SPEEDING UP XML QUERYING

Satisfiability Test & Containment Test of XPath
Queries in the Presence of XML Schema Definitions

Dissertation

by
Jinghua Groppe

Liibeck, Germany, July 2008

Jinghua Groppe

Institut fiir Informationssysteme

Universitit zu Liibeck

Ratzeburger Allee 160

D-23538 Liibeck

Germany

E-Mail: Jinghua.Groppe @ifis.uni-luebeck.de

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

der Technisch-Naturwissenschaftlichen Fakultit

der Universitit zu Liibeck

in Deutschland

Dekan: Prof. Dr. Enno Hartmann
Gutachter: Prof. Dr. Volker Linneman
Prof. Dr. Walter Dosch

Tag der Promotion: 9. Juli 2008

My intelligence comes from my mother
My interest in study comes from my mother
My character comes from my mother

ACKNOWLEDGEMENTS

I would like to express my thanks to all of the people, who once gave me help,
support, encouragement and happy times in my study, in my live and in my
work not only in our PhD work. However, it is a pity that I cannot mention
each of them.

I would like to thank Professor Volker Linneman for supervising my disser-
tation. Without the supervision of Professor Linneman, I could not have had
my promotion examination today.

I would especially like to thank Professor Franz Rammig in the University
of Paderborn in Germany. Professor Rammig opened to me the gate of becom-
ing a scientist, and paved a way for my dissertation. Without Professor Ram-
mig, I could not have finished my dissertation today.

I also want to thank our colleges in the institute of information system of
the University of Liibeck in Germany: Professor Linneman, Angela, Anke,
Jana, Sven, Christoph and Nils, for the invaluable presents, they give me when
I pass the promotion examination. The doctorate cap, I will keep forever.

I also want to thank our ex-colleges, especially the members in Advanced
Design System group in C-lab/Paderborn University in Germany, for a pleasur-
able and fruitful work in this group.

I also want to thank my friends in Paderborn: Dr. Yuhong Zhao, Dr. Hongbi
Zhang, Dr. Bo Bu and Miss Hui (Hellen) Liang for the friendship, the help and
the happy time they gave me.

I would once again like to thank Dr G. Dick van Albada in the University of
Amsterdam. Dr. Albada not only supervised my master thesis, but also helped
to bring about a quick finish of various management procedures such that I can
begin the work as a scientist in the University of Paderborn in time. I also want

to thank Dr Kamil Iskra and Dr Zhiming Zhao once again for the help, which
they gave me in my master study.

Many thanks to my family for the love, which it has been giving me no mat-
ter where I am and no matter what I do.

Many thanks as well to my parents-in-law and my sister-in-law and her
family for their wonderful presents.

Special thanks to my husband Sven and my son Nils. Sven gives me a fam-
ily and a happy life such that my heart is not lonely and does not wander. In
the three years of from finding out the topic to pass the promotion examina-
tion, Sven plays with our son in many weekends and evenings such that I can
work on papers; behind me Sven lifts his “hurry up” stick over my head such
that I have to run up my dissertation. Because of Nils, I do not almost have any
own time after picking him up from the kindergarten. However, my son be-
stows my work and life so much meaning. Let us work hard to build an eternal
peaceful and beautiful world for Nils and for all the children.

Liibeck, Germany, July 2008 Jinghua Groppe

ABSTRACT

This dissertation develops approaches to testing the satisfiability and the con-
tainment of XPath queries in the presence of XML Schema definitions in order
to speed up XML querying.

XML provides a simple yet powerful mechanism for information storage,
processing and delivery, and is a widely used standard data format. XPath is a
basic language for querying XML data, and is embedded into many W3C stan-
dards, e.g. XQuery, XLink, XML Schema, XForm and Schematron, for ad-
dressing XML data. Therefore, XPath optimization plays a key role in speed-
ing up XML query processing. The satisfiablity test and containment test of
XPath are two important issues in XPath optimization.

An unsatisifable XPath query selects every time an empty result. Therefore,
the application of the satisfiability test can avoid the unnessesary submission
and the unnecessary evaluation of unsatisfiable queries, and thus can save que-
rying costs. In programming languages, which embed XPath, like XOBE
[Kempa and Linnemann 2003a], the satisfiability test can enable an efficient
development of more robust applications by avoiding extensive tests and run-
time failures caused by unsatisfiable queries. The satisfiability test can also
speed up the execution of codes by the pre-computation of an empty result at
compile time. Furthermore, the XPath satisfiability test plays an important role
in other applications, e.g. XML access control [Fan et al. 2004], type-checking
of transformations [Martens and Neven 2004] and XPath-based index update
[Hammerschmidt et al. 2005].

The containment of XPath is another key factor for XPath evaluation.
XPath containment can be used to minimize XPath expressions to speed up
query evaluation. When using views to answer queries, the containment test is
the underlying technique to decide if a new query can be answered using the
results of previous queries. Using views to answer queries can significantly
improve the performance of XPath processing, and reduce the communication
and query costs by significantly decreasing shipped data, since part of query

evaluation has bee done when computing the cache, and since the partial or
even the whole answer to the new query is already available at client side.
XPath containment can also find its applications in inferring the keys of XML
Schema and in testing the satisfiability of XPath queries.

Since the high complexity of XPath queries, it is not trivial to develop effi-
cient approaches to checking XPath satisifiability and to checking XPath con-
tainment when schemas, especially recursive schemas, are in presence. [Choi
2002] shows that recursive schemas are often used in the real world. The exist-
ing solutions to XPath satisfiability consider only some subsets of XPath axes
and non recursive schemas. In this thesis, we propose an approach to XPath
satisfiability in the presence of XML Schema definitions, and support all
XPath axes, and recursive as well as non-recursive schemas. Since XPath con-
tainment has a high complexity under constraints, there is lack of work on
practical solutions to this issue. In this work, we develop an approach to check-
ing XPath containment under constraints of XML Schema definitions.

Furthermore, we develop a data model for XML Schema and an XPath-
XSchema evaluator based on the data model. We as well suggest an approach
to rewriting and optimization of XPath expressions according to schemas. Our
XPath-XSchema evluator evaluates XPath queries on an XML Schema defini-
tion, in order to check satisfiability and containment of XPath expressions with
respect to the schema. We present a complexity analysis of our XPath-
XSchema evalutor, which proves that our approach is efficient at typical cases.
We present an experimental analysis of our satisfiability tester, which proves
the optimization potential of avoiding the evaluation of unsatisfiable queries.
We prove the correctness of our approach to XPath containment, and analyze
the complexity of our approach. We develop a prototype of our containment
tester and the experimental results show the efficiency of our approach.

Contents

Chapter 1 Introduction 1
1.1 MOTIVALION .ttt ettt et s 1
L1l XPAtN ittt 2

1.1.2 Satisfiability of XPath qQUETIESccoceererriiriiiniinienieeeceeeeeeee 3
1.1.2.1 XPath satisfiability in the presence of schemas..........c.ccceceeueeee. 4

1.1.3 Containment of XPath qUETIesccoceeveeriiriinienienieneeeeieseeneene 5
1.1.3.1 XPath containment under the constraints of schemas 6

1.1.4 XML SCheMA.....coiiriiiniiiiiiieiieiie ettt st 7

1.2 CONLIIDULIONS ...ttt 9

1.3 Organizationcc..cecueeierieenieenieenieeie ettt ettt e st etesaeseesiee e 10

1.4 Test system and data............coeereeriiniiiiinienieeeeeeeeee e 11
Chapter 2 XML Technologies 13
2.1 XMLttt et 13
2.1.1 XML hiStory and VIITUESccceerueererieriereenieenieeieeirenieesieenieenieenees 13

2.1.2 XML dOCUIMENLScuvereriiieiieiieieeieete sttt ettt e e 14

2.2 XML SCREIMA ..ttt ettt e 16
2.2.1 XML Schema definitionsc..ceveererieriereeneeniieieeienresieenieenieenes 16

2.3 XPath JangUAZE ...c..ccoueerieeriiiiiiieiieneeeeeete ettt st 20
2.3.1 XPath data model..........ccocueiieniiniiiiiiiiieieeeeeeee e 21

2.3.2 XPath @XPressions......ccceeierieriienieenenieiieneenieenieete et siee e 23

2.4 XOBE: An XML-embedding language...........ccocvevvereeneenernenneeneeneenne 25
Chapter 3 Data Model for XML Schema 29

R0 B\ (o157 15 To) 1 WU PRRRRRRRRRRPNY 29

ii Contents

RN (0] 7: 15 () 1 -SSR P RRRRRRRRRRPNY
3.3 CONCEPLS -ttt ettt ettt et et et ettt sbeesbe e be e e e et emeesaeesbeenee
3.4 FUNCHOIS .evvvvveieeeeeeeiiiee e eeeette e e e eeeaae e e e e e eeeeataareeeeeeeesataaseeeeeeesnssrnnees

Chapter 4 XPath-XSchema Evaluator
4.1 Schema PathiS.......cooeeviiiiiiiiiniiieee ettt
4.1.1 DefiNition ..c..ccuiiuieiiiiiiiiiiiieneeececee et e
4.1.2 EXAMPIE ..ottt sttt
4.2 Computation of schema pathscc.ccocerieriininiiniinieneeeeecee e
4.2.1 Evaluating XPath eXpressions........ccccceveeverienieneeneenennenneeneeneenne
4.2.2 Evaluating axes and NOAE-tESESccoueevuerririenienieneeieeienieseeneenne
4.2.3 Evaluating prediCatesc.uevuereenienieenienienienienieenieenieeieseeseesieenae
4.2.4 Integrating data type checkingc..ceceevierienienienennennenie e
4.2.5 Integrating occurrence constraints checking.........ccocceeceeverveeneeneenne
4.2.6 Filtering redundant schema pathscccccecvevienieniiniincnnciiineene
4.3 CompleXity analySiscccueeverierierierrienienteneenteeteete sttt

Chapter 5 XPath Rewriting
5.1 Mapping schema paths to (regular) XPath EXpressions.......c.ccoccceceeneene
5.2 Optimizing mapped (regular) XPath EXpressionscc.ccceceevervieneeneenne

Chapter 6 XPath Satisfiability Tester
6.1 A framework of the satisfiability teSter.........cccceecverieniineinenniiiciieneee
6.2 Filtering XPath queries not conforming to schema constraints................

6.2.1 Performance analysiscocceeeereererienienieneeniceieeteeeesee e
6.2.1.1 XPath QUETIEScovereieiieiieiieiieniieeeeeeee et
6.2.1.2 Filtering queries with incorrect semantics and structures..........
6.2.1.3 Filtering queries not conforming to data-type or occurrence
COMSIIAINLS ..cuiuviiieiieiieiieieiete sttt s s
6.2.1.4 Filtering queries with redundant schema pathsc..cc..c......
6.2.1.5 Measuring the overhead of evaluating satisfiable queries.........

6.3 Filtering XPath queries with conflicting constraintsccocceeeereeneenne

43
44
44
46
54
55
55
58
60
64
68
70

73
73
76

iii

6.3.1 Performance analysisccocceverviirieneinennienienieneeneeneee st 101
6.3.1.1 XPath QUETIES ...cooueriiriiiriieiieiieieeieetesteseeeeeee et 102

6.3.1.2 Filtering queries with conflicting constraintsc..ccoceeveenne 103
Chapter 7 XPath Containment under XML Schema Definitions............... 113
7.1 Problem studied.........cccoueviiriiiiriininiiieicieiene e 114
7.2 Normalization of schema pathsccccecevieniiniinienncnineeceeene 116
7.2.1 Filtering redundant schema paths of predicates..........cc.ccevueruereenne 116

7.2.2 Shifting schema paths of predicates backwards..........ccccceeereeneene 117

7.2.3 Combining schema paths of predicates..........ccocueveereerennenicneenne 121

7.3 Containment of schema paths........cccccecevierieniiniincnciecececee 122
7.3.1 Re-presentation of schema paths..........ccoceevercierienieniininncnicneene 122

7.3.2 Properties of schema paths........c..ccoceeveeniriiniiniinieneeececeee 123

7.3.3 ContaiNmENt tEStcceevuiruiriieiiriieiieieieie sttt 125
7.3.3.1 Concepts and Propertiesc..cecueeuervereeneeneeniernenreeneeneenne 125

7.3.3.2 Schema path 1 e, 127

7.3.3.3 Schema path" ™ 1 131

7.3.3.4 Attribute axes and comparison predicatesc..ceeerreereeneenne 134

7.4 Performance analysiS.........ccoceeveereenierienienieniencee ettt 135
T4 1 XPath QUETIESeeuviriieiieiieieeieite sttt st 135

7.4.2 ContaiNmENt tEStcceevuiruiriieririeiieieieie sttt 137
Chapter 8 Related Work 141
8.1 XPath evaluationccccceeieieieniiniiiiiieiceceee e 141
8.2 XPath reWITHNG ..c..eeuviiiiieiieiieieeicecete sttt 141
8.3 XPath satisfiabilityccceceerieniiiiiiiiieeeeeee e 143
8.4 XPath CONtAINMENTc..ocueruiiiiiiiiiiiiiere e 144
Chapter 9 Conclusions 147
9.1 FUture WOTK ..c..coiiiiiiiiiiiiiiiienccccceee e 148

Benchmark.xsd 149

iv Contents

References

Publications

Journal papers......c..ccoceevueenene

Conference/Workshop papers

Index

159
169
169
170

173

Chapter 1 Introduction

In this chapter, we motivate our proposed approaches, describe our scientific

contributions and explain the overall organization of the dissertation.

1.1 Motivation

As XML becomes increasingly popular as a language for data storage, auto-
matic exchange and processing, larger and larger as well as more and more
data are stored using XML. Table 1.1 presents several XML datasets with
large data sizes. Therefore, speeding-up query processing of XML data be-
comes increasingly important. In this work, we focus on the satisfiability test
and the containment test of XPath queries with respect to XML Schema defini-

tions.

Table 1.1: Examples of large XML datasets

(compressed)

XML datasets Data size Reference
Computer science bibliography | 389 Megabytes | [Trier 2007]
Protein sequence database 683 Megabytes | [Washington 2008a]
SwissProt knowledgebase 419 Megabytes | [UniProtKB 2008a]
(compressed)

Tremble knowledgebase 2.64 Gigabytes | [UniProtKB 2008b]
(compressed)

UniRef50 database 730 Megabytes | [UniRef 2008a]
(compressed)

UniRef90 database 1.09 Gigabytes | [UniRef 2008b]
(compressed)

UniRef100 database 1.34 Gigabytes | [UniRef 2008c]

2 Chapter 1 Introduction

1.1.1 XPath

XPath [W3C XPath1.0 1999][W3C XPath2.0 2003] is a language for address-
ing the information in an XML document by navigating through elements and
attributes in the XML document. As well as being a standalone XML query
language, XPath is also embedded in other XML languages, e.g. XSLT,
XQuery, XLink and XPointer, for specifying node sets in XML documents.

XQuery [W3C XQueryl.0 2004][W3C XQueryl.0-XPath2.0 2004] is an
XML query language, which uses XPath expressions to identify and extract
elements and attributes from XML documents. XQuery 1.0 and XPath 2.0
share the same data model and support the same functions and operators.
XPath 2.0 is a subset of XQuery 1.0.

The XST Transformations language (XSLT) [W3C XSLT1.0 1999][W3C
XSLT2.0 2003] is used to transform an XML document into another XML
document, or another type of document, like HTML [W3C HTML4.01 1999]
or XHTML [W3C XHTMLI1.0 2002]. XSLT uses XPath expressions to define
parts of the source document, which should match one or more predefined
templates.

The XML Pointer language (XPointer) [W3C XPointer1.0 2001] defines
how individual parts of an XML document are addressed and is an extension
and customization of XPath. XPoint uses XPath to build URI references that
reference parts of XML documents. Based on XPath features, URI references
can address individual points and elements as well as lists of elements, attrib-
utes or character data.

The XML Linking Language (XLink) [W3C XLink1.0 2001] is an XML
markup language used for creating hyperlinks in XML documents. The URI
references in XLink can contain an XPointer, which in turn contains an XPath
expression. XPath is also used in other W3C specifications such as XML
Schema [W3C Schemal 2004] and XForms [W3C XForms1.0 2007].

Therefore, XPath is an important construct in these W3C's standards, and
optimization of XPath is fundamental for speeding up XML querying in all the
instances of these languages. Automatic optimization techniques have been
developed and have been used for decades in database management systems
for the deductive (e.g [Bancilhon et al. 1986], [Levy at el. 1995] and [Behrend
2003]) and relational (e.g. [Jarke and Koch 1984], [loannidis 1996] and
[Chaudhuri 1998]) worlds. Different from the query languages for relational
databases, XPath supports complex navigational paths and qualifiers. It is not

1.1 Motivation 3

trivial to develop efficient XPath evaluators and all major XPath engines have
a high runtime complexity [Gottlob et al. 2002]. Therefore, there is a need to
logically optimize XPath queries. The satisfiability test and the containment
test of XPath queries are two important issues in logical XPath optimization.

1.1.2 Satisfiability of XPath queries

An XPath query is satisfiable if there is an XML document on which the
evaluation of the XPath query returns a non-empty result; an XPath query is
unsatisfiable if the evaluation of the query on any XML document returns
every time the empty answer. Therefore, using the satisfiability test can avoid
the submission and unnecessary evaluation of an unsatisfiable query, and thus
can save processing time and users’ cost. In addition, the XPath satisfiablity
test is important for consistency problems, e.g. XML access control [Fan et al.
2004], type-checking of transformations [Martens and Neven 2004], and
XPath-based index update [Hammerschmidt et al. 2005].

The satisfiability test of XPath queries also plays an important role in proc-
essing of programming languages, which embed XML constructors and XML
query languages, e.g. XOBE [Kempa and Linnemann 2003]. XOBE is a Java-
based programming language to process XML data conforming to a given
schema, and is developed by the Institute of Information Systems of the Uni-
versity of Liibeck in Germany. XOBE embeds XPath to access and select
XML data. Application of the XPath satisfiability test to the programming of
the embedding languages can generate more efficient and more robust pro-
grams. If an XPath expression is detected as unsatisfiable, some computations
can be already done at compile time, and thus greatly speed up program proc-
essing at run-time. If an unsatisfiable XPath expression is not allowed, then the
satisfiability test can help to find errors at compile time to avoid run-time fail-
ures and extensive tests. The runtime tests are hard to be exhaustive, so even
an extensive test can not guarantee the complete correctness. Therefore, the sa-
tifisfability test of XPath queries enables a fast development of reliable XOBE
applications.

Therefore, many research efforts focus on the satisfiability test of XPath
queries with or without respect to schemas, e.g. [Benedikt et al. 2005],
[Groppe and Groppe 2006a], [Groppe and Groppe 2006b], [Groppe and

4 Chapter I Introduction

Groppe 2006c] [Groppe and Groppe 2008], [Groppe and Linnemann 2008],
[Hidders 2003], [Kwong and Gertz 2002] and [Lakshmanan et al. 2004].

1.1.2.1 XPath satisfiability in the presence of schemas

In the absence of schemas, the satisfiability test can detect two kinds of errors
in XPath queries:

e The first kind of errors is that the structural properties of XPath queries are
inconsistent with the XML data model

¢ the second kind of errors is that the constraints from an XPath expression it-
self are inconsistent with each other

For example, the XPath query Q1=/following-sibling::a is unsatisfiable, be-
cause Q1 contains one of the first kind of errors, i.e. the root node / has no sib-
ling node according to the XML data model. The query Q2=//person/age is
tested as a satisfiable XPath query without respect to schemas. However, ac-
cording to a given schema, e.g. the schema (see the appendix benchmark.xsd) in
[Franceschet 2005], the element person does not have a child age. Thus, Q2 is
unsatisfiable with respect to the schema.

The XPath query Q3=a[@v>2][@v<1] is unsatisfiable since Q3 contains the
second kind of errors, ie. ~@v>2 is contrary to @v<1.
Q4=//catgraph/+[parent::x[not(edge)]] is satisfiable because Q4 conforms to the
XML data model, and contains no visible conflicting constraints. However, if
Q4 is rewritten to /site/catgraph/edge[parent::catgraph[not(edge)] according to a
given schema, e.g. the one (see the appendix benchmark.xsd) in [Franceschet
2005], and is further optimized to /site/catgraph[not(edge))/edge by eliminating
reverse axes, then Q4 is unsatisfiable with respect to the schema. (We call Q4 is
a query with hidden conflicting constraints.)

Therefore, we can detect more errors in XPath queries if we additionally
consider schema information. We focus on the satisfiability test of XPath que-
ries in the presence of the schemas formulated in the XML Schema language
[W3C Schemal 2004] [W3C Schema?2 2004].

Since XPath supports a number of navigational axes and complex qualifi-
ers, it is not trivial to develop efficient satisfiability testers of XPath queries,
when the constraints from schemas have to be considered. [Benedikt et al.
2005] theoretically shows that the complexity of XPath satisfiability depends

1.1 Motivation 5

on the considered subsets of XPath queries and schemas, varying from PTIME
to undecidable when the considered subsets of XPath and schemas increase.
They also show that for some subsets of XPath, the complexity of the satisfi-
ability problem is much lower without respect to schemas than with respect to
schemas, and the presence of recursive schemas and negation in XPath queries
finally lead to the undecidability of XPath satisfiability.

Existing approaches to XPath satisfiability support only partial features of
the XPath language and schemas. [Kwong and Gertz 2002] and [Lakshmanan
2004] support some subsets of XPath axes and allow non-recursive schemas.
We develop an approach to XPath satisfiability, which supports all the XPath
axes, recursive as well as non-recursive schemas and negation operation in
XPath. The satisfiability test for the XPath subset supported by our approach in
the presence of the schemas supported by our approach is undecidable
[Benedikt et al. 2005]. Therefore, we present an incomplete, but fast satisfi-
ability tester, i.e. if our tester returns unsatisfiable, then we are sure that the
XPath query is unsatisfiable, but if our tester returns maybe satisfiable, then
the XPath query may be satisfiable or may be unsatisfiable.

1.1.3 Containment of XPath queries

Given two XPath queries Q1 and Q2, if for any XML document the result of
applying Q2 is a subset of the result of applying Q1, then Q1 contains Q2, de-
noted as Q12Q2. XPath containment plays an important role in query optimi-
zation and other applications, e.g.

e in XPath minimization [Amer-Yahia et al. 2001] [Furfaro and Masciari
2003] [Wood 2001]: An XPath expression can not be minimal unless no
part is contained by other parts of the XPath expression. Since the size of
XPath expressions is a determinant of XPath processing performance,
minimizing XPath expressions can speed up XPath querying.

* in using views to answer queries [Balmin et al. 2004][Xu and Ozsoyoglu
2005]: Views store the results of previously answered queries in order to
answer succeeding queries faster by reusing these results. The result of a
query cannot be used to answer a new query unless the new query is con-
tained by the answered query. Using views to answer queries is important

6 Chapter 1 Introduction

in many applications. In the context of query optimization, it can speed up
query processing since parts of query evaluation have been done when
computing views. This has a special benefit for the query languages like
XPath, which have high complexity of computation. In the context of que-
rying over network and client-server architectures, it can reduce the com-
munication and query cost by significantly decreasing shipped data since
parts or even all of the answer to the query is already available at the cli-
ent. Using views to answer queries also plays a key role in database design
and data integration.

¢ in inferring the keys of an XML Schema definition: If an XPath expres-
sion Q is defined as a key for an XML Schema definition, then all the
XPath expressions, which are contained by Q, are also the keys of the
schema.

® in testing the satisfiability of XPath: all the XPath expressions, which are
contained by an unsatisfiable XPath query, are unsatisfiable, too; all the
XPath expressions, which contain a satisfiable XPath query, are satisfi-
able, too.

e In database programming languages, which embed XML constructors and
XML query languages: application of containment tests can improve the
execution of programs by minimizing the XPath expressions and using the
results of previous queries to answer new queries.

Therefore, many contributions deal with the problem of XPath containment
with or without respect to constraints, e.g. [Deutsch and Tannen 2001], [Mik-
lau and Suciu 2004], [Neven and Schwentick 2003], [Schwentick 2004] and
[Wood 2003].

1.1.3.1 XPath containment under the constraints of schemas

The XPath containment under schemas has a high computational complexity
compared with the XPath containment without schemas. For example, Q1=a[b]
does not contain Q2=a without respect to any constraints. However, if a con-
straint specifies that b must occur if a occurs, then Q1 is equal to a semanti-
cally, denoted as Q1=a, and thus Q12Q2 under this constraint. If Q3=a/b[c] and
Q4=a[b/d]/b, then Q3 does not contain Q4 without respect to any constraints.

1.1 Motivation 7

However, if a schema defines that b can occur at most once then Q4=a/b[d], and
if the schema also specifies that if d occurs then ¢ must occur, then Q32Q4
with respect to the schema. The containment of XPath under schema con-
straints, even for XPath queries with only child axis and predicates, denoted as
XPath"” ' is coNP-complete [Neven and Schwentick 2003][Wood 2001].
[Wood 2003] identifies that containment of XPath"" " is intractable under
schemas. The intractability of the containment for XPath"" "' under schemas
comes from the fact that inferring even some simple constraints from some
schemas seems to be intractable [Wood 2001].

Existing works on XPath containment under integrity constraints and DTDs
mainly theoretically study the complexity and decidability of XPath contain-
ment. Since XPath containment has a high complexity under constraints, there
is lack of contributions to practical solutions to check XPath containment.
Therefore, in this thesis, we fill this gap by developing a practical algorithm to
test XPath containment in the presence of constraints formulated in XML
Schema definitions. Our approach can support the reverse axes and the axes
depending on the document order. The complexity and decidability of XPath
containment, when these axes are allowed, are still unknown. Since the high
complexity of containment test and the intractability of inferring even some
simple constraints from a schema, we present a fast but incomplete approach to
XPath containment in the presence of schemas. Given two XPath queries Q1
and Q2, our containment tester returns that Q1 contains Q2, or that Q1 maybe
does not contain Q2.

1.1.4 XML Schema

The schema languages for XML define the XML documents by specifying the
structure, semantics and data types of documents. XML documents are not
necessarily associated with a schema. However, XML documents together
with its schema become self-descriptive, and can generate more robust applica-
tions. Therefore, many XML documents are provided with a schema, and
many applications and tools to process XML data require that all processed
documents follow a given schema like [Sun 2001], [Microsoft 2001], [Exolab
2001] and [Oracle 2001]. Therefore, we study the satisfiability test and the
containment test of XPath queries in the presence of schemas.

8 Chapter 1 Introduction

There is a number of XML schema languages available, like DTDs [W3C
XML1.0 2004], XML Schema [W3C Schemal 2004] [W3C Schema2 2004],
RELAX NG [OASIS 2001], Schematron [ISO Schematron 2006], XML-Data
[W3C XML-data 1998], Examplotron [Vlist 2003] and DSD [Moeller 2002].
There is also a number of articles introducing and comparing different XML
schema languages, e.g. [Lee and Chu 2000], [Vlist 2001] and [Wikipedia
2007].

DTDs, XML Schema and Relax NG are considered as the primary XML
schema languages, each of which has its own advantages and disadvantages.
RELAX NG is an OASIS RELAX NG Committee specification, released in
May 2001. RELAX NG has many advantages of XML Schema and DTDs, and
it also has some own advantages, e.g. it can define the document element of
XML documents. However, the use and the support to RELAX NG are not
widespread compared with the other two.

W3C’s DTDs [W3C XMLI1.0 2004] and XML Schema [W3C Schemal
2004] [W3C Schema?2 2004] are two widely used and supported XML schema
languages. DTD is the earliest schema language for XML, and widely sup-
ported. DTDs are compact and highly readable and can be defined inline.
However, DTDs are primarily structural in nature. DTDs have limited support
for defining the type of data, and do not have ability to specify specific and
precise data types above and beyond character data. Therefore, DTDs can not
meet the requirement in describing XML structures and contents more pre-
cisely.

As well as imposing the constraints of structure and semantics on XML
documents as DTDs do, the XML Schema language provides powerful capa-
bilities for specifying more concrete data types on elements and attributes,
most of which are not expressible in DTDs. The XML Schema language pro-
vides a large number of built in simple types and allows deriving new types for
values of elements and attributes, which are only specified to be character data
in DTDs. Thus, if the type of values of elements or attributes in an XPath
query does not conform to constraints specified in the XML Schema defini-
tion, the XPath query selects an empty set of nodes for any valid XML docu-
ment. For example, the query meeting[@date="01-05-06"] does not retrieve any-
thing if the type of the attribute date is declared to have the format DD-MM-
YYYY. Therefore, the powerful data-typing facilities supported by XML
Schema provide another dimension for the satisfiability test of XPath queries.
Since XML Schema can express more restrictions than a DTD, a DTD can be

1.2 Contributions 9

easily transformed into an XML Schema representation, but in general, an
XML Schema definition cannot be transformed into a DTD without loosing in-
formation.

Furthermore, the schemas written in the XML Schema language are XML

documents, but the syntax of DTDs is completely different. Therefore, XML
Schema can leverage various tools that have been built around XML, but
DTDs can not.

1.2 Contributions

The main contributions of this thesis include:

We develop a data model for the XML Schema language, which identifies
the navigational paths of XPath queries on an XML Schema definition by
mapping the parent-child, preceding-sibling and following-sibling relations
in instance XML documents to the corresponding relations in an XML
Schema definition. This model is the basis of evaluating XPath queries on
XML Schema definitions

We develop an XPath-XSchema evaluator, which evaluates XPath queries
on an XML Schema definition based on the data model of the XML
Schema language, and returns a set of schema paths. The schema paths in-
tegrate the constraints imposed by the schema, and thus provide means to
check the satisfiablity and containment of XPath queries with respect to
schemas. Our approach supports all XPath axes and recursive as well as
non-recursive schemas. We define the formal semantics of the XPath-
XSchema evaluator and analyze the complexity of our approach, which
proves the efficiency of our XPath-XSchema evaluator at the typical cases.
We develop a prototype of the XPath-XSchema evaluator, which shows the
efficiency and usability of our evaluator.

We develop a satisfiability tester of XPath queries to speed up query proc-
essing. Based on the schema paths of queries, our satifiability tester filters
the XPath queries, (a) which do not conform to the constraints of seman-
tics, structure, data type and occurrence imposed by an XML Schema defi-
nition, and (b) which contain visib