HPLC-Analytik des Vitamin C:
Methodenoptimierung und Referenzwerterstellung

Inauguraldissertation
zur
Erlangung der Doktorwürde
der Universität zu Lübeck

- Aus der Medizinischen Fakultät -

vorgelegt von
Cornelia Marlene Focke
aus Bremen

Lübeck 2010
1. Berichterstatter: Prof. Dr. med. Michael Seyfarth
2. Berichterstatter: Priv.-Doz. Dr. med. Gunther Weitz

Tag der mündlichen Prüfung: 06.09.2010
Zum Druck genehmigt. Lübeck, den 06.09.2010

gez. Prof. Dr. med. Werner Solbach
- Dekan der Medizinischen Fakultät -
Messe, was messbar ist.

(Galileo Galilei)
Inhaltsverzeichnis

Inhaltsverzeichnis...4
Abkürzungsverzeichnis..7
1. Einführung in die Thematik...8
 1.1 Bedeutung des Vitamin C für den menschlichen Organismus8
 1.2 Chemie und Biochemie des Vitamin C...10
 1.3 Vitamin C– Mangelsyndrome, ihre Ursachen und adäquate Vitamin C-
 Versorgung...12
 1.4 Vitamin C in Prävention und Therapie...15
 1.5 Unerwünschte Nebenwirkungen und Kontraindikationen..18
 1.6 Übersicht zur bisherigen Vitamin C- Plasmaspiegelbestimmung............................19
 1.6.1 Allgemeine Einführung in die HPLC...20
 1.6.2 Normalphasen-, Umkehrphasen-, Ionpaar- und Ionenaustausch-Chromato-
 graphie ...21
 1.6.3 Interne und externe Standards ...22
 1.6.4 Validierung einer HPLC-Methode..22
 1.6.5 HPLC-Methoden zur Vitamin C-Plasmaspiegelbestimmung in der Literatur....23
 1.6.6 Methode zur Vitamin C-Plasmaspiegelbestimmung nach Liau et al.................25
 1.7 Zielsetzung der Arbeit...25
2. Material und Methoden...27
 2.1 Geräte, Chemikalien, Untersuchungsmaterialien..27
 2.1.1 Geräte ..27
 2.1.2 Seren, Plasmen, Liquor und Urin ..27
 2.1.3 Chemikalien ..28
 2.2 Methodenaufbau und -optimierung zur Messung des Plasma- und Serum-
 Vitamin C ...29
 2.2.1 Herstellung der mobilen Phase ..29
 2.2.2 Herstellung des Präzipitans und Stabilisans ...29
 2.2.3 Herstellung der Vitamin C-Standards und Kontrollen29
 2.2.4 Herstellung der Proben zu den Untersuchungen zum internen Standard30
 2.2.5 Probenvorbereitung ...30
 2.2.6 Einstellung der HPLC-Anlage ...31
 2.2.7 Kalibrierung und Auswertung der Chromatogramme31

4
2.2.8 Untersuchungen zur Stabilität der Proben ...31
2.2.9 Optimierte HPLC-Methoden zur Bestimmung von Ascorbinsäure in Serum und Plasma...32
2.2.10 Untersuchungen von Urin- und Liquor-Vitamin C32
2.3 Methodenvalidierung ...33
2.3.1 Untersuchungen zur Richtigkeit ...33
2.3.2 Untersuchungen zur Präzision ...33
2.3.3 Untersuchungen zur Nachweis- und Bestimmungsgrenze34
2.3.4 Untersuchungen zur Linearität der Messung ...34
2.4 Methodenanwendung: Referenzwertermittlung und Untersuchungen zur Vitamin C-Kinetik ...34
2.4.1 Referenzwerte ...34
2.4.2 Kinetik ...35
2.5 Statistische Methoden ...35
3. Ergebnisse ..37
3.1 Methodenoptimierung und -validierung ..37
3.1.1 Stationäre Phase...37
3.1.2 Mobile Phase...37
3.1.3 Interner Standard ...40
3.1.4 Richtigkeit ..40
3.1.5 Präzision ..41
3.1.6 Nachweisgrenze ...41
3.1.7 Linearer Messbereich...42
3.1.8 Stabilität der Vitamin C-Proben ..42
3.1.9 Messung von Urin- und Liquorproben ...46
3.2 Methodenanwendung ...47
3.2.1 Referenzwertermittlung ...47
3.2.1.1 Untersuchung auf altersspezifische Unterschiede49
3.2.1.2 Untersuchung auf geschlechtsspezifische Unterschiede51
3.2.2 Vitamin C-Kinetik ...53
4. Diskussion ..56
4.1 Methodenoptimierung ..56
4.2 Grenzen der Methode ..58
4.3 Referenzwerte ...58
4.4 Kinetik ...59
4.5 Einsatzmöglichkeiten ..60
4.6 Ausblick ...60
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Aqua dest</td>
<td>destilliertes Wasser</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
</tr>
<tr>
<td>ECD</td>
<td>elektrochemische Detektion</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>I.E.</td>
<td>internationale Einheiten</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>Kg</td>
<td>Kilogramm</td>
</tr>
<tr>
<td>KG</td>
<td>Körpergewicht</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitre</td>
</tr>
<tr>
<td>µmol</td>
<td>Mikromol</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
</tr>
<tr>
<td>MPA</td>
<td>meta-Phosphorsäure</td>
</tr>
<tr>
<td>nA</td>
<td>nanoAmpère</td>
</tr>
<tr>
<td>nr.</td>
<td>Nummer</td>
</tr>
<tr>
<td>pAVK</td>
<td>periphere arterielle Verschlusskrankheit</td>
</tr>
<tr>
<td>PCA</td>
<td>Perchlorsäure</td>
</tr>
<tr>
<td>rp HPLC</td>
<td>reversed-phase HPLC</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s.</td>
<td>siehe</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>U</td>
<td>Umdrehungen</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolett</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>VK</td>
<td>Variationskoeffizient</td>
</tr>
</tbody>
</table>
1. Einführung in die Thematik

1.1 Bedeutung des Vitamin C für den menschlichen Organismus

Sir Jack Drummond benannte 1919 den für den Menschen lebenswichtigen Antiskorbutfaktor mit dem Buchstaben C, weshalb er seitdem als Vitamin C bezeichnet wird (Drummond 1919); 1928 isolierte Szent-Györgyi erstmals die gegen Skorbut wirksame Verbindung aus Ochsen-Nebennierenrinde und Pflanzen (Szent-Györgyi 1928), die schließlich auf Grund ihrer antiskorbutischen Eigenschaft den Trivialnamen Ascorbinsäure erhielt (Szent-Györgi 1933).

![L-Ascorbinsäure](image1)

Abb. 1: Strukturformel der L-Ascorbinsäure

1.2 Chemie und Biochemie des Vitamin C
Die L-Ascorbinsäure, chemisch 2-Oxogulonolacton, ist gut wasserlöslich (330g/l), hat ein Molekulargewicht von 176.1, einen sauren Charakter und ist an ihren OH-Gruppen des C$_2$- und C$_3$- Atoms sehr oxidationsempfindlich. Indem sie ihre beiden Protonen und zwei Elektronen abgibt und so zu Dehydroascorbinsäure oxidiert, ist sie in der Lage, andere Substanzen zu reduzieren.

Abb. 2: Redoxsystem L-Ascorbinsäure/L-Dehydroascorbinsäure

Das Oxidationsprodukt, die L-Dehydroascorbinsäure kann durch andere Antioxidantien wie Glutathion (May et al 2003) wieder zu L-Ascorbinsäure reduziert werden; alternativ wird L-Dehydroascorbinsäure irreversibel zu 2,3-Diketogulonsäure hydrolysiert und schließlich als Oxalsäure über die Nieren ausgeschieden (Baker 1969).

Abb. 3: irreversibler Metabolismus des Vitamin C. L-Ascorbinsäure wird zu Oxalsäure abgebaut.

Durch ihr starkes Reduktionsvermögen schützt die L-Ascorbinsäure das zweiwertige Eisen im aktiven Zentrum vieler Hydroxylasen sowie das zweiwertige Kupfer einiger Oxygenasen vor Oxidation und verhindert den Funktionsverlust dieser Enzyme. Vitamin C ist somit ein wichtiger Co-Faktor in Hydroxylierungsreaktionen der Kollagen-

Eine weitere wichtige Funktion der L-Ascorbinsäure ist die Reduktion dreiwertigen Nahrungseisens zu zweiwertigem, dies erleichtert seine Resorption über die Darmschleimhaut (Mackenzie und Garrick 2005). Vitamin C fördert so die Eisenaufnahme und wird daher vielen therapeutischen Eisenpräparaten zugesetzt.

Die Fähigkeit der L-Ascorbinsäure, sich durch Protonen- und Elektronenabgabe zum Ascorbatradikal zu wandeln und in dieser aggressiven Form mit anderen Radikalen zu reagieren, erklärt ihre vielbeschriebene Wirkung als Radikalfänger. Zudem ist sie in der Lage, andere Antioxidantien wie das Vitamin E in Membranen zu regenerieren, wenn diese zu Radikalen verbraucht wurden (Bisby et al. 1995).

1.3 Vitamin C– Mangelsyndrome, ihre Ursachen und adäquate Vitamin C-Versorgung

Bis Ende des 18. Jahrhunderts war der Skorbut ein gefürchtetes und weit verbreitetes Leiden, insbesondere unter Seefahrern, die sich oft wochenlang Obst- und gemüsearm ernährten. Der schottische Marinearzt Dr. James Lind brachte 1753 durch einfache Experimente erstmals den Verzehr von frischen Früchten mit der Genesung einiger Skorbutkranker in Zusammenhang. Durch seine systematischen Untersuchungen wurde 40 Jahre später der Zitronensaft als unerlässlicher Bestandteil in die Rationen der britischen Seeleute aufgenommen (Bartholomew 2002).

Auch Möller und Barlow beschrieben Skorbutsymptome mit Störungen des Knochenwachstums bei Säuglingen und Kleinkindern, die lediglich mit Kuhmilch, die nur wenig Vitamin C enthält, ernährt worden waren (Rajakumar 2001).

Die tägliche L-Ascorbinsäuredosis für eine optimale Vitaminversorgung ist unbekannt und wird kontrovers diskutiert. Es verdichten sich die Hinweise, dass die empfohlene Vitamin C- Aufnahme von 75 mg/d für Frauen und 90 mg/d für Männer (RDA; http://www.iom.edu/Object.File/Master/7/296/webtablevitamins.pdf), bzw. 100 mg/d für beide Geschlechter (DGE; http://www.dge.de/pdf/ws/ReferenceValues.pdf) zwar durchaus ausreicht, um Anzeichen von Skorbut zu verhindern, jedoch weit unter der Dosis liegt, die möglicherweise einen Nutzen in der Prämvention und Bekämpfung vieler Erkrankungen bringen könnte.

Verfechter einer präventiven und therapeutischen Vitamin C-Hochdosisgabe von mehreren Gramm pro Tag war Linus Pauling, der zwar in seinem Buch „Vitamin C und der Schnupfen“ eine besondere Wirksamkeit in verschiedenen Studien beschrieb
(Pauling 1971 und 1972), deren Ergebnisse jedoch zum Teil bis heute nicht reproduziert werden konnten.

Tatsächlich aber haben Experimente an den Affenarten *Papio ursinus* und *Cercopithecus aethiops*, die wie der Mensch nicht fähig sind Vitamin C zu synthetisieren, gezeigt, dass die Tiere täglich 10-35 mg L-Ascorbinsäure/kgKG benötigten, um den Vitamin C-Plasmaspiegel zum Zeitpunkt ihrer Gefangennahme zu halten, bzw. um während der Gefangenschaft gesund zu bleiben. Diese Experimente an in freier Wildbahn gefangenen Tieren war für die Versuchsaffen allerdings mit großem physischen und psychischen Stress verbunden, der möglicherweise zu einem stark erhöhten Vitamin C-Verbrauch führte (DeKlerk et al 1973 a, DeKlerk et al 1973 b). Im Gegensatz dazu liegt die empfohlene Aufnahme beim Menschen bei etwa 0,9-1,5 mg/kgKG pro Tag (60 bzw. 100 mg/d).

Neuere Studien untersuchten die Pharmakokinetik des Vitamin C genauer und demonstrierten eine Bioverfügbarkeit von 100% bei einmaliger oraler Gabe von 200 mg, eine Sättigung von Granulo-, Mono- und Lymphozyten bei 100 mg, eine Plasmasättigung bei 1 g und ein maximales Plasmaplateau bei 200 mg L-Ascorbinsäure pro Tag. Die Autoren dieser Studien halten daher eine tägliche Vitamin C-Zufuhr von 200 mg für angemessen (Levine et al 1996 und 2001).

Eine andere Herangehensweise zur Bestimmung einer optimalen Vitamin C-Dosis ist die Messung von Markern, die oxidativen Stress im Organismus repräsentieren. Ein maximaler antioxidativer Effekt der L-Ascorbinsäure bei Gesunden wird bei einer oralen Zufuhr von 150 mg (Frei et al 1989) bis zu 500-1000 mg pro Tag (Johnston et al 2001) angegeben.
1.4 Vitamin C in Prävention und Therapie

Auch Leukozyten enthalten im Vergleich zum Plasma bis zu 100 mal höhere L-Ascorbinsäurekonzentrationen (Washko et al 1991), die im Verlauf vieler Erkrankungen

Neben der direkten Wirkung von L-Ascorbinsäure auf Entzündungszellen gibt es auch andere Hinweise auf ihre Einflussnahme auf das Immunsystem.

An Meerschweinchen konnten Haskell und Johnston zeigen, dass die Serumkonzentration des Komplementfaktors C1q (ein Hydroxyprolin-reiches Protein, das dem Kollagen strukturell sehr ähnlich ist) unter gewebesättigender Vitamin C-Fütterung deutlich höher war als unter skorbutischen Bedingungen (Haskell und Johnston 1991). Eine auf 5-20 mg Vitamin C/d beschränkte Diät für 32 Tage führte bei Testpersonen zu einer signifikanten Senkung der Spättyp-Reaktion, welche ein wichtiges Maß für die allgemeine Immunkompetenz darstellt (Jacob et al 1991).

Sehr umstritten ist die Wirkung von Vitamin C in der Krebsforschung. In einigen epidemiologischen Studien konnte eine inverse Assoziation zwischen L-Ascordsäureplasmaspiegeln und dem Risiko für die Entwicklung

konventionellen Eisentherapie keine signifikanten Änderungen dieser Parameter (Tarng und Huang 1998). Auch Keven et al konnten einen positiven Effekt des Vitamin C auf die Erythropoese solcher rHuEpo-Hyporesponder feststellen (Keven et al 2005).

1.5 Unerwünschte Nebenwirkungen und Kontraindikationen

Da es sich bei der L-Ascorbinsäure um ein Vitamin, also um einen essentiellen Nährstoff, handelt, ist eine absolute Kontraindikation für die Aufnahme von Vitamin C per definitionem nicht möglich. Es gibt jedoch relative Kontraindikationen, die einen zurückhaltenden oder stark eingeschränkten Verzehr gebieten. Zu diesen gehören insbesondere Patienten mit Oxalatsteinanamnese sowie Patienten mit Eisenspeichererkrankungen (s. Kap. 1.4). Eine intravasale Hämolysie wurde bei Patienten mit Glucose-6-Phosphat-Dehydrogenase-Mangel beschrieben, wenn diesen Ascorbinsäure i.v. oder in einer Dosis von > 6 g oral verabreicht wurde (Levine et al 1999).

1.6 Übersicht zur bisherigen Vitamin C-Plasmaspiegelbestimmung

Dabei stellt die Messung von Vitamin C-Konzentrationen in biologischen Flüssigkeiten hohe Anforderungen an die technische und zeitliche Bearbeitung. Da es sich bei der L-Ascorbinsäure um ein sehr instabiles Molekül handelt, das bei hohem pH, bei Raumtemperatur, unter Lichtexposition und in Gegenwart von reduzierbaren Substanzen rasch oxidiert, müssen Vitamin C-haltige Proben für eine Messung entsprechend stabilisiert und möglichst zeitnah untersucht werden (Isler et al 1988).

1.6.1 Allgemeine Einführung in die HPLC

Zu den sensitivsten analytischen Messmethoden gehört die Hochleistungs-Flüssigkeitschromatographie (HPLC), ein chromatographisches Verfahren, bei dem eine flüssige oder in Flüssigkeit gelöste Probe mit Hilfe einer mobilen Phase (Eluent) über eine feste Phase (HPLC-Säule) transportiert, einzelne Komponenten der Probe über verschiedene Interaktionen mit der stationären Phase wie lipophile und Dipol-Wechselwirkungen unterschiedlich retentiert und so aufgetrennt und die Konzentrationen der getrennten Verbindungen über ein geeignetes Signal in einem Detektor gemessen werden.

Eine HPLC-Anlage besteht dementsprechend aus einem (isokratisches System) oder mehreren Lösungsmitteln (Gradientenelution), einer Pumpe, einem Probenaufgeber (Autosampler, Injektor), einer Säule und einem Detektor. Alle Komponenten sind über ein Kapillarsystem verbunden, das letztendlich in den Abfall mündet. Die Anlage verfügt
zudem über ein Interface, welches die Steuerung der Anlage und das Erfassen und Auswerten der Messdaten per Computer ermöglicht.

HPLC System

Abb. 5: Darstellung einer HPLC-Anlage mit mobiler Phase (Solvent), Pumpe (Pump), Einspritzsystem (Injector), Säule (HPLC Column), Detektor (Detector), Abfall (Waste) und angeschlossenem Computer zur Datenauswertung (Data) (http://www.chemistry.nmsu.edu/Instrumentation/Waters_HPLCSystem.gif).

Durch das unterschiedlich lange Zurückhalten der Verbindungen auf der festen Phase („Retentionszeit“) ist eine Identifizierung der Substanzen, also eine qualitative Analyse möglich.

Im Chromatogramm, der graphischen Darstellung des Detektorsignals (y-Achse) gegen die Zeit (x-Achse), erlaubt die Höhe des Ausschlages, der so genannte Peak, über Höhen- oder Flächenberechnung auch eine Konzentrationsbestimmung, also eine quantitative Analyse.

Abb. 6: Beispiel eines Chromatogramms. Höhe des Ausschlages (y-Achse) ist gegen die Zeit (x-Achse) aufgetragen (Retentionszeit (Retention time)). A und B zeigen zwei unterschiedlich hohe Peaks.
1.6.2 Normalphasen-, Umkehrphasen-, Ionpaar- und Ionenaustausch-Chromatographie

Die HPLC-Säule, das Kernstück des Systems, trennt die Komponenten einer Probe auf, während die mobile Phase (der Puffer) als Lösungs- und Fließmittel dient, das die stationäre Phase mit der Probe benetzen, sie aber auch wieder vollständig von der Säule eluieren soll ohne selbst mit der Probesubstanz zu reagieren. Entsprechend den Eigenschaften der Probe wird ein Puffer verwendet, in dem sie sich löst (demnach ein hydrophiler, polarer Puffer für eine hydrophile zu messende Substanz), während die Säule als stationäre Phase die Probe möglichst kurz retenieren und von anderen Verbindungen trennen und daher konträre Eigenschaften besitzen sollte (z.B. eine apolare Säule für eine polare zu messende Verbindung).

1.6.3 Interne und externe Standards

1.6.4 Validierung einer HPLC-Methode

Vor der Routineanwendung einer HPLC-Methode müssen ihre Leistungsparameter ermittelt, beschrieben und überprüft werden. Zu diesen gehören u. a.: Selektivität bzw. Spezifität, Mess- bzw. Linearitätsbereich, Nachweisgrenze (Detection Limit) und Bestimmungsgrenze (Quantification Limit), Präzision (Reproduzierbarkeit) und Wiederholbarkeit, Richtigkeit (Wiederfindung), Robustheit.
Die Selektivität ist ein Maß dafür, wie gut ein Analyt in einer komplexen Probe ohne Störungen durch andere Analyte oder die Probenmatrix gemessen werden kann. Eine Methode, die vollkommen selektiv für einen Zielanalyten ist, bezeichnet man als spezifisch.

Die Empfindlichkeit ist der kleinste Unterschied der Analytenkonzentration, der mit der Methode bestimmbar ist, und wird durch die Steigung der Kalibrationskurve dargestellt. Die Nachweisgrenze (Detection Limit) ist die niedrigste Konzentration, die sich noch vom Nullwert signifikant unterscheidet. Bei der HPLC ist dies der Fall, wenn das Signal (der Peak) etwa 2-3 mal größer ist als das Basislinienrauschen.

Die Präzision (Reproduzierbarkeit) einer Methode ist die Angabe der Übereinstimmung von unabhängigen Messergebnissen innerhalb einer Methode, die als Variationskoeffizient oder Standardabweichung in der Serie angegeben und durch wiederholte Injektion aus einer Probe ermittelt wird. Für die Wiederholbarkeit werden Mittelwerte aus kleinen Serien in kurzen Zeitabständen (Tagen) miteinander verglichen (identisches Material, Gerät, Labor etc.).

Die Richtigkeit (Wiederfindung) einer Methode ist die Übereinstimmung mit dem wahren Wert und kann nur mit Hilfe von Referenzstandards ermittelt werden. Die Wiederfindung ist dann die Abweichung in Prozent vom wahren Analytenwert.

1.6.5 HPLC-Methoden zur Vitamin C-Plasmaspiegelbestimmung in der Literatur

In der Literatur werden verschiedene Verfahren zur Vitamin C-Analyse mittels HPLC beschrieben, die sich in Komplexität, Schnelligkeit der Analyse, Detektionsart, Sensitivität und Möglichkeiten der Stabilisierung der Proben deutlich unterscheiden. Insbesondere die reversed phase- und die Ionenaustauscher-Chromatographie dominieren in den letzten 15 Jahren die Erfassung von L-Ascorbinsäurekonzentrationen.
in biologischen Flüssigkeiten. Die beiden üblichen Detektionsarten sind dabei die UV- und die elektrochemische Detektion.

Weiterhin beschäftigen sich nur wenige Arbeiten ausführlicher mit der Haltbarkeit der Vitamin C-Proben, obwohl die Ascorbinsäure als Antioxidans für ihre Instabilität bekannt ist. Zu den Faktoren, welche die Stabilität positiv beeinflussen, gehören dabei insbesondere ein saures Milieu, Lichtschutz, niedrige Temperatur und der Zusatz eines stabilisierenden Agens.

Die üblichsten Stabilisatoren sind dabei EDTA und meta-Phosphorsäure (MPA), wobei das EDTA meist direkt bei der Probengewinnung über Blutabnahmeröhrchen hinzugegeben wird. Doch auch der Einfluss des Untersuchungsmaterials wird häufig nur unzureichend überprüft. Die meisten Methoden verwenden hierfür entweder EDTA- (Liau

1.6.6 Methode zur Vitamin C-Plasmaspiegelbestimmung nach Liau et al.
Von Liau et al wurde eine praktikable Methode zur Messung von Plasma-Ascorbinsäure mit UV- bzw. elektrochemischer Detektion beschrieben. Als mobile Phase wurde 20 mM Ammoniumdihydrogenphosphat mit 0,015 % MPA, als stationäre Phase eine Partisphere 5 C18 (110 x 4.7 mm) Säule mit einer Vorsäule (GuardCartridge) verwendet. Das Stabilisans und Präzipitans war ein Gemisch aus 10 % Perchlorsäure und 1 % meta-Phosphorsäure. Bei einer Messzeit von 5 min betrug die Retentionszeit des Vitamin C etwa 2 min. Den Angaben der Autoren zufolge waren die Vitamin C-Standards bei –20°C drei Tage, Vitamin C - Plasmaproben versetzt mit einem Stabilisator waren bei –20°C sechs Tage stabil (Liau et al 1991).

1.7 Zielsetzung der Arbeit
Die von Liau et al beschriebene HPLC-Methode zur Plasma-Ascorbinsäuremessung sollte zuerst reproduziert und dann den Bedürfnissen und Gegebenheiten des Zentrallabors angepasst werden. Ziel dieser Arbeit war eine Optimierung der HPLC-Messmethode für Plasma-Vitamin C nach Liau et al insbesondere durch:

- Verbesserung der Auflösung
- Charakterisierung der Nachweisgrenze, der Linearität, der Präzision und der Richtigkeit der Messungen
- Einführung eines internen Standards
• Systematische Untersuchung zur Stabilität der Proben in verschiedenen Medien
• Erstellen von Referenzwerten für verschiedene Altersgruppen
• Untersuchung der Vitamin C-Kinetik an gesunden Probanden

Zusätzlich sollte überprüft werden, ob sich die optimierte Methode grundsätzlich auch für die Bestimmung von Vitamin C in anderen biologischen Flüssigkeiten, insbesondere in Urin und Liquor cerebrospinalis, eignet.
2. Material und Methoden

2.1 Geräte, Untersuchungsmaterialien, Chemikalien

2.1.1 Geräte

HPLC-System:
- L-6220 Intelligent Pump (Merck Hitachi)
- D-6000A Interface (Merck Hitachi)
- AS-2000A Autosampler (Merck Hitachi)
- Degasser (Knauer)
- L-4250 UV-VIS Detector (Merck Hitachi)
- Amperometric Detector L-3500A (Merck Recipe)

HPLC-Säule und Vorsäule:
- Synergi 4µm Hydro-RP 80A 150 x 4,6 mm (Phenomenex 00F-4375-E0)
- SecurityGuard Guard Cartridges Kit, AQ-C18 Cartridge 4 x 3,0 mm (Phenomenex AJ0-7511)

HPLC-Software:
- Model D-7000 Chromatography Data Station Software HPLC System Manager (Merck)

Filtrationsanlage:
- Vakuum-Filtrationsvorrichtung (Millipore)
- Cellulose Acetate Filter 0,2 µm Poregröße (Sartorius AG 11107-47-N)

Sonstige Geräte:
- pH-Meter (Mettler Delta 345)
- Vortex Mischer
- Waage (Mettler Toledo Ag 241)
- Ultraschallbad

2.1.2 Seren, Plasmen, Liquor und Urin

Seren und Plasmen:
Für die Methodenentwicklung und -validierung wurden Restseren und –plasmen, -urine und -liquores aus der Routineanalytik des Zentrallabors des Universitätsklinikums

2.1.3 Chemikalien

- meta-Phosphorsäure, p.a. (Merck KGaA 100546)
- Ammoniumdihydrogenphosphat, p.a. (Merck KGaA 101207)
- Perchlorsäure 70-72%, p.a. (Merck KGaA 100519)
- L(+)Ascorbinsäure, p.A. (Mallinckrodt Baker 1018)
- 3-Amino-4-hydroxybenzoësäure (Fluka AG 08110)
- Acetonitril HPLC grade (J.T. Baker 8004)
- N-Methyl-Dopamin (Fluka AG H3132)
- Gulonsäure-y-lacton (Fluka AG 49120)
- 1,4-Dihydroxybenzol (Hydrochinon) (Merck KGaA 8223330
- DL-p-Hydroxyphenylmilchsäure (Sigma-Aldrich H3253)
- 3,4-Dimethoxyphenylessigsäure (Sigma-Aldrich 53650)
- 3-Hydroxy-4-Methoxybenzoësäure (Isovanillinsäure) (Sigma-Aldrich 220108)
- Orthophosphorsäure p.a. (Merck KGaA 100573)

Vitamin C Präparate:

- L-Ascorbinsäure 500 mg Tabletten (Wörwag Pharma 0652234)
- L-Ascorbinsäure Injektionslösung, Ampulle 500 mg/ 5 ml (Wörwag Pharma 3568847)
Vitamin C-Kontrollen:

- Vitamin C Plasma Control Level I + II, lyophilised (Chromsystems GmbH 0074)

2.2 Methodenaufbau und -optimierung zur Messung des Plasma- und Serum-Vitamin C

2.2.1 Herstellung der mobilen Phase

Für den HPLC-Puffer (20 mM Ammoniumdihydrogenphosphat mit 0,015 % meta-Phosphorsäure) wurden 2,3 g Ammoniumdihydrogenphosphat und 0,15 g Metaphosphorsäure abgewogen, in 900 ml Aqua dest gelöst, mit Hilfe von Orthophosphorsäure auf den gewünschten pH eingestellt und dann mit Aqua bidest auf 1000 ml aufgefüllt.

Die mobile Phase wurde mit einer Millipore-Anlage vakuumfiltriert und anschließend 10 Minuten im Ultraschallbad entgast.

Um den Einfluss des pH-Werts auf die Retentionszeit der L-Ascorbinsäure und die chromatographische Auflösung der HPLC-Methode mit elektrochemischer und UV-Detektion zu studieren, wurde die mobile Phase auf folgende pH-Werte eingestellt: 2,55; 2,65; 2,95; 3,10.

2.2.2 Herstellung des Präzipitans und Stabilisans:

Zur Enteiweissung und Stabilisierung der Proben wurde eine wässrige Lösung aus 10 % Perchlorsäure mit 1 % meta-Phosphorsäure hergestellt: 5 g meta-Phosphorsäure wurden zu 71,43 ml 70 %-iger Perchlorsäure gegeben, das Gemisch mit Aqua dest auf 500 ml aufgefüllt.

2.2.3 Herstellung der Vitamin C-Standards und –Kontrollen:

10 mg L-Ascorbinsäure wurden abgewogen und nach Liau et al in 10 ml mobiler Phase gelöst, um die Stammlösung eines Vitamin-C-Standards zu erhalten. Diese wurde im Verhältnis 1:50 mit einem Gemisch aus 1 % meta-Phosphorsäure und 10 % Perchlorsäure (MPA/PCA) (►Standard 5) verdünnt. Anschließend wurde Standard 5 1:2 (►Standard 4), Standard 4 1:2 (►Standard 3), Standard 3 ebenso 1:2 (►Standard 2) und Standard 2 1:5 (►Standard 1) mit MPA/PCA verdünnt.
10 ml Stammlösung.
(Ascorbinsäure)

| Arbeitslösung = 20 µl (Verdünnte Stammlösung) + 980 µl MPA/PCA |
| Standard 5 = 100 µl (Arbeitslösung) + 100 µl MPA/PCA |
| Standard 4 = 100 µl (Standard 5) + 100 µl MPA/PCA |
| Standard 3 = 100 µl (Standard 4) + 100 µl MPA/PCA |
| Standard 2 = 100 µl (Standard 3) + 100 µl MPA/PCA |
| Standard 1 = 100 µl (Standard 2) + 400 µl MPA/PCA |

Abb. 7: Ansetzen der Vitaminstandards aus Stammlösung

Alternativ wurden 10 mg Ascorbinsäurepulver in 10 ml Vitamin C-freiem Plasma gelöst. Die Stammlösung wurde nach demselben Schema zu den Standards 1-5 mit Vitamin C freiem Plasma verdünnt.

Die Vitamin C-Standards wurden wie Vitamin C-Plasma- oder Serumproben aufgearbeitet.

Die Herstellung der Kontrollen erfolgte analog zur Herstellung der Vitamin C-Standards mit variablen L-Ascorbinsäurekonzentrationen.

2.2.4 Herstellung der Proben zu den Untersuchungen zum internen Standard:

Auf der Suche nach einem internen Standard wurden für die Messungen in je 10 ml mobiler Phase gelöst:

- 0,8 mg N-Methyl-Dopamin
- 0,8 mg Gulonsäure-γ-lacton
- 0,8 mg Hydrochinon
- 0,6 mg 3-Amino-4-hydroxybenzoesäure
- 0,7 mg DL-p-Hydroxyphenylmilchsäure
- 0,8 mg β-4-Hydroxy-3 Methoxyphenylmilchsäure
- 0,9 mg 3,4-Dimethoxyphenyllessigsäure
- 1,4 mg Isovanillinsäure

Die einzelnen Verbindungen wurden jeweils zusammen mit Vitamin C-Standards per UV-Detektion bei Wellenlängen von 245, 255, 265 und 275 nm, per ECD bei 0,7 V gemessen.
2.2.5 Probenvorbereitung:
Frische Blutproben in Serum-, EDTA-Plasma- oder Lithium-Heparinplasma-Monovetten®, wurden bei 3600 g 10 Minuten zentrifugiert. 100 µl des Überstandes wurden mit 100 µl 1 %-iger MPA und 10 %-iger PCA versetzt und entweder direkt zur Analyse weiterbearbeitet oder bis zum Zeitpunkt der Messung bei -20°C eingefroren. Für die Analyse wurden die mit MPA/PCA stabilisierten und ausgefallten Proben sowie 30 µl des internen Standards in lichtgeschützte Eppendorfgefäße überführt und 20 Minuten bei 4°C inkubiert. Anschließend wurde 200 µl der mobilen Phase zugegeben und das Gemisch 3 Minuten bei 12 000 g zentrifugiert. 10 µl des Überstandes wurden in das HPLC-System injiziert.

2.2.6 Einstellungen der HPLC-Anlage:
Die Messung der Proben erfolgte bei 245 nm (UV-Detektion) bzw. 0,70 V (ECD), die Flussrate betrug 1 ml/min bei 100 % Elutionspuffer.

2.2.7 Kalibrierung und Auswertung der Chromatogramme
Für quantitative Bestimmungen der Vitamin C-Proben wurden die in Kapitel 2.2.3. beschriebenen Standardlösungen als Kalibratoren eingesetzt und mit dem gleichen Volumen wie die unbekannten Proben injiziert. Die Integration der Chromatogramme, die Korrektur der Flächenintegrale durch das Flächenintegral des Internen Standards, die Berechnung der Kalibrierfunktion sowie die Ermittlung der Ascorbinsäurekonzentration in der untersuchten Probe erfolgten mit Hilfe einer speziellen Software (HPLC System Manager D-7000, Kap. 2.1.1).

2.2.8 Untersuchungen zur Stabilität der Blutproben:
Für die Untersuchungen zur optimalen Behandlung der Vitamin C-Proben wurden einer gesunden Testperson jeweils ein Serumröhrchen, ein Lithium-Heparinröhrchen und zwei EDTA-Röhrchen abgenommen. Die Proben wurden sofort bei 3600 g zentrifugiert und anschließend wie folgt aliquotiert: Jeweils zwei braune Eppendorfgefäße à 100 µl Serum-, EDTA- oder Lithiumheparinplasma-Probe wurden bei Raumtemperatur, bei 4°C oder bei -20°C gelagert. Zu einem der beiden Gefäße wurde dabei sofort 100µl 1% MPA + 10% PCA zur Stabilisierung gegeben. Nach sechs, 24 und 48 Stunden wurde jeweils eine Probe pro Lagerungstemperatur aufbereitet und gemessen, des weiteren nach sieben, 14, 21, 28 und 35 Tagen.
Um L-Ascorbinsäureverluste während des Messvorganges zu vermeiden, wurden die Proben zeitversetzt bereitet, so dass sie bis zur Messung nur 15-30 min in der Anlage zubrachten. Die mobile Phase und die L-Ascorbinsäurestandards wurden am Tag jeder Messreihe frisch hergestellt.

2.2.9 Optimierte HPLC-Methoden zur Bestimmung von Ascorbinsäure in Serum und Plasma

Probenvorbereitung:

<table>
<thead>
<tr>
<th>100 µl Serum / Standard +</th>
<th>100 µl MPA/PCA +</th>
<th>30 µl interner Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 min bei 4 °C inkubieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200 µl Probe +</td>
<td>200 µl Eluent</td>
<td></td>
</tr>
<tr>
<td>3 min bei 12000g zentrifugieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 µl Überstand in die HPLC injizieren</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abb. 8: Probenvorbereitung in der optimierten Methode.

Säule: RP-HPLC-Säule Synergi 4µm Hydro-RP 80A 150 x 4,6 mm
Eluent: $(\text{NH}_4)_2\text{H}_2\text{PO}_4$, $(\text{HPO}_3)_n$, pH 2,55 (UV), pH 2,95 (ECD)
Interner Standard: 3-Amino-4-hydroxybenzosäure (UV), Hydrochinon (ECD)
Flussrate: 1 ml/min
Detektion (UV): 245 nm
Detektion (ECD): 0,70 V

2.2.10 Untersuchungen von Urin- und Liquor-Vitamin C:
Urinproben einer gesunden Testperson wurden vor und nach der oralen Gabe von 500 mg Vitamin C asserviert und ebenfalls wie Plasmaproben aufgearbeitet.

2.3. Methodenvalidierung
Zur Validierung der HPLC-Methode wurden der Messbereich, die Nachweis- und Bestimmungsgrenze, die Präzision, die Linearität und die Richtigkeit der Messung untersucht.

2.3.1 Untersuchungen zur Richtigkeit:
Die Richtigkeit der Messung wurde mit Hilfe von Doppelbestimmungen zweier durch Einwaage selbst hergestellter Kontrollen ermittelt. Kontrolle 1 hatte dabei eine rechnerische Vitamin C Konzentration von 14,47 µmol/l, Kontrolle 2 eine Konzentration von 57,91 µmol/l. Zusätzlich wurden zwei unterschiedliche Konzentrationen eines kommerziellen Anbieters (Chromsystems) von Kontrollen gemessen. Die Sollwerte der Chromsystemskontrollen betrugen 35,6 µmol/l (Bereich 28,5-42,7 µmol/l, Kontrolle Chrom 1) bzw. 124,6 µmol/l (Bereich 99,2-149 µmol/l, Kontrolle Chrom 2). Aus den erhaltenen Messwerten wurde der Mittelwert und die Unrichtigkeit berechnet. Die Unrichtigkeit wurde mit Hilfe der folgenden Formel errechnet:

\[
\text{Unrichtigkeit (\%)} = \left(\frac{\text{Messwert} - \text{Zielwert}}{\text{Zielwert}} \right) \times 100
\]

2.3.2 Untersuchungen zur Präzision:
Zur Ermittlung der Präzision in Serie wurden drei unterschiedliche Vitamin C-Konzentrationen (14, 58 und 100 µmol/l) im Plasma jeweils mindestens zehn Mal in einer Messreihe gemessen. Um die Tag-zu-Tag-Präzision zu ermitteln, wurden zwei unterschiedliche Vitamin C-Konzentrationen (95 µmol/l in Serum; 112 µmol/l in Lithium-Heparinplasma) an drei aufeinander folgenden Tagen gemessen. Aus den erhaltenen Werten wurden Mittelwert, Standardabweichung und der Variationskoeffizient berechnet. Der Variationskoeffizient (VK) wurde mit Hilfe folgender Formel berechnet:

\[
\text{VK (\%)} = \left(\frac{\text{Standardabweichung}}{\text{Mittelwert}} \right) \times 100
\]

2.3.3 Untersuchungen zur Nachweis- und Bestimmungsgrenze:

\[\text{Nachweisgrenze} = \bar{X}_b + 3 \cdot SD_b \]

berechnet, wobei \(\bar{X}_b \) für den Mittelwert, \(SD_b \) für die Standardabweichung des Blindwertes steht.

Die Bestimmungsgrenze wurde ebenfalls mit Hilfe des Blindwertes nach folgender Formel berechnet:

\[\text{Bestimmungsgrenze} = \bar{X}_b + 9 \cdot SD_b \]

2.3.4 Untersuchungen zur Linearität der Ascorbinsäuremessung:
Zur Untersuchung der Linearität der Vitamin C-Messung wurde eine Stammlösung mit einer Vitamin-C-Konzentration von 700 µmol/l hergestellt, die in 10 Schritten jeweils 1:1 mit ascorbinsäurefreiem Poolplasma verdünnt wurde. Nach Analyse der verdünnten Proben wurden die Peakflächen und die daraus berechneten Konzentrationen verglichen.

2.4 Methodenanwendung: Referenzwertermittlung und Untersuchungen zur Vitamin C-Kinetik

2.4.1 Referenzwerte:
Für die Erstellung der Referenzwerte wurden daher Serumproben von 150 Blutspendern verwendet, denen mit ihrer Zustimmung zur Kontrolle der Ferritinkonzentration im Zentrallabor Blut frisch abgenommenen worden war. Unmittelbar anschließend an die Blutentnahme wurden Aliquote für die Ascorbinsäurebestimmung sofort auf Eis gelegt und lichtgeschützt aufbewahrt. Innerhalb von 45 Minuten wurden die Proben zentrifugiert, präzipitiert, stabilisiert und bis zur Messung bei –20° C eingefroren.
Das Spenderkollektiv umfasste 55 Frauen und 95 Männer im Alter von 18 bis 67 Jahren.
2.4.2 Zeitverlauf der Ascorbinsäure-Konzentrationen nach exogener Zufuhr von Vitamin C

Um die Vitamin C-Kinetik im menschlichen Organismus zu untersuchen, wurde zwei gesunden Versuchspersonen (eine männlich, 28 Jahre; eine weiblich, 27 Jahre) nüchtern Blut abgenommen (t 0), anschließend wurde der einen 500 mg unmittelbar vor der Gabe in Leitungswasser gelöster L-Ascorbinsäure oral zugeführt, dem anderen Probanden wurde eine Injektionslösung mit 500 mg langsam i.v. gespritzt. 30 Minuten nach der Vitamin C-Gabe wurde erneut eine Blutprobe entnommen (t 30), ebenso nach 60 (t 60), 90 (t 90), 120 (t 120), 180 (t 180), 240 (t 240), 300 (t 300) Minuten sowie nach 24 Stunden (t 24h).

2.5 Statistische Methoden

Die kontinuierlichen Variablen wurden mittels des Shapiro-Wilk-Tests hinsichtlich ihrer Normalverteilung überprüft. Je nachdem ob die getesteten Variablen eine Normalverteilung aufwiesen (Shapiro-Wilk-Test: p≥0,05) oder keine Normalverteilung berechnet wurde (Shapiro-Wilk-Test: p<0,05), wurden bei den Mittelwertvergleichen Tests für normalverteilte Stichproben und nichtparametrische Tests für nicht normalverteilte Stichproben herangezogen.

Beim Vergleich von 2 unabhängigen, normalverteilten Stichproben wurde der t-Test verwendet, während bei nicht normalverteilten Stichproben der Mann-Whitney-U-Test als nichtparametrisches Verfahren durchgeführt wurde.

Beim Vergleich von mehr als 2 unabhängigen, nicht normalverteilten Stichproben wurde eine multiple Wilcoxon-Testung durchgeführt.

Bei allen durchgeführten Tests erfolgte eine zweiseitige Signifikanzüberprüfung, wobei für alle statistischen Tests ein p-Wert < 0,05 als statistisch signifikant angenommen wurde.

3. Ergebnisse

Im ersten Teil der Arbeit wurde eine publizierte HPLC-Methode zur Vitamin-C-Bestimmung (Liau et al. 1993) im Labor etabliert; diese Methode wurde anschließend optimiert und analytisch validiert.

3.1 Methodenoptimierung und -validierung

3.1.1 Stationäre Phase

In der von Liau et al. publizierten Originalmethode wurde eine konventionelle 5 µm C18 Reversed-Phase-Säule in Kartuschenform (110 x 4,7 mm) mit Vorsäule eingesetzt (Liau et al. 1993). In der eigenen Arbeit wurde stattdessen eine Synergi 4µm Hydro-RP 80A 150 x 4,6 mm Säule als stationäre Phase eingesetzt, die eine bessere Auftrennung relativ hydrophiler Verbindungen wie der Ascorbinsäure erwarten ließ. Insgesamt wurden in der Arbeit 1428 Vitamin C-Proben untersucht. Nach 594 Probeninjektionen traten Probleme bezüglich Systemdruck und Auflösung auf, so dass die HPLC-Säule ersetzt werden musste. Zusätzlich wurde der neuen Säule eine Vorsäule (GuardCartridge) vorgeschaltet, um sie besser vor Verunreinigungen, z.B. durch Proteine der Probenmatrix, zu schützen. Die neue Säule mit GuardCartridge zeigte auch nach 834 Probeninjektionen keinerlei Funktionseinbußen.

3.1.2 Mobile Phase

In der Originalvorschrift nach Liau et al. wurde ein Puffer der folgenden Zusammensetzung verwendet: 20 mM Ammoniumdihydrogenphosphat mit 0,015 % meta-Phosphorsäure. Mit diesem Puffer ergab sich sowohl in der UV- als auch in der elektrochemischen Detektion eine Retentionszeit von etwa 2 min für L-Ascorbinsäure bei einer Gesamtmeszeit von fünf Minuten. Der Vitamin C-Peak in der UV-Detektion erschien unmittelbar nach dem Injektionspeak und wurde von ihm nicht vollständig abgetrennt. Dies machte eine korrekte Vitamin C-Konzentrationsberechnung unmöglich (s. Abb. 9).

Durch das Einstellen des Puffer-pH auf 2,55 für die UV-Detektion, bzw. pH 2,95 für die ECD verlängerte sich die Retentionszeit des Vitamin C auf etwa 2,6 min, wodurch eine vollständige Abtrennung von vorangehenden Peaks erreicht werden konnte. Die Messzeit erhöhte sich wegen der unterschiedlichen Retentionszeiten der internen Standards von fünf auf sieben in der UV-Detektion und auf neun Minuten in der elektrochemischen Detektion.
Abb. 9: Chromatogramm der Vitamin C-Messung mit UV-Detektion nach Liau et al

Abb. 10: Chromatogramm der Vitamin C-Messung mit UV-Detektion nach Optimierung des Puffer-pH und Einführung eines internen Standards.
Abb. 11: Chromatogramm der Vitamin C Messung mit ECD nach Liau et al

Sample Name: S4
Vial Number: 4
Volume: 10,0 ul
Vial Type: STD4
Injection from this vial: 1 of 1

Abb. 12: Chromatogramm der Vitamin C Messung mit ECD nach Liau et al und nach Optimierung des Puffer-pH und Einführung eines internen Standards.

Sample Name: S3
Vial Number: 3
Volume: 10,0 ul
Vial Type: STD3
Injection from this vial: 1 of 1
Eine Messung der Ascorbinsäure bei einem Puffer-pH von 2,65 in der UV-Detektion ergab sich eine Retentionszeit von 2,6 min, bei einem Puffer-pH von 3,1 in der ECD auf 2,7 min; die Auflösung wurde dabei im Vergleich zu den Puffer-pHs von 2,55 (UV) und 2,95 (ECD) nicht wesentlich verbessert, die gesamte Messzeit verlängerte sich bei pH 3,1 in der ECD auf 10 min. Für die weiteren Untersuchungen wurde bei der UV-Detektion ein Puffer mit einem pH 2,55 verwendet.

3.1.3 Interner Standard
Die Methode von Liau et al. verwendete keine internen Standard. In den eigenen Untersuchungen wurden deshalb einige der Ascorbinsäure chemisch verwandte Verbindungen auf ihre Eignung als interner Standard getestet. Die Zugabe von 0,8 mg N-Methyl-Dopamin, 0,8 mg Gulonsäure-γ-lacton, 0,7 mg DL-p-Hydroxyphenylmilchsäure, 0,8 β-4-Hydroxy-3-Methoxyphenylmilchsäure, 0,9 mg 3,4-Dimethoxyphenylessigsäure und 1,4 mg Isovanillinsäure zu den Serumproben führten zu keinem sichtbaren Peak in den sieben Minuten der Messzeit, weder mit UV-Detektion bei 245, 255, 265 oder 275 nm, noch mit elektrochemischer Detektion bei 0,7 V.
Nach Zugabe von 0,6 mg 3-Amino-4-hydroxybenzoesäure wurde ein Peak mit einer Retentionszeit von 3,4 min in der UV-Detektion bei 245 nm sichtbar (s. Abb. 10). Nach Zugabe von 0,8 mg Hydrochinon erschien bei einer Retentionszeit von 6,3 min in der ECD bei 0,7 V ein Peak (s. Abb. 12). Beide Verbindungen zeigten einen einheitlichen symmetrischen Peak mit Beginn von der und Rückkehr zur Nulllinie.

3.1.4 Richtigkeit
Zwei kommerziell erhältliche Vitamin C-Kontrollen der Firma Chromsystems wurden als unabhängige Referenz verwendet. Die angegebenen Sollwerte der Kontrollen Chrom 1 und 2, die gemessenen Werte und die statistischen Charakteristika der Messungen sind in Tabelle 1 und 2 zusammengefasst.
Sollwert	35,6 µmol/l
Gemessen (X)	32,6 µmol/l
Unrichtigkeit (%)	8,4

Tab. 1: Chrom1

Sollwert	124,6 µmol/l
Gemessen (X)	117,4 µmol/l
Unrichtigkeit (%)	5,7

Tab. 2: Chrom2

Weiterhin wurden zwei selbst hergestellte Vitamin C-Plasma-Kontrollen jeweils zweimal gemessen. Die aus der Einwaage von Vitamin C errechneten Sollwerte der Kontrollen 1 und 2, die gemessenen Werte und die gefundene Unrichtigkeit sind in den Tabelle 3 und 4 zusammengefasst.

Sollwert	14,47
Gemessen (X)	14,458
X	14,468
S	0,0141
Unrichtigkeit (%)	0,01

Tab. 3: Werte der Kontrolle 1

Sollwert	57,91
Gemessen (X)	57,93
X	57,92
S	0,0139
Unrichtigkeit (%)	0,02

Tab. 4: Werte der Kontrolle 2

3.1.5 Präzision

Die Reproduzierbarkeit der Ergebnisse wurde durch Bestimmung der Präzision in der Serie und von Tag zu Tag ermittelt.

Für die Bestimmung der Unpräzision in der Serie wurden die Kontrollen S2 (14 µmol/l) und S4 (58 µmol/l) jeweils 20 mal, die Kontrolle S5 (100 µmol/l) zehn mal gemessen.

Der Variationskoeffizient in den Serienversuchen lag bei 0,7 % für die Kontrolle S2, bei 0,05 % für die Kontrolle S4 und bei 0,7 % für die Kontrolle S5.

Die Präzision von Tag zu Tag wurde mit Hilfe einer Plasmakontrolle (Mittelwert: 103 µmol/l) und einer Serumkontrolle (Mittelwert: 91 µmol/l) ermittelt, die an drei aufeinander folgenden Tagen gleichartig vorbereitet und gemessen wurden.

Für die Tag-zu-Tag-Präzision lag der Variationskoeffizient für die Plasmakontrolle bei 8,2 %, für die Serumkontrolle bei 4,2 %.

3.1.6 Nachweisgrenze

Eine Vitamin C-freie Plasmaprobe wurde als Blindprobe 20 Mal gemessen. Rechnerisch ergab sich eine Nachweisgrenze von 0,55 µmol/l und eine Bestimmungsgrenze von 2,22 µmol/l.
3.1.7 Linearer Messbereich

Abb. 13: Kalibriergerade mit Verhältnis von Vitamin C-Konzentration (x) zu Peakfläche (y)

3.1.8 Stabilität der Vitamin C-Proben

In Serum und Lithium-Heparinplasma zeigte sich bei Raumtemperatur ein Ascorbinsäureverlust von weniger als 10 % innerhalb von 24 h. EDTA-Plasma hingegen zeigte trotz Stabilisans und Lagerung bei –20° C bereits nach 24 h einen Vitamin C-Verlust von über 50 %, bei Raumtemperatur oder 4° C sogar 90 % in der Probe.
Abb. 14: Einfluss unterschiedlicher Lagerungsbedingungen auf die Stabilität der Vitamin C-Konzentration in EDTA-Plasma (RT = Raumtemperatur).
Abb. 15: Einfluss unterschiedlicher Lagerungsbedingungen auf die Stabilität der Vitamin C-Konzentration in Lithium-Heparin-Plasma (RT = Raumtemperatur).

Abb. 16: Einfluss unterschiedlicher Lagerungsbedingungen auf die Stabilität der Vitamin C-Konzentration in Serum (RT = Raumtemperatur).

Ohne den Zusatz von meta-Phosphorsäure hingegen sank die Asorbinsäurekonzentration nach wenigen Tagen auf weniger als die Hälfte der ursprünglichen Konzentration.
Bei 4° C und bei Raumtemperatur waren nach 21 Tagen keine Ascorbinsäure in der Probe mehr messbar. Allein im Heparin-Plasma war nach drei Wochen noch etwa 20 %
der anfänglichen Konzentration nachweisbar, wenn der Probe meta-Phosphorsäure zugegeben worden war.

3.1.9 Messung von Urin- und Liquorproben
Das Vitamin C hatte in der Liquorprobe eine Retentionszeit von 2,9 min und zeigte sich als sauberer Peak ohne Überlagerung durch andere Verbindungen. Auch der interne Standard 3-Amino-4-hydroxybenzosäure wurde nach einer Retentionszeit von 4 min störungsfrei sichtbar.
Abb. 17: Chromatogramm einer Vitamin C-Messung in Liquor cerebrospinalis mit 3-Amino-4-hydroxybenzoesäure als internem Standard.

Auch in Urinproben zeigte sich ein deutlicher Vitamin C-Peak, mit einer Retentionszeit von 2,7 min. 3-Amino-4-hydroxybenzoesäure hingegen schien durch einen anderen Peak überlagert zu werden und konnte in seiner Konzentration nicht klar erfasst werden.
Abb. 18: Chromatogramm einer Vitamin C-Messung in Urin mit 3-Amino-4-hydroxybenzoesäure als internem Standard.

3.2 Methodenanwendung

3.2.1 Referenzwertermittlung

Abb.19: Altersverteilung der Probanden

Mittels Shapiro-Wilk-Test wurde überprüft, ob die Messwerte der Vitamin C-Konzentration des Probandenkollektivs normalverteilt sind. Die Daten zeigten keine signifikante Abweichung ($p < 0,05$) von der Normalverteilung. Aus der Streubreite der gemessenen Vitamin C-Konzentrationen wurden Referenzintervalle abgeleitet.

Abb.20: Serum-Vitamin C-Konzentration des Gesamtkollektivs

Die ermittelten Messwerte wurden zu Mittelwert, Median und Standardabweichung zusammengefasst. Die Referenzwerte wurden auf der Grundlage des 2,5% - 97,5%
Quantils \((X_{2,5} \text{ bis } X_{97,5}) \) definiert. Darüber hinaus wurden Minimum und Maximum berechnet. Die Konzentrationsverteilung der Ascorbinsäure im Serum sowie die entsprechenden statistischen Kenngrößen sind in Form von Boxplots in Abbildung 20 dargestellt.

3.2.1.1 Untersuchung auf alterspezifische Unterschiede

Zur Beurteilung möglicher altersabhängiger Unterschiede der Vitamin C-Serumkonzentration wurde das Gesamtkollektiv in drei Altersgruppen unterteilt (siehe Abb. 21).

Die Messwerte der Vitamin C-Konzentration waren in allen drei Gruppen normalverteilt. Da jedoch große Unterschiede bezüglich der Probandenzahl in den einzelnen Gruppen bestanden (siehe Abb. 22), wurde der nichtparametrische Mann-Whitney-U-Test dem t-Test als robusteres Testverfahren vorgezogen.

Zwischen den in den drei Altersgruppen Ascorbinsäurekonzentrationen konnten bei multipler Wilcoxon-Testung keine signifikanten Unterschiede nachgewiesen werden (Tab. 5).

<table>
<thead>
<tr>
<th>Wilcoxon</th>
<th>Alter (Jahre)</th>
<th>Alter (Jahre)</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 30</td>
<td>31 - 50</td>
<td>0,056</td>
</tr>
<tr>
<td></td>
<td>31-50</td>
<td>> 50</td>
<td>0,121</td>
</tr>
<tr>
<td></td>
<td>< 30</td>
<td>> 50</td>
<td>0,686</td>
</tr>
</tbody>
</table>

Tab. 5: Ergebnisse der multiplen Wilcoxon-Testung der gemessenen Vitamin C-Konzentration
3.2.1.2 Untersuchung auf geschlechtsspezifische Unterschiede

In Abbildung 23 ist die Geschlechterverteilung im untersuchten Kollektiv dargestellt.

Abb. 23: Geschlechterverteilung des Gesamtkollektivs (n=150).

Es wurden bei der Untersuchung auf geschlechtsspezifische Unterschiede die Vitamin C-Serumkonzentrationen der männlichen Probanden mit denen der weiblichen verglichen.

Abb. 24: Serum-Vitamin C-Konzentration getrennt nach Geschlecht und ermittelte geschlechtsspezifische Referenzwerte
Im Shapiro-Wilk-Test zeigte sich eine Normalverteilung der Messwerte, daher wurde der t-Test verwendet. Frauen zeigten signifikant höhere Serum-Ascorbinsäurekonzentrationen als Männer (p = 0,001).

<table>
<thead>
<tr>
<th>Weibliche Probanden (n=46)</th>
<th>Vit. C in µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>80,87</td>
</tr>
<tr>
<td>Median</td>
<td>79,08</td>
</tr>
<tr>
<td>SD</td>
<td>24,67</td>
</tr>
<tr>
<td>Minimum</td>
<td>21,63</td>
</tr>
<tr>
<td>Maximum</td>
<td>142,45</td>
</tr>
<tr>
<td>Quantil 2,5</td>
<td>22,76</td>
</tr>
<tr>
<td>Quantil 97,5</td>
<td>139,22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Männliche Probanden (n=82)</th>
<th>Vit. C in µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittelwert</td>
<td>69,42</td>
</tr>
<tr>
<td>Median</td>
<td>69,11</td>
</tr>
<tr>
<td>SD</td>
<td>20,16</td>
</tr>
<tr>
<td>Minimum</td>
<td>17,6</td>
</tr>
<tr>
<td>Maximum</td>
<td>125,22</td>
</tr>
<tr>
<td>Quantil 2,5</td>
<td>21,86</td>
</tr>
<tr>
<td>Quantil 97,5</td>
<td>117,89</td>
</tr>
</tbody>
</table>

Abb. 25: Serum-Vitamin C-Konzentrationen und ermittelte Referenzwerte getrennt nach Geschlecht in der Altersgruppe 18-50 Jahre
Signifikante Unterschiede in der Serum-Ascorbinsäurekonzentration fanden sich zwischen den Geschlechtern nur in der Altersgruppe 18-50 Jahre (p = 0,005), zwischen den Vitamin C-Konzentrationen von Männern und Frauen >50 Jahre konnten keine signifikanten Unterschiede (p = 0,081) nachgewiesen werden (s. Abb. 25 und 26).

3.2.2 Vitamin C-Kinetik

Zur Untersuchung der Ascorbinsäurekinetik wurde einer gesunden männlichen Versuchsperson (28 Jahre) 500 mg Ascorbinsäure oral verabreicht, einer gesunden weiblichen Probandin (27 Jahre) wurden 500 mg Ascorbinsäure intravenös appliziert. Nach oraler Einnahme von 500 mg Vitamin C stieg der Ascorbinsäure-Plasmaspiegel langsam und kontinuierlich an und erreichte ein Maximum von etwa 130 µmol/l nach etwa 75 Minuten. Der weitere Verlauf der Vitamin C-Konzentration bis zu 5 Stunden nach Einnahme bewegte sich im Bereich 100-120 µmol/l.
Abb. 27: Vitamin C-Plasmakonzentrationsverlauf nach oraler Einnahme von 500 mg Ascorbinsäure.

Nach intravenöser Applikation von Ascorbinsäure zeigte sich nach 15 Minuten ein schneller Anstieg der Vitamin C-Plasmakonzentration auf 270 µmol/l. Es folgte ein
rascher Abfall innerhalb von 45 Minuten auf ein Konzentrationsplateau von 100-120 µmol/l.
4. Diskussion

4.1 Methodenoptimierung

Liau et al beschreiben in ihrer Methode eine ungenügende Abtrennung des Vitamin C-Peak vom Injektionspeak in der elektrochemischen Detektion wie in der UV-Detektion (Liau et al 1991), was eine korrekte Konzentrationsbestimmung erschwert. Dies konnte durch Senkung des Puffer-pH von 2,95 auf 2,55 in der UV-Detektion verbessert werden, da die Retentionszeit der Ascorbinsäure hierdurch deutlich verlängert wurde (von 2 min auf 2,6 min).

Als interner Standard wurde 3-Amino-4-hydroxybenzoesäure (Retentionszeit 3,4 min) für die UV-Detektion, bzw. Hydrochinon (Retentionszeit 6,3 min) für die ECD eingesetzt. Die anderen Substanzen zeigten in den sieben Minuten der Messung keinerlei erkennbaren Peak oder eluierten bereits im Totvolumen von der Säule und konnten somit von anderen Verbindungen nicht abgetrennt werden.

Die Richtigkeit der Messung von Vitamin C-Proben wurde in der Originalarbeit mit >100 % angegeben, was bedeutet, dass höhere Konzentrationen erfasst wurden, als eigentlich in der Probe enthalten waren. Durch die Verwendung von Vitamin C-freiem Serum als Verdünnungsmedium der Standards in der vorliegenden Arbeit statt des ursprünglich verwendeten Puffers ergab sich eine Unrichtigkeit von 0,013 % für die Kontrolle 1 und 0,017 % für die Kontrolle 2. Die Wiederfindung (berechnet als Prozentsatz des Mittelwert der gemessenen Konzentration vom Sollwert) betrug dabei für die Kontrolle 1 99,91 %, für die Kontrolle 2 100,03 %.

Den eigenen Untersuchungen zufolge (Abb. 15 und 16) ist die Zugabe von meta-Phosphorsäure in der vorliegenden optimierten Methode ein praktikabler und zuverlässiger Weg zur Stabilisierung der Vitamin-C-Proben in Serum und Lithiumheparinplasma.

4.2 Grenzen der Methode

Die vorliegende Methode dient der Bestimmung von Ascorbinsäurekonzentrationen in Plasma und Serum, eine Messung von Dehydroascorbinsäure oder anderen Vitamin C-

4.3 Referenzwerte

Konzentrationen mit Hilfe der vorliegenden optimierten Methode mit hoher Präzision und Richtigkeit erfasst.

4.4 Kinetik

Während sich die Vitamin C-Kinetik bei intravenöser Applikation durch einen raschen Anstieg sowie einen raschen Abfall der Konzentration im Plasma auszeichnete, stieg die Konzentration nach oraler Gabe langsamer an. Erst nach 75 Minuten erreichte sie ihre maximale Konzentration bei 127 µmol/l und sank dann ebenfalls auf ein Konzentrationsplateau von etwa 100 µmol/l.

Die Beobachtungen von Levine et al, die ein Konzentrationsmaximum unmittelbar nach intravenöser Gabe mit nachfolgendem Abfall auf ein Konzentrationsplateau innerhalb der ersten zwei Stunden beschreiben, sind ebenso gut mit den vorliegenden Ergebnissen vereinbar wie die Beobachtung, dass das Konzentrationsplateau bei oraler Gabe erst nach eineinhalb bis zwei Stunden nach Applikation erreicht wird. Dabei interpretieren Levine et al das Plasmaplateau als Ausdruck der zellulären Vitamin-C-Sättigung, für die bereits eine Dosis von 100 mg ausreichend ist. Erst eine Vitamin C Aufnahme von über 100 mg/d führte in ihren Versuchen zu einer renalen Ausscheidung. Gleichzeitig beschreiben sie einen linearen Konzentrationsanstieg bis zum Erreichen eines Plasmaplateaus sowie eine Bioverfügbarkeit von 100 % bei einmaliger Gabe von 200 mg Ascorbinsäure pro Tag. Bei Einzeldosen von 500 mg oder mehr sank die Bioverfügbarkeit und der überwiegende Anteil wurde renal eliminiert (Levine et al 1996, 2001).

4.5 Einsatzmöglichkeiten
Die für das Zentrallabor optimierte Methode zur Bestimmung des Plasma-Vitamin C eignet sich insbesondere für die Forschung, kann jedoch auch in der klinischen Routine Anwendung finden. Obgleich der manifeste Vitamin C-Mangel in Mitteleuropa und

Auch der Ascorbinsäurespiegel von Hämochromatose-Patienten, die ihren Vitamin C-Konsum einschränken, um die enterale Eisenaufnahme gering zu halten, kann überprüft und bei akutem Mangel durch intravenöse Applikation angehoben werden.

4.6 Ausblick

5. Zusammenfassung

L-Ascorbinsäure spielt eine facettenreiche Rolle im menschlichen Organismus; ihr Nutzen in Prävention und Therapie vieler Erkrankungen ist derzeit noch wenig verstanden und aktuell Gegenstand der Forschung.

In der vorliegenden Arbeit wurde die von Liau et al beschriebene RP-HPLC-Methode mit UV-Detektion zur Messung von Ascorbinsäurespiegeln im Plasma optimiert und an die Gegebenheiten des Zentrallabors angepasst. Verwendet wurde eine Synergi 4u Hydro-RP C18 150 x 4,6 mm Säule und eine mobile Phase aus 20 mM Ammoniumdihydrogen-Phosphat und 0,015 % meta-Phosphorsäure bei einem pH von 2,55, mit 3-Amino-4-hydroxybenzoësäure als internem Standard. Serum- oder Lithium-Heparin-Proben wurden mit einem Gemisch aus 10 % meta-Phosphorsäure und 1 % Perchlorsäure stabilisiert und (ausgefällt) deproteiniert. Die insgesamt siebenminütige HPLC-Messung erfolgte per UV-Detektion bei 245 nm, bei einer Flussrate von 1ml/min. Die Retentionszeit der Ascorbinsäure betrug dabei 2,9 min, die des internen Standards 3,4 min. Die optimierte Methode hat eine Nachweisgrenze von 96 ng/ml. Die Unrichtigkeit der Messung lag konzentrationsabhängig zwischen 0,03 % und 0,08 %. Der Variationskoeffizient der Impräzision in Serie betrug konzentrationsabhängig 0,05–0,7 %, in der Tag-zu-Tag-Impräzision 4,2 % für Serumproben, 8,2 % für Plasmaproben. Die Messung von Ascorbinsäurekonzentrationen war linear von 2-700 µmol/l. Die vorliegende Methode könnte prinzipiell auch für Liquor- und Urinuntersuchungen modifiziert werden. Mit 10 % meta-Phosphorsäure und 1 % Perchlorsäure versetzte und bei -20 °C eingefrorene Serum- oder Lithium-Heparin-Proben konnten 35 Tage ohne Konzentrationsverluste gelagert werden. Zur Referenzwerteerstellung wurden Serumproben von 150 Blutspendern zwischen 18 und 67 Jahren (m: 95, w: 55) analysiert. Der ermittelte Vitamin C-Plasma-Referenzbereich betrug 25–120 µmol/l. Frauen hatten dabei signifikant höhere Vitamin C-Plasmaspiegel (24-136 µmol/l) als Männer (23–116 µmol/l). In pharmakokinetischen Untersuchungen zeigten sich deutlich höhere erreichbare Ascorbinsäure-Plasmakonzentrationen nach intravenöser Applikation von 500 mg Vitamin C als nach oraler Gabe der selben Dosis.
6. Anhang

<table>
<thead>
<tr>
<th>Vitamin C in µmol/l</th>
<th>Peakfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>709,703</td>
<td>230897</td>
</tr>
<tr>
<td>354,851</td>
<td>105001</td>
</tr>
<tr>
<td>177,425</td>
<td>48452</td>
</tr>
<tr>
<td>88,712</td>
<td>21659</td>
</tr>
<tr>
<td>44,356</td>
<td>8848</td>
</tr>
<tr>
<td>22,178</td>
<td>4307</td>
</tr>
<tr>
<td>11,089</td>
<td>2024</td>
</tr>
<tr>
<td>5,544</td>
<td>1047</td>
</tr>
<tr>
<td>2,772</td>
<td>818</td>
</tr>
<tr>
<td>1,386</td>
<td>442</td>
</tr>
<tr>
<td>0,693</td>
<td>524</td>
</tr>
<tr>
<td>0,346</td>
<td>363</td>
</tr>
<tr>
<td>0,173</td>
<td>425</td>
</tr>
</tbody>
</table>

Tab. 6: Tabelle der Werte zur Linearität der Messung

<table>
<thead>
<tr>
<th>Kontrolle S2</th>
<th>Kontrolle S4</th>
<th>Kontrolle S5</th>
<th>Leerprobe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin C in µmol/l</td>
<td>Vitamin C in µmol/l</td>
<td>Vitamin C in µmol/l</td>
<td>Vitamin C in µmol/l</td>
</tr>
<tr>
<td>14,08</td>
<td>59,48</td>
<td>99,11</td>
<td>-0,483367</td>
</tr>
<tr>
<td>14,07</td>
<td>58,12</td>
<td>101,24</td>
<td>-0,0470181</td>
</tr>
<tr>
<td>14,16</td>
<td>59,38</td>
<td>100,48</td>
<td>-0,837217</td>
</tr>
<tr>
<td>14,12</td>
<td>58,58</td>
<td>99,69</td>
<td>-0,912409</td>
</tr>
<tr>
<td>14,05</td>
<td>58,92</td>
<td>98,84</td>
<td>-0,241109</td>
</tr>
<tr>
<td>14,15</td>
<td>58,2</td>
<td>99,92</td>
<td>-0,245376</td>
</tr>
<tr>
<td>14,07</td>
<td>58,33</td>
<td>100,01</td>
<td>-0,743339</td>
</tr>
<tr>
<td>14,12</td>
<td>57,49</td>
<td>99,78</td>
<td>-0,121922</td>
</tr>
<tr>
<td>14,02</td>
<td>58,02</td>
<td>99,37</td>
<td>-0,23529</td>
</tr>
<tr>
<td>14,13</td>
<td>58,12</td>
<td>99,91</td>
<td>0,153667</td>
</tr>
<tr>
<td>14,01</td>
<td>58,11</td>
<td></td>
<td>-0,130809</td>
</tr>
<tr>
<td>14,16</td>
<td>58,11</td>
<td></td>
<td>-0,174128</td>
</tr>
<tr>
<td>14,04</td>
<td>58,09</td>
<td></td>
<td>-0,04584</td>
</tr>
<tr>
<td>13,85</td>
<td>58,14</td>
<td></td>
<td>-0,24801</td>
</tr>
<tr>
<td>13,98</td>
<td>58,13</td>
<td></td>
<td>-0,389037</td>
</tr>
<tr>
<td>13,88</td>
<td>58,22</td>
<td></td>
<td>-0,376494</td>
</tr>
<tr>
<td>14</td>
<td>58,29</td>
<td></td>
<td>-0,308737</td>
</tr>
<tr>
<td>13,96</td>
<td>58,53</td>
<td></td>
<td>-0,277186</td>
</tr>
<tr>
<td>13,8</td>
<td>58,02</td>
<td></td>
<td>0,004963</td>
</tr>
<tr>
<td>13,96</td>
<td>57,94</td>
<td></td>
<td>-0,075</td>
</tr>
</tbody>
</table>

Tab. 7: Tabelle mit den ermittelten Werten der mehrfachen Messung der Kontrollen S2,4 und 5 zur Bestimmung der Präzision in Serie sowie Werte der Leerprobe zur Bestimmung der Nachweigrenze

<table>
<thead>
<tr>
<th>Zeit in Stunden</th>
<th>Heparinplasma Vitamin C in µmol/l</th>
<th>Serum Vitamin C in µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tab. 8: Tabelle der ermittelten Werte zur Tag-zu-Tag-Präzision

<table>
<thead>
<tr>
<th>Zeıt in Tagen</th>
<th>RT</th>
<th>RT+MPA</th>
<th>4°C</th>
<th>4°C+MPA</th>
<th>-20°C</th>
<th>-20°C+MPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>3,65138</td>
<td>0</td>
<td>9,0948</td>
<td>0</td>
<td>15,1899</td>
</tr>
<tr>
<td>2</td>
<td>3,65125</td>
<td>4,88897</td>
<td>14,2616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>16,0286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16,3061</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>12,481</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>12,7222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 9: Tabelle mit den ermittelten Werten des Stabilitätsversuches mit EDTA-Plasma unter unterschiedlichen Lagerungsbedingungen

<table>
<thead>
<tr>
<th>Zeıt in Tagen</th>
<th>RT</th>
<th>RT+MPA</th>
<th>4°C</th>
<th>4°C+MPA</th>
<th>-20°C</th>
<th>-20°C+MPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100,699</td>
<td>100,699</td>
<td>100,699</td>
<td>100,699</td>
<td>100,699</td>
<td>100,699</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>37,7431</td>
<td>15,0983</td>
<td>65,0466</td>
<td>80,8759</td>
<td>100,699</td>
</tr>
<tr>
<td>2</td>
<td>14,6849</td>
<td>2,11743</td>
<td>55,9566</td>
<td>74,1167</td>
<td>96,5643</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>14,3465</td>
<td>0</td>
<td>25,0166</td>
<td>74,6697</td>
<td>95,8965</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>21,0735</td>
<td>7,46957</td>
<td>61,7514</td>
<td>93,6447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21,5084</td>
<td>0</td>
<td>62,4434</td>
<td>94,3262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td></td>
<td>55,69</td>
<td>91,186</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 10: Tabelle mit den ermittelten Werten des Stabilitätsversuches mit Heparin-Plasma unter unterschiedlichen Lagerungsbedingungen

<table>
<thead>
<tr>
<th>Zeıt in Tagen</th>
<th>RT</th>
<th>RT+MPA</th>
<th>4°C</th>
<th>4°C+MPA</th>
<th>-20°C</th>
<th>-20°C+MPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>88,6262</td>
<td>88,6262</td>
<td>88,6262</td>
<td>88,6262</td>
<td>88,6262</td>
<td>88,6262</td>
</tr>
<tr>
<td>1</td>
<td>0,118893</td>
<td>18,2007</td>
<td>43,4039</td>
<td>53,5836</td>
<td>80,3886</td>
<td>88,6262</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2,35319</td>
<td>23,1259</td>
<td>47,7853</td>
<td>84,4726</td>
<td>89,225</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>2,67573</td>
<td>14,9399</td>
<td>64,2102</td>
<td>92,1515</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>4,67359</td>
<td>75,1112</td>
<td>92,628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td></td>
<td>68,4656</td>
<td>93,2474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>52,9476</td>
<td>91,3441</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 11: Tabelle mit den ermittelten Werten des Stabilitätsversuches mit Serum unter unterschiedlichen Lagerungsbedingungen

<table>
<thead>
<tr>
<th>Proband</th>
<th>Geschlecht</th>
<th>Alter</th>
<th>Vit C Konz 1 (µmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>49</td>
<td>95,2584</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>24</td>
<td>113,702</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>31</td>
<td>20,8279</td>
</tr>
<tr>
<td>4</td>
<td>W</td>
<td>24</td>
<td>85,2393</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>21</td>
<td>81,7217</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>29</td>
<td>86,776</td>
</tr>
<tr>
<td>7</td>
<td>W</td>
<td>31</td>
<td>93,3501</td>
</tr>
<tr>
<td>8</td>
<td>W</td>
<td>25</td>
<td>107,003</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>64</td>
<td>72,8391</td>
</tr>
<tr>
<td>10</td>
<td>W</td>
<td>59</td>
<td>91,3597</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>51</td>
<td>88,5922</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>22</td>
<td>63,8208</td>
</tr>
<tr>
<td>13</td>
<td>M</td>
<td>25</td>
<td>66,1654</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>25</td>
<td>46,671</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>38</td>
<td>44,1697</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>22</td>
<td>58,7676</td>
</tr>
<tr>
<td>17</td>
<td>W</td>
<td>40</td>
<td>104,35</td>
</tr>
<tr>
<td>18</td>
<td>W</td>
<td>25</td>
<td>112,496</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>27</td>
<td>45,3159</td>
</tr>
<tr>
<td>20</td>
<td>W</td>
<td>40</td>
<td>51,0859</td>
</tr>
<tr>
<td>21</td>
<td>M</td>
<td>21</td>
<td>112,496</td>
</tr>
<tr>
<td>22</td>
<td>W</td>
<td>56</td>
<td>93,645</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>36</td>
<td>67,612</td>
</tr>
<tr>
<td>24</td>
<td>W</td>
<td>41</td>
<td>53,2278</td>
</tr>
<tr>
<td>25</td>
<td>W</td>
<td>39</td>
<td>76,1189</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>41</td>
<td>79,7575</td>
</tr>
<tr>
<td>27</td>
<td>W</td>
<td>37</td>
<td>28,1184</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>45</td>
<td>58,9321</td>
</tr>
<tr>
<td>29</td>
<td>M</td>
<td>42</td>
<td>46,5881</td>
</tr>
<tr>
<td>30</td>
<td>M</td>
<td>54</td>
<td>109,667</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>60</td>
<td>79,639</td>
</tr>
<tr>
<td>32</td>
<td>M</td>
<td>26</td>
<td>107,964</td>
</tr>
<tr>
<td>33</td>
<td>M</td>
<td>44</td>
<td>82,77</td>
</tr>
<tr>
<td>34</td>
<td>W</td>
<td>53</td>
<td>88,4054</td>
</tr>
<tr>
<td>35</td>
<td>W</td>
<td>23</td>
<td>100,589</td>
</tr>
<tr>
<td>36</td>
<td>M</td>
<td>21</td>
<td>72,3297</td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>25</td>
<td>129,222</td>
</tr>
<tr>
<td>38</td>
<td>M</td>
<td>28</td>
<td>77,708</td>
</tr>
<tr>
<td>39</td>
<td>M</td>
<td>44</td>
<td>60,3236</td>
</tr>
<tr>
<td>40</td>
<td>W</td>
<td>30</td>
<td>65,3809</td>
</tr>
<tr>
<td>41</td>
<td>M</td>
<td>26</td>
<td>77,5053</td>
</tr>
<tr>
<td>42</td>
<td>W</td>
<td>23</td>
<td>142,446</td>
</tr>
<tr>
<td>43</td>
<td>M</td>
<td>20</td>
<td>118,239</td>
</tr>
<tr>
<td>44</td>
<td>M</td>
<td>45</td>
<td>83,3364</td>
</tr>
<tr>
<td>45</td>
<td>M</td>
<td>42</td>
<td>90,1709</td>
</tr>
<tr>
<td>46</td>
<td>M</td>
<td>21</td>
<td>98,5052</td>
</tr>
<tr>
<td>47</td>
<td>M</td>
<td>57</td>
<td>71,8177</td>
</tr>
<tr>
<td>48</td>
<td>W</td>
<td>32</td>
<td>21,6286</td>
</tr>
<tr>
<td>49</td>
<td>M</td>
<td>22</td>
<td>73,1191</td>
</tr>
<tr>
<td>50</td>
<td>W</td>
<td>18</td>
<td>76,8081</td>
</tr>
<tr>
<td>51</td>
<td>W</td>
<td>49</td>
<td>64,9667</td>
</tr>
<tr>
<td>52</td>
<td>W</td>
<td>32</td>
<td>44,6305</td>
</tr>
<tr>
<td>53</td>
<td>M</td>
<td>50</td>
<td>76,6075</td>
</tr>
<tr>
<td>54</td>
<td>W</td>
<td>44</td>
<td>102,296</td>
</tr>
<tr>
<td>55</td>
<td>M</td>
<td>55</td>
<td>26,4348</td>
</tr>
<tr>
<td>56</td>
<td>M</td>
<td>24</td>
<td>65,7684</td>
</tr>
<tr>
<td>57</td>
<td>M</td>
<td>20</td>
<td>72,768</td>
</tr>
<tr>
<td>58</td>
<td>M</td>
<td>28</td>
<td>93,4234</td>
</tr>
<tr>
<td>59</td>
<td>W</td>
<td>32</td>
<td>69,256</td>
</tr>
<tr>
<td>60</td>
<td>W</td>
<td>44</td>
<td>48,1483</td>
</tr>
<tr>
<td>61</td>
<td>M</td>
<td>42</td>
<td>47,9069</td>
</tr>
<tr>
<td>62</td>
<td>M</td>
<td>55</td>
<td>47,4147</td>
</tr>
<tr>
<td>63</td>
<td>M</td>
<td>49</td>
<td>73,9383</td>
</tr>
<tr>
<td>64</td>
<td>M</td>
<td>39</td>
<td>86,7035</td>
</tr>
<tr>
<td>65</td>
<td>W</td>
<td>47</td>
<td>103,771</td>
</tr>
<tr>
<td>66</td>
<td>W</td>
<td>29</td>
<td>96,0497</td>
</tr>
<tr>
<td>67</td>
<td>W</td>
<td>51</td>
<td>72,8409</td>
</tr>
</tbody>
</table>

65
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>M</td>
<td>22</td>
<td>67,2476</td>
</tr>
<tr>
<td>69</td>
<td>M</td>
<td>28</td>
<td>68,7298</td>
</tr>
<tr>
<td>70</td>
<td>M</td>
<td>38</td>
<td>66,3394</td>
</tr>
<tr>
<td>71</td>
<td>M</td>
<td>52</td>
<td>49,8292</td>
</tr>
<tr>
<td>72</td>
<td>M</td>
<td>64</td>
<td>74,6985</td>
</tr>
<tr>
<td>73</td>
<td>M</td>
<td>26</td>
<td>34,7106</td>
</tr>
<tr>
<td>74</td>
<td>M</td>
<td>37</td>
<td>41,5936</td>
</tr>
<tr>
<td>75</td>
<td>M</td>
<td>41</td>
<td>67,9941</td>
</tr>
<tr>
<td>76</td>
<td>W</td>
<td>31</td>
<td>109,355</td>
</tr>
<tr>
<td>77</td>
<td>W</td>
<td>27</td>
<td>84,411</td>
</tr>
<tr>
<td>78</td>
<td>W</td>
<td>20</td>
<td>80,6188</td>
</tr>
<tr>
<td>79</td>
<td>W</td>
<td>37</td>
<td>75,04</td>
</tr>
<tr>
<td>80</td>
<td>W</td>
<td>19</td>
<td>70,271</td>
</tr>
<tr>
<td>81</td>
<td>W</td>
<td>29</td>
<td>63,5737</td>
</tr>
<tr>
<td>82</td>
<td>W</td>
<td>21</td>
<td>86,1339</td>
</tr>
<tr>
<td>83</td>
<td>M</td>
<td>20</td>
<td>87,0655</td>
</tr>
<tr>
<td>84</td>
<td>W</td>
<td>25</td>
<td>99,2783</td>
</tr>
<tr>
<td>85</td>
<td>M</td>
<td>36</td>
<td>97,249</td>
</tr>
<tr>
<td>86</td>
<td>M</td>
<td>47</td>
<td>52,7442</td>
</tr>
<tr>
<td>87</td>
<td>M</td>
<td>24</td>
<td>70,262</td>
</tr>
<tr>
<td>88</td>
<td>M</td>
<td>26</td>
<td>67,2358</td>
</tr>
<tr>
<td>89</td>
<td>W</td>
<td>21</td>
<td>55,1932</td>
</tr>
<tr>
<td>90</td>
<td>M</td>
<td>45</td>
<td>72,3438</td>
</tr>
<tr>
<td>91</td>
<td>M</td>
<td>30</td>
<td>56,8466</td>
</tr>
<tr>
<td>92</td>
<td>W</td>
<td>40</td>
<td>59,8768</td>
</tr>
<tr>
<td>93</td>
<td>M</td>
<td>42</td>
<td>53,7187</td>
</tr>
<tr>
<td>94</td>
<td>M</td>
<td>45</td>
<td>79,5653</td>
</tr>
<tr>
<td>95</td>
<td>M</td>
<td>27</td>
<td>65,0673</td>
</tr>
<tr>
<td>96</td>
<td>M</td>
<td>20</td>
<td>63,1192</td>
</tr>
<tr>
<td>97</td>
<td>M</td>
<td>37</td>
<td>53,009</td>
</tr>
<tr>
<td>98</td>
<td>M</td>
<td>33</td>
<td>68,9168</td>
</tr>
<tr>
<td>99</td>
<td>W</td>
<td>23</td>
<td>76,0358</td>
</tr>
<tr>
<td>100</td>
<td>M</td>
<td>30</td>
<td>57,6392</td>
</tr>
<tr>
<td>101</td>
<td>W</td>
<td>41</td>
<td>115,39</td>
</tr>
<tr>
<td>102</td>
<td>M</td>
<td>23</td>
<td>58,2115</td>
</tr>
<tr>
<td>103</td>
<td>M</td>
<td>26</td>
<td>66,4722</td>
</tr>
<tr>
<td>104</td>
<td>M</td>
<td>62</td>
<td>63,6288</td>
</tr>
<tr>
<td>105</td>
<td>M</td>
<td>40</td>
<td>54,5247</td>
</tr>
<tr>
<td>106</td>
<td>W</td>
<td>32</td>
<td>72,6649</td>
</tr>
<tr>
<td>107</td>
<td>W</td>
<td>23</td>
<td>115,456</td>
</tr>
<tr>
<td>108</td>
<td>W</td>
<td>49</td>
<td>63,9378</td>
</tr>
<tr>
<td>109</td>
<td>M</td>
<td>28</td>
<td>51,0924</td>
</tr>
<tr>
<td>110</td>
<td>M</td>
<td>52</td>
<td>95,1135</td>
</tr>
<tr>
<td>111</td>
<td>M</td>
<td>26</td>
<td>17,597</td>
</tr>
<tr>
<td>112</td>
<td>W</td>
<td>34</td>
<td>124,031</td>
</tr>
<tr>
<td>113</td>
<td>M</td>
<td>28</td>
<td>60,8468</td>
</tr>
<tr>
<td>114</td>
<td>W</td>
<td>65</td>
<td>102,151</td>
</tr>
<tr>
<td>115</td>
<td>M</td>
<td>19</td>
<td>80,1244</td>
</tr>
<tr>
<td>116</td>
<td>W</td>
<td>22</td>
<td>115,562</td>
</tr>
<tr>
<td>117</td>
<td>M</td>
<td>25</td>
<td>73,0239</td>
</tr>
<tr>
<td>118</td>
<td>M</td>
<td>26</td>
<td>79,4352</td>
</tr>
<tr>
<td>119</td>
<td>W</td>
<td>38</td>
<td>69,8152</td>
</tr>
<tr>
<td>120</td>
<td>M</td>
<td>45</td>
<td>55,501</td>
</tr>
<tr>
<td>121</td>
<td>W</td>
<td>35</td>
<td>71,2183</td>
</tr>
<tr>
<td>122</td>
<td>M</td>
<td>42</td>
<td>69,3344</td>
</tr>
<tr>
<td>123</td>
<td>M</td>
<td>26</td>
<td>70,3179</td>
</tr>
<tr>
<td>124</td>
<td>M</td>
<td>28</td>
<td>91,4565</td>
</tr>
<tr>
<td>125</td>
<td>M</td>
<td>29</td>
<td>84,282</td>
</tr>
<tr>
<td>126</td>
<td>M</td>
<td>28</td>
<td>74,6484</td>
</tr>
<tr>
<td>127</td>
<td>W</td>
<td>24</td>
<td>93,9512</td>
</tr>
<tr>
<td>128</td>
<td>W</td>
<td>46</td>
<td>92,117</td>
</tr>
<tr>
<td>129</td>
<td>W</td>
<td>48</td>
<td>57,9609</td>
</tr>
<tr>
<td>130</td>
<td>W</td>
<td>22</td>
<td>88,8226</td>
</tr>
</tbody>
</table>
Tab. 12: Tabelle der ermittelten Referenzwerte mit Angabe von Alter und Geschlecht der Probanden

<table>
<thead>
<tr>
<th>Zeit in min</th>
<th>Proband 1 (i.v.) Vitamin C in µmol/l</th>
<th>Proband 2 (p.o.) Vitamin C in µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>53,658</td>
<td>71,7715</td>
</tr>
<tr>
<td>15</td>
<td>269,79</td>
<td>80,1384</td>
</tr>
<tr>
<td>30</td>
<td>202,756</td>
<td>72,1683</td>
</tr>
<tr>
<td>45</td>
<td>106,454</td>
<td>87,6044</td>
</tr>
<tr>
<td>60</td>
<td>144,122</td>
<td>97,7626</td>
</tr>
<tr>
<td>75</td>
<td>147,055</td>
<td>126,554</td>
</tr>
<tr>
<td>90</td>
<td>106,655</td>
<td>91,5061</td>
</tr>
<tr>
<td>105</td>
<td>115,511</td>
<td>99,0137</td>
</tr>
<tr>
<td>120</td>
<td>107,531</td>
<td>106,706</td>
</tr>
<tr>
<td>135</td>
<td>123,803</td>
<td>116,079</td>
</tr>
<tr>
<td>150</td>
<td>106,543</td>
<td>115,899</td>
</tr>
<tr>
<td>165</td>
<td>100,657</td>
<td>112,234</td>
</tr>
<tr>
<td>180</td>
<td>110,727</td>
<td>129,282</td>
</tr>
<tr>
<td>210</td>
<td>94,3017</td>
<td>112,87</td>
</tr>
<tr>
<td>240</td>
<td>92,63</td>
<td>102,912</td>
</tr>
<tr>
<td>270</td>
<td>99,2265</td>
<td>104,715</td>
</tr>
<tr>
<td>300</td>
<td>91,1674</td>
<td>108,817</td>
</tr>
<tr>
<td>1440</td>
<td>66,78</td>
<td>68,0469</td>
</tr>
</tbody>
</table>

Tab. 13: Tabelle mit den Werten der Probanden 1 (500 mg Vitamin C i.v.) und 2 (500 mg Vitamin C p.o.) zur Untersuchung der Vitamin C-Pharmakokinetik
Literaturverzeichnis

Bienfait H F und van den Briel M L: Rapid mobilization of ferritin iron by ascorbate in the presence of oxygen. Biochim Biophys Acta 631, 507-10 (1980).

Langlois M, Duprez D, Dlanghe J, De Buyzere M, Clement D L: Serum vitamin C concentration is low on peripheral arterial disease and is associated with inflammation and severity of atherosclerosis. Circulation 103, 1863-8 (2001).

79

http://www.dge.de/modules.php?name=Content&pa=showpage&pid=4&page=11 (Eingesehen am 3.5.2007)

Danksagung

Ich danke Prof. Michael Seyfarth für die Überlassung des Themas und die zur Verfügung gestellten Mittel, Dr. Leif Dibbelt für seine kontinuierliche und inspirierende Betreuung sowie Fr. Ellen Spies für die technische Einweisung und ihre angenehme Gesellschaft. Außerdem danke ich meiner Familie für ihre stets bedingungslose Unterstützung.

Curriculum Vitae

Name: Cornelia Marlene Focke
Persönliche Daten: geb. am 11.12.1978 in Bremen

Schulausbildung:
1985-89 Grundschule an der Stader Straße, Bremen
1989-91 Orientierungsstufe Brokstraße, Bremen
1991-98 Altes Gymnasium, Bremen

Studium der Humanmedizin:
2000-05 Universität zu Lübeck

81
2001 Physikum
2002 Erstes Staatsexamen
2004 Zweites Staatsexamen
2004-05 Praktisches Jahr mit dem Wahlfach Pathologie
2005 Drittes Staatsexamen und Approbation als Ärztin

Beruflicher Werdegang:
2006-08 Assistenzärztin im Institut für Pathologie, Praxis Fischer & Partner, Wilhelmshaven (Prof. G. Fischer)
2008-09 Assistenzärztin am Gerhard Domagk-Institut für Pathologie der Universität Münster (Prof. W. Böcker)
seit 10/2009 Assistenzärztin für Pathologie am Bonhoeffer-Klinikum Neubrandenburg (Dr. T. Decker)

Selbständigkeitserklärung und Erklärung zur Bewerbung
Ich erkläre, dass ich die vorliegende Arbeit selbständig und nur unter Anwendung der angegeben Hilfsmittel und Literatur angefertigt habe.

Lübeck, den 06.09.2010

(Cornelia Focke)