Entwicklung eines Operationsgerätes
zur minimal-invasiven Fascia lata-Entnahme

Inauguraldissertation
zur
Erlangung der Doktorwürde
der Universität zu Lübeck

- Aus der Medizinischen Fakultät -
vorgelegt von

Rolf Hartmann
aus Wolfenbüttel

Lübeck 2007
1. Berichterstatter: Priv.-Doz. Dr. med. Martin Russlies

2. Berichterstatter: Priv.-Doz. Dr. med. Peter Benecke

Tag der mündlichen Prüfung: 23.05.2007

Zum Druck genehmigt. Lübeck, den 23.05.2007

gez. Prof. Dr. med. Werner Solbach

-Dekan der Medizinischen Fakultät-
Inhaltsverzeichnis

Abkürzungsverzeichnis ... 4
Abbildungsverzeichnis ... 5

1 **EINLEITUNG** .. 7
1.1 Einführung ... 7
1.2 Anatomie und Funktion der Fascia lata und des Tractus iliotibialis 8
1.3 Konventionelle Fascia lata-Entnahme .. 10
1.4 Minimal-invasive Fascia lata-Entnahmen ... 12
1.5 Zielsetzung und Anforderung der eigenen minimal-invasiven Entnahmetechnik 14

2 **MATERIAL UND METHODEN** ... 15
2.1 Material ... 15
2.1.1 Chemikalien ... 15
2.1.2 Geräte ... 15
2.1.3 Ver- und Gebrauchsmaterialien .. 15
2.1.4 Versuchspersonen .. 15
2.2 Methoden .. 16
2.2.1 Entwicklung eines Fascia lata-Fixationssystems ... 16
2.2.1.1 Theoretische Überlegungen und Vorversuche ... 16
2.2.1.2 Erprobung .. 17
2.2.2 Entwicklung einer Fascia lata-Nahtmethode ... 20
2.2.2.1 Theoretische Überlegungen und Vorversuche ... 20
2.2.2.2 Vergleich zweier Nahtmethoden ... 21
2.2.3 Entwicklung eines Prototypen zur Fascia lata-Transplantatentnahme 23
2.2.3.1 Theoretische Überlegungen und Vorversuche ... 23
2.2.3.2 Erprobung .. 25

3 **ERGEBNISSE** .. 31
3.1.1 Erprobung eines Fascia lata-Fixationssystems ... 31
3.1.2 Vergleich zweier Fascia lata-Nahtmethoden ... 31
3.1.3 Erprobung eines Prototypen zur Fascia lata-Transplantatentnahme 33

4 **DISKUSSION** .. 35
4.1 Minimalinvasität ... 35
4.2 Operationsrisiko ... 35
4.2.1 Nervenschädigung ... 35
4.2.2 Gefäßschädigung und Hämatombildung .. 36
Inhaltsverzeichnis

4.2.3 Muskelschädigung ... 36
4.2.4 Fasziennahtinsuffizienz .. 36
4.2.5 Wundheilungsstörungen und Infektion 37
4.3 Autotransplantatqualität ... 38
4.4 Operationsdauer ... 38
4.5 Gerätezuverlässigkeit und Funktionalität 39
4.6 Vergleichsdiskussion mit anderen Geräten 39
4.7 Kritische Bewertung der Transplantation von Fascia lata- und Tractus iliotibialis-Anteilen ... 40
4.8 Schlussfolgerung ... 42

5 ZUSAMMENFASSUNG ... 43

6 LITERATURVERZEICHNIS .. 44

7 ANHANG ... 48
7.1 Technische Zeichnungen ... 48
7.1.1 Spannbacken .. 48
7.1.2 Prototyp Fascia lata-Transplantatentnahme 49
7.1.2.1 2D-Zeichnungen ... 49
7.1.2.2 3D-Schemazeichnung ... 52

8 DANKSAGUNG .. 53

9 LEBENSLAUF .. 54
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lsg.</td>
<td>Lösung</td>
</tr>
<tr>
<td>M.</td>
<td>Musculus</td>
</tr>
<tr>
<td>N</td>
<td>Newton</td>
</tr>
<tr>
<td>NaCl-Lsg.</td>
<td>Natriumchlorid-Lösung</td>
</tr>
<tr>
<td>RSTL</td>
<td>engl: relaxed skin tension lines</td>
</tr>
<tr>
<td>USP</td>
<td>United States Pharmacopoeia</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. 1-1 Seitansicht auf den Tractus iliotibialis ... 9
Abb. 1-2 Lagerung und Hautschnitt .. 11
Abb. 1-3 Faszienschnitt .. 11
Abb. 1-4 Transplantatentnahme ... 11
Abb. 1-5 Fasziennaht ... 11
Abb. 1-6 Wundverschluss ... 11
Abb. 2-1 Umlenkstab- und Fixationsrolleneinlage .. 17
Abb. 2-2 Faszienmobilisation (a) .. 17
Abb. 2-3 Faszienmobilisation (b) .. 17
Abb. 2-4 Fasziennaht ... 17
Abb. 2-5 Lagerung und Markierung .. 18
Abb. 2-6 Zugangswege und Hautschnitte ... 18
Abb. 2-7 Dissektion ... 19
Abb. 2-8 Faszienschnitte ... 19
Abb. 2-9 Umlenkstabeinlage ... 19
Abb. 2-10 Umlenkstablage ... 19
Abb. 2-11 Fixationsrohreinlage ... 19
Abb. 2-12 Fixationsrohrlage ... 19
Abb. 2-13 Anschlingung .. 20
Abb. 2-14 Verschluss der Fixationsrohre .. 20
Abb. 2-15 Spannbacken-Halterung .. 23
Abb. 2-16 Zugversuch (a) ... 23
Abb. 2-17 Zugversuch (b) ... 23
Abb. 2-18 Zugversuch (c) ... 23
Abb. 2-19 Faszienfixation ... 24
Abb. 2-20 Fasziennahtbearbeitung ... 24
Abbildungsverzeichnis

Abb. 2-21 Verschlussprinzip .. 26
Abb. 2-22 Hebeprinzip ... 26
Abb. 2-23 Instrumentarium ... 27
Abb. 2-24 Geräteeinlage ... 27
Abb. 2-25 Gerätelage ... 27
Abb. 2-26 Geräteöffnung .. 27
Abb. 2-27 Geräteverschluss (a) ... 27
Abb. 2-28 Geräteverschluss (b) ... 27
Abb. 2-29 Gabeleinlage ... 28
Abb. 2-30 Gabelvorschub ... 28
Abb. 2-31 Skalpelleinlage ... 28
Abb. 2-32 Skapellvorschub ... 28
Abb. 2-33 Fascia lata-Entnahme .. 28
Abb. 2-34 Spiraleinlage ... 28
Abb. 2-35 Fadeneinlage ... 29
Abb. 2-36 Gabel- und Spiralenentfernung ... 29
Abb. 2-37 Geräteentfernung ... 29
Abb. 2-38 Faszienendnähte ... 29
Abb. 2-39 Transplantatansicht .. 30
Abb. 2-40 Nahtansicht (a) .. 30
Abb. 2-41 Nahtansicht (b) .. 30
Abb. 3-1 Zugbelastungs-Elongationskurve Einzelknopfnah ... 32
Abb. 3-2 Zugbelastungs-Elongationskurve fortlaufende Naht .. 32
Abb. 3-3 Darstellung der Box-Plots .. 33
1 EINLEITUNG

1.1 Einführung

Die Fascia lata wird bei vielen operativen Verfahren als Transplantat in unterschiedlicher Form und Größe benötigt. Das Gewebe eignet sich zum Ersatz und zur Wiederherstellung (Rekonstruktion, Augmentation), zur Aufhängung (Suspension), zur Zwischenschaltung (Interposition) und zur Deckung (Okklusion) von Gewebedefekten.

Die operative Orthopädie und Traumatologie weist das breiteste Anwendungsgebiet auf. Die Fascia lata dient hier vorrangig als Band- bzw. Sehnenersatz sowie als Interpositionsmaterial.

Exemplarisch ist die Rekonstruktion des rupturierten vorderen Kreuzbandes, wobei zwischen intra- und extraarticulären Verfahren sowie der Kombination aus beiden unterschieden wird [2,4,23,32,33,35,44,47,54]. Als weitere Gelenke, die bei Instabilität mit Bandplastiken versorgt werden, sind vor allem Schulter-, Ellenbogen- und das obere Sprunggelenk zu nennen [31,46,53,63].

Bei primär unzureichend behandelten Sehnenverletzungen, die nicht mehr mit Hilfe einer Direktnaht versorgt werden können, wird das Transplantat durch Interposition erfolgreich zur Wiederherstellung der Kontinuität eingesetzt [29,37].

Neben den gegenwärtig gebräuchlichen Verfahren ist die Entwicklung weiterer Einsatzbereiche denkbar. So wurde z.B. versucht, mit Fascia lata ein Binnenband als Meniskusersatzgewebe anzufertigen [43].

Von den Einsatzgebieten am Bewegungsapparat abgesehen sind anteilsmäßig bedeutsam die in der Gynäkologie häufig durchgeführte pubovaginale Schlingensoperation bei Stressinkontinenz und die in der Ophthalmologie angewandte Suspensionsoperation bei Blepharospasmus [27,39]. In den übrigen chirurgenischen Disziplinen wird das Faszien- gewebe hauptsächlich als Deckungsmaterial gebraucht [1,19,25,36,38,52,55].

Plastische Operationen, bei denen autologes Gewebe verwendet wird, sind in der Regel mit dem Nachteil verbunden, dass bei der Transplantatgewinnung eine Schädigung von vorher
unversehrten Strukturen in Kauf genommen werden muss. Die Fascia lata wird je nach Größe des benötigten Autotransplantates durch einen entsprechend langen Hautschnitt am lateralen Oberschenkel entnommen. Während durch die Präparation kleinerer Faszienstücke das umliegende Gewebe nur geringfügig beeinträchtigt wird, geht die Entnahme der häufiger benötigten größeren Transplantate mit einer ausgedehnteren Traumatisierung einher. Dies stellt einen erheblichen Nachteil dar und ist mitunter ein Grund für die mittlerweile abnehmende Operationsfrequenz unter Verwendung von Fascia lata.

An der Medizinischen Universität zu Lübeck wurde bei chronischer Instabilität des oberen Sprunggelenkes die von Elmslie beschriebene Augmentationsoperation der Ligamenta fibulotalare anterius und fibulocalcaneare durch einen 2 cm breiten und 18 cm langen Fascia lata-Streifen angewandt [20]. Aufgrund der zuvor beschriebenen Problematik wurde nach einer Lösung zur Verringerung der Entnahmemorbidität gesucht.

Ziel dieser Doktorarbeit war es, ein minimal-invasives Operationsverfahren zu entwickeln, um den ausgedehnten Zugangsweg zur Autotransplantatentnahme zu vermeiden und somit die Akzeptanz der plastischen Operationen mit Verwendung von Fascia lata zu erhöhen.

1.2 Anatomie und Funktion der Fascia lata und des Tractus iliotibialis

Die Fascia lata ist die Muskelhaut, die den gesamten Oberschenkel umschließt. Sie ist der oberflächlichste Anteil des funktionellen Weichteilgewebes des Oberschenkels und hat ihren proximalen Ursprung am lateralen Anteil des Ligamentum inguinale, der Crista iliaca, des Os sacrum und des Os coccygis. Distal steht sie mit der Fascia cruralis in Verbindung und strahlt in den Kapsel-Band-Apparat des Kniegelenkes ein.

Der vom Chirurgen benutzte Ausdruck „Fascia lata“ für das zur Transplantation gewonnene Gewebe ist anatomisch meist nicht korrekt, da oft neben der eigentlichen Fascia lata auch Anteile des Tractus iliotibialis entnommen werden.

Der Tractus iliotibialis (Abb. 1-1), der auch als Maissiatischer Streifen bezeichnet wird, ist ein eigenständiger Verstärkungszug der Fascia lata. Er entspringt an der Crista iliaca und an der Spina iliaca anterior superior. In seine vertikal verlaufenden Kollagenbündel strahlen der Musculus gluteus maximus und der Musculus tensor fasciae latae ein. Der vordere Teil spaltet sich hier in eine superfiziale und eine profundale Schicht, die den Musculus tensor fasciae latae umschliessen. Er verläuft in einer von der Fascia lata gebildeten Gleitetasche und steht über diese mit dem Septum laterale intermusculare in Verbindung [24]. Im Bereich über dem Trochanter major besitzt er keine – wie früher fälschlicherweise ange-
nommen – feste Verbindung zum Knochen. Die Ansatzsehne des Musculus gluteus maximus durchflechtet sich jedoch vor der Insertion an der Tuberositas gluteae mit Anteilen des Tractus, so dass hier eine indirekte Verbindung zum proximalen Femur besteht [57].

Weiter distal zieht der Tractus iliotibialis über den Musculus vastus lateralis bis zu seiner Insertion am Condylus lateralis tibiae (Gerdys Tuberkel). Zusätzlich entsendet er Fasern zum Caput fibulae und zum Retinaculum patellae laterale. Durch seine Interaktion mit dem Kapsel-Band-Apparat des Kniegelenkes erhält er Einfluss auf dessen Funktion. Er dient dort als antero-lateraler Stabilisator und Reservestreckelement [56].

1.3 Konventionelle Fascia lata-Entnahme

Für die Qualität des Transplantates ist eine korrekte Entnahme von entscheidender Bedeutung. Biomechanische Versuche zeigten, dass die Zugfestigkeit der Faszie unter anderem abhängig vom longitudinalen Faserverlauf ist [26]. Eine Schädigung dieser Fasern durch einen nicht längs der Verlaufsrichtung geführten Schnitt bedingt ein funktionell insuffizientes Transplantat.

Lagerung:
Rückenlagerung des Patienten auf dem Normaltisch.

Zugangsweg:
Lateraler Zugang am Oberschenkel im Verlauf des Tractus iliotibialis.

Arbeitsschritte:
1) Hautschnitt von 18 cm Länge am lateralen Oberschenkel (Abb. 1-2).
2) Subkutane Präparation und Darstellung der Fascia lata. Blutstillung.
3) Herausschneiden eines 2x18 cm messenden Fascia lata-Streifens (inkl. Tractus iliotibialis-Anteil) (Abb. 1-3 und Abb. 1-4).
4) Faszienverschluss mit Einzelknopfnah (Abb. 1-5).
5) Einlage einer subkutanen Redondrainage.
6) Schichtweiser Wundverschluss (Abb. 1-6).
7) Anlage eines sterilen Kompressenverbandes.
Einleitung

Abb. 1-2 Lagerung und Hautschnitt. Bei Innenrotation des zu operierenden Beines wird ein ca. 18 cm langer Hautschnitt entlang des Verlaufs des Tractus iliotibialis gesetzt. Danach erfolgt die Trennung von Subcutis und Fascia lata.

Abb. 1-3 Faszienschnitt. Mit einem Skalpell wird die Faszie durch zwei im Abstand von 2 cm parallel verlaufende Längsschnitte gespalten. Deutlich zu sehen ist die Herniation des Musculus vastus lateralis.

Abb. 1-4 Transplantatentnahme. Das proximale Ende des Fasziestreifens wird mit einem Führungsfaden armiert und bei unter Spannung gehaltenem Transplantat die vollständige Entnahme durchgeführt.

Abb. 1-5 Fasziennaht. Der Verschluss der entstandenen Faszienlücke erfolgt mit Einzelknopfnähten.

Abb. 1-6 Wundverschluss. Nach Einlage einer subkutanen Redondrainage wird die Wunde schichtweise verschlossen und das Wundgebiet mit einem sterilen Kompressenverband versorgt.
1.4 Minimal-invasive Fascia lata-Entnahmen

Wegen des bei konventioneller Fascia lata-Entnahme erforderlichen großen Zugangsweges wurde schon früher nach Möglichkeiten gesucht, eine minimal-invasive Entnahme zu etablieren.

Komplikationen in Form von postoperativen Blutungen, Muskelhernien oder Funktions Einschränkungen werden in den genannten Arbeiten nicht erwähnt oder traten nicht auf. Andere Autoren beschreiben lediglich direkt postoperativ bestehende Einschränkungen in Form von Wundschmerzen, Belastungsschmerzen und Hinken. Als bestehendes Problem
wird lediglich die vom Patienten als auffällig empfundene Narbe im Entnahmebereich genannt [64].

Eine endoskopische Fascia lata-Entnahme wird im Rahmen der Gewebegewinnung zur Korrektur bei rezidivierenden ventralen Abdominalhernien beschrieben [60]. Nach konventioneller Präparation und Darstellung der Hernie wird die zur Defektdeckung benötigte Transplantatgröße (ca.10x20 cm) ausgemessen und auf den Oberschenkel aufgezeichnet. Danach wird durch einen 10 mm großen Schnitt am lateralen Oberschenkel auf die Fascia lata präpariert. Die Separation zwischen Faszie und Subcutis erfolgt durch diesen Zugang mit Hilfe eines in der Abdominalchirurgie verwendeten präperitonealen Dissektions-systems. Durch einen Trokar wird eine Videooptik eingeführt. Durch zwei zusätzliche Arbeitskanäle wird die Fascia lata mit endoskopischen Scheren entnommen. Aufgrund der Größe des Defektes ist ein Faszienverschluß nicht möglich.
1.5 Zielsetzung und Anforderung der eigenen minimal-invasiven Entnahmetechnik

Minimal-invasive Operationsverfahren setzen sich zunehmend gegenüber konventionellen chirurgischen Vorgehensweisen durch. Damit jedoch eine offen-chirurgische Methode abgelöst wird, muss das neue Operationsverfahren Vorteile aufweisen, die vor allem die Einbuße der besseren operativen Zugänglichkeit rechtfertigen.

Für die eigene Geräteentwicklung wurden folgende Anforderungen an die neue Entnahme- methode gestellt:

- Die Operationsmethode muss als „minimal-invasiv“ gelten, d.h. es sind kleinstmögliche Zugangswege mit gutem Narbenresultat und die Schonung des umliegenden Gewebes bei der Transplantatentnahme zu fordern.
- Um den operativen Aufwand gering zu halten, soll auf den Einsatz endoskopischer Hilfsgeräte verzichtet werden.
- Das allgemeine Operationsrisiko soll sich nicht erhöhen (Nervenschädigungen, Gefäßschädigung/Hämatombildung, Muskelschädigung, Nahtinsuffizienz, Wundheilungsstörungen/Infektion).
- Das gewonnene Autotransplantat muss über die gleiche Qualität verfügen, d.h. es darf durch das neue Verfahren nicht beschädigt und muss anatomisch korrekt entnommen werden.
- Die Dauer des Eingriffs zur Entnahme ist nicht wesentlich zu verlängern.
- Bei ausreichender Sicherheit und Zuverlässigkeit des Gerätes soll trotz allem eine günstige Kosten-Nutzen-Analyse der Anwendung bestehen.

Die Zielsetzung dieser Doktorarbeit war es, unter den gegebenen Anforderungen einen Prototypen zu entwickeln, der prinzipiell für eine minimal-invasive Transplantatentnahme geeignet ist und zusätzlich die entstandene Faszienläsion wieder verschließt.
2 MATERIAL UND METHODEN

2.1 Material

2.1.1 Chemikalien

0,9% NaCl-Lösung
B. Braun petzold

2.1.2 Geräte

Kühl-Gefrierkombinationsschrank
Lieberherr, Ochsenhausen
Zugversuchsmaschine (Typ 1456)
Zwick, Ulm
Drehschieber-Vakuumpumpe
Brand
Digitalkamera Coolpix 940
Nikon, Japan
Spiegelreflexkamera F90
Nikon, Japan

Messblatt (Messbereich 30 cm)
Wisent
Inbusschlüssel (4er und 5er)

Nadelhalter
Lennartz
Pinzette, anatomisch
Lennartz
Pinzette, chirurgisch
Lennartz
Präparierschere
Lennartz
Wundspreizer
Lennartz
Öhrnadel

Fascia lata-Fixationssystem
Spannbacken (Kap. 7.1.1)
Prototyp Fascia lata-Transplantatentnahme (Kap. 7.1.2)

2.1.3 Ver- und Gebrauchsmaterialien

VICRYL® Polygalactin 910 (metric 4 (1 USP), Länge 45 cm und 70 cm)
Ethicon, Hamburg
Einmalhandschuhe Peha-Soft® Größe M
Hartmann, Heidenheim
OP-Handschuhe Gammex® PF Größe 7,5
Ansell
OP-Mantel Klinidrape® Größe XL
Möllycke Health Care AB, Schweden

Perfusorspritze 50ml
B. Braun petzold
Einmalskalpelle (Feather Nr. 11 und Nr. 21)
Feather

2.1.4 Versuchspersonen

Menschliche Frischleichen der Medizinischen Universität zu Lübeck.
2.2 Methoden

2.2.1 Entwicklung eines Fascia lata-Fixationssystems

2.2.1.1 Theoretische Überlegungen und Vorversuche

Die minimal-invasiv angestrebte Entnahmestelle des Autotransplantates entspricht der bei der konventionellen Fascia lata-Gewinnung beschriebenen Lokalisation (Kap. 1.3).

Bei einer Faszienstreifengröße von 2x18 cm wird davon ausgegangen, dass zwei kleine Zugangswege im Bereich der beiden Endpunkte notwendig sind, um ein funktionsfähiges Gerät auf der dazwischen liegenden Strecke unter der Haut sinnvoll bedienen zu können.

Das Herausschneiden des Faszienstranges durch eine stripperähnliche Vorrichtung kann einfach durchgeführt werden und wird, wie in der Einleitung beschrieben, in unterschiedlichen Varianten bereits länger praktiziert.

Die Lösung der Probleme der Herniation und Refixation besteht darin, dass die Faszie bereits vor dem Herausschneiden fixiert wird. Dies ist durch ein System möglich, wie es ähnlich beim automatischen Filmschnitt benutzt wird. Mit Hilfe einer Umlenkrolle wird zunächst die aus dem Film auszuschneidende Sequenz herausgezogen. Dann werden die Enden der auszuschneidenden Sequenz durch zwei Fixationsrollen gegeneinandergedrückt, die Sequenz herausgeschnitten und der Restfilm wieder verklebt.

Das Filmrollenmodell lässt sich auf das minimal-invasive Entnahmegerät folgendermaßen übertragen: Als „Umlenkrolle“ fungiert ein Stab, der durch die zuerst an den Längsenden des zu entnehmenden Transplantates gesetzten Faszienschnitte unter die Faszie geschoben wird. Der Umfang des Stabes entspricht der gewünschten Breite des Transplantates (Abb.
2-1). Die „Fixationsrollen“, die die Faszie nach dem Herausziehen aus der „Faszienebene“ an den zukünftigen Schnittkanten fixieren, beinhalten Schneide- und Nahtvorrichtungen, mit denen die Faszie bearbeitet werden kann (Abb. 2-2 bis Abb. 2-4).

2.2.1.2 Erprobung

An fünf an den unteren Extremitäten nicht voroperierten menschlichen Leichen (Geschlechtsverteilung: zwei männlich und drei weiblich; Durchschnittsalter: 58,8 Jahre; Altersverteilung: 27-80 Jahre) wurde die Anwendbarkeit eines Fixationssystems zur Gewinnung eines Fascia lata Streifens wie folgt erprobt:

Sämtliche Operationen wurden durch den Autor durchgeführt.
Material und Methoden

Lagerung:
Rückenlagerung auf dem Sektionstisch.

Zugangswege:
Projektion des Fascia lata-Transplantates nach den in Kap. 1.3 beschriebenen Kriterien.
Zugangswege durch Hautschnitte, den kurzen Seiten des Transplantatrechteckes entsprechend (Abb. 2-5).

Arbeitsschritte:
1) Hautschnitte à 2 cm am lateralen Oberschenkel in Verlaufsrichtung der „relaxed skin tension lines“ (RSTL) (Abb. 2-6).
2) Stumpfe Präparation auf die Faszie.
3) Separation des subkutanen Fettgewebes von der Fascia lata mit einem Dissektionsspatel. (Abb. 2-7).
4) Faszienschlitze à 2 cm (Abb. 2-8).
5) Subfasziales Einführen des Umlenkstabes (Abb. 2-9 und Abb. 2-10).
6) Subkutanes Einführen der Fixationsrohre (Abb. 2-11 und Abb. 2-12).
7) Anschlingen und Heben des Umlenkstabes zwischen den Fixationsrohren und über deren Niveau hinaus (Abb. 2-13).
8) Verschluss der Fixationsrohre (Abb. 2-14).
Material und Methoden

Abb. 2-7 Dissektion. Das subkutane Fettgewebe wird durch einen Dissektionsspatel, der jeweils über beide Hautschnitte zwischen Fascia lata und Subcutis geführt wird, von der Faszie getrennt.

Abb. 2-8 Faszienschnitte. Quer zur Faserverlaufsrichtung wird die Faszie proximal und distal über 2 cm gespalten.

Abb. 2-9 Umlenkstabeinlage. Der Umlenkstab (20 cm Länge, 5 mm Durchmesser) wird über den distalen Zugangsweg subfaszial eingeführt und in Richtung des proximalen Faszienschnittes vorgeschoben.

Abb. 2-10 Umlenkstablage. Am proximalen Faszienschnitt wird der Umlenkstab wieder ausgeführt. Die beiden Enden des Stabes überragen die Fasciotomien mit jeweils 1 cm.

Abb. 2-11 Fixationsrohreinlage. Die Fixationsrohre (25 cm Länge, 10 mm Durchmesser) werden über den proximalen Hautschnitt subkutan eingeführt und in Richtung des distalen Hautschnittes vorgeschoben.

Material und Methoden

Abb. 2-14 Verschluss der Fixationsrohre. Das Heben des Umlenkstabes und der Verschluss der Fixationsrohre mit Hilfe der Flügelmuttern wird auf beiden Seiten gleichzeitig durchgeführt, um ein Verkanten zu vermeiden. Die Faszie ist nun um den Umlenkstab verlaufend zwischen den Rohren fixiert.

Begutachtung:
Nach den beschriebenen Arbeitsschritten wurde das Gerät in umgekehrter Reihenfolge wieder entfernt und nach lateralem Längsschnitt der Haut die Fascia lata makroskopisch begutachtet.

2.2.2 Entwicklung einer Fascia lata-Nahtmethode

2.2.2.1 Theoretische Überlegungen und Vorversuche
Nachdem ein Fixationssystem geschaffen wurde, galt es, eine Nahtmethode zu finden, die durch das Gerät schnell und zuverlässig ausgeführt werden kann.

In der Orthopädie bzw. Unfallchirurgie werden zur Naht der Fascia lata gewöhnlich bei Einzelknopfnahnt geflochten resorbierbare polyfile Fäden (z. B. Polyglykolsäure (Dexon®) oder Polyglactin 910 (Vicryl®) oder bei fortlaufender Naht monofile resorbierbare Fäden (z. B. Polyglykonat (Maxon®) oder Polydioxanon (PDS II®)) verwendet. Die herkömmliche Fadenstärke beträgt metric 4 (USP 1).

Die bei der offenen Transplantatentnahme zum Faszieverschluss am häufigsten eingesetzte und schon hier zeitaufwändige Einzelknopfnahnt ließ sich im Gerät unter den zeitlichen Vorgaben nicht realisieren.
Material und Methoden

Mit einer modifizierten Matratzennaht konnte bei höherer Nahtstabilität die Anzahl der notwendigen Einzelnähte verringert werden. Doch auch hier erwies sich das häufig durchzuführende Vorschieben des Knotens über Schlittensysteme als zu aufwendig.

Da in den eigenen Versuchen der Knotvorgang bei den meisten Systemen den begrenzenden Problemfaktor darstellte, wurde schließlich die fortlaufende Naht als Verschlussmethode favorisiert.

Als technisch realisierbar erschien es, mit Hilfe einer spiralförmigen Nadel eine fortlaufende, überwendelnde Naht in das Gewebe einzubringen.

Weil die zukünftig angestrebte Gerätegröße die Spiralausmaße einschränkt, wurde die Naht mit kleinstmöglichen Nahtparametern (0,5 cm Randabstand und 1 cm Stichabstand) umgesetzt und anschließend hinsichtlich ihrer Stabilität mit einer herkömmlichen Einzelnkopfnah (0,5-1,0 cm Randabstand und 1 cm Nahtabstand) verglichen.

Es gibt unterschiedliche Möglichkeiten, eine genähte Gewebeprobe auf Reißfestigkeit zu untersuchen. Zum einen kann die Bruchfestigkeit (breaking strength [N/cm]) als Kraft pro Einheitsbreite der Probe und zum anderen die lineare Zugfestigkeit (tensile strength [N/cm²]) als Kraft pro Einheitsbreite und Querschnitt der Probe ermittelt werden. Die Ermittlung der linearen Zugfestigkeit ist die einzige Methode, die unter Idealbedingungen reproduzierbare Ergebnisse bringt [61]. Bei den nachfolgenden Zugversuchen bestand nicht die Zielsetzung, absolute mechanische Werte hinsichtlich der Nahtfestigkeit der jeweiligen Nahtmethode zu erlangen, sondern einen direkten Vergleichswert bei zwei unterschiedlichen Methoden an einem Probandenmaterial zu erhalten. Aus diesem Grund wurde die Maximalbelastung bis zum Materialversagen der beiden unterschiedlichen Nähte als Messwertparameter gewählt. Dies erschien auch insofern sinnvoll, da absolute Zugbelastungswerte aufgrund der großen interindividuellen Unterschiede der Material-eigenschaften bei Probandenmaterial (genetische Vorraussetzungen, Aktivitätsniveau und Lebensalter) schwer ermittelbar sind [8].

2.2.2 Vergleich zweier Nahtmethoden

Von neun menschlichen, an den unteren Extremitäten nicht voroperierten Leichen (Geschlechtsverteilung: sechs männlich und drei weiblich; Durchschnittsalter: 68.8 Jahre; Altersverteilung: 55-80 Jahre) wurde beidseits die laterale Fascia lata entfernt und an den Faszienpräparaten zwei unterschiedliche Nahtmethoden miteinander verglichen.
Probenentnahme:
Die Probenentnahme erfolgte innerhalb 36 Stunden post mortem. Die laterale Fascia lata mit Tractus iliotibialis wurde in einem rechteckigen Format vom oberen Patellarrand bis auf Höhe des Ansatzes des Musculus tensor fasciae latae entnommen.

Lagerung und Präparation:
Das Gewebe wurde in einem Aufbewahrungsbehälter bei –50°C tiefgefroren. Die gesamte Lagerungszeit betrug nicht länger als acht Wochen. Untersuchungen haben gezeigt, dass ein einmaliger Frier- und Auftauvorgang, sowie die Lagerungsdauer keinen Effekt auf die mechanischen Eigenschaften des Stützgewebes haben [10,22,62]. Am Versuchstag wurden die Proben zum Auftauen eine Stunde vor Versuchsbeginn in dem geschlossenen Behältnis im 35°C warmen Wasserbad erwärmt. Danach wurde die Probe auf einem mit NaCl 0,9% angefeuchten Bearbeitungsbrett ausgebreitet. Noch an der Faszie enthaltenes Fettgewebe wurde entfernt, ohne die superfiziale Faszienschicht zu beschädigen. Das Präparat wurde nun mittels Skalpell auf eine Größe von 20x10 cm zugeschnitten. Die proximale Begrenzung dieses Rechteckes lag 5 cm distal vom ehemaligem Ansatz des Musculus tensor fasciae latae. Der Tractus iliotibialis verlief zentral im zugeschnittenen Präparat. Mit einem doppellklingigen Skalpell wurde ein 2 cm breiter Streifen mittig auf gesamter Länge entnommen und somit die Transplantatentnahme simuliert. Hierdurch wurde der Tractus iliotibialis nahezu vollständig entfernt. Die beiden so entstandenen Faszienhälften wurden mit einer Naht wieder verbunden. Hierbei wurden nach randomisierter Auswahl die Faszienstücke ipsilateral mit einer einfach überwendelnden fortlaufenden Naht bei 0,5 cm Rand- und 1 cm Stichabstand und kontralateral mit einer Einzelknopfnah bei 0,5-1,0 cm Rand- und 1 cm Nahtabstand versorgt.

Halterung und Zugversuch:
Jedes Versuchspräparat wurde in zwei Materialklemmbacken eingespannt (Abb. 2-15). Die Spannbacken wurden in ein Materialtensiometer (Materialprüfmaschine Zwick/Ulm Typ 1456) eingesetzt, wobei die untere Halterung fest, die obere in der Spannbackenebene durch eine Stiftlagerung frei beweglich war (Kap. 7.1.1).

Nach Anlegen einer Vorspannung von 10 N wurden die Proben bis zum Materialversagen zugbelastet (Abb. 2-16, Abb. 2-17 und Abb. 2-18). Bei einer Vortriebsgeschwindigkeit von 10 mm/min wurde eine Kraft-Verformungs-Kurve erstellt. Der gemessene Festigkeitsparameter war die maximale Zugbelastung bis zum Materialversagen.
Material und Methoden

Abb. 2-16 Zugversuch (a). Versuchsverlauf nach ca. einer Minute. Die obere Spannbacke richtet sich der Belastungs- verteilung entsprechend aus.

Abb. 2-17 Zugversuch (b). Nach zwei Minuten sind erste Bezirke mit Materialversagen (links unten) erkennbar.

Abb. 2-18 Zugversuch (c). Das Präparat zeigt auf der ge- samten Breite Materialversagen. Belastungslimitierender Faktor war die durch die Nahteinstiche geschwächte Fas- zie.

Begutachtung:
Nach dem Versuch wurden die Proben makroskopisch auf die Art des Materialversagens begutachtet.

2.2.3 Entwicklung eines Prototypen zur Fascia lata-Transplantatentnahme

2.2.3.1 Theoretische Überlegungen und Vorversuche
Fixationssystem und Nahtmethode wurden unter Berücksichtigung der folgenden Anforderungen in einem Prototyp vereint: Das Fixationssystem muss bei kleinstmöglichem Durchmesser über eine ausreichende Längsstabilität verfügen, um die Faszie auf der Strecke unter der Haut sicher zu arretieren. Außerdem sollte es möglich sein, das Fixationssystem gleichzeitig als Arbeitskanal zu nutzen, um das Risiko einer Gewebeschädigung zu minimieren.
Material und Methoden

Der zugrundeliegende Gedanke, durch eine runde Bauweise einerseits ein gutes Stabilitätsverhalten und andererseits eine optimale Führung für das eingesetzte Spiralsystem zu gewährleisten, wurde mit dem Entwurf eines rohrähnlichen Arbeitskanals umgesetzt. Um funktionell eine Fixation zu ermöglichen, setzt sich der Arbeitskanal aus zwei halbrohrähnlichen Elementen zusammen. Mit diesen lässt sich die Faszie zwischenliegend einspannen (Abb. 2-19) und im so entstandenen Lumen bearbeiten (Abb. 2-20).

Eine geschützte und weitestgehend gewebeschonende Fadeneinlage gelingt mit einer spiralförmigen Kapillare, die bei akzeptablem Außendurchmesser ein genügend weites Lumen besitzt, um für den verwendeten Faden (metric 4 (1 USP)) durchgängig zu sein. Es besteht jedoch die Schwierigkeit, den entsprechenden Faden in der spiralförmigen Kapillare zu platzieren. Beim manuellen Vorschlieben des Nahtmaterials in das Spirallumen konnte schon nach kurzer Strecke durch die zunehmende Fadenreibung kein Vortrieb mehr erzielt werden. Wegen seiner höheren Flexibilität war es jedoch möglich einen geflochtenen polyfilen Faden (Vicryl®, metric 4) in die Spirale einzusaugen. Hierbei wurde dieser zunächst einige Zentimeter in die Spirale vorgeschoben und mit ihr in eine Wasserschale gelegt. Anschließend konnte mit Hilfe einer am anderen Ende des Kapillarrohres konnek-

Ein zusätzlicher Vorteil bei im Lumen liegendem Faden besteht darin, dass beim Herausdrehen der Spirale gleichzeitig eine kontinuierliche Fadenspannung im Nahtverlauf erzeugt wird.

2.2.3.2 Erprobung

An elf an den unteren Extremitäten nicht voroperierten menschlichen Leichen (Geschlechtsverteilung: sechs männlich und fünf weiblich; Durchschnittsalter: 55.2 Jahre; Altersverteilung: 22-79 Jahre) wurde ein Prototyp zur minimal-invasiven Fascia lata-Transplantatentnahme wie folgt erprobt.

Der Prototyp besteht - wie in den Vorversuchen bereits beschrieben - aus dem Umlenkstab und der Einheit aus Fixationsmechanismus und Arbeitskanal (Kap. 7.1.2). Die halbrohrähnlichen Fixationselemente sind durch einen Verschlussapparat in einer Ebene gegen einander verschiebbar.

Material und Methoden

Abb. 2-21 Verschlussprinzip. Der Verschlussapparat enthält zwei Gleitstifte und einen Gewindestab, die das Öffnen und Schließen des Gerätes in einer Ebene ermöglichen.

Lagerung und Zugangswege:
Wie in Kap. 2.2.1.2 beschrieben.

Arbeitsschritte:
1) Erste Arbeitsschritte bis zur subfaszialen Platzierung des Umlenkstabes entsprechend Kap. 2.2.1.2.
2) Subkutanes Einführen der Geräteeinheit (Abb. 2-24 und Abb. 2-25).
3) Öffnen der Geräteeinheit (Abb. 2-26).
4) Aufstecken der Hebeaufsätze auf den Umlenkstab.
5) Verschließen der Geräteeinheit (Abb. 2-27 und Abb. 2-28).
6) Einbringen und Fixieren der Gabel in den Arbeitskanal (Abb. 2-29 und Abb. 2-30).
7) Zerschneiden der Fascia lata mit dem Skalpellschlitten (Abb. 2-31 und Abb. 2-32).
8) Entnehmen des Fascia lata-Streifens und des Umlenkstabes (Abb. 2-33).
9) Vordrehen der Spirale auf der Gabel (Abb. 2-34).
10) Einspülen des Vicryl®-Fadens in das Spirallumen (Abb. 2-35).
12) Öffnen und Entfernen der Geräteeinheit (Abb. 2-37).
13) Vernähen der Fadenenden (Abb. 2-38).
14) Schichtweiser Wundverschluss.
Material und Methoden

27

Abb. 2-23 Instrumentarium. Das minimal-invasive Fascia lata-Entnahmegerät besteht aus dem eigentlichen Hauptapparat, dem Umlenkstab und zwei Hebekeilen, der gabelähnlichen Geräteschiene, dem Skalpellschlitten und der Spiralnadel. Ganz links im Bild zu sehen die zum Geräteverschluss benötigten Inbusschlüssel.

Abb. 2-25 Gerätelage. Das Gerät wird vollständig vorgeschoben, so dass im proximalen Anteil der Hebeschacht schließlich über dem Ende des Umlenkstabs liegt. Im distalen Abschnitt ist hier der Verschlussapparat mit ebenfalls integriertem Hebeschacht zu sehen.

Abb. 2-26 Geräteöffnung. Nach der Geräteöffnung wird der Umlenkstab zwischen die beiden halbrohrähnlichen Fixationselemente positioniert und auf die danach eingelegten Hebekeile aufgesteckt.

Material und Methoden

Abb. 2-29 Gabeleinlage. Als weitere Fixation und zur Schienung der Arbeitsgeräte wird die gabelartige Vorrichtung so eingeführt, dass die Fascia zwischen den Gabelschenkeln liegt.

Abb. 2-31 Skalpelleinlage. Das Schneidegerät besteht aus einer Skalpellklinge, die in einen Halbrundaufsatz eingebracht ist. Es wird auf der Gabel aufliegend in den Arbeitskanal eingeführt.

Abb. 2-32 Skalpellvorschub. Beim Vorschub des Skalpells auf der Gabel wird die Fascia lata im oberen Bereich des Arbeitskanals durchtrennt und das Stück, welches um den Umlenkstab verläuft, wird als Transplantat frei.

Abb. 2-33 Fascia lata-Entnahme. Das ca. 2x18 cm messende Fascia lata-Transplantat kann nun mit dem Umlenkstab zusammen subkutan herausgezogen werden.

Abb. 2-34 Spiraleinlage. Der zu nähte Fascia lata-Anteil ist immer noch zwischen den Gabelschenkeln und den Halbrohren im Arbeitskanal fixiert. Auf der Gabel wird eine Spiralnadel (25 cm Länge, 8,5 mm Außendurchmesser, 10 mm Steigung, Nadellumen 1,2 mm Außen- und 0,8 mm Innendurchmesser) vorgedreht.
Material und Methoden

Abb. 2-35 Fadeneinlage. Beim Vordrehen auf der Gabel durchsticht die Spirale die Faszie im 10 mm Abstand, bis sie nach vollständigem Einbringen am Ende des Arbeitskanals erscheint. Mit Hilfe einer Perfusorspritze und NaCl 0.9% wird ein Vicryl®-Faden in das Lumen der Spirale gespült und am proximalen Zugangsweg ergriffen.

Abb. 2-36 Gabel- und Spiralenentfernung. Der Faden wird proximal gehalten, die Spirale zurückgedreht und die Gabel gleichzeitig zurückgezogen. Es resultiert eine fortlaufende, überwendelnde Naht.

Abb. 2-37 Geräteentfernung. Der Verschlussapparat wird geöffnet und das gesamte Instrument entfernt. Jetzt ist die Faszie zwischen den Halbrohren nicht mehr fixiert, so dass der Vicryl®-Faden an beiden Enden unter Zug gehalten werden muss, damit keine Nahtdehiszens entsteht.

Begutachtung:
Nach dem beschriebenen Eingriff wurden zwei Strukturen ohne Zuhilfenahme von optischen Geräten inspektiorisch begutachtet: das Transplantat (Abb. 2-39) und - nach lateralem Längsschnitt der Haut - die Fascia lata inklusive Fasziennaht (Abb. 2-40 und Abb. 2-41).
Material und Methoden

Abb. 2-39 Transplantatansicht. Nach Entfernung von noch vorhandenen Fettgeweberesten kann das ca. 2x18 cm messende Faszienstück als Transplantat verwendet werden.

Abb. 2-40 Nahtansicht (a). Zur Nahtbegutachtung werden die Haut über einen lateralen Zugang eröffnet und die Hautlappen fixiert.

Abb. 2-41 Nahtansicht (b). Die Nahansicht zeigt einen korrekten Verlauf der einfach überwendelnden Fasziennaht. Der Faden steht gut unter Spannung, so dass keine Dehiszenz entsteht.

Bewertung:

Nach Einarbeitung mit dem Gerät wurden sieben Operationen unter strengeren Zeitvorgaben durchgeführt, so dass eine grobe Schätzung der Operationsdauer möglich war.
3 ERGEBNISSE

3.1.1 Erprobung eines Fascia lata-Fixationssystems

Bei Begutachtung der Faszie mit bloßem Auge ließen sich keine Schädigungen durch den Maschineneinsatz feststellen.

3.1.2 Vergleich zweier Fascia lata-Nahtmethoden

Die Zugversuche zur Nahtstabilität wurden in einer Anordnung von neun Gewebeprobenpaaren durchgeführt, um die Einzelknopfnäht mit der fortlaufenden Naht zu vergleichen. Der gemessene Festigkeitsparameter war die maximale Zugbelastung bis zum Materialversagen, welches sich entweder in einer Nahtinsuffizienz oder einer Gewebezerrissung äußern konnte. Bei acht Probenpaaren war der limitierende Faktor für die Zugbelastung die durch die Nahtstechen geschwächte Faszie. Die Ausnahme bildete ein Probenpaar, bei der einerseits in der Einzelknopfnäht eine Knotenöffnung auftrat und sich andererseits ein Stück mit fortlaufender Naht aus der Spannbäckchenhalterung löste. Da beide Fehlereignisse bei niedrigen Zugbelastungswerten stattfanden, wurde hier von einem Präparationsfehler ausgegangen, weswegen die Daten nicht mit in die Bewertung aufgenommen wurden.

Für die restlichen acht Probenpaare konnten regelrechte Kraft-Verformungs-Kurven (Abb. 3-1 und Abb. 3-2) erstellt werden.

Ergebnisse

Abb. 3-1 Kraft-Verformungs-Kurve Einzelknopfnah�.

Abb. 3-2 Kraft-Verformungs-Kurve fortlaufende Naht.
Beispiel einer Probe mit fortlaufender Naht mit einem Zugbelastungsmaximalwert von 82,3 N.

Der Durchschnittswert und die Standardabweichung für die gemessene Maximalbelastung war für die Einzelknopfnah�-Proben 79,6 N ± 28,7 N und für die Proben mit fortlaufender Naht 91,3 N ± 27,5 N.

Die zugehörigen Box-Plots sind in Abb. 3-3 dargestellt.

Bei der Zielsetzung einer deskriptiven Untersuchung mit weitgehend verallgemeinernden Schlussfolgerungen der unterschiedlichen Nahtmethoden wurde posthoc zur Trendbestimmung der Mann-Whitney-U-Test durchgeführt. Hier konnte bei p > 0,05 kein signifikanter Unterschied zwischen den Maximalbelastungswerten der beiden Nahtmethoden festgestellt werden.
3.1.3 Erprobung eines Prototypen zur Fascia lata-Transplantatentnahme

Die mit dem Prototyp durchgeführten elf Operationen zeigten eine prinzipielle Anwenbarkeit des Gerätes.

Wie in den Versuchen zur Erprobung eines Fascia lata-Fixationssystems gezeigt, ergaben sich keine Schwierigkeiten bei der subkutanen Präparation der Faszie über die zuvor platzierten Zugangswege.

Die Fixationseinheit bestand im Gegensatz zum ersten Gerät nun jedoch aus Halbrohren. Daraus resultierte, dass die Faszie nun mit Hilfe des Umlenkstabes über die abgerundeten Schnittkanten der Halbrohre gezogen werden musste und somit einem stärkeren Richtungswechsels ausgesetzt wurde. Infolgedessen trat ein höherer Widerstand beim Einzug
Ergebnisse

auf. In diesem Zusammenhang zeigte sich die besondere Bedeutung der sorgfältigen Dissektion zwischen Faszie und Subcutis, um den Verbleib größerer Fettansammlungen an der Faszie zu verhindern.

Bei einer Probe wurde der Muskel mit zwischen die Fixationshalbrohre gezogen, was jedoch schnell durch den erhöhten Maschinenverschlusswiderstand festgestellt werden konnte. Die Korrektur erfolgte durch Zurückdrehen der Einzugsvorrichtung, subfasziale Mobilisation und erneutes Schließen des Verschlussapparates.

Die entnommenen Transplantate entsprachen bei allen Versuchen den gewünschten Maßen und waren durch die zuvor durchgeführte Orientierung korrekt entlang der Kollagenfaserverlaufsrichtung ausgerichtet. Eine Schädigung des Transplantates konnte nicht beobachtet werden.

Die Operationszeiten, die bei den sieben Versuchen vom Hautschnitt bis zum Wundverschluss gemessen wurden, lagen durchschnittlich bei 21 Minuten (19-24 Minuten).
4 DISKUSSION

Zielsetzung der Doktorarbeit war die Entwicklung eines Prototypen, der prinzipiell zur minimal-invasiven Fascia lata-Transplantatentnahme geeignet ist und zusätzlich die entstandene Faszienläsion wieder verschließt.

Das Kapitel „Material und Methoden“ spiegelt die Entstehung des Prototypen wider. Im Abschnitt „Ergebnisse“ werden die Resultate des Prototypen in bezug auf die Anforderungen an die eigene Entnahmemethode beurteilt. Daher orientiert sich die Diskussion an den in der Zielsetzung gestellten Anforderungen.

4.1 Minimalinvasivität

Als minimal-invasiv wird eine im Vergleich zur konventionellen Methode durchgeführte neue Operation bezeichnet, wenn sie mit geringerer Schädigung des umliegenden Gewebes einhergeht. Der beschriebene Prototyp zur Fascia lata-Transplantatentnahme benötigt lediglich zwei 2 cm lange Inzisionen. Im Vergleich zu dem ansonsten ca. 20 cm langen Hautschnitt kann hier also von einem minimal-invasiven Verfahren gesprochen werden.

Die Hautschnitte wurden entsprechend der heutigen Empfehlung im Verlauf der Spannungslinien der Haut (Relaxed skin Tension lines) gesetzt [65]. Zusätzlich zeigte die Schnittführung in ventro-dorsaler Richtung einen positiven Einfluss auf die Handhabung des Gerätes, da diese in der gleichen Ebene wie die Bewegung bei der Geräteöffnung liegt.

4.2 Operationsrisiko

Jeder operative Eingriff birgt ein gewisses Operationsrisiko. Die Komplikationen bei konventioneller durchgeführter Entnahmetechnik sind bekannt. Sie sollen bezüglich der Art und der Häufigkeit mit der der minimal-invasiven Methode verglichen werden:

4.2.1 Nervenschädigung

Durch die 2 cm langen Zugangsweg an der lateralen Seite des Oberschenkels ist eine Schädigung der Äste des Nervus cutaneus femoris lateralis möglich, dessen Anteile von ventro-cranial nach dorso-caudal über die Oberschenkelaußenseite verlaufen. Das Verletzungsrisiko ist jedoch bedeutend geringer, als bei der Entnahmemethode mit langer Schnittführung.
4.2.2 Gefäßschädigung und Hämatombildung

4.2.3 Muskelschädigung

Wie im Kap. 3.1.3 beschrieben wurde bei einem Versuch der Muskel (Musculus vastus lateralis) mit zwischen die Fixationshalbrohre gezogen, was jedoch am erhöhten Maschinenverschlusswiderstand festgestellt werden konnte. Grund dieser Komplikation war wahrscheinlich eine ungenügende Mobilisation zwischen Faszie und Muskel, bevor die Faszie zur Fixation zwischen die Halbrohre gezogen wurde.

Die Verletzungsmöglichkeit des Muskels ist auf die Geräteverschlussprozedur beschränkt, da die restlichen Arbeitsschritte im Arbeitskanal des Gerätes durchgeführt werden und so ein optimaler Schutz des umliegenden Gewebes gewährleistet ist.

4.2.4 Fasziennahtinsuffizienz

Eine Nahtinsuffizienz der Faszie kann auftreten, wenn die Naht reißt, ein Knoten aufgeht oder der Faden das Gewebe durchschneidet. Diese nicht zu unterschätzende Komplikation, die sich in der Herniation des Musculus vastus lateralis durch die Fascienlücke äußert, galt es durch ein geeignetes Nahtverfahren zu verhindern.

manuell erstellt. In der fortlaufenden Naht wurden die Nahtparameter (0,5 cm Rand- und 1 cm Stichabstand) berücksichtigt, die in der Maschine realisiert werden sollten.

Im Kap. 2.2.2.2 wurde gezeigt, dass die Naht mit den Parametern, wie sie im Prototypen geplant waren, gleichwertige Halteeigenschaften gewährleistet wie eine Einzelknopfnaht. Dies wurde durch ein statistisches Vorgehen nachgewiesen. Bei dieser deskriptiven Untersuchung der unterschiedlichen Nahtmethoden wurde der Mann-Whitney-U-Test durchgeführt. Hier konnte bei p > 0,05 kein signifikanter Unterschied zwischen den Maximalbelastungswerten der beiden Nahtmethoden festgestellt werden.

Als Nachteil der fortlaufenden Nahtmethode ist zu nennen, dass im Gegensatz zur Einzelknopfnaht eine einzige Schadhaftigkeit im Nahtmaterial ausreicht, um die Stabilität der gesamten Naht zu gefährden. Während der Versuche mit dem Prototypen konnte eine Schädigung des Nahtmaterials durch Einbringen und Ausschwemmen des Fadens aus der Spirale nicht beobachtet werden. Somit erscheint die Gefahr eines Nahtdefektes nicht größer als bei offen angewandter fortlaufender Naht.

Unklar ist, ob durch die Fixation der Faszie mit den Halbrohren Gewebetraumatisierungen auftreten, die bei der Begutachtung mit dem bloßen Auge nicht erkannt werden.

4.2.5 Wundheilungsstörungen und Infektion

Durch die geringere Schädigung des umliegenden Gewebes der minimal-invasiven Operationsmethode wird folgerichtig angenommen, dass auch die Gefahr einer postoperativen

4.3 Autotransplantatqualität

Weder bei den Versuchen zur Erprobung eines Fascia lata-Fixationssystems noch bei der Erprobung eines Prototypen zur Fascia lata-Transplantatentnahme konnte makroskopisch eine Schädigung des Fasziengewebes beobachtet werden.

Entscheidend für die Qualität des Transplantates ist die korrekte Entnahme, d.h. im Verlauf der Faserrichtung, da nur dann optimale Materialeigenschaften des Transplantates gesichert werden [8]. Die Beurteilung der Faserorientierung ist nur bei der offenen Entnahme möglich. Sie kann jedoch über die in der Einleitung beschriebenen anatomischen Hilfspunkte auf die Oberfläche projiziert werden. Das Operationsgerät kann dann anhand dieser Punkte parallel zur Faserorientierung eingeführt werden und entlang der Faserrichtung schneiden.

4.4 Operationsdauer

4.5 Gerätezuverlässigkeit und Funktionalität

Neben der nachgewiesenen prinzipiellen Funktionstüchtigkeit zeigte das Gerät eine gute Zuverlässigkeit.

Als eventuell anfällige Einheit des Operationsgerätes ist die Faszienfixationsvorrichtung zu nennen. Die Abstände zwischen den Spannbacken sind für eine bestimmte Fasziendicke konzipiert (gedoppelt ca. 1-1,5 mm). Bei zu dünner Faszie droht diese aus den Spannbacken zu rutschen, nachdem die Schneideeinheit das Transplantat herausgeschnitten hat. Ist die Faszie zu dick, wird sie gequetscht und somit geschädigt, was zu Heilungsstörungen und möglicher Faszienruptur führen kann.

Als aufwendig und mühsam erwies sich vor allem das Aufstecken des proximalen Hebekeils. Eine komplette Integration dieser Geräteeinheit würde die allgemeine Handhabung verbessern und zudem eine schnellere Anwendung ermöglichen.

Für den klinischen Einsatz sind höhere Anforderungen an die Spiraleigenschaften zu stellen. Zum einen kann der Außendurchmesser von 1,2 mm noch als ziemlich grob bezeichnet werden, zum anderen gelang es bei den gegebenen produktionstechnischen Möglichkeiten nur, einen polyfilen Faden in die Spirale einzuschwemmen. Da in der Orthopädie bzw. Unfallchirurgie zur fortlaufenden Naht der Fascia lata wegen der langsameren Resorption und dadurch länger verbleibenden Reißfestigkeit monofile Fäden aus z. B. Polyglykonat oder Polydioxanon verwendet werden, ist dies auch für den Spiralfaden zu fordern. Desweiteren muss eine auf die Spirale aufsetzbare Nadelspitze hergestellt werden, um die Gewebeschädigung beim Vordrehen der Spirale weiter zu minimieren.

4.6 Vergleichsdiskussion mit anderen Geräten

Auffällig ist, dass keine Entnahmetechnik recherchiert werden konnte, die ein Nahtverfahren anwendet, um die entstandene Faszienlücke wieder zu verschließen. Mögliche Ursachen hierfür sind, dass ein Verschluss aufgrund der Defektgröße nicht möglich ist, eine Muskelnernie bei geringer Faszienschwächung und bestimmter Entnahmelokalisation nicht
auftritt oder deren klinische Symptomatik unterschätzt wird. Die bei chronisch bestehender Muskelhernie möglichen Behandlungen beschränken sich allerdings auf Inaktivierung des prolabilierten Muskelanteils durch Injektion mit Botulinumtoxin oder eine plastische Deckung [7,40]. Zusammengefasst birgt die minimal-invasive Entnahme mit einem Faszienstripper somit vermeidbare und damit unnötige Risiken für den Patienten.

Eine vergleichbare Methode, die eine Transplantatentnahme in etwa der Größe 2x18 cm ohne resultierenden Fasziendefekt ermöglicht wurde bisher nicht beschrieben.

4.7 Kritische Bewertung der Transplantation von Fascia lata- und Tractus iliotibialis-Anteilen

Die in der operativen Orthopädie und Traumatologie durchgeführten Rekonstruktionsplastiken mit Fascia lata werden häufig bei jungen, sportlich aktiven Patienten angewandt. Umso wichtiger ist die Frage, welche biomechanischen Konsequenzen die Entnahme eines Teils des Tractus iliotibialis für den Patienten hat:

Durch Schädigung des Tractus iliotibialis kann auch seine Funktion als antero-lateraler Kniestabilisator gemindert werden. Diese Aufgabe wird jedoch zum Großteil durch das Ligamentum cruciatum anterior erfüllt [28]. Desweiteren ist eine substanzielle Beein-
trächtigung des Tractus vor allem im distalen Abschnitt notwendig, um einenausschlaggebenden Effekt im Kniebereich hervorzurufen.

Es stellt sich die Frage, warum autogenes Transplantationsmaterial nötig ist, und nicht auf allogenues oder synthetisches Material zurückgegriffen werden kann. Die Erwartungen, die in synthetische Ersatzmaterialien gesetzt wurden, konnten leider nicht erfüllt werden. Erhöhte Infektionsraten, frühzeitige Materialinsuffizienz und Kontamination des Operationsgebietes durch Erosionsprodukte sind einige der beobachteten Komplikationen [3,66].

4.8 Schlussfolgerung

Mit der vorgelegten Doktorarbeit konnte die prinzipielle Eignung einer selbst konstruierten minimal-invasiven Transplantatentnahmemaschine gezeigt werden.

Nach in diesem Sinne durchgeführten Verbesserungen der Transplantatentnahmemaschine ist für die entsprechende Operation mit einer steilen Lernkurve zu rechnen.

Die Methode einer minimal-invasiven Fascia lata Entnahme mit Hilfe eines Gerätes, welches eine fortlaufende Naht verwendet gilt es weiter zu verfolgen. Nach durchgeführten Modifikationen kann die Maschine für eine eventuelle Serienproduktion als Grundlage dienen.
ZUSAMMENFASSUNG

Zur Vermeidung dieses für den Patienten unnötigen Risikos wurde ein Prototyp entwickelt, der durch zwei kleine Hautschnitte im Oberschenkelbereich subkutan eingebracht wird und das Transplantat entnimmt. In der Maschine konnte ein spezielles Fixations- und Bearbeitungsverfahren realisiert werden, das einen Faszienverschluss mit einer überwendelnden, fortlaufenden Naht ermöglicht.

Die an die Operationsmethode gestellten Forderungen bezüglich Minimalinvasivität, allgemeinem Operationsrisiko, Qualität des gewonnenen Autotransplantates, Sicherheit und Zuverlässigkeit des Gerätes und der Eingriffsduer konnten im Wesentlichen erfüllt werden. Die Versuche zeigten eine prinzipielle Eignung der Methode für eine minimal-invasive Fascia lata-Entnahme, wodurch ein klinischer Einsatz möglich erscheint.
6 LITERATURVERZEICHNIS

29. Herren T, Zdravkovic V: Late reconstruction of distal biceps tendon rupture with fascia lata graft and Mitek anchors. Unfallchirurg. 107(3):236-8, 2004
7 ANHANG

7.1 Technische Zeichnungen

7.1.1 Spannbacken

Adapter für Sehnenhalter

Platte 1 für Fascia lata Halterung
7.1.2 Prototyp Fascia lata-Transplantatentnahme

7.1.2.1 2D-Zeichnungen

Hauptgerät, Teil 1 mit großem Verschluss-/Hebeblock (1), Halbrohr (2) und kleinem Verschluss-/Hebeblock (3)
Hauptgerät, Teil 2 mit kleinem Verschluss-/Hebeblock (4), Halbrohr (5) und großem Verschluss-/Hebeblock (6)

Fixationsgabel (7)
Umlenkstabeinheit mit großem Hebekeil (8), kleinem Hebekeil (9) und Umlenkstab (10)

![Diagram of Umlenkstabeinheit](image8)

Skalpellschlitten mit Halteschiene (11) und Skalpellblock (12)

![Diagram of Skalpellschlitten](image9)

Erzielte Rauhigkeit

Maßstab 1:5

![Diagram of Erzielte Rauhigkeit](image10)
Spiralnadel mit Haltegriff

7.1.2.2 3D-Schemazeichnung
8 DANKSAGUNG

Ich danke Herrn Prof. Dr. med. Rudolf Ascherl für die Bereitstellung des Themas.

Mein ganz besonderer Dank gilt Herrn Priv. -Doz. Dr. med. Martin Russlies für die betreuerische Übernahme der Arbeit und für seinen konstruktiven Ansporn, der maßgeblich zum Gelingen der Arbeit beigetragen hat.

Besonders herzlich danken möchte ich Herrn Dipl.-Ing. Dr. rer. biol. hum. Wolfgang Köller, der mir vor allem während der Entwicklungsarbeit der Operationsgeräte und bei der experimentellen Durchführung der biomechanischen Versuche jederzeit mit Rat und Tat zur Seite stand.

Desweiteren danke ich Herrn Prof. Dr. med. Dr. h.c. mult. Wolfgang Kühnel und dem Institut für Anatomie dafür, dass sie mir die Voraussetzungen für die Versuchsanordnungen ermöglicht haben.

Den Mitarbeitern der wissenschaftlichen Werkstätten (Holz und Metall) danke ich für die Mithilfe zur Umsetzung meiner Zeichnungen in anwendbare Instrumente.

Dem Institut für Medizinische Statistik und Dokumentation danke ich für die Beratung und statistische Auswertung der Messwerte der Fascia lata Nahtmethoden.

Meinem Freund und damaligem Mitbewohner Axel Hilker danke ich aufrichtig für das geduldige Zuhören meiner vorgetragenen Ideen zur Entwicklung der Operationsgeräte.

Ein großer Dank geht an Frau Betty Johannsmeyer für die Beschaffung der relevanten Literatur.

Meiner Lebensgefährtin Antje Johannsmeyer danke ich vor allem für die Unterstützung während der Zeit des Schreibens der Abhandlung.
9 LEBENSLAUF

Persönliche Daten:
Name, Vorname: Hartmann, Rolf
Anschrift: Klämmagatan 2b, 507 45 Borås, Schweden

Schulausbildung:
1981-1983 Orientierungsschule „Cranachstraße“, Wolfenbüttel
Mai 1991 Allgemeine Hochschulreife

Gemeinschaftsdienst
1991/92 Rettungshelfer im Rettungsdienst DRK Celle-Land

Studium Humanmedizin
1992-1995 Georg-August-Universität, Göttingen
1995-1999 Medizinische Universität zu Lübeck
Mai 1999 Ärztliche Prüfung, Erhalt der Teilapprobation
März 2001 Approbation als Arzt

Ärztliche Tätigkeit:
September 1999-Februar 2001 Arzt im Praktikum in der Klinik für Unfall- und Wiederherstellungschirurgie, ZKH St.-Jürgen-Str., Bremen
März/April 2001 Hospitation in der Abteilung für chirurgisch-orthopädische Wissenschaften und Sportmedizin, Karolinska Institut, Stockholm/Schweeden
Oktober 2001-März 2002 Assistenzarzt in der Klinik für orthopädische Chirurgie, Sahlgrenska Universitetssjukhuset/Östra, Göteborg/Schweeden
seit April 2002- Assistenzarzt in der Klinik für orthopädische Chirurgie, Södra Älvsborgs Sjukhus, Borås/Schweden
Promotion:
1996-2000 praktische Durchführung der Experimente
2000-2005 Verfassen der Abhandlung

Veröffentlichung:
Hartmann R, Koller W, Ascherl R, Russlies M:
Designing a surgical device for harvesting autologous fascia lata grafts as a minimal invasive procedure

Patent: