From the Institute for Telematics
The University of Luebeck

Director:
Prof. Dr. rer. nat. Stefan Fischer

Aspect-Oriented Adaptation Composition and Dynamic
Reconfiguration in Multimedia Frameworks

Dissertation
For Fulfillment of
Requirements
For the doctoral degree
of the University of Luebeck
from the faculty of Technology and Natural Scienees

Submitted by

Muhammad Asadullah Khan
from Rawalpindi, Pakistan

Luebeck, 2007

Abstract

With enormous expansion of the Internet in sizetiqudarly the wireless part, and
an ever increasing myriad of distributed multimedgplications, we are moving towards
its more ubiquitous use in future. In particulahetnumber of embedded and resource
constrained computers will significantly increaderay with the resulting increase in the
number of applications. Due to the distributed matof such systems, the number of
inter- and intra-application interactions will rise These interactions will be
unpredictable, dynamic and distributed. Therefdhes system as a whole will need to
adapt to the changes as soon as they occur. Cownt@mypsolutions exist in the form of a
middleware layer, which is reconfigurable using leefive or aspect-oriented
programming. This indirectly enables adaptive exiecuof the applications running on
top of it. The applications interact with this layea stubs, skeletons or interfaces.

In this thesis the existing development panadigas been reviewed for its
shortcomings and a new paradigm of composing adaftehaviors has been developed,
in the context of multimedia frameworks. Two masues which have been tackled are
static composition of adaptation and its dynamicorgfiguration. This new paradigm is
based on the state machine model and is implementsdftware as an event-based
system. The new paradigm differs from the conteamparork in the sense that it does
not rely on any stubs, skeletons or interfaces. pfateon mechanism is completely
confined in a separate layer, at the time of adaptacomposition, whereas, at the
application load-time, smart patches of code areeggated according to the specified
adaptation behaviors and are weaved into the seppéipplication code, using aspect-
oriented programming techniques. The source codiefapplication is not required;
weaving is done on the compiled code instead. Thasactual application code is
transformed into new code, which has now adaptatemaviors composed into it. When
the transformed code starts execution, it generatesnts. The events are trapped and
adaptively diverted to trigger the application fraone state to another, in response to
dynamic changes occurring in the entire system.s€quently, the execution pattern of
the given code is impacted by changes externaheoapplication and the application
code adapts to those changes. Since multimediacapiph code has been considered in

particular, multimedia data flow undergoes dynaraied adaptive modifications as a
result.

Through quantitative and comparative analysi$ias been shown that the model
performs significantly better than the existing tegss, which use middleware as a
separate layer underneath the application. Als@s thodel can handle various types of
application oriented multimedia adaptations, whiey on the application code and
cannot be adequately handled by existing systenttsowti human involvement. The
architecture is portable and realizable in othentpuages as well. Although the work was
done in the context of multimedia frameworks, thacjples used by the conceptual
model are applicable to any event based framewbhle work presented in this thesis
concludes by proposing suggestions for further ldgweent with particular reference to
its portability to different frameworks and extdrbiy using dynamically reconfigurable
hardware.

Acknowledgements

With a deep feeling of satisfaction that comes upampletion of a task, | thank my
supervisor Prof. Dr. rer. nat. Stefan Fischer, wloguidance and encouragement
throughout my work at IBR, Braunschweig and latefTaM, Luebeck has been a great
source of inspiration. | felt a great pleasure, wHewas given a free-hand to experiment
and explore research ideas. In addition to his able technical suggestions during the
process of writing scientific papers and this ditstoon, he was happy to help solve
many of my problems which were not even relatedigqrofession, but | would have
faced them as a foreign student in Germany. Ini@agr, | am thankful for all the
‘letters’ he wrote to the “Auslaenderbehoerde” ardifferent foreign offices and
embassies, to handle visa related issues.

| am grateful to the Braunschweig University of Aemlogy and the University of
Luebeck for employing me as a Scientific Assissauat providing necessary financial
assistance to enable my all conference participetioProf. Dr.-Ing. Lars C. Wolf
deserves my thanks, for all his efforts to handle visa extension issues with the
Braunschweig Foreign Office, after Prof. Fischerved to Luebeck.

My colleagues, Dr.-Ing. Joerg Diedrich and FrankraBiss deserve thanks in
particular, since without them, my initial days Germany would have been miserable.
They were there to help with even those thingstwbften appeared minor, but were
practically significant and hard to handle as ad@n student. For me, they were not
only ‘Live German-English Dictionaries’, they alsmld some wonderful tricks to survive
in Germany. They deserve appreciation for all liedp they extended to me, including
their all ‘unsuccessful’ efforts to teach me the@an Language! My colleague Prof. Dr.
Christian Werner, was particularly helpful in finahg dissertation submission
formalities.

Last but above all, | must remember the long tiawiBce of my family, without whose
encouragement and support, | would have neithembagle to start this task, nor
complete it.

Vi

Table of Contents

Y 013 (= ox PP PPPPR PP iii
ACKNOWIEAGEMEBNTSo s enrasnenenes %
LI o] (o3 01 O 0]] (=] o £ Vii
IS o) T U =SSOSR Xi
LISt Of TADIES ... e Xiii
(O g F=T o] (=] i TSP TTTOTRTRRRRRN 1
1] 0o [Tod 1 o] o PSS 1
IO 1V o] 1= L4 [) o SR 1
1.2 An Overview of EXisting APPrOoaChes........coovviveiiiiiice e e e 2
1.3 Limitations of EXIStING WOTK.........ccoiiiiimmio e e 3
I N g T=Te [@ 111U 11 o] o LS 5
1.5 Technical ChallenNges..........uuuii it e e e e e e e e e e e e eenes 6
1.6 Organization Of the ThESISciveiiii e e e 7
CRAPLEL 2 ...t eeeema et e e e b e n b b nbe b n e nnnne 8
Background and Survey of Related WOrK........cooeeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieniienieeene. 8
P22 N [11 70 To 18 ox 1T o TP P SURPPPPUPRPRPPI 8
2.2 Quiality of Service and Adaptation - Fundamenta...............cccoiiiiiiiii e 9
2.2.1 System (Network) Oriented QOScceeeeriiiiiiiiiiii e e e e e et e e 10
2.2.2 Application Oriented QOS (Ad@PLatiON) ...cceeeiiieeeeiie it er e e s e e e e e e e sennees 11
2.2.3 Combined System QoS and Application Adaptafipproaches.........cccccceeveeeveieieciiivinnenn. 11
2.2.4 Adaptation in Pervasive and Mobile COMPULNG............ccoociiimiiiiiiiiiee e creieeeeee e 12
2.2.4.1 Adaptation with respect to CharacteristicBervasive Environment.................ceeueee 12
2.2.4.2 Adaptation with respect to CharacteristicBervasive Devices................ccevvivveveeens 13
2.3 Language Features and Software Tools for Adaptiancccooeevveiiiiieiiiiiinieenenns 81
2.3.1 Reflection and ReIfICALIONomueeeriiieieieiee et e e e e e e e e e e e e e e e nnaes 18
2.3.1.1 Reflection Support in Contemporary LangBage.c.vevvuvrrvrrernniieiiesesmmmmmmeeeeeens 19
2.3.2 Meta Object Protocols and Meta ArchiteCtULES...........uuvevieeeeeeeiiie e 20
2.3.3 Aspect Oriented Programming..........cccceeeerieioiieriiierereeeeessessssesiereseeseessssssnssssrennseeeeeees 21
2.3.3.1 Elements of an Aspect Oriented LanQUAGgEe. -............euuvurmiiiiiiiiiieieeeeeeeieeneneasceeeannns 21
2.3.3.2 Aspect Weavers and Related WOTK ... cceceeeeee e scveeee e 23
2.4 Software Systems and Models for Adaptationcccoeeveeiiiiiineiciie e, 23
2.4.1 Adaptation’s Place in System Hierarchy — Whedleware Levelcccoevivvviiviininnns 23
2.4.1.1 Reflective and Adaptive Middleware and REIANVOIKcccvvveveeeeeeiiiiiiiiiiieeeeens 23
2.4.1.2 Aspect Oriented Middleware and AOP Fram@&®B/Or.............ccceeeevveiiieieeieiiiiiivimemnen 29

vii

2.5 Summary of the Related Work and LIimitationSccoooevviiiiiieiiiiiiii e 35

(O =T 0] =T S TSR 37
Aspect-Oriented Model for Adaptive Code Generation...........cocoeeeeeeeieeieieeeeee e, 37
300 [o1 oo [ox 1 o] o TP PR OUPPPPPPRPRTPRPN 37
3.2 System State MaChiNegcouuiiiiiee e e 38
3.3 APPlICAtiON STALE Sel....cciiiii i e 42
3.4 Profile STAE Slc.eiiiiieiii i et e ee e 43
3.5 Realizable State MaChiNeuu et 44
3.6 Towards a Practical MOUEIuuuuimm e 49
(@4 =T 0] =] S S SPR 54
Adaptation Composition and Runtime Environment fdultimedia Applications
(YO = 1Y S 54
o R g (0T [T (o o PO PP TP 54
4.2 IMF Media Processing EIeMENTS...........iceeie e e ee e eeeeaa s 54
4.3 Architectural Overview of the System Model............c.ccooiiiiiiiiiin e, 55
70 T S - Toa @ o o o1 1S3 1o) o PR 57
4.3.2 Dynamic ReCONFIQUIALIONccoi i ceeeee e e er e e e e e e e e e s e e aeeees 58
4.4 System-wide Adaptation Coordination.........cccceeeeieiiiiiiiiiien e 60
4.5 State Machines and Code Transformation.........cccoeeeeiiiiinieeieiiinee e 61
4.6 Adaptation ClassSifiCation...........cooiiiiiiiiii e 64
4.6.1 Code Interception Event Diversion AdaptaiGiED)ccceveieaiiiiiiiiiiiiiiieim e 65
4.6.2 Static Pre or Post-Processing Chain Adaptg@BPC)oovvvvvviviiiiiiiiiiiiinee e 67
4.6.3 Main Processing Chain Static Adaptations (JBPC.........cooveviiiiiciiiiiiiireree e vmmmmee s 68
4.6.4 Main Processing Chain Dynamic AdaptationsQIP...............ccoovvvriviiiiiiiiiiiiiisieee e, 70
4.6.5 Multiple Code Manipulation Adaptations (MCMAD...........covveriiriiiiiiiiiiin e enaeeae e 71
4.6.6 Adaptations requiring ACREMA EXIENSIONSuvviiiiieeeeiiiiiiiiiiiiieeeeee e e e e snnnneeeeeeaeeeens 71
(O F=T o] (=] T TS TOTOTRPRPRTRRR 72
ACREMA IMPIemMeNntationoooiiiiiiii e 72
5.1 Specification of Adaptation Preferences and Pfilescccoooviiiiiiiiiiiiin e e 72
5.2 Derivation of the Resultant State Maching............ccoiiiiiiiiiiii e, 74
5.2.1 CIED Code Transformation and Parameter TUNING............cuvvviiiiiiiiiiiniiiiieeeeeeeneeiee e 75
5.2.2 SPPC Code Transformation and Parameter TUNING........ccuvvevriiieieeerenisiciiinreeeeeeseeens 78
5.2.3 MPCS Code Transformation and Parameter TUNINGccevriviiriivviiiriireeeeeeeesenieneees 80
5.2.4 MPCD Adaptation Implementationccuuuiuiiiiiiiiiiin e eeee e 82
(@4 T 0] =T S TSP 85
ACREMA EVAIUALION ...euttitiiiiiiiiiiiiiiiiiiiiaseaeeeeeeeeaeeaeesseseesssssssessssssssssssssnannnsessseseeees 85

6.1 Evaluation TeSt BENCHoouvii e e 85
6.2 Architectural Evaluation of ACREMA ... e 86
6.3 Application Test Case EValUuation...........occvuriiiiirieiin i e e e 90
6.3.1 Code Interception Event Diversion (CIED) AGHIDNSccceeeeieviiiieinieieieeeeeeesemmmmmeeneeeens 91
6.3.2 Static Alteration of Pre or Post Processihgi@ (SPPC Adaptation)c.cecovevvvieeeeeenes 91
6.3.3 Static Alterations of Main Processing ChaiNuuuivieeeeeiiiiiiciiiiiie e e e eese s ee e 92
6.3.4 Dynamic Data FIOW DIVEISION............ummmmeerererererietesesaianaennnnneereeereeessaassesssnnereeaeseeesananns 93
6.3.5 Multiple Adaptation Application TESt CaS . .ciciviiiiiiieiiieciii e 95
6.4 QuAlitative EVAIUALIONuuueiii et 96
B.4.1 SCAlADIIILYcciiiiiie ettt a e e e e e e e ta et aearaaarran 96
A =T 01T =111 Y75 OO PPPPPPPPSPRRRRN 97
O e B 0o B (] 1= o RS 97
G g1 =1 o] 1 PSSR 97
(O = o (= PSSP 99
Outlook and FULUIE DIFECHIONSuuuiiiiiierie e 99
7.1 CONIDULIONS ...ttt e ettt e e e e e et eeae bbb as 99
7.2 FULUIE EXIENSIONS. ... uuiiiiiiiii e ettt v e ettt e e e e e e e e e e et s e e e s e e e eaaan e e e eanaanes 100
7.2.1 Software Related EXIENSIONS...........cummmemiuriiiiiieeeeeeeeisisriee e e ee e e s esssssrraeerereeeeeeeassannnnes 101
7.2.2 Dynamically Reconfigurable Hardware Relat&ERSiONSccccvvvveveieeeee e 101
(IS oY A o] o] =2V = U1 o 1R 104
Appendix A : List of Author’'s PUblICatiONS.......ccoiiiiiiiiiiiii e, 117

List of Figures

Fig. 3.1 — A System State Machine with arbitraciysen state names, showing all possible states..38
Fig 3.2a — First transition of System State Machine................iiiiiiiiiiiie s 40
Fig 3.2b — System state machine taking a transpiashing resource limits to threshold level. 40
Fig 3.2c — Resulting System State Machine upon letiop of transition from SOto S3...........ccceee.... 41

Fig. 3.3 — A sample Realizable State MaChINE . vvveeeieiieee e e e 48
Fig. 3.4a — Altering pre-processing chain of theagi application code.............ccccccvvviiieeeenie s 51
Fig. 3.4b — Altering pre and main processing chaifthe given application code.............ccccccceeiennne 52
Fig. 3.4c - Altering post processing chain of tlieg application Code.........ccooiviiviiiii i 52
Fig. 3.4d — Altering entire processing chain of gieen application...........cccoceveeiiiiii e, 52
Fig 4.1: Application loaded on top of ACREMA reSitBYer...........ccoeeiiiiiiiiieeeien e 56
Fig 4.2: Aspectized application code produced affenerated adaptation behaviors have been weaved-in
... 56
Fig. 4.3 — Static COMPOSItION PRASEcomemeeiitiiiieiiie ettt e e e e e e e aaaaaaeaeae 57
Fig 4.4: Dynamic Reconfiguration PRaSEccccceeeiiiiiiiiiiiieie e e e e e ee e e e e e e 59
Fig 4.5 — An overview of the application code pssieg through the static composition and dynamic
(g=ToTo] 0110 U= Vi o] TN o] g T= TS SRR 63
Fig. 4.6 — Static COMPOSILION PASSESiieeeeeeciiiiiiiie e ce e e e e e e s es s erere e e e e e s e s nnneraeaeeees 64
Fig 4.7: Sequence of operations to weave-in CIERPABLIONSccoooviiiiiiiiiiiiie s 66
Fig 4.8: Sequence of operations to weave-in SPPAPRIONSc.cooveviieiiiiiiiiicceee e 68
Fig 4.9: Sequence of operations to weave-in MPCERIONSvvvviiiiiiiiiieii e vmcmmm e eevaeasinnes 69
Fig 5.1: An excerpt of user’'s adaptation prefereinCe. ... 73
Fig. 5.2 — An excerpt of Sample Profile ... ——————— 75
Fig 5.3: Given application byte-code being interezpby the Pointcuts residing outside the applarati
advice being woven and runtime adaptation hooksgiekported as a result...........ccccoovviieeecemeeeeennn. 76
Fig 5.4 (a) showing code interception and patchimgase of SPPC adaptations..............c.cccceuvevnnene. 79
Fig 5.4 (b): showing the resulting component swapégctDraw Renderer swapped with LightWeight
Renderer), as the result of above adVviCe WEAVING............ocoiiiiiiiiiiie e 80
Fig 5.5: A codec chain being swapped with a newsBl.@odec during the static composition phase of an
| GRS T= T F=T o) 2= L4 [o A PP 18
Fig 5.6 (a): Multiple processing chain installatiai a DMFC adaptation. I/O sync. code left out for
£SO PRR 83

Fig 5.6(b): resulting change in dynamic adaptattowoks, (initially JPEG quality control was availa)
now in addition to H.263 quality control a numbdraodher fine tuning parameters are exported as

AAPLALION NOOKS.o e e et a e et 84
Fig 5.6(c): multiple elements of the media proaegsihain have been swapped, as a result of maiimcha
incompatibility resolution process (described eatrlin SEC.4.5.4).......uvuvviieeiiiiiiiiiiceeeee e 84
Fig 6.1 — Evaluation teSt DENCN ... e e e e e e e e e e e e 85
Fig. 6.2 —Adaptation Composition Latency Graph @dBNe)cccceeeviiiviiiieiriie e 87
Fig 6.3 — Adaptation Invocation Latency Graph (HOT&)ccoeeeririeeiiiinimrirereeeeemmmme e e eeseseeeeeeees 88
Fig 6.4 — Comparison of Network Bandwidth REQUINBIBIE.ieiiiiiiiiieiieiiececc et emeemre e 89
Fig 6.5 — Server CPU Load adaptation by varying M®Quality Factor, with negligible adaptation

o1 =T g T =T TP P PPPPPPPPPR 91
Fig 6.6 — Static Pre/Post Processing Adaptationafgle of Client-only adaptationcem..... 92
Fig 6.7 — Main Processing Chain Static AdaptatioGhanging frame-rate in H.263 video................ 93
Fig 6.8 — Codec Swap Adaptation — Conflicting Adaph EXample............iiiiiiiiiiiiceceeeeeeeee e, 95
Fig 6.9 — Multiple adaptation invocations in a cdewreal-life situation...............cccoeee v e vevvveevvvninns 96

Xi

Xii

List of Tables

Table 1.1 — Comparison of placement of adaptatiooverall SYStem...........cccevevevieeeeeiiviccieeee e, 4
Table 3.1 : Adaptation types and their correspogdffects on system reSourCes............ceeeeeeveeeeennn. 49
Table 4.1 —Java Media Framework’s media processiBgIENtScceeeviieiiiiiriiieirie s e e e e e 55
Table 4.2 — Summary of adaptation ClassifiCatiQN...............cooiiiiiiiiiiii e 70
Table 5.1 — Different adaptation types and relatverheads.............cooooveiiiiiiiiir e 72
Table 6.1 — Comparison of Adaptation iNvOCatioNEAIES.............ccoveevviiiieiie e 88
Table 7.1 — Summary of CONtHDULIONS........cooeieiiiii e e 100

Xiii

Chapter 1

Introduction

1.1 Motivation

With the enormous expansion of the Internet in,quzeticularly the wireless part, and
an ever increasing myriad of distributed multimealglications, we are moving towards
its more ubiquitous use in future. The number ahpaters (in particular those which are
embedded and resource constrained) will signiflgantrease. This will lead to an even
greater number of applications running on suchasvand a corresponding rise in the
number of their interactions. These interactionsomgn applications (and different
components of the same application) will be distigil, un-predictable and dynamic.
Therefore, stable operation of future systems caly de guaranteed if different
components constituting an application and differ@gpplications making up the entire
system are capable of adapting themselves to cekangecoordinated manner. However,
looking at the complexity of large distributed sy of resource constrained devices, it
is neither feasible nor possible to take into aotoso many different adaptation
scenarios, because the number of situations whiali amise during an applications
execution lifetime, and interaction patterns offafiént applications are unpredictable
beforehand.

These inter-application, intra-application and sgghetwork-wide interactions, which
in-turn contribute to dynamically changing resourequirements during the application
runtime, will render the design of adaptable appions very complex and their
interactions un-manageable, especially when ceQuaiality of Service (QoS) is desired.
Furthermore, it is not possible to have as manydrnexperts to cope with this situation
because it requires a good understanding of spexdfptation Application Programming
Interfaces (APIs) and using those APIs in develgmwery application requires analysis
of the entire system dynamics. The solution liedemelopment of systems which require
no or minimal user involvement to adapt their fumaality to varying operating
environments.

The work presented in this dissertation is motidatey the need to develop
frameworks/environments, which can facilitate ilngeint adaptations after making
legacy multimedia applications (non-adaptive omapable of adapting, without any user
involvement in programming adaptation behaviors aitti minimum (or without) user
involvement in configuring adaptation parameterthédugh this work is focused on
multimedia applications on wireless networks oforese constrained devices, the
methodology presented here is applicable to othentebased development frameworks
in different domains.

1.2 An Overview of Existing Approaches

Since the early days of distributed computing saftw like Remote Procedure
Calls(RPC) efforts have been mostly focused onnlgidow level networking details,
providing distribution transparency and certaineotBuch features by introducing an
abstraction layer beneath the applications. Latevekbpments like Distributed
Computing Environment(DCE-RPC) provided some addél services along with a
number of uniform interfaces for the applicationognammers while masking the
network heterogeneity. Further middleware systemtuding a number of well known
technologies like OMG’s CORBA [OMG1995], DCOM (whievolved as DDE to OLE
to COM to DCOM) [MM1997], Java RMI [Sun1997] matdrand are being widely used
today, however, the motivation behind all such peeg was to ease the development of
enterprise applications for which, characterizirgameters are robustness, persistence,
transaction security etc. These technologies iir t@mmon form are, therefore, not
suitable for applications which are required to paddynamically to changes in their
operating context.

Technologies like CCM [OMG2001] , EJB [Sun2001] a@@®M [Don1997] , mainly
enhanced the capabilities of existing middlewarehielogies by using component
models, enabling reusable service composition,igordtion and installation, but the
focus remained on business QoS. Other approach@edace purpose-built middleware
for communication, like Adaptive Communication Enaviment (ACE) [Sch1994], and
TAO [Sch1999], were although custom tailored to oamication QoS, at least a part of
these middleware still remained as a monolithiefdyeneath the applications. This is not
suited to resource constrained devices due to d¢fetively large footprint of the
middleware.

Further improvements in literature appear in thenf@f custom-tailored middleware
mostly relying on reflective-programming techniquaad can be broadly classified as
Adaptive and Reflective Middleware, which facilgainspection and alteration of the
middleware layer and adjusting it to needs. Thagyial benefit of such technologies is
that low level networking details remain hidden whequired, but, can be exposed to the
application programmer where needed, through médlec Thus a general purpose
middleware can be made domain specific when desire@ prominent examples are
Open ORB [BCA+2001] and Dynamic TAO [RKC1999]. Adtgh in both these
research prototypes, reflection is used to confighe ORB, the process of application
development and customization is fairly human ddpahand requires two phases:

() - The applications should be written to beng&fim the API offered by the ORB
(ii) - and the ORB must be configured to the opaggpénvironment.

A number of projects like BBN’s Quality Objects(QufBS+1998] and middleware
based on CORBA compliant ORBs, like Component-irgesgi ACE ORB (CIAO)
[Wang2003], ZEN [KKS+2003], AspectlX [HBG+2001] artargeted to provide
communication oriented QoS by using Meta Objecttd@as (MOPS) [Kic1991] or
Aspect oriented Programming (AoP) [KLM+1997]. Thésehnologies enable separation
of functional and non-functional concerns in theldkeware layer. Due to this separation
of concerns, the resulting middleware is custome&amnd can have small footprint as
well, however, there are still some limitationsatdissed below; in particular, when a
general purpose middleware is customized to a Bpeamain.

1.3 Limitations of Existing Work

Despite having undergone many improvements, thgtiegi middleware technologies
are still limited in coping with the challenges pdsby specific domains, like integrated
networks, wireless multimedia on resource constidhitievices etc. These limitations are
summarized below:

. Middleware exists as a separate layer beneath fieation Additional
abstraction layer is not suitable in case of muéidia applications,
because it introduces un-necessary overhead in imgpgackets and
transfer of other control signals to and from théyer. The additional
operations consume a significant amount of systesources like the
battery power on small devices. Even in those sebemhich offer the
option of bypassing the middleware layer, applicati dependent
properties (e.g., multimedia transcoding) cannoteleciently handled..

3

. The programmer is required to program with someppge-built QoS
API, which needs substantial effort to analyze (ragvedict) the runtime
system behavior, precisely estimate resource atitin etc, which is never
possible due to time varying nature of the inteyplzetween resource
requirements and resource fluctuations. This impactmany-fold in
wireless networks (the details are given in lateaputers). It is a major
problem and will always hinder system’s performargredictability,
throughout its life-time.

. These models _mainly target system-side adaptgtiased on resource
reservation and allocation etc.) and have been usedmission-critical
distributed real-time embedded applications (whete non-elastic in
nature and rely on pre-hand over-booking of thetesysresources). In
order to guarantee QoS, these schemes reserveroesoun multiples of
the minimum application requirements. Thereforeless the resource
fluctuations are very high, most of over-bookedoveses go waste for
most of the application lifetime. Since multimedipplications can
generally tolerate some resource fluctuation andotgce over-booking
will lead to waste of resources, adaptation baseldesmes is likely to
perform better.

Implementation Flexibility Efficiency Programming Ease Size Suitability
type
Implemented solely Less High Low; the user needs tc Suitable for small
inside application devise the adaptation foot print devices
procedures and prograi (because only the
them. application is present,
no middleware)
Implemented purely High Less (because the High; because the use Not Suitable for
outside the application has no does not need to maste small foot print
application control and is bound the adaptation details devices, because of
to rely on whatever for each application, a the existence of
the system provides general API will suffice additional
in all cases. middleware layer.
Implementation Relatively Low (because the High; because the use Midway between the
spread across the high application and the does not need to maste above two extremes.
application and the middleware both the adaptation details
layer beneath have to coordinate for each application, a
adaptation decisions general APl will suffice
which reduces in all cases. However

execution speed) the applications must b
specifically designed tc
operate in different
modes.

Table 1.1 — Comparison of placement of adaptatioroverall system

The limitations of the existing models, as desatibbove were in particular related to
the systems, which mainly target system-side atlaptdy resource reservation and
adaptive (re)-allocation. Adaptive software systexaus also be classified with respect to
the placement of adaptation mechanism inside teesy as shown in table 1.1.

1.4 Aimed Contributions
Considering the limitations and comparison, ab@xeconclude that:

high execution efficiency and small footprint caa &chieved only if the adaptation
mechanism is embedded into the application, whilimum flexibility can only be
retained when the implementation of adaptation raeisn resides completely outside
the application.

The goal of this research is to devise a concephaalel, develop an architecture and
realize the developed architecture to fulfill beitle above conflicting requirements in an
optimal way. This has been done by integrating espented methodologies existing in
the software engineering community with the adamtatnechanisms proposed by the
networking community to develop an adaptation cositpph and dynamic
reconfiguration environment. Main contribution bktthis research is that it proposes an
improved paradigm to engineer domain specific aatapt systems for event based
frameworks. The work presented in this dissertaBatistinctive in three respects:

. The system software layer, responsible for adamptagixists separately at
the time of composition (due to which the adapmaparts stay separate
from the application, giving the benefits of sep@anm of functional and
behavioral concerns), but forms a part of the aggdion at runtime (thus
giving the performance benefits of embedding adegptacode into the
application).

. The implementation is custom-tailored to multime@ipplication on
resource devices, due to which it has a very sfoall print and as it is
particularly in the context of multimedia framewsrfvhere the skeleton
is pre-defined), it does not need programming éffexcept the very
minimum ‘tweaking’ in some cases, for fine tuning).

. Since its implementation is Aspect Oriented anceeispare additive in
nature (code patches are added only when required; stripping off the
unnecessary adaptation code when not required)sdlaspects are added
to the _application’s target code (source code int mequired) and
adaptation is achieved on the data stream

5

Although the research was carried out in the odntd multimedia application
development frameworks, which are largely evenetashe impact of the concept of
using automated aspect weaving for self-managepitatians is far-reaching. Since the
fundamental approach of this work is based on thecept of state machines, the
implementation can be extended to other event bdseelopment frameworks and other
categories of applications can be targeted.

A number of research works and prototypes targettestd aware application
adaptation. Although these efforts are adaptatisedl and radically different from the
resource reservation based approaches (which dedywemployed for QoS guarantees),
these mainly concentrate on service adaptations$,aafew others, which may not be
considered as full-fledged middleware (e.g, SMikgus on content adaptations. None of
these provides the concept of automated weavingpofe adaptation mechanism, but,
rely on the user to design each individual apphecataccording to the anticipated
operating context, which is again not a good solutbecause of the third limitation
detailed above.

1.5 Technical Challenges
To reach an optimal compromise between these twlicting requirements, there are
a number of challenges which need to be addressifieaent levels.

Technical challenges exist in:

. Devising the right conceptual model which can ceptadaptation
requirements with minimum user involvement.

. Developing the most feasible architecture to realize proposed model,
which comprehensively incorporates (or be exterslabl incorporate)
various aspects of application-oriented and systei@nted adaptations.

. Realizing the proposed model and architecture ysoheveloping and
extending specific language features and softwhstractions.

In the scope of this work it will be proved withethelp of a test-case implementation
that it is possible to devise an implicit adaptatimechanism for an event based
multimedia framework, which can intelligently andthout (or with minimal) user
involvement, comprehensively map inter-applicatiotra-application and network-wide
adaptation requirements to the underlying developgnfeamework and that these
requirements can be automatically weaved into ptemr non-adaptive applications,
transforming them into adaptive ones, completelyirgg rid of any middleware layer (at

6

the expense of loosing some flexibility), thus nmakiadaptation a sole property of the
composition and reconfiguration environment.

1.6 Organization of the Thesis
Having given a background introduction to the werksented here, the rest of this
dissertation is organized as follows:

Chapter 2presents a detailed survey of the related wonkingia classification of
existing work and introduces the fundamental cotscapeful in understanding the rest of
this dissertation.

Chapter 3introduces the conceptual model of the systemIdped in this research.
The model is based on the basic principles of stetehines and event based systems. It
sets the stage for integrating application orierdddptation with software engineering
techniques of reflection and aspect-oriented prograng, in the realm of multimedia
frameworks.

Chapter 4gives an architectural overview of the proposediehan the form of an
Adaptive Composition and Runtime Environment for Itilnedia Applications
(ACREMA).

Chapter 5details implementation of the proposed architedtomodel with examples of
code snippets to show main parts of implementation.

Chapter 6explains the results obtained from practical eatadun of the implemented
model using test applications. Results include Hatictional as well as architectural
evaluation and are obtained from application exeoutn an emulated network on Linux
Virtual Machines.

Chapter 7concludes this research with the lessons learopgses some enhancements
and gives suggestions for further improvementsfanae work.

Chapter 2

Background and Survey of Related Work

2.1 Introduction

The work presented in this report has benefitednfi wealth of research existing
across a multitude of QoS and adaptation relateldisi This includes in particular,
research related to algorithms and implementatibnthe fundamental QoS and
adaptation concepts, existing work in the domairmobile and pervasive computing,
especially the language features and abstractmnddvelopment of adaptive software
systems and the related work in development of tadagoftware platforms and their
architectural models. Keeping in view the wide spathese disciplines and the theme of
the work presented in this dissertation, the chriaipés been broadly divided into three
main sections as follows:

QoS and Adaptation — Fundamental Concep(details in section 2.2) which
provides a background for establishing the requérehand categorizing them. The work
presented in this section includes relevant funddaheoncepts, overview of the existing
algorithms and standards and some example implat@ms. This section mainly
summarizes the work where main emphasis was omgrdedi a QoS provisioning or
adaptation algorithm. In these cases the work doas focus on exploring the
effectiveness of a particular language feature pamicular architectural model of the
software.

Language Features and Software Tools for Adaptati@ietails in section 2.3)This
section details certain language features and wsrianguage enhancements which
provide different techniques to incorporate adapbehaviors in software. Therefore, the
work summarized in this section is focused on expipthe effectiveness of a particular
language feature in the development of adaptivdwsoé systems (and not on
development of adaptation algorithms). It is meaat introduce those enabling
technologies which are used by the work presemtétd next section. These techniques

mainly include reflection, reification, Meta Objeé&trotocols (MOPs) and Aspect-
oriented Programming/Aspect Oriented Software Diualent (AoP/AOSD).

Software Systems and Models to Realize QoS and fed@m (details in section 2.4)
This section describes the employment of the lagguaatures and tools discussed in
section 2.3, in developing adaptive systems. Exempiclude adaptive and reflective
middleware, aspect-oriented middleware, meta achites, runtime environments and
the related work in these domains. The above meati language features and software
tools. This is mainly a comparative study of exigtadaptive (reflective and/or Aspect-
oriented) middleware and runtime environments, uditig in particular the study of
architectural models for resource constrained @svand ubiquitous environments. The
work presented here is mainly from the softwareir®gying community and is focused
on exploring the effectiveness of a software engjiimg paradigm or language features to
develop adaptive systems.

2.2 Quality of Service and Adaptation - Fundamental s

The International Telecommunication Union (ITU) refard X.902, Information
technology — Open distributed processing — Referdiodel, refers to QoS as “A set of
quality requirements on the collective behavior asfe or more objects”. Different
researchers have given various definitions. We eagne the following definition of
Quiality of Service (QoS), given by IEEE “The séttlmose quantitative and qualitative
characteristics of a distributed multimedia systemhich are necessary in order to
achieve the required functionality of an applicatifSN2004].

Practically, providing QoS is achieved by strikiaghalance between resource supply
and demand, by allocating (and dynamically reatiogy the resources in high demand
to various applications or their components, adogrdto preset contracts.
Implementation of such contracts may involve reseucosts, service charges, user
preferences etc. Two well known standards, for iging QoS in the Internet are
Integrated Services (Intservand Differentiated Services (Diffserv)However, the
applicability of these standards is limited to wirdixed networks. Intserv is aimed at
providing QoS guarantees to individual applicategssions, whereas, Diffserv is to
handle different classes of internet traffic infeliént ways. Inherent scalability problem
due to per-flow state maintenance of the Intsed/the resolution of pushing the load to
edge routers in the case of Diffserv, make theability of these standards questionable

9

for wireless networks, in particular. In case ofedéss communication, the problem of
data transmission and reception itself becomesoblgmn and due to the same reason,
issues like efficient and reliable routing, molyilimanagement, adaptive resource
management etc. are hot areas of research in ékeirright. Such issues are being
mostly handled at the network and MAC layers inrteavorking community.

In general, QoS provisioning as viewed by the add literature can be seen as a
combined effect of QoS specification, mapping, irayt resource management and
adaptationQoS Specificatiomefers to the definition of the required QoS lewveterms
interpretable form the viewpoint of a particulas®m entity. At user level it may only be
specification of the human perception [ZKS+2003y(®f a video or audio, in terms of
excellent, good, poor etc). At application levdie tspecification parameters will be
application specific (e.g; frame rate, frame siz&)system level, these may be buffer
size, tolerable delays etc. Similarly, there areapeeters related to communication
channel signal to noise levels etc.

Therefore QoS provisioning mechanisms are genemalplemented using a layered
architecture, and quality requirements from eadhdr level are translated to (mapped
onto) the adjacent lower level of the architectli@:. example the specification given by
the user, or that given by a specific applicatias to be translated to lower levels of the
protocol stack, considering available resourcé® (§pecification of the requirements of
good, poor or excellent has to be somehow tramslat® parameters like frame-rate,
frame-size etc at application level, or to inteiiveal jitter, delay, throughput of the
network channel, device display capabilities, huffize and available battery life
keeping in view the available resources.

Two principle approaches that exist at presentdeige QoS in IP networks and differ
in their suitability for application domains areysfem-Oriented QoS and Application-
Oriented Qos (Adaptation). These are discussdueiméxt two sub-sections.

2.2.1 System (Network) Oriented QoS

A lot of work has been focused in this area inrtbevorks community. This scheme is
based on pre-hand resource reservation and refiesome reservation protocol like
RSVP [ZDE+1993], dynamic RSVP (dRSVP) [KK2000]. Tapplications submit their
requirements in advance and this information islusehe subsequent phases. The calls
are admitted (or denied) on the basis of the in&diom provided before the setup.

10

The advantage is that it can lead to a stable Qatigh out the session. However, this
assumption only holds if the applications can ey estimate their resource
requirements throughout the system, which is selgossible. Due to this reason, the
resources will need to be reserved in higher ansotiman those demanded by the
applications, in order to guarantee the availabilif that amount throughout the
application lifetime. The downside of all such amrhes is that if each application
reserves resources in excess amounts, and théaitudere these surplus resources are
required does not occur or remains for a very sthoration, then for a significant period
of time those resources which were reserved inlgsingill go waste. This will result in
guaranteed QoS provisioning at a very high cose futhese reasons such an approach
is suitable only in mission-critical applicationdik¢ DRE, UAV), examples
implementations include TAO, CIAO, ZEN.

2.2.2 Application Oriented QoS (Adaptation)

Application Oriented approach to provide QoS is enfbexible as compared the one
discussed above. The applications do not need bonisuan estimate of resource
consumption in advance, but benefit from the resmairwhen they are available and
adapt themselves to utilize lesser resources wherrdsources fall below the critical
levels. This approach cannot provide any hard Qe8amntees and is suitable only where
soft QoS is required (e,g; in certain multimediglagations, if optimum video quality is
available it would be better but the user wouldegally bear with slightly lower quality).
This approach is effectively a compromise betweaargnteed QoS anbest effort
implementations. This kind of approach to provideSQs discussed in more detail in the
subsequent sections.

More importantly and above all, both the approactissussed can co-exist in a
system. We can have examples of the systems ma&lyipng on Network Oriented QoS
but supporting Adaptation, where adaptation is usely when the resources in the
system fall below critical levels.

2.2.3 Combined System QoS and Application Adaptation Approaches

There are some approaches like [FRS2000], wherb bu¢ aspects have been
considered. Such schemes take into account the mdismaf the application, initially
reserving the system resources in surplus and ggo@oS guarantees within certain

11

operational bands. When the application requiremerteed those initially specified (or
in case when the demands cannot be met by the lyimdesystem), the application is
required to adapt to whatever can be offered byyiseem. In such cases the mechanisms
to realize certain QoS are built into both the agapion and the system.

Since a discussion of QoS algorithms and mechangrsver levels of the protocol
stack are not directly within the scope of the weprksented in later chapters of this
dissertation, only a brief overview has been presen

2.2.4 Adaptation in Pervasive and Mobile Computing

Since pervasive computing [Weil993] is about thehmelogies that disappear, its
realization needs addressing the challenges of laegg scalability, seamless integration
of different technologies, acquisition and managanoé context and invisibility of the
technology enabling all these. Pervasive computarg be viewed as a close companion
of mobile computing or as suggested in [SM2003J asiperset of mobile computing. In
case of pervasive environments, adaptation takeseweral dimensions, since not only
the network bandwidth is usually limited, deviceahilities (relating to its processing
power, display size, available battery power) dse aonstrained, adaptation can play a
pivotal role to realize the vision of pervasive guting, this section therefore,
summarizes some existing work related to adaptafionpervasive and mobile
environments. While considering adaptation (in ipalar multimedia adaptation), in the
context of pervasive and mobile environments, twasinsignificant facets of the subject
are concerned with (i) — characteristics of theimmment and (ii) — characteristics of the
devices operating in such environments. These itwemkions of pervasive and mobile
adaptation are briefly described below.

2.2.4.1 Adaptation with respect to Characteristics of Pervasive Environment

With regard to pervasive computing, adaptation aritent and services is critical in
accordance with the changes in the environmentdawice limitations. A significant
amount of research aimed at this type of adaptat®orfound in the literature,
encompassing a wide range of techniques from medrescoding proxies to use of
different markup languages to describe the contiself. These are the approaches
generally using compression, searching, indexind fltering to manage and scale
multimedia data. Early work in this respect, likdD)P+2002] has mostly addressed the

12

issues like compression and content adaptation egopdied these concepts to video
adaptation for both streaming media and pointdimtpcommunication, while keeping
main focus on compression of the content. Work likePyramid [SML1999], manages
different variations of multimedia data objects lwiifferent fidelities (summarized,
compressed and scaled variations) and modalitieedy image, text and audio) and
generates and selects among the alternatives er twdadapt the delivery to different
client devices. [YLC+2002], introduces a methoddabasn clipping of the web content
using Web Clipping Markup Language (WCML), usingietha clip is automatically
extracted from a source page based on a clip speaih provided by a content provider
and transformed into a target page according &t afsconversion rules. The clips stored
in an intermediate meta-language are later tramsfdrinto multiple presentation pages
in different target markup languages. In a similrk [LL2002], content adaptation
using SMIL has been combined with a proxy-basethigacture. On contrary to pure
content-based adaptation using markup languageshwlecessitate generating multiple
versions of the same application, combining proagdud architecture with markup
languages enables this generation on the fly, witlequiring the content provider to
write multiple versions of an application for mple types of clients.

2.2.4.2 Adaptation with respect to Characteristics of Pervasive Devices

A distinguishing property of any pervasive envir@amhis associated with the devices
used in such an environment, which are generatiitdd in resources, like battery power
and display size, in particular. In this regardse@chers have targeted both hardware
oriented procedures which includes designing loWwage devices tReal Time Dynamic
Voltage ScalingRT-DVS) [PS2001] strategies for energy conseoratbn small foot-
print devices by integrating adaptive battery comgtion strategies and real-time task
constraints into the operating system schedulenhaBcements of such work include
[PHS], putting forward the concept dnergy Aware QofEQo0S) that can manage real-
time tasks and adapt their execution to maximizehnefits of their computation for a
limited energy budget.

Some prominent examples of research specificalgtee to energy aware multimedia
adaptation include [KW2001], proposing software liempentation strategies for power-
conscious systems to algorithms and middlewaredveanks for energy-aware processor
reservation [YN2006] to coordinate adaptation ofltrmedia algorithms and energy

13

resources [YNG2001]. [MV2003[SY+2004] present an adaptive middleware solution
for power-aware video streaming to mobile hand-tgddices by adaptive switching of
the device network interface card to sleep modeaataghting the video burst size, while
[PS2004] details an approach to strike a balancevden the end-system QoS
requirements and available battery power on regocwastrained devices by dynamically
selecting the appropriate transcoders and adaptsegling the transcoding parameters
for streaming video. In a similar approach [CKPZDO8PEG4 Fine Grain Scaling (FGS)
has been used by adaptively sending enhancemaesrs layaddition to the base layer to
resource-constrained client to achieve energy-awarkimedia transmission. In small
devices like PDAs and mobile phones, a signifiGanbunt of battery power is sipped by
the backlight of the display unit. Especially witkgard to video, there are approaches
like [PLM+2004;PML+2003] that suggest middleware solutions whenfyét adaptation
of the display units backlight to save energy, wipiteserving video QoS at a reasonable
level.

In addition to the research related to optimizidgative behaviors with respect to any
single characteristic of pervasive computing (&aicfrom the above examples), existing
work that resulted in development of complete pgme& and mobile computing
platforms is of great interest and relevance. Wetted to pervasive adaptation can be
divided into two broad categories [BN2004agintext modelshat provide a database-
style management and interaction acwhtext ontologieghat focus on a thorough
representation of the context knowledge with somleamce on artificial intelligence
methods for its manipulation. Since ontology baaedk is not directly relevant to the
research presented in this dissertation, this @edibcuses mainly on the work that
targeted pervasive adaptation in a broader serséedrto the development of complete
frameworks or middleware, aimed at achieving systede adaptation. Some examples
are outlined below:

MobiPADS

Mobile Platform for Actively Deployable Service (M&®ADS)[CC2003] is a reflective
middleware specifically designed to facilitate aitaware processing by providing an
execution platform to enable active service depleyhand reconfiguration of the service
composition in response to varying contexts. Unlikest mobile middleware,
MobiPADS supports dynamic adaptation at both thedieware and application layers to

14

provide flexible configuration of resources to opide the operations of mobile
applications.

Gaia

Gaia [RC2000RHC+2002;RHC+2002a] is a meta-operating system supportieg th
development of applications for active spaces. Astiva space is defined as
programmable ubiquitous computing environments Imctv users interact with several
devices and services simultaneously. These agbaees must support development and
execution of user-centric applications, in whiskessionsassociate user data and
applications with the users themselves. Users eéineddifferent sessions, thus forming
auser virtual spacand can activate and suspend sessions as désiiecllows users to
move about with in the active space and still smynected to their applications.

The core of the Gaia operating system consistscohgponent management core and it
can use CORBA, RMI, SOAP or any other communicatmiddleware. Five basic
services offered by Gaia are; the context senpcesence service, event management,
space repository and the context file-system. Gmi@s LuaOrb, which is based on
scripting language Lua, to program active spacdscanfigure the entities they contain.

Although Gaia is a step forward in the directionremoving the classical interfaces
(keyboard, mouse, monitor etc) and takes a stépemirection of pervasive computing,
the involvement of the user to configure individgassions is significant. Also, in a
ubiquitous environment a user may not be assumdoktexpert in writing language
scripts to describe different possible configunasio

Aura

Aura [Garlan2001SG2002] is an architectural framework to tacklerusebility in
ubiquitous computing environments. In Aura, useksaare represented explicitly, using
place holders to capture the user intent and sdarcuitable configurations in changing
environments. Aura’s architecture consists ofask manager, environment manager,
context observer and service suppliefbe task manager is aimed at minimizing user
distraction in face of changes. With user movemealisthe information relating to a
particular task is migrated to the new environnaanhg with negotiating support for that
task. The QoS information of the components momitpa particular task is monitored

15

and when the requirements cannot be met by the ereironment, the environment
manager is signaled to find an alternative configjon (if possible). When a task change
is explicitly triggered by the user, the task masratpkes care of the related house-
keeping activity like status saving etc. When tbatext changes, (the user moves from
one environment to another, or someone else wallksa office) context constraints like
privacy requirements are readjusted. The servipplgis typically occur in the form of
normal applications wrapped such that the wrappeap abstract service descriptions
into application specific settings. Service disagveechanisms of Aura are built on top
of existing technologies like Jini.

The main difference between Gaia and Aura is thaiaGemphasizes space
programmability by allowing its users to configutee applications to benefit from the
resources in their current space [RHC+2002a].

BASE

BASE [BS2003;BSG+2003] is a middleware for pervasive computiagda on the
concept of micro-broker for resource constrainedads, aimed at providing easy to use
abstractions to access remote services and depwfis capabilities. The design of
BASE is inspired by the research in micro kernétgrefore, instead of providing a
whole lot of functionality in the middleware inftascture, it relies on a flexible plug-in
based architecture. Plug-ins can be used to conwatenwith different local and remote
services and to query the device capabilities. ddwace capabilities are registered at the
local registry service and transport protocolshat invocation broker itself. In contrast
with the approaches like Gaia discussed above, B&&#s not rely on the presence of a
specific surrounding where the services could Isealiered and used. BASE facilitates
different communication models and simple servamklp in the locality of a device is
provided by the device registry, which keeps adisthe devices reachable and transport
plug-ins to access another device.

PCOM

PCOM is a component system for pervasive computwigich offers application
programmers a high level programming abstractionajoture the dependencies among
components using contracts [BHS+2004]. In PCOM ptateon is two fold: at lower

level, it uses BASE [BSG+2003], which can swap camitation protocols even at
16

runtime and at the level of application, dependemamong components can be resolved
by the adaptation policies embedded in PCOM, witltasly human involvement, which
allows application component selection when mom@ntbne suitable components are
available. Component dependencies are modeled wsingacts. A contract has two
parts: the first specifies the corresponding coreptsi requirements (like libraries,
memory) while the second part specifies the fumetiiby provided by the component and
its dependencies on other components. An applitasothus modeled as a tree of
components and their dependencies, where the cogba@nent identifies the application.
PCOM provides three signaling mechanisms to indictte availability of used
components, that of new components and to indexayechange in the quality parameters
of a component. These signals can be used by thleaon programmers to hook the
required actions corresponding to different evemtause system provided adaptation
procedures. The components are atomic with respelistribution.

AMUN

Autonomic Middleware for Ubiquitous eNvironments NWN) [TBP+2005] is a
pervasive computing middleware similar to Gaia, alihis meant to support a smart
office environment, in which personalization issugige automated telephone call
forwarding) related to office assignment to differgpersons can be managed in an
adaptive manner. The underlying structure of thddmeware is based on peer-to-peer
network, supporting transparent messaging and wwamit AMUN is a based around the
concepts of self-configuration, self-optimizatiomdaself-healing. Architecturally, it
consists of four main entities; the transport ifatee, the service interface and the service
proxy, the event dispatcher and the autonomic namdadpe transport interface provides
abstracts the underlying communication platforme Tdvent dispatcher supports the
services to send messages and receive messagesofinem services by registering
themselves as listeners.

The main feature of AMUN which makes it suitable tdiquitous computing is the
use of message introspection. Message parametergivean as name, value pairs and
only the names and types of the elements are defiseng WSDL, therefore, using
introspection on messages, it is possible to mparfameters to a service description.
Also, as the number of message parameters canivergasier to extend the system, for
example incorporating a better service after dguaknt. For a service that has moved to
another node, service proxies are used to forwaohning messages to the new location.

17

System resources, message latencies and eventsoaired by the system to trigger
adaptation decisions, e.g., using message lateant$ocal resources to decide whether
it is beneficial to run a service locally or onemrote node.

In addition to the projects described in this sBtbove, there is a significant amount
of other related work, which can be classified unitie general category of pervasive
adaptation. Examples of such research include: mRiggoable Context Sensitive
Middleware (RCSM) [YKW+2002], that models contesdansitive application software
ascontext-objectslt uses a context sensitive reconfigurable ORG @BPwhich hides
the underlying ad-hoc networking details and ispoesible for service and device
discovery on behalf of the context objects. The lengentation has been targeted to
support both kinds of communications (direct, lIR®C) and indirect (by sharing a
common space between interacting applications).

2.3 Language Features and Software Tools for Adapta tion

While algorithms and standards for QoS and adaptgtrovide fundamental concepts
and abstractions for various strategies, programnmianguages and software tools
provide the necessary constructs to realize adajptiplementations. Typical language
features include code instrumentation, inspectiod alteration, dictated by adaptation
policies to develop adaptive software. This sectmresents an overview of these
enabling technologies from the programming languagel software engineering
perspective.

2.3.1 Reflection and Reification

In the context of programming languages, reflectias been defined in [BGW93] as,
“Reflectionis the ability of a program to manipulate as datanething representing the
state of the program during its own execution. €hare two aspects of such
manipulationintrospectionandintercessionsintrospection is the ability for a program to
observe and therefore reason about its own statzcession is the ability for a program
to modify its own execution state or alter its ownterpretation or meaning. Both aspects
require a mechanism for encoding execution statéates providing such an encoding is
calledreification.”

Different words have been used in the literaturexplain this term. For the purpose of
discussion in this report, we agree on the follgndefinition, “The process of providing

18

an external representation of the internals ofsaesy, which allows the internals of the
system to be manipulated at runtime, is catgfication’.

Reflection can be structural or behavioral. Strradtueflection implies the ability of
the language to provide a complete reification @athlthe program currently executing as
well as a complete reification of its abstract dgfes [ALD+2003]. Therefore, structural
reflection provides the ability to alter staticafixed internal data/functional structures
and architecture used in a program. A structurflectve system would provide a
complete reification of its internal methods anatest allowing them to be inspected and
changed. For example, the definition of a clagsethod or a function etc can be altered
on demand.

Behavioral reflection on the other hand implies alhdity of the language to provide a
complete reification of its own semantics as wsllaacomplete reification of the data it
uses to execute the current program. Thereforevimhh reflection provides the ability
to intercept an operation such as a method invmcatnd alter the behavior of that
operation. This allows the program or another pogto change the way it functions or
behaves.

In brief, structural reflection changes the intérs&ructure of a program, while
behavioral reflection alters the actions of a paogr

Efficient implementation of structural reflectiors imuch simpler than that of
behavioral reflection. Structural reflection feasir have existed in some form in
languages like Lisp and Prolog since long, but,abeiral reflection is a hot topic of
research, in particular being investigated for afgplications in designing reflective
middleware. Various example works making use ofavaral reflection will be
discussed in later sections of this chapter.

2.3.1.1 Reflection Support in Contemporary Languages
In programming languages, like Smalltalk, Lisp, |Bgoreflection and reflective

programming concepts existed since long [DM1995jsthmodern languages like Ruby,
Python, C# etc. also support reflective programminignited reflective support was
added to java with JDK 1.1 reflection API. Javaleetion can be used by (1) — the
applications that need to discover and use alhebtbl i c members of a target object
based on its run-time class and (2) — by the apipdics that need to discover and use the
members declared by a given class. These apphsateed run-time access to the

implementation of a class at the level providedilbyass file. Examples in this category
19

are development tools, such as debuggers, interpranspectors, and class browsers,
and run-time services, such as Java Object Seti@iz These applications use instances
of the classesi el d, Met hod, andConst ruct or obtained through different methods of
the classt ass. This allows inspection of the program related mata like class names,
methods, access specifiers, fields etc, withinJdb& security restrictions on the fields,
methods, and constructors in other objects. Itls® @ossible to load and instantiate
classes at runtime and invoke methods on the abgfdhose classes. An even powerful
feature introduced with JDK 1.3 is the possibilitly using proxies which support the
interface of another object (th&argef, such that thg@roxy can substitute for therget

for all practical purposes through implementatiow aelegation. Theroxy therefore
acts as an intermediary or a substitute and forsvaame or all calls to the target,
importantly, it can add method pre-processing ostpoocessing to the calls when
working as an intermediary. This procedure for agdore and/or post processing to a
method call resembles the concepbeforeandafter advice(explained in section 2.3.4)
in Aspect oriented Programming (AoP), however i bartain limitations and is not as
powerful as that in AoP. Java 1.5 offers signifitarenhanced support for adaptive
programming in the form of enhanced reflection deas, code instrumentation class and
metadata support in the form of annotations.

Among the tools for java byte-code instrumentati?d&§M[ASM], BCEL[BCEL],
Javassist and Reflex[] provide means of changiagscdefinitions in java. Javassist is
more systematic, since it offer an Aspect compasitool Gluonj[], based on top of it,
which provides all the basic constructs of an Aspg@dented Language. Due to its
support for code instrumentation and availabil#tyA@P constructs, Gluonj and Javassist
were used to form the Aspect Engine in this work.

2.3.2 Meta Object Protocols and Meta Architectures

Gregor Kickzales, in 1991, pioneered the idea oftavi®bject Protocols (MOPSs)
through his groundbreaking work [Kic1991]. The kdga of MOPs is the division of a
software system into two levels; the base level #rel meta level. The base level
describes the actual design of the software toyaaut its particular functions, whereas
the meta-level keeps information about the baselland therefore describes different
policies which determine the behavior of the ba&sel. Thus meta-level keeps
information about the actual program and this imfation is known as meta-data. In case
of object oriented software, this meta-data is oizad into objects, called meta-objects.
Thus meta-level can be used to inspect and akebbe¢havior of the base level. The meta-

20

interfaces which expose the functions of the basetlare called meta-object protocols,
since they specify the means of altering the beimanfibase level components, objects or
modules. A meta object protocol relies on the funelatal principles of reflection, and
should be sufficiently general to permit unantitgzachanges to the platform, but be
restricted to prevent the integrity of the syst&iviL995].

2.3.3 Aspect Oriented Programming

One of the key features of Object Oriented Desgyioiencapsulate data and functions
specific to a goal, in a specific object. Thus afeot is a self-contained unit without any
information about other objects and others donitehany information about that object,
except what the object makes public. In practicftvare design, there are a number of
concerns which cannot be adequately confined inspexcific object.A concernis a
specific requirement or consideration that musaddressed in order to satisfy the overall system
goal.Implementation of such concerns affects multiplgects (rather classes) in a system
and they are known asross-cutting concernsFor example if a software had been
designed without keeping security issues in mindi later on some security policy needs
to be implemented, then this will require changesnultiple modules composing the
system e.g; it may involve modification of a numbérclasses. Thus security is a cross-
cutting concern, which cuts across several moduteshe entire software. Other
examples include logging, scheduling etc.

Aspect oriented Programming [Kiczales1996] is aagaym which facilitates seamless
incorporation of cross-cutting concerns into erigtisoftware through a mechanism
known asweaving Using this software development paradigm, a piteam program can
be ‘intelligently patched’ at various well definpthces, resulting in new code. An aspect
oriented language has four main elements whichnasessary to carry out the code
weaving process. These elements are detailed below.

2.3.3.1 Elements of an Aspect Oriented Language

Join Point

A join point is a well defined location within thectual program code (i.e; the code
written by the user to do a specific task), wheommacern will crosscut the application. It
can be considered as a well defined point withimm phogram, where some additional

21

code can be meaningfully patched. Examples inclagkethod calls, constructor calls,
exception handlers etc. Basically, join points tre places where cross cutting actions
are woven in.

Point Cut

A point cut is a program construct which selects jihin points (and/or a set of join
points). It also collects the context informatidrtfzose points. For example, a point cut
can select a particular method call as a join paimd can also capture that method’s
context like its arguments and the target objeetsi&lly, point cuts provide a kind of
link to joint points using the aspect weaver’'s kaage constructs. Point cuts are the
constructs used to specify weaving rules and jaimtp are the conditions which occur
within the primary program flow upon which thosé¢esiare satisfied.

Advice

An advice is the additional code, which existedswlé the primary program and is to
be executed at a join point, specified using a tpout. The advice code is executed,
before, after or around join points. If we considgarticular method call as a join point,
then before advice refers to the additional code which will be execubefore that
method invocationafter adviceis defined as the code that will be executed dftat
method invocation andround advicedefines the code which will completely substitute
the pre-existing method.

Aspect

An aspect is like a class in an object orientedjlage. It is a modular unit of code,
which contains the point cuts along with correspoga@dvices.

Different aspect oriented languages use differermbs$ to refer to the above mentioned
elements or they extend these basic elements wiitle $anguage specific features.

22

2.3.3.2 Aspect Weavers and Related Work

An aspect weaver or an aspect engine is softwarehwenables compilation of aspects.
The process of weaving can be static; meaning tiratactual aspects are inserted
statically or it may be dynamic; meaning that oimigertion hooks are inserted statically
and the actual code patching takes place at runiifmere are also cases where weaving
is done at load time. Dynamic approaches are giyenare flexible, because they allow
partial application code modification while the &pgtion is running. There are a large
number of aspect weavers available for differengleages each with its own strengths
and weaknesses and a number of those which aradgegndependenThese weavers
differ in the ways they express the crosscuttingceons and how they translate those concerns to
form the final system.

2.4 Software Systems and Models for Adaptation

Having presented the language features for softadeptation, this section details the
architectural models which have been developedgutinse language features. In the
context of software systems, adaptation refersctensibility, enhancement of complete
or partial software system to tailor it no new reee&idaptation in software exists in some
well known forms, hot-fixing, hot-swapping, softwegoatching etc. Scientific literature in

the related area unfolds a whole lot of effortstegsin devising better architectural

models for software adaptation. It includes compbng based approaches, using
reflection, and recently aspect oriented prograngmirhis section gives an overview of
some of the famous projects and a summary of tlaéecework where these techniques
of software adaptation have been applied, espgct@mthe middleware layer.

2.4.1 Adaptation’s Place in System Hierarchy - The Middleware Level

Traditionally, middleware systems have been dewogeeping in mind generic
problems like heterogeneity, distribution etc. lBaample, CORBA [COR], J2EE[J2E]
were mainly devised to ease the development ofgnge applications. The middleware
level has so far been the most attractive pladbarsystem hierarchy to design adaptive
systems [DLS+2004].

2.4.1.1 Reflective and Adaptive Middleware and Related Work
Adaptive middleware is software whose functiondldasor can be modified dynamically
to optimize for a change in environmental condsi@m requirements [LSZ+2001]. Thus

23

adaptive middleware can be customized to the nekedspecific domain, e.g; embedded
control systems with real-time requirements, resewonstrained mobile devices etc.
Adaptive and reflective techniques have emergeslrasn paradigm for the development
of next generation dynamic middleware [5] and gelhe reflection is the primitive
technique to achieve adaptation. These techniquesleethe system to self-alter to meet
the changing environment or user needs. Adaptatortake place autonomously or semi
autonomously, on the basis of the systems deploymevironment, or according the
user defined policies [BCC+1999]. Primary requiratseof a runtime adaptive system
are: measurement, reporting, control, feedback salility. Being adaptable is only a
feature which a middleware system may have, arsdféiaiture is realized using reflective
programming. Therefore, in literature, adaptive aaflective middleware are treated
together (sometime synonymously).

RAFDA

The Reflective Architecture Framework for Distriedt Applications (RAFDA)
[PWK+2003] is a reflective framework enabling tihensformation of an non-distributed
application into a flexibly distributed equivalenhe. RAFDA allows an application to
adapt to its environment by dynamically adaptirg distribution boundaries. It can
transform a local object into a remote object aie-versa, allowing local and remote
objects to be interchangeable. RAFDA achieves Iflexidistribution boundaries by
substituting an object with a proxy to a remotdanse. The transformation process takes
place at the bytecode level. Points of substitlitgbare identified and an interface is
extracted for each substitutable class, then ewefigrence to the substituted class is
transformed to use the extracted interface. Theypimmplementation provides different
transport options including Simple Object Accesstétol(SOAP), Remote Method
Invocation(RMI) and Internet Inter-ORB Protocol(PQ Policies determine substitutable
classes and the transport mechanism to be used.

mChaRM

The multi-Channel Reification Model (mChaRM) [CA2000], is a refleativ
implementation which reifies and reflects direatly communications. This model does
not operate on base-objects but on the communitativong base-objects, resulting in a
communication-oriented model of reflection. It absts and encapsulates inter-object

24

communications and enables the meta-programmerentach and/or replace the
predefined communication semantics. mChaRM haraliegthod call as a message sent
through a logical channel between a set of senaledsreceivers. The model supports
reification of such logical channels into logicdljects called multi-channels. A multi-
channel can enrich the messages (method calls)neithfunctionality, thus allowing a
finer reification-reflection granularity than thase din other approaches. mChaRM is
specifically targeted for developing complex comioation mechanisms and has been
used to extend standard Java RMI to support mattieMI.

GARF and CodA

GARF [GGM1993] and CodA [McAffer1995] are consideéréo be milestone in
reflective research. GARF is a tool that suppdresdesign and development of reliable
distributed applications by wrapping distributiominpitives of a system to create a
uniform abstract interface which allows the bagbdwior of the system to be enhanced.

CodA is a project aimed at fine grain decomposibbthe meta-level architecture. Its
main goal was to allow decomposition based on &goehavior, thus it was mainly
meant to deal with the problem ofonolithic meta-architecture€CodA eliminated this
by using multiple meta-objects, each one descrilsingingle small behavioral aspect,
instead of one large object describing many aspEc® objects behavior. For example
if distributionis a behavioral concern, then in CodA, it can beodgosed into smaller
aspects like, message sending, receiving, queting e

Open ORB

OpenORB [BCA+2001] is a good example of a full-ied reflective middleware. It
relies on component paradigm and provides reflectigatures by defining three
fundamental concepts: components, interfaces andirlgs. Reflective facilities in
OpenORB support inspection and dynamic adaptationuitiple aspects of components
and bindings [BCB+2002]. These facilities are oiged into four meta-models: the
interface, architecture, interception and resourneta-model. An excellent and detailed
architectural as well as performance analysis obr@RB has been presented in
[LPP+2005].

25

Interface meta-model provides access to the exteima of components and bindings,
enabling enumeration of provided interfaces andadiery of new interface definitions.
The interception meta-model enables dynamic attaahrof interceptors to interfaces
which allows insertion of pre- and post- procesdunmctionality. The architecture meta-
model provides access to the internal structureoaiponents and bindings, represented
as an object graph; it provides operations to ee#; insert, remove and replace
components and explicit bindings, as well as op@ratto manipulate the local bindings
connecting them. The resources meta-model proadesss to underlying resources and
resource management. Specifically, the meta-majelices diverse types of resources at
different levels of abstraction (e.g. buffers, dlesel threads, and kernel-level threads),
and provides control over the distribution of res@s amondasks defined as units of
resource allocation. Tasks are invocation sequeti@scan span multiple components
distributed over different address spaces.

DynamicTAO and UIC(LegORB)

DynamicTAO [KRL+2000] is a reflective ORB built aan extension of TAO
[SLM1998]. TAO is a modular and configurable middére platform based on design
patterns. TAO uses the strategy design pattern {&805] to encapsulate different
aspects of the middleware implementation and peowétonfigurability. However, TAO
itself is not reflective in nature and is aimedsttic hard real-time systems (avionics in
particular) and does not provide sufficient suppfmt on-the-fly configuration of
strategies, once the ORB has been statically aorgty DynamicTAO on the other hand
is a reflective ORB and allows inspection and rdigomation of its internal engine. This
is achieved by exporting an interface for transfigrcomponents across the distributed
system, loading and running modules into the ORMBtime and inspecting and
modifying the ORB configuration state.

The Universally Interoperable Core (UIC) , (prewsbu known as LegORB
[RMK+2000]) is a reflective ORB targeting environmtg with limited resources, such as
handheld devices. LegORB adopts a microkerneldjggroach, where the core contains
only the low-level essential components. The apfiben programmer implements
customized policies, or selects them from a cdtbecof policies available with the ORB
package (marshaling, demarshaling, specific GIOflamentations, etc.). UIC defines a
skeleton of abstract components that encapsuléaesiasd functional aspects of ORBs
(e.g. marshalling strategies and concurrency p@s)ciand it can be specialized to form
26

different personalities (e.g. CORBA client-side qmrality or Java RMI personality).
Specialization in UIC involves developing concremponents that conform to the
abstract components and inserting them into thiekestructure [LPP+2005].

2K

2K [KRC+2000] is an operating system that incorporates most ef dignamic
reconfiguration functionality of middleware. On tayd the 2K microkernel, it uses
dynamicTAO and LegORB (renamed as UIC), as reflecODRBs. In 2K, resource
management responsibilities of the operating sysepplemented with algorithms for
QoS provisioning, including admission control, neggon, reservation and regeneration.
The application programmers can, therefore, actessystem’s dynamic state and can
implement application-specific adaptations, while system guarantees that the QoS is
preserved. The services provided include standdDREA services (e.g. naming,
trading, and security service) as well as servicesautomatic configuration, resource
management, and code distribution.

Multe-Orb

Multe-ORB [EKP+2000KKP2001] is a reflective multimedia object requesbker
suited to Low Latency, High Throughput Environmentshandles application QoS
requirements, by supporting QoS specification onRBA binding and protocol level.
Reflection is achieved by reifying the binding carjtions and allowing any component
to be inspected, thus manipulating the object gtaplinserting, removing or replacing
individual components using meta object protocdlsis concept of open bindings is
similar to the one introduced in [BCD+1997]. Applion specific QoS parameters are
instantiated as a set of protocol modules thatcbltely achieve the required QoS goals.
Multe-Orb aims at integrating an end-to-end Qo%itsmh with a standardized ORB in
the least intrusive way. However, provisioning odSis supported only for CORBA
request-reply invocations.

K-Components

K-Components [DC2001)JC2001;JV2004] is an implementation of a dynamically
adaptable architectural meta-model. It is desigtedbuild dynamically adaptable
software architectures whose configuration is st@e a typed connected graph, where

27

the vertices are interfaces that are labeled wighcdomponent instances that implement
them. Interfaces are connected by directed eddasleld with connector properties,

which represent the reconfigurable properties @f tonnector such as the ability to
change its communication protocol, etc. The entintin the program is represented as
the root of the vertex.

The graph is automatically generated from the corapb definitions and the actual
implementation code. It is stored and managed loyeta-level component called the
configuration manager. Dynamic reconfigurationahiaved using reflective code called
adaptation contractsThese adaptation contracts specify conditional sfamations
based on architectural constraints. They are impiged as metalevel objects that can be
loaded and unloaded at run-time using the conftgamamanager. The integrity of the
system is maintained by the configuration rulescg@el on the edges of the graph and
by a reconfiguration protocol that ensures thatices involved in the reconfiguration are
in a safe state. Further adaptation contractstalecare of the management of incoming
and outgoing dependencies of the system. The dtaptaode is kept separate from the
computational code by using a special Adaptatiomtaat Description Language
(ACDL) to specify this code. The K-Components systienplements components with
an architecture metamodel, and adaptations costtaciupport reconfiguration.

Quartz

Quartz [SC2000] defines an architecture that presidupport for quality of service
(QoS) specification and enforcement in heterogesatistributed computing systems.
Applications requiring QoS enforcement use the raeidms provided by Quartz to
specify their requirements. In order to enforce tbguired QoS, Quartz employs the
resource reservation protocols available in thgetanetwork and operating system.
Quartz defines two main levels of abstraction faiSpecification, the application level
and the system level. A Translation Unit that ist gd the middleware architecture is
responsible for translating the application defin@®S specification to a set of
parameters corresponding to the available protoictile hosting platform.

The central component in Quartz is the QoS agkat,is composed of the Translation
Unit and multiple System Agents associated with rdeervation protocols responsible
for administering the use of the available resasirc&uartz provides no support for
extending binding types. As it is not a generic diegvare architecture, but rather a QoS

28

architecture. Quartz provides extensive infrastmefor dealing with resource adaptation
and reservation. Adaptation rules can be speciéiedhe system and the application
levels. At the system level, the System Agent edu® adapt to environmental condition
including network or host resources. The SystemnAgealso responsible for monitoring
of the resources that are occupied by the reservatiotocol it corresponds to. At the
application layer, Quartz employs a declarativakatte-value based syntax for resource
reservation. Application adaptation is provided tire form of call-backs from the
middleware. Applications are notified only in cadke middleware is unable to provide
the resources originally requested.

2.4.1.2 Aspect Oriented Middleware and AoP Frameworks

A number of systems, including our implementatioesented in this report have often
combined reflection and AoP together. While appiaa of reflective techniques eases
the reconfiguration of middleware, application dcfpact oriented programming to
develop middleware aids in modularizing the crosting concerns in the middleware
layer. System wide concerns like persistence, aeimal communication, security,
QoS, and synchronization cannot be easily modddrand the code for handling them is
often spread across (rather entangled in) diffemedules. Therefore, many research and
commercial middleware has chosen the middlewarer lay the right place to use Aspect
Oriented Programming for middleware adaptation.

Since the very fundamental requirements were pwda in the discipline of software
engineeringcohesionand couplingwere defined. Well designed software must show a
high degree of cohesion while minimizing the imeodule coupling. In the domain of
middleware, a key challenge is the achievementodi@ate modularization at the level of
objects, components, agents etc. However, thistia straight forward task and involves
many cycles of re-factoring during the developn@mises. A large number of research
projects have applied AoP successfully, to modearsystemic concerns in the
middleware layer, producing various aspect oriemédtileware. Among them, a broader
classification can be done with respect to theiegpbn of AoP in their development;

» those systems which pre-existed and have beendadgor made domain
specific), for example those applying AoP to exigtiCORBA, CORBA
compliant or Corba Component Model (CCM) compliayptusing AoP.

29

* those which have been engineered from the grountbugenefit from
AoP. This mainly includes the systems where CBS& been combined
with AoP while designing the system or AoP has besed to custom-
tailor the system to pervasive computing needs.

Both these types of systems have been reviewdgkifotlowing subsections:

2.4.1.2.1 Aspect Oriented QoS Extension of CORBA and CORBA Compliant Systems

Early works with respect to middleware aspectizatiave been focused on extending
CORBA with aspects hence providing some QoS suppbis type of work has mostly
been focused on customizing existing middlewaresupport real-time and real-time
embedded systems. Early examples include: The Qu@lbjects (QuO) framework
[ZBS1997], which addresses the issue of QoS usiDREA by extending the CORBA-
IDL with a Quality Description Language (QDL). QDk actually a set of Quality
Description Languages [LBS+1998], which are usedpecify possible QoS states, the
system resources and mechanisms for measuringamobiing QoS, and behavior for
adapting to changing levels of available QoS atimm QuO supports QoS at COBRA
Object level, by allowing the user to specify aplagation’s expected usage patterns and
QoS requirements for a connection to an object. Qb& usage specification is at the
object level (like methods per second) and nohatdommunication level (like bits per
second). Thus an object may have several connectmrthe same object, each with
different system properties. [DLS+2004] shows depeient of adaptive distributed
applications using QuO framework.

In [HCG2001], AspectJhas been used to incrementally add adaptatiomurésatto
existing ACE-ORB(TAOQO) [Schmidt1998] middleware, bging theirAspectiDLon the
java real time event channel. AspectlX [HBG+1998khi CORBA compliant ORB and
supports QoS management on per-service basis, ing imgmented objects called
Qoslets, which travel from the server to the cliantl cooperate to achieve end-to-end
QoS. Management of Adaptive QoS enabled ServicesQ®) [BG1997aGB2001] is a
framework developed using MICO (an open source CAORBmpliant ORB) [RP1997]
and QoS IDL (QIDL). QIDL [BG1998] is an extensioth the OMG IDL with QoS
definitions. A distinguishing benefit of this apph is that unlike the BBN's QuO,
QIDL does not introduce a new language for writasgpects and does not use a separate
aspect weaver, instead, it implicitly extends thisteng IDL with the notion of QoS.

30

2.4.1.2.2 Component Based Aspect Oriented Frameworks

The related work discussed in this section cont#hse examples where AoP has
been applied to component based systems. Variayscps mentioned below mainly
differ from each other in their join point modehyasive or non-invasive) along with
certain features specific to each of thénvasive Dynamic AOP breaks the component
architecture by weaving code within the base corappimplementation, i.e. behind the
interface contracts, whereas non-invasive appraaatiéze the component interfaces as
point-cuts, and hence these aspects are implemastedierceptors on the interfaces. The
former approach tends to rely on code re-writinghteques, such as bye-code rewriting
as supported by tools such as Javassist. In coni@s-invasive approaches tend to rely
on behavioral reflection mechanisms such as inptiae to dynamically introduce or
remove aspects [Blair].

JBoss AOP

JBoss AOP is a Java based aspect oriented framedspkcts and other constructs are
written using java and which are then bound witle #pplications using java 5.0
annotations or XML. Point cut and advice bindings @solved at runtime. Jboss AOP is
normally used together with the JBoss Applicatierver. Its microkernel layer delivers
light weight component model and for the same medsdas found place in various
embedded systems. The join point model of JBobw/a&sive.

Lasagne

Lasagne [TVJ+2001] is an Aspect-Oriented Middlewéye Context-Sensitive and
Dynamic Customization of Distributed Services. lashgne, aspects are woven non-
invasively at system runtime and the selectionhef aspects to be composed is context
sensitive. These are the two features which makeoie dynamic in comparison with
other examples in the same class. The aspect edi@pproach of Lasagne is based upon
extensions, where an extension encapsulates adflibehavior that updates multiple
components at the same time. For example an aithgoh extension may crosscut a
number of components involved in a client-servequest. A service will have some
contextual properties attached to it. Interceptattached to the components of the
middleware inspect the values of those propertied decide which extensions to
execute. In Lasagne aspects are woven/unwoven dgalyrand this feature is similar

31

to the JAC implementation (discussed next). Theadynity is achieved by policy
selection on the client. However, in case of Lasafme distribution mechanism is
provided by the regular ORB, hence distributiomasspect would be relatively difficult
to implement.

JAC

Java Aspect Components (JAC) [PSD+2004] is an gpence middleware project at
Object Web [JAC], and is aimed at developing Asgggented Middleware. It has been
written in Java and provides dynamic AoP featuteselies on the use of containers,
which are similar to J2EE. The two core mechanigras JAC relies upon are in order to
extend the application semantics, are dynamic vaappnd meta-model annotations.
Through the configuration interfaces provided bgnth new aspects can be integrated
with running applications. The framework also faates, the use of distributed point-
cuts, thus enabling cross-cutting structures wiaich not in the same host. There is a
library of pre-defined aspects in JAC, which carubed by the application programmers
or alternatively, new aspects can be defined. Antbegoredefined aspects are; session,
persistence, transaction, deployment, GUI, autbaetitin, caching, integrity and
consistency aspects.

The distribution related, predefined aspects aspexial feature of this framework. For

code instrumentation, JAC is dependent on BCELciwhiraps the classes at load time
and then aspect components are instantiated latékspects can be woven and unwoven
during the application runtime. The core distribatimechanism in JAC is based upon
two kinds of application components; a deploymespeat which is used to create a
distributed application and a set of distributegbem$és which implement distributed

protocols .

The key concept introduced by JAC is the notionaspect component. An aspect
component is the software entity that capturesoasoutting concern. Due to this feature,
JAC is very powerful in applying system-wide com=gr since the all parts of a
distributed application automatically get updat&d. achieve this, JAC comes with a
container mechanism. The containers host both bssiobjects and aspect component
instance. They are remotely accessible using e@#RBA or Java RMI.

32

Prisma

Prisma [APC+2004ASJ+2003;PRJ+2003] is another attempt to combine the benefit
of component based software engineering (CBSE) veisipect oriented software
development (AOSD). A unique feature of PRISMAhattit does not have the notion of
the base program to which aspects may be woveteaishsfunctionality is considered as
another aspect. Thus in this case aspects are wogether. PRISMA can be used as a
framework to evolve architecture of complex infotima systems. It relies on
requirements-driven evolution, which is supported means of a meta-level and the
reflexive properties of PRISMA Architecture Destigm Language (ADL), which have
been implemented as a middleware. PRISMA speciferent characteristics (like
distribution, safety, context-awareness, coordamagtc) of an architectural element (e.qg,
a component or connector) using aspects, and étstacture is evolved at meta-level
using the specified properties. In PRISMA the dbisttion aspect has to be added to the
set of aspects types of a conceptual model in dadenable the specification of software
architectures of distributed systems. The distidsutaspect specifies the features and
strategies that manage the dynamic location ofuntsts of architectural elements in a
software architecture. The distribution aspect slemith all the properties related to
distribution and changes in location. Each architet element with a distribution aspect
must have a location.

PRISMA is an architectural model that can be usedidscribe the architecture of
software applications based on components and @sp&pplications designed with
PRISMA have to be implemented using different kinfl®bject-oriented and/or aspect-
oriented languages.

PROSE and MIDAS

MIDAS (MIDleware Adaptive Services) [FPA2008AG2003] is a system based on
PROSE (PROgrammable Service Extension) that alsgwedications to self-organize into
spontaneous information systems, but without rglyon a fixed infrastructure. MIDAS
is a middleware layer for adaptive services, anos®ris the language providing the
facilities required by MIDAS. MIDAS is based on thpontaneous containeoncept. A
spontaneous container is a container that adaptputer appliances to the environment
where they are being executed. It works dynamichldlyentire service communities,
which are built dynamically, using dynamic servidescovery. Although in this

33

dissertation, it has been classified from the poinview of its architecture and placed
under this sub-section, with respect to its feauitecan also be classified under
middleware for pervasive systems. MIDAS does natehspecial features furthermore
than exposed in EJB/Jini, which is the middlewaaget over which MIDAS is
constructed.. PROSE/MIDAS is designed for Java,tarzk used over EJB or Jini. They
offer a dynamic weaving mechanism based on a Jipdem

JAsCo

JAsCo [SVJ2003] is basically an aspect orienteguage, combining the component
based design concepts with aspect oriented progragniih introduces the notions of an
aspect-beamand aconnector An aspect-bean is like a normal java bean, howéve
contains extra code to realize a particular belrasica component. It also specifies a
deployment hook. The connectors are used to deph@yor more hooks in a specific
context (the so called traps). These concepts akd)otraps and aspect beans are
functionally very similar to the concepts of joinpp point and an aspect, introduced
earlier, except that JAsCo uses them with compenditte traps should be known before
the execution is started, which makes the appreabtt limited, however, if it is used
together with JAsCo HotSwap-2 (which requires JVBA), runtime insertion and
removal of traps is supported, which overcomedirtgations and makes the approach
more dynamic.

Jadabs

Jadabs [AG2005] is a light weight middleware forvasive computing, based on
service oriented architecture (SOA). It describggliaations by annotating components
and services with metadata. By using this metacdesa&, dependencies can be evaluated
at runtime to adapt the application with extensigrevided or required by the
environment. Jadabs can use different underlyingvor& technologies and enables
communication in centralized as well as decentdlienvironments by using peer-to-
peer communication paradigm. The unique featurelamfabs is that it offers both
segmented containerssuitable for powerful devices like laptops amabnolithic
containers which are somewhat limited in their support, buitable for small devices
like mobile phones. Jadabs makes use of PROSEefpnented containers and Nanning
[NAN] for monolithic containers for aspect weaving.

34

2.5 Summary of the Related Work and Limitations

Adaptive mobile applications are generally builingstwo approaches; either the
adaptation is performed by the system which undsrgiie application or the application
itself monitors and adapts to change [ECD+2001JesEhtwo approaches differ from
each other in the levels of efficiency and flextgil Programming adaptive behaviors
into applications is more efficient, but is praatlg very cumbersome, it is difficult for
the application designer to predict the runtime awedr of an application and in
particular, to estimate all possible scenarios Wigi@n occur at runtime on a system-wide
basis [KF2005]. Handling the adaptation respongytib the underlying system (usually
middleware) is less efficient but more flexiblenee the application code does not need
to explicitly handle adaptive behaviors. Most oé ttecent research has benefited from
the latter approach by using different techniquesiévelop QoS middleware, among
which are included Meta Object Protocols (MOPS) [RB1] for separation of concerns
and behaviors, reflection and Aspect oriented Roogning. A wealth of research is
available in literature, mainly in the area of atilag reflective and in particular aspect
oriented middleware, where specific languages fBscdbing QoS aspects have been
developed, and existing middleware has been cudtlored to provide QoS. A
comprehensive comparison of different aspect wasaaed aspect oriented middleware is
provided in [LPP+2005]. While different aspect otied middleware systems have their
own pros and cons, a commonality found in thenmésassumption that, the applications
running on top of such systems are using the Apitssided by the middleware. The
systems based on this assumption give the berfafitayoperability, and will generally
be capable of adapting a wide range of applicatibraspects are directly woven into the
application code, this will be more efficient andlwe feasible if adaptation is required
for a specific class of applications and can bel ued¢ransform non-adaptive applications
into adaptive ones. An example of this is found RAP/J project [SMC+2004]. While
TRAP/J can be used as a tool to make applicatidaptave, this requires selecting
classes to be adapted and defining adaptive beisafaiothem.

Adaptation, in all its forms (software, resourceservice), affects multiple elements of
a system and has been identified as a cross-cutbingern, particularly in the context of
pervasive computing [RK2004]. In case of wirelesstworks, the communication
problems are even more complicated due to thetatiot only the application demands
remain fluctuating, the available resources like tietwork bandwidth, in particular, are
also neither constant nor precisely known at astamt.

35

Reflective implementations of middleware dependumgpn the component model
suffer from an inherent property of the componerddei, that is, since reflective
facilities are indispensable from the component @h@decause all components maintain
meta-information about themselves, which is discedehrough reflection to facilitate
plugability), the associated overhead scales up thié number and size of components
in a system. Therefore, on resource constrainecte®in particular, it is not feasible to
keep a general purpose middleware layer, and cuzgatwvhen required. In some cases
customization of a large middleware to specificimnment can prove complicated. This
suggests the need for domain-specific middleware.

Thus, despite being beneficial in comparison withe tclassical middleware
technologies, effectiveness of reflective middlesves only proven for the middleware
developers, because, they can develop a genedsrireflective middleware once and
then customize it using reflection, to market gté. Thus applying reflection to engineer
middleware itself can be a good example of softweeasability, but, its use to
application programmers is limited.

The common factor of all the existing approacheseésinherent idea of providing the
user with an API, using which the user can desjgplieations on top of it, which can
then benefit from the underlying middleware feasufBhe work presented in this report
is based on the existing concept of separatioronterns and behaviors, with the main
difference that we are implementing it in more agtoous fashion. Our approach can be
seen as an example of the same principles, howsume it is in the context of a
framework (Java Media Framework : JMF), where ttnecture of applications is pre-
defined, it gives us the benefit of specifying adeagp concerns at a higher level of
abstraction and system-wide manner in the formrofilps and makes the adaptations
more self-managed, at the cost of limiting the mayblility to a specific framework.

36

Chapter 3

Aspect-Oriented Model for Adaptive Code

Generation

3.1 Introduction

A wealth of research has gone into developing asplaying various strategies for
providing Quality of Service (QoS). On one hand &ne approaches providing
guaranteed QoS for non-elastic applications anthemther hand are those attempting to
adapt the resource usage to whatever is availadgplicable in case of elastic
applications. In the networks community, adaptatefiers to altering the transmission of
data by different means like compression, transgpadir adaptive routing, resulting in
adaptive behavior of data flowin the software engineering community, adaptation
research is concentrated in adapting the softwtasdf ito enhance its functionality at
runtime (hot-fixing; updating application comporenwithout taking the application
offline), facilitating content or service adaptatioresulting from adaptive code
modifications Despite seemingly being two different researchdlions, it is possible to
combine these two approaches, in such a way thatariy multimedia application,
adaptive behavior of the multimedia data streaan by achieved throughdaptive
modification of that application’s codd@herefore, software abstractions and techniques
used to map adaptation requirements for any diget computing software can be
enhanced to be applied in the context of multimddianeworks, which are used to
develop multimedia applications.

This chapter presents a conceptual model basedat machines and state sets, and
maps adaptation requirements given at a highet t#vabstraction onto the application

37

target code using Aspect Oriented Programming igcles. The model developed in this
research relies on four constituents:

* A System State Machine

* An Application State Set

* A Profile State Set

* A Resultant State Machine

These are the main components of the model anddeseribed in detail in the
following sections.

3.2 System State Machine

The purpose of the System State Machine is to ke of past resource availability,

present state and future resource availability iptexh. When the application starts, the
state of the resource availability represents #faudt (or current) state of the systems. At
any given time, the System State Machine consikthe default state/reference state
(representing current resource levels) and difteceher states, each of which can be
characterized by a unique combination of resouegels. An example of System State
Machine is shown in the figure below:

{r1+|rlnew<=rlrnd}
{r2+|r2new<=r2mna}

S1

Fig. 3.1 — A System State Machine with arbitrarithosen state names, showing all possible states

38

Fig 3.1 represents a System State Machine, withrésources. Possible combinations
of these variations have been shown in the arbytnaamed states, S1 to S8, while SO is
the default (current) or start state. Taking thisrent state as the reference, all other
states have been marked with resource name, falld®ye ‘+’ or a *-’ sign, indicating an
increase or a decrease in the resource. Thus, irfside a state bubble means that
resource rl will increase as compared to the cursete. Similar meanings can be
attached to other symbols. The conditions on tlgegdndicate restrictions on switching
to any terminal state, e.drl+|rl...<=rlmg} ON the edge from SO to S2 indicates that the
System State Machine can switch to state S2 ortlyeife is an increase in the level of
resource rl, such that the new level (or the irsddevel) of rl is less than or equal to
the threshold level of r1. A threshold level of aegource is that level beyond which the
system is likely to show some unpredictable behaatoany time (e.g., if 95% of the
peak CPU availability is set as the CPU threshibldn it simply means, that more than
95% CPU load is not desirable and since it may ntha&esystem unstable). Similarly, in
case of available bandwidth, it may be defined%spacket loss, (meaning that a packet
loss higher than that is not tolerable etc). Aesthiat is labeled with an increase (or a
decrease) in the resource level, only tells tha ieached when that specific resource
increases (or decreases); it does not define nat@sson the basis of the magnitude of
increase or decrease. Due to this reason, at any ipotime, any terminal state of the
machine is reached in single transition.

Once the System State Machine switches from orie staanother, the new state to
which the machine transitioned, now becomes theenur(or reference) state. The
resource increase and/or decrease possibilitiethaneevaluated again and a new System
State Machine is constructed. With the new macltsogme of the existing states may no
longer be available, some new states may becomkalalea which did not exist in the
previous state machine, or the new state machinecwmsist of exactly the same states
as the previous machine (this case is easily utadetable if we keep in mind that a state
only showsthe type of resource variationghich led to that stateot the magnitude of
resource variations Due to this reason, the state machine doeshmt siny transition
back to the start state. An example of state ttiansiwhere the System State Machine
switches to a new state is shown in the figure,B,2a

39

s2

{r1+|rlnew<=rlrna}

rl-
{r2+|r2new<=r2mna

{rl+|rlnew<=rlrna} -
r2- / 1+ %
r2-
N\

Ss3 .

\\4

{r2+|r2new<=r2rna} {ri+|rLnew<=rlrd}

{r2+|r2new<=r2mna}

S5

S1

Fig 3.2a — First transition of System State Machine

Assuming that the System State Machine takes #wesitron from state SO to S3, as
shown in the diagram above, then, as soon as #msition is complete, a new state
machine is constructed. This transition will ocaumly when utilization of resource rl
increases and that of r2 decreases at the same time

{r1+| rlnew< 1Th

{rl+|rlnew<=rlrna}
r2- ri+

{r2+[r2news=r2ma} {rL+|rlnew<=rlmd}

{r2+|r2new<=r2nda}

Ss1

Fig 3.2b — System state machine taking a transitigimshing resource limits to threshold level.

40

If the increase in rl is enough to push it to tmeghold level, then the new System
State Machine will be as shown in figure 3.2b. Nalvother states (i.e., S2 and S4)
which could have been reached due to increaseeircdoimsumption of rl, will not be
available, therefore they have been shown maskeavs in pink rectangles) in figure
3.2b. Therefore, after this transition, the newt&ysState Machine will be as shown in
figure 3.2c.

ri-
{r2+ I r2new<:r2Thd}

{r2+ I r2new<:r2Thd}

S1

Fig 3.2c — Resulting System State Machine upon cdetipn of transition from SO to S3

It is notable that the System State Machine resyiktipon the completion of transition
has the current (or default/reference state) S@ghwlvas S3 in the actual machine before
the transition (fig. 3.2a).

In this example, a System State Machine has beanwrskvith combinations of only
two resources, in practice however, the resourcesneore than that and the state
machine is correspondingly complex. In practicalplementation of this model,
switching of states can occur as a result of resfluctuation or when the application
switches from one mode to another. For examplenwthe application switches from
one state to another to realize a video format ghai may overburden some resource,

41

due to which in the new application execution statene system resource states may not
be available, meaning that the number of possiaesitions from this new state are
somewhat limited or it may happen that new resowmmbinations (states) become
available as a result of positive resource fluetunabr as a result of the application state
switching. Thus a System State Machine keeps chgrigroughout the execution time.

3.3 Application State Set

When a multimedia application is running, it hasnsocharacteristics with respect to
the multimedia stream. For example it can haveezifip bit rate, frame rate, play-out
buffer size etc. Different elements like codecs hawe further tunable parameters, e.g.,
video size may also be variable etc. At any padicypoint in time, therefore, a
multimedia application can also be given a charatie representation with realizable
combinations of such parameters.

A collection of all valid combinations of such cheterizing parameters can therefore,
define an application state set. As a simple exampt us assumejdeosizeandframe-
rate be the only two characterizing parameters for &68l application, denoted Isyand
f respectively. Also assume that the applicationpsus QCIF and SQCIF sizes and
frame rates of 5 frames per second and 10 framesseeond. Different valid
combinations of the two parameters (size and f}-raik be.

S, = f(5), SQCIH S, = f(10), (SQCIH
f(5), L QCIR S, = (10), S(QCIF)

where S, 1<=i <=4, denotes th&h element (state) in application state set.

Sa3

Or the set of application states can be written as:
St & & 2

Thus, a set of application states as shown aboeatifets different modes of
execution, to which the given application can skiteach of these states has associated
resource requirements. In case of applicationswsiow some degree of adaptability by
default, the application state set consists of mihi@n one element, while in the
applications which are non-adaptable by defau#t,application state set will consist of
only one element. In such cases, where the applice either not adaptable by default
and/or extension of its default adaptability iside changes to application code are

42

necessary, such that the application state setruale elements (states) to which the
application can switch. (Details of application eadanipulation are given in chapters 4
and 5).

3.4 Profile State Set

Since an adaptive application has to fulfill usemands of adaptive behavior, its
execution is dependent on different user preferentieerefore, similar to an application
state set a profile state set is defined. Eacheéwf the profile state set defines a state
which consists of a combination of properties ttieg user wants the application to
satisfy. These states defined by the user have &pbcified in some preferential order
For example, a user may like an H.263 video tanbanie of the states given below.

S, = f(5), CIF S,, = f(10), s(CIF) S, = f(15),s(CIF)

S = 1(5), (QCIH S = f(10), s(QCIF) S, = f(15),s(QCIF)
wheref ands denote frame-rate and video size respectively and

S, 1<=i <=6, denotes th&h element (state) in user’s profile state set.

Then the user’s profile state set can be writterS3g ={ S, $ & 2 & »

The profile state set for any user must specifytradl states, which are demanded from
the application during its entire life time. It shd also be noted that the parameters,
defining different states exist in groups, and egrup varies from the other most of the

! Since, sets do not offer sufficient means to ayeaelements in a ‘preferred order’, more detailgtos
specification of preferences will be presentedhapter 5, using XML examples.

43

time, not only in the values of these parameteradisd in the number of parameters. For
example, if in addition to H.263, MJPEG adaptatians also needed, then those options
must also be added to the profile state set. Is ¢thse, size parameter for H.263 and
MJPEG will be different. For all the states cong&inin the profile state set, the
preferences defined by the user along with theuregocosts, a state machine can be
constructed (as explained in the next section imihlementation details in chapter 4 and
5).

3.5 Realizable State Machine

As described above, the application state settagrofile state set, both are related to
the states of execution of the application. Theeefthe application state set contains all
those states, in which the given application cateexecute while the user’s profile state
set lists all the states in which the user wishnes dpplication to be executable. This
possible difference in the states of executionhaf given application code and those
demanded by the user, is fulfilled by modifying #yeplication codeA state machine
whose states are obtained by intersection of theliegiion state set and the user’s
profile state set and edges derived from the usefepences, is called the Realizable
State Machinelt indicates the modifications required in the défaapplication code,
necessary to achieve the desired adaptive behavVibesefore, depending upon the type
of elements (definition of states) in the two givaats, there are four possible results of
set intersection, and the type of result determmast will be used to derive the edges of
the Realizable State Machine. The edges are demithér from the user supplied
adaptation preferences or from the adaptationipritables of the system or using both.
The four possible results of set intersection éseugsed below.

(I) - Sa\ppm Sprof = Scxpp: %rof

This is the simplest case. It happens when thdagpioln is inherently adaptive and the
user demands exactly what is provided by the gajglication code. In this case, there
exists a possibility that the application had ordge state (i.e., a non-adaptive
application) and the user also does not demandadaptation. (There is a very little
chance of this happening in a practical situatidn)such cases, the Realizable State

Machine is derived frong, , by taking all elements as distinct states ancatfeptation

44

priorities configured by the user to form the edges of the machine. fifeians that even
in the cases, where adaptation provided by the iGgtign without any code
modifications is the same as the user desires $tansitions of the Realizable State
Machine are directed by the adaptation configurnatigiven by the user.

(") - Sappﬂ Sprof = Sctpp and Sapp U Sprof

Mostly, this is the type of relationship that octun practice between what the
application offers and what the user demands. tlhescase when the application offers
some (or only one state of execution at minimumictvhis the case of no adaptation).
And user demands additional adaptations. In thée ¢ao, the Realizable State Machine

is derived fromS, , by taking all elements as distinct states anchtteptation priorities

configured by the user to form the edges of thehim&c The Application State Set and
the Profile State Set in section 3.2.2 and 3.28ecander this category.

(”I) - Sappm Sprof = %rof and Sprof D %pp

This is a very rare case, and can occur only whergiven application offers a good
degree of adaptation and the users demands areTiessonstruct a Realizable State

Machine in this case, for those states which amencon to bothS_ . and S,__, the edges

prof app?

are derived from the adaptation configuration siggpby the user and for those states

2 Configuration of adaptation preferences by the ase discussed in chapter 4 and 5.

45

which are not common to both the sets, defaultsttiom conditions of the application
stay untouched.

(IV) - Sa\ppm Sprof =@

This is the situation where bot§, jand S, are disjoint sets (they have nothing in

common) which means that the adaptation providedhkyapplication (if any) is not
needed by the user, but the user has made conyptitfielrent demands. In this case the
Realizable State Machine is constructed entireynfiS, and the edges of the machine

are also derived from the adaptation preferencepligad by the user. In this case
adaptive code has to be intelligently patched ithi® supplied application code. The
resultant code after the application has undergoisecode transformation represents the
states of the Realizable State Machine in softwarkthe transitions are implemented as
state switching conditions. Since, the adaptatiihsany) provided by the initially
supplied application code are not needed at adicetion of the supplied code may be
masked at different places, usiagund advice(Detailed explanation is given in chapter
5).

In all the cases of obtaining the realizable maehstates through application and
user’s profile state set intersection, the edgethefmachine are derived from the user
adaptation preferences, starting from the higheshé lowest. The reverse link in each

46

case is added automatically between the two statedved in the forward transition.
Assuming the user’s preferenéegven below,

f(15),s(CIF); prefl

f (10),s(CIF); pref2
f(5),s(CIF); pref3

f (15),s(QCIF); pref4
f (10),s(QCIf); pref5
f (5),s(QCIF); pref6

Then if the given application is non-adaptive byadé (the most frequent case), then
the user’s state set of section 3.2.3, will be uslede for derivation of the Realizable
State Machine as shown in figure 3.3.

% In fig 3.3, the edges are marked with the changomitions. They could have been marked with the
preference numbers; likgefl, pref2 etc. similar to XML implementation files in chapter

47

Fig. 3.3 — A sample Realizable State Machine

In practice, user's adaptation preferences canflgreater complexity and so is the
corresponding Realizable State Machine.

In cases where the given application shows adaptiaracteristics (e.g., the

application state set given in section 3.2.2),ithersection ofS, jand S, will contain

some elements representing the states to whiclefailt application code can switch,
therefore, to switch across those states, theiti@ams for the Realizable State Machine
can be derived from the internal adaptation tabdsinternal adaptation table lists the
effects of changing adaptation parameters uporesysésources. An internal adaptation
table is shown below.

In order to determine the transitions for the eletes&oming from the application state
set, the priority shown in table 3.1 is used; thedr the number, the higher the priority
and vice-versa.

48

Adaptation Effect on Effect Effect Overhead RAM (Buffer) Battery Impact Priority

Network on on Requirement Life
Server Client
CPU CPU
Compressiofi Data Loadt Load | High - - System 5
Sent, wide
Format> - - - Medium - - System 4
wide
Size| Data Load| Load | Medium l 1 System 3
Sent wide
Pre/ Post - - Load | Medium - - Client 2
Swap| side
Dimension| - - Load | None l 1 Client 1
side

Table 3.1 : Adaptation types and their corresponglieffects on system resourées

3.6 Towards a Practical Model

Previous sections have only described the modaf,itwithout any reference to it the
use of software engineering techniques to realizeThis section gives a principle
overview of the use of adaptive software enginegtechniques and language features
which help realize the proposed adaptation model.

Multimedia frameworks (e.g; Java Multimedia FramekydMicrosoft Direct Show,
largely open source GStreamer etc.) are basedeoftoil-grapli model. Components of

“ 1shows increaseshows decrease; only means change form one to another, - showknmwn or
negligible change.

® While different multimedia frameworks have beemgshe termsfilter graph, flow graph, pipestc, a
general termmedia processing chaior simply aprocessing chaiwill be used in this dissertation.

49

a multimedia framework are characterized by the&dia processing states, therefore,
execution of multimedia applications developed gsmultimedia frameworks is realized
by switching the states of constituent applicattmmponents. Thus the way an entire
application executes is determined by the wayataponents transition from one state to
another, which directly depends upon which evem¢s fmed. Use of different media
processing elements can be controlled by altetiegapplication code and once desired
elements are used, tunable parameters of such miewen be tweaked to gain adaptive
performance.

Therefore, a realizable model of adaptive executjse; adaptive processing of
multimedia data in the processing chain) is basedtlee fundamental principle of
mapping the states of the Realizable State Macbm® the states of underlying
framework components and adaptively controlling floev of state-transition events. In
principle, this task can be decomposed into Staliomposition and Dynamic
Reconfiguration phases.

Since the Realizable State Machine is the resutthtite application state machine and
the user preferences/profiles, its states inhgreetresent possible adaptive behaviors
contained in them. During the Static Compositiorag#) by using Aspect oriented
Programming (AoP), code required to carry-out thetestransitions dictated by the
Realizable State Machine are woven into those freorie components which are used by
the application. Thus the given application codagpectized with severakfore after
andaroundadvice to facilitate interception, diversion andsking of the events used by
the given application code. Additional adaptive &ad also hooked with these event
interceptions, thus at the application runtime,-m&cessing, post-processing or even

50

completely new code (at certain places) is executedesponse to different state
transitions. Thus, in accordance with the usergpesfces/ profiles, the media processing
chain generated may be partially or completelyedéht from the original applications’
media processing chain. In practical situationstead of one chain, several chains exist,
each with its own characteristic media processiagabilities and associated resource
demands. At application runtime, when a requestd@apt to certain situation has to be
fulfilled, the chain suited best to that kind obpessing is installed (this gives coarse-
grain adaptation) and then it the tunable parammeaiethe media processing elements in
that chain are tweaked (this gives fine-grain aaksmt). In summary, the default media
processing chain of the multimedia framework gétered’. This is shown in figure 3.4
a, b, candd.

Media Processing Chain

with Original Application

Code
|N===mmeemmmmmmnmmemanncaencenaae il Pre peeeeene- ouT

Altered Pre-Processing
Chain with Aspectized
Code

Fig. 3.4a — Altering pre-processing chain of thevgin application code

® It is notable, that the change in the pre, poshain processing chain elements may either result i
complete replacement of that element with a new onenly masking of some methods and/or addition o
some others.

51

Media Processing Chain
with Original Application

Code
TN B aGRREaCEEEEEEEEAEREREERERE ouT

Altered Pre and Main
Processing Chains with
Aspectized Code

Fig. 3.4b — Altering pre and main processing chaiokthe given application code

Media Processing Chain
with Original Application

Altered Post Processing
Chain with Aspectized
Code

Fig. 3.4c - Altering post processing chain of thevgn application code

Media Processing Chain
with Original Application

Code
N >‘ """""" P‘ """""" P‘ """"""""""""" P out

Completely Altered
Processing Chain with
Aspectized Code

Fig. 3.4d — Altering entire processing chain of tlygven application

In addition to figure 3.4a,b,c and d, at times mibr@n one media processing chains
can exist in parallel to each other and switchiognfone to another is done at runtime. In
all the cases, during the Dynamic Reconfiguratibase, already aspectized application’s
media processing chain, which is now hooked withadaptation policy, is directed to
fine-tune the parameters associated with each npediessing element (like a codec, a
renderer, a packetizer etc). It is notable theaddition to the cases shown in figure 3.4

52

above, there are several other possibilities okcagpectization. In many cases, instead
of completely swapping a processing chain componeith another one, only
modification of some methods can give the desidaptive behavior, so that only that
modification is made to the code without swappihg éxisting chain with a new one.
Subsequent chapters, discuss the theoretical nmimladloped in this chapter from a
practical standpoint, with particular referencdéva Media Framework (JMF).

For practical implementation of any adaptationumhber of factors relating its type are
to be considered. An adaptation parameter may brealspecific (e.g; LCD backlight
switching on/off, changing the play-out buffer siae the client etc.) it may be user
specific (e.g; each user defining a different peofor the same content type), or instead
of determining the local device behavior, it mayaunt system-wide adaptation decision
(e.g; incase of format change, server and clierth have to adapt in a coordinated
manner; details in sec. 4.4).

53

Chapter 4
Adaptation Composition and Runtime Environment

for Multimedia Applications (ACREMA)

4.1 Introduction

The adaptation model presented in the last chaptebe easily realized in software if
the applications are adaptive by default; i.ehéyt have been programmed to have modal
adaptation characteristics within themselves, h@wnevor non-adaptive applications
(those which only have minimal functionality) biged to show adaptive behavior, some
architectural abstractions that can transform ndegpive code to execute in an adaptive
manner must be developed. This chapter providekitactural and implementation
details of how the adaptation model discussederptievious chapter can be extended to
non-adaptive (legacy) multimedia applications. I[oadiscusses some test applications
and how the results can be applied in general. flis¢ section describes media
processing elements of the Java Media FrameworlE)J8ince sample application code
from JMF was used to realize the concept for thrpgee of testing.

4.2 JMF Media Processing Elements

The JMF API mainly consists of several interfaced a few classes, which abstract
audio and video processing devices used in ddidy Bome features of these media
processing elements are tunable, while the frameviself is extendable as a whole to
incorporate new functionality. The table given eldists important media processing
elements of JMF along with the possible adaptiveabm®rs that can be attached to each
one of them.

Element Name Possible Adaptation Features

Processor A Processor is the basic element which can be imsgchumber of ways, starting from capturing
media from input devices, reading from URL or filgs. It can be used to add adaptive behaviors
like size of the display picture.

RTPManager RTPManagers are responsible for RTP session maragethus any kind of adaptation related to
controlling the network response can be done hyguadaptive method code to an RTPManager.

Codecs (Severa Of all the elements, codecs are the most verdatiléne purpose of tenability. Many different types

54

Types) of coarse and fine adaptations are possible oroardi video, including format, frame-rate, bit-
rate, encoding quality, and different other codmectfic parameters.

Buffer A playout buffer can be managed adaptively, and hedy reduce jitter.
Renderer A renderer is an abstraction of an output devitrisTseveral client side adaptations can be realized
by adaptively controlling the renderer.
Device Ports These elements abstract physical device ports.
Effect It is one of the special plug-ins and by writingtam Effect plug-in, various media processing

features of the IMF API can be enhanced, e.g; antydé manipulation of individual frames or
transcoding the input stream etc.

Packetizers Packetizers are responsible for converting the gerterated by the application for transmission
over the network (e.g; encoding for RTP transmissiDepacketizers do the reverse.

Table 4.1 —Java Media Framework’s media processelgments

The above table shows media processing elementsolimy the behavior of a
multimedia application. Each application typicallges several of these elements and
each element has several versions, each one vdifieaent set of properties (e.g; the
same codec by one vendor may behave differentlyottee from another vendor etc).
Different characteristics of each of such elemangscontrolled by a number of methods,
spread across many interfaces/classes. Such matheddo incorporate code changes in
order to give adaptive behavior to the entire ajgpion. To make the given non-adaptive
application, adaptive, code changes have to be moeskveral methods spread across the
entire application codegdaptationis therefore considered as a cross-cutting conicern
this context. That is why AoP has been used to lleanhd

4.3 Architectural Overview of the System Model

The model presented in the previous chapter ongcriges how user’s adaptation
requirements and the properties of the given meltiiaa application code are merged
together, giving a theoretical manifestation of éldaptable code. Practically, this process
starts with exploring the given application codegseflectionand exploring the media
processing elements present in the applicationgaldth methods which can manipulate
those media processing elements. The given applicabde itself resides on top of the
ACREMA layer as shown in figure 4.1.

Thus, initially the application in question onlynsists of its basic functionality, and all
the adaptation behaviors are contained inside ACREMansforming a non-adaptive
application into an adaptable one is completeavimghases. During the first phase when
the application is loaded on top of ACREMA, ACREMgenerates code patches
according to the Realizable State Machine and wse#wvem into the given application
code at different points. It is notable that theperations are carried out on byte code of

55

the application (source code is not at all requir@dhis weaving process exports some
‘hooks’ inside the given application code at wedfided adaptation points.

U

i

i

i

>

()

it

il

Realizable State Machine

Java Virtual Machine

Fig 4.1: Application loaded on top of ACREMA residelayer

These ‘*hooks’ which are now part of the modifieglagation-code on one hand and
can be tweaked according to the adaptation polcyan the other hand, can be used to
link to adaptive code patches at the applicati@u lbme or to adaptively divert the flow
of control during application runtime. In termsADP, this whole process is finding the
appropriate join points, composing pointcuts andawirgg-in advice code. Figure 4.2
illustrates the concept.

Java Virtual Machine

Fig 4.2: Aspectized application code produced afjenerated adaptation behaviors have been weaved-in

56

The given non-adaptive application code now costamtaptation hooks (green patches
inside yellow, shown in figure 4.2).

At an abstract level, the entire system consiststwvad main phases: thstatic
composition phasewvhich is responsible for identifying the apprape joinpoints in the
given application code along with the adaptationi@to be woven at those joinpoints
and thedynamic reconfiguration phas&hich uses the weaved advice code along with
different adaptation policies and available resedevels, to realize runtime adaptation.
The entities constituting the whole system are shimvthe figures 4.3 and 4.4.

4.3.1 Static Composition

The Static Composition, is meant to produce théimenadaptable code from the given
non-adaptable application code. A conceptual oeanaf the process is shown in figure
4.4. The lower portion of figure 4.4, where the Mg Interface is shown producing the
Realizable State Machine has already been explamtue last chapter, while the upper
portion which is transforming the supplied applicatcode according to the Realizable
State Machine, using aspect enginés the subject of section 4.5.

Supplied Application Code | _p»
(Non-Adaptive)

Aspectized
Application Code

Resultant State Set

Realizable
State
Machine

Mapping Interface

User's Adaptation |
Preferences A

System
Adaptation
Priorities &
Adaptable
Elements

Fig. 4.3 — Static Composition Phase
57

The Mapping Interface takes a list of adaptaldenents of all the system elements
available in the JMF API, along with the providednradaptive byte code for the
application. The application code is analyzed (teta section 4.5) for all possible
adaptive behaviors which can be added to the daassd methods used by the given
application. The pointcuts are identified at thisge. In addition to specifying the types
of adaptive behaviors desired, mostly other infaromarelated to the characteristics of
the device (e.g., battery and cpu power, cpu amnd ddaptation features, network
interfaces etc.) can also be specified. If theeeaany conflicting (non-realizable) adaptive
behaviors in the specification, they are filteredt.oThe Realizable State Machine
produced by the mapping interface is used to wélaweadaptive code into the supplied
application code, thus transforming it into adajgatmde (shown as ‘aspectized code’ in
figure 4.4). Since the aspect engine is a load-tasgect-weaver, the functions of JMF
API, used by the user application are aspectizédeafipplication load time. It is notable
that due to load-time nature of the weaving proce$®n the application is loaded, the
adaptation hooks are inserted and when the applicatompletes execution and is
unloaded, the application code is again the saniefase loading. The changes made to
the code are not permanent. The aspectized applicatde is made to divert its flow of
control at specified points to the code patchesichigive the overall execution an
adaptive behavior.

4.3.2 Dynamic Reconfiguration

Dynamic Reconfiguration of the application is déa@chieve adaptation at runtime. It
is realized by executing the aspectized code pexiwduring the Static Composition
phase along with the current input from the Systetaie Machine at any time. Vital
resource levels like CPU usage, remaining battamgjlable network bandwidth and
RAM usage are obtained by the resource monitomaalwith the pre-programmed
resource threshold limits. The aspectized appboatiode, which now has various states
of operation is switched from one state to anollyethe adaptation engine, in accordance
with the possible transitions of the System Staseivhe. The System State Machine, is
indirectly used to predict future adaptation podisigs by the Adaptation Engine.

58

Aspectized Applicaiton Code
(produced during Static Customization Phase)

Adaptation Policy

Adaptation Engine Comm. Interfaces

|

System
State
Machine

Resource Thresholds

Battery

Fig 4.4: Dynamic Reconfiguration Phase

The time varying input to the Adaptation Engined f&y the System State Machine,
only predicts adaptation possibilities and anti@pahe effects on the system resources.
However, the application may not be capable ofnigkadaptation suggested by the
System State Machine (because resource variatrensi@ependent of both the type of
application and the user desires). Therefore, witeniime to adapt, the Adaptation
Engine has to choose from only those choices peavioy the System State Machine,
which are realizable by the aspectized code aaegrih the constraints provided by the
adaptation policy.

It may be noted that the user’'s adaptation pret&®nvhich together with the profile
state set, partly (or in some cases fully) defime Realizable State Machine during the
static composition phase are different from thepgataon policy used at runtime (figure
4.5). The difference is that the adaptation prefess in the static composition describe
all the desired ‘possibilities’ of adaptation anuable the application fotoarse-grain
adaptation, while the adaptation policy used at runtime is fioe-grain adaptation
hence the namedynamic reconfiguration phaseA coarse grain adaptation is
characterized by the way it impacts system ressuioecase of coarse-grain adaptation,
whenever the application switches from one modearother, the change in system

59

resource utilization is significant, while for figgain adaptations, this change is very
minor. Examples of course-grain adaptation includepression scheme change, format
adaptations etc, while tuning codec parameterdjtgudactor etc are examples of fine-
grain adaptation.

In actual implementation, adaptation requiremergstr@nslated onto different plug-ins
of the JMF. Therefore the process of mapping dffeprofiles and preferences to make
applications adaptive is effectively a two stepgess. In the first step, aspects are
generated from profiles and are woven across diffeplug-ins constituting a JMF
application. In the second step, adaptation pret&® dynamically reconfigure the plug-
ins. For example, normal codecs are made rate4dadapy inserting mechanism for
frame dropping and adaptive bit-rate control, sgeeifects like converting a colored
image to grey scale are adaptive enabled/disaliledname, while insertion of hooks
takes place statically. This reconfiguration of megrocessing elements facilitates fine-
grain adaptation and management of complete RTStosess

4.4 System-wide Adaptation Coordination

Since the application software can be spread aaassnplete network, adaptation is
viewed as a system-wide coordinated activity. Sysiede communication of initial
negotiation and runtime statistics from differeesgurce state machines existing on
communicating peers, along with adaptation decssioimom the server and
synchronization signals are sent on the commuwicatiterface shown in figure 4.4. In
all cases a machine with more resources and theéhames acting as a server, stays the
adaptation master (controller of adaptation densjiand the client remains adaptation
slave. Therefore, the process of system-wide atiaptatarts with the client application
registering itself with the server side, mentionitige node’s IP address and
communication port and the server, registering dlaga with the client. In case of
multiple clients, separate media processing chaiist on the server, because, the
adaptation capabilities of all the clients are galtgnot the same.

During application runtime when there is a neeadapt, depending upon the type of
adaptation required (whether due to scarcity aicallresource or a network resource) the
client tries to adapt locally by altering the loegdplication parameters, if possible (e.g.,
by making the picture small or swapping a localli@pgfion component like a heavy-
weight video renderer with a lightweight one).Hétadaptation needs involvement of the

60

server, the client sends an adaptation requesg aldth the adaptation type. The client
determines the type of adaptation from the parameté the target state of its own
Realizable State Machin# the adaptation cannot be handled locally andhent, then
the server coordinates the system-wide adaptafionexample, if currently the client is
receiving an H.263 video with 15 frames per secfihd present state of it Realizable
State Machine) and the fluctuation in the systesoueces switch itsSSystem State
Machineto a new state, where itRealizable State Machimaust transition to a target
state defined by H.263 video of 10 frames per sgctiven the adaptation request sent to
the server will be:
<?xm version="1.0" encoding="utf-8"?>
<adaptreq type = "adaptdown">
<f or mat >h263</ f or mat >
<framer at e>10</franer at e>

</ adaptreqg>

After parsing the adaptation request, the seniirsignal the client if the request
cannot be fulfilled, otherwise, when the Realizabtate Machines of both the client and
the server have reached a common state to switelclient will be signaled to switch to
the target state and the server will fulfill thejuest. When the client’s request is refused,
the client can send another request later. Aparhfthe adaptation request, the client
periodically sends feedback reports.

If the server needs to adapt, the server will stetadaptation negotiation in a similar
manner with the client. However, in this case whhbke server's and the client’s
Realizable State Machines both have a common tstathich they can switch, the server
has to trigger the adaptation. All adaptation atiration messages are sent g@nm.
Interfacesshown in fig. 4.4.

4.5 State Machines and Code Transformation

Figure 4.3 and figure 4.4 above, only describedphases obtatic compositiorand
dynamic adaptatiorat a conceptual level, without giving details ofplementation in
software. Both these only serve as a ‘bridge’ tpl&r how the theoretical model
presented in chapter 3 is related to the softwapamentation. In both these figures, the
grey highlighted portions are mainly related to thaftware implementation of the
adaptation using AoP and are explained in figube 4.

Entire ACREMA layer shown in fig 4.5 is an elabdoatof the abstract view given in
figure 4.3 and 4.4. It has been shown enclosedaensidotted boundary, which is further

61

subdivided into two parts by a vertical dotted Jine order to separate the static
composition phase from the dynamic reconfigurapbase. Both the static composition
and the dynamic reconfiguration phases proceedungasses, shown by the two dotted
arrows in the figure 4.5. During the static compiosiphase, each pass starts by scanning
the given byte code for adaptable properties ofctiraponents that the application loads
by default (e.g; a default codec may support migtfpame rate or bit rates etc). This is
done by the ACREMA Event Listener, which captutes ¢vents fired when the media
processing chain takes transitions. Further detditbese passes are shown in figure 4.6.
The four different blocks (Composers) shown in fegd.5, inside the static composition
phase, correspond to four different classes of tatiap described in section 4.6. These
four blocks enable composition of adaptive behaviorthe given application’s byte code
during the four composition passes shown in figufe

62

Static Composition Phase Dynamic Reconfiguration Phase

Given Byte Code Aspectized Code

Fig 45 — An overview of the application code presing through the static composition and dynamic
reconfiguration phases

"In fig. 4.5, other parts of the system like Reatlie State Machine generation, network communicatio
etc have been deliberately omitted to avoid clirtger

63

Upon completion of the static composition phase,abpectization process is complete
and the aspectized code of the given applicatioictwiis now capable of showing
adaptive behaviors is used by the dynamic recordigan phase. Four adaptors shown in
figure 4.5 correspond to four different classesadéptation discussed in section in 4.6.
According to the adaptation policy and in respotts¢he state transitions taken by the
System State Machine at runtime, these four adapteoke the adaptive code patches
corresponding to the state transitions of the Rahle State Machine.

Pass -1:
Scan the given code, |ocate nedia processing el enents;
Deduce the application type (whether, |ocal or network);
Use before advice, intercept and prioritize event queue;
Generate Realizabl e State Mchi ne;
Enabl e all ClI ED adapt ati ons;

Pass -2:
Read Real i zabl e State Machi ne;
Locate Pre- and Post Processing Adaptati on Requirenents;
Mask conflicting nethods, using around advice;
Weave in new Aspects and Generate new Real i zabl e State Mchi ne;

Pass - 3:
Read Real i zabl e State Machi ne;
Locate Static Main Processing Adaptation Requirenents;
Mask conflicting nethods, using around advice;
Wave in new Aspects and Cenerate new Real i zabl e State Machi ne;

Pass -4:
Read Real i zabl e State Machi ne;
Locate Dynami ¢ Main Processi ng Adaptati on Requirenents;
Mask conflicting methods, using around advice;
Weave in new Aspects and Generate new Real i zabl e State Mchi ne;
Enabl e Paranmeter Tuning for Runtinme Reconfiguration;
Report Static Conposition Conpletion;

Fig. 4.6 — Static Composition Passes

4.6 Adaptation Classification

There can be several ways to classify the adaptwtarried out by ACREMA, e.g;
categorizing with respect to the type of applicat{e.g; running locally on the device
playing stored media, executing on the network sisnple client and server, a multiparty

64

conference where several sessions are to be masagadately etc). Classification can
also be done on the basis of the type of implentientgi.e; how are the adaptive

behaviors injected in into the application). Anathgossible categorization is with

reference to the type of adaptive code injectioth i@placement which is more related to
ACREMAS’ architecture and type of the supplied bgtele of the application. In the

subsequent sections, the classification will beedipom an architectural standpoint with
respect to the type of Aspect oriented featured.use

4.6.1 Code Interception Event Diversion Adaptation (CIED)

This type of adaptation is characterized by itstexice anywhere in the application
code (i-e; it can effect any of thi&re, Postor Main processing chain(s)) and are handled
by intercepting running code and diverting eveRts. any non-adaptive application, this
is the simplest type of adaptation and basicalguies identification of tunable media
processing elements (if any) constituting the entihain, along with their properties
which may be tuned to get the desired behaviornipkas of the applications requiring
this type of adaptation include any applicationttie to play or record a simple
audio/video from/on the local device and the usexfguences demand very simple
adaptation. Typical adaptation requirements in stages are related to demands on bit-
rate, frame-rate, display size, different code@apuaaters etc.

Since this type of adaptation is characterized tsyproperty of Dynamic Stream
Reconfiguration, it requires minimum code manipolatand the Static Composition
phase is the simplest for such cases. This phagdymavolves identification of the
media processing element(s) which are responsibiegiving the desired output.
Identifiers pointing to all such elements are listevent ACREMA event listeners are
registered to divert to the flow of control to tAelaptation Engine and corresponding
Aspects are added. The UML sequence diagram bélowssthe process.

65

ACREMA Application CIED Adaptor

scanByteCode() , :

Manager.createProcessor()

BHRORE {add ACREMAEventListe

message

addControllerListener() ACREMAEventListener

Config \omJlleteEvent

,\
AN getEventSource()
<

E\)QngSource

N getAvailableParameterControls()

AN AdaptationKnobs[1..n]
intercepted control returned ™

Fig 4.7: Sequence of operations to weave-in CIEDajpdations

As soon as an adaptive element (like a Media Psocgss created, the pointcut
matches the condition and by addipgforeadvice the execution of the application is
intercepted and the flow of control is divertedadd ACREMAEventListener, which is
responsible for extracting all tunable parameterdietated by the Profile S.M. The flow
of control is returned to the given applicationeafall Runtime Adaptation Knobs have
been exported to the CIED Adaptor, which is resgm@sfor parameter-tuning at
runtime, under the constraints of the System S.bk bfbefore advicéhere ensures that
all events are intercepted by ACREMA, before thegch the actual application.

Since this type of adaptation, does not involveecagection into the application
(instead it works only by intercepting the givendeoand diverting events), it relies
entirely on the default media-processing chainhefapplication and the extent of CIED
adaptations that can be extracted from the givepliGgtion code depends upon the
number and type of media-processing elements loathgd the application.
(Implementation example in sec.5.2.1)

66

4.6.2 Static Pre or Post-Processing Chain Adaptation(SPPC)

SPPC Adaptations are characterized by their exdstém pre- and/or post-processing
media chains, due to which the additional codeirequo impart adaptive behaviors is
also in the pre- and/or post processing chainss fiypie of adaptation involves relatively
more work to be done during the Static Composifpdrase. Examples can include
adaptation choices made by the user which canndilbéed by tuning existing media
processing elements of the given application. Thhes,requirements are met by adding
additional code fragments which can display theirddsadaptive behavior. Practical
examples of this type may include applications mvg custom processing of a media
track (if it is desired that the size of the plaghdisplay be variable, it may need addition
of a display components, having properties of stgee scaling, or it may be desired to
have a light-weight video-renderer than one thdiegon already has, (in order to suit
the deployment on a resource constrained deviaa)th®r example may be addition of
media pre-processing or post-processing elemeriteeicodec chain (e.g; a user opts for
some adaptation which, although, can be providedhieydefault codec used by the
application, but the output produced cannot belaysa by the default video-renderer or
the codec in its present form takes only specifjut video size, in the pre-processing
chain, then the pre-processing chain may need oamtéfications to handle additional
sizes. Similarly, some post processing (e.g; RGBWY conversion or vice-versa) may
be needed.

This kind of adaptation is relatively complicatdthn the previous one and is mainly
carried out on different pre and/or post-processitgments of the chain. The UML
sequence diagram below shows the operations ind@ueng the Static Composition of
the given application from this type of adaptations

67

T
scanByteCode() - PASS-2 > i
.

listAllChainPreProcessors()

i

i

PreProcessors[l..[H 3

listAllChainPostProcessors() I
> PostProcessors[l..i]

getAdaptationProfile()

AdaptationPreferences[1..q]

maskConflictings()

PEE—

installPreProcessingChain()

-«

installPostProcessingChain()

«

generateSPPCAspectizedCodl

exportRuntimeReconfigurglionHooks()

;
;
|
‘
;
;
|
‘

. ;

' '

SPPC Hooks[1..r| 1
L)
‘
;
;

! n T]]

I I] I I

.

Fig 4.8: Sequence of operations to weave-in SPP@Gptdtions

All pre and post processing elements are obtaitteddy media processing properties
explored (througheflection and in view of the constraints set by the Pro8I#&/, their
default properties are altered. This may need palyial code injection (usinigeforeor
after advice to add additional code, e.g; in case of vide® sthange) or complete
replacement of a specific element (usargund advicee.g; in case of swapping default
video-renderer with a leight-weight renderer). A§iral step, all adaptation hooks are
obtained by exploring the configurable propertidstiee modified pre and/or post-
processing chain and exported for runtime adaptatio

All related pointcuts are identified, the joinparformed and Aspect Advice is woven
to carry out desired adaptive processing. (Comphepéementation example in sec.5.2.2)

4.6.3 Main Processing Chain Static Adaptations (MPCS)

This type of adaptation exhibits a higher degreeahplexity and is found in the
applications which are written with their basic é¢tionality in mind, but need to adapt to
a different format. It is particularly related tostallation of custom codecs. These
adaptations are characterized by their requirerteentodify the main processing chain.
A typical example of this type of adaptation invedvtranscoding from one format to
another, where the transcoding format is selectedically and is not altered

68

dynamically. That is, it has the transcoding propess a coarse-grain adaptation
requirement during static composition phase and maymay not have fine-grain

adaptation requirements during dynamic reconfigomgbhase. A practical example may
not even involve media display or play-out, butypmeading one format and storing in
another format or reading in one format, transogdim the fly and transmitting in

another format. UML sequence diagram given beloswshthe operations involved.

scanByteCode() - PASS-3 I

SPPC Aspectized Code MPCS Composer MPCS Adaptor

extractMainProcessingChain(;

MainProcessingChain

PreProcessingChail
PostProcessingChain

extractPreProcessingChain()

extractPostProcessingChain

getAdaptationProfile()

AdaptationPreferences|[1..q]

maskConflicting()

resolveChainincompatibilities()

generateNewChains()

installNewChains()

generateSPPCAspectizedCode

<

MPCS Aspectized Code

exportRuntimeReconfigurafignHooks()

MPCS Hooks][1.,{]

Fig 4.9: Sequence of operations to weave-in MPCSaptitions

In addition to swapping the existing main-procegsahain with the new one, an
additional (and iterative) step in this case isesolve the incompatibilities arising with
the installation of the new codec. This conflickokition may require changes to pre
and/or post-processing chains (e.g; if a codecmscéUV input instead of RGB, then
color scale needs conversion, which is basicallyreprocessing operation). Like the
previous cases, runtime adaptation hooks fromekelting aspectized code are passed to
the adaptor for runtime tuning. (Implementationrapée in sec.5.2.3).

69

4.6.4 Main Processing Chain Dynamic Adaptations (MPCD)

This type of adaptation has the highest degreeoofptexity, both during the static
configuration phase as well as during the Dynanecdrfiguration phase. It is different
from all other adaptation types due to its resouwogflicting nature and very high
overhead. This type of adaptations are resourcictimy becaue, when the system
adapts with respect to one resource, another resaygts overloaded mainly due to
heavy house-keeping overhead. These adaptationsaareally on the main processing
chain, but, occasionally effect pre- and post-psstey chains as well. Thus complexity
of the runtime phase is the main factor which ddfeiates it from PMCS case discussed
above. Example of this kind of adaptation is foumdere a codec swap is needed at
runtime. In this case mostly an existing processingin has to be completely replaced
with another, and this process of chain swaps naairtue on to multiple sets of pre,
post and main processing chains. Additional coddditate synchronized switching of
the media stream from one chain to another is géser All runtime adaptation hooks
from all complete chains are then exported in g=sh set corresponding to a complete
chain), therefore, switching from one chain to aeotcan exhibit entirely new adaptive
behavior of each element of the chain under corglid®. This type of adaptations have
maximum overhead due to the fact that each timewa chain is installed while the
application is running, the one already in place ttabe garbage collected. (Complete
implementation example in sec.5.2.4).

Table 4.2 gives a summary of basic adaptation typategorized on the basis of
implementation type.

Adaptation Identifying Property Implementation Overhead Nature
CIED Exists anywhere in the Implemented by intercepting running cod Least Non-
program code and diverting events Conflicting
SPPC Only in pre and/or Implemented by injecting additional code More than Non-
post- in pre and/or post processing chain(s) CIED Conflicting
processing chains
MPCS Basically in the main Implemented by one-time static modificatic Comparable Non-

processing chain, but of the main (and possibly pre and/or post with SPPC Conflicting
can effect pre and/or processing chain(s) using code injection
post processing chain

MPCD Basically in the main Implemented by one or more static code Highest Resource
processing chain, but modifications of the main (and possibly pr Conflicting
mostly effects pre and/or post) processing chain(s) using co
and/or post processini injection along with addition of runtime
chains switching and stream synchronization coc

Table 4.2 — Summary of adaptation classification

70

4.6.5 Multiple Code Manipulation Adaptations (MCMA)

Each of the adaptation types discussed above pomded to the four passes of
application code processing in fig.4.5 and fig.&#ce the formation of Realizable State
Machine is also dependent on User’s Profile StatdrSaddition to the Application State
Set, and the User’'s Profile State Set is definedheyuser along with the adaptation
preferences (also) given by the user, real lifgptateon requirements are much complex
than the 4 basic categories of adaptation discualede. The complexity mainly arises
from the fact that to fulfill user's adaptation damas, the processing of the given
application code has to undergo multiple passesw(shn fig. 4.6). Therefore MCMA
represents the real life adaptation scenarios wheréple locations in the application
code are aspectized. This is the most complex atiaptsituation and can virtually
handle all types of requirements, therefore, isntiost practical situation also. However,
the corresponding complexities of both the Statiom@osition and Dynamic
Reconfiguration phases are proportionally high. theo important feature of these
adaptations lies in the fact that they have to ml@dditional pass to scan the application
for such methods which can interfere with the ACREMlaptation implementations and
mask all such methods, so that the user may naetbleeto deliberately or accidentally
tamper with the system. These adaptations are aieaimed by existence of multiple
adaptation instances of the types described i £et.to sec.4.5.4. This requirement of
making multiple changes throughout the code-badesrevthese changes satisfy well
defined conditions, justifies the use of Aspectented Programming to handle these
practical cases of adaptation. (Complete implentiemzaand evaluation example is in
Chapter 6.)

4.6.6 Adaptations requiring ACREMA Extensions

The adaptations which are not strictly confinedapplication code modifications, but
rely on several other factors (e.qg; different crias®r adaptations, which can be carried-
out effectively without making any changes to thgplecation code), fall under this
category. Although, such cases were not directhhiwithe scope of the work presented
here and have not been implemented fully in ACRENBwever, a limited extension
related to adaptations with respect to device dtaratics have been incorporated. This
can incorporate system wide adaptations (e.g, pegific adaptive resource management
strategy of any network transmission methodologg ltomposition filters etc, layered
transmission with online format conversion into tplé content qualities, without
requiring to write multiple content types).

71

Chapter 5

ACREMA Implementation

This chapter explains specification of adaptatioefgrences/profiles along with code
snippets to show some sample code injection exangle implement the concepts
discussed in the last chapters, Java was the lgagaachoice, since it provided all
desired language properties (reflection, meta-tatadling, AoP), and a wide variety of
aspect engines, each with a host of features. Poftthat Java Media Framework (JMF)
was available to design the test applications amyepthe suitability for an existing
platform, therefore application development wasiedrout in JMF.

5.1 Specification of Adaptation Preferences and Pro files

Adaptation preferences are accepted from the useg @ GUI and are internally kept
in XML files. A sample adaptation preferences fite shown in fig. 5.1. Different
switching possibilities given by the user, alongthwihe default application code
determine the possible code instrumentation (adaptbde injection into the given
applicaiotn code), thus defining the states of dpeplication and user state sets, while
preferences define the transitions of the Profil@e&SMachine.

Although, resource usage in multimedia compreskicgely depends upon the type of
image/video being encoded/decoded, from a numbeexpleriments, the resource
overheads were computed, and based on resourcengptisn in different types of
operations, adaptations tables were devised.

Adaptation Type Implementation Reliability Comments
Overhead
Format Conflicting complicated, high can be faulty consecutive invocations not
change recommended
Size changg Non- simple, low can be faulty only first time consecutive invocations
conflicting possible
Frame rate Non- very simple Never faulty consecutive invocations
change conflicting possible
Image Quality Non- Simplest Never faulty Step-wise invocations possible
changt conflicting

Table 5.1 — Different adaptation types and relatiwgerheads

72

In addition to the coarse-grain adaptation typescieed in table 5.1, other fine-grain
adaptations also exist. For example, a list of bllenaodec parameters is in case of H.263,
the parameters, which in-turn is represented abliagadifferent modes of the codec.
The default order for codec parameters are no-ogti®B-enable, AC-enable, AP-PB-
enable and AP-PB-AC-enable.

<?xm version="1.0" encodi ng="utf-8"?>
<pr ef erences>

<conpression standard = "h263">
<codec pref = "1">
<adaptation type = "format">
<size pref = "1">16C F</si ze>
<size pref = "2">4Cl F</si ze>
<size pref = "3">ClF</size>
<size pref = "4">QCl F</si ze>

<si ze pref "5" >SQCl F</ si ze>

</ adapt ati on>

<adapt ation type "framerate">
<fps pref = "1">hi ghrate</fps>
<fps pref = "2">m drate</fps>
<fps pref = "3">l ow ate</fps>

</ adapt ati on>
</ codec>

</ conpressi on>

</ pref erences>

Fig 5.1: An excerpt of user’'s adaptation preferersce

Considering the above mentioned sample profile addptation preferences, the
Profile State Set with a default state is derived.

For generation of the Profile State Set, devicdilptonetwork profile etc are, taken
into account in addition to user preferences fosiree adaptive behavior. A device
73

profile describes device characteristics like, @épees to switch on/off the LCD
backlight, cpu speed-stepping modes, low-powerestan mode availability etc. The
network profile describes the connection possiegitand preferences e.g; it can contain
preferences with respect to pricing (per minutegasa GPRS, dependent on the amount
of data transfer in case of GSM, free in case ofANLetc) which helps the system
decide how expensive an adaptation woull Besample profile is shown in fig 5.2.

5.2 Derivation of the Resultant State Machine

The first step in aspectizing a pre-written apgiaa code is the identification of
elements which can be used to weave adaptive lmisavihis is done once for whole
framework API (in this case JMF API). The clasgbsjr identifiers and methods, which
represent and control the functionality of mediagesssing elements are identified and
corresponding information stored in a repositorgpBnding upon the given application
code, the ACREMA Resident Layer thus appropriaigdntifies all the joinpoints in the
given code (details in the next four sub-sectiosaih points are usually spread across
the whole code-base, spanning multiple classesserheinpoints are used in the
Pointcut(s) and Advice for adaptive execution is/&ra

8 In the simulation examples for evaluating ACREMAhitecture and application test cases, switching
between WLAN, GSM or GPRS part was not implemenfdde to restrictions of the evaluation
environment). Further more this is not within direscope of the work presented here; this type of
adaptation comes under ACREMA'’s extensions.

74

<?xm version="1.0" encodi ng="utf-8"?>
<profil e>
<clientside>

<renderer pref
<renderer pref
<renderer pref
<renderer pref
<di nensi on pref
<di nensi on pref
<di mensi on pref

"1">| i ght wei ght </ render er >
"2">awt </ r enderer >
"3">nati ve</renderer>
"4">j ava</ r ender er >

"1">| ar ge</ di nensi on>

" 2" >medi unx/ di mensi on>
"3">smal | </ di nensi on>

</clientside>
<devi ceproperti es>
<cpu type = "ARM >
<freq>200Mhz</freq>

<scal ing = "3">speedst ep</scal i ng>
</ cpu>
<ranm>64MK/ r ame

<l cd | evel = "2">backlight</I|cd>

</ devi ceproperti es>

<r esour cecost s>
<connection cost "hi gh" >gpr s</ connecti on>
<connecti on cost "l ow' >gsnx/ connecti on>
<conection cost = "none">w an</ conecti on>

</ resour cecost s>
</profile>

Fig. 5.2 — An excerpt of sample profile

5.2.1 CIED Code Transformation and Parameter Tuning
This type of adaptation mainly involves ideictition of the software elements, which

can be operated in an adaptive manner. Althoughedand of load-time composition is

needed in all cases, in this case, the patched cobeexports adaptive features of
already existing components inside the applicatidrerefore, the adaptation is mainly
confined to parameter tuning of existing componehtsillustrate the example, we take a
prewritten application available from Sun Microgyss as a sample java media

framework application.

75

Non- Adapt i ve code
bei ng intercepted

public boolean beginSession()
{
MedialLocator mediaLocator = new MediaLocator(fileName);
try {
processor = Manager.createProcessor(_ medial ocator); ‘
processor.addControllerListener(new
ProcessorEventHandler()); BEFORE advi ce,
i " - : "wy. prioritizing the
System.out.printin("Processor configuring..."); flow of Events
processor.configure();
Jcatch (Exception ex) {

@Glue class CIEDComposer{
@Before("{((javax.media.Processor)str).addControllerListener(new
CIEDAdapter());}")

Pointcut pc = Pcd.define("str",
$0").call("javax.media.Processor#addControllerListener(..)");

class CIEDAdapter extends ControllerAdapter{

private TrackControl[] tc;

private Control[] cont;

Control bitratecontrol, buffercontrol, formatcontrol, frameratecontrol,
trackcontrol, frameprocessingcontrol, keyframecontrol, h261control,
h263control, mpegaudiocontrol, packetsizecontrol, qualitycontrol,
rtpcontrol, streamwritercontrol, monitorcontrol;
public void configureComplete(ConfigureCompleteEvent ConfigEvent){

E Dynanical |y patching-
E in additional code

// obtain all possible controls and export hooks for Dynamic Reconfiguration

Fig 5.3: Given application byte-code being interd¢eg by the Pointcuts residing outside the applicatj advice being
woven and runtime adaptation hooks being exportexiearesult

76

Since the adaptation can only be carried out orapggtication written using JMF, the
framework API was searched thoroughly for the medeaments which can be vital in
adapting the multimedia data stream. Consideriagdalowing application excerpt in fig
5.3, which declares an element of typeax. nedi a. Processor. Itis one such element
which processes multimedia data and can be uspdrform adaptive media processing.
Since this type of adaptation can is realized bgnéchannel interception, to divert the
control flow and monitor the operations and statéshe Processor, the ACREMA
Resident Layer adds event listeners on it usingpgamoP snippet shown in fig. 5.3.

At runtime, as soon as the methpdgonfi gure() has completed execution, before it
has exited from its body, the pointcut defined he figure matches the condition and
weaves-in the corresponding advice, thus effegtieslabling the control flow diversion
upon event reception, to the clagREMAEvent Li st ener . This class in-turn captures the
source of the evenj §vax. medi a. Processor) and adds event listeners on it to keep
track of its states. In the example code it getsference to ther ackcontrol s and thus
can access and adaptively alter the behavior ofithehl media track to be played by the
application. It is worth noting that the use of b&ore registers the
ACREMAEventListener by intercepting the applicationde in such a way that in the
event queue, the desired events are captured byEM2R beforethey can be passed to
the application, so that they can be diverted (@adipulated) adaptively.

Upon completion of this whole chain of events (defl as Static Composition), the
given non-adaptive application, is now capablehmivéing the sample adaptive behavior.
Like this simple example of a behavior addition,ewhthe entire application code is
aspectized with any such adaptation advice, a nupftedaptations can be realized. The
AoP code shown in fig-5.3 captures the referenabdécargument passed to the function
configure() of classjavax. nedia. Processor. Its clear from fig-5.3 that its the
variable p of type avax. nedi a. Processor. The sample Aspect Code defines and alias
to the parameter passed and the alias is thenhyséae advice of this aspect code to
register an event listener with that variable. Efi@re, when the byte-code corresponding
to the program snippet shown in fig-5.3 is loadedtop of the ACREMA Resident
Layer, first of all, the code is analyzed and Ikirg a reference to the media processing
element, ACREMA Event Listener is attached to ijck keeps monitoring that element
for adaptive processing of the media stream pasgingugh it. Once event channel
interception is completed successfully, the difféi@ontrols get hooked to ACREMA for
dynamic reconfiguration according to adaptatiorfgmences, and changing system states.

77

5.2.2 SPPC Code Transformation and Parameter Tuning

Like the example shown above, in this case tooetlemts are intercepted to divert the
flow of control, however the difference here isttadditional code is patched. In contrast
to the case described above, where diffef@nit r ol s (e.g., bit-rate, frame-rate etc)
were obtained by intercepting the events and omlg frain adaptation was possible
through dynamic reconfiguration of the existing epdow additional code patched-in
provides the hooks for fine-grain adaptation Thadaptations also rely on dynamic
parameter tuning, but the tunable parameters athase components, which did not
form the part of the given application code, buteyénjected by ACREMA at load time
and then at runtime, there parameters are adaptiuakd. Or the cases of load-time
component swapping, where a pre-existing compouoiethte application code is replaced
with another for adaptive processing, however, toisiponent must be a part of media
pre-processing or media post-processing chain.

An example can be the situation, where the appicgan RTP Client) was developed
for a powerful computer, is now required to exeairte resource-constrained device like
a PDA. Due to use a resource limited nature otdhget device an adaptation possibility
is to use a light-weight video renderer. Thus iadtef using the default renderer, a new
renderer is to be used with this pre-written noapdiye application, for which the user
only needs to have the byte-code available. Thend#vice characteristics of the new
device will need to be specified (in the device filgh Keeping this adaptation
requirement in view, the sample code shown below wnhdergo an adaptive
transformation through ACREMA, the details of thimcess are shown in fig. 5.4.

78

public boolean beginSession() Non- Adapt i ve code

{ being intercepted
MediaLocator mediaLocator = new MedialLocator(fileName);
try {
processor = Manager.createProcessor(medialLocator);
4 pprocessor.addControllerListener(new
ProcessorEventHandler());
System.out.printin("Processor configuring...");
processor.configure();
Jcatch (Exception ex) { Before advice
intercepting control
flow
A
@Glue class SPPCComposer{
@Before("{((javax.media.Processor)str).addControllerListener(new
SPPCAdapter());}")
'\ Pointcut pc = Pcd.define("str",

$0").call("javax.media.Processor#addControllerListener(..)");

public class SPPCAdapter{

javax.media.renderer.VideoRenderer ren = new
com.sun.media.renderer.video.DDRenderer();

private TrackControl[] tc;

Format format;
public void configureComplete(ConfigureCompleteEvent ConfigEvent)}{
tc = ((Processor)ConfigEvent.getSource()).getTrackControls(); Dynani cal |y pat chi ng-
for (int i=0; i<tc.length; i++){ in additional code
if (tc[i].getFormat() instanceof VideoFormat){
tryf{

tc[0].setRenderer(ren);
}catch(Exception e){

)

Fig 5.4 (a) showing code interception and patchiimgcase of SPPC adaptations

Depending upon the application code a similar aslys done on other media
processing elements, including codecs, input antpubudevices, communication

79

channels etc, in order to monitor their proces$ielgaviors and then adaptive behavior is
given to them by altering their default way of datacessing.

£ Plugin Viewer

MPEG-1 Videa Decoder
. Parserfor MPEG-1flefo.. |
MPEG Layer 2 Decoder

YW To RGB Converter P] DirectDraw Renderer ‘

B B

DirectSound Renderer ‘

com.sun.mediarenderervideo. DDRenderer, DireciDraw Renderer

£ Plugin Viewer

MPEG-1 Wideo Decader P] YW To RGB Converter P] Lightwweight Renderer ‘
i Parserfar MPEG-1 fllefo.. |

MPEG Layer 2 Decoder b DirectSound Renderer ‘

com.sun.mediarenderervideo LighteightRenderer , Light¥Weight Renderer

Fig 5.4 (b): showing the resulting component swapiectDraw Renderer swapped with LightWeight Render as
the result of above advice weaving.

Having added the advice, corresponding to variationthe resource demands, when
the element which has been made adaptive switalressadifferent modes of operation,
lead to generation of the Realizable State MacHimehe example code shown above,
since a method call was trapped and it ultimateingleted upon addition of a custom
codec to the already provided application code.s T¢twndec provides the following
tunable parameters and corresponding to differerdas of the codec, there are resource
variations as the table above.

5.2.3 MPCS Code Transformation and Parameter Tuning

Example of this includes format change adaptatahsre the codec is completely
swapped on the fly. This type of adaptation islhjitdifferent from the previous one by
its nature of affecting theain processing chaiof multimedia data processing, whereas
the adaptation mentioned above affects ghe-processingor post-processing chains.
Due to this reason the implementation overhead BCH is higher than that of the
previous cases, however, this overhead is mosthfireed to application load time. A
practical example shown below is of an applicatidrere the application was initially
designed to use a specific compression and thenss®s a different one.

80

Non- Adapti ve code

S)) bei ng int ted
public boolean beginSession() eing intercepte

{

MedialLocator mediaLocator = new MediaLocator(fileName);
try {

processor = Manager.createProcessor(_ medial.ocator);
processor.addControllerListener(new

ProcessorEventHandler());
System.out.printin("Processor configuring...");
processor.configure();

}catch (Exception ex) {

BEFORE advi ce,

Prioritizi ng the
low of Events

@Gilue class MPCSComposer{
@Before("{((javax.media.Processor)str).addControllerListener(new

MPCSAdapter());}")
Pointcut pc = Pcd.define("str",

$0").call("javax.media.Processor#addControllerListener(..)");

class MPCSAdapter extends ControllerAdapter{
Codec[] H263AdaptationCodec = {new

com.ibm.media.codec.video.h263.NativeEncoder()};

private TrackControl[] tc;
Format format;

public void configureComplete(ConfigureCompleteEvent ConfigEvent){
tc = ((Processor)ConfigEvent.getSource()).getTrackControls();
for (int i=0; i<tc.length; i++){
if (tc[i].getFormat() instanceof VideoFormat){
try{
tc[i].setFormat(new VideoFormat("RGB",new Dimension(352, 288),
VideoFormat.NOT_SPECIFIED, null,
VideoFormat.NOT_SPECIFIED));
tc[i].setCodecChain(H263AdaptationCodec);
}catch(Exception exp){

Dynani cal | y pat chi ng-
in additional code

Fig 5.5: A codec chain being swapped with a new 6B2codec during the static composition phase of MFPCS
adaptation.

81

5.2.4 MPCD Adaptation Implementation

In contrast with the adaptations in the previousesa this is the final phase of
applcaiton processing and scans the provided naptize@ byte-code, for necessary code
swaps, in view of the profile state machine, wharitiple media processing elements are
needed in the main processing chain of the apmitasuch that during application
runtime, such changes need to be incorporatedefiythA typical example of this type
of adaptation is implemented as a dynamic codep se@uirement.

In MPCD Adaptations several complete media proogsshains are installed during
Static Composition phase and during the DynamicoR#guration phase, those chains
are activated. This, however involves additiondiorefto synchronize media data,
stopping one chain, to switch to another and sda® to this, in practical applications,
MPCD adaptations get lowest priority and are usaely, since they often lead to
resource usage conflicts.

Implementation details of different adaptationsgagen in this chapter, differ from
each other mainly during Static Customization ph&seing Dynamic Reconfiguration,
all adaptations are invoked in response to custeents, fired due to transitions of the
System State Machine.

82

Non- Adapti ve code
bei ng intercepted

public boolean beginSession()

MediaLocator mediaLocator = new MediaLocator(fileName);

try {

processor = Manager.createProcessor(_ medial ocator):

processor.addControllerListener(new
ProcessorEventHandler());

System.out.printin("Processor configuring...");

processor.configure();

Jcatch (Exception ex) {

BEFCRE advi ce,
prioritizing the
flow of Events

v

@Glue class MPCDComposer{@Before("{((javax.media.Processor)str).addControllerListener(new
MPCDAdapter());}")

Pointcut pc = Pcd.define("str",
$0").call("javax.media.Processor#addControllerListener(..)");

}

class MPCDAdapter extends ControllerAdapter{
Codec[] H263AdaptationCodec = {new
com.ibm.media.codec.video.h263.NativeEncoder()};
Codec[] MJIPGAdaptationCodec = {new
com.sun.media.codec.video.jpeg.NativeDecoder()};
private TrackControl[] tc;
Format format;
public void configureComplete(ConfigureCompleteEvent ConfigEvent){
tc = ((Processor)ConfigEvent.getSource()).getTrackControls();
/I default processing chain
for (int i=0; i<tc.length; i++){ — -
B A H H nam cal at chi ng-
if ((;[::)El{].getFormat() instanceof VideoFormat)){ % addmoialp oo 9
tc[i].setFormat(new VideoFormat("RGB",new Dimension(352, 240),
VideoFormat.NOT_SPECIFIED, null,
VideoFormat.NOT_SPECIFIED));
tc[i].setCodecChain(MJPGAdaptationCodec);
}catch(Exception e1){

)
)

/I DYNAMICALLY INVOKABLE DURING RECONFIGURATION

: Dynani cal | y patchi ng-
for (int i=0; i<tc.length; i++){ in additional code

if ((tc[i].getFormat() instanceof VideoFormat)){

try{
tc[i].setFormat(new VideoFormat("YUV",new Dimension(352, 288),
VideoFormat.NOT_SPECIFIED, null,
VideoFormat.NOT_SPECIFIED));
tc[i].setCodecChain(H263AdaptationCodec);

Jcatch(Exception e2){

Fig 5.6 (a): Multiple processing chain installatioof a DMFC adaptation. /O sync. code left out femmplicity.
83

Media Properties |

Advanced Prediction [
Arithmetic Coding [
Error Compensation [
PE Frames [
Unrestricted Vector [
Hrd B 1]

Bpp Max Kh 1000

Bit Rate |BOTEGD

Key Frames Every |19

Quality

Frame Rate |29.97

Frame processing

Packet Size (984

H.263 Encodling Controls |

Plug-in Settings

Close

B8 Plugin Viewer

Media Prope

Plug-in Settings

JPEG Quality

Close

Fig 5.6(b): resulting change in dynamic adaptation
hooks, (initially JPEG quality control was availab),
now in addition to H.263 quality control a numberfo
other fine tuning parameters are exported as
adaptation hooks.

Raw videofaudio buffer ...

_ H.263 Decoder _ YW To RGHE CGonverter _ DirectDraw Renderer ‘

com.sun.media.rendereryideo.

DDRenderer, DirectDraw Renderer

B8 Plugin Viewer

Raw videofaudio buffer ...

P JPEG DePacketizer h

JPEG Decoder _ DirectDraw Renderer ‘

com.sun.media.codec video jpeg. MativeDecoder , JPEG Decoder

Fig 5.6(c): multiple elements of the media processichain have been swapped, as a result of mainicha
incompatibility resolution process (described earlin sec.4.5.4)

84

Chapter 6

ACREMA Evaluation

6.1 Evaluation Test Bench

This chapter provides details of the evaluatiougednd quantitative measurements
made in order to measure the efficiency of ACREMAfshitecture and adaptive code
injection, compilation and execution overheads. ®waluation of ACREMA was
conducted in an emulated test-bench, which simsilai®iations that can occur in real
life. The experimental setup to emulate virtual hiaes was realized as shown in the
diagram below:

[=i

A
§ p Client (Normal JVM)
g outer

(Packet Filtering) |
Media Sener

=i

Client (ACREMA Loaded)

Fig 6.1 — Evaluation test bench

Using virtual machines, a network of clients ant/eewas emulated on an Intel Dual
Core, 2.0 GHz, machine such that one client is inghapplication on ACREMA while
the other without it. Different scenarios of netkdrandwidth variation were simulated
by selective packet forwarding/dropping through #mulated router while CPU load
variations were simulated by randomly, starting astdpping graphic animation
applications, so that the emulated virtual maching®ming ACREMA were subject to
varying CPU load.

85

Different compression schemes make use of diffevanging properties of the media
data, therefore, to test the response of the aipits running in ACREMA, a sample
uncompressed movie file was streamed under idagstonke and CPU conditions and
sample profiles of transmission in H263 and MJPE&engenerated. Having established
the following relationship under ideal conditioaslaptation policy was devised.

— MJPEG bandwidth requirement >> H263 bandwidthiiregnent
— MJPEG Client CPU load > H263 Client CPU load
— MJPEG Server CPU load << H263 Server CPU load

Since main purpose of the work presented is thissertation was to test the
effectiveness of the principles of AoP, when appti® achieve multimedia adaptation, on
by aspectizing pre-written applications in a preigeed framework (and not to devise a
comprehensive adaptation algorithm) adaptatiorcpalias made dependent upon user’s
preferences, along with the default adaptationrpies coded in the internal tables.

Different aspects of overall evaluation can begatieed under three broad classes of :
* Architectural Evaluation
» Application Test Cases, and

e Qualitative Evaluation

6.2 Architectural Evaluation of ACREMA

In order to measure different architectural ovedsea high precision timer, based or
the actual hardware of the machine was used byssitgethe microprocessor registers.
On an Intel Dual Core machine with 2GHz clock frexey, the maximum precision
achieved was 25.4222 micro-seconds.

Since adaptations in ACREMA take place in two défe phases: Static Composition
Phase and Dynamic Reconfiguration Phase, ACREMAUs architectural evaluation
was done in terms of load time and runtime latendi®ad time latencies occur due to
that fact that the application code in Aspectizetbad time, while runtime latencies are
the adaptation invocation latencies. Fig 6.2 sh@tatic Composition Phase latencies
averaged over 10 runs of test cases.

86

Static Composition Phase Latencies

450
400
350
300
250
200
150
100

50

Time (milli sec)

SPPC Adaptation SPCS Adaptation MPCD Adaptation
Adaptation types

Fig. 6.2 —Adaptation Composition Latency Graph (b&me)

Since CIED Adaptations rely on event interceptiotypthe latencies in this case are
only runtime latencies. For the other three ty&RRC, MPCS and MPCD Adaptations),
latencies are mainly loadtime. For these 3 differesses of adaptation ranged from
125.792 milli-sec in case of SPPC Adaptations (mum) to 398.8715 milli-sec in case
of Dynamic Flow Diversion, where adaptive code fiynamic codec swap was to be
injected codec swap was involved at runtime. Thguré may seem a significant
overhead, however it is worth noting, that all tn@rhead is load-time overhead.

Table 6.1 and fig. 6.3 show relative adaptationogation latencies for different
invocations. Each bar is an average of 10 readifigs.normal case depicts the case of
hand-coded adaptation (in blue), while the instntaiiton done by ACREMA is plotted
in pink. These are the per-invocation latenciesyewer, in an application there may be
several adaptation invocations, in which casedtenties will add up.

87

Adaptation Normal ACREMA

Bit Rate Adaptations 1525 2414
Buffer Control Adaptations 2131 2454
Format Control Adaptations 2041 2898

Frame Processing Control 2052 2884
Frame Rate Control 2048 3000
H.263 Control 2043 2083
Key Frame Control 2019 2840
Monitor Control 2061 3062
Mpeg Audio Control 2039 2844
Packet Size Control 2067 2900
Quality Control 2123 2980
RTP Control 2041 2947
Media Track Controls 2074 2836
Stream Writer Control 2021 2969

Table 6.1 — Comparison of Adaptation invocation keaties

Adaptation Latency Comparison

Time (micro-sec)

Adaptations

\ m Normal @ ACREMA

Fig 6.3 — Adaptation Invocation Latency Graph (ruime)

From the graphs of adaptation composition latenigs5.2) and dynamic adaptation
invocation latencies (fig. 6.3), it can be inferrédht irrespective of the simplicity or

88

complexity of a real life adaptation situation, pt#ion composition latencies are much
higher than the adaptation invocation latenciesiISTACREMA successfully shifts most

of the overall temporal overhead of any adaptattoload time, while minimum (in most

of the cases negligible) latencies appear duringicgiion execution time. This is in

accordance with the general understanding of atlapsa found in contemporary

scientific literature, according to which, it's betto start an application with some delay,
in order to avoid runtime disturbance, than totstar application quickly and disturb it

afterwards.

ACREMA versus Normal Transmission under Ideal Condi tions

450000000 25
- 350000000 - + 20
= 3
kS . 250000000 - + 15 3
28 =)
g = o
= 150000000 - +10 O
o X
8 50000000 - +5
-50000000 4 5 3 4 5 0

Frame Rate (fps), SCALE: Each Unit =5 frames per sec

—m— Data Transmitted (Normal) —— Data Transmitted (ACREMA)
—&— CPU Load (Normal) ~— CPU Load (ACEMA)

Fig 6.4 — Comparison of Network Bandwidth Requirents

ACEMA was evaluated for runtime overhead on the C&hdl the network in
comparison with the normal case (i-e; applicatianning without ACREMA), under
ideal conditions. The results are shown in fig.. @t4was observed that there is no
significant load on the CPU or the Network. A mirdifference can be seen from the
graph, in case of CPU, however this is with in thage of experimental error. Thus
under ideal network conditions, ACREMA does notrtnad system resources more than
they will be loaded without ACREMA.

89

6.3 Application Test Case Evaluation

As described in (sec.4.5.1 to sec.4.5.4) and (s&&.%0 sec.5.2.4), the applications can
be categorized with respect to the type of codern(®vinterceptions (diversions) they
utilize. In order to further ensure fair evaluatimi ACREMA architecture and
implementation, the application type used in aflesaof simple and complex adaptations
discussed below, was kept the same, so that aosegancies in quantitative analysis can
be avoided by keeping the measurement-referencstasunfor all different types of
simple and complex adaptations. For the four mategories of adaptations, application
performance was measured as detailed below.

The performance evaluation is based around takimg-wpitten non-adaptive
application using JMF API and evaluating them fog efficiency of adaptation advice
injection. The applications tested in this regaal inder two main categories: those
which were written with minimum functionality (e.g,simplest application consisting of
an RTP server and a corresponding client), andetiagsch the user has already written
to incorporate some feedback or monitoring (a cdg@e-implemented limited adaptive
behavior).

In all the sample evaluations of the system preskim the subsequent sections of this
chapter, the worst case scenario was put to testwirst case scenario is defined by the
following two characteristics:

* The given application’s byte-code should be congtyevoid of any kind
of default adaptation behavior (so that any kindod-existing behavior
e.g; programmed parameter tuning etc. neither smlder subtracts from
the adaptive behavior(s) dictated to the applicatip ACREMA).

» The given application code and the adaptation prates described by
ACREMA, should exist in two completely independenits (so that the
genuine efficiency of Aspect oriented Programmiagagigm, applied in
the context of this thesis can be evaluated in spigt of the paradigm
itself).

Sections 6.3.1 to 6.3.4 show single invocation specific type of adaptation. In these
cases, except the one specific adaptation undér a#sothers were masked from
triggering, while a case of multiple adaptationshewn in section 6.3.5.

90

6.3.1 Code Interception Event Diversion (CIED) Adaptations

These adaptations are the simplest to implementhanveé the minimum overhead,
however are limited in their adaptation capab#iti# incorporates all those cases, where
no additional code needs to be injected to thergaygplication code and the adaptation
policy works by hooking itself with the media preseng events of the application
through the Aspects used by ACREMA. The figure below shows Qualityctéa
Adaptation of an MJPEG video stream from 8 dowa2 @nd then up to 10 (maximum).
Quality Factor mainly effects Server CPU, this isn@n-conflicting adaptation. The
adaptation was triggered by starting graphic appibo at time point 65 which ended on
104. The adaptation latency in this case is ndigég(approximately 3 milliseconds
directly obtainable from fig. 6.3).

Changing Quality Factor for CPU Load Adaptation

35

20 LA APRSNAL A M, Sy
Y L d x L v’

25 +

20 -

15

10 VWV

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161

CPU Load (%)

Time (sec)

—e— Quiality Adaptation ‘

Fig 6.5 — Server CPU Load adaptation by varying Ma8 Quality Factor, with negligible adaptation latemes.

6.3.2 Static Alteration of Pre or Post Processing Chain (SPPC Adaptation)

An example of SPPC adaptation is encountered whaptiae alterations to the post
processing media chain is required by swapping avyheweight component
(DirectDrawRenderer with its light weight equivalentL{ghtWeightRenderér In the
example adaptation scenario shown in fig. 6.8. &thés is an adaptation that affects, the
client side only, network transmission has not bskown in the figure. In the figure
below, at sample time point 70, the default videaderer is swapped with its light
weight equivalent and the application on the res®wuonstrained client device, demands
lesser CPU share. This is an example of a nonictinf§ post-processing chain local

91

adaptation, which can be carried out in isolatiod aynchronization of the client and
server is not required.

Video Renderer Swap

25

20 4

15 A

10 A

% CPU Load

0

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217

Sample Time (sec)

—— 9% CPU Load

Fig 6.6 — Static Pre/Post Processing Adaptatieixample of Client-only adaptation

6.3.3 Static Alterations of Main Processing Chain

The implementation was tested to adapt a pre-writ{f@on-adaptive) video
conferencing application transmitting H.263 codéB §lze frames in WLAN, to adapt to
bandwidth variations. The results are shown in fige 6.9. The application was
configured to adapt down (decrease frame rate) adapt up (increase frame rate)
according to the two threshold values (arbitrasiy). As an example of adaptation policy
in this case, reaching the upper threshold valupententage packet loss triggers the
‘adapt-down’ behavior, while staying in the ‘adajoiwn state’ for five consecutive time-
points triggers the ‘adapt-up’ behavior. In theufig, ‘adapt-downis invoked at time-
point 13, upon crossing the threshold of 5% losg] again at time-point 25, while
‘adapt-up is invoked at after 5 stable time-points at 30h€ experimental results shown
in this case were obtained by simulating the s¢ermar a 1.1 Ghz, single processor PC).

92

Both the adapt-downand adapt-up operations take place instantaneously, with a very
small invocation latency.

90 10

80 1

70

60 1

50

CPU Load

40 4

(9
% Packet Loss

30 1

20

10 1

L s I s B B 8- T
123456 7 8 91011121314151617 18192021 222324252627 2829 303132 3334 3536373839404142

Time Points

‘+ Server CPU Load —=— Client CPU Load ---*--- % Packet Loss ‘

Fig 6.7 — Main Processing Chain Static AdaptationGhanging frame-rate in H.263 video

6.3.4 Dynamic Data Flow Diversion
This type of adaptation is the most resource imensnd incurs the heaviest load-time
overhead. The performance of ACREMA for such adapta was measured by starting

93

a client-server session, where initial transmissias in MJPG format in a stable system
state. At time=35, packet loss starts increasirdjthe system remains stable no longer.
As the packet loss continues for the next 5 pomfermat adaptation is triggered, which

results in stopping the current flow, synchronizergd starting a new media data flow
with H.263 codec. However, as soon as ACREMA statisptation operation, and both

client and server synchronize to initiate the code@ap and flow diversion operation,

CPUs on both sides experience a heavy load. lbtghbte that dynamic behavior of this

adaptation is resource-conflicting (i-e; adaptihg tpplication to relieve one resource,
result in temporary overload of another§ig 6.8. a significantly long adaptation latency
due to the same reason. The data transmissiondegps down to zero, which occurs due
to switching from one media processing chain (clsaiapping discussed in chapter 3) to
another.

° This also explains presence of a small wait timsveen successive adaptations, in the adaptati@ypo
because, if the adaptation policy is void of a $nvait-time between two consecutive adaptations, th
system may go into a thrashing state, where, teeatiresource consumption by the adaptation engine

would increase the overall resource consumptiothbyapplication under test.

94

Codec Swap Adaptation

6000000

5000000 -

4000000 H

3000000 -

% CPU Load

2000000 -

Data sent and received
(bps)

1000000

O e e e e Rt pepepprepereepearepeenel ()
1 5 9 1317 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93
Time (sec)
—a— Data sent —— Data received —— Server CPU Load —— Client CPU Load —e— % Packet Loss

Fig 6.8 — Codec Swap Adaptation — Conflicting Adapon Example

6.3.5 Multiple Adaptation Application Test Case

Fig 6.9 shows results of mixed and multiple fraraterand size adaptation invocations
on an MJPG video in response to simulated packstdoe to custom firewall switching
on and off on the router, shown in fig 6.1. Th@edited bandwidth (shown red) in fig 6.9
was periodically increased and decreased in sewtepls to observe the adaptation
response. It may be noticed that this variatiomliacated bandwidth stays constant for
some time before changing. It is due to the faett thdaptation is not based on
instantaneous values, but uses a moving averaggsmdtsMoreover, whenever there is a
need to adapt, the adaptation process is not \enpa Also, at times, when the packet
loss reduces to zero, if the adaptation engine dh@ady adapted-down, then it may
trigger adapt-up operation, however, at the samme,tithe allocated bandwidth may
further reduce. An example of such a deceptivesttatimay be observed at point 25,
100 and 101 and 105 where the already adaptedcapeph is trying to adapt-up, while
the allocated bandwidth is still not sufficient.

It may also be observed that even in presence ®REFA, although the percentage
packet loss decreases considerably, it is not zs¥cause, whenever an adaptation is

95

invoked, it is triggered with some delay (a ‘lazgsponse). The adaptation is invoked on
the basis of packet loss reported by a three-teaving-averager, therefore the response
in not instantaneous.

Multiple Adaptation Invocations

70000 o
60000 [
_ 1 40
& 50000 - (2
1%
< 1 (o]
£ 40000 o e
i 25 @
| Q
g 30000 (208
's 20000 la
: { 110
10000
\ 15
0 -asssssasssssssnadd dasadNassssssssad —— Nadossssssssssss . TTTTTT T 0

7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115121127

Time (sec)

—e— Normal Transmission —&— Adaptive Transmission —&— Allocated Bandwidth
—a&— 9% Packet Loss (Normal) —&— % Packet Loss (ACREMA)

Fig 6.9 — Multiple adaptation invocations in a cortgx real-life situation

At the same time it can also be observed that ACREEN reduce packet loss by a
significant amount (the actual quantity will depamabn a number of factors and varies
from case to case).

6.4 Qualitative Evaluation

Qualitative evaluation can be done in the casegreviquantitative evaluation is not
possible. In case of ACREMA, the following factormy be considered for qualitative
evaluation.

6.4.1 Scalability

Scalability can be addressed from two view poistslability of the software system
as well as scalability of performance of the systemith respect to multimedia
application type and size. With respect to the sizapplication (software), ACREMA,

96

can adaptively aspectize an application of any, $simevever, if complexity of adaptation
requirements to be fulfilled is increased by therughen the latencies will increase
correspondingly. The exact increase in latencidisb@idependent upon the size and type
of the pre-written non-adaptive software applicatio

With respect the complexity of the multimedia, AOQRE should scale very well,
because communication overhead of ACREMA is ndgkgi There may be some
inherent limitation on communication scalabilityedio RTCP, which can be attributed to
the protocol (not ACREMA). Runtime computationakdvead depends mainly upon the
number of times adaptation is invoked. Static coiaponal overhead will be
considerable, however, it can be tolerated in mb#te cases, since it occurs only at load
time.

6.4.2 Generality

Although, the implementation presented here has bgeecific to Java Media
Framework, its’ architecture relies on fundamemahciples ofreflection and Aspect
oriented ProgrammingThis makes ACREMA a system capable of being dewesland
extended to various other languages and media fvanks.

6.4.3 Co-Existence

ACREMA in its present state is limited to applicatioriented adaptations, which don’t
rely on any specific network service and are notrfabto any particular protocol.
Although it has been tested with RTP/RTCP, sinceF Jdcilitates use of custom
transport, ACREMA is not limited to a specific pwobl too. It does not interfere with
any other adaptation system existing on the samiea&hich may be meant to handle
adaptive features of other applications. Therefdrean co-exist on a system with any
other such system, as long as ACREMA is indepeiygaesponsible for adapting
multimedia applications.

6.4.4 Limitations

The limitations described in this section relataligplay of unpredictable behavior. It
can mainly happen when the user deliberately iraratps some code which can trigger
any actions, and the events, method signaturebeosystem elements, involved with
realization of those behaviors are the same whiehused by ACREMA to inject
automated adaptations. The reason for this anomalesponse is the fact that, actions
carried out depend upon the order in which the tsvare caught by the user application

97

and the ACREMA. This limitation, however, occurslyomvhen the user violates the
fundamental principle of keeping the behavioralea$p separate from the application
core functionality and also by making some prograngnerror (i-e, the limitation is only

seen in the cases, where the user deliberatelyrgmsgan application to defeat the
system!).

98

Chapter 7

Outlook and Future Directions

7.1 Contributions

While in existing research and most of contemponaork, middleware has been
extensively used as a means to achieve objectikesdistribution transparency by
increasing the level of abstraction, the abstractiohieved so far is still limited to the
extent that requires an application developer el additional code which serves as
an interface between the application and the nwdalle. During application loadtime
and execution the middleware stays as a sepanae Uaderneath the application. This
adds to the processing overhead on one hand arab#tiection provided is still limited
since some ‘interfacing code’ needs to be develdpethe application developer on the
other hand. The Aspect oriented approach presdntehis dissertation increases the
level of abstraction by providing the applicatioevdloper means of configuration
(instead of requiring to develop ‘interfacing codeeduces the software footprint since
the middleware does not exist as a separate layderneath the application while
increasing the execution efficiency at the same tisince there are no extra copying and
un-copying operations involved in contrast with dielvare. However, all this is
achieved at the cost of being a domain-specifigrenment (i-e., works with multimedia
applications only), which may not be seen as a niegutation in this case, since the aim
was to solve a domain specific problem. The coutrdmn of this work lies in the fact that
two conflicting properties ogfficiency and abstractionwhich have been difficult to
handle in contemporary middleware implementations een successfully (but domain
specifically) tackled in this dissertation.

Table 7.1 summarizes the contribution of this watkng with a comparison with
existing solutions.

99

Existing Solutions

Middleware layer exists as a separate laye
beneath the application. Additional layer is n
suitable in case of multimedia applications
because it will introduce un-necessary overh
in copying packets and transfer of other cont
signals to and from this layer. Even those
approaches which handle stream based flow:
bypassing this layer, do so partially and they
unable to properly handle application-side
adaptations.

The programmer is required to program QoS
Adaptation behavior using some purpose-bt
API, which may at times involve some kind ¢
knowledge of the runtime circumstances of t

system. (precise knowledge of this type is
generally not available due to complex runtir
system resource and requirements fluctuatio

Mainly target system-side adaptations,
involving pre-hand resource reservation, whi
can lead to waste of reserved resources in ¢
of multimedia applications, which can tolerat
some QoS degradation

Table 7.1 — Summary of Contributions

7.2 Future Extensions

ACREMA

The System Software Layer responsible for

adaptation exists separately at the time of St

Composition (giving the benefits of separation

functional and behavioral concerns), but weay

itself into application at runtime (thus giving tr

performance benefits of embedding adaptatic
code into the application.

The programmer does not need to program us
any purpose-built APl and knowledge of
complex adaptations is also not required. On
users preferences, together with the applicati
type and device profiles will generate the
adaptation requirements and program them

Mainly targets application-side adaptations,
involving no pre-hand resource reservation. |
case of multimedia applications which are
mostly elastic in nature, this will generally dc
well, however in some cases, this may tempoi
disrupt the communication.

Comparison

ACEMA 1110

ACREMA 1

Generally,
ACREMA 1

In some cases,
ACREMA |

Having presented and evaluating ACREMA in the fast chapters, future work can

take mainly two directions:

19 ACEMA 11 denotes ACREMA is much better. ACREMAdenotes ACEMA is better.

100

7.2.1 Software Related Extensions

» Since Aspectsare mainly used for software re-factoring and Hagd
concerns spread across several modules, ACREMA deasloped to
address unmanaged application-oriented adaptediooe Aspects can be
used to make adaptive modifications to existing-adaptive code and
also because adaptation, by its very nature igserutting concern. In
addition to that, ACREMA can be extended to incogp® any kind of
cross-layer or resource-oriented adaptations. Tdweresystem-oriented
QoS work may be combined to complement the solypi@vided and a
comprehensive approach for cross-layer adaptatimeiuding the
application-side adaptations) can be realized, ddress the QoS and
Adaptation problem more comprehensively.

* With respect to support for multimedia developmé&atmeworks, the
current implementation can be extended with DS#&iShow Java], to
support a more feature rich multimedia API. Sinde tprototype
implementation was based around JMF, Mobile Muldiae API
(MMAPI), can be easily supported on the client sitlee architecture of
ACREMA relies on fundamental principles oéflection and Aspect
oriented Programmingnd not only reflective features are now supported
by most of contemporary languages, a wide rangespéct weavers also
exists for a number of languages. Therefore, thmesaystem can be
implemented in other languages (e.g; on .Net platf&# or others). This
will enable support for multimedia frameworks attgaleveloped in other
languages (e.g; largely open source G-Streamer).

* The adaptation process handled in current impleatient was based on a
number ofif-then-elsedecisions. However, the adaptation process by its
very nature can be better handled using fuzzy /ratealgorithms.
Therefore, future work may also be in the directanintegrating such
adaptation algorithms.

7.2.2 Dynamically Reconfigurable Hardware Related Extensions
During the course of this project the following tvedservations were made
regarding computational overhead:

101

* It was observed a number of times, that modifyingrewritten software
can involve significant amount of overhead, whinhcase of multimedia
can be intolerable at times. For example in casecamfec swap in
particular, both the Client and Server CPUs arerloaded, due to the
requirement to load a number of java classes, sime#t of the codecs use
Java Native Interface (JNI), this process is slowddwn and
synchronizing media streams further slows dowrotres all task.

* Multimedia processing (like encoding and transcgdin particular)
involve a number of mathematical operations, dua/tah performance
of a software codec is not as good as a hardwakecco

Considering implementation of such operations irdware, in particular dynamically
reconfigurable FPGA's seems promising. In this rdgaesearchers have already done
some fruitful work using dynamically partially redogurable hardware, where different
hardware configurations are used by dynamicallyngivey data paths to switch across
several algorithm implementations. For example,HAE006] and [PAK+2007] provide
such a solution for network processors, while [CBB36] presents a reconfigurable
multimedia audio player on FPGA, which can downleacbnfiguration bit-stream from
a remote database, in case of a codec being alsdneconfigure the FPGA with the
new codec.

Another motivating factor that suggests the impletagton of ACREMA's
architecture on dynamically reconfigurable hardwardue to the fact thaspectsffer
a very good way of code instrumentation, and thaiegbility of the Aspect Oriented
Programmingto modular reconfigurable computing has been fogmatudied and
proved in [VB2007].

As a natural extension of the work presented is thssertation, implementation of
ACREMA'’s architecture in dynamically reconfiguralllardware is therefore proposed.
The proposed implementation will mainly consistafgeneral purpose CPU and an
FPGA which can be dynamically, partially reconfigdr(e.g., Xilinx Virtex 1l Pro) on
board. Communication between the JVM running onGR& and codecs implemented in
the FPGA can be established by using JNI. Ugsgect Oriented Programmingll
responses to handle transcoding and codec swapa#dap (which have a very high
overhead) can be intercepted and served by thevaeedcodecs implemented inside the
FPGA. As swapping a codec in software involves ilmgch number of new classes,

102

unloading the already loaded ones, running garbagkector, synchronizing media

streams etc, the CPU is overloaded in the procedstlze user notices a temporary
transmission interruption. In case of implementation dynamically reconfigurable

FPGA, AOP may be used to intercept the class |lgadperation. Swapping a codec in
hardware will then be a matter of loading the réigomation bit-stream to one area of the
FPGA while the other is still in use (which is sty a very fast operation). The data
flow paths can then be attached to the newly ilestadodec.

Since different codecs share several common iatdumctional units, on a runtime
reconfigurable hardware, exploring a finer degreeuntime reconfigurability, such that
codec are partially swapped would also be of istert is believed that in case of
successful implementation of the proposed syste@RBMA’s performance can be
enhanced many folds and a device as small as demgitine may be powerful enough to
adaptively transcode multimedia!

103

Acronym
ACE
ACM

ACREMA

Al
AOP
AOSD
API
ASM
BCEL
CBSE
CCM
CIAO
CIED
CIF
COM
CORBA
CPU
DCE
DCOM
DDE
DRE
DVS
EJB
FGS
GIOP
GPRS
GSM
GUI
IDL
IEEE
HOP
P
ITU
J2EE

List of Abbreviations

Definition
Adaptive Communication Environment
Association for Computing Machinery
Adaptation Composition and Reconfiguration
Environment for Multimedia Applications
Atrtificial Intelligence
Aspect-Oriented Programming
Aspect Oriented Software Development
Application Programming Interfaces
Assembler (A Byte Code Instrumentation Tool)
Byte Code Engineering Library
Component Based Software Engineering
CORBA Component Model
Component Integrated ACE Orb
Code Interception Event Diversion
Common Intermediate Format
Component Object Model
Common Object Request Broker Architecture
Central Processing Unit
Distributed Computing Environment
Distributed Component Object Model
Dynamic Data Exchange
Distributed Realtime Embedded
Dynamic Voltage Scaling
Enterprise Java Beans
Fine Grain Scaling
General Inter-Orb Protocol
General Packet Ratio Service
Global System for Mobile communications
Graphical User Interface
Interface Description Language
Institute of Electrical and Electronics Engine
Internet Inter-Orb Protocol
Internet Protocol
International Telecommunication Union
Java 2 Enterprise Edition

104

Acronym
JDK
JMF
JPEG
JVM
LCD
LVM
MAC
MJIPEG
MJIPG
MMAPI
MOP
MPCD
MPCS
MPEG
OMG
ORB
QCIF
QDL
RGB
RMI
RPC
RSVP
RTP
RTCP
SMIL
SNR
SOA
SOAP
SPPC
SQCIF
TCP
UAV
UML
WCML
WLAN
WSDL
XML

Definition
Java Development Kit
Java Media Frameworks
Joint Photographic Experts Group
Java Virtual Machine
Liquid Crystal Display
Linux Virtual Machine
Medium Access Control
Motion JPEG
Motion JPEG
Mobile Media Application Programming Interfac
Meta Object Protocol
Main Processing Chain Dynamic
Main Processing Chain Static
Motion Picture Experts Group
Object Management Group
Object Request Broker
Quarter Common Intermediate Format
Quality Description Language
Red Green Blue
Remote Method Invocation
Remote Procedure Call
ReSerVation Protocol
Real Time Protocol
Real Time Control Protocol
Synchronized Multimedia Integration Language
Signal to Noise Ratio
Service Oriented Architecture
Simple Object Access Protocol
Simple Pre/Post Processing Chain
Sub-Quarter Common Interchange Format
Transmission Control Protocol
Unmanned Arial Vehicle
Unified modeling Language
Web Clipping Markup Language
Wireless Local Area Network
Web Service Definition Language
eXtensible Markup Language

105

Bibliography

[AFK+2006] Albrecht, C., Foag, J., Koch, R., Mé&&hE. DynaCORE - A
Dynamically Reconfigurable Coprocessor Architecture for Network
Processors In Euromicro Conference on Parallel, Distributed anctiNork-
Centric Processing2006.

[AG2005] Andreas Frei and Gustavo AlongoDynamic Lightweight Platform for
Ad-Hoc Infrastructures. In PERCOM '05: Proceedings of the Third IEEE
International Conference on Pervasive Computing @odhmunications2005.

[ALD+2003] Atallah S.B. and Layaida O. and De Palh. and Hagimont DDynamic
Configuration of Multimedia Applicationsn PRoc. oF THE 6TH IFIP/IEEE
INTERNATIONAL CONFERENCE ON MANAGEMENT OF MULTIMEDIA NETWORKS
AND SERVICES (MMNS’03). BELFAST SEPT (2003) : .

[APC+2004] Ali N. and Perez Jimplementation of the PRISMA Model in the. Net
Platform, PRoc. oF DYNAMICA M{\' A (2004) : .

[ASJ+2003] Ali NH and Silva J. and Jaen J. and Baimand Carsi JA and Perez
J., Mobility and Replicability Patterns in Aspect-Orted Component-Based
Software Architecture$®ROCEEDINGS OF (2003) 15: p. 820--826.

[ASM] . http://asm.objectweb.org/.

[BCA+2001] Blair G.S. and Coulson G. and Andergerand Blair L. and Clarke M.
and Costa F. and Duran-Limon H. and Fitzpatricedd Johnston L. and
Moreira R. and othersThe Design and Implementation of Open ORBEEE
DISTRIBUTED SYSTEMS ONLINE (2001) 2: p. 1--40.

[BCB+2002] Blair Gordon S. and Coulson Geofhd@lair Lynne and Duran-Limon
Hector and Grace Paul and Moreira Rui andaPantzas NikosReflection
self-awareness and self-healing in OpenORBn WOSS '02: Proceedings of the
first workshop on Self-healing systerf802.

[BCC+1999] Gordon S. Blair and Fabio M. Costa &ebff Coulson and Hector A.
Duran and Nikos Parlavantzas and Fabien DelpiantbBruno Dumant
and Horn and Jean-Bernard Stefatie Design of a Resource-Aware

Reflective Middleware Architecture. In Reflection '99: Proceedings of the
Second International Conference on Meta-Level Aechures and Reflection
1999.

106

[BCD+1997] Blair G.S. and Coulson G. and DaviesaNd Robin P. and Fitzpatrick
T., Adaptive Middleware for Mobile Multimedia Applicatis
PROCEEDINGS OF THE 8TH INTERNATIONAL WORKSHOP ON NETWORK AND
OPERATING SYSTEM SUPPORT FOR DIGITAL AuDIO AND VIDEO (NOSSDAYV)
(1997) : p. 259--273.

[BCEL] . http://bcel.sourceforge.net/.

[BG1997a] Becker C. and Geihs KMAQS-Management for Adaptive QoS-enabled
Services PROCEEDINGS OF I|IEEE WORKSHOP ON MIDDLEWARE FOR
DISTRIBUTED REAL-TIME SYSTEMS AND SERVICES (1997) : .

[BG1998] Becker C. and Geihs KQuality of Service—Aspects of Distributed
Programs INTERNATIONAL WORKSHOP ON ASPECT-ORIENTED PROGRAMMING
AT ICSE'98 KYOTO/JAPAN 1998(1998) : .

[BHS+2004] Becker C. and Handte M. and Schielea@d Rothermel K.PCOM-a
component system for pervasive compuytifgRVASIVE COMPUTING AND
COMMUNICATIONS 2004.PERCOM 2004.PROCEEDINGS OF THE SECOND
IEEE ANNUAL CONFERENCE ON (2004) : p. 67--76.

[BN2004a] Becker C. and Nicklas DVhere do spatial context-models end and where
do ontologies start? A proposal of a combined apphp PROCEEDINGS OF THE
FIRST INTERNATIONAL WORKSHOP ON ADVANCED CONTEXT MODELLING
REASONING AND M ANAGEMENT IN CONJUNCTION WITH UBICoMP 2004 (2004) :

[BS2003] Becker C. and Schiele GMiddleware and application adaptation
requirements and their support in pervasive commg,ti DISTRIBUTED
COMPUTING SYSTEMS WORKSHOPS 2003. PROCEEDINGS. 23RD

INTERNATIONAL CONFERENCE ON (2003) : p. 98--103.

[BSG+2003] Becker C. and Schiele G. and Gubbelsattl Rothermel K.BASE-a
micro-broker-based middleware for pervasive commjti PERVASIVE
COMPUTING AND COMMUNICATIONS 2003.(FERCoM 2003). PROCEEDINGS OF
THE FIRST IEEE INTERNATIONAL CONFERENCE ON (2003) : p. 443--451.

[CA2000] Cazzola W. and Ancona MmChaRM: a Reflective Middleware for
Communication-Based ReflectjoDISI UNIVERSITA DEFLI STuDI DI MILANO
TECHNICAL REPORT: DISI-TR-00-09 (2000) : .

107

[CC2003] Chan ATS and Chuang SMpobiPADS: A Reflective Middleware for
Context-Aware Mobile ComputinglEEE TRANSACTIONS ON SOFTWARE
ENGINEERING (2003) 29: p. 1072 -- 1085.

[CHP+2006] Castillo, J., Huerta, P., PedrazaMartinez, J. | A Self-Reconfigurable
Multimedia Player on FPGA. , 2006.

[CKP2003] Kihwan Choi and Kwanho Kim and Massouedim. Energy-aware
MPEG-4 FGS streaming In DAC '03: Proceedings of the 40th conference on
Design automation2003.

[DC2001] Jim Dowling and Vinny CahillThe K-Component Architecture Meta-
model for Self-Adaptive Software In REFLECTION '01: Proceedings of the
Third International Conference on Metalevel Architees and Separation
of Crosscutting Concern2001.

[DLS+2004] Duzan G. and Loyall J. and Schantzri®l &hapiro R. and Zinky J.,
Building adaptive distributed applications with rdidware and aspects
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ASPECT-
ORIENTED SOFTWARE DEVELOPMENT (2004) : p. 66--73.

[DM1995] Demers F.N. and Malenfant Reflection in logic functional and object-
oriented programming: a short comparative StUdfoRKSHOP ON REFLECTION
AND METALEVEL ARCHITECTURES AND THEIR APPLICATIONS IN Al. IJCAI
(1995) 95: pp. 29-38.

[Don1997] Don BoxEssential COM (1997) : .

[ECD+2001] Efstratiou C. and Cheverst K. and Davie and Friday A.Architectural
requirements for the effective support of adaptiMobile applications
PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MOBILE
DATA MANAGEMENT (2001) : .

[EKP+2000] Eliassen F. and Kristensen T. and Rtegen T. and Rafaelsen H.O.,
MULTE-ORB: Adaptive QoS aware bindjn§VORKSHOP ON REFLECTIVE
MIDDLEWARE (RM 2000).NEw YORK USA (2000) : .

[FPA2003] Frei A. and Popovici A. and Alonso Gyent based systems as adaptive
middleware platforms/N ORKSHOP OF THE 17TH EUROPEEAN CONFERENCE FOR
OBJECT-ORIENTED PROGRAMMING JuLY (2003) : .

[FRS2000] Foster I. and Roy A. and SanderA/quality of service architecture that
combines resourcereservation and application ad@miaQUALITY OF SERVICE

108

2000.IWQOS. 2000EIGHTH INTERNATIONAL WORKSHOP ON (2000) : p. 181--
188.

[GB2001] Geihs K. and Becker CA framework for re-use and maintenance of
Quality of Servicemechanisms in distributed objeststems SOFTWARE
MAINTENANCE 2001.PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON
(2001) : p. 470--478.

[GGM1993] Garbinato B. and Guerraoui R. and Maz#unDistributed Programming
in GARF PROCEEDINGS OF THE WORKSHOP ON OBJECT-BASED DISTRIBUTED
PROGRAMMING (1993) : p. 225--239.

[GHJ+1995] Gamma Erich and Helm Richard and Jomf&ph and Vlissides
John. Design Patterns: Elements of Reusable OfGgetited Software (Addison-
Wesley Professional Computing Series). . AddisorsieProfessional, 1995.

[Garlan2001] Garlan DAura: Distraction-Free Ubiquitous ComputindENGINEERING
FOR HUMAN-COMPUTER INTERACTION, 8TH IFIP INTERNATIONAL
CONFERENCE, EHCI 2001, TorRONTO, CANADA, REVISED PAPERS (2001) : pp.
1-2.

[HBG+1998] Franz J. Hauck and Ulrich Becker andrtviaGeier and Erich Meier and
Uwe Rastofer and Martin Steckermei@&he AspectlX ORB Architecture. In
Object-Oriented Technology ECOOP'98 Workshop Red®98.

[HBG+2001] Hauck, F. J., Becker, U., Geier, M.,idteU., Rastofer, U., Steckermeier,
M.. AspectlX: a Quality-Aware, Object-Based Middleware Architecture.. In
3rd IFIP International Conference on Distributed fligations and Interoperable
Systems2001.

[HCG2001] Hunleth F and Cytron R and Gill Building Customizable Middleware
using Aspect Oriented Programmijng/ ORKSHOP ON ADVANCED SEPARATION
OF CONCERNS (OOPSLA?01)(2001) : .

[JAC] . http://jac.objectweb.org/.

[JC2001] Jim Dowling and Vinny CahilDynamic Software Evolution and the K-
Component ModelWORKSHOP ON SOFTWARE EvoLuTioN , OOPSLA 2001
(2001) : .

[JV2004] Jim Dowling and Vinny CahillSelf-Managed Decentralised Systems
using K-Components and Collaborative Reinforceni@atrning PROCEEDINGS
OF THE WORKSHOP ON SELF-M ANAGED SYSTEMS (WOSS'04)(2004) : .

109

[KDP+2002] Karunanidhi A. and Doermann D. and Rhré&l. and Rautio V.Video
analysis applications for pervasive environmerfRBOC. 1 STINTERNATIONAL
CONFERENCE ON MOBILE AND UBIQUITOUS MULTIMEDIA OuULU FINLAND
(2002) : p. 48--55.

[KF2005] Khan, M. A., Fischer, SA Reflective Runtime Environment for
Dynamic Adaptation of Streaming Media on Resource @nstrained Devices,
2005.

[KK2000] Kuo, G.S. and Ko, P.C.Dynamic RSVP forMobile IPv6 in Wireless
Networks. In 51st IEEE Vehicular Techonology Conferer2@00.

[KKP2001] Kristensen T K.T.A.P.T.Implementing configurable signalling in the
MULTE-ORB IN 4TH IEEE CONFERENCE ON OPEN ARCHITECTURES AND
NETWORK PROGRAMMING (IEEE OPENARCH'01) (2001) : .

[KKS+2003] Krishna, A.S. Klefstad, R. Schmid,C. Corsaro, A.Towards
Predictable Real-time Java Object Request Broketsin The 9th IEEE Real-
Time and Embedded Technology and Applications Ssimmpp2003.2003.

[KLM+1997] Kiczales, G., Lamping, J., Mendhekar, Maeda, C., Lopes, C.V.,

Loingtier, J.M., Irwin, J.,Aspect-Oriented Programming In European Conference on
Object-Oriented Programming (ECOQM)997.

[KR1991] Kiczales, G and Des Rivieres, J. Thedrimetaobject protocol. . MIT
Press Cambridge MA USA, 1991.

[KRC+2000] Fabio Kon and Roy H. Campbell and M. Dennis Mickunas and
Klara Nahrstedt and Francisco J. Ballester@is: A Distributed Operating
System for Dynamic Heterogeneous Environmentdn Proceedings of the 9th
IEEE International Symposium on gHiPerformance Distributed
Computing (HPDC'9)2000.

[KRL+2000] Kon F. and Rom{\'aylonitoring security and dynamic configuration with
the dynamicTAO reflective ORBIULTIMEDIA MIDDLEWARE W ORKSHOP
(2000) : p. 121--143.

[KW2001] Kshirasagar Naik and David S. L. Wegoftware implementation
strategies for power-conscious systeM®BILE NETWORKS AND APPLICATIONS
(2001) 6: p. 291--305.

110

[Kic1991] Kiczales G.. The art of metaobject paib . MIT Press Cambridge MA
USA, 1991.

[Kiczales1996] Kiczales G.Aspect-oriented programmincACM COMPUTING
SURVEYS (CSUR) (1996) 28: .

[LBS+1998] Loyall J.P. and Bakken D.E. and Sch&&. and Zinky J.A. and Karr
D.A. and Vanegas R. and Anderson K.RQS Aspect Languages and Their
Runtime IntegrationL ECTURE NOTES IN COMPUTER SCIENCE (1998) 1511.: .

[LL2002] T. Lemlouma and N. Layad&MIL Content Adaptation for Embedded
Devices SMIL CONFERENCE EUROPE 2002(2002) : .

[LPP+2005] Loughran N, Parlavantzas N, Pinto Mn&adez L.F, Sanchez P, Webster
M and Colyer AAOSD-Europe-ULANC-10(2005) : .

[LSZ+2001] Loyall, Joseph P. Schantz, Richard Bky, John A. Pratim Pal, Partha
Shapiro, Richard Rodrigues, Craig Atighetchi, Mieh&arr, David A. Gossett,
Jeanna Gill, Christopher D..Comparing and Contrasting Adaptive
Middleware Support in Wide-Area and Embedded Distrbuted Object
Applications. In ICDCS '0l1: Proceedings of the The 21st Internationa
Conference on Distributed Computing Syste2081.

[MM1997] Mowbray, T. J and Malveau, R.C.. CORBAdgn Pattern. . Wiley, New
York, 1997.

[MV2003] MOHAPATRA S. and VENKATASUBRAMANIAN N., Proactive
Energy-Aware Streaming to Mobile Hand-Held DeVjdeSOCEEDINGS OF THE

IEEE 5TH MOBILE AND WIRELESS COMMUNICATION NETWORKS (MWCN)
(2003) : .

[McAffer1995] McAffer J., Meta-level programming with COGQAPROCEEDINGS
OoF ECOOP (1995) 95: .

[NAN] , http://nanning.codehaus.org/overview.htnf) : .

[OMG1995] OMG,Common Object Request Broker: Architecture and iSpaton,
Revision 2.0 (1995) : .

[OMG2001] Object Management GroUpORBA 3.0 New Components Chapters,
OMG TC Document ptc/2001-11-03 editiof2001) : .

111

[PAG2003] Popovici A. and Alonso G. and Gross Just-in-time aspects: efficient
dynamic weaving for JayaPROCEEDINGS OF THE 2ND INTERNATIONAL
CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT (2003) : p. 100--
109.

[PAK+2007] Pionteck, T., Albrecht, C., Koch, R.akhle, E., Huebner, M., Becker, J.
Communication Architectures for Dynamically Recon grable FPGA
Designs , 2007.

[PHS] Pillai P. and Huang H. and Shin K.Gpergy-Aware Quality of Service
Adaptation () : .

[PLM+2004] Pasricha S. and Luthra M. and Mohapa8a and Dutt N. and
Venkatasubramanian N.Dynamic Backlight Adaptation for Low-Power
Handheld DevicedEEE DESIGN AND TEST OF COMPUTERS (2004) : .

[PML+2003] Pasricha S. and Mohapatra S. and LutMa and Dutt N. and
Venkatasubramanian NReducing backlight power consumption for streaming
video applications on mobile handheld devjc€rRoc. FIRST WORKSHOP
EMBEDDED SYSTEMS FOR REAL-TIME MULTIMEDIA (2003) : .

[PRJ+2003] P'erez J. and Ramos |. and Ja'en JLatglier P. and Navarro E.,
PRISMA: Towards Quality Aspect Oriented and DynanSoftware
Architectures 3rRD |IEEE INTERNATIONAL CONFERENCE ON QUALITY
SOFTWARE (QSIC 2003) DaLLAS TEXAS USANOVEMBER (2003) : p. 6--7.

[PS2001] Padmanabhan Pillai and Kang G. SKeal-time dynamic voltage
scaling for low-power embedded operating system#én SOSP '01: Proceedings
of the eighteenth ACM symposium on Operating syspeimciples 2001.

[PS2004] C. Poellabauer and K. Schwéa&mergy-Aware Media Transcoding in
Wireless SystemBPROCEEDINGS OF THE SECOND IEEE INTL. CONFERENCE ON
PERVASIVE COMPUTING AND COMMUNICATIONS (PERCoM 2004)(2004) : .

[PSD+2004] Pawlak R. and Seinturier L. and Duchien and Florin G. and
Legond-Aubry F. and Martelli L.JAC: an aspect-based distributed
dynamic framework SOFTWARE PRACTICE AND EXPERIENCE (2004) 34: p.
1119--1148.

[PWK+2003] Portillo A. R, Walker S., Kirby G., aridearly A.,A Reflective Approach
to Providing Flexibility in Application Distributio, PROC. 2ND INTERNATIONAL
WORKSHOP ON REFLECTIVE AND ADAPTIVE M IDDLEWARE

112

ACM/IFIP/USENIX INTERNATIONAL M IDDLEWARE CONFERENCE
(MIDDLEWARE 2003)RI0 DE JANEIRO BRAZIL (2003) : .

[RC2000] Roman M. and Campbell R.HGaia: enabling active spacges
PROCEEDINGS OF THE 9TH WORKSHOP ON ACM SIGOPS EUROPEAN
WORKSHOP: BEYOND THE PC: NEW CHALLENGES FOR THE OPERATING SYSTEM
(2000) : p. 229--234.

[RHC+2002] Roman M. and Hess C.K. and Cerqueiraaid Ranganathan A. and
Campbell R.H. and Nahrstedt KGaia: A Middleware Infrastructure to Enable
Active SpacesEEE PERVASIVE COMPUTING (2002) 1: p. 74--83.

[RHC+2002a] Roman M and Hess C and Cerqueira RRamjanathan A and Campbell
RH and Nahrstedt KA middleware infrastructure for active spaces
PERVASIVE COMPUTING IEEE (2002) 1: .

[RK2004] Rashid A. and Kortuem GAdaptation as an aspect in pervasive
computing WORKSHOP ON BUILDING SOFTWARE FOR PERVASIVE COMPUTING
AT THE 19TH ACM SIGPLAN CONF ON OBJECT-ORIENTED PROGRAMMING
SYSTEMS LANGUAGES AND APPLICATION (OOPSLA 2004) VANCOUVER
CANADA (2004) : .

[RKC1999] Roman, M., Kon, F.,and Campbell, R.iesign and Implementation of
Runtime Reflection in Communication Middleware: TbhgnamicTAO Case
19tH IEEE CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, WORKSHOP
ON E-COMMERCE AND WEB-BASED APPLICATIONS (1999) : pp. 122-127.

[RMK+2000] Roman M, Mickunas M.D, Kon F. and Royar@pbell, LegORB and
Ubiquitous CORBA IN IFIP/ACM MIDDLEWARE 2000 WORKSHOP ON
REFLECTIVE MIDDLEWARE . (2000) : .

[RP1997] Romer K. and Puder AJICO: CORBA 2.0 implementatiptSER AND
PROGRAMMER GUIDE COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF
FRANKFURT GERMANY (1997) : .

[SC2000] Siqueira F. and Cahill \Quartz: A QoS Architecture for Open Systems
PROCEEDINGS OF |EEE |INTERNATIONAL CONFERENCE ON DISTRIBUTED
COoMPUTING SysTEMS (ICDCS 2000)(2000) : p. 197--204.

[SG2002] Sousa J.P. and Garlan Bura: an Architectural Framework for User
Mobility in Ubiquitous Computing Environment8ROCEEDINGS OF THE 3RD
WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE (2002) : p.
25--31.

113

[SLM1998] Schmidt D.C. and Levine D.L. and Mundgeg Design of the TAO real-
time object request broke€CoMPUTER COMMUNICATIONS (1998) 21: p. 294--
324.

[SM2003] Saha D. and Mukherjee Rervasive computing: a paradigm for the 21st
century COMPUTER (2003) 36: p. 25--31.

[SMC+2004] Sadjadi S.M. and McKinley P.K. and CéhH.C. and Stirewalt R.E.K.,
TRAP/J: Transparent generation of adaptable javagrams PROCEEDINGS OF
THE INTERNATIONAL SYMPOSIUM ON DISTRIBUTED OBJECTS AND
APPLICATIONS (DOA’04) (2004) : .

[SML1999] Smith J.R. and Mohan R. and Li C.Scalable multimedia delivery for
pervasive computingPROCEEDINGS OF THE SEVENTH ACM INTERNATIONAL
CONFERENCE ON M ULTIMEDIA (PART 1) (1999) : p. 131--140.

[SN2004] Steinmetz, R., Nahrstedt, K.. Multime8igstems. . Springer, 2004.

[SVJ2003] Suvee D., Vanderperren W., JonckersJ¥sCo: an aspect-oriented
approach tailored for component based software lbgveent PROCEEDINGS OF
THE 2ND INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE
DEVELOPMENT (2003) : p. 21--29.

[Sch1994] Schmidt D.CACE: an Object-Oriented Framework for Developing
Distributed Applications. In 6th USENIX C++ Technical ConferencE994.

[Sch1999] Schmidt, D. C. and Cleeland, 8pplying Patterns to Develop Extensible
ORB MiddlewarelEEE COMMUNICATIONS (1999) : .

[Schmidt1998] Schmidt D.CAn Architectural Overview of the ACE Framework:
A Case-study of Successful Cross-platform Systerftweabe ReuseUSENIX
LOGIN MAGAZINE TOOLS SPECIAL ISSUE Nov (1998) : .

[Sun1997] Sun Microsystemstlava Remote Method Invocation Specicati¢h997)

[Sun2001] Sun Microsystemdava 2 Platform Enterprise Editipn(2001) : .

[TBP+2005] Trumler W. and Bagci F. and Petzoldadd Ungerer T.AMUN—
autonomic middleware for ubiquitous environmentspligol to the smart
doorplate project ADVANCED ENGINEERING INFORMATICS (2005) 19: p. 243--
252.

114

[TSY+2004] M. Tamai and T. Sun and K. Yasumoto awdShibata and M. Ito,
Energy-aware Video Streaming with QoS Control fasrt&le Computing
Devices (NOSSDAV2004) (2004) : .

[TVJ+2001] Truyen E., Vanhaute B., Joosen W., “etbn P., Jgrgensen B.N,
Dynamic and Selective Combination of Extensions Aomponent-Based
Application PROCEEDINGS OF ICSE (2001) : pp. 233-242.

[VB2007] Vinh, C. P., Bowen, J. P.A Formal Approach to Aspect-Oriented
Modular Reconfigurable Computing. , 2007.

[Wang2003] Wang, N., Schmidt, D.C., Gokhale, AgdRgues C., Natarajan, B.,
Loyall J.P., Schantz, R.E., and Gill, C. D. QoSi#ed Middleware. Qusay H.
Mahmood. Wiley and Sons, 2003.

[Weil993] Weiser M.Some Computer Science Problems in Ubiquitous Congput
COMMUNICATIONS OF THE ACM, (1993) : .

[YKW+2002] Yau, S.S., Karim, F., Wang, Y., Wang,. Band Gupta, S.K.S,
Reconfigurable context-sensitive middleware for vpsive computing
PERVASIVE COMPUTING IEEE (2002) 1: pp. 33 - 40.

[YLC+2002] Yang S. and Lee H. and Chung K. and Kin A Content Provider-
Specified Web Clipping Approach for Mobile ContefAtlaptation 4TH
INTERNATIONAL SYMPOSIUM ON MOBILE HUMAN-COMPUTER |INTERACTION
(2002) : p. 324--328.

[YN2006] Wanghong Yuan and Klara Nahrstelhergy-efficient CPU scheduling
for multimedia applicationsACM TRANSACTIONS ON COMPUTER SYSTEMS
(2006) 24: p. 292--331.

[YNG2001] Yuan W. and Nahrstedt K. and Gu >Cpordinating energy-aware
adaptation of multimedia applications and hardwaesource PROCEEDINGS OF
THE 2001 INTERNATIONAL WORKSHOP ON M ULTIMEDIA MIDDLEWARE ~ (2001) :
p. 60--63.

[zBS1997] Zinky J.A. and Bakken D.E. and Schant&.RArchitectural support for
quality of service for CORBA object$HEORY AND PRACTICE OF OBJECT
SYsSTEMS (1997) 3: p. 55--73.

[ZDE+1993] Zhang, L., Deering, S., Estrin, D., Bker, S., Zappala, DRSVP: A New
Resource Reservation ProtoctEEE NETWORK MAGAZINE (1993) 7: pp. 8-18.

115

[ZKS+2003] Zink M., Kuenzel O., Schmitt, J.and i8teetz, R.,Subjective Impression
of Variations in Layer Encoded VideO$NTERNATIONAL WORKSHOP ON
QUALITY OF SERVICE (2003) : p. 137--154.

116

Appendix A : List of Author’s Publications

Muhammad A. Khan and Stefan FiscH&CREMA - An Adaptive Composition and
Runtime Environment for Multimedia Applications”, in the 32nd Euromicro
Conference on Software Engineering and Advanced Apgtions (SEEA 2006), Aug.-
Sept. 2006, Cavtat, Croatia.

Muhammad A. Khan and Stefan Fischéfowards Unmanaged Multimedia
Adaptations using Automated Aspect Weaving”, short paperin the International
Conference on Software Engineering Research and &ree (SERP'2006), June 2006,
Las Vegas, USA.

Muhammad A. Khan and Stefan Fisché® Customizable, Reconfigurable

Deployment Environment for QoS-aware Multimedia Application”, in the 4th

international workshop on Adaptive and Reflectiveiddleware (ARM-2005), Nov.
2005, Grenoble, France.

Muhammad A. Khan and Stefan Fischeh, Reflective Runtime Environment for Dynamic
Adaptation of Streaming Media on Resource Constrained Devices”, proceedings of 38
Hawaii International Conference on System ScienogfCSS-38), Jan 2005, Hawaii,
USA.

Muhammad A. Khan and Stefan Fischeh, Reflective Runtime Environment for Dynamic
Adaptation of Streaming Media”, workshop proceedings, the™sACM/IFIP/USENIX
International Middleware Conference (Middleware 28)) Oct 2004, Toronto, Canada.

117

