Effekte von Hypergravitation auf die Flüssigkeitsverteilung in der Haut bei normohydrierten und dehydrierten Probanden

Inauguraldissertation
zur Erlangung der Doktorwürde
der Universität zu Lübeck
- aus der Medizinischen Fakultät -

vorgelegt von
Inés Frank
aus Teneriffa

Lübeck, 2009
1. Berichterstatter: PD Dr. med. Wolfgang Eichler
2. Berichterstatter/Berichterstatterin: PD Dr. med. Matthias Bechtel

Tag der mündlichen Prüfung: 26.08.2009
Zum Druck genehmigt, Lübeck, den 26.08.2009

Gez. Prof. Dr. med. W. Solbach, Dekan
Inhaltsverzeichnis

INHALTSVERZEICHNIS .. 3

1 EINLEITUNG .. 7

1.1 Flüssigkeitsverteilung im Organismus ... 7
 1.1.1 Grundlagen ... 7
 1.1.2 Ursachen von perioperativen Störungen des Volumenhaushalts 9

1.2 Messmethoden der Flüssigkeitsverteilung .. 10
 1.2.1 Diagnostik des intravaskulären Volumenstatus .. 10
 1.2.2 Diagnostik der Gewebehomöostase .. 10
 1.2.3 Einsatz der Gewebeschichtdickemessung in der Diagnostik 11

1.3 Hypergravitation .. 12

1.4 Fragestellung ... 15

2 PROBANDEN, MATERIAL UND METHODEN ... 16

2.1 Probanden ... 16

2.2 Versuchsablauf .. 17

2.3 Flüssigkeitskarenz .. 18
 2.3.1 Normohydratation ... 18
 2.3.2 Dehydratation .. 18
 2.3.3 Reihenfolge der Prozeduren .. 19

2.4 Hypergravitation ... 19

2.5 Messzeitpunkte ... 21

2.6 Messparameter .. 21
 2.6.1 Blutdruck und Herzfrequenz .. 21
 2.6.2 Körpergewicht ... 22
 2.6.3 Hämatokrit ... 22
1 Einleitung

Since all things, both argument and ocular demonstration, show that the blood passes through the lungs, and heart by the force of the ventricles, and is sent for distribution to all parts of the body, where it makes its way into the veins and porosities of the flesh, and then flows by the veins from the circumference on every side to the centre, from the lesser to the greater veins, and is by them finally discharged into the vena cava and right auricle of the heart, and this in such a quantity or in such a flux and reflux thither by the arteries, hither by the veins, as cannot possibly be supplied by the ingesta, and is much greater than can be required for mere purposes of nutrition; it is absolutely necessary to conclude that the blood in the animal body is impelled in a circle, and is in a state of ceaseless motion; that this is the act or function which the heart performs by means of its pulse; and that it is the sole and only end of the motion and contraction of the heart.

(William Harvey (1578-1657): On The Motion Of The Heart And Blood In Animals, 1628)

1.1 Flüssigkeitsverteilung im Organismus

1.1.1 Grundlagen

Diese allgemein physiologischen Grundüberlegungen zur Kreislauffunktion haben auch bei der direkten klinischen Betreuung von Patienten im perioperativen Zeitraum eine hohe Bedeutung, da gerade in dieser Periode Bedingungen auftreten, die mit Störungen dieser Funktion verbunden sein können (Beard 2008).
1.1.2 Ursachen von perioperativen Störungen des Volumenhaushalts

a) intravaskulärer Volumenmangel

Die Patienten müssen eine präoperative Phase der Nüchternheit einhalten, können schon im Vorfeld der Operation durch Auftreten von Erbrechen, verstärktem Schwitzen oder Spülmanövern Belastungen des Volumenhaushalts ausgesetzt sein und sind dann in der intraoperativen Phase durch die Behandlung mit Infusionen und Transfusionen, durch Blutverluste und Behandlung mit vasoaktiven Substanzen weiteren Veränderungen der Homöostase ausgesetzt.

b) interstitieller Volumenmangel

Diese Flüssigkeitsverschiebung aus dem Interstitium in das Gefäßlumen stabilisiert zwar die hämodynamische Situation, kann aber neben der Mikrozirkulation die Flüssigkeitshomöostase in den Organen selbst stören. Die unmittelbaren Folgen dieser Homöostasestörung sind wesentlich schwieriger einzuschätzen. Ausgeprägter interstitieller Volumenmangel kann zu einer metabolischen Dekompensation führen, die sich etwa am klinischen Aspekt oder in einer Erhöhung des Serumlaktatspiegels erkennen lässt (Kreimeier

1.2 *Messmethoden der Flüssigkeitsverteilung*

1.2.1 **Diagnostik des intravaskulären Volumenstatus**

1.2.2 **Diagnostik der Gewebehomöostase**

Versuch, Standards für diese Problematik zu entwickeln, wie immer wieder in der Literatur vorgeschlagen wird (Kortgen 2006).

1.2.3 Einsatz der Gewebeschichtdickemessung in der Diagnostik

Diese Studien konnten zeigen, dass die einfach zu handhabende Methode in der Lage war, klinisch bedeutsame Befunde zu erheben. Allerdings ist die in der anästhesiologischen Klinik auftretende Veränderung der Flüssigkeitsverteilung in ihrer zeitlichen Kinetik überlagert von verschiedenen anderen Flüssigkeitsveränderungen, die durch Trinken, Schwitzen, Diurese oder vaskulärem Muskeldonus auftreten können.
Zwei Vorgänge sind dabei von klinischem Interesse für den Anästhesisten:

a) die Folgen der typischen präoperativen Nüchternheit und

b) die Folgen von kurzfristigen Körperpositionsänderungen

Für die Analyse der Effekte der präoperativen Nüchternheit können Methoden herangezogen werden, die neben einer genauen Dokumentation der kontrollierten Einnahme und Ausscheidung von Flüssigkeit auch die Verhaltensweise des Probanden beachten, da sowohl die Körperposition, die Aktivität als auch die Belastungen eine Rolle spielen können. Dies ist ohne großen technischen Aufwand durchzuführen.

Im Gegensatz dazu sind die Folgen der kurzfristigen Körperpositionsänderungen methodisch nur schwer zu erfassen, da die Kinetik der Veränderungen durch verschiedene durchaus schneller wirksame andere Effekte überlagert wird. Für die Ausbildung von Beinödemen durch langes Stehen oder deren Rückgang bei Hochlagerung der Beine ist eine mehrstündige Entwicklung allgemein bekannt. Eine solche mehrstündige Entwicklung kann nicht losgelöst von Diurese, Blutdruckschwankungen, Resorption von Flüssigkeit aus dem Darmlumen und weiteren Flüssigkeitsverschiebungen analysiert werden, die eventuell schnelleren Wirkeintritt zeigen (Braunwald 1998).

Wir suchten daher eine Möglichkeit, die Veränderungen durch die Änderung der Körperposition zeitlich stark zu betonen. Dies ist durch eine artifizielle Erhöhung der Gravitationskräfte möglich, die in einer Humanzentrifuge am Organismus angelegt werden können. Diese aufwändigen Geräte werden weltweit nur in wenigen Spezialeinrichtungen vorgehalten. Uns stand durch ein Kooperationsprojekt mit dem Flugmedizinisches Institut der Luftwaffe - Abteilung II - Flugphysiologie in Königsbrück eine der weltweit größten Humanzentrifugen zur Verfügung.

1.3 Hypergravitation

Die Humanzentrifuge HZF der Luftwaffe ist eine Trainingsstätte für Piloten der Luftwaffe, die dort auf ihre flugtechnische Eignung getestet und auf die hohen Schwerkraftbelastungen bei Kampfflugzeugeinsätzen vorbereitet werden. Die am
Flugmedizinischen Institut der Luftwaffe, Abteilung Flugphysiologie in Königsbrück bei Dresden aufgestellte Anlage ist eine der weltweit größten Einrichtungen zu diesem Zwecke.

Foto. 1: Hochleistungszentrifuge der Luftwaffe in Königsbrück: Probandenkabine am Dreharm
1.4 Fragestellung

1. Welche Auswirkungen hat eine Phase der Dehydratation auf die Flüssigkeitsverteilung im Schalengewebe des Menschen?

2. Welche Auswirkungen hat die Einwirkung von Hypergravitation auf die Flüssigkeitsverteilung im Schalengewebe des Menschen?

3. Lassen sich Unterschiede an verschiedenen Messorten des Schalengewebes finden?
2 Probanden, Material und Methoden

Nach Genehmigung des Studienprotokolls durch die Ethikkommission der Universität zu Lübeck wurde in Zusammenarbeit mit dem Flugmedizinischen Institut der Luftwaffe unter Leitung von Herrn Oberstarzt Dr. med. Dipl.-Ing. Heiko Welsch im Herbst 2003 die Untersuchung durchgeführt.

2.1 Probanden

Die Probanden wurden durch Aushang und durch mündliche Anfrage bei den Studierenden der Universität zu Lübeck rekrutiert. Die Personen, die sich meldeten, wurden zunächst über Hintergrund, Risiken und Inhalt der Studie in einer Einführungsveranstaltung mündlich und schriftlich informiert. Sie erteilten nach ausführlicher Aufklärung freiwillig schriftlich das Einverständnis zur Teilnahme an der Studie.

Als Probanden wurden gesunde männliche Personen im Alter zwischen 18 und 37 Jahren ausgewählt, die angaben Nichtraucher zu sein.

2.2 **Versuchsablauf**

Die Probanden wurden zur Studiendurchführung randomisiert in zwei Gruppen zu je 8 Personen aufgeteilt. Die Gruppen wurden jeweils an zwei hintereinander liegenden Tagen untersucht.

Jeder Proband unterzog sich zwei Untersuchungsdurchläufen. An einem Tag wurde bei ausgeglichenem Flüssigkeitshaushalt (Normohydratation) untersucht, am anderen Tag durch Begrenzung der Flüssigkeitseinnahme eine Dehydratation erzielt.

Die entnommenen Blutproben wurden im Labor des Institutes unverzüglich weiterverarbeitet und zur späteren Auswertung in flüssigem Stickstoff eingefroren und auf Trockeneis nach Lübeck überführt.

2.3 Flüssigkeitskarenz

2.3.1 Normohydratation

An dem Untersuchungstag, an dem im Zustand der Normohydratation gemessen werden sollte, waren die Probanden gehalten, nach einem Standardfrühstück ohne Kaffee oder Tee ein genaues Trinkschema einzuhalten: Zum Frühstück um 8:00 Uhr morgens mussten 1.000 ml Mineralwasser zum Ausgleich der Nüchternheit über die Nacht getrunken werden. Danach anschließend waren die Probanden gehalten im Verlauf jeweils einer Stunde eine Trinkmenge von 250 ml zu sich zu nehmen. Dies war bis eine halbe Stunde vor dem festgelegten Untersuchungstermin in der Zentrifuge fortzusetzen.

2.3.2 Dehydratation

An dem Untersuchungstag, an dem im Zustand der Dehydratation gemessen werden sollte, durften die Probanden zum Frühstück eine Höchstmenge von 100
ml Flüssigkeit zu sich nehmen. In den anschließenden Stunden bis zu dem individuellen Beginn der Zentrifugenfahrt war die Einnahme von 100 ml Mineralwasser pro Stunde erlaubt. Auch in dieser Gruppe durfte in der letzten halben Stunde vor der Zentrifugenbelastung keine Flüssigkeit zu sich genommen werden.

2.3.3 Reihenfolge der Prozeduren

2.4 Hypergravitation

Foto 3: Hochleistungszentrifuge der Luftwaffe in Königsbrück: Geöffnete Probandenkabine während der Hautschichtdickenmessung
Die Humanzentrifuge in Königsbrück hat folgende Einsatzspektren:

- Flugphysiologische Ausbildung von Luftfahrzeugbesatzungen der Bundeswehr sowie von Partnerstaaten.
 - Feststellung der natürlichen Gravitationstoleranz bei Bewerbern für die fliegerische Laufbahn.
 - Vorbereitung von Flugschülern (Jet) auf die fliegerische Ausbildung.
 - Demonstration von Gravitationskräften und räumlicher Desorientierung für Flugschüler sowie für die Ausbildung von Fliegerärzten.
 - Qualifizierungslehrgänge für Piloten von Hochleistungskampfflugzeugen.

- Medizinische Untersuchung von Luftfahrzeugbesatzungsmitgliedern nach medizinischer Indikation.

- Forschung, Entwicklung und Erprobungen in Zusammenarbeit mit Universitäten und der Industrie.

Hypergravitation von 2 g anlag. Nach diesem zweiten Abschnitt wurde die Kapsel wieder abgebremst, der Proband stieg aus und begab sich in den 10 m entfernten Untersuchungsraum.

2.5 Messzeitpunkte

Die Messzeitpunkte wurden in Bezug auf die Phase der Zentrifugenfahrt festgelegt.

Liste 1: Definition der Messzeitpunkte

<table>
<thead>
<tr>
<th>Zeitpunkt</th>
<th>Situation</th>
<th>Messparameter</th>
</tr>
</thead>
</table>
| T 0 | Vor Hypergravitation | a. Medizinische Grunduntersuchung
b. Körpergewicht, Blutdruck und Herzfrequenz
c. Venöse Blutabnahme
d. Hautschichtdicke |
| T 1 | Nach 20 Min. Hypergravitation | a. Herzfrequenz
b. Hautschichtdicke |
| T 2 | Ende der Hypergravitation | a. Herzfrequenz |
| T 3 | Nach Hypergravitation | a. Körpergewicht, Blutdruck und Herzfrequenz
b. Venöse Blutabnahme
c. Hautschichtdicke |

2.6 Messparameter

2.6.1 Blutdruck und Herzfrequenz

Zu den angegebenen Messzeitpunkten wurden Blutdruck und Herzfrequenz mit einem Patientenüberwachungsmonitor (Sirecust 630, Siemens/ München) bestimmt. Dazu wurden den Probanden EKG-Elektroden in Extremitätenableitung

2.6.2 Körpergewicht

Zu den angegebenen Messzeitpunkten (T0 und T3) wurde das Körpergewicht der Probanden im Untersuchungsraum gemessen. Dazu benutzten wir eine Präzisionspersonenwaage (Soehnle S 20-2760). Die amtlich geeichte Waage evaluiert das Körpergewicht im Bereich bis 75 kg mit einer Messgenauigkeit von 5 g, über 75 kg mit 10 g. Um möglichst exakte Messwerte zu erhalten, wurden die Probanden abgetrocknet und nur mit Unterhose bekleidet gewogen. Sie wurden angehalten gerade und ruhig zu stehen und für 15 Sekunden die Luft anzuhalten, da die mit der Atmung verbundenen Körperbewegungen Schwankungen der Messwerte ergeben. Jede Messung wurde zwei Mal wiederholt.

2.6.3 Hämatokrit

Mittels Einmalpunktion einer Armvene bei leichter venöser Stauung wurden zu den Messzeitpunkten jeweils 9,0 ml Blut in eine S-Monovette mit Kalium-EDTA (Sarstedt AG/Nümbrecht) abgenommen um Plasmaviskosität und Hämatokrit zu ermitteln.

Der Hämatokrit wurde in einer Kapillarzentrifuge durch zweifache Messung ermittelt. Dazu wurden zwei Kapillaren mit Blut aus der S-Monovette befüllt und in eine Kapillarzentrifuge eingelegt. Die Kapillarzentrifuge wurde drei Minuten bei 10.000 Umdrehungen pro Minute (U/min) betrieben. Die Ablesung erfolgte mit einem Messschema mit einer Genauigkeit von 0,5 Prozent.
2.6.4 Plasmaviskosität

Mit einem automatisch arbeitenden Kapillarplasmaviskosimeter (Fresenius AG/Homburg) wurde aus den aufgetauten Plasma-proben die Plasmaviskosität ermittelt. Gemessen wird dabei die Zeit, die ein Plasmabolus bei konstant treibendem hydrostatischen Druck und definerter Temperatur benötigt, eine definierte Strecke zwischen zwei Lichtschranken in dem Präzisionsmessschlauch zurückzulegen. Aus dieser Messzeit wird die dynamische Viskosität berechnet.

Dazu wird die blasenfrei mit Blut gefüllte Spritze über eine Kanüle in die Messkapillare gefüllt. Nach Schließen des Gerätes läuft die Messung automatisch ab. Die Messung dauert 2 Minuten. Am Ende einer Viskositätsmessung erscheint auf der Anzeige die Viskosität in m*Pa*s. Es wurden jeweils drei Bestimmungen pro Messwert durchgeführt und der Mittelwert zur weiteren Auswertung herangezogen.

2.6.5 Hautschichtdicke

Die Hautschichtdicke wurde bei allen Probanden zu den angegebenen Messzeitpunkten jeweils an Stirn und Tibia gemessen. Dazu benutzten wir ein Gewebedicken-Messgerät (GDM, Kräutkrämer GmbH, Hürth, Deutschland). Das 400 g schwere Gerät besteht aus einem Auswertegerät und einem durch ein Kabel verbundenen 10 MHz Ultraschallmesskopf. Der Messbereich erstreckt sich von 0,5 bis 20 mm, bei einer Auflösung von 0,5% (bezogen auf eine
durchschnittliche Gewebedicke von 4,0 mm) und einer Standardabweichung von 1%.

Mit der Messsonde des Gewebedickenmessgerätes GDM haben wir an einem zuvor mit wasserfestem Stift markierten Areal zwei Zentimeter oberhalb der Augenbrauen mittig auf der Stirn und in einem glatten Oberflächenareal an der Tibiavorderseite am Übergang von mittlerem zu unterem Drittel die Hautschichtdicke ermittelt.

Zu jedem Messzeitpunkt führten wir insgesamt drei Gewebsschichtdickenmessungen durch, um eventuell auftretende Messfehler zu eliminieren. Aus diesen drei Messwerten wurde der Mittelwert gebildet und in einem Protokoll notiert.

2.7 Statistik

Die biometrischen Werte sind als Mittelwert ± Standardabweichung (SD) dargestellt, die Ergebnisse der Hautschichtdickenmessung, Hämatokrit und Plasmaviskosität als Mittelwert ± Standardfehler (SEM). Zur Auswertung der statistischen Signifikanz benutzten wir den Friedmann-Test und den Kruskal Wallis
H- Test und nachfolgender post-hoc- Analyse mittels Mann Withney U- Test. Das Signifikanzniveau wurde als $p \leq 0.05$ definiert.
3 Ergebnisse

Die Untersuchungen fanden für die auf zwei Untersuchungsgruppen aufgeteilten Probanden an zwei aufeinander folgenden Tagen statt. Die klimatischen Bedingungen insbesondere Temperatur und Luftfeuchtigkeit waren an allen Versuchstagen vergleichbar. Für acht Probanden wurde als Reihenfolge für die Untersuchungsbedingungen zunächst die Bedingung Normohydratation, am folgenden Tag die Bedingung Dehydratation festgelegt. Die anderen acht Probanden wurden der umgekehrten Reihenfolge unterzogen, somit wurde die Reihenfolge der zwei Versuchsbedingungen über den Probanden permutiert (N=2x8). Die Ergebnisse unserer Studie an diesen 16 männlichen gesunden freiwilligen Probanden sind in zwei Kapiteln dargestellt. Zum einen werden die Auswirkungen der Flüssigkeitskarenz allein, zum anderen die Effekte der Hypergravitation in Abhängigkeit von der Flüssigkeitskarenz beschrieben. Das Alter der Probanden betrug im Mittel 25,6 Jahre (s ± 4,8), die Größe betrug im Mittel 181,4 cm (s ± 4,9).

3.1 Auswirkungen der Flüssigkeitskarenz

3.1.1 Allgemeine Parameter vor Hypergravitation

Verglichen und in Tabelle 1 dargestellt wird die Auswirkung der Dehydratation gegenüber der Normohydration vor Hypergravitation. Diese Werte wurden am Morgen des jeweiligen Versuchstages vor der Zentrifugenfahrt bestimmt.
Tab. 1: Körpergewicht, hämodynamische und hämatologische Messwerte (Mittelwerte ± sem) bei Normohydration bzw. Dehydratation vor der Hypergravitation. *: p < 0,05 gibt statistisch signifikante Unterschiede zwischen den Ausgangswerten an.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normohydration</th>
<th>Dehydratation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Körpergewicht [kg]</td>
<td>76,8 (± 2,7)</td>
<td>* 75,7 (± 2,6)</td>
</tr>
<tr>
<td>Herzfrequenz [1/min]</td>
<td>77,0 (± 3,0)</td>
<td>76,2 (± 3,2)</td>
</tr>
<tr>
<td>Systolischer Blutdruck [mmHg]</td>
<td>140,6 (± 3,7)</td>
<td>139,3 (± 2,9)</td>
</tr>
<tr>
<td>Hämatokrit [%]</td>
<td>43,2 (± 1,2)</td>
<td>* 44,2 (± 1,3)</td>
</tr>
<tr>
<td>Plasmaviskosität [m Pas]</td>
<td>1,238 (± 0,010)</td>
<td>* 1,264 (± 0,013)</td>
</tr>
</tbody>
</table>

Das Körpergewicht der Probanden lag durch die Flüssigkeitskarenz bedingte Dehydratation mit Ausnahme eines Probanden gegenüber Normohydration deutlich und signifikant niedriger, bei 8 Probanden um mehr als 1 kg, davon bei drei sogar um mehr als 2 kg. Der Hämatokrit sank als Folge der Flüssigkeitskarenz nur bei zwei Probanden leicht ab, blieb bei zwei weiteren unverändert und stieg bei allen anderen 12 Probanden an, bei dreien davon sogar um 3 Prozentpunkte. Diese Hämatokritveränderung war im Durchschnitt signifikant. Auch die Plasmaviskosität stieg signifikant an. Vier Probanden zeigten allerdings einen Abfall des Wertes, wohingegen bei 11 Probanden der Wert anstieg, bei vieren davon sogar um mehr als 0,05 mPas. Bei dem systolischem Blutdruck und bei der Herzfrequenz traten durch die Flüssigkeitskarenz keine Unterschiede auf.

Hämatokrit und Plasmaviskosität stiegen durch die Flüssigkeitskarenz signifikant an, das Körpergewicht sank dagegen ab.

3.1.2 Hautschichtdicke vor Hypergravitation

Am Morgen der jeweiligen Untersuchungstage wurden die Hautschichtdicken (HSD) der Probanden an Stirn und Tibia gemessen. Es ergab sich an der Stirn
eine HSD von 4,57 mm ± 0,2 bei Normohydratation und nicht signifikant unterschiedlich von 4,55 mm ± 0,18 bei Dehydratation. An der Tibia ergaben sich Werte von 4,63 mm ± 0,31 bei Normohydratation und von 4,45 mm ± 0,2 bei Dehydratation. Dieser Unterschied an der Tibia war statistisch signifikant.

Eine statistisch unterschiedliche Hautschichtdicke ergab sich durch die Flüssigkeitskarenz nur für die Messungen an der Tibia.

3.2 **Auswirkungen der Hypergravitation**

3.2.1 Blutdruck

In Abbildung 1 wird der Einfluss der Hypergravitation auf den Blutdruck unter Normo- bzw. Dehydratation dargestellt.

![Diagramm](image)

Abb. 1: Systolischer und diastolischer Blutdruck vor und nach Hypergravitation bei Normo-bzw. Dehydratation (Mittelwerte +/- sem). Der Anstieg des diastolischen Blutdruckes in der Gruppe der Normohydratation ist signifikant (p< 0,05).
Beim Betrachten der individuellen Veränderungen des Blutdruckes sowohl in Normohydratation als auch in Dehydratation fallen Reaktionen in den unterschiedlichen Richtungen auf. Die meisten Veränderungen begrenzen sich auf niedrige Werte um 10 mmHg Anstieg oder Abfall, nur ein Proband zeigt etwas stärkere Veränderungen.

3.2.2 Herzfrequenz

In Abbildung 2 wird der Effekt der Hypergravitation auf die Herzfrequenz bei den Probanden im Zustand der Normo- bzw. Dehydratation dargestellt.
Herzfrequenz [min⁻¹]

Abb. 2: Herzfrequenz vor (T0), während (T1 = 20 min, T2 = am Ende der Hypergravitation) und nach (T3) Hypergravitation bei Normo- bzw. Dehydratation (Mittelwerte ± sem). Ausgehend vom Ausgangspunkt T0, sind alle Veränderungen der Herzfrequenz durch Hypergravitation in beiden Gruppen signifikant (zeitlicher Vergleich: * p< 0,05). Im Gruppenvergleich zeigen sich zwischen den normohydrierten und den dehydrierten Probanden zu keinem Zeitpunkt signifikante Unterschiede bei der Herzfrequenz.

In der Gruppe der normohydrierten Probanden bewegt sich die Herzfrequenz der Probanden zum Messzeitpunkt vor Hypergravitation gleichmäßig verteilt zwischen 60 und 90 /min, nur ein Proband zeigt eine Herzfrequenz von 111 /min. Dieser Proband hat auch an den weiteren Messzeitpunkten eher höhere Werte. Während der Hypergravitation variiert die Herzfrequenz zwischen 80 und 120 /min. Nach Hypergravitation liegen die Werte in dieser Gruppe zwischen 53 und 93 /min. In der Gruppe der dehydrierten Probanden liegen die minimal bzw. maximal gemessenen Werte vor Zentrifugenfahrt bei 63 bzw. 95/ min. Während der Hypergravitation variiert in dieser Gruppe die Herzfrequenz zwischen 75 und
120/min. Nach Hypergravitation liegt der niedrigste Wert bei 55/min, der höchste bei 92/min.

Die Veränderungen der Herzfrequenz sind im zeitlichen Verlauf während der Hypergravitation signifikant. Es ergeben sich allerdings keine signifikanten Gruppenunterschiede für die Herzfrequenz.

3.2.3 Körpergewicht

In Abbildung 3 wird der Einfluss der Hypergravitation auf das Körpergewicht unter den Bedingungen Normo- bzw. Dehydratation dargestellt.

![Diagramm Körpergewicht](image)

Abb. 3: Körpergewicht vor und nach Hypergravitation bei Normo- bzw. Dehydratation (Mittelwerte ± sem). Die Gewichtsabnahme im zeitlichen Verlauf und im Gruppenvergleich ist signifikant (zeitlicher Verlauf: * p< 0,05; Gruppenunterschied: # p< 0,05).

Bei allen untersuchten Probanden sank das Körpergewicht unter normohydrierten Bedingungen ab. Die Gewichtsabnahme über den Zentrifugationslauf lag zwischen 150 und 700 g. Die mittlere Abnahme lag bei 360 g und zeigte statistische Signifikanz. Unter der dehydrierten Versuchsbedingung zeigte sich
eine ebenfalls signifikante Abnahme des Körpergewichtes um 160 g. Die größte Gewichtsabnahme lag hier bei 420 g.

Die Abnahme des Körpergewichts durch die Hypergravitation unter Normo- und Dehydratation ist deutlich. Hier zeigt sich sowohl im zeitlichen Verlauf, als auch im Vergleich der Gruppen ein signifikanter Unterschied.

3.2.4 Hämatokrit

![Hämatokrit Diagramm](image)

Abb. 4: Hämatokrit vor und nach Hypergravitation bei Normo- bzw. Dehydratation (Mittelwerte ± sem). Die Hämatokritzunahme im zeitlichen Verlauf und im Gruppenvergleich ist signifikant (zeitlicher Verlauf: * p< 0,05; Gruppenunterschied: # p< 0,05).

Probanden in der Dehydratation einen Anstieg des Hämatokrits maximal um 2,5 Prozentpunkte, bei 2 Probanden blieb der Wert unverändert, bei 2 weiteren Probanden verminderte er sich sogar. Insgesamt zeigte sich der Hämatokritanstieg in dieser Gruppe aber statistisch signifikant.

Die Zunahme des Hämatokrits über den Zeitraum der Hypergravitation war unter Normo- und Dehydratation signifikant.

3.2.5 Plasmaviskosität

In Abbildung 5 wird der Einfluss der Hypergravitation auf die Plasmaviskosität bei Probanden im Zustand der Normo- bzw. Dehydratation dargestellt.

![Diagramm der Plasmaviskosität vor und nach Hypergravitation bei Normo- bzw. Dehydratation](attachment:plasmaviskositat.png)

Abb. 5: Plasmaviskosität vor und nach Hypergravitation bei Normo- bzw. Dehydratation (Mittelwerte ± sem). Die Zunahme der Plasmaviskosität im zeitlichen Verlauf und im Gruppenvergleich ist signifikant (zeitlicher Verlauf: * p< 0,05; Gruppenunterschied: # p< 0,05).

In beiden Untersuchungsbedingungen, Normo- und Dehydratation, steigt im Zeitraum der Einwirkung von Hypergravitation die Plasmaviskosität signifikant an. In beiden Gruppen sind aber Probanden, die keine Veränderung zeigen.
Die Zunahme der Plasmaviskosität wies sowohl im zeitlichen Verlauf, als auch unter Normo- und Dehydratation statistische Relevanz auf.

3.2.6 Hautschichtdicke bei Normohydratation

In Abbildung 6 wird der Einfluss der Hypergravitation auf die Hautschichtdicke an Stirn und Tibia unter Normohydratation dargestellt.

Abb. 6: Hautschichtdicke an Stirn und Tibia vor, während und nach Hypergravitation bei Normohydratation (Mittelwerte ± sem). Signifikante Veränderung der Hautschichtdicke im Verlauf der Hypergravitation nur an der Stirn (zeitlicher Verlauf an der Stirn: *p< 0,05).

Die Hautschichtdicke wurde an zwei Hautarealen, an der Stirn und an der Schienbeinvorderseite, gemessen. Im Verlauf der Zentrifugationsbelastung verminderte sich unter normohydrierten Versuchsbedingungen die Gewebedicke nur an der Stirn signifikant. 14 Probanden hatten nach der Zentrifugenfahrt eine geringere Hautschichtdicke. Dabei veränderte sich der Wert bei einigen Probanden um etwa einen halben Millimeter. An der Tibia zeigte sich dagegen keine einheitliche Veränderungstendenz. Es traten sowohl Zunahmen als auch
Abnahmen in Größenordnungen von bis zu einem halben Millimeter auf. Gemittelt hoben sich die Veränderungen gegenseitig auf.

Während sich an der Stirn unter Einfluss der Hypergravitation eine deutliche und signifikante Abnahme der Hautschichtdicke unter Normohydration nachweisen lässt, blieb der Parameter an der Tibia weitgehend unverändert.

3.2.7 Hautschichtdicke bei Dehydratation

In Abbildung 7 wird der Einfluss der Hypergravitation auf die Hautschichtdicke an Stirn und Tibia unter Dehydratation dargestellt.

Abb. 7: Hautschichtdicke an Stirn und Tibia vor, während und nach Hypergravitation bei Dehydratation (Mittelwerte ± sem). Signifikante Veränderung der Hautschichtdicke im Verlauf der Hypergravitation nur an der Stirn (zeitlicher Verlauf an der Stirn: *p< 0,05).

Unter dehydrierten Versuchsbedingungen zeigt sich ein Ergebnis, das dem der normohydrierten Situation sehr ähnelt. Die Einwirkung der axialen Hypergravitation führte zu einer signifikanten Abnahme der Hautschichtdicke an der Stirn bei weitgehender Stabilität des Wertes an der Tibia.
Während sich unter dehydrierten Bedingungen an der Stirn unter Einfluss der Hypergravitation eine deutliche und signifikante Abnahme der Hautschichtdicke nachweisen lässt, konnte dies an der Tibia nicht nachgewiesen werden.

3.2.8 Hautschichtdicke an der Stirn

In Abbildung 8 wird der Einfluss der Hypergravitation auf die Hautschichtdicke an der Stirn unter Normo- und Dehydratation dargestellt.

Die direkte Gegenüberstellung der an der Stirn gewonnenen Werte zeigt eine sehr genau vergleichbare Veränderung der Hautschichtdicke unabhängig von den unterschiedlichen Versuchsbedingungen.
3.2.9 Hautschichtdicke an der Tibia

In Abbildung 9 wird der Einfluss der Hypergravitation auf die Hautschichtdicke an der Tibia unter Normo- und Dehydratation gegenübergestellt.

Abb. 9: Hautschichtdicke an der Tibia unter Normo- und Dehydratation vor, während und nach Hypergravitation (Mittelwerte ± sem). Signifikante Veränderung der Hautschichtdicke an der Tibia im Vergleich der normohydrierten mit dehydrierten Probanden (Gruppenvergleich an der Tibia: #p< 0,05).

Die direkte Gegenüberstellung der Hautschichtdickenwerte, die an der Schienbeinvorderkante gemessen wurden, ergibt, dass zwar ein deutlicher und signifikanter Unterschied im Niveau zwischen den Probanden der normohydrierten Gruppe und denen der dehydrierten Gruppe festzustellen ist, die Einflüsse der Hypergravitation aber zu keinen statistischen Veränderungen führen.

3.3 Zusammenfassung der Ergebnisse

Als Effekt der Flüssigkeitskarenz von 12 Stunden konnten bei den untersuchten Probanden signifikante Veränderungen für die Parameter Körpergewicht, Hämatokrit und Plasmaviskosität nachgewiesen werden. Ebenfalls signifikant waren auch die Veränderungen dieser Parameter im zeitlichen Verlauf am Ende
4 Diskussion

Die meisten chirurgischen Eingriffe an Patienten werden in Allgemeinanästhesie durchgeführt. Eine Allgemeinanästhesie führt hauptsächlich durch die Reduzierung des präoperativen Stressniveaus und durch die kardiodepressive Wirkung der Narkosemedikamente auch im problemlosen Routinefall zu starken Auswirkungen auf Parameter des Kreislaufs. Häufig sind die Patienten dann auch noch durch Vorerkrankungen oder präoperative Therapien in ihren Regulationsmechanismen kompromittiert, so dass durchaus kritische Zustände erreicht werden können (Gombotz 1997).

rechnen sind, können Möglichkeiten eröffnen, die Volumensituation eines Patienten abzuschätzen.

Trotz aller Entwicklungen sind aber verschiedene wichtige Bereiche des Kreislaufsystems weiterhin nicht einer etablierten Überwachung zugänglich. Dies erstreckt sich neben den Verhältnissen in der Mikrozirkulation insbesondere auch auf die Flüssigkeitsverteilung zwischen den Kompartimenten des Organismus. Es wird daher versucht Methoden zur Diagnostik dieses Bereiches durch tierexperimentelle Untersuchungen zu etablieren (Wiig 1986)

Die damit einsetzbaren apparativen Einrichtungen ermöglichten nun Untersuchungen zu der Kinetik von Flüssigkeitsverschiebungen zwischen den Kompartimenten, das heißt der Austausch von Flüssigkeit zwischen Interstitium und Intravasalraum aber auch die Verschiebungen innerhalb des Interstitiums von
durch die Schwerkraft gesteuerte Flüssigkeitsströmen. Kombiniert mit der perioperativen Problematik der Dehydratation, die durch genaue Bilanzierung von Flüssigkeitsingestion und Aktivitätsverhalten möglich erscheint, konnte der hier interessierende Fragenkomplex bearbeitet werden.

4.1 Diskussion der Methodik

Die Untersuchung der körperpositionsabhängigen Flüssigkeitsverschiebungen ist schwierig, da sich bei der möglichen Geschwindigkeit der Veränderungen verschiedene andere Effekte auf den Flüssigkeitshaushalt überlagern (Maw 1995). Insbesondere durch die Diurese, durch Resorption von Flüssigkeit aus dem Darmlumen oder durch Schwitzen können Verschiebungen ähnlichen Ausmaßes
in einem vergleichbaren zeitlichen Verlauf eintreten (Maw 1998). Für unsere Untersuchung war daher eine Provokation notwendig, die isoliert die Geschwindigkeit der durch die Körperposition hervorgerufenen Verschiebung erhöht und somit ohne die genannten Störfaktoren analysierbar macht.

Der Studienplan sah die Untersuchung von 16 Probanden vor, die jeweils an zwei Tagen der Belastung durch einen halbstündigen Zentrifugenflug einmal in Normohydratation und einmal im Zustand der Dehydratation ausgesetzt wurden. Für acht Probanden wurde als Reihenfolge für die Untersuchungsbedingungen zunächst die Bedingung Normohydratation, am folgenden Tag die Bedingung Dehydratation festgelegt. Die anderen acht Probanden wurden der umgekehrten Reihenfolge unterzogen, somit wurde die Reihenfolge der zwei

Es konnte an den Untersuchungstagen zum Zeitpunkt vor der Beeinflussung durch die Hypergravitation jeweils untersucht werden, welche Folgen die unterschiedliche Nüchternheit, erzielt durch Flüssigkeitskarenz oder liberale Flüssigkeitsingestion, hatte, wohingegen nach der Hypergravitation die Auswirkung dieser Provokation untersucht werden konnte.

Die Probanden in unserer Studie wurden durch Aushang an der Universität zu Lübeck gesucht. Es fanden sich 16 Freiwillige, die nach einer Voruntersuchung geeignet für die Teilnahme an der Studie waren. Vor der ersten Studienmaßnahme wurden Basiswerte, nämlich Körpergewicht, Herzfrequenz, systolischer Blutdruck, Hämatokrit und Plasmaviskosität erhoben. Diese Werte lagen im Normbereich. Ein für eine Probandengruppe im Studentenalter leicht unerwarteter systolischer Blutdruck von 140 mmHg kann sicher als psychische Anspannung vor dem Zentrifugenlauf angesehen werden. Die Gruppe der Probanden war also insgesamt geeignet für die Studie.

4.2 **Auszirkungen der Flüssigkeitskarenz**

4.2.1 **Allgemeine Parameter vor Hypergravitation**

In unserer Untersuchung konnte gezeigt werden, dass Hämatokrit und Plasmaviskosität durch die Flüssigkeitskarenz signifikant anstiegen, das Körpergewicht dagegen absank.

An der Abnahme des Körpergewiches lässt sich die erfolgreiche Etablierung einer Dehydratation ablesen. Eine durchschnittliche Abnahme um mehr als 1 kg lässt sich durch ein Volumendefizit von etwa 1 Liter erklären. Der ungefähre Volumenumsatz eines gesunden Menschen mit einem Körpergewicht von 70 kg wird in den Physiologielehrbüchern mit 2 l angegeben und setzt sich aus Urinausscheidung und Perspiratio insensibilis zusammen (Deetjen 1987). Die in der Studie beobachtete Abnahme von etwas über 1 l in etwa 12 Stunden steht in

Der signifikante Anstieg der Plasmaviskosität lässt sich durch eine Veränderung der Zusammensetzung des Plasmas erklären, die insbesondere durch eine
Abnahme des freien Wasseranteils erklärbar ist, da die großmolekularen Bestandteile dann relativ zunehmen (Ritchie 2007).

Es lässt sich aber zusammenfassend darstellen, dass durch die Dehydratation ein starker Wasserentzug stattfand, welcher sich nur zu einem kleinen Teil aus dem Intravasalraum zum überwiegenden Teil aus dem Extravasalraum herleiten lässt. Die Ergebnisse dieses Abschnittes sind nur als Hinweise auf ein Geschehen zu sehen, welches die Grundlage der folgenden Abschnitte darstellt.

4.2.2 Hautschichtdicke vor Hypergravitation

Es ergab sich in unserer Studie, dass ein statistischer Unterschied in Bezug auf die Hautschichtdicke durch die Flüssigkeitskarenz nur für die Messungen an der Tibia entstand.

Die Hautschichtdicke wird in klinischem Zusammenhang zur Diagnostik verschiedener Krankheitsbilder herangezogen. Von Bedeutung ist insbesondere die kardiologische Diagnostik einer Herzinsuffizienz; die bei einer Rechtsherzstauung mit Flüssigkeitseinlagerungen in den abhängenden Extremitäten aber auch in inneren Organen wie Leber oder Milz oder im Bauchraum in Form von Aszites verbunden sein kann (Khan 2008).

Der Aufbau der Haut und des subkutanen Gewebes ist abhängig von der Lokalisation des betroffenen Hautareals. Durch die Feinstruktur ergeben sich in unterschiedlichen Hautregionen differenzierte Reaktionen auf physikalische Reize wie etwa den hydrostatischen Druck (Gniadecka 1994 a)

Daher ist es von Bedeutung die in der hier vorliegenden Untersuchung gemessenen Hautschichtdicken in ihrer Wertigkeit einzuordnen.

In früheren Untersuchungen der Arbeitsgruppe an ebenfalls jungen gesunden männlichen Probanden konnten Hautschichtdicken von ähnlicher Stärke gemessen werden. Die bei Normohydration gemessenen Werte, die an der Stirn bei 4,57 mm und an der Tibiavorderseite bei 4,63 mm lagen, sind weitgehend vergleichbar mit den Basismessungen der Vorstudien. Hier zeigte sich eine Hautschichtdicke an der Stirn von 4,47+/+0,52 (Eichler 2000), wobei an der Tibia dort nicht gemessen wurde. Durch die effektiv durchgeführte Dehydratation

4.3 Auswirkungen der Hypergravitation

4.3.1 Blutdruck

In unserer Studie veränderte sich durch die Hypergravitation der systolische Blutdruck nicht in bedeutsamen Maße. Der diastolische Blutdruck stieg lediglich in der Gruppe der Normohydratation signifikant an. Bei Dehydratation lässt sich keine signifikante Veränderung darstellen. Der Ausgangsblutdruck lag im Durchschnitt bei 140 mmHg. Dieser Blutdruck, der kurz vor der ersten Zentrifugenfahrt gemessen wurde, muss als Anspannungswert verstanden werden. Dass sich durch die weiteren Belastungen keine Änderungen dieses Wertes ergeben haben, gibt einen Hinweis auf einen konstant anhaltenden psychischen Stress über den Messzeitraum. Dieser Einfluss von länger oder
kürzer anhaltendem Stress ist in einer Metaanalyse erneut dargestellt worden (Chida 2008).

Im klinischen Alltag ergeben sich bei der Behandlung von Patienten Schlussfolgerungen aus der Beobachtung des Kreislaufs. Insbesondere der Verlauf über die Zeit kann wichtige Hinweise auf möglicherweise bestehende kritische Zustände ergeben. Besonders wichtig für die akutmedizinische Einschätzung des Kreislaufs ist dabei die Auswertung des Blutdruckes. So kann ein steigender arterieller Blutdruck Hinweise für Stresssituationen geben, dagegen sind Blutdruckabfälle bis hin zum Schockzustand Zeichen von Dekompensationen der Herzfunktion, des Füllungsvolumens des Kreislaufs oder der Gefäßweitenregulation (Pinsky 2007)

Während diese Diagnostik für schwere Störungen der Homöostase geeignet ist, können mit den Werten, die bei jungen gesunden Personen erhoben werden, Schlussfolgerungen nur in geringem Ausmaß gezogen werden. So ist der Blutdruck im Ruhezustand wohl zu werten als Zeichen einer psychischen Anspannung aber nicht als Hinweis auf einen hier interessierenden Parameter wie den Füllungszustand des Gefäßsystems.

4.3.2 Herzfrequenz

Die Messung der Herzfrequenz ergab während der Hypergravitation signifikant höhere Werte allerdings ohne signifikante Gruppenunterschiede. Der Hydratationszustand, wie er durch die Versuchsanordnung hervorgerufen wurde, hat also in der hier vorgelegten Studie keinen Einfluss auf die Herzfrequenz. Es wäre allerdings davon auszugehen, dass sich dies bei ausgeprägten Hydratationszuständen durchaus hätte zeigen müssen (Raj 2007).

Blutdruck und Herzfrequenz liegen. Es kann damit zu einer Herzfrequenz erhöhung im Sinne einer Gegenregulation gekommen sein. Eine weitere Möglichkeit ist aber auch die Entwicklung einer Tachykardie durch Katecholaminausschüttung im Rahmen des Stresses bei der für die Probanden ungewohnten Belastung. Zwischen diesen Möglichkeiten kann in unserer Studie nicht mit ausreichender Sicherheit differenziert werden, doch spricht die sehr ähnliche Verlaufskurve für Probanden in der Normohydration und in der Dehydratation für eine von Füllungszuständen unabhängigen Regulationsmechanismus, also eher für die Stresssituation.

4.3.3 Körpergewicht

4.3.4 Hämatokrit

Die Auswertung unserer Hämatokritmessungen ergab sowohl über den Zeitraum der Hypergravitation als auch im Vergleich von Normo- und Dehydratation einen signifikanten Anstieg.

Welche Bestandteile des Plasmas dem für die Laboruntersuchung zugänglichen Blutvolumen entzogen wurden, ist aus dem Vergleich der Hämatokritwerte nicht ableitbar. Das aus dem Intravasalraum der großen Gefäße entzogene Volumen kann dabei entweder über die Niere ausgeschieden (Bhattacharya 1998) oder in das Interstitium oder sezernierende Drüsen wie Schweißdrüsen verschoben worden sein. Von hier aus kann es dann nach extrakorporal abgegeben werden, was über die Messung des Körpergewichtes ermittelt werden kann. In der hier vorgelegten Studie konnte die Urinproduktion nicht kontinuierlich evaluiert werden, da die Probanden nicht mit einem Blasenkatheter versehen wurden.

4.3.5 Plasmaviskosität

Im Ergebnisteil dieser Studie konnte gezeigt werden, dass die Zunahme der Plasmaviskosität sowohl im zeitlichen Verlauf, als auch unter Normo- und Dehydratation statistische Relevanz aufwies.

Obwohl die Plasmaviskosität einen entscheidenden Faktor für die Perfusion der Gewebe im Kreislauf darstellt, wird dieser Parameter nur wenig in der Klinik eingesetzt (Késmárky 2008).

Veränderungen der Plasmaviskosität zeigen eine veränderte Zusammensetzung des Plasmas an. Es muss sich das Verhältnis von hochviskösen zu niedrigviskösen Bestandteilen verändert haben. Dies liegt vor, wenn entweder Wasser dem Plasma entzogen oder zugeführt wird oder wenn hochvisköse

4.3.6 Hautschichtdicke bei Normohydration

Interessante Befunde ergaben sich bei der Messung der Hautschichtdicke bei Normohydration. Während sich an der Stirn unter Einfluss der Hypergravitation eine deutliche und signifikante Abnahme der Hautschichtdicke unter Normohydration nachweisen ließ, blieb der Parameter an der Tibia weitgehend unverändert.

4.3.7 Hautschichtdicke bei Dehydratation

Bei Dehydratation zeigte sich an der Stirn unter Einfluss der Hypergravitation eine deutliche und signifikante Abnahme der Hautschichtdicke. Dies konnte an der Tibia nicht nachgewiesen werden.

Diese Befunde werden durch die im Vorkapitel beschriebenen strukturellen Unterschiede der Haut erklärbar. Von dem geringeren Niveau der Hautschichtdicke im Zustand der Dehydratation ausgehend zeigte sich durch die Hypergravitation eine ähnliche Verschiebung, bei der wieder die signifikante Verminderung der Hautschichtdicke an der Stirn durch die Schwerkraftwirkung gut erklärbar ist. Die stabile Dicke der Haut an der Tibia ist wieder durch Flüssigkeitsentzug oder durch die festere Bindegewebsstruktur anzunehmen. Der Wassergehalt der Haut an sich ist ein schwierig zu determinierender Faktor und wird mit hoch auflösenden Ultraschallgeräten oder MRT-Untersuchungen ermittelt (Gniadecka 1996).
4.3.8 Zusammenfassung der Befunde der Hautschichtdicke an der Stirn

Die schon in den Kapiteln 4.3.6 und 4.3.7 dargestellten Hautschichtdicken können auch in anderer Weise gegenüber gestellt werden. Daher sollen nun die Messwerte eines Hautareals in den verschiedenen Füllungszuständen verglichen werden.

Die an der Stirn gewonnenen Werte zeigten eine sehr genau vergleichbare Veränderung der Hautschichtdicke durch die Gravitationsbelastung unabhängig von den unterschiedlichen Versuchsbedingungen hinsichtlich des Flüssigkeitsfüllungszustandes.

An der Stirn lassen sich keinerlei Unterschiede zwischen den unterschiedlichen Füllungsbedingungen feststellen. Die Hautschichtdicke verändert sich also nicht durch den Füllungszustand und reagiert aber sehr wohl und in vergleichbarer Weise auf die Hypergravitation.

4.3.9 Zusammenfassung der Befunde der Hautschichtdicke an der Tibia

Die Hautschichtdickenwerte an der Schienbeinvorderkante ergaben, dass zwar ein deutlicher und signifikanter Unterschied im Niveau zwischen den Probanden der normohydrierten Gruppe und denen der dehydrierten Gruppe festzustellen war, die Einflüsse der Hypergravitation aber zu keinen statistischen Veränderungen führten.

Im Gegenteil zu den Messwerten an der Stirn sind bei der Analyse der Hautschichtdicke an der Tibia keine Veränderungen durch die Hypergravitation aber signifikante Veränderungen durch den Wasserverlust nachzuweisen. Es ist denkbar, dass durch die festere Gewebestruktur Veränderungen an der Unterschenkelhaut erst über längere Zeiträume entstehen. Die Dehydratation wirkte auf die Probanden zumindest über einen Zeitraum von mehreren Stunden ein, wohingegen die Hypergravitation in weniger als einer Stunde abließ.
4.4 Zusammenfassende Bewertung für die Klinik

So können durch diese Ergebnisse unserer Studie die in der Fragestellung aufgeführten Punkte im Einzelnen beantwortet werden:

1. Welche Auswirkungen hat eine Phase der Dehydratation auf die Flüssigkeitsverteilung im Schalengewebe des Menschen?

Die etwa zwölfstündige Nüchternheitsphase führt im Vergleich zu einem liberalen Flüssigkeitsregime zu einer signifikanten Abnahme der Hautschichtdicke an der Tibia. Die Hautschichtdicke an der Stirn verändert sich durch die Dehydratation nicht.

2. Welche Auswirkungen hat die Einwirkung von Hypergravitation auf die Flüssigkeitsverteilung im Schalengewebe des Menschen?
Die Hautschichtdicke nimmt durch die Schwerkraftbelastung von 2 g über 30 Minuten an der Stirn signifikant ab. Die Hautschichtdicke an der Tibia wird durch die Schwerkraftbelastung in unserer Studie nicht beeinflusst.

3. Lassen sich Unterschiede an verschiedenen Messorten des Schalengewebes finden?

Durch die in 1. und 2. genannten Befunde lässt sich zeigen, dass die Hautstrukturen sich an verschiedenen Körperregionen unterschiedlich verhalten. Während die Schwerkraftbelastung nur Auswirkungen auf die Hautschichtdicke an der Stirn hat, wirkt sich eine Dehydratation nur auf die Haut der Tibia aus. Beide Regionen sind im Alltag beim aufrechten Stehen unterschiedlichen Belastungen ausgesetzt, wodurch diese Befunde sich ergeben.
5 Zusammenfassung

Durch die Nüchternheit ergaben sich eine signifikante Gewichtsabnahme, ein Anstieg des Hämatokrits und ein Anstieg der Plasmaviskosität. Die Hautschichtdicke an der Tibia nahm ab, nicht aber an der Stirn. Durch die Zentrifugalkraft nahm die Hautschichtdicke an der Stirn ab, nicht dagegen an der Tibia.

Nach diesen Befunden kann der Parameter Hautschichtdicke an der Tibiavorderseite für die Messung des Hydratationszustands herangezogen werden. Die Veränderungen durch die Körperpositionierung beeinflussen den Parameter bei Messungen an der Stirn.
6 Literaturverzeichnis

Bradford CD, Cotter JD, Thorburn MS, Walker RJ, Gerrard DF. Exercise can be pyrogenic in humans. Am J Physiol Regul Integr Comp Physiol 291: R143-149; 2007

Harvey W. On the motion of the heart and blood in animals, 1628

Kreimeier U: Pathophysiology of fluid imbalance. Crit Care 4 Suppl 2: S3-S7; 2000

Pinsky MR. Hemodynamic evaluation and monitoring in the ICU. Chest 132: 2020-2029; 2007

Rehm M, Haller M, Orth V, Kreimeier U, Jacob M, Dressel H, Mayer S, Brechtelsbauer H, Finsterer U. Changes in blood volume and hematocrit during acute preoperative volume loading with 5 % albumin or 6 % hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95: 849-856; 2001

Schumacher J, Eichler W, Bauer O, Klotz KF. Perioperative tissue thickness measurement by a new miniature ultrasound device, J Clin Monit Comput 14: 471-476; 1999 (a)

7 Publikationsverzeichnis

7.1 Originalarbeiten

7.2 Posterpräsentationen

1. Frank I, Eichler W, Nehring M, Welsch H, Klotz KF.
 Changes of interstitial fluid volume in superficial tissues induced by hypergravity (+2Gz) and nil-by-mouth period detected by a miniature ultrasound device.
 75th Meeting of the Aerospace Medical Association, Anchorage, Alaska, USA

2. Frank I, Eichler W, Nehring M, Welsch H, Klotz KF.
 Changes of interstitial fluid volume in superficial tissues induced by hypergravity (+2Gz) and nil-by-mouth period detected by a miniature ultrasound device.
 Annual Congress of the European Society of Anaesthesiology 2004, Lissabon, Portugal

3. Eichler W, Frank I, Nehring M, Welsch H, Klotz KF.
 Veränderungen interstitieller Flüssigkeitsvolumina in oberflächlichen Gewebsschichten induziert durch erhöhte Erdbeschleunigung (+2Gz) und eine Nüchternheitsperiode erfasst durch ein Miniatur Ultraschallgerät.
 51. Jahrestagung der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin, Nürnberg
8 Danksagung

Herrn Professor Schmucker, dem Direktor der Klinik für Anästhesiologie der Universität zu Lübeck, danke ich ganz herzlich für die Unterstützung meiner Promotionsarbeit und die Überlassung des Arbeitsplatzes in seiner Klinik.

Herrn Professor Karl Klotz für seine Unterstützung bei der Erstellung der Arbeit.

Herrn Priv.-Doz. Dr. Wolfgang Eichler danke ich ganz herzlich für die Betreuung und die Hilfe bei allen Fragen, die im Verlauf der Arbeit geklärt werden mussten, und die freundliche Unterstützung bei der Auswertung und Publikation der Daten.

Herrn Oberstarzt Dr. Welsch, Leiter des Flugmedizinischen Institutes der Luftwaffe in Königsbrück, und dem gesamten freundlichen Personal der Humanzentrifuge danke ich für die Öffnung der Humanzentrifuge für unsere Studie und die Möglichkeit und Unterstützung der Durchführung der Untersuchung in seinem Institut und im Labor.

Herrn Professor Hüppe danke ich für die Hilfe bei der statistischen Auswertung der Daten.

Frau Olsson und Frau Baumgart danke ich für die Unterstützung bei der Messung der Plasmaviskositäten.

Allen Probanden sei für die selbstlose, engagierte und disziplinierte Teilnahme an der Studie besonderer Dank gesagt.

Zu guter Letzt danke ich meinem Mann und meinen drei Kindern, die mich während der Zeit der Erstellung der Arbeit so oft entbehren mussten, für ihre seelische Unterstützung und Motivationshilfe in allen schwierigen Phasen des Promotionsprojektes.
9 Lebenslauf

9.1 Persönliche Daten

Name: Inés Frank, geb. Trenkler
Anschrift: Am Pohl 80, 23566 Lübeck
Geburtstag: 30.08.1966
Geburtsort: La Laguna/Teneriffa
Familienstand: verheiratet, drei Kinder

9.2 Schulbildung/Hochschulbildung

1972-1974 Grundschule/Colegio Aleman Santa Cruz de Tenerife
1974-1977 Volksschule Eichenau bei München
1977-1984 Gymnasium Eleonorenschule in Darmstadt
1984-1987 Berthold-Brecht-Schule Gymnasiale Oberstufe in Darmstadt, Abschluss: Abitur
1988-1995 Studium der Humanmedizin an der Justus-Liebig Universität in Gießen

9.3 Berufliche Tätigkeit

2000-2001 Assistenzärztin in der Abteilung für Anästhesie und Intensivmedizin der Kerckhoff-Klinik in Bad Nauheim
2006-2008 Assistenzärztin im Krankenhaus Rotes Kreuz, Lübeck, Geriatriezentrum und Innere Medizin