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Kurzfassung

Die Themen Sicherheit und Zuverlässigkeit spielen in Computernetzen und ver-
teilten Systemen seit jeher eine wichtige Rolle. Insbesondere aber im Hinblick
auf die fortschreitende Realisierung des Ubiquitous Computing in der Infor-
mationsgesellschaft gewinnen diese Themen noch einmal zusätzlich an Bedeu-
tung. Das Ubiquitous Computing, welches sich sinngemäß mit allgegenwärtigem
Rechnen übersetzen lässt, stellt eine grundlegende Veränderung der IT-Land-
schaft dar und zeichnet sich insbesondere durch die Verschmelzung der virtuel-
len mit der realen Welt aus. Die Computer werden in die Umwelt so integriert,
dass sie der Nutzer großteils nicht mehr als solche wahrnimmt. Da diese Compu-
ter jederzeit miteinander vernetzt sind und kommunizieren können, lassen sich
mit ihrer Hilfe vielfältige hilfreiche Anwendungen realisieren, die den Nutzer in
seinen alltäglichen Arbeiten unterstützen. Gleichermaßen wächst jedoch auch
das potentielle Gefahrenpotential, beispielsweise der allumfassenden und dauer-
haften Überwachung der Nutzer. Weiterhin müssen die Anwendungen, die sich
intern die Zusammenarbeit vieler einzelner Computer erfordern, sehr robust
und zuverlässig arbeiten, um nutzbringend einsetzbar zu sein und Akzeptanz
bei den Nutzern zu erhalten.

Diese Dissertation beschäftigt sich mit Fragen rund um die Thematik wie Si-
cherheit und Verlässlichkeit in Ubiquitous Computing-Umgebungen etabliert
und gehandhabt werden können. Hierbei erfolgt einerseits eine Fokussierung
auf zwei wichtige Teilbereiche, die Integration von Sicherheitsmaßnahmen in
die verbauten Geräte, die die technische Basis des Ubiquitous Computing aus-
machen, sowie die Weiterentwicklung der in bestehenden Weitverkehrsnetzen
eingesetzt Routing-Verfahren. Andererseits wird in einem dritten Schwerpunkt
die Frage erörtert, ob die heutzutage vorwiegend eingesetzten Konzepte und
Verfahren zur Erreichung der Sicherheitsziele noch zeitgemäß sind oder ob eine
datenzentrierte Sicht auf Sicherheit mehr Vorteile verspricht, insbesondere im
Hinblick auf die qualitativen Veränderungen im Ubiquitous Computing.

Bezüglich der Integration von Sicherheitsmaßnahmen in ubiquitär eingesetzte
Geräte muss insbesondere darauf geachtet werden, dass diese möglichst klein
und günstig sein müssen um überall einsetzbar zu sein. Hieraus ist augen-
blicklich ersichtlich, dass diese Geräte sehr beschränkt in ihren Möglichkeiten
sein werden, beispielsweise nur geringen Speicher, Rechenleistung, Energievor-
rat oder Übertragungsgeschwindigkeiten unterstützen. Diese limitierenden Ei-
genschaften gilt es bei der Integration von Sicherheitsmaßnahmen zu beachten.
Eine Beispieltechnologie für diesen Bereich bilden drahtlose Sensornetze, die in
Ubiquitous Computing-Umgebungen zahlreich zum Einsatz kommen werden. In
dieser Arbeit werden in diesem Kontext zwei Lösungsansätze vorgestellt. Zum
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Einen wird eine Sicherheitsarchitektur für mobile selbstorganisierende Sensor-
netze entworfen und deren praktische Umsetzung beschrieben. Da jedoch der
spezielle Fokus auf ein Einsatzszenario diverse Nachteile mit sich bringt, wird
zum Anderen ein zweites, allgemeiner einsetzbares Verfahren beschrieben, wel-
ches die Annotation von Sicherheitsmaßnahmen beim Designprozeß der Anwen-
dung erlaubt. Das Verfahren unterstützt den Entwickler nachhaltig bei der In-
tegration sinnvoller Sicherheitsmaßnahmen. Ausgehend von der Spezifizierung
abstrakter Sicherheitsmerkmale durch den Anwendungsentwickler werden auto-
matisch mögliche Sicherheitslösungen generiert und hinsichtlich der erreichten
Sicherheit und verbleibenden Risiken evaluiert. Die Ergebnisse werden dem An-
wendungsentwickler präsentiert, der hierdurch in die Lage versetzt wird, einer-
seits die optimal passende Sicherheitslösung für seine Anwendung zu wählen.
Andererseits kann er durch die detaillierten Rückmeldungen mögliche Sicher-
heitsrisiken besser einschätzen und in der weiteren Anwendungsentwicklung
berücksichtigen. Durch die Integration des Verfahrens in einen Middelware Ge-
nerator kann dem Anwendungsentwickler schließlich automatisch der benötigte
Quellcode zur Verfügung gestellt werden. Sowohl die theoretischen Grundla-
gen wie auch die praktische Umsetzung dieses Verfahrens werden detailliert
beschrieben und evaluiert.

Im Bereich des Routings begutachtet diese Arbeit natur-inspirierte Routing-
Verfahren näher, um die Frage zu klären, ob autonom agierende Verfahren
das Potential besitzen die Verlässlichkeit der Weitverkehrsnetze zu steigern.
Natur-inspirierte Verfahren orientieren sich hierbei entweder am Schwarmver-
halten von Tieren oder an Grundsätzen der Evolution. Verschiedene Verfah-
ren werden zu Beginn der Untersuchung auf Basis der verfügbaren Literatur
verglichen, um den viel versprechendsten Ansatz zu bestimmen. Dieser wird
dann unter theoretischen Gesichtspunkten wie auch simulativ mit dem State-of-
the-Art Routing-Verfahren OSPF hinsichtlich der verschiedenen Aspekte von
Verlässlichkeit nähergehend untersucht. Es werden sowohl die einzelnen Un-
tersuchungen detailliert präsentiert, wie auch die Ergebnisse aufbereitet und
bewertet.

Schließlich widmet sich diese Arbeit der Frage, ob die traditionell eingesetzten
Konzepte um Sicherheit in Netzen zu erreichen auch in Ubiquitous Computing-
Umgebungen effizient Sicherheit bereitstellen können, oder ob eine datenzen-
trierte Sicht auf Sicherheit nicht viel versprechender ist. In diesem Zusam-
menhang werden einerseits die zugrundeliegenden Konzepte datenzentrierter
Sicherheit näher erläutert. Andererseits werden die Verfahren, die heute zur
Erreichung dieser Konzepte verwendet werden, hinsichtlich ihrer Eignung für
den Einsatz in Ubiquitous Computing-Umgebungen untersucht und bewertet.
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Abstract

Security and dependability represent important topics in the context of com-
puter networks and distributed systems. Especially with the ongoing trend to-
wards realizing the paradigm of ubiquitous computing, they become even more
decisive. Ubiquitous computing is characterized by a fundamental revolution
in the information technology as it is known and in use today. In essence, the
computing devices are integrated into the real world in such a way that they
disappear from view and are no longer perceived as computer systems by the
users. Thus, the virtual and the real world effectively merge. This allows on
the one hand for many fascinating new applications to support users in their
everyday tasks. However, on the other hand this also involves a great poten-
tial for massive security risks, such as the complete and permanent surveillance
of the users. Furthermore, these systems, that span internally over multiple
devices, must be extremely robust and dependable in order to provide usable
solutions and gain the users’ acceptance.

This dissertation concentrates on questions regarding the management of se-
curity and dependability in ubiquitous computing environments. At this, we
focus on the one hand on two important aspects, the integration of security
into the devices that build the foundation of these environments as well as the
advancement of the routing technology used in wide-area networks today to
support the qualitative changes that accompany ubiquitous computing. On
the other hand, we discuss the question if the traditionally prevalent security
concepts still represent efficient and usable solutions in ubiquitous computing
environments or whether a data-centric view on security is more beneficial and
feasible to implement.

Regarding the integration of security measures into the ubiquitously deployed
devices it is important to keep their distinct characteristics in mind. By de-
sign, these devices must be extremely small and cheap in order to be deployed
everywhere and disappear from view. However, this results in severely resource-
constrained devices, regarding CPU, memory, energy, and communication band-
width. These limitations must be considered during the design of appropriate
security solutions. An example of such a technology represent wireless sensor
networks which will be massively deployed in future ubiquitous computing en-
vironments. We present in this work two approaches to provide security for
wireless sensor networks. On the one hand we design and implement a security
architecture for a mobile self-organizing sensor network. However, due to sev-
eral drawbacks that result from the general approach of providing a specialized
security architecture for one application scenario, we design and implement a
second, more generic framework that allows for annotating security during the

ix



design process of the application. It effecively supports the application by de-
vising and evaluating feasible security solutions. Based on the specification of
abstract security aspects, the framework generates possible security solutions
and evaluates them regarding the provided security and remaining risks. This
evaluation is given as qualitative feedback to the application developer who in
turn may choose the most applicable solution for his application. Furthermore,
the detailed information fosters his awareness of remaining open risks and en-
ables him to include safeguards in his application to prevent these. Finally, this
framework is integrated into a middleware generation tool, in order to auto-
matically provide the application developer with the required source code. We
present in detail the theoretical foundations as well the implementation of the
framework and evaluate its usefulness.

In the context of routing in wide-area networks we assess the potential of nature-
inspired approaches to autonomically increase the dependability of these net-
works. Nature-inspired approaches to routing either mimic the behaviour of
animal swarms or are based on the concepts of the evolutionary process. Based
on the available literature we analyse several nature-inspired approaches to de-
termine the most promising approach. Following this, we evaluate this approach
theoretically and by means of simulation with regard to several aspects of de-
pendability. Furthermore, the whole evaluation is done in comparison to the
state-of-the-art routing approach OSPF. We present the individual evaluations
as well as the results and provide a first answer regaring the initial research
question.

Finally, we assess to what extend the traditionally prevalent security concepts
still provide usable and efficient security solutions in the context of ubiquitous
computing environments. In this regard we also introduce a data-centric view
on security and evaluate its potential benefits, underlying concepts, and the
technologies that are required to implement the concepts. Furthermore, we
evaluate whether these technologies are usable and operate efficiently in ubiq-
uitous computing environments.
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1 Introduction

Yesterday is not ours to recover,
but tomorrow is ours to win or to lose.

[Lyndon B. Johnson]

We live in interesting times. Small-scale computers emerge more and more
to help us manage our every-day tasks. On the one hand, traditional devices
become more powerful and provide functionalities that go way beyond their
original purpose. For example, mobile phones no longer provide only their lit-
eral functionality, making phone calls en route, but additionally include our
calendars and tasks, serve as digital cameras, music players, and navigate us
towards our destinations. On the other hand, the numbers of computers sur-
rounding us increase significantly. Thus, mobile phones may also be used, for
example, at home as a universal remote to control various electronic devices,
such as the stereo system or television. Furthermore, other parts of the building
equipment and appliances increasingly become computer-enabled as well and
thus may be controlled and operated remotely. In these so-called smart homes
aspects, such as the heating system, lights, and kitchen appliances become com-
pletely controllable using common computer technology. Prototypes of these
smart homes already exist and are promoted by vendor associations, e. g. [247].

This computerization of our world is assisted by global networking capabilities,
allowing for new always-on technologies, i. e. permanent connection to online
services such as Google Latitude [85], which allows you to publish your current
location on an online map, so that your friends are always able to locate and
contact you. Localization also provides the basis for so-called location-based
services, i. e. services offered to you via your phone that are located in your
immediate physical surrounding.

Thus, the virtual world of cyberspace increasingly merges with our physical
world. This ongoing trend in information technology towards integrating sens-
ing, communication, and computation into the physical world offers fascinating
new services. For example, the physical reality could be augmented with fitting
digital information in order to provide the user with additional information
about a piece of art in a museum or intuitively usable navigation system, dis-
played directly on the windshield of the car. Furthermore, it will be possible
to continuously monitor patients or elderly people at home. This vision of
a completely computerized world is commonly referred to as the paradigm of
ubiquitous computing (UC) [279].

1



Chapter 1. Introduction

1.1 Motivation

While offering many fascinating new services, the same technologies also in-
troduce many new risks with regard to security. Questions that arise include,
for example, who controls the data that is gathered and how can we keep our
data to ourselves or control who may access it? Furthermore, can we trust
the technologies to exactly provide the service they advertise and are they sta-
ble enough in their operation that we may depend on them? Who is liable if
something goes wrong? How can we manage security-related aspects in a world
where computers are no longer visible? Thus, in order to safeguard the users
from negative side-effects of the ubiquitous technology and gain their accep-
tance, it is very important to consider security and dependability aspects when
designing and building these systems.

In this dissertation we study how security and dependability can be managed
in such a future world that is fully penetrated by information technology. We
would like to clarify, that we do not attempt to provide solutions for all problems
related to security and dependability in ubiquitous computing, just to name
and categorize them all could easily fill a book. Rather, we use the vision of
ubiquitous computing to give focus and context to our research and present
and discuss particular well-defined sub-problems for which we provide possible
solutions or advance the state-of-the-art knowledge.

1.2 Contributions and Structure of this Work

The research contributions we present in this dissertation examine three prob-
lem areas regarding security and dependability in UC in more detail:

1. The integration of security into UC devices – we propose and evaluate
two approaches to integrate security into wireless sensor networks, one of
the core technologies in UC environments.

2. The achievement of autonomic dependability in wide-area networking –
we determine the most promising nature-inspired approach to routing
in networks and analyze theoretically as well as by means of simulation
its advantages and drawbacks compared to the state-of-the-art routing
approach OSPF, focusing on the autonomic realization of dependability
in wide-area networking.

3. The case for data-centric security – we argue why traditional security
concepts need to be critically challenged regarding their applicability in
UC environments and present the concept of data-centric security. Fur-
thermore, we analyze how far this concept may be realized using today’s
prevalent technologies.

This thesis first discusses general aspects of security and dependability before
presenting the vision of UC in more detail, including its distinct characteristics

2



1.2. Contributions and Structure of this Work

Figure 1.1: Structure of this work

and the challenges that arise regarding security and dependability. Based on
this, we focus on our contributions. The individual concepts and operational
settings for the three areas differ significantly. Therefore, to improve readability,
we target each area in one chapter and try to make it as self-contained as
possible1, i. e. we present and discuss the respective foundations, related work,
and, where applicable, the proposed solution or experimental results inside each
of these chapters. Thus, each of the main chapters may be read independently,
if the the reader is familiar with the basic concepts of security, dependability,
and UC. Finally, we summarize the results of our contributions and provide
possible directions for future work. The overall structure of this work as well as
possible reading paths are illustrated in Figure 1.1. In more detail, the thesis
is structured as follows:

In Chapter 2 we provide the necessary foundations and terminology for the
reader to follow the discussions and presentations in our work. First, Section 2.1
introduces the traditional concepts regarding security and dependability. Sec-
tion 2.2 provides a brief overview of the vision and research field of UC. At
this, we especially highlight its distinct characteristics as well as the resulting
challenges and issues focusing on security and dependability. Finally, we briefly
describe, arrange, and visualize in Section 2.3 the respective research areas of
our contributions in the overall context of UC environments, to provide a clear
picture which aspects and challenges of UC we address.

Chapter 3 targets the integration of security technologies and concepts into
resource-constrained devices, i. e. wireless sensor nodes, that represent one of
the fundamental technologies that will be used in UC environments. We pro-
vide the necessary fundamentals regarding wireless sensor networks (WSN) as
well as an introduction to the middleware synthesis tool Fabric in Section 3.1.
Fabric will be utilized in one of our later proposals in the proof-of-concept
implementation. Section 3.2 gives an overview of the research area of security

1Thus, it may happen that some abbreviations are defined twice in this work, e. g. “wireless
sensor network (WSN)” is defined in the background in Section 2.2 as well as in the
respective chapter of the contribution in Section 3.1.
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in WSNs. In Section 3.3 we present and evaluate our first proposal to provision
a WSN with the required security technologies, i. e. we define a security archi-
tecture for mobile self-organizing WSNs. Due to the fact that this approach
to provide security results in several disadvantages, we propose and evaluate
a more generic framework in Section 3.4 that allows to annotate the required
security mechanisms during the application development. Section 3.5 provides
a summary of the important findings and results from our two proposals.

In Chapter 4 we examine the question whether autonomic approaches to routing
have the potential to increase the dependability of wide-area networks (WANs),
which will become hard to manage in the face of the increasing complexity in
UC. Section 4.1 provides the necessary foundations for the analysis. In detail,
we recap the general routing problematic and present state-of-the-art as well
as nature-inspired approaches to routing. In particular, we discuss the nature-
inspired approach BeeHive as well as the state-of-the-art approach OSPF in
more detail, as these two will be examined more detailed in the further analysis.
We provide a survey of the published evaluations of several nature-inspired
routing approaches to determine the most promising candidate, which turned
out to be BeeHive, in Section 4.2. Following this, in Section 4.3 we analyze
BeeHive and OSPF in more detail regarding the aspects of dependability, both
theoretically and by means of simulation. Finally, Section 4.4 summarizes the
results and presents our conclusions.

Chapter 5 is devoted to the question whether the security concepts that are
prevalent today still represent effective security solutions with regard to UC or
if data-centric security provides a superior and viable security concept. To this
end Section 5.1 introduces the goals and underlying concepts of data-centric
security. In Section 5.2 we analyze the concepts and technologies that are
used to implement them, focusing on their realizability and effectiveness in the
context of UC. Section 5.3 finally summarizes the results.

Chapter 6 concludes this dissertation with a summary of the contributions and
a presentation of possible directions for future work.

Acknowledgements

A dissertation is usually not the result of countless hours spent alone in a dark
room. The work presented here would not have been possible without the close
cooperation and the prolific discussions and cooperations with my colleagues at
the Institute of Telematics and our project partners.

The first part of the research on integrating security into ubiquitous computing
devices is joint work with Holger Krahn, Prof. Dr. Dietmar Wätjen, and Prof.
Dr. Stefan Fischer, while the second part is joint work with Dr. Dennis Pfisterer
and Prof. Dr. Stefan Fischer.

The results on autonomic dependability in wide-area networking stem from
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2 Security and Dependability in
Ubiquitous Computing Environments

One’s mind has a way of making itself up in the background,
and it suddenly becomes clear what one means to do.

[A. C. Benson]

The following sections are devoted to providing the reader with the required
concepts and terminology to understand the further presentations and discus-
sions in this work. First, the next section presents the traditional concepts
regarding security and dependability in computer networks and defines impor-
tant terms. Furthermore, we present approaches to network security as they are
prevalently in use today. In Section 2.2 we present the vision of UC, including a
disambiguation of terms regarding related concepts. Furthermore, we highlight
the distinct characteristics of UC as well as its foundations and present chal-
lenges and issues with regard to security and dependability. Finally, Section 2.3
briefly describes the research areas on which we focus in our contributions. Fur-
thermore, we show the relations between them and visualize their place within
the overall context of UC.

2.1 Security and Dependability

The need for security is as old as the formation of the first human societies.
While historically security implied mostly the protection of physical assets from
others, the dawn of the information age, if nothing else, has extended this need
to the protection of digital information as well. Over the history, mankind has
invented several methods and protocols to secure his assets. However, as con-
stantly as new ways to attack the protection mechanisms emerge, new security
techniques are developed as well. Consequently, security has become such a
broad discipline, that today it is almost impossible to give an all-encompassing
in-depth overview.

Accompanying the information age is also an increasing technological pervasion
of our surroundings. As humanity depends more and more on these systems,
the research area of dependable computing has gained momentum. Essentially,
dependability centers around building up trust that a system delivers its ad-
vertised service. Originally, dependability considered only the avoidance and
handling of non-malicious system faults. Lately however, other aspects have
been taken into consideration as well, overlapping in parts with security di-
rections. Though the areas of security and dependability have traditionally
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Chapter 2. Security and Dependability in UC Environments

evolved separately, there have been attempts to provide unifying concepts that
encompass both [12].

Generally, security and dependability both represent non-functional properties
of a system. Thus, they express how the system must behave while providing
its functionality. Functional properties in contrast ensure the system’s actions,
i. e. what the system is intended to do. Thus, while security and dependability
of a system are usually implicitly expect by most people, few explicitly think
about them as they focus on the task at hand. This often leads to a neglect
of security and dependability aspects during systems design. However, it is of
special importance to include them at this stage, since retrofitting them is often
burdensome if not impossible and the components that lack integrated security
are usually the first point of attack.

However, perfect security for a system does not exist on principle, as long as the
system is supposed to be used later on. Therefore, the discussion about security
is always a discussion about risk management, e. g. what security measures still
allow for a useable system and how do theses measures compare economically
to the risks they address. Equally, no perfect system, i. e. without faults, can
be build. Therefore, discussions about the dependability of a system are really
discussions about the kind of faults possible and the threshold up to which they
are manageable and thus acceptable.

In the remainder of this section we first establish a common terminology to be
able to efficiently discuss the problems and solutions in this work. Furthermore,
we introduced security and dependability concepts as they are commonly in use
today.

2.1.1 Terminology

The vocabulary of security an dependability is rich with seemingly alike terms
and definitions, leading sometimes to confusion and misunderstandings. So
in order to establish a common vocabulary and a basis for understanding the
further discussions, we define in the following the terms that are relevant in the
context of this dissertation. We hereby focus on aspects that are important in
the context of networks and distributed systems.

2.1.1.1 Security

The communication in computer networks is generally considered secure, if one
or several security services are satisfied [253].

Definition 1 (Security Service) A security service defines security aspects
for data or a system, that counter a certain class of threats when fulfilled. A
security service makes use of one or several security mechanisms to provide the
service.
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Three primary security services exist: confidentiality, integrity, and availability,
with secondary security services covering additional aspects. The following
definitions are based on the widely accepted descriptions in [240].

Definition 2 (Confidentiality) Confidentiality protects information against
unauthorized disclosure.

In other words, confidentiality guarantees that the information is not made
available or disclosed to unauthorized individuals, entities, or processes. Re-
garding communication in computer networks, an adversary may indeed detect
that two parties are communicating. However, he is not able to determine the
content of the communication.

Definition 3 (Integrity) Integrity protects a system element or the system
as a whole against unauthorized intentional or accidental changes.

It is important to note, that integrity cannot prevent changes, e. g. changing a
message in a distributed system during transfer from sender to receiver. Yet,
it ensures that changes are definitely detected. Furthermore, while integrity
deals with constancy of and confidence in data values, it allows no assessment
about the information that the data values represent, e. g. trustworthiness of
the information. With regard to systems, integrity ensures the correct mode of
operation, free from deliberate or inadvertent unauthorized manipulation.

Definition 4 (Availability) Availability guarantees that a system or a sys-
tem resource is accessible and usable upon demand by an authorized entity,
according to the design specifications of the system.

Providing availability thus requires a proper management and control of the
system resources.

Building upon these three basic security services several others are defined to
assure further aspects. The two most important ones are authenticity and
access control.

Definition 5 (Authenticity) Authenticity enables verification of the identity
claimed by or for an entity.

In computer networks, authenticity is generally used in one of two forms, either
data origin authenticity or peer entity authenticity. Generally, authenticity
cannot be achieved in this environment without integrity, ensuring that the
communicated data is not altered during the transmission.

Definition 6 (Access Control) Access control prevents unauthorized usage
of a system or system resource, including the prevention of using the system or
system resource in an unauthorized manner.
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Thus, the focus of access control is authorizing entities to use the system or
system ressource in a clearly defined way or denying them access. At the same
time it prevents unauthorized ways of access to the system or system ressource.
Access control therefore requires authenticity to fulfill its goal.

Each of the aforementioned security services represents an abstract security
goal. To obtain the respective goal technically, the services make use of one or
more security mechanisms.

Definition 7 (Security Mechanism) A security mechanism provides a tech-
nical process that can be used in a system to implement a security service.

Therefore, a security mechanisms implements the technical means to detect or
prevent an attack or to reset the system state after a successful attack. Ex-
amples for often used security mechanisms are encryption, digital signatures,
message authentication codes, and hash algorithms. Usually several mecha-
nisms are used in combination to implement a security service.

2.1.1.2 Dependability

The focus of dependability has broadened from the traditionally original target
of non-malicious system faults to include malicious faults as well over time. A
good overview and discussion about this is presented in [12]. The following
definitions are based upon this as well as the definitions given in [240].

Definition 8 (Dependability) The ability of a system to deliver its service in
a way that users can justifiably trust. The means to achieve this is the system’s
ability to avoid service failures that are more frequent and more severe than is
acceptable.

Dependability is an umbrella concept that comprises availability, reliability,
safety, integrity, and maintainability. Figure 2.1 (adapted from [12]) illustrates
the relationship between security and dependability. In the following, we pro-
vide short definitions of these concepts as far as they were not defined in the
security part already.

Definition 9 (Reliability) The system’s ability to perform a required func-
tion under stated conditions for a specified period of time.

The level of robustness of the employed software and hardware, i. e. the ability
to react to failures in a way that no system failure occurs or its effects are
minimized, is decisive for the system’s reliability.

Definition 10 (Safety) The property of a system being free from risk of caus-
ing harm to its users and system entities.

Definition 11 (Maintainability) The ability of a system to undergo modi-
fications during its operation as well as repairs after a failure.
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Figure 2.1: Relationship between security and dependability

2.1.1.3 Threats, Attacks, and Risks

Generally, threats, attacks, and risks refer to the unwanted but unavoidable
events that oppose the security and dependability of a system. However, a lot
of ambiguity exists in the literature regarding the exact terms, their scope, and
differences. We use them throughout this dissertation as follows.

Definition 12 (Threat) A potential for violation of security, which exists
when there is an entity, circumstance, capability, action, or event that could
cause harm, adversely affecting the system.

In other words, a threat represents the possibility of something bad happening.
It is important to note that threats may be caused accidentally, for example,
by human error, equipment malfunction, or natural disaster. Though threats
include intentional acts as well, we refer to these as attacks.

Definition 13 (Attack) An intentional act by which an intelligent entity, the
attacker, attempts to evade security services and violate the security policy of
a system.

Thus, attacks realize threats, mostly by exploiting system vulnerabilities. At-
tacks are generally distinguished by their point of origin into internal and exter-
nal attacks, using a security perimeter (c. f. Section 2.1.2) as boundary. Internal
attacks are executed by an insider, an entity that has legitimate access to the
system resources but uses them maliciously. Quite often internal attacks can
not be differentiated from byzantine failures [195]. Here a system still operates,
but incorrectly and it is not possible to determine if the incorrect operation
results from a successful attack or from failures, such as misconfiguration, hard-
ware failures, or software bugs. External attacks in contrast are initiated from
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Attack Type Description

Masquerade Active Posing as another entity, e. g. when sending
messages.

Replay Active Retransmission of valid messages.
Message modification Active Altering of the message’s content, or delay-

ing or reordering messages.
Denial of service (DoS) Active Preventing the legitimate use of a system

resource.

Information disclosure Passive Unauthorized publishing of confidential in-
formation.

Traffic analysis Passive Observation of the frequency and length of
communications, in order to derive informa-
tion about the entities’ relationship.

Table 2.1: Generic active and passive attacks

outside the security perimeter, by an unauthorized or illegitimate user of the
system, the so-called outsider.

Furthermore, attacks are differentiated according to their intent into active and
passive attacks. Active attacks attempt to alter system resources or affect their
operation, while passive attacks attempt to learn or make use of information
from a system by monitoring but not affecting the system resources. Several
taxonomies exist that organize attacks, e. g. [105, 158]. In the context of this
thesis, we categorize attacks regarding networks according to Stallings [253].
Table 2.1 provides an overview.

Especially with regard to analysing possible attacks against a system, it is im-
portant to specify the attacker’s capabilities in order to define the boundaries for
the analysis. The Dolev-Yao model [67] is often used to model active adversaries
in communication networks and distributed systems. The basic assumption is
an insecure communication channel between any communicating entities. Thus,
the attacker, who is assumed to be omnipresent, may execute all of the active
and passive attacks mentioned above at any point in the network. However,
the employed cryptographic protocols and mechanisms are beyond this ability
to break without knowledge of the key. Furthermore, he can not compromise
the communicating entities.

Finally, risk centers on the quantitative aspects of threats.

Definition 14 (Risk) Risk defines the probability of loss due to a successfully
realized threat.

With regard to analysing risk of a system, the term residual risk defines the
portion of an original risk or set of risks that remains after the available coun-
termeasures have been applied to the system.
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2.1.2 Concepts

The prevalent approaches to network security today center on providing secu-
rity solutions for specific problems, mainly focussing on the environment. For
example, virtually every organization protects its devices, services, and data
in its internal network from the outside by means of a firewall. This concept
of perimeter security aims at separating a trusted internal network from the
untrusted external network by securing the borders of the network which the
organization controlls. Firewalls analyse the data traffic trying to determine
unwanted data packets or communication connections. Here, unwanted traffic
is specified by security policies specified by the organization. In order to enforce
these policies modern firewalls often not only filter the data traffic by analysing
the connection information, e. g. the IP addresses or port numbers, but include
sophisticated content filtering technologies as well, e. g. to detect attacks on
services available to the outside such as web servers.

Inside the trusted networks, further security technologies are often utilized to
enforce for example access control for documents, e. g. by means of encryption,
or for devices or services, e. g. by requiring users to authenticate to the PC or
the database.

If data traffic crosses the security boundaries of the internal network the focus
of the security measures shifts to securing the communication. Secure com-
munication protocols, such as SSL/TLS provide for example a protected tunnel
through which the communication may take place. The scope may range from a
single communication connection up to a protected interconnection of protected
networks by means of a virtual private network (VPN).

All of the mentioned concepts above represent proactive security approaches,
i. e. they consist of measures that are taken with the goal of preventing attacks
from successfully compromising the system. However, it is practically impos-
sible, to build and maintain a perfectly secure system that anticipates every
possible attack. Therefore, reactive security approaches aim at detecting and
reacting to attacks and other system anomalies against which proactive security
measures are not feasible, due to technological difficulties or efficiency and cost
issues. Security technologies for reactive security are usually summarized under
the term intrusion detection system (IDS) [61,224].

In essence, approaches to security today center around protecting the informa-
tion technology, i. e. the infrastructure, closely following the military concept
known as defense-in-depth. As the name implies, defense-in-depth aims at pro-
viding different layers of security. If one protection is overcome by an attacker,
further technologies provide additional safeguards.
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2.2 Ubiquitous Computing

Marc Weiser coined the term ubiquitous computing (UC) in his seminal article
in Scientific American [279] and is therefore often referred to as the father of
UC. His vision of UC in a nutshell is not concerned with a special technology
by itself but rather symbolizes Information Technology (IT) that merges with
the real world surroundings, offering services in an unobtrusive and intuitively
useable way.

UC IT, which we will simply denote as UC technology or devices in the fol-
lowing, will be seamlessly integrated into everyday objects making it invisible
to common awareness. Rather it will always be present in the background and
people will use it unconsciously to accomplish everyday tasks. As an example
of disappearing technology Weiser points out that although several motors are
required in an automobile, most people will never think of starting a specific
motor when starting the wipers. Furthermore, people will be able to absorb
the presented information from UC devices without the need to explicitly think
about it or to acquire specialized knowledge beforehand. Weiser compares this
to reading a street sign. People usually do not consciously perform the act of
reading when looking at it, still its information is instantly transmitted to the
reader.

Weiser also refers to UC as embodied virtuality which is diametrically opposed
to virtual reality . While virtual reality is based on a virtual world inside the
computer, the UC devices are integrated in the real world, which effectively
merges the real and the electronic, i. e. virtual, world.

Towards the realization of his UC vision Weiser sees a clear trend in [280]. He
describes three epochs in computing, which he defines as waves of technological
change that fundamentally alter the place of technology in our life, rather than
merely changes in the technology itself. The three epochs are the mainframe
era, the personal computer era, and the UC era.

Mainframe era – In the mainframe era computers are run exclusively by
experts and have to be shared by many users because they are a scarce
resource, i. e. expensive and rare.

Personal computer era – The personal computer era started around 1984
when the people using personal computers outnumbered the mainframe
users. In this era people work with their own personal computer. An
important thing to note is that this work occupies them completely, i. e.
they are not doing anything else. However, to do so the user does not
necessarily have to be an expert.

UC era – In the UC era the ratio between users and computers or devices
has reversed itself completely in comparison to the mainframe era. Each
user is surrounded and interacts with lots of computers. The handling and
interaction with them is intuitively done as the user focuses on solving
his everyday problems.
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Figure 2.2: Weiser’s major trends in computing

Due to Weiser we are currently in a transition phase between the latter two eras,
in which the Internet and the distributed computing paradigm tie together the
personal computers and give them access to servers, which resemble on their
own the mainframe era. Figure 2.2 illustrates the eras and the corresponding
computer-to-person ratio respectively.

2.2.1 Terminology

Alongside Weiser’s term UC, to which we will stick in this thesis, several other
terms and definitions exist in the literature that are often used synonymously
or overlap in parts. Some of the widely mentioned terms in this context include
Pervasive Computing, Ambient Intelligence (AmI), Mobile Computing, and Au-
tonomic Computing. In order to differentiate between them and identify their
relations a disambiguation the terms is clearly needed.

Müller et al. define UC as the intersection of the concepts mobile computing,
pervasive computing, and autonomic computing, each with it’s own focus but
yielding important aspects into UC (cf. Figure 2.3) [177]. Furthermore, they
arrange these areas into a temporal development. On the basis of traditional
computing Mobile Computing set the development off towards mobile devices,
making seamless global connectivity the focus of research. The following in-
clusion of context is the key point of Pervasive Computing. With increasing
complexity of the networks and devices people can no longer administrate the IT
and the need for self-organization becomes evident, focused in the research area
Autonomic Computing. Furthermore, other definitions and disambiguations of
UC-relating terms exist in the literature, e. g. Lyytinen and Yoo differentiate the
individual terms in [161] based on the dimensions embeddedness and mobility.

The vision of AmI was coined by the IST Advisory Group of the European
Union [116] during the 6th Framework Program, in order to foster european
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Figure 2.3: Research areas that form ubiquitous computing.

research. Essentially, AmI and UC describe the same vision. However, while
UC focuses on the technological aspects, AmI’s focus is broader, taking for
example social aspects, such as the acceptance of AmI, into account as well.

We define UC as an umbrella concept that integrates various other research
areas, thus following closely Müller’s definition. However, we acknowledge that
social issues have to be taken into account as well. This definition will become
clearer when we talk about the characteristics of UC environments in the next
section.

2.2.2 Characteristics and Foundations

Generally, UC environments consist of numerous context-aware devices that
are able to communicate and interact with each other in order to provide ser-
vices that facility the user in his everyday tasks. Salient characteristics that
distinguish UC from other computer science domains are:

Ubiquity : by design UC is everywhere. Permeating every aspect of the
real world, it is effectively affecting every part of our lives. Thus, the
traditional boundaries to computing vanish. IT is no longer confined to
the computer and the cyberspace but rather integrates into the real world.
Hereby, the devices may be static as well as mobile.
Invisibility an unobtrusiveness: the merging of IT with the real world
leads to invisible devices that offer their services in an unobtrusive way.
The user should no longer be aware that he is using a computer while
performing a task.
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Figure 2.4: UbiComp resource trends

Context-awareness: UC devices are able to understand their surround-
ings, i. e. they are context-aware. By means of various sensors they may
capture and process certain aspects of the user or their surroundings.

Adaptability : on the basis of the context information, UC devices adapt
their operation to the user’s wishes or the current situation.

Communication and cooperation: all devices communicate with each other
in order to cooperate and integrate specialized services into higher level
services.

Weiser emphasizes in [279] three technological requirements for UC to become
reality: cheap, low-power computers that include equally convenient displays,
software for ubiquitous applications, and a network that ties them all together.
While at the time of writing in 1991 this was clearly a vision for the future,
trends in hardware and software since then seem to make this vision feasible
today. Most importantly is the ongoing trend to miniaturise hardware at an
exponential rate, following Moore’s law [171]. However, equal technological
advancements can be found for example in the areas of storage capacities and
communication bandwidth as well [167]. Figure 2.4 illustrates the growth rates
of different resources in the last years based on [188].

These trends give rise to the widespread deployment of small embedded systems
as well as new technologies, such as radio frequency identification (RFID) tags
and wireless sensor networks (WSN). Furthermore, new materials emerge that
for example resemble on the surface traditional paper but are in fact electroni-
cally controllable [66] or that are bendable and thus allow to be integrated into
the clothing, so-called wearable computing [160].

Regarding the network capabilities, several technologies have been developed to
cover almost every usage scenario, ranging from strictly local communication via
NFC or Bluetooth, to mid-range communication technologies, such as ZigBee
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and WLAN, up to global coverage via GPRS, UMTS, and the Internet. These
technologies tie the individual devices into a globally spanning omnipresent
network.

2.2.3 Issues and Challenges

The real power of UC lies in the unrestricted flow of information, which is
gathered and processed by the plethora of devices to establish their services
and support the users in their everyday tasks. It is evident that the ongoing
realization of UC has a profound impact on our lives and the way we interact
with computers. Since the concept focuses on the complete penetration of the
real world with information technology, possible applications can be envisioned
wherever imagination reaches. Today several UC concepts are already in use,
e. g. in the area of medicine, logistics, or smart homes [28].

However, realizing UC gives also rise to several issues and challenges. This is
especially true for security and dependability. While the traditional security
services, which have been defined years in advance of the UC vision, represent
important pointers to reason about security in UC environments, the tradition-
ally employed mechanisms to provide these services must be critically challenged
due to the significant changes in the operational environment.

For example, by design the devices that form the UC environment must be cheap
and small, in order to place them everywhere and in large quantities. Thus,
these devices will be significantly constrained with regard to their on-board
resources, such as CPU, memory, energy, and communication bandwidth. This
strongly impacts the choice of technical security measures, such as encryption
algorithms. These are mostly designed for full-scale computers and may not
run on these devices. Furthermore, the heterogeneity of the devices as well as
the complexity of the UC environment makes the individual programming and
administrating of these environments a nearly unmanageable task.

Furthermore, the traditional security boundaries are vanishing in UC. No longer
will well-defined entry and exit points exist to a network. Rather the devices
communicate on demand using multiple available communication technologies
and redundant communication paths. This requires a change in the traditional
security assumptions and trust models. While traditional perimeter security
established an internal trusted network in which devices may assume a certain
security and trust level, as well as an external untrusted network, UC devices
have to establish and maintain trust dynamically with their communication
partner.

Another issue becomes apparent if we take for example a look at traditional
authentication methods. Generally, devices or users are authenticated by either
proving that they know a secret, proving the possession of a token, or provid-
ing a certain characteristic feature. Although these basic concepts may also be
used in UC environments, the management of these authentication paths was
traditionally handled manually, e. g. users were given credentials by the ser-
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vice provider in order to use the service. The on-demand service construction
and multitude of devices which UC environments comprise however, makes a
manual approach infeasible. Furthermore, authentication is traditionally cen-
tered on IDs and the question arises, if this is still adequate when most of the
communication takes place between devices, with no user-interaction.

Apart from the technological challenges, the socio-technological perspective,
i. e. the recognition of the interaction between people and technology, must be
taken into account when arguing about and designing security solutions for UC
environments. Foremost, usability aspects, i. e. security solutions that don’t get
in the way of the systems’ users, represent probably the greatest challenges for
UC in this regard [58]. However, just as important are aspects that usually spark
users’ fears, such as the inscrutability of the complex UC services. Especially
the questions if the system acts as advertised and does it provide the promised
security, provide important challenges regarding the traceability of the systems
operation and robustness, as well as the visualization of the employed security.
Measures in this regard would allow the user to build up trust into the systems.

A profound open question in this regard is also the secure handling of personal
data, commonly denoted as privacy, in order to avoid the transparent user.
Mobile users will leave bits of personal data whereever they go and correlating
this data may result in a complete trace of their whereabouts and actions.
Therefore, systems or mechanisms that provide amongst others location privacy
and data confidentiality are imperative in a UC environment.

We are well aware that we have covered only the tip of the iceberg in our discus-
sions above. However, the topic is so vast, that whole books have been written
that focus solely on security in UC, such as [41, 249]. Furthermore, several ex-
tensive studies center around deriving the impacts UC will have on our lives,
e. g. [28,37,102]. For a more in-depth presentation and discussions we therefore
refer to these excellent sources as well as the significant amount of research
papers that have been published on numerous conferences and workshops.

In the context of this work, it suffices to say that security and dependability
in UC are complicated on a technological level by the device heterogeneity, the
complexity and enormous scale of UC environments, as well as the potential
mobility, adaptability, and the required autonomic behaviour of the devices.
On the socio-technological level the main challenges represent usability, trust
in UC devices, visualization of security, as well as data and location privacy.
The security community has to determine which of these security-related prob-
lems can be solved by adapting existing solutions from traditional distributed
systems while the others require novel solutions.

2.3 Roadmap

Before we set out discussing some of the issues and challenges set forth in the
last section in more detail and present our findings and solutions, we want to
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Figure 2.5: Research focus areas

clarify what exactly we are trying to accomplish. Since the topic of security
and dependability in UC represents a vast research field, we concentrate our
work on advancing the body of knowledge with regard to three problem areas:

1. Devices: how to build security into the devices that form the ubiquitous
computing environments?

2. Networks: how to enable the existing WAN infrastructures to cope with
the changes that result from the distinct characteristics of ubiquitous
computing?

3. Paradigms: do we need to rethink traditional security paradigms to enable
efficient security in ubiquitous computing environments?

Figure 2.5 provides a graphical representation of our research areas as well as
the relations between them. We start at the bottom with the individual devices
that provide the basis for UC environments. These need to be programmed with
security-enabled applications. Connecting these devices are networks, which
eventually comprise the well-established Internet backbones. Especially the
employed routing approaches must be advanced to cope with the changes that
accompany UC. Finally, we take a step back to discuss if the traditionally
prevalent security paradigms still represent feasible and efficient security con-
cepts in UC environments at large and argue the case for data-centric security.
In the remainder of this section we take a closer look at each of our three target
research areas.

Devices A plethora of different devices will be deployed in a multitude of
operational settings when UC becomes reality. Thus, the IT is characterized
by a significant device heterogeneity and high complexity. In order to enable
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secure and dependable operations, security measures must be integrated into
these applications, i. e. each device must be programmed comprising the ap-
propriate security measures. However, although this is generally a problematic
field, especially tiny, resource-constrained devices, such as sensor nodes, compli-
cate the development of secure and dependable applications even further, since
traditional security measures are usually too heavyweighted.

In Chapter 3 we focus on how to integrate the “right” security measures into
WSNs. We discuss in detail why WSN applications require security as well as
challenges that arise from their technical nature. Furthermore, we present and
evaluate two approaches to provide security for WSNs.

Networks. Networking capability is a critical component in UC environments.
Without the ability to communicate and cooperate, the devices will not be able
to provide the services that are envisioned by UC. While several networking
techniques exist, that provide special support for the wireless ad hoc commu-
nication between the devices, the existing WANs will continue to serve as the
backbone of future global networks, integrating all UC environments. However,
the increasing complexity and resulting diversity of service demands the WANs
have to fulfill make them no longer humanly manageable.

In Chapter 4 we explore the question if nature-inspired routing strategies are
able to autonomously increase the dependability and security of WANs. On
the one hand we discuss in this context theoretical aspects and evaluate the
different approaches in this regard. On the other hand, we actively analyse the
behaviour of two selected approaches by means of simulation.

Paradigms. The prevalent security concepts today focus on protecting the in-
frastructure, e. g. protecting the network perimeter, the transport channel, or
providing identity-based access control. However, several of the presented UC
characteristics, such as the multitude of devices that form UC environments
and the vanishing network perimeters, run contrary to the available security
concepts. Furthermore, data is generally the most valuable asset, not the de-
vices that store and process it. Therefore, the question arises, if solely relying
on traditional security concepts is sufficient to provide security in future UC
environments

In Chapter 5 we start by analysing the situation regarding security in general
today and describe the impact which the realization of UC will have. Fur-
thermore, we present the goals of a data-centric security paradigm as well as
necessary concepts of this approach. Finally, we survey as to how far this ap-
proach may be realised in UC environments using today’s existing technology.
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3 Integrating Security into Ubiquitous
Computing Devices

Nothing useful can be said about
the security of a mechanism, except

in the context of a specific application.
[Robert H. Courtney Jr.]

Security is an important aspect in UC as we have discussed in the last chapter.
However, the question arises, which are the necessary security measures and
how can these be integrated into the devices that form UC environments? First,
the plethora of potential application scenarios seems to make it impossible to
find a common denominator in form of a basic security setup that provides the
necessary protection mechanisms, while not including aspects that are seldom
used. Furthermore, due to the extreme device heterogeneity in UC such a setup,
which surely comprises some of the well-known security algorithms, will quickly
overburden some devices. Especially small, resource-constrained devices, which
will be massively deployed in UC environments, represent an inhibiting factor
in this regard.

In this chapter, we explore the problem of how to integrate the “right” security
measures into these small devices. At this, we focus on WSNs, one of the core
technologies in UC. Generally, although a lot of the envisioned application sce-
narios today would benefit from integrated security mechanisms, few actually
concern themselves with security aspects as the technological nature of WSNs
already provides a challenging environment for application developers. Since
large numbers of small, severely resource-constraint devices form WSNs and
have to be programmed, deployed and maintained, even well studied concepts
like routing, or time-synchronization pose again challenging problems. There-
fore, although security is often a desired feature, building a working system
generally takes precedence over integrating security-related aspects, leaving a
large part of WSN applications at risk.

In the following we provide first the basis for our further presentations and
discussions in Section 3.1. Especially, we introduce at this the research area of
WSNs. In Section 3.2, we discuss on the one hand the role of security in WSNs
and highlight specific security challenges. On the other hand, we introduce areas
of related work that aim at meeting them. Afterwards in Section 3.3, we present
and explain in detail our initial approach to provide a security architecture for
mobile WSNs. We evaluate this approach and discuss its achievements as well
as its drawbacks. Finally, we present and evaluate in Section 3.4 a more generic
technique to provide security for arbitrary WSN application scenarios.
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3.1 Fundamentals

In the following we first provide a general overview of wireless sensor networks
in the next section and introduce afterwards, in Section 3.1.2, the middleware
synthesis framework Fabric, which may be used to facilitate programming of
the sensor nodes.

3.1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) represent one of the core technologies in UC
environments, allowing UC to perceive the real world. They comprise in theory
of hundreds to thousands of inexpensive and tiny nodes that allow to monitor
and analyze real-world phenomena. Although the individual nodes are severely
constraint in their resources and abilities, the power of WSNs arises from several
interesting characteristics. First, the nodes are supposed to be so cheap that
they can be deployed in large numbers, e. g. to completely cover an extended
geographical area. Furthermore, due to their small size, they can be deployed
unobtrusively and close to the phenomena they are intended to monitor. An-
other advantage lies in the potentially easy deployment of WSNs. For example,
the nodes can be dropped at random, since they automatically organize them-
selves into a network during start-up and start to cooporate to achieve their
goal. Due to this intended self-organization and the fact that the sensor nodes
communicate generally wireless no expensive IT infrastructure is required.

3.1.1.1 Applications

Initial research in WSNs was motivated mainly by military applications lead-
ing to well-known research projects like Smart Dust [202]. In its context the
military application of a WSN was, among other aspects, successfully tested in
the 29 palms experiment [1]. At this, the sensor nodes were dropped from an
unmanned aerial vehicle with the task to build up a network and detect and
track military vehicles driving through the operation area. Another military
applications represents, for example, a WSN to detect and locate snipers [244].

However, the deployment of a WSN is also advantageous in several civilian
application domains. Especially, monitoring and tracking applications benefit
from WSNs. Well-known examples can be found in long-term habitat and
environmental monitoring applications. In habitat monitoring the objective is
to track and observe wild life in real-time, keeping the human disturbances
at a minimum. Hiding the sensor nodes in the animals’ burrows [162, 255]
or attaching them directly to animals [123, 293] provides researchers detailed
information about the life of the respective animals. Information, that could not
easily be gathered otherwise. The same holds true for environmental monitoring
applications. For example, in [166] Martinez et al. monitor a glacier by means
of a WSN. Especially, they aim at exploring the inner workings of the glacier.
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(a) ESB 430/1 sensor node. (b) iSense sensor node.

Figure 3.1: Past and present sensor nodes.

While human disturbance is irrelevant in this application, the environmental
conditions are too harsh for humans to endure for long.

Further extensive fields of possible WSN applications represent the areas of
home and office automation, structural monitoring, logistics, disaster relief, and
healthcare. More details about the application examples given above as well as
further examples can be found in the good survey articles [221] and [291]. While
we have presented only a fraction of the possible applications, it is apparent
that WSNs are applicable in a very diverse set of application domains.

3.1.1.2 Sensor Nodes

Several different sensor node hardware platforms emerged during the years.
Generally, sensor nodes are characterised as severely resource-constrained de-
vices in terms of available computational power, memory, energy, and com-
munication bandwidth. The ESB 430/1, one of the first commercially available
sensor nodes, reflects this. It is powered by three standard AAA batteries, incor-
porates 60 KB flash memory, 2 KB RAM, and 64 KB EEPROM. Furthermore,
it uses the 16 bit microcontroller MSP 430 from Texas Instruments which is
working at 4 MHz. For communication purposes, a RFM TR1001 radio is used,
working at a fixed data rate of 19.2 Kbit/sec in the 868 MHz band. The node is
equipped with several sensors, e. g. for measuring temperature and movement
detection. The ESB 430/1 was developed at the FU Berlin in the ScatterWeb
project [4] and served as our first research node. Figure 3.1a gives a descriptive
illustration of the ESB 430/1.
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Since the first designs, sensor nodes have continuously been enhanced and
refined. An example of a state-of-the-art node represents the iSense sensor
node [40], developed by the coalesenses GmbH. Compared to the ESB 430/1
it is significantly more powerful. It comprises a 32 bit RISC processor working
at 16 MHz, 96 KB RAM, and 128 KB flash memory. Furthermore, it incorpo-
rates the 802.15.4 communication standard, also known as ZigBee, offering a
data rate up to 250 Kbit/sec. Figure 3.1b provides an illustration of the iSense
sensor node.

Usually several sensor modules are available for the different hardware plat-
forms, ranging from generic sensors, e. g. to measure temperature, humidity, or
light intensity, up to highly specialized sensors, e. g. to detect certain chemical
substances. Depending on the application, actuators may be incorporated in
the sensor nodes as well.

Generally, today’s commercially available sensor nodes are still light-years away
from the envisioned microscopic nodes, also known as Smart Dust [273]. How-
ever ongoing advances in integrated circuit design, which continually shrink
their size, while simultaneously improving their capabilities, may make this vi-
sion reality in the future. However, energy supply will remain a critical issue
in the foreseeable future, as the progress in this area of research is significantly
slower than for example the increase in CPU speed, as we have discussed in
Section 2.2.3 (cf. also Figure 2.4).

Furthermore, several application-specific sensor nodes are likely to emerge. Spe-
cialized nodes that are robust with regard to extreme environmental conditions
and that carry only the required hardware, e. g. in terms of CPU, memory, and
sensors, to optimally support the envisioned application are clearly needed.
Since the application scenarios vary greatly, a “one size fits all”-approach is im-
practical. In certain cases it may also be beneficial to include a limited amount
of more powerful devices in the WSN to support for example some complex
computation. Thus, a great variety of different sensor nodes will be employed
in future UC environments.

3.1.1.3 Challenges

Generally, the special characteristics of WSNs provide many challenges for soft-
ware engineering. Since WSNs constitute in essence extremely large distributed
systems consisting of tiny, resource-constrained embedded devices that commu-
nicate wireless, well-known challenges from the research areas of distributed
systems, embedded systems, and wireless ad hoc networks mostly present chal-
lenges in WSNs as well. Without aiming for completeness, we highlight some
of the major challenges in more detail in the rest of this section.

Resource Constraints First and foremost, the resource constraints in WSNs
represent significant challenges. Compared to today’s state-of-the-art computer
technology, the resources available to the sensor nodes, as described in the
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last section, are of several magnitudes lower, regarding CPU, memory, and
communication capabilities. While it is possible to build better equipped sensor
nodes, the trends towards cheap and tiny devices counteract this.

Another critical aspect in the context of resource constraints represents the
limited energy that is available for each node. Especially, the wireless commu-
nication is by far the most expensive operation regarding energy consumption.
Hill et al. ascertain in [101] that transmitting one bit requires as much energy
as roughly 100 CPU operations. However, sensor nodes must communicate
frequently in order to organize the network and cooperate in attaining their
operational goal. Furthermore, depending on the application, WSNs are envi-
sioned to operate for years and once deployed, the effort to replace the battery
is often practically infeasible. While some applications may allow for energy
harvesting, e. g. by using solar panels, the introduction of data aggregation in-
side the WSN [98,141] and sleep cycles, i. e. times during which the nodes shut
down their communication and switch the CPU into a low-power mode, rep-
resent the generally accepted methods in order to save energy. While the first
solution requires more computation, the main drawback of the latter approach
is that during the sleep cycles, the nodes are deaf and blind and may miss in-
teresting events. Furthermore, synchronization of the nodes’ sleeping cycles is
mandatory in order to allow for communication between the nodes.

In essence, the software employed on the sensor node must make efficient use of
CPU and memory while enabling low-power communication to meet the chal-
lenges arising from the resource constraints. Thus, the philosophy of getting the
work done as quickly as possible and going to sleep afterwards proves beneficial
for sensor nodes at large [101].

Self Organization and Robustness WSNs are deployed in the real world, on,
in, or close to the phenomena they are supposed to monitor. Thus, in several
application scenarios the application terrain is either not easily accessible by
humans, characterized by harsh environmental conditions, or even considered
hostile. Thus, once deployed the sensor nodes are supposed to autonomously
find their neighbours and organize themselves into a network. This includes,
for example, building up a routing tree, determining their locations and syn-
chronizing their time. This self-organization is essential for other reasons as
well. First, a random deployment, e. g. dropping the nodes from a low-flying
airplane, is explicitly envisioned. Furthermore, the exact conditions and char-
acteristics of the application terrain can usually not be predicted in all details
before the deployment and it is impractical to configure large-scale networks
manually after deployment.

In addition, WSNs are supposed to operate unattended. Thus, continuous
adaptations are usually necessary during its lifetime, e. g. due to mobile or fail-
ing nodes or general changes in the application environment. Regarding the
robustness of the WSN, especially failing nodes or defect ones that communi-
cate erroneous data samples must be reckoned with and handled appropriately.

27



Chapter 3. Integrating Security into Ubiquitous Computing Devices

Additionally, challenges from the wireless communication domain, such as un-
reliable communication, unstable routing paths, or the problem of topology
control [230] must be considered as well, in order to build a robust network.

Programming Abstractions A key to widespread usage of WSNs is supporting
the application developer with regard the programming of the sensor nodes. In
essence, these represent embedded systems, which are generally difficult to pro-
gram and debug. Furthermore, the heterogeneity and mandatory optimization
of the application to the specific hardware capabilities represent major chal-
lenges, as they require expert expertise in various fields of computer science.
Thus, relieving the application designer from low-level aspects, such as the de-
tailed handling of the sensors and the sending and receiving of messages, allows
to programmer to concentrate on his application. Besides, including aspects,
such as mobility of nodes and scalability of the employed algorithms, usually
provide additional challenges for the application programmer.

Security Finally, security plays of course an important role in WSNs as well.
Since WSNs enable a qualitative assessment of their surrounding orders of mag-
nitude more detailed than today’s measures, security-related aspects, such as
location privacy and the protection of personal data, become high-priority chal-
lenges. Since we focus on security in this work, we discuss the security-related
aspects of WSNs separately and more detailed in Section 3.2.

This concludes our overview of WSNs. For more details we kindly refer the
interested reader to the good survey articles [5], [291], and [295]. While the
latter two are more recent and thus provide more up-to-date works in WSNs,
all represent good starting points to find in-detail information about certain
aspects of WSNs.

3.1.2 Fabric

WSNs constitute massively distributed systems with only very scarce resources,
as we pointed out in the last section. Especially, application development for
these kind of networks is complicated and error-prone, as it requires exper-
tise from various fields. In addition to their distributed nature, heterogeneity,
energy awareness, and harsh resource constraints are constant challenges in
WSNs. It is desirable to hide these complex aspects of WSNs from the devel-
oper in order to be able to focus the efforts on the target application during
development. In the following we provide a brief introduction to the middle-
ware synthesis framework Fabric, proposed by Pfisterer et al. in [199,201]. In
Section 3.4 we extend Fabric with security-related aspects, that allow for a
seamless integration of security in the process of WSN application development
without requiring users to be security experts. Although Pfisterer et al. include
security related aspects in their description of Fabric, they use these just to
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exemplify the framework’s functionality. However, they did not elaborate on
their realization, nor did they provide an implementation.

3.1.2.1 Overview

Fabric supports WSN application development by generating custom-tailored
middleware instances. The authors point out that a major advantage of this
approach is that exactly the required functionalities are provided, while func-
tionalities that will never be used during operation are omitted. This results in
lean code, well-suited for resource-constrained devices.

The underlying idea of Fabric is that each data type of the application may
require a certain handling. To assign the appropriate handling methods to the
individual data types, the application developer annotates the data type defi-
nitions with treatment aspects. A code generation processor passes both, type
definitions and annotation aspects to so called modules that provide the actual
functionality. These modules finally generate source code for the annotations
they are in charge of, e. g. compact serialization or reliable messaging.

Therefore, only the required functionalities for the defined data types are gener-
ated by the framework, resulting in high-level data management operations for
transmitting and receiving instances of the application’s data structures. On
the one hand this relieves application developers from dealing with low-level
WSN issues while on the other hand still allowing for data type specific treat-
ment. Finally, in order to build the resulting application binary, the synthesized
middleware code along with the application code and eventual OS or firmware
of sensor nodes must be compiled and linked together.

3.1.2.2 Architecture

Figure 3.2 illustrates the Fabric architecture. On the left hand side, the re-
quired input by the application developer can be seen. It includes the actual ap-
plication code, annotated data type definitions, and a target specification that
defines properties of the target platform, such as the programming language
and hardware type. These parameterizations are fed into an instance of the
Fabric-framework which is provided by a framework developer. An instance
of Fabric consists of the generic Fabric generator, a framework specification,
and a selection of modules providing the actual source code as depicted in the
middle part. On the right hand side the generated middleware is illustrated
encapsulating the low-level WSN aspects and providing the type-specific API
for the application developer to use in his application.

The architecture indicates that two fundamental roles exist in Fabric: an
application developer and a framework developer. These result in different
views on the framework. While the application developer’s focus is on having an
easy to use and flexible system to help devising his application, the framework
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Figure 3.2: The architecture of Fabric.

developer’s focuses on providing the framework specification as well as sound
implementations of the supported concepts, i. e. the modules.

Application Developer The application developer specifies the data types that
the target application will contain and annotates them with treatment aspects
that define how the data type will be handled by the middleware. Aspects
are grouped inside Fabric into domains that embrace related aspects. The
concept of annotating data types is realized using a feature of the well-known
XML Schema standard that allows amending most schema elements with XML
documents. Annotating a data type therefore simply means attaching an XML
document to each data type definition. Figure 3.3 gives an excerpt of such a
specification, displaying the data type “location” along with the correspond-
ing annotation from the domain “serialize”. The annotations are contained
inside an appinfo tag intended for machine readable information.

In addition to the annotated type definitions, the application developer needs
to specify the targets, i. e. which hardware platform and programming language
the middleware should support. Finally, he can devise the envisioned applica-
tion assisted by the provided type-specific API of the middleware. Note that the
treatment of each data type can be altered simply by changing its annotations
leaving the application code unchanged.

Code Generation Process For each annotated aspect, a number of modules
provide source code. Modules of the same aspect may target different hardware
platforms, programming languages or be of different complexity. For a given
annotated type definition, the framework picks the best modules based on each
module’s self-description. The code generation processor reads the schema,
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<xs:element name="Location">

    <xs:annotation>
        <xs:appinfo>
            <fabric:fabric>
                <fabric:Domain name="serialize">
                    <fabric:Aspect name="compact">
                </fabric:Domain>
            </fabric:fabric>
        </xs:appinfo>
    </xs:annotation>

    <xs:complexType>
        <xsd:sequence>
            <xsd:element name="x" type="xsd:double"/>
            <xsd:element name="y" type="xsd:double"/>
        </xsd:sequence>
    </xs:complexType>

</xs:element>
...
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Figure 3.3: Example Fabric XML-Schema Annotation.

and passes both type definitions and annotation attributes to a set of selected
modules. These then generate source code for the functionality they are in
charge of, e. g. compact serialization.

With regard to the example in Figure 3.3 the generated middleware contains
code to send location data using compact serialization. For a formal description
and an example of the module selection we refer the interested reader to [201].

Framework Developer The framework developer provides the Fabric frame-
work, namely the specifications and modules. As an expert in his field, he is
able to provide sound implementations of the supported concepts, in form of
the modules, which provide the actual source code. The specifications guide the
application developer as they reference all available functionality and specify
the grammar of the data type definitions and annotations.

This completes our short introduction to the middleware synthesis tool Fabric.
More in-depth information about Fabric, including a discussion about middle-
ware approaches for WSNs, details about Fabric’s inner workings as well as
an evaluation of the concept can be found in [199,201].

3.2 Security in Wireless Sensor Networks

WSNs represent the eyes and ears by which UC environments will perceive the
real world. The fact that they potentially permeate every aspect of the real
world, including the private areas of our lives, makes the provision of security
one of the fundamental challenges in WSNs.
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Especially the unmatched data quality gives rise to many concerns about the
privacy with regard to personal data. However, with increasing office automa-
tion WSNs will also be aware of many sensitive information that companies
need to keep confidential. Finally, decisions and actions will be based increas-
ingly automated upon the gathered data. Therefore it is essential to include
security measures in order to enable the safe and secure operation of WSNs.

In general, security is an important requirement in each WSN application that
collects, processes and communicates secret or private personal data, that pro-
vides security-critical functionality, such as keyless door entry, or that depends
on data correctness in order to provide reasonable responses to sensed events.
Furthermore, highly personalized services and law regulations may demand cer-
tain security aspects to be present as well. Ultimately, including security into
WSNs is also the key towards gaining widespread users’ acceptance for this new
technology.

3.2.1 Requirements and Challenges

Many of the security requirements and corresponding challenges common to
traditional networks are relevant in the context of WSNs as well. However, from
the specific characteristics, which we have described in Section 3.1.1.3, arise on
the one hand additional security requirements, while on the other hand, they
make it difficult to directly apply the existing security measures today in these
networks.

Requirements Regarding the security requirements, the commonly prevail-
ing security services confidentiality, integrity, availability, and authenticity are
needed in WSNs as well. However, due to the unattended operation and poten-
tial accessibility of the sensor nodes, node failure or even compromised nodes
must be considered. Thus, all employed security measures must be resilient
with regard to these situations and degrade gracefully in their performance or
security, i. e. the damage from the attack must be contained and minimized
to the greatest possible extent. Additionally, the employed security measures
must continue to operate properly and provide as much security as possible in
the event of single failing or compromised nodes. Furthermore, data freshness,
i. e. measures to ensure that messages are recent, is of paramount importance
to prevent message replay attacks. Due to the envisioned size of WSNs this
is essential in achieving robustness regarding the system operations inside the
network. Finally, since the sensor nodes are required to self-organize, the re-
quired operations, e. g. for localization and time synchronization, must not be
vulnerable to attacks.

Challenges As a general rule, WSNs inherit many of the common challenges
from distributed systems, mobile ad hoc networking, e. g. the lack of a physical
infrastructure and the dependence on an insecure wireless media [46], as well
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as embedded systems, e. g. see [213] for an excellent overview. Especially the
latter are much pronounced in WSNs. The severe ressource limitations pro-
vide considerable obstacles with regard to securing WSNs. First, cryptographic
measures must not utilize the CPU excessively in order not to interfere with
the node’s system operations. Furthermore, security measures must neither
require much communication for coordination purposes, nor enlarge the mes-
sages significantly, since the sending of message is the most expensive operation
in WSNs with regard to energy consumption. Finally, the memory needed to
store key material is strictly limited, requiring sophisticated key management
schemes.

Another set of challenges arises from the self-organization and unattended op-
eration in accessible or even hostile environments. We already mentioned that
the employed security measures must be able to operate in spite of failing or
compromised nodes and only gracefully degrade in their performance as well
as provided security. However, this requires a careful and anticipatory design
of the security measures and represents in general a topic that requires further
research [7]. In case of failing nodes, the application scenario may also demand
the deployment of additional sensor nodes at a later point in time to compen-
sate for the dead nodes. Regarding security, the measures must therefore allow
to securely integrate new nodes at any point in time after deployment.

3.2.2 Attacker Model

Generally, the attacker model for a WSN must be evaluated with respect to
its application scenario. For example, a WSN for habitat monitoring is much
less likely to be attacked than a smart office or even a military-type WSN.
Furthermore, the types of attackers will doubtless differ between the application
scenarios, e. g. regarding their capabilities. However, a generic model, which
can be evaluated in more detail within the context of the specific application is
advantageous in order to assess the provided level of security.

As a basis, the Dolev-Yao [67] attacker model (cf. Section 2.1.1.3), which is
widely used in distributed systems, can be used in WSNs as well. However, it
must be extended to account for the special WSN characteristics. The model
assumes in essence an insecure communication channel, while the endpoints are
not themselves subject to attack. However, this assumption is not reasonable in
WSNs. Since the sensor nodes should be as cheap as possible only critical appli-
cations with a high demand for security will utilize tamper-proof hardware, due
to cost factors and the general difficulty in building such devices [9, 10]. Fur-
thermore, the sensor nodes operate unattended in real-world settings, which
an attacker may access in order to physically tamper with the nodes, e. g. to
extract sensitive information. Although tampering with a sensor node is not
trivial as it mostly requires to remove the sensor node from the WSN for a
noticeable amount of time [21], it is also not infeasible. Therefore, in addi-
tion to the insecure communication channel the end-points must be considered
untrusted in most application scenarios as well.
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In addition to these general assumptions the exact capabilities and the extent
of the attacker’s actions need to be specified. Often the attacker is categorized
with regard to his equipment as being either a node-class or laptop-class attacker
and regarding his knowledge and access to the WSN as either an insider or
outsider [129].

A more differentiated framework for modelling attackers in WSNs is proposed by
Benenson et al. in [22]. They classify attackers according to the four parameters
goals, presence, intervention, and available resources.

Generally, the goals of an attacker are hard to derive and specify. Therefore, the
primary security services (confidentiality, integrity, and availability) are usually
considered equally important.

The attacker’s presence specifies the scope of the WSN the attacker is able to
influence. Benenson et al. differentiate along this dimension the categories: local
(the attacker can influence only a small portion of the network), distributed,
(the attacker is either mobile or may influence different though not connected
parts of the network), and global (the attacker may influence all nodes inside
the WSN).

The dimension intervention specifies the abilities of the attacker. Categories in
this dimension include in increasing order of strength:

Eavesdrop: the attacker may only mount passive attacks.
Crash: the attacker may additionally crash nodes, e. g. by draining them
of power, destroying them physically, or by sending them corrupt mes-
sages. Essentially the node stops working afterwards.
Disturbing: the attacker can partially disturb protocols, e. g. by physically
moving nodes, selective jamming of the network, or influencing the sensor
readings, for example, by holding a lighter close to a temperature sensor
of a node.
Limited passive: the attacker is able to compromise nodes, i. e. retrieve all
stored information. But in order to to this, he has to remove each node
from the network and take it to a laboratory for tampering.
Passive: the attacker is able to compromise nodes in-situ, i. e. he does
not have to remove them from the network. Furthermore, he is able to
modify the data on the node.
Reprogramming: the most powerful attacker regarding this parameter
may reprogram nodes in order to execute arbitrary software. thus he may
for example clone nodes.

Regarding the available resources several aspects may be differentiated concern-
ing the attacker’s funding, equipment, expertise, and time. Again this requires
some guesswork during the security evaluation.

The two significant parameters in this framework with regard to the security
evaluation of a specific WSN are intervention and presence, since they allow
for a specific definition of the attaker. Figure 3.4 visualizes attacker types of
different strengths with regard to these dimensions. The arrows describe the

34



3.2. Security in Wireless Sensor Networks

Figure 3.4: WSN attacker model dimensions

paths for the attacker to gain more strength. For example, the weakest attacker
type may only eavesdrop on the communication in a small part of the WSN,
while the most powerful attacker has global reprogramming capabilities.

3.2.3 Attack Possibilities

The commonly known two categories of active and passive attacks can also be
applied to sensor networks. However, sensor networks are susceptible to more
attacks than ordinary networks, due to their special characteristics. Although,
several publications categorize and describe the special attack possibilities on
WSNs, e. g. [95,129,222], we differentiate in the context of this work for brevity
only between passive and active attacks.

Passive Attacks Passive attacks on the sensor network are relatively easy be-
cause of wireless communication. The illegitimate disclosure of information,
which breaks confidentiality, presents the major threat here. Therefore, infor-
mation that is exchanged between the nodes should be encrypted to ensure its
confidentiality. Furthermore, by means of traffic analysis an attacker may gain
important knowledge about the network structure or the occurrence of special
events.

Active Attacks Active attacks allow the attacker to seriously disrupt the func-
tioning of the WSN. Several points of attack are imaginable to influence the
WSN in its operation. First, on a message level, it must be ensured that it is
impossible to inject or replay messages into the WSN. Otherwise an attacker
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could masquerade as a legitimate member of the network and send its own infor-
mation or replay old data, which might lead to wrong decision making inside the
WSN. The commonly known threat of message modification, however, does not
pose a significant threat in our opinion. Due to the local broadcast of the mes-
sages, it should be almost impossible to intercept and modify a single message
before any other node receives it. However, capturing a message, modifying it,
and injecting it at a different place inside the WSN must be considered, though
this represents a special case of packet injection. Another means of influencing
the WSN originates from the way sensor networks operate. If an attacker is
able to generate physical stimuli, e. g. by holding a cigarette lighter close to a
temperature sensor, he can influence what data the sensor nodes collect.

A serious vulnerability arises from the physical accessibility of the sensor nodes.
Communicated location information might lead attackers to find out about
the positions of single nodes, which further emphasizes the need to keep the
communication between the nodes confidential. Furthermore, considering that
the sensor nodes are usually not tamper-proof, it is possible to physically attack
accessible nodes. Though tampering sensor nodes is not an easy task, as we
have already discussed in the last section, it is still possible.

Also several ways exist to start a Denial of Service (DoS) attack against a
WSN [284]. For example, an attacker who is able to create an extensive amount
of physical stimuli might paralyze the network or at least parts of it, as the
real events drown in the artificial noise of stimuli. Furthermore, attackers who
possess the location information of the nodes could capture or destroy the nodes
one by one. The traditionally known jamming of the wireless medium or sensor
specific DoS attacks, such as sleep deprivation torture [251], i. e. keeping a node
awake in order to drain its energy resources, present threats as well.

Finally, several specialized attacks on the basic services, such as routing [129]
or time synchronization [163] exist.

3.2.4 Security Solutions

During the past few years there has been an explosive growth in the research
devoted to WSN security. Multiple approaches have been proposed in the lit-
erature that address various aspects of WSN security, realizing most security
services. In the following we provide an overview of well-known proposals with
regard to the most significant security services confidentiality, integrity, au-
thenticity, and availability. Furthermore, we briefly discuss security solutions
for fundamental WSN services as well as solutions for key management.

Confidentiality To achieve message-based confidentiality in the communica-
tion between the nodes, many of the traditional well-established cryptographic
algorithms may be used to encrypt data in WSNs as well. In general, the well-
known symmetric algorithms, e. g. AES [264] or RC5 [217], as well as asymmet-
ric algorithms, e. g. RSA [219] or ECC [139,140] may be utilized. However, most
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algorithms have been designed for full-scale computers and thus need to be eval-
uated with regard to performance when implemented on the severely resource
limited sensor nodes. Especially asymmetric cryptography is often considered
to perform poorly, although studies show that it is in general feasible on sensor
nodes, e. g. see [29, 93, 157]. However, in particular the individual architecture
of the sensor node’s hardware affects the performance of the encryption al-
gorithms. Comparative analyses of the performance of several cryptographic
algorithms on different sensor node platforms present for example Law et al.
in [146] and Roman et al. in [220]. A more extensive discussion about the
general challenges as well as an extensive analysis of the suitability of several
cryptographic algorithms for WSNs presents Kaps in his dissertation [126].

Integrity and Authenticity Integrity and authenticity of a message is often
provided simultaneously by means of a message authentication code (MAC)
that is attached to the message. For protection of the link layer in WSNs, i. e.
providing integrity and authenticity for single hop communication, the TinySec
library [128] or its successor MiniSec [159] provide the necessary mechanisms
when using sensor nodes that implement TinyOS [151]. Furthermore, WSNs
that operate according to the ZigBee standard [297] must provide the security
measures specified in the IEEE 802.15.4 standard [145], including link-layer
encryption. For this purpose, compliant sensor nodes, such as the iSense node
often contain a hardware chip that provides link-layer AES encryption.

Multi-hop integrity and authenticity may be achieved by utilizing end-to-end
pairwise keys between distant nodes, instead of using pairwise keys between
neighbouring nodes. A special kind of multi-hop authenticity represents broad-
cast authentication, in which all nodes may verify that received messages orig-
inated from the claimed source and were not modified en-route. µTESLA rep-
resents the most prominent approach for broadcast authentication in WSNs.
It was proposed by Perrig et al. for the SPINS protocols [196]. In essence,
µTESLA encrypts messages with a symmetric key, which is made public in the
subsequent time slot, in order to allow for verification on all nodes. µTESLA
requires for this loose time synchronization between the nodes. The authors of
LEAP [296] provide broadcast authentication by means of one-way hash chains.

Availability Availability represents and interesting research topic in WSN se-
curity, since the possibilities for DoS attacks are manifold and mostly easy to
execute. Wood et al. discuss in [284] several ways to execute DoS attacks in
WSNs as well as possible defenses. Furthermore, they present in [285] mecha-
nisms to map the region in which the WSN suffers from a DoS attack. On the
one hand, this allows to circumvent the affected area in the communication of
the other nodes. On the other hand, defense operations may be targeted at the
affected network region. Further defense proposals include for example evasion
techniques that allow for sending an alarm despite an active DoS attack [42] and
an approach to protect end-to-end communication against DoS attacks [64].
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WSN Services Several fundamental services require protection in WSNs in
order to allow for undisturbed operation. This includes especially routing and
data aggregation. Functional routing is very important to guarantee the opera-
tions in WSNs when facing attacks. If the routing fails, no sensible communci-
ation is possible between the sensor nodes. Karlof and Wagner discuss in [130]
several possibilities to disrupt routing in WSNs as well as possible defenses.
Further approaches to secure routing are presented for example in [260, 283].
Secure data aggregation is an equally important service because undetected
compromised nodes may send erroneous data to influence the WSN. Ye et al.
analyse in [289] how to detect false data that was injected by compromised
nodes. A secure hop-by-hop data aggregation protocol is proposed by Yang et
al. in [288]. Further approaches include for example [51, 106, 205]. A survey
providing additional solutions for secure data aggregation is presented by Sang
et al. in [229].

Key Management Most of the approaches described above require a specific
kind of key management to operate properly. Generally, key management rep-
resents the foundation of any security infrastructure, since most cryptographic
measures involve keys. Therefore, a significant body of research proposals is
devoted to key management in WSNs. Generally, nodes may be provisioned
with the appropriate key material before they are deployed or they may estab-
lish their key material during runtime after the deployment, according to the
respective key scheme protocol. Both, asymmetric as well as symmetric key
schemes can generally be used in WSNs. Although asymmetric cryptography
is feasible on sensor nodes as we have discussed above, it is often considered
too inefficent and consequently not employed. Therefore, the majority of key
management proposals focus on symmetric key schemes.

The simplest key management technique is to provide all sensor nodes with a
single network-wide key before deployment that is later used exclusively in all
cryptographic operations. While this scheme requires only limited memory on
the sensor nodes and avoids complex protocols, compromising a single node
reveals the key to the attacker, which results in a collapse of all security mea-
sures. Furthermore, providing end-to-end security and node authentication is
not possible using a network-wide key, since all nodes share the secret key.

Pairwise keys provide better security with regard to these security shortcomings,
albeit at a higher cost in terms of the required memory to store the keys. In
general, a pairwise key is shared exclusively by two nodes, in order to secure
their communication. However, storing a pairwise key for every other member
in a large WSN quickly exhausts the available memory on a sensor node. Thus,
the scalability of the simple pairwise scheme is limited.

Several key management schemes have been published that establish pairwise
keys while trying to remedy the scalability problem. Some schemes simply
assume that during the first time intervals after the deployment of the sensor
nodes no attacker is present. Thus, the nodes may use unprotected communica-
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tion to establish pairwise keys during this time [8, 296]. Other approaches, the
random key pre-distribution schemes, establish pairwise keys by first generat-
ing a large key pool from which they provide each node with a random subset.
These schemes require in a second step a discovery protocol after deployment in
which the nodes share for example the IDs of their keys to determine a pairwise
key. If no common key could be found an additional protocol may generate a
new pairwise key by determining a secure path via other nodes with which each
of the two nodes shares a pairwise key. Schemes that operate according to this
scheme are for example [50, 73]. Using these, two nodes may establish a pair-
wise key only with a certain probability. Furthermore, the same keys may be
used several times as pairwise keys between different node pairs, which impedes
node authentication. Related approaches exist that substitude the key pool
for example with a pool of Blom’s matrices [68] or bivariate polynomials [155].
From these keys can be derived that are bound to the node IDs and thus allow
for authentication. Further key schemes aim for example at deterministically
determining a pairwise key between any two nodes, e. g. [49, 147] or provide
location-based pairwise keys [156].

This short overview represents only a small fraction of the proposed key man-
agement schemes for WSNs. More extensive discussions about key management
schemes for WSNs can be found for example in [47,286,295].

Before finishing this overview we would like to present briefly the random key
pre-distribution scheme Hashed Random Preloaded Subsets (HARPS) [208],
which we will support in our security framework in Section 3.4. Similar to
other key management schemes in this category, the nodes are configured with
a number of randomly chosen keys from an initial key pool that is generated
prior to the deployment of the nodes. However, HARPS additionally utilizes
a hash function to diversify the keys further before they are stored on the
individual nodes. Thus, a node contains a certain number of keys, identified
by their ID, in a random hash depth, i. e. the hash function is repeated several
times taking the hash value of the previous run as input for the next run. In
addition to the keys, the nodes are provided with the used hash function as well
as a selection function, i. e. using this function with a node’s ID as input reveals
the key IDs and hash depths of the keys that are stored on that node. Now, if
two nodes want to derive a pairwise secret key they determine if both have one
or more keys with the same ID in common by using the selection function. If
this is the case the node that contains the key or keys in the lower hash depth
adjusts those by applying the hash function to derive the appropriate keys at
the required hash depth, i. e. corresponding to the hash depths of the other
node’s keys. Finally, the hash function is applied to the concatenation of all
common keys to derive the final pairwise secret key.

39



Chapter 3. Integrating Security into Ubiquitous Computing Devices

3.3 A Security Architecture for Mobile Wireless Sensor
Networks

During the early years of WSN research most security approaches centered
around the idea that every node inside the sensor network shares a secret key
with a base station. Furthermore, this base station is considered trusted, i. e.
immune to attacks, and is at all times able to communicate with every node in
the network, e. g. see [196]. Furthermore, the base station was also often consid-
ered resource-abundant and thus able to execute computationally demanding
operations for the nodes, e. g. see [33].

However, this focus on a specific network setting limited the applicability of
these WSNs security solutions. For example, the envisioned scenarios in which
mobile sensor nodes need to be included or if the deployment of the WSN
has to be done in an ad hoc manner, without worrying about a supporting
infrastructure, are excluded.

Therefore, we have analysed different measures to secure WSNs that do not
necessarily require a base station. Especially, we wanted to include in our tar-
get design mobile self-organizing nodes that are able to independently create a
secure pairwise key whenever the need arises, i. e. one node enters the communi-
cation range of another node. With regard to the envisioned security services,
the security design should support unambiguous authentication between the
nodes as well as encrypted and integrity-assured communication of messages.
Due to the ressource limitations of the nodes we especially explored lightweight
cryptographic measures for these purposes. As the target hardware platform
we chose the ESB 430/1 sensor nodes (cf. Section 3.1.1.2), which represented
state-of-the-art sensor nodes at that time.

In the following we first present our findings regarding applicable cryptography
on the ESB 430/1 and afterwards present the security architecture for our
mobile self-organizing WSN, which was mostly developed in [104]. Furthermore,
parts of this research have also been published in [232].

3.3.1 Cryptography on the ESB 430/1

Employing cryptographic measures on sensor nodes requires careful design,
keeping the constraint nature of the resources that are available on the sen-
sor node in mind. Since the main goal of the nodes is to fulfill their operational
task, the employed cryptography must not use more than a small fraction of
the available memory and processor time.

Therefore, cryptographic algorithms should have a small memory footprint,
regarding the static code size as well as the dynamic memory usage during
runtime. Furthermore, they should be fast in their computation. In general,
the memory requirements during runtime as well as the level of security provided
by the employed cryptography depends largely on the key size. However, while
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longer keys provide a higher level of security, storing for example pairwise keys
for numerous other nodes in the network quickly exhausts the available memory
if long keys are used. Therefore, the actually required level of security should
determine the key size. In the following we take a closer look into both aspects.

Key size Cryptographic mechanisms are generally considered computation-
ally secure, if the security is based completely on keeping the key secret, not
the algorithm. Thus, even though an attacker may have complete knowledge
about the inner workings of the algorithm, it is infeasible for him to decrypt
the ciphertext without the correct key. However, a brute force attack, i. e. sys-
tematically trying every possible key in the key space, is always viable. Thus,
the security of the information protected by cryptography directly depends on
the strength of the employed key, i. e. its size. Choosing the right key size is
therefore of utmost importance. Discussions about and guidelines for this can
be found for example in [19,150].

In general, a cryptographic key has the right length, if

1. breaking the key is more expensive than the value of the safeguarded
information, or

2. breaking the key takes a longer timespan than the information is valid or
useable.

Thus, even short key sizes may provide a sufficient level of security, if these
rules hold for the envisioned application. To evaluate which key size is suffi-
cient, it is therefore required to determine the average time required to break
the key by estimating the runtime the cryptographic measures require for this
task. However, these depend in large parts on the complexity of the underlying
cryptographic algorithm. For example, a brute force attack on a 56 bit DES
key requires 5 · 105 MIPS years1 [150]. Using commercially off-the-shelf avail-
able Pentium 4 (2 GHz) PCs, which are considered 4000 MIPS machines, 11
machines are required to break the DES key within one month. Nevertheless,
specialized hardware may reduce this time further [65,71].

In general, a brute force attack requires on average testing half of all possible
keys in order to find the correct one. In Table 3.1 we provide an overview of
several key sizes and the resulting average times for the brute force attack based
on [253]. Especially, we list the two cases where the computer is able to perform
one encryption per microsecond and 106 encryptions per microsecond. Thus,
breaking a 56 bit key, which is used by DES, takes 10.01 hours if 106 encryptions
per µsecond can be performed by the computer.

Cryptographic algorithms Most cryptographic algorithms are designed for
full-scale personal computers, utilizing for example the available 32 bit regis-
ters. Since our sensor node represents a much weaker device, from a perfor-

1One MIPS year represents the amount of work that one computer, with the capability of
processing one million instructions per second, could perform in one year
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Key Size 1 enc./µsec 106 enc./µsec

32 35.8 minutes 2.15 milliseconds
56 1142 years 10.01 hours
64 2.9 · 105 years 106 days
80 1.9 · 1010 years 19000 years
100 2 · 1016 years 2 · 1010 years
128 5.4 · 1024 years 5.4 · 1018 years
168 5.9 · 1036 years 5.9 · 1030 years

Table 3.1: Average time required to brute force different key sizes

mance point of view, we started out to determine first, which cryptographic
algorithms provide feasible solutions for the ESB 430/1. Therefore we analysed
in [104] several algorithms to determine their applicability.

Generally, asymmetric as well as symmetric cryptography could be employed to
achieve security. Guajardo et al. prove in [91] that an implementation of elliptic
curve cryptography, one of the fastest available asymmetric methods is possible
on the ESB 430/1. Although Guajardo et al. use several available measures
to optimize their implementation, e. g. by programming directly in the machine
code of the CPU, the results indicate, that it seems to be infeasible to implement
a fast public key system on the given hardware platform. The calculations for
encryption and decryption would delay the message transmission for more than
a second, which is unacceptable. Consequently we refrain from considering
asymmetric cryptography further.

Focussing on symmetric cryptography algorithms, we analysed the final candi-
dates that competed for the advanced encryption standard (AES), solicited by
the National Institute of Standards & Technology (USA) (NIST) to determine
the follow-on algorithm to DES. In detail, we determined based on the respec-
tive source code the necessary CPU cycles for each algorithm and estimated on
this basis the required runtime for encrypting a 32 byte text on the ESB 430/1.
Furthermore, we calculated the required memory each algorithm requires during
runtime, when an 80 byte secret key is utilized. The overall memory require-
ments for each algorithm depend in large parts on the implementation and the
compiler settings and can therefore not easily be estimated. Table 3.2 displays
the results of our analysis. For each algorithm we denote the reference as well
as the considered encryption rounds, i. e. several algorithm may be used with
different rounds. Furthermore, we present the CPU cycles, required times and
memory. For example, the 10-round Rijndael algorithm requires 11824 CPU
cycles during encryption, which results in 12.5 milliseconds to encrypt 32 byte
of data. The whole operation furthermore requires 48 byte of memory during
runtime when an 80 bit secret key is utilized. The detailed descriptions and
security analyses of the individual algorithms are available in [104].

The Rijndael algorithm [264] offers the best performance in terms of required
time and runtime memory. However, it requires a large S-Box, i. e. a scheme
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Algorithm Ref. Rounds CPU Cycles Time1 Memory2

Setup Encryption [ms] [byte]

AES/Rijndael [264] 10 – 11824 12.5 48
Mars [39] 32 33272 16180 34.7 252
RC5-32 [217] 12 30316 6528 29.8 114
RC6-16 [218] 20 21604 7804 27.9 96
RC6-32 [218] 20 72908 19252 58.9 188
Serpent [27] 16 – 29212 30.9 68
Serpent [27] 32 – 57980 61.3 68
Twofish [235] 16 – 59972 63.4 56

1 Time in milliseconds required to encrypt a 32 byte text.
2 Memory required during runtime in byte, using an 80 bit secret key.

Table 3.2: Symmetric cryptography performance on the ESB 430/1

to implement a non-linear substitution of the bits, which adds around 10 KB
to its source code. Although, it is independent of the keys, and can thus be
included in the source code as constants, the resulting memory requirements for
the algorithm are still rather high. Furthermore, Rijndael is not designed for a
key lengths shorter than 128 bit, which may be used in sensor networks. Simply
padding the key might expose new flaws. Therefore, we decided to incorporate
Serpent [27] which has been explicitly constructed to support shorter key sizes.
Furthermore, it shows good runtime behaviour because it can be implemented
using logical operations only. A reduction of the number of rounds from 32 to
16 results in a linear speed-up. The reduction is reasonable, since Serpent has
a generally high security margin [183], i. e. although 16 rounds were considered
sufficient against all known types of attack, the designers nevertheless specified
32 rounds to protect the algorithm against future discoveries in cryptanalysis.

3.3.2 Architecture

The security architecture for the mobile self-organizing WSN is based on three
different interacting phases. First, a pairwise key agreement to provide mutual
authentication and the initial key exchange between the sensor nodes, second,
the establishment of sending clusters to extend the secure pairwise communi-
cation to secure broadcast inside the communication ranges of the nodes, and
third, the encrypted and authenticated communication of sensor data inside
these secure broadcast domains.

3.3.2.1 Pairwise Key Agreement

To achieve pairwise key agreement we use the Blundo et al. scheme [31], which
is based on a pre-distribution scheme by Blom [30]. It enables two nodes to
determine a pairwise secret that is solely shared among these two nodes. The
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scheme is unconditionally secure and resistant against collusion of a maximum
of t users. In terms of a cooperative sensor network, this means that an attacker
has to compromise more than t nodes to compromise the whole network, i. e.
being able to derive all secret pairwise keys. By compromising less than t node
the attacker gains no knowledge about the other keys.

The scheme requires a certificate authority (CA) which randomly generates a
symmetric bivariate polynomial f(x, y) of degree t over an arbitrary finite field.

f(x, y) =
t∑

i,j=0

aijx
iyj (aij = aji)

The CA, ensuring that each sensor node x has an unique ID , evaluates the
polynomial in the following way:

gID(x) = f(x, ID)

Thus, gID is a polynomial of degree t with a single variable x. The CA transfers
the coefficients of the polynomial gID to the node with the unique identification
ID , prior to the deployment of the sensor nodes. These constitute its individual
key material.

Two nodes are now able to determine their specific pairwise secret by evaluating
their private polynomial gID(x) where x denotes the other node’s identity. It
can be derived directly from the symmetry of the polynomial f(x, y) that both
nodes calculate the same value. An efficient way to implement the Blundo et
al. scheme on sensor nodes is presented in Appendix A.1.

3.3.2.2 Establishment of Sending Clusters

To communicate securely with all nodes within its communication range at
once, without creating the overhead of sending every message to each node
individually, every node establishes a randomly generated key within its neigh-
bourhood. This key is used solely by this node to encrypt and authenticate
its messages. If a node B receives a message M from node A, for which the
content cannot be decrypted and authenticated, i. e. node B does not know the
key, it calculates the pairwise secret KAB for the sender and itself using the
Blundo et al. scheme. This secret is then used to transfer its own sending key
securely to the other node, who replies by transferring its sending key using the
pairwise secret KAB, which he derives, as well. Node A automatically sends its
own key, because we assume that if a node could not decrypt and authenticate
the other node’s message, either the network is initializing or a change in the
topology must have happened and thus the other node equally does not know
its sending key. Figure 3.5 illustrates the protocol.

This protocol enables a node to establish its key in a new environment and get
to know the other nodes’ keys with just two messages per neighbour. It is not
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Node A Node B

Figure 3.5: Protocol to establish the sending cluster

restricted to an initialization phase and can be used at any time and with any
other legitimate node of the network. Thus, it supports mobile sensor nodes as
well as the deployment of new nodes at a later point of time.

3.3.2.3 Secure Communication

The sensor nodes always broadcast messages to their direct neighbourhood. For
encryption purposes the counter mode of operation (CTR) [69] (c. f. Figure 3.6)
is used, which allows for an encryption of the message M to the ciphertext
C, without changing its length. Since the transmission of messages requires
by far the most energy, keeping the original message length is advantageous
compared to padding it to achieve a certain necessary block size. In addition
to the message itself the counter is added, which results in ordered and unique
messages. The counter register is divided into two parts, s which is incremented
once per message and t which is reset to zero for a new message and incremented
once per block. This overhead can be avoided if both sender and receiver
increment the counter after each transmission. However, due to the lossy nature
of the communication in sensor networks this procedure is inappropriate. A
message loss by any of the neighbours would require two additional messages,
the request for the counter value and its reply. Thus, the counter value is
included in every message.

It is not necessary to use the full block size of the encryption algorithm for the
counter value, because it can be padded with zeros to achieve the appropriate
length. Since the same counter should not be used twice, as this would support
attacks, the size of the counter limits the number of messages which can be
encrypted with a single key.

In order to provide integrity and authentication, we furthermore compute a
MAC, using the same encryption algorithm albeit in cipher block chaining
(CBC) mode [69], i. e. each block of plaintext is XORed with the previous
ciphertext block prior to the encryption.
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Figure 3.6: Counter mode of operation

3.3.3 Implementation

We have implemented a prototype of our security architecture using the
ESB 430/1 sensor nodes (cf. Section 3.1.1.2). The algorithms require 17.1 KB
of memory. This results mainly from the Serpent algorithm being a standard
implementation, which has only been optimized with regard to volatile mem-
ory usage and speed but not for code size. During run-time the algorithms
need additional 86 byte for their operations. The average delay caused by the
encryption is 30.9 milliseconds per 16 byte of cleartext information.

The security degree t, i. e. the number of nodes an attacker has to compromise
to successfully calculate the CA’s original polynomial, is completely adjustable,
but of course influences the run-time and memory requirement. For our imple-
mentation that utilizes 80 bit secret pairwise keys, (t+ 1) · 10 byte are required
to store the key material. However, the coefficients can be freely distributed
between volatile memory, code space and EEPROM, wherever space is avail-
able.

During our tests, we targeted a 100-node WSN and chose the security degree
to be 20. Thus an attacker must compromise at least 21 nodes to being able
to derive all secret pairwise keys. The coefficients are stored in memory. In
addition, a node has to store the sending key of each neighbour. In our im-
plementation nodes store up to 20 sending keys of their neighbouring nodes,
which represent a rather high network density. After that they start to reuse
the space by deleting the oldest key. In summary, we require approximately a
quarter of the available memory on the ESB 430/1 for our security architecture.
Regarding the extension of the messages, our prototype used a 4 byte MAC and
a 2 byte index, which results in an extension of each message by 6 bytes.

3.3.4 Evaluation

We evaluate our security design and prototype with regard to two aspects.
First, in order to assess the provided security, we perform a security analysis.
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Afterwards, we evaluate the general quality of the methodology used in our
approach.

Security Analysis By employing our security architecture we are able to pre-
vent most of the threats WSNs are subject to, while considering the constraints
that the sensor network demands. It provides confidentiality as well as integrity
for the communicated information and ensures the authenticity of the sensor
nodes. Furthermore, it minimizes the effects of compromised nodes. All de-
ployed cryptographic algorithms are efficient in terms of run-time and memory
usage and do not extend the messages significantly.

Confidentiality is achieved by encrypting the messages. This prevents any ille-
gitimate disclosure of information. Furthermore, the MAC ensures the integrity
of the messages. We use short MACs in our architecture to reduce the message
overhead, which, on the one hand, enables the attacker to determine legitimate
messages by brute force. On the other hand, he has no control over the message
content due to the encryption of the message. Furthermore, the counter mode
of operation, which is used in the encryption process, automatically adds an
index to each message without adding overhead compared to simple encryp-
tion. Hereby, replay attacks are prevented, because a receiver can keep track
of already used counter values, while the messages are only slightly extended.

Only legitimate nodes can join the communication, since no illegitimate node
is able to derive the sending key of the other nodes. An attacker may conduct
the pairwise key agreement protocol using a captured key request message from
another node. However, it is only possible for him to attack the encrypted send-
ing key, which is itself encrypted with the pairwise secret key. Thus, if no new
ways to attack Serpent become known, this can be considered impossible. Fur-
thermore, the authentication process is implicitly included in the key exchange,
which only requires two additional messages.

End-to-end security can easily be established in our approach, though we did
not consider it in our description. If two nodes need to communicate securely
via several intermediary hops, they can derive and use their pairwise key to
encrypt the message payload rather than their broadcast communication key.
Thus, only the two nodes may gain access to the message.

One threat we cannot prevent is the possible capturing and compromising of
individual nodes. However, our security architecture minimizes the effects of
this attack. While an attacker, who successfully compromised a node, may be
able to authenticate himself to the network and is consequently able to join in
the communication, he can only do so using the one compromised node. Only
very powerful attackers that are able to clone nodes gain more footholds inside
the network. However, the communication between non-compromised nodes
remains secure. This holds true for up to t compromised nodes, which is based
on the security specified by the initial symmetric bivariate polynomial calcula-
tions. It is important to note that t is not necessarily linearly dependent on the
actual network size. It denotes the number of nodes that need to be physically
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compromised, which is by far the most expensive attack in this scenario and
thus much less likely than radio-based attacks. Due to the fact that crypto-
graphic algorithms alone cannot prevent DoS attacks, the security architecture
does not address these threats any further.

In general the architecture is scalable and robust, since all operations take place
inside a node’s communication radius. Thus, the actual size of the network does
not influence its local security associations.

Methodology Evaluation We have achieved our goal of designing and im-
plementing a security architecture that provides the desired security service
for a mobile self-organizing WSN while using only lightweight cryptography.
However, all data is handled equally with regard to applying security. This is
disadvantageous if only one data type requires protection while the other data
types could be transmitted without. Thus, our solutions may generate unnec-
essary computational overhead. Furthermore, a general drawback arises from
this methodology of devising the security solution for WSNs.

Generally, WSNs are applicable to a multitude of application settings, of which
several will not be consistent with our target application. WSNs for long-
term environmental monitoring applications, for example, most likely comprise
a base station and only stationary nodes. Thus, some aspects, such as the
ability to securely derive pairwise keys on demand to support node mobility,
provide unnecessary overhead in these applications. However, keeping the gen-
eral ressource limitations of WSNs in mind, any unnecessary overhead should
be avoided.

In essence, changing the application scenario has a major impact on the re-
quired security setup in most cases. This however often results in the expensive
redesign of the security architecture for each new application, which is clearly
a daunting task. Furthermore, changing the hardware platform for the sensor
nodes usually requires to optimize the utilized cryptographic measures with re-
spect to this new architecture, which requires expert knowledge in the fields of
cryptography as well as the programming of embedded systems.

3.3.5 Conclusion

It is without doubt possible to integrate security into resource-constrained de-
vices, such as sensor nodes and thus secure the WSN application according
to its specific requirements. However, providing a specialized security setup
for a well-defined application does not present an effective approach, keeping
the plethora of potential application scenarios in UC environments in mind.
Rather, the process of integrating security measures should be easy to use and
apply to most application scenarios. Furthermore, special consideration should
be given to providing the security measures in a way that allows the application
developer to include the required aspects in his application without having to
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be an expert in this field. One promising possibility, which we examine in more
detail in the next section, is the usage of a middleware approach.

3.4 Annotating Security during Application Development

We have learned that it is inevitable that all discussions about security must
have the target application in mind and that the application developer should
devise the required security measures. He knows which data needs to be secured
with which kind of security service. Furthermore, he knows about the scope
of these security measures, e. g. whether the whole communication needs to be
secured or only a certain data type when it is communicated.

However, devising and implementing sound security measures requires signif-
icant knowledge and experience in this field [7, 282], which a large group of
application developers presumably lacks. Therefore, it is beneficial to provide
the application developer with easy to use tools to include security in his ap-
plication while designing it.

Furthermore, a security solution for an application must always be subject to
a thorough security evaluation in order to justify its security promises and to
foster the application developer’s awareness regarding which aspects are secure
and which are at risk, thus avoiding a false sense of security. Again, this requires
significant expertise in the area of WSN security.

In the following we present a solution to these predicaments. We propose a
framework which allows the integration of comprehensible security into the
development process of WSN applications. In detail, we show how to automat-
ically devise application-specific security mechanisms from the characteristics
of the application. Furthermore, we explain how to automatically provide a
security evaluation of the possible security solutions in order to enable the ap-
plication developer to choose the appropriate solution. Finally, we make these
steps usable by integrating them into a middleware synthesis tool. Parts of this
research have been published in [210] and [211].

The remainder of this section is organized as follows. First, we take up the
subject of application-specific security again, deal with it in greater detail, and
derive important aspects which should be considered when providing security
for WSNs in the next section. Then we review related work in Section 3.4.2.
Subsequently, in Section 3.4.3, we introduce our concept of automatically pro-
viding comprehensible security for WSNs. In detail, we explain how to derive
viable security solutions from the characteristics of the envisioned application
and how to evaluate their security. Furthermore, we describe how these concepts
are implemented in the WSN middleware synthesis tool Fabric in Section 3.4.4.
Finally, we illustrate the whole process by means of a use-case and give an eval-
uation of the whole concept in Section 3.4.5 and Section 3.4.6 respectively.
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3.4.1 Application-specific Security

The requirements for security vary greatly between applications, mainly based
on their data semantics, i. e. the meaning of data to the application. At a high
level, different application domains usually have different security requirements
for their data. For instance, the security requirements of structural monitor-
ing applications differ significantly from those of health-care applications. Take
for example the “Sustainable Bridges” project [164] in which the WSN appli-
cation continuously monitors the condition of the bridge, in order to detect
for example structural defects and to streamline visual inspection. While this
application would benefit from mechanisms that guarantee correctness of the
WSN data, i. e. by employing integrity and authenticity, it is clear that it could
also work without these, since the data is always validated by visual inspection.
Furthermore, there is no need to employ mechanisms to achieve confidentiality.
In contrast, in health-care applications, such as the “Ubiquitous Support for
Medical Work in Hospitals” project [18], confidentiality, authenticity, and in-
tegrity are a must, since these applications handle sensitive personal data, e. g.
the patients’ vital parameters. Furthermore, these applications have a much
stronger requirement for data-correctness and availability since the measures
taken on the basis of this data can easily be life-threatening.

Even the same data type may have different security requirements in different
applications. Consider for example location data that is communicated between
the nodes. Due to the physical accessibility of the nodes, the location of a node
represents highly sensitive information in surveillance WSNs, such as [137].
Gaining this knowledge gives an attacker valuable information on how to at-
tack or circumvent the WSN. However, location information in environmental
monitoring is mostly used to coordinate the WSN and thus is of relatively low
value from a security point of view.

Due to the scarce resources in sensor nodes, the strategy of always including
all-encompassing security measures is counter-productive in WSNs. An exam-
ple are the measures to prevent traffic analysis, such as those in [63]. Clearly,
for a large group of WSNs traffic analysis is not a great security concern and
consequently these networks need not waste resources on the nodes with mea-
sures that prevent it. Therefore, a “one size fits all”-approach is not feasible
for providing security in WSNs. Rather specialized security building blocks
that target exactly the security requirements are needed. Additionally, it is
important to differentiate the required security on the basis of the data type.
While it may be acceptable to use inefficient asymmetric cryptography to se-
cure a highly sensitive data type, such as the update of a secret key during the
WSN lifetime, other data types, such as sensor or management data, should
be secured differently in order to achieve the optimal overall performance and
security.

Generally, research to provide security for different aspects of WSNs is numer-
ous as we have discussed in Section 3.2.4. Furthermore, it is mostly conducted
by security experts, who design secure solutions for certain scenarios, i. e. how
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to securely and efficiently establish pairwise keys when nodes are randomly dis-
tributed. While all approaches are essential contributions to explore the design
space of security in WSNs, the specially chosen scenarios and assumptions make
the solutions mostly only applicable to certain application scenarios. For ex-
ample, Wood et al. present in [283] a family of secure routing protocols. They
assume among other things that each node knows its geographic location as
well as the location of important other nodes, e. g. the base station, in order
to calculate distances. Furthermore, they limit a possible attacker to have only
hardware capabilities that are equal to the sensor nodes. While these assump-
tions could be valid for a certain class of WSN applications they are unlikely
to be valid for all.

Furthermore, some standard assumptions that can be found in many security
proposals are partially not realistic. Gamage et al. challenge in [81] especially
the often made assumptions that pairwise keys between the nodes are always
needed and that the nodes are consistently deployed randomly as not being
realistic for a large class of applications. Silva et al. further present in [241]
some applicability drawbacks of the widely accepted class of key management
approaches that are based on the random pre-distribution of keys, such as [73].
They argue that good mathematical results can be achieved when the three
parameters number of neighbours, number of total nodes and number of keys
in each node’s keyring, can be freely adjusted. However, these parameters are
strictly confined in real-world WSNs. For example, the number of neighbours
depends on the application scenario, e. g. the node’s communication range, the
network’s topology, and density, while the maximum number of keys a node
can store is limited by its available memory. Therefore, the good mathematical
results cannot always be transferred to real world applications.

In essence, a serious gap exists in WSNs security research between theory and
practice today. Despite the great advances in theory the transfer of these con-
cepts to real systems is not well supported.

Another reason for approaching security from the application point of view
arises from the fact, that several application design parameters have a direct
impact on the required security mechanisms although they concern at heart non-
security related aspects of the application. This becomes especially apparent
in WSN key management. For example, the communication pattern between
nodes as well as the deployment strategy both have a strong impact on the pre-
deployment of key material, e. g. which nodes need to share a key and which
nodes do not. Furthermore, taking dependability into account, different routing
concepts have for example a strong impact on the availability and robustness
of the network.

In summary, although invaluable contributions exist in WSN security research,
most works do not provide any assistance and guidelines for the application
developers with regard to choosing the appropriate security measures for their
specific application, leaving them to adapt existing solutions or devise and
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implement their own. However, as we already mentioned, this is complicated
and error-prone.

We believe that the application developer must be provided with an easy to
use process for including security into his application based on the specific
requirements of the application. Especially, it must be possible to differentiate
the security requirements and resulting measures for different data types in
order to achieve optimal performance. Furthermore, he must be enabled to
assess the chosen security solution in order to avoid a false sense of security and
thus develop an insecure WSN application. Finally, in order to be widely used,
these steps must be embedded into WSN development tools. The framework,
which we will present later in this chapter, targets specifically these aspects.

3.4.2 Related Work

We review in the following related work focussing on the main requirements:
application-specific security provision, the security analysis of feasible security
solutions for an application, and the provision of security at the middleware
level.

3.4.2.1 Application-specific Security

Although current research seconds our application-centric view of security pro-
vision for WSNs, e. g. see [225,252], we are not aware of any structured approach
to facilitate the application developer in the process of generating application-
specific security solutions.

Close to our view of differentiating the security requirements for different data
types are Slijepcevic et al. in [246]. However, they target a predefined WSN ap-
plication scenario, for which they statically specify three types of data that are
communicated inside the network. They formulate different security require-
ments and measures for each of these three types, but do not present a concept
that would allow for the application developer to freely specify additional data
types.

3.4.2.2 Security Analysis

Generally, the question arises how to choose the proper security solution from
all feasible solutions. In general, security, as such, is hard to quantify and
visualize. Discussing and evaluating the quality of different security schemes
requires significant domain expertise in the area of security. Although several
attempts try to establish metrics that measure and describe the achieved level
of security of a system, no all-encompassing framework exists, that is a able to
cover all aspects and points of view. In particular, the metric must be appro-
priate for the evaluated technology and the results of the evaluation must be
understandable for the target audience. Thus, while a false-positive ratio may
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be a good measure to judge the quality of an intrusion detection component
it is not suitable to express the quality of security measures in WSNs. Ad-
ditionally, a representation of the security evaluation by a mere number, i. e.
security solution 1 rates 0.8 whereas solution 2 rates 0.97, gives no hint how
these two solutions differ, especially regarding residual risks, and which one
might be more appropriate.

The upcoming ISO/IEC 27004 standard [115] as well as the recommendations in
the NIST special publication 800-55 [53] try to measure the security of a system,
however, mostly along a process-oriented approach, i. e. do backup strategies
exist and how complete is an implementation. In this, they are suitable to mea-
sure the security level of an organization. However, with this broad perspective,
measuring security in WSNs is not satisfyingly possible with these approaches,
since important technical details are not covered.

A more technical approach to measure the efficiency of security measures is
based on security patterns [236]. This model-based approach provides reusable
solutions to specific security problems which application developers may use
to build secure systems. Since the patterns are widely utilized and evaluated
in real systems, the security evaluation of the resulting system becomes much
easier [100]. Although several patterns might be helpful in establishing and
evaluating security in WSNs they were not widely considered with this focus
yet and consequently do not cover some WSN-typical aspects. Particularly,
retaining security with the possibility of compromised nodes is not included
[203].

Typically, due to the lack of formal approaches, authors of specific WSN security
measures evaluate their approaches by means of attack possibilities with regard
to a chosen attacker profile. However, attacker profiles are often not specified in
great detail and evaluations differ greatly with respect to the considered attacks.
Although attack taxonomies are published in the literature, e. g. [95,222], they
do not seem to be used widely. Although we use attack possibilities in our
evaluation as well, we use on the one hand a structured approach that takes
all possible attack paths into account. On the other hand, the application
developer is able to influence the evaluation by specifying certain characteristics
of the attacker.

3.4.2.3 Providing Security at the Middleware Level

To the best of our knowledge, the integration of security into WSN applica-
tions, let alone an automated security analysis, is not supported by existing
WSN middlewares leaving the developers to devise, evaluate, and implement
their own security solutions. This is also backed by a current WSN middleware
survey [271]. Notable exceptions to this are the TinySec [128] and MiniSec [159]
libraries for the widespread operating system for sensor nodes TinyOS [151].
They provide some security building blocks, e. g. to encrypt and authenticate
data packets. However, in order to be used they assume that necessary founda-
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tions like key setup are handled elsewhere. Furthermore, their usage is limited
to systems running TinyOS.

We go a step further and focus on a more encompassing system. It automatically
determines necessary security requirements for the target application and is
extensible in order to support different hardware platforms as well as different
programming languages.

3.4.3 Automated Comprehensible Security Provision

We now present our framework which facilitates the application developer in in-
tegrating security into his WSN application. As already mentioned, it comprises
three steps. First, possible application-specific security solutions are derived by
querying simple properties of the target application from the application de-
veloper. Second, each security solution is assessed with regard to what kind
and the level of security it provides. The results of the security assessments are
given to the application developer as feedback in form of residual risk tables,
clearly identifying for each solution the aspects that are secure against attacks
as well as those that are still vulnerable. Finally, the actual security measures
are provided in form of a communication middleware.

To automatically derive feasible and fitting security mechanisms as well as as-
sessing the solutions regarding their security provision, the application devel-
oper first has to specify several application-specific properties. These provide
the foundations for our framework. On the one hand, the application devel-
oper assigns abstract security specifications for each data type that needs to be
handled securely during runtime. On the other hand, he specifies several ap-
plication aspects, namely node and network properties as well as the attacker
profile. Table 3.3 provides an overview of the necessary specifications. While
most of the specifications in the first three categories are used to derive appro-
priate security solutions, the hardware and lifetime specifications, as well as the
specifications regarding the attacker profile are used during their evaluation.

3.4.3.1 Deriving Application-specific Security

The security requirements for each data type provide the basis for the de-
rived security solutions. At this, the application developer specifies the desired
abstract security service or services for each data type, e. g. authenticity and
integrity for the data type location data. This defines how location data will
be handled security-wise when communicated in the network during operation.
Furthermore, the scope is required for each data type, i. e. which nodes must
be able to participate in the secure communication of this data type.

On the one hand, these specifications clearly delineate the required security
technologies. On the other hand, the scope specification gives valuable hints to-
wards selecting an appropriate key setup. As we have discussed in Section 3.2.4
a plethora of different key management schemes are proposed for WSNs. How-
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Parameter Description
Abstract security specification
Security service Desired security service for a data type, e. g. confidentiality.
Scope The scope specifies who participates in the secure communica-

tion of this data type. Examples are all nodes and each node
and the base station.

Node properties
Memory The amount of memory available on the node for storing secret

keys, e. g. 200 byte.
Hardware Do the nodes have tamper-proof hardware?

Network properties
Nodes Total number of sensor nodes inside the WSN.
Basestations Total number of base stations inside the WSN.
Lifetime Envisioned network lifetime, e. g. 1 year

Attacker profile
Presence Specification of the attacker’s scope, i. e. which extent of the

WSN is he able to influence?
Intervention Defines the attacker’s abilities, e. g. eavesdropping.

Table 3.3: Required application properties

ever, the choice and implementation of a fitting proposal for the target appli-
cation are anything but trivial. We try to alleviate this problem by providing
several options for key pre-distribution, i. e. key material that is initially stored
on the sensor nodes before they are deployed. The goal is to pre-deploy all keys
necessary while avoiding wasting precious memory on keys the application will
never use.

However, the appropriate key management scheme largely depends on several
application characteristics. For illustration, Table 3.4 defines four generic key
types and Table 3.5 explicates the confinements several application properties
set on these key types for single hop and multi-hop communication.

Without going into detail on the individual confinements, the general limiting
factor is the available memory on the nodes that is required to store the key
material. Pairwise keys are generally only applicable if the number of keys that
are required multiplied by the key size require less or equal memory space than
being available.

However, using these simple equations to provide the key material would only
allow for deriving very basic key setups, such as pairwise keys for small WSNs.
Though, especially when the nodes are deployed manually to the operational
area, highly specific key setups could be devised that take the resulting topology
and structure of the WSN into account. Therefore, in order to keep the provision
of key material simple while still allowing for great flexibility, we limit the
automatic generation of key material to providing pairwise keys between all
nodes, between each node and the base station (or base stations) or to providing
a network-wide key. Additionally, we include the possibility for the application
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Key Type Description

Pairwise node-node key Each pair of nodes shares one key in order to allow for
end-to-end security in their communication.

Pairwise node-bs key Each node shares a key with each base station in order
to enable secure end-to-end communication between
each pair.

Group key A group key is used by each node inside a group
to communicate its data securely to the other group
members, allowing for a secured intra-group broad-
cast. A group key may secure the single hop commu-
nication, e. g. if the nodes establish sending keys to
secure broadcasts to all neighbours, or provide end-
to-end security between group members in multi-hop
communication.

Network-wide key A network-wide key is shared between all nodes in the
WSN including the optional base stations. Thus, it
secures the communication link, but does not provide
end-to-end security.

Table 3.4: Basic symmetric key types

developer to specify a key topology that defines which nodes share a pairwise or
a group key. Thus, prior to deployment he may completely specify the network
topology from the point of view of security relations between the nodes and
the nodes will automatically be provisioned with the required key material.
Note that such a specification usually requires a manual deployment of the
nodes. For example, specifying the node IDs that should share a common
secret key with an aggregating node guarantees that these nodes, which could
be deployed manually to a certain area, get provisioned with the secret key of
the node that aggregates the data for that region in the WSN. Thus, during
runtime, each node is able to communicate securely in an end-to-end fashion
with the aggregating node. Furthermore, we include HARPS [208] as a possible
key scheme, if the available memory on the nodes is not sufficient to support
simple pairwise keys between all nodes but the application requires this key
type. Generally, it is possible to include more key management schemes in our
framework or to exchange for example HARPS with another scheme.

During the process of deriving possible security solutions, our framework eval-
uates for each option, if it provides a feasible solution. In general, this will be
the case for more than one option. Thus, the framework specifies each possible
solution and hands them to the next stage, the evaluation phase.

3.4.3.2 Evaluating WSN Security

Often several different security solutions can be synthesized that provide ap-
propriate solutions, however, each with its specific strengths and weaknesses.
Furthermore, the choice of a solution often has consequences for the application
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Pairwise keys Group Network-wide
Node-node Node-bs key key

Single Hop
Communication scope

All nodes – – X X
Node-to-node (X)∗ – X X
Node-to-bs – X X X

Deployment strategy
Manually (X)∗ X X X
Random (X)† (X)§ – X

Node mobility (X)† (X)§ (X)o X

In-network aggregation X – X X

Additional nodes
Manual (X)+ X X X
Random – (X)§ – X

Multi-hop
Communication scope

All nodes – – – X
Node-to-node (X)† – (X)o X
Node-to-bs – (X)§ (X)− X
Node-to-group (X)† – (X)o X

Deployment strategy
Manually (X)† (X)§ X X
Random (X)† (X)§ – X

Node mobility (X)† (X)§ (X)o X

In-network aggregation (X)† – (X)o X

Additional nodes
Manual (X)+ (X)§ X X
Random – (X)§ – X

(X)∗ applicable if number of neighbours · keysize ≤ available memory

(X)† applicable if total number of nodes · keysize ≤ available memory

(X)§ applicable if number of base stations · keysize ≤ available memory
(X)o applicable if number of groups · keysize ≤ available memory
(X)− applicable if the base station knows the group key
(X)+ applicable if dead nodes are cloned and re-deployed.

Table 3.5: Applicability of key types for certain application properties.

logic itself. For example, if the application developer chooses a solution that is
based on one network-wide key, he will not be able to use end-to-end encryption
between the base station and a particular node based on the selected scheme.
Furthermore, it may be necessary to consider residual risks in the application
logic, such as for example replayed packets, if the security solution does not
provide any measures to prevent this.

Therefore, in order to support the application developer in his choice, it is
important to present him a qualitative security evaluation for each possible
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solution rather than merely presenting all possible solutions or choosing one in
a black box fashion.

In the following we go into detail about how we evaluate the security solutions
as well as the qualitative feedback we provide to the application developer in
form of residual risk tables.

Security Evaluation For the security evaluation of the derived security solu-
tions we use a formal and structured approach to model threats to the system,
similar to Attack Trees presented by Schneier in [234]. First, all attacks on a
system are arranged in one or several tree structures, with the targets modelled
as roots and possible ways to attack these modelled as leaves. Then each at-
tack path can be evaluated with respect to its likelihood, the necessary effort
for the attacker, or other qualitative measures. Finally, specific techniques can
be devised and implemented in order to prevent likely attack paths.

Generally, we classify attacks into insider and outsider attacks in this disserta-
tion. While it is characteristic for insider attacks that the attacker controls a
valid member of the network, outsider attacks are always possible, even with-
out control of a valid member. In the evaluation of the security solutions we
are mainly concerned with outsider attacks. This is a reasonable choice, as
we evaluate the initial security solution for the WSN and there must not be
any successful attacks during the pre-deployment phase. Otherwise the whole
security solution falls apart.

Three important targets for outsider attacks exist in each WSN: the nodes, the
communication, and the environment. Attacks on nodes target valid members
of the WSN either by destroying, controlling, or influencing their data or be-
haviour. Attacks on the communication target the communication in parts or
as a whole, and focus either on disturbing it or eavesdropping on it. Finally, at-
tacks on the environment target the WSN in parts or as a whole by influencing
its operation area, e. g. by triggering wrong sensor readings. A simple example
of this is holding a burning lighter next to a temperature sensor or increasing
the heating inside a building. On this basis we model three attack trees, which
are illustrated in Figure 3.7. The numbers denote the possible attack paths.

However, we do not include all possible attack paths in our evaluation since
no proper defenses exist against some attacks. For example, consider DoS
attacks. Some research exists that aims at lessening the effects of these attacks,
e. g. see [284]. However, a complete defense against a sufficiently provisioned
attacker is not feasible. Therefore, DoS attacks are for now excluded from
the further analysis. Following the same reasoning we exclude all attacks on
the environment from our analysis. Additionally, we do not include attack
paths that can be avoided by best-practice programming guidelines, such as
to disable the nodes’ programming interfaces and over-the-air programming
(OTAP) capabilities during operation.
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(a) Target: sensor node

(b) Target: communication (c) Target: operational environ-
ment

Figure 3.7: WSN Attack Trees (numbers denote the different attack paths)

Table 3.6 gives an overview of the different attack paths, including the funda-
mental attacking efforts and goals of the attack. The attack paths we consider
in our further evaluation are highlighted, namely the paths 3, 5, 6, and 11.
We now focus on real attack types along these paths and possible defences.
Generally, we assume that the foremost goal of an attacker is to become an
insider using the outsider attack paths discussed above. Once an insider, he
may influence the WSN directly or stage more sophisticated attacks, such as
Sybil attacks [184]. Regarding his capabilities and presence, we consider the
specifications which the application developer may choose from the categories
derived by Benenson et al. in [22] (c. f. Section 3.2.2).

Becoming an insider can be achieved in three ways. First, if the communi-
cation is not secure the attacker instantly learns the communicated data and
influencing the nodes at will is trivial via message injection and modification.
Furthermore, nodes which are controlled by the attacker may be added to the
WSN. In case of a secured communication valid messages can be replayed to
influence or at least to confuse nodes. Additionally, the attacker may try to
break the employed cryptography, which can only succeed if the key size is too
small. We assume the actual algorithm to be secure and implemented properly.
Finally, he may attack the nodes physically in order to compromise them, thus
again gaining access to the WSN. Ideally, he analyses the traffic beforehand in
order to isolate important nodes in the network, such as data sinks or nodes
close by. Table 3.7 gives an overview of the considered attacks and defences.
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Path Effort Attack
Attacks on Nodes
1 Find & access node Destroy the node’s hardware

2 Find & access node Compromise the node by accessing it through live
interfaces

3 Find & access node Compromise the node by accessing its hardware di-
rectly

4 Find & access node Influence the node’s sensor readings

5 Addressable node Influence the node’s information

6 Addressable node Influence the node’s behaviour

7 Addressable node Sleep deprivation torture
DoS with malformed packets

8 Addressable node Reprogram node via OTAP

Attacks on the Communication
9 Attacker model Jam communication medium

10 Attacker model Redirect traffic via wormhole

11 Attacker model Eavesdrop on the communication

Attacks on the Environment
12 Attacker model Influence sensor readings

13 Attacker model Destroy operation area

Table 3.6: WSN attack paths

We use this evaluation logic to automatically assess the derived security solu-
tions with regard to their quality. This is done first by matching the security
annotations specified by the application developer in addition to the derived
security specifications with the attack possibilities to find paths in the attack
tree that are secure. In a second step we evaluate the efforts and risks of the
insecure paths to determine the possible effects of the attacks. For this purpose
we assume that communicating wireless with a node requires significantly less
effort than finding and accessing it. Furthermore, Becher et al. [21] describe
that compromising a node usually requires expert knowledge as well as costly
equipment. Furthermore, often the nodes need to be removed from the network
for a significant time-span. Therefore, we denote the effort to compromise a
node as being high. The risks are mainly affected by the chosen key setup as
well as the attacker’s presence and capabilities.

Residual Risk Tables Finally, in order to facilitate the application developer in
choosing a solution, we present these quality assessments in form of residual risk
tables. These tables display for each possible security solution the remaining
risks, after the specified countermeasures have been applied. In detail, we
present attack paths of high and medium risk, as well as paths that are secure.
Furthermore, an indication is given of how much effort a particular attack
requires. For example, a security solution that utilizes pairwise keys is much
less vulnerable to node compromise compared to a solution based on a network-
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Attack Target Defence

Message insertion Nodes Authenticity

Message modification Nodes Integrity

Message replay Nodes Message uniqueness

Physical attacks Nodes Tamper-proof hardware

Eavesdropping Communication Confidentiality

Traffic analysis Communication Confidentiality (whole packet)
or measures from [63]

Cryptanalysis Cryptography Sufficient key size

Table 3.7: Considered external attacks and defences

wide key, since the attacker gains significantly less influence by compromising
one node. In addition to the security assessment further information about the
security solution may be presented to the application developer, such as that
in general a solution is possible but inefficient. An example situation in which
this is helpful is presented in the use-case.

An example of a residual risk table for the use-case we describe in Section 3.4.5 is
given in Table 3.8. At this, for example, no confidentiality was annotated for the
data type and thus the risk of an eavesdropping attack is high. However, keep in
mind, that this is not a problem for an application, in which the respective data
type does not comprise sensitive information. Thus, the final interpretation of
the residual risk tables must be done by the application developer.

Based on the security evaluations for each feasible security solution, the applica-
tion developer is now able to either choose one proposed solution or discard the
choices and go back to modify his annotations, e. g. to include further security
services.

3.4.3.3 Middleware Integration

Up to this point our framework represents a stand-alone approach for devising
and evaluating application-specific security solutions. However, the realization
of the security measures still requires expert knowledge in the field of security.
Therefore, it is beneficial to include the whole process into a WSN development
tool to provide the necessary implementations of the security measures.

Generally speaking, our scheme can be integrated with systems synthesizing
middleware systems or virtual machines as well as complete applications, such as
RUNES [56] or ATG [13]. As a first step, we have implemented support for our
middleware synthesis framework Fabric [200] that supports WSN application
development by generating custom-tailored middleware instances for different
target platforms. We provide more details about the actual architecture and
implementation in the next section.
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Attack Effort Risk
High Risks

Eavesdropping small The content of your data and routing messages
is readable.

Message Replay small Valid messages can be replayed.

Compromise node high 1 node required to access to all routing mes-
sages.

Medium Risks
Traffic Analysis small An attacker can analyse the traffic, though only

in his local coverage area.

Not at Risk
Message correctness small Messages are authentic and can not be modified

undetected.

Cryptography medium Average time to break a 128 bit key: >58 thou-
sand years [107 keys/sec].

General Comments
–

Table 3.8: Example residual risk table

3.4.4 Implementation

We have implemented a prototype of our approach for the middleware synthesis
framework Fabric. In particular, we have devised and implemented three
aspects. First, we have integrated the security annotation of the data types
and the visualization of the residual risk tables into Fabriclipse. Fabriclipse is
an Eclipse plugin that is being developed at the moment to facilitate the data
annotation process for Fabric. Second, we have implemented the security
logic, which determines feasible security solutions and assesses their security. It
is integrated into Fabriclipse as well. Finally, we have implemented a security
module allowing Fabric to generate the required security-related source code.
These parts allow for specifying and generating the security-enabled middleware
which will then be used by the application developer to devise his application.

3.4.4.1 Fabriclipse Integration and Workflow

Figure 3.8 illustrates the architecture of our implementation. The application
developer interacts only with Fabriclipse, using the GUI for annotating the
data and choosing the appropriate security solution, based on the displayed
qualitative feedback, i. e. the residual risk tables. The security logic, including
the invocations of Fabric during the validation of potential security solutions
as well as the security assessments are transparent to him. Rather it appears to
him that the system changes from the annotation step directly to the residual
risk tables. In the following we briefly address each step in the order of the
actual workflow.
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Figure 3.8: Implementation architecture

Data Annotation Generally, we follow Fabric’s annotation nomenclature.
Therefore, all security-related annotations are located in the domain security.
The application properties, such as the security services, constitute aspects,
which in turn have options. For example, an annotation for the data type
sensordata may comprise the aspect confidentiality and the option scope
with the value all. This annotation translates into the requirement that the
data type sensordata should be sent encrypted using a key that is known to
or which can be derived by all nodes inside the WSN. The annotation process,
using this example, is depicted in Figure 3.9. Fabriclipse allows for both, GUI-
assisted annotation in which the possible values are provided in drop-down
menus (c. f. Figure 3.9a), as well as the possibility to edit the XML file directly
(c. f. Figure 3.9b).

Derivation of Configurations and Fabric Dry-run Based on the specified an-
notations, the security logic derives possible security solutions. First, it deter-
mines the necessary key schemes that are specified by the annotations as well as
possible alternative key schemes. Returning to the example above, the all an-
notation in the option scope requires a key scheme in which all nodes know the
encryption key or are able to derive it during runtime. This requirement could
be fulfilled for example with either a network-wide key or by using HARPS.
Following this, the security logic determines if the required cryptographic mea-
sures are implemented in Fabric’s security module. In addition to providing
the necessary functionality, these have to provide the implementation in the
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(a) GUI-supported editing (b) Direct editing of the XML file

Figure 3.9: Security annotations in Fabriclipse

required programming language as well as being applicable to the destination
hardware. The security logic validates for each solution if Fabric is able to
generate the required source code. For this purpose, we have extended Fab-
ric slightly to support the dry-run functionality. In essence, Fabric operates
unaltered in this mode, except that no source code is generated.

Security Analysis and Residual Risk Tables The resulting feasible security
solutions are then subject to the security evaluation. By means of the attack
trees (c. f. Section 3.4.3.2) unprotected attack paths are determind. The results
are given as feedback to the application developer in form of the residual risk
tables. Figure 3.10 visualizes an example in Fabriclipse. Now, the applica-
tion developer may either accept one security solution, in which case Fabric
is invoked with the respective configuration, or he may discard all proposed
solutions and go back to adjust his annotations.

3.4.4.2 Fabric Security Module

In order to enable Fabric to generate the security-related source code, we have
implemented a security module that provides various functionalities. Gener-
ally, all functionality is available for the programming languages Java and C.
Regarding sensor node hardware we support at the moment only the iSense
platform.

First, the security module is able to generate different key schemes. The pro-
totype supports pairwise keys, network-wide keys, and the key management
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Figure 3.10: Residual risk tables in Fabriclipse

scheme HARPS. Furthermore, it supports customizable source code packages.
This is necessary, for example, if pairwise keys are specified between certain
node IDs. In this case the resulting source code can be customized during
the compilation process. Figure 3.11 illustrates this by giving an excerpt of
an example source code. Here, the source code contains symmetric keys for
each node such that it shares a unique key with each base station. In this case
this results in ten keys per node. Since the key material is different for each
node participating in this application, the source code has to be compiled for
each node ID individually in order to include only the appropriate keys for that
single ID into the binary.

Furthermore, we have implemented the encryption algorithm AES, which may
operate in the three modes CTR to support confidentiality, Cipher Block Chain-
ing Message Authentication Code (CBC-MAC) for authenticity and integrity,
and Counter with CBC-MAC (CCM) [281] which combines all three security
services. AES was mainly chosen because the iSense sensor nodes are ZigBee-
compliant and thus comprise a hardware AES module. For the Java program-
ming language, we implemented these concepts in software.

The security module is completely self-contained, i. e. no specific order is nec-
essary regarding the previous or following modules which may be generated by
Fabric due to respective annotations. Figure 3.12 exemplifies the general API
Fabric generates. Generally, a custom send method is provided for each data
type, e. g. sendSensordata(data). Internally the send method contains all the
annotated functionalities, such as the serialization and encrypt functionality.
The amount of utilized modules as well as their order is irrelevant from the
point of view of the security module since each module uses a standardized
format for input and output, i. e. two buffers, one for input and one for output,
as well as the size of the data inside the in-buffer and out-buffer.

65



Chapter 3. Integrating Security into Ubiquitous Computing Devices

Figure 3.11: Customizable source code

Figure 3.12: Security measures in the generated API

Regarding the security module, the application developer first has to specify
the key for the next call of the send<DataType>(data) method. For this pur-
pose the API contains the function setKey<DataType>(ID) which is also cus-
tomized for each data type, e. g. setKeySensordata(ID). Calling this method
with the ID of the destination node sets the corresponding key for the next
sendSensorData(data) call.
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NodeID
Data
type

Initialization
Vector

Ciphertext

1 3 4 20 n

Figure 3.13: Ciphertext format

Setup Routing Data Sensor Data

1 128 bit network-wide key 128 bit pairwise keys
2 HARPS 128 bit pairwise keys

Table 3.9: Use-case: two feasible key schemes

In order to allow for an automatic decryption process after an encrypted mes-
sage has been received, the destination node ID as well as the encrypted data
type are included in the message in front of the ciphertext. Furthermore, the
message comprises the initialization vector which is required for the decryption.
Figure 3.13 visualizes the ciphertext format. The node ID requires 2 bytes, the
data type 1 byte, and the initialization vector 16 byte. After that the ciphertext
is appended. It comprises all necessary parts, e. g. the encrypted data or the
concatenation of the data and corresponding CBC-MAC.

3.4.5 Use-Case

To further illustrate the framework described above and to evaluate its useful-
ness, we now look at the whole process by means of a use-case. We consider a
structural monitoring application, similar to the one investigated in [252]. In
this scenario we have two data types: routing data and sensor data. Both must
be transmitted with authenticity and integrity guarantees, while confidential-
ity is not required. Furthermore, routing data must be accessible to all nodes,
while sensor data is only transmitted in an end-to-end fashion from each node
to the base station.

Here, we assume 200 employed nodes which are not tamper-proof but also not
easily accessible, e. g. embedded in the walls. Furthermore, we envision a long
network lifetime and assume that an attacker is able to mount communication
as well as physical attacks, though only locally. For the sake of brevity, we limit
ourselves to these characteristics in this example.

Based on these specifications our framework generates and evaluates possible
security solutions that are able to satisfy the given characteristics. In the fol-
lowing we discuss two of these choices.

Both solutions provide the required services based on the keys given in table
Table 3.9. While solution 1 provides a network-wide key to secure routing data
and a pairwise key between each node and the base station to secure the sensor
data, solution 2 utilizes HARPS pairwise keys for both data types.
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Attack Effort Risk
High Risks

Eavesdropping small The content of your sensordata and routing
messages is readable.

Message Replay small Valid messages can be replayed.

Compromise node high 1 node required to gain access to all routing
messages. An attacker gains full control over
the sensor data messages from a compromised
node. Other sensor data messages remain se-
cure.

Medium Risks
Traffic Analysis small An attacker can analyse the traffic, though only

in his local coverage area.

Not at Risk
Message correctness small Messages are authentic and can not be modified

undetected.

Cryptography medium Average time to break a 128 bit key: >58 thou-
sand years [107 keys/sec].

General Comments
–

(a) Security solution 1

Attack Effort Risk
High Risks

Eavesdropping small The content of your data and routing messages
is readable.

Message Replay small Valid messages can be replayed

Medium Risks
Traffic Analysis small An attacker can analyse the traffic, though only

in his local coverage area.

Compromise node high Several nodes required to access all routing and
sensordata messages.

Not at Risk
Message correctness small Messages are authentic and can not be modified

undetected.

Cryptography medium Average time to break a 128 bit key: >58 thou-
sand years [107 keys/sec].

General Comments
Routing messages: a new MAC will be created for each communication hop
using the pairwise key of the communication neighbours. This may result in high
computing costs.

(b) Security solution 2

Table 3.10: Residual risk tables
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The residual risk tables for both solutions are given in Figure 3.10. They
illustrate respectively the risks associated with each option and give additional
information for the solution, if necessary. The application developer can accept
one of the options if all the attacks he thinks likely are handled or he can discard
both and specify further security properties in the security annotations.

In this use-case it is likely that the application developer selects the first security
solution, although the risk potential regarding the compromised nodes is higher.
However, the WSN is supposed to operate for a long time and therefore the
solution should be as energy-efficient as possible. Furthermore, the nodes are
not easily accessible and the overall likelyhood of an attack in this scenario is
relatively low. However, keep in mind that this is our personal view and other
application developers might choose differently.

3.4.6 Evaluation

We achieve several important goals with our approach. Most importantly, we
support application developers in devising sound security solutions for their
applications without requiring them to become security experts. Since they
are able to specify the security requirements in an abstract form and receive a
detailed security evaluation of possible solutions, they may make an informed
decision about which security solution is best for their target application. Fur-
thermore, they are made aware of possible open issues in the security solution,
for example reply attacks may be possible despite the employed security mea-
sures. Having this knowledge the application developer is able to handle those
issues in the application logic itself, thus increasing the robustness of the re-
sulting application.

Therefore, on the one hand our approach alleviates the integration of security
into WSN applications, while on the other hand it allows for the overall quality
of the employed security in WSN applications to increase. The latter aspect
results from the additional knowledge the application developer is been given,
as well as the strict division of labor. While security experts implement the
individual algorithms and provide the logic of how to use them, the actual
users are guided to feasible solutions and may use them in a straight forward
way. Eventually, they benefit from the sound implementations done by experts.

Especially with regard to the device heterogeneity in UC environments, the
possibility of programming large numbers of heterogeneous devices in one pro-
cess is advantageous. The different devices will comprise the same security
measures, e. g. for encryption, optimally adjusted to the specific hardware and
implemented in the required programming language. Thus, the application
developer does not need to worry about the interoperability of the different
devices.

Regarding useability, especially the integration of our approach with Fabric
results in a very easy to use system. Deriving appropriate security solutions
requires only the specification of the corresponding abstract annotations. Fur-
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thermore, changing a security solution may be easily achieved by changing the
annotations. The integration into Fabriclipse further increases useability since
the application developer is provided with a GUI and may stay in his accus-
tomed programming environment, i. e. Eclipse.

Another advantage of our approach is its modularity. Experts may implement
new security measures and integrate them into the framework or they may fix
erroneous implementations without having to change the general logic. Partic-
ularly application developers who are security experts, may integrate custom
security concepts and measures to speed up the integration of security into their
applications. However, it would also be possible to devise and implement cus-
tom security measures inside the application and only annotate desired aspects
that complete the custom solution. Likewise it is possible to completely pass on
the automated security generation and security assessment by not annotating
any security-related aspects at all.

One aspect to keep in mind is that our approach is only able to provide the
quality and extensiveness of the underlying expert implementations. This holds
true for the expressiveness of the security evaluation as well. Thus, changes or
the integration of new concepts into the framework should be done with great
care.

Evaluating our approach from a technical point of view is almost impossible,
since different implementations of the security measures generally result in dif-
ferent code sizes and runtimes. Furthermore, several compiler settings have a
great influence on both aspects as well. Nevertheless, we have compared parts of
the generated source code from Fabric with independent manual implementa-
tions of equal measures. Especially the FlegSense project [112] has implemented
some aspects of our prototype, such as the key management scheme HARPS on
the iSense sensor nodes as well. Both implementations, though independently
devised, resulted in roughly the same code size.

3.4.7 Summary and Outlook

We have presented a framework that facilitates the application developer in in-
tegrating security concepts and measures into his application. It is based on the
premise that the application properties define most of the significant security
aspects. In essence, it provides comprehensible security and thus helps the ap-
plication developer in choosing the optimal security solution for his application.
Furthermore, the integration into Fabric allows for the automatic provision of
the required source code.

In the future, our approach would benefit from additional aspects. In particular
additional information regarding the resulting code size as well as approximate
runtimes of the security solutions would enable application developers to de-
termine the advantages and disadvantages of the security solutions even better
and chose the most sufficient solution. Furthermore, we would like to extend
the scope of the security evaluation to include DoS and internal attacks as well.
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Other possible extensions may comprise dependability aspects. For example,
the routing strategy has a great influence on the robustness of the network.
Thus, it may be beneficial for data types that must be received at the desti-
nation to use flooding instead of the normal routing scheme. We think it is
worthwhile to determine which other factors influence the dependability as well
and make them available for annotation in the Fabric-domain dependability.

3.5 Conclusion

We have shown that the integration of meaningful security into WSNs needs
to be considered with regard to the respective target application. While it is
possible to design and implement a specific security solution for a strictly defined
target application, as we have shown in our first approach, this methodology
results in a significant amount of work for each additional target application
scenario and always requires expert knowledge. Therefore, we have devised a
more generic approach that allows for application developers to integrate sound
security solutions into their applications without limiting the scope of possible
application scenarios nor the requirement for the developer to become a security
expert. We have shown that this approach yields many advantages.

Although we have focused on WSNs in this research, the same reasoning holds
true for UC environments, where a vast quantity of possible application sce-
narios exists. Furthermore, especially regarding the device heterogeneity in
UC environments the establishment of security aspects greatly benefits from a
middleware-based approach. We consider in particular the integration of our
approach and Fabric to be of great use in integrating into UC environments
as well.
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4 Autonomic Dependability in Network
Routing

The next thing in technology
is not just big but truly huge:

the conquest of complexity
[Andreas Kluth]

Networking capability is one of the key building blocks to fully establish UC
environments, as we have discussed earlier. Hereby, several levels of networking
can be differentiated: local networks which the devices form by interconnect-
ing, the connection of these to WANs, and the interconnections of the WANs
into a globally spanning network. Several networking technologies exist, that
specially take the UC devices’ unique features and constraints into considera-
tion. However, the existing WANs operate with long established technologies
and thus may become the critical component when UC environments increas-
ingly emerge. Especially the increasing complexity, e. g. in traffic volume and
service demands, or drastically increasing connection links may lead to massive
problems with regard to the manageability and efficiency of these networks.
Therefore, new concepts and strategies must be evaluated to enable the exist-
ing WANs to cope with emerging UC environments.

Industry as well as researchers have started to address these manageability
problems amongst others under the names of autonomic computing or organic
computing. In essence, both envision systems that adapt autonomously to their
environments and are thus able to optimize their operations. In this context,
nature-inspired strategies, i. e. strategies that seek inspiration from nature to
solve technological problems, have become one focus of research. This follows
the reasoning that despite nature being an inherently complex system, it has
without doubt been doing an extraordinary job maintaining a diversity of life
for millions of years. In this context several successful strategies evolved to
solve complex problems, e. g. the foraging of animals. Expectations are high,
that some of these strategies may prove beneficial to ensure operation in the
face of growing complexity in computer science as well.

With regard to communication networks, the employed routing mechanism
determines in large parts the dependability of the network. Furthermore, it
presents the central point where human administrators may influence and con-
trol the networks’ operations. Therefore, the question arises, whether nature-
inspired strategies may be incorporated here to increase the dependability of
networks in an autonomic way. Thus, relieving the human administrators from
the burdensome task of managing the increasingly complex network in detail.
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Several nature-inspired routing protocols have been proposed in the literature,
see for example [276] for a good overview. However, the respective evaluations
are mostly focused on performance-related questions. Furthermore they are not
fully comparable due to different evaluation settings, provide partially question-
able results, or the results are irreproducible since important details about the
evaluation are not given by the authors. Therefore, the above question cannot
be answered with certainty based on these evaluations.

To remedy this problem, we review the published evaluations, select the most
promising nature-inspired routing approach, and analyse it further in compar-
ison to the state-of-the-art routing protocol.

The remainder of this chapter is structured as follows. In the next section we
first aquaint the reader with the necessary foundations for our analysis. We then
survey the published evaluations of nature-inspired routing approaches, point
out problematic areas, and determine the most promising approach. In the
following we analyse this approach in comparison to a state-of-the-art routing
protocol with regard to dependability. Finally, we try to provide an answer
to the question about the role nature-inspired methods can play in network
routing and point out future work.

4.1 Fundamentals

We now provide the necessary foundations for the further analysis in this chap-
ter. Specifically, we give an overview of the autonomic computing initiative
as well as the research field of organic computing in the next section. Further-
more, we briefly review the problem of routing in communication networks, give
an overview of state-of-the-art routing algorithms and explain which categories
of nature-inspired approaches present alternative approaches in Section 4.1.2.
Finally, we describe OSPF, the state-of-the-art technique for intra-domain rout-
ing today in Section 4.1.3, as well as the nature-inspired approach to routing,
BeeHive in Section 4.1.4.

4.1.1 Autonomic and Organic Computing

IBM started the Autonomic Computing (AC) initiative as a response to the
growing complexity in the IT industry [111, 135]. The term is derived from
human biology and describes at heart a vision where autonomic systems man-
age themselves according to high-level goals given by administrators. On this
account, IBM anticipates that systems incorporate four fundamental “self”-
properties:

Self-configuration: systems adapt automatically to dynamically changing
environments, following high-level policies.
Self-optimization: systems monitor and tune resources automatically to
improve their own performance and efficiency.
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Self-healing: systems automatically detect, diagnose, and repair localized
software and hardware problems.
Self-protection: systems anticipate, detect, identify, and protect them-
selves from malicious attacks.

With the focus on business applications, IBM defines a roadmap of five consecu-
tive steps for realising self-managing systems [84]: step one describes the current
status of IT technology, where human administrators manage the systems man-
ually. Steps two through four successively integrate more sophistication, until
fully self-managing systems are available at step five.

Organic Computing (OC) was first introduced in [269] as the research coun-
terpart to IBM’s business initiative. While both agree on the principle that
self-organization will characterize future IT systems, the scope of OC is consid-
erably wider than the scope of AC.

The central focus of OC is the analysis of information processing in biological
systems and its transfer into IT systems. According to its vision, the newly
designed systems will behave life-like by adapting autonomously to changes in
the environment. For this purpose, the systems have self-x properties, similar
to those described by the AC initiative. However, man-machine interaction, ro-
bustness and trust in the reliability and the protection of privacy are additional
focal points in the OC initiative [231].

With regard to this thesis, we do not differentiate further between AC and
OC. However, we utilize several of the self-x properties in our evaluation of the
routing approaches’ autonomic behaviour Section 4.3.

4.1.2 Network Routing

Routing is one of the core topics in networking and has been studied by re-
searchers since the dawn of packet switched networks, e. g. see [169]. It rep-
resents a key feature in networks, focusing on the process of moving a data
packet from a source to a destination node, mostly via several intermediary
nodes. Generally, this presents a complex and difficult optimisation problem,
first, in finding possible paths from source to destination and second in finding
the best next path segment to forward the data packet. Routing is therefore
of special significance in networks, since it determines in large parts its perfor-
mance and robustness.

4.1.2.1 State-of-the-Art

Numerous approaches exist, that try to optimise the choice of routing paths.
In IP-based WANs, we generally differentiate between intra-domain and inter-
domain routing. Figure 4.1 respresents an example section of a global-spanning
WAN. It displays three network domains, each having an internal routing
backbone and being interconnected by gateway routers. We refer to the routing
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Figure 4.1: Sample domain structure of a wide area network

inside a domain as intra-domain routing, while the routing between domains is
referred to as inter-domain routing.

Routing domains usually represent network segments that are administered by
a single authority1. This authority has complete control of the network and
may decide autonomously all aspects of the domain, e. g. its physical structure
or which routing algorithm is deployed. Despite the autonomy, OSPF consti-
tutes nowadays state-of-the-art routing protocol for intra-domain traffic. While
the optimisation criteria for intra-domain routing is mostly the network’s per-
formance, the optimisation criteria for inter-domain routing is largely defined
by costs and politics. Therefore, a different routing protocol is usually em-
ployed for inter-domain routing. Here, BGP constitutes nowadays the de facto
standard.

Open Shortest Path First (OSPF) is specified in its current version, OSPFv2,
in RFC 2328 [176]. OSPF is a link-state routing algorithm, i. e. it broadcasts
the cost for each link and calculates the shortest paths to each destination on
the basis of all link costs . We give a more detailed description of OSPF in
Section 4.1.3.

The Border Gateway Protocol (BGP), in the latest version 4, is specified in
RFC 4271 [214]. From BGP’s point of view, a WAN only consists of several
interconnected domains, each with a unique number, the network prefix. BGP
is a path vector protocol, i. e. instead of periodically transmitting the costs for
the links, it always sends the whole path to a destination. The definition of
the rules, according to which the optimal path is chosen, is outside the scope
of BGP. Therefore, rules may contain arbitrary aspects, such as monetary or

1We abstain in this thesis from using the name “Autonomous Systems” as these domains are
usually called, in order to avoid confusion with the autonomous systems that are envisioned
by the AC and OC initiatives.
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political aspects. For example, the rule “traffic from this domain should never
pass through domain XYZ” could be incorporated.

4.1.2.2 Nature-inspired Routing

Several promising nature-inspired approaches to routing have been proposed by
researchers. A good overview is presented by Wedde and Farooq in [276]. In the
context of packet switched networks, we include the following two categories of
nature-inspired routing approaches into our analysis: algorithms that are based
on swarm intelligence as well as algorithms that are based on evolutionary
algorithms.

Swarm Intelligence Routing algorithms based on swarm intelligence mimic
the behaviour patterns of animal swarms in nature, e. g. ants or bees. A basic
assumption in this context is that although the individuals possess only limited
capabilities, their collective behaviour leads to an intelligence each individual
alone would not be capable of. However, the individuals benefit from this, for
example for foraging.

Definition 15 (Swarm, Swarm System) A swarm is defined as a group of
loosely structured, interacting agents [132]. A swarm system is a group of
individuals (agents) that are able to interact and communicate among them
and with the environment. At this, they may change the environment or the
swarm.

Regarding routing in networks, swarm-based approaches are realized as agent
systems. Each agent represents an individual and is implemented as a special
kind of data packet that travels through the network. On its way it assesses
the links’ quality parameters and updates the routing data structures on the
nodes accordingly. Well-known swarm-based approaches to routing are AntNet
and BeeHive.

AntNet [43] is a routing approach based on ant colony optimization (ACO).
ACO describes a discrete optimization technique that is oriented on the foraging
behaviour of ants. During foraging, ants communicate indirectly via chemical
substances, so-called pheromones, which are laid continuously on the paths
the ants travel. The amount of pheromones depends hereby on the quality
of the food source. After some time the pheromones on the paths dissolve.
Although ants choose their path in a probabilistic fashion, they generally tend
to follow paths with high pheromone concentrations. In [86] an experiment was
conducted that proved the potential of ACO to solve the shortest path problem.

AntNet uses this technique for routing purposes. It’s goal is to increase the over-
all network performance by load-balancing the traffic in a probabilistic fashion
over all available links. In order to determine the link characteristics, AntNet
employs two kinds of agents, forward ants and backward ants. They commu-
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Figure 4.2: Data structures in AntNet

nicate indirectly via two data structures that are located at each node in the
network, see Figure 4.2.

Routing table: for each destination d and neighbour k each node stores
in his routing table the probability P (k, d) which reflects the goodness of
using node k as the next hop towards the destination d. The table has the
size L×N , whereby L denotes the amount of neighbours and N denotes
the number of nodes inside the network.

Local traffic statistics: an arrayMs = (µsd, σ
2
sd,Wsd) defines the statisti-

cal model for the distribution of traffic from the individual node s to all
destination nodes d. At this, µsd reflects the average and σ2

sd the vari-
ance of the required travelling time of a data packet from node s to d.
Additionally, the shortest travelling time is stored in a time window Wsd,
which serves as a short-term memory. Based on these values the travel
time as well as the stability of the route can be estimated.

In regular intervals each node s sends out forwards ants Fs→d to different des-
tinations d. The choice of the destination node is probabilistic and based on
the distribution of the traffic.

Forward ants use the same queues as normal data packets to measure the delay.
On their path to the destination they store each intermediary node and the
state of the links in a stack structure. Generally, forward ants choose one of
the nodes they have not yet visited as the next hop. If all hops have already
been visited the forward ant chooses one randomly and deletes the resulting
circle from the memory stack. Upon reaching its destination, a backward ant
Bd→s is generated that receives all travel information from the forward ant and
starts its way back towards the originating node. The forward ant is eliminated
since it is no longer needed. Backward ants use higher priority sending queues
to speed up the dissemination of the gathered information in the network.
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The backward ant travels the path of the forward ant in reversed order and
updates the data structures regarding the entries that concern the destination
node d on each node.

Several enhanced versions of AntNet exist. Foremost, the authors of AntNet
propose an enhanced version called AntNet-CO [44]. In this version both, for-
ward and backward ants use higher prioritized queues in order to propagate the
routing information faster. The queueing delay is estimated.

Furthermore, Barán and Sosa propose several enhancements for AntNet [15,16].
We denote their version as AntNet* in the following. First, they enhance the
initialization of the routing tables by including knowledge about the network
topology. Essentially, the probability values for the entries that have a direct
neighbour as destination and next hop, i. e. Pdd for d ∈ N , are increased, while
the probabilities for all other entries, i. e. Pdi for u 6∈ N , are initialized equally,
the standard approach in AntNet. Furthermore, they increase the performance
during network failures. While the next hop is chosen at random during failure
situations in AntNet, AntNet* recalculates the probabilities based on the al-
ready learned values. The same improvement is applied to the situation where
links are re-established. With regard the next hop to which ants travel, AntNet*
decides randomly if it is chosen probabilistically or deterministically, in which
case the best routing entry towards the destination is chosen. Finally, AntNet*
limits the amount of ants to four times the size of the network nodes and
eliminates backward ants that can not reach their destination due to network
failures.

AntNet-local has been proposed by Liang et al. in [152]. AntNet requires global
information on all nodes, such as the total number of nodes in order to fill the
routing table. However, this is unrealistic in real networks. Furthermore, if the
network changes, e. g. nodes are added, each node in AntNet must extend its
routing table with the required columns and rows. Liang et al. explored the
behaviour of an AntNet version that utilizes only locally available information.
AntNet-local differs from AntNet with regard to the following aspects:

The routing table comprises only entries for direct neighbours

Each node utilizes a buffer to store an arriving ant’s information, i. e. the
timestamp and ID of the previous node

Choosing the next hop is done in a deterministic fashion if the destination is
a direct neighbour. Otherwise it is chosen based on the probabilities in the
routing table. It is obvious that these decisions are much more uncertain, since
entries exist only for the direct neighbours and the respective probabilities are
not differentiated with respect to the different destinations.

The travelling time is calculated incrementally. The forward ant does not keep
the information about the hops and delays internally in its memory stack but
stores this information together with its ID in the buffer of the next node.
Eventually, this entry is read and deleted by the backward ant.
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Algorithm 1 Basic operation of an Evolutionary Algorithm
1: randomly initialize the population
2: evaluate the population
3: repeat
4: select the best individuals according to their fitness
5: apply diversification operators to generate the new population
6: evaluate the population
7: until finishing criteria is met

Beehive is a swarm-based routing algorithm developed by Farooq and Wedde
[76, 275, 277]. It is based on the foraging principles of a honey bee colony. We
give a detailed description of BeeHive in Section 4.1.4.

Evolutionary Algorithms Evolutionary Algorithms (EAs) constitute general
randomised search heuristics that replicate the concepts of evolution in nature.
Evolution in this context is considered as a process, influenced by chance, that
allows for species to adapt to their surroundings. The basic assumption is, that
the next generations of individuals will be gradually better adapted to their
surroundings than the current generation. Furthermore, it is assumed that this
refinement can be measured. It constitutes the fitness of the individuals. Based
on these assumptions we define an EA as follows:

Definition 16 (Evolutionary Algorithm) An evolutionary algorithm2 max-
imises a fitness function by gradually adapting a randomly generated population
via selection and diversification operations until a finish criteria is met.

The basic operation of a EA is given in Algorithm 1. With regard to routing
EA-based algorithms are realized as agent systems, similar to swarm-based
approaches. Each agent represents an individual and is, from a technical point of
view, a special kind of data packet that travels through the network. The quality
of the traveled path, e. g. the end-to-end delay or the average link capacity
utilisation, defines its fitness. If an individual is selected to be a parent for
the next generation, the corresponding path will serve as the basis for the
diversification. Generally, mutation and crossover strategies are used in this
process.

Beyer and Schwefel point out in [25], that the choice of fitting mutation and
crossover strategies is generally problem-dependent. However, they also present
some general rules for choosing an appropriate diversification strategy. To foster
the general understanding of these concepts, we give a short example, how the
mutation and crossover strategies may look like in the routing context. The
descriptions as well as the illustrations are adapted from the EA-based routing
approach GARA (cf. [180]).

2Although some publications denote this concept as a genetic algorithm, the commonly
used term today is evolutionary algorithm. We do not differentiate further between the
two, though small differences exist, and stay for the sake of consistency with the term
evolutionary algorithm.
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(a) Mutation operation

(b) Crossover operation

Figure 4.3: Diversification operations in evolutionary algorithms

Mutation: The first step in the mutation process is the selection of a
random node nm on the path from source node s to destination node d.
Next, a neighbour node n′m of nm is chosen at random and the shortest
paths from s to n′m (r1) and from n′m to d (r2) are computed using the
Dijkstra algorithm. If the two paths r1 and r2 have nodes in common,
the mutation will be discarded. Otherwise, the concatenation of r1 and
r2 represents the mutated path. Figure 4.3a illustrates this process.
Crossover: The crossover operation exchanges sub-paths between two
selected paths. Both paths must have the same source node s and des-
tination node d, as well as at least one other path-internal node in com-
mon. From the common internal nodes one is randomly chosen to be the
crossover point. Eventually, the two sub-paths from the crossover point to
the destination node are exchanged. Figure 4.3b visualizes the crossover
operation for the two paths r1 and r2.

For more details on EAs that go beyond this short description, we refer the
interested reader to [24] and [120]. We include in our further analysis the two
EA-based routing approaches GARA and DGA.

The Genetic Adaptive Routing Algorithm (GARA) is specified in [179, 180].
It represents a source routing algorithm, i. e. the whole path from source to
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Destination Path Frequency Delay Fitness

2 (1 3 2)∗ 7232 50 0.7
(1 3 4 2) 2254 60 0.2

(1 3 4 5 2) 1039 70 0.1

6 (1 8 6)∗ 20983 100 0.4
(1 10 11 6) 34981 105 0.6

8 (1 8)∗ 30452 40 0.9
(1 7 8) 3083 40 0.1

Figure 4.4: Example routing table in GARA

destination is specified in the data packet at the sender. Therefore, each node
needs to know the whole topology of the network.

GARA maintains a routing table at each node similar to the example depicted
in Figure 4.4 (adapted from [180]). For a destination, several complete paths are
stored. Furthermore, each entry consists of the frequency of the particular path
being used in the past as well as its measured delay. Finally, the fitness of each
path is included, which determines the probability of using each path for future
data packets. Initially, the routing table is empty. For each new destination a
standard path (marked with a * in the example) is calculated using Dijkstra’s
shortest path algorithm based on a hop count metric. The delay for each path
is calculated from the communication latency of special delay query packets
that are sent periodically on each path.

After each evaluation of the fitness values, alternative paths are computed by
applying diversification operations to the existing paths with a certain proba-
bility. We already described GARA’s diversification operations in the general
description of EAs (c. f. Figure 4.3). Furthermore, in order to keep the routing
table from overflowing, selection operations are executed whenever the routing
table exceeds a predefined threshold. GARA contains two selection strategies:
(1) for all alternative paths to a destination, the path with the lowest fitness
is deleted, (2) all paths to a destination that the node rarely communicates
with are deleted. Thus, each node contains only good routes to destinations
he frequently corresponds with. An extension to GARA, which additionally
allows for the exchange of routes between neighbouring nodes, is proposed by
Munetomo et al. in [181].

The Distributed Genetic Algorithm (DGA) is based on the concepts of GARA
as well as AntNet and AntNet-local. It is described by Liang et al. in [153,154].
The authors’ goal was to find a routing algorithm that does not require global
information while still finding appropriate paths in the network.

Analogous to AntNet, DGA utilizes forward and backward agents. However,
they travel trough the network following a pre-defined path. This path is defined
as a string of next-hop offsets, e. g. {1, 5, 0, 4, 2, 3, 5} over the interval [0, L],
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Agent ID Fitness Travel time (ms) and Node ID

95 0.32 (3, J), (9, C), (21,W )
234 0.39 (1, B), (7, A), . . . , (432, Y )
. . . . . . . . .
31 0.71 (5, C), (9,K), . . . , (871, X)

Figure 4.5: Example routing table in DGA

where L is selected to enable indexing of the maximum amount of neighbours
a node may have. On entering a node, the next offset is used to determine the
next hop, using a clockwise count which starts with the arriving link. If this
results in choosing the arriving link, the node randomly chooses another and
updates the string entry accordingly (deterministic mutation).

If the string is finished, the forward agent is changed into a backward agent
which returns to the source node. This may also happen if no next hop can
be determined. In this case the string is truncated accordingly. In contrast to
AntNet, the backward agent changes only the routing table at the source node.

In addition to the routing table, DGA stores in each node a population of
agents, which is generated randomly during startup of the network. Its size
is proportional to the square of the total number of nodes inside the network.
At the beginning half of these agents are sent into the network. The routing
table (c. f. Figure 4.5) is initially empty. After four agents have been returned
from their destinations, their fitness is evaluated. It measures the popularity of
nodes in terms of the relative frequency αi

k describing how often data packets
are forwarded from node i to node k as well as the required travelling times tk
which are recorded by the agents. Thus, agents that discover shortest paths to
frequently used destinations are favoured. In summary, the fitness function f
has the following form:

f =

∑
∀destinations k

αi
k · tk∑

∀destinations k

tk
. (4.1)

Based on their fitness, the two best agents are chosen and stored in the routing
table or their fitness values are updated if they already exist. Upon reaching a
certain size, the two worst agents are deleted from the routing table. Using one-
point crossover and mutation two new agents are generated based on the two
selected agents. At this, the mutation operator randomly chooses one element
in the string and adds or subtracts a random integer ensuring that the result
still resides in the interval [0, L]. Due to the crossover operation agents may
have a different size. The new agents are included in the population while the
worst two agents are eliminated. Eventually four agents are chosen randomly
from the population and sent to explore the network.
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The next hop for a packet is chosen deterministically based on the travelling
times of the entries, i. e. the neighbour with the shortest travelling time. If no
entry exists, the neighbour with the highest fitness is chosen.

Additionally to these basic concepts, the authors enhanced DGA further. On
the one hand, each node sends the best agents, according to their fitness, to its
neighbours in fixed intervals. On the other hand, an aging mechanism prevents
stagnation of the routing entries. During the update of the routing table the
fitness of each entry is multiplied by a constant c ∈ (0, 1) and the travelling
time is divided by c.

4.1.3 OSPF

The routing protocol OSPF was developed by the IETF for the intra-domain
routing setting. The current standard OSPFv2 (OSPF version 2) for IPv4 (IP
version 4) based networks is specified in RFC 2328 [176], with several extensions
and details being furthermore specified in additional RFCs3. For IPv6 (IP
version 6) based networks, OSPFv3 (OSPF version 3) is specified in [55]. We
cover only OSPFv2 in this dissertation and refer to it for readability as OSPF,
unless stated otherwise.

OSPF constitutes a link-state routing protocol, i. e. the shortest path between
two nodes is computed on the basis of all links and their associated costs which
are known to every node in the network. In order to gain this knowledge, the
nodes regularly exchange their lists of neighbours and link conditions.

At a high level, the operation of OSPF follows this scheme:

1. In order to discover their neighbours, routers send hello packets out on
all interfaces. Based on certain information inside this hello packet two
routers decide if they become neighbours.

2. Each router sends link-state advertisements (LSAs) to all of it’s neigh-
bours. These LSAs contain all of the router’s links, including their state,
as well as the router’s neighbours.

3. Upon receiving an LSA from a neighbour the router includes the data
in it’s link-state database and forwards the LSA to all of it’s neighbours.
Thus, all routers learn the network topology and are able to build identical
link-state databases.

4. Eventually, a shortest path first (SPF) algorithm is employed by each
node to generate a loop-free graph describing the shortest path to every
other router in the network. Note that the shortest path is based on the
link costs, i. e. the lowest cost path, rather than the shortest hop count.

The SPF algorithm for a node A is displayed in Algorithm 2. We use the
following notation:

N : denotes the set of nodes for which a shortest path is known.
3See Appendix B.1 for an overview.
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Algorithm 2 Shortest path first algorithm for a node A
1: /* initialisation */
2: N = {A}
3: for all nodes v do
4: if v is neighbour of A then
5: D(v) = c(A, v)
6: else
7: D(v) = ∞
8: end if
9: end for

10:

11: /* iteration */
12: repeat
13: select node w 6∈ N with minimal D(w)
14: N = N + w
15: for all neighbours v of w, whereas v 6∈ N do
16: D(v) = min( (D(v), D(w) + c(w, v) )
17: end for
18: until all nodes n ∈ N

c(i, j): represents the costs associated with the link between the
nodes i and j. For simplicity we assume that c(i, j) = c(j, i).
D(v): denotes the costs for the path to node v.

5. In a stable network topology OSPF becomes rather quiet after this step.
Though hello packets are still exchanged regularly between neighbours
as keepalives, LSAs are only seldom retransmitted, after a configurable
timeout.

6. If changes occur inside the network, e. g. a router or link going down, each
of the neighbouring routers sends out a new LSA that reflects this change.
Based on this information all routers will recalculate the shortest paths
and update their routing tables.

Generally, OSPF is designed as a deterministic routing protocol, i. e. the next
hop is always chosen deterministically to be the next node on the shortest path
to the destination. However, it also supports equal-cost multipath (ECMP) rout-
ing. Thus, if multiple equal-cost routes to a destination exist, OSPF discovers
and uses all of them to transfer data packets.

OSPF is suitable for large-scale networks, despite the facts that LSAs are
flooded and all routers have to keep track of all links inside the network. To
achieve scalability, OSPF incorporates an area concept, which allows for a hier-
archical structuring of the network. The major advantage of this approach is the
significant reduction in the amount of network bandwidth consumed by routing
updates. Inside each area, LSAs are exchanged as described above. However,
the area border routers summarize the internal information when sending an
LSA on the outside interface. This results in only one entry in the non-area
node’s routing tables regardless of the actual area size.
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Figure 4.6: OSPF area concept

Figure 4.6 illustrates an example of the area concept. Areas are arranged into
a two-level hierarchy whereby one or more areas are attached to the central
backbone area.

Another feature explicitly integrated into the OSPF protocol is the authenti-
cation of routing packets. Different types of authentication schemes are sup-
ported by OSPF and can be configured on a per network area basis. This pre-
vents rogue routers from advertising unauthorized routes, allowing only trusted
routers to participate in the network routing.

Finally, OSPF is able to integrate routes provided by another routing protocol,
such as BGP which allows for an easy integration into the global internet.

This concludes our introduction to OSPF. For more information about the
protocol we refer the interested reader to [175] and [176] as well as the respective
RFCs that define further aspects of OSPF. An overview of these is provided in
Appendix B.1.

4.1.4 BeeHive

Wedde and Farooq have developed the swarm-based routing algorithm BeeHive
based on the foraging principles of a honey bee colony [76,275,277].

BeeHive uses agents to assess the links’ qualitative characteristics and update
the routing information on the nodes. At this, only forward agents exist in
BeeHive, unlike in AntNet, though two different types: short-distance bees and
long-distance bees. Short-distance bees explore only the direct neighbourhood
of a node (up to a predefined number of hops), while the long-distance bees
explore the whole network. Their lifetime is limited as well by a hop limit. The
differentiation between these two types is motivated by the fact, that only few
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Figure 4.7: The region and zone concept in Beehive

bees explore long-distance while most stay in the close neighbourhood of the
hive.

BeeHive is by design a hierarchical routing protocol. For this purpose, the
network is divided into foraging regions. These partitions stay fixed during
the lifetime of the network. Each foraging region has a representative node
which is usually the node with the smallest IP. If this node fails during the
network’s lifetime, the node with the next higher IP will assume the position
as representative node. Farooq has shown in [76] that more elaborate selection
processes do not yield better performance results while leading to significantly
more administrative effort.

In addition to the foraging regions, each node maintains its personal foraging
zone. This contains all the nodes in the direct neighbourhood of the node and
is determined by the range that the short-distance bees travel. It may span
over multiple foraging regions.

Figure 4.7 gives an example of this. Two foraging regions are illustrated, the
representative nodes being 0 and 8. Furthermore, the foraging zone of node 10
is indicated by the dark nodes.

BeeHive determines the foraging regions autonomically during the start-up
phase, by means of the short-distance bees. In detail, the following three steps
will be repeated until the whole network is partitioned into foraging regions:
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1. In the beginning each node assumes that it is the representative node of
the foraging region and sends out its short-distance bees to propagate this
belief.

2. If node i receives a short-distance bee from node s, claiming that s is
the representative node, i decides on the basis of the IP addresses if it
resigns his status. If the IP address of s is smaller than its own, it joins
the foraging region of s and abandons its efforts.

3. If i receives at a later time a short-distance bee from s announcing that s
resigned its status and joined another foraging region, i restarts the whole
process.

These steps are repeated until the network is divided into foraging regions and
foraging zones. Finally, each node informs all other nodes in the network to
which foraging region it belongs. If link of node failures occur in the network
the foraging regions may need to reshaped. In this case the initialisation process
is repeated. BeeHive detects link or router failures by means of hello packets
each node sends at regular intervals to its neighbours.

During normal operation, each regular node sends out short-distance bees while
the representative nodes send out long-distance bees. When a bee is received
at a node, it updates the routing information and is flooded to all neighbours
except the one from which it arrived. This process repeats until the bee’s
lifetime exceeds or if another replica of this bee has already been received at
the node. Bees generally have no destination. Rather the flooding algorithm
is a variant of a breadth first search algorithm. In order to disseminate the
routing information quickly, bees are always communicated via priority queues.

On their way they assess each link’s overall delay and update the routing infor-
mation on the next node. However, since bees only move forward, they have to
estimate the trip time back to their originating node via the traveled path. For
example, a bee originates at node s and arrives at node k on the link from the
intermediate node i. It estimates the time tks as the sum of the queue delay
qki, the transmission delay xki, and the propagation delay pki of the link (k, i).
Furthermore, it adds to this the estimated travel time tis from node i to node s.
The transmission delay and the propagation delay are static link characteristics
while the queue delay is directly dependent on the size of the queue (lki). It
is approximated with regard to the available bandwidth of the link (bki). This
results in the following formula:

tks =
lki

bki︸︷︷︸
qki

+xki + pki + tis (4.2)

During the initialisation phase the nodes approximate the static link charac-
teristics by means of the hello packets that are sent on each link. The bee
estimates the queue delay for a link by observing the size of the queue for the
normal traffic.
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For packet switching each node s maintains three routing tables:

1. Intra foraging zone table: for each destination d inside the foraging zone
and each neighbour k on a path to these an entry Pkd = (qkd, pkd) is
stored. It contains the queue delay qkd and the propagation delay pkd

which a packet will experience on its way to node d via node k. The
tables is updated by short-distance bees.

2. Inter foraging region table: for each representative node d in the network
and each neighbour k on a path to these an entry Pkd = (qkd, pkd) is
stored. This table is updated by long-distance bees.

3. Inter foraging membership table: an entry exists for each node in the
network that displays its foraging region. This table is built during the
initialisation phase.

The choice of the next hop for a packet with the destination d is based on
the goodness gkd of each neighbour k of node s (k ∈ Ns). In this process,
the node checks first if d resides inside its foraging zone. In this case, the
goodness calculations are based on the values from the intra foraging zone table.
Otherwise, the foraging region of the destination node is determined from the
inter foraging membership tables and the calculations are based on the entries
in the inter foraging region.

The aim of the goodness is to reflect the actual situation in the network. There-
fore, the goodness for a neighbour should be high if the corresponding link’s
overall delay is low and vice versa. The critical factor here is the queue delay
during high network utilisation or respectively the propagation delay during
low utilisation. The calculation of the goodness value considers this:

qkd =
1/ (pkd + qkd)
|Ns|∑
l=1

1/ (pld + qld)

(4.3)

Eventually, the next hop is chosen in a probabilistic manner, based on the good-
ness values. More precisely, BeeHive uses a method called stochastic sampling
with replacements. This ensures that the probability of choosing neighbour k
with goodness gkd is at least gkdP|Ns|

i=1 gid

.

Due to the aim of reflecting the actual network situation, the values p and
q which provide the basis for the goodness calculation need to be updated
frequently. This is done by the bees. More precisely, the short-distance bees
update the delays in the intra foraging zone table, while the long-distance bees
update the delays in the inter foraging region table. Furthermore, the bees
communicate with each other in order to incorporate the experience of different
paths in their estimate.

Figure 4.8 visualizes the communication of the bees. Here, three paths exist
from node s to node k. Thus, s launches three replicas of the same bee on each
of the available paths. Each estimates the link’s delay as described above. On
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Figure 4.8: Communication paradigm of the bee agents

node k the three bees actualize the entries in the routing table and exchange
their estimates. Only the bee that arrived first is allowed to continue its flight.
It incorporates the two other estimates proportional to the quality of the paths
they traversed:

q :=
∑
i∈Nk

(qis · gis) and p :=
∑
i∈Nk

(pis · gis) (4.4)

This concludes our introduction to BeeHive. For more information about the
algorithm as well as performance evaluations by its authors we refer the inter-
ested reader to [76].

4.2 Survey of the Published Evaluations

Each of the nature-inspired routing protocols mentioned in the fundamentals
was evaluated by the respective authors, mostly by means of simulation. In
order to get a first impression of their quality and to be able to focus the further
analysis on a promising candidate, we first survey the published evaluations and
point out problematic areas.

Generally, the nature-inspired approaches concentrate on performance evalua-
tions, making them applicable for intra-domain routing. We are not aware of
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any nature-inspired approach that targets inter-domain routing. Furthermore,
it is highly unlikely that all domain operators switch to an autonomic routing
algorithm, since the basis for the inter-domain routing decision centers mostly
on monetary aspects and contracts between carriers. Consequently, we focus
our analysis on intra-domain routing as well.

Furthermore, we exclude GARA from the further analysis, since it represents
a source routing approach. This results in the whole path being specified in
each data packet, which is clearly not a scaleable solution. It is therefore in our
opinion not a useable approach for intra-domain routing.

Based on the published results we have compiled a summary of the evaluations
in Table 4.1. In order to determine their comparability we extracted several
important aspects that describe the evaluations. Foremost, we were interested
in which algorithms were used for comparison. Furthermore, we looked which
network topologies were used, how traffic was generated, and if network failures
were taken into account. Finally, we listed the used evaluation parameters.

For the sake of brevity, we focus in the following overview on the most interesting
findings. The detailed survey is available in [209].

Algorithms: No all-encompassing evaluation of all approaches exists. However,
due to the complexity of this task, this does not come as a big surprise.
The most comprehensive evaluation is done by the authors of BeeHive,
being also the most recent. Generally, all authors evaluated their approach
in comparison to older versions of their own protocol and AntNet.

Regarding OSPF, only a simplified version that emulated OSPF’s gen-
eral aspects was considered, both in the AntNet and BeeHive evaluations.
Essentially, on the basis of statically assigned link costs that mirror the
physical characteristics of the links, OSPF represents a simple SPF al-
gorithm. None of the more elaborate features of OSPF were taken into
account. Concerning this, especially Di Caro et al. acknowledge that
this functional limitation penalizes OSPF with regard to its performance.
Barán and Sosa do not give any details about the employed version of
OSPF in the evaluation of AntNet*. However, since their work is based
on AntNet, it is likely that OSPF is only considered in its basic function-
ality as well.

Network topologies: The choice of network topologies in the evaluations is
heavily influenced by the AntNet evaluation, where the specially designed
SimpleNet and the two real world network topologies NSFNet and NT-
TNet were used. Especially NTTNet was adopted by all authors. How-
ever, its description and graphical representation differ greatly among the
publications. We must therefore assume that it is unlikely that the same
network was used in all evaluations.

Scalability with regard to network topologies consisting of more than 150
nodes was only considered in the BeeHive evaluation. Especially, it re-
vealed among other interesting aspects, that AntNet and AntNet-CO do
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not scale well in these grand topologies and display the worst results of all
tested approaches, including the impaired OSPF version, in these settings.

Traffic generation: Traffic was only considered on an abstract flow-based level
in all evaluations. None analysed realistic traffic profiles or modeled re-
alistic Internet protocols. The most elaborate discussions can be found
in the AntNet and BeeHive evaluations. Both consider mainly session-
based traffic in which several different types exist to model several traffic
situations and distributions.

Network failures: The robustness of the algorithms in the face of network
failures was analysed by all evaluations except AntNet and AntNet-CO.
However, the BeeHive evaluation included AntNet in this analysis. Re-
grettably, OSPF was excluded in this, as the authors of BeeHive deemed
it to be too inferior in its performance compared to BeeHive and AntNet.

Generally, the individual evaluations are not fully comparable due to the signif-
icant differences in the simulation settings. Especially, the comparison to the
state-of-the-art routing protocol OSPF was never in the focus of the evaluations.
Apart from that, the evaluation results are partially not comprehensible, since
important details of the evaluations are omitted in the descriptions. Thus, an
objective assessment of each algorithm’s efficiency is not possible on this basis.

However, it is possible to deduce an approximate ranking regarding the perfor-
mance of the evaluated approaches. Especially, the evaluations conducted by
Farooq et al. in [76] are quite extensive and provide a good basis for this.

In general, the performance results of the swarm-based approaches outper-
formed the EA-based approach DGA with the exception of AntNet-Local, show-
ing mostly the lowest performance of all approaches. The improved versions of
AntNet, AntNet-CO and AntNet* achieved furthermore better results than the
original version of AntNet. Yet, the results for AntNet* raise several questions
since they contradict in parts the AntNet results. The best results among all
approaches were observed for BeeHive.

As a result of our survey we decided to focus on BeeHive for our further eval-
uation as it seems to provide the highest performance of the nature-inspired
routing approaches.

4.3 Analysis

The survey of the published evaluations revealed several general shortcomings,
resulting in the dilemma that no objective assessment of the nature-inspired
approaches is possible on this basis. Especially the direct comparisons of the
respective nature-inspired approaches to OSPF were done only rudimentary,
if at all. Furthermore, the focus of the published evaluations was generally
on performance issues and not on dependability. While dependability com-
prises performance aspects, a more comprehensive analysis of BeeHive as the
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Nature-inspired routing approaches
AntNet1 AntNet-Local BeeHive DGA

Considered publica-
tions

[15,16,43,44] [152] [76,275,277] [153,154]

Algorithms used for comparison
OSPF X2 X2 X – X2 –
AntNet X X X X X –
AntNet-CO – X – – X –
AntNet∗ – – X – – –
AntNet-Local – – – X – X
BeeHive – – – – X –
DGA – – – – X X

Evaluated network topologies
SimpleNet X – X – X –
NSFNet X – X – – –
NTTNet X X X X X X
Randomly gener-
ated

– X – – X –

Large-scale – – – – X –

Traffic specification
Session-oriented X X – – X –
Sessionless – – – – X –
Poisson distribu-
tion

– – – X – X

Undefined – – X – – –

Taking failures into account
Link-/router failure – – X X X3 X

Evaluation parameters
Throughput X X X X X X
Delay X X X – X X
Network
utilization4

X X – – – –

Routing overhead X X – – X –
Queue size – – – X – –
Session delay – – – – X –
Complete sessions – – – – X –
Delivery rate – – – – X X
Routing loops – – – – X –
Jitter – – – – X –
Agent processing
time

– – – – X –

Suboptimal over-
head

– – – – X –

Dropped packets – – – – – X

1AntNet family: AntNet, AntNet-CO, and AntNet*.
2in a simplified version.

3OSPF was excluded from this evaluation.
4only data packets.

Table 4.1: Summary of the published evaluations. 93
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most promising approach in comparison to OSPF regarding all aspects of de-
pendability is indispensable. In particular the aspects availability, reliability,
integrity, and maintainability (cf. Section 2.1.1.2) of the routing approaches
need to be evaluated.

Availability and reliability focus on performance aspects in the routing context,
such as how well the network is utilized and how robust the algorithms handle
failures inside the network. We analyse these aspects in Section 4.3.1.

In Section 4.3.2 we focus our analysis on the evaluation of the approaches’
characteristics regarding system integrity, i. e. the protection of the routers as
well as the messages they exchange against intentional or accidental change or
manipulation.

Finally, we analyse maintainability aspects of the routing approaches in Sec-
tion 4.3.3. In particular, we are interested in the extend to which both ap-
proaches operate autonomously, addressing the growing complexity in UC en-
vironments.

We neglect the safety aspect of dependability in our further evaluations, since
routing functionality is generally free from risk of causing harm the user or the
system.

4.3.1 Performance

Farooq provides in [76] an extensive performance evaluation of BeeHive in com-
parison to other nature-inspired routing approaches. For reference he also in-
cluded OSPF in these evaluations. However, we question some of his results.
Especially the following aspects need clarification:

OSPF’s performance results: the performance results of OSPF were consider-
ably inferior to the results BeeHive achieved. However, the evaluation of
OSPF was done using a simplified basic version. Therefore, we put forth
the hypothesis that a realistic OSPF configuration with optimized link
costs, should increase its performance results significantly.

Realistic results: Farooq’s simulation environment abstracted from real net-
works. Neither did he include realistic protocols, such as IP and TCP,
nor realistic traffic patterns. While abstract simulations do provide im-
portant insight into a protocol and its performance in certain situations,
it is questionable if these findings can be generalized to real world envi-
ronments.

For example, the widely used TCP protocol comprises several mecha-
nisms to provide a reliable transport service in unreliable networks. This
results, among others, generally in a higher percentage of delivered pack-
ets, since TCP retransmits dropped packets. Thus, the influence of the
routing algorithm on this performance parameter decreases significantly.
Furthermore, multipath routing schemes in general might even decrease
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the TCP performance in certain situations [290] resulting in the need to
adapt TCP to improve the results [148].

Therefore, we think it prudent to compare both approaches’ performance
in a simulation environment that models realistic network characteristics.

Robustness: no evaluation exists that compares the behaviour of OSPF and
BeeHive during network failures. Farooq excluded OSPF from this eval-
uation claiming that the performance of OSPF would be inferior to Bee-
Hive’s performance since the results were already significantly worse in a
faultless network. This must be validated in order to soundly determine
both algorithms’ robustness with regard to network failures.

We analyse these three aspects by means of simulation. Therefore, we first
describe our simulation environments in the next section and afterwards provide
the detailed settings for each simulation and discuss the respective results.

4.3.1.1 Simulation Environments

We use the C++-based discrete event simulation framework OMNeT++ ver-
sion 3.3 [267, 268]. Additionally, we utilise Internet-related functionality, such
as the protocols IP, TCP, and UDP, from the corresponding INET framework
version 20061020 [3]. It also provides two implementations of OSPF.

Generally, we reiterate each simulation ten times to avoid choosing an un-
favourable seed for the random number generator by accident. Thus, the per-
formance results always represent the average of ten independent simulation
runs. Each simulation run lasts 1030 seconds. During the first 30 seconds, the
routing algorithms have exclusive access to the network in order to initialize
their routing tables. No application traffic is generated during this time.

With regard to network topologies, we model two real world WANs that are
commonly used in the evaluations of nature-inspired routing approaches as well:
NSFNet and NTTNet.

NSFNet represents the old US T1 backbone consisting of fibreoptic links that
allow for a bandwidth of 1.544 Mbit/sec It comprises 14 nodes that are
connected with 21 bidirectional links, each having a transmission delay
between 4 and 20 milliseconds. Figure 4.9 illustrates the topology and
summarizes the characteristics.

NTTNet models the Japanese backbone or, more precisely, the fibreoptic
backbone of the company NTT. NTTNet comprises 57 nodes that are
connected with 81 bidirectional links. The bandwidth of the links is uni-
formly 6 Mbit/sec while the transmission delays range between 1 and 5
milliseconds. Figure 4.10 illustrates the topology and summarizes the
characteristics.

Although both WANs are rather old and do not represent the current state-of-
the-art regarding for example, link bandwidth, we chose these for two reasons.
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(a) Topology

Number of nodes: 14 Bandwidth: 1,5 MBit/s
Bidirectional links: 20 Link delay: 4–20 ms

(b) Characteristics

Figure 4.9: NSFNet

(a) Topology

Number of nodes: 57 Bandwidth: 6 MBit/s
Bidirectional links: 81 Link delay: 1–5 ms

(b) Parameters

Figure 4.10: NTTNet

First, they are widely used in the evaluations of the nature-inspired routing
approaches. Second, they allow us to overload the network while still keeping
the time and memory requirements of the simulations reasonable.
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Parameter Description

Percentage delivered The amount of packets (in percent) that arrived at their re-
spective destination on the application layer. The routing
algorithm should maximise this value.

Throughput The average throughput (in Mbit/sec) denotes the average
traffic that arrived at its destination on the application layer
per second. The routing algorithm should maximise this
value.

Complete sessions The amount of sessions (in percent) that were transferred
completely, i. e. all packets arrived successfully at their des-
tination application. Note, that while TCP retransmits
dropped packets, a single dropped UDP packet renders a
UDP session incomplete. The routing algorithm should max-
imise this value.

Packet delay The average time (in seconds) the packet traveled from
sender to destination. Hereby, we measure the packet de-
lay from sending to receiving application. Thus, it includes
for example the time that is required for a TCP retransmis-
sion of the same packet if it was dropped previously. The
routing algorithm should minimize this value.

Jitter The average jitter (in milliseconds). Jitter results from the
variable packet delays of the data packets and denotes their
average difference. Especially time critical applications, such
as VoIP or video streaming, require low jitter values in or-
der to provide a good replay quality. The routing algorithm
should minimize this value.

Session delay The average time (in seconds) that is required to finish a
session completely. The routing algorithm should minimize
this value.

Routing overhead The bandwidth (in percent) that is consumed solely by the
routing algorithm. The routing algorithm should minimize
this value.

Table 4.2: Performance parameters collected during the simulations

For our experiments we have two simulation environments available: the sim-
ulation environment Farooq devised and used in his simulations in [76] and
our newly devised simulation environment that incorporates realistic Internet
functionality. Both network topologies are available in the two environments.
Furthermore, we collect the performance parameters illustrated in Table 4.2 in
both environments.

Farooq’s simulation model Farooq provided us with the original simulation
model he used in his experiments in [76]. We are grateful for this, since this
allows us to use his implementation of BeeHive, eliminating a great potential
source of error. Regarding OSPF, we made only minor changes to the model in
order to allow for using link costs when calculating the shortest paths between
nodes.
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Parameter Description

MSIA Mean session inter-arrival time
MPIA Mean packet inter-arrival time in a session
sessionSize Size of the session
packetSize Size of the packets

Table 4.3: Traffic generation parameters in Farooq’s simulation environment

The traffic is specified on a flow-level, i. e. the communication is represented by
an abstract continuous flow of packets between the nodes. The parameters dis-
played in Table 4.3 are used to model the flow. Generally, each node generates
traffic. At this, the destination is chosen alternating completely at random or
at random while favouring the previous destination by a probability of 40%.
We do not consider network failures in his model.

For a more detailed description of Farooq’s simulation environment we refer the
interested reader to [76].

Realistic simulation model In addition to Farooq’s simulation model we de-
vised and implemented our own model striving for more realism. The significant
difference to Farooq’s model lies in the fact that we model the complete pro-
tocol stack as it exists in the Internet today. Furthermore, we use the Quagga
OSPF implementation from the INET framework for OMNeT++ , which is a
real routing software [2] that was adapted to run inside OMNeT++. A small
drawback results from the fact that the adaptation layer does not support the
use of ECMP routing which will have a slightly negative impact on the OSPF
results. Though it is impossible to quantify this impairment, the results will
still be meaningful, since they represent the worst case scenario, in which no
equal-cost paths exist inside the network.

In order to include BeeHive in our model, we implemented a wrapper that al-
lows for Farooq’s version of BeeHive to run in our model making only minor
adaptations necessary. We tested our implementation by also porting Farooq’s
traffic generator to our model. We found no significant discrepancies in the
attained results in comparison to his simulation model and thus assume that
our wrapper works correctly. For completeness we provide the results in Ap-
pendix B.2.

Both described network topologies are available for use in this model as well.
In order to model realistic traffic, we looked at the characteristics of real In-
ternet traffic, which comprise, amongst other aspects, self-similarity [149] and
heavy-tailed distributions [77]. Similar to Farooq’s model, each node generates
traffic, though the destination is always chosen at random. We based the traffic
generator on ReaSE [82,83] which considers these known characteristics of real
Internet traffic. In detail, we specify the fundamental traffic mix as illustrated
in Table 4.4. Based on this, we devise four traffic profiles that successively in-
crease the network load until the network is overloaded. Finally, we include the
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Application Percentage1 Protocol

Backup 1.57 TCP
Interactive server 4.71 TCP
Email server 4.19 TCP
Streaming server 1.05 UDP
Web server 11.52 TCP
Misc 20.42 UDP
DNS 56.54 UDP

1 of the total traffic.

Table 4.4: Traffic mix

possibility to disable and re-enable nodes during the simulation at configurable
times, to simulate router failures.

4.3.1.2 Evaluation 1 – Optimized link costs

The performance results of OSPF should increase significantly if the link costs
are optimized. This should become especially apparent with increasing traffic
volume, since the traffic load should be balanced better across the network,
resulting in a longer time before single network links become overloaded. In
this first evaluation we analyse this hypothesis.

OSPF bases the calculation of the shortest paths solely on the given link costs.
Thus, changing the link costs results in different shortest paths and consequently
a different network utilization and overall performance. The link weight setting
problem, i. e. finding the optimal link costs, is a well discussed topic in the
literature, e. g. [78, 79,215,223].

Optimizing link costs represents an external optimization method, i. e. an ad-
ministrator or management system may calculate the optimal link costs for the
available traffic and update the router configurations accordingly, either before
or during operation. However, each changing of the link costs results in a re-
calculation of the shortest paths in the network. Therefore, this optimization
should be used sparingly during operation as it results in unstable routes during
the recalculation time. Another problem represents the fact that the traffic has
to be known in advance to optimize the link costs accordingly. It is evident
that great changes in the traffic result in a different utilization of the network.
Thus, optimized link costs for one traffic type might not be optimal for another.

Generally, the link weight setting problem is NP-complete [78]. However, several
optimization strategies are proposed and discussed in the literature, e. g. using
local search algorithms [78, 79], evolutionary algorithms [38, 72], or heuristics
[228].
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We optimize the link costs via simulation, using the cost metric from [79], where
øa denotes the cost for a link a, c(a) denotes the capacity of link a, and x denotes
the maximum load during the simulation:

øa(x) =



1 for 0 ≤ x/c(a) < 1/3
3 for 1/3 ≤ x/c(a) < 2/3
10 for 2/3 ≤ x/c(a) < 9/10
70 for 9/10 ≤ x/c(a) < 1
500 for 1 ≤ x/c(a) < 11/10
5000 for 11/10 ≤ x/c(a) <∞

(4.5)

After each simulation run, the utilization x/c(a) of each link a is evaluated and
the corresponding cost is updated according to this cost metric. Overall, we
did 100 optimization iterations to keep the total optimization time reasonable.
While this does not represent an exhaustive optimization, the simulation results,
which we present in the following, already show a clear trend. From now on,
we refer to OSPF using uniform link costs of one as UnitOSPF and to OSPF
using optimized link costs as Adv.OSPF.

Simulation settings In order to analyse the effect of optimized link cost iso-
lated from other factors, we use Farooq’s simulation model for this analysis.
This guarantees valid results for BeeHive, allowing us to unambiguously assess
Farooq’s claim that OSPF generally performs worse than BeeHive.

Furthermore, we use in accordance to Farooq the network topology NTTNet
and specify the traffic equally to his settings. Each node generates traffic with
MPIA = 0.005 sec, sessionSize = 2130000 bit, and packetSize = 512 byte. The
buffer size in each router is set to 1000 packets. The value for MSIA is gradually
decreased from 8.6 to 1.6, in order to continuously increase the traffic load.

We are especially interested in the performance parameters throughput, the
percentage of successfully delivered packets, the packet delay, and the total
amount of created and successfully finished sessions.

Results In general, the results support our hypothesis that the performance
of OSPF increases significantly, if it is provided with optimized link costs.

Figure 4.11 visualises the simulation results in detail. In each diagram the x-
axis denotes the five different traffic situations, which are generated by gradually
decreasing the MSIA from 8.6 to 1.6. Thus, the network load increases from
left to right.

Adv.OSPF outperforms BeeHive by a slight margin in low-traffic situations and
performs only slightly worse in high-traffic situations regarding throughput,
percentage delivered, and packet delay which are illustrated in Figure 4.11a,

100



4.3. Analysis

 10

 20

 30

 40

 50

 60

 70

8.6 6.6 4.6 2.6 1.6

T
hr

ou
gh

pu
t i

n 
M

bp
s

Mean session inter−arrival time (MSIA)

 BeeHive
UnitOSPF
Adv.OSPF

(a) Throughput

 60

 65

 70

 75

 80

 85

 90

 95

 100

8.6 6.6 4.6 2.6 1.6

P
er

ce
nt

ag
e 

of
 p

ac
ke

ts
 d

el
iv

er
ed

Mean session inter−arrival time (MSIA)

 BeeHive
UnitOSPF
Adv.OSPF

(b) Percentage delivered

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

8.6 6.6 4.6 2.6 1.6

P
ac

ke
t d

el
ay

 in
 s

ec
on

ds

Mean session inter−arrival time (MSIA)

 BeeHive
UnitOSPF
Adv.OSPF

(c) Packet delay

 0

 5

 10

 15

 20

 25

 30

 35

 40

8.6 6.6 4.6 2.6 1.6

A
m

ou
tn

 o
f s

es
si

on
s 

(x
10

00
)

Mean session inter−arrival time (MSIA)

20%
33%

24%

51%
43%

58%

92%
64%

93%

98%
83%

98%
98%

93%
99%

BeeHive
UnitOSPF
Adv.OSPF

(d) Total and completed sessions

Figure 4.11: Simulation 1 results

Figure 4.11b, and Figure 4.11c respectively. Furthermore, the session analy-
sis reveals that Adv.OSPF performs generally better than BeeHive, i. e. more
sessions are completed successfully. Though the difference is only minimal dur-
ing low traffic situations, the performance gap widens with increasing traffic.
Figure 4.11d reflects this. It displays the total number of generated and suc-
cessfully completed sessions. Each shaded column displays the number of total
sessions, while the successfully completed sessions are displayed in black. The
percentage of completed sessions is given above each column for the sake of
clarity. In the cases where nearly 100% of the sessions are completed, the first
column always displays the results for BeeHive, the second UnitOSPF, and the
third Adv.OSPF respectively.

With increasing traffic load, UnitOSPF performs gradually worse than BeeHive.
The fact that it achieves the best results regarding packet delay in the over-
load situation results from the fact that 33% of all packets are dropped when
using UnitOSPF, compared to only 17% for Beehive and 18% for Adv.OSPF.
Generally, the packets that account for high delay values are those with longer
routes, i. e. packets that have to travel longer distances in the network. How-
ever, these are statistically more likely to get dropped than packets with short
routes. Since we do not consider the delays of dropped packets in the packet
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delays, the mean packet delay is therefore lower in UnitOSPF, compared to
BeeHive and Adv.OSPF.

At first it is also remarkable that UnitOSPF completes the most sessions suc-
cessfully in the overload situation, while it performs generally worse than Bee-
Hive and Adv.OSPF. However, this can be explained by looking at the general
strategies of the routing variants and the characteristics of NTTNet. Uni-
tOSPF always uses the shortest path regarding the hop count while BeeHive and
Adv.OSPF statistically use longer routes. Furthermore, all links in NTTNet
have almost equal characteristics, i. e. the same bandwidth and only slightly
varying link delays. Therefore, since the overload situation is equally distributed
across the whole network and not limited to single links, again the probability
of a packet drop statistically increases with each additional link the packet has
to travel, penalizing longer routes.

In summary we observe that while Farooq is correct in his claim that OSPF in
a default configuration performs worse than BeeHive, a more thorough analysis
proves that optimized link costs enable OSPF to partly outperform BeeHive.
Furthermore, there seems to be further potential for improving the performance
of Adv.OSPF since we did not perform an exhaustive optimization of the link
costs. This is also supported by the results in [79] that observed a minimal
difference of only three percent between the performance using completely op-
timized link costs and the general optimum that is possible.

However, due to the fact that the traffic has to be known in advance of the
optimization and the NP-completeness of the optimization problem, optimizing
link costs might not be possible in every situation. From this point of view
BeeHive provides the more efficient routing approach.

4.3.1.3 Evaluation 2 – Realistic protocols and traffic

The simulation environment we used in simulation 1 modelled the network ab-
stractly. No real protocols or traffic profiles were incorporated. While this
evaluation provides important first insights into a new protocol and its per-
formance, the question arises if the results can be generalized to real world
networks.

Although Farooq analyses in [76] the performance results of a real world Bee-
Hive implementation in comparison to a real implementation of OSPF as well,
he evaluates both using only a small network topology and in a situation that
clearly favours multipath routing approaches. Thus, as expected, BeeHive
clearly outperforms OSPF. Farooq takes these results as proof that BeeHive
generally outperforms OSPF. However, we question the generality of these re-
sults and analyse the impact of realistic protocols and traffic in this second
evaluation.
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Simulation settings Again, we analyse the behaviour of BeeHive, UnitOSPF,
and Adv.OSPF. However, this time we use our simulation environment that
models real Internet protocols, such as IP, TCP, and UDP. Furthermore,
we use our predefined traffic profiles that reflect a more realistic traffic mix.
Similarly to the first evaluation, we use NTTNet as the network topology and
increase the traffic load during the simulations from low to overload, i. e. from
left to right in the visualisations.

Results We illustrate the general results of this evaluation in Figure 4.12. The
individual diagrams are arranged similar to those of simulation 1. Merely the
traffic load if no longer specified by the MSIA but our traffic profile.

Generally, the results show that the model comprising a realistic protocol stack
as well as traffic yields different performance results than from the abstract
model, operating with flow-based traffic. Adv.OSPF clearly outperforms Bee-
Hive in every aspect, with the exception of slightly lower throughput during
high traffic load. However, we expect this situation to change if we optimize
the link costs further.

An interesting results is that BeeHive performs worst in the overload traffic
situation. While we see the same effect as in simulation 1 of UnitOSPF showing
the lowest packet delay and highest amount of completed sessions, BeeHive falls
behind UnitOSPF in terms of throughput and percentage delivered as well,
though Adv.OSPF performs still better than UnitOSPF on both accounts.

Furthermore, the average packet delay using BeeHive in the low traffic situation
is with 36 milliseconds 13 milliseconds higher than UnitOSPF and Adv.OSPF,
which both result in an average packet delay of 23 milliseconds.

We are curious if this performance degradation results from including TCP in
the simulation and thus explore the performance results in more detail. With
regard to TCP traffic, we take a closer look at the email sessions of the traffic
mix. In detail, the email session models a request-response communication, in
which a total of 41000 bytes are sent via TCP. Furthermore, the application
processing time between the requests adds up to a total of 3 seconds.

Figure 4.13 displays the simulation results regarding the session delay (Fig-
ure 4.13a) and the total and completed sessions (Figure 4.13b). Only the delays
of finished TCP sessions are considered. Nevertheless, since TCP retransmits
dropped packets, the delays of the individual sessions vary significantly. There-
fore, we change the visualization from displaying merely the mean session delay
to visualizing three aspects of the session delays. The columns represent the
range in which the lower 80% of the session delays are located. The median
of all session delays, i. e. the delay of 50% of the sessions is lower or equal to
this value, are displayed by the horizontal line inside each column. Finally, the
maximum session delay is given above each column.
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Figure 4.12: Simulation 2 results

On first inspection, it is striking that remarkably high session delays up to 974
seconds occur. So, before delving into discussing the results in detail, we would
like to spend a moment explaining the underlying reasons for this.

If a packet is dropped, TCP waits until the retransmission timeout (RTO)
timer expires. The initial value is set to 1 second. This complies to the rec-
ommendation in [238], in which the author analysed in detail the influence of
the initial RTO on TCP’s performance. After each packet drop the RTO is
doubled, following the specification of the TCP retransmission timer in [192].
The maximum RTO is defined to be 240 seconds in the simulation environ-
ment, following [35]. Finally, the maximum number of retransmissions is set to
12. Therefore, in the worst case, i. e. if a packet is dropped repeatedly for 12
times, the RTO delay alone adds up to 1215 seconds. To this, the transmission,
queueing, and processing delays on the path to the packet’s destination have to
be added as well, resulting in potentially long-running sessions.

Generally, several causes for packet retransmission exist. Especially when using
multipath routing schemes, the TCP-internal measurement of the round trip
time (RTT), needed to set the RTO appropriately, is never accurate due to the
different paths used. If the delays of different paths differ significantly this may
lead to the premature timeout and retransmission of the packet that travels on
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Figure 4.13: Simulation 2 detailed TCP session results

the long-delay path [287]. Furthermore, since NTTNet comprises links with a
bandwidth of only 6 Mbit/sec, packet drops occur frequently. Thus, high session
delays may occur at times.

Still, it is remarkable, that even with a low traffic load, the maximum session
delay takes up to 560 seconds for BeeHive, compared to 29 and 13 seconds
for UnitOSPF and Adv.OSPF respectively. This could be an indication of the
RTT problem described above. However, these extremely high values are the
exception. The median of all delays using BeeHive is 4.0 seconds, which is al-
most as good as the median of 3.8 seconds for both UnitOSPF and AdvOSPF.
However, with increasing traffic load, the median using BeeHive increases faster
than using UnitOSPF and Adv.OSPF. Eventually, in the overload traffic situa-
tion, the median using BeeHive is twice as high as the median using Adv.OSPF
and almost three times as high as the median using UnitOSPF.

Thus, including TCP seems to be at least in parts responsible for the perfor-
mance degradation of BeeHive, beginning with a high traffic load as well as
the higher average delay in low traffic situations. One reason behind this is
that BeeHive is able to handle less sessions during the simulation time than its
competitors due to the longer session times. We do not generate a new session
at a fixed interval on each node, but model a number of applications, that start
a new session at random during a specified time interval, after their current
session is finished, either successfully or broken.

To validate these findings, we examine the UDP traffic in more detail as well.
Furthermore, we are interested in the performance both routing approaches
show regarding time critical streaming traffic. Thus, we take a closer look at
the streaming application from our traffic mix, which models the streaming of
a high-quality compressed audio stream. In detail, it generates a constant bit
rate stream of 96 Kbit/sec. At this, 256 byte UDP packets are sent every 21.3
milliseconds. The total size of the stream is chosen randomly between 512 KB
and 2 MB. Furthermore, we model a 0.5 second buffer to account for jitter.
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(c) Percentage of packets delivered per session

Figure 4.14: Simulation 2 detailed streaming session results

Thus, if a the next packet in the stream is not received after 0.5 seconds, we
consider the stream broken.

Figure 4.14 illustrates the detailed simulation results for the streaming applica-
tion. Figure 4.14a clearly shows that the multipath strategy of BeeHive results
in significantly higher jitter values compared to UnitOSPF and Adv.OSPF.
Clearly the multipath routing strategy of BeeHive takes its toll regarding jitter.
However, despite being higher, the jitter is still acceptable for our streaming
application.

More amazing are the low values for the completed streaming sessions, illus-
trated in Figure 4.14b. Even during low traffic, no approach allows for even
half of the started streaming sessions to successfully transfer all packets. How-
ever, since NTTNet is generally low equipped regarding the links’ bandwidth
compared to today’s standards, packets are likely to get dropped. Especially
streaming applications suffer from this, since they have rather high require-
ments for the network to work properly. Still, despite packet drops, the received
stream might still be useable.

Therefore, we illustrate in Figure 4.14c the percentage of the packets that
are delivered on average per stream. During low network load, the streams
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Figure 4.15: Simulation 2 routing overhead

should generally be useable, though the quality is worst when using BeeHive
as the routing algorithm. In medium traffic load situations only BeeHive and
Adv.OSPF allow for usage of the streaming application. Although the audio
quality suffers noticeable with packet delivery rates from only 80 to 90%, the
usage of packet loss concealment rechniques, e. g. [194], might still provide a
limited useable audio stream. We seriously doubt that a stream with less than
60% of the packets available is of any use to the receiver. We therefore do not
evaluate the details of the streaming results further.

However, since BeeHive’s performance regarding packet delivery is better com-
pared to UnitOSPF beginning with medium network load, we take this as an
indication that indeed TCP seems to be responsible for the overall performance
degradation of BeeHive.

We conclude our second evaluation with the analysis of the routing overhead,
i. e. the percentage of the total available bandwidth that each approach requires
for its routing messages. The results are displayed in Figure 4.15. Due to the
fact that the network in this simulation is error-free, OSPF becomes rather quiet
after the initial setup of the routing tables. The default Quagga configuration
for retransmitting LSAs is every five seconds. However, in BeeHive every node
sends a bee agent every second, resulting in a significantly higher bandwidth
that is required. Furthermore, the graph for BeeHive is increasing over time,
which results from the fact that in addition to the bee agent that is sent every
second, another bee is generated after a certain amount of data packets has
been generated at the node. Thus, increasing traffic results in increasing routing
overhead in BeeHive. However, the required bandwidth of BeeHive is generally
acceptable in our case since it generally requires less than 1% of the total
available bandwidth, with the exception of the overload situation. Still, if
BeeHive should be employed in future WANs that will have much higher link
bandwidths (even today the German research network XWin comprises some
links that have a bandwidth of 1 Tbit/sec) and are thus able to handle much
more traffic, the effect of this behaviour should be further evaluated.
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In summary, we note that the results of the abstract simulation model are not
transferable one-to-one into real world networks. Especially the TCP-based
traffic seems to have a negative impact on BeeHive’s overall performance. Gen-
erally, Adv.OSPF outperforms BeeHive in all aspects. Furthermore, UnitOSPF
shows better results than BeeHive in overload traffic situations.

4.3.1.4 Evaluation 3 – Network failures

Our final evaluation targets mainly the robustness of the routing algorithms
since Farooq excluded OSPF from these evaluations. Furthermore, in order
to validate the previous results, we want to compare the behaviour of the two
routing approaches on a second network topology with different characteristics.

Simulation settings We have chosen the network topology NSFNet (cf. Fig-
ure 4.9) for this simulation for two reasons. First, it represents in contrast
to NTTNet a smaller topology with significantly less alternative paths between
any two nodes. We are mainly interested in the question if BeeHive still outper-
forms UnitOSPF in a network topology that is not heavily interconnected. Fur-
thermore, although NSFNet is widely considered in the evaluations of nature-
inspired routing approaches, Farooq did not include it in his evaluations.

We use NSFNet in our realistic simulation environment, in which we generate
the traffic utilizing our four traffic profiles, that increase the network load from
low to an overload situation.

In detail, we evaluate the characteristics of BeeHive, UnitOSPF, and Adv.OSPF
in three scenarios:

1. For reference and in order to be able to compare the results to the sec-
ond evaluation, we analyse the approaches’ performance in an error-free
network.

2. In the second scenario we introduce a failure situation. At t1 = 300
seconds router 6 fails and restarts at t2 = 600 seconds.

3. In the third scenario we aggravate the failure situation further. In addi-
tion to router 6 we let router 10 fail at t3 = 400 seconds, which almost
partitions the network. Router 10 restarts similarly to router 6 at t4 = 600
seconds.

Figure 4.16 illustrates the locations of the failing routers in NSFNet.

Results We illustrate the results of the first, error-free simulation scenario in
Figure 4.17. It is instantly obvious that the characteristics of NSFNet are prob-
lematic for BeeHive. Generally, Adv.OSPF again outperforms BeeHive in every
performance aspect. Furthermore, except for the low traffic situation, where
BeeHive performs slightly better than UnitOSPF regarding throughput and
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10

6

Figure 4.16: Failing routers in the NSFNet topology

the completed sessions, it performs worst in every other traffic situation. Espe-
cially with increasing traffic load the performance gap becomes wider between
BeeHive and the two OSPF variants.

We believe this is a direct consequence from NSFNet’s topological structure.
While in NTTNet usually several only slightly different paths or sub-paths
exist between two nodes, NSFNet is marked by the fact that although several
paths exist bestween any two nodes, mostly only one good path sticks up.
Therefore, the probabilistic routing decision of BeeHive which spreads traffic
over all available paths has a negative impact on the performance in this setting.

The same general trends are apparent in the results for the two failure situations
as well. Though the performance of BeeHive suffers more from the network
failures. Especially in failure situation 2 it performs worst of all candidates
regarding all performance aspects. We visualize the results in Figure 4.18. At
this, we display the results for failure situation 1 on the left and directly oppose
the respective results of failure situation 2 on the right side.

In order to evaluate how fast OSPF and BeeHive react to the failure situations,
we illustrate the throughput per second on the application layer in Figure 4.19.
Each row displays a traffic profile, increasing from low to overload. Furthermore,
the left column displays the results in failure situation 1, while the right column
displays failure situation 2. To increase readability, we include at this point only
the graphs for BeeHive and UnitOSPF. Furthermore, the diagrams include for
reference the throughput graphs of BeeHive and OSPF in the error-free network,
which are denoted by their names. The graphs in the failure situations on the
other hand are marked with a star, e. g. UnitOSPF*.

Both approaches react instantly to the failure as well as the re-entry of the
router. Generally, the time each algorithm needs to notice the router failure
and re-entry depends on its configuration. Both recognize a failing router when
no answer is received for four consecutive hello packets. Consequently, the
required time is determined by the frequency of the hello packets, which is
configurable in both approaches. In the simulation, both are set to 1 second,
which explains the equal behaviour in this regard.
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Figure 4.17: Simulation 3 error-free network results

Furthermore, it shows clearly that BeeHive handles the first failure better than
OSPF in low and medium traffic situations. However, this reverses in high and
overload traffic situations, which supports our earlier observation that OSPF
outperforms BeeHive in overload situations. During the second failure, Bee-
Hive’s performance generally falls short of UnitOSPF’s performance.

After the failures, the performance of each approach recovers quickly and evens
out approximately at the level of the error-free performance curve. The only
exception constitutes BeeHive in failure situation 2 with a low traffic load, where
the throughput stays for unknown reasons significantly lower compared to the
error-free curve.

Finally, the routing overhead results are similar to those of evaluation 2 (c.f.
Figure 4.15) which is why we abstain from a graphical representation. The
overhead of OSPF centers around 0.01% of the total available bandwidth, while
BeeHive’s overhead increases gradually from 0.5 to 1.6%.

In summary, we record that both approaches show robust behaviour regarding
network failures. While the performance is understandably lower during the
failure situation, it quickly recovers after the failure has been fixed. Further-
more, BeeHive’s performance suffers if the network topology does not comprise
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Figure 4.18: Simulation 3 failure situations results
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Figure 4.19: Simulation 3 throughput per second during failure situations
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several alternative paths between the nodes that are similar in terms of delay
and hop count.

4.3.1.5 Summary

We evaluated three hypotheses in the performance evaluations, regarding which
we compared the performance of OSPF and BeeHive. In summary, the results
show that a realistic configuration of OSPF using optimized link costs results
in better or at least equally good performance results compared to Beehive.
Thus, especially Farooq’s assumption that BeeHive always outperforms OSPF
is invalidated from a purely performance oriented point of view.

Furthermore, we showed in evaluation 2 that the performance results using an
abstract simulation model are not representative for a real world network. In
particular the inclusion of TCP-based traffic has a negative impact on BeeHive’s
performance results. Thus, a more thorough analysis of BeeHive’s performance
regarding TCP traffic in order to find measures to improve it is advisable.
Although several research proposals exist that adapt TCP’s behaviour to meet
the requirements of multipath routing schemes, e. g. [148,287], from a pragmatic
point of view, changing the multipath routing scheme to perform well with the
widely deployed standard protocols increases the realistic applicability of these
approaches. It is highly unlikely that widely deployed protocols, such as TCP
will be changed significantly or replaced completely in the near future.

With regard to streaming traffic, BeeHive performed generally worse than
Adv.OSPF. However, concerning the applicability of BeeHive in future net-
works, this is of special importance. In the generally ongoing process of network
convergence, telecommunication providers increasingly substitute their tradi-
tional circuit-switched telephone systems with VoIP solutions. Furthermore,
more and more comprehensive all-round packages are offered, including, in ad-
dition to telephone and internet services, television over data networks (IPTV).
Therefore, the importance of good performance results regarding streaming
traffic is growing. This correlates with the latest forceasts about the develop-
ment of global IP traffic. For example, Cisco’s June 2009 forecast estimates a
367% compound anual growth rate for multimedia traffic in the timeframe 2008
to 2013. Furthermore, by the end of this time period the sum of all forms of
video traffic are estimated to account for over 91 percent of global consumer
traffic [54]. In essence, we provided only the first step in the evaluation and
the algorithms’ characteristics regarding streaming content should be analysed
further.

Focussing on VoIP, Bohge and Renwanz present in [32] for example a framework
that allows for a realistic qualitative evaluation of VoIP sessions. Essentially,
they provide the possibility to feed arbitrarily encoded sound files into an OM-
NeT++ VoIP traffic generator and measure the quality of the received sound
file using the ITU recommendation for perceptual evaluation of speech quality
(PESQ) [256], which has been developed specifically to analyse end-to-end voice
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quality in real world telecommunication networks. An analysis of BeeHive and
OSPF using this framework would yield a more detailed assessment regarding
VoIP quality.

Similar future work in the context of evaluating the streaming quality may
include the integration of objective and subjective perceptual evaluation of
multimedia video quality (PEVQ) as specified in [257] and [258] respectively.

A general lesson we learned during the evaluations is that using simply the
shortest path for the routing decision is advisable in situations where the net-
work is overloaded. Especially the results of evaluation 2 account for this. It
is not clear if situations where this holds can be described in a way that allows
for the routing algorithms to switch their operations to shortest path routing
accordingly. This is an interesting open question for future research.

Finally, both routing approaches show robust behaviour with regard to network
failures.

Advisable future work includes a detailed analysis of both algorithm’s scalabil-
ity characteristics as well as a performance comparison using state-of-the-art
network characteristics. We did not include this in the evaluation at hand due
to the respective enormous CPU and memory requirements of such a simulation.
Especially with regard to the discussed UC characteristics this is indispensable.

Furthermore, we did not include in our analysis more elaborate traffic engineer-
ing techniques that are used in OSPF-based networks today. Especially, the
usage of Multiprotocol Label Switching (MPLS) allows to choose the shortest
path to a destination on the basis of additional metrics than solely the link
costs, e. g. the currently available bandwidth of the paths. It relies on the
use of the OSPF traffic extensions [131], which allow in addition to bandwidth
considerations the definition of other special link or tunnel attributes [60]. A
comparison of BeeHive and MPLS on top of OSPF would be interesting.

4.3.2 Operational Integrity

Routing is a critical part in networking. If the routing system is disrupted either
by malicious intent or by accident, the network may become useless. Therefore,
in addition to good routing performance to guarantee the network’s availability
and its reliable operation in spite of possible network failures, the operational
integrity of the routing system as a whole must be ensured as well.

Generally, routers incorporate the information inside every routing message
they receive as they put unconditional trust in the sender and the message
content. Thus, without mechanisms to protect and verify the integrity and
authenticity of the exchanged messages it is trivial to manipulate the routing
operation externally, e. g. by sending forged or modified messages to the routers.
Since these messages can be sent from any host inside the network the attack
potential is significant. Furthermore, a misconfigured router that is started
up deliberately or by accident can bring an entire network to a standstill by
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reporting incorrect route information to the other routers. Therefore, in order
to provide a serious solution for real world deployment a routing algorithm
must include or allow for external mechanisms to protect its operation from
deliberate or inadvertent unauthorized manipulation.

In the following we first set the boundary of our analysis by giving an overview of
relevant attacks in the routing context and specifying the attacker’s capabilities.
We then evaluate which security measures are available for both protocols as
well as the extend to which they provide the necessary protection for the routing
system with regard to the described attacks.

4.3.2.1 Attacks

We consider attacks on routing algorithms on several levels: the packet level, the
information level, as well as the protocol level. Although the attack potential
for the router itself, i. e. the machine running the routing algorithm, is quite
significant, as it provides a possibility for an external attacker to become an
insider, such attacks are outside the scope of this dissertation. Furthermore, we
do not consider vulnerabilities and the resulting attack possibilities that arise
from faulty implementations of the routing algorithms.

As a foundation we assume a Dolev-Yao attacker who is able to execute the
full range of active and passive attacks. Moreover, without applying security
measures, outsiders are given the same active attack possibilities as insiders.
They can attack the routing on all abstraction levels at will. For example,
at packet level they may monitor, drop, delay, reorder, or replay the routing
packets sent by legitimate routers. Furthermore, they may execute DoS attacks,
e. g. by flooding a router with bogus packets. On the information level they
may for example modify valid routing packets, injecting fake routing packets
into the system by masquerading as legitimate router, or pose as a new router,
distributing arbitrary routing information.

Additionally, an attacker may execute protocol specific attacks. For example,
three insider modification attacks that target the OSPF protocol are described
in [52, 270]. Here, some of the features designed to make OSPF more robust,
especially with regard to the handling of LSAs, can also be exploited by an
insider to attack the routing operation.

Seq++ attack. Each LSA has a sequence number to distinguish if an LSA is
newer or similar to an already known LSA. An attacker may change the routing
information inside an LSA he received, recalculate the checksums, and increase
the sequence number before flooding it again. As a consequence all other routers
will incorporate his falsified information as they believe the LSA to be newer.
Eventually, the bogus LSA will reach the actual originator, which will respond
with a new LSA that contains the correct information. If the attacker keeps
up his attack, this leads to an unstable network topology, where the routing
information constantly changes.
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Maximum age attack. The LSA age provides a mechanism to delete old infor-
mation from the system. If an attacker modifies the age of a received LSA to
MaxAge (default setting is 1 hour in OSPF) while keeping the sequence number
intact and re-injects this LSA into the network, it causes all other routers to
delete the corresponding LSA from their database. Eventually the originator
of the LSA receives the bogus LSA and responds with a correct one. Similar to
the seq++ attack, this results in an unstable network topology if the attacker
continues his attack.

Maximum sequence number attack. The LSA sequence number represents a
32 bit value. If an attacker modifies the routing information and sets the se-
quence number of a received LSA to the maximum value, it will be considered
the “freshest” by all other routers. The originator has to take two steps in his
response: first purge this LSA by generating an LSA with MaxAge set and then
generate a new LSA including the correct information and reinitialized sequence
number. Again, the effects are similar to the seq++ attack if the attacker keeps
his attack up.

Although these three attacks may result in an unstable topology, we think them
unlikely to be executed, since an inside attacker who, for example, floods the
network with arbitrary routing information will attain an unstable topology
situation at a much faster rate.

The attacker’s motivation for attacking the routing can be very diverse. For
example, changing the packet flow may be beneficial in order to enable him to
monitor data packets he would otherwise not have access to. Another reason
may be the resulting higher monetary costs for the provider or decreased net-
work performance. Destructive minds may simply want to damage the routing
by creating unstable topologies, e. g. by flooding the network with arbitrary
routing messages.

Further discussions about attacks on routing, including those that are outside
the scope of this analysis, can be found in the literature, especially [17] and [108]
provide good overviews.

4.3.2.2 Security Measures

Security measures that protect the routing against the mentioned attacks can
take various forms. Generally, we focus on techniques that protect the integrity
and authenticity of the routing. At this, we differentiate the approaches along
two dimensions. We describe and evaluate proactive approaches that are based
on cryptographic schemes and reactive approaches that derive from IDSs. Fur-
thermore, we evaluate each with regard to the level on which it provides security,
the packet level, the information level, or the protocol level.

Establishing security measures to ensure integrity and authenticity limit the
possible attacks for outsiders and insiders. Security on the packet level narrows
the possible active attacks for outsiders down mainly to replaying packets and
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DoS attacks. Furthermore, they may drop, delay, or reorder the packets, if this
is physically possible. However, packet level security does not restrict insiders.
Defenses against inside attacks have to be established on the information level.

OSPF Security OSPF includes proactive security measures on the packet level
to achieve authenticity and integrity of the exchanged routing messages [176],
although the standard refers mainly to authenticity. For this purpose, the
OSPF packet header includes an authentication type field, and a 64-bit data
field, which the different authentication schemes may use to store their data.
Three authentication types are specified in the standard: null authentication,
simple password, and cryptographic authentication.

Null authentication essentially disables this feature. It provides no security
against any of the mentioned attacks.

Simple password authentication specifies that a 64 bit password is included in
every message, albeit in clear text. This guards against accidental threats, such
as routers inadvertently joining the routing domain, since each router has to be
configured with the correct password before it may participate in the routing.
However, simple password authentication does not provide any security against
attacks, since it is vulnerable to passive attacks. An attacker who is able to
capture a routing message instantly learns the password and is consequently
able to actively attack the routing.

Cryptographic authentication provides the only mode that allows for message
authenticity and integrity. It specifies that a shared secret key must be config-
ured in all routers participating in the routing. This key is used to generate
and verify a message digest that is appended to the end of the packet. The
message digest is the result of a one-way function with the message and the
secret key as input. Since the secret key is never transmitted over the network,
an attacker is consequently not able to learn it by capturing a packet, although
no confidentiality is provided. Furthermore, since our Dolev-Yao attacker is
not able to break cryptographic measures, this authentication mode provides
the required security on the packet level and consequently protects the routing
operation against external attacks.

Additionally, replay attacks are impeded by integrating a non-decreasing se-
quence number in the packet. Although it is possible to replay each packet until
the sequence number changes, this still provides long-term protection against
replay.

From a technical point of view, the OSPF standard specifies only the MD5
algorithm [216] for use with the cryptographic authentication, which has been
reported successfully broken in late 2008 [262]. Thus, it should not be used
anymore.

While cryptographic authentication theoretically protects the message during
transport between neighbouring routers, it provides no security for the included
routing information, i. e. on the information level. Any router may alter the in-
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formation inside the LSA before sending it on. Thus, protection against internal
attackers is out of the scope of this measure. To remedy this problem, Murphy
et. al propose as an extension to OSPF the application of digital signatures [182].
They hereby address proactive end-to-end authentication and integrity on the
information level, protecting the actual routing information that is flooded via
routers which may themselves be faulty or compromised.

Their basic idea is to add digital signatures to LSAs that are flooded through the
network while keeping the neighbor-to-neighbor authentication algorithm on the
packet level, such as the keyed MD5 which is proposed in OSPF’s cryptographic
authentication. By signing each LSA the originator is always identifiable and
end-to-end integrity and authentication for LSA data is ensured.

As a prerequisite to using this security extension the public keys of all legiti-
mate routers have to be made available inside the network. A new LSA type
(Public Key LSA) is defined for this purpose, using the standard OSPF flooding
mechanism to distribute the public keys. In order to assure the identity of the
router and its public key, a trusted third party, the so-called CA, generates for
this purpose certificates for all routers. Each router is configured with the CA’s
public key and thus able to verify each certificate that contains a valid key.
Hence, if a router receives a new public key, it can verify the signature inside
the certificate to assure the identity of the sending router. Finally, successfully
verified public keys are used to verify the origin and integrity of LSAs.

Murphy et. al specify the RSA/MD5 algorithm [121] for generating and veri-
fying the digital signature, although in principle other asymmetric algorithms
may be used as well. Furthermore, they require signature and key formats
according to the specification in [70].

From a security point of view, this proposal provides the greatest security for
OSPF. It provides, in addition to the transport security ensured by the cryp-
tographic authentication, end-to-end authenticity and integrity for the actual
routing information. Therefore, the impact of faulty or compromised routers
inside the network is reduced significantly. They can still distribute incorrect
information, delay, drop, or reorder other routing messages, but cannot alter
other router’s information. Furthermore, if faulty routing information is de-
tected, the digital signature pinpoints exactly the responsible router.

A drawback of this approach is the necessary central CA. A successfull attack
on the CA renders the whole approach insecure. Furthermore, we are not aware
of any publication that quantifies the performance loss that results from using
digital signatures in detail. However, asymmetric cryptography is generally up
to 1000 times slower than symmetric cryptography [233]. Therefore, we expect
a significant performance loss in LSA generation and verification, compared to
standard OSPF operations.

In addition to the discussed proactive security measures, the JiNao distributed
intrusion detection system is presented in [52,122]. It provides reactive security
at the protocol level by stateful protocol analysis. For this purpose, JiNao
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Figure 4.20: JiNao protocol analysis model architecture

includes a protocol analysis module that is able to perform a real-time protocol
analysis based on a timed finite state machine that represents the real-time
behaviour of OSPF.

Figure 4.20 illustrates the protocol analysis module. Each intercepted routing
packet is first given to the Protocol Analysis Machine that determines its type
and forwards it to the appropriate Event Abstractor. Each event abstractor is
responsible for a certain type of LSA and performs some global checks, such
as checking the LSA checksum. Furthermore, it comprises of several JiNao
Finite State Machines (JFSMs) that analyse the LSA further, once the global
checks succeed. Each JFSM models a certain pattern, such as a known attack
or normal behaviour. Based on the event string they receive, their internal
state machine advances or stops. Eventually, one JFSM should finish its state
machine and report its findings. If no JFSM finished, the protocol analysis
module concludes an unknown attack and reports the event sequence.

JiNao furthermore contains a prevention module acting like a firewall. If corrupt
LSAs are found, they are dropped and not passed on to OSPF.

The authors have analysed the protocol analysis module in [52] by construct-
ing JFSMs for the three OSPF protocol attacks seq++, maximum age, and
maximum sequence number. Their experiments verify that all three attacks are
successfully detected. Furthermore, unknown attacks can be detected if JFSMs
for normal behaviour are specified. Compared to proactive security measures,
JiNao protects the routing against insider attacks, without the extra cost of

119



Chapter 4. Autonomic Dependability in Network Routing

for example digital signatures. However, the authors of JiNao did not evaluate
other attacks, such as a router masquerading as another router. Furthermore,
they did not elaborate on the complexity of constructing a JFSM that reflects
normal behaviour.

All publications considered, security in the context of OSPF is a widely dis-
cussed topic in the literature. Since the late 1990s several proposals to se-
cure OSPF were published, in addition to the approaches we discussed above,
e. g. [97, 109, 110, 292]. We focused in our descriptions on what we believe
to be the most significant ones, since none of the other proposals seems to
have made a lasting impact. None have been embraced by the Internet com-
munity and resulted in an Internet standard, which is mostly the basis on
which vendors include functionality in their products. Furthermore, security
for OSPF is still considered in parts an open problem [170] and is also still
subject to active research, especially within the IETF. For example, Bhatia
et. al are currently enhancing the cryptographic authentication of OSPF in the
Internet-Draft [26] by adding support for the algorithms defined in the NIST
Secure Hash Standard (SHS) [266] using the Hashed Message Authentication
Code (HMAC) [265] mode. Presumably this is done due to the discovered
insecurity of MD5.

Although we focus on OSPFv2 in this dissertation, we still want to mention how
the security considerations for OSPF will presumably change in the long-term
perspective. With the increasing adoption of IPv6 [62] OSPFv3 will replace
OSPFv2. All security measures have been removed from OSPFv3 as it relies
on the security services mandatory in IPv6 networks. So in order to ensure
integrity, authentication, and confidentiality of the routing exchanges, the IP
authentication header [133] and the IP encapsulating security payload [134] are
utilized as described in [92].

BeeHive Security The BeeHive protocol does not comprise any security mech-
anisms. However, proactive as well as reactive security extensions have been
proposed.

Wedde et al. specify in [278] BeeHiveGuard a proactive security extension to
BeeHive that is based on standard cryptography. It utilizes RSA [219] to gen-
erate digital signatures. One signature is used to protect the integrity of the
agent, i. e. it cannot be modified and impersonated. Additionally, two further
signatures are used to protect the integrity of the routing information which
the agent carries, i. e. the propagation delay and the queuing delay. Thus, Bee-
HiveGuard comprises packet level security as well as information level security.

Wedde et al. analysed their approach by simulation. Especially they analysed
active attacks, such as modification, masquerading, flooding, and dropping at-
tacks. The experiments reveal that BeeHiveGuard protects BeeHive against all
considered attacks. However, due to the extensive usage of digital signatures the
operational costs for BeeHiveGuard cause significantly worse performance re-
sults compared to BeeHive without security extensions. The authors state that
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the average processing cost for the agents amount to 52100% up to 160400%
compared to standard BeeHive. Furthermore, the communication costs amount
to 133% up to 1390% compared to BeeHive.

Due to this unacceptable performance degradation, Wedde et al. come to the
conclusions that new security mechanisms need to be devised to efficiently pro-
tect nature-inspired routing algorithms. The same hypothesis was also pub-
lished beforehand in [294].

BeeHiveAIS [274] provides a framework to detect and handle threats to BeeHive
in a reactive manner, based on the concepts of an Artificial Immune System
(AIS).

AIS represent a nature-inspired approach to IDS as they mimic the human
immune system in order to detect and defend against known and unknown in-
cidents. Generally, a differentiation between self and non-self cells provides the
basis of anomaly detection. With regard to BeeHive routing, self-antigenes are
representations of the routing agents’ normal behaviour while antigenes (non-
self) represent anomalous behaviour. They are detected by antibodies, which
are generated randomly on the basis of the self-antigenes. At this, antibodies
whose affinity, based on the Hamming distance, to the self-antigenes is above a
defined threshold are discarded.

A full description of the interesting AIS research field is out of the scope of this
dissertation. However, we recommend the work of Kim et al. to the interested
reader, who provide in [136] a good overview of AISs as well as a categorization
of most published approaches.

The basic operation of BeeHiveAIS consists of three distinct phases: initial-
ization, learning, and protection. During the initialization phase the patters
of agent movements, which form the foraging zones and foraging regions are
learned. In the learning phase typical patterns in the data traffic are learned.
It operates under the assumption that at this time no attacker and no malicious
node are present in the network. Combined, these first two phases result in a
repository of self-antigenes, that reflect the normal situation in the network.
These are built in each node and provide the basis for antibodies that reflect
the anomalous behaviour and are generated to counter the different threats.
Finally, during the protection phase the network is monitored and the various
security threats are detected and countered through the respective antibodies.

The learning and protection phase are illustrated in Figure 4.21a and Fig-
ure 4.21b respectively. Generally type 1 and type 2 self-antigenes are differen-
tiated. Type 1 self-antigenes protect the integrity of the agent. They consist of
tuples of (source address, neighbour, hops). Type 2 self-antigenes protect the
integrity of the propagation and queuing delays. They consist of the average
goodness values of the path to a destination via a specific neighbour. The values
are gathered over a sliding window of the delay of five subsequent bee agents,
allowing to derive an upper and lower bound to both values. If an antibody
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(a) Learning phase (b) Protection phase

Concept Description

Self-Antigenes type 1 Correct incoming direction and region of the bee
agent

type 2 Correct propagation and queueing delay tendencies

Antigenes
type 1 Incorrect incoming direction and region of the bee

agent
type 2 Incorrect propagation and queueing delay tendencies

Antibody type 1 Pattern that can detect antigenes of type 1
type 2 Pattern that can detect antigenes of type 2

(c) BeeHiveAIS Concepts

Figure 4.21: BeeHiveAIS operation phases

of either type matches an antigene the corresponding bee agent is dropped.
Table 4.21c summarizes the BeeHiveAIS concepts.

In addition to the antibodies, a protection against DoS attacks in form of an
upper bound to routing table updates is included in BeeHiveAIS. This essen-
tially defines a minimum time between two consecutive arriving bee agents. An
agent arriving before this time will be discarded and the routing table not be
updated.

Wedde et al. analysed BeeHiveAIS by means of simulation in comparison to
BeeHiveGuard. In detail, they evaluated an impersonating scenario, in which a
node fakes his address in order to divert traffic to himself, a tampering scenario,
in which a node tampers with the delay values of a bee agent in order to alter
the goodness of other nodes, a combined attack, in which several nodes collude
in the attack, and a DoS attack. They come to the conclusion that BeeHiveAIS
provides the same level of security as BeeHiveGuard while keeping the pro-
cessing and control overhead 200 and 20 times smaller respectively. However,
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they note that further evaluations regarding the scaleability of BeeHiveAIS are
required.

One aspect the authors of BeeHive do not elaborate on, is how to ensure that
no attacker is present during the learning phase. However, this clearly is a
critical point in real world networks. One possibility could be to disconnected
the network from outsiders in the beginning. However, it is questionable if
BeeHiveAIS is able to learn the patters of realistic traffic in this case. We pre-
sume that it rather determines realistic traffic as anomalous after the network
has been reconnected. Thus, other ways to achieve this must be identified and
evaluated, e. g. shielding the network from attackers somehow or filtering out
anomalous traffic, before BeeHiveAIS presents an applicable solution for real
world networks.

Generally, BeeHive could also benefit from security that is provided at the IP
layer, similar to OSPFv3 that requires the mandatory security measures in
IPv6. However, we are not aware of any research in this direction.

4.3.2.3 Summary

Both routing approaches have been subject to security evaluations and several
security solutions have been proposed. Based on the results from the respective
evaluations, we conclude that both can theoretically be secured on all levels with
regard to integrity and authenticity. However, some aspects demand further
analysis.

Only the proactive security measures at the packet level, which are included
in the OSPF standard have been embraced by the Internet community, despite
the fact that numerous approaches to secure OSPF further have been published
in the literature. Of these, only the cryptographic authentication provides any
reasonable security. Although we cannot say how network providers secure
their routing today, when using OSPF, we presume that most providers have
experts monitoring the networks closely and reacting to anomalies. This is
reasonable, since OSPF was never intended to run completely autonomous.
On this assumption, cryptographic authentication may indeed provide a good
compromise between provided security and extra operational cost. However,
a detailed study of current routing products of vendors, such as Cisco, could
shed more light on the security possibilities that are available in today’s routing
hardware. Furthermore, interviewing big providers might provide some answers,
though we deem it unlikely that most will talk freely about such a sensitive
topic.

Much higher are the security requirements for BeeHive, since it is supposed to
operate completely autonomously. Based on the respective results, BeeHiveAIS
seems to provide a quite powerful security measure that fulfills this mission.
However, security aspects in BeeHive, including BeeHiveAIS, were so far only
analysed by its authors, demanding clearly for further independent evaluations.
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4.3.3 Autonomic Behaviour

The evaluation of the approaches’ autonomic behaviour is aimed at answering
the question if human administrators may be relieved from the increasingly
burdensome task of managing the network in the future. Especially, we want
to identify if BeeHive represents an improvement over OSPF. Furthermore, in
the latter case we also want to differentiate the areas in which this proves true.

The autonomic computing initiative as well as the organic computing research
community have established several self-x properties that describe autonomic
systems. Generally, we define a self-x property as follows.

Definition 17 (Self-X Property) A self-x property describes the ability of
a system to provide a certain capability independently.

Much ambiguity exists, however, with regard to the exact definitions of indi-
vidual self-x properties, such as self-configuration, self-management, and self-
organization, since they are usually defined slightly different within the context
of the application domain at hand. A discussion about the different perceptions
of self-x properties in different research areas present, for example, Fromm and
Zapf in [80].

To avoid ambiguity in the following discussions, we therefore define first those
properties that are relevant in our context and afterwards assess the algorithms’
characteristics in their regard. Figure 4.22 provides an overview of the individ-
ual properties that are important in our context, their operational focus, as
well as their relations. Although both represent individual properties, slef-
configuration and self-stabelization interact significantly.

In the assessment we include in addition to the actual routing algorithm the
security extensions we have described in the last section. Especially, we assume
that OSPF has the cryptographic authentication enabled, while BeeHive is
protected using BeeHiveAIS.

Generally, if all individual self-x properties are present in a system, they add
up to a self-managing system.

Definition 18 (Self-Managing) A system is self-managing if it adapts its
operation to meet the characteristics of its environment, without external in-
tervention, thus ensuring its operation even in the face of failures and attacks.

However, since a meaningful assessment of the routing approaches regarding
this generic definition is not possible, we divide the analysis into two focus
areas: configuration, which includes optimizing it for performance, as well as
operational stability, which includes robustness with regard to network failures
and defense against attacks. Undoubtedly, interdependencies exist between
these two areas. For example, reacting to network failures is usually not possible
without being able to change the configuration.
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Figure 4.22: Self-X properties and their focus

4.3.3.1 Configuration

The configuration of the routing approaches comprises the initial setup of the
network as well as the routing algorithm and the configuration of the routing
tables.

Definition 19 (Self-Configuration) Self-configuration enables a system to
independently adjust its configuration parameters.

OSPF was not designed to build its initial configuration autonomous. Thus,
it must be configured with regard to the network structure, i. e. areas must be
configured, and link costs must be set, if the default setting of one, which equals
a hop-count metric, is not wanted. In order to increase the performance this is
advisable, as we have shown in Section 4.3.1.2. Furthermore, several protocol
parameters, such as the frequency of the hello packets, the time interval to
regard a neighbouring router as down, need to be configured.

BeeHive on the other hand determines the network structure by itself during
the formation of the foraging regions. Furthermore, the link characteristics
are measured during runtime. No external initial configuration is necessary.
However, several protocol aspects of BeeHive have to be specified, equally to
OSPF, via parameters, such as the frequency of bee agents or hello packets.

Based on their initial configuration, both approaches establish their routing
tables without further external guidance. Both find neighbouring routers by
means of hello packets and determine routes to all destinations inside the net-
work.

Regarding security, OSPF again requires the manual configuration of the pass-
words, whereas BeeHiveAIS learns autonomous. Yet, it requires a time span in
which no attacker must be present in the network. However, the authors do not
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elaborate on how this might be done. We presume that at present significant
manual effort is required to ensure this attacker-free environment.

Definition 20 (Self-Optimization) Self-optimization constitutes continuous
monitoring and adaptation of the configuration with regard to optimizing the
performance of the system.

BeeHive performs continuous optimization by adapting the goodness values for
the individual nodes with regard to the current situation inside the network.
Since these provide the basis for the routing decisions, the overall network
performance is continuously optimized.

An optimization measure that both algorithms include is the update of the
routes if better paths become available. This could happen for example, if a
network error has been fixed and the path is again available for routing.

Apart from this, OSPF does not include any further measures to optimize its
configuration. Merely the link costs might be updated by an administrator or
management system with externally optimized link costs, which will prompt
OSPF to update the routes.

Generally, both protocols do not include any measures to omptimize their pro-
tocol, such as adapting the frequency of routing messages or bees according to
the situation at hand inside the network.

4.3.3.2 Operational Stability

Operational stability characterises the convergence of the network into a stable
routing situation, in an error-free network as well as in the face of network
failures and attacks on the routing.

Definition 21 (Self-Stabilization) Self-stabilization describes the ability of
a system to (1) reach an acceptable state from an arbitrary state in a limited
amount of time and (2) to keep this state independently.

Both approaches are self-stabilizing in a sense that the routers find each other
and legal routes are determined for each destination, in a limited amount of
time. Furthermore, in an error-free environment, the stable routing situation is
kept indefinitely.

Important subaspects in the context of self-stabilization regarding failure sit-
uations are self-healing and self-protection. We distinguish between them in
terms of intentional versus accidental failures. At this, self-healing focusses on
accidental network failures, while the focus of self-protection lies on intentional
failures, i. e. attacks on the system.

Definition 22 (Self-Healing) Self-healing defines the ability of a system to
reach an acceptable state, starting from an unacceptable one, in a limited
amount of time.
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Both approaches are self-healing. They autonomously detect network failures
and adapt the routing entries accordingly. By excluding the failed system or
network link, they ensure the operation of the remaining network as far as
possible.

Definition 23 (Self-Protection) Self-protection enables the system to de-
tect, identify, and protect itself against attacks, in order to maintain the overall
system integrity.

Self-protection at its full extend is not available today. Measures exist, for
example, for detecting and identifying attacks, such as checking the message
integrity to determine unauthorized modifications or monitoring the system by
means of an IDS. However, a completely autonomous response is usually not
available, especially reconfiguring the employed security measures, such as to
increase the system’s overall security or to attain specialized protection against
previously unknown attacks that goes beyond detection, is still an open research
topic.

Nevertheless, the OSPF protocol contains limited measures for self-protection,
originally included for fault tolerance. In the context of attacks on the routing
algorithms (cf. Section 4.3.2.1) we mentioned that if erroneous LSAs arrive
at the legitimate router, it will send our the correct information to heal this
“error”4. Furthermore, the usage of the cryptographic authentication could
be considered limited self-protection, since on its basis external attacks can be
identified and successfully prevented. However, it requires manual configuration
to achieve this.

No automatic measures to protect OSPF against insider attacks with good
performance are available.

Although the core BeeHive algorithm does not contain any measures for self-
protection its authors present with BeeHiveAIS a solution that provides a rem-
edy to this. However, we are not sure about the extend to which BeeHiveAIS is
able to operate unsupervised in case of attacks, as only a few have been evalu-
ated. This needs to be evaluated further, ideally independent from its authors.
Furthermore, apart from detecting and dropping erroneous packets, it provides
no advanced security measures.

4.3.3.3 Problems of Autonomic Behaviour

Generally, increasing autonomic behaviour decreases the possibilities to influ-
ence the employed algorithms. In terms of the characteristics of today’s net-
works this may lead to several problems.

For example, OSPF is well integrated into the global Internet structure, being
able to redistribute domain-external routes from BGP and vice versa. We are

4This situation could also arise due to a misconfigured router, in which case these measures
could also be classified as self-healing measures.
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not aware of any possibility, manually or autonomic, to interact with BeeHive’s
operation.

Another interesting aspect represents the specification and provision of guar-
antees about the network. Today, most customers negotiate service level agree-
ments (SLA) with the service providers, which specify a certain level of service,
e. g. a certain amount of bandwidth that is guaranteed to be available for a cus-
tomer. The autonomic concept of BeeHive clearly clashes with this established
process.

Finally, the introduction of an autonomic routing approach yields a certain loss
of control about the network. Since no manual intervention is possible, it must
be well tested. However, a certain amount of residual risk remains, since it
is generally hard to devise a completely error-free design that accounts for all
failure situations and attacks.

4.3.3.4 Summary

In summary, both approaches work autonomic during their runtime, in error-
free network conditions as well as with regard to failures. However, while Bee-
Hive does not need any initial configuration to operate with good performance,
optimizing it continuously, an external initial configuration and optimization is
mandatory for OSPF to work efficiently. Furthermore, both approaches may
be configured with regard to their internal protocol behaviour, if the default
settings are not sufficient. Regarding attacks, some autonomic measures are
available for both approaches, though we believe this aspect has to be evalu-
ated in more detail for a proper qualitative assessment.

4.4 Conclusion

In this chapter, we have evaluated the question, if nature-inspired routing ap-
proaches have the potential to provide autonomic dependability in network
routing. On this account, we briefly surveyed nature-inspired approaches to
network routing and have chosen the most promising candidate, BeeHive, for
further anaylsis. At this, we gradually evaluated the characteristics of Bee-
Hive in comparison to the state-of-the-art routing protocol OSPF regarding
the individual aspects of dependability.

Focussing on availability and robustness we challenged some of the results that
were published in the evaluation of BeeHive. In detail we have invalidated the
conclusion that OSPF performs generally worse than BeeHive. Furthermore, we
have proven that simulation results that were attained in an abstract simulation
model are not one-to-one representative for real world networks.

Our results document that a realistic configuration of OSPF, i. e. using opti-
mized link costs, generally outperforms BeeHive. Yet BeeHive performs gener-
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ally better than UnitOSPF, with the exception of the overload traffic situation.
Looking at the results in more detail has reveiled that BeeHive does not oper-
ate optimally with TCP-based traffic. Here further research is needed. At best,
optimizing BeeHive in this regard would render changing the well-established
TCP protocol unnecessary. However, maybe the step towards UC makes this
neccessary.

Additionally, regarding streaming applications our results attest the worst per-
formance for BeeHive’s during low traffic situations and generally worse results
than Adv.OSPF. Furthermore, the jitter values were significantly higher in Bee-
hive. In the face of the estimated growth of streaming traffic a more detailed
evaluation focussing on streaming traffic is unavoidable.

Problematic on account of optimizing the link costs are the facts that the op-
timization is generally NP-hard and the traffic has to be known in advance.
However, under the assumption that real world network providers have detailed
knowledge about their network and the traffic demands, it it reasonable to as-
sume, that today optimized link costs are utilized in general. Still, regarding
future UC networks this will probably change, due to the increasing complexity.
Thus, the question arises if measures can be found that allow for an autonomic
online optimization of the link costs. Furthermore, it is well worth evaluating
additional traffic engineering approaches that operate on top of OSPF, such
as MPLS. A further evaluation of BeeHive in comparion to these is therefore
advisable.

Finally, we have shown that BeeHive and OSPF react almost equally good
to network failures, though OSPF provides on average the better perfomance
during the failure situation.

The analysis of the operational integrity has reveiled that, although several
approaches have been proposed to secure the operation of OSPF, only the
basic measures providing hop-based integrity and authenticity for the routing
messages seem to have made an impact. Security for BeeHive has only been
targeted by the authors of BeeHive so far. Independent in-detail evaluations
are advisable to attain a qualitative assement.

Finally, we have evaluated the extent of autonomic behaviour both approaches
show. BeeHive clearly distinguishes itself regarding the initial configuration and
continuous optimization during runtime. OSPF was not designed to operate
autonomous on these accounts. Thus, BeeHive represents a step forward to
conquering the growing complexity.

Despite our evaluation results, we have to admit, that we cannot give a defini-
tive answer to the initial question what role nature-inspired methods can play in
network routing. Although we have shed more light on the applicability of Bee-
Hive in future WANs and advanced the knowledge on this account. Especially,
some earlier results and conclusions about BeeHive, specifically regarding the
comparison to OSPF, are no longer justified. Furthermore, we have revealed
several areas, in which further work is advisable.
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5 Towards Data-Centric Security

The value of what is being protected
affects the measures taken to protect it.

[Basic principle of security]

Today we live in a world where the amount of digital data is constantly growing,
both in volume and diversity. A recent study [113] estimates that the amount
of digital data will increase by the factor of 10 every five years. At this, the
increasing amount of personal data in digital form is of special importance.
Being of a certain economic value, it is mostly stored outside the users’ control
on websites or by external companies. Users ultimately have to trust these to
appropriately handle the personal data. Equally important and problematic is
the handling of confidential or sensitive data in organizations, such as blueprints
for a new technology or customer data. It is often shared with other companies
during cooperation or the outsourcing of operations, leaving its protected haven.

However, today personal and confidential data can quite often be found, for
example by a simple Google search, on lost USB drives, or on auctioned hard
drives, which clearly demonstrates that data is not always handled as securely
as it should be. For some time now, this led researches to warn about a denied
oblivion of data [250] and to propose that the future information society and
technology need to relearn how to forget [168].

Especially organizations should pay special regard to data security, since they
are also often subject to legal and compliance requirements. For example, the
EU Directive 95/46/EC [75], the Health Insurance Portability and Account-
ability Act (HIPAA) [263], or the Sarbanes-Oxley legislation [237] all dictate
a specific handling of certain data with regard to security. Quite often usage
restrictions are part of these obligations as well. For example, the EU Directive
95/46/EC dictates that personal data may only be used for the originally in-
tended purpose. The organization is responsible for the compliance, regardless
if the data resides on their own servers or the IT infrastructure of partners that
may perform some outsourced operations. Still, the recurring news about un-
intentional data leakage everywhere indicate that the employed security mech-
anisms do not cover the security requirements appropriately. The ramifications
for organizations may range from damaging the business reputation up to a
struggle for the continued existence of the company.

It is undisputed, that generally all data should be handled securely. How-
ever, striving for the absolute maximum security regarding all data is a bad
strategy, as the costs explode and the usability diminishes. Rather, providing
“good enough” security is a feasible and meaningful approach. Therefore, due
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to the fact that different data is not equal in its value, security should ideally
be applied according to the old security principle: “the value of what is being
protected affects the measures taken to protect it”. Yet, as we have discussed in
Section 2.1.2, security concepts today center mostly on the technologies used
to store and handle data, not the data itself, though additionally, a few ap-
plications have specialized, built-in security measures. A differentiation in the
security for different data types is barely possible using these technologies in
distributed and complex IT environments. Furthermore, large organizations
often do not even know which kinds of data are present and where they are
stored. Therefore, due to the cost of providing high security throughout the IT
environment, sensitive or confidential data is often not handled as secure as it
should be.

The movement towards UC will aggravate these problematic trends as well
as create several new challenges (cf. Section 2.2.3). The mountains of digital
data will grow even faster, both in quantity and quality, with the massive
deployment of smart devices and sensor networks. Furthermore, due to the
high numbers of employed devices, network complexity increases dramatically.
Managing their security on a per device level is doomed to fail, demanding
for autonomic behaviour. Thus, a plethora of autonomously operating end
devices interact dynamically, offering their specialized services or composing
higher-level services on-the-fly from other services. In these IT environments
the information flow will no longer have any boundaries and data will generally
be shared, stored and accessed outside the control of its owner.

It is obvious, that the traditional focus of security on the infrastructure, con-
taining concepts such as perimeter security, ID-based access control to data,
or secure communication tunnels between two trusting devices, cannot cope
entirely with this increasing complexity as well as the quantity and quality
of data on their own. Trying to achieve security with device-centric solutions
alone will quickly become an unmanageable task. While they will still have
their application domains, we generally need to rethink our dominating secu-
rity paradigms. This has also repeatedly been said in the security community
lately, e. g. in [57,119,207].

Clearly, although a healthy IT infrastructure is vitally important, the real asset
in today’s as well as in future IT environments is the data and not the devices
that gather and process it. Therefore, it is reasonable that the focus of secu-
rity should likewise be data-centric rather than device-centric. However, we
have two problems that accumulate. Already today legal obligations demand
for better security. However, the existing security infrastructures are not well
equipped to handle the task. Furthermore, emerging UC environments will ag-
gravate the problem by several orders of magnitudes. Thus, it’s high time to
question the existing security systems and evaluate the benefits and impeding
factors of data-centric security.

The term data-centric security is used quite often today. However, apart from
research done by IBM [89, 99] that focuses on business process integration of
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data-centric security, we are not aware of a distinct analysis and definition of
necessary elements and aspects as well as inhibiting factors and technological
feasibility.

Therefore, we define in the following the goals and necessary concepts needed
to establish data-centric security. In addition we provide a survey on existing
technologies that are mainly used today to implement the required concepts
and discuss, to what extent they provide useable solutions in future UC envi-
ronments. In particular, we highlight open issues that need further research.
Parts of this research have been published in [212].

5.1 Goals and Concepts

The focus of data-centric security is to provide at all times the fitting security
level for each data set, allowing for continuous optimal data security, regardless
where the data is transferred, stored, or accessed. At this, the data itself spec-
ifies the required security level, not the available infrastructure. In fact, the
infrastructure should automatically adapt its provided security to the require-
ments of each data set.

Data-centric security has several advantages compared to the traditional device-
centric focus of security. First, data-centric security effectively prevents data
leakage, since the data is protected according to its needs at all times. For
example, a high value data type may only be stored on a mobile device using
strong encryption. Now, if the mobile device is lost or stolen the stored data
remains secure. Furthermore, the complexity of the security management de-
creases since not a plethora of devices have to be configured with regard to
security. Rather the focus is on providing standardized building blocks that
provide the security that is required by the data.

Another major advantage of data-centric security, especially for organizations,
is the clear division of labor and the resulting ease of integrating the security
specification into business processes [99]. In particular, security requirements
are specified in an abstract and technology agnostic form, while the specific
implementation is left to the infrastructure. This allows on the one hand to
enable the decision makers and users of the data to specify the correct secu-
rity requirements for the data, e. g. to meet compliance requirements. On the
other hand, the experts on security technologies can focus on providing sound
implementations of the required concepts, without having to decide which level
of security is appropriate for a particular device that handles several different
data types. Finally, evidence of compliance is provided automatically, if the
data history is recorded, since this provides a complete audit trail.

Generally, data-centric security must go beyond mere transmission and storage
security as well as access control. It must also include measures to describe
and enforce usage rules, in order to comply, for example, to legal obligations,
such as that the data may only be used for the originally intended purpose.
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Thus, in order to establish data-centric security, four aspects are essential on
a conceptual level: data classification, meta data, security specification, and
security enforcement.

Data Classification The foundation of data-centric security is data classifi-
cation, i. e. the data owner has to evaluate which types of data need to be
protected and why. Generally, not all data will require protection, but the sub-
set that is important, e. g. for the company’s operation, or that is of sensitive
nature needs to be secured. The importance is expressed as the data value, i. e.
a high value implies high security requirements.

For example, a location system that monitors the usage of an office building
may produce two different data types. On the one hand, statistical data about
the monthly usage of certain rooms or services may be classified as low value
data and thus shared freely within the company’s network. On the other hand,
detailed data that allows to see which person is present in which room using
which service at a specific time, is of high value, due to privacy concerns. There-
fore, it may only be used in strictly specified situations, such as to locate all
employees in an emergency or to determine the user after a service has been
used maliciously. Security for this data type may be strict access control, e. g.
by encrypted storage, the prohibition of the data flowing outside the company’s
core network, and the usage constraint on the specified situations.

Additionally, legal obligations may demand specific security requirements for
data in certain situations. An example of this can be found in the payment
card industry’s security standard [193] that requires encryption for identity data
when it is combined with the account number, but not if it appears by itself,
as Bayuk describes in [20]. Therefore it is imperative to include the context of
the data usage, e. g. the underlying business process, when classifying data.

Today, the classification of data is generally a very difficult thing to do, since
data permeates the whole IT systems and is stored in several different places,
such as file servers, email inboxes, or databases. Therefore, on the one hand
it is hard to identify all relevant data and on the other hand the evaluation
is complicated, since different technologies have to be used to access the data.
Regarding the qualitative challenges in UC environments this paints a bleak
picture about the feasibility of data classification in these environments. How-
ever, keeping the service orientation of UC environments in mind, specifying
the data value during creation according to high level policies provides a decen-
tralized solution to this problem. For example, the location system described
above knows the purpose for which it gathers data and is therefore able to label
it according to a global policy.

Meta Data In order to describe and assess the data quality and value, the
meta data specifies additional information about the data. In addition to the
data origin, it must include the whole lifecycle of the data, covering its gen-
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Figure 5.1: Overview of data-centric security concepts

eration, each transmission and every usage or alteration until its lifetime is
exceeded or its purpose is fulfilled.

In the context of future UC environments this is especially important regarding
two problem areas. First, the quality and relevance of data becomes measure-
able and assessable, which facilitates the classification. Second, a complete data
history greatly facilitates accountability as the data history provides a complete
audit trail. At this it also sustains the dependability of UC services.

Although we focus in this chapter on data-centric security, UC devices must
also be confident that the data they process is genuine and accurate in order
to build dependable services. Therefore, measures that allow the devices to
build up trust in the accuracy of data, such as traceable quality, are equally
important as measures to protect data.

Security Specification Based on the data value and potential legal obligations,
the security goals for the data must be specified and transferred into security
policies, i. e. guidelines and constraints that regulate the usage, handling, and
flow of the data. These may include for example the time frame during which
the data may be used or is up-to-date, how it must be stored, and under what
conditions it may be accessed. Generally, the policies must be inseparably
attached to the data at all times during its lifetime, specifying how it must be
handled.

Security Enforcement Finally, the policies must be enforced during the whole
lifetime of the data, regardless whether it is transferred, stored, or accessed.
Thus, the automatic provisioning of security by the employed infrastructure as
well as the compliance of the end devices must be verifiable.
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Figure 5.2: Data lifecycle

Figure 5.1 illustrates the conceptual parts and their relations. We refer to the
combination of the latter three concepts as Data Lifecycle Management (DLM)
and focus our further discussions in the next section on its details.

5.2 Data Lifecycle Management

Data lifecycle management centers around specifying and controlling the whole
lifecycle of data. At this, it comprises all steps in the life of data beginning with
its creation, storage, each transmission, and every usage, including alterations,
until its lifetime is exceeded or its purpose is fulfilled. In particular, the de-
struction of the data is explicitly included and specified. Figure 5.2 illustrates
the lifecycle of data. With regard to security, requirements can be specified for
each step, such as to allow only encrypted storage or that the data should never
leave the internal network.

This concept is sometimes also referred to as Information Lifecycle Management
(ILM). Although this has been a hot topic in organizations for some time
now, ILM has mostly been limited to the area of data storage [198]. At this,
additionally to data security, other concerns, such as data backup and recovery
play an important role in ILM. However, this limited application area will not
be sufficient in the future. Rather, DLM needs to be incorporated into the
IT environment as a whole, in order to provide sufficient security in future IT
environments.

In contrast to today’s security concepts, an IT environment that fully utilizes
DLM, requires few device-specific security configurations. Rather, these can
largely be replaced by the dynamic and autonomic fulfillment of the security
requirements specified alongside the data. This allows on the one hand for a
more fine-grained security configuration, optimally adjusted for each data set,
and on the other hand, it reduces the complexity of the security management.
Furthermore, changes in the required security handling for a specific data type
can easily be achieved by simply changing its security requirements.
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In the following, we will delve into the details of the individual concepts that
make up DLM, the meta data as well as the security specification and enforce-
ment. Furthermore, we review which technologies are used today to implement
the concepts and comment on their applicability in future UC environments.

5.2.1 Meta Data

In UC environments the vast quantity of devices will create an immense data
flood. At this, typically more than one source will provide similar information,
albeit maybe of different quality or slightly different focus. Furthermore, due
to the opaque and complex communication patterns between the autonomous
devices and on-the-fly service provisions, the specific type of data as well as
its origin and quality will be hard to establish. Furthermore, especially in
science, given results are only credible and considered reliable if the process
that produced them is completely traceable.

We would like to illustrate especially the last point by giving an example that
will be common in UC environments. Imagine a widespread WSN that pro-
vides high resolution spatial and temporal environmental monitoring capabil-
ities. Due to energy and bandwidth constraints it is generally advisable to
filter and aggregate data inside the WSN, although this introduces the risk
of potentially loosing information. Especially the capturing of high-frequency
phenomena using resource constraint devices requires extensive in-network pro-
cessing [90]. However, the resulting data can only be interpreted correctly by
external users, if the operations on the data are clearly marked and traceable.

Therefore, in order to enable reasoning about the relevance of a data set, its
quality, and thus, its value, it is imperative to provide information about the
data, including the authoritative source of the data and its history.

Research on data provenance, which is gaining momentum lately, focuses on this
subject, e. g. see [174, 243]. Typically, the exact definition of data provenance
differs slightly with regard to its application domain. Similar to Simmhan et
al. [243] we define data provenance as:

Definition 24 (Data Provenance) Information that helps to determine the
derivation history of a data set, starting from its original source.

Generally, several domain-specific provenance models exist, e. g. [34, 114], that
typically look at data provenance from different angles. In [242,243] Simmhan
et al. present a taxonomy of general data provenance techniques. Apart from
possible applications of data provenance, such as facilitating traceable data
quality, data reliability, and the provision of an audit trail, they also present
the design space of data provenance schemes and highlight important design
questions.

First, the subject of provenance needs to be decided upon, e. g. the data or
the process. Furthermore, the question arises, which granularity of provenance
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information is sufficient for the applications that handle the data type? Second,
a model for representing the provenance data needs to be established, specify-
ing the syntax and semantics as well as providing the possibility to query the
provenance data. Both design decisions have a great impact on the third design
questions, the storage of the provenance data. Especially the aspects overhead
and scaleability play an important role in this context.

Regarding data-centric security, the subject of provenance clearly needs to be
the data. However, taking the general quantitative increase of data in UC
environments into account, this results in a tremendous overhead, questioning
its scalability and general performance. Therefore, we believe that the “right”
granularity of provenance information should be determined on the basis of the
application domain, in order to keep the overhead to a minimum. For example,
the surveillance system we described above gets by with only two types of
provenance data, mapping each data set to one of the provenance types, if
the method to gather the data does not change over time. Problems arise in
this scheme, however, if the data crosses application domains, which may have
different granularity needs.

In order to represent the provenance data in a standardized structured data
model, Moreau et al. propose in [172,173] the open provenance model. It aims
at providing a generic model to specify provenance unambiguously. According
to its authors, it allows on the one hand for the documentation of complex dis-
tributed applications that comprise different technologies. On the other hand, it
provides a compatibility layer to allow provenance information to be exchanged
between different systems. Finally, a query mechanisms is included, allowing to
identify information and processes independent of the used technologies. Still,
the applicability of the open provenance model in UC environments, especially
regarding its application on resource constrained devices, needs to be studied
further. Nevertheless, Park and Heidemann present in [189] a provenance model
for WSNs that is compatible to the open provenance model, which gives first
positive hints towards its applicability in UC environments.

From an architectural point of view, the question arises where to store the
provenance data. Storing it alongside the data will overload the communication
channels, due to the significant overhead. Yet, since seamless connectivity is an
underlying assumption in UC, we believe that it may be stored at any available
place inside the network, as long as the data contains an unambiguous link to
it. Furthermore, storage should be associated with the data provider, in order
to establish a decentralized and thus more scaleable solution.

Finally, although disregarded in the taxonomy, the security of the provenance
data itself must be addressed, since only reliable provenance data is of any use.
For example, if an attacker is able to alter existing provenance data or insert
additional entries it becomes useless. Generally, integrity and availability are
the security services desired foremost in this context. However, confidentiality
may also be a vital concern, for example, when the process that generated the
data is a trade secret.
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Mainly, the research on provenance data security is still in its infancy, offering
an interesting field for further research. Nevertheless, first publications that
highlight open research issues in provenance security exist. Hasan et al. study
security aspects of provenance focussing on data storage [96]. Additionally,
Braun et al. reason in [36] that provenance data has different security needs
compared to data in general and therefore requires its own security model.

5.2.2 Security Specification

Based on its value and potential legal obligations, the security goals for the data
must be specified and transferred into policies, i. e. guidelines and constraints
that regulate the usage, handling, and flow of the data. Generally, policies can
be devised for each step in the data lifecycle, including a predefined lifetime
either along a temporal dimension or based on the fulfillment of a condition.
Furthermore, the policies must be inextricably bound to the data during its
lifetime in order to govern it and to provide the infrastructure with the specific
security requirements.

5.2.2.1 Policy Specification

Several definitions exist for a security policy, originating mostly from the context
of the different application domains [240]. For our purpose we define a security
policy as follows.

Definition 25 (Security Policy) A security policy represents a high-level
statement, specifying rules to achieve the security goals and objectives for an
asset, independent of the security mechanisms.

In the context of DLM mostly two kinds of security policies are relevant: access
control policies that specify the device or devices that are allowed to access
the data and data restrictions, formulating constraints regarding its usage and
responsibilities about how the data is to be handled.

The traditional standard technique for protecting documents is access con-
trol [107], which has been studied in the community for decades. The XML-
based language XACML [186] is widely used today focussing on expressing
access control policies. However, this narrow focus, rather than the ability to
specify high-level usage rights for the data, such as “the data may only be used
for purpose ABC”, makes it only applicable to application scenarios, in which
access policies provide sufficient expressiveness.

Several more encompassing rights expression languages (RELs) exist in the con-
text of digital rights management (DRM), the most popular being ODRL [206]
and XrML [272] according to [94, 117]. These can be used for the purpose of
describing diverse high-level security policies and digital contracts. Both are
based on XML as well and cover a wide variety of operational aspects, providing
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the functionality for various possible application scenarios. Furthermore, both
are extensible in order to adapt them to any specific purpose.

However, Jamkhedkar et al. note in [118] that their generic focus is also their
main drawback. They are so extensive and complex that considerable effort
has to be taken to understand and use them. Additionally, Pretschner et al.
describe several important shortcomings in [103, 204]. First, RELs originate
from the DRM context and are thus best applicable for audiovisual content.
Second, their internal semantics are not always precise, leaving ambiguity in
the specified policies. Third, the conversion of policies in different formats
seems to be an open issue right now.

Finally, the applicability of full-blown RELs in UC environments represents an
open issue. We are not aware of any project that employs a standard REL on
resource constrained embedded devices.

Additionally, to these standard technologies, several approaches have been pro-
posed that explicitly take the UC characteristics into account, though mostly
focussing on special subareas. For example, Kagal et al. propose in [125] the
policy language Rei. Patwardhan et al. provide an architecture and proof of
concept implementation in [190] that proves Rei’s ability to provide security
in a mobile, though infrastructure-based, UC environment. The policy lan-
guage Ponder2 for autonomous pervasive environments was recently proposed
by Twindle et al. in [261]. Also focussing on mobile autonomic networks are
Aljnidi et al. with a policy system they propose in [6]. A security policy lan-
guage specially designed for WSNs is proposed in [165].

Despite these research accomplishments, a standard for defining security policies
that takes most aspects of UC into account, has yet to emerge. Although an
all-encompassing framework might be hard to devise, given the complexity of
UC, interoperable standards for well-defined areas are clearly needed to address
general policy issues, such as combining, merging, decomposing, migrating, and
negotiating different security polices between different frameworks. Though
we are not aware of any attempts to define sensible areas, this is especially
important when taking the general service orientation in UC environments into
account. For example, imagine a service that combines several data sets from
other services to provide a higher-level service. If it crosses application domain
boundaries at this, mechanisms to combine or at least retain the original policies
are clearly needed.

5.2.2.2 Binding Policies to the Data

In order to control the whole lifecycle of the data it must not be possible to
separate it from its policies. Otherwise, on the one hand no data-specific secu-
rity can be applied to the data set. On the other hand, policies might easily be
changed for other devices’ data. Karjoth et al. defines this in [127] for example
as the “sticky” policy paradigm, though they do not discuss ways to bind the
policies to the data.
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Generally, the binding can be achieved by employing cryptographic techniques,
resorting to access control. We would like to point out especially two families
of encryption schemes in this context: traditional public key encryption and
attribute-based encryption.

Traditional Public key Encryption Public key encryption can easily be used
to sign a hash generated from the data and its policies. However, public key
cryptography needs an entity that manages the keys and provides a basis for
reasoning about the keys’ trust. One possibility is employing a public key infras-
tructure (PKI). However, with regard to scalability many PKI implementations
do not perform well [245]. Furthermore, keeping the growing complexity in UC
environments in mind, the manageability of a PKI is generally a daunting task.
Therefore, a “web of trust” approach [45] might be a better fitting solution for
UC environments due to its distributed nature. It is important to note that the
reasoning about trust in the keys differs at this, compared to PKIs, since it is
based on trust between individual devices and not in central certificate authori-
ties. However, research in computational trust, though numerous, still does not
provide a mature and useable solution due to some researchers, e. g. [142,144].

Generally, in both approaches keys are bound to an entity’s identity, which is
not an optimal solution considering the numerous entities that will be present
in UC environments. Furthermore, data can only be encrypted for one entity
at a time, resulting in a high communication overhead if more than one client
should access the data.

Attribute-based Encryption In contrast, attribute-based encryption (ABE)
schemes do not encrypt the data for a specific entity, but for all clients that
have certain properties or attributes. These may include arbitrary aspects,
like the device type, its operational context or the history of a device. During
encryption the combination of attributes serves as the key and a device is able
to decrypt the data if its attributes match exactly the combination specified
during the encryption.

Based on the original proposal of ABE [227] several different variants were
proposed in the literature, e. g. [23, 87, 88], each having its own strengths and
weaknesses. For example, Bethencourt et al. propose in [23] the ciphertext-
policy ABE, in which the encryption takes place by specifying an access tree
structure over the chosen attributes. Each client’s private key is furthermore
associated with arbitrary attributes expressed as strings. The client is able
to decrypt a ciphertext, if its attributes pass through the ciphertext’s access
structure.

The drawback of most ABE is that usually a trusted third party manages
the set of attributes, the private decryption keys, and the validation of the
devices’ properties. However, one central authority is hard to image in UC
environments. However, Müller et al. propose in [178] a distributed ABE scheme
to remedy this drawback.
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Using ABE, the specification and binding of the security policies becomes es-
sentially a matter of access control. However, it allows for significantly more
fine-grained access control possibilities and simplifies the encryption at the data
originator to specifying the desired properties for each data fragment, compared
to traditional approaches. Furthermore, it blurs the lines between policy spec-
ification and enforcement, as it actually combines both. Since a device only
gets access to the data if its attributes correspond to the chosen set during
encryption, security policies are automatically enforced during decryption. For
example, policies, such as “device type XYZ may access this data, however,
only if it is located in the core network” may be specified as attributes during
encryption and only compliant devices are able to decrypt the data.

Generally, both schemes to bind the polices to the data suffer from an insider
attack. Once a device has been given legitimate access to the data, it may strip
the policies from the data. Since we cannot prevent this a priori, detecting this
lies within the focus of security enforcement, which we cover in the next section.

5.2.3 Security Enforcement

Compliance to the specified policies must be enforced wherever the data re-
sides. Generally, the enforcement of the security policies represents both, the
most important aspect as well as quite often the most complicated aspect of
DLM. Without proper enforcement of the policies, the whole concept becomes
questionable.

Chadwick and Lievens discuss in [48] the enforcement of policies in distributed
applications from an architectural point of view. They propose three proto-
cols, that enhance either the application protocol, provide a new security layer
directly underneath the application, or use a back channel model for policy en-
forcement. Furthermore, they discuss the individual merits of each approach.
However, a complete evaluation of the tree protocols is still subject to future
work.

In general, Pretschner et al. differentiate in [204] between direct policy enforce-
ment and observation. Direct enforcement is possible if the owner of the data
can access the device to validate it or provide the application software. In cases
where this is not possible, the observation of significant parameters might prove
a device’s compliance or noncompliance as well.

5.2.3.1 Direct Enforcement

The enforcement of access control policies is a well studied problem in computer
science [107], including in addition to traditional ID-based access control other
aspects, such as geo-spatial access control [11]. Especially the usage of ABE
presents a neat process of specifying and enforcing arbitrary access control
policies. However, the enforcement of usage restrictions and responsibilities is
generally more difficult.
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DRM is probably the best known technology to directly enforce restrictions on
digital data and is rather popular in the content industry for enforcing digital
copyright. Yet, the different existing DRM systems are typically closed propri-
etary and incompatible systems [143]. This results mainly from the fact that
they try to enforce their policies in an untrusted environment and therefore
resort to using closed proprietary hard and software. However, the closed pro-
prietary and incompatible architectures clearly clash with the openness of UC
environments, where communication based on established standards will play
an important role.

Some argue that employing trusted computing (TC) techniques [259] may pro-
vide a solution to overcome the limitation of proprietary DRM systems. If
provable unmodified software runs on a provable unmodified system, the com-
pliance to the policies can reasonably be assumed. Therefore, while employing
TC techniques does provide a trusted basis which alleviates several problems,
it is unlikely that the vast number of different devices that constitute UC envi-
ronments will all contain a trusted hardware chip. Thus, it may be available in
some cases though not in general. Albeit, TC has rather strong requirements
for several always available PKIs [14], which is not even realized in today’s
networks.

Almost the same direction as TC is taken by research on remote attestation,
e. g. see [239, 226]. It aims at remotely verifying certain aspects of the device’s
hardware or software and deduce from this the compliance or noncompliance
to the policies. Usually, remote attestation requires a standardized application
software on each device and the ability to determine critical aspects about the
hardware and operating system. Though with numerous different devices in
UC environments this seems to be an unmanageable task.

Finally, several approaches try to establish trust relationships between devices
and utilize these to make security-related decisions, e. g. see [124]. Still, estab-
lishing and maintaining trust between devices in UC environments is a nontriv-
ial task, especially if the interactions are dynamic and short-lived. For example,
Pavlovic argues in [191] that common trust systems can easily be subverted by
attacking high-ranking nodes in the network. On this account he reasons that
trust should mainly stem from private trust vectors that the devices manage
themselves, including public trust notions only for refinement. Additionally,
trust between devices is inherently concerned with IDs, which cannot be guar-
anteed to be unique and unchanging in UC environments and is thus contrary
to the goal of data-centric security. Furthermore, as we have already noted
earlier, some researchers question the applicability of trust at all [144], or at
least do not deem the current schemes mature enough [142].

We believe however, that interactions that occur on a regular basis could profit
from trust establishment. Especially the available provenance data might pro-
vide additional means to establish trust in the data itself, as shown in [59].
Furthermore, research on physically unclonable functions (PUF), e. g. [187,254],
provides the means to unambiguously identify and authenticate physical de-
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vices. PUFs use the unique physical characteristics of the integrated circuits
of the devices to derive for example secret keys. Although two devices may be
logically identical, the small variances in the hardware, caused mainly by man-
ufacturing variances, are unique and almost impossible to copy or model. Due
to the fact, that the hardware characteristics are not changeable they provide
an excellent source to unambiguously identify a device. Nevertheless, taking
the prospect of a plethora of deployed devices into account, the scalability of
ID-based approaches is still questionable.

5.2.3.2 Observation

In situations where direct enforcement is not possible, the observation of sig-
nificant parameters may provide the means to determine a device’s compliance
or non-compliance to the specified security policies. Pretschner et al. mention
in [204] that they are not aware of any existing implementations to observe
a device’s compliance without direct access, due to the difficulty of obtaining
trustworthy signals.

However, for audiovisual data types the usage of watermarking technologies [185,
197] might provide a means to detect a postiori a device’s noncompliance.

In general, a postiori control of compliance in form of audits is quite common
in real world businesses. Therefore, we believe it to be an interesting field of
future research. A first step in this direction provide Etalle and Winsborough
who transfer this idea into collaborative distributed computing, by proposing
A Posteriori Policy Enforcement (APPLE) in [74]. They argue that preventive
policy systems are too restrictive with regard to unforeseeable situations, i. e.
situations in which acting in disagreement with the specified security policies is
appropriate. APPLE allows for this, but logs these actions in order to hold the
device or user accountable after the fact. An example situation in which such
a system may prove beneficial is the case of an emergency, in which otherwise
private data is accessed to save persons at risk.

5.3 Summary and Discussion

In the previous two sections we have presented the goals and advantageous of
data-centric security, specified the concepts necessary to establish data-centric
security, and surveyed technologies that may be used to implement these con-
cepts. Due to the vastness of the underlying research fields we have selected
typically used technologies as well as those that specifically target UC environ-
ments. Therefore, we do not make the claim to have presented an exhaustive
list of all possible technologies. We have conducted the whole analysis from the
perspective of how applicable are the concepts and technologies to UC environ-
ments.
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In summary, it is obvious that several of the concepts necessary to establish
data-centric security are still subject to further research before we may witness
more than isolated and strictly limited data-centric security solutions. Espe-
cially the policy specification and enforcement represent problematic areas. We
believe that especially with regard to policy-based systems, standards need to
be established in order to allow for a permeation of these throughout the IT
infrastructure.

Furthermore, regarding the security enforcement, we believe that leveraging
the distinctive UC-specific characteristics for enforcement present interesting
and worthwhile questions for future research. For example, the high numbers
of devices that form UC environments and their context awareness are two
aspects that may prove useful to encourage compliant behaviour of nodes. In
the following we like to sketch two ideas in this context.

The basic assumptions are that devices generally distrust each other and that
services keep a public log of all generated data types. Now, if devices that
use the data give public commitments about their data usage, an interesting
research project would be to explore if nodes are able to determine other mis-
behaving nodes on the basis of the meta data of the data sets and the public
records.

The second idea centers around the belief that uncertified information is in
essence nothing else than a rumour and cannot be trusted. It may address the
problem of clients stealing data and pretending to be the originating service.
Though we generally cannot prevent unauthorized copying and sharing of data
by clients without employing TC techniques, we can try to discourage this be-
haviour. By binding a special token to the data or its meta data, a service
proves its genuineness. Such a token may be based on the attestation of a ser-
vice’s data by long-established neighbouring services that built up trust among
each other. Thus, a malicious device may only share the original bundled data,
which can be traced back to the legitimate originator or it may share the un-
bundled data. However, it cannot prove the correctness of this to other devices.
Therefore, any device that is interested in correct data will naturally use the
data of the provable service.

Finally, though we have not discussed this topic further in our discussions above,
the realization of an adaptive infrastructure presumably requires further re-
search efforts. While adaptive security in data storage and transmission seem
to be achievable without too much effort, we deem global adaptive policy-based
data usage to be the most problematic area. Such systems have to be estab-
lished on all end-systems in order to allow for the advantageous of data-centric
security to take effect.
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6 Conclusion and Outlook

We should all be concerned about the future
because we will have to spend the rest of our lives there.

[Charles F. Kettering]

Ubiquitous computing is gradually realized and this ongoing trend will change
our lives in the most profound fashion. Therefore, it is of utmost importance to
ask questions, analyse problems, and design solutions regarding security and de-
pendability in future UC environments. If we miss to target this development
right now at the beginning, some systems will surely be deployed that may
have a grave impact on our personal freedom or the stability of our surround-
ing. Furthermore, retrofitting security and dependability aspects into existing
applications and systems is at best a daunting task and is also generally op-
posed by security practitioners. Therefore, we have targeted our research at
three problem areas regarding the management of security and dependability
in UC in this dissertation.

First, we have addressed the requirement to integrate security measures into
heterogeneous devices that provide the foundation for UC. Considering the dis-
tinct characteristics of resource-constrained devices, i. e. sensor nodes, we have
designed and implemented a security architecture for a mobile WSN. Although
we have achieved our goals of securing that particular application scenario, this
methodology of providing security is not optimal. Changes in the application
scenario or the employed sensor node hardware may require a complete redesign
of the security concepts as well as of the respective implementations. Thus, we
have designed and implemented a more generic framework that allows for the
integration of the optimal security concepts and measures into arbitrary WSN
application scenarios without the requirement for the application developer to
become a security expert. The underlying premise of this concept is that the
appropriate security concepts and measures can be derived by looking at the
application properties. In our framework, the application developer specifies
only abstract security services for the data types in his application and some
important application properties. These annotations are then evaluated by the
framework and possible security setups are generated and evaluated regarding
the level of achieved security as well as the residual risks. This information
is finally presented to the application developer, who is thus able to choose
the optimal security solution for his application. Furthermore, he is aware of
potential risks and may handle those inside the application logic. Finally, we
have integrated this framework into the middleware synthesis tool Fabric to
additionally provide the application developer with the required source code
for the security solution. The evaluation of the framework shows the individual

147



Chapter 6. Conclusion and Outlook

advantages of this approach. In essence, we believe that the provision of com-
prehensible security at a middleware level significantly facilitates the integration
of security into UC devices.

In our second contribution we have focused on the possibility of autonomically
increasing the dependability of wide-area networks that may be achieved when
employing a nature-inspired routing approach. First, we have determined the
most promising nature-inspired routing approach, BeeHive, based on the pub-
lished literature. Following this, we have gradually evaluated it compared to
the state-of-the-art routing approach OSPF. At this, we have assessed both ap-
proaches characteristics regarding the individual aspects that define dependabil-
ity. The overall results show that BeeHive does not clearly outperform OSPF
in the performance-related aspects, despite the commonly published statements
from its authors. However, BeeHive clearly wins when considering the necessary
autonomic behaviour, that may be required in order to conquer the complex-
ity of UC. In addition to these main results, we have identified several open
questions, that require further analysis.

Our final focus of research has been arguing the case for data-centric security
and evaluating its feasibility. Traditional security concepts will not suffice to es-
tablish security and protect the data in future UC environments alone, though
they will still have their application domains. The concept of data-centric secu-
rity provides a more reasonable focus of security and has the potential to provide
a solution to this predicament. We have established the necessary concepts and
discussed commonly used technologies to implement them. Furthermore, we
have evaluated them regarding their applicability to future UC environments.
Generally, it is apparent, that several diverse research directions need to be
combined in order to establish data-centric security. Furthermore, the results
document that the implementation technologies for several of the necessary
concepts are still subject to further research, especially when the characteris-
tics of UC have to be considered. Thus, the main contribution of our work is a
structuring of the necessary concepts and technologies, which may serve as the
groundwork from which further research may be conducted and combined, in
order to achieve data-centric security in the future.

Generally, our research in this work has advanced the common knowledge in the
respective contribution areas. However, several paths to extend our research
exist. Although we have presented and discussed possible future work within
each of our contributions, we would like to take the opportunity and again
highlight important aspects here.

We would like to extend our framework to provide comprehensible security
along several dimensions. First, we contemplate to provide more differentiated
feedback about the possible security setups, especially focussing on code size
and runtime. This would allow the application developer to further fine-tune his
application, particularly if optimized versions of the security setups regarding
both aspects are available. Furthermore, including dependability aspects would
greatly improve the framework.
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In the context of autonomic dependability in network routing, BeeHive has to
be analysed further, especially regarding TCP and realistic streaming traffic.
Furthermore, scalability test are indispensable. Finally, a comparison with more
elaborate traffic engineering concepts, such as MPLS would facilitate a deeper
understanding of BeeHive’s advantages and drawbacks.

Finally, we would like to extend the presented ideas in the final discussion of the
data-centric security research and evaluate their usefulness in detail. We believe
that such simple measures could play an important role in securing future UC
environments.
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A Appendix to Integrating Security
into Ubiquitous Computing Devices

A.1 Implementation Details for the Blundo et al.
Scheme

This appendix illustrates a way to efficiently implement the Blundo et al. scheme
on sensor nodes, as presented in [232]. Two concepts are combined: first, the
Horner rule minimizes the multiplication effort and second, the choice of the
field determines the speed of the modular reduction.

For an efficient implementation, the ID’s of the nodes can be reduced to a
certain range, e.g. 0 < ID < 216. If the evaluation is done using the Horner
rule [138] (see also Figure A.1) only multiplications between a short ID and a
longer field element have to be done, which allows for a much faster modular
arithmetic than the general case.

anIDn + an−1IDn−1 + . . .+ a0 =
(. . . (anID + an−1)ID + an−2)ID + . . .) + a0

Figure A.1: Horner rule

The choice of the field F determines furthermore the range and the speed of
the evaluation of the common secret. The scheme can be implemented using
any field. Consequently, a field, which suits the existing hardware platform
well, should be chosen. The arithmetic of GF (p) is supported by the existing
hardware multiplier of the MSP 43071 processor. Therefore, this choice is faster
than an implementation using GF (2m).

The following example assumes that the identities are limited to 0 < ID < 216

and illustrates the usage of a 80 bit Generalized Mersenne Prime, which allows
for an efficient modular arithmetic [248], p = 280−264−232−1. First a normal
multiplication of a 16 bit identity and a 80 bit coefficient is calculated. After-
wards one can rearrange the 96 bit result r =

∑5
i=0 ri2

16i to s =
∑4

i=0 ri2
16i and

t = 264r5 + 232r5 + r5. From the special form of p follows that s+ t = r mod p.
The advantage is that the reduction modulo p can be calculated by a single
80 bit addition and at most two 80 bit subtractions. This is substantially faster
than any standard method that assumes two equally long operands.
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B Appendices to Autonomic
Dependability in Network Routing

B.1 RFCs regarding OSPF

RFC Title Author Date Info Status

2328 OSPF Version 2 J. Moy 04/1998 Obs.
RFC2178

Std.

5340 OSPF for IPv6 R. Coltun, D. Fer-
guson, J. Moy, A.
Lindem

07/2008 Obs.
RFC2740

Prop.
std.

5252 OSPF-Based Layer 1 VPN
Auto-Discovery

I. Bryskin, L.
Berger

07/2008 Errata Prop.
std.

5250 The OSPF Opaque LSA Op-
tion

L. Berger, I.
Bryskin, A. Zinin,
R. Coltun

07/2008 Obs.
RFC2370

Prop.
std.

5243 OSPF Database Exchange
Summary List Optimization

R. Ogier 05/2008 Inf.

5187 OSPFv3 Graceful Restart P. Pillay-Esnault,
A. Lindem

06/2008 Errata Prop.
std.

5185 OSPF Multi-Area Adja-
cency

S. Mirtorabi, P.
Psenak, A. Lindem,
Ed., A. Oswal

05/2008 Errata Prop.
std.

5088 OSPF Protocol Extensions
for Path Computation Ele-
ment (PCE) Discovery

JL. Le Roux, Ed.,
JP. Vasseur, Ed., Y.
Ikejiri, R. Zhang

01/2008 Errata Prop.
std.

4973 OSPF-xTE & Experimental
Extension to OSPF for Traf-
fic Engineering

P. Srisuresh, P.
Joseph

07/2007 Exp.

4972 Routing Extensions for
Discovery of Multiproto-
col (MPLS) Label Switch
Router (LSR) Traffic
Engineering (TE) Mesh
Membership

JP. Vasseur, Ed.,
JL. Leroux, Ed., S.
Yasukawa, S. Prev-
idi, P. Psenak, P.
Mabbey

07/2007 Prop.
std.

4970 Extensions to OSPF for Ad-
vertising Optional Router
Capabilities

A. Lindem, Ed., N.
Shen, JP. Vasseur,
R. Aggarwal, S.
Shaffer

07/2007 Prop.
std.

4940 IANA Considerations for
OSPF

K. Kompella, B.
Fenner

07/2007 Errata Best
cur-
rent
prac-
tice
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RFC Title Author Date Info Status

4915 Multi-Topology (MT) Rout-
ing in OSPF

P. Psenak, S. Mir-
torabi, A. Roy, L.
Nguyen, P. Pillay-
Esnault

06/2007 Prop.
std.

4813 OSPF Link-Local Signaling B. Friedman, L.
Nguyen, A. Roy, D.
Yeung, A. Zinin

03/2007 Exp.

4812 OSPF Restart Signaling L. Nguyen, A. Roy,
A. Zinin

03/2007 Errata Inf.

4811 OSPF Out-of-Band Link
State Database (LSDB)
Resynchronization

L. Nguyen, A. Roy,
A. Zinin

03/2007 Inf.

4750 OSPF Version 2 Manage-
ment Information Base

D. Joyal, Ed., P.
Galecki, Ed., S. Gi-
acalone, Ed., R.
Coltun, F. Baker

12/2006 Obs.
1850

Prop.
std.

4577 OSPF as the Provider/Cus-
tomer Edge Protocol for
BGP/MPLS IP Virtual Pri-
vate Networks (VPNs)

E. Rosen, P.
Psenak, P. Pillay-
Esnault

06/2006 Upd.
RFC4364,
Errata

Prop.
std.

4552 Authentication/Confidentia-
lity for OSPFv3

M. Gupta, N.
Melam

06/2006 Prop.
std.

4222 Prioritized Treatment of
Specific OSPF Version 2
Packets and Congestion
Avoidance

G. Choudhury, Ed. 10/2005 Best
cur-
rent
prac-
tice

4203 OSPF Extensions in Sup-
port of Generalized Multi-
Protocol Label Switching
(GMPLS)

K. Kompella, Ed.,
Y. Rekhter, Ed.

10/2005 Upd.
RFC3630

Prop.
std.

4167 Graceful OSPF Restart Im-
plementation Report

A. Lindem 10/2005 Inf.

4136 OSPF Refresh and Flooding
Reduction in Stable Topolo-
gies

P. Pillay-Esnault 07/2005 Inf.

4063 Considerations When Using
Basic OSPF Convergence
Benchmarks

V. Manral, R.
White, A. Shaikh

01.04.05 Inf.

4062 OSPF Benchmarking Termi-
nology and Concepts

V. Manral, R.
White, A. Shaikh

04/2005 Inf.

4061 Benchmarking Basic OSPF
Single Router Control Plane
Convergence

V. Manral, R.
White, A. Shaikh

04/2005 Inf.

3883 Detecting Inactive Neigh-
bors over OSPF Demand
Circuits (DC)

S. Rao, A. Zinin, A.
Roy

10/2004 Upd.
RFC1793

Prop.
std.

3630 Traffic Engineering (TE)
Extensions to OSPF Version
2

D. Katz, K. Kom-
pella, D. Yeung

09/2003 Upd.
RFC2370,
Upd.
RFC4203

Prop.
std.

3623 Graceful OSPF Restart J. Moy, P. Pillay-
Esnault, A. Lindem

11/2003 Prop.
std.

3509 Alternative Implementa-
tions of OSPF Area Border
Routers

A. Zinin, A. Lin-
dem, D. Yeung

04/2003 Inf.
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RFC Title Author Date Info Status

3166 Request to Move RFC 1403
to Historic Status

D. Meyer, J. Scud-
der

08/2001 Inf.

3137 OSPF Stub Router Adver-
tisement

A. Retana, L.
Nguyen, R. White,
A. Zinin, D.
McPherson

06/2001 Inf.

3101 The OSPF Not-So-Stubby
Area (NSSA) Option

P. Murphy 01/2003 Obs.
RFC1587

Prop.
std.

2844 OSPF over ATM and Proxy-
PAR

T. Przygienda, P.
Droz, R. Haas

05/2000 Exp.

2740 OSPF for IPv6 R. Coltun, D. Fer-
guson, J. Moy

12/1999 Obs.
RFC5340,
Errata

Prop.
std.

2676 QoS Routing Mechanisms
and OSPF Extensions

G. Apostolopou-
los, S. Kama,
D. Williams, R.
Guerin, A. Orda,
T. Przygienda

08/1999 Errata Exp.

2370 The OSPF Opaque LSA Op-
tion

R. Coltun 07/1998 Obs.
RFC5250,
Upd.
RFC3630

Prop.
std.

2329 OSPF Std.ization Report J. Moy 04/1998 Inf.
2178 OSPF Version 2 J. Moy 07/1997 Obs.

RFC1583,
Obs.
RFC2328

Draft
Std.

2154 OSPF with Digital Signa-
tures

S. Murphy, M. Bad-
ger, B. Wellington

06/1997 Exp.

1850 OSPF Version 2 Manage-
ment Information Base

F. Baker, R. Coltun 11/1995 Obs.
RFC1253,
Obs.
RFC4750

Draft
Std.

1793 Extending OSPF to Support
Demand Circuits

J. Moy 04/1995 Upd.
RFC3883

Prop.
std.

1765 OSPF Database Overflow J. Moy 03/1995 Exp.
1745 BGP4/IDRP for IP—OSPF

Interaction
K. Varadhan, S.
Hares, Y. Rekhter

12/1994 Hist.

1587 The OSPF NSSA Option R. Coltun, V. Fuller 03/1994 Obs.
RFC3101

Prop.
std.

1586 Guidelines for Running
OSPF Over Frame Relay
Networks

O. deSouza, M. Ro-
drigues

03/1994 Inf.

1585 MOSPF & Analysis and Ex-
perience

J. Moy 03/1994 Inf.

1584 Multicast Extensions to
OSPF

J. Moy 03/1994 Hist.

1583 OSPF Version 2 J. Moy 03/1994 Obs.
RFC1247,
Obs.
RFC2178

Draft
Std.

1403 BGP OSPF Interaction K. Varadhan 01/1993 Obs.
RFC1364

Hist.

1370 Applicability Statement for
OSPF

Internet Archi-
tecture Board, L.
Chapin

10/1992 Hist.
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RFC Title Author Date Info Status

1364 BGP OSPF Interaction K. Varadhan 09/1992 Obs.
RFC1403

Prop.
std.

1253 OSPF Version 2 Manage-
ment Information Base

F. Baker, R. Coltun 08/1991 Obs.
RFC1252,
Obs.
RFC1850

Prop.
std.

1252 OSPF Version 2 Manage-
ment Information Base

F. Baker, R. Coltun 08/1991 Obs.
RFC1248,
Obs.
RFC1253

Prop.
std.

1248 OSPF Version 2 Manage-
ment Information Base

F. Baker, R. Coltun 07/1991 Obs.
RFC1252,
Upd.
RFC1349

Prop.
std.

1247 OSPF Version 2 J. Moy 07/1991 Obs.
RFC1131,
Obs.
RFC1583,
Upd.
RFC1349

Draft
Std.

1246 Experience with the OSPF
Protocol

J. Moy 07/1991 Inf.

1245 OSPF Protocol Analysis J. Moy 07/1991 Inf.
1131 OSPF specification J. Moy 10/1989 Obs.

RFC1247
Prop.
std.
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B.2 BeeHiver Wrapper – Testresults

In this appendix we present the test results which we gained during development
of the BeeHive wrapper. Remember that Farooq implemented a very abstract
simulation environment, lacking typical features, such as TCP/IP protocols,
IP addresses, or realistic router queues. Thus, in order to integrate the ex-
isting implementation of BeeHive into our realistic simulation environment we
implemented a wrapper that translates, for example, IP addresses into integer
node-IDs that are used in the original BeeHive implementation.

We do not think that the wrapper affects BeeHive’s performance. However, to
ensure this, we have ported Farooq’s abstract traffic generator to our simulation
environment as well. This allows us to execute the same simulations as Farooq
has executed, albeit in our realistic simulation environment.

For our tests, we use the network topology NTTNet and specify the traf-
fic in accordance to Farooq settings. Thus, each node generates traffic with
MPIA = 0.005 sec, sessionSize = 2130000 bit, and packetSize = 512 byte. The
buffer size in each router is set to 1000 packets. The value for MSIA is gradually
decreased from 8.6 to 1.6, in order to continuously increase the traffic load.

We have analysed the performance results with regard to the parameters through-
put, the percentage of successfully delivered packets, and the packet delay. In
the following we review each of these parameters comparing the results using Fa-
rooq’s simulation environment to the results from our simulation environment.
Keep in mind that we do not expect 100% equal results, since the simulation
environments differ significantly. However, the general characteristics of the
algorithms should be similar and thus visible in the graphs.

The results regarding throughput are displayed in Figure B.1. In essence, they
show a very similar behaviour for OSPF and BeeHive in both simulation envi-
ronments, though both algorithms perform slightly worse in the realistic model,
especially with increasing traffic.

Figure B.2 illustrates the results with regard to the percentage of the data
packets that are delivered successfully. Again no significant differences exist in
the performance values. However, both algorithms again perform slightly worse
in the realistic simulation model.

Finally, the delay results, which are illustrated in Figure B.3, ascertain the ten-
dency that in essence the behaviour stays the same, though the performance is
slightly worse in the realistic model. One reason for this performance decrease
results from the realistic data packets our simulation environment uses. For
example, an UDP packet increases the packet length at least by 28 byte, i. e.
8 byte for the UDP header and 20 byte for the IP header. Thus, the individual
packets are generally larger in the realistic simulation environment. In sum-
mary, the results confirm our assumption that we ported BeeHive correctly to
the realistic simulation model.
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Figure B.1: BeeHive wrapper simulation results: throughput
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Figure B.2: BeeHive wrapper simulation results: percentage delivered
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Figure B.3: BeeHive wrapper simulation results: delay
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and Würtenberger, F. Das Vorsorgeprinzip in der Informationsge-
sellschaft. Auswirkungen des Pervasive Computing auf Gesundheit und
Umwelt. Studie des Zentrums für Technologiefolgen-Abschätzung, TA
46/2003, 2003.

184



Bibliography

[103] Hilty, M., Pretschner, A., Schaefer, C., and Walter, T. En-
forcement for Usage Control – An Overview of Control Mechanisms. Tech.
Rep. 1-ST-18, DoCoMo Euro-Labs, July 2006.

[104] Holger Krahn. Analyse leichtgewichtiger kryptographischer Algorith-
men für Sensornetzwerke. Diplomarbeit, Institut für Betriebssysteme und
Rechnerverbund, Technische Universität Braunschweig, Feb. 2004.

[105] Howard, J., and Longstaff, T. A Common Language for Computer
Security Incidents. SAND D98-8667, Sandia National Laboratories, Liv-
ermore, CA, USA, 1998.

[106] Hu, L., and Evans, D. Secure Aggregation for Wireless Networks.
In Symposium on Applications and the Internet Workshops (SAINT’03)
(2003).

[107] Hu, V. C., Ferraiolo, D. F., and Kuhn, D. R. Assessment of Access
Control Systems. NIST Interagency Report 7316, Sept. 2006.

[108] Huang, D., Cao, Q., Sinha, A., Schniederjans, M. J., Beard, C.,
Harn, L., and Medhi, D. New architecture for intra-domain network
security issues. Communications of the ACM 49, 11 (2006), 64–72.

[109] Huang, D., Sinha, A., and Medhi, D. A double authentication scheme
to detect impersonation attack in link state routing protocols. In Pro-
ceedings of the International Conference on Communications (ICC’03)
(2003).

[110] Huang, H., and Wu, S. F. An integrated solution to protect link
state routing against faulty intermediate routers. In Proceedings of the
10th Network Operations and Management Symposium: Management of
Integrated End-to-End Communications and Services (NOMS’06) (2006).

[111] IBM White Paper. An architectural blueprint for autonomic computing
(4th edition). Tech. rep., IBM Corporation, June 2006.

[112] Institut für Telematik Universität zu Lübeck, Institut für
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