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Active Contours with Spatially-Variant
Definitions of Energy Terms Based on
Local Region Descriptors

Determining the contents of an image is a fundamental task in computer vision. Consequently,
the problem of separating an image into distinct, contiguous regions - the problem of image
segmentation - has attracted the efforts of numerous researchers. A well-known framework in
the field of image segmentation is the active contours framework. This thesis introduces region-
based active contours incorporating two novel ideas.

First, the thesis proposes to drive contours by local region descriptors, which means that the
statistics of features are computed from observations in localized windows. Moreover, the energy
of active contours based on local region descriptors is constructed such that the number of its
local minima is reduced, by assuming that features in local regions follow a normal distribution.

Second the thesis proposes a solution for situations in which local regions are badly modeled
using Gaussian probability densities. For this purpose, the thesis introduces active contours
with spatially variant definitions of energy terms. As a result, the energy of an active contour
is based on a Gaussian density model in some local regions, while, in other local regions, the
energy is based on densities estimated with a kernel density method. The kernel density method
is used when multiple contours are in one another’s vicinity when local regions are observed.
This event is assumed to occur in the vicinity of an image boundary, where arbitrary densities of
multiple regions must be well modeled. The properties of both proposed ideas are demonstrated
in experiments with synthetic and natural images.

The novel active contours are applied to the segmentation of natural, textured images and to
the marker-free tracking of hand motion with a multiple-camera computer-vision system. In the
image segmentation application, we employ a novel, but time intensive, texture modeling frame-
work. Texture is modeled by applying nonparametric density estimation methods to observed
image patches, which are regarded as high-dimensional feature vectors. Combining local de-
scriptors and spatially-variant definitions of energy terms, we obtain active contours for textured
image segmentation that are two orders of magnitude faster than their global counterparts. The
result of segmenting complex natural images with this method are very good.
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Hand motion tracking is accomplished using local region descriptors. Due to very accurate
segmentation results, the middle of the arm and of the wrist can be reliably computed, yielding
good features to track. By tracking the motion of these features with a stereo camera system,
the motion of hands can be measured. The prototypical hand measurement system is tested by
measuring the surgical motion of a few surgeons and trainees.
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Aktive Konturen mit ortsabhängigen
Definitionen der Energieterme
basierend auf lokalen
Bildregionsdeskriptoren

Eine wichtige Aufgabe im Bereich der Computer Vision ist die automatisierte Bestimmung von
Bildinhalten. Diese Aufgabe kann, wenn überhaupt, nur durch eine Abfolge von komplexen
Prozeduren gelöst werden, deren primäre wiederum die Bildsegmentierung ist. Bildsegmen-
tierung - also der Teilung eines Bildes in disjunkte, kontinuierliche Regionen - ist ein durchaus
vielbeforschtes Gebiet, das unter anderen die Methode der Aktiven Konturen hervorgebracht hat.
Ziel der vorliegenden Arbeit ist es, diese Methode derart zu verbessern, dass natürliche Bilder
und Videoaufnahmen von Handbewegungen möglichst fehlerarm segmentiert werden konnten.

Als erster Ansatz werden dazu Aktive Konturen mit Hilfe lokaler Bildregionsdeskriptoren ent-
wickelt, d.h. die auf die Kontur wirkenden Kräfte werden aus Merkmalsstatistiken generiert,
welche nur über lokalen Fenstern einer Bildregion berechnet werden. Darüber hinaus wird bei
der Definition der Energie dieser Aktiven Konturen auf die Anzahl der lokalen Energieminima in
der Bildregion geachtet. Um diese Zahl zu minimieren, wird angenommen, dass die Merkmale
in lokalen Bildregionen statistisch normal verteilt sind.

Der zweite Ansatz behandelt jene Fälle, in denen die Modellierung der deskriptiven Wahrschein-
lichkeitsverteilungen der Merkmale in lokalen Bildregionen mit Hilfe Gaussscher Modelle eine
schlechte Approximation liefert. Dieser Ansatz basiert darauf, dass die Energie der Aktiven Kon-
turen abhängig von der Konturposition relativ zu anderen Konturen im Bild zu definieren ist, d.h.
es müssen Aktive Konturen mit ortsabhängigen Definitionen der Energieterme entwickelt wer-
den. Wenn eine Kontur in einem lokalen Fenster keine Nachbarkonturen hat, basiert wiederum
deren Konturenergie auf einer Gaussschen Wahrscheinlichkeitsdichte. Sind mehrere Konturen in
einem lokalen Fenster benachbart, dann basiert die Konturenergie auf einer Wahrscheinlichkeits-
dichte, welche mit einem Dichteschätzer approximiert wird. Es gilt dabei die Annahme, dass
sich mehrere benachbarte Konturen sich in der Umgebung einer Objektgrenze nähern. An dieser
Stelle müssen die - ansonsten beliebig geformten - Wahrscheinlichkeitsdichten unterschiedlicher
Objekte gut approximiert sein. Die Eigenschaften der Konturen, welche aus diesen Ideen folgen,
werden in Experimenten mit synthetischen und natürlichen Bildern demonstriert.
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Die entwickelten Aktiven Konturen werden angewendet um texturierte, natürliche Bilder zu seg-
mentieren, Die Bildsegmentierungsapplikation benutzt eine neue Methode der Texturmodellierung.
Kleine Bildausschnitte werden als Texturbeispiele betrachtet, welche in einem sehr hoch-dimensionalen
Raum eingebettet werden. Deren Wahrscheinlichkeitsdichten werden mit nichtparametrischen
Dichteschätzern approximiert. Durch die Zusammenführung lokaler Bildregionsdeskriptoren,
ortsabhängiger Definitionen der Energieterme und ausschnittsbasierter Texturmodellierung wer-
den Aktive Konturen für die Textursegmentierung konstruiert. Diese Aktiven Konturen werden
um zwei Grössenordnungen schneller berechnet, als Aktive Konturen, welche die globale Statis-
tik der Texturbeispiele approximiren. Die präsentierten Aktiven Konturen führen zu sehr guten
Ergebnissen in der Segmentierung natürlicher Bilder.

Das markerfreie Tracking von Handbewegungen mit einem Multi-Kamera Computer Vision Auf-
bau wird im Weiteren durch die Anwendung lokaler Bildregionsdeskriptoren erreicht. Dank
der sehr akkuraten Segmentierergebnisse, können Handmerkmale, wie die Armmitte und die
Handgelenksmitte, zuverlässig berechnet und verfolgt werden. Die 3D-Bewegung dieser Merk-
male kann schliesslich mit dem Stereokameraaufbau vermessen werden. Um den Aufbaupro-
totyp zu testen, werden Handbewegungen einiger ausgebildeter und angehender Chirurgen ver-
messen.
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1. Introduction

These are the kind of disciplines in the field of science where you have to learn
to know when you know and you don’t know and what it is you know and what it is
you don’t know. You got to be very careful not to confuse yourself.

Richard Feynmann

This thesis proposes novel active contour methods and applies them to the segmentation of nat-
ural textured images and in a computer vision system for hand motion measurement.

Computer (or machine) vision is a research field reuniting a shoal of researches that pursue the
ultimate goal of making machines see. Having found the time and the willingness to read this
thesis, as you do so, your biological vision system is transparently and instantaneously solv-
ing some very complex engineering problems. These involve recording an image of the page,
separating the black foreground containing message from the white background that is only its
support, identifying word-spacings in the foreground, and identifying the letters, in order to know
where to expect words and finally read them. In computer vision, these problems are known as
image formation and representation, image segmentation, stereo vision and pattern recognition,
and state-of-the-art solutions engineered for them are not comparable with biological solutions.

Image formation and representation is dictated by the physical device involved in the process.
Machine hardware is clearly in advantage: it can record the world in much more detail than the
human eye1, concerning space, frequency and time. At extremes, cameras can record signals
from millions of kilometers away, in the whole spectrum of electromagnetic waves, every few
milliseconds. The recorded images may be played forward, backward or paused in time, at very
high or low frame rates (allowing television viewers around the world to awe at the flight of a
colibri bird on a Friday evening). A machine vision system can be equipped with many cameras
that can be flexibly positioned, the whole system being limited only by the financial resources of
its constructor. The advantages of machine vision systems end here.

Cameras cannot automatically adapt to the intensity of light as well as eyes do every time a
person goes outdoor. Algorithms for segmentation, stereo computation and pattern recognition

1Biological eyes are very different in their properties; for example, some snakes have detectors for infrared wave-
lengths, while eagles can see three times farther than humans. For this reason, we limit our comparative discus-
sion to human vision. After all, it is mainly the type of vision researchers try to imitate.
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1. Introduction

are rudimental in comparison. Segmenting black symbols from a white page is a relatively
simple task 2. Consider the far more complex task of picking this manuscript from a cluttered
desk instead of any of the competing works. The human vision system identifies the manuscript
within seconds, but state-of-the-art vision algorithms could not, even if one had a week’s time to
wait for the answer.

The difficulties start with the digital representation of an image. As Steven Pinker has put it
(Pinker, 1999), "If you could see the world through a robot’s eyes, it would look not like a movie
picture decorated with crosshairs but something like this:"

157 156 167 167 161 167 181 192 176 159 166 164 160 171 166 163 175 187 184 177 163
161 159 167 170 165 161 168 198 182 158 170 171 161 175 169 160 168 182 187 188 178
164 158 156 165 169 163 150 192 185 161 169 169 162 178 169 152 151 162 172 184 184
158 150 141 158 176 173 144 180 182 163 163 163 164 178 179 157 147 153 163 181 189
152 142 130 155 185 182 151 167 174 166 159 164 175 185 195 171 158 159 165 181 189
150 138 126 156 190 186 159 160 168 168 161 172 191 197 200 177 165 163 165 176 181
139 130 129 154 180 181 167 165 159 154 161 179 197 205 204 171 160 169 166 163 172
143 130 120 136 158 161 163 167 164 151 146 159 181 196 200 182 174 171 164 169 175
148 136 120 128 146 148 157 168 167 148 130 134 157 177 186 183 183 174 165 175 182
150 147 138 145 157 156 155 168 170 151 129 127 142 157 167 166 175 177 169 176 186
150 158 160 169 175 167 161 171 174 163 149 144 147 150 159 149 162 178 172 168 178
149 163 171 178 179 168 168 175 179 177 175 173 167 160 166 149 158 176 168 157 166
152 166 171 175 176 167 166 172 178 183 189 192 185 176 176 163 165 169 159 156 162
154 169 169 170 174 169 160 166 174 181 190 197 194 186 180 175 173 163 153 160 166
169 156 156 174 171 177 162 162 166 179 193 200 198 192 191 184 174 165 159 158 160
157 147 152 174 175 184 167 167 169 178 190 198 200 199 191 186 177 170 165 165 167
158 144 144 164 164 172 169 168 169 172 179 188 198 203 194 190 184 178 174 173 174
166 146 141 156 152 159 167 166 164 162 164 174 188 199 198 196 191 186 181 178 176

The numbers code for pixel intensities in a black and white image. The philosophy of any image
processing algorithm is to make sense of the numbers, while accessing their spatial arrangement
only locally. As an exercise, one can zoom into an image till pixels get very large, like in Fig. 1.1,
and try to understand the structure of the image looking only through this magnifying window.
The type of object shown in Fig. 1.1 is encountered extremely often by each person every day.

Image segmentation starts at the level of individual pixels. This is equivalent to finding the eye
while seeing only little parts of the image (smaller than the image on the right). The task, which
was trivial in the left image, suddenly becomes annoyingly difficult. To make the task even more
difficult, even when the entire image is available, different human vision systems find different
boundaries. In Fig.1.2 lighter boundaries in the contours-image represent boundaries that have
been drawn by many test persons that observed the image on the left. The gray boundaries are

2There exist many systems that can scan a page and convert it into editable text

2



Figure 1.1.: One of the eyes of the person on the right, extremely magnified.

ones drawn by only a few, or one test person. The contours-image is not binary. The problems
this creates relate to the fact that computer vision algorithms aim to imitate biological systems,
which is rather difficult when different biological systems behave differently.

Figure 1.2.: An image and its segmentation by several different people (Bear, 2008). Note the
discrepancies in the segmentation as depicted by the lines of different intensity.

Image segmentation refers to the separation of images into distinct, contiguous regions. It is
an important part of computer vision, and it is an extensively studied problem. Accordingly,
numerous approaches have been proposed. They all make use of two basic properties of images
of real world objects: 1) spatial proximity and similarity between points on an object’s surface,
and 2) discontinuity between the surfaces of two objects. Nonetheless, there are various possible
ways of organizing an overview of methods for image segmentation; two different examples can
be found in (Forsyth and Ponce, 2003) and (Snyder and Qi, 2004). In the following, we present
segmentation methods starting with simple ones and finishing with complex ones.

Thresholding is a simple and intuitive method that defines or computes the lowest and the high-
est intensity that occur in an object. Only pixels with intensities that do no fall between the
two thresholds do not belong to the object. Thresholds can be selected automatically, based
on knowledge about the system. Different types of knowledge or assumptions lead to different
procedures for automatic selection, reviewed, for example, in (Jain et al., 1995). Considering

3



1. Introduction

that the world can be imaged using only 256 different intensities, it is obvious that this method
can only segment trivial images. Take the situation of a simple shaded scene (a black cube on a
white board illuminated from one side). A single threshold will most probably not be appropriate
throughout the image. The problem is remedied if we subdivide the image, and adapt the value
of the threshold to each subimage. Adaptive thresholds are more robust when they are iteratively
varied while verifying that the new segmentation is better than the previous. Even with these
improvements, thresholding is limited to fairly simple images. The main reasons are that more
objects have similar intensities in basic natural scenes, like the one in Fig.1.3 and that the spatial
information is totally disregarded.

It is fairly easy to combine spatial information with thresh-

Figure 1.3.: An image showing
some of nature’s basics
(Flickr, 2008).

olding in methods known as clustering methods. Starting
with some image points, these methods cluster pixels that
belong together using mainly three approaches.

Region growing starts with a few pixels (selected auto-
matically or manually) that will assimilate other pixels as
long as some similarity criterion is larger than a thresh-
old. For instance, to attempt segmentation in Fig.1.3, a
set of seed points is placed on the dog and a set on the
cat. The first set grows while the difference between light
pixels inside the region and light pixels outside the re-
gion is smaller than a threshold. The second will behave
similarly, but taking dark pixels.

Region merging starts by making each pixel a cluster. In an iterative procedure, the two clusters
with the smallest inter-cluster distance are merged, until some satisfactory clustering has been
reached. Region splitting starts with a single cluster that contains all pixels. Also iteratively, the
algorithm splits the cluster that results in two clusters with the largest inter-cluster distance.

Region growing, merging and splitting depend on issues with complex answers. How should
thresholds be determined? What is a good way to measure the distance between clusters? Many
methods have been designed to address these issues. They include, for example, k-means clus-
tering and statistical classification. Other methods include trees and graphs. For example, quad-
trees are constructed by recursively splitting the image and arranging the pieces in white, black
and gray nodes. When all pixels in a node are black or white, the node is not split further. Only
gray nodes are processed in each iteration and are split into four equal regions, until all pixels are
black or white, and thus a segmentation is obtained. Graphs are obtained by viewing clusters as
nodes. The edges connecting the nodes are weighted according to similarity measures and con-
nectivity (which clusters neighbor any given cluster) between clusters. The best segmentation
is equivalent to finding a minimal length path or a maximum flow in the graph. Graph meth-
ods largely benefit from well developed graph algorithms. We turn from methods that exploit
similarity and spatial proximity, to methods that exploit discontinuities between objects.

4



Discontinuities are usually perceived at locations where sudden changes in

Ideal edges

intensity, called edges, occur. Many methods for finding edges, called edges
detectors, exist. Most edge detectors define edges via the image derivative.
For example, the magnitude of the gradient at a pixel must be larger than
some threshold for a pixel to qualify as edge-pixel. Looking at an image
one may be fooled into thinking that most edges are similar to stair steps.
However, they are similar, if at all, to ramps or roofs with very different slope magnitudes.

In reality edges look like noisy signals. Edge detectors thus often find edges

Real edge

where we do not see them and miss some that are obvious to us. To illustrate this
behavior, a Sobel edge detector has been applied to the image in Fig.1.4. The
result can be visually improved if the spatial proximity between edge-pixels is
additionally considered, as does, for example, the Canny method, but the main
issue still remains.

original image Sobel edges Canny edges

Figure 1.4.: An original image (Flickr, 2008) and its edge images.

Another class of methods that involves image gradients and suffers from the same problem is
morphological watershed. For a textbook overview of edge detectors and morphological water-
sheds see, for example, (Gonzalez and Woods, 2002a). The image is visualized as a basin in
3D, which has points of maximum depth, to which walls with slopes equal to those of image
gradients converge. The basin is flooded with water from below. The crests where water fronts
meet are discontinuities in the image. Watershed methods typically lead to over-segmentation,
i.e. too many different regions are found in the image.

In fact, most images are too complex to be segmented based only on the

Impossible cube

information available in intensity or color data. Cognitive psychology pro-
vides evidence that the human visual system is preconditioned to see objects
that it already knows. Experiments on visual perception include images of
so-called impossible objects like the impossible cube, first published by the
Swiss crystallographer Louis Albert Necker in 1832. We see that there is
something wrong with the cube in this figure, but we still see a cube be-
cause it fits most of the general knowledge about the cube. The objects most
eagerly recognized by the human visual system are faces. An intuitive proof is that we remem-
ber faces much easier than we remember names. Using magnet resonance imaging, researchers
have shown that there is special sites and circuitry in the brain dedicated to recognizing faces,
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1. Introduction

(Moeller et al., 2008; Tsao and Livingstone, 2008) are recent examples. The brain even seems
to constantly search for faces. When one site is artificially stimulated, the others also show in-
creased activity. This should be no surprise, since we are all familiar with the man in the moon,
or the smiley in the clouds. The effect in Fig.1.5 is due, at least partly, to this constant search for
faces.

Angels and daemons (Wade and Tavris, 2005) Double meaning scene (Gillbert, 1929)

Figure 1.5.: Images in which we see faces.

Computer vision algorithms that use knowledge of the shape and appearance of an object, or
that make assumptions about them, are more robust than those based solely on image data. For
example, the eyes of the dog in Fig.1.4 can be found by searching for round shapes in the edge
image.

Many objects have much more complex shapes than lines, circles and corners. A correspond-
ingly large amount of thinking is necessary in order to describe these shapes. The first tools that
come to mind involve statistical learning. In the active shape models framework (Cootes et al.,
1995), the shape of an object type is learned from examples, by learning an average shape and
the amount by which it varies from examples. A segmentation algorithm uses the learned shape
to search for an instance of the shape, for example, in an edge image or an image labeled by
clustering. Learning algorithms can also be applied to appearance, not only to shape. Addition-
ally, appearance must not refer to the whole object. For example, attempts have been made to
learn what an edge looks like, in general (Martin et al., 2004). Learning from examples involves
complex statistical modeling and methods and it cannot guarantee the success of segmentation.

A very important issue in shape learning is that 3D objects - that is the majority of objects in
the world, have a different projected 2D shape, when viewed from different angles. It is not
possible to learn all these shapes, since, in the majority of situations, the process would largely
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exceed the computation power available at present. Many methods for model-based vision have
been proposed (see, for example, (Forsyth and Ponce, 2003)), but this dissertation focuses on a
different method for incorporating knowledge about the image into the segmentation process.

A shape model helps segment the object in more complex, clut-

An impossible zigzagged tree
with impossible texture

tered images. When we know what to look for, the pile can be
large, and we will still find the item. But what if we do not know
what the scene is, that has been photographed? It would not be
practicable to iterate through a list of objects known by the system
for practical reasons regarding computation time. Also, it would be
difficult to decide which and how many objects to put on the list.
Even so, this does not mean that we do not know or cannot assume
anything about the image. Our brains constantly make assumptions
about the world we live in. One of them is that objects have smooth
boundaries, that can at times take sharp corners and that the largest
changes in visual properties occur around the boundaries. Take
trees for instance. They come in all sorts of shapes, sizes and col-
ors, with hulls that are frayed when observed exactly, but on the whole they create smooth shapes.
None of them grow to have boundaries composed of randomly connected, zigzagged straight and
circular edges, like in the figure that look like clouds from the middle up just to confuse us.

The smoothness assumption is incorporated into all methods of a particular class known as active
contours, to which the methods of this dissertation belong. Active contours can be thought of as
rubber-bands placed on the image. A rubber-band is stretched toward image boundaries by forces
generated from the image. Active contours can use both edge detectors and methods that cluster
image pixels based on the statistical analysis of the variation of pixel values in order to stretch the
rubber-band (i.e. to evolve the contour). Each rubber-band has an energy associated with it, and
its deformation stops only when this energy is minimal. The result is a set of regions with smooth
boundaries and constant appearance. This is not to say that active contours can correctly segment
all images. This is mainly because human perception of “smooth” boundaries and “constant”
appearance is very flexible, and cannot be pressed into one mathematical model. Active contours
model image segmentation as a mathematical problem and use calculus of variations to solve
it. However, active contour methods have been successfully employed in a large number of
applications, ranging from vehicle tracking in traffic to medical image segmentation.

Active contours have been intensively studied. Proposed methods differ in the way they gener-
ate forces from the image and the manner they formulate the smoothness term. The proposed
methods are very promising, as the large number of applications shows, but they are also far
from constituting a robust segmentation tool for all input images. There is thus still room for
research to improve on these methods, and explore novel alternatives. For example, a very re-
cent development includes active contours that evolve driven by forces generated only from local
information, as will be discussed in Chapter 4.
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1. Introduction

In this dissertation, we present local region descriptors as a new concept for evolving contours
based on statistics of local regions (i.e. ones that cover small parts of the image), and introduce
energies constructed from local descriptors such that the number of local minima is reduced. In
natural images, the variation of features in local regions is smaller than in global regions that
cover entire image objects. Local regions are thus more likely to be well described by simpler
statistical models than global regions. For the same reason, the probability densities of different
local regions are less likely to overlap than those of global regions are.

We also present an entirely novel type of active contours that have spatially variant definitions
of energy terms. For these contours the way forces are generated from the image depends on the
position of the contour point on which they act. For all other contours, the definition of energy
terms, and thus the definition of forces that act upon the contour, is spatially invariant. Spatially-
variant energy terms have the advantage that the associated contour has a flexible behavior which
adapts to the presence of other contours, and, indirectly, to the image data.

The novel techniques presented in this dissertation have been combined to create solutions for
two computer vision problems. First, the spatially variant definition of energy terms was based on
local information obtained from texture. The resulting active contours significantly improve the
speed of a recently introduced texture segmentation framework. The segmentation framework is
based on modeling image patches as Markov random fields to capture the properties of texture,
and use them to segment images with active contours. Due to the fact that it uses local texture
information, the presented texture segmentation method is two orders of magnitude faster than
similar active contours based on global information.

Second, active contours segmentation based on local information enable the creation of a mul-
ticamera computer vision system for tracking and measuring hand motion. Hands are difficult
items to track because they are very flexible causing the shape they project on a 2D image to
change extremely. For accurately and robustly tracking the motion of hands, computer vision
systems typically require the use of visual markers. Much research on hand tracking involves
using a 3D hand model. The system presented in this dissertation uses neither. Because the
segmentation method yields very accurate hand contours, exact hand features are computed to
replace visual markers. Unlike markers, the computed features are visible from every camera
perspective, the time is not lost with fixing the marker apparel on the hands. Economizing time
proves to be very valuable in measuring the hand motion of surgeons during surgical procedures.
Surgeons are well known for constantly being short of time.

The methods proposed here have a large range of applications. Besides medical image pro-
cessing, that constantly requires better and faster algorithms, the proposed methods would be
particularly suited as an object cutting tool for editing photographs.
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1.1. Thesis Overview

1.1. Thesis Overview

The methods in this thesis build on the statistical analysis of region properties and active con-
tours. Two chapters are thus dedicated to them. Chapter 2 reviews three main approaches to
image modeling in computer vision, of which this thesis adopts the statistical approach. Funda-
mental concepts in probability theory and statistics needed for this approach are present in the
remainder of the chapter. These include concise definitions and the mathematical notation for
random variables and probability density, density estimation and Markov random fields. Non-
parametric density estimation is discussed in more detail in order to give a better understanding
of the trade-offs involved and because it is an important building block of this thesis. The chapter
closes with a review of divergence measures for measuring the difference between two probabil-
ity densities.

Chapter 3 describes the active contours framework as the combination of region and edge prop-
erties for describing objects, a method for generating motion forces from the selected properties,
a method for implementing contour motion and a choice of initial contours. Extensive reviews
of the active contours literature explain the possible choices for each component. This part of the
dissertation is organized in four corresponding subsections.

The next two chapters present the core contributions of this dissertation to the theory of ac-
tive contours. First, chapter 4 proposes to describe the properties of regions locally and thus
generate motion forces from the local information. Similarly to statistical descriptors, the pro-
posed construction is named local region descriptors. Local region descriptors are contrasted to
global region descriptors. The chapter then discusses the fact that energies of active contours
constructed with local region descriptors have many local minima, and it proposes solutions to
this problem. Properties of active contours based on local region descriptors are pointed out in
numerous segmentations of natural images.

Second, chapter 5 presents active contours with spatially-variant definitions of energy terms, and
opposes these to other active contours, that typically have spatially invariant definition of energy
terms. The general method is concretized in contours that have the data terms defined in one
of two ways. The purpose of this particular contour is to further reduce the number of minima
of active contours based on local information and thus make the proposed active contours more
robust, as will be explained in the chapter.

Chapters 6 and 7 apply the proposed theoretical methods to two different types of problems. The
first one in chapter 6 refers to the issue of segmenting textured images. Specifically, small im-
age patches are modeled as Markov random fields in order to describe the properties of textures,
which is a relatively recent development in texture segmentation. We review texture segmenta-
tion and show that this concept has been recently employed with active contours based on global
information. The chapter demonstrates that using local information, these active contours can
be modified such that the method’s speed increases by two orders of magnitude. Using spatially
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1. Introduction

variant definitions of energy terms, the active contours are also robust.

Chapter 7 employs the methods of previous chapters in a multicamera computer vision for hand
tracking. This chapter describes the problem of tracking hands using computer vision and
presents a short overview of related work. It then introduces the system’s setup and the basic
principles of stereo vision needed for measuring the positions of points in 3D space. Accurate
tracking of hand and arm contours provides the 2D points necessary for measuring 3D points.
The practical use of the system is demonstrated in the tracking and measurement of hands during
surgical procedures, which yields practical 3D measurements.

The work concludes with Chapter 8, which also discusses the ideas that remain unexplored in
the course of this dissertation and touches a few directions for future research.
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2. Image Models and Statistics Theory

I had a conversation some weeks ago about flying saucer with laymen. ’Cause I
am scientific, I know all about flying saucers. I said, I don’t think there are flying
saucers. [..] That’s the way it is scientific: it is scientific only to say what’s more
likely and less likely and not to be proving all the time possible-impossible. [..] I
finally said to him: Listen [..], I think that it is much more likely that the reports of
flying saucer are the results of known irrational characteristics of terrestrial intelli-
gence, rather than the unknown rational efforts of extraterrestrial intelligence.

Richard Feynman at Cornel University, 1964.

This thesis is concerned with the segmentation of images into regions that have a more or less
uniform appearance. As was pointed out in the introduction, the segmentation task starts with a
matrix of integers. In order to delineate regions in this matrix, the intuitive concept of uniform
appearance must be shaped into a model.

2.1. Image Models

Researchers have taken different approaches for this problem. A short overview of three main
approaches, i.e. functions on a grid domain, multiscale representation and statistical models,
follows. The statistical model is the one on which this thesis is based, therefore relevant technical
background from probability, statistics and information theory will also be shortly reviewed.

2.1.1. Images: Functions on a Grid Domain

The observed image is interpreted as an intensity function sampled on a grid, most often of
square pixels. The observed intensity function is a noisy version of a piecewise smooth function
u(x,y), I(x,y) = u(x,y)+ n(x,y), with u(x,y) the ideal smooth function and n(x,y) the noise, as
exemplary depicted in Fig.2.1. The piecewise smooth function is discontinuous only at object
boundaries. To impose the smoothness constraint on the ideal function, one requires that some
measure depending on the function’s gradient be minimal. For instance, in (Mumford and Shah,
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2. Image Models and Statistics Theory

(a) (b) (c)

Figure 2.1.: Functions-on-a-grid-domain representation of an inexplicable image: (a) the original
image I(x,y) (Flickr, 2008), (b) and (c) two views of the surface described by the
function I(x,y) = u(x,y)+ n(x,y). Note that in view (b) we can still recognize the
image’s structure, but by changing the perspective like in the view (c) we cannot,
partly due to the fact that textured objects do not yield smooth functions.

1985) the term |∇u|2 must be minimal. Minimizing the bounded total variation |∇u| of the ideal
function was proposed in (Rudin et al., 1992), in the sense that, on the same image, L1-norm
denoised approximations of the observed image look better than L2-norm denoised approxima-
tions. The proposed model is known as the ROF-model, and it can be intuitively understood by
thinking of the image as a 3D-surface which is propagated in the direction of its normals with
speed proportional to its curvature.

Variational methods that employ this model use numerical iterative schemes to determine the
piecewise constant function, and they can solve the tasks of denoising and segmentation simul-
taneously. However, the optimization problems that need to be solved are non-linear, and have
a large number of local minima, which is a problem especially for the segmentation task. This
issue can be alleviated by imposing strict constraints on the image. For example, a global min-
imum can be reached, independent of initialization, when the number of image objects is very
small (Bresson et al., 2007).

Not all objects in natural images can be represented by smooth functions. An example are tex-
tured objects, as for example the cat in Fig. 2.1. These objects are very difficult to model as
smooth functions of a grid domain. Attempts have been made to model texture as noise (Bresson
et al., 2007) or as an oscillatory image part in a combination of cartoon-texture models (Bertalmio
et al., 2003). Complex texture can be described much better with statistical models, since these
are better equiped to deal with different variations of region features.
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2.1. Image Models

2.1.2. Images: Multiscale and Multiresolution Representation

The digital image is a matrix of numbers, as mentioned in the previous chapter. Fast image
operators, e.g. image filters, analyze neighbored individual pixels, yielding information about
local features at the finest scale of the image. Information about most image structures, like
objects, is found when observing much larger patches of pixels at larger scales (Freeman and
Adelson, 1991). The fundamental problem in multiscale analysis is to determine the scale which
best reveals a certain structure, since, in general, structures of different sizes are best visible at
different scales; for a textbook discussion see, for example, (Jaehne, 1997). For example, if a
person’s head and body are best identified at a larger scale, his eyes and hands are best identified
at a lower scale. Multiscale methods thus analyze images at many different scales to determine
the dominant scale in a local neighborhood. In this process, the images at larger scales are
increasingly blurred versions of the image at a fine scale.

Two main directions of research that look at the image scale problem from different points of
view cover most of multiscale analysis: wavelets and scale space methods. In scale space meth-
ods, for which (Lindeberg, 1998a,b) are often cited sources, images are blurred by applying the
heat-diffusion equation to the image in a given period of time. This process is equivalent to filter-
ing the image with Gaussian filters of increasing size, and the scale parameter is proportional to
the standard deviation of the Gaussian kernel. An example of scale space for an image showing
protesting cows is shown in Fig.2.2.

The scale parameter adds a dimension to the image representation that requires large amounts of
memory, and many of the pixels at larger scales do not contain relevant information. A solution to
both issues is the multiresolution representation, such that images at larger scales have less pixels
than those at finer scales. The Gaussian pyramid is a standard multiresolution representation that
shows only the coarsest structures in the image at the top of the pyramid. Each level is four
times smaller than its predecessor (it is obtained by taking every second pixel in every second
row of the smoothed predecessor). An example of a Gaussian pyramid is shown in Fig. 2.3.
One can avoid loosing image details when constructing the Gaussian pyramid, with a Laplacian
pyramid, see, for example, (Gonzalez and Woods, 2002b). The latter is obtained by subtracting
two consecutive planes of the Gaussian pyramid.

Wavelet transforms (Mallat, 1999; Gonzalez and Woods, 2002b; Tziritas and Labit, 1994) rep-
resent an alternative for multiresolution decomposition. The wavelet pyramid contains both the
coarse structure and the details in one binary tree. The planes in the tree are obtained by decom-
posing the image in limited frequency subbands defined by a function basis. The latter is in turn
generated from a single function that is scaled and shifted. These functions are well localized
both in the space and frequency domain. Wavelets are a very flexible and fast tool (see e.g. (Jain,
1989) for a review of some transforms used in image processing).
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2. Image Models and Statistics Theory

Figure 2.2.: Scale-space for an image showing protesting cows (Cows, 2008). The scale-space is
obtained by filtering the original image with Gaussian filters of increasing variance.

2.1.3. Images: Observations of Random Variables

This model handles image data as statistical quantities, e.g. (Forsyth and Ponce, 2003). Vari-
ations in the image are usually caused by measurement noise in the imaging device, and by
fluctuations in the visual appearance and the geometry of the object. Statistical modeling gives
the possibility to determine the law of variation from the data for image denoising and segmen-
tation purposes. Pixels are treated as individual measurement points, to which classical statistics
concepts can be applied. As an example, we show the (not photoshopped) image in Fig.2.4 1. The
pixels of the image are lined into a vector of values for which a histogram may be constructed to
gain information about the way pixel intensities in the image vary. Two main statistical modeling
approaches exist.

Pixels are very often considered to be independent identically distributed random variables, be-
cause this hypothesis considerably simplifies calculations for determining the variables’ (joint)
probability density. This model does not include any information on the spatial relation between
pixels. Spatial information is, however, very important in understanding the structure of an im-

1The rabbit is a “Deutschen Riesen Grau” bred in Eberswalde by Karl Szmolinsky, who stopped exporting them
to Nord Coreea because they were eaten without being allowed to breed first.
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2.1. Image Models

Figure 2.3.: Scale-space for an image showing protesting cows. The scale-space is obtained by
filtering the original image with Gaussian filters of increasing variance.

age, since pixels depend on one another over large image areas. Considering all the interactions
results in intractable computation problems. To simplify the problems, it is supposed that in-
teractions between pixels are of short range. Pixels depend only on those other pixels found in
their immediate neighborhood, creating a Markov Random Field (MRF), e.g. (Geman and Ge-
man, 1984). In a MRF setting, one estimates the probability density of a pixel conditioned on its
neighborhood, or the joint probability of pixels in the same neighborhood.

For the segmentation task, it is considered that each image object is generated from a different
random process, characterized by the probability density estimated with one of the two modeling
approaches. The variation laws for the different objects must be different in order to obtain
a successful segmentation. An image of sand dunes and sky is a good example of an image
showing objects with different probability densities.

Determining the probability density function (pdf) of each of the random variables involved
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(a) (b)

Figure 2.4.: Statistical modeling of images: (a) (not photoshopped) image (Rabbit, 2008), and
(b) its histogram showing information about the variation of pixel intensities in the
image.

is part of the statistical modeling. Generally, it is accomplished in a maximum likelihood or
Bayesian framework, where the probability of pdf parameters given the data is expressed in
terms of the probability of the data given the parameters. The modeler must specify the type of
density function before any estimation is possible.

The values observed at any pixel may be measured or computed image features. For example,
the pixel intensity is measured in gray images, while pixel color is measured in color images.
From this raw data, features that enhance the image or that describe properties like texture can
be computed. A pixel may be characterized by any number of features. The random variable
associated with a pixel’s intensity is replaced by a random vector. For instance, the pixel’s color
is described by a random vector with three components. Although theoretically unlinked, practi-
cally the dimension of the random vector restricts the choice on the density function model to be
used. It is common to select non-parametric pdf models for more than three feature components
(Brox et al., 2003a; Awate et al., 2006; Silverman, 1986), while for three or less features both
parametric and non-parametric estimation is employed. For the segmentation of complex natural
imaging, statistical modeling is a difficult task, because it is extremely challenging to press nat-
ural variations into mathematical functions that have minimally overlapping supports. To justify
this statement, we fist review relevant methods of probability theory and statistics.

2.2. Probability, Statistics and Density Estimation

The ideas in this dissertation are constructed on the basis of statistical image modeling. This
section reviews relevant concepts of probability theory and density estimation, and establishes
the corresponding mathematical notation.
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2.2. Probability, Statistics and Density Estimation

2.2.1. Probability and random variables

Many phenomena in nature, from light to people, are uncertain. This means that one cannot know
exactly the outcome of a specific event, but can only guess it using ones experience. Looking
out the window in the evening, a person will see mainly the sunset, but will also see a faint
reflexion of themselves. In physics, this phenomenon is known as the partial reflexion of light
off glass, and raises the question: why is it that glass reflects only four percent of the incident
light? Why does glass not reflect all of the photons that hit it or none at all? The answer is
that the phenomenon is probabilistic, only some of the photons get reflected from the glass, and
there is no telling which of all the photons sent toward a glass plate will be the reflected ones.
Probability, random processes and random variables can formalize the fact that, when a photon
is sent toward the glass, we do not know whether it will be reflected or not, but, we do know
that, in general, one of twenty-five photons sent toward the glass will be reflected. Probability
and random variables provide the mathematical tools to quantify intuitive concepts like: "about",
"almost", "seldom", "often".

The notions introduced shortly in this sections can be found, in detail, in any good book on
probability. For example, we refer the reader to the textbook of Papoulis (1990).

For an experiment with uncertain outcome, probability gives a measure of the chances of each
possible outcome. The set of all possible outcomes is denoted as the sample space, Ω, of that
experiment. An event A is the subset of samples for which a given something occurs. The
probability of an event is the chance that the event will occur. It is a function, denoted P(A),
defined on Ω, which assigns a positive value to each event in the sample space, P(A) ≥ 0, such
that the probability of the sample space adds to one, P(Ω) = 1, and the probability that either
one of two events occurs satisfies
P(A∪B) = P(A)+P(B), if and only if A∩B = /0, otherwise, and
P(A∪B) = P(A)+P(B)−P(A∩B)).

In many situations, the occurrence of one event may lead to the occurrence of another. Light can
be reflected from glass only if it is emitted by a source. However, only a part of the photons emit-
ted by the source will reach the glass. The probability that a photon emitted by the source will be
reflected from the glass is a conditional probability. The probability of an event A conditioned
by the occurrence of event B is denoted P(A|B) and it is defined as

P(A|B) =
P(A∩B)

P(B)
.

The conditional probability P(B|A) can be written in a manner similar to the equation above.
If P(A∩B) is expressed from both forms, Bayes’ law, the law used for Bayesian inference, is
obtained

P(A|B) = P(B|A)
P(A)
P(B)

. (2.1)
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2. Image Models and Statistics Theory

If the occurrence of an event A has no influence over the occurrence of an event B, the events are
said to be independent, and the following holds P(A|B) = P(A), and P(A∩B) = P(A)P(B).

In general, the notation P(A) refers to the probability of the specific event A. To refer to the
events of an experiment in general, the concept of random variable is introduced. A random
variable is a symbol X to which the sample space Γ and the probability function P are associated.

A discrete random variable has a discrete sample space and the probability of a specific event
xi is denoted p(xi) = P(X = xi). In our photon example, the sample space of the light reflexion
experiment has two events, and p(photon_re f lected) = 0.04.

A continuous random variable has a continuous sample space. The number of possible outcomes
is thus infinite, which means that the probability of almost all possible events is zero. A finite
number of possible outcomes is obtained if the continuous sample space is divided into finite
intervals, and the uncertainty in the random variable is measured with the probability density
function (pdf):

p(xi) = lim
δ→0

P(xi < X < xi +δ )
δ

. (2.2)

A possible event is that the random variable X takes a value in a given interval, and the event’s
probability is given by

P(xi < X < xi+1) =
∫ xi+1

xi

p(x)dx. (2.3)

Since the probability of the sample space still must be one, the probability density of a continuous
random variable integrates to one:

∫
∞

−∞
p(x)dx = 1. A special type of event is that the random

variable is smaller than a value x. The probability P(X < x) regarded as a function of x constitutes
the cumulative distribution function (cdf) of the random variable X. The pdf is the derivative of
the cdf, fact that can be deduced from their definitions.

Random variables are characterized by an ample number of statistics. We mention here the two
most used ones, expected value and variance. The expected value is defined as

EX [X ] = ∑
xi∈Ω

xi p(xi) (2.4)

for a discrete random variable, or

EX [X ] =
∫

Ω

xp(x)dx. (2.5)

for a continuous random variable. The law of large numbers ensures that the limit of the sample
mean Ex[X ]≡ 1

nxi is the expected value.

In addition to the expected value (or mean), it is instructive to know how close observations from
X will be to the mean, on average. For this purposes, one computes the expected variation, called
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variance
Var(x) = EX [(X−EX [X ])2] = EX [X2]−EX [X ]2. (2.6)

The mean distance to the expectation is the square root of the variance, and it is known under the
name standard deviation.

2.2.2. Statistical inference

In practice, the probability density of the studied phenomenon is unknown, only measurements
being available. The unknown aspects of the phenomenon can be inferred from statistics on the
measurement data. The general principle of statistical inference is to select a model for the ran-
dom variable, and then test how well the model explains the data using various different methods
(Papoulis, 1990). We mention here three of the most widely used methods in computer vision.
All three models rely on Bayesian inference, which allows to express the desired probability of
the model given the data in terms of the known probability of the data given the model.

Maximum likelihood (ML) selects the random variable model that maximizes the likelihood of the
observed data x1,x2, ...xn, denoted as the data sample x (Papoulis, 1990). The likelihood of the
sample x is defined as a conditioned probability L(x) = P(x|X) = P(x1,x2, ..,xn|X). The model
is selected to maximize the likelihood of the sample in an iterative step procedure: 1) guess a
random variable model that might explain the phenomenon; 2) evaluate the model’s quality by
computing likelihood of the data sample, 3) iterate steps 1) and 2), and retain the model that
makes the data most probable after having evaluated more models.

Maximum-a-posteriori (MAP) estimation is also based on likelihoods (Duda et al., 2001). It
maximizes the likelihood of the model X , defined as L(X) = P(X |x). Since only P(x|X) can
be known, Bayes’s law is used to express the probability of the most likely model given the
sample as P(x|X) = P(X |x)(P(x)/P(X)). Note that maximum likelihood is a particular case
of maximum-a-posteriori with P(x)/P(X) = 1. Maximum-a-posteriori estimation is employed
when we have a-priori information about the studied phenomenon that can be quantified as an
a-priori probability P(X). The data is the same for all evaluated models, which means that the
unconditioned probability of the sample P(x) does not participate in the maximization process,
and can be ignored. Priors are not known, they must also be estimated. Priors cannot be esti-
mated without making biased assumptions about the data. This statement is known as the Ugly
Duckling theorem, and it is discussed in detail in the textbook by Duda et al. (2001).

Expectation Maximization (EM) is an iterative procedure for obtaining a ML or MAP when part
of the data is missing (Duda et al., 2001). Didactical examples involve a data set collected from
men and women, e.g. height, weight, or the proverbial time to find the butter in the refrigerator,
for which it is not known if an observation stems from a male or female subject. We want
to compute the statistics for each population separately. The time-to-find-butter constitutes the
observed data x, and the type, male or female, constitutes the hidden data y. Random variables
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X and Y are associated to the observed and hidden data.

The idea behind the EM algorithm is to alternate between computing a model X and guessing
what the missing data is. For this purpose it iterates two steps: 1) E-step: given parameter esti-
mates and a guess about the unknown variable y, compute its expected value; 2) M-Step: with the
computed expectation value, estimate the distribution parameters to maximize the likelihood of
the data. For the didactical example, consider that the time-to-find-butter is normally distributed
for both men and women, and consider the means and variations of the distributions known. In
the E-step compute the expected class, male or female, for each data point. In the M-step, know-
ing the class for each data point, determine the means and variances that maximize the likelihood
of the data.

To arrive at the two steps in the iterative EM-algorithm, we start with the log likelihood of the
data given the model, and express the probability of the observed data as the integral of marginal
probabilities of the joint observed and missing data log(L(x)) = logP(x|X) = log

∫
y P(x,y|X)

(Duda et al., 2001). The goal of the E-step is to determine an optimal lower bound on the log
likelihood of the data. It can be shown that, for a given model Xi and a guess on Y

logP(x|Xi) =
∫

y
P(y|x,Xi) log

P(x,y|Xi)
P(y|x,Xi)

dy. (2.7)

The lower bound is maximized in the M-step, which means we need to find X such that logP(x|X)
is maximum. We write the maximization problem depending on the known Xi as

max
X

logP(x|X) = max
X

∫
y
P(y|x,Xi) log

P(x,y|X)
P(y|x,Xi)

dy (2.8)

= max
X

∫
y
P(y|x,Xi) logP(x,y|X)dy

= max
X

EY logP(x,Y |X)≡ Q(X).

The next model Xi+1 is the one that maximizes the quantity Q(X).

The necessary ingredient for all three methods is the probability density of the data given the
model, which is not known. Section 2.2.4 discusses methods for density estimation from ob-
served data.

2.2.3. Markov Random Fields

Spatial continuity is an important clue to observe in natural images. When pixels are modeled
as independent, identically distributed random variables the spatial information is lost. The spa-
tial relationships between pixels can be modeled using Markov random fields (MRF), (Geman
and Graffigne, 1986; Bouman and Sauer, 1993). For didactical introductions on MRFs see for
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example (Gardner, 1990) or (Ngan et al., 1999).

The pioneering works that involved Markov processes referred to time relations between ele-
ments of an ordered sequence of random variables. An ordered sequence has the Markov prop-
erty if each random variable in the sequence depends only on the previous one, or, equivalently,
the conditional probability distribution of a random variable given all previous random vari-
ables equals the conditional probability of that random variable given its direct predecessor. The
Markovian property was first applied to random fields by the physicist Ernst Ising (in the 1920s).
He was attempting to devise a mathematical model for the experimentally determined properties
of ferromagnetic materials.

A random field X is defined on a finite rectangular lattice L of pixels by assigning a random
variable Xt to each pixel t. A digital image is modeled as a realization of the random field
obtained by observing all random variables Xt simultaneously. A neighborhood system N is
defined on the lattice as a collection of neighborhoods Nt such that

Nt ⊂ L , (2.9)
t /∈ Nt ,and

(s ∈Nt) ⇔ (t ∈Ns).

Figure 2.5.: The 8-pixels square neighborhood of the center pixel.

The most popular neighborhood in digital images consists of the 8 pixels connected to the center
pixel as shown in Fig. 2.5. Having defined the notion of neighborhood, X is a Markov random
field on the sample space Ω if

P(Xt |{xs}s∈L−t) = P(Xt |Xs,s ∈Nt), and (2.10)
P(X = x) > 0 for all x ∈Ω. (2.11)

The first condition expresses the Markovian property of the random field. The second condition
is true of any random field and it is called the positivity condition.

The conditional probabilities in a random field should be simplified to a MRF such that the
resulting system is consistent. A consistent system is one where the probabilities in Markovian
condition can be obtained from the joint pdf P(X) of all the random variables in the system,
by employing probabilistic inference rules. In order to have consistency in the MRF, the local
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conditional pdfs must have a Gibbs functional form (Besag, 1974)

P(X = x) =
1
Z

e−
1
T U(x). (2.12)

The Gibbs distribution, e.g. (Ngan et al., 1999), was introduced in physics, where the constant T
is a temperature parameter, and U(x) is an energy function. Z is a normalizing constant that, usu-
ally, must not be evaluated. The Gibbs distribution relates the probability of a system state to the
state’s energy: states with high energy are less probable than those with low energy. The energy
function depends on the potential of cliques, Vcl(x), associated with the neighborhood system
N . Denoting a clique with cl and the set of cliques with Cl, the energy function dependent on
the potential function is

U(x) = ∑
cl∈Cl

Vcl(x). (2.13)

For digital images, a clique contains either a single pixel, or more pixels such that every two
pixels are neighbors. The cliques of one, two and three pixels that can be formed in an 8-
connected neighborhood system are shown in Fig. 2.6.

Figure 2.6.: All types of cliques that can be formed in an 8-connected neighborhood system.

To model an image, the parameters of the Gibbs distribution and its potential functions must
be estimated from the data. In a maximum-likelihood approach, this means that the probability
of the realization x of the random field X must be evaluated for each proposed model. This
creates an intractable optimization problem for images of reasonable sizes, unless one makes
simplifying assumptions or is content with approximate solutions. Optimization algorithms that
find approximate maximum-likelihood estimators are iterative and they are either stochastic or
deterministic in nature, see for example (Ngan et al., 1999).

Stochastic relaxation (also known as simulated-annealing) algorithms (Kirkpatrick et al., 1983)
start from an arbitrary initial estimate and employ a partially random search on the sample space
Ω. For example, the Metropolis algorithm (Metropolis et al., 1953) starts with an initial state
at very high temperature and evaluates its “goodness”. It then randomly generates a new state
within some limits of the old state. The new state is accepted only if it is better than the old
one. When a local optimum is approached, the temperature decreases. The algorithm stops at a
minimum temperature. Building on the Metropolis algorithm, Geman and Geman (1984) have
proposed the Gibbs sampler for image restoration problems. This algorithm entails that the local
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conditional pdfs in the MRF are known and that the value of a pixel is estimated with participation
of neighborhood pixel values. In practice, both algorithms are computation-intensive.

Deterministic algorithms accomplish faster convergence to a local optimum by starting with
“smart” initial estimates. The iterated conditional modes (ICM) algorithm, e.g. (Ngan et al.,
1999), follows a philosophy similar to that of the Gibbs sampler, but it only allows downhill
moves. The image is viewed as a noisy version of an MRF realization, and the noise is Gaussian,
independent, identically distributed. In each iteration, the algorithm cycles through the ordered
indices of pixels, setting the value of the pixel according to the Markovian pdf, given the values
of pixels in the neighborhood. The results of this algorithm are dependent on the pixel-indexing
order. The highest confidence first algorithm (HCF), e.g. (Ngan et al., 1999), was proposed as a
modification of the ICM algorithm. It keeps pixels in two classes: committed and uncommitted.
Initially all pixels are uncommitted, and once a pixel has been committed to a value or image
region it cannot go back to the uncommitted state. HCF solves two problems of ICM: an initial
estimate is not required, and the order in which pixels are updated is not influenced by some
arbitrary indexing.

One last issue concerning MRFs employed in image processing needs mentioning. In general,
they are considered to be stationary and ergodic, e.g. (Gardner, 1990). A strictly stationary MRF
is one where the Markov statistics are shift invariant, P(Xt) = P(X),∀t ∈ L . The ergodicity
property justifies inferring the pdf of a MRF from a single instance, which is the digital image.

2.2.4. Probability density estimation

Probability density estimation refers to the process of constructing a probability density function
from the observed data. Two main approaches to density estimation may be identified: paramet-
ric and non-parametric. The researcher chooses the type of density estimator taking into account
his knowledge or assumptions about the studied phenomenon.

We may understand parametric density estimation by thinking of the photon reflexion phe-
nomenon. If we bombard the glass with photons, in general, four out of a hundred will be
reflected. Because the phenomenon is probabilistic and we can always count on measurement
errors, we may count two reflected photons if we conduct the experiment once, and we may count
six reflected photons if we conduct the experiment again. Intuitively, we assume that the more
experiments we make, the average of reflected photons will be four. We also assume chances that
we count four photons are the same with the chances that we count six photons, and that they are
both larger than the chance that we count seven or three. We have the same intuition about many
variables in physics and biology, like men’s hight. If we plot the data we obtain curves of similar
shapes, known shapes, which can be described by parametric functions.

Parametric density estimation is chosen by researchers when they assume that the data has been
drawn from a known parametric family of distributions. The best known and most often used
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parametric distribution is the Gaussian (normal) distribution, e.g. (Papoulis, 1990) with mean m
and variance σ2

p(x) =
1√

2πσ
e−

(x−m)2

2σ2 . (2.14)

Examples of the bell-shape of the normal distribution is shown in Fig. 2.7(a), along with some
other distributions that are sometimes used in computer vision. The Laplace distribution, e.g.
(Gardner, 1990), in Fig. 2.7(b) is reminiscent of the normal distribution. Its pdf depends on the
absolute distance to the mean, instead of the squared distance to the mean. Fig. 2.7(c) shows
examples of the Rayleigh distribution. If the components of a random vector (X ,Y ) are random
variables that follow a normal distributions, their Euclidean norm

√
X2 +Y 2 follows a Rayleigh

distribution, e.g. (Gardner, 1990).

A discrete random variable with a distribution similar to the normal one, has a binomial dis-
tribution. The resemblance can be observed looking at Fig. 2.7(a) and 2.7(d). As the number
of trials in the binomial distribution goes to infinity, the binomial distribution tends toward the
Poisson distribution, e.g. (Gardner, 1990), which indicates the probability that a number k of
events will occur in a given time-interval, knowing the average rate λ at which events occur in
that time-interval

f (k;λ ) =
λ ke−λ

k!
(2.15)

The length of the time-interval between two occurrences of a random variable with a Poisson
distribution follows an exponential distribution. The shapes of the Poisson and exponential dis-
tributions are shown in Fig. 2.7(e) and Fig. 2.7(f), respectively.

The Poisson distribution is used to model probabilities of the number of calls per minute to a
call center, or the number of new arrivals into a queue of people waiting to become the happy
possessors of a signed copy of the book "365 Ways to Become a Millionaire" 2. The Poisson
distribution can also be used to approximate the cumbersome binomial distribution.

We conclude this section with two examples or random variables with parametric distributions.
At high temporal resolution, the photons emitted by a light source follow a Poisson distribution.
Integrated over comparatively large periods, the light intensity fluctuates according to a normal
distribution. An example from biology involves the sizes of grown biological creatures, which
follow a lognormal distribution.

2The book’s complete title is "365 Ways to Become a Millionaire (Without Being Born One)", is written by Brian
Koslow and can be bought for $0.89. The shape of the Poisson distribution intuited by the reader probably
reflects the degree to which his view of his fellow men is optimistic.
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(a) (b) (c)

(d) (e) (f)

Figure 2.7.: Examples of parametric distributions shapes (?). (a) Normal distributions. (b)
Laplace distributions. (c) Rayleigh distributions. (d) Binomial distributions. (e)
Poisson distributions. (f) Exponential distributions. (Image sources:wikipedia.org)

2.3. Nonparametric Density Estimation

Virtually all parametric pdfs are unimodal. In many practical situations, it happens that the
data exhibits multiple modes. Take, for example, the height in a group of basketball-players
celebrating the team’s victory with a large group of friends. The pdf that models this random
variable will have at least three modes, one at a smaller height for females and one at a larger
height for males and the largest one for the basketball-players.

A good probability model must both summarize and generalize the available dataset, i.e. it must
abstract all information on the variation in the dataset, while being able to recognize which values
not present in the data set fit the variation law. In these respects, multimodal distributions are
badly modeled by unimodal parametric density functions. An alternative is to use a mixture of
parametric pdfs, such that each mode is represented by one mixture component. However, an
issue exists with this approach. Density estimation is often used to explore datasets when we
do not know anything about them. Not knowing the number of modes may turn approximating
the mixture of pdfs into an intractable problem. Nonparametric estimation methods have been
designed for such situations by using the sample to directly define the pdf, while making the mild
assumption that the pdf is smooth. Nonparametric distributions allow, so to say, the data to speak
for itself. The following sections presents a short overview of some of the existing methods.
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2.3.1. Histograms

The histogram is the oldest and most intuitive density estimator. It is the first tool that comes to
mind when exploring a dataset. It helps to quickly gather an impression of both small and very
large datasets.

Given a dataset x1...xn, a histogram is constructed by defining for the dataset an origin x0 and
a bin width h. These parameters determine the number of bins in the histogram. The bins of
the histogram are defined as intervals of the form [x0 +mh,x0 +(m+1)h) The histogram is a
function that assigns to all observations in a bin the same value:

f̂ (x) =
1

nh
(no. of observations in the same bin as x), (2.16)

where f̂ denotes the estimate of the density f . One version of the histogram allows the bins to
have different widths, to accommodate the fact that some regions of the sample space contain
more data than others. Due to its simplicity, the histogram is computationally inexpensive com-
pared to other methods. The two qualities confers the histogram’s great popularity in computer
vision applications. Nonetheless, histograms have some notorious drawbacks.

Some issues exist in summarizing the data. The choice of origin and bin width may have quite
an effect on the shape of the estimate. This is especially true in higher dimensions, but can
happen even in one dimension. On the other hand, the histogram may summarize too much detail
from the data, which negatively affects its power to generalize. This problem can be alleviated
somewhat by smoothing the histogram. Mathematically, histograms cannot be used when the
derivative of the pdf is required, since histograms are discontinuous. In higher dimensions, the
problems occurring in one dimension are exacerbated, and the computational advantage may be
lost. For example, it is easy do decide that the histogram of a gray image should have 256 bins.
For a color image, the number of bins of equivalent size is 2563, and many of them are empty
or contain very few elements. If the size of the bins is increased, the data may be irremediably
distorted, and important details may be lost.

The alternative estimators presented here have been designed to solve one or the other problem
inherent to histograms.

2.3.2. The kernel estimator (Parzen windows)

The kernel density estimator is a continuous function based on the definition of the pdf for a
continuous random variable, which can be written as the limit of f (x) = 1/2h ·P(x− h < X <
x+h) when h→ 0. Every sample space point x becomes the center of a sampling interval of size
2h. Observations within the interval contribute to the estimate f̂ via a kernel function K which
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Figure 2.8.: Kernel density estimation: six observations used to construct the estimate (continu-
ous line) from individual Gaussians centered on the observations (dotted line).

satisfies the condition
∫+∞

−∞
K(x)dx = 1, and is in general symmetric

f̂ (x) =
1

nh

n

∑
i=1

K(
x− xi

h
). (2.17)

Parameter h is the window width, also named bandwidth (with no relation to the bandwidth in
spectral analysis) or smoothing parameter. The kernel estimator can be viewed as a sum of n
parametric functions of given shape, with width determined by the window width, and centered
on the n data points. To illustrate the principle as in Fig. 2.8, the kernel function has been
chosen to be a Gaussian (Silverman, 1986). The figure shows the individual functions, along with
the estimate obtained by adding them up. Nonparametric kernel estimators based on Gaussian
kernels are most often encountered under the name Parzen windowing. Another popular kernel
function is the Epanechnikov kernel (Silverman, 1986)

K(x) =
{ 3

4(1− x2), for |x| ≤ 1,
0, otherwise.

(2.18)

By centering an interval on each sample point, the kernel estimator avoids problems introduced
by rigidly choosing bins for the histogram. Since the kernel is everywhere positive, everywhere
derivable, and a density function, the estimate itself will be a continuous, everywhere derivable
density function. The kernel density estimate converges to the true density in the case of an
infinite number of observations (e.g. see (Duda et al., 2001)).

The density estimate is dependent on the window width, the dataset being given. As the window
width tends to zero, every data point introduces a spike in the density’s shape. The shape becomes
smoother as the band width increases, while details contained in small variations in the data are
lost. The dependence is illustrated in Fig. 2.9, reprinted from (Viola, 1995). The plots have
been generated from a hundred point sample of a zero-mean Gaussian with variance one. The
kernel function employed to compute the estimate was also a Gaussian, the most used function
in kernel density estimation. For this function, the window width is equivalent to the variance of
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Figure 2.9.: Influence of the window width on the kernel density estimate. Five plots of the den-
sity estimate from the same 100 observations but with five different window widths
(left), extracted from the surface plot of the Parzen density estimation versus vari-
ance, for the same sample (right). (Source: (Viola, 1995), pp. 46,47.)

the Gaussian, which, in the presented example, ranges from 0.005 to 1.28.

The kernel function and the window width should reflect any information available a-priori, given
its large influence. However, in many situations, there is no such information available. Due to its
importance, the problem of choosing the optimal kernel and window width has been intensively
studied, and a number of methods for choosing the window width have been proposed; for a
review see, for example, (Silverman, 1986). Most of them lead to complex solutions that either
involve some new parameter, or impose additional constraints on the dataset. Here, we mention
a rather simple method for choosing the window width that aims to maximize the log likelihood
of the data, given the density estimate. Maximizing log likelihood can be shown to be well
approximated by minimizing entropy (defined in Section 2.4.1) in this situation (Viola, 1995)

logL(x) = logP(x1...xn| f̂ )≈ log
n

∏
i=1

f̂ (xi) =
n

∑
i=1

log f̂ (xi), (2.19)

and the last term dived by n is the expectation of log f̂ (x;h), also known as empirical entropy
approximation of the entropy of the random variable X . If empirical entropy and density estimate
both use the same observations, the minimization of empirical entropy with respect to window
width has the trivial solution h = 0. To avoid this solution, when computing the estimate at
observation xt , empirical entropy is computed from a set of observation that does not contain xt .
Fig.2.10 shows plots of empirical entropy for a random vector with 9 components obtained from
3×3 image patches. The empirical entropy is estimated with a Gaussian kernel function, versus
kernel variance, for two samples selected from the same image. The plot in the middle shows
a broad minimum, which suggests that in this situation the density estimate is not extremely
sensitive to the value of the variance. However, we have previously discussed that this need not
always be so. For example, the plot on the right shows a decreasing entropy function with no
minimum.
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Figure 2.10.: Empirical entropy evaluated from two different samples for the image on the left.
Observe that the one in the middle has a broad minimum, while the one on the right
does not have a minimum.

2.3.3. The Nearest-Neighbor Method

The optimal window width for describing an entire data set may be inexistent. This is because
observations are often disproportionately scattered over the sample space. Some regions in the
sample space may be very densely populated, while others are much less so. The information
content is higher in densely populated regions, and variation in the observations carry more
importance than in sparsely populated regions. The k-nearest-neighbors method represents a
potential remedy to the problem of finding the best window width (Duda et al., 2001).

The method estimates p̂(x) from an interval centered at x large enough to contain exactly k
observations, known as the k nearest-neighbors of x. The parameter k is typically

√
n, where n is

the total number of observation (Silverman, 1986). If the distance between x and the observation
xi is denoted with di(x), the size of the interval will be dk(x). In regions of high density, dk will
be relatively small, preserving important detail information. In regions of low density it will be
relatively large. The k nearest-neighbor density estimate is defined as

p̂(x) =
k

2ndk(x)
. (2.20)

To understand what this definition does, we can compare it to the bin of a histogram. The bin of
the histogram counts how many samples fall withing a given interval, and the density estimate
is directly proportional to this number. The nearest-neighbor estimate determines the size of the
cell that contains a given number of observations, and it is inversely proportional to it.

The nearest-neighbor estimate tends to yield functions with very long tails, since tail values are
usually situated in sparsely populated regions of the sample space. Additionally, the obtained
function is not a smooth curve, it is not a probability density because it does not integrate to one,
and it is only piecewise derivable. These last issues are remedied by the variable kernel estimator
described next.

29



2. Image Models and Statistics Theory

2.3.4. The variable kernel estimator

The kernel density estimator has many desirable properties, but requires the choice of a fixed
window width. However, there is no reason why we should not estimate a window width h(x) at
each x, like we did in nearest-neighbor estimation, and replace h with h(x) in the kernel density
estimator formula. We then obtain the balloon density estimator, sometimes denoted generalized
k nearest-neighbor estimate (Silverman, 1986)

p̂(x) =
1

ndk(x)

n

∑
i=1

K(
x− xi

dk(x)
). (2.21)

The balloon estimate still suffers from some of the issues in the nearest neighbor method, since
it depends on dk(x). The balloon estimate is negatively affected by local noise, it has long tails
and an infinite integral.

An estimator that is a probability density function emerges if the dk(x) is replaced with the
distance dk(xi), i.e. the distance between the observation xi and its kth nearest neighbor. The new
estimator is the variable kernel estimator or sample point estimator with smoothing parameter h
(Silverman, 1986)

p̂(x) =
1
n

n

∑
i=1

1
hdk(xi)

K(
x− xi

dk(x)
). (2.22)

All following facts referring to the variable kernel estimator can be found, for example, in (Sil-
verman, 1986). The smoothing parameter h is often omitted, since it is constant and can be
incorporated in hdk(xi). Instead of selecting a window width for each estimation point x, the
variable kernel estimator selects a window width for each observation (or sample point) xi. The
window width is no longer dependent on x, which substantially reduces problems in estimating
the densities tail. Also, the density is not affected anymore by the position of the estimation
point, being fully determined by the dataset.

There exists an optimal choice for the window width at an observation point xi, which we may
denote with h(xi)

h(xi) = h0

(
λ

p̃(xi)

) 1
2

(2.23)

where h0 represents a fixed window width and λ is a proportionality constant. The estimate p̃
is called a pilot density. It is sufficient if the pilot density is only a rough approximation of the
underlying density. Its purpose is to allow to compute the window widths h(xi) in order to obtain
a more accurate estimate.

Parameters h0 and λ allow a higher level of abstraction, but must still be chosen by the researcher.
The estimate in equation 2.22 depends on the value of λ . This parameter represents the threshold
between low and high densities. When the local density is low, the window width h(xi) is larger
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than h0 leading to increased smoothing around the point xi. Reciprocally, for regions of high
density, the window width becomes narrower.

Automatic selection of window-width size is an intensively studied problem due to countless
applications that profit from data analysis. A very interesting and recent theoretical development
is (Katkovnik and Spokoiny, 2008), and it has been applied to image segmentation and denois-
ing problems in (Polzehl and Spokoiny, 2003; Tabelow et al., 2006). The authors propose that
the kernel function be viewed as model of the local data within each window centered on each
observation. The best window-width is found iterating through a list of possible sizes. In each
iteration, given the window size, the maximum-likelihood fit to the data in the window is com-
puted. One then statistically tests the hypothesis that residuals between the model and the data
can be treated as pure noise. The best window width is the largest window that passes the test.
In their paper, the authors provide the theoretical bounds of such a statistical test.

The nonparametric methods in this chapter have been introduced while discussing random vari-
ables for the simplicity of illustrations (all illustrations are 1D, allowing the reader to concentrate
on the introduced method). Their definitions for random vectors, i.e. in higher-dimensions, are
the same. The formulas are only changed to replace the volume of the one dimensional inter-
val 2h with the volume of a d-dimensional sphere and correcting factors that ensure pdfs will
integrate to one. These formulas will be reminded in the latter chapters, as we will use them to
develop our methods.

2.4. Information Theoretic Measures

Image processing tasks typically involve two or more random variables or vectors. For example,
different image objects are associated with different random variables in order to accomplish
segmentation. Objects may be assigned labels, which may be also viewed as random variables
that transform the image segmentation problem into a data classification problem. Researchers
are often interested to view the pdfs of the different random variables in relation to one another.
For instance, how much does the pdf of a pixel feature tell us about the pixel’s label.

Knowledge on the functional dependence between random variables and the amount of uncer-
tainty associated with them is acquired from information theoretic concepts like entropy and
pdf divergence measures. Some of the concepts mentioned in this dissertation will shortly be
described in order to help the reader follow some of the discussion in following chapters.
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2.4.1. Entropy, Conditional Entropy and Mutual Information

The entropy of a random variable is a measure of how random the variable is. Are the birthdays
of babies more or less random than lottery numbers? Entropy, typically denoted H(X) quantifies
the answer to this questions

H(X) = ∑
xi∈Ω

P(X = xi) log
(

1
P(X = xi)

)
=− ∑

xi∈Ω

p(xi) log p(xi). (2.24)

This entropy measure is known as Shannon entropy. Lower entropy values are associated with
more certainty concerning the random variable.

From its formula, one observes that Shannon entropy is the expectation of the random variable
(− logP(X)). This expectation can be approximated by 1/n∑

n
i=1− log p(xi), and it is also known

under the name empirical entropy. Writing the sum of logarithms as logarithm of products,
Shannon entropy is proportional to the negative of the log likelihood by a constant factor. A
maximum likelihood optimization may thus be replaced with a minimum entropy optimization.

The concept of entropy also helps express the degree of certitude that two random variables are
functionally dependent. For this purpose, we first define the conditional entropy of a random
variable Y given random variable X

H(Y |X) = EX [EY [log(P(Y |X))]]. (2.25)

Larger functional dependencies result in lower values for conditional entropy. However, a small
value of H(Y |X) can also result from the fact that the entropy of Y is small itself. To circumvent
this problem, mutual information is introduced

I(X ,Y ) = H(Y )−H(Y |X). (2.26)

to measure the amount by which the entropy of Y decreases when the entropy of X is known. It
can be demonstrated that I(X ,Y ) = I(Y,X). Methods based on maximizing mutual information
have gained much popularity in computer vision, especially due to the work of Viola and Wells
(1997). The work discusses in detail desirable propertied of mutual information and shows its
efficiency in ill-posed alignment problems.

2.4.2. Divergence Measures

In most applications we are not interested in functional dependencies. Instead, we want to know
if two pdfs are similar or not. For example, two pdfs are estimated and we need to know if they
represent estimates of the same random variable. A well know similarity measure between pdfs
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p and q is the Kullback-Leibler Divergence (Duda et al., 2001)

KL(p||q) = ∑
xi∈Ω

p(xi) log
p(xi)
q(xi)

. (2.27)

This quantity is not symmetric, hence it is not a true distance measure. A true distance that
measures the mis-match between pdfs is the Bhattacharyya distance (Duda et al., 2001)

B(X ,Y ) = ∑
xi∈Ω

√
p(xi)q(xi). (2.28)

Another true distance is the Wasserstein distance. Unlike the Bhattacharyya distance, it is de-
fined via cumulative distributions. If we denote the cdf of two random variables Fp and Fq, the
definition for the continous case reads

W (p,q) =
∫ 1

0
|Fp(x)−Fq(x)|dx. (2.29)

Many other divergence measures exist, and choosing the appropriate one for a given problem is
a topic of intensive research in statistics. We mention that a relatively recent example is (Barth
et al., 1999), and we do not further immerse in this topic.

2.4.3. Mann-Whitney-Wilcoxon test

Some of the algorithms mentioned in this dissertation incorporate divergence measures into an
optimality criteria, typically minimization. Much fewer ones adopt a variant where the diver-
gence measure is thresholded in order to obtain some result. One such example is the Mann-
Whitney-Wilcoxon test. This is a nonparametric statistics test for assessing whether two samples
of observations have been drawn from the same distribution. For instance, we would like to know
if two image patches belong to the same object.

The null hypothesis is that the two independent samples (e.g. image patches) are drawn from
the same variable (e.g. region). The test calculates a statistic, usually called U . For two small
samples of possible different sizes, the statistic U is obtained in a few trivial steps: 1) sort both
sample into a single ranked series, 2) decide which is the sample with smaller ranks, and let this
be sample1, and the other sample2, 3) for each observation in sample2, count the numbers of
observations smaller than it in sample1, 4) set the value of U to the sum of these counts. The
distribution of U is known when the null hypothesis is true. The null hypothesis is accepted or
rejected by checking the tabulated values of U .
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3. Active Contours: Overview and
State-of-the-art

This fellow takes things seriously, it isn’t safe to ask him a simple question.

Groucho Marx

In this chapter we will answer the question: “What are active contours?”. Active contours are
methods based on models of physical phenomena. In the introduction, we have resorted to the
rubber-band model for simplicity. However, a more appropriate model is that of moving (or
evolving) interfaces (or curves). Both terminologies are often used. Intuitively, the evolving
curves exist in a plane on top of the image. In order to find object boundaries, the curves move
under the action of forces generated from image properties while staying smooth.

The forces are oriented in the direction of the contour’s normal vectors. At each moment in
time, the curve has a position and an energy. The curve moves in each time iteration at a speed
dictated by image properties until it reaches a state of minimal energy. Physically speaking,
the contour’s energy and the motion forces directly determine one another. Mathematically, the
energy is formulated first, and motion forces are the result of energy derivation for the purpose
of gradient descent. For this reason, the active contours framework is a framework of variational
models. Four issues must be considered to achieve segmentation with this physical model.

First, the visual properties of image regions must be described. This means selecting features
to characterize image properties and generating energy terms from them. Visual properties may
refer to the strengths of edges, yielding edge-based active contours. The contour is constructed
to move toward and stop at image pixels where the measured edge strength is largest. The
edge strength is often measured by computing the gradient of the image ∇I. The magnitude
of the gradient is plugged into a strictly decreasing function g that contributes to the contour’s
energy. The energy E(C,∇I) is the boundary integral over the contour C. Intuitively, to obtain
the contour’s energy, one adds the energy bits that exist at each point on the contour and are
inversely proportional to the strength of the edge. A force proportional to the energy bit acts
on each contour point, a fact which can be mathematically expressed in the form of a partial
differential equation.

Alternatively, visual properties may refer to the characteristics of the region occupied by the im-
aged object, yielding region-based active contours. The contour is constructed to move such as to
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encompass only image pixels with similar characteristics. The characteristics or features fr ∈ Rn

may refer to intensity, color, texture or other measurable quantities. To decide which pixels are
similar, the values of pixels in each region encompassed by each contour are analyzed statisti-
cally. Probability densities pi are often estimated in the process (using, for example, histograms
or Gaussian distributions).

The contour’s energy E(Ri,Ci) is a region integral over the region Ri encompassed by Ci. Intu-
itively, each pixel inside the region contributes bits of energy to yield the total energy. An energy
bit is proportional to the probability that the pixel belongs to the region. This part of the energy
is known as the image data term. To this term, one needs to add the energy that constrains the
contour to having smooth shapes. This part of the energy is known as the smoothness term. Sim-
ilar to edge-based contours, forces proportional to the energy bits act on contour points; they are
also expressed in the form of partial differential equations. The image in Fig. 3.1 depicts both
edge and region-based construction of active contours.

Second, the derivative of the energy is computed to obtain motion forces. The two main ap-
proaches for derivation, expectation maximization and shape gradients, will be discussed in Sec-
tion 3.2. Third, the evolution process starts with initial contours. The positions of initial contours
significantly influence the results for the vast majority of active-contour methods. When the user
places the initial contours manually, he is able to provide the segmentation method with useful
information. However, initialization should be automatic for autonomous computer vision. The
best of both approaches is often combined in so-called semi-automatic initializations, as will be
shown in Section 3.4.

Fourth, the contour motion caused by the computed forces must be implemented. The implemen-
tation algorithm is determined by the curve’s representation, which can be parametric or implicit.
Parametric (explicit) models represent the contour as a chain of particles (points). The contour is
obtained by interpolating points between particles. In implicit models (or level-set methods), the
contour is the intersection of a 3D surface with a 2D horizontal plane. The implementation itself
may rely on numeric techniques or may be entirely algorithmic. Implementation algorithms are
discussed at larger extent in Section 3.5.

The design of an active-contours method follows these four steps, which are illustrated in Fig.
3.2. This figure plays the role of a road-map for the seminal and state-of-the-art material pre-
sented in this chapter. The large amount of research reviewed here has been directed at tackling
problems in the framework of active contours. Well-know problems include the fact that assump-
tions about the image do not always hold. For instance, the color gradient magnitudes for some
of the edges in the grass and in the dog are stronger than those of edges between grass and dog
in the image at the top of Fig.3.1. Also, the color of the fur largely varies, and pixels in the dog
region are not similar to each other.
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3. Active Contours: Overview and State-of-the-art

Figure 3.1.: Generation of energy terms from visual properties of the image. Initial image and
illustration of features (top).The initial image (top) also shows the initial contour
(solid circle) and some of the forces acting upon it (dotted lines). Concise flow for
edge-based ACs (bellow left) and concise flow for region-based ACs (below right).
The contours stay smooth during their evolution.

3.1. Active Contours Formulations

This section introduces the mathematical formulation and notation for edge-based, region-based
and hybrid active contours. The generation of energy terms from image properties, succinctly
illustrated in Fig.3.1, are described here in more detail. The presentation is slightly historical,
and it starts with the first proposed active contours. This manner of presentation requires a few
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3.1. Active Contours Formulations

Figure 3.2.: Overview of the active contours framework. Active contours have an energy that
depends on image properties of mostly two types: edges and region features. They
move toward object boundary while staying smooth.

forward references.
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3. Active Contours: Overview and State-of-the-art

3.1.1. Edge-Based Active Contours

Active-contour methods have been studied intensely since they have been first proposed. Edge-
based active contours were first proposed by Kass et al. (1988), and they were called snakes.
Their energy depends on edge strength and includes a term to reinforce the smoothness con-
straint. This type of constraint reinforcement is also known as regularization, and the term added
to the energy for this purpose is known as regularization term. Let the contour be a curve C
parametrized by p. The energy of a snake is written as the sum of internal and external energies

E(C(p)) = α

∫ 1

0

∣∣C′(p)
∣∣2 d p+β

∫ 1

0
|C′′(p)|2d p︸ ︷︷ ︸

Internal energy

−λ

∫ 1

0
|∇I(C(p))|d p︸ ︷︷ ︸

External energy

(3.1)

I denotes the image to be segmented, and the gradient of the image ∇I measures edge strength.
C′ and C′′ are the first and second derivatives of C and they are involved in the definition of the
internal energy, which is the snake regularization term.

The nomenclature for the first and second internal energy terms are

Figure 3.3.: A snake
(Kass
et al.,
1988).

smoothness term and stiffness term, respectively. The external energy
is often called image data term, or simply data term. The parameters
α , β and λ control the contribution of each energy term to the total en-
ergy, and thus they influence on the behavior of the active contour. Edge
strength may be measured with any edge filter, not just by computing
image gradients.

Snakes are very intuitive, easy to implement, and they are an excellent
tool for interactive segmentation. They may also close gaps, as illus-
trated in Fig.3.3. However, the initial snake must be placed in the vicin-
ity of the object to be segmented because its range of capture is small,
which means that they converge to the closest edges, and these are not
necessarily object boundaries. Solutions proposed to alleviate this prob-
lem, e.g. (Cohen, 1991; Xu and Prince, 1997, 1998) will be discussed further in section 3.4.

A snake is generally represented as a chain of particles. To implement snake motion, particles
are moved under the action of forces computed from the energy; more details are given in Sec-
tion 3.5. This makes it a daunting task to prevent a contour from self-intersecting or to deal with
situations when contours merge or split. The level-set method (Osher and Sethian, 1988), de-
scribed later in this chapter, represents curves implicitly and, as a result, does not suffer from any
of these problems. It thus incited the idea of snake-like curves represented implicitly (Caselles
et al., 1993; Kichenassamy et al., 1995; Malladi et al., 1995). These curves are known as geodesic
active contours (Caselles et al., 1997), and they differ from snakes in two points: 1) the stiffness
term is omitted, and 2) the data term is constructed via a non-linear function g : [0,+ inf]→ R+

which has the property that g(x)→ 0 as x→ inf, giving the energy more flexibility. The geodesic
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3.1. Active Contours Formulations

active contour is formulated as

E(C(p)) = α

∫ 1

0

∣∣C′(p)
∣∣2 d p+λ

∫ 1

0
g(|∇I(C(p))|)2d p (3.2)

=
∫ 1

0
g(|∇I(C(p))|)C′(p)d p =

∫ L

0
g(|∇I(C(s))|)ds. (3.3)

L denotes the length of the contour, and C(s) is the arc-length parametrization of C(p).1 Let us
denote the curvature of C with k, and its unit inward normal with ~n. The curve flow is derived
from the energy (3.3) by gradient descent and yields the following partial differential equation
(pde) (Caselles et al., 1997)

∂C
∂ t

= g(I)k~n− (∇g~n)~n. (3.4)

Edge-based active contours are affected by problems of edge detectors. For example, the edge-
filter response is weak where the human eye perceives a strong edge, and conversely, weak
responses may occur where the human eye perceives a strong edge. Remember for example
Fig.1.4 in the introduction. Consequently, classical edge-based contours leak in the first situation
and stop before reaching the correct boundaries in the second.

Currently, two classes of solutions exist to make active contours more robust and overcome
problems caused by edge detectors. One class consists of region-based active contours, the other
consists of contours that combine region and edge information.

3.1.2. Region-Based Active Contours

The appearance of many objects in the world can be described by their color or texture, while
their shapes are mostly composed of smooth surfaces rather than of randomly connected points.
An image of an arrangement of such objects is often the union of homogeneous regions delin-
eated by smooth boundaries. Visual characteristics change from object to object, rather then
within a single object, while the largest differences are often perceived at boundaries. Mum-
ford and Shah (1985) have formulated these assumptions mathematically, modeling images as
functions on a grid domain. Consider an image I approximated by a piecewise smooth function
u(x) = u(x,y) defined on the domain R ⊂ R2 and discontinuous at the set of boundary points
C parametrized by the arc length s. Let us denote the absolute value with | · | and with ∇u the
gradient of function u. The best-approximating piecewise smooth function is determined by
minimizing the energy functional

EMF(u,C) =
∫

R
|u− I|2dx+ µ

∫
R−C
|∇u|2dx+ν

∫
C

ds. (3.5)

1By the chain rule for derivation, we have C′(p)d p = C(s).
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3. Active Contours: Overview and State-of-the-art

The parameters µ and ν weigh the contributions of smoothness of the approximating function
and the smoothness of curve, respectively. The smoothness of the approximating function is
known as total variation norm in a similar and also very well known variational image model,
the ROF nonlinear total variation model (Rudin et al., 1992). This model is mainly employed
in image denoising, but it also has applications in image segmentation. The form of the energy
functional is similar the one in the Mumford Shah model, but does not depend on position of the
contour

EROF(u) =
∫

R
|∇u|dx︸ ︷︷ ︸
TV (u)

+λ

∫
R
|u− I|2dx, (3.6)

which explains that its main application is to image denoising. However, we mention it due to its
importance and its resemblance to the Mumford Shah model. TV (u) is the total variation norm
of the function u. The least squares approximations |u− I|2 is sometimes replaced with the L1
norm |u− I|. A problem in these frameworks is that, although it is possible to model textured
regions, this is, in general, a very tedious task (Liu et al., 2002). Also, minimizing the energy
functional is not trivial, involving a Poisson-type equation (Tsai et al., 2001).

For textured images, the description is simpler and more compact when the image is modeled
statistically. However, statistical modeling is just as suitable for color-based segmentation. In
both situations, it is important to capture the information that best distinguishes between different
objects. Region information can be gained from the object’s color or intensity, or from any
number adequate features obtained with any number of arbitrary image filters. In general, the
variation of features is formalized and measured using one of the probability density estimators
presented in Chapter 2. A recent review of statical methods can be found in (Cremers et al.,
2007).

The mathematical framework for active contours segmentation of statistically modeled images
was proposed, for example, in the seminal work by Zhu and Yuille (1996), which we shortly
describe. Pixel features are assumed to be identically, independently distributed in each image
region Ri. The total number of regions in the image is N. The feature vector f(x) at a pixel
x = (x,y) is the realization of a random vector with pdf p({f(x) : x ∈ Ri}|θi). The pdf for each
region, shortly denoted pi, depends on the unknown parameters θi. The energy functional for the
N region-based contours is

E(Ri,θi,N) =
N

∑
i=1


(

µ

2

∫
C

ds
)

︸ ︷︷ ︸
Smoothness term

−
∫ ∫

Ri

log pidx︸ ︷︷ ︸
Data term

+β

. (3.7)

Parameter β penalizes a large number of regions to prevent over-segmentation, while parameter
λ controls the influence of the smoothness term. The number of regions N is decreased by
merging two adjacent regions, so that the merging causes the largest decrease in energy. The
process is stopped when no merge can further decrease the energy. The energy is minimized by
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3.1. Active Contours Formulations

evolving initial contours. The contour that separates regions Ri and R j is denoted Ci, j. Its motion
is derived using Green’s theorem and the Euler-Lagrange equations, as in (Zhu and Yuille, 1996),
while considering the parameters θi constant. At every contour point, the contour moves in the
direction of its outward normal, denoted as ~ni, under the action of a force Fk =−µki~ni, where ki
denotes the curvature. We may say that the contour moves at a speed that is directly proportional
to the curvature. The speed also depends on the values of the pdfs of regions Ri and R j at that
point

∂Ci, j

∂ t
= −µki~ni︸ ︷︷ ︸

Smoothness f orce

+
(
log pi− log p j

)
~ni︸ ︷︷ ︸

Statistics f orces

, (3.8)

The term Fi = log pi~ni represents the statistics force exerted on the con-

Figure 3.4.: Force
illustration.

tour by region Ri. The force points in the direction of the contour’s nor-
mal, and its magnitude depends on the confidence that the pixel should
be assigned to region Ri. The total of statistics forces thus assigns the
pixel to the region where the value of pdf is highest. In other words,
one can say that regions compete over each contour point. For this rea-
son, the statistic forces generated by the two regions are often called
competition forces. Analogously, when the two regions that most de-
crease the total energy (3.7) are merged, this action is considered to be
accomplished by merging forces. The contour flow by equation (3.8) is
illustrated in Fig.3.4. Shown are a contour Ci, j between regions Ri and
R j, and the statistics forces corresponding to the regions. Smoothing forces Fk at points of high
and low curvatures are also shown. All forces act in the direction of the contour’s normal.

Force computation involves the unknown parameters θi. In order to determine them, some as-
sumptions about the image need to be made. The assumptions about the image are reflected
in the model chosen to estimate probability densities and the observations selected to estimate
their parameters. The most common assumption about the image is that features are normally
distributed in each image region (Paragios and Deriche, 2002a; Rousson and Deriche, 2002;
Chan and Vese, 2001; Jehan-Besson and Barlaud, 2003). Other parametric distribution may be
assumed, especially when - otherwise not too complex - images are very noisy and the type of
noise is known. For instance, a Gaussian Markov random field model was employed to segment
an image in (Chakraborty et al., 1996), while (Chesnaud et al., 1999) experiment with probability
densities of the exponential family.

Arbitrary densities of real world objects often cannot be approximated with parametric density
models. In these situations nonparametric density estimation methods may be more suited, as
discussed in Chapter 2. Widely used non-parametric methods are smoothed histograms and
Parzen density estimation (Brox and Weickert, 2004a; Rousson et al., 2003; Kim et al., 2005;
Herbulot et al., 2004). When nonparametric estimators are employed, the statistics force is not
always generated as the logarithm-of-probability, like in Eqn.(3.8). Instead, it relies on similarity
measures between pdfs. Similarity is quantified by computing a divergence measure between the
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3. Active Contours: Overview and State-of-the-art

(a) (b)

Figure 3.5.: Acquiring global and local information. (a) Image regions for acquiring global
region information. (b) Rectangular image parts for acquiring local region
information.

histograms of regions, like the Kullback-Leibler divergence or the Battacharya distance (Freed-
man and Zhang, 2004), or the Wasserstein distance (Chan et al., 2007). The statistics force that
merges two regions is largest between the two regions that are most similar.

Independent of the type of model employed for pdf estimation, the pdf over a set of chosen feature
describes the region. The ensemble of chosen features and their estimated pdf is sometimes called
a region descriptor. Region descriptor will be specified more accurately in Chapter 4, but for now
this definition suffices.

3.1.3. Local and Global Region Information in Contour Evolution.

We distinguish between two types of region descriptors, depending on the size of the of the
image part modeled by the pdf. Most often, the pdf associated with an image region summarize
the variation of features within the entire region, because it is computed from all observations
in the region (Chan and Vese, 2001; Cohen et al., 1993). This is illustrated in Fig.3.5(a). The
information contained in the pdf is global in nature and omits the spatial relations between pixels.
For example, the sky immediately after sunset is globally described as blue. However, looking at
it in more detail, one observes that it is dark blue above one’s head and light blue where the sun
just set. If details are to be described accurately with pdfs, statistics have to be computed over
image parts smaller than the entire region, in order to capture local information. A possible type
of local image patches is shown in Fig.3.5(b). Methods based on local information are much less
encountered than the ones based on global information. We review the main methods that use
local information in the following.

The region-competition method proposed by Zhu and Yuille (1996) relies in principle on the
global information contained in the pdfs p({f(x) : x ∈ Ri}|θi). However, they have noticed that
local information can increase the confidence about a pixel’s true region if the joint distribution
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3.1. Active Contours Formulations

of pixels in a local window W (x) centered on pixel x is considered, instead of the pdf at pixel x.
This means that in the energy equation 3.7, the logarithm of the pdf pi is replaced with the joint
pdf of the w pixels in window W (x), i.e. 1

w
∫∫

W (x) log pidx.

The feature vector f(x) ∈ Rd is assumed to have a multivariate normal distribution within region
Ri. The density has a global mean denoted as µi, a covariance matrix denoted as Σi, a local mean
denoted as f̄, and a local variance denoted as S. Means and variances are given by the formulas

µi =
1
n ∑

x∈Ri

f(x), (3.9)

Σi =
1
n ∑

x∈Ri

(f(x)−µi)(f(x)−µi)
T . (3.10)

The joint probability of pixels in window W is written in terms of these multidimensional param-
eters as (Zhu and Yuille, 1996)

w

∏
j=1

pi(x j) =
1

(2π)w/2 ‖Σi‖w/2 exp

{
−1

2

w

∑
j=1

(
f(x j)−µi

)
Σ
−1
i
(
f(x j)−µi

)T

}

=
1

(2π)w/2 ‖Σi‖w/2 exp
{w

2
(
f̄−µi

)
Σ
−1
i
(
f̄−µi

)T + tr(Σ−1
i S)

}
. (3.11)

With this arsenal, the statistics force generated by region Ri in Eqn. (3.8) is deduced (Zhu and
Yuille, 1996)

fi =−1
2

(
log(2π)+ log‖Σi‖+

(
f̄−µi

)
Σ
−1
i
(
f̄−µi

)T + tr(Σ−1
i S)

)
. (3.12)

Theoretically, the feature vector f may have any number of components. We have already dis-
cussed that, in practice, this is rarely feasible, and indeed, in their paper, Zhu and Yuille (1996)
have successfully experimented with two dimensional features for color and texture.

A modification of the region-competition method, one which loosens the Gaussian assump-
tion, is proposed in (Kadir and Brady., 2003). To this end, the global pdfs are estimated non-
parametrically, but local regions are still modeled with normal distributions. Unlike the region-
competition method, the local information is employed not only in computing competing forces,
but also in computing merging forces.

The anticipating snake introduced in Ronfard (1994) is another pioneering work that involves
local information. The particularity of this work is that information for generating statistics
forces is mainly local. Also unusual, the method employs a parametric curve representation
to evolve a region-based active contour. The curve partitions the image into an inside- and an
outside-region. The principle is to start with a possible deformation of the contour that leads to
a region deformation δR, in either the inward or the outward direction, in order to generate a
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Figure 3.6.: Deformation hypothesis for contour evolution. (Source:(Ronfard, 1994))

region force. In the particular implementation provided by Ronfard, the contour deformation δR
is divided into sections. For this purpose, the parceling in Fig.3.6 is created. The local regions are
image strips aligned with the normal to the contour, and the deformation δR is also a rectangular
window aligned with the normal.

The region force generated by the region variation δR is computed using the Ward distance.
To compute the Ward distance, one must first compute the sum of squared errors between the
original image intensity, I(x,y), and a statistical model of the region, Imodel(x,y), over all pixels
in a given region R, W (R) =

∫
R (I(x,y)− Imodel(x,y))2dxdy. The Ward distance between two

region R1 and R2 represents the amount of energy needed to merge the two regions, and it is
defined as D(R1,R2) = W (R1 ∪R2)−W (R1)−W (R2). The region force equals the difference
between two Ward distances D(Rin,δR)−D(Rout ,δR). Intuitively, the force tells us if δR should
be merged with R1 or with R2.

Active contours based on local information only, have recently been given more attention (Pio-
vano et al., 2007; Lankton et al., 2007; Li et al., 2007; Mansouri and Mitiche, 2002). A more
detailed discussion follows in section 4.1 and 4.2. Here we point out the important results from
(Brox and Cremers, 2007). If only local information is considered, and it is modeled with a
normal distribution with fixed variance, the Mumford-Shah functional (3.5) is equivalent to the
statistic functional (3.7). A piece ui of the smooth approximating function u is then equal to the
mean of the normal pdf pi.

3.1.4. Contours Based on Combined Edge and Region Information

Intensity information gained from regions can be combined with edge information to create ac-
tive contours that impose less constraints on the segmented image. The question is how to con-
struct the associated energy functional. A straight forward solution is to sum a weighted edge-
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term with a weighted region-term (Cohen et al., 1993; Paragios and Deriche, 1999b, 2002b;
Ecabert and Thiran, 2002; Besson et al., 2000). A functional obtained as a boundary integral
over local region integrals was proposed in (Lankton et al., 2007). The resulting curve flow
has two components: a weighted curve shortening flow similar to the first term of the geodesic
active contour (3.4), and a region flow similar to the region-competition term in (3.8). The differ-
ence is that the partial differential equation for updating the curve C depends on two arc-length
parameters: the first traverses the curve, the second localizes the region information.

Other solutions for constructing energy functionals are nonlinear. The region term, written as a
region integral, is divided by the boundary term, written as a boundary integral in (Jermyn and
Ishikawa, 1999). The weighting parameters present in linear energies disappear from the energy
proposed in that method, and the length of the curve is optimized in relation to its area, with
the potential for producing smoother curves. Intuitively, this can be understood by remembering
the circle, which has maximal area reported to its boundary length. As a distinctive feature, the
authors suggest that the method can find the global optimum for an image.

Bresson et al. (2007) also propose a solution to finding the global optimum for a contour energy
by combining region and edge information. The idea of the method is to minimize the length of a
geodesic active contour while approximating the image with a piecewise constant function (using
the L1 norm in the ROF model). The paper is particularly interesting because it proposes a fast
alternative to the standard minimization based on partial differential equations, which does not
require setting the position of the initial contour. The so called dual formulation represents the
function u as the sum of two artificial matrices. One captures the constant or region component
of u, while the other capture the noise or texture component of u. Instead of iteratively updating
u according to a pde, in each iteration, each matrix is computed while considering the other one
constant. This means that the geometry (the regions) of the image are approximated considering
the amount of noise known. The amount of noise is then determined considering the geometry
known. The exact numerical scheme for the iterative process is given in (Bresson et al., 2007).

3.2. The Derivation of Motion Forces

For the majority of level-set methods for image processing, the flow equation is derived by gra-
dient descent. The gradient of the energy is determined by the Euler-Lagrange equations. For
this purpose, probability densities may be considered constant or variable. When probability
densities are involved, the derivation may thus occur in one of the following manners.

One can take an expectation maximization approach (Dempster et al., 1977), in which the regions
Ri, and thus probability densities pi, are considered to be constant in time when writing deriva-
tives. Once the level-set function has been updated, new probability densities pi are computed
considering the contour to be fixed Zhu and Yuille (1996); Chan and Vese (2001); Samson et al.
(2000). This type of derivation has been employed to obtain flows (3.8) and (3.18) from energies
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(3.7) and (3.17).

Alternatively, one can take into consideration that pdfs of region descriptors do in fact depend
on the regions Ri. The flow can then be derived using shape-derivation tools as shown in (Aubert
et al., 2003; Jehan-Besson and Barlaud, 2003). The resulting flow has additional terms when
compared to the flow obtained in an expectation maximization manner. The additional terms
may improve the segmentation, and, at the same time, they increase the complexity of the im-
plementation and its computational cost. Shape derivatives are most often used in combination
with the level set framework, which is also described latter in this chapter. Rousson and Deriche
(2002) have shown that these terms reduce to zero if pdfs are considered to be Gaussian and that
they are negligible when pdfs are assumed to be Laplacian (Heiler and Schnoerr, 2003). In this
thesis, we opt for the expectation maximization manner of deriving the flow, because accurate
segmentation results can be obtained without the additional terms, and the evolution is faster.

3.3. Features for Describing Objects

The overwhelming majority of references discussed up to this point propose active contours
based on pixel intensity or color. However, in order to deal with complex images, additional
information is typically needed.

The image segmentation task is a very difficult one, partly because the raw image data is very
difficult to interpret. Raw image data consisting of intensity or color information often does
not provide sufficient information to achieve correct segmentation. Human vision excells in
integrating multiple cues in order to solve this difficult problem. Inspired by biological vision
systems, researchers have worked on integrating into machine vision systems cues or features,
like shape, texture and motion. The active-contours framework is well suited for integrating
multiple sources of information into the contour’s evolution.

3.3.1. Integrating Texture, Motion, and Other Features

Texture and motion are very important visual cues that help biological systems identify objects
in the world (Regan, 2000). “Texture is a phenomenon that is widespread, easy to recognize and
hard to define” (Forsyth and Ponce, 2003), which is why a standard definition of texture does
not exist. We explore the concept of texture as a regularity and a constancy of the appearance of
a surface that does not have a block-color. Quantifying texture for computational purposes has
been a constant topic of research in computer vision, because texture is constant in an organic
sense, not a mathematical one. For the overwhelming majority of contours, texture is considered
a random vector (Zhu and Yuille, 1996; Sandberg et al., 2002; Popat and Picard, 1997; Varma
and Zisserman, 2008; Wolf et al., 2006), and it is integrated into the energy as a statistical data
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term (by means of the pdf), like in equation (3.7).

There are mainly three types of texture-quantifying methods, and they can all be found in the
active contours segmentation framework. A texture feature vector may originate in filtering the
image with a filter bank (Paragios and Deriche, 1999a, 2002a), or it may be a small linearized
image patch (Awate et al., 2006). Alternatively, a structure tensor is defined from the image
gradients. The structure tensor usually undergoes a nonlinear diffusion process to smooth im-
age noise without smoothing edges before it functions as texture quantifier (Brox and Weickert,
2004b; Brox et al., 2003a; Rousson et al., 2003).

Biological vision systems perceive continuous motion. The brain assumes that objects change
minimally from frame to frame, both in their positions and their appearance. Researchers make
the same assumption when they design methods for determining the apparent motion of objects,
known as optical flow. Some optical flow algorithms aim at determining the motion of individual
points between frames. Corresponding points can be found by starting with the result from the
previous frame, and searching for edges along the normals to the contour in the current frame
(Isard and Blake, 1998b,a); due to problems that accompany edge detection, the shape of the
tracked object needs to be constrained. Ideas for estimating the motion vector field have been
introduced in a few seminal papers (Lucas and Kanade, 1981; Horn and Schunck, 1981). In the
framework of active contours, the motion vector field can be employed to set the initial position
of the contour in a frame, knowing its position in the previous frame (Ha et al., 2004). Also,
motion vectors can be modeled statistically, like any other pixel feature. For example, vector
components have been integrated with texture and color to obtain robust tracking methods that
have been applied to traffic scenes (Brox et al., 2003a; Clark and Thomas, 2001).

There are mainly two different ways to apply statistics for determining motion in active contours.
The first relies on modeling the background and the foreground of the scene. For example, if it is
possible to learn a model of the background image, this image is subtracted from every frame in
order to determine the foreground. The outcome is most often not the desired one because it does
not contain only foreground pixels. One can then try to learn a pdf for static pixels and one for
dynamic ones, and subsequently use these pdfs in an active contour (Paragios and Deriche, 2000;
Yilmaz et al., 2004; Besson et al., 2000; Mansouri, 2002). The second is to find those regions in
two frames that are delimited by active contours, and that have most similar statistics. In (Chang
et al., 2005a) similarity was evaluated with the mean-shift procedure, while in (Freedman and
Zhang, 2004) the Kullback-Leibler divergence was proposed for this purpose.

An alternative class of optical flow methods aims at estimating the motion of an object as a
whole, while making assumptions about the law of motion followed by the object. Parameters
of the law of motion are usually determined by minimizing the least-squares-error between the
image predicted by the model and the observed image using an active-contours flow (Paragios
and Deriche, 2005; Dorettoy et al., 2003). The optimization problem is increasingly difficult, as
motion models have to grow more complex and the number of parameters grows, similar to the
optimization problems posed by integrating shape information. Thus, the simplest type of model
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that can be integrated into active contours is rigid or affine motion (Paragios and Deriche, 2005).
A more complex Gaussian Markov Random Process model for the arrangement of pixels in time
and space was employed for tracking textured objects, like smoke or fire on water (Dorettoy
et al., 2003).

Optical flow, and other types of information may be abstracted as vector or tensor fields, which in
turn can be viewed as vector valued images to be segmented. Often, the goal of the segmentation
is to delineate regions of vectors that point mainly in the same direction. Possible applications are
object segmentation from motion information only (Roy et al., 2006, 2003), or the segmentation
of brain structures in diffusion tensor images (Wang and Vemuri, 2004).

Some authors have proposed to generate forces from image data by a physical-process model
(Jalba et al., 2004). For instance, Xiang et al. (2005) use long range elastic interactions between
image edges to let contours detect thin, weak blurred structures like blood vessels. Edge points
and the evolving contour can be seen as electrostatic particles that generate interaction vector
fields between the two entities; as the contour evolves, the interaction vector field is updated
with the goal of robustifying the evolution (Yang et al., 2006).

In (Xie and Mirmehdi, 2006, 2008), the authors hypothesize the existence of magnetic forces
between the active contour and object boundaries detected with edge filters. Due to the magnetic
field, edges can interact across the image, providing global information in the segmentation
process. These types of contours can easily close small gaps caused by weak edges, but they are
still negatively affected by the problems of edge detectors.

3.3.2. Integrating Shape Priors

The shape of an object is a very important clue that helps detecting it in a visual scene. Shape
reflects prior knowledge about the world. Depending on the amount of knowledge about the
object, one can distinguish between geometric priors and specific priors. Geometric priors, also
known as generic priors, mathematically formalize the general properties of shape. Specific
priors mathematically formalize the shape of a particular object.

Generic (geometric) priors. All active contours include a smoothness constraint that prevents
the curve from forming sharp corners, as pointed out, for example, for the region competition
model in Section 3.1.2. The constraint

∫
C ds reveals that the curve is required to have minimal

length. If data terms are ignored, the fastest curve flow that minimizes the length of the curve is
in the direction of the curve’s normal at a speed proportional to the curve’s curvature. This flow
will drive any contour into the shape of a circle which shrinks until it disappears. A mathematical
derivation of this flow in terms of level sets can be found in Appendix A.

Another common generic prior is a maximal-area constraint. This constraint takes the form∫
Ri

dx, and if forces the region enclosed by the contour Ci to occupy the maximum possible
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space. This constraint adds a balloon force to the other forces that determine curve flow and
helps drive the contour out of local minima (Cohen, 1991; Chan and Vese, 2001).

Recently, higher order active contours have been introduced in (Rochery

Normal vectors

et al., 2006). The shapes of these contours are constrained by generic priors
that model long-range interactions between contour points. The concept is
exemplified for the segmentation of thin structures. For thin structures, in
a small neighborhood, points have either (relatively) parallel or antiparallel
normal vectors, as illustrated in the figure.

Interactions between every two points on the curve are expressed using tan-
gent vectors~t, which are perpendicular to the normal vectors. Mathematically, the geometric
prior energy-term Eg associated with the contour is a double integral of quadratic form

Eg(C) = α

∫
C

ds︸ ︷︷ ︸
Length

−β

∫
R

dx︸ ︷︷ ︸
Area

−γ

∫
C

∫
C
~t ·~t′Ψ(||s− s′||)ds ds′. (3.13)

As previously, s is the arclength parametrization, and || · || represents is the Euclidean distance.
Function Ψ is a real valued function chosen such that Ψ(x)→ 0 as x→∞, due to the fact that local
interactions should be emphasized over global ones. Otherwise, the geometric prior depends on
the scale (size) of the image, which is an undesired property. One can note that the linear length
and area terms can be added to the quadratic term to enforce all three constraints.

The data term in the energy of a higher order active contour is modified to reflect interactions
between points, in a manner analogous to the geometric prior term. For instance, a data term that
depends on the gradient of the image, |∇I|, is written as

Ed(C) =
∫

C
~n ·∇I ds−

∫
C

∫
C
~t ·~t′(∇I ·∇I′)Ψ(||s− s′||)ds ds′. (3.14)

The first term encourages the normal to be opposed to the image gradient, while the second
allows the data and the contour to interact nonlinearly. Applications of these complex generic
priors include the segmentation of elongated thin structures like roads in aerial maps (Rochery
et al., 2003) and blood vessels (Nain et al., 2003), or circular structures like tree crowns (Horvath,
2007).

Finally, the active contour may be forced to encourage shapes that are similar to an initial con-
tour’s shape by minimizing the distance between the two shapes. This method is applicable to
tracking objects that minimally change shape from frame to frame (Gastaud et al., 2004). For
this purpose, a distance measure between shapes needs to be defined taking into account the
way shapes are represented. The method is very adequate for shapes represented as distance
transforms, as is the case when curves are represented implicitly in a level-set implementation.
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(a) (b)

Figure 3.7.: Active shape models ingredients: (a) learning examples, (b) mean shape with over-
laid example landmarks. (Source: (Cootes et al., 1995))

Specific priors. An intuitive way to learn the shape of an object is from examples. The active
shape model is a framework that is widely used for learning specific priors (Cootes and Taylor,
1992; Cootes et al., 1995). In essence, the method computes an average shape and the degree in
which examples differ from this average from a set of aligned examples. The same principle can
be applied to learn the appearance of an object (Cootes and Taylor, 1992). Fig.3.7 (a) shows a
set of aligned example-shapes for resistors. The fact that the shapes are aligned means that they
have approximately the same orientation and size. To learn an average shape, we need to pick the
same number of landmarks (special points) from each example shape and index it. Landmarks
with the same index constitute a set of corresponding landmarks. The average shape, exemplified
in Fig. 3.7(b), is obtained by computing the average position of each landmark. The degree to
which the average shape varies is illustrated by the scatter of example landmarks overlaid on the
average shape. The variation is quantified by computing the covariance matrix between the sets
of corresponding landmarks.

Specific priors are typically discussed taking into account the contour representation, because
the latter guides the selection of landmarks. Parametric models have a very large computational
advantage over level sets when integrating shape priors, because the representation is much more
compact, since parametric models are in fact a chain of particles. In comparison, level sets offer
a dense representation in the form of distance transforms of the contour. In consequence, a
large number of landmarks points must be selected in order to capture the information necessary
for learning a good shape model. The landmarks must be uniformly scattered over the region
represented by the distance transform.

Landmarks can be used for parametric representations. They are thus suited for real time tracking
of objects with relatively constant shape (Cremers et al., 2002). For the same reason, shape
alignment can be achieved much faster with explicit than with implicit representations. For an
excellent treatment of parametric representations see (Blake and Isard, 1998; Isard and Blake,
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1998a,b).

The implicit representation allows a straight forward computation of the mean shape. Covariance
matrices can be seldom computed because the number of landmarks involved is so large. As a
result, a mean shape plays the role of a template shape to which a segmented shape is compared
using a distance measure. The larger the distance, the less the found shape looks like the template
shape and the energy term associate with the shape prior is larger. Computed distances are
informative only if the two shapes are aligned. To align shapes, one must have a model of the
geometric transformation that connects them. The transformation’s parameters are determined
by minimizing the distance between the two shapes. However this minimization problem is not
symmetric, meaning that the mapping that transforms shape A in shape B, is, in general, different
from the mapping that transforms shape B in shape A. Additionally, the problem may have many
local minima and it involves nonlinear optimization, which is particularly difficult. For these
reasons, the selected transformation model is often rigid (Rousson and Paragios, 2002; Chen
et al., 2002; Rousson and Paragios, 2008).

Alignment is important, for instance, in object recognition and image understanding. In many
applications, manually positioning the template over the object to be segmented seems advan-
tageous, since accurate segmentation has the highest importance. A trade-off between dense
representation and ease of manipulation must be analyzed at times. For example, in medical
applications, organ shapes may benefit from the dense distance transform representation, but it
is unclear which transformation best models the variation of the shapes of different individuals’
organs. The integration of shape priors into level-set methods is thus an actively studied topic,
and we present here some state-of-the-art methods.

Pohl et al. (2006) proposed the concept of Logarithm of Odds (LogOdds) for shape representa-
tion, with application to the segmentation of brain structures. The method starts by computing
probability maps from distance transform examples. These probabilities are used to construct a
log odd maps. Unlike the mean shape, which is a linear combination of learning examples, the
log odds map is nonlinear in nature, due to the nature of the distance transform and the fact that
the probability maps can be estimated nonparametrically. The log odd maps have the advantage
that they exist in a vector space, which means that the maps can be added and multiplied. The
construction of a distance measure between template and segmented shape is eased considerably.
Overall, prior shape knowledge can be captured more accurately. To achieve segmentation with a
level-set algorithm, the level set itself is a log-odds map, and the smoothness term is also defined
in a probabilistic manner (Pohl et al., 2007). The resulting method is very powerful and has been
applied to the segmentation of brain structures. However, the appearance of objects should be
such that it can be modeled well with a normal distribution.

Shape models have a good potential to grow more and more complex. For example, prior shape
may be combined with motion information for tracking deformable objects in video sequences.
These problems become interesting when the objects are deformed nonlinearly. Examples that
are often researched are the deformation of hearts in ultrasound images and deformations of sil-
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Figure 3.8.: Automatic initializations - first, third, fourth and fifth images - and initializations
obtained from user interaction - second and sixth images. (Top image source: (Para-
gios, 2000); bottom image source: (Brox et al., 2003b))

houettes of walking people. Cremers and Rousson (2007) thus propose to approximate the com-
plex statistics of a set of moving heart shapes or moving silhouettes employing Parzen-windows
density estimation. In a further development, the resulting shape priors are integrated into a
motion model of Markovian type (Cremers, 2008), where the probability of the current shape is
conditioned on the shape observed at a previous time. This means that the parameters of transi-
tion probabilities between shapes must be estimated. The model ends up with and optimization
problem over a very large number of parameters from a vast amount of data. Such problems are
well known for being extremely difficult to solve, or very sensitive to initial conditions.

3.4. Active Contours Initialization

The active-contours segmentation process starts with an initial contour obtained automatically
or with the help of user interaction. Automatic initialization is pursued in the larger frame of
artificial vision research, a field with myriad of engineering problems in need of a solution. For
many computer vision applications, it is absolutely unproblematic to require the user for minimal
interaction. Through interaction, the user provides valuable information for the segmentation
process. In many cases, segmentation fails when this information lacks. On the other hand,
even when the user draws a circle or a square, as shown in Fig. 3.8, segmentations depend on
the initial contour’s position. Initialization is thus a very important issue in the active contour
framework. All other properties of the active contour method being constant, the segmentation
of an image may succeed starting with one initialization, while failing for another.

Initialization sensitivity is a problem especially for edge-based active contours. A corresponding
amount of research has dealt with finding remedies for this problem. Each method solves some
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problem which might occur in reality. However, the real world has a plethora of ways for not
being conform to researchers’ assumptions.

The range of capture of original snakes was enlarged placing the contour in a vector field obtained
from the contour’s distance transform in (Cohen and Cohen, 1993). A constant balloon force
meant to shrink or grow the contour was proposed in (Cohen, 1991). The edges of an object
generally have different strengths, and a constant balloon force may lead to missing some of
them.

The range of capture is significantly enlarged by diffusing the edge map of an image (Xu and
Prince, 1997, 1998). A vector field, known as gradient vector flow, is obtained in which vectors
point toward the nearest boundary. As a result, snakes driven by this gradient vector flow can be
initially positioned such that they cross the boundary. However, when the contour is tangent to
the force vector, the gradient vector flow cannot converge to the correct solution. An attempt to
alleviate this problem involves adding a balloon force to the gradient vector flow (Paragios et al.,
2004).

In (Li et al., 2005a), an edge-preserving gradient vector flow is first segmented with a graph
partitioning algorithm, yielding regions of interest around objects. The boundaries of these re-
gions constitute initial snakes made to shrink toward objects. This method fails when snakes are
initialized within or across object boundaries.

The initialization problem is not as severe with region-based active contours, since this type
of contours relies on global image characteristics. Automatic initialization is encountered much
more often for this type of contours (Brox and Weickert, 2004a; Paragios and Deriche, 2002a). In
order not to favor a local minimum over another, the requirement is that initial patches are evenly
distributed across the image, as shown in some of the examples in Fig. 3.8. Even so, one can
never guarantee that the correct segmentation will be reached from automatic initialization. The
segmentation result can only be determined by experimenting, and, probably, tuning parameters.

3.5. Methods for Flow Implementation

The speed and quality of segmentation with active contours largely depend on the implementation
of the theoretically derived flow. Implementations may rely on graph algorithms, or, more often,
curves are represented parametrically, or as level sets. The first two alternatives are shortly
discussed, before level-set methods are presented.

An image can be transformed into a graph, where pixels are nodes, and differences between
pixels, e.g. image gradients, are edges (Jermyn and Ishikawa, 1999). For instance, the weight of
an edge can be set inverse proportional to the gradient magnitude. Well-studied graph algorithms
can then be used to find the shortest way between a starting and an ending point. Both points
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can be interactively selected, as is the case with intelligent scissors (also known as livewire)
(Mortensen and Barrett, 1995), a tool that requires intensive interaction, but offers very good
results.

A large class of algorithms model images as connected graphs and use graph-theoretic algo-
rithms to solve the segmentation problem, as described, for example, in the seminal paper (Shi
and Malik, 2000). Boykov et al. (2001) extend graph-methods to address the minimization of a
large class of energies containing smoothness constraints with graph-cuts algorithms; the algo-
rithms find approximate solutions very fast. These graph-cut algorithms are employed for active
contours energy minimization in (Ning Xu and Ahuja, 2003; Kim and Hong, 2007). In the first
reference, the active contour is dilated to obtain an outer and an inner boundary, that represent
sink and source nodes in a graph. The new position of the contour is determined by the mini-
mal cut in the graph, and it can overcome minima, but the size of the neighborhood obtained by
dilatation is be user-specified. The second reference proposes to remove initialization, similar
to (Jermyn and Ishikawa, 1999), by successively finding minimal cuts in partitions obtained in
a previous step, until the energy does not further decrease. It is interesting to note here, that the
authors of (Jermyn and Ishikawa, 1999) and (Kim and Hong, 2007) claim their algorithms find
the global energy minimum for a given image, due to graph algorithm properties. The shortest
cuts, however, do not always yield accurate segmentations.

Referring to active contours, one generally expects algorithmic imple-

Figure 3.9.: Chain of
particles.

mentations to be parametric snakes or level-set methods. Parametric
snakes (Kass et al., 1988; Zhu and Yuille, 1996; Ronfard, 1994; Brig-
ger et al., 2000; Blake and Isard, 1998) represent curves as chains of
particles. Particle positions are iteratively updated according to the par-
tial differential equation describing the curve flow. At every step, curve
points are interpolated between particles, using for example radial or B-
spline functions. Handling snake points may be a daunting task, because
particles may come too close together or grow too far apart causing nu-
merical problems. Also, it is very difficult to handle topological shape changes, like the merging
and the splitting of contours. On the other hand, particles are a less dense representation which
allows for faster computation and easier integration of shape-prior knowledge, as mentioned in
subsection 3.3.2.

For both parametric snakes and level-sets, the partial differential equation for the flow can be
solved with the Finite Difference Method. For snakes, the larger the distance between particles,
the less the amount of information from the image that flows into the equation. For a coarse
sampling, the problem can be alleviated with Finite Elements Methods, where one works with
continuous functions, generated from a basis of functions to pass through the particle chain
(Cohen and Cohen, 1993). Further mathematical issues concerning the equivalence between
snakes and level-set methods can be found in (Xu et al., 2001).

Before attending to the level-set method, we may note that designing implementations for active
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contours flows is an active field and alternatives are often proposed. We mention here two exam-
plesS. In the first one, stochastic dynamics were adopted for interface propagation in order to deal
with local minima (Juan et al., 2006). In the second example, global minimizers for edge-based
active contours are proposed for images approximated with a piecewise smooth function (Chan
et al., 2004; Bresson et al., 2007). These methods assume that the piecewise smooth approxima-
tion is a good one. In the second reference, a fast numerical scheme for minimization is based on
introducing noise into the energy functional. Instead of solving the partial differential equation
to determine the piecewise smooth image approximation, two easier equations are solved. In
each iteration, the amount of noise is evaluated first, and then the piecewise smooth function is
approximated taking the calculated noise into account.

3.6. Level-Set Methodology

Figure 3.10.: Level-
sets.

The level-set method was proposed by Osher and Sethian (1988) as

Simulation
us-
ing
level
sets

a solution to the problems of mathematically modeling moving fronts
and simulating the motion using computers. The method is employed
by large communities of researchers from computer graphics to im-
age processing, due to some very appealing properties. First, large
changes in front shape, including merging and splitting, are intrinsic
to the method. Fronts may completely disappear, or new ones may be
created and these situations also need not be handled separately. One
fully appreciates these intrinsic properties, when faced with the task of
simulating a stone splashing into water, like in the excerpt in the figure
(Fedkiw, 2008). Second, the numerics of front evolution are easy to
implement, and increasingly faster algorithms have been designed for
this purpose. As a result, the level-set method has enjoyed increasing
popularity in image processing fields. It is the method of choice in this
thesis. As such, this section is dedicated to presenting the method and its importance in active
contours segmentation. Finally, the ideas of this thesis are all implemented with a recent level-set
algorithm, and thus this algorithm be described as well.

3.6.1. The Level-Set Method

Mathematically, a 2D-curve is a continuous map from a one-dimensional space to an 2-dimensional
space. It can be represented parametrically (or explicitly) by specifying the coordinates x(s) and
y(s), i.e. C(x(s),y(s)). Curves can also be defined implicitly, taking the form C(x,y) = 0. A
curve that varies in time is written explicitly as C(x(s),y(s), t). The same curve can be repre-
sented implicitly, embedding the curve into a function φ defined on a 3-dimensional space

C(t) = {(x,y)|φ(x,y, t) = 0}. (3.15)
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Figure 3.11.: Level-set representation of a curve. The surfaces show level-set functions. A level-
set function is, in general, the signed distance transform of the curve, as depicted
in the lower half of the image. The curve may change topology, as the level-set
function is updated from the image on the left, to the image on the right.

At a fixed moment in time t0, the set of points (x,y) that evaluate to the same value c, i.e.
φ(x,y, t0) = c constitutes a level-set for the surface φ(x,y, t0). φ(x,y, t) is named the level-set
function and the curve is the zero level-set of this function at any moment in time. The surface
on the left of Fig. 3.11 depicts a level-set function at time t. Cutting the surface with the xy-plane
at hight zero, one obtains the evolving curve in the shape of a circle. On the right, the level-set
function is shown at time t + n, after n iterations. One can observe that the shape of the surface
has substantially changed, and the curve has split into two circles at the zero level-set.

For implementation purposes, the level-set function is taken to be the morphological distance
transform, see, for example, (Tönnies, 2005). The distance transform of a binary image is a real-
valued image, where the value of each pixel is the distance between the pixel itself and closest
nonzero pixel in the binary image. The distance transform of two contours is shown as 3D surface
and gray image in Fig. 3.11. Conventionally, distances are negative inside and positive outside
the contour.

The level-set function is initially set such that φ(x,y,0) = C0, where C0 denotes the initial curve.
An active contour is moved in the direction of its normal, and it involves, in general, the contour’s
curvature. Both the normal and the curvature can be expressed in terms of the level-set function
φ , taking into account the sign definition for the function, as shown in Appendix B. In this thesis,
the signed distance function φ is taken to be positive on the inside and negative on the outside
of the curve. Let us denote the time derivative of the curve C and the level-set function φ with
φt and Ct , respectively. A partial differential equation of the form Ct = F ·~n, where ~n denotes
the outward normal, can be written as φt = F(−|∇φ |). A partial differential equation of the form
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Ct = k ·~n, where k denotes the curvature can be written

φt = div
(

∇φ

|∇φ |

)
|∇φ |. (3.16)

3.6.2. Formulations Based on Level-Sets

Level sets were introduced into the variational approach to image segmentation with edge-based
functionals (Caselles et al., 1993; Malladi et al., 1995; Caselles et al., 1997), as already mentioned
in subsection 3.1.1. The level-set function φ was defined as the signed distance transform of the
active contour. For region-based contours, a contour’s energy and flow were formulated with the
help of level sets in (Chan and Vese, 1999, 2001) as the special two-region case of equations
(3.7) and (3.8) as follows

E(φ , p1, p2) =−
∫ ∫

R

H(φ) log p1 +(1−H(φ)) log p2︸ ︷︷ ︸
Data term

− µ|∇H(φ)|︸ ︷︷ ︸
Smoothness term

 dxdy, (3.17)

∂φ

∂ t
= H ′(φ)

(
log p1− log p2 + µ

(
div
(

∇φ

|∇φ |

)))
, (3.18)

where div(·) is the divergence, | · | is the magnitude of a vector, and all other notations are as
before. The function H is the Heaviside function,

H(x) =
{

1 x≥ 0
0 x < 0 (3.19)

Since this function is discontinuous, its derivative H ′(x) needs to be defined; commonly, it is
defined as the Dirac delta distribution: H ′(x) = δ (x).

Figure 3.12.: Regularized versions of the Dirac delta with ε small (continuous line) and large
(dotted line) (Chan and Vese, 2001).

Alternatively, to avoid introducing an infinite term at φ(x,y) = 0, one can use a regularized
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version Hε of the Heaviside function and obtain its derivative H ′ε = δε , similar to Chan and Vese
(2001), with a small ε > 0. The Dirac delta is then obtained for ε → 0. The choice of ε has an
influence on the behavior of the update equations. When ε→ 0, H ′(φ) is non-zero only at points
around the zero level-set, and thus the level-set function will be updated only at those points.
This in turn means that existing curves can only merge and split.

When ε has a large value, H ′(φ) is different from zero everywhere, and the level-set function is
updated everywhere. This means that the function may change its sign outside a narrow band
around the zero level set, and thus new contours are created. Setting ε to a large value is compu-
tationally much more expensive, since the level-set function must be updated for a larger number
of points.

Concerning execution speed, one may also note that the curve normal need not be computed in
order to apply the statistics force to the level-set. The gradient of the level-set function is needed
only for curvature computation, which can then be optimized (Shi and Karl, 2005a).

Recently, some authors have dealt with the optimization of the functional over multiple regions.
A large part of this progress is due to the level-set implementation which makes it possible to
include the condition of non-overlapping complementary regions as artificial parameters (Aubert
et al., 2003; Jehan-Besson and Barlaud, 2003; Paragios and Deriche, 2002a; Vese and Chan,
2002) or Lagrange multipliers (Zhao et al., 1996; Samson et al., 1999) in the energy functional.
An simple mathematical formulation to this problem is given in Brox and Weickert (2004a). If
each of N regions is represented by its own level set φi, the functional in (3.17) and its corre-
sponding equation of motion can be written by analogy as follows (Brox and Weickert, 2004a):

E(φi, pi,N) =
N

∑
i=1

−∫ ∫R
H(φi) log pi︸ ︷︷ ︸

Data term

− µ

2
|∇H(φi)|︸ ︷︷ ︸

Smoothness term

dx

. (3.20)

∂φi

∂ t
= H ′(φi)

(
log pi− max

j 6=i,H(φ j)>0

(
log p j

)
+

µ

2

(
div
(

∇φ

|∇φ |

)))
. (3.21)

In this equation, one may note that the statistics forces generated by competing regions, log pi,
log p j, uniquely assign pixels to regions. The smoothness term, however, can cause regions to
slightly overlap, but this can be corrected in a post-processing step. Motion forces are derived
either in an expectation-maximization manner, or using shape gradients, as described in Sec-
tion 3.2. Equations (3.18) and (C.1) have been both derived using an expectation-maximization
approach.
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Figure 3.13.: Narrow Band algorithms principle. The finite difference numerical schemes are
applied only for grid points in the narrow band (Paragios, 2000).

3.6.3. Implementations for Level-Set Methods

Many level-set implementations are based on Finite Difference Methods (Adalsteinsson and
Sethian, 1995; Sethian, 1999). These require numerical approximations of the first and second
order derivatives of the level-set function. Numerical schemes are effectively simplified when
the function’s gradient has value 1 everywhere. The reason for taking signed distance transforms
of contours is that they have this property. Most often, the level-set function does not remain a
distance transform, causing numerical instability. The solution is to reinitialize the function by
recomputing the distance transform.

Finite difference implementations underly a constraint, known as Courant-Friedrich-Levy (CFL)
condition, that the speed multiplied with the time step must be smaller than the size of a grid
cell at every point on the curve in order to obtain a stable and accurate solver. The advantage is
that boundaries are located with sub-pixel accuracy. The disadvantage is that the computational
cost is, in general, very large. This adds to the the fact that reinitialization is time intensive. The
problem is alleviated starting from the observation that one is often interested only in the position
of the zero level set. This means that it is sufficient to solve the partial differential equation in
a narrow band around the zero level-set (Adalsteinsson and Sethian, 1995), as shown in Fig.
C.2. A particular case of narrow-band algorithms are fast marching methods (Sethian, 1999;
McInerney and Terzopoulos, 1996), but they require that the direction of propagation does not
change. These methods are often used for fast reinitialization (Peng et al., 1999). The time step
limiting CFL condition can be circumvented with well known implicit numerical methods, like
the additive operator splitting scheme (Lu et al., 1991; Goldenberg et al., 2001; Weickert et al.,
1998), at the cost of increased computational complexity per iteration.

However, the principle for some methods is to allow for the formation of new interfaces away
from the narrow bands of current ones (Chan and Vese, 2001; Li et al., 2007). In this situation
the level-set is updated over the entire grid. Re-initialization can be avoided if the level-set is
constrained to remain a distance function (Li et al., 2005b). For this purpose, a least-squares
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term of the form
∫

R
1
2(|∇φ |−1)2 is added to the energy of the level set. This technique also

needs large computation times.

A way to design fast algorithms is to use the phase-field method for approximating motion by
mean curvature. In this model, the level-set function takes value one inside the curve, zero
outside and has a smooth transition from zero to one in a narrow band around the zero level set
(Rochery et al., 2005). The corresponding shape energy has the form of a double-well potential.
The level-set function can be initialized with the value that yields maximum energy. Already
in the first step, the value of the level-set function at each image pixel is pushed toward zero
or one by the information in image data. This is not only meaningful, but makes the method
initialization invariant. The implementation may be fast when using a two-step algorithm based
on threshold dynamics (Esedoglu et al., 2005; Esedoglu and Tsai, 2006). In each iteration, the
level-set function is updated according to a phase field flow equation. Subsequently, the function
is thresholded such that all pixels get assigned either to the interior or the exterior. Another
method that is initialization invariant and does not require re-initialization is proposed in (Xie and
Mirmehdi, 2004), and it is based on radial basis function interpolation of the level-set function.

Alternatively, if the level-set function is updated in a narrow-band around the contour, fast al-
gorithms can be designed by keeping lists of grid points equidistant to the zero level-set, and
by computing only an approximate distance transform Whitaker (1998). This idea is the basis
for probably the fastest level-set implementation available at present, which will conclude this
chapter.

In this section, we have described the main choices of a programmer that has the task of imple-
menting the evolution of an active contour. There exists a considerable amount of literature in
which solutions are proposed for a particular class of problems solved with level-set methods.
We mention a situation where one would like to keep the advantages, but fix an issue that is
disadvantageous for the problem at hand. The topology should be preserved when the shape of
the object is known, for example when segmenting an opened human hand or a cortical surface
in the brain (Han et al., 2003a,b). The authors propose to check at each grid point whether the
topology will be changed or not, before allowing the level-set to be updated at that point.

3.6.4. The Fast Level-Set Method by Shi and Karl

The flows proposed in the following chapters of this dissertation are implemented with the fast
level-set method (Shi and Karl, 2005a,b, 2008), for two main reasons. First, this method is very
fast: it was proven to be two orders of magnitude faster than some numerical schemes, and, it is
suitable for real-time tracking of objects based on the pdf of their color feature. In our research,
we found no other level-set methods applicable for real-time tracking. Second, segmentations
differ only in detail from those obtained with a numerical method; for example, the fast level-set
method does not have sub-pixel accuracy.
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Figure 3.14.: Left: Double representation of a curve (Shi and Karl, 2008), as 1) an integer-valued
level-set function φ and 2) two lists of pixels neighboring the curve, called Lin
(illustrated in dark gray) and Lout (illustrated in light gray). Right: The curve is
propagated by switching points between Lin and Lout .

The method does not implement the partial differential motion equation numerically. It uses
instead a double curve representation: 1) the curve is the level-set of an integer valued function,
and 2) the curve lies in a very narrow-band, between inside and outside pixels. The first idea,
of indicator level-set functions with values in a small integer set, had been inspired by (Gibou
and Fedkiw, 2005). In that work, the level-set function takes values -1 for pixels outside and
1 for pixels inside the curve, and it is initialized on an image pre-segmented with a K-means
algorithm. The second idea, of memorizing pixels equidistant to the zero level-set in lists had
been previously proposed in (Whitaker, 1998). Under the action of image and smoothness forces,
the front is evolved by switching pixels between lists and correspondingly updating the level-sets.
In the following, we present the details of the algorithm closely following the original papers.

For segmentation purposes, the sign of the level-set function is the one that codes for the region
a pixel belongs to. When forces act on the level-set function, the outcome of main interest is
the sign of the function. To track the moving curve, a narrow band of bandwidth two pixels is
memorized in two lists: a list of pixels that neighbor the zero level-set from the inside, named
Lin, and a list of outside neighboring pixels, named Lout , as depicted in Fig. 3.14.

A curve is propagated outward by switching a pixel from Lin to Lout and while ensuring that Lout
will not be disrupted, as is the case for point A shown in Fig. 3.14. To propagate the curve
outward the switching need to be from Lout to Lin, as shown for point B. Switching is caused by
forces acting on the contour. Again, only the sign of the force is of interest. If the force at a pixel
in the outer list is positive, the curve will evolve outward at that pixel. Similarly, if the sign of the
force at a pixel in the inner list is negative, the curve will move inward at that pixel. (Of course,
one could take the opposite convention.)

For the switching procedure, it is important that the level-set function has information about
whether pixels are list pixels or not. The integer valued level-set function is defined to code for
four types of pixels, with values of -3 in the interior, -1 at pixels in the interior list Lin, 1 at pixels
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in the exterior list Lout, and 3 in the exterior:

φ(x) =


3, if x is an exterior point
1, if x ∈ Lout
−1, if x ∈ Lin

3, if x is an interior point.

(3.22)

A pixel x is switched from Lout to Lin in a procedure named switch_in, having two steps: 1)
delete x from Lout and insert it in Lin, and set φ(x) = −1; 2) update the level-set function -
∀mathb f y ∈ N4(x) satisfying φ(y) = 3, y is added to Lout , and set φ(y) = 1. N4(x) denotes the
four-connected neighborhood of pixel x.

A pixel x is switched from Lin to Lout in a procedure named switch_out, having two steps:
1) delete x from Lin and insert it in Lout , and set φ(x) = 1; 2) update the level-set function -
∀mathb f y ∈ N4(x) satisfying φ(y) =−3, y is added to Lin, and set φ(y) =−1. Once the switch-
ing procedures have been completed, it may happen that a pixel in Lin has only negative neighbors
in its four-connected neighborhood in the level-set function. However, these cannot be boundary
pixels, since they don’t have neighbors of the other sign, and must be thus removed from Lin.
Similarly, pixels in Lout that only have positive neighbors must be deleted from Lout .

Propagating a curve under the evolution of forces F is summarized as follows

Propagate-curve procedure

• Initialize arrays φ , F , and the lists Lout to Lin.

• Compute forces F at all pixels in Lout and Lin.

• Outward evolution: for each x ∈ Lout , if F(x) > 0 switch_in(x).

• Delete redundant points from Lin: for each x ∈ Lin, if ∀y ∈ N4(x) φ(y) < 0, delete x from
Lin, and set φ(x) =−3.

• Inward evolution: for each x ∈ Lin, if F(x) > 0 switch_out(x).

• Delete redundant points from Lout : for each x∈ Lout , if ∀y∈N4(x) φ(y) > 0, delete x from
Lout , and set φ(x) = 3.

• If the stopping condition is not satisfied, start new iteration.

The algorithm stops after a fixed number of iterations, or when the forces are positive for all
pixels in Lin, and negative for all pixels in Lout .

The algorithm poses no restrictions on the method for generating forces from image data. The
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smoothness force is implemented with a simple Gaussian filter. Curvature calculations on the
coarse level-set function in the two pixel narrow band badly approximate the smoothing forces.
The solution to this problem is based on the idea that diffusion generated mean curvature motion
can be implemented using convolution operations (Merriman et al., 1994). Linear diffusion on an
image is equivalent with smoothing the image with a Gaussian kernel. In the previous subsection,
it has been shown that the curvature of an implicitly represented curve is the divergence of the
gradient of the level-set function, i.e. it is the linear diffusion term in the diffusion equation 2.

One can deduce that in order to accomplish motion by mean curvature, the level-set function can
be smoothed with a Gaussian kernel, and consequently thresholded to preserve its integer-valued
definition. At a pixel x in Lout , the smoothing force Fs is 1 if G∗φ(x)) < 0, and 0 otherwise. G
denotes the Gaussian kernel, and ∗ denotes convolution. The definition expresses the intuition
that if most pixels in a mask centered on x are inside the curve, yielding the negative convolution
result, pixel x itself represents a “dip” in the contour, and the contour is thus not smooth. A
“bump” is smoothed by evolving the curve inward. By analogy, at a pixel x in Lin, the smoothing
force Fs is 1 if G∗φ(x)) > 0, and 0 otherwise.

Similar to (Gibou and Fedkiw, 2005), the authors of the fast level-set method propose to run the
algorithm in two cycles, to economize on computations for the smoothing term. In the first cycle,
the curve is evolved according to the image data forces for a number of iterations Na, as described
in the propagate-curve procedure. In the second cycle, the curve is smoothed for a number of
iterations Ns with the same propagate-curve procedure, but with forces computed from Gaussian
convolution as previously described. The amount of smoothness is controlled by filter size and
the number of filtering operations.

Multiple curves are evolved by modifying the basic algorithm. Given M curves, all are rep-
resented with the same level-set function, but each curve administers its own set of lists, Li

in
and Li

out . Additionally, a matrix of region labels ψ indexes the region each pixel belongs to.
The switch_out procedure is as previously, except that the region indicator ψ(x) is also set to
zero. The switch_in procedure responsible for outward evolution is modified to handle region
competition. Two curves are prevented from assimilating the same pixel by means of topolog-
ical numbers. The topological number of a pixel in respect to a region indicates the number
of connected-components in the eight-neighborhood of a pixel intersected with the region. If
there are more regions in the eight-neighborhood of a pixel, and the topological number in re-
spect to each is larger than 1, switching the pixel would cause different regions to merge. In this
situation no switching is performed. In all other situations, the switch_out procedure remains
as previously, except that the region indicator is set to the region corresponding to the contour,
ψ(x) = m. After a few evolution steps, the boundary between contours is listed in only one of
the two Lout lists involved, and representation symmetry is broken.

In summary, the properties of the algorithm that make it fast and simple are as follows. All

2Linear diffusion involves computing the Laplacian of the level-set function. The curvature, which is equal to the
divergence of the normalized gradient is the Laplacian of the function.
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computations for level-set propagation are reduced to integer arithmetics, which is notoriously
faster than float arithmetics. One only need compute the sign of the image data force, since
the contour can move exactly one pixel at a contour point in each iteration. As a result, force
computation may also be reduced to integer operations. Forces are computed only at pixels on
the inner and outer borders. And finally, curvature computation may be replaced with a fast
smoothing with an integer Gaussian kernel.

This elegant algorithm has been slightly modified in the course of this work. The changes will
be presented in the following chapters, in sections that disclose implementation details on the
proposed methods, according to the chronology of changes. This algorithm and our methods
were implemented in C++ in the course of this work.

The closing note of this chapter is that, the overview given herein allows us to place the methods
of this dissertation in the AC framework. They are ACs based on novel local region descriptors
and a new type of equation of motion from spatially-variant definitions of energy terms.
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It is important to prove, but it is more important to improve.

popular wisdom

The overview of active contours in the previous chapter showed that image segmentation meth-
ods currently rely on edge information, region information or both. While edges characterize
small neighborhoods of pixels, region descriptors characterize entire image regions. This chap-
ter proposes to characterize local image regions by defining Local Region Descriptors (LRDs);
these are essentially statistics of features located within windows centered on the evolving con-
tour. Active contours driven by only LRDs are a very recent development in active contours. We
use LRDs to define general-form energies based on level sets in a novel manner, such that the
number of energy local minima is reduced. For this purpose, a particular energy is associated
with an active contour by specifying the function in the energy functional that takes LRD values
as argument. For example, this function can be the logarithm of the probability density of fea-
tures conditioned on the region. We introduce two other such functions based on the assumption
that local densities of features are approximately Gaussian. The first is based on a similarity mea-
sure between features of pixels that involves confidence intervals and the second is based on a
local Markov Random Field (MRF) model. By minimizing the associated energies, the proposed
active contours can segment objects that have largely overlapping global probability densities. In
experiments, this method can accurately segment natural large images in very short time when
using the fast level-set implementation.

4.1. Rationale for Active Contours Based on Region
Information

Historically, region intensity information has been added to edge-based energy functionals in
order to obtain more robust contours (Paragios and Deriche, 1999b; Cohen et al., 1993). Zhu and
Yuille (1996) assumed it to be sufficient to consider only the region information and designed
a general energy functional for segmenting an image in N regions. Information about a region
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is usually captured by selecting features that quantify its visual characteristics and statistically
modeling their variation. The construct obtained by combining features and their statistics is
named region descriptor.

Features for region descriptors may refer to intensity or color, texture (Paragios and Deriche,
2002b), motion (Brox et al., 2003a) and optical flow field (Roy et al., 2006). Image features
that describe a region usually vary within this region, and the goal of a region descriptor is to
formalize and measure the variation. This is commonly achieved by interpreting the varying
values of a feature as realizations of a random variable with a probability density function (pdf)
that needs to be determined. Some methods take a supervised approach to learning the pdfs. in
(Paragios and Deriche, 2002a, 1999b; Ecabert and Thiran, 2002) image intensities are modeled as
a Gaussian mixture and its parameters are learned beforehand with an expectation maximization
(EM) algorithm; in (Chakraborty et al., 1996) the user selects image samples thus making it
possible to compute a mean and a variance for each region. Other methods (Chan and Vese, 2001;
Chesnaud et al., 1999; Zhu and Yuille, 1996) take an unsupervised approach, and approximate
the parameters of a Gaussian pdf for each region, and at each evolution step.

Real world objects may be not uniformly illuminated, have large stripes, spots and fur, or wear
glasses or beards, and their features may thus have arbitrary densities. Pdfs are then better
approximated by nonparametric kernel density estimators (KDEs) (Brox and Weickert, 2004a;
Kim et al., 2005). With an appropriate choice of kernel window width, nonparametric KDEs
can describe the data closely, but because of this, new data points not present in the learning set
may have low probabilities. Pdfs of two regions described non-parametrically may be compared
by computing a statistical divergence, like the Kullback-Leibler divergence or the Battacharya
distance (Freedman and Zhang, 2004).

Generally, a region descriptor is estimated from all samples within the region delimited by the
active contour (Paragios and Deriche, 2002a; Chan and Vese, 2001; Brox et al., 2003a), which
means that one obtains a global region descriptor in this manner. Active contours based on global
region descriptors are negatively affected when the support of distributions of different regions
overlap. In this situation, values which fall on the tail of the distribution might be classified based
on the maximum likelihood criterion into the wrong region. This is an omnipresent problem in
classification tasks; however, an overview of possible solutions is beyond the scope of this paper.

Chances are that the feature varies less when its variation is analyzed in a local region. This
means that the overlap between pdfs is likely to decrease if only observations from around the
contour are the basis for density estimation. For this purpose, we introduce the concept of local
region descriptors (LRDs) computed from samples within windows centered on contour pixels,
along with a formalism for constructing energy functionals from LRDs. These functionals have
many local minima. This issue is addressed by changing the function that takes LRD quantities as
argument. First, a balloon force is added to a region competition equation defined via the function
"logarithm-of-pixel-probability" with pdf determined from a LRD. Secondly, we introduce two
novel functions based on a Gaussian similarity measure and on local modeling of the image as a
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Markov Random Field (MRF). We name all these functions segmenter functions. The proposed
active contours are tested on various synthetic and real, gray and color images by placing initial
contours inside the objects to be segmented and letting them grow toward object boundaries. In
experiments, objects with visual characteristics that create the impression of an approximately
uniform appearance can be segmented correctly and rapidly; these objects may be neighbored by
other objects that are, at least partly, similar in appearance.

4.2. Local Region Descriptors for Active Contours

Strongly overlapping probability densities usually lead to poor segmentation results. The ex-
treme example of an image with two regions having normal distributions with the same mean
but different variances is shown in Fig. 4.1(a), and has been discussed in (Zhu and Yuille, 1996).
The authors correct the evolution equation (3.8) by analyzing two sets of parameters in order to
solve the problem. One set of parameters is computed for each region from all pixels within this
region. The other set is computed from the pixels within a window W (x,y) centered on each pixel
on the evolving curve. The probability of a boundary pixel is then replaced with the probability
of the window considered to have m independent pixels as shown in equation(3.11). The motion
force then includes a term that compares the mean and variance over samples in the window with
the global region mean and variance in a statistic-test-like manner.

Global region descriptors decouple pixel intensities from their spatial positions. Visually, more
elements form a group not only if they look alike, but also if they are in close proximity of
each other, whereas similar elements which are further away will not belong to the group. For
a very large number of objects, their visual properties change in a relatively slow manner; a
comparatively sudden change in color and texture is very often accounted for by the presence of
a boundary between objects. We assume for our method that this situation exists in the image to
be segmented.

Global descriptors may hamper an active contour. In the example in Fig. 4.1(a), regions are
well characterized by their respective variances, but this need not be the case for all objects with
overlapping distributions. Consider the synthetic image in Fig. 4.2(a). It shows two rectangles
filled with the same color gradient that clearly are two separate regions. The intensities in the two
rectangles not only overlap, they even follow the same discrete uniform distribution. However,
an observer perceives two rectangles because the intensity varies slowly within each rectangle,
but suddenly at the visual boundary.

Describing each region only locally seems more appropriate for this image. In the following we
show how both synthetic and natural images can be correctly segmented by minimizing energies
given by different segmenter functions that depend on local information only. First, LRDs are
defined, then the concept of segmenter functions is introduced along with different segmenter
functions.
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(a) (b)

Figure 4.1.: Exemplary segmentation of a synthetic image. (a) Synthetic image showing two
regions with mean 128 and variances 10 and 35 and (b) its segmentation by (4.3)
(using the segmenter function gmr f of LRDs). The segmentation is initialization
invariant, as long as an initial contour is placed inside each region.

(a) (b)

Figure 4.2.: Exemplary segmentation of a synthetic image. (a) Synthetic image showing two
regions with the same discrete uniform distributions and (b) segmentation obtained
with LRDs plus balloon force according to (4.3). The segmentation is initialization
invariant, as long as an initial contours is placed inside each region.

4.2.1. Local Region Descriptors

A region descriptor is defined by choosing or computing features that quantify the visual charac-
teristics of a region, and by choosing a probability model to express the variation of those features
within the region. Features may be chosen from intensity, color or quantities that measure texture
properties, e.g. values obtained with Gabor filters. Probability distributions on features may be
modeled parametrically or non-parametrically.

Local region descriptors are region descriptors with probability distributions computed from
feature samples within regions that lie inside windows centered on an active contour point. At
each pixel on the contour, statistics that describe a region are computed only from samples in
this region. The LRD is defined by specifying the size of the window, the features that describe
a region and the type of pdf underlying the feature samples in the window. Features may be
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computed by either taking into account the position of the contour or not. Choosing the window’s
shape is also part of an LRD’s definition. Most obvious choices for the shape of a window with
the purpose of describing the image locally are squares (Pappas, 1992; Zhu and Yuille, 1996) or
circles (Zhu and Yuille, 1996; Lankton et al., 2007).

Two square-shaped windows used for computing LRD values are depicted in Fig. 4.3. An initial
curve divides the image into an inner and an outer contour region, denoted in the image with
R1 and R2. Each window includes patches from both regions. We observe that a LRD value
describing R1, for example the mean pixel intensity, can vary significantly along the contour; the
same is true for an LRD describing R2. For example, the inside mean m1 in the window on the
left of the image is closer in value to the outside mean m2 in the same window than to inside
mean m1 in the window on the right.

(a) (b)

Figure 4.3.: Contour separating the image in an inside region R1 and an outside region R2. (a)
Global region descriptors m1 and m2 are computed from all observations in R1, re-
spectively R2. (b) Two windows W (x) and W (x′) centered on contour pixels. Region
patches included in each window are highlighted. Each includes the pixels for com-
puting the LRDs m1, m2 in W (x), and m1 and m2 in W (x′).

We were inspired by Pappas’ adaptive clustering algorithm (Pappas, 1992) in our decision to
determine the statistics of each region separately. That algorithm estimates the local pdf of a
class of pixels only from pixels that already belong to this class with very promising results.

In (Zhu and Yuille, 1996), samples within a window are assumed to follow a Gaussian distri-
bution, but in the authors’s algorithm the position of the contour is not taken into account when
computing statistics. Because statistics are computed without taking the boundary position into
account, the detected boundary may differ from the image boundary by an amount proportional
to the local window size. This fact influences the choice of window size: windows too small do
not include enough samples to reliably compute statistic forces; windows too large are associ-
ated with large uncertainty about real boundary positioning. Unlike in (Zhu and Yuille, 1996),
features pdfs are computed for each region in the local window, a separate pdf is computed only
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from the the observations in this region, as illustrated in Fig. 4.3. Another difference to (Zhu
and Yuille, 1996) is that here global descriptors are not computed. With LRDs the boundary
is generally accurate. The window size influences the result minimally, as long as it contains
enough samples from each region and the assumptions about the local pdfs are true; this can be
seen in the results of experiments with different window sizes (Figs. 4.8, 4.12 in Section 4.4.3).
These results are due to the fact that, as the contour approaches the boundary, only samples from
one image regions are used to compute the statistics for this region. The possibility of separately
describing patches of regions is theoretically mentioned in (Ronfard, 1994), but implemented is
a method that compares all samples in a small window centered on a snake point with region
patches outside and inside the point.

A method that involves local region processing and takes into account the contour’s position has
been presented very recently in (Piovano et al., 2007); an independent development, the method
turns out to be based on a special type of LRD. The feature used to describe the region is the
local weighted average of the intensity inside the region. This feature is obtained at every pixel
by convolving the image with a Gaussian kernel that is strictly positive only inside the region
containing the pixel. The window W is reduced to a pixel and there is no probability distribution
model involved.

Another interesting result is that the piecewise smooth Mumford-Shah energy is equivalent to
a likelihood-based energy (3.20) based on local region descriptors (Brox and Cremers, 2007).
The local region descriptors must be composed of a normally distributed intensity feature with
constant σ =

√
0.5 in windows of given size W . This is an alternative interpretation of the LRD

in (Piovano et al., 2007). Another LRD for which the feature is pixel intensity is used in (Lankton
et al., 2007) to formulate a hybrid region-edge-based active contour; the local statistics computed
for this feature are the local region sample mean and variance.

For the images segmented in this paper, we choose simple region descriptors that rely on inten-
sity or color and we assume the distributions of these features are locally Gaussian; intensity is
modeled with univariate normal distributions and color with multivariate ones. We make this
choices because we want to emphasize the advantages that come from local modeling.

4.2.2. Segmenter Functions

The majority of energies associated with active contours have either a form similar to (3.5) or
to (3.20); (3.5) expresses the assumption that the image can be approximated with piecewise
smooth functions, while for (3.20) it is assumed that each pixel is assigned a region label and
the energy represents the logarithm of the joint pdfs of pixel features conditioned on their region
label. Both energy types thus include a double integral over the image domain of functions of
values depending on pixel features. This suggests that we can introduce general-form energies
based on LRDs by allowing a flexible form for the function under the double integral.
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Formally, consider a LRD composed of a feature vector f (x,y) and a pdf model with a different
set of parameters θW (x,y)∩Ri , shortly θW

i , in each window W (x,y) centered on a contour pixel
(x,y). Also consider a real-valued function g denoted as segmenter function. Each region Ri is
represented by a level-set function Φi. We propose the minimization of the following energy
functional, considering the number N of regions present in the image known:

E(Φi,θ
W
i ,N) =

N

∑
i=1

(
−
∫ ∫

R

(
H(Φi)g( fi(x,y),θW

i )− µ

2
|∇H(Φi)|

)
dxdy

)
(4.1)

The equation of motion for the level set function Φi can be derived from the associated Euler-
Lagrange equation (as shown in the Appendix A):

∂Φi

∂ t
= H ′(Φi)

(
g( fi,θ

W
i )−g( f j,θ

W
j )+

µ

2
ki

)
, (4.2)

where we denote the curvature term by ki =
(

div
(

∇Φi
|∇Φi|

))
.

To obtain an energy similar to the energy in (3.20) we have to set the segmenter function to
g = log p. However, the parameters of p are not computed from all values in a region Ri, but as
LRDs from local observations.

Very often, the result of applying a filter to an image region is considered to be normally dis-
tributed, and thus g is the logarithm of a Gaussian pdf of a random vector (with more components
when more filters are employed), i.e. g = log pN with pN ∼N (mW

i ,ΣW
i ) and where mW

i is the
mean and ΣW

i is the covariance matrix. The image of a spiral (Chan and Vese, 1999) is initialized
with a grid of circles. It is segmented by a contour moving according to (4.2) with the segmenter
function g = log pN . The LRD is pixel intensity assumed to be a feature which locally follows
a normal distribution. The result can be seen in Fig. 4.4.

Figure 4.4.: A spiral image presented in (Chan and Vese, 1999) (left) segmented with LRDs and
segmenter function g = log pN (right).

Contours are best initialized within real objects with the proposed method, similar to (Zhu and
Yuille, 1996). If this requirement is not met, and a real boundary cuts through an initial patch, it
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still may be possible to obtain a correct segmentation by evolving the contour according to the
region competition equation (4.2). For this purpose it is necessary that part of the object to be
segmented occupies a larger area in the initial patches. This situation occurs for the spiral in Fig.
4.4.

Energies based on LRDs are prone to have more local minima than those based on global de-
scriptors (depending on the degree of separability between descriptors), especially when an ini-
tial contour lies within a real object. Since LRDs characterize the image locally, they are “short
sighted”. They tend to be equal on both sides of a contour making the motion force approx-
imately zero. Not being able to use information from image parts outside the windows, the
contour cannot escape a local minimum.

One alternative is to rely on the curvature term to evolve the contour when it lies in a homoge-
neous region, as in (Piovano et al., 2007). This alternative requires balancing the influence of the
data term and of the curvature term in the energy functional (3.20): the less homogeneous the
regions, the larger µ needs to be; however, this is known to be an unreliable solution. Because
of the large number of local minima, the method in (Piovano et al., 2007) is very sensitive to
initialization and so is the method in (Lankton et al., 2007). For both methods, local image data
must have unimodal distributions that are well characterized by the local mean. The variance of
the data is not taken into consideration, but it can often be an important source of information
(e.g. in the image in Fig. 4.1). Such probability models are often not suitable for descriptors
based on more than one feature.

In the previous section we have noted that special cases of LRDs are used to construct the ener-
gies in (Piovano et al., 2007; Lankton et al., 2007); we may now show the segmenter functions
used there. We have discussed in the previous section that the LRD in (Piovano et al., 2007) can
be interpreted in two different ways. If the interpretation is that the LRD relies on the feature
intensity, the segmenter function that needs to be used is g = log pN with pN ∼N (mW

i ,
√

0.5)
(Brox and Cremers, 2007). Note that the Mumford-Shah functional in (3.5) cannot be expressed,
in general, as a particular case of proposed energy (4.1), since the function smoothness term∫

R−C |∇u|dx is missing.

If the LRD is considered to be based on the local weighted mean intensity inside a region, denoted
here by f (x), the energy proposed by (Piovano et al., 2007) is obtained with the segmenter
function g = (I(x)− f (x))2; I(x) denotes image intensity at pixel x. In this case, g resembles
the term under the integral in the Mumford-Shah functional from (3.5). The segmenter function
in (Lankton et al., 2007) also resembles this term, since g = (I(x)−mW

i (x))2, where mW
i (x) is

computed as the local mean intensity inside region Ri. We note here that the function in (Ronfard,
1994) may also be seen as segmenter function. It is based on the Ward distance and its role is
to decide whether a small rectangular patch around a snake point should be merged with the
foreground or the background.

Another known solution to the local minima problem involves adding a small constant force term
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λ to the motion of the level set Φi:

∂Φi

∂ t
= H ′(Φi)

(
g( fi,θ

W
i )−g( f j,θ

W
j )+λ +

µ

2
ki

)
. (4.3)

The parameter λ can be seen as a maximal area constraint (Chan and Vese, 2001) or plays the
role of a balloon force (Cohen, 1991). In the context of LRD-based contour evolution, it can be
interpreted as follows: λ indirectly gives a measure of the minimal difference that needs to exist
between two local image regions in order to consider that they describe the sides of a real image
boundary. As such, it may reflect the a priori knowledge about the smallest local image variations
created by real edges. Equation (4.3) describes a local region competition equation with an added
balloon force that yields a method for segmenting images with strongly overlapping distributions
for foreground and background objects, as will be discussed in Section 5.5 and exemplified in
Fig. 4.5.

For the moment, we turn to the synthetic example in Figure 4.2(a): the segmentation in Figure
4.2(b) is obtained according to (4.3). The feature for the LRD is pixel intensity, which is assumed
to be normally distributed in local regions, and the segmenter function g = log pN ; this particular
form of (4.3) will be referred to as LRDs plus balloon force. A circular initial contour is placed
inside each region. While the means and variances computed for the outside and inside of the
contour in each window are minimally different, balloon force λ drives each contour to grow.
When the contour reaches a bright-to-dark boundary, the local regions are different enough for
the contour to stop. We thus observe that at the boundary, distributions of LRDs do not overlap.
Since intensity in these regions varies linearly, the initial contours may be placed anywhere
inside the respective regions. However, if global descriptors are computed, the result of the
segmentation will depend on the initialization. For example, if the initial circles are centered
within each region and include no dark pixels, the dark pixels will remain in the background
since their initial probability is larger in the background, a fact that does not change when region
histograms are reestimated at each iteration.

4.2.3. Novel Segmenter Functions

The search for other solutions that avoid local minima led us to develop two novel segmenter
functions as will be shown in the following.

Consider an initial contour included in an image object. Intuitively, it should grow as long
as pixels just outside the contour are similar to pixels just inside the contour; then, instead of
describing both sides of the contour for region competition, only the local regions inside the
contour need to be described. A similarity test then checks whether outside pixels match the
description. This means that only the object to be segmented needs to be described, while its
background need not be described.
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In order to describe this intuition formally, we assume that the LRD has a normal distribution
and we define the segmenter function g to be the confidence that a samples was drawn from
this distribution. For a one-dimensional feature f1 we know the percentage α of values that fall
within an interval of length cα around the mean mW , measured in standard deviations sW . Chosen
a confidence level α , the function g will be written:

gsim(cα , f1(x),θW ) = cα · sW −| f1(x)−mW |, (4.4)

where |.| denotes the absolute value; we remind here that θW = (mW ,sW ) and W = W (x,y)∩Rin.
The smaller the difference between the feature value and the window mean the higher is the
confidence that the pixel at the center of the window belongs to the inside of the contour. For
α = 0.68, the values accepted as similar fall within one standard deviation from the mean (cα =
1). This means that if the difference is larger than one standard deviation, the pixel is considered
to belong to the outside

The confidence for observing given values of a multivariate normal distribution can be expressed
using the value of the χ2

p distribution, with p degrees of freedom (Duda et al., 2001) p.629. Thus,
if more features are observed, g is formulated using χ2

3 . For a chosen confidence 1−α , values
similar to the curve’s inside will fall within a given interval of size χ2

p(α) around the mean. Let
f (x) be the feature vector, mW its mean, and Σ its covariance matrix. gsim is then written as

gsim(α, f (x),θW ) = χ
2
p(α) − ( f (x)−mW )′ Σ−1( f (x)−mW ). (4.5)

and it can be interpreted similarly to the one-dimensional case. Only LRDs which describe the
inside of the object are computed, and letting all the variables describe only one object, the
energy to be minimized is modified to refer to only one object:

E(Φ, p) =−
∫ ∫

R

(
H(Φ)gsim( f (x),θW )− µ

2
|∇H(Φ)|

)
dx. (4.6)

The energy is minimal when gsim(x) > 0 for each x with H(Φ(x)) = 1, i.e. each pixel in the
segmented object must be similar to its neighbors in the object, with similarity measured by
gsim. The associated Euler-Lagrange equation for the level-set function Φ can be derived (see the
Appendix), leading to the following equation:

∂Φ

∂ t
= H ′(Φ)(gsim( f ,θW )+

µ

2
k). (4.7)

This equation can be interpreted as follows: the level set will move to include a contour pixel
x if gsim(x) > 0 and the curve stays smooth; it will do the opposite if gsim < 0. Since only one
object is described, the background can be complex and have any sort of empirical distribution
as long as it does not match the local description of the object to be segmented. It is thus still
possible to segment the object with gsim even if object edges are weak (e.g. Figs. 4.7, 4.9).
This is not possible with local region competition plus balloon force that needs minimally strong
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edges, i.e. edges are stronger than edges inside the object to be segmented. Also, this method has
difficulties when one of the objects separated by the boundary has a local probability distribution
with multiple modes (see the incorrect segmentation of the camera in Fig. 4.10(c)).

The similarity-based function gsim has difficulties to segment objects that are very noisy (e.g.
Figs. 4.1 and 4.15) or when a small percentage of the pixels in a local window does not match
the local Gaussian description (e.g. the background of Fig. 4.7 is slightly textured and there are
some highlights in the arm and racket in Fig. 4.14).

Methods that deal with this type of problems are often based on Markov Random Fields (MRF)
(Pappas, 1992), and we will now show how a more robust segmenter function can be obtained
by using MRF modeling.

A MRF models the intuitive idea that the intensity of a pixel depends on the intensities of neigh-
bored pixels. Let the current segmentation of image I be C, i.e. C is the characteristic function of
the current local segmentation. If this segmentation is considered to be the realization of a MRF,
the pdf for a pixel’s segmentation label can be approximated by a Gibbs distribution as follows
(Pappas, 1992):

P(C(x) = c) =
1
Z

exp

(
− 1

T ∑
cl∈Cl(x)

(Vcl(c))

)
, (4.8)

with Cl(x) the set of pairwise cliques that include pixel x, and Vcl(c) the potential of a clique cl
of two 8-connected pixels x and y:

Vcl(c) =
{
−β , if c(x) = c(y) and x, y ∈Cl(x)

β , if c(x) 6= c(y) and x, y ∈Cl(x). (4.9)

T is a parameter considered here constant. In the modeling process, the original image is assumed
to be a noisy version of the segmented image. The goal is to maximize the conditional pdf
p(I(x,y)|C = c) assuming that it is normally distributed with mean mW

i and standard deviation
sW

i . This is equivalent to minimizing the cost

Cost(x ∈ Ri) =
(I(x)−mW

i )2

2(sW
i )2 +

1
T ∑

cl∈Cl(x)
Vcl(c). (4.10)

It may be observed that minimizing (4.10) is equivalent to maximizing (4.4) if the potential term
is ignored. One can conclude that it is possible to write a regularized version of (4.4) by taking
into account the potential term:

gmr f (cα , f1,θ
W ,C) = cα · sW −| f1(x)−mW |−ν ∑

cl∈Cl(x)
Vcl(c). (4.11)

Parameter ν controls the influence of the regularization term. The purpose of this regularization
is to ensure a smooth segmentation; from this point of view, it may be seen as a binarized version
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of the smoothness constraint in the Mumford-Shah functional in (3.5).

The MRF cost function gmr f can replace gsim in the energy of a growing curve (4.6) and in the
corresponding equation of motion (4.7). It has been employed to segment the synthetic example
in Fig. 4.1(a). The image was first filtered to replace each pixel’s intensity with the value of the
standard deviation of pixels in the 8-neighborhood; subsequently a Gaussian filter was applied
and the resulting image was segmented employing the segmenter function gmr f . The result is
shown in Fig. 4.1(b). An initial circular contour was placed inside each image region and the
two contours evolved independent of one another; one can thus observe for each region a stable
segmentation result, independent of the other region.

Knowledge about the image can influence not only the choice of the pdf model for computing
LRDs, but the choice for the segmenter function g as well. A more detailed discussion follows
in Section 5.5, after mentioning one possible implementation for the method presented in this
thesis.

4.3. Fast Implementation by Approximations

Local region descriptors for active contours are implemented with the fast level-set method. Like
many other computations in this method, calculating gmr f is reduced to comparing the number
of cliques assigned a positive β when the pixel belongs to the contour’s inside with a threshold.
Even with such a strong approximation, segmentation results are very good.

In order to reduce the number of iterations needed for convergence, several initial patches can
be placed inside one object, since level-set methods can deal with topology changes automati-
cally (Osher and Sethian, 1988). Finally, LRDs can be computed every few steps during curve
evolution, instead of every step; their values then determine motion forces not only for the cen-
ter of the window, but also for pixels in its immediate neighborhood Ns of range s; when s = 0
the computation is carried out only for the contour pixel. The algorithm may be summarized as
follows:

• Initialize contour C, level set Φ, and select g and W

• For each pixel x on C

– Compute θW
i , the LRD for each neighboring region i.

– For each y ∈ Ns(x), compute the sign of g(y,θW
i ).

• Evolve C according to the Propagate-curve procedure in Section 3.6.4.

• Stop if convergence or maximum number of iterations reached.
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With this algorithm, short times for the segmentation of large images have been obtained, as will
be shown in the next section.

4.4. Results and Discussion

In this section, we present results for the proposed method and discuss the effects of different
choices for parameters and window sizes. The method was implemented in C++ and all compu-
tations have been reduced to integer arithmetic. Contour initialization is started by the user, by
selecting a few pixels in each object to be segmented and a circular contour is generated around
each selected pixel.

4.4.1. Experiment Settings

In our experiments natural gray-level and color images were segmented. Features for LRDs are
pixel intensity or color unless otherwise specified and their local pdfs are assumed to be Gaussian.
We have experimented with LRDs, g = log pN and balloon forces according to (4.3), and with
the two novel segmenter functions gsim and gmr f . The properties of evolution based on LRDs plus
balloon forces are discussed together with the influence of the magnitude of the balloon force in
Section 4.4.3. For the novel segmenter functions, cα was set to 1 for all images. Experimentally
it was found that a smaller value of 0.75 will often create holes in the segmentation, and a larger
value of 1.5 or 2 will cause leakage, especially for regions with large variances. Both gsim and
gmr f use only information about the object. Due to this fact, the boundary between background
and silhouette in Fig. 4.7 can be segmented although the hair and shirt contain the intensities
present in the background because these regions do not fit the local normal distribution for the
background close to the boundary. Starting from the silhouette, with an initialization that is just-
as-far away from the boundary, we could not achieve this segmentation because there are too
many edges present.

With a few exceptions, boundary smoothness was implemented by filtering the level-set function
with a Gaussian filter of 5×5 pixels (standard deviation of 1.5), because a larger filter can better
prevent leakage; it also prevents the formation of small holes in the segmentation (e.g. of noisy
images). However, a larger filter does not allow for an accurate segmentation of corners and
for such regions it is better to employ a smaller filter. For example, due to sharp corners in the
woman’s shirt and the table, a 3×3 pixels filter has been employed to segment images in Fig.
4.15 and Fig. 4.14.

The size of the window W and the magnitude of the balloon force were varied in the experiments;
segmentations change gradually as these parameters are varied; in some situations, these changes
are minimal. The parameter β introduced to compute gmr f has also been varied. It was found
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that it has a much larger influence on the segmentation result, since it is very coarse.

4.4.2. Comparison with The Region-Competition Method by Zhu
and Yuille

LRDs plus balloon force (with window side length of 11px and λ = 5) were used to segment
and track the hands shown in Fig. 4.5; the difficulty of these images lies in the overlapping
support of the histograms for the hands and the background (intensities between 50 and 75). For
illustration purposes, two such regions are marked with ellipses in Fig. 4.5. Edge detectors,
like Canny and Sobel (Gonzalez and Woods, 2002a) yield edge maps that lead to leakage or
false boundaries. The lightest patches in the hands, as shown in Fig. 4.5, are detected with
an adaptive-threshold segmentation of the background-subtracted image. The binary image is
repeatedly eroded (Gonzalez and Woods, 2002a) to ensure that the initial contour is well inside
the hands; using connected components, only the largest two patches from the eroded image
are kept and used to initialize the contour. Subsequent frames are initialized by combining the
information from the background-subtracted current frame and optical flow computed for pixels
on the final contour in the previous frame. The full tracking application will be presented in
detail in chapter 7.

The images of hands in Fig. 4.5 have also been segmented with a fast level set implementation of
the method introduced in (Zhu and Yuille, 1996), starting with the same initial contours. Since
neighbored regions on the arms and sleeves are not well characterized by their variances, the
method (Zhu and Yuille, 1996) cannot achieve an accurate segmentation of the hands, as shown
in Fig. 4.5(c). Dark pixels are mostly in the background and such pixels on the hand also get
assigned to the background.

With the method in (Zhu and Yuille, 1996), further segmentation problems created by overlap-
ping global distributions can be seen in Fig. 4.6. For the image in Fig. 4.6(e), the initial contour
grows to include all dark objects, instead of stopping at the silhouette. All buildings are included
in the background of Fig. 4.6(f). One can observe that many contours in segmentations in Fig.
4.6 (g) and (h) are correct; however the segmentation has leaked in Fig. 4.6(g), and it stops before
reaching the boundary in Fig. 4.6(h). In this last image, pixels in the face region distort the PDF
of part of the background region. Combined with the intensity gradient in the background itself
and the noise in the image, this creates the conditions for the contour to stop prematurely. These
problems are not present in the segmentations obtained with the method presented in this paper,
as can be seen in Fig. 4.6 (i)-(l).
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(a) (b) (c)

Figure 4.5.: Segmentation of two images of hands. (a) Initial contours. In the top image two
regions with largely overlapping pdfs are marked with ellipses. (b) Segmentation
with the method described in (Zhu and Yuille, 1996). (c) Segmentation with LRDS
and the constant speed λ .

4.4.3. Influence of Parameter Choices and Initialization

Fig. 4.7 shows the influence of different initializations for the Miss America image. We employ
the segmenter function gmr f because the background is slightly textured 1; the lighter pixels are
outliers to a local normal distribution with very small variance. The segmentation in Fig. 4.7(d)
has been obtained by setting the initial contour as depicted in Fig. 4.7(a) and using a window
side length of size 21×21 pixels, W = 21px. Setting the contour as depicted in Fig. 4.7(b),(c),
yields segmentations that are within few pixels from the contour presented in Fig. 4.7(d).

For the same image, the influence of the window size is shown by varying the length of the
window side from 11px to 31px. The corresponding segmentations are shown in Fig. 4.8. Here,
one can observe that larger windows are more prone to forming stable holes. Altogether, we
may conclude that initialization and window size have little influence on the final segmentation.
Inaccuracies at the image boundaries are partly due to pixels that do not match the interior LRD,
e.g., pixels become lighter at the top of the image, and partly due to boundary effects. Critical
pixels in boundary regions have less neighbors in their corresponding windows than those in the
interior. The latter problem can be solved when the image is extended by repeating border pixels
prior to segmentation and, after segmentation, cropping the result to the original size.

1Details can be seen by zooming in the electronic version
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We now compare segmentations with gmr f and LRDs plus balloon force, still looking at the Miss
America image. The background in Fig. 4.7 has a homogeneous texture; the lighter pixels in
the texture can be included in the curve due to gmr f . The background, shirt and arm are all dark;
these regions have quite similar values, but locally they are slightly different. The differences
can be detected with gmr f , as shown in Fig 4.7(d). LRDs plus balloon force in (4.3) do not
rely as much on representing the region locally with the correct model, but on what we perceive
as strong edges; this approach cannot detect the difference between the two regions, as can be
observed in Fig. 4.9(b) (initialization as in Fig. 4.7(a)).

In Fig. 4.10, we show the result for segmenting the Cameraman image with gsim and LRDs plus
balloon force, respectively, starting from two different initializations. All segmentations were
obtained with W = 11px; the balloon force was λ = 5. Segmentations with gsim are visually the
same, while results for the two initializations for LRDs plus balloon force differ very little.

Looking at the results in Fig. 4.10 one may compare the properties of gsim and LRDs plus balloon
force. gsim is able to detect the faint edges between the sky and the buildings because the function
is sensitive to subtle image changes in regions with small local variances; this also explains the
hollow around the camera man. LRDs plus balloon force (λ = 5) is less sensitive, but more
accurate in finding boundaries: the contour around the camera man is very accurate, but part of
the camera was segmented into the background and some of the building edges are not detected
(Fig. 4.10(c)).

The number of detected building edges depends on the value of the balloon force λ . The influ-
ence of this parameter is shown in Fig. 4.11. The window width was W = 11px and λ was varied
from 2 to 10 (initialization as in Fig. 4.10(a) top). Fig. 4.11 (a) shows segmentation with λ = 2;
observe that more building edges are found. As λ increases, more of the buildings are segmented
into the background. For λ = 8,9 the segmentation is very similar to the one for λ = 10 shown
in Fig. 4.11(d).

Fig. 4.12 shows the influence of window size on segmenting the background in the cameraman
image. The top row shows segmentations with gsim and window side lengths of 13px, 17px and
21px. The source of the differences in segmentation is the color gradient in the sky. For a larger
window, the differences between bright outside pixels and the LRD are larger than for a smaller
window. The part of the luminous sky center not included in the final contour grows with the
window size.

The bottom row in Fig. 4.12 shows segmentations with LRDs plus balloon force with λ = 5 and
window side lengths of 7px, 13px and 17px. In this situation, the larger the window the more
inaccurate the segmentation and more of the buildings are assigned to the background, because
parts of different buildings are represented with the same region descriptor. This decreases the
sensitivity to small changes, like the ones between the sky and the buildings. Since the difference
between grass and buildings is large enough, that boundary can still be found.

Fig. 4.13 shows the influence of the threshold β for gmr f . This threshold is set to 4 for most
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images: if 4 or more cliques have positive β for the inner region, the speed is positive. Setting
this threshold to 3 usually causes leakage, as can be seen for the background in Fig. 4.13(a)
and for the racket in Fig. 4.13(c). Setting it to 5 usually prevents the contour from reaching
object boundaries, as can be seen looking at the arm shown in Fig 4.13(c). However, there
are exceptions. Setting this threshold to 5 may prevent leakage as in Fig. 4.7(d); this is due
to the fact that dark pixels in the hair, with intensities similar to those in the background, can
be excluded from the segmentation since many have 5 or more neighbors that have intensities
that do not match the background. In some situations, it may be useful to set the threshold to
3; highlights on the arm initialized as in Fig. 4.13(d), are better segmented with β = 3 than 4
(segmentation in Fig. 4.14(b) bottom). When using LRDs plus balloon force in Fig. 4.14, two
different initializations result in different segmentations for the arm, but not for other objects.
This is due to the lighter crease in the shirt not included in the initial contour. This crease has
a smooth shape and forms an edge - pixels on the inside of the final contour are darker, pixels
on the outside lighter. This fits the definition of a real boundary and thus the final contour stops
at this crease. When the novel segmenter functions are used, the different initializations lead to
very similar segmentations.

From our first experiments we conclude that, for LRDs plus balloon force, a window side length
of 11px and λ = 5 are good candidates for starting the segmentation of gray images. Segmen-
tations in Figs. 4.14(c) and 4.15 (c) were obtained with these values. For the novel segmenter
functions, a good candidate for the window side length is 21px. Objects in Figs. 4.14(b) and
4.15 (b) were segmented with this window size. An exception was the racket; since this object is
small, a smaller window had to be chosen in order to keep the size of the window comparable to
the initial patch. The visual characteristics of the background in Fig. 4.14(b) change minimally
such that the pdf remains constant over large image patches; the segmentation of the background
with W = 21px is thus very similar to the segmentation with W = 41px.

A good candidate threshold for gmr f is β = 4. This threshold has been used to obtain the segmen-
tations for the arm, racket and table in Fig. 4.14(b) top and the racket and table in Fig. 4.14(b)
bottom; for the arm in this last image β = 3. For Fig. 4.15 (b) β was also 4. gmr f was chosen
for the arm racket and table in Fig. 4.14 (b) in order to deal with the highlights on these objects;
gsim was sufficient in dealing with the background.

4.4.4. Examples of Color Image Segmentation

We have also tested our methods on color images. Figs. 4.16 and 4.17 present the initial contour
and the result of the segmentation of frames from two color video sequences, commonly referred
to as Akyio and Erik. For these images, we choose the LRD to be a normally distributed RGB
color vector. Both segmentations were achieved by LRDs plus balloon force, with a 5×5px
smoothing filter, the size of the window W was 11px and λ = 350. These images cannot be
segmented correctly with the function gsim or gmr f because the local regions that include the
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eyes and eyebrows have two modes with different basins of attraction (one represents skin, the
other eyebrows, eyelashes and iris). This type of distribution is badly approximated by a normal
distribution. The eye regions are close to the real object boundaries, and the large variances of the
Gaussians fitted to those regions cause background pixels to be segmented into the foreground.
The contour thus leaks around the eyes.

The multivariate version of gmr f was used to segment the grass in Fig. 4.18(a); an inferior result
obtained with gsim contains more small holes in the segmentation. The image was first smoothed
to decrease the variance in the grass. Otherwise, the variance of the window sample is too large
and causes the contour to leak into the region occupied by the squirrel. In regions around the
squirrel’s bottom and tail, grass overlaps fur and there is not a clear smooth boundary. Both local
regions include many light pixels. The variance in the local region in the fur is larger than in the
grass, and thus, if we start the segmentation from the squirrel, it will leak into the grass at the
bottom.

The algorithm’s implementation is fast: the 397×499 noisy Claire image and the 409×518 table
tennis scene have been segmented in under 5 seconds to obtain each of the two results in Fig.
4.14(b) and (c) and Fig. 4.15(b) and (c), respectively. The faces in the 409×500 and 327×400
color images in Figs. 4.16 and 4.17 were both segmented in under 0.5 seconds. The number of
computations for the algorithm depends the number of evolution steps, the number of contour
pixels at each step and the square of the window side length. The first two variables make up for
the largest amount of computation time. The Cameraman image is segmented in 0.61sec with
W = 11px and in 0.71 sec with W = 21px, with the initialization from Fig. 4.10(a),top. The
image in Fig. 4.15 is segmented in 5 sec with W = 11px and in 7 sec with W = 21px, with the
initialization from Fig. 4.15(a). However if the background of this image is initialized with 4
instead of 2 circles, the computation time can be reduced to under 1 sec, because the number of
evolution steps decreases considerably. The C++ application runs single threaded (it uses only
one of the processor cores) on an Intelő Core 2 Duo E6600.

In summary, we have concentrated on region-based active contours and region descriptors. Specif-
ically, we have suggested that the problematic overlap of pdf for different regions can be reduced
if pdfs are computed for local regions. We have thus proposed to replace global region descrip-
tors with local ones in the framework of active-contours segmentation. For this purpose, LRDs
have been defined by choosing representative region features and selecting a probability model
to represent their variation. Parameters of the local pdf are computed from samples that lie in a
region within a window centered on the active contour. We have proposed to associate energies
based on LRDs to active contours by defining segmenter functions for a general-form energy.
This procedure has been exemplified with three segmenter functions. The results are a region
competition equation and an object-oriented approach that proved to have different properties in
experiments. Segmentations were accurate in situations where the global distributions of fore-
ground and background overlapped, and other methods failed. Results could be obtained very
fast by reducing calculations to integer arithmetics and choosing the fast level-set algorithm.

82



4.4. Results and Discussion

(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 4.6.: Comparison of two segmentation methods. (a)-(d) Initial contours for both segmen-
tation methods. (e)-(h) Segmentations obtained with the method in (Zhu and Yuille,
1996) (superimposed on initial images). (i)-(l) Segmentations obtained with the pro-
posed methods (superimposed on initial images). Note that the proposed method
yields better results for all examples.
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(a) (b)

(c) (d)

Figure 4.7.: Segmentations obtained with different initializations. (a)-(c): Different positions of
initial contours for a popular image. (d) Segmentation with the function gmr f (β = 5)
for initialization (a) and W = 21px; the other initializations result in contours within
a few pixels difference from the one in (d).
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(a) (b)

(c) (d)

Figure 4.8.: Segmentations obtained with gmr f and β = 5 and different window side lengths: (a)
11px, (b) 15px, (c) 25px, (d) 31px. Initialization as in Fig. 4.7(a). Note that the
different window sizes result in very similar segmentation results, which are within
a few pixels from one another.

(a) (b)

Figure 4.9.: Intermediary step (a) and segmentation obtained with LRDs plus balloon force, W =
11px and λ = 5 (b) (initialization as in Fig. 4.7(a)). Note that the LRDs plus balloon
force method is not sensitive enough to detect the boundary between the female
subject and the background.
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(a) (b) (c)

Figure 4.10.: (a) Two different initializations. (b) Corresponding segmentations obtained with
gsim and W = 11px. (c) Corresponding segmentations obtained with LRDs plus
balloon force and W = 11px and λ = 5. Note that gsim detects the presence of
the smaller building, while LRD plus balloon force does not. gsim is thus more
sensitive to changes in locally Gausian regions. Note also that the two different
initializations result in very similar segmentations, which are within a few pixels of
one another in both situations.

(a) (b) (c) (d)

Figure 4.11.: Segmentation results for different values of λ : (a) λ = 2, (b)λ = 6, (c) λ = 7,
(d)λ = 10 (with W = 11px and initialization as in Fig. 4.10(a)top.) Note that as λ

increases more of the buildings get drawn into the background due to faint edges
between the sky and the buildings.
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Figure 4.12.: Top row: segmentation with window side lengths of 13px, 17px and 21px and gsim.
Bottom row: segmentation with window side lengths of 7px, 13px and 17px and
LRDs plus balloon force. (Initializations as in Fig. 4.10(a)). Note that as the size
of window increases, the variation of features in the described local region is larger
and less well described by a Gaussian model. gsim then tends to separate the sky
into dark and light regions, while in LRD plus balloon force result become less
accurate.
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(a) (b)

(c) (d)

Figure 4.13.: Segmentations obtained with different threshold values for gmr f : (a) β = 3, (b)
β = 4, and (c) β = 3, for the racket and table, and β = 5 for the arm; the back-
ground contours were not evolved so that the over- and under-segmentations can
be observed. Initializations: for (a),(b) as in Fig. 4.7(a), for (c) as in (d). Note that
the influence of a unit change in β has a large effect on the segmented image, due
to implementation approximations. For these examples, the particular choices of β

lead to bad segmentations.
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(a) (b) (c)

Figure 4.14.: Segmentations of a table tennis scene. (a) Two initializations for the table tennis
scene. (b) Corresponding segmentations with gmr f for the arm, racket and table;
gmr f was chosen to deal with the highlights on these objects; gsim was sufficient
in dealing with the background. (See text for parameters). (c) Corresponding seg-
mentations with LRDs plus balloon force (W = 11px, λ = 5).

(a) (b) (c)

Figure 4.15.: Segmentations of a noisy image. (a) Initialization for a noisy image called “Claire”.
(b) Its segmentation with the segmenter function gmr f , W = 21px and β = 4. (c)
Its segmentation with LRDs plus balloon force, W = 11px and λ = 5.
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Figure 4.16.: A frame from the color sequence Akyio segmented with LRDs plus balloon force
(W = 11px and λ = 350) taking the RGB vector as feature. Initialization (left) and
final segmentation (right).

Figure 4.17.: A frame from the color sequence Erik segmented with LRDs plus balloon force
(W = 11px and λ = 350) taking the RGB vector as feature. Initialization (left) and
final segmentation (right).

Figure 4.18.: An image of a squirrel segmented with with gmr f taking the RGB vector as feature.
Initialization (left) and final segmentation (right).
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5. Active Contours with Space-Variant
Definitions of Energy Terms

The reasonable man adapts himself to the world; the unreasonable one persists in
trying to adapt the world to himself. Therefore, all progress depends on the unrea-
sonable man.

George Bernard Shaw

Active contours are a method for solving the intensively studied image segmentation task. Tra-
ditionally, the definition of energy terms for active contours is space invariant, i.e. forces driving
the contour are computed the same way at every contour point. In contrast, we propose a frame-
work where the definition of energy terms is space-variant. For this new type of contours, forces
at different contour points are computed in different ways. As an example, we introduce con-
tours for which energy terms are defined in one of two ways. These contours are driven by
local-statistics forces that are estimated according to either a Gaussian density model, or a kernel
density estimator. For a contour point, one of the two forces is chosen depending on the point’s
position relative to other contours. Multiple such contours allow for segmentation of images
based on local region descriptors. Unlike other active contours based only on local information,
these contours are initialized far away from object boundaries. Our evaluations showed accu-
rate segmentations on complex natural scenes, based solely on color. Parts of this chapter have
already been presented in (Darolti et al., 2008a).

5.1. Spatially-Invariant and Spatially-Variant Definitions
of Energy Terms

The data term of a region-based active-contour is defined by quantifying the confidence that
every image pixel has been assigned to the correct region (Zhu and Yuille, 1996). The following
short overview will show that starting from this fundamental form of the data term, the energy
terms grow more and more complex, but their definition remains spatially-invariant.

Researchers have proposed behaviors for active contours which allow them to adapt to more
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information from the image or to prior knowledge, or to control the way a solution is formed.
For example, linear terms have been added to the fundamental form in order to include in contour
evolution additional information about shape (Rousson and Paragios, 2002; Paragios et al., 2002),
motion (Mansouri and Mitiche, 2002) or texture (Rousson et al., 2003). The behavior of an
active contour is determined by the way the evolution equation is derived, and by the way this
equation is implemented. To derive the equation, region descriptors may be considered to be
constant during gradient descent (Samson et al., 2000). Region descriptor do in fact depend on
the position of the contour, and the shape derivative tool has been introduced to provide an exact
equation of motion (Jehan-Besson and Barlaud, 2003). Both types of equations are very often
implemented with the level-set method (Osher and Sethian, 1988), which has the advantage that
topology changes are intrinsic to the method. This is not the case for the alternative snake method
(Kass et al., 1988).

Level-set methods often update the level set according to the equation of motion in a narrow band
around the zero level-set (Adalsteinsson and Sethian, 1995). As an effect, new regions cannot
form far away from the narrow band, e.g. the white center of a black circle on a white background
cannot be segmented if an initial contour is not set inside the white circle. The level-set model
introduced in (Chan and Vese, 2001; Li et al., 2005b) provides the possibility for new contours
to form far away from the zero level set.

Active contours based on the phase field model are explicitly designed to allow regions to quickly
form according to image data starting from a neutral initialization (Rochery et al., 2005). Phase
fields have been proposed recently to construct non-linear energies for active contours special-
ized in segmenting elongated or circular structures (Rochery et al., 2006; Nain et al., 2003;
Horvath, 2007). Another special type of non-linear energies are those that combine region and
edge information in a non-linear fashion (Lankton et al., 2007; Jermyn and Ishikawa, 1999).

In the methods mentioned above, energy terms remain constant once they have been defined,
which means they have spatially-invariant definitions. We propose active contours for which the
definition of energy terms is spatially-variant and use them to create a robust method based only
on local region descriptors.

Local descriptors must only represent local regions accurately, while global descriptors must
model entire image regions. The first assumption (requirement) is less restrictive than the second
one. Fig. 5.1 was constructed in order to show an example where objects are characterized by
features with pdfs that overlap. The global densities of the star, square, and the background in
this image strongly overlap. The boundaries of objects are however very clear, because local
regions of each side of a boundary are very different in appearance. If the image is segmented
employing global descriptors, Fig. 5.1(d) shows that the image gets separated into dark and light
regions, and the shapes cannot be found. The shapes can be retrieved as in Fig. 5.1(c) when
employing local region descriptors and contours with space-variant definition of energy terms.

Local region descriptors are dependent on the positions of the initial contours Piovano et al.
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(2007); Lankton et al. (2007). These need to cross or be in the vicinity of image boundaries,
due to the fact that contours based on local descriptors have many local minima. In the previous
chapter, two types of forces were proposed to alleviate this problem, and allow initial contours
to be placed well inside the segmented object (for instance as in Fig. 5.1(a)). These solutions
yield very good segmentations for images with features that can be locally approximated with
Gaussian densities. However, when local pdfs are badly approximated with normal distributions
results degrade. In these situations, contours often leak through some pieces of image boundaries,
while correctly finding others.

(a) (b)

(c) (d)

Figure 5.1.: A noisy synthetic image where the global distributions of objects strongly overlap,
but most object boundaries are very clear. (a) Initial contours. (b) Intermediary
evolution step showing leakage (marked by circles). (c) Segmentation with the pro-
posed contours based on the intensity feature. (d) Segmentation with the region-
competition approach (Zhu and Yuille, 1996) that uses global and local statistics.

Active contours with space-variant definition of energy terms are designed to correct leakage by
better approximating probability densities that are not Gaussian. The densities of non-Gaussian,
multimodal data can be well approximated employing kernel density estimators. However, kernel
density estimators are not well suited to drive the contour out of local minima, because the value
of a balloon force or a probability density threshold require careful tuning per image. Both
solutions are feasible in the situation of local Gaussian distributions, as demonstrated in the
previous chapter.

The basic idea of multiple contours associated with the proposed energy is to let initial contours

93



5. Active Contours with Space-Variant Definitions of Energy Terms

evolve toward the vicinity of image boundaries by assuming that features in local regions are
normally distributed. Once contours are in the vicinity of an image boundary, they compete over
local regions by estimating the probability densities of features with a kernel method. However,
image boundaries are not known, since they are exactly the items which segmentation must
determine. We thus assume that, typically, contours arrive in each other’s vicinity when they are
close to real boundaries. This assumption relies on the fact that, in many images, local image
regions often have normal densities. Many real boundaries can thus be found using the Gaussian
density model. However, different contour pieces will approach boundaries at different time
steps, which means that in the same iteration, the different types of forces must act on the points
of the same contour depending on the points’ positions.

Fig. 5.1 provides a concrete example for the problematic addressed here. Driven by forces
computed assuming Gaussian densities, contours stop at many image boundaries, while leaking
at some other positions marked in Fig. 5.1(b). As multiple contours arrive in each other’s vicinity
in the marked areas, they start competing. One may notice in this image that pieces of a contour
will reach the vicinity of other contours at different times during evolution. In the image, some
contour pieces have leaked, while other contours still have to grow toward the boundaries. Thus,
the contour cannot behave the same way at all contour points at a given time step.

This chapter introduces a general formulation for a new type of AC for which forces at different
points can be computed in different ways, from a space-variant definition of energy terms. To
the best of our knowledge, no other such AC exist. For all other ACs, energy terms have space-
invariant definitions, which means that the force at every contour point is computed from the
same way. The general framework is subsequently exemplified with active contours that are
driven by two types of forces, specifically forces computed assuming Gaussian densities or using
kernel density methods. The constructed contours can be placed well inside image boundaries,
while being robust to initialization and complex images in our experiments. The result of the
first experiment is shown in Fig. 5.1(c). In this figure, contours often stop at an image boundary,
while region competition corrects the leakage. The marked, and apparently faulty, boundary
pieces occur in local regions where an edge between the two regions does not exist, due to the
way the local color gradients blend. At these positions, the contours stop at a local equilibrium.

5.2. Active Contours with Space-Variant Definitions of
Energy Terms

Let Ri denote one of m image regions, and the entire image domain is R = ∪m
i=0Ri. We remind

that the energy of an AC is very often written as (see Section 3.1.2)

E(Ri, pi,m) =−
m

∑
i=1

(∫ ∫
Ri

log pidx− µ

2

∫
∂Ri

ds
)

. (5.1)
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Let the image domain R be divided into a set of regions such that, for a ∈ R and b ∈ R being two
regions, a∩ b = /0. All pixels in a region a meet some given criterion. These criterion-regions
entirely cover the image domain, ∪a∈Ra = R, as shown in Fig. 5.2. Consider a continuous
function ga,i(f(x)) that generalizes the term log pi, defined on region a∩Ri. Function ga,i depends
on (pdfs of) features f in the LRDs, and it differs between criterion-regions. Let 1a(x) be the
characteristic function of a criterion-region a. With these notations, we define the energy of an
AC with space-variant definition of energy terms:

E(Ri,ga,i,m) =−
m

∑
i=1

(∫ ∫
Ri

∑
a∈R

1a ga,i dx− µ

2

∫
∂Ri

ds

)
. (5.2)

The proposed active contours are implemented with the level-set method. If we associate a level-
set function φi to each region Ri, such that the level set function is positive inside and negative
outside the region, the energy (5.2) can be written as (Chan and Vese, 2001)

E(φi,ga,i,m) =−
m

∑
i=1

(∫ ∫
R

H(φi) ∑
a∈R

1a ga,i−
µ

2
|∇H(φi)|

)
dx, (5.3)

where H(x) is the Heaviside function or its regularized version and φi is the level-set function
that represents region RI . The AC of minimal energy is found employing the gradient descent
method (Strang, 2008). The energy’s gradient is obtained by taking the derivative of E with
respect to time, in a general direction v.

Figure 5.2.: A contour with piecewise constant behavior on a domain R = Ri ∪R j. The image
domain is divided into criterion-regions of two types, a and b. Each image region
Ri∩a generates a statistics-force according to a function ga,i. A function ga,i applied
at pixels in a criterion-region a is different from a function gb,i applied at pixels in a
criterion-region b.

The functional E is discontinuous at points on the boundary between criterion-regions, where the
function ga,i is changed, for example to gb,i. The energy E is thus only piecewise differentiable.
Theoretically, the evolving contour thus obtained will be discontinuous. In practice, this problem
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can easily be dealt with. In most level-set methods, each contour point moves with speed of one
pixel, at maximum. It can thus be enforced that contour pieces stay connected, e.g. with the fast
level-set method (Shi and Karl, 2005a). This is meaningful because the objects to be segmented
have smooth, connected boundaries and we expect the image data to guide contours toward these
boundaries. We take an expectation maximization approach for derivation, and consider that
LRDs do not depend on level-set functions φi. We obtain the following flow

∂φi

∂ t
= H ′(φi)

(
∑
a∈R

1a(ga,i− max
j 6=i,H(φ j)>0

ga, j)+ µ

(
div
(

∇φi

|∇φi|

)))
, (5.4)

where H ′(x) represents the derivative of H(x), which needs to be defined. In equation (5.4), the
term (ga,i−max j 6=i,H(φ j)>0 ga, j) is a region competition term, and R j are regions that neighbor
Ri at pixel x. This data term can deal with junctions of multiple regions because it ensures that
a pixel will be assigned to one segmentation region only. We denote the curvature term with
ki ≡ div( ∇φi

|∇φi|); this term can cause slight overlaps or gaps between contours. Again, this is only
a theoretical problem. In practice, these pixels can also be uniquely assigned to segmentation
regions, for example, according to the data term.

Regions a are disjoint by definition, and thus, for a contour point x, only one of the functions of
the characteristic functions 1a may take the value 1 at x, while all others will take the value 0. It
follows that in the proposed equation of motion (5.4), the role of the characteristic function 1a
is to select which of region forces ga,i will be applied at each contour point. The characteristic
function of a criterion-region thus switches between possible definitions of energy terms. There
are as many possible definitions, as there are given criteria. The terms that determine region
forces vary depending on the position x, i.e. the forces have a spatially-variant definition. In the
following section we present an example where regions a depend on the number of contours that
neighbor each other locally. The selector functions 1a select between local regions where only
one contour is present, and local regions where more contours are present.

The data term in equation (5.4) will assign the point to the region that exerts the largest force on
the point, while the curvature term ensures that the contour stays smooth.

5.3. Two Energy-Term Definitions Based on Different
Local Density Models

This section introduces multiple contours with energy terms defined in one of two ways. More
specifically, the energy terms are defined using local region descriptors with probability densities
estimated assuming normal distributions or kernel density models. These active contours are
thus a particular case of the general framework proposed in the previous section. They yield a
segmentation method that builds on active contours driven by LRDs with Gaussian densities, but
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it is more robust than these.

Active contours driven only by LRDs with Gaussian densities were proven to be a successful
method for segmenting individual objects (see Chapter 4). Many local regions in many images
can be well approximated with normal densities. On the other hand, local regions are often not
Gaussian. For instance, in the image in Fig. 5.3 the tail of the squirrel is badly modeled using
Gaussian densities. In the intermediary evolution step in Fig. 5.3(b) locations where contours
evolve using Gaussian distributions are marked. At these locations, contours are not locally
neighbored by other contours. The ellipse-shaped markers enclose regions where boundaries
have been found correctly. The square-shaped marker points out a location where the contour
has leaked because the bimodal density in the region of the tail (which contains extreme dark
and light pixels) has been approximated with a Gaussian model. Changing the density estimation
method when contours approach one another at this location not only corrects leakage, but also
yields visually accurate results, as can be observed in Fig. 5.3(c).

(a) (b) (c)

Figure 5.3.: Exemplary segmentation on a squirrel image. (a) Initial contours. (b) Segmenta-
tion with LRDs with Gaussian densities: many boundary pieces are found, but the
contour for the squirrel leaks into the grass. The circles mark some of the correctly
found boundaries; the square marks the leakage. (c) Accurate segmentation with the
proposed contours. (The chosen feature for the LRD is pixel color.)

The result in Fig. 5.3(c) is due to employing a kernel density estimator where the Gaussian
model fails, as will be shown in the following. A KDE can be very specific in representing the
underlying data. This property makes KDEs suitable for accurately determining the boundary
between two distinct real regions by letting neighbored contours compete. However, KDEs lack
the power to generalize and they are thus not as good at growing contours out of local minima as
normal approximations of pdfs are. We thus need a contour for which some contour pieces are
driven by Gaussian LRDs, while others compete by kernel estimated LRDs. We need to define
the criterion-regions accordingly, and then write the corresponding energy. Even if motion by
Gaussian LRDs causes a contour to both grow and shrink, they are mostly intended to grow; for

97



5. Active Contours with Space-Variant Definitions of Energy Terms

shortness we use the attribute "growing" to refer to this motion.

In order to decide which of the two models is employed at a point, we check if the there are other
contours present in the vicinity of the point. We obtain two complementary criteria for defining
criterion-regions. For the first types of criterion-regions there are no other contours present in
the vicinity of a pixel on a contour. For the second type of criterion-regions, other contours can
be present in the vicinity of a pixel on a contour.

Formally, let there be m initial contours that delimit regions Ri, i = 1...m. We denote with R0
the set of pixels not yet assigned to regions Ri. In order to determine the number of contours
present in the vicinity of a pixel, we employ a window W (x) centered on the pixel. One type of
criterion-region contains all pixels with only one contour present in this window. The remaining
pixels belong to the other type of criterion-region.

Using set operations, the criterion for the first type of criterion-region can be written as W (x)∩m
j=1, j 6=i

R j = /0, which means that the local window does not intersect other regions than R0 and Ri. Let
us denote the characteristic function of this set with 1W

i . For pixels in this region we wish to
compute a growing force G(x) based on LRDs with normal densities. Also, for pixels in this
region we have 1W

i = 1. The criterion for the second type of regions is W (x)∩m
j=1, j 6=i R j = /0. For

pixels in this region we wish to compute a competing force K(x) based on KDE. Let us denote
the characteristic function of this set with 1CW

i = 1−1W
i .

Characteristic functions 1W
i and 1−1W

i replace characteristic functions 1a without changing the
energy (5.3). This means that 1W

i is now the function switching between energy terms. With this
switching function, the energy of multiple ACs that grow and compete is written as a special case
of (5.3):

EGK(φi,G,K,m) =−
m

∑
i=1

(∫ ∫
R

H(φi)
(
1W

i (G+ c)+(1−1W
i )K

)
− µ

2
|∇H(φi)|dx

)
. (5.5)

The growing force G(x) and the competing force K(x) are based on Gaussian pdfs pG,W
i , and

kernel density estimated pdfs pK,W
i , respectively, and will be defined in the following. The index

i denotes the local region within window W for which the pdf is approximated. The constant c
will be defined when deriving the growing force G(x).

The Growing Force. Two methods for creating a region-growing term that reduces the number
minima for energy (5.5) were proposed in (Darolti et al., 2008b). The first one involves adding
a balloon force λ to region competition forces generated by LRDs with normal pdfs (remember
Section 4.2 and its notations):

E(φi, pG,W
1 , pG,W

0 ) =−
∫

R
H(φi)(log pG,W

i ( f (x))+λ )+

(1−H(φi)) log pG,W
0 ( f (x))−µ|∇H(φi)| dx. (5.6)
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Indirectly, the balloon force λ reflects the minimal difference between two neighbored image
patches that belong to different objects. The index 0 represents the set of pixels not yet assigned
to other regions.

With the second method, a contour grows as long as outside pixels are similar to inside ones. A
feature f is assumed to have a Gaussian local pdf pW

i , with mean mW
i and standard deviation sW

i ,
and pixels in an interval around the mean are considered to be similar. The size of the interval,
cαsW

i , is determined by fixing the probability α of the interval, i.e.

∫ mW
i +cα sW

i

mW
i −cα sW

i

pW
i ( f (x))dx = α. (5.7)

We can directly derive a function gW
i to reflect the amount of similarity as

gW
i (cα , f ,sW

i ,mW
i ) = cαsW

i −| f (x)−mW
i |. (5.8)

This definition is extended for a feature vector f ∈ Rd , with mean mW
i and covariance matrix

ΣW
i , assumed to be diagonal. For this purpose, we employ the χ2

d distribution with d degrees of
freedom:

gW
i (α, f,mW

i ,ΣW
i ) = χ

2
d (α) − (f(x)−mW

i )′ (ΣW
i )−1(f(x)−mW

i ). (5.9)

We create an energy based on gW
i similar to (5.6). The two growing methods behave differently,

as local pdfs deviate more and more from the normal pdf (Darolti et al., 2008b). For both meth-
ods, the contours may leak or stop prematurely, but they often do so in different situations. We
would rather have contours leak, since leakage can be corrected by the competing force K. We
thus propose to compute the region growing term with both methods and select the stronger one:

E(φi) =−
∫

R
H(φi)

(
log pG,W1

i ( f (x))+max(λ ,νgW2
i )
)

+

(1−H(φi)) log pG,W1
0 ( f (x))−µ|∇H(φi)| dx. (5.10)

The size of the local windows for computing the different terms may be different: to compare
the balloon force λ with the difference between local pdfs, we may choose a window of size
W1, while for computing the similarity term gW

i we may choose a window W2. The role of the
parameter ν is to bring log p and l in the same numerical range, and it is kept constant in our
implementation. The energy (5.10) can be interpreted as follows: two methods are combined in
order to test if two local regions separated by the contour belong to separate image objects: 1) a
logarithmic term that compares statistics of local regions inside and outside the contour requiring
them to be minimally different, and 2) a term that assimilates pixels which may be observations
of the Gaussian distribution of the local inside region. The corresponding contour evolution can
be written as

∂φi

∂ t
= H ′(φi)(G(x)+ µki), G(x) = log pG,W1

i − log pGa,W1
0 +max(λ ,νgW2

i ). (5.11)
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At this point we define the constant c as c = log pG,W1
0 (f(x)). Because we select the stronger

region force for each contour pixel, the combined strategy grows faster than its individual parts.
It can still correctly find many real boundaries. Once the contour is close to object boundaries,
leakage is corrected by the the competing term introduced next.

The Competing Force. Images are usually composed of multiple regions, and thus multiple
contours are employed for segmentation. Multiple contours driven by the growing force may
overlap. The competition term is needed in order to assign pixels to regions uniquely. In general,
this term is constructed based on the maximum likelihood criterion. Using KDEs we can ensure
that a pixel will be assigned to the region with the largest number of pixels similar to it. In turn,
this ensures that object boundaries are detected accurately when the competing contours are in
their surrounding areas.

The windows for defining LRDs with kernel density estimated pdfs can be different from win-
dows W1 and W2 employed in defining the growing force G. We will denote these windows with
W3. The evolution associated with the competing term has a classical form, but is computed from
pdfs pK,W

i :
∂φi

∂ t
= H ′(φi)K(x), K(x) =

(
log pK,W3

i − max
j 6=i,φ j>0

log pK,W3
j

)
. (5.12)

In our implementation, kernel density estimate for a local region is obtained by building a his-
togram from intensity or color observations found in the local region delimited by a window W3
and smoothing it with a computationally inexpensive constant Epanechnikov kernel.

Having defined forces G(x) and K(x), the gradient descent flow for energy (5.5) with respect to
each level-set function φi can be written out as

∂φi

∂ t
= H ′(φi)

(
1W

i G(x)+(1−1W
i )K(x)+ µki

)
= H ′(φi)

(
1W

i (log pG,W1
i −

log pGa,W1
0 +max(λ ,νgW2

i ))+(1−1W
i )(log pK,W3

i − max
j 6=i,φ j>0

log pK,W3
j )+ µki

)
. (5.13)

In this evolution equation, one may observe the characteristic function 1W
i , which selects only one

of the two motion forces, such that the other one is always zero for any given contour pixel. The
function selects the term based on the Gaussian model if the contour is not locally neighbored by
other contours, and it selects the term based on kernel estimation if the contours is neighbored
locally by another contours. The associated contour selects the motion force at each contour
pixel.
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Figure 5.4.: Two level-set functions with highlighted list pixels, representing two different re-
gions. The lines highlight the double representation of the boundary between con-
nected regions.

5.4. Fast Implementation and Stopping Condition

Our implementation closely follows the fast level-set algorithm introduced in (Shi and Karl,
2005b). We remind that the level-set function φ is a matrix that takes one of the values {−3,−1,1,3}.
and the positions of boundary pixels are recorded in two lists.

The original elegant algorithm (see subsection 3.6.4) has been modified in order to not to have
to compute topological numbers (Shi and Karl, 2005b) for each pixels, at the cost of increased
memory space due to redundant representation. The modification employs one level-set function
and a set of lists per curve. The boundary between contours lies between one set of boundary
pixels. The boundary pixels in the inside list of one contour are also listed in the outside list of
the other, as shown in Fig. 5.4. The speed for pixel is however computed only once, using a flag
matrix to memorize computed speeds.

The region indicator matrix ψ is also needed. The switchin(x) procedure checks in this matrix
if the pixel that was switched in belonged to the background region. If the pixel belonged to
another object region, a switchout(x) procedure must be performed for the neighboring contour
to correct its level-set function. These pixels are stored in a correct list.

We also provide an alternative stopping condition. If forces should be positive for all pixels in
Lin, and negative for all pixels in Lout , the energy must have a unique local minimum. Often,
this is the case when the boundary is delimited by step-edges, but it is not the case for ramp- and
roof-edges. In the experiments made to provide the results in this thesis, the first condition was
not met because the contour oscillated within a narrow interval until the maximum number of
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iterations was reached. Execution time was thus unnecessarily increased.

A novel stopping condition is defined in order to reduce execution time. The idea is to detect
and count oscillations, and set the maximum number of allowed oscillations. Two arrays memlin
and memlout are used to memorize the number of times a given pixel has been added to one
of the two lists. The arrays are updated in each iteration when a pixel is added to one of the
lists. For a faster implementation, we do not count the number of oscillations. Instead, every few
iterations (e.g. 10) the two arrays are cleared. To stop the algorithm, we check in the arrays if all
pixels in the current lists have been crossed by the respective list at least two times. The stopping
condition check_stop can be written in pseudocode:

for each contour i, i = 1,m

• for all x ∈ Li
out , if (memlout(x) < 2 and ∀y ∈ N4(x) memlin(y) < 2) then return false

for each contour i, i = 1,m

• for all x ∈ Li
in, if (memlin(x) < 2 and ∀y ∈ N4(x) memlout(y) < 2) then return false

return true.

We do not prove that this stopping condition is met for any given image, but in practice, we have
employed it successfully. The details of the propagating algorithm employed in this dissertation
are as follows:

The algorithm is run in two cycles (Shi and Karl, 2005b): first the contour is evolved according
to the sign of the speed; second, the contour is smoothed by convolving the level-set function
with a Gaussian kernel. Finally, for large images, the algorithm is implemented in a multi-
scale approach, such that the result of segmentation on a coarser scale is used to initialize the
segmentation on the next finer scale.

5.5. Experiments with Contours Driven by Two Local
Density Models

We have employed the novel active contours driven by two density models in the segmentation
of gray and color images. To describe the regions locally, simple intensity or RGB color features
were chosen for all images and contours were evolved according to (5.13). To create initial
contours, circles of fixed radius are generated around a few user-selected pixels in each region.
This semi-automatic initialization can be an advantage, since it allows for a fast input of user
knowledge.
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Table 5.1.: Propagate-multiple-curves algorithm

Initialize Φi, Li
in, Li

out , i = 1,m, and ψ .
Compute forces
Evolve contours
Initialize memlin and memlout; count = 0.
While check_stop returns false

• For each contour i, i = 1,m

– Set correct to false.

– For each x ∈ Li
out with F(x) > 0 set correct(ψ(x)) = true and switch_out(x).

– For each x ∈ Li
in with (∀y ∈ N4(x), Φi(y) < 0) delete x from Li

in, Φi(x) =−3.

– For each contour j, j = 1,m with correct( j) = true

* For each x ∈ L j
in with Φ j < 0 switch_out(x) without changing ψ(x).

* For each x ∈ L j
out with (∀y ∈ N4(x), Φ j(y) > 0) delete x from L j

out ,
Φ j(x) = 3.

• For each x ∈ Li
in, i = 1,m increment memlin(x); for each x ∈ Li

out , i = 1,m
increment memlout(x);

The shape of windows of LRDs may be circular or square. We choose square windows because
the implementation is then faster. All computations are reduced to integer arithmetics, also
in order to obtain a faster algorithm. For LRDs with Gaussian densities, the window sides,
measured in pixels (px), are W1 = 11px for the logarithmic terms and W2 = 21px for computing
the term gW2

i , which were found to be good window sizes in Chapter 4. In the same work, good
values for the balloon force λ were determined: for gray-level images λ = 5 and for color images
λ = 350. In practice, the balloon force added to the logarithmic term works similar to an edge
detector. It compares the similarity of pixels on the two sides of an edge within a mask of 11×11
pixels. The term based on the similarity function gW2

i works like a region growing term.

The parameter ν that multiplies gW2
i is set to 1. The smoothing term µki is implemented by

smoothing the level-set function with a constant Gaussian kernel of 5× 5px and σ = 1.5. This
corresponds to a small value of µ , and it preserves thin structures in the segmentation. The size
of the window W for determining the number of contours present in a region and 1W

i was varied
from 3px to 21px; our method proved not to be sensitive to the value of this parameter. For
all images, W was set to 7px. The only parameter varied for a particular image was the size of
windows W3 for computing the competition term. This window should be chosen large enough
as to include samples from both sides of an object boundary where the active contour leaks. On
the other hand, the larger the window, the larger the computational cost. For Figures 5.5-5.12, W
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was 51px, 61 px, 31px, 61px, 51px, 51px and 31px, respectively.

For comparison, we show segmentations obtained with the region-competition approach by Zhu
and Yuille (1996) because this well-known method also uses local statistics for contour evolu-
tion. But local statistics do not take into account the contour’s position and they are combined
with global information during evolution. Both local and global information are modeled using
Gaussian distributions. Also, this method unifies many other statistical approaches by accurately
describing the segmentation problem as a Bayes-error minimization problem. For example, ac-
tive contours without edges are a special case of contours proposed in (Zhu and Yuille, 1996)
formulated using level-sets. The region-competition approach (Zhu and Yuille, 1996) was ap-
plied both using the color model proposed in (Zhu and Yuille, 1996) and by using RGB color.
The size of the local window was 7px and the influence of the smoothing term was the same as
in the proposed method.

Color images were processed in a multi-scale approach, using a Gaussian pyramid with two
levels. Figures 5.7-5.12 show the initial step (at the coarsest scale), an intermediary step and
the final segmentation (at the finest scale) for the respective image. Contours are shown in the
original image to allow for a direct visual evaluation of the result1, and as contour mask to
allow for readability in colorless print. Each figure also presents segmentations obtained with
the region competition approach Zhu and Yuille (1996). These result are also shown in color
and gray scale. Since for this method gaps may be formed in the segmentation, we show filled
colored regions instead of contours.

Images of intermediary evolutions steps in Figs. 5.5 - 5.10 show contours that have grown over
the real boundaries of the region they represent. One can also observe in these images that many
boundaries are found correctly. The mistakes were corrected by the competition term.

The semi-automatic initialization allows us to obtain segmentations with different numbers of
regions for the same image, by specifying the number of objects in the image. This property is
illustrated in Fig. 5.5, where the landscape is first segmented into foreground, background and
trees, and then into background, grass, trees and bovine. In Fig. 5.9 we can specify that we
wish to have only one background object. This background object is composed of leaves and
dark patches that are very different in appearance, but its segmentation is nonetheless very good.
The flexible initialization also has the advantage that segmented objects may contain very strong
edges. The complex images in Figs. 5.6 and 5.10 pose a difficult segmentation problem for
region-based methods that do not include shape knowledge. This is because the sail (Fig. 5.6 ),
the dog and the person (Fig. 5.10) are composed of dark and bright regions that are very different
in appearance, but similar to other image regions. With the proposed method, we only need to
place initial contours such that they cross edges not representing image boundaries in order to
obtain very good results.

Initial contours have little influence on the result, as long as they are reasonably distributed over

1Please zoom in the electronic version for details.
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Figure 5.5.: Segmentation of a landscape. Left and middle row: Segmentation with the proposed
method starting with two different initializations. Top to bottom: Initial contours; an
intermediary step showing leakage; the final segmentation shown as contour mask;
the final contour and regions superimposed on the image. Right: Segmentation with
the region-competition approach (Zhu and Yuille, 1996). Top to bottom: Segmenta-
tion starting with the same initialization as for the top segmentation shown as region
masks; a second initialization that covers a larger area of the grass region and corre-
sponding segmentation shown superimposed on the image and as regions mask.

the object’s area. For example, two different initializations for the landscape image lead to very
similar segmentations of background, trees and grass, as can be seen in the top and bottom rows
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Figure 5.6.: Segmentation of an image of a surfer. Top: Segmentation with the proposed method.
Left to right: Initial contours; an intermediary step showing leakage; the final seg-
mentation superimposed on the image. Bottom, left to right: the final segmentation
shown as contour mask; segmentation with the region-competition approach (Zhu
and Yuille, 1996) starting with the same initialization as for the top segmentation,
shown superimposed on the image, and as regions mask.

of Fig. 5.5. Very similar segmentations can also be observed for the squirrel image in Figs.
5.3 and 5.7. Even though initial contours are far away from object boundaries in all figures, the
final segmentations are very accurate. Accuracy is due to LRDs with kernel estimated densities,
which reliably describe regions locally.

The proposed method allows smooth transitions in an object’s visual properties. For example,
there is not a smooth strong edge between the cow’s horns and fur in Fig. 5.8, and, as a result,
the entire head can be segmented. Also, in Fig. 5.9, the koala’s fur changes from dark gray to
light gray.

With the region-competition approach Zhu and Yuille (1996), not all boundaries could be found
due to some problems that particularly affect global distributions; they either overlap, in which
situation the contour may leak over the boundary, or the distribution is multi-modal, in which
situation the one region may be fragmented. In Fig. 5.6 bottom, we may observe leakage and
fragmentation, while in Fig. 5.5 the grass is fragmented into dark and light patches, even though
the boundaries between these patches are not very strong. In Figs. 5.8 and 5.9 not all boundaries
could be correctly found, neither by using the color model in Zhu and Yuille (1996) nor by using
RGB color, because global densities overlap. For example, there are many dark pixels in the
koala’s fur. These attract into the koala region dark pixels above the koala’s head that are not as
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Figure 5.7.: Segmentation of an image of a squirrel. Top: Segmentation with the proposed
method. Left to right: Initial contours at the coarsest of 3 scales; an intermediary
step showing leakage; the final segmentation shown as contour mask; the final con-
tour at the finest scale, superimposed on the image. Bottom: Segmentation with the
region-competition approach Zhu and Yuille (1996) starting with the same initializa-
tion as for the top segmentation. Left to right: Segmentation with the color model
from Zhu and Yuille (1996) superimposed on the image and shown as regions mask;
segmentation with RGB color superimposed on the image and as regions mask.

dark as other pixels in the background. The region-competition method can segment the squirrel
in image Figs. 5.7 when using the RGB color, and the result is similar to the one obtained with
the proposed method. When using the color model in Zhu and Yuille (1996), the squirrel’s lighter
paw and lighter grass patches remained in the background.

The final result in Fig. 5.9 contains a slight glitch in the segmentation of the koala, but it is com-
parable to the segmentation in Brox and Weickert (2004a); however, in that paper the observed
features are color, the entries of a structure tensor and a local scale measure for texture. The
segmentation of the flying dog in Fig. 5.10 also contains glitches under the left ear, the right
paws and the person’s hand. These are due to specularities creating light pixels similar to those
in the fur, shadows creating dark pixels similar to those in the person’s hair, and a strong color
gradient in the hand. These glitches may be corrected only by placing initial contours very close
to these regions. The segmentation of the same image with the region competition method is
shown in Fig. 5.11.

Fig. 5.12 shows details of two slices of a computer tomography (CT) image of a lung tumor
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Figure 5.8.: Segmentation of an image of a cow. Top: Segmentation with the proposed method.
Left to right: Initial contours at the coarsest of 3 scales; an intermediary step show-
ing leakage; the final segmentation shown as contour mask; the final contour at the
finest scale, superimposed on the image. Bottom: Segmentation with the region-
competition approach Zhu and Yuille (1996) starting with the same initialization as
for the top segmentation. Left to right: Segmentation with the color model from Zhu
and Yuille (1996) superimposed on the image and shown as regions mask; segmen-
tation with RGB color superimposed on the image and as regions mask.

attached to the lung wall. There is no difference in the visual characteristics of lung wall and
tumor. However, the tumor is not compactly attached to the wall, and the boundary between
the two is revealed by the small dark patches. This tumor thus poses a difficult medical image
segmentation problem. With the proposed method, it suffices to place two initial contours around
and inside the tumor in order to obtain a reliable segmentation.

Computation times for relatively large images are relatively small. The squirrel in Fig. 5.7
(450×450 pixels) has been segmented in 2.1 seconds, the cow in Fig. 5.8 (600×450 pixels) in
5.5 seconds and the koala in Fig. 5.9 (170×250) in 2.9 seconds; the radiographs in Fig. 5.12
(140×120 pixels) have all been segmented in under 0.3 secods.

In summary, in the active contours framework, definitions of energy terms are spatially-invariant,
which means that at every contour point driving forces are computed the same way. In this paper,
we have proposed a formulation for evolving contours with spatially-variant definition of energy
terms. Theoretical issues concerning the functional’s continuity and their solution in practice
have been discussed.

The proposed method has been concretized as active contours that have energy terms defined in
one of two ways. These contours are driven by two types of forces derived from local statistics.
Multiple such contours have been employed in order to segment difficult natural images. Ac-
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Figure 5.9.: Segmentation of an image of a koala. Top: Segmentation with the proposed method.
Left to right: Initial contours at the coarsest of 3 scales; an intermediary step show-
ing leakage; the final segmentation shown as contour mask; the final contour at the
finest scale, superimposed on the image. Bottom: Segmentation with the region-
competition approach Zhu and Yuille (1996) starting with the same initialization as
for the top segmentation. Left to right: Segmentation with the color model from Zhu
and Yuille (1996) superimposed on the image and shown as regions mask; segmen-
tation with RGB color superimposed on the image and as regions mask.

curate segmentation results were obtained, in spite of the fact that initial contours were placed
far away from object boundaries. With other methods based on local information and spatially-
invariant definition of energy terms, initial contours must generally be placed in the neighborhood
of the object to be segmented in order to obtain good results.

Our accurate segmentations starting from ambitious initializations are due to multiple contours
with spatially-variant definition of energy terms, and thus of forces. The type of force is chosen
depending on the presence or absence of other contours in the vicinity of a contour point. If there
are no other contours near the point the contour piece is probably away from an object boundary,
and the contour must be made to grow. For this purpose, it it more appropriate to assume that
features are Gaussian distributed in local regions. If there are other contours in the local vicinity
of a contour point, the contours compete. We have shown that, in this situation, it is more
appropriate to assume that the data is better represented with a kernel density estimation. The
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(a) (b)

(c) (d)

Figure 5.10.: Segmentation of an image of a flying dog using the proposed method. a) Initial
contours; b) an intermediary step showing leakage. The final segmentation shown
as (c) contour mask and (d) superimposed on the image.

result is a robust active contour that takes advantage of the accuracy of local region descriptors,
while substantially reducing sensitivity to initialization.

Our new method involves five main parameters. For four of them, we were able to empirically
determine generic values, while the window size for the region competition term still had to
be selected by the user for a particular image. This is clearly a point that needs improvement.
Determining window sizes for the growing and competition term that automatically adapt to the
image will certainly not be a trivial task.

Energies based on local descriptors can accurately describe image data at the cost of having more
local minima. Energies based on global descriptors have much less minima. Active contours with
spatially-variant definition of energy terms could be used to combine the advantages of global
and local approaches. For example, global descriptors could be used in criterion-regions where
the contour has reached an equilibrium under the action of local descriptor forces. The stopping
condition proposed in Section 5.4 could be used to determine if a contour piece has stopped.

Finally, there exist a number of state-of-the-art methods where initial contours and the number of
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(a) (b)

(c) (d)

Figure 5.11.: Segmentation of an image of a flying dog using the region-competition approach
Zhu and Yuille (1996) starting with the initialization in Fig. 5.10a). a) Segmenta-
tion with the color model from Zhu and Yuille (1996) superimposed on the image
and b) shown as regions mask. c) Segmentation with RGB color superimposed on
the image and d) as regions mask.

regions is detected automatically. Our method should also be extended to a fully automatic ver-
sion. However, semi-automatic initialization has the advantage that it benefits from user knowl-
edge, allowing a user to obtain the desired segmentation.
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Figure 5.12.: Details of two CT slices of a lung tumor. Left to right: the original images, initial
contours, an intermediary step and the final segmentation.
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6. Local Region Descriptors for
Texture Segmentation

The most exciting phrase to hear in science, [...] is not “Eureka!” (I found it!) but
“That’s funny ...”

Isaac Asimov

This chapter uses active contours with space-variant definitions of energy terms for the segmen-
tation of complex natural images. The local region descriptors employed to drive the contours
formalize the variation of colored texture. For this purpose, image patches are viewed as texture
exemplars. We show that the frameworks proposed in the previous two chapters are flexible and
allow us to tailor the segmentation solution to the nature of the problem.

The linearized image patches constitute texture feature vectors which exist as points in a high-
dimensional space, where probability density estimation is problematic. We model densities with
a variable kernel estimator. Finding appropriate kernel window widths for estimating the density
at each data point is a difficult statistical problem. We propose a solution that involves finding
the k-nearest neighbors of a feature vector in a set of vector-observations selected from the image
vicinity of the pixel characterized by the feature vector. The value of the pdf at a feature vector is
evaluated in the local region descriptors framework, which means that the observations needed
in the evaluation are obtained from a local window centered on the pixel characterized by the
texture-feature vector.

The texture-features and their pdfs evaluated locally are complex LRDs able to model textured
regions in natural images. They can provide good descriptions of regions due to their local nature.
The problem of numerous local minima is handled by active contours with energy term defini-
tions based on two density models. For the term based on Gaussian model, designed to have
a growing behaviour,we design a novel one-dimensional feature by computing a mean distance
from other features. This mean-distance feature (md-feature) appears to have an approximately
normal distribution, and it proves to yield a reliable growing term that finds many correct bound-
aries. For the term based on kernel density estimation, designed to have a competing behaviour,
the pdf for local descriptors is approximated with a variable kernel estimator (Silverman, 1986).
The sizes of kernel window widths are determined from the image data with a novel method that
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involves computing k-nearest neighbors in a local image patch.

The proposed natural image segmentation method is novel, in that it combines recent ideas
on density estimation of high-dimensional image patches for texture modeling with the new
spatially-variant active contours driven by local information. In our experiments, this method
leads to very good segmentation results of natural, large, and complex scenes. Additionally,
it is two orders of magnitude faster than a state-of-the-art contour based on global probability
densities of image patches as texture features, and yields comparable results.

Before presenting the proposed method, we set the stage by shortly discussing texture as visual
cue, and reviewing some works concerned with texture segmentation.

6.1. Color and Texture in Image Segmentation

Color and texture provide rich visual cues that help us make sense of the world around us. For
example, the texture of the picture in Fig. 6.1(a) gives away that it is an aerial picture. New
objects can be created by change in texture alone, as shown in the details (b) and (c) in Fig. 6.11.

From a technical point of view, the question is how the color and texture of visible objects can
be represented by measurable quantities, processable with computer algorithms; in the fields of
image processing and computer vision these quantities are usually named features.

Measurable quantities for color are obtained by choosing a color space and digitizing the image
in this color space. As a result, each image pixel is characterized by a 3-dimensional feature
vector, since most color spaces are 3-dimensional. Images are often represented in the RGB
color space since this is the one used by sensors; a color is obtained by mixing red, green and
blue, each with values between 0 and 255.

A disadvantage of RGB is that to obtain a light red from a dark red one needs to increase the
values in all RGB channels, thus ending up with a very different set of values. However, for the
purpose of our algorithms, we would expect small changes in values for a small change in color.
This has been achieved with the CIE Lab color space as derived by the International Commission
on Illumination. In this color space, the intensity (or monochromatic) component of the image
(L) is separated from its chromaticity component (ab). The L channel is nothing but the gray
version of the color image. In this chapter, images will be represented in the CIE Lab color space
for segmentation purposes.

Intensity and color modeled by parametric distributions are well known region descriptors in

1The Firefox browser logo was created in the fields of Oregon by members of the Oregon State University, who
wanted to suggest the browser was preferred by extraterrestrials
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(a)

(b) (c)

Figure 6.1.: (a)A place in Oregon, USA. The textures in the image strongly suggest this is a aerial
image (Firefox, 2008). (b) and (c) Details of (a); the shape of a fox can be perceived
because there is a change in the texture of the field.

active-contours segmentation, e.g. (Jehan-Besson and Barlaud, 2003; Chan and Vese, 1999,
2001). Although color features with parametric distributions can yield very good segmentation
results, their performance degrades rapidly as the distribution of the image data is increasingly
different from a normal distribution. In fact the PDFs of feature vectors may have arbitrary shapes
that can be better modeled by non-parametric methods for density estimation when appropriate
parameters to match the data are chosen.

Non-parametric methods were introduced into active contours after parametric ones. Many use
(smoothed) histograms (Brox and Weickert, 2004a; Kadir and Brady., 2003; Chan et al., 2007)
and Parzen windows (Kim et al., 2005) since these are simple and fast to compute. Histograms
can represent well feature vector with up to three components, provided that one can find the
appropriate bins sizes and positions. However, it is most often not feasible to create the histogram
when many more features are involved, as usually the case with texture. But before addressing
the issue of statistical modeling for texture features we need to specify what the quantities are
that characterize texture.
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6.1.1. Texture representation

Texture is a rich source of information, but obtaining descriptive quantities for it is not as straight
forward as for color, since it arises from more than one pixels. Characterizing the visual prop-
erties of texture involves computation of texture features. Texture features mean to capture the
orientation and scale of structures in the texture. The features are very often obtained filtering
the image with a filter bank, i.e. a set of filters, one for each pair orientation-scale. Widely
used filters are Gabor filters shown in Fig. 6.2 (Sagiv et al., 2002; Dunn and Higgins, 1995;
Jain and Farrokhnia, 1990; Sandberg et al., 2002) and wavelet filter banks (Unser, 1995). Filter
banks have a biological motivation. Simple cortical cells of a biological visual system seem to
implement Gabor filters (Marcelja, 1980; Jones and Palmer, 1987). Each cell is responsible for
responding only to the presence of structures of a particular orientation at a particular scale in
the visual field.

An image of two Brodatz textures, for grass and for straw, is

Figure 6.2.: An exemplary
Gabor function.

shown in Fig.6.3(a). The orientation of textures is different:
while the grass texture is not oriented, the straw texture in the
middle has a unique orientation. There is also a difference in
texture scale, the granularity of the straw texture being larger.
The discretization of the exemplary Gabor function shown in
Fig.6.2 has been employed to filter the image of Brodatz tex-
tures 6.3(a). The function was oriented at 0, 45 and 90 degrees
and the respective results of filtering operations are displayed in
Fig. 6.3(b)-(d). In these images we observe that the grass texture
has large responses for each of the orientations, while the straw
texture most strongly responds to the 45 degree-oriented filter in Fig.6.3(c).

(a) (b) (c) (d)

Figure 6.3.: (a) An image showing the Brodatz textures for grass and straw. Results of filtering
the image with the Gabor filter in Fig.6.2 oriented at (b) 0, (c) 45, and (d) 90 degrees.

Gabor filters can offer a very good representation of a texture if the number of employed fil-
ters is large enough, but, this representation is most often redundant. Computing an image’s
segmentation with the resulting features can thus be computationally very expensive.
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A representation that involves a smaller number of features is the structure tensor (Bigün et al.,
1991). For each scale the structure tensor yields three features, namely the image’s second order
derivatives (Rousson et al., 2003; Brox et al., 2003a). Before computing the structure tensor,
images are often smoothed with Gaussian kernel in order to remove noise. This operation may
however blur the boundaries. The problem may be avoided with the non-linear structure tensor
that involves replacing Gaussian smoothing with an anisotropic diffusion process (Rousson et al.,
2003). During this process texture features undergo coupled smoothing, i.e. the value of a
feature is updated in each diffusion step by an amount that depends on the values of all other
features. With help of the non-linear structure tensor, a colored texture can be described by
a vector (R,G,B,R2

x + G2
x + B2

x ,R
2
y + G2

y + B2
y ,Rxy + Gxy + Bxy), where R,G,B denote the color

channels, and the subscripts denote partial derivatives (Brox et al., 2003a).

Joint smoothing of vector components by diffusion results in a version of the original image
where edges are preserved while color differences in texture elements can be reduced. The re-
quirement is that the variability of features within a region is sufficiently small compared to
the variability of features between regions, since edges of the same magnitude will be either
smoothed or preserved independent of their position (within a texture or at a boundary). For
example, in Fig.6.1.1 many gradients in each region of the two-Brodatz textures image are pro-
gressively reduced by the diffusion operation. The figure shows the results of diffusion after
25, 50 and 100 iterations. However, many strong gradients still remain in each region, even af-
ter a large number of iterations. Another example is the color image in Fig.6.1.1, where most
gradients caused by texture are strongly reduced. This however causes some parts of the image-
subject and the gravel foreground to become very similar in color and texture. In fact much of
the texture information useful in discriminating between the two regions is lost. This effect can
be observed even better by looking at the gray version of this image in Fig.6.1.1(d).

(a) (b) (c) (d)

Figure 6.4.: (a) An image showing the Brodatz textures for grass and straw and the results of
non-linear diffusion on the image. Diffusion depends on the values of the structure
tensor. Results after (b) 25, (c) 50, and (d) 100 diffusion iterations.

Quantitative features for characterizing texture obtained with a filter bank or using the structure
tensor involve a not negligible amount of computation. Image patch exemplars are an alternative
texture representation, which does not require the computation of any features. We dedicate
the next section to discussing this alternative, since this is the texture representation used in our
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(a) (b)

Figure 6.5.: (a) A color image and (b) the result of non-linear diffusion on the image. Diffusion
depends on the values of the structure tensor.

method.

6.1.2. Texture from image patches

An image patch is simply a neighborhood (also window) of specified shape and size around a
given pixel. Pixels in this patch are not independent and identically distributed (iid), as methods
often assume, but their spatial positions influence the distributions of their values. In other words,
pixels in a patch are conditioned random variables, since texture exhibits regularities.

Julesz was the first to suggest that these relations can be modeled by the joint probability dis-
tribution of N neighbored pixels, which he denoted as higher-order statistics (Julesz, 1962). In
this work we will more often use the terms joint PD and multivariate PD. An image can then
be modeled as a Markov Random Field. The relationships between pixels can be described by
specifying the probability at a pixel conditioned on the probabilities at pixels in its neighborhood.
MRFs have been long used in image processing for the purpose of image filtering (Geman and
Geman, 1984; Bouman and Sauer, 1993).

Later, MRF modeling has been used in the field of texture synthesis (Efros and Leung, 1999;
Liang et al., 2001; Zalesny and Gool, 2000). The model is successful because it can quickly
generate textures with good visual qualities, similar to those of an input texture. For example, in
(Efros and Leung, 1999) the conditional PD is approximated from the input texture by selecting
similar patches from the texture and then learning the value of the center pixel with a histogram.
To synthesize a patch, a 3×3 seed selected for the input texture at random is grown in layers
outward by sampling from the learned conditional PD.

The works in (Popat and Picard, 1997; de Bonet and Viola, 1998) is among the first to use
MRF modeling for neighborhoods up to 13 pixels large for texture classification. Both works
demonstrated very good texture classification results sparking the interest in patch-based meth-
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ods, which were recently proven to be superior to filter-based approaches, when combined with
a good probability density estimation method (Varma and Zisserman, 2003, 2008). These latter
works have also shown that conditioned probability distribution in MRFs can be replaced by joint
PDs as proposed by Julesz (Julesz, 1962), without affecting the results.

A fundamental issue associated with texture represented as image patch exemplars is the estima-
tion of their probability densities in the high-dimensional spaces they exist in. The references
cited here empirically showed that this estimation is feasible such that pdfs can be used for dis-
tinguishing between classes of textures. For this reason, but only very recently, image patch
modeling has been employed in texture segmentation.

In the work of Wolf et al. (2006), texture edges are detected by computing similarities be-
tween image patches around a given pixel. With the help of a non-parametric statistics test (the
Wilcoxon Mann-Whitney test), it can be decided if the computed similarities are drawn from the
same distribution; if they are not, the pixel is labeled as edge. Segmentation is achieved using a
free-form-deformation method on the distance transform of the edge image.

The work of (Awate et al., 2006) presents an active-contours method driven by global descriptors
based on image patches, and is thus related to the method presented here. We are not aware of
any other related methods. The method (Awate et al., 2006) uses very large image patches of
size 13×13px for segmenting monochrome images. The pdf at an image patch is estimated
with Parzen windows using an isotropic Gaussian kernel with constant window width. The
contour’s motion is determined with the shape derivative tool thus having more terms than a
motion determined in an expectation maximization style, as explained in Section 3.2.

Our active-contours method for texture segmentation is based on local region descriptors and
their probability densities are approximated with variable kernel density estimators. The EM-
style equation of motion is implemented with contours with spatially-variant definitions of en-
ergy terms. As a result of combining local processing with the novel type of spatially-variant
contours, our active contours are two orders of magnitude faster than those presented in (Awate
et al., 2006).

The problem of estimating probability densities of high-dimensional feature
vectors

Methods based on image patches have to deal with high-dimensional feature vectors (their di-
mension is equal to the number of pixels in the patch). For this reason, all methods mentioned
above resort to non-parametric density estimators. These estimators can be very powerful as
shown in the seminal work of (Viola, 1995); however, the author warns that estimating PDs in
high-dimensional spaces might not be feasible because sparsity introduces distortions. "Empiri-
cal evidence argues against using Parzen estimation in many more than six dimensions."
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Before we continue our discussion, it is important to observe that the nomenclature commonly
used in the literature does not describe exactly what is estimated. Most authors state that PD of
feature vectors are approximated with non-parametric methods. If this statement is to be taken
literally, we should expect to know (be able to graph) the shape of the PDF on its definition
domain. However, to the best of our knowledge, no one has claimed to be able to provide such
a result. At best, results provide the number of clusters in the data and some way to describe
their shape and size.2 More often, the evaluated quantity is the value of the modeled probability
distribution function at a given data point and our method is no exception. For the sake of
conciseness, we will denote this quantity with density at a point and, when appropriate, point
density estimation.

Returning to patch-based methods, those mentioned previously work with feature vectors with a
number of components between 9 and 169 which exist in high-dimensional spaces. The problem
of analyzing high-dimensional data is a notoriously difficult one and it is known as the curse
of dimensionality (Scott, 1992). Contrary to the statement in (Viola, 1995), there is empirical
evidence that multivariate density estimation in higher-dimensional spaces is feasible and mean-
ingful, because, in general, the underlying structure of the data has a lower dimension than the
data itself (Scott, 1992). Empirical evidence (Lee et al., 2003; Georgescu et al., 2003) supports
the idea that image features cluster in the high-dimensional space.

After all, the methods cited in this section do present good results, providing more evidence that
point density estimation in high-dimensional spaces is possible. An explanation could originate
in the nature of texture itself: pixels follow specific spatial relationships thus yielding patches that
look alike and should thus be close to each other in the high-dimensional space. To have patches
entirely scattered over the data space the image would have to be the results of experimenters
trying to absolutely confuse the human visual system, rather than a picture of something in the
world. It is also very important to keep in mind that our goal is to discriminate between image
regions by using pdfs of features over regions. The bias of the estimation is thus a matter of
secondary importance, as long as separability is ensured. As such, good classification results can
be obtained even if density estimates are quite crude (Silverman, 1986), pp.124. Even so, density
estimation involves carefully choosing the estimation method and its smoothing parameters.

Quite a number of different non-parametric methods have already been applied to estimate statis-
tics of image features. Clusters of points were determined by k-means clustering in (Popat and
Picard, 1997; Varma and Zisserman, 2003). In (Popat and Picard, 1997), the user is involved in
choosing the number of clusters and after determining the points of each cluster, a multivariate
Gaussian with diagonal covariance matrix is fitted to each cluster.

A widely used strategy for estimating densities from high-dimensional data points is to estimate
a pilot density using a k-nearest neighbors method, and subsequently choose parameter(s) to

2In this work, we do not address methods that have the goal of determining surfaces that separate clusters, like
Linear Discriminant Analysis or Support Vector Machine methods. In general, these are methods for supervised
learning, while this dissertation deals only with unsupervised segmentation.
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determine variable window widths for an adaptive kernel estimate Silverman (1986). For up to
three features, it has been shown that virtually all parameters can be automatically determined
from the data (Comaniciu et al., 2001; Han et al., 2008).

For much higher dimensional feature vectors, the strategy was adopted in a heuristic data parti-
tioning algorithm for finding clusters in high-dimensional spaces (Georgescu et al., 2003). In this
algorithm, modes of the pdf were found with the iterative mean-shift procedure from (Comani-
ciu, 2003). To evaluate the densities at points involved in the mean-shift procedure, a variable
kernel density estimator was employed. The kernel window width at each point was determined
by taking nearest neighbors in the same partition with the point.

The k-nearest neighbors of vectors obtained from image patches are used to estimate densities
for the purpose of texture synthesis in (Efros and Leung, 1999; Liang et al., 2001). Finding
the k-nearest neighbors of a data point can be a very expensive computational step, but many
algorithms have been designed in order to optimize the efficiency of the procedure, e.g. the one
in (Liang et al., 2001).

Parzen-windows with fixed window width were employed in (Awate et al., 2006) for texture
segmentation from image patches. The fixed window width is determined from the data via
entropy minimization as follows: the user selects a the number of observations to participate in
kernel entropy estimation. Observations are then selected from the image for entropy evaluation.
To find the optimal window width, entropy is minimized by gradient descent with respect to
this parameter. This procedure is repeated every few iterations. This method works well when
the evaluated entropy function depending on the window width has a unique minimum. But of
course, for many images this is not the case. When graphing the entropy for some of the images
segmented in this thesis, the shape of the function was often asymptotically decreasing or it was
widely flat near the minimum.

The non-parametric Wilcoxon-Mann-Whitney statistical test was used to decide if two patches
belong to the same textured region in (Wolf et al., 2006). The very promising results suggest that
this avenue of research is to be looked at more thoroughly. In our research, we did not find other
works on segmentation based on non-parametric statistical test.

One may observe that segmentation methods based on texture from image patches involve im-
portant decisions regarding patch size, the pdf estimator, its parameters and the selection of data
points for evaluation. With this observation in mind, in the following we will construct novel
local region descriptors that involve image patches. Unlike any of the methods presented so far,
that use image patches only for gray images, the novel descriptors use color texture patches.
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6.2. LRDs from Image Patches and Non-parametric
Statistics for Texture Segmentation

We wish to propose a solution to the texture segmentation problem that relies on active contours
with spatially-variant definitions of energy terms and local region descriptors. Remember that a
local region descriptor is defined by choosing those features that best quantify region character-
istics, and by choosing the pdf model to approximate the features’ variation in a region. This we
will do in the following. First, to describe image textures, we will introduce image patches as
features for characterizing texture. Second, we will introduce a solution for the difficult problem
of estimating the local probability densities with variable kernel density estimation.

6.2.1. Image Patches as Color Texture Features

Intuitively, texture can be often viewed as the repetition of an arrangement of pixels on a patch
with a certain size. Every time it is repeated, the arrangement is varied to a certain degree in color
and in position, but when its pixels are examined together, a common pattern is perceived. Pixels
in the patch thus determine each other’s intensities or colors. In statistical terms this means that
the probability of observing a given texture patch is equal to probability of jointly observing the
pixels in the patch.

Formally, the textured region is modeled as a random field: a random variable is associated
with every image pixel x and a neighborhood Ns(x). A patch is defined as the random vector
containing the random variables associated with x and with all pixels s ∈ Ns(x).

Most often, the neighborhood Ns(x) is considered to be a D×D square centered on x. For a gray
scale image, the image patch centered at pixel x is composed of random variables fs, s = 1..d,
where s ∈ Ns(x), and d = D2 is the number of elements in each pixel’s neighborhood. This patch
can be represented as the d-dimensional random vector of features f = ( f1, ..., fd). The notation
f(x) will be used when we wish to emphasize the realization of f at pixel x. With this model, for
a 5×5pixel square image patch, f will have 25 components.

For color images, an image patch is defined as the joint realization of patches in each image
channel. A square patch centered at pixel x yields a random vector
f(x) = ( fL,1, ..., fL,dL , fa,1, ..., fa,da, fb,1, ..., fb,db) ∈ Rd . This notation is motivated by the fact that
we use the CIE Lab color space in our experiments. One may allow the sizes of patches to
differ between channels, if one channel is to be given more importance than others. For example,
in the CIE Lab color space, the intensity channel carries more information than the chromaticity
channel. The size dL of the patch in the intensity channel can thus be two times the size da = db of
a patch in a chromaticity channel, in order to give the same importance to intensity and chromatic
information. When there is reason to assume more complex relationships between channels,
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vector components from each channel can be assigned weights, or equivalently, one can set an a
priori probability for each channel.

So far, a feature vector was obtained that can be employed to describe the texture of a region. A
pdf estimator is further needed in order to obtain a complete region descriptor.

6.2.2. Variable Window-Widths from Local Nearest-Neighbors for
KDE

We have already discussed that kernel density estimation is a good method for approximating
the pdf at a feature vector f(x) and that these data points in the high-dimensional space tend to
cluster in its lower-dimensional subspaces.

In practice, image patches are very likely to cluster around more modes than one for each region.
Clusters will probably have different shapes and sizes depending on the size of a patch and on
the nature of the texture. For example, in the image of a checker-board, some image patches will
start with white pixels, others will start with black pixels, some will contain a line, others will
contain a crossing. If patches are large compared to the scale of the board, patches will contain
multiple crossings. The pdf of the corresponding feature vector will certainly have multiple
modes. Additionally, the basins of attraction for modes are likely to have different sizes and they
may overlap.

It is possible to assume that a constant kernel width models the data well, with the benefit of
reduced algorithm complexity. This is indicated by the results presented in (Awate et al., 2006).
It is however improbable that all natural textures should accommodate this assumption just in
order to not let algorithms grow too complex. In order to accommodate a larger class of images
we propose to use variable kernel density estimation for texture segmentation.

Variable kernel estimators can represent the data better than kernel estimators by adjusting band-
widths hs to data samples used for estimation. We remind here that given n data samples
f(xs) ∈ Rd from a region Ri and a symmetric kernel function K, the variable kernel estimator
p̂(f(x)) is (Silverman, 1986)

p̂i(f(x)) =
1
n

n

∑
s=1

1
hd

s
K
(

f(x)− f(xs)
hs

)
. (6.1)

The most common kernel functions are the Epanechnikov kernel

K(u) =
3
4
(1−u2)1(|u|<1), (6.2)
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and the Gaussian kernel
K(u) = 1/

√
2π exp(−1

2
u2)1(|u|<1). (6.3)

The Epanechnikov kernel is more efficient to compute. In our experiments, we have tested both
kernels and obtained similar results. Therefore, later on we will present result obtained with the
Epanechnikov kernel.

There are numerous methods for computing the widths hs. A widely used strategy is to partition
the data into clusters and then determine the size of clusters by some means. Many algorithms
start the clustering by finding the k-nearest neighbors (NN) of each point (Georgescu et al.,
2003; Popat and Picard, 1997). For large data sets, the resulting procedure is computationally
expensive, in spite important advances concerning kNN search (Georgescu et al., 2003; Liang
et al., 2001).

In our method, we also use nearest neighbors. Observations are selected from local regions for
evaluating a point density, as well as for determining the kernel window width for each point,
for reasons that will be described shortly. We concentrate for a moment on the vicinity of a pixel
xs, denoted by V . The k nearest neighbors of f(xs), shortly fs, are sought for in the set of feature
vectors observed at pixels that lie in the vicinity V . Let fkNN be the kthNN of the data point fs in
the set of observations generated from the vicinity V . The size of the kernel window for the data
point fs), hs, is the L1 distance between the data point and its kth nearest neighbor

hs = ‖fs− fkNN‖L1
. (6.4)

The L1 distance was chosen because it is fast to compute and the difference between two d-
dimensional vectors in (B.4) needs to be computed very often.

The question now is how to determine k. The number of pixels in the vicinity of pixel xs is
determined by the shape and size of V . We can thus consider that the number of modes in the
local density is limited. To find a good value for k three additional assumptions are made. First,
we suppose that clusters around these modes are relatively compact and separable to a sufficient
degree. Then we can state that there is a minimal number of feature vectors kmin in each cluster.
Second, we presume that there is a maximal limit to the number of feature vectors needed to
estimate the bandwidth for the current patch, and denote it as kmax. Third, we require that the
distance between two neighbored feature vectors be no larger than a maximum distance, which
is to say that we set a maximum bound on the kernel window width, denoted as hmax.

A good value k for the kth nearest neighbor is found between kmin and kmax by taking the largest
k, such that the window width hs satisfies hs≤ hmax. This means that we take the maximum value
k such that k ∈ [kmin,kmax] and the L1 distance between current feature vector and its kthNN is
smaller than hmax,

∥∥f j− fkNN
∥∥

L1
≤ hmax. Finally, the limits kmin and kmax are fractions of the total

number of observation in the vicinity V .

In our implementation, we use a square vicinity and set the limit kmin to 1/10 and the limit kmax
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is 1/2 of the number of pixels in the local window. The interval [kmin,kmax] is discretized to a set
by taking fractions {1/10, 1/9, .. 1/2} of the number of pixels in the window.

Local sampling strategy. A widely used assumption is that textured image regions are station-
ary random fields. However, like in the case of intensity and color, textures often do not appear
constant over the surface of the object, but they undergo smooth changes. We are thus moti-
vated to adopt a local sampling strategy in order to determine the kernel window width as just
described.

Let us again concentrate on the vicinity V of a pixel xs; an exemplary window V (xs) is depicted
in Fig. 6.6 in light gray. According to the previous paragraph, patches most similar to the one
centered on pixel xs are those patches centered on pixels that lie in the vicinity V (xs). This
suggests that the kernel window width hs for the feature vector f(xs), centered at xs, can be found
by searching for nearest neighbors in the set of feature vectors observed at pixels within window
V (xs). By the same reasoning, the pdf at a point f(x) is also estimated from local observations
in the vicinity of a contour pixel x, denoted as W2(x), rather then from the whole image; an
exemplary window W2(x) is drawn in black in Fig. 6.6.

Figure 6.6.: Windows for local sampling strategy for selecting observation to compute variable
kernel window width and estimate the pdf at a feature vector centered on pixel x.
Window V is for computing variable kernel window width. Window W2 is for com-
puting the pdf estimate and the competition forces.

The local sampling strategy reduces computation time considerably since distances between fea-
ture vectors are computed in small local windows, in stead of the whole image. For each window,
we compute and memorize in an initial step the distance between the center patch f(x) and every
other patch f(y) centered on a pixel in the window y ∈W2(x). These distances are used initially
to compute kernel window widths, and they are reused in every iteration of the level-set evolution
to estimate densities of local descriptors. The procedure for computing kernel window widths
and local sampling strategy can be summarized as follows

• Select shape and size of V and W2; compute the number of pixels NV and NW2
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• Initialize the distances structure D(x,y): for each x inR

– For each pixel y ∈W2(x) compute D(x,y) = ‖f(x)− f(y)‖L1
.

• Compute kernel window widths.

– Set vector k =
{ 1

10NV , 1
9NV , ..., 1

2NV
}

and hmax.

– For each x ∈ R

* Sort distances D(x,y), y ∈ V (x) into Dtemp. Set number of neighbors for f(x)
nn = 0.

* Count nn and find largest k(i) such that nn > k(i), and Dtemp(x,yk(i)) < hmax).
Set h(x) = Dtemp(x,yk(i)).

• { When computing the competition term for level-set evolution... }

• Estimate the pdf for each x on the zero level set, according to equation 6.1 by using all
y ∈W2.

The descriptors thus obtained are local texture descriptors. They will be used to drive active
contours with piecewise constant behavior in order to segment textured images.

6.3. Contours with Spatially-Variant Definition Based on
LRDs from Image Patches

Region descriptors allow us to estimate region probability densities, and based on that generate
forces to evolve initial contours. Conventional active contours based on local descriptors often
get trapped in local minima, because the local nature of the information causes the descriptor to
be "short-sighted". For the same reason, segmentations obtained with these contours are depen-
dent on the initial positions of contours. In chapter 5, we have proposed contours with piecewise
constant behavior that are driven by local region descriptors and can be initialized far away from
real boundaries.

We remind the reader of the multiple contours driven by two types of forces, one of which is a
growing force that assumed locally Gaussian regions, and the other was a competing force for
which pdfs of competing regions were kernel density estimated. The growing force was applied
at a contour point if the contour was not neighbored in a local window W by other contours,
which meant that the characteristic function 1W

i of the set W ∩m
j=1, j 6=i R j = /0 had value 1 at x. If

at least another contour was present in the local region around the contour point, the competing
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force was applied.

The growing force requires that the feature in the region descriptor can be approximated by a nor-
mal distribution. However, feature vectors representing image patches exist in high-dimensional
spaces, and, in practice, it is very unlikely to find high-dimensional data distributed according to
a multivariate normal law. More likely, these densities are very complex and, mostly, they are
only crudely estimated, as discussed in section 6.1.2. The analysis of high-dimensional data is
often approached with a dimension reduction method. In the spirit of this idea, we design a novel
one-dimensional feature for the growing term by averaging over local image patches and name
it mean-distance feature.

Mean-distance features (Md-features). The novel one-dimensional md-feature, denoted as
f d(x), is computed for every pixel in a local window by manipulating distances between patches.

Fig. 6.7 shows local windows and pixels involved in computing an md-feature. Consider a
pixel x on an evolving contour and a local window W1(x) centered on pixel x. An md-feature
is computed for each pixel xs ∈W1(x)∩Ri. This is done using another local window W1(xs)
centered on the pixel xs in order to select some other pixels xt that belong to the same region
as pixel xs, i.e. xt ∈W1(xs)∩Ri. The L1 distances between the feature vector f(xs) centered
on pixel xs and each feature vector f(xt) centered on a pixel xt are computed and denoted with
Dt(f(xs), f(xt)). The md-feature for pixel xs, denoted as md(xs), is the mean value of distances
Dt(f(xs), f(xt))

md(xs) =
∑xt∈W1(xs)∩Ri Dt(f(xs), f(xt))

|W1(xs)∩Ri|
. (6.5)

The computation can be made more efficient if not all pixels W1(xs)∩Ri participate in determin-
ing the mean; for instance, one can randomly select a fixed number of pixels from this region, or
take every second pixel.

We assume that the md-feature is a random variable that is normally distributed in each local
window W1(x). At any pixel x we can compute the mean m and standard deviation s of this
random variable in the local window W1(x) from md-features of pixels xs

m =
∑xs∈W1(x)∩Ri md(xs)
|W1(x)∩Ri|.

(6.6)

The growing term. The growing force in equations (5.5) and (5.13) was the maximum between
a balloon force term and a similarity term based on properties of the normal distribution. When
using md-features in our experiments, we have found that many boundary pieces are correctly
detected even when computing the similarity term only.

The growing force for a pixel x is thus written using the similarity measure gW1 that depends on
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Figure 6.7.: Local windows and pixels involved in computing md-features. x is the pixel for
which the growing force is to be computed. The local window W1(x) is centered
on x. xs are pixels in W1(x)∩Ri. For each pixel xs, an md-feature is computed by
averaging the distances from the feature vector centered at xs to each feature vector
centered at a pixel xt ∈W1(xs)∩Ri

the md-feature of the pixel x and the mean and variance of this feature in the local window

gW1(x) = 2s(x)−|md(x)−m|. (6.7)

This similarity measure is analogous to the one given for intensity features in Section 4.2.3: the
larger the difference between the local mean of the md-feature and the md-feature of x, compared
to the standard deviation of the md-feature, the less similar the patch f(x) centered on pixel x is
to patches in Ri. When this difference is larger than 2s pixel x most likely does not belong to Ri.

The competing term is fundamental in the framework of region-based active contours. This
term selects the region for which the a posteriori probability of a contour pixel x is highest.
The competition force is computed for a contour pixel x by considering a local window W2(x)
centered at on pixel x. The observations in the local window already have kernel window widths
computed as proposed in subsection 6.2.2. The pdf at feature vector p̂i(f(x)) is determined from
these observations according to the variable kernel density estimator in equation 6.1. The pdf
is estimated for each region Ri in the vicinity W (x) of pixel x. The growing term helps escape
the local minima points where the competition force is very small. Alternatively, the size of
the local window for competition can be varied. If a minimum is not optimal, the contour will
start evolving anew. However, the time to pre-compute distances between feature vectors in each
window increases with the window size exponentially. In our implementation, we choose to
double the size of the local window W2 for computing p̂i every tenth iteration; these iterations
then require more time, since distances necessary for this operation are not pre-computed.

The level-set energy and evolution equation. Having modified the growing term and consider-
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ing the estimate p̂i(f(x)) for the competing term, the energy equation (5.5) is written as follows

E =−
m

∑
i=1

∫ ∫
R

H(Φi)
(
1W

i (x)gW1(x)+(1−1W
i (x)) log p̂i(f(x))

)
− µ

2
|∇Φi|dx. (6.8)

The gradient descent equation that minimizes the energy is similar to the one in (??):

∂Φi

∂ t
= 1W

i gW1 +(1−1W
i )(log p̂i− max

j 6=i,Φ j<0
log p̂ j)−

µ

2
div
(

∇Φi

|∇Φi|

)
. (6.9)

As previously, we consider that region descriptors are constant during gradient descent; other-
wise, we would have to use the shape gradient tool Jehan-Besson and Barlaud (2003) that intro-
duces additional terms in the equations. These, in turn, substantially increase computation time.
According to the gradient descent equation, each contour moves to assimilate pixels similar to
the ones in its interior, and similarity is computed via md-features. Simultaneously, for contour
pieces that are in the vicinity of another contour, the level-sets compete for pixels in between.

The computational advantage of the semiautomatic initialization. The initialization of active
contours with piecewise constant behavior is semi-automatic. The user selects a few pixels in
each region and circles are automatically generated around them, (e.g., see Fig. 6.10,d). In chap-
ter 5, we have discussed that allows flexible segmentation of the same image. Semi-automatic
initialization considerably contributes to the efficiency of the proposed texture segmentation al-
gorithm, making it even faster when compared to global region descriptor methods.

With global region descriptors, automatic initialization is possible if many small initial contours
are spread over the entire image, and, for each, the region index is specified. This means that
competition forces must be computed for a large number of contour pixels. However, kernel
density estimation of the pdf at each contour pixel is computationally very expensive, since every
time a sufficient number of observations must be selected from the global region, and distances
between observed feature vectors and the feature vector of the contour pixel must be calculated.

With the proposed semi-automatic initialization, the initial contours consist of a comparatively
small number of pixels. The number of pixels on the contours becomes largest as contours grow
close to image boundaries. This number is among the smallest in global active contours. The
number of computations in the proposed method is thus substantially reduced and iterations can
be executed much faster. Computation times will be discussed in more detail in the next section.

6.3.1. Implementation Details

We implement the level-set evolution with the fast two-cycle algorithm Shi and Karl (2008). As
far as possible, computations for forces in (6.9) are approximated with integers. An important
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implementation detail refers to the minimum number of samples necessary for computing the
growing and competing terms. The formula of the variable KDE (6.1) requires that the feature
vector where the pdf is evaluated is within the computed kernel window width for the observa-
tion, from any observation that contributes to the estimation. The number of observations that
contribute to the estimation may thus be very small. For instance, this happens when evaluating
the pdf at a feature vector of a pixel close to an edge. The estimated pdf is very unreliable in this
situation.

A more robust evaluation is obtained if we require there be a minimum number of patches f(xs)
around a pixel x such that f(x) is within one kernel window width hs(xs) from the patch at xs, i.e.
|f(x)− f(xs)|< hs(xs). Otherwise, the term is set to zero. In our implementation, p̂i(f(x)) and the
md-feature of x are evaluated with a minimum of 5, respectively 20 such samples. The smaller
the value for the minimum number of samples for the competing term, the higher the chances
that a pixel gets assigned to one of two competing regions, even if in reality is should belong to a
third region that did not yet arrive at the competing site. This often causes incorrect detection of
some small boundary pieces. The higher the value of this number, the more holes form between
regions, at an image boundary, since pixels close to edges have a decreased similarity to their
respective region. The smaller the value for the minimum number of samples for estimating the
md-feature, the more randomly the growing term behaves because the information contained in
the md-feature is not reliable. The larger this value, the growing term will be slowed down in its
evolution as the degree in which image patches vary gets larger.

An image is processed in a multi-scale setting where the image pyramid has two level. Level-set
evolution in the higher level mostly corrects the details of the segmentation on the smaller image.

6.4. Segmentation of Natural Images

The segmentation method proposed in Section 6.3 based on texture descriptors presented in
Section 6.2 was tested on natural color images. Images are represented in the CIE Lab color
space. The last two images in Fig.6.10 were taken from the Berkley image database (Berkley,
2008) and the first three were selected because of the imaged subjects. All local windows are
square-shaped and they have the same size for all segmented images. The size of the side of
the window W2 for determining the region-competition force is largest and is set to 31px (W2 =
31px). The size of the window W1 for computing the md-feature is set to 21px, like in chapters 4
and 5, (W1 = 21px). The size of the local window V for determining kernel window widths was
set to 21px (V = 21px). Distance between pairs of patches were pre-computed in local windows
of size 31px; the distance structure for each image can be thus initialized in a few seconds.

At the image border, all local windows are cropped to fit into the image. Feature vectors for
pixels near the border have fewer components than within the image because they are generated
from patches because they are also cropped.
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Local descriptors were created from patches of size 5×5px in the intensity channel and 3×3px
in each color channel. For the leopard image patches of size 3×3px in each channel proved to
be a better descriptor for regions in the image. The parameter hmax was set to 600 for the first
two images, 400 for the third and 300 for the fourth in Fig.6.10. Image d) of each row shows
the intensity-coded size of window width h j(x) for the respective image; widths were scaled for
presentation purposes, with dark pixels representing small widths. Pixels with large h j(x) can
be observed at boundaries between objects, but also within regions, when the patch size does
not capture texture properties best, e.g. the ground in the second image where there are large
variations in texture scale due to stones. On one hand, this suggests that variable window widths
can capture data properties well; on the other, image size and object textures influence widths
computation and this is reflected in having to somewhat adjust hmax. However, the goal of future
research is to compute hmax from the data, similar to approaches for computing a fixed window
width Awate et al. (2006).

Previously, we have imposed a condition that energy terms are evaluated from a minimum num-
ber of patches and this has two effects. First, some image elements remain in region R0 because
their visual appearance is not similar to any of the regions within contours, e.g. the stone under
the prairie dog in the second image. Second, the growing term reliably stops when there is a
sudden change in appearance even in the absence of a competing contour. This is the case for the
region above the cat (first row), the one above the polar bears (third row) and the "pirate eye" of
the mouse. What seems to be a glitch in the segmentation, contains the subject’s tail and some
other objects, which on a closer look are not identifiable with certainty. Note that these errors
are very few, although the segmented images are difficult. Because local descriptors were used,
the two bears were accurately segmented into two different regions; this would have not been
possible with global descriptors.

For processing, two levels for an image pyramid are computed. The sizes of images at the lowest
level are 300×217px, 284×420px, 212×180px. 284×420px and 284×420px. For these images,
distances for the local sampling strategy are computed on average in 5 seconds and one iteration
for evolving level-sets takes on average 0.5 seconds. For global level-sets, 3 minutes per iteration
were reported for a 256×256px image Awate et al. (2006) (we measured 2 minutes per iteration
on our machine for a similar but simpler method). Commonly, at least tens of iterations are
needed. Our method is thus two orders of magnitude faster than a global one and it requires
minimal user interaction. When p̂i is evaluated from samples in 2W2 where distances are not
pre-computed computation time increases to 35 seconds, on average.

To summarize, we have presented and demonstrated very good segmentation results on natu-
ral images using level-sets driven by region descriptors from image patches. Their probability
distributions in a local image region is estimated with a variable kernel estimator. For this es-
timator, we compute the window width hs at a pixel xs by finding a good value k for selecting
the kth local nearest neighbor of the patch at xs. To achieve short computation times, a patch’s
probability is also evaluated locally, from samples taken from a window around the patch. For
the same purpose, initialization is semi-automatic. As a result, our local method is two orders of
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a) b) c) d)

a) b)

c) d)

Figure 6.8.: Results of the proposed segmentation method on natural images selected due to the
photographed subjects: a) level-set initialization; b) level-sets at an intermediary
evolution step; c) final segmentation; d) image with the intensity-coded size of h j.
Images a) to d) for the same picture are referred to in the text as "a row". (Please
zoom in in the electronic version for more details.)

magnitude faster than a global one involving global initialization and sampling. The drawback of
local methods compared to global ones, is that their associate energies have more local minima
where level-sets may get trapped. To deal with this issue, we use active contours with a special
property: different contour pieces may behave in different ways, one piece may grow while an-
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a) b)

c) d)

Figure 6.9.: Results of the proposed segmentation method on natural images selected due to the
photographed subjects: a) level-set initialization; b) level-sets at an intermediary
evolution step; c) final segmentation; d) image with the intensity-coded size of h j.
Images a) to d) for the same picture are referred to in the text as "a row". (Please
zoom in in the electronic version for more details.)

other contour piece is competing with neighboring level-sets. To create the growing term, we
have designed a one-dimensional mean-distance feature that is approximately locally Gaussian
and that correctly finds most of the boundaries. However, a formal justification missing, a better
understanding of md-features is needed. Patch size strongly influences the shape of the PD over
a region. Finding the best patch size for each region and finding the best width hs for each patch
are related issues that still need a solution.
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a) b)

c) d)

a) b)

c) d)

Figure 6.10.: Results of the proposed segmentation method on natural images from the Berkley
image database: a) level-set initialization; b) level-sets at an intermediary evolution
step; c) final segmentation; d) image with the intensity-coded size of h j. Images a)
to d) for the same picture are referred to in the text as "a row". (Please zoom in in
the electronic version for more details.)
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7. Marker free Hand Motion
Measurement with a Multicamera
Vision System

There is something fascinating about science. One gets such wholesale returns of
conjecture out of such a trifling investment of fact.

Mark Twain

This chapter presents a marker free computer vision system for tracking the articulated movement
of hands in order to measure surgical skill. In this system, the hands and arms of a person are
tracked with the help of local region descriptors and fast level sets. The accurate hand and arm
contours are processed to obtain so-called anatomical features, which are the middle of the arm,
the wrist, and the palm. Knowing 2D feature positions in individual cameras, the 3D feature
positions result from employing principles of stereo vision. In our experiments we show that the
anatomical features are sufficient for tracking the trajectory and motion of arms and hands with
the proposed system.

7.1. Hand Tracking: Motivation, Technologies and
Applications

At the sight of a messy room one may start to daydream about possessing a genie. She could
clean the room at the wave of the hand and do the dishes at the blink of an eye (like Major
Nelson’s Jeannie from the image (Jeannie, 2008)). An ideal cleaning machine is the scientific
version of a genie without the communication skills. One question is, how do we rapidly get
our wishes into the machine? Hand gestures constitute an important means of communication,
and they are indispensable to object manipulation. Seeing the hands of a person, most people
would have no difficulties identifying what these sentences mean: “Put that there”, “The dog was
about this size”, “Hold the onion like this and the knife like this”. Hands can be used to grasp,
hold, manipulate, assemble, move, point, show, write, paint, explain, express, caress. They
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can manipulate things, but they can also convey ideas or feelings. 1 Consequently, a machine
that could understand hand gestures would be very valuable. A gesture interface can look very
impressive, as Steven Spielberg’s “Minority Report” illustrates, but its value lies mainly in the
fact that hand motion comes natural and easy.

Already in the early ages of home computers, researchers set out to create
machines that accept hand motion as input. For example, a “Put-that-
there” interface was presented in 1980 (Bolt, 1980). This and other pio-
neering works have shown the difficulty of creating such machines. The
machines first encounter all the difficulties present in computer vision. The
machine must be capable of identifying if and where hands are present in
an image(-stream). Additionally, the application may require that changes
in both hand position and posture are identified and tracked. Hand posture
denotes the configuration of the hand at a given moment in time, i.e. the
bending and position of the fingers and of the palm.

The difficulty of tracking hands with computer vision systems depends on the application’s con-
text, and on what exactly is being tracked. For some applications, it is sufficient to isolate the
region occupied by the hand, while for others it is important to determine if the hand is in one of
few known postures. The most ambitious applications require that the posture of the highly flex-
ible hand be constantly recognized. Concerning the context, tracking the positions of hands is
quite uncomplicated if only a uniform, static background and the hands are visible in the picture.
However, this is rarely the case. Hands are, in general, attached to bodies, which usually exist
in cluttered environments with varying illumination. In such cases, robustly solving the tracking
problem suddenly becomes very difficult. The application designer needs to choose features or
models that best describe the hand in the context and for the type of tracking required by the ap-
plication. In the following we give a short overview of modeling possibilities, while we mostly
reference recent relevant work.

A feature that naturally describes hands is skin color (Kurata et al., 2001; Wu and Huang, 2002;
Kölsch and Turk, 2004b). This feature is modeled as a random variable with a probability den-
sity that needs to be determined. At the same time, one also estimates the probability density of
colors in the background, typically employing the maximum a-posteriori principle. Properties
of image acquisition systems, changes in illumination, and changes in environment cause proba-
bility densities of colors in the background and skin to vary between frames. To make tracking
algorithms more robust, density models for background and skin colors are updated in every
video frame. Algorithms also have to address the problem of learning initial distributions, since
different people have different skin colors. There are various approaches to update color models
and they often incorporate spatial information regarding pixels in the same frame and pixels in
consecutive frames (Kurata et al., 2001). Spatial information between frames may be obtained
by tracking features (Kölsch and Turk, 2004b) or by assuming the hand follows a motion model
(Chang et al., 2005b).

1In fact, some peoples depend on their hands for communication: tie an Italian’s hands and chances are good that
this will interfere with his communication ability.
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Figure 7.1.: Different hand configurations project into very different 2D shapes (Hands, 2008).

When a stereo-camera system is available, depth information may take the role of color, if we
assume that hands are the objects closest to the cameras (Wilson and Oliver, 2003; de la Hamette
and Troester, 2008). In user interaction scenarios, this is a reasonable assumption. Depth in-
formation is gained from depth-map algorithms. The robustness of these algorithms is also in-
creased by incorporating additional sources of information, like motion detected by block match-
ing (Wilson and Oliver, 2003) or color (de la Hamette and Troester, 2008).

Both color models and depth-maps algorithms rely on assumption about the world that are often
not met. We are familiar with issues of statistical modeling from previous chapters, and depth-
map computation constitutes an entire field in computer vision. Many researches have thus opted
to integrate a priori shape information into their algorithms.

The human hand is a system of connected rods with 21 degrees of freedom. It is thus a highly
articulated object. As a result, the shapes it projects on a 2D surface may be very different. Four
such situations are exemplified in Fig. 7.1. In order to model an object of such complexity, one
either restricts the number of postures that can be tracked by the system, or uses very complex,
computationally expensive models that might not be robust.

A simple idea is to learn what a limited number of hand postures looks like

Figure 7.2.: Rectangle
features.

in different environments. Amazingly, this idea has a simple and very fast
solution in the ingenious method by Viola and Jones. (2001b,a). They pro-
pose to simultaneously learn the appearance and shape of an object using
very large sets of very simple features, called rectangle features. Rectan-
gle features are obtained by summing the values of pixels in rectangular
windows and subsequently subtract or add the sums given some configu-
ration. For example, in Fig.7.2, the sums in black rectangles are subtracted
from sums in white rectangles. In this manner, features representative for
a hand posture are learned from examples like the ones in Fig. 7.3. It has been shown that al-
gorithms based on the rectangle features can yield good real-time tracking results, but that they
are also extremely sensitive to rotation and deforming transformations (Kölsch and Turk, 2004a;
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Figure 7.3.: Examples for learning rectangle features for different hand postures in different en-
vironments (Kölsch and Turk, 2004a).

Barczak et al., 2005).

Another simple idea is to design the application in such a way that it only has to recognize
one hand posture (T. and Weissman, 1995) or one template (O’Hagan and Zelinsky, 2000). For
example, the television control application presented in (T. and Weissman, 1995) compensates
the use of a single hand posture, the opened hand, by providing rich visual interface and rich
visual feedback. However, in many applications one either needs a richer interaction vocabulary,
or one is interested in the exact configuration of the hand joints. In these situations, researchers
construct hand models to help them (Licsar and Sziranyi, 2002).

Simplified models are designed for the needs of the application, and Fig. 7.4 shows four exam-
ples. The model in Fig.7.4(a) uses windows to specify the possible positions of palm and fingers
and their spatial relationship (Abe et al., 2000). The point of reference for this model is the center
of the palm, which is the point farthest away from all detected hand contours. This point is de-
tected using the distance transform, an idea also encountered in (Oka et al., 2002), and it has the
advantage that it is invariant to hand opening and closing. The model is employed in interfaces
for 3D drawing applications (Abe et al., 2000; Oka et al., 2002). Fig.7.4(b) shows a hand model
for television control in cluttered environments (Bretzner et al., 2002). It is based on the view
that palms, fingers, and fingertips look like round or elongated blobs that occur in given spatial
configurations when one, two, three, four or five fingers are shown to the camera simultaneously.
The image shows the configuration for a hand showing three fingers. The cardboard model in
Fig.7.4(c) can track a still hand that simultaneously flexes multiple fingers (Wu et al., 2001a),
while the model in Fig.7.4(d) can track a pointing hand that is moving very fast. This last model
is constructed using B-spline functions and control points (Isard and Blake, 1998b).

One problem of these simplified models is that they cannot deal with hand rotations and simul-
taneous motion of multiple fingers. Furthermore, the models may identify hand postures when
the posture is in fact not present in the image. To solve these problems, researchers have used
3D hand models. 3D models are not given the full number of degrees of freedom, either by not
constructing a full model, or by fixing some of the parameters. The number of model param-
eters, which specify the degrees of freedom, are constrained to a few, while other degrees of
freedom are ignored or considered constant. Otherwise, the problem of determining the values
of parameters to match the image data would be intractable. For example, the user rests their
hand in a hand-box thus eliminating three degrees of freedom (Noelker and Ritter, 1999). The
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(a) (b) (c) (d)

Figure 7.4.: Simplified hand models. (a) Windows specify the possible positions of fingers rel-
ative to each other (Abe et al., 2000). (b) The hand is composed of circular and
elongated blobs in the shown configuration (Bretzner et al., 2002). (c) The card-
board model approximates each finger by a rectangle (Wu et al., 2001a). (d) The
shape of a pointing hand is estimated using B-splines (Isard and Blake, 1998b).

number of parameters is reduced to 10 by making simplifying assumptions about finger joints
2. The appearance of finger tips is learned and detected using a neural network, and the model
parameters are also determined by neural networks. The authors propose to use the system to
analyze the finger motion of a music conductor.

Natural hand motions do not fully exploit all degrees of freedom. An experimental statistical
analysis of natural hand configuration has shown that most of the feasible hand configurations can
be reached from a set of basis configurations, by linearly combining them (Wu et al., 2001b). As a
result, a 3D-mesh model can be employed to learn various hand configurations and their possible
“deformations” with active shape models (Heap and Hogg, 1996). Fig. 7.5(a) shows such a
hand model and its deformation along the first and second modes of variation. Starting from an
initial configuration, that must be relatively close to the position and posture of the hand in the
image, the model is deformed to match data from video images. Tracking can be achieved if hand
motion between frames is small, since for both model deformation and image data processing,
complex algorithms are needed (Heap and Hogg, 1996; Wu et al., 2001b). For example, transition
probabilities between different hand configurations are modeled with an optimized Bayesian tree
(Stenger et al., 2006), and chamfer matching is used to match the model’s 2D projection to the
image edge map (Thayananthan et al., 2003). The hand model, shown in Fig. 7.5(b), was created
from 3D geometric primitives. Although the model includes all degrees of freedom, in practice
only six of its parameters were allowed to vary simultaneously, since otherwise the algorithm’s
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(a) (b)

Figure 7.5.: 3D hand models. (a) A deformable mesh representation showing the hand mean-
shape and its deformations along the principal variation axes in learning examples
(Heap and Hogg, 1996). (b) A full 3D model created from geometrical primitives
(Stenger, 2004).

complexity grows too large (Stenger et al., 2006).

7.2. Hand Tracking for Surgical Motion Measurement

Our hand tracking application is designed specifically for measuring hand motion during simple
surgical procedures. This section presents first the rationale of this application. Second, it moti-
vates the choice of a different hand tracking approach than the ones overviewed in the previous
section.

A surgeon’s manual skill is vital for the patient and the doctor. As such, training surgeons is
an important, time consuming activity, that involves the assessment of acquired skills. Recently,
computer systems have been introduced to support the search for objective measures of surgical
skill. Two types of systems are widely used to measure hand motion: virtual reality simulators
like MIST-VR (Inc, 2008) or daVinci (Surgical, 2008), or electromagnetic based tracker systems,
like the Imperial College Surgical Assessment Device (ICSAD). Virtual reality systems typically
permit the practice of laparoscopic procedures. The ICSAD system is employed in tracking
conventional procedures, but it requires the trainees to wear a significant amount of gear which
may interfere with their skills.

Our work explores the use of computer vision based hand tracking systems as an alternative to
electromagnetic trackers. Computers eyed with video cameras can monitor a surgeon’s hand
movements while the surgeon is performing simple surgical tasks. The advantages of a computer
vision system refer to comfort and time. The trainee is not required to wear any hardware gear so

2It is know for example that certain hand configurations are not possible, like bending some finger without bending
another.

140



7.2. Hand Tracking for Surgical Motion Measurement

that his movements remain natural and unimpeded. Simultaneously, the trainees need not waste
time by attaching gear to themselves. Saving time is especially important when the users of the
system are surgeons, since these people are notoriously always in a hurry.

Measuring the surgical skill of practicing surgeons using machines is just as important as evalu-
ating the skills of trainees. First, this helps create objective measures for surgical skill evaluation.
Up to present, objective quantities for surgical skill assessment are the number of movements, the
distance traveled by each hand during the procedure and the speed at which movements are exe-
cuted (Datta et al., 2001). The surgeon that executes fewer, less ample movements is considered
rated better than the surgeon that executes more movements.

The example we concentrate on in this work is the simple suturing procedure in conventional
surgery. Motion patterns involved in this procedure include reaching for the needle, position-
ing/holding the needle and inserting/pushing the needle through tissue (Lin et al., 2005). Second,
the analysis of hand motion during surgical procedures provides important information for the
design of laparoscopic instruments.

The motion of hands can be measured by selecting or fixing landmarks on the hand and determin-
ing their 3D position in a sequence of images. In an ideal situation, landmarks would coincide
with the joints of the hand, and their positions would be determined by matching the image data
to a 3D hand model. As discussed in the previous section, a tractable algorithm can be designed
only if the number of parameters in the model is constrained. For determining the constrained
parameter subspace, one needs to acquire a set of learning examples, segment them and estab-
lish the correspondence with the model, while designing a method for dimensionality reduction.
The task proves to be complicated because the hands hold instruments, such that the instruments
occlude parts of the hand, while other hand parts are occluded by the hand itself. Additionally,
different surgeons grasp and hold instruments in different ways, such that their hand configura-
tions may differ considerably. Also, during the procedure, hands rotate such that visible parts
become occluded and occluded parts become visible, leaving the researcher with the problem of
dealing with partial visibility of landmarks.

In order to avoid these problems, we opt for an accurate segmentation of hand contours based on
their appearance described with local region descriptors. Accurate contours are necessary in or-
der to obtain reliable landmarks. We define these reliable landmarks and name them anatomical
landmarks or features. To compute the positions of landmarks in space we use a stereo vision
system. The fact that our system has multiple cameras can be employed to make measurements
more exact. The system functions optimally when hands and arms are in contrast with their im-
mediate background. This requirement can be easily met in the setup we propose if the trainee
or surgeon wears a dark sweater with tucked sleeves. There are no other restrictions to the sys-
tem. Its software and the hardware setup, as well as the necessary technical background in stereo
vision are presented in the following.
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7.3. Multicamera Setup and Principles of Stereo Vision

The setup and methods for marker free motion measurement have been introduced in (Darolti
et al., 2007), and this chapter details both. Surgeons and trainees perform surgical procedures
in a workspace designed for this purpose. The workspace consists of an aluminum rack (120
x 200 x 60 cm) shown in Fig. 7.6. A transparent acrylic glass plate is hinged in the rack and
can be adjusted to reside 90 to 140 cm above ground to yield an optimal working height for the
operator. An object serving as dummy for the surgical procedure is fixed on the plate. Two photo
umbrellas are used to illuminate the scene.

The rack is equipped with six digital monochrome progressive scan BaumerLink iX60-s cameras
(780 x 582 px, 50 frames per second) wearing Pentax H612A-TH lenses. The amount of data
from six color cameras would have exceeded the capacity of the data bus at the time the hard-
ware for the project was aquired. The cameras are accessed through two Baumer PCI-A25 PCI
interface boards (FireWire based) connected to the same desktop computer. Each board hosts
four camera connectors and offers the possibility to synchronize the cameras. The six cameras
can slide along the rack-bars and can be flexibly positioned. The surgical motion can thus be
viewed from multiple different angles - including the "from under the table" view. An example
of viewing the same scene from six different positions is given in Fig.7.6. The figure also shows
the definition of the coordinate system in this setup. In our final setup, the cameras build three
narrow-base stereo-pairs: a pair looks at the scene from the top, one from the left side an one
from “under the table”. Stereo-pairs need to have narrow bases to ensure that the same land-
marks are detected in each camera, as will be explained later in this chapter. First, we define
stereo vision and related terms.

7.3.1. Stereo vision

This chapter gives a concise overview of the principles of stereo vision involved in the proposed
system for the purpose of 3D measurements from 2D points. For an introduction on camera
models and stereopsis see Trucco and Verri (1998). For a detailed treatment of multiple view
geometry and algorithms for computer vision see Hartley and Zisserman (2004). The concepts
used or defined in this section can be found in both references.

The video camera of the hardware setup are modeled as perspective pinhole cameras. Let X be a
point in a 3D world reference frame and let x be the projection of this point in the image reference
frame of the image recorded by a camera. The positions of both points is expressed in homo-
geneous coordinates; for a textbook introduction on homogeneous coordinates see (Hartley and
Zisserman, 2004). For a 3D point X = (X1,X2,X3,X4) expressed in homogeneous coordinates,
the following relation holds: X1/X4 = X2/X4 = X3/X4, and these fractions are the coordinates of
the point in the 3D coordinate system. Analogously, for a 2D point x = (x,y,w) expressed in ho-
mogeneous coordinates, the coordinates in the camera coordinate system are x/w,y/w. Given the
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Figure 7.6.: The hardware setup of the multicamera vision system composed of a rack, six
monochrome cameras and a desktop computer. An example for viewing the same
scenes through the flexibly positionable cameras is also shown.

position of the point in the world reference frame, X ∈ R4, the position of point x ∈ R3 projected
in the camera reference frame can be determined with the help of the 4×3 camera projection
matrix P according to the following system of equations in matrix form

x = PX. (7.1)

The entries in the camera projection matrix P can be determined from n known correspondences
Xi↔ xi, i = 1..n by writing the equations resulting from the equalities xi = PXi.

In general, the image positions x are the ones that are known. Geometrically, all 3D-points on
a line project to the 2D-point. This line, denoted as X(λ ), passes through the camera center,
denoted as C, and the position of x in 3D space, P+x. P+ is the pseudo-inverse of matrix P
(Hartley and Zisserman, 2004). The equation for this line, known as back-projection line is
written as

X(λ ) = P+x+λC, (7.2)

where λ is the parameter that describes the line.

To determine the position of a particular point on this line, addition information must be gained
from a second camera. A system of two or more cameras constructed for this purpose is a stereo
system. The ambiguity of seeing a point through a single camera is illustrated in Fig.7.7(b).

Both images in this figure illustrate the geometry of a stereo system. The cameras are indicated
by their centers C and C′ and by their image planes in Fig.7.7. A space point X and its images x
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(a) (b)

Figure 7.7.: Stereo geometry: point correspondences and epipolar lines (Hartley and Zisserman,
2004) p.220. See text for explanation.

and x′ define a plane named epipolar plane, denoted in the figure as π . This plane is alternatively
defined by two lines that lie in this plane (Fig. 7.7(b)), and that can be determined from a single
projection point x. One of the lines is the back-projection line for point x. The other one is the
image of the back-projection line in camera C′, which is known as the epipolar line for point x,
and is denoted in the figure with l′. The corresponding point for point x, denoted as x′, must thus
lie on this line. Knowing x′, and the projection matrices of the two cameras P and P′ completely
determines the position of the 3D-point X, as shown by the dotted line in Fig.7.7(b).

Triangulation is an ancient, well-known method for determining the 3D-point X knowing its
images x and x′ in the two cameras. The method relies on the straight forward observation
that the back-projection lines through x and x′ intersect at point X. In practice, these lines do
not intersect due to measurement errors, and triangulation algorithms must compensate for this
issue.

The needed camera projection matrices are determined by camera calibration methods. Cameras
may be calibrated independently, however calibrating the stereo pair simultaneously has the ad-
vantage of determining the orientation of the cameras in the same world reference frame. Camera
orientation is one of the components of a camera’s projection matrix, and it is given by camera
rotation and translation with respect to the origin of the reference frame. The other component is
a transformation that maps image points to 3D-points in the camera reference frame which has
its origin at the camera center C. Camera lenses typically distort the recorded image. In order
to correct the image, it is necessary to determine the parameters of the distortion assuming it can
be described by a radial and a tangential model (Trucco and Verri, 1998).

A calibration object with known geometry (e.g. a checker board) is imaged by the stereo pair
to start the calibration process. The calibration object should enable a fast automatic detection
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Figure 7.8.: The formulation of the multiple camera calibration problem (Svoboda et al., 2005a).

of corresponding images of the same 3D point. Once correspondences are known, the system of
equations can be solved for the parameters of the projection matrices. One must ensure sufficient
correspondences have been found to create an over-determined system. The system must be
over-determined so that one can compensate for measurement errors, as explained for example
in the textbook (Hartley and Zisserman, 2004).

7.3.2. Multiple camera calibration

Calibrating the cameras in the multiple camera setup two by two would involve a large amount
of hand work. This is not practicable, since cameras can be easily displaced, invalidating the
calibration matrices. Svoboda et al. (2005a) proposed a method for simultaneous calibration of
multiple cameras, accompanied by a piece of free software available at (Svoboda et al., 2005b)).
The calibration object is a punctual light source constructed from a laser pointer. The points
necessary for calibration are obtained by simply waving the calibration point through the volume
viewed by the cameras. The set of equations projecting the point in each camera can be written
for each calibration point, as illustrated in Fig. 7.8.

To solve the set of equations according to theoretical results from the field of self-calibration
methods, the software robustly tackles some practical problems. The software starts by solv-
ing the image processing problem of finding the images of the calibration point in the recorded
images. In an ideal setting, the calibration point is the only bright object in a dark room. Its pro-
jection will be larger than one pixel, thus being an measurement error source which disturbs the
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calibration process. The calibration routine is thus iterative. It starts by estimating the projection
matrices, the distortion parameters and the 3D calibration points from all detected 2D points. It
then iteratively discards 2D points that do not fit the model by RANSAC analysis (Hartley and
Zisserman, 2004) and recomputes calibration parameters.

The software also provides a routine for reconstructing the ge-

Figure 7.9.:

ometry of imaged objects based on a routine presented in (Hart-
ley and Zisserman, 2004). Fig. 7.9 shows the geometry of the
reconstructed waved motions executed in a calibration experi-
ment with the setup proposed in this chapter. One may observe
that the results of the calibration are not aligned with the world
reference systems: the cameras denoted in the figure by 0 and
1 are the top cameras in the setup, but in the figure they appear
on the side. This is because the software uses the relative po-
sitions of recorded points, not their absolute one. The software
can align the result of the calibration with the setup’s world ref-
erence frame, if the user provides the positions of three cameras
in this frame. For measuring motion, the absolute position of
the reference frame for the calibration is irrelevant. However,
the results can be controlled better if they are displayed in a
meaningful world reference frame.

7.3.3. Image rectification

Given a stereo camera pair, and a 2D-point x in a camera im-

Figure 7.10.: Rectified cam-
eras(Fusiello
et al., 2000).

age, epipolar geometry ensures that its corresponding 2D-point
x′ in the other camera lies on the epipolar line of point x. As a
practical matter, one wants a fast and simple method for deter-
mining the image pixels which lie on this line. When camera
image planes in a stereo pair are parallel, the image of a cam-
era’s center in the other camera is at infinity, and hence, the
epipolar lines are parallel, as shown in Fig. 7.10. This means
that the epipolar lines are image rows, if the epipolar lines are
horizontal, or image columns, if the lines are vertical (Hartley
and Zisserman, 2004).

In general, two cameras will not have parallel image planes.
The idea behind rectification is to construct two new projection
matrices from the old ones such that the cameras defined by the
new projection matrices have parallel, horizontal (or vertical)
epipolar lines. The recorded images are rectified to create the image that would have been ob-

146



7.4. Marker Free Hand Motion Measurement

tained if the cameras had indeed have parallel image planes. The rectifying image transformation
is computed from the new projection matrices. In this work, the new projection matrices and the
rectifying transformation were computed with the compact algorithm proposed by Fusiello et al.
(2000).

7.4. Marker Free Hand Motion Measurement

The measurement of hand motion with the designed computer vision system does not occur in
real time due to computational requirements. As a result, the suturing procedure executed by a
trainee or surgeon is recorded from the six perspectives offered by the six cameras. The frames
in the video streams are compressed using the ffmpeg library (ffmpeg, 2005) before they are
saved. Images can thus be saved at a rate of approximatively 18 frames per second (fps) with
image quality loss that makes hand contours slightly unsharp. Short videos of the background
are recorded for each camera, additional to the recorded suturing procedure. Image processing
for motion measurement starts with these saved video streams. The steps and components of the
measurement methods can be seen in Fig. 7.11.

Videos recorded by a camera pair are rectified frame by frame according to Section 7.3.3. As
a result, the epipolar lines of the rectified images are parallel and horizontal. A background
subtracted image is computed for each frame to provide additional information for contour ini-
tialization and tracking. Accurate contours of hands are segmented and tracked in each video
independently using active contours based on local region descriptors. The segmented frames
are processed to detect the 2D positions of anatomical features in each frame. Since the calibra-
tion matrix of the multiple camera system is known, the 2D positions are corrected to account
for the lens distortion, and are then used to triangulate the 3D positions of the landmarks in each
frame using the reconstruction routine according to the methods described in Section 7.3.2.

7.4.1. Accurate Tracking of Hand and Arm Contours

Due to different viewing conditions, methods for segmenting images from the side cameras need
to be more robust than those for segmenting images from the top cameras.

In the top cameras the contrast between hands and their immediate background is large, since
the trainee or surgeon wears a dark sweater. We thus assume that the skin surface will appear
as patches of light intensity in the recorded images. Other light patches viewed by the cameras
may be almost entirely eliminated by background subtraction. For this purpose an average back-
ground image is computed from the background recording. Exemplary background and original
images are shown in Fig. 7.12 (a) and (b).

The background image is subtracted from each processed frame, and pixels in the result are set
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Figure 7.11.: The steps of the marker free hand motion measurement method (see text for
details).

to 0 if the absolute value of the difference is smaller than 10. Fig. 7.12(c) shows a typical result
for this operation. We see that most of the hands’ surfaces are preserved in the background-
subtracted image, but so are parts of the sweater. To retain only the lightest patches which occur
on the hand, the image is segmented with an adaptive threshold. To compute the threshold, we
assume the existence of two classes of pixels in the image and and determine the value that
separates the two classes such that the intraclass variance is minimal.
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(a) (b)

(c) (d) (e)

Figure 7.12.: Background subtraction and threshold segmentation as means of obtaining initial
contours: (a) background image, (b) original image, (c) background subtraction
result or difference image, (d) adaptive threshold segmentation of the difference
image. (e) Typical initial contours for segmenting hands in a video frame.

The result of adaptive threshold segmentation on image 7.12(c) is shown in Fig. 7.12(d). Only the
largest two connected components are retained from the binarized thresholded image. Additional
iterated erosion ensures that initial contours are well inside the hand surface and no other objects
have been wrongfully enclosed in the contours.

In the first frame, an initial rectangular contour slightly smaller than the image is evolved in the
binary image toward the two retained patches (the speed at a contour pixel is zero only if the
pixel is white). Exemplary start rectangular contour and found initial contours are shown in Fig.
7.12(e). The final hand contours in this frame are evolved according to the threshold segmented
difference between the subsequent frame and the background to initialize the segmentation in the
subsequent frame.

In each frame, initial contours are evolved toward the boundaries of the hands using the motion
driven by local region descriptors plus balloon force, as described in Section 4.2.2 by the equation
of motion (4.3). The regions occupied by palms holding instruments are difficult to segment
accurately in all frames. Segmentations can be improved by subsequently evolving the curve
according to the maximum likelihood equation (4.2), since the contours are already in the vicinity
of hand boundaries. The implementation is the one described in Sections 4.3 and 4.4.2. Each of
the videos recorded by the top cameras is segmented independently. Fig. 7.13 shows segmented
frames from the top stereo camera pair at two different time steps (one row shows one time
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Cam 1 Cam 2

Figure 7.13.: Accurately tracked hand contours in the top cameras: images from two different
time steps (one row shows one time step).

step). The frames are taken from a video recorded while a suturing procedure was executed by a
visceral surgeon.

7.4.2. Anatomical features for markerless tracking

Hand motion can be measured if we track the position of landmarks on the hand. We define
anatomical features as follows: the middle of the forearm near the elbow, the middle of the wrist
and the center of gravity of the palm. These features have the important advantage that they
stay visible in all cameras as hands rotate during the procedure. However, to ensure that both
cameras in a stereo pair detect approximately the same anatomical features, the distance between
cameras must be rather small in order to provide very similar views of the scene. Since images
are rectified to have parallel horizontal epipolar lines, corresponding anatomical features should
be found on the same image line.

Looking at a hand and forearm we observe that the forearm near the elbow is widest and the wrist
is narrowest in the direction of the bones (radius and ulna). The orientation of hand and forearm is
determined by computing the ellipse that has the same second moments as the segmented hand,
as shown in Fig. 7.14. We consider the orientation of this ellipse to be the orientation of the
hand. The pixel coordinates of the forearm’s middle are then at the middle of the perpendicular
to this orientation, where the hand is widest. The middle of the wrist is at the middle of the
perpendicular where the hand is at its narrowest. The palm center is computed as the center of
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Figure 7.14.: Detection of anatomical features.

gravity of the palm and fingers.

To approximate the width of the segmented hand, the distance transform of the segmented con-
tour is computed as illustrated in Fig. 7.14. The pixels with highest and the lowest values in the
distance transform will be anatomical feature candidates. Starting from the forearm we traverse
the distance transform in the computed orientation while pixel values increase. The middle of
the forearm is found when values start decreasing. Continuing along this direction, the middle
of the wrist is found when values start increasing again. In some particular frames, this may be
past the actual wrist, and we thus limit the maximum length of the forearm to 180px.

One must note that the positions of anatomical features can be reliably detected only if the seg-
mented hand contours are accurately tracked, since in many frames the difference in width be-
tween forearm and wrist are very small. Anatomical features detected at two time steps on the
hands of a vascular surgeon during the suturing procedure are shown in Fig. 7.15 (one row shows
one time step). The position of the detected anatomical features in space is finally triangulated
knowing the system’s calibration matrices.

7.5. Experiments and results

A visceral surgeon, a vascular surgeon, and two trainees have executed suturing procedures while
being recorded with the computer vision system presented in this chapter.

Parameters for the right and left hand were set slightly differently to obtain optimal tracking
accuracy. For both hands the smoothing Gaussian kernel was 5×5 pixels (standard deviation of
1.5) (as in 4.4.2). For the right hand the window size of the local region descriptor was 11px and
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Cam 1 Cam 2

Figure 7.15.: Detected anatomical features at two time steps of top video streams (one row shows
one time step).

the balloon force was λ = 5 (as in 4.4.2). Although acceptable results were obtained for the left
hand using these parameters for most frames, for some other the contours leaked. This problem
could be solved while improving the accuracy of the segmentation by setting the balloon force
to λ = 7 and a window size of 15px. The need for different parameters is caused by different
illumination of the two hands, due to the fact that the rack was stationed perpendicularly to a
window and the photo umbrellas could not compensate for this.

Multiple trials were recorded for each system user. The first 100 frames of each video stream
were processed to detect the contours of each hand. Only a few frames per video showed partly
incorrect arm boundaries. The accurate detection of fingers is more problematic due to strongly
shadowed regions, making the center of gravity of the palm a little less reliable than the other
two anatomical features. Hand contours and anatomical features were displayed in the original
video frame as illustrated in Fig. 7.15 to enable the experimenter to visually verify the results.
This experimenter mostly agreed with the results.

The triangulated 3D positions of anatomical features have been plotted for each subject. The
results for the two surgeons and one trainee are presented in a comparative fashion. Fig. 7.16
shows in 3D plots the positions of anatomical features for the visceral surgeon on the left and the
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Vascular surgeon Trainee

Figure 7.16.: Plots showing the 3D positions of anatomical features in the working space.

trainee on the right. The middle of the forearm is shown in red, the middle of the wrist in blue
and the center of gravity of the palm in green. Unsurprisingly, the plot shows that the trainee
has moved his hands more than the surgeon - the points in the plot on the left are much more
scattered.

The 3D scatter plot gives a general impression about the distance traveled by the hands, but it
does not allow us to analyze the details of the motion. For this purpose, one can plot the XYZ
coordinates of each measured point independently as in Fig. 7.17. The figure shows one of the
recorded procedures executed by the visceral surgeon on the left and the similar data for the vas-
cular surgeon on the right. Plotting each spatial coordinate against time yields different curves
for the two surgeons. Comparing the X- and Y-coordinates, it can be observed that the vascular
surgeon has more ample motions at the beginning and end of the procedure, but very steady mo-
tions for both hands in between. The core of the procedure is performed by the visceral surgeon
with more ample motions than those of the vascular surgeon. One may be tempted to assume
that the amplitude of motion skilled surgeons is proportional to their object of work. Since our
sample consists of only two observations, we should refrain from drawing such conclusions. We
may observe that the Z-coordinate plots show many jumps. This is due to the geometry of the
setup in which the top cameras are oriented almost parallel to the define XY-plane.
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Figure 7.17.: Plots showing the individual coordinates of anatomical features for the visceral
surgeon (on the left) and vascular surgeon (on the right). From left to right and
top to bottom: X-coordinate visceral, Z-coordinate visceral, X-coordinate vascular,
Y-coordinate visceral, Z-coordinate vascular, Y-coordinate vascular against frame
number. Each plot shows the coordinates for both left and right hands.
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I was born not knowing, and I have had very little time to change that here and there.

Richard Feynman

Computer vision is a very challenging research field with applications in industry, surveillance,
entertainment, medical care, research in biology or archeology, and many others 1. The goal of
researchers is to create methods that accomplish vision tasks as robustly as human vision, but
the latter generally outperform the proposed vision algorithms. Take for example the basic edge
detection task: human vision is still the best edge detector there is. There is thus much room for
improvement in computer vision methods.

The contributions of this thesis are in the field of image segmentation using region-based active
contours. We have introduced two novel ideas in this field. First, we have proposed that contour
evolution should be driven by local statistics instead of global ones. Specifically, local statis-
tics have been incorporated into the concept of local region descriptors employed to construct
energies associated with active contours. Since these energies have many local minima, along
with local region descriptors we have introduced segmenter functions to reduce the number of
local minima by assuming that image features are locally normally distributed. The properties
of the proposed concept have been determined and analyzed in numerous image segmentation
examples.

Second, we have proposed to construct energies from spatially-variant definitions of energy
terms. This is equivalent to a mechanism for selecting the type of force that acts upon the contour
at each point. The idea was exemplified for multiple contours where forces were defined assum-
ing that features are locally normally distributed, or that their local distribution is best modeled
with kernel density estimators.

The multiple contours are initialized requiring minimal user input - a few clicks on the objects to
be segmented. Important user knowledge about image regions can thus be input into the method
effortlessly and very fast. The proposed force selection algorithm was robust in various gray
and color image segmentation experiments. Combining the two proposed ideas with the semi-
automatic initialization we obtain a powerful, flexible framework for image segmentation which

1It might be shorter to list all the domains where computer vision cannot be applied, than to list all domains where
it can
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has been demonstrated in two applications.

First, we have segmented complex natural images using texture information. Texture was de-
scribed by estimating the nonparametric statistics of image patches modeled as Markov Random
Fields. This type of modeling has only recently been applied to texture segmentation and was
proven to be extremely time intensive (Awate et al., 2006; Wolf et al., 2006). Due to the local
nature of the proposed framework, segmentation time can be considerably shortened. In our
experiments, the results were obtained two orders of magnitude faster than with global methods.

Second, the ideas proposed in Section 4 have been employed to track the hands of surgeons in
stereo system setup. The advantage of the proposed system is that hand motion can be measured
without using markers. Instead, anatomical landmarks, like the middle of the arm and wrist, are
tracked. This helps saving time and eliminating the problem of visual markers that go out of the
sight of a camera.

Both definitions of local region descriptors and of spatially-variant forces are dependent on man-
ually selected parameters which are the sizes of local windows. In our experiments we have
found good values for these parameters. This proves that our approach can be successful in
many situations, however it does not guarantee it. In our experiments we slightly varied some
of the parameters (the smoothness force, the balloon force and the sizes of windows) to improve
the results of segmentation for different images. The empirically determined parameter values
we have experimented with will probably not be appropriate for all possible images. A very
important direction for future work is thus to determine the window sizes from the image data.
This will raise difficult issues concerning the criteria employed for determining parameters, as
well as computation time.

The proposed methods yield the same results for various initializations, but not all initializations
will lead to correct segmentation results. One must also consider that our initializations contain
user knowledge. However, computer vision methods should ultimately be fully automatic. Active
contours based on global region descriptors have the advantage that they can be initialized fully
automatically. It seems logical to combine local and global region descriptors to evolve the active
contour. Global information could also be used in validating the values of computed parameters.
Since initialization and parameter estimation are very difficult issues, the method will probably
have to be more than a linear combination of global and local energy terms.

Another direction of research is the implementation of the proposed methods in 3D. Local feature
statistics are computed from values, irrespective of the dimension - 2D or 3D - of the object
described by the features. The fast level-set implementation is easily extended to 3D (as stated
by the author of the fast level-set method in our personal correspondence). This direction of
research is thus fairly straight forward to explore.

Considering the directions for future exploration, and the results presented in this thesis, one may
conclude that the introduced local methods are a novel, promising approach in the difficult field
on image segmentation, with state-of-the-art results in concrete applications.
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A. Appendix I

In this appendix, we give a solution for finding the minimum of the following energy:

E(Φ, p) =−
∫ ∫

R

(
H(Φ)g( f ,θW )−µ|∇H(Φ)|

)
dxdy. (A.1)

To find the optimum Φ, the Euler-Lagrange equations for the level set function must be derived.
For this purpose, it is common to assume that the parameters of g do not depend on Φ. To derive
the variation of Φ, consider replacing Φ by Φ + εψ where ε is a very small number. Since E
is minimized by Φ, ∂E(Φ+εψ)

∂ε
= 0 for ε = 0. Because of H ′(x) = δ (x), we have |∇H(Φ)| =

δ (Φ)|∇Φ|. According to the chain rule, this partial derivative can be written by simultaneously
substituting ε = 0 (and thus obtaining ∂E

∂Φ
):(

∂E
∂Φ

,ψ
)

=−
∫ ∫

R
gδ (Φ)ψ−µ

(
δ
′(Φ)|∇Φ|ψ +δ (Φ)

∂ |∇(Φ+ εψ)|
∂ε

)
dxdy (A.2)

The last partial derivative is written by substituting ε = 0:

∂ |∇(Φ+ εψ)|
∂ε

=
1

2|∇(Φ+ εψ)|
+

∂

∂ε

(
(Φx + εψx)2 +(Φy + εψy)2

)
(A.3)

=
1

2|∇Φ|
2(Φxψx +Φyψy) =

∇Φ∇ψ

|∇Φ|
.

By plugging this term into (A.2) and integrating it by parts we obtain:(
∂E
∂Φ

,ψ
)

=−
∫ ∫

R
gδ (Φ)ψ−µ

(
δ
′(Φ)|∇Φ|ψ +δ (Φ)

∇Φ∇ψ

|∇Φ|

)
dxdy (A.4)

=−
∫ ∫

R
gδ (Φ)ψ−µ

(
δ
′(Φ)|∇Φ|ψ−div(δ (Φ)

∇Φ

|∇Φ|
)ψ
)

+
∫

∂R

δ (Φ)
|∇Φ|

∇Φnψds
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where n is the outward normal vector to ∂R. We can write

div(δ (Φ)
∇φ

|∇φ |
) =

∂

∂x

(
δ (Φ)

Φx

|∇Φ|

)
+

∂

∂y

(
δ (Φ)

Φy

|∇Φ|

)
(A.5)

= δ
′(Φ)

Φ2
x

|∇Φ|
+δ (Φ)

∂

∂x

(
∇Φ

|∇Φ|

)
+δ

′(Φ)
Φ2

y

|∇Φ|
+δ (Φ)

∂

∂y

(
∇Φ

|∇Φ|

)
(A.6)

= δ
′(Φ)|∇Φ|+δ (Φ)div

(
∇Φ

|∇Φ|

)
. (A.7)

By substituting (A.7) in (A.5)(
∂E
∂Φ

,ψ
)

=−
∫ ∫

R

(
gδ (Φ)+ µδ (Φ)div

(
∇Φ

|∇Φ|

))
ψdxdy+ µ

∫
∂R

δ (Φ)
|∇Φ|

∂Φ

∂n
ψds. (A.8)

This partial derivative must be zero for all ψ , and thus we must have δ (Φ)(g + µk) = 0, where
we denote by k the term div

(
∇Φ

|∇Φ|

)
. The gradient descent in time for Φ can then be written:

Φt = H ′(Φ)(g+ µk), (A.9)

with Φ(x,y,0) = Φ0(x,y), (x,y) ∈ R and boundary conditions δ (Φ)
∇Φ

∂Φ

∂n = 0 on ∂R.
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The normal and curvature of a curve C(x,y) can be expressed in term of the level-set function Φ.
In this appendix we demonstrate the equivalences.

The zero level-set of Φ is the implicit representation of C(x(s),y(s)), and thus Φ(C(s), t) = 0.
Taking this expression’s derivative with respect to s, we have

∂Φ

∂ s
= 0 on C ⇔Φx ·xs +Φy ·ys = 0. (B.1)

We have used the chain rule for the equivalence. The equation above means that ∇Φ is perpen-
dicular to (xs,ys), which is the tangent to C. Taking the level-set function to be positive inside
the curve and negative outside, the outward normal is − ∇Φ

|∇Φ| .

The outward normal~n is also written as −(−ys,xs), thus

−(−ys,xs) =−
(

Φx

|∇Φ|
,

Φy

|∇Φ|

)
. (B.2)

The formula for the curvature is derived starting from the signed curvature’s definition using the
derivative of the tangent

Css = (xss,yss) = k ·~n. (B.3)

Since ∂Φ

∂ s is zero on C, ∂ 2Φ

∂ s2 = 0. Let us denote the dot product of two vectors < a,b >. The
equality is written out using the chain rule

∂

∂ s
(Φxxs +Φyys) = Φxx · x2

s +Φxy · xsys +Φyy · y2
s+ < ∇Φ,Css > . (B.4)

One can further write by replacing (B.2) and (B.3) in (B.4)

(Φxx · xs +Φxy · ys)xs +(Φxy · xs +Φyy · ys)ys = k < ∇Φ,− ∇Φ

|∇Φ|
> (B.5)(

Φxx
Φy

|∇Φ|
−Φxy

Φx

|∇Φ|

)
Φy

|∇Φ|
+
(
−Φxy

Φy

|∇Φ|
+Φyy

Φx

|∇Φ|

)
Φx

|∇Φ|
=−k · |∇Φ|. (B.6)
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The term |∇Φ| can be factored out on the left, such that finally

ΦxxΦ2
y−2ΦxyΦxΦy +ΦyyΦ2

x

(Φ2
x +Φ2

y)3/2 |∇Φ|=−k · |∇Φ|, (B.7)

and thus

k =−
ΦxxΦ2

y−2ΦxyΦxΦy +ΦyyΦ2
x

(Φ2
x +Φ2

y)3/2 =−div(
∇Φ

|∇Φ|
). (B.8)
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C. From Formulas to Implementation

This appendix lists the steps from the curve evolution formula to its implementation.

Take the following curve evolution for the curve represented by the level-set function φi:

∂φi

∂ t
= H ′(φi)

log pi− max
j 6=i,H(φ j)>0

(
log p j

)
︸ ︷︷ ︸

Statistics f orces

+
µ

2

(
div
(

∇φ

|∇φ |

))
︸ ︷︷ ︸

Smoothness f orce

 . (C.1)

To implement this equation, one must first initialize the contour. The initial position of the
contour is used to initialize the level-set function φi, usually computing the distance transform of
the binary image of the contour. The level-set function φi is negative on the inside, positive on
the outside of the contour, and zero on the contour.

To modify the position of the contour, one updates the level-set function, according to the force
that acts upon it, composed of statistics and smoothness force. When the force is positive, pos-

Figure C.1.: Level-set function and the derivative of the Heaviside function. The level-set func-
tion is negative inside, positive outside on the outside of the contour and zero on
the contour. The Heaviside function decreases to zero, thus the level-set function is
modified only around the zero level-set (φi = 0).

v



C. From Formulas to Implementation

Figure C.2.: Level-set function and the derivative of the Heaviside function. The level-set func-
tion is negative inside, positive outside on the outside of the contour, and zero on
the contour. The Heaviside function decreases to zero, thus the level-set function is
modified only around the zero level-set (φi = 0).

itive values are added to φi. This happens at positions where H(φi) is strictly positive, which is
around the zero level-set. The curve is thus moved inwards.

In the fast level-set implementation, the level-set function φi is a piecewise constant function.
This function is updated by computing only the sign of the data and smoothness forces that act
upon the contour. The contour is also represented by the two lists, the list of inner points in dark
gray and the list of outer points in light gray. The sign of the forces is computed for each point
in these lists. By convention, if the speed is negative at an inner list point, the curve is moved
inward, as is shown, for example, at point B. At point A in the outer list the speed is positive and
the curve is moved outward.
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D. Formula Glossary

I The image to be segmented
(x,y) = x The position of an image pixel

R The image domain (the domain of indexes of pixels x and y )

Ri A region in the image, delimited by an active contour

N The total number of image regions, thus i = 1..N

C, Ci An active contours

L The length of the active contour

Ci j A piece of an active contour lying between regions Ri and R j

~n,~ni The normal to the contour

k, ki The curvature of the contour

u(x) A smooth approximation of the image I∫
C ds Smoothness term of the curve C, parametrized by arc-length s

f(x) Value of (computed) feature at pixel x

pi The pdf that describes the variability of a feature (vector) in region Ri

θi Parameters of the pdf pi∫∫
Ri

log pidx Data term

t Artificial time variable for curve evolutions

φi Level-set function representing curve Ci

H(x) The Heaviside function

|∇φ | The normal of the zero level-set (the curve) in terms of the level-set function

div
(

∇φ

|∇φ |

)
The curvature in terms of the level-set function
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Dorettoy, G., Cremersy, D., Favarozy, P., and Soatto, S. (2003). Dynamic texture segmentation.
In IEEE Int. Conf. Comp. Vis.

Duda, R., Hart, P., and Stork, D. (2001). Pattern Classification. Wiley.

Dunn, D. and Higgins, W. (1995). Optimal gabor filters for texture segmentation. IEEE Trans.
on Image Processing, 4:947 – 964.

xi



Bibliography

Ecabert and Thiran, O. (2002). Variational image segmentation by unifying region and boundary
information. In 16th International Conference on Pattern Recognition.

Efros, A. A. and Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In Int.
Conf. on Comp. Vision.

Esedoglu, S., Ruuth, S., and Tsai., R. (2005). Threshold dynamics for shape reconstruction and
disocclusion. In Proc. Int. Conf. Image Processing, page 502Ű505.
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Xie, X. and Mirmehdi, M. (2004). Rags: Region-aided geometric snake. IEEE Trans. on Image
Processing, 13:640Ű652.
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