Zur Entwicklung der autologen Knochentransplantation

Ein medizinhistorischer Überblick von der Antike bis zum Jahr 1949

Inauguraldissertation
zur
Erlangung der Doktorwürde
der Universität zu Lübeck
– Aus der Medizinischen Fakultät –
vorgelegt von
Dörthe Stecker
aus Oldenburg (Oldb.)

Lübeck 2007
1. Berichterstatter: Priv.-Doz. Dr. med. Dr. med. dent. Dirk Hermes

2. Berichterstatter: Priv.-Doz. Dr. med. Jan Gliemroth

Tag der mündlichen Prüfung: 08.10.2007

Zum Druck genehmigt. Lübeck, den 08.10.2007

gez. Prof. Dr. med. Werner Solbach

− Dekan der Medizinischen Fakultät −
ZUR ENTWICKLUNG DER AUTOLOGEN KNOCHENTRANSPLANTATION
Ein medizinhistorischer Überblick von den Anfängen bis zum Jahr 1949

INHALTSVERZEICHNIS

1. EINLEITUNG 1

2. DIE URSPRÜNGE DER MUND-, KIEFER- UND GESICHTSCHIRURGIE
 VON DEN ANFÄNGEN BIS IN DAS 18. JAHRHUNDERT 5
 2.1. Ur-/ Naturvölker 5
 2.2. Alter Orient 5
 2.3. Griechisch-römische Antike 12
 2.4. Mittelalter und beginnende Neuzeit 22
 2.5. Europäisches Mittelalter 25
 2.6. Renaissance 33
 2.7. Barockzeitalter 42

3. WEGBEREITER DES AUTOLOGEN KNOCHENTRANSFERS 49
 3.1. Anästhesie 50
 3.1.1. Altertum und Mittelalter 50
 3.1.2. Renaissance und Neuzeit 54
 3.1.3. Inhalationsnarkotika 57
 3.1.4. Intravenöse Narkose 65
 3.1.5. Lokalanästhesie 66
 3.1.6. Anästhesie im Bereich der Mund-, Kiefer- und Gesichtschirurgie 68
 3.2. Antiseptik und Asepsis 71
 3.3. Bildgebung als diagnostisches Hilfsmittel 79
4. DIE HISTORISCHE ENTWICKLUNG DER AUTOLOGEN
KNOCHENTRANSPLANTATION 86

4.1. 1668–1819 Erste wissenschaftliche Untersuchungen an Knochen 86
4.2. 1820–1866 Ausweitung der Resektionsprothetik und
Rhinoplastik und erster autologer Knochenersatz 88
4.3. 1867–1890 Veröffentlichung gegensätzlicher Resultate
bezüglich des Überlebens von Transplantaten
durch Ollier und Barth 97
4.4. 1891–1906 Vorrangige Stellung der gestielten Plastik vor der
freien Transplantation 109
4.5. 1907–1913 Durchsetzung des freien autoplastischen Ersatzes 116
4.6. 1914–1918 Neue Erfahrungen im Bereich der Transplantation
durch bisher unbekannte Formen der Verletzung
im Ersten Weltkrieg 137
4.7. 1919–1949 Entwicklung der Methode der Knochenvorpflanzung 188

5. ÜBERBLICK ÜBER DIE WEITERENTWICKLUNG DER
KNOCHENTRANSPLANTATION VON 1950 BIS IN DIE GEGENWART 205

6. ANHANG

6.1. Zusammenfassung 225
6.2. Bibliographie 226
6.3. Abbildungsnachweis 250
6.4. Danksagung 262
6.5. Lebenslauf 263
1. Einleitung

1.1. Einführung in das Dissertationsthema

In der heutigen Medizin stellt die Transplantation verschiedenster Organe und Gewebe eine gängige Behandlungsform dar. Genutzt wird die Möglichkeit des Hartgewebeerisatzes u.a. bei Knochendefekten, nicht heilenden Frakturen, zur Verlängerung eines Knochens, bei Deformitäten, zur Arthrodese und Osteodese, zur Fixation von Knochen (Knochenbolzung), zur Gelenkbildung und zum Gelenkersatz oder bei Plastiken verschiedener Körperstellen. Die dabei verwendeten Transplantattypen lassen sich einsteilen in autologe Transplantate, d.h. aus demselben Individuum stammend, aber auch die Gewebe eines anderen Individuums der gleichen Spezies (homolog/allogen) oder einer fremden Spezies (heterolog/xenogen) können zum Ersatz herangezogen werden.
Weiterhin werden nichtvaskularisierte und vaskularisierte Transplantate unterschie-
den.
Heutzutage ist bekannt, dass Knochentransplantaten drei physiologische Funktionen
zuzuschreiben sind. Dazu gehört die Osteoinduktion, der Prozess der lokalen
Knochenformation durch die Ausbildung von potentiell knochenbildenden Zellen.
Ferner können Transplantate die Osteokonduktion unterstützen, indem sie einen
Rahmen bieten, in dem sich Knochen ablagern kann. Außerdem liefern
Knochentransplantate eine Quelle knochenbildender Zellen.

Die Entwicklung des beschriebenen Behandlungsverfahrens der autologen Knochen-
transplantation ist untrennbar mit der Entwicklung der Chirurgie, insbesondere der
Mund-, Kiefer- und Gesichtschirurgie und ihrer Behandlungsmethoden, verbunden.
Die Entwicklung der Anästhesie und die Einführung der chirurgischen Asepsis sowie
die Entdeckung der bildgebenden Verfahren als „Wegbereiter“ der Knochentransplan-
tation bedeuteten auf dem Weg der Transplantationsgeschichte wesentliche Neuerun-
gen, die bislang für unmöglich gehaltene Eingriffe möglich machten. Auch andere
Fachbereiche wie die der Histologie, Immunologie, Pathologie und Physiologie trugen
wesentlich zur Entstehung der Transplantationsmöglichkeiten bei.

1.2. Zielsetzung der Arbeit

Die vorliegende Arbeit beschäftigt sich unter medizinhistorischen Aspekten mit der
Behandlung von Knochendefekten durch Knochentransplantation und den begleitenden
Fortschritten aus grundlagenwissenschaftlichen und klinischen Fachgebieten, die zur
Entwicklung und Etablierung des Behandlungsverfahrens führten.
Dabei soll(en) im Einzelnen
- die medizinhistorischen Ursprünge der Mund-, Kiefer- und Gesichtschirurgie
 erörtert werden,
- die wesentlich zur Entwicklung der Knochentransplantation beitragenden Fach-
 bereiche in einem kurzen Abriss dargestellt werden,
- verschiedene historische Forschungsergebnisse und Operationsverfahren der
 autologen Knochentransplantation sowie deren Modifikation im zeitlichen
 Zusammenhang erläutert werden,
- für die Knochentransplantation bedeutende ärztliche Persönlichkeiten sowie deren bedeutende Veröffentlichungen vorgestellt werden,
- ein umfassendes Verzeichnis der begleitenden medizinhistorischen, grundlagenwissenschaftlichen und klinischen Literatur zusammengestellt werden.

Innerhalb der einzelnen Kapitel der Arbeit wurde eine möglichst strenge Chronologie der Ereignisse eingehalten. In Zusammenhang stehende Themenbereiche wurden jedoch aus Gründen der Anschaulichkeit im entsprechenden Kontext belassen und so möglicherweise aus der Chronologie herausgelöst.

1.3. Durchführung der Literaturrecherche, Quellenauswertung

Einzelne Bereiche des Themas konnten nur am Rande behandelt werden oder fanden im Rahmen der Arbeit keinerlei Berücksichtigung. Hierzu zählen u.a. die Anwendungsbereiche der autologen Knochentransplantation außerhalb der Mund-, Kiefer- und Gesichtschirurgie, die histologischen und physiologischen sowie pathophysiologischen Zusammenhänge bei Einheilung oder Abstoßung der Transplantate, die Erforschung
der immunologischen Gesetze bei Transplantationen, die damit zusammenhängende Immunsuppression und die Antibiotikatherapie. Diese wurden nur dann eingearbeitet, wenn sie grundlegende Bedeutung für die weitere Entwicklung der autologen Knochentransplantation hatten. Auch die Entwicklungen und Fortschritte in den Bereichen von Anästhesie, Antiseptik und Asepsis sowie Radiologie können in ihrer Bedeutung für den medizinischen Fortschritt nur in eingeschränktem Maße dargestellt werden.

Um dem Leser eine umfassende Orientierung über das Thema der Abhandlung insgesamt zu ermöglichen, wurden wesentliche Schritte der Weiterentwicklung der autologen Knochentransplantation nach dem Jahr 1949 im Rahmen eines Ausblicks zusammengefasst. Auch nach diesem Jahr veröffentlichte Literaturquellen von Bedeutung wurden in das Literaturverzeichnis aufgenommen.
2. **Die Ursprünge der Mund-, Kiefer- und Gesichtschirurgie**

von den Anfängen bis in das 18. Jahrhundert

Seit frühester Zeit ist es ein Wunsch der Menschen, verlorengegangene und verbrauchte Gewebe oder Körperteile zu ersetzen und damit Leben zu verlängern und Funktion wiederherzustellen. Die Ursprünge dieser Behandlungsformen, der Transplantationen, liegen bereits in vorchristlicher Zeit. Wurden insbesondere während der Weltkriege die Probleme der Transplantationen diskutiert, gehören sie heute zur klinischen Routine [147]. Bis zu diesem Erfolg war jedoch ein langer Weg experimenteller und klinischer Studien notwendig.

2.1. **Ur-/Naturvölker**

2.2. **Alter Orient**

gesichert und in erhärteten Ton gebettet, luxierte Gelenke wieder eingerenkt. Eingedrungene Fremdkörper lernte man zu eliminieren [20].

Den ersten Hinweis auf chirurgische Tätigkeit sahen Forscher bereits im Neolithikum, der Jungsteinzeit (ca. 6. Jahrtsd.–1800 v. Chr.) [7; 37; 122]. Bei Untersuchungen an Schädeln dieser Zeit fanden sich Zeichen einer Trepansion. In einigen Fällen konnte man Regeneratio

von Knochen an den Frakturrändern nachweisen, was ein Zeugnis des chirurgischen Geschickes dieser Zeit darstellen könnte, aber auch auf die Resistenz unserer Vorfahren gegenüber Infektionen aufmerksam macht [7; 122].

Bereits in der Steinzeit gelang es zum Teil mit Erfolg, Fragmente des durch Natur- oder Fremdeinwirkung eingerückten Schädelaches herauszuheben, was auf die Technik der Schädelachtrepanation hingelenkt haben könnte. „Seit der Mensch als erstes Gerät den Faustkeil handhabte, also vor etwa 200 000 Jahren, dürften auch adäquate Eingriffe im Bereich des Gesichtsschädels durchgeführt worden sein.“ [20]. Die Eingriffe dienten vermutlich insbesondere der Schmerzlinderung, z.B. bei Verletzungen oder auch Tumoren. Entfernte Knochenstücke wurden anschließend häufig als Amulette verwendet [7]. Erst als Heilkundige begannen, ihre Erfahrungen in der Krankenversorgung z.B. auf altägyptischen Papyrusrollen oder mesopotamischen Ton-
tafeln niederzuschreiben, wurden historisch nachweisbare Unterlagen geschaffen [19; 20; 37].

„Zu den ältesten medizinischen Quellen gehören etwa ein Dutzend ägyptischer Papyri, die überwiegend um die Mitte des 16. Jahrhunderts v. Chr. in Hieroglyphenschrift abgefaßt worden sind [...]. Ihr In-
halt aber geht mit aller Wahrscheinlichkeit auf ein Jahrtausend ältere Kenntnisse zurück, auf die Zeit der großen Pyramidenbauer des Alten Reiches (2650–2150 v. Chr.).“

[20]
Dazu zählen u.a. der Papyrus Ebers, der Papyrus Smith, der Hearstpapyrus, der Papyrus Brugsch major und der Papyrus Anastasi [23].
Vor allem im umfangreichen Papyrus Ebers, der 1872 n. Chr. in Theben entdeckt wurde und der Zeit um 1550 v. Chr. zugeordnet wird, sind praktische therapeutische Ratschläge niedergelegt. Auch der etwa gleich alte, ca. 1600 v. Chr. verfasste Papyrus Smith liefert als sogenanntes Wundenbuch in vierundzwanzig Kapiteln bereits wesentlich älteres, genauer gesagt, ausgeführtes Erfahrungsgut [19; 20; 37] (vgl. Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.2., S. 11). So wird angenommen, dass der Papyrus Smith lediglich die Kopie einer mindestens 1000 Jahre älteren Schrift ist und zum Teil bis in die Zeit der großen Pyramiden (3000–2500 v. Chr.) zurückgeht [20; 299].

In diesen Papyri sind bereits erste anatomische Kenntnisse niedergelegt [20; 37] (vgl. Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.2., S. 11).

Besondere Bedeutung erlangte in der alten Zeit nach den Schriften auch die Fixierung gelockerter Zähne [23; 37].

Wurden für viele Erkrankungen grundsätzlich noch heute gültige Therapievorschläge geschildert, nahm der Verfasser jedoch von der Behandlung des infizierten Kieferbruchs Abstand [20]:

„Wenn du einen Mann untersuchst mit einem Bruch an seinem Unterkiefer, dann sollst du deine Hand darauflegen, und findest du jenen Bruch, indem [er] sich verschiebt unter deinen Fingern. Dann musst du dazu sagen: einer mit einem Bruch in seinem Unterkiefer; aufgebrochen ist eine Wunde darauf; der Ausfluß hat aufgehört zu fließen; er hat Fieber in folgedessen. Eine Krankheit, die man nicht behandeln kann.“

(aus dem Papyrus Smith, übersetzt und zitiert nach [20])

Das hochentwickelte ärztliche System dieser Zeit zeigte sich in der Einteilung der Medizin in zehn Spezialfächer, zu denen u.a. die Zahnkunde zählte. Für den heute häufigsten chirurgischen Eingriff in der Mundhöhle, die Zahnextraktion, fand sich jedoch wider in der altägyptischen Literatur noch an fossilen Kiefern ein Hinweis. Nach anderen Quellen war aber im alten China die Zahnextraktion einer der häufigsten Eingriffe, wobei man zunächst durch verschiedenste Medikamente den Zahn zu lockern versuchte, um ihn anschließend durch hebelartige Instrumente zu entfernen [20: 23].

Allgemein zeigte sich in der Alten Welt bis hinein ins Mittelalter eine nach Hoffmann-Axthelm anscheinend auf schlechten Erfahrungen beruhende Scheu vor dieser Form der Therapie [19; 20: 37].

Bei Untersuchungen an Tausenden altägyptischer Schädel fanden sich keinerlei Spuren chirurgischer Tätigkeit am Kiefer. Umso mehr Aufsehen erregte 1917 ein außergewöhnlicher Fund des Kieferchirurgen K. H. Thoma im Peabody-Museum in Boston. Er fand an einem Unterkiefer aus der Zeit um 2500 v. Chr. distal des Foramen mentale zwei Löcher, die in eine röntgenologisch nachweisbare Aufhellung um die Wurzelspitzen eines zerstörten 1. Molars führten. Thoma sah in diesen Bohrungen eine Entlastung eines enossalen Abszes-

![Abb.3: Zyste an einem unteren Molaren, vor 3000 v. Chr.](image)
Die Sicherheit über diesen ersten kieferchirurgischen Eingriff wird jedoch in Frage gestellt [20], ebenso der von dem Ägyptologen E. A. Hooton gezogene Schluss, „daß zweifellos eine gewisse Kenntnis von Kieferchirurgie im Alten Reich existiert habe.“ (Hooton, übersetzt und zitiert nach [20]).

So gibt W. Hoffmann-Axthelm zu bedenken, dass neben weiteren Möglichkeiten durchaus vorstellbar sei „daß bei einer (im Alten Reich noch unvollkommenen) Mumifizierung sich ein Präparator um Reposition des Bruches bemüht [habe], denn der ägyptische Mensch legte höchsten Wert darauf, möglichst intakt in das Totenreich des Osiris einzuziehen.“ [20].

Auch in der ausgedehnten medizinischen Literatur der bereits oben erwähnten mesopotamischen Tontafeln findet sich keinerlei Erwähnung chirurgischer Eingriffe. Jedoch sah Hoffmann-Axthelm in den 282 Paragraphen der Hammurapi-Stele, eines in Stein gemeißelten Gesetzbuches des im 18 Jh. v. Chr. herrschenden Babylonierkönigs, Hinweise auf die Ausübung chirurgischer Tätigkeit.

Darin waren Gehühren für chirurgische Leistungen festgelegt, aber auch schwere Strafen bei deren Misslingen [20; 23]. So erhielt der Behandler für die Eröffnung eines Abszesses neben dem Auge ein Erfolgs Honorar von 10 Sekel Silber (= 84g). Ging aber das Auge verloren, wurde ihm laut §218 dieser Gesetzessammlung die Hand abgeschlagen. Ähnlich waren die Gehühren bei der Therapie der Knochenbrüche [20]. Derartige Gesetzesbestimmungen mussten nahezu jede Entwicklung chirurgischer Tätigkeit im Keim ersticken. Auch wurde in dieser Zeit zwischen der Strafe eines Übeltäters, der die Zähne „Seinesgleichen“ oder eines „Freigelassenen“ beschädigte, unterschieden [23]:
„§200: Wenn jemand die Zähne eines anderen Seinesgleichen herausschlägt, so soll man seine Zähne herausschlagen."
„§201 Wenn er die Zähne eines Freigelassenen ausgeschlagen hat, soll er eine halbe Mine Silber zahlen."

(aus der Hammurapi-Stele, Sudhoffsche Wiedergabe, übersetzt und zitiert nach [23])

Eine ähnliche Formel „Auge um Auge, Zahn um Zahn“ tauchte in späterer Zeit im jüdischen Sprachgebrauch wieder auf [23].
Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.2.

Therapieanweisung einer Nasenbeinfraktur aus dem Papyrus Smith um 1600 v. Chr., übersetzt und zitiert nach [20]

Therapieanweisung einer Unterkieferfraktur aus dem Papyrus Smith um 1600 v. Chr., übersetzt und zitiert nach [20]

„Das ist das Ende seines Unterkiefers. Der Krallenknochen endet in seinem Joch-Schläfenbein, wie der Krallenvogel nach etwas greift.“

Niederlegung erster anatomischer Kenntnisse im Papyrus Smith, ca. 1600 v. Chr., übersetzt und zitiert nach [20]

„Als Odysseus mit einem Fausthieb das Gebiß des Irus zerschlägt, der daraufhin Blut spuckt, in den Staub fällt und seine Zähne ausspuckt, besteht die einzige Maßnahme des Arztes darin, auf die Wunde eine zerriebene bittere Wurzel zu legen, um die schlimmen Schmerzen zu lindern, die Wunde auszutrocknen und die Blutung zu stillen.“

Toellner über die selten ausgeführte chirurgische Tätigkeit in der alten Zeit [37]
2.3. Griechisch-römische Antike

Bereits hier finden sich auch verschiedenste Ratschläge zur Therapie von Abszessen, Geschwüren und auch Karzinomen im Mundbereich. „Alle, die an verborgenen Krebsschäden leiden, läßt man am besten unbehandelt; denn behandelt gehen sie rasch zu Grunde; unbehandelt bleiben sie noch lange Zeit am Leben.“ Über Schleimhautgeschwüre hingegen ist zu lesen: „Der Mann mit dem Krebsgeschwür im Rachen. Er wurde gebrannt. Er genas unter unserer Behandlung...“ (aus dem Corpus Hippocraticum, übersetzt und zitiert nach [20]).

Hippokrates verwendete hier erstmals die Be-
zeichnung Karzinoma (von griech. karkinos, Krebs), abgeleitet von der Ähnlichkeit eines Mammakarzinoms mit Krebsschieren [20].

Hippokrates hatte außerdem bereits erkannt, dass die größten Fortschritte in der Entwicklung der Behandlungsmethoden bei Verletzungen während der Kriege gemacht wurden. Daraus resultierte sein Rat, die Armeen in die Schlachten zu begleiten, um so die nötigen Erfahrungen für die Weiterentwicklung der Behandlungsverfahren zu sammeln [299]. In der Therapie der Kieferfrakturen wurde bereits in dieser Zeit zwischen partiellem und vollständigem Bruch der Mandibula unterschieden [20]. So wurde ersetzer therapiert,

„indem man mit den Fingern seitwärts von der Zunge hineinfaßt, von außen her aber, soweit das zweckdienlich ist, einen Gegendruck ausübt. Wenn die Zähne an der verletzten Stelle verschoben und lose geworden sind, so muß man, nachdem der Knochen eingerichtet ist, die Zähnen miteinander verbinden, und zwar nicht bloß zwei, sondern mehrere, am besten mit einem Golddraht, bis sich der Knochen in sich gefestigt hat, andernfalls mit Fäden.“

(aus dem Corpus Hippocraticum, übersetzt und zitiert nach [20])

Durch die bimanuelle Reposition der Frakturstücke und anschließendes Anlegen einer Kinnschleuder erfolgte eine Konsolidierung der Unterkieferfraktur bereits nach 20 Tagen [37; 149] (vgl. Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.3., S. 20).

Eine Schienung im heutigen Sinne und damit die konsequente und systematische Weiterentwicklung der Frakturversorgung wurde jedoch nicht vorgenommen. Damit fehlte ein wesentlicher Schritt auf dem Weg der Versorgung von Kieferfrakturen [20]. Den-
noch behielt diese Behandlungsweise für Antike, Mittelalter und beginnende Neuzeit beinahe vollkommene Gültigkeit [149].

Auch bei der Behandlung der Unterkieferluxation sind Krankheiten und Therapievorschläge beschrieben, die sich von den Hippokratikern bis hinein in die nachchristliche Zeit finden. Gleichzeitig lässt sich die Behandlungsform zurückführen auf antike Vorlagen (s. Abb.7).

Gemeinsamkeiten zeigten sich auch mit den üblichen Behandlungsprinzipien der alten Ägypter, niederge schrieben im Papyrus Smith, was dessen erster Übersetzer Breasteds als deutliches Zeichen kultureller Wechselbeziehungen zwischen Griechen und Ägyptern der Spätzeit deutete [20].

Bekannt schien den hippokratischen Ärzten auch bereits eine Zahnextraktion mit der Zahnzange [20: 37]:

„Was die Zahnschmerzen anlangt, so muß man, wenn (der Zahn) angefressen ist und wackelt, ihn ausziehen; wenn er jedoch nicht angefressen ist und auch nicht wackelt, jedoch schmerzt, so muß man ihn durch Brennen austrocknen.“ [...] „...die Instrumente zum Zahnziehen und die Zäpfchenzange kann der Nächstbeste handhaben, ihre Anwendung schient mir ja ganz einfach“

(aus dem Corpus Hippocraticum, übersetzt und zitiert nach [20])
Abb. 8: Römische Zahnzange aus dem Saalburg-Kastell, 1./2. Jh. v. Chr.

Ähnliche Verfahren finden sich im 2. nachchristlichen Jahrhundert bei Soranos von Ephesos wieder, einem in Rom wirkenden Griechen, der seine Erfahrungen im Buch „Von den Verbänden“ niederlegte [20].

Abb. 9: Künstschleuder des Soranos von Ephesos, 2. Jh.

Abb. 10: Gesicht-Nasenverband des Soranos von Ephesos

Eine der ältesten Wiedergaben oralchirurgischer Behandlungen, datiert in das späte 4. Jahrhundert v. Chr., fand man 1830 in Form einer Vase als Grabbeigabe in einem skythischen Tumulus auf der Halbinsel Krim [13; 20]. Dargestellt sind skythische Krieger beim Verbinden eines Beines durch einen Kameraden, oder bei einer schein-
bar schmerzhaften Manipulation in der Mundhöhle eines mit Bogen und Köcher Be-
waßneten durch einen anderen Bogenschüt-
zen [13; 20; 37].
Eine deutliche Entwicklung auf anatomi-
schem und chirurgischem Gebiet war
schließlich im 3. Jahrhundert v. Chr. unter
Aristoteles (384–322 v. Chr.) zu verzeich-
nen [20; 37], jedoch wurden diese erst
greifbar, als im 1. Jahrhundert n. Chr. Aulus
Cornelius Celsus (25 v. Chr.–50 n. Chr.),
dessen Schilderung der vier klassischen

Entzündungsmerkmale noch heute gilt („rubor et tumor cum calor et dolore“), eine
Abhandlung „De medicina“ verfasste. In diesem Werk fasste er die Kenntnisse der
alexandrinischen Schule in lateinischer Sprache zusammen: im 6. Buch stomatologi-
sche Probleme, chirurgische sind im 7. Buch und osteologische im 8. Buch dargelegt
[20].
Im chirurgischen Teil folgt nach kriegs chirurgischen und ophthalmologischen Kapiteln
die erste Schilderung einer gesichts plastischen Operation in Form einer Verschiebe-

Da den alexandrinischen Forschern erstmals Sektionen an menschlichen Leichen und sogar an lebenden, zum Tode verurteilten Verbrechern gestattet waren, zeigten sich besonders im anatomischen Bereich bedeutende Fortschritte (vgl. Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.3., S. 20). Und auch bei der Behandlung der Kieferfrakturen zeigte sich eine Weiterentwicklung dahingehend, dass Celsius starken Wert auf die Ligatur als Ruhigstellung der Fraktur legte, und nicht wie Hippokrates noch v.a. auf die Erhaltung der traumatisch gelockerten Zähne (vgl. Zitate aus dem

Eine Weiterentwicklung chirurgischer Erkenntnisse findet sich jedoch bei Galenos, der sich insbesondere internistischen Erkrankungen widmete, nicht. „So werden auch die in der Palästra bestimmt nicht seltenen Frakturen und Luxationen des Unterkiefers nach fast sechs Jahrhunderten ganz nach hippokratischem Vorbild ohne Hinzufügung eines neuen Gedankens behandelt.“ [20]. Im Bereich der Zahnextraktion jedoch, von der es bisher nur Andeutungen gegeben hatte, machte Galenos als erster die Empfehlung einiger Ätzmittel wie Mutterkrautpuder mit starkem Essig, die so lange auf den Alveolarfortsatz gegeben werden sollten, bis der Zahn mit der Hand herausgenommen werden
konnte. Dieser Rat beeinflusste die Literatur bis in die Neuzeit. Galenos Werk besaß nahezu das gesamte Mittelalter hindurch fast absolute Autorität [20; 23; 37].

Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.3.

„Der Knabe des Metrodoros bekam nach Zahnshmerzen Brand der Kinnlade; dazu schlimme Fleischwucherung am Zahnfleisch, er eiterte mäßig, die Backenzähne fielen aus und die Kinnlade.“

„Denen welche aus dem Gaumendach Knochenstücke abgehen, sinkt die Nase in der Mitte ein; denen aber die Vorderzähne abgehen, wird die Nase platt.“

Erste Erwähnungen von Knochenverlust im Corpus Hippokratikum, übersetzt und zitiert nach [20]

Anleitung zur Reponation aus dem Corpus Hippocraticum, übersetzt und zitiert nach [20]

„Wenn die Zähne an der verletzten Stelle gebogen oder versetzt sind, so muß man sie nach der Anpassung der gebrochenen Teile vorzugsweise mit einem Goldfaden so lange verbinden, bis alles verheilt ist. Ist die Anpassung ausgeführt, so bindet man die Zähne zusammen. Dann nimmt man karthagisches Leder, schneidet einen Streifen davon ab, überzieht die Kinnlade mit Gummi und befestigt das Riemenende mit Klebstoff in der Gegend des Bruchs. Der Riemen wird unter der Kinnlade entlanggezogen und mit Hilfe eines Einschnittes um die Kinnspitze geschlungen. Ein weiterer Riemen soll in der oberen Gegend der Kinnlade angeklebt und so aufgeschlitzt werden, daß er das Ohr umfassen kann. Dann möge man die Riemen dehnen, um ein
Übereinanderliegen der Bruchstücke zu vermeiden und danach oben auf dem Kopf zusammenschnüren. Schließlich ist ein Band um die Stirn zu wickeln und der Apparat mit einem „Überzieher“ zu sichern, so daß der Verband hält. Der Verletzte hat Bettruhe zu bewahren und muß zehn Tage lang auf Diät gehalten werden. Danach soll man ihm unverzüglich zu essen geben, denn wenn während der ersten Tage keine Entzündung auftritt, so heißt die Kinnlade innerhalb von zwanzig Tagen."

Fixierung gebrochener Partien bei Kieferfrakturen nach Hippokrates, übersetzt und zitiert nach [37]

„[...] ein festzufestender Zahn wird unter größerer Gefahr herausgezo-
gen.[...] Die Zange muß gerade geführt werden, damit nicht bei abge-
bogenen Wurzeln der dünne Knochen, dem der Zahn anhaftet, zer-
bracht. Knochensplitter sollen auf jeden Fall entfernt werden, sonst
tritt eine Schwellung ein, die mit Kataplasm en aus Mehl und Feigen
zur Reife gebracht werden muß. Dann Inzision. Herausziehen des
Splitters, doch bleibt bisweilen eine Fistel zurück, die auszuschaben
ist.“

Zahnextraktion mittels Zahnzange nach Aulus Cornelius Celsus,
1. Jh. n. Chr., übersetzt und zitiert nach [20]

„Die beiden Fortsätze des Unterkiefers (maxilla) laufen in zwei Fort-
sätze aus. Der eine Fortsatz ist unten breiter, wird an der Spitze dü-
nner, geht dann im weiteren Verlaufe unter dem Jochbogen durch und
befestigt sich oberhalb desselben an den Schläfenmuskeln. Der ande-
re Fortsatz ist kürzer und runder und dreht sich in jener neben den
Öffnungen befindlichen Grube nach Art einer Angel, und die in den
verschiedenen Richtungen möglichen Drehungen bedingen die Be-
weglichkeit derselben.“

Anatomische Abhandlung aus der Schrift „De medicina“ des Aulus
Cornelius Celsus, 1. Jh. n. Chr., übersetzt und zitiert nach [20]

„Ist nun der Unterkiefer quer gebrochen, wobei gewöhnlich der eine
der neben dem Bruch befindlichen Zähne den anderen überragt, und
hat man die Bruchenden in die richtige Lage gebracht, so muß man
die beiden dem Bruche zunächst stehenden Zähne oder, falls diese lo-
se sind, die auf jene folgenden mit einem Pferdehaar fest zusammen-
binden“

Behandlung einer Unterkieferfraktur nach Aulus Cornelius Celsus,
1. Jh. n. Chr., übersetzt und zitiert nach [20]
2.4. Mittelalter und beginnende Neuzeit

Neu waren bei ihm jedoch die Abbildungen verschiedener Instrumente [20: 23: 37], wie auch die Schilderung einer Zahnschienung [20]:

Abb.17: Aus den medizinischen Schriften des Abulcasim

(Abulcasim, übersetzt und zitiert nach [20])

Diese Technik der Schienung wurde im Mittelalter auch für die Kieferbruchversorgung herangezogen [20]. Für die Behandlung des Zahn- oder Kieferleidens hatte sich der Patient zwischen die Beine des auf einem Stuhl sitzenden Arztes zu setzen, und zwar dergestalt, dass der Kopf des Kranken zwischen den Knien des Behandlers festgehalten werden konnte [23; 37].

Aus dieser Zeit stammt auch die erste Erwähnung eines Rezeptes, das durch die Jahrhunderte immer wieder in der abendländischen Literatur auftaucht, und dessen letzte Erwähnung im Jahre 1790 bei dem Wiener Chirurgen Plenk vorliegt: „Froschfett, sagt man, hat die Eigenschaft, wenn es auf einen Zahn getan wird, ihn ausfallen zu lassen, besonders, wenn er kariös ist. Denn große Tiere, als sie Frösche gekauft haben, die im Gras waren, haben ihre Zähne verloren.“ (Rhazes, übersetzt und zitiert nach [20]).
2.5. Europäisches Mittelalter

Abb.21: Illustriertes chirurgisches Manuskript des Mittelalters, basierend auf den Schriften des Roger von Salerno
zitiert nach [20]). Roland meinte ergänzend, Verziehungen bei der Naht müsse man vermeiden, weil sonst ein durch Narbenkontraktur oder Runzelbildung entstelltes Gesicht entstehe [20].

In Salicetos „De Chirurgica“ findet sich neben eben dieser Behandlungsweise, die er nahezu wortwörtlich wiedergibt, eine ausführliche Beschreibung der Kieferbruchschienung, für die er gewachste und gedrehte Seidenfäden verwendete: „... und binde die Zähne in der Art als ob du einen Weidenzaun flechten willst und setze dieses Umflechten der Zähne zwischen den Zähnen des verletzten Kiefers und jenen des unverletzten Kiefers fort, von einem Zahn zum anderen verlaufend so lange, bis der ganze Teil unbeweglich gemacht ist.“ (Saliceto, übersetzt und zitiert nach [20]).

Und über 200 Jahre später in einem Druck von Salicetos Werk in Lyon 1492 findet man den Zusatz: „Nachdem dies geschehen ist, verflechte die Zähne des unbeschädigten Kiefers mit jenen Zähnen des verletzten Kiefers eben auf diese Weise.“ (Saliceto, übersetzt und zitiert nach [20]). Hier findet sich somit die erste Beschreibung einer Fixierung des frakturierten Unterkiefers am intakten Oberkiefer. Erst gegen Ende des
19. Jahrhunderts wurde dieser Behandlungsgedanke wieder aufgenommen und weiterentwickelt [20].

Eine Sammlung der griechisch-arabisch-italienischen Kenntnisse findet sich im 14. Jahrhundert bei Guy de Chauliac, der als Chirurg und päpstlicher Leibarzt in Avignon wirkte und 1363 die „Chirurgica magna“ veröffentlichte, von der fünfzig Handschriften und einhundertdreißig Ausgaben bekannt sind [20; 21; 37]. In diesem Werk gab de Chauliac auch erstmals eine Definition seines Faches: „Die Chirurgie ist in dreierlei Weise tätig: solvit continuum = sie löst das Zusammenhängende, iungit separatum = sie verbindet das Getrennte, et exstirpat superfluum = sie entfernt, was überflüssig ist.“ (de Chauliac, übersetzt und zitiert nach [21]).

Durch den 1215 gefassten Beschluss des IV. Lateranischen Konzils unter Papst Inno-
cent III. wurde Priestern, die sich zu dieser Zeit in der Ausführung der Heilkunde üb-
ten, die Ausführung chirurgischer Eingriffe wegen der möglichen Todesfolge mit der
Begründung untersagt, sie seien gegen den Willen Gottes. Dieses Verbot führte dazu,
dass die in der nachfolgenden Zeit gegründeten Fakultäten die Chirurgie nicht in ihren
Lehrkanon nahmen. Einzig in Italien entstanden bedeutende Medizinschulen, an de-
nen auch Chirurgie gelehrt wurde, so in Salerno und Bologna. Notgedrungen entstand
daraus dort, wo diese konziliaren Bestimmungen besonders strikt eingehalten wurden,
neben dem Stand der akademischen Ärzte der handwerksmäßig ausgebildete und spä-
ter in Zünften organisierte Stand der Chirurgen. Erste Schilderungen hiervon stammen
aus dem Paris von 1256.

In der Folge entfernte sich die universitätsmäßig gelehnte Schulmedizin stetig von der
praktisch ausgeführten Heilkunde. Neben diesen ersten beiden Vertretern der Heil-
kunde bildete sich während des Mittelalters ein dritter Stand, der zumeist auf Jahr-
märkten, Messen, in Wirtstuben und auf dem Dorfanger tätig wurde [19: 37: 149].
Nach dem ältesten staatlichen Medizinaledikt von 1685, dem des Großen Kurfürsten
Friedrich Wilhelm von Brandenburg, waren dies „Oculisten, Operatores, Stein- und
Bruchschneider, Zahnbrecher“, die „ihre Kunst und Wissenschaft öffentlich üben und
feilhaben“ (Kurfürst Friedrich Wilhelm von Brandenburg, zitiert nach [19: 149]). Die
Fähigkeiten dieser Standesvertreter waren jedoch so anerkannt, dass sogar der Chi-
rurg Guy de Chauliac den Ärzten empfahl, die Zahnoperationen meist den Barbieren
und Zahnbrechern zu überlassen [20: 149]. „Sicher ist hingegen, wenn die Operatio-
nen von den Ärzten geleitet werden.“ (Guy de Chauliac, übersetzt und zitiert nach
[20]). Seit der Empfehlung de Chauliacs wurde sogar in den meisten Lehrbüchern der
Chirurgie zur Überweisung des an Zahnschmerzen Leidenden an diese Kollegen ge-
raten. Die praktische Zahnheilkunde dieser bestand im Wesentlichen in der Zahnentfer-
nung mit Zange oder Pelikan, im Herausbrechen starken Zahnsteins oder im Vertrieb
von verschiedensten Wundmitteln gegen „Zahnweh und dicke Backe“. Aus der Reihe
derer Behandler entsprang im Laufe des 18. Jahrhunderts der Stand der Zahnärzte
[19: 149].

Der Pariser Zahnarzt Pierre Fauchard (1678–1761) gab 1728 mit seinem Werk „Le
Chirurgien Dentiste“ dem neuen Stand der Zahnärzte eine Basis [19: 23: 37]. Darin
stellte er das Spezialwissen der Chirurgen, die odontologischen Kenntnisse der aka-
demisch gebildeten Anatomen, die Erfahrung der für die Zahnprothetik tätigen Drechs-
ler und Goldschmiede und die Künste der Zahnbrecher zusammen [19]. Von Fauchard
Abb. 25: Pierre Fauchard.
Titelblatt der 2. Auflage seines Lehrbuchs, 1746

stammt auch die moderne Sitzhaltung des Patienten in einem bequemen Sessel mit Kopfstütze als Operationsstuhl [23].

kannt gemacht, der sie in einem umfassenden Spezialwerk „De chirurgica curtorum per insitionem“ (Über die Chirurgie der Gewebsdefekte durch Einpflanzung) schilderte [20: 149: 150].

Abb. 27: „Von den Wunden im Angesicht“, aus der medizinischen Schrift des H. Brunschwig
Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.5.

„If the lower mandible is fractured, the diagnosis is easy. Therefore, when you wish to set it, if it should be the right mandible, introduce the index finger and half of the left hand into the mouth of the patient. And if the left mandible is broken, then introduce the fingers of the right, and with them manipulate the fracture medially and laterally, and push any protuberance of the fracture outward from within. And with your other hand outside, line it up properly in normal relationship. And its alignment is determined from the alignment of the teeth which are in it.

But if the mandible is broken in two places, then apply traction with the aid of an assistant. And while the assistant holds it, then the physician may align it as we have said until its normal relationship is re-established. Then bind the teeth thus separated and displaced to one another with gold or silver wire ore with silk, holding them firmly so that they cannot be distracted.“

Theodoricus 1266 über die Behandlung frakturierter Mandibulæ, übersetzt und zitiert nach [122]

„Wasserfrösche werden in Öl gesotten, bis sie zergangen sind. Mit diesem Öl werden die Zähne mehrere Tage bestrichen, das Zahnfleisch angeschnitten und dann die Zähne ausgezogen. Das geschieht in jedem Falle mit dem Eisen.“

Saliceto 1279 über die medikamentöse und operative Behandlungsmethode bei der Zahnextraktion, übersetzt und zitiert nach [20]

„Der Defekt wird viereckig ausgeschnitten, und durch paralleles Weiterführen der Schnitte zweier gegenüberliegender Seiten des Vier- ecks gewinnt der Operateur zwei Lappen, die er oberflächlich mobilisiert, gegeneinander zieht und über der Stelle des Defektes durch Nähte vereint.“

Einziges bekanntes Verfahren zur Deckung von Substanzdefekten aus der Antike [21]
„ein wal hath mich das gelernt, der gar vil leüten do mith geholfen hath, und vill geldes do mith verdieneth.[...] Nim ein bergament oder ein leder, und must das gleich dach der nassen wunden machen, und schneiden, soo weith vndsso langk als die forige nassen gewest ist, und must das enwenig bigenn oben vff der nassen, dor vmb das die nassen oben nicht breith werde, dornach nim das selbige bergamen oder leder und lege das hinder den elbogenn enwenig vff den arm, do er dicke ist, und streich dorvmb mith einer dinten oder sunst vff eng, als weit vnd langk das selbige flecklein gewesst ist; und nim ein guth scharff schnedemesser, oder ein schermesser und do mith streich adder schneidt dörch die hawt, und nim des fleiss enweinigk mith. und schneid nicht weiter, wan du das mit der dinten oder farb gemernt hast, und hibb hinder an zew schnidden herfurtatz. und wie du die mosse eben getroffen hasst mit dem schniden, soo schneid nach mir er furbas, das thustu wol mith einem schnidt, vm zeweren finger adder mehr. und lass denn selbenn fleck, den du gescnitten hast, am arm hengenn, und schneide den nicht abe. und hebe jn den arm vff das heipt, und heftim den selben fleck gleich auf die nassen, in massenn als sie vor gewest ist, und dorvmb mustu den fleck dester lenger scheiden, das du dester bas twz der nassenn kommen kanst den du must den arm vff das heipt binden, und hinder den elbogenn, und must en alssso mit bndern bewaren, das im der arm dister steter ligen möge und dister weniger müde werde. mache derr binden von tochern dester meher, den er muss sso langk gebunden ligen, biss das die nasse mith (dem) fleck gestossenn se. das werth twz zweitenn VIII oder X tage. adder alssso langk bistu sichst, das es gestossenn sie und in der heill ist, soo schnide den lappen oder den flecke abe, doch nicht twz kortz, asso das er dennacht ein wenigk vor dy nasse gehe, soo hat die nasse newr ein loch, dor noch schneid den lappen oder den fleck in solcher langk und breite, das dü en vnden widder heftenn magst, alssso mustu die hawth ein wenigk weg schneidenn, aber sunst roe fleiss also machen, und den selbigenn lappen unden hintzw hefftenn, do er roe fleisch ist, soo wirt die nassen aussen widder zewischlicht, aber innen nicht. soo hei sie denn mith dem wundertrangk und mith dem öl, und mith der rothen ssalbhenn. doch ee du in schnidest, soo lege im den arm vff vff das heipt hober unden nieder, soo siehstu woll, wo du jn schneiden saldt. vnd wann du en sso gantz geheflt hast vnd wilt jn heellen, vnd al die weil du inn heilest, soo richt öm die nassen, vnd vnd ergo en die, vnd versorge ims alssso mit solchenn gebende, do von sie schmal, hoch oder nider wirth, ist enn die nasse twz breith soo bine jm kleine seckelein tzw beiddenn seiten neben vff die nassen. doch mustu jm gebunden fedderkell mit flaschs in die nasse stosben, vnd die forne in der nassen wol aufs föllen sso werden die nassen locher nicht twz enge, vnd bleiben gleich weith. “

Aus der „Bündt-Ertzney“ des deutschen Ordensritters
Heinrich von Pfalzpeint von 1460, zitiert nach [20]
2.6. Renaissance

“Human beauty is expressed in the face and in the well formed body. Therefore, O physician, be careful and diligent in caring for facial wounds. If possible put very fine sutures. In wounds of the mouth start with the first stitch in one corner and then put stitch after stitch, very near one another, below, above, on the sides, so that the mouth keeps its nice form even if the person is going to speak.”

(Brunschwig, übersetzt und zitiert nach [122])

So findet sich selbst in den Schriften des bedeutenden Wundarztes Ambroise Paré (1510–1590) ein Zusammenfließen von Jahrtausende altem Gut mit neuen, eigenen Erfahrungen [20].

Paré war als Sohn eines einfachen Koffermachers geboren worden. Als Lehrling eines Barbiers, seines Meisters Violot, hatte er zunächst den Aderlaß und das Verbinden von
Geschwüren erlernt, bis er 1533 zum Studium der Anatomie und Chirurgie nach Paris ging. 1539 eröffnete er den Laden eines chirurgischen Barbiers [37].

Paré, der als Wegbereiter der modernen Chirurgie gilt [20; 23; 37], belebte die Anwendung der Ligatur erneut und forderte weiterhin das Einlegen passender Drainagen bei Wunden [122]. Er war auch bereits vertraut mit Transplantation und Reimplantation. So arbeitete Paré bereits mit künstlichen Ersatzzähnen aus Knochen oder Elfenbein, und auch selbstkonstruierte Gaumenobturatoren kamen bei ihm zur Anwendung [23; 37]. Seine Denkweise und die hohe Integrität verschafften ihm solche Anerkennung, dass er zum Chirurgen vierer französischer Könige berufen wurde [20; 37; 122]. In seiner Arbeit „Cinq livres de Chirurgie“, die Paré 1572 verfasste, beschrieb er Probleme, mit denen ein Chirurg konfrontiert wurde, der Gesichtsverletzungen behandelte, insbesondere die dem Krieg zuzuschreibenden [122]. Die Fähigkeit der Regeneration, die dem menschlichen Körper dieser Zeit zugeschrieben war, zeigt sich in einer Beschreibung der Belagerung Bolognas:

„What shall I say of the great and very memorable wound of Francis of Loraine, the Duke of Guise? He, in the fight of the City of Bologne had his head so thrust through with a Lance, that the point entering under his right eye by his nose, came out at his necke betweene his eare and the vertebrea, the head or Iron being broken and left by the violence of the stroke, which stuck there so firmly, that it could not be drawn or plucked forth without a paire of Smith`s pincers.
Paré legte besonderen Wert auf die Behandlung von Wunden im Gesichtsbereich. Die betreffenden Gewebe sollten, so Paré, durch eine trockene Naht gleich einem adhaesiven Pflaster verschlossen werden. Seine Art des Wundverschlusses wurde besonders im Ersten Weltkrieg empfohlen und weiterentwickelt. In der Behandlung der Kieferfrakturen fand sich keinerlei Neuerung, sie wurden weiterhin wie bei Hippokrates behandelt (s.u.) [122].

Abb. 30: Die „trockene Naht“ nach Ambroise Paré

Abb. 31: Behandlung einer dislozierten Unterkieferfraktur nach Hippokrates

In seinen „œuvres de chirurgie“ (1598) beschrieb er neben chirurgischen Instrumenten auch Instrumente der Zahnchirurgie. Sein Handbuch „Der auffrichtige Augen- und Zahn-Arzt“ wurde 1706 in deutscher Sprache herausgegeben [37].

Ende des 16. Jahrhunderts erschien auch eines der für die Entwicklung der späteren Transplantationschirurgie bedeutenden Werke, Gaspare Tagliacozzi (1545–1599), Professor der Anatomie in Bologna, veröffentlichte 1597 erstmals sein umfangreiches Spezialwerk „De chirurgica curtorum per in-

[21]

Aus dieser Zeit zu Beginn des 17. Jahrhunderts stammt auch die Legende vom sympathetischen Zusammenhang zwischen Transplantat und Spender. „Wenn der Spender stirbt – so heißt es –, dann sterbe auch das ihm entnommene Gewebestück ab.“ [21].

Athanasius Kircher ging sogar so weit, aus diesem sympathetischen Zusammenhang heraus Spekulationen von telegraphischer Verständigung nachzugehen: „Zwei Menschen [...] die gegenseitig ein Hautstück tauschten, müßten über dieses Transplantat miteinander in Verbindung treten können, indem sie wechselseitig spürtan, wenn der eine in die transplantierte Haut des andern sticht.“ In diesem Zusammenhang erwähnte Kircher ironisch die Entwicklung eines Morsealphabets, das jedem Buchstaben eine bestimmte Stichzahl zuordnet [21].

Abb.36: Fabricius Hildanus in seiner chirurgischen Kasuistik über eine 1592 von Jean Griffon durchgeführte italienische Rhinoplastik, 1614
dizinischen Fakultät von Paris im Jahre 1742, „ob verstümmelte Nasen aus der Armhaut wiederhergestellt werden könnten“, wurde jäh verneint [149].

Dieffenbachs Nachfolger Bernhard Rudolf Conrad von Langenbeck (1810–1887) war es, der das Vorgehen der indischen Methode der Rhinoplastik erneuerte. So führte er ein, neben dem Stirnhautlappen auch Pericranium abzulösen und in den Defekt einzu-

Die Möglichkeit der freien Knochentransplantation hatte bereits 1821 erstmals Philipp von Walther erwähnt. Dessen Technik nutzte Jacques Israel und modifizierte 1896 die Operationsmethode Königs [21: 149]. Er verwendete zum ersten Mal eine Knochen-
säge aus der Ulna zum Ersatz des verlorengegangenen Knochengerüstes der Nase [149]. Ebenso setzte er ein Stück aus dem Schienbein unter die Haut einer Sattelnase [21].
Im Bereich der Rhinoplastik wurde durch diesen nach Stockhorst ersten Fall freier Knochentransplantation eine neue Ära der Operationstechnik eröffnet [149].

Abb.40: Rhinoplastik nach Jaques Israel ([149], Abb. 12)
2.7. Barockzeitalter

Im 17. Jahrhundert wurden nicht nur im medizinischen Bereich besonders durch naturwissenschaftliche Experimente Fortschritte erzielt. Physik und Chemie wurden zu mehr als nur medizinischen Hilfswissenschaften [20].

In diesem Zusammenhang beschrieb William Harvey 1628 nach eingehenden Berechnungen und zahlreichen Tierexperimenten bis auf eine Lücke des ihm noch unbekannten Kapillarsystems erstmals den Verlauf des großen Blutkreislaufs, den der Anatom und Histologe Marcello Malpighi 1661 vervollständigte [20].

Abb. 41: William Harvey

Abb. 42: Titelseite der „Exercitatio anatomica de motu cordis et sanguinis in animalibus“ des William Harvey, 1628

Auf klinisch-operativem Gebiet brachte das Barockzeitalter einige Neuerungen im Bereich der Kiefer- und Spaltchirurgie. So findet sich bei Schultheiß (genannt Scultetus, 1595–1645) die wahrscheinlich erste Schilderung einer Zystenoperation im Oberkiefer. Bei einem Unterkiefer-Schussbruch jedoch bediente er sich keinerlei chirurgi-
scher Methode, sondern versorgte nur die Wunde, spülte mit einem Gurgelwasser, gab Purgativa und Klistiere und entfernte Knochensplitter [20].

Sein Arnheimer Kollege Johannes Muys empfahl zu eben dieser Behandlung 1685 „ein Instrument aus Elfenbein, dessen Höhling vier Zähne aufnahm (nämlich zwei auf jeder Seite), und mit ihrer Hilfe verblieb der auseinandergebrochene Kiefer unbewegt, und in zwanzig Tagen war er völlig geheilt.“ (Muys, zitiert nach [20]).

Zu deren „Hand–Cur gehöret nur ein gutes Messer, gut Vorsichtigkeit, und eine gute Blutstillung; denn alles böse und angegriffene wird biß aufs frische weg geschnitten, der Patient mag nachher aussehen wie er will, denn es kann nicht anders seyn; und bleibt nur weniges, als einer Linsen groß im Fleisch sitzen, so ist alle Mühe vergebens.“

(Purmann, zitiert nach [20])

In seinen „Funfftzig sonder– und wunderbahre Schuß–Wunden–Curen“ von 1703 beschrieb der breslauer Stadtarzt Matthäus Gottfried Purmann auch mehrere Kieferquetschbrüche, die er wie zuvor Scultetus ausschließlich mittels Wundversorgung und Sequestorentfernung ohne jegliche Schienung behandelte [20].

Zitate aus dem medizinhistorischen Kontext zu Kapitel 2.7.

„§1. Feldt- Medici sollen vielmehr wohlgeübte vnd erfahrene Männer, als junge Doctörchen sein.

§2. Ihr Gemäß und Kleydung soll nicht nach Hochmuth schmecken, sondern schlecht und recht feyn.

§3. Sollen die Feldtschährer oder Feldt- Barbieren in guter Ordnug, Fleiss, vnd Frieden erhalten helfen.

§4. Ihnen in gefährlichen Casibus willigen Beystandt leisten.

§5. Ihren Instrumenta und Artzneyen Monatlich bey der Bezahlung, oder wann man Geld reichet, besichtigen, was Vntüchtig ist, abschaffen, sie mit guten Lehren unterweisen, vnd was etwan da oder dort zugebrauchen sey, trewlich lehren.“

Und von Wundärzten und Barbierern heißt es weiter:

„§1. Es soll keinem Wundartzt oder Barbierer erlaubt seyn, der Wund-Arzney sich zu vonfangen, das Handwerck zutreiben vnd Becken ausszuhencken, er sey dann genugsam examiniert, vnd habe sein Meisterstück wie es sich gebühret, gemacht.

§2. Das Examen aber soll von den Verordneten oder Geschwornen Meistern, in beysein eines Medici Ordinarii geschehen“.

Ludwig von Hörnigk über die Ansichten und Charakterisierungen der ärztlichen Zeit des 17. Jahrhunderts, zitiert nach [14]

„§ 2. In folche Zunfft gehören nun dem A.B.C. nach anfänglich:

Alte Weiber, ja auch Junge, deren jene wegen ihres Alters, diefe aber aufs Fürwitz, inforderheit, wann fie etwan den Kindbetterinnen oder Kranken warten, pflegen, vnd dienen sollen, ihnen größe Wiffenchaft von stattlichen Artzneymitteln einbilden, vnd den Krank- cken vorflchagen.

§ 3. Beutelschneider, welche mit ihrem Beutelschneiden sich nicht vergnügen, fondern auch diefes vnd jenes für eine vnd andere Schwachheit rühmen vnd geben.

§ 4. Cryftalenseher, welche als ebenmäßige des Teuffels Mancipia, die Krankheiten in dem Cryftall zusehen, suchen, mit vor- wenden, was sie für gewisse remedie darwieder würfen.

§ 5. Dorff-Geiftliche, ja auch wohl Stattpriefter vnd Mönche, dergleichen Schulteiner oder Schulmeister, welche nicht io wohl auß bloßer liebe dem Nechsten zuhelfen (wie fie zwar vorgeben) als vnmaßiger Begierde, vnzimlichen Gewins, oder auß Geitz den Krank- cken allerhand Artzneyen beyzubringen sich erkûhen.
§ 6. Einsiedler, die in den Einöden, Wälder, etc. sich halten, in der Kräuterey etwas vben, vnd davon, wie auch was sie in ihrer Einöde für Offenbahrung die Krankheiten zu curiren, den Leuten viel her plaudern, vnd einen blauen Dun ft für die Augen machen.

§ 7. Fallimentierer, oder folche Handelsleuth, Krämer, faule Handwercker vnd dergleichen, welche, wann sie das jährige entweder durch die Gurgel gejagt, verreffien, verloff en, verloffen, oder fonften aufs Vnachtfankeit verlohren, sich darnach an der Medicin widerum erhöhlen wollen.

§ 9. Harnpropheten, welche, wie sie alle Krankheiten, was Na- mens, Natur vnd Art sie immer hegen, aufs dem Harn erfehen können, gewaltig auffschneiden, von künftigem Zustand des Patienten viel propheseyen, vnd darauf ein hauffen vermeinte Mittel vorfchlagen.

§ 10. Iuden, als die nicht allein (auch oft wider der Obrigkeit ver- bieten) den Patienten Recepten zuordnen sich anmaffen, fondern auch wohl selbsten praeparireu, oder bey den Apothekern, Würtzkrärmern, etc. kauffen vnd darnach den Patienten für 2 oder dreymahl doppel fo viel geld als sie darfüro gebe, vberlassen.

§ 11. Kûhe- vnd Kälber Aertz, defsgleichen die Rofs Aertz vnd Geltzenleuchter, welche die Schwein, Hund vnd Katzen verfch- neiden, vnd daher vermeinen, wann sie einer Beftien helfen können, fo können sie auch einem Menfchen helfen, vnd fey vnter folchen al- len ein schlechter Uнтерfcheidt.

§ 12. Landſtreicher, Landtfahrer, welche von einer Stadt zur andern wandern, vnd von großen Künften wider die größten Schwachheiten prallen.

§ 13. Marckschreyer, Salt in banco, Zahnbrecher, Murmerthier Schmaltzer, die sich wegen großer Wilfenschaft allerley Künften faß helfen ruffen, biß fie den Leuten grug Heller abkläben vnd abgaut- zen, folche mögen zwar ihr Zahnbrechen bey denen fo vor sich selbß Luft darzu haben exerciren, auch das Murmelthier Schmaltz verkauf- fen, bevorab in freyen Meffen, da fie aber mit Betrug vmbgiengen, oder verboten vnd folche Sachen welche leichte zuverälschen, als Theriae, Mithridat, etc. item purgirende vnd das Geblüt treibende Dinge, oder Gifft feyl hetten, follen ihnen die Vahren genommen, auch fie darumb ferner erntli uftragten werden.

§ 15. Ofenschwärmer, die vmb die Delfillir vnd Brennofen stetig vmbher schweeren, sich großer Extracten, Quint-effentien, Æpirituum, Ballamen, ja, gar des Goldmachens rühmens, im Werck aber nur Schmeltekfles vnd Kohlen Verderber feynd, follen, weiln sie das
Handwerck nicht recht gelernt, keinesweges mit ihren Sachen, da sie folche den Leuten für richtige Arzneyen verkaufen wolten, geduldet werden.

§ 16. Pseudo - Parcelgiften, welche den Namen von Paracelso führen, gleichwohl aber die Medicinam Hermeticam oder Spagyricam nicht ex fundamento studiret, noch jhre Prob an gehörlem Orth gethan, sondern nur mit etlichen des Paracelso, Croij vnnd anderer Chymicorum arcans prangen, vnd als Laboranten felbften zu praeapariren pflegen, foluen ohne Erlaubnis auf vorhergangene Auf- teflung ihres Krams, jhre Sachen zuverkaufen, noch zu Arzneyen, keine Macht haben.

§ 17. Quacksalber, Historier oder Storger, welche wie die Marckschreyer oftermahl felbften Dieb, Schelmen, Mörder vnd defs Landsverwißfene, oder mit Ruthen aufgestrichene Buben feynd, mo- gen jre Waaren fo fern diefelbe vnverbotten vnd auffrichtig (das doch felten gefichert) feyß haben. Sonsten foß mit ihnen wie von den Marckfchreyern gemeldt, verfahren werden.

§ 18. Ratten- vnd andere Maußfangen mögen jhr Aafs verkauffen, sollen aber alle Käuffer warnen dafs sie alfo darmit vmbgehen, dafs weder Menschen, noch nutzbarem Viehe schaden dar- durch zugeffügert werde, auch foluen sie sich hüten dafs sie keinem ei- nige Arzney verkauffen, oder fonffen zuchantzen.

§ 19. Segenprecher vnd Segenprecherin, Kopffmefferin, wie gemeingßlich fürwitziger Weiber vnd Aberglaubliche Veturin feynd, indem fo jemandt verwundet ift, oder sich geftoffen hat, oder das Fie- ßer vnd andere Krankheiten bekompt, oder jhmd das Haupt aufftehet, oder eine Frau keine Milch in jhren Brüften hat, etc. folchte ding Seg- nen, Vercreutzigen, vermurmeln etc.

§ 20. Teuffelsbander, die den bößen Geiß vnd Sathan bechwö- ren, Banden, vnd jhn vermeintlich zwingen, wider diefe vnd jene Krankheit Arzneymittel anzuzeigen, folche hernach vmb ein gewifs Gelt den Patienten habende zurichen.

§ 22. Waldheintzen oder Wurtzelgräber vnd Wurtzelträger: Item Kreuterweiber, welche mit den Wurtzel vnd was fie fonften von Gekräut aufszugraben pflegen, allerley Krankheiten zuheiln fch unterfhehen, foluen zwar macht haben folche Ding (doch das sie keiner schädlichen, Giftigen, Purgirenden vnd das Geblät treibenden Ey- genschaft, als da feind Niefswurtz, Seydelbaft, Treibwurtz, Wun- derbaum, Haßelwurtz, Siebenbaum, Springkörner, etc.) öffentlich zu- verkauffen: Aber die Einfaltige zu dero kauff betrieglich zubereben, oder eintzichlich oder vermücht einzugeben vnd zuraten, soll jhnen bey verlust der Waahr, vnd fernerer Geltstraff, mit nichten passiret werden.
§ 23. Zigeuner, Zeergarer, Heyden, vnd Heydinne, Wahrfager vnd dergleichen, fo sich neben dem vielen verlogenen Wahrfagen, vnterfchiedlicher verborgener Künften wider die Krankheiten rühmen, und die Leut vmbs Geld bringen."

Alphabet der Scharlatane aus „Geist- vnd Weltlichen Rechten, Policey-Ordnungen vnd vielen bewährten Schriften“
des Ludwig von Hörnigk, zitiert nach [14]

„It appeared a strange sight at first to me, his face being beaten in, and the lower jaw sticking out: Nor did I presently know how to help him, or by what art to make my Extension. But after a while, he a little recovering his Senses, was perswaded to open his mouth, and there I saw the Os palatini and Úvula beaten so close backwards, that it was not possible for me to get my finger behind, as I designed; and other way of Extension there was none. Upon which I got up behind the Úvula: then raising it a little upward, pulled it forward with the Bone into its former place very easily. But I no sooner let go my Ex-tender than the fractured body returned back again within a few hours I caused an Instrument to be made, whereby the great fractured body was more easily brought into its natural place, and also kept there by the hand of the Child, his Mother, and my Servants helping him some while: other way was there none. Thus be their and our Care, the Tone of the Part was preserved and a Callus thrust forth, which, as it hardened, the Part grew stronger, and the Face was restored to a good shape, better than could have been hoped for from such a Dis-tortion in that place. The Patient is yet alive and well."

Wiseman 1676 über die Behandlung eines Oberkieferbruchs,
zitiert nach [122]
3. Wegbereiter des autologen Knochentransfers

Abb.45: Schere und Messer stellten das Handwerkszeug eines Barbierchirurgen dar ([95]: Abb.24)
3.1. Anästhesie

3.1.1. Altertum und Mittelalter

Eine andere Art der Allgemeinbetäubung wird den Assyren zugesprochen, die bei der rituellen Beschneidung eine Bewusstlosigkeit durch Kompression der Halsgefäße herbeigeführt haben [14; 27]. „In Assyria moris esse, ut adolescentibus, quibus praeputia adimere volunt, ligent venas circa guttur. His enim perire sensum et motum.“ (Benedetti, zitiert nach [14; 218]).

Hippokrates (ca. 460–375 v. Chr.) empfahl in seinen Schriften als schmerzstillende Mittel Opium, Mandragora und Schierling. Erwähnung findet dort, wie auch bei Herodotus (ca. 490–425 v. Chr.) auch die Inhalation von Kräuterdämpfen zu narkotischen Zwecken [22; 27; 37]. Eine umfassende Beschreibung der Heilpflanzen und deren Anwendung findet sich bei Pedanios Dioscurides, der um die Mitte des 1. Jh. n. Chr. lebte und unter Nero als römischer Militäarzt wirkte [22; 27]. Er verfasste in seinen Schriften ein Kapitel über die Mandragora und empfahl, man solle daraus einen Wein bereiten und denjenigen zu trinken geben [14; 22], „die man schneiden oder brennen will, damit sie den Schmerz nicht fühlen. Denn sie fallen dadurch in einen Schlaf, der ihnen alle Empfindlichkeit nimmt.“ (Dioscurides, übersetzt und zitiert nach [27]).

79 n. Chr. gab auch Plinius der Ältere (23 –79 n. Chr.) eine Beschreibung des Mandragoraweines [14; 22]:

„Yet it may be safely ynough for to procure sleepe, if there be a good regard had in the dose…Also it is an ordinarie thing to drinke it against the poysom of serpents: likewise before the cutting, cauterizing, pricking or launcing of any member, to take away the sence and feeling of such extreame cures.“

(Plinius, übersetzt und zitiert nach [22])

In leichter Abwandlung findet sich das Rezept um 1363 in der „Chirurgia Magna“ des französischen Chirurgen Guy de Chauliac (ca. 1298–1368) [14: 22; 27; 37], ebenso die Erwähnung von Opium als narkotische Substanz [22; 27; 37]. Chauliac beschrieb darin außerdem die unerwünschten Effekte wie Asphyxie, Blutstauung und Tod, die unter der Verwendung der narkotisierenden Mittel auftreten [22]. Auch im 15. Jh. taucht das Rezept für Schlafschwämme im „Buch der Bündth–Ertzney“ des Heinrich von Pfalzpeint (1868) erneut auf [14: 27]: „Wye man eynen schlaffen macht, den man schneiden wolde ader fünft gerne schloffen machen, der krangk were, und nicht schloffen kunde.“ (Heinrich von Pfalzpeint, zitiert nach [27]). Als Kräuter für die Zubereitung der Schlafschwämme wurden u.a. schwarzer und weißer Mohn, Schierling, Bilsenkraut, Thalmkraut, Kellerhalskörner, Lattich, Portulak und Mandragora herangezogen [27].

Tränke wurden im wesentlichen die gleichen Substanzen verwendet wie für die Schlafschwämme [27; 37] (vgl. Zitate aus dem medizinhistorischen Kontext zu Kapitel 3.1., S. 70).

Auch in der Literatur großer Dichter dieser Zeit finden sich Zeugnisse von Versuchen mit narkotisierenden Substanzen [27; 37]. So schreibt der italienische Schriftsteller Giovanni Boccaccio (1313–1375) in seiner Decamerone in einer der Novellen Folgendes:

„Ein berühmter Arzt und Chirurg [...] in Salerno findet bei der Behandlung eines Kranken, dass, um das Leben desselben zu erhalten, an seinem kranken Beine die Herausnahme eines Knochen unumgänglich ist und beabsichtigt bei der erforderlichen Operation den Patienten, um ihm die Schmerzen zu ersparen, zu betäuben [...]. Er bereitet die zu dem Zweck bestimmte Flüssigkeit („aqua“), die er in seinem Zimmer aufstellt, wird aber, ehe er sie zur Anwendung bringen kann, schneuzeug zu einem Kranken nach Amalfi berufen. Seine junge und schöne Frau benutzt seine Abwesenheit, um ihren Liebhaber kommen zu lassen. Dieser, die Flüssigkeit für Trinkwasser haltend, trinkt sie vollständig aus und verfällt in einen so tiefen, Todesähnlichen Schlaf, dass die Frau und ihre Magd, nach vergeblichen Versuchen, durch starkes Zerren, Kneifen und Brennen mit einer Kerze ihn zu erwachen, ihn aus dem Hause schaffen, ihn in einen Kasten legen und diesen um Mitternacht von zwei Wucherern in deren Wohnung bringen lassen. Gegen Morgen erwacht der junge Mensch und infolge der von ihm in dem Kasten gemachten Bewegungen fällt der letztere mit grossem Geräusch von der Erhöhung, auf die er gestellt war, herab: die Frauen der Wucherer, die von dem Vorgange nichts wussten, erwachen, rufen um Hilfe gegen den vermeintlichen Dieb, er wird festgenommen, auf der Folter gestehet er, dass er zum Stehlen in jenes Haus eingedrungen sei und würde gehängt worden sein, wenn nicht die Magd, für ihre Herrin eintretend, ihn für ihren Liebhaber erklärt hätte.“

(Boccaccio, übersetzt und zitiert nach [14])

Auch bei Shakespeare (1564–1616) findet sich mehrfach Erwähnung der Mandragora und deren einschlafender Wirkung, so u.a. auch in Antony und Cleopatra oder in Othello [14].

“We will give you sleepy drinks, that your senses, unintelligent of our insufficiency, may thought they cannot praise us, as little accuse us.”

(W. Shakespeare, Winter`s Tale, Act I, Sc. 1).
3.1.2. Renaissance und Neuzeit

Chirurgen vor allem in deren Schnelligkeit gesehen, und so bestand ein typisches Ritual der Zuschauer einer Operation darin, zu Beginn des Eingriffes Taschenuhren herzuvorholen, um die Dauer der Operation festzuhalten [95].

„Den Schmerz bei Inzisionen zu vermeiden, ist eine Chimäre, der niemand mehr nachjagt. Chirurgisches Skalpell und Schmerz sind in der operativen Medizin zwei Begriffe, die dem Kranken niemals getrennt voneinander begegnen, mit deren Zusammengehörigkeit man sich für alle Zeit abfinden muss.“

(Louis Velpau, übersetzt und zitiert nach [27; 35; 95])

Dennoch blieb die Suche nach einem wirkungsvollen Betäubungsmittel weiter offen. Anstatt jedoch die Wirkung bereits bekannter potenter Betäubungsmittel auszunutzen, hielten eher obskure Versuche, Operationsschmerzen zu unterbinden, Einzug in die Medizin.

In Italien, England und im asiatischen Raum wurden zwischen dem 17. und 20. Jahrhundert Versuche angestrebt, wie schon bei den Assyrrern eine Betäubung durch Kompression der Halsgefäße und Nerven zu erreichen [22; 27; 48; 230]. Einige Ärzte wie Paré und Valverdi berichteten über eine Reihe schmerzloser Operationen, die ihnen auf diese Weise gelangen [22; 37].

1823 empfahl der Chirurg Wardrop den Aderlass als Anästhesiemethode. Er berichtete von einer Frau, der er einen Tumor an der Stirn entfernen wollte. Die Operation musste er jedoch zweimal unterbrechen, da die Patientin die Schmerzen nicht ertragen konnte. Schließlich entschloss er sich zu einem Aderlass von ca. 1 Liter Blut. Die Patientin verfiel darunter in Bewusstlosigkeit, und die Operation konnte ohne Un-
terbrechung zu Ende geführt werden [27]. Auch die Anwendung von Alkohol als Anästhesiethode wurde über lange Zeit immer wieder unternommen, hatte man beobachtet, dass Patienten im Alkoholrausch bei der Einrenkung luxierter Glieder oder bei chirurgischen Eingriffen kaum Schmerzen zeigten [27; 37].

Neben diesen naturwissenschaftlichen Formen der Schmerzausschaltung rückte auch die Magie erneut in den Vordergrund. Allerdings versuchte man jetzt, Wissenschaft und Wunder miteinander in Einklang zu bringen. „Man glaubte, daß der Kosmos von vitalen Kräften durchdrungen sei. Im Menschen wirke das magnetische Fluidum, die treibende Kraft des Kosmos. Der Heilende musste diese Kräfte in sich speichern und dem Patienten übermitteln.“ [37].

In der Folgezeit beschäftigten sich mehrere Ärzte in sachlicher Form mit der Schmerzbekämpfung durch Hypnose. 1815 entdeckte Maxime de Puységur (1751–
1825), ein Schüler Mesmers, in Deutschland das Phänomen des Somnambulismus, das vor allem zur Erleichterung bei schmerzhaften chirurgischen Eingriffen ausgenutzt wurde. Besonders in Großbritannien wurde diese Form der Anästhesie unter Dr. J. Braid, John Elliotson und James Esdaile vorangetrieben. Ihnen gelang es, zahlreiche kleinere und auch größere chirurgische Eingriffe an hypnotisierten Patienten schmerzlos durchzuführen [27; 37]. Im Jahr 1852 teilt Esdaile James Braid in einem Schreiben mit:

„Während der letzten 6 Jahre habe ich über 300 verschiedenartige, grosse und zum Theil sehr schwere Operationen ausgeführt, ohne den Patienten Schmerz zu verursachen und die Unempfindlichkeit jedes Mal in der folgenden Weise herbeigeführt: Pat. Soll möglichst von dem Vorhaben und von dem Mesmerismus überhaupt nichts wissen. Man lässt ihn in einem dunklen Raume sich niederlegen und die Augen schliessen; „darauf setzte sich ein junger Muselmann oder Hindu an das Kopfende des Bettes und machte, ohne die Kranken zu berühren und während er seinen Athem über Kopf und Augen ausströmen liess, Bewegungen vom Kopf herab zum Epigastrium und liess auf dem letzteren oder in der Magengrube seine Hände gelegentlich eine Minute lang ruhen. Auf diese Weise wurde oft innerhalb weniger Minuten ein Schlaf erzeugt, der tief genug war, um die schwersten Operationen zu überdauern, in der Regel aber wurde erst nach Ablauf einer Stunde der Zustand des Patienten geprüft und, wenn er zur Vor- nahme der Operation noch nicht geeignet erschien, das gleiche Verfahren täglich wiederholt. In der Regel wurde dann die Operation am 4. oder 5. Tage ausgeführt.“

(Esdaile, übersetzt und zitiert nach [14])

Erfolge blieben jedoch vereinzelt, und es gelang lange Zeit nicht, der Anästhesie durch Hypnose allgemeine Anerkennung zu verschaffen.

Die Weiterentwicklung der modernen Chemie sowie die Fähigkeit, reine Substanzen einerseits zu synthetisieren und andererseits pharmakologischen Untersuchungen zuzufließen, ermöglichten im Verlauf des 18. Jahrhunderts schließlich den Aufbruch in eine neue Ära in der Geschichte der Narkose [27; 95].

3.1.3. Inhalationsnarkotika

Lachgas

Joseph Priestly (1733–1804), ein englischer Pfarrer und Lehrer, entdeckte bei seinen grundlegenden Untersuchungen über die Beschaffenheit und Auswirkungen von Gasen

Der damals 17-jährige Humphry Davy (1778–1829) beschäftigte sich während seiner Lehre bei einem Chirurgen dennoch ausführlicher mit dieser Substanz [27; 37; 95]. In zahlreichen nächtlichen Selbstversuchen entdeckte er 1798 die euphorisierende und analgetische Wirkung des Stickoxyduls [22; 27; 37]. 1799 führte er die Anwendung des Lachgases in die medizinische Praxis am Beddoes’ Pneumatic Institute ein [22]. 1800 veröffentlichte Davy schließlich die Ergebnisse seiner Studien [27; 69; 95]: „Da Lachgas in seiner umfassenden Wirkung in der Lage zu sein scheint körperliche Schmerzen aufzuheben, kann es wahrscheinlich vorteilhaft bei solchen chirurgischen Eingriffen verwendet werden, bei denen es zu keiner großen Blutung kommt.“ [69].

Aus den Erkenntnissen Davies wurde jedoch lange kein praktischer Nutzen gezogen. Statt dessen fand das Lachgas lediglich als eine Art Gesellschaftsspiel auf sogenannten „Lachgasparties“ Verwendung [11; 27; 37; 95; 230].

Abb.52: „Das Leben leichtgemacht“.
Lachgas als Betäubungsmittel in einer Karikatur, um 1830 ([95]: Abb.29)
Der amerikanische Zahnarzt Horace Wells (1815-1848) aus Hartford, Conneticut, nahm um 1844 erneut die Verwendung des Lachgases zur Analgesie auf. Er hatte auf einer Lachgasvorführung am 10.12.1844 einen jungen Mann erlebt, der sich unter der Wirkung von Lachgas bei einem Sprung von der Schaustellerbühne eine tiefe Wunde zuzog und dennoch keine Schmerzen zu haben schien. Wells ließ sich daraufhin einen Tag später nach Inhalation einer größeren Menge Lachgas von Dr. John Riggs einen Weisheitszahn ziehen und empfand dabei keinerlei Schmerzen [22; 27; 37; 95]. Als Wells nach dem Eingriff das Bewusstsein zurückerlangte, soll er ausgerufen haben: „Dies ist die größte Entdeckung, die je gemacht wurde, ich fühlte nicht einmal einen Nadelstich.“ (Wells, zitiert und übersetzt nach [22; 25; 27; 95; 203; 305]).

Zunächst war die Anwendung des Lachgases jedoch wegen der nach wenigen Minuten eintretenden Asphyxie auf sehr kurze Eingriffe beschränkt. Grund dafür war die Verabreichung des Gases ohne Beimischung von Sauerstoff. Erst als das Lachgas auch in flüssiger Form herstellbar war und E. Andrews, ein Chirurg aus Chicago, 1868 die Zutemischung von mindestens 20% Sauerstoff zur Vermeidung der teilweise fatal verlaufenden Asphyxie empfahl, fand das Stickoxydul breiteren Einsatz in der allgemeinen Chirurgie [27; 95; 165].

Äther

Bereits um 1275 beschrieb der spanische Alchimist Raimundus Lullius erstmalig einen schnell verdampfenden Stoff, den Äther [22; 27; 95]. Eben diesem Stoff gab der aus Oberhessen stammende Arzt Valerius Cordus (1515–1544) 1544 den Namen „süßes

aus dem Nackenbereich [22; 27; 95; 246]. In der Folgezeit führte Long einige Operationen erfolgreich in Äthernarkose durch. Da jedoch seine Patienten den mit der Narkose einhergehenden Bewusstseinsverlust nicht akzeptierten und sich von Kollegen behandeln ließen, sah Long sich in seiner wirtschaftlichen Existenz bedroht und gab den Gebrauch von Äther schließlich auf. Seine Erfahrungen im Bereich der Äthernarkose hielt er bis auf weiteres zurück, so dass die Entdeckung zunächst in Vergessenheit geriet [22; 27; 95].

Nach weiteren Versuchen an seinen Assistenten und sogar einem Patienten bat Morton schließlich den Chirurgen Dr. John Collins Warren vom Massachusetts General Hospital, vor Studenten über seine Ergebnisse sprechen, und damit an die Öffentlichkeit treten zu dürfen. Im selben Operationsaal, den Horace Wells Anfang 1845 nach seiner missglückten Stickoxydulnarkose unter Gelächter

Abb. 54: William Morton führt in Boston die erste Äthernarkose durch

Horace Wells versuchte sich ebenfalls mit der Entdeckung des Äthers einen Namen zu machen, jedoch erhielt er dafür keinerlei Zuspruch. Er verfiel dem Wahnsinn und wurde schließlich wegen der Belästigung von Frauen von der Polizei verhaftet. Vor seiner Verurteilung floh Wells jedoch und öffnete sich am 24.1.1848 die Pulssadern, nachdem er zuvor Chloroform inhaliert hatte [27; 95].

Die Neuigkeit über die erste schmerzfreie, in Narkose durchgeführte Operation ging schnell um die ganze Welt [27; 29; 95]. In England wandte im Dezember 1846 Robert Liston (1794–1847) am Londoner Universitätskrankenhaus als erster europäischer Chirurg eine Äthernarkose an [22; 27; 37; 95; 245]. Trotzdem die Narkose einwandfrei verlief, operierte Liston in üblicher Schnelligkeit und nahm in 28 Sekunden eine Oberschenkelamputation vor [95].

In Deutschland wurde die Inhalationsnarkose mittels Äther erstmalig am 12.1.1847 durch den Erlanger Chirurgen J. F. Heyfelder zur Eröffnung eines Glutealabszesses durchgeführt [27; 95]. Nach primärem Misserfolg gelangen ihm am folgenden Tag Narkose und chirurgischer Eingriff. Nur kurze Zeit später, am 24.1.1847, betäubten Weickert und Obenaus in Leipzig unter Verwendung von Äther einen Patienten zur Extraktion eines Backenzahns [95]. Der Leiter der Berliner Charité Professor J. Diefenbach (1792–1847) äußerte sich in seinen Schriften „Der Äther gegen den Schmerz“ zu den Erfolgen der Äthernarkose:
„Der schöne Traum, daß der Schmerz von uns genommen, ist Wirklichkeit geworden. Der Schmerz, dies höchste Bewusstwerden unserer irdischen Existenz, diese deutlichste Empfindung der Unvollkommenheit unseres Körpers, hat sich beugen müssen der Macht des menschlichen Geistes, vor der Macht des Ätherdunstes."

(Dieffenbach, zitiert nach [27])

In der folgenden Zeit wurden verschiedenste Apparaturen zur Applikation des Äthers entwickelt [27; 95]. Neben der von James Watts bereits 1795 geschaffenen Konstruktion zur Inhalation von Gasen [22] und dem von Morton 1846 entwickelten Inhalator kamen sogenannte Blasenapparate, Schweins- oder Rindsblasen mit kurzem Rohr und Mundstück, aber auch wesentlich einfachere Methoden in Form von vorgehaltenen Tüchern oder Schwämmen zur Anwendung [27; 95]. Als Nebenwirkung der Äthernarkose war die Gefahr der Asphyxie bekannt, weshalb viele Ärzte zur Anwendung des Äthers mittels Ventilapparaten neigten, um ein ausreichendes Äther-Luftgemisch zu sichern [27]. 1867 empfahl der an der Berliner Charité tätige Chirurg Curt Schimmelbusch eine Gaze-Maske zur Applikation des Anästhetikums, deren Verwendung eine Ätherpropfnarkose ermöglichte – die Schimmelbuschmaske [27; 95].

Chloroform

Weitere Inhalationsnarkotika

Durch den jahrelang ungeklärten Disput um Äther und Chloroform gab es zahlreiche Versuche, ein besseres und ungefährlicheres Narkosemittel zu finden. Auf diesem

Abb. 55: Holzstich von Michael Wohlgemuth, 1493

"And the Lord God caused a deep sleep to fall upon Adam, and he slept."

Abb. 56: 1903 entwickelte Narkoseapparatur, bei der erstmals durch ein Sauerstoffgebläse das Narkosemittel zum Verdampfen gebracht wird ([95]: Abb. 34)
Weg wurden zahlreiche Substanzen wie Äthylen, Chloräthy, Bromäthy, Cyclopropan entdeckt. Jede dieser Substanzen setzte sich mehr oder weniger als Narkotikum in der kleinen und großen Chirurgie durch. In den letzten Jahren hat bevorzugt das Halothan eine breite Anwendung in der Anästhesie gefunden. In Kombination mit Lachgas–Sauerstoff stellte es in den 70er Jahren nach Orth und Kis das am häufigsten ge- brauchte Inhalationsnarkotikum dar [27].

3.1.4. Intravenöse Narkose

3.1.5. Lokalanästhesie

Im selben Jahr begannen die Amerikaner R. L. Hall und William Steward Halsted im Bereich der Leitungsanästhesie zu forschen [22; 27; 36; 95]. Sie injizierten erstmals eine Kokainlösung in die Nähe der Nervenstämmen und erreichten so eine Schmerzausschaltung bei Operationen am Unterarm und Unterkiefer [22; 27; 36].

1892 gelang dem Chirurgen Carl Ludwig Schleich (1859–1922) erstmals eine tiefergreifende und dadurch chirurgisch nutzbare Infiltrationsanästhesie durch zunächst intrakutane und später subkutane Injektion von verdünnter Kokainlösung [22; 27; 95; 287]. Seine Methode stellte er auf dem Deutschen Chirurgenkongress 1892 in Berlin vor, woraus eine rasche Verbreitung des Verfahrens resultierte. Ein weiterer Fortschritt war 1897 die Entdeckung von Heinrich Braun, dass durch den Zusatz von Suprarenin in hoher Verdünnung zur Kokainlösung infolge der Vasokonstriktion eine
verlangsamte Resorption und damit eine geringere Toxizität des Kokains zu erreichen war [22: 27].

3.1.6. Anästhesie im Bereich der Mund-, Kiefer- und Gesichtschirurgie

Zitate aus dem medizinhistorischen Kontext zu Kapitel 3.1.

„Ypnoticum Adiutorium: id est somnificium conveniens his qui cirurgi-am operantur aut sectiones ut dolore non sentient soporati. Recipt: opio tenaica, mandragoris sucus ex foliis unicie octo, citate his uiridis sucus, iusquiam suci uncie tres in uncum cum aqua sufficieti, ut su-cum faciat et ipsum sucum in spungie rude siecca redigis et diligenter siccabis. Et dum uti oolueris ipsa spongia ad hora infundis in calida et naris adponis et facit, ut ad se ipsum rapiat spiritum, donec dormiet et dum expersgiscat oolueris alia spungia in aceto calefacto infusa ad na-res ponit."

Erstes Rezept für einen Schlafswamm aus dem 9. Jahrhundert,
Sigerist 1923, zitiert nach [27]

„Ein tractat von staff machenden stücken nach der arabischen weyße: Nym ein hantvol weyser mahen unde geusse daruff wasßer, daz sy gar bedeckt, unde laz sy sten ein tag und ein nacht. Darnach bewege sy oder rür unde sewd sy bey einem kleinen kol fewer, wyß czwey teyl ein gesoten synt daz dritte teyl saltu seyen durch ein grob tuch und auß trücken und die j hefen wirff hin wegk. Darnach nymda van czwey teyl unde honigs ein teyl unde seude das, daz eß czu einer massa wirt unde dick als j lauge saltu es syden, unde behalte daz, unde wen du sein witz gebrauchen, so czu laße jn coriander waßer unde jusquiani unde lactuce, mahend, safrani unde mandragore, czu reybe dy unde conficir sy mit honig.”

Rezeptbeispiel eines Narkotisierungstrankes aus dem Codex palatinus
latinus (1300 n. Chr.) in mittelhochdeutscher Übersetzung nach
Sudhoff 1918, zitiert nach [27]

„Spongia somnifera. R opii thebaici unc. i. succi iusquiam succi more immature rubei seminis lactue, succi cicate codii i. e. papa./veris/ sux mandragore, suc. hedere arboree an. unc. i. hec omnia simul in uase mitte: et ibi spongiam marinam nouam qualis de mari exierit ut non tangat eam aqua dulcis et pone ad solem in canicularibus diebus donec omnia consumantur: cumque opus fuerit aqua nimis calida illam parum fomenta et postea naribus patientis appone, et cito dormiat: cum autem excitare ooolueris suc. radi. foenic./uli/ naribus apponetur, et mox expersgiscetur.”

Weiterentwickelte Rezeptur eines Schlafswammes aus dem
12. Jahrhundert nach Nicolaus von Salerno, zitiert nach [14]
3.2. Antiseptik und Asepsis

Klinisch nutzbare und effiziente Narkoseverfahren führten zu einem Anstieg der Anzahl chirurgischer Eingriffe sowie Dauer der Operationen. Operative Eingriffe mussten nicht mehr in möglichst geringer Zeit durchgeführt werden, und so wurde das chirurgische Können der Operateure nicht länger mit der Taschenuhr beurteilt.
Trotz der durch die Fortschritte der Anästhesie wesentlich verbesserten Operationsbedingungen zeigten sich bei den chirurgischen Eingriffen dennoch Einschränkungen. So konnten Hospitalinfektionen selbst bei kleinsten Verletzungen zu letalem Ausgang führen [35; 37; 95]. Infizierte postoperative Wunden und von Patient zu Patient übergehende Wundinfektionen waren so üblich, dass sogar von „jöblichem Eiter“ gesprochen wurde [95].

Erste Anfänge der sterilen Wundbehandlung zeigen sich um das Jahr 1790 auch bei dem französischen Mediziner Pierre-Joseph Desault, der bei Behandlung einer Lip-
pen-Kiefer-Gaumenspalte zunächst die äußeren Enden der Nadeln reinigte, bevor er sie aus dem Wundbett herauszog [20].

wurde ihm nur unter eingeschränkten Bedingungen gewährt. Die von ihm vorgeschlagenen Verfahren lehnte die „Académie Francaise“ 1851 und wiederholt 1858 ab [12], ohne das die chirurgische Öffentlichkeit davon Kenntnis genommen hatte. 1861 veröffentlichte Semmelweis sein Werk „Die Aetiologie, der Begriff und die Prophylaxe des Kindbettfiebers“, doch auch dies konnte die Angriffe gegen ihn nicht abmelden [95].

Postoperative Wundinfektionen und eine dadurch bedingte äußerst hohe Hospitalsterblichkeit bei operierten Patienten stellten trotz vielfältiger Bemühungen bis in die siebziger Jahre des 19. Jahrhunderts die Normalität dar [28]. Lindpainter, ein Mitarbeiter an der Münchner Klinik des bekannten Chirurgen Johann Nepomuk Ritter von Nussbaum (1829–1890), beschrieb diesen Zustand:

„80% aller Wunden wurden vom Hospitalbrande befallen. Das Erysipel war bei uns so auf der Tagesordnung, daß wir das Auftreten desselben fast als normalen Vorgang hätten betrachten können: […] eine Heilung per primam reunionem gab es bei uns überhaupt so gut wie gar nicht. Von 17 Amputierten starben in einem Jahr 11 allein an Pyämie; eine komplizierte Fraktur war auf unserer Station selten zu sehen, denn entweder wurde sofort amputiert oder bereits nach wenigen Tagen war Eiterinfektion, Spitalbrand, Septikämie die Ursache des rasche eintretenden Todes.“

(Lindpainter, zitiert nach [12])

Abb. 62: Lord Joseph Lister

Vor allem in Frankreich und Deutschland setzten sich die Methode der „Listerschen Wundbehandlung“ und die Sprayapparate durch. Auch hier zeigte sich die Richtigkeit der von Lister aufgestellten Forderungen in kürzester Zeit durch die Verringerung eitriger Wunden und Blutvergiftungen.

Nach und nach verbreiteten sich die Methoden Listers in der Welt. So ließ sich nach anfänglicher Skepsis auch Theodor Billroth, Pionier der Magenchirurgie, von den Vorteilen der sogenannten „Listerei“ überzeugen, und auch andere deutsche Chirurgen

Die Antiseptik setzte sich schließlich aus den deutschen Operationssälen, wo sie nach der Entwicklung in Schottland zunächst den meisten Zuspruch gefunden hatte, in die gesamte Welt fort [95].

Ein neuer Ansatz in der chirurgischen Hygiene kam um das Jahr 1890 auf, die Asepsis. Bis zu dieser Zeit waren die Prinzipien Listers bezüglich der Keimabtötung in Wunden („antiseptic principles“) allgemein anerkannt und angewandt. Seit 1886 suchten jedoch einige Ärzte nach einer geeigneten Methode, die bereits das Eindringen der Mikroben in die Wunde verhindern sollten.

Abb.65: Bergmann vor einer Operation im Hörsaal, auf dem Tisch rechts eine Trommel mit sterilisiertem Material ([95]: Abb.41)

3.3. Bildgebung als diagnostisches Hilfsmittel

Bald spezialisierten sich Ärzte auf das Gebiet der Röntgenkunde. Im Herbst 1896 eröffnete Max Levy-Dorn (1863–1929) in Berlin das erste ärztlich geleitete Institut als Privateinrichtung. Damit erlangte er eine so große öffentliche Anerkennung, dass ihm die Planung der ersten Krankenhaus-Röntgenabteilung für das damals neue Rudolf-Virchow-Krankenhaus in Berlin übertragen wurde, die er von 1906 bis zu seinem Tod 1929 leitete [13].

Im Laufe der Zeit führten die technischen Verbesserungen der Röntgenverfahren, insbesondere die Einführung von Blenden zur Ausschaltung von Streustrahlen, die Verbesserung der Röntgenleistung und die Verstärkung des Bildeffektes durch emp-

Richtete sich zunächst das Augenmerk auf die Darstellung des Magen-Darm-Traktes, sollten bald auch andere Organe wie die ableitenden Harnwege (Nierenbecken, Harn-
leiter, Harnblase und Harnröhre) mittels Kontrastmittel dargestellt werden. Durch die Weiterentwicklung der Röntgenkontrastmittel wurde in den 30er Jahren schließlich die Darstellung von Bronchialbaum (Bronchographie) und des Wirbelkanals (Myelographie) möglich. Später gelangen auch Cholecystographie und Cholecystangiographie. Die erfolgreich eingesetzten Kontrastmittel bewährten sich auch für die Diagnostik von Herz- und Gefäßkrankheiten, so dass das Röntgenverfahren auch aus internistischer Sicht zunehmend Beachtung erlangte. In den 70er Jahren hatte sich die Röntgendiagnostik in nahezu allen Gebieten der klinischen Medizin etabliert [13; 37].

Zitate aus dem medizinhistorischen Kontext zu Kapitel 3.3.

Wilhelm Conrad Röntgen in einem Brief an seinen Freund Prof. Ludwig Zehnder (1854–1949), zitiert nach [13]
4. Die historische Entwicklung der autologen Knochentransplantation

4.1. 1668–1819 Erste wissenschaftliche Untersuchungen an Knochen

Bereits 1668 beschrieb der niederländische Chirurg Job van Meekeran in seinen „heel- en geneeskonstige aanmerkingen“ als erster den Transfer von frischem Knochen [4: 52; 107; 112; 116; 217; 240]. Er entnahm das Transplantat einem Hunderschädel, um den Schädeldefekt eines durch einen Säbelhieb verletzten russischen Soldaten zu decken. Dieser Soldat wurde jedoch aufgrund der scheinbar barbarischen Behandlung von der Kirche verbannt [4: 46; 52; 107; 217; 233; 240]. Um die Gunst der Kirche zurückzuverlangen, bat der Patient den Chirurgen daraufhin, das Transplantat wieder zu entfernen – zu diesem Zeitpunkt war der Knochen jedoch bereits erfolgreich eingeglieht [4: 52; 107; 217; 233; 240].

Nur 6 Jahre später beschrieb der niederländische Wissenschaftler Anton van Leeuwenhoek erstmals Struktur und Aufbau von Knochen [4: 52; 236].

In einem Brief vom 1. Juni 1674 an den Herausgeber des „Philosophical Transactions“ schrieb van Leeuwenhoek: “I reviewed the shin bone of a calf, in which I found several little holes, passing from without inwards: and I than imagined, that this bone had divers small pipes going long ways” (van Leeuwenhoek, zitiert nach [4: 52]). Diese von van Leeuwenhoek erkannten Röhren sind heutzutage als Haversianische oder Haverssche Kanäle bekannt.

Um das Jahr 1680 veröffentlichte wiederum ein niederländischer Wissenschaftler Antonius de Heyde sein Werk über experimentelle Beobachtungen an Fröschen. Er fand heraus, dass Knochenkallus durch die Kalzifizie-
 rung von Blutklümpchen um die Knochenbruchenden herum gebildet werde [4: 52; 70; 213].
1692 gab der britische Anatom Clopton Havers (1659–1702) seine neuen Erkenntnisse über die physiologische Knochenstruktur bekannt. Er hatte die zuvor von van Leeuwenhoek gemachten Erkenntnisse erneut aufgegriffen und zum Gegenstand seiner Forschungsarbeit gemacht. In seinen Ergebnissen beschrieb Havers einerseits die späterhin nach ihm benannten Haversschen Kanälchen und andererseits das Periost, welches er als einfaches begrenzendes aber ernährendes Bindegewebe darstellte.

Allgemeine Anerkennung für die ersten wissenschaftlichen Untersuchungen über Osteogenese wurde jedoch Henri Louis Duhamel, einem französischen Botaniker und Ingenieur, zugesprochen, obwohl dieser seine wissenschaftlichen Veröffentlichungen erst 60 Jahre nach seinem Vorgänger de Heyde, also 1742, verfasste [4: 52; 212; 213]. Seit 1739 hatte Duhamel Versuche durchgeführt, in denen er Silberdrähte unter das Periost gepflanzt hatte, wobei in der Literatur nichts über die Wahl seiner Versuchstiere nachzulesen ist. Nach einigen Wochen hatte er einen knöchernen Überzug der Drähte beobachten können. Dieser neu entstandene Knochen, so glaubte er, sei durch Periost gebildet, dem er eindeutige osteogenetische Eigenschaften zusprach.

Der schweizerische Mediziner Albrecht von Haller (1708–1777) stellte seine These der Duhamels gegenüber. Er glaubte, das Periost sei hauptsächlich als Unterstützung der Blutgefäße tätig, denen er die eigentliche osteogenetische Potenz zusprach. Dabei stellte er die Behauptung auf, die Osteogenese beruhe auf einer Art „Ausschwitzung“ der Arterien [5].

Zur gleichen Zeit, 1738, nahm der am Guy’s Hospital wirkende Chirurg John Belchier Untersuchungen an Schweinen vor, die zuvor durch den Wirt, einen Maler, mit Färberröte (Krapp) gefüttert worden waren. Er hatte festgestellt, dass die Extremitätenknochen dieser Schweine eine anscheinend durch die Färberröte hervorgerufene Verfärbung aufgetreten war. Duhamel folgerte aus den von Belchier gemachten Untersuchungen, dass dieser Vorgang nur an wachsendem Knochen erfolge. Und auch John Hunter griff die Untersuchungen mittels Krapp auf und schlussfolgerte daraus, der Knochen müsse „retain the living principle“. Ein baldiger Versuch der Knochentransplantation war damit unvermeidlich [122].

4.2. 1820–1866 Ausweitung der Resektionsprothetik und Rhinoplastik und erster autologer Knochenersatz

Schädelknochens, die bei einer Trepanation chirurgisch entfernt worden waren, zurück ins Knochenbett zu pflanzen [52; 147; 217; 233; 303] (vgl. Zitate aus dem medizinhistorischen Kontext zu Kapitel 4.2., S. 95). Das Transplantat heilte trotz anfänglicher Wundinfektion und Sequestration der tabula externa erfolgreich ein [217; 233; 303]. Zuvor hatte er die gleiche Operation erfolgreich „bei einem Spitz, von etwas mehr als mittlerer Größe“ [303] durchgeführt [217; 303].

„Das Thier hatte durch die Operation nicht gelitten: es fieberte nur leicht am zweiten Tage, und hatte schon am dritten wieder seine gewöhnliche Munterkeit und Freßlust. [...] Das eingesetzte Knochenstück wurde in kurzer Zeit fest, und man bemerkte an demselben ferner keine widernatürliche Beweglichkeit mehr."

[303]

Abb.79: Philipp von Walther

Die Übertragung des Verfahrens auf den Menschen hatte von Walther jedoch hinausgeschoben. So beobachtete er die Entwicklung des Hundes zunächst ein Jahr lang nach der Operation. Erst als der Hund nach dieser Zeit noch immer wohlauf war, führte er seine ersten Versuche am Menschen durch [217; 303]. Aus seinen Ergebnissen schloss folgerte von Walther:

„1) dafs nicht nur von dem menschlichen Körper ganz getrennte Körpertheile wieder angeheilt werden können; sondern dafs auch 2) eine solche Einigung selbst bei Knochenstücken möglich sey, die ganz entblößt, und von weichen Theilen in jeder Richtung abgetrennt sind.“

[303]

Nach anderen Quellen soll bereits 1810 der deutsche Zoologe Blasius Merrem (1761–1824) ein austrepaniertes Schädelstück in ähnlicher Weise wieder zur Einheilung gebracht haben [233; 309].

Die von Ph. von Walther angewandte Technik der Replantation wurde später, 1889, von A. Adamkiewicz anerkannt und mit guten Ergebnissen angewendet [217]. Adamkiewicz war jedoch nach vielfältig gemachten Beobachtungen schließlich der Ansicht, „dass die Transplantation von lebendem Knochengewebe nicht nur auf Individuen der- selben Species, sondern auch von Individuen einer Species auf die einer anderen möglich [sei], wenn nur die Operation streng antiseptisch gemacht [werde]“ [262]. Insbe-

Abb. 80: Simon P. Hullihen

Abb. 81: Gebäude des Philadelphia Dental College und die Klinik für Oralchirurgie
weitere Klinik für Oralchirurgie. Garretson schaffte es, die Kieferchirurgie in den USA als selbständiges Fach zu etablieren, wobei sein Werk „A treatise on the diseases and surgery of the mouth, jaws, and associate parts“ große Erfolge erzielte. Bei seinen zahlreichen gesichtsplastischen Eingriffen orientierte Garretson sich im Wesentlichen an der Methodik Dieffenbachs [18; 19].

Dem Beispiel Langenbecks folgend nahm dessen Schüler Theodor Billroth (1829–1894) die Idee der Oberkieferresektion wieder auf. Der Gedanke lag nahe, „auch am Unterkiefer eine ähnliche Operation zu versuchen“ [188]. Bei einem Patienten mit „E- epithelialkarzinom“ am Unterkiefer führte Billroth nach langwieriger Vorbehandlung des
Neben diesen Folgerungen hatte Billroth eine weitere Beobachtung gemacht. Er hatte im Verlauf der Operation auf der gesamten Innenseite des Kieferstückes das Periost entfernen müssen. Dennoch war das Kieferstück lebensfähig geblieben und Heilung war erfolgt [188].
In den nachfolgenden Jahren nahm Billroth eine Reihe osteoplastischer Versuche an Hunden und Tauben vor. Die Transplantationen von Periostlappen und Replantationen und auch Transplantationen von Knochenstücken blieben jedoch ohne jeglichen Erfolg [309].
Der Berliner Dozent Julius Wolff statierte nach Durchführung verschiedenster osteoplastischer Operationen daraufhin 1869, „dass es wesentlich vom Operationsverfahren abhängt, ob ein osteoplastischer Versuch gelingt, oder nicht“. Wolff forderte deshalb, „vollkommen präzise Bedingungen für das Gelingen osteoplastischer Versuche“ zu erforschen [309].
Die von Julius Wolff und dessen Kollegen Léopold Ollier durchgeführten gründlichen experimentellen und klinischen Untersuchungen erbrachten zwar gute Ergebnisse auf
dem Weg der Verbesserung der osteoplastischen Operationen, sie konnten jedoch die von Langenbeck bemängelte Unvollkommenheit der Osteoplastik noch keineswegs aus dem Weg räumen [262].

Abb. 85: Rhinoplastik nach Franz König ([149]: Abb. 11)
Abb. 86: Materialentnahme zur Rhinoplasik nach Jaques Israel

Abb. 87: Rhinoplastik nach Jaques Israel
Zitate aus dem medizinhistorischen Kontext zu Kapitel 4.2.

Wiedereinheilung einer austrepanierten Knochenscheibe durch
von Walther, 1821 [303]
„I „Die organische Verbindung zwischen eingesetzten Knochenstücken und dem Mutterboden wird zunächst durch Bindegewebe hergestellt, das unter dem Mikroskop sich als kernreiches, Strähnen und lockere Maschinen bildendes Fibrillengewebe charakterisiert. Im weiteren Verlauf bilden sich in diesem Gewebe Ossificationen, Dieselben gehen zum grössten Theil vom Mutterboden aus, theilweise entstehen sie auch frei mitten im Bindegewebe. Dort wächst osteoides Gewebe halbänselfartig in die Bindegewebsbrücke hinein, hier erscheint es in der Gestalt von Inseln, die sich durch strahlenartig verlaufende Bindegewebssträhnen mit den Knochen zu beiden Seiten in Verbindung setzen. In sehr breiten Bindegewebsbrücken tritt daher die Ossification langsamer oder gar nicht ein.“

II. „Indem die geschilderten Ossificationen sich vermehren und wachsen, verdrängen sie allmählich das Bindegewebe und stellen mit der Zeit, wo die Bindegewebsbrücke nicht breit ist, eine vollständige knöcherne Contiguität zwischen Knochen und dem eingepflanzten Knochenstück her. Nach einigen Monaten sind beide in Eins verschmolzen und haben, wie Injectionspräparate zeigen, gemeinschaftliche Gefässe.“

III. „Bei diesen Verwachungen spielt das Periost keine Rolle. Die Verwachungen gehen in der geschilderten Weise zwischen den Knochenrändern vor sich, auch wenn von den Knochenstücken vor ihrer Uebertragung das Periost entfernt worden ist.“

IV. „Es bildet sich an solchen von Periost entblössten Knochenstücken zugleich mit der knöchernen Verwachung ein neues Periost.“

anatomisch–physiologische Erscheinungen der Knochentransplantation nach Adamkiewicz, 1891, zitiert nach [262]

„Im Bereich des rechten unteren Hundszahns spaltete ich die Lippe und führte den Schnitt nach unten bis etwas über den Kieferrand hinaus, dann führte ich den Schnitt unter den rothen Lippensaum horizontal bis zur Gegend des Kieferwinkels nach links, und von hier rechtwinklig nach unten wieder etwas über den Kieferrand nach unten hinaus, nun wurde der rechte Hundszahn extrahirt, die Weichteile von Kiefer innen und aussen so weit gelöst, dass der Kiefer hier jetzt mit einer Kettensäge durchschnitten werden konnte: ebenso wurde der vorletzte linke Backenzahn extrahirt, und der Kiefer hier durchsägt; jetzt war noch der Kiefer an seiner Innenfläche von Weichteilen zu befreien: hier hatte sich jedoch in Folge der ersten Operation Osteophyten gebildet; dieselben wurden mit dem Raspatorium abgelöst, so dass nun das ausgesägte Unterkieferstück, an einem breiten Hautstück hängend, nach unten geklappt werden konnte. [...] es wurde alles Krankhafte sehr genau und sicher extirpirt [...]“

Unterkieferresektion nach Billroth 1861 [188]
4.3. 1867–1890 Veröffentlichung gegensätzlicher Resultate bezüglich des Überlebens von Transplantaten durch Ollier und Barth

Seine klassisch chirurgische Arbeit war so gründlich und vollständig verfasst, dass die wissenschaftlichen Erkenntnisse aus seinen Experimenten an Kaninchen, Hunden, Katzen und Vögeln eine nahezu unangreifbare Position erreichten [4: 52; 277] und damit die Basis der osteo-periostalen Schule der Knochentransplantation in Frankreich unter Henri Delagenière darstellten [97: 122; 224]. Ollier bewies darin die Überlebensfähigkeit von Autotransplantaten und erkannte, dass vereinzelte lebende Knochenfragmente ohne Periost in entsprechender Umgebung überleben und sogar wachsen können [4; 5: 119; 166; 291].

Generell, so meinte er, seien aber die Möglichkeiten der Lebenserhaltung, des Wiederwachens und v.a. der Funktionsübernahme nur bei frisch entnommenem und periostgedecktem Knochen des gleichen Individuums gegeben [20; 119; 277; 291], wobei er insbesondere das Periost als notwendigen Bestandteil zu Lebenserhaltung und Aufbau der Knochensubstanz hervorhob [61; 66; 119; 186; 241]. Dabei betonte er insbesondere die Wichtigkeit der Intaktheit des Periosts [166; 217]. Dieses, so meinte er, bleibe auch nach der Verpflanzung lebens- und produktionsfähig [119; 166; 291]. Dem Knochenmark hingegen sprach er eine deutlich geringere Wichtigkeit beim Aufbau des Knochens zu [66].
Für den Vorgang des Knochenersatzes beschrieb Ollier ein eigentümliches Nebeneinander von Resorption und Proliferation, wobei er den zelligen Elementen der Markräume und Haversschen Kanälchen und den Osteoblasten der Knochenhaut eine besondere Rolle bei der Proliferation zusprach [5: 186]. Aber auch die Ossifikation der umgebenden Weichteile stellte nach Ollier eine Quelle der Regeneration dar [186].

„Wir können nicht genügend darauf hinweisen, daß alle Gewebe der Bindesubstanz sich ossifizieren können und zwar bei Einwirkung bestimmter irritativer und pathologischer Bedingungen, welche wir leider weder beherrschen noch regulieren vermögen. Wir haben aber teststellen können, daß die greifbarste Ursache dieser Ossifikationen im Kontakte mit gereitztem Knochen oder Perioste liegt. Deshalb überschreitet die Verknöcherung bei Splitterfrakturen und Knochennekrosen die Grenzen des Periosts. Aus dieser Tatsache, welche ganz sichergestellt ist, soll jedoch nicht gefolgt werden, daß die umgebenden Weichteile für sich allein ein irgendwie bedeutendes Knochenstück wiederherstellen können.“

(Ollier, übersetzt und zitiert nach [186])

Zu dieser Zeit führte Johann Nepomuk von Nussbaum die erste freie Transplantation von Knochen durch [217]. Er berichtete 1875 von einem 5 cm langen Ulnadefekt nach einem infizierten Splitterbruch, den er durch ein Verschiebetransplantat er-
setzte, bestehend aus der Hälfte des proximalen Ulnaanteils mit partiell erhaltenem Periost. Schon nach einem halben Jahr war die normale Funktion der Ulna wieder hergestellt [217].

Radzimowsky war es, der 1881 die bis dahin allgemein geltende und anerkannte Olliersche Lehre in Frage stellte. Er hatte bei histologischen Untersuchungen an periostgedeckten lebenden Transplantaten herausgefunden, dass die Knochensubstanz selbst unter günstigen Verhältnissen stets der Nekrose verfällt und resorbiert und von neugebildetem Knochen von dem überlebenden Periost des Transplantates ersetzt werde [61].

In praktischer Hinsicht, so meinte Ochtin, könne man also unter Anwendung strenger Antiseptik oder Aseptik „einen toten Knochen in den Organismus dreist einführen“. Wichtig sei jedoch für ein positives Ergebnis, dass der eingebrachte tote Knochen in unmittelbarer Berührung mit dem lebenden, oder sich wenigstens in nächster Nähe zu ihm befände.

„Andernfalls kann die um den toten Knochen entstandene dicke Bindegewebskapsel [...] den Prozess des Zusammenwachsens und der Resorption des transplantierten Knochens auf so lange Zeit hinausschieben, dass kein einziger Patient in der Lage sein wird, den vollen Cursus der Heilung auszuhalten und schliesslich doch eine Entstellung vorziehen wird, um nur von den vielen, mehrere Monate andauernden, immobilisirten Verbänden befreit zu werden.“

[262]

Als weitere Bedingung an das Gelingen einer Transplantation stellte Ochtin die möglicherst dünne, filigranartige Bearbeitung des Ersatzstückes, um eine bessere Resorption desselben zu erleichtern. Als Empfehlung gab er dabei die Verwendung von Knochen eines jungen Rindes, da dieser leicht resorbierbar sei [262].

„...wir hatten uns aus den mikroskopischen Bildern, welche uns eine Reihe von Trepanationsversuchen mit Replantation der ausgesägten Knochenscheiben ergeben hatte, bereits ein so wesentlich anderes Urtheil [...] gebildet, dass wir uns zur Fortsetzung dieser Untersuchungen veranlasst sahen.“

[180]

„Diese Anschauungen Ollier’s, welche wesentlich auf makroskopische Untersuchungen gegründet sind, können der histologischen Forschung nicht standhalten.“

[182]
Bei seinen Untersuchungen stellte er sich die Frage, ob das ganze Transplantat am Leben bleibe, oder ob Teile desselben oder gar das gesamte Ersatzstück absterben [46: 291]. Barth platzte ausgeglühten Knochen in die Peritonealhöhle einer Katze. 6 Wochen später fand er das Transplantat durchwachsen von Bindegewebe und partiell von Knochen, eingefasst von Osteoblasten [217]. In seinen Ergebnissen beschrieb er dies als einen „schleichenden Ersatz“ in Form von Absorption von totem Gewebe [4; 46; 52].

„Schon jetzt kann man nicht mehr in Zweifel sein, dass es sich hier nicht um einen einfachen Appositionsprozess handelt, sondern um einen sehr merkwürdigen Substitutionsprozess, um einen schleichenden Ersatz des toten Materials durch lebendes. Der junge Knochen entwickelt sich im alten und auf dessen Kosten, ohne vorhergehende Resorption desselben.“

[46]; Barth, zitiert nach [166]

Abb. 91: schleichender Ersatz des Transplantates nach A. Barth

Abb. 92: schleichender Ersatz des alten Knochens durch neuen. Die Hohlen des ersten sind leer bis auf zwei, wo gut gefärbte Kernen sichtbar sind, die nach Form und Farbung den Zellen des neugebildeten Knochens entsprechen. (Nach Leo Mayer.)
„Dass es sich dabei wesentlich um eine Assimilierung der Kalksalze handelt, ist zum mindesten wahrscheinlich.“

[46]

„Durch immer neue Anlagerung wird schliesslich der im Verlauf von Monaten das todte Knochengewebe durch lebendes substituirt...“

[181; 182]

„Wir haben es hier also nicht mit einer Resorption im gewöhnlichen Sinne und nachträglichen Ersatz durch Neubildung zu thun, sondern es handelt sich hier, wenn Sie so wollen, um eine Art Metaplasie, um eine Substitution des todten durch lebendes Knochengewebe.“

[180]

Barths Untersuchungen zeigten, dass Periost und Knochenmark, abgesehen von einzelnen äusseren Schichten, nach der Transplantation selbst bei Autoplastik [241] unter nahezu allen Umständen abstürben [5; 46; 166; 167; 168; 180; 201; 217; 228; 249; 291] (vgl. Zitate aus dem medizinhistorischen Kontext zu Kapitel 4.3., S. 107).

Für die Vitalität des Stückes, so meinte Barth, sei also unerheblich, ob das Periost des entnommenen Stückes auf seiner Oberfläche belassen werde oder nicht [166]. Als Grund für das Absterben des Implantates sah er die vorübergehende Anämie, die das Transplantat erleide, unabhängig von der Beschaffenheit des Transplantatbettes. „Unter den Veränderungen am Fragment selbst bleibt der Tod seiner Knochenzellen im Vordergrund des Interesses. Derselbe pflegt am Ende der ersten Woche vollendet zu sein. Das abgestorbene Fragment [...] stellt einen aseptischen, porösen Fremdkörper dar“ (Barth, zitiert nach [218]). Nach Absterben und Absorption des Transplantates, so meinte Barth, wuchsen aus dem umgebenden ossifikationsfähigen Bindegewebe Blutgefäße in das avitale Knochengerüst ein [4; 20; 46; 180; 291]. Diese Revaskula-
risierung beschrieb er als Voraussetzung der Knochenneubildung. Diese wiederum
gehe ausschließlich von dem umgebenden lebenden ossifikationsfähigen Knochenlager
aus, von wo nachfolgend junger autogener Knochen in das Transplantat hineinwachse
[61; 180; 181; 182; 217; 291]. Das abgestorbene Transplantat diente nach Barths
Vorstellungen dabei ausschließlich als Gerüst und Kalklieferant [20; 180; 215; 217;
228]. „....So dürfen wir wohl vermuten, dass auch in unseren Versuchen die
Bestandtheile der abgestorbenen Knochenscheibe als Material zum Aufbau der sich
neubildenden Knochenlammellen dienen“ [180]. Diese Funktion der Leitstruktur und
Materialquelle, stellte Barth ein Jahr später fest, könne jedoch auch mazerierter und
sogar ausgeglühter Knochen übernehmen [20; 180].

„Dagegen ist es von ganz besonderem Interesse, dass macerirte Kno-
chenstücke nach demselben Typus einheilen können wie frisch
replantierte. [...] zu unserer grossen Befriedigung fanden wir hier mik-
roskopisch dasselbe Hineinwachsen und dieselbe Anlagerung neuer
Knochenschichten, wie bei den frisch replantierten Scheiben.“

[180]

Demnach war es bei Vorliegen eines ossifikationsfähigen Knochenbettes nahezu
gleichgültig, welches Transplantatmaterial, also auch allogener oder heterogener Kno-
chen, eingesetzt wurde [20; 61; 166; 181; 241; 291] (vgl. Zitate aus dem medizinhis-
torischen Kontext zu Kapitel 4.3., S. 107).

Curtis, der ebenfalls durch die Theorien Olliers zu Versuchen angeregt worden war,
bemerkte:

“The Haversian canals, moreover, afford easy avenues for the growth
of granulation tissue, and in some cases it has been observed that the
bone turns a rosy hue within a short time after implantation, appar-
ently by absorption of blood, two factors which probably explain why
ossification so soon take place in tissues which replace the bone graft
as it is absorbed.”

[198]; Curtis, zitiert nach [4; 52]

Dieser von Barth und Curtis beschriebene Prozess, bei dem jedweder Knochen vom
Wirt durch die Bildung von autogenen Knochen ersetzt wird, wurde schließlich 1914
von D. B. Phemister als „creeping substitution“ bezeichnet [66; 217; 272].
Mit den Erkenntnissen Barths und Curtis’ war eine nahezu völlige Gleichstellung jeden
Knochenmaterials geschehen. Aus praktischen Gründen bedeutete dies sogar die Be-
vorzugung toten und körperfremden Materials, da dies dem Patienten die Entnahme
des Knochenersatzstückes in einem weiteren Operationsfeld außerhalb des Primärdefektes ersparte [20; 228; 277].

1893 stellte Curtis schließlich sein Konzept der Verpflanzung von lebendem vaskularisiertem Knochen vor. In seinen Ausführungen legte er dar, “that calcified bone [was] at present the most practical material for use in the ordinary cases, while we are waiting the ideal of the future: the insertion of a piece of living bone which will exactly fill the gap and will continue to live without absorption” (Curtis, zitiert nach [4; 52]).

Gleiches hatte bereits zwei Jahre zuvor A. M. Phelps versucht, der 1891 ein Stück eines Hundeknochens als Interpositionstransplantat in einen Tibiaedefekt eines Jungen einsetzte [4; 52; 271]. Nach der Operation waren Junge und Hund für zwei Wochen aneinandergebunden. Das Transplantat verfiel jedoch und musste nach 5 Wochen entfernt werden [4; 52].

Der Franzose F. Marchand bestätigte um 1900 die Substitutionstheorie Barths [147; 277]. Dafür wiederholte Marchand dessen Versuche und kam zu selbigen Ergebnissen. „Was die Versuche mit lebenden Knochen anlangt, so ergab die mikroskopische Untersuchung der [...] Präparate, wie zu erwarten war, Abgestorbensein der Knochenkörperchen mit fortschreitendem Zerfall bis zu gänzlichem Schwund der Kerne“ [249]. Wie zuvor bereits Barth bestätigte Marchand die solide Einheilung mazerierten und auch ausgeglühten Knochens. Er stellte jedoch fest, dass „es immerhin scheine, als ob der Ersatz des mazerierten kompakten Knochens durch lebenden Knochen im allgemeinen viel langsamer vor sich geht als bei frisch replantiertem Knochen“ (Marchand, zitiert nach [166]). Dies, so meinte er jedoch erklären zu können, liege „wohl hauptsächlich daran, daß bei ersterem die Dipoeräume und Haversschen Kanälchen mit festeren Resten organischer Substanz ausgefüllt sind, die dem Eindringen der Gefäße größeren Widerstand entgegensetzen“ (Marchand, zitiert nach [166]).

Abb.94: Knochensubstitution nach Marchand

Im Gegensatz zu Barth billigte Marchand jedoch dem Periost bei der Knochenneubildung eine wichtige Rolle zu, da er von diesem ausgehende Osteoblastentätigkeit beobachten konnte [147; 166; 249].

"...übereinstimmend ergibt sich, daß das Periost zu denjenigen Geweben gehört, welche eine Verpflanzung von ihrer ursprünglichen Stelle auf eine andere verhältnismäßig gut vertragen und sogar befähigt sind, an dem neuen Ort die spezifische Funktion der Knochenneubildung zu entfalten."

(Marchand, zitiert nach [166])

Es „ist hervorzuheben, dass die Knochenbildung an der replantierten Trepanationsscheibe der Hauptsache nach von der Dura mater ausgeht. War das Periost nicht erhalten geblieben, so blieb die Knochenneubildung an der Aussenseite des Schädels sehr gering, oder sie fehlte ganz.“

[249]

Mit diesen Ausführungen wurde die Auffassung der Arbeit des Franzosen Ollier zunächst grundlegend geändert [277]. In der Folgezeit wurden zwar immer wieder Stimmen laut, welche die Gültigkeit der Barthschen Lehre in Frage stellen. Solche Äußerungen blieben jedoch vereinzelt und vermochten nicht zur durchgreifenden prinzipiellen Änderung des Standpunktes zu führen [167].

Max David versuchte ein Jahr später erneut, die Ansichten Olliers und Wolffs in Experimenten zu bestätigen und damit Barths Theorie zu widerlegen [201; 249; 294]. Nach Barths Vorbild führte er nahezu exakt die gleichen Versuche durch [201]. Dabei kam er jedoch zu dem Schluss, dass „das implantierte Organ durch zahlreiche aus der Umgebung sich bildende Gefässe vascularisirt, und damit in seiner Vitalität erhalten“ werde [201].

„Es kann also nicht davon gesprochen werden, das der Knochen zu Grunde geht, wie Barth behauptet. […] Ein von seiner Umgebung völlig losgelöstes replantiertes Stück des Schädels heilt bei normalem Wundverlauf wieder ein, denn nichts in den Präparaten deutet auf eine totale Neubildung der Knochensubstanz hin, und Nekrose ist nicht vorhanden."

[201]

Die endgültige Klärung der Transplantationsvorgänge blieb weiterhin offen. Die durch die gegensätzlichen Resultate von Ollier und Barth entstandene Unsicherheit übte eine starke Hemmung auf die Praxis und Weiterentwicklung der Chirurgie aus und zeigte somit direkte Wirkung bei der Wahl der Operationstechniken [291].
Zitate aus dem medizinhistorischen Kontext zu Kapitel 4.3.

3. Die Frage hinsichtlich des Wesens der resorbierenden Wirkung der Zellenelemente muss noch als ungelöst betrachtet werden.

4. Was das fernere Schicksal der Riesenzellen anlangt, so muss zugegeben werden, dass sie sowohl einer weiteren Vermehrung fähig sind, als auch einer regressiven Umwandlung in ihre Prototypen unterliegen können.“

Ochotins Ergebnisse von 1891 zur Frage des toten oder lebenden Knochens als Transplantationsmaterial [262]

„Nach unseren Thierversuchen müssen wir es aber für höchst unwahrscheinlich halten, dass ein aus seiner Verbindung völlig gelöstes und wieder implantiertes Knochenstück seine Vitalität jemals behalten hat. [...] In unseren Versuchen, die wir verschiedentlich variierten, [...] erwies sich das eingetheilte Knochenstück stets nekrotisch, mochte nun die Einheilung durch bindegewebige Einkapselung, oder, wie es viel häufiger der Fall war, durch knöcherne Vereinigung mit dem betreffenden Skelettknochen erfolgen.“

Barth 1993 über das Schicksal des transplantierten Knochens [180]

„Auch habe ich mich nicht davon überzeugen können, daß das Perioststück selbst ein günstigeres Schicksal gehabt hätte als der Knochen. Es starb in meinen Versuch wie dieser ab und wurde von dem Periost aus der Umgebung aus regeneriert.“

Barth zur Frage der Vitalität des transplantierten Gewebes, zitiert nach [166]
„Die Erhaltung des Periostes auf der Oberfläche des implantierten Fragmentes hat in meinen Versuchen einen Einfluss auf das Schicksal desselben nicht gehabt. Es starb in jedem Falle mitsamt dem Fragment ab. “

Barth 1893/94 über das weitere Schicksal von Periost und Knochenmark nach Transplantation [182]

Barth über die Wahl des Transplantationsmaterials [182]

„Man wird seinen Zweck mit dem wohleilen toten Material ebenso erreichen wie mit kostbarem lebendem[...]“

Barth 1894 über die Verwendung von allogenem oder heterogenem Knochengewebe als Transplantationsmaterial, zitiert nach [166]

„Die Osteoblasten müssen [...] die feste Knochensubstanz aufzulösen imstande sein, und es ist sehr wahrscheinlich, dass die Salze des alten Knochens zum Aufbau der jungen Knochensubstanz verwendet werden. [...] Es muss eine beständige Bildung neuer Vorsprünge in den alten Knochen hinein stattfinden, ein expansives Wachsthum der jungen Knochensubstanz, welche eine gewisse Weichheit, ähnlich der des jungen osteoiden Gewebes bei Rhachitis oder im Callus besitzen muss. Hat die junge Substanz ihre definitive Festigkeit erlangt, so kann eine weitere Ausdehnung auf Kosten des alten Knochens nicht mehr stattfinden. [...] Die Resorption durch Riesenzenellen kommt selbstverständlich auch vor, doch ist die Zahl der Riesenzenellen im Innern des eingepflanzten Knochens sehr gering [...]“

Marchand 1900 über die Frage nach der Resorption des Knochenersatzstückes [249]
4.4. 1891–1906 Vorrangige Stellung der gestielten Plastik vor der freien Transplantation

In zwei weiteren Fällen verwendete Bardenheuer einen gestielten Schleimhaut–Periost–Knochenlappen aus der Mandibula selbst, um einen Mandibuladefekt zu decken [178 217; 291; 302; 307]. Veranschaulicht wurde Bardenheuers Vorgehen von Esmarch und Kowalzig 1899 [217].

![Abb.95: Osteoplastik nach Unterkieferresektion nach Bardenheuer](image)
Bardenheuers Vorgehen war erfolgreich, und so bewirkten seine guten Resultate, dass auch andere Chirurgen die gestielte Knochenplastik der freien vorzogen [291].

Ähnlich der Technik Bardenheuers ging auch dessen Nachfolger August Wildt 1896 vor [20; 307]. Er legte einen Bericht vor, in dem er eine Verschiebeplastik des ipsilateralen Mandibulaknochens zur Deckung eines Unterkieferdefektes beschrieb: zur
Aufrechterhaltung der Blutversorgung nutzte er dabei das Platysma und den M. mylohyoideus [122; 209; 307].

„...Es resultierte also ein rechteckiges, mit Periost bedecktes Knochenstück, welches unten und hinten mit Muskulatur zusammenhing. Dieses Knochenstück wurde nun mitsamt der anhängenden, jetzt zunächst etwas mobilisirten Muskulatur nach hinten und etwas nach oben verschoben und [...] durch Drähte fixiert. [...] Der Lappen umfasste bezüglich der Dicke die Haut, das Platysma myoideus und im inneren Gebiete den Musc. mylohyoideus...“

[307]

Abb. 97: Osteoplastik mit verschobenem Mandibulaspan nach Wildt, 1896

Zwischen 1892 und 1900 wurde diese Art der gestielten Transplantation in Europa zehnmal durchgeführt, wobei sie in sechs Fällen zum Erfolg führte. Eine Kieferverschiebung wurde in keinem der zehn Fälle vorgenommen [291]. An die freie Osteoplastik wagte man sich im Kieferbereich zunächst nicht [20].

Seit Beginn des 20. Jahrhunderts wurden sowohl experimentelle als auch klinische Untersuchungen bezüglich des Verhaltens überpflanzten Knochens gemacht [52]. Der Moskauer Chirurg W. Sykoff machte im Jahre 1900 bei einem Verlust der Kinnpartie durch Noma den ersten Versuch einer freien autologen Knochenverpflanzung in den Unterkiefer [20; 59; 104; 122; 209; 295; 296; 302]. Er sägte aus einem gesunden Unterkieferfragment eine vier cm lange Platte heraus und überbrückte mit ihr den Defekt, nachdem er zuvor im anderen Frakturende durch eine entsprechende Vertiefung ein Aufnahmefbett geschaffen hatte [20; 59; 209; 277; 296; 302].

Das periostgedeckte Transplantat heilt komplikationslos ein [209; 291; 296]. „Das Resultat [konnte] als sehr gelungen betrachtet werden“ [296]. Sykoff behauptete, nur
die Ausführung der autoplastischen Methode stelle sicher, dass das Knochenersatzstück überlebe und nicht resorbiert werde [217; 296].
Für das Gelingen der Transplantation stellte Sykoff folgende Bedingungen auf:

„1) Erhaltung seines Periosts und einer Brücke zum umliegenden Gewebe,
2) Erhaltung des Knochenmarkes und
3) Aseptik des transplantierten Stückes Knochengewebe“

[296]

Rippe entwickelte sich später auch generell zu bevorzugtem Transplantationsmaterial [20].
Trotz des Erfolges der freien Transplantation behielt der Gedanke der gestielten Knochentransplantation weiterhin eine vorrangige Stellung im Bereich der Transplantation. 1904 gab Fedor Krause, der bereits Erfahrung im Bereich der freien Hauttransplantation gemacht hatte, einen Bericht über mehrere geglückte Unterkieferplastiken, bei denen er einen breiten, an den Halsweichteilen gestielten 5–7 cm langen Haut-Muskel-Knochenlappen vom unteren Rand des benachbarten Kieferteils in den Defekt geschwenkt und ihn durch zwei Silberdrähte fixiert hatte [20; 104; 231; 302] (vgl. Zitate

Abb. 99: Unterkieferplastik nach F. Krause
Zitate aus dem medizinhistorischen Kontext zu Kapitel 4.4.

„Es wird über und zwei Querfinger breit unter der Clavicula ein entsprechen breiter, mit oberer Ernährungsbrücke versehener Hautlappen gebildet, der jedoch nur bis an den unteren Rand der Clavicula freipräpariert wird: die Vorderfläche der Clavicula bleibt mit seiner Basis genau vereinigt, und man muß sich ja hüten, während des Abtrennens des zum Ersatz bestimmten Stückes aus der vorderen Hälfte der Clavicula die verhältnismäßig lockere Verbindung zwischen Haut und Knochen zu lösen. Der untere Teil des Hautlappens wird um die abgelöste Knochenspange von unten her herumgeschlungen, der Defekt mit einem entsprechenden Hautlappen bedeckt, und man wartet 8 bis 12 Tage ab, bis der umhüllende Hautlappen fest mit der Knochenspange verwachsen ist. Darauffhin kann man die so préparierte Knochenspange ohne Gefahr des Absterbens an einen genügend langen Hautlappen in den Unterkieferdefekt einpflanzen."

Unterkieferersatz mittels gestieltem Transplantat aus der Clavicula nach Rydygier 1908 (283)

Es wurde „aus der linken Hälfte des Unterkiefers eine ca. 4 cm lange Platte herausgesägt, wie dies aus der Zeichnung ersichtlich ist. Auf dem freien Rand der rechten Hälfte des Unterkiefers wurde eine ca. 1 cm lange Vertiefung gemacht, in welche das herausgesägte Knochensstück hineingelegt wurde und so eine Brücke über den Defekt bildete."

Sykoff 1900 über den ersten Versuch einer freien autologen Knochentransplantation in den Unterkiefer (296)
4.5. 1907–1913 Durchsetzung des freien autoplastischen Ersatzes

„Die freie Knochentransplantation ist für mich schon seit vielen Jahren die vorherrschende Operation zum Ersatz von Knochenlücken geworden.“

(Lexer, 1931)

„Selbst wenn solche Versuche leicht einmal misslingen, da ja immer mit dem Einwandern von Entzündungserregern aus der Schleimhaut zu rechnen ist, so sind sie doch zu empfehlen. Bei gutem Erfolg ist man über alle Schwierigkeiten einer Prothese hinweg; der Misserfolg ist nicht schlimmer, als nach dem Überbrücken des Defektes mit Draht oder mit Metallschienen, die ja häufig später herausgenommen werden müssen. Sind amputierte Glieder nicht zur Hand, so eignen sich am besten entsprechend gebogene Rippenstücke, welche man demselben Patienten samt Periost entnimmt.“

(Lexer, zitiert nach [209])

Als Erster erachtete Lexer auch eine präoperative Kieferorschienung als notwendig [109: 239: 291]. So ließ er den Kieferstumpf „*durch eine sehr einfach und rasch her¬zustellende und herausnehmbare Zinkgusschiene [feststellen], auch wenn zahnlose Stümpefe vorhanden [waren]“ [239].

In einem anderen Fall führte die Einpflanzung eines Leichenunterkiefers zur nachfol¬genden Fistelbildung und Abstoßung des Transplantates [104]. Die Ergebnisse mit homoplastischem Material waren insgesamt nicht überzeugend [20]. So nahm Lexer bald von den Behandlungsversuchen mittels homoplastischem Knochen Abstand, stell¬te er nämlich fest: „*Mit einwachsenden Gefäßen durchwächst und resorbiert ihn das Lagerbindegewebe, so daß er auch ohne jede Eiterung bricht oder schwindet. [...] Zum Knochenersatz ist im allgemeinen die Autoplastik der Homoplastik vorzuziehen“ [108].

Seit 1908 empfahl Lexer als autoplastisches Material für den Unterkieferersatz auch Rippenstücke samt Periost.

Abb. 674. Ausmählen eines periostgedeckten Tibiaspanes

Abb. 675. Anschlagen des unnaßgelüften Spanes

Abb.101: Entnahme eines Transplantates aus der Tibia nach Lexer
Diese, so meinte er, könnten „mit voller Festigkeit des Kiefers“ zur Einheilung gebracht werden (Lexter, zitiert nach [277]). Die Knochensubstanz, so meinte Lexer, werde größtenteils bei der Transplantation nekrotisch, das mitverpflanzte Periost, das Endost und auch das Knochenmark arbeiteten seiner Meinung nach jedoch am Ersatz des Knochens [238]. So zeigten Lexers Untersuchungen, dass sowohl Transplantatperiost als auch –endost im Lager unentbehrlich seien, sowohl für die Hemmung der Resorption des Transplantatknochens als auch für den lebenden Umbau [108: 241].

„Bei gutem Ernährungsanschluß wird von beiden Membranen ein schleichender Ersatz besorgt, der zuerst die Grundlamellen betrifft und später mit dem Einwachsen der Osteoplasten, von den Haversschen Kanälen ausgehend, in die Tiefe fortschreitet. An den freien Periosträndern und an Einschnitten, wie sie Axhausen deshalb empfiehlt, erfolgt Osteophytenbildung und Knochenanlagerung. [...] Die Knochenauflagerungen werden zum lebenden Umbau verbraucht oder verschwinden wieder durch Resorption.“

[241]

Auch bei Frakturheilung eines Transplantates, so beschrieb Lexer, gehe die Heilung vom Weichteillager aus, genauer vom Transplantatperiost. Allein durch diese Erkenntnis sah er die These, welche dem Transplantat jede osteogenetische Kraft absprach und ihm nur die Rolle als Leitbahn für die Regeneration aus dem knöchernen Lager anerkannte, als wiederlegt an [241].

Neben der osteogenetischen Fähigkeit sprach Lexer dem Periost und Endost auch wichtige Schutz- und Ernährungsfunktion zu. „Sie schützen die Knochenoberfläche vor Resorption, sie lassen die Ernährungsfähigkeit an die unter ihnen liegenden Osteoplasten gelangen und erhalten ihnen das Leben, ermöglichen so ihre Wucherung und Tätigkeit“ [241].

Zur Funktion des Knochenlagers äußerte er sich:

„Die aus dem Lager einwachsenden Capillaren benutzen nach Axhausen vielfach die alten Wege. Mit ihnen wandern die wuchernden Osteoplasten in die Tiefe. Sie schlüpfen in die leeren Knochenhöhlen und in alle Spalten zwischen den Lamellen. Aber mit den Gefäßen wächst auch das junge Bindegewebe des Lagers ein. Wo es die Knochenoberfläche an Stellen zugrunde gegangener Membranen unmittelbar berührt, wirkt es resorzierend, ebenso in allen Kanälen und Räumen und Spalten, solange nicht auch Osteoplasten folgen.“

[241]

Auch die nachträgliche Verlängerung zuvor eingepflanzter Transplantate durch weitere Stücke erklärte Lexer für möglich, worin sich seiner Meinung nach die „osteogenen Kräfte eines Transplantates [...] noch viel deutlicher“ zeigten [241]. Neben der Transplantation in den Unterkiefer nahm Lexer auch Knochener- satz im Bereich der Nase vor [149]. So bildete er nach Verlust des knöchernen Nasenskeletts ein „Nasengerüst durch Knickung und dachförmige Aufstellung einer Knochenplatte, die er von der Stirn oder der Tibia stammend, zuerst unter der Stirn- oder Armhaut einheilen ließ“ [149].

Bei der Einheilung autoplastischer Transplantate in das Transplantatbett erkannte Lexer verschiedene „Stadien des normalen Geschehens“.

„1. Das Stadium der Atrophie. Das ist die Zeit der vorwiegend resorptiven Vorgänge auf der Oberfläche, in den Kanälen und Räumen mit Kalkschwund und Vascularisation. Das Durchwachssensein mit Gefäßen bedeutet noch kein Leben. [...] Es bedeutet aber ebenso die Grundlage für den lebenden Umbau, wie bei ungünstigen Umständen, denen die Transplantatosteproplasten des Periostes und Endostes zum Opfer fielen, den Anfang vom Ende durch völlige Resorption."

Abb.104: Schema für die Herstellung eines Kieferbogens aus einem periostgedeckten Tibiaspan zum KinnAufbau nach Lexer
2. Das Stadium des lebenden Umbaues. Es beginnt in der Zeit, wo die Verdichtung deutlicher wird gegenüber der früheren Aufhellung im Röntgenbild, etwas vom 3. bis 4. Monat ab, aber an periostlosen Schädeldefekten erst nach 1 Jahr. Es erfolgt die Glättung der Oberfläche durch Apposition, die Verdichtung der Knochensubstanz durch Kalkablagerung [...]

[241]

![Diagram](image)

Abb. 105: Lebender Umbau bei autoplastischem periostgedecktem Transplantat nach Lexer

Abb. 106: Kinnaufbau nach einem ausgedehnten Kieferdefekt nach Granatschussverletzung bei einem 26jährigen Ersatzreservisten
Abb. 107: Kninraufbau nach einem ausgedehnten Kieferdefekt nach Granatschussverletzung bei einem 26jährigen Ersatzreservisten
Zu ähnlichen Erkenntnissen war im selben Jahr auch der Berliner Kollege Brentano durch seine Untersuchungen gelangt [191]. Und auch der Chirurg A. Neumann, stellte fest, „dass die Knocheneubildung bei derartigen freien Autoplastiken im wesentlichen durch das Periost geleistet wird“ [257].

Abb. 108: Jaques Joseph
Nach vielfältigen Untersuchungen kamen sie schließlich zu der Folgerung, die Hauptquelle der Regeneration bei der Knochenüberpflanzung liege in dem umgebenden jungen Bindegewebe, welches die Knochen umwache, in alle Mark- und Gefäßräume und Kanälchen eindringe und zu Osteoblasten und Knochenzellen metaplasiere [61: 186]. Nicht die Eigenschaft des Periosts und des Marks, sondern viel mehr diese Metaplasie des Lagerbindegewebes habe an dem lebenden Ersatz eines Transplantates Anteil [241]:

„Die Nachbarschaft des minderwertig lebenden, zum größten Teil allmählich absterbenden Knochens, scheint auf dieses Bindegewebe ei-
nen spezifischen Reiz auszuüben und die metaplastische Bildung von Knochengeewebe in hohem Maße zu fördern. Der alte Knochen dient dabei als Gerät, an und in welchem sich der Prozeß des Ersatzes abspielt.“

Abb.113: Längsschnitt durch einen autoplastisch periostlos überpflanzten Knochen nach 14 Tagen. Das osteoid Gewebe (o.G.) hat sich am freien Ende, also an der Sägefläche des Transplantates entwickelt. Hier kann es unmöglich zufälligen Periostresten entstammen, ebenso wenig am Leben gebliebenen Endoste von Haversschen Kanälchen, da solche in unmittelbarer Nähe nicht vorhanden sind [186].

Das einwachsende bindegewebige Keimgewebe des Lagers bilde bei Berührung mit dem Transplantat auf der Oberfläche und im Innern Knochen, nicht die Transplantat-Osteoblasten, meinten sie [241]. Einige Jahre später, 1914, stellte Petrow sogar die Behauptung auf, das Periost sei nichts als eine Grenzmembran ohne wesentliche knochenbildende Fähigkeit, die zur Einheilung des Transplantates nicht unbedingt nötig sei, sondern nur einen schnelleren vaskulären Anschluss an das Lagergewebe bewirke. So war Petrow auch der Erste, der „die schlummernde osteogenetische Fähigkeit des Bindegewebes im Kontakt mit dem überpflanzten Knochen“ (Petrow, zitiert nach [147]) erkannte [147].

Urist und seine Kollegen entwickelten daraufhin eine Osteoinduktionstheorie [4: 52; 66; 300]. Sie stierten, ein chemischer Mediator aus dem Knochentransplantat könne die Knochenneubildung durch Wiederherstellung der osteogenetisch aktiven Zellen induzieren [4: 52; 66].

Und auch Weidenreich teilte seine neue Auffassung mit, wonach die Periosttätigkeit eine Bindegewebsmetaplasie sei und die Osteoblasten keine spezifischen, sondern gewöhnliche Bindegewebszellen darstellten, die erst unter einem örtlichen Knochenbildungsreiz die charakteristische Osteoblastenform annähmen. Viele Autoren wandten sich gegen diese Ansichten, unter ihnen auch Erich Lexer [241].

„...Denn sonst müßte ja jede junge Bindegewebszelle unter den gleichen Bedingungen das gleiche leisten können. Dies ist aber, wie die regellos heterotopen Knochenbildungen beweisen, nur unter ganz besonderen, noch nicht voll geklärten Bedingungen der Fall. [...]
Im übrigen spricht alle Erfahrung dagegen, daß die Metaplasie des Lagerbindegewebes irgendwie bei der Knochentransplantation eine Rolle spielt.

[241]

Der am pathologischen Institut eines Berliner Krankenhauses wirkende spätere Mund-, Kiefer- und Gesichtschirurg Georg Axhausen (1877–1960) war es, der die histologischen Gegebenheiten der Knochentransplantation neu interpretierte [5; 20; 166]. Seine pathologisch anatomischen Untersuchungen baute er auf der Grundlage der Barth'schen Versuche auf [5; 166; 167; 168]. Mit seinen Forschungsergebnissen, basierend auf 146 Experimenten an Tieren verschiedener Spezies, etwa Ratten, Kaninchen, Hunden und detaillierten histologischen Ausarbeitungen [167; 168; 217], nahm er einen vermittelnden Standpunkt zwischen den Meinungen Olliers und Barths ein [20; 42; 43; 166; 277; 284]. In seiner 1908 veröffentlichten Habilitationsschrift vertrat er den Standpunkt, „...daß die Wahrheit in der Mitte liegt, dass aber für die praktisch Anwendung die Vorschriften Olliers das richtige treffen“ [20].

[168]

Aber mit Ollier und gegen Barth ergab sich, dass "das deckende Periost in hohem Grade die Eigenschaft des Uberlebens und die Fähigkeit, neuen Knochen zu bilden [hat und] dass auch
So konnte Axhausen anhand seiner Untersuchungen zeigen, dass beim Absterben eines autologen Transplantates Teile des Periosts und Knochenmarks am Leben blieben, deren osteogenetischen Fähigkeiten für die Knochenneubildung im Transplantat sorgten [167; 168; 291]. „Nur für das Knochengewebe selber trifft die von Barth ange- nommene Nekrose zu, nicht für das Periost und nicht stets für das Mark“ [167].

Nach Axhausen kam als Quelle der Knochenneubildung sogar „in erster Linie und fast ausschließlich das mittransplantierte und am Leben gebliebene Periost in Betracht“ [166], „in zweiter Linie erhaltene Teile des überpflanzten Knochenmarkes und erst an dritter Stelle – bei Transplantation in ein ossificationsfähiges Lager – die knochenbil- denden Gewebe dieses Lagers“ (Axhausen, zitiert nach [218]). Danach war das Transplantat „nicht auf die ossificatorische Thätigkeit seiner Umgebung angewiesen. [...] Der Ersatz des abgestorbenen implantierten Knochens durch neugebildeten, lebenden, [...] hat seine Quelle einzig und allein in den überlebenden Periost- und Markanteile“ [167]. Dabei meinte er, das Periost „durch mehrere Längsincisionen zu erhöhter Tätigkeit“ bringen zu können [167; 42]. Periost und Mark bewirkten nach seinen Studien,

1. dass zwischen dem implantirten Knochen und der Umgebung eine rasche organische Verbindung geschaffen wird; [...]
2. dass der implantirte absterbende Knochen rasch durch lebendes Knochengewebe ersetzt wird. [...]
3. dass eine rasche knöcherne Verbindung mit einem knöchernen Lager geschaffen wird.“

Bereits 1908 hatte Georg Axhausen eine Zeichnung angefertigt, die das nekrotische Transplantat, die überlebenden Osteoblasten und den Ersatz des Knochens enthielt und somit die beginnende Produktion von Geflechtknochen zeigte, also alle für das Schicksal eines autogenen Knochentransplantates wichtigen Elemente [217]. Axhausen stellte allerdings dem von Barth und Marchand beschriebenen unmittelbaren „schleichen- den Ersatz“ eine andere Art des lebenden Umbaus gegenüber, welcher die Apposition nach Resorption als Hauptform beinhaltete [241]. „Der Ersatz des abgestorbenen und
implantierten Knochens durch neugebildeten, lebenden" so meinte er, "erfolgt auf dem Wege der aufeinander folgenden lacunären Resorption und Apposition. Diesen Vorgang sah Axhausen als "allein vorhandenen Modus des Er- satzes" [167].

Erich Lexer, der Axhausens Untersuchungen nachverfolgte, kam daraufhin nach zahlreichen eigenen Untersuchungen am Menschen zu dem Schluss,

"daß beides vorkommt, in verschiedenem Maße vorherrschend, je nach den Einheitsbedingungen: besten Falles und bei Autoplastik am meisten der schleichende Ersatz, dagegen bei schlechten Bedingungen, bei Nekrose der Knochenhaut, bei Homoplastik und im narbi- gen Lager die Resorption mit Apposition".

[241]

Zahlreiche unternommene Untersuchungen hinsichtlich der Transplantation fremden Knochens erbrachten bezüglich Axhausens Einschätzung keinerlei neuen Aspekte [277]. Auf dem Congress der Deutschen Gesellschaft für Chirurgie 1908 zeigte sich nach Axhausens Auffassung schließlich,

„dass einheitlich von allen Chirurgen praktisch die Vorschriften, die sich aus der Barth’schen Lehre als nothwendig ergaben, verlassen worden sind. Von allen Seiten wurde ausnahmslos im Gegensatz zur Barth’schen Lehre die Ueberlegenheit des perioistgedeckten lebenden menschlichen Knochens gegenüber dem perioistlosen, dem toten und dem macerirten Knochen, ganz im Sinne der Ollier’schen Vorschriften anerkannt“.

[167]

Im gleichen Jahr, 1908, rückte Barth nach ausführlicher Betrachtung der umfassenden Untersuchungen Axhausens von seiner Hypothese ab:

„Es unterliegt keinem Zweifel, dass die Bedeutung des Periostes bei der freien Transplantation perioistgedeckter Knochenstücke in einem anderen Lichte erscheint, als ich es vor 14 Jahren auf Grund meiner Thierversuche dargestellt habe“.

[184]

Nach erneut eingehenden Untersuchungen mit lebendem Knochen schloss sich Barth der Ansicht Axhausens an und verwarf damit seine eigene Hypothese, das ganze Transplantat sterbe ab [20; 184; 185; 291].

„Heute muss es nach den experimentellen Untersuchungen [...] als sicher gelten, dass sich Periost und Knochen nicht nur überpflanzen lässt, sondern hierfür sogar eine relativ hohe Vitalität und Productivität besitzt. [...] [Es kann] für mich nicht zweifelhaft sein, dass die Auto- und Homoplastik mit perioistgedeckten Knochenstücken [...] die souveräne und allein sicher zum Ziele führende Methode ist, und ich kann nur meine Freude darüber aussprechen dass wir in dieser wichtigen und gewiss noch eine grosse Zukunft verheissenden Frage auf Grund der neueren experimentellen Forschung, insbesondere der umfassenden Untersuchungen Axhausen’s, nunmehr klar sehen. Der volle Tag für die osteoplastische Chirurgie beginnt erst jetzt.“

[184]

Dennoch zog Barth seine Behauptung nicht vollständig zurück, sondern machte seine Meinung deutlich, dass „man bei einem richtigen Verständnis für die pathologischen Vorgänge mit der Implantation toder Knochensubstanz gelegentlich recht schöne Erfolge erzielen kann [...]“ [184].
Die Praxis bestätigte bald die von Axhausen histologisch festgestellte Überlegenheit des eigenen lebenden Knochengewebes, da alle anderen Implantate, selbst wenn sie vom Körper angenommen wurden, sehr bald der Resorption verfielen. Die von Axhau-
sehen nachgewiesene osteogenetische Aktivität des Knochenmarks gab den Anstoß, das Mark durch Anfrischung der Kieferstümpfe direkt in Kontakt mit dem Querschnitt des eingepflanzten Knochens zu bringen [20: 277]. Allmählich wurde die Operationsmetho-
de von anderen Seiten anerkannt, wobei zunächst die Ausführungen und Erfolge sehr unterschiedlich waren [277].

1908 beschrieb auch Prof. E. Payr, der an der chirurgischen Klinik in Greifswald tätig war, einen erfolgreichen Ersatz mittels freiem Ersatzstück aus der Rippe [104: 122;
269; 302]. Er war der Überzeugung, dass der „Ersatz verloren gegangener Teile nicht
 durch Einheilung von Fremdkörpern, sondern [...] durch lebendes und daher funktionell viel höher wertiges Gewebe“ zu erstreben sei [269]. Allerdings bemängelte er,
„daß kein osteoplastisches Verfahren bisher technisch in entsprechender Weise für
die verschiedenen Anforderungen ausgearbeitet und systematisch in Anwendung ge-
bracht worden“ sei [269].

Bereits 5 Jahre zuvor, 1903, hatte Payr sich mit dem Gedanken der Transplantation „periostbekleideter Rippenstücke“ als zweckmäßiges Material für eine Knochenplastik
beschäftigt [269]. Er beschrieb zwei Wege der Ausführung der Transplantation:

„1) Osteoplastik mittels eines in einem Brustwandlappen befindlichen entsprechend großen Rippenstückes“.

„2) Eine zweite Art des osteoplastischen Kieferersatzes wird durch eine freie Transplantation eines periostbekleideten Rippenstückes in den Defekt erzielt“.

[269]

Aber auch andere Knochenteile ließen sich zur Transplantation verwenden, meinte Payr, so etwa die Spina scapulae und das Darmbein. Er war jedoch der Überzeugung, dass „der allseitig mit zu übertragende Periostmantel der Rippen“ dieses Material über jedes andere stelle [269]. Dabei gab er den Hinweis, es sei Hauptsache und Grundbe-
dingung für das Gelingen der Operation, für die ungestielt zu transplantierende Rippe ein aseptisches Feld zu schaffen [209]. Zur Befestigung empfahl Payr Einfalzung, Verzapfung oder Knochennaht mit dem Kieferstümpfen [104].

In den Jahren von 1908 bis 1914 wurden in Europa insgesamt elf freie Knochentransplantationen am Unterkiefer durchgeführt. Dabei wurde in sechs Fällen Rippe, in vier Fällen Tibia und in einem Fall Unterkiefer als Transplantationsmaterial verwendet. Von den elf Transplantaten heilten nur drei fest ein. Außer Erich Lexer hatte keiner der behandelnden Chirurgen eine Ruhigstellung der Kieferstümpfe vorgenommen [291].
Da in der Lexerschen Klinik in Berlin seit 1908 alle größeren Unterkieferdefekte durch freie Knochentransplantation aus autologer Rippe oder Tibia gedeckt wurden, konnte im 1. Weltkrieg zahlreichen Verletzten „beim ersten Fall von Kriegsverletzung“ (Lever, zitiert nach [277]) durch das bereits vielfach erfolgreich durchgeführte Verfahren geholfen werden [277]. Dennoch konnte sich bis 1914 trotz aller Fortschritte kein sicheres Transplantationskonzept durchsetzen [291].
Zitate und Bilder aus dem medizinhistorischen Kontext zu Kapitel 4.5.

Grundsätze der Gewebsschonung nach Lexer, 1931 [108]

„Sie schützen die Knochenoberfläche vor Resorption, sie lassen die Ernährungsfüssigkeit an die unter ihnen liegenden Osteoplasten gelangen und erhalten ihnen das Leben, ermöglichen so ihre Wucherung und Tätigkeit."

Lexer 1925 zur Schutzfunktion des Periosts und Endosts [241]

1. Frisch entnommenes, transplantiertes Knochengerüste stirbt in allen Teilen ab, nicht aber das mitüberpflanzte Periost, das lebend und produktionsfähig bleibt, und wahrscheinlich auch nicht das ganze Knochenmark.

2. Das implantierte abgestorbene Knochenstück wird allmählich durch neugebildetes Knochengerüste ersetzt.

3. Als Quelle dieses Ersatzes kommt in erster Linie das mitüberpflanzte Periost, in zweiter erhaltene Teile des mitüberpflanzten Knochenmarkes in Betracht; an dritter Stelle – aber nur bei Transplantation in ein ossifikationsfähiges Lager – die knochendenden Gewebe dieses Lagers.

4. Als Modus des Ersatzes ist die aufeinander folgende Resorpti- on und Apposition anzusehen; alle vorhandenen Bilder finden unter dieser Annahme eine hinreichende Erklärung.

5. Die unter 3 angegebenen Tatsachen müssen gegenüber eingepflanztem mazeriertem Knochen einen wesentlichen Unterschied ausmachen, da bei ihm nur die an dritter Stelle angefuhrte Ersatz- quelle wirksam sein kann. Aber auch sie kann nur bei einer Einpflan- zung in ein ossifikationsfähiges Lager eine Rolle spielen – so bei Tre- panationen und wandständigen Resektionen –, nicht aber für den
Hauptteil größerer, in Kontinuitätsdefekte von Röhrenknochen einge- pflanzter Knochenstücke.

7. Es ist daher die plastische Deckung solcher Defekte stets mit frisch entnommenem, von Periost gedecktem Knochen vorzunehmen. Wie weit frischen künstlichen Leichen unter sorgfältiger Asepsis entnommener Knochen das gleiche zu leisten vermag, werden weitere Versuche lehren müssen." [166]

Untersuchungsergebnisse Axhausens zur Frage nach dem Überleben von Knochentransplantaten, 1908 [166]

2. Der kompakte Knochen eines Transplantates birgt im größeren Teil seiner Masse stets leere Zellräume.

3. Ein ein Transplantat enthaltendes Mark zeigt neue Knochen- formation des Knochenmarkgewebes, wo immer dieses in Kontakt mit lebendem vaskularisiertem Gewebe steht.

5. Xenotransplantate werden eingekapselt oder absorbiert und zeigen weder Vitalität noch Proliferationsfähigkeit.“

Axhausens Untersuchungsergebnisse von 1908 nach Transplantationsversuchen mit autologem, allogenem und heterogenem Material, übersetzt und zitiert nach [217]

„1. A living periostal-covered graft shows marked cellular proliferation under the periostium, which produces and establishes a vascular connection between the graft and its bed.

2. The compact bone of a graft always exhibits empty cell spaces into the greater part of its content.

3. A graft containing marrow shows new bone formation from the marrow tissue, wherever this is in contact with living vascular tissue.

4. The viability and proliferation of allografts are more uncertain than those of autografts.

5. Xenografts become encapsulated or absorbed and show neither vitality nor proliferative capacity.“

Axhausens Untersuchungsergebnisse von 1908 nach Transplantationsversuchen mit autologem, allogenem und heterogenem Material, übersetzt und zitiert nach [217]

Bildung eines „neuen knöchernen Kinns“ nach Göbell 1913 [209]
4.6. 1914–1918 Neue Erfahrungen im Bereich der Transplantation durch bisher unbekannte Formen der Verletzung im Ersten Weltkrieg

In den Kriegen vor dem Ersten Weltkrieg hatten Kiefer-Gesichtsverletzungen nur geringe kriegs chirurgische Bedeutung, da sie mit einem Anteil von 0,5–1% an den Gesamtverletzungen selten aufraten [59; 291]. Durch neue Waffentechnik und v.a. moderne Körperdeckung, bei der der Soldat nur noch seinen Kopf als Schussfeld freigab, stieg die Anzahl der Kiefer-Gesichtsverletzungen und gleichzeitig das Ausmaß dieser Verletzungen nun deutlich an [291]. So zitierte Zilz 1916 den offiziellen Bericht der medizinischen Akademie Paris vom 5. Mai 1915:

„10 Prozent aller Kriegsverletzungen der Alliierten betrafen den Kopf, davon waren 60 Prozent Gesichts- und Kieferwunden. Für Deutschland und Österreich-Ungarn bestätigten Guido Fischer (Westfront) und Zulian Zilz (Ostfront) diese Bilanz. Sie fanden 13 Prozent Kopf- und davon 70 Prozent Gesichts- und Kieferverletzungen."

(Zilz, zitiert nach [59])

„In Frankreich und Belgien belief sich die Gesamtzahl der Kriegsverletzten in den ersten 9 Kriegsmonaten auf 715.000. Davon betraten 37.180 Verletzungen den Schädel und 55.770 den Kieferbereich. [Zwischen Februar und Juni 1916 wurden] 37.620 Schwerverletzte gezählt. 6.342 Verletzungen entfielen dabei auf den Schädel, davon 2.793 auf den Gesichtsbereich und 654 auf die Kiefer.“

[59]

Es fehlten entsprechend kriegszahnärztliche Einrichtungen, was sich besonders in den ersten Monaten des Ersten Weltkrieges massiv auswirkte. Hatten die europäischen Armeen bis dahin dem Aufbau kriegszahnärztlicher Versorgung nur geringfügig Beachtung geschenkt, veranlasste die neue Kriegstaktik die kriegführenden Länder nun, sofortige sanitätsdienstliche Maßnahmen zu ergreifen. Es wurden spezialisierte Einrichtungen für die Behandlung von Kiefer- und Gesichtsverletzten errichtet, die als Kieferschussstationen den Reservelazaretten angegliedert wurden [59; 291]. Leiter einer Kieferschussstation war jeweils ein durch die Heeresleitung bestimmter Zahnarzt, dem einige Zahnärzte und -techniker unterstellt waren. Chirurgen und Augenärzte standen für spezielle chirurgische Eingriffe zur Verfügung [291]. Die konservative Behandlung von Knochenbrüchen, deren theoretische und praktische Grundlagen schon seit längerem bekannt waren, stellte keine Schwierigkeit für die behandelnden

„Dank unserer trefflichen Bundesgenossen, der Zahnärzte, sind wir imstande, den Kieferknochenschäden heute eine Hilfe zu bringen, wie das in früheren Kriegen nicht der Fall war. [...] Durch die gemeinsa-me Arbeit von Zahnarzt und Chirurg können die Verletzten nahezu zu gesunden Menschen gemacht werden.“

[19; 20]

Man erkannte, dass das Prinzip der Kieferbruchschienung im Bereich des Transplantationsgeschehens zur Anwendung kommen musste [59], wie sie auch für eine komplikationslose Kieferbruchbehandlung vonnöten war [291]. Dies schien den Chirurgen die geeignete Methode, um einen defekten Unterkiefer funktionsstabil zu halten und materialtechnisch zu rekonstruieren [59]. Außerdem sollte eine klare Prognose für die dem Bruchspalt benachbarten Zähne gestellt werden. Diese zwei Faktoren waren bisher sowohl bei der Behandlung der Kieferbrüche als auch bei der Knochentransplantation ungeachtet geblieben. Allerdings herrschte bis zu Kriegsende Unklarheit über die

1. Notfalleingriffe, psychische Betreuung
2. Erstellung der Krankengeschichte
3. Frühbehandlung/Wundbehandlung
4. Kiefer- und Defektbruchbehandlung
5. Wartezeit: Beobachtung des Operationsfeldes
6. Knochen- und Weichteilplastik [59; 291].

So setzte der Erste Weltkrieg einen nachdrücklichen Impuls bezüglich der Knochentransplantation an Defekten der Mandibula [97; 122; 224]. Viele der in Kriegszeiten entwickelten chirurgischen Methoden haben sich bis heute bewährt [277].

„Bis zu welcher Grösse des zu transplantirenden Stückes man gehen darf, welche Verhältnisse am günstigsten für die Anheilung sind, wissen wir nicht, ja, die Frage, ob sie überhaupt ihre Vitalität behalten oder ob sie resorbiert werden und nur der Kalkschwamm zur Regeneration gebraucht wird, ist noch offen. [...] [ich möchte glauben], dass es keine Grenzen für die Grösse gibt.“

[228]
Tasche ab [...]“ [229]. Anschließend kürzte er mit Hilfe der Lührschen Hohlmeißelzange die spitzen Kieferstumpfenden und frischte sie stufenartig an, um schließlich ein von der Tibia stammendes periostbedecktes Transplantat in die Periosttaschen der Bruchenden einzusetzen [59: 229]. War keine Fixierung des Fragments möglich, so verkeilte er das zapfenartig angespitzte Transplantat mit Bohrlöchern im Kieferquerschnitt.

Klapp wählte den vierten Metatarsus jedoch nur dann, wenn der Knochenverlust bis zum Kiefergelenk weniger als 6,5 cm betrug. War der Knochenverlust länger als 8 cm, wählte er als Er satzmaterial Beckenknochen [59: 229], „wobei die Spina ili ac ant. sup. als Kopf fungiert“ [229]. Dazu entnahm er von der Crista iliaca ein bis zu 9 cm langes und 3 cm breites Periostknochenstück, bog es entsprechend dem natürlichen Kieferwinkel und arbeitete es in den Zugangskanal bis zur Gelenkpfanne ein. Die Funktion des Kiefergelenkkopfes übernahm dabei die Spina iliaca anterior [59]. Wich-

Abb. 122: Ersatz des aufsteigenden Unterkieferastes aus dem Metatarsus IV [229]

Abb. 123: Ersatz eines großen Unterkieferdefektes aus dem Beckenkamm [229]

neun Patienten klagten im Verlauf der Behandlung über Beschwerden in Form von Gehbeschwerden durch Fußschmerzen, Zehenstarre oder Fußrückenentzündungen [59].

kieferdefekte Tibia und für ausgedehntere Knochenverluste halbierte Rippenstücke
und Beckenkamm als Ersatzmaterial zu verwenden [19; 20; 59].

Die beste Grundlage für die erfolgreiche Transplantation bildete nach Lindemann ein
klares Behandlungskonzept. So beugte er mit umfangreichen Vorbehandlungen Kom-
plikationen vor und versuchte, optimale Voraussetzungen für die Transplantation zu
schaffen. Er entfernte Narben, unterversorgte Gewebe wurden durch Massage oder
Saugtätigkeit wiederbelebt und insuffiziente Weichteillager mit Lappen- oder Fettver-
pflanzung verstärkt. Bei der Operation selbst legte Lindemann die Kieferstümpfe frei
und kürzte sie derart, dass nur noch fester, gesunder Knochen vorlag. Anschließend
setzte er eine Bohrung in den Markanteil des späteren Lagers, um so die Knochenneu-
bildung anzuregen und eine Transplantatverankerung zu schaffen. Das aus der Tibia
oder dem Beckenkamm des Patienten entnommene Knochenstück präparierte er, in-
dem er die Enden zapfenförmig zuschnitt, so dass diese sich in die Markbohrungen der

Abb. 23: Operationsbild 1: Die den linkss seitigen Defekt begren-
zenden Kieferstümpfe sind zur Ein-
pflanzung des Transplantates vorbereitet

Abb. 24: Operationsbild 2: Eingefügtes Transplantat mit umge-
schlagenen Periststrängen für eine
bessere Übersicht

Abb. 25: Ein dem Schienbein entnommenes
Perist-Knochensstück ist für die
Zurechtformung bereit

Abb. 26: Das zugeformte Transplantat ist für
das Einsetzen am Unterkiefer bereit

Abb.126: Präparation und Implantationsvorbereitung eines Transplantates
nach Lindemann ([59]; Abb. 23–26)

Kieferstümpfe einführen ließen [59; 299]. Dabei fixierte er das Transplantat prinzipiell
durch Einkeilung und Verzapfung im Defekt, während der Unterkiefer zuvor durch
Schiennung ruhig gestellt wurde [20; 299].

Entnahme und Einfügung des Knochens erfolgte bei Lindemann stets in Lokalanästhe-
sie, wobei der Patient präoperativ mit Morphin und Scopolamin sediert wurde [291].

Als Erster im deutschsprachigen Raum habilitierte sich August Lindemann 1926 im Fachbereich der Kiefer- und Gesichtschirurgie [20].

Ende der zwanziger Jahre brachte Lindemann abweichend von der allseitig verbreiteten Meinung einen alten Grundgedanken wieder auf. So statierte er, anders als ge-
glaubt stürben auch die Weichteile des Knochens, nämlich Periost und Knochenmark nach der Transplantation ab und würden durch neugebildetes Gewebe ersetzt (Axhausen, 1930).

„Die zelligen Elemente des Transplantates, sowohl der knöchernen Substanz wie des Periostes und der Markhöhlen und -kanäle, verlieren schon fast unmittelbar nach der Übertragung an Aussehen und Tönierbarkeit, zerfallen, werden aufgesaugt und fortgeschwemmt.“

(Lindemann, zitiert nach [43])

Der Ersatz des Transplantates gehe nach seinen Beobachtungen so vor sich,

„daß unter den vom Transplantat ausgehenden, auf den Mutterboden sich fortgesetzter auswirkender Reizen in letzterem ein Saftstrom nach Art eines Lymphstromes entsteht und die gesamten Anteile des Transplantates durchdringt, hierbei die Weichgebilde rascher als die knöchernen Anteile überflutend. Dem Saftstrom folgen Erythrocyten; in die Masse dieser, die in ihrer Gesamtheit keine abschließende Membran aufweisen und sich lebendfrisch zeigen, schiebt sich ein Netz von Endothelschläuchen hinein, die zum Teil solide, zum Teil gefüllt scheinen. Es kommt zur Ausbildung eines Keimgewebes, in welchem zu gegebener Zeit Zellen vom Typus der Osteoklasten und Osteoblasten vorherrschend werden, denen die Aufgabe obliegt, die alten Knochenbälkchen abzubauen bzw. neue Randsäume entstehen zu lassen, die die Reste des alten umschließen.“

(Lindemann, zitiert nach [43])

Diese von Lindemann neu aufgestellte Theorie stellte Axhausen 1930 absolut in Frage. Lindemann, so meinte er, habe wie zuvor Barth „über dem tatsächlichen Absterben wesentlicher Anteile des Periostes und Markes die Erhaltung derjenigen Randpartien übersehen“ [...], „die an das Lager angrenzen und von denen die Wiederbelebung und Umformung des knöchernen Transplantates tatsächlich“ ausgehe [43].

Abb. 128: Knochenfräse nach August Lindemann

147

Um eine Spontanheilung des Knochens zu ermöglichen, ging Ganzer bei der Rekonstruktion von Unterkieferdefekten konservativ vor. So unterließ er bei Eiterbildung und Fieberzeichen eine Ausräumung der Kieferwunde, und auch Fremdmaterialien vermied er einzusetzen [59]. „Erste Forderung bei der Knochentransplantation ist unbedingte Aseptik, nicht nur in bezug auf Instrumentarium, Hände, Injektionsflüssigkeit, Naht und Verbandmaterial, sondern ebenso in bezug auf das Wundgebiet“ [76]. Um solche Infektionen zu vermeiden forderte Ganzer dazu auf, die Mundhöhle unbedingt uneröffnet zu lassen. Der Mutterboden, so riet Ganzer, solle so vorbereitet sein, dass er das Transplantat nicht mechanisch hindere und ihm gleichzeitig eine gute Ernährung gewähre [76].

Bei seiner Behandlung stellte Ganzer zunächst die Knochenstümpfe und die Bruchstelle dar [20; 59; 76; 208]. Dafür legte er einen nahezu parallel zum Unterkiefer laufenden Bogenschnitt durch Haut und Platysma an.

„Man fühlt jetzt durch das freigelegte Weichgewebe hindurch die Knochenenden, die durch einen zweiten Schnitt parallel zu dem ersten, ein bis zwei Finger breit von ihm entfernt, ohne Durchtrennung des Periostes freigelegt werden. [...] So entstehen zwei Lappen, die sich gegenseitig decken.“ [208]

Bei dem späteren Verschluss der Wunde sollte so ein direktes Aufeinanderliegen der Nähte verhindert werden können.
Anschließend arbeitete er mit einer Lührschen Zange Rinnen in die Kortikalis der Stümpfe [20: 59; 76; 208]. Mit einem Stirnhöhlenmeißel entnahm er danach ein fingerdickes Stück aus Tibia oder Beckenkamm [59: 76; 208].

Die Enden der Ersatzstücke versah er wie auch die der Stümpfe ebenfalls mit Rinnen, die jedoch zu denen der Kieferstümpfe senkrecht standen [59: 76; 208]. Dem Periost sprach Ganzer eine Rolle für den Erhalt des Transplantates zu, indem es die Berührungsstelle zwischen Defektknochen und Transplantat bedecke und gleichzeitig das Einwuchern von Bindegewebe aus der Umgebung verhindere.
„Die Hauptsache ist und bleibt der überpflanzte markhaltige Knochen als solcher und ferner, daß dieser mit den Knochenenden des Defektes in innige und möglichst breite Berührung gebracht und in ihrer erhalten wird, so daß sich ohne weiteres die Beanspruchungsbedingungen, d.h. Bewegung, Belastung usw., des Defektknochens auf das Transplantat übertragen.“

Schwierigkeiten ergaben sich bei der Anpassung des Transplantates an die natürliche Krümmung des Unterkiefers. Durch Einsägen und entsprechendes Abbiegen des Transplantates konnte Ganzer jedoch die nötige Krümmung herstellen [56; 76].

Schließlich vereinigte er das Transplantat mit den Kieferstümpfen in der Art, dass das Transplantat „auf den Knochenenden reitet wie die Achsel auf einer Krücke“ (Ganzer, zitiert nach [20]). Ganzer betonte dabei, das Transplantat müsse so gut an seinem neuen Ort liegen, dass der Patient bei offener Operationswunde mehrmals den Mund öffnen und schließen könne, ohne dass das Transplantat seinen Platz verließe. Für die Befestigung des Transplantates sah Ganzer vier verschiedene Vorgehensweisen vor: die subperiostale Auflagerung, die Verzapfung, die Klauenverkuppelung und die Naht[76].

Eine Verdrahtung des eingesetzten Spanes lehnte er, wie auch seine Vorbilder ab, stabilisierte jedoch mit einem Katgutfaden. Eine starre Fixierung der Knochenfrag-
mente lehnte er aufgrund gemachter Erfahrungen ebenfalls ab, setzte sich aber für eine konsequente funktionelle Nachbehandlung ein [20: 208]. „Bei der beschriebenen Art der Transplantationstechnik ist aber eine unbedingte Ruhigstellung der Bruchen- den gar nicht notwendig, es soll nur verhindert werden, daß das Transplantat schlot- tert“ [76].

Ganzer war auch im Bereich der Jochbeinplastik, Oto- und Rhinoplastik tätig. Dabei schloss er sich weitestgehend den Methoden Josephs an, legte jedoch mehr Wert auf die funktionelle als auf die kosmetische Wiederherstellung. Das Nasengerüst bildete Ganzer durch einen von der Nasenspitze her eingeführten Knochenspan, der mit den Nasenbeinresten verwuchse oder gestützt wurde, und einen zweiten vom Becken oder aus der Tibia entnommenen Span, den er ins Nasenseptum verpflanzte [76: 149]. Später ging er auch zur Verwendung gestielter Stirn-Periostlappen über, die den Nasenrücken seiner Auffassung nach besser stützten [149].

Zwischen 1915 und 1918 nahm Ganzer über 50 freie Knochentransplantationen vor, wobei nach eigenen Angaben nur in einem Fall ein Misserfolg zu verzeichnen war [59: 208]. Insgesamt führte Ganzer über 300 freie Knochentransplantationen allein im Bereich des Unterkiefers durch, von denen es in 96% der Fälle zur primären Einheilung des Transplantates kam. In den restlichen 4% der Fälle konnte eine Heilung durch eine zweite Operation erreicht werden [76].

seine Einrichtung jedoch nicht als zivile Institution weiterführen, und übergab 1923 seine Station nach Versorgung der Patienten in militärmärztliche Hand [19: 20].

\begin{figure}
\centering
\includegraphics[width=\textwidth]{loos.jpg}
\caption{Abb.135: Verschiedene Arten des „Loch-Zapfen-Verfahrens“ nach Loos}
\end{figure}

1941 wurde Kazanjian zum ersten Professor für Plastische Chirurgie der Harvard-University ernannt [18].

In der Folgezeit erschienen mehrere Arbeiten, die sich mit dem Schicksal transplantierten Knochens und der regenerativen Kraft der verschiedenen Bestandteile beschäftigten. Ob die knochenbildenden Zellen über das Transplantatbett oder über das Transplantat selbst versorgt würden, blieb weiterhin Thema verschiedener Diskussionen [4: 52]. Waren die Prinzipien der Knochentransplantation bereits früher vielfach erörtert worden, entwickelten sich dennoch erst jetzt feste Vorgehensweisen bei der Knochenübertragung. Jones war es, der 1916 seine Forderungen für das Gelingen einer Knochentransplantation veröffentlichte [299]:

"Nutrition of the graft must be secured by perfect hemostasis because a mass of blood clot around the graft endangers its life. Asepsis must be perfect because toxins if virulent will cause death of the bone cells in a graft. The bed for the graft should be prepared so that rapid adhesion and organization may take place between the graft and the bone. The bone should be open at the point of contact, and the soft tissue surrounding it should be brought around the implanted part. Perfect immobilization is a very important factor for early vascularization and union, and only when the bone is firm and beginning to ossify should function be allowed to stimulate growth and development of the graft. Function, however, should be restricted to the very mildest form of motion."

Bei bilateralen Unterkieferfrakturen mit großem Knochenverlust wurde die rechte Fraktur mit dem äußeren Anteil der vertikal gespaltenen neunten Rippe versorgt. Das
Transplantat wies eine Länge von 5cm auf und wurde vorne in die Spongiosa und hinten in die angefrischte Kortikalis des Unterkiefers eingeklebt. Die linke Fraktur operierte Platt vier Monate später auf dieselbe Weise.

Bei Frakturen am linken Kieferwinkel wurde ein Rippentransplantat eingesetzt und beidseitig in Knochenlaschen der Kieferstümpfe eingespannt.

Frakturen am linken Horizontalast versorgte Platt, indem er zunächst den Defekt freilegte, die Kieferstümpfe anfrischte und anschließend ein Rippentransplantat einsetzte. Bei großem Knochenverlust wurde der Defekt mit einem Tibiatransplantat gedeckt.

Bei Frakturen am rechten Horizontalast kam zur Defektdeckung ein Transplantat der Skapula zur Anwendung [59; 275].

In keinem der neun Fälle kam es zu einer Abstoßung des Ersatzstückes, in fünf Fällen zeigte sich nach fünf Monaten sogar klinisch und radiologisch eine stabile Verknöcherung zwischen Transplantat und Kieferstümpfen. Allerdings betrachtete Platt seine Operationen aufgrund der geringen Anzahl von behandelten Patienten als ein persönliches Experiment, das keine allgemeingültigen Schlüsse zuließe [59; 275].

Pichler blieb zunächst bei „der Verpflanzung eines lebenden, mit einem Ernährungsstiel versehenen Knochenstückes aus der unmittelbaren Umgebung des Defektes“ [274] nach dem Vorbild Fedor Krauses und Bernhard Bardenheuers, weil der ihn „weniger empfindlich“ schien [20]. „Infection is far less dangerous if a piece of bone is used for grafting which is not entirely cut off from its blood supply [...]“ [273]. Jedoch veränderte er ihn dahingehend, dass er den Kieferspan nur an der Halsmuskulatur stielte und die
Hautdecke belief [20], da „dass Heranziehen der Haut überflüssig ist, da die darunterliegenden Weichteile, besonders die Muskeln, […] als Ernährungsbrücke vollständig ausreichen […]“ [274]. Neben der Halscutis bezog er auch den M. mylohyoideus nicht in seinen Ernährungsstiel ein, da er so die Entstehung von Schluckbeschwerden, Hautnarben und Weichteilstauungen zu verhindern glaubte [59: 274].

Abb. 140: Der abgetrennte Span, der ein we- nig über die Mittellinie reichte, ist über den Defekt nach rückwärts verschoben. Der vordere Teil des Stieles (namentlich der Böventer der linken Seite) musste wegen zu großer Spannung eingeschnitten werden. Diese durchschnittene Muskulatur wird später zur Deckung der wunden Knochenfläche auf das Kieferperiost hinaufgenäht [274].

Infanterist P. G., 38 Jahre alt, verwundet am 22. Mai 1915, 5 Tage später an der Klinik aufgenommen. Einschuss im rechten Kieferwinkel mit Bruch des Knochens, Ausschuss links unter hochgradiger Zerrüttmung der linken Hälfte beider Kiefer und ausgedehnter Zerreißung der linken Gesichtshälfte (Fig. 23a und b). Oberkiefer auch rechts gebrochen und im ganzen aus seiner festen Verbindung mit dem Schädel gelöst. Trotz aller Bemühungen kommt es zur Bildung einer Pseudarthrose rechts. Auch links Abstossung zahlreicher Sequester vom Unterkiefer und nachher keine wesentliche Verkleinerung des Knochendefektes (vergleiche die Fig. 24 und 26). Auch die hartnäckige Neigung des Kiefermittelstückes unter dem Zug der Kinnmuskulatur nach vorne zu kippen, kann trotz der Verwendung starker Gleitschienen nicht ganz überwunden werden.

Am 1. April 1916 Knochenplastik rechts (vergleiche Fig. 25). Das hochgezogen proximale Fragment wird dabei durchbohrt und mit einer starken Drahtschlinge gefasst, welche durch die Nahtlinie nach außen geleitet wird. Daran wird es mit Hilfe einer Kopfkappe aus Stärke binden während der Heilung herabgeworfen.

Abb. 142: Patientenbericht Pichlers über den verletzten Infanteristen P.G.

Abb. 143

Fall P. G. Links. Das ganz atrophische spitze Endes des hinteren Fragments, das bloss aus dem Gelenkfortsatz besteht, ist in ein Bohrloch des verpflanzten Stückes 1 eingesteckt. Der Gelenkkopf 3 war schon vor der Operation aus der Pflanze 3 nach vorn und aussen verlagert. Der Winkel zwischen Gelenkfortsatz und Jochbogen ist viel weniger spitzen, als in der Fig. 26. Es ist also gelenkige Dislokation des hochgezogenen hinteren Fragmentes bei der Operation zu korrigieren.

Abb. 144

Fall P. G. Fest verheilter Unterkiefer nach einer Aufnahme Mitte März 1917.

Abb. 145

Fall P. G. nach der Heilung.

81. Juli 1916. Rechts kaum mehr eine geringe Pseudodystrophie nachweisbar, auch links schon beträchtliche Festigkeit. Da jetzt zweielliges schon ziemlich fester Kallus die Fragmente bindet, wird nun daran gearbeitet, die untere Zahnreihe eine Schiene mit Zement zu befestigen, welche aus dem Munde nach abwärts herausragende, ziemlich lange Hohllarmen aus Draht trägt, an welche mit Hilfe einer äusseren Extension gegen eine Kopfkappe eine elastische Kraftring aufgesetzt werden kann, um die oben erwähnte Kippung des Mittelstückes um die Frontalachsen und Ausziehung, dass eine vollkommene Okklusion der Zähne erreicht wird. Das gelingt innerhalb 2 Wochen. Der Patient trägt dann den Apparat noch ungefähr einen Monat lang mit schwachen Gummitützen. Während dieser Zeit tritt vollkommen feste Verheilung ein und die Zahnreihe bleibt auch nach dem Weglassen der Extension dauernd in richtiger Okklusion (Fig. 28 und 29).

Abb. 146: Patientenbericht Pichters über den verletzten Infanteristen P. G.

Abb. 147: Hautschnittführung am Unterkiefer nach Esser

In einigen Fällen steckte Esser zur Fixation des Transplantates einen kräftigen, 10 cm langen Nagel durch ein Bohrloch, das 1 cm medial vom Foramen mentale axial durch die Kompakta und Spongiosa nach distal verlief [59; 205]. „3 mal verwendete ich gewöhnliche Tischlernägel, ein anderes Mal einen chirurgischen Stahlnagel ohne Kopf, der ganz versenkt wurde“ [205].
Dies führte zur vollständigen Immobilisierung aller beteiligten Knochenelemente. Bis 1917 führte Esser auf diese Weise acht Plastiken aus, wobei er weder Nekrosen noch Sequester zu verzeichnen hatte [59: 205].

Autoplastische Transplantate aus der Tibiakante und dem Beckenkamm verwendeten auch die Chirurgen Johann Soerensen (1862–1928) und der am Berliner Zahnärztlichen Institut der königlichen Friedrich-Wilhelms-Universität tätige Prosthetiker Ludwig

Abb. 20: Vorbereitung des Transplantates am Unterkiefer: zurückgeschobene Periostmanschette (a) und eröffnete Markräume der Kieferstümpfe (b)

Abb. 21: Transplantationstechnik an der Tibia: freigelegter Knochen (a), zurückgeschobenes Periost (b) und Linie (c), wo der Knochen abgemeisselt wird

Abb. 22: Einsetzen des Implantates am Unterkiefer: Implantat (a). Periostlappen und Periostmanschette (b) werden durch Catgutfäden zusammengezogen

Abb. 149: Transplantationstechnik nach Soerensen

Das Einwachsen eines Implantates stellte Partsch sich so vor, dass zunächst

„das Implantat durch Umspülung von Lymph vor der Vertrocknung gesichert und in seiner Lebensfähigkeit erhalten bleibt, bis es den von den Gefäßen des Wundbettes aus sich allmählich entwickelnden Ge-
fassen gelingt, eine anfangs geringe, später eine immer weiter sich ausbildende Zirkulation herzustellen und so das Implantat allmählich an den Sämtstrum des Körpers einzubeziehen.“

[268]

Partsch war der Überzeugung, einzig die Federkraft des gespaltenen Kieferknochens biete die sicherste Befestigung für das Ersatzstück [59].

„Wenn man den Spaltmeißel mit einer hebelfachigen Drehvorrichtung an seinem oberen Ende versieht, so ist man instande durch feine Drehungen sich genau eine Vorstellung von der Nachgiebigkeit und der Elastizität des Knochens zu machen, und man kann dann durch feine Drehungen, ähnlich wie der Klavierstimmer in feinsten Form die Saite anspannt, den Spalt im Knochen zum Klaffen bringen und ihn so erweitern, dass sich das keilförmige Ende des Implantates bequem in den Spalt einschieben lässt und von dem federnden Knochen so fest gehalten wird, dass sich eine weitere Befestigung fast erübrigt.“

[268]

„dass viele kommunitive Brücke von grösserer Ausdehnung durch einfache Schienenbehandlung ohne weiteres zur Heilung kamen, während ein andermal verhältnismässig kleinere Brücke unter dersel-
ben sorgfältigen Behandlung keine Tendenz zur Konsolidierung zeigte, ja sogar bei forzirter Behandlung in Pseudarthrosen übergingen“ [74].

„Der richtigste Zeitpunkt ist nämlich die sechste bis achte Woche nach der Verwundung, wo die Weichteile noch genügend vaskularisiert sind und das regenerierte Periost noch eine entsprechend starke osteoblastische Energie besitzt."

[204]

„In älteren Fällen sind die Erfolge unsicher, offenbar weil der richtige Zeitpunkt für die Operation versäumt worden und das Periost schon in das atrophische Stadium übergegangen ist."

(von Ertl, zitiert nach [274])

Für die Transplantation entwickelten sie zwei unterschiedliche Methoden: Bei der ersten überbrückten sie eine gerade, nicht abgewinkelte Partie des Unterkiefers mit einem starren Transplantat. Dafür schnitt von Ertl in der ersten Phase der Operation bogenförmig um den Defekt herum und präparierte die Deckhaut lappenförmig ab. Diesen Nährlappen, bestehend aus der Fascia superficialis, dem Platysma, der Fascia colli media, dem Nervus facialis und der Arteria und Vena maxillaris exter-
na, löste er bis an die Kanten der Bruchenden ab. Bestehendes Narbengewebe entfernte er mit einem Messer, bevor er mit einem Raspatorium die knöchernen Kieferstümpfe freilegte. Auf diese Präparation folgte die für den Erfolg der knöchernen Konsolidierung entscheidende Ausarbeitung der Bruchenden, wozu von Ertl sechs verschiedene Verfahren aufzeigte [74].

1. Die einfache Auffrischung der Bruchenden erfolgte in diagonaler Richtung.
2. Bei der Auffrischung wurde eine keilförmige Rinne in die Bruchenden gearbeitet.
3. Bei der einfachen Falzung wurde die Kortikalis des Bruchendes auf ca. 1 cm Länge abgemeißelt.
4. Die einfache Falzung mit Einkeilung erfolgte, indem das Bruchende auf 1 cm Länge aufgemeißelt und mit einer Vertiefung versehen wurde.
5. Die subkortikale Aufmeißelung des Bruchendes erfolgte bis zu einer Tiefe von 2 cm, um die darüberliegenden Knochenanteile abzuheben.
6. Das sechste Verfahren erfolgte, indem die Kortikalis in einzelnen Blättern abgehoben wurde.

In der zweiten Phase der Operation entnahmen Gadany und von Ertl das Transplantat aus der Tibia. Dazu wurde die vorbereitete Zinnfolie auf die Tibiavorderseite aufgelegt und in einer Entfernung von 2–3cm vom Folienrand U-förmig umschnitten. Nach Entfernen des Hautlappens wurde die Ausdehnung der Zinnfolie entsprechend auf

ostsaum des Ersatzstückes legte Port über das Periost der Kieferstümpfe und vernähte beide Anteile mit Seidenfaden. Nach Wundverschluss wurde für acht Tage ein Gazeverband angelegt, der nach Einheilung des Transplantates entfernt wurde, ebenso die Nähte [59].

Bis Ende 1917 führte Port auf diese Weise 30 Transplantationen durch, wobei in zwei Fällen ein Misserfolg auftrat: In einem Fall kam es zu Eiterungen, bei dem zweiten Patienten entfernte Port die Fixationsschiene zu früh. In den übrigen 28 Fällen konsolidierte sich der Unterkiefer innerhalb von 3–9 Monaten [59]. Anhand seiner Erfahrungen erarbeitete Port fünf Aspekte als Bedingung für einen Behandlungserfolg bei der Knochentransplantation:

„1. Mindestens vier Wochen vor dem Eingriff müssen sämtliche Fisteln und offenen Wunden verschwunden sein.

2. Postoperativ müssen die Kieferstümpfe miteinander durch eine Interdentallschiene so fixiert werden, dass keine Kaubewegungen möglich sind.

5. Nachkontrollen mit Röntgenaufnahmen sollten über den Stand der Einheilung und der Kallusbildung Auskunft geben, um ein zu frühes Entfernen der Fixationsapparatur zu verhindern.“

[59]

Wunschheim zu drei Aspekten, die seiner Meinung nach bei der Behandlung mittels Knochenplastik beachtet werden sollten [59]. So war er der Ansicht, der Erfolg der Knochentransplantation hänge einzig und allein von der Wachstumsenergie des lokalen Knochensgewebes ab. Dabei stellte er die lokale Knochenplastik im Vergleich zur freien Transplantation als überlegen dar, weil der Knochen am Leben bleibe und damit besser einheilen könne. Die freie Knochentransplantation, so meinte er, dürfe nur bei jungen und kräftigen Patienten mit einem gut ausgebildeten Kiefer durchgeführt werden [59].

Bei der Methode der sogenannten „Olisthopexie“ ließ Cavalié das Ersatzstück in den Defekt hineingleiten und verklebte es im Markanteil der Kieferstümpfe. Folglich entstand ein inniger Kontakt der beiden Anteile, was zu einer besseren knöchernen Einheilung führte [59].

Bei der Methode der „Stréphopexie“ blieb der losgelöste Knochenspan durch eine Gewebebrücke mit dem Entnahmeort verbunden und wurde anschließend umgekehrt in den Defekt eingesetzt, so dass sein Periost nach innen und die Spongiosaanteile nach außen zeigten [59].

Nach der Eingliederung erfolgte die Fixation des Transplantates mit Weichteil- und Hautnaht. Eine Ruhigstellung des Unterkiefers konnte anschließend durch prothetische Mittel oder durch eine intermaxilläre Fixationsschiene erreicht werden.

21 Transplantationen führte Cavalié mit dieser Methode durch, von denen 15 erfolgreich verliefen. In sechs Fällen kam es zu Eiterungen, wobei in zwei Fällen die Transplantate gänzlich verloren gingen [59].

und mit ihnen vernäht. Nach 6 Monaten trat die erste streichholzdünne Knochenneubil-
dung im Defekt auf. Nach einem Jahr war schließlich die erste solide Verknöcherung
im Röntgenbild zu erkennen [59].
Eugen Lickteig hingegen verwendete zur Transplantation Knochenperiostspäne aus
der Tibia. Bei seinem operativen Vorgehen hielt er sich an die Methode August Lin-
demanns. So legte er unter Lokalanästhesie die Kieferenden frei, entnahm danach ei-
en dem Defekt entsprechenden Knochenperiostspan aus der Tibia und versah diesen
mit Zapfen und Löchern. An den Kieferfragmenten brachte er korresponndernde Ver-
tiefungen und Zapfen an. Nach kräftigem Auseinanderziehen der Kieferstümpfe bolzte
er das Transplantat in den Unterkiefer ein und gliederte zum Schluss eine Kiefer-
schiene ein [59].
Für Fälle mit zahntragenden Kieferfragmenten entwickelte Eugen Lickteig eine eigene
Dentalschiene. Diese bestand aus einer vorderen und einer hinteren Hälfte, die inein-
ander griffen. Durch eine Schraube konnten die beiden Schienenhälften in jeder belie-
bigen Kiefer-
stellung mit-
einander fixiert
werden. Eine
seitlich ange-
brachte Spiralfeder hielt die
Schienenhäl-
ten auch bei
gelöster
Schraube und
geöffnetem Mund in Kontakt, so dass der gebrochene Unterkiefer zur Transplantatein-
setzung nach Bedarf gedehnt werden konnte. Danach zog die Spiral feder die Kiefer-
stümpfe wieder in die richtige Lage zurück und die Schienenhälften konnten fixiert
werden [59].
 Über den Umfang seiner durchgeführten freien Knochenplastiken machte Eugen Lick-
teig keinerlei Angaben. Seine Ergebnisse gab er verhalten bekannt. So beobachtete er,
dass sich die eingepflanzten Knochenstücke sehr verschieden verhielten. Einige der
Transplantate wurden nach wenigen Wochen resorbiert, andere veränderten sich über
Monate hinweg nicht, wieder andere zeigten gleichzeitig Vorgänge der Resorption und
der Knochenneubildung an unterschiedlichen Orten des Transplantates. Aus diesen Beobachtungen zog er folgendes Fazit:

Meistens nahm die Festigkeit des Unterkiefers durch freie Knochenplastiken zu. An den Kieferenden war Kallusbildung nachweisbar, und obwohl eine feste knöcherne Verbindung ausblieb, schuf das freie Transplantat günstigere Verhältnisse zu Prothesenanfertigung als das gestielte Transplantat [59].

Bereits zu dieser Zeit, 1917, erkannte der britische Chirurg Ernest W. Hey Groves (1872–1944), dass ein rascher Gefäßanschluss eines Transplantates vom Lagergewebe und von der Ruhigstellung des Transplantates abhänge [147: 212]. Mit Einführung der stabilen Osteosynthese konnte so das autologe Spongiosatransplantat seine volle
osteogenetische Potenz entfalten. Spongiosaer Knochen, so meinte Groves, könne sich trotz starker Kompression aufgrund seiner Viskoelastizität wieder ausdehnen und dadurch neue Spalträume bilden, die einen raschen und intensiven Anschluss an das Gefäßsystem ermöglichen. Groves später durchgeführten Versuche, die Durchblutung des Knochens durch direkten Gefäßanschluss zu verbessern, konnten dahingegen zunächst nicht überzeugen [147].

Im gleichen Jahr, 1917, berichtete McWilliams von Transplantationen bei Mandibula defekten, verursacht durch Traumata oder in Fällen von Osteomyelitis. Er legte bei seiner Behandlung den Schwerpunkt auf die anatomisch richtig positionierten und fixierten Segmente der Mandibula während der Heilungsperiode. Wichtig schien ihm auch die Entfernung jeden nekrotischen Materials vor der Implantation. Weiterhin machte er die Intaktheit der oralen Mukosa zur Grundbedingung vor der Überpflanzung des Knochenmaterials. Sollte während der Operation eine Ruptur der Schleimhaut auftreten, so müsse die Transplantation aufgeschoben werden, betonte er. McWilliams empfahl den Gebrauch gestielter Klavikula, besonders im Falle eines Infektionsrisikos. In anderen Fällen zog er Ersatzmaterial aus der Tibia vor [217].

Nach seinen eingehenden Untersuchungen schloss sich McWilliams vollständig der Theorie Olliers an. So stutierte er, dass Periost sei nach der Transplantation im Besitz

Abb. 170: Kinnaufbau mit gekerbtem Tibiaspan nach Lexer, 1917
knochenbildender Fähigkeiten und diene außerdem als Ernährungsmembran für die Knochensubstanz. Dabei bezog McWilliams, wie zuvor auch Ollier, seine Erkenntnisse nahezu vollständig aus makroskopischen Beobachtungen [61].

In allen drei Fällen vernähten Hepner und Neumann die Weichteile zweischichtig über der Knochewunde, was einerseits zur besseren Stabilisierung der Transplantate führte, und andererseits die Bildung von Hohlräumen und Blutungen verhindern sollte. Während des Krieges führten Hepner und Neumann 18 Knochenplastiken aus, die all- samt primär einheitlich und gute Resultate bezüglich Verknöcherung und Kaufunktion zeigten [59: 216].

1918 berichtete auch Billington über Knochentransplantationen, die er in Zusammenarbeit mit Parrott durchgeführt hatte. Dabei meinten sie, eine neue Methode der Transplantateinbettung entwickelt zu haben. Sie brachten Transplantate ein, die die angefrischten Oberflächen der Fragmentenden überlappten, sogenannte Onlay-Transplantate. In diesem Zusammenhang bemerkte Billington, Tibiatransplantate seien spröde und brüchig und deshalb unvorteilhaft. Statt dessen verwendete er zunächst

Percival P. Cole, der Direktor der Abteilung für Maxillofaciale Chirurgie am King George’s Hospital, bevorzugte für seine Behandlungen demgegenüber eine wiederum andere Methode, die gestielte Verschiebeplastik [223; 297; 299]. Seine Operation begann Cole mit einer langen Inzision über der Frakturstelle und mit der Darstellung der Kieferfragmente, welche er anfrischte und zur Aufnahme des Transplantates vorbereitete [59; 297]. Mit einer elektrischen Säge wurde anschließend ein entsprechendes Knochenstück als Transplantat aus dem intakten Unterkiefer herausgesägt, wobei die anhaftenden Weichteile belassen wurden [297]. Dieses Transplantat wurde in den Defekt eingegossen und mit den hinteren und vorderen Fragmenten verdrahtet [297]. Insgesamt führte Cole 10 solcher Operationen durch. 1938 präsentierte Cole drei Fälle, in denen er aufgrund einer aufgetretenen Eiterung eine Nachbehandlung vorgenommen und eine Weiterbeobachtung durchgeführt hatte. Die Patienten hatte er selbst 1919, also knapp 20 Jahre vor, behandelt. Alle drei zeigten nach der Ausbehandlung eine nahezu vollständige Erhaltung der Masse des gestielten Transplantates [217].

Dies war vermutlich die erste Dokumentation darüber, wie wichtig der Erhalt der vaskulären Versorgung für die Einheilung des Transplantates ist, damit es nicht resorbiert wird [217]. In acht Fällen konnte Cole in einer Beobachtungszeit bis zu einem Jahr eine vielversprechende Festigkeit des Unterkiefers nachweisen [59]. Nach An-
gaben Thomas behandelte Cole auf diese Weise sogar mehr als 30 Fälle, wobei er in 70% sehr gute Erfolge erzielte [299]. Cole führte bei größeren Unterkieferdefekten jedoch auch freie Transplantationen durch, für die er ausschließlich Tibiaknochen als Ersatzmaterial benutzte [59].

F. J. Tainter, ein Schüler Coles, veranschaulichte 1919 Coles Methode der gestielten Knochentransplantation (s.o.). Auf der Basis von Erfahrungen an 17 behandelten Patienten beschrieb er, dass das Transplantat aus den basalen Anteilen der Mandibula als Gleittransplantat entnommen wurde, dort, wo das Platysma und der vordere Bauch des M. digastricus ansetzen [217; 297]. Zur Verbindung der Knochenfragmente verwendete Tainter die Methode der interossären Verdrahtung, nicht jedoch bei zahnlosen Kiefern, bei denen er die Fragmente durch umschlingende Drähte fixierte [217; 297; 299]. Anders als Cole verwendete Tainter bei seinen Behandlungen jedoch eine modifizierte ablösbare Schiene, um die Immobilisierung der Kiefer zu sichern. So war für ihn bei der Operation die geöffnete Position der Kiefer wichtig, da sie zum einen die
Nahrungsaufnahme der Patienten erleichterte, zum anderen aber auch das Problem der Kieferkersche ausmerzte [297; 299]. Dabei war Tainter der Überzeugung.

"that liberties could be taken with the pedicled graft which would not be tolerated with the free graft" [297].

lisierung der Knochenanteile durch sich selbst zu erreichen war, wurden die Transplantate in den Fragmentenden verkeilt [207: 299].

Gallie und Robertson wiesen bei ihren Untersuchungen darauf hin, dass in den sogenannten lebenden autologen Transplantaten ausschließlich die Osteoblasten überlebten. „All the rest of the graft dies and is absorbed“ [207]. Die Osteoblasten seien der eigentliche Grund für die Funktion des Knochentransplantates. Von der Oberfläche des Transplantates, so beschrieben sie, wanderten diese Osteoblasten in das Ersatzstück ein und ersetzten noch während des Absorptionsprozesses den abgestorbenen transplantierten Knochen durch neugebildete gesunde Knochensubstanz. Dieser Umstand, meinten Gallie und Robertson, benötige jedoch nahezu perfekten Kontakt zwischen Transplantat und umgebendem gesundem Knochengewebe. Wichtig sei außerdem die Verwendung von Knochen, auf dem die periostale und endostale Oberfläche intakt sei, da in diesen Schichten die größte Anzahl an Osteoblasten zu finden sei. Nach erfolg- reicher Einpflanzung des Transplantates, empfahlen sie, möglichst viele kleine Splitter in das Transplantatbett einzubringen, um so die Knochenoberfläche, und damit die Zahl der überlebenden Osteoblasten zu erhöhen und zu aktivieren [207]. Gallie und Robertson erzielten mit ihrem Vorgehen nach eigenen Angaben gute Erfolge.

Bei dem zweiten Patienten wandte Krüger keine freie Knochenplastik an, da die Wangenweichteile zu dünn waren. Stattdessen arbeitete er mittels gestieltem Lappen aus dem Schlüsselbein, der in mehreren Abständen aus seinem Lager gelöst wurde, wodurch der Lappen einen eigenen Kollateralkreislauf bilden konnte. Anschließend wurde er zwischen die angefrischten Kieferstümpfe gelegt und mit ihnen vernäht. Im Gegensatz zu der ersten Methode erreichte Krüger nur am mesialen Ende des Transplanta-
tes eine knöcherne Einheilung, am distalen Ende bildete sich dahingegen eine Pseudarthrose [59].

Einigkeit über die Rekonstruktionsvorgänge war bis zum Ende des Krieges nicht erreicht worden. So war für einige Chirurgen zuerst die Weichteilkontinuität wiederherzustellen und anschließend das skelettale Gerüst, während andere Chirurgen wie Lindemann gerade umgekehrt vorgingen. Nach Kriegsende etablierte sich schließlich das Vorgehen Lindemanns in der sich entwickelnden europäischen Kieferchirurgie als allgemein gültiger Ansatz [291].
"...dann halten wir derartiges lebendes Material für nöthig, denn nach Ansicht vieler Autoren ist zur Defectdeckung an den Röhrenknochen nicht wie am Schädel, wo von ihm keine Function verlangt wird, jedes beliebige Material zu brauchen, sondern durch Autoplastik gewonnenes, lebendes Material eignet sich hier ganz ausschliesslich. [...] Ich bin nun weit entfernt davon, zu glauben, die auf so viele exacte Untersuchungen gestützte Theorie Barth’s über die Knochenverpflanzung wankend machen zu können. Vielmehr bin ich der festen Ueberzeugung, dass es bei der Art der Transplantation, wie Barth sie ausgeführt hat, thatsächlich ohne Werth ist, ob der Knochen lebt oder ob er tot ist, ob er vom Menschen oder vom Thiere stammt, und dass hier der ossificationsfähige Boden der Ausgangsort der Regeneration ist, wozu das absterbende transplantirte Stück nur den Kalkschwamm liefert. Ebenso fest überzeugt allerdings bin ich, dass es ausser dieser Art von Transplantation noch eine andere giebt, bei der es von grössstem Werthe ist, dass ein lebendes, durch Autoplastik gewonnenes Knochenstück nebst Periost, wenn auch auf ganz sterilsem Boden, verpflanzt wird, wobei der Knochen vielleicht leben bleibt, vielleicht auch abstirbt, jedenfalls aber vom lebenbleibenden Periost aus die Neugestaltung erfährt, die zu seiner Vervollkommnung und der Leistungen der an ihn gestellten Function erforderlich ist."

Stellungnahme zur Frage nach dem Schicksal des Knochentransplantates durch Klapp, 1900 [228]
„Ad 1. Im Falle des einfachen Aneinanderlegens des Transplantats an
die wird das Periost an der Vorderfläche der Tibia am oberen und un-
teren Rande der Maßfolie auf ca. 1 cm, an der Längskante auf ¼ cm
Entfernung umschnitten und bis zum Rande der Folie sorgfältig abge-
hoben; unmittelbar neben diesem zurückgeklappten Periost wird der
herauszunehmende Knochenteil umgebildet; die der Tibiakante anlie-
gende Muskulatur wird mittels Haken gut abgezogen und von dort aus
das Transplantat in einer Dicke von 3–4 mm ausgemeißelt: dabei muß
darauf geachtet werden, daß die Marköhle nicht eröffnet wird [...].

Ad 2. Für die Einkeilung wird das nach vorhergehender Beschreibung
herausgenommene Knochenstück mittels Meißel und Läerscher Zange
derart keilförmig geformt, daß es in die aufnehmende Rinne des Bruc-
chendes passt [...].

Ad 3. Bei der einfachen Einfalzung wird das Transplantat immer um
1–2 cm länger als der eigentliche Defekt herausgenommen, da es sich
mit den Bruchenden auf 1–1½ cm Ausdehnung flächenartig berühren
muß. Die stufenförmig ausgemeißelten Enden des Transplantats müs-
sten so dick sein wie die abgetragene Corticalisschicht des Bruchen-
des, während die dazwischenliegende Knochenpartie dem früher be-
schriebenen Transplantat gleich ist.

Ad 4. Bei Einfalzung mit Einkeilung wird das in gleicher Weise vorbe-
reitete Transplantat außerdem in den Enden keilartig zugeformt.

Ad 5. Bei subcorticaler Einkeilung muß das Periost an beiden Enden
des Transplantates noch mehr zurückgeschoben werden. Der peri-
ostfreie Knochen wird an der Oberfläche etwas angeschrägt und muß,
damit er in den subcorticalen Spalt des Bruchendes hineingezogen wer-
den kann, dünn und blattartig geformt werden [...].

Ad 6. Bei der corticalen Knochenauflaßung und Aneinanderflech-
tung wird das Periost des wie früher präparierten Knochenstückes –
nur im kleineren Ausmaß – frei zurückgeschoben und zugleich mit ihm
mehrere corticale Blätter mit dem Meißel abgehoben [...].“

von Ertl 1918 über die sechs verschiedenen Entnahmeverfahren
des Knochenspans entsprechend dem Operationsverfahren [74]
„Im Falle 1, d. h. bei einfachem Aufeinanderlegen wird das Transplantat zwischen die aufgefrischten Bruchenden gebracht und das Periost des Transplantats mit dem des Bruchendes durch Nähte vereinigt; außerdem wird es noch ringsherum durch Catgutknopfnähte an den Weichteilen befestigt [...].

Das gleiche gilt für den Fall 2, dem Einanderlegen mit Einkeilung [...].

In den übrigen Fällen 3–6 bedarf das Transplantat, bevor es an seinen Platz gebracht werden kann, manchesmal einer kleinen Umformung, die mit Lüerscher Zange leicht ausgeführt werden kann.

Im Falle 3, bei der Einfalzung, werden die entsprechenden kongruenten Flächen des Transplantats und der Bruchenden ineinandergefügt, daß die Corticalis des Transplantats sich in die Corticalis des Bruchendes fortsetze [...].

Die Einfalzung mit Einkeilung im Falle 4 geschieht auf dieselbe Weise wie vorher; doch wird die Fixierung durch das keilförmige Ende des Transplantats noch vergrößert [...].

Bei der Knochenaufläuterung und Einflechung (Fall 6) wird das Transplantat ähnlich wie früher eingesetzt und dann die blattartig abgeholbenen corticalen Schichten des Bruchendes mit einer anatomischen Pinzette mit den entsprechenden Lamellen des Transplantats ineinander gelegt [...], wodurch eine mehrschichtige Adaptation zustande kommt und die Adaptationsfläche vergrößert wird: das Periost wird, damit es sich an der Adaptationsstelle gut anlege, mit Lembergartigen Nähten befestigt. Mit diesem Adaptationsverfahren habe ich auch bei sklerotischer Corticalis eine frühzeitige und ideale Konsolidation erreicht.

Ich benutze von diesem Adaptationsverfahren immer das den gegebenen Verhältnissen entsprechendste und variiere sie auch manchesmal, indem ich an dem einen Bruchende die eine, an dem anderen Bruchende eine andere Form anwende!"

von Wunschheim aus der Krankengeschichte des 29 jährigen Stefan T., Knochenersatz mittels Knochenspänen, zitiert nach [59]
4.7. 1919–1949 Entwicklung der Methode der Knochenvorpflanzung

Trotz der Ausstoßung des Transplantates war es zu einer knöchernen Überbrückung des Defektes am Unterkiefer gekommen. Den Grund dafür sahen die Ärzte darin, dass die Bruchenden und der Unterkiefer durch die Kronen-Drahtschiene fixiert geblieben waren. Nach ihrer Ansicht war die Knochenneubildung vom Endost des Knochenstumpfes ausgegangen [59].

Viktor Hoffmann, der an der chirurgischen Uniklinik in Köln wirkte, beschäftigte sich insbesondere vom Standpunkt der Biologie und Architektonik aus mit der autoplastischen Knochentransplantation. In einer groß angelegten Studie beschäftigte sich Hoffmann mit der Biologie des verpflanzten Knochens und den daraus abgeleiteten Opera-

Hoffmann stellte fest, das

„Periost pflegt unter den gewöhnlichen Verhältnissen [...] zum größten Teil am Leben zu bleiben und behält seine Fähigkeit der Knochenneubildung. [...] Die histologischen Untersuchungen zeigen [...] daß die Knochensubstanz selbst, autoplastisch frei verpflanzt, regelmäßig umgebaut wird, wenn sie einheilt. Sie stirbt „gewöhnlich“ ab [...]. Die mitgeteilten Untersuchungen [...] führen zu dem eindeutigen Ergebnis, daß Endost und Knochenmark unter günstigen Bedingungen, d.h. ausreichender Ernährung, in mehr oder minder großer Ausdehnung am Leben bleiben und osteogenetische Kraft entfalten“. [218]

An die Operationsverfahren stellte Hoffmann klare Bedingungen. So sollte seiner Meinung nach das Ersatzstück in Form, Stärke und Funktionsbeanspruchung dem Defektstück gleichen und während des Umbaus vor jeglicher Schädigung gewahrt werden [134; 218].

Hoffmann gab jedoch generell der gestielten Plastik vor der freien autoplastischen Transplantation den Vorzug [134].

Der Chirurg C. TH. Wittich kam nur ein Jahr später zu der Einschätzung, Mark und Endost des eingepflanzten Knochenstückes wären ohne jegliche Hilfe der Knochenhaut in der Lage, Knochenlücken vollständig aufzufüllen. Der knochenbildenden Fähigkeit der Knochenhaut sei die des Markes und Endostes durchaus ebenbürtig. So sei bei den Überpflanzungen die Mitnahme von Endost und Knochenmark wichtiger als die des Periostes, meinte Wittich [138].

In Frankreich beschrieb 1922 der Chirurg Henri Delagenière seine Erfahrungen und Ergebnisse von Plastiken an Schädel, Unterkiefer und Extremitätenknochen und sogar Gelenken. Als erster französischer Chirurg berücksichtigte Delagenière bei der Operationstechnik die Erkenntnisse Léopold Olliers und entwickelte sie zu einer eigenen Technik weiter. Er schilderte sein Vorgehen bei Pseudarthrosen nach Frakturen, wobei er die Knochenheilung vermied und sich für eine zeitige Einpflanzung eines Knochenstückes aus der vorderen medialen Tibia samt Periost aussprach. Selbst bei teilweiser Infektion war seitens der nicht der Eiterung verfallenen Periostknochenstücken eine Knochenneubildung und Festigung zu erwarten [88]. In anderen Fällen hatte Delagenière sich für die Verwendung einer sehr feinen periostbedeckten Knochen-
schicht aus der Tibiaoberfläche ausgesprochen [59: 299]. Diese konnte bis zu 50 cm lang sein, die Schichtdicke blieb jedoch stets dünner als die Lamina der Tibia.

Als Vorbereitung für die Transplantationsoperation entfernte Delagenière zunächst die Narben und frische die Kieferenden bis 1,5 cm unter den Periostrand an. Anschließend entnahm er das osteoperiostale Transplantat aus der Tibia, nachdem das nötige Ausmaß festgelegt war. Um den Defekt auszufüllen und um die Kieferenden mindestens 1 cm fassen zu können, benötigte er meistens die gesamte mediale Oberfläche der Tibia. Eine mittelgroße Tibia gab durchschnittlich eine 25 cm lange Knochenschicht ab, was zur Deckung des Defektes ausreichte. War der Knochenverlust besonders groß, wurde das Tibiatransplantat der Länge nach in Streifen geschnitten und nebeneinander in den Defekt eingelegt. Zuletzt wurde die Kieferwunde mit den umgebenden Weichteilen bedeckt und mit Catgutnahten verschlossen [59].

Dank der dünnen Knochenschicht konnte das Transplantat problemlos an die natürliche Krümmung des Unterkiefers angepasst werden. Eine zusätzliche Festigkeit für das Transplantat war ebenfalls gegeben [59].

Bis 1916 führte Delagenière 41 osteoperiostale Transplantationen durch. In den folgenden zwei Jahren führte er weitere 118 Operationen durch, wobei er die Technik modifizierte und verbesserte. Aufgrund der vielen positiven Ergebnisse bei zahlreichen und sehr verschiedenen Fällen betrachtete Delagenière seine Behandlungsform als Methode der Wahl, um den verletzten Unterkiefer zu rekonstruieren. Seine Operationstechnik wurde später für allgemein gültig erklärt und von zahlreichen Operateuren angewendet, darunter Lebedinsky und Vireneque [59].

Auch Léon Dufourmentel und Léon Frison verwendeten osteoperiostale Transplantate der Tibia [59]. Diese bestanden aus einer Knochenlamelle (Dicke 3,5 mm, Länge 3–5 mm) und einem deckenden dreieckigen Periostlappen (Breite 6 cm). Das Transplantat wurde in den Defekt eingebracht und mit „Agraffen“ (Häkchen) am Kieferknochen befestigt. Die feste Einheilung des Transplantates wurde durch Röntgenbilder und klinischen Befund bestätigt. Bezüglich Aussehen, Form und Funktion erreichten die Chirurgen das Resultat eines normalen Unterkiefers [59].
Ebenfalls in Frankreich gab 1923 der Chirurg Christophe seine Erfahrungen bezüglich des Transplantationsmaterials bekannt. Er stellte alkoholfixierte, bald nach dem Tode aus Leichen entnommene Knochenstücke dem lebenden entnommenen Knochen volla-
kommen gleich. Toter Knochen habe sogar den Vorteil, stets verfügbar zu sein, ohne
dem Patienten durch eine Knochenentnahme ein Trauma zu setzen. Als weitere Beo-
bachtung schilderte er, lebender autoplastischer, in Muskelgewebe eingepflanzter
Knochen würde genau wie toter Knochen resorbiert. Den Osteoklasten, so Christophe,
däme bei der Knochenneubildung keine besondere Rolle zu. Statt dessen, so meinte er,
war ein noch nicht geklärter, chemischer, die Gewebe anregender Vorgang als ver-
antwortlich anzusehen [87]. Dieser Gedanke wurde Anfang der 50er Jahre von ver-
schiedenen Chirurgen wieder aufgegriffen.

Der Marseiller Léon Imbert versuchte im gleichen Jahr, 1924, resezierte Knochenstü-
cke zu zertrümmern und als Knochenbrei zur sofortigen Wiedereinplanzung in die
Entnahmestelle heranzuziehen. Die Einheilung und Festigung ließ jedoch zu wünschen
übri, denn es kam nicht regelmäßig zum festen Anschluss an die Knochenstümpfe
[90]. Einige Jahre zuvor
hätte Imbert Erfahrungen an Transplantatios-
nen mit patienteneige-
nen Rippenknochen ge-
macht. Aber auch ge-
frörene Skelettknochen
eines toten Neugebore-
nen, das ihm von der
„Maternité de Mar-
seille“ zur Verfügung
gestellt worden war,
brachte er zur Anwen-
dung. Gemeinsam mit
seinem Kollegen Pierre
Réal übertrug er wäh-
rend der Operation das
Transplantat auf eine
knöcherne Osteo-

Abb. 178: freie Transplantation von Rippenknochen nach
Imbert und Réal

Waldron und Risdon sahen Anfang der zwanziger Jahre Indikationen für eine Knochentransplantation in „*nonunion of fragments of long standing; to replace lost bone due to gunshot wounds; carcinoma; infection, cysts, etc. […]*“ [279]. Dabei bevorzugten sie das Ersatzmaterial aus dem Beckenkamm. „*We have used the rib with success, and also the tibia, but prefer the ilium for the reasons that it is very easily and quickly obtained*“ [279]. Als Bedingung für eine Transplantation sahen sie Infektionsfreiheit über 5 Monate und Zahnlosigkeit der Fragmentenden. Nach Experimenten mit Pflocks, Stufenzahl und Zuspitzung der Fragmentenden, um eine Autofixation zu ermöglichen, bevorzugten sie die Befestigung in korrekter Position mittels Drahtstiften [279: 299]. Für die postoperative Behandlung der Patienten sahen sie eine gesonderte Diät vor, in Form von „*soups, mashed potatoes, minced meats, egg-nogs, junkets, etc., and one bottle of stout a day*“ [279].

In Italien beschäftigte sich Mitte der Zwanziger Jahre E.T. Gaudioso erneut mit der Frage, ob Transplantate nach der Einpflanzung resorbiert würden. Dabei kam er zu
dem Schluss, dass auto-, homo- und heteroplastische Knochentransplantate zum größten Teil resorbiert würden, dass aber von den Defekträubern her eine lebhafte Ossifikation einsetze. Der gebildete Periost- und Knochenkallus stellte seiner Meinung nach einen vollwertigen Ersatz des resorbierten Knochens [89].

Ausgehend von dieser Tatsache, dass einzig vom Periost die Knochenneubildung ausgeht, verwendete der Italiener Violato als Ersatzmaterial ausschließlich Periost, meist aus der Tibia,

„und zwar derart, dass zunächst ein entsprechend breiter Perioststreifen vom Knochen abgehoben, jedoch an den beiden Enden mit dem Knochen noch in Zusammenhang belassen wird. Unter diesem brückenartigen Streifen wird ein Stück dünn sterilisiertem Gummis (Gummihandschuhe) untergeschoben, nach einigen Wochen hat sich über der Gummischicht eine dünne Knochenlamelle gebildet, die nach Erreichung der nötigen Dicke (Röntgenkontrolle) in ihrem Zusammenhang mit dem Mutterknochen durchtrennt und dem Defect eingefügt wird.“

(Violato nach [94])

den. Der restliche ursprüngliche Unterkiefer konnte mit beiden Kondylen entfernt werden. Schon eine Woche nach der Operation konnte das Mädchen mit dem neugebildeten Unterkiefer kauen und hatte ca. 50% der normalen Kieferbewegung [118].

Ebenfalls in Italien erkannte Amedo Perna 1927 schließlich, dass das Transplantat nicht als reine mechanische Zwischenschaltung aufgefasst werden könne. „Vielmehr handelt es sich hier um aktive Vorgänge, die um so rascher und günstiger sich abspielen, je mehr homogen das transplantierte Material ist und je weniger Unterschiede in den Gewebselementen sind“ (Perna nach [117]). Von den drei Arten der Transplantation sei also die beste und günstigste die autoplastische, erklärte Perna. Besonders im Bereich der Unterkiefer sei diese anzuwenden, wobei hier als geeignetestes Material Knochen aus der Tibia verwendet werden sollte (Perna, übersetzt und wiedergegeben von [117]).

Dabei könne die Fixation der Bruchenden mit dem Interponat entweder mit Catgut oder mit Metalldraht unter Verwendung von schützenden Metallplättchen erfolgen. Bei 23 behandelten Fällen erzielte Perna in 14 Fällen sehr gute Erfolge [117].

„Die Knochennaht stört im allgemeinen die normale Heilung eines Bruches. Sie wirkt als Fremdkörper, verzögert die Konsolidierung, führt nicht selten zur Nekrose und Abstoßung von Sequestern, besonders dann, wenn der Bruch infiziert ist, wie im Unterkiefer fast immer“

(Waßmund, zitiert nach [149]).

Georg Axhausen entwickelte diese Form zur Methode der Knochenvorpflanzung weiter [20: 277]. Er hatte festgestellt, dass bei Infektionen nach Transplantation eine organische Verbindung des Transplantates zu seiner neuen Umgebung das Ersatzstück vor
der Abstoßung retten könne. Seiner Meinung nach wiesen vorgepflanzte Knochenstücke eine besonders große Resistenz gegenüber der Wirkung von Wundinfektionserregern auf [169]. „Der Kieferknochen muß eine besondere Widerstandskraft gegen die

| Fall 2. Grobes centrales Fibrom der rechten Unterkieferhälfte. Wartezeit 5 Wochen. | Abb. 183: Grobes centrales Fibrom

Abb. 182: Fall mit Anwendung der Knochenvorpflanzung nach Axhausen

pyogenen Kokken besitzen“ (G. Axhausen: zitiert nach [277]).

Häufig, so stellte er fest, sei die pyogene Infektion, insbesondere im Bereich der Mundhöhle, jedoch so schwerwiegend, dass es zu einer organischen Verbindung nicht mehr kommen könne [169].

„Der Vorteil muß aber sofort in Erscheinung treten, wenn man die notwendigen organischen Verbindungen herstellt, bevor die Infektion herantreten kann, d.h. wenn man das Transplantat kurze Zeit vorher an die Stelle legt, an der es später zur Defektdeckung gebraucht wird. Man braucht nur in einer kleinen Voroperation von einem kurzen Hautschnitt aus unter Tunnellierung der Weichteile das Knochenstück zwischen Kiefer und Haut schieben. Bei der eigentlichen Operation kann dann, nach Ausführung der Kontinuitätsresektion, das mit der Umgebung schon organisch verbundene Transplantat in den Defekt eingefügt werden.“

[169]

Auch für eine Defektdeckung unmittelbar nach Tumorresektion sah Axhausen die Methode der Knochenvorpflanzung vor [20]. Bei seinem Vorgehen bevorzugte er jedoch, anders als Limberg, Tibiaknochen oder Ersatzstücke aus dem Beckenkamm [43: 169].

Bereits einige Zeit zuvor, 1907, hatte der Arzt Johannes Reinmöller in Rostock eine private „klinische Fachkranenanstalt“ für kieferchirurgische Fälle mit 6 Betten eingerichtet, die 1924 der dortigen zahnärztlichen Klinik angeschlossen wurde [20].

In den folgenden Jahren versuchte Matti insbesondere in der Hauptfrage, ob autoplastisch frei transplantierter Knochen in seiner Hauptmasse absterbe oder vollständig zur

1930 beschäftigte S. Kartaschew sich erneut mit der Frage der freien autoplastischen Knochentransplantation, wobei er sein Augenmerk insbesondere auf die Transplantation feiner Knochenstückchen und -splitter legte. Schwerpunkt seiner Forschungen war wiederum die Frage nach der Bedeutung des Periostes, des Endostes und des Knochenmarks für die Knochenbildung. Seine Versuche führte Kartaschew an ausgewachsenen Kaninchen durch, wobei er in 94 Fällen eine vollkommene aseptische Heilung erreichte. Er bemerkte, die Einheilung werde begünstigt, wenn Periost und Endost vorhanden und der Knochen fein zersplittert sei [135; 227].

„Die feinen Knochenstückchen und -splitter, die von Anfang an in bessere Ernährungsbedingungen durch den Anschluss an die Gewebs-säfte gestellt sind, behalten infolge rascher Vascularisation ihrer ganzen Masse oder in ihrem größten Teil ihre Lebensfähigkeit für längere Zeit, ganz im Gegensatz zu großen Knochentransplantaten und ganzen Diaphysen-­abschnitten, bei denen nur begrenzte Abschnitte von Knochenzellen am Leben erhalten bleiben."

[227]

Das Transplantat, so glaubte Kartaschew, gehe dennoch vollständig zugrunde, werde vollständig resorbiert und schließlich durch neuen Knochen größtenteils „schleichend“ ersetzt [227].

In England ernannter Armeearat im Mai 1932 ein „Army Advisory Standing Committee“ für Maxillo-faciale Verletzungen. Dieses Komitee empfahl die Einrichtung spezieller Stationen für die Behandlung kiefer-, und gesichtschirurgischer Patienten. 1939 folgte auf Beschluss der britischen Regierung die Einrichtung Plastischer und Kiefer-Gesichtschirurgischer Zentren in UK unter der Leitung von Sir Harold Delt Gilles [122].

Dieser hatte bereits früher in England (Kent) eine Fachabteilung für Wiederherstellungschirurgie gegründet [19]. Im gesamten englischen Königreich entstanden im Laufe der folgenden Jahre zahlreiche Zentren für Plastische Chirurgie und Kiefer-, und Geschichtschirurgie [122].

1934 errichtete der Arzt und Zahnarzt Kurt Steinbach (1890-1974) in Hamburg im Eppendorfer Klinikum eine Kieferstation, die jedoch wegen internen Probleme bald ins Hafenvolkshaus verlegt wurde. 1939 wurde unter Steinbachs Leitung schließlich das im nördlichen Raum größte Fachklinikum mit 286 Betten, die „Nordwestdeutsche Kieferklinik“, gegründet [18; 19]. Die Zeitumstände bedingten, dass sie zugleich als zivile Behandlungsstätte und als Reservelazarett diente [19].

1945 übernahm Karl Schuchardt mit dem Hamburger zahnärztlichen Ordinariat auch die Nordwestdeutsche Kieferklinik, die infolge der Kriegsereignisse nach Blankenese in die Warburgsche Villa ausgewichen war, und überführte sie ins Eilbeker Krankenhaus.
Durch großzügigen Klinikbau führte er schließlich die Klinik als Ausbildungsstätte in den Eppendorfer Universitätsbereich ein [18; 19].

Mit Beginn des Zweiten Weltkrieges stieg die Zahl der Kieferverletzten erneut stark an [51]. Es begann eine Suche nach alternativen Quellen für Knochen. Vor allem homologer Knochen war Gegenstand vieler Experimente [122]. Und auch die Entwicklung geeigneter Konservierungsverfahren war Ziel vieler Studien [217]. Die Zellen sollten nicht nur frischgehalten, sondern auch in einem latenten Lebenszustand gehalten werden. Atmung, Stoffwechselvorgänge etc. seien in einem Ruhezustand zu halten, bis sie durch entsprechende Maßnahmen wieder zum aktiven Leben erweckt würden [277].

Dem Neuseeländer Rainsford Mowlem gelang es 1944 erneut, anstatt von Blocktransplantaten Knochenspäne als Ersatzmaterial zur Einheilung zu bringen [122; 255]. Die Knochenmasse wurde nach der Entnahme in Späne verschiedener Größe zerteilt, ca. 1 x 0,5 x 0,2 cm [97; 224].

"On biological grounds, it was thought, that fragmentation of the graft might be expected to provide a much greater surface area, through which the transplanted bone cells would become accessible first to serum and secondly to the ingress of newly formed capillaries, and that the chance of their survival would thereby be enhanced."

(Mowlem, zitiert nach [217])

Die Ergebnisse Mowelms, die er anhand von 36 Fällen spongöser Knochenspantransplantate zum Wiederaufbau knöcherner Defekte beschrieb, wurden 1944 im Lancet veröffentlicht [122; 255]. Er beschrieb darin sein Prinzip der Transplantation:

"In using cancellous chips we are reversing the accepted standard of bone grafting. Instead of splinting the defect with a dense almost non-cellular transplant which may also act as bridge for osteogenesis or as a poor source of new bone - and for neither of these purposes is histologically suitable - we rely on other methods for fixation and fill the defect with a cellular mass, the survival of which will produce the requisite amount of new bone within a matter of weeks."

[255]

Dem autologen markhaltigen Knochen sprach Mowlem dabei eine sehr hohe Resistenz gegen Infektionen zu [145]. Aufgrund der höheren Anzahl überlebender Osteozyten an der Transplantatoberfläche sprach er der Spongiosa gegenüber der Kompakta eine verbesserte Überlebensfähigkeit zu [96]. Von 1010 mandibulären Knochentransplantaten

Nach vielen Studien teilte auch Robert Ivy 1951 schließlich mit: “In the present state of our knowledge it is safer to place reliance on autogenous bone for repair of large losses of continuity of the mandible” [97: 224].

Gegen Ende des Zweiten Weltkrieges gelang es schließlich dem Engländer Medawar an Hauttransplantaten, die schlechtere Einheilung oder auch Misserfolge nach Xeno- und Allotransplantationen auf eine Antigen-Antikörperreaktion zurückzuführen [147].

1948 teilten Pichler und sein Kollege Trauner mit, ihr Assistent Clementschitsch habe den Aufbau einer atrophischen Maxilla durch ein Knochentransplantat aus dem Beckenkamm via einen transoralen Zugang erfolgreich ausgeführt [217]. Trotzdem das Resultat dieser Operation durchaus befriedigend war, kam Pichler bezüglich des autologen Knochentransfers u.a. zu der Schlussfolgerung: „Always in a complete sterile way, it means via an extraoral approach. Should a rupture of the oral mucous membrane appear, then one has to stop the operation immediately“ (Pichler, zitiert nach [217]).

Dieselbe achtsame Einstellung hatte auch Leo Winter bereits 1943 auf der anderen Seite des Ozeans vertreten [217]. Für das Gelingen einer jeden Knochentransplantation stellte er präoperative Maßnahmen auf:

„1. The elimination of all possible sepsis in the field of operation.

2. Proper coaptation and fixation by correctly made intraoral appliances.

3. Aseptic technique throughout the operation.

4. Entrance into the buccal mucous membrane during the operation avoided.

5. The source of the graft properly prepared.”

[162]

Abb. 187: Transplantationsvorgehen nach Winter, I

Abb. 188: Transplantationsvorgehen nach Winter, II

Abb. 189: Transplantationsvorgehen nach Winter, III
5. Überblick über die Weiterentwicklung der Knochentransplantation von 1950 bis in die Gegenwart

Die Behauptung, der transplantierte Knochen sterbe vollständig ab, übe aber einen besonderen Reiz auf das umliegende Gewebe aus und „induziere“ Knochenneubildung, wurde besonders von G. Levander verfochten [237; 277]. Er vermutete in dem überpflanzten Knochen eine Substanz, die das mesenchymale pluripotente Gewebe zur Knochenbildung anrege. Das Periost hingegen, so konstatierte er, habe weder osteogenetische Fähigkeit noch überlebe es die Transplantation. Seine Induktionstheorie versuchte Levander zu bestätigen, indem er durch Einspritzung zellfreier, alkoholisch gelöster Knochenextrakte eine Knochenneubildung in einem Muskel erreichte [66; 147; 172; 237].

Nachfolgend suchten viele Forscher nach osteogenetisch wirkenden Stoffen wie Osteogenin oder dem K-Faktor, die eine Weiterdifferenzierung induzierten [66; 147]. Besonders Hans Oberdahlhoff und P. Lacroix hatten bereits in den 40er Jahren versucht, mit ihren Experimenten in diesem Bereich Erfolge zu erzielen [147; 234; 260]. Der Gedanke der Induktionstheorie setzte sich jedoch nie vollständig durch.

Lentz widmete sich 1955 erneut der Fragestellung nach dem Überleben des Knochenmaterials. Er folgerte jedoch aus seinen Untersuchungen, dass bei der Transplantation von frischem autoplastischem Knochen die sehr empfindlichen Knochenzellen sämtlich absterben, die Weichteile jedoch teilweise überleben und ihre osteogenetische Potenz erhalten [277].

„Durch einsprossendes Granulationsgewebe bekommt ein Teil der Weichteile innerhalb von 2 Tagen Anschluß an den Kreislauf. Der
Umbau des toten Knochens in lebenden erfolgt vorwiegend auf dem Wege der schleichenden Substitution (Barth, Marchand) und in geringerem Ausmaß auch durch zellige Resorption mit späterer Apposition (G. Axhausen)“.

(Lentz, zitiert nach [277])

Im weiteren Verlauf schien das starre Anhängen an eine Lehre – entweder Osteoblastenlehre oder Induktionslehre – zugunsten eines Kompromisses aufgegeben zu werden. So konnte im Besonderen W. Axhausen den Dualismus der „Osteoblastenlehre“ und der „Induktionslehre“ durch eigene experimentelle Untersuchungen aufheben, indem er an diese Stelle einen zweiphasigen Vorgang der Knochenregeneration setzte [147; 174; 277]:

„Die erste Phase, die nur von präexistenten spezifischen Zellen des Knochenweichgewebes frisch überpflanzten autoplastischen Knochens ausgeht und physiologischer Weise wohl die wichtigere ist, setze bereits nach wenigen Tagen ein. Das Ingangkommen der zweiten, vom unspezifischen Bindegewebe ausgehende Phase, die auch am menschlichen konservierten Material regelmäßig zu beobachten sei, nehme jedoch mehrere Wochen in Anspruch. Beide Phasen sollen, und das ist das Gemeinsame, durch die aktivierende Wirkung der abgestorbenen Knochensubstanz ausgelöst werden.“

(W. Axhausen nach [277])

In der von Axhausen beschriebenen ersten Phase, die der Osteoblastenlehre entspricht, geht also die Knochenbildung zunächst von den überlebenden osteogenetischen Zellen des Knochenweichgewebes des Transplantates aus, die Anschluss an die

Abb.190: subperiostale Knochenneubildung an periostgedecktem Tibiaspan 8 Tage nach der Überpfanzung. Transplantatknochen tot und daher zellkernlos.

Abb.191: Die Elastikafärbung zeigt die subperiostale Lage des geflechtartigen Knochens als Ausdruck der periostalen Neubildung.

Abb.192: Charakteristisch für die reguläre Osteogenese ist der Osteoblastensäum der neugebildeten Knochenbälkchen.

[176]
Gefäße des Lagers bekommen und von einsprossenden Kapillaren versorgt werden.

Die beschriebene zweite Phase entspricht der Induktionstheorie. Dabei kommt es zur Resorption der Knochengußsubstanz, während verbleibende Zellen des Knochenlagers zu Osteoblasten induzieren, die daraufhin Geflechtknochen bilden [147: 174].

„Die zweite osteogenetische Phase unterscheidet sich durch den Zeitpunkt und den Ort ihres Auftretens und das Vorausgehen einer lebhaften Osteoklase vor der Neubildung eindeutig von der Osteogenese durch transplantierte überlebende Zellen.“

1950 schilderte Converse die Verwen-
dung von 12 Knochentransplantaten und
14 Knochen-Knorpeltransplantaten inner-
halb der letzten drei Jahre. Diese waren
erfolgreich als „Onlay-Transplantate“ auf
Maxilla, Jochbein und Kinnregion plat-
ziert, eingeführt durch intraorale vestibu-
läre Inzisionen [64; 217]. Als
Ersatzmaterial gebrauchte er den
medialen Anteil des Beckenkamms [64;
217]. Bei der Transplantation ging
Converse nach Mowlems Methode von

Mowlems Me-
Thode von 1944
vor, kleine Ho-
bel spongiösen
Knochens in
die Zwischen-
räume um das
Onlay zu ge-
ben. Das
Transplantat
selbst stabili-
sierte er subperiostal, nur ein Druckverband wurde für eine Woche angelegt [64;
217]. Über Langzeitergebnisse von Converses Studie oder die eventuelle Behandlung

Abb. 197: Autologes tiefgekühltes
Transplantat 12 Tage nach der Überpflanzung. Das nekrotische Peri-
ost ist kernlos und gequollen. Bg: Bindegewebe des Lagers. [176]

Abb. 198: Tiefgekühltes autologes Trans-
plantat 18 Tage nach der Überpflanzung.
Lebhafte osteoklastische Aktivität. Keine
Knochenneubildung. Rb: Resorptionshöhle
mit Osteoklasten [176]

Abb. 199: Tiefgekühltes autologes Transplan-
tat 30 Tage nach der Überpflanzung. Der
Osteoklase folgt die Bildung des Oste-
oblastensauxs und damit eine reguläre Oste-
ogenese. Ok: Osteoklasten; nKn: neugebilde-
tes, kernhaltiges Knochengewebe mit Oste-
oblastensaum.[176]

Abb. 200: Intraoraler Zugang zur Mandibula nach Converse
mit Antibiotika ist nichts bekannt [217]. Der oral vestibuläre Zugang bei der Transplantation schien jedoch genauso erfolgreich zu sein wie der externe. Die Vermeidung sichtbarer Narben und die guten Ergebnisse sprachen eindeutig für eine weitere Anwendung dieser Methode ([64: 66]. Die Idee, die Behandlung transoralt durchzuführen, war aufgrund von Beobachtungen während des Krieges entstanden. Es hatte sich gezeigt, dass lose Fragmente, die der Mundhöhle ausgesetzt waren, durchaus ohne jegliche Infektion vollständig und fest einheilten [217]. Für die Knochentransplantation stellte Converse wichtige Behandlungsprinzipien auf:

Abb.201: Transplantation auf intraoralem Zugangsweg nach Converse.

Abb.202: Entnahme eines Transplantates vom Beckenknochen. nach Converse
"1. The absence of infection. […]

2. A vascular, non-scarred recipient site. […]

3. Contact between the graft and bone. […]

4. Thorough immobilization of the graft and the bones with which it is in contact. […]"

Für die Ossifikation oder Osteogenese setzte Converse das Vorhandensein von Osteoblasten voraus. Diese, so meinte er, würden durch Interzellulärs substanz umgeben und bildeten so die Osteozyten [66].

„Not all of the osteoblasts differentiate into osteocytes: many proliferate on the periphery of the bone. Trabeculae and bone processes join together to form cancellous bone. If the covering osteoblasts continue to proliferate and differentiate, forming osteocytes, new bone is added to the free ends of the trabeculae, increasing their length. The new bone is deposited in layers designated “lamellae”. The continued deposition of lamellae may transform cancellous bone with large spaces into compact bone with narrow spaces […]”

[66]

Im Bereich der Nasenersatzplastik entwickelte Converse ein Vorgehen mittels eines Stirnlappens, wobei das Nasengerüst durch freie Transplantation geschaffen wurde. Der Entnahmedefekt bei Converses Methode lag relativ weit lateral an der Stirn, so dass er mit den Haaren größtenteils verdeckt werden konnte. Nach zusätzlicher Abdeckung mit einem Vollhauttransplantat war der Entnahmedefekt häufig sogar kaum sichtbar. Auch heute noch ist die Nasenersatzplastik mit-
tels Stirnlappen nach Converse aufgrund der ge-
nannten Vorteile eine gängige Methode [67; 147].

Eine der Hauptvoraussetzungen für die erfolgreiche
Weiterentwicklung der transoralen Chirurgie war die
Entdeckung des Penicillins und die schnelle Ent-
wicklung weiterer Antibiotika, deren Verwendung
1951 von Obwegeser in einer umfassenden Studie
über 33 freie Knochen- und Knorpeltransplantate in
die Gesichtsregion rückblickend beschrieben wurde
[217].

Dabei stellte er allgemeine Prinzipien für die Transplantation von Knochen auf:

„a) Transplantation eines möglichst kortikalisfreien Knochens.
b) Grosse Spongiosa-Anlagerungsf lächen zwischen Transplantat
und Reststumpf mit Einlagerung von Spongiosabrei.
c) Anlagerung möglichst unter Druck.
d) Bekämpfung des primären Operationsinfektes durch lokale Ap-
plikation von Breitspektrumantibiotika.
e) Vermeidung von Hohlräumen in der Implantatumgebung.
f) Dichte Weichteildecke durch genaue Schleimhautnaht.
g) Absolute Immobilisierung durch entsprechende Kieferbruchs-
schienungsmethoden, wenn immer möglich."

[261]

Obwegeser befürwortete schließlich die einzeitige partielle Unterkieferresektion und
gleichzeitige Rekonstruktion mit freiem Knochen als Transplantat sowohl auf oralem
als auch extraoralem Weg [261].

1954 demonstrierte E. Schmid einige Fälle mit Rekonstruktion nach Alveolar- und
Kontinuitätsdefekten. Über einen intraoralen Zugang brachte er unter prophylaktischer
Antibiotikaktherapie Beckenkamm als Ersatzmaterial ein, gab jedoch an, dieses auch
schon vor Einführung der Antibiotika in gleicher Weise durchgeführt zu haben. Die
Rekonstruktion betraf beide Kieferknochen [217].
Rehrmann war vermutlich der Erste, der eine chirurgische Methode zum Aufbau des Knochenkammes mit Beckenkamm entwarf, gefolgt von der Entwicklung einer vestibulären Lingual-Sulkoplastie, die er in den frühen Fünfzigerjahren beschrieb [217].

Lentz stellte in seiner Schrift „Die Grundlagen der Transplantation von fremdem Knochengewebe“ 1955 in seinen Schlussfolgerungen erneut eine Art Wertigkeitsskala des Ersatzmaterials für die Knochentransplantation auf. Seiner Meinung nach konnte zur Ausfüllung von Knochenhöhlen und -lücken jedes Knochenmaterial als „Leitgerüst und Baumaterial“ dienen. Zwar würde der frische, autoplastische Knochen die besten Aussichten auf Heilung bieten, „in vielen Fällen kann aber auch auf eine günstige Art konserviertes Transplantat durchaus ausreichend sein“. Das zusätzliche Trauma der Spanentnahme könne also vermieden werden, da „das aktive Mitwirken des frischen, autoplastischen Knochens nicht benötigt“ werde, meinte er (Lentz, zitiert nach [277]). Ausschließlich bei der Deckung größerer Defekte sah Lentz allein die frische Autoplastik als erfolgversprechend an und stellte in diesen Fällen die Verwendung fremden Knochens sogar als kontraindiziert dar [277].

Die Verwendung fremden, konservierten Knochens trat schließlich sowohl in der großen Chirurgie als auch in der Kiefer- und Gesichtschirurgie in den Hintergrund. Dies bedeutete aber keinerlei Einbußen für die Weiterentwicklung der operativen Technik [277].

Neben vielen klinischen Studien, die meistens autologe Blocktransplantate von Beckenkamm oder der Rippe verwendeten, wurden experimentelle Studien durchgeführt, um das beste autologe Knochenmaterial für den Ersatz herauszufinden.

1966 erkannte Puranen, dass frisch entnommene autologe Transplantate zwar am besten zum Knochenersatz geeignet seien, dass ihre induktive Leistung bei Lagerung an der Luft aber innerhalb weniger Stunden verloren ging [147: 276].

thode im Versuch bei drei älteren Frauen angewandt. Laut der Erläuterung war der 15 mm breite Transplantatblock aus dem Beckenkamm jedoch nach 24 Monaten nahezu vollständig resorbiert [217].

Bezüglich der Befestigung des Transplantates waren sowohl Reichenbach als auch Schönberger der Meinung, man solle diejenige Art wählen, die sich aus den individuell verschiedenen Gegebenheiten heraus biete, bei der sich jedoch eine langwierige, umständliche und daher den Knochen schädigende Zurichtung als unnötig erweise. Als bekannteste Techniken beschrieben sie „die subperiostale Auflagerung, die aber für Defektdeckungen ohne das Hilfsmittel der Naht nicht zuverlässig genug ist, die Verzapfung (Lindemann) und die Klauenverkuppelung (Ganzer)“ [277].
Eine andere Methode, derer sie sich gerne bedienten, sei die des „Anbindens“:

„Dabei werden die Unterkieferstümpfe stufenförmig angeschärt und durchbohrt. Mit den durch die Bohrlöcher gezogenen Drähten wird das Transplantat umschlungen. Der Defekt wird also nicht ausgefüllt, sondern überbrückt, wobei die Fragmente eine natürliche Schienung (Lexter) erfahren.“

Diese Methode sei, so statierten sie, auch bei frei endendem, einseitigen Unterkieferersatz anwendbar [277].

Durch den Infektionsschutz in Form von Antibiotika wurde der freien Knochentransplantation in der Mundhöhle schließlich der Weg geebnet. „Selbst bei nicht lückenloser Adaptation der Wundränder […] heilen diese Transplantate ein“ [288].

Nach den Ergebnissen aus Mowlem’s Studien von 1944 richtete 1968 Richter seine Versuche aus. Darin untersuchte er erneut die osteogenetischen Fähigkeiten von Knochenmark und spongösen Knochenspänen [217]. Mowlem’s Erkenntnisse wurden auch in der rekonstruktiven präprothetischen Chirurgie von Philip J. Boyne angewandt, der seine Studien 1969 und 1972 publizierte [54; 217]. “It is believed that the use of this grafting concept may produce the optimal bone grafting techniques of the future in dental reconstructive procedures” [54].

Verfeinert wurden Boynes Techniken von Marx und Wong 1987, außerdem weiterentwickelt von Marx in seinen Publikationen von 1994 und 1998, in denen sie das erworbene heutige Wissen über die Regulation der Osteogenese auf molekularer Ebene di-

216
reakt auf eine klinische Methode innerhalb der rekonstruktiven präprothetischen Chirurgie anwendeten [217].

Die Arbeit der Schweden Östrup und Fredrickson trieb diese neue Art der Knochentransplantation voran [4; 52]. Sie beschrieben einen Distanztransfer von freien, lebenden Rippentransplantaten durch mikrovaskuläre Anastomosierung bei Hunden [52; 263], bei der die Gefäße des transplantierten Knochens mikrochirurgisch mit denen des Lagers verbunden wurden [263; 147]. Neben Östrup und Fredrickson machten auch

Einen weiteren Fortschritt im Bereich der Knochentransplantation bedeutete die Darstellung der histomorphologischen und biochemische Vorgänge der primären Knochenheilung, die 1963 Schenk und Willenegger gelang. Ham und Harris bestätigten kurze Zeit später, 1971, dass bei Transplantateinheilung die gleichen Heilungsvorgänge ablaufen wie bei der Frakturheilung [147]. So ergaben sich auch bezüglich der Fixierung von Knochentransplantaten weitere Möglichkeiten, u.a. eine stabile Druckplattenosteosynthese oder die weniger stabile Drahtnahtosteosynthese [141; 147]. Dabei zeigte sich, dass eine Transplantatfixation unter Druck zu schneller Verknöcherung und diese wiederum zu früherer funktioneller Belastungsfähigkeit des Unterkieferersatzes führte [141].

1976 äußerten sich Witt und Jäger zur Frage der Fixation von autologen Knochentransplantaten:

Abb. 210: Heilungsvorgänge bei Transplantateinheilung und Frakturheilung nach Ham und Harris
„Die autologe Spongiosa als das wohl osteogenetisch hochwertigste Transplantatmaterial, bedarf zu einer optimalen Nutzung fast unabhängig der stabilen Osteosynthese. Auf diese stabile Osteosynthese kann nur verzichtet werden, wenn die umgebende Knochenstruktur stabile Verhältnisse für einen irritationslosen Einbau der Spongiosa gewährleistet.“

(Witt und Jäger, zitiert nach [147])

Farrell wandte 1976 als Erster die Methode der „Le Fort I-Osteotomie“ an, um eine atrophische Maxilla zu behandeln. Dazu interpositionierte er ein Beckenknochentransplantat und führte gleichzeitig eine submuköse Vestibuloplastie durch.
14 Jahre später bediente Sailer sich der gleichen Technik, jedoch immobilisierte er das Blocktransplantat durch simultanen Einbau von Zahnimplantaten. Dabei lenkte er die Aufmerksamkeit auf die Möglichkeit der Korrektur der intermaxillären Beziehung in allen Richtungen über diesen Zugang [217].

Ähnlich wie Davis zu Beginn der 70er Jahre zeigte Fazili 1978, dass bei 14 Patienten, bei denen er Beckenkamm als Ersatz zum Aufbau der gesamten Mandibula herangezogen hatte, das Transplantat nach 40 Monaten vollständig resorbiert worden war. Bei sechs dieser Patienten entnahm er Probebiopsien aus dem Beckenkamm, um eine Reihe biologischer Parameter zu bestimmen, die unter Umständen die Resorption des Knochens vorhersagten. Die Probe lieferte jedoch keine schlüssigen Ergebnisse, sodass Fazili diesen Schauplatz des Knochenaufbaus zugunsten der Visierosteotomie verließ [217].

\[\text{Abb.211: Visierosteotomie nach F. Härle}\]
den Weichteilen verbunden war, in vertikaler Richtung zu drehen. Gleichzeitig konnte sie Kontakt zu dem bukkalen Anteil der Mandibula behalten oder sogar auf dem oberen Teil der Mandibula platziert werden. Die linguale Platte wurde durch eine Drahtosteo-
synthese fixiert. Die Höhe der atrophischen Mandibula konnte so um 100% gesteigert werden.

Nur vier Jahre später, 1979, veröffentlichte Härle eine Nachsorgestudie (Langzeitstu-
die) über die Visierosteotomie. Obwohl die Ziele dieser Methode durchaus erreicht worden waren, nämlich eine Reduktion der Knochenresorptionsstärke auf die Höhe der Kammresorption nach einer Vestibuloplastie zu senken, waren die Ergebnisse nicht zufriedenstellend. Häufig war eine veränderte Sinneswahrnehmung im Bereich des N. mentalis zu finden. So war in 40% der 20 Fälle, in denen die mentalen Nerven einbe-
zogen waren, noch drei Jahre postoperativ eine Parästhesie oder sogar Anästhesie zu befunden [217].

In den folgenden Jahren wurden verschiedene Techniken, die den eigenen Mandibu-
araknochen zur Rekonstruktion zu nutzen versuchten, vorgestellt. So entwickelte Schettler 1976 eine „Sandwich Osteotomie“, Stoelinga kombinierte diese 1978 mit der bereits bekannten Visierosteotomie von Härle [217].

Der Australier Taylor veröffentlichte 1975 als Erster einen Bericht über einen freien vaskularisierten Fibulatransfer. Er rekonstruierte einen traumatischen Tibiadeffekt mit der Fibula der Gegenseite, deren Revascularisation durch mikrovaskuläre Anastomo-
sen erreicht wurde [4: 52]. Die erste freie Transplantation vaskularisierter Fibula wurde jedoch wahrscheinlich in Kyoto/Japan durchgeführt, wo 1973 eine Rekonstruk-
tion einer Pseudarthrose der Ulna ausgeführt wurde. Dieser Fall wurde jedoch erst 1983 veröffentlicht [52].

Stoelinga publizierte 1983 eine kritische Arbeit, die sich mit 148 Fällen auseinander setzte, in denen Patienten einen interpositionierten Knocheneinsatz zur Vergrößerung der Mandibula erhalten hatten. Bei 38 dieser Patienten, wurde 4–6 Jahre postoperativ eine Nachsorge durchgeführt, bei den anderen für mindestens 2 Jahre. Stoelinga fand ein deutlich erhöhtes Auftreten von Nervenschädigungen und stadierte, diese seien als nicht akzeptabel anzusehen. Die Höhe der Mandibulavergrößerung nahm innerhalb der ersten 6 Monate rapide ab, anschließend nahm die Resorptionsrate über die Jahre ste-
tig ab, bis sie sich schließlich dem annäherte, was Tallgren 1972 als charakteristisch

1989 statierte de Boer, man wisse, dass Knochentransplantaten drei physiologische Funktionen zugeschrieben würden.

„First, osteoinduction can occur in the process of inducing bone formation locally by the recruitment of cells which have a potential for bone formation [...]. Secondly, bone grafts may serve for osteoconduct, providing a framework for bone deposition [...]. And finally, bone grafts may provide a source of bone-forming cells[...]“

[52]

In verschiedenstem Maße, so meinte de Boer, sei jede Transplantationstechnik für eine oder mehrere dieser Funktionen verantwortlich.

Eine signifikante Weiterentwicklung der Behandlung dieser Defekte zeigt sich in den vergangenen 35 Jahren [52]. Besonders der wachsende Bedarf an Knochentransplantaten für den Erhalt von Gliedern nach Knochentumoren etc. hat das Interesse an Knochentransplantaten wesentlich erneuert [52].

Die Einführung von Implantaten veränderte die klinische Situation bei der zunehmenden Anzahl zahnloser Patienten völlig. Obwohl der Erfolg bei Implantaten im Bereich der Kiefer nach Knochener satz häufig nicht so gut ist wie mit nativem Alveolarknochen, sind die Resultate dennoch akzeptabel [217]. Der funktionale Stimulus im Transplantationsgebiet durch die Implantate hat die Rate der Transplantatresorption sehr positiv beeinflusst. Viele der Faktoren für das Überleben sowohl von Implantat als auch Knochenersatzstück sind noch immer unklar. Wichtige Studien wie die des Schweden Blomqvist von 1996 waren die Frage auf, ob Osteoporose ein wichtiger Faktor für das Überleben des eingepflanzten Materials sein könnte, ebenso die Erkenntnis, dass bei metabolischen Erkrankungen des Knochens weitaus häufiger ein Absterben der Transplantate erfolgt. Der gleichzeitige oder verzögerte Einbau von Implantaten in transplantierten Knochen steht noch immer zur Diskussion, wobei in

„Nur im ersetzt-kräftigen Lager, bei kleinem Defekt und flächenhaftem Kontakt mit lebenden, angefrischten Knochenstümpfen ist die Einführung von homologem Material aus einer „Knochenbank“ erlaubt und wird in jüngerer Zeit erfolgreich vorgenommen.“

[20]

Auch das sogenannte “Tissue Engineering“ ist Teil der Zukunft der Knochenregeneration. Dabei werden lebende Zellen eines Organismus außerhalb des Körpers kultiviert, mit extrazellulären Komponenten biologischer oder synthetischer Art kombiniert und
die so geschaffenen bioartifiziellen Regenerate oder Konstrukte in den Organismus reimplantiert. Der Vorteil besteht darin, dass die Implantate vom Immunsystem des Menschen akzeptiert werden, da die kultivierten Zellen nur körpereigene Proteine auf den Zelloberflächen aufweisen.

Bereits heute ergeben das Wissen über das genaue Wesen einer Vielzahl von morphogenetischen Proteinen und Möglichkeiten für die industrielle Produktion dieser Proteine weitreichende Perspektiven im Bereich der Knochentransplantation. Auch die wachsende Erkenntnis über die sequentielle Funktion der Osteogenesephasen einer Vielzahl von Wachstumsfaktoren und die zunehmende Erfahrung mit biologisch abbaurbaren Trägermaterialien bieten neue Möglichkeiten, deren weitere Erforschung eine wesentliche Aufgabe der Wissenschaft und Forschung in der Zukunft darstellen wird.

Aus medizinhistorischer Sicht befasst sich die vorliegende Arbeit mit der Behandlung von Knochendefekten durch knöchernen Ersatz. Ferner werden die an der Entwicklung dieser Therapieform beteiligten grundlagenwissenschaftlichen und klinischen Fachgebiete aufgegriffen, die zur Etablierung des Behandlungsverfahrens führten.

Zu Beginn des 20. Jahrhunderts war eine weitere Entwicklung zu verzeichnen, die zu einem vermittelnden Standpunkt zwischen den Ollierschen und Barthschen Prinzipien führte, wo bei jedoch für die praktische Anwendung die Ollierschen Grundlagen zur Anwendung kamen. Hatte bisher die gestielte Plastik eine vorrangige Stellung vor der freien Transplantation eingenommen, setzte sich nun der freie autoplastische Ersatz von Knochen durch.

Die Einführung mikrochirurgischer Operationstechniken gegen Ende der 60er Jahre und das sogenannte „tissue engineering“ führten die Entwicklung der Transplantation bis in die Gegenwart weiter.

Das Wissen über den genauen Aufbau einer Vielzahl morphogenetischer Proteine und deren industrielle Produktion, die wachsende Erkenntnis über die sequentielle Funktion der Osteogenezesephasen vieler Wachstumsfaktoren und die weiter zunehmenden Erfahrungen mit biologisch abbaubaren Trägermaterialien bieten auch in Zukunft neue Möglichkeiten im Bereich der Knochentransplantation.
6.2. Bibliographie

Nachschlagewerke und Monographien zur Allgemeinen Geschichte/ Geschichte der Medizin

1. **Ackerknecht EH**: Geschichte der Medizin. 7. Aufl., Enke, Stuttgart, 1992

3. **Binz C**: Der Äther gegen den Schmerz. Deutsche Verlagsanstalt, Stuttgart, 1896

8. **Eckart WU**: Geschichte der Medizin. 5. Aufl., Springer, Heidelberg, 2005

9. **Fischer J**: Biographisches Lexikon der hervorragenden Ärzte der letzten 50 Jahre. 2 Bde., Berlin, 1932

11. **Fülöp–Miller R**: Triumph over pain. The literary guild of America, New York, 1938

28. **Rihner F**: 100 Jahre Antisepsis. 9–11, W. Classen, Zürich, 1967

32. **Schipperges H** (Hrsg.): Geschichte der Medizin in Schlaglichtern. Meyer Lexikonverlag, Mannheim, 1990

34. **Sigerist HE**: Die großen Ärzte. Eine Geschichte der Heilkunde in Lebensbildern. Lehmann, München, 1970

35. **Sournia JC, Poulet J, Martiny M** (Hrsg.): Illustrierte Geschichte der Medizin. Andreas & Andreas, Salzburg, 1983

38. **Zeis E**: Die Literatur und Geschichte der plastischen Chirurgie. Thieme, Leipzig, 1863

Handbücher, Lehrbücher und Monographien

45. **Bäumler C**: Der sogenannte animalische Magnetismus oder Hypnotismus. Vogel, Leipzig, 1881

47. **Bartolinus T**: De nivis uso medico. Haffniae, 1661

49. **Berend N**: Zur Chloroform–Casuistic. Hannover, 1850

50. **Binz C**: Der Äther gegen den Schmerz. Deutsche Verlagsanstalt, Stuttgart, 1896

55. **Bruhn C**: Die Westdeutsche Kieferklinik in Düsseldorf und ihre Wirksamkeit. München, 1922
56. **Bruhn C**: Die Westdeutsche Kieferklinik und ihr Verhältnis zur Medizinischen Akademie. Düsseldorf, 1924
60. **Brunschwig H**: Buch der Chirurgie. Straßburg, 1497, facsimile: München, 1912
63. **Celsius**: De Medicina. (30 v. Chr.) Übersetzung von Spencer WG: De medicina of Celsius. Heinemann, London, 1938
64. **Converse JM**: Restoration of facial contour by bone grafts introduced through the oral cavity. In: Ivy RH (Ed.): Plastic & reconstructive surgery. Vol. 6, 295–300, Williams & Wilkins Company, Baltimore, 1950

230
<table>
<thead>
<tr>
<th></th>
<th>Author</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>Davy H</td>
<td>Researches, chemical and philosophical, chiefly concerning nitrous oxyde.</td>
<td>London, 1839</td>
</tr>
<tr>
<td>70</td>
<td>de Heyde A</td>
<td>Anatomia Mytuli, Subjeca centuria observatorium. Janssonio Waesbergios, Amsterdam</td>
<td>1684</td>
</tr>
<tr>
<td>71</td>
<td>Diepgen P, Rostock P</td>
<td>Das Universitätsklinikum in Berlin und seine Ärzte.</td>
<td>Leipzig, 1939</td>
</tr>
</tbody>
</table>

85. **Gutbier T**: über: **Stein G**: Plantationsstudien. (Z Stomat 26, 284 (1928)) In: Misch J (Hrsg.): Die Fortschritte der Zahnheilkunde nebst Literaturarchiv, Bd. 5/II, 1043–1044, Thieme, Leipzig, 1929

87. **Hauberrisser E**: über: **Christophe**: Recherches sur les greffes d’or a l’alcohol et sur le mécanisme de l’osteogenèse. (Arch France-belges d chir (Januar 1923)). In: Misch J (Hrsg.): Die Fortschritte der Zahnheilkunde nebst Literaturarchiv. Bd. 1/II, 132, Thieme, Leipzig, 1926

232

110. Liebig J von: Über die Verbindungen, welche durch die Einwirkung des Chlors auf Alkohol, Äther, ölbildendes Gas und Essig entstehen. Liebig's Annalen 1, 182, 1832

113. **Macewen W**: The growth of bone. Observations on osteogenesis. An experimental enquiry into the development and reproduction of diaphyseal bone. Maclehose, Glasgow, 1912

115. **Marchand F**: Der Prozeß der Wundheilung mit Einschluß der Transplantation. In: Deutsche Chirurgie, Enke, Stuttgart, 1901

116. **Meekerent J van**: Heel- en geneeskonstige aanmerkingen. Commelijn, Amsterdam, 1668

118. **Nipperdey H**: über: **McGee RP**: Complete regeneration of the mandible from retained periosteum. (Oral Hygiene 17, 1708 (1927)) In: Misch J (Hrsg.): Die Fortschritte der Zahnheilkunde nebst Literaturarchiv. Bd. 4/II, 1161–1162, Thieme, Leipzig, 1928

120. **Pliny**: The historie of the world. Translated by Philemon Holland. London, 1601

235

126. **Rosenstein P**: Über: **Lazzarini L**: Sul differente comportamento del periostio e del tessuto connettivo dell’ospite, di fronte all’infetto di osso deperiostato. (Arch di Ortop 43 (1927)). In: Misch J (Hrsg.): Die Fortschritte der Zahnheilkunde nebst Literaturarchiv. Bd. 5/II, 1044, Thieme, Leipzig, 1929

130. **Saliceto W von**: De Chirurgia. Venedig, 1276

134. **Schmidt G:** über: **Hoffmann V:** Die autoplastischen Knochentransplantationen vom Standpunkt der Biologie und Architektonik. (Arch klin Chir 135, 413–485 (1925)) In: Misch J (Hrsg.): Die Fortschritte der Zahnheilkunde nebst Literaturarchiv. Bd. 2/II, 598, Thieme, Leipzig, 1926

137. **Schmidt G:** über: **Rosenthal W:** Beitrag zur Wiederherstellungschirurgie nach Kieferresektion und Nekrose. (Arch klin Chir 147, 248 (1927)) In: Misch J (Hrsg.): Die Fortschritte der Zahnheilkunde nebst Literaturarchiv. Bd. 4/II, 1158–1160, Thieme, Leipzig, 1928

138. **Schmidt G:** über: **Wittich CT:** Die Bedeutung des Knochenmarkes für die Regeneration bei der freien autoplastischen Knochentransplantation im Tierexperiment. (Beitr klin Chir 126, 102 (1926)) In: Misch J (Hrsg.): Die Fortschritte der Zahnheilkunde nebst Literaturarchiv. Bd. 3/II, 729, Thieme, Leipzig, 1927

139. **Schjerning O von, Payr E, Franz C:** Handbuch der Ärztlichen Erfahrungen im Weltkriege 1914/1918. Bd. 2/II: Chirurgie. 692–696, Barth, Leipzig, 1922

144. Simpson JY: Account of a new anaesthetic agent, as a substitute for sulfuric ether in surgery and midwifery. Sutherland & Knox, Edinburgh, 1847
150. Tagliacozzi G: De curtorum chirurgia per institionem. Venedig, 1597

158. **Waßmund M**: Die Behandlung der Defektfrakturen. Thieme, Leipzig, 1939

163. **Wiseman R**: Severall chirurgicall treatises. London, 1676

Zeitschriftenaufsätze, Vorträge und Abstracts

165. **Andrews E**: The oxygen mixture, a new anaesthetic combination. Chicago Med Exam 9, 656 (1868)

166. **Axhausen G**: Histologische Untersuchungen über Knochentransplantation am Menschen. Dtsch Z Chir 91, 388–430 (1908)

169. **Axhausen G**: Über die erhöhte Anwendbarkeit der freien Knochenüberpflanzung in der Kieferchirurgie mittels der Knochenvorpflanzung. Chirurg 1, 23–30 (1929)

177. **Baetzner W**: Über experimentelle freie Periostverpflanzung. Arch klin Chir 118, 504–506 (1921)

196. Chubb G: Bone grafting of the fractured mandible, with an account of 60 cases. Lancet 2, 9 (1920)
199. Cushing H: Cocaine anaesthesia in the treatment of certain cases of hernia and in operations of the thyroid gland. Johns Hopk Hosp Bull 9, 192 (1898)

203. **Ellsworth PW**: The discover of the effects of suluric ether. Lancet 1, 10, 266 (1847)

207. **Gallie WE, Robertson DE**: The transplantation of bone. J Am Med Assoc 70, 1134-1140 (1918)

209. **Göbell R**: Zum osteoplastischen Ersatz von angeborenen und erworbenen Unterkieferdefekten. Dtsch Z Chir 123, 144-178 (1913)

212. **Groves EWH**: Methods and results of transplantation of bone in the repair of defects caused by injury or disease. Br J Surg 5, 185-242 (1917/18)

214. **Hattyasy D**: über: **Jakabázy I**: Az állkapocsizület fejecsének stb. Pótlása (Der Ersatz des Gelenkkopfes und des Unterkieferwinkels). (Fogorv Szemle (Ung) 32, 204 (1939)) Zentralbl Zahn Mund Kieferheilkd 5, 316-317 (1940)

220. **Huntington TW**: Case of bone transference. Use of a segment of fibula to supply a defect in the tibia. Ann Surg 41, 249 (1905)

222. **Imbert L, Real P**: Bone grafting in fractures of the lower jaw. Restauration Maxillo–Faciale 20, Paris (1917)

228. **Klapp R**: Ueber einen Fall von ausgedehnter Knochentransplantation. Dtsch Z Chir 54, 576–583 (1900)

235. **Langenbeck B**: Neue Methode der Rhinoplastik. Berl klin Wochenschr 1, 13–14 (1864)

236. **Leeuwenhoek A van**: Microscopical observations about blood, milk, bones, the brain, spittle, cuticula, sweat, fat and tears. Philos Trans R Soc Lon 9, 125 (1674)

238. ** Lexer E**: Uber freie Transplantationen. Arch klin Chir 95, 827–851 (1911)

240. ** Lexer E**: Die freien Transplantationen. Neue Dtsch Chir 26, 11 (1924)

245. ** Liston R**: Brief an Dr. Bott. Abgedruckt in: Lancet 1, 1, 8 (1847)

246. ** Long CW**: An account of the first use of sulfuric ether by inhalation as an anaesthetic on surgical operations. South Med Surg J 5, 12 (1849)

251. Mathis H: Prof. Dr. Hugo Ganzer. Zahnärztl Rundsch 64, 79–81 (1955)

262. **Ochotin S**: Beiträge zur Lehre von der Transplantation todter Knochentheile. Arch Pathol Anat Physiol 124, 97–113 (1891)

270. **Petrov NN**: Zur Frage der Quelle der Regeneration bei Knochenüberpflanzungen. Langenbecks Arch Chir 105, 914–923 (1914)

271. **Phelps AM**: Transplantation of tissue from lower animals to man. Med Records 39, 221 (1891)

272. **Phemister DB**: The fate of transplanted bone and regenerative power of its various constituents. Surg Gynecol Obstet 19, 303–333 (1914)

274. **Pichler H**: Ueber Knochenplastik am Unterkiefer. Österr–ungar Vierteljahrsschr Zahnheilkd 33, 348–385 (1917)

287. **Schleich CL**: Infiltrationsanästhesie. Verh Dtsch Ges Chir 21, 121 (1892)

289. **Schultze AW**: Über Lister`s antiseptische Wundbehandlung nach persönlichen Erfahrungen. Dtsch Militärärztl Zschr 7 (1872)

293. **Steinkamm J:** Die exakte Wiederherstellung der ursprünglichen Form und Gestalt des Kieferknochens bei Frakturen ist zur Erzielung eines vollen kosmetischen Erfolges Hauptbedingung. Dtsch Monatsschr Zahnheilkd 35, 265–269 (1917)

294. **Streissler E:** Der gegenwärtige Stand unserer klinischen Erfahrungen über die Transplantation lebenden menschlichen Knochens. Beitr klin Chir 71, 1–203 (1910)

295. **Sudeck P, Rieder W:** Operationstypen, die sich bei Behandlung der Kontinuitätsstrennung und Defektbildungen des Unterkiefers bewährt haben. Bruns Beitr klin Chir 146, 503–518 (1929)

296. **Sykoff W:** Zur Frage der Knochenplastik am Unterkiefer. Zentralbl Chir 27, 881–883 (1900)

301. **Urist MR:** Bone: formation by autoinduction. Science 150, 893–899 (1965)

302. **Vorschütz:** Klinischer Beitrag zur Frage der freien Knochentransplantation bei Defekten des Unterkiefers. Dtsch Z Chir 111, 591–606 (1911)

303. **Walther Ph von:** Wiedereinheilung der bei der Trepanation ausgebohrten Knochenscheibe. J Chir Augenheilkd 2, 571–583 (1821)

305. **Wells H:** To the european and american public. Lancet 1, 18, 471 (1847)

306. **Wereshchinski A:** Beiträge zur Frage über das Schicksal der Knochentransplantate. Arch klin Chir 136, 545–567 (1925)

308. **Wittich CT**: Die Bedeutung des Knochenmarkes für die Regeneration bei der freien autoplastischen Knochentransplantation im Tierexperiment. Beitr klin Chir 136, 102 (1926)

6.3. Abbildungsnachweis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abb. 2</td>
<td>http://www.onlinepot.org/images1/Eberstaf78.gif</td>
</tr>
<tr>
<td></td>
<td>Abb. 5</td>
<td>http://sfr.ee.teiath.gr/historia/historia/important/html/images/Hippokrates.jpg</td>
</tr>
<tr>
<td></td>
<td>Abb. 7</td>
<td>http://www.bium.univ-paris5.fr/sfhad/iahd/06/img/01.jpg</td>
</tr>
<tr>
<td></td>
<td>Abb. 11, 12</td>
<td>Goerke H: Medizin und Technik. 3000 Jahre ärztliche Hilfsmittel für Diagnostik und Therapie. Callwey, München, 1988</td>
</tr>
<tr>
<td></td>
<td>Abb. 15</td>
<td>http://www.nndb.com/people/788/000087527/galen-sm.jpg</td>
</tr>
<tr>
<td>Abb. 19</td>
<td>http://upload.wikimedia.org/wikipedia/commons/thumb/0/07/Avicenna2.jpg/180px-Avicenna2.jpg</td>
<td></td>
</tr>
<tr>
<td>Abb. 20</td>
<td>http://www.uab.edu/reynolds/IMAGES/Avicenna.jpg</td>
<td></td>
</tr>
<tr>
<td>Abb. 23</td>
<td>http://www.homeoint.org/morrell/articles/photo/chaulliac.jpg</td>
<td></td>
</tr>
<tr>
<td>Abb. 24</td>
<td>http://histoirepharmacie.free.fr/chaulliac.jpeg</td>
<td></td>
</tr>
<tr>
<td>Abb. 34</td>
<td>http://clendening.kumc.edu/dc/pc/tagliacozzi05.jpg</td>
<td></td>
</tr>
</tbody>
</table>
Abb. 37 http://www.sil.si.edu/digitalcollections/hst/scientific-identity/thumbnails/TNSIL14-H003-05.jpg

Abb. 41 http://www.homeoint.org/articles/daucourt/harvey.jpg

Abb. 44 **Goerke H**: Medizin und Technik. 3000 Jahre ärztliche Hilfsmittel für Diagnostik und Therapie. Callwey, München, 1988

Kapitel 3.

Abb. 46 http://upload.wikimedia.org/wikipedia/commons/thumb/a/a1/Syrischer_Maler_des_Kr%C3%A4uterbuches_des_Dioskurides_001.jpg/180px-Syrischer_Maler_des_Kr%C3%A4uterbuches_des_Dioskurides_001.jpg

Abb. 47 http://www.italy.surrealism.ru/pliny.jpg

252
Abb. 48–50

Abb. 51
http://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Franz_mesmer.jpg/200px-Franz_mesmer.jpg

Abb. 52, 53

Abb. 54
http://publicrelations.unibe.ch/unipress/heft105/bilder/aethernarkose.jpg

Abb. 55

Abb. 56

Abb. 57
http://www.med.yale.edu/neurosurg/cushing/cushing.jpg

Abb. 58
http://www.kbpr.wm.tu.koszalin.pl/czerwewa_pliki/image003.jpg

Abb. 59

Abb. 60
http://www.cojeco.cz/attach/illustrations/3b76e9bfe160b.jpg

Abb. 61

Abb. 62
http://home.tiscalinet.ch/biografien/images/Lister.gif
Abb. 63 http://www.uea.ac.uk/his/medhis/images/
Lister%20carbolic%20spray.jpg
Abb. 64 http://www.easternhealth.org.au/boxhill/images2/
billroth.jpg
Abb. 65 **Hermes D**: Zur Entwicklung der lumbalen
Bandscheiben-Chirurgie. Ein medizinhistorischer
Diss. Düsseldorf, 1999
Abb. 66 http://www.gzm.de/pic/HistoryAsepsis.gif
Abb. 67 http://wave.xray.mpe.mpg.de/roentgen/
roentgen-1.gif
Abb. 68 **Goerke H**: Medizin und Technik. 3000 Jahre
ärztliche Hilfsmittel für Diagnostik und Therapie.
Callwey, München, 1988
Abb. 69 http://content.answers.com/main/content/wp/
en/thumb/4/49/180px-Roentgen-x-ray-von-
kolliker-hand.jpg
Abb. 70 **Goerke H**: Medizin und Technik. 3000 Jahre
ärztliche Hilfsmittel für Diagnostik und Therapie.
Callwey, München, 1988
Abb. 71, 72 **Eckart WU**: Geschichte der Medizin. 5. Aufl.,
Springer, Heidelberg, 2005
Abb. 73–75 **Goerke H**: Medizin und Technik. 3000 Jahre
ärztliche Hilfsmittel für Diagnostik und Therapie.
Callwey, München, 1988

Kapitel 4. Abb. 76 **Boer H de**: Early research on bone transplantation.
In: Aebi M und Regazzoni P (Eds.): Bone
transplantation. 7–19, Springer, Berlin, 1989
Abb. 77 http://www.englib.cornell.edu/exhibits/
microbe_hunters/leeuwenhoek.jpg
Abb. 78 http://upload.wikimedia.org/wikipedia/commons/
thumb/4/4f/DuhameldeMonceau.jpg/180px-
DuhameldeMonceau.jpg
Abb. 79 http://www.portrait-hille.de/holiday/images/dsc00780.jpg

Abb. 83 http://portrait.kaar.at/Deutschsprachige%20Teil%202/images/bernhard_von_langenbeck.jpg

Abb. 84 http://www.oeaz.at/zeitung/3aktuell/2004/12/bilder/Billroth_theodor.jpg

Abb. 88 http://museetl.univ-lyon1.fr/html/OLLIER.jpg

Abb. 89 http://www.vereinigung-bayerischer-chirurgen.de/Nussbaum.gif

Abb. 91, 92 **Llexer E**: Die Verpflanzung von Knochen, Periost und Mark. In: Küttner H (Hrsg.): Neue deutsche Chirurgie 26b/II: Die freien Transplantationen. 1–201, Enke, Stuttgart, 1924

Abb. 94 **Marchand F**: Zur Kenntniss der Knochen-Transplantation. Verh Dtsch Ges Pathol. 368–375 (1900)

Abb. 100 [Link to image](http://clendening.kumc.edu/dc/pclexer.jpg)

Abb. 108 [Link to image](http://calder.med.miami.edu/Ralph_Millard/photos/Jacques_Joseph.jpg)

Abb. 124 http://www.zmk.uni-duesseldorf.de/images/bruhn.jpg

Abb. 125 http://www.zmk.uni-duesseldorf.de/images/lindemann.jpg

Abb. 136 http://www.countway.med.harvard.edu/rarebooks/exhibits/plastic_surgery/images/KP.jpg

Abb. 139–146 **Pichler H**: Ueber Knochenplastik am Unterkiefer. Österr–ungar Vierteljahrsschr Zahnheilkd 33, 348–385 (1917)

Abb. 147, 148 **Esser JFS**: Lokale Knochenplastiken bei Unterkieferdefekten. Bruns Beitr klin Chir 105, 555–563 (1917)

Kapitel 5.

Auch Bildkommentare entstammen zum Teil den angegebenen Quellen.
6.4. **Danksagung**

An dieser Stelle bedanke ich mich zunächst sehr herzlich bei Herrn PD Dr. Dr. D. Hermes für die freundliche Überlassung des Dissertationsthemas sowie alle konstruktive Kritik und Unterstützung sowie die fürsorgliche Betreuung während des Entstehens dieser Arbeit.

Stellvertretend seien an dieser Stelle Herr PD Dr. Dr. D. Hermes sowie Frau Borowska (Klinik für Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck), Frau Österreich (Institut für Medizin- und Wissenschaftsgeschichte, Universität zu Lübeck), die Damen und Herren der Fernleihestelle/Ausleihe der Universitätsbibliothek Lübeck sowie die MitarbeiterInnen des Zeitschriftenarchivs der Deutschen Zentralbibliothek für Medizin in Köln genannt.

Bei meinen Eltern und meiner Familie möchte ich mich für alle liebevolle Unterstützung während des gesamten Studiums bedanken. Sie haben meine berufliche Ausbildung stets gefördert und mir so die Möglichkeit eines unbeschwerter Weges gegeben.

Ein besonderer Dank geht auch an meinen lieben Kay, der mich während der Zeit der Entstehung dieses Werkes begleitet und mir stets den notwendigen mentalen Beistand geleistet hat.

Insgesamt wäre die Zeit, nicht nur der Promotion, sondern des gesamten Studiums, ohne meine liebe Freundin Bärte nur halb so erinnerndwert und erfolgreich. Die gemeinsamen Tage in den Archiven bei der Literaturrecherche und Quellensuche für unsere Promotionen bleiben ebenso unvergessen wie alle gegenseitige Unterstützung nicht nur während der gemeinsamen Prüfungsvorbereitungen.
6.5. Lebenslauf

Persönliche Daten
Name: Dörthe Stecker
Geburtsdatum: 05.11.1979
Geburtsort: Oldenburg (Oldb.)
Eltern:
 - Ingeburg Stecker, geb. Claußen, Erzieherin
 - Ernst-Wilhelm Stecker, Pfarrer
Geschwister:
 - Karen Hohage, Studienrätin
 - Birgit Bohl, Grund-, Haupt- und Realschullehrerin
 - Hilke Feilbach, Sprachbehindertenpädagogin
Wohnung: Ruhleben 5, 23564 Lübeck
Konfession: evangelisch-lutherisch
Familienstand: ledig

Schulbesuch
08.86 – 07.90 Grundschule Großenmeer
08.90 – 07.99 Jade–Gymnasium Jaderberg
08.99 – 10.99 Pflegepraktikum im Evangelischen Krankenhaus Oldenburg

Studium der Humanmedizin
10.99 Studienantritt an der Medizinischen Universität zu Lübeck
09.01 Ärztliche Vorprüfung
09.02 1. Staatsexamen
09.04 2. Staatsexamen
09.04–02.05 wissenschaftliche Arbeit im Rahmen der Dissertation zum Thema:
 "Zur Entwicklung der autologen Knochentransplantation",
 PD. Dr. Dr. D. Hermes, Klinik für Kiefer- und Gesichts chirurgie
 des Universitätsklinikums Schleswig–Holstein, Campus Lübeck
02.05 Beginn des Praktischen Jahren
 (Innere Medizin und Chirurgie – Sana Kliniken Lübeck,
 Wahlfach Neurologie – Klinik für Neurologie des
 Universitätsklinikums Schleswig–Holstein, Campus Lübeck)
04.06 Abschluss des Studiums/3. Staatsexamen und
 Erhalt der Approbation
03.07 Fertigstellung der Dissertationsschrift

Berufliche Tätigkeit
05.06 Aufnahme der ärztlichen Tätigkeit als Assistenzärztin im Hanse–
 Klinikum Wismar/ Klinik für Innere Medizin

Dörthe Stecker

263