Inhalative Sedierung mit Isofluran im Vergleich zu Propofol bei beatmeten, postoperativen Intensivpatienten

Inauguraldissertation
zur
Erlangung der Doktorwürde
der Universität zu Lübeck
- Aus der medizinischen Fakultät -

vorgelegt von
Andreas Christian Glück
aus Münisingen

Lübeck 2009
meinen Eltern
1. Berichterstatter: Priv. - Doz. Dr. med. Klaus F. Wagner

2. Berichterstatter: Priv. - Doz. Dr. med. Jan Gliemroth

Tag der mündlichen Prüfung: 15.01.2010

Zum Druck genehmigt. Lübeck, den 15.01.2010
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaltsverzeichnis</td>
</tr>
<tr>
<td>Abkürzungsverzeichnis</td>
</tr>
<tr>
<td>Abbildungsverzeichnis</td>
</tr>
<tr>
<td>Tabellenverzeichnis</td>
</tr>
</tbody>
</table>

1. Einleitung

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Postoperative Sedierung auf der Intensivstation</td>
</tr>
<tr>
<td>1.2 Anaesthetic Conserving Device (ACD)</td>
</tr>
<tr>
<td>1.3 Isofluran</td>
</tr>
<tr>
<td>1.4 Propofol</td>
</tr>
<tr>
<td>1.5 Fragestellung</td>
</tr>
</tbody>
</table>

2. Material und Methode

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Patienten</td>
</tr>
<tr>
<td>2.2 Ein- und Ausschlusskriterien</td>
</tr>
<tr>
<td>2.3 Materialien</td>
</tr>
<tr>
<td>2.4 Methodik</td>
</tr>
<tr>
<td>2.4.1 Untersuchungsplan</td>
</tr>
<tr>
<td>2.4.2 Untersuchungsdurchführung</td>
</tr>
<tr>
<td>2.4.3 Messzeitpunkte</td>
</tr>
<tr>
<td>2.4.4 Ablauf der Studie</td>
</tr>
<tr>
<td>2.5 Statistische Auswertung</td>
</tr>
<tr>
<td>2.5.1 Statistische Methodik</td>
</tr>
<tr>
<td>2.5.2 Statistische Auswertungsverfahren</td>
</tr>
</tbody>
</table>

3. Ergebnisse

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Allgemeine Charakterisierung der Gesamtstichprobe</td>
</tr>
<tr>
<td>3.1.1 Vergleich soziodemographischer Merkmale</td>
</tr>
<tr>
<td>3.2 Spezieller Ergebnisteil</td>
</tr>
<tr>
<td>3.2.1 Dauer von Nachbeatmung, Gesamt- und Durchschnittsverbrauch an Anästhetika</td>
</tr>
</tbody>
</table>
3.2.2 Aufwach- und Extubationszeiten .. 26
3.2.3 Verbrauch an Analgetika während der Sedierung 28
3.2.4 Endtidale (exspiratorische) Isoflurankonzentration in der Atemluft ... 30
3.2.5 Serum-Kreatinin als Nierenfunktionsparameter 31
3.2.6 Allgemeine hämodynamische Parameter 32
3.2.7 Richmond Agitation-Sedation Scale (RASS) als Parameter für die Sedierungstiefe .. 35
3.3 Kostenanalyse .. 36

4. Diskussion ... 37

4.1 Auswahl des volatilen Anästhetikums und Anwendung des ACD .. 38
4.2 Aufwach- und Extubationsverhalten 39
4.3 Analgetikaverbrauch ... 40
4.4 Nierenfunktion .. 41
4.5 Hämodynamik ... 42
4.6 Kostenanalyse .. 43
4.7 Grenzen der Studie ... 43
4.8 Schlussfolgerung und Ausblick .. 44

5. Zusammenfassung .. 45

6. Literaturverzeichnis ... 46

7. Anhang .. 54

7.1 Blutgasanalysen ... 54
7.2 Aufklärungsbogen und Einwilligungserklärung 57
7.3 Richmond Agitation-Sedation Scale (RASS) und ASA-Klassifikation für Narkoserisiken .. 61
7.4 Veröffentlichungen .. 62

8. Danksagung ... 64

9. Curriculum Vitae ... 65
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACD</td>
<td>Anaesthetic Conserving Device</td>
</tr>
<tr>
<td>AnaConDa®</td>
<td>Anaesthetic Conserving Device (Markenname)</td>
</tr>
<tr>
<td>ASAT/ALAT</td>
<td>Aspartataminotransferase/Alaninaminotransferase</td>
</tr>
<tr>
<td>ASA</td>
<td>American Society of Anaesthesiologists</td>
</tr>
<tr>
<td>BE</td>
<td>Base Excess</td>
</tr>
<tr>
<td>BGA</td>
<td>Blutgasanalyse</td>
</tr>
<tr>
<td>BIS</td>
<td>Bispektralindex</td>
</tr>
<tr>
<td>COPD</td>
<td>chronical obstructive pulmonary disease</td>
</tr>
<tr>
<td>DGAI</td>
<td>Deutsche Gesellschaft für Anästhesie und Intensivmedizin</td>
</tr>
<tr>
<td>Fi</td>
<td>hier: inspiratorische Isoflurankonzentration</td>
</tr>
<tr>
<td>Fet</td>
<td>hier: endtidale Isoflurankonzentration</td>
</tr>
<tr>
<td>g/l</td>
<td>Gramm pro Liter</td>
</tr>
<tr>
<td>Hb</td>
<td>Hämoglobin</td>
</tr>
<tr>
<td>HCO³⁻</td>
<td>Standardbikarbonat</td>
</tr>
<tr>
<td>KHK</td>
<td>koronare Herzerkrankung</td>
</tr>
<tr>
<td>MAC</td>
<td>minimale alveolare Konzentration</td>
</tr>
<tr>
<td>mmol</td>
<td>Millimol</td>
</tr>
<tr>
<td>µmol</td>
<td>Mikromol</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>paO₂/CO₂</td>
<td>arterieller Sauerstoff/Kohlendioxidpartialdruck</td>
</tr>
<tr>
<td>PEEP</td>
<td>positive endexpiratory pressure</td>
</tr>
<tr>
<td>PONV</td>
<td>post-operative nausea and vomiting</td>
</tr>
<tr>
<td>RASS</td>
<td>Richmond Agitation-Sedation Scale</td>
</tr>
<tr>
<td>RR</td>
<td>Riva Rocci (Bezeichnung für Blutdruck)</td>
</tr>
<tr>
<td>RRsys/RRdiast</td>
<td>systolischer/diastolischer Blutdruck</td>
</tr>
<tr>
<td>S(a)O₂</td>
<td>(arterielle) Sauerstoffsättigung</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation (Standardabweichung)</td>
</tr>
<tr>
<td>SpO₂</td>
<td>periphere Sauerstoffsättigung</td>
</tr>
<tr>
<td>SPSS</td>
<td>Software Package For Social Sciences</td>
</tr>
<tr>
<td>Temp.</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Vol.%</td>
<td>Volumenprozent</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1 ACD-System Seite 3
Abbildung 2 Strukturformel von Isofluran Seite 5
Abbildung 3 Strukturformel von Propofol Seite 7
Abbildung 4 Isofluranflasche mit Fülladapter für ACD-50ml Spritze Seite 18
Abbildung 5 Das ACD im Querschnitt Seite 18
Abbildung 6 Tragbarer Narkosegasmonitor Dräger Vamos® Seite 19
Abbildung 7 Aktivkohle-Restgasfilter Aldasorber® und Aktivkohle-Zeolith-Restgasfilter Contrafluran Seite 22
Abbildung 8 Beatmungsgerät Dräger Evita XL® mit angeschlossenem Restgasfilter Aldasorber® Seite 22
Abbildung 9 Aufwachzeiten in min nach Sedierung Seite 27
Abbildung 10 Extubationszeiten in min nach Sedierung Seite 28
Abbildung 11 Verbrauch an dem Analgetikum Dipidolor® Seite 29
Abbildung 12 Verbrauch an dem Analgetikum Dolantin® Seite 29
Abbildung 13 Exspiratorische Isoflurankonzentration bei Verwendung des ACD Seite 30
Abbildung 14 Serum-Kreatinin präoperativ, sowie am 1., 2. und 3. postoperativen Tag Seite 31
Abbildung 15 Systolischer und diastolischer Blutdruck Seite 33
Abbildung 16 Herzfrequenz in beiden Gruppen Seite 34
Abbildung 17 Richmond Agitation-Sedation Scale: Häufigkeitsverteilung Seite 35
Tabellenverzeichnis

<table>
<thead>
<tr>
<th>Tabelle</th>
<th>Überschrift</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabelle 1</td>
<td>Geräte und Zubehör</td>
<td>12</td>
</tr>
<tr>
<td>Tabelle 2</td>
<td>Medikamente</td>
<td>12</td>
</tr>
<tr>
<td>Tabelle 3</td>
<td>Software</td>
<td>12</td>
</tr>
<tr>
<td>Tabelle 4</td>
<td>Messzeitpunkte</td>
<td>16</td>
</tr>
<tr>
<td>Tabelle 5</td>
<td>Im Verlauf erhobene Messparameter</td>
<td>16</td>
</tr>
<tr>
<td>Tabelle 6</td>
<td>Beatmungseinstellungen</td>
<td>17</td>
</tr>
<tr>
<td>Tabelle 7</td>
<td>Alter und Gewicht der Patienten</td>
<td>25</td>
</tr>
<tr>
<td>Tabelle 8</td>
<td>Dauer der Sedierung, Gesamt- und Durchschnittsverbrauch an Anästhetika</td>
<td>26</td>
</tr>
<tr>
<td>Tabelle 9</td>
<td>Kostenanalyse beider Sedierungsregimes</td>
<td>36</td>
</tr>
<tr>
<td>Tabelle 10</td>
<td>Kosten für Verbrauchsmaterialien</td>
<td>36</td>
</tr>
<tr>
<td>Tabelle 11</td>
<td>Blutgasanalysemessdaten und Körper-temperatur</td>
<td>55-56</td>
</tr>
<tr>
<td>Tabelle 12</td>
<td>Richmond Agitation-Sedation Scale (RASS)</td>
<td>61</td>
</tr>
<tr>
<td>Tabelle 13</td>
<td>ASA-Klassifikation für Narkoserisiken</td>
<td>61</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Postoperative Sedierung auf der Intensivstation

Die Sedierung und Analgesie stellen einen wichtigen Bestandteil bei der Therapie von postoperativen und kritisch kranken Intensivpatienten dar. Sie sind von hoher Komplexität und relevant für den Therapieerfolg der Patienten.

1.2 Anaesthetic Conserving Device (ACD)

Abb.1: ACD-System: Kernstück (enthält den Carbonfilter und Miniverdampfer) mit Wirkstoffzuleitung und 50ml-Spritze.

Von einigen Zentren wird Isofluran darüber hinaus bereits seit über 20 Jahren regelhaft zur Therapie des Status asthmaticus oder Status epilepticus eingesetzt [13, 14, 15, 16]. Ein im Jahr 2007 in Deutschland veröffentlichter Fallbericht demonstriert einen derartigen Einsatz bei einem Patienten mit exazerbierter COPD und Ventilationsproblemen unter konventionellem Sedierungsregime ebenfalls beispielhaft [17].

In der klinischen Praxis werden für die inhalative Sedierung im Gegensatz zur Allgemeinanästhesie unter Operationsbedingungen niedrigere Dosierungen im Bereich von 0,2-1,0 MAC eingesetzt [12]. Zur Sedierung mit Sevofluran liegen bislang jedoch insgesamt nur wenige klinische Daten vor [19, 24, 25, 26].

1.3 Isofluran

Die Biotransformation von Isofluran ist mit weniger als 0,2% sehr gering. 95% des verabreichten Isoflurans werden unverändert mit der Ausatemluft ausgeschieden [27]. Diese extrem niedrige Metabolisierungsrate weist darauf hin, dass Isofluran nicht lebertoxisch ist. Die Elimination von Isofluran erfolgt wegen des niedrigen Blut/Gas-Verteilungskoeffizienten ebenfalls schnell, hängt jedoch von der Narkosedauer ab [28, 29, 30].

1.4 Propofol

Abb.3: Strukturformel von Propofol (modifiziert nach Larsen)

Im klinischen Alltag findet Propofol vor allem zur Narkoseeinleitung, als Komponente zur Narkoseführung und zur Langzeitsedierung auf Intensivstationen seinen Einsatz. Ebenfalls wird es für Kurznarkosen bei Endoskopien in Verbindung mit Benzodiazepinen eingesetzt [41, 42].

Propofol und seine Metaboliten werden vorwiegend renal ausgeschieden (88%), dabei vor allem mit Sulfat oder Glucuronsäure konjugiert. Nur 0,3% des verabreichten Propofols erscheinen unverändert im Urin. Weniger als 2% der Abbauprodukte werden im Stuhl ausgeschieden. Aufgrund seiner pharmakologischen Eigenschaften, die sich besonders durch die kurze Wirkeintrittsdauer und die kurze Wirkdauer beschreiben lassen, ist weltweit eine große Akzeptanz zu verzeichnen.

1.5 Fragestellung

2. Material und Methoden

2.1 Patienten

In die hier dargestellte Untersuchung gingen die Daten von 70 Patientinnen und Patienten ein, die sich einer geplanten Operation mit anschließender Indikation für eine intensivmedizinische Behandlung mit Nachbeatmung auf der Intensivstation 15i der Klinik für Anästhesiologie des Universitätsklinikums Schleswig-Holstein, Campus Lübeck, unterziehen mussten.

Nach Genehmigung der Studie durch die örtliche Ethikkommission am 20.03.2008 unter dem Aktenzeichen 07-117 wurden die Patienten, für die eine geplante postoperative Aufnahme auf der Intensivstation mit Indikation zur Nachbeatmung bestand, im Rahmen des üblichen Prämiedikationsgespäches durch schriftliche und mündliche Information für die Studie gewonnen. Der Untersuchungszeitraum erstreckte sich auf die Zeit vom 30.03.2008 bis 01.11.2008.

Die Patienten nahmen freiwillig daran teil, vor Studienteilnahme unterschrieben sie eine entsprechende Einwilligungserklärung (siehe Anhang 7.2) und wurden darauf hingewiesen, dass sie jederzeit und unbegründet die Teilnahme an dieser Studie widerrufen können.
2.2 Ein- und Ausschlusskriterien

Folgende Kriterien wurden für einen möglichen Einschluss in die Studie formuliert:

<table>
<thead>
<tr>
<th>Alter zwischen 18 und 85 Jahre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indikation zur Aufnahme auf die Intensivstation 15i</td>
</tr>
<tr>
<td>ASA-Klassifikation I – III (siehe Tabelle 13)</td>
</tr>
<tr>
<td>Gewicht > 50 kg</td>
</tr>
<tr>
<td>Hb präoperativ > 10 g/l</td>
</tr>
<tr>
<td>Fähigkeit und Bereitschaft, die Einwilligung in die Studienteilnahme zu geben</td>
</tr>
</tbody>
</table>

Als Ausschlusskriterien galten das Vorliegen eines oder mehrerer der folgenden Merkmale:

<table>
<thead>
<tr>
<th>Notfälle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwangerschaft und Stillzeit</td>
</tr>
<tr>
<td>Allergie gegen Propofol oder Isofluran</td>
</tr>
<tr>
<td>Alkohol-, Drogen- oder Schmerzmittelmissbrauch</td>
</tr>
<tr>
<td>ZNS-Erkrankungen wie Morbus Parkinson oder Morbus Alzheimer</td>
</tr>
<tr>
<td>Leberinsuffizienz (ASAT/ALAT > 40 U/l)</td>
</tr>
<tr>
<td>vorbestehende Muskelkrankungen oder Muskelschwäche</td>
</tr>
<tr>
<td>vorbestehendes Delir, Agitation, psychische Erkrankungen</td>
</tr>
<tr>
<td>bronchoösophageale oder bronchopleurale Fistel</td>
</tr>
<tr>
<td>maligne Hyperthermie</td>
</tr>
<tr>
<td>Teilnahme an einer anderen Studie</td>
</tr>
<tr>
<td>Ablehnung von Seiten des Patienten</td>
</tr>
</tbody>
</table>
2. Material und Methoden

2.3 Materialien

Für die Patientenversorgung wurden die auf Intensivstationen üblichen Geräte und Verbrauchsmaterialien verwendet. Die nachfolgend aufgelisteten Geräte und Verbrauchsmaterialien sowie Medikamente und die Software kamen speziell im Zusammenhang mit der Anwendung des ACD zum Einsatz.

Tab.1: Geräte und Zubehör

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dräger Evita 2®</td>
<td>Fa. Dräger Medical, Lübeck, Deutschland</td>
</tr>
<tr>
<td>Dräger Evita XL®</td>
<td>Fa. Dräger Medical, Lübeck, Deutschland</td>
</tr>
<tr>
<td>Dräger Vamos®</td>
<td>Fa. Dräger Medical, Lübeck, Deutschland</td>
</tr>
<tr>
<td>AnaConDa®-Set</td>
<td>Fa. Sedana Medical, Geretsried, Deutschland</td>
</tr>
<tr>
<td>AnaConDa®-Fülladapter für Isofluran</td>
<td>Fa. Sedana Medical, Geretsried, Deutschland</td>
</tr>
<tr>
<td>Restgasfilter Aldasorber® (Aktivkohle)</td>
<td>Fa. Shirley Aldred & Co Ltd, Sheffield, Großbritannien</td>
</tr>
<tr>
<td>Restgasfilter Contrafluran® (Aktivkohle-Zeolith)</td>
<td>Fa. ZeoSys, Berlin, Deutschland</td>
</tr>
<tr>
<td>CO₂-Messleitung</td>
<td>Fa. Mallinckrodt DAR, Mirandola, Italien</td>
</tr>
<tr>
<td>Spitzenpumpe Perfusor® fm</td>
<td>Fa. B. Braun, Melsungen, Deutschland</td>
</tr>
</tbody>
</table>

Tab.2: Medikamente

<table>
<thead>
<tr>
<th>Medikament</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forene® Wirkstoff: Isofluran</td>
<td>Fa. Abbott, Wiesbaden, Deutschland</td>
</tr>
<tr>
<td>Propofol® 2% Wirkstoff Propofol</td>
<td>Fa. Fresenius Kabi, Bad Homburg, Deutschland</td>
</tr>
<tr>
<td>Dipidolor® Wirkstoff: Piritramid</td>
<td>Fa. Janssen-Cilag, Neuss, Deutschland</td>
</tr>
<tr>
<td>Dolantin® Wirkstoff: Pethidin</td>
<td>Fa. Sanofi-Aventis, Frankfurt, Deutschland</td>
</tr>
</tbody>
</table>

Tab.3: Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Word/Excel Version 2002</td>
<td>Fa. Microsoft, Unterschleißheim, Deutschland</td>
</tr>
<tr>
<td>Software Package for Social Sciences (SPSS) Version 16</td>
<td>Fa. SPSS Inc., Chicago, USA</td>
</tr>
</tbody>
</table>
2.4 Methodik

2.4.1 Untersuchungsplan

2.4.2 Untersuchungsdurchführung

Folgende Daten werden für die Untersuchung erhoben und zum Teil ausgewertet:

2.4.2.1 Demographische Daten

Es werden erfasst: Alter des Patienten, Größe (in cm), Gewicht (in kg), Geschlecht, relevante Vorerkrankungen (z.B. Hypertonie, KHK, COPD) sowie Art der Operation.

2.4.2.2 Hämodynamisches Monitoring

Es erfolgt die Blutdruckmessung entweder nach Riva-Rocci oder invasiv mittels arterieller Drucksonde, Messung der Herzfrequenz (Schläge pro Minute) über eine EKG-Ableitung oder pulsoxymetrisch sowie die pulsoxymetrische Messung der Sauerstoffsättigung und die Messung der Sauerstoffsättigung in der Blutgasanalyse, außerdem die Messung der Körperkerntemperatur.
2.4.2.3 Laborparameter

Im Verlauf der Beatmung werden Laborwerte fokussiert, die mittels arterieller Blutgasanalyse (BGA) bestimmt werden. Dazu gehören Messwerte, die den Säure-Base-Haushalt, der bei Intensivpatienten stark beatmungsassoziert ist, widerspiegeln:
- pH-Wert des Blutes,
- Sauerstoffpartialdruck (paO$_2$) in mmHg,
- Kohlendioxidpartialdruck (paCO$_2$) in mmHg,
- Standardbikarbonatkonzentration (HCO$_3^-$) in mmol/l,
- Base Excess (BE) (in mmol/l).

Weiter der Wert von Hämoglobin (in g/l), die Werte von Kalium und Natrium (in mmol/l) sowie der Blutglucosewert (in mg/dl).

Als Nierenfunktionsparameter wird der Kreatininwert (in µmol/l) vor der OP, 1 Tag nach der OP, 2 Tage nach der OP und 3 Tage nach der OP bestimmt.

2.4.2.4 Beatmungsparameter

Alle beatmungsrelevanten Parameter werden dokumentiert. Dies sind:
- Inspiratorische Sauerstoffkonzentration (FiO$_2$ in %),
- Atemfrequenz pro Minute,
- Tidalvolumen (V_t),
- Atemminutenvolumen (ml/min),
- Beatmungsdrücke (Maximalwert, Mitteldruck, PEEP [in mbar]),
- Compliance (in ml/mbar) sowie die Gesamtbeatmungsdauer in Minuten.

2.4.2.5 Aufwach- und Extubationsverhalten

Als Aufwachzeit wird die Zeit von Beendigung der Sedierung (Stop der Wirkstoffzufuhr von Isofluran und Ausbau des ACD-Systems, Stop der Propofolspritzenpumpe) bis zum Augenöffnen und Reagieren auf einfache Kommandos wie Hände drücken, definiert. Die Extubationszeit wird definiert als Zeit von Beendigung der Sedierung (s.o.) bis zur endgültigen Extubation. Zur Evaluation der Sedierungstiefe kommt die Richmond Agitation-Sedation Scale (RASS) zum Einsatz [57] (siehe Tabelle 12).
2.4.2.6 Verbrauch an Sedativa

Der Gesamtverbrauch an flüssigem Isofluran und Propofol (in ml) sowie der mittlere Isofluran-bzw. Propofolverbrauch pro Stunde werden dokumentiert.

2.4.2.7 Verbrauch an Analgetika

Der Gesamtverbrauch der für die Analgesie verwendeten Opioidanalgetika Dipidolor® (Piritramid) und Dolantin® (Pethidin) werden dokumentiert.

2.4.2.8 Nebenwirkungen

Mögliche Nebenwirkungen, die im Zusammenhang mit einer Narkose oder Sedierung stehen können wie Agitation, Fieber, Niereninsuffizienz, Dialysepflichtigkeit, postoperative Übelkeit und Erbrechen, Allergien, Hypotonie, Myokardinfarkt, Arrhythmien, ischämischer Insult, Kopfschmerzen, Somnolenz und Delir werden dokumentiert.

2.4.2.9 Kostenkalkulation

Es soll eine Gesamtkostenanalyse beider Sedierungsregimes angefertigt werden. Sie stützt sich auf Verbrauchsmaterialkosten (ACD-Set, Spritzen, Leitungen, Restgasentsorgung), die Medikamentenkosten für Propofol bzw. Isofluran und die erforderlichen Analgetika.

2.4.2.10 Erhebung der Laborparameter

Allen auf der Intensivstation 15i aufgenommenen Patienten wird entsprechend der Stationsroutine nach ärztlicher Anordnung zu definierten Zeitpunkten Blut abgenommen und Laborwerte werden bestimmt. Darüber hinaus werden vor Verlegung auf Normalstationen einige Laborwerte erneut bestimmt, sofern sie nicht durch die Routineabnahmen bekannt sind. Ein Einfluss der Studie auf die Erhebungszeitpunkte besteht nicht. Alle Daten werden auf Basis der Beobachtung dieser klinischen Routine erhoben.
2.4.3 Messzeitpunkte

Um die Messdaten der unterschiedlich lange dauernden Sedierungsverläufe vergleichend auswerten zu können, wurden drei verschiedene Messzeitpunkte festgelegt. Diese sind nachfolgend beschrieben.

Tab.4: Messzeitpunkte

<table>
<thead>
<tr>
<th>Messzeitpunkt 1</th>
<th>Ankunft auf der Intensivstation und Einleitung der Sedierung, Anflutungsphase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messzeitpunkt 2</td>
<td>Mitte der Sedierung</td>
</tr>
<tr>
<td>Messzeitpunkt 3</td>
<td>Ende der Sedierung</td>
</tr>
</tbody>
</table>

An den drei Messzeitpunkten werden die in folgender Tabelle aufgeführten Parameter erhoben.

Tab.5: Im Verlauf erhobene Messparameter

<table>
<thead>
<tr>
<th></th>
<th>Messzeitpunkt 1-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hämodynamische Parameter</td>
<td>systolischer und diastolischer Blutdruck</td>
</tr>
<tr>
<td></td>
<td>Herzfrequenz</td>
</tr>
<tr>
<td>Beatmungsassozierte und weitere Messparameter</td>
<td>zugeführte Isofluran/Propofolmenge</td>
</tr>
<tr>
<td></td>
<td>im arteriellen Blut gemessene Werte von: pH, pO₂, pCO₂, HCO₃⁻, BE, Hb, SO₂ in der BGA, Kalium, Natrium, Blutglucose.</td>
</tr>
<tr>
<td></td>
<td>Körpertemperatur (°C), SpO₂, RASS</td>
</tr>
</tbody>
</table>
2.4.4 Ablauf der Studie

Der Studienzeitraum beginnt mit der Aufnahme auf die Intensivstation. Der jeweils behandelnde Arzt der Intensivstation entscheidet über die Durchführung der Analgosedierung mittels Propofol oder Isofluran.

Für die Isoflurangruppe wird das befüllte ACD-System initial mit einer Flussrate von 3 ml/h an der Spritzenpumpe beschickt. Ziel der Analgosedierung ist die Toleranz des Tubus. Dafür kann die Infusionsrate zwischen 1 und 10 ml/h entsprechend den medizinischen Erfordernissen variiert werden. Die zugeführte, endexspiratorische Isoflurankonzentration liegt dann zwischen ca. 0,2 und 1,0 Vol.%. Für die Beatmung werden die jeweils am Patientenbett vorhandenen Intensivrespiratoren Dräger Evita XL oder Dräger Evita 2 (siehe Tabelle 1) mit folgenden initialen Einstellungen verwendet:

Tab.6: Beatmungseinstellungen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tidalvolumen (V_t):</td>
<td>6-8 ml/kg</td>
</tr>
<tr>
<td>Atemfrequenz (AF):</td>
<td>10 / min</td>
</tr>
<tr>
<td>Verhältnis Inspiration/Expiration (T_i / T_e):</td>
<td>1 : 1,7</td>
</tr>
<tr>
<td>Inspiratorische Sauerstoffkonzentration (FiO_2):</td>
<td>60%</td>
</tr>
<tr>
<td>PEEP</td>
<td>5 mbar</td>
</tr>
</tbody>
</table>

Zum Befüllen der in jedem ACD-System enthaltenen 50ml-Spritze mit Isofluran wird ein spezieller Fülladapter benötigt, der auf die handelsüblichen Flaschen geschraubt werden kann (siehe Tabelle 1 und Abb. 4). Er ist wiederverwendbar und darf nur für Isofluran eingesetzt werden. Für Sevofluran bietet der Hersteller einen eigenen Fülladapter an. Die Adapter ermöglichen ein Befüllen der Spritze, ohne dass Wirkstoff in die Umgebungsluft entweichen kann.
2. Material und Methoden

Abb. 4: Isofluranflasche mit Fülladapter für ACD-50ml-Spritze (siehe Tabelle 1)

Abb. 5: Das ACD im Querschnitt. (Quelle: Sedana Medical Deutschland)

In der Inspiration fließt Sauerstoff von der Beatmungsmaschine (1) durch das ACD und fließt -angereichert mit Isofluran- über den Tubus zum Patienten (6).

In der Expiration fließt das Sauerstoff-Gas-Gemisch zurück zur Beatmungsmaschine, dabei wird Isofluran in der Aktivkohlemembran gespeichert und im nächsten Atemzyklus wiederverwendet.

Abb 6: Tragbarer Narkosegasmonitor Dräger Vamos® (siehe Tabelle 1)
links: Anschluss für CO₂-Messleitung am ACD
Bei der Interpretation der Gaskonzentrationsmesswerte muss bei der Verwendung des ACD eine Besonderheit beachtet werden, die im Folgenden erklärt werden soll. Der Narkosegasmonitor misst zwei Narkosegaskonzentrationen und stellt diese als Zahlenwert dar - \(F_i \), d.h. die inspiratorische Konzentration und \(F_{et} \), d.h. die endtidale bzw. endexspiratorische Konzentration. Die Werte der \(F_i \) und \(F_{et} \) werden nach einem speziellen Algorithmus im Gasmonitor berechnet, der vom Hersteller des Monitors entwickelt wurde. Der expiratorische Wert wird normalerweise am Ende der Expiration und der inspiratorische Wert am Ende der Inspiration gemessen. Um zu ermitteln, wann die Expiration und die Inspiration beginnt bzw. endet, orientiert sich der Vamos® an der mitgemessenen CO₂-Kurve.

Die Beurteilung der Sedierungstiefe erfolgt stündlich und außerdem zu den definierten Messzeitpunkten (siehe Tabelle 4) mittels der dimensionslosen Richmond Agitation-Sedation Scale (RASS) [57]. Es werden unter der Beatmung RASS-Werte von -3 bis 0 angestrebt (siehe Anhang 7.3).
Die Sedierungstiefe wird entsprechend diesen Werten durch Reduktion oder Erhöhung der Isofluranzufuhr adaptiert. Die Gabe von Analgetika und die erforderliche weitere Medikation erfolgt unabhängig von der Studie gemäß den auf der Station 15i gängigen, klinischen Kriterien und nach Ermessen des verantwortlichen, diensthabenden Arztes. Für die Isoflurangruppe wird bei Entscheidung zur Extubation die Wirkstoffzufuhr gestoppt und das ACD-System aus dem Beatmungssystem entfernt.

Die Sedierung mit Propofol erfolgt mit der 2%-igen Propofol-Lösung in einer Dosierung von 1-3 mg/kg/h. Ziel der Sedierungstiefe ist ebenfalls die Toleranz des Tubus sowie RASS-Werte zwischen -3 bis 0. Auch hier wird die Sedierungstiefe stündlich bzw. zu den definierten Messzeitpunkten (siehe Tabelle 4) mittels RASS bestimmt und durch Reduktion oder Erhöhung der Propofolzufuhr entsprechend angepasst. Die Gabe von Analgetika und die erforderliche weitere Medikation erfolgt auch in dieser Gruppe unabhängig von der Studie gemäß den auf der Station 15i gängigen, klinischen Kriterien und nach Ermessen des verantwortlichen, diensthabenden Arztes. Nach Entscheidung zur Extubation wird die kontinuierliche Wirkstoffzufuhr gestoppt und die Spritze diskonnektiert.
Abb. 7: Aktivkohle-Restgasfilter Aldasorber® (links) und Aktivkohle-Zeolith-Restgasfilter Contrafluran®

Abb. 8: Beatmungsgerät Dräger Evita XL® mit angeschlossenem Restgasfilter Aldasorber®
2.5 Statistische Auswertung

2.5.1 Statistische Methodik

Der Verständlichkeit halber wurden auch bei Parametern, die signifikant von einer Gauss-Verteilung abwichen, in der deskriptiven Statistik die Mittelwerte und die Standardabweichung verwendet. Es wurde stets zweiseitig getestet und ein Signifikanzniveau von 5% zugrunde gelegt. Alle weiteren vorgenommenen inferenzstatistischen Auswertungen wurden nicht alphaadjustiert. Sie verstehen sich wegen der vorgenommenen Mehrfachvergleiche letztlich deskriptiv [60]. Entsprechend versteht sich der Terminus „signifikant“ als deskriptiver Hinweis auf Gruppenunterschiede ohne konfirmatorische Absicherung.

2.5.2 Statistische Auswertungsverfahren
3. Ergebnisse

3.1 Allgemeine Charakterisierung der Gesamtstichprobe

In die Untersuchung gingen die Daten von 70 Patientinnen und Patienten ein, wovon jeweils die Hälfte mit Isofluran mittels ACD (n=35) und die andere Hälfte mit Propofol (n=35) sediert wurden. Es wurden die Daten von insgesamt 52 Männern und 18 Frauen ausgewertet, was einer prozentualen Verteilung von 74,3 % Männern und 25,7 % Frauen entspricht.

Alle Patienten waren postoperativ intubiert und somit mit Indikation zur Beatmung und Sedierung auf die Station 15i des UKSH Campus Lübeck aufgenommen.

3.1.1 Vergleich soziodemographischer Merkmale

Das Durchschnittsalter in der Gesamtstichprobe betrug 64,4 ± 11,3 Jahre, das Durchschnittsgewicht 73,5 ± 12,2 Kilogramm.

Es gibt keine signifikanten Unterschiede hinsichtlich Alter und Gewicht zwischen der ACD- und der Propofolgruppe (T-Test, p > 0,10).

<table>
<thead>
<tr>
<th>Tab. 7: Alter und Gewicht der Patienten¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter [Jahre]</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>63,8</td>
</tr>
<tr>
<td>74,31</td>
</tr>
</tbody>
</table>

¹ In der Tabelle sind jeweils Mittelwert und Standardabweichung (SD) angegeben.
3. Ergebnisse

3.2 Spezieller Ergebnisteil

3.2.1 Dauer von Nachbeatmung, Gesamt- und Durchschnittsverbrauch an Anästhetika

Im Durchschnitt dauerte die Nachbeatmung und Sedierung in der ACD-Gruppe 544 Minuten (9h 4min) und in der Propofolgruppe 634 Minuten (10h 34min).

Somit dauerte die Sedierung mit Propofol signifikant (90min) länger als mit Isofluran (U-Test, p = 0,024).

Der Gesamtverbrauch an flüssigem Isofluran betrug in der ACD-Gruppe im Mittel 38 ± 40 ml, der Verbrauch an 2%-iger Propofollösung in der Vergleichsgruppe betrug 117 ± 81ml.

Daraus ergibt sich ein stündlicher Durchschnittsverbrauch von 4,1 ± 1,9 ml Isofluran und von 10,9 ± 3 ml Propofol.

Tab. 8: Dauer der Sedierung, Gesamt- und Durchschnittsverbrauch an Anästhetika

<table>
<thead>
<tr>
<th></th>
<th>ACD-Gruppe</th>
<th>SD</th>
<th>Propofol-Gruppe</th>
<th>SD</th>
<th>p</th>
<th>Gesamt-Gruppe</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer [min]</td>
<td>544,7</td>
<td>458,6</td>
<td>643,2</td>
<td>363,3</td>
<td>0,024</td>
<td>589,5</td>
<td>413,1</td>
</tr>
<tr>
<td>Gesamt-verbrauch[ml]</td>
<td>37,7</td>
<td>39,8</td>
<td>116,6</td>
<td>80,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Durchschnitts-verbrauch[ml/h]</td>
<td>4,1</td>
<td>1,9</td>
<td>10,9</td>
<td>3,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

3.2.2 Aufwach- und Extubationszeiten

Die Aufwachzeit in der ACD-Gruppe betrug im Mittel 10,8 ± 5,4 min und in der Propofolgruppe im Mittel 26,8 ± 8,2 min. Somit ist die Aufwachzeit in der ACD-Gruppe signifikant kürzer (T-Test, p < 0,001).

1 In der Tabelle sind jeweils Mittelwert und Standardabweichung (SD) angegeben.
Ähnliches gilt für die Extubationszeit, sie betrug in der ACD-Gruppe im Mittel 23,1 ± 10 min und bei Verwendung von Propofol 48,5 ± 17,7 min. Auch dieser Messwert ist in der ACD-Gruppe signifikant kürzer (T-Test, p < 0,001).

Abb. 9: Aufwachzeiten in min nach Sedierung

1 Die dargestellten Box-Plots stellen die 25. bis 75. Perzentile mit Median, die Whisker die 5. bis 95. Perzentile dar. Mit Punktdarstellung sind Ausreißerwerte abgebildet, die zwischen 1 ½ bis 3 Interquartilsabstände von der benachbarten Box abweichen.

2 Mit „Testgruppe“ ist die ACD-Gruppe, mit „Kontrollgruppe“ die Propofolgruppe bezeichnet.
3. Ergebnisse

3.2.3 Verbrauch an Analgetika während der Sedierung

Der Verbrauch an den für die Vergleichsbetrachtung zugrunde gelegten Analgetika Dipidolor® (Piritramid) und Dolantin® (Pethidin) verteilt sich wie folgt:

In der ACD-Gruppe betrug der Verbrauch an Dipidolor® im Mittel 11,3 ± 14,4 mg und in der Propofol-Gruppe 17,3 ± 13,7 mg. Somit wurde in der ACD-Gruppe signifikant weniger Dipidolor® verbraucht (U-Test, p = 0,014).

Der Verbrauch an Dolantin® betrug in der ACD-Gruppe im Mittel 9,29 ± 19,3 mg und in der Propofol-Gruppe 18,1 ± 29 mg. Hier kann im Gruppenvergleich ein messbarer, aber kein statistisch signifikanter Unterschied gezeigt werden (U-Test, p = 0,193). Dolantin® wurde jedoch nur als Co-Analgästikum bei einer geringen Patientenanzahl angewendet.

Abb. 10: Extubationszeiten in min nach Sedierung

\[\text{Dargestellte Größen und Nomenklatur: siehe S.27} \]
\[\text{Mit Stern sind Werte abgebildet, die über 3 Interquartilsabstände von der benachbarten Box abweichen.} \]
3. Ergebnisse

Abb. 11: Verbrauch an dem Analgetikum Dipidolor®

Abb. 12: Verbrauch an dem Analgetikum Dolantin®

1 Dargestellte Größen und Nomenklatur: siehe S.27 und 28
3.2.4 Endtidale (exspiratorische) Isoflurankonzentration in der Atemluft

Der Verlauf der expiratorischen Isoflurankonzentration stellt sich wie folgt dar: Nach einer anfänglichen Anflutungs- und Aufsättigungsphase wird ein „steady state“ erreicht und es kommt im Verlauf der Sedierung zu einem allmählichen Konzentrationsabfall. Zum Zeitpunkt 1 (Anfang) beträgt die mittlere expiratorische Isoflurankonzentration 0,94 ± 0,47 Vol.%, zum Zeitpunkt 2 (Mitte) 0,89 ± 0,3 Vol.% und zum Zeitpunkt 3 (Ende) 0,74 ± 0,33 Vol.%. Die entsprechende Infusionsrate zum Erzielen dieser Gaskonzentrationen betrug 4,1 ± 1,9 ml/h Isofluran.

Abb.13: Exspiratorische Isoflurankonzentration bei Verwendung des ACD

1 Dargestellte Größen und Nomenklatur: siehe S.27 und 28
3. Ergebnisse

3.2.5 Serum-Kreatinin als Nierenfunktionsparameter

Bei der Betrachtung des Serum-Kreatinins wurde in der Testgruppe präoperativ ein Mittelwert von 82 ± 22 µmol/l und in der Kontrollgruppe ein Mittelwert von 81 ± 26 µmol/l ermittelt. Diese Mittelwerte unterscheiden sich nicht signifikant (T-Test, $p = 0,809$).

Für die Analyse im postoperativen Verlauf konnte eine signifikante Veränderung im Sinne eines moderaten Abfalls des mittleren Serum-Kreatinins in beiden Gruppen zwischen dem 1. und 2. postoperativen Tag gezeigt werden (ANOVA für Messwiederholungen, Lineare Kontraste, $p = 0,001$).

Es kann jedoch kein signifikanter Unterschied zwischen beiden Gruppen im Verlauf des Serum-Kreatinins von Tag 1 bis Tag 3 postoperativ beobachtet werden (ANOVA für Messwiederholungen, Zwischensubjekteffekt, $p = 0,373$).

Abb. 14: Serum-Kreatinin präoperativ, sowie am 1., 2. und 3. postoperativen Tag

1 Dargestellte Größen und Nomenklatur: siehe S. 27 und 28
3. Ergebnisse

3.2.6 Allgemeine hämodynamische Parameter

3.2.6.1 Systolischer und diastolischer Blutdruck

Der systolische Blutdruck lag zum Messzeitpunkt 1 (Anfang) in der Isofluran-
gruppe bei 111 ± 18 mmHg, der diastolische Blutdruck bei 63 ± 12 mmHg und in
der Propofolgruppe systolisch bei 130 ± 20 mmHg, diastolisch bei 64 ± 10 mmHg.
Zum Messzeitpunkt 2 (Mitte) lag der systolische Wert in der Isoflurangruppe bei
114 ± 12 mmHg, der diastolische Wert bei 65 ± 9 mmHg und in der Propofol-
gruppe systolisch bei 133 ± 24 mmHg und diastolisch bei 68 ± 11 mmHg. Am
letzten Messzeitpunkt (Nr.3, Ende) lag der systolische Wert in der Isoflurangruppe
bei 119 ± 13 mmHg, der diastolische Wert bei 63 ± 10 mmHg und in der
Propofolgruppe systolisch bei 128 ± 21 mmHg und diastolisch bei 64 ± 13 mmHg.
Hiermit kann ein signifikanter Unterschied im systolischen, jedoch nicht im dia-
stolischen Blutdruck zwischen den beiden untersuchten Gruppen gezeigt werden,
der systolische Blutdruck ist zu allen drei Messzeitpunkten in der Isoflurangruppe
signifikant niedriger (ANOVA für Messwiederholungen, Zwischensubjekteffekt,
p < 0,001).
Betrachtet man beide Blutdruckteilwerte noch genauer, zeigt sich im zeitlichen
Verlauf des systolischen Wertes ein signifikanter Gruppenunterschied zwischen
Messzeitpunkt 2 und 3, im Sinne eines Abfalls in der Isoflurangruppe und eines
Anstiegs in der Propofolgruppe (ANOVA für Messwiederholungen, Lineare
Kontraste, p = 0,006). Die isolierte Verlaufsbeobachtung des diastolischen Blut-
ldrucks zeigt keine signifikanten Unterschiede (ANOVA für Messwiederholungen,
Lineare Kontraste, p = 0,333).
Abb 15: Systolischer und diastolischer Blutdruck (in mmHg)1

1 Dargestellte Größen und Nomenklatur: siehe S. 27
3.2.6.2 Herzfrequenz

Die mittlere Herzfrequenz betrug in der Isoflurangruppe zum Messzeitpunkt 1 79 ± 13 / min, in der Propofolgruppe lag sie bei 88 ± 22 / min.
Zum Messzeitpunkt 2 betrug sie in der Isoflurangruppe 81 ± 14 / min und in der Propofolgruppe 87 ± 17 / min. Am letzten Messzeitpunkt 3 betrug sie in der Isoflurangruppe 84 ± 16 / min und in der Propofolgruppe 87 ± 18 / min.
Die Herzfrequenz ist somit in der Isoflurangruppe zu allen drei Messzeitpunkten etwas geringer. Es konnte jedoch weder im Verlauf zwischen den Gruppen noch im direkten Gruppenvergleich ein signifikanter Unterschied gezeigt werden (ANOVA für Messwiederholungen, jeweils p > 0,05).

Abb. 16: Herzfrequenz in beiden Gruppen

Dargestellte Größen und Nomenklatur: siehe S. 27
3.2.7 Richmond Agitation-Sedation Scale (RASS) als Parameter für die Sedierungstiefe

Die Richmond Agitation-Sedation Scale ist eine dimensionslose Skala, auf der Werte von -5 bis +4 zur quantitativen Beschreibung der Sedierungstiefe definiert sind (siehe Anhang 7.3). Abbildung 17 veranschaulicht die RASS-Ausprägung an den drei verschiedenen Messzeitpunkten. Sie lag zu allen Zeitpunkten zwischen -4 und -1. Es konnte zu keinem der drei Messzeitpunkte ein signifikanter Gruppenunterschied in der Sedierungstiefe beobachtet werden (Chi-Quadrat-Test auf linearen Trend, $p_1 = 0,498; p_2 = 0,863; p_3 = 0,871$).

Abb. 17: Richmond Agitation-Sedation Scale: Häufigkeitsverteilung

1 Mit „Testgruppe“ ist die ACD-Gruppe, mit „Kontrollgruppe“ die Propofolgruppe bezeichnet.
3. Kostenanalyse

Tab. 9: Kostenanalysen beider Sedierungsregimes

<table>
<thead>
<tr>
<th></th>
<th>ACD-Gruppe</th>
<th>SD</th>
<th>Propofol-Gruppe</th>
<th>SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosten (€) für Sedativa/Analgetika</td>
<td>4,43</td>
<td>4,17</td>
<td>12,43</td>
<td>6,67</td>
<td>< 0,001</td>
</tr>
<tr>
<td>Gesamtkosten (€)</td>
<td>62,55</td>
<td>10,0</td>
<td>13,52</td>
<td>7,29</td>
<td>< 0,001</td>
</tr>
</tbody>
</table>

Die Gesamtkosten ergeben sich aus den Kosten für Sedativa/Analgetika und den in Tabelle 10 aufgelisteten Verbrauchsmaterialien.

Tab. 10: Kosten für Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Kosten (€) pro Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACD-System incl. Spritze</td>
<td>50</td>
</tr>
<tr>
<td>CO₂-Messleitung</td>
<td>0,51</td>
</tr>
<tr>
<td>50ml-Spritze (Propofolgruppe)</td>
<td>0,38 pro Spritze</td>
</tr>
<tr>
<td>Restgasentsorgung</td>
<td>7,57²</td>
</tr>
</tbody>
</table>

¹ In der Tabelle sind jeweils Mittelwert und Standardabweichung (SD) angegeben.
² Berechneter Mittelwert bei Einsatz der Filter gem. der empfohlenen Maximalbenutzungszeit
4. Diskussion

In der modernen Intensivmedizin stellt die adäquate Analgosedierung einen wesentlichen Baustein eines erfolgreichen Therapiekonzeptes dar. Daher war es Ziel der vorliegenden Arbeit, ein neues Sedierungskonzept mit volatilen Anästhetika auf einer Intensivstation anzuwenden, kennenzulernen, damit Erfahrungen zu sammeln und es aus verschiedenen Blickrichtungen zu bewerten. Hierbei standen neben ärztlichen Aspekten auch die Anwendung durch die pflegerische Seite sowie die wirtschaftliche Komponente im Fokus.

Obwohl die Vorteile volatiler Anästhetika im Vergleich zu intravenösen Substanzen bekannt sind [10, 22, 24], werden sie in der Intensivmedizin wegen des technischen Aufwandes selten verwendet: Für ihre Anwendung war bisher ein Narkosegerät mit Gasabsaugung erforderlich. Mit dem ACD hat sich dies verändert, eine inhalative Sedierung ist ohne diesen Aufwand möglich geworden und ist im klinischen Alltag einfach durchführbar. Ob und wieweit sich das ACD auf Intensivstationen durchsetzt, muss abgewartet werden.

Unsere Arbeit mit dem ACD zeigte, dass es sich dabei um ein sicheres und anwenderfreundliches Verfahren zur inhalativen Sedierung handelt. Alle damit behandelten Patienten waren ausreichend sedierbar, die angestrebte Sedierungstiefe, ein Wert auf der Richmond Agitation-Sedation Scale zwischen -3 und 0, konnte gut erreicht werden [57], keiner davon benötigte zusätzlich intravenöse Substanzen und in keinem Fall kam es zu Nebenwirkungen wie Arrhythmien, Shivering, PONV oder Delir, die auf die Sedierung zurückzuführen wären. Hämodynamisch instabile Patienten waren aus der Studie ausgeschlossen, bei den Untersuchten war jedoch keine zusätzliche Volumen- oder Katecholamingabe in der Anflutungs- oder einer folgenden Sedierungphasen notwendig. Eine vorsichtige Titration der Infusionsrate nach Hämodynamik ist notwendig, dann kann der kardiodepressive Effekt von Isofluran gut beherrscht werden [3]. Eine Startdosierung von 3 ml/h kann als Richtwert angesehen werden. Die Regulation der Sedierungstiefe erfolgt analog zur intravenösen Variante durch Erhöhung oder Verminderung der zugeführten Wirkstoffmenge an der Spritzenpumpe.

4.1 Auswahl des volatilen Anästhetikums und Anwendung des ACD

Es gilt als eines der sichersten und nebenwirkungsärmsten Anästhetika [11, 21]. Isofluran ist außerdem deutlich kostengünstiger als Sevofluran. Desfluran weist eine noch geringere Metabolisierungsrate als Isofluran auf, kann aber wegen seines niedrigen Siedepunkts nicht über eine Spritzenpumpe und das ACD angewendet werden.

4.2 Aufwach- und Extubationsverhalten

4.3 Analgetikaverbrauch

4.4 Nierenfunktion

Wir untersuchten als Nierenfunktionsparameter das Serum-Kreatinin und konnten hierbei weder Unterschiede noch eine Erhöhung in einer der beiden Gruppen als Hinweis auf eine Nierenfunktionsstörung beobachten, was insbesondere aufgrund der relativ kurzzeitigen Sedierungsdauer nicht überrascht. Ein messbarer Abfall des Kreatinins in beiden Gruppen zwischen dem 1. und 2. postoperativen Tag konnte beobachtet werden, er bewegt sich vollständig im Normalbereich und kann als klinisch nicht relevant betrachtet werden. Bei der Betrachtung eines Parameters wie des Kreatinins muss beachtet werden, dass es von vielen Faktoren wie prä- und intraoperativem Flüssigkeitsstatus, renalen Vorerkrankungen und vielem mehr abhängig ist. Wir betrachten unser Patientenkollektiv als perioperativ gleichartig flüssigkeitsbilanziert und daher im nachfolgenden Verlauf als vergleichbar, dies wurde in der Studie aber nicht weiter objektiert, da primär andere Aspekte eines ACD-Einsatzes vordergründig standen.
Hier besteht ebenfalls ein Punkt, der in Folgestudien unter kontrollierten Bedingungen weiter objektiviert werden kann.

4.5 Hämodynamik

4.6 Kostenanalyse

4.7 Grenzen der Studie

Verschiedene Messparameter wurden ohne Standardisierung nach klinischer Erfahrung und Ermessen der behandelnden Ärzte beeinflusst, so z.B. die Gabe von Analgetika oder die Einschätzung der Nierenfunktion, die stark vom Wasserhaushalt eines Patienten beeinflusst wird. Dies wurde von uns jedoch nicht weiter objektiviert, da die Anwendungsbeobachtung vordergründig stand. Der RASS als Maßeinheit für die Sedierungstiefe hat sich als ein sicheres und valides Verfahren hierzu bewährt [57, 64]. Er wurde jedoch durch unterschiedliche Personen auf der Basis von Beobachtungen erhoben und somit ein subjektiv beeinflusstes Maß. Die gewonnenen Daten müssen daher immer im Hinblick auf diese diskutierten Einflussquellen interpretiert werden.

4.8 Schlussfolgerung und Ausblick

5. Zusammenfassung

6. Literaturverzeichnis

[47] Fachinformation Propofol-® Lipuro, Fa.B.Braun, Melsungen, Deutschland

7. Anhang

7.1 Blutgasanalysen

In der nachfolgenden Tabelle sind weiterführende Messparameter, die vor allem mittels arteriellen Blutgasanalysen erhoben wurden, sowie Messungen der Körpertemperatur aufgeführt. Sie sollen dem geneigten Leser dazu dienen, einen Überblick über zusätzliche, nicht im Rahmen dieser Arbeit diskutierte, intensivmedizinische Messwerte zu gewinnen.
Tab. 11: Blutgasanalysemessdaten und Körpertemperatur\(^{1,2}\)

<table>
<thead>
<tr>
<th></th>
<th>ACD- gruppe</th>
<th>SD</th>
<th>Propofol-gruppe</th>
<th>SD</th>
<th>p</th>
<th>Gesamt-gruppe</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb 1 [mg/dl]</td>
<td>10,5</td>
<td>1,7</td>
<td>10,0</td>
<td>1,5</td>
<td>0,12</td>
<td>10,3</td>
<td>1,6</td>
</tr>
<tr>
<td>Hb 2 [mg/dl]</td>
<td>10,7</td>
<td>1,6</td>
<td>10,0</td>
<td>1,5</td>
<td>0,26</td>
<td>10,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Hb 3 [mg/dl]</td>
<td>10,7</td>
<td>1,5</td>
<td>10,1</td>
<td>1,5</td>
<td>0,06</td>
<td>10,4</td>
<td>1,5</td>
</tr>
<tr>
<td>SpO(_2) (BGA) 1 [%]</td>
<td>99</td>
<td>2</td>
<td>99</td>
<td>1,6</td>
<td>0,01</td>
<td>99</td>
<td>1,6</td>
</tr>
<tr>
<td>SpO(_2) (BGA) 2 [%]</td>
<td>98</td>
<td>1,3</td>
<td>99</td>
<td>1,6</td>
<td>0,34</td>
<td>99</td>
<td>1,5</td>
</tr>
<tr>
<td>SpO(_2) (BGA) 3 [%]</td>
<td>98</td>
<td>1,4</td>
<td>98</td>
<td>1,0</td>
<td>0,80</td>
<td>98</td>
<td>1,2</td>
</tr>
<tr>
<td>SpO(_2) (Mon.) 1 [%]</td>
<td>99</td>
<td>1,4</td>
<td>99</td>
<td>1,5</td>
<td>0,61</td>
<td>99</td>
<td>1,4</td>
</tr>
<tr>
<td>SpO(_2) (Mon.) 2 [%]</td>
<td>99</td>
<td>1,4</td>
<td>99</td>
<td>1,4</td>
<td>0,34</td>
<td>99</td>
<td>1,4</td>
</tr>
<tr>
<td>SpO(_2) (Mon.) 3 [%]</td>
<td>99</td>
<td>1,5</td>
<td>99</td>
<td>1,0</td>
<td>0,82</td>
<td>99</td>
<td>1,3</td>
</tr>
<tr>
<td>K(^+) 1 [mmol/l]</td>
<td>4,1</td>
<td>0,6</td>
<td>4,0</td>
<td>0,4</td>
<td>0,44</td>
<td>4,1</td>
<td>0,5</td>
</tr>
<tr>
<td>K(^+) 2 [mmol/l]</td>
<td>4,3</td>
<td>0,6</td>
<td>3,9</td>
<td>0,4</td>
<td>0,07</td>
<td>4,0</td>
<td>0,5</td>
</tr>
<tr>
<td>K(^+) 3 [mmol/l]</td>
<td>4,1</td>
<td>0,4</td>
<td>4,0</td>
<td>0,4</td>
<td>0,09</td>
<td>4,1</td>
<td>0,4</td>
</tr>
<tr>
<td>Na(^+) 1 [mmol/l]</td>
<td>139</td>
<td>2,4</td>
<td>140</td>
<td>2,8</td>
<td>0,10</td>
<td>139</td>
<td>2,6</td>
</tr>
<tr>
<td>Na(^+) 2 [mmol/l]</td>
<td>139</td>
<td>2,4</td>
<td>140</td>
<td>2,4</td>
<td>0,30</td>
<td>139</td>
<td>2,4</td>
</tr>
<tr>
<td>Na(^+) 3 [mmol/l]</td>
<td>140</td>
<td>2,0</td>
<td>140</td>
<td>2,8</td>
<td>0,21</td>
<td>140</td>
<td>2,5</td>
</tr>
<tr>
<td>Messgröße</td>
<td>ACD-Gruppe</td>
<td>SD</td>
<td>Propofol-Gruppe</td>
<td>SD</td>
<td>p</td>
<td>Gesamt-Gruppe</td>
<td>SD</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>----</td>
<td>-----------------</td>
<td>----</td>
<td>-----</td>
<td>---------------</td>
<td>----</td>
</tr>
<tr>
<td>BZ 1 [mg/dl]</td>
<td>135</td>
<td>32</td>
<td>169</td>
<td>49</td>
<td>0,001</td>
<td>152</td>
<td>45</td>
</tr>
<tr>
<td>BZ 2 [mg/dl]</td>
<td>128</td>
<td>39</td>
<td>151</td>
<td>36</td>
<td>0,01</td>
<td>139</td>
<td>39</td>
</tr>
<tr>
<td>BZ 3 [mg/dl]</td>
<td>133</td>
<td>29</td>
<td>140</td>
<td>31</td>
<td>0,32</td>
<td>137</td>
<td>30</td>
</tr>
<tr>
<td>Temperatur 1 [°C]</td>
<td>35,7</td>
<td>0,7</td>
<td>35,9</td>
<td>0,6</td>
<td>0,19</td>
<td>35,8</td>
<td>0,6</td>
</tr>
<tr>
<td>Temperatur 2 [°C]</td>
<td>36,2</td>
<td>0,5</td>
<td>36,3</td>
<td>0,5</td>
<td>0,46</td>
<td>36,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Temperatur 3 [°C]</td>
<td>36,6</td>
<td>0,6</td>
<td>36,8</td>
<td>0,3</td>
<td>0,22</td>
<td>36,7</td>
<td>0,5</td>
</tr>
</tbody>
</table>

1 „1; 2; 3“ hinter einer Messgröße bezeichnet den jeweiligen Messzeitpunkt (siehe Tabelle 4).
2 In der Tabelle sind jeweils Mittelwert und Standardabweichung angegeben.
3 Am Überwachungsmonitor abgelesener Messwert.
7.2 Aufklärungsbogen und Einwilligungserklärung

Patienteninformation Analgosedierung auf der Intensivstation

Nehmen Sie sich bitte genügend Zeit, um die folgende Information gut zu verstehen.

Worum geht es?

Um für unsere Patienten stets das modernste und nebenwirkungsärmste Narkoseverfahren zur Verfügung stellen zu können, forschen wir auf diesem Gebiet sehr intensiv. Es ist für die moderne Medizin unumgänglich, die Patienten möglichst schnell nach einem großen Eingriff wieder auf die Beine zu bekommen und die Verweildauer sowohl auf der Intensivstation, als auch im Krankenhaus selbst zu minimieren.

Hierbei entscheidet der behandelnde Arzt, welches Narkosemedikament für die Analgesierung bei Ihnen eingesetzt wird. Im Rahmen der Beobachtung werden wir Herz- und Kreislaufdaten (Puls, Blutdruck, Sauerstoffgehalt im Blut) sowie Laborwerte von Ihnen messen. Diese Laborwerte erfordern keine zusätzliche Blutentnahme sondern werden routinemäßig auf der Intensivstation bestimmt. Für unsere Fragestellung werden wir diese Werte speichern und auswerten. Wichtig für Sie ist dabei, dass diese Daten vollständig anonym erhoben werden, es kann durch niemanden Rückschlüsse auf Ihre Person gezogen werden.

Was sind die möglichen Nebenwirkungen und Komplikationen?
Wenn Sie weitere Fragen haben, sprechen Sie mit Ihrem behandelnden Arzt. Sie können uns auch jederzeit anrufen, wir sind für Sie da.

 Ort, Datum, Unterschrift Patient Ort, Datum, Unterschrift Arzt
Einwilligung „Analgesedierung auf der Intensivstation“

Ich bin damit einverstanden, dass im Rahmen dieser Studie eine postoperative Analgesedierung auf der Intensivstation 15i entweder mit dem Narkosemedikament Propofol oder mit dem Narkosegas Isofluran durchgeführt wird.

Ich weiß, dass die im Rahmen dieser Behandlung erhobenen Daten und persönlichen Mitteilungen der ärztlichen Schweigepflicht unterliegen und zur Auswertung nur ohne meinen Namen (anonymisiert) zusammengeführt werden und stimme dieser zu.

Ich bestätige durch meine Unterschrift, dass ich die Aufklärung verstanden habe und mich mit der Durchführung der vorgenannten Behandlung einverstanden erkläre.

Sonstiges:

______________________________ ____ __________________________
Ort, Datum, Unterschrift Patient Ort, Datum, Unterschrift Arzt
7.3 Richmond Agitation-Sedation Scale (RASS) und ASA-Klassifikation für Narkoserisiken

Tab. 12: Richmond Agitation-Sedation Scale

<table>
<thead>
<tr>
<th>Punktwert</th>
<th>Ausdruck</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 4</td>
<td>Streitlustig</td>
<td>Offene Streitlust, gewalttätig, unmittelbare Gefahr für das Personal</td>
</tr>
<tr>
<td>+ 3</td>
<td>Sehr agitiert</td>
<td>Zieht oder entfernt Schläuche oder Katheter; aggressiv</td>
</tr>
<tr>
<td>+ 2</td>
<td>Agitiert</td>
<td>Häufige ungezielte Bewegungen, atmet gegen das Beatmungsgerät</td>
</tr>
<tr>
<td>+ 1</td>
<td>Unruhig</td>
<td>Ängstlich, aber Bewegungen nicht aggressiv oder lebhaft</td>
</tr>
<tr>
<td>0</td>
<td>Aufmerksam und ruhig</td>
<td></td>
</tr>
<tr>
<td>- 1</td>
<td>Schläfrig</td>
<td>Nicht ganz aufmerksam, aber erwacht anhaltend durch Stimme (>10s)</td>
</tr>
<tr>
<td>- 2</td>
<td>Leichte Sedierung</td>
<td>Erwacht kurz mit Augenkontakt durch Stimme (<10s)</td>
</tr>
<tr>
<td>- 3</td>
<td>Mäßige Sedierung</td>
<td>Bewegung oder Augenöffnung durch Stimme (aber keinen Augenkontakt)</td>
</tr>
<tr>
<td>- 4</td>
<td>Tiefe Sedierung</td>
<td>Keine Reaktion auf Stimme, aber Bewegung oder Augenöffnung durch körperlichen Reiz</td>
</tr>
<tr>
<td>- 5</td>
<td>Nicht erweckbar</td>
<td>Keine Reaktion auf Stimme oder körperlichen Reiz</td>
</tr>
</tbody>
</table>

Tab. 13: ASA-Klassifikation für Narkoserisiken

<table>
<thead>
<tr>
<th>ASA-Klasse</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normaler, gesunder Patient</td>
</tr>
<tr>
<td>2</td>
<td>Leichte Allgemeinerkrankung ohne Leistungseinschränkung</td>
</tr>
<tr>
<td>3</td>
<td>Schwere Allgemeinerkrankung mit Leistungseinschränkung</td>
</tr>
<tr>
<td>4</td>
<td>Schwere Allgemeinerkrankung, die mit oder ohne Operation das Leben des Patienten bedroht</td>
</tr>
<tr>
<td>5</td>
<td>Moribunder Patient, Tod innerhalb 24h mit oder ohne Operation zu erwarten</td>
</tr>
</tbody>
</table>
7.4 Veröffentlichungen

Inhalative Sedierung mit Isofluran im Vergleich zu Propofol zur Nachbeatmung bei postoperativen Patienten.

A. Glück, M. Großherr, P. Schmucker, K.F. Wagner

Inhalative SEDierung mit Isofluran im Vergleich zu Propofol zur Nachbeatmung bei postoperativen Patienten

A. Glück¹, M. Großherr², P. Schmucker³, K.F. Wagner¹,²

¹Klinik für Anästhesiologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
²Klinik für Anästhesie und Intensivmedizin, Klinikum Südoststadt Rostock, Rostock

Fragenstellung:

Methodik:
Nach Zusammenschlüssen durch die Ethik-Kommission wurden von insgesamt 70 postoperativen, beatmeten Patienten 35 mit Propofol und 35 mit Propofol sediert. Die Patienten wurden nach urologischen Eingriffen zur Nachbeatmung auf die Intensivstation verbracht und Sediierungstage, Kreislauf, Nierenfunktion (Intervallvolumen+3 Tage) sowie Aufwach und Extubationszeit erfasst.

Ergebnisse:
Bei vergleichbarem RASS-Score wurden in der Isofluran-Gruppe eine signifikant kürzere Aufwachzeit und ein geringerer Analgetikaverbrauch beobachtet.

Schlussfolgerung:

Anwendung des ACD am beatmeten Intensivpatienten.
8. Danksagung

Viele Menschen haben zum Gelingen dieser Arbeit beigetragen. Bei allen möchte ich mich hiermit bedanken. Mein besonderer Dank gilt:

Herrn Prof. Dr. med. Peter Schmucker für die Möglichkeit, in der Klinik für Anästhesiologie meine Dissertation schreiben zu dürfen, sowie für die Bereitstellung der Intensivstation und der Klinikressourcen.

Herrn Priv.-Doz. Dr. med. Klaus F. Wagner für die freundliche Überlassung des interessanten Themas und für die hervorragende Betreuung meiner Arbeit sowie seine Geduld, stets ermutigende Kritik und Motivation.

Herrn Dr. med. Martin Großherr für die Betreuung auf der Intensivstation, für die methodische Beratung und für die Hilfe bei der Auswertung meiner Daten.

Herrn Prof. Dr. med. Karl Klotz für seine vielseitige Beratung und Unterstützung in vielen theoretischen und praktischen Dingen, ohne die die Realisierung und der Fortgang der Arbeit nur schwer möglich gewesen wären.

Herrn Prof. Dr. phil. Dipl.-Psych. Michael Hüppe für die Hilfe bei der statistischen Beratung und für seine zahlreichen Tipps während des Methodikseminars.

Ferner gilt mein Dank:

Den Mitarbeitern der Klinik für Anästhesiologie, vor allem den Ärzten, Schwestern und Pflegern der Station 15i und der diversen OPs, besonders Herrn Gerd Pries für seine tatkräftige Hilfe bei der Durchführung des ACD-Projektes.

Der Klinik für Urologie, der Klinik für Hals-Nasen-Ohrenheilkunde und der Klinik für Kieferchirurgie, ganz besonders aber den Patientinnen und Patienten, die sich bereit erklärt haben, an der Studie teilzunehmen.

9. Curriculum Vitae

Andreas Christian Glück

Adresse
Hundestraße 55
23552 Lübeck

Geboren am
10. Mai 1980

Geboren in
Münsingen

Nationalität
deutsch

Familienstand
edig

Schulbildung

1986 – 1990
Grundschule Arnbach

1990 – 1999
Gymnasium Neuenbürg

Juni 1999
Abitur

Zivildienst

1999 – 2000
Deutsches Rotes Kreuz Kreisverband Pforzheim
Rettungsdienst / Hausnotrufdienst

Hochschulstudium

ab Oktober 2002
Studium der Humanmedizin an der Universität zu Lübeck

August 2005
Bestehen der Ärztlichen Vorprüfung, Universität zu Lübeck

August 2008
Beginn des Praktischen Jahres
Westküstenklinikum Heide: Anästhesiologie
Inselspital Bern/Schweiz und Med. Klinik Borstel: Innere Medizin
BG-Unfallkrankenhaus Hamburg: Chirurgie

Wissenschaftlicher Werdegang

ab Juli 2007
Wissenschaftlicher Mitarbeiter an der Klinik für Anästhesiologie des
UKSH Campus Lübeck, Beginn der Promotionsarbeit

Mai - Nov. 2008
Klinische Datenerhebung