Monitoring biochemischer und immunologischer Veränderungen in freien mikrovaskulären Gewebetransplantaten mit Hilfe der Mikrodialysetechnik

INAUGURAL-DISSERTATION

zur

Erlangung der Doktorwürde der Universität zu Lübeck - Aus der Medizinischen Fakultät -

vorgelegt von Anne Brüggemann aus Stralsund

Lübeck 2006
1. Berichterstatter: Prof. Dr. med. H.-G. Machens
2. Berichterstatter: PD Dr. med. J. Gliemroth
 Tag der mündlichen Prüfung: 07.05.2007

Zum Druck genehmigt.
Lübeck, Mai 2007
Inhaltsverzeichnis

1. Einleitung .. 1
 1.1. Freie myokutane Lappen... 1
 1.2. Mikrodialysetechnik.. 3
 1.3. Untersuchte metabolische Parameter... 5
 1.4. C3a ... 7
 1.5. Interleukin–8.. 9
 1.6. RANTES.. 10
 1.7. Fragestellung... 11

2. Material und Methoden ... 12
 2.1. Patientendaten ... 12
 2.2. Operatives Vorgehen... 14
 2.2.1. Transplantation des Musculus latissimus dorsi 17
 2.2.2. Transplantation des Radialislappen.. 18
 2.2.3. Mikrodialysetechnik ... 19
 2.3. CMA-Analyse .. 20
 2.4. Enzymimmunoassay .. 21
 2.4.1. C3a.. 23
 2.4.2. Interleukin-8 .. 24
 2.4.3. RANTES.. 24
 2.5. Statistik... 25
 2.6. Allgemeine Berechnung und graphische Darstellung............................. 25

3. Ergebnisse ... 28
 3.1. Patientendaten ... 28
 3.2. Operationsdaten ... 31
 3.3. Metabolische Parameter .. 32
3.3.1. Glukose ... 32
3.3.2. Laktat ... 33
3.3.3. Pyruvat ... 35
3.3.4. Quotient Laktat / Pyruvat .. 36
3.3.5. Glyzerol ... 37

3.4. Immunologische Parameter ... 39
3.4.1. C3a ... 39
3.4.2. Interleukin-8 ... 40
3.4.3. RANTES ... 41

4. Diskussion .. 42

4.1. Die Mikrodialysetechnik .. 42

4.2. Metabolische Parameter ... 45
4.2.1. Glukose ... 46
4.2.2. Laktat ... 47
4.2.3. Pyruvat ... 48
4.2.4. Quotient Laktat / Pyruvat .. 48
4.2.5. Glyzerol ... 49

4.3. Immunologische Parameter ... 51
4.3.1. C3a ... 51
4.3.2. Interleukin-8 ... 54
4.3.3. RANTES ... 55

4.4. Ischämie-Reperfusionsvorgang 56

4.5. Klinische Relevanz ... 58

5. Zusammenfassung ... 60

6. Literaturverzeichnis ... 62

7. Danksagung .. 71

8. Lebenslauf .. 72

9. Publikationen ... 73
1. Einleitung

1.1. Freie myokutane Lappen

sie die Schrift „The transplantation of veins and organs“, welche allgemein als Grundlage der Gefäß- und Transplantationschirurgie angesehen wird [22].

bestätigt werden konnten. Eine ebenfalls mögliche und vor allem bei einem Weichteiltrauma mit zusätzlichen Knochenverlust sinnvolle Methode ist die LD-Lappenplastik mit Anteilen der Scapula [2].

Die Verwendung freier myokutaner Lappen zur Therapie größerer Gewebedefekte ist zunehmend zur Routine geworden. Entsprechend hat sich auch das wissenschaftliche Interesse von primär klinischen Aspekten wie Operationstechniken und Methode zur Sicherung desselben wie postoperatives Monitoring der Durchblutung hin zu grundlagenwissenschaftlichen Fragen gewendet. War es früher die Frage nach dem Überleben des Lappens, so richtet sich heute das Interesse auf die pathophysiologischen Vorgänge vor, während und nach dem Gefäßanschluß. Entsprechend weicht zunehmend die Aufmerksamkeit an einem reinen Monitoring der Durchblutung einem Interesse an den biochemischen und immunologischen Veränderungen nach freier Lappengewebe-Pfenplantation. Es wird zunehmend klar, dass die Transplantation eines FMLD ein besonderes, weil elektives und autologes Transplantationsmodell in der Klinik darstellt, mit dem Ischämie-Reperfusionssvorgänge gezielt analysiert werden können.

1.2. Mikrodialysetechnik

Abbildung 1: Katheteraufbau

erreicht hat, wird sie in das Katheterinnere geleitet (Abbildung 1). Hier kann also keine weitere Veränderung der Substanzkonzentration mehr stattfinden. Dieses Prinzip ermöglicht das Monitoring von Konzentrationsänderungen der unterschiedlichen Substanzen zu verschiedenen Zeitpunkten.

1.3. Untersuchte metabolische Parameter

Abbildung 2: Die Konzentrationsänderung metabolischer Parameter während Ischämie und Perfusion

Wird ein Gewebe minderperfundiert oder ist ischämisch, so ist auch die Glukosekonzentration vermindert. Das gewonnene Pyruvat wird unter diesen Umständen in großen Anteilen zu Laktat umgewandelt, da keine Energie für den Zitratzyklus zur Verfügung steht. Folglich

Tabelle 1: Pyruvatumwandlung

<table>
<thead>
<tr>
<th>Bedingung</th>
<th>Energie</th>
<th>Formel</th>
</tr>
</thead>
</table>
| Mikroorganismen, Hefen | -226 kJ/mol | Pyruvat + H⁺ → Acetaldehyd + CO₂
Acetaldehyd + NADH + H⁺ → Ethanol + NAD⁺ |
| Höhere Organismen, anaerob | -197 kJ/mol | Glukose + 2P, +2ADP → 2Laktat + 2ATP + 2H₂O |
| Höhere Organismen, aerob | -2881 kJ/mol | Pyruvat + NAD⁺ + CoA → Acetyl-CoA + CO₂ + NADH |

1.4. C3a

C3a besteht aus 77 Aminosäuren bei einer Größe von 9,3 kDa. Es wird aufgebaut aus einer einzelnen Kette, die einen 8-prozentigen Zysteinanteil und eine endständige kationische COOH-Region aufweist. Eben dieser endständige Anteil ist aller Wahrscheinlichkeit nach verantwortlich für die Interaktionen zwischen C3a und zellulären Rezeptoren. Die Rezeptoren sind G-Protein gekoppelt und an Granulozyten, Monozyten und Mastzellen zu finden, sowie auf aktivierten Lymphozyten und nervalem Gewebe [59, 130]. C3a – auch C3a Anaphylatoxin genannt – spielt eine wichtige Rolle bei lokalen Entzündungsprozessen [137]. Es führt zur Kontraktion von glatten Muskelzellen, erhöht die Gefäßpermeabilität und steigert die Histaminfreisetzung aus basophilen Leukozyten und Mastzellen. Zudem moduliert C3a die Zytokinproduktion. Im Wesentlichen soll C3a dabei die Produktion von Interleukin-1 und Tumornekrosefaktor-α (TNF-α) von ortsständigen Monozyten erhöhen und die Produktion dieser Stoffe durch zirkulierende Zellen vermindern [136]. C3a stellt somit einen nicht unwesentlichen Faktor des inflammatorischen Systems dar, der sowohl pro- als auch antiinflammatorisch wirkt [67]. Außerdem besteht mit hoher Wahrscheinlichkeit eine
Verbindung zum blutbildenden System. So konnte beobachtet werden, dass C3 durch das Knochenmark in C3a und C3b aktiviert wird und hämatopoetische Zellen (hematopoetic stem/progenitor cells = HSPC) retiniert werden können [117]. C3a-Rezeptoren können vor allem an der Oberfläche aktivierter T-Lymphozyten gefunden werden und spielen daher möglicherweise eine Rolle bei T-Zell-vermittelten Krankheiten, wie beispielsweise atopische Hautreaktionen, Vaskulitiden oder Autoimmunerkrankungen (Myasthenia gravis, Hashimoto-Thyreoiditis) [145].

1.5. Interleukin–8

Die Hauptform des Interleukin–8 (Il-8) ist ein Protein mit einer Größe von 8 kDa bestehend aus 72 Aminosäuren. Es wird aus einem 99-Aminosäuren langen Präkursor durch Abspaltung verschiedener Sequenzen gebildet, wobei unterschiedliche Formen des Il-8 entstehen können. Das veränderte AVLPR-II-8 ist ein um 5 Aminosäuren verlängertes Il-8-Molekül und identisch mit FDNCF (fibroblast-derived neutrophil chemotactic factor). Die biologischen Eigenschaften von Il-8 ähneln sehr stark denen des NAP-2 (neutrophil-activating peptide 2) [7].

1.6. RANTES

Es lässt sich zusammenfassend feststellen, dass RANTES eine wichtige und bisher noch wenig erforschte Rolle bei vielen Vorgängen im menschlichen Körper spielt und in ein kompliziertes Netzwerk von Signalwegen integriert ist.

1.7. Fragestellung

Folgende definierte Fragestellungen sollen also im Rahmen dieser Arbeit untersucht werden:

1. Stellt die Mikrodialysetechnik ein geeignetes Monitoringverfahren für die postoperative Überwachung bei freien myokutanen Lappendtransplantationen dar?
2. Verändern sich die Konzentrationen von metabolischen Parametern wie Glukose, Laktat, Pyruvat und Glyzerol in Abhängigkeit von der Ischämiedauer?
3. Kann die Ischämiedauer die Konzentrationen von immunologischen Parametern wie Interleukin-8, RANTES und C3a beeinflussen?
4. Bieten sich durch die gewonnenen Ergebnisse neue Erkenntnisse bezüglich der Pathophysiologie des Ischämie-Reperfusionsschadens?
2. Material und Methoden

2.1. Patientendaten

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Unfallart</th>
<th>Patienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Arbeitsunfall</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>Verkehrsunfall</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1. PKW</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2. Motorrad</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Privatunfall</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1. Biss- und Schussverletzung</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2. alkoholbedingte Stürze</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3. sonstige Stürze, Absturz</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Chronische Osteomyelitis</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total: 19</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 3: Patientenübersicht

<table>
<thead>
<tr>
<th>Patient</th>
<th>m/w</th>
<th>Alter (J)</th>
<th>Trauma</th>
<th>Lappenart</th>
<th>Defektlokalisation</th>
<th>Gefäßanschluss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>♂</td>
<td>55</td>
<td>C1</td>
<td>FMLD</td>
<td>offene Defektverletzung re. Vorfuß</td>
<td>A. tibialis ant. E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>subtotale Amputation 5. Zehe, Fraktur</td>
<td>V. comitans</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Metatarsale III,IV,V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>♂</td>
<td>56</td>
<td>A</td>
<td>FMLD</td>
<td>III° offene Fraktur li. Unterschenkel</td>
<td>A. poplitea E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. poplitea E/S</td>
</tr>
<tr>
<td>3</td>
<td>♂</td>
<td>28</td>
<td>B1</td>
<td>FMLD</td>
<td>II° offene Fraktur li. Unterschenkel</td>
<td>A. tibialis post. E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. tibialis post. E/S</td>
</tr>
<tr>
<td>4</td>
<td>♂</td>
<td>48</td>
<td>C2</td>
<td>FMLD</td>
<td>Calcaneusfraktur re. mit Osteomyelitis,</td>
<td>A. tibialis post. E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wundheilungsstörung</td>
<td>V. tibialis post. E/E</td>
</tr>
<tr>
<td>5</td>
<td>♂</td>
<td>21</td>
<td>B1</td>
<td>FMLD</td>
<td>III° offene Trümmerfraktur li. Unterschenkel</td>
<td>Truncus tibiofibularis E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>offene Innenknöchelfraktur li., Kompartmentssyndrom li.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>♂</td>
<td>49</td>
<td>B1</td>
<td>FMLD</td>
<td>III° offene Fraktur re. Unterschenkel mit Freiliegen der Tibia</td>
<td>A. poplitea E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. tibialis post. E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. poplitea E/S</td>
</tr>
<tr>
<td>8</td>
<td>♂</td>
<td>45</td>
<td>B2</td>
<td>FMLD</td>
<td>offene obere Sprunggelenksluxation re. mit Talusverlust</td>
<td>A. tibialis ant. E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. tibialis ant. E/S</td>
</tr>
<tr>
<td>9</td>
<td>♂</td>
<td>53</td>
<td>C3</td>
<td>R</td>
<td>offene Calcaneusfraktur li.</td>
<td>A. tibialis post. E/E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. tibialis post. E/E</td>
</tr>
<tr>
<td>10</td>
<td>♂</td>
<td>17</td>
<td>B1</td>
<td>FMLD</td>
<td>Talusnukleation li., Luxatio talo totalis, Außenknöchelfraktur</td>
<td>A. tibialis ant. E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. comitans E/E</td>
</tr>
<tr>
<td>11</td>
<td>♂</td>
<td>38</td>
<td>A</td>
<td>FMLD</td>
<td>Haut- und Weichteildefekt re. Unterschenkel; knöcherner Bandausriss dorsale Fibula re.</td>
<td>A. tibialis post. E/E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. tibialis post. E/E</td>
</tr>
<tr>
<td>12</td>
<td>♂</td>
<td>38</td>
<td>C3</td>
<td>FMLD</td>
<td>infizierte Plattenosteosynthese bei distaler Unterschenkelfraktur mit freiliegendem Malleolus medialis</td>
<td>A. tibialis post. E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. comitans E/E</td>
</tr>
<tr>
<td>13</td>
<td>♂</td>
<td>23</td>
<td>C2</td>
<td>FMLD</td>
<td>Calcaneusfraktur beidseits mit chronischer Osteomyelitis</td>
<td>A. fibularis E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. comitans E/E</td>
</tr>
<tr>
<td>14</td>
<td>♂</td>
<td>18</td>
<td>C2</td>
<td>FMLD</td>
<td>Öberschenkelamputation re. mit III° offener Trümmerfraktur des Unterschenkels, Öberschenkel- schaftfraktur re.</td>
<td>A. femoralis E/E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. femoralis E/E</td>
</tr>
<tr>
<td>15</td>
<td>♂</td>
<td>41</td>
<td>C3</td>
<td>FMLD</td>
<td>komplexe Unterschenkelfraktur re. mit Weichteildefekt</td>
<td>A. tibialis post. E/E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. tibialis post. E/E</td>
</tr>
<tr>
<td>16</td>
<td>♂</td>
<td>56</td>
<td>D</td>
<td>FMLD</td>
<td>Weichteildefekt bei Z.n. chronischer Osteitis li. Tibia (offene Fraktur ’89)</td>
<td>A. poplitea E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. poplitea E/S</td>
</tr>
<tr>
<td>17</td>
<td>♂</td>
<td>40</td>
<td>B2</td>
<td>FMLD</td>
<td>Pilonfraktur re und III° offene Trümmerfraktur re. Calcaneus</td>
<td>A. tibialis post. E/E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. tibialis post. E/E</td>
</tr>
<tr>
<td>18</td>
<td>♂</td>
<td>21</td>
<td>B2</td>
<td>FMLD</td>
<td>III° offene Trümmerfraktur re. Unterschenkel, II° offene Femurschaftfraktur re.</td>
<td>A. poplitea E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. poplitea E/E</td>
</tr>
<tr>
<td>19</td>
<td>♂</td>
<td>21</td>
<td>B2</td>
<td>FMLD</td>
<td>offene Tibiakopffraktur li. mit Haut- und Weichteildefekt; Fibulafraktur li.</td>
<td>A. poplitea E/S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V. poplitea E/S</td>
</tr>
</tbody>
</table>

Lappenart:
- FMLD – myokutaner Latissimus dorsi Lappen
- R – Radialislappen

Trauma:
- Tabelle 2
2.2. Operatives Vorgehen

Abbildung 4: Intraoperativer Situs

Die Katheteranlage erfolgte durch den Operateur. Die Mikrodialysepumpe (CMA 107, CMA Microdialysis AB, Stockholm, Schweden) wurde auf eine Geschwindigkeit von 2 µl/min eingestellt. Die Spritze (3,0 ml Reservoir, MiniMed, Sylmar CA, USA) wurde mit minimal
2. Material und Methoden

Abbildung 5: Operationsverlauf

Die gewonnenen Proben wurden nach dem Wechsel in einem Eisschrank bei -5 Grad Celsius aufbewahrt und am Ende der Messungen bis zur Datenanalyse in einem Tiefkühlgerät (economic froster, BOSCH) bei -30 Grad Celsius gelagert.

Die Bestimmung der Konzentrationen der immunologischen Parameter C3a, RANTES und Interleukin-8 wurden unter Verwendung spezifischer Enzymimmunoassays durchgeführt. Es wurden die Proben während der Ischämiezeit, sowie zu den Zeitpunkten Reperfusion – 90

Darüber hinaus wurde bei allen Lappen ein klinisches Monitoring der Hautinsel mit zusätzlicher Überwachung der Vitalzeichen und Beschwerden des Patienten in Abständen von einer Stunde durchgeführt (Tabelle 4).

Tabelle 4: Klinisches Monitoring

<table>
<thead>
<tr>
<th>klinisches Monitoring</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rekapillarisierung</td>
<td></td>
</tr>
<tr>
<td>< 1 Sekunde</td>
<td>1a</td>
</tr>
<tr>
<td>2 - 4 Sekunden</td>
<td>1b</td>
</tr>
<tr>
<td>> 5 Sekunden</td>
<td>1c</td>
</tr>
<tr>
<td>Lappenturgor</td>
<td></td>
</tr>
<tr>
<td>weich</td>
<td>2a</td>
</tr>
<tr>
<td>fest</td>
<td>2b</td>
</tr>
<tr>
<td>hart</td>
<td>2c</td>
</tr>
<tr>
<td>Farbe der Hautinsel</td>
<td></td>
</tr>
<tr>
<td>blass</td>
<td>3a</td>
</tr>
<tr>
<td>rosa / rot</td>
<td>3b</td>
</tr>
<tr>
<td>livide</td>
<td>3c</td>
</tr>
</tbody>
</table>

2.2.1. Transplantation des Musculus latissimus dorsi

Tabelle 5: Indikation für Lappentransplantation

<table>
<thead>
<tr>
<th>Indikation</th>
<th>Patienten (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Großflächige Haut- und Weichteilverletzungen</td>
<td>3</td>
</tr>
<tr>
<td>Offene Frakturen, Knochen liegt frei</td>
<td>11</td>
</tr>
<tr>
<td>Amputation mit Weichteildefekt</td>
<td>2</td>
</tr>
<tr>
<td>Chronische Osteomyelitis</td>
<td>3</td>
</tr>
</tbody>
</table>

2.2.2. Transplantation des Radialislappen

2. Material und Methoden

2.2.3. Mikrodialysetechnik

Der Körper des Probensammlergefäss (Microvial, CMA, Schweden) besteht aus Polysterne 144C BASF mit Gummi verschlüssen aus Santoprene 64 an beiden Enden. Es hat ein maximales Fassungsvolumen von 200 µl.

Der CMA 60 Microdialysekatheter (CMA, Schweden) ist speziell für ein Monitoring von Substanzen in Muskel- und subkutanem Fettgewebe entwickelt worden. Er besteht aus einer 30 mm langen und im Durchmesser 0,6 mm messenden Membran aus Polyamid. Der zuführende Schlauch, der abführende Schlauch und der Schaft des Katheters bestehen aus Polyurethan. Der zuführende Schlauch ist 400 mm lang und hat einen Durchmesser von 1,0 mm. Der abführende Schlauch weist bei einer Länge von 105 mm den gleichen Durchmesser auf. Der Schaft misst 20 mm in der Länge und 0,9 mm im Durchmesser. Die Insertionskanüle besteht aus rostfreiem Stahl und hat eine Länge von 54 mm und einen Durchmesser von 1,4 mm.

Die Mikrodialysepumpen wurden anschließend in sterile Handschuhe (Biogel®) verpackt und gesichert. Die gewonnenen Proben wurden nach dem Wechsel in einem Eisschrank bei -5 Grad Celsius aufbewahrt und am Ende der Messungen bis zur Datenanalyse in einem Tiefkühlgerät bei -30 Grad Celsius gelagert.

Die Mikrodialysepumpe CMA 107 hat eine Größe von 90 x 50 x 20 mm und wiegt rund 70g. Sie wird mit 6V Batterien betrieben mit einer durchschnittlichen Laufdauer von 14 Tagen bei Dauerbetrieb. Das Gehäuse der Pumpe besteht aus Plastik und ist spritzsicher. Die Mikrodialysepumpe wurde auf eine Geschwindigkeit von 2 µl/min eingestellt, wobei die
2. Material und Methoden

Geschwindigkeit des Spülzyklus 15 µl/min beträgt (Werkseinstellung). Die Pumpe verfügt über verschiedene Leuchtsignale, so dass Alarmfunktionen vom problemlosen Betrieb der Pumpe abgrenzbar sind.

Abbildung 6: Mikrodialysetechnik

A. Mikrodialysepumpe, Kathetersystem, Microvial
B. Katheter mit semipermeabler Membran
C. Microvial (Sammelgefäss)

2.3. CMA-Analyse

Der CMA 600 Microdialysis Analyzer wurde speziell für die Anforderungen des Monitoring auf Krankenhausstationen entwickelt. Da der Klinik für Plastische Chirurgie kein eigenes Gerät zur Verfügung stand, wurden in Absprache mit Herrn PD Dr. J. Gliemroth und Frau Dr. A. Klöhn aus der Klinik für Neurochirurgie die dortigen Geräte genutzt. Das System besteht aus dem Analysegerät, Monitor, Computersystem und Drucker auf einem mobilen Wagen. Das Analysegerät hat eine ungefähre Größe von 445 x 393 x 345 mm und wiegt rund 23 kg. Die Analyse einer Substanz dauert zwischen 60 und 90 Sekunden, wobei ein Volumen von 2 µl pro Probe und einer zu messenden Substanz benötigt wird. Das Messprinzip beruht auf der kinetischen colorimetrischen Messung bei einer Lichtwellenlänge von 546 nm für Glukose, Laktat, Pyruvat, Glycerol und Glutamat (Tabelle 6) und 365 nm für Harnstoff. Dabei wird die Absorptionsänderung während der ersten 30 Sekunden gemessen und die maximale Reaktion als Quantifizierung für den weiteren Verlauf genutzt.

Tabelle 6: CMA - Substanzanalyse

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Analyseprinzip</th>
</tr>
</thead>
</table>
| **Glukose** | Messung der rot-violetten Farbstoffänderung bei 546 nm
D-Glukose + O₂ \rightarrow Glukonolaktone + H₂O₂
2 H₂O₂ + Phenol + 4-Amino-Antipyrin \rightarrow Farbstoff + 4 H₂O
$[GOD – Glukoseoxidase; POD – Peroxidase]$ |
| **Laktat** | Messung der rot-violetten Farbstoffänderung bei 546 nm
L-Laktat + O₂ \rightarrow Pyruvat + H₂O₂
H₂O₂ + 4-Chlorphenol + 4-Amino-Antipyrin \rightarrow Farbstoff + 2 H₂O + HCl
$[LOD – Laktatoxidase; POD – Peroxidase]$ |
| **Glyzerol** | Messung der rot-violetten Farbstoffänderung bei 546 nm
Glyzerol + ATP \rightarrow Glyzerol-3-Phosphat + ADP
Glyzerol-3-Phosphat + O₂ \rightarrow Dihydroxyazetonphosphat + H₂O₂
H₂O₂ + DCHBS + 4-Amino-Antipyrin \rightarrow Farbstoff + 2 H₂O + HCl
$[GK – Glyzerolkinase; GPO – Glyzerol-3-Phosphateoxidase; POD – Peroxidase]$ |
| **Pyruvat** | Messung der rot-violetten Farbstoffänderung bei 546 nm
Pyruvat + O₂ + anorgan. Phosphat \rightarrow Acetyolphosphat + CO₂ + H₂O
H₂O₂ + TOOS + 4-Amino-Antipyrin \rightarrow Farbstoff + 4 H₂O
$[PyrOx – Pyruvatoxidase; POD – Peroxidase]$ |

2.4. Enzymimmunoassay

Alle verwendeten Enzymimmunoassays bestimmten quantitativ die Substratkonzentrationen in den Mikrodialysatproben. Sie benutzen das Prinzip der Sandwich-Technik, wobei die optische Dichte bei 450 nm gemessen wird. Dieser Wert wird in Korrelation mit der Standardkurve und den Leerwerten gesetzt und die Konzentration der Probe angegeben.
Die Versuche wurden im ELISA-Labor des Instituts für Immunologie und Transfusionsmedizin durchgeführt. Dabei wurden neben den Standardlaboreinrichtungen (Messutensilien, Pipetten) auch spezielle Geräte verwendet (Tabelle 7).

Tabelle 7: verwendete spezielle Laborartikel

<table>
<thead>
<tr>
<th>Laborartikel</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drucker</td>
<td>Precicolor, Fortuna Brand</td>
</tr>
<tr>
<td>Rotator</td>
<td>Titramax 100 Heidolph, Schwabach</td>
</tr>
<tr>
<td>Spektrometer</td>
<td>anthos reader 2001 anthos labtec instruments Salzburg, Österreich</td>
</tr>
<tr>
<td>Vortex</td>
<td>REAX 2000 Heidolph, Schwabach</td>
</tr>
<tr>
<td>Waschautomat</td>
<td>Columbus Washer Tecan, Crailsheim</td>
</tr>
<tr>
<td>Mikrotiterplatten</td>
<td>Microtest U-Bottom, Becton Dickinson Labware, Franklin Lakes, NJ, USA</td>
</tr>
</tbody>
</table>

Durch das begrenzte Probenvolumen (180 µl Volumen pro Probe; 90 Minuten bei einer Pumpgeschwindigkeit von 2µl/min) musste bei den Enzymimmunoassays von RANTES und Interleukin-8 auf eine Doppelbestimmung verzichtet werden. Beim C3a-Enzymimmunoassay konnten dagegen Doppelbestimmungen mit unterschiedlichen Verdünnungen durchgeführt werden.

Insgesamt wurden 18 Enzymimmunoassays durchgeführt, von denen zwei wiederholt werden mussten. Die Konzentrationen von C3a und Interleukin-8 wurden bei allen Patienten ermittelt. Die Konzentrationen von RANTES wurden nur von den ersten Patienten bestimmt, da die

2.4.1. C3a

C3a entsteht im Körper durch die Spaltung des Komplementfaktors C3 in C3a und C3b. Angeregt wird diese Bildung sowohl durch den klassischen, den alternativen und auch durch den Lektin-Aktivierungsweg. Das Anaphylatoxin C3a ist sehr kurzlebig und wird im Serum schnell in C3a(desArg) umgewandelt. Der Enzymimmunoassay (Quidel, San Diego CA, USA, Vertrieb durch InnogeneticsGmbH, Heiden) bestimmte quantitativ C3a(desArg) Fragmente im Mikrodialysat.

Die Mikrotiterplatten sind mit monoklonalen, spezifischen Antikörpern gegen C3a(desArg) beschichtet. Während der Inkubationszeit bindet C3a(desArg) an die spezifischen Antikörper. Ungebundene C3a(desArg) Fragmente werden beim Waschvorgang entfernt. Mit Hilfe von Peroxidase-konjugiertem Kaninchen-Anti-C3a werden die gebundenen C3a-Fragmente detektiert. Die C3a-Konzentration der Mikrodialyseprobe wird mittels der optischen Dichte (O.D.) bei 450 nm gegen eine Standardkurve ermittelt und in ng C3a/ml angegeben.
Die ersten Testergebnisse zeigten, dass C3a Konzentrationen bei der empfohlenen Probenverdünnung von 1:100 nicht messbar waren. Die folgenden Messungen wurden mit Verdünnungsreihen von 1:10, 1:20 und 1:30 durchgeführt, wobei die 1:10 und 1:20 Verdünnungen eindeutige Ergebnisse zeigten.

Testdurchführung:

1. Pipetieren von 100 µl der Standards, Kontrollen und Probenverdünnungen in die Titerplatte
2. Inkubation: 1 Stunde bei Raumtemperatur
3. Waschvorgang
4. Pipetieren von 100 µl Konjugat (Kaninchen Anti-C3a) in die Titerplatte
5. Inkubation: 1 Stunde bei Raumtemperatur
6. Waschvorgang
7. Pipetieren von 100 µl TMB-Substrat-Lösung in die Titerplatte
8. Inkubation: 15 Minuten bei Raumtemperatur
9. Pipetieren von 100 µl Stopplösung in die Titerplatte
10. Messung der O.D. bei 450 nm innerhalb von 60 Minuten gegen den Leerwert

2.4.2. Interleukin-8

Der human Interleukin-8/NAP-1 Enzymimmunoassay (Bender MedSystems, Wien, Österreich) misst quantitativ die vorhandene Konzentration von Interleukin-8 im Mikrodialysat.

Für die Testdurchführung wurden Probenverdünnungen von 1:2 durchgeführt.

Testdurchführung:

1. Waschvorgang
2. Pipetieren von 100 µl der Standards, Kontrollen und Probenverdünnungen in die Titerplatte
3. Pipetieren von 50 µl HRP-Konjugat in die Titerplatte
4. Inkubation: 2 Stunden bei Raumtemperatur
5. Waschvorgang
6. Pipetieren von 100 µl TMB-Substrat-Lösung in die Titerplatte
7. Inkubation: 15 Minuten bei Raumtemperatur
8. Pipetieren von 100 µl Stopplösung
9. Messung der O.D. bei 450 nm

2.4.3. RANTES

Der Human-RANTES-Enzymimmunoassay (R&D Systems GmbH, Wiesbaden-Nordenstadt) misst ebenfalls quantitativ die vorhandene RANTES-Konzentration des Probenvolumens.

Der Human RANTES Enzymimmunoassay wurde mit einer Probenverdünnung von 1:4 durchgeführt.

Testdurchführung:
1. Pipetieren von 100 µl der Standards, Kontrollen und Probenverdünnungen in die Titerplatte
2. Inkubation: 2 Stunden bei Raumtemperatur
3. Waschvorgang
4. Pipetieren von 200 µl Konjugat in die Titerplatte
5. Inkubation: 1 Stunde bei Raumtemperatur
6. Waschvorgang
7. Pipetieren von 200 µl Substrat-Lösung in die Titerplatte
8. Inkubation: 15 Minuten bei Raumtemperatur, Vermeidung von Licht
9. Pipetieren von 50 µl Stopplösung in die Titerplatte
10. Messung der O.D. bei 450 nm innerhalb von 30 Minuten gegen den Leerwert

2.5. Statistik

2.6. Allgemeine Berechnung und graphische Darstellung

Jeder Patient wurde intraoperativ mit zwei Mikrodialysekathetern versorgt, je einem im transplantierten Lappengewebe und im gesunden Referenzgewebe. Da sich die Patienten in Konstitution, Alter, Geschlecht und in der Verletzungsart, -ausdehnung und Lappengröße

Abbildung 7: Graphische Darstellung

wenn mit steigender Monitoringdauer, beide Graphen eine charakteristische Entwicklung zeigten, die auf die Reperfusion als auslösendes Ereignis zurückführbar war. Ein Einfluss durch die Komplikation [Effekt_{Kompl.}] bestand, wenn die Graphen – wenn auch statistisch nicht signifikant unterschiedlich – einen ungleichen Verlauf zeigten und nicht parallel verliefen.
3. Ergebnisse

3.1. Patientendaten

In den Folgeuntersuchungen während des Klinikaufenthaltes zeigten sich bei vier Patienten Nekroseareale an funktionell unbedeutenden Muskellappenrändern, die während einer erneuten Operation debridiert wurden. Ein Patient wies nekrotische Veränderungen der
3. Ergebnisse

Tabelle 9: Patientenübersicht

<table>
<thead>
<tr>
<th>Patient</th>
<th>Lappenart</th>
<th>Ischämie (min)</th>
<th>Komplikationen</th>
<th>Folge</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FMLD</td>
<td>83</td>
<td>postoperativ: ~ 10 Stunden post reperf. 1c,2b,3c → Lagerrungswechsel dann Besserung ~ 16 Stunden post reperf. Fehlende Durchblutung im Lappen → Re-OP aufgrund Ödem 6 Stunden nach Re-OP 1b,2b,3c → Re-OP (Hämatom um Vene)</td>
<td>Unterschenkel – und tiefe Beckenvenenthrombose</td>
</tr>
<tr>
<td>2</td>
<td>FMLD</td>
<td>139</td>
<td>intraoperativ: Torsionsfehler der Vene mit Thrombusbildung → Revision intraoperativ</td>
<td>Folgeoperationen: Corticotonie nach Lappenhebung, Fibulasegmentresektion, Spongiosaplastik, Lappendébridement</td>
</tr>
<tr>
<td>3</td>
<td>FMLD</td>
<td>141</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>FMLD</td>
<td>186</td>
<td>intraoperativ: Torsionsfehler der Vene mit Thrombusbildung</td>
<td>Folgeoperationen: Débridement und AB-Ketteneinlage, rezidivierende Fistelung tibialer, kaudaler Wundrand</td>
</tr>
<tr>
<td>5</td>
<td>FMLD</td>
<td>91</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>6</td>
<td>FMLD</td>
<td>135</td>
<td>Ø</td>
<td>Wundheilungsstörung Entnahmestelle, MRSA-Infektion Folgeoperation: Débridement der Lappenspitze</td>
</tr>
<tr>
<td>7</td>
<td>FMLD</td>
<td>130</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>8</td>
<td>FMLD</td>
<td>143</td>
<td>Ø</td>
<td>Serombildung Entnahmestelle Folgeoperation: instabile Narbe, Débridement fibulaseitige oberflächliche Hautnekrose</td>
</tr>
<tr>
<td>9</td>
<td>R</td>
<td>200</td>
<td>intraoperativ: lokale ödematöse Reaktion der Arterie auf Instrumente mit Thrombusbildung → Anastomosensrevision</td>
<td>Ø</td>
</tr>
<tr>
<td>10</td>
<td>FMLD</td>
<td>250</td>
<td>intraoperativ: arterielle Thrombusbildung → Thrombenentfernung; venöse Stauung durch Druckmanschette</td>
<td>Folgeoperation: Débridement randständige Lappennekrosen</td>
</tr>
<tr>
<td>11</td>
<td>FMLD</td>
<td>120</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>12</td>
<td>FMLD</td>
<td>120</td>
<td>Ø</td>
<td>starke Schmerzen Entnahmestelle</td>
</tr>
<tr>
<td>13</td>
<td>FMLD</td>
<td>138</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>14</td>
<td>FMLD</td>
<td>110</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>15</td>
<td>FMLD</td>
<td>223</td>
<td>intraoperativ: arterielle Thrombusbildung → intraoperative Thrombenentfernung</td>
<td>Folgeoperation: Débridement Hautinsel</td>
</tr>
<tr>
<td>16</td>
<td>FMLD</td>
<td>135</td>
<td>postoperativ: ~ 13 Stunden post reperf. 1a,2b,3b → Verbandswechsel ~ 17 Stunden post reperf. 1a,2b,3c → Re-OP</td>
<td>Folgeoperation: 48 Stunden nach Primäroperation 1a,2b,3c → Re-OP</td>
</tr>
<tr>
<td>17</td>
<td>FMLD</td>
<td>415</td>
<td>intraoperativ: Leckage in venöser Anastomose → Revision; zweimalige arterielle Thrombusbildung → Thrombenentfernung</td>
<td>Folgeoperationen: Débridement Lappenrandnekrose, Spalthautdefekte</td>
</tr>
<tr>
<td>18</td>
<td>FMLD</td>
<td>137</td>
<td>Ø</td>
<td>Ø</td>
</tr>
<tr>
<td>19</td>
<td>FMLD</td>
<td>120</td>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>

Lappenart:
- FMLD – freier myokutaner Latissimus dorsi Lappen
- R – Radialislappen

post reperf.: post reperfusionem
3.2. Operationsdaten

Die mittlere Operationszeit inklusive Patientenlagerung und Verband nach Angaben der Narkoseprotokolle betrug 9 Stunden und 33 Minuten. 17 Patienten wurden postoperativ auf der Verbrennungsintensivstation (23v) behandelt. Ein Patient wurde auf der anästhesiologischen Intensivstation (15i) und ein Patient für 2 Stunden postoperativ im zentralen Aufwachraum überwacht und anschließend auf die Verbrennungsintensivstation zum weiteren Monitoring verlegt.

Tabelle 10: Zeitliche Einordnung

<table>
<thead>
<tr>
<th>Patient</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit [d] Trauma - OP</td>
<td>29</td>
<td>4</td>
<td>49</td>
<td>149</td>
<td>15</td>
<td>45</td>
<td>53</td>
<td>33</td>
<td>35</td>
<td>16</td>
</tr>
<tr>
<td>Klinikaufenthalt [d]</td>
<td>58</td>
<td>94</td>
<td>41</td>
<td>64</td>
<td>33</td>
<td>54</td>
<td>41</td>
<td>37</td>
<td>32</td>
<td>42</td>
</tr>
</tbody>
</table>

Die erreichte mittlere Ischämiezeit betrug 158,74 Minuten. Dabei dauerte die kürzeste Ischämiezeit 83 Minuten und die längste 415 Minuten.

Die Gruppe A (n=12) wies eine mittlere Ischämiezeit von 122,33 Minuten auf. Die mittlere Ischämiezeit der Gruppe B (n=7) betrug 221,14 Minuten (Abbildung 8). Komplikationen während der Operation verlängerten die Ischämiezeit signifikant mit einem P-Wert von unter 0,05 und beinhalteten intra- und postoperative Komplikationen durch die Ausbildung von Gewebeödemen, Hämatomen und Thromben.
3. Ergebnisse

Abbildung 8: Ischämiezeiten, \(* P < 0,05 \)

3.3. Metabolische Parameter

3.3.1. Glukose

Die Auswertung der Glukosekonzentrationen (Abbildung 9) der Patienten mit Komplikationen ergab einen minimalen Mittelwert von 0,431 für den Zeitraum der ersten 90 Minuten nach Reperfusion und einen maximalen Mittelwert von 1,301 zum Zeitpunkt 901-990 Minuten. Insgesamt ist während der gesamten Monitoringphase eine deutliche tendenzielle Zunahme der Lappenglukosekonzentration zu verzeichnen. Dennoch ist die Konzentration im Referenzgewebe bis 360 Minuten nach Reperfusion um das zweifache erhöht und nähert sich bis 900 Minuten post reperfusionem zunehmend einer gleichen Konzentration in beiden Geweben an, um dann erstmals 990 Minuten nach Reperfusion eine erhöhte Lappenglukosekonzentration aufzuweisen.

Der mittlere Quotient aus Glukosekonzentration im Lappen im Bezug auf die Konzentration im Referenzgewebe der Patienten ohne Komplikationen lagen bei einem minimalen Wert von 0,469 während der Ischämie und einem maximalen Wert von 1,316 im Zeitraum 541 – 630 Minuten post reperfusionem. Direkt nach Reperfusion zeigt sich deutlich eine Verdoppelung der Glukosekonzentration im Lappengewebe von einem Quotienten von etwa 0,5 auf näherungsweise 1,1. Dieses ausgeglichene Verhältnis zwischen Lappen- und Referenzgewebekonzentration bleibt während der gesamten Monitoringphase bestehen.

Nullhypothese (Faktor Komplikation hat keinen Einfluss auf die gemessenen Glukosekonzentrationen) mit einem P-Wert von kleiner 0,0001 widerlegt werden. Die Auswertung zeigte, dass bei einem Experiment dieser Größe nur eine 0,01 prozentige Chance besteht, dass ohne direkten Einfluss des Faktors Komplikation ein ähnliches Ergebnis erzielt werden kann. Es lässt sich für den zeitlichen Verlauf, das heißt für die fortlaufende Reperfusion, eine Entwicklung zugunsten höherer Glukosekonzentrationen im Lappen mit einem P-Wert von 0,0053 erkennen. Die Nullhypothese, dass steigende Reperfusionsdauer keinen Einfluss auf die Höhe der Konzentrationen hat, lässt sich somit widerlegen.

Abbildung 9: Glukose, Gruppe A, ohne Komplikation, Gruppe B, mit Komplikation

*** P < 0,0001, ** P = 0,0053

3.3.2. Laktat

Abbildung 10: Laktat, Gruppe A, ohne Komplikation, Gruppe B, mit Komplikation

*** P = 0,0001

Verlauf der Graphen, so lässt sich eine tendenzielle Reduktion der anfänglich hohen Laktatkonzentrationen im Lappengewebe hin zu ähnlichen Konzentrationen wie das Referenzgewebe erkennen. Die Auswirkung der Reperfusionsdauer auf diese Entwicklung ist mit einem P-Wert von 0,0001 stark signifikant.

3.3.3. Pyruvat

Deutlich wechselhafter verläuft die graphische Darstellung der Ergebnisse der Gruppe mit Patienten ohne Komplikationen während der Lappentransplantation. Der minimale Wert beträgt hier 0,999 zwischen 361 – 450 Minuten nach Reperfusion und der maximale Wert liegt bei 1,747 während der ersten 90 Minuten der Reperfusion. Deutlich zu erkennen ist der sprunghafte Anstieg um 50% von circa 1,1 während der Ischämiephase auf den maximalen Wert während der Reperfusion. Es folgt eine Phase der Konzentrationsangleichung, bis zu dem Zeitpunkt 181 Minuten post reperfusionem die Konzentrationen im Lappen- und im Referenzgewebe ähnliche Werte aufweisen. Jedoch ist eine leichte Tendenz zugunsten höherer Werte im Lappengewebe zu erkennen.

3.3.4. Quotient Laktat / Pyruvat

Der Quotient aus Laktat und Pyruvat wird jeweils aus den Einzelquotienten der beiden Substanzen berechnet. Die Gruppe mit Komplikationen weist während der gesamten Monitoringphase eine Verteilung der Quotienten um den Wert 1 herum auf. Lediglich in der Phase der Ischämie lässt sich ein maximaler Quotient von 1,6 feststellen. Die Gruppe ohne Komplikationen weist ebenfalls eine Anordnung der Quotienten um den Wert 1 auf. Jedoch ist der Laktat/Pyruvat-Quotient in der Ischämiephase deutlich zugunsten des Laktats verschoben und weist einen Wert 7,5 auf. Interessanterweise ließ die statistische Auswertung also nur zum Zeitpunkt der Ischämie einen signifikanten Unterschied der beiden Gruppe A und B bezüglich des Quotienten aus Laktat und Pyruvat mit einem P < 0,001 zu. Um so überraschender ist jedoch die Tatsache, dass das Verhältnis von Laktat/Pyruvat in der Gruppe der Nichtkomplikationen völlig unerwartet zugunsten des Laktatwertes verschoben war und die Gruppe der Komplikationen diese Auffälligkeit zu keinem Zeitpunkt der Monitoringphase zeigt (Abbildung 12).
3. Ergebnisse

Abbildung 12: Laktat/Pyruvat, – Gruppe A, ohne Komplikation, – Gruppe B, mit Komplikation

*** \(p < 0.001 \)

3.3.5. Glyzerol

Die Gruppe der Patienten mit Komplikationen weist einen mittleren minimalen Quotienten zwischen Lappen- und Referenzglyzerolkonzentration von 0,723 zum Zeitpunkt 991 – 1080 Minuten post reperfusionem und einen maximalen Wert von 1,818 während der Ischämiedauer länger als 145 Minuten auf. Interessanterweise steigt die Glyzerolkonzentration im Lappen im Gegensatz zur Konzentration im Referenzgewebe mit längerer Ischämiedauer um ungefähr ein Drittel an. Jedoch sind im Verlaufe der Monitoringphase mit längerer Reperfusionsdauer keine signifikanten Unterschiede der Glyzerolkonzentration im Lappen- oder Referenzgewebe zu erkennen. Allerdings lässt sich eine leichte Tendenz zugunsten der Konzentration im Referenzgewebe erkennen, da die Werte sich zwischen 0,75 bis 1,0 befinden.

Reperfusion bei 1,086. Dagegen findet sich 90 Minuten vorher ein maximaler Wert von 3,020.

Die statistische Auswertung der Daten aus beiden Gruppen A und B lässt nur zum Zeitpunkt 541 – 630 Minuten eine signifikante Erhöhung des Quotienten der Gruppe ohne Komplikationen verglichen mit der Gruppe mit Komplikationen erkennen. Der P-Wert ist kleiner als 0,01. Zu keinem anderen Zeitpunkt sind die Quotienten der beiden Gruppen signifikant voneinander unterschiedlich (Abbildung 13).

**Abbildung 13: Glycerol, — Gruppe A, ohne Komplikation, — Gruppe B, mit Komplikation

*** P = 0,0002, ** P = 0,01

Die Betrachtung des zeitlichen Verlaufes zeigt keine Signifikanzen. Es ist die Nullhypothese aufzustellen, dass der zeitliche Verlauf (also die andauernde Reperfusionszeit) keinen Einfluss auf die gewonnenen Ergebnisse hat. Betrachtete man allerdings den Faktor Komplikation, so beträgt die Signifikanz P = 0,0002. Die Wahrscheinlichkeit, dass bei einem ähnlichen Experiment ohne diesen Faktor ähnliche Ergebnisse erzielt worden wären, beträgt nur 0,043 Prozent. Somit ist diese Nullhypothese zu verwerfen.
3. Ergebnisse

3.4. Immunologische Parameter

3.4.1. C3a

Abbildung 14: C3a, Gruppe A, ohne Komplikation, Gruppe B, mit Komplikation

*** P < 0,001

Die statistische Auswertung zeigt zum Zeitpunkt der frühen Reperfusion einen über 30fach erhöhten C3a-Konzentrationsquotienten im Vergleich der Gruppen A und B. Dieses Ergebnis ist hoch signifikant und entspricht einem P-Wert von kleiner 0,001. Zu keinem anderen Zeitpunkt konnte ein signifikanter Unterschied gefunden werden. Hinsichtlich des Faktors...
Zeit konnte eine deutliche Auswirkung auf das Ergebnis mit einem P-Wert von kleiner 0,001 gefunden werden. Bezüglich des Faktors Komplikation konnte ebenfalls ein P-Wert von kleiner 0,001 bestimmt werden. So kann für beide Faktoren die Nullhypothese, dass man in einem ähnlichen Experiment ohne diese Einflußgrößen ein gleiches Ergebnis hätte erzielen können, widerlegt werden.

3.4.2. Interleukin-8

Die Quotienten für die Interleukin-8-Konzentrationen der Gruppe B (mit Komplikationen) liegen zwischen dem minimalen Wert 0,614 zum Zeitpunkt 541 Minuten und dem maximalen Wert 2,184 zum Zeitpunkt 210 Minuten. Deutlich zu erkennen ist die zunächst mäßige Erhöhung der IL-8-Konzentration im Lappen während der Ischämie, die kurzfristig zum Zeitpunkt der Reperfusion vermindert ist und im weiteren Verlauf erneut bis auf die doppelte Konzentration im Lappengewebe ansteigt. Jedoch fällt die Konzentration im Lappengewebe von IL-8 im weiteren Monitoringverlauf wieder zugunsten des Referenzgewebes.

Demgegenüber steht die Gruppe der Nicht-Komplikationen. Hier ist während der gesamten Monitoringphase eine erhöhte Konzentration im Referenzgewebe festzustellen. Der minimale Wert liegt in dieser Gruppe bei 0,625 während der Ischämie und der maximale Wert bei 0,917 zum Zeitpunkt 540 Minuten.

Zum Zeitpunkt 210 Minuten kann ein größerer Unterschied zwischen den beiden Gruppen gefunden werden. Dieser ist jedoch nicht signifikant Insgesamt betrachtet, haben sowohl der Faktor Zeit als auch der Faktor Komplikation keinen Einfluss auf das Ergebnis. Es besteht im ersten Fall eine Möglichkeit von 33% und im zweiten Fall von 10%, dass bei einem ähnlichen Experiment ohne Einfluß der Faktoren ein gleichwertiges Ergebnis erzielt werden kann (Abbildung 15).
3.4.3. RANTES

4. Diskussion

4.1. Die Mikrodialysetechnik

Bei der Verwendung der MDT im klinischen Monitoring und in der experimentellen Forschung gibt es folglich einige Elemente zu beachten. Dennoch ist die MDT eine einfache und unkomplizierte Methode um Substanzen in der interstitiellen Flüssigkeit zu bestimmen. Es ist daher nicht verwunderlich, dass sie bereits in vielen medizinischen Bereichen eingesetzt wird.

Bisher hat sich die klinische Anwendung der MDT vor allem auf die Analyse verschiedener pathophysiologischer Vorgänge nach Hirntrauma konzentriert [52, 61]. Durch weitreichende Forschungen konnte sogar ein neues Behandlungskonzept für Patienten mit Hirntrauma oder Hirnblutungen in Skandinavien etabliert werden: das „Lund-Konzept“ [101]. In den letzten Jahren konnten darüber hinaus metabolische Vorgänge und ischämische Stoffwechselsituationen in verschiedenen Gewebearten erforscht werden wie Skelettmuskel [46], Herzmuskel [65, 76] und Fettgewebe [13]. Während die Anfänge der Technik also eher...
4. Diskussion

durch die Anwendung im Bereich der Neurochirurgie und Neurologie gekennzeichnet waren, so kann man sie heute in fast allen medizinischen Bereichen finden. Ansätze gibt es beispielsweise in der Intensivmedizin [8], in der Chirurgie [139], in der Transplantationschirurgie [21, 106], in der Plastischen Chirurgie [120] in der Inneren Medizin [32] und in fächerübergreifenden Forschungsfragen [31].

Die MDT bietet also eine vielseitig einsetzbare Alternative zu bisherigen Monitoringverfahren. Dennoch sind die spezifischen Eigenschaften sowohl der Technik selbst als auch des zu untersuchenden Gewebes zu berücksichtigen. Die pathophysiologischen Vorgänge besonders während der Ischämie-Reperfusionsphase sind bis heute nicht vollständig verstanden. Gerade deshalb ist die MDT eine wichtige Monitoringtechnik, die das klinische Monitoring eines freien Lappens erleichtert und durch biochemische Messwerte ergänzt, gleichwohl aber nicht ersetzen kann.

4.2. Metabolische Parameter

4. Diskussion

4.2.1. Glukose

Es konnte unter Verwendung des Doppler-Ultraschalls gezeigt werden, dass nach einer freien Gewebetransplantation der Blutfluss sowohl im Empfängergebiet als auch in den Blutgefäßen des freien Lappens erhöht ist. Die Autoren führen dies auf einen möglicherweise vorliegenden Verlust des Gefäßtonus und verminderten Gefäßwiderstand zurück [82]. Inwieweit sich
verschiedene Komplikationen während der freien Gewebetransplantation unterschiedlich auf dieses Phänomen auswirken, bleibt zum derzeitigen Zeitpunkt unklar.

4.2.2. Laktat

4.2.3. Pyruvat

4.2.4. Quotient Laktat / Pyruvat

Wie bereits oben dargestellt, eignet sich die Höhe der Laktatkonzentration nicht als prognostischer Faktor. Die Bildung des Quotienten aus Laktat und Pyruvat [L/P] ermöglicht jedoch eine genauere Aussage über den Redoxstatus der Zelle und scheint unempfindlicher auf andere systemische Einwirkungen zu sein [70]. Enblad et al. beschreiben den [L/P] als

4.2.5. Glyzerol

4. Diskussion

4.3. Immunologische Parameter

Es ist bekannt, dass Wundsekret und Blut, welches direkt aus einer chirurgischen Wunde entnommen worden ist, erhöhte Konzentrationen von Komplementspaltprodukten und Zytokinen enthalten [58]. Wir konnten erstmals mit unserer Studie zeigen, dass immunologische Parameter wie C3a und Interleukin-8 mit der Mikrodialysetechnik messbar sind und deshalb lokale Regulationsvorgänge in direkten Zusammenhang mit dem Ischämie-Reperfusionsverlauf zu bringen sind.

4.3.1. C3a

werden somit durch die Mikrodialysetechnik nicht erfasst [131]. Da C3 durch sein hohes Molekulargewicht von 187 kDa ebenfalls nicht mehr dialysiert werden kann, lässt sich nach erfolgter Dialyse eine Aktivierung von Zwischenprodukten und C3a über den alternativen Weg ausschließen.

4.3.2. Interleukin-8

4.3.3. RANTES

könnte RANTES einen neuen blockierenden Faktor und Marker darstellen, der eine
erfolgreiche Behandlung dieser Patientinnen darstellt [116]. Einen ähnlichen Zusammenhang
zwischen der RANTES-Konzentration und einer Aktivierung von T-Zellen nutzen Adler at al.
bei der Betrachtung von 4P1 murinen Mamma-Carcinom-Zelllinien. Beide Zelllinien
unterschieden sich in der exprimierten Konzentration des Faktors. Die mit der geringeren
Sekretion führten zu einer ausgeprägteren Infiltation des Tumors und der nächsten
Lymphknotenstation mit Lymphozyten. Darüber hinaus war die Wachstumsrate dieser
tumoren deutlich geringer als derjenigen mit hohen RANTES-Konzentrationen [1].

Unsere Schwierigkeiten beim Nachweis von RANTES mittels MDT könnten rein
physikalische Gründe haben (Konformationsänderung, Reaktion mit kleineren Peptiden, die
akzidentiell mitdialysiert wurden, schnelle Zerfallszeit, Anfälligkeit gegenüber Kälte). Es ist
beschrieben worden, dass RANTES Aggregate bildet, die wahrscheinlich sogar essentiell für
die Rekrutierung von Leukozyten in Entzündungsprozessen sind. Zum anderen konnte gezeigt
werden, dass RANTES bei hohen und bei niedrigen Konzentrationen jeweils unterschiedliche
Reaktionswege triggt, die beide einen Einfluss auf die Kalziumkonzentration und somit den
Aktivierungsprozess von Lymphozyten haben [4]. Des Weiteren ist auch möglich, dass
erhöhte RANTES-Konzentrationen vor allem bei inflammatorischen Prozessen zu finden sind
und weniger in primär rein hypoxischen Situationen.

4.4. Ischämie-Reperfusionsvorgang

In den letzten Jahren nahm nicht nur das Interesse an pathophysiologischen Vorgängen
während der Gewebeischämie, sondern auch an den immunologischen Reaktionen bezüglich
der Ischämie-Reperfusionsvorgänge zu. Es gibt eine Vielzahl von Studien, die sich mit der
Ischämiephase und der Unterscheidung zwischen venöser und arterieller Beeinträchtigung den
Gefäßanastomose bei freien Lappentransplantationen beschäftigten.

May und Kollegen beschrieben, dass nach prolongierter Ischämiezeit keine Füllung des
venösen Gefäßsystems detektiert werden konnte, obwohl eine arterielle Pulsation erkennbar
war. Diese beschriebene Obstruktion des Blutflusses ohne die direkte Beteiligung eines
Anastomosenproblems wurde als „No-Reflow“-Phänomen bezeichnet [92]. Die bisherigen
Ergebnisse unterstützen die Theorie, dass es sich um zwei konkurrierende Vorgänge während
der Reperfusionsphase handelt, die in Kombination zu einer Gewebeschädigung im Sinne des
„No-Reflow“-Phänomens führen und in der Literatur auch als „Reflow“-Paradoxon
beschrieben werden [93]. Die mikrovaskuläre Minderversorgung des Gewebes führt zum
einen lokal zu der bereits vorher ausführlich beschriebenen Beeinträchtigung des

bereits von May et al. beschrieben) oder auch durch den Versuch, den Zell- und Umgebungs-
PH konstant zu halten, verursacht sein [19]. Mehrere Autoren haben beschrieben, dass die
Zellschwellung besonders nach Reperfusion ausgeprägt zu finden war und eine Affektion des
Gefäßlumens stattfand, welche den Blutfluss durch eine Steigerung des Widerstandes
beeinflusste [43]. Eine sowohl durch Veränderungen des Ionen- und Flüssigkeitshaushaltes
hervorgerufene Veränderung der Blutviskosität als auch eine erhöhte Gefäßpermeabilität trägt
tu einer Beeinträchtigung der mikrovaskulären Gewebeversorgung bei [48]. Weiterhin wurde
von Slaaf und Kollegen gezeigt, dass nach Stillstand der Blutzirkulation ein erhöhter
Perfusionsdruck vonnöten ist, um eine Kapillarperfusion nach verlängerter Ischämiezeit zu
gewährleisten [132].
Der Lappen ist im Vergleich zur Gefäßversorgung zu groß gewählt, was zu einer distalen
Nekrose im Bereich der sogenannten letzten Wiese führt. 2. Versagen des arteriellen
Zustromes. 3. Versagen des venösen Abstromes. Es gibt zahlreiche Hinweise darauf, dass
eine venöse Beeinträchtigung des Gefäßsystems nachteiliger für das Überleben von
Muskeltransplantaten ist als eine Einwirkung auf das arterielle System. Dabei konnte bisher
nicht verifiziert werden, ob es sich um unterschiedliche pathophysiologische Mechanismen
handelt. Kerrigan und Kollegen zeigten, dass bei gleicher Ischämiezeit eine arteriell
verursachte Ischämie zu einer deutlich geringeren Nekroserate führt als eine venöse Ischämie
[66]. Dabei verringert sich die Überlebensrate der Lappen deutlich mit steigender
Ischämiezeit. Die Lappen mit venös induzierter Ischämie zeigen eine ausgeprägte
Ödembildung sowie ein schweres Gewicht. Nach Ende arterieller Ischämien wird eher eine
hyperämische Reaktion gesehen. Demgegenüber steht eine langsamere Perfusion nach
venöser Gefäßokklusion [50]. Histologisch lassen sich bei den venös-ischämischen Lappen
vermehrt Erythrozytenextravasationen, Fibrinbildung und Mikrothrombenbildungen
erkennen. [66]. Wahrscheinlich sind auch akkumulierte Stoffwechselabbauprodukte mit lokal
zytotoxischer Wirkung verantwortlich für die genannten Effekte.

4.5. Klinische Relevanz

Bisher sind die einzelnen pathophysiologischen Vorgänge, die zum „No-reflow“-Phänomen
führen, nicht ausreichend geklärt. Die signifikant erhöhten C3a-Konzentrationen im
Lappengewebe nach prolongierter Ischämiezeit deuten auf eine Beteiligung des
Komplementsystems mit nachfolgender Gewebeeschädigung hin. Eine Inhibierung des
Komplementsystems und speziell C3a würde also die Effekte von ROS, PAF,
Neutrophilenaktivierung und Neutrophilenmigration reduzieren. Somit können nachfolgende Beeinträchtigungen der Zellfunktionen und mögliche Nekrosebildung minimiert und die Überlebensrate von freien myokutanen Gewebetransplantationen weiter erhöht werden. Es konnte gezeigt werden, dass löslicher rekombinanter Komplementrezeptor 1 (sCR1) die Entstehung von C3a um zwei Drittel und die Entstehung von C5a komplett verhindern kann [77]. sCR1 ist ein polymorphes Protein, welches therapeutisch bei inflammatorischen Erkrankungen wie Myokardinfarkt, Myasthenia gravis und experimenteller allergischer Reaktionen im Tiermodell eingesetzt werden kann und vermutlich eine Rolle in der Behandlung von Autoimmunerkrankungen spielt. Zudem konnten Heijnen et al. darstellen, dass die Gabe eines C1-Inhibitor die Konzentration von C3a, C5a, MAC und CRP reduzieren kann und somit Ischämie-Reperfusionsschäden vermindert auftraten [51]. Dies ist eine Beobachtung, die auch von anderen Arbeitsgruppen unterstützt wird [15]. K-76COON ist ein antikomplementärer Faktor auf Ebene der C5-Aktivierung. Allein oder in Kombination mit dem Protease-Inhibitor FUT-175 kann er nachweislich Ischämie-Reperfusionsschäden in der Darmenschleimhaut vermindern [113]. Dabei wird der alternative Aktivierungsweg fast vollständig und der klassische Aktivierungsweg um 50-60% geblockt [69]. Alle diese Faktoren sind jedoch unspezifische antikomplementäre Agenzien. Demgegenüber steht ein spezifischer C3a-Rezeptor-Antagonist, der selektiv C3a-Rezeptoren blockieren kann: \(N(2)-[(2,2-diphenylethoxy)acetyl]-L-arginine\) (SB 290157). Somit wird die Bereitstellung von präformierten Rezeptoren durch eine Blockierung der Rezeptorinternalisierung verhindert und das Neutrophilenrekrutment unterbunden [3].

In der Pathophysiologie nach Ischämie-Reperfusion sind neben dem Komplementsystem mit Sicherheit zusätzliche Faktoren involviert. Augenscheinlich spielt es jedoch eine zentrale Rolle. Wir müssen davon ausgehen, dass C3a nicht der einzige immunologische Faktor des Komplementsystems ist, der an diesen Prozessen beteiligt ist. Die Weiterentwicklung der Mikrodialysetechnik zu Kathetern mit einer Dialysefähigkeit von Substanzen von bis zu 100 kDa erlaubt ein Monitoring von beispielsweise C5a, TNF-\(\alpha\), Interleukin-1 und -6 und anderen. Sie stellt eine Möglichkeit dar, die pathophysiologischen Vorgänge während und nach Ischämie-Reperfusionssprozessen in situ, am Menschen und im klinischen Alltag zu beurteilen und bietet somit eine Hilfe zur Entwicklung von therapeutischen Strategien um Gewebeuntergang nach freien myokutanen Lappentransplantationen zu verhindern.
5. Zusammenfassung

Die freie myokutane Gewebetransplantation ist eine anerkannte rekonstruktive chirurgische Technik zur Therapie ausgedehnter Weichteildefekte vor allem der unteren Extremität. Trotz der Weiterentwicklung und Sicherung der prä- und postoperativen Maßnahmen handelt es sich dabei um eine Technik mit zahlreichen Risiken. Dass ein Ischämie-Reperfusion-Schaden zum „No-Reflow“-Phänomen führen kann, ist unbestritten. Dennoch sind die genauen pathophysiologischen Mechanismen spekulativ.

Alle freien Lappentransplantate heilten ohne größeren Gewebeverlust ein. Auftretende Komplikationen wie Hämatome oder Thrombusformationen führten zu intra- oder postoperativen Revisionen der mikrovaskulären Anastomose und verlängerten die totale Ischämiezeit in der Gruppe B im Vergleich zur Gruppe A signifikant (P < 0,05). Wir konnten nur punktuell signifikante Unterschiede zwischen den Konzentrationen der metabolischen Parameter während der Reperfusion in beiden Gruppen feststellen. Interleukin-8 und C3a konnten in beiden Gruppen A und B mit Hilfe der Mikrodialysetechnik detektiert werden, während dies für RANTES nicht möglich war. Für beide Gruppen A und B konnten im
Lappengewebe höhere C3a-Konzentrationen im Vergleich zum Referenzgewebe bestimmt werden. In der Gegenüberstellung der Gruppen A und B konnten für die ersten 90 Minuten nach Reperfusion signifikant erhöhte C3a-Konzentrationen für die Gruppe mit Komplikationen gezeigt werden (P < 0,001).

Die vorliegende Arbeit konnte somit erstmals zeigen, dass die Mikrodialyse eine geeignete Technik für die Detektion immunologischer Substanzen während des Ischämie-Reperfusionsvorganges ist. Im Gegensatz zu bisherigen Studienergebnissen halten wir jedoch die Mikrodialysetechnik als alleiniges Monitoringverfahren zur postoperativen Überwachung nach freier Gewebetransplantation für nicht geeignet. Die metabolischen Parameter und im Speziellen der oft zitierte Laktat/Pyruvat-Quotient zeigten nicht die erwarteten, von der Ischämiedauer und dem Auftreten von Komplikationen abhängigen Konzentrationsänderungen. Einzig C3a scheint ein hochsensitiver Indikator für Ischämie-Reperfusionsschäden zu sein und ist hinweisend für eine Beteiligung des Komplementsystems während dieser Prozesse.

Die Ergebnisse dieser Studie könnten dazu beitragen, die pathophysiologischen Hintergründe des „No-Reflow“-Phänomens weiter aufzuklären.
6. Literaturverzeichnis

5. Arumugam TV, Shields IA, Woodruff TM, Granger DN, Taylor SM: The role of complement system in ischemia-reperfusion injury. The role of the complement system in ischemia-reperfusion injury. Shock. 2004 May;21(5):401-9

59. **Hugli TE**: Human anaphylatoxin (C3a) from the thrid component of complement. Primary structure. J Biol Chem 1975;250(21):8293-301

6. Literaturverzeichnis

84. **Lucchesi BR, Tanhehco EJ**: Therapeutic potential of complement inhibitors in myocardial ischemia. Expert Opin Investig Drugs. 2000 May;9(5):975-91

88. **Manchot C**: Die Hautarterien des menschlichen Körpers. Springer-Verlag, Leipzig, 1889

100. **Muller M**: Science, medicine, and the future: Microdialysis. BMJ. 2002 Mar 9;324(7337):588-91

136. **Takabayashi T, Vannier E, Clark BD, Margolis NH, Dinarello Ca, Burke JE, Gelfand JA**: A new biologic role for C3a and C3a des Arg: regulation of TNF-alpha and IL-1 beta synthesis. J Immunol. 1996 May 1;156(9):3455-60

146. **Wyle EJ, Yakuboff KP, Clark RG, Neale HW**: Use of free fasciocutaneous and muscle flap for reconstruction of the foot. Ann Plast Surg. 1990 Feb;24(2):101-8

7. Danksagung

Mein herzlichster Dank gilt allen Personen, die maßgeblich Anteil an der Fertigstellung dieser Arbeit hatten:

Prof. Dr. H.G. Machens für die Überlassung des Themas und die persönliche Betreuung, sowie dem Einsatz während der Anfertigung dieser Arbeit. Ihm gebührt großen Dank für die Möglichkeit, Teile der Arbeit mündlich und schriftlich zu präsentieren.

Der gesamten Abteilung für Plastische Chirurgie des Universitätsklinikum Schleswig-Holstein, Campus Lübeck für die Unterstützung. Im Besonderen: Prof. Dr. med. P. Mailänder für die Möglichkeit, die Arbeit in seinem Institut durchführen zu können. Dr. med. A. Noltze, Dr. med. M. Kaun, Dr. med. S. Grzybowski und dem pflegerischen Team der Verbrennungseinheit 23v für die tatkräftige Unterstützung während der Probengewinnung.

Frau I. Jasmund und Frau K. Witting für die gute Zusammenarbeit und Hilfe.

Dem Institut für Immunologie und Transfusionsmedizin, PD Dr. med. S. Görg und der Frau K. Kropf für die tatkräftige, engagierte Hilfe in der experimentellen Durchführung und der anschließenden Auswertung.

PD Dr. med. J. Gliemroth und Frau Dr. med. A. Klöhn aus der Klinik für Neurochirurgie, die mir zur Auswertung der metabolischen Parameter den MD-Analyser zur Verfügung gestellt und bei technischen Geräteschwierigkeiten geholfen haben.

Ganz besonderen Dank gilt meinen Geschwistern Laura und Matti, meinen Eltern Elke und Helmut und meinem Mann Norbert für das Anfeuern und den Beistand.
8. Lebenslauf

Persönliche Daten

Name: Anne Brüggemann, geb. Pabst
Staatsangehörigkeit: deutsch
Eltern: Helmut Pabst; Dozent, Dekra Medienakademie Berlin
Elke Pabst; Lehrerin, Gymnasium Dorf Mecklenburg

Schulbildung

07/1999 Abitur, Gymnasium Dorf Mecklenburg
06/1997 Graduation, Hamilton High School, Hamilton, Montana, USA

Hochschule

10/1999 – 11/2005 Studium der Humanmedizin an der Universität zu Lübeck
10/2001 Ärztliche Vorprüfung
09/2002 1. Staatsexamen
09/2004 2. Staatsexamen
01/2002 – 01/2005 klinische und experimentelle Datenerhebung der Doktorarbeit

Klinische Tätigkeit

Seit 01/2006 Assistenzärztin in der Klinik für Augenheilkunde, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
9. Publikationen

Im Rahmen dieser Doktorarbeit entstandene Originalarbeiten

Im Rahmen dieser Doktorarbeit gehaltene Vorträge

Publizierte Abstracts

Vortragspreis

10/2004 H. J. Bretschneiderpreis 2004 der Deutschen Gesellschaft für Chirurgie, Sektion Chirurgische Forschung e.V.