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1 General introduction

1 General introduction

In everyday life, people are often confronted with complex auditory environments in which multiple

sound sources compete for their attention. The ability to selectively attend to one particular sound

source over others is essential for effective communication, and this is commonly referred to as the

”cocktail party problem” (Cherry, 1953). While the healthy auditory system is remarkably adept at

solving such complex auditory scenes, even mild to moderate hearing loss can impair the processing of

speech in complex environments. To better understand the neural mechanisms of selective attention,

my first study investigated these mechanisms in young, healthy participants using a psychophysically

augmented continuous-speech paradigm. In the second part of the thesis, I investigate the relationship

between attention and amplitude compression in young and older participants with mild to moderate

sensorineural hearing loss. The goal of this research is twofold: to enhance our understanding of neural

mechanisms underlying selective attention, and to lay a foundation to support hearing-impaired listeners

in improving their ability to handle complex auditory environments.
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1.1 Auditory object formation

To analyse the auditory scene, a listener must separate one or multiple sound sources by creating an

internal representation of them, referred to as ”auditory objects” (Bregman, 1994). Although auditory

objects play an important role in selective auditory attention in the auditory scene, the precise definition

of an object is not always straightforward in audition, as the listener’s expectations and state also de-

termine the constitution of an auditory object. For instance, listening to the entire symphony orchestra

versus listening to a single instrument. Although the definition of an auditory object is not quite simple,

sound emitted from a single physical sound source usually refers to the perceptual entity of an auditory

object (B. G. Shinn-Cunningham, 2008). According to a more formal definition, auditory objects are

the computational output of the auditory system’s ability to locate, isolate, classify, and organise the

spectrotemporal regularities present in the acoustic environment into stable perceptual units (Bizley &

Cohen, 2013).

In the cocktail-party scenario, continuous speech is usually the physical sound source of interest. But

what is needed to prioritise relevant speech over distracting speech and thus solve the cocktail party prob-

lem? The listener’s ability to solve the cocktail party problem relies on the spectrotemporal structure

of speech, which is important on different time scales. Auditory object formation and auditory selective

attention are two processes associated with solving the cocktail party problem.

The structure of speech has different levels of importance depending on the time scale. Object forma-

tion operates at two time scales: a local time scale that binds sound energy spectrotemporally linked

to short-term objects (integration of simultaneous components), and a longer scale that connects these

short-term objects into auditory objects that evolve over time (integration of sequential components).

Bregman (1978) referred to an auditory object that extends in time, such as syllables linked together

over time, as a ”stream.” In the following, I will use the term ”stream” for an auditory object composed

of multiple syllables.

Computing relevant feature values in each syllable is key to successful streaming. For instance, frequency,

pitch, timbre, amplitude modulation rate, and spatial location of sequentially presented syllables all con-

tribute to the perception of the stream as one single continuous source (B. G. Shinn-Cunningham, 2008;

Shamma, Elhilali, & Micheyl, 2011; Griffiths & Warren, 2004). It has been suggested that the neural

representations of auditory objects are formed in the auditory cortex by combining all the features that

belong to the same object. These representations are considered to be basic units for higher-level cogni-

tive processes (Snyder, Gregg, Weintraub, & Alain, 2012; Nelken & Bar-Yosef, 2008). Listeners perceive

continuous speech as one auditory stream despite the presence of silent gaps where spectrotemporal con-

tinuity is absent. Therefore, higher-order perceptual features are also associated with auditory streaming

(B. Shinn-Cunningham, Best, & Lee, 2017).

In the present thesis, I primarily focus on the attentional processing of different talkers presented at
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1 General introduction

different spatial positions. Regardless of which cue dominates object formation, I primarily investigate

the neural response to the broad-band temporal dynamics (represented as the envelope of the speech

signal) of the talkers.

1.2 Auditory selective attention

In the cocktail party scenario, listeners have to select which stream they want to attend since it is im-

possible to process every talker in detail due to limited processing capacity (Marois & Ivanoff, 2005). In

addition, it is usually the listener’s goal to communicate with a single talker rather than to analyse the

complete auditory scene. Selective attention refers to listeners’ cognitive ability to control which infor-

mation they want to attend to (object selection) in the simultaneous presence of distractors (Desimone,

Duncan, et al., 1995). Attention is focused on objects even when observers choose what to pay attention

to based on low-level features. When attention is spatially focused, observers become more sensitive to

additional features that are specific to the attended object (Duncan, 2006). As a result, object formation

and selective attention are closely related, with the object serving as the unit of attention. (B. G. Shinn-

Cunningham, 2008). In addition, the temporal coherence theory assumes that attention plays a key role

not only in object selection but also in object formation. That is, starting the binding process, altering the

neuronal representations of the acoustic features and/or the temporal coherence patterns between these

features, and generating the binding signal (Shamma et al., 2011). In challenging listening situations, a

failure of object formation could thus be associated with impaired selective attention. However, it was

also shown that attention is not always required for the formation of auditory objects (Micheyl et al.,

2003). But selective attention can affect how aware we are of an object (B. G. Shinn-Cunningham, 2008).

According to the ”Load Theory of Attention” proposed by (Lavie, 1995), successful selection in the visual

domain depends also on the perceptual demands imposed by the relevant task information. However, in

the auditory domain, findings regarding the role of perceptual load on attentional selection have been

mixed (Murphy, Spence, & Dalton, 2017). Dichotomous concepts like early versus late and bottom-up

versus top-down attention, which are described in the following, are closely related to selective attention.

1.2.1 Early versus late selection

In attentional research, there has been a longstanding debate about whether the cognitive system fil-

ters out to-be-ignored stimuli early or late in the processing stages. Early selection theorists, such as

Broadbent (1958), propose that the processing of incoming data is limited by computational resources,

and that a filter is tuned to reduce the amount of information coming in. Later, Deutsch and Deutsch

(1963) proposed that the filter acts only after semantic analysis of all stimuli, thus suggesting late selec-

tion.

Early selection implies that irrelevant stimuli are rejected at an early stage based on basic physical charac-

teristics such as location or pitch, rather than their content. However, evidence in favour of late-selection

theories indicates that irrelevant stimuli can undergo semantic analysis. In a dichotic listening exper-

iment, Moray (1959) found that participants could still recognise their own names in the unattended
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stream, suggesting that irrelevant stimuli sometimes undergo semantic analysis. Deutsch and Deutsch

(1963) model even presupposes that all input is processed up to the semantic representation and selection

functions at this stage.

Based on evidence for both early and late selection, Treisman (1960) proposed the ”attenuation theory” to

account for how unattended stimuli could occasionally be processed. This theory advanced Broadbent’s

original early selection theory by contending that attenuation occurs on the basis of physical features

rather than complete rejection. As long as unattended stimuli still have enough ”strength” after attenua-

tion to pass through a hierarchical analysis process, it would be challenging but not impossible to extract

meaningful content from irrelevant inputs.

More recent theories suggest that the extent of attentional selection, whether it occurs early or late, may

not be predetermined and may depend on factors such as the task demand and the amount of perceptual

load that needs to be processed (Lavie, 1995; Huang-Pollock, Carr, & Nigg, 2002).

1.2.2 Bottom-up versus top-down attention

Bottom-up attention refers to attention that is guided solely by external stimuli that are salient due to

their inherent properties relative to the background, while top-down attention refers to attentional guid-

ance based on prior knowledge, deliberate plans, and current goals (e.g., Awh, Belopolsky, & Theeuwes,

2012; Connor, Egeth, & Yantis, 2004; B. G. Shinn-Cunningham & Best, 2008).

A prominent example of bottom-up attention is the sound of one’s own name in ignored speech in the cock-

tail party. The sound of one’s own name can capture attention even when it emerges in the unattended

background (e.g., Conway, Cowan, & Bunting, 2001; Moray, 1959; Holtze, Jaeger, Debener, Adiloğlu, &

Mirkovic, 2021). Although attentional capture is stimulus-driven, salience is not pre-programmed in the

auditory system but can be developed through learning. In addition, recent behavioural investigations

have demonstrated that learning based on prior experiences with distracting information influences the

ability to ignore distracting information by extracting statistical regularities from a particular feature

over time, such as the position of a distractor (Wang & Theeuwes, 2018b; Daly & Pitt, 2021).

A typical top-down goal is to understand one’s conversation partner in a complex listening situation.

When the listener knows that the conversation partner (object) has desired features such as pitch or

location, their neural representation becomes more inclined to prioritize those objects over others that

don’t have the desired feature (e.g., B. Shinn-Cunningham et al., 2017). The neural signatures of selective

attention are described in section 1.3.5.

Mainly in the visual domain, the strong interplay between bottom-up and top-down attention was shown

(Egeth & Yantis, 1997). Due to the strong interplay, it is challenging to clearly separate bottom-up and

top-down attention using experimental paradigms (e.g., Shuai & Elhilali, 2014). Recent visual studies,
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1 General introduction

however, have shown that top-down inhibitory mechanisms can be used to inhibit bottom-up capture,

potentially bridging the gap between bottom-up and top-down theories (Gaspelin, Leonard, & Luck,

2015, 2017). According to the signal suppression hypothesis, salient objects automatically generate a

priority signal that capture attention, which is in line with bottom-up theories, but the salient items

can be suppressed before, which is in line with top-down theories (Gaspelin & Luck, 2018). Closely

related are the two principles of proactive and reactive suppression (van Moorselaar & Slagter, 2020;

Geng, 2014). Proactive mechanisms suppress distractions before they occur and reactive mechanisms

suppress distraction after the distractor captures attention. Thus, attentional capture can be considered

a prerequisite for reactive suppression (Gaspelin & Luck, 2018).

1.2.3 Exploring attentional background through the principles of negative priming in a continuous

speech paradigm

Until now, investigating the attentional background in attentional selection based on behavioural mea-

surements has been difficult, because asking listeners about their perceptions of the background would

shift the attentional background into the foreground. An influential paradigm in cognitive psychology,

negative priming, was first created to address this problem by measuring attentional selective inhibition

of distracting information.

Negative priming refers to a subconscious memory and inhibition phenomenon in which a previously

presented stimulus leads to slow and error-prone responses to the currently presented stimulus (Tipper,

1985). Classical negative priming designs consist of two main components: the prime (trial N) and the

probe (trial N+1). A target is presented together with a distractor in both the prime and the probe. The

prime presents a certain stimulus (or stimulus feature) as a distractor, which becomes the target in the

probe trial (distractor-to-target repetition).

In the literature, there are primarily two potential underlying processes of negative priming described:

inhibition and retrieval mechanisms. The inhibition theory assumes that the distractor is actively sup-

pressed by mechanisms of selective attention throughout the processing of the prime, and that this

inhibition lasts until the presentation of the following probe (Houghton & Tipper, 1984; Tipper, 1985).

On the other hand, retrieval theories assume that perceiving a target in probe activates memory traces

associated with this stimulus in the prime (Neill, Valdes, Terry, & Gorfein, 1992). In other words, the

current target still holds information associated with the previously presented distractor, like ”ignore the

distractor”. This theory is related to the concept of ”event files,” which postulates that information about

the stimulus and response information get incorporated into ”event files” (Hommel, 1998). At present,

most researchers agree that both the inhibition mechanism and retrieval processes contribute to negative

priming (for review, see Frings, Schneider, & Fox, 2015).

Negative priming evidence was primarily investigated in the visual modality (for review, see E. Fox,

1995). However, negative priming was observed in the auditory modality as well (e.g., Banks, Roberts,
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& Ciranni, 1995; Buchner & Mayr, 2004). The general rules of auditory negative priming are similar to

those of its visual counterpart (for review, see Mayr & Buchner, 2007). Given the differences between

auditory and visual attention, this is by no means a simple matter. For instance, the involvement of pe-

ripheral mechanisms such as eye and head movements supports selective attention in the visual domain.

In contrast, an equivalent peripheral movement is not present in the auditory domain. Importantly, a

more recent study found evidence for negative priming in an auditory selective attention switching task

that used speech as stimuli and varied not only the identity of the talker also the location (Eben, Koch,

Jolicoeur, & Nolden, 2020).

In this thesis, instead of using a traditional negative priming experiment with a prime and probe structure,

I employed the principles of negative priming within a continuous speech paradigm. The details of this

approach are explained in Section 3.

1.2.4 Neutral baseline for distractor suppression investigation

The mechanism of how selective attention is implemented at the neural level is still an ongoing debate in

attention research. To separate target enhancement and distractor suppression, the two sub-processes of

selective attention, it is argued that a pre-defined baseline is needed to test whether the target exceeds

the baseline (enhancement) and the distractor falls below the baseline (suppression). Due to the sole

separation between the target and distractor, it is insufficient to distinguish between these attentional

subprocesses. (Forschack, Gundlach, Hillyard, & Müller, 2022; Wöstmann et al., 2022). The aforemen-

tioned studies usually lack such a neutral control condition.

However, in visual attentional research, such a control baseline was successfully implemented. Seidl,

Peelen, and Kastner (2012) measured brain activity in response to photographs that contained objects

from task-relevant (target) category, a task-irrelevant (distractor) category and a never task-relevant

(neutral) category in fMRI (functional magnetic resonance imaging). Thus, neutral control baseline was

operationalized by a category of visual objects that were not task relevant. Comparing target to neutral

and distractor to neutral categories, they found target enhancement and distractor suppression.

1.2.5 Neural signatures of selective attention and neural speech tracking

Early studies found electrical signatures of selective attention in the human brain (Hillyard, Hink,

Schwent, & Picton, 1973). Participants listened selectively to a series of tones and ignored concurrent

tones in the other ear while their brain activity was measured. The specific neural activity arising from

such acoustic stimulation is called an auditory evoked potential (AEP). AEPs are obtained by averaging

multiple repetitions to the onset of the identical stimulus in the time domain of an electrophysiological

signal and consist of a sequence of positive and negative deflections, called components. Each compo-

nent can be seen as a representation of a neuronal activity along the auditory pathway (T. W. Picton,

Hillyard, Krausz, & Galambos, 1974). Consequently, inferences about the underlying neuronal origins of

the components are made possible by the components’ latency. The cochlea, the auditory nerve, and the
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1 General introduction

brainstem are connected to early (i.e., rapid) components within the first 10 ms. The auditory cortex

responds to an auditory stimulus at latencies between 10 and 80 ms (i.e., midrange). Hillyard et al. (1973)

found that selective attention modulates the component around 80 to 110 ms. The auditory cortex is the

brain region most strongly linked to components after 80 ms, followed by the frontal and parietal brain

regions (T. Picton et al., 1999). As a result, the processing of the signal in the auditory cortex is com-

plex, which may cause components of the AEP to overlap in time. In auditory attentional research, the

AEP is thus utilised to examine where, when and how attention affects the processing of auditory input.

Based on these characteristics, the AEP could be described as an attentional filter. AEPs, with their

characteristics of an attentional filter, could be used to investigate sub-mechanisms of selective attention

such as the enhancement of targets or a suppression of distractors. However, their requirement for brief,

isolated events is a significant obstacle to studying attentional systems in ecological contexts.

Research on the electrophysiology of attention to continuous signals such as speech has started in recent

years thanks to advancements in computational processing (e.g., Crosse, Di Liberto, Bednar, & Lalor,

2016). Computational methods take advantage of the neural tracking phenomenon, which describes how

electrical brain activity synchronises to specific features of sensory continuous stimuli (for review, see

Obleser & Kayser, 2019). In auditory perception, neural tracking, or more precisely, speech tracking,

refers to slow oscillations in the brain (delta 0.5–4 Hz and theta 4–8 Hz) that track the syllabic structure of

speech (e.g., Ding & Simon, 2012; Lalor, Power, Reilly, & Foxe, 2009). In both, invasive (ECoG) and non-

invasive electrophysiology (EEG/MEG) measures speech tracking can reliably be observed, since these

methods have the temporal activity to reveal this neural activity (e.g., Ding & Simon, 2012; Golumbic et

al., 2013). These low-frequencies (delta-theta oscillations) were observed not only in low-level auditory

areas (for review, see Peelle & Davis, 2012) but also at higher processing, such as attentional control

and language processing in inferior frontal cortex, anterior and inferior temporal cortex and inferior lobe

(Golumbic et al., 2013).

It is still debated whether neural speech tracking arises from neural entrainment of neural oscillations or

a superposition of responses evoked by sound features (Obleser & Kayser, 2019; Ding & Simon, 2014). A

recent study supports the latter hypothesis (Zou et al., 2021). In this thesis, neural speech tracking refers

to the mathematical approach that measures how well neural activity can be predicted from specific fea-

tures of a speech stream. In this context, the measured electrical response and the amplitude envelope of

the speech stream are linked via a linear filter, called the ”temporal response function” or TRF (Crosse et

al., 2016). The TRF is frequently understood in close relation to accepted understandings of the auditory

evoked brain response (described above) in traditional, event-related designs (Simon, Depireux, Klein,

Fritz, & Shamma, 2007). By folding this temporal response function with the time series of the stimulus

feature, a predicted EEG signal can be obtained. The correlation between the predicted and measured

EEG signal is referred to as ”encoding accuracy” in a forward model, and it is interpreted as the strength

of neural representation or neural tracking.
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In the cocktail-party scenario, the listener can guide her attentional focus to select the talker of interest

based on spectrotemporal features of speech (Shamma et al., 2011). The process of selective attention

should therefore create a spectrotemporal filter to enhance the relevant audio stream by incorporating

information from it (Lakatos et al., 2013). The TRF as filter should thus reflect both acoustic information

and selective attention as a neural correlate of object formation and selection and represent speech as a

whole auditory object (B. G. Shinn-Cunningham, 2008; Ding & Simon, 2012).

Both the anatomy and timing of neural activity reflect the acoustics and selection processes involved

in the hierarchy of auditory processing (Nourski et al., 2014), as evidenced by the component structure

of the temporal response function (TRF) which is similar to the auditory evoked potential (AEP). The

early components of the TRF are associated with the core auditory cortex, while the later components

correspond to activity in higher-order auditory areas. (Ding & Simon, 2012; Puvvada & Simon, 2017).

TRF and neural tracking of the attended stream is enhanced in multi-talker situations (e.g., Ding &

Simon, 2012; Kerlin, Shahin, & Miller, 2010; Mesgarani & Chang, 2012). The attentional modulation is

so powerful that even single trials are enough to decode to which speech stream listeners are attending

(O’Sullivan et al., 2015). In addition, there is evidence that the degree of neural tracking correlates with

speech intelligibility (Peelle, Gross, & Davis, 2013), with behavioural indices of speech comprehension

(Etard & Reichenbach, 2019) and stronger speech tracking boosts trial-to-trial behavioural performance

(Tune, Alavash, Fiedler, & Obleser, 2021).

While the attentional filtering mechanisms relating to the enhancement of target speech are relatively well

understood, the mechanisms that enable ignoring (suppression of distractors) are much less understood.

An implementation of a dual selective attention mechanism of target enhancement and distractor sup-

pression could be beneficial at least for two reasons. First, any neural mechanism can only operate within

finite limits. Hence, the rate at which a signal can be solely enhanced is limited by the upper bound. In

contrast, a dual mechanism that enhances relevant signals (target) while suppressing irrelevant signals

(distractor) can double the rate of the separation between the target and distractor by fully using the

upper and lower limits. Second, a dual mechanism would be maximally effective over the entire dynamic

range. For example, if the target and distractor were both at high levels of the dynamic range, further

enhancing the target would be less successful than suppressing it, and if the target and distractor were

both at low levels, further enhancing the target would be more effective than suppressing it (Tipper,

Weaver, & Houghton, 1994).

In addition to the enhanced brain responses to target speech, responses to distracting speech were found to

be sometimes suppressed (e.g., Rif, Hari, Hämäläinen, & Sams, 1991; Bidet-Caulet, Mikyska, & Knight,

2010). The EEG responses to target and distractor speech were found with opposite time-lags (Horton,

D’Zmura, & Srinivasan, 2013). In combination with the findings from Lakatos et al. (2013) that the

phase of slow neural ocillations alters the excitability of neurons, the opposite polarities of TRFs reflect
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enhancement of target and suppression of distractor speech (Horton et al., 2013).

Puvvada and Simon (2017) investigated cortical representations of multiple talkers in the auditory scene

and found that the attentional background remains unsegregated. However, they did not manipulate the

two streams in the background by task. In contrast, Kong, Mullangi, and Ding (2014) found evidence of

suppression of responses to the unattended stream. By comparing unattended streams in a competing

speech versus a passive listening condition, they found that the response to the unattended stream was

attenuated. The effect of suppression is typically detected in the neural response around 200 msec after

the start of the stimulus (Rif et al., 1991). Consistent with these findings, Fiedler, Wöstmann, Herbst, and

Obleser (2019) demonstrated that varied signal-to-noise ratios result in different modulations of late TRF

components, which are linked to cortical tracking of ignored speech. Suppressive mechanisms were also

investigated in the auditory domain using alpha oscillations (neural oscillations 8-12 Hz; not phase-locked

to the stimulus). The neural signature of alpha oscillations indicates the independent implementation

of distractor suppression and target enhancement (e.g., Schneider, Herbst, Klatt, & Wöstmann, 2022;

Wöstmann, Alavash, & Obleser, 2019).

1.3 Implications of presbycusis on the peripheral hearing and selective attention

Age-related hearing loss, also known as presbycusis, is a prevalent sensory impairment among older adults

and a critical public health issue (Organization et al., 2017). Studies have shown that the prevalence

of hearing loss greater than 35 dB HL is around 29% for women and 33% for men over 65 years of age

(Homans et al., 2017). This hearing loss can lead to difficulties in understanding speech in everyday

communication, which has been directly linked to presbycusis (Humes et al., 2012). Moreover, pres-

bycusis is associated with long-term consequences such as social isolation (Weinstein, Sirow, & Moser,

2016), cognitive decline (Uchida et al., 2019), and depression (Lawrence et al., 2020). Of particular

concern, hearing loss in midlife is the single largest modifiable risk factor for later dementia (Livingston

et al., 2020). While hearing aids are the most common treatment for hearing loss (Dawes et al., 2015),

recent advances in hearing aid technology have incorporated features such as dynamic compression and

directional microphones to improve hearing in difficult situations (Dillon, 2008).

1.3.1 Object formation and selective attention in hearing impaired listeners

To this day, it remains unclear to what extent auditory perceptual and cognitive decline in hearing-

impaired listeners causes difficulties in complex multi-talker situations and contributes to insufficient

selective attention. Compared to normal hearing listeners, hearing-impaired listeners show reduced tem-

poral and spectral sensitivity (Gaudrain, Grimault, Healy, & Béra, 2007; B. G. Shinn-Cunningham &

Best, 2008). Broader frequency selectivity in hearing-impaired listeners leads to fewer independent chan-

nels, resulting in difficulties in segregating auditory objects (Pick, Evans, & Wilson, 1977; Rosen &

Fourcin, 1986). In contrast, they have a comparable good ability to use temporal cues (Bacon & Gleit-

man, 1992; Turner, Souza, & Forget, 1995). Additionally, when the same envelope is used to modulate

multiple spectral bands of competing sounds, hearing-impaired listeners experience increased perceptual
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interference (Hall III & Grose, 1994). In summary, mostly decreased spectral sensitivity in hearing-

impaired listeners leads to impaired object formation, and they may compensate by relying more on

temporal cues, even if their temporal processing is also decreased compared to normal hearing partici-

pants.

Given the close relationship between object formation and selective attention, it makes sense to assume

that when object formation is compromised, so is selective attention. Unsuccessful object formation can

lead to a decreased difference between targets and distractors. In this situation, attention is unable to

act selectively and choose which object will be enhanced or suppressed (Desimone et al., 1995). Multiple

studies have shown that hearing loss affects the ability to select target objects (for review, see B. G. Shinn-

Cunningham & Best, 2008).

1.3.2 Changes along the auditory pathway due to presbycusis

The representation of modulation rates in the temporal envelope of non-speech sounds follows a hierar-

chical pattern along the auditory pathway, as indicated by evidence from studies on humans (Giraud et

al., 2000) and animals (e.g. Schreiner & Urbas, 1986). Preferred amplitude modulation (AM) rate has

been shown to decrease as one ascends the auditory pathway, with the olivary complex most responsive to

faster modulation rates (> 250Hz), the inferior colliculus (IC) responding to ≈ 30–250 Hz, the auditory

thalamus to AM rates at 16 Hz, and the primary auditory cortex tuned to low AM frequencies at ≈ 8

Hz (Giraud et al., 2000). This hierarchical organisation of the auditory pathway enables a decomposi-

tion of temporal modulations, with each level of processing acting as an AM filter (Dau, Kollmeier, &

Kohlrausch, 1997a, 1997b). Due to age related hearing loss this processing is may weakened (Gaudrain

et al., 2007; B. G. Shinn-Cunningham & Best, 2008). In the following, the most prominent changes due

to presbycusis along the auditory pathway are explained.

When we are exposed to sound, acoustic signals reach our outer ear first and then move along the au-

ditory pathway to the auditory cortex. The outer and middle ears are important to bundle and amplify

sound on a mechanical level and are usually still preserved in old age (Rosowski, 1994). The amplified

oscillations are transmitted via the footplate of the stapes into the cochlea and lead to the expansion

of a wave therein. The wave leads to the activation of hair cells located at the basilar membrane. The

basilar membrane shows a different stiffness based on its position within the cochlea. The stiffness is

highest at the base (start) and lowest at the apex (end) of the basilar membrane. Directly related to

the stiffness of the basilar membrane is its eigenfrequency. If the sound frequency transmitted from the

outer world matches the eigenfrequency of the basilar membrane, the basilar membrane peaks and acti-

vates the inner hair cells at this location. This frequency-dependent spatial arrangement is referred to as

tonotopy. Besides the inner hair cells (the actual sensory receptors), the outer hair cells are anatomically

and functionally distinct hair cells that mechanically amplify low-level sounds (Kemp, 1986).

Outer hair cells lead to high sensitivity and sharp tuning of the travelling wave in a healthy cochlea, also

13



1 General introduction

called the active travelling wave. While the inner hair cells are usually well preserved at an advanced

age, there is a causal link between people suffering from sensorineural hearing loss and the disruption of

the mechano-electrical amplification process of the outer hair cells (Patuzzi, Yates, & Johnstone, 1989).

This loss provides a cochlea-based explanation of two of the most common symptoms of sensorineurally

impaired people. First, the absolute hearing threshold reached a higher level than in normal hearing.

Second, the uncomfortable loudness level reached the same or even lower levels compared to normal

hearing. The cause for this symptom is called ”loudness recruitment”. The loss of the sharp tuning of the

active travelling wave leads to the activation of more inner hair cells (more inner hair cells are recruited).

For hearing-impaired participants, this results in abnormal frequency resolution and increased loudness.

Interestingly, the growth of loudness is similar (roughly linear) to normal hearing around the threshold

(Buus & Florentine, 2002). In addition, cochlear compression is frequency-selective. The response to

a tone presented at the center frequency (CF) is highly compressive, while a tone presented well below

CF is roughly linearly represented in the basilar membrane response. Hence, the amount of compression

applied to sounds depends on the relationship between the frequency of the sound and the CF (Oxenham

& Bacon, 2003). In sum, for the sensorineural hearing-impaired, steeper growth of loudness and poorer

frequency selectivity lead to an overall more linear response, while the healthy human cochlea is highly

sensitive and non-linear to sound.

The most prominent age-related effect on hearing is the above described loss of outer hair cells. However,

age-related decline affects all stages along the auditory pathway. Cochlear synapses between inner hair

cells and the cochlear nerve decline with age, which leads to degraded temporal envelope cues early in

the auditory pathway (Parthasarathy, Bartlett, & Kujawa, 2019). Past the cochlea, animal and human

data reveal age-related changes at the level of the cochlear nerve, medulla, pons, midbrain, and inferior

colliculus (Peelle & Wingfield, 2016). The envelope following response (EFR) as part of the auditory

brain stem response (ABR) is an evoked potential produced by periodic or quasi periodic stimuli and

commonly used to evaluate the auditory periphery. Ageing also affects the EFR and ABR responses.

Neural phase-locking to the envelope and temporal fine-structure are impaired in people with mild to

moderate presbyacusis at the level of EFR (Ananthakrishnan, Krishnan, & Bartlett, 2016).

The primary auditory cortex receives inputs from the ascending auditory pathway and transmits them

to cortical processing. Auditory information only reaches perception if it is processed by the cortical

area. Hence, changes in the auditory cortex due to aging and hearing loss are of particular significance

for auditory perception. The processing strategies within the auditory cortex are complex and still not

fully understood (e.g., Bizley & Cohen, 2013; Schreiner, Read, & Sutter, 2000). Ageing and hearing loss

affect the auditory cortex in multiple ways. For instance, ageing is associated with changes in evoked

responses and affects the structure, tuning, selectivity, and temporal processing of the auditory cortex

(for review, see Peelle & Wingfield, 2016). The effects of ageing and hearing loss on the auditory cortex

are multifaceted and complex, in this thesis, I will focus on how they affect neural speech tracking, which

is covered in the section below.
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1.3.3 Neural speech tracking in hearing impaired listeners

The growing body of research on how age-related hearing loss affects the neural tracking of speech in

the auditory cortex has not been fully answered yet. An earlier study reported larger neural tracking of

the ignored stream for hearing impaired listeners, which results in smaller differential tracking between

the attended and ignored streams (Petersen, Wöstmann, Obleser, & Lunner, 2017). Recent research has

found that hearing-impaired listeners have larger neural tracking responses to target speech (Decruy,

Vanthornhout, & Francart, 2019; Fuglsang, Märcher-Rørsted, Dau, & Hjortkjær, 2020). Comparing

hearing impaired participants with age-matched normal-hearing peers, hearing-impaired listeners had

increased neural tracking, delayed neural responses to continuous speech in quiet and the latency also

increased with the degree of hearing loss (Gillis, Decruy, Vanthornhout, & Francart, 2022). In additon,

Schmitt, Meyer, and Giroud (2022) reported enhanced speech tracking with increasing hearing loss and

suggested that the hearing impaired rely more on the tracking of slow modulations in the speech signal

to compensate for their hearing deficit. Additionally, brain tracking of the fundamental frequency of

the voice is linked to cortical compensation for hearing loss but not to age (Van Canneyt, Wouters,

& Francart, 2021). On the other hand, it was also demonstrated that linguistic and acoustic speech

representational neural tracking declines with age (Gillis, Kries, Vandermosten, & Francart, 2023). Tune

et al. (2021) reported no increased neural tracking with age or hearing loss. Interestingly, Decruy et

al. (2019) and Gillis et al. (2023) used the same data set but found contradictory results depending on

the modelling approach used to obtain neural tracking. Therefore, the opposite effects could result from

the method selection, but also, for instance, various experimental design decisions could have an impact

on the outcomes. Even if the current state of this collection of research does not clearly indicate what

occurs to the brain’s ability to track speech, it does show that the ability is not lost due to hearing loss.

Further, hearing aid algorithms also affect neural speech tracking. Petersen (2022) found that hearing

aid directionality improves neural speech tracking in hearing impaired listeners.

1.3.4 Hearing aid algorithm

Modern hearing aids do not simply enhance the sound from the outer world but use a wide range of so-

phisticated signal processing algorithms in combination with multi-microphone technology to deliver the

best possible speech comprehension and hearing quality to meet the individual needs of hearing-impaired

people.

Multimicrophone algorithms, for example, can use the spatial information of the sound scene in addition

to the spectrotemporal information. The additional use of spatial information is especially beneficial for

performance when target sound and distractor sound are locally separated (e.g., Jensen, Høydal, Branda,

& Weber, 2021).

Another widely used hearing aid algorithm is dynamic range compression (DRC). DRC is an audio

signal processing algorithm that amplifies quiet sounds while reducing the intensity of loud sounds.

Despite having higher hearing thresholds, hearing impaired listeners with presbycusis perceive sounds
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as more intense and louder than healthy hearing listeners (loudness recruitment, see section 1.4.2). In

hearing impaired listeners suffering from presbycusis, the combination of increased hearing thresholds and

loudness recruitment results in a decreased dynamic range. DRC compensates for a decrease in dynamic

range by applying a lower gain to sounds with a higher intensity (Kates, 2005). However, DRC also leads

to unwanted side effects. The compression of the sound signal is not instantaneous. Attack and release

times lead to abrupt changes in the onset and offset of the signal. In addition, compression directly

affects the envelope of a speech signal, since it reduces the amplitude modulation depth of speech (Stone

& Moore, 1992). A change of the speech envelope could impair the processing of the speech stimulus,

since the speech envelope is associated with speech comprehension and is not only an inoperable acoustic

feature of the signal (for review, see Poeppel & Assaneo, 2020).
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1.4 Research questions

The two thematic foundations that form the basis of this thesis’ research questions are: First, investigate

the mechanisms of selective attention utilising behavioural responses and electrophysiological recordings

in a novel psychophysically augmented continuous speech paradigm. Second, this thesis aims to explore

the neural mechanisms of selective attention to speech when speech streams are degraded by a compres-

sion of their temporal envelope. In total, 73 participants took part in this thesis.

This thesis’ first section aims to provide an answer to the following: How is selective attention imple-

mented in a multi-talker situation? Study 1 looks into whether the behavior-supported neural tracking

signatures of selective attention represent target enhancement, capture, and then suppression of the

distractor, or both. A neutral control baseline in the form of a never-task relevant stream was opera-

tionalized to distinguish between the two potential sub-mechanisms of target enhancement and distractor

suppression. To obtain finely-resolved behaviour to continuous speech, short repeats were embedded in

the speech stream, which the participants had to detect.

The second part of the thesis tries to shed light on the following question: How does amplitude com-

pression of speech impact the neural and behavioural signatures of selective attention in a situation with

multiple talkers? To answer this complex question, this study is divided into several sections. In the

first section, it was tested whether different amplitude compression ratios affected neural tracking. In

the next section, the interplay between selective attention and amplitude compression was investigated

in normal hearing listeners. Using a computational model of the human auditory periphery, the neural

fate of loudness matched amplitude compressed speech was simulated. Of particular interest, the re-

lationship between selective attention and amplitude compression was investigated in hearing impaired

listeners. Behavioural responses and neural tracking in younger, normal hearing and older, hearing im-

paired listeners were compared to test whether the manipulation of compression has a different impact

on listeners suffering from presbycusis. Finally, in an online study, the loudness matching algorithm used

for amplitude compressed speech was behaviorally evaluated.
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2 General methods

2.1 Psychophysically augmented continuous speech stimuli

Speech is the most important medium in human communication, which makes it one of the most salient

and behaviorally relevant signals in human environments. For this reason, a fundamental goal in neuro-

science is to investigate how cognitive processes deal with naturalistic speech. Hamilton and Huth (2020)

propose that the use of natural stimuli will be the future of auditory neuroscience. In accordance with

this, speech in the form of continuous narrative stories was presented to participants in this thesis. This

was mainly done for two reasons. First, this work should contribute to aiding hearing impaired listeners

and addressing their challenges in real-life listening scenarios. Second, advances in computational mod-

elling enable the analysis of neural responses to continuous speech.

People are exposed to narrative stories outside of the experimental context, which makes narrative sto-

ries more ecologically valid compared to isolated words or isolated sentences. Listening scenarios that

are considered naturalistic in an ecologically valid sense, on the other hand, include social interactions

and unpredictable changes in conversational partners. Hence, narrative stories are a medium on which

we operate and are placed on a continuum between discrete and naturalistic stimuli. We would argue,

however, that narrative stories are more on the naturalistic spectrum due to their continuous character

and real-life appearance.

In comparison to trial-based designs, the presentation of continuous speech improves ecological validity.

Contrarily, a significant drawback of continuous speech paradigms up to this point has been their typical

lack of rich behavioural data (Hamilton & Huth, 2020). Commonly, comprehension questions about the

speech stream’s content are asked infrequently or later. This makes it difficult to determine whether or

not the neural responses are relevant to the task at hand. On the one hand, there are the fine-sampled

neural recordings, and on the other, there are the very discrete comprehension questions. This presents

a particularly difficult problem for the study of brain-behavior relationships. Within this thesis, I have

attempted to address this challenge by including short, repeated segments of speech into the speech

streams inspired by Marinato and Baldauf (2019). Participants had to detect the embedded repeats as

fast as possible in the target stream and had to ignore them in the streams in the attentional background.

As a result, we were able to measure the response times and hit and false alarm rates for the repeats

embedded in different speech streams.

In the first experiment, we presented three narrative stories simultaneously and spatially separated (-45,

0, 45) to the participants in the free field. Narrative stories were spoken by different untrained male

speakers. Participants could therefore rely on spatial and spectral cues to segregate the speech streams.

We aimed to investigate the mechanisms of selective attention by implementing a neutral baseline. To

separate the neutral and distractor streams on the behavioural level, we were reliant on false alarms

in participants’ behaviour evoked by these streams. To achieve this, we needed a comparable level of
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stream segregation. As a result, we chose a comparable small spectral and spatial separation. In the

second experiment, we presented two narrative stories concurrently and spatially separated (0, 180) to

the participants in the free field. We presented narrative stories spoken by professional male and female

speakers. Participants could therefore rely more heavily on spectral cues to segregate the speech streams.

This was done mainly for two reasons. First, hearing-impaired participants were to be measured in this

setup. In complex listening situations, hearing impaired participants typically have difficulty listening

and attending to speech. Second, hearing aids can more effectively apply separate hearing aid algorithms

in the front versus the back semi-field.
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2.2 Electroencephalograpy

Temporal properties of human speech are important characteristics for the human brain in speech percep-

tion. Slow envelope fluctuations were shown to contribute significantly to the perception and attention

of a human speech signal (e.g., Rosen, 1992; Hickok & Poeppel, 2007; Abrams, Nicol, Zecker, & Kraus,

2008; Giraud & Poeppel, 2012). Investigating, the neural processing of the speech envelope requires a

brain imaging technique with a fast temporal resolution. In this thesis, electroencephalography (EEG)

was used as the method of choice since EEG is considered to have excellent time resolution.

Hans Berger is the developer and eponym of the EEG. He measured the first human EEG back in 1924

(H. Berger, 1930). Since then, the technical basis has not changed much. Voltage fluctuation is measured

at least between two electrodes. The magnitude of the signal measured on the scalp ranges approximately

between 5 and 100 µV. EEG recording systems use differential amplifiers to reduce the impact of noise

from the ground circuit. To achieve this, a reference electrode is used in addition to the active electrodes.

The reference electrode also records the signal relative to the ground electrode and therefore also contains

noise from the ground circuit. By subtracting the signal from the reference electrode from the signals

from the active electrodes, the noise is cancelled out, since it is approximately the same in both the active

and reference electrodes.

Changes in the postsynaptic potentials of cortical pyramidal cells are the source of the EEG signal. Pri-

marily, pyramid cells with a vertical orientation produce vertical dipoles. Only a sum of these vertically

oriented dipoles is relevant for the EEG. This means that the EEG is not measuring primary currents

(action potentials) but rather secondary currents (postsynaptic potentials). In contrast to other methods

in neuroscience such as fMRI, EEG has a high temporal resolution because it measures the electrophys-

iological process directly (Gevins, Leong, Smith, Le, & Du, 1995). However, the spatial resolution is

limited due to the further spread caused by the limited conductivity of the skull and scalp (Ahlfors, Han,

Belliveau, & Hämäläinen, 2010).

For EEG recordings in this thesis, the SMARTING amplifier (mBrainTrain, Belgrade, Serbia) was con-

nected to 24 electrodes of the EEG-cap (Easycap, Herrsching, Germany; Ag-AgCl electrodes placed

according to the 10-20 International System). This is a mobile EEG-system that transfers the signal via

Bluetooth to a recording computer. This feature gives the system a relatively high degree of flexibility

in terms of application. In this thesis, we were mostly interested in answering ”how” questions and not

”where” questions (Bizley & Cohen, 2013). In additon, we mainly used encoding models, which estimated

a model for each single channel (see below). As a result, the relatively low number of electrodes posed

no significant restriction for us.

2.2.1 EEG data preprocessing

The human brain is not a linear, time-invariant system that responds consistently to all input at all

times. On the contrary, the human brain is quite nonlinear and time-variant. This and external noise
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pose a challenge analysing EEG recordings. The aim of the preprocessing is to get rid of noise from

irrelevant brain areas as well as from non-brain sources such as muscle activity or external noise such as

electromagnetic interference. There is no general optimal choice for the different pre-processing steps.

The preprocessing has to match the research question and underlying assumptions and can thus vary

between experimental designs. We used high- and low-pass Hamming-window FIR-filters with cutoff

frequencies of 1 and 40 Hz, respectively, in this thesis (Fiedler et al., 2019). Further, recordings were

re-referenced to mastoid electrodes to prepare for independent component analysis (ICA), which is an

algorithm to split up a mixture of multiple sources of variance into components (Comon, 1994). The

data were then divided into 10-second epochs. Noisy epochs were excluded for ICA by visual inspection.

After performing an ICA on the remaining data, components identified as artifactual by visual inspection

were removed. In order to prepare for linear modelling, a 1-Hz-highpass and 10-Hz-lowpass filter were

then applied. High-pass filtering eliminates drifts, whereas low-pass filtering removes high-frequent noise.

Since previous research has shown that neural activity phase-locked to the speech envelope typically

occurs below 10 Hz, we here chose a 10-Hz-lowpass cut-off(e.g., Golumbic et al., 2013; Simon et al.,

2007).

2.3 Feature extraction from continuous speech

In terms of physics, sound is a pressure change that travels through a transmission medium like a gas,

liquid, or solid as an acoustic wave. These sound waves are characterised by frequency, amplitude, speed,

and direction. The smooth curve that delineates the extremes of an oscillating sound signal is called

its envelope. Of course, these characterizations also apply to speech. Along the auditory pathway from

the outer ear to the auditory cortex, these physical characteristics of speech are transformed, grouped,

selected, and turned into meaning.

In linguistics, a syllable is an organisational unit for speech sounds. They are also referred to as ”building

blocks” of speech. The speech envelope captures this syllable structure of speech. Although the process of

creating a complete model of the auditory pathway leading to the auditory cortex is still in its early stages

(Verhulst, Altoe, & Vasilkov, 2018), the speech envelope is associated with phase-locked neural activity

(e.g., Golumbic et al., 2013). However, the precise method for obtaining a speech signal’s envelope is far

from standardised and is partly up to the analyst’s judgment.

A straightforward approximation to the broad-band temporal envelope of speech is the magnitude of the

analytic signal. Here, we used the more sophisticated approach of utilising an auditory model of the

cochlea that extracts a cochleogram of sound (summed to a broad-band envelope), which was shown to

improve the representation of the speech envelope in the brain (Chi, Ru, & Shamma, 2005; Biesmans, Das,

Francart, & Bertrand, 2016). It has been demonstrated that the auditory cortex is extremely responsive

to the rate of change of the envelope (Howard & Poeppel, 2010, 2012) and that onsets produce the

strongest neural responses and TRF components with the highest similarity to a classical ERP (Fiedler

et al., 2019; Chalas et al., 2023). Hence, in this thesis, we focused on the envelope onsets, which are
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represented as the first half-wave rectified derivative. More complex or abstract speech features can be

modelled in addition to low level acoustic features like the onset speech envelope. Stick-functions, for

example, can be used to model higher-order linguistic features such as phonemic or semantic features

based on their occurrence in the continuous speech signal (Brodbeck, Hong, & Simon, 2018).

2.4 Neural response to continuous stimuli

The world we live in is continuous, and as such, the human experience unfolds continuously in time.

During speech perception, the human brain transforms the continuously varying speech signal into mean-

ing. The brain response thus represents a continuous function of the input stimulus. Nevertheless, brain

responses are not a direct representation of the stimulus but reflect multiple transformations of that

stimulus. Although not all cortical neurons fit this description, there are neurons in the cerebral cortex’s

sensory regions that act as sensory transducers that are activated by sensory stimulation. The sim-

plest transducers are linear, and a linear time-invariant system is characterised by its impulse response

(Ringach & Shapley, 2004). Importantly, the impulse response provides a full characterization of a linear

time-invariant system. The impulse response can be measured in many different ways (Figure 1). In

the following, two methods commonly used in neuroscience are described. First, it can be measured as

the response to a brief stimulus. In auditory electrophysiology, this approach is basically used to mea-

sure ERPs in the event related framework (Hillyard et al., 1973). Second, the impulse response can be

measured by cross-correlating a broadband white noise with it corresponding output. In principal this

approach is associated with the TRF or encoding/decoding framework (Crosse et al., 2016), which is

described in more detail in the following.
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Figure 1: Measurement of the impule resonse of a LTI System
Two ways to measure the impulse response. A Dirac impulse is used as the LTI system’s input in the
first pathway (red), which shows how the impulse response is measured. A theoretical signal known as the Dirac
impulse has an infinitely short period of time, an infinitely large amplitude, and an infinitely continuous frequency.
It is the convolution’s invariant element. The impulse response of the LTI-system itself is the output if the system
is now simulated with a Dirac impulse (input). White noise is used as input to obtain the impulse response in
the second pathway (green). The resulting output of the LTI-system is a superposition of the input signal and
the impulse response function. A cross-correlation between the input and output results in the impulse response
function of the LTI-system.

Continuous stimuli, such as continuous speech, are a challenge for event-related analysis frameworks but

can be analysed in the framework of encoding/decoding models. Prior to such modelling, a critical choice

between two options—even though they both fall under the same machinery—must be made.

2.4.1 Encoding versus decoding models

To estimate the neural response to continuous stimuli, there are two complementary approaches estab-

lished in the field of auditory neuroscience (Crosse et al., 2016). The two models differ in their direction

of stimulus-response mapping. The decision to use one of the two models depends on the question asked.

Are we interested in how well the neural response can be predicted from multiple stimulus features?

This approach refers to encoding (or forward) models. It is also called forward model since it reflects

the stimulus-response mapping from stimulus to neural response. Or, are we interested in how well the

stimuli feature can be reconstructed from neural response? This approach maps the neural response to

the past stimulus (opposite direction to encoding model) and is therefore fittingly called the decoding (or

backward) model (Figure 2).
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Figure 2: Encoding decoding approach
Encoding versus decoding approach. Encoding models (”write-in”) work in the direction of information
flow when studying sensory systems. What kernel/impulse response gets me from a given stimulus (s) to a neural
response (r)? Decoding models (”read-out”) predict stimulus features using patterns of brain activity. How can
I decipher from a given neural response (r) which stimulus (s) was present? In the regression approach, we are
aiming for the linear operator (b), which gets us from stimulus (s) to a estimated brain response (r̂;encoding) or
from a recorded brain response to a predicted stimulus (ŝ;decoding). Here, b is estimated via a ridge regression
approach.

Both approaches are mathematically similar and aim for a kernel between stimulus and neural response.

However, both approaches have their own advantages, and the decision to choose one over the other

depends not only on the asked question but also on other more detailed considerations derived from the

properties of each model. The temporal response function reflects the encoding model in the mTRF-

regression-framework (Crosse et al., 2016). They define how a brain response changes with each one-unit

change in a specific stimulus component, and they are evaluated independently for each EEG channel.

Their beta weights provide an intuitive, neurophysiological interpretation that is comparable to an event-

related potential (Simon et al., 2007). This enables us to directly compare TRFs between conditions and

to separate brain responses to even concurrently presented stimuli. This univariate prediction at each

EEG channel also allows us to interpret the topography of the encoding brain. Further, correlations

between stimulus features are explicitly accounted for in the encoding model (for review, see Holdgraf et

al., 2017). On the other hand, decoding models take correlations between EEG channels into account,

since it maps the data from all EEG simultaneously. This makes the pre-selection of certain channels

redundant. The multivariate characteristic of decoding models leads to increased sensitivity since chan-

nels are weighted based on their relevance (Pasley et al., 2012). Decoding model weights are not directly

interpretable in terms of a studied brain process. However, it is possible to transform decoding models

into encoding models to facilitate their interpretation in terms of a brain process (Haufe et al., 2014).

Within this thesis, mostly encoding models were used mainly for two reasons. First, we were interested

in studying the effects of attentional and amplitude compression manipulations on the morphology of

the TRFs. Second, our repeat detection task led to potential ERPs evoked by the repeats and to motor

activity by the button presses to detect repeats. The encoding model approach takes correlations with
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this potential confound into account.

2.4.2 Temporal response function

The kernel, or impulse response function, that characterises the influence of each unit in the predictor

on the neural response is called TRF. The TRF is usually unknown in contrast to the features of the

continuous stimulus and the neural response. The TRF algorithm exploits this to estimate the TRF that

shows the best prediction of the neural response from the predictor variables. The central assumption of

the TRF approach is that a convolution of the predictor variable (stimulus representation), s, with the

TRF (kernel), β, and a residual response ϵ results in the dependent variable (neural response), r.

r = β ∗ s + ϵ (1)

In discrete time, the encoding model is represented as:

r(t, n) =
∑

τ

β(τ, n)s(t − τ) + ϵ(t, n) (2)

where r(t, n) is the neural response, sampled at times t = 1...T and at channel n. The TRF β(τ, n)

describes the linear transformation of the ongoing stimulus ot the ongoing response for a given range of

time lags τ , relative to the transient occurrence of the stimulus feature s(t). The residual response at

each channel that the model is unable to account for is denoted by the error term ϵ(t, n).

The TRF (β) is estimated by defining a measure of the error term. The mean-squared error (MSE) is

here the target to minimize the error between the actual response r(t, n) and the response predicted by

the convolution r̂(t, n).

MSE = min ϵ(t, n) =
∑

τ

[r(t, n) − r̂(t, n)]2 (3)

This method is solved using reverse correlation (De Boer & Kuyper, 1968). As a result, the TRF is

calculated using the subsequent matrix operation:

β = (ST S)−1ST r (4)

where β is the TRF τwindow × N matrix with each column containing a TRF for each channel. S is a

T × τwindow matrix containing the stimulus representation with time-lagged repetitions. r is a T × N

matrix containing the column-wise arranged neural data.

2.4.3 Regularization

Only very broadly defined terms have been used up to this point to refer to fitting linear models that map

between presented stimuli and measured neural responses. A comparatively large number of regressors

is modelled as a result of the inclusion of various time lags. These regressors may also be highly corre-
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lated because many stimulus regressors, including the acoustic envelope (a non-white stimulus), exhibit

significant auto-correlation and neighbouring EEG channels pick up similar signals. As a consequence, a

simple cross-correlation would result in a temporal smearing of the TRF. The solution is to divide out

the covariance structure of the stimulus. Therefore, the method referred to ridge regression is used to

reliably estimate the TRF (Crosse et al., 2016).

Regularization introduced an additional term into equation 4 to solve the ill-posed estimation problem

and prevent overfitting. Inverting the auto-covariance matrix ST S is numerical instable. To take care

numerically, this means adding a smoothing term to reduce variance in the estimate. In addition, this

smoothing term penalises large differences between neighbouring TRF values, which makes the TRF less

specific and easier to generalise (Hastie, Tibshirani, Friedman, & Friedman, 2009). Regularization can

be introduced by adding the smoothing term, as shown below:

β = (ST S+ λ I)−1ST r (5)

I is the identity matrix and λ is the regularization parameter. λ can have values that fall within the

range of [0; ∞]. A λ = 0 would result in a zero matrix for the identity matrix and since zero is the

neutral element in addition λ = 0 would have no effect on ST S. In other words, the effect of λ = 0

would be equal to ordinary least square regression as in eq. 4. On the other hand, λ > 0 would increase

the regularization. Interestingly, regularization appears to have a greater effect on the decoding model

(Wong et al., 2018).

Practically, iterative model training and testing for a given set of lambda values empirically determines

the ideal level of regularization. As an alternative, one could decide to alter the range of tested values in

accordance with the regressors’ autocovariance structure (Fiedler et al., 2019).

2.4.4 Training and testing

To test model performance, model training is complemented with model testing on held-out data. In

order to prevent overfitting, model training aims to generalise the model to new data. In model testing,

the trained encoding models are convolved with a unseen stimulus segment to predict a EEG response per

channel. Cross-validation is a popular method for accomplishing this. (Varoquaux et al., 2017). Model

performance is evaluated by two different validation metrics: Pearson’s correlation and mean squared

error (see above). In the TRF-framework the mean squared error is usually used to find the optimal

ridge parameter λ and Pearson’s correlation of model predictions with the EEG-signal to obtain the

correlation-based measure of neural tracking.
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2.4.5 Neural tracking

In the literature, neural tracking refers to both the temporal response function and the correlation-based

accuracy as strengths of neural representation (e.g., Obleser & Kayser, 2019; Tune et al., 2021; Brodbeck

et al., 2018). Nevertheless, in this thesis, neural tracking refers rather to correlation-based accuracy,

which is of course closely linked to the TRF. The predicted EEG signal computation is expressed as a

matrix operation as follows:

r̂ = Sβ (6)

where r̂ is the predicted EEG response, S the stimulus matrix (e.g, time-lagged versions of broadband

envelope) and β the TRF matrix.

As described above the Pearson’s correlation is used as a measure for neural tracking by quantifying

the relationship between predicted (r̂) and measured EEG signal (r). Mathematically, the Pearson’s

correlation coefficient is denoted as:

rpearson =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(7)

where x = r̂, y = r and n the number of samples.

The Pearson’s correlation coefficient (rpearson) reflects the correlation-based accuracy and, as such, neural

tracking. Importantly, negative coefficients do not mean the same thing as positive coefficients, in contrast

to the most typical case of Pearson correlation. Negative coefficients would indicate a different polarity

of the predicted and measured EEG signal, which can only explained as noise. However, for positive

correlations, the greater the neural tracking, the higher the signal-to-noise ratio in the recorded EEG.

Typically, the correlations range around 0.05 in the encoding approach (e.g., Jessen, Obleser, & Tune,

2021; Fiedler et al., 2019).

2.5 Dynamic range compression

Dynamic range compression is an audio signal processing technique that amplifies quiet sounds while

reducing the intensity of loud sounds, thereby decreasing the dynamic range of an audio signal. To ad-

just dynamic range compression algorithms, a number of parameters can be adjusted (Kates, 2005). In

the following, the most central parameters (threshold, ratio, and attack and release times) of a digital

compressor are described.

The threshold is the point at which the compressor starts working. The threshold is set in dBFS for

digital compressors. A lower threshold (e.g., -50 dBFs) means that the signal is more affected by the

compression than a signal at a higher threshold (-10 dBFs). In other words, the higher the threshold, the
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less the compression on the signal (Figure 3 A).

A compressor reduced the gain by a certain ratio. A ratio of 2:1 means that if the input level is 2 dB

over the threshold, the output signal is reduced to 1 dB over the threshold. In other words, 2:1 could

also be stated as 1 over 2 which means that the output level is reduced by 50% over the threshold. A

ratio of ∞:1 is often referred to as a limiter that reduced each input signal above the threshold almost

to threshold level (Figure 3 A) .

The compressor does not typically react instantaneously to a given input. Attack and release times de-

termine how fast a compressor acts. The attack time is the period that the compressor needs after the

threshold is reached to reduce the gain according to the compression ratio. The release time determines

how long it takes for the compressed gain to return to linear gain after the input level is reduced (Figure

3 B).

Figure 3: Dynamic range compressor
A. Input/Output curve hearing aid compressor amplifier. The curve of an hearing aid compressor
usually contained at least three areas. First, low level inputs are amplified linear. Second moderate to high
inputs are compressed. Third, very loud signals are cut-off via a limiter. Lower threshold (or knee) determines
operating point of the compressor. The slope of the compressor determines compression ratio. Upper threshold
determines operating point of the limiter. B. Attack and release compressor. Attack and relase periods are
illustrated over time. Threshold indicates operating point of the compressor. The compressor do not apply the
full compression to the signal that exceed the threshold. Compressor gradually reduced amplification over until
the ratio is reached. This period is called attack time. Also, the compressor do not stop instantly compressing
the signal when the input falls below threshold. This period is called release time.

There is no standard for how these parameters have to be set. It depends on their application. Com-

pression is commonly used in sound recordings, instrumental amplifiers, broadcasting, and hearing aids.

Here, we focused on the application of digital amplitude compression to hearing aids.

In hearing aids, a compressor is usually used to compensate for loudness recruitment by bringing back the

levels into the listener’s hearing range. Applying linear gain only to compensate for hearing loss would

involve a compromise between audibility and comfort. Low-level audibility would be sacrificed to avoid

loudness discomfort for high-level sounds. Hence, most modern hearing aids use a combination of linear
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gain and amplitude compression since it enables the audibility of low level sounds and the reduction of

high-intensity sounds (Figure 3). Up to 20 or even more channels are employed in modern hearing aids.

Usually each channel can apply frequency-dependent compression (e.g., Kollmeier, Peissig, & Hohmann,

1993). However, amplitude compression also has undesired side effects such as reduction of amplitude

modulation depth, distortion of the envelope shape and abrupt changes in the onsets (overshoot) and

offsets (undershoot) of sounds (Stone & Moore, 1992).

The processing power of hearing aids has increased over the years. Beamforming approaches enable

modern hearing aids to apply spatial-dependent signal processing such as compression on different posi-

tions. For instance, beamformer processing technology divides incoming acoustic signals into two distinct

streams. The sounds in one stream are primarily coming from the front of the wearer, while the sounds

in the other stream are coming from the back. A dedicated processor is used for each stream to examine

the characteristics of sound coming from every angle (Jensen et al., 2021).

Here, we were interested in combining the use of beamformer processing technology with the application

of various compression ratios to speech streams at distinct locations. We experimented with simulating

such processing over free-field loudspeakers.
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2.6 Peripheral auditory modelling

There are many different types of models for the human auditory periphery, ranging from very sim-

ple functional descriptions of auditory filtering to intricate computational models of cochlear mechanics,

inner-hair cell (IHC), auditory nerve (AN), and brainstem signal processing. To investigate the peripheral

fate of unprocessed and compressed signals in normal hearing and hearing impaired, we used computa-

tional modelling of the human auditory periphery (Verhulst et al., 2018).

The model of Verhulst and colleagues is a complex model that enabled us to model different stages along

the auditory pathway, and importantly, hearing loss. The model outputs are: single-unit simulations of

the auditory nerve (AN), cochlear nucleus (CN), inferior colliculus (IC) and envelope following responses

(EFR). Here, we are especially interested in the output of the EFR. The processing pipeline (Figure 4

A.) is summarised in the paragraphs that follow.

Figure 4: Human auditory periphery model Verhulst
Human auditory periphery model. With amplitude compressed and uncompressed speech as inputs and
the EFR in the time domain as the model output, Figure A. depicts the various stations of the human auditory
periphery model in a simplified manner (for details, see Verhulst et al., 2018).B. For the given input of pure tones
(250, 1000, and 4000 Hz) at three sound pressure levels (35 (blue), 60 (red), 85 dB (yellow)), we simulated model
outputs (AN, IC, and EFR). This was simulated for normal hearing (NH) and hearing loss (HI). The hearing loss
was set in accordance to a typical mild-to-moderate sloping hearing loss starting from 1 kHz to 8 kHz 35 dB HL.

The stimulus first passes through a first order middle-ear bandpass filter before entering a transmission-

line cochlear model with cochlear compression and tuning estimates based on human otoacoustic emissions

(OAEs). The transmission-line model simulates waveforms across 1000 discretized cochlear sections that

span the human range of hearing (Greenwood, 1990) as well as OAEs that can be compared to human
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data at the middle-ear filter output. The IHC-AN synaptic complex model, which includes a biophysical

description of the IHC membrane potential, a synaptic exocytosis (models acitve transport of neurotrans-

mitters) model (Beutner, Voets, Neher, & Moser, 2001), as well as a three-store diffusion (Meddis, 1986)

and refractoriness model (Peterson, Irvine, & Heil, 2014) that generates AN firing rates, receives half of

the simulated cochlear sections.

The auditory nerve, cochlear nucleus, and inferior colliculus levels are where population responses can

be written out. The population AN response sums 13 high-spontaneuos-rate (HSR) (70 spikes/s), 3

medium-spontaneuos-rate (MSR) (10 spikes/s), and 3 low-spontaneuos-rate (LSR) (1 spikes/s) fiber re-

sponses rAN . These waveforms (rAN ) are then summed to yield the ABR wave-I across each CF and

for CFs between 112 Hz and 12 kHz. The ABR wave-I most accurately depict the population’s total

auditory-nerve activity. In order to produce the ABR wave-III and wave-V, rAN is passed through a

same-frequency bushy cell (second order neurons) model, modeling generators for the cochlea nucleus

and inferior colliculus, respectively. Simulated W-I, W-III, and W-V waveforms are added and then

subjected to a Fourier transform to generate the response component corresponding to the modulation

frequency of the EFR stimulus in order to model the EFR.

By altering the cochlea’s mechanical gain on a CF-dependent basis, the model can be made hearing-

impaired by producing wider cochlear filters that mimic the impact of OHC loss. A model parameter

can be set to reflect a BM gain reduction corresponding to a particular hearing sensitivity loss [in dB HL].

To get an idea of how the model works, in particular how hearing loss is simulated, we have generated

model outputs (AN,IC and EFR) with simple pure tones (Figure 4 B.). We compared the model settings

for the normal hearing human (NH) to a typical mild-to-moderate presbycusis (HI; starting at 1 kHz and

sloping to 35 dB HL at 8 kHz). In general, the model exhibits frequency-dependent AN firing rates and

increasing amplitudes with rising simulated sound pressure levels. As expected, the models for NH and

HI generate similar output for pure tones with F = 500 Hz, since the simulated HL should only affect the

processing of frequencies ⩽ 1000 Hz. The sloping HL is reflected in decreasing amplitudes with increasing

frequency for 1000 Hz and 4000 Hz. As expected, for higher sound pressure levels, the differences between

HI and NH along the simulated model outputs are getting smaller due to the simulated loss of outer hair

cells.
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2.7 Statistical analysis

This section is not intended to provide a detailed description of the individual statistical methods used

in this work. Rather, it aims to present the motivation behind why a particular method was chosen. To

address various questions in this thesis, different statistical approaches were employed.

We implemented a novel experimental paradigm using a psychophysically augmented continuous speech

paradigm consisting of consecutive trials and short repeats that participants had to detect. We measured

several subjects and took multiple measurements from each subject. Mixed models, also known as hi-

erarchical linear models, were used to handle such nested data where observations are not independent

(Raudenbush & Bryk, 2002; Gelman & Hill, 2006). The Intraclass Correlation Coefficient (ICC) is used

to quantify whether the data were nested (Shrout & Fleiss, 1979).

Unlike in simple regression, model parameters in mixed models are not estimated via ordinary least

squares (OLS) but with (restricted) maximum likelihood (ML). The ML method estimates the param-

eters that maximize the likelihood function, which provides the most likely values of the parameters

given the observed data (Pinheiro et al., 2007). Mixed models can model both random and fixed effects

simultaneously. Fixed effects are variables that were measured in all the levels of interest (Tukey et al.,

1977), while random effects are variables that were measured in only one random level and thus allow for

random variation between groups and levels. For example, in our experimental paradigm, trials (repeated

measurements from the same subject; level 1) are nested within each individual subject (level 2) and are

therefore modeled as random effects.

Random effects can be modelled as a random intercept and/or random slope in the mixed model. In-

cluding random slopes in the model may be beneficial if level 2 units vary not only in their average

(intercept) but also in their relationship (slope). To test whether including random intercepts or slopes

improves the model fit, a model comparison using the Akaike Information Criterion (AIC) is useful. AIC

determines which model provides the best fit to the data, balancing goodness of fit and model complexity

(Akaike, 1974). Modeling fixed and random effects simultaneously allows for more accurate estimation of

model parameters. Additionally, mixed models can handle unbalanced designs and missing data, unlike

traditional methods such as ANOVA. A potential source of missing data within this thesis could be due

to connection loss during Bluetooth EEG recording or non-responses to embedded repeats in the speech

streams.

Overall, mixed models offer a powerful and flexible method for analysing complex data and were therefore

predominantly used in this thesis. Mixed models were executed using MATLAB, JAMOVI, and R (The

MathWorks, 2021; R Core Team, 2021).
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In this thesis, we sought evidence in favour of the null hypothesis. In frequentist hypothesis testing, the

p-value provides evidence against the null hypothesis rather than evidence in favour of it (e.g, J. O. Berger

& Sellke, 1987). However, Bayesian statistics allow for direct calculation and interpretation of the ev-

idence in support of the null hypothesis (for review, see Rouder, Speckman, Sun, Morey, & Iverson, 2009).

In Bayesian statistics, one determines the distribution of a quantity (posterior distribution) to estimate

its true value or test a hypothesis concerning this value. Frequentist statistics assumes that the popu-

lation parameters are fixed and unknown and that samples are drawn at random from the population,

whereas Bayesian statistics does not require random sampling but instead assigns probabilities to the

parameters based on prior knowledge or beliefs. This is the main distinction between frequentist and

Bayesian statistics.

Bayesian statistics is linked to three different types of probabilities: likelihoods, posterior probabilities,

and prior probabilities. We have prior beliefs about the possible values that the statistical model’s input

parameters might have before observing any data. We express our beliefs as a prior probability distribu-

tion, indicating the probability of various parameter values before data are observed. Using a likelihood

function given a set of parameter values, we determine the likelihood of observing the collected data. The

likelihood function describes how well the model fits the data for a specific set of parameter values.

We revise our prior beliefs about the parameters in light of the data after we observe it. By calculating the

posterior probability distribution, which combines our prior beliefs (expressed as the prior probability

distribution) and the likelihood function, we accomplish this. In Bayesian statistics, the Bayes factor

(Kass & Raftery, 1995) is a measure of the strength of the evidence for one hypothesis over another (see

Figure 5 for more details).
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Figure 5: Bayes factor example
Example Bayes factor. Prior (dashed line): We did not expect a difference (similar to null hypothesis), δ = 0.
In addition, the prior distribution (Cauchy distribution) also allows for large effects in both directions. The
posterior distribution (solid line) shows a narrower distribution after being updated by data, δ ≈ 0.7. The Bayes
Factor (BF), as illustrated by the so-called pizza plots, is reflecting the likelihood ratio, with which the prior odds
(the relative probabilities of the two hypotheses to each other a priori any data; unknown) get updated. BF10
indicates the Bayes factor of H1 vs. H0. The red area illustrates that the probability of the data given the
alternative hypothesis is 8x larger than the data given the null hypothesis. The key advantage of the BF is that
both hypotheses can be compared at the same time.

In the example in Figure 5 the Bayes factor indicates moderate evidence for H1. This qualitative in-

terpretation of the Bayes factor is based on a table proposed by Jeffreys (1998) ranging Bayes factors

regarding their evidence. Interestingly, if we assume that we have discovered evidence for H0, the poste-

rior distribution shifts to δ ≈ 0 and the white area of the pizza plot becomes prominent. In this thesis,

the Bayes factor was used to determine whether the data supported one hypothesis over another. The

Bayes factors were computed using JASP and JAMOVI (The jamovi project, 2022, JASP Team, 2023).

To analyse data originating from multichannel EEG measurements, we used cluster permutation tests to

investigate differences in time-shifted neural tracking (TRFs) between experimental conditions such as

target and neutral distractor. Cluster permutation tests involve clustering together time points of a dis-

crete time series and spatial locations on the scalp, and then testing whether these cluster-level statistics

differ significantly between conditions. We used one-sample t-tests to compare the time-series of exper-

imental conditions against zero as a test statistic at the single-subject level. The resulting t-values and
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a threshold that was set to t-values corresponding to p < 0.05 for at least three neighbouring electrodes

were used to define clusters at the group level. A permutation distribution of 5000 clusters was used to

compare each observed cluster to those clusters. The permutation distribution was generated by ran-

domly assigning the time-resolved experimental data to conditions. P-values were corrected for multiple

comparisons using the Monte Carlo method, which takes into account the number of clusters and multi-

ple comparisons across time and space (Maris & Oostenveld, 2007). The cluster p-value represents the

proportion of Monte Carlo iterations during which the observed cluster’s summed t-statistic is exceeded.

The results are interpreted based on these corrected cluster p-values. We performed cluster-based per-

mutation tests using an established two-level statistical analysis implemented in Fieldtrip (Oostenveld,

Fries, Maris, & Schoffelen, 2011).

To investigate brain-behaviour relationships, we used logistic regression, a variant of generalized mixed

model (GMM, J. Fox, 2015; Eid, Gollwitzer, & Schmitt, 2017). We used brain data to predict participants

perceptual performance. We modelled behaviour as binary response (hit vs. miss). A simple regression

is insufficient to model binary outcome since a binary outcome violates the assumptions of the linear

regression model, such as normally distributed errors (Hosmer Jr, Lemeshow, & Sturdivant, 2013). GMMs

are characterised by a so-called link function g that is linearly related to the predictors. The logit-function

logit(p) (logarithm of the odds) serves as the link function in logistic regression.

g = logit(p) = log
(

p

1 − p

)
=

∑
βX (8)

where p is the probability of the event occurring, β is the regression coefficient and X the predictor

matrix. To predict the outcome, we have to use the inverse link function g−1. However, the regression

coefficients β are interpreted in terms of odds ratios. To test the regression coefficients for significance,

different statistical tests can be used. Within this thesis, we used the Wald-test that is a statistical

hypothesis test that uses the chi-squared test statistic to compare the coefficients of a regression model

to a null hypothesis value (Wald, 1943). We used JAMOVI and R to run logistic regression and the

Wald-test.
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3 Study 1: Auditory neural tracking reflects target enhancement but
not distractor suppression in a psychophysically augmented
continuous-speech paradigm

3.1 Abstract

Selective attention modulates the neural tracking of speech in auditory cortical regions. It is unclear

whether this attentional modulation is dominated by enhanced target tracking, or suppression of dis-

traction. To settle this long-standing debate, we employed an augmented electroencephalography (EEG)

speech tracking paradigm with target, distractor, and neutral streams. Concurrent target speech and

distractor (i.e., sometimes relevant) speech were juxtaposed, with a third, never task-relevant speech

stream serving as a neutral baseline. Listeners had to detect short target repeats and committed more

false alarms originating from the distractor than from the neutral stream. Speech tracking revealed target

enhancement but no distractor suppression below the neutral baseline. Speech tracking of the target (not

distractor or neutral speech) explained single-trial accuracy in repeat detection. In sum, the enhanced

neural representation of target speech is specific to processes of attentional gain for behaviourally relevant

target speech rather than neural suppression of distraction.

3.2 Introduction

Selective attention refers to the neural filtering processes of prioritizing relevant objects over irrelevant

distractions (Desimone et al., 1995). Typically, attentional selection is quantified by the difference in the

behavioural or neural response to target versus distractor. However, such a difference can be driven by

either target enhancement, distractor suppression, or a combination of the two. Here, we investigated how

the mechanism of selective attention is represented in neural (electroencephalographic) activity and we

linked the trial-by-trial neural responses to behavioural responses associated with different sub-processes

of attention.

In the visual domain, single-cell studies have shown that attention operates when multiple stimuli com-

pete for access to neural representation. Distractors within a receptive field become suppressed, while

attended stimuli are enhanced (Desimone et al., 1995). The mechanism of how selective attention is

implemented at the level of neural networks is still in debate in attention research (Schneider et al.,

2022; van Moorselaar & Slagter, 2020). It has been argued that an often-missing, pre-defined baseline

is needed to test whether the target exceeds the baseline (enhancement) and the distractor falls below

the baseline (Gundlach, Forschack, & Müller, 2022; Wöstmann et al., 2022). In the visual modality,

Seidl et al. (2012) had implemented such a ”neutral” baseline by assigning a given class of stimuli as

the never task-relevant, and therefore least distracting, category. They measured brain activity in fMRI

(functional magnetic resonance imaging) in response to natural scene photographs that contained objects

from a task-relevant (target) category, a task-irrelevant (distractor) category, and a never task-relevant

(neutral) category. In addition, distractor suppression was linked to attentional capture. A distractor

requires to capture attention initially, followed by suppression (Alexopoulos, Muller, Ric, & Marendaz,
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2012; Dalton & Lavie, 2004; Gaspelin & Luck, 2018).

Speech is one of the most salient and behaviourally relevant signals in human environments, but for a

long time it was not possible to study the neural processing of time-varying natural stimuli like speech

quasi-continuously. Neuroscientists thus studied attention to short, isolated events due to the need for

temporally discrete event-related potentials (ERP; Handy, 2005). Recently, research has begun to inves-

tigate the electrophysiology of attention to continuous speech (Ding & Simon, 2012; Lalor & Foxe, 2010;

Wöstmann, Fiedler, & Obleser, 2017). Electrophysiological responses in cortical regions phase-lock to the

temporal envelope of the speech signal (Luo & Poeppel, 2007). This linear relationship is well-captured

by the so-called temporal response function (TRF), which can be interpreted as a cortical impulse re-

sponse, in close analogy to the conventional ERP (Crosse et al., 2016; Fiedler et al., 2019). The TRF

can indicate a stereotypical, phase-locked brain response to various acoustic features. The most often

used feature is the low-frequency temporal envelope, also referred to as neural speech tracking (Obleser

& Kayser, 2019). This neural speech tracking shows a robust and often-reproduced differentiation of

attended versus ignored speech (Ding & Simon, 2012; Fiedler et al., 2019; Horton et al., 2013; Kerlin

et al., 2010; Mesgarani & Chang, 2012). Thus, neural tracking is a feasible approach to quantify the

neural processing of several speech streams at the same time to reveal the effect of attention (Ding &

Simon, 2012; Puvvada & Simon, 2017; Golumbic et al., 2013). In addition, Fiedler et al. (2019) showed

that late TRF components are associated with cortical tracking of ignored speech and are differently

modulated for varying signal-to-noise ratios. These findings indicate that different components of the

TRF are associated with different attentional processes. In sum, a hitherto underutilised advantage of

this approach is its ability to delineate two potential sub-processes of attention: target enhancement vs

distractor suppression (Wöstmann et al., 2022).

What characterises a distractor stream in such an experimental setup? First, the implementation of the

distractor stream was based on the phenomenon of ”negative priming,” which describes the finding that

a distractor from the previous trial is harder to select on the next trial (Kristjánsson & Driver, 2008;

Shiffrin & Schneider, 1977; Tipper, 1985) . It is assumed that a stimulus and the response it elicits

become integrated into so-called ”event files” in memory (Frings et al., 2015). Therefore, a specific stim-

ulus automatically retrieves the response that was previously linked with this stimulus (Hommel, 1998).

In this sense, the whole distractor stream in a given trial is distracting, since the same event that was

previously task-relevant triggers a response despite currently being task-irrelevant, and must be inhibited.

Second, it was shown that spatial statistical regularities influence selective attention on a longer time

scale. A location that contained a distractor with a higher probability is suppressed relative to other

locations. In this context, participants would learn about the location of the distractor stream and sup-

press it over time (Wang & Theeuwes, 2018b).

In the auditory modality, (Hambrook & Tata, 2019) investigated the mechanisms of distraction by in-
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creasing the number of distractor streams in the auditory scene. Their results suggest that distraction

is not an active process but rather simply a loss of phase tracking of the target envelope. However, the

attentional sub-processes target enhancement and distractor suppression have been suggested but have

rarely been probed explicitly (Fiedler et al., 2019; Petersen et al., 2017; Vanthornhout, Decruy, & Fran-

cart, 2019). We followed Seidl et al. (2012) logic and implemented three auditory speech streams: a target

(task-relevant) stream, a distractor stream (previously task-relevant), and a neutral stream that is never

task-relevant. Larger target-vs-neutral tracking would indicate enhancement, while smaller distractor-

vs-neutral tracking would indicate suppression. In the context of the auditory scence, the neutral stream

can be conceived as a weaker distractor not as non-distractor. We operationalized the neutral stream as

the never task-relevant stimulus. However, the neutral stream is not neutral in the strongest sense: Like

the distractor stream, it was associated with the attentional background since it had to be ignored by the

listener (Puvvada & Simon, 2017). In other words, the neutral stream was more similar to the distractor

stream compared to the target stream. Critically, it is conceivable that suppression is preceded by initial

attentional capture of the distractor, indicated by larger distractor-vs-neutral tracking for early neural

responses (see Fig. 6B).

However, a severe disadvantage of continuous speech paradigms thus far has been their typical lack of rich

behavioural data (Hamilton & Huth, 2020). Typically, comprehension questions are asked intermittently

or afterwards regarding the content of the audio stream, which are insufficient to assess the task-relevance

of neural responses, especially during a complex continuous speech paradigm.

In the present study, we use electroencephalography (EEG) to investigate neural responses in human

participants. We asked to what extent selective attention to speech is implemented in the human brain

through target enhancement versus distractor suppression, and whether en-hanced tracking of target

speech or suppressed tracking of distraction would explain behav-ioural trial-by-trial indices of selective

attention.

To this end, we designed a new experimental paradigm with two key advances over previous neural speech-

tracking experiments (Fig. 6A). First, a speech stimulus that was never relevant served as a neurally

and behaviourally ‘neutral’ baseline, against which the processing of concurrent target speech (relevant

on a present trial) and distractor speech (relevant on other trials) can be contrasted (Seidl et al., 2012;

Wöstmann et al., 2022). Second, listeners had the task of continuously monitoring and detecting short

repeats in the target stream (Marinato & Baldauf, 2019) and ignoring short repeats in the distractor and

neutral streams. This enabled us to contrast whether neural responses to target, neutral, or distractor

speech would independently explain trial-by-trial variation in attentional performance.
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Figure 6: Experimental design and hypothetical results
Experimental design and hypothetical results. A. Simultaneously, we presented three different audio
streams at different locations (-45°, 0°, 45°). Participants were instructed to attend to the cued audio stream
for the duration of a trial (currently task-relevant target). In the next trial, another stream was cued, which
became the target stream. The stream that was previously task-relevant became the distractor stream. During
the entire experiment, the cue alternated between these two streams. The task-irrelevant (never cued) stream
was defined as the neutral stream. In all three streams, we included short repeats. Participants had to detect
repeats in the target stream and ignore repeats in the neutral and distractor streams. Further, participants were
instructed to process the content of the target audio stream. B. Hypothetical neural outcomes. While target
enhancement (stronger target vs. neutral tracking; green) is expected for early and late TRF components, earlier
components are expected to show neural capture by the distractor, that is, distraction (stronger distractor vs.
neutral tracking; red), and later components are expected to show suppression (reduced distractor vs. neutral
tracking; yellow).

3.3 Methods

3.3.1 Participants

The current study included 19 young adults (12 females and 7 males) ranging in age from 18 to 27 years

(21.9). All participants had German as their mother tongue and reported normal hearing and no histories

of neurological disorders. To verify normal hearing, we measured pure-tone audiometry within a range of

125 to 8,000 Hz. All participants showed auditory thresholds below 20 dB HL for the tested frequencies.

They gave written informed consent and received compensation of 10 euros per hour. The study was

approved by the local ethics committee of the University of Lübeck.

3.3.2 Stimulus materials and spatial cue

We presented three different narrated book texts as audio, spoken by different male, untrained talkers

(”Michael Kohlhaas” by Heinrich von Kleist, ”Pole Poppenspäler” by Theodor Storm, and ”Das Wrack”

by Friedrich Gerstäcker). We chose audio streams that were fictional instead of fact-based, to minimise

the impact of variations in prior knowledge on a topic and a resulting possible bias to one of the audio
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streams. At an SPL (mixture) of about 65 dB(A), which corresponds to normal conversation levels, all

three audio streams overlapped in time.

The following processing steps of the stimuli were done using custom written code in MATLAB (Version

2018a Mathworks Inc., Natick, MA, United States). The sound files were sampled at 44.1 kHz with a

16-bit resolution. The sound level was matched to the same long-term root-mean-square (rms) dB full

scale (dBFS) between the three audio streams. Silent periods were truncated to maximally last 500 ms

(O’Sullivan et al., 2015).

We embedded short repeats in the audio streams by pseudo-randomly selecting a 400-ms segment from

the original stream and repeating it directly thereafter (Marinato & Baldauf, 2019). The first repeat was

presented at least two seconds after stimulus onset. A linear ramping and cross-fading technique was

used to incorporate each repeat into the sound stream. The linear ramping was done by using a window

of 220 samples (5 ms) at the end of the part to be repeated (the down ramp) and the first 220 samples

(5 ms) of the repeat itself (the up ramp). The cross-fading was done by adding the down and up ramps

together.

The onset time of each repeat was drawn randomly to avoid predictability of the repeat. To avoid that

repeats occurring in the different streams overlap in time, the distance between two repeat onsets was at

least 2 seconds.

We further used a rms (root mean square) criterion (the rms of the repeat had to be at least the same as the

rms of the stream from which the repeat was drawn) to avoid undetectable repeats of low sound intensity.

The cue was presented at the center of the screen (resolution: 1920x1080, Portable HDMI Screen,

Wimaxit) in front of the participant (distance: 1 m). The cue (Fig. 6A) consisted of three sub-triangles

that had a size of 1.3° and pointed to the three sound sources (front, left, and right). The background of

the screen (RGB: 127, 127, 127), the cued sub-triangle (RGB: 204, 204, 204), and the not cued triangles

(RGB: 115, 115, 115) were kept in different shades of gray to keep the contrast low. The bright triangle

indicates the to-be-attended position. Since the cue and the fixation cross were presented at the same

time as the auditory stimuli, we ensured that the possible interference between visual and auditory neural

responses was as small as possible. To this end, the change between the fixation cross and cue was made

smooth by linearly fading in and fading out (50 ms each) the cue.

3.3.3 Experimental Setup

The experiment took place in a laboratory space with eight loudspeakers (Genelec: Speaker 8020D, Den-

mark) arranged in a circle with a radius of one meter. The loudspeakers were spaced at 45 degrees. A

chair was placed in the middle of the radial speaker array, face-aligned to the loudspeaker at position

0°. The three audio streams were presented over the three frontmost loudspeakers (-45°, 0°, and 45° in
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the azimuth plane, elevation was not adjusted for participants’ height, ground-to-loudspeaker distance:

1,20 m, the five remaining speakers were not used in the present experiment). In advance, participants

were briefed about the experiment. Importantly, they were not briefed about the condition-to-location

assignment of the streams. Each participant was asked to keep their eyes open, focus on the center of

the screen, and sit as relaxed as possible. To avoid head motion, a chin rest was used. The height of the

chin rest was adjusted for each participant.

Each participant had to switch their attentional focus between the same two streams and locations. The

stream at the cued location was defined as target, the stream cued in the previous trial was defined as

distractor. Importantly, this left each participant with only one, never task-relevant stream and location,

here defined as neutral. Between participants, we implemented three condition-to-location assignments

to avoid any confound with the position of the neutral stream (neutral front (0°), neutral left (-45°),

and neutral right (45°). We aggregated across the three condition-to-location assignments to obtain our

measures of interest, i.e., neutral tracking of target, neutral, and distractor. As the position of the neu-

tral stream, the different audio streams were almost balanced between the 19 participants (neutral front:

n=7; neutral right n= 6; neutral left n= 6).

Participants had to detect short repeats in the target stream. Each trial contained 6 repeats, which were

randomly partitioned into the three streams (for procedure details, see section: Stimulus materials and

spatial cue) Before data collection, participants were familiarized with the experiment. During instruc-

tion, it was emphasized to respond as fast and accurately as possible to a repeat in the target stream,

but also to listen to the content of the target stream. To familiarize participants with the repeats, we

presented them with a single sentence with one repeat included. They had to give oral feedback if they

were able to detect the repeat. Further, we presented them with 6 training trials that corresponded to the

main experiment but used different audio streams. The main experiment consisted of 180 trials divided

into 4 blocks, resulting in a total duration of 60 min. After each block, participants were able to take a

rest. The total number of repeats was 360 per stream across the experiment.

We asked participants 15 multiple choice questions (with four possible answers, each) about the content

of each audio stream at the end of the experiment. To avoid participants attending the to-be-ignored

audio stream, we did not ask the questions after every block. The order of the questions and the possible

answers were randomized between participants.

3.3.4 Behavioural data analysis

We evaluated participants’ behavioural performance in two ways. We analysed the proportion of detected

repeats and, as a control, the proportion of correctly answered content questions.

We analyzed the detection of repeats in terms of signal detection theory. Button presses to repeats in a

time window (150-1500 ms) after repeat onset were considered in this analysis. A button press following a
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repeat in the target stream was assigned as a hit. Button presses following repeats in the distractor stream

and in the neutral stream were assigned as separate types of false alarms. To differentiate between false

alarms to repeats in the neutral versus distractor stream, we calculated sensitivity (d’) between hit rate

and false alarms to distractor repeats [d′
target vs. distractor = z(hit rate)–z(false alarm rate distractor)]

and hit rate and false alarms to neutral repeats [d′
target vs. neutral = z(hit rate)–z(false alarm rate neutral)].

For this signal-detection analysis of repeats, we excluded one participant who did not respond to any

repeats in the distractor stream.

A challenge in creating multiple-choice comprehension questions is to provide multiple (here: four) re-

sponse options that cannot be solved based on prior knowledge or the possibility of excluding some of

the response options. Hence, participants’ actual guess rate might be considerably higher than the theo-

retical chance level of 25%. Thus, in a pilot experiment, we presented the multiple-choice comprehension

questions to N=9 different participants who had not listened to the audio streams at all. As a result,

a new ”empirical” chance level of 40% (3.9% S.E.M.) was established. In the following, we tested the

proportion of correctly answered questions in the main experiment against this empirical chance level.

3.3.5 Data acquisition and pre-processing

EEG was recorded using a 24-electrode EEG-cap (Easycap, Herrsching, Germany; Ag–AgCl electrodes

placed according to the 10-20 International System) connected to a SMARTING amp (mBrainTrain,

Belgrade, Serbia). This is a mobile EEG system, that transfers the signal via Bluetooth to a recording

computer (e.g., Waschke, Wöstmann, & Obleser, 2017; Wöstmann, Waschke, & Obleser, 2019). EEG

activity was recorded with the software Smarting Streamer (mBrainTrain, version: 3.4.2) at a sampling

rate of 500 Hz. During recording, electrode FCz served as an online reference, and impedances were kept

below 20 kΩ. No data loss was reported during the sessions.

Offline, EEG preprocessing was done using MATLAB (Version 2018a, Mathworks Inc., Natick, MA,

United States), built-in functions, custom-written code, and the Fieldtrip-toolbox (Oostenveld et al.,

2011). EEG data were re-referenced to the average of M1 and M2 (left and right mastoids) electrodes

and high- and low-pass filtered between 1 and 100 Hz (two-pass Hamming window, FIR). An independent

component analysis (ICA) was computed on each participant’s EEG data. M1 and M2 were removed

before ICA. ICA components related to eye blinks, eye movement, muscle noise, channel noise, and line

noise were identified by visual inspection and removed. On average, 8.37 of 22 (SD = 3.13) components

were rejected. Components that were not associated with artifacts were projected back into the data.

Clean EEG data were further processed. Hence, EEG data were low-pass filtered again at 10 Hz (two-pass

Hamming window, FIR). Afterwards, EEG data were resampled to 125 Hz and segmented into epochs

corresponding to the 20-s trial length.
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3.3.6 Extraction of the speech envelope

The temporal fluctuations of speech were quantified by computing the onset envelope of each audio

stream (Fiedler et al., 2017). First, we computed an auditory spectrogram (128 sub-band envelopes

logarithmically spaced between 90-4000 Hz) using the NSL toolbox (Chi et al., 2005). Second, the auditory

spectrogram was summed up across frequencies, resulting in a broadband temporal envelope. Third, the

onset envelope was obtained by computing the first derivative of this envelope and zeroing negative values

to obtain the half-wave rectified first derivative. Finally, the onset envelope was downsampled to match

the target sampling rate of the EEG analysis (125 Hz). Compared to the envelope, using the onset

envelope shifts the envelope in time. Importantly, the TRF obtained by using the onset envelope as a

regressor has the most similarity to a classical ERP (Fiedler et al., 2017).

3.3.7 Temporal response functions (TRFs)

The deconvolution kernel or impulse response, which describes the linear mapping between an ongoing

stimulus and an ongoing neural response, is called the temporal response function (TRF). We used a

multiple linear regression approach to compute the TRF (Crosse et al., 2016). More precisely, we trained

a forward model using the onset envelopes (e.g., Fiedler et al., 2019) of the target, distractor, and neutral

speech to predict the recorded EEG response. In this framework, we analysed time lags between –100

and +500 ms between envelope changes and brain responses.

To account for the EEG variance attributable to the detection and processing of the behaviourally rele-

vant repeats and corresponding evoked brain responses, we also included all onsets of the repeats in the

three streams and the button press in the model as nuisance regressors, represented by stick functions.

The onsets of the repeats are independent of the speech envelope regressors by design, since these were

almost randomly (within the constraints of SNR threshold) added into the speech streams.

To prevent ill-posed problems and overfitting, we used ridge regression to estimate the TRF (Crosse et al.,

2016). Lambda (λ) is the ridge parameter for regularization. We estimated the optimal ridge parameter

that optimized the mapping between stimulus and response by leave-one-out cross-validation for each

participant. First, the stimuli are segmented in M-trials and different ridge values (λ = 20, 21, . . . 220) are

predefined. In this approach, a separate model for each λ is calculated. Second, the trials are mixed, and

each time one is left out. This trial is used as a test set, while the M-1 trials are used as a training set.

Then, the models are averaged over the trials and convolved with the data from the matching test set

to predict the neural response. This is done for every predefined λ. Calculating the MSE between the

predicted estimate and the original data provides a validation metric that enables selecting the λ with

the lowest MSE. We used the ridge value with the lowest MSE (specific for each subject) for the TRF

model that jointly contained the target, distractor, and neutral onset envelopes as regressors.

TRFs were estimated based on the trials in the experiment. Participants had to switch their attention

trial-wise between two of the streams. Hence, the trials enable the assignment of target, distractor, and
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neutral onset envelopes. The time window in which the stimulus and response are cut to estimate the

TRF is referred to as a ”trial.” To avoid any conflicts with the cue, the first second of each trial was cut off

in the EEG signal and the envelope onsets. One model was trained on 180 trials, incorporating multiple

predictor variables: the onset envelope for target, distractor, and neutral streams; and the stick functions

for the repeats and button presses. Resulting in a single TRF for each predictor variable that predicts

a separable response component. Similar to the TRF approach, we estimated TRFs for the embedded

repeats, but we modelled repeats as a stick function based on the repeat onset. Importantly, TRFs for

the three streams, TRFs for repeats in the three streams, and button presses were estimated in the same

model with the same regularization.

3.3.8 Neural tracking

Neural tracking quantifies how strongly a single stream is represented in the EEG signal. TRFs were

used to predict the EEG response. The neural tracking (r) was calculated by correlating the predicted

and measured EEG responses using Pearson correlation. We predicted the EEG signal on single trials

using the leave-one-out cross-validation approach (see above). The r-values that resulted were averaged

across trials and participants. We obtained the neural tracking accuracy over TRF time lags by using

a sliding-time window of time lags (size: 48 ms, 6 samples) with an overlap of 24 ms (3 samples) for

the prediction (Fiedler et al., 2019; Hausfeld, Riecke, Valente, & Formisano, 2018; Kraus, Tune, Ruhe,

Obleser, & Wöstmann, 2021; O’Sullivan et al., 2015). For every window position, the neural tracking

was calculated, resulting in a time-resolved neural tracking. We used the term ”stream tracking” which

refers to the neural tracking of the envelope onsets, and ”repeat tracking,” which refers to the neural

tracking of the repeat onsets. To obtain the repeat tracking, we used the same pipeline as for the speech

tracking procedure (see above), with the exception that we estimated neural tracking based on the onsets

of repeats (instead of the speech onset envelope), which we modelled as stick functions.

3.3.9 Statistical analysis

A study (Fiedler et al., 2019) investigated the attentional effects of neural tracking in a comparable con-

tinuous speech paradigm by recording the EEG of N = 18 participants. It is reasonable to expect that

similar effect sizes will be observed in a replication of auditory attention effects with the same sample size.

The present study is supposed to detect neural tracking effects with at least medium to large effect sizes

(Cohen’s d ≥ 0.7) and a power of 80 % (two-sided, within-subject tests, Alpha = 0.05) for N = 18 subjects.

We also used different statistical procedures to answer different questions. To answer the main research

question (outlined in Fig. 6B), we used generalized mixed models (jamovi 1.6, R 4.0). This approach

enables us to include and jointly model factors that potentially influence behaviour and the neural re-

sponse. These included at least the factor condition-to-location assignment (neutral front, left, or right)

and the subject as a random intercept to account for between-participant variability.
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To determine statistically significant differences in behavioural sensitivity (outcome measure), we included

target versus distractor and target versus neutral as categorical predictors in the model. To determine

statistically significant differences in neural tracking (outcome measure), we included the target, neutral,

and distractor streams as categorical predictors in the model. In both models, we included the factor

condition-to-location assignment as a covariate and the random intercept (subject ID) into the model.

Bayesian t-tests were calculated to obtain Bayes factors to quantify evidence for the null hypothesis

(JASP Team, 2022).

For quantifying the brain-behaviour relations, we used a generalized linear mixed-effects model (repeat

detected or not; binomial distribution, with logit link function), since we predicted a binary outcome.

The predicted outcome variable was the binary response to the detection of a single repeat in the target

stream (Hit = 1; Miss = 0). We included the encoding accuracies for the target, neutral, and distractor

streams as continuous, z-scored, fixed-effects predictors in our model. We assigned repeat tracking (trial-

based) to each repeat within a trial. To again control for potential confounding between stream tracking

and repeats, we also included repeat tracking similar to stream tracking in our model. Beside the factors

condition-to-location assignment and subject as random intercepts, we also included the number of repeats

during the total experiment and the number of repeats within a trial, as well as the trial number as a

random intercept, into the model.

3.3.10 Statistical analysis on time series

We were looking for time points in time-resolved neural tracking that might differ between subjects

(target enhancement: neutral vs. target, and active suppression: neutral vs. distractor). To answer this

question, we used an established two-level statistical analysis, more specifically a cluster permutation

test implemented in Fieldtrip (Oostenveld et al., 2011). Data from 22 channels was used in this analysis.

As a test statistic at the single-subject level, we used one sample t-tests to test the time-resolved neural

tracking to the target, neutral, and distractor as well as the neutral-target, neutral-distractor, and target-

distractor difference against zero. At the group level, clusters were defined by the resulting t-values and a

threshold that was set to t-values that corresponded to p < 0.05 for at least three neighboring electrodes.

Each observed cluster is compared to 5000 clusters with a permutation distribution. The permutation

distribution was generated by randomly assigning the time-resolved neural tracking data to conditions.

The Monte Carlo method was used to correct for multiple comparisons. The relative number of Monte

Carlo iterations in which the summed t-statistic of the observed cluster is exceeded is indicated by the

cluster p-value (Maris & Oostenveld, 2007).

3.4 Results

We recorded the electroencephalogram (EEG) from 19 young, normal-hearing participants (7 male and 12

female, mean age 21.9 years, range 18–27 years). They were presented with three continuously narrated

audio streams simultaneously (Fig. 6A). On a trial-by-trial basis, they had to switch their attention

between the same two audio streams. The to be attended audio stream was defined as the target stream,

45



3 Study 1: Auditory neural tracking reflects target enhancement but not distractor suppression in a

psychophysically augmented continuous-speech paradigm

the audio stream attended in the trial before as the distractor stream, and the never task-relevant audio

stream as the neutral stream. Participants had to detect any repetitions in the target stream as fast and

accurately as possible and ignore the neutral and distractor streams.

Here, we analysed behavioural data in terms of signal detection theory. We tested whether selective

attention is driven by an enhancement of the target, a suppression of the distractor, or a combination

of the two by investigating the differential neural tracking of target versus neutral speech and distractor

versus neutral speech by slow (1-8 Hz) cortical responses.

Figure 7: Behavioural results and ERPs to repeats
Behavioural results and TRFs to repeats. A. Box plots depict the proportion of detected repeats for the
target (green), neutral (gray), and distractor stream (orange). Scatter dots depict individual subject data. B.
TRF to repeats in the target (green), neutral (gray) and distractor stream (orange). TRFs ß-weights are averaged
across subjects (N=19) and channels of interest (solid line). Shaded areas show the standard error for each time
lag across subjects. Topographic maps depict ß-weights for an early time window (0-100 ms) and for a later time
window (300-400 ms) for the attended stream.C. The spaghetti plot shows the sensitivity index (d-prime) for
target versus distractor streams and target versus neutral streams. Dots depict individual data, with connection
lines indicating data from the same subject. Shaded areas illustrate the distribution of the data. Bayes factor
visualisation: probability pie charts show the ratio of the likelihood of H1(red) and H0 (white) for pairwise
comparisons.

3.4.1 Larger repeat evoked responses in the target stream

Overall, participants were well able to detect repetitions in the target stream (mean accuracy: 69.8% ±

SEM 2.7%; response time: 735 ms ± SEM 14.1 ms), but performance was clearly not ceiling up with

up to 86% (the highest score of single individual) correct responses (Fig. 7A). In comparison, the false

alarm rates for the neutral (false alarm rate: 2.1% ± SEM 3.4%; response time: 789 ms ± SEM 44.7 ms)

and distractor streams (false alarm rate: 2.9% ± SEM 3.4%; response time: 801 ms ± SEM 37.7 ms)

were low. Jointly, the number of hits and false alarms indicated that participants were attending to the
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cued target audio streams. No significant differences in response times were observed (t = 2.20; df = 30;

p > 0.05, for all comparisons).

We also estimated regression-based TRFss phase-locked to repeat onset (Fig.7B). TRFs to repeats in

the target stream yield an auditory ERP-typical, biphasic response with an early positive deflection

(0-170 ms) and a later negative deflection (170-550 ms). Topographies show ß-weights with the highest

magnitude for central channels. In contrast, the TRFs for the neutral and distractor streams did not show

clear TRFs. Regression based ERPs indicated a different brain response to target versus neutral repeats,

but no different brain response to repeats in the neutral and distractor streams, which is in line with the

observed behaviour in Fig. 7A. For further neural analysis, we treated the magnitude of these TRFs in

all three streams as potential confounds and controlled for them statistically (for details see Methods:

Temporal response functions (TRFs). The fact that the participant’s performance was off ceiling for

detected repeats in the target stream and had a low false alarm rate in combination with no TRFs to the

distractor and neutral streams indicate that the repeats did not pop out of the streams automatically.

However, we label repeats ”detected” in the distractor and neutral streams (false alarms) only if they

are followed by a response. We cannot exclude the possibility that some repeats are detected but not

followed by a response (response inhibition), even though TRF for false alarms indicates no pop-out.

3.4.2 Larger interference by distracting versus neutral speech

To better understand the contrast in behaviour between the neutral and distractor streams, we analysed

the behavioural data in terms of signal detection theory. Based on the hit rate and false alarm rates,

two different d’ could be calculated (Fig. 7C). We calculated d′
target vs. distractor to index the perceptual

separation of target versus distractor stream, and d′
target vs. neutral to index the perceptual separation of

target versus neutral stream. Participants achieved a mean d′
target vs. distractor of 2.46 ± 0.1 (M±SEM)

and a somewhat higher mean d′
target vs. neutral of 2.66 (±0.1).

A mixed model (supported by a Bayesian paired-samples t-test) with the regressor attention (target-

distractor vs. target-neutral) confirmed this difference to be statistically significant (t = 3.01; df = 15; p

= 0.009; BF10 = 8.1, supporting H1 over H0), indicating larger interference by the distractor than the

neutral speech stream.
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3 Study 1: Auditory neural tracking reflects target enhancement but not distractor suppression in a

psychophysically augmented continuous-speech paradigm

Figure 8: TRF Topo
Temporal response functions (TRFs) of the target, neutral and distractor streams. TRF ß-weights
are averaged across subjects (N=19) and channels of interest: Fz, Cz, CPz and Pz (solid lines). Shaded areas
show the standard error for each time lag across subjects. Topographic maps depict ß-weights for time windows
of the P1, N1 and P2/N2 components for the three streams. 45°-plots show the single subject (N=19) ß-weights
separately for neutral versus target, neutral versus distractor, and distractor versus target for the P1, N1 and
P2/N2 components.

3.4.3 Morphology of neural responses to target, neutral, and distractor speech

We analysed the neural tracking response to the target, neutral, and distractor streams by investigating

the temporal, time-lagged relationship between the stimulus representation of each stream and the brain

signal. This relationship is captured by an impulse response, the so-called temporal response function

(TRF; see methods). Each component of the TRF is interpreted as a neural operation along the audi-

tory pathway, analogous to the event-related potential (Davis & Johnsrude, 2003; Di Liberto, O’sullivan,

& Lalor, 2015). Here, we describe differences between the TRF for the target, neutral, and distractor

streams, followed by a statistical analysis of the neural tracking response.

As expected, the morphology of the TRF for the target stream showed the succession of P1-N1-P2 re-

sponse components, and the TRFs for the neutral and distractor streams showed the succession of P1-N2
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response components (Fig. 8).

The early positive deflection P1 (0-80 ms) appeared in the TRF for the target, neutral, and distractor

streams without any difference, indicating no attentional modulation. Topographies (located in fronto-

central regions), latencies, and polarity of the P1 component were in line with previously observed TRFs

and auditory evoked potentials (AEPs) in the literature.

The later negative component N1 (80-150ms) was prominent for the TRF of the target stream. The

magnitude of N1 was increased (i.e., more negative) compared with the neutral and distractor streams.

The late positive deflection P2 (170 -300 ms) was only present for the TRF of the target stream. In

contrast, we found a negative deflection N2 in the TRF for the distractor and neu-tral stream in about

the same time interval. This anti-polar relationship was also reported in previous studies (Ding & Simon,

2012; Fiedler et al., 2019). However, there was no considerable difference in N2 for the TRF of the neutral

stream versus the TRF of the distractor stream.

Figure 9: Neural tracking
Neural tracking reveals target enhancement but no distractor suppression. A. Neural tracking was
computed based on the extracted TRFs and the envelopes of the attended (green), neutral (gray) and distractor
streams (orange). Spaghetti plot shows single-subject data averaged across channels of interest. Connection lines
between dots indicate the same subject. Bayes factor visualisation: pie charts show the probability of data given
H1 (red) and H0 (white) for pairwise comparisons. Shaded areas depict distributions of the data. B. Unfolding
neural tracking across time lags (-100-500 ms). Solid lines show the averaged neural tracking (encoding accuracy;
r) across subjects (N=19) and channels of interest (topographic map). Shaded areas show the standard error
for each time lag across subjects. Cluster permutation test revealed two significant clusters between target and
neutral (136-232 ms) and between target and distractor (136-208 ms). Black bars indicate significant clusters.
No significant clusters between distractor versus neutral were found. Topographic maps depict average neural
tracking (r) for the three streams (0-500 ms).
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3 Study 1: Auditory neural tracking reflects target enhancement but not distractor suppression in a

psychophysically augmented continuous-speech paradigm

3.4.4 Neural tracking reflects target enhancement, not distractor suppression

Neural tracking reflects the strength of the representation of a speech stream in the EEG (see methods

for details). For neural tracking, we asked whether selective attention is driven by an enhancement of the

target, a suppression of the distractor, or a combination of the two. The most important finding of this

study resulted from the differential neural tracking of the target and neutral streams (target enhance-

ment; Fig. 9B).

Analysis of the neural tracking (0-500 ms) revealed a difference between the target and neutral stream

indicated by a linear mixed model on the mean neural tracking (0-500 ms) and Bayesian t-test for target

stream versus neutral stream (t = 3.67; df = 32; p ¡ 0.001; BF10 = 6.5, supporting H1 over H0) and

between the target and distractor stream (t = 2.78; df = 32; p¡ 0.05; BF10 = 2, weakly supporting H1

over H0). There was no significant difference in neural tracking of the distractor versus neutral stream

and also the Bayes factor is not evidential (t = 0.88; df = 32; p = 0.383; BF10 = 1.6). If at all, the Bayes

factor indicates the unexpected finding that the distractor stream was tracked slightly better than the

neutral stream (see Fig 9). Topographies revealed the strongest neural tracking for central and frontal

channels.

Lastly, we analysed the temporally resolved dynamics of target enhancement and distractor suppression

(Fig. 9B). Unfolding neural tracking across time lags revealed differential tracking of the target and neu-

tral streams. Target enhancement of encoding target versus neutral speech was signified by one cluster

(136-232 ms; cluster p = 0.0044) We observed no significant clusters separating the neural response to

neutral versus distractor stream.

Altogether, these findings indicate that neural tracking in a continuous speech tracking para-digm re-

flects a neural mechanism of target enhancement at the auditory cortical level, but no active distractor

suppression.

3.4.5 Neural tracking of the target stream is associated with perceptual performance

To test the relationship between neural tracking and repeat detection performance, we modelled binary

response behaviour (hit vs. miss) as a linear function of neural tracking for the speech streams in the

target, neutral and distractor streams using a generalized linear mixed model (GLMM; see methods for

details). Further, we also controlled for the different numbers of repeats in the target stream by adding

the trial number as a continuous predictor into the model. We also included the subject ID, the number of

repeats (total experiment), and the condition-to-location assignment (neutral front, left, right) as random

intercepts into the GLMM.

Neural tracking of continuous speech of the target stream displayed a positive linear relationship with

participant’s performance (β±SEM = 0.077±0.029; z = 2.618; p = 0.009). The higher the tracking

accuracy of the target stream during a 20-s trial, the more likely participants detected repeats in that
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stream during that trial. We observed no such linear relationship in the neutral (β±SEM = 0.017±0.029;

z = 0.589; p = 0.556) or distractor streams (β±SEM = –0.023±0.029; z = –0.806; p = 0.420; Fig. 10A,

left panel).

Figure 10: Brain–behaviour relation
Brain–behaviour relation. A. Standardized estimates (fixed effects, with SE) for the prediction of binary
response behavior (hit vs. miss) by speech and repeat tracking for the target (green), neutral (gray) and distractor
stream (orange).B. Coloured dots and gray lines show single subject proportion correct scores; black dots and a
black line show the average across (N=19) subjects. For illustration, data were binned by stream/repeat tracking
and normalization was done by subtracting the mean of single subject data across all bins from each corresponding
subject data bin. Inset shows the model prediction for each bin.

Note especially that the estimates for the target stream and distractor stream pointed in opposite di-

rections (Fig. 10A, left panel). We thus used a Wald statistic to test if the two estimates differed

significantly from each other. The behaviour-beneficial contribution of the neural tracking of the target

stream was positive and differed significantly from (as per sign of the estimator, behaviour-detrimental)

neural tracking of the distractor stream (ZW ald = 2.44, p = 0.015). As to be expected, the smaller

differences between the neutral and target estimates (ZW ald = –1.44, p = 0.147) and the neutral and

distractor estimates (ZW ald = 0.97, p = 0.332) proved not significant.

To control for potential confounding of the speech tracking in the target stream by the neural response

to the to-be-attended repeats, we also included neural repeat tracking from all three streams in our

model. Unsurprisingly, we observed a positive linear relationship between participant’s performance and

neural repeat tracking (β = 0.246; SE = 0.023; z = 8.235; p < 0.001) in the target stream. This shows

that stronger neural responses to repeats in the target stream were associated with better behavioural

detection of repeats. On the other hand, we observed no significant linear relationship between the

tracking of a repeat in the neutral (β = −0.018; SE = 0.028; z = −0.644; p = 0.520) or in the distractor

stream (β = 0.034; SE = 0.029; z = 1.197; p = 0.231; Fig. 10A, right panel). For illustration only, we

binned the data by the strength of stream and repeat tracking into five bins (Fig 10B, right panel).
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3 Study 1: Auditory neural tracking reflects target enhancement but not distractor suppression in a

psychophysically augmented continuous-speech paradigm

3.4.6 Control Analysis I: Listeners process the content of competing speech streams

The behavioural outcome from the comprehension questions was not of major interest to us, since the de-

tection of repeats provides a much more reliable and finely resolved measure of behavioural performance.

However, one concern we aimed to alleviate was that participants might have been only detecting repeats

rather than listening to the speech content of the target stream at all; acoustic–phonologically processing

the speech streams alone would probably be enough to identify the repeats. To further explore the degree

to which listeners processed the speech streams semantically, 15 multiple-choice comprehension questions

addressing all three streams were provided at the end of the study.

We used double iterative bootstrapping to estimate the 95% CI for the difference between the percentage

of correctly answered questions and the previously determined empirical chance level of 40% (N=9 dif-

ferent participants only answering the questions without exposure to the full audio books; see Methods).

By design, we were not able to differentiate between percentages of correctly answered questions in the

target and distractor streams, as these switched their roles on a trial-by-trial basis. For instance, some

questions required processing on a time scale that exceeded the trial length of 20s, which meant that some

parts of the respective audiobook content belonged to the target and others to the distractor. Hence, we

combined the correctly answered questions from the target and distractor streams (50±2%, mean±SEM,

range: 30-67%).

This average response accuracy was significantly better than the empirical chance level (CI: 4.6–14.2%

above chance). The percentage of correctly answered questions of the neutral audio stream was closer to

chance (48±3%, mean±SEM, range: 27–80%), but there remained a significant if slim difference against

the empirical chance level (CI: 0.9–14.6% above chance). The percentages of correctly answered questions

did not differ systematically for the target/distractor stream versus the neutral stream (CI: –3 – 6.3%).

3.4.7 Control Analysis II: Condition-to-location assignment does not confound interference by

distracting speech and sub-processes of attention

In a further control analysis, we considered the possibility that the spatial condition-to-location assign-

ment could have an indirect effect on our behavioural and neural measures. Between subjects, we varied

the position of the neutral sound stream (neutral: front/left/right). The different positions of the neutral

stream lead to a different assignment of the target and distractor streams. The spatial separation be-

tween the target and distractor streams was 90° when neutral was presented at 0° and 45° when neutral

was presented at 45° or -45°. To control for the different spatial condition-to-location assignments, we

included the factor condition-to-location assignment as a covariate in our behavioural and neural analysis.

In our behavioural analysis, we observed a significant main effect of the factor condition-to-location as-

signment (F = 4.47; df = 15; p = 0.03). This effect is mostly driven by a significant difference between

the condition-to-location assignment: neutral front versus neutral right (t = 2.96; df = 15; p = 0.01).

In other words, participants correctly detected more repeats when the neutral stream was presented in
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front compared with the neutral stream presented on the left or right. There was no significant difference

between neutral front versus neutral left (t = 1.29; df = 15; p = 0.22) and neutral right versus neutral

left (t = -1.71; df = 15; p = 0.11). Importantly, however, the difference in sensitivity was independent

of the spatial position of the neutral stream: There was no significant interaction between the factors

attention and condition-to-location assignment (F = 1.44; df = 15; p = 0.268).

In our neural analysis, the main effect for the factor condition-to-location assignment was not significant

(F = 0.328; df = 16; p = 0.725). Importantly, the differences in neural tracking were independent of the

spatial position of the neutral streams. There was no significant interaction between the factors attention

and condition-to-location assignment (F = 0.88; df = 32; p = 0.482). In sum, between-subject differences

in the spatial condition-to-location assignment did not confound our results.

3.4.8 Control Analysis III: Unfolding of neural filters (TRFs) across trial duration

To account for the possibility that attentional processes such as enhancement, capture, and suppression

unfold on different time scales over the trial duration and might cancel each other out, we divided the 20-s

trial into 4, non-overlapping windows of 5 s each and estimated TRFs separately for each window (Fig.

11). Cluster permutation tests revealed that target enhancement is sustained across the trial duration.

Importantly, we found no significant clusters for the distractor-vs.-neutral contrast (i.e., no evidence

for capture or suppression). Also, a temporally more finely resolved analysis revealed no evidence for

distractor capture or suppression. This analysis further supports our finding that target enhancement

(i.e., attentional gain) is the dominant mechanism that modulates the neural phase-locked response to

competing speech in a cocktail party scenario.

Figure 11: TRFs across trial duration
TRFs across trial duration. TRF β-weights are estimated in four separate 5 s time windows across the trial
duration (20s), representing early to late attentional processing during the trial. TRF β-weights are averaged
across subjects (N=19) and channels of interest: Fz, Cz, CPz and Pz (solid lines). Shaded areas show the standard
error for each time lag across subjects. Cluster permutation test shows significant clusters between target and
neutral speech tracking in each time window (green bars). No significant clusters for distractor versus neutral
speech tracking are observed.

3.5 Discussion

The present study aimed to test whether the human auditory cortex enhances targets or suppresses

distractors when implementing selective attention to continuous speech. To do so, we have proposed a

new, three-stream continuous-speech design with an embedded psychophysical task. The most important
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3 Study 1: Auditory neural tracking reflects target enhancement but not distractor suppression in a

psychophysically augmented continuous-speech paradigm

results can be summarised as follows:

First, the paradigm is feasible to delineate different sub-processes of auditory attention, separating a

task-relevant target speech stream better from potentially neutral speech than from distracting speech.

This finding proved robust under analyses controlling for stream location relative to the listener.

Second, the neural results suggest that attention is implemented through enhancement of the target

stream. This lack of neural differentiation of tracking a distracting vs. tracking a neutral stream speaks

against mechanisms of ”active” or below-baseline neural suppression of distractors at the level of the

human auditory cortex as measured with EEG.

Third, in line with an enhancing neural attention mechanism, the momentary neural tracking of the

target but not the neural tracking of other, competing streams can predict the momentary likelihood

that a listener detects events in this target stream.

3.5.1 Neural tracking of speech implements enhancement, not suppression

As in previous studies (e.g., Di Liberto et al., 2015; Ding & Simon, 2012; Fiedler et al., 2019; Har-shai

Yahav & Zion Golumbic, 2021; Kerlin et al., 2010; Kraus et al., 2021; Lalor & Foxe, 2010) we found the

strongest neural tracking for the target stream, which was mainly due to enhanced N1 and P2 compo-

nents of the cortical response. Notably, this improved tracking could be due to increased sensory gain,

but it could also be due to more precise temporal fidelity of the target stream, or both (Ponjavic-Conte,

Hambrook, Pavlovic, & Tata, 2013). Critically extending these previous findings by implementing a neu-

tral, task-irrelevant ”baseline stream” in a three-talker paradigm, we were able to assign these previous

findings to two sub-processes of selective attention: target enhancement and distractor suppression. We

found a significant difference in neural tracking between target and neutral streams but no significant

difference between distractor and neutral streams.

We found that participants erroneously detected more repeats in distractor versus neutral speech, which

indicates attentional capture on the behavioural level. Despite this signature of capture in behaviour,

we found neither suppression nor capture in the neural speech tracking response. In the visual modality,

it was shown that capture and suppression go together. A distractor can capture attention, followed by

suppression thereafter (Gaspelin & Luck, 2018). We have addressed this issue by analysing different time

windows along the trial. However, we found no evidence for distractor capture or suppression, analysing

early and late time windows separately. But that does not mean that suppression is not implemented

on the cortical level in general. For instance, modulation of alpha oscillatory power is a potential neural

mechanism that might implement distractor suppression in a scenario with competing auditory streams

(Wöstmann, Alavash, & Obleser, 2019).

Neural tracking of ignored speech is modulated by signal-to-noise ratio (SNR), hearing loss and percep-
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tual demand. Fiedler et al. (2019) showed that SNR manipulations of ignored speech led to differential

modulation of ignored speech and the resulting neural tracking. Also, hearing loss differentially affected

neural tracking of attended versus ignored speech (Petersen et al., 2017). Recently, it was found that

neural tracking of distracting speech in noisy auditory scenes depends on perceptual demand (Hausfeld,

Shiell, Formisano, & Riecke, 2021). Following a rationale established before in visual neuroscience (Seidl

et al., 2012), we manipulated the attentional fate of ignored speech by varying the listener’s need to

minimize or eliminate interference generated by the (previously task-relevant) distractors.

There is plenty of experimental evidence suggesting that selective attention is mainly enhancing the

neural signal–to-noise ratio, thus effectively clearing or sharpening target representations in the visual

and auditory domain (Desimone et al., 1995; J. B. Fritz, Elhilali, David, & Shamma, 2007; Gazzaley,

Cooney, McEvoy, Knight, & D’esposito, 2005; Kastner, Pinsk, De Weerd, Desimone, & Ungerleider, 1999;

McAdams & Maunsell, 1999; Mesgarani & Chang, 2012; Peelle et al., 2013; Golumbic et al., 2013). In

line with these findings, we show that the prioritization of the neural representation of the target auditory

input is mainly implemented by an enhancement of the target. In this respect, our results are also no-

tably in line with a recent visual EEG study on attentional suppression by Gundlach et al. (2022). Also,

another recent study investigated whether exogenous attention led to facilitation of attended information,

suppressed unattended information, or both (Keefe & Störmer, 2021). Both studies found that attention

rather operates on target enhancement than distractor suppression.

Generally, our study adds to the unsettled debate in attention research over neural implementations of

suppression. Even before the present study, evidence in the literature for distractor suppression has been

mixed, with some studies speaking to (Desimone et al., 1995; Schwartz & David, 2018; Seidl et al., 2012;

Wöstmann, Alavash, & Obleser, 2019) and others speaking against distractor suppression (Gundlach et

al., 2022; Keefe & Störmer, 2021; Noonan, Crittenden, Jensen, & Stokes, 2018).

Classical theories of attention permit some form of distractor suppression (Broadbent, 1958; Treisman,

1960), and there might well be distinct types of distractor suppression as endpoints to a continuum. Also,

from a neurocognitive vantage point, distractor suppression does not need to be one single process and

could rather be implemented via multiple neural mechanisms.

Firstly, suppression could be driven by the current intention of the observer extracting statistical reg-

ularities of certain features such as location of a distractor over time, enabling the brain to learn to

produce suppression (Wang & Theeuwes, 2018b; Wöstmann et al., 2022). In the long term (duration of

the experiment), participants could learn based on statistical regularities the location (same location of

distractor stream) and the voice of the talker (same voice). Secondly, in the short term (every trial),

participants are cued (current intention) to attend to one stream and to suppress the distractor (negative

priming). In principle, our paradigm might initialise both of these types of distractor suppression. While

it is debatable whether the effect of our negative priming manipulation persists over the whole trial dura-
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tion (probably decreasing over time), learning and using statistical regularities of the distractor over time

should persist in the long term of the experiment. However, we found no significantly suppressed neural

tracking of the distractor vs. neutral stream, which suggests that the neural speech tracking response does

not implement distractor suppression. Contrary to our hypothesis, results hinted rather at a potentially

stronger tracking of the distractor compared to the neutral stream although this was not a statistically

robust observation in the present data. For future studies, it is nevertheless important to consider such

an attentional capture of the distractor stream (Gaspelin & Luck, 2019). In addition, participants could

also have left some residual attention to the distractor stream in terms of divided attention between the

currently relevant target stream and the previously relevant distractor stream, which led to the potentially

stronger tracking of the distractor compared to the neutral stream (Miller, 1982). However, given the

high hit rate for the target and the comparably low false alarm rate for the distractor stream, it appears

rather unlikely that participants used divided attention as a strategy at least over the entire trial duration.

Secondly, distractor suppression can be generally divided into proactive (processing before the distrac-

tor appears) and reactive suppression (processing after the distractor has captured attention; Chelazzi,

Marini, Pascucci, & Turatto, 2019; Wöstmann et al., 2022). The amplitude of neural alpha oscillations

( 10 Hz) related to top-down selective attention processes can be modulated by target- and distractor-

processing. Wöstmann, Alavash, and Obleser (2019) found that alpha power during the anticipation

of competing tone sequences implements distractor suppression independent of target enhancement. In

a behavioural study, it was shown that the intelligibility of the target is improved when the masker is

a familiar voice (Johnsrude et al., 2013). Their findings suggest that the brain uses a prior model of

the characteristics of the distractor to actively suppress the distractor. In sum, the aforemetioned re-

sults speak to a proactive implementation of distractor suppression. But neural tracking is characterized

by the time-lagged neural responses that phase-lock to the stimulus. Due to this characteristic, neural

tacking is rather suited to investigate reactive suppression than proactive suppression. With respect to

these distinguishable sub-processes of distractor suppression, our results indicate that at least reactive

suppression is absent for auditory cortex responses in a multi-talker situation.

3.5.2 Auditory attention exploits statistical regularities to separate distracting versus neutral speech

When considering how distracting versus neutral, task-irrelevant speech might be encoded neurally, a

previous auditory study using also three streams had suggested that higher-order auditory areas provide

an object-based representation for the foreground, but the background remains unsegregated (Puvvada &

Simon, 2017). At first glance, our results are broadly in line with this conclusion, but note that Puvvada

and Simon had not applied any differential task manipulation to the two background speech streams,

which we aimed to achieve here. The here proposed experimental paradigm aimed to strike important

compromises in studying the listener’s neurocognitive ability to separate target, distractor and neutral

speech.

In contrast to trial-based designs, continuous speech paradigms often lack rich behavioural data. Usually,
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comprehension questions regarding the content of the audio streams are asked to differentiate between

attended and ignored audio streams (Broderick, Anderson, Di Liberto, Crosse, & Lalor, 2018; Fiedler et

al., 2019). Asking comprehension questions has some drawbacks. Comprehension questions usually refer

to a comparable long-time range. This limits the number of questions and thus the number of behavioural

data that can be extracted from the experiment. Further, in our paradigm participants had to switch

their attention every 20s between two audio streams, which did not allow us to strictly assign the ques-

tion to attended or ignored parts of the audio streams. Hence, it was insufficient to ask comprehension

questions solely to investigate the listener’s cognitive ability to separate target, distractor, and neutral

speech on the behavioural level. More fine-grained behavioural data were needed, ideally without losing

much of the ecological validity of natural speech.

We used short repeats in the audio streams to obtain rich behavioural data. In trial-based designs,

participants are asked much more frequently to respond, which also ensures a steady engagement in the

listening task. Marinato and Baldauf (2019) also embedded short repeats in auditory objects, arguing

that such a detection task requires the processing of the acoustic stream at the level of auditory objects.

Such a repeat detection task might thus be particularly suited to study object-based mechanisms of se-

lective attention. Adopting this approach here, we found that participants detected much more repeats

in the target (hits) compared to the neutral and ignored stream (false alarms).

Recall that, in our paradigm, participants had to switch attention between the same two streams while

they had to ignore the never-task relevant neutral stream. Importantly, we found a significantly larger

behavioural interference by distractor speech than by neutral speech, but what is the underlying mecha-

nism? Our results suggest that the neural fate of a stream on the previous trial has the potency to make

it more distracting and capture attention on the text trial. This corresponds with the concept of negative

priming. Negative priming refers to the effect that the reaction to a stimulus that was previously ignored

is more error-prone and slower (Tipper, 1985). Classical negative priming designs consist of two main

components: the prime (trial N) and the probe (trial N+1). The prime presents a certain stimulus (or

stimulus feature) as a distractor, which becomes the target in the probe trial. Negative priming has been

studied in vision in a detailed manner (E. Fox, 1995; May, Kane, & Hasher, 1995).

Although there are fewer studies that investigated negative priming in auditory selective attention, they

reported similar results (Frings et al., 2015). Nowadays, most researchers agree that auditory negative

priming (similar in vision) is explained by inhibition and retrieval theories (Frings et al., 2015). Longer

response times and higher error rates are typically observed relative to a no priming condition (Banks et

al., 1995; Mayr, Buchner, Möller, & Hauke, 2011; Mayr & Buchner, 2007). Notably, we did not present

the same segments of the audio streams on two consecutive trials. Participants had to attend and ignore

different segments of the audio streams in each trial, due to the ongoing structure of continuous speech.

We assume that it was rather the spatial location or/and the voice that was associated with negative

priming and leaked into the present trial, than the identity of the auditory stimulus. On the one hand, if a
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listener attended to a specific feature of an auditory object, not only this specific feature is enhanced, but

all features related to the selected object (for review see, B. G. Shinn-Cunningham, 2008). On the other

hand, one could argue that this also holds for features concerning negative priming and object suppression.

A more recent study varied randomly the location of the target and distractor and the speaker (Eben et

al., 2020). They demonstrated negative priming in auditory selective attention switching with the spoken

material. In sum, our new paradigm has proven feasible to utilise the negative priming phenomenon to

unravel listeners’ separation of distractor speech versus neutral speech.

3.5.3 Neural tracking of target but not distractor explains performance

Continuous speech paradigms often lack rich behavioural data. But only if we unravel the precise rela-

tionship between brain and behaviour can we reach a veridical understanding of cognitive processes such

as selective attention (Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017). We embedded

short repeats into the speech streams, which served as a trial-by-trial measure for behaviour. In addition,

this also enabled us to predict behaviour from neural responses on a single-trial level. We found that

neural tracking of the target stream only predicted trial-by-trial variation in repeat detection. Our results

not only provide support to the functional relevance of neural speech tracking (Tune et al., 2021), but sig-

nificantly expand this by providing an explanation for the underlying sub-processes of auditory selective

attention, that is, enhancement of the target and not suppression of distractors predicts performance. In

addition, this finding supports the feasibility of our new continuous speech paradigm since we found a

significant relation between the neural tracking of continuous speech and the repeat detection behaviour.

Further, the finding supports our previous findings since only target enhancement predicts behaviour.

Indicating that the prominent process of selective attention is target enhancement rather than distractor

suppression.

3.6 Limitations

There are limitations regarding the operationalization of the neutral and distractor streams. First, the

attentional manipulation by their respective task-relevance (Seidl et al., 2012) of the distractor stream

might not lead to an interference strong enough that distractor suppression was useful. Thus, it is possible

that negative priming in combination with the spatial and/or spectral separation of the audio streams was

insufficient to activate the need of distractor suppression in our study. Future studies could address this

by varying for instance, the separation between the audio streams (Hausfeld et al., 2021). The task may

become more difficult with smaller spatial separation, which potentially activate distractor suppression.

In addition, our sample size (N = 19) could have been too small to detect small distractor suppression

effects. Note, however, that any such distractor-suppression effect size would need to be put in perspective

given the considerable effect sizes of target enhancement we observed. So, the relative conclusion about

target enhancement vs. distractor suppression would remain. Thus, the conclusion stands that target

enhancement is the behaviourally and neurally more prominent sub-process of selective attention in a
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continuous speech paradigm.

3.7 Conclusion

In attention research, previous paradigms have rarely aimed at conclusively separating mechanisms of

distractor suppression from mechanisms of target enhancement. Using a new, psychophysically augmented

continuous-speech paradigm with three speech streams, our results demonstrate that neural tracking of

continuous speech reflects target enhancement, not distractor suppression. These findings call for a

refinement of current models about enhanced neural responses to speech and should account for specific

sub-processes of selective attention, that is, the enhancement of targets rather than the suppression of

distraction.
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4 Exploring the interplay between dynamic range compression and
selective attention in competing-talker environments

4.1 Introduction

In everyday life, people often encounter challenging hearing situations where multiple auditory signals are

present. Selective attention allows listeners to prioritise a target auditory signal over distracting signals

that may be occurring simultaneously (Desimone et al., 1995). People with normal hearing are remark-

ably adept at focusing on relevant signals (even complex signals like speech) while filtering out concurrent

distractions (Cherry, 1953). However, individuals even with mild to moderate hearing impairments often

struggle in multi-talker situations. Hearing aids are the most common treatment for people suffering from

hearing impairment. In our study, we explored the impact of amplitude compression on the ability to

focus attention and how it interacts with attention. We hypothesised that by compressing the amplitude

of ignored talkers, the distinction between attended and ignored talkers would be enhanced, resulting in

improved performance for the listener.

In recent years, computational techniques have been developed to estimate neural responses to single con-

tinuous auditory stimuli, even in the presence of other sounds (Crosse et al., 2016). Electrophysiological

responses in cortical regions phase-lock to speech features in magneto/electroencephalogram recordings

(Luo & Poeppel, 2007). The ”temporal response function” (TRF) captures this linear relationship be-

tween continuous speech features and neural response and can be interpreted in close analogy to the

classical ERP (Crosse et al., 2016; Fiedler et al., 2019). Neural phase locking to the low-frequency enve-

lope of speech, referred to as ”neural speech tracking” (Obleser & Kayser, 2019), serves as an objective

measure for differentiating attended speech from concurrently ignored speech. Numerous studies have

shown that individuals with normal hearing exhibit stronger neural phase locking to the envelope of at-

tended speech compared to ignored speech (e.g., Brodbeck & Simon, 2020; Ding & Simon, 2012; Fiedler

et al., 2019; Puvvada & Simon, 2017; Golumbic et al., 2013). Additionally, there is evidence that neural

phase locking to the envelope of speech correlates with speech intelligibility (Peelle et al., 2013), as well

as behavioural indices of speech comprehension (Etard & Reichenbach, 2019), and that stronger speech

tracking enhances trial-to-trial behavioural performance (Tune et al., 2021).

Since neural tracking can be an objective measure for selective attention and correlates with behavioural

measures, it is an interesting basis for research concerning the hearing-impaired system. However, the

literature provides mixed evidence on how hearing impairment affects the neural tracking of the speech

envelope. Early studies showed that poorer hearing was related to stronger tracking of the ignored en-

velope (Petersen et al., 2017). On the other hand, more recent studies suggest that hearing-impaired

listeners show stronger neural tracking compared to the age-matched control group (Fuglsang et al.,

2020). In contrast, other studies found no differences between older listeners with normal and impaired

hearing in neural speech tracking (Goossens, Vercammen, Wouters, & van Wieringen, 2019; Presacco,

Simon, & Anderson, 2019). The contradictory effects of hearing loss on neural tracking may be due to
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the complex interplay between ageing, the severity of hearing loss, and cognitive abilities. More recently,

Schmitt et al. (2022) reported enhanced speech tracking with increasing hearing loss and suggested that

the hearing impaired rely more on the tracking of slow modulations in the speech signal to compensate

for their hearing deficit.

It’s worth noting that changes in neural tracking have been observed in studies related to auditory

processing. For instance, vocoding can lead to delayed neural separation of competing speech during

attentional selection (Kraus et al., 2021), and late cortical tracking of ignored speech is modulated differ-

ently based on signal-to-noise ratios (Fiedler et al., 2019). Furthermore, a recent study found that neural

speech tracking can serve as an indicator of the benefits of hearing aid algorithms, including amplitude

compression (Petersen, 2022). Overall, these findings suggest that neural speech tracking could be a

useful tool for researchers seeking to understand the effects of various hearing aid algorithms, such as

dynamic range compression.

Dynamic range compression is an audio signal processing algorithm that amplifies quiet sounds while

reducing the intensity of loud sounds. Dynamic range compression is commonly used in hearing aids

to compensate for loudness recruitment in hearing impaired listeners with presbyacusis and to restore

the outer world audio dynamic into the listener’s hearing range (Kates, 2005). However, dynamic range

compression also leads to undesired side effects. For instance, compression directly affects the envelope

of a speech signal. It reduces the amplitude modulation depth, impairs the envelope shape, and leads to

abrupt changes in the onsets and offsets of the speech envelope (Stone & Moore, 1992). Since the envelope

of speech is not just a simple acoustic feature of speech but also associated with speech comprehension

(for review, see Poeppel & Assaneo, 2020). We assume that dynamic range compression impairs, in gen-

eral, the neural tracking of speech. However, hearing aids are able to perform spatial signal processing.

This allows hearing aids to apply different compression ratios to different spatial locations of signals. If a

comparable strong compression is only applied to ignored speech, this could be a potentially useful tool

in a multi-talker situation. In addition to a pure reduction of the SNR, which has the consequence that

ignored speech (noise) is very strongly down-regulated and makes a change of attention more difficult. In

contrast, a higher compression ratio for ignored speech may provide a sweet spot between suppression and

the ability to switch speakers situationally. We hypothesise that amplitude compression on the ignored

stream increases the behavioural and neural separation between the attended and ignored streams, as

reflected by faster response times and increased behavioural responses. This hypothesis is based on the

assumption that compression on ignored talkers will reduce their salience and facilitate their suppression

by attention, thereby leading to improved performance on the attended task.

To test our hypothesis, we first conducted a pilot experiment to determine the appropriate compression

ratio for the following main experiments. We then recruited 24 normal hearing control participants to

participate in a quasi-categorical paradigm in which the speech streams could be unprocessed, compressed,

or one of the two streams could be compressed while the other was not. Following this, we modelled
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the human auditory periphery using the model from (Verhulst et al., 2018) to investigate the peripheral

fate of compressed and unprocessed speech in normal hearing and hearing-impaired participants. In the

following, we measured hearing-impaired participants with presbycusis in the same experiment as normal

hearing participants, accounting for overall sound pressure level. Finally, we conducted a behavioural

control online experiment to verify our used loudness matching procedure.
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4.2 Methods

4.2.1 Normal hearing participants

The participants in the current study were 24 young adults (18 female and 6 male), aged 18 to 34 (mean:

25.5). Each participant reported having a native language of German, having normal hearing, and having

no prior neurological conditions. We measured pure tone audiometry between 250 and 4000 Hz to confirm

normal hearing. For the tested frequencies, all participants displayed auditory thresholds below 20 dB.

They provided written, fully informed consent and were paid 10 euros per hour. The study was approved

by the local ethics committee of the University of Lübeck.

4.2.2 Hearing impaired participants

We recruited a total of 10 participants with hearing loss, but three of them had to be excluded from

the analysis. The first participant was excluded due to data loss during EEG recording, the second

participant was excluded because they did not perform the task correctly, and the third participant was

excluded because their hearing loss was due to acute causes in the right ear, rather than presbycusis.

Figure 12: Audiogram and PTA

The study enrolled individuals between the ages

of 50 and 75 with mild to moderate presbycusis,

defined as a pure tone average (PTA) between 20-

50 dB HL (Humes et al., 2012), similar hearing

thresholds in both ears with a maximum differ-

ence of 10 dB, and no or less previous experience

with compression in hearing aids, either unaided

or with no longer than one year of prior use. The

remaining N = 7 participants were aged between

60 to 73 years old, with an average age of 68.4

years. This also means that both groups were not

matched in age. To assess their hearing ability,

pure tone audiometry was performed for frequencies ranging from 250 to 4000 Hz. All participants

showed the typical sloping progression to higher frequencies in auditory thresholds, with pure tone av-

erages ranging from 26-40 dB HL and an average of 33.1 dB HL. Written, fully informed consent was

obtained from all participants, and they were compensated at a rate of 10 euros per hour. The study was

approved by the local ethics committee of the University of Lübeck.
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4.2.3 Stimulus materials

We presented audio versions of two different narrated book texts, ”Ludwig van Beethoven Basiswissen”

and ”Sophie und Hans Scholl Basiswissen”, both of which were spoken by professional talkers. We se-

lected audio streams that had not previously undergone amplitude compression. At an average intensity

(SPL mixture) of about 65 dB(A), which is comparable to the volume of a normal conversation, the two

audio streams overlapped in time.

Using customised MATLAB code, the stimuli were processed in the following steps (Version 2018a Math-

works Inc., Natick, MA, United States). The audio files had a 44.1 kHz sampling rate and a 16-bit

resolution. The maximum duration of silent periods was reduced to 500 ms (O’Sullivan et al., 2015).

By selecting 400 ms of the original audio stream and repeating it immediately after, we added brief re-

peats to both audio streams (Marinato & Baldauf, 2019). At least two seconds after the stimulus began,

the first repeat was shown. By linear ramping and cross-fading, each repeat was incorporated into the

sound stream. Utilizing a window of 220 samples (5 ms) from the down ramp’s end and the first 220

samples (5 ms) from the repeat itself, linear ramping was performed (up ramp). The cross-fading was

accomplished by combining the up and down ramps.

In order to prevent undetectable repeats of weak sound intensity, we further used an rms (root mean

square) criterion, which required that the repeat’s rms be at least equal to the rms of the stream from

which it was drawn.

Using a digital dynamic range compressor built into MATLAB, we applied amplitude compression to

the speech streams (Giannoulis, Massberg, & Reiss, 2012). The following is how we set the compressor

parameter: Attack time: 2 ms; release time: 15 ms; threshold: -40 dB. We used a high compression

ratio and relatively quick attack and release times compared to standard hearing aid processing (e.g.,

Kates, 2010). Then, to avoid clipping, the uncompressed and compressed audio books were both limited

to 99.95% (Figure 13). The compression ratio was determined by the pilot experiment (Section 4.3).

We created four pairs of segments -uncompressed & uncompressed, uncompressed & compressed, com-

pressed & uncompressed, and compressed & compressed- each belonging to both of the streams that were

simultaneously presented in order to maintain a balance between compressed and uncompressed segments

in the two streams. Each pair had a duration of 5-minutes. The pairings were arranged in a balanced

and random manner.

The root-mean-square (rms) is frequently used to match the intensity of distinct audiobooks. However, it

was demonstrated that the perceived loudness of RMS matched unprocessed and compressed speech dif-

fers (Moore, Glasberg, & Stone, 2003) Here, we matched the perceived loudness for time-varying acoustic

signals based on Zwicker using an internal MATLAB function (Zwicker & Scharf, 1965). We conducted a
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psychophysical experiment to confirm the viability of this algorithm using the stimuli we had previously

used (Section 4.7).

Figure 13: Stimulus processing pipeline
Stimulus processing pipeline. The most important stimulus processing flow is shown by A. The stimulus
is expressed as the envelope onset of the speech signal. First, the signal is processed by the compressor (ratio:
1/8, attack time: 2 ms; release time: 15 ms; threshold: -40 dB). Importantly, the limiter was then applied to
both signals the uncompressed and compressed signals- to avoid clipping. The compressed audio segments were
matched to the loudness of their uncompressed counterparts by using a MATLAB algorithm based on Zwicker and
Scharf (1965). The same stimulus envelope onset is shown uncompressed and compressed with loudness matching
in B.

The cue was presented at the center of the screen (resolution: 1920x1080, Portable HDMI Screen,

Wimaxit) in front of the participant (distance: 1 m). The spatial cue consisted of two sub-triangles

which had a size of 1.3° visual angle pointing to the front and back sound sources The two triangles had

different colours blue and red. Participants had to attend either to the red or the blue triangle. Since the

cue and the fixation cross were presented at the same time as the auditory stimuli, we ensured that the

possible interference between visual and auditory neural responses was as small as possible. In order to

achieve this, the cue was linearly faded in and out (50 ms each) to create a seamless transition between

the fixation cross and cue.

4.2.4 Experimental setup

The experiment was conducted in a soundproof chamber with two loudspeakers (Genelec: Speaker 8020D,

Denmark) placed at a one-meter radius in the front and back. The ground was 1.20 meters away from the

loudspeakers, and a chair was positioned in the center of the radial speaker array with its face aligned to

the loudspeaker at position 0° in the azimuth plane. Participants received a briefing on the experiment

in advance. Each participant was instructed to keep their eyes open, keep their gaze on the center of the
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screen, and sit as comfortably as they could. A chin rest was utilized to prevent head movement. Each

participant had their chin rest adjusted in height.

4.2.5 Experimental procedure

To study amplitude compression in a multi-talker paradigm, we developed a new experimental procedure.

The experiment was created using Psychophysics Toolbox extensions (Brainard & Vision, 1997; Pelli &

Vision, 1997) and MATLAB (MathWorks, Natick, MA, USA). Two audio streams were played simulta-

neously for participants. Each trial started with a cue that specified which stream to attend, displayed

for 500 milliseconds. A fixation cross was then shown for the remainder of the trial (19.5 s), while the

auditory stimuli continued to play in the background. Trials were presented continuously, with the next

trial starting immediately after the previous one ended.

Participants were required to identify short repeats in the target stream, with six repeats included in

each trial and randomly divided between the two streams. Prior to data collection, the experiment was

explained to participants, emphasising the importance of listening to the target stream’s content and

responding as quickly and accurately as possible to a repeat. Participants were given a single sentence

containing one repeat to acquaint them with the repeats, and were asked to provide oral feedback if they

were able to recognise it. Additionally, participants completed six practice trials that were identical to

the main experiment but used different audio streams. The main experiment lasted approximately one

hour and included 196 consecutive trials split into four blocks, with participants having the opportunity

to rest between each block.

At the conclusion of the experiment, we gave the participants 15 multiple-choice questions (each with

four possible answers). We did not pose the questions after every block to prevent participants from

paying attention to the audio stream that was meant to be ignored. Participants were presented with

the questions in a certain order and a set of potential answers that were randomised.
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Figure 14: Experimental paradigm
Experimental paradigm and hypothetical results. A Left: Experimental setup. Two loudspeakers are
placed in front (0◦ ) and back (180◦) of the participant. Speech streams are simultaneously presented over both
loudspeakers. A screen was placed in front of the participant. A spatial cue indicated to which location participant
had to attend. Right: Experimental paradigm. We had a quasi-factorial design with the factors attention (2-
levels:attended and ignored) and compression (2-levels: compressed and uncompressed). Importantly, attending
and ignoring always happened at the same time, while the factor compression was fully balanced. B Hypothetical
results. For the main effects, we would expect that attention (to-be-attend to the cued stream) has a positive
effect on the dependent variables, which means that attention leads to increased behavioural and neural results.
In contrast, compression would have a negative effect on the dependent variables, that is, decreased neural
and behavioural results. More importantly, we would expect an interplay between attention and compression.
Compression on the ignored stream, in particular, increases neural and behavioural separation when compared to
when no compression is applied to the ignored stream.

4.2.6 Sound pressure level adjustment for hearing impaired participants

The hearing-impaired participants completed the same experiment as their normal hearing counterparts,

using the same stimuli but with different randomizations of conditions. However, we made one change:

We adjusted the overall sound pressure level of the experiment based on each participant’s hearing loss.

To determine their hearing threshold, we used 500 ms parts of the stimuli that were presented in the

experiment itself over free-field loudspeakers. We employed a combination of limit and constant stimuli

methods to establish the threshold for the experimental stimuli. First, we presented pairs of compressed

and uncompressed stimuli snippets (one over the front loudspeaker, one over the back), with one always

louder than the other. In 3 dB steps, we decreased the sound pressure level of the signals each time the

participant pressed a button to indicate they could hear the sound snippet. Once the participant stopped

responding, we set this level as a reference for the method of constant stimuli. We then presented three

different levels in 2 dB steps before and after the reference level, with each level presented 10 times in

random order for a total of 70 presentations. We used the participants’ responses to fit a psychometric

function and obtained the SRT50 of this function as the new determined threshold. We added 35 dB to

this threshold to set the presentation level. However, we asked each participant after the procedure if the

overall presentation level was appropriate for them. If they did not agree, we adjusted the presentation

level in 5 dB steps until it matched their reported most comfortable perceived loudness. On average, the

presentation level was 72 dB ranging from 65 to 88 dB SPL.
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4.2.7 Data acquisition and pre-processing

A 24 electrode EEG-cap (Easycap, Herrsching, Germany; Ag-AgCl electrodes positioned in accordance

with the 10-20 International System) connected to a SMARTING amp was used to record the EEG

(mBrainTrain, Belgrade, Serbia). The portable EEG system sends the signal via Bluetooth to a com-

puter for recording . Using the program Smarting Streamer (mBrainTrain, version: 3.4.2), EEG activity

was captured at a sample rate of 500 Hz. Impedances were kept under 20 kΩ while impedances were used

as an online reference during recording using electrode FCz.

The Fieldtrip-toolbox, built-in functions, and MATLAB (Version 2018a Mathworks Inc., Natick, MA,

United States) were used for offline EEG preprocessing (Oostenveld et al., 2011). High- and low-pass fil-

ters were applied to the EEG data between 1 and 100 Hz, and the electrodes M1 and M2 (the left and right

mastoids) were averaged (two-pass Hamming window, FIR). On the EEG data from every participant, an

independent component analysis (ICA) was performed. Prior to ICA, M1 and M2 were removed. Visual

inspection was used to identify and remove ICA components associated with eye blinks, eye movement,

muscle noise, channel noise, and line noise. On average, 7.89 out of 22 components (SD = 2.74), were

disqualified. Back projected to the data were elements not connected to artifacts. Clean EEG data were

processed further. Frequencies up to 8 Hz are associated with neural speech tracking (Luo & Poeppel,

2007). EEG data were therefore low-pass filtered once more at 10 Hz (two-pass Hamming window, FIR).

EEG data were then segmented into epochs that matched the trial length of 20s and resampled to 125 Hz.

4.2.8 Extracting the speech envelope

By calculating the onset envelope of each audio stream, the temporal fluctuations of speech were quantified

(Fiedler et al., 2017). In the beginning, we used the NSL toolbox (Chi et al., 2005) to compute an auditory

spectrogram (128 sub-band envelopes logarithmically spaced between 90 and 4000 Hz). In order to create

a broad temporal envelope, the auditory spectrogram was secondly averaged across frequencies. Third,

the half-wave rectified first derivative of the onset envelope was obtained by computing the first derivative

of this envelope and zeroing negative values. In order to match the EEG analysis’s target sampling rate,

the onset envelope was lastly down sampled (125 Hz). By using the onset envelope instead of the envelope,

the envelope is moved in time. It’s significant that the TRF obtained by using the onset envelope as a

regressor resembles a conventional ERP the most (Fiedler et al., 2017).

4.2.9 Temporal response function and neural tracking estimation

A temporal response function (TRF) is a condensed brain model that illustrates how the brain would

process the acoustic speech envelope of the stimulus to produce the recorded EEG signal if it were a linear

filter. To calculate the TRF, we employed a multiple linear regression method (Crosse et al., 2016). In

order to more precisely predict the recorded EEG response, we trained a forward model using the onset

envelopes of the attended and ignored streams (e.g., Fiedler et al., 2019). In this framework, we examined
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delays between envelope changes and brain responses of between -100 and +500 ms.

To address EEG variance related to processing behaviorally relevant repeats and corresponding evoked

responses, we added all repeat onsets and button presses as nuisance regressors using stick functions.

These repeat onsets were added independently of the speech envelope regressors and chosen almost ran-

domly (within SNR threshold) for each speech stream.

To prevent overfitting, we used ridge regression to estimate the TRF and determined the optimal ridge

parameter through leave-one-out cross-validation for each participant. We predefined a range of ridge

values, calculated a separate model for each value, and averaged over trials to predict the neural response

for each test set. The ridge parameter with the lowest mean squared error (MSE) was selected as the

optimal value specific to each subject. TRFs were estimated from trials in the experiment. To avoid cue

conflicts, the first second of each trial was excluded. One model was trained on 192 trials using predictor

variables for the onset envelopes of attended and ignored streams, as well as stick functions for repeats

and button presses. These were modeled jointly (same regressor matrix) using the same regularization.

Neural tracking measures the representation of a single stream in the EEG signal, using TRFs to predict

the EEG response. By using Pearson correlation to compare the predicted and actual EEG responses,

the neural tracking (r) was calculated. By using the leave-one-out cross-validation method, we were

able to predict the EEG signal on single trials (see above). A sliding-time window (48ms, 6 samples,

24ms overlap) calculated neural tracking accuracy over TRF time lags, resulting in a time-resolved neural

tracking (Fiedler et al., 2019; Hausfeld et al., 2018; Kraus et al., 2021; O’Sullivan et al., 2015).

4.2.10 Statistical analysis

We employed various statistical methods to address our research questions. To examine the behavioural

data in relation to detected repeats, we utilised logistic regression to model the binary outcome (hit

= 1/miss = 0) of each repeat. We used a mixed model to predict the continuous dependent variable

response speed. We incorporated both attention and compression categorical predictors in both models

to examine their main effects and interactions. To investigate the attentional pairs (separate model), we

incorporated a categorical predictor that indicated the corresponding information of the pair in which

the dependent variable was measured. To assess statistical differences in neural tracking, we employed

mixed models with the same categorical predictors as previously mentioned. However, the difference was

that we utilised the models to predict neural tracking. Additionally, we included the categorical predictor

space (front/back) to control the spatial assignment of loudspeakers in the setup for all models. We used

jamovi for, gamlj package in R for fitting generalized linear mixed models (Jamovi Project, 2020), and

MATLAB’s fitlme function for fitting linear mixed models (MathWorks Inc., 2020).
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4.2.11 Statistical analysis on time series

We investigated whether there were differences in time points in time-resolved neural tracking and TRF

between subjects in different conditions and attentional pairs. To do this, we utilized a two-level statis-

tical analysis known as cluster permutation test, which was implemented in Fieldtrip (Oostenveld et al.,

2011). The analysis was conducted on data from 22 channels. At the single-subject level, we performed

one sample t-tests to assess TRF and time-resolved neural tracking differences. Clusters were defined

based on resulting t-values and a threshold set at p < 0.05 for at least three neighboring electrodes. The

observed clusters were compared to 5000 randomly generated clusters through a permutation distribu-

tion using the Monte Carlo method to correct for multiple comparisons (Maris & Oostenveld, 2007). The

cluster p-value was determined by the relative number of Monte Carlo iterations in which the summed

t-statistic of the observed cluster exceeded that of the random clusters.

Due to the small sample size of only seven participants with hearing impairment and six participants

for the pilot study, we employed double iterative bootstrapping to assess the statistical significance of

our results. This method is particularly useful for small sample sizes and can help to mitigate issues

with low power and unreliable results. Double iterative bootstrapping involves resampling both the

participants and the data, and then running the analysis multiple times to generate a distribution of

results that can be used to estimate the true population parameters. Instead of using a single bootstrap,

we opted for a double bootstrap approach (J. Fox, 2016) to improve the accuracy of the confidence

intervals. We performed the bootstrap procedure using the iboot package, which is designed for iterated

bootstrap analysis of small samples and samples with complex dependence structures (Penn, 2020). We

implemented the procedure in Matlab (MathWorks Inc., 2020) and used 2000 bootstrap samples and 200

repetitions for the inner loop based on the methods of Tibshirani (1993) and J. Fox (2016).

4.3 Study 2: The effects of compression ratio on neural tracking of speech: A

pilot study

In this pilot experiment, seven young individuals with normal hearing were asked to listen to a narra-

tive story that contained randomly balanced parts of three different compression and expansion ratios.

The compression ratios were 1:2 and 1:8, while the expansion ratio was 2:1. The participants were also

presented with a baseline condition where the narrative story was unprocessed. The task was to listen

to the content of the presented narrative story. The objective of this pilot experiment was to identify an

appropriate compression ratio to be used in a follow-up study.

For this pilot study, we opted to use a decoding approach rather than an encoding approach. The main

reason for this choice was to take advantage of the higher accuracy that can be achieved by using all EEG

channels for reconstruction also given the small sample. Additionally, we were able to avoid potential

confounds related to the temporal response functions of the brain to repeated stimuli, as well as confounds

related to button presses since repeats were not included in this pilot experiment.
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Figure 15: Pilot study
Neural results for different compression and expansion ratios. A Decoding accuracy refers to the Pearson
correlation between the stimulus onset envelope and the estimated onset envelope, using all EEG channels. Inset:
shows the decoding accuracy obtained by using the uncompressed onset envelops for all conditions. Bar plots
indicate the participants’ means, and error bars indicate the standard error of the mean (SEM). B Absolute
difference in decoding accuracy between compression and expansion ratios and the unprocessed baseline (raw).
Bar plots indicate the participants’ means, error bars to indicate the 95% bootstrapped confidence intervals
(CIs) against zero. C This plot shows the decoding accuracy for the unprocessed baseline compared to the
1:8 compression ratio, with dots representing individual subject data and connection lines indicating the same
subjects.Inset: shows the decoding accuracy obtained by using the uncompressed onset envelops for all conditions.
The boxes represent the interquartile range (25th to 75th percentile) of the data, with the median indicated by
a line inside the box. The whiskers extend to the most extreme data point, excluding outliers.

Figure 15 A depict the averaged decoding accuracy for different compression and expansion ratios. To

investigate differences between conditions we used bootstrapped CIs. For the comparison of compression

ratio 1:2 and expansion ratio 2:1 versus unprocessed baseline (raw) the bootstrapped CI included zero,

indicating a non-significant difference (Figure 15 B). However, for the difference between compression

ratio 1:8 and raw the bootstrapped CI is not including zero, indicating a significant difference. That is,

the decoding accuracy for the 1:8 compression ratio was significantly lower than that for the unprocessed

speech, as indicated by a bootstrap CI that did not include zero. Interestingly, each participant shows a

decreased decoding accuracy for the 1:8 compressed speech signal (Figure 15 C).

In all of our analysis, we used the onset envelopes of the actually presented signals. As a control, we

also conducted an analysis using the uncompressed onset envelope, even when the signal was expanded

or compressed, while keeping the ridge regression parameter λ constant (Figure 15 A Inset). In this

alternative analysis, we observed that most (5 out of 6) participants demonstrated a decrease in neural

tracking, as measured by decoding accuracy, for compressed (1:8) speech (Figure 15 C Inset).

Based on the results of the pilot experiment, we concluded that using a 1:8 compression ratio for amplitude

compression reduces the brain’s ability to track speech. Therefore, we chose to use this compression ratio

in our main experiment, which also included attention as an experimental factor. We made this decision
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for two main reasons. Firstly, our initial hypothesis that compression on ignored streams would increase

neural separation only works when participants focus their attention on one stream and ignore the other.

Secondly, attention could also have affected the compression effect in the pilot experiment, as participants

may not have been attending to the compressed (1:8) speech stream.
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4.4 Study 3: The interplay between dynamic range compression and selective

attention in normal hearing listeners

24 young, hearing-normal participants were simultaneously presented with two streams of continuously

narrated audio. The assignment of amplitude compression to the speech streams was counterbalanced

within participants. They had to alternate between the two audio streams on a trial-by-trial basis.

Participants had to quickly and accurately identify any repetitions in the attended stream while ignoring

the unattended stream.

4.4.1 Compression on both streams impairs performance

Here, we analysed the behavioural data in terms of the proportion of detected repeats and response

speed (dependent variables). We tested the effects of attention and compression (independent variables)

on the dependent variables. For the main effects, we would expect that attention (to-be-attend to the cued

stream) has a positive effect on the dependent variables, which means that attention leads to an increased

proportion of detected repeats and an increased response speed (inverse of response time). In contrast,

compression would have a negative effect on the dependent variables, that is, a decreased proportion of

detected repeats and a decreased response speed. We would expect a quasi-interaction between attention

and compression. However, it is important to note that we do not have a classic factorial design but that

the attended and ignored streams are always presented simultaneously, hence we contrasted attentional

pairs against each other. Specifically, we would expect that the effect of attention depends on compression,

with compression on the ignored stream increasing behavioral performance in contrast to the attentional

pair where no compression is applied to the ignored stream.
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Figure 16: NH: Behavioural results
Proportion of detected repeats and corresponding response speed. A Left: Proportion of detected
repeats per condition. Dots show individual (N=24) mean proportions of detected repeats. Light gray lines indi-
cate the same subject. The bold line represents the mean of the group. Right: Proportion of correctly detected
repeats in the attend stream displayed for attentional pairs (attend/ignore) with the four experimental compres-
sion combinations. The attentional pair (attend-uncompressed:ignore-uncompressed) served as a baseline and is
contrasted against the remaining three pairs. Dots depict single subject data. Histograms show the distribution
of the difference in correctly detected repeats for the contrasted attentional pairs. B Left: Response speed per
condition. Dots show individual (N=24) mean response speed. Light gray lines indicate the same subject. The
bold line represents the mean of the group. Right: Response speed of correctly detected repeats in the attend
stream displayed for attentional pairs (attend/ignore) with the four experimental compression combinations. The
attentional pair (attend-uncompressed:ignore-uncompressed) served as a baseline and is contrasted against the
remaining three pairs. Dots depict single subject data. Histograms show the distribution of the difference in
response speed of correctly detected repeats for the contrasted attentional pairs.

Participants were well able to detect repeats in the attended uncompressed stream (Figure 16 A left;

mean accuracy: 0.87, 95% CI: [0.84, 0.90]; mean speed: 1.56 s−1, 95% CI: [1.49, 1.62 s−1]). They were

also well able to detect repeats in attended compressed stream (mean accuracy: 0.86, 95% CI: [0.82,

0.89]; mean speed: 1.55 s−1, 95% CI: [1.49, 1.62 s−1]). They made a only few false alarms for the ignored

uncompressed stream (false alarm rate: 0.03, 95% CI: [0.02, 0.04]; mean speed: 1.65 s−1, 95% CI: [1.46,

1.84 s−1) and for the ignored compressed stream (false alarm rate: 0.03, 95% CI: [0.02, 0.04]; mean speed:

1.44 s−1, 95% CI: [1.34, 1.55 s−1). Jointly, the number of hits and false alarms indicate that participants

were attending to the cued speech stream. We found no significant difference in mean accuracy (b =

0.02, SE = 0.06, OR = 1.02, 95% CI [0.99, 1.14], p = .74) between the compressed and uncompressed

streams.

Participants responded with similar response speed to repeats in attend and ignored speech, no significant
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differences were observed (Figure 16 B left; b = 0.036, SE = 0.05, t(12268) = 0.74, p = 0.46). We found

a significant main effect of compression (b = 0.36, SE = 0.05, t(12260) = 7.36, p < .001), indicating

that compression on speech streams led to a decreased response speed. However, this main effect was

qualified by a significant interaction with attention (b = 0.69, SE = 0.1, t(12260) = 7.11, p < .001). A

closer examination of the interaction via post hoc tests showed that the decrease in response speed on

compressed speech was driven by ignoring (b = -0.7, SE = 0.1, t(12260) = -7.35, p < .001) not attending

(b = -0.012, SE = 0.017, t(12260) = -0.7, p = 1). That is participants showed slower responses to false

alarms in the ignore compressed stream.

Comparing the hit rate between attend uncompressed and ignore compressed vs. attend uncompressed

and ignore uncompressed, we found no significant difference (b = -0.09, SE = 0.07, OR = 0.92, 95% CI

[0.8, 1.01], p = .22) as well as for attend compressed and ignore uncompressed vs. attend uncompressed

and ignore uncompressed (b = -0.05, SE = 0.07, OR = 0.95, 95% CI [0.82, 1.1], p = .48). Participants

detected significant less repeats correctly when both streams were compressed vs. both streams uncom-

pressed (b = -0.25, SE = 0.07, OR = 0.78, 95% CI [0.67, 0.89], p < .001; Figure 16 A right).

We found a similar pattern comparing the response speed. No significant differences between attend

uncompressed and ignore compressed vs. attend uncompressed and ignore uncompressed (b = -0.012,

SE = 0.01, t(12252) = -1.2, p = .24) and attend compressed and ignore uncompressed vs. attend

uncompressed and ignore uncompressed were observed (b = -0.01, SE = 0.01, t(12252) = -1.01, p = .29).

Participants were significant slower detecting repeats in the attended stream when both streams were

compressed vs both streams uncompressed indicated by decreased response speed (b = -0.03, SE = 0.01,

t(12252) = -2.7, p = .007; Figure 16 B right).
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Figure 17: NH:Neural response
Neural tracking and TRF. A Neural tracking (r) refers to the encoding accuracy (0-500 ms) based on estimated
TRFs and envelopes. Spaghetti plot shows single-subject data averaged across channels of interest. Connection
lines between dots indicate the same subject. Green dots indicate attend tracking, while orange dots indicate
ignored tracking. Purple color indicates compression. B TRF β-weights are averaged across subjects and channels
of interest. Shaded areas depict the standard error for each time lag across subjects. Topographic maps depict
β-weights for time windows of the P1, N1 and P2/N2 components. Topographic map (C) indicates and solide
line (C) indicates significant cluster between attended uncompressed and attended compressed TRF. C Unfolding
neural tracking across time lags (-100-500 ms). Solid lines shows the averaged neural tracking (r) across subjects
and channels of interest (topographic map). Shaded areas show the standard error for each time lag across
subjects.Topographic maps depict average neural tracking (r; 0-500 ms).

4.4.2 Compression decreases neural speech tracking

The strength of a speech stream’s representation in the EEG is reflected by neural tracking (see methods

for details). Analysis of the neural tracking (0-500 ms) revealed significant main effects of attention, which

means that attended speech is stronger tracked than ignored speech (b = 0.08, SE = 0.02, t(9185) = 3.9,

p < .001) and compression, which means that uncompressed speech is stronger tracked than compressed

speech (b = 0.13, SE = 0.02, t(9185) = 6.4, p < .001; Figure 17 A). Attention and compression had no

significant interaction (b = -0.06, SE = 0.04, t(9185) = -1.36, p =.175).

To assess the statistical significance of differences in TRFs between conditions, we used a cluster permuta-

tion test (Figure 17 B). We found a significant negative cluster (24–104 ms; cluster p-value < .001) which

indicates a larger N1 amplitude for the attended signal, and a significant positive cluster (136-248 ms;
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cluster p-value < .001) which indicates a larger P2 amplitude for the attended signal between attended

uncompressed and ignored uncompressed TRFs. When attend compressed and ignore compressed were

compared, there was a significant negative (40-96 ms; cluster p-value =.005) and a significant positive

(144-248 ms; cluster p-value = <.001) cluster. We found a significant negative cluster comparing attended

uncompressed and attended compressed TRFs (56-112 ms; cluster p-value = .003) which indicates a larger

N1 amplitude for the attended uncompressed signal. No significant clusters between ignore uncompressed

and ignore compressed were observed.

To assess the statistical significance of differences in time-shifted neural tracking between conditions,

we used a cluster permutation test (Figure 17 C). We found a significant positive cluster between at-

tend uncompressed and ignore uncompressed (136-208 ms; cluster p-value = .001). Comparing attend

compressed and ignore compressed revealed a significant negative (64-88 ms; cluster p-value = .04) and

a significant positive cluster (136-160 ms; cluster p-value = .04). We observed no significant clusters

between attend uncompressed and attend compressed, as well as between ignore unprocessed and ignore

compressed.

Figure 18: NH:Neural response pairs
Neural tracking and TRF within attentional pairs. Overlapping double circle symbols indicate attentional
pairs. A circle in the foreground indicates attending while a circle in the background indicates ignoring. Purple
colour indicates compression. A Neural tracking (r) refers to the encoding accuracy (0-500 ms) based on estimated
TRFs and envelopes. 45◦ plot shows single-subject data averaged across channels of interest for the four attentional
pairs. B TRF β-weights and time-shifted encoding accuracy are averaged across subjects and channels of interest
for the four attentional pairs. Shaded areas depict the standard error for each time lag across subjects. Black
bars indicate significant differences between attend and ignore TRF.
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4.4.3 Increased neural separation due to decreased neural tracking of ignored stream

Analysis of the neural tracking (0-500 ms) within attentional pairs revealed (Figure 18 A) a significant

effect of attention when both streams were uncompressed (b = 0.11, SE = 0.046, t(9208) = 2.58, p =

0.01). When only the ignored stream is compressed, we see significantly more neural tracking of the

attended stream (b = 0.2, SE = 0.04, t(9208) = 4.9, p < .001). There was no significant difference

between attend compressed and ignore uncompressed (b = -0.03, SE = 0.04, t(9208) = -0.83, p = .406)

and when both streams were compressed (b = 0.05, SE = 0.04, t(9208) = 1.1, p = .263).

To assess the statistical significance of differences in TRFs within pairs, we used a cluster permutation

test (Figure 18 B). We found one negative and one positive cluster (PC, NC) for each attentional pair:

attend uncompressed & ignore uncompressed (NC: 40-104 ms, cluster p-value = .002; PC: 136-232 ms,

cluster p-value < .001), attend uncompressed & ignore compressed (NC: 40-112 ms, cluster p-value =

< .001; PC: 144-248 ms, cluster p-value < .001), attend compressed & ignore uncompressed (NC: 32-88

ms, cluster p-value = .03; PC: 128-240 ms, cluster p-value < .001) and attend compressed & ignore

compressed (NC: 40-104 ms, cluster p-value = .002; PC: 152-248 ms, cluster p-value < .001).
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Figure 19: NH: Comparison attentional pairs
Comparison between attended and ignored neural tracking arising from different simultaneously
presented attentional pairs. Neural tracking (r) refers to the encoding accuracy (0-500 ms) based on estimated
TRFs and envelopes. Overlapping double circle symbols indicate attentional pairs. The purple color indicates
compression. The bar plot shows the participant’s group mean (green = attend, orange = ignore), and single-
subject data are depicted as gray circles. Connection lines indicate the same subject. Error bars show a 95%
CI. Topographic maps (green = attend, orange = ignore) depict average neural tracking (0-500 ms). A shows
the comparison between attended and ignored streams from attend and ignore uncompressed pairs vs. attend
uncompressed and ignore compressed pairs, B shows attend and ignore uncompressed pairs vs. attend compressed
and ignore uncompressed pairs, C shows attend and ignore uncompressed pairs vs. attend and ignore compressed
pairs, D shows attend uncompressed and ignore compressed pairs vs. attend and ignore compressed pairs, E
shows attend compressed and ignore uncompressed pairs vs. attend and ignore compressed pairs, and F shows
attend uncompressed and ignore compressed pairs vs. attend compressed and ignore uncompressed pairs.

Importantly, based on our hypothesis that compression on the ignored stream increases the neural separa-

tion between the attended and ignored streams, we have taken a closer look on the attentional differences

between attended uncompressed & ignore compressed vs. attended uncompressed & ignore compressed

(Figure 19 A). We discovered no statistically significant differences between the attended uncompressed

streams from both pairs (b = -0.003, SE = 0.04, t(9208) = -0.08, p = 0.9). We found a significant differ-

ence between the ignored uncompressed and ignored compressed stream (b = 0.09, SE = 0.04, t(9208) =

2.3, p = 0.02) which indicates less neural tracking for the compressed ignored stream.

The results of the other comparisons (Figure 19 B-F) between attend (att) and ignore (ign) are shown

in the following table:
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Variable Estimate SE tStat DF pValue 95 % CI
B: att -0.141 0.041 -3.451 9208 0.001 [-0.221, -0.061]
B: ign -0.002 0.041 -0.046 9208 0.963 [-0.082, 0.078]
C: att -0.175 0.041 -4.265 9208 <.001 [-0.255, -0.094]
C: ign -0.115 0.041 -2.809 9208 0.005 [-0.195, -0.035]
D: att 0.178 0.041 4.343 9208 <.001 [0.097, 0.258]
D: ign 0.02 0.041 0.48 9208 0.625 [-0.06, 0.1]
E: att 0.033 0.041 0.814 9208 0.416 [-0.047, 0.114]
E: ign 0.113 0.041 2.763 9208 0.006 [0.033, 0.194]
F: att 0.144 0.041 3.529 9208 <.001 [0.06, 0.225]
F: ign -0.09 0.041 -2.275 9208 0.023 [-0.173, -0.013]

Table 1: Mixed model coefficients for each comparison.

We also investigated the comparison between attend and ignore for the attentional pairs in TRFs and time-

shifted neural tracking (Figure 18 B), just like for neural tracking (Figure 19 A-F). Cluster permutation

test revealed no significant differences for the comparisons.

4.5 Study 4: Auditory peripheral modeling of compressed and uncompressed

speech

Before we started measuring people with presbycusis, we modelled the auditory periphery (see 2.6 Pe-

ripheral auditory modeling and Verhulst et al., 2018). We did that because the loss of outer hair cells

changes the response behaviour to sounds and to account for the potential confound that the cortical

results are driven by the human auditory periphery. While the healthy human cochlear is highly sensitive

and non-linear (compressive), the damaged cochlear has a poorer frequency selectivity and is overall more

linear in their response (Oxenham & Bacon, 2003).

We employed a computational model of the human auditory periphery developed by Verhulst and col-

leagues (2018) to simulate model outputs to the speech signals used in our experiments presented at

65 dB SPL. We randomly selected 100 speech snippets from our uncompressed stimulus material and

applied the same processing pipeline (including compression and loudness matching) as used in our main

experiment to create a set of 100 compressed speech snippets and a corresponding set of 100 uncom-

pressed snippets. We modeled the firing rate of the auditory nerve (AN) and the envelope following

response (EFR) for both normal hearing and hearing-impaired participants, simulating a typical mild-

to-moderate presbycusis (hearing loss due to aging) starting at 1 kHz and sloping to 35 dB HL at 8 kHz.

As the AN response varies with frequency, we focused on four center frequencies (500, 1000, 2000, and

4000 Hz) that are particularly relevant to speech in audiology (Sweetow & Silverman, 1994). The EFR,

which reflects the neural processing of the temporal envelope, was modeled without frequency dependence.

To analyze the output of the auditory nerve (AN) in greater detail, we employed a mixed model. The

dependent variable was the log-transformed spike rate of the modeled AN. We used the same speech

snippet to generate both uncompressed and compressed outputs, for both normal hearing (NH) and

hearing-impaired (HI) conditions, resulting in four different AN outputs for each speech snippet. To
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account for the quasi-repeated measures nature of the data, we included speech snippet as a random effect

in the mixed model. In addition to hearing impairment (NH, HI) and signal manipulation (uncompressed,

compressed), we also included frequency (500, 1000, 2000, and 4000 Hz) as a factor in the model.

Figure 20: Verhulst modeling: AN and EFR
Simulated model output: AN and EFR. Panel A displays AN outputs for four center frequencies (500, 1000,
2000, and 4000 Hz), separated by normal hearing (NH) and hearing-impaired (HI) conditions and uncompressed
(raw) and compressed (comp) speech snippets. Dots indicate different speech snippets. Connection lines indicate
same snippet. Panel B shows the simulated EFR for NH and HI conditions,separate for compressed and uncom-
pressed speech snippets. Shaded area shows SEM of different snippets, while solide line shows the mean across
snippets. The color purple indicates compression.

We used a mixed model to analyze the AN output (Figure 20 A), with hearing status (NH vs. HI), signal

manipulation (uncompressed vs. compressed), and frequency (500, 1000, 2000, and 4000 Hz) as fixed

effects, and speech snippet as a random effect. Our analysis revealed a significant main effect of hearing

status (b = 0.053, SE = 0.02, t = 2.4, p = 0.016), indicating higher log-transformed spike rates in the NH

group compared to the HI group. We also observed a significant main effect of frequency (ref:1000 Hz; b

= -1.3 to 0.9, SE = 0.03, t = -42 to 29, p < .001 for all), indicating higher log-transformed spike rates for

higher frequencies. There was no significant main effect on signal manipulation (b = 0.004, SE = 0.02, t

= .2, p = 0.9) In addition, there was a significant interaction between frequency and signal manipulation

(overall, p = 0.003). No other interactions were significant (all p > 0.05). Overall, our results indicate

that both hearing status and frequency have a significant impact on AN output.

Upon visual inspection the EFR (Figure 20 B), if at all, the compressed speech snippets appeared to lead

to a higher amplitude in both simulations for normal hearing and hearing impaired.

The model outputs confirmed our expectation that the NH group has higher log-transformed spike rates

than the HI group. The model simulates sensorineural hearing loss at the level of the transmission-line

cochlear model and cochlear gain loss by reducing the gain of OHCs, which affects the model’s tuning

and sensitivity, leading to decreased AN model output for HI. The model also showed that the firing rate

of the AN is higher for higher frequencies, in line with the literature (Greenwood, 1990). Although one

would expect a stronger decrease in firing rate with increasing frequency for the HI simulation, the mixed
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model did not reveal a significant interaction between frequency and hearing status, but it was close to

being significant (p = 0.051). Importantly, there was no significant effect of signal manipulation on the

firing rate, and if anything, the amplitude was increased for loudness-matched compressed signals.

Interestingly, our previous neural tracking results in NH participants showed that compression reduced

the neural tracking of compressed speech, which is the opposite of what was found in the simulated

EFR. In conclusion, our simulation results suggest that the effects observed in our neural speech tracking

study are not confounded due to changes in the auditory periphery. To further investigate the impact of

hearing loss on neural speech tracking of compressed speech, we conducted a similar experiment with HI

participants.

4.6 Study 5: The interplay between dynamic range compression and selective

attention in hearing impaired listeners

Dynamic range compression is commonly used in nearly all modern hearing aids to compensate for loud-

ness recruitment and is generally considered to have a positive effect on users’ hearing. However, the

results in the literature are mixed with some studies finding benefit for compression and other studies

finding no benefit or even a detriment to intelligibility or speech quality (Braida et al., 1979; Dillon,

1996; Souza, 2002). We here used a relative strong compression ratio of 1:8 so we would not expect

positive effects of compression but rather decline in behavioural performance and neural response similar

to the normal hearing. There is also some evidence for the hypothesis that hearing impaired people use

cortical neural tracking to compensate for their peripheral heraring loss (Schmitt et al., 2022). Hence

we hypothesize that our choosen compression parameters lead an even larger neural seapartion between

attended and compressed ignored speech in contrast to normal hearing participants.

In this study, 7 participants with presbycusis had their electroencephalograms (EEGs) recorded while

they listened to two different narrated audio streams. The level of compression applied to each stream

was randomly assigned to each participant. Participants had to switch between the two streams and

identify any repeated segments in the attended stream while ignoring the unattended stream. Although

the double iterative bootstrapping analysis performed in this study allowed us to investigate differences

between conditions in a group of seven hearing-impaired participants, it is important to note that the

sample size is small and the results should be interpreted with caution. Additionally, it should be noted

that bootstrapping here is always a pairwise comparison and may not be sensitive to interactions between

conditions or other factors.
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Figure 21: HI: Behavioural results
Behavioral results for participants with hearing impairment (HI, N=7) and normal hearing controls
(NH, N =24). In panel A the upper section displays the proportion of detected repeats per condition, with
individual mean proportions shown as dots, and light gray lines indicating the same subject. The mean of the
group is represented by the bold line. The lower section shows response speed per condition, with individual
mean response speeds displayed as dots and light gray lines indicating the same subject. The mean of the group
is represented by the bold line. Panel B shows the upper section with the proportion of correctly detected repeats
in the attend stream for attentional pairs (attend/ignore) with the four experimental compression combinations.
The attentional pair (attend-uncompressed:ignore-uncompressed) serves as a baseline and is compared against the
remaining three pairs, with individual subject data depicted as dots. The lower section displays response speed of
correctly detected repeats in the attend stream for attentional pairs (attend/ignore) with the four experimental
compression combinations, with the same baseline comparison and individual subject data depicted as dots.

4.6.1 Slower responses to attended compressed speech

The study found that participants with hearing impairment (HI) were able to detect repeated sounds

in both the uncompressed and compressed attended streams, with mean accuracies of 0.77 (95% double

bootstrapped [CI]: [0.63, 0.86]) and 0.7 (95% double bootstrapped CI: [0.56, 0.81]), respectively (Figure

21 A). The difference in accuracy between the uncompressed and compressed attended streams was not

significant (mean difference: 0.07, 95 % double bootstrapped CI:[-0.015, 0.128]). HI participants also

made very few false alarms in detecting repeated sounds in the ignored uncompressed and compressed

streams, with mean accuracies of 0.14 (95% double bootstrapped CI: [0.02, 0.15]) and 0.06 (95% double

bootstrapped CI: [0.02, 0.12]), respectively.The difference in false alarms between the compressed and

uncompressed ignored streams was not significant (mean difference: -0.001, 95% double bootstrapped CI:

[-0.04, 0.04]. These results suggest that there is no significant difference in performance within the HI

group between the compressed and uncompressed attended or ignored streams.
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Participants with hearing impairment (HI) responded faster to repeated sounds in the uncompressed at-

tended stream compared to the compressed attended stream, with mean response speed of 1.37 s−1 (95%

double bootstrapped confidence interval [CI]: [1.26, 1.5]) and 1.35 s−1 (95% double bootstrapped CI:

[1.23, 1.48]), respectively (Figure 21 B). The difference in response speed between the uncompressed and

compressed attended streams was significant (mean difference: 0.027 s−1, 95% double bootstrapped CI:

[0.045, 0.05]). However, there was no significant difference in response speed between the uncompressed

and compressed ignored streams, with mean response times of 1.37 s−1 (95% double bootstrapped CI:

[0.97, 1.86]) and 1.37 s−1 (95% double bootstrapped CI: [1.05, 1.79]), respectively (mean difference: -0.01

s−1 , 95% double bootstrapped CI: [-0.58, 0.35]). These results suggest that there is a significant differ-

ence in performance within the HI group between the uncompressed and compressed attended streams,

with faster response times for the uncompressed stream.

The results of the double iterative bootstrapping analysis for attentional pairs indicated that there were

no significant differences between accuracy and speed in hearing-impaired participants.

Figure 22: HI: Neural response
Neural tracking for participants with hearing impairment (HI, N=7) and normal hearing controls
(NH, N =24). In Panel A of the figure, the differences in neural tracking between the hearing impairment
(HI) group (consisting of 7 participants) and normal hearing (NH) control group (consisting of 24 participants)
were obtained by selecting 7 participants from the NH group and comparing their neural tracking to that of the
HI group. This process was repeated 1000 times to obtain an average difference between the two groups. The
inset shows the average neural tracking across all conditions for both groups. Group averages are represented by
bars and individual participant averages by dots. Panel B shows the neural tracking for each condition for both
groups, with group averages represented by bars and individual participant averages by circles. Error bars show
the standard error (SEM).

4.6.2 Hearing impaired show stronger neural tracking than normal hearing

We compared neural tracking between a group of 24 normal hearing control participants and a group of 7

hearing-impaired participants (Figure 22 A). Neural tracking was averaged across all conditions and the

differences in neural tracking between the groups were obtained by randomly selecting 7 participants from
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the normal hearing group and comparing their neural tracking differences to that of the hearing-impaired

group. This process was repeated a thousand times to obtain a distribution of the iterative differences

between the two groups. The results suggest that the overall neural tracking was larger for the hearing-

impaired group compared to the normal hearing control group. Specifically, all iterative differences were

larger than zero.

4.6.3 Compression decreases neural tracking in hearing impaired

Despite the small sample size of hearing-impaired participants, the neural tracking results are consistent

(Figure 22 B). All participants showed increased neural tracking when they attended to signals compared

to when they ignored them (mean: 0.013, 95% double bootstrapped CI: [0.001, 0.0335]). They also

demonstrated significantly less neural tracking of compressed speech compared to uncompressed speech

(mean: 0.018, 95% double bootstrapped CI: [0.0075, 0.0317]). Furthermore, the difference in neural

tracking between attending to uncompressed versus compressed speech was significant (mean: 0.022,

95% double bootstrapped CI: [0.0029, 0.0439]), as was the difference in neural tracking between ignor-

ing uncompressed versus compressed speech (mean: 0.014, 95% double bootstrapped CI: [0.0014, 0.0256]).

Figure 23: HI: Neural response pairs
Neural tracking and TRF to attentional pairs for hearing impaired participants. Overlapping double
circle symbols indicate attentional pairs. A circle in the foreground indicates attending while a circle in the
background indicates ignoring. Purple colour indicates compression. A Neural tracking (r) refers to the encoding
accuracy based on estimated TRFs and envelopes. 45◦ plot shows single-subject data averaged across channels of
interest for the four attentional pairs contrasted between attended and ignored. B TRF β-weights and time-shifted
encoding accuracy are averaged across subjects and channels of interest for the four attentional pairs (green =
attended, orange = ignored). Shaded areas depict the standard error for each time lag across subjects.
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4.6.4 Largest neural separation in the attend uncompressed - ignore compressed attentional pair

We conducted an analysis of neural tracking (0-500 ms) within attentional pairs (attend vs. ignore;

Figure 23 A) and found no significant difference when both streams were uncompressed (mean: 0.015,

95% double bootstrapped CI: [-0.0037, 0.0475]). However, we did observe a significant difference in the

attentional pair when only the ignored stream was compressed (mean: 0.035, 95% double bootstrapped

CI: [0.0095, 0.0750]). Interestingly, when the attended stream was compressed and the ignored stream

was uncompressed, we found significantly less neural tracking of the attended stream (mean: -0.0102,

95% double bootstrapped CI: [-0.0256, -0.0011]). When both streams were compressed, there was no

significant difference between the two streams (mean: 0.0109, 95% double bootstrapped CI: [-0.0024,

0.0243]).

Upon visual inspection of the temporal response functions (TRFs) and time-shifted neural tracking, we

found that they were consistent with the neural tracking results (Figure 23 B). Overall, in attentional

pairs, the attended TRFs showed the typical P1-N2-P2 succession. Additionally, the P1 component

of both the attended and ignored TRFs had similar amplitudes across all attentional pairs. However,

the difference between the attended and ignored streams varied between attentional pairs for the N1

time window (approximately 80-120 ms). The largest separation occurred in the attend uncompressed

and ignore compressed pair, followed by the attend and ignore uncompressed and attend and ignore

compressed pairs. Interestingly, there appeared to be no separation in the attend compressed and ignore

uncompressed pair. These findings were consistent with the time-shifted neural tracking results, which

indicated similar neural separation relations in attentional pairs.
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Figure 24: HI: Comparison attentional pairs
Comparison between attended and ignored neural tracking arising from different simultaneously
presented attentional pairs. Neural tracking (r) refers to the encoding accuracy 0-500 ms based on estimated
TRFs and envelopes. Overlapping double circle symbols indicate attentional pairs. The purple color indicates
compression. The bar plot shows the participant’s group mean (green = attend, orange = ignore), and single-
subject data are depicted as gray circles. Connection lines indicate the same subject. Topographic maps (green =
attend, orange = ignore) depict average neural tracking (0-500 ms). A shows the comparison between attended and
ignored streams from attend and ignore uncompressed pairs vs. attend uncompressed and ignore compressed pairs,
B shows attend and ignore uncompressed pairs vs. attend compressed and ignore uncompressed pairs, C shows
attend and ignore uncompressed pairs vs. attend and ignore compressed pairs, D shows attend uncompressed
and ignore compressed pairs vs. attend and ignore compressed pairs, E shows attend compressed and ignore
uncompressed pairs vs. attend and ignore compressed pairs, and F shows attend uncompressed and ignore
compressed pairs vs. attend compressed and ignore uncompressed pairs.

Figure 24 shows the comparisons between the attend and ignore neutral tracking conditions for attentional

pairs in hearing-impaired participants, just like Figure 19 for normal hearing participants. The difference

in Figure 24 A will be analyzed in more detail in the next paragraph and compared to the results for

normal-hearing participants. No further statistical analyses were conducted for the other comparisons.

However, based on visual observation, it can be suggested that the general pattern is similar to that of

normal-hearing participants, namely that amplitude compression reduces neural tracking.
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Figure 25: Neural response HI vs. NH
Comparing neural tracking of attended and ignored uncompressed versus attended uncompressed
and ignored compressed between hearing impaired (HI) and normal hearing control (NH). Over-
lapping double circle symbols indicate attentional pairs. Purple colour indicates compression. A 45◦ plot shows
single-subject data averaged across channels of interest for the attentional pairs contrasted between attended and
ignored. Inset: Bar plot shows participant’s mean and single-subject data are depicted as circle. Dark blue area
indicates HI and light blue area NH participants. Error bars show the standard error (SEM). B Comparison of
the neural tracking differences between the attended streams (left) and ignored streams (right) between hearing
impaired (HI) and normal hearing (NH) participants for selected pairs. Distributions were obtained by randomly
selecting seven participants from the NH group and comparing their neural tracking to that of the HI group. This
process was repeated 1000 times to obtain an average difference between the two groups. The solid vertical lines
(brown) indicate the average difference across iterations, while the dashed line indicates zero, which would indicate
no difference between HI and NH. Inset shows differences in neural tracking between the attended and ignored
streams for the attentional pair comparison, respectively. Bar plot shows participant’s mean and single-subject
data are depicted as circle. Dark blue circle indicates HI and light blue circle NH participants. Error bars show
the standard error (SEM).
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4.6.5 Hearing impaired show larger differences between attended and ignored streams compared to

normal hearing

To investigate whether the neural separation is larger in the hearing impaired when the ignored stream

is compressed, we compared the attentional pairs in which both streams are unprocessed to the pair in

which only the ignored stream is compressed and the attended stream is uncompressed. We compared

the attended (mean: -0.007, 95% double bootstrapped CI: [-0.0244, 0.0068]) and ignored (mean: 0.0123,

95% double bootstrapped CI: [-0.0043, 0.0322]) streams between the ”attend uncompressed and ignore

uncompressed” pair and the ”attend uncompressed and ignore compressed” pair. The results showed no

significant difference between the two pairs. However, visual inspection of the individual participants’

data revealed that most (5 out of 7) participants showed increased neural tracking for attend , and most

(6 out of 7) showed decreased neural tracking for ignore for the ”attend uncompressed ignore compressed”

attentional pair (Figure 25 A) .

We compared the differences in neural tracking between the attended and ignored speech streams for

two attentional pairs: ”attend uncompressed and ignore uncompressed” and ”attend uncompressed and

ignore compressed”, between a group of 24 normal hearing control participants and a group of 7 hearing-

impaired participants (Figure 25 B). To obtain the differences in neural tracking between the two groups,

we randomly selected 7 participants from the normal hearing group and compared their neural tracking

differences to that of the hearing-impaired group. This process was repeated a thousand times to obtain

a distribution of the iterative differences between the two groups.

We found that the differences in attended streams between the groups were mostly larger for the hearing-

impaired participants (mean: 0.0069, 95% CI: [0.067, 0.070]). However, the differences in ignored stream

between the groups were consistently larger in the hearing-impaired listeners across all iterations (mean:

-0.0086, 95% CI: [-0.0084, -0.0087]).

4.6.6 Control analysis: Front back location assignment does not confound neural and behavioural

results

We considered the possibility that the front back location assignment could have an indirect effect on

our behavioural and neural measures. Between trials (and for some sustained trials), participants had

to switch their attention between the front and back loudspeakers. We randomized and balanced our

conditions across the two locations of the streams. Nevertheless, we used the location as a factor in our

statistical analysis to control for potential confounds.

In our study, we analyzed the effects of location (front-back), attention, and compression on both be-

havioural performance and response time in normal hearing participants. Our results showed a significant

main effect of location on behavioural performance (b = 0.26, SE = 0.06, OR = 1.3, 95% CI [1.16, 1.45],

p < .001), indicating that participants detected more repeats in the front loudspeaker.
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Importantly, we found no significant interactions between location and attention (b = -0.01, SE = 0.11,

OR = 0.99, 95% CI [0.79, 1.24], p = 0.9), between location and compression (b = -0.14, SE = 0.11, OR

= 0.87, 95% CI [0.7, 1.01], p = 0.2), and between location, compression, and attention (b = -0.22, SE =

0.23, OR = 0.8, 95% CI [0.51, 1.26], p = 0.33).

Regarding response speed, we observed no significant main effect of location (b = 0.02, SE = 0.05, t =

0.44, p = 0.66) and no significant interactions between location and attention (b = -0.08, SE = 0.1, t =

-0.8, p = 0.43), between location and compression (b = -0.01, SE = 0.1, t = -0.1, p = 0.92), and between

location, compression, and attention (b = -0.02, SE = 0.19, t = -0.09, p = 0.93).

Our neural analysis showed no significant main effect of location (b = -0.02, SE = 0.02, t = -1.04, p =

0.3), and we found no significant interactions between location and attention (b = -0.03, SE = 0.04, t

= -0.8, p = 0.43), between location and compression (b = -0.06, SE = 0.04, t = -1.34, p = 0.175), or

between location, compression, and attention (b = -0.03, SE = 0.08, t = -0.312, p = 0.76). Therefore,

our results suggest that the front-back location assignment did not confound the neural and behavioural

measures in normal hearing participants.

Hearing impaired participants correctly detected repeats on average with a proportion of 0.76 (95% CI

[0.64, 0.88]) in the front loudspeaker, while they correctly detected a proportion of 0.71 (95% CI [0.63,

0.79]) in the back loudspeaker. They responded with similar response speed to the front (mean: 1.37

s−1, 95% CI [1.24, 1.49]) and back loudspeaker (mean: 1.36 s−1, 95% CI [1.23, 1.5]).

In our neural analysis, hearing impaired participants show a mean neural tracking of 0.06 (95% CI

[0.03, 0.09]) for attended and 0.046 (95% CI [0.03, 0.06]) for ignored speech presented over the frontal

loudspeaker. In contrast, they show a mean neural tracking of 0.052 (95% CI [0.03, 0.07]) for attended

and 0.04 (95% CI [0.03, 0.05]) for ignored speech presented over the back loudspeaker.

4.7 Study 6: perceived loudness of compressed and uncompressed speech stimuli

Auditory stimulation level is a widely recognized confounding factor in psychoacoustics and auditory

neurophysiology. As a result, nearly all studies related to hearing aim to control for this factor. To

account for potential differences in perceived loudness between uncompressed and compressed speech, we

applied a Matlab algorithm based on Zwicker’s model (Zwicker & Scharf, 1965). Previous research has

demonstrated that RMS-matching can increase the perceived loudness of compressed speech compared

to uncompressed speech (Moore et al., 2003). While existing models can accurately predict the loudness

of stationary signals, the accuracy of these models for time-varying signals depends on the specific stim-

ulus; however, loudness perception of speech appears to be relatively robust (Rennies, Verhey, Appell, &

Kollmeier, 2013). Nonetheless, to ensure that perceived loudness was comparable between the compressed

and uncompressed speech stimuli used in our study, we conducted an online study to assess participants’

actual loudness perception on our used stimuli material.
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4.7.1 Participants

Ten participants (7 female and 3 male) between the ages of 22 and 32 with no reported hearing impair-

ments participated in this online study. Eight of them were native German speakers. Participants used

a PC with headphones, and the volume on each PC was adjusted to a level where soft speech signals

could still be heard, while very loud speech signals were not uncomfortably loud. It should be noted that

the volume range was set individually for each participant. In the experiment, 720 speech signals (40

different speech signals * 3 conditions * 6 volume levels) were randomly presented to the participants.

After each presentation, participants rated the loudness of the speech signal on a scale of 1 to 9, with 1

indicating a soft signal and 9 indicating a loud signal. Participants were instructed to use the entire scale

during the experiment.

Figure 26: Example loudness matching
Example of RMS and Zwicker matching . The schematic shows an example of the RMS (dBFS) and Zwicker
(sone) outputs of an uncompressed speech signal, which was used as a matching baseline and of the corresponding
RMS and Zwicker matched signals. The brown rectangle indicates the pair of speech signals that were matched
based on RMS, while the green rectangle indicates the pair that were matched based on Zwicker loudness, which
were used in the experiment.

4.7.2 Methods

We randomly selected twenty 2.1-second speech snippets from our uncompressed stimulus material. These

signal segments were then processed to generate two sets of stimuli: one set matched to six different RMS

levels (-36, -33, -30, -27, -24, and -21 dBFS), and one set matched to six different loudness levels according

to the Zwicker model (Figure 26; following the same processing pipeline as in our main experiment). These

different levels were used to generate loudness functions using the method described by J. C. Stevens

and Marks (1980),originally used to achieve cross-modality matching of loudness and brightness. For

the online experiment, the speech signals were available in three different conditions: uncompressed,

Zwicker-matched compressed, and RMS-matched compressed.
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4.7.3 No significant differences in perceived loudness between uncompressed and Zwicker loudness

matched compressed speech

Figure 27: Loudness ratings
Results: Loudness ratings. Figure A shows the mean values of the different conditions per RMS value (circle)
and the resulting linear regression for each subject (dashed line). Figure B shows this linear regressions of mean
values across all subjects for each condition as a function of the centered RMS value in direct comparison. Figure
C presents the calculated intercept values of each subject (circle) and the mean values across all subjects (square)
for mean-adjusted RMS values. To visualize the Bayes factor, we have included probability pie charts in which
the ratio of the likelihood of H1 (shown in red) and H0 (shown in white) for pairwise comparisons is displayed.

The results of the linear regressions showed a positive slope in all conditions, indicating that higher levels

were perceived as louder. The study also found that each participant used almost the same range on the

rating scale for all conditions, with some preferring the upper end of the scale and others the lower end

(Figure 27 A).

Comparing the regression lines across all participants, it was found that the regression line for the loudness

rating of the RMS-matched compressed speech signal was consistently above that of the uncompressed

speech signal, indicating that the former was rated as louder. However, for the Zwicker-matched com-

pressed speech signal, the regression line was below that of the uncompressed speech signal, although

at higher levels the two were nearly superimposed, with the Zwicker-matched compressed speech signal

slightly higher (Figure 27 B).

The results of the Bayesian t-test indicate that there is anecdotal evidence (BF10 = 2.709) supporting the

hypothesis (H1) that the intercepts of the RMS matched compressed speech signals have different mean

values compared to the control - uncompressed speech signals. This suggests that the RMS matched

speech is perceived as louder. On the other hand, there is anecdotal evidence (BF10 = 0.814) supporting

the null hypothesis (H0) that the intercepts of the Zwicker matched compressed speech signals do not

have different mean values compared to the control - uncompressed speech signals. This indicates that

there is similar loudness perception between these two conditions (Figure 27 C).
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Figure 28: Loudness as function of conditions
Loudness as function of conditions. A For ratings 3.5 to 7.5, the RMS values were calculated via linear
regression of each condition.To visualize the Bayes factor, we have included probability pie charts in which the
ratio of the likelihood of H1 (shown in red) and H0 (shown in white) for pairwise comparisons is displayed. B
The difference between the respective compressed conditions and the control - uncompressed condition. Dashed
line represents control condition.

The Bayesian paired t-test produced strong evidence (BF10 = 236.19) indicating that there are differences

in mean values between the dBFS values associated with the ratings of the RMS matched compressed

speech signal and those of the control - uncompressed speech signal (H1). On the other hand, for the com-

parison between the Zwicker matched compressed speech signal and the control - uncompressed speech

signal, the Bayes factor showed anecdotal evidence for H1 (BF10 = 2.31; Figure 28 A).

The comparison between the values of the compressed speech conditions and the control - uncompressed

speech signal illustrates the extent to which the RMS value of the control - uncompressed speech signal

needs to be increased or decreased to be perceived as equally loud, as depicted in Figure 5B. The dif-

ferences for the RMS matched compressed speech signal range between 1.2 and 0 dB, whereas for the

Zwicker matched compressed speech signal, the range is between 0 and -1.1 dB (Figure 28 B).

The aim of this study was to validate the loudness matching of uncompressed and compressed speech using

a Zwicker-based algorithm, which also incorporated RMS matching, in a psychoacoustical experiment.

The results suggest that there is a difference in loudness perception between the compressed speech signals

and the control - uncompressed speech signal, with the RMS matched compressed speech signal is rather

perceived as louder. Importantly, the results suggest no significant differences in loudness perception

between uncompressed and Zwicker matched compressed speech. In addition, the difference of 1.1 dB

found here can be considered very small, since the detection thresholds for level differences is around 1

dB (S. S. Stevens, Volkmann, & Newman, 1937).
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4.8 Discussion

In the present study, we aimed to investigate the effects of amplitude compression and selective attention

on neural separation and behavioral response in normal and hearing impaired participants using a psy-

chophysically augmented continuous speech paradigm. Our hypothesis was that the interaction between

attention and compression would affect both neural separation and behavioral response. Specifically, we

expected that compression on ignored talkers would increase neural separation and behavioral response.

Normal hearing participants showed several key results. Firstly, when compression was applied to both

attended and ignored streams, behavioral performance decreased, and response to repeats in the ignored

stream was slower. Secondly, we observed a significant main effect of compression on decreased neural

speech tracking. Finally, the most important finding was an increased neural separation in neural speech

tracking between attentional pairs when when only the ignored stream was compressed compared to

both streams compressed. This difference was driven by the decreased neural tracking of the compressed

ignored stream.

For hearing impaired participants, we found slower responses to attended compressed speech and evidence

that amplitude compression decreased neural tracking, which was a relatively robust finding given the

small sample size. The most important result was that we observed the largest neural separation in the

attentional pair where the attended stream was uncompressed and the ignored stream was compressed.

This finding was not entirely unambiguous due to the small sample size. However, there was a tendency

for hearing impaired participants to show both enhanced tracking of the uncompressed attended stream

and weaker tracking of the compressed ignored stream.

When comparing the results of normal hearing and hearing impaired participants, we found that hearing

impaired participants showed increased overall neural tracking compared to normal hearing participants.

Additionally, hearing impaired participants showed a larger difference in neural tracking between the

attended and ignored streams when both streams were compressed compared to when only the ignored

stream was compressed compared to normal hearing participants.

4.8.1 Amplitude compression on both attend and ignore speech impairs performance

In the present study, normal hearing participants showed decreased behavioral accuracy and slower re-

sponses when the attended and ignored streams were simultaneously compressed compared to when both

streams were uncompressed (Figure 16). The findings are consistent with prior research indicating that

fast-acting compression leads to reduced speech intelligibility (Stone & Moore, 2004; Drullman, Festen,

& Plomp, 1994).

Stone and Moore (2004) also investigated the relative importance of two possible causes responsible for

the decreased performance: ”comodulation” and ”modulation reduction”. In a latter paper they also used
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the term across-source modulation correlation or coherence instead of comodulation to emphasize that

this effect of compression introduces patterns of partially correlation from sources that were previously

independent (Stone & Moore, 2007). When there are peaks in one signal, the gain applied to all signals in

the mixture decreases. This results in signals that were previously independently amplitude modulated to

acquire a common modulation component from the compression, reducing their independence and making

them more likely to fuse perceptually. This comodulation may lead to a perceptual fusion of attended and

ignored speech and thus have disruptive effects related to auditory grouping. In other words, if two or

more speech signals with similar comodulation are presented simultaneously, they may interfere with each

other and make it more difficult to separate either one (Bregman, Abramson, Doehring, & Darwin, 1985;

Hall III & Grose, 1990; Bregman, 1994). Importantly, comodulation should only appear if the mixture of

both attended and ignored signals is compressed. We used amplitude modulation on each stream sepa-

rately, and thus our results should not be driven by comodulation of both streams (Stone & Moore, 2004).

In contrast to comodulation, modulation reduction is important for our case. This is because the gain of

the dynamic range compressor used in our loudness matching pipeline is controlled by the most intense

components of the input signal, which typically correspond to peaks in the envelope. Fast amplitude com-

pression, which is used in our pipeline, primarily acts on these peaks, reducing their gain. Additionally,

our pipeline enhances low intensity signals compared to the uncompressed signal, resulting in a smaller

amplitude modulation depth of compressed speech compared to uncompressed speech. As a consequence

the fidelity of the envelope is distorted in shape (Stone & Moore, 1992). The non-instantaneous operation

of the compressor can cause overshoots and undershoots, which can also contributes to distortion of the

envelope (Verschuure et al., 1996).

Since high intensity parts of a speech signal are typically associated with vowels, while low intensity

parts are associated with consonants, loudness matched compressed speech will attenuate vowels while

enhancing consonants. This results in a distortion of the speech signal and a decrease in the ratio be-

tween vowels and consonants. Multiple studies have shown that fast amplitude compression can reduce

amplitude modulation depth and intensity contrast (Plomp, 1988; Moore, 1990, 2003; Dillon, 1996). This

is crucial for speech recognition as it primarily relies on the temporal cues of speech (Shannon, Zeng,

Kamath, Wygonski, & Ekelid, 1995; Stone & Moore, 2004; Peelle & Davis, 2012). Furthermore, both

speech streams are subject to reduced amplitude modulation, even though they are not comodulated.

This means that they share a similar low amplitude modulation ratio, which can make it more difficult

to separate the two streams (Grimault, Bacon, & Micheyl, 2002).

4.8.2 Amplitude compression on ignore speech may facilitate inhibition

Interestingly, we observed a main effect of compression on response speed, which was driven by an inter-

action with attention. Specifically, normal hearing participants made false alarms with slower responses

when ignoring the compressed stream compared to the uncompressed stream. In most studies, researchers
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investigate response times to target stimuli under different levels of distraction and then compare them.

Typically, increasing numbers of distractors increase interference and attentional demand, resulting in

delayed response times (e.g., Mazza, Turatto, & Caramazza, 2009). However, in our study, we found

no difference in response time between attending to the compressed versus uncompressed stream. The

interpretation of slower response times emerging from the attentional background is not well established

in the literature. However, one could assume that responding quickly to irrelevant distractors in the

ignore uncompressed streams may reflect a failure to inhibit those distractors, while slower responses to

the ignore compressed streams could reflect more successful inhibition. It’s possible that the increased

inhibition of repeats in the compressed stream is due to the aspects of amplitude compression mentioned

earlier. Unfortunately, we were limited in the number of false alarms and could not further investigate

them according to attentional pairs.

4.8.3 Unexpected lack of effects of amplitude compression applied to single speech streams

Unexpectedly, we observed no significant differences in performance and response speed when either the

attended or ignored stream was compressed compared to both streams uncompressed. For the attended

stream, we would have expected a decrease in performance when it is compressed, as the decreased mod-

ulation depth of the attended stream envelope peaks is associated with reduced perception (Drullman,

1995). However, the greater contrast in amplitude modulation depth between attended compressed and

ignored uncompressed could also facilitate stream segregation and lead to compensatory effects (Grimault

et al., 2002).

In contrast, we would have expected an increase in performance and faster response times when only

the ignored stream is compressed. The decreased amplitude modulation depth in the ignored stream

should make it easier to ignore, while the increased contrast in amplitude modulation depth between the

attended uncompressed and ignored compressed speech should facilitate selective attention.

One possible explanation for our unexpected result is that the compression applied in our study may not

have been strong enough to induce a significant effect, even though we used a fast-acting compressor with

a comparable large compression ratio. Future studies could assess this by testing different compression

ratios or also varying attack and release times of the dynamic range compressor.

Our task involved detecting short repeats in continuous speech, which is a relatively novel task that

likely engages phonological processing more than higher-level semantic processing (Marinato & Baldauf,

2019). Moreover, participants performed relatively well in the task, leaving little room for improvement.

Future studies could employ adaptive procedures to track performance and capture potential benefits of

compressing the ignored stream. Additionally, it would be valuable to explore behavioral paradigms that

assess speech intelligibility, quality, and semantic processing.
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4.8.4 Effects of amplitude compression on performance for hearing impaired participants

In general, hearing-impaired participants show similar trends in the data as normal hearing participants,

with impaired responses to compressed speech. It seems that, in contrast to normal hearing controls,

compression particularly decreases perceptual performance and leads to slower responses to attend com-

pressed speech. Again, caution should be exercised when interpreting the results of this study, given the

small sample size of N=7 participants.

The previously discussed points for normal hearing participants also apply to hearing-impaired partici-

pants, as they relate to the presented stimulus material. However, due to differences in hearing abilities,

one could expect that the compression manipulation would have an even stronger deleterious effect on

amplitude-compressed speech for individuals with presbycusis. People suffering from presbycusis have re-

duced frequency selectivity (Pick et al., 1977; Glasberg & Moore, 1986) and may be relatively insensitive

to temporal fine structure cues (Rosen & Fourcin, 1986; Moore & Moore, 2003), but have a good ability

to use temporal envelope cues (Bacon & Gleitman, 1992; Turner et al., 1995). Therefore, any form of

signal processing that affects the use of temporal envelope cues might be expected to have in particular

a negative effect on performance.

4.8.5 Amplitude compression decreases neural tracking of speech

To the best of our knowledge, this is the first study to investigate the effect of amplitude compression

on neural tracking of speech in a competing continuous speech paradigm using electroencephalography

(EEG) recordings, in both normal hearing and hearing-impaired controls. Our results showed a main

effect of amplitude compression on neural tracking in normal hearing participants.

Neural speech tracking relies on the temporal envelope of speech, as has been previously shown in various

studies (Ding & Simon, 2012; Kerlin et al., 2010; Mesgarani & Chang, 2012; Rosen, 1992; Golumbic et al.,

2013; Etard & Reichenbach, 2019; Kadir, Kaza, Weissbart, & Reichenbach, 2019; Peelle & Davis, 2012;

Obleser & Kayser, 2019). Therefore, it was expected that dynamic range compression, a form of signal

processing that directly affects the temporal envelope of speech, might impair neural speech tracking. As

described in more detail in the section above, the fidelity of the temporal envelope is impaired (vowel

to consonant ratio) due to reduction in amplitude modulation depth and overshoot and undershoots in

amplitude compressed speech (Stone & Moore, 1992; Verschuure et al., 1996; Stone & Moore, 2007).

The mathematically model to obtain TRF and neural tracking (encoding/decoding accuracy) is based

on system identification (Marmarelis, 2004; Ringach & Shapley, 2004). One way to obtain the impulse

response function (fully characterization of the LTI system) is by sending a Dirac impulse (which is infi-

nite short in time and high in amplitude but cannot be physically realized) into the system. One other

way is to compute a cross-correlation between the measured input and output of the signal. The latter

approach is the basis of the mTRF-toolbox (Crosse et al., 2016).
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An impulsive input signal contains a wide range of frequencies that can excite the system’s resonant

frequencies and provide more information about its dynamics (Madisetti, 2018). While the human brain

is not linear or time-invariant, studies have shown that the human auditory cortex is highly responsive to

changes in the temporal envelope of speech (Howard & Poeppel, 2010). In the context of neural speech

tracking, it has been shown that onset envelopes produce the strongest neural tracking and TRF com-

ponents with the highest similarity to classical ERP (Fiedler et al., 2019; Chalas et al., 2023). Dynamic

range compression is a signal processing technique that reduces the gain for high-level signal parts (peaks)

and make the signal less impulsive. It also limits the rate of changes in the onset envelope. In summary,

the elements described are likely to result in the signal processing driven reduced neural tracking of am-

plitude compressed speech.

4.8.6 Neural tracking and selective attention: Effects of compression and attentional pairs

In the context of selective attention, our results showed a main effect of attention on neural tracking, with

larger tracking of the attended speech compared to the ignored speech. This is in line with several previ-

ous studies that have shown enhanced neural responses to attended speech compared to ignored speech

(e.g., Mesgarani & Chang, 2012; Golumbic et al., 2013). We did not observe a significant interaction

between compression and attention on neural tracking, suggesting that compression did not modulate

the effect of selective attention on neural tracking in the first place (Figure 17).

However, due to the quasi-factorial nature of our experimental paradigm, with attended and ignored

speech streams presented simultaneously, we investigated the attentional pairs in more detail Figure

(19). Based on our hypothesis that applying compression only to the ignored stream would increase

neural separation between attended and ignored streams. We expected that neural tracking would be

decreased for the ignored stream but also that the neural tracking of the attended stream would be

increased even when both streams were unprocessed in this comparison. Since the comparison between

attentional pairs in which both streams were presented unprocessed to pairs where only the ignored

stream was compressed were in particular interesting for us (19 A). We found a significant difference in

neural tracking between the compressed and uncompressed ignored streams, but no significant difference

in tracking between the uncompressed attended streams.

This result supports the assumption that compression reduces the neural processing of speech, which in

turn decreases neural tracking. The main driver of this effect is likely the distortion of the fidelity of the

envelope, as discussed earlier. This is further supported, since remaining attentional pair comparisons

indicate significant differences between compressed and uncompressed streams but no signs of interaction

effects (19 B-F).

However, neural tracking of speech reflects most likely both the acoustic information of sound as well

as top-down attentional processes and thus might be a correlate of both auditory object formation and
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selection (B. Shinn-Cunningham et al., 2017). In attentional pairs where both a compressed and uncom-

pressed stream are presented, the contrast in the modulation depth between the two signals is larger,

resulting in more distinct attentional cues. This difference could potentially facilitate stream selection

(Grimault et al., 2002; Bregman, 1978; B. G. Shinn-Cunningham, 2008). Hence, the observed difference

between ignored streams in neural tracking could also be influenced by listeners’ ability to actively ignore

distracting speech more easily by suppressing neural responses to it (Schneider et al., 2022; Wöstmann,

Alavash, & Obleser, 2019; Fiedler et al., 2019).

To investigate the contribution of top-down attentional processes such as active ignoring and the im-

pact of signal processing (i.e., distorted envelope due to compression) on the difference in ignored neural

tracking between attentional pairs, it would be useful to consider the temporal resolution of neural track-

ing and temporal response functions (TRFs). TRFs are often interpreted in a similar way to auditory

evoked potentials (AEPs), with each component representing neuronal activity along the auditory path-

way (T. W. Picton et al., 1974). Differences in the latencies of TRF components can provide information

about the underlying neuronal origins of those components (for review, see Brodbeck & Simon, 2020).

Fiedler et al. (2019) found a late TRF-N2 component associated with active ignoring under varying

signal-to-noise ratio conditions. However, in our study, we found no significant differences between the

ignored streams of the compared attentional pairs when comparing TRFs and time-resolved neural track-

ing. One possible reason for this could be that the sensitivity of these methods is too low to detect subtle

differences. Future studies using decoding-based analyses, more EEG channels or different compression

parameters could be more sensitive in detecting potential differences in time-resolved analysis between

attentional pairs under amplitude compression.

4.8.7 Hearing impaired participant showed larger neural tracking responses compared to normal

hearing participants

Our findings are consistent with some previous literature, which has also reported stronger overall neural

tracking in individuals with age-related hearing loss (Figure 22 A). For example, Petersen et al. (2017)

reported larger neural tracking of the ignored stream for hearing impaired listeners, and both Decruy

et al. (2019) and Fuglsang et al. (2020) found that hearing impaired listeners show larger neural track-

ing responses to target speech. In quiet environments, hearing-impaired listeners exhibited increased

neural speech tracking, along with delayed neural responses that had longer latency compared to age-

matched controls (Gillis et al., 2022). Furthermore, Schmitt et al. (2022) even reported enhanced neural

speech tracking with increasing hearing loss. This finding is in line with previous literature that suggests

hearing-impaired individuals rely even more on temporal envelope cues as a possible compensation for

their reduced processing of the temporal fine structure (Bacon & Gleitman, 1992; Turner et al., 1995;

Rosen & Fourcin, 1986).

On the other hand, there are also opposing views regarding ”the stronger, the better”. In ageing research,

the enhanced amplitude of sensory evoked responses is often associated with listeners deficits in inhibitory
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control (e.g., Alain, Roye, & Salloum, 2014; Presacco, Simon, & Anderson, 2016). In addition, higher

cognitive processes were associated with the cortical representation of the speech signal. Higher neural

tracking could also be related to an inefficient use of cognitive resources and a decrease in cortical network

connectivity (Peelle, Troiani, Wingfield, & Grossman, 2010).

However, other studies have found conflicting results; for instance, Tune et al. (2021) found no increased

neural tracking with hearing loss or age, and Gillis et al. (2023) reported that acoustic speech and linguistic

representational neural tracking decreased with age. While there are discrepancies in the literature, our

results align with previous findings of stronger neural tracking in individuals with age-related hearing loss.

The main effect of amplitude compression on neural tracking appears to be similar for both normal

hearing and hearing-impaired participants. Specifically, amplitude compression decreases neural speech

tracking in both groups. Therefore, the general conclusions drawn for normal hearing participants can

also be applied to hearing aid users.

However, when we compared the neural tracking of attend-compressed and ignore-uncompressed versus

attend-uncompressed and ignore-compressed speech within normal hearing participants, we found a ten-

dency that the to-be-attended stream is stronger tracked when the ignored stream is compressed (Figure

25 A). There is the possibility that manipulating the unattended stream also influences the processing

of the attended stream. (Makov & Zion Golumbic, 2020) reported that manipulating the rhythmic reg-

ularity of distracting tones affected not only distractor but also target tones neural processing. They

emphasise the possibility that suppressing the target can result in changes in how the target is processed.

Comparing these differences in hearing impaired and normal hearing participants, we found that hearing

impaired participants show larger differential tracking between both the attended and ignored streams

(Figure 25 B). Normal hearing participants performed very well in the task and perhaps the compression

manipulation on the ignored stream was insufficient to activate the need for distractor suppression or

target enhancement. In contrast, hearing impaired participants had the tendency to overall perform

worse and thus may profit more from an ignored compressed talker. The comparison between NH and

HI of the compressed versus uncompressed ignored streams revealed a consistent weaker tracking of the

HI participants that may indicate an additional suppression of the compressed stream that may facilitate

the processing of the attended stream as indicated by the increase in neural tracking.However, to really

distinguish cleanly between target enhancement and distractor suppression, an additional baseline would

be very supportive(Wöstmann et al., 2022).

Furthermore, recent studies have reported that better speech comprehension is associated with en-

hanced neural tracking in hearing-impaired individuals (Schmitt et al., 2022). Additionally, there is

evidence that neural speech tracking correlates with speech intelligibility (Peelle et al., 2013) and behav-

ioral indices of speech comprehension (Etard & Reichenbach, 2019). However, we found no behavioral
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evidence based on the detection of repeats that hearing-impaired participants also performed better here,

which suggests that future studies are needed to explore the relationship between neural responses and

speech comprehension or quality.

The results of this study provide new insights into the neural and behavioral effects of compression on

attended and ignored streams in normal and hearing impaired individuals. Specifically, the study reveals

that compression on both attended and ignored streams leads to decreased behavioral performance and

decreased neural speech tracking. Additionally, the study demonstrates that the largest neural separation

is observed when only the ignored stream is compressed in hearing impaired participants, highlighting

the potential benefits of compression for individuals with hearing impairments.

Overall, this research advances our understanding of the complex interplay between attention and com-

pression in auditory processing and provides important foundation for developing effective interventions

for individuals with hearing impairments.

4.9 Limitations

To avoid confounds with loudness perception, we used a loudness matching procedure to match the per-

ceived loudness of uncompressed and compressed speech. However, it should be noted that the peaks

in the envelope of the compressed speech are still reduced compared to the uncompressed speech, and

low-level signals are partly enhanced in the compressed speech to match the loudness between the two

versions. This means that there may be some energetic masking effects, even with the two speech streams

almost uncorrelated (Brungart, 2001).

In attentional pairs where one stream was compressed and the other was not, this could mean that the

attend compressed stream is more likely to mask the ignore uncompressed stream for low-intensity parts,

and vice versa for high-intensity parts. Similarly, in attentional pairs where the attend stream is uncom-

pressed and the ignored stream is compressed, the ignored stream is more likely to mask the attended

stream for low-intensity parts, and vice versa for high-intensity parts. In other words, loudness-matched

compressed speech is more likely to mask the uncompressed speech at low levels and vice versa for high-

intensity parts.

Although both streams are uncorrelated as well as speech streams can be, it could be potentially bene-

ficial to investigate this in more detail. The low intensity masking might work to some degree in favor

of the loudness matched compressed speech since on average low-intensity signals are more prominent

in the compressed stream. Low-level parts of a signal are associated with consonants that also play an

important role in speech intelligibility (e.g., Villchur, 1973). Based on this, there could be a compen-

satory effect between the low-level masking of uncompressed and the high-level masking of compressed

speech. Future studies are needed to investigate this relationship in more detail. For instance, one could

add different signal-to-noise ratios (SNRs) to investigate potential interactions with SNR and compression.
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Another limitation of the present study is that we did not perform a brain-behavior relationship analysis

to directly link changes in neural processing to changes in behavioral performance. An analysis of the

relationship between our behavioral and neural data would reveal if there is a connection between the two,

providing additional insights into the neural mechanisms underlying selective attention and compression.

Additionally, while the current study included both normal hearing and hearing impaired participants, the

sample size for the hearing impaired group was relatively small (n=7) and thus my not be representative

of the population. However, it is important to note that the hearing loss was similar in terms of slope

and PTA among hearing impaired participants (see Figure 12). Moreover, a previous study (Verschueren,

Vanthornhout, & Francart, 2021) reported that neural speech tracking is robust to stimulus intensity, and

the attention and compression effects were consistent (see Figure 22) despite the small sample size. In

addition, the group of hearing-impaired participants can be considered a sub-group of the normal-hearing

participants and may be analyzed within the same statistical approach. Nevertheless, future studies with

larger sample sizes and a mixed model analysis incorporating covariates such as overall presentation

level, age, and degree of hearing loss would be beneficial to further explore the effects of attention and

compression on neural processing and behavioral outcomes in this population.

4.10 Conclusion

The study sheds light on the intricate interplay between attention and compression in neural processing

and behavior, deepening our understanding of how amplitude compression impacts the neurophysiological

mechanisms underlying selective auditory attention during ongoing speech. This study potentially paves

the way for novel hearing aid algorithms. However, the possibilities of amplitude compression are not

fully explored, and future research could explore multi-band compression, comodulated compression of

multiple sound sources in the background, and sidechain compression that compresses the ignored based

on the attended stream. These possibilities are further explained in Section 5.6 of this thesis.
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5 General discussion

The present thesis investigates behavioural and neural signatures of selective attention to speech. The

goal of this thesis was twofold: first, the top-down contributions of target enhancement and distractor

suppression to selective attention were investigated by implementing a neutral control condition to sep-

arate those sub-processes utilising a novel psychophysically augmented continuous speech paradigm and

electroencephalography (EEG). Second, how far might mechanisms of selective attention interact with

amplitude compression. In particular, we investigated how normal-hearing listeners and older adults suf-

fering from presbycusis cope with amplitude compressed speech in a multi-talker situation. To this end,

we conducted a pilot study on neural responses to different compression ratios, modelled the peripheral

fate of amplitude compressed speech, performed and evaluated loudness matching between amplitude

compressed and uncompressed speech, and measured behavioural and neural responses from normal and

hearing participants to amplitude compressed speech in a psychophysically augmented continuous speech

paradigm. The discussion then concentrates on the main findings after summarising the experimental

results. If there are more detailed discussions about specific findings, these can be found in the respective

experimental chapters.

5.1 Summary of experimental results

Study 1 found that selective attention is implemented by the enhancement of target speech, rather than

the suppression of distraction. The results showed that listeners committed more false alarms originating

from the distractor speech than the neutral stream. However, the neural representation of target speech

was enhanced, while no suppression of distraction was observed below the neutral baseline. These findings

suggest that target enhancement is the primary mechanism underlying selective attention.

Study 2 presented a narrative story with different compression and expansion ratios (1:2 and 1:8 for

compression and 2:1 for expansion) to six individuals with normal hearing, as well as an unprocessed

baseline condition. The main objective of the pilot experiment was to determine an appropriate com-

pression ratio to be used in a follow-up study. A 1:8 compression ratio significantly reduced the brain’s

ability to track speech compared to unprocessed speech. This was shown by a significant decrease in

decoding accuracy for the 1:8 compression ratio, which was observed in all participants. The 1:8 ratio

was used in the follow-up experiments.

Study 3 investigated the effects of amplitude compression and selective attention on neural separation

and behavioural response in normal-hearing participants using a continuous speech paradigm. The re-

sults showed that compression on both attended and ignored streams decreased behavioural performance

and neural speech tracking and increased neural separation when only the ignored stream was compressed.

Study 4 (simulation) used a computational model of the human auditory periphery to simulate model

103



5 General discussion

outputs to (compressed) speech signals, modelling the firing rate of the auditory nerve and the envelope

following response for both normal hearing and hearing-impaired participants. The results indicated that

hearing status and frequency significantly impacted the output of the auditory nerve (AN), with higher

spike rates in the normal hearing group and higher spike rates for higher frequencies. Importantly, there

was no significant effect of signal manipulation on the firing rate, and if anything, the amplitude was

increased for loudness-matched compressed signals. The simulation results suggest that changes in the

auditory periphery did not confound the effects observed in the neural speech tracking study and the

follow-up study for hearing impaired participants.

Study 5 aimed to study the impact of amplitude compression and selective attention on neural separation

and behavioural response in individuals with hearing impairment. The findings demonstrated comparable

patterns to those observed in normal-hearing participants, with reduced performance and neural tracking

for amplitude-compressed speech. However, unlike the normal-hearing participants, the results showed

enhanced neural speech tracking for the attended stream when only the ignored stream was compressed.

5.2 Terminological considerations

Before discussing the general implications of both parts, it’s important to consider the terminological

choices used in this thesis. Terminology can lead to conflicting theoretical inferences, as discussed more

recently by (Makov, Pinto, Yahav, Miller, & Golumbic, 2023). In close analogy to (Seidl et al., 2012),

the terms ”target”, ”distractor”, and ”neutral” were used within this thesis and can be considered as

theory-derived terms without further context. These terms are rather abstract and generalise at a high

level. Furthermore, they are likely to make assumptions about underlying cognitive processes or be used

differently in different studies. On the other hand, methodological-based terms are advantageous because

they do not require making assumptions about the inner state or cognitive operations (Makov et al., 2023).

However, within this thesis, the terms ”target”, ”distractor”, and ”neutral” are used as placeholders for

task-relevant, task-irrelevant, and never-task-relevant, which are methodologically based terms. This tri-

section was used especially to separate the terms that occur in the attentional background (i.e., distractor

and neutral). If one is precise, the terms attentional background and foreground are also theory-driven

terms, as one would assume that the participant’s attentional operations are associated with their sepa-

ration.

The term neutral plays a special role here, as it refers to the never-task-relevant stream and is used as a

control or baseline to separate target enhancement and distractor suppression. At first glance, one might

expect the neutral stimulus to be a stimulus that does not elicit a natural response. However, this is not

the case for an additional speech stream in a cocktail scenario, as described in greater detail in Section 3.

The second part of the thesis moves away from the neutral stream and employs the terms ”attended” and

”unattended” (sometimes also referred to as ”ignored”) streams, as previous studies have done (e.g., Ding
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et al., 2012). However, these terms are theory-derived, as they assume that participants truly allocate

attention to the cued stream. Therefore, more precise methodological terms might be cued and uncued

streams. In general, selecting appropriate terms to describe auditory attention based on previous studies

or categories such as theory or methodological terms is not trivial. However, increased awareness of this

issue will be beneficial for future studies.

5.3 The role of short repeats as a behavioural measure for assessing selective

attention in continuous speech

Continuous speech is often preferred over trial-based designs in experiments, particularly when investi-

gating speech perception in multi-talker situations, as it provides increased ecological validity (Hamilton

& Huth, 2020). However, one significant disadvantage is the limited availability of behavioural data. But

behavioural measures and their relation to cortical speech tracking are key to investigating its meaning.

Typically, comprehension questions are asked infrequently or after the experiment, making it challenging

to determine the relevance of neural responses to the task. This creates a difficulty in studying brain-

behavior relationships as neural recordings are fine-sampled while comprehension questions are rather

discrete. To address this issue, short, repeated segments of speech were included in the speech streams

in this study, which required participants to detect them quickly in the target stream and ignore them

in the attentional background (Marinato & Baldauf, 2019). This allowed the measurement of response

times and hit and false alarm rates for the repeats in different speech streams.

One question that arises here is at what processing level the repeats are processed. We included quasi-

randomly (some constraints; see Section 3 for more details) repeated segments of the speech stream with

a length of 400 ms in the speech streams. One interesting characteristic of the repeated segment is that

it has the same acoustic properties as the preceding segment before the repetition. Therefore, detecting

the repetition based on low-level acoustic features such as changes in intensity or frequency would be

unlikely, which would be the case if, for example, the names of the participants were randomly included in

the streams. Our findings support this, as repeats in the neutral and distractor streams did not evoke a

significant temporal response function in contrast to the repeats in the target stream. Thus, higher-level

processing of the repeats, such as grouping based on phonemes and syllables, is likely involved in repeat

detection (Marinato & Baldauf, 2019).

The duration of spoken syllables in German depends on several factors, such as the number and type

of sounds that make up the syllable, and their respective durations, the speaking rate or tempo of the

speaker, and the surrounding context in which the syllable occurs. Generally, the longer a word is, the

shorter its syllables. For instance, the average duration of spoken syllables in German is 388.51 ms for

a word containing 1 syllable and 172.54 ms for a word containing 7 syllables, and 1 syllable contains on

average 2-3 phonemes, the smallest unit of speech (Altmann & Schwibbe, 1989; Sievers, 1876). There-

fore, in a range of 400 ms fall on average after roughly 2 syllables and 5 phonemes. In conclusion, the

participants most likely processed the speech stream at the phonetic level of streaming speech based on
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grouping phonemes and syllables to recognise the repeat in speech and to respond to it.

Some of the repeats could thus also include shorter word and are thus also processed and the verly low

level of morphemes word meaning (e.g., Di Sciullo & Williams, 1987). However, higher levels of semantic

processing such as sentence semantics and beyond the sentence boundary, are probably not covered by

the repeat detection task. But the listener’s goal is typically to understand their interlocutor at a higher

semantic level, in order to have a productive conversation. This is one limitation of the repeat detection

task.

One could even go a step further and consider the repeat detection task and attending to the content

of the audiobooks as a dual-task. Are these two tasks completely independent? Could participants be

solely focused on detecting the repeats without processing the content of the audiobooks? We also asked

comprehension questions regarding the content of all streams at the end of the experiment. Due to the

nature of the paradigm, which involved fast switching of attention between two streams, it was not al-

ways clear which stream the answers pertained to. Additionally, since the questions were asked at the

end of the experiment, there was a memory component involved. However, results indicated that par-

ticipants processed the streams at higher semantic levels. More importantly, our brain-behavior analysis

revealed a significant relationship between the neural tracking of continuous speech and repeat detection

performance. In other words, the larger the neural tracking for the target stream, the better the repeat

detection performance. These findings support a relationship between the long-term tracking of speech

and the repeat detection task and demonstrate the feasibility of our new continuous speech paradigm.

The role of repeats in the attentional background of speech streams is unique. As mentioned earlier, the

repeated segment shares the same acoustic properties as the preceding segment before the repetition,

making it unlikely for the repeats to pop out in the attentional background. Hence, it is possible that

the streams in the attentional background have to be preattentively segregated to some extent to have

the potential to trigger a false alarm. This relates to the ongoing discussion on whether the process of

separating auditory objects is preattentive or whether it is influenced by attention, and would rather add

to the former (Carlyon, 2004; B. G. Shinn-Cunningham, 2008; Puvvada & Simon, 2017). Additionally,

we observed a significant difference in the rate of false alarms between the distractor and neutral streams,

despite both being considered part of the attentional background. This finding challenges the assumption

that background sources are unsegregated and suggests that there may be some degree of preattentive

segregation even in the background. However, we observed only a relatively low number of false alarms,

and we quasi-randomized their occurrence, which also randomised the acoustic features and processing

level associated with them. Therefore, it is unclear if there is some form of clustering in the repeats based

on their features that is more likely to create false alarms. Further research is necessary to investigate

this issue. It is also unclear whether participants ”detected” a repeat in the background and successfully

suppressed it or simply did not ”detect” the repeat, which both would result in no response to repeats

in the attentional background.
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While the repeat detection task in continuous speech has some drawbacks, such as its limited ability to

reflect high-level semantic processing in a multi-talker paradigm, it offers several advantages over discrete

comprehension questions. For instance, it provides a much more fine-resolved behavioural measure, and

yields richer behavioural data that can be analysed using signal detection theory (e.g., hits, false alarms)

and response times to the repeats. It should be noted, however, that the repeats in continuous speech

may reduce their ecological validity. On the other hand, the more continuous nature of the task may

engage participants more, while the hit-false alarm ratio is a good indicator of whether the participant is

allocating attention as specified for the task, an important factor for neural analysis. Finally, our research

has shown a relationship between the long-term neural tracking of speech and performance on the repeat

detection task. In sum, the repeat detection task has some advantages but also some disadvantages and

is probably not yet the final answer to unravel the precise relationship between brain and behaviour in

understanding cognitive processes related to selective attention in multi-talker situations.

5.4 Implication of the psychophysically augmented continuous speech paradigm on

stream formation

In the first part of the thesis, we investigated the mechanisms of selective attention based on top-down

attention, specifically attention switching (negative priming) between two task-relevant streams while

also having a task-irrelevant stream in the attentional background.

We demonstrated that the neural representation of target speech is specific to processes of attentional

gain for behaviorally relevant target speech rather than neural suppression of distraction. We quantified

target enhancement as an increased cortical gain reflected in the neural tracking of the target stream

versus the neutral stream, and we quantified distraction suppression as a decreased neural tracking of the

distractor stream versus the neutral stream.

One could argue that a prerequisite for this is that all three streams are represented as different auditory

objects. It is widely accepted that an auditory scene is perceived in terms of auditory objects (Bregman,

1978, 1994; Griffiths & Warren, 2004; Shamma et al., 2011; B. G. Shinn-Cunningham, 2008) and some

believe that suppression operates on the representation of objects (Geng, 2014; Noonan et al., 2018; Daly

& Pitt, 2021).

However, this touches on the long-standing debate regarding at what level of hierarchy auditory object

segregation is implemented: preattentive or actively influenced by selective attention (Carlyon, 2004;

B. G. Shinn-Cunningham, 2008; B. Shinn-Cunningham et al., 2017; Shamma et al., 2011). There is

mixed evidence about spectro-temporal-based, acoustic-based, and object-based representations of the

auditory scene in the core auditory cortex.

It has been shown that core neural activity in the auditory cortex reflects acoustic characteristics of
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speech, such as spectro-temporal features (Ding & Simon, 2013; Okada et al., 2010). On the other hand,

it has been proposed that neural auditory objects are formed, and that representations of dynamic sounds

are influenced by task demands in early auditory cortex (Nelken & Bar-Yosef, 2008; J. Fritz, Shamma,

Elhilali, & Klein, 2003).

More recently, Puvvada and Simon (2017) used a three-speaker paradigm to investigate the cortical repre-

sentation of speech in an auditory scene. They found no distinct representation between the two streams

in the attentional background, even at higher-order auditory areas, and the mix of unattended streams

was more faithfully represented than the separate representations of both unattended streams. These

results suggest that speech streams in the attentional background are not represented as distinct auditory

objects but rather as one merged auditory object resulting from the mix of unattended streams.

In the context of our study, these results would imply that distractor suppression would not be measur-

able by contrasting two speech streams in the attentional background since both are represented as one

object. At first glance, our neural results are broadly in line with this conclusion, but note that Puvvada

and Simon (2017) had not applied any differential task manipulation. to the two background speech

streams, which we aimed to achieve here.

We made three important changes. First, (Puvvada & Simon, 2017) investigated the mix of the three

streams, resulting in single channel representation without spatial separation. We used three spatially

separated streams, thus participants could make use of spatial cues that likely influence auditory stream

segregation (Darwin & Hukin, 2000). Secondly, we manipulated the attentional streams differently by

task. When attentional switching was indicated by a spatial cue, the two streams alternately represented

the attended object. In other words, both streams were likely to form an object (at least for cued trials)

regardless of whether the formation of auditory objects occurred preattentively or was modulated by at-

tention. We hypothesised that this competition in the neural representation of the task-relevant streams

is associated with inhibition, retrieval mechanisms (Tipper, 1985; Frings et al., 2015), and the represen-

tation of event files (Hommel, 1998). Third, we incorporated the repeat detection paradigm (Marinato

& Baldauf, 2019) into a continuous speech paradigm.

In contrast to the neural tracking results, the behavioural results suggest distinct processing of the at-

tentional background, as discussed in more detail in the previous section. The shared acoustic properties

between a repeated segment and its preceding segment make it difficult for the repetition to be detected

in unattended streams without preattentive segregation of the auditory streams. Additionally, we ob-

served a significant difference in the rate of false alarms between the distractor, which also suggests

a separate processing of the attentional background. But what is the relationship between the neural

speech tracking and behavioral results, especially regarding the attentional background? We have shown

that participants’ performance in the repeat detection task is related to the neural tracking of the target

stream. We found no evidence for a relation between stream and repeat tracking of the neutral stream
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and participants’ performance, and also no statistical evidence that stream tracking of the distractor

stream is related to perceptual performance. But a tendency (ZW ald = –1.44, p = 0.147) that lower

neural tracking of distractor speech is associated with increased performance. This may also be an in-

dication of a distinct relation between the neutral stream and ignored stream on behavioural performance.

In sum, the results are rather mixed relating to the more general questions of whether streams are

formed preattentively and whether multiple streams can coexist, or whether attention is required to form

a stream. Additional research is needed to further explore these issues.

5.5 Investigating the sub-mechanisms of selective attention: Intersection of

findings from two parts of the thesis

In the first part of this thesis, we examined the mechanisms of top-down selective attention. We pre-

sented speech streams on different spatial positions and narrative stories spoken by different talkers.

Thus, listeners’ most likely used spatial and frequency cues to separate speech streams. The assign-

ment of speakers to locations was randomised across participants, and no acoustic features of the speech

streams were manipulated.

In contrast to the first part of the thesis, in the second part we used dynamic range compression as an

acoustic manipulation to speech streams. However, we did not include a neutral control condition. We

made this decision for two main reasons. First, based on the neural speech tracking results, we did not

find any support for distractor suppression or differential processing of speech streams in the attentional

background. Second, we aimed to mimic hearing aid processing by presenting speech streams in both the

front and back of the participant.

In the first and second parts of this thesis, we learn about the sub-processes of selective attention, target

enhancement, and distractor suppression. When no acoustical manipulation was applied to the speech

streams in the first part, evidence for target enhancement was found, but not for distractor suppres-

sion. However, classical attention theories assume the possibility of some form of distractor suppression,

where the brain selectively filters out distracting information. It is possible that different neural mech-

anisms can implement distractor suppression, which could explain the absence of evidence in the first

part (Broadbent, 1958; Treisman, 1960; Gaspelin & Luck, 2018; Wang & Theeuwes, 2018a; Noonan et

al., 2018; Wöstmann et al., 2022; Daly & Pitt, 2021).

There are two types of distraction suppression: proactive and reactive. Proactive suppression is process-

ing done before the distraction appears, while reactive suppression is processing done after the distraction

has drawn attention. Alpha power is usually associated with proactive suppression, while the character-

istics of neural tracking of speech reflect reactive distractor suppression. However, the study found that

reactive suppression is absent in auditory cortex responses in a multi-talker situation. Thus, future stud-

ies are needed to investigate proactive suppression using other neural measures (Geng, 2014; Wöstmann,
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Alavash, & Obleser, 2019; Noonan et al., 2018).

Participants performed well on the task, as indicated by high hit rates and generally low false alarm

rates. Our results suggest that this performance was mainly related to the neural speech tracking of the

target stream, which enhanced processing of the target. However, it is possible that the task was too

easy, leading to a lack of engagement of suppressive mechanisms. To increase the difficulty of the task

and activate suppressive mechanisms, one approach could be to manipulate the acoustics, such as by

varying the signal-to-noise ratio (SNR) between attended and ignored signals. For example, a study by

Fiedler et al. (2019) found that, under adverse listening conditions, such as manipulations of the SNR

led to the activation of suppressive mechanisms.

In the second part of the thesis, we manipulated the acoustics in terms of dynamic range compression.

We found some indications of suppressive mechanisms in neural speech tracking. Dynamic range com-

pression on ignored speech increased neural tracking of attended speech in hearing-impaired participants,

suggesting that suppression (possibly facilitated via compression) influences the processing of the at-

tended stream (Makov & Zion Golumbic, 2020; Daly & Pitt, 2021). Furthermore, there is evidence that

the potential influence of target and distractor suppression relies on separable underlying mechanisms, as

indicated by different activity patterns (Jaeger, Bleichner, Bauer, Mirkovic, & Debener, 2018). However,

a baseline control condition (similar to the one in study 1) is needed to reliably distinguish between this

mechanisms: target enhancement and distractor suppression (Wöstmann et al., 2022).

In sum, one important intersection of the first and second parts of this thesis is the investigation of the

sub-processes of selective attention. While the first part found evidence for target enhancement but not

for distractor suppression, the second part showed some indication of suppressive mechanisms in neural

speech tracking. The second part demonstrated that dynamic range compression on ignored speech could

increase neural tracking of attended speech, suggesting a possible suppression mechanism that influences

the processing of the attended stream. These findings indicate the complexity of selective attention

and the possibility of different mechanisms involved in target enhancement and distractor suppression.

Further research is needed to better understand the neural mechanisms underlying these sub-processes

of selective attention.

5.6 Implications on hearing aids and future research

To date, amplitude compression or dynamic range compression is widely used in most modern hearing

aids. The primary goal is to compensate for loudness, and the compressor parameters vary depending

on the listening situation, often being applied in a frequency-dependent manner. However, the pros and

cons of amplitude compression are still under discussion. (Braida et al., 1979; Dillon, 1996; Souza, 2002).

Previous studies have indicated that hearing aids that compress the total sound scene with the same

compression often have negative effects on performance, particularly in multi-talker situations where tar-

get speech and distracting speech are compressed together, undergoing a comodulation (Stone & Moore,
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2004). More recently, hearing aid algorithms are able, via beam-forming technology, to apply different

signal processing techniques,including compression, to separate sound sources from different locations

(Jensen et al., 2021).

In the second part of the thesis, we simulated independent spatial signal processing by presenting com-

pressed and uncompressed speech over free-field loudspeakers in a spatial competing talker paradigm. We

investigated the interplay of fast-acting amplitude compression with selective attention and found that,

in general, behavioural and neural responses were impaired when amplitude compression was applied

to speech streams. Particularly, hearing-impaired participants showed reduced speech tracking of the

amplitude-compressed streams and increased neural speech tracking of the attended stream when only

the ignored stream was compressed, compared to both streams being uncompressed.

Overall, the results support the hypothesis that fast-acting amplitude compression on both streams (even

when not comodulated in our experiment) impairs neural speech tracking and performance. Additionally,

the study suggests that hearing-impaired participants may benefit from independent compression applied

only to ignored sources, as indicated by enhanced neural speech tracking. However, the study did not

find increased behavioural performance to support this result. Future studies could investigate the effect

of amplitude compression on other behavioural measures, such as speech intelligibility. Moreover, sound

quality is also crucial for the acceptance of hearing aids, and further studies could evaluate the effect of

compression on quality ratings.

We only scratched the surface of signal processing in terms of compression. Our study applied wideband

(single-channel) compression to the stimulus material and investigated TRFs based on the cochlea-filtered

broadband envelope. However, compression can alter the envelope shape of an audio signal in a way that

adds distortion components to the modulation spectrum that were not present in the original signal (Stone

& Moore, 2007). In addition, neural speech tracking not only relies on the speech envelope but also on

temporal fine structure (Ding, Chatterjee, & Simon, 2014; Obleser, Herrmann, & Henry, 2012). Research

that explicitly considers the frequency domain could provide additional insights. To explore the impact

of fast-acting compression to the modulation spectrum on neural tracking, it would be interesting to

investigate the spectro-temporal response functions (sTRFs) of amplitude-compressed speech (Drennan

& Lalor, 2019; Fiedler et al., 2017; Kraus et al., 2021). Additionally, the use of multi-channel compres-

sion on neural speech tracking and performance on independent channels should be further explored.

For hearing-impaired participants, carefully set channel-dependent compression is associated with im-

proved speech intelligibility and quality and may support the acceptance of such algorithms (Souza, 2002).

Further research is needed to investigate the role of across-source modulation coherence (Stone & Moore,

2007, 2004) and its impact on selective attention, neural tracking, and performance in multi-talker situ-

ations. This would be particularly interesting when multiple objects in the attentional background are

comodulated (compression leads to patterns of modulation that are partially correlated across previously
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5 General discussion

independent source) but the target talker is not. This could lead to a perceptual fusion of distractors,

which may facilitate stream segregation and selection (Grimault et al., 2002; Shamma et al., 2011), result-

ing in potential better performance, especially for hearing-impaired listeners in situations with multiple

distractions.

Dynamic range compression is a crucial tool in hearing aids, as well as being used in music production. In

music production, side chain compression is often used to modify the behaviour of the compressor using

a separate audio signal (Oliveira, 1989). One example of this is reducing the volume of a bass guitar

signal when a kick drum transient occurs, creating a ”ducking” effect that allows the two instruments to

blend better. This same side-chain compression technique could also be a beneficial feature in hearing

aids. For instance, in a multi-talker situation where there are several speech sources, a listener may want

to focus on one particular talker. The compressor could then reduce the gain of the ignored talker(s)

based on the transients in the attended talker’s speech signal, which could be controlled and adjusted

via the attack and release times. Since speech transients play an important role in speech comprehension

(for review, see Peelle & Davis, 2012), reducing the gain of the ignored talker(s) based on the transient

could be beneficial for speech comprehension. This technique could help to improve the intelligibility of

the attended speech source, while reducing the distracting effect of the ignored talker(s).

5.7 Limitations

It is important to note some limitations of our present work. The limitations of the individual studies

are described in the corresponding section. Here, the more generally applicable limitations are described.

While our newly introduced behavioural repeat detection task in continuous speech has some advantages,

it also has some drawbacks, which we discuss in more detail in section 5.3. The main limits are likely

that the task, in general, only led to a small number of false alarms, and that the repeat detection task

does not cover high-level semantic processing.

For the former, the repeat detection task has the great advantage that it provides fine-resolved behavioural

data from speech streams in the attentional background. However, the total number of false alarms is

comparably low. There are probably different ways to increase the false alarm rate. At first glance, a

straightforward possibility would be to reduce the length of the repeat. The shorter the repeat, the less

information the participant can use to form the repetitions, and the more similar the repeats become

between streams, potentially making them more difficult to separate, which may increase the false alarm

rates. On the other hand, the shorter the repeats get, the more they reflect low-level acoustics, making

them more likely to pop out of the streams. Another possible option would be to make the task more

difficult without changing the repeat length, for instance, by adding acoustical manipulations to the task,

such as SNR manipulations. However, this must be well thought out and, of course, depends on the

respective hypotheses.

For the latter, it is always a trade-off between sampling behaviour at a high rate and speech comprehen-
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sion. We aimed to obtain more finely resolved behavioural data to have a measure that can compete (at

least to some extent) with the comparable, very-high-sampled neural recordings. We found a significant

brain-behavior relationship, and indeed, neural tracking of target speech predicts the proportion correct

of the repeat detection task. However, the repeat detection task is insufficient for high-level speech com-

prehension or even extracting meaning from a conversation. Future studies are still needed to address

this complex but important issue in the field. One possibility could be to cautiously and well-consideredly

combine different sampled behavioural measures that address different levels of processing. In addition

to the repeat detection task, one option could be to randomly stop the presentation and ask the par-

ticipant to repeat the last sentence or a certain number of words (O’Sullivan et al., 2017), or to collect

self-reported intelligibility scores (Ding & Simon, 2013).

We claimed that we used a more ecologically valid experimental paradigm in contrast to more trial-based

designs. We used narrative stories as stimuli that appear in real-life scenarios but do not reflect typical

conversation. They still operate on a continuum between well-controlled and ecologically valid real-life

paradigms, perhaps leaning more towards the latter. The additional attention-switching components in

our design make the task more interactive, as in challenging listening situations, such as in a bar, one

is more likely to change interlocutors. On the other hand, the embedded repeats in the speech stream

make the speech streams more unnatural (since repeats do not usually appear in everyday conversation)

and move the paradigm on the continuum more towards well-controlled paradigms. In addition, real-

life listening scenarios have much more variation in background noise than competing talkers reflect as

narrative stories, and participants can usually use visual information, such as lip-reading, to facilitate

speech comprehension. Once again, this boils down to a trade-off between ecologically valid paradigms

and more trial-based, controlled paradigms. To choose one over the other or even to choose a combination

of both, which we claimed within this thesis, needs to be reconsidered for future studies and depends on

the research questions asked.
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6 Conclusions

6 Conclusions

In this thesis, we investigated the sub-processes of selective attention in complex auditory environments

using psychophysically augmented continuous speech paradigms. The results of the first study demon-

strated that selective attention is achieved by enhancing the target speech rather than suppressing the

distraction. This result was supported by the brain-behaviour relationship, indicating better performance

with increased neural speech tracking of the target streams. This provides valuable insights into the

mechanisms of selective attention. This finding challenges current models of enhanced neural responses

to speech and emphasises the importance of considering specific sub-processes of selective attention, such

as target enhancement, when examining the neural mechanisms underlying speech processing.

The second part of the thesis investigated the effects of dynamic range compression on neural separa-

tion and behavioural response in normal hearing and hearing-impaired participants. The results lay a

foundation for our understanding of how amplitude compression affects the neurophysiological mecha-

nisms underlying selective auditory attention during ongoing speech, with potential implications for the

development of novel hearing aid algorithms. We show that fast-acting compression in general impairs

performance and leads to decreased neural speech tracking. On the other hand, applying dynamic range

compression only to ignored talkers in a multi-talker situation can lead to increased neural separation

between attended and ignored talkers in hearing-impaired listeners. However, we found no associated

increase in performance related to repeat detection. Further studies are needed to also investigate the

effect of dynamic range compression on additional behavioural measures.

While our study provides important insights into the neural mechanisms underlying selective attention

and the interplay with dynamic range compression, there are limitations that should be acknowledged.

The repeat detection task provided rich and finely resolved behavioural data in contrast to common

methods. On the other hand, it did not cover high-level semantic processing, which is important for

speech comprehension. The studies were conducted in controlled laboratory environments with narrative

stories as stimuli and may not fully represent real-world listening scenarios. Additionally, the study with

hearing-impaired participants was conducted with a relatively small number of participants, and further

studies with larger sample sizes are needed to validate the findings.

In conclusion, this thesis contributes to the ongoing debate in attention research by providing new insights

into the sub-processes of selective attention in complex auditory environments. Our findings suggest that

dynamic range compression can have different effects on behavioural performance and neural speech

tracking, and that the enhancement of the target speech is the primary mechanism behind selective

attention. Future studies are needed to investigate the neural mechanisms of selective attention and

validate our findings in larger samples and real-world listening scenarios.
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Fuglsang, S. A., Märcher-Rørsted, J., Dau, T., & Hjortkjær, J. (2020). Effects of sensorineural hearing loss
on cortical synchronization to competing speech during selective attention. Journal of Neuroscience,
40 (12), 2562–2572.

Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-
irrelevant sensory inputs. Psychological science, 26 (11), 1740–1750.

Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-
but-irrelevant color singletons. Attention, Perception, & Psychophysics, 79 (1), 45–62.

Gaspelin, N., & Luck, S. J. (2018). The role of inhibition in avoiding distraction by salient stimuli.
Trends in cognitive sciences, 22 (1), 79–92.

Gaspelin, N., & Luck, S. J. (2019). Inhibition as a potential resolution to the attentional capture debate.
Current opinion in psychology, 29 , 12.
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Summary

Summary

People are often confronted with complex auditory environments where multiple sound sources compete

for their attention. The ability to selectively attend to one particular sound source over others is essential

for effective communication and even mild to moderate hearing loss can impair the processing of speech in

such environments. Cherry (1953) introduced the concept of the cocktail party problem, and since then,

research has focused on understanding the neural mechanisms underlying selective attention. Auditory

object formation is a crucial process in the perception of continuous speech and the selective attention

required to solve the cocktail party problem (Bregman, 1994; B. Shinn-Cunningham et al., 2017; Bizley

& Cohen, 2013). Selective attention refers to the ability to control which information to attend to in the

presence of distractors (Desimone et al., 1995). The mechanism of how selective attention is implemented

is a topic of ongoing debate in attention research, and it is proposed that a pre-defined baseline is required

to distinguish target enhancement and distractor suppression (Wöstmann et al., 2022). The present work

investigated these sub-processes of selective attention in young and normal hearing participants using a

psychophysically augmented continuous speech paradigm. The experiment involved using a speech stim-

ulus that was irrelevant and served as a baseline, against which the processing of relevant target speech

and irrelevant distractor speech could be compared. Participants had to continuously monitor and detect

repeated segments in the relevant speech while ignoring repeats in the irrelevant speech. This helped to

determine if the neural responses to relevant, irrelevant, and baseline speech could explain the variation

in attentional performance on a trial-by-trial basis.

Hearing-impaired individuals often struggle in multi-talker environments, making them an interesting test

case for investigating the neural dynamics of selective attention in complex listening scenarios. Hearing

aids are the most common treatment for individuals with presbycusis, and new hearing aid technology

enables independent processing of sound from different directions. Studies have shown that the temporal

speech envelope is crucial for speech comprehension (Shannon et al., 1995; Peelle et al., 2010; Ding &

Simon, 2014). Our hypothesis is that dynamic range compression, a signal processing technique that

directly affects the temporal speech envelope, impairs both behavioural performance and neural speech

tracking. Additionally, we propose that applying compression only to ignored talkers in a multi-talker

situation will increase the neural separation between the attended and ignored talkers and lead to im-

proved behavioural performance. We employed an adapted version of the psychophysically augmented

continuous speech paradigm. In contrast to the first study, we reduced the number of speakers and

modified the positions of the two competing speakers to the front and back, mimicking the processing of

hearing aids. The compression was applied randomly and equally in advance to the speech streams.

In Study 1, it was discovered that selective attention is achieved by enhancing the target speech, rather

than suppressing the distraction. The study involved 19 young adults. All participants reported having

German as their native language and having normal hearing. The study’s results revealed that listeners

made more false alarms from the distractor speech than from the neutral stream. However, the neural
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representation of target speech was strengthened, and no suppression of distraction was observed below

the neutral baseline. Only, neural tracking to target speech explains performance. These findings imply

that the primary mechanism behind selective attention is the enhancement of the target.

The second part of the thesis conducted several studies to investigate the effects of amplitude com-

pression and selective attention on neural separation and behavioural response in normal hearing and

hearing-impaired participants. In Study 2, a pilot study (N=6) was conducted with different compression

and expansion ratios to determine an appropriate ratio to be used in the follow-up study. The findings

showed that a 1:8 compression ratio significantly reduced the brain’s ability to track speech. Study 3

used a continuous speech paradigm and revealed that compression on both attended and ignored streams

decreased behavioural performance and neural speech tracking while increasing neural separation when

only the ignored stream was compressed in N = 24 normal hearing participants. In Study 4, a computa-

tional model of the human auditory periphery was used to simulate the firing rate of the auditory nerve

and the envelope following response for both normal hearing and hearing-impaired participants. The

simulation results indicated that changes in the auditory periphery did not confound the effects observed

in the neural speech tracking study and the follow-up study for hearing-impaired participants. Study 5

aimed to study the impact of amplitude compression and selective attention on neural separation and

behavioural response in individuals with hearing impairment (N=7). The results showed comparable

patterns to those observed in normal-hearing participants, with reduced performance and neural tracking

for amplitude-compressed speech. However, unlike the normal-hearing participants, the results showed

enhanced neural speech tracking for the attended stream when only the ignored stream was compressed.

This thesis investigates the sub-processes of selective attention using speech streams utilising augmented

psychophysically speech paradigms. The first part examines top-down selective attention mechanisms and

finds evidence for target enhancement but not for distractor suppression. The second part uses dynamic

range compression as an acoustic manipulation and shows some indications of suppressive mechanisms in

neural speech tracking. The absence of evidence for distractor suppression in the first part may be due to

different neural mechanisms implementing it. Proactive suppression is associated with alpha power, while

reactive suppression is more reflected in the neural tracking of speech. Reactive suppression was found to

be absent in auditory cortex responses in a multi-talker situation. Future studies are needed to investigate

proactive suppression using other neural measures. The second part demonstrates that dynamic range

compression on ignored speech could increase neural tracking of attended speech, suggesting a possible

suppression mechanism. As in the first part, a baseline control condition is needed to reliably distinguish

target enhancement from distractor suppression. These findings indicate the complexity of selective

attention and the need for further research to understand its neural mechanisms. Researchers could also

investigate the effect of compression on other behavioural measures, explore the impact of modulation

coherence on selective attention, and consider the potential benefits of side chain compression in hearing

aids.
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Zusammenfassung

Zusammenfassung

Menschen werden oft mit komplexen akustischen Umgebungen konfrontiert, in denen mehrere Schal-

lquellen um ihre Aufmerksamkeit konkurrieren. Die Fähigkeit, sich selektiv auf eine bestimmte Schal-

lquelle zu konzentrieren und andere auszublenden, ist für eine effektive Kommunikation unerlässlich.

Selbst geringgradige Hörverluste können die Verarbeitung von Sprache in solchen Umgebungen beeinträchti-

gen. Cherry (1953) führte das Konzept des Cocktailparty-Problems ein, und seither konzentriert sich die

Forschung darauf, die neuronalen Mechanismen zu verstehen, die der selektiven Aufmerksamkeit zu-

grunde liegen. Die Bildung auditiver Objekte ist ein entscheidender Prozess bei der Wahrnehmung kon-

tinuierlicher Sprache und der selektiven Aufmerksamkeit, die für die Lösung des Cocktailparty-Problems

erforderlich ist (Bregman, 1994; B. Shinn-Cunningham et al., 2017; Bizley & Cohen, 2013). Selektive

Aufmerksamkeit bezieht sich auf die Fähigkeit, zu kontrollieren, auf welche Informationen man sich

in Gegenwart von Störgeräuschen konzentriert (Desimone et al., 1995). Der Mechanismus, wie selek-

tive Aufmerksamkeit implementiert wird, ist ein Thema der laufenden Debatte in der Aufmerksamkeits-

forschung, und es wird vorgeschlagen, dass eine vorgegebene Baseline erforderlich ist, um Zielverstärkung

und Distraktorsuppression zu unterscheiden (Wöstmann et al., 2022). Die vorliegende Arbeit unter-

suchte diese Teilprozesse der selektiven Aufmerksamkeit bei jungen und normal hörenden Teilnehmern

unter Verwendung eines psychophysisch erweiterten kontinuierlichen Sprachparadigmas. Das Experiment

beinhaltete die Verwendung eines Sprachstimulus, der irrelevant war und als Baseline diente, um die

Verarbeitung relevanter Zielsprache und irrelevanter Distraktorsprache vergleichen zu können. Die Teil-

nehmer mussten fortlaufend wiederholte Abschnitte in der relevanten Sprache erkennen und gleichzeitig

Wiederholungen in der irrelevanten Sprache ignorieren. Dies half dabei zu bestimmen, ob die neuronalen

Antworten auf relevante, irrelevante und Baseline-Sprache die Varianz in der Aufmerksamkeitsleistung

auf einer Trial-by-Trial-Basis erklären konnten.

Hörgeschädigte Personen haben oft Schwierigkeiten in Situationen mit mehreren Sprechern, was sie zu

einem interessanten Testfall für die Untersuchung der neuronalen Dynamik der selektiven Aufmerksamkeit

in komplexen Hörszenarien macht. Hörgeräte sind die häufigste Behandlung für Menschen mit Presbyaku-

sis, und neue Hörgerätetechnologien ermöglichen die unabhängige Verarbeitung von Schall aus verschiede-

nen Richtungen. Studien haben gezeigt, dass die zeitliche Sprachhülle für das Sprachverständnis eine

wichtige Rolle spielt (Shannon et al., 1995; Peelle et al., 2010; Ding & Simon, 2014). Unsere Hypothese

ist, dass die dynamische Bereichskompression, eine Signalverarbeitungstechnik, die direkt die zeitliche

Sprachhülle beeinflusst, sowohl die Performance als auch das neuronale Sprachtracking beeinträchtigt.

Darüber hinaus schlagen wir vor, dass die Anwendung von Kompression nur auf ignorierte Sprecher in

einer Situation mit mehreren Sprechern die neuronale Trennung zwischen dem aufmerksamen und ignori-

erten Sprecher erhöht und zu einer verbesserten Performance führt. Wir verwendeten eine angepasste

Version des psychophysischen augmentierten kontinuierlichen Sprachparadigmas. Im Gegensatz zur er-

sten Studie haben wir die Anzahl der Sprecher reduziert und die Positionen der beiden konkurrierenden

Sprecher vorne und hinten modifiziert, um die Verarbeitung von Hörgeräten zu simulieren. Die Kom-
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pressionsmanipulation wurde randomisiert im Voraus auf die Sprachströme angewendet.

In Studie 1 wurde gezeigt, dass selektive Aufmerksamkeit durch die Verstärkung des Zielsprechers erreicht

wird, anstatt den störenden Sprecher zu unterdrücken. Die Studie umfasste 19 junge Erwachsene. Alle

Teilnehmer gaben an, Deutsch als Muttersprache zu haben und normales Hörvermögen zu besitzen. Die

Ergebnisse der Studie zeigten, dass die Zuhörer mehr False-alarms von dem störenden Sprecher als vom

neutralen Sprecher machten. Die neuronale Repräsentation des Zielsprechers wurde verstärkt, und es

wurde keine Unterdrückung des störenden Sprechers unterhalb der neutralen Baseline beobachtet. Nur

das neuronale Tracking des Zielsprechers erklärte die Performance im Verhalten. Diese Ergebnisse legen

nahe, dass der primäre Mechanismus hinter selektiver Aufmerksamkeit die Verstärkung des Zielsprechers

ist.

Der zweite Teil der Arbeit führte mehrere Studien durch, um die Auswirkungen der Amplitudenkom-

pression und selektiven Aufmerksamkeit auf die neuronale Trennung und das Verhaltensverhalten bei

normal hörenden und hörgeschädigten Teilnehmern zu untersuchen. In Studie 2 wurde eine Pilotstudie

(N=6) mit unterschiedlichen Kompressions- und Expansionsverhältnissen durchgeführt, um ein geeignetes

Verhältnis für die Folgestudie zu ermitteln. Die Ergebnisse zeigten, dass ein Kompressionsverhältnis von

1:8 die Fähigkeit des Gehirns, Sprache zu verfolgen, signifikant verringerte. Studie 3 verwendete ein kon-

tinuierliches Sprachparadigma und zeigte, dass die Kompression sowohl auf den beachteten als auch auf

den ignorierten Streams die Performance und das neuronale Sprachtracking verringerte, während die neu-

ronale Trennung erhöht wurde, wenn nur der ignorierte Stream bei N = 24 normal hörenden Teilnehmern

komprimiert wurde. In Studie 4 wurde ein computerbasiertes Modell des menschlichen Hörorgans verwen-

det, um die Feuerrate des Hörnervs und die Envelope-following-Response für sowohl normal hörende als

auch hörgeschädigte Teilnehmer zu simulieren. Die Simulationsergebnisse zeigten, dass Veränderungen

im Hörorgan die Auswirkungen der beobachteten Studien zum neuronalen Sprachtracking und Folges-

tudie für hörgeschädigte Teilnehmer nicht beeinträchtigten. Schließlich zielt Studie 5 darauf ab, die

Auswirkungen der Amplitudenkompression und selektiven Aufmerksamkeit auf die neuronale Trennung

und das Verhaltensverhalten bei Personen mit Hörbeeinträchtigung (N=7) zu untersuchen. Die Ergeb-

nisse zeigten vergleichbare Muster wie bei normal hörenden Teilnehmern, mit reduzierter Performance

und neuronalem Tracking für amplitudenkomprimierte Sprache. Im Gegensatz zu den normal hörenden

Teilnehmern zeigten die Ergebnisse jedoch ein verbessertes neuronales Sprachtracking für den beachteten

Stream, wenn nur der ignorierte Stream komprimiert wurde.

Diese Arbeit untersucht die Teilprozesse der selektiven Aufmerksamkeit unter Verwendung von psychoph-

ysischen Sprachparadigmen. Der erste Teil untersucht top-down selektive Aufmerksamkeitsmechanismen

und findet Hinweise auf eine Zielverstärkung, aber nicht auf eine Distraktorsuppression. Der zweite Teil

verwendet dynamische Bereichskompression als akustische Manipulation und zeigt einige Anzeichen für

supressive Mechanismen im neuronalen Sprachtracking. Das Fehlen von Hinweisen auf Distraktorsup-

pression im ersten Teil könnte auf verschiedene neuronale Mechanismen zurückzuführen sein, die dies
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Zusammenfassung

implementieren. Proaktive Suppression ist mit Alpha-Power assoziiert, während reaktive Suppression

eher im neuronalen Tracking von Sprache reflektiert wird. Reaktive Suppression im neuronalen Track-

ing wurde hier in einer Mehrsprecher-Situation nicht gefunden. Zukünftige Studien sind notwendig, um

proaktive Suppression mit anderen neuronalen Maßen zu untersuchen. Der zweite Teil zeigt, dass die

dynamische Bereichskompression bei ignorierten Sprachsignalen das neuronale Tracking von beachteter

Sprache erhöhen kann, was auf einen möglichen Suppressionsmechanismus hinweist. Wie im ersten Teil

ist allerdings auch hier eine Kontrollbedingung notwendig, um Zielverstärkung und Distraktorsuppression

zuverlässig zu unterscheiden. Diese Ergebnisse zeigen die Komplexität selektiver Aufmerksamkeit und die

Notwendigkeit weiterer Forschung, um ihre neuronalen Mechanismen zu verstehen. Zukünftige Studien

könnten den Effekt der Kompression auf andere Verhaltensmaße untersuchen, den Einfluss von Comodu-

lation auf selektive Aufmerksamkeit erforschen und die potenziellen Vorteile von Side-chain-Kompression

bei Hörgeräten berücksichtigen.
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