Untersuchungen zur Regulation der Biofilmbildung in
Staphylococcus epidermidis

Inauguraldissertation
zur Erlangung der Doktorwürde
der Universität zu Lübeck

- Aus der Medizinischen Fakultät -

vorgelegt von
Beate Jonas
aus Greifswald

Lübeck 2009
Wissenschaftliche Betreuung:

1. Berichterstatter: Prof. Dr. med. Johannes Knobloch

2. Berichterstatter: Priv.-Doz. Dr. rer. nat. Stefan Niemann

Tag der mündlichen Prüfung: 22.02.2010

Zum Druck genehmigt. Lübeck, den 22.02.2010

gez. Prof. Dr. med. Werner Solbach
- Dekan der Medizinischen Fakultät -
Danksagung

An dieser Stelle möchte ich mich ganz herzlich bei allen bedanken, die mich bei der Erstellung dieser Arbeit unterstützt haben:

Mein ganz besonderer Dank gilt Herrn Prof. Dr. Johannes K.-M. Knobloch für die Überlassung des interessanten Themas und für die jederzeit freundliche und hilfsbereite Zusammenarbeit sowohl bei wissenschaftlichen Fragen als auch bei der praktischen Durchführung der Versuche. Ferne danke ich ihm für die zahlreichen Diskussionen, seine unschätzbare, fortwährende Unterstützung sowie die kritische Durchsicht des Manuskripts.

Herrn Prof. Dr. Werner Solbach und Herrn Prof. Dr. Martin Aepfelbacher danke ich für die Möglichkeit, die vorliegende Dissertation an den Instituten für Medizinische Mikrobiologie und Hygiene der Universitäten Lübeck und Hamburg bearbeitet haben zu können.

Frau Dr. Susanne Engelmann, Herrn Dr. Harald Kusch und Herrn Stephan Fuchs danke ich herzlich für die Einführung in das experimentelle Arbeiten auf dem Gebiet der 2D-Gel-Analyse und für die Möglichkeit, diese Arbeiten am Institut für Mikrobiologie der Universität Greifswald durchführen zu können.

Bei Frau Gesche Kroll und Frau Justina Schunke möchte ich mich für eine wunderbare Zusammenarbeit und für ihre stets hilfsbereite Unterstützung bedanken.

Mein herzlicher Dank gilt sämtlichen Mitgliedern der Arbeitsgruppe und Christiane Jugert für die stetige Diskussions- und Hilfsbereitschaft. Darüber hinaus danke ich ihnen für das angenehme und harmonische Arbeitsklima und die schöne gemeinsame Zeit innerhalb und außerhalb des Labors, die ebenfalls zum Gelingen dieser Arbeit beigetragen hat.

Frau Dr. Andrea Starke, Frau Franziska Albrecht und Frau Christiane Jugert danke ich für das Korrekturlesen dieser Arbeit.

Nicht zuletzt gilt mein besonderer Dank meinen Eltern Sonja und Uwe Jonas sowie Herrn Tim Fresenborg, die mir während dieser Zeit zur Seite gestanden haben. Diese Arbeit verdanke ich ihnen durch ihre stets uneingeschränkte Unterstützung, Geduld und ermutigenden Ratschläge.

Vielen Dank.
Inhaltsverzeichnis

Inhaltsverzeichnis ... I
Abkürzungsverzeichnis .. IV
Abbildungsverzeichnis ... VII
Tabellenverzeichnis ... VIII
1 Zusammenfassung ... 1
2 Theoretische Grundlagen... 2
 2.1 Staphylokokken ... 2
 2.2 Fremdkörper-assoziierte Infektionen... 3
 2.3 Molekulare Grundlagen der Biofilmbildung ... 4
 2.3.1 Anheftung ... 5
 2.3.2 Akkumulation und Reifung .. 6
 2.3.3 Ablösung .. 8
 2.4 Regulation der Biofilmbildung.. 9
 2.4.1 Umwelteinflüsse ... 9
 2.4.2 Regulation der Exopolysaccharidsynthese ... 9
 2.4.3 Regulationen durch das agr-System .. 12
 2.5 Physiologie der Biofilme ... 14
 2.6 Resistenz gegenüber Antibiotika und der Wirtsabwehr 14
3 Ableitung der Fragestellung... 17
4 Material.. 18
 4.1 Bakterienstämmme ... 18
 4.2 Plasmide... 19
 4.3 Antibiotika ... 22
 4.4 Oligonukleotide ... 22
 4.5 Antikörper .. 24
 4.6 Enzyme .. 25
 4.7 Kits... 25
 4.8 Chemikalien und Verbrauchsmittel ... 26
 4.9 Geräte und Hilfsmittel ... 27
5 Methoden ... 29
 5.1 Kultur bakterieller Zellen .. 29
 5.1.1 Kultivierung von $E. coli$ Zellen .. 29
 5.1.2 Kultivierung von Staphylokokken ... 29
 5.2 Phänotypische Charakterisierung ... 29
 5.2.1 Erstellung von Wachstumskurven der $S. epidermidis$ Stämme 29
 5.2.2 Semiquantitative Bestimmung der Biofilmbildung 30
 5.2.3 Extraktion von PIA .. 31
 5.2.4 Quantifizierung von PIA mittels Dot Blot ... 31
 5.2.5 Bestimmung der Proteaseexpression auf Caseinagarplatten 32
 5.3 Genetische Manipulation bakterieller Zellen .. 33
 5.3.1 Herstellung chemisch-kompetenter $E. coli$ Zellen 33
 5.3.2 Transformation von $E. coli$ Zellen ... 34
 5.3.3 Herstellung elektrokompetenter $S. aureus$ und $S. epidermidis$ Zellen 34
 5.3.4 Elektroporation von $S. aureus$ und $S. epidermidis$ Zellen 35
 5.3.5 Phagentransduktion ... 35
 5.3.6 Mutagenese .. 37
 5.4 Arbeiten mit DNA ... 38
 5.4.1 Isolation chromosomaler DNA aus $S. epidermidis$ 38
Inhaltsverzeichnis

5.4.2 Isolation von Plasmid-DNA ... 38
5.4.3 Analyse von DNA im TBE-Agarosegel ... 39
5.4.4 Nukleinsäureaufreinigung ... 39
5.4.5 Bestimmung der DNA-Konzentration .. 39
5.4.6 Polymerasenkettenreaktion (PCR) ... 40
5.4.7 Sequenzierung von DNA-Fragmenten .. 41
5.4.8 Gatewayklonierungen .. 42
5.4.9 klassische Klonierung ... 46

5.5 Arbeiten mit RNA .. 47
5.5.1 Probennahme der S. epidermidis Zellen zur RNA-Aufreinigung 47
5.5.2 Isolation der Gesamtzell-RNA .. 47
5.5.3 Bestimmung der RNA-Konzentration .. 48
5.5.4 Primer Extension Analyse ... 48
5.5.5 5’ Kartierung der mRNA mittels RACE-Technologie 50
5.5.6 Quantitative Transkriptionsanalyse .. 51

5.6 Arbeiten mit Proteinen ... 54
5.6.1 Proteinüberexpression .. 54
5.6.2 Aufreinigung rekombinanter Proteine ... 54
5.6.3 Probennahme der S. epidermidis Zellen zur Proteinaufreinigung 55
5.6.4 Aufreinigung intrazellulärer Proteine .. 56
5.6.5 Aufreinigung extrazellulärer Proteine ... 56
5.6.6 Herstellung polyklonaler Antiseren ... 56
5.6.7 Proteinkonzentrationsbestimmung nach Bradford 58
5.6.8 Auftrennung von Proteinen im SDS-Polyacrylamidgel 59
5.6.9 Western Blot Analyse ... 59
5.6.10 Auftrennung von Proteinen über 2 Dimensionen 60

5.7 Computerbasierte Analyse ... 65
5.7.1 Blast-Suchen und Alignments ... 65

6 Ergebnisse .. 66
6.1 Nachweis des σB abhängigen Promoters strangaufwärts von barAB 66
6.1.1 Nachweis mittels Primer Extension Analyse 66
6.1.2 Nachweis mittels RACE-Technologie ... 67
6.2 Generierung polyklonaler Antiseren in Hasen 68
6.2.1 Überexpression der Proteine in E. coli BL 21 und Aufreinigung der His-tag Proteine mittels Affinitätschromatographie 68
6.2.2 Aufreinigung der Antiseren ... 71
6.3 Etablierung der Deletionsmutanten des purR-Lokus in S. epidermidis...... 71
6.3.1 Generierung definierter Mutanten ... 72
6.3.2 Komplementierung der Mutanten ... 75
6.3.3 Nachweis der veränderten Proteinexpressionsmuster in den Mutanten. .. 76

6.4 Charakterisierung der Biofilmbildung der Mutanten 76
6.4.1 Wachstumsverhalten .. 77
6.4.2 Biofilmbildung in 96well Polystyrolplatten 79
6.4.3 Transduktion der Deletionen in unabhängige genetische Hintergründe ... 80
6.4.4 PIA-Expression ... 83
6.4.5 Quantitative Transkriptionsanalyse der Gene icaA und icaR 84
6.5 Intrazelluläre Proteomanalyse mittels 2D Analyse 86
6.5.1 Die Deletionen von barA, barB und barAB 86
6.5.2 Die Deletionen von sigB und sigBagr ... 94
6.6 Änderungen der extrazellulären Expressionsmuster durch die Deletionen von *barA, barB, barAB, sigB, agr* und *sigBagr* .. 98
6.6.1 Analyse des extrazellulären Proteoms in der 1D SDS PAGE............... 98
6.6.2 Analyse der extrazellulären Proteaseaktivität auf Casein-Agar........ 100
6.6.3 Quantitative Transkriptionsanalyse der extrazellulären Proteasen .. 102
7 Diskussion.. 106
7.1 Kartierung des σB-abhängigen Promotors vor *barA*.......................... 107
7.2 Generierung der Deletionsmutanten... 109
7.3 Regulation der Biofilmbildung durch BarA und BarB.......................... 113
7.4 Einfluss der Regulatoren BarA, BarB, σB und *agr* auf das intrazelluläre Proteom.. 116
7.5 Einfluss der Regulatoren BarA, BarB, σB und *agr* auf das extrazelluläre Proteom.. 122
7.5.1 Proteasen.. 122
7.5.2 Weitere Proteine... 126
7.6 Schlussbetrachtungen .. 128
Literaturverzeichnis ... 130
Anhang... 147
I Plasmidkarten ... 147
II Sequenzierungen .. 149
III Signifikant veränderte Proteine des intrazellulären Proteoms 158
IV KEGG-Diagramme.. 175
V Proteinalignment BarA und BarB.. 177
Lebenslauf... 178
Veröffentlichungen... 179
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>xxxnm</sub></td>
<td>Absorption bei xxxnm</td>
</tr>
<tr>
<td>A. dest</td>
<td>destilliertes Wasser</td>
</tr>
<tr>
<td>Aap</td>
<td>accumulation associated protein</td>
</tr>
<tr>
<td>AB</td>
<td>Antibiotikum</td>
</tr>
<tr>
<td>agr</td>
<td>accessory gene regulator</td>
</tr>
<tr>
<td>AI-2</td>
<td>autoinducer-2</td>
</tr>
<tr>
<td>AIP</td>
<td>autoinducing peptide</td>
</tr>
<tr>
<td>AMPs</td>
<td>antimikrobielle Peptide</td>
</tr>
<tr>
<td>AP</td>
<td>alkalische Phosphatase</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AtlE</td>
<td>Autolysin</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosin-5’-triphosphat</td>
</tr>
<tr>
<td>bar</td>
<td>biofilm associated regulator</td>
</tr>
<tr>
<td>BCIP</td>
<td>3-Brom-4-chloro-3-indolylphosphat</td>
</tr>
<tr>
<td>BHI</td>
<td>brain heart infusion</td>
</tr>
<tr>
<td>BLAST</td>
<td>basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BSA</td>
<td>bovines Serumalbumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary DNA</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-Cholamidopropyl)dimethylammonio] 1-propan-sulfonat</td>
</tr>
<tr>
<td>CHCA</td>
<td>α-4-cyano-hydroxy-Zimtsäure</td>
</tr>
<tr>
<td>CIAP</td>
<td>calf intestine alkaline phosphatase</td>
</tr>
<tr>
<td>Cp</td>
<td>crossing point</td>
</tr>
<tr>
<td>cpm</td>
<td>counts per minute</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonucleic acid (Desoxyribonukleinsäure)</td>
</tr>
<tr>
<td>dNTPs</td>
<td>desoxy-Nukleosidtriphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>EMBL</td>
<td>European Molecular Biology Laboratory</td>
</tr>
<tr>
<td>Embp</td>
<td>extracellular matrix binding protein</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>ica</td>
<td>intercellular adhesin</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>ID</td>
<td>Identifikationsnummer</td>
</tr>
<tr>
<td>IEF</td>
<td>isoelektrische Fokussierung</td>
</tr>
<tr>
<td>IPG</td>
<td>immobilisierter pH Gradient</td>
</tr>
<tr>
<td>kDa</td>
<td>kiloDalton</td>
</tr>
<tr>
<td>KNS</td>
<td>koagulasenegative Staphylokokken</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>LSC</td>
<td>liquid scintillation counter</td>
</tr>
<tr>
<td>MALDI</td>
<td>matrix associated laser desorption ionization</td>
</tr>
<tr>
<td>MS</td>
<td>Massenspektroskopie</td>
</tr>
<tr>
<td>MSCRAMMs</td>
<td>microbial surface components recognizing adhesive matrix molecules</td>
</tr>
<tr>
<td>NB2</td>
<td>nutrient broth no. 2</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitroblau-Tetrazoliumsalz</td>
</tr>
<tr>
<td>OD<sub>xnm</sub></td>
<td>optische Dichte bei x nm</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamid-Gelelektrophorese</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphat-gepufferte Salzlösung</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerasekettenreaktion</td>
</tr>
<tr>
<td>PGA</td>
<td>Poly-γ-glutaminsäure</td>
</tr>
<tr>
<td>PIA</td>
<td>polysaccharide intercellular adhesin</td>
</tr>
<tr>
<td>PNK</td>
<td>Polynukleotidkinase</td>
</tr>
<tr>
<td>PSMs</td>
<td>phenol soluble modulins</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidenfluorid</td>
</tr>
<tr>
<td>RACE</td>
<td>rapid amplification of cDNA ends</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid (Ribonukleinsäure)</td>
</tr>
<tr>
<td>Rsb</td>
<td>Regulator von σ<sup>B</sup></td>
</tr>
<tr>
<td>RT</td>
<td>real-time</td>
</tr>
<tr>
<td>Sar</td>
<td>staphylococcal accesory regulator</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>sigB</td>
<td>Genort des alternativen Sigmafaktors σ<sup>B</sup></td>
</tr>
<tr>
<td>STA</td>
<td>Staphylokokken-Typisierungsagar</td>
</tr>
<tr>
<td>SV</td>
<td>Säulenvolumen</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borsäure-EDTA</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-gepufferte Salzlösung</td>
</tr>
<tr>
<td>TCA-Zyklus</td>
<td>Tricarbonsäure-Zyklus</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloressigsäure</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethylethylendiamin</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>TFA</td>
<td>Tri-Fluoreszsäure</td>
</tr>
<tr>
<td>TIGR</td>
<td>The Institute of Genomic Research</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight</td>
</tr>
<tr>
<td>Tris</td>
<td>Trihydroxyaminomethan</td>
</tr>
<tr>
<td>TSA</td>
<td>Tryptic Soy agar</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic Soy broth</td>
</tr>
<tr>
<td>TSB_EtOH</td>
<td>TSB supplementiert mit 3 % EtOH</td>
</tr>
<tr>
<td>TSB_NaCl</td>
<td>TSB supplementiert mit 3 % NaCl</td>
</tr>
<tr>
<td>TTBS</td>
<td>Tween-Tris gepufferte Salzlösung</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>Upm</td>
<td>Umdrehungen pro Minute</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>w/v</td>
<td>Gewicht pro Volumen</td>
</tr>
<tr>
<td>wt</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>ZVK</td>
<td>Zentraler Venenkatheter</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 2-1 Phasen der Biofilmbildung nach M. Otto 2008 .. 5
Abb. 2-2 Modell der Biofilmregulation in S. epidermidis (Mack et al., 2006) 12
Abb. 5-1 Primer für Expressionsvektoren.. 42
Abb. 5-2 Primer für Deletionsvektoren.. 44
Abb. 6-1 Schematische Darstellung der Primer Extension Analyse......................66
Abb. 6-2 Primer Extension für barA ... 67
Abb. 6-3 5’ Kartierung mit RACE für barA .. 68
Abb. 6-4 Aufreinigung der His-tag-Proteine ... 70
Abb. 6-5 Schematische Darstellung des homologen Genaustausches von barAB. 72
Abb. 6-6 Nachweis der Proteine BarA und BarB in den generierten Mutanten...76
Abb. 6-7 Wachstumskurven... 78
Abb. 6-8 Wachstumskurven... 81
Abb. 6-9 Biofilmbildung in 96well NunclonΔ Zellkulturschalen.......................... 80
Abb. 6-10 Biofilmbildung der S. epidermidis Stämme 1057 und 8400 82
Abb. 6-11 Biofilmbildung der S. epidermidis Stämme 1057 und 8400................... 82
Abb. 6-12 PIA-Nachweis in S. epidermidis 1457 Stämmen................................. 83
Abb. 6-13 IcaA und icaR Transkriptionsanalyse der Mutanten............................ 95
Abb. 6-14 Änderungen des intrazellulären Proteoms in S. epidermidis 1457barA 87
Abb. 6-15 Änderungen des intrazellulären Proteoms in S. epidermidis 1457barB 88
Abb. 6-16 Änderungen des intrazellulären Proteoms in S. epidermidis 1457barAB 89
Abb. 6-17 Änderungen der extrazellulären Proteasen in S. epidermidis 1457sigB 95
Abb. 6-18 Änderungen der extrazellulären Proteasen in S. epidermidis 1457sigBagr. 96
Abb. 6-19 Änderungen der extrazellulären Proteasen in S. epidermidis 1457sigBagr im Vergleich mit 1457barB ... 98
Abb. 6-20 Änderungen des intrazellulären Proteoms in S. epidermidis 1457sigBagr im Vergleich mit 1457sigBagr ... 101
Abb. 6-21 Änderungen der extrazellulären Proteasen in S. epidermidis 1457sigBagr im Vergleich mit 1457sigBagr ... 101
Abb. 6-22 Änderungen der extrazellulären Proteasen in S. epidermidis 1457sigBagr im Vergleich mit 1457sigBagr ... 101
Abb. 6-23 Änderungen der extrazellulären Proteasen in S. epidermidis 1457sigBagr im Vergleich mit 1457sigBagr ... 101
Abb. 6-24 Extraproteine in S. epidermidis .. 99
Abb. 6-25 Proteaseexpression verschiedener S. epidermidis 1457 Stämme........... 101
Abb. 6-26 Proteaseexpression in S. epidermidis 8400 und 1057 Stämmen........... 102
Abb. 6-27 Expression von SE0184, SE1543 und SE2219 nach 7 h 103
Abb. 6-28 Genexpression von SE0184, SE1543, SE2219 und RNAIII nach 24 h 105
Abb. 7-1 Alignment der oβ-Proteine... 109
Abb. 7-2 Modifiziertes Modell der Biofilmbildung .. 115
Abb. 7-3 Beziehung zwischen PIA-Synthese und Glykolyse/TCA-Zyklus 118
Abb. 7-4 Schema der Regulation der extrazellulären Proteasen in S. epidermidis.. 126
Abb. 8-1 Plasmidkarten der Expressionsplasmide.. 147
Abb. 8-2 Plasmidkarten der Gatewayplasmide zur Deletion 148
Abb. 8-3 Glykolyse / Glukoneogenese .. 175
Abb. 8-4 TCA-Zyklus .. 176
Abb. 8-5 Aminozucker-Metabolismus .. 176
Abb. 8-6 Proteinalignment von BarA und BarB .. 177
Tabellenverzeichnis

Tab. 2-1 Ausgewählte Oberflächenproteine, die extrazelluläre Matrix binden 6
Tab. 4-1 In dieser Arbeit verwendete Bakterienstämme 18
Tab. 4-2 In dieser Arbeit verwendete Plasmide .. 19
Tab. 4-3 In dieser Arbeit verwendete Antibiotika ... 22
Tab. 4-4 In dieser Arbeit verwendete Oligonukleotide 22
Tab. 4-5 In dieser Arbeit verwendete Antikörper .. 24
Tab. 4-6 In dieser Arbeit verwendete Enzyme .. 25
Tab. 4-7 In dieser Arbeit verwendete Kits ... 25
Tab. 4-8 In dieser Arbeit verwendete Chemikalien und Verbrauchsmittel 26
Tab. 4-9 In dieser Arbeit verwendete Geräte und Hilfsmittel 27
Tab. 5-1 Hybridisierungstemperaturen von Primerpaaren 41
Tab. 5-2 Kombinationen der Entry- und Destinationsvektoren 43
Tab. 5-3 Zuordnung der att-sites zu den Fragmenten und resultierende Vektoren 44
Tab. 5-4 PCR-Bedingungen zur Amplifikation der dA-markierten cDNA 51
Tab. 5-5 PCR-Protokoll der Kontroll PCR ... 52
Tab. 5-6 Protokoll der reversen Transkription .. 53
Tab. 5-7 Zusammensetzung der RT-PCR Ansätze ... 53
Tab. 6-1 Größenveränderung der His-tag Proteine ... 70
Tab. 6-2 Zu erwartende Fragmentgrößen bei korrektem Genaustausch 73
Tab. 6-3 Wachstumsrate und Generationszeiten der 1457 Stämme 78
Tab. 6-4 Wachstumsrate und Generationszeiten der 1057 und 8400 Stämme 82
Tab. 6-5 Anzahl signifikant regulierter Proteinspots in 1457barAB 91
Tab. 6-6 Anzahl signifikant regulierter Proteinspots in 1457sigB und 1457sigBagr 94
...
Tab. 8-1 Signifikant veränderte Proteine in S. epidermidis 1457barA, 1457barB und 1457barAB im Vergleich zum Wildtyp ... 158
Tab. 8-2 Signifikant veränderte Proteine in S. epidermidis 1457barAB im Vergleich zu 1457barA und 1457barB .. 162
Tab. 8-3 Signifikant veränderte Proteine in S. epidermidis 1457sigB und 1457sigBagr im Vergleich zum Wildtyp 1457 .. 167
Tab. 8-4 Signifikant veränderte Proteine in S. epidermidis 1457sigBagr im Vergleich zu 1457sigB .. 171
1 Zusammenfassung

2 Theoretische Grundlagen

2.1 Staphylokokken

dieser Infektionen ist der Erreger *S. epidermidis* (Darouiche, 2004; Zimmerli et al., 2004). Der Spezies kommt durch die Fähigkeit zur Biofilmbildung eine enorme Bedeutung bei Infektionen von intravasalen Kathetern, Liquorshunts, Endoprothesen sowie künstlichen Herzklappen oder Gelenken zu. Die Behandlung solcher Infektionen ist oft kompliziert und eine Heilung meist nur durch Entfernung des Fremdmaterials zu erreichen (Kloos and Bannerman, 1994).

2.2 Fremdkörper-assoziierte Infektionen

Insbesondere die Fähigkeit der Bakterien zur Bindung an implantierte Oberflächen und die Bildung von mehrschichtigen Biofilmen führt zu ihrem hohen pathogenen Potential. Biofilme sind charakterisiert durch eine Reduzierung der basalen zellulären Prozesse und durch eine Induktion von protektiven Faktoren (Kong et al., 2006). Die Bakterien schützen sich durch eine verminderte Sensitivität gegenüber Antibiotika, Zytokinen und antimikrobiellen Peptiden. Sie wechseln in einen weniger aggressiven Status (Transkription und Translation, verringriger Metabolismus sowie Wechsel zur Fermentation) und führen so zu einer verminderten Entzündung und Chemotaxis (Yao et al., 2005). Ferner zeigen *S. epidermidis* Stämme in Fremdkörper-assoziierten Infektionen ein erhebliches Antibiotikaresistenzmuster gegenüber Methicillin, Chinolonen und Glycopeptiden (Raad et al., 1998; Ziebuhr et al., 2006). Biofilme sind deshalb nur sehr schwer zu eradizieren (Gilbert et al., 1997; Costerton, 1999). Dafür gibt es verschiedene Ursachen, die in

2.3 Molekulare Grundlagen der Biofilmbildung

2.3.1 Anheftung

Schon kurz nach der Implantation des Fremdmaterials kommt es zu einer Überschichtung mit wirtseigener Matrix. Daher stellt sich die Frage, welche Bedeutung den oben geschilderten Interaktionen bei humanen Infektionen tatsächlich zukommt. Möglicherweise ist *in vivo* die spezifische Interaktion mit der

<table>
<thead>
<tr>
<th>Protein</th>
<th>Matrixbestandteil</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtlE</td>
<td>Vitronektin</td>
<td>Heilmann et al., 1997</td>
</tr>
<tr>
<td>Aae</td>
<td>Vitronektin, Fibronectin, Fibrinogen</td>
<td>Heilmann et al., 2003</td>
</tr>
<tr>
<td>Fbe (SdrG)</td>
<td>Fibrinogen</td>
<td>Nilsson et al., 1998</td>
</tr>
<tr>
<td>SdrF, SdrH</td>
<td>Fibronectin</td>
<td>McCrea et al., 2000</td>
</tr>
<tr>
<td>Embp</td>
<td>Fibronectin</td>
<td>Williams et al., 2002</td>
</tr>
<tr>
<td>GehD</td>
<td>Kollagen</td>
<td>Bowden et al., 2002</td>
</tr>
</tbody>
</table>

Ferner wurde beschrieben, dass auch Teichonsäuren, Bestandteile der Zellwand, an immobilisiertes Fibronectin binden (Hussain *et al.*, 2001).

2.3.2 Akkumulation und Reifung

Die Akkumulation und Reifung des Biofilms ist charakterisiert durch interzelluläre Aggregation, die durch Exopolymere (Kohlenhydratstrukturen, aber auch Proteine) und durch strukturierende Kräfte innerhalb des Biofilms erreicht wird.

2.3.2.1 Adhäsive Kräfte (Aggregation)

Die Produktion von Faktoren, die die interzelluläre Adhäsion vermitteln, führt zur Aggregation. Dazu zählt in erster Linie das extrazelluläre Polysaccharid PIA (*polysaccharide intercellular adhesin*) sowie die biofilmassozierten Proteine Aap (*accumulation associated protein*) und Bhp (*Bap homologue protein*). PIA ist der Hauptbestandteil der extrazellulären Kohlenhydratmatrix von *S. epidermidis*, der essentiell für die Akkumulation der Bakterien ist (Mack *et al.*, 1992; Mack *et al.*, 1994; Ziebuhr *et al.*, 2006). PIA ist ein lineares β-1,6-verknüpftes Glukosaminglykan aus N-Acetylglukosaminresten. Das Molekül enthält ca. 15 % de-N-acetylierte...
Aminogruppen und ist mit Succinat- und Phosphatresten substituiert. Das gesamte Molekül besitzt eine positive Ladung (Mack et al., 1996a). Dadurch ist PIA in der Lage mit der negativ geladenen Zelloberfläche, bspw. benachbarten Polysaccharidsträngen, Zellwandbestandteilen wie Teichonsäuren oder Lektinen, zu interagieren. Synthesisiert wird PIA durch die Enzyme, die im intercellular adhesin (ica) Operon codiert werden (Mack et al., 1994; Heilmann et al., 1996; Mack et al., 1996b). Das Operon besteht aus den vier Genen icaADBC. IcaA ist eine N-Acetylglukosaminyltransferase, die zur optimalen Aktivität IcaD benötigt (Gerke et al., 1998). IcaB stellt die Deacetylase dar und IcaC ist ein Transmembranprotein und spielt wahrscheinlich eine Rolle bei der Externalisierung, Elongation und Translokation des Polysaccharidstranges (Vuong et al., 2004a).

Es wurde gezeigt, dass der ica-Lokus und die PIA-Expression wichtige Parameter für die Kolonisation von implantierten Kathetern im Tiermodell sind (Rupp et al., 1999a; Rupp et al., 1999b; Rupp et al., 2001). In einem Modell, in dem Gewebekäfige mit Katheterstücken, die mit Wirtsproteinen bedeckt waren, implantiert wurden, führte die PIA–Expression jedoch zu einer geringeren Kolonisation (Fluckiger et al., 2005). Diese Beobachtung gibt einen Hinweis darauf, dass S. epidermidis unterschiedliche Mechanismen der Biofilmbildung entwickelt hat.

In der Vergangenheit wurden S. epidermidis Isolate beschrieben, die einen biofilmpositiven Phänotyp aufwiesen, aber denen der ica-Lokus fehlte (Ninin et al., 2006; Qin et al., 2007). Es wurde ein alternativer Mechanismus der Biofilmbildung beschrieben, der eine extrazelluläre Matrix aus Proteinen besitzt (Hennig et al., 2007). Aap ist in einigen Stämmen essenziell für die Entstehung eines Biofilms und entgegen früheren Annahmen konnte gezeigt werden, dass das Protein interzelluläre Adhäsion und einen PIA-unabhängigen Biofilm vermitteln kann (Rohde et al., 2005). Aap ist ein Zellwandprotein, das auch in den Extrazellularraum sekretiert werden kann. Es besteht N-terminal aus 16 Aminosäure repeats, einer A-Region, einer B repeat Region, 19 prolinreichen tandem repeats, einer Sortase-Erkennungssequenz und einem positiv geladenen cytoplasmatischen Schwanz (Bowden et al., 2005). In der B repeat Region kann die Anzahl der Wiederholungen variieren (Rohde et al., 2004; Monk and Archer, 2007). Diese Region des Proteins enthält G5-Domänen, die N-Acetylglukosamin binden können (Bateman et al., 2004) und damit die Verbindung zu PIA ermöglichen. Außerdem konnte gezeigt werden, dass Aap durch
Proteasen der Staphylokokken prozessiert werden muss, um die Bildung des Biofilms vermitteln zu können (Rohde et al., 2005; Banner et al., 2007). Ein weiteres Oberflächenprotein, Bap (biofilm associated protein) spielt eine Rolle im proteinvermittelten Biofilm und wurde bei Isolaten aus boviner Mastitis beschrieben (Cucarella et al., 2004; Tormo et al., 2005a). Ein Homolog von Bap tritt in humanen S. epidermidis Stämmen auf (Zhang et al., 2003; Gill et al., 2005), scheint aber bei humanen Infektionen keine entscheidende Rolle zu spielen (Rohde et al., 2004; Hennig et al., 2007).

2.3.2.2 Disruptive Kräfte (Biofilmstrukturierung)

2.3.3 Ablösung

Kräfte, die zur Strukturierung des Biofilms genutzt werden, lassen sich kaum von den Mechanismen zur Ablösung von Zellen aus dem Biofilm trennen. Daher spielen die oben beschriebenen, durch das agr-System regulierten Faktoren, auch bei der Ablösung von Zellen aus dem Biofilm eine wichtige Rolle (Yarwood et al., 2004;

2.4 Regulation der Biofilmbildung

2.4.1 Umwelteinflüsse

Für eine große Anzahl an äußeren Bedingungen konnte ein Einfluss auf die Biofilmbildung gezeigt werden. So wird die Biofilmbildung bspw. durch Eisenmangel, Sauerstofflimitation und erhöhte Temperaturen gefördert (Deighton and Borland, 1993; Rachid et al., 2000a; Rachid et al., 2000b; Cramton et al., 2001). Auch eine erhöhte Osmolarität und Glukosekonzentration im Wachstumsmedium induzieren die Biofilmbildung (Mack et al., 1992; Rachid et al., 2000b; Knobloch et al., 2001; Fitzpatrick et al., 2002; Dobinsky et al., 2003). Des Weiteren kommt es zur Induktion der Biofilmbildung durch subinhibitorische Konzentrationen von Antibiotika, Desinfektionsmitteln und Ethanol (Rachid et al., 2000c; Fitzpatrick et al., 2002; Knobloch et al., 2002b).

2.4.2 Regulation der Exopolysaccharidsynthese

Die meisten der oben beschriebenen Umwelteinflüsse wirken auf die Biofilmbildung durch Veränderungen der PIA-Expression. Es wurden einige Genorte gezeigt, deren Deletionen zu einer Erhöhung oder Abschaltung der PIA-Expression führten. Neben dem spezifischen Negativregulator IcaR, der die Transkription von icaADBC durch Bindung an die DNA reprimiert, gibt es noch weitere Regulatoren (Conlon et al., 2002; Götz, 2002; Jefferson et al., 2003). Der Verlust der globalen Regulatoren SarA bzw. σ^B wirkt sich negativ auf die Biofilmbildung aus (Knobloch et al., 2001; Tormo et al., 2005b), wohingegen die Deletion des luxS Gens, einem Bestandteil eines Quorum sensing Systems in Staphylokokken, zu einer gesteigerten Biofilmbildung führt (Xu et al., 2006).

Ein weiterer Positivregulator der PIA-Synthese wurde in der Mutante M17 inaktiviert. Das Transposon zerstört einen offenen Leserahmen unbekannter Funktion und der biofilmpositive Phänotyp kann durch Zugabe von N-Acetylglukosamin zum Wachstumsmedium wieder hergestellt werden (Rohde et al., 2001; Knobloch et al., 2003).

Bei SarA handelt es sich um einen Positivregulator der PIA-Synthese, der unabhängig von IcaR, durch Bindung an den Promotorbereich von icaADBC dessen Transkription beeinflusst (Tormo et al., 2005b). SarA selbst besitzt drei Promotoren, von denen einer σB-abhängig transkribiert wird (Fluckiger et al., 1998). Überraschenderweise scheinen jedoch die Mechanismen in denen SarA und σB auf die Biofilmbildung wirken unterschiedlich zu sein, da σB, wie schon beschrieben, über ein unbekanntes Intermediat die icaR Transkription reprimiert (Knobloch et al.,
Die unterschiedliche Regulation wird weiter verdeutlicht durch die Beobachtung, dass die icaADBC Transkription in einer sarA Mutante, welche durch Intergression eines Insertionselements (IS256) generiert wurde, unter bestimmten Umweltbedingungen das Wildtypniveau erreicht, aber trotzdem kein PIA synthetisiert (Conlon et al., 2004). Dies deutet auf einen weiteren SarA-abhängigen Regulationsweg hin, der auf posttranskriptioneller Ebene erfolgen muss.

Durch die intensive Forschung über die Regulation der PIA-Synthese und des ica Operons, wird immer deutlicher, dass dies ein komplexes Netzwerk darstellt (Abbildung 2-2). Ein besseres Verständnis der Mechanismen der Biofilmbildung wird zur Entwicklung von Methoden führen, die der Bekämpfung biofilmassoziierter Infektionen dienen werden.

2.4.3 Regulationen durch das agr-System

Das System wird beim Übergang von der exponentiellen zur stationären Wachstumsphase aktiviert. Hier kommt es zu einer Herabregulation von Oberflächenproteinen und einer Induktion von Virulenzfaktoren (Vuong et al., 2000). In S. aureus wurde gezeigt, dass homologe AIPs zu einer Induktion führen, wohingegen heterologe Peptide das System reprimieren (Ji et al., 1997). Das agr-System reguliert zum großen Teil die Expression von extrazellulären Lipasen und Proteasen, wozu auch die Serinprotease (SE1543), die Cysteinprotease (SE0184) und die Metalloprotease (SE2219) zählen (Vuong et al., 2000; Yao et al., 2006; Batzilla et al., 2006).

Es wurde gezeigt, dass es in der stationären Phase von in Biofilmen lebenden S. epidermidis Zellen zu einer geringeren Expression von agr kommt, verglichen zu planktonisch lebenden Zellen (Yao et al., 2005). Die agr Deletion in S. epidermidis führte zu einer signifikant stärkeren Biofilmbildung verglichen zum Wildtyp (Vuong et al., 2003). Die Zellen adhärierten wesentlich besser an Polystyren und humane Epithelzellen (Vuong et al., 2003; Vuong et al., 2004b). AtlE, ein wichtiges Protein zur primären Anheftung der Zellen, wurde in den frühen Wachstumsphasen durch die agr Deletion klar induziert und akkumuliert, was die bessere Anheftung erklärt (Vuong et al., 2003; Yao et al., 2006; Batzilla et al., 2006; Mack et al., 2007). Weiterhin wurde beobachtet, dass die Biofilme der agr Deletionsstämme dicker waren als die des Wildtyps (Vuong et al., 2004b). Dies weist auf eine Beteiligung von Faktoren hin, die in die Akkumulation des Biofilms involviert sind oder auf eine geringere Ablösung der Zellen aus dem Biofilm. Messungen von icaADBC, PIA und Aap zeigten allerdings keine signifikanten Veränderungen (Vuong et al., 2003; Yao et al., 2006; Batzilla et al., 2006). Zur Aktivierung benötigt Aap Proteaseaktivität, wird aber bei sehr hoher proteolytischer Aktivität auch schnell abgebaut (Rohde et al., 2005). Die Repression von Proteasen durch die agr Deletion könnte somit zu der verstärkten Akkumulation indirekt beitragen (Hussain et al., 1997; Sun et al., 2005).
Darüber hinaus reguliert das agr-System die Expression der PSMs und spielt auch dadurch bei der Strukturierung des Biofilm und der Ablösung von Zellen aus dem Biofilm eine entscheidene Rolle (2.3.2.2 und 2.3.3).

2.5 Physiologie der Biofilme

Darüber hinaus konnte ein Einfluss des Citratzyklus auf die Biofilmbildung gezeigt werden. Eine Hemmung des Citratzyklus führt zu einer Verschiebung von Kohlenstoffintermediaten hin zur Synthese von PIA (Vuong et al., 2005). PIA wird aus mit UDP aktiviertem N-Acetylglukosamin synthetisiert (Gerke et al., 1998), welches über mehrere Schritte aus Fruktose-6-Phosphat hergestellt wird. Fruktose-6-Phosphat ist ein Intermediat, welches aus Glukose in der Glykolyse entsteht und durch eine verminderte Aktivität des Citratzyklus akkumuliert und so vermehrt zur Synthese von PIA bereitsteht.

2.6 Resistenz gegenüber Antibiotika und der Wirtsabwehr

S. epidermidis Infektionen in Zusammenhang mit Biofilmen auf implantierten medizinischen Fremdkörpern sind schon lange bekannt (Peters et al., 1981; Marrie et al., 1982). Trotzdem steht die Medizin noch heute vor großen Problemen in der Therapie derartiger Infektionen (Götz and Peters, 2000). Es scheint, dass Zellen im
Biofilm resisterter gegenüber einer Vielzahl von Antibiotika sind als planktonisch lebende Zellen (Costerton et al., 1999). In der Literatur finden sich Studien über verschiedene Faktoren, die hieran beteiligt sein könnten. Dazu gehört, dass die Wirkstoffe nicht ihre Ziele erreichen, sei es durch verminderte Diffusion, blockierende Oberflächenmoleküle oder aktive Ausschleusung, aber auch die Expression spezifischer Resistenzfaktoren wird diskutiert (Yao et al., 2005; de Araujo et al., 2006; Saginur et al., 2006; McCann et al., 2008). In den meisten Studien wurde das Überleben der Zellen in einem etablierten Biofilm gemessen und nicht deren Wachstum. Vergleicht man dies zu exponentiell wachsenden planktonischen Zellen, ergibt sich schon aus dem aktiveren Metabolismus dieser Zellen eine gesteigerte Empfindlichkeit gegenüber diversen Antibiotika, da die Targets antimikrobieller Substanzen aktive zelluläre Prozesse darstellen. Tatsächlich konnte aber gezeigt werden, dass Antibiotika, wie Fluorochinolone sehr gut durch die Kohlenhydratmatrix von Biofilmen Gram-negativer Bakterien diffundieren können (Shigeta et al., 1997; Vrany et al., 1997; Ishida et al., 1998; Anderl et al., 2000; Stewart and Costerton, 2001; Ehrlich et al., 2004). Mittlerweile konnte gezeigt werden, dass die Mehrheit der Zellen im Biofilm durch klinisch erreichbare Konzentrationen der Antibiotika getötet werden kann (Brooun et al., 2000). Durch diese Beobachtung stellte sich die Frage, warum es trotzdem sehr häufig zu Reinfektionen durch die Biofilmbildner nach Antibiotikabehandlung kommt.

In jeder Bakterienpopulation gibt es eine geringe Anzahl an sogenannten Persistern, deren Anteil von der Wachstumsphase der Bakterien abhängig ist (Bigger, 1944; Keren et al., 2004). Persisten weisen eine multi drug tolerance unabhängig vom Antibiotikum auf (Lewis, 2001). Bei diesen Zellen handelt es sich nicht um Mutanten oder Zellen, die sich in einem bestimmten Zellzyklus befinden. Vermutlich kommt es durch die Aktivität der Toxine, aus verschiedenen Toxin-Antitoxin-Systemen der Bakterien, in diesen Zellen zu einem fast vollständigen Stillstand der Translation und damit aller zellulären Prozesse (Lewis, 2005; Lewis, 2008). Da aber die Persisten wieder in der Lage sind neue Populationen zu bilden, muss zumindest das Antitoxin noch gebildet werden, um die Wirkung des Toxins neutralisieren zu können (Pedersen et al., 2002). Die Dormanz dieser Zellen führt somit zu einer Toleranz gegenüber antimikrobiellen Substanzen durch ein Abschalten der Targets.

Auch in S. epidermidis wurde das Vorkommen von Persisten beschrieben und gezeigt, dass nur eine kleine Subpopulation, sowohl biofilmpositiver Stämme als
auch deren biofilmnegativer Mutanten, eine gewisse Toleranz gegenüber den getesteten Antibiotika aufwiesen (Knobloch et al., 2002a; Knobloch et al., 2008).

In einer Infektion mit planktonischen Zellen werden die Persister effizient vom Immunsystem erkannt und beseitigt. Für Zellen, die in einer Biofilmmatrix eingebettet sind, ist bekannt, dass sie vor dem Angriff durch das Immunsystem geschützt sind (Zimmerli et al., 1984; Vaudaux et al., 1985; Hoyle et al., 1990; von Eiff et al., 1999). Im Einzelnen wurde gezeigt, dass PIA die Zellen vor kationischen und anionischen antimikrobiellen Peptiden (AMPs) des angeborenen Immunsystems schützt (Vuong et al., 2004b). Auch das Exopolymer Poly-γ-Glutaminsäure (PGA), welches im Biofilm hochreguliert wird, trägt zur Resistenz gegenüber AMPs bei (Kocianova et al., 2005). Letztlich schützen PIA und PGA die Bakterien auch vor der Phagozytose durch neutrophile Granulozyten (Vuong et al., 2004a; Kocianova et al., 2005). Durch diese Mechanismen ist es den Persistern eines Biofilms möglich nach der Antibiotikatherapie wieder neue Populationen zu bilden und eine Reinfektion hervorzurufen.
3 Ableitung der Fragestellung

Um die Regulons der Regulatoren σ^B^, BarAB und es agr-Systems näher zu charakterisieren und mögliche Wirkungswege in Zusammenhang mit der Pathogenität von *S. epidermidis* zu klären, sollte die Proteinexpression der Mutanten global untersucht werden.

Das Verständnis über Funktion und Regulation der verschiedenen Genprodukte und deren mögliche Netzwerke in *S. epidermidis* stellt eine wesentliche Voraussetzung für die Entwicklung neuer Therapiestrategien dar.
4 Material

4.1 Bakterienstämme

<table>
<thead>
<tr>
<th>Staphylococcus epidermidis</th>
<th>relevante Charakteristika</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457</td>
<td>ZVK-Isolat, stark biofilmpositiv</td>
<td>Mack et al., 1992</td>
</tr>
<tr>
<td>8400</td>
<td>Blutkulturisolat</td>
<td>Mack et al., 1992</td>
</tr>
<tr>
<td>1057</td>
<td>ZVK-Isolat</td>
<td>Mack et al., 1996b</td>
</tr>
<tr>
<td>1457-M10</td>
<td>icaA-Tn917-Mutante, biofilmnegativ</td>
<td>Mack et al., 1994</td>
</tr>
<tr>
<td>1457-M12</td>
<td>purR-Tn917-Mutante, biofilmnegativ</td>
<td>Mack et al., 1994</td>
</tr>
<tr>
<td>1457-M15</td>
<td>rsbU-Tn917-Mutante, biofilmreduziert</td>
<td>Mack et al., 1994</td>
</tr>
<tr>
<td>1457rsbU</td>
<td>rsbU::erm, Biofilm-reduziert</td>
<td>Knobloch et al., 2004a</td>
</tr>
<tr>
<td>1457sigB</td>
<td>sigB::erm, Biofilm-reduziert</td>
<td>Knobloch et al., 2004a</td>
</tr>
<tr>
<td>1457agr</td>
<td>agr::spec, verstärkt biofilmpositiv</td>
<td>Vuong et al., 2003</td>
</tr>
<tr>
<td>1457sigBagr</td>
<td>agr::spec sigB::erm, Biofilmreduziert</td>
<td>Schewe, unpubliziert</td>
</tr>
<tr>
<td>1457ispE</td>
<td>ispE::erm, biofilmpositiv</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>1457purR</td>
<td>purR::erm, biofilmpositiv</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>1457barA</td>
<td>barA::erm, Biofilm-reduziert</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>1457barB</td>
<td>barB::erm, biofilmnegativ</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>1457barAB</td>
<td>barAB::erm, biofilmnegativ</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>1457ispEpurRbarAB</td>
<td>ispEpurRbarAB::erm, biofilmnegativ</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>1057sigB</td>
<td>sigB::erm, Biofilm-reduziert</td>
<td>Schewe, unpubliziert</td>
</tr>
<tr>
<td>1057agr</td>
<td>agr::spec, verstärkt biofilmpositiv</td>
<td>Schewe, unpubliziert</td>
</tr>
<tr>
<td>1057sigBagr</td>
<td>agr::spec sigB::erm, Biofilmreduziert</td>
<td>Schewe, unpubliziert</td>
</tr>
<tr>
<td>8400sigB</td>
<td>sigB::erm, Biofilm-reduziert</td>
<td>Jäger, 2006</td>
</tr>
<tr>
<td>8400agr</td>
<td>agr::spec, verstärkt biofilmpositiv</td>
<td>Jäger, 2006</td>
</tr>
<tr>
<td>8400sigBagr</td>
<td>agr::spec sigB::erm, Biofilmreduziert</td>
<td>Jäger, 2006</td>
</tr>
<tr>
<td>8400barA</td>
<td>barA::erm, Biofilm-reduziert</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>
Staphylococcus aureus

RN4220 NCTC8325-4 r m⁺ rsbU Kreiswirth et al., 1983

Escherichia coli

TOP10 F⁻ mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (Str^R) endA1 nupG Invitrogen

Mach1 F⁻ Φ80lacZΔM15 ΔlacX74 hsdR ΔrecA1398 endA1 tonA Invitrogen

DH5α F⁺ supE44 ΔlacU169 (Φ80 lacZΔM15) hsdR17 λ⁻ recA1 endA1 gyrA96 thi-1 relA1 Hanahan, 1985

BL21 A1 F⁺ ompT hsdS_B gal dcm araB::T7RNAP-tetA Invitrogen

DB3.1 F⁺ gyrA462 endA1 Δ(sr1-recA) mcrB mrr hsdS₂₀ supE44 ara-14 galK2 lacY1 proA2 rpsL20(sm^R) xyl-5 λ-leu mtl1 Invitrogen

4.2 Plasmide

Tab. 4-2 In dieser Arbeit verwendete Plasmide

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>relevante Charakteristika</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>pDONR 221</td>
<td>Gateway-Donorvektor; Kan<sup>R</sup> Cmr<sup>R</sup> ccdB attP1 attP2</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pDONR P4-P1R</td>
<td>Gateway-Donorvektor; Kan<sup>R</sup> Cmr<sup>R</sup> ccdB attP4 attP1R</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pDONR P2-P3</td>
<td>Gateway-Donorvektor; Kan<sup>R</sup> Cmr<sup>R</sup> ccdB attP2P3 attP3</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pDEST R4-R3</td>
<td>Gateway-Destinationsvektor; Amp<sup>T</sup> Cmr<sup>R</sup> ccdB attR4 attR3</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pDEST 17</td>
<td>Gateway-Destinationsvektor; Amp<sup>T</sup> Cmr<sup>R</sup> T7 6xHis tag ccdB attR1 attR2</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pDEST 15</td>
<td>Gateway-Destinationsvektor; Amp<sup>T</sup> Cmr<sup>R</sup> T7 GST tag ccdB attR1 attR2</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pBT2</td>
<td>Temperatur-sensitiver shuttle-Vektor aus pRB-Serie; Amp<sup>T</sup> in E. coli; Cmr<sup>R</sup> in Staphylokokken</td>
<td>Brückner, 1997</td>
</tr>
<tr>
<td>pTS1lac dest</td>
<td>Temperatur-sensitiver shuttle-Vektor, Destinationsvektor attR4 attR3, Amp<sup>T</sup> Cmr<sup>R</sup></td>
<td>Perehinec et al., 2007</td>
</tr>
<tr>
<td>pENTRYfrag1</td>
<td>Klonierungsvektor mit Sequenz zw. den Koordinaten 2364577 – 2364074 (AE015929.1); Kan<sup>R</sup></td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pENTRYfrag2</td>
<td>Klonierungsvektor mit Sequenz zw. den Koordinaten 2363376 – 2362907</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>
MATERIAL

pENTRYfrag3 Klonierungsvektor mit Sequenz zw.
den Koordinaten 2363804 – 2363249
(AE015929.1); Kan^f
diese Arbeit

pENTRYfrag4 Klonierungsvektor mit Sequenz zw.
den Koordinaten 2362523 – 2361945
(AE015929.1); Kan^f
diese Arbeit

pENTRYfrag5 Klonierungsvektor mit Sequenz zw.
den Koordinaten 2362906 – 2362372
(AE015929.1); Kan^f
diese Arbeit

pENTRYfrag6 Klonierungsvektor mit Sequenz zw.
den Koordinaten 2362139 – 2361785
(AE015929.1); Kan^f
diese Arbeit

pENTRYfrag7 Klonierungsvektor mit Sequenz zw.
den Koordinaten 2362523 – 2361945
(AE015929.1); Kan^f
diese Arbeit

pENTRYfrag8 Klonierungsvektor mit Sequenz zw.
den Koordinaten 2361742 – 2361251
(AE015929.1); Kan^f
diese Arbeit

pENTRYerm Klonierungsvektor mit *ermB*-Fragment aus Tn917; Kan^f
diese Arbeit

pENTRYbarA Klonierungsvektor mit *barA*-Gen;
Kan^f
diese Arbeit

pENTRYbarB Klonierungsvektor mit *barB*-Gen;
Kan^f
diese Arbeit

pENTRYrsbU Klonierungsvektor mit *rsbU*-Gen;
Kan^f
diese Arbeit

pENTRYsigB Klonierungsvektor mit *sigB*-Gen; Kan^f
diese Arbeit

pCOLIispE *E. coli* Expressionsvektor, Fragmente
zur Deletion von *ispE*, Amp^f
diese Arbeit

pCOLIpurR *E. coli* Expressionsvektor, Fragmente
zur Deletion von *purR*, Amp^f
diese Arbeit

pCOLIbarA *E. coli* Expressionsvektor, Fragmente
zur Deletion von *barA*, Amp^f
diese Arbeit

pCOLIbarB *E. coli* Expressionsvektor, Fragmente
zur Deletion von *barB*, Amp^f
diese Arbeit

pCOLIispEpurR *E. coli* Expressionsvektor, Fragmente
zur Deletion von *ispE* und *purR*, Amp^f
diese Arbeit

pCOLIbarAB *E. coli* Expressionsvektor, Fragmente
zur Deletion von *barA* und *barB*,
Amp^f
diese Arbeit

pCOLIispEpurRbarAB *E. coli* Expressionsvektor, Fragmente
zur Deletion von *ispE*, *purR*, *barA* und
barB, Amp^f
diese Arbeit

pTS1ispE Deletionsvektor für *ispE*; *ermB*-Fragment flankiert von Fragmenten
upstream und *downstream* von *ispE*
diese Arbeit

pTS1purR Deletionsvektor für *purR*; *ermB*-Fragment flankiert von Fragmenten
upstream und *downstream* von *purR*
diese Arbeit
<table>
<thead>
<tr>
<th>Deletionsvektor</th>
<th>Beschreibung</th>
<th>Arbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>pTS1barA</td>
<td>Deletionsvektor für barA; ermB-Fragment flankiert von Fragmenten upstream und downstream von barA</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pTS1barB</td>
<td>Deletionsvektor für barB; ermB-Fragment flankiert von Fragmenten upstream und downstream von barB</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pTS1ispEpurR</td>
<td>Deletionsvektor für ispE und purR; ermB-Fragment flankiert von Fragmenten upstream von ispE und downstream von purR</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pTS1barAB</td>
<td>Deletionsvektor für barA und barB; ermB-Fragment flankiert von Fragmenten upstream von barA und downstream von barB</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pTS1ispEpurRbarAB</td>
<td>Deletionsvektor für ispE, purR, und barAB; ermB-Fragment flankiert von Fragmenten upstream und downstream von ispE</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pBT2ispE</td>
<td>Deletionsvektor für ispE; ermB-Fragment flankiert von Fragmenten upstream und downstream von ispE</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pBT2purR</td>
<td>Deletionsvektor für purR; ermB-Fragment flankiert von Fragmenten upstream und downstream von purR</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pBT2barA</td>
<td>Deletionsvektor für barA; ermB-Fragment flankiert von Fragmenten upstream und downstream von barA</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pBT2barB</td>
<td>Deletionsvektor für barB; ermB-Fragment flankiert von Fragmenten upstream und downstream von barB</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pBT2ispEpurR</td>
<td>Deletionsvektor für ispE und purR; ermB-Fragment flankiert von Fragmenten upstream von ispE und downstream von purR</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pBT2barAB</td>
<td>Deletionsvektor für barA und barB; ermB-Fragment flankiert von Fragmenten upstream von barA und downstream von barB</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pBT2ispEpurRbarAB</td>
<td>Deletionsvektor für ispE, purR, und barAB; ermB-Fragment flankiert von Fragmenten upstream und downstream von ispE</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEXPRbarA</td>
<td>Expressionsvektor für barA mit Histag, T7, Amp'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEXPRbarB</td>
<td>Expressionsvektor für barB mit Histag, T7, Amp'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEXPRbarA-GST</td>
<td>Expressionsvektor für barA mit GSTtag, T7, Amp'</td>
<td>diese Arbeit</td>
</tr>
<tr>
<td>pEXPRbarB-GST</td>
<td>Expressionsvektor für barB mit GSTtag, T7, Amp'</td>
<td>diese Arbeit</td>
</tr>
</tbody>
</table>
MATERIAL

pEXPR\textit{rsbU} Expressionsvektor für \textit{RSbU} mit His-tag, T7, Amp'
diese Arbeit

pEXPR\textit{sigB} Expressionsvektor für \textit{SigB} mit His-tag, T7, Amp'
diese Arbeit

\section*{4.3 Antibiotika}

\begin{tabular}{l|c|c}
Bezeichnung & Lösungsmittel & Selektionskonzentration \\
\hline
Kanamycin & A. dest & $70 \, \mu g/ml \textit{E. coli}$ \\
Ampicillin & A. dest & $100 \, \mu g/ml \textit{E. coli}$ \\
Erythromycin & 100\% Methanol & $50 \, \mu g/ml \text{Staphylokokken}$ \\
Chloramphenicol & 50\% Methanol & $10 \, \mu g/ml \text{Staphylokokken}$ \\
\end{tabular}

\section*{4.4 Oligonukleotide}

\begin{tabular}{l|l}
\textbf{Tab. 4-4} In dieser Arbeit verwendete Oligonukleotide \\
\hline
Bezeichnung & Sequenz (5’- 3’) \\
\hline
5’ Kartierung & \\
frag5.\textit{barA}.rv & ACCTGATGTAAAGACAAAACC \\
\textit{barA}.pe.rv & GGTTGTACTCGTCGACATC \\
\hline
Klonierungen zu den Deletionsmutanten & \\
frag1.\textit{attB4}.fw & GGGGACAAACTTTTGTATAGAAAAGTTGGCAGTTGCACAC \\
& TAACAAAAAC \\
frag1.\textit{attB1}.rv & GGGGACTGGTTTTTTGTACAAACTTGTTGTCATCACCA \\
& TTTCAATTTC \\
frag2.\textit{attB2}.fw & GGGGACAGCTTTTCTTGTAACAAAGTGTAATGCGATAGAA \\
& TGGTTGTTG \\
frag2.\textit{attB3}.rv & GGGGACAACCTTTTGTATAATAAAGTTGACAGCATCAAGT \\
& TCTTCGTTTC \\
frag3.\textit{attB4}.fw & GGGGACAACCTTTTGTATAGAAAAGTTTGAGCAGTTTTAGCT \\
& GCATTAGG \\
frag3.\textit{attB1}.rv & GGGGACACTGTTTTTTGTACAAACTTGTTGTTGCATG \\
& AGGTATTG \\
frag4.\textit{attB2}.fw & GGGGACAGCTTTTCTTGTAACAAAGTGTTAAGTGGAAC \\
& CAGGCAAA \\
frag4.\textit{attB3}.rv & GGGGACAAACTTTTGTATAATAAAGTTGCTAGCAGTAATTG \\
& AAACGAGTG \\
frag5.\textit{attB4}.fw & GGGGACAAACTTTTGTATAATAAAGTTGTTACCATTAGC \\
& GACTAAAGGG \\
frag5.\textit{attB1}.rv & GGGGACTCGTTTTTTGTACAAACTTGACCTGATGTAAC \\
& GACAAAAACCG \\
\hline
\end{tabular}
frag6.attB2.fw
GGGGACAGCTTTCTTTGTAACAAAGTGGGGGTGCTAAGAGCGTA
ACGTAAAGG

frag6.attB3.rv
GGGGACAACATTGTTATATAATAGTTGCTACTTTCATCAC
TGCATCTTTGG

frag7.attB4.fw
GGGGACACATTAGTTATAGTTGCTACTTTCATCAC
CAGGCAAC

frag7.attB1.rv
GGGGACTGCTTTTTTTGACAAACTTGCTTAGCGTAATGG
AAACGAGTG

frag8.attB2.fw
GGGGACAGCTTTCTTTGTAACAAAGTGGGGGTGCTAAGAGCGTA
ACGTAAAGG

frag8.attB3.rv
GGGGACAACATTAGTTATATAATAGTTGCTACTTTCATCAC
CAGGCAAC

ermR2.attB1.fw
GGGGACAAGTTTGTACAAAAAAGCAGGCTGACGGTGAC
ATCTCTCTATTG

ermL1.attB2.rv
GGGGACCACATTAGTTATATAATAGTTGCTACTTTCATCAC
CCATAACGCGTGC

frag1.Pst1.fw
ATGGTAAGCTGCAGGCAGCTTTAGCTGCATTAGG

frag2.BamHI.rv
ATGGTAGACGCTACATGAAAGCTGACAGATGTAAGACT

frag3.Pst1.fw
ATGGTAAGCTGCAGGCAGCTTTAGCTGCATTAGG

frag4.BamHI.rv
ATGGTAGACGCTACATGAAAGCTGACAGATGTAAGACT

frag5.Pst1.fw
ATGGTAAGCTGCAGGCAGCTTTAGCTGCATTAGG

frag6.BamHI.rv
ATGGTAGACGCTACATGAAAGCTGACAGATGTAAGACT

frag7.Pst1.fw
ATGGTAGACGCTACATGAAAGCTGACAGATGTAAGACT

frag8.BamHI.rv
ATGGTAGACGCTACATGAAAGCTGACAGATGTAAGACT

Klonierung der Expressionsplasmide

barA.attB1.fw
GGGGACAAAGTTTGTACAAAAAAGCAGGCTAATTCATCAC
TGAATATATCAACTCAG

barA.attB2.rv
GGGGACACATTAGTTATATAATAGTTGCTACTTTCATCAC
TAATTTCTTCAACTTACC

barB.attB1.fw
GGGGACCACATTAGTTATATAATAGTTGCTACTTTCATCAC
TGAATATATCAACTCAG

barB.attB2.rv
GGGGACACATTAGTTATATAATAGTTGCTACTTTCATCAC
TGAATATATCAACTCAG

rbsU.attB1.fw
GGGGACAAAGTTTGTACAAAAAAGCAGGCTAATTCATCAC
AAACGAGTG

rsbU.attB2.rv
GGGGACACATTAGTTATATAATAGTTGCTACTTTCATCAC
CTACATGAAAT

sigB.attB1.fw
GGGGACAAAGTTTGTACAAAAAAGCAGGCTAATTCATCAC
CTACATGAAAT

sigB.attB2.rv
GGGGACACATTAGTTATATAATAGTTGCTACTTTCATCAC
CTACATGAAAT

Sequenzierung und kontrolle von Plasmiden

M13 rev
CAGGAAACAGCTATGACC

M13 uni
TGTAAGACGCTATGACC
T7 primer
TAATACGACTCACTATAGGG

T7 rv primer
CCACCCTGAGCAATAACTA

erm.fw1
AATTGGAAACAGTTAAAGGC

erm.rv1
AACATCTGTGGTATGGCGG

v.frag1.fw
GCTTACAGAAAAATGTACAAG

h.frag8.rv
GGTTTGATATTMTTAGAAATTC

pRB.fw
GTTTTATTTTGATCTCAAGC

pRB.rv
CTCATCTGAGTTGTTTCAG

RT-PCR

icaA.real1
TGTATCAAGCGAAGTCAATCTC

icaA.real2
GGCACTAACATCCACGATAG

icaR.real1
TGAAGATGGTGTTGGATTTGGT

icaR.real2
CCATTGACCGACTTTACCAG

gmk.real1
AATTCCAGATGCGTTGTTC

gmk.real2
CGATTCTTAGCGAGTTCAAC

SE1543.for1
TTTCTCAGCCAATATAGAC

SE1543.rev1
GTCACCAAACGAACATAACAC

SE2219.for1
TGAAAGCGTAACAAAGATTTAC

SE2219.rev1
AACTTCAAGGTCAAGTAACAG

SE0184.for1
CGATGTGGCTTTGTGGTTGAAG

SE0184.rev1
CAATAGTGCTCACGCGACTC

einfach unterstrichen: Attachment sites zur Gateway-Klonierung
fett gedruckt: Erkennungsstellen der Restriktionsendonukleasen
Alle Oligonukleotide wurden von den Firmen Invitrogen oder MWG bezogen.

4.5 Antikörper

Tab. 4-5 In dieser Arbeit verwendete Antikörper

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller / Referenz</th>
<th>Verdünnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Kaninchen-IgG, monoklonal, alkalische Phosphatase konjugiert</td>
<td>Roche</td>
<td>1 : 60 000</td>
</tr>
<tr>
<td>Anti-BarA_Sepi, polyklonal</td>
<td>diese Arbeit</td>
<td>1 : 1000</td>
</tr>
<tr>
<td>Anti-BarB_Sepi, polyklonal</td>
<td>diese Arbeit</td>
<td>1 : 1000</td>
</tr>
<tr>
<td>Anti-PIA, polyklonal</td>
<td>Mack et al., 1996b</td>
<td>1 : 800</td>
</tr>
</tbody>
</table>

Alle polyklonalen Seren wurden in Kaninchen generiert

4.6 Enzyme

Tab. 4-6 In dieser Arbeit verwendete Enzyme

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Konzentration</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restriktionsenzyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acu I</td>
<td>5.000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Ava I</td>
<td>10.000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>BamHI</td>
<td>20.000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>HindIII</td>
<td>20.000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>NheI</td>
<td>10.000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>PstI</td>
<td>20.000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>XbaI</td>
<td>20.000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Klonasen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gateway BP-Clonase II Enzyme Mix</td>
<td>0,5 Reakt./µl</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Gateway LR-Clonase II Plus Enzyme Mix</td>
<td>0,5 Reakt./µl</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>weitere Enzyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4-Ligase</td>
<td>400000 U/ml</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Calf Intestine alkalische Phosphatase</td>
<td>1 U/µl</td>
<td>Roche</td>
</tr>
<tr>
<td>DNase, amplification grade</td>
<td>20 µg/ml</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Lysostaphin</td>
<td>1500 U/ml</td>
<td>Genmedics</td>
</tr>
<tr>
<td>Lysozym</td>
<td>0,2 mg/ml</td>
<td>Sigma</td>
</tr>
<tr>
<td>Proteinase K solution, RNA grade</td>
<td>20 µg/µl</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>SuperScript™ III Rnase H- reverse Transkrittase</td>
<td>200 U/µl</td>
<td>Invitrogen</td>
</tr>
</tbody>
</table>

4.7 Kits

Tab. 4-7 In dieser Arbeit verwendete Kits

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Verwendung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>5′/3′ RACE Kit, 2nd Generation</td>
<td>5′ Kartierung von mRNA</td>
<td>Roche</td>
</tr>
<tr>
<td>DyNAzyme I DNA Polymerase Kit</td>
<td>Amplifikation von DNA-Fragmenten</td>
<td>Finnzymes</td>
</tr>
<tr>
<td>High Pure PCR Product Purification Kit</td>
<td>Aufräumigung von DNA-Fragmenten innerhalb der RACE-Technologie</td>
<td>Roche</td>
</tr>
<tr>
<td>iScript™ Select cDNA Synthesis Kit</td>
<td>reverse Transkription für RT-PCR</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>LightCycler® FastStart DNA Master SYBR Green I</td>
<td>RT-PCR</td>
<td>Roche</td>
</tr>
</tbody>
</table>
MATERIAL

NucleoSpin Extract II Elution von DNA aus TBE-Agarosegelen, Aufreinigung von PCR-Fragmenten Macherey & Nagel

NucleoSpin Tissue Isolation chromosomaler DNA Macherey & Nagel

peqGOLD Plasmid Midi Kit Plasmid-Midipräparation peqlab

peqGOLD Plasmid Miniprep Kit I Plasmid-Minipräparation peqlab

RNEasy Mini Kit Isolation von mRNA Qiagen

Thermo Sequenase Cycle Sequencing Kit Sequenzierung von PCR-Fragmenten USB

TripleMaster PCR System Amplifikation von DNA-Fragmenten, proofreading PCR Eppendorf

4.8 Chemikalien und Verbrauchsmittel

Tab. 4-8 In dieser Arbeit verwendete Chemikalien und Verbrauchsmittel

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 well Gewebekulturplatten</td>
<td>Greiner bio one</td>
</tr>
<tr>
<td>1 mm Elektroporationsküvetten</td>
<td>peqlab</td>
</tr>
<tr>
<td>96 well NunclonΔ Mikrotiterplatten</td>
<td>Nunc</td>
</tr>
<tr>
<td>peqGOLD Universal Agarose</td>
<td>peqlab</td>
</tr>
<tr>
<td>Amicon Ultra 4 5k</td>
<td>Millipore</td>
</tr>
<tr>
<td>Ampholyte 3-10</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Antihaft-Silan</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>Bacto-Agar</td>
<td>BD</td>
</tr>
<tr>
<td>BCIP</td>
<td>peqlab</td>
</tr>
<tr>
<td>BHI</td>
<td>Oxoid</td>
</tr>
<tr>
<td>BIOMAX™ MS (Röntgenfilm)</td>
<td>Kodak</td>
</tr>
<tr>
<td>Bio-Scale™ Mini Profinity™ IMAC Cartridges</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Blutagarplatten, COS</td>
<td>Biomerieux</td>
</tr>
<tr>
<td>Quick Start™ Bradford dye reagent</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>BSA</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>CHAPS</td>
<td>Carl Roth</td>
</tr>
<tr>
<td>complete mini</td>
<td>Roche</td>
</tr>
<tr>
<td>Coomassie brilliant blue R250</td>
<td>Carl Roth</td>
</tr>
<tr>
<td>DTT</td>
<td>MP Biomedicals</td>
</tr>
<tr>
<td>Electrode strips</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Filterpapier GB002</td>
<td>Schleicher & Schuell</td>
</tr>
</tbody>
</table>
Freundsches Asjuvants, komplett
Freundsches Asjuvants, inkomplett
$[\gamma^{32}\text{P}]\text{ ATP}$
Glaskapillaren
Halb-Mikro-Küvetten
HiTrap Tm NHS-aktivierte HP
IPG-Streifen, linear pH 4-7, 17 cm
L(+) -Arabinose
LB
Lysing Matrix B
MES-Puffer 20x
Milchpulver
Mineralöl
NBT
NuPAGE Novex Bis Tris Mini Gels
Parafilm
Rnasin
Roti®-Nanoquant
Sterilfilter MILLEX.GV, 22 µm Poren
TSB
UVette

Alle weiteren Chemikalien, Salze und Nährstoffe wurden, wenn nicht anders ausgewiesen, von den Firmen Sigma, Carl Roth und Fluka bezogen.

4.9 Geräte und Hilfsmittel

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biofuge 22R</td>
<td>Roche</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>Heraeus</td>
</tr>
<tr>
<td>Brutschüttelschrank</td>
<td>Edmund Bühler</td>
</tr>
<tr>
<td>Curix 60</td>
<td>Agfa</td>
</tr>
<tr>
<td>Elektroporator</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Flexcycler</td>
<td>Analytik Jena</td>
</tr>
<tr>
<td>Gelektrophoresekammer</td>
<td>peqlab</td>
</tr>
<tr>
<td>Infinite M200</td>
<td>Tecan</td>
</tr>
<tr>
<td>Lightcycler</td>
<td>Roche</td>
</tr>
</tbody>
</table>

Tab. 4-9 In dieser Arbeit verwendete Geräte und Hilfsmittel
<table>
<thead>
<tr>
<th>Material Description</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid Scintillationszähler</td>
<td>Packard</td>
</tr>
<tr>
<td>Multiphor II unit</td>
<td>Pharmacia</td>
</tr>
<tr>
<td>Novex Mini Cell</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>PowerPac 3000</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Power supply EV231</td>
<td>peqlab</td>
</tr>
<tr>
<td>Power supply EV233</td>
<td>peqlab</td>
</tr>
<tr>
<td>Precellys 24</td>
<td>peqlab</td>
</tr>
<tr>
<td>Protean® plus Dodeca™ Cell Gellaufsystem</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Proteom Analyzer 4700</td>
<td>Applied Biosystems</td>
</tr>
<tr>
<td>ScannerX finity ultra</td>
<td>Quato Graphic</td>
</tr>
<tr>
<td>SmartSpec™ Plus Spectrophometer</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Spot cutter Proteom Work™</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Spot Handling Work Station</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>Ultraschallsonde</td>
<td>Bandelin Sonopuls</td>
</tr>
<tr>
<td>Ultraspec™ 3100 pro</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>UV-Transilluminator</td>
<td>Vilber Lourmat</td>
</tr>
<tr>
<td>Zentrifuge 5418</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Zentrifuge 5810R</td>
<td>Eppendorf</td>
</tr>
<tr>
<td>Zentrifuge J2-21</td>
<td>Beckman</td>
</tr>
</tbody>
</table>
5 Methoden

5.1 Kultur bakterieller Zellen

5.1.1 Kultivierung von E. coli Zellen

E. coli Zellen wurden standardmäßig als Vorkultur in 5 ml LB Medium (30 g/l, Sigma) mit entsprechendem Antibiotikum (AB) 16 h bei 37 °C und 150 Upm kultiviert. Aus der Vorkultur erfolgte das Animpfen der Hauptkultur in LB-Medium auf eine optische Dichte bei 600nm (OD$_{600nm}$) von 0,05. Die Hauptkultur enthielt ebenfalls das entsprechende Antibiotikum und wurde unter den gleichen Bedingungen angezüchtet.

5.1.2 Kultivierung von Staphylokokken

Staphylokokken wurden, wenn nicht anders beschrieben, in TSB (30 g/l, BD) kultiviert. 37 °C und 150 Upm wurden als Standardkulturbedingungen gewählt. Eine 16stündige Kultur in 5 ml Medium mit entsprechendem AB diente als Vorkultur und wurde genutzt, um die Hauptkultur ohne AB auf eine OD$_{600nm}$ 0,05 anzuimpfen. Eine Ausnahme stellten dabei die Zellen dar, die zur Analyse der Biofilmbildung (5.2.2), zur Extraktion von PIA (5.2.3) und zur Extraktion von RNA (5.5.2) genutzt wurden. In diesen Fällen wurde die Vorkultur lediglich 6-8 h inkubiert und anschließend 1:100 für die Hauptkultur verdünnt. Da$s TSB der Hauptkulturen wurde für verschiedene Analysen mit 3 % NaCl (TSB$_{NaCl}$) oder 3 % Ethanol (TSB$_{EtOH}$) supplementiert.

5.2 Phänotypische Charakterisierung

5.2.1 Erstellung von Wachstumskurven der S. epidermidis Stämme

Um die Wachstumseigenschaften verschiedener Mutanten zu analysieren wurden mit Hilfe des infinite M200 Wachstumskurven erstellt. In 12well-Platten wurden pro Vertiefung 2 ml TSB mit Vorkulturen der Stämme auf eine OD$_{600nm}$ von 0,05 angeimpft. Diese Berechnung erfolgte durch Messungen der OD in Halb-Mikro-Küvetten am Spektrophotometer (SmartSpec™ Plus Spectrophotometer) und stimmt somit nicht mit den Werten, die in der 12well-Platte ermittelt wurden, überein. Die Zellen wurden wie unter Kapitel 5.1.2 beschrieben bei 37 °C inkubiert. Allerdings konnten die Zellen nur vor jeder Messung geschüttelt werden (10 s, 57 Upm, Amplitude 2). Die Messung der OD$_{600nm}$ erfolgte alle 30 min über einen Zeitraum von 16 h. In jedem Zyklus wurden in jeder Vertiefung, über ein Quadrat verteilt, 16

Die Berechnung der Wachstumskonstanten und Generationszeiten erfolgte mit folgender Formeln:

Wachstumsrate (K)

\[K = \frac{\log(O_{D600Nm}) - \log(O_{D600Nm}N_t0)}{\Delta t} \]

Generationszeit (t_G)

\[t_G = \frac{\log(2) \cdot \Delta t}{\log(O_{D600Nm}) - \log(O_{D600Nm}N_t0)} \]

\[\Delta t = t_{\text{Ende der logPhase}} - t_{\text{Beginn der logPhase}}(t_0) \]

\[O_{D600Nm} \quad O_{D600Nm} \text{ zum Ende der logPhase} \]

\[O_{D600Nm}N_t0 \quad O_{D600Nm} \text{ zum Beginn der logPhase} \]

5.2.2 Semiquantitative Bestimmung der Biofilmbildung

<table>
<thead>
<tr>
<th>PBS</th>
<th>NaCl</th>
<th>140 mM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2HPO4</td>
<td>9 mM</td>
<td></td>
</tr>
<tr>
<td>KCl</td>
<td>2 mM</td>
<td></td>
</tr>
<tr>
<td>KH2PO4</td>
<td>1 mM</td>
<td></td>
</tr>
<tr>
<td>pH 7,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2.3 Extraktion von PIA

Zur weiteren Charakterisierung des Biofilms wurden PIA-Rohextrakte hergestellt. 10 ml der 1:100 Verdünnung der Vorkultur in TSB, TSBNaCl und TSBEOH wurden in Nunclon\(\Delta\) Petrischalen stehend 18 h kultiviert. Mittels eines Einwegzellschabers wurden die Bakterien von der Plastikoberfläche gelöst und mit dem Medium in ein Zentrifugenröhrchen überführt. Die Zellen wurden für 15 min bei 3220 \(\times g\) und 4 °C sedimentiert und der Überstand dekantiert. Das Pellet wurde in 2 ml PBS (5.2.2) mit 0,05 % NaN\(\text{3}\) resuspendiert und die auf Eis gekühlte Zellsuspension zweimal 30 s mit 30 s Pause mit Ultraschall bei einer Amplitude von 70 % homogenisiert. Anschließend wurden die Bakterien unter gleichen Bedingungen erneut zentrifugiert und, der das PIA enthaltende, Überstand in ein neues Zentrifugenröhrchen überführt. Dieser wurde durch einen weiteren Zentrifugationsschritt geklärt und der gewonnene Überstand in einem sauberen Reaktionsgefäß bei -20 °C gelagert.

5.2.4 Quantifizierung von PIA mittels Dot Blot

Zur Quantifizierung der PIA-Expression wurden 1:2 Verdünnungsreihen der PIA-Rohextrakte mit PBS (5.2.2) + 0,05 % NaN\(\text{3}\) hergestellt. Als Trägermaterial wurde eine PVDF-Membran genutzt, die zuvor in Methanol aktiviert und anschließend in PBS überführt wurde. Die Membran wurde auf ein mit PBS getränktes Filterpapier gelegt und jeweils 5 µl der Probe aufgetropft. Das Blocken der Membran erfolgte in PBS mit 3 % Milchpulver für 1 h bei Raumtemperatur. Im Folgenden wurde die Membran für 15 min in TTBS gewaschen. Der Blot wurde zur Inkubation mit dem primären Antikörper (gegen das jeweilige Protein gerichteter Antikörper) im gleichen Puffer in einer 1:800 Verdünnung für 1 h geschwenkt und danach dreimal für 15 min in TTBS gewaschen. Als Sekundärantikörper diente anti-rabbit-IgG konjugiert mit einer alkalischen Phosphatase. Dieser wurde 1:60 000 in TTBS verdünnt und unter Schwenken 1 h auf der Membran inkubiert. Anschließend wurde die Membran wiederum dreimal für 15 min mit TTBS gewaschen. Zur Detektion der Antikörperbindung wurde der Blot 30 min in alkalischer Phosphatase (AP)-Puffer equilibriert, der anschließend verworfen wurden. Die Entwicklung erfolgte dann in 30 ml NBT/BCIP-Lösung (200 µl NBT-Stammlösung, 100 µl BCIP-Stammlösung auf 30 ml AP-Puffer).
METHODEN

TTBS

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,42 g Tris</td>
<td></td>
</tr>
<tr>
<td>7,42 g NaCl</td>
<td></td>
</tr>
<tr>
<td>1 ml Tween20</td>
<td></td>
</tr>
<tr>
<td>ad 1 l A. dest</td>
<td></td>
</tr>
</tbody>
</table>

pH 7,6

NBT-Stammlösung

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Zusatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% (w/v)</td>
<td>NBT</td>
</tr>
<tr>
<td>70% (v/v)</td>
<td>Dimethylformamid</td>
</tr>
</tbody>
</table>

BCIP-Stammlösung

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Zusatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% (w/v)</td>
<td>BCIP</td>
</tr>
<tr>
<td>100%</td>
<td>Dimethylformamid</td>
</tr>
</tbody>
</table>

Die Lagerung der NBT- und BCIP-Stammlösungen erfolgte bei -20°C.

AP-Puffer

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Zusatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 M Tris pH 9,5</td>
<td></td>
</tr>
<tr>
<td>0,1 M NaCl</td>
<td></td>
</tr>
</tbody>
</table>

1 M Tris pH 9,5 und 1 M NaCl-Lösung sind getrennt zu autoklavieren und werden mit sterilem A. dest. entsprechend verdünnt.

5.2.5 Bestimmung der Proteaseexpression auf Caseinagarplatten

Um festzustellen, ob die Deletion der Gene sigB, agr, sigBagr, barA, barB und barAB einen Einfluss auf die Proteaseaktivität der S. epidermidis Stämme 1457, 1057 und 8400 haben, wurde ein Screening auf Casein-Agarplatten durchgeführt. Mit dieser Methode kann auf optischem Wege die Aktivität denaturierender und lysierender Proteasen erkannt und unterschieden werden. Die denaturierenden Proteasen zersetzen das in dem Agar eingegossene Casein, sodass sich um die Kolonien ein weißer Hof bildet. Die lysierenden Proteasen sind dagegen in der Lage, das Casein vollständig umzusetzen, wodurch ein heller, durchscheinender Hof um die Bakterienkolonien erkennbar wird. Die verschiedenen S. epidermidis Stämme wurden in TSB-Medium mit entsprechendem AB für 7 h bei 37 °C und 150 Upm inkubiert. Anschließend wurden 5 µl der Vorkultur auf frisch hergestellte Casein-Platten aufgetropft und die Platten für 24 h bei 37 °C im Brutschrank inkubiert. Nachdem die Platten fotografiert wurden, wurde zur besseren Darstellung der lysierenden Höfe, 10 % Essigsäure auf die Casein-Platten gegeben. Das Casein wird dabei denaturiert, die denaturierenden Proteasen treten dadurch in den Hintergrund, wobei die lysierenden Proteasen deutlicher an ihrem caseinfreien Hof zu identifizieren sind.
Caseinagar Bacto-Agar 1,5 g
TSB 3 g
CaCl₂ 73,5 mg
Cystein 12,1 mg
A. dest ad 50 ml

1 g Casein wurde in 50 ml A. dest gelöst und der pH mit NaOH zwischen 8 und 10 eingestellt. Die Lösungen wurden separat sterilisiert und anschließend zusammengefügt.

5.3 Genetische Manipulation bakterieller Zellen

5.3.1 Herstellung chemisch-kompetenter E. coli Zellen

Um die Zellen zur Aufnahme von Plasmiden zu befähigen, wurden sie durch eine chemische Methode kompetent gemacht. Die Kationen der Salze in den Puffern lockern die Zellwandstruktur. Zusätzlich wird die DNA als schwerlösliches Salz auf der Zelloberfläche ausgefällt, sodass die Aufnahme des Vektors erleichtert wird. Es wurden 100 ml Tym-Medium mit Zellen aus einer Vorkultur angeimpft und bis zu einer OD₆₀₀nm von 0,5-0,6 im Schüttelinkubator inkubiert. Die Kultur wurde auf zwei 50 ml Zentrifugenröhrchen verteilt und bei 4 °C und 3220 ×g für 15 min zentrifugiert. Die Pellets wurden in 15 ml TbfI-Puffer resuspendiert und 30 min auf Eis inkubiert und unter gleichen Bedingungen wieder sedimentiert. Anschließend wurde das Pellet in 4 ml TbfII-Puffer resuspendiert. Die Zellen wurden zu je 200 µl aliquotiert und die Lagerung erfolgte bei -80 °C.

<table>
<thead>
<tr>
<th>Tym-Medium</th>
<th>2 % (w/v)</th>
<th>Trypton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5 % (w/v)</td>
<td>Hefe-Extrakt</td>
</tr>
<tr>
<td></td>
<td>0,1 M</td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>MgCl₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TbfI-Puffer</th>
<th>30 mM</th>
<th>KOAc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 mM</td>
<td>RbCl₂</td>
</tr>
<tr>
<td></td>
<td>100 mM</td>
<td>KCl</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>CaCl₂</td>
</tr>
<tr>
<td></td>
<td>15% (v/v)</td>
<td>Glycerin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TbfII-Puffer</th>
<th>10 mM</th>
<th>Na-MOPS, pH 7,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75 mM</td>
<td>CaCl₂</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>KCl</td>
</tr>
<tr>
<td></td>
<td>15% (v/v)</td>
<td>Glycerin</td>
</tr>
</tbody>
</table>
5.3.2 Transformation von *E. coli* Zellen

Die Transformation kompetenter *E. coli* Zellen diente zum einen der Amplifikation von Plasmiden. Bei den dafür genutzten Stämmen handelte es sich um *E. coli* TOP10, Mach1 und DH5α. Zum anderen wurden *E. coli* BL21 Zellen mit Expressionsplasmiden transformiert, um rekombinante Proteine überexprimieren zu können. Die kompetenten Zellen des entsprechenden Stammes wurden schnell aufgetaut und sofort auf Eis transferiert. 200 µl der kompetenten Zellen wurden mit 1-5 µl (je nach DNA-Menge im Isolat) Plasmidisolat oder 15 µl Ligationsansatz (um eine hohe Effizienz zu erreichen wurde der gesamte Ansatz eingesetzt) für 30 min auf Eis inkubiert. Anschließend wurden die Zellen für 90 s auf 42 °C erhitzt und nach Zugabe von 500 µl SOC-Medium für weitere 60 min bei 37 °C unter Schütteln inkubiert. Der Transformationsansatz wurde dann auf LB-Agarplatten, die das zur Selektion benötigte AB enthielten, ausplattiert.

SOC-Medium:
- 20,0 g/l Trypton
- 5,0 g/l Hefextrakt
- 0,6 g/l NaCl
- 0,5 g/l KCl
- 20 mM Glukose
- 20 mM MgCl₂
- pH 7,0

5.3.3 Herstellung elektrokompetenter *S. aureus* und *S. epidermidis* Zellen

Zur Präparation elektrokompetenter Staphylokokken wurde sowohl die Vor- als auch die Hauptkultur in B2 Medium angezüchtet. 50 ml B2 Medium wurden mit 2 ml der Vorkultur inokuliert und die Zellen unter Schütteln bis zu einer OD₆₀₀nm 0,6-0,8 kultiviert. Nach einer Zentrifugation für 15 min, bei 3220 ×g und 4 °C wurden die Zellen dreimal mit 25 ml eiskaltem A.dest gewaschen. Anschließend wurde das Pellet in 5 ml 10 % Glycerin resuspendiert und erneut unter gleichen Bedingungen sedimentiert. Darauf folgte ein letzter Waschschritt mit 2,5 ml 10 % Glycerin. Abhängig von der Ausgangs-OD₆₀₀nm wurde das Pellet in 600-800 µl sterilem 10 % Glycerin resuspendiert. Die Zellen wurden zu je 70 µl aliquotiert und im Falle von *S. aureus* RN4220 bei -80 °C gelagert. Elektrokompetente *S. epidermidis* M12 und M15 wurden direkt im Anschluss zur Elektroporation genutzt.
5.3.4 Elektroporation von *S. aureus* und *S. epidermidis* Zellen

Um Vektoren in *S. aureus* RN4220 und *S. epidermidis* M12 und M15 zu transformieren wurde die Zellmembran der Bakterien durch Elektroschock permeabilisiert. Dabei kommt es zu einem kurzfristigen reversiblen Zusammenbruch des Membranpotentials bzw. einer Desorganisierung der Membranstruktur. Dies führt zur Verbesserung der Aufnahme von Vektoren in die Zelle. Es wurden 0,5 µl bis 1 µl des Vektors zu einem Aliquot elektrokompetenter Zellen gegeben. Nach einer 30 minütigen Inkubation bei Raumtemperatur wurden die Zellen in 0,1 cm-
Elektroporationsküvetten überführt und im Elektroporator bei 100 Ω, 2,3 kV und 25 µF elektroporiert. Nach sofortiger Zugabe von 390 µl B2-Medium (5.3.3) wurden die Zellen für 1 h bei 37 °C und 150 Upm inkubiert. Je 100 µl der Ansätze wurden auf BHI-Agarplatten mit entsprechender Antibiotikaselektion ausplattiert und bei 30 °C für 24 - 48 h bebrütet. Die Inkubationstemperatur bei 30 °C sollte verhindern, dass die temperatursensitiven *E. coli*/Staphylococcus-shuttle-Vektoren eliminiert werden. Zum Nachweis der erfolgreichen Übertragung der Plasmide erfolgte eine Kolonie-PCR.

5.3.5 Phagentransduktion

Der Phagentransduktion ging eine Präparation von Phagenlysaten voraus, die zum einen die Herstellung des Phagenlysats und zum anderen dessen Titerbestimmung beinhaltete. Die Methode wurde zum einen genutzt, um die zur Mutagenese hergestellten pBT2-Plasmide aus *S. epidermidis* M15 oder M12 in den Zielstamm *S. epidermidis* 1457 zu übertragen. Zum anderen sollte die chromosomalen Deletion aus *S. epidermidis* 1457 in die beiden *S. epidermidis* Hintergründe 1057 und 8400 übertragen werden.

5.3.5.1 Herstellung von Phagenlysaten

Für die Herstellung der Phagenlysate aus den Trägerstämmen wurden zunächst Vorkulturen in 5 ml NB2+ Medium bis zu einer OD$_{600nm}$ von 0,1 bis 0,2 bei 37 °C im Schüttelinkubator inkubiert. Stämme mit dem temperatursensitiven *shuttle*-Vektor

<table>
<thead>
<tr>
<th>B2 Medium</th>
<th>10 g/l</th>
<th>Caseinhydrolysat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25 g/l</td>
<td>Hefeeextrakt</td>
</tr>
<tr>
<td></td>
<td>1 g/l</td>
<td>K$_2$HPO$_4$</td>
</tr>
<tr>
<td></td>
<td>5 g/l</td>
<td>Glukose</td>
</tr>
<tr>
<td></td>
<td>25 g/l</td>
<td>NaCl</td>
</tr>
</tbody>
</table>
pBT2 wurden bei 30 °C unter Chloramphenicolselektion (10 µg/ml) kultiviert. Die Selektion für die Übertragung der chromosomalen Elemente erfolgte mittels Erythromycin (50 µg/ml). Es wurden 500 µl einer Vorkultur des Zielstammes mit 500 µl der optimalen Phagenverdünnung gemischt und zu 3 ml STA-Softagar mit entsprechendem AB gegeben. Die optimale Phagenverdünnung wurde zuvor durch eine Phagentitration bestimmt (Verdünnung mit der höchstmöglichen Plaquedichte)(5.3.5.2). Pro Stamm wurden drei STA-Platten vorbreitet und bei 37 °C bzw. 30 °C für 18 h bebrütet. Nach der Inkubation wurden 5 ml NB2+ Medium auf jede der drei Platten gegeben. Der Softagar wurde mit einem sterilften Glasspatel abgelöst und in einem Zentrifugenröhrchen zusammengefügt. Die Suspension aus NB2+ Medium und dem Softagar wurde 5 min kräftig geschüttelt, um die Phagen aus dem Softagar zu extrahieren. Die Phagensuspension wurde durch die anschließende Zentrifugation von 15 min bei 4 °C und 3220 ×g vom Agar und den Bakterien getrennt. Der Überstand wurde erneut zentrifugiert und anschließend sterilfiltriert (Porengröße der Sterilfilter 0,22 µm) und bei 4 °C gelagert.

<table>
<thead>
<tr>
<th>NB2+ Medium</th>
<th>20 g/l Nutrient Broth No 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,4 g/l CaCl₂</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STA-Softagar</th>
<th>20 g/l Nutrient Broth No 2 (Oxoid)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 g/l NaCl</td>
</tr>
<tr>
<td></td>
<td>0,4 g/l CaCl₂</td>
</tr>
<tr>
<td></td>
<td>7 g/l Bacto-Agar</td>
</tr>
</tbody>
</table>

Zur Herstellung von STA-Agar wurde der Bacto-Agar-Anteil auf 12 g/l erhöht.

5.3.5.2 Bestimmung der Phagentiter

Zur Bestimmung des Phagentiters im Phagenlysat wurde dieses zehnerlogarithmisch von 10⁻² bis 10⁻⁸ in NB2+ (5.3.5.1) verdünnt. Je 500 µl der Phagenverdünnung wurden mit 500 µl einer Suspension von <i>S. epidermidis</i> 1457 (OD_{600nm} 0,1 – 0,2) und 3 ml STA-Softagar (5.3.5.1) vermischt und auf einer STA-Agarplatte ausplattiert. Die Platten wurden bei 37 °C im Brutschrank über Nacht bebrütet und am folgenden Tag durch Auszählen der entstandenen Plaques unter Berücksichtigung der Vorverdünnung der Phagentiter berechnet. Ein optimaler Phagentiter sollte für die Transduktion im Bereich von 5x10⁸-10¹⁰ liegen, wobei die Effizienz für die Übertragung chromosomaler Elemente schlechter ist und ein hoher Phagentiter noch wichtiger ist als für die Übertragung von Plasmiden.
5.3.5.3 Transduktion

Bakterienmaterial von mehreren Blutagarplatten der Zielstämme wurde in NB2+ Medium (5.3.5.1) bis zu einer OD$_{600nm}$ von 11 suspendiert. 1 ml dieser Bakteriensuspension wurde dann mit 1 ml des zuvor hergestellten Phagenlysats 30 min bei 37 °C inkubiert. Es wurden 40 µl 1 M Natriumcitrat hinzugefügt, um die Absorption der Phagen zu stoppen. Anschließend wurde der Ansatz für 15 min bei 4 °C und 3220 ×g zentrifugiert. Das Pellet wurde zweimal in 2 ml BHI+ Medium gewaschen. Anschließend wurde das Pellet in 3 ml BHI+ Medium resuspendiert und für 1 h bei 37 °C im Schüttelinkubator (150 Upm) inkubiert. Der Kultur wurden zur Selektion des pBT2–Vektors 1,2 µl Chloramphenicol (10 mg/ml Stammlösung) zugefügt. 1,2 µl Erythromycin (50 µg/ml Stammlösung) dienten zur Selktion bei der Übertragung der Deletionen. Die Zellen wurden mit 3 ml des BHI+ Softagars versetzt und auf BHI-Agarplatten mit entsprechendem AB ausgebracht. Die Inkubation erfolgte bei 30 bzw. 37 °C für 24 - 48 h.

<table>
<thead>
<tr>
<th>Medium/Agar</th>
<th>Konzentration</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHI+ Medium</td>
<td>30 g/l</td>
<td>Brain Heart Infusion Broth (Oxoid)</td>
</tr>
<tr>
<td></td>
<td>20 mM</td>
<td>Natriumcitrat</td>
</tr>
<tr>
<td>BHI+ Softagar</td>
<td>30 g/l</td>
<td>Brain Heart Infusion Broth (Oxoid)</td>
</tr>
<tr>
<td></td>
<td>20 mM</td>
<td>Natriumcitrat</td>
</tr>
<tr>
<td></td>
<td>7 g/l</td>
<td>Bacto-Agar (Becton Dickinson)</td>
</tr>
</tbody>
</table>

Zur Herstellung von BHI+-Agar wurde der Bacto-Agar-Anteil auf 12 g/l erhöht.

5.3.6 Mutagenese

Die Plasmid-tragenden S. epidermidis 1457 Stämme wurden in 5 ml TSB (25 µg/ml Erythromycin) über Nacht bei 30 °C vorkultiviert. In einem kleinen Kolben wurden dann 10 ml TSB (50 µg/ml Erythromycin) und 100 µl der Vorkultur gegeben und ca. 6 h bei 30 °C und 150 Upm inkubiert. Die Kultur wurde im
Verhältnis 1:100, 1:1 000, 1:10 000 und 1:100 000 mit TSB verdünnt und je 70 µl auf TSA-Platten mit 50 µg/ml Erythromycin ausplattiert. Die Inkubation erfolgte bei einer für die temperatursensitiven Vektoren nicht permissiven Temperatur von 44 °C. So konnte erreicht werden, dass nur Klone mit einer erfolgreichen Insertion des \textit{erm}-Gens selektioniert wurden. Die Klone wurden separat auf TSA-Platten mit Erythromycin (50 µg/ml) und Chloramphenicol (10 µg/ml) ausgestrichen. Die Mutanten wurden identifiziert durch den Verlust des Resistenzmarkers der Vektoren (Chloramphenicol) und gleichzeitigem Erwerb einer Erythromycinresistenz.

Durch zwei Kolonie-PCRs für den strangaufwärts (\textit{v.frag1.fw} mit \textit{erm.rv}) und stragabwärts (\textit{erm.fw} mit \textit{h.frag8.rv}) gelegenen Bereich der Insertionen wurde die korrekte Integration der Resistenzkassette überprüft. Die entstandenen PCR-Fragmente wurden im Anschluss sequenziert, um mögliche Basenverluste ausschließen zu können.

TSA-Platten 30 g/l TSB
12 g/l Bacto-Agar

5.4 Arbeiten mit DNA

5.4.1 Isolation chromosomaler DNA aus \textit{S. epidermidis}

5.4.2 Isolation von Plasmid-DNA

5.4.3 Analyse von DNA im TBE-Agarosegel

Zur Reinigung und Größenbestimmung von DNA-Fragmenten erfolgte die Elektrophorese standardmäßig in 1,5 %igen (w/v) TBE-Agarose-Gelen, die 0,003 % (w/v) Ethidiumbromid enthielten. Als Laufpuffer diente 0,5x TBE. Vor dem Auftragen der Proben auf das Gel wurden diese mit Probenpuffer verändert. Die Auftrennung der DNA-Fragmente wurde je nach Größe des Gels durch eine Spannung zwischen 100-150 V (Power supply EV233) erreicht. Als Größenstandard wurde ein Gemisch aus mit HindIII verdauter λ-DNA und mit HaeIII verdaute DNA des Bakteriophagen ΦX174 genutzt. Die durch Ethidiumbromid gefärbte DNA wurde durch UV-Licht sichtbar gemacht.

<table>
<thead>
<tr>
<th>6x DNA-Probenpuffer</th>
<th>30% (v/v) Glycerol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,25% (w/v) Bromphenolblau</td>
</tr>
<tr>
<td></td>
<td>0,25% (w/v) Xylencyanol</td>
</tr>
<tr>
<td></td>
<td>0,05 M EDTA</td>
</tr>
<tr>
<td>10x TBE</td>
<td>0,9 M Tris</td>
</tr>
<tr>
<td></td>
<td>0,9 M Borsäure</td>
</tr>
<tr>
<td></td>
<td>0,01 M EDTA</td>
</tr>
</tbody>
</table>

5.4.4 Nukleinsäureaufreinigung

5.4.5 Bestimmung der DNA-Konzentration

Zur photometrischen Bestimmung der Konzentration wässriger DNA-Lösungen wurde die Absorption bei einer Wellenlänge von 260 nm gemessen ($A_{260\text{nm}}$). Eine $A_{260\text{nm}}$ von 1,0 entspricht einer Nukleinsäurekonzentration von 50 μg/ml für doppelsträngige DNA. Der Quotient aus $A_{260\text{nm}}/A_{280}$ liefert eine Aussage über die Reinheit der DNA-Lösung. Bei reinen Nukleinsäurepräparationen liegt der Wert des Quotienten bei ca. 1,8 (reine DNA). Die Konzentration berechnet sich wie folgt:

DNA-Konzentration (μg/ml) = Absorption 260 x 50 x Verdünnungsfaktor
Die DNA wurde 1:10 mit Aqua dest. verdünnt und die Konzentration in UV-durchlässigen Plastikküvetten (UVette) photometrisch (SmartSpec Plus Spektrophotometer) gemessen.

5.4.6 Polymerasenkettenreaktion (PCR)

Die PCR wurde zur Amplifikation sequenzspezifischer DNA-Fragmente eingesetzt. Abhängig von der weiteren Nutzung der PCR-Produkte wurden diese durch verschiedene DNA-Polymerasen amplifiziert. Die DyNAzyme I DNA-Polymerase stammt aus *Thermus brockianus* und besitzt 5’ → 3’ DNA-Polymerase und Exonuklease-Aktivität, aber ihr fehlt die 3’ → 5’ proofreading-Aktivität. DNA-Fragmente, die auf diese Weise gewonnen wurden, dienten entweder zur Kontrolle, der Aufnahme von DNA in Bakterienzellen in Kolonie-PCR-Ansätzen oder zur Sequenzierung von DNA-Abschnitten durch die Firma MWG. DNA, die im Anschluss an die PCR zur weiteren Klonierung genutzt werden sollte, wurde hingegen mit dem TripleMaster PCR System (Eppendorf) amplifiziert. Der DNA-Polymerasemix besteht aus einem Gemisch verschiedener thermostabiler Polymerasen, die proofreading-Aktivität besitzen.

PCR-Ansätze, deren Produkt anschließend weiter verwendet wurde, wurden standardmäßig in 50 µl Ansätzen durchgeführt, die sich wie folgt zusammensetzten:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x PCR-Puffer</td>
<td>5 µl</td>
</tr>
<tr>
<td>TripleMaster:</td>
<td></td>
</tr>
<tr>
<td>10x HighFidelity Puffer mit 2,5 mM Mg²⁺</td>
<td></td>
</tr>
<tr>
<td>DyNAzyme I:</td>
<td></td>
</tr>
<tr>
<td>10x optimierter DyNAzyme Puffer mit 1,5 mM Mg²⁺</td>
<td></td>
</tr>
<tr>
<td>forward Primer (10 pmol)</td>
<td>1,5 µl</td>
</tr>
<tr>
<td>reverse Primer (10 pmol)</td>
<td>1,5 µl</td>
</tr>
<tr>
<td>DNA template</td>
<td>2 µl</td>
</tr>
<tr>
<td>dNTPs (10 mM)</td>
<td>1 µl</td>
</tr>
<tr>
<td>DNA-Polymerase</td>
<td>0,5 µl</td>
</tr>
<tr>
<td>TripleMaster:</td>
<td></td>
</tr>
<tr>
<td>5 U/µl</td>
<td></td>
</tr>
<tr>
<td>DyNAzyme I:</td>
<td></td>
</tr>
<tr>
<td>2 U/µl</td>
<td></td>
</tr>
<tr>
<td>A. dest.</td>
<td>38,5 µl</td>
</tr>
</tbody>
</table>

Um zu kontrollieren ob DNA-Fragmente korrekt integriert oder überhaupt in die Zellen aufgenommen wurden, wurden Kolonie-PCRs durchgeführt. Da diese DNA nicht weiter genutzt wurde, wurden die Ansätze auf 25 µl reduziert. Eine Einzelkolonie wurde in 10 µl A. dest aufgenommen und 2,5 µl dieser Suspension als template in der PCR eingesetzt. Die Mengenangaben für Primer, dNTPs, Puffer und Polymerasen wurden halbiert und der Ansatz entsprechend mit A. dest auf 25 µl aufgefüllt.
Alle PCR-Reaktionen wurden im Flexcycler durchgeführt. Die Ansätze durchliefen 30 – 35 Zyklen, dabei wurde die Temperatur für die Hybridisierung der Primer, mit der DNA, entsprechend ihrer Schmelztemperatur gewählt (Tabelle 5-1). Die Denaturierungstemperatur betrug 95 °C. Zur Verlängerung der DNA-Fragmente wurde die optimale Arbeitstemperatur der Polymerasen, 72 °C, gewählt, die Zeit richtete sich dabei nach der Länge der zu amplifizierenden Fragmente.

Zur Kontrolle einer erfolgreichen Amplifikation wurden die PCR-Produkte im Anschluss auf TBE-Agarosegelen (5.4.3) kontrolliert.

Tab. 5-1 Hybridisierungstemperaturen von Primerpaaren

<table>
<thead>
<tr>
<th>forward Primer</th>
<th>reverse Primer</th>
<th>Temperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>frag1.attB4.fw</td>
<td>frag1.attB1.rv</td>
<td>53 °C</td>
</tr>
<tr>
<td>frag2.attB2.fw</td>
<td>frag2.attB3.rv</td>
<td>52 °C</td>
</tr>
<tr>
<td>frag3.attB4.fw</td>
<td>frag3.attB1.rv</td>
<td>52 °C</td>
</tr>
<tr>
<td>frag4.attB2.fw</td>
<td>frag4.attB3.rv</td>
<td>54 °C</td>
</tr>
<tr>
<td>frag5.attB4.fw</td>
<td>frag5.attB1.rv</td>
<td>55 °C</td>
</tr>
<tr>
<td>frag6.attB2.fw</td>
<td>frag6.attB3.rv</td>
<td>52 °C</td>
</tr>
<tr>
<td>frag7.attB4.fw</td>
<td>frag7.attB1.rv</td>
<td>52 °C</td>
</tr>
<tr>
<td>frag8.attB2.fw</td>
<td>frag8.attB3.rv</td>
<td>52 °C</td>
</tr>
<tr>
<td>ermR2.attB1.fw</td>
<td>ermL1.attB2.rv</td>
<td>57 °C</td>
</tr>
<tr>
<td>barA.attB1.fw</td>
<td>barA.attB2.rv</td>
<td>58 °C</td>
</tr>
<tr>
<td>barB.attB1.fw</td>
<td>barB.attB2.rv</td>
<td>58 °C</td>
</tr>
<tr>
<td>rsbU.attB1.fw</td>
<td>rsbU.attB2.rv</td>
<td>55 °C</td>
</tr>
<tr>
<td>sigB.attB1.fw</td>
<td>sigB.attB2.rv</td>
<td>60 °C</td>
</tr>
<tr>
<td>erm/fw1</td>
<td>h.frag8.rv</td>
<td>46 °C</td>
</tr>
<tr>
<td>v.frag1.fw</td>
<td>erm.rv</td>
<td>45 °C</td>
</tr>
</tbody>
</table>

5.4.7 Sequenzierung von DNA-Fragmenten

Die standardmäßige Sequenzierung zur Kontrolle von Klonierungen wurde von der Firma MWG durchgeführt. Dazu wurden 100 µg der zu sequenzierenden DNA in 1,5 ml Reaktionsgefäßen eingetrocknet und der Firma zugesandt.

5.4.8 Gatewayklonierungen

In dieser Arbeit wurde das System genutzt, um Expressionsvektoren für die Überexpression der Proteine BarA, BarB, RsbU und SigB zu erzeugen sowie zur Herstellung von Vektoren, die der Deletion der Gene *ispE*, *purR*, *barA* und *barB* dienen sollten.

5.4.8.1 Klonierung der Expressionsvektoren

Die Lage der Primer () und deren Orientierung, die zur Amplifikation der Gene genutzt wurden sind dargestellt. Die gefüllten Pfeile zeigen die verschiedenen offenen Leserahmen, wie sie im Genom von *S. epidermidis* ATCC12228 (AE015929.1) vorliegen.

Die kodierenden Bereiche der Gene *barA*, *barB*, *rsbU* und *sigB* wurden mittels PCR (5.4.6) amplifiziert. In diesem Schritt wurden die DNA-Abschnitte mit den *att-
sites zur Integration in pDONR221 versehen. Der forward-Primer fügte eine attB1-site an das 5'-Ende des PCR-Produktes und der reverse-Primer eine attB2-site an das 3'-Ende (Abbildung 5-1).

In der BP-Klonierung wurden 50 fmol des jeweiligen PCR-Produktes und 150 µg des Donorvektors pDONR221 eingesetzt. Den Ansätzen wurden jeweils 4 U der BP-Clonase zugefügt und sie wurden mit A. bidest auf 25 µl aufgefüllt. Nach einer Inkubation für 2 h bei RT, wurden die Ansätze in E. coli TOP 10 transformiert (5.3.2).

25 fmol der entstandenen Entryvektoren (Tab. 5-1) wurden für die LR-Klonierung mit 150 µg der jeweiligen Empfängervektoren eingesetzt. Durch die Empfängervektoren wurde den Proteinen ein tag angefügt (pDEST 17: His-tag, pDEST 15: GST-tag) und die Expression wurde unter Kontrolle des T7-Promotors gestellt (Tabelle 5-2).

Tab. 5-2 Kombinationen der Entry- und Destinationsvektoren

<table>
<thead>
<tr>
<th>Entry-Vektor</th>
<th>Destinationsvektor</th>
<th>Expressionsvektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>pENTRYbarA</td>
<td>pDEST 17</td>
<td>pEXPRbarA</td>
</tr>
<tr>
<td></td>
<td>pDEST 15</td>
<td>pEXPRbarA-GST</td>
</tr>
<tr>
<td>pENTRYbarB</td>
<td>pDEST 17</td>
<td>pEXPRbarB</td>
</tr>
<tr>
<td></td>
<td>pDEST 15</td>
<td>pEXPRbarB-GST</td>
</tr>
<tr>
<td>pENTRYrsbU</td>
<td>pDEST 17</td>
<td>pEXPRrsbU</td>
</tr>
<tr>
<td>pENTRYsigB</td>
<td>pDEST 17</td>
<td>pEXPRsigB</td>
</tr>
</tbody>
</table>

Zu den Vektoren wurde die LR-Clonase (4 U) hinzugefügt und der Ansatz wurde mit A. bidest auf 20 µl aufgefüllt. Nach einer ca. 16 stündigen Inkubation bei Raumtemperatur, wurden die Klonierungsansätze in E. coli DH5α transformiert (5.3.2). Mittels PCR wurden die Plasmide zunächst überprüft, anschließend wurden die Plasmide mit Hilfe der T7 Primer sequenziert (5.4.7), um Mutationen ausschließen zu können. Bevor die Proteine überexprimiert werden konnten, wurden die Plasmide in den dafür besser geeigneten Stamm E. coli BL21 AI transformiert.

5.4.8.2 Klonierung der Deletionsvektoren

Der Klonierung ging die Amplifikation der benötigten DNA-Fragmente durch eine PCR (5.4.6) voraus. Es wurden DNA-Abschnitte ausgewählt, die über einen Bereich von ca. 500 bp das zu deletierende Gen flankieren (Abbildung 5-2).
In der PCR-Reaktion wurden den Fragmenten durch die Primer *att-sites* angehängt, die zur Erkennung durch den Enzymmix sowie für die korrekte Insertion in den Empfängervektor notwendig waren (Tabelle 5-3).

Abb. 5-2 Primer für Deletionsvektoren
Gezeigt ist die genomische Region um *purR* in *S. epidermidis* ATCC 12228 (AE015929.1). Die offenen Leserahmen sind durch gefüllte Pfeile gekennzeichnet. Es sind alle Primer (***) sowie deren Lage und Orientierung und die daraus resultierenden DNA-Fragmente dargestellt, die zur Klonierung der Deletionsvektoren nötig sind. Des Weiteren sind die Oligonukleotide *v.frag1.fw* und *h.frag8.rv* eingezeichnet, die zur späteren Kontrolle der korrekten Insertion dienten.

Tab. 5-3 Zuordnung der *att-sites* zu den Fragmenten und resultierende Vektoren

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>att-sites</th>
<th>Empfängervektor</th>
<th>Produkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frag 1</td>
<td>attB4 und attB1</td>
<td>pDONR™P4-P1R</td>
<td>pENTRYfrag1</td>
</tr>
<tr>
<td>Frag 2</td>
<td>attB2 und attB3</td>
<td>pDONR™P2R-P3</td>
<td>pENTRYfrag2</td>
</tr>
<tr>
<td>Frag 3</td>
<td>attB4 und attB1</td>
<td>pDONR™P4-P1R</td>
<td>pENTRYfrag3</td>
</tr>
<tr>
<td>Frag 4</td>
<td>attB2 und attB3</td>
<td>pDONR™P2R-P3</td>
<td>pENTRYfrag4</td>
</tr>
<tr>
<td>Frag 5</td>
<td>attB4 und attB1</td>
<td>pDONR™P4-P1R</td>
<td>pENTRYfrag5</td>
</tr>
<tr>
<td>Frag 6</td>
<td>attB2 und attB3</td>
<td>pDONR™P2R-P3</td>
<td>pENTRYfrag6</td>
</tr>
<tr>
<td>Frag 7</td>
<td>attB4 und attB1</td>
<td>pDONR™P4-P1R</td>
<td>pENTRYfrag7</td>
</tr>
<tr>
<td>Frag 8</td>
<td>attB2 und attB3</td>
<td>pDONR™P2R-P3</td>
<td>pENTRYfrag8</td>
</tr>
<tr>
<td>erm</td>
<td>attB1 und attB2</td>
<td>pDONR™ 221</td>
<td>pENTRYerm</td>
</tr>
</tbody>
</table>

Ansätze für die BP-Klonierungen setzten sich wie folgt zusammen:

- Aufgereinigtes PCR-Fragment: 50 fmol
- Donorvektor: 150 µg
- Enzymmix: 2 µl
- A. bidest.: ad 10 µl
Der Ansatz wurde für 2 h bei Raumtemperatur inkubiert und anschließend in E. coli TOP 10 transformiert (5.3.2). Die Selektion der Klone mit den entsprechenden Entry-Vektoren erfolgte auf Kanamycin. Wurden in einer PCR-Reaktion die zu erwartenden Banden nachgewiesen, wurden die Entry-Plasmide durch eine Sequenzierung mit M13 Primern kontrolliert (5.4.7).

Tab. 5-4 Kombination der ENTRY-Vektoren und resultierende Vektoren

<table>
<thead>
<tr>
<th>Ausgangsplasmide</th>
<th>Produkt pDEST™R3-R4</th>
<th>Produkt pTS1 opplac</th>
</tr>
</thead>
<tbody>
<tr>
<td>pENTRYfrag1 + pENTRYfrag2</td>
<td>pCOLIispE</td>
<td>pTS1ispE</td>
</tr>
<tr>
<td>pENTRYfrag1 + pENTRYfrag4</td>
<td>pCOLIispEpurR</td>
<td>pTS1ispEpurR</td>
</tr>
<tr>
<td>pENTRYfrag1 + pENTRYfrag8</td>
<td>pCOLIispEpurRbarAB</td>
<td>pTS1ispEpurRbarAB</td>
</tr>
<tr>
<td>pENTRYfrag3 + pENTRYfrag4</td>
<td>pCOLIpurR</td>
<td>pTS1purR</td>
</tr>
<tr>
<td>pENTRYfrag5 + pENTRYfrag6</td>
<td>pCOLIbarA</td>
<td>pTS1barA</td>
</tr>
<tr>
<td>pENTRYfrag5 + pENTRYfrag8</td>
<td>pCOLIbarAB</td>
<td>pTS1barAB</td>
</tr>
<tr>
<td>pENTRYfrag7 + pENTRYfrag8</td>
<td>pCOLIbarB</td>
<td>pTS1barB</td>
</tr>
</tbody>
</table>

Die LR-Ansätze enthielten jeweils 25 fmol der jeweiligen Entry-Vektoren, 60 ng pDEST R4-R3 bzw. pTS1 opplac dest, 4 µl der LR-Clonase und wurden mit A. bidest auf 16 µl aufgefüllt und für 18 h bei Raumtemperatur inkubiert und anschließend in E. coli TOP 10 oder Mach 1 transformiert (5.3.2). Die Selektion der Klone erfolgte auf Ampicillin.

Bei den pCOLI-Plasmiden handelte es sich nicht um E. coli/Staphylococcus-shuttle-Vektoren, demnach erfolgte eine Umklonierung in den Vektor pBT2 (5.4.9) in einem zusätzlichen Schritt.
5.4.9 klassische Klonierung

5.4.9.1 Restriktionsverdau des Vektors und der DNA-Fragmente

Die durch die MultiSite-Gateway Technologie erzeugten pCOLI-Vektoren waren nicht als *E. coli/Staphylococcus-shuttle*-Vektoren geeignet, deshalb mussten die zusammengesetzten Fragmente in den Vektor pBT2 umkloniert werden. Dieser Vektor weist keine *att-sites* auf, besitzt jedoch eine *multi cloning site*. Hier wurden die Schnittstellen für *PstI* und *BamHI* genutzt, um den Vektor zu linearisieren. Der Ansatz mit Enzymen und Puffern (New England Biolabs) setzte sich wie folgt zusammen:

- pBT2: 30 µl
- BSA: 0,5 µl
- *BamHI*: 1,5 µl
- *PstI*: 1,5 µl
- Neb3 Puffer: 5 µl
- A. dest: 11,5 µl

Die Inkubation erfolgte bei 37 °C für 3 h. Der linearisierte pBT2 hatte eine Länge von 6,97 kb. Nach dem Verdau wurde der Vektor pBT2 mittels CIAP (*calf intestine alcaline phosphatase*) dephosphoryliert. Dem Ansatz wurden 5 µl CIAP (1 U/µl) zugefügt und die Inkubation erfolgte für eine weitere Stunde bei 37 °C. Darauf folgte eine Hitzeinaktivierung bei 65 °C für 10 min.

Die pCOLI-Vektoren, die mit der Gateway-Technik erzeugt wurden, enthielten die zusammengesetzten drei DNA-Fragmente. Diese wurden als ein PCR-Amplifikat durch jeweils zwei spezifische Primer amplifiziert (5.4.6). Der *forward* Primer besaß am 5' Ende eine *PstI*-Schnittstelle und der *reverse* Primer eine *BamHI*-Schnittstelle. Auf diese Weise konnten die Insertionsfragmente genauso verdaut werden wie der Vektor. Anschließend erfolgte die Aufreinigung der DNA-Fragmente (5.4.4).

5.4.9.2 Ligation

Die Ligation wurde zur Integration der 3-Fragment-Konstrukte in den linearisierten *shuttle*-Vektor pBT2 durchgeführt. Für die Verknüpfung wurde ein molares Verhältnis 1:6 von Vektor zu Insert (50 fmoles zu 300 fmoles) eingesetzt. Es wurden 2 µl T4-DNA-Ligase-Puffer und 1 µl T4-Ligase zugegeben und auf 20 µl Gesamtvolumen mit A. dest aufgefüllt. Nach einer 10 minütigen Inkubation bei Raumtemperatur und einer anschließenden Hitzeinaktivierung der Enzyme bei 65 °C (10 min) wurde eine Transformation in *E. coli* (5.3.2) angeschlossen.
5.5 Arbeiten mit RNA

5.5.1 Probennahme der *S. epidermidis* Zellen zur RNA-Aufreinigung

Um die RNA der verschiedenen *S. epidermidis* Stämme zu gewinnen, wurden 10 ml TSB, TSB NaCl und TSB EtOH mit den Vorkulturen in Zellkulturschalen (Nunclon\(\Delta\)) beimpft und die Hauptkulturen angezüchtet. Diese wurden für 7 bzw. 24 h bei 37 °C im Brutschrank stehend inkubiert. Nach der Inkubationszeit wurden die Zellen mit Hilfe eines Zellschabers vom Boden der Zellkulturschalen geerntet und in ein 50 ml Polystyrolröhrchen auf Eis überführt. Nach Zentrifugation bei 3220 \(\times g\), 4 °C für 10 min wurde der Überstand verworfen und das Pellet in 10 ml TE-Puffer gewaschen. Die Pellets biofilmpositiver Stämme wurden 20 s mit einer Frequenz von 20 kHz und einer Amplitude von 70 % mittels Ultraschallgerät sonifiziert. Nach zwei weiteren Waschschritten wurde der Überstand abgenommen und das Pellet bis zur Weiterverarbeitung bei -20 °C gelagert.

<table>
<thead>
<tr>
<th>TE-Puffer</th>
<th>10 mM Tris-HCl pH 8,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 mM EDTA</td>
<td></td>
</tr>
</tbody>
</table>

5.5.2 Isolation der Gesamtzell-RNA

Nachdem die Zellpellets auf Eis aufgetaut wurden, erfolgte die Zugabe von 180 µl TE-Puffer (5.5.1). Eine Behandlung der Zellen mit Ultraschall (Frequenz: 20 kHz, Amplitude: 30 %) führte zur vollständigen Resuspension der Zellen in dem Puffer. Anschließend erfolgte die Zugabe von 30 U des antibakteriellen Enzyms Lysostaphin, das die Zellwand der Staphylokokken spaltet. Nach einer 10 minütigen Inkubationszeit bei 37 °C wurden die Zellen 5 min auf Eis gestellt. Sie wurden anschließend mit jeweils 700 µl RLT-Lysis-Puffer (Qiagen) (enthält 1:100 Mercaptoethanol) vermischt und in Lysing-Matrix-B-Säulen überführt. Bei 6800 Upm erfolgte der Aufschluss der Zellen mit dem Precellys 24. Anschließend wurden die Proben für 30 s auf Eis gekühlt und die Glas-beads der Lysing-Matrix-B-Röhren bei 4 °C und 25000 \(\times g\) für 5 min sedimentiert. Der Überstand wurde in eine neues Reaktionsgefäß überführt und unter gleichen Bedingungen 30 min zentrifugiert. Der Überstand wurde wiederum in ein neues Reaktionsgefäß überführt und mit Ethanol bis zu einer Endkonzentration von 70 % versetzt.

Zur RNA-Isolation wurde RNeasy Mini Kit von Qiagen verwendet. Alle folgenden Schritte wurden laut Angaben des Herstellers zum Protokoll für Hefen
durchgeführt. Die RNA wurde mit 50 µl RNase freiem Wasser durch Zentrifugation bei 8000 ×g für 1 min in ein sauberes Reaktionsgefäß eluiert.

5.5.3 Bestimmung der RNA-Konzentration

Die RNA-Konzentrationsbestimmung beruht auf dem gleichen Prinzip wie die Konzentrationsbestimmung der DNA (5.4.5).

Für die Bestimmung der Konzentration der RNA wurde diese zunächst 1:100 in RNase freiem Wasser verdünnt. Unter Verwendung von UV-Küvetten wurde die Absorption bei 260 nm am SmartSpec Plus Spektrophotometer gemessen. Als Referenz diente RNase freies Wasser. Eine Absorption (A_{260nm}) von 1,00 entspricht einer Konzentration von 40 µg/ml RNA. Durch zusätzliche Messung der Absorption bei 280 nm wurde auf den Grad der Verunreinigung mit Protein geschlossen. Quotienten zwischen 1,9 und 2,2 weisen auf reine RNA-Präparationen hin. Bis zur weiteren Verwendung wurden die RNA-Proben bei -80°C gelagert.

5.5.4 Primer Extension Analyse

Die Primer Extension Analyse wurde mittels eines radioaktiv markierten Primers, mit dessen Hilfe mRNA in markierte cDNA umgeschrieben wurde, durchgeführt. Die Methode wurde zur Bestimmung des Transkriptionsstartpunktes genutzt. Zuerst erfolgte die Markierung des Primers mit \([\gamma^{32}P]\) ATP durch die T4-Polynukleotidkinase (PNK). Der Reaktionsansatz setzte sich wie folgt zusammen:

- 5 µl \([\gamma^{32}P]\) ATP (50 µCi)
- 1 µl Primer (100 ng/µl)
- 2,5 µl Kinasepuffer (zehnfach)
- 0,4 µl T4-PNK (entspricht 4 U)
- 16,1 µl A. bidest.

Der Ansatz wurde für die Phosphorylierungsreaktion für 30 min bei 37 °C inkubiert. Anschließend wurde die PNK 5 min bei 65°C hitzeinaktiviert. Die Fällung der markierten Oligonukleotide erfolgte durch Zugabe von 25 µl Ammoniumacetat (4 M) und 250 µl eiskaltem Ethanol (96 % v/v) für 30 min bei -70 °C. Danach wurden die Primer 15 min bei 13000 Upm und 4 °C sedimentiert. Nach Trocknen des Pellets wurde dieses in 20 µl A. bidest. aufgenommen und gelöst. 1 µl dieses Ansatzes wurde für die Messung der inkorporierten Radioaktivität am LSC eingesetzt. Für die Primerverlängerung wurde eine Aktivität von etwa 0,5-
1x10^6 cpm eingesetzt. Der Ansatz für die Hybridisierung der mRNA mit dem markierten Primer setzte sich wie folgt zusammen:

\[
\begin{align*}
10^6 \text{ cpm} & \quad \text{endmarkierter Primer} \\
5 \mu\text{g} & \quad \text{RNA} \\
1 \mu\text{l} & \quad 10\times \text{Hybridisierungspuffer} \\
ad 10 \mu\text{l} & \quad \text{A. bidest.}
\end{align*}
\]

Die Hybridisierung erfolgte für 60 min bei 52 °C. Anschließend wurde dem Ansatz 25 µl des Primer-Extension-Mix und 20 U der reversen Transkriptase (SuperScript III) zugefügt. Die weitere Inkubation erfolgte bei 37 °C für 30 min, um die nötigen Bedingungen für die reverse Transkription zu schaffen. Die nun entstandene cDNA wurde mit 200 µl eiskaltem Ethanol (96 % v/v) 30 min bei -70 °C gefällt und anschließend sedimentiert (15 min, 13000 Upm). Das getrocknete Pellet wurde in 10 µl Stopppuffer resuspendiert. 2 µl jeder Probe wurden auf ein Sequenzgel aufgetragen. Das Gießen des Gels erfolgte zwischen zwei zuvor silanisierte (Antihaut-Silan) und mit Ethanol gereinigte Glasplatten. Vor dem Auftragen der Proben erfolgte ein Vorlauf des Gels von etwa 2 h, um eine Geltemperatur von ca. 55 °C zu erreichen. Die Proben wurden 3 min bei 70 °C denaturiert und zusammen mit den dazugehörigen Sequenzen auf das Gel aufgetragen. Als Laufpuffer diente 1x TBE (5.4.3) und die Elektrophorese erfolgte bei 80 W für 2 h (PowerPac 3000). Nach dem Gellauf wurde das Gel mit Hilfe eines Bogens Filterpapier (GB002) von der Glasscheibe entfernt und mit Saranfolie bedeckt, bevor ein Röntgenfilm (Kodak BIOMAX™ MS) aufgelegt wurde. Die Exposition fand über Nacht bei -80 °C statt. Des Röntgenfilms wurde im Curix 60 entwickelt.

Hybridisierungspuffer

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Komponente</th>
<th>pH</th>
<th>Verarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM</td>
<td>Tris-HCl</td>
<td>7,9</td>
<td>autoklavieren</td>
</tr>
<tr>
<td>1 mM</td>
<td>EDTA</td>
<td></td>
<td>autoklavieren</td>
</tr>
<tr>
<td>250 mM</td>
<td>KCl</td>
<td></td>
<td>autoklavieren</td>
</tr>
</tbody>
</table>

Primer-Extension-Mix

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Komponente</th>
<th>pH</th>
<th>Verarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mM</td>
<td>Tris-HCl</td>
<td>8,7</td>
<td>autoklavieren</td>
</tr>
<tr>
<td>10 mM</td>
<td>MgCl_2</td>
<td></td>
<td>autoklavieren</td>
</tr>
<tr>
<td>5 µM</td>
<td>DTT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 mM</td>
<td>dNTPs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 U/µl</td>
<td>Rnasin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sequenzgel 40% (38%AA + 2%Bis) 1x 42% (w/v) Acrylamid TBE Harnstoff durch Papierfilter filtriert 0,00025% (w/v) APS 0,001% (v/v) TEMED

5.5.5 5' Kartierung der mRNA mittels RACE-Technologie

Mit dem 5'/3’ RACE-Kit, 2nd Generation ist es möglich sowohl 5’ als auch 3’ Enden zu kartieren. In dieser Arbeit sollte der 5’ Startpunkt des Transkripts von barAB, ausgehend vom putativen σB abhängigen Promotor strangaufwärts von barA, kartiert werden. Dazu wurde in einem ersten Schritt durch einen genspezifischen Primer und der im Kit enthaltenen Transcriptor reversen Transcriptase aus der RNA eine cDNA geschrieben. Der Ansatz setzte sich wie folgt zusammen:

4 µl cDNA Synthetisepuffer 2 µl dNTPs 1,25 µl frag5.barA.rv (10 µM) 0,56 µl RNA (2 µg) 1 µl Transcriptor rev. Transcriptase 11,2 µl A. dest.

Der Ansatz wurde 60 min bei 55 °C und anschließend 5 min bei 85 °C inkubiert. Im Folgenden wurde die cDNA mit dem High Pure PCR Product Purification Kit laut Angaben des Herstellers aufgereinigt. Im nächsten Schritt wurde ein polyA-Schwanz an das 3'-Ende der aufgereinigten cDNA mit Hilfe einer terminalen Transferase nach dem Protokoll des Herstellers angefügt. In einer nested-PCR (Tabelle 5-4) wurde das spezifische DNA-Fragment amplifiziert, anschließend aufgereinigt und bei der Firma MWG sequenziert (5.4.7).

Der PCR-Ansatz setzte sich wie folgt zusammen:

5 µl dA-markierte DNA 1 µl oligo dT Primer 1,25 µl barA.pe.rv (10 µM) 1 µl dNTPs 5 µl Reaktionspuffer (mit Taq DNA-Polymerase) 36,25 µl A. bidest.
Tab. 5-4 PCR-Bedinungen zur Amplifikation der dA-markierten cDNA

<table>
<thead>
<tr>
<th></th>
<th>Temperatur [°C]</th>
<th>Zeit [s]</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiale Denaturierung</td>
<td>94</td>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>94</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Anlagerung</td>
<td>55</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Verlängerung</td>
<td>72</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Denaturierung</td>
<td>72</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Anlagerung</td>
<td>55</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>Verlängerung</td>
<td>72</td>
<td>40 + 20 / Zyklus</td>
<td></td>
</tr>
<tr>
<td>Finale Verlängerung</td>
<td>72</td>
<td>420</td>
<td>1</td>
</tr>
</tbody>
</table>

Die so ermittelte Sequenz konnte für ein Alignment mit der aus der Datenbank bekannten genomischen Sequenz genutzt werden und der Startpunkt ermittelt werden.

5.5.6 Quantitative Transkriptionsanalyse

Zur Analyse der Transkription der Gene *icaA* und *icaR* sowie der extrazellulären Protease SE0184, SE1543 und SE2219 wurde die reverse Transkription real time PCR (RT-PCR) genutzt. Dabei diente das Gen der Guanylatcyclase (*gmk*) als unreguliertes Referenzgen (*house keeping gene*).

Die aus den Bakterien gewonnene RNA enthielt Kontaminationen genomischer DNA. Um die Quantifikation nicht zu beeinträchtigen, wurde diese DNA durch die Behandlung der Proben mit RNase-freier DNase I entfernt. 5 µg RNA wurden mit 2 µl DNase-I-Puffer und 4 µl DNase (1 U/µl) versetzt und auf 20 µl mit A. dest. aufgefüllt. Der Ansatz wurde 15 min bei Raumtemperatur inkubiert. Durch Zusatz von 1 µl 25 mM EDTA und 10 min Erhitzen auf 65 °C wurde die Reaktion abgestoppt. Der Ansatz wurde für die weitere Behandlung 1:5 mit Aqua dest. verdünnt. Um den Erfolg des DNA-Verdaus zu prüfen, erfolgte eine Kontroll-PCR im Light Cycler. Der Ansatz setzte sich wie folgt zusammen:

- 2 µl LightCycler® FastStart Reaction Mix SYBR Green
- 0,8 µl MgCl₂, 25 mM
- 1,5 µl *forward-gmk*-Primer (10 pmol/µl)
- 1,5 µl *reverse-gmk*-Primer (10 pmol/µl)
- 2 µl DNase behandelte RNA-Probe
- 12,2 µl A. dest

Tab. 5-5 PCR-Protokoll der Kontroll PCR

<table>
<thead>
<tr>
<th>Temperatur [°C]</th>
<th>Zeit [s]</th>
<th>Anstieg [°C/s]</th>
<th>Zyklen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturierung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>600</td>
<td>20</td>
<td>1 x</td>
</tr>
<tr>
<td>Amplifizierung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>20</td>
<td>52 x</td>
</tr>
<tr>
<td>72</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Schmelzkurven</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0</td>
<td>20</td>
<td>1 x</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>20</td>
<td>1 x</td>
</tr>
<tr>
<td>95</td>
<td>0</td>
<td>0,2</td>
<td>1 x</td>
</tr>
<tr>
<td>Kühlung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>15</td>
<td>20</td>
<td>1 x</td>
</tr>
</tbody>
</table>

Wurde die Kontroll-PCR erst nach 35 oder mehr Zyklen positiv bzw. blieb negativ, konnten die Proben zur weiteren Analyse verwendet werden. Dabei muss die RNA zunächst in cDNA umgeschrieben werden. Die reverse Transkription zur Synthese der cDNA erfolgte mit dem iScript™ Select cDNA Synthesis Kit. Für die Denaturierung der RNA und Anlagerung der Primer, wurden 5 µl der 1:5 verdünnten RNA mit 2 µl *random* Primern sowie mit 8 µl A. dest versetzt und 5 min bei 65 °C inkubiert. Nachdem der Ansatz 1 min auf Eis stand, wurde ein Reaktionsmix, bestehend aus 4 µl 5x iScript Reaktions-Puffer und 1 µl iSript reverser Transkriptase, hinzupipettiert. Im Thermocycler erfolgte die Inkubation des Reaktionsmixes bei folgenden Temperaturen:
Tab. 5-6 Protokoll der reversen Transkription

<table>
<thead>
<tr>
<th>Zeit [s]</th>
<th>Temperatur [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>25 °C</td>
</tr>
<tr>
<td>30 min</td>
<td>42 °C</td>
</tr>
<tr>
<td>5 min</td>
<td>84 °C</td>
</tr>
<tr>
<td>∞</td>
<td>4 °C</td>
</tr>
</tbody>
</table>

Die erhaltenen cDNA wurde 1:4 verdünnt und bis zum weiteren Gebrauch bei -20 °C gelagert.

Die RT-PCR setzte sich für alle Primerpaare entsprechend der optimalen Bedingungen zusammen. In Tabelle 5-7 sind die verschiedenen Zusammensetzungen zusammengefasst.

Tab. 5-7 Zusammensetzung der RT-PCR Ansätze

<table>
<thead>
<tr>
<th>PCR-Komponenten</th>
<th>Ansätze [µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LightCycler® FastStart Reaction Mix SYBR Green</td>
<td>icaA</td>
</tr>
<tr>
<td>MgCl₂, 25 mM</td>
<td>0,8</td>
</tr>
<tr>
<td>forward-Primer (10 pmol/µl)</td>
<td>1,5</td>
</tr>
<tr>
<td>reverse-Primer (10 pmol/µl)</td>
<td>1,5</td>
</tr>
<tr>
<td>cDNA</td>
<td>2</td>
</tr>
<tr>
<td>A. dest</td>
<td>15,2</td>
</tr>
</tbody>
</table>

Das Protokoll für die PCR erfolgte wie in Tabelle 5-1 dargestellt mit kleinen Abweichungen. In der PCR für icaR wurde während der Amplifikation die annealing-Zeit auf 8 s reduziert und die Temperatur auf 52 °C erhöht. Für die Gene SE0184, SE1543 und SE2219 wurde die annealing-Temperatur auf 53 °C erhöht, aber das Protokoll ansonsten beibehalten.

Um die Effizienz der Primerpaare zu bestimmen wurde eine 1:2 Verdünnungsreihe einer cDNA hergestellt (1:2 bis 1:256) und diese für die PCR analog zu den in Tabelle 5-3 dargestellten Ansätzen, eingesetzt. Die Software konnte diese Informationen nutzen, um eine Regressionsgerade zu erstellen, deren Anstieg die Effizienz der jeweiligen Primer darstellte. Weiterhin wurde die Signifikanz der Beobachtungen durch einen Standard-t-Test (p > 0,05) berechnet.

5.6 Arbeiten mit Proteinen

5.6.1 Proteinüberexpression
Mit der Proteinüberexpression wurde infolge einer induzierten Proteinsynthese in der Zelle die erhöhte Konzentration eines rekombinanten Proteins erzielt. Es wurden 3 l LB-Medium (100 µg/ml Ampicillin) mit einer Vorkultur des Vektor-tragenden E. coli BL21 Stammes auf eine OD_{600nm} 0,05 inokuliert und bei 37 °C und 150 Upm kultiviert. Nach Erreichen einer Zelldichte von OD_{600nm} 0,6 wurde zur Induktion der Expression des rekombinanten Proteins, Arabinose zugegeben (0,02 % Endkonzentration). Die Bakterien wurden unter gleich bleibenden Bedingungen weitere 3 h kultiviert. Die Zellen wurden anschließend auf Eis geerntet und durch Zentrifugation für 15 min bei 4 °C und 3220 ×g pelletiert.

5.6.2 Aufreinigung rekombinanter Proteine
Das Zellpellet wurde in 30 ml Lysispuffer aufgenommen. Der Zellsuspension wurden 3 µl DNase I, 20 µl Lysozym (10 mg/ml), 10 µl Proteaseinhibitor (25x complete mini) und 30 µl MgCl₂ (Endkonzentration 1 mM) hinzugefügt. Nach 30 min Inkubation auf Eis unter leichtem Schütteln wurden die Zellen durch dreimaliges Sonifizieren für 30 s mit einer Amplitude von 70 % und jeweils 30 s Pause aufgeschlossen. Die unlöslichen Bestandteile wurden durch Zentrifugation bei 11000 Upm und 4 °C für 45 min sedimentiert (J2-21). Zusätzlich wurde der Überstand durch Filter mit einer Porengröße von 0,22 µm filtriert. Der so gewonnene Überstand, mit der darin enthaltenen löslichen Proteinfraktion, wurde durch Affinitätschromatographie über 1 ml Bio-Scale Mini Profinity IMAC Säulen aufgereinigt. Die rekombinannten Proteine wurden mit einem N-terminalen 6xHis-tag versehen, der mit Metallionen auf der Säulenmatrix interagiert. Dazu wurde die Säule mit 5 Säulenvolumen (SV) Lysispuffer equilibriert bevor mittels einer peristaltischen Pumpe die Proteinlösung (2 ml/min) über die Säule lief. Im Anschluss wurde die Säule mit 6 SV Lysispuffer und 6 SV Waschpuffer gewaschen, um
unspezifisch gebundene Proteine zu verdrängen. Das rekombinante Protein wurde dann mit 10 SV Elutionspuffer von der Säule eluiert und in 1 ml Fraktionen aufgefangen. Die Eluate wurden auf einer SDS-PAGE (5.6.8) aufgetrennt und diese 10 min unter leichtem Schwenken bei Raumtemperatur mit Coomassie gefärbt. Das Entfärben der Gelmatrix erfolgte über Nacht unter den gleichen Bedingungen. Eluate mit großer Menge Protein und ohne sichtbare Verunreinigung wurden mittels Amicon Ultra 4 5k aufkonzentriert und umgepuffert, da Imidazol durch die Poren des Filters nicht aufgehalten wurde. Bevor die Proteine bis zur weiteren Nutzung bei 4 °C gelagert wurden, wurde der Proteingehalt bestimmt (5.6.7).

Die Säulen wurden nach der Aufreinigung chaotrop gereinigt, indem sie mit 2 SV Wasser, 5 SV 6 M Guanidin-HCl und nochmals 2 SV Wasser gespült wurden. Bis zur nächsten Nutzung wurden die Säulen in 20 % Ethanol bei 4 °C gelagert. Eine Säule wurde immer nur für das gleiche Protein wieder verwendet.

Lysispuffer 300 mM KCl
50 mM KH₂PO₄
5 mM Imidazol
Waschpuffer 300 mM KCl
50 mM KH₂PO₄
10 mM Imidazol
Elutionspuffer 300 mM KCl
50 mM KH₂PO₄
250 mM Imidazol
Denaturierende Puffer waren ebenso zusammengesetzt und enthielten zusätzlich 6 M Harnstoff.
Coomassie 800 ml Methanol
140 ml Essigsäure
2 g Coomassie brilliant blue G250
ad 2 l A. dest
Die Entfärberlösung war ebenso zusammengesetzt, aber enthielt kein Coomassie.

5.6.3 Probennahme der S. epidermidis Zellen zur Proteinaufreinigung
Zellen zur Proteingewinnung wurden aus einer 250 ml TSB Hauptkultur zu verschiedenen Zeitpunkten entlang der Wachstumskurve entnommen. Für die Probe in der logarithmischen Phase wurden nach 5,5 h Wachstum 50 ml Kultur
entnommen. Nach 24 h wurden 30 ml für die Probe aus der spätstationären Phase des Wachstums geerntet. Alle Proben wurden sofort auf Eis gekühlt und für 15 min bei 4 °C und 3220 ×g zentrifugiert. Die Pellets wurden zweimal mit 10 ml TE-Puffer (5.5.1) gewaschen. Biofilmpositive Stämme wurden zur vollständigen Auflösung der Pellets für 20 s bei einer Amplitude von 70 % sonifiziert. Nach der letzten Zentrifugation wurde der Überstand vollständig entfernt und die Pellets bis zur weiteren Verarbeitung bei -20 °C gelagert. Zur Gewinnung der extrazellulären Proteine wurde der Überstand der verschiedenen Proben nicht verworfen, sondern wenn nötig ein weiteres Mal zentrifugiert und daraus die Proteine gefällt (5.6.5).

5.6.4 Aufreinigung intrazellulärer Proteine

Die gewaschenen Zellpellets (5.6.3) wurden in 1 ml TE-Puffer (5.5.1) aufgenommen und in Lysing-Matrix-B-Röhrchen überführt. Der Aufschluss der Bakterienzellen erfolgte im Precellys 24 bei 6800 Upm für 30 s. Anschließend wurden die Proben sofort auf Eis gekühlt und die Glas-beads durch Zentrifugation bei 25200 ×g für 25 min sedimentiert. Der Überstand wurde in ein neues Zentrifugationsgefäss überführt und nochmals bei 25200 ×g und 4 °C für 45 min zentrifugiert. Der Überstand mit dem löslichen Protein wurde vorsichtig in ein sauberes Reaktionsgefäss überführt und nach der Konzentrationsbestimmung (5.6.7) bei -20 °C gelagert.

5.6.5 Aufreinigung extrazellulärer Proteine

Der zellfreie Überstand der Bakterienkulturen (5.6.3) wurde mit frisch angesetzter 100 % TCA (Endkonzentration 5 %) über Nacht bei 4 °C gefällt. Am folgenden Tag wurden die gefällten Proteine durch Zentrifugation bei 3200 ×g sedimentiert. Das Pellet wurde zweimal mit 20 ml und zweimal mit 10 ml 100 % eiskaltem Ethanol gewaschen. Anschließend folgte ein Waschschritt mit 10 ml 70 % eiskaltem Ethanol. Der Überstand wurde vorsichtig vollständig abgenommen und das Pellet komplett getrocknet bevor es in 1 ml 8 M Harnstoff / 2 M Thioharnstoff aufgenommen wurde. Bevor die Proteinlösung bei -20 °C gelagert wurde, wurde die Konzentration (5.6.7) bestimmt.

5.6.6 Herstellung polyklonaler Antiseren

Um die Möglichkeit zu haben, die Proteine BarA, BarB, SigB und RsbU in Western Blot Analysen nachweisen zu können, wurden polyklonale Antiseren in Kaninchen generiert. Dazu wurden 100 µg der aufgereinigten rekombinanten
Proteine genutzt, um Hasen zu immunisieren (Versuchsnummer/A10/06). Die erste Proteingabe erfolgte 1:1 in vollständigem Freundschen Adjuvans. Ca. 4 Wochen später wurden die Kaninchen ein weiteres Mal mit 100 µg Protein immunisiert, wobei dieses 1:1 mit unvollständigem Freundschen Adjuvans verdünnt wurde. Nach 4 Wochen wurde eine Serumprobe entnommen und als Antiserum für eine Western Blot Analyse (5.6.9) getestet. Dazu wurden jeweils 10 µg Gesamtzellprotein von \textit{S. epidermidis} 1457 und einer entsprechenden Mutante genutzt und das Antiserum in verschiedenen Verdünnungen eingesetzt (1:500 – 1:10000). Waren die spezifischen Banden in der 1:5000 Verdünnung noch gut erkennbar, wurden die Hasen entblutet und das gesamte Blut zur Gewinnung des Serums (Überstand nach 15 min Zentrifugation bei 3220 ×g) verwendet. War das Antiserum noch nicht ausreichend reaktiv, wurden weitere Immunisierungen in unvollständigem Freundschen Adjuvans vorgenommen, bis eine ausreichende Reaktivität gegeben war.

Mit den polyklonalen Antiseren wurden viele unspezifische Reaktionen detektiert. Um dies zu minimieren, wurden die Seren gegen die entsprechenden Proteine aufgereinigt. Dabei wurden in einem ersten Schritt die rekombinannten Proteine kovalent an HiTrap NHS-aktivierte HP-Säulen gebunden. Das Protein wurde in Bindepuffer auf eine Konzentration von ca. 0,5 mg/ml verdünnt. Bevor der Ligand auf der Säule für 30 min inkubiert wurde, wurde die Säule dreimal mit 2 SV eiskalter HCl (1 mM) gewaschen. Im Anschluss wurde die Säule mit 6 SV Blockpuffer und weiter mit 6 SV Waschpuffer gespült. Diese Schritte wurden dreimal wiederholt, wobei die Blocklösung in der zweiten Wiederholung für 30 min auf der Säule inkubiert wurde, um überschüssige aktive Gruppen zu inaktivieren. Zur Lagerung und weiteren Verwendung der Säule wurden 2-5 SV des Bindepuffers injiziert. Vor der ersten Aufreinigung eines Antiserums wurde ein Leerlauf mit 2 SV Bindepuffer II und 3 SV Elutionspuffer durchgeführt. 10 SV Bindepuffer II dienten zur Equilibrierung der Säule bevor das Antiserum mit 0,5 ml/min über die Säule lief. Unspezifisch festgehaltene Proteine wurden mit 10 SV Bindepuffer entfernt und spezifisch gebundene Antikörper mit 3 SV Elutionspuffer eluiert, der in 1 ml Fraktionen auf 30 µl 1 M Tris/HCl pH 9,0 aufgefangen wurde. Die Säule wurde sofort mit 10 SV Bindepuffer II reequilibriert.

Die drei Fraktionen wurden, wie auch oben für die Testseren beschrieben, in Western Blot Analysen getestet und die zur Nutzung bestmögliche Verdünnung ermittelt. Die Antikörperlösungen wurden bei 4 °C gelagert.
Bindepuffer
0,2 M NaHCO₃
0,5 M NaCl
PH 8,3

Blockpuffer
0,5 M Ethanolamin
0,5 M NaCl
PH 8,3

Waschpuffer
0,1 M Acetat
0,5 M NaCl
PH 4,0

Bindepuffer II
0,02 M Na₂HPO₄
0,5 M NaCl
PH 7,4

Elutionspuffer
0,1 M Glycin
PH 3,0

5.6.7 Proteinkonzentrationsbestimmung nach Bradford

Hierzu wurden 1 ml Bradfordreagenz und 20 µl Proteinextrakt durch starkes Vortexen gemischt und 5 min bei Raumtemperatur inkubiert. Die Absorption wurde dann bei 595 nm gemessen (SmartSpec™ Plus Spectrophotometer). Zur Ermittlung der Konzentrationswerte wurde eine Eichgerade (y = 0,8918x + 0,0425) genutzt, die zuvor mit BSA erstellt wurde.

Berechnung der Konzentration berücksichtigt werden, die ebenfalls durch eine zuvor mit BSA erstellte Eichkurve, erreicht wurde:

\[
Konzentration [\mu g / \mu l] = \frac{((\lambda_{590\text{nm}} / \lambda_{450\text{nm}} - 0,3864)/0,054845)*Vd}{x}
\]

\(Vd\) Verdünnung in der die Probe eingesetzt wurde
\(x\) eingesetzte \(\mu l\)-Menge

5.6.8 Auftrennung von Proteinen im SDS-Polyacrylamidgel

Mit der Sodiumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) wurden die Proteine in einer vertikalen Elektrophoresekammer nach ihrem Molekulargewicht getrennt. Als Größenstandard diente ein Protein-Molekulargewichtsmarker der Firma Invitrogen (SeeBlue Plus2) oder Spectra MultiColor broad range Protein ladder (Fermentas). Die Proteinproben wurden mit 3x Probenpuffer nach Laemmli (Laemmli, 1970) versetzt und vor dem Auftragen auf das Gel für 5 min bei 95 °C denaturiert. Es wurden ausschließlich Precast-Gele der Firma Invitrogen verwendet (NuPAGE Novex BisTris). Die elektrophoretische Auftrennung erfolgte bei 150 V für ca. 1 h in 1x MES-Puffer (Power supply EV231).

3x Laemmli-Probenpuffer 15 % (v/v) Glycerol
1,5 % (v/v) β-Mercaptoethanol
0,15 M Tris, pH 6,8
7,5 % (w/v) SDS
0,03 % (w/v) Bromphenolblau

5.6.9 Western Blot Analyse

Zum spezifischen Nachweis von Proteinen wurden Western Blot Analysen durchgeführt. Dazu wurden die Proteine aus einem SDS-Gel nach der Größtrennung bei 30 V für 1 h auf eine PVDF-Membran übertragen (Power supply EV231). Anschließend wurde die Membran für 30 min in Blotto equilibriert und der primäre Antikörper dazugegeben. Die Inkubation mit dem primären Antikörper (gegen das nachzuweisende Protein gerichtet) erfolgte bei Raumtemperatur über Nacht unter leichtem Schwenken. Am folgenden Tag wurde die Membran dreimal mit Blotto für etwa 10 Minuten gewaschen bevor der sekundäre Antikörper (gegen Hasen-IgG gerichtet), an den eine alkalische Phosphatase gekoppelt war, zugesetzt wurde. Die Inkubation erfolgte ebenfalls bei Raumtemperatur unter leichtem Schwenken für 1 h. Nachdem der Western Blot nochmals mit Blotto gewaschen wurde und die Rückstände des Blottos durch dreimaliges kurzes Spülen mit A. bidest

10x TBS 0,49 M Tris pH 7,6
9 % (w/v) NaCl
Blotto 1x TBS
2,5 % (w/v) Milchpulver
20 mg/l NaN$_3$
0,05 % (v/v) TWEEN 20

5.6.10 Auftrennung von Proteinen über 2 Dimensionen

5.6.10.1 Erste Dimension: Isoelektrische Fokussierung

Die Proteinproben, die mit dieser Technik untersucht werden sollten, wurden nach 5,5 h und 24 h geerntet (5.6.3) und aufgereinigt (5.6.4). Die Konzentrationsbestimmung der Extrakte erfolgte mit Roti®-Nanoquant (5.6.7). 350 µg Protein wurden, wenn nötig, auf ein Volumen von etwa 20 µl eingeengt und anschließend in 360 µl Rehydratisierungslösung aufgenommen. Um eine bessere Lösung zu erhalten, wurden die Proben 20 min geschüttelt und anschließend für 5 min bei 21000 × g und Raumtemperatur zentrifugiert, um ungelöste Bestandteile zu eliminieren. Die Proben wurden gleichmäßig in der Rehydratisierungskammer verteilt und der IPG-Streifen (17 cm, linearer pH-Gradient 4-7) mit der Gelseite nach unten auf die Lösung aufgelegt. Dabei wurde das Entstehen von Luftblasen vermieden. Die Rehydratisierung erfolgte über Nacht für ca. 15 h bei Raumtemperatur. Um ein Austrocknen der Streifen zu verhindern, wurden die Rehydratisierungskammern mit Parafilm abgedeckt.

Die Isoelektrische Fokussierung (IEF) erfolgte in der Multiphor II unit bei 20 °C. Die rehydratisierten IPG-Streifen wurden mit einer Pinzette aus der Kammer entnommen und mit der Gelseite nach oben in die Vertiefungen des Trägers der
Multiphor II *unit* gelegt. Die Streifen wurden so positioniert, dass die anodischen Enden in einer Linie abschlossen. Sowohl über die anodischen als auch über die katodischen Enden der Streifen wurde ein mit 0,5 ml A. bidest getränkter 11 cm langer Elektrodenstreifen gelegt, so dass der Elektrodenstreifen Kontakt zur Gelfläche aller IPG-Streifen hatte. Auf diese Fläche wurden die Elektroden aufgesetzt und deren Kontakte wurden mit dem Transformator verbunden. Anschließend wurden die IPG-Streifen mit Mineralöl überschichtet. Die IEF erfolgte nach folgendem Protokoll:

<table>
<thead>
<tr>
<th>Schritt</th>
<th>Spannung (Gradient)</th>
<th>Strom (mA)</th>
<th>Leistung (W)</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schritt 1</td>
<td>500 V</td>
<td>2</td>
<td>5</td>
<td>für 2 Vh</td>
</tr>
<tr>
<td>Schritt 2</td>
<td>3500 V</td>
<td>2</td>
<td>5</td>
<td>für 3 kVh</td>
</tr>
<tr>
<td>Schritt 3</td>
<td>3500 V</td>
<td>2</td>
<td>5</td>
<td>für 23,5 kVh</td>
</tr>
</tbody>
</table>

Nach ca. 8 h war die IEF beendet und die IPG-Streifen wurden mit Pinzetten aus dem Träger gehoben und seitlich auf ein Filterpapier gestellt, um das überschüssige Öl zu entfernen. Die Streifen wurden sofort für die zweite Dimension verwendet oder bei -20 °C gelagert.

Rehydratisierungslösung

<table>
<thead>
<tr>
<th>Konzentration</th>
<th>Lösungslösung</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg</td>
<td>CHAPS</td>
</tr>
<tr>
<td>30 mg</td>
<td>DTT</td>
</tr>
<tr>
<td>8 M</td>
<td>Harnstoff</td>
</tr>
<tr>
<td>2 M</td>
<td>Thioharnstoff</td>
</tr>
<tr>
<td>52 µl</td>
<td>Ampholyte 3-10</td>
</tr>
</tbody>
</table>

5.6.10.2 Zweite Dimension: Gelelektrophorese

Die IPG-Streifen mussten vor dem Lauf equilibriert werden. Dazu wurden die Streifen mit der Gelseite nach oben in Equilibrationsschalen gelegt und mit je 4 ml Äqui-Lösung A für 20 min geschwenkt. Anschließend wurde der Vorgang mit Äqui-Lösung B wiederholt.

Die equilibrierten Streifen wurden zwischen die Glasplatten mit den Gelen gelegt und mit einem Spatel vorsichtig auf das Sammelgel geschoben. Die Enden der Streifen wurden jeweils mit einem Tropfen 2 %iger Agarose fixiert. Die Gele wurden dann in der mit Laufpuffer gefüllten Kammer positioniert und der Lauf erfolgte bei konstanter Leistung (19 W) und konstanter Temperatur (12 °C) über ca. 16 h (PowerPac 3000).

Trenngellösung	335,3 ml	40 % Acrylamid
	179 ml	2 % Bis-Acrylamid
	272,54 ml	1,5 M Tris/HCl pH 8,8
	11,48 ml	10 % SDS
	300 ml	A. bidest

zur Polymerisation wurden vor dem Gießen 2,8 ml 10 % APS und 0,55 ml TEMED zugefügt

Sammelgellösung	10,8 ml	40 % Acrylamid
	3,4 ml	2 % Bis-Acrylamid
	30 ml	4x upper buffer
	76 ml	A. bidest

zur Polymerisation wurden vor dem Gießen 0,44 ml 10 % APS und 0,066 ml TEMED zugefügt

| 4x upper buffer | 0,4 % (w/v) | SDS |
| | 0,5 M | Tris/HCl pH 6,8 |

Äqui-Lösung	36 g	Urea
	10 ml	0,5 M Tris/HCl pH 6,8
	30 ml	Glycerol
	40 ml	10 % SDS
	ad 100 ml	A. bidest

für Lösung A werden in 50 ml Äqui-Lösung 175 mg DTT zugefügt; für Lösung B werden auf 50 ml 2,25 g Iodacetamid und eine Spur Bromphenolblau zugefügt
10x Laufpuffer 150 g Tris
720 g Glycin
50 g SDS
ad 5 l A. dest

5.6.10.3 Proteinidentifikation und Analyse

Nach der Elektrophorese wurden die Gele von den Glasplatten entfernt und in Coomassie-Lösung für ca. 18 h gefärbt. Durch viermaliges 30minütiges Spülen mit A. dest wurden die Gele wieder entfärbt und die Proteinspots wurden sichtbar.

Anschließend wurden die Gele in Folien eingeschweißt und am Scanner X finity ultra im transmission Modus mit 200 dpi gescannt. Bis zur weiteren Nutzung wurden die Gele bei 4 °C gelagert.

Die Gelbilder wurden in die Software Delta 2D (Decodon) importiert, in der alle Bilder fiktiv in einem Fusionsgel zusammengefügt wurden und darauf eine Spotmaske erstellt wurde. Die dual-channel-imaging Technik ermöglichte es unterschiedlich exprimierte Proteinspots im Vergleich zweier Mutanten darzustellen. Für jede Mutante lagen für jeden Zeitpunkt 3 Gele unabhängiger biologischer Replikate vor, die zur Berechnung der Änderungen der Proteinspot herangezogen wurden. Die Software ermöglichte eine Quantifizierung der Spots und berechnete über einen t-Test (p<0,01) signifikante Änderungen der Spotintensitäten. Manuell wurden Spots aus der Analyse ausgeschlossen, die unterhalb einer zweifachen Änderung signifikant waren. Spots, die in der Massenspektrometrie identifiziert werden sollten, wurden aus Gelen mit möglichst hohem Spotvolumen mit dem Proteom Work™ mit einem 2 mm Kopf ausgestochen. Dazu wurden zuvor Picklisten in Delta 2D erstellt, die dem cutter die Koordinaten der Spots lieferten.

Die ausgestochenen Spots wurden zur weiteren Bearbeitung in 96 well Platten transferiert. Der Verdau der Proteine mit Trypsin und das danach folgende Spotten der Peptide auf die MALDI targets wurde automatisiert an der Spot Handling Workstation durchgeführt. Dabei wurden die Gelstücke zweimal mit 100 µl 50 mM Ammoniumbikarbonat / 50 % Methanol für 30 min und einmal mit 100 µl 75 % (v/v) Acetonitril für 10 min gewaschen. Nach 17minütigem Trocken wurden 10 µl Trypsinlösung (20 ng/µl in 2 mM Ammoniumcarbonat) auf den Proteinspot gegeben. Der Verdau erfolgte für 120 min bei 37 °C. Zur Peptidextraktion wurden die Gelstücke mit 60 µl 50 % (v/v) Acetonitril / 0,1 % (w/v) TFA bedeckt und für 30 min bei 37 °C inkubiert. Der Überstand mit den gelösten Proteinen wurde in eine
neue Mikrotiterplatte überführt und die Extraktion mit 40 µl wiederholt. Die Proteinlösung wurde bei 40 °C für 220 min vollständig eingetrocknet und anschließend in 2,2 µl 0,5 % (w/v) TFA / 50 % Acetonitril gelöst. 0,7 µl dieser Lösung wurden direkt auf das MALDI target gespottet und dort mit 0,4 µl der Matrixlösung gemischt. Vor der Messung der Proben im MALDI-TOF wurde das target für 10 – 15 min getrocknet.

Die MALDI-TOF-MS-Analyse erfolgte im Proteom Analyzer 4700. Die Spektren wurden im Reflektor-Modus in einem Massenbereich von 900 bis 3700 Da aufgenommen. Die Peaklisten wurden mit dem peak to mascot Script der 4700 Explorer™ Software mit folgenden Einstellungen erstellt:

- Massenbereich 900 – 3700 Da
- Peakdichte 50 / 200 Da
- minimaler Bereich von 100 und maximal 200 peaks / Proteinspot
- minimale Signal to noise ratio von 6

Die Peaklisten wurden mit Hilfe des mascot search engine (Matrix Science) mit der Organismus-spezifischen Fusionsdatenbank aus den Genomen von *S. epidermidis* 12228 und *S. epidermidis* RP62A (NC_004461, NC_005003, NC_005008) verglichen. Peptidmixe, die zweimal einen mowse score von mindestens 49 und eine Sequenzübereinstimmung von mindestens 30 % aufzeigten wurden als positiv identifiziert gewertet.

Coomassie-Lösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 ml 85 % o-Phosphorsäure</td>
<td></td>
</tr>
<tr>
<td>40 g (NH₄)₂SO₄</td>
<td></td>
</tr>
<tr>
<td>0,48 g Coomassie Blue G-250</td>
<td></td>
</tr>
<tr>
<td>ad 360 ml A. dest</td>
<td></td>
</tr>
</tbody>
</table>

Die Lösung wurde gerührt und 30 min vor Nutzung wurden 100 ml Methanol hinzugefügt

Matrixlösung

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 % (v/v) Acetonitril</td>
<td></td>
</tr>
<tr>
<td>0,5 % TFA (gesättigt mit CHCA)</td>
<td></td>
</tr>
</tbody>
</table>
5.7 Computerbasierte Analyse

5.7.1 Blast-Suchen und Alignments

6 Ergebnisse

6.1 Nachweis des σ^B abhängigen Promotors strangaufwärts von barAB

Aus einer dieser Arbeit vorhergegangenen Promotorkonsensussuche war bekannt, dass sich strangaufwärts von barA ein putativer σ^B abhängiger Promotor befindet (Knobloch et al., 2003). Dieser sollte experimentell nachgewiesen werden. Dazu wurden zwei unterschiedliche Techniken genutzt. Zum einen die Primer Extension Analyse und zum anderen ein Kit, das von der Firma Roche (RACE kit, 2nd Generation) angeboten wird zur Kartierung von 5’ und 3’ Enden beliebiger mRNAs.

6.1.1 Nachweis mittels Primer Extension Analyse

Die Primer Extension Analyse basiert auf der Verlängerung eines markierten spezifischen Primers, die am Anfang der mRNA abbricht und in einer markierten cDNA resultiert. Gleichzeitig wird der Primer für eine Sequenzierungsreaktion genutzt, die zusammen mit dem markierten cDNA auf ein Polyacrylamidgel aufgetragen wird. Dadurch lässt sich anhand der Größe der Startpunkt der mRNA auf dem Gel ablesen.

Der Primer barA.pe.rv wurde mit $[^32P]ATP$ und der PNK radioaktiv markiert. Dieser wurde dann für die Hybridisierungsreaktion mit der cDNA eingesetzt (Abbildung 6-1). Der gleiche Primer wurde für die vier Sequenzierungs-reaktionen genutzt.

Nachdem die Proben der Größe nach auf einem Gel aufgetrennt wurden, wurden die radioaktiven Banden mit Hilfe eines Röntgenfilms sichtbar gemacht (Abbildung 6-2). Die Analyse konnte den putativen Promotor bestätigen. Mit einer -10 Region GGGTAT und einer -35 Region GTTTAA entspricht er exakt der Konsensussequenz
für σ^B abhängige Promotoren, die für S. aureus beschrieben wurde (Homerova et al., 2004).

 Abb. 6-2 Primer Extension für barA

Die Methode lieferte nur eine ungefähre Startpunktkartierung der mRNA, da aufgrund der schwachen Auftrennung der Banden, die genaue Zuordnung der markierten cDNA zu einem Nukleotid nicht erreicht werden konnte. Deshalb wurde zur exakten Kartierung die RACE-Technologie als eine zusätzliche Methode genutzt.

6.1.2 Nachweis mittels RACE-Technologie

Bei der RACE-Technologie (rapid amplification of cDNA ends) wird die RNA mit einem genspezifischen Primer in eine cDNA umgeschrieben. Dieser wird an dem zu untersuchenden Ende ein polyA-Schwanz angehängt. Dies ermöglicht es in einer einfachen PCR-Reaktion mit einem polyT-Primer und dem genspezifischen Primer das 5’ Ende der mRNA zu amplifizieren, welches dann zu einer Sequenzierung genutzt werden kann.

Mit Hilfe des Primers frag5.barA.rv wurde aus der Gesamtzell-RNA von S. epidermidis 1457 eine cDNA erstellt, die dem 5’ Ende der mRNA von barA

Abb. 6-3 5’ Kartierung mit RACE für barA

Es konnte ein genauerer Startpunkt ermittelt werden, der sich elf Nukleotide strangabwärts der -10 Region befand und 148 Nukleotide strangaufwärts des kodierenden Bereiches. Es konnte allerdings nicht ausgeschlossen werden, dass der Startpunkt 10 Nukleotide entfernt von der -10 Region lag, da es sich bei diesem Nukleotid um ein T handelte und unklar war, ob dieses in der komplementären Sequenz schon zu dem polyA-Schwanz zu zählen war oder nicht.

6.2 Generierung polyklonaler Antiseren in Hasen

Um die Bedeutung der Proteine BarA und BarB näher zu untersuchen ist es notwendig die Proteine in zellulären Lysaten nachweisen zu können. Dazu werden Antikörper benötigt, die in dieser Arbeit generiert werden sollten. Des Weiteren sollten auch Antiseren gegen die Proteine RsbU und SigB hergestellt werden, um einen möglichen Zusammenhang der Regulation der verschiedenen Proteine nachweisen zu können.

6.2.1 Überexpression der Proteine in *E. coli* BL 21 und Aufreinigung der His-tag Proteine mittels Affinitätschromatographie

Die kodierenden Sequenzen der Gene wurden mittels PCR so amplifiziert, dass sie *in frame* in den Vektor pDEST17 kloniert werden konnten, von dem die Gene
ERGEBNISSE

69
durch einem induzierbaren T7-Promotor exprimiert wurden. Zusätzlich wurden die
Proteine in diesem Vektor mit einem N-terminalen His-tag versehen, der ihre
Aufreinigung über eine Affinitätschromatographie ermöglichte. Zunächst wurden die
konstruierten Plasmide sequenziert, um die korrekte Klonierung zu prüfen. Die
sequenzierten Fragmente wurden mit der Sequenz von *S. epidermidis* RP62A
verglichen (Anhang I), da die vollständige Sequenz von *S. epidermidis* 1457 noch
nicht in den Datenbanken zur Verfügung steht. Sowohl in der Sequenz von *barA* als
auch in der Sequenz von *barB* wurde eine Punktmutation (Transition) festgestellt. Im
Falle von BarA kam es zu einer Aminosäureveränderung von Glycin zu Aspartat. In
BarB handelte es sich um eine stille Mutation. Die Sequenz von *rsbU* wies keine
Fehler auf. Jedoch wurden sowohl eine Transition als auch eine Transversion in der
sigB-Sequenz festgestellt. Dabei wurde ein Cystein zu einem Arginin und
Glutamatsäure zu Histidin. Bei diesen Mutationen handelt es sich wahrscheinlich
nicht um Fehler, sondern um individuelle Unterschiede zwischen den *S. epidermidis*
Stämmen RP62A und 1457.

Anschließend wurden die Vektoren in *E. coli* BL21 AI transformiert, einen
Stamm der aufgrund seiner Proteasedefizienz optimal geeignet ist für eine
Überexpression. Weiterhin besitzt der Stamm das Gen für die T7-Polymerase unter
einem Arabinose induzierbaren Promotor, sodass die Expression der Proteine durch
Zugabe von Arabinose zum Wachstumsmedium angeschaltet werden konnte.

Nachdem die Kulturüberstände geerntet wurden, wurden die Zellen
aufgeschlossen und die unlöslichen Bestandteile abzentrifugiert. Der lösliche
Überstand wurde dann aufgereinigt, alle Fraktionen aufgefangen und zur Kontrolle
auf eine SDS-PAGE aufgetragen (Abbildung 6-4). Alle vier Proteine befanden sich
im Überstand. Bei der Größenbestimmung der Proteine konnte nicht von der
ursprünglichen Größe der nicht-markierten Proteine ausgegangen werden. Durch den
His-tag und weitere Aminosäuren, die durch die Klonierung an die jeweiligen
Proteine N-terminal angehängt wurden, war von einer Größenverschiebung
auszugehen, die auch in der Auftrennung der Proteine beobachtet wurde (Tabelle
6-1).
ERGEBNISSE

70

Abb. 6-4 Aufreinigung der His-tag-Proteine
Zur besseren Kontrolle der Aufreinigungen wurden auch Fraktionen der nicht an die Säule gebundenen Proteine (D) und der in den Waschschritten von der Säule gewaschenen Proteine (W1, W2) zusätzlich zu den Elutionsfraktionen 1 bis 10 (E1-10) auf SDS-PAGEs (4-12 %) aufgetrennt. Die durch Coomassie dargestellten Proteinbanden fanden sich auf den zu erwartenden Größen der jeweiligen mit dem His-tag versehenen Proteine. Die Größe der Markerbanden (M) wurde in kDa dargestellt.

Tab. 6-1 Größenveränderung der His-tag Proteine

<table>
<thead>
<tr>
<th>Protein</th>
<th>ursprüngliche Größe</th>
<th>Größe des His-tag-Proteins</th>
</tr>
</thead>
<tbody>
<tr>
<td>BarA</td>
<td>14 kDa</td>
<td>16,8 kDa</td>
</tr>
<tr>
<td>BarB</td>
<td>11,5 kDa</td>
<td>14,9 kDa</td>
</tr>
<tr>
<td>RsbU</td>
<td>38,4 kDa</td>
<td>42,4 kDa</td>
</tr>
<tr>
<td>SigB</td>
<td>29,4 kDa</td>
<td>33,5 kDa</td>
</tr>
</tbody>
</table>

Proteine verunreinigt. In Fraktion 4 war die Verunreinigung stark verdünnnt und genug Protein für die Immunisierung enthalten. Die Aufreinigung von RsbU lieferte nur geringe Mengen an Protein, die zusätzlich stark verunreinigt waren. Nur durch eine weitere Aufreinigung der zusammengeführten Elutionsfraktionen konnte eine Proteinfraktion hergestellt werden (Daten nicht gezeigt), die zur Immunisierung genutzt werden konnte.

6.2.2 Aufreinigung der Antiseren

Da es sich bei den gewonnenen Antiseren um polyklonale Seren aus Tieren handelte, die nicht keimfrei gehalten wurden, fanden sich außer der spezifischen Bande für das jeweilige Protein noch eine große Anzahl weiterer unspezifischer Banden. Um eine möglichst saubere Detektion, ohne starken Hintergrund, der Proteine zu erreichen, wurden die Seren gegen das jeweilige Protein aufgereinigt. Dazu wurde das Protein kovalent an eine NHS-aktivierte Säule gekoppelt und das Antiserum darüber gegeben. Dadurch gingen unspezifische Antikörper verloren und die spezifischen Antikörper konnten von der Säule eluiert werden. So konnte der Hintergrund für alle Antiseren minimiert werden, wenn auch kreuzreaktive Banden auf den Western Blots bestehen blieben (Daten nicht gezeigt).

6.3 Etablierung der Deletionsmutanten des purR-Lokus in S. epidermidis

Die biofilmnegative S. epidermidis Mutante M12 trägt eine Transposoninsertion im purR-Gen. Es war bekannt, dass die Transposoninsertion zu einem Verlust der Transkription von insgesamt vier Genen führte. Dabei handelte es sich um ispE, purR, barA und barB. Da nicht geklärt werden konnte welcher Genverlust für den biofilmnegativen Phänotyp von M12 verantwortlich war oder dies sogar auf einem

6.3.1 Generierung definierter Mutanten

![Abb. 6-5 Schematische Darstellung des homologen Genaustausches von barAB](image)

Um eine Transkription der in Richtung 3´ Ende liegenden Gene zu ermöglichen und die Bildung von *antisense*-RNA zu vermeiden, wurde die *erm* Kassette in positiver Orientierung in Bezug zu den umliegenden Genen kloniert. Der Vektor pTS1opplac dest hatte zusätzlich die *att sites* eines Gateway-Destinationsvektors und konnte somit direkt in der LR-Klonierung eingesetzt werden. Die in *E. coli* TOP 10 klonierten Plasmide wurden zunächst mittels Elektroporation in den restriktions-defizienten *S. aureus* Stamm RN4220 transformiert. Nach der Passage in diesem Zwischenwirt konnten die Plasmide durch Elektroporation in *S. epidermidis* M15 transformiert und aus diesem Stamm durch Phagentransduktion mit Φ71 in den eigentlichen Zielstamm *S. epidermidis* 1457 transduziert werden. Durch Kultivierung bei für den temperatursensitiven *shuttle*-Vektor nicht permissiven Temperaturen
ERGEBNISSE

Mittels PCR wurde die korrekte Insertion der erm-Resistenzkassette überprüft, wobei von den Primerpaaren ein Primer jeweils innerhalb der erm-Kassette lag und sich der andere Primer außerhalb der manipulierten Region befand. Die Größen der Amplifikate entsprachen den zu erwartenden Größen bei einer korrekten Insertion (Tabelle 6-2, Abbildung 6-6)

Tab. 6-2 Zu erwartende Fragmentgrößen bei korrektem Genaustausch

<table>
<thead>
<tr>
<th>Mutante</th>
<th>3'-Fragment</th>
<th>5'-Fragment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457ispE</td>
<td>2286 bp</td>
<td>751 bp</td>
</tr>
<tr>
<td>1457purR</td>
<td>1456 bp</td>
<td>1599 bp</td>
</tr>
<tr>
<td>1457barA</td>
<td>1072 bp</td>
<td>2476 bp</td>
</tr>
<tr>
<td>1457barB</td>
<td>675 bp</td>
<td>2903 bp</td>
</tr>
<tr>
<td>1457barAB</td>
<td>675 bp</td>
<td>2476 bp</td>
</tr>
<tr>
<td>1457ispEpurRbarAB</td>
<td>675 bp</td>
<td>751 bp</td>
</tr>
</tbody>
</table>

Die 3'-Fragmente wurden mit den Primern *erm*fw und *h.frag8.rv* amplifiziert, die 5'-Fragment mit den Primern *v.frag1.fw* und *erm.rv* (Tabelle 4-4).
ERGEBNISSE

Abb. 6-6 Fragmente zur Überprüfung der *erm*-Insertion
Es sind zwei PCRs für jede Mutante dargestellt. Im Ansatz A wurde der 3’-Bereich der Insertion bis in den Bereich hinter *barB* amplifiziert. Ansatz B ergab das 5’-Fragment der Insertion bis vor den manipulierten Bereich von *ispE*. Die Größe der Amplifikate entsprach der zu erwartenden Größe bei einer korrekten Insertion (Tabelle 6-2).

Um die Integrität der benachbarten Gene sicherzustellen, wurde der manipulierte Bereich aller Mutanten anschließend sequenziert. Alle überprüften Mutanten zeigten eine korrekte Insertion der Resistenzkassette ohne Veränderungen der flankierenden Gene (Anhang II).

Trotz wiederholter Versuche die Mutante 1457*ispEpurR* herzustellen, gelang dieses Vorhaben nicht. Es steht fest, dass die Deletion der Gene nicht letal für die Zellen ist, da diese in anderen Mutanten etabliert werden konnten. Daher bleibt unklar, warum die Doppelmutante nicht generiert werden konnte. Es wurden sechs Deletionsmutanten erfolgreich etabliert, deren genetische Organisation (Abbildung 6-7).
Abb. 6-7 Genetische Organisation der Deletionsmutanten
Gezeigt ist die Anordnung der Gene in *S. epidermidis* 1457 und die *erm*-Insertionen und der resultierenden Verlust einzelner Gene in den verschiedenen Mutanten. Gene und Promotoren sind gekennzeichnet, verbliebene Genfragmente sind gestreift dargestellt.

6.3.2 Komplementierung der Mutanten

6.3.3 Nachweis der veränderten Proteinexpressions muster in den Mutanten

Abb. 6-8 Nachweis der Proteine BarA und BarB in den generierten Mutanten
In einem Proteinlysat aus logarithmisch wachsenden Zellen, konnten im Western Blot die Proteine BarA und BarB durch die polyklonalen Antiseren nachgewiesen werden. Die Deletionstämmen wiesen die entsprechende Bande nicht mehr auf. Durch Expression der Proteine vom Vektor pRBbarAB konnten die Proteine wieder nachgewiesen werden.

6.4 Charakterisierung der Biofilmbildung der Mutanten

Die S. epidermidis 1457 Transposonmutante M12 wies einen biofilmnegativen Phänotyp auf, der aus der fehlenden Expression von PIA resultierte. Allerdings fehlen der Mutante vier Proteine und es konnte nicht eindeutig festgestellt werden
welcher Verlust für diesen Phänotyp verantwortlich ist. Um die zu klären wurden die verschiedenen Deletionsmutanten hinsichtlich ihrer Biofilmbildung analysiert.

6.4.1 Wachstumsverhalten

Zunächst war es wichtig das Wachstumsverhalten der Mutanten zu betrachten, damit ausgeschlossen werden konnte, dass ein vermindertes Wachstum zu einer schwächeren Biofilmbildung führen könnte. Das Wachstum der Stämme wurde in TSB in 12 well Platten über 16 h durch Messungen der optischen Dichte bei 600 nm in 30minütigem Abstand erfasst. Die Messungen erfolgten automatisiert im infinit M200. Es wurden alle Mutanten getestet, die in dieser Arbeit zum Einsatz kamen, um auch für weitere Experimente die Gewissheit zu haben, dass sie keine erheblichen Wachstumsunterschiede aufwiesen.

Für die Stämme 1457, M10, 1457purR, 1457barA, 1457barB, 1457sigB, 1457agr, 1457sigBagr konnte gezeigt werden, dass sie nach einer kurzen lag-Phase mit nur geringem Wachstum nach ca. 1,5 h in die log-Phase mit einem exponentiellen Wachstum übergingen (Abbildung 6-9). Nach ca. 5,5 h verlangsamt sich das Wachstum wieder und verlief über eine transiente Phase von ca. 2 h in die stationäre Phase. Damit erreichten die Stämme nach 8 h Wachstum eine optische Dichte (OD$_{600nm}$) von etwa 0,7 (0,64 – 0,73). Diese Dichte stieg innerhalb der folgenden 8 h, über die das Wachstum beobachtet wurde, nur noch geringfügig an und erreichte Werte zwischen 0,77 und 0,84. Die Wachstumskurven der Stämme M12, 1457ispE, 1457barAB und 1457ispEpurRbarAB verliefen ähnlich, allerdings wurde eine leicht verlängerte lag-Phase von ca. 2 h beobachtet (Abbildung 6-9). Der weitere zeitliche Verlauf war zu den anderen Stämmen vergleichbar, wenn auch nicht so hohe Werte erreicht wurden. Nach 8 h lag deren OD$_{600nm}$ zwischen 0,5 und 0,61. Nach 16 h konnte ebenfalls nur eine Dichte von etwa 0,7 erreicht werden. Damit lagen die Kurven geringfügig unter denen der anderen Gruppe und zeigten zusätzlich keine Veränderungen im Kurvenverlauf. Der geringe Unterschied im Wachstum der Stämme sollte somit keinen wesentlichen Einfluss auf die mögliche Bildung eines Biofilms haben.
Abb. 6-9 Wachstumskurven

Die optische Dichte (OD\textsubscript{600nm}) wurde logarithmisch gegen die Zeit (h) aufgetragen. Alle Diagramme zeigen den Wildtyp 1457 (−) zum Vergleich zu den einzelnen Mutanten. Die einzelnen Diagramme zeigen die biofilmnegativen Transposonmutanten (A), die Einzelmutanten 1457\textit{ispE}, 1457\textit{purR} sowie die vierfach-Mutante 1457\textit{ispEpurRbarAB} (B), die Mutanten des \textit{barAB}-Lokus (C) sowie die \textit{sigB} und \textit{agr} Mutanten (D). Es sind jeweils Mittelwerte aus drei Experimenten dargestellt.

Tab. 6-3 Wachstumsrate und Generationszeiten der 1457 Stämme

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Wachstumsrate [OD\textsubscript{600/h}]</th>
<th>Generationszeit [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457</td>
<td>0,169</td>
<td>1,33</td>
</tr>
<tr>
<td>1457 M10</td>
<td>0,157</td>
<td>1,44</td>
</tr>
<tr>
<td>1457 M12</td>
<td>0,115</td>
<td>1,96</td>
</tr>
<tr>
<td>1457\textit{ispE}</td>
<td>0,138</td>
<td>1,63</td>
</tr>
<tr>
<td>1457\textit{purR}</td>
<td>0,159</td>
<td>1,42</td>
</tr>
<tr>
<td>1457\textit{barA}</td>
<td>0,167</td>
<td>1,35</td>
</tr>
<tr>
<td>1457\textit{barB}</td>
<td>0,161</td>
<td>1,40</td>
</tr>
<tr>
<td>1457\textit{barAB}</td>
<td>0,125</td>
<td>1,81</td>
</tr>
<tr>
<td>1457\textit{ispEpurRbarAB}</td>
<td>0,137</td>
<td>1,65</td>
</tr>
<tr>
<td>1457\textit{sigB}</td>
<td>0,156</td>
<td>1,44</td>
</tr>
<tr>
<td>1457\textit{agr}</td>
<td>0,165</td>
<td>1,37</td>
</tr>
<tr>
<td>1457\textit{sigBagr}</td>
<td>0,151</td>
<td>1,49</td>
</tr>
</tbody>
</table>
Aus den ermittelten Wachstumskurven konnten für die logarithmische Phase des Wachstums die Wachstumsraten und Generationszeiten errechnet werden (Tabelle 6-3). Die Wachstumsrate stellt die Verdopplung der Zelldichte pro Zeiteinheit dar. Wohingegen die Generationszeit die Zeit ist, die zur Verdopplung der Zelldichte benötigt wird. Auch Wachstumsraten und Generationszeiten bestätigten, dass es keine erheblich Unterschiede zwischen den einzelnen Mutanten gab. Es ließen sich allerdings wiederum die beiden Gruppen finden, die auch schon oben beschrieben wurden. Die Gruppe um den Wildtyp 1457 wies Generationszeiten zwischen 1,33 h und 1,49 h auf. Die Werte der anderen Mutanten lagen zwischen 1,63 h und 1,96 h. Allerdings war zu erkennen, dass alle Werte nur in einem geringen Bereich schwankten und nicht zu einem bedeutsamen Wachstumsunterschied führten.

6.4.2 Biofilmbildung in 96well Polystyrolplatten
Um den Einfluss der generierten Deletionen auf die Biofilmbildung zu untersuchen, wurden semiquantitative Biofilmtests in 96well-Zellkulturplatten mit einer NunclonΔ Oberfläche durchgeführt.

Die Mutanten 1457barB, 1457barAB und 1457ispE purR barAB zeigten in TSB eine signifikant (p < 0.05) stark verminderte Biofilmbildung gegenüber dem Wildtyp. Die Mutante 1457barA wies ebenfalls eine verminderte Biofilmbildung auf, diese war, wenn auch von geringerem Ausmaß, statistisch signifikant (Abbildung 6-10 A und C). Im Gegensatz dazu zeigten die Mutanten 1457ispE und 1457purR in TSB eine im Vergleich zum Wildtyp leicht gesteigerte Biofilmbildung, die aber nicht statistisch signifikant war (Abbildung 6-10 B). Weiterhin wurden die Mutanten 1457 M10 und 1457 M12 als Kontrollen mitgeführt, für die keine Biofilmbildung nachweisbar war (Abbildung 6-10 A). Durch Supplementierung von TSB mit 3 % NaCl konnte die Biofilmproduktion des Wildtypstammes induziert werden. Eine weitere Steigerung der Biofilmbildung wurde durch Zugabe von 3 % Ethanol zum Wachstumsmedium erreicht. In den S. epidermidis Mutanten 1457ispE, 1457purR und 1457barA konnte diese Induktion ebenfalls gezeigt werden. Keine der Mutanten wies in den supplementierten Medien statistisch signifikante Unterschiede zur Biofilmbildung des Wildtyps auf. Trotzdem konnte ein Trend gezeigt werden. Die Mutanten 1457ispE und 1457purR wiesen leicht höhere Werte im Vergleich zum Wildtyp auf, wohingegen 1457barA etwas weniger Biofilm als der Wildtyp bildete. Mutanten, die in TSB keinen Biofilm bilden konnten, konnten weder durch die Supplementierung durch NaCl noch durch Ethanol zur Biofilmbildung angeregt

werden. Somit konnte auch im Vergleich zum Wildtyp eine starke statistische Signifikanz errechnet werden.

Abb. 6-10 Biofilmbildung in 96well NunclonΔ Zellkulturschalen

6.4.3 Transduktion der Deletionen in unabhängige genetische Hintergründe
Die Übertragung der verschiedenen Deletionen in weitere S. epidermidis Hintergründe sollte die Möglichkeit geben die Beobachtungen in S. epidermidis 1457 zu verifizieren um individuelle Ergebnisse in diesem Hintergrund ausschließen zu
können. Als alternative \textit{S. epidermidis} Stämme dienten die Hintergründe 1057 und 8400.

Für die generierten Transduktanten und deren Wildtypen wurden ebenso wie für die Mutanten im Hintergrund von \textit{S. epidermidis} 1457 Wachstumskurven erstellt und Wachstumsraten sowie Generationszeiten berechnet (Abbildung 6-11, Tabelle 6-4). Dabei zeigten sich keine Unterschiede. Die geringe Verschiebung der lag-Phase, die in 1457ispE beobachtet wurde, konnte in 1057ispE und 8400ispE nicht gefunden werden. Die Zellen erreichten nach ca. 1,5 h die log-Phase mit einem exponentiellen Wachstum, das nach etwa 5,5 h in eine transiente Wachstumsphase überging. Zu diesem Zeitpunkt hatten die Zellen eine OD$_{600\text{nm}}$ zwischen 0,46 und 0,56 erreicht, die in den folgenden 2 h auf Werte zwischen 0,64 und 0,70 weiter anstieg. In dem weiter beobachteten Zeitraum der stationären Wachstumsphase erhöhten sich die Werte nur noch geringfügig auf 0,75 bis 0,83.

\textbf{Abb. 6-11 Wachstumskurven}
Die optische Dichte (OD$_{600\text{nm}}$) wurde logarithmisch gegen die Zeit (h) aufgetragen. Teil A zeigt das Wachstum von \textit{S. epidermidis} 1057 und den isogenen Mutanten 1057ispE und 1057purR. In den \textit{S. epidermidis} Hintergrund 8400 konnte zusätzlich eine Deletion von \textit{barA} untersucht werden (B). Es sind jeweils Mittelwerte aus drei Experimenten dargestellt.
Tab. 6-4 Wachstumsrate und Generationszeiten der 1057 und 8400 Stämme

<table>
<thead>
<tr>
<th>Stamm</th>
<th>Wachstumsrate [OD$_{600}$/h]</th>
<th>Generationszeit [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1057</td>
<td>0,179</td>
<td>1,26</td>
</tr>
<tr>
<td>1057ispE</td>
<td>0,177</td>
<td>1,27</td>
</tr>
<tr>
<td>1057purR</td>
<td>0,170</td>
<td>1,33</td>
</tr>
<tr>
<td>8400</td>
<td>0,182</td>
<td>1,24</td>
</tr>
<tr>
<td>8400ispE</td>
<td>0,165</td>
<td>1,37</td>
</tr>
<tr>
<td>8400purR</td>
<td>0,171</td>
<td>1,32</td>
</tr>
<tr>
<td>8400barA</td>
<td>0,176</td>
<td>1,28</td>
</tr>
</tbody>
</table>

Die Wachstumsraten der Transduktanten und ihrer Wildtypstämmen lagen zwischen 0,170 und 0,182 und unterschieden sich damit kaum voneinander. Auch die Generationszeiten lagen mit Werten von 1,24 bis 1,33 eng beieinander.

Der Vergleich von Wachstumsraten und Generationszeiten der verschiedenen Wildtypen zeigte, dass es keine erheblichen Unterschiede in ihrem Wachstum gab. Es konnte lediglich ein Trend beobachtet werden, dass *S. epidermidis* 1057 und 8400 (Wachstumsraten: 0,179; 0,182 / Generationszeiten: 1,26 h; 1,24 h) scheinbar etwas schneller wuchsen als *S. epidermidis* 1457 (Wachstumsrate: 0,169 Generationszeit: 1,33 h).

Des Weiteren wurden die Transduktanten auch hinsichtlich ihrer Biofilmbildung untersucht (Abbildung 6-12).

Abb. 6-12 Biofilmbildung der *S. epidermidis* Stämme 1057 und 8400
Biofilmbildung der *S. epidermidis* Stämme 1057 und 8400 und den darin generierten Transduktanten in TSB (■) und TSB supplementiert mit 3 % NaCl (■) und 3 % Ethanol (□). Die Limitation des Messgerätes erlaubte es nur Werte bis 3 zu messen. Stärkere Färbbungen konnten nicht unterschieden werden, daher kommt es in diesem Bereich auch nur zu geringen Standardabweichungen. Es sind jeweils Mittelwerte aus mindestens drei Experimenten dargestellt.
Bei *S. epidermidis* 1057 handelt es sich im Vergleich zu den Hintergründen 1457 und 8400 um einen schwächeren Biofilmbildner. Trotzdem konnte in allen Hintergründen die Induktion der Biofilmbildung durch NaCl und Ethanol gezeigt werden. Ferner führten auch die verschiedenen Deletionen zu vergleichbaren Veränderungen der Biofilmbildung, wie sie auch schon in *S. epidermidis* 1457 gezeigt werden konnten. Zusätzlich wurde jedoch, in Medien, die NaCl oder Ethanol enthielten, eine verstärkte Biofilmbildung der *purR*-Deletionsstämme im Vergleich zu den jeweiligen Wildtypen beobachtet, die auch statistisch signifikant war. Dies konnte in *S. epidermidis* 1457 nicht beobachtet werden.

6.4.4 PIA-Expression

Abb. 6-13 PIA-Nachweis in *S. epidermidis* 1457 Stämmen

6.4.5 Quantitative Transkriptionsanalyse der Gene \textit{icaA} und \textit{icaR}

Zur weiteren Charakterisierung der Mutanten bezüglich ihrer Biofilmbildung sollte die Transkription des, für die PIA-Synthese verantwortlichen, \textit{icaADBC} Operons und dessen spezifischen Repressors \textit{icaR} näher untersucht werden. Hierzu wurde RNA aus Zellen isoliert, die 7 h in Nunclon\textDelta beschichteten Petrischalen gewachsen waren. Verglichen wurde die Transkription in TSB, in TSB\textsubscript{NaCl} und TSB\textsubscript{EtOH} in Bezug auf den Wildtyp.

\textit{S. epidermidis} 1457\textit{barA} zeigte eine Reduktion der \textit{icaA} Transkription in TSB (3,43-fach) im Vergleich zum Wildtyp. Auch in TSB\textsubscript{NaCl} und TSB\textsubscript{EtOH} war die \textit{icaA} Transkription ebenfalls leicht reduziert (TSB\textsubscript{NaCl}: 1,91-fach; TSB\textsubscript{EtOH}: 1,38-fach), jedoch unter einer biologisch relevanten zweifachen Veränderung (Abbildung 6-14). Eine statistische Signifikanz ließ sich allerdings in allen drei Medien zeigen. Die \textit{icaA} Transkription in \textit{S. epidermidis} 1457\textit{barB} und 1457\textit{barAB} war signifikant stark reduziert unter allen Bedingungen. \textit{S. epidermidis} 1457\textit{barB} zeigte eine 28,18-fache (TSB), eine 15,53-fache (TSB\textsubscript{NaCl}) und eine 17,76-fache (TSB\textsubscript{EtOH}) Reduktion der \textit{icaA} Transkription im Vergleich zu \textit{S. epidermidis} 1457. In \textit{S. epidermidis} 1457\textit{barAB} wurde \textit{icaA} 190,30-fach (TSB), 131,25-fach (TSB\textsubscript{NaCl}) und 310,17-fach (TSB\textsubscript{EtOH}) vermindert transkribiert (Abbildung 6-14). Aus der relativen Quantifizierungsmethode ergaben sich solche hohen Werte, die aber wahrscheinlich eine abgeschaltete Transkription des Operons in \textit{S. epidermidis} 1457\textit{barAB} darstellen. Auch die Deletion des \textit{sigB} Gens führte zu einer drastischen Reduktion der \textit{icaA} Transkription. In TSB wurde \textit{icaA} 37,86-fach weniger und in TSB\textsubscript{NaCl} 31,8-fach weniger transkribiert als im Wildtyp. Auch in TSB\textsubscript{EtOH}, ein Medium in dem
1457*sigB* Biofilm bildet, war die Transkription 7,47-fach vermindert im Vergleich zum Wildtyp.

Abb. 6-14 *icaA* und *icaR* Transkriptionsanalyse der Mutanten
Relative Transkriptionsunterschiede in *S. epidermidis* 1457*barA*, 1457*barB*, 1457*barAB* und 1457*sigB* in Bezug auf den Wildtyp 1457 nach 7 h Wachstum in TSB. Die Expression gilt als signifikant, wenn ein 2-facher Unterschied zum Wildtyp gezeigt werden konnte (gestrichelte Linie). Die Analyse der Genexpression basiert auf der Auswertung von drei unabhängigen Experimenten.

Die *icaR* Transkription wurde in *S. epidermidis* 1457*barA* und 1457*barB* in keinem Medium über den Faktor 2 hinaus beeinflusst (Abbildung 6-14). *S. epidermidis* 1457*barAB* zeigte in TSB und TSB_{EtOH} ebenfalls keine relevanten Änderungen der *icaR* Transkription. Allerdings wurde die Transkription in TSB_{NaCl} signifikant leicht erhöht, auf das 2,51-fache der Wildtyp-Transkription. Der *sigB* Deletionsstamm wies in den Medien TSB und TSB_{NaCl} eine statistisch signifikante Erhöhung des *icaR* Transkriptes auf (TSB: 2,33-fach; TSB_{NaCl}: 2,31-fach). Dies konnte in TSB_{EtOH} nicht beobachtet werden.
6.5 Intrazelluläre Proteomanalyse mittels 2D Analyse

6.5.1 Die Deletionen von *barA*, *barB* und *barAB*

Für *S. epidermidis* 1457*barA* wurden nur zwei Proteine aus dem Nukleotidstoffwechsel (PrsA un PurC) und ein Protein mit Chaperonfunktion (GroEL) identifiziert (Anhang III Tabelle 8-1). Alle drei Proteine waren vermindert exprimiert. Sieben Proteine konnten in *S. epidermidis* 1457*barB* identifiziert werden. Davon war eines auch unter den regulierten Proteinen in 1457*barA*, ein Protein aus dem Nukleotidstoffwechsel (PrsA), das ebenfalls herunterreguliert wurde. Des Weiteren wurden zwei Proteine des Energiemetabolismus (Alaninhydrogenase und Laktatdehydrogenase) und ein Elongationsfaktor (FusA) herabreguliert. Ein Enzym des Fettsäurestoffwechsels (PisX), ein ribosomales Protein (RplJ) und ein hypothetisches Protein wurden erhöht gefunden (Anhang III Tabelle 8-1).
Abb. 6-15 Änderungen des intrazellulären Proteoms in \textit{S. epidermidis 1457barA}

Abb. 6-16 Änderungen des intrazellulären Proteoms in *S. epidermidis* 1457*barB*
Für *S. epidermidis* 1457*barAB* konnten 64 Spots identifiziert werden, die verschiedenen biologischen Prozessen zugeordnet wurden (Anhang III Tabelle 8-1). Im Nukleotidstoffwechsel wurden sechs Proteine hochreguliert und nur die Phosphopentomutase (DeoB) herunterreguliert. Aus der Proteinsynthese wurden Elongationsfaktoren und ribosomale Proteine identifiziert. Dabei fielen viele Fragmente des Elongationsfaktors EF-Tu auf, die allerdings sowohl induziert als auch reprimiert wurden. Proteine, die der Proteinmodifikation und Faltung dienten, wurden mit Ausnahme von DnaK alle induziert. Dabei wurde GroEL sogar 10,14-fach stärker exprimiert als im Wildtyp. Vermehrt exprimiert wurden ebenfalls die Phosphoënlpyruvat-Proteinphosphatase (PtsI) und Proteine zur Synthese von Cofaktoren und prosthetischen Gruppen (bspw.: HemH und HemL-1). Außerdem

Abb. 6-18 Überlappung der differenzial exprimierten Proteinspots

Die Zahlen geben die Anzahl differentiell regulierter Proteinspots in den *S. epidermidis* Mutanten 1457barA, 1457barB und 1457barAB im Vergleich zum Wildtyp 1457 wieder. Die Überlappungen der Kreise zeigen die Anzahl an Spots, die in mehreren Mutanten reguliert wurden. Dabei fanden nicht alle Regulationen in gleicher Richtung statt (in gleicher Richtung reguliert / entgegengesetzt reguliert).
Weiterhin konnten Proteinspots gefunden werden, die nur in einer der Einzelmutanten und der Doppelmutanten differenziell exprimiert wurden. Dabei war die Überlappung zwischen 1457\textit{barA} und 1457\textit{barAB} (acht Spots) deutlich geringer als die Überlappung der Doppelmutante mit 1457\textit{barB} (36 Spots).

Um einen noch besseren Einblick in die Abhängigkeiten der Proteinregulationen zu bekommen, wurde die Doppelmutante auch experimentell mit den Einzelmutanten verglichen. Dabei sollten Proteinspots, die in gleicher Weise reguliert wurden in der Analyse herausfallen und entgegengesetzt regulierte Proteine stärker in den Vordergrund treten. Sowohl für die den Vergleich von 1457\textit{barAB} zu 1457\textit{barA} als auch zu 1457\textit{barB} ergab sich eine erhebliche Veränderung des intrazellären Proteinmusters (Abbildung 6-19, 6-20). Die zusätzliche Deletion von \textit{barB} in 1457\textit{barA} ergab 458 signifikant unterschiedlich exprimierte Proteinspots und der Vergleich der Doppelmutante zur \textit{barB} Deletion ergab 464 signifikant veränderte Spots (Tabelle 6-5).

| Tab. 6-5 Anzahl signifikant regulierter Proteinspots in 1457\textit{barAB} |
|-----------------|-----------------|
| 1457\textit{barAB} vs | signifikante Spots | identifizierte Proteine |
| | (herab/hoch) | (herab/hoch) |
| 1457\textit{barA} | 458 (277/181) | 62 (18/44) |
| 1457\textit{barB} | 464 (276/188) | 70 (23/47) |

Es konnten zehn Proteine identifiziert werden, die in den Nukleotidstoffwechseln involviert sind. Die Proteine wurden in 1457\textit{barAB} im Vergleich zu beiden Einzelmutanten verstärkt exprimiert. Lediglich die Phosphopentomutase (DeoB) aus diesem Stoffwechselweg wurde in beiden Fällen reprimiert. An der Transkription beteiligte Proteine und eine große Anzahl, der aus der Proteinbiosynthese
identifizierten Proteine, wurden ebenfalls in *S. epidermidis* 1457*barAB* induziert. Jedoch fanden sich auch in der Proteinsynthese eine erhebliche Anzahl an Spots, hauptsächlich Fragmente des Transkriptionsfaktors EF-Tu, die reprimiert waren.

Abb. 6-19 Änderungen des intrazellulären Proteoms in *S. epidermidis* 1457*barAB* im Vergleich mit 1457*barA*

Des Weiteren wurde GroEL, ein Protein mit Chaperonfunktion im Vergleich zu beiden Einzelmutanten stark vermehrt exprimiert. Der Vergleich der Mutanten zum Wildtyp hatte für dieses Protein auch schon eine Induktion in 1457*barAB* und eine leichte Repression in 1457*barA* gezeigt. Wie zu erwarten, war die Induktion in 1457*barAB* im Vergleich zu 1457*barA* noch stärker. Zusätzlich wurde eine vermehrte Expression gegenüber 1457*barB* gezeigt, die ebenfalls stärker war als die
Induktion gegenüber dem Wildtyp. Vermutlich wurde das Protein in 1457barB im Vergleich zum Wildtyp auch schächer exprimiert, diese Regulation lag aber wahrscheinlich unter dem Faktor 2, der für die Analyse ausschlaggebend war.

Abb. 6-20 Änderungen des intrazellulären Proteoms in *S. epidermidis* 1457barAB im Vergleich mit 1457barB

verstärkt exprimiert gezeigt werden. Im Energiemetabolismus fanden sich eine Reihe an Proteinen aus Glykolyse/Glukoneogenese, Pentosephosphatweg, TCA-Zyklus und Fermentation, die in beiden Vergleichen verstärkt auf den Gelen von 1457barAB nachgewiesen wurden. Mit Ausnahme einer putativen Malat:Quinon-Oxidoreduktase, deren Expression in beiden Fällen vermindert war, und der Citratsynthase (GtIA), die nur im Vergleich zu S. epidermidis 1457barA signifikant reguliert wurde und deren Expression leicht herunterreguliert wurde.

6.5.2 Die Deletionen von sigB und sigBagr

Da die veränderten Proteinspots der stationären Phase bis zu diesem Zeitpunkt noch nicht untersucht werden konnten, wurden hier lediglich die Ergebnisse der Analyse der exponentiellen Phase gezeigt (Abbildung 6-21 und 6-22). Die Mehrheit der regulierten Proteine konnte in beiden Mutanten nicht identifiziert werden (ca. 17 % bzw. 13 % identifiziert, (AnhangIII Tabelle 8-3)). Allerdings wurden in beiden Stämmen fast gleich viele Proteinspots im Vergleich zum Wildtyp verändert, die allerdings schon in der Verteilung der verminderten und verstärkten Spots große Unterschiede zeigten (Tabelle 6-6).

| Tab. 6-6 Anzahl signifikant regulierter Proteinspots in 1457sigB und 1457sigBagr |
|----------------------------------|-------------------------------|
| 1457 vs | identifizierte Proteine (runter/hoch) |
| | signifikante Spots (runter/hoch) |
| 1457sigB | 252 (149/102) | 32 (27/5) |
| 1457sigBagr | 246 (116/130) | 42 (13/29) |
Änderungen des intrazellulären Proteoms in *S. epidermidis* 1457*sigB*

ERGEBNISSE

identifiziert werden, die nur durch die sigB-Deletion reguliert wurden. Der Positivregulator der σB Kaskade, RsbU, wurde dahingegen nur in dem agr-Deletionsstamm verstärkt exprimiert.

pH 7

pH 4

Abb. 6-22 Änderungen des intrazellulären Proteoms in S. epidermidis 1457sigBagr

Da bekannt war, dass die Deletion von sigB eine Induktion des agr-Systems zur Folge hat, sollten die Stämme 1457sigB und 1457sigBagr auch untereinander verglichen werden (Abbildung 6-23), um Proteine identifizieren zu können, die ausschließlich durch den alternativen Sigmasfactor σB reguliert wurden. Durch die agr Induktion könnten Proteine sowohl reprimiert als auch induziert werden. Eine zusätzliche Deletion von agr sollte diesen Effekt aufheben und ein Protein, das ausschließlich durch σB reguliert wird, sollte in der Doppelmutter in gleicherweise beeinflusst sein wie in 1457sigB. Zusätzlich sollte dieses Protein bei einem Vergleich der Mutanten untereinander nicht mehr signifikant reguliert sein. Im Gegenzug
sollten Proteine, deren Expression in $1457\text{sig}B$ reguliert wurde und die in $1457\text{sig}Bagr$ entgegengesetzt reguliert wurden, wahrscheinlich agr-abhängig exprimiert werden. Demnach sollte deren Regulation im Vergleich der Mutanten noch stärker hervortreten. Es konnten sechs nicht redundante Proteine identifiziert werden, deren Expression in $1457\text{sig}B$ und $1457\text{sig}Bagr$ im Vergleich zum Wildtyp in gleicher Richtung reguliert wurde und die beim Vergleich der Mutanten nicht mehr signifikant verändert waren. Zu diesen Proteinen zählten ein ribosomales Protein (RplY), die ATP-abhängige Protease ClpX, eine putative Malat:Quinon Oxidoreduktase, ein putatives Stressprotein und zwei konservierte hypothetische Proteine. In der zweiten Gruppe wurden fünf Proteine identifiziert, die beta-Untereinheit der DNA-abhängigen RNA-Polymerase (RpoC), ebenfalls ein ribosomales Protein (RpsB) und drei Enzyme des Energiemetabolismus (Glycerokinase, Alanindehydorgenase und Pyruvatkinase).

Der direkte Vergleich von $1457\text{sig}B$ und $1457\text{sig}Bagr$ zeigte größere Veränderungen des intrazellulären Proteoms, als der Vergleich der jeweiligen Mutanten zum Wildtyp. 394 Proteinspots wurden unterschiedlich reguliert. Davon wurden im Vergleich zu S. epidermidis $1457\text{sig}B$ in $1457\text{sig}Bagr$ 150 Spots schwächer und 244 Spots stärker exprimiert. Identifiziert wurden nur 57 Proteinspots (36 Proteine) von denen sich 51 unter den stärker exprimierten befanden (Anhang III Tabelle 8-4). Auffällig waren einige Proteine, die in $1457\text{sig}Bagr$ extrem stark induziert wurden. Die Inositol-monophosphat-dehydrogenase (GuaB) wurde in vier Spots nachgewiesen, von denen zwei stark induziert waren (22,77-fach und 41,05-fach). Des Weiteren wurde die beta-Untereinheit der DNA-abhängigen Polymerase (RpoC) 23,83-fach stärker exprimiert. Im Energiemetabolismus kam es jedoch zur stärksten Induktion. Die Glycerokinase (GlpK) wurde um das 60,68-Fache und ein Fragment des Pyruvatdehydrogenase-Komplexes (PdhC) wurde um das 36,53-Fache induziert.
Abb. 6-23 Änderungen des intrazellulären Proteoms in S. epidermidis 1457sigBagr im Vergleich mit 1457sigB

6.6 Änderungen der extrazellulären Expressionsmuster durch die Deletionen von barA, barB, barAB, sigB, agr und sigBagr

6.6.1 Analyse des extrazellulären Proteoms in der 1D SDS PAGE
Sowohl in der exponentiellen Phase als auch in der stationären Phase kam zu erheblichen Veränderungen des extrazellulären Proteinmusters. In beiden
Wachstumsphasen fielen besonders zwei Bereiche mit großen Veränderungen auf (Abbildung 6-24). Im hochmolekularen Bereich über und um 260 kDa fanden sich mehrere Banden, die in *S. epidermidis* 1457*barB*, 1457*barAB*, 1457*sigB* und 1457*sigBagr* nicht zu erkennen waren. In der stationären Phase wurde die größte dieser Banden in *S. epidermidis* 1457*agr* im Vergleich zum Wildtyp stärker exprimiert. Weiterhin sind exponentiell und stationär extrem große zusätzliche Banden in *S. epidermidis* 1457*barB* und 1457*barAB* beobachtet worden. In *S. epidermidis* 1457*barAB* konnte eine Proteinbande von ca. 220 kDa gezeigt werden, die nur in diesem Stamm induziert wurde und stationär und exponentiell zu beobachten war. Im Bereich von 90 – 120 kDa wurden in dieser Mutante in der exponentiellen Phase ebenfalls zwei Banden beobachtet, die in den anderen Stämmen, wenn überhaupt nur in wesentlich geringerer Stärke zu finden waren. In den Kulturüberständen der stationär gewachsenen Zellen ließen sich in diesem Bereich keine wesentlichen Änderungen feststellen.

Abb. 6-24 Extrazelluläre Proteine in *S. epidermidis*

10 µg extrazellulärer Proteinfraktionen von *S. epidermidis* 1457 und dessen isogene Mutanten mit Deletionen der Genen *barA*, *barB*, *sigB* und *agr* wurden in eindimensionaler SDS-PAGE (4-12 %) aufgetrennt und mit Coomassie sichtbar gemacht. Die Proteine wurden aus dem zellfreien Kulturüberstanden nach 5,5 h (A) und 24 h (B) Wachstum in TSB gewonnen. Bereiche mit starken Veränderungen sind eingerahmt.

Zwischen 40 und 25 kDa wurden wiederum in beiden Wachstumsphasen Unterschiede beobachtet. In diesem Größenbereich sollten sich die extrazellulären Proteasen befinden. In den *S. epidermidis* Stämmen 1457, 1457*barA*, 1457*barB*, 1457*agr* zeigten sich zwei dominante Banden, von denen die kleinere in 1457*barAB*

6.6.2 Analyse der extrazellulären Proteaseaktivität auf Casein-Agar

ERGEBNISSE

Abb. 6-25 Proteaseexpression verschiedener *S. epidermidis* 1457 Stämme

Um die Änderungen der Proteaseexpression auf die verschiedenen Deletionen und nicht auf spezifische Expressionsmuster des Stammes 1457 zurückführen zu können, wurde diese auch in den *S. epidermidis* Hintergründen 8400 und 1057 durchgeführt.

Die Proteaseaktivität dieser beiden Wildtypstämme war im Vergleich zu 1457 wesentlich höher (Abbildung 6-26). Die Expressionsmuster der verschiedenen Mutanten verhielten sich allerdings vergleichbar. Der Verlust des alternativen Sigmafaktors σ^B^ führte zu einer erhöhten Expression der Proteasen, die allerdings nicht mehr so deutlich wird, da das Expressionsniveau schon sehr hoch lag. Die Deletion des *agr*-Systems sowohl in 1457*agr* als auch in der Doppelmutante 1457*sigBagr* führte zu einer drastischen Reduzierung der Proteaseexpression, die auf den Caseinplatten nicht mehr nachgewiesen werden konnte.
ERGEBNISSE

Abb. 6-26 Proteaseexpression in *S. epidermidis* 8400 und 1057 Stämmen

6.6.3 Quantitative Transkriptionsanalyse der extrazellulären Proteasen

Zunächst wurde die Transkription in *S. epidermidis* 1457, 1457*barA*, 1457*barB*, 1457*barAB* und 1457*sigB* untersucht (Abbildung 6-27), nachdem sie für 7 h (exponentiell) in TSB kultiviert wurden. Die relative Quantifizierung ergab, dass SE0184 in 1457*barA* 12,8-fach und in 1457*barB* 11,5-fach verglichen zum Wildtyp hochreguliert wurde. SE1543 wurde in beiden Mutanten nur leicht stärker exprimiert (2,3-fach). Die Expression von SE2219 war in 1457*barA* mit der des Wildtyps vergleichbar, während sie in 1457*barB* leicht, jedoch nicht signifikant hochreguliert wurde. Die Doppelmutante 1457*barAB* zeigte dagegen eine signifikant 8-fach geringere Expression von SE0184 und eine 2,2-fach geringere Expression der

![Diagramm zur Expression von SE0184, SE1543 und SE2219 nach 7 h](image)

Abb. 6-27 Expression von SE0184, SE1543 und SE2219 nach 7 h
Relative Transkriptionsanalyse der Stämme *S. epidermidis* 1457*barA*, 1457*barB*, 1457*barAB* und 1457*sigB* nach 7 h Wachstum in TSB. Die dargestellte x-fache Regulation bezieht sich stets auf die Expression in *S. epidermidis* 1457 und gilt bei mind. 2-fach erhöhter oder vermindelter Expression als signifikant (gestrichelte Linie). Als nicht reguliertes Haushaltsgen wurde die Guanylatkinase für die Auswertung mitgeführt. Die Analyse der Genexpression basiert auf der Auswertung von drei unabhängigen Versuchen.

In der stationären Phase wurde, wie auch in der exponentiellen Phase, die Expression der Protease SE0184 in 1457*barA* signifikant erhöht 4 (2,7-fach). SE1543 und SE2219 zeigten keine biologisch signifikante Veränderung gegenüber
ERGEBNISSE

Abb. 6-28 Genexpression von SE0184, SE1543, SE2219 und RNAIII nach 24 h
7 Diskussion

Gen von *Staphylococcus aureus*, *Bacillus subtilis* und *Lactococcus lactis*. In *B. subtilis* und *L. lactis* konnte dem purR-Gen eine Funktion zugewiesen werden, während in Staphylokokken bisher keine Funktion dieses Gens beschrieben wurde. In *B. subtilis* wurde eine negative regulatorische Aktivität in der Purinsynthese gezeigt, wohingegen in *L. lactis* eine positive Aktivität nachgewiesen werden konnte (Weng et al., 1995; Kilstrup and Martinussen, 1998; Weng and Zalkin, 2000). Hierbei erfolgt die Regulation durch PurR über spezifische Bindung an sog. PurR-Bindestellen. Da in der Promotorregion von icaADBC oder dessen negativem Regulator IcaR keine homologen Sequenzen zu diesen PurR-Bindestellen gefunden werden konnten, ist eine direkte Regulation dieser Gene durch PurR unwahrscheinlich (Knobloch et al., 2003). Durch vorangegangene Untersuchungen der Mutante M12 konnte gezeigt werden, dass die Transposoninsertion hinter einer putativen σ^B-abhängigen Promotorsequenz lag, und es wurde vermutet, dass der biofilmnegative Phänotyp möglicherweise durch Inaktivierung von Genen unterhalb von purR verursacht wurde. Da durch andere Arbeiten aus der Arbeitsgruppe gezeigt wurde, dass der alternative Sigmafaktor σ^B an der Regulation der Biofilmbildung von *S. epidermidis* durch negative Regulation des negativen Regulators IcaR beteiligt ist (Knobloch et al., 2001; Knobloch et al., 2004a), wurde vermutet, dass die Gene unterhalb von purR regulative Intermediate in dem Regulationsnetzwerk darstellen könnten. Der in *S. epidermidis* gefundene putative σ^B-abhängige Promotor ist innerhalb der kodierenden Sequenz von purR konserviert und wurde somit auch in *B. subtilis* und *S. aureus* beschrieben (Petersohn et al., 1999a; Bischoff et al., 2004). Interessanterweise konnte in *B. subtilis* gezeigt werden, dass dieser Promotor nicht σ^B-abhängig transkribiert wird, während er in *S. aureus* einer Kontrolle durch σ^B unterliegt. Deshalb wurde zunächst untersucht, ob der putative Promotor in *S. epidermidis* aktiv ist.

7.1 Kartierung des σ^B-abhängigen Promotors vor barA

Es war bekannt, dass in *S. epidermidis* ein Transkript gebildet wurde, welches möglicherweise von der putativen Promotorsequenz ausging. Das Transkript kodiert für die Gene barA und barB und wird in der biofilmnegativen Transposonmutante M12 nicht mehr abgelesen (Bartscht, 2001). Des Weiteren konnte gezeigt werden, dass dieses Transkript sowohl in exponentiell als auch in stationär wachsenden *S. epidermidis* 1457 Zellen vorhanden ist. Im Gegensatz zu einem weiteren, größeren
Transkript, welches außer für barA und barB auch für ispE und purR kodiert, das nur in exponentiellen Zellen nachgewiesen werden konnte (Bartscht, 2001; Knobloch et al., 2004b; Knobloch, 2005). Demnach gab es schon eine Reihe von Hinweisen auf den Promotor. Auch die σB-Abhängigkeit konnte durch Verlust des Transkriptes in Mutanten des σB-Operons gezeigt werden (Jäger, 2006). In dieser Arbeit sollte der Transkriptionsstartpunkt experimentell nachgewiesen werden.

DISKUSSION

<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP62A</td>
<td>--MAKESKSAEVSPEQINQWIQKIQEQLKIESLHRYSHQSHHEDLQVQG</td>
</tr>
<tr>
<td>ATCC 12228</td>
<td>--MAKESKSAEVSPEQINQWIQKIQEQLKIESLHRYSHQSHHEDLQVQG</td>
</tr>
<tr>
<td>N315</td>
<td>--MAKESKSAEVSPEQINQWIQKIQEQLKIESLHRYSHQSHHEDLQVQG</td>
</tr>
<tr>
<td>Mu50</td>
<td>--MAKESKSAEVSPEQINQWIQKIQEQLKIESLHRYSHQSHHEDLQVQG</td>
</tr>
<tr>
<td>COL</td>
<td>--MAKESKSAEVSPEQINQWIQKIQEQLKIESLHRYSHQSHHEDLQVQG</td>
</tr>
<tr>
<td>168</td>
<td>MMTQPSK-TTKLTDERSVQNLQKYSKRSFHEDLQVQG</td>
</tr>
</tbody>
</table>

RP62A

<table>
<thead>
<tr>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVGLIGAINRFDLSFDRKFEAFLVPTVIGEIKRYLRDKTWSVHVPRRIKEIGPRIKKVSDELTNEL</td>
</tr>
<tr>
<td>ATCC 12228</td>
</tr>
<tr>
<td>MVGLIGAINRFDLSFDRKFEAFLVPTVIGEIKRYLRDKTWSVHVPRRIKEIGPRIKKVSDELTNEL</td>
</tr>
<tr>
<td>N315</td>
</tr>
<tr>
<td>MVGLIGAINRFDMSFERKFEAFLVPTVIGEIKRYLRDKTWSVHVARRIKEIGPRIKKVSDELTAEL</td>
</tr>
<tr>
<td>Mu50</td>
</tr>
<tr>
<td>MVGLIGAINRFDMSFERKFEAFLVPTVIGEIKRYLRDKTWSVHVARRIKEIGPRIKKVSDELTAEL</td>
</tr>
<tr>
<td>COL</td>
</tr>
<tr>
<td>MVGLIGAINRFDMSFERKFEAFLVPTVIGEIKRYLRDKTWSVHVARRIKEIGPRIKKVSDELTAEL</td>
</tr>
<tr>
<td>168</td>
</tr>
<tr>
<td>MTGLIGAKVQDVPVEQKESFEAFDIKIEIRKRLDEKTNSVHVPRRIKEIGPRIKKVSDELTAEL</td>
</tr>
</tbody>
</table>

Abb. 7-1 Alignment der σ^B^-Proteine

Sigmafaktoren vereinen mehrere Aktivitäten in einem Protein, z.B. Bindung der RNA-Polymerase (RNAP), Erkennung der -10 und -35 Promotorsequenzen und das Schmelzen der DNA. All diese Aktivitäten werden durch verschiedenen Unterregionen des Sigmafaktors bewerkstelligt (Helmann and Chamberlin, 1988; Lonetto *et al.*, 1992). Beispielsweise die Region 2.4, die für die Erkennung der -10-Region verantwortlich ist, sowie die Regionen 4.1 und 4.2, die für das Erkennen der -35-Region wichtig sind, sind dabei besonders konserviert (Kullik and Giachino, 1997).

7.2 Generierung der Deletionsmutanten

Der Nachweis des σ^B^-abhängigen Promoters lieferte noch keinen Hinweis darauf, ob tatsächlich der Verlust der von *purR* strangabwärts gelegenen Gene zu dem biofilmnegativen Phänotyp von M12 führte. Um diese Hypothese zu testen, sollten Deletionsmutanten generiert werden, in denen die Gene, die in *S. epidermidis* M12...

Um für nachfolgende Experimente ausschließen zu können, dass veränderte Wachstumseigenschaften der verschiedenen Mutanten einen Einfluss auf die Bildung des Biofilms haben, wurden zunächst Wachstumskurven erstellt (Abbildungen 6-9, 6-11). Hier zeigten sich nur leichte Unterschiede in den Stämmen 1457ispE, 1457barAB, 1457ispepurRbarAB. Es kam zu einer leichten Verlängerung der lag-Phase, die Zellen wuchsen dann jedoch exponentiell und erreichten annähernd die gleichen optischen Dichten wie der Wildtyp. Diese geringen Abweichungen der Wachstumskurven sollten keinen Einfluss auf die mögliche Ausbildung und Stärke eines Biofilms haben.

Biofilmbildung im Vergleich zum Wildtyp *S. epidermidis* 1457 (Abbildung 6-10). Diese war jedoch weiterhin sowohl durch NaCl als auch durch Ethanol induzierbar. Dahingegen führte die Deletion von *barB* in der Einzel- und in der Doppelmutante 1457*barAB* zu einem biofilmnegativen Phänotyp, der auch durch NaCl und Ethanol nicht aufgehoben werden konnte.

BarA oder BarB im Verhältnis zur Menge des Proteins, welches aus dem Genom transkribiert wurde, nicht zu einer sinnvollen Regulation in der Zelle führt.

Zusammenfassend konnte eindeutig gezeigt werden, dass BarA und BarB die Biofilmbildung in *S. epidermidis* 1457 positiv regulieren, wobei BarB essenziell ist. Der Verlust von funktionellem IspE und PurR war in *S. epidermidis* M12 nicht für den biofilmnegativen Phänotyp der Mutante verantwortlich.

7.3 Regulation der Biofilmbildung durch BarA und BarB

In der Folge stellte sich die Frage, ob eine verminderte PIA-Synthese Ursache für den biofilmnegativen Phänotyp der Mutanten *S. epidermidis* 1457*barA*, 1457*barB* und 1457*barAB* war. Dotblot-Experimente mit einem PIA-spezifischen Antiserum zeigten in allen Stämmen eine verminderte oder fehlende PIA-Expression (Abbildung 6-13).

ergeben, resultieren aus der Berechnung und stellen in sicherlich eine Abschaltung der Transkription dar.

Wie schon zuvor durch Northern Blots gezeigt wurde, konnte die Reprimierung der icaA-Transkription in S. epidermidis 1457sigB bestätigt werden (Knobloch et al., 2004a). Diese Regulation ist Folge der fehlenden Repression der icaR-Transkription in TSB und TSB NaCl. In TSB EtOH wird von dieser Mutante wieder Biofilm gebildet und die icaA-Transkription nur noch schwach reprimiert. Die icaR-Transkription wurde in diesem Medium nicht mehr signifikant beeinflusst. Demnach erfolgt die Induktion der Biofilmbildung in TSB EtOH durch Repression der icaR-Transkription unabhängig von σB.

induzieren, ist anzunehmen, dass ein σ^B-abhängiges Intermediat diese Regulation vermittelt. Weder BarA noch BarB scheinen dieses Intermediat darzustellen.

Das vereinfachte Modell der Biofilmregulation, dass schon in den theoretischen Grundlagen das Netzwerk verdeutlichte, konnte durch die gewonnenen Erkenntnisse, die diese Arbeit liefert, erweitert werden (Abbildung 7-2). PurR hat keinen Einfluss auf die Regulation der Biofilmbildung, sondern der σ^B-abhängige barAB-Lokus reguliert das icaADBC-Operon positiv.

Abb. 7-2 Modifiziertes Modell der Biofilmbildung

7.4 Einfluss der Regulatoren BarA, BarB, σ^B und agr auf das intrazelluläre Proteom

Verschiedene Studien konnten zeigen, dass der Metabolismus der Staphylokokken, die in einem Biofilm leben, entscheidend verändert ist (Beenken et al., 2004; Resch et al., 2005; Yao et al., 2005). In dieser Arbeit sollte durch Proteomanalysen untersucht werden, ob die Regulatoren BarA, BarB, σ^B und das agr-System an dieser Regulation beteiligt sind. Da sowohl σ^B als auch agr-System ein großes Regulon aufweisen, war anzunehmen, dass durch die Deletion der Gene eine Vielzahl von Proteinen beeinflusst wird. Für BarA und BarB stellte sich die Frage, ob sie ebenfalls als globale Regulatoren identifiziert werden könnten. In der Analyse wurden, um nur Expressionsmuster zu detektieren, die abhängig von den jeweiligen Regulatoren verändert wurden und um biofilmspezifische Effekte auszuschließen, die Bakterien als planktonische Zellen kultiviert und deren Proteinextrakte der Proteomanalyse zugeführt.

Für die Deletionsstämme 1457$barA$ und 1457$barB$ wurden 43 bzw. 100 Proteinspots gezeigt, die im Vergleich zum Wildtyp unterschiedlich exprimiert wurden. Von diesen konnten drei bzw. sechs Proteine in der MS-Analyse identifiziert werden. In der Mutante 1457$barAB$ wurden 447 Proteinspots im Vergleich zum Wildtyp differentiell exprimiert, von denen 64 identifiziert werden konnten. Aufgrund der geringen Anzahl an identifizierten Proteinen in den Einzelmutanten soll hier nur der Verlust beider Regulatoren in 1457$barAB$ näher betrachtet werden, für den aus 64 veränderten Proteinspots 47 nicht redundante Proteine gezeigt werden konnten. Dabei sollte berücksichtigt werden, dass die Überlappung der Veränderungen in den Einzelmutanten mit denen der Doppelmutante nur sehr gering war und das Expressionsmuster nicht auf einen der beiden Regulatoren zurück zu führen ist.

Die beobachtete Induktion von Glykolyse und Citratzyklus bzw. deren Enzymen in S. epidermidis 1457barAB könnte somit zu einer Verschiebung des Intermediates Fruktose-6-Phosphat zu Stoffwechselprodukten des TCA oder einem vollständigen Katabolismus von Glukose führen (Abbildung 7-3). Damit stünde zur Synthese von UDP-N-Acetylglukosamin kein Fruktose-6-Phosphat mehr zur Verfügung, welches zur Synthese von PIA genutzt werden könnte. Allerdings ist UDP-N-Acetylglukosamin für die Synthese der Zellwand essenziell, da S. epidermidis 1457barAB nur einer verlängerten Wachstumsphase, aber keinen Wachstumdefekt aufweist, muss hierfür das Vorläufermolekül in ausreichender Menge bereit stehen. Es ist also denkbar, dass zusätzlich zu der Verschiebung von Intermediaten, die Staphylokokken einen Mechanismus aufweisen, der es ihnen ermöglicht zu entscheiden für welchen Stoffwechselprozess aktiviertes N-Acetylglukosamin genutzt wird. Da für das Überleben der Bakterien eine intakte Zellwand notwendig
ist, ist anzunehmen, dass bei einem geringen Angebot von UDP-N-Acetylglukosamin, dieser Biosyntheseweg als erstes versorgt wird.

Abb. 7-3 Beziehung zwischen PIA-Synthese und Glykolyse /TCA-Zyklus
Die Acetyl-CoA-Carboxylase (AccC) und ein Fettsäuresynthaseprotein (PlsX) wurden ebenfalls induziert. Daher ist denkbar, dass durch die hohe Aktivität des Citratzyklus vermehrt Metabolite, bspw. für die Fettsäuresynthese, entzogen werden.

Ferner ist eine höhere Aktivität des Citratzyklus mit einem höheren Redoxstatus der Zelle verbunden. Vuong et al. sehen hier einen möglichen Regulationsweg und vermuten, dass ein bis jetzt unbekanntes Protein als Sensor des Redoxpotentials agieren könnte und so die Regulation der PIA-Synthese vermitteln könnte (Vuong et al., 2005). Derartige NADH-Sensorproteine wurden in anderen Organismen schon beschrieben (bspw. Rex (Brekasis and Paget, 2003), NmrA (Lamb et al., 2003), CcpA (Gaudu et al., 2003). CcpA kontrolliert die Nutzung von Glukose als bevorzugte Kohlenstoffquelle und spielt eine Rolle bei der Expression einiger Virulenzfaktoren in S. aureus und der Oxacillinresistenz (Seidl et al., 2006; Seidl et al., 2008a). Weiterhin führt die Deletion von ccpA in S. aureus zu einer verminderten Biofilmbildung (Seidl et al., 2008b). Interessanterweise wurde in der Proteomanalyse von S. epidermidis 1457barAB ein Spot als CcpA identifiziert, der leicht induziert wurde. Da dieser Stamm jedoch biofilmnegativ ist, ist eine differentielle Regulation der Biofilmbildung in S. epidermidis und S. aureus denkbar. In Bezug auf die beobachteten Stoffwechselveränderungen untermauert eine Induktion von CcpA die verstärkte glykolytische Aktivität zusätzlich. Unklar ist jedoch, warum Enzyme des TCA-Zyklus induziert wurden, da für diese in B. subtilis gezeigt werden konnte, dass sie der C-Kataboliten-Repression durch CcpA unterliegen (Tobisch et al., 1999).

derartig phosphoryliertes HPr interagiert mit CcpA und dient als Co-Repressor (Deutscher and Saier, 1983). Es ist also vorstellbar, dass aufgrund der gesteigerten Aktivität von PtsI nur eine geringe Menge an Serin-phosphoryliertem HPr in der Zelle vorliegt, welches mit CcpA interagieren kann, und somit trotz einer Induktion von CcpA, dieses nicht wirken kann.

Darüber hinaus wurde PtsI schon zuvor in Zusammenhang mit der Pathogenität von *S. epidermidis* beschrieben (Duggirala et al., 2007). Es handelt sich dabei um ein spezifisches Gen in allen Endophthalmitis-Isolaten. Ferner konnte gezeigt werden, dass ein *ptsI* Deletionsstamm von *S. aureus* in der Maus weniger virulent ist als der Wildtyp (Kok et al., 2003). TagD ist ein weiteres Protein, welches in *S. epidermidis* Isolaten aus Endophthalmitiden essenziell zu sein scheint (Duggirala et al., 2007). In der Proteomanalyse von 1457*barAB* konnte TagD als vermindert exprimiert gezeigt werden. TagD ist ein Vorläuferprotein, das in die Synthese von Teichonsäuren in *S. aureus* involviert ist (Badurina et al., 2003). Welche Rolle TagD dabei spielt und warum es durch die Deletion von *barAB* zu einer verminderten Expression kommt, bedarf weiterer Forschung.

Die Proteomanalyse ergab für 1457*sigB* 251 Spots, die in ihrer Proteinmenge im Vergleich zum Wildtyp variierten. In der Doppelmutante fanden sich 245 differentiell exprimierte Proteinspots. Aus der Purin-Ribonukleotidbiosynthese wurden einige Proteine identifiziert, die in *S. epidermidis* 1457*sigB* reprimiert wurden, aber auch eines das induziert wurde. Dahingegen fanden sich in der Doppelmutante hauptsächlich GuaB-Fragmente, die induziert wurden. Dieses Protein wurde auch schon in der Studie von Batzilla et al. beschrieben, sie vermuten eine

Interessanterweise wurde in *S. epidermidis* 1457sigBagr RsbU leicht induziert. RsbU ist der Positivregulator der σ^B-Regulationskaskade in *S. epidermidis* (Knobloch *et al.*, 2001). Über die Aktivierung von RsbU in Staphylo kokken ist kaum etwas bekannt (Pané-Farré *et al.*, 2006; Pané-Farré *et al.*, 2009). Da die Proteomdaten auf eine schwache negative Regulation durch das *agr*-System deuten, bietet sich hier ein Ansatzpunkt für weitere Untersuchungen, die zeigen könnten, ob die Beobachtungen auch von physiologischer Bedeutung für die Zelle wären. Denkbar wäre z. B. ein regulatorischer Rückkopplungsmechanismus, da es durch σ^B zu einer Repression des *agr*-Systems kommt, könnte dieses im Gegenzug den Positivregulator von σ^B, RsbU, hemmen.

Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass nicht nur die Deletionen von *sigB* und *sigBagr*, sondern auch die Deletionen der Gene *barA*, *barB* und deren Kombination in *S. epidermidis* 1457 zu globalen Veränderungen der Proteineexpression im Vergleich zum Wildtyp führen. Dabei wurde die größte Veränderung in 1457barAB beobachtet und es konnte geschlussfolgert werden, dass es sich bei den Proteinen BarA und BarB um globale Regulatoren handelt. Aufgrund einer geringen Identifizierungseffizienz, die in den verschiedenen Mutanten zwischen 6 % und 17 % lag, konnte jedoch keine Aussage zu globalen

7.5 Einfluss der Regulatoren BarA, BarB, σB und agr auf das extrazelluläre Proteom

7.5.1 Proteasen

Bei den drei in S. epidermidis beschriebenen extrazellulären Proteasen handelt es sich um eine Metalloprotease (SE2219), für die eine Elastase-Aktivität gezeigt werden konnte (Teufel and Götz, 1993). Außerdem eine Cysteinprotease (SE0184), die humanes sIgA, IgM, Serumalbumin, Fibrinogen und Fibronectin abbaut und somit auch als Virulenzfaktor eine Rolle spielt (Sloot et al., 1992). Die dritte Protease ist eine Serinprotease (SE1543) (Geissler et al., 1996). Alle Proteasen
besitzen eine hohe Ähnlichkeit zu den entsprechenden Proteinen in *S. aureus* (Aureolysin, Staphopain, V8-Protease), allerdings sezerniert *S. aureus* noch weitere Serinproteasen (Spl) und Staphopain A (Dubin, 2002).

Die Proteasen werden ähnlich wie in *S. aureus* als Prä-pro-Enzyme synthetisiert. Die Pro-Formen der Enzyme, werden durch proteolytische Spaltung im Extrazellularraum aktiviert. Dabei kommt es sowohl zur gegenseitigen Prozessierung als auch zu autokatalytischen Spaltungen der Proteasen in *S. aureus* (Björkklind and Jornvall, 1974; Drapeau, 1978; Rice et al., 2001; Shaw et al., 2004; Nickerson et al., 2007). Über die Aktivierung der Proteasen in *S. epidermidis* ist kaum etwas bekannt, aber aufgrund der hohen Homologie der Proteine ist ein ähnlicher Prozessierungsvorgang anzunehmen. Auch zur Regulation der Proteaseexpression wurden die meisten Untersuchungen in *S. aureus* durchgeführt. Als die wichtigsten Regulatoren der extrazellulären Proteine wurden *agr* und SarA identifiziert (Peng et al., 1988; Cheung and Projan, 1994; Morfeldt et al., 1996; Cheung et al., 1997; Ziebandt et al., 2001). Es konnte eine negative Regulation der extrazellulären Proteasen durch SarA und eine positive Regulation durch *agr* gezeigt werden (Chan and Foster, 1998; Vuong et al., 2000; Said-Salim et al., 2003; Batzilla et al., 2006). Unabhängig davon konnte eine positive Regulation der RNAIII-Expression durch Bindung von SarA an das *agr*-Operon nachgewiesen werden (Morfeldt et al., 1996; Cheung et al., 1997; Bischoff et al., 2001). Ferner werden beide Regulatoren auch durch den alternativen Sigmafaktor σ^B beeinflusst. Die Transkription von *sarA* wird direkt über einen σ^B-abhängigen Promotor induziert (Bischoff et al., 2001). Dies konnte auch in *S. epidermidis* gezeigt werden (Fluckiger et al., 1998). Dahingegen wird das *agr*-System trotz des positiven Einflusses durch SarA durch den Sigmafaktor indirekt negativ reguliert (Bischoff et al., 2001). In weiteren Dissertationsarbeiten aus der Arbeitsgruppe von J. Knobloch konnte der Einfluss der verschiedenen Regulatoren auf die Proteaseexpression auch in *S. epidermidis* bestätigt werden (Kneschke, 2007; Schewe, 2009).

In dieser Arbeit wurde zusätzlich die Bedeutung der Regulatoren BarA und BarB, die durch σ^B induziert werden, für die Expression der extrazellulären Proteasen betrachtet. Die Analyse der Proteaseexpression wurde zunächst mit einem Casein-Agarplatten-Screening vorgenommen, mit dem phänotypische Unterschiede der Expression erkennbar waren (Abbildung 6-25). *S. epidermidis* 1457 zeigte auf den Platten leichte lytische Aktivität, denaturierende Proteasen waren im nativen Agar

Zusammengenommen konnte aber sicher gezeigt werden, dass BarA und BarB einen Einfluss auf die Expression der Proteasen ausüben, der unabhängig von *agr* ist.

Abb. 7-4 Schema der Regulation der extrazellulären Proteasen in *S. epidermidis*

Die Proteaseaktivität spielt nicht nur eine Rolle beim Abbau von Wirtsgewebe und dem Entgehen der Immunabwehr des Wirtes, sondern wurde auch in Verbindung mit der Biofilmbildung der Bakterien gebracht. In *S. aureus* wurde beschrieben, dass die erhöhten Proteasespiegel in der *sigB*-Mutante einen negativen Effekt auf die Biofilmbildung ausüben (Boles and Horwill, 2008). Das Einbringen einer zusätzlichen *agr*-Mutation führte in *S. aureus* wieder zur Etablierung eines Biofilms (Lauderdale *et al.*, 2009). Dies ist in *S. epidermidis* nicht der Fall. Demnach scheint die Bedeutung der Proteasen für die Ausbildung eines Biofilms in *S. epidermidis* nicht von entsprechendem Ausmaß zu sein.

7.5.2 Weitere Proteine

DISKUSSION

1457barB und 1457barAB wiesen am oberen Ende der SDS-PAGE eine bzw. zwei Banden von enormer Größe auf, die sonst nicht erkennbar waren. In S. epidermidis wurde nur ein Protein (Embp) beschrieben, dass eine solche Größe besitzt. Embp weist einen Leserahmen von 30,5 kb auf, es ist jedoch nicht klar, ob dieser als ein Transkript abgelesen wird (Williams et al., 2002). Dem Protein wurde eine Bindung an Fibronektin nachgewiesen. Ein Zusammenhang einer negativen Regulation durch BarB kann bislang nicht gezogen werden. Da die Identifikation des Proteins nicht vorliegt, kann jedoch auch spekuliert werden, dass es sich hierbei um einen Faktor handelt, der bislang nicht beschrieben wurde.

Um die Veränderungen des extrazellulären Proteoms in den untersuchten Mutanten genauer zu klären, bedarf es einer Identifikation der Proteine. Dies wäre denkbar durch spezifische Antiseren gegen Aap und Embp oder durch eine Identifikation mittels Massenspektroskopie.

7.6 Schlussbetrachtungen

Literaturverzeichnis

Schewe, S. 2009 Dissertation, Fachbereich Medizin, Universität Lübeck

Zienkiewicz, A. unpubliziert Dissertation, Fachbereich Medizin, Universität Lübeck

Anhang

I Plasmidkarten

Abb. 8-1 Plasmidkarten der Expressionsplasmide
Alle Plasmide wurden nach dem Protein benannt für dessen Überexpression sie genutzt werden konnten. Dargestellt sind Größe, Resistenzkassetten, relevante Charakteristika wie Promotoren, OriSite oder Primer, und eine Auswahl an Restriktionsschnittstellen.
Abb. 8-2 Plasmidkarten der Gatewayplasmide zur Deletion
Sequenzierung des Expressionsplasmide pEXPRbarA und pEXPRbarB
ANHANG II

Sequenzierung des Expressionsplasmides pEXPR

His-tag codierende Sequenz von rsbU

<table>
<thead>
<tr>
<th>Sequenzierung</th>
<th>pEXPR rsbU</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sequenzierung</td>
<td>Codierende Sequenz von \textit{sigB}</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>--ACCTATGTCGTAATCAATACATCGACTGCTAGACTGCTTTGATGTTTATGCTAAAAAGAGCTAGGCTAGGCTGAAATAATGGCGAAAGAGTCGAAATCAGCTAGTGAAGTATCA</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>CCTGAACAAATTAACCAATGGATTAAACAACATCAAGAAAACGAAGATAGCCAAGCTCAAGATAAATTAGTAAAACATTATCGTAAGCTGATTGAATCTTTAGCTTATAGGTACTCTAAG</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>GGACAATCAGTTCAATGGATTAAACAACATCAAGAAAACGAAGATAGCCAAGCTCAAGATAAATTAGTAAAACATTATCGTAAGCTGATTGAATCTTTAGCTTATAGGTACTCTAAG</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>TCACCATCTATTAGTGAAATCGCACAACGCTTAGAAGTTTCAGATGAAGAAGTTTTGGAAGCGATGGAGATGGGGCAGAGTTACAATGCCCTGAGTGTGGATCACTCTATAGAAGCAGAT</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>AAAGATGGTTCTGACAGTTACATTATTAGATATTATGGGACAACAAGATGATAATTATGATTTAACGGAAAAACGTATGATATTAGAACGTATTTTACCTATTTTGTCAGAGAGAGAAAGA</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>CAAATCATACATTGTACTTTTATTGAAGGTCTTAGCCAAAAAGAGACTGGTGAAAGAATTGGTCTTAGTCAAATGCATGTTTCACGTTTGCAACGTACCGCAATAAAAAACCCAGCTTTC</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>TTGTACAAAGTGGTTGATTCGAGGCTGCTAACAAA</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>AAAGATGGTTCTGACAGTTACATTATTAGATATTATGGGACAACAAGATGATAATTATGATTTAACGGAAAAACGTATGATATTAGAACGTATTTTACCTATTTTGTCAGAGAGAGAAAGA</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>CAAATCATACATTGTACTTTTATTGAAGGTCTTAGCCAAAAAGAGACTGGTGAAAGAATTGGTCTTAGTCAAATGCATGTTTCACGTTTGCAACGTACCGCAATAAAAAACCCAGCTTTC</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>TTGTACAAAGTGGTTGATTCGAGGCTGCTAACAAA</td>
</tr>
</tbody>
</table>

Histag

<table>
<thead>
<tr>
<th>Sequenzierung</th>
<th>Histag</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>CCTGAACAAATTAACCAATGGATTAAACAACATCAAGAAAACGAAGATAGCCAAGCTCAAGATAAATTAGTAAAACATTATCGTAAGCTGATTGAATCTTTAGCTTATAGGTACTCTAAG</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>GGACAATCAGTTCAATGGATTAAACAACATCAAGAAAACGAAGATAGCCAAGCTCAAGATAAATTAGTAAAACATTATCGTAAGCTGATTGAATCTTTAGCTTATAGGTACTCTAAG</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>TCACCATCTATTAGTGAAATCGCACAACGCTTAGAAGTTTCAGATGAAGAAGTTTTGGAAGCGATGGAGATGGGGCAGAGTTACAATGCCCTGAGTGTGGATCACTCTATAGAAGCAGAT</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>AAAGATGGTTCTGACAGTTACATTATTAGATATTATGGGACAACAAGATGATAATTATGATTTAACGGAAAAACGTATGATATTAGAACGTATTTTACCTATTTTGTCAGAGAGAGAAAGA</td>
</tr>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>CAAATCATACATTGTACTTTTATTGAAGGTCTTAGCCAAAAAGAGACTGGTGAAAGAATTGGTCTTAGTCAAATGCATGTTTCACGTTTGCAACGTACCGCAATAAAAAACCCAGCTTTC</td>
</tr>
</tbody>
</table>

Transition

<table>
<thead>
<tr>
<th>Sequenzierung</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>TTGTACAAAGTGGTTGATTCGAGGCTGCTAACAAA</td>
</tr>
</tbody>
</table>

Transversion

<table>
<thead>
<tr>
<th>Sequenzierung</th>
<th>Transversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>pEXPR\textit{sigB}</td>
<td>TTGTACAAAGTGGTTGATTCGAGGCTGCTAACAAA</td>
</tr>
</tbody>
</table>
ANHANG II

Sequenzierung der *S. epidermidis* Mutante 1457 ispE

erm rv

1457 ispE

erm fw

1457 ispE

att-site

Anteil der *erm*-Resistenzkassette

att-site

Anteil der *erm*-Resistenzkassette

att-site

manipulierte 5'Region

att-site

manipulierte 3'Region

att-site

manipulierte 3'Region

att-site

manipulierte 3'Region

Sequenzierung der S. epidermidis Mutante 1457purR

manipulierte 5’Region

| 1457purR | TAGACGCTTTAGCTGATTAGCATAAATAGGCGACAGACATACCTTTTGGATTTTATATTATACCAAAACTGCTGTTGAGCGGGCGCGCCGCAAGTGAATTACCTCTCTAAAAGACCCATT |
| 1457purR | TAGACGCTTTAGCTGATTAGCATAAATAGGCGACAGACATACCTTTTGGATTTTATATTATACCAAAACTGCTGTTGAGCGGGCGCGCCGCAAGTGAATTACCTCTCTAAAAGACCCATT |

5’-att-site

| 1457purR | TTGTGAGTTATTAGTGGTACAGTTTTCAACCGTTTTAATTATAAAAAAGTGGTGCATTTTTAAATTGGCACAAACAGGTAACGGTTATTGCAGGTGTATTTCTTATCTATGGGTTTAA |
| 1457purR | TTGTGAGTTATTAGTGGTACAGTTTTCAACCGTTTTAATTATAAAAAAGTGGTGCATTTTTAAATTGGCACAAACAGGTAACGGTTATTGCAGGTGTATTTCTTATCTATGGG |

Anteil der erm-Resistenzkassette

| 1457purR | GTAATAATTCGAATCTACGAGCGTCCATTCGCTTTACGTTTTACCGTGTTGTTGTTGTTGAAGTGTCACGGTTGCCTAAAGACGTAAAGGTAGAA |
| 1457purR | GTAATAATTCGAATCTACGAGCGTCCATTCGCTTTACGTTTTACCGTGTTGTTGTTGTTGAAGTGTCACGGTTGCCTAAAGACGTAAAGGTAGAA |

Anteil der erm-Resistenzkassette

| 1457purR | ATTGAATTGATAGGTAAAGTGAAGGAATTATAATTTTCTTAAAAGTTGTCAAGCTTCTAATAACATAAAGATATACTAGGGGGGCTCACTACATGAAAGTGACAGATGTAAGACTTAGAA |
| 1457purR | ATTGAATTGATAGGTAAAGTGAAGGAATTATAATTTTCTTAAAAGTTGTCAAGCTTCTAATAACATAAAGATATACTAGGGGGGCTCACTACATGAAAGTGACAGATGTAAGACTTAGAA |

Anteil der erm-Resistenzkassette manipulierter 3’Region

| 1457purR | ATTGAATTGATAGGTAAAGTGAAGGAATTATAATTTTCTTAAAAGTTGTCAAGCTTCTAATAACATAAAGATATACTAGGGGGGCTCACTACATGAAAGTGACAGATGTAAGACTTAGAA |
| 1457purR | ATTGAATTGATAGGTAAAGTGAAGGAATTATAATTTTCTTAAAAGTTGTCAAGCTTCTAATAACATAAAGATATACTAGGGGGGCTCACTACATGAAAGTGACAGATGTAAGACTTAGAA |

Anteil der erm-Resistenzkassette manipulierter 3’Region

| 1457purR | AAATACAAACAGACGGCAGAATGAAAGCACTCGTTTCCATTACGCTAGATGAAGCTTTTG |
| 1457purR | AAATACAAACAGACGGCAGAATGAAAGCACTCGTTTCCATTACGCTAGATGAAGCTTTTG |
Sequenzierung der *S. epidermidis* Mutante 1457barB

manipulierte 5’Region

<table>
<thead>
<tr>
<th>Locus</th>
<th>1457barB</th>
<th>155erm.rv</th>
</tr>
</thead>
<tbody>
<tr>
<td>barB</td>
<td>GACG...</td>
<td>GACG...</td>
</tr>
</tbody>
</table>

att-site

<table>
<thead>
<tr>
<th>Locus</th>
<th>1457barB</th>
<th>Anteil der erm-Resistenzkassette</th>
</tr>
</thead>
<tbody>
<tr>
<td>155erm.fw</td>
<td>AACGA...</td>
<td>Anteil der erm-Resistenzkassette</td>
</tr>
</tbody>
</table>

manipulierte 3’Region

<table>
<thead>
<tr>
<th>Locus</th>
<th>1457barB</th>
<th>155erm.fw</th>
</tr>
</thead>
<tbody>
<tr>
<td>erm</td>
<td>AGAG...</td>
<td>AGAG...</td>
</tr>
</tbody>
</table>

att-site

<table>
<thead>
<tr>
<th>Locus</th>
<th>1457barB</th>
<th>Anteil der erm-Resistenzkassette</th>
</tr>
</thead>
<tbody>
<tr>
<td>155erm.fw</td>
<td>AGAG...</td>
<td>Anteil der erm-Resistenzkassette</td>
</tr>
</tbody>
</table>
Sequenzierung der *S. epidermidis* Mutante 1457*barAB*

<table>
<thead>
<tr>
<th>erm.rv</th>
<th>erm.fw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457barAB</td>
<td>1457barAB</td>
</tr>
</tbody>
</table>

Manipulierte 5'Region

<table>
<thead>
<tr>
<th>erm.rv</th>
<th>erm.fw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457barAB</td>
<td>1457barAB</td>
</tr>
</tbody>
</table>

Manipulierte 3'Region

<table>
<thead>
<tr>
<th>erm.rv</th>
<th>erm.fw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457barAB</td>
<td>1457barAB</td>
</tr>
</tbody>
</table>

Anteil der *erm*-Resistenzkassette

<table>
<thead>
<tr>
<th>erm.fw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457barAB</td>
</tr>
</tbody>
</table>

Anteil der *erm*-Resistenzkassette

<table>
<thead>
<tr>
<th>erm.fw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457barAB</td>
</tr>
</tbody>
</table>

All-site

<table>
<thead>
<tr>
<th>erm.fw</th>
</tr>
</thead>
<tbody>
<tr>
<td>1457barAB</td>
</tr>
</tbody>
</table>
ANHANG II Sequenzierung der S. epidermidis Mutante 1457ispEpurRbarAB

erm.rv

1457ispEpurRbarAB

manipulierte 5' Region

erm.fw

1457ispEpurRbarAB

Anteil der erm-Resistenzkassette

att-site

erm.fw

1457ispEpurRbarAB

Anteil der erm-Resistenzkassette

manipulierte 3' Region

erm.fw

1457ispEpurRbarAB

att-site

erm.fw

1457ispEpurRbarAB

att-site

erm.fw

1457ispEpurRbarAB

III Signifikant veränderte Proteine des intrazellulären Proteoms

Tab. 8-1 Signifikant veränderte Proteine in *S. epidermidis* 1457*bar*A, 1457*bar*B und 1457*bar*AB im Vergleich zum Wildtyp

<table>
<thead>
<tr>
<th>Genname oder GI</th>
<th>putative Identifikation</th>
<th>biologischer Prozess</th>
<th>Regulation in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nukleotidstoffwechsel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deoB</td>
<td>Phosphopentomutase</td>
<td></td>
<td>0,46</td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,13</td>
</tr>
<tr>
<td>pyrC</td>
<td>Dihydroorotase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,99</td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,21</td>
</tr>
<tr>
<td>purQ</td>
<td>Phosphoribosylformylglycinamidinsynthase I</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,62</td>
</tr>
<tr>
<td>prsA</td>
<td>Ribosephosphatpyrophosphokinase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>0,49</td>
</tr>
<tr>
<td>upp</td>
<td>Uracilphosphoribosyltransferase</td>
<td>Wiederverwerbung von Nukleosiden und Nukleotiden</td>
<td>6,40</td>
</tr>
<tr>
<td>purC</td>
<td>Phosphoribosylaminomimidazole-succinocarboxamidsynthase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>0,48</td>
</tr>
<tr>
<td>Transkription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoB</td>
<td>RNA-Polymerase beta-Kette</td>
<td></td>
<td>0,34</td>
</tr>
<tr>
<td>rpoC</td>
<td>DNA-abhängige RNA-Polymerase, beta-Untereinheit</td>
<td></td>
<td>4,14</td>
</tr>
<tr>
<td>Proteinsynthese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,10</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,15</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationselongation</td>
<td>0,21</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,25</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,35</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,44</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationselongation</td>
<td>4,29</td>
</tr>
<tr>
<td>Protein</td>
<td>Description</td>
<td>Annotation</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>rpsB</td>
<td>30S ribosomales Protein S2</td>
<td>4.76</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>5.74</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>5.78</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>5.88</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>7.87</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>7.96</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>rplJ</td>
<td>50S ribosomales Protein L10</td>
<td>2.76</td>
<td></td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>27468132</td>
<td>Xaa-Pro dipeptidase</td>
<td>3.39</td>
<td></td>
</tr>
<tr>
<td>27468491</td>
<td>Methionylaminopeptidase</td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td>tig</td>
<td>trigger Faktor</td>
<td>6.70</td>
<td></td>
</tr>
<tr>
<td>groEL</td>
<td>GroEL Protein</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>ptsI</td>
<td>Phosphoenolpyruvat-Protein-Phosphatase</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
<td></td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
<td></td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>

Proteinbestimmung

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>0.23</td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>0.32</td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>2.78</td>
</tr>
<tr>
<td>27468132</td>
<td>Xaa-Pro dipeptidase</td>
<td>3.39</td>
</tr>
<tr>
<td>27468491</td>
<td>Methionylaminopeptidase</td>
<td>4.35</td>
</tr>
<tr>
<td>tig</td>
<td>trigger Faktor</td>
<td>6.70</td>
</tr>
<tr>
<td>groEL</td>
<td>GroEL Protein</td>
<td>0.45</td>
</tr>
<tr>
<td>ptsI</td>
<td>Phosphoenolpyruvat-Protein-Phosphatase</td>
<td>3.88</td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Transport- und Bindeproteinen

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ptsI</td>
<td>Phosphoenolpyruvat-Protein-Phosphatase</td>
<td>3.88</td>
</tr>
<tr>
<td>27468132</td>
<td>Xaa-Pro dipeptidase</td>
<td>3.39</td>
</tr>
<tr>
<td>27468491</td>
<td>Methionylaminopeptidase</td>
<td>4.35</td>
</tr>
<tr>
<td>tig</td>
<td>trigger Faktor</td>
<td>6.70</td>
</tr>
<tr>
<td>groEL</td>
<td>GroEL Protein</td>
<td>0.45</td>
</tr>
<tr>
<td>ptsI</td>
<td>Phosphoenolpyruvat-Protein-Phosphatase</td>
<td>3.88</td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Biosynthese von Cofaktoren, prosthetischen Gruppen und Carriern

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>2.68</td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Kohlensäure, organische Alkohole und Säuren

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>2.68</td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Heme, Porphyrin und Cobalamin

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>2.68</td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Heme, Porphyrin und Cobalamin

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>2.68</td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Heme, Porphyrin und Cobalamin

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Annotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>2.68</td>
</tr>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>3.26</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>3.47</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>3.73</td>
</tr>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatidylyltransferase</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Energiemetabolismus

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein/Enzyme</th>
<th>Funktionsbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>femB</td>
<td>FemB protein</td>
<td>Biosynthese und Degradation von Oberflächenpolysacchariden und -lipopolysacchariden, Toxinproduktion und Resistenz</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyltransferase</td>
<td>0,10 TCA-Zyklus</td>
</tr>
<tr>
<td>27467075</td>
<td>Malat:Quinon-oxidoreduktase</td>
<td>0,30 TCA-Zyklus</td>
</tr>
<tr>
<td>ldh</td>
<td>L-lactatdehydrogenase</td>
<td>0,49 Glycolyse/Glukoneogenese, anaerob</td>
</tr>
<tr>
<td>tal</td>
<td>putative Transaldolase</td>
<td>2,21 Pentosphosphat-Weg</td>
</tr>
<tr>
<td>27468937</td>
<td>Sorbitoldehydrogenase</td>
<td>2,33 Fermentation</td>
</tr>
<tr>
<td>glpK</td>
<td>Glycerokinase</td>
<td>2,47</td>
</tr>
<tr>
<td>pgk</td>
<td>Phosphoglycerokinase</td>
<td>2,53 Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>icd</td>
<td>Isocitratdehydrogenase</td>
<td>2,62 TCA-Zyklus</td>
</tr>
<tr>
<td>mgo-2</td>
<td>malate:quinone oxidoreductase</td>
<td>2,84 TCA-Zyklus</td>
</tr>
<tr>
<td>pyk</td>
<td>Pyruvatkinase</td>
<td>2,95 Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyltransferase</td>
<td>2,95 TCA-Zyklus</td>
</tr>
<tr>
<td>mgo-2</td>
<td>malate:quinone oxidoreductase</td>
<td>2,98 TCA-Zyklus</td>
</tr>
<tr>
<td>pgk</td>
<td>Phosphoglycerokinase</td>
<td>3,04</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyltransferase</td>
<td>3,96 TCA-Zyklus</td>
</tr>
<tr>
<td>fbaA</td>
<td>Fructose-bisphosphataldolase, Klasse II</td>
<td>5,68 Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>ldh</td>
<td>L-lactatdehydrogenase</td>
<td>0,46 6,78 Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>lacD</td>
<td>Tagatose 1,6-diphosphataldolase</td>
<td>8,93 Biosynthese und Degradation von Polysacchariden</td>
</tr>
<tr>
<td>ald</td>
<td>Alaninindehydrogenase</td>
<td>0,26 Alanin-metabolische Prozesse</td>
</tr>
</tbody>
</table>
Fettsäure- und Phospholipidmetabolismus

<table>
<thead>
<tr>
<th>Gene</th>
<th>Funktion</th>
<th>Koeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>accC</td>
<td>Acetyl-CoA-Carboxylase (Biotin-Carboxylase-Untereinheit) accC</td>
<td>2,25</td>
</tr>
<tr>
<td>plsX</td>
<td>Fettsäure /Phospholipid Syntheseprotein PlsX</td>
<td>2,80 14,45</td>
</tr>
</tbody>
</table>

Regulatorische Funktionen

<table>
<thead>
<tr>
<th>Gene</th>
<th>Funktion</th>
<th>Koeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>ccpA</td>
<td>catabolite control protein A</td>
<td>2,35</td>
</tr>
</tbody>
</table>

Sonstiges

<table>
<thead>
<tr>
<th>Gene</th>
<th>Funktion</th>
<th>Koeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>27469309</td>
<td>konserviertes hypothetisches Protein</td>
<td>0,13</td>
</tr>
<tr>
<td>27467260</td>
<td>konserviertes hypothetisches Protein</td>
<td>0,16</td>
</tr>
<tr>
<td>27467393</td>
<td>plant-metabolite dehydrogenases</td>
<td>0,17</td>
</tr>
<tr>
<td>27468303</td>
<td>konserviertes hypothetisches Protein</td>
<td>2,15</td>
</tr>
<tr>
<td>27467466</td>
<td>konserviertes hypothetisches Protein</td>
<td>2,51</td>
</tr>
<tr>
<td>27467725</td>
<td>GTP-binding elongation factor</td>
<td>9,10</td>
</tr>
<tr>
<td>27468992</td>
<td>D-specific D-2-hydroxyacid dehydrogenase</td>
<td>9,25</td>
</tr>
<tr>
<td>27468226</td>
<td>konserviertes hypothetisches Protein</td>
<td>2,07</td>
</tr>
</tbody>
</table>
Tab. 8-2 Signifikant veränderte Proteine in *S. epidermidis* 1457*barAB* im Vergleich zu 1457*barA* und 1457*barB*

<table>
<thead>
<tr>
<th>Genname oder GI</th>
<th>putative Identifikation</th>
<th>biologischer Prozess</th>
<th>Regulation in 1457barAB</th>
<th>vs 1457barA</th>
<th>vs 1457barB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nukleotidstoffwechsel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deoB</td>
<td>Phosphopentomutase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,17</td>
<td>0,49</td>
<td>0,43</td>
</tr>
<tr>
<td>pyrC</td>
<td>Dihydroorotase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,38</td>
<td>2,51</td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,81</td>
<td>2,97</td>
<td></td>
</tr>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>Pyridine –Nukleotide</td>
<td>2,48</td>
<td>3,07</td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,43</td>
<td>3,76</td>
<td></td>
</tr>
<tr>
<td>purC</td>
<td>Phosphoribosylaminomimidazole-succinocarboxamidase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,76</td>
<td>2,97</td>
<td></td>
</tr>
<tr>
<td>purQ</td>
<td>Phosphoribosylformylglycinamidinsynthase I PurQ</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,76</td>
<td>2,97</td>
<td></td>
</tr>
<tr>
<td>upp</td>
<td>Uracilphosphoribosyltransferase</td>
<td>Wiederverwertung von Nukleosiden und Nukleotiden</td>
<td>4,60</td>
<td>5,34</td>
<td></td>
</tr>
<tr>
<td>prsA</td>
<td>Ribosephosphatpyrophosphokinase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>7,97</td>
<td>15,10</td>
<td></td>
</tr>
<tr>
<td>27468775</td>
<td>Inosin-adenosin-guanosin-nucleosiddihydrolase</td>
<td>Wiederverwertung von Nukleosiden und Nukleotiden</td>
<td>0,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>purA</td>
<td>Adenylosuccinatsynthase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>4,45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transkription</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoC</td>
<td>DNA-abhängige RNA-Polymerase, beta-Untereinheit</td>
<td></td>
<td>3,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nusG</td>
<td>Antiterminationsprotein</td>
<td>Transkriptionsfaktors</td>
<td>10,38</td>
<td>2,11</td>
<td></td>
</tr>
</tbody>
</table>
Signifikant regulierte intrazelluläre Proteine in *S. epidermidis* 1457*barA*, 1457*barB* und 1457*barAB*

Aminosäurebiosynthese

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Funktion</th>
<th>Signifikanz</th>
</tr>
</thead>
<tbody>
<tr>
<td>27467021</td>
<td>Ornithincarbamoyltransferase</td>
<td>Glutamatfamilie</td>
<td>0,35943</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,09</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,14</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationelongation</td>
<td>0,17</td>
</tr>
<tr>
<td>rplL</td>
<td>50S ribosomales Protein L10</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>0,24</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,26</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,28</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,29</td>
</tr>
<tr>
<td>27469179</td>
<td>konserviertes hypothetisches Protein</td>
<td>Protein synthesis: tRNA aminoacylation</td>
<td>3,12</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>4,83</td>
</tr>
<tr>
<td>rpsB</td>
<td>30S ribosomales Protein S2</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>5,82</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationelongation</td>
<td>6,15</td>
</tr>
<tr>
<td>27468083</td>
<td>30S ribosomales Protein S1</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>7,68</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>7,90</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>8,26</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>9,33</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationelongation</td>
<td>9,39</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,10</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,14</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationelongation</td>
<td>0,15</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,21</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,31</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>0,32</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationelongation</td>
<td>10,07</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>2,61</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationelongation</td>
<td>5,35</td>
</tr>
<tr>
<td>27468083</td>
<td>30S ribosomales Protein S1</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>6,78</td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationelongation</td>
<td>6,91</td>
</tr>
</tbody>
</table>
Signifikant regulierte intrazelluläre Proteine in *S. epidermidis* 1457*bar* *A, 1457*bar* *B* und 1457*bar* *AB*

Proteinbestimmung

<table>
<thead>
<tr>
<th>Protein</th>
<th>Funktion</th>
<th>Signifikanzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>7,58</td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>7,60</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>7,92</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>8,91</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>7,92</td>
</tr>
</tbody>
</table>

Transport und Bindung von Proteinen

<table>
<thead>
<tr>
<th>Protein</th>
<th>Funktion</th>
<th>Signifikanzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>ptsI</td>
<td>Phosphoenolpyruvat-Protein-Phosphatase</td>
<td>4,95 6,74</td>
</tr>
<tr>
<td>groEL</td>
<td>GroEL Protein</td>
<td>22,29 19,89</td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>0,27</td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>0,44</td>
</tr>
</tbody>
</table>

Biosynthese von Cofaktoren, prosthetischen Gruppen und Carriern

<table>
<thead>
<tr>
<th>Protein</th>
<th>Funktion</th>
<th>Signifikanzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>hemH</td>
<td>Ferrochelatase</td>
<td>5,03 9,40</td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>2,92</td>
</tr>
</tbody>
</table>

Zellwand

<table>
<thead>
<tr>
<th>Protein</th>
<th>Funktion</th>
<th>Signifikanzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>tagD</td>
<td>Teichonsäurebiosynthesis-Protein, Glycerol-3-phosphatcytidylyltransferase</td>
<td>0,26 0,26</td>
</tr>
<tr>
<td>27468626</td>
<td>UDP-GlcNAc 2-epimerase</td>
<td>2,07</td>
</tr>
<tr>
<td>lacD</td>
<td>Tagatose 1,6-diphosphataldolase</td>
<td>3,63</td>
</tr>
<tr>
<td>GenENAME</td>
<td>Beschreibung</td>
<td>Kategorie</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>femB</td>
<td>FemB protein</td>
<td>Biosynthese und Degradation von Oberflächenpolysacchariden und -lipopolysacchariden, Toxinproduktion und Resistenz</td>
</tr>
<tr>
<td>pdcH</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyltransferase</td>
<td>Energiemetabolismus</td>
</tr>
<tr>
<td>icd</td>
<td>Isocitratdehydrogenase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>tal</td>
<td>putative Transaldolase</td>
<td>Pentosephosphat-Weg</td>
</tr>
<tr>
<td>mqc-2</td>
<td>malate:quinone oxidoreductase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>pgk</td>
<td>Phosphoglyceratkinase</td>
<td>Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>glpK</td>
<td>Glycerokinase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>mqc-2</td>
<td>Malat:Quinon Oxidoreductase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>27467075</td>
<td>Malat:Quinon-oxidoreduktase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>tal</td>
<td>putative Transaldolase</td>
<td>Pentosephosphat-Weg</td>
</tr>
<tr>
<td>mqc-2</td>
<td>malate:quinone oxidoreductase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>pgk</td>
<td>Phosphoglyceratkinase</td>
<td>Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>glpK</td>
<td>Glycerokinase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>mqc-2</td>
<td>Malat:Quinon Oxidoreductase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>27468937</td>
<td>Sorbitoldehydrogenase</td>
<td>Fermentation</td>
</tr>
<tr>
<td>icd</td>
<td>Isocitratdehydrogenase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>lacD</td>
<td>Tagatose 1,6-diphosphataldolase</td>
<td>Biosynthese und Degradation von Polysacchariden</td>
</tr>
<tr>
<td>fbaA</td>
<td>Fructose-bisphosphataldolase, Klasse II</td>
<td>Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>ldh</td>
<td>L-lactatdehydrogenase</td>
<td>Glycolyse/Glukoneogenese</td>
</tr>
<tr>
<td>gltA</td>
<td>Citratsynthase</td>
<td>Energy metabolism: TCA cycle</td>
</tr>
<tr>
<td>mqc-2</td>
<td>Malat:Quinon Oxidoreductase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>pdcH</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyltransferase</td>
<td></td>
</tr>
<tr>
<td>mqc-2</td>
<td>Malat:Quinon Oxidoreductase</td>
<td>TCA-Zyklus</td>
</tr>
<tr>
<td>pdcH</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyltransferase</td>
<td></td>
</tr>
<tr>
<td>Signifikant regulierte intrazelluläre Proteine in S. epidermidis 1457barA, 1457barB und 1457barAB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacytyltransferase</td>
<td>8,38</td>
</tr>
<tr>
<td>Fettsäure- und Phospholipidmetabolismus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27469302</td>
<td>Acetyl-CoA C-acetyltransferase-ähnliches Protein</td>
<td>Biosynthese</td>
</tr>
<tr>
<td>accC</td>
<td>Acetyl-CoA-Carboxylase (Biotin-Carboxylase-Untereinheit) accC</td>
<td>Biosynthese</td>
</tr>
<tr>
<td>plsX</td>
<td>Fettsäure/Phospholipid Syntheseprotein PlsX</td>
<td>Fettsäurebiosynthese</td>
</tr>
<tr>
<td>Regulatorische Funktionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ccpA</td>
<td>catabolite control protein A</td>
<td>DNA-Bindung, Transkriptionsaktivator</td>
</tr>
<tr>
<td>Sonstiges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27467393</td>
<td>Pflanzen-metabolit Dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>27467260</td>
<td>konserviertes hypothetisches Protein</td>
<td></td>
</tr>
<tr>
<td>27469309</td>
<td>konserviertes hypothetisches Protein</td>
<td></td>
</tr>
<tr>
<td>27467393</td>
<td>Pflanzen-metabolit Dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>27467393</td>
<td>Pflanzen-metabolit Dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>27467393</td>
<td>Pflanzen-metabolit Dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>27468081</td>
<td>GTP-Bindeprotein</td>
<td></td>
</tr>
<tr>
<td>27468303</td>
<td>konserviertes hypothetisches Protein</td>
<td>Adaptation an atypische Bedingungen</td>
</tr>
<tr>
<td>27469293</td>
<td>GTP-binding protein</td>
<td></td>
</tr>
<tr>
<td>27467725</td>
<td>GTP-binding elongation factor</td>
<td></td>
</tr>
<tr>
<td>27468992</td>
<td>D-specific D-2-hydroxyacid dehydrogenase</td>
<td></td>
</tr>
<tr>
<td>27468226</td>
<td>konserviertes hypothetisches Protein</td>
<td></td>
</tr>
<tr>
<td>27467466</td>
<td>konserviertes hypothetisches Protein</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 8-3 Signifikant veränderte Proteine in *S. epidermidis* 1457*sigB* und 1457*sigBagr* im Vergleich zum Wildtyp 1457

<table>
<thead>
<tr>
<th>Genname oder GI</th>
<th>putative Identifikation</th>
<th>biologischer Prozess</th>
<th>Regulation in 1457sigB</th>
<th>Regulation in 1457sigBagr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nukleotidstoffwechsel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prsA</td>
<td>Ribosephosphatpyrophosphokinase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>0,14</td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>purC</td>
<td>Phosphoribosylaminomimidazole-succinocarboxamidsynthase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>0,23</td>
<td></td>
</tr>
<tr>
<td>purC</td>
<td>Phosphoribosylaminomimidazole-succinocarboxamidsynthase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>0,39</td>
<td></td>
</tr>
<tr>
<td>pyrB</td>
<td>Aspartattranscarbamoylase chain A</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,14</td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,23</td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>2,49</td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>4,16</td>
<td></td>
</tr>
<tr>
<td>upp</td>
<td>Uracilphosphoribosyltransferase</td>
<td>Wiederverwerbung von Nukleosiden und Nukleotiden</td>
<td>5,98</td>
<td></td>
</tr>
<tr>
<td>Transkription</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoA</td>
<td>DNA-abhängige RNA-Polymerase alpha-Kette</td>
<td></td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>rpoC</td>
<td>DNA-abhängige RNA-Polymerase, beta-Untereinheit</td>
<td></td>
<td>0,31</td>
<td>7,34</td>
</tr>
<tr>
<td>rpoB</td>
<td>RNA-Polymerase beta-Kette</td>
<td></td>
<td>6,73</td>
<td></td>
</tr>
<tr>
<td>Proteinsynthese</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rplY</td>
<td>50S ribosomales Protein L25</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>0,14</td>
<td>0,27</td>
</tr>
<tr>
<td>rpsB</td>
<td>30S ribosomales Protein S2</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>0,16</td>
<td>3,47</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>rplJ</td>
<td>50S ribosomales Protein L10</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationselongation</td>
<td>0,27</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td>Function</td>
<td>Expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationselongation</td>
<td>0,32</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,20</td>
<td></td>
</tr>
<tr>
<td>tsf</td>
<td>Elongationsfaktor EF-Ts</td>
<td>Translationselongation</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>rplJ</td>
<td>50S ribosomales Protein L10</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationselongation</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>rplJ</td>
<td>50S ribosomales Protein L10</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>0,28</td>
<td></td>
</tr>
<tr>
<td>hemL-1</td>
<td>Glutamat-1-semialdehyd-2,1-aminomutase</td>
<td>Heme, Porphyrin und Cobalamin</td>
<td>2,38</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>3,28</td>
<td></td>
</tr>
<tr>
<td>rplJ</td>
<td>50S ribosomales Protein L10</td>
<td>Ribosomale Proteine: Synthese und Modifikation</td>
<td>3,41</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>3,89</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationselongation</td>
<td>5,29</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>7,70</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>Translationselongation</td>
<td>8,78</td>
<td></td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>Faltung und Stabilisation</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>clpX</td>
<td>Protease ClpX, ATP-abhängig</td>
<td>Degradation von Proteinen, Peptiden und Glycopeptiden, Chaperonaktivität</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>Faltung und Stabilisation</td>
<td>0,18</td>
<td></td>
</tr>
<tr>
<td>dnaK</td>
<td>DnaK Protein</td>
<td>Faltung und Stabilisation</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>mrsA-2</td>
<td>Peptidmethioninsulfoxidreduktase</td>
<td>Modifikation und Reparatur</td>
<td>2,81</td>
<td></td>
</tr>
<tr>
<td>27468132</td>
<td>Xaa-Pro-dipeptidase</td>
<td>Degradation von Proteinen, Peptiden und Glycopeptiden</td>
<td>2,93</td>
<td></td>
</tr>
<tr>
<td>tig</td>
<td>trigger Faktor</td>
<td>Proteinfaltung und Stabilisation, Protein- und Peptidsekretion und trafficking</td>
<td>5,02</td>
<td></td>
</tr>
</tbody>
</table>
Signifikant regulierte intrazelluläre Proteine in *S. epidermidis* 1457sigB und 1457sigBagr

<table>
<thead>
<tr>
<th>Signifikante Proteine</th>
<th>Funktion</th>
<th>Signifikanzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>tig</td>
<td>trigger Faktor</td>
<td>Proteinfaltung und Stabilisation, Protein- und Peptidsekretion und trafficking</td>
</tr>
<tr>
<td>menB</td>
<td>Naphthoatsynthese</td>
<td>Biosynthesis of cofactors, prosthetic groups, and carriers: Menaquinone and ubiquinone</td>
</tr>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>Pyridine -Nukleotide</td>
</tr>
<tr>
<td>Energiemetabolismus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>glpK</td>
<td>Glycerokinase</td>
<td>Energy metabolism: TCA cycle</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacetyltransferase</td>
<td>0,11</td>
</tr>
<tr>
<td>27467075</td>
<td>Malat:Quinon Oxidoreductase</td>
<td>0,09</td>
</tr>
<tr>
<td>ald</td>
<td>Alanindehydrogenase</td>
<td>2,87</td>
</tr>
<tr>
<td>pyk</td>
<td>Pyruvatkinase</td>
<td>0,05</td>
</tr>
<tr>
<td>budA</td>
<td>alpha-Acetolactatdecarboxylase</td>
<td>0,09</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacetyltransferase</td>
<td>0,11</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacetyltransferase</td>
<td>0,09</td>
</tr>
<tr>
<td>ldh</td>
<td>L-lactatdehydrogenase</td>
<td>3,19</td>
</tr>
<tr>
<td>27468138</td>
<td>Glycindehydrogenase (decarboxylating) subunit 2</td>
<td>0,36</td>
</tr>
<tr>
<td>Fettsäure- und Phospholipidmetabolismus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27469302</td>
<td>acetyl-CoA C-acetyltransferase-ähnliches Protein</td>
<td>Biosynthese</td>
</tr>
<tr>
<td>plsX</td>
<td>Fettsäure /Phospholipid Synthetaseprotein PlsX</td>
<td>2,04</td>
</tr>
<tr>
<td>Regulatorische Funktionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rsbU</td>
<td>SigmaB Regulationsprotein RsbU</td>
<td>Proteininteraktion</td>
</tr>
<tr>
<td>Sonstiges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27467393</td>
<td>Pflanzen-metabolit Dehydrogenase</td>
<td>2,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signifikante Proteine</th>
<th>Funktion</th>
<th>Signifikanzwert</th>
</tr>
</thead>
<tbody>
<tr>
<td>27467393</td>
<td>Pflanzen-metabolit Dehydrogenase</td>
<td>0,07</td>
</tr>
<tr>
<td>Accession</td>
<td>Description</td>
<td>Regulation</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>27467260</td>
<td>konserviertes hypothetisches Protein</td>
<td></td>
</tr>
<tr>
<td>27468656</td>
<td>generelles Stressprotein 20U</td>
<td>Adaptation an atypische Bedingungen</td>
</tr>
<tr>
<td>27468081</td>
<td>GTP Bindeprotein</td>
<td></td>
</tr>
<tr>
<td>27469309</td>
<td>konserviertes hypothetisches Protein</td>
<td></td>
</tr>
<tr>
<td>27468297</td>
<td>konserviertes hypothetisches Protein</td>
<td></td>
</tr>
<tr>
<td>27467725</td>
<td>GTP-binde-elongationsfaktor</td>
<td></td>
</tr>
</tbody>
</table>
Tab. 8-4 Signifikant veränderte Proteine in *S. epidermidis* 1457*sigBagr* im Vergleich zu 1457*sigB*

<table>
<thead>
<tr>
<th>Genname oder GI</th>
<th>putative Identifikation</th>
<th>biologischer Prozess</th>
<th>Regulation in 1457sigBagr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nukleotidstoffwechsel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>3,03</td>
</tr>
<tr>
<td>upp</td>
<td>Uracilphosphoribosyltransferase</td>
<td>Wiederverwertung von Nukleosiden und Nukleotiden</td>
<td>3,20</td>
</tr>
<tr>
<td>pyrC</td>
<td>Dihydroorotase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>4,07</td>
</tr>
<tr>
<td>prsA</td>
<td>Ribosephosphatpyrophosphokinase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>6,51</td>
</tr>
<tr>
<td>purC</td>
<td>Phosphoribosylaminomimidazolosesuccinocarboxamid-synthase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>7,19</td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>7,39</td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>22,77</td>
</tr>
<tr>
<td>guaB</td>
<td>Inositol-monophosphat-dehydrogenase</td>
<td>Purin-Ribonucleotidbiosynthese</td>
<td>41,05</td>
</tr>
<tr>
<td>Transkription</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nusG</td>
<td>Antiterminationsprotein</td>
<td>Transkriptionsfaktors</td>
<td>2,38</td>
</tr>
<tr>
<td>rpoB</td>
<td>RNA-Polymerase beta-Kette</td>
<td></td>
<td>3,50</td>
</tr>
<tr>
<td>rpoA</td>
<td>DNA-directed RNA polymerase alpha chain</td>
<td></td>
<td>7,36</td>
</tr>
<tr>
<td>rpoC</td>
<td>DNA-abhängige RNA-Polymerase, beta-Untereinheit</td>
<td></td>
<td>23,83</td>
</tr>
<tr>
<td>Proteinsynthese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,22</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>0,35</td>
</tr>
<tr>
<td>tsf</td>
<td>elongation factor EF-Ts</td>
<td>Translationselongation</td>
<td>0,48</td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>Translationselongation</td>
<td>2,16</td>
</tr>
<tr>
<td>27469179</td>
<td>konserviertes hypothetisches Protein, Glutaminamidotransferase Untereinheit PdxT</td>
<td>tRNA-Aminoacylation</td>
<td>2,22</td>
</tr>
<tr>
<td>Protein</td>
<td>Description</td>
<td>Signifikante Werte</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>2,74</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>2,95</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>3,64</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>6,09</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>6,10</td>
<td></td>
</tr>
<tr>
<td>tuf</td>
<td>Elongationsfaktor EF-Tu</td>
<td>7,94</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>8,08</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>14,82</td>
<td></td>
</tr>
<tr>
<td>fusA</td>
<td>Elongationsfaktor EF-G</td>
<td>19,53</td>
<td></td>
</tr>
<tr>
<td>rpsB</td>
<td>30S ribosomal protein S2</td>
<td>22,05</td>
<td></td>
</tr>
</tbody>
</table>

Proteinbestimmung

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Signifikante Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>clpC</td>
<td>ATP-abhängige Clp Protease, ATP-Bindeuntereinheit ClpC</td>
<td>5,54</td>
</tr>
<tr>
<td>tig</td>
<td>trigger Faktor</td>
<td>10,45</td>
</tr>
<tr>
<td>tig</td>
<td>trigger Faktor</td>
<td>27,59</td>
</tr>
</tbody>
</table>

Transport- und Bindeproteinen

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Signifikante Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>ptsI</td>
<td>Phosphoenolpyruvat-Protein-Phosphatase</td>
<td>6,27</td>
</tr>
</tbody>
</table>

Biosynthese von Cofaktoren, prosthetischen Gruppen und Carriern

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Signifikante Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>27468515</td>
<td>Nicotinat-phosphoribosyltransferase-ähnliches Protein</td>
<td>5,31</td>
</tr>
</tbody>
</table>

Energiemetabolismus

<table>
<thead>
<tr>
<th>Protein</th>
<th>Description</th>
<th>Signifikante Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyltransferase</td>
<td>0,23</td>
</tr>
<tr>
<td>27467132</td>
<td>Formatacetyltransferase</td>
<td>0,43</td>
</tr>
</tbody>
</table>
Signifikant regulierte intrazelluläre Proteine in *S. epidermidis* 1457*sigB* und 1457*sigBagr*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein/Enzyme</th>
<th>Funktion</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>budA</td>
<td>Alpha-Acetolactatdecarboxylase</td>
<td>Fermentation</td>
<td>2,35</td>
</tr>
<tr>
<td>27468138</td>
<td>Glycindehydrogenase (Decarboxylierung) Untereinheit 1</td>
<td>Aminosäuren und Amine</td>
<td>2,56</td>
</tr>
<tr>
<td>pyk</td>
<td>Pyruvatkinase</td>
<td>Glycolyse/Glukoneogenese</td>
<td>2,79</td>
</tr>
<tr>
<td>27468139</td>
<td>Glycindehydrogenase (Decarboxylierung) Untereinheit 2</td>
<td>Aminosäuren und Amine</td>
<td>3,15</td>
</tr>
<tr>
<td>pyk</td>
<td>Pyruvatkinase</td>
<td>Glycolyse/Glukoneogenese</td>
<td>3,48</td>
</tr>
<tr>
<td>lacD</td>
<td>Tagatose 1,6-diphosphataldolase</td>
<td>Biosynthese und Degradation von Polysacchariden</td>
<td>4,02</td>
</tr>
<tr>
<td>ldh</td>
<td>L-Lactatdehydrogenase</td>
<td>Glycolyse/Glukoneogenese, anaerob</td>
<td>4,04</td>
</tr>
<tr>
<td>fbaA</td>
<td>Fructose-bisphosphataldolase, Klasse II</td>
<td>Glycolyse/Glukoneogenese</td>
<td>5,54</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyteltransferase</td>
<td>Polysacchariden</td>
<td>7,21</td>
</tr>
<tr>
<td>ald</td>
<td>Alanindehydrogenase</td>
<td>Alanin-metabolische Prozesse</td>
<td>7,95</td>
</tr>
<tr>
<td>pdhC</td>
<td>Pyruvatedehydrogenase-Komplex E2 Komponente, Dihydrolipoamidacyteltransferase</td>
<td>Polysacchariden</td>
<td>36,53</td>
</tr>
<tr>
<td>glpK</td>
<td>Glycerolkinase</td>
<td>Fettsäurebiosynthese</td>
<td>60,68</td>
</tr>
</tbody>
</table>

Fettsäure- und Phospholipidmetabolismus

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein/Enzyme</th>
<th>Funktion</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>plsX</td>
<td>Fatty acid/phospholipid synthesis protein PLSX</td>
<td>Fettsäurebiosynthese</td>
<td>0,16</td>
</tr>
<tr>
<td>27469028</td>
<td>3-Hydroxy-3-methylglutaryl-CoA-synthase</td>
<td>Biosynthese</td>
<td>2,06</td>
</tr>
<tr>
<td>accC</td>
<td>Acetyl-CoA-Carboxylase (Biotin-Carboxylase-Untereinheit) accC</td>
<td>Biosynthese</td>
<td>2,64</td>
</tr>
</tbody>
</table>

Regulatorische Funktionen

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein/Enzyme</th>
<th>Funktion</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsbU</td>
<td>SigmaB Regulationsprotein RsbU</td>
<td>Proteininteraktion</td>
<td>2,53</td>
</tr>
<tr>
<td>ccpA</td>
<td>Catabolite Control protein A</td>
<td>DNA-Bindung, Transkriptionsaktivator</td>
<td>2,66</td>
</tr>
</tbody>
</table>

Pathogenese

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein/Enzyme</th>
<th>Funktion</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>srrA</td>
<td>Staphylococcal respiratory response protein SrrA</td>
<td>Regulatorische Funktionen: DNA-Interaktionen, Proteininteraktionen; Zweikomponentensystem</td>
<td>2,94</td>
</tr>
<tr>
<td>Anmerkungen</td>
<td>PDB-Id</td>
<td>Proteinname</td>
<td>Adaptation an atypische Bedingungen</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>27468303</td>
<td>konserviertes hypothetisches Protein</td>
<td>2,29</td>
</tr>
<tr>
<td></td>
<td>27468297</td>
<td>conserved hypothetical protein</td>
<td>2,57</td>
</tr>
<tr>
<td></td>
<td>27468081</td>
<td>GTP binding protein</td>
<td>3,59</td>
</tr>
<tr>
<td></td>
<td>27469293</td>
<td>GTP-binding protein</td>
<td>4,55</td>
</tr>
</tbody>
</table>
IV KEGG-Diagramme

Abb. 8-3 Glykolyse / Glukoneogenese
Abb. 8-4 TCA-Zyklus
Gezeigt sind die möglichen metabolischen Wege, die *S. epidermidis* im Citratzyklus zur Verfügung stehen. Die Enzyme sind mit ihren EC-Nummern gekennzeichnet (http://www.genome.jp/KEGG).

Abb. 8-4 Aminozucker-Metabolismus
V Proteinalignment BarA und BarB

A

SERP0135_ S.epidermidis RP62A
NTL02SE2286_ S.epidermidis ATCC12228
NTL01SA0473_ S.aureus N315
SACOL0540_ S.aureus COL

SERP0136_ S.epidermidis RP62A
NTL02SE2287_ S.epidermidis ATCC12228
NTL01SA0474_ S.aureus N315
SACOL0541_ S.aureus COL

B

SERP0135_ S.epidermidis RP62A
NTL02SE2286_ S.epidermidis ATCC12228
NTL01SA0473_ S.aureus N315
SACOL0540_ S.aureus COL

SERP0136_ S.epidermidis RP62A
NTL02SE2287_ S.epidermidis ATCC12228
NTL01SA0474_ S.aureus N315
SACOL0541_ S.aureus COL

Abb. 8-6 Proteinalignment von BarA und BarB

Verglichen wurden die Proteinsequenzen von BarA (A) bzw. BarB (B) aus den *S. epidermidis* Stämmen RP62A und ATCC12228 mit den homologen Genen aus *S. aureus* N315 und COL. BarA weist mit dem homologen YabJ eine Ähnlichkeit von 90,5 % (Identität 78,6 %) auf. BarB ist höher konserviert zum homologen Protein SpoVG in *S. aureus* mit einer Ähnlichkeit von 98 % (Identität 95,1 %).
Lebenslauf

Persönliche Angaben
Beate Jonas
Geboren am 19. September 1981
in Greifswald
Ledig, keine Kinder

Schulbildung:
Abschluss: Abitur (1,4)

Studium
10/2000-10/2005 Studium der Humanbiologie an der Ernst-Moritz-Arndt-Universität Greifswald
11/2003-01/2004 Praktikum an der New South Wales University, Sydney im Labor von Prof. Staffan Kjelleberg
Studienschwerpunkte: Mikrobiologie und Molekularbiologie, Immunologie, Medizinische Biochemie
10/2004-09/2005 Diplomarbeit „Untersuchungen zur Regulation von SigmaB in Staphylococcus aureus“ am Institut für Mikrobiologie der Ernst Moritz Arndt Universität Greifswald bei Prof. Dr. Michael Hecker in der Arbeitsgruppe von Dr. Susanne Engelmann
10/2005 Abschluss mit dem akademischen Grad der Diplom-Humanbiologin (2,0)

Beruflicher Werdegang:
Seit 11/2006 Wissenschaftliche Mitarbeiterin in der Arbeitsgruppe von Prof. Dr. Johannes Knobloch
Seit 11/2006 im Institut für Medizinische Mikrobiologie und Hygiene am Universitätsklinikum Schleswig-Holstein, Campus Lübeck

weiteres Engagement:
als Student Mitglied im Humanbiologieverein, e. V. Greifswald, aktive Mitarbeit in der Arbeitsgruppe Puls (Public understanding of life sciences)
Stellv. Vorsitzende des Vereins zur Förderung des Wissens in der Infektiologie e.V. Lübeck
Veröffentlichungen

Publikationen

Abstracts

Auszeichnungen

1. Travel fellowship des International Symposium on Staphylococci and Staphyloccocal Infections, 2008

2. DGHM Reisestipendium der 60. Jahrestagung, 2008