
From the Institute for Software Engineering
and Programming Languages
of the University of Lübeck

Director: Prof. Dr. Martin Leucker

Efficient Implementation of
Stream Transformations

Dissertation

for Fulfillment of

Requirements

for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences and Technical Engineering

Submitted by

Malte Schmitz

from Hamburg

Lübeck 2022

First referee: Prof. Dr. Martin Leucker

Second referee: Prof. João Lourenço, PhD

Date of oral examination: 9 December 2022

Approved for printing. Lübeck, 13 December 2022

Acknowledgement

I have had the support of many people in writing this thesis. I am very grateful to
them for supporting me and teaching me so much.

First of all, I would like to thank my supervisor, Martin Leucker, for his support and
guidance throughout my academic journey. He introduced me to all the different
aspects of runtime verification, provided me with a variety of research opportunities
and collaborations, and gave me the freedom and environment to develop ideas and
results. I would also like to thank João Lourenço for reviewing this thesis and
Mladen Bereković for chairing the examination board.

I am grateful to Daniel Thoma for all our fruitful discussions. His sharp analysis and
ideas have greatly improved this thesis. I would also like to thank Torben Scheffel
for his continuous support. We met on the first day of our computer science studies
and have worked very well together on many projects since then.

I would like to thank Alexander Weiss and Albert Schulz for providing me with the
EPUs and for our great cooperation in developing and debugging the EPUs and the
corresponding compiler.

I would like to thank the TeSSLa team for their dedicated work on the compilers
and ecosystems. I am especially grateful to Sebastian Hungerecker for his work
on the TeSSLa compiler frontend, for teaching me how to code properly, and for
being the best office mate. I would also like to thank Hannes Kallwies and Thiemo
Bucciarelli for their great implementation work on the TeSSLa software compiler,
the EPU compiler, and the FPGA compiler.

v

Abstract

This thesis compares different implementations of the stream transformation lan-
guage TeSSLa, which is designed as a general-purpose specification language to
analyse traces. The focus lies on online monitoring. The monitors do not have
access to the entire trace but sequentially process the events of the input trace at
the runtime of the system under test.

A TeSSLa specification consists of (potentially recursive) functional definitions of
streams deriving new streams from existing streams. This thesis compares moni-
toring syntheses that translate TeSSLa specifications into a generic software appli-
cation, into a configuration for dedicated pipelining hardware and into an FPGA
image.

The generic software application uses a synchronous evaluation approach. The spec-
ification’s flow graph is compiled into a Java or Rust program. In a synchronous
loop, the graph is entirely evaluated for a timestamp until inputs of the following
timestamp are considered.

The dedicated hardware called Event Processing Units (EPUs) is implemented on
an FPGA and was developed by Accemic specifically for TeSSLa. The EPUs are in-
spired by data flow processors and reconfigurable hardware approaches.The TeSSLa
implementation on EPUs combines the synchronous approach with pipelining.

The FPGA synthesis employs TeSSLa’s support for asynchronous evaluations to
utilise the inherent parallelism of FPGAs: The specification’s flow graph is directly
mapped to the hardware in the form of a network of operators connected with
low-level channels. The synchronisation of the inputs happens at every individual
operator based on the logical timestamps.

Further, an interpreter written in Scala is introduced as a reference implementation
to test the correctness of the other implementations. It follows the same synchronous
approach as the compiler, but it dynamically creates an object graph from the
specification’s flow graph at runtime.

The different monitoring syntheses follow different approaches adapted to the re-
spective environments. In this thesis, they are compared with each other, especially
with regard to the following two main questions:

vii

Abstract

1. How can the different monitor implementations be related to a formal TeSSLa
semantics? Different variations of the TeSSLa semantics are discussed and re-
lated to each other. The correctness of the different monitor syntheses is shown
using synchronous and asynchronous semantics introduced as abstractions of
a common monitoring semantics of TeSSLa.

2. How efficient are the different monitoring implementations? The throughput,
i. e. the number of processed events over time, is compared empirically on
real-world specifications obtained from several research projects. The results
show the practical feasibility of all three approaches. Further, the effect of
adjusting different parameters is measured using synthetic specifications to
gain insights into which monitoring implementation is particularly suitable in
which scenarios.

viii

Zusammenfassung

Diese Arbeit vergleicht verschiedene Implementierungen der Stromtransformationss-
prache TeSSLa, die als universelle Spezifikationssprache zur Analyse von Traces kon-
zipiert ist. Der Schwerpunkt liegt dabei auf dem Online-Monitoring. Die Monitore
haben keinen direkten Zugriff auf den ganzen Trace, sondern verarbeiten sequentiell
die Ereignisse des Input-Traces zur Laufzeit des zu testenden Systems.

Eine TeSSLa-Spezifikation besteht aus (potentiell rekursiven) funktionalen Defini-
tionen von Strömen, die neue Ströme aus bestehenden Strömen ableiten. In die-
ser Arbeit werden Monitorsynthesen verglichen, die TeSSLa-Spezifikationen über-
setzen in eine generische Softwareanwendung, in eine Konfiguration für dedizierte
Pipelining-Hardware und in ein FPGA-Image.

Die generische Softwareanwendung verwendet einen synchronen Evaluierungsansatz.
Der Flussgraph der Spezifikation wird in ein Java- oder Rust-Programm kompiliert.
In einer synchronen Schleife wird der Graph für einen Zeitstempel vollständig aus-
gewertet, bis die Eingaben des folgenden Zeitstempels berücksichtigt werden.

Die dedizierte Hardware namens Event Processing Units (EPUs) ist auf einem FPGA
implementiert und wurde von Accemic speziell für TeSSLa entwickelt. Die EPUs sind
inspiriert von Datenflussprozessoren und rekonfigurierbaren Hardwareansätzen. Die
TeSSLa-Implementierung auf EPUs kombiniert den synchronen Ansatz mit Pipeli-
ning.

Die FPGA-Synthese nutzt TeSSLas Unterstützung für asynchrone Auswertungen,
um die inhärente Parallelität von FPGAs zu nutzen: Der Flussgraph der Spezifi-
kation wird in Form eines Netzwerks von Operatoren, die mit Low-Level-Kanälen
verbunden sind, direkt auf die Hardware abgebildet. Die Synchronisation der Ein-
gänge erfolgt bei jedem einzelnen Operator auf Basis der logischen Zeitstempel.

Außerdem wird ein in Scala geschriebener Interpreter als Referenzimplementierung
eingeführt, um die Korrektheit der anderen Implementierungen zu testen. Er ver-
folgt den gleichen synchronen Ansatz wie der Compiler, erstellt aber zur Laufzeit
dynamisch einen Objektgraphen aus dem Flussgraphen der Spezifikation.

Die verschiedenen Monitoring-Synthesen verfolgen unterschiedliche Ansätze, die an
die jeweiligen Umgebungen angepasst sind. In dieser Arbeit werden sie miteinander
verglichen, insbesondere im Hinblick auf die folgenden zwei Hauptfragen:

ix

Zusammenfassung

1. Wie können die verschiedenen Monitor-Implementierungen mit einer formalen
TeSSLa-Semantik in Verbindung gebracht werden? Es werden verschiedene Va-
rianten der TeSSLa-Semantik diskutiert und zueinander in Beziehung gesetzt.
Die Korrektheit der verschiedenen Monitor-Synthesen wird anhand synchroner
und asynchroner Semantiken gezeigt, die als Abstraktionen einer gemeinsamen
Monitoring-Semantik von TeSSLa eingeführt werden.

2. Wie effizient sind die verschiedenen Monitor-Implementierungen? Der Durch-
satz, d. h. die Anzahl der verarbeiteten Ereignisse über die Zeit, wird empirisch
mit realen Spezifikationen aus verschiedenen Forschungsprojekten verglichen.
Die Ergebnisse zeigen die praktische Tauglichkeit aller drei Ansätze. Darüber
hinaus wird die Auswirkung der Änderung verschiedener Parameter anhand
synthetischer Spezifikationen gemessen, um Erkenntnisse darüber zu gewin-
nen, welche Monitor-Implementierung für welche Szenarien besonders geeignet
ist.

x

Contents

1. Introduction 1
1.1. Formalisms for Analysing Traces . 3
1.2. TeSSLa . 6
1.3. Contributions . 11
1.4. Outline . 13
1.5. Related Work . 17

2. Preliminaries 21

3. TeSSLa 27
3.1. Motivating Example . 29

3.1.1. Lifting Functions on the Data Domain to Streams 29
3.1.2. Synchronisation of Events . 30
3.1.3. Filtering Events and Explicitly Handling the Absence of Events 33
3.1.4. Timestamps, Previous Events and Event Creation 35
3.1.5. Aggregating Data Along the Streams 37

3.2. Semantics . 40
3.2.1. Streams . 41
3.2.2. Syntax . 44
3.2.3. Semantics . 45
3.2.4. Properties . 49

3.3. Common Derived Operators . 53
3.3.1. Operators Derived From lift 53
3.3.2. Accessing Previous Values . 54
3.3.3. Signal Lift . 55
3.3.4. Default Values . 57
3.3.5. Recursive Equations . 58
3.3.6. Generating New Timestamps 61
3.3.7. Implicit Type Conversions and Type Checking 61

3.4. Design Choices . 62
3.4.1. Lifting Nested Functions . 63
3.4.2. Basic Operators . 66
3.4.3. Events and Signals . 67
3.4.4. Generating Zeno-Streams . 69
3.4.5. Memory Usage . 69

xi

Contents

3.5. Monitoring . 73
3.5.1. Monitoring Streams . 74
3.5.2. Monitoring Semantics . 77
3.5.3. Examples . 79
3.5.4. Fixed Points in the Monitoring Semantics 89
3.5.5. Relation to Semantics . 92
3.5.6. Maximal Refinement . 93
3.5.7. Fixed Points in the Semantics 95

3.6. Expressiveness of TeSSLa . 96
3.7. Conclusion . 103

4. Interpreter and Software Compiler 105
4.1. Semantics . 107

4.1.1. Progress . 107
4.1.2. Synchronised Streams . 109
4.1.3. Operator Functions . 114
4.1.4. Synchronised Monitoring Function 117
4.1.5. Examples . 120
4.1.6. Correctness and Properties . 125

4.2. Implementation Concepts . 127
4.2.1. Imperative Algorithm for the Synchronised Monitoring Function128
4.2.2. Implementing the Closed Operator Function 130

4.3. Interpreter . 133
4.3.1. Implementing the Closed Operator Function 133
4.3.2. Implementing the Synchronised Monitoring Function 134
4.3.3. Example . 136
4.3.4. Scala DSL . 138

4.4. Software Compiler . 139
4.4.1. Implementing the Synchronised Monitoring Function 140
4.4.2. Implementing the Closed Operator Function 140
4.4.3. Example . 141
4.4.4. Compiler Frontend . 143

4.5. Integration and Test Setup . 144
4.5.1. Trace Encoding . 145
4.5.2. Test Setup . 146

4.6. Conclusion . 146

5. TeSSLa on Embedded Procssing Units (EPUs) 149
5.1. Data Flow Processors . 150
5.2. EPU Hardware . 153

5.2.1. Inner Pipeline . 158

xii

Contents

5.3. Formal EPU model . 159
5.3.1. Execution of a single EPU . 164
5.3.2. Execution of an EPU Network 165
5.3.3. Mapping Events to EPUs . 169
5.3.4. EPU Simulation . 170

5.4. EPU Commands for TeSSLa Operations 171
5.5. Mapping the Dependency Graph on an EPU Network 177

5.5.1. Example . 177
5.6. Recursion . 180

5.6.1. Example . 185
5.6.2. Expressiveness . 188

5.7. Fulfilling Hardware Restrictions . 188
5.7.1. Splitting Up EPU Commands 190
5.7.2. Condition Configuration . 190
5.7.3. Placement of EPU Commands in the Network 194
5.7.4. Enqueuing Commands . 198

5.8. Practical Simplifications . 198
5.8.1. Flow Graph Optimisations . 198
5.8.2. EPU Network Optimisations 200
5.8.3. Translating Recursive Specifications 200

5.9. Optimising Simple Recursions . 202
5.10. Integration and Test Setup . 209
5.11. Conclusion . 210

6. Implementing Asynchronous TeSSLa 211
6.1. Abstract Monitoring Streams . 213
6.2. Abstract TeSSLa Operators . 219

6.2.1. Delay . 222
6.3. Abstract TeSSLa Semantics . 229

6.3.1. Quality of the TeSSLa Abstract Monitoring Semantics 231
6.3.2. Equivalence of TeSSLa Specifications 233

6.4. Conclusion . 234

7. FPGA Synthesis 237
7.1. Finite Memory . 240
7.2. Operator Networks . 243
7.3. Translating TeSSLa to Operator Networks 247

7.3.1. Imperative Semantics of the Operators 247
7.3.2. Translating TeSSLa Specifications to Operator Networks . . . 253
7.3.3. Example . 257
7.3.4. Simplifications for Timestamp-Conservative Specifications . . 259

xiii

Contents

7.4. Implementation Details . 260
7.4.1. Implementation of Channels 260
7.4.2. Chisel . 262
7.4.3. Implementation of Channel Operators 264
7.4.4. Implementation of Queues . 266

7.5. Tuplification Optimisation . 270
7.5.1. Timestamp Relations . 271
7.5.2. Dependencies . 273
7.5.3. Graph Transformations . 274

7.6. Integration and Test Setup . 277
7.7. Conclusion . 280

8. Evaluation 281
8.1. Measurement Methods . 282

8.1.1. Event Generators . 284
8.1.2. Interpreter and Compiler . 284
8.1.3. EPUs . 289
8.1.4. FPGA Synthesis . 290

8.2. Real-World Specifications . 291
8.2.1. Specifications . 291
8.2.2. EPU Optimisation for Simple Recursions 296
8.2.3. Backend Comparison . 298

8.3. Synthetic Specifications . 300
8.3.1. Specification Depth . 300
8.3.2. Recursion Depth . 304
8.3.3. Number of Inputs . 305
8.3.4. Summary . 308

8.4. Comparison of Workflows . 310
8.5. Conclusion . 312

9. Conclusion and Future Work 315
9.1. Conclusion . 315
9.2. Outlook and Future Work . 319

A. Evaluation Appendix 321
A.1. Specifications . 321
A.2. Generators . 324
A.3. Measurement Data . 329
A.4. Hardware Utilisation . 347

xiv

1 Introduction

Verification is essential for implementing and integrating software and hardware
projects to ensure their correctness. The qualitative and quantitative analysis of
execution traces is a branch of verification techniques that can be considered be-
tween classic tests [Mye04, BJK+05] and static formal verification techniques like
e. g. model checking [CGP99]. While the former checks fixed sets of input/output
relations and typically focuses on smaller units of the system under test, the latter
statically considers all possible executions of the system and thus often faces the state
explosion problem [CKNZ11]. It is rather complicated to consider long executions
of complex systems in their environment with both approaches. However, with the
growing popularity of distributed, parallel, decentralised and cyber-physical systems,
those bugs become common, which can only be detected in the integrated system
running in its production environment. Such bugs are sometimes called Heisenbugs
because they tend to disappear if one starts probing or isolating them [GT05].

Runtime verification (RV) is a branch of verification techniques that tries to over-
come these limitations by analysing and processing execution traces of the system
under test with monitors [KVB+99, SKK+99, GH01, HR01, LS09]. RV neither re-
places tests nor static verification, but it complements these techniques with tools
and methods for monitoring. Among other use cases, RV is well suited for long-term
monitoring of systems in their production environment. In general, RV consists of
two central aspects:

• The trace observation, i. e. how to get an execution trace from the system under
test, and

• the monitoring, i. e. how to process the observed trace.

A distinction can be made between online and offline monitoring: Offline moni-
toring analyses pre-recorded traces. The monitor has random access to the entire
trace. Online monitoring analyses events of the system under test directly during
its execution. The monitor processes the events of the trace in the order of their
occurrence.

The implementation of the trace observation highly depends on the system under
test and the level of interest. A common approach for software monitoring is to
instrument the system under test such that it emits events at runtime. When to

1

1. Introduction

emit events is determined by an observation specification defining points of interest,
e. g. calling a function, entering or exiting a function, executing a statement, or
accessing a variable. The sequence of such events forms the execution trace used as
input for the monitor. A common approach for software instrumentation are tools
for aspect oriented programming [KLM+97] like AspectJ1 or AspectC++2.

While instrumentation is a widespread technique due to its ease of use, it has
the drawback of modifying the system under test for the purpose of monitoring.
This might affect the timing behaviour of the system and lead to disappearing
bugs or introduce new ones. Less invasive techniques utilise debugging interfaces
of processors or existing logging layers of communication frameworks. For exam-
ple the embedded tracing units (ETU) available on many modern processors pro-
vide debugging information that can be used for the purpose of runtime verifi-
cation [CHS+18, DGH+17, DDG+18]. Typical ETUs are available as part of the
processor hardware independent of the logic responsible for the execution of the
program and thus does not interfere with the execution. To use ETUs for long-term
online monitoring dedicated trace processing hardware such as [WLa, WLb] is re-
quired to process the provided debugging information online and reconstruct points
of interests.

This thesis entirely focus on the specification and implementation of monitors. While
monitors could be programmed manually, a common approach in RV is to synthe-
size monitors from a high-level specification. The usage of high-level specifications
abstracts away from implementation details. Different trace sources impose different
settings and requirements on the implementation of the monitors, leading to vari-
ous approaches for the implementation of monitors: Compiling a specification into
a software program allows the monitor to be executed alongside the system under
test. Software monitors are generic and versatile as they can be executed on many
different target platforms.

If the trace observation is done using dedicated FPGA hardware, e. g. for the re-
construction of ETU traces, this hardware can be used for the monitoring, too.
By using the same hardware for the observation and the monitoring, transmission
and conversion of data for other platforms can be avoided. Further, the inherent
parallelism of FPGAs can be utilised for the monitoring, too. While synthesizing
a monitor for an FPGA can utilise the properties of the FPGA in order to create
an efficient implementation, this is a complex process that might be more involved
than compiling a software monitor. A possible compromise between the software
and the hardware monitoring approach is dedicated monitoring hardware that can
be configured. Such a monitoring configuration can be changed without the need to

1https://www.eclipse.org/aspectj/
2https://www.aspectc.org

2

https://www.eclipse.org/aspectj/
https://www.aspectc.org

1.1. Formalisms for Analysing Traces

synthesise a new FPGA image. Fast reconfiguration of the monitor allows interactive
debugging sessions [DGH+17].

This thesis discusses online monitoring implementations for the specification lan-
guage TeSSLa [CHL+18]. TeSSLa allows the specification of monitors in terms of
transforming streams. The concept of stream transformation is introduced in detail
in the next section. The following three approaches motivated above are discussed
for TeSSLa: Compiling a specification

– into a general-purpose software program,
– into a configuration for dedicated monitoring hardware on an FPGA, and
– into a native FPGA image.

The focus lies on monitors that process traces to analyse and verify complex systems
in their production environment. Low level debugging utilising debugging interfaces
like, for example, ETUs generates a massive amount of data. However, complex
bugs might occur only after days of monitoring, leading to online monitoring as the
most feasible approach because storing the entire trace is not an option. Instead,
the memory consumption should be independent of the length of the trace.

The contribution is elaborated in detail in Section 1.3 below, after discussing different
approaches for analysing traces in general and introducing TeSSLa in particular in
the following two sections. After an outline of this thesis is given in Section 1.4,
this chapter is concluded with an overview of existing work on related monitoring
synthesis.

1.1. Formalisms for Analysing Traces

We distinguish the following classes of formalisms suited for analysing and processing
execution traces:

• Logics like regular expressions [Kle56, Tho68, HMU07] or Linear Temporal
Logic (LTL) [Pnu77] can be used to specify sets of allowed traces. In this
simple case, a trace is a sequence of letters from a finite alphabet, representing
discrete events. Synthesised monitors can then check if the observed trace is
an element of the set of allowed traces. [HR02, BLS11]

Events can be equipped with timestamps which leads to RV with extended
logics like timed LTL [BLS11] and timed regular expressions [ACM02]. In the
case of Signal Temporal Logic (STL) [MN04] the atomic propositions of dis-
crete events are derived by sampling a continuous signal and Time-Frequency
Logic (TFL) [DMB+12] additionally derives propositions from the frequency
domain of the input signal. In this classification, the commonality of logics

3

1. Introduction

is the mapping from an observed trace to a single verdict indicating if the
observed trace is an element of the specified set of allowed traces. Quantita-
tive regular expressions (QREs) [AFR16] add quantifications to this approach
which extends the verdict to numeric values.

Further, some logics can express properties over traces with rich data domains,
like e. g. Monitoring Modulo Theories (MMT) [DLT16] which introduces the
Temporal Data Logic (TDL) as an extension of LTL. In TDL, instead of fixed
atomic propositions, one specifies calculations and comparisons on the data
domain. However, the computed values are again only used to specify the set
of allowed traces and not to analyse the derived trace.

• Time-series Databases (TSDB) are databases with special compression algo-
rithms to efficiently store large time series. [DMF12]. If they are used for
runtime verification purposes, then the entire trace is stored in the database
and can then be analysed. The main benefit of TSDBs is the fast access to the
entire trace, which allows efficient realisations of analyses comparing events
and data values at arbitrary positions in the trace. TSBDs are not that well
suited for online monitoring of arbitrary long executions of the system under
test because their main approach is to store and manage large but finite data
sets. Popular examples for TSDBs are Prometheus and InfluxDB. [Ste18]

• Stream Transformations take input streams and transform those into output
streams. Similar to traces, a stream is a sequence of discrete events. The
events can carry values and depending on the formalism be equipped with
timestamps, too. So instead of a final verdict or a query result, the analysis
provides output streams. Compared to logics, the specification of a stream
transformation usually describes how the output streams are derived from the
input streams in a more or less constructive way, while logics give the set of
correct traces as an existential description. Stream transformations can be
compositional, i. e. specifications consist of smaller parts generating intermedi-
ate results which are streams, too. These intermediate streams are then used
as inputs for the next parts of the specification until the final output streams
are computed. Compared to TSDBs, stream transformations do not require
a database but are suitable for online monitoring where the output streams
are derived from the input streams in a linear style, i. e. the input streams
are read, and the output streams are generated sequentially. Focus [BS01]
is a well-known formalism for the specification of streams and stream-based
systems. In the area of runtime verification, this form of stream processing
is sometimes called Stream Runtime Verification (SRV) [BS16, BS14]. Stream
transformations support streams with rich data domains as input, intermedi-
ate and output streams, and thus naturally combines correctness checks with
statistical analysis and other aggregating computations on the streams.

4

1.1. Formalisms for Analysing Traces

In this thesis, we focus on stream transformations as a tool to analyse traces in order
to verify and debug program executions. Stream transformations are a simple and
versatile tool to analyse traces. They allow engineers to directly describe operations
on the input stream of events instead of specifying a set of allowed executions using
a logic. It still provides an entirely different perspective to the system under test
than its actual implementation: The global view onto traces allows focusing on
specific aspects of the integrated system without considering other implementation
aspects.

There are, in general, two different styles of stream transformations: Event proces-
sors and synchronous stream transformations:

Event processors consist of operators processing input events in the order of their
appearance. If an operator combines multiple streams, then it takes those events
available at the evaluation of the transformation without a semantic synchronisation
mechanism. There is usually no explicit notion of a logical time. The implementation
entirely defines the timing of the event processing.

The idea of event processing is based on the common architectural pattern pipes
and filters [Ort05, BMR+96] as well as the idea of functional reactive programming
(FRP) [EH97]. The idea of event processing can be found in different architectural
patterns like Event Sourcing [Pac18] and is implemented in many popular frame-
works, like for example, Akka Streams [Dav19, Chapter 6: Akka Streams] or Azure
Functions [KL19]. There are also implementations specialised for RV like Beep-
Beep 3 [HK17, BKH17, HK18]. In these event-queue based systems, functions on
the data domain are applied to queued events without any form of synchronisation
other than the order in which the events arrive at the operators.

Synchronous stream transformations follow the synchronous hypothesis, which
“states that a system reacts to environmental events in no time. [...] The syn-
chronous hypothesis thus separates the notion of [logical time] from the execution
time of the system, which is largely a side-effect of how it is implemented.” [PEB07]
So in comparison with event processors, we no longer have events being passed
through a chain of operators, but we have time instants at which outputs are de-
rived from their inputs. In addition to a causal relation, we now relate input and
output events regarding the logical timing of events.

Common synchronous stream transformations are the synchronous stream program-
ming languages Lustre [CPHP87, Hal05], Esterel [BG92, Ber00a, Ber00b] and Sig-
nal [GL87] as well as SCADE [Ber07, CPP05] which is a graphical version of Lus-
tre. In the application domain of runtime verification the language LOLA [DSS+05,
FFST16] is closely related to Lustre. LOLA adds the ability to refer to future events.

5

1. Introduction

These languages for synchronous stream transformation use synchronous streams:
In case of multiple input streams all input streams have events at the same time
instants. All derived and output streams have events at these instants, too. The
input streams are organised in discrete steps, which usually represent a fixed amount
of time. The derived intermediate and output streams are organised in the same
steps.

Synchronous stream transformations can be used on asynchronous streams, too.
RTLola [FFS+19] is an extension of LOLA, which introduces asynchronous streams
to perform aggregations over real-time intervals. Asynchronous streams require the
events to carry timestamps indicating their ordering across multiple streams. It
is no longer required that all streams have events at the same timestamps. The
synchronous hypothesis still applies: Input and output events are related regarding
their logical timestamp. All synchronous languages follow the same idea of implicit
or explicit logical time that relates the derived events to their origins.

The main difference between Lustre and Esterel is the programming style. Lustre
and LOLA consist of stream transforming operations that are applied to the streams
in a functional way: Streams and their events’ data values are considered immutable,
and applying an operator to a stream derives a new independent stream. There is
no implicit control flow. Every state must be explicitly realised in the form of an
additional stream carrying the current state in its events. Esterel has an impera-
tive programming style: The user specifies an imperative program with an implicit
control flow that reads and writes events. The control flow state of this imperative
program is implicitly preserved over the entire execution. Explicit statements pause
the program until the next instant is reached.

The imperative programming style introduces additional challenges. For example,
Esterel supports parallelism on its non-deterministic control flow, making the se-
quential scheduling of an Esterel program a non-trivial task. In the case of the
functional programming style, a deterministic scheduling follows more or less di-
rectly from the specification.

1.2. TeSSLa

This thesis is about implementing monitors to analyse and derive additional in-
formation from observed traces. This thesis uses TeSSLa [CHL+18] to specify such
monitors. TeSSLa is a generic specification language supporting synchronous stream
transformation applied to streams with explicitly timestamped events over a contin-
uous time domain. As motivated in the previous section, TeSSLa is a synchronous
language with asynchronous streams supporting asynchronous evaluation:

6

1.2. TeSSLa

• TeSSLa is a synchronous language adhering to the synchronous hypothesis:
Events on the input and output streams are related through the notion of a
logical time. The logical time is explicitly available in TeSSLa through times-
tamps attached to every event.

• TeSSLa uses asynchronous streams: The logical timestamps attached to the
events refer to a common global clock and indicate the order of events across
multiple streams. It is not required that all streams contain events at the same
timestamps.

• The TeSSLa semantics support asynchronous evaluation: The semantics define
the transformations performed by TeSSLa’s operators using an explicit notion
of how far a stream was already processed, called the progress of that stream.
This notion of progress defines partial evaluations for streams independent of
a global synchronisation.

TeSSLa specifications are written in a functional and compositional style: Streams
are considered immutable and operators are applied to streams and return new
derived streams. TeSSLa consists of a few basic operators that are composed into
more complex operators.

An early version of TeSSLa was first used in [DGH+17]. This early version can-
not express recursive specifications, i. e. specifications with cycles in the data flow
graph, and it consists of a large set of practically motivated operators. It was for-
mally presented together with an asynchronous evaluation scheme based on message
passing in [LSS+18, LSS+20]. The version of TeSSLa used in this thesis was pre-
sented in [CHL+18]. It adds the ability for recursive specifications and boils down
the formal semantics to three essential operations: Lifting functions on the data
domain to streams, accessing previous values and creating events with additional
timestamps. TeSSLa was used in several projects to analyse trace data of embedded
tracing units of processors. [DDG+18, CHS+18]

[Sch20] introduces future operators for TeSSLa similar to LOLA. However, this
thesis focusses entirely on specifications that derive events only based on events
with the same or an earlier timestamp. We will introduce this concept as future-
independent stream-transformation functions later.

TeSSLa considers a stream as a sequence of discrete events. Every event of a stream
has a unique timestamp of a continuous time domain: A stream can have at most
one event at a timestamp, but there is no maximal number of events that can occur
between two timestamps. The stream’s type indicates what data values are attached
to the stream’s events.

Synchronous stream transformations of asynchronous streams are suited for analysing
observed traces: Events observed from a real-world system usually have some kind

7

1. Introduction

of a real-world timestamp attached to them. Those timestamps are not follow-
ing a synchronous pattern of instants, especially not if different trace sources are
combined. For example, consider a network interface generating an event for ev-
ery message sent and received and a processor’s debugging interface generating an
event for every indirect jump performed by the processor. Both event streams do
not have a fixed frequency of events, and even the average event frequency between
the two streams might vary heavily. Asynchronous streams can naturally represent
such information by equipping events with explicit timestamps. Other than with
instants at a fixed frequency, there is no longer a need to encode an event’s absence
explicitly. Asynchronous signal can also be used to represent sampled real-world
continuous signals in a compact way: The continuous signals can be sampled into
piece-wise constant signals with dynamically adjusted and non-synchronised sample
rates.

However, we are still in the setting of synchronous stream transformations. Every
derived event has a precise timing relation to its origin regarding its logical time.
The main job of every implementation is to preserve this relation and synchronise
processed events based on their logical timestamp.

Using event streams with timestamps over a continuous time domain has two main
benefits:

1. It lays the foundations for implementations with an efficient encoding of streams
with irregular event patterns. The absence of events is not explicitly encoded.
Languages like Lustre and LOLA use streams with a fixed event rate. While
this is not necessary a difference in the expressiveness, the concept of times-
tamps as a first-class citizen in TeSSLa is a different perspective that influences
the implementations, especially the hardware backends.

2. TeSSLa can create additional events at arbitrary timestamps. On a discrete
sequence of instants, there is no such thing as an additional timestamp, but
on a continuous time domain, one can add arbitrary many additional events
before the next input event is processed.

TeSSLa orders the events on the streams based on the assumption of a common
global clock. Asynchronous streams on a continuous time domain allows the inser-
tion of additional events at arbitrary timestamps. TeSSLa has the expressiveness to
describe such complex event generations to gain the most of the extension to con-
tinuous streams: Arbitrary event generation is a natural way to monitor complex
timing properties on traces.

However, asynchronous streams over a continuous time domain comes with a price:
Additional synchronisation effort is needed in every implementation because the in-
put events are synchronised based on their timestamps. Having such a synchronisa-
tion mechanism as a fundamental feature of the semantics makes TeSSLa well suited

8

1.2. TeSSLa

for analysing observed real-world trace sources. However, it also requires additional
implementation effort compared to event processors or stream transformations with
a synchronous evaluation of synchronous traces. Hence, TeSSLa implementations
usually have no guarantees regarding the execution based on the logical timestamps.
While especially the latter is very important for synthesising controllers for appli-
cations with hard real-time requirements, we focus on analysing observed traces
and gain additional flexibility for that application domain by introducing explicit
timestamps over a continuous time domain.

If the insertion of additional events on a continuous time domain is not further
restricted, this allows inserting arbitrarily many events between two existing events.
The creation of additional events even allows the generation of Zeno streams, i. e.
streams with infinitely many events in a finite period. If a TeSSLa implementation
must generate infinitely many events before it can read the next input event, this
monitor is obviously no longer functioning properly. TeSSLa does not restrict the
generation of streams in this respect and thus leaves it up to the user to avoid this
problem.

We focus on online stream transformation, i. e. the monitor is a black box reading
some events and producing some events without access to the entire stream. In
theory, this black box could store the entire stream with unlimited memory, but with
the idea of continuous observation for long periods and hardware implementations,
this thesis focuses on online monitoring without random access to the entire trace.

A stream transformation function for online monitoring should not change already
produced output events after reading further input events. Once the black box
has outputted an event, there is no way to change it later. Further, the stream
transformation function should not change its behaviour at the transition from finite
stream prefixes to infinite streams. The theory is about infinite streams, but the
practical implementations are only seeing prefixes of these infinite streams, so we
need a relation between these finite prefixes and the infinite streams. We will use
Scott continuity [AJ94] to formally characterise these behaviours. Finally, a stream
transformation function should be independent of future events because the black
box should be able to generate an output based on the events seen so far. Since we
do not want to store the entire stream or even larger pieces of streams, the black
box must be able to produce an output based on what it has seen so far without
the need to wait for future events. We will define future independence to formally
characterise this behaviour.

TeSSLa is a generic formalism for such stream transformation functions over a con-
tinuous time domain. Future-independent stream transformation functions are rep-
resented as recursive equation systems of stream transforming operators:

• lift lifts functions on values to functions on streams,

9

1. Introduction

• last gives access to values of previous events, and

• delay generates events with additional timestamps.

Together with the basic stream unit containing exactly one initial event and the
accessor function time used to access an event’s timestamp instead of an event’s
data, these three operators are everything required to formalise arbitrary stream
transformation functions over timed event streams.

To sum up these considerations: This thesis discusses different implementations of
TeSSLa, which is a specification language designed for the analysis of observed traces
and can be characterised as follows:

• TeSSLa is a synchronous functional specification language, i. e. we assume a
global clock and input and output events are related regarding their logical
timestamps. TeSSLa operators derive streams from streams in a functional
way.

• TeSSLa operates on streams of timestamped events on a continuous time do-
main, i. e. there is no need to encode the absence of events explicitly, but we can
always insert arbitrarily many additional events between two existing events.
Streams are asynchronous in the sense that there is no global pattern. They
naturally encode the asynchronous environment.

• TeSSLa supports asynchronous evaluation. The semantics is given in a way
that allows synchronous and asynchronous evaluation. The progress of the
individual derived streams depends only on the available data on the inputs
on which they depend.

• TeSSLa can express future-independent stream transformations, which are the
functions we identified as suitable for analysing observed traces.

• TeSSLa is designed to have explicit memory usage. While it is possible to
write TeSSLa specifications that use unbounded memory, this is always done
by explicitly using unbounded data structures and never hidden inside the
semantics.

• TeSSLa is designed to have a small set of three basic operators. More conve-
nient operators are derived from these basic operators as syntactic sugar.

A detailed introduction into timed event streams and TeSSLa is given in Sec-
tion 3.1.

10

1.3. Contributions

1.3. Contributions

As motivated before, this thesis operates in the context of online monitoring using
synchronous stream transformations on asynchronous streams with the specification
language TeSSLa. Depending on the application area and the origin of the traces,
it can be desirable to execute TeSSLa specifications either as a generic software
application or on dedicated hardware. This thesis compares software and hard-
ware implementations of TeSSLa. In particular, the following three approaches are
discussed:

• Software compiler. The TeSSLa specification is compiled into imperative source
code that can be compiled and executed on various platforms. The execution
scheme is synchronous, and the events of all input streams are processed in se-
quence. The specification’s flow graph is compiled into a sequential imperative
program evaluated in an outer loop for every timestamp.

• Compilation for specialised monitoring hardware. The TeSSLa specification
is compiled for specialised hardware called Event Processing Units (EPUs),
which is implemented on an FPGA and was developed by Accemic specifically
for TeSSLa [Weia, Weib]. The EPUs are inspired by data flow processors and
reconfigurable hardware approaches using switching networks or routing: The
EPUs are small processing units organised in a pipeline, and the contained
address determines how incoming messages are processed. The TeSSLa imple-
mentation on EPUs combines synchronous evaluation with pipelining.

• FPGA synthesis. The TeSSLa specification is compiled directly for an FPGA
(via Chisel and Verilog). This approach employs TeSSLa’s support for asyn-
chronous evaluations in order to utilise the inherent parallelism of FPGA hard-
ware: The specification’s flow graph is mapped to the hardware in the form
of a network of operators connected with low-level channels. Messages passed
between these operators contain timestamps and data values of events such
that every operator can advance as far as possible. The synchronisation of the
inputs happens at every individual operator based on the logical timestamps.

In order to compare the different approaches, all generated monitors must adhere
to the semantics of the specification. However, the different approaches realise very
different evaluation principles: The software program synchronously processes a
single timestamp before moving on to the next, the EPUs process event streams
synchronously in a pipeline, and the FPGA synthesis processes the events asyn-
chronously. This diversity of approaches leads to the first main research question
answered in this thesis:

11

1. Introduction

Q1. How can the different implementations and their relationships to the TeSSLa
semantics be formally described?

Different variations of the TeSSLa semantics are discussed and related to each other
to answer this question. First, the TeSSLa semantics is given on streams without
any consideration of progress. This semantics relates fully known input streams to
output streams. In the setting of online monitoring of asynchronous streams, how-
ever, we only get partial information about the input streams, i. e. the streams are
revealed step-wise to the monitor with every additional observed event. The notion
of monitoring streams is introduced to encode this form of partially known streams.
The TeSSLa semantics’ natural extension to monitoring streams leads to the moni-
toring semantics. It describes how much information can already be obtained from
incomplete input streams, and this serves as the basis for all implementations.

As an intermediate step toward the actual implementations, two representations of
streams are derived that are very close to the actual implementations: The synchro-
nised streams are used in the software monitor and the EPUs, and the asynchronous
abstract monitoring streams are used in the FPGA synthesis. They are described
together with their corresponding semantics, the synchronous monitoring on the
synchronised streams and the abstract monitoring semantics on abstract monitoring
streams. The methodology of abstractions [CC92, CC77] is used to relate these two
semantics to the monitoring semantics. The quality of the abstractions is further
characterised by showing that they differ from the monitoring semantics only con-
cerning the handling of incomplete streams. These two formalisms are the central
element of addressing the research question formulated above Q1: They formally
describe the handling of incomplete streams during online monitoring for the syn-
chronous and the asynchronous evaluation, and their relation to the semantics on
fully known streams is characterised.

The actual implementations are then related to the semantics as follows: The soft-
ware monitor is described using a generic imperative language and directly derived
from the synchronised monitoring. A simplified formal model for the EPUs de-
scribes their behaviour, and the mapping of a TeSSLa specification to this model
in accordance with the synchronised monitoring is given. The behaviour of the
synthesised FPGA is described using a network of operators, and a TeSSLa specifi-
cation is translated into such a network in accordance with the abstract monitoring
semantics.

The relation between the different semantics and the implementations is also shown
in Figure 1.1 which is discussed further in the next section.

The second part of the contribution is an empirical evaluation of the efficiency of the
different implementations, which is carried out to answer the second main research
question:

12

1.4. Outline

Q2. How efficient are the different implementations?

This question is addressed in this thesis with regard to the run-time efficiency of the
implementations. The monitor’s throughput, i. e. the number of processed events
over time, is identified as an indicator of the monitor’s performance.

This thesis discusses different measurement settings and establishes the following ap-
proach: The measurements entirely focus on the performance of the monitors trying
to ignore as much of its environment as possible. The influence of the trace obser-
vation and the I/O operations for reading and writing the trace data are minimised
as far as possible.

The throughput is measured on representative sets of specifications used to compare
the qualitative and quantitative performance of the different approaches. Real-
world specifications obtained from several research projects show the usability of all
implementations in practice. Further, the effect of adjusting different parameters
is measured using synthetic specifications: The influence on the throughput of the
depth of the specification, the depth of the recursive cycles in the specifications and
the number of parallel inputs of the specification is compared.

The evaluation carried out according to these considerations does not provide a
clear ranking but shows that all three implementations have their justified area
of application: The software monitors offer flexibility and efficiency. If the input
streams are available in a software setting, the compiled software backend is sufficient
in many cases, especially if only individual specifications are evaluated. However,
the EPUs can be an almost equally flexible and, in some cases, even significantly
more efficient solution. They are especially efficient if the specification consists of
many small, mostly but not entirely independent parts. Finally, the FPGA synthesis
is less flexible because adjusting the specification requires an entirely new synthesis,
but it can be the most efficient solution for large specifications as its performance is
independent of the size of the specification.

1.4. Outline

Figure 1.1 shows an overview of the contributions and the outline of this thesis.
Chapter 3 starts with an informal introduction into TeSSLa and streams in Sec-
tion 3.1. The formal TeSSLa semantics on streams are given in Section 3.2. A
similar semantics is given in [Sch20], but only as a didactic introduction and with-
out a formal relation to the other used semantics. This semantics is lightweight and
easy to understand but not suited for online monitoring.

13

1. Introduction

TeSSLa Semantics
on Streams

Se
ct

io
n

3.
2

Monitoring Semantics
on Monitoring Streams

Se
ct

io
n

3.
5

Sync. Monitoring
on Sync. Streams

Se
ct

io
n

4.
1

Abstract Mon. Sem.
on Abstract Mon. Str.

C
ha

pt
er

6

Software
Interpreter

Section 4.3

Software
Compiler

Section 4.4

EPU
Pipeline

Chapter 5

FPGA
Synthesis

Chapter 7

extension to
incomplete streams

abstraction with
minimal progress

abstraction with
maximal progress

per operator

synchronous global
current timestamp

synchronous global
current timestamp
per pipeline stage

asynchronous local
current timestamp

per operator

Figure 1.1.: Overview of the different semantics and implementations in-
troduced in this thesis.

14

1.4. Outline

The semantics only define the basic operators. Further convenient operators which
are used throughout the thesis are defined in Section 3.3 using equivalences. Sec-
tion 3.4 continues the discussion of several design choices for TeSSLa, which were
already motivated above, especially regarding the set of fundamental operators and
the explicit memory usage.

In Section 3.5 the semantics are extended the monitoring streams which can rep-
resent incomplete streams. They represent a prefix of a complete stream as a set
containing all possible continuations of the prefix. The TeSSLa semantics is extended
to monitoring streams using the previously defined operators on streams.

Section 3.6 formally characterises the expressiveness of TeSSLa specifications us-
ing Scott continuity and future independence. This thesis does not formally cover
the question of what can be expressed in TeSSLa with finite memory. Scheffel’s
thesis contains detailed discussions on expressiveness and memory usage of TeSSLa
fragments [Sch20].

As motivated in the previous section, the monitoring semantics is not directly suited
for actual implementations, but it instead serves as a joint base for synchronous
and asynchronous evaluations. Thus, the synchronous monitoring and the abstract
monitoring semantics are introduced and related to the monitoring semantics us-
ing the methodology of abstractions. Similar usage of abstraction was presented
in [LSS+19] to handle input streams with partial information, i. e. known gaps in
the input. Partial information is not explicitly considered in this thesis, but the con-
cept of abstraction is used to relate the different implementations to the monitoring
semantics.

This thesis does not cover the implementation of a parser, type checking, and macro
expansion for TeSSLa. TeSSLa specifications are given as equation systems using
mathematical notations, and a proper compiler frontend is assumed. The focus is
on compiling TeSSLa specifications for different backends.

As shown in Figure 1.1 this thesis presents four different implementations of TeSSLa:
A software interpreter serves as a simple reference implementation that is mainly
used to verify the correctness of the other implementations. The software compiler
uses the same synchronous evaluation as the interpreter but is much faster due to its
ability to utilise compile-time and runtime optimisations. In the case of the EPUs,
the TeSSLa specification’s flow graph is mapped onto a pipeline of special-purpose
processors, inspired by the concept of data flow processors. Finally, the FPGA
synthesis uses an asynchronous evaluation. The main difference between the syn-
chronous and the asynchronous evaluations is how the necessary synchronisation of
events based on their timestamps is implemented: The synchronous evaluation con-
tains a current global timestamp, and all traces are synchronised before entering the
monitor. The EPU backend combines the synchronous evaluation with a pipelining

15

1. Introduction

scheme such that instead of one global current timestamp, every EPU (i. e. every
stage of the pipeline) has its own current timestamp. The asynchronous character of
the monitoring semantics is preserved in the abstract monitoring semantics, which
allows the FPGA synthesis to do the synchronisation locally for every translated
operator individually, and hence maximal utilise the parallelisation throughout the
space of the FPGA.

In Chapter 4 the synchronous semantics on synchronous streams is formally defined.
While the monitoring semantics supports asynchronous evaluation and the monitor-
ing streams natively encoded asynchronous event sources, both are synchronised
in this approach. It is shown that the synchronous semantics is an abstraction of
the monitoring semantics, and the quality of the abstraction is characterised. The
implementations of the interpreter and software compiler are based on the same ap-
proach: The specification’s flow graph is evaluated for the current timestamp. The
next timestamp is determined from the input streams and additional derived events.
The evaluation of the flow graph for a fixed timestamp is implemented in the inter-
preter using message passing. The interpreter uses dynamic message passing along
the flow graph of the specification and is mainly included in this thesis to illustrate
a simple implementation of the synchronous semantics, which is used as a reference
implementation to verify the correctness of other implementations. The software
compiler evaluates the flow graph using a linearisation. It compiles a TeSSLa spec-
ification into an imperative Rust or Java program, consisting of a single outer loop
iterating over the timestamps included in the input traces in chronological order.

The compiler for the EPU pipeline is presented in Chapter 5. Each EPU is equipped
with a control logic and an ALU. Following the idea of data flow processors, they
perform computations based on the incoming messages and do not have a sequential
program or a program state other than the incoming messages. The EPUs are
organised in the form of a sequential pipeline: Every EPU is a pipeline stage. The
TeSSLa specification is mapped onto this pipeline by splitting the flow graph into
layers. The EPU pipeline evaluates the synchronous semantics by assigning every
EPU a current timestamp, i. e. instead of one current global timestamp, the concept
of pipelining allows EPUs earlier in the pipeline to advance further than EPUs later
in the pipeline. However, there is no way for messages to travel faster than others.
Everything is still synchronous in this single pipeline.

Section 5.3 defines a formal model for the EPUs and Sections 5.4 to 5.6 translates
a TeSSLa specification for that formal model. Section 5.7 discusses implementation
details of the actual hardware and Sections 5.8 and 5.9 presents optimisations to
increase the efficiency of the EPU pipeline.

Chapter 6 presents the TeSSLa semantics used in [CHL+18, Sch20] and shows that
they are an abstraction of the monitoring semantics. Hence it is called abstract
monitoring semantics in this thesis. The corresponding abstract monitoring streams

16

1.5. Related Work

no longer explicitly contain all possible continuations but encodes this using the
explicit notion of a progress. In comparison to the synchronous streams, every
stream can still have its individual progress, and the timestamps of the events are
not synchronised across all input streams.

The FPGA synthesis is presented in Chapter 7. It utilises the asynchronicity of the
abstract monitoring semantics to implement a local asynchronous evaluation. The
specification’s flow graph is synthesised as a network of operators communicating
through channels. Every operator locally synchronises its input streams based on
the event’s timestamps. This approach computes every derived stream as far as pos-
sible. The translation scheme is compositional in the sense that every synthesised
operator’s input and output channels directly correspond to edges of the specifica-
tion’s flow graph, i. e. every subgraph of the synthesised network corresponds to a
part of the specification’s flow graph, which in turn corresponds to a part of the
specifications. Section 7.2 defines operator networks as a simple formal model used
to abstract the capabilities of an FPGA. Section 7.3 gives a translation of a TeSSLa
specification into an asynchronous operator network and Section 7.4 shows how to
realise such an operator network on actual FPGA hardware using Chisel [BVR+12]
which compiles to Verilog and VHDL.

The empirical evaluation with the goal of the qualitative and quantitative compari-
son of the performance of the different backends is given in Chapter 8.

Finally, Chapter 9 concludes the thesis with a summary of its essential contents and
findings, as well as an overview of open issues and possible extensions.

1.5. Related Work

The synchronous monitoring that is implemented by the software compiler is based
on a widespread event-driven synchronous execution scheme which is described
in [BCE+03]. This principle is used in many other synchronous stream languages like
for example Lustre [HRR91], Esterel [PEB07], LOLA [DSS+05] and RTLola [FFS+19,
BFST20, BFST19, FOPS20]. This scheme is extended in two ways to adapt it to
TeSSLa: The handling of timestamps as first-level citizens and the possibility to
insert events with additional timestamps that are not already present in the input
streams. This is discussed in detail in Chapter 4.

Other implementations of the synchronous execution scheme are Copilot [PGMN10],
which is a language strongly influenced by LOLA and an internal Haskell DSL that
provides building blocks transforming streams into other streams, and HLola [GS21,
CGS20] which is an internal Haskell DSL implementing LOLA.

17

1. Introduction

The central idea of the EPUs is to provide reconfigurable hardware for the evaluation
of stream transformations.

An approach towards reconfigurable hardware is high-level datapath merging intro-
duced by [AMHM02] and applied to an early acyclic version of TeSSLa [LSS+18,
LSS+20] in [DGH+17, GH17]. The main idea of datapath merging is to merge sev-
eral flow graphs into a parameterised larger graph such that the original graphs can
be obtained at runtime by setting the correct parameters. The main drawback of
high-level datapath merging is that one needs to know all relevant data paths in ad-
vance in order to merge them. The EPUs provide a more generic approach because
they do not rely on parameters selecting subgraphs but are freely configurable.

The most generic approach to reconfigurable FPGA designs is ZUMA [BL12] that
is an embedded FPGA architecture on an FPGA, i. e. an FPGA synthesised on
an FPGA. More specific to the execution of data flow graphs and related to the
ideas of EPUs are approaches of processing elements or functional units that are
interconnected by a switching network or routing [GHS11, GSM+99, CA13].

The EPUs combine this approach of realising pipelines through reconfigurable inter-
connection networks with the central idea of data flow processors, i. e. the incoming
message determines how it is processed. The dataflow architecture was introduced
in [DM74] and further extended in [Vee86, AC03, DG88, PC90]. For an overview
and introduction into data flow processors see for example [HK08] and [SRU99,
Chapter 2]. Further aspects of data flow processors and a detailed comparison with
EPUs is given in Chapter 5.

The FPGA synthesis utilises the asynchronous monitoring semantics to implement
an asynchronous evaluation. Evaluating TeSSLa specifications using asynchronous
message passing along the specification’s flow graph was already studied with an Er-
lang implementation, and an early acyclic version of TeSSLa in [LSS+18, LSS+20].

Synthesising Lustre on hardware in [RH91] follows the idea of a synchronous eval-
uation, i. e. the entire specification is evaluated for every time instant to compute
the outputs for the current inputs. The same holds for Esterel’s hardware synthe-
sis [Ber16, PEB07]: Esterel can be used to program an FPGA in Esterel [HN03]:
The user can specify the FPGA’s behaviour down to clock cycles in Esterel. The
TeSSLa synthesis has an additional abstraction due to the synchronisation of streams
based on the event’s logical timestamps. This allows writing more high-level spec-
ifications referring only to the logical timestamps of the streams. The user cannot
refer to the FPGA’s clock cycles in TeSSLa.

There are compilations of LOLA to FPGAs [BFST20, BFST19, BFS+20], too. They
split up the monitoring synthesis on the FPGA into two sequential parts: A deadline
detection happens first and based on its results, the actual event processing takes

18

1.5. Related Work

place in the form of a synthesised automaton. As mentioned before, the TeSSLa
synthesis is entirely compositional.

There are also several approaches to execute monitors on FPGAs for various logics
which are not stream processing:

There has been work on the synthesis of STL to FPGAs in different ways [JBG+15,
JBGN16, SJN+17] and a synthesis for past time LTL for the observation of hardware
buses is described in [PMCR08]. The synthesis for mission-time bound LTL is
compositional similarly to the TeSSLa synthesis [SMR15, RRS14]. However, they
reduce the need for synchronisation by avoiding any recursive cycles in the data flow
path.

Approaches also allowing for reconfiguration are described in [MRS17] for past-time
LTL and in [RFB14] for past-time MTL with a microcomputer synthesized onto an
FPGA. The dynamic evaluation of LTL3 monitors [BLS11] on FPGAs with micro-
programmed FSM is presented in [BHW+13].

19

2 Preliminaries

This chapter establishes names and notations for common mathematical concepts
used throughout this thesis.

Sets

We use the notation U = {□} for the unit type whose only value is □, called unit.

We use the notation B := {true, false} for the set of Boolean values.

We use the notation N = {0, 1, 2, . . .} for natural numbers, i. e. non-negative integers.
For a comparison operator ⋄ ∈ {<,≤, >,≥} and a constant c ∈ N we use the
shorthand N⋄c := {n ∈ N | n ⋄ c} for restricted numerical sets, e. g. N>0 for natural
numbers without zero, i. e. positive integers. The same notation is used for the set
Z of integers and the set R of real numbers.

We use the notation D⊥ := D ∪ {⊥} to indicate sets extended with the additional
symbol ⊥ called bottom.

Functions

Let R ⊆ X × Y be a binary relation over two sets X and Y . R is functional if

∀x ∈ X : ∀ y, z ∈ Y : (x, y) ∈ R ∧ (x, z) ∈ R =⇒ y = z.

R is serial if

∀x ∈ X : ∃ y ∈ Y : (x, y) ∈ R.

A partial function f : A ↪→ B is a binary relation f ⊆ A×B which is functional. A
function f : A → B is a partial function which is serial.

Every partial function f : A ↪→ B can be transformed into the equivalent function
f : A → B⊥ by adding (a,⊥) to the relation for all a ∈ A which are not in the
relation. We use this notation to specify partial functions.

21

2. Preliminaries

We use the notation A1, A2, . . . , An↣ B to indicate the function A1⊥ ×A2⊥ × . . .×
An⊥ → B⊥, called ⊥-function. Such a ⊥-function f is called

– well-formed iff ∀ 1 ≤ i ≤ n : ai = ⊥ =⇒ f(a1, a2, . . . an) = ⊥,
– conservative iff ∃ 1 ≤ i ≤ n : ai = ⊥ =⇒ f(a1, a2, . . . an) = ⊥, and
– ideal iff ∃ 1 ≤ i ≤ n : ai = ⊥ ⇐⇒ f(a1, a2, . . . an) = ⊥.

A partial function f : A1, A2, . . . , An ↪→ B can be extended to a conservative ⊥-
function f⊥ : A1, A2, . . . , An↣ B as follows:

f⊥(a1, a2, . . . , an) =

f(a1, a2, . . . , an) if ∀ 1 ≤ i ≤ n : ai ̸= ⊥

and f(a1, a2, . . . , an) is defined,
⊥ otherwise.

A function f : A1 ×A2 . . . An → B can be extended to an ideal ⊥-function f⊥ : A1 ×
A2 . . . An↣ B as follows:

f⊥(a1, a2, . . . , an) =

f(a1, a2, . . . , an) if ∀ 1 ≤ i ≤ n : ai ̸= ⊥,
⊥ otherwise.

We assume (partial) functions to be implicitly extended to ⊥-functions if needed.

Let f : A → B and g : B → C be two functions over the sets A,B and C. Then the
notation f ◦ g indicates the functional composition given by

f ◦ g(x) = g(f(x)).

Let f : (A → B) → (C → D) be a function that maps functions to functions,
g : A → B a function and c ∈ C a value. We use the notation f(g) : C → D
to denote the function retrieved by applying f to g. We further use the notation
f(g)(c) : D to denote the value retrieved by applying c to the function retrieved by
applying f to g.

We use the notation id : A → A with id(x) = x for the identity function.

For a Boolean value b ∈ B and two values d, e ∈ D we use the conditional operator
as an infix notation for the conditional function ite : B × D × D → D with

b ? d : e := ite(b, d, e) :=

d if b,
e otherwise.

22

Semirings

A set R with an addition + and a multiplication · together with the identity elements
1 and 0, respectively, form a semiring (R, 0, 1,+, ·) if the following conditions are
met for any a, b, c ∈ R [BPR10]:

• (R, 0,+) is a commutative monoid, i. e. (a+ b) + c = a+ (b+ c) (associativity),
0 + a = a+ 0 = a (identity element) and a+ b = b+ a (commutativity).

• (R, 1, ·) is a monoid, i. e. (a · b) · c = a · (b · c) (associativity) and 1 ·a = a · 1 = a
(identity element).

• a · (b+ c) = (a · b) + (a · c) (left distributivity) and (a+ b) · c = (a · c) + (b · c)
(right distributivity).

• 0 · a = a · 0 = 0 (zero element).

Orders

A set P and a relation ≤ form a partial order (P,≤) if the following conditions are
met for any a, b, c ∈ P [AJ94]:

• a ≤ a (reflexivity).

• If a ≤ b and b ≤ a then a = b (antisymmetry).

• If a ≤ b and b ≤ c then a ≤ c (transitivity).

Let (P,≤) be a partial order and S ⊆ P be a subset of P . An element a ∈ S is
called the minimum of S if it is the least element of S, i. e.

∀ s ∈ S : a ̸= s ⇒ a < s.

An element a ∈ S is called the maximum of S if it is the greatest element of S, i. e.

∀ s ∈ S : a ̸= s ⇒ s < a.

An element a ∈ P is called the infimum of S if it is the greatest lower bound
for S [AJ94], i. e. the following maximum exists:

a = max{p ∈ P | ∀ s ∈ S : p ≤ s}

An element a ∈ P is called the supremum of S if it is the least upper bound
for S [AJ94], i. e. the following minimum exists:

a = min{p ∈ P | ∀ s ∈ S : s ≤ p}

A partial order (P,≤) is a total order if the reflexivity can be extended to the
condition that we have a ≤ b or b ≤ a for all a, b ∈ P (connexity).

23

2. Preliminaries

Kleene Fixed-Point Theorem

Given a partial order (A,≤), a subset D ⊆ A is called directed [AJ94] if it is not
empty and for each pair of elements in D there exists an upper bound in D, i. e.

∀ a, b ∈ D ∃ c ∈ D : a ≤ c ∧ b ≤ c.

A partial order (A,≤) is called directed-complete partial order (dcpo) [AJ94] if there
exists a supremum ∨

D for every directed subset D ⊆ A.

Let f : A → B be a function and (A,≤) and (B,≤) two partial orders.

• The function f is called monotonic [AJ94] if it preserves the order, i. e.

∀ a1, a2 ∈ A : a1 ≤ a2 ⇒ f(a1) ≤ f(a2).

• The function f is called Scott-continuous [AJ94] if it preserves all directed
suprema, i. e. for all directed subsets D ⊆ A with supremum ∨

D in A the
supremum of the image of D under f exists in A and is equal:∨

f(D) = f
(∨

D
)
.

Every Scott-continuous function is monotonic.

By the Kleene fixed-point theorem [Tar55, SLG94], every Scott-continuous function
f : A → A has a least fixed point µf if (A,≤) is a dcpo with a least element 0. The
least fixed point µf is the supremum of the chain iterating f starting with the least
element:

µf =
∨

{fn(0) | n ∈ N}.

This chain is called the Kleene chain.

Abstractions

Let (A,⪯) and (B,⪯) be two partial orders. A pair of monotone functions α : A → B
and γ : B → A is called a Galois connection [EKMS93, Ore44] if

∀ a ∈ A, b ∈ B : α(a) ⪯ b ⇐⇒ a ⪯ γ(b).

Let (A,⪯) be a partial order, f : A → A a monotone function and γ : B → A a
function. Then the function f# : B → B is an abstraction [CC92, CC77] of f if

∀ b ∈ B : f(γ(b)) ⪯ γ(f#(b)).

24

If (α, γ) is a Galois connection between A and B, we call the function f# : B → B
given by

f#(b) := α(f(γ(b))

the perfect abstraction of f .

Sequences

A sequence is a list of elements with a particular order. All elements are from a
common (finite or infinite) base set. For a set A we denote the set of all finite
sequences over A with A∗. We write

s = ⟨s0, s1, . . . , sℓ−1⟩ ∈ A∗

and say, the sequence s is of length |s| = ℓ. For a set A we denote the set of all
infinite sequences over A with Aω. We write

s = ⟨s0, s1, . . .⟩ ∈ Aω

and say, the sequence s is of length |s| = ∞. The set A∞ := A∗ ∪ Aω is the set of
all finite or infinite sequences over A.

Let s ∈ A∗ be a finite sequence of length ℓ and s′ ∈ A∞ a finite or infinite sequence.
We use the following notation to denote their concatenation:

s& s′ := ⟨s0, s1, . . . , sℓ−1, s
′
0, s

′
1, . . .⟩.

We use the term sequence and not word to distinguish sequences from words which
are elements of formal languages. Our base set A is allowed to be infinite which
would be uncommon for alphabets of typical formal languages.

Graphs

A directed graph G = (V,E) consists of a set V of vertices and a set E ⊆ V × V of
edges. A directed multi-graph G = (V,E) has a multi-set E of edges. A path in G
is a finite or infinite sequence v1, v2, . . . ∈ V ∞ of vertices such that every vertex is
at most contained once in the sequence and for any two consecutive vertices vi and
vi+1 there is an edge (vi, vi+1) ∈ E. A subset of a graph’s vertices is called strongly
connected iff there is a path from each vertex to all others in the subset. Such a
subset is called strongly connected component (SCC) if it is maximal, i. e. all strictly
larger subsets of the graph are not strongly connected. An SCC is called non-trivial
if it contains at least two nodes [BM76].

25

3 TeSSLa

This chapter discusses the TeSSLa semantics as a theoretical foundation for the
different implementations discussed in the next chapter. We will start in Section 3.1
with an informal introduction into streams, the usage of TeSSLa and the available
TeSSLa operators. Formal definitions for streams and the TeSSLa semantics are
given in Section 3.2.

Informally a stream is a sequence of events, and each event consists of a timestamp
and a data value. A timestamp is a number indicating when the event happened.
There is no theoretical limit to the timestamp’s precision, i. e. there can always be
another timestamp between two timestamps. We require all events of a stream to
be linearly ordered by their timestamp, i. e. two events on the same stream cannot
have the same timestamp. We refer to a set of timestamps and available operators
on timestamps as time domain. The data value is an arbitrary value attached to
the event. Streams are typed by the set of possible data values. We refer to a set
of possible data values and available operators on these values as data domain. The
data domain is not restricted and can range from primitive data types like Booleans
or integers to complex data structures such as lists or sets.

While the data domain of streams might differ, we require all streams to have the
same time domain. Two streams might have events with the same timestamp,
although it is not required that all streams have their events at identical timestamps.
We assume all timestamps to be comparable, i. e. events of different streams can be
ordered by their timestamps. This concept was introduced as the assumption of a
common global clock in the introduction.

We do not directly define a prefix relation on streams, i. e. a stream cannot be
extended into larger streams. The length of a stream might differ from its number
of events and requires additional consideration because the events are timestamped,
and the absence of events is not explicitly encoded. We thus do not introduce an
explicit length of streams. Instead, we consider every stream to be of infinite length.
This approach makes the definition very simple but has the drawback that we do not
immediately get an operational version of the semantics: A TeSSLa specification is
given in the form of an equation system, and we can only check for a given solution,
i. e. a set of streams if they fulfil the specification. The TeSSLa semantics do not
provide a systematic way to compute a solution for a given TeSSLa specification.

27

3. TeSSLa

In Section 3.5 we introduce monitoring streams as an extension of streams: We define
a prefix relation for monitoring streams and introduce the concept of a monitoring
stream’s progress, which generalises the concept of a stream’s length. The progress
of a monitoring stream encodes what we already know about the monitoring stream
and what information can be added in possible future extensions of the monitoring
stream. Monitoring streams are defined as a set of streams, which can be seen as
the most general way to express progress. The TeSSLa monitoring semantics is
introduced as TeSSLa semantics over monitoring streams. Using the monitoring
streams’ prefix relation the monitoring semantics provides an operational way to
compute solutions for a given TeSSLa specification: We will show that the Kleene
fixed-point theorem renders us an iterative approach starting with the empty chain
and step-wise extending it until the solution is reached. Further, the monitoring
semantics supports online monitoring, i. e. the online evaluation of streams extended
over time. The monitoring semantics extends the TeSSLa semantics: It uses the
same semantics for the individual TeSSLa operators.

In the following chapters, we introduce additional semantics with advantages for
implementing the different TeSSLa engines. As motivated in the introductions, these
semantics are shown to be abstractions of the TeSSLa monitoring semantics.

The formal semantics is only given for a minimal set of operators. Using these op-
erators directly can be cumbersome when writing real-world specifications. Further
derived operators are therefore introduced as syntactic sugar based on the basic
operators in Section 3.3. These derived operators are defined to be equivalent to a
composition of existing TeSSLa operators. We will also show that equivalences on
the TeSSLa semantics hold on the TeSSLa monitoring semantics.

Before the formal introduction of the monitoring semantics, we discuss several design
choices and basic principles of TeSSLa in Section 3.4. Several other sets of operators
are defined in this section, which could have also been chosen as basic operators.
We discuss the drawbacks of these operators and why the TeSSLa basic operators
are defined the way they are.

Finally, in Section 3.6 we show several results on the expressiveness of TeSSLa. Us-
ing the tools defined in the previous section on the monitoring semantics, we can
conclude this chapter with a precise characterisation of the stream transformation
functions that can be expressed with TeSSLa. As already motivated in the intro-
duction, TeSSLa is designed to express stream transformation functions that can be
realised in an online monitoring setting with finite memory.

28

3.1. Motivating Example

3.1. Motivating Example

A TeSSLa specification is a set of equations that describes the relationship between
streams. A formal definition of a stream is given in Section 3.2.1. For the motivating
examples in this section, we consider a stream to be a sequence of events, each
consisting of a timestamp and a data value. We distinguish between input streams
and derived streams. Applying a stream transformation to a set of input streams
derives new streams from the input streams. Input streams are given streams. They
are not defined by the specification but used as inputs of the specification. Derived
streams are derived from other streams (input streams and derived streams) using
TeSSLa operators. In theoretical considerations, we treat all derived streams as
the output of the specification. In practical applications, we distinguish further
between intermediate streams and output streams. Intermediate streams are only
used to derive further streams, and output streams are the actual output of the
specification.

This section aims at an informal introduction into the usage of TeSSLa and the
available TeSSLa operators. The formal semantics is given later in this chapter.
Basic TeSSLa operators are printed in bold and are defined in Section 3.2. Derived
operators are printed in sans serif and are defined in Section 3.3.

In the PDF version of this document, one can click on the operators to jump to their
formal definition. In the printed version, the formal definitions of the operators are
all listed in the list of theorems and definitions in Appendix A.4.

3.1.1. Lifting Functions on the Data Domain to Streams

The lift operator lifts a function on the data domain to a function on streams by
applying the function to every event of the stream.

Example 3.1 (Lifting Unary Functions to Streams). As a first example consider
the following stream x over the time domain R of real numbers and the data domain
Z of integers:

0 1 2 3 4

x
2 7 4

The stream x consists of three events at the timestamps 1.5, 3, 4 ∈ R with the values
2, 7, 4 ∈ Z. The time flows from the left to the right, indicated by the timeline in the
graphical representation. A cross indicates every event. The position on the x-axis
is related to the event’s timestamp, and the event’s data is written above the cross.

29

3. TeSSLa

The grey lines are meant to give an orientation about the timestamps. We will add
these lines in later diagrams only if the concrete timestamps are relevant.

Consider the following TeSSLa specification:

z = lift(inc)(x)

The function inc : Z → Z increments an integer, i. e. inc(i) = i + 1 for any i ∈ Z.
The lift operator lifts the function inc to streams by applying it to every event’s
data individually:

x
2 7 4

lift(inc)(x) = z
3 8 5

The light red arrows indicate the data flow and dependency between the events: An
arrow connects two events if the second event’s data value is derived from the first
event’s data value.

3.1.2. Synchronisation of Events

We use streams over a continuous time domain that explicitly specify the event’s
timestamps. The continuous time domain is the main difference between TeSSLa
and synchronous stream processing languages over a discrete time domain like, e. g.
LOLA [DSS+05]. Our timestamps serve multiple purposes: They are used to indi-
cate the order of the events, and they can represent the exact time when the event
happened. See the next section on a detailed discussion of timestamps.

Example 3.2 (Lifting Binary Functions to Streams). We can extend the previous
example to a binary function + : Z × Z → Z, which takes two elements from the
data domain and sums them up, i. e. returns another element from the data domain.

z = lift(+)(x, y)

We can lift such a function to streams over this data domain by applying it to the
corresponding events of two streams.

x
2 7 4

y
3 6 5

lift(+)(x, y) = z
5 13 9

30

3.1. Motivating Example

In the above example, the two input streams x and y are synchronous in the sense
that their events have identical timestamps. Next, we consider the case of events
without corresponding events with the exact timestamp on the other input streams.
Streams do not explicitly encode the absence of events. As a result, the lift operator
cannot use every i-th event of the input streams to compute the i-th event of the
output stream. It uses the event’s timestamps instead of their sequence number to
synchronise the input streams, i. e. use those events of the input streams that have
the same timestamp to compute an event with that timestamp on the output stream.
A total function like + on the data domain is lifted to a function on streams over
the data domain which only considers events with the same timestamp and ignores
the others:

x
2 7 4

y
3 6 5

lift(+)(x, y) = z
5 9

Some events on x and y are ignored because of the missing simultaneous event on
the other stream.

Ignoring those events makes sense if we interpret an event as a momentary action
that happens at a particular point in time. We call this the event view of a stream.
One can also interpret the events as points in a stream where a piece-wise constant
signal changes its value. We call this the signal view of a stream. This is illustrated
using the following digital signal notation:

x 2 7 4
y 3 6 5

With this interpretation, one wants to lift functions on the data domain to functions
on the streams so that the piece-wise constant signals’ current values for every
timestamp fulfil the operation. We refer to the current value of a stream if it is seen
as a piece-wise constant signal as the last known value of a stream. So we want to
consider the last known value on both input streams for every event on either of
the two input streams to compute new events on a derived stream. The necessary
control over asynchronous streams is provided by sampling one stream’s event using
another stream:

Example 3.3 (Sampling Events). In the following specification the on operator
takes two streams x and r and repeats the last event’s value on the stream x for

31

3. TeSSLa

every event on the stream r:

z = on(x, r)

Note how data dependencies indicated by the light red arrows are no longer exclu-
sively between events with the same timestamp. The on refers to previous events
on x:

x
2 4

r

on(x, r) = z
2 4 4

Example 3.4 (Synchronising Events). The sync operator is a special case of sam-
pling: It synchronises events between two streams, i. e. samples each stream with
the events of the other stream:

x′ = sync(x, y)
y′ = sync(y, x)

A stream cannot have two events with identical timestamps. So even if both streams
have an event at the same timestamp, we end up only with one event with that
particular timestamp. In the corresponding visualisation we can see how the derived
streams x′ and y′ contain the same events as x and y and additional sampled events
repeating the same value:

x
2 7 4

x′ 2 2 7 4

y
3 6 5

y′ 3 6 6 5

Now we can use the synchronised x′ and y′ as inputs to a lift to use the last known
value of a stream instead of ignoring events without a simultaneous event on the
other stream:

z = lift(+)(x′, y′)

The visualisation shows how events without a simultaneous event on the other stream
are no longer ignored. Instead the last known event on the other stream is used:

32

3.1. Motivating Example

x
2 7 4

y
3 6 5

lift(+)(x′, y′) = z
5 8 13 9

Since this combination of synchronising streams and then applying a function on
the data domain to the streams with the lift operator is an essential operation, we
call this signal lift or slift. Further, if functions (and operators) defined on the data
are used on streams, we assume an implicit signal lift. With this conventions we can
write z = x+ y instead of z = lift(+)(sync(x, y), sync(y, x)).

Coming back to the digital signal notation we now have:

x 2 7 4
y 3 6 5

x+ y = z 5 8 13 9

Although the above visualisation conveys the idea of the signal view better, for the
rest of the thesis, we primarily use the stream diagrams in which crosses indicate
the events because these are closer to the actual implementations of the streams.

3.1.3. Filtering Events and Explicitly Handling the Absence of
Events

If we lift a partial function, we can use the lift operator to filter streams.

Example 3.5 (Lifting Partial Functions). Consider the partial function f : N ↪→ N
mapping a number n ∈ N to itself if its odd. Then the specification

z = lift(f)(x)

filters the stream x ∈ SN and removes all events with even data value:

x
7 4 9 3

z
7 9 3

This approach can be extended to define a Boolean partial function f : D × B ↪→ D
taking a data value and a condition. It maps the data value to itself if the condition
is true: f(d, true) = d. If we lift such a function to streams, we get a function
that takes a stream of data values and a stream of conditions. By synchronising

33

3. TeSSLa

the condition stream with the data stream we can filter a stream based on the last
known value on a condition stream:

z = lift(f)(x, sync(c, x))

Note how we combined event and signal view in this example. The condition stream
is synchronised with the data stream, but the data stream is considered as a stream
of individual events which are not synchronised with the condition stream.

x
7 4 9 3

c
true truefalse

z
7 3

We lifted a partial function to filter a stream in the above example. We can extend
this approach further and lift a ⊥-function, i. e. a function whose domain and co-
domain are extended with the special symbol ⊥ representing the absence of a value.
(See Chapter 2 for the formal definition of ⊥-functions.) The lift operator passes ⊥
to this function for streams without a corresponding event. Thus, the function can
explicitly handle the absence of a corresponding event on the input streams. The
function is called for every timestamp for which there is at least one event on any
of the input streams.

Example 3.6 (Handling Absence of Events). With this approach we can define a
⊥-function f : D×D↣ D which passes through any input with a precedence to the
first argument if both arguments are present:

f(a, b) =

a if a ̸= ⊥,
b otherwise.

By lifting such a function we can merge the events of two streams with a precedence
to the first stream if both streams have a simultaneous event:

x
2 4 6

y
1 3 5

lift(f)(x, y) = z
2 4 61 3

The operator lift(f) merges the events of multiple streams with precedence to earlier
arguments in those cases where multiple streams contain simultaneous events. This
common operation is defined as the derived operator merge in Section 3.3.

34

3.1. Motivating Example

3.1.4. Timestamps, Previous Events and Event Creation

So far, we have discussed how to lift functions and synchronise events of different
streams. Another important aspect of stream processing is providing access to
previous events. The following examples combine this with explicitly accessing the
timestamps of events. In TeSSLa, there are no operators to check properties over
the event’s timestamps. Instead, the time operator can be used to retrieve an
event where the event’s value is set to its timestamp. Thus we can reuse the same
operators which were already introduced to manipulate event’s values to perform
computations on event’s timestamps:

Example 3.7 (Accessing Timestamps And Previous Events). The following specifi-
cation computes for every incoming event the time passed since the last event. The
prev operator gives access to the previous event on the given stream by shifting the
event’s values all by one event and removing the first event on the stream.

d = time(x) − prev(time(x))

In the visualisation, we can see how prev accesses the previous event. The light blue
and light red arrows again indicate the data flow. The different colours are only
used to increase the readability.

0 2 4 6 8 10 12 14 16 18

x

time(x) 2 5 7 15 18

prev(time(x)) 2 5 7 15

d
3 2 8 3

Assume that we want to check that at least every 5 time units that there is an event
on x. Such a check can be realised by taking the stream d and filtering it for events
with a value greater than 5. If we use a function f : T↣ T which maps every value
greater than 5 to the amount how much it exceeds 5 we get the time this event is
too late to meet the deadline:

f(x) =

x− 5 if x > 5,
⊥ otherwise.

In the visualisation we can see how the event on x at timestamp 15 is 3 time units
too late to meet the criterion:

35

3. TeSSLa

0 2 4 6 8 10 12 14 16 18

d
3 2 8 3

lift(f)(d) = e
3

We have seen in the previous examples that timestamps in a stream serve three
different purposes:

1. Timestamps of the events in a stream indicate the order of the events in that
stream. They are strictly increasing and can be accessed and compared to
retrieve the relative order of the events in that stream.

2. Timestamps of different streams indicate the relative order of events across all
streams. They are used to synchronise the events of different streams.

3. The timestamps may represent the order of events and the exact time the event
occurred. In those cases, one can use the timestamp to compute the relative
time passed between events or check that absolute time lies within certain
boundaries.

All our TeSSLa examples so far have been timestamp conservative, i. e. the derived
streams contained only timestamps which already occurred in the input streams.
See Definition 3.95 in Section 3.6 later in this chapter for a formal definition. In
the previous example, we detected events that violated the deadline of 5 time units.
Because of the timestamp conservatism, we can only detect this violation when the
next event appears. In general, we already know 5 time units after the event if the
deadline was met or not. The delay operator is used to introduce events at arbitrary
new timestamps. It allows us to formulate a similar specification that reports the
error earlier.

Example 3.8 (Delaying Events). Consider the following specification

y = lift(c5)(x)
z = delay(y)

with the function c5 : D → {5} on the data domain mapping every input to the
output 5.

Using the same input stream x as in the previous example we get the following
visualisation:

36

3.1. Motivating Example

0 2 4 6 8 10 12 14 16 18

x

lift(c5)(x) = y
5 5 5 5 5

delay(y) = z

The delay operator takes a delay and generates an event without data after the
given delay has passed.

The light grey arrows do not indicate data flow in this case because the event’s
data values are ignored. It still represents a causal relationship between the events
because the events on the delayed stream only occur because of the events on x.

The operator does not keep track of arbitrarily many delays. Instead, every new de-
lay resets previous delays. This behaviour keeps the semantics of the basic operators
as simple as possible. Other possible definitions and their drawbacks are discussed
in Section 3.4.5.

The diagram shows not all events of the streams: The stream z must continue with
more events after timestamp 18. The cut light-grey arrow indicates this continuation
in the diagram. Either an event on x cancels the currently active delay, or there will
be an event on z at timestamp 18 + 5 = 23.

3.1.5. Aggregating Data Along the Streams

Finally, we discuss TeSSLa’s ability to aggregate data along a stream. So far, only
examples referring to previous events using prev were considered. The prev operator
can be nested, but it can only refer back to a finite number of events. It cannot
aggregate data over all the events that occurred so far on a stream.

Such aggregations can be expressed with recursive definitions, i. e. a stream defined
in terms of itself.

Example 3.9 (Recursive Aggregating Sum). The following specification sums up
the values of all events which occurred so far on the input stream x:

ℓ = last(default(ℓ+ x, 0), x)

In order to name the subexpressions we rewrite this specification as follows:

ℓ = last(s, x)
a = ℓ+ x

s = default(a, 0)

37

3. TeSSLa

The recursive definition uses the operator last to refer to a previous event on a
stream. Compared to prev this operator takes an additional parameter which is
required to define where the events are supposed to be. In this example, we derive
a new stream s with a recursive equation saying that the next event of s should be
based on the last event of s. The prev operator cannot be used in such a recursive
fashion because it lacks additional parameters. Without it, there would be no unique
solution to the equation because there is no minimal distance between events on a
stream.

The addition ℓ + x takes the last value on s and adds the current value on x to it.
With ℓ having an event for every event on x, this sums up the event’s values on x.
The default operator is needed to define a base case for the recursion. Otherwise,
there would never be a previous event on s to whose value the last operator could
refer. The default adds an event with value 0 at the timestamp 0.

x
3 1 4

default(a, 0) = s
0 3 4 8

last(s, x) = ℓ
0 3 4

ℓ+ x = a
3 4 8

The light red data flow arrows show how the aggregation starts with 0 at timestamp
0. Then the last is triggered with every event on x. It reproduces the last known
value on s at the timestamp of the event on x. The current value of x – shown as a
light blue data flow arrow – is added to this last value of s. The default has no effect
for later timestamps. It is only included to provide the default value for timestamp
0.

To conclude this set of motivating examples, we will consider two final examples,
which combine recursive equations and event generation using the delay operator.
The following example creates an event every 2 time units.

Example 3.10 (Period). The following specification does not use any input streams.
The stream d is only defined in terms of its own:

d = delay(const(2,merge(d,unit)))

As before, we rewrite the specification in order to name the subexpressions. We get
the three streams c, d and z that are derived from each other:

c = const(2, z)

38

3.1. Motivating Example

d = delay(c)
z = merge(d,unit)

The above specification takes every event on z and maps its value to a constant 2.
The events with value 2 are then used as input for a delay. So with any first event
on z, it will be repeated every 2 time units forever. Such a first event is introduced
into the recursion using the merge with the stream unit which contains a single
event at timestamp 0 without a value.

Since there is no input stream, the following stream visualisation is not only an
exemplary solution but the only possible solution for this equation system:

0 2 4

merge(d,unit) = z

const(2, z) = c
2 2 2

delay(c) = d

The stream continues with this pattern infinitely because every event causes another
event 2 time units later.

The following example extends the event generation by making the period config-
urable. Instead of using a fixed period of 2, an input stream specifies the period:

Example 3.11 (Variable Frequency Period). The input stream x contains events
whose values specify the period from that point on. The stream z contains an event
with that value repeated with the given period:

z = merge(x, last(x,delay(z)))

As before we rewrite the specification in order to name the subexpressions:

d = delay(z)
ℓ = last(x, d)
z = merge(x, ℓ)

The main difference in comparison to the previous example is that we use the last

instead of the const to set a value to the events generated by the delay. The merge

starts the recursion, but this time we do not start with a fixed event but with the
first event on x. The following visualisation shows an exemplary execution of this
specification:

39

3. TeSSLa

0 1 2 3 4 5 6 7 8

x
3 1.5

merge(x, ℓ) = z
3 3 1.5 1.5 1.5

delay(z) = d

last(x, d) = ℓ
3 1.5 1.5

The red 1.5 and the black 1.5 indicate the same value. They are only coloured
differently to indicate the source of the event: The red ones are immediately merged
into the stream from the input stream x, and the black ones are reproduced by
the last after the delay. Note how new ones overwrite existing delays. The delay

operator can only handle a single currently active delay.

Without any further event on the input stream x, the pattern of events with the
value 1.5 every 1.5 time units would continue indefinitely. Other than the previous
example, the periodic event pattern generated by this specification can be inter-
rupted by events on the input stream x: An event with value 0 on x would produce
a single output event with that value and stop the periodical output until a new
event on x with a positive value starts it again.

3.2. Semantics

In this section, the formal syntax and semantics of TeSSLa are presented. A similar
semantics is given in [Sch20] as a didactic intermediate step which is replaced with
the actual semantics later on. We reproduce the TeSSLa semantics in this thesis with
some adjustments regarding the presentation and use it as a basis for the following
semantics introduced later. Note that the TeSSLa semantics given in [CHL+18]
are based on an extended stream model and will be shown in Chapter 6 to be an
abstraction of the monitoring semantics introduced in Section 3.5.

We start by formally defining the concept of streams and discuss the Zenoness of
streams. Next, we will give definitions for the syntax of TeSSLa as an equation
system over streams. Then the semantics of TeSSLa will be defined as the solution
of such an equation system. Only the basic operators are defined explicitly. The
other operators are given as syntactic sugar in the next section. Finally, some
properties regarding the equivalence of TeSSLa specifications, their well-definedness
and their dependency graphs are discussed.

40

3.2. Semantics

3.2.1. Streams

As discussed in the introduction of this thesis, there are many different ways to
represent streams. This thesis considers streams with explicitly timestamped events
over a continuous time domain. First, we formalise the idea of a time and data
domain. The notation is based on [CHL+18]:

Definition 3.12 (Time Domain). We call a totally ordered semiring (T, 0, 1,+, ·,≤)
a time domain if it is positive, i. e. , ∀ t ∈ T : 0 ≤ t.

In the following, we always assume T to be the time domain if not explicitly stated
otherwise.

Definition 3.13 (Data Domain). A data domain is a set.

Any arbitrary set can be a data domain. However, it is often convenient for actual
applications to use data domains that are time domains, too. A more detailed
discussion about time and data domains can be found in Section 3.4.

We use the symbol D to denote an arbitrary data domain.

We formalise streams as finite or infinite sequences of events. Each event is rep-
resented as a tuple of a timestamp and a data value. The notation for streams is
based on [Sch20]:

Definition 3.14 (Stream). The set SD ⊂ (T×D)∞ of all streams over a time domain
T and a data domain D consists of finite or infinite sequences

s = ⟨(t0, a0), (t1, a1), . . .⟩ ∈ SD,

where the timestamps are strictly increasing, i. e.

∀ 0 < i < |s| : ti−1 < ti.

A tuple (t, d) ∈ T × D is called an event and we say s contains (t, d) if the tuple
occurs in the sequence s.

In the following, we abuse notation and indicate the Cartesian product D1 × D2 ×
. . .× Dn of n potentially different data domains with the notation Dn. In the same
way, we indicate the Cartesian product SD1 × SD2 × . . .× SDn of streams over these
data domains with the notation Sn

D.

41

3. TeSSLa

Definition 3.15 (Timestamps of a Stream). For a stream s ∈ SD we define T (s) ⊆ T
to be the set of timestamps carrying events in s:

T (s) := {t ∈ T | s contains (t, d) with d ∈ D}.

We further define T (s) := ⋃
1≤i≤k T (si) for the timestamps of all events occurring in

a tuple s ∈ Sn
D of streams.

As discussed in the introduction of this chapter, we do not define a prefix or refine-
ment relation on streams. The following example illustrates this:

Example 3.16 (Stream). Let the time domain be R≥0. Then consider the stream
s = ⟨(2, 17)⟩ ∈ SN which consists of one event at timestamp 2 with the value 17.
Intuitively this stream explicitly covers the entire time domain R≥0, i. e. s does not
only encode the event at timestamp 2 but also the absence of any events at other
timestamps t ∈ R≥0\{2}. If we use s in last(s, r) then for every event on r with
a timestamp greater than 2, we get the value 17 because there is no other event
following that first event on s.

We will introduce the concept of monitoring streams in Section 3.5 which introduces
concepts on how to extend monitoring streams and defines a refinement relation on
them.

There are three ways in which streams can be considered infinite:

1. Streams are always considered fully known, i. e. they are infinite in the sense
that there is no possible extension of a stream.

2. Streams can have infinitely large timestamps, i. e. they have infinitely many
events without a maximal timestamp.

3. Streams can have infinitely many events whose timestamps are not becoming
infinitely large.

The third case is known in the literature as Zeno behaviour [Lam02, Mos07, ZJLS00],
named after the Greek philosopher Zeno who came up with the paradox that an ar-
row will never reach its target if it first flies half of the distance to the target, then
an additional quarter, then an additional eight and so on:

Definition 3.17 (Zeno [Lam02, Mos07, ZJLS00]). An stream s ∈ SD with infinitely
many events is called to be Zeno if the supremum of its timestamps sup(T (s)) exists.
We say s has Zeno behaviour at sup(T (s)).

42

3.2. Semantics

Example 3.18 (Zeno Stream). As an example for a Zeno stream consider the stream〈
(1,□),

(
1 + 1

2 ,□
)
,
(

1 + 2
3 ,□

)
,
(

1 + 3
4 ,□

)
, . . .

〉
∈ SD.

Its n-th timestamp is given by

tn = 2 − 1
1 + n

.

All timestamps in this infinite sequence of timestamps are strictly lower than 2 be-
cause every timestamp in the sequence is exclusively between the previous timestamp
and 2.

All finite streams are, by definition, non-Zeno. Infinite streams with a smallest delta
between the timestamps are also non-Zeno, but there are non-Zeno streams without
a smallest timestamp delta:

Example 3.19 (Non-Zeno Stream). As an example for a non-Zeno stream consider
the stream〈

(1,□),
(

1 + 1
2 ,□

)
, (2,□),

(
2 + 1

3 ,□
)
, (3,□),

(
3 + 1

4 ,□
)
, . . .

〉
∈ SD.

Its n-th timestamp is given by

tn =

m if n is even,
m+ 1

1+m
otherwise.

with

m = 1 +
⌊
n

2

⌋
.

The timestamps in this infinite sequence rise beyond any boundary, so this stream
does not show Zeno behaviour. However, the delta between a timestamp at an even
position and the next timestamp decreases below every boundary.

Note that a stream’s timestamps can at most converge towards one limit. Without
further restrictions, a set of timestamps could contain multiple intervals with finite
boundaries, containing infinitely many timestamps. Even an arbitrary sequence
of timestamps could diverge but stay below a finite boundary, e. g. by alternating
between two converging sequences. However, a sequence of strictly increasing times-
tamps can either converge towards a limit or rise beyond any limit. For example,
the Zeno stream shown in the examples above converges towards (but never reaches)
timestamp 2.

43

3. TeSSLa

Definition 3.20 (Limit of a Stream). Let s ∈ SD be a stream and ⟨t0, t1, . . .⟩ the
ordered sequence of its timestamps T (s). If this sequence converges towards a finite
limit we call

limT(s) = lim
i→∞

ti

the limit of s. Otherwise we define

limT(s) = ∞.

Although defined as a sequence, a stream can also be seen as a function, too:

Definition 3.21 (Functional View of a Stream). Let s ∈ SD be a stream. Then
fs : T → D⊥ is the streams’ functional view with

fs(t) =

d if s contains (t, d),
⊥ otherwise.

The function fs maps a timestamp t to a value d if s has an event with value d at
time t. All timestamps t without an event at t are mapped to ⊥. The domain of
the function is always the time domain T, which reflects the fact that there is no
possible extension of a stream.

If the usage is clear from the context, we use s to refer to fs.

This functional view is beneficial for the definition of the TeSSLa operators below:
They are given by specifying their generated stream as a function mapping times-
tamps to values. For the formal definition of a stream, we rely on sequences in order
to implicitly derive the following property: There is one first event, and every event
except the first has a unique predecessor. As a result, a stream’s timestamps can
at most converge towards one limit, with all timestamps being strictly lower than
the limit.

3.2.2. Syntax

Syntactically a TeSSLa specification is an equation system that derives new streams
from the given input streams:

44

3.2. Semantics

Definition 3.22 (TeSSLa Syntax). TeSSLa has the basic operators unit, time,
lift, last and delay. A TeSSLa expression e over these operators is given by the
following grammar:

e ::= unit | time(e) | lift(f)(e, . . . , e) | last(e, e) | delay(e, e) | x

with x being variables representing streams and f being identifiers representing
arbitrary functions on data domains.

A TeSSLa specification φ consists of equations of the form

x := e

with x being variables representing streams and e being TeSSLa expressions.

We distinguish between free and bound stream variables. Bound variables are used
on the left-hand side of precisely one equation in φ, and free variables are only used
in TeSSLa expressions.

The free streams are the specification’s input streams, and the bound streams are
derived streams.

3.2.3. Semantics

The semantics of a TeSSLa specification φ are given as a semantics function fφ
mapping a tuple of free input streams to a tuple of derived bound streams. The
bound streams are derived as a solution of the equations in φ:

Definition 3.23 (TeSSLa Semantics [Sch20]). Let φ be a TeSSLa specification with
k free stream variables and n bound stream variables. The semantics interprets the
equations of φ as functions fi : Sk

D × Sn
D′ → SD′

i
mapping all free streams y ∈ Sk

D and
all bound streams z ∈ Sn

D′ to a stream zi ∈ SD′
i
:

zi = f i(y)(z)

The functions fi are compositions of the TeSSLa operators whose semantics are
given below. In combination we get f : Sk

D × Sn
D′ → Sn

D′ being the tuple of all fi and
thus the following equation:

z = f(y)(z)

The semantics of φ is a function fφ : Sk
D → Sn

D′ given as the fixed point z of f :

fφ(y) := z such that f(y)(z) = z.

45

3. TeSSLa

In general, this fixed point is not unique, and hence the semantics is not well-defined.
We will introduce the concept of well-formed TeSSLa specifications in Section 3.2.4
and show in Section 3.5 that the fixed point is unique for those specifications.

In the following, we define the semantics of the TeSSLa operators by defining the
resulting stream z ∈ SD using its view as a function. We implicitly quantify the
timestamp t ∈ T in the defining equations over all t < limT(z). Although the
stream z is given as a function, one always has to keep in mind that it is a stream,
i. e. we do not consider arbitrary functions from the time domain to the data domain,
but only those functions that represent streams. This restriction becomes especially
important in the case of compositions o ◦ p of two TeSSLa operators o and p: The
output of the first operator o is a stream that is then processed by the second
operator p.

Definition 3.24 (Semantics of the Operator unit [Sch20]). The operator unit is
defined as follows:

unit ∈ SU with unit := z,

where the stream z defined by

z(t) =

□ if t = 0,
⊥ otherwise.

The unit operator is a pre-defined stream with a single event at timestamp 0. The
operator is required to introduce streams with an event at timestamp 0 indepen-
dently from the input streams. For a further discussion on the set of basic operators,
see Section 3.4.2.

We use the unit type U = {□} to encode streams of events without values as streams
whose events all have the single value □. Every stream SD over an arbitrary data
domain D can be implicitly converted into a stream over SU by ignoring the event’s
values.

Not that the unit stream can be stated explicitly as unit = ⟨(0,□)⟩, too, but for
the sake of a uniform presentation of all TeSSLa operators, the functional view was
used in the above definition.

Definition 3.25 (Semantics of the Operator time [Sch20]). The operator time is
defined as follows:

time : SD → ST with time(s) := z,

46

3.2. Semantics

where the stream z defined by

z(t) =

t if t ∈ T (s),
⊥ otherwise.

The time operator maps the event’s values to their timestamps.

Definition 3.26 (Semantics of the Operator lift [Sch20]). The operator lift is
defined for any well-formed ⊥-function f : Dn↣ D as follows:

lift : (Dn↣ D) → (Sn
D → SD) with lift(f)(s1, . . . , sn) := z,

where the stream z is defined by

z(t) = f(s1(t), . . . , sn(t)).

The lift operator lifts a function f on the data domain to a function on streams
over these data domains by applying f to the stream’s values for every timestamp.
As defined in the preliminaries, a ⊥-function’s domain and co-domain is extended
with ⊥. The special value ⊥ indicates the absence of an event. The ⊥-function f
must be well-formed, i. e. if all inputs are ⊥, the output must be ⊥, too. In other
words: The function f is not allowed to produce additional events if its input does
not contain any event. This approach was motivated in detail in Section 3.1.3.

Definition 3.27 (Semantics of the Operator last [Sch20]). The operator last is
defined as follows:

last : SD × SU → SD with last(v, r) := z,

where the stream z defined by

z(t) =

d if t ∈ T (r) ∧ ∃ t′ < t : isLast(t, t′, v, d),
⊥ otherwise,

with the following auxiliary definition:

isLast(t, t′, v, d) := v(t′) = d ∧ ∀ t′′ : t′ < t′′ < t ⇒ v(t′′) = ⊥.

The last operator takes two streams v and r. We refer to v as its value stream and
to r as its trigger stream. It outputs an event with the previous value on v for every
event on r. The predicate isLast(t, t′, v, d) for two timestamps t, t′ ∈ T, a stream

47

3. TeSSLa

v ∈ SD and a value d ∈ D holds if (t′, d) is the last event on v until timestamp t
(excluding t).

The following definition of the delay operator differs from the one given in [Sch20]
because it only takes one argument. We show in Section 3.6 that we gain the full
expressiveness with this simpler version. The need for additional arguments of the
operator is discussed further in Section 6.2.1.

Definition 3.28 (Semantics of the Operator delay). The operator delay is defined
as follows:

delay : ST → SU with delay(d) := z,

where the stream z defined by

z(t) =

□ if ∃ t′ < t : set(d, t, t′) ∧ noreset(d, t′, t),
⊥ otherwise,

with the following auxiliary definitions:

set(d, t, t′) := d(t′) = t− t′ and
noreset(d, t, t′) := ∀ t′′ : t < t′′ < t′ ⇒ d(t′′) = ⊥.

The predicate set(d, t, t′) for a stream d ∈ ST and two timestamps t, t′ ∈ T holds if
the stream d has an event at timestamp t′ whose value is the delta until the current
timestamp t. The predicate noreset(d, t, t′) for a stream d ∈ ST and two timestamps
t, t′ ∈ T holds if the stream d does not contain an event between the timestamps t′
and the current timestamp t (both exclusive).

The delay operator takes one stream d, called its delay stream. It emits a unit event
in the resulting stream after the delay passes. Delays are not accumulated. A new
delay resets a currently active one. A delay of 0 only resets the currently active
delay without setting a new one.

Now we can conclude: For non-recursive stream definitions, the semantics are imme-
diately given by applying the operators to the streams according to the equations.
For recursive stream definitions, the semantics is given as the fixed point. So far, we
have no way to compute the fixed point or even to assure that a fixed point always
exists. Both problems will be addressed in Section 3.5.

48

3.2. Semantics

3.2.4. Properties

We now consider some simple properties of TeSSLa specifications starting with the
equivalence of specifications defined as usual:

Definition 3.29 (Equivalence of TeSSLa Specifications). Two TeSSLa specifica-
tions φ and ψ are equivalent if their semantics functions fφ and fψ are equivalent:

φ ≡ ψ :⇐⇒ fφ ≡ fψ.

With this definition, two specifications are only equivalent if, for all free streams, all
of their derived streams are equivalent. Although the TeSSLa semantics introduced
in this thesis does not have a formal definition of output streams, a projection
of the semantics function onto certain elements of the tuple is a straightforward
extension. The fixed point must be computed over the tuple of all bound streams,
but afterwards, one can remove internal streams from the tuple of streams.

In the following we sometimes use expressions over streams as specification. For
example the notation

last(x, y) ≡ last(x, last(unit, y))

is short for

φ ≡ ψ

with the implicitly defined specifications φ and ψ: Both specifications have the
free input streams x, y ∈ SD and the bound derived stream zφ ∈ SD or zψ ∈ SD,
respectively, given by

zφ = last(x, y)
zψ = last(x, last(unit, y)).

It is important for the equivalence to hold that ψ has only one derived variable.
Assume the slightly different specification ψ′ with the internal derived stream z1 ∈
SD and the output derived stream zψ′ ∈ SD given by

z1 = last(unit, y)
zψ′ = last(x, z1).

The equivalence ψ ≡ ψ′ only holds if we ignore the internal stream z1 and implicitly
project the semantics function fψ′ to the output stream zψ′ .

Next, we define the dependency graph and the related flow graph of a TeSSLa
specification. For the dependency graph we require the specification to be flat:

49

3. TeSSLa

Definition 3.30 (Flat [CHL+18]). We call a TeSSLa specification φ flat if for every
equation x := e of φ the TeSSLa expression e contains exactly one of the TeSSLa
operators unit, time, lift, last or delay.

In a flat TeSSLa specification, every derived bound stream corresponds to a TeSSLa
operator used to define this stream.

By adding additional bound variables, every TeSSLa specification can be trans-
formed into an equivalent flat TeSSLa specification.

Definition 3.31 (Dependency and Flow Graph [CHL+18]). The dependency graph
of a TeSSLa specification φ is the directed multi-graph G = (V,E) of nodes V =
{x1, . . . , xn}. For every equation xi := fi(x) in φ the graph contains the edge (xi, xj)
iff fi depends on xj.

The dependency graph with reversed edges is called flow graph.

For a given TeSSLa specification φ, we refer to the dependency graph of an equivalent
flat TeSSLa specification as the dependency graph of φ if that is clear from the
context.

While an edge in the dependency graph represents a dependency between two op-
erators, the reversed edge in the flow graph represents the data flow between the
operators.

So far, no formal restrictions on cyclic definitions of bound streams in a TeSSLa
specification are defined. However, the semantics function fφ might not be well-
defined on arbitrary specifications if the equation system has multiple solutions. For
example, for the specification x := x every stream x ∈ SD is a fixed point.

Definition 3.32 (Well-Formed TeSSLa Specification [CHL+18]). We call a TeSSLa
specification φ well-formed if every cycle of the dependency graph contains at least
one delayed-labelled edge. We label edges corresponding to the first argument of
last or delay with delayed.

We will show in Section 3.5 on monitoring semantics that the semantics function
fφ(y) = z such that z = f(y)(z) of a TeSSLa specification φ is well-defined if φ is
well-formed because then the fixed point z is unique.

Example 3.33 (Dependency Graph of a Well-Formed TeSSLa Specification). Re-
consider the TeSSLa specification φ from Example 3.11 (Variable Frequency Period)

50

3.2. Semantics

in Section 3.1.5 with the free (input) stream x ∈ SR≥0 and the bound (derived)
streams d ∈ SU and z, ℓ ∈ SR≥0 :

z = merge(x, ℓ)
ℓ = last(x, d)
d = delay(z)

The dependency graph of φ can be drawn as shown in Figure 3.1. Bound streams
are depicted as rectangles and free streams with rounded corners. The only cycle
in the graph contains a delayed-labelled edge, making the specification well-formed.
Informally one can say that the cycle is interrupted by the delay operator: An
input event of the delay cannot produce an output event with the same timestamp.
Remember that values of 0 are defined to reset the delay. The last operator does
not interrupt the cycle in the same way in this example because its trigger input,
i. e. its second argument, is used in the cycle. The delayed-labelled edge of the last

is going to the input stream x.

d = delay(z)

z = merge(x, ℓ)

ℓ = last(x, d)x
delayed

delayed

Figure 3.1.: Dependency graph of a well-formed specification. (Example 3.33)

Example 3.34 (Dependency Graph of a Not Well-Formed TeSSLa Specification).
As a counterexample for a well-formed specification consider the following specifi-
cation with the streams z, ℓ, i ∈ SZ:

ℓ = last(z, z)
i = lift(inc)(ℓ)
z = merge(i, 0)

51

3. TeSSLa

Compared to the previous example, this specification lacks any free stream, i. e.
there is no input stream. The dependency graph shown in Figure 3.2 contains two
cycles: One cycle contains an edge corresponding to the first argument of last and
hence is fine, but the other cycle (depicted in red in the diagram) contains only
an edge corresponding to the second argument of last and thus no delayed-labelled
edge.

The specification describes a stream z that has an event with value 0 at timestamp
0. With every further event of z, the event’s value is incremented by 1. The spec-
ification, however, does not define the timestamps of these events because the last

is triggered by z, which is itself again defined by the last. In synchronous stream
processing languages over a discrete time domain, like e. g. [DSS+05], specifications
like this are allowed and uniquely define a stream because for every timestamp, there
is only one possible next timestamp. In TeSSLa, we need additional clarification on
the timestamps of the events because the time domain is continuous. This can be
an external trigger stream, as in Example 3.9 (Recursive Aggregating Sum) from
Section 3.1.5, or a precise definition where additional events are created using a
delay, as in the previous example.

z = merge(i, 0)

i = lift(inc)(ℓ)

ℓ = last(z, z)

delayed

Figure 3.2.: Dependency graph of the specification given in Example 3.34 which
is not well-formed.

The above examples illustrate that the semantics is, in general, not well-defined on
specifications that are not well-formed. The equation systems can have multiple
solutions, and so far, we have not introduced an ordering on these solutions because
we have not yet introduced an ordering on the streams defined in this section. All
streams are infinitely long, and we do not define any prefix relation on streams.
Hence we cannot use, e. g. the least fixed point in the definition of the semantics
discussed in this section.

52

3.3. Common Derived Operators

The monitoring semantics introduced in Section 3.5 use monitoring streams that
have a notion of progress, i. e. they can represent a prefix with multiple possible
continuations. The monitoring semantics is defined as a least fixed point which
guarantees a well-defined semantics for arbitrary specifications. The monitoring
semantics function maps to a not entirely evaluated output in those cases, where
the fixed point is not unique using the semantics defined in this section.

3.3. Common Derived Operators

This section defines some additional TeSSLa operators derived from the basic op-
erators defined in the semantics. These basic operators are building blocks for the
definition of more user-friendly and verbose TeSSLa operators. It is one of the fun-
damental ideas of TeSSLa to have a minimal set of basic operators which form the
theoretic core of TeSSLa and many derived operators which simplify the practical
usage of TeSSLa.

This section only demonstrates how to derive further TeSSLa operators with the
example of some valuable operators. Practical implementations of TeSSLa may
contain large standard libraries that can adapt to different application domains.

3.3.1. Operators Derived From lift

The following operators are directly derived from lift by passing it a specific func-
tion.

Definition 3.35 (Semantics of the Operator nil). The stream nil ∈ S∅ is defined as

nil ≡ lift(f)(unit)

with the function f : U↣ ∅ given by f(x) = ⊥ for all x ∈ U⊥.

The stream nil is the empty stream without any event.

Definition 3.36 (Semantics of the Operator const). The binary operator const : D×
SD′ → SD maps the values of the events on a stream to a constant value:

const(d, r) = lift(f)(r)

with the constant function f : D′ → D with f(d′) = d for all d′ ∈ D′.

53

3. TeSSLa

The unary operator const : D → SD maps a value from the data domain to a stream
with a single event at timestamp 0 carrying that value:

const(d) ≡ const(d)(unit)

In TeSSLa specifications, we use the convention that a value d ∈ D on a data domain
D can be used to represent the stream const(d).

Definition 3.37 (Semantics of the Operator merge). The n-ary operator merge : SD×
SD × . . .× SD → SD merges all the events from the given streams into a single new
stream. In the case of simultaneous events, the operator uses the value of the event
coming first in the sequence of operands.

merge(s1, s2, . . . , sn) ≡ lift(fn)(s1, s2, . . . , sn)

with fn : Dn↣ D given by

fn(d1, d2, . . . , dn) =

d1 if d1 ̸= ⊥,
fn−1(d2, . . . , dn) otherwise.

f1(d) = d

For the trivial case of n = 1 we get merge(s) ≡ s.

3.3.2. Accessing Previous Values

The operators sync and on for the synchronisation of events were motivated in Sec-
tion 3.1.2 and Section 3.1.4 introduced how previous events can be accessed directly
with the operator prev. These operators are derived as simpler and hence more
specific variants of the operator last:

Definition 3.38 (Semantics of the Operators prev, sync and on). The operator
prev : SD → SD maps every event on the given stream to its predecessor on that
stream. The operator sync : SD × Sn

U → SD synchronises the first stream with the
events from the other streams. The operator on : SU × SD → SD samples the second
stream with the events from the first stream.

prev(x) ≡ last(x, x)
sync(x,y) ≡ merge(x, last(x,merge(y)))

on(x, y) ≡ lift(f)(x, sync(y, x))

54

3.3. Common Derived Operators

with f : D′ × D↣ D given by

f(a, b) =

b if a ̸= ⊥,
⊥ otherwise.

Note that prev can be nested: We use the notation prevn to indicate the composition
of n prev operators. prevn(x) shifts the values of the events of the stream x by n
events to the right and removes the n first events from the stream. The parameter
n is fixed for every operator prevn used in a specification. See Section 3.4.5 for a
discussion of the drawbacks of an operator prevn which allows access to the n-th
previous event where n is dynamically given as stream and how such an operator
can be expressed in TeSSLa.

With the above definitions, we have established different applications of the last

operator:

• Accessing previous events on the same stream with prev,

• sampling events on a stream with triggers on another stream with on,

• synchronising events on a stream with triggers on another stream with sync,
which can be seen as a special case of sampling, and

• accessing previous events at a given external trigger in recursions with last.

For every event on the trigger stream, the last operator produces the last known
value of the value stream. The last known value at timestamp t only refers to events
that happened strictly before t. This feature of the last operator is only needed for
the last usage of last, i. e. as a way to access previous values in recursions. In fact,
in the sampling and synchronising applications, we have to combine last and lift to
get access to all events which happened at or before t. However, as one can see in
the above definitions, it is rather straightforward to do so, and it makes theoretical
analyses much easier if last and lift have strictly separated concerns which can then
be combined later if needed.

3.3.3. Signal Lift

The signal view of a stream was motivated in Section 3.1.2. The corresponding
signal lift operator slift is derived as a combination of last and lift:

55

3. TeSSLa

Definition 3.39 (Semantics of the Operator slift). The signal lift operator slift with
the signature (Dn ↪→ D) → (Sn

D → SD) lifts a given partial function f : Dn ↪→ D on
the data domain to streams:

slift(f)(d) ≡ lift(f)(d′)

where every d′
i in d′ is given by

d′
i = sync(di,d).

The tuple d′ of streams is the synchronised version of d where all streams have events
at identical timestamps. If streams in d are missing events at certain timestamps
where other streams have events, then those events are added in d′ by repeating
the previous event on that stream. If we interpret a stream as a piece-wise constant
signal, this operation does not change the signal but only its underlying encoding
as an event stream. This synchronisation ensures that the function is never called
with ⊥ on any inputs.

The only case where additional events cannot be added is if a stream does not
have any previous events, which could be repeated. The signal lift only generates
an output event at timestamp t if all input events have an event at t or had an
event prior to t. The above definition defines slift only on partial functions. By
convention, such a function is then implicitly extended to a conservative ⊥-function
when passing it to the lift. This extension leads to the desired behaviour because
conservative ⊥-functions return ⊥ if any of its inputs are ⊥.

In TeSSLa specifications, we use the convention that all functions f , which are
defined on the data domain, can implicitly be used on streams by replacing f with
slift(f). This convention can be used together with the convention of automatic
application of const in order to convert constants on the data domain to streams:
By combining both conventions, we can write y = x + 1 to define the stream y to
have the same events as x, with every event’s value being incremented by 1. See
Section 3.4.1 for a further discussion of this approach.

The filter operator is a special case of the signal view: It filters a stream of events
based on the Boolean value of another stream. The event stream is not synchronised
with the condition stream because we do not want to create new events. On the
other hand, the condition stream is synchronised with the event stream because we
want to interpret the condition as a piece-wise constant signal.

Definition 3.40 (Semantics of the Operator filter). The operator filter with the
signature SD × SB → SD filters a given event stream based on the current value of a
Boolean stream:

filter(x, c) ≡ lift(f)(x, sync(c, x))

56

3.3. Common Derived Operators

with the function f : D × B↣ D given by

f(d, a) =

d if a = true,
⊥ otherwise.

The lifted function f returns ⊥ if either of its arguments is ⊥ or if the second
argument is false.

3.3.4. Default Values

If we see a stream as a piece-wise constant signal, the first event of such a stream
is essential. Before that first event, the piece-wise constant signal does not exist.
Starting with the first event, the value of the piece-wise constant signal is given by
the last event on the stream. With the following operator, one can ensure that a
stream starts with an event at timestamp 0. If the given stream does not already
have an event at timestamp 0, such an event with a given default value is added:

Definition 3.41 (Semantics of the Operator default). The derived TeSSLa operator
default : SD × D⊥ → SD is given by:

default(s, d) ≡

merge(s, const(d,unit)) if d ̸= ⊥,
s otherwise.

When passed ⊥ as default value d the default operator has no effect. This feature
is used to simplify more complex compositions in later definitions. We encode this
explicitly using the case differentiation for d = ⊥ because the operator const only
accepts actual values of the data domain D.

With the convention of the automatic conversion from values on the data domain to
corresponding constant streams, the expression default(s, d) could be directly written
as merge(s, d), too. The default operator is included here as a simple operator which
adds exactly the missing feature to create full expressiveness in Section 3.4.2.

57

3. TeSSLa

3.3.5. Recursive Equations

A typical recursive equation in TeSSLa requires an initialisation as a base case to
get the recursion started, accessing previous values at certain timestamps and a
computation that derives a new value from an old value and some current input.
Example 3.9 (Recursive Aggregating Sum) from Section 3.1.5 shows such an aggre-
gation that sums up the values of all events on a stream: The initialisation is an
event at timestamp 0 with the value 0. We want to access the old value with every
event on the input stream, and the computation takes the old value and adds the
value of the current event.

The operators fold and reduce simplify specifying such aggregations. They are known
from functional programming [Hug89, Hut99], where they are used to express recur-
sions that aggregate over data structures such as lists. In TeSSLa, these operators
express recursive specifications that aggregate over all events of a stream. The op-
erator fold takes an initial value and a function combining two values from possibly
different data domains. The operator reduce uses the first event’s value of the stream
as the initial value and thus takes a function combining two values from the same
data domain. They are given below as special cases of the more generic aggregation
foldn operator, which generalises the operators to multiple input streams:

Definition 3.42 (Semantics of the Operator foldn). The operator foldn with the
signature D′

⊥ × (D′ × ∏n
i=1 Di ↣ D′) → ∏n

i=1 SDi
→ SD′ folds a well-formed ⊥-

function f : D′ × ∏n
i=1 Di ↣ D′ over all the event’s values of the input streams

starting with a default value a ∈ D′
⊥:

foldn(a, f)(x) = y

where y is given by the following equation

y = lift(f)(default(last(y,merge(x)), a),x)

The semantics of the foldn operator is not directly given as a composition of other
operators but as a TeSSLa equation. The operator can be seen as a macro that
needs to be instantiated before the fixed point used to define the TeSSLa semantics
can be determined. Practical implementations of TeSSLa need a way to specify such
macros to make full use of user-defined TeSSLa operators.

The fold operator is a special case of the foldn operator. It is restricted to a single
input stream and total functions. It always produces an event at timestamp 0. If
there is no input event at timestamp 0, then the given start value is used as output
at timestamp 0:

58

3.3. Common Derived Operators

Definition 3.43 (Semantics of the Operator fold). The derived TeSSLa operator
fold : D′ × (D′ × D → D′) → SD → SD′ folds a function f : D′ × D → D′ over all the
event’s values of a stream x ∈ SD starting with a default value a ∈ D′:

fold(a, f)(x) ≡ foldn(a, g)(x)

with g : D′ × D↣ D′ given by

g(a, x) =

a if x = ⊥,
f(a, x) otherwise.

As a direct consequence of the above definitions, we get the following relation: The
expression fold(a, f)(x) defines a stream y which is equivalent to the equation

y = default(f(default(last(y, x), a), x), a).

For some operations, there is no neutral value a. For example, for a sum or a count,
the value 0 is a good neutral value indicating that no data was processed so far,
but there is no such value for a minimum or a maximum. One could introduce an
artificial neutral value indicating the absence of any actual data or use TeSSLa’s
ability to express the absence of events to encode this.

The following operator folds a function over all the event’s values of a stream and
uses the first event on that stream as the initial value. Consequently, the folded
function must take two operands of the same type and return a value of that same
type.

Definition 3.44 (Semantics of the Operator reduce). The operator reduce with the
signature (D × D → D) → SD → SD folds a function f : D × D → D over all the
event’s values of a stream:

reduce(f)(x) ≡ foldn(⊥, g)(x)

with g : D′ × D↣ D′ given by

g(a, x) =

x if a = ⊥,
f(a, x) otherwise.

With the operators fold and reduce we can now derive several common aggregation
operators as further examples how to use fold and reduce:

59

3. TeSSLa

Definition 3.45 (Semantics of the Aggregation Operators count, sum, minimum

and maximum). The operator count : SU → SN counts the events in the input stream.
The operator sum : SR → SR sums up the event’s values in the input stream. The
operator minimum : SR → SR computes the minimum of all event’s values in the
input stream. The operator maximum : SR → SR computes the maximum of all
event’s values in the input stream.

count(x) ≡ fold(0, inc)(x)
sum(x) ≡ fold(0,+)(x)

minimum(x) ≡ reduce(min)(x)
maximum(x) ≡ reduce(max)(x)

The function inc : Z → Z increments an integer, i. e. inc(i) = i+ 1 for any i ∈ Z.

As a final example of how the foldn operator can be used to define arbitrary aggre-
gations over multiple streams, we define a resetCount operator which extends the
count operator with an additional resetting input stream: Every event on that re-
setting input stream resets the counting output to 0. For simultaneous events on
both input streams, the counter is reset to 0 and immediately incremented to 1.

Definition 3.46 (Semantics of the Operator resetCount). The derived TeSSLa op-
erator resetCount : SU × SU → SN is given by

resetCount(x, r) ≡ foldn(0, f)(x, r)

with the function f : N × U × U↣ N given by

f(a, x, r) =

1 if x ̸= ⊥ ∧ r ̸= ⊥,
0 if x = ⊥ ∧ r ̸= ⊥,
a+ 1 if x ̸= ⊥ ∧ r = ⊥,
c if x = ⊥ ∧ r = ⊥.

Note how f(0,⊥,⊥) = 0 causes the foldn to output 0 at timestamp 0 if there is no
input event at timestamp 0 on the input streams x or r.

Similarly, the operators sum, minimum and maximum could be equipped with a
resetting input stream, too.

60

3.3. Common Derived Operators

3.3.6. Generating New Timestamps

In order to delay events with their values by an arbitrary amount of time, one can
use the expression last(x,delay(d)). While this is sufficient in most cases, it might
not provide the desired semantics if x contains more events than d. In those cases,
the expression does not delay the last known value at the time when the delay was
set, but it produces the last known value at the time when the delay is over. This
problem can be overcome by removing those additional events on x first:

Definition 3.47 (Semantics of the Operator delayedLast). The derived TeSSLa op-
erator delayedLast : SD ×ST → SD delays the value of the first stream for the amount
of time specified by the second stream:

delayedLast(x, d) ≡ last(on(d, x),delay(d))

After the delay passes, the operator emits an event carrying the delayed value in
the resulting stream. Like with the delay operator, delays are not accumulated. A
new delay resets a currently active one. A delay of 0 only resets the currently active
delay without setting a new one.

3.3.7. Implicit Type Conversions and Type Checking

The following list sums up all the implicit type conversions introduced for TeSSLa
specification:

• A partial function D1×D2×. . .×Dn ↪→ D (or a function D1×D2×. . .×Dn → D)
on the data domains can be extended to a conservative (or ideal) ⊥-function
D1 × D2 × . . .× Dn↣ D on the data domains.

• A value d ∈ D of the data domain can be converted to the stream const(d) ∈ SD
representing a constant signal.

• A partial function f : D1 × D2 × . . . × Dn ↪→ D on the data domains can be
converted to the function slift(f) : SD1 × SD2 × . . .× SDn → SD on streams.

• A stream s ∈ SD can be converted to the unit stream const(□, s) ∈ SU by
ignoring the event’s values.

The type-checking problem is straightforward because every function and stream is
typed, and hence new functions derived by composing existing functions are auto-
matically typed. Which implicit type conversion should be applied can be easily
determined if everything is fully typed. There is always only one conversion appli-
cable, and if it is applicable, it must be applied. In some cases, the conversions can

61

3. TeSSLa

be chained, but since there is always only one conversion applicable, the application
of such a conversion chain is still straightforward.

In practical TeSSLa implementations, one usually wants to add some additional
type inference to overcome the requirement to add type annotations to every stream
explicitly. Explicit type annotations are then only needed for recursive equations if
the type of the stream cannot be inferred from the used operators.

3.4. Design Choices

TeSSLa is designed as a specification language based on stream transformation and
well-suited for online monitoring in hardware settings with limited memory. The
following design goals for TeSSLa are introduced in [CHS+18, Section 4.2] and elab-
orated below:

• Specification. A specification has a different and usually more abstract view
than the actual implementation. While an implementation contains all the
details and edge cases, a specification can focus on particular aspects. Imple-
mentations are usually organised in units containing related aspects. Specifi-
cations can express global invariants across the entire implementation. As a
stream processing language, TeSSLa provides a different perspective that can
help avoid making the same mistakes in the specification and the implementa-
tion. However, TeSSLa does not require previous knowledge in mathematical
logic: TeSSLa specifications can be seen more as a monitor description than a
description of valid runs of a system.

• Data. TeSSLa supports arbitrary operations on the data domain. It thus
allows quantitative and statistical analysis in addition to correctness checks
based on timestamps or event ordering constraints. TeSSLa has no restrictions
on the data domain because it is defined independently from the available
operations on the data domain. TeSSLa only provides mechanisms that lift
these operations to streams.

• Time. TeSSLa has built-in support for timestamps from a continuous time
domain. The full power of timed event streams with arbitrary precision comes
with all benefits and drawbacks. TeSSLa has no specific operations to check
timing constraints. Instead, timestamps can be used as data values and pro-
cessed with the same operations. The time domain must be a totally-ordered
semi-ring because we need to be able to check orders of events, and for the
generation of additional events with the delay operator, we need calculations
on timestamps.

62

3.4. Design Choices

• Formal Semantics. A TeSSLa specification is an equation system over streams.
The streams are considered immutable because the specification contains every
derived stream exactly ones on the left-hand side of an equation. The right-
hand side of the equation defines the stream by applying operators to other
streams. TeSSLa has a small set of basic operators with an explicit semantics.
The formal semantics is given as a fixed point over the potentially recursive
equations, which allows expressing complex computations. For better usability,
new operators can be defined as compositions of the basic operators. Practical
implementations facilitate this in the form of a macro system.

• Explicit Memory Usage. TeSSLa follows the idea of explicit memory usage.
As discussed in the introduction, the targeted scenario is online monitoring
without access to the entire input stream. The input events arrive in order and
are processed sequentially. The TeSSLa operators are designed such that the
number of data values that TeSSLa implementations must store is independent
of the number of processed events, i. e. the implementations do not need to keep
track of the entire trace processed so far. They only need to store the data
values of certain events. However, if specifications require unbound memory,
then complex data structures like queues can be used in TeSSLa because the
TeSSLa operators are agnostic towards the data domain. In that case, the
implementation still only keeps track of a fixed number of data values, but
a value from the data domain can be of arbitrary size. The explicit memory
usage of TeSSLa makes it easy to check whether a given specification can be
compiled into software with fixed memory usage or hardware configurations.

This section discusses properties of the TeSSLa operators and introduces additional
unusual operators, which can be derived from the basic operators. On the one hand,
they demonstrate the expressiveness of TeSSLa, and on the other hand, they are
used to explain why the actual basic TeSSLa operators are not defined this way.

Although this section only refers to the TeSSLa semantics defined in the last section,
all the results naturally carry over to the monitoring semantics introduced in the
next section.

3.4.1. Lifting Nested Functions

We have established the convention that functions on the data domain are automat-
ically lifted to streams using the signal lift operator slift. While this makes it very
convenient to write TeSSLa specifications, it might seem unclear how nested appli-
cations of functions defined on the data domain are applied to the stream domain.
We can show that lifting a composed function using a single lift has the same effect
as composing the individually lifted functions. The same holds for slift, too.

63

3. TeSSLa

Lemma 3.48 (Associativity of lift). Let f : A × B ↣ X and g : X × C ↣ Y
be two well-formed ⊥-functions on data domains. Then h : A × B × C ↣ Y with
h(a, b) = g(f(a, b), c) is the composition of the two functions. We then have for
corresponding streams a ∈ SA, b ∈ SB, c ∈ SC the following equality:

lift(h)(a, b, c) ≡ lift(g)(lift(f)(a, b), c)

Proof. From the definition we get that the stream ℓf = lift(f)(a, b) is given by

ℓf (t) = f(a(t), b(t)).

Consequently ℓ = lift(g)(ℓf , c) is given by

ℓ(t) = g(ℓf (t), c(t)) = g(f(a(t), b(t)), c(t)),

which is exactly how lift(h)(a, b, c) is given.

As a direct consequence of the definition of the sync operator, we get the following
statement:

Lemma 3.49 (Oversampling of Signals). Let f : A × B ↪→ Z be a partial function
and a ∈ SA, b ∈ SB and c ∈ SC streams. We then have

sync(f(a, b), c) ≡ f(sync(a, c), sync(b, c))
≡ f(sync(a, c), b) ≡ f(a, sync(b, c))

This lemma is called oversampling of signals because it does not matter if we syn-
chronise a and b individually before applying the function f (implicitly using slift)
or if we synchronise the result of applying the function f with c.

By combining the Lemmas 3.48 and 3.49 from above, we can show the same asso-
ciativity result for slift:

Lemma 3.50 (Associativity of slift). Let f : A × B ↪→ X and g : X × C ↪→ Y be
two partial functions on data domains. Then h : A × B × C ↪→ Y with h(a, b, c) =
g(f(a, b), c) for all a, b on which f(a, b) is defined, is the composition of the two
functions. We then have for corresponding streams a ∈ SA, b ∈ SB, c ∈ SC the
following equality:

slift(h)(a, b, c) ≡ slift(g)(slift(f)(a, b), c)

64

3.4. Design Choices

Proof. Let ℓf = slift(f)(a, b) and ℓg = slift(g)(ℓf , c). With the definition of slift we
get

ℓg = lift(g)(sync(ℓf , c), sync(c, ℓf)).

By applying Lemma 3.49 we get

ℓg = lift(g)(slift(f)(sync(a, c), sync(b, c)), sync(c, ℓf)).

Because f and g are implicitly extended into conservative ⊥-functions we know: If
any input is ⊥ the output is ⊥. Thus, we can replace sync(sync(a, c), sync(b, c)) with
sync(a, b, c) which might contain additional events in the beginning which are then
removed by lift(f) and lift(g):

ℓg = lift(g)(lift(f)(sync(a, b, c), sync(b, a, c)), sync(c, a, b))

Now we can apply Lemma 3.48 and get

ℓg = lift(h)(sync(a, b, c), sync(b, a, c), sync(c, a, b)),

which is the definition of slift(h)(a, b, c).

The proof relies on slift taking a partial function which is extended to a conservative
⊥-function when passed to lift. If slift would take an arbitrary well-formed ⊥-
function instead, which could individually handle ⊥ on its inputs, this could break
the associativity of slift.

To summarise the above results, consider the expression x+ y+ z for three streams
x, y, z ∈ SR. With the implicit conversion this expression will be expanded to
slift(+)(x, slift(+)(y, z)) under the assumption that the conversion is applied from
left to right. Since this is the same as slift(+)(slift(+)(x, y), z) or even slift(f)(x, y, z)
for a function

f : R3 → R with f(a, b, c) = a+ b+ c

it is not needed to clarify the order of the application of the implicit conversion
further. This equivalence allows many powerful performance optimisations for dif-
ferent backends. Depending on the implementation of a TeSSLa backend, it might
be more efficient to lift complex expressions on the data domain into a single function
or multiple functions on streams.

As a final example, consider x+ 3 for a stream x ∈ SN and a constant 3 on the data
domain. This expression is interpreted as slift(+)(x, const(3)), which is the same as
lift(f)(x) for a function f : N → N with f(i) = i+ 3.

65

3. TeSSLa

3.4.2. Basic Operators

We defined the TeSSLa semantics by defining a minimal set of operators and then
derived further operators as compositions of the basic operators. As with many
languages, there are different possible sets of basic operators. The set of operators
shown in the following theorem would also be a possible set of basic operators:

Theorem 3.51 (Signal Lift and Default). The operators default, slift, last and
delay together with the accessor function time and the basic stream nil are sufficient
to gain the expressiveness of TeSSLa.

Proof. We proof the statement by deriving the missing operators lift and unit from
the given ones:

unit = default(nil,□)

The helper function sync : SA × SB → SA⊥ synchronises two streams by adding
additional events with the value ⊥ whenever b has an event, but a does not. This
transforms the stream from the data domain A to a stream over the data domain
A⊥ which allows us to pass a ⊥-function to slift:

sync(a, b) = default(time(a), 0) ≥ default(time(b), 0) ? default(a,⊥) : ⊥

Now we get

lift(f)(a, b) = slift(f)(sync(a, b), sync(b, a)).

This set of operators might seem to be a more natural choice because one immedi-
ately gets the operators slift and default, which are helpful when writing specifica-
tions. However, these operators are more complex: The slift operator is a combina-
tion of lift and last because it has to remember the last known values, and it applies
a function. The definition of lift is much simpler. Further, defining slift using lift

and last as done in Definition 3.39 in Section 3.3.3 is more straight forward than
defining lift using slift as done in the proof above.

In this thesis the basic operators unit, time, lift, last and delay are defined to gain
a formal semantics for TeSSLa. For the different implementations, however, different
sets of operators are considered. For example, we will discuss in Chapter 5 that the
slift operator is a very natural operator for the compilation towards EPUs.

66

3.4. Design Choices

3.4.3. Events and Signals

As already motivated in Section 3.1.2 lifting functions with lift is more useful when
thinking in terms of events and lifting functions with slift is more useful when think-
ing in terms of piece-wise constant signals introduced as the signal view. In order
to write readable and intuitive TeSSLa specifications, one needs both operators. In
terms of expressiveness, they can be converted into each other, as shown above.

As an example of the important difference between signals and events, we introduce
a slight variant of the filter operator, which uses the synchronisation from the signal
view on both input streams:

Definition 3.52 (Semantics of the Operator sfilter). The derived TeSSLa operator
sfilter : SD × SB → SD filters a given event stream based on the current value of a
Boolean stream:

sfilter(x, c) ≡ slift(f)(x, c)

with the partial function f : D × B ↪→ D given by

f(d, a) =

d if a = true,
⊥ otherwise.

The filter operator was defined in Definition 3.40 in Section 3.3.3 as

filter(x, z) ≡ lift(f)(x, sync(z, x))

using the same function f as in the above definition. The main difference is that in
case of sfilter both streams x and z are synchronised with each other and not only the
condition stream z. This additional synchronisation causes additional events, which
can be interpreted as oversampling if the filtered stream can be seen as a piece-wise
constant signal. If not, these additional events might be unwanted. As an example
consider traces in Figure 3.3: The stream sfilter(x, z) contains two additional events
in comparison with filter(x, z).

• The event with value 2 is repeated on sfilter(x, z) because of the repeated event
with value true on z.

• The stream sfilter(x, z) contains an additional event with value 4 in the end
because the last known value on x is used.

67

3. TeSSLa

x
1 2 3 4

z
true true false true

filter(x, z) 2 3

sfilter(x, z) 2 2 3 4

Figure 3.3.: Comparison of the filter operator which considers x as stream of
individual events and z as signal and the sfilter operator which treats both inputs
using the signal view. The additional events generated by sfilter are highlighted
in red.

It is possible to derive the original filter semantics from slift, too:

filter(x, z) ≡ slift(f)(x, on(x, z))

with the function f being the same as before. The additional events are removed
by sampling the condition stream with the events on x.

These examples show the importance of carefully specifying which events are used in
a computation. Properly synchronising events is a central aspect of writing TeSSLa
specifications.

In this thesis, the distinction between streams of individual events and streams
representing piece-wise constant signals is not made explicitly on the type level.
We have only introduced one type for streams: The set SD of all streams over the
data domain D. The typing does not distinguish if a stream represents events or
piece-wise constant signals.

For the theoretical results and the implementation of the different backends, it
is easier not to make this distinction on the level of the basic TeSSLa operators.
Derived operators, however, might distinguish between different stream types and
even introduce additional stream types together with libraries of derived operators
suitable to manipulate those streams, e. g. streams representing piece-wise linear
signals or even streams representing signals constructed from sine waves. TeSSLa
directly supports such operators as long as those streams are represented as a discrete
sequence of timed events. The discrete events always indicate the points in time
where the signal switches from one representation to the next, i. e. in the case of the
piece-wise constant signal, the points where the signal changes its value. TeSSLa
frontends could provide static type checking for different stream types to help users
write meaningful specifications.

68

3.4. Design Choices

3.4.4. Generating Zeno-Streams

As already discussed in Section 3.2.1 a stream can represent Zeno behaviour. The
main problem with Zeno behaviour is that it prevents any monitor which processes
events in their order in the stream from advancing beyond the limit towards the
stream’s timestamps are converging. Infinitely many events in a finite time window
cannot all be processed in finite time. There are two ways how the outputs of a
specification can become Zeno:

1. If an input stream is Zeno and the specification derives a new stream with
identical timestamps from that input stream, the derived stream becomes Zeno,
too. This scenario is problematic for making progress in online monitoring
but is not considered harmful because the problem originates from the input.
Even transmitting the infinitely many input events to the monitor will take
infinitely long, so in this scenario, the event source should be considered flawed.
Especially since any measurements of events from real-world sources should not
be Zeno because “real physical systems are not Zeno” [ZJLS00].

2. TeSSLa can create Zeno streams from non-Zeno streams. TeSSLa can create
new timestamps using the delay operator and nothing prevents one from gen-
erating for example the stream shown in Example 3.18 (Zeno Stream) from
Section 3.2.1 where the n-th timestamp is given by tn = 2 − 1/(1 +n). That is
considered harmful because the monitor stops processing events from the input
beyond this limit. The monitor will be busy forever generating these events
and can be considered essentially stuck in an endless loop.

Whether a TeSSLa specification generates a Zeno stream is a semantic property
of the specification. Hence TeSSLa allows the user to write such harmful
specifications similar to how every Turing-complete programming language can
express an endless loop.

Example 3.19 (Non-Zeno Stream) from Section 3.2.1 demonstrates that re-
quiring specifications to have a smallest timestamp delta is not the same as
requiring specifications to generate only non-Zeno streams: The stream in the
example does not have Zeno behaviour, although there is no smallest times-
tamp delta.

3.4.5. Memory Usage

TeSSLa has explicit memory usage, i. e. without the explicit usage of an unbound
data structure, the TeSSLa operators support implementations with a fixed amount
of memory. TeSSLa still supports specifications that require unbound memory. If

69

3. TeSSLa

required, the user can explicitly use unbound data structures such as lists, sets
or queues. This section illustrates this design choice: We will demonstrate how
powerful TeSSLa operators can be defined as compositions of the basic operators
that utilise unbound data structures. These operators serve two main purposes in
this thesis:

1. They demonstrate the expressiveness of the TeSSLa specification language and

2. they illustrate why the basic TeSSLa operators are defined as they are: If they
would natively support the behaviour of the operators introduced below, then
every implementation of TeSSLa would need unbound memory.

With the principle of explicit memory usage, the usage of unbound data structures
is made explicitly by the user and not hidden inside the semantics of the basic
operators.

As a first example, we consider the prevn operator. It is a variation of prev operator
that allows unbound dynamic access to previous events, i. e. at runtime based on
input data, the prevn operator provides access to any previous event.

In the case of the prev operator, online monitoring implementations need to store
one event’s value for every prev operator in the specification. For the composed
prevn, this would be n values. In this case, the n is statically known at compile
time.

Instead, if the n is determined dynamically, i. e. via events on another stream, there
is no upper bound for n. Then an online monitor implementation would need to
store all events seen on the stream so far. This unbound storage requires a dynamic
data structure, e. g. a list:

Definition 3.53 (Semantics of the Operator prevn). The derived TeSSLa opera-
tor prevn : SD × SN>0 → SD allows access to the n-th previous event where n is
dynamically given as stream:

prevn(x, n) = slift(f)(v, on(v, n))

with the function f : D∗ × N → D given by

f(l, i) =

l[i] if i < |l|,
⊥ otherwise,

and the stream v ∈ SD∗ given by the following equation

v = default(a : : last(v, a), ⟨⟩).

70

3.4. Design Choices

The above definition uses a stream over the data domain D∗, i. e. a stream of finite
lists over D. So every event of the stream can contain a finite list as its value.

Over D∗ the operator : : prepends an element to the list. The notation l[i] for a
list l ∈ D∗ and i ∈ N accesses the (i + 1)-th element of the list. All complex data
structures in TeSSLa are always considered immutable. The immutability makes it
possible to use data domains consisting of complex data structures in the same way
as data domains consisting of primitive data types.

The prevn operator is not well-suited for online monitoring: It converts the entire
so far processed stream into a list in order to simulate random access to all events
seen so far. While this is possible and can be expressed in TeSSLa, it is not efficient
because it breaks with the fundamental idea of online monitoring for streams: We
only want to store a finite amount of data independently of the stream length. The
memory consumption of prevn, however, increases with the length of the stream.

A similar situation arises if we adjust the delay operator so that it no longer resets
the currently active delay with every new delay but instead keeps track of all open
delays in a set:

Definition 3.54 (Semantics of the Operator mdelay). The derived TeSSLa operator
mdelay : ST → SU produces a unit event at timestamp t + a for every event at
timestamp t with value a. The expression mdelay(x) = z is defined in terms of the
internal streams ℓ, o ∈ S2T of sets of timestamps, m ∈ ST of timestamps and z ∈ SU
of unit events given below:

ℓ = default(last(o,merge(x, z)), ∅)
o = lift(fo)(ℓ, time(ℓ), x)
m = lift(fm)(o)
z = delay(m− time(m))

with the lifted functions fo : 2T × T × T → 2T given by

fo(S, t, a) =

{s ∈ S | s > t} if a = ⊥,
{s ∈ S | s > t} ∪ t+ a otherwise,

and fm : 2T → T given by

fm(s) =

min(s) if |s| > 0,
⊥ otherwise.

71

3. TeSSLa

We represent maps over a key domain K and a value domain V as partial functions
K ↪→ V. For such a partial function f : K ↪→ V we define |f | to be the number of
different keys k ∈ K for which f(k) is defined, i. e. the size of the map. In the above
definition, we use timestamps as keys of the map and further define min(f) to be
the minimal key k ∈ K such that f(k) is defined, i. e. the minimum of the key-set
of the map.

The above definition uses streams over a data domain of unbound sets. Again
these sets might grow indefinitely during the execution of an online monitor for
this specification. However, in this case, it depends on the input stream how much
memory will be consumed because the set only stores the open delays.

With some slight modifications a non-resetting variant of delayedLast can be given
as well:

Definition 3.55 (Semantics of the Operator mdelayedLast). The derived TeSSLa
operator mdelayedLast : SD × ST → SD takes a value stream and a delay stream. It
produces an event at timestamp t+a with the last known value on the value stream
at timestamp t for every event on the delay stream at timestamp t with value a.
The expression mdelayedLast(v, x) = w is defined in terms of the internal streams
ℓ, o, y ∈ ST↪→D of maps of timestamps to values, m ∈ ST of timestamps, z ∈ SU of
unit events and w ∈ SD given below:

ℓ = default(last(o,merge(x, z)), ∅)
o = lift(fo)(ℓ, time(ℓ), x, on(x, v))

with the lifted function fo : (T ↪→ D) × T × T × D → (T ↪→ D) given by

fo(S, t, a, d) =

{(s, e) ∈ S | s > t} if a = ⊥,
{(s, e) ∈ S | s > t} ∪ (t+ a, d) otherwise.

m = lift(fm)(o)

with the lifted function fm : 2T → T given by

fm(s) =

min(s) if |s| > 0,
⊥ otherwise.

z = delay(m− time(m))
y = on(z, prev(o)))
w = lift(fw)(y, time(z))

with the lifted function fw : (T ↪→ D) × T → D given by

fw(y, t) = y(t).

72

3.5. Monitoring

This operator can be used to derive the following convenient operator:

Definition 3.56 (Semantics of the Operator shift). The derived TeSSLa operator
shift : SD × ST+ → SD takes a stream of events and a stream of timestamps and
delays every event by the amount of time given by the stream of timestamps:

shift(x, s) = mdelayedLast(x, on(x, s))

The shift operator can be used with constants being automatically converted to
signals, too. For example shift(x, 2) delays every event on x by 2 time units. As
with all delaying operators, negative delays are not allowed because that would no
longer be future independent.

Again without any limit on how many events can occur in the range of 2 time units,
there is no upper limit on how big the set storing all these events might become at
runtime.

The main principle behind the definition of the basic TeSSLa operator is not to
forbid the definition of these operators. We have shown in this section that they
can be derived from the basic TeSSLa operators. However, unbound memory usage
is made explicit because we always needed to introduce streams over unbound data
domains.

3.5. Monitoring

In the setting of online monitoring, the monitor receives individual events step by
step. The monitor does not have access to the entire trace, not even to previous
events. The TeSSLa semantics on streams introduced in Section 3.2 only considers
fully known streams that cannot be extended any further. As the next step towards
implementations for online monitoring, this section introduces monitoring streams
and the monitoring semantics over monitoring streams.

Monitoring streams encode additional information on how far the stream is known
and possible continuations of the stream. We can then define a prefix relation on
monitoring streams that describes how to extend a stream.

This thesis discusses different approaches for encoding streams: As illustrated in
Figure 1.1 in Section 1.4, the synchronised streams presented in Chapter 4 and the
abstract monitoring streams in Chapter 6 will be introduced as special cases of the
more general approach of the monitoring streams introduced next.

73

3. TeSSLa

3.5.1. Monitoring Streams

We define monitoring streams as sets of streams. This set represents what we already
know about a stream and where multiple continuations are possible.

Definition 3.57 (Monitoring Stream). A monitoring stream p over a time domain
T and a data domain D is a set of streams over T and D, i. e. p ∈ PD = 2SD\∅.

PD is the power set of all possible streams without the empty set. This set is further
restricted as follows:

Definition 3.58 (Monitoring Stream of Independent Events). A monitoring stream
p ∈ PD over a time-domain T consists of independent events iff for all streams r, s ∈ p
and for all timestamps t ∈ T there exists a stream q ∈ p defined by

q(t′) =

s(t′) if t′ = t

r(t′) otherwise.

This property requires the events at a certain timestamp to be independent from
their specific stream. Note that r, s and q do not necessarily have to be three
different streams. In the following we implicitly assume that all monitoring streams
consists of independent events.

Intuitively we consider the monitoring stream to be known as long as all the streams
of the set are equal, i. e. they contain the same events with the same values at
identical timestamps. From the point where any of the streams differs from the
other streams in the set, we consider the different streams to represent all possible
continuations.

This thesis uses sets of streams to encode monitoring streams for several reasons:

• Sets of streams are a simple extension of streams. This extension allows the
further use of the existing TeSSLa operators. We will raise the operators
defined on streams to monitoring streams by applying them to all streams in
the set individually.

• Sets of streams can represent multiple regions of uncertainty. A region between
two timestamps is considered to be of full knowledge if all streams in the
set contain the same events in the region. A monitoring stream can contain
multiple regions where the different streams in the set differ. Thus, monitoring
streams can be seen as a unified theory that can integrate work on TeSSLa
for timed event streams with partial information [LSS+19]. The rest of this
section discusses these abilities of monitoring streams in general. However,

74

3.5. Monitoring

actual implementations which can handle inputs with partial information are
beyond the scope of this thesis.

• The different implementations of TeSSLa shown in Figure 1.1 in Section 1.4 rely
on different semantics, which are abstractions of the monitoring semantics.
Thus, the semantics of the implementations can be shown to adhere to the
common monitoring semantics, although not all its details can be realised. The
corresponding chapters of the implementations introduce Galois connections
(α, γ) between monitoring streams and the respective stream representation of
the implementation. Representing monitoring streams as sets of streams makes
the definition of the abstraction function α and the concretisation function γ
straight-forward.

Following the notation Sn
D (see Section 3.2.2) we use Pn

D to indicate the Carte-
sian product PD1 × PD2 × . . . × PDn of streams over the individual data domains
D1,D2, . . . ,Dn.

Similarly to Definition 3.15 on streams in Section 3.2.1, we define the following on
monitoring streams:

Definition 3.59 (Timestamps of a Monitoring Stream). For a monitoring stream
p ∈ PD we define T (p) ⊆ T to be the set of timestamps carrying events in p:

T (p) :=
⋃
s∈p

T (s).

We further define T (p) for all timestamps occurring in p ∈ Pn
D:

T (p) :=
⋃

1≤i≤k
T (pi).

Example 3.60 (Fully Known and Fully Unknown Monitoring Stream). The fully
known stream s ∈ SD is represented as the singleton set {s} ∈ PD. The fully
unknown stream is represented as SD ∈ PD.

Example 3.61 (Monitoring Stream). Let r ∈ PD be a monitoring stream given as
follows:

r = {s ∈ SD | s(2) = a ∧ ∀ t ̸= 2 ∧ t < 3: s(t) = ⊥}.

We know about an event at timestamp 2 with value a ∈ D, and we know that there
are no other events until timestamp 3 (exclusively), but we know nothing after
timestamp 3 (inclusively). In the stream visualisations we represent this monitoring
stream r as follows:

75

3. TeSSLa

0 1 2 3 4 5

r
a D

The stream is fully known up to (but not including) timestamp 3, indicated by the
thin bar used before. All streams in r have an event with value a at timestamp
2, drawn as regular events as before. Starting with timestamp 3, the monitoring
stream r contains all possible continuations, indicated by the thick bar. The data
domain D above the thick bar shows that the events in the region can have any
value from D.

A monitoring stream p ∈ PD can represent various levels of uncertainty for a par-
ticular timestamp t:

• In the definitive case, all streams in the set show the same behaviour at times-
tamp t: Either all streams have an event with the same value at t, or no stream
has an event at t. This definitive case is visualised either as a regular event or
as a thin timeline without any event, respectively.

• In the next weaker case, the event pattern is definitive, but the values are
uncertain: Every stream in the set contains an event at timestamp t, but the
values differ. This case is visualised as a regular event whose value is given as
a set of possible values.

• In addition to streams with different values for events at timestamp t we can
also have streams in the set without an event at timestamp t: Some streams
contain an event at t with a limited set of values, and other streams contain
no event at that timestamp. This case is visualised as a thick bar instead of
an event. The possible values of events at t are written above the thick bar.

• We have full uncertainty at timestamp t: At least one stream has no event at
t, and for every possible value in the data domain D there exists a stream with
an event at t carrying that value. This case is visualised as a thick bar instead
of an event. Above the thick bar, the data domain of the stream is written as
a set of possible values for events at timestamp t.

For a stream a ∈ SD we abuse notation if the types are obvious from the context and
write a to represent {a} ∈ PD and for a tuple of streams a = (a1, a2, . . . , an) ∈ Sn

D
we write a to represent ({a1}, {a2}, . . . , {an}) ∈ Pn

D.

We extend Definition 3.20 from Section 3.2.1 to monitoring streams as follows:

Definition 3.62 (Limit of a Monitoring Stream). For a monitoring stream p ∈ PD
we define its limit to be

limT(p) = min
s∈p

limT(s).

76

3.5. Monitoring

We can now define a prefix relation on monitoring streams. The fewer streams are
in a monitoring stream, the more we know about the stream:

Definition 3.63 (Refinement Relation). We define the refinement relation ⊑ ⊆
PD × PD as inverse subset relation. For arbitrary a, b ∈ PD we define

a ⊑ b ⇔ b ⊆ a

and say that b is a refinement of a.

Every stream in PD is a refinement of the fully unknown stream and hence the fully
unknown stream the least element of (PD,⊑):

∀ p ∈ PD : p ⊑ SD.

There is no common greatest element on the other end because the fully known
streams are all incomparable regarding the refinement relation.

From the above definitions we can derive the following statement, because every
directed subset of (PD,⊑) has a supremum:

Lemma 3.64 (Refinement Relation is a Dcpo). (PD,⊑) is a dcpo.

Intuitively, the directed subsets can be seen as sets of prefixes of a common moni-
toring stream, and for every such set of prefixes, there exists a longest prefix.

We extend the refinement relation to tuples of streams by applying it to every pair
of streams in the tuples individually. Let s,u ∈ Pk

D be two tuples of monitoring
streams. We then have

s ⊑ u ⇔ ∀ i ∈ {1, 2, . . . , k} : si ⊑ ui.

3.5.2. Monitoring Semantics

In order to define the monitoring semantics on monitoring streams, we first raise
the TeSSLa operators defined on streams to monitoring streams:

Definition 3.65 (TeSSLa Operators on Monitoring Streams). The TeSSLa oper-
ators defined on SD are raised to PD by applying them to all streams in the set
individually. Let o : SD1 × SD2 × . . . × SDk

→ SD be a TeSSLa operator. We then
define ô : PD1 × PD2 × . . .× PDk

→ PD as follows:

ô(p1, p2, . . . , pk) = {o(s1, s2, . . . , sk) | si ∈ pi, 1 ≤ i ≤ k}.

77

3. TeSSLa

The operator ô is derived by applying o to all possible combinations of input streams.
The following examples demonstrate this for the case of a binary operator:

Example 3.66 (TeSSLa Operators on Monitoring Streams). Let a, b ∈ PN be two
monitoring streams given explicitly as sets of streams a = {a1, a2} and b = {b1, b2}
over the streams a1, a2, b1, b2 ∈ SN given as follows:

a1 = ⟨(1, 1), (3, 2)⟩ b1 = ⟨(1, 7), (3, 1)⟩
a2 = ⟨(1, 1), (3, 4)⟩ b2 = ⟨(1, 7), (3, 3)⟩

Further, let the derived stream c ∈ PN be defined as

c = l̂ift(+)(a, b).

The monitoring stream c can be computed explicitly by applying slift(+) to all
combinations of a and b individually. We get the streams ci ∈ SN as follows

c1 = lift(+)(a1, b1) = ⟨(1, 1 + 7), (3, 2 + 1)⟩ = ⟨(1, 8), (3, 3)⟩
c2 = lift(+)(a1, b2) = ⟨(1, 1 + 7), (3, 2 + 3)⟩ = ⟨(1, 8), (3, 5)⟩
c3 = lift(+)(a2, b1) = ⟨(1, 1 + 7), (3, 4 + 1)⟩ = ⟨(1, 8), (3, 5)⟩
c4 = lift(+)(a2, b2) = ⟨(1, 1 + 7), (3, 4 + 3)⟩ = ⟨(1, 8), (3, 7)⟩

With c2 = c3 we get c = {c1, c2, c4}.

The following visualisation depicts the streams a, b and c:

0 1 2 3 4

a
1 {2, 4}

b
7 {1, 3}

l̂ift(+)(a, b) = c
8 {3, 5, 7}

The TeSSLa monitoring semantics is defined analogous to the TeSSLa semantics in
Definition 3.23 in Section 3.2.3 with the only difference that on monitoring streams
the TeSSLa operators are raised to monitoring streams as defined above:

Definition 3.67 (TeSSLa Monitoring Semantics). Let φ be a TeSSLa specification
with k free streams y = (y1, y2, . . . , yk) and n bound streams z = (z1, z2, . . . , zn).
The equations zi = fi(y)(z) for 1 ≤ i ≤ n of the specification φ can be raised to
monitoring streams by replacing fi with f̂i. In combination we get

z = f̂(y)(z)

78

3.5. Monitoring

with

f : Pk
D × Pn

D′ → Pn
D′ .

The monitoring semantics of φ is a function f̂φ : Pk
D → Pn

D′ given as the least fixed
point of f̂ over the bound streams z:

f̂φ(y) := µf̂(y).

Two TeSSLa specifications are called monitoring-equivalent if they behave equiva-
lently regarding the monitoring semantics:

Definition 3.68 (Monitoring-Equivalence of TeSSLa Specifications). Two TeSSLa
specifications φ and ψ are monitoring-equivalent if their semantics functions f̂φ and
f̂ψ are equivalent:

φ ≡̂ψ :⇐⇒ f̂φ ≡ f̂ψ.

We will show later that two TeSSLa specifications are monitoring-equivalent iff they
are equivalent.

From the definitions of the basic TeSSLa operators we can derive:

Lemma 3.69 (Scott-Continuity of the TeSSLa Operators). The TeSSLa operators
ûnit, t̂ime, l̂ift, ̂last and d̂elay are Scott-continuous with regard to the partial
order (PD,⊑) and its extension to tuples of monitoring streams.

When their extension to monitoring streams is clear from the context, we do not
explicitly distinguish between the TeSSLa operators on streams and those on mon-
itoring streams.

3.5.3. Examples

We start with a simple example demonstrating how an slift can only produce certain
events if both input streams are in regions of full knowledge:

Example 3.70 (Signal Lift). Let x, y ∈ PR be two free monitoring streams and let
z ∈ PR be a derived monitoring stream given by:

z = x+ y

The following visualisation shows the evaluation of this simple specification on two
exemplary input streams:

79

3. TeSSLa

x
1 2 R

y
4

x+ y = z
5 6 R

Events on the derived stream are derived from the input streams in the same way as
before on streams. The data flow is indicated by the light red and light blue arrows.
As soon as the first input stream reaches the region of full uncertainty, the output
stream becomes fully uncertain, too.

Next, we consider a similar example with more complex refinement areas:

Example 3.71 (Signal Lift With More Complex Refinements). Let x, y ∈ PN be
two free monitoring streams and z ∈ PN a derived monitoring stream given by:

z = x+ y

The following visualisation shows the evaluation of this specification on two exem-
plary input streams:

x
1 N 3, 4

y
4 6, 8

x+ y = z
5 N≥4 7, 8 9..12

In the above diagram, comma-separated values represent sets, e. g. 3, 4 represents
{3, 4} and sequences such as 9..12 represent the interval [9, 12] and hence on the
data domain N the set {9, 10, 11, 12}.

Note how {3, 4} + 4 = {7, 8} and {3, 4} + {6, 8} = {9, 10, 11, 12} reflects the way
how the TeSSLa operations are lifted to sets of streams by applying them to every
possible combination of streams.

Note that R+ 4 = R as seen in the previous example, but in this case N+ 4 = N≥4.
How much refinement happens here on the last part on z highly depends on the
data domain.

The operators lift and slift studied in the previous examples can be considered
symmetric regarding the influence of the input streams’ refinement on the refinement
of the output stream. The last operator is asymmetric in the sense that regions of
uncertainty in the input only affects the output when the operator was triggered:

80

3.5. Monitoring

Example 3.72 (last). Let v ∈ PR and r ∈ PU be free monitoring streams and the
output monitoring stream ℓ ∈ PR be given by:

ℓ = last(v, r)

The following visualisation demonstrates the evaluation of this specification on two
exemplary inputs:

v
1 2 3

r

last(v, r) = ℓ
1 1, 2 1, 2 3 3

One can see how the output stream ℓ only has uncertainty regarding the event’s
values as long as the events on the triggering stream r are known. The possible
values reflect which events on the value stream v come into question. As soon as the
triggering stream r becomes uncertain, the output becomes uncertain, too, because
we no longer know where the events might be. However, we still know that any
event in that region can only carry the value 3 because that is the only event on the
value stream v which comes into question.

So far, we only considered specifications, where the application of the operators
immediately provides the output streams and hence the application of the fixed
point is trivial. Next, we look at how monitoring streams allow us to compute the
fixed point defined in the TeSSLa monitoring semantics. In the case of the TeSSLa
semantics, we were only able to check if a given solution is a valid fixed point. In
the case of the TeSSLa monitoring semantics, we are now using monitoring streams
with their refinement relation. Hence we can compute the fixed point starting with
the smallest element, i. e. the fully unknown monitoring stream PD which is the set
of all possible streams. We will discuss the theory behind constructing this fixed
point further after the examples in Lemma 3.81.

Example 3.73 (Counting). Let x ∈ PU be a free monitoring stream and ℓ, i, z ∈ PN
output monitoring streams given by the following recursive specification:

ℓ = last(z, x)
i = lift(inc)(ℓ)
z = merge(i, 0)

The function inc : Z → Z increments an integer, i. e. inc(i) = i+1 for any i ∈ Z. The
visualisation in Figure 3.4 demonstrates how the fixed point of z can be computed
starting with the smallest element z0 = SN.

81

3. TeSSLa

x

z0
N

last(z0, x) = ℓ1

N N

lift(inc)(ℓ1) = i1
N≥1 N≥1

merge(i1, 0) = z1

0 N≥1 N≥1

last(z1, x) = ℓ2

0 N≥1

lift(inc)(ℓ2) = i2
1 N≥2

merge(i2, 0) = z2

0 1 N≥2

last(z2, x) = ℓ3

0 1

lift(inc)(ℓ3) = i3
1 2

merge(i3, 0) = z3

0 1 2

last(z3, x) = ℓ4

0 1

lift(inc)(ℓ4) = i4
1 2

merge(i4, 0) = z4

0 1 2

Figure 3.4.: Visualisation how the fixed point of z in Example 3.73 is computed.

82

3.5. Monitoring

With the initial application of the last with trigger x to z0 we get ℓ1: The monitoring
stream ℓ1 contains no event at those timestamps where x contains no event. When x
contains an event, ℓ1 might contain an event. The very short thick bars are supposed
to represent individual timestamps at which the monitoring stream might contain
an event or not. The possible values are denoted above as usual.

The merge introduced as a base case for the recursion and the subsequent application
of the last now has a precise value for the first event.

After several iterations we reach the fixed point z4 = z3 and can conclude z = z3.

The following example demonstrates what happens if we remove the merge from
the specification in the previous example. Without the base case, the iterative
computation of the fixed point step by step converges to the result that only the
empty stream is a possible solution:

Example 3.74 (Recursion Without a Base Case). As in the previous example let
x ∈ PU be a free monitoring stream and ℓ, z ∈ PN output monitoring streams given
by the following recursive specification:

ℓ = last(z, x)
z = lift(inc)(ℓ)

The visualisation in Figure 3.5 demonstrates how the fixed point of z can be com-
puted starting with the smallest element z0 = SN.

Because of z4 = z3 we reached the fixed point and can conclude z = z3.

The TeSSLa semantics in Definition 3.23 in Section 3.2.3 is defined as solution of
an equation system. However, there may be multiple solutions in general, and thus,
this semantics might not be well-defined. In the case of the TeSSLa monitoring
semantics, we are using monitoring streams with their refinement relations. Hence,
we can order the monitoring streams and explicitly use the least fixed point in the
monitoring semantics. We will show in Lemma 3.81 that the least fixed-point exists
and can be computed. The following examples demonstrate how the monitoring
semantics is well-defined even for not-well-formed specifications:

Example 3.75 (Not-Well-Formed Simple Recursion). We start with a very simple
not-well-formed recursion over a single stream x ∈ SD:

x = x

As in the previous examples we start with the least stream:

83

3. TeSSLa

x

z0
N

last(z0, x) = ℓ1

N N

lift(inc)(ℓ1) = z1

N≥1 N≥1

last(z1, x) = ℓ2

N≥1

lift(inc)(ℓ2) = z2

N≥2

last(z2, x) = ℓ3

lift(inc)(ℓ3) = z3

last(z3, x) = ℓ4

merge(ℓ4, 0) = z4

Figure 3.5.: Visualisation how the fixed point of z in Example 3.74 is computed.

x0
D

Due to the simplicity of the specification, we immediately reached a fixed point.
Note that every stream is a fixed point of this specification, but since we start
computing fixed points with the least stream, i. e. the set of all possible streams, we
get exactly that as our least fixed point.

If we adjust the specification slightly things get more complicated:

x = x+ 1

Now it highly depends on the data domain which fixed point will be reached. For
example for x ∈ SZ we have the same situation as above: The least stream x0 is
immediately our fixed point because Z+ 1 = Z. For x ∈ SN the situation is slightly
different. See Figure 3.6 for the visualisation.

By iteratively removing possible values from the data domain, we end up with
the empty stream because, after infinitely many steps, we ruled out all possible
values.

Next, we consider a more advanced example of a not-well-formed specification:

Example 3.76 (Not-Well-Formed Advanced Recursion). Consider the following
specification with the streams z, ℓ, i ∈ SZ:

ℓ = last(z, z)

84

3.5. Monitoring

x0
N

x1
N≥1

x2
N≥2

x3
N≥3

...
x

Figure 3.6.: Visualisation of the evaluation of the specification from Exam-
ple 3.75 with the data domain N.

i = lift(inc)(ℓ)
z = merge(i, 0)

As shown in Example 3.34 (Dependency Graph of a Not Well-Formed TeSSLa Spec-
ification) in Section 3.2.4 this specification lacks any free stream, i. e. there is no
input stream. Its dependency graph contains a cycle without a delayed-labelled
edge: This cycle contains only an edge corresponding to the second argument of
last and thus no delayed-labelled edge. See Figure 3.7 for the visualisation.

x0
Z

last(z0, z0) = ℓ1
Z

lift(inc)(ℓ1) = i1
Z

merge(i1, 0) = z1
Z0

last(z1, z1) = ℓ2 Z

lift(inc)(ℓ2) = i2
Z

merge(i2, 0) = z2
Z0

Figure 3.7.: Visualisation of the evaluation of the not-well-formed specification
from Example 3.76.

We reached the least fixed point with z1 = z2 = z. Note how last(x, x) returns a
set of streams where every stream does not contain an event at timestamp 0. Fed
with this stream, the merge(i, 0) returns a stream that contains an event with value
0 at timestamp 0 and any possible continuation immediately after the first event.

85

3. TeSSLa

In the visualisation we introduce the additional notation which indicates a
region of uncertainty not including its left boundary. Note the important difference
between and . The cross indicates a definitive event, i. e. every stream
in the set contains an event at that timestamp. The thick bar indicates a possible
event, i. e. there are at least two streams in the set: One containing an event at
that timestamp and one that does not contain an event at that timestamp. So
indicates a definitive event at the timestamp of the cross followed by infinitely many
possible events with timestamps strictly greater than the timestamp of the cross.

If we adjust the previous example and change the data domain from SZ to SN, we
get an effect similar to the specification x = x discussed in Example 3.75 above:

Example 3.77 (Not-Well-Formed Advanced Recursion Over Discrete Data Do-
main). Consider again the specification from the previous example but this time
with the streams z, ℓ, i ∈ SN:

ℓ = last(z, z)
i = lift(inc)(ℓ)
z = merge(i, 0)

Every application of lift(inc) removes another value from the set of possible values
until after infinitely many steps, no possible values are left, and we get a stream
without any events. The only difference is the merge(i, 0) which always adds an
event with value 0 at timestamp 0. See Figure 3.8 for the visualisation.

We conclude this set of examples for the TeSSLa monitoring semantics with the
replication of the final motivating examples from Section 3.1 with the monitoring
semantics, which illustrates how additional events are generated with delay in recur-
sive equations: The simple period specification from Example 3.10 and the advanced
variable frequency period specification from Example 3.11.

Example 3.78 (Period). Let z, d ∈ PU and c ∈ PR be derived monitoring streams
given by the following specification:

c = const(2, z)
d = delay(c)
z = merge(d,unit)

As already discussed in Example 3.10 this specification does not use any free streams.
All streams are defined by the specification. Hence, the visualisation in Figure 3.9

86

3.5. Monitoring

x0
N

last(z0, z0) = ℓ1
N

lift(inc)(ℓ1) = i1
N≥1

merge(i1, 0) = z1
N≥10

last(z1, z1) = ℓ2
N≥1

lift(inc)(ℓ2) = i2
N≥2

merge(i2, 0) = z2
N≥20

...
merge(i, 0) = z

0

Figure 3.8.: Visualisation of the evaluation of the not-well-formed specification
from Example 3.77.

0 2 4 6

z0
□

const(2, z0) = c1
2

delay(c1) = d1
□

merge(d1,unit) = z1

□ □

const(2, z1) = c2

2 2

delay(c2) = d2

□ □

merge(d2,unit) = z2

□ □ □

Figure 3.9.: Visualisation of the evaluation of the specification from Exam-
ple 3.78.

87

3. TeSSLa

shows not an exemplary evaluation with an arbitrary input but the only possible
solution for the specification.

The fixed point computation starts again with the fully unknown stream z0 = SU.
The delay operator produces events without values, so the imprecision is not about
the events’ values but purely about their existence. The const maps all events’
values to 2, and after the first application of the delay we know that there cannot
be any event before the timestamp 2 because all possible events on its input c1 have
a value of 2. The merge introduces an event at timestamp 0 as a base case similar to
the previous examples on recursive specifications with last. Now we can iterate this
procedure, and with every application of the delay we know about another event. In
this example, we do not reach a fixed point after a finite number of steps. The fixed
point is the monitoring stream which contains infinitely many events with a period
of 2 time units. Because the TeSSLa monitoring semantics is Scott-continuous (see
Section 3.5.4 below), we reach this fixed point after infinitely many steps.

For this example, we once more illustrate what happens if a recursive specification
does not have a base case:

Example 3.79 (Period-Recursion Without Base Case). By leaving out the merge

with a default value at timestamp 0 in the previous example, we can achieve a
similar effect as in the recursion with a last without a base case in Example 3.74:
With every application of the delay operator, everything is delayed by 2 time units,
but without the addition of a new event at timestamp 0 we end up with the empty
stream after infinitely many steps.

Let z ∈ PU and c ∈ PR be monitoring streams given by the following specification:

c = const(2, z)
z = delay(c)

The visualisation now looks as shown in Figure 3.10.

As before, we only reach a fixed point after infinitely many steps, but the iteration
leads to the empty stream this time.

As a final example we now consider the computation using the monitoring semantics
of the variable frequency period specification from Example 3.11 in Section 3.1.5:

Example 3.80 (Variable Frequency Period). Let x ∈ PR+ be a free monitoring
stream indicating the desired period and let ℓ, z ∈ PR+ and d ∈ PU be derived
monitoring streams given by the following specification:

d = delay(z)

88

3.5. Monitoring

ℓ = last(x, d)
z = merge(x, ℓ)

The stream visualisation in Figure 3.11 shows the evaluation on an exemplary input
stream x.

The red 1.5 and the black 1.5 are the same value. They are only coloured differently
to indicate the origin of the event.

In this specification, the delay is applied directly to z0 without a const mapping
the events’ values to a fixed value. Hence d1 only excludes an event at timestamp 0.
More significant progress is then generated by the last which is triggered by d1 to
reproduce values from x. Before the first event on x, the last does not produce
any event. At timestamp 5, the stream ℓ1 still may contain an event with value 3.
For all timestamps greater than 5, the stream ℓ1 may contain events with a value
of 1.5. The merge provides a base case for the recursion by copying the events
from x. With the subsequent application of delay the event pattern starts with
a period of 3. The next event on x interrupts this pattern and adjusts the period
to 1.5. Without further events, this pattern goes on forever, and the fixed point is
the stream with infinitely many events with a value of 1.5 every 1.5 time units.

3.5.4. Fixed Points in the Monitoring Semantics

In the previous examples, we have seen how the fixed point used to define the
monitoring semantics can be constructed by iteratively applying the function derived
from the equation system starting with the fully unknown monitoring stream z0 =
SD. The following lemma formally states that:

Lemma 3.81 (Construction of the Least Fixed Point). The least fixed point used
in the definition of the TeSSLa monitoring semantics exists and can be constructed:

f̂φ(y) = µf̂(y) =
∨

{(f̂(y))n(SD1 ,SD2 , . . . ,SDk
) | n ∈ N}

Proof. For a given tuple of input streams y ∈ PD the function f̂(y) is Scott-
continuous because it is built from the TeSSLa operators, and the property is closed
under function composition and Cartesian products. With Lemma 3.64 from Sec-
tion 3.5.1 we know that (PD,⊑) is a dcpo. By extension (PD1 × PD2 × . . .× PDk

,⊑
× ⊑ . . . ⊑) is a dcpo, too. Now the statement follows directly from the Kleene
fixed-point theorem.

Based on that, we can now formulate one of the main theorems regarding the TeSSLa
monitoring semantics. As we have already motivated in the previous examples, the
TeSSLa monitoring semantics have several advantages over the TeSSLa semantics:

89

3. TeSSLa

0 2 4 6

z0
□

const(2, z0) = c1
2

delay(c1) = z1
□

const(2, z1) = c2
2

delay(c2) = z2
□

Figure 3.10.: Visualisation of the evaluation of the period-recursion without
base case from Example 3.79.

0 1 2 3 4 5 6 7 8

x
3 1.5

z0
R+

delay(z0) = d1
□

last(x, d1) = ℓ1

3 1.5

merge(x, ℓ1) = z1

33 1.51.5

delay(z1) = d2
□

last(x, d2) = ℓ2

3 1.5

merge(x, ℓ2) = z2

3 3 1.51.5

delay(z2) = d3

□ □

last(x, d3) = ℓ3

3 1.5

merge(x, ℓ3) = z3

3 3 1.5 1.5

delay(z3) = d4

□ □ □

last(x, d4) = ℓ4

3 1.5 1.5

merge(x, ℓ4) = z4

3 3 1.5 1.5 1.5

Figure 3.11.: Visualisation of the evaluation of the variable frequency period
specification from Example 3.80 on an exemplary input stream x.

90

3.5. Monitoring

1. With the introduction of monitoring streams, we can express incomplete streams.
The monitoring semantics can be applied to incomplete streams and thus en-
able us to do online monitoring.

2. The monitoring semantics are always well-defined because with the introduc-
tion of the refinement relation on monitoring streams, the monitoring semantics
can be defined as the least fixed point. So for those cases where we had mul-
tiple fixed points in the TeSSLa semantics, we now still have a well-defined
semantics.

3. As shown in the previous lemma, the fact that the monitoring semantics are
defined over monitoring streams allows us to construct the least fixed point.

4. The refinement relation on monitoring streams and the monitoring semantics
provides us with the tools we need to prove that the fixed point is unique if
the TeSSLa specification is well-formed.

The following theorem states the last point: If the TeSSLa specification is well-
formed, then the least fixed point is the only fixed point. The intuitive idea is
as follows: We iteratively apply the function given by the equation system of the
specification as in the above lemma, i. e. we iteratively build the Kleene chain. We
assume that there is always enough new progress provided by the free input streams
such that we never reach an early fixed point. The TeSSLa operators are built to
reach the maximal fixed point in this case, and thus, the minimal and maximal fixed
points are the same.

Theorem 3.82 (Uniqueness of the Fixed Point in the Monitoring Semantics). If a
TeSSLa specification φ is well-formed then the fixed point µf̂(y) used in the TeSSLa
monitoring semantics is unique.

Proof. By Lemma 3.81 we know that the least fixed point exists. We call that least
fixed point a. Now assume that another fixed point b exists with a ̸= b. We now
have two fixed points a, b ∈ Pn

D with a ⊏ b because b must be greater than the
least fixed point a:

f̂(y)(a) = a

f̂(y)(b) = b

We further assume that f was derived from a flat TeSSLa specification because
every TeSSLa specification can be rewritten into a monitoring-equivalent flat TeSSLa
specification. Now every cycle in the dependency graph corresponds to a sequence
of entries in f̂ = (f̂1, f̂2, . . . , f̂k). At least one of these entries must be last or delay

because φ is well-formed. We call that entry f̂i : Pn
D → PDi

. We now have

f̂i(a) = ai

91

3. TeSSLa

f̂i(b) = bi

with a ⊏ b and ai ⊑ bi. Under the assumption that fi is the only last or delay

forming a delayed-labelled edge on that cycle in the dependency graph, we even
have ai ⊏ bi. That is a contradiction to fi being either last or delay because both
operators are defined in a way that they refine their input further on pre-fixed points
until the fixed point is reached: An output event at timestamp t is defined in both
operators independent of their input streams at t.

We conclude this section with the simple result that the TeSSLa monitoring seman-
tics is Scott-continues. This result follows directly from the observation that the
basic TeSSLa operators are defined such that they have this property.

Lemma 3.83 (TeSSLa Monitoring Semantics is Scott-Continuous). The monitoring
semantics f̂φ for a TeSSLa specification φ is Scott-continuous.

Proof. We already observed in Lemma 3.69 from Section 3.5.2 that the basic oper-
ators are Scott-continuous concerning the partial order (PD,⊑) and its extension to
tuples of monitoring streams. Scott-continuity is compositional, and f̂φ is defined
as a fixed point given as the Kleene chain of a function that is composed of the basic
operators.

3.5.5. Relation to Semantics

In the previous section, we have shown that the fixed point used in the definition of
the monitoring semantics is unique. Now we are going to establish some results re-
garding the relation of the monitoring semantics and the semantics from Section 3.2
which is defined on fully known streams. Finally, we can show that the fixed point
in the TeSSLa semantics is unique if the TeSSLa specification is well-formed. The
uniqueness of the fixed point is a significant result because it allows us to define the
TeSSLa semantics in Definition 3.23 in Section 3.2.3 as this fixed point, and this is
well-defined if the TeSSLa specification is well-formed.

First, we categorise functions on monitoring streams that preserve full knowledge.
Recall that monitoring streams are called fully known if they are singleton sets
because no further refinement is possible. In terms of the refinement relations,
those streams are maximal.

Definition 3.84 (Preserving Full Knowledge). We say a function f : Pk
D → Pn

D over
tuples of monitoring streams preserves full knowledge if it maps tuples of fully known
streams to tuples of fully known streams, i. e. if the input is a tuple of singleton sets,
then the output is a tuple of singleton sets, too.

92

3.5. Monitoring

Lemma 3.85 (Relation Between TeSSLa Monitoring Semantics and TeSSLa Se-
mantics). Let φ be a well-formed TeSSLa specification with the semantics fφ and
the monitoring semantics f̂φ. We then have

∀a ∈ Sn
D : f̂φ(a) = fφ(a).

Proof. It follows from the definition of the TeSSLa monitoring semantics that every
fixed point on f(y) in the TeSSLa semantics is a fixed point on f̂(y) in the TeSSLa
monitoring semantics, too. Since φ is well-formed, that fixed point is the only fixed
point and, hence, the least.

As a direct consequence of this lemma, the monitoring semantics preserve full knowl-
edge.

3.5.6. Maximal Refinement

So far, we have established the relation between the monitoring semantics and the
semantics on fully known monitoring streams. In order to analyse the case of non-
maximal monitoring streams, we introduce a way to judge the quality of a monitoring
function based on the refinement of its output: The refinement of its output is
maximal if the set of streams does not contain any stream which could already be
ruled out given the current input. We say functions on monitoring streams which
fulfil this property produce maximal refinement:

Definition 3.86 (Maximal Refinement). We say a function f : Pk
D → Pn

D′ produces
maximal refinement iff for every input a ∈ Pk

D we have

f(a) =
⋃
s∈a

f(s).

This definition relies on monitoring streams PD = 2SD being sets of streams. A
function f : Pk

D → Pn
D′ on monitoring streams transforms a tuple of monitoring

streams into a tuple of monitoring streams. For a concrete tuple a ∈ Pk
D of sets

of streams, we consider the union over f individually applied to all possible tuples
s ∈ a of streams. The element operator ∈ is overloaded to tuples by applying it to
every element of the tuples individually:

(s1, s2, . . . , sk) ∈ (a1, a2, . . . , ak) ⇐⇒ ∀ 1 ≤ i ≤ k : s1 ∈ ai.

Since f is defined on tuples of monitoring streams, we can only apply f to a tuple
of streams using the implicit conversions from a tuple of streams into a tuple of

93

3. TeSSLa

monitoring streams which replaces every stream with a singleton set containing
that stream.

In other words, a monitoring stream transformation is said to have maximal refine-
ment if its output is the infimum of the function applied to all maximal extensions
of its input. A monitoring stream is a common prefix of all its possible extensions.
To judge the quality of a monitoring stream transformation, we compare its output
on a prefix with its output on all possible extensions of that prefix. It is considered
maximal if its output on the prefix is the largest common prefix of its outputs on all
possible extensions of that prefix. The largest common prefix of a set of monitoring
streams is their infimum.

With this definition being established, we can now show that the TeSSLa monitoring
semantics fulfil this property:

Theorem 3.87 (TeSSLa Monitoring Semantics Produces Maximal Refinement).
Let φ be a TeSSLa specification. Then the monitoring semantics f̂φ : Pk

D → Pn
D′

produce maximal refinement.

Proof. For a proof by contradiction, we assume that f̂φ does not produce maximal
refinement. Then there are tuples of streams a ∈ Pk

D and c ∈ Pn
D′ such that c ⊐

f̂φ(a), i. e. c is a true extension of f̂φ(a). For f̂φ to not produce maximal refinement,
we need

∀a′ ⊐ a : f̂φ(a′) ⊒ c.

So if we consider all outputs generated by applying f̂φ on all extensions of a, then
all these outputs have a common prefix c which is a true extension of f̂φ(a). In
other words, f̂φ(a) could have been at least c because all extensions of this input
lead to extensions of c.

Let b := f̂φ(a). Since c is a true extension of b there exists an index 1 ≤ i ≤ n

and a stream s ∈ SD′
i

such that s ∈ bi but s /∈ ci. So s is contained in f̂φ(a), but
for every true extension a′ ⊐ a this stream s is no longer present in f̂φ(a′) because
f̂φ(a′) ⊒ c and s is not contained in c. In other words, whichever stream is removed
from a in order to create its extension a′, the stream s is no longer present in f̂φ(a′).
By the definition of f̂φ, this is a contradiction to s being in f̂φ(a) because nothing
in a can have caused its existence in f̂φ(a).

The above proof is quite technical, but its primary essence is f̂φ being defined
by applying the TeSSLa operators individually to all the (possible combinations
of) streams contained in a monitoring stream. This construction is basically what

94

3.5. Monitoring

maximal refinement requires from a function on monitoring streams: The output
must combine applying all streams in the input individually to the function.

As a final result regarding the relation of the TeSSLa semantics and the monitoring
semantics, we can conclude:

Lemma 3.88 (Relation of Equivalence and Monitoring Equivalence). Two well-
formed TeSSLa specifications are equivalent iff they are monitoring equivalent.

Proof. As a consequence of Lemma 3.85 we get for two well-formed TeSSLa speci-
fications: If they are monitoring-equivalent, then they are equivalent.

Let φ and ψ be two well-formed and equivalent TeSSLa specifications. Since f̂φ and
f̂ψ are Scott-continuous and equivalent on maximal refined inputs, they can only
differ in their amount of refinement, but they both produce maximal refinement and
are thus equivalent.

3.5.7. Fixed Points in the Semantics

With the previous results, we can now come back to our goal and finally show the
uniqueness of the fixed point in the semantics:

Corollary 3.89 (Uniqueness of the Fixed Point in the Semantics). If a TeSSLa
specification φ is well-formed, then the fixed point z = f(y)(z) used in the TeSSLa
semantics is unique.

Proof. We have to show that (1) every fixed point of f is unique and (2) that f has
a fixed point.

First, for (1), we assume that x ∈ Sn
D is a fixed point. By Lemma 3.85 we know

that x is a fixed point on the function f̂(y) used in TeSSLa monitoring semantics,
too. Since that fixed point is unique on f̂(y) because φ is well-formed, it must be
unique on f , too.

For (2), we know that there is a fixed point on f̂(y) and because f̂(y) preserves
maximal refinement and y is maximal, that fixed point also exists on f(y).

Note that we again used the conservative extension from x ∈ Sn
D to Pn

D by replacing
every element in the tuple with a singleton set.

95

3. TeSSLa

3.6. Expressiveness of TeSSLa

In this section, we adopt the results regarding the expressiveness of TeSSLa from
[CHL+18] to the more general concept of monitoring streams and the monitoring
semantics. The semantics used in [CHL+18] is introduced as abstract monitoring
semantics in Chapter 6 and shown to be an abstraction of the monitoring seman-
tics.

In order to formally describe the expressiveness of TeSSLa, we first introduce the
notion of future-independent functions on monitoring streams. The intuitive idea
of future independence is that a function can produce outputs up to a particular
timestamp without having access to events on the input stream located after that
timestamp. We start with an auxiliary definition:

Definition 3.90 (Segments of a Monitoring Stream up to a Timestamp). Let s ∈
PD be a monitoring stream. Then the segment of s up to the timestamp t is defined
as

x|≤t := {a&≤t b | a ∈ x ∧ b ∈ SD},

where c = a&≤t b for streams a, b, c ∈ SD is the concatenation of the two streams at
the timestamp t given by

c(t′) =

a(t′) if t′ ≤ t,

b(t′) otherwise.

Note that for any monitoring stream s ∈ PD and any timestamp t ∈ T we have
s|≤t ⊑ s.

We extend this segmentation operator to tuples of streams by applying it individu-
ally to every stream in the tuple. Let s ∈ Pk

D be a tuple of monitoring streams. We
then define for any timestamp t ∈ T

s|≤t := (s1|≤t, s2|≤t, . . . , sk|≤t).

The following definition is adopted from the corresponding definition in [CHL+18]
to monitoring streams:

Definition 3.91 (Future Independence). A function f : Pk
D → Pn

D′ on monitoring
streams is called future independent if for all inputs s ∈ Pk

D and all timestamps t ∈ T
we have

f(s)|≤t ⊑ f(s|≤t).

96

3.6. Expressiveness of TeSSLa

Future independence forbids any causal dependencies between output events and
later input events. Changes of input events after a timestamp t must not affect
the output until timestamp t, i. e. all outputs must have the same prefix up to
timestamp t.

x
a b c

f(x)
u v w

t1 t2

Figure 3.12.: Stream visualisation showing the allowed and forbidden
causal dependencies for a future-independent function f on monitoring streams.

The diagram in Figure 3.12 depicts examples for allowed causal dependencies with
green arrows and an example for a forbidden causal dependency with a red arrow.
x|≤t1 contains the events a and b and because of the causal dependencies f(x|≤t1)
contains the dependent events u and v, but f(x)|≤t1 contains only u. This de-
pendency is allowed because f(x)|≤t1 is a prefix of f(x|≤t1). In case of the causal
dependency indicated with the red arrow x|≤t2 does not contain the event c and
hence f(x|≤t2) cannot contain w, but f(x)|≤t2 does contain w. This dependency is
forbidden for a future-independent function because the output of such a function
must not depend on future events.

The definition of future independence is even stronger because for any stream s ∈ Pk
D

and any timestamp t it requires the output of s|≤t to be at least as refined as f(s)|≤t.
In other words, a function cannot ignore refinement made on its input but must use
new inputs immediately to produce new outputs.

Example 3.92 (Future Independence and Refinement). Consider a function that
produces its output in chunks of three events. Its output stream is only extended if at
least three additional events can be added. This function appears future independent
if one only considers the causal dependencies of the events, but it is not future
independent regarding the refinement. See Figure 3.13 for an example of such a
function: The function f counts the input events and extends the output stream
only if at least three additional events can be added. This behaviour is not future
independent because, intuitively, the function has to look into the future to decide
whether to extend its output stream.

In the diagram in Figure 3.13 one can see that for both depicted timestamps ti for
i ∈ {1, 2} we have f(x|≤ti) ⊏ f(x)|≤ti which is the opposite of the required relation
for future independence: The output derived from the cut input must be at least as
refined as the cut output.

97

3. TeSSLa

x

f(x)0 1 2 3 4 5 6 7 8 9

x|≤t1

f(x)|≤t1
0 1 2 3 4 5

f(x|≤t1)0 1 2 3

x|≤t2

f(x)|≤t2
0 1 2 3 4 5 6 7

f(x|≤t2)0 1 2 3 4 5 6

t1 t2

Figure 3.13.: Stream visualisation showing exemplary applications of the func-
tion described in Example 3.92, which is not future independent.

On the other hand, generating more refinement than required by future indepen-
dence is fine.

Example 3.93 (Generating More Refinement is Future Independent). We give an
example for a future-independent function, which can generate more refinement on
the output then what was present on the input. Consider the following TeSSLa
specification with the free stream x ∈ SD and the bound stream y ∈ SD:

y = filter(x)(false).

The monitoring semantics immediately produce the fully known empty stream in-
dependently of the input because the output is the same for every possible input.

The visualisation in Figure 3.14 illustrates how this is future independent because
cutting the input at t does not reduce the refinement of the output more than cutting
the output at t.

The examples above only consider Scott-continuous functions because the intuition
of future independence is easier to see that way. Nevertheless, this restriction is not
required: The property is defined on arbitrary functions on monitoring streams.

To sum up the section on future independence, we can say that a future-independent
function must output events based on the available input events. Waiting for future

98

3.6. Expressiveness of TeSSLa

x

f(x)
x|≤t

f(x)|≤t
f(x|≤t)

t

Figure 3.14.: Exemplary application of the future-independent function de-
scribed in Example 3.93. The function generates more refinement on the output
than what was provided in its input.

events is not allowed, but in cases where the function already knows more, it is
allowed to output more.

Lemma 3.94 (TeSSLa Monitoring Semantics is Future Independent). The moni-
toring semantics f̂φ for a TeSSLa specification φ is future independent.

Proof. The basic TeSSLa operators are future independent by definition: last and
delay are the only operators referring to other timestamps, and they only refer to
the past. For Scott-continuous functions, future independence is compositional. f̂φ
is defined as a fixed point given as the Kleene chain of a function which is composed
of the basic operators.

We have only defined future independence on monitoring streams in this thesis. In
order to properly define future independence on streams and show that the TeSSLa
semantics are future independent, too, one would need to introduce a notion of cut
streams. In this regard, one can see the monitoring streams as a way to prove the
future independence of the TeSSLa semantics since they introduce a prefix relation
for streams.

A second important property of functions on monitoring streams is timestamp con-
servatism. A function is called timestamp conservative if its output only contains
events whose timestamps are either 0 or already appeared in the input. As shown in
multiple examples, TeSSLa can generate additional events at arbitrary timestamps
with the delay operator. We will show that TeSSLa without the delay operator
can express all timestamp-conservative functions.

The following definition is adopted from the corresponding definition in [CHL+18]
to monitoring streams:

99

3. TeSSLa

Definition 3.95 (Timestamp Conservative). A function f : Pk
D → Pn

D′ on monitor-
ing streams is called timestamp conservative if for all s ∈ Pk

D we have

T (f(s)) ⊆ T (s) ∪ {0}.

Definition 3.96 (Timestamp-Conservative TeSSLa). We call a TeSSLa specifica-
tion φ timestamp conservative if only the operators lift, last, time and the basic
stream unit, as well as operators derived from these are used.

Lemma 3.97 (Timestamp-Conservative TeSSLa is Timestamp Conservative). The
semantic function f̂φ of a timestamp-conservative TeSSLa specification φ is times-
tamp conservative.

Proof. The proof follows directly from the definition of the basic TeSSLa operators:
Only the delay operator can introduce new timestamps.

Next, we adopt the corresponding statement in [CHL+18] to monitoring streams:

Lemma 3.98 (Expressiveness of Timestamp Conservative TeSSLa). For a function
f : Pk

D → Pn
D on monitoring streams there exists a timestamp-conservative TeSSLa

specification φ such that f̂φ ≡ f iff

a) f is Scott-continuous and preserves full knowledge,
b) f has maximal refinement,
c) f is future independent, and
d) f is timestamp conservative.

Proof. Since f is continuous, a finite input prefix is sufficient to compute a finite
output prefix. Using this, we can represent f as a step function f̃ which takes an
aggregated memory value, the value of all input streams at the current timestamp
t (or ⊥ if there is no value at t on that stream) and that current timestamp t.
For simplicity, the step function outputs only a new memory value fed into the
subsequent application of the step function. The initial value for the memory is ⊥.
The functions õi map the current memory value to the output stream’s values at the
current timestamp. The following TeSSLa specification is equivalent to the function
f mapping input streams x to output streams y:

t = time(merge(unit, x1, . . . , xk))
m = lift(f̃)(last(m, t), x1, . . . , xk, t)
yi = lift(õi)(m) ∀ i ≤ n

100

3.6. Expressiveness of TeSSLa

Specifying the output event streams only based on this aggregated memory is suf-
ficient because f is Scott-continuous. Further, because f preserves full knowledge,
we know that this stepwise iteration can continue until all inputs are processed.
The maximal refinement of f guarantees us that f and the monitoring semantics
of the above TeSSLa specification are not only equivalent on fully known streams
but behave equivalent on non-maximal prefixes, too, because the TeSSLa monitor-
ing semantics are also of maximal refinement. Since the memory value domain is
unbound, the step function f̃ can store arbitrary information. Because f is future
independent, it is sufficient to provide f̃ only access to past events. Finally, it is
sufficient to evaluate f̃ for the timestamp 0 and every following timestamp in the
input events because f is timestamp conservative.

The other direction follows immediately because we already know that the moni-
toring semantics for every timestamp-conservative TeSSLa specification fulfils the
properties a) to d).

Note that the step function f̃ and the output mapping functions õi in the above
proof are a way to describe the relationship between the input and the output
streams. Since f and the monitoring semantics of the TeSSLa specification used
in the proof are both of maximal refinement, they are not equivalent to executing
the step function in a strictly synchronous way for one timestamp after another. A
synchronous execution would require the input to be available synchronously, but
the theorem and its proof consider arbitrary functions on monitoring streams. The
step function works for not synchronised input streams, too, because it is applied to
streams using the monitoring semantics of the lift operator.

Next, we extend the previous statement to include functions on monitoring streams
that are not timestamp-conservative. For the construction, we now need the delay

operator to generate events at additional timestamps.

The following definition is adopted from the corresponding definition in [CHL+18]
to monitoring streams:

Lemma 3.99 (Expressiveness of TeSSLa). For a function f : Pk
D → Pn

D on moni-
toring streams there exists a TeSSLa specification φ such that f̂φ ≡ f iff

a) f is Scott-continuous and preserves full knowledge,
b) f has maximal refinement, and
c) f is future independent.

Proof. We prove the statement by extending the construction presented in the pre-
vious proof for Lemma 3.98. The only difference is the omission of the restriction of
the function f to be timestamp conservative. As a result, it is no longer sufficient to
evaluate the step function f̃ for timestamp 0 and every timestamp which appeared

101

3. TeSSLa

in the input streams. Additionally, we introduce a delay function ũ, which computes,
based on the memory, a delay when the subsequent evaluation of the step function
must take place. The delay computed by such a function can be fed directly into
the delay operator whose output is then used as an additional trigger to compute
all timestamps:

t = time(merge(unit, x1, . . . , xk, d))
d = delay(lift(ũ)(m))
m = lift(f̃)(last(m, t), x1, . . . , xk, t)
yi = lift(õi)(m) ∀ i ≤ n

Again the other direction follows immediately because we already know that the
monitoring semantics for every TeSSLa specification fulfils the properties a) to c).

Note how that proof utilises all of the basic TeSSLa operators.

In Lemma 3.99 (Expressiveness of TeSSLa) and Lemma 3.98 (Expressiveness of
Timestamp Conservative TeSSLa) above, the function’s requirement to have max-
imal refinement might seem like a relatively strong limitation. With the following
definition of behavioural equivalence, we introduce a slightly weaker equivalence on
functions on monitoring streams which is of practical relevance and allows us to
lift this restriction from the expressiveness results. A similar concept is introduced
in [Sch20] but only on the streams which are introduced as abstract monitoring
streams in Chapter 6 and only on Scott-continuous functions.

Definition 3.100 (Behavioural Equivalence). Let f, g : Pk
D → Pn

D be functions on
monitoring streams. They are behavioural equivalent if

∀a ∈ Pk
D : f(a) ⊑ g(a) ∨ g(a) ⊑ f(a).

For Scott-continuous functions on monitoring streams, this can be simplified as fol-
lows: They are behavioural equivalent if they are equivalent on fully known streams,
i. e. singleton sets.

Lemma 3.101 (Behavioural Equivalence of Scott-Continuous Functions). Let the
functions f, g : Pk

D → Pn
D on monitoring streams be Scott-continuous and preserve

full knowledge. They are behavioural equivalent iff

∀a ∈ Sk
D : f(a) = g(a)

102

3.7. Conclusion

Note that the above statements quantify over streams and not over monitoring
streams. We implicitly convert streams into monitoring streams by inserting them
into singleton sets, representing fully known streams.

Proof. The definition of behavioural equivalence directly implies the weaker state-
ment in the lemma. On Scott-continuous functions, the statement in the lemma
implies the definition of behavioural equivalence because, for fully known streams,
the statements are equivalent, and, for prefixes of fully known streams, the functions’
output always is a prefix of their output on fully known streams.

With this simplification, one can see why the definition of behavioural equivalence
provides a reasonable way to compare functions on monitoring streams: We only
consider Scott-continuous functions, which are full knowledge preserving. On those
functions, it is sufficient to compare their behaviour only on fully known streams.
Their behaviour on other inputs is restricted by their behaviour on fully known
streams: Every incomplete input is a prefix of a fully known stream. If the input is
extended, then the output can only be an extension of the earlier output, too, and
finally, the output must reach the fully known output. So behavioural equivalence
states that eventually, the two functions produce the same output. They only differ
in how early they provide the output, which can be argued to be an implementation
detail.

By combining Lemma 3.98 (Expressiveness of Timestamp Conservative TeSSLa)
and Lemma 3.99 (Expressiveness of TeSSLa) with Definition 3.100 (Behavioural
Equivalence) we can conclude this section with the following theorem:

Theorem 3.102 (Expressiveness of TeSSLa). For a function f : Pk
D → Pn

D on mon-
itoring streams there exists a TeSSLa specification φ such that f̂φ and f are be-
havioural equivalent iff

a) f is Scott-continuous and preserves full knowledge, and
b) f is future independent.

The TeSSLa specification φ can be timestamp conservative iff f is timestamp con-
servative.

3.7. Conclusion

We have defined TeSSLa as an equation system over streams in this chapter. TeSSLa
operators are applied to streams in the equations TeSSLa operators are either one
of the very few basic operators or derived operators defined in terms of the basic
operators. The semantics is given in terms of a fixed point over the equations.

103

3. TeSSLa

The monitoring streams add the concept of incompletion to streams which is es-
sential for online monitoring. We have a prefix relation on the monitoring streams
called refinement relation because a monitoring stream is a prefix of a large stream
if the latter is a refinement of the former. The monitoring semantics are defined
in terms of the least fixed point over the equation because the refinement relation
provides an order on the fixed points. The monitoring semantics is a semantics for
incomplete input streams. It is a way to construct the fixed point, and it allows us
to prove that the fixed point of the TeSSLa semantics is unique if the specification
is well-formed.

We have established a relation between the monitoring semantics and the semantics
and can conclude that the TeSSLa monitoring semantics f̂φ(y) is very well suited
for online monitoring: It is Scott-continuous, preserves full knowledge, is related to
the semantics function, and the output is as refined as possible on not fully known
input streams.

Producing maximal refinement is a great property, but unfortunately it is unfeasi-
ble for efficient implementations: A monitoring stream is a potentially infinite set of
streams, and we can lift arbitrary functions from the data domain to streams. Hence
computing the output with the best refinement possible for an incomplete input can
become very challenging. We will consider two abstractions of the monitoring se-
mantics for actual implementations that no longer produce maximal refinement.
The synchronous TeSSLa semantics introduced in Section 4.1 for the interpreter can
be seen as the simplest possible abstraction of the monitoring semantics that still
computes something. The abstract monitoring semantics introduces in Chapter 6
for the FPGA synthesis are on the opposite side of the spectrum: They have the
maximal refinement per operator, which is the best one can do while staying com-
positional, i. e. the individual operators can be synthesised individually without the
need for global consideration.

As motivated in the introduction, we only want to consider functions that can be
implemented with finite memory for online monitoring with stream transformations.
We precisely defined the set of functions on stream transformations which we con-
sider as those which are monotonic, continuous and preserve full knowledge and are
future independent. We have demonstrated in Section 3.4 on design choices that
these functions are not in general implementable with finite memory, but the mem-
ory usage is made explicit by the data domain. These functions are precisely the
functions that can be expressed in TeSSLa.

104

4 Interpreter and Software Compiler

This chapter presents a TeSSLa interpreter and software compiler. The interpreter
is the first implementation considered in this thesis and the most straightforward
implementation. Due to its simplicity, the interpreter will serve as a reference im-
plementation used to test the more complex implementations following. Further,
it will serve as a baseline for the efficiency benchmark. The interpreter does not
contain any optimisations regarding the processing speed.

The software compiler is a faster approach to execute a TeSSLa specification in soft-
ware. It compiles the TeSSLa specification into imperative code. Local variables rep-
resent the current value of the streams and the memory cells of the operators. This
code is close to a manual implementation and can profit from compile-time optimisa-
tion performed by different backends, e. g. the LLVM compiler [Lat02, LA04, Lat12]
or the Java VM JIT.

For simplicity, both solutions do not implement the monitoring semantics but a
simpler abstraction of that semantics. This abstraction is synchronous, i. e. there is a
global current timestamp. As already mentioned in the introduction, the reasonable
abstractions of the monitoring semantics can be categorised by their progress. Due
to its synchronous nature, the semantics introduced in this chapter has the least
possible progress. The input streams are synchronised on their timestamps, and
hence the monitors only perform the next step if data for all input streams for
the next timestamp is available. In a single step, the monitors only compute the
synchronous output stream for the current timestamp, too. So the output streams do
not contain any information about future events. We will show in this chapter that
this is the minimal progress that a function on monitoring streams must generate
to be future independent.

The synchronisation of the input streams transforms a tuple of streams into a stream
of tuples. The principle of using explicit timestamps to encode events from the asyn-
chronous environment still applies naturally: Timestamps can be arbitrary precise,
and the synchronised stream contains only those timestamps with an event on at
least one of the individual streams.

The synchronous approaches evaluate the flow graph of the TeSSLa specification for
the current global timestamp. Section 4.1 gives a formal semantics for this setting: It
introduces synchronised streams and the synchronised monitoring function on those

105

4. Interpreter and Software Compiler

streams as an abstraction of the monitoring semantics on monitoring streams. We
define synchronous semantics for every TeSSLa operator. An operator is provided
with the current timestamp and the current evaluation of their dependent streams
for that timestamp. It provides its current output for that timestamp. Further,
operators can store values in a memory cell. The TeSSLa specification is future
independent, so it is sufficient to store past events. As discussed in Section 3.4.5
the TeSSLa operators are built such that it is sufficient to store a single data value
for every operator.

Section 4.2 discusses the different approaches to implement the synchronous se-
mantics in the interpreter and the compiler. The interpreter dynamically builds an
object graph representing the flow graph of the TeSSLa specification at runtime.
It evaluates the flow graph straightforwardly by sending actual messages along the
edges of the flow graph. The compiler linearises the flow graph into sequential im-
perative code. Details of the interpreter are given in Section 4.3, and the compiler
is discussed in Section 4.4.

The synchronous monitoring is based on a widespread event-driven synchronous
execution scheme which is described in [BCE+03] using the pseudocode shown in
Figure 4.1. This principle is used in many other synchronous stream languages like
for example LOLA [DSS+05] and RTLola [FFS+19, BFST20, BFST19, FOPS20].

Initialise Memory
for each input event do

Compute Outputs
Update Memory

end

Figure 4.1.: The common event driven synchronous execution scheme as shown
in [BCE+03, Figure 1].

The synchronous monitoring function for TeSSLa adjusts and extends this scheme
in two aspects:

• TeSSLa has explicit timestamps, which is an adjustment to the step or instant
based semantics: The TeSSLa semantics refer to the event’s timestamps, and
the synchronous execution provides access to a global current timestamp.

• With the notion of explicit timestamps of arbitrary precision comes the possi-
bility to generate events at additional timestamps. The loop body is executed
for every timestamp in the input stream and for every additional timestamp
generated by the specification.

106

4.1. Semantics

It is sufficient to evaluate the flow graph for every timestamp occurring in the input
stream for timestamp-conservative specifications. In order to evaluate specifications
that can generate events at additional timestamps, the operators can give feedback
when they should be evaluated next. This feedback of the operators is then used in
the global evaluation loop to determine for which global timestamps the flow graph
should be evaluated.

4.1. Semantics

This section gives formal semantics for the synchronised setting used by the inter-
preter and the software compiler. First, we formalise the concept of the progress of
a monitoring stream. The amount of progress generated is used to compare different
semantics. Next, we define synchronised streams, followed by the actual semantics
on these streams. The semantics is given in the form of operator functions for ev-
ery basic TeSSLa operator and synchronised monitoring function combining these
operator functions into a semantics for a given TeSSLa specification.

From this chapter on, we use a common data domain D for the theory. The typing
discussed in detail in the previous chapters can still be applied, but it simplifies the
function signatures if we consider the typing and type checking already done in a
separate previous step. For further simplification, we assume that the common data
domain is a superset D ⊇ T of the common time domain T.

4.1.1. Progress

The progress of a monitoring stream is the timestamp up to which we already know
everything about the stream. After that timestamp, we might still know something
about the monitoring stream, but some information is missing that is not yet avail-
able to the monitor in the setting of online monitoring. We will use the formal
definition of the progress later in this section to show that the synchronous mon-
itoring yields exactly the minimal progress that a function on monitoring streams
must generate to be future independent.

We extend the order on time domains to the set T∞ = T ∪ {∞} as follows:

∀ t ∈ T : t < ∞.

Definition 4.1 (Progress of a Monitoring Stream). Let s ∈ PD be a monitoring
stream. Then let t ∈ T∞ be the maximal timestamp such that for all t′ < t and any
two streams r, r′ ∈ s we have r(t′) = r′(t′). We call the minimum of t and limT(s)

107

4. Interpreter and Software Compiler

the progress of s. If the progress is t and r(t) = r′(t) holds, too, we call the progress
inclusive, otherwise exclusive.

Every monitoring stream has either an exclusive or an inclusive progress. Although
every inclusive progress is technically also an exclusive progress, we only consider
the maximal progress of a monitoring stream. See Example 4.8 (Abstraction and
Concretisation for Synchronised Streams) in Section 4.1.2 for an elaborate example
on exclusive and inclusive progress.

If a monitoring stream s has Zeno behaviour, its progress is capped by the limit
limT(s) towards which the timestamps converge. Since this limit is never reached,
this progress is an exclusive one.

For a tuple of monitoring streams s ∈ Pk
D, we call a timestamp t ∈ T∞ the minimal

progress of s if it is the minimal progress of all streams in s. An exclusive progress
is considered smaller than an inclusive progress. The minimal progress is either
inclusive or exclusive, depending on its origin.

The following relation between prefix and progress follows directly from the defini-
tions: Let s, s′ ∈ PD be two monitoring streams with progresses t, t′ ∈ T∞, respec-
tively. Then the relation s ⊑ s′ implies t ≤ t′, and the strict relation s ⊏ s′ implies
strictly less progress, where again, an exclusive progress is considered smaller than
an inclusive progress.

The following lemma states that future-independent functions at least preserve the
minimal progress. They might generate more progress on their output than they
had on their input but cannot produce less progress than they had on their input.
If the function is defined on tuples of streams, then the statement applies to the
minimal progress of the tuple.

Lemma 4.2 (Future Independence Preserves Progress). Let f : Pk
D → Pn

D be a func-
tion on monitoring streams with

a) f being Scott-continuous and preserving full knowledge, and
b) f being future independent

then for any s ∈ Pk
D either

– the minimal progress of f(s) is at least the minimal progress of s, or
– the timestamps of f(s) converge to a limit limT(s) smaller than the minimal

progress of s.

Proof. Let f : PD → PD be a function on monitoring streams fulfilling the properties
a) and b) and s ∈ PD be a monitoring stream with inclusive progress t ∈ T. For
the sake of the contradiction let t′ ∈ T with t′ < t be the inclusive progress of f(s).

108

4.1. Semantics

Let u ∈ SD be a fully known extension of s, i. e. s ⊑ u. From a), we know that
f(u) ∈ SD is fully known, too. We have u|≤t ⊑ s because u|≤t is the smallest prefix
of u with inclusive progress t. With a) it follows that f(u|≤t) ⊑ f(s). Hence, we
know that the progress of f(u|≤t) is at most t′. The progress of f(u)|≤t is t and with
b) we know that f(u)|≤t ⊑ f(u|≤t). That implies t ≤ t′ which is a contradiction to
the assumption.

Intuitively the above proof states that f cannot be future independent if the progress
of f(s) is less than s because that would imply that the extension of f(s) depends
on events on s in the future. The only exception is a function f that generates a
Zeno stream that converges before its input’s minimal progress is reached.

4.1.2. Synchronised Streams

A synchronised stream is an abstraction of a tuple of monitoring streams. The
synchronisation transforms a tuple of monitoring streams with individual events into
a stream of tuples. Hence the synchronised stream contains all the timestamps at
which any represented monitoring streams have an event. The synchronised stream
cannot represent different possible continuations with the same expressiveness of the
monitoring streams. It only contains events up to a single common timestamp for
all the represented streams:

Definition 4.3 (Synchronised Stream). A synchronised stream s ∈ Qn of size n is
a finite or infinite sequence over timestamped n-tuples:

Qn := (T∞ × Dn
⊥ ∪ {_})∞.

The timestamps in s must be strictly increasing, and the timestamp ∞ is only
allowed with the value symbol _.

The symbol ⊥ encodes the absence of an event on a particular stream at a particular
timestamp. Consequently, the tuple ⊥ = (⊥,⊥, . . . ,⊥) encodes the absence of any
event at that timestamp. The symbol _ encodes explicit progress, i. e. the absence
of events since the last timestamp up to but not including the current timestamp.
In practical implementations, there is usually no need to encode progress explicitly.
One can introduce an additional stream whose events are not used by the specifica-
tion but whose timestamps encode inclusive progress. However, exclusive progress
cannot be encoded this way, which is why it is explicitly included in the above defi-
nition in order to preserve the progress in the abstraction (see Definition 4.5 below).
With these conventions, we can now formally define the progress of a synchronised
stream:

109

4. Interpreter and Software Compiler

Definition 4.4 (Progress of a Synchronised Stream). Let q ∈ Qk be a synchronised
stream. Then the progress of q is the supremum of all timestamps used in q if it
exists, or ∞ otherwise. If q ends in (t,_) or if there is no maximal timestamp we
call the progress exclusive, otherwise inclusive.

For the simple case of a synchronised stream with finitely many events, the progress
of that synchronised stream is the timestamp of its last event. Since the timestamps
of a synchronised stream are strictly increasing, its last timestamp is the largest
one. For synchronised streams with infinitely many events, there is no last event.
In that case, we use the least upper bound of the timestamps, i. e. their supremum,
if the timestamps converge towards a limit. Otherwise, if the timestamps do not
converge, the progress is defined as ∞.

The abstraction function α encodes a tuple of monitoring streams as a synchronised
streams:

Definition 4.5 (Abstraction Function for Synchronised Streams). Let s ∈ Pk
D be a

tuple of monitoring streams. Then let q ∈ Qk be given by

q = ⟨(t0, s(t0)), (t1, s(t1)), . . .⟩,

where ⟨t0, t1, . . .⟩ is the ordered sequence of all timestamps in T (s) that are lower
than (or equal to) the minimal exclusive (or inclusive) progress t of s and

s(t) = (s1(t), s2(t), . . . , sk(t)).

Then the abstraction function α : Pk
D → Qk is given by

α(s) =

q&⟨(t,⊥)⟩ if |q| < ∞ and t ̸∈ T (s) and t inclusive,
q&⟨(t,_)⟩ if |q| < ∞ and t exclusive,
q otherwise.

A tuple of monitoring streams s ∈ Pk
D may contain multiple points where the individ-

ual streams show Zeno behaviour, i. e. they have infinitely many events whose times-
tamps converge towards a finite limit. On the other hand, the sequence ⟨t0, t1, . . .⟩
can only contain the first of these limits because it is a sequence. However, this is
not a limitation because the sequence ⟨t0, t1, . . .⟩ contains only those timestamps up
to the minimal progress of s. If a monitoring stream is Zeno, its progress cannot
be more than the limit its timestamps are progressing towards, and that progress is
always exclusive because the timestamps never reach the limit.

The concretisation function γ decodes a synchronised stream back into a tuple of
monitoring streams:

110

4.1. Semantics

Definition 4.6 (Concretisation Function for Synchronised Streams). Let q ∈ Qk

be a synchronised stream of size k. Then let t ∈ T∞ be the progress of q and s ∈ Pk
D

any tuple of monitoring streams such that α(s) = q. The concretisation function
γ : Qk → Pk

D is given by

γ(q) =

s|≤t if t is inclusive,
s|<t otherwise.

In the above definition, we assume s|≤∞ := s to simplify the notation. There are
many different possibilities to choose an s ∈ Pk

D such that α(s) = q, but since we
only consider s|≤t the function γ is well-defined.

As a direct consequence of the above definitions, we get:

Lemma 4.7 (Abstraction Preserves Progress). For any tuple of monitoring streams
s ∈ Pk

D, the minimal progress of s is the same as the progress of α(s).

For any synchronised stream q ∈ Qk, the progress of q is the same as the minimal
progress of γ(q).

In other words, for any tuple of streams s ∈ Pk
D, the minimal progress of s and of

γ(α(s)) are the same. However, the progress of all individual streams in the tuple
γ(α(s)) is the same after the concretisation. So for streams in s whose individual
progress is larger than the minimal progress of the tuple s the progress of their
corresponding stream in the tuple γ(α(s)) is smaller.

Example 4.8 (Abstraction and Concretisation for Synchronised Streams). As an
example consider the following monitoring streams a, b ∈ PD

a = {⟨(1, 1), (3, 3), (5, 7)⟩}|≤5

b = {⟨(2, 2), (3, 4), (4, 6), (6, 10)⟩,
⟨(2, 2), (3, 4), (4, 8), (6, 10)⟩}

The monitoring stream a consists of infinitely many streams all being identical up
to and including timestamp 5 and every possible continuation afterwards. The
monitoring stream b consists of two nearly identical streams with a difference in the
value of the event at timestamp 4. Both monitoring streams are depicted in the
following stream diagram using the syntax introduced in the last chapter:

0 1 2 3 4 5 6

a
1 3 7 D

b
2 4 6,8 10

111

4. Interpreter and Software Compiler

The following timestamps appear in the tuple s = (a, b) of monitoring streams:

T (s) = {1, 2, 3, 4} ∪ {t ≥ 5 | t ∈ T}.

The monitoring stream a has an inclusive progress of 5 and b has an exclusive
progress of 4. Hence, the tuple s has a minimal exclusive progress of 4. For the
abstraction α(s) we consider the sequence 1 2 3 of timestamps. We get the synchro-
nised stream q ∈ Q2 with

q := α(s) = ⟨(1, (1,⊥)), (2, (⊥, 2)), (3, (3, 4)), (4,_)⟩.

Following a similar style than the monitoring stream diagrams we can visualise such
a stream as follows:

0 1 2 3 4

q

(
1

⊥

) (
⊥
2

) (
3

4

)

We further get for the concretisation

γ(q) = s|<4 = (a|<4, b|<4) = ({(1, 1), (3, 3)}|<4, {(2, 2), (3, 4)}|<4)),

which is depicted in the following diagram:

0 1 2 3 4 5 6

a
1 3 D

b
2 4 D

In the similar way how streams s ∈ SD can be seen as functions fs : T → D⊥ (see
Definition 3.21 in Section 3.2.1) we can see synchronised streams as functions, too:

Definition 4.9 (Functional View of Synchronised Streams). Let q ∈ Qk be a syn-
chronised stream with progress t. Then fq : T → Dk

⊥ ∪ {?} is the functional view of
q. For any timestamp t′ ∈ T we have

fq(t′) =

d if q contains (t′, d) with d ∈ Dk

⊥,

⊥ if t′ ̸∈ T (γ(q)) and t′ < t if t exclusive or t′ ≤ t if t inclusive,
? otherwise.

112

4.1. Semantics

The function maps a timestamp t to a k-tuple of values d ∈ Dk
⊥ if any of the streams

encoded in q has an event at time t. All timestamps t without any event at t are
mapped to ⊥ if t is lower than the progress of q. All timestamps after the progress
of the stream are mapped to the new symbol ?.

If the usage is clear from the context, we use q to refer to fq.

Using this functional view, we can now define a prefix relation on synchronised
streams:

Definition 4.10 (Prefix Relation on Synchronised Streams). Let q, r ∈ Qk be two
abstract monitoring streams. We define the prefix relation ⊑⊆ Qk × Qk as follows:

q ⊑ r :⇐⇒ ∀ t ∈ T : q(t) ∈ {r(t), ?}.

The prefix relation forms a partial order (Qk,⊑). If we use the inverse prefix relation
on synchronised streams and the inverse refinement relation on monitoring streams,
it follows directly from the definitions above:

Lemma 4.11 (Galois Connection for Synchronised Streams). The abstraction func-
tion α : Pk

D → Qk and the concretisation function γ : Qk → Pk
D are a Galois connec-

tion between (Pk
D,⊒) and (Qk,⊒).

The following example illustrates the Galois connection:

Example 4.12 (Galois Connection Between Monitoring Streams and Synchronised
Streams). The functions α and γ are a Galois connection between the partial orders
(Pk

D,⊒) and (Qk,⊒), i. e. we have

∀a ∈ Pk
D, b ∈ Qk : α(a) ⊒ b ⇐⇒ a ⊒ γ(b).

We illustrate this relation for k = 2. Recall the tuple s ∈ P2
D of monitoring streams

from Example 4.8:

s = (a, b) = ({⟨(1, 1), (3, 3), (5, 7)⟩}|≤5,

{⟨(2, 2), (3, 4), (4, 6), (6, 10)⟩,
⟨(2, 2), (3, 4), (4, 8), (6, 10)⟩})

0 1 2 3 4 5 6

a
1 3 7 D

b
2 4 6,8 10

113

4. Interpreter and Software Compiler

The minimal progress of s is an exclusive progress of 4 and thus we get the following
synchronised stream α(s) ∈ Q2:

α(s) = ⟨(1, (1,⊥)), (2, (⊥, 2)), (3, (3, 4)), (4,_)⟩.

0 1 2 3 4

α(s)

(
1

⊥

) (
⊥
2

) (
3

4

)

We now choose another synchronised stream r ∈ Q2 which is a prefix of α(s), i. e.
α(s) ⊒ r:

r = ⟨(1, (1,⊥)), (2, (⊥, 2)), (3, (3, 4)), (3.5,⊥)⟩.

0 1 2 3

r

(
1

⊥

) (
⊥
2

) (
3

4

)

The synchronised stream r has an inclusive progress of 3.5 and thus we get the
following tuple of monitoring streams γ(r) ∈ P2

D:

γ(r) = (c, d) = ({(1, 1), (3, 3)}|≤3.5, {(2, 2), (3, 4)}|≤3.5))

0 1 2 3 4 5 6

c
1 3 D

d
2 4 D

We can see that γ(r) is, in fact, a prefix of s, i. e. s ⊒ γ(r).

4.1.3. Operator Functions

In this section, formal semantics for the synchronous evaluation of the basic TeSSLa
operators on Qn is given in the form of operator functions. The operator functions
work under the assumption that they are evaluated in the correct order: Every
operator is provided with the current values of its dependencies. Further, every
operator is equipped with a memory cell to store data locally. After defining the
operator functions below, we will describe how an entire TeSSLa specification is
translated into a synchronous monitoring function that evaluates the flow graph
synchronously for a global current timestamp. (See Definition 4.20 below.)

114

4.1. Semantics

An operator function o : T × D⊥ × Dn
⊥ → D⊥ × D⊥ × T⊥ with o(t,m,v) = (m′, o, c)

takes

– a current timestamp t ∈ T,
– a current value m ∈ D⊥ for the memory cell and
– an n-tuple v ∈ Dn

⊥ of current values of its input streams at time t.

It produces

– a new value m′ ∈ D⊥ for the memory cell,
– a value o ∈ D⊥ for its output stream at timestamp t and
– a timestamp c ∈ T⊥ for the next evaluation.

Definition 4.13 (Semantics of the Synchronous Operator units). The synchronous
operator units : T × D⊥ × D0

⊥ → D⊥ × D⊥ × T⊥ is given by

units(t,m) = (⊥, o,⊥)

with

o =

□ if t = 0,
⊥ otherwise.

The units operator produces an event at timestamp 0 and ignores all inputs. For
this operator to work, it is necessary to evaluate all flow graphs at timestamp 0 even
if the input does not contain any event at that timestamp. Note that the definition of
timestamp-conservative functions in Definition 3.95 in Section 3.6 explicitly allows
the generation of additional events at the timestamp 0.

Definition 4.14 (Semantics of the Synchronous Operator times). The synchronous
operator times : T × D⊥ × D1

⊥ → D⊥ × D⊥ × T⊥ is given by

times(t,m, v) = (⊥, o,⊥)

with

o =

t if v ̸= ⊥,
⊥ otherwise.

For every incoming event, the times operator sends out an event with the current
timestamp used as the value.

115

4. Interpreter and Software Compiler

Definition 4.15 (Semantics of the Synchronous Operator lifts). The synchronous
operator lifts : (Dn↣ D) → (T × D⊥ × Dn

⊥ → D⊥ × D⊥ × T⊥) is given by

lifts(f)(t,m,v) = (⊥, o,⊥)

with

o = f(v).

The lifts operator lets the lifted function f handle the computation of the output
value. There is no memory involved, so the function f is only called with the values
of the input streams at the current timestamp. The input might be (a tuple of) ⊥
if there is no event at that timestamp. The definition of the operator lifts defined
in Definition 3.26 in Section 3.2.3 requires the lifted ⊥-function f : Dn ↣ D to be
well-formed, i. e. it must return ⊥ if all its arguments are ⊥.

Definition 4.16 (Semantics of the Synchronous Operator lasts). The synchronous
operator lasts : T × D⊥ × D2

⊥ → D⊥ × D⊥ × T⊥ is given by

lasts(t,m, v, r) = (m′, o,⊥)

with

m′ =

v if v ̸= ⊥,
m otherwise.

o =

m if r ̸= ⊥,
⊥ otherwise.

The lasts operator is the only operator in timestamp-conservative specifications that
uses the memory cell. It stores the current value of the value stream in the memory
cell and produces an event with the current value of the memory cell for every event
on its second input. Note that the operator is only evaluated once per timestamp
and that the output is based on the old memory value m and not the new memory
value m′. This evaluation reflects how the lasts operator defined in Definition 3.27
in Section 3.2.3 always refers to the last known value but not the current value.

Definition 4.17 (Semantics of the Synchronous Operator delays). The synchronous
operator delays : T × D⊥ × D1

⊥ → D⊥ × D⊥ × T⊥ is given by

delays(t,m, v) = (m′, o,m′)

116

4.1. Semantics

with

m′ =

t+ v if v ̸= ⊥ ∧ v > 0,
m if v = ⊥ ∧m ̸= ⊥ ∧m > t,

⊥ otherwise.

o =

□ if m = t,

⊥ otherwise.

The delays operator can create events at arbitrary timestamps after the given delay
is over. It uses the memory cell to track when to produce an event on the out-
put stream. A given delay of 0 resets the currently active delay. The delays is
the only operator which returns an actual timestamp for the next evaluation, i. e.
not ⊥. The operator always returns (m′, o,m′), which requests that the operators’
next evaluation always happens at the timestamp stored in its memory cell. Note
how the definition of m′ precisely reflects the semantics of the operator given in
Definition 3.28 in Section 3.2.3.

Note that returning m′ as the timestamp for the next evaluation does not guar-
antee that the operator will not be evaluated earlier. The flow graph is evaluated
synchronously for all relevant timestamps, and if other timestamps before m′ are
relevant for other operators, this operator will be evaluated earlier. Hence the op-
erator needs to return m′ because the synchronous monitoring function does not
store these obligations separately. It computes the minimal next timestamp from all
internal obligations returned by the operators and the next timestamp in the input
stream after every step. (See next section.)

4.1.4. Synchronised Monitoring Function

Now we can combine the individual operator functions to a monitoring function. So
far, we only described the individual operator functions assuming that we can pro-
vide them with all their dependencies at a particular timestamp. Next, we consider
when and in which order the operator functions should be evaluated to fulfil these
dependencies.

We start by taking all the operators in the flow graph of a specification and com-
bining them in a joined operator function. This intermediate step combines all the
operators in a big tuple of functions. The obtained function computes a single next
timestamp as the minimum of all the next timestamps returned by the individual
operators.

117

4. Interpreter and Software Compiler

Definition 4.18 (Joined Operator Function). Let φ be a TeSSLa specification with
k free streams y = (y1, y2, . . . , yk) and n bound streams z = (z1, z2, . . . , zn) that is
well-formed. The specification φ consists of n equations zi = oi(y)(z) for 1 ≤ i ≤ n
with oi being a basic operator, i. e. the specification is flat.

For every operator oi we take the corresponding operator function pi : T × D⊥ ×
(Dk

⊥ × Dn
⊥) → D⊥ × D⊥ × T⊥ defined above. The input signature of the operator

function is extended to all free and bound streams of φ. The operator function with
the extended signature ignores all the additional streams in its input.

The joined operator function g : T × Dn
⊥ × (Dk

⊥ × Dn
⊥) → Dn

⊥ × Dn
⊥ × T⊥ is derived

by applying all pi for 1 ≤ i ≤ n in parallel: Let pi(t,mi, (y, z)) = (m′
i, oi, ci) for

1 ≤ i ≤ n be the individual operator functions, then g(t,m, (y, z)) = (m′, z′, c) is
given by the following rules:

– The same timestamp t ∈ T is passed to all pi.
– The i-th entry in the memory input tuple m ∈ Dn

⊥ is passed to pi.
– The input values of the free and bound streams (y, z) ∈ (Dk

⊥ ×Dn
⊥) are passed

to all pi because every pi selects its needed inputs from the entire tuples.
– The updated memory tuple m′ ∈ Dn

⊥ is derived by concatenating the updated
memory values m′

i ∈ D⊥ of every pi.
– The tuple of output values for the bound streams z′ ∈ Dn

⊥ is derived by con-
catenating the outputs oi of every pi.

– The timestamp c ∈ T⊥ for the next evaluation is derived as minimum of all ci
with ci ̸= ⊥ or ⊥ if all ci are ⊥.

The joined operator function takes the current valuation of all the free and bound
streams as input and returns the valuation of the bound streams at the same times-
tamp as output. We cannot use the function like that because we do not know the
valuation of the bound streams. Hence, the next step is to close this function over
the valuations of the bound streams. We leave the co-domain and the image of g
as it is, but we remove the bound streams from its domain. From all the possible
images for the thereby identified elements of the function’s domain, we choose those
where the bound streams are mapped to themselves. This step is essentially the
equivalent of taking the fixed point in the definition of the monitoring semantics in
Definition 3.67 in Section 3.5.2.

Definition 4.19 (Closed Operator Function). Let g : T×Dn
⊥ × (Dk

⊥ ×Dn
⊥) → Dn

⊥ ×
Dn

⊥ ×T⊥ be a joined operator function with g(t,m, (y, z)) = (m′, z′, c) for a TeSSLa
specification φ as defined above. Then the closed operator function e : T×Dn

⊥ ×Dk
⊥ ∪

{_} → Dn
⊥ × Dn

⊥ ∪ {_} × T⊥ is derived from g by closing over z = z′, i. e. taking

118

4.1. Semantics

those elements from g where z = z′. The additional input _ is passed through for
any memory m ∈ Dn

⊥ and any timestamp t ∈ T as follows:

e(t,m,_) = (m,_,⊥).

The well-formedness of the TeSSLa specification φ guarantees that its closed opera-
tor function e is a well-defined function. The well-formedness of a TeSSLa specifica-
tion requires that every cycle in its flow graph contains at least one last or delay.
In the operator functions lasts and delays the output does not depend on the input,
but only on the memory. Hence, there is only one closed operator function for a
given joined operator function because every dependency cycle of the bound streams
is broken up when considering only one timestamp.

The additional input _ represents inclusive progress up to but not including the
given timestamp. It is only included in the closed operator function to make the
definition of the synchronised monitoring function more convenient. With this ad-
dition, it does not need to handle this exclusive progress explicitly: For every given
timestamp, all internally generated timestamps being lower to the given timestamp
are processed before processing the given timestamp.

The closed operator function evaluates the flow graph for a particular timestamp.
The synchronised monitoring function defines how to apply the closed operator
function to a synchronised stream.

In the following, we assume that every synchronous monitoring stream q ∈ Qk starts
with the timestamp 0. This assumption can be easily met by prepending the stream
with (0,⊥) if needed.

Definition 4.20 (Synchronised Monitoring Function). Let e : T × Dn
⊥ × Dk

⊥ →
Dn

⊥ × Dn
⊥ × T⊥ be a closed operator function with e(t,m,y) = (m′, z′, c) for a

TeSSLa specification φ as defined above. Then the synchronised monitoring func-
tion f : Qk → Qn is given by f(q) = p as follows:

Let q := (t0, q0)(t1, q1) . . . be the synchronised input stream, p := (τ0,p0)(τ1,p1) . . .
be the output stream, y := y0y1 . . . be the sequence of input events, m := m0m1 . . .
be the sequence of memories and c := c0c1 . . . the sequence of next timestamps with
the following conditions:

• We start with the initial timestamp τ0 = 0, the initial memory m0 = ⊥ and
the initial input y0 = q0.

• We continue for all j ≥ 0 with

(mj+1,pj, cj) = e(τj,mj,yj).

119

4. Interpreter and Software Compiler

• With i > 0 chosen such that ti−1 ≤ τj−1 < ti we inductively define the next
timestamp τj and its input yj for all j > 0 as follows: If cj−1 ̸= ⊥ and cj−1 ≤ ti
we define

τj = cj−1 and yj = ⊥

and otherwise

τj = ti and yj = qi.

The synchronised monitoring function applies the closed operator function to every
tuple of input events. The closed operator function provides an updated memory
tuple mj+1, an output tuple pj and a potentially generated next timestamp cj. If
that generated timestamp is smaller than the next input timestamp, then the closed
operator function is evaluated on that timestamp before processing the next input
event.

4.1.5. Examples

We now discuss examples of synchronised monitoring functions for several specifica-
tions. We start with a simple timestamp-conservative TeSSLa specification without
any recursion:

Example 4.21 (Simple Example of a Synchronised Monitoring Function). Consider
the TeSSLa specification y = merge(a, b) with the free (input) streams a, b ∈ PD and
the bound (output) stream y ∈ PD. The derived TeSSLa operator merge is defined
in Definition 3.37 in Section 3.3.1 for the binary case as lift(h) with the function
h : D2

⊥ → D⊥ given by

h(a, b) =

a if a ̸= ⊥,
b otherwise.

We get the operator function p = lifts(h) with the signature p : T × D⊥ × D2
⊥ →

D⊥ × D⊥ × T⊥ and the definition

p(t,m, (a, b)) = (⊥, h(a, b),⊥).

Since there is only one operator function involved, the joined operator function
g : T × D⊥ × (D⊥ × D2

⊥) → D⊥ × D⊥ × T⊥ looks similar to the operator function p:

g(t,m, y, (a, b)) = (⊥, h(a, b),⊥)

120

4.1. Semantics

Note that the output of g is independent of the current timestamp t, the memory
value m and the bound (output) stream y. Hence we can derive the closed operator
function e : T×D⊥ ×D2

⊥ → D⊥ ×D⊥ ×T⊥ simply by removing the additional input
parameter y again:

e(t,m, (a, b)) = (⊥, h(a, b),⊥)

The monitor function f : Q2 → Q1 is derived by applying e to all timestamped 2-
tuples of the input stream. In this case, this boils down to applying h to all tuples of
the input stream. The application of f to the input stream q ∈ Q2 from Example 4.8
(Abstraction and Concretisation for Synchronised Streams) in Section 4.1.2 can be
visualised as follows:

0 1 2 3 4

q

(
1

⊥

) (
⊥
2

) (
3

4

)

f(q) 1 2 3

In the following example, we consider a recursive TeSSLa specification, i. e. one
that contains a cycle in the flow graph. For such a specification, the closed operator
function now actually needs to close over the valuation of the bound streams because
those are used in the joined operator function.

Example 4.22 (Closed Operator Function for a Recursive TeSSLa Specification).
Consider the following TeSSLa specification with the free (input) stream x ∈ PD
and the bound (output) streams y, ℓ, a ∈ PD:

y = default(ℓ, 0)
ℓ = lift(+)(a, x)
a = last(y, x)

We assume an operator function defaults being derived by combining merges and
consts appropriately. For the joined operator function g : T × D⊥ × (D⊥ × D3

⊥) →
D⊥ × D3

⊥ we ignore the memory update of the operator functions if it is constantly
⊥. Further, the timestamp for the next evaluation is ignored because it is always
⊥. After all, no delay is used in the specification:

g(t,m, x, (y, ℓ, a)) = (m′, (y′, ℓ′, a′))

with

y′ =

0 if t = 0 ∧ ℓ = ⊥,
ℓ otherwise.

121

4. Interpreter and Software Compiler

ℓ′ =

a+ x if a ̸= ⊥,
⊥ otherwise.

a′ =

m if x ̸= ⊥,
⊥ otherwise.

m′ =

y if y ̸= ⊥,
m otherwise.

To derive the closed operator operator function e : T × D⊥ × D⊥ → D⊥ × D3
⊥ with

g(t,m, x) = (m′, (y′, ℓ′, a′))

we take the definition of g and replace all occurrences of y, ℓ and a with y′, ℓ′ and a′,
respectively. Because of the well-formedness of φ this definition does not contain any
cyclic dependencies and we end up with a well-defined function. To double-check
this we can reformulate all definitions directly in terms of m and x:

a′ =

m if x ̸= ⊥,
⊥ otherwise.

ℓ′ =

m+ x if x ̸= ⊥ ∧m ̸= ⊥,
⊥ otherwise.

y′ =

0 if t = 0 ∧ (x = ⊥ ∨m = ⊥),
m+ x if x ̸= ⊥ ∧m ̸= ⊥
⊥ otherwise.

m′ =

0 if t = 0 ∧ (x = ⊥ ∨m = ⊥),
m+ x if x ̸= ⊥ ∧m ̸= ⊥
m otherwise.

We can simplify further using the fact that t = 0 implies m = ⊥:

y′ =

0 if t = 0,
m+ x if x ̸= ⊥ ∧ t > 0,
⊥ otherwise.

m′ =

0 if t = 0,
m+ x if x ̸= ⊥ ∧ t > 0,
m otherwise.

Now we can see how this function sums up all the values of x into the memory. It
outputs the stored value with every event on x, starting with a default value of 0 at

122

4.1. Semantics

timestamp 0. The cases y′ = ⊥ and m′ = m are relevant if the function is evaluated
at timestamps without an event on the stream x. Then no output is generated, and
the memory is left untouched.

Finally, we consider the specification from Example 3.80 (Variable Frequency Pe-
riod) in Section 3.5.3 as an example of a specification which is recursive and not
timestamp-conservative:

Example 4.23 (Not Timestamp-Conservative Synchronised Monitoring Function).
Consider the following TeSSLa specification φ with the free (input) stream x ∈
SR≥0 and the bound (derived) streams d ∈ SU and z, ℓ ∈ SR≥0 whose dependency
graph was shown in Example 3.33 (Dependency Graph of a Well-Formed TeSSLa
Specification) in Section 3.2.4:

z = merge(x, ℓ)
ℓ = last(x, d)
d = delay(z)

We get the joined operator function g : T×D3
⊥ × (D⊥ ×D3

⊥) → D3
⊥ ×D3

⊥ ×T⊥ with

g(t, (mz,mℓ,md), x, (z, ℓ, d)) = ((m′
z,m

′
ℓ,m

′
d), (z′, ℓ′, d′), c)

given by

z′ =

x if x ̸= ⊥,
ℓ otherwise.

m′
z = ⊥

ℓ′ =

mℓ if d ̸= ⊥,
⊥ otherwise.

m′
ℓ =

mℓ if x = ⊥,
x otherwise.

d′ =

□ if t = md,

⊥ otherwise.

c = m′
d =

t+ z if z ̸= ⊥ ∧ z > 0,
md if z = ⊥ ∧md ̸= ⊥ ∧md > t,

⊥ otherwise.

The closed operator function e : T × D3
⊥ × D⊥ → D3

⊥ × D3
⊥ × T⊥ with

e(t, (mz,mℓ,md), x) = ((m′
z,m

′
ℓ,m

′
d), (z′, ℓ′, d′), c)

123

4. Interpreter and Software Compiler

can be derived by replacing z, ℓ and d with z′, ℓ′ and d′, respectively, in the above
equations. Because of the well-formedness of φ we do not end up with cyclic de-
pendencies and we get a well-defined function e. To get a clearer picture of what e
does, we can rewrite some of the equations in terms of the arguments of e:

z′ =

x if x ̸= ⊥,
mℓ if x = ⊥ ∧ t = md,

⊥ otherwise.

m′
ℓ =

mℓ if x = ⊥,
x otherwise.

m′
d =

t+ x if x ̸= ⊥ ∧ x > 0,
t+mℓ if x = ⊥ ∧ t = md ∧mℓ > 0,
md if x = ⊥ ∧md ̸= ⊥ ∧md > t,

⊥ otherwise.

Now we can see how this function realises the specification

z = merge(x, last(x,delay(z))).

Every event on the stream x is directly passed through to z. If x does not contain an
event and the current timestamp matches the target timestamp of the delay stored
in md, then the last value seen on x is outputted as an event on z. The last value
seen on x is stored in mℓ, updated with every new value seen on x. The target
timestamp md is computed either

– as t+ x if there is an event on x or
– as t+mℓ if the target timestamp is reached and hence a new target timestamp

needs to be computed.

The target timestamp is set to ⊥ if x is negative or 0. In any other case, the old
target timestamp is returned as the next one and thus left unchanged. It is necessary
to leave the target timestamp unchanged if the closed operator function is evaluated
with timestamps irrelevant for this specification, e. g. if the period is combined with
other specifications whose events are not synchronous to the period.

Figure 4.2 shows an evaluation of the synchronous monitoring function derived from
this closed monitoring function.

The synchronised input stream q ∈ Q1 is the synchronised version of the monitoring
stream x, which sets the period’s frequency.

The sequence y ∈ (D⊥)∞ contains the input events: It contains all events from q
without timestamps and ⊥ at positions without input events. The closed operator

124

4.1. Semantics

0 1 2 3 4 5 6 7 8 9

q
3 1.5 10

y
⊥ 3 ⊥ 1.5 ⊥ ⊥ 10

m

(⊥
⊥
⊥

) (⊥
⊥
⊥

) (
⊥
3
4

) (
⊥
3
7

) (
⊥
1.5
6.5

) (
⊥
1.5
8

) (
⊥
1.5
9.5

)

c
⊥ 4 7 6.5 8 9.5 19

p

(⊥
⊥
⊥

) (
3
⊥
⊥

) (
3
3
□

) (
1.5
⊥
⊥

) (
1.5
1.5
□

) (
1.5
1.5
□

) (
10
⊥
⊥

)

Figure 4.2.: Evaluation of the synchronous monitoring function for a specifica-
tion which generates a period with a frequency depending on the input stream x.

function is evaluated at these positions because of an expired delay. Note that the
sequence y is not a stream and does not contain timestamps. In the figure, it is
aligned to the events of p′.

The sequence m ∈ (D3
⊥)∞ contains the memory values. The tuples are drawn as

stacked matrix and contain the elements in order mz,mℓ,md, i. e. the memory of
the operator functions merges, lasts and delays. Note that merges does not actually
need any memory, and hence the first entry in this tuple is always ⊥. The sequence
is aligned with the streams in the diagram such that the closed operator function’s
input memory value is aligned with the timestamp. Consequently, the updated
memory value can be found as input to the next timestamp.

The sequence c ∈ (T⊥)∞ consists of the next timestamps. It is aligned with the
streams in the diagram such that the closed operator function’s output is aligned to
the timestamp.

Finally, the synchronised stream p ∈ Q3 is the output stream. The entries of its
tuples are in the same order as the tuples of the memory values, i. e. their values
represent the outputs of the operators merges, lasts and delays in that order.

4.1.6. Correctness and Properties

The following theorem states that the synchronised monitoring function adheres to
the monitoring semantics. As discussed in the introduction, it does not provide

125

4. Interpreter and Software Compiler

the same output, but it always provides a prefix of the monitoring semantics’ out-
put. More precisely, up to the input streams’ minimal progress, the synchronous
monitoring function provides the same output as the monitoring semantics.

Note that the largest timestamp of α(s) for a tuple of monitoring streams s ∈ Pk
D is

the largest timestamp in T (s) being lower (or equal to) than the minimal exclusive
(or inclusive) progress of s.

Theorem 4.24 (Correctness of Synchronised Monitoring). Let φ be a well-formed
TeSSLa specification and f : Qk → Qn the corresponding synchronised monitoring
function and f̂φ : Pk

D → Pn
D the monitoring semantics of φ. Let s ∈ Pk

D be any tuple
of input streams, and t its minimal progress. We than have

γ(f(α(s))) =

f̂φ(s)|≤t if t is inclusive,
f̂φ(s)|<t otherwise.

Proof. The operator functions are defined consistent with the operator’s semantics.
The closed operator function realises precisely the fixed-point operation used in the
definition of f̂φ. The closed operator function only works on individual values and
not streams, so it only performs the calculation for a single global timestamp. The
well-formedness of φ guarantees that the closed operator function is well defined,
i. e. it can be evaluated to a unique solution for every timestamp. The synchronised
monitoring function executes the closed operator function repeatedly for all relevant
timestamps of the input streams. The closed operator function must be called often
enough, which is natural for timestamp-conservative specifications and explicitly
handled for delay, which is the only operator which can create events with additional
timestamps. The synchronisation ensures that every operator function has all the
required inputs ready when called and the future independence of the specification
guarantees that information about previous events is sufficient. The synchronised
monitoring function executes the closed operator function up to the last input event
and hence generates output precisely up to the minimal progress t of s.

By rewriting the above correctness statement, we get the weaker statement for any
synchronised stream q ∈ Qk

γ(f(q)) ⊑ f̂φ(γ(q)).

With this relation and Lemma 4.11 (Galois Connection for Synchronised Streams)
from Section 4.1.2 we can conclude:

Corollary 4.25 (Synchronised Monitoring is an Abstraction of the Monitoring
Semantics). Let φ be a TeSSLa specification and f : Qk → Qn the corresponding
synchronised monitoring function and f̂φ : Pk

D → Pn
D the monitoring semantics of

φ. Then f is an abstraction of f̂φ.

126

4.2. Implementation Concepts

If we relax the statement of the above theorem differently, we get

γ(f(α(s))) ⊑ f̂φ(s).

So we can follow from the above theorem this statement on the relation of the
synchronised monitoring function and the monitoring semantics, too:

Corollary 4.26 (Synchronised Monitoring is Behavioural Equivalent to the Moni-
toring Semantics). Let φ be a TeSSLa specification and f : Qk → Qn the correspond-
ing synchronised monitoring function and f̂φ : Pk

D → Pn
D the monitoring semantics

of φ. Then γ ◦ f ◦ α is behavioural equivalent to f̂φ.

We can derive further insights on the quality of the abstraction from the theorem:
The output of the synchronised monitoring function (in combination with the ab-
straction function α and the concretisation function γ) is not only a prefix of the
monitoring semantics, but this prefix is equal to the output of the monitoring se-
mantics up to the minimal progress of the input streams. Due to the synchronous
nature of the synchronised monitoring function, its output’s progress is synchro-
nised across all the monitoring streams contained in the output tuple. Further, its
output’s (minimal) progress is always its inputs minimal progress. So the synchro-
nised monitoring function provides the least progress and the least refinement on
the output, which is possible while still being future independent.

From Lemma 4.2 (Future Independence Preserves Progress) in Section 4.1.1 we
learned that a future-independent function must at least preserve the minimal
progress. So, in conclusion, the synchronised monitoring function can be seen as
the simplest non-trivial abstraction which generates minimal progress while still
being future independent.

4.2. Implementation Concepts

In order to implement the synchronised monitoring function defined in the last sec-
tion, we need to realise the individual operator functions, the joined operator func-
tion, the closed operator function and finally, the synchronised monitoring function
itself. The main challenge is realising the closed operator function because this
requires executing the individual operator functions in the proper order. In the
examples at the end of the previous section, we already used a linearisation of the
operator functions to specify the synchronised monitoring function for a concrete
specification.

In order to compute all dependencies before their usage, we sort the nodes in the
given specification’s flow graph topologically. The sorting can be done either by ex-
plicitly performing a linearisation or dynamically via message passing. The message

127

4. Interpreter and Software Compiler

passing approach requires fewer steps for the static compilation. It is used for the
interpreter, making its implementation as simple as possible. On the other hand,
static linearisation requires a static compilation step. However, it benefits from the
static compilation in terms of performance.

The main difference between the synchronised monitor function and its implemen-
tation is memory management: In the formal definition of the synchronised monitor
function, the closed operator function gets a tuple of memory values as input and
produces an updated tuple of memory values. The synchronised monitor function
then keeps track of these memories. In the implementation, every individual opera-
tor can keep its memory in a local field. Since every operator only manipulates its
own memory, this is a simple and efficient implementation.

Before getting into the actual implementations of the interpreter and the software
compiler in the next two sections, we discuss two considerations common for both
approaches:

• The imperative algorithm for the synchronised monitoring function, i. e. the
outer loop of the monitor implementation, and

• the linearisation of the closed operator function, i. e. how to execute a single
step inside the monitoring loop.

4.2.1. Imperative Algorithm for the Synchronised Monitoring
Function

Definition 4.20 (Synchronised Monitoring Function) in Section 4.1.4 can be seen as
a denotational description. The following definition describes the same synchronised
monitoring function more operationally:

Definition 4.27 (Imperative Algorithm for the Synchronised Monitoring Function).
Let e : T×Dn

⊥ ×Dk
⊥ → Dn

⊥ ×Dn
⊥ ×T⊥ be a closed operator function for a well-formed

TeSSLa specification φ as defined above. Then the imperative algorithm for the
synchronised monitoring function is given as follows:

We assume the following two imperative procedures with side effects:

• The procedure read() = (t, d) takes no arguments and returns a timestamp
t ∈ T and a data value d ∈ Dk

⊥. The tuple (t, d) are the timestamp and value
of the next event from the synchronised input stream. If there is no next event
in the input stream, t becomes ⊥.

128

4.2. Implementation Concepts

• The procedure write(t, d) takes a timestamp t ∈ T and a data value d ∈ Dn
⊥

and returns nothing. It appends an event with the given timestamp and data
value to the synchronised output stream.

The setup initialises the variables for the timestamps and the inputs and reads the
initial input:
m := ⊥
(t,y) := read()
(t′,y′) := read()

The main loop runs as long as input is available:
while t ̸= ⊥ do

(m, z, c) := e(t,m,y)
write(t, z)
if c ̸= ⊥ ∧ t′ ̸= ⊥ ∧ c < t′ then

(t,y) := (c,⊥)
else

(t,y) := (t′,y′)
(t′,y′) := read()

end
end

Note that the current timestamp t and the next timestamp t′, as well as the current
input y and the next input y′ and the memory m, are mutable variables in the
global scope of this routine. The output z and the next requested timestamp c are
local variables only used inside the loop body.

The following result follows directly from the definition of the synchronised moni-
toring function and the above definition of its imperative description:

Lemma 4.28 (Correctness of the Imperative Algorithm for the Synchronised Mon-
itoring Function). Let φ be a well-formed TeSSLa specification with k free and n
bound streams. Further, let f : Qk → Qn be its synchronised monitoring function
and let p ∈ Qk and q ∈ Qn be two synchronised monitoring streams. The imperative
algorithm for the synchronised monitoring function applied on p such that we get q
realises f(p) = q.

Note that the above lemma only states that the imperative description is equivalent
to the synchronised monitoring function defined in Definition 4.20 in Section 4.1.4.
However, with the correctness of the synchronised monitoring from Theorem 4.24,
the correctness of the imperative description follows.

129

4. Interpreter and Software Compiler

The imperative algorithm explicitly calls the closed operator function e. We will
discuss its implementation in the following subsection.

As already discussed in this chapter’s introduction, there are two main differences
between the synchronised monitoring function for TeSSLa shown above and the
established common synchronous execution scheme shown in Figure 4.1:

• TeSSLa has explicit timestamps. The call to read() provides the next event’s
data y′ from the synchronized input stream together with its timestamp t′.
The current timestamp t is passed to the closed operator function e with every
call.

• TeSSLa can generate additional events with arbitrary timestamps. The closed
operator function e returns an updated memory tuple m, an output z, and a
timestamp c. In the case of timestamp-conservative specifications, c is always
⊥, and the loop calls the closed operator function for every input event. How-
ever, in the general case, the variable c can contain a timestamp that indicates
when the functions must be executed next. The conditional statements after
the call to write(t, z) determine the next current timestamp t and the corre-
sponding input y for the next iteration of the loop: The current timestamp t
is either updated to the next timestamp t′ of the synchronised input stream
or to the timestamp c, depending on which is smaller. In the latter case, the
current input y is set to ⊥ because the synchronised input stream contains no
event at c.

The concept of a next timestamp c is loosely related to RTLola’s ability to determine
a step rate for a specification as presented in [BFS+20]. However, RTLola’s step
rate is fixed for an entire specification, and by calculating the c as shown above, we
are dynamically adjusting the step rate based on the input.

As discussed in Section 3.4.4 TeSSLa is able to generate Zeno streams. The syn-
chronised monitoring function can do so as well: There is no limit on how many
intermediate timestamps can be added before the next timestamp from the input is
considered. As long as the minimal next timestamp is always smaller than the next
timestamp from the input, we will never consider the input again. This situation
only occurs if the generated timestamps converge towards a limit but never reach
the limit – which is precisely the pattern for Zeno behaviour in streams.

4.2.2. Implementing the Closed Operator Function

The imperative algorithm for the synchronised monitoring function discussed above
explicitly calls the closed operator function e : T × Dn

⊥ × Dk
⊥ → Dn

⊥ × Dn
⊥ × T⊥ of

the TeSSLa specification φ. In the following, we discuss the two slightly different

130

4.2. Implementation Concepts

approaches of the interpreter and the software compiler on implementing the closed
operator function. The implementation details of these two approaches are given in
the following sections.

The TeSSLa flow graph might contain cycles. Thus, there is no apparent order for
the execution of the operator functions contained in the closed operator function.
However, we can distinguish three steps of the computation:

1. Computation of the outputs. Every operator computes the value for its output
stream at the current timestamp.

2. Computation of the updated memory values. The operators which use their
memory cell compute a new value for their memory cell.

3. Computation of the timestamp for the next evaluation. The operator delays

additionally computes a timestamp for the subsequent evaluation.

The operator functions are defined such that they do not need dependencies related
to the delayed-labelled edges in the flow graph to compute their outputs for the
current timestamps. These inputs are only required to compute the updated values
for their memory cells and the timestamps for the subsequent evaluation, which in
turn are both not used until the next evaluation. Thus, we can implement the closed
operator function by splitting the computation into the three steps listed above.

For every operator, we distinguish its inputs as follows:

Definition 4.29 (Delayed and Immediate Inputs). Let φ be a TeSSLa specification
and o an operator in its flow graph. Every incoming edge of o in the flow graph is
called input of o. The incoming delayed-labelled edges of o are called delayed inputs,
the others are called immediate inputs.

For the computations of the outputs, the operators must still be evaluated in proper
order. In the case of the interpreter, this scheduling is done dynamically via message
passing at runtime:

Definition 4.30 (Message-Passing Implementation of the Closed Operator Func-
tion). Let φ be a well-formed TeSSLa specification with the closed operator function
e. The message-passing implementation of e works as follows: Every operator has a
variable for every input. The inputs of the closed operator function are distributed
into the input variables of all dependent operators according to the flow graph. For
every operator whose immediate inputs are available, the operator’s output is com-
puted and distributed into the input variables of all dependent operators according
to the flow graph. For every operator whose immediate and delayed inputs are avail-
able, the memory cells are updated, and the timestamps for the next evaluation are
computed.

131

4. Interpreter and Software Compiler

Note that the condition to compute the output of an operator is immediately sat-
isfied in case of the operators delays and units: They do not have any immediate
inputs, and thus, their output values for the current timestamp can be computed
immediately based on their memory values. The operator delays then needs its
delay-labelled input in order to update its memory value, but the updated memory
value is not needed until the evaluation for the next timestamp.

The following lemma states the correctness of the above construction:

Lemma 4.31 (Correctness of the Message-Passing Implementation of the Closed
Operator Function). Let φ be a well-formed TeSSLa specification with the closed
operator function e. Then the message-passing implementation of e is correct.

Proof. All operator functions are defined such that the computations of the out-
put values only relies on the old memory values and the immediate inputs. The
flow graph of φ without the delayed-labelled edges is acyclic. The inputs of e are
distributed to the operators, and consequently, the output of every operator is com-
puted. The computation of the updated memory values only depends on the input
values. Once every output is computed, all delayed inputs are available, too.

In the case of the software compiler, the closed operator function is implemented
with a static evaluation order of the operators. Again we split the assignments of the
closed operator function into the computation of the stream values and the memory
updates:

Definition 4.32 (Linearising Implementation of the Closed Operator Function).
Let φ be a well-formed TeSSLa specification with the closed operator function e.
The linearising implementation of e is obtained as follows: Use the flow graph of
φ without the delayed-labelled edges to perform a topological sort of the derived
streams. Realise the computation of the values of the derived streams in the order
given by the topological order. Next, translate the computation of the new memory
values and the next timestamps for all operators in arbitrary order.

The following lemma states the correctness of the above construction:

Lemma 4.33 (Correctness of the Linearising Implementation of the Closed Opera-
tor Function). Let φ be a well-formed TeSSLa specification with the closed operator
function e. Then the linearising implementation of e is correct.

Proof. We extend the proof of Lemma 4.31 as follows: For every directed acyclic
graph, a topological order exists. If executed in any topological order, operators are
executed if all immediate inputs are available. The updated memory values and the

132

4.3. Interpreter

timestamps are not used before the next iteration and can thus be computed in any
order.

The following two sections discuss how the interpreter’s message passing and the
software compiler’s linearisation are implemented.

4.3. Interpreter

The interpreter uses the approach from Definition 4.27 (Imperative Algorithm for the
Synchronised Monitoring Function) in Section 4.2.1 and Definition 4.30 (Message-
Passing Implementation of the Closed Operator Function) in Section 4.2.2. The
input events are assumed to be provided in a synchronised fashion, i. e. we get the
information included in one tuple of the synchronised monitoring stream.

Object-oriented programming languages provide natural implementations of mes-
sage passing: Dynamic object structures communicating by exchanging messages is
one of the main object-oriented principles established by Smalltalk. [GR83] Objects
represent every node of the dependency graph and perform the corresponding indi-
vidual operator function. These objects are connected using the common observer
pattern [GHJV94], i. e. every node listens to notifications of the nodes it depends
on directly.

4.3.1. Implementing the Closed Operator Function

Figure 4.3 shows the interpreter in a UML class diagram with simplified type
signatures. Parameter names are omitted, and return types are only specified if
the method returns something. The Value type must be an option type, e. g.
Option[Any].

A Stream has Listeners listening to propagations of the streams it depends
on directly. During the initialisation, a Stream registers its listeners by calling
addListener on each direct predecessor in the flow graph. A stream can call
propagate with a value to send this value to all its listeners.

Bound streams of a TeSSLa are defined in terms of operators. Bound streams
are realised as subclasses of Stream, which overrides init with the registration
of listeners to its dependencies. The late initialisation using the method init is
discussed further in Section 4.3.4.

133

4. Interpreter and Software Compiler

A stream keeps track of its dependencies and propagates a value for the current
timestamp to its listeners when it has received enough information from its depen-
dencies.

A derived stream defined by a lift operator can propagate a new value when it has
received a value (or ⊥) from all its direct predecessors in the flow graph. Due to the
synchronous nature of the interpreter, all streams are evaluated for every relevant
timestamp.

The dynamic implicit computation of the topological order does work because the
operands are implemented to be independent of the order in which they receive
information. They wait until they get all the needed information and perform their
action.

A stream defined by a last can propagate a new value as soon as it receives a trigger
on its input r. It is not necessary to wait for the update of its value input because,
as one can see in the operator’s definition in Definition 4.16 in Section 4.1.3, the
input v is only used to update the local memory.

The delay operator only has a delayed input: A stream defined by a delay can
propagate a new value immediately for every new timestamp without waiting for
any input because, as one can see in the operator’s definition Definition 4.17 in Sec-
tion 4.1.3, the output is only defined in terms of the memory and the timestamp.

Hence a stream defined by a delay operator is a TriggeredStream which has an
additional method step which will be called explicitly by the Specification
for every timestamp. The same holds for the unit operator, which does not depend
on any other streams. It must be triggered explicitly, too.

An InputStream propagates its explicitly set value to its listeners with every new
timestamp. Hence it is a TriggeredStream, too. Additionally, it has a public
method to set its current value externally.

The closed operator function is realised by the message passing along the dependency
graph. The Specification realises the computation of the following timestamp
defined in the joined operator function and the synchronised monitoring function:
Streams can request next timestamps via setTrigger and the next timestamp of
the input is set via setTime.

4.3.2. Implementing the Synchronised Monitoring Function

For every timestamp of the input streams, the user

a) sets the timestamp of the specification via setTime, then
b) sets current values of the input streams for that timestamp and finally

134

4.3. Interpreter

c) executes the specification for that timestamp calling step.

For every call to setTime, the specification sets the current time to the next re-
quested time and steps the specification until the externally set timestamp is smaller
than the next requested timestamp. Because the input streams are not provided with
new values, they propagate ⊥ for those timestamps.

A call to step steps the specification for the timestamp set via setTime: The
specification calls step on all its TriggerStreams, and the current timestamp is
made available to all streams via getTime.

How a specification is built and executed is discussed further in Section 4.3.4.

Every operator function is implemented as a class extending the class Stream (or
the class TriggeredStream) and overrides init (and step). When they are
explicitly stepped or receive propagated values, they perform the following steps:

1. Reading the global timestamp. Every stream can read the current global times-
tamp by calling getTime on the specification.

2. Receiving values from the dependent streams. Streams receive values from other
streams they depend on because they listen to their propagations.

3. Receiving a call to step. Triggered streams are explicitly triggered for every
new timestamp.

4. Propagating the computed value. Streams manually keep track of the informa-
tion they receive from their predecessors in the flow graph. They propagate
their current value to their listeners as soon as they receive enough information.

5. Updating the memory. If streams receive enough information from their prede-
cessors in the flow graph, they update their local memory. In the case of lasts

and delays updating the memory requires more information than propagating
the newly computed value.

6. Register next timestamps. The implementation of delays finally registers its
next timestamp from the specification. This registration is done again with
every specification evaluation because the specification does not keep track
of registered timestamps. Instead, it computes the next timestamp of the
minimum of all requested timestamps and the next external timestamp.

Note that the individual steps are not necessarily always executed in that order.
Steps 2 and 3 are the only two entry points where a method of the individual
object is called. The timestamp is read as part of step 2 or 3, which propagates the
computed value, updates the memory and requests the trigger.

135

4. Interpreter and Software Compiler

Stream
init()
+ addListener(Listener)
propagate(Value)

Listener
+ call(Value)

TriggeredStream
+ step()

InputStream
+ set(Value)

Specification
+ step()
+ setTime(Time)
+ getTime(): Time
+ setTrigger(Time)

calls 0..* callee 0..*

triggers
0..*

specification1

Figure 4.3.: UML class diagram of the interpreter.

4.3.3. Example

Figure 4.4 shows an object diagram for the specification discussed in Example 4.23
in Section 4.1.5. One can see the relation to the dependency diagram for this spec-
ification shown in Example 3.33 from Section 3.2.4. Note that the direction of
the edges is reversed. In the dependency diagram, an edge depicts a dependency
while the direction of the edges in the object diagram corresponds to the data flow:
Streams propagate their value to their listeners.

The associations related to the delayed-labelled edges in the dependency graph are
drawn in thick and blue. For the current timestamp, the data passed along these
associations is not needed to send out an event but only to update the local mem-
ory. Hence, every cycle in the graph must contain at least one such edge because
otherwise, there would be a deadlock of streams waiting for enough inputs.

136

4.3. Interpreter

d: TriggeredStream

: Listener

z: Stream

: Listener : Listener

l: Streamx: Input

: Listener

: Listener

s: Specification

callee

callee callee

callee

callee

calls

specification

calls calls

calls

calls

sp
ec

ifi
ca

tio
n

triggers

sp
ec

ifi
ca

tio
n

triggers

sp
ec

ifi
ca

tio
n

Figure 4.4.: UML object diagram for the specification discussed in Exam-
ple 4.23.

137

4. Interpreter and Software Compiler

4.3.4. Scala DSL

This section describes how a TeSSLa specification is translated into a configuration
for the interpreter:

Operators are converted into a function that takes streams and creates a new stream
which it returns. This way, we already get a very simple internal Scala DSL that
can specify TeSSLa specifications. The following code snippet shows how to express
the specification from Example 4.23 in Section 4.1.5 in this DSL:
var s = new Specification {

val x = new InputStream
val z: Stream = merge(x, last(x, delay(z)))
z.addListener(_.map(v => println(s"$time: z = $v")))

}

The recursive stream z is defined in terms of z, i. e. the stream object z depends on
itself. For this cyclic definition to work, the listeners are registered lazily. The object
z cannot accept listeners when the expression delay(z) is evaluated first. Thus,
every stream has an init method, in which the stream registers its listeners. This
method is called when the first listener was registered to that stream. In the above
example, the listeners are not created and registered until the printing listener is
registered to z. This late registration ensures that all the stream objects are already
created and can accept listeners when they create and register their listeners. This
late initialisation works because, for every recursive definition, at least one of the
involved streams is used outside of the recursive equation. At least, as in the above
example, to print the event’s values.

The input is then passed by incrementing the timestamp, setting the input values
for that timestamp and calling the specification’s step method:
s.time = 100
s.x.value = Some(BigInt(3))
s.step()

This straightforward implementation already supports macro expansion. For exam-
ple it is possible to define default based on merge and const as follows:
def default(s: Stream, value: Any): Stream =

merge(s, const(value, unit))

However, this implementation does not have any proper type system or type check-
ing. There is also no static optimisation or constant folding. Everything is computed
at runtime. These features could be added either by extending this basic internal
DSL into a proper one or by implementing an external DSL that compiles into this

138

4.4. Software Compiler

backend. The latter approach was chosen for the TeSSLa compiler and interpreter
available on the TeSSLa website1. A thorough discussion of the engineering details
of proper type checking and constant folding would go far beyond the scope of this
thesis.

The primary purpose of the interpreter lies in its simplicity. The implementation
of the operator functions is straightforward due to their synchronous nature: They
are provided with all the data they depend on and executed for a global timestamp.
The correct execution order is determined dynamically at runtime using message
passing. Every operator sends its output to all operators depending on it. Operators
without input are scheduled explicitly. This implementation can be easily checked
for correctness and is used as a reference implementation for the more advanced
implementations discussed in the following chapters.

4.4. Software Compiler

Due to its simplicity, the interpreter presented in the last section is a reference im-
plementation for the TeSSLa semantics. However, it is not very fast. The approach
of the interpreter has one main disadvantage: The execution is based on passing
messages between objects. The program execution flow is entirely determined by
the objects created dynamically at runtime. This dynamic prevents compile-time
optimisation, and it can be assumed that the runtime optimisation in the just-in-
time (JIT) compilation of the Java virtual machine (VM) [CFM+97, Ven98] cannot
gain much in this scenario. All conditions and jumps are entirely based on the dy-
namic object graph, which the JVM cannot analyse in detail and must assume that
it might change in the future. We will see in the evaluation in Chapter 8 that the
interpreter is much slower than any other implementation.

In this section, we will discuss a different approach: As the interpreter, the compiler
uses the approach from Definition 4.27 (Imperative Algorithm for the Synchronised
Monitoring Function) in Section 4.2.1, and the input events are assumed to be
provided in a synchronised fashion. However the compiler relies on Definition 4.32
(Linearising Implementation of the Closed Operator Function) in Section 4.2.2. So
instead of message passing, plain variables are updated in the loop.

The TeSSLa specification is compiled into imperative code with local variables repre-
senting the current value of the streams and the memory cells of the operators. This
code is close to a manual implementation and can profit from compile-time optimisa-
tion performed by different backends, e. g. the LLVM compiler [Lat02, LA04, Lat12]
or the Java VM JIT.

1https://www.tessla.io

139

https://www.tessla.io

4. Interpreter and Software Compiler

4.4.1. Implementing the Synchronised Monitoring Function

The code presented in Definition 4.27 (Imperative Algorithm for the Synchronised
Monitoring Function) in Section 4.2.1 is given in an imperative form that can be
realised in various programming languages. The body of the main loop consists of
three steps:

1. Apply the closed operator function using the current timestamp, the old mem-
ory values and the current input stream values.

2. Write the output, i. e. the computed derived stream values.

3. Compute the next timestamp and read the next input stream values if needed.

The imperative algorithm is given in pseudocode, which can be realised with different
imperative programming languages. The implementation was done for Java and
Rust. See Chapter 8 for an empirical comparison of the two implementations.

Although the translation scheme would generally work with complex data types, the
implementation assumes that all data types are primitive. We do not discuss the
memory management of complex data structures and assume all data structures to
be immutable.

The pseudocode uses the additional value ⊥ indicating the absence of an event or
a value in the memory cell. In order to avoid the overhead of additional objects,
especially in the Java implementation, all variables whose data type allows such
an additional value are implemented as a variable accompanied by an additional
Boolean flag indicating if the value is present or not.

4.4.2. Implementing the Closed Operator Function

The code of Definition 4.27 (Imperative Algorithm for the Synchronised Monitoring
Function) in Section 4.2.1 explicitly calls the closed operator function. The imple-
mentation inlines the entire code to avoid the overhead of any function calls. The
memory variables are local to their basic operator: A memory variable is only used to
compute a stream value or to update that particular memory value. Hence, inlining
the closed operator function can be done without reproducing any local variables.
The input stream variables are immutable inside the closed operator function. They
are only changed during the input computation. The derived stream variables are
fully immutable. The memory variables are only changed in the final block where
all memory values are updated, and the memory values are only updated depending
on their old value and the immutable stream values computed above.

140

4.4. Software Compiler

The software compiler translates a TeSSLa specification into Rust or Java code, then
compiled further with the corresponding compilation toolchain. Such a translation of
one high-level language into another is commonly called a source-to-source compiler
or transpiler. The overall compilation process benefits from existing optimisation
phases in the different compilation backends, e. g. the LLVM compiler or the Java
VM JIT.

The code generation follows these principles:

• Simple Code. The generated code is kept as simple as possible. We use local
variables to store the values of derived streams and the memory cells. The
closed operation function is inlined into the loop of the synchronised monitoring
function.

• Structured Programming. The generated code only uses common features of
structured imperative programs, i. e. arithmetic computations, variable assign-
ments, conditional statements and a while loop.

So, in the end, the code consists of conditional variable assignments performed in an
endless loop. The code generation was implemented with Java and Rust, and further
target languages can easily be added because no language-specific features are used.
This language-agnostic implementation has the advantage that the generated code
is simple and reusable.

However, it has the disadvantage that compiler-specific features such as function
pointers or jumps to memory addresses are not used. For example, [HRR91] in-
troduces the idea for the Lustre compiler not to execute all the synthesised code
for every time instant but to only execute those parts of the code whose depen-
dencies have changed. They use jumps to specific addresses to switch between
different execution states in which only the currently relevant parts of the code are
executed. The Signal compiler uses a similar approach of checking the dependen-
cies statically and only executing those parts of the code whose dependencies are
changed. [ABL95] The pacing type refinement and filter refinement for RTLola try
to achieve the same goal of not executing code related to streams unaffected by the
current timestamp. [BFKS20] For simplicity, such approaches are not considered in
this thesis.

4.4.3. Example

As an example for the code generation we continue with the specification from
Example 4.23 in Section 4.1.5:

141

4. Interpreter and Software Compiler

Example 4.34 (Imperative Code). Consider the following TeSSLa specification φ
with the free (input) stream x ∈ SR≥0 and the bound (derived) streams d ∈ SU and
z, ℓ ∈ SR≥0 whose dependency graph was shown in Example 3.33 in Section 3.2.4:

z = merge(x, ℓ)
ℓ = last(x, d)
d = delay(z)

For this specification the following pseudo code for the synchronised monitoring
function was obtained by applying Definition 4.27 (Imperative Algorithm for the
Synchronised Monitoring Function) from Section 4.2.1 and Definition 4.32 (Lin-
earising Implementation of the Closed Operator Function) from Section 4.2.2:
// initialisation
(mℓ,md) := (⊥,⊥)
(t, x) := read()
(t′, x′) := read()

// main loop
while t ̸= ⊥ do

// 1. execute closed operator function
// 1.1 compute derived stream values
d := (md = t) ? 0 : ⊥
ℓ := (d ̸= ⊥) ?mℓ : ⊥
z := (x ̸= ⊥) ?x : ℓ
// 1.2 update memory values
mℓ := (x = ⊥) ?mℓ :x

md :=

t+ z if z ̸= ⊥ ∧ z > 0,
md if z = ⊥ ∧md ̸= ⊥ ∧md > t,

⊥ otherwise.
// 1.3 compute next timestamp request
c := md

// 2. write events
write(t, d, ℓ, z)
// 3. compute next timestamp and next input
if c ̸= ⊥ ∧ t′ ̸= ⊥ ∧ c < t′ then

(t, x) := (c,⊥)
else

(t, x) := (t′, x′)
(t′, x′) := read()

end
end

142

4.4. Software Compiler

The code starts with an initialisation of the memory cells. The tuple (t, x) always
contains the current timestamp and the corresponding values of the input streams.
The tuple (t′, x′) is the same for the next timestamp. The procedures read and write
are assumed as defined in Definition 4.27. The variable t′ becomes ⊥ if there is no
next timestamp in the input.

The main loop first computes the current values of the derived streams d, ℓ and z.
Then the memory cells for the delays and the lasts operator are updated based on
the new value of z. Finally, the next timestamp request is set. Since this specification
contains only a single operator delays which can make such requests, there is no
need to compute the minimum.

Finally, the computed values are written, and the next timestamp is computed. As
already discussed in Section 4.2.1, splitting the closed operator function into the
computation stream values and memory updates fits precisely the well-established
execution scheme discussed in [BCE+03] and shown in Figure 4.1 in this chapter’s
introduction. The primary adjustment for TeSSLa is this computation of the next
timestamp which can be either the next timestamp if the input stream or – if it
exists and is smaller – the computed next additional timestamp c.

See Figure 4.2 and its explanation in Section 4.1.5 for an illustration of the execution
of this synchronised monitoring function.

4.4.4. Compiler Frontend

The software compiler uses a compiler frontend, parsing and processing a TeSSLa
specification in a textual format. This textual format can be seen as an external
DSL in contrast to the internal DSL used in the Scala interpreter.

Example 4.35 (Textual Format of TeSSLa Specifications). Consider the following
specification from Example 3.80 (Variable Frequency Period) in Section 3.5.3 which
was used as running example in this chapter in Examples 4.23 and 4.34:

Let x ∈ PR+ be a free monitoring stream and let ℓ, z ∈ PR+ and d ∈ PU be derived
monitoring streams given by the following specification:

d = delay(z)
ℓ = last(x, d)
z = merge(x, ℓ)

The specification’s output consists of the derived stream z.

This specification is written in the textual format as follows:

143

4. Interpreter and Software Compiler

free input streams
in x: Events[Float]

derived bound streams
def d: Events[Unit] = delay(z)
def l = last(x, d)
def z = merge(x, l)

output streams
out z

Note that we need an explicit type annotation for at least one stream in a recursive
definition.

This section gives a rough overview of the compiler frontend. Its details are not cov-
ered in this thesis. The TeSSLa compiler frontend consists of the following phases:

• Parser. The parser is written in ANTLR [PQ95, PF11] and parses an abstract
syntax tree from the textual representation of a TeSSLa specification.

• Type Checker. The type checker infers the types of the declared streams and
performs implicit type conversions defined in Section 3.3.7.

• Constant Evaluator. The constant evaluator evaluates constant expressions. It
expands derived operators and macros (see Section 3.3) into their definition.

This compiler frontend is used for the further implementations for EPUs, and FP-
GAs discussed in Chapters 5 and 7, too. The set of basic operators that are not
expanded can be configured such that for the different implementations, different
sets of operators can be translated directly. As discussed in Section 3.4.2 different
sets of basic operators are sufficient. In addition, some derived operators can be
translated directly for performance reasons, too.

4.5. Integration and Test Setup

We conclude this chapter with some final remarks regarding the integration and test
setup for the interpreter and the software compiler. The interpreter is built with the
primary goal of simplicity and correctness and serves as a reference implementation.
It was extensively tested with a test suite of simple specifications whose expected
outputs were manually defined. The other implementations were tested by com-
paring their output with the interpreter. With this approach, the correctness of an

144

4.5. Integration and Test Setup

implementation can be tested for different complex specifications and input traces
without the error-prone task of manually specifying an expected output.

For every implementation considered in this thesis, we will discuss the integration
and test setup for two scenarios: Testing the correctness of the implementation
by comparison with the interpreter and evaluating its performance as discussed in
Chapter 8.

4.5.1. Trace Encoding

The above sections are agnostic to the encoding of the input and output trace. The
functions read and write in Definition 4.27 (Imperative Algorithm for the Synchro-
nised Monitoring Function) from Section 4.2.1 are assumed to have the proper side
effects.

For debugging and testing purposes, a simple text format for traces is manageable
for parsing and writing and, most importantly, easy to read, write and manipulate
for humans: Every line represents one event and contains a timestamp, the name
of the stream and the event’s value. As an example, consider the event on stream
with the name foo at the timestamp 12 with value 42. Such an event would be
represented as follows:
12: foo = 42

Such a human-readable plain text format becomes inefficient for larger traces be-
cause parsing the trace may consume more time than processing the events in the
synthesised specification. Binary formats can be read much easier without any pars-
ing.

The Common Trace Format (CTF)2 is a standardised interchange format for binary
traces, which is used by several tracing tools like Linux Trace Toolkit Next Genera-
tion (LTTng) [SLD12]. CTF is optimised for complex hierarchical data to be written
very efficiently. This format allows minimal intrusive tracing because observed data
needs only minimal processing before it is written into the trace. CTF does not
specify an exact encoding, but it is a standardised way to describe data traces that
follow some conventions.

This thesis uses simple binary formats roughly inspired by CTF and optimised for
fast processing, i. e. everything is encoding as 64-bit integers that can be directly
mapped to variables, and the order of data values and timestamps is specific for
every specification without any metadata stored in the traces.

2https://diamon.org/ctf/

145

https://diamon.org/ctf/

4. Interpreter and Software Compiler

The more information about the event pattern in the trace is already available at
compile-time, and the more regular this pattern is, the more can it be utilised by
the input reader. For example, if a trace contains alternating events on two streams
and every event occurs at a different timestamp, then a binary encoding could leave
out any form of address or event type encoding. The input reader can read the
data based on its internal state. If the input trace is less regular, some event type
or address encoding is added. See Chapter 8 for more information on the actually
performed experiments.

4.5.2. Test Setup

The software compiler was tested by comparing its output with the interpreter.
Figure 4.5 gives an overview of the simple architecture of such an integration test.
Both backends were equipped with a parser and printer for the text-based trace
format mentioned above. For this setup, the interpreter was attached to the compiler
frontend discussed in Section 4.4.4, and the object graph is built dynamically from
the parsed specification.

The same specification is used as input for the interpreter and the compiler. The
compiler produces source code for the target programming language, i. e. Scala, Java
or Rust. In the same way, as the functions read and write in the above pseudocode
are assumed to have the proper side effects, the input and output functions are
provided as templates to the compiler. The compiler of the target programming
language then compiles the source code to a binary which is executed in the runtime
environment, e. g. the JVM, or directly on the target platform.

The same input trace is fed into the interpreter and the compiled engine. The output
trace of both backends is fed into the trace comparator. The trace comparator sorts
the events with the same timestamp alphabetically because they might be produced
in arbitrary order. Afterwards, it can simply compare the text-based traces.

4.6. Conclusion

This chapter introduced the synchronised monitoring function on synchronised mon-
itoring streams as an abstraction of the monitoring semantics from Section 3.5. Due
to its synchronous nature, the semantics introduced in this chapter generates the
least progress. The synchronised monitoring function executes the closed operator
function for every timestamp of the input stream. If the specification creates ad-
ditional timestamps, these are considered and inserted appropriately. The closed

146

4.6. Conclusion

Input Trace

Specification

TeSSLa
Interpreter

TeSSLa
Compiler

Target
Compiler

Trace
Comparator

Test Result

Engine

Ru
nt

im
e

En
vi

ro
nm

en
t

Parser

PrinterOutput
Trace

Source
Code Binary

Figure 4.5.: Integration test setup for the software compiler in comparison with
the interpreter used as reference implementation.

operator function for a specification is built from the operator functions correspond-
ing to the operators in the specification’s flow graph.

The synchronised monitoring function is implemented as a while loop iterating over
all timestamps in the interpreter and the software compiler. The interpreter uses
message passing to dynamically evaluate the operators in the flow graph in a causal
order. The software compiler explicitly performs a topological sorting of the opera-
tors in the flow graph and compiles it into a structured program. The interpreter is
implemented in Scala; the compiler generates Java or Rust code.

The correctness of the interpreter was tested with manual unit tests; the software
compiler was tested by comparing it with the interpreter. The synchronous software
implementation will serve as a baseline regarding the evaluation of the EPU and the
FPGA implementations discussed throughout the rest of this thesis.

147

5 TeSSLa on Embedded Procssing Units
(EPUs)

In the previous chapter we discussed software-based TeSSLa implementations. For
the rest of this thesis we will introduce hardware-based implementations and com-
pare their performance with the software implementations in the evaluation in Chap-
ter 8. The main idea of hardware-based implementations is to utilise the inherent
parallelism of hardware by passing events along the flow graph in order to evaluate
a TeSSLa specification. We discuss two different approaches to map the flow graph
of a TeSSLa specification onto processing hardware: Chapter 7 covers the synthesis
of a TeSSLa specification on an FPGA. This synthesis places every operator of the
flow graph individually on the FPGA. This chapter presents a different approach.
We map the flow graph onto a linear sequential pipeline of processing units that run
in parallel.

This thesis uses Event Processing Units (EPU) [Weia, Weib] which are a specially
made hardware for stream processing, especially for processing TeSSLa. The EPUs
are designed and built by Accemic1 and are made available synthesised on an FPGA.
They are programmed by writing a special configuration into their memory. This
chapter discusses how to compile a TeSSLa specification into such an EPU configu-
ration.

The EPUs are organised in a pipeline, i. e. the output events of one EPU are the
input events of the next EPU. A single EPU is a processing unit that processes
incoming messages and sends outgoing ones further down the pipeline. Such a
message encodes a TeSSLa event and consists of a timestamp, a data value and a
target address. Inspired by data flow processors the target address indicates how a
message is processed by the EPU. Every EPU is equipped with its own data and
command memory. The data memory is used to store computed data, and the
command memory is used to program the EPU: It contains instructions how to
process a message for a given target address. Events from the input streams are
encoded as messages to the first EPU of the pipeline. The outgoing messages of
the last EPU of the pipeline are interpreted as events of the specification’s output
streams.

1https://accemic.com

149

https://accemic.com

5. TeSSLa on Embedded Procssing Units (EPUs)

Accemic has provided the EPU setup, and the author has no access to the source
code of the EPUs. All information about the inner workings of the EPUs are taken
from publications [DDG+18, CHS+18, DGH+17] and patents [Weia, Weib] as well
as private communication with Albert Schulz and Alexander Weiss from Accemic.
The EPUs are covered in this thesis as a compilation target. Their design and
implementation is not part of this thesis.

TeSSLa is evaluated on the EPUs following the synchronous semantics defined in
Section 4.1, i. e. there is no explicit encoding of progress or the absence of events.
Instead the timestamp increase is used as a trigger for additional computations.
However, the EPUs add pipelining to the synchronous execution model of the inter-
preter: Instead of a single global current timestamp, every EPU has its own current
timestamp, such that the increment of the current timestamp is not required to
happen synchronously on all EPUs but can sequentially travel along the pipeline of
EPUs. EPUs located further back in the pipeline either have the same or an earlier
current timestamp.

For the compilation towards the EPUs, we only consider timestamp-conservative
TeSSLa specifications. The introduction of additional timestamps which are not
already present in the input is not covered for EPUs in this thesis because it would
require the ability to enqueue and sort messages by their timestamps to achieve an
effect similar to the execution of the entire closed operator function for the computed
next timestamp in Definition 4.27 from Section 4.2.1.

This chapter is organised as follows: Before we discuss the EPU architecture in
detail, we first give a rough overview of the concept of data flow processing in order
to compare the classic data flow architecture with EPUs. After the introduction of
the EOU hardware in Section 5.2 a formal model of this hardware is introduced in
Section 5.3 which is used to formally define the implementation of TeSSLa operators
on the EPUs and the mapping of TeSSLa flow graphs to an EPU pipeline. We come
back to the actual hardware in Section 5.7 and discuss several implementation details
and optimisations.

5.1. Data Flow Processors

The von Neumann architecture is the classic control flow architecture. Figure 5.1
depicts a simplified version of this architecture on the left. The program memory
contains a sequence of instructions that are executed in sequential order. The con-
trol unit has a program counter pointing to the current instruction in the program
memory. An instruction can

– load data from the data memory into a register,

150

5.1. Data Flow Processors

ALU Register

Control Unit

Program Counter

Memory

Program

Data

Operation Unit 1 ALU
...

Operation Unit n ALU

Memory

Cell 1
...

Cell mD
ist

rib
ut

io
n

N
et

wo
rk

A
rb

itr
at

io
n

N
et

wo
rk

Figure 5.1.: Von Neumann control flow architecture on the left. Diagram based
on [SRU99, Fig. 1.1]. Control flow depicted in red and data flow in blue. Basic
data flow architecture on the right. Diagram based on [DM74, Figure 2].

– operate on the registers with the arithmetic logic unit (ALU),
– write data from a register to the data memory, or
– (conditionally) manipulate the program counter.

On the other hand a basic dataflow architecture was introduced in [DM74] is shown
on the right in Figure 5.1: The memory is split into many cells. In [DM74], each
cell contains:

– two input data values,
– two ready bits,
– an instruction code, and
– a target address.

The arbitration network selects cells whose ready bits are set and loads them into an
operation unit. Every operation unit is equipped with an ALU. Multiple operation
units can work independently in parallel and execute their cell’s instruction with
their ALU. The distribution network writes the operation units’ results into the
cells’ data values indicated by the target address. The ready bits of the data values
are set when the data value is written and erased when the cell is executed.

This section can only give a rough overview of the basic principles of data flow
processors as far as these are needed to classify the concept of EPUs. For a more
detailed overview and introduction into data flow processors see for example [HK08]
and [SRU99, Chapter 2].

151

5. TeSSLa on Embedded Procssing Units (EPUs)

While a control flow architecture processes the program code in sequential order,
the execution order of a data flow program is only determined by the availability of
the input data values of the cells. This scheduling of the cells is done dynamically at
runtime. As soon as the ready bits are set, a cell can be chosen for execution by the
arbitration network. The literature refers to such a cell as one that can fire. There
is no fixed execution order if multiple cells can fire. Every cell can be executed on
every operation unit; there is no static mapping from cells to operation units. The
mapping is done entirely dynamic at runtime by the arbitration network.

While imperative languages are compiled into a sequence of instructions for a control
flow processor, data flow processors can execute data flow graphs. A data flow graph
is a directed graph consisting of nodes representing operations and edges representing
data flow, i. e. input dependencies and output targets. The nodes of a data flow graph
are represented by the memory cells of the data flow architecture. The edges are
encoded as the cell’s target addresses. The execution semantics of data flow graphs
represent the data flow architecture as follows: Every edge can hold at most one
data value, and a node can be executed if all its input dependencies are fulfilled, i. e.
if every incoming edge holds a data value. Executing a node performs is arithmetic
logic operation and consumes the data values on its input edges, and produces data
values on its output edges. Data flow graphs are functional and composable, i. e. the
operations associated with the nodes cannot have any side effects, and the outputs
of one graph can be directly used as inputs for another graph.

Languages which can be compiled into data flow graphs are single-assignment lan-
guages. (see for example [SRU99, Chapter 2]): Every variable can only be written
once, i. e. it may only appear once on the left-hand side of an assignment.

The first data flow architecture whose simple approach is described above and vi-
sualised in Figure 5.1 on the right was introduced in [DM74] and many extensions
and improvements have been made since then: Every edge of the data flow graph
can hold at most one value because the input value field of the cell in the memory
is statically mapped to the edge of the graph. A dynamic mapping from edges of
the graph to memory locations was introduced in [Vee86] to overcome this limita-
tion: Every value is equipped with a tag (sometimes also called colour) indicating
its computational context. A node can be executed if values carrying the same tag
for all inputs are available. The generated output carries the same tag. New tags
are generated, for example, with every loop iteration or procedure call. This ap-
proach is called dynamic or tagged-token data flow and improves the parallelism of
the architecture. An explicit token store (ETS) [AC03] takes this approach one step
further and replaces the inefficient tag matching with a direct mapping between tags
and memory offsets. Another extension is the addition of a pipelining of the steps of
the operation unit [DG88]: The Pipelined Instruction Processing Unit (PIPU) per-
forms the steps instruction fetch, operand fetch, scalar operation and result store in

152

5.2. EPU Hardware

a pipeline. This pipeline never stalls because the Dataflow Instruction Scheduling
Unit (DISU) only schedules nodes that can be executed. Monsoon [PC90] is an
example of a commercially available ETS computer.

5.2. EPU Hardware

The central motivation for data flow architectures is their inherent parallelism. A
fixed input is encoded in the processor’s memory together with a data flow graph
which is then executed in a highly parallel fashion. TeSSLa’s flow graphs as defined
in Definition 3.31 in Section 3.2.4 are quite similar to data flow graphs. However,
there are several main differences between the data flow architectures presented in
the last section and the requirements for TeSSLa implementations as discussed in
Chapter 1:

• Data flow processing is not explicitly optimised for stream processing. We are
in the specific setting of online monitoring: We want to process events on an
input stream in their order of appearance without the need to store the entire
stream in the memory.

• Data flow graph’s semantics can be seen as an event processor: If there is a
value for all inputs of a node, that node can fire and produces an output event.
TeSSLa is a synchronous language that requires additional synchronisation
mechanisms to preserve the relation of input and output events regarding the
logical timing of events (see synchronous hypothesis in Chapter 1). Because
of the synchronisation based on timestamps used in the TeSSLa semantics,
such a TeSSLa flow graph cannot be directly executed by the simple data flow
architecture introduced in the last section.

• TeSSLa uses explicit timestamps attached to every event in order to synchro-
nise events across different streams. Synchronising events and maintaining
the event’s order based on their timestamps is a crucial aspect of a TeSSLa
implementation.

• The idea behind tagged-token data flow is to allow the parallel execution of
operations that depend on the same data. However, we target especially the
scenario of many event streams, which are independent of each other most of
the time. So the main problem which motivated the tagged-token architecture
is not present: While waiting for data, independent operations on other data
can be executed.

On these grounds, we consider two conceptional differences between the EPU archi-
tecture and the data flow architecture discussed in the last section:

153

5. TeSSLa on Embedded Procssing Units (EPUs)

EPU0

I0

I1

I2

I4

O0

O1

O2

O4

EPU1

I0

I1

I2

I4

O0

O1

O2

O4

EPU2

I0

I1

I2

I4

O0

O1

O2

O4

EPU3

I0

I1

I2

I4

O0

O1

O2

O4

EPU4

I0

I1

I2

I4

O0

O1

O2

O4

Figure 5.2.: Exemplary message routing between EPUs. Diagram based on
[Weia, Weib, Fig. 22].

1. Every EPU is a processor equipped with a controller, an arithmetic logic unit
(ALU) and a separated data and command memory. Commands are statically
assigned to a single EPU and not dynamically scheduled at runtime. However,
the individual EPUs resemble the idea of data flow processing because the
incoming events entirely determine the executed operation: The command
memory contains instructions at dedicated addresses, called command IDs.
Every incoming message contains a command ID next to its data that specifies
how the EPU should process the data.

2. EPUs follow the idea of stream processing and process the incoming events in
the order of their arrival. There is no central scheduling, like the arbitration
network of data flow processors, that decides at runtime which nodes can be
fired.

Figure 5.2 shows the sequential pipeline of EPUs. For the simple case of acyclic
TeSSLa specifications, we only consider the green arrows and ignore the existence
of multiple inputs and outputs. Messages are coming from a message source on the
left which is not shown in the diagram. Every EPU has an input on the left, where
it reads incoming messages. After processing the message according to its command
ID, an output message might be generated with a new command ID. The output
message is then sent to the next EPU.

The general idea of the mapping of a TeSSLa specification’s flow graph onto such
a pipeline of EPUs is as follows: The dependency graph is layered such that nodes
connected by an edge are located on different layers. Every EPU of the pipeline
roughly resembles a layer of the specification’s dependency graph. The details are
given in Section 5.5 and a concrete example is discussed in Section 5.5.1 after in-
troducing a formal model of the EPUs, and a mapping of the TeSSLa operators to
EPU commands in the following sections.

If the the specification’s flow graph contains cycles, then messages must be passed

154

5.2. EPU Hardware

EPU ID command ID timestamp value
address data

Figure 5.3.: Message frame encoding of the EPUs. Diagram based on [Weia,
Weib, Figs. 5–8].

In
pu

t
C

on
tr

ol
le

rI0

I1

I2

I4

command
lookup

command
memory

control
logic

ALU

data & flag
memory

O
ut

pu
t

C
on

tr
ol

le
r O0

O1

O2

O4

data & flags

data & flags

command
ID

com-
mand

command ID command address,
data &

timestamp

data & timestamp

next
command

ID

compare TS
detect TSC

BTSC &
ATSC FIFO

forward messages with non matching EPU ID

TSC

tim
e-

st
am

p

co
m

m
an

d
ID

co
m

m
an

d
ID

Figure 5.4.: Architectural overview of the components of an Event Processing
Unit (EPU). The diagram based on [Weia, Weib, Figs. 4, 9, 10–12] shows the
conceptional data flow through the components of an EPU.

from later EPUs back to earlier EPUs in the pipeline. How to achieve this in
accordance with the TeSSLa semantics is discussed in Section 5.6. Technically this
is supported by additional outputs which are not connected to the next EPU but
earlier EPUs in the pipeline. These connections are shown in red in Figure 5.2. One
output can only be connected to one input, but these connections can be configured
freely through switch boxes in a configurable switching network. The simple pipeline
connection shown in green which connects every EPU with the next one, is always
there. The feedback connection shown in red which connects some EPUs with
other EPUs located earlier in the pipeline, is configured based on the needs of the
specification.

Figure 5.3 shows the encoding of a message in detail: The address consists of the
target EPU of the message and the command ID. The EPU ID specifies which EPU
is supposed to handle the message. If an EPU reads a message not addressed to it,
it directly forwards the message to the next EPU in the pipeline. The command ID
determines how the EPU processes the message. The data consists of the event’s
timestamp and value.

155

5. TeSSLa on Embedded Procssing Units (EPUs)

Figure 5.4 shows an architectural overview of a single EPU. It shows the conceptional
data flow through the components of an EPU. Depicted in blue is the default data
flow through the EPU: The first step in processing an incoming message is comparing
the target EPU encoded in the message address with the ID of the EPU. If the target
ID does not match, the EPU forwards the message to the output controller without
changing it. With this forwarding mechanism, messages addressed to EPUs located
later in the pipeline are correctly dispatched.

Every EPU has a command memory which is programmed statically at compile
time. It maps command IDs to commands. A command contains instructions
how to process incoming messages. If the message is addressed to this EPU, the
command ID is looked up, and the corresponding command is loaded from the
command memory.

The control logic then processes the command. A command can consist of any of
the following steps:

– Loading flags and data from memory,
– processing the message’s timestamp or value or load data in the ALU,
– writing the message’s timestamp or value or the ALU result to the memory,
– writing flags to the memory,
– sending a message to the output controller.

If a command sends out a message, this message’s target address, consisting of the
EPU ID and the command ID, is determined only by the command. The command
must statically provide the target EPU ID and command ID independently of the
message’s timestamp, value, loaded memory values, flags, or computed values. The
message’s value can be chosen from the memory, the incoming message’s value or
the ALU result.

Depicted in green is the handling of next commands: A command can specifying a
next command ID. This command is looked up and processed immediately after the
current command without loading a new message.

Depicted in red are the components related to the timestamp change (TSC): An
EPU has a current timestamp determined by the currently processed message. An
increment of this timestamp can schedule additional commands: A command can
schedule command IDs into the before timestamp change (BTSC) or after timestamp
change (ATSC) FIFO. The corresponding commands are processed before or after
the timestamp change, respectively. The timestamp of every incoming message is
compared with the current timestamp. If the incoming timestamp is larger than the
current timestamp, several steps are executed:

a) the before timestamp change (BTSC) FIFO is processed,
b) the current timestamp is updated,

156

5.2. EPU Hardware

c) the after timestamp change (ATSC) FIFO is processed, and finally
d) the incoming message is processed.

The outgoing message’s timestamp is always the current timestamp of the EPU; it
can never be changed. As a result, EPUs can only realise timestamp-conservative
specifications.

A final important concept of EPUs used to realise cyclic TeSSLa specifications is
the blocking counter: The blocking counter can be incremented or decremented by
a command. If the blocking counter is above zero, the EPU does not process incom-
ing messages, which would change the current timestamp of the EPU. The blocking
counter is used to realise synchronisation mechanisms between recursive messages
coming through the feedback connections (shown in red in Figure 5.2) with the reg-
ular messages travelling down the pipeline through the forward pipeline connections
(shown in green in Figure 5.2). Compiling recursive TeSSLa specifications to EPUs
is discussed in detail in Section 5.6.

This thesis only considers a single sequential pipeline of EPUs. Technically it would
be possible to have multiple pipelines of EPUs running in parallel and connecting
these pipelines with switching networks similarly to the ones used for the feedback
connections for recursive messages. This approach, however, raises multiple prob-
lems which are not addressed in the context of this thesis:

1. It requires a synchronisation based on the timestamps when the events of
multiple pipelines are supposed to be joined again. Such a synchronisation
could be realised similarly to the recursive feedback connections, but we will see
later that this mechanism is not very efficient in terms of possible throughput.

2. This approach would further require an automatic allocation during the trans-
lation from a TeSSLa specification to a configuration of the EPU pipeline.
Mapping every branch of the dependency graph onto a separate pipeline is
impossible because the number of available EPUs is limited, so a choice based
on the event frequencies and the recursions’ depth of different branches would
be required. A complex analysis of the expected throughputs occurring in dif-
ferent parts of the specification is needed to solve the optimisation problem
of levelling the potential throughput gain from the parallel pipelines and the
slowdown caused by the additional synchronisations.

3. The main issue, however, is the limited number of EPUs. For the practical
evaluations in the context of this thesis, a pipeline with 12 EPUs was available.
This thesis assumes that it is more efficient in this scenario to use the EPUs
in a single pipeline than splitting them up into multiple pipelines.

157

5. TeSSLa on Embedded Procssing Units (EPUs)

IF IF IF IF ID EX EX EX EX EX EX WB
IF IF IF IF ID EX EX EX EX EX EX WB

IF IF IF IF ID EX EX EX EX EX EX WB

...

time

handled
messages

Figure 5.5.: Schematic visualisation of the stages of the inner pipeline over time.

5.2.1. Inner Pipeline

The pipeline of connected EPUs discussed so far will be called the outer pipeline in
the following. The event processing in a single EPU is pipelined, too. We call this
the inner pipeline. The technical details of the EPU’s realisation are neither known
to the author nor relevant for this thesis. This section gives a rough overview of the
inner pipeline as far as it is required to understand the evaluation performed on the
EPUs.2

The processing of an incoming message on an EPU is implemented in several phases:

• Instruction Fetch (IF) performs everything from comparing the message’s times-
tamp with the current timestamp to loading the command from the command
memory.

• Instruction Decode (ID) decodes the instructions loaded from the command
memory and assigns the correct values to the ALU based on the command’s
instructions.

• Execute (EX) executes the command, i. e. performs the computation in the
ALU and the logical computations based on the flags and the ALU result.

• Write Back (WB) writes values and flags to the memory and sends an output
message.

The internal pipeline has 12 stages. Every stage takes one clock cycle on the FPGA.
IF takes 4 stages, ID a single stage, EX 6 stages and WB again a single stage.
Figure 5.5 shows a visualisation of the pipeline stages over time. In the optimal
case, a new incoming message can be handled with every new clock cycle. If a
command chains another command via the next command chain or commands from
the BTSC or ATSC FIFO are executed, those commands prevent further processing

2The information about the inner pipeline presented in this section are based on private commu-
nication with Albert Schulz and Alexander Weiss from Accemic.

158

5.3. Formal EPU model

of input messages. The pipeline is stalled for one cock cycle in those cases. In the
following cases, the pipeline is not only stalled, but rolled back in order to fulfil
causal dependencies between sequential commands:

• During the ID phase, the EPU checks whether the current command has a
next command set in its command instructions loaded from the command
memory. If a next command is configured for the current command, then
this next command must be executed immediately after the current one before
any other commands whose processing might already have been started in the
pipeline. The pipeline thus rolls back the already fetched commands.

• During the ID phase, the EPU checks whether the current command might
schedule a command for BTSC or ATSC execution or might change the block-
ing counter. Such changes must be considered before executing the following
incoming message. If that message changes the current timestamp of the EPU,
the blocking counter must be considered, and BTSC or ATSC executions are
handled first. Hence, the EPU flushes the IF stages and stalls the entire inter-
nal pipeline until this command has passed the WB stage.

• The EPU checks for data dependencies when reading or writing data or flags
from or to the memory. Examples for data dependencies are the command
executed next reading the same flags or data written immediately before. The
IF and ID stages are stalled in those cases until the current command has
passed the WB stage.

5.3. Formal EPU model

This section abstracts from the concrete EPU hardware presented in the last sec-
tion and introduces a formal model. This model is used to discuss the translation
of a TeSSLa specification into an EPU configuration. It includes an operational
semantics of an EPU pipeline.

The behaviour of an EPU is determined by the commands in its command memory.
Consequently these commands are the central element of the representation intro-
duced in this chapter. Intuitively, an EPU command is represented as a function
mapping their input message and their current memory to an (optional) output mes-
sage and an updated memory. The commands interact with each other by sending
messages, causing a next command to be executed and scheduling commands for
BTSC and ATSC execution. This is represented by a graph, called EPU network.
This graph is organized in layers representing the EPUs. Every command is located
on an EPU and can only issue next commands and enqueue commands located on
the same EPU. It can only send messages to commands located on other EPUs.

159

5. TeSSLa on Embedded Procssing Units (EPUs)

We start with the formal definition of an EPU command and organize them in an
EPU network next:

Definition 5.1 (EPU Command). Let C be the set of all EPU commands:

C = T × T × D × Dn → D⊥ × Dn × {−1, 0, 1}.

An EPU command c ∈ C with c(t, u, i,m) = (o,m′, b) takes

– a current timestamp t,
– a received timestamp u,
– an input value i and
– a memory tuple m.

It produces

– an output value o which can be ⊥ indicating no output and
– an updated memory tuple m′ and
– a delta b for the blocking counter.

In this representation, we merge the data and flag memory into a single memory
tuplem. In the following we assume the naming convention e(t, u, i,m) = (o,m′, b′)
and denote EPU commands as relation between these variables given in imperative
pseudocode assigning the output variables. If not stated otherwise we assume no
output, i. e. o = ⊥, the identity mapping of unmentioned entries of the memory
tuple, i. e. m′ = m, and no changes to the blocking counter, i. e. b′ = 0. For
example with the memory tuple m = (m1,m2) ∈ B2

⊥ the notation

e : if m1 then o = i, m′
2 = false

denotes the function

e(t, u, i,m1,m2) =

(i,m1, false, 0) if m1,

(⊥,m1,m2, 0) otherwise.

Definition 5.2 (EPU Network). An EPU network consists of a finite set V of
command nodes, a finite set O of output nodes, and a finite set E of EPU nodes
with the following functions:

• cmd : V → C maps a command node to its EPU command.

• epu : V → E locates every command node on an EPU node.

• first ∈ E indicates the first EPU node.

• succ : E → E⊥ maps an EPU node to its successor.

160

5.3. Formal EPU model

• target : V → (V ∪ O)⊥ maps a command node either to another command
node or to an output node. The EPU command of this node sends outgoing
messages to the configured target.

• btsc : V → V⊥ and atsc : V → V⊥ maps a command node to a command node
whose command is added to the BTSC or ATSC set, respectively, when the first
node’s command is executed. Further, the overloaded function btsc : E → 2V
and atsc : E → 2V maps an EPU node to a set of initially scheduled commands
for BTSC or ATSC execution, respectively.

• next : V → V⊥ maps a command node to a next command node whose com-
mand is executed immediately after the current node’s command.

• init : E → M maps an EPU to its initial memory tuple with M being the set
of all possible memory values of the EPU, i. e. the Cartesian product of all
possible memory values of the EPU commands of the EPU.

Note that a node can have no target, btsc, atsc or next node because the correspond-
ing functions can map to ⊥ instead of a value. In the same way the last EPU does
not have a successor. Where convenient we extend epu to output nodes and use the
convention epu(o) = ⊥ for any output node o ∈ O.

Definition 5.3 (Well-Formed EPU Network). An EPU network is called well-
formed iff

• The EPU nodes in E are totally ordered with first being minimal, i. e. when
starting with the first node one eventually reaches all nodes when iterating
their successors.

• A command node’s target must be located on a different EPU, i. e. for any two
command nodes v1, v2 ∈ V we have

target(v1) = v2 =⇒ epu(v1) ̸= epu(v2).

• A command node’s next command, BTSC command and ATSC command node
lay all on the same EPU if they exist, i. e. for any two nodes v1, v2 ∈ V we have

next(v1) = v2 =⇒ epu(v1) = epu(v2),
btsc(v1) = v2 =⇒ epu(v1) = epu(v2) and
atsc(v1) = v2 =⇒ epu(v1) = epu(v2).

161

5. TeSSLa on Embedded Procssing Units (EPUs)

e1

e2

v1

pass
v2

store
v3

send

v4

fwd
v5

fwd

x y

a b

c

btsc

next

Figure 5.6.: EPU network diagram for the EPU network from Example 5.4.

In the following we only consider well-formed EPU networks.

EPU networks are specified using EPU network diagrams. See Figure 5.6 for an
example of such a network diagram: The black arrows indicate the target addresses
configured for outgoing messages. Incoming and outgoing arrows are labelled with
the names of streams indicating how the translated commands are connected to an
entire EPU network and how inputs and outputs are mapped to the EPU network.
The blue arrows labelled with next, btsc and atsc represent the scheduling of other
commands or the execution of the next command. Blue arrows without a source
indicate commands being initially scheduled for BTSC or ATSC execution.

Example 5.4 (EPU Network). As an example for an EPU network consider its
diagram depicted in Figure 5.6. This network merges incoming messages on a and b
into c and duplicates the output into x and y. The merging prioritizes messages on
a in case of messages with the same timestamp. The commands on the first EPU
are a simplified version of the commands given later in Definition 5.10 (Commands
for merge).

The network consists of the setE = {e1, e2} of EPU nodes, the set V = {v1, v2, . . . , v5}
of command nodes and the set O = {x, y} of output nodes. The command nodes
v1, v2 and v3 are located on the first EPU, i. e.

epu(v) = e1 for v ∈ {v1, v2, v3}.

Further, the command nodes v4 and v5 are located on the second, i. e.

epu(v) = e2 for v ∈ {v4, v5}.

The EPUs are organized sequentially starting with first = e1:

succ(e1) = e2 and succ(e2) = ⊥.

162

5.3. Formal EPU model

The command node’s outputs are routed as follows: v1 and v3 send messages to v4:

target(v1) = target(v3) = v4,

and the command nodes v4 and v5 send messages to x and y, respectively, i. e.

target(v4) = x and target(v5) = y.

The diagram further includes the edge labels a, b and c, which are technically not
part of the EPU network.

The command node v1 passes on incoming messages and sets the flag msent to true:

cmd(v1) = cpass with cpass : m′
sent = true, o = i

The command node v2 stores the value of incoming messages in the memory mvalue:

cmd(v2) = cstore with cstore : m′
value = i

The command nodes v1 and v2 schedule the command node v3 for BTSC execution:

btsc(v1) = btsc(v2) = v3 and btsc(v) = ⊥ for v ∈ {v3, v4, v5}.

The command node v3 is executed before a timestamp increase if a message on a or
b was received. If only a message on b was received then this message is send out.
In any case the flag msent is reset:

cmd(v3) = csend with cbtsc : m′
sent = false,

if ¬msent then o = mvalue

The memory of e1 is initialized by init(e1) as follows:

msent = false and mvalue = 0.

The command nodes v4 and v5 pass every incoming message without any further
action:

cmd(v4) = cmd(v5) = cfwd with cfwd : o = i

The command node v4 issues v5 as next command, i. e. the command of v5 will be
executed immediately after v4 on the same input message:

next(v4) = v5 and next(v) = ⊥ for v ∈ V \{v4}.

Thus every incoming message on c is send out twice to x and y.

163

5. TeSSLa on Embedded Procssing Units (EPUs)

5.3.1. Execution of a single EPU

Let V be the command nodes and E the EPU nodes of an EPU network. We use
the following procedures, which receive and send messages on an EPU. A message
consists of a target, which is either a command node or an output node, a data value
and a timestamp. We use M := (V ∪ O) × D × T for the set of all messages for
a given EPU network. The procedures are assumed to have imperative semantics
with side effects:

• receive() = m takes no arguments and returns the next message m ∈ M
addressed to the given EPU. A message consists of a target, a timestamp and
a data value.

• nextTime() = t takes no arguments and returns a timestamp t ∈ T. It allows
for peeking at the timestamp of the next message without receiving it.

• send(m) takes a message m ∈ M and returns nothing. It sends an outgoing
message, again consisting of a target command node, a timestamp and a data
value.

These procedures are blocking until there are messages available or until the outgoing
message was send. See the next section on their implementations, i. e. their side
effects.

For every EPU e ∈ E, we assume the following variables:

– t ∈ T contains the current timestamp of the EPU initialised with 0,
– bc ∈ N is the current value of the EPU’s blocking counter initialised with 0,
– b, a ⊆ V store the commands scheduled for BTSC and ATSC execution and
– m ∈ Dk is the memory tuple of the EPU.

The initial assignment of the memory tuple m and the sets b and a is given by the
functions init, btsc and atsc of the EPU network, respectively. The FIFOs of the
actual hardware are represented as sets. This abstraction simplifies the encoding of
the commands, because a command can only be scheduled once each for BTSC or
ATSC execution. See Section 5.7.4 for a discussion on how to implement the BTSC
and ATSC scheduling on the actual hardware.

The following pseudocode describes the execution of a single EPU e ∈ E:
loop

wait until bc = 0 ∨ nextTime() = t
(c, d, u) = receive()
if u > t then

for all c′ ∈ b do handle(c′); b = b\{c′}
t = u

164

5.3. Formal EPU model

for all c′ ∈ a do
handle(c′); a = a\{c′}

end
if epu(c) = e then handle(c) else send(c, d, u)

end

The procedure handle(v) with imperative side effects executes a command node. It
takes a command node v ∈ V as argument and returns nothing. This execution in-
cludes applying the actual EPU command of the command node, sending the output
message, and handling the blocking counter, the BTSC and ATSC scheduling and
the next command of the node. The details are given by the following pseudocode:
(o,m, b) = cmd(c)(t, u, d,m)
if o ̸= ⊥ ∧ target(c) ̸= ⊥ then send(target(c), o, t)
bc = bc + b
if btsc(c) ̸= ⊥ then b = b ∪ {btsc(c)}
if atsc(c) ̸= ⊥ then a = a ∪ {atsc(c)}
if next(c) ̸= ⊥ then handle(next(c))

For simplicity, we assume that every EPU command implicitly knows which part of
the memory tuple is relevant for it and only updates that part of the memory tuple
while returning the rest of the EPU’s memory unchanged.

5.3.2. Execution of an EPU Network

Based on the execution of a single EPU, we can now describe the execution of the
entire EPU network. First, the side effects of the procedures receive, nextTime and
send are given. These procedures are used in the above pseudocode, and they define
how the message passing between the EPUs works. On the actual hardware, an
outgoing message on an EPU is available as an incoming message on the following
EPU in the next clock cycle. There is no buffer between the EPUs. If the next
EPU is not ready to receive a message, the current EPU cannot send a message.
If this blocking continues through multiple EPUs on the outer pipeline, it causes
backpressure.

In order to model that EPUs have multiple inputs, one regular input and depending
on the routing up to three recursive inputs, every EPU e ∈ E has two queues:

– An input queue, which is a priority queue with length 1 per priority, i. e. two
variables. We write e. input, e. importantInput ∈ M⊥.

– An output queue, which is a queue with length 1, i. e. one variable. We write
e. output ∈ M⊥.

165

5. TeSSLa on Embedded Procssing Units (EPUs)

EPUs are equipped with a priority queue to avoid deadlocks: Sometimes EPUs are
waiting for certain recursive messages, i. e. those coming from an EPU located later
in the pipeline, before they are allowed to accept messages with a larger timestamp.
In these cases the EPU must be able to receive recursive messages even if the regular
input queue already contains a message.

The procedures send, receive and nextTime perform the following operations on
these queues:

– The procedure send puts its argument into the output queue of the current
EPU.

– The procedure receive takes the value from the input queue, respecting the
priority, i. e. an element from the variable importantInput is used in preference
to an element from the variable input.

– The procedure nextTime reads the time from the input queue following the
same rules as receive but leaving the queue unchanged.

All procedures are considered blocking if the corresponding queue is full (writing)
or empty (reading).

The execution of a single EPU was described in the previous section as an endless
loop. The loop is executed for every EPU in parallel. On the actual hardware, the
EPUs are operating independently on the FPGA, too. Every EPU processes mes-
sages from its input queue and writes messages to its output queue. The following
code describes how messages between these queues are dispatched. Altogether, the
EPU network implements a translation from a synchronised input stream to a syn-
chronised output stream. The next section addresses the mapping between events in
a synchronised stream and nodes in the EPU network. In the following pseudocode,
we assume two procedures with imperative side effects:

• The procedure readMessage() = m takes no arguments and returns a message
m ∈ M. It returns the next input event from the synchronised input stream
in the form of a message, i. e. a target node, a data value and a timestamp.

• The procedure writeMessage(m) takes a message m ∈ M and returns nothing.
It appends the content of the message as an event to the synchronised output
stream.

The execution of the EPU network is given by the following pseudocode which is
executed in parallel with the individual EPUs:
loop

for all e ∈ E do
if e. output ̸= ⊥ then

(c, d, u) = e. output
if epu(c) > e then

166

5.3. Formal EPU model

if succ(e) ̸= ⊥ ∧ succ(e). input = ⊥ then
e. output = ⊥
succ(e). input = (c, d, u)

end
else if succ(e) = ⊥ then writeMessage(c, d, u)

else if epu(c) < e ∧ epu(c). importantInput = ⊥ then
e. output = ⊥
epu(c). importantInput = (c, d, u)

end
end

end
if first . input = ⊥ then first . input = readMessage()

end

If an EPU e wants to send an output, we distinguish two cases:

1. If the target EPU is located later in the pipeline (epu(c) > e), then the message
is transmitted to its successor succ(e).

2. If the target EPU is located earlier in the pipeline, then the message is trans-
mitted directly to the target EPU epu(c). On the actual hardware, there must
be a feedback connection (shown in red in Figure 5.2) available connecting e
and epu(c). For such recursive messages, we use the importantInput of the
target EPU.

Transmitting a message is only possible if the target input is currently empty. Oth-
erwise, the message stays in e’s output until it can be transmitted in a future cycle.

The two edge cases of the first and the last EPU in the pipeline are handled by feeding
events taken from readMessage into the first EPU’s input and calling writeMessage
instead of transmitting a message if an EPU has no successor.

The following examples demonstrates the execution of an EPU network including
the execution of its EPUs:

Example 5.5 (Execution of an EPU Network). Recall the EPU network from Ex-
ample 5.4 (EPU Network): Its first EPU merges merges messages on a and b into
c, prioritizing messages on a in case of messages with the same timestamp. The
second EPU duplicates the output into x and y. We send a message with value 2 at
timestamp 7 into a, followed by a message with value 4 at timestamp 9 into b. The
first EPU passes on both messages. The first because it is the only message with
that timestamp and the second because it is prioritized. Both messages are then
duplicated to the outputs x and y by the second EPU.

167

5. TeSSLa on Embedded Procssing Units (EPUs)

In the following walk through we ignore the counter bc and the ATSC set a, because
they stay 0 or ∅, respectively. The timestamps of both EPUs are initialized with 0
and the memory of EPU is initialized according to init(e1):

e1 : t = 0, msent = false, mvalue = 0, b = ∅
e2 : t = 0, b = ∅

The input message (v2, 7, 2) is dispatched to e1.

The EPU e1 receives and processes (v2, 7, 2): It updates its timestamp to 7 and
executes handle(v2). The execution of cmd(v2) = cstore updates mvalue and adds v3

to the BTSC set:

e1 : t = 7, msent = false, mvalue = 7, b = {v3}

The input message (v2, 9, 4) is dispatched to e1.

The EPU e1 receives and processes (v1, 9, 4): Before it changes its timestamp, it
executes handle(v3) and removes v3 from b. The execution of cmd(v3) = csend runs
send((v4, 7, 2)).

e1 : t = 7, msent = false, mvalue = 7, b = ∅

The sent message (v4, 7, 2) is dispatched from e1 to e2.

The EPU e1 continues to process (v1, 9, 4): It updates its timestamp to 9 and
executes handle(v1). The execution of cmd(v1) = cpass runs send((v4, 9, 4)), updates
msent and adds v3 to the BTSC set:

e1 : t = 9, msent = true, mvalue = 7, b = {v3}

The EPU e2 receives and processes (v4, 7, 2): It updates its timestamp to 7 and
executes handle(v4). The execution of cmd(v4) = cfwd runs send((x, 7, 2)) and issues
v5 as next command:

e2 : t = 7, b = ∅

The sent message (v4, 9, 4) is dispatched from e1 to e2 and the message (x, 7, 2) is
dispatched from e2 to the output.

The EPU e2 receives (v4, 9, 4), but continues processing (v4, 7, 2): It executes the
next command handle(v5). The execution of cmd(v5) = cfwd runs send((y, 7, 2)):

e2 : t = 7, b = ∅

168

5.3. Formal EPU model

The message (y, 7, 2) is dispatched from e2 to the output.

The EPU e2 processes (v4, 9, 4): It updates its timestamp to 9 and executes handle(v4).
The execution of cmd(v4) = cfwd runs send((x, 9, 4)) and issues v5 as next command:

e2 : t = 9, b = ∅

The message (x, 9, 4) is dispatched from e2 to the output.

The EPU e2 continues processing (v4, 9, 4): It executes handle(v5). The execution
of cmd(v5) = cfwd runs send((y, 9, 4)):

e2 : t = 9, b = ∅

The message (y, 9, 4) is dispatched from e2 to the output.

More complex executions of EPU networks are discussed after the introduction of
the EPU commands for TeSSLa operators in the next sections: Section 5.5.1 demon-
strates the execution of an EPU network generated from a simple TeSSLa specifica-
tion and Section 5.6.1 one generated from a recursive specification.

5.3.3. Mapping Events to EPUs

The procedures readMessage and writeMessage connect the EPU network to an
input and an output synchronised stream. A synchronised stream as defined in
Definition 4.3 in Section 4.1.2 is a sequence of events. Every event consists of
a timestamp and either a value or the symbol ⊥. The symbol ⊥ represents the
absence of an event for every stream encoded in the synchronised stream. On the
other hand, a message consists of a target command node or output node, a data
value, and a timestamp.

In order to map between events to messages, we assume an implicit EPU mapping
for a given EPU network. The input mapping maps streams, i. e. an index in the
value tuple of a synchronised stream’s event, to a command node (or an output
node) of the EPU network. The output mapping maps an output node of the EPU
network back to a stream, i. e. an index in the event’s value tuple.

Every call to readMessage returns the events whose data values are not ⊥ from the
current event of the synchronised input stream. As timestamp, the timestamp of
the current event is used. The data value is taken from the event, and the target
is looked up in the input mapping. If no events are left, then the input stream is
advanced to the next event of the input stream.

169

5. TeSSLa on Embedded Procssing Units (EPUs)

The procedure writeMessage collects messages with the same timestamp and ap-
pends an event to the synchronised output stream with all these data values filling
all the missing values with ⊥. The output mapping is used to determine the index
of the data values in the event’s tuple.

5.3.4. EPU Simulation

The semantics of the formal EPU model given in this section has been implemented
in TypeScript. This simulation was used to test and debug the EPU commands
and networks introduced in the next section. For that purpose the simulation can
generate stream diagrams showing the messages passed through the EPUs. Such
generated diagrams are shown in Sections 5.5.1 and 5.6.1.

In the simulation, the memory and the commands are identified using descriptive
string keys. EPUs are described as configuration objects specifying for every com-
mand the name of the relevant memory section, the function implementing the EPU
command and optional a name of the next, btsc or atsc command and a target iden-
tified by an EPU id and a command name. Additionally, every target contains
human-readable a name, which is used for logging the messages. Functions imple-
menting EPU commands have the following signature, which is as close as possible
to Definition 5.1 (EPU Command) from Section 5.3:
(t: Time, u: Time, i: Value, m: Memory)

=> [Value, Memory, BlockingCounterDelta]

A Value can be any primitive type. The Memory is a lookup table that maps
string keys to arbitrary values. The BlockingCounterDelta is either −1, 0 or 1.
So for this simulation, an EPU’s memory is organised as a two-staged lookup table
where the first key identifies the memory region and the second key identifies the
concrete memory cell in that region.

While the pseudocode given above assumes the EPUs and the dispatching of mes-
sages between the EPUs happening in parallel, the implemented simulation performs
the dispatching of messages between EPUs, the feeding of input messages to the first
EPU and the sequential execution of all EPUs in an alternating sequence. This al-
ternating sequence simulates the concurrent execution defined by the pseudocode
because an EPU can only produce at most one output message in a single execu-
tion step, which is then dispatched afterwards. Output messages are collected and
converted into a synchronised stream to compare the generated output with the
expected one in unit tests.

During the execution of the EPUs, every execution step of an EPU is sent to a cen-
tral logger. Such a log message contains the current EPU id, the current cycle, the

170

5.4. EPU Commands for TeSSLa Operations

received input, the send output, the executed command together with the informa-
tion if the command was executed because of an incoming message, from a BTSC or
ATSC schedule or as a next command, the current value of the blocking counter and
the current value of the memory. These log messages are used to generate stream
diagrams that visualise the execution of an EPU network, as shown in Figure 5.13
in Section 5.5.1 and Figure 5.17 in Section 5.6.1.

This simulation is by no means a simulation of the actual EPU hardware. It is
only a simulation of the formal model of the hardware presented in this section.
The relation between this formal model and the actual EPU hardware is discussed
further in Section 5.7.

5.4. EPU Commands for TeSSLa Operations

In this section, we discuss translations for the TeSSLa operators to EPU commands.
For a given TeSSLa specification, the corresponding EPU commands are given to-
gether with an EPU network describing their interconnection: It contains the initial
memory assignments of the relevant parts of the memory tuple of that EPU and
the network connections of the command node, i. e. its target, next command, btsc
and atsc command. We use the EPU network diagrams introduced inw Section 5.3
with the following additional conventions: An EPU command is represented by
the translated TeSSLa operator and the command’s name written in cursive below
the operator name. The thick grey bar represents a shared memory region, i. e.
commands connected with this bar are accessing the same data and flag memory.

fwd

y

x

time

y

x

slift(f)

y

x

default
main

default
btsc

y

x

btsc

Figure 5.7.: EPU network diagrams for the forward command and the com-
mands for time, the unary slift(f) and default.

We start with the identity function, which is usually not used on its own in a
TeSSLa specification but is utilised to forward messages to the next EPU. See the
next section on how EPU commands are mapped to the EPUs for an exemplary
usage of this command. It simply forwards every incoming message unprocessed to
the output.

171

5. TeSSLa on Embedded Procssing Units (EPUs)

Definition 5.6 (Forward Command). The TeSSLa specification

y = lift(id)(x)

is translated into the EPU command c given by:

c : o = i

The corresponding EPU network diagram is given in Figure 5.7.

The command for time is similar to the forward command but uses the messages
timestamp instead of its value.

Definition 5.7 (Command for time). The TeSSLa specification

y = time(x)

is translated into the EPU command c given by:

c : o = t

The corresponding EPU network diagram is given in Figure 5.7.

The command for unary arithmetic operations is the last of these simple commands
with a single input. It applies the function f to every input value.

Definition 5.8 (Commands for slift(f) With a Unary Arithmetic Operation f).
The TeSSLa specification

y = slift(f)(x)

is translated into the EPU command c given by:

c : o = f(i)

The corresponding EPU network diagram is given in Figure 5.7.

The binary const(d, r) can be translated as a special case of then unary slift(f)(r)
with f being a constant function mapping all inputs to d.

Translating default requires two commands: cmain forwards incoming messages and
sets the flag msent . cbtsc is initially scheduled for BTSC execution and sends the
default value if msent is not set. The flag msent ensures that the default value is not
send if the stream x has an event at timestamp 0.

172

5.4. EPU Commands for TeSSLa Operations

Definition 5.9 (Commands for default). The TeSSLa specification

y = default(x, v)

is translated into the EPU commands cmain and cbtsc given by:

cmain : o = i, m′
sent = true

cbtsc : if ¬msent then o = mvalue

The EPU’s memory tuple is initialised as follows:

m = (msent ,mvalue) = (false, v).

The corresponding EPU network diagram is given in Figure 5.7.

The unary const(d) is translated as a special case of default(nil, d). Remember that
const(d) is the implicit conversion for constant values into streams. The empty
stream nil is translated simply by never sending a message to that input.

merge
main

merge
secnd

merge
btsc

z

x y

btsc

last
data

last
btsc

last
trigger

z

x y

btsc

Figure 5.8.: EPU network diagrams for the commands for merge and last.

merge is the first actual binary operator. It requires three commands: cmain simply
forwards the message because the left operand of merge is prioritised if both streams
contain an event with the same timestamp. csecnd stores the data in the memory and
schedules cbtsc for BTSC execution, which sends the value if main was not executed
for that timestamp.

Definition 5.10 (Commands for merge). The TeSSLa specification

z = merge(x, y)

is translated into the EPU command cmain, csecnd and cbtsc given by:

cmain : m′
sent = true, o = i

csecnd : m′
value = i

cbtsc : m′
sent = false, if ¬msent then o = mvalue

173

5. TeSSLa on Embedded Procssing Units (EPUs)

The EPU’s memory tuple is initialised as follows:

m = (msent ,mvalue) = (false, 0).

The corresponding EPU network diagram is given in Figure 5.8.

The commands for last store the last known value of the data stream (cdata) and
send it out for every event on the trigger stream (ctrigger). They ensure that always
the last known value is generated and never the current value even if both streams
contain an event at the same timestamp. In that case the events might occur in an
arbitrary order. Hence, cdata stores the new value in mcurrent and schedules cbtsc for
BTSC execution, which then writes mcurrent to mlast .

Definition 5.11 (Commands for last). The TeSSLa specification

z = last(x, y)

is translated into the EPU commands cdata, ctrigger and cbtsc given by:

cdata : m′
current = i

ctrigger : o = mlast

cbtsc : m′
last = mcurrent

The EPU’s memory tuple is initialised as follows:

m = (mcurrent ,mlast) = (0,⊥).

The corresponding EPU network diagram is given in Figure 5.8.

Note that the definition above uses the additional value ⊥ for the memory entry
mlast . Actually, this is syntactic sugar for two separate entries in the memory tuple:
A value and a flag indicating if the value is present or ⊥.

The commands for the binary slift(f) store the data values of the incoming messages
(cstore1 and cstore2) and schedules cbtsc for BTSC execution to apply f on the stored
values and send out the result. Note how the two memory entries m1 and m2 fulfil
the same purpose as in the case of the last. The main difference is that events at
the current timestamp are already considered for the event with that timestamp.
The flag msend ensures that only one message is sent out per timestamp even if both
streams have an event at the same timestamp, which enqueues cbtsc twice.

174

5.4. EPU Commands for TeSSLa Operations

slift(f)
store1

slift(f)
store2

slift(f)
btsc

z

x y

btsc

filter
store1

filter
store2

filter
btsc

z

x y

btsc

Figure 5.9.: EPU network diagrams for the commands for the binary slift(f)
and filter.

Definition 5.12 (Commands for slift(f) With a Binary Arithmetic Operation f).
The TeSSLa specification

z = slift(f)(x, y)

is translated into the EPU command cstore1 , cstore2 and cbtsc given by:

cstore1 : m′
1 = i, msend = true

cstore2 : m′
2 = i, msend = true

cbtsc : m′
send = false, if m1 ̸= ⊥ ∧m2 ̸= ⊥ ∧msend then o = f(m1,m2)

The EPU’s memory tuple is initialised as follows:

m = (m1,m2,msend) = (⊥,⊥, false).

The corresponding EPU network diagram is given in Figure 5.9.

If the slift is used with a ternary function or one with even higher arity, we utilise
Lemma 3.50 (Associativity of slift) from Section 3.4.1 to split it into multiple binary
operations that can be translated as defined above. The ternary operator ite is
treated as a special case in Definition 5.14 below.

filter is translated similar to slift. The main difference between the EPU commands
for slift and filter is cstore2 not enqueuing cbtsc. Instead of applying an arithmetic
function to the stored values cbtsc checks the last known condition stored in m2 and
sends out the event only if that is a true value. Note that cstore1 cannot send out
messages directly because if both streams have an event at the same timestamp,
they might arrive in arbitrary order.

Definition 5.13 (Commands for filter). The TeSSLa specification

z = filter(x, y)

175

5. TeSSLa on Embedded Procssing Units (EPUs)

is translated into the EPU command cstore1 , cstore2 and cbtsc given by:

cstore1 : m′
1 = i

cstore2 : m′
2 = i

cbtsc : if m2 ̸= 0 then o = m1

The EPU’s memory tuple is initialised as follows:

m = (m1,m2) = (0, 0).

The corresponding EPU network diagram is given in Figure 5.9.

slift(ite)
store1

slift(ite)
store2

slift(ite)
store3

slift(ite)
btsc

z

w x y

btsc

Figure 5.10.: EPU network diagram for the command for slift(ite).

The commands for slift(ite) are very similar to the translation for the binary slift.
Instead of two there are now three storing commands cstore1 , cstore2 and cstore3 , each
scheduling cbtsc for BTSC execution. cbtsc sends out the value of m2 or m3 depending
on m1 being true. The commands realise the signal view of slift: No message is send
until all streams are initialised, i. e. all memory entries m1, m2 and m3 are no longer
⊥.

Definition 5.14 (Commands for slift(ite)). The TeSSLa specification

z = slift(ite)(w, x, y)

is translated into the EPU command cstore1 , cstore2 , cstore3 and cbtsc given by:

cstore1 : m′
1 = i, msend = true

cstore2 : m′
2 = i, msend = true

cstore3 : m′
3 = i, msend = true

cbtsc : m′
send = false

if m1 ̸= ⊥ ∧m2 ̸= ⊥ ∧m3 ̸= ⊥ ∧msend then

o =

m2 if m1 ̸= 0,
m3 otherwise.

176

5.5. Mapping the Dependency Graph on an EPU Network

The EPU’s memory tuple is initialised as follows:

m = (m1,m2,m3,msend) = (⊥,⊥,⊥, false).

The corresponding EPU network diagram is given in Figure 5.10.

5.5. Mapping the Dependency Graph on an EPU
Network

We will now discuss how to translate an entire TeSSLa specification into an EPU
network. In this section, we will only consider specifications with an acyclic depen-
dency graph. Recursive specifications will be considered separately in Section 5.6.

Let φ be an acyclic TeSSLa specification. Organise the dependency graph in layers
such that every node is a different layer than all the nodes on which it depends.
These layers will be the EPUs of the EPU network. Translate every node on the de-
pendency graph into the EPU commands given in Section 5.4 and put the command
nodes on the EPU corresponding to their layer.

If multiple nodes in the dependency graph depend on the same node, then that
node’s corresponding commands must send their outgoing messages to multiple
targets. Because the EPU network does not directly support this, we introduce
additional commands depending on where the target node is located:

• If a stream is needed as input of multiple commands located on the same
EPU, then send the message to the first of these commands and chain the
other commands using the next command mechanism.

• If a stream is needed as input of multiple commands located on different EPUs,
then insert forward command nodes on the first EPU, which forwards their
input to the commands located on later EPUs. These forwards commands can
then be chained together using the next command mechanism as in the first
case.

5.5.1. Example

As an example of this translation we consider a TeSSLa specification with the input
streams x, y ∈ SZ and the derived output stream z ∈ SZ:

z = x > y ?x− y : y − x.

177

5. TeSSLa on Embedded Procssing Units (EPUs)

slift(>)
store1

slift(>)
store2

slift(>)
btsc

slift(−)
store1

slift(−)
store2

slift(−)
btsc

slift(−)
store1

slift(−)
store2

slift(−)
btsc

slift(ite)
store1

slift(ite)
store2

slift(ite)
store3

slift(ite)
btsc

z

x y
next next nextnext

btsc btsc btsc

c1 c2 c3

btsc

Figure 5.11.: EPU network diagram for the absolute value example.

With the implicit conversion from Section 3.3.7 the given function on the data
domain is lifted to streams using slift. For the translation into an EPU network,
we utilise Lemma 3.50 (Associativity of slift) from Section 3.4.1 which allows us
to apply the slift to all operators individually instead of lifting the entire function
at once. We can only translate an slift with an operation that the ALU supports.
Nested operations on values must be converted into nested expressions on streams.
We introduce some additional derived variables used to identify sub-expressions for
the rest of this example and end up with the following specification:

c1 = slift(>)(x, y)
c2 = slift(−)(x, y)
c3 = slift(−)(y, x)
z = slift(ite)(c1, c2, c3)

Figure 5.11 shows the EPU network diagram for this specification.

This specification is a rather artificial example to explain how the commands are
nested. The ALU of the EPUs has a builtin absolute value function which could be
used to simplify this expression to abs(x− y).

Figure 5.12 shows an exemplary evaluation of this absolute value specification using
the synchronous semantics from Section 4.1. There is no output for the first event
on x because the stream y has not been initialised yet. With the first event on y
the current value on y is larger than on x. Hence the condition c1 becomes false,
and the output becomes the value on c3, a positive 1. With another value on x this
turns the other way round: The output becomes the value on c2, which is now the
positive value. Finally, we have two simultaneous events on x and y, resulting in
the third and final event on z.

178

5.5. Mapping the Dependency Graph on an EPU Network

0 1 2 3 4 5

x
1 4 8

y
2 3

c1
false true true

c2
−1 2 5

c3
1 −2 −5

z
1 2 5

Figure 5.12.: Exemplary evaluation of the absolute value example using the
synchronous semantics.

x
1
1

4
3

8
5

y
2

1.5

3
5

done
99

c1
false

1.5

true
3

true
5

c2
−1
1.5

2
3

5
5

c3
1

1.5

−2
3

−5
5

done′
99

z
1

1.5

2
3

5
5

Figure 5.13.: Exemplary evaluation of the EPU network derived from the ab-
solute value example using the same input as in Figure 5.12.

179

5. TeSSLa on Embedded Procssing Units (EPUs)

Figure 5.13 shows the evaluation of the EPU network translated from the absolute
value TeSSLa specification. The same input as in Figure 5.12 is used. This stream
diagram is based on the EPU network execution semantics given above and was
generated using the EPU simulation discussed in Section 5.3.4. In particular these
diagrams adhere the following rules:

• An event’s data value is depicted above the cross. The event’s logical times-
tamp is depicted below the cross.

• Events are always depicted when the EPU first reads them.

• Direct causal relations between events are drawn in blue. Events sent because
of the timestamp increase caused by an event are drawn in red.

• The X-axis represents physical time passing by during the execution of the
EPU network. However, the axis has no linear relation to any measured time.
Instead, it represents causal relations: Events can only be processed after they
have been sent.

• An EPU can only read and send one event simultaneously. The diagram does
not depict the execution of commands but receiving and sending events. In
particular, commands that neither read nor write an event do not consume
time in this representation.

• As discussed in the execution semantics of the EPU network, the queues be-
tween the EPUs are of size one. If an EPU cannot process its input fast enough,
this causes back pressure along the pipeline.

Note the additional streams done and done′ which are not depicted in the EPU
network diagram in Figure 5.13. After the input stream was read entirely, an addi-
tional message with a maximal timestamp was sent to an empty command on the
last EPU. The stream done represents this message being forwarded by the first
EPU because its target address does not match. The stream done′ represents this
message being received by the second EPU. This empty command itself does noth-
ing on its own, but the maximal timestamp of this message triggers a timestamp
increase on all the EPUs the message passes through. As one can see in Figure 5.13
this final flush of the EPU pipeline is needed to execute all commands scheduled for
BTSC execution.

5.6. Recursion

So far, we have only considered acyclic TeSSLa specifications, but to gain the full
expressiveness of TeSSLa, we now discuss the translation of specifications with cycles

180

5.6. Recursion

in the dependency graph. We only consider well-formed timestamp-conservative
specifications, i. e. every cycle is guarded by a last operator.

The main question addressed in this section is how to integrate cycles into the
outer EPU pipeline. The current timestamp of an EPU must never decrease. This
invariant is essential for the mechanics of the pipeline and the EPUs to work. While
this is naturally the case if events are fed synchronously into the pipeline and only
traverse down the pipeline, this invariant might break as soon as messages can travel
the opposite direction up the pipeline.

We assume that every cycle is started with the last operator guarding it. This
assumption can be easily fulfilled by reordering the nodes of the dependency graph,
i. e. moving all other nodes involved in the cycle to a later EPU. The statement

y := last(v, r)

defines the derived stream y: For every event on the trigger stream r, an event on
y carries the value of the last event that happened on the value stream v before. If
there was no event on the value stream yet, then the event on r is ignored.

Recall that the EPUs form a pipeline processing events. The different EPUs have
different current timestamps, but the timestamps are increasing, so further along the
pipeline we get, the lower the current timestamps are. In case of the non-recursive
last in Definition 5.11 from Section 5.4 this invariant makes the implementation of
the last semantics rather straight forward. Trigger events only need to consider
events on the value stream which arrived earlier. We have to make sure that we
only use values from events that happened before the trigger. This is done by the
cbtsc command which copies mcurrent into mlast .

In the case of cycles, we have to solve two additional problems:

(P1) We must ensure that the EPU has received enough information through the
recursive loop to send out the data in case of a trigger event. We can no longer
assume that all relevant data events arrived before the trigger event at the
EPU because the data event arrives through the recursive channel, which is
not implicitly synchronised with the other events. So now we have to keep
track of every event going through the EPU, which can eventually end up in
the recursive data input of the last. We need to keep track of whether we are
waiting for such an event. We are again up to date if all such events have made
it through the recursive cycle. Since the EPUs can filter events, we introduce
progress messages to detect the absence of events: With every event going
into the recursive cycle, we send a progress message following it. The progress
message is sent with the next occurring timestamp, which guarantees that this
message is received after the original message because the EPUs always keep
the order of timestamps.

181

5. TeSSLa on Embedded Procssing Units (EPUs)

(P2) If an EPU waits for data arriving through the recursive channel, it cannot
immediately send the message responding to the trigger. In those cases, we
must ensure that this message still has the correct timestamp and that the
invariant is preserved, that the timestamps of all messages sent out by an
EPU never decrease. So if the last operator gets triggered and the required
information about the value stream is not yet available, we must ensure that the
EPU’s current timestamp stays the same until the trigger is handled. Blocking
the EPU ensures this. It prevents the entire EPU from accepting incoming
messages, which increase the current timestamp. Note that such a block is not
necessary for every message being sent in the recursive cycle but only if the
last gets triggered without all required information about the cyclic dependent
value stream being available yet. So it highly depends on the event frequency
on the trigger stream if the EPU gets blocked or not.

With these considerations, we can now look at the following definition giving the
EPU commands used to translate a last operator guarding a cycle. Because of (P2),
this is called a blocking last.

Definition 5.15 (Commands for Blocking last). The TeSSLa specification

z = last(x, y)

in which x is (transitively) depending on z is translated into the EPU commands
cobs, cbtsc, ctrig, cdata, cprog and catsc given by:

cobs : o = i

cbtsc : if mtime < t then m′
time = t, m′

state = invalid
ctrig : if mstate = valid then

if mtime = t ∧mprev ̸= ⊥ then o = mprev, m
′
state = invalid

if mtime < t ∧mvalue ̸= ⊥ then o = mdata, m
′
time = t, m′

state = invalid
if mstate = invalid then m′

state = triggered, b′ = 1
cdata : m′

data = i, m′
prev = mdata,

if mstate = valid then m′
time = u

if mstate = invalid ∧mtime = u then m′
state = valid

if mstate = triggered ∧mtime = u then
o = i, m′

time = t, m′
state = invalid, b′ = −1

cprog : if u > mtime then
if mstate = invalid then m′

state = valid
if mstate = triggered then

if mdata ̸= ⊥ then

182

5.6. Recursion

last
obs

last
btsc

last
trig

last
data

last
prog

last
atsc

fwd

a y

z

x

atsc

btsc

btsc

Figure 5.14.: EPU network diagrams for the commands for blocking last.

o = mdata, m
′
time = t, m′

state = invalid, b′ = −1
if mdata = ⊥ then m′

state = valid, b′ = −1
catsc : if mstate = invalid then o = 0

The EPU’s memory tuple is initialised as follows:

m = (mdata,mprev,mtime,mstate) = (⊥,⊥,−∞, valid).

The corresponding EPU network diagram is given in Figure 5.14.

There are, in general, three different states the system can be in: The memory
field mstate is either valid, invalid or triggered. In the following we describe the
effect of the three variables mdata, mtime and mprev in these three states and which
state transitions are triggered by receiving a trigger, observing an event going into
the recursive cycle, and receiving a data value or a progress through the recursive
cycle.

valid mdata contains the most recent data, which was last updated at c. mtime
contains the timestamp at which we received this data. mprev contains the
previous data value.

Trigger. We can simply send out an event with the value mdata. If mdata is ⊥,
then the last has not been initialised, and we do not send out anything.

There is one rare special case: If We have received data with the same times-
tamp with which we are triggered now, then we cannot send out the current
data. The last operator always produces the previous value, so if mtime equals
the current timestamp, then we send out mprev instead of mdata.

We have sent an event into the recursion in both cases, so we are now invalid.

183

5. TeSSLa on Embedded Procssing Units (EPUs)

Observe. We have to become invalid because we have to wait for this event to
come back through the recursive cycle. Since the last operator always produces
the last known value, an observed value does not immediately invalidate the
data, but only for the next occurring timestamp. Hence, we perform the state
change right before the timestamp increase.

Data. An observed event made it through the recursive cycle before the times-
tamp increased. We update mdata and mprev and mtime accordingly and stay
valid.

Progress. We can safely ignore this because we have already processed the data
preceding this progress. Otherwise, the current state would not be valid.

invalid mdata contains the previous data value. mtime contains the latest timestamp
at which an event was send into the recursion, which we are waiting for now.
mprev contains nothing meaningful.

Trigger. We cannot respond to this trigger. So we go to the triggered state
and increment the blocking counter to prevent any timestamp increase until
the trigger at the current timestamp could be reacted to.

Observe. We are already invalid, so at the timestamp increase, we update the
timestamp we are waiting for in mtime.

Data / Progress. If this was the data we are waiting for, i. e. the received
timestamp equals mtime or is greater, respectively, then we are now valid again.
In case of data we update mdata and mprev accordingly.

triggered The variables have the same meaning as in the invalid state. Additionally,
we know in this state that we have postponed a trigger which must be executed
as soon as we have valid data.

Trigger. We cannot be triggered in this state because a timestamp increase
is blocked, and we have already been triggered. Two triggers cannot happen
with the same timestamp because two events on the same stream always have
different timestamps.

Observe. Timestamp increases are blocked in this state, so we cannot observe
a timestamp increase in this state.

Data / Progress. If this was the data we are waiting for, i. e. the received
timestamp equals mtime or is greater, respectively, then we can now react to
the postponed trigger and send out the just received data. In case of data
we update mdata and mprev accordingly. Since we have sent a new event into
the recursion, we become invalid again and update mtime. We decrement the
blocking counter because there is no longer a postponed trigger, so a timestamp
increase is allowed again.

184

5.6. Recursion

5.6.1. Example

To illustrate the translation of a blocking last to an EPU network we consider the
following TeSSLa specification with the free input variables x, y, a ∈ SD:

z = default(last(z, x) + y, 0)
b = a+ 1

We split up the definition of z into multiple intermediate derived streams as fol-
lows:

ℓ = last(z, x)
s = ℓ+ y

z = default(s, 0)
b = a+ 1

The EPU network translated from this specification is shown in Figure 5.15. The
stream y is observed so that we know about all messages going into the recursive
cycle. The messages on y are only forwarded to y′ on the first EPU. The stream x
triggers the last which then sends out a message on ℓ. Every event observed on y
and every message sent out as a response to a trigger on x schedules a command for
ATSC execution, sending a progress message after the timestamp is increased. The
events on y′ and ℓ are added together on the second EPU following the signal view.
The third EPU applies a default value in order to get the recursion started, and
the fourth EPU forwards the resulting events on z back to the first EPU as input
to the last guarding the recursion and a copy of that message out as the result of
the recursive computation. Progress messages are forwarded back to the first EPU
through the recursive channel. Mostly not interfering with all this – at least while
the EPU is not blocked – for every event on a the message’s value is incremented
on the first EPU and forwarded on all subsequent EPUs. This stream is included in
the example to demonstrate the interference – or its absence – of regular messages
with the recursive messages.

Figure 5.16 shows an exemplary evaluation of this specification using the syn-
chronous semantics from Section 4.1. The default first creates a 0 on z. Then
an event on a is processed, i. e. its value gets incremented. Next, we receive a trigger
on x causing the last to produce the last known value on z, which is the 0 created
earlier by the default. Then we receive a 4 on y, which is added to this 0 causing
a new event on z. Next, we receive two synchronous events on x and y, so the 4
produced on z earlier is reproduced with the current timestamp by the last and
added to the 2 on y producing a 6 on z. Finally, there is another event on a causing
a final event on b.

185

5. TeSSLa on Embedded Procssing Units (EPUs)

last
obs

last
btsc

last
trig

last
data

last
prog

last
atsc slift(+1)

slift(+)
store1

slift(+)
store2

slift(+)
atsc

default
main

default
btsc

fwd fwd fwd

z′′ b′′′

y x a

b

b′

b′′

p

p′

p′′

ℓ

s

z

y′

p′′′z′

btsc

atsc

btsc

btsc

next

btsc

Figure 5.15.: EPU network diagram for the recursive example.

0 1 2 3 4 5 6

y
4 2

x
5 5

a
3 8

ℓ
0 4

s
4 6

z
0 4 6

b
4 9

Figure 5.16.: Exemplary evaluation of the recursive example using the syn-
chronous semantics.

186

5.6. Recursion

a
3
1

8
6.7

x
5
2

5
5

z′ 0
0

4
3.3

6
5

y
4

3.3

2
5

p′′′
1 3.3 5 6.7

p
1 3.3 5 6.7

b
4
1

9
6.7

l
0
2

4
5

y′ 4
3.3

2
5

p′
1 3.3 5 6.7

b′ 4
1

9
6.7

s
4

3.3

6
5

z
0
0

4
3.3

6
5

p′′
1 3.3 5 6.7

b′′ 4
1

9
6.7

z′′ 0
0

4
3.3

6
5

b′′′ 4
1

9
6.7

invalid triggered invalid trig. invalid valid

Figure 5.17.: Exemplary evaluation of the EPU network derived from the re-
cursive example using the same input as in Figure 5.16.

187

5. TeSSLa on Embedded Procssing Units (EPUs)

Figure 5.17 shows the same input being processed by the EPU network. Again this
stream diagram is based on the EPU network execution semantics given above and
was generated using the EPU simulation discussed in Section 5.3.4. In addition to
EPU stream diagrams used earlier in this chapter in this diagram the state of the
commands for the blocking last is indicated by the bar above the first EPU: If the
state is triggered, the EPU is blocked, i. e. the blocking counter is incremented above
zero, and the EPU no longer accepts incoming messages, increasing the current
timestamp. Note how in both cases, an incoming recursive message delivers the
missing data we were waiting for. Then the state goes back to invalid, the blocking
counter is decremented, and the blocking is disabled.

5.6.2. Expressiveness

Theorem 5.16. Every timestamp-conservative TeSSLa specification can be evalu-
ated on EPUs.

Proof. As a direct consequence of Theorem 3.51 (Signal Lift and Default) from
Section 3.4.2 and Lemma 3.98 (Expressiveness of Timestamp Conservative TeSSLa)
from Section 3.6 we get: The basic operators slift, last, time, default and unit

are sufficient to express every timestamp-conservative TeSSLa specification. In the
previous sections we have shown how to evaluate TeSSLa specifications build from
these operators on EPUs.

Note that the proof of Theorem 3.51 requires data types being extended with ⊥. This
extension can be encoded into integer data types by interpreting an unused value as
⊥. However, this is a rather theoretical result because this encoding and especially
the constructions used in the proof are very inefficient on the EPUs because they
use up too many commands. For that reason, additional translations for derived
operators into EPU networks have been given in Section 5.4.

5.7. Fulfilling Hardware Restrictions

The last sections discussed how to translate TeSSLa specifications into EPU net-
works which were introduced as formal EPU model in Section 5.3. This section will
discuss additional restrictions and limitations of the actual hardware that must be
considered when encoding such an EPU network into actual hardware EPUs.

A central concept of the hardware EPUs is the encoding of conditions. All condi-
tional assignments and outputs of an EPU are expressed in the form of a condition.

188

5.7. Fulfilling Hardware Restrictions

These conditions are configured in a separate condition configuration and are re-
ferred to only by their ID in the command’s configuration.

The following constraints on EPU commands must be fulfilled on actual hardware:

• A command must use at most 3 data memory values, which can be read and
written.

• A command must use at most 8 flag memory values, i. e. Boolean values, which
can be read and written. These flags must be grouped into flag words of 8 bit,
i. e. flags cannot be shared with other commands in different subsets.

• A command must use only one arithmetic computation.

• A command can only use one condition to decide whether to send out an event
or not. The value of an outgoing message sent by a command can be taken
from many sources, e. g. the memory or an arithmetic computation. However,
this choice must be made static at compile-time, and the only decision made
at runtime is whether to send a message or not. Note that this restriction does
not limit the possible values of an outgoing message.

• A command can only use one condition to decide whether to update a memory
cell or leave it unchanged.

• A command can only have three different new values for the entire flag word,
with one option being leaving the flag word unchanged.

• The conditions must be expressible; see below on how conditions are encoded.

In addition to these constraints on the individual EPU commands, the size of the
memories and FIFOs are further limitations. In detail, the following limitations of
the EPUs must be considered when assigning EPU commands to EPUs:

– The size of the ASIC and BSIC FIFOs,
– the size of the command memory,
– the size of the data and flag memory and
– the number of available channels.

In the next sections, we will discuss how to fulfil the constraints regarding the
individual EPU commands, how to encode conditions and how to fulfil the memory
constraints of the EPUs.

189

5. TeSSLa on Embedded Procssing Units (EPUs)

5.7.1. Splitting Up EPU Commands

In order to fulfil the constraints regarding the individual EPU commands, some EPU
commands must be split up into multiple EPU commands: A single EPU command
can be replaced with two (or more) EPU commands linked together using the next
command. The original input message is available to all EPU commands. Memory
adjustments of previous commands are already available when executing the next
commands, so basically, an EPU command can be split up into two consecutive
commands at any point.

Example 5.17 (Splitting Up EPU Commands). As an example on how to split up
EPU commands we reconsider the command cbtsc used in Definition 5.14 for the
translation of the TeSSLa specification

z = slift(ite)(w, x, y).

The command cbtsc is given by

cbtsc : m′
send = false

if m1 ̸= ⊥ ∧m2 ̸= ⊥ ∧m3 ̸= ⊥ ∧msend then

o =

m1 if m1 ̸= 0,
m2 otherwise.

There are three possible outcomes regarding the outgoing message o: Sending out
m1, sending out m2 or doing nothing. According to the constraints above we must
decide statically where the value should come from and the ALU is already busy
deciding m1 ̸= 0, so we need to split this command up into cbtsc1 and cbtsc2 defined
as follows:

cbtsc1 : if m1 ̸= ⊥ ∧m2 ̸= ⊥ ∧m3 ̸= ⊥ ∧msend ∧m1 ̸= 0 then o = m2

cbtsc2 : if m1 ̸= ⊥ ∧m2 ̸= ⊥ ∧m3 ̸= ⊥ ∧msend ∧m1 = 0 then o = m3

m′
send = false

The precondition of m1, m2 and m3 being initialised and msend being set is now
checked by both commands. What to send is decided by m1 ̸= 0 or its negation
m1 = 0 in the second command.

5.7.2. Condition Configuration

As mentioned in the constraints above, all conditional assignments and outputs of
an EPU must be expressible as a condition configuration. The result flag of the

190

5.7. Fulfilling Hardware Restrictions

ALU and all the flags of the flag memory are available as inputs to the condition
logic. The output of the condition logic is used to decide if an output event is sent
or memory is updated. The condition logic realises an expression of the form

((x⊗ x) ⊗ (x⊗ x)) ⊗ ((x⊗ x) ⊗ (x⊗ x)),

where each ⊗ is either ∧ or ∨ and each x is any of the flags, optionally negated.

For simplicity, we discuss the condition configuration for condition logic trees of
depth 3. The EPUs on the actual hardware are equipped with trees of depth 4.
Note that this only changes the number of different formulas that can be expressed,
not the number of available inputs. In both cases, all nine flags can be used as an
input for a condition. Figure 5.18 shows a schematic representation of a condition
logic tree of depth 3 and the variables used to configure the tree.

∧∨o31

∧∨o21

∧∨o11

¬n1

xs1

¬n2

xs2

∧∨o12

¬n3

xs3

¬n4

xs4

∧∨o22

∧∨o13

¬n5

xs5

¬n6

xs6

∧∨o14

¬n7

xs7

¬n8

xs8

Figure 5.18.: Schematic representation of an condition logic tree of depth 3.

The tuple o = (o31, o21, o22, o11, o12, o13, o14) ∈ B7 specifies if the Boolean operator is
∧ (false) or ∨ (true). The tuple n = (n1, n2, . . . , n8) ∈ B8 specifies if the negation is
enabled (true) or not (false). The tuple s = (s1, s2, . . . , s8) ∈ {1, 2, . . . , 9}8 specifies
which of the 9 flags (flag word and ALU flag) are assigned to the inputs.

We will discuss two different approaches to fit Boolean functions f : B9 → B into a
configuration o,n, s for this condition tree: Using an SMT solver and a faster and
simpler greedy approach.

191

5. TeSSLa on Embedded Procssing Units (EPUs)

Using an SMT Solver

Let f : B9 → B be the given function with the arguments x = x1, x2, . . . , x9. Then
we want to find an assignment to the variable tuples o,n, s such that

∀x ∈ B9 : f(x) = γ

with

γ := α(o31, α(o21, α(o11, β(n1, s1), β(n2, s2)),
α(o12, β(n3, s3), β(n4, s4))),

α(o22, α(o13, β(n5, s5), β(n6, s6)),
α(o14, β(n7, s7), β(n7, s7))))

and

α(oij, a, b) := (¬oij ∧ a ∧ b) ∨ (oij ∧ a) ∨ (oij ∧ b)

β(ni, si) := ni ⊻

 ∨
k∈{1,2,...,9}

si = k ∧ xk

The operator ⊻ denotes the exclusive disjunction, i. e. the XOR operation.

These conditions can be encoded into and solved with an SMT solver whose output
is an assignment of the configuration variables of the condition logic tree such that
the logic formula represented by the tree is equivalent to the given formula.

Note that this is not an optimisation problem. Any solution is a good solution
because we only need a valid configuration for the condition logic tree. This con-
figuration is written into the memory and interpreted by the FPGA accordingly.
Since we are not reconfiguring the FPGA itself, the path length of the routes on the
FPGA is fixed and independent of the concrete configuration.

Example 5.18 (Computing a Condition Configuration Using an SMT Solver). Con-
sider the function

f(x) := x1 ∨
(
x2 ∨ ((x3 ∧ x4) ∨ ¬(x3 ∨ x4))

)
,

which is equivalent to x0 ∨ x1 ∨ (x2 ↔ x3). If we insert this into the SMT formula
presented above a possible solution would be

o = (false, true, true, true, true, true, true)
n = (false, true, false, false, false, false, false, true)
s = (3, 4, 1, 2, 4, 2, 1, 3)

192

5.7. Fulfilling Hardware Restrictions

which represents this formula

f1(x) :=
(
(x3 ∨ ¬x4) ∨ (x1 ∨ x2)

)
∧

(
(x4 ∨ x2) ∨ (x1 ∨ ¬x3)

)
.

The condition tree is shown in Figure 5.19.

∧

∨

∨

x3 ¬x4

∨

x1 x2

∨

∨

x4 x2

∨

x1 ¬x3

Figure 5.19.: Condition tree for the condition configuration discussed in Exam-
ple 5.18.

Using a Simple Greedy Algorithm

In many cases, the following simple algorithm is sufficient, faster and produces a
more human-readable result. The condition tree shown in Figure 5.18 can already
express Boolean formulas, including disjunction, conjunction and negation of the
leaves. So it only remains to convert given formulas to negation normal form and
balance them to fit in trees of limited depth. While the following steps are not
guaranteed to find a solution if one exists, they are sufficient enough for all practical
examples:

1. Replace constants with tautologies or contradictions, i. e. replace true with
x1 ∨ ¬x1 and replace false with x1 ∧ ¬x1.

2. Convert the formula to negation normal form.

3. Balance the formula: Form maximal subformulas using only the same operator
(∧ or ∨) starting with the tree’s leaves, i. e. the literals in the formula. Build
balanced trees for those subformulas. Now consider these subformulas as fixed
and iterate the process until the tree is balanced. Always consider the depth
of subtrees when balancing subformulas over already balances subtrees.

4. Fill up the tree: If balancing the tree does not produce a fully balanced tree,
fill up the tree either by duplicating subtrees or adding tautologies.

193

5. TeSSLa on Embedded Procssing Units (EPUs)

5. Assert depth: If the tree’s depth is too high (more than three levels of opera-
tors), this algorithm cannot fit the given function. If it is too small (less than
three levels), add layers either by duplicating subtrees or adding tautologies.

Example 5.19 (Computing a Condition Configuration Using a Simple Greedy Al-
gorithm). Consider the same function used in the last example:

f(x) := x1 ∨
(
x2 ∨ ((x3 ∧ x4) ∨ ¬(x3 ∨ x4))

)
.

The expression does not contain any constant. We first translate the expression into
negation normal form:

f1(x) := x1 ∨
(
x2 ∨ ((x3 ∧ x4) ∨ (¬x3 ∧ ¬x4))

)
.

Next we identify subexpressions using the same operator: The two conjunctions at
the bottom of the tree are already perfectly balanced, but the disjunction at the top
of the tree can be better balanced:

f2(x) := (x1 ∨ x2) ∨
(
(x3 ∧ x4) ∨ (¬x3 ∧ ¬x4)

)
.

As a final step we add a conjunction with the tautology ¬x1 ∨ x1 to the subtree on
the left in order to perfectly balance the tree:

f3(x) :=
(
(¬x1 ∨ x1) ∧ (x1 ∨ x2)

)
∨

(
(x3 ∧ x4) ∨ (¬x3 ∧ ¬x4)

)
.

This formula now fits exactly into the condition tree and we get the following con-
dition configuration:

o = (true, false, true, true, true, false, false)
n = (true, false, false, false, false, false, true, true)
s = (1, 1, 1, 2, 3, 4, 3, 4)

The tree representations for these functions is shown in Figure 5.20.

5.7.3. Placement of EPU Commands in the Network

If the mapping results in an EPU network using more than the available memory
for data, flags or FIFOS, some EPU commands must be moved to the next EPU
following these considerations:

• One can only move entire command groups, i. e. a group of commands that
shares the same data and flag memory, indicated as grey memory connections
in the EPU network diagrams.

194

5.7. Fulfilling Hardware Restrictions

∨

x1 ∨

x2 ∨

∧

x3 x4

¬

∨

x3 x4

f

∨

x1 ∨

x2 ∨

∧

x3 x4

∧

¬x3¬x4

f1

∨

∨

x1 x2

∨

∧

x3 x4

∧

¬x3¬x4

f2

tr
ue

∨

∧

∨

¬x1 x1

∨

x1 x2

∨

∧

x3 x4

∧

¬x3¬x4

f3

Figure 5.20.: Tree representations for the functions discussed in Example 5.19.
In f1 the maximal subtree with same operators is highlighed and in f2 balanced.
In f2 additionally the not yet perfectly balanced subtree is highlighted and moved
one level down in f3.

195

5. TeSSLa on Embedded Procssing Units (EPUs)

slift(>)
store1

slift(>)
store2

slift(>)
btsc

slift(−)
store1

slift(−)
store2

slift(−)
btsc

fwd fwd

slift(−)
store1

slift(−)
store2

slift(−)
btsc

slift(ite)
store1

slift(ite)
store2

slift(ite)
store3

slift(ite)
btsc

z

x y
next next nextnext

btsc btsc

btsc

c1

x′ y′

c2 c3

btsc

Figure 5.21.: Adjusted EPU network diagram for the absolute value example
from Figure 5.11 in Section 5.5.1.

• Dependent command groups must be moved to later EPUs, too.

• If a command group is moved to a later EPU, which got its input via a next
chain, then one might need to insert additional forward commands as discussed
in Section 5.5.

As an example of such adjustments reconsider the absolute value example from
Figure 5.11 in Section 5.5.1. For the sake of the example, we assume that the
commands for the third slift do not fit on the first EPU. Figure 5.21 adjusts the
EPU network diagram accordingly: The three commands for that slift are moved
to the next EPU. As a consequence, the commands for the slift(ite) are also moved
to a later EPU because it depends on the output of the slift. In the original EPU
network, the inputs x and y are dispatched to the three slift using a next command
chain. This only works for commands on the same EPU, so in order to send these
messages to the third slift, too, they are dispatched to fwd commands using the
next chain. These fwd commands forward the messages to the third slift on the
second EPU. The second EPU bypasses messages, which are sent from the first EPU
and targeted to the third EPU.

196

5.7. Fulfilling Hardware Restrictions

Additional Restrictions for Recursive Cycles

With recursive cycles, one has to consider an additional restriction: The number of
parallel recursions with different targets must be smaller or equal to the number of
available recursive channels. The optimisation problem becomes more complex with
this additional restriction because one has to decide which command group should
be moved to a later EPU to fulfil all constraints.

We formalise the constraints in order to use an SMT solver to check if an EPU
network can be transformed into an equivalent network that fulfils the hardware
restrictions:

We assume the set of all EPU commands c ∈ C to be partitioned into command
groups g ∈ G = 2C. For every command group, the variable vg ∈ E encodes on
which EPU all commands of this command group are located. We analyse all target
edges in a given EPU network and distinguish them into forward and backward
edges:

• The set D ⊆ G × G of forward edges between command groups contains all
combination of command groups g1, g2 such that there are c1 ∈ g1 and c2 ∈ g2

with target(c1) = c2 and epu(c1) < epu(c2).

• The set DR ⊆ G × G of backward edges between command groups contains all
combination of command groups g1, g2 such that there are c1 ∈ g1 and c2 ∈ g2

with target(c1) = c2 and epu(c1) > epu(c2).

For every backward edge (g1, g2) ∈ DR we introduce a variable hg1,g2 ∈ {1, 2, 3, 4}
indicating the recursive channel used for this backward edge. Finally we encode the
switch boxes (see Section 5.2) as follows: For every EPU e ∈ E and every channel
h ∈ {1, 2, 3, 4} we introduce a variable se,h ∈ {straight, out, in} indicating the state
of this switch box.

We are now looking for an assignment of the variables vg, hg1,g2 and se,h for all
g, g1, g2 ∈ G, e ∈ E and h ∈ {1, 2, 3, 4} which fulfils the following constraints:

• Every forward edge must remain forward, i. e. for all (g1, g2) ∈ D we have
vg1 < vg2 and

• every backward edge has a channel, i. e. for all (g1, g2) ∈ DR we need the
following switch box configuration on the assigned channel: out on the EPU
of g1, in on the EPU of g2 and straight for all EPUs in between:

svg1 ,hg1,g2
= out ∧svg2 ,hg1,g2

= in ∧
∧

g1<v<g2

sv,hg1,g2
= straight

197

5. TeSSLa on Embedded Procssing Units (EPUs)

In order to encode the second property into an SMT solver, the formula can be
unrolled: All possible recursive channels can be generated in advance and then only
checked if any of these recursive channels matches the current variable assignment.

In order to find a proper mapping of the commands onto the EPUs, we encode the
other EPU network constraints regarding the available memory for flags, data and
FIFOs, too. These additional constraints check how much memory the commands
consume, which are included in the command groups.

5.7.4. Enqueuing Commands

In the definition of the execution of the formal EPU modal given in Section 5.3.1
every EPU is equipped with two sets storing the commands being enqueued via
BTSC or ATSC. As already introduced in Section 5.2 these sets are implemented
as FIFOs on the actual hardware. Implementing a set in hardware would introduce
additional overhead to maintain the invariance that an element can only be once in a
set. There are multiple approaches, e. g. sorting the set elements with every insertion
or comparing every newly inserted element with all elements in the set. Any generic
solution would use numerous resources, which is why we use the existing flags and
conditions to ensure that specific BTSC or ATSC commands only get enqueued once.
An EPU command of the actual hardware can specify two additional conditions
specifying if the BTSC or ATSC command, respectively, is enqueued or not. With
the introduction of an additional flag to remember if the command was already
enqueued, we can use this mechanism to prevent a command from being enqueued
twice. The enqueued command then resets the flag so that it can be enqueued again
for the next timestamp.

5.8. Practical Simplifications

This section discusses several practical engineering tweaks used in translating TeSSLa
specifications to EPU configurations.

5.8.1. Flow Graph Optimisations

We start with adjustments on the level of the specification’s flow graph. Although
these adjustments are performed on the flow graph before its translation into the
EPU network, they are especially relevant for the EPU backend, because the EPU
backend is the only implementation which uses the translation result directly without
further optimisations.

198

5.8. Practical Simplifications

Unary filter. The binary operation filter can be replaced with a unary slift if both
inputs of the filter are derived from the same stream. For example filter(const(x, c), c)
is a common pattern to replace the true events on c ∈ SB with the constant value
x and filter out the false events. This specification is equivalent to slift(f)(c) with
f : B → D⊥ given by

f(a) =

x if a = true,
⊥ otherwise.

Further, filter(c, c) is a special case of that pattern which filters a Boolean stream
c ∈ SB for true events. This specification is equivalent to slift(f)(c) with f : B → D⊥
given by

f(a) =

a if a = true,
⊥ otherwise.

Integrate Constants Into slift. Constant values d ∈ D in specifications are im-
plicitly understood as const(d) ∈ SD, which is then translated as default(nil, d). This
operator becomes an EPU command sending a single message before the first times-
tamp change of its EPU. If this stream is used as input of an slift it can be integrated
directly into the lifted function and thereby reduce the arity of the operator.

For example slift(f)(x, default(nil, y)) for a stream x ∈ SD, a constant y ∈ D and
a binary function f : D × D → D can be equivalently as a unary slift(g)(x) with
g : D → D given by g(a) = f(a, y). Translating this into an EPU commands no
longer requires any BTSC commands waiting for a possible event on the second
input stream because we now know that every incoming event on x immediately
creates an outgoing event.

The same approach can be applied for the ternary slift(ite)(w, x, y) with streams w ∈
SB, x ∈ SD and a constant y ∈ D. The resulting slift(ite)(w, x, default(nil, y)) can be
expressed as slift(g)(w, x) with f : B × D → D given by f(a, b) = ite(a, b, y). In case
of slift(ite)(w, default(nil, x), default(nil, y)) it can even become a unary slift(g)(w)
with g : B → D given by g(a) = ite(a, x, y).

Similarly merge(x, y) for a stream x ∈ SD and a constant y ∈ D can be replaced
with default(x, y) with requires fewer synchronisation logic.

199

5. TeSSLa on Embedded Procssing Units (EPUs)

5.8.2. EPU Network Optimisations

The following adjustments are applied after the translation of the specification’s
flow graph into an EPU network. They are based on integrating commands into the
target command in the next EPU to reduce the specification depth and cannot be
expressed on the flow graph.

Integrate time. Instead of translating the time operator into a custom command
in nearly all cases, the target command can be adjusted to use the time t instead of
the events value i. This adjustment cannot be expressed on the TeSSLa flow graph
because the time operator is used there to express accessing an event’s timestamps
instead of its values.

Integrate Constants Into last. In the same way that constant values d ∈ D could
be integrated into a following slift they can also be integrated into a following last.
However, the resulting construct has no longer a trivial TeSSLa operator expressing
its semantics. Hence, this integration optimisation only makes sense directly on the
EPU network:

The specification last(default(nil, d), r) can be translated as the commands for last

where mcurrent is initialised with d and cbtsc is initially enqueued in the BTSC FIO.
Note that initially setting mcurrent = d would be wrong because a last never pro-
duces an event when triggered at timestamp 0. This distinction between events at
timestamp 0 and all later events is what makes this case unique compared to the
integration into slift discussed in the previous section.

5.8.3. Translating Recursive Specifications

The translation scheme for recursions presented in Section 5.6 works for arbitrary
cycles in the specification’s flow graph. A typical pattern for simple recursive spec-
ifications, however, is shown in Figure 5.22 on the left and consist of the following
elements: A last operator which is used to copy the old aggregated value to the
current timestamp for each event on the trigger stream r, some arbitrary operators
depicted as cloud C which perform computations based on the old aggregated value
and some new incoming events represented by an observed stream o, and a default

operator, which defines a base case needed to get the recursion started.

The specification

z = default(last(z, x) + y, 0)

200

5.8. Practical Simplifications

r

last

C

o

default

s

r

last

C

o

default s

Figure 5.22.: Abstract flow graph of recursive specifications suitable for a sim-
ple translation.

from Section 5.6.1 falls into this category, too: The last reproduces the old aggre-
gated value at the current timestamp for every event on x, then the latest value on
y is added to the aggregated value and finally the default injects the base case of 0
at timestamp into the cycle. We will therefore revisit this example in this section
and discuss how to simplify the translation by removing the default operator from
the cycle. If the default is the last operator whose output is directly fed into the
recursive value input of the last, then the default can be integrated into the EPU
commands created from the recursive last.

For recursive specifications matching this pattern, we can adjust the memory ini-
tialisation. The initial memory tuple m for the EPU commands used to translate a
recursive last was given in Definition 5.15 as

m = (mdata,mprev,mtime,mstate) = (⊥,⊥,−∞, valid).

If we already apply the effect of the default with a constant value k ∈ D we adjust
this to

m = (mdata,mprev,mtime,mstate) = (k,⊥, 0, valid).

With the initialisation mtime and mprev = ⊥ we still ensure that the last never
produces an event at timestamp 0 because ctrig only sends out events if mstate = valid
and either mtime = t∧mprev ̸= ⊥ or mtime < t∧mvalue ̸= ⊥ which is both not initially
fulfilled.

The second adjustment is that we do not need to initially enqueue cbtsc in that
case because there is no longer a need to inform the default about a timestamp

201

5. TeSSLa on Embedded Procssing Units (EPUs)

last
obs

last
btsc

last
trig

last
data

last
prog

last
atsc slift(+1)

slift(+)
store1

slift(+)
store2

slift(+)
atsc

fwd fwd fwd

default
main

default
btsc

z′′ b′′′

y x a

b

b′

b′′z′

p

p′

ℓ

s

y′

p′′z

btsc

atsc

btsc

next

btsc

Figure 5.23.: EPU network diagram for the simplified translation of the recur-
sive example.

change by a progress message. The adjusted EPU network diagram for the example
specification is shown in Figure 5.23.

The EPU commands for the default are still there but are located after the recursion
now. This adjustment reduces the number of EPUs involved in the recursion by
one. The default is still required after the recursion to send out the initial output of
0 at timestamp 0. In the case of the flow graph shown in Figure 5.22 on the right,
where the output stream s is derived directly from the internal specification C and
the default is not involved, the default can be eliminated.

5.9. Optimising Simple Recursions

Looking at the EPU commands defined so far – except those designed to implement
recursive cycles – there is a common pattern: Storing data on arrival and processing
it before the timestamp increment. This pattern implements the sync operator,
which performs the synchronisation required for the signal view. In combination
with an operation performed before the timestamp increases, this pattern realises
the semantics of the slift operator. This section aims to generalise this pattern further

202

5.9. Optimising Simple Recursions

by allowing the execution of arbitrary functions at the arrival of events and when
computing the output event before the timestamp increase. The TeSSLa operator
foldLift provides a formal TeSSLa semantics to this store and BTSC mechanism of
the EPU commands.

The foldLift operator is based on the foldn operator defined in Definition 3.42 in
Section 3.3.5. The foldn operator takes a function f , which is folded over the events
of the input streams. This function is split up into several smaller functions to
simplify the mapping onto the mechanisms available on the EPUs:

• For every input stream, there is a function si : D×Mi → Mi which is called for
every event on the input stream xi. The foldLift does not directly aggregate
the output stream but instead aggregates over a tuple of memory cells from
the partitioned memory domain M = ∏n

i=1 Mi.

• For every timestamp with an event on at least one of the input streams, the
function u : M → M is called once to update the entire memory.

• For every timestamp with an event on at least one of the input streams, the
function q : M → D⊥ is called to derive the output event from the current
memory valuation.

From the perspective of the TeSSLa semantics, this separation complicates the def-
inition but does not limit the expressiveness in comparison to foldn. However, it
makes it possible to directly translate expressions defined using foldLift to EPU
commands. Every si only uses its local memory, and u and f are only called once
per relevant timestamp. This restriction makes the semantics independent of the
execution order of the individual si, making the TeSSLa operator’s semantics and
the corresponding EPU commands equivalent. Otherwise, the semantics of the EPU
commands would depend on the order of arrival of the events with similar times-
tamps. In many cases, this is not a problem, but it depends on the specific functions
if the semantics realised by the EPU commands are still expressible in TeSSLa.

The foldLift operator and the corresponding EPU commands allow evaluating recur-
sions on a single EPU. Instead of using additional synchronisation mechanisms to
integrate recursive messages into the outer pipeline, we can now evaluate a recur-
sion in a single step of the pipeline. We will see in the evaluation in Chapter 8 that
this improves performance for small recursions with high event rates because the
additional synchronisation overhead is reduced. However, for complex recursions,
this approach might be even slower because the EPU must compute the entire re-
cursion in a chain of next commands before any other message can be processed, so
the EPU may become a bottleneck. Note that the foldLift is not sufficient to gain
the full expressiveness because mutual recursive expressions cannot be directly ex-
pressed using foldn without the introduction of additional data types such as tuples,
which the EPUs do not support.

203

5. TeSSLa on Embedded Procssing Units (EPUs)

We now define the foldLift operator as a special case of the foldn operator and then
give the corresponding EPU commands:

Definition 5.20 (Semantics of the Operator foldLift). Let

M =
n∏
i=1

Mi

be a tuple of arbitrary memory data types. The operator

foldLift : M ×
n∏
i=1

(Mi × D → Mi) × (M → M) × (M → D⊥) → Sn
D → SD

is defined as

foldLift(a, s, u, q)(x) = lift(q)(foldn(a, g)(x)).

It takes an initial memory tuple a ∈ M , a corresponding tuple s of store functions
si : Mi × D → Mi as well as a final memory update function u : M → M and
an output computation function q : M → D⊥. The aggregating function g : M ×
(D⊥)n → M is given by

g(m,x) = u(m′)

with m′ being

m′
i =

si(mi, xi) if xi ̸= ⊥,
mi otherwise.

Definition 5.21 (Commands for foldLift). Let x ∈ Sn
D be a tuple of streams and

the derived stream z ∈ SD given by z = foldLift(a, s, u, q)(x). This specification is
translated into the EPU commands ck for all 0 ≤ k < n and the EPU command
cbtsc given by:

ck : m′
k = sk(mk, i)

cbtsc : m′ = u(m)
o = q(m′)

The EPU’s memory tuple is initialised as follows:

m = a.

The corresponding EPU network diagram is given in Figure 5.24.

204

5.9. Optimising Simple Recursions

foldLift
1

foldLift
n

foldLift
btsc

z

x1 xn. . .

btsc btsc

Figure 5.24.: EPU network diagrams for the commands for foldLift.

One can see the idea of the foldLift operator in the above definition of its EPU
commands and the corresponding EPU network diagram: It can be imagined as
turning around the responsibilities and represent what an EPU can do as a TeSSLa
operator. This approach allows us to have an operator with a formal semantics that
can express EPU commands.

In the following, we give some examples of how foldLift can be used to translate
TeSSLa specifications to EPU commands.

Example 5.22 (Express slift Using foldLift). Let x ∈ Sn
D be a tuple of streams and

f : Dn ↪→ D a partial function on the data domain. The following equivalence follows
from the above definitions:

slift(f)(x) ≡ foldLift(⊥, s, u, q)(x)

with the initial memory tuple ⊥ ∈ (D⊥)n, the store functions si : D × D → D,
the memory update function u : Dn → Dn and the output computation function
q : Dn → D⊥ given by:

si(mi, d) = d

u(m) = m

q(m) = f(m)

This usage of foldLift does not aggregate values over multiple events because the old
value mi is ignored in si. As a result, we only store the old value until it is used,
which is the semantics of sync which is embedded in slift.

Next we show how the recursive aggregation operators count, sum, minimum and
maximum defined in Section 3.3.5 can be expressed using foldLift:

Example 5.23 (Express count Using foldLift). Let x ∈ SD be a stream. The fol-
lowing equivalence follows from the above definitions:

count(x) ≡ foldLift(0, s, u, q)(x)

205

5. TeSSLa on Embedded Procssing Units (EPUs)

with the initial memory value 0 ∈ D, the store function s : D×D → D, the memory
update function u : D → D and the output computation function q : D → D⊥ given
by:

s(m,x) = m+ 1
u(m) = m

q(m) = m

The sum operator could be expressed similarly using the store function s(m,x) =
m+ x instead.

Example 5.24 (Express minimum Using foldLift). Let x ∈ SD be a stream. The
following equivalence follows from the above definitions:

minimum(x) ≡ foldLift(⊥, s, u, q)(x)

with the initial memory value ⊥ ∈ D⊥, the store function s : D⊥×D → D⊥, the mem-
ory update function u : D⊥ → D⊥ and the output computation function q : D⊥ → D⊥
given by:

s(m,x) =

x if m = ⊥,
min(m,x) otherwise.

u(m) = m

q(m) = m

As already mentioned in Section 5.4 on the definition of the EPU commands for
TeSSLa operators, we use data types with the additional value ⊥ for memory cells
only to improve the readability. In the actual implementation, this is a memory
cell containing the data values and an additional flag indicating if the value was
initialised or not.

The maximum operator could be expressed similarly using max instead of min.

As a final example we have a look at how to express resetCount defined in Defini-
tion 3.46 using foldLift. This example is interesting because its two input streams
combine multiple input streams with an actual aggregation.

Example 5.25 (Express resetCount Using foldLift). Let x, r ∈ SD be two streams.
The following equivalence follows from the above definitions:

resetCount(x, r) ≡ foldLift((0, 0), (sx, sr), u, q)(x, r)

206

5.10. Integration and Test Setup

with the initial memory tuple (0, 0) ∈ D2, the two store functions sx, sr : D×D → D,
the memory update function u : D2 → D2 and the output computation function
q : D2 → D⊥ given by:

sx(x,mx) = 1
sr(r,mr) = 0
u(mx,mr) = (0,mr +mx)

q(m) = mr

In this example, we make use of the individual functions to express the complex
semantics of a resetCount with simple functions: The memory tuple m = (mx,mr)
stores the current increment in mx which is either 0 or 1 and the current value in
mr. With this convention sx can set mx to 1 for every incoming event on x in order
to count that event and sr resets the counter mr to 0. The memory update function
than adds mx to mr and resets mx to 0. The output is then mr, which is always
the current counter value.

Practical Simplifications

Looking at the above examples, one can see that the differentiation into a separate
store function, a memory update function and an output computation function does
not make much sense in the unary case with only one input stream. For these simple
aggregation operators count, sum, minimum and maximum we always have

u(m) = m

q(m) = m.

The three functions are evaluated one after another for every event on the one input
stream. Evaluating u and q in an additional command with BTSC execution is not
necessary in that case.

As a further simplification the initial evaluation at timestamp 0 can be removed if
it has no effect, i. e. u(a) = a and q(a) = ⊥. In that case, we do not schedule cbtsc
initially for BTSC execution.

For example in case of slift we have a = ⊥, u(⊥) = ⊥ and q(⊥) = ⊥. In case
of count however we have a = 0 and u(0) = 0, but q(0) = 0 ̸= ⊥ because count

produces and output stream which is initialised with 0 even if the input stream does
not have an event at timestamp 0.

207

5. TeSSLa on Embedded Procssing Units (EPUs)

PC FPGA

Input Trace

Specification

Interpreter

Encoder

Compiler

DecoderComparator

Test Result

USB

USB

USB

Input Queue

EPU1

data

config

EPU2

data

config

EPUn

data

config

Output Queue
co

nfi
gu

ra
bl

e
sw

itc
hi

ng
ne

tw
or

k

Output
Trace

Output
Trace

Input
Stream
Mapping

Output
Stream
Mapping

Input
Messages

Output
Messages

EPU
config

Figure 5.25.: Architectural overview diagram of the EPU hardware and test
workflow on the PC communicating with the EPUs.

208

5.10. Integration and Test Setup

5.10. Integration and Test Setup

A pipeline of EPUs is synthesised onto an FPGA and then at runtime configured
with an EPU configuration. While synthesising an FPGA image can take several
minutes up to hours, this reconfiguration is fast because we only write a small
configuration data of a few kilobytes through a USB connection into memory on the
FPGA. Figure 5.25 shows on the right an architectural overview of the pipeline of
EPUs on an FPGA. The EPU configuration is written through the USB connection
represented by the USB node in the centre of the diagram. As shown in Figure 5.4
in Section 5.2, every EPU has a command memory and a data & flag memory.

• The command memory contains the command configuration containing the
EPU commands and the operation configuration, as well as the condition con-
figuration, which is referenced in the command configuration as described in
Section 5.7. The command memory is written during the configuration and
only read by the EPU.

• The data memory is initialised during the configuration and read and written
by the attached EPU during the execution. It contains the data and flag
memory as well as the BTSC and ATSC FIFOs.

• The switching network controls the connections of the EPUs, which are going
against the direction of the outer pipeline. These connections are used to realise
the cyclic paths in the dependency graphs of recursive TeSSLa specifications.
The switch boxes are configured as described in Section 5.7. The switch boxes’
configuration is written during the configuration and cannot be changed during
the execution of the EPUs.

On the left of Figure 5.25 the integration test workflow for hardware EPUs is shown.
A specification is compiled into an EPU configuration and an input and output
stream mapping on the PC connected to the FPGA via USB. The input mapping
indicates which input streams are mapped to which commands on which EPUs.
Output messages are sent to a virtual EPU located after the final EPU of the
pipeline. The output mapping maps those messages and their target command ID
back to streams.

For the integration test, the input trace is encoded and sent via USB to the input
queue on the FPGA. Messages from the input queue are then fed into the pipeline of
EPUs. Messages from the output queue are read through USB and are then decoded
on the PC. The output trace is then compared with an output trace generated by
the interpreter, executed on the same specification and trace. The interpreter is
used here again as a reference implementation in a similar way as in Section 4.5.

209

5. TeSSLa on Embedded Procssing Units (EPUs)

Transmitting input and output messages through a USB connection from the PC
to the FPGA and back is a bottleneck of the setup depicted in Figure 5.25. In
production, especially the input messages are usually either provided by the same
FPGA containing the EPUs or transmitted through specialized high-speed connec-
tions. This test setup, however, serves the two purposes of correctness tests and
performance evaluation: For the correctness tests, input messages are created on
the PC and sent to the EPUs to compare the output of the EPUs with the in-
terpreter’s output. The input and output queues are included in the test setup,
in particular for the performance evaluation in Chapter 8: All input messages are
written into the input queue, then the EPUs process the input messages and write
their output into the output queue, and finally, the output queue is read out by the
PC. With this approach, the execution time of the EPUs is measured independently
of the USB connection.

5.11. Conclusion

This chapter introduced the first of two hardware backends for TeSSLa presented in
this thesis: We map a specification’s flow graph onto a linear sequential pipeline of
EPUs that run in parallel. Data flow processors inspired the design of the individ-
ual EPUs of the pipeline because the address of the incoming message determines
the executed command. A TeSSLa specification is compiled into an EPU network
realising the synchronous semantics for the specification that was introduced in Sec-
tion 4.1. Recursive specification, i. e. cycles in the flow graph, are supported on the
EPUs by additional outputs which are not connected to the next EPU but earlier
EPUs in the pipeline. For the translation of recursive specifications onto the EPUs,
a single last operator is translated into several different EPU commands on at least
three EPUs. However, with this construction, we gain the full expressiveness of all
timestamp-conservative TeSSLa specifications on the EPUs. Simple recursive spec-
ifications that are not mutual recursive can be expressed using the foldLift operator,
which avoids this complex construction. It can be translated into fewer commands
on a single EPU. The evaluation in Chapter 8 shows that this approach can improve
the performance for small recursions with high event rates in comparison with the
non-optimised translation.

The formal execution model for EPU commands and EPU networks were tested
with a simulation. Integration tests of the EPU compiler and the EPU hardware
have been performed by comparing the EPU’s output with the interpreter using
a hardware simulation and actual hardware provided by Accemic. An empirical
evaluation of the EPU’s performance in comparison with the software compiler from
Chapter 4 and the FPGA synthesis in Chapter 7 is discussed in Chapter 8.

210

6 Implementing Asynchronous TeSSLa

In the last chapters, we studied synchronous approaches to implement the TeSSLa
semantics. The synchronous monitors use a single global current timestamp indicat-
ing the synchronous progress for all streams of the specification. For the FPGA syn-
thesis discussed in Chapter 7, a different approach is taken to support asynchronous
evaluations. The monitoring semantics defined in Section 3.5 already support asyn-
chronous evaluations in that every stream can have a different progress. The progress
of a derived stream is not restricted by a global synchronisation but only determined
by the application of its defining TeSSLa operators and the progress of its arguments.
However, the monitoring semantics are not implemented directly, but this chapter
introduces the abstract monitoring semantics on abstract monitoring streams. This
semantics are shown to be an abstraction of the monitoring semantics. This abstrac-
tion differs from the synchronous semantics given in Section 4.1 in that they preserve
more of the asynchronicity of the monitoring semantics. The abstract monitoring
streams can still have different progress and the individual abstract operators are
shown to be perfect abstractions of their counterparts on monitoring streams.

A monitoring stream was defined in Section 3.5 as a possibly infinite set of streams.
This set can be seen as the set of all possible continuations of a given prefix. A
refinement relation and hence a smallest element, the entirely unknown stream, was
defined. Starting from this smallest element, one can compute the fixed point by
applying the function step by step; see Lemma 3.81 (Construction of the Least Fixed
Point) in Section 3.5.4.

Actual implementations cannot directly handle the set of infinitely many streams.
The abstract monitoring streams introduced in this chapter provide an abstract
representation of such a set of streams. This abstraction ignores that monitoring
streams can have multiple sequences of perfect knowledge, i. e. sequences where all
the streams in the set are equal. For the online monitoring to work starting with
the smallest element and refining this stepwise, we only need to represent the initial
sequence of full knowledge. The progress of a monitoring stream was defined in
Definition 4.1 in Section 4.1.1 as the timestamp, until which all its streams are equal.
This progress can either be inclusive or exclusive, i. e. at this particular timestamp,
the streams can still be equal (inclusive progress), or the streams can be equal up
to but not including this particular timestamp (exclusive progress). Thus, abstract

211

6. Implementing Asynchronous TeSSLa

monitoring streams explicitly encode the progress and contain of the sequence of
events up to the progress.

With this informal idea of abstract monitoring streams, we can now discuss a first
example, illustrating the difference of

– the TeSSLa monitoring semantics on monitoring streams,
– the synchronous monitoring on synchronised streams and
– the abstract monitoring semantics on abstract monitoring streams.

The main difference between monitoring streams and abstract monitoring streams
is that the abstract monitoring streams do not encode any information about how
the stream can continue after its progress.

Example 6.1 (Comparison of Different Abstractions of Monitoring Streams and
Semantics). Let v, r ∈ PD be two free monitoring streams and let ℓ ∈ PR be a
derived monitoring stream given by:

ℓ = last(v, r)

Figure 6.1 shows the application of this specification to exemplary input streams
on the left in black. Let q ∈ Q2 a synchronised stream given as the synchronous
abstraction of v, r:

q = α((v, r)).

The synchronised stream ℓq ∈ Q1 is derived from q by application of the synchronous
monitoring to q and shown in the middle of Figure 6.1 in red. Let vp, rp ∈ PD be
abstract monitoring streams (defined below in this chapter) given as the abstraction
of v, r:

vp = α(v) and rp = α(r).

The abstract monitoring stream ℓp ∈ PD is derived from vp and rp using the abstract
monitoring semantics (defined below in this chapter) and shown in the right part of
Figure 6.1 in blue.

The monitoring streams v and r have a minimal exclusive progress of 2. Thus, the
synchronised stream abstracted from v and r has a common exclusive progress of
2. Due to the synchronisation any information about the behaviour of the streams
beyond that progress is lost.

The abstract monitoring streams vp and rp can encode the different progresses of v
and r. However, the monitoring semantics yield more details on ℓ than the abstract
monitoring semantics on ℓp: We can see on the monitoring stream ℓ that that
last(v, r) can only generate events when v has events. If there is no event on v,

212

6.1. Abstract Monitoring Streams

0 1 2 3 4 5 0 1 2 0 1 2 3 4 5

v
2 N

r

ℓ
2 2 N N N

q

(
2

⊥

)(
⊥
□

)(
⊥
□

)

ℓq
2 2

vp
2

rp

ℓp
2 2

Figure 6.1.: Exemplary evaluation of the specification ℓ = last(v, r) with mon-
itoring semantics on the left in black in comparison with two abstractions: The
abstraction to synchronous monitoring is shown in the middle in red. The ab-
straction to abstract monitoring semantics is shown on the right in blue.

then there cannot be an event on ℓ. For the two events at and after timestamp 3, ℓ
encodes that there is an event with unknown value, because v is only known until
timestamp 2. The abstraction ℓp only encodes that there is no event up to but not
including 3 without any details on how the stream continues after timestamp 3.

6.1. Abstract Monitoring Streams

Abstract monitoring streams are introduced as streams in [CHL+18]. Their defini-
tion is reproduced here with minor adjustments to analyse them as an abstraction
of monitoring streams.

Definition 6.2 (Abstract Monitoring Streams [CHL+18]). An abstract monitoring
stream over a time domain T and a data domain D is a finite or infinite sequence
over timestamped elements from the data domain:

s = ⟨(t0, d0), (t1, d1), . . .⟩ ∈ RD ⊆ (T∞ × D ∪ {⊥,_})∞.

Every such sequence s ∈ RD fulfils the following properties:

– The sequence s contains at least one element,
– the timestamps are strictly increasing, i. e. ∀ 0 < i < |s| : ti−1 < ti,
– the symbols ⊥ indicating inclusive progress and _ indicating exclusive progress

occur only in the last element of s,
– the symbolic timestamp ∞ only occurs as (∞,_) in s.

In the same way as already introduced for Sn
D (see Section 3.2.2) we indicate the

Cartesian product RD1 × RD2 × . . .× RDn of abstract monitoring streams over these
data domains with the notation Rn

D.

213

6. Implementing Asynchronous TeSSLa

An abstract monitoring stream can either be a finite or an infinite sequence of tuples
of timestamps and values. In the finite case, special symbols can be used in the last
tuple to indicate additional progress. Similar to the synchronised streams introduced
in Section 4.1.2 the final tuple (t,⊥) indicates inclusive progress, i. e. the knowledge
that there exists no extension with an event until and including t. The final tuple
(t,_) indicates exclusive progress, i. e. the knowledge that extension cannot have
events before t but might have an event at t. The special final tuple (∞,_) is used
to encode full knowledge, i. e. there exists no extensions for this stream.

Similarly to Definition 3.15 (Timestamps of a Stream) in Section 3.2.1 and Defi-
nition 3.59 (Timestamps of a Monitoring Stream) in Section 3.5.1, we define on
abstract monitoring streams:

Definition 6.3 (Timestamps of an Abstract Monitoring Stream). For an abstract
monitoring stream s ∈ RD we define T (s) ⊆ T to be the set of timestamps carrying
events in s:

T (s) := {t ∈ T | s contains (t, d) with d ∈ D}.

We further define T (s) := ⋃
1≤i≤k T (si) for the timestamps of all events occurring in

s ∈ Rn
D.

As abstract counterpart for Definition 4.1 (Progress of a Monitoring Stream) from
Section 4.1.1 we define similar to Definition 4.4 (Progress of a Synchronised Stream)
from Section 4.1.2:

Definition 6.4 (Progress of an Abstract Monitoring Stream). Let s ∈ RD be an
abstract monitoring stream. Then the progress of s is the supremum of all times-
tamps used in s if it exists, or ∞ otherwise. If s ends in (t,_) or if there is no
maximal timestamp we call the progress exclusive, otherwise inclusive.

Example 6.5 (Abstract Monitoring Streams). The stream without any progress

s0 = ⟨(0,_)⟩

consists of a single tuple indicating an exclusive progress of 0. The empty sequence
is not a valid abstract monitoring stream. The empty stream with infinite progress

s1 = ⟨(∞,_)⟩

does not contain any events and can not be extended because the progress is already
infinite. Both streams do not contain any timestamps:

T (s0) = T (s1) = ∅.

214

6.1. Abstract Monitoring Streams

This stream with three events

s2 = ⟨(1, 2), (3, 5), (7, 1)⟩

has an inclusive progress of 7. Its extension

s3 = ⟨(1, 2), (3, 5), (7, 1), (9,_)⟩

has an exclusive progress of 9 and its extension

s4 = ⟨(1, 2), (3, 5), (7, 1), (9,⊥)⟩

has an inclusive progress of 9. All three streams have three timestamps:

T (s2) = T (s3) = T (s4) = {1, 3, 7}.

We depict abstract monitoring streams using the same conventions as for their con-
crete counterparts. We no longer depict specific possible values next to the black bars
because every value is possible after the progress for abstract monitoring streams.
See Figure 6.2 for the visualisations of the streams defined above.

0 1 2 3 4 5 6 7 8 9 10

s0

s1

s2
2 5 1

s3
2 5 1

s4
2 5 1

Figure 6.2.: Visualisation of the streams defined in Example 6.5.

In general we can distinguish the following cases for an abstract monitoring stream
s ∈ RD:

• A finite stream ending with (t, d) with a data value d ∈ D has inclusive progress
of t.

215

6. Implementing Asynchronous TeSSLa

• A finite stream ending with (t,⊥) has inclusive progress of t. The special
symbol ⊥ indicates the absence of an event and represents inclusive progress
without a terminal event.

• A finite stream ending with (t,_) has exclusive progress of t. The special
symbol _ indicates exclusive progress.

• An infinite stream with timestamps growing beyond any bound has exclusive
progress of ∞.

• An infinite stream with timestamps converging in a way that there is a times-
tamp t such that ∀ t′ ∈ T (s) : t′ < t has exclusive progress of t.

Definition 6.6 (Abstraction Function for Abstract Monitoring Streams). Let s ∈
PD be a monitoring stream with progress t and r be the sequence of all events (t′, d)
from s with t′ ≤ t. The abstraction function α : PD → RD is given by

α(s) := ⟨(0,_)⟩ if r is the empty sequence

and otherwise by

α(s) :=

r if s and r have the same progress,
r&⟨(t,_)⟩ if s has exclusive progress,
r&⟨(t,⊥)⟩ otherwise.

The sequence of events r is already an abstract monitoring stream if it contains at
least one event. If the sequence is finite, then r always has inclusive progress because
r ends with an event. The other two cases extend r to encode the progress of s.

In Definition 3.57 in Section 3.5.1 a monitoring stream is defined as a set of streams:
PD = 2SD\∅. The function α defined above thus fits the concept of an abstrac-
tion function which provides an abstract representation for a set of elements. The
progress of a monitoring stream is defined in Definition 4.1 in Section 4.1.1 such
that all events with timestamps smaller or equal to the progress are common to
all streams of the monitoring stream. By definition, the abstraction function α pre-
serves the progress of the monitoring stream: The progress of an abstract monitoring
stream is a perfect abstraction of the progress of a monitoring stream.

Definition 6.7 (Concretisation Function for Abstract Monitoring Streams). Let
r ∈ RD be an abstract monitoring stream with progress t and s ∈ PD be a monitoring
stream such that α(s) = r. The concretisation function γ : RD → PD is given by

γ(r) :=

s if r has infinitely many events,
s|<t if r has finitely many events and exclusive progress,
s|≤t otherwise.

216

6.1. Abstract Monitoring Streams

In the above definition we assume s|<∞ := s to simplify the notation. There is only
one possibility to choose an s ∈ PD such that α(s) = r if r has infinitely many
events. However, there are many possibilities to choose an s ∈ PD if r has only
finitely many events, but since we only consider s|≤t or s|<t, the function γ is still
well-defined.

In a similar way how streams s ∈ SD can be seen as functions s : T → D⊥ (see
Definition 3.21 in Section 3.2.1) and synchronised streams q ∈ Qk as functions
q : T → Dk

⊥ ∪{?} (see Definition 4.9 in Section 4.1.2) we can see abstract monitoring
streams as functions, too:

Definition 6.8 (Functional View of Synchronised Streams). Let r ∈ RD be an
abstract monitoring stream with progress t. Then fr : T → D∪{⊥, ?} is its functional
view. For any timestamp t′ ∈ T we have

fr(t′) =

d if r contains (t′, d) with d ∈ D,
⊥ if t′ ̸∈ T (r) and t′ < t if t exclusive or t′ ≤ t if t inclusive,
? otherwise.

As with streams and synchronised streams, the function maps a timestamp t to a
value d ∈ D if r has an event with value d at time t. All timestamps t without an
event at t are mapped to ⊥ if t is lower than the progress of r. All timestamps after
the progress of the stream are mapped to the symbol ?.

If the usage is clear from the context we use r to refer to fr.

The TeSSLa monitoring semantics are defined in Definition 3.67 in Section 3.5.2
using the least fixed point. The least fixed point depends on the refinement rela-
tion on monitoring streams defined in Definition 3.63 in Section 3.5.1 as inverse
subset relation. Since we want to define the abstract TeSSLa monitoring semantics
as an abstraction of the TeSSLa monitoring semantics, we need a relation on ab-
stract monitoring streams that corresponds to the refinement relation on monitoring
streams:

Definition 6.9 (Prefix Relation on Abstract Monitoring Streams [CHL+18]). Let
s, r ∈ RD be two abstract monitoring streams. We define the prefix relation ⊑⊆
RD × RD as follows:

s ⊑ r :⇐⇒ ∀ t ∈ T : s(t) ∈ {r(t), ?}.

217

6. Implementing Asynchronous TeSSLa

This prefix relation matches the refinement relation on monitoring streams from
Definition 3.63 in Section 3.5.1, i. e. for two abstract monitoring streams s, r ∈ RD
we have

s ⊑ r ⇐⇒ γ(s) ⊑ γ(r).

The prefix relation forms a partial order (RD,⊑). If we use the inverse prefix relation
on abstract monitoring streams and the inverse refinement relation on monitoring
streams, it follows directly from the definitions above:

Lemma 6.10 (Galois Connection for Abstract Monitoring Streams). The abstrac-
tion function α : PD → RD and the concretisation function γ : RD → PD are a Galois
connection between (PD,⊒) and (RD,⊒).

The following example illustrates the Galois connection:

Example 6.11 (Galois Connection Between Monitoring Streams and Abstract Mon-
itoring Streams). The functions α and γ are a Galois connection between (Pk

D,⊒)
and (RD,⊒), i. e. we have

∀ a ∈ PD, b ∈ RD : α(a) ⊒ b ⇐⇒ a ⊒ γ(b).

Let a ∈ PD be the following monitoring stream:

a = {⟨(1, 1), (2, 1)⟩, ⟨(1, 1), (2, 2)⟩}

We get the following abstract monitoring stream α(a) ∈ RD:

α(a) = ⟨(1, 1), (2,_)⟩

Next, we choose another abstract monitoring stream b ∈ RD which is a prefix of
α(a), i. e. α(a) ⊒ b:

b = ⟨(1, 1), (1.5,⊥)⟩

We get the following monitoring stream γ(b) ∈ PD:

γ(b) = {(1, 1)}|≤1.5

Now we can see that γ(b) is in fact a prefix of a, i. e. a ⊒ γ(b).

218

6.2. Abstract TeSSLa Operators

6.2. Abstract TeSSLa Operators

The abstract TeSSLa operators defined in this section are introduced as regular
TeSSLa operators in [CHL+18]. Their definition is reproduced here with minor
adjustments to analyse them as an abstraction of the TeSSLa operators defined in
Section 3.2 on monitoring streams.

The TeSSLa semantics on monitoring streams provide maximal progress. It consid-
ers all possible continuations of all streams for the entire specification. The abstract
TeSSLa operators on abstract monitoring streams provide maximal progress per op-
erator, i. e. it does not consider all streams and especially not the lifted function in
case of the lift operator.

Definition 6.12 (Semantics of the Abstract Operator unit# [CHL+18]). The ab-
stract operator unit# ∈ RU is given by

unit := ⟨(0,□), (∞,_)⟩.

The unit# operator is the stream with a single unit event at timestamp zero and
infinite progress. The only addition compared to the unit operator on streams is
the infinite progress.

Definition 6.13 (Semantics of the Abstract Operator time# [CHL+18]). The ab-
stract operator time# : RD → RT is given by time#(s) := z with the abstract
monitoring stream z being defined as follows:

z(t) =

t if t ∈ T (s),
s(t) otherwise.

The time operator on streams explicitly states ⊥ in the case t ̸∈ T (s) while this
time# operator refers to s(t) which can be either ⊥ or ?. This way, the time#

operator preserves the progress of its input stream.

Definition 6.14 (Semantics of the Abstract Operator lift# [CHL+18]). The ab-
stract operator lift# : (Dn↣ D) → (Pn

D → PD) is given by lift#(f)(s1, . . . , sn) := z.
The function f must not generate new events, i. e. , must fulfil f(⊥, . . . ,⊥) = ⊥.
The abstract monitoring stream z being defined as follows:

z(t) =

f(s1(t), . . . , sn(t)) if s1(t) ̸= ?, . . . , sn(t) ̸= ?,
? otherwise.

219

6. Implementing Asynchronous TeSSLa

The lift# operator lifts a function f on values to a function on streams by applying
f to the stream’s values for every timestamp. Again the only extension compared
to the operator on streams is the handling of the progress: The progress of z is the
minimal progress of all input streams because an event on any of the input streams
at timestamp t can directly affect the output stream at timestamp t.

Definition 6.15 (Semantics of the Abstract Operator last# [CHL+18]). The ab-
stract operator last# : SD × SD′ → SD is given by last#(v, r) := z with the abstract
monitoring stream z being defined as follows:

z(t) =

d if t ∈ T (r) ∧ ∃ t′ < t : isLast(t, t′, v, d),
⊥ if r(t) = ⊥ ∧ defined(z, t),

or uninitialised(v, t),
? otherwise,

with the auxiliary definitions:

isLast(t, t′, v, d) := v(t′) = d ∧ ∀ t′′ : t′ < t′′ < t ⇒ v(t′′) = ⊥,
defined(z, t) := ∀ t′ < t : z(t′) ̸= ? and

uninitialised(v, t) := ∀ t′ < t : v(t′) = ⊥.

The predicate isLast(t, t′, v, d) for two timestamps t, t′ ∈ T, a stream v ∈ SD and a
value d ∈ D holds if (t′, d) is the last event on v until t. (isLast is the same as in
Definition 3.27 for last from Section 3.2.3.) The predicate defined(z, t) for a stream
z ∈ SD and a timestamp t ∈ T holds if z is defined at least until t (exclusive). The
predicate uninitialised(v, t) for a stream v ∈ SD and a timestamp t ∈ T holds if v
has no event at least until t (exclusive).

The last operator interprets the events on its input stream v as values and the
events on r as triggers. It outputs an event with the previous value on v for every
event on r. Again this only differs from the last operator on streams in the handling
of the progress. The addition of the third case, which outputs ?, makes it necessary
to explicitly state when z(t) is ⊥.

With the definitions of the abstract operators unit#, time#, lift# and last# to-
gether with the derived operators from Section 3.3 we can now handle timestamp-
conservative TeSSLa specifications. The following example reconsiders Example 3.73
(Counting) from Section 3.5.3 using abstract monitoring streams instead of moni-
toring streams. Note how the online monitoring in the form of a stepwise refinement
still works the same as in the original example.

220

6.2. Abstract TeSSLa Operators

Example 6.16 (Counting With Abstract Monitoring Streams). Let x ∈ RU be a
free input stream and ℓ, i, z ∈ RN be bound derived streams given by the following
specification:

ℓ = last#(z, x)
i = lift#(inc)(ℓ)
z = merge#(i, 0)

The function inc : Z → Z increments an integer, i. e. inc(i) = i+ 1 for any i ∈ Z.

The visualisation in Figure 6.3 shows the abstract monitoring semantics on the left
and the monitoring semantics already shown and discussed in Example 3.73 on the
right in grey.

x

z0

last#(z0, x) = ℓ1

lift#(inc)(ℓ1) = i1

merge#(i1, 0) = z1

0

last#(z1, x) = ℓ2

0

lift#(inc)(ℓ2) = i2
1

merge#(i2, 0) = z2

0 1

last#(z2, x) = ℓ3

0 1

lift#(inc)(ℓ3) = i3
1 2

merge#(i3, 0) = z3

0 1 2

last#(z3, x) = ℓ4

0 1

lift#(inc)(ℓ4) = i4
1 2

merge#(i4, 0) = z4

0 1 2

N

N N

N≥1 N≥1

0 N≥1 N≥1

0 N≥1

1 N≥2

0 1 N≥2

0 1

1 2

0 1 2

0 1

1 2

0 1 2

Figure 6.3.: Comparison of the abstract monitoring semantics applied to the
specification from Example 6.16 on the left and the monitoring semantics already
shown and discussed in Example 3.73 on the right in grey.

Because of z4 = z3 we reached the fixed point and can conclude z = z3.

221

6. Implementing Asynchronous TeSSLa

The progress is always exclusive in the above example. Example 6.22 illustrates
that inclusive progress is needed, too, especially for the delay operator to be used
in recursive equations.

6.2.1. Delay

In the case of the delay operator, the abstraction becomes more complicated. If
one would define the abstract operator based on the operator on streams like we did
for the other operators, the resulting abstract delay# operator would not work as
expected.

Example 6.17 (delay# introduces additional fixed points). Consider the following
TeSSLa specification known from Example 3.78 (Period) in Section 3.5.3:

c = const(2, z)
d = delay(c)
z = merge(d,unit)

Now assume the streams z, d ∈ RU and c ∈ RR being abstract monitoring streams.
Then we would start with an initial z0 = ⟨(0,_)⟩, i. e. the stream without any
progress. Next we would compute const#(2, z0) = ⟨(0,_)⟩ = c1 which would be
again the stream without any progress because lift# preserves the progress. Now
delay#(c1) does not have the information that all events on c1 carry the data value
2 because we do not have any information about how the stream continues after its
progress available in the abstract monitoring streams.

One could try to enrich the abstraction with more information, but while this seems
simple for this example, it might become challenging in the general case. The main
issue why the delay# cannot produce any progress larger than its input progress is
because every event on its input can cancel and override the currently active delay.
We thus define the delayR# operator with an additional input stream called reset:
The delayR# only accepts new delays if there is a simultaneous event on the reset
stream or the output stream. In other words, new delays are only accepted at the
timestamp when the current delay has been expired or was cancelled by an event
on the reset stream. With this adjustment, we know that there will be no relevant
event on the input until the current delay is over, and the delayR# can generate
enough progress to drive the recursion.

Using delayR instead of delay does not limit the expressiveness (see Lemma 6.20
below), but solves the issue of multiple fixed points due to the abstraction (see
Theorem 6.27 below): Similar to the monitoring semantics defined in Definition 3.67

222

6.2. Abstract TeSSLa Operators

in Section 3.5.2, the abstract monitoring semantics will be defined as the least
fixed point of the equation system later in Definition 6.25. Without the additional
reset argument of the delayR operator, this fixed point in the abstract monitoring
semantics would not be unique. An abstraction preserves all fixed points, i. e. every
fixed point in the concrete case is a fixed point in the abstraction. However, this
is not true the other way around: The abstraction might introduce additional fixed
points, as shown in the example above: The minimal fixed point would be the empty
stream, but there would be many additional fixed points.

Next, we first define the new delayR operator on streams and reason that while it
might be less comfortable to use, it does not affect the expressiveness of TeSSLa:

Definition 6.18 (Semantics of the Operator delayR). The operator delayR with
the signature ST\{0} × SU → SU is given by delayR(d, r) := z with the stream z
being defined as follows:

z(t) =

□ if ∃ t′ < t : set(d, t, t′) ∧ setable(z, r, t′) ∧ noreset(r, t′, t),
⊥ otherwise,

with the following auxiliary functions

set(d, t, t′) := d(t′) = t− t′,

setable(z, r, t′) := z(t′) = □ ∨ r(t′) = □ and
noreset(r, t, t′) := ∀ t′′ : t < t′′ < t′ ⇒ r(t′′) = ⊥.

The predicates set and noreset are the same as in the definition of delay in Def-
inition 3.28 from Section 3.2.3. The additional predicate setable(z, r, t′) for two
streams z, r ∈ SU and a timestamp t′ ∈ T holds if z or r has an event at timestamp
t′. Note that we only consider those t′, which are strictly smaller than the current
timestamp t. That allows us to use z(t′) to define z(t).

The operator takes a delay stream d and a reset stream r. It emits a unit event in
the resulting stream after the delay passes. Every event on the reset stream resets
any delay. New delays can only be set together with a reset event or an emitted
output event. The 0 is not allowed as an event’s value on the delay input. In the
traditional delay operator, the 0 was used to reset the delay without setting a new
one, but in this delayR operator, an event on the reset stream is used for this
purpose.

We now consider TeSSLa specifications using delayR instead of delay:

Definition 6.19 (Progressing TeSSLa). We call a TeSSLa specification progressing
if it only uses the operators unit, lift, last and delayR and operators derived from
these.

223

6. Implementing Asynchronous TeSSLa

The traditional delay operator without the reset parameter and any operator de-
rived from it are explicitly not allowed in progressing TeSSLa specifications.

The statements made in Lemma 3.99 (Expressiveness of TeSSLa) in Section 3.6 still
holds for progressing TeSSLa:

Lemma 6.20 (Expressiveness of Progressing TeSSLa). For a function f : Sk
D → Sn

D
on monitoring streams there exists a progressing TeSSLa specification φ such that
f̂φ ≡ f iff

a) f is Scott-continuous and preserves full knowledge,
b) f has maximal refinement, and
c) f is future independent.

Proof. The construction in the proof of Lemma 3.99 can be slightly adjusted to use
delayR instead of delay: Replace the line

d = delay(lift(ũ)(m))

with the new line

d = delayR(lift(ũ)(m),merge(unit, x1, . . . , xk)).

Since the entire specification contains only one delayR operator and all the other
operators are timestamp conservative, we know that there can only be timestamps
at time 0, coming from the external streams x1, . . . , xk or at times where the delayR

generated them. All this is covered by this new usage of delayR.

As a consequence of Lemma 6.20 shown above, Theorem 3.102 (Expressiveness of
TeSSLa) from Section 3.6 holds for progressing TeSSLa, too.

Although a single delayR operator is sufficient to gain the full expressiveness for
every TeSSLa specification as shown in the above proof, this might not be the typical
use of delay operators in TeSSLa specifications. Typical applications use the delay

operator either in a non-recursive fashion as a timer that generates events after a
timeout or in recursive expressions to generate repeated event patterns. In the first
case of non-recursive specifications, the delay can be replaced with delayR simply
by using the existing input stream as reset stream, too. The second case is elaborated
in Example 6.22 (Period With Abstract Monitoring Streams) and Example 6.23
(Variable Frequency Period With Abstract Monitoring Streams) below.

With the expressiveness of progressing TeSSLa being established we can now move
on and abstract the new delayR operator:

224

6.2. Abstract TeSSLa Operators

Definition 6.21 (Semantics of the Abstract Operator delayR# [CHL+18]). The
abstract operator delayR# : RT\{0} × RU → RU is defined by delayR#(d, r) := z
with the abstract monitoring stream z being defined as follows:

z(t) =

□ if ∃ t′ < t : set(d, t, t′) ∧ setable(z, r, t′) ∧ noreset(r, t′, t),
⊥ if defined(z, t)

and ∀ t′ < t : unset(d, t, t′) ∨ unsetable(z, r, t′) ∨ reset(r, t′, t),
? otherwise,

with the following auxiliary definitions:

set(d, t, t′) := d(t′) = t− t′,

setable(z, r, t′) := z(t′) = □ ∨ r(t′) = □,
noreset(r, t, t′) := ∀ t′′ : t < t′′ < t′ ⇒ r(t′′) = ⊥,

defined(z, t) := ∀ t′ < t : z(t′) ̸= ?,
unset(d, t, t′) := d(t′) ̸= t− t′ ∧ d(t′) ̸= ?,

unsetable(z, r, t′) := z(t′) = ⊥ ∧ r(t′) = ⊥, and
reset(r, t, t′) := ∃ t′′ : t < t′′ < t′ ⇒ r(t′′) = □.

The predicates set, setable and noreset are the same as in Definition 6.18 for delayR

from Section 6.2.1. The predicate defined is the same as in Definition 6.15 for last#

from Section 6.2. The predicates unset, unsetable and reset are the opposites of
set, setable and noreset, respectively. However, they are not their negation because
they disallow the unknown case, i. e. they require the involved streams to have
sufficient progress to make their statement: The predicate unset(d, t, t′) for a stream
d ∈ RT\{0} and two timestamps t, t′ ∈ T holds if the stream d does not contain
an event at timestamp t′ with a delay pointing to the current timestamp t. The
predicate unsetable(z, r, t′) for two streams z, r ∈ RU and a timestamp t′ ∈ T holds
if both streams z and r do not have an event at timestamp t′, i. e. event on d at t′
are ignored. The predicate reset(r, t, t′) for a stream r ∈ RU and two timestamps
t, t′ ∈ T holds if there is an event on r between t′ and the current timestamp t (both
exclusive).

The operator takes a delay stream d and a reset stream r. It emits a unit event in
the resulting stream after the delay passes. Every event on the reset stream resets
any delay. New delays can only be set together with a reset event or an emitted
output event. Again, the main addition is the third case producing ?, which requires
an explicit definition when the output is ⊥.

With the delayR# being defined, we can now come back to the specification known
from Example 3.78 (Period) in Section 3.5.3 and show how computing the recursive
specification step by step works:

225

6. Implementing Asynchronous TeSSLa

Example 6.22 (Period With Abstract Monitoring Streams). Let z, d ∈ RU and
c ∈ RR be derived streams given by the following specification:

c = const#(2, z)
d = delayR#(c,unit#)
z = merge#(d,unit#)

The diagram in Figure 6.4 shows the abstract monitoring semantics on the left, and
the diagram from Example 3.78 on the right in grey for comparison.

0 2 4 6 0 2 4 6

z0

const#(2, z0) = c1

delayR#(c1,unit#) = d1

merge#(d1,unit#) = z1

□

const#(2, z1) = c2

2

delayR#(c2,unit#) = d2

□

merge#(d2,unit#) = z2

□ □

□

2

□

□ □

2 2

□ □

□ □ □

Figure 6.4.: Comparison of the abstract monitoring semantics on the left, and
the monitoring semantics from Example 3.78 on the right in grey for comparison.

The diagram on the left uses the abstract monitoring semantics, and the grey dia-
gram on the right uses the monitoring semantics and delay instead of delayR. The
main difference is that the monitoring streams on the right can encode that all pos-
sible events on c1 have the value 2. The abstract monitoring streams cannot encode
this information, and hence d1 only has inclusive progress of 0 because, without
the information that all events on c1 have a value of 2, we only know for sure that
there cannot be an event at timestamp 0. After merging with the unit# stream and
applying the const# operator again we get c2. Now the delayR has the additional
knowledge that there will be no interruption until it outputs the event at timestamp
2 because its reset stream unit# is fully known and has no events. So the delayR#

now produces inclusive progress until timestamp 2. This example shows how the
additional reset stream input of the delayR replaces the information that was lost
by representing the monitoring stream as an abstract monitoring stream.

We can make two observations from the above example:

226

6.2. Abstract TeSSLa Operators

1. z1 has fewer progress than in the concrete case. We will show after the following
example that the individual operators are perfect abstractions of their concrete
counterparts. However, this property is not closed under composition, i. e. the
composition of two TeSSLa operators can be abstracted by composing the
corresponding two abstract operators, but this is not necessarily a perfect
abstraction of the composition. We will discuss this further in Example 6.29.

2. While c1 has an exclusive progress of 0, d1 has an inclusive progress of 0. This
inclusive progress is needed for the merge to generate an initial event in z1.
Without the capability to express inclusive progress, we would reach a fixed
point after one iteration, the fully unknown stream z0.

In the above example the reset was a constant stream with infinite progress. The
following more complex example demonstrates how a delay can be interrupted using
an external input stream as reset stream. The specification is known from Exam-
ple 3.80 (Variable Frequency Period) in Section 3.5.3:

Example 6.23 (Variable Frequency Period With Abstract Monitoring Streams).
Let x ∈ RR+ be a free input stream and ℓ, z ∈ RR+ and d ∈ RU be derived streams
given by the following specification:

d = delayR#(z, x)
ℓ = last#(x, d)
z = merge#(x, ℓ)

Figure 6.5 shows the abstract monitoring semantics on the diagram from Exam-
ple 3.80 on the right in grey. The grey diagram on the right uses the monitoring
semantics and delay instead of delayR. As in Example 3.80 the red 1.5 and the
black 1.5 are the exact same value. They are only coloured differently to indicate
the source of the event.

The main difference to the previous Example 6.22 is that the delay can now be
interrupted by events on the input stream x. Hence the input stream x is used as
reset stream for the delayR#. The stream d3 only has inclusive progress until the
timestamp 5 because there is an event with that timestamp on x. On the right, the
delay considers all possible values of the events on z3. It generates progress until
timestamp 6.5 because the possible values on z2 switch from 3 to 1.5 after the event
on the input stream x. So again, the additional reset stream compensates for the
additional information available on the monitoring streams on the right.

As a direct consequence of the definition of the abstract TeSSLa operators above we
can conclude:

227

6. Implementing Asynchronous TeSSLa

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

8

x
3

1.5

z 0

d
e
la

y
R

#
(z

0
,x

)=
d

1

la
st

#
(x
,d

1
)=

ℓ 1

m
er

g
e#

(x
,ℓ

1
)=

z 1
3

d
e
la

y
R

#
(z

1
,x

)=
d

2

□

la
st

#
(x
,d

2
)=

ℓ 2
3

m
er

g
e#

(x
,ℓ

2
)=

z 2
3

3

d
e
la

y
R

#
(z

2
,x

)=
d

3

□

la
st

#
(x
,d

3
)=

ℓ 3
3

m
er

g
e#

(x
,ℓ

3
)=

z 3
3

3
1.5

d
e
la

y
R

#
(z

3
,x

)=
d

4

□
□

la
st

#
(x
,d

4
)=

ℓ 4
3

1.5

m
er

g
e#

(x
,ℓ

4
)=

z 4
3

3
1.5

1.5

3
1.5

R
+

□

3
1.5

3
3

1.5
1.5

□ 3
1.5

3
3

1.5
1.5

□
□

3
1.5

3
3

1.5
1.5

□
□

□

3
1.5

1.5

3
3

1.5
1.5

1.5

Figure 6.5.: Variable frequency period with abstract monitoring streams. For
comparison the already known monitoring semantics is reproduced above in grey.

228

6.3. Abstract TeSSLa Semantics

Lemma 6.24 (Perfectness of the Abstract TeSSLa Operators). The abstract TeSSLa
operators on abstract monitoring streams unit#, time#, lift#, last# and delayR#

are a perfect abstraction of their counterparts on monitoring streams unit, time,
lift, last and delayR.

The abstract lift# operator is a perfect abstraction of the lift operator if we do not
consider the lifted function f and are looking for an abstraction that works for any
lifted function. If we consider lift(f) for a concrete function f : Dn↣ D on the data
domain then lift#(f) might not be a perfect abstraction. For example consider the
function f : D ↣ D with f(x) = ⊥ which removes all events. In this case, lift(f)
would be ⟨(∞,_)⟩, i. e. the empty stream with infinite progress because there will
never be an event on this stream. However, lift#(f) does not produce more progress
than the input stream already has.

While this seems easily fixable in the above example, the general case can become
arbitrarily complex and involves static analysis of the function f . For that reason,
we stick with lift# which is the perfect abstraction of lift for the general case of
unknown lifted functions.

6.3. Abstract TeSSLa Semantics

In the above examples, the abstract TeSSLa operators were already used in com-
plex specifications. The following definition formally defines the abstract monitoring
semantics analogously to Definition 3.67 (TeSSLa Monitoring Semantics) from Sec-
tion 3.5.2. This semantics and the results regarding its fixed point are introduced
as TeSSLa semantics in [CHL+18] and are reproduced here with minor adjustments
for the sake of completeness.

Definition 6.25 (TeSSLa Abstract Monitoring Semantics [CHL+18]). Let φ be
a progressing TeSSLa specification with k free streams y = (y1, y2, . . . , yk) and n
bound streams z = (z1, z2, . . . , zn). The equations zi = fi(y)(z) for 1 ≤ i ≤ n of the
specification φ can be applied to abstract monitoring streams by replacing fi with
f#
i . In combination we get the fixed point equation

z = f#(y)(z)

with

f# : Rk
D × Rn

D′ → Rn
D′ .

The abstract monitoring semantics of φ are a function f#
φ : Rk

D → Rn
D′ given as the

least fixed point of f# over the bound streams z:

f#
φ (y) := µf#(y).

229

6. Implementing Asynchronous TeSSLa

Next, we show that Lemma 3.81 (Construction of the Least Fixed Point) from
Section 3.5.4 can be modified such that it applies to the least fixed point used in
the above definition of the abstract monitoring semantics and states that this fixed
point exists and can be constructed:

Lemma 6.26 (Construction of the Least Fixed Point [CHL+18]). The least fixed
point used in the definition of the abstract TeSSLa monitoring semantics exists and
can be constructed:

f#
φ (y) = µf#(y) =

∨
{(f#(y))n(⟨(0,_)⟩, ⟨(0,_)⟩, . . . , ⟨(0,_)⟩) | n ∈ N}

Proof. In order to apply the proof of the original Lemma 3.81 we make sure that
several concepts used in it still work on the abstract monitoring stream and the
abstract operators:

• The abstract TeSSLa operators unit#, time#, lift#, last# and delayR# are
Scott-continuous in the same way as their concrete counterparts.

• Hence, for a given tuple of input streams y ∈ SD the function f#(y) is Scott-
continuous.

• The partial order (RD,⊑) is a dcpo with the least element (0,_), i. e. the
empty stream without any progress, in the same way as (P ,⊑) is a dcpo with
the least element SD, i. e. the set of all possible streams.

Based on this we can now show that Theorem 3.82 (Uniqueness of the Fixed Point
in the Monitoring Semantics) from Section 3.5.4 can be adjusted to hold on the
abstract TeSSLa monitoring semantics, too:

Theorem 6.27 (Uniqueness of the Fixed Point [CHL+18]). If a progressing TeSSLa
specification φ is well-formed, then the fixed point µf#(y) used in the abstract
TeSSLa monitoring semantics is unique.

Proof. The proof of the original Theorem 3.82 can be applied to the adjusted the-
orem by replacing the mentioned functions and relations with their abstract coun-
terparts and replacing delay with delayR. We only need to reconsider the final
argument regarding the nature of the operators last# and delayR#: Both oper-
ators are defined in a way that they refine their input further on pre-fixed points
until the fixed point is reached: An output event at timestamp t is defined in both
operators independent of their input streams at timestamp t. Due to the addition
of the reset input stream to the delayR# operator, this argument still holds.

230

6.3. Abstract TeSSLa Semantics

See Examples 6.16, 6.22 and 6.23 for illustrations how last# and delay# generate
progress if there is enough progress on trigger or reset, respectively.

6.3.1. Quality of the TeSSLa Abstract Monitoring Semantics

Theorem 6.28 (TeSSLa Abstract Monitoring Semantics is an Abstraction). The
TeSSLa abstract monitoring semantics f#

φ : Rk
D → Rn

D′ is an abstraction of the
TeSSLa monitoring semantics f̂φ : Pk

D → Pn
D′ for any progressing TeSSLa specifi-

cation φ with k free stream variables.

Proof. Let φ be a progressing TeSSLa specification with k free stream variables.
From Lemma 6.10 (Galois Connection for Abstract Monitoring Streams) in Sec-
tion 6.1 we know that α and γ are a Galois connection between (PD,⊒) and (RD,⊒).
This property is closed under Cartesian product such that we have a Galois con-
nection between (Pk

D,⊒) and (Rk
D,⊒), too. From Lemma 6.24 (Perfectness of the

Abstract TeSSLa Operators) in Section 6.2.1 we know that the abstract TeSSLa
operators are abstractions or their concrete counterparts, so for an abstract TeSSLa
operator f#

i and its concrete counterpart f̂i we have

∀ s ∈ RD : fi(γ(s)) ⊒ γ(f#
i (s)).

This property is compositional and closed under the Cartesian product, and by
Lemma 6.26 we know that for any tuple of input streams s ∈ Rk

D we can construct
f#
φ (s) through a Kleene chain of Cartesian products of TeSSLa operators. Hence

we get

∀ s ∈ Rk
D : f̂φ(γ(s)) ⊒ γ(f#

φ (s)).

Note that we only use the fact that the operators are an abstraction, not a perfect
abstraction. We have already seen in Example 6.22 that the perfectness of the ab-
straction is not closed under composition. The following example illustrates further
cases where the abstract monitoring semantics is not a perfect abstraction:

Example 6.29 (Abstract TeSSLa Monitoring Semantics is Not a Perfect Abstrac-
tion). Consider the following TeSSLa specification with the input stream x ∈ SU:

y = count(x)
z = filter(y, y ≤ 3)

In this example, we use the implicit conversions and applications defined in Sec-
tion 3.3.7, which allow us to write y ≤ 3 for an slift which applies the comparison
with 3 to every event’s data value on the stream y.

231

6. Implementing Asynchronous TeSSLa

This specification counts the number of events on the input stream and lets the first
three events pass. All later events will be filtered out. As a result, after the third
event on the output stream, we can be sure that there will be no more events on the
output stream z. The monitoring semantics reflect this by returning a fully known
stream after reading the third input event because they consider all possible contin-
uations of the partially known input streams. The abstract monitoring semantics,
however, cannot consider this because the abstract monitoring streams contain no
information about possible events after the current progress of the stream. As a re-
sult, the abstract monitoring semantics do not generate more progress on the output
stream than what is already available on the input stream.

Although it might be possible for a given TeSSLa specification to manually come up
with a perfect abstraction for the entire specification, this is generally not feasible
because it would require a complex analysis of the entire specification. For practical
implementations, it is much better to be compositional than perfect. As one can see
in the above example, we only lose precision regarding the progress, and we gain a
set of simple abstract operators which can be used as basic building blocks for every
TeSSLa specification.

Before we continue in the next chapter using the abstract monitoring semantics
to build an imperative asynchronous execution model, we first consider some final
aspects about the relation of the TeSSLa monitoring semantics and the abstract
TeSSLa monitoring semantics:

The following definition is the abstract counterpart of Definition 3.84 (Preserving
Full Knowledge) from Section 3.5.5. Monitoring streams are called fully known
if they are singleton sets because then no further refinement is possible. We call
abstract monitoring streams fully known if their progress is infinite. In terms of the
prefix relation, those streams are maximal.

Definition 6.30 (Preserving Full Knowledge on Abstract Monitoring Streams). We
say a function f : Rk

D → Rn
D over tuples of abstract monitoring streams preserves full

knowledge if it maps tuples of fully known streams to tuples of fully known streams,
i. e. if the input is a tuple of abstract monitoring streams with infinite progress then
the output tuple consists only of abstract monitoring streams with infinite progress,
too.

Recall that every stream can be seen as a monitoring stream with full knowledge. We
defined the implicit conversion, which converts a stream into a monitoring stream
by making it a singleton set. In the same way, we define the following implicit
conversion for abstract monitoring streams: Let s ∈ SD be a stream. We then
implicitly add (∞,_) if s is finite and used as an abstract monitoring stream. We

232

6.3. Abstract TeSSLa Semantics

get γ(s) = {s}, i. e. if we use a stream as an abstract monitoring stream, its concrete
counterpart is a fully known stream.

The following lemma is the abstract counterpart of Lemma 3.85 (Relation Between
TeSSLa Monitoring Semantics and TeSSLa Semantics) from Section 3.5.5 and makes
the relation between the abstract monitoring semantics and the monitoring seman-
tics and hence the quality of the abstraction more precise: For all streams, i. e.
monitoring streams with full knowledge, the abstract monitoring semantics behaves
the same as the monitoring semantics.

Lemma 6.31 (Relation Between the Abstract TeSSLa Monitoring Semantics and
the TeSSLa Semantics). Let φ be a well-formed progressing TeSSLa specification with
the semantics fφ and the abstract monitoring semantics f#

φ . We then have

∀a ∈ Sn
D : f#

φ (a) = fφ(a).

Proof. The proof of Lemma 3.85 directly carries over to this abstract counterpart
of the lemma using the fixed point used to define the TeSSLa abstract monitoring
semantics in Definition 6.25 instead of the fixed point from the TeSSLa monitoring
semantics in the original proof.

Note that the main equality in the lemma above only holds with the implicit con-
versions from streams to fully known abstract monitoring streams.

It directly follows from the above lemma that the abstract TeSSLa semantics pre-
serves full knowledge.

Intuitively the lemma states that the only difference between the TeSSLa operators
and the abstract TeSSLa operators is the handling of the progress. If there is
enough progress, then they behave the same. This result says something about the
quality of this abstraction: The abstraction of the individual operators is perfect,
but as demonstrated in Example 6.29 the perfectness of the individual operator’s
abstraction is not compositional, i. e. the abstraction of the TeSSLa monitoring
semantics is no longer perfect. With this lemma, we know that it only differs from
the perfect abstraction regarding the progress on not yet fully known input streams,
not regarding the events. So we can safely use this abstract monitoring semantics
because eventually, we get the exact result.

6.3.2. Equivalence of TeSSLa Specifications

While monitoring-equivalence and equivalence of TeSSLa specification is the same
property, the equivalence of TeSSLa specifications regarding the abstract monitoring

233

6. Implementing Asynchronous TeSSLa

semantics is weaker: Abstract monitoring equivalence implies equivalence. As a
direct consequence of Lemma 6.31 we get:

Corollary 6.32 (Equivalence of Abstract TeSSLa Specifications). If two TeSSLa
specifications φ and ψ are equivalent with regard to their abstract monitoring se-
mantics, i. e. f#

φ ≡ f#
ψ , then they are monitoring-equivalent and thus equivalent.

Intuitively equivalence of two TeSSLa specifications with regard to their abstract
monitoring semantics means they produce the same output for any input, which
includes those streams with infinite progress, which are the ones relevant for the
TeSSLa semantics.

Equivalent TeSSLa specifications are not always equivalent with regard to their
abstract monitoring semantics. They can have different behaviour regarding the
progress in the abstraction. The following example demonstrates a case where equiv-
alent TeSSLa specifications do not behave the same using the abstract monitoring
semantics because the progress differs:

Example 6.33 (Equivalent TeSSLa Specifications With Different Progress in the
Abstract TeSSLa Monitoring Semantics). We know that for any monitoring stream
x ∈ SD we have

filter(x, false) ≡ nil,

because the filter removes all elements from x with the condition being always false.
The following diagram compares the monitoring semantics and the abstract moni-
toring semantics:

x
7

filter(x, false) 7

nil

7 D

In the abstract monitoring semantics on the left, the filter only generates as much
progress as the input stream x provides. The monitoring semantics on the right,
however, considers all possible streams, and because all possible streams never con-
tain any event, the output of the filter is equivalent to nil.

6.4. Conclusion

This chapter introduced the abstract monitoring semantics on abstract monitoring
streams used for the FPGA synthesis discussed in the next chapter. The monitoring

234

6.4. Conclusion

streams are a possibly infinite set of streams, and the monitoring semantics are
defined by applying the TeSSLa operators to each of these streams individually.
With the straightforward definition of this semantics in Section 3.5 we gained the
ability to express individual progress for every monitoring stream which supports
asynchronous evaluations. The abstract monitoring semantics is an abstraction of
the monitoring semantics that

a) preserves the support for asynchronous evaluation that the monitoring seman-
tics provide, and

b) simplifies the operators to allow implementation on hardware.

The delay operator was extended to the delayR operator with an additional reset
argument. By splitting up the inputs of the delay into one stream setting delays
and another stream resetting them, we can express the behaviour of delay in case
of recursive definitions on abstract monitoring streams.

The abstract monitoring semantics cannot preserve the maximal progress provided
by the monitoring semantics, but it provides maximal progress per operator. In-
tuitive, this means that there is only a difference in the derived streams regarding
the progress, and only in cases where the input lacks sufficient progress. This sweet
spot satisfies the two goals of simple compositional operators that can be imple-
mented on hardware and support for asynchronous evaluation of the flow graph on
the hardware.

235

7 FPGA Synthesis

This chapter introduces another approach how to map the flow graph of a TeSSLa
specification onto processing hardware: Chapter 5 presented a linear sequential
pipeline of EPUs running in parallel and mapped the flow graph onto this linear
pipeline. This chapter covers the synthesis of a TeSSLa specification directly on an
FPGA. This synthesis places every operator of the flow graph individually on the
FPGA such that all synthesised operators are executed independently in parallel.
Chapter 6 introduced the abstract monitoring semantics on abstract monitoring
streams as an abstraction of the TeSSLa monitoring semantics that is suited for this
parallel approach: The abstraction preserves the ability of the monitoring semantics
to produce different progress on the individual streams.

The main difference between the EPU architecture and the synthesis discussed in
this chapter is the absence of a global current timestamp. In order to keep the EPU
pipeline synchronous, every event is sent through the entire pipeline until it reaches
its target. Messages cannot bypass EPUs on the pipeline because otherwise, the
EPUs might miss timestamp increments. With the individual progress per stream
provided by the abstract monitoring streams, we can utilise the main benefit of an
FPGA: It processes multiple data values independently in parallel on different areas
of the FPGA. On the other hand, additional synchronisation overhead is required
for every operator.

The FPGA synthesis is based on the following principles:

• Message Passing. The operators receive, process and pass on timestamps and
values along the edges of the flow graph. Data can only be transmitted if
the recipient is ready to receive. Otherwise, the sender has to wait. Waiting
operators can cause a back pressure along the edges of the flow graph in the
opposite direction. Queues are included in the graph to store data and relieve
the backpressure for certain paths.

• Compositional Flow Graphs. The synthesised monitor consists only of the
synthesised operators connected according to the flow graph. There is no
central orchestration or scheduling. Every operator is executed purely based on
the available input data. The operators and the flow graph are compositional,
i. e. every connection between operators directly corresponds to an edge of the
flow graph and can be interpreted as an abstract monitoring stream.

237

7. FPGA Synthesis

• Asynchronous Evaluation. The lack of a central orchestration also implies the
absence of any global synchronisation. The streams are synchronised locally
for every operator. The benefit of this approach is that operations on one
path do not necessarily influence independent operations on other paths. This
independence can be especially beneficial if different event streams have dif-
ferent event rates. The drawback is the additional need for synchronisation
logic in every operator. We will investigate ways to reorganise the flow graph
to mitigate this effect in Section 7.5 (Tuplification Optimisation).

• Logical Timestamps. The absence of a global orchestration in combination with
asynchronous evaluation raises the need to encode the order of events explicitly:
The synchronisation of events on different streams is performed based on their
logical timestamps. Every event is encoded and passed along the edges of the
flow graph in the form of a timestamp and a corresponding data value. With
this approach, TeSSLa’s ability to insert additional events between existing
events with the delay operator can be implemented naturally.

The basic idea of evaluating TeSSLa specifications using asynchronous message pass-
ing along the specification’s flow graph was already studied in [LSS+18, LSS+20]
However, these publications use Erlang actors to encode the flow graph in software
and do not address hardware synthesis. Further, they use a preliminary version of
TeSSLa that does not support recursive equations. This chapter generalises and
extends the approach to support cycles in flow graphs and the necessary synchroni-
sation.

As already discussed in the introduction of this thesis, the main difference between
TeSSLa and other synchronous languages such as Esterel and Lustre is TeSSLa’s
support for asynchronous evaluations due to its utilisation of logical timestamps.
Synthesising Lustre on hardware [RH91] always follows the idea of a Synchronous
evaluation. The continuous time is represented as a sequence of instants, and for
every instant, inputs are read, and new outputs are computed. These instants are
realised as clock cycles on the hardware. The same holds for Esterel’s hardware
synthesis [Ber16, HN03]: The evaluation happens in general in a synchronous fash-
ion. The entire specification is evaluated for every instant. The logical timestamps
of TeSSLa, on the other hand, can be seen as a higher abstraction from the actual
hardware. While Esterel can be seen as a language to program FPGAs, because
the Esterel specification describes the timing behaviour of the hardware [HN03],
TeSSLa’s timestamps are entirely independent of the hardware’s clock ticks.

For the purpose of this thesis, an FPGA can be considered an array of programmable
logic blocks and programmable interconnects between these logic blocks. [Max04]
Figure 7.1 shows a top-down view of such a simple, generic FPGA architecture
and Figure 7.2 shows an exemplary logic block: The lookup table (LUT) can be

238

logic
block

logic
block

logic
block

logic
block

logic
block

logic
block

Figure 7.1.: Top-down view of a simple, generic FPGA architecture [Max04,
Figure 3-20].

LUT y

a

b

c

d

M
U

X

e flip-
flop

q

clock

Figure 7.2.: Simplified logic block, diagram based on [Max04, Figure 4-7].

239

7. FPGA Synthesis

configured to realise an arbitrary 4-ary boolean function, and the flip-flop can store
one bit. The multiplexer (MUX) connects the flip-flop’s input either with the output
of the LUT or an independent input. In modern FPGAs, the design is way more
advanced. See [XILa, XILb] for detailed informations about Xilinx’ logic blocks.

FPGAs are programmed by describing registers and logical functions connecting
their inputs and outputs. On a higher level, arithmetic operations and comparison
on integers are available, too. Such a hardware description is then compiled into an
FPGA image by tools like Xilinx Vivado [XILe]. For a given clock speed, the logical
functions connecting flip-flops must not exceed a certain complexity such that the
involved LUTs realising the function are converging fast enough into a stable value
until the end of the clock cycle. That also depends on how the functions can be
mapped to logic blocks on the physical chip and how long the corresponding physical
paths are.

The TeSSLa operators are designed to have explicit memory usage (see Section 3.4)
which supports implementations with finite memory. Compared with the syn-
chronous operator functions used for the software compiler and the EPUs, the asyn-
chronous operators introduced in the last section are more complex, because they
need to consider inputs of different progress and computer the resulting progress.
Unfortunately, the computation of the progress performed by the delay# opera-
tor introduced in the previous chapter cannot be implemented with finite memory.
Therefore, we define some simpler versions of the delay# and last# operators in
Section 7.1. These are no longer perfect abstractions because they do not always
generate the maximal possible progress. However, with this slight adjustment, they
are much better suited for hardware implementations.

Section 7.2 introduces operator networks as a formal model which abstracts away
from the technical details of an FPGA and Section 7.3 describes how TeSSLa spec-
ifications are compiled into operator networks.

Section 7.4 brings back the implementation details of actual FPGAs, Section 7.5
adds optimisations that increase throughput and reduce resource utilisation, and
Section 7.6 explains the test and integration setup used the evaluate the compiler
and the synthesised FPGA images.

7.1. Finite Memory

Before we discuss how to implement the abstract operators for the FPGA synthesis,
we first revisit the delayR# operator defined in the last chapter. The following
example demonstrates why we cannot implement this operator with finite memory:

240

7.1. Finite Memory

Example 7.1 (delayR# Needs Infinite Memory). Let d ∈ RR>0 and r ∈ RU be two
abstract input streams. Further, let the derived abstract monitoring stream z ∈ RU
be defined by

z = delayR#(d, r).

The following diagram shows a possible evaluation:

0 1 2 3 4 5 6 7 8

d
5 3 2

r

delayR#(d, r) = z

delayR‡(d, r) = z̃

The additional stream z̃ is discussed after the definition of delayR‡ below. The blue
arrows indicate the delays. The delay (and thus the delayR) operator is designed
such that there is always only one active delay. (See the discussion of the alternative
mdelay in Section 3.4.5.) However, the reset stream r has fewer progress in the above
situation than the delay stream d. In such a situation, it is not (yet) clear if the
events on d must be considered or not because there might be a corresponding event
on r. The maximal possible progress on the output stream z depends on all possible
active delays. We have to consider all possible delays. In the example above the
progress is

min{2 + 5, 2.5 + 3, 3 + 2} = 5.

Note that the progress on z is exclusive: With an event on r at timestamp 3 there
could be an event on z at timestamp 5. However, considering all possible delays on
d, there is no way how r could be extended to create an event on z with an earlier
timestamp. There exists no limit regarding the number of events on d that must be
considered to compute the progress of z. Infinite memory is needed to track all the
events occurring on d after the progress on r.

Next, we define a variant of the delayR# operator, the delayR‡ operator, which
still has all the necessary properties for the considerations in the previous chapter
but produces slightly less progress. We do this by restricting the progress of z̃ to
the progress of r:

Definition 7.2 (Semantics of the Abstract Operator delayR‡). The abstract op-
erator delayR‡ : RT\{0} × RD → RU is defined by delayR‡(d, r) := z with the

241

7. FPGA Synthesis

abstract monitoring stream z being defined in the same way as for delayR# with
one adjustment: For the case ⊥ we add the additional requirement

∧ defined(r, t)

at the outermost level of the condition.

The effect of this adjustment is depicted in the stream diagram of the previous
example as stream z = delayR‡(d, r): The progress of r limits the progress of z.
This restriction drastically simplifies the progress output and makes it possible to
implement the operator with finite memory: If there is sufficient progress on d, the
progress of r is passed on.

Note that implementations with finite memory would be possible with less restrictive
adjustments. In the example above, the progress of z̃ could be extended up to 2
without the need to consider any of the events on d because there are no events on
d until 2. However, the delayR‡ operator was chosen because of its straightforward
rules regarding the output of progress.

Next, we define a similar simplification for the last# operator. Although this op-
erator can already be implemented with finite memory, we simplify the edge case
when there has not been any event that can be reproduced by a trigger yet. Again
this does not change the behaviour of the operator with regards to the events:

Definition 7.3 (Semantics of the Abstract Operator last‡). The abstract operator
last‡ : SD × SD′ → SD is given by last‡(v, r) := z with the abstract monitoring
stream z being defined in the same way as for last# with one adjustment: For the
case ⊥ we remove the condition

or uninitialised(v, t).

The following example illustrates the difference between last# and last‡:

Example 7.4 (Comparison of last# and last‡). Let v ∈ RN and r ∈ RU be two
abstract input streams and the derived abstract monitoring stream z ∈ RN defined
by

z = last#(v, r).

The following diagram shows a possible evaluation:

242

7.2. Operator Networks

v

r

last#(v, r) = z

last‡(v, r) = z̃

The stream v has more progress than r, and due to the absence of events on v, even
in the case of an event on r, there would be no event on z. The stream z̃ shows the
simpler version of the operator, which passes on the progress of r if there is sufficient
progress on v but never exceeds the progress of r.

We conclude this section with the definition of the adjusted abstract monitoring
semantics using the two operators delayR‡ and last‡ introduced above:

Definition 7.5 (Adjusted TeSSLa Abstract Monitoring Semantics). The adjusted
abstract monitoring semantics f ‡

φ of a TeSSLa specification φ are obtained like the
abstract monitoring semantics defined in Definition 6.25 from Section 6.3 but with
delayR‡ and last‡ instead of delayR# and last#, respectively.

7.2. Operator Networks

We introduce operator networks as a formal model which abstracts away many im-
plementation details of actual FPGAs. Operator networks consist of two elements:
Operators reading inputs and writing outputs and channels connecting these oper-
ators and providing inputs and outputs to them. Abstract monitoring streams as
defined in Definition 6.2 from Section 6.1 are encoded in channels based on their
sequential notation: Timestamps and values are transmitted in an alternating fash-
ion. This approach has the benefit of naturally combining progress information and
event’s timestamps:

– A timestamp denotes progress, i. e. the fact that there was no event up to (but
not including) the timestamp.

– A value denotes an event. It refers to the last timestamp preceding the value
on the channel. The combination of value and timestamp form an event.

The absence of an event is not explicitly encoded, i. e. timestamps can be followed
by further timestamps on a channel. This encoding simplifies the implementation
of recursive cycles: Compared to the EPUs (see Section 5.6) no additional progress
messages are needed.

In some circumstances we still need to explicitly encode the absence of events; see
Example 6.16 (Counting With Abstract Monitoring Streams) and Example 6.22

243

7. FPGA Synthesis

(Period With Abstract Monitoring Streams) from Section 6.2.1 as well as the dis-
cussion in Section 7.3.4. For that purpose, we extend the time domain to encode
inclusive and exclusive progress as different values. Inclusive progress is a special
timestamp that an event cannot follow. While regular timestamps only encode ex-
clusive progress, i. e. they might be followed by a value indicating an event at that
timestamp, inclusive timestamps encode inclusive progress, i. e. the guarantee that
there is no event at that timestamp.

Definition 7.6 (Extended Time Domain). Every time domain T can be extended
into an extended time domain Ti as follows:

Ti = T ∪ {t′ | t ∈ T} ∪ {∞}.

On the extended time domain the following additional conventions for any a, b ∈ T
apply:

a < ∞, a < b′ :⇔ a ≤ b, a′ < b :⇔ a < b, a′ < b′ :⇔ a < b,

a · b′ := (a · b)′, a+ b′ := (a+ b)′, a′ · b′ := (a · b)′, a′ + b′ := (a+ b)′

We call timestamps of the form t′ for any t ∈ T inclusive. The operator incl : Ti → Ti
with incl(t) := t′ and incl(t′) := t′ for any t ∈ T and incl(∞) := ∞ takes any
timestamp from the extended time domain and makes it inclusive with the exception
of ∞ which cannot be inclusive.

Every operator has zero or more inputs and one output (see Definition 7.8 below).
A channel connects operators as follows:

Definition 7.7 (Channel). A channel connects one output of one operator (called
the channel’s source) with one or more inputs (called the channel’s sinks) from one
or more operators. The following operation is available for the output connected to
the source of the channel:

– submit(x) for any x ∈ Ti or any x ∈ D sends a timestamp or a data value,
respectively, into the channel. This operation blocks until the channel is ready,
i. e. there is currently no timestamp or value in the channel waiting to be
received.

The following operations are available for every input i connected to a sink of the
channel:

– ts(i) ∈ B indicates if a timestamp is available at the channel attached to this
input.

– val(i) ∈ B indicates if a data value is available at the channel attached to this
input.

244

7.2. Operator Networks

– consume(i) consumes the timestamp or data value at the channel attached to
this input.

A channel can hold one timestamp or data value, so for one input i, the predicates
ts(i) and val(i) are mutually exclusive. Every timestamp or data value can be
consumed once at every sink. A new timestamp or data value cannot be submitted
to the channel until every sink has consumed the current one. The current value of a
channel can be accessed by reading the corresponding input i. Reading a channel if
neither a timestamp nor a data value is available results in undefined behaviour.

A channel operator reads from the input channels and writes to its output channel:

Definition 7.8 (Channel Operator). A channel operator consists of

– zero or more inputs,
– exactly one output,
– zero of more variables with their initial values and
– a behaviour.

A behaviour is a deterministic finite sequence of conditional instructions using the
operations and predicates of the inputs and outputs and reading and writing the
variables. Writing a variable has an immediate effect on all following reading in-
structions.

If we combine channel operators with channels, we get an operator network:

Definition 7.9 (Operator Network). An operator network is a finite graph of chan-
nel operators connected with channels. Every channel connects exactly one output
of one operator to one or more inputs of one or more operators. Every input or out-
put not connected to any channel is considered as an input or output, respectively,
of the network.

The graph might contain cycles that may lead to deadlocks (see below).

A single operator without any channels forms a trivial operator network.

Definition 7.10 (Scheduling). A scheduling s for an operator network with the
operators O = {o1, o2, . . . , on} is an infinite sequence of non-empty subsets of O:

s ∈ (2O\∅)ω.

A scheduling is called fair if every operator occurs infinitely often in the sequence.

245

7. FPGA Synthesis

Example 7.11 (Fair Scheduling). Assume an operator network with the operators
o1, o2 and o3. The schedulings s1 = ({o1}, {o2}, {o3})ω and s2 = {o1, o2, o3}ω are
trivially fair.

In the case of trivial operator networks, there is only one scheduling. That scheduling
is always fair.

Definition 7.12 (Operator Network Function). An operator network function f
with the signature Rk

D → Rn
D maps a tuple of abstract monitoring input streams to

a tuple of abstract monitoring output streams. The function f is derived from an
operator network by applying a scheduling s to the network: All operator’s variables
are initialised according to their behaviour. Then for every entry si of the schedule
s the operators in si are executed, i. e. all conditional instructions in its behaviour
are executed in order. The side effects of the operations submit and consume of the
channels are applied after all operators from si are executed. In case of a blocked call
the execution of the operator terminates early and continues with this instruction
the next time the operator is executed.

We assume that every input stream is mapped to one input of the network, and
every output stream is mapped to one output of the network. Inputs can always
be consumed until the end of their stream is reached. If an input is consumed then
the next tuple from the stream is submitted to the input according to the following
mapping:

– Regular events (t, d) for t ∈ T and d ∈ D are submitted as t and d after another.
– Inclusive progress (t,⊥) for t ∈ T is submitted as incl(t).
– Exclusive progress (t,_) for t ∈ T∞ is submitted as t.

Outputs can always be submitted. Submitting an output extends the corresponding
stream as follows:

– Inclusive timestamps are appended as inclusive progress to the stream.
– Non-inclusive timestamps are appended as exclusive progress to the stream.
– Data values are appended as an event using the progress of the current stream

as the timestamp.

Note that if an operation during the execution of an entry si of a schedule submits
data into a channel, this data is not available before si+1, i. e. other operations from
si cannot read it. The same applies to the consumption of data from a channel: If
operations from si consumes data from all sinks of a channel, the channel becomes
ready for another submission not before si+1, i. e. other operations from si cannot
submit data into it.

246

7.3. Translating TeSSLa to Operator Networks

Although the operator network function is defined for every combination of operator
network and scheduling, we will only consider operator networks translated from
TeSSLa specifications and fair schedulings in the next section. We will show that
the operator network function of an operator network translated from a TeSSLa
specification is equivalent to the specification’s abstract monitoring semantics for
any fair scheduling.

An infinite amount of execution steps defines the operator network functions be-
cause every scheduling is an infinitely long sequence. However, the output of the
operator network function might still be a stream with finitely many events because
most operators only submit output if they are provided with an input (see next
section). Finite schedulings would be sufficient to generate such output streams
with only finitely many events, but since TeSSLa can generate Zeno streams (see
Section 3.4.4), the operator networks are defined with infinite schedulings to express
this behaviour.

7.3. Translating TeSSLa to Operator Networks

In the following we present channel operators for the abstract TeSSLa operators
unit#, time#, lift#, last‡ and delayR‡. Lemma 6.20 (Expressiveness of Pro-
gressing TeSSLa) from Section 6.2.1 states that these operators are sufficient to
gain TeSSLa’s full expressiveness. Section 7.3.2 then addresses the translation of a
TeSSLa specification into an operator network: The operators are translated into
their corresponding channel operators, and the specification’s flow graph is encoded
using channels connecting these operators. We show the correctness of this transla-
tion and finally give an example.

The channel operators for unit#, time#, lift#, last‡ discussed below are based
on an earlier version presented in [Buc20]. The implementation discussed in that
thesis neither supports the delay operator nor inclusive progress. Further, it does
not contain any formal representation of the operators apart from their actual im-
plementation.

7.3.1. Imperative Semantics of the Operators

Definition 7.13 (Channel Operator for unit#). The channel operator for unit#

has no inputs, uses the variable state ∈ {DONE ,VALUE ,TIME} initialised with
state = VALUE and has the following behaviour:

247

7. FPGA Synthesis

if state = VALUE then
submit(□); state := TIME

else if state = TIME then
submit(∞); state := DONE

The channel operator for unit# has an internal state used to submit the value □ in
its first execution, then the timestamp ∞ and then does nothing for all subsequent
executions.

Definition 7.14 (Channel Operator for time#). The channel operator for time#

has the input a, uses the variable time ∈ Ti initialised with time = 0 and has the
following behaviour:
if ts(a) then

time := a; submit(a); consume(a)

if val(a) then
submit(time); consume(a)

The channel operator for time# directly passes on every timestamp and stores the
latest passed timestamp in its local memory. Every value is directly passed on, too,
but the value is replaced with the latest passed timestamp.

Definition 7.15 (Channel Operator for Unary lift#(f)). The channel operator for
unary lift#(f) with a function f : Dn↣ D on the data domain has the input a and
the following behaviour:
if ts(a) then

submit(a)
consume(a)

if val(a) then
if f(a) ̸= ⊥ then submit(f(a))
consume(a)

The channel operator for a unary lift#(f) works very similar to the one for time#:
Incoming timestamp and values are directly passed on. Instead of replacing values
with the last timestamp, the function f is applied to the value.

248

7.3. Translating TeSSLa to Operator Networks

Definition 7.16 (Channel Operator for binary lift#(f)). The channel operator for
binary lift#(f) with a function f : D2 ↣ D on the data domain has the inputs a
and b, uses variable progress ∈ Ti with the initialisation progress = 0 and has the
following behaviour:
if ts(a) ∧ ts(b) then

if a ≤ b then
submit(a); consume(a); progress := a
if a = b then consume(b)

else
submit(b); consume(b); progress := b

else if ts(a) ∧ val(b) then
if f(⊥, b) ̸= ⊥ then submit(f(⊥, b))
consume(b)
if a = incl(progress) then consume(a)

else if val(a) ∧ ts(b) then
if f(a,⊥) ̸= ⊥ then submit(f(a,⊥))
consume(a)
if b = incl(progress) then consume(b)

else if val(a) ∧ val(b) then
if f(a, b) ̸= ⊥ then submit(f(a, b))
consume(a); consume(b)

The channel operator for binary lift#(f) performs the following synchronisation:
Timestamps are only consumed if both inputs are a timestamp. In that case, the
smaller timestamp is consumed (or both if they are equal). The input streams are
kept synchronised, and if a value is present on any of the inputs, it can be directly
processed. If only one input is a value, there cannot be a corresponding event with
the same timestamp on the other stream, and the operator passes ⊥ to the function
for that input. In the case of inclusive progress, the progress is consumed if it fits the
current progress to ensure that the operator always consumes all processed progress
(see Definition 7.25 (Progress Consuming Channel Operators) below).

Every n-ary lift#(f) can be split up into nested binary lift# applications using
Lemma 3.48 (Associativity of lift) from Section 3.4.1. We use a tuplification func-
tion u : Dn

⊥ → (Dn
⊥)⊥ with u(d) = (d), which converts the input values into a single

tuple of values. Let f : D3 ↣ D be a ternary function on the data domain and
a, b, c ∈ SD streams:

lift(f)(a, b, c) = lift(f)(lift(u)(a, b), c)

249

7. FPGA Synthesis

We abuse notation and apply the same function f to three arguments of type D⊥ on
the left and two arguments of type (D2

⊥)⊥ and D⊥, respectively, on the right. These
changes of the function’s signature must be considered in actual implementations.
For efficiency reasons, explicit channel operators for lift#(f) of higher arity can be
defined by generalising the binary operator given above.

Definition 7.17 (Channel Operator for last‡). The channel operator for last‡ has
the inputs trigger and value. It uses the variables

triggerTime, valueTime ∈ Ti and store ∈ D

initialised with

triggerTime = valueTime = 0 and store = 0.

It has the following behaviour:
if ts(value) then

valueTime := value; consume(value)

if ts(trigger) then
triggerTime := trigger ; submit(trigger); consume(trigger)

if val(value) ∧ valueTime < triggerTime then
store := value; consume(value)

if val(trigger) ∧ valueTime ≥ triggerTime then
if store ̸= ⊥ then submit(store)
consume(trigger)
if val(value) ∧ valueTime = triggerTime then

store := value; consume(value)

Timestamps on both inputs are always consumed and stored in the corresponding
variables triggerTime and valueTime. Every timestamp on trigger is immediately
passed on because the progress of last‡ only depends on the progress of trigger . A
value on value is stored into store and consumed if valueTime < triggerTime because
last‡ outputs the last known value, i. e. the previous value in cases of simultaneous
events on trigger and value. In the other case valueTime ≥ triggerTime, events on
trigger are processed and the last known value stored in store is submitted. In the
case of simultaneous events on trigger and value, the value can be updated after
consuming the trigger in the same execution.

250

7.3. Translating TeSSLa to Operator Networks

Definition 7.18 (Channel Operator for delayR‡). The channel operator for delayR‡

has the inputs delay and reset. It uses the variables

delayTime, resetTime, nextTime ∈ Ti,
state ∈ {DONE ,TIME ,VALUE} and
init ∈ B

with the initialisation

delayTime = resetTime = 0,
nextTime = ∞,

state = DONE and
init = false .

It has the following behaviour:
if ts(delay) then

consume(delay); delayTime := delay

if val(reset) then
consume(reset); state := DONE ;
nextTime := resetTime; resetTime := incl(resetTime)

if val(delay) then
if delayTime < resetTime ∧ state = DONE then

consume(delay)
if delayTime = nextTime then

nextTime := nextTime + delay; state := TIME

if ts(reset) then
resetTime := reset
if nextTime <= reset ∧ state = TIME then

submit(nextTime); state := VALUE
else if nextTime <= reset ∧ state = VALUE then

submit(□); state := DONE
else if nextTime < delayTime ∨ reset ≤ nextTime then

consume(reset)
if reset ̸= nextTime then submit(incl(reset))

else if resetTime = 0 ∧ ¬init then
init := true; submit(incl(0))

251

7. FPGA Synthesis

The internal synchronisation of the channel operator for delayR‡ is more complex
than that of the operators already discussed because this operator can generate
additional events. Generating an additional event in this encoding means submitting
a timestamp followed by a value. (In this case, the value of always □.) During one
execution of the channel operator, it can only submit either a timestamp or a value.
The variable state determines should be submitted next: A timestamp (TIME) or a
value (VALUE). The operator only submits when a timestamp is present at the reset
input, which is greater than or equal to the timestamp of the event which should be
generated (stored in nextTime). If this condition is not fulfilled, the scheduled event
might be cancelled by an event on reset. The timestamp on reset is always stored in
resetTime but only consumed if nextTime < delayTime or resetTime ≤ nextTime,
i. e. if there is no event on delay at or before the next scheduled event or the input
progress on reset is not sufficient to generate the next scheduled event.

Timestamps on delay are always consumed and stored in delayTime. A value on
reset is always consumed and processed by resetting the state and the nextTime. The
resetTime is marked as inclusive to indicate that there cannot be another reset event
at this timestamp. This ensures delayTime < resetTime in case of simultaneous
events at reset and delay.

Values on delay are only consumed if there is sufficient progress on reset (delayTime <
resetTime) no event is currently scheduled (state = DONE). A new delay is only
scheduled if delayTime = nextTime, i. e. either if the last delay ended at the times-
tamp of the new delay or if an event on reset at that timestamp has set the nextTime
to its timestamp. In both cases the nextTime is increased by the given delay and the
state is set to TIME . Note that setting the state to TIME might cause a timestamp
to be submitted during the same execution later on if ts(reset).

The last two lines of the behaviour submit an initial inclusive progress of 0, which
is needed to get recursions started; see Example 6.22 (Period With Abstract Mon-
itoring Streams) from Section 6.2.1 and Lemma 7.28 (Channel Operators for last‡

and delayR‡ are Progress Increasing) below.

With the above definitions and descriptions of the channel operators, we can con-
clude the following correctness statement:

Lemma 7.19 (Correctness of the TeSSLa Channel Operators). Let o be one of the
operators unit#, time#, lift#, last‡ or delayR‡. Let f be the operator network
function for the trivial operator network consisting only of the channel operator for
o. We then have o ≡ f .

252

7.3. Translating TeSSLa to Operator Networks

7.3.2. Translating TeSSLa Specifications to Operator Networks

Definition 7.20 (Translating TeSSLa Specifications to Operator Networks). Let
φ be a progressing, well-formed and flat TeSSLa specification. The corresponding
operator network consists of

– the channel operators corresponding to the TeSSLa operators used in φ and
– channels connecting the channel operators according to the flow graph of φ.

One operand of a TeSSLa operator can only depend on at most one other stream,
but multiple operands can depend on the same stream. This relation correlates to
a channel having exactly one source but multiple sinks.

We now consider the correctness of this translation. Lemma 7.19 at the end of the
last section already states the correctness for trivial operator networks consisting
only of a single channel operator. We want to extend this result to operator net-
works consisting of multiple channel operators connected with channels. For trivial
operator networks, there is only one scheduling. For non-trivial operator networks,
we consider all fair schedulings. We will show that all operator network functions for
a given TeSSLa specification and a fair scheduling are equivalent. A similar consid-
eration for an earlier acyclic version of TeSSLa was given in [LSS+18]. In addition
to that result, this section considers recursive specifications, i. e. those with cycles
in their flow graph, showing that these cycles cannot lead to deadlocks.

Before we state the main correctness theorem, we observe some properties of the
channel operators for the TeSSLa operators, which will be used to prove the main
theorem.

Definition 7.21 (Synchronising Operator Network). We call an operator network
synchronising if all its operator network functions with fair schedulings are equiva-
lent.

From the definitions of channel operators for the TeSSLa operators given above, we
can observe:

Lemma 7.22 (TeSSLa’s Operator Networks are Synchronising). Operator networks
which consist only of channel operators for the TeSSLa operators unit#, time#,
lift#, last‡ or delayR‡ are synchronising.

This lemma implies that the operators are never reading from channels that are not
ready because that would be undefined behaviour.

For the next properties of channel operators, we need to extend our notion of progress
to channels:

253

7. FPGA Synthesis

Definition 7.23 (Progress of a Channel). The progress of a channel is determined
by the progress of the abstract monitoring stream induced by all timestamps and
data values passed through the channel (including those currently held by the chan-
nel) as defined in Definition 7.12 from Section 7.2 for outputs of an operator net-
work.

Now we can observe two important properties of the channel operators for the
TeSSLa operators: They pass on progress, and they consume progress:

Definition 7.24 (Progress Passing Channel Operators). A channel operator is
called progress passing if its output eventually has at least the minimal progress
of its inputs.

Channel operators without inputs are considered progress passing because we assume
the minimal progress of their inputs to be 0 (exclusive), i. e. the progress of the
empty abstract monitoring stream. The term eventually in the above definition
allows situations where the output’s progress is less than the minimal progress of
the inputs. However, if the minimal progress of the inputs is not increased, the
output’s progress must catch up after a finite number of executions.

Channel operators being progress passing is intuitively related to TeSSLa operators
being future independent because both properties state that outputs must not de-
pend on future inputs. With a more imperative perspective, they state: Operators
must always output at least the minimal progress of the input.

The following property goes one step further: The channel operators not only pass
the progress, but they also consume the input with minimal progress afterwards.

Definition 7.25 (Progress Consuming Channel Operators). A channel operator is
called progress consuming if it eventually consumes inputs whose progress is lower
or equal to the output’s progress.

From the definitions of channel operators for the TeSSLa operators given above we
can observe:

Lemma 7.26 (TeSSLa’s Channel Operators are Progress Passing and Consuming).
The channel operators for the TeSSLa operators unit#, time#, lift#, last‡ and
delayR‡ are progress passing and progress consuming.

254

7.3. Translating TeSSLa to Operator Networks

From the combination of progress passing and progress consuming, we get that if the
minimal input progress of a channel operator increases, the operator will eventually
consume that input progress and submit at least as much progress.

Finally, we observe that the channel operators for delayR‡ and last‡ even fulfil a
slightly stronger property than progress passing. If provided with enough progress
on the input related to the operator’s second argument such that the input related
to the operator’s first argument is the one with the minimal progress, they not only
pass the input’s progress but they even increase the progress:

Definition 7.27 (Progress Increasing Channel Operators). A channel operator is
called progress increasing on an input i if

a) the operator is progress passing and
b) if i is the input with the minimal progress then its output eventually has more

progress than i.

From Definitions 7.17 and 7.18 of the channel operators for last‡ and delayR‡ given
above we can observe:

Lemma 7.28 (Channel Operators for last‡ and delayR‡ are Progress Increasing).
The channel operators for last‡ and delayR‡ are progress increasing on the input
related to the TeSSLa operator’s first input.

The channel operators for last‡ and delayR‡ either convert an exclusive progress to
an inclusive one, or in case of an inclusive progress, they increase it. Both operators
are defined in a way such that their output is not directly dependent on their input.

With all these lemmas in place we can now state the main correctness theorem:

Theorem 7.29 (TeSSLa Operator Networks are Correct). Let φ be a progressing,
well-formed and flat TeSSLa specification, f ‡

φ its adjusted abstract monitoring se-
mantics and f the operator network function of the operator network corresponding
to φ. We then have for any fair scheduling

f ‡
φ ≡ f.

Proof. Let φ be a progressing, well-formed and flat TeSSLa specification and f the
operator network function of the operator network corresponding to φ.

From Lemma 7.19 we know that the individual channel operators are correct. So
now we have to prove that the operator network composed of the individual channel
operators is correct, too.

255

7. FPGA Synthesis

From Lemma 7.22 we know that the individual channel operators are synchronising.
This result directly carries over to the entire operator network for any fair scheduling
because the queues only pass on the output from channel operators to the input of
other channel operators. Every such input can be seen as an abstract monitoring
stream using the encoding defined in Definition 7.12 from Section 7.2.

While the above considerations are already enough to see the correctness of cycle-free
operator networks, we need some more considerations for cycles. From Lemma 7.26
(TeSSLa’s Channel Operators are Progress Passing and Consuming) we know that
every operator is progress passing; thus, a progress present at any point in the cycle
will eventually be passed on through the entire cycle under the assumption that
there is sufficient progress available at all external inputs to the cycle. Further from
Lemma 7.26 we know that every operator is consuming: The operators are passing
on the progress and eventually consume their input, which always allows new inputs
to be read. For every cycle in the operator network, we know that there is at least
one last or delayR present in the cycle because it was derived from a well-formed
TeSSLa specification. Again under the assumption that their external inputs – which
are not part of the cycle – are provided with sufficient progress, last and delayR

guarantee to increase the progress by Lemma 7.28 (Channel Operators for last‡ and
delayR‡ are Progress Increasing). Based on these considerations, we can conclude
that the operator network is deadlock-free, i. e. if there is input available at all inputs
of the network, then eventually one of the inputs will be consumed, and an output
will be submitted.

Now we know that a composition of channel operators in an operator network com-
putes precisely the composition of the corresponding abstract operators. Finally,
the semantics f ‡

φ are defined as a fixed point which by Lemma 6.26 (Construction
of the Least Fixed Point [CHL+18]) from Section 6.3 can be computed as a Kleene
chain of individual abstract operators.

Note how cycles in the dependency graph and hence cycles in the operator network
correlate precisely to the fixed point in the semantics being computed by the Kleene
chain: The least fixed point in Lemma 6.26 is computed as one fixed point of the
entire specification. The operator network computes fixed points for every cycle
individually. Both approaches are equivalent because the TeSSLa semantics is com-
positional, i. e. TeSSLa specifications can be split up into individual specifications,
and these specifications can be chained together, as long as cycles, i. e. recursive
definitions, remain in the same specification.

256

7.3. Translating TeSSLa to Operator Networks

7.3.3. Example

We can now revisit Example 6.23 (Variable Frequency Period With Abstract Moni-
toring Streams) from Section 6.2.1 and show how this specification is evaluated in an
operator network. The dependency graph of the original version of this specification
using delay and not delayR was shown in Example 3.33 in Section 3.2.4.

As in the earlier example, we have the input stream x ∈ RR+ and the derived streams
ℓ, z ∈ RR+ and d ∈ RU with z being the final output, i. e. the derived stream in
which we are interested. The derived streams are defined by the following recursive
equations:

d = delayR‡(z, x)
ℓ = last‡(x, d)
z = merge#(x, ℓ)

The corresponding operator network is shown in Figure 7.3. The input of channel
x and the output of channel z are not connected. These are the input and output
of the network.

delayR

last

merge

z

x

d

ℓ

Figure 7.3.: Operator network of the variable frequency period specification.
Channels are depicted as arrows. The blue arrow denotes the recursive channel
going upwards. Note that there is nothing special about this channel, and which
arrow is pointing upwards only depends on the way the graph is drawn.

257

7. FPGA Synthesis

in delay / z – – 1 3 4 3 5 1.5 6.5

in reset / x – 1 3 5 5 5 1.5 9 9
out / d – 1′ – 4 □ 5′ – 6.5 □

delayTime 0 0 1 1 4 4 5 5 6.5

resetTime 0 1 1′ 5 5 5 5′ 9 9
nextTime ∞ ∞ 1 4 4 7 5 6.5 6.5

state

D
O

N
E

D
O

N
E

D
O

N
E

V
A

LU
E

D
O

N
E

T
IM

E

D
O

N
E

V
A

LU
E

D
O

N
E

in value / x – 1 3 5 – – 1.5 9 –
in trigger / d – 1′ – 4 □ 5′ – 6.5 □

out / l – 1′ – 4 3 5′ – 6.5 1.5

triggerTime 0 1′ 1′ 4 4 5′ 5′ 6.5 6.5
valueTime 0 1 1 5 5 5 5 9 9

store ⊥ ⊥ 3 3 3 3 1.5 1.5 1.5

in a / x – 1 3 5 5 5 1.5 9 9
in b / l – 1′ 1′ 4 3 5′ 5′ 6.5 1.5

out / z – 1 3 4 3 5 1.5 6.5 1.5

progress 0 1 1 4 4 5 5 6.5 6.5

d
e
la

y
R

la
st

m
er

g
e

Figure 7.4.: Exemplary execution of the operator network for the variable fre-
quency period specification.

In the following exemplary execution of the operator network we consider the fol-
lowing abstract monitoring stream as input:

x = (1, 3)(5, 1.5)(9,_)

Figure 7.4 shows the execution of the operator network on the input stream x.
The three vertical parts of the table correspond to the three channel operators for
delayR‡ and last‡. The final part labelled merge corresponds to a channel operator
for lift# with the lifted function f : D2 ↣ D:

f(d1, d2) =

d1 if d1 ̸= ⊥,
d2 otherwise.

258

7.3. Translating TeSSLa to Operator Networks

The inputs and the output of the operators are shown in green. The name of the
channel the inputs and outputs are connected to are given after the slash. The
symbol – denotes the absence of a timestamp or value on the channel. Timestamps
are prefixed with the symbol . Internal variables of the operators are shown in
blue. Variables may contain timestamps, too, but they are not explicitly prefixed
with , since those variables cannot contain anything but timestamps.

Updated values and timestamps are depicted in bold. Repeated values are shown
in a lighter colour. Note how the channels do not provide new values or timestamps
until all sinks have consumed the old value.

7.3.4. Simplifications for Timestamp-Conservative Specifications

If we consider only timestamp-conservative specifications, we can apply several
simplifications: Exclusive progress is sufficient for timestamp-conservative specifi-
cations. Remember that in Example 6.16 (Counting With Abstract Monitoring
Streams) from Section 6.2 only exclusive progress occurs. Recursive specifications
with delay need inclusive progress as shown in Example 6.22 (Period With Abstract
Monitoring Streams) in Section 6.2.1, but for timestamp-conservative specifications
these cases cannot occur because the delay operator is not allowed.

The channel operators for unit#, time# and even last‡ do not explicitly consider
inclusive progress. They pass on timestamps received on their inputs. The channel
operator for last‡ does not explicitly manipulate timestamps. They are only stored
and compared.

The channel operator for lift# however, must consider inclusive progress explicitly
because inclusive progress indicates the absence of an event that results in evaluating
the function with ⊥ on the particular input. This evaluation with ⊥ on the partic-
ular input happens in the case of larger progress on the corresponding input, too.
However, if the progress on one input is larger, the larger progress is not consumed.
If the progress is inclusive but not larger, the inclusive progress must be consumed
together with the value on the other input. This is handled by two conditional
consumptions of the following form:
if a = incl(progress) then consume(a)

and in a similar form for b. If we know that the progress is never inclusive, then
these two conditional consumptions can be removed, and as a result, the variable
progress can be removed entirely.

259

7. FPGA Synthesis

7.4. Implementation Details

This section discusses the actual synthesis of operator networks onto FPGAs. Oper-
ator networks consist of channels and channel operators, so we discuss synthesising
these two concepts on FPGAs. The implementation discussed below is an extension
of an earlier version presented in [Buc20] that neither supports the delay operator
nor inclusive progress.

In the previous sections, the execution of operator networks was introduced to adhere
a given scheduling in Definition 7.12 (Operator Network Function) from Section 7.2.
On the actual hardware, every operator is executed in parallel with every clock cycle,
which realises a fair scheduling.

7.4.1. Implementation of Channels

The channels as defined in Definition 7.7 from Section 7.2 have several features:

• They can distinguish between data and timestamps.

• Sources can submit, and sinks can check if something is waiting to be consumed.

• They can have multiple sinks and can store data or timestamps until every
sink has consumed it.

In the implementation, we split this feature set up into several elements: The channel
implementation cannot store anything and can only connect a source with a single
sink. Instead, we introduce queues that can store timestamps and values.

A channel indicates to a sink if a value is valid, i. e. if it can be consumed and if it is a
data or a timestamp value. It indicates to the source if the channel is ready to receive
another value, i. e. if the value was consumed. If we omit the distinction between
data and timestamp values, this behaviour is known as ready-valid interfaces from
many hardware bus protocols, e. g. the AXI bus provided by Xilinx [XILc]:

• The wire data transfers data from the source to the sink. Its bit width corre-
sponds to the bit width of the data values being transferred.

• The wire ready is a flag used by the sink to signal the source that the source
is ready to consume new data.

• The write valid is a flag used by the source to signal the sink that the current
data is valid and can be consumed.

260

7.4. Implementation Details

Note that the data flow on the ready wire is opposed to the other wires. The ready
flag prevents the source from sending new data if the sink is not ready to process
data. This mechanism results in messages queued along the pipeline until the source
is ready again.

The distinction between timestamps and values can be added into this schema by
making the data wire wide enough to contain either a timestamp or a value and
equipping it with an additional bit indicating whether it is a timestamp. Different
wires are used for timestamps and values in the actual implementation, making the
type-safe realisation in Chisel easier (see next section).

AXI provides way more features than the ready-valid interface described above. For
example, it contains infrastructure for complex addressing and multi-clock interfaces.
AXI4-Stream interfaces are the closest to a simple ready-valid interface because they
omit the address phases for faster throughputs. Nevertheless, even AXI4-Stream
provides IP blocks that contain unnecessary features.

TeSSLa specifications consist of many channels, and these channels can be considered
more an internal feature of the translated specification than an external interface.
Hence, the implementation does not rely on any IP blocks but simply uses the
following interface together with usage conventions:

• The wire value contains event’s values.

• The wire timestamp contains timestamps.

• The flag isTimestamp is true if the current value is a timestamp and should
be read from the timestamp wire. Otherwise, the current value is a data value
and should be read from the data wire.

• The flags ready and valid work as before.

In order to avoid combinatorial cycles in the layout, some usage conventions must
be established which are very similar to the AXI bus:

• Both, the ready and the valid flags once being set to true must stay like that
until the actual transfer happens.

• The actual transfer happens at the rising edge of the next clock cycle when
the flags ready and valid are both set to true.

• At the source of the channel, the flag valid must not be combinatorially derived
from the ready flag.

261

7. FPGA Synthesis

so
ur

ce

sin
k

value

timestamp

isTimestamp

valid
ready ✓✗

Figure 7.5.: A channel connecting a source with a sink. The wires timestamp,
value, isTimestamp and valid pass information from the source to the sink and
the wire ready provides feedback from the sink to the source. To prevent combi-
natorial cycles the wires from source to sink must not depend on the ready wire.
The ready wire might depend on the other wires.

Very similar conventions apply for using the AXI bus, too. Its documentation [XILc]
states: “The READY slave output cannot be generated combinatorially from the
VALID slave input.” Note that while AXI forbids a combinatorial relation between
ready and valid at the sink of the channel, the convention above forbids it at the
source. Both rules have the same effect of preventing combinatorial cycles, but the
adjustment makes the implementations of TeSSLa’s channel operators more intuitive
because especially the channel operators for the small TeSSLa operators like lift do
not store data. They only manipulate the received values and immediately pass
them on to the next module in the same clock cycle. They are ready to consume
a new value with every received valid value that could be passed on to the next
channel operator. Intuitively the ready flag is used to indicate that a value on the
channel was consumed. The ready flag depends on the data (or timestamp) anyhow,
so an additional dependency on the valid flag does not matter much. See Figure 7.5
for a visualisation of the channel and these conventions.

7.4.2. Chisel

On a very abstract level, an FPGA consists of logic cells and a routing network
connecting the logic cells. A logic cell consists of lookup tables (LUT), a full adder
to implement a combinatorial network, and a flip-flop to store a single bit. In order to
program an FPGA, we need a way to specify the routing, the combinatorial network,
and the flip-flops. In the two most common hardware description languages (HDL),
Verilog and VHDL, this is done with the concept of wires and registers. A wire
describes a single logical value and can be connected to other wires using Boolean
combinations, which describes the combinatorial networks. A register can store a
single bit and can be set and read using wires. The registers and wires are described

262

7.4. Implementation Details

in HDLs in a data-flow oriented language which includes a notion of time, e. g. one
can specify that a register is read or written with the rising edge of a clock signal.

Neither Verilog nor VHDL was designed exclusively for programming FPGAs. They
support a wide range of features, from describing hardware to testing it using
testbench-based verification. Hence, the languages support many different pro-
gramming styles and many different operators and the synthesisable fragment of
the languages that can be used to program FPGAs is not precisely specified. It de-
pends on the used tooling. See [Han18] for more discussions on writing synthesisable
Verilog.

High-level synthesis (HLS), e. g. SystemC, aims to overcome the difficulties of writ-
ing Verilog or VHDL. It automatically transfers programs written in an imperative
style into the data-flow-oriented register-transfer level. Chisel [BVR+12] follows a
different approach: On the one hand, it utilises Scala as a metaprogramming lan-
guage used to describe wires and registers. Compared to HLS, one does not lose
any precision due to the usage of non-matching programming models because one
still describes the exact relation of the wires and registers in a data-flow-oriented
way. Schuyler Eldridge, one of Chisel’s maintainers, summarises the different ap-
proach in [Eld18] as follows: “The differentiating factor here is that Chisel is still,
fundamentally, a powerful language for describing circuits while HLS is a path for
converting programs to circuits.” The generalisation and reusability are, however,
highly increased by using Scala features to do so. On the other hand, Chisel is
compiled to the Flexible Internal Representation for RTL (Firrtl), which is an HDL
specifically for programming FPGAs and hence is entirely synthesisable: Some con-
cepts of Verilog and VHDL are simplified, so for example, there are only two Boolean
values, and the global clock is implicitly assumed for registers. Multi-clock designs
are still possible, but since this is not needed for the TeSSLa synthesis, we will not
discuss this in the context of this thesis.

Chisel – or more precisely the Firrtl [IKL+17] code generated with the Chisel Scala
frontend – can be compiled either to Verilog or to VHDL. Chisel allows the definition
of modules that are connected by bundles. A module has an interface defined in
terms of bundles, and a bundle is a typed set of wires. The following code shows
the slightly simplified implementation of the ready-valid interface discussed above
in Chisel:
class ChannelInterface extends Bundle {

val ready = Output(Bool())
val valid = Input(Bool())
val isTimestamp = Input(Bool())
val value = Input(DataType)
val timestamp = Input(TimeType)

}

263

7. FPGA Synthesis

Note that the above code only defines data types but not the functionality. In
the same way, modules make it easier to instantiate code multiple times, but they
do not add any overhead to the final compilation product. However, modules are
preserved in the Verilog or VHDL code which can be helpful to identify portions of
the compiled code in the Xilinx tools during debugging.

7.4.3. Implementation of Channel Operators

A channel operator as defined in Definition 7.8 from Section 7.2 is represented as a
Chisel module as follows:

The inputs are declared as channel interface and the outputs as flipped channel
interface, i. e. a channel interface where inputs and outputs are swapped.

The variables are declared as registers, which are initialised accordingly.

The behaviour is implemented using Chisel’s conditional assignment feature with
the when keyword. This language features provides syntactic sugar for defining
values of wires and registers. So for example instead of
io.out.timestamp := Mux(io.a.timestamp <= io.b.timestamp,

io.a.timestamp, io.b.timestamp)

one can write
when(io.a.timestamp <= io.b.timestamp) {

io.out.timestamp := io.a.timestamp
}.otherwise {

io.out.timestamp := io.b.timestamp
}

The Mux in the first notation takes three arguments:

– The Boolean condition,
– the value to be used if the condition is fulfilled,
– and the value to be used otherwise.

The second notation allows the definition of multiple wires or registers based on the
same condition, so this notation can be used to express the behaviour of the channel
operators. The functions val, ts and consume of channels are translated using these
Chisel definitions:

264

7.4. Implementation Details

def ts(a: ChannelInterface) = a.valid && a.isTimestamp
def vl(a: ChannelInterface) = a.valid && !a.isTimestamp
def consume(a: ChannelInterface) = {
a.ready := true.B

}

The function submit is slightly more complicated because it might block if the chan-
nel is not ready to receive a new value. The Chisel semantics does not support
blocking calls because this imperative concept cannot be directly translated into its
data-flow semantics.

If the channel is ready and we want to submit something, we assign the data wires to
the new values and set the valid flag. The actual transfer is then assumed to happen
at the rising edge of the next clock cycle. If, however, the ready bit is not set, we
simulate the blocking of the call to submit by making sure that nothing changes
until we reach the same position in the code for the next clock cycle. Following
sequential assignments happing after the call to submit are postponed until the next
clock cycle. The following Chisel definitions provide a non-blocking implementation
of submit. We distinguish the two cases of submitting a value and a timestamp:
def submitValue(value: V): Unit = {
out.valid := true.B
out.isTimestamp := false.B
out.value := value

}

def submitTime(timestamp: T): Unit = {
out.valid := true.B
out.isTimestamp := true.B
out.timestamp := timestamp

}

def submitted = out.ready

The predicate submitted is mapped to the channels ready flag. Assignments after
the call to submit are only executed when submitted evaluates to true. So for
example the following first case from the channel operator for lift

if ts(a) ∧ ts(b) then
if a ≤ b then

submit(a); consume(a); progress := a
if a = b then consume(b)

else
submit(b); consume(b); progress := b

265

7. FPGA Synthesis

becomes:
when (ts(io.a) && ts(io.b)) {

when(io.a.timestamp <= io.b.timestamp) {
submitTime(io.a.timestamp)
when (submitted) { // submit did not block
consume(io.a)
progress := io.a.timestamp
when (io.a.timestamp == io.b.timestamp) {

consume(io.b)
}

}
}.otherwise {

submitTime(io.b.timestamp)
when (submitted) { // submit did not block
consume(io.b)
progress := io.b.timestamp

}
}

}

7.4.4. Implementation of Queues

As mentioned earlier, the implementation of channels cannot store values on their
own. Instead, queues are included for that purpose. The queues can be seen as an
optimisation so that not every channel has to store values. Queues have the same
ready-valid interface as the channel operators. A queue always has one input but
can have multiple outputs. A queue is a ring buffer storing an alternating sequence
of timestamps and values with one write pointer and multiple read pointers, one for
each output.

Queues are included into the data-flow graph for the following purposes:

(1) Dispatch data from a single source to multiple targets. The ready-valid interface
only supports data transfer from a single source to a single target. In order to
dispatch data to multiple targets, it is sent to and stored in a queue instead.
Multiple targets can now read the data from the queue. Using queues to
dispatch data to multiple targets has two benefits:

a) It keeps the ready-valid interface simple because there is always only one
target.

266

7.4. Implementation Details

b) The queue is equipped with multiple read pointers such that the targets
can asynchronously read the data. Otherwise, without storing the data in
a queue, the data transfer would have to happen synchronously from the
source to all targets in the same clock cycle.

(2) Break up combinatorial cycles. This effect of the queues is implicit because
every cycle in the operator network has at least one node whose output is con-
nected to multiple targets. This connection requires a queue anyhow, so every
cycle in the network is broken up by at least one queue. A cycle without such
a node would not affect the rest of the network and could easily be eliminated.

(3) Break up too long paths. As discussed in this chapter’s introduction, the length
of paths between registers is vital for FPGA design. Since registers store values,
their output at a particular clock cycle is independent of their input at that
particular clock cycle. The timing limits the number of logical operators and
the path length on the actual hardware chip between the involved logic blocks.
The slack is the time difference between the required arrival of a signal and
the actual arrival of a signal. This slack must be positive for the design to
be synthesisable. If sequences of combinatorial operations are becoming too
long, the slack gets negative, and additional registers must be introduced into
the path. In the translation of operator networks, this is done with additional
queues.

Queues are implemented as a custom module and not using the Xilinx FIFO IP
core [XILd] because of the following requirements for queues:

We need multiple reading pointers which is not immediately supported by Xilinx
FIFOs and was easier to implement manually using registers.

Further, queues need the ability to override the previously inserted timestamp instead
of enqueuing it. If two timestamps are passed along consecutively on a channel, the
second timestamp is an update of the first timestamp; both can be combined into
the larger timestamp. While preserving both timestamps would be semantically
correct, it increases the throughput to combine both timestamps into a single one
in the queue.

Finally, the queues need the first-word fall-through (FWFT) [XILd] semantics in
order to match the channel interface semantics: It must be possible to read a value
and decide based on that value if it should be consumed or if the value should stay
so that it can be reread in the next clock cycle. Traditional FIFOs do not have
FWFT because they are implemented using memory blocks. Memory provides in
the current clock cycle the value stored at the address assigned in the last clock
cycle.

267

7. FPGA Synthesis

The Xilinx IP cores for FIFOs do support FWFT, but in combination with the other
special requirements, it was easier to manually implement the queues using registers.
A possible optimisation would be the usage of memory blocks for larger queues.
Memory blocks are much more efficient in resource consumption, but additional
registers are still required to implement FWFT. One has to store the data at the
position of any reading pointer separately in registers. Hence such an optimisation
would only improve the situation for larger queues, and a size of one is already
sufficient for many queues. In that case, using memory blocks does not gain much
because the entire queue does not store much more information than what needs to
be stored in registers anyhow.

Internally two separate queues are used to store timestamps and values instead of
one queue storing them alternatingly. This separation has the same practical reason
of relying on the available static type checking, which was already discussed for the
channel interface. Additionally, it would be a waste of resources to store timestamps
and values in the same data structure if their bit width would differ.

More technical details on the actual implementation of the queues can be found in
[Buc20, Section 3.2.1. Queues].

Translation of Operator Networks.

All the purposes for introducing queues mentioned above could be already satisfied
by adding a queue of size one for every channel. However, this would not be ideal for
the resource usage of the hardware layout and the timing because a queue does not
pass on a received value in the same timestamp, i. e. every queue introduces latency
to the network. In the case of recursive cycles, latency decreases the throughput,
too. So we will investigate better heuristics regarding the queue placement in the
next section.

Queue Placement

Queues must be placed for every channel with more than one target to satisfy queue
purposes (1) and (2). For queue purpose (3), breaking up long paths, however, a
better heuristic than placing a queue for every channel can be defined:

In order to estimate the slack between two modules, the following estimation is
used: We compute a slack constant for every input of every channel operator based
on the amount of combinatorial logic between this input and the operator’s output.
There is no combinatorial connection to the output from inputs corresponding to
delayed-labelled edges in the dependency graph. The same is true for queues: There
is no combinatorial connection from their inputs to their inputs.

268

7.4. Implementation Details

These slack constants are then aggregated along the operator network and reset
to zero for every delay-labelled edge. If the aggregated slack constant exceeds a
threshold, a queue is added at that position in the network, and the aggregated slack
constant is reset to zero. The threshold’s value can only be determined empirically
and highly depends on the used FPGA hardware and the synthesis.

Unfortunately, this estimation only considers combinatorial logic but not the physi-
cal path length on the hardware. This path length is mainly driven by the physical
distance of the elements on the FPGA used to realise the logic. With a higher util-
isation of the FPGA, these path lengths typically increase as the utilisation of the
available logic elements becomes more difficult.

Queue Depth

For certain operator network graphs, the throughput of the entire graph can be
increased with additional buffering capacities in the graph: Assume a data flow
graph splitting up the same input and only sending one branch through multiple
queues before joining both branches again in one operator at the end. In that
situation, every new timestamp must be passed through all the queues until it
reaches the operator at the end, where both branches are joined. While the new
timestamp travels down the queues, no new timestamp can be inserted into that
pipeline of queues because the operator at the end is blocking the input: It cannot
consume a timestamp on the input connected to the short branch until the same
timestamp has reached its other input connected to the long branch. In this case,
both timestamps are always the same because they are inherited from the same
origin, and thus there is never sufficient progress at the other input until the same
timestamp has arrived.

There is already a queue placed at the input, which dispatches data to both branches.
If this queue’s depth is increased, it provides already new input data into the pipeline
while the operator at the bottom still waits. With this adjustment, the longer
branch can process following timestamps, which are not yet accepted by the shorter
branch.

In order to compute proper queue depth, all channel operators in the operator
network are identified whose inputs depend on a common ancestor. Then the path’s
latency, i. e. the number of queues on the path, from that ancestor to the operator is
computed. The maximal difference of the latencies determines the size of the queue
at the common ancestor.

269

7. FPGA Synthesis

7.5. Tuplification Optimisation

Next to the queues, most FPGA resources are used for the synchronisation mecha-
nisms. Therefore, this section presents some modifications of specifications that do
not change their semantics but aim to reduce their resource utilisation by reducing
the required amount of synchronisations. The required number of timestamp com-
parisons for the synchronisation of multiple streams can be reduced by replacing
parallel streams with a single stream of tuples.

See Figures 7.6 and 7.7 in Section 7.5.3 for examples of such graph transforma-
tions. Note that other than the queue placement discussed in the last section, this
optimisation phase is purely performed on the TeSSLa specification itself.

Especially the transformation of parallel lift operators into a joined lift of tuples
can be applied quite often, but it sometimes comes with a cost of increased latency
or even throughput: By combining two streams into a stream of pairs, we lose
the ability the evaluate both streams asynchronously. This combination reduces
the amount of synchronisation needed, but the asynchronous evaluation also allows
efficient evaluation of asynchronous streams on hardware. So combining streams to
treat them synchronously is a trade-off between resource utilisation and throughput
and latency.

Intuitively the following rules are applied: Parallel lift operators are combined into
a single lift operator as shown in Figure 7.6 if both streams have events at the same
timestamps. This combination will be formalised in the equivalence relation ≡t This
restriction is slightly softened by the relation ⊆m to include streams with the same
timestamps except for an initial phase. Parallel last operators are combined into a
single last operator if their value streams fulfil the same requirements. Their trigger
streams must have the same timestamps because otherwise, the tuplification would
change the semantics of the specification. Further, in both cases, the streams must
be independent for the transformation to work correctly. Especially the situation
where both streams are part of different cycles must be avoided because combining
different cycles into a common cycle might drastically reduce the throughput of the
synthesised specification.

The tuplification optimisations were developed in the context [Buc20].

Before defining what the two graph transformations do and when they are applied,
we define auxiliary equivalence and dependency relations used to identify appropri-
ate streams in a TeSSLa specification.

270

7.5. Tuplification Optimisation

7.5.1. Timestamp Relations

The equivalence of two TeSSLa specifications was defined in Definition 3.29 from
Section 3.2.4 as follows: With fφ,fψ ∈ Sk

D → Sn
D we denote the semantic functions

of the specifications φ and ψ. We call them equivalent and write φ ≡ ψ iff

∀y ∈ Sk
D : fφ(y) = fψ(y).

We use T (s) ⊆ T for the set of timestamps used in s ∈ SD and T (s) for the element-
wise application of T to all streams in the tuple s ∈ Sk

D.

Definition 7.30 (Equivalence of TeSSLa Specifications Regarding Timestamps).
Two TeSSLa specifications φ and ψ are called equivalent regarding their timestamps
denoted with φ ≡t ψ iff

∀y ∈ Sk
D : T (fφ(y)) = T (fψ(y)).

It follows directly that for any two specifications φ and ψ the equivalence φ ≡ ψ
implies the equivalence regarding timestamps φ ≡t ψ.

In many practical cases, streams are equivalent regarding timestamps except for
some initial events. In order to weaken the equivalence regarding timestamps ac-
cordingly, a first idea would be to ignore a fixed amount of time at the beginning of
the streams, i. e. ignore all timestamps smaller than a threshold. Unfortunately, this
would not be a good criterion because one typically cannot derive such a property
statically from the specification without knowing the actual input streams. After
all, the actual values of the timestamps depend on the actual input streams.

A different approach is to consider two streams related if they contain the same
timestamps starting with their first event. Ignoring all events happening on one
stream before the first event on the other stream fits quite well to typical specification
patterns in which, for example, last removes the first event from a stream.

The corresponding relation is no longer an equivalence relation because it depends
on the order of the operands whose initial events can be ignored. However, it is
possible to define a transitive relation. As explained in the next section, that is
sufficient to derive this property on specifications with a rule-based approach.

Let A ⊆ T be a non-empty set of timestamps A ̸= ∅ and B ⊆ T an arbitrary set of
timestamps. We then say that A is subsumed under B and write A ⊆m B iff

A = {t ∈ B | t ≥ min(A)}.

271

7. FPGA Synthesis

Further, for any B ⊆ T we have

∅ ⊆m B.

In the case of tuples of sets of timestamps, the relation is applied element-wise. Let
A,B ∈ 2Tk be tuples of sets of timestamps. Then A ⊆m B holds iff

∀ i ∈ {1, 2, . . . , k} : Ai ⊆m Bi.

Using this new relation we define the corresponding relation on TeSSLa specifica-
tions:

Definition 7.31 (Subsumption of TeSSLa Specification). Let φ and ψ be two
TeSSLa specifications. We say that φ is subsumed by ψ regarding timestamps
and write φ ⊆m ψ iff

∀y ∈ Sk
D : T (fφ(y)) =m T (fψ(y)).

It follows directly that for any two specifications φ and ψ the equivalence regarding
timestamps φ ≡t ψ implies subsumption in both directions φ ⊆m ψ and φ ⊇m ψ.

Similar to the regular equivalence relation, we use the notational convention that
two streams are equivalent if their specifications projected to these streams are
equivalent.

Deriving Timestamp Relations

Neither the equivalence of TeSSLa specifications nor the equivalence relation ≡t of
TeSSLa specifications regarding timestamps, nor the subsumption relation ⊆m of
TeSSLa specification can be computed for arbitrary specifications. These relations
are semantic properties that might depend on the semantics of a lifted function
which is not restricted and thus cannot be analysed statically in the general case.

In the following, we establish some simple rules used to derive the three relations
in some cases. These rules can be used to derive an under-approximation of the
relations because the following rules are universally true, but they are not sufficient
to derive the relations in all cases.

Let f and g be arbitrary ideal ⊥-functions, x, y ∈ SD streams and z ∈ Sn
D a tuple of

streams. We then have the following general equivalences:

nil ≡ lift(f)(last(x, y),unit)
nil ≡ last(x, nil)

272

7.5. Tuplification Optimisation

nil ≡ last(nil, x)
last(x, y) ≡ last(x, last(x, y))
last(x, y) ≡ last(x, last(unit, y))

The following equivalences regarding timestamps hold:

x ≡t time(x)
x ≡t lift(f)(x)

last(x, lift(f)(z)) ≡t lift(g)(last(x, z1), last(x, z2), . . . , last(x, zn))

The following additional equivalences regarding timestamps hold when the initial
timestamps are ignored:

y ⊇m last(x, y)
y ⊇m lift(f)(last(z1, y), last(z2, y), . . . , last(zn, y))

More rules, especially for additional classes of lifted functions, can be found in [Buc20].

7.5.2. Dependencies

In order to give formal rules when to apply the optimisations, we need two more aux-
iliary definitions regarding the dependence of streams in a TeSSLa specification:

Definition 7.32 (Dependent Streams). Let x, y ∈ SD be two derived streams de-
fined in a common well-formed TeSSLa specification φ. We than say that x depends
on y and write x ⇝ y iff there exists a path in the dependency graph of φ from x
to y which does not use any delayed-labelled edge.

Note that this dependency relation is defined on an acyclic graph because the def-
inition considers only well-formed TeSSLa specifications and ignores the delayed-
labelled edges.

Definition 7.33 (Connected Cycles). Let x, y ∈ SD be two derived streams defined
in a common well-formed TeSSLa specification φ. We say that x and y connect
cycles iff

a) x and y are part of two different non-trivial SCCs in the dependency graph of
φ and

b) there is a path in the dependency graph of φ which connects the SCCs of x
and y.

273

7. FPGA Synthesis

a1 . . . an b1
. . . bn

lift(f1) lift(f2)

lift(g)
z

y1 y2

⊆m

⊇m

a1 . . . an b1
. . . bn

lift(u)

lift(f1∥f2)

lift(g)
z′

y′

m′

Figure 7.6.: Tuplification for parallel lift operators. The conditional relation is
shown by the green dashed line: The derived streams y1 and y2 should have most
events at the same timestamps for this optimisation to be effective.

Note that for this definition, the delayed-labelled edges are considered, too. Other-
wise, there would be no non-trivial SCC in the dependency graph of a well-formed
TeSSLa specification. Note further that the connection between the SCCs of x and
y might be a path in either direction, but not both because then x and y would be
part of the same SCC.

7.5.3. Graph Transformations

Using the definitions regarding equivalence and dependency of streams in a TeSSLa
specification, we can now precisely define the two graph transformations used to
optimise the resource utilisation of the translated specification.

Merge Parallel lift

Let φ be a TeSSLa specification with the following streams: a ∈ Sk
D and b ∈ Sn

D
are tuples of streams and y1, y2, z ∈ SD are derived streams with the following
definitions:

y1 = lift(f1)(a)
y2 = lift(f2)(b)
z = lift(g)(y1, y2)

with f1 : Dk ↣ D, f2 : Dn↣ D and g : D2 ↣ D being arbitrary ideal ⊥-functions.

274

7.5. Tuplification Optimisation

We can rewrite this as follows introducing the new derived stream m′ ∈ SDk+n , y′ ∈
SD2 and z′ ∈ SD:

m′ = lift(u)(a, b)
y′ = lift(f1∥f2)(m′)
z′ = lift(g)(y′)

Note that m′ is a stream of tuples, while a and b are tuples of streams. The
function u is the tuplification function introduced earlier. By (f1∥f2) : Dk×Dn↣ D
we denote the function applying f1 and f2 in parallel: (f1∥f2)(c,d) = (f1(c), f2(d)).
We again abuse notation by applying the same function g to two arguments of type
D⊥ in the first case and one argument of type (D⊥ × D⊥)⊥ in the second case.

By Lemma 3.48 (Associativity of lift) from Section 3.4.1 we have z ≡ z′ on monitor-
ing streams, but as shown in Example 6.33 from Section 6.3.2 this equivalence does
not always hold on abstract monitoring streams. Two independent lift# operators
can be more asynchronous than one lift# operator applied to streams of tuples.
From Lemma 6.31 (Relation Between the Abstract TeSSLa Monitoring Semantics
and the TeSSLa Semantics) in Section 6.3.1 we know that they only differ regarding
the generated progress. This difference in the produced progress is an important
trade-off for this optimisation and the reason why using this transformation is not
always efficient: It is only efficient if the tuples created by the tuplification are not
sparse, i. e. most of their values are not ⊥. Otherwise, the tuplification introduces
additional synchronisation between streams, preventing the FPGA from utilising
its main benefit, the asynchronous processing of independent streams. Formally we
only apply this optimisation if y1 ⊆m y2 or y1 ⊇m y2.

See Figure 7.6 for a visualisation of the graph transformation and this requirement.

We further require that y1 and y2 do not connect cycles because otherwise, the
tuplification could combine both cycles into one larger cycle, which could drastically
decrease the throughput of the specification by increasing the latency of a cycle.

We can safely assume that y1 ̸⇝ y2 because otherwise we could insert an additional
lift(id) operator in the graph between y1 and z and apply the transformation to
the resulting specification, i. e. combining y2 with the inserted id node instead of y1.
Due to the symmetry of the graph, the same applies to y2 ⇝ y1.

As shown in Figure 7.6 the depths of the dependency graph might be increased by
this graph transformation. An increased depth neither increases the latency nor
the resource utilisation because the combinatorial logic in the channel operators for
unary lift is much simpler than in the general case of the binary or even n-ary lift

which must synchronise the incoming timestamps and values across all input chan-
nels in order to apply the lifted function only on events with the same timestamps.

275

7. FPGA Synthesis

v1 r1 v2 r2

last last

lift(g)
z

y1 y2

⊆m / ⊇m ≡t

v1 r1 v2 r2

lift(u)

last

lift(g)
z′

y′

v′

Figure 7.7.: Tuplification for parallel last operators. The condition relations are
shown by the green and purple dashed line: The value streams v1 and v2 should
have most events at the same timestamps for this optimisation to be effective.
The trigger streams r1 and r2 must have all events at the same timestamps for
this optimisation to be correct.

Merge Parallel last

Let φ be a TeSSLa specification with the following streams: v1, r1, v2, r2 ∈ SD are
streams and y1, y2, z ∈ SD are derived streams with the following definitions:

y1 = last(v1, r1)
y2 = last(v2, r2)
z = lift(g)(y1, y2)

with g : D2 ↣ D being an arbitrary ideal ⊥-function.

We can rewrite this as follows introducing the new derived streams v′, y′ ∈ SD2 and
z′ ∈ SD:

v′ = lift(u)(v1, v2)
y′ = last(v′, r1)
z′ = lift(g)(y′)

Very similar to the previous case of parallel lift the streams v′ and y′ are streams of
pairs.

With the condition r1 ≡t r2 we have z ≡ z′. For the tuplification to be efficient we
further require v1 ⊆m v2 or v1 ⊇m v2. See Figure 7.7 for a visualisation of the graph
transformation and these requirements.

276

7.6. Integration and Test Setup

Input
Trace Encoder

Xillybus
Driver

DecoderOutput
Trace

PC

Input
FIFO Input Adapter

Synthesised
Specification

Output Adapter

FPGA

Output
FIFO

Xillybus
IP Core

PCI Express

Binary
File

Binary
File

Figure 7.8.: Integration Test Setup using PCI Express via Xillybus.

As before we further require that y1 and y2 do not connect cycles and assume that
y1 ̸⇝ y2 and y2 ̸⇝ y1.

7.6. Integration and Test Setup

A TeSSLa specification can be translated into an operator network which can then
be compiled via Chisel into a Verilog or VHDL hardware module. This hardware
module has inputs and outputs matching the input and output streams of the spec-
ification. The usage of such a module highly depends on the concrete use case. If
parallel trace sources are available on the same hardware, these trace sources can
be attached directly to the inputs. The following approach was used to evaluate
synthesised specifications in the context of this thesis: Input events are fed via PIC
Express from a host PC to the FPGA. The synthesised hardware module then pro-
cesses these events on the FPGA, and the output event stream is fed back to the
host PC via the same PCI express interface. Figure 7.8 shows an overview of this
setup. Xillybus1 was chosen as a ready to use PCI Express data streaming solu-
tion [PS14]. On the host PC, it provides a driver that provides memory-mapped
virtual files used to write and read binary data into and from the interface. On the
FPGA, it provides an IP core connected to two FIFOs used as input and output
buffer. Events can then be read from the input buffer and fed into the synthesised

1http://xillybus.com

277

http://xillybus.com

7. FPGA Synthesis

specification. On the other end, output events are written into the output buffer
and transferred back through the PCI Express bus.

The compiled operator network is clocked with the same clock as the Xillybus IP
core such that the PCI Express interface does not become a bottleneck of this setup
because it provides new data for every clock cycle. However, the PCI Express
connection only provides a single input and output channel. Hence a synchronous
encoding of multiple streams into that single channel is needed. The following ad
hoc encoding was mainly chosen because it is simple to decode and encode on the
hardware: The first bit of every data frame encodes if the data frame is a timestamp
or a value. The timestamps are the same for all encoded streams. In the case of a
value, the next few bits encode an address followed by the actual value. If multiple
streams carry an event at the same timestamp, then multiple data frames with values
might follow after a single timestamp frame. If the operator network has multiple
inputs, the PCI Express interface can, after all, become a bottleneck because it can
not provide new data to every input of the compiled operator network with every
clock cycle. The effect of this limitation is discussed in Section 8.3.3 (Number of
Inputs).

The input adapter is a special hardware module reading such a sequence of data
frames and dispatching it into multiple input channels of a synthesised operator
network as follows: A timestamp is passed on to all input channels, and a value
is passed to the channel corresponding to the address given in the data frame.
In order to avoid deadlocks, a queue is added directly after the input adapter for
every channel. A queue size of 1 is sufficient because the input events are encoded
synchronous in the data frame sequence.

The output adapter works in a very similar fashion. Like a lift it synchronises its
input channels based on the event’s timestamps and then passes the timestamp to
the output. Addresses are added to values corresponding to their output channel.

The input and output adapters were developed in the context of [Buc20].

On the software side, an encoder takes an input trace in a human-readable text
format and encodes it to the corresponding binary format. The encoder must be
configured with the specification’s meta-data to generate the proper addresses for
the named streams. The decoder works similarly on the output stream: It takes the
binary data and decodes it into a human-readable text format.

Chisel’s builtin simulation engine Treadle2 is used for fully automated integration
tests. Treadle only simulates the semantics of the Firrtl code without simulating the
actual FPGA hardware, i. e. the timing is only accurate in terms of clock cycles. Ac-
tual hardware paths on the FPGA are not simulated. A given TeSSLa specification

2https://www.chisel-lang.org/treadle/

278

https://www.chisel-lang.org/treadle/

7.6. Integration and Test Setup

Input Trace

Specification

Interpreter

Encoder

Compiler

Input Adapter

Synthesised
Specification

Output Adapter

Tr
ea

dl
e

DecoderComparator

Test Result

Log

Output
Trace

Firrtl

Output
Trace

Input
Stream
Mapping

Output
Stream
Mapping

Binary Input

Binary Output

Figure 7.9.: Integration test setup for the simulation in software using Chisel’s
simulation engine Treadle.

279

7. FPGA Synthesis

is compiled into Firrtl code for a synthesised hardware module. A given input trace
is encoded, fed through the simulator and decoded. The compiler provides mapping
information for the encoding and decoding about the addressing of the input and
output streams used by the input and output adapters. The same input trace is
evaluated for the same specification using the interpreter discussed in Section 4.3
which is used as a reference implementation of the TeSSLa semantics. The output
traces are then compared. This entire workflow for these integration tests shown in
Figure 7.9 is automated as Scala unit tests. The software encoder and decoder and
the input and output adapter provide an integration test setup. Together with the
output trace and the comparison result, a detailed log of the inputs, outputs and
actions of all the involved channel operators in the operator network synthesised
from the specification can be retrieved from the Treadle simulation engine. Every
action is timestamped with the current clock cycle.

7.7. Conclusion

The synthesis introduced in this chapter translates a specification’s flow graph into
an operator network consisting of operators connected by channels. Theorem 7.29
(TeSSLa Operator Networks are Correct) in Section 7.3.2 shows that the opera-
tor networks realise the abstract monitoring semantics with the adjusted operators
delayR‡ and last‡. The operator networks are compositional: Every channel can
be interpreted as an abstract monitoring stream such that a network’s outputs can
be used as inputs for another network. The central idea of the operator networks is
the asynchronous evaluation and the corresponding local synchronisation based on
the logical timestamps: The operators send timestamps as indicators of exclusive
progress into the channels, potentially followed by a value turning the progress in-
dication into an event with a value at that timestamp. The explicit decentralised
progress per channel supports the maximal parallelisation on the hardware.

The tuplification is a specific optimisation for the hardware synthesis to mitigate
the additional synchronisation overhead introduced by the asynchronous evaluation.
It explicitly synchronises streams that are implicitly synchronous in that events on
them occur at identical timestamps. The tuplification at compile-time reduces the
number of timestamp comparisons at runtime.

The operator networks are implemented in Chisel and compiled to Verilog or VHDL.
A test setup was used to check the correctness of the implementation by comparing
its output to the reference implementation provided by the interpreter. The test
setup is further used in Chapter 8 to compare the performance of the hardware
synthesis with the EPUs and the software compiler.

280

8 Evaluation

In this chapter, the different approaches to evaluate TeSSLa specifications presented
in this thesis are benchmarked. Namely, the following backends are compared:

• The synchronous interpreter from Section 4.3 which builds and evaluates an
object graph from the dependency graph at runtime,

• the synchronous compiled software monitor from Section 4.4 which compiles a
specification into a single big loop iterating through all timestamps,

• the synchronous EPUs from Chapter 5 which extend the synchronous approach
to a pipelining configurable hardware design, and

• the asynchronous synthesised FPGA monitor from Chapter 7.

Although a variety of TeSSLa compilers is used to generate the different evaluation
engines, this evaluation focuses on the efficiency of the different approaches in gen-
eral: The specifications are specifically optimised for every backend, either by the
optimisation phases of the corresponding compilers or manually. When comparing
different backends, the same input sequences have been used, and the output traces
have been checked for correctness to ensure that only equivalent monitors have been
compared. This evaluation only considers timestamp-conservative specifications to
execute the specifications on all backends.

We are in the setting of online monitoring with finite and relatively small memory.
So the general idea is that the monitors analyse traces that are much longer than
what the monitors can store. In this setting, the relevant metric used to compare
the performance of the different backends is the throughput, i. e. the number of
input events that can be processed per time. This evaluation concentrates on the
throughput of the actual monitor ignoring any I/O operations: It is ensured that
the input events are always available and that the output can always be written.

Possible other metrics of interest like the memory consumption of the monitor or
the latency of the monitor, i. e. the time passing between an input event and the
corresponding response to that particular input, are not considered: We only exam-
ine monitors without complex data structures where all values are either fixed-width
integers (64 or 48 bit signed), including timestamps or Boolean flags. All TeSSLa
backends only store a fixed amount of data values per operator of the specification,

281

8. Evaluation

such that one can compute the memory consumption statically from the specifica-
tion. Similarly, the latency can be determined statically because it only depends on
the size of the specification.

The throughput of the backends is compared in two different ways: First, several
specifications derived from real-world use cases of several research projects with
different partners are used. Second, synthetic benchmark specifications are used.
They allow the variation of just one characteristic property of interest while keeping
the other properties fixed. While the real-world specifications provide an overview,
measuring the throughput as a function of different specification properties allows
us to understand how the different backends perform in general. The considered
specification properties are:

• The depth of the specification, i. e. the longest path from an input to an output,

• the recursion depth of the specification, i. e. the longest recursive path inside
the specification and

• the parallelism of the specification, i. e. the number of independent paths from
inputs to outputs.

Next, we will define precisely how and what was measured in the next section,
compare the performance of several benchmarks on the four different backends and
finally discuss what we can learn from synthetic specifications with variable proper-
ties.

8.1. Measurement Methods

In this thesis, only the performance of the actual monitoring is considered. The
aspects of how to get the trace into the monitor and what to do with the output
trace are neglected in this discussion in order to focus entirely on the efficiency of
the different monitoring implementations.

The metric of interest is the number of processed input events over time. We call
this the throughput of the monitor. This throughput is measured as the time passed
between the first and the last action performed by the monitor during the processing
of a known number of events.

In the case of the synchronous software monitors, we know that the monitor is done
with all computations after performing the computations for the last timestamp. In
the case of the EPU pipeline and asynchronous FPGA network, we have to wait until
the output progress reaches the final timestamp. For these monitors, a final maximal
timestamp is injected, and we consider the time until this final timestamp was passed

282

8.1. Measurement Methods

102 103 104 105 106 107 108

105

107

109

1011

trace length

runtime [ns]

102 103 104 105 106 107 108

0.4

0.6

trace length

throughput [MEvents/s]

Figure 8.1.: Runtime and throughput of burst in the interpreter in dependence
of the trace length. See Table A.1 in Appendix A.3 for the data table.

through the entire monitor. In order to minimise the influence of the latency onto
the measured throughput and get close to the throughput on infinite traces, we
consider sufficiently large traces. Depending on the backend, traces of a few 1000
events can be considered sufficient to reduce the influence of the latency enough
compared to the runtime of the entire trace being processed by the monitor.

We assume the throughput to be independent of the trace length. Although it is
theoretically possible to construct specifications that require certain computations
only for certain parts of the trace, it is generally impossible to aggregate growing
data because all backends use fixed statically assigned memory. Figure 8.1 shows the
runtime of the specification burst for growing traces. The exact measurements are
listed in Appendix A.3 in the appendix. See Section 8.2.1 for a detailed discussion of
the specifications used in this evaluation. One can see how the runtime grows linear
with the trace length. The constant slope of this line is the throughput in which
we are interested. The diagram on the right in Figure 8.1 shows the throughput for
different trace lengths. The plot does not show an exact constant value due to several
effects affecting the precision of the measurements: The interpreter was executed
on a JVM running on a multi-threading computer whose scheduling might interrupt
the monitor. See Section 8.1.2 for a detailed discussion on how measurements have
been optimised in this setting.

In the case of the EPU pipeline and FPGA synthesis, the execution is not influenced
by garbage collection, scheduling or other interferences by operating systems. For
each execution of the hardware with the same input trace, the timing is identical to
each clock cycle.

283

8. Evaluation

8.1.1. Event Generators

The input traces used in the benchmarks are synthetically generated. Generating
synthetic events makes the benchmarks independent of real trace sources: It ensures
the availability of events without any blocking I/O and thus allows the evaluation
to focus entirely on the performance of the different monitor engines. However, this
approach has the drawback of less realistic scenarios and repeated input patterns.
The input generators simulate realistic inputs to mitigate these problems: They
create complex and varying patterns with random number generators.

A pseudorandom number generator (PRNG) with a fixed seed generates entirely de-
terministic and reproducible but still realistic traces. The xorshift PRNGs [Mar03]
can be implemented in software and hardware.

Starting with an initial fixed seed in the variable m with every need for a new
random number the following computation is performed:

x1 = m ⊻ (m ≫ 13)
x2 = x1 ⊻ (x1 ≪ 7)
m = x2 ⊻ (x2 ≫ 17)

The variables are unsigned 64-bit integers. The operator ⊻ denotes the exclusive
disjunction, i. e. the XOR operation. The operators ≪ and ≫ denote the unsigned
left or right bit shift, respectively.

The generators were derived from the actual inputs used in the use cases from which
the specifications have been derived. The specifications are discussed in detail later
in this chapter, and the corresponding generators are given in Appendix A.2.

The output of the monitors was written to a text-based trace format used to check
the monitors for correctness. However, for the performance measurement, the output
was entirely neglected, again to eliminate any I/O dependencies. Instead of storing
the actual output trace, the generated events’ values and timestamps are aggregated
into a single value. This value serves two purposes:

1. It can be used to ensure that the monitor is still operating correctly and

2. prevents any included optimisation steps from removing parts or even the entire
monitor.

8.1.2. Interpreter and Compiler

The interpreter and the compiler are software running on a multi-threading operat-
ing system. The benchmarks were executed on a MacBook Pro (15-inch, 2018) with

284

8.1. Measurement Methods

50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
0

10

20

30

40

min

median

avg

min

median

avg

runtime [ms]

number of runs

Figure 8.2.: Distribution of the runtime of long (with a fixed specification
depth of 1) compiled for Java (min: 55.97, median: 58.89, avg: 59.97) and

Rust (min: 52.57, median: 55.91, avg: 56.08), aggregated in groups of 10 µs.

2.6 GHz Intel Core i7 and 32 GB 2400 MHz DDR4 RAM using Java 1.9 and Rust
1.44.

The time was measured using System.nanoTime(). On Mac OS X, this method
uses mach_absolute_time() which relies on the processors’ time stamp counter
and thus provides accuracy on the level of CPU cycles [Lar14].

We take the minimal time of multiple runs because we perform the same computation
in multiple runs. Under the assumption that the implementation is correct, the
fastest run is as close as possible to the actual time of an uninterrupted execution.
See [Bak20] on a detailed discussion of this approach.

The approach is illustrated by Figure 8.2. The plot shows the distribution of all
individual execution times of the specification long (see Section 8.3.1 below) ag-
gregated in groups of 10 µs. The plot shows the typical right-skewed distribution of
multiple executions of the same deterministic computation, which cannot be faster
than the optimum but gets randomly slowed down by interruptions of the scheduler
and the operating system. As one can see in the plot, using the average runtime
of multiple runs would be biased by this right-skew. The median is less affected by
this issue, but one can see in the plot that it is still a significant amount away from

285

8. Evaluation

the minimum. On the other hand, the minimum can be less stable because it is only
based on a single data point. For this evaluation, the minimum was chosen because
it provides the best estimate of the optimal, uninterrupted runtime.

Interpreter

We use the simple Scala interpreter presented in Section 4.3 which differs from the
official TeSSLa interpreter available online1 in the absence of a compiler. The official
TeSSLa interpreter compiles a textual representation of a TeSSLa specification into
an object graph which is then evaluated. The interpreter from Section 4.3 uses a
straightforward internal Scala DSL to build the object graph directly, which is then
evaluated. The main difference regarding the performance of the two approaches
is the evaluation of lifted functions. While the official TeSSLa interpreter compiles
functions on primitive data values into an object graph which is then evaluated
with every call of the function, the TeSSLa interpreter used here can rely on Scala
functions as basic functions on data values, which is much faster.

This evaluation focuses on comparing different approaches to implement the TeSSLa
operators. Hence, the simple internal Scala DSL presented in Section 4.3.4 renders
the more relevant results as it shows the limits of the approach using message passing
directly on the object graph derived from the dependency graph.

Compiler

For the evaluation of the compiler, a slightly more advanced version of the approach
presented in Section 4.4 was used, which was developed in [Kal19]. It extends the
presented approach with proper runtime error handling and, in some cases, relies
on comparing timestamps instead of splitting the operations into the computation
of the stream’s value and the updated memory value.

For the software compiler, the specifications were slightly rewritten such that they
do not lift complex functions but only basic operators. As Theorem 3.51 (Signal Lift
and Default) in Section 3.4.2 shows, this does not limit the expressiveness but would
limit the performance of the other backends because fewer optimisations directly on
the TeSSLa dependency graph are possible. However, in the case of the software
compiler, this avoids the need to translate functions on data values. As discussed in
Section 4.4 the translation generates a single big loop with all variables being local
variables inside a function, which allows many optimisations to be performed by the
LLVM backend and the Java JVM JIT.

1https://www.tessla.io

286

https://www.tessla.io

8.1. Measurement Methods

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

100

101

102

specification depth

throughput [MEvents/s]

Java ArrayList
Java array
Java file

Java generator
Rust array
Rust file

Rust generator

Figure 8.3.: Throughput of long in dependence of the specification depth with
different compilers and I/O options. See Tables A.8 to A.14 in Appendix A.3 for
the data tables.

287

8. Evaluation

The compiler can generate Java and Rust code, and different forms of event gener-
ators have been evaluated:

File The input events are read from a binary file written by the generator before
starting the measurement.

ArrayList The input events are read from an ArrayList, i. e. Java’s resizable-array
implementation of a List, created by the generator before starting the mea-
surement.

Array The input events are read from an integer array created by the generator
before starting the measurement.

Generator The input events are generated during the measurement without any
storage.

The last option – generating the events on the fly – is the fastest and less intrusive
way. This approach eliminates all I/O operations from the measurement and, at first
glance, seems to be the fairest comparison with the hardware backends because they
use the same approach. However, while it is a reasonable assumption that events
on the hardware can be fed into the system with the cycle speed of the dedicated
hardware, this is not true with a CPU: If the events are generated by the same CPU
which monitors them, then the events are only stored in the local cache of the CPU,
which is unrealistic for actual use cases where events must be read from an external
trace source. While these concerns seem reasonable, they cannot be rectified by the
measurements:

Figure 8.3 shows the specification long (see Section 8.3.1 below) with varying
specification sizes and the Java and Rust software monitors using the different event
sources discussed above. See Section 8.2.1 for a detailed discussion of the speci-
fications used in this evaluation. The raw data is included in Tables A.8 to A.14
in Appendix A.3. The throughputs for generators and arrays can be considered
equivalent for both Java and Rust.

Note that distinguishing between an actual array and an ArrayList only happens for
the Java case. After all, an ArrayList in Java consists of an array on the heap storing
pointers to the actual integer values because Java data structures can only store
objects. As a result, one can see a drastically worse performance of the ArrayList.
Rust data structures can directly allocate memory on the heap for the stored values,
making them effectively equivalent to an array.

Using files as input sources, on the other hand, is significantly slower than reading
the events from memory structures due to the additional I/O operations and corre-
sponding interactions with the operating system. Thus, the array event source was
chosen for the compiler and the interpreter to compare the different backends. One

288

8.1. Measurement Methods

could argue that systems with direct memory access could be used to gain a similar
effect in actual implementations.

Comparing Rust with Java, one can see that the static compile-time optimisation
performed by Rust and especially the LLVM backend of the Rust compiler gains
better results than the JIT compiler and optimiser of the JVM. This result is not
surprising considering that the JIT compilation is performed at runtime and thus
designed to be very fast to avoid any slowdowns that the user would recognise. The
Rust compilation, on the other hand, is performed at compile-time and takes much
longer depending on the size of the specification.

Note how the Java throughput drastically drops down to uselessly low throughputs
with a specification size of 23 and more. This considerable performance drop is due
to the HugeMethodLimit of 8000 bytes. The JIT optimisation is not executed
for very long methods whose byte code is above this limit. [EGN18, Chapter 10:
Understanding JIT Compilation] All in all, the throughput of Rust is higher, and
the graphs are more stable. Rust was chosen as the target language for the compiler
for the comparison with the different backends.

8.1.3. EPUs

Accemic provided the following setup on a Xilinx XC7V585T of the Virtex 7 series
with a clock speed of 100 MHz: Events can be written via USB into a large input
buffer before the actual measurement. The events are read from the input buffer
during the measurement, and the final EPU writes the output events into a similar
output buffer.

The output buffer is continuously read by software. The output buffer might over-
flow, but that does not affect the throughput measurement. The throughput is
measured on the hardware at the input buffer and provided in the form of an event
rate. As discussed earlier, we use long traces to mitigate any latency effects. We use
traces of length 20 000 because the measured throughput is sufficiently independent
of changes in trace length at this length.

Accemic has provided this setup, and the author has no access to the source code
of the EPUs. All information about the inner workings of the EPUs are taken
from publications [DDG+18, CHS+18, DGH+17] and patents [Weia, Weib] as well as
private communication with Albert Schulz and Alexander Weiss from Accemic.

289

8. Evaluation

Simulation

Additionally, the hardware benchmarks were performed on a hardware simulation.
The simulation is a timing-accurate simulation built with Vivado Simulator and was
provided as a closed source binary by Accemic.

The EPU simulation is a perfect simulation of the EPUs regarding the timing. Since
tests have shown that the measured throughput on the hardware could be repro-
duced in the simulation, further benchmarks were only performed in the simulation.
The simulation runs with 200 MHz, but the results were converted to a clock speed
of 100 MHz for a better comparison with actual hardware measurements.

In the simulation, one can see every message passing through the system. This
information allows even better estimations of the throughput on shorter traces since
the final dummy message could be ignored in the measurement.

8.1.4. FPGA Synthesis

The test setup described in Section 7.6 was used as follows: Instead of an input
adapter, an event generator was implemented in hardware and used as the event
source. As mentioned above, the Xorshift PRNG can be implemented with slight
adjustments in hardware, too. Instead of the output adapter, a special aggregating
module was used, which performs a similar task as the event aggregators in the
software benchmarks described above: They ensured that every output was used,
and the optimisers could not remove it. A statistics module was added, counting
the number of cycles passed between the first and the last event. The event gen-
erators and the aggregating and statistics modules were developed in the context
of [Buc20].

The benchmark was run on a Xilinx XC7A200T-FBG676 of the Artix-7 series on
the Artix-7 AC701 evaluation board with a clock speed of 100 MHz.

Simulation

In addition to the actual hardware, a simulation was used: Chisel’s built-in simula-
tion engine Treadle (see Section 7.6) simulates the timing accurately regarding the
clock cycles, but actual pathways on the hardware are not simulated. So assum-
ing that the generated design can be synthesised with the given clock speed, the
simulation is timing-accurate.

Instead of the hardware input generator and event aggregator, proper input and
output adapters were used in the simulation. Since the simulation only simulates the

290

8.2. Real-World Specifications

clock cycles, waiting for I/O does not affect the measurement because the simulation
does not continue with the next clock cycle until all the required input data is loaded
and encoded. The simulation reads events from a text-based trace file and feeds
them into an input adapter. The output is passed through the output adapter and
converted into a text-based trace file which allows easy checking for correctness as
described in Section 7.6. Since the measurements performed on the actual hardware
could be reproduced precisely in the simulator, further measurements were only
performed using the simulator. During the execution of the simulator, one can see
every message passing through the system, which allows very accurate measurement
of the throughput on rather short traces.

8.2. Real-World Specifications

This section discusses evaluations based on specifications derived from real-world
use cases of several research projects with different partners.

8.2.1. Specifications

The following specifications were used in the evaluation:

eventchain. This specification is based on timing measurements of event chains
performed in the ARAMiS II project [BB18]. An event chain is a causal sequence
of events. The events are gathered from a system that consists of three indepen-
dent processing cores communicating via queues implemented in shared memory.
Figure 8.4 shows the architecture on the right: Every time the hub gets input data
from the network, it writes the new data into the first queue. The following two
apps read data from their queue and write their results to the next queue. Other
than the hub that only writes something into the queue when new external events
arrive, the apps write their input periodically to their output queues with every time
slot. The specification tracks an external input event along this causal effect chain
and measures the time it takes such an external input event to cause an external
output event, i. e. the time between the hub writing something to the first queue
and the hub reading the corresponding causal event from the last queue.

runtime. Like the previous one, this specification is based on experiments run
in the context of the ARAMiS II project. It computes the time passed between
two events and outputs this time for every occurrence of the second event. The
canonical example for such a scenario is measuring a function’s runtime, i. e. the
time passed between the call of the function and its return. Figure 8.5 shows
the dependency graph of this specification on the left. Note that the dependency

291

8. Evaluation

q0w

time

last

q0r

last

q1w

last

q1r

last

q2w

last

q2r

last

lift

time

lift

simulate
event chain

remove events
with redundant

values

filter
for errors

Network

hu
b

qu
eu

e
0

ap
p

1

qu
eu

e
1

ap
p

2
qu

eu
e

2

w
rit

e
re

ad
w

rit
e

re
ad

w
rit

e
re

ad

Figure 8.4.: Dependency graph of the specification eventchain on the left and
simplified architecture of the system under test on the right. Abbreviated stream
names of the form q1r encode reading of queue 1.

292

8.2. Real-World Specifications

call ret

time time

slift

last

lift

x

last

lift

default

e

last

lift

reset

default

Figure 8.5.: Dependency graphs of the specifications runtime, toggle and
resetcount.

read write

time merge time

last

lift

default

slift

lift

getDec

last

lift

last

setDec

merge

default

getInc

last

lift

last

setInc

Figure 8.6.: Dependency graph of the specifications rosace and incdec.

293

8. Evaluation

e

time

last

lift

last

lift

default

slift

default

lift

detect start
of a burst

count events
since last

burst start

check correctness
of timing

and counting

Figure 8.7.: Dependency graph of the specification burst.

294

8.2. Real-World Specifications

graphs of eventchain and runtime do not contain any cycles because no data is
aggregated along the trace.

toggle. The simplest possible recursive specification is a counter modulo two, i. e.
a Boolean flag being toggled with every event. This specification is included in the
benchmark set because it is the core recursive component of the rosace specification
discussed next. Figure 8.5 shows the dependency graph of this specification in the
middle. The recursive dependency is highlighted in blue. The blue arrow is the only
arrow going downwards.

rosace. The ROSACE case study [PSG+14] was used as an avionic example in the
European research project COEMS. The case study defines a longitudinal flight con-
troller designed in Matlab Simulink. Five filters read input values, and their output
values are combined into the controller’s output. In the implementation analysed in
the CONIRAS project, these filters were implemented in different threads running
on different cores. The specification checks that the interlocking of the different
filters is correct, i. e. that the primary process waits for every filter to finish before
combining the outputs into the controller’s output. The specification included in
this benchmark is the core of a more complex one and checks that read and write
events are occurring in the correct pattern using the toggle specification to keep
track of whether an even or odd number of input events has been seen. Figure 8.6
shows the dependency graph of this specification on the left. The toggle network
in the middle is the only recursive part of this specification.

incdec. This specification keeps track of two counters. Like the previous specifi-
cation, this one is taken from experiments performed in the context of the COEMS
project. The application under test performs increment and decrement operations
on two separate threads using a shared variable. The specification simulates the
state of the shared variable and simulates the increment and decrement operations.
This experiment’s goal in the COEMS project was to test the performance of the
event source used in the project and compare the output of the specification with
the output of the running application. It was included in this benchmark because it
is a real-world example of two non-synchronous interlocked recursions. Figure 8.6
shows the dependency graph of this specification on the right. Note how the two
recursive loops are governed by two individually triggered last operators and de-
layed by two additional individually triggered last operators, which are part of the
recursive loops, too.

resetcount. The most basic recursive building blocks are those counting events
or summing up events values along the trace. The toggle specification is the most
basic form using a modulo two counter. The resetcount counts the number of
events and has an additional input resetting the counter. This specification is the
basic building block of the burst specification discussed next with the addition

295

8. Evaluation

of simultaneous input events. Simultaneous events do not occur in the specifica-
tion burst. The resetting event always occurs with a simultaneous counting event,
setting the counter to one. In this more general specification, those cases are dis-
tinguished: A resetting event resets the counter to zero, but if it occurs with a
simultaneous counting event, the counter goes directly to one. Figure 8.9 shows the
dependency graph on the right. Note how the central lift depends on the last value
and both input values in order to distinguish the different cases discussed above.

burst. The AUTOSAR Timing Extension [AUT17] and the EAST-ADL2 tim-
ing extension TADL2 [GDPM13] were examined in the context of the ARAMiS II
project as a specification language for timing behaviour of automotive software. This
specification is based on the burst pattern introduced by these timing extensions:
A certain amount of events is allowed during a burst until the end of the burst pe-
riod. This period is followed by a silence period which must not contain any events.
Afterwards, the next burst period starts with the next event. There are two ways
to violate this pattern:

– Too many events can occur during the burst, or
– the burst period can be too long, resulting in events occurring in the silence

period.

Figure 8.7 shows the dependency graph of this specification. It consists of three
basic blocks:

a) The start of a new burst is identified by comparing the current event’s times-
tamp with the previous burst start.

b) The number of events until the burst start is counted.
c) The duration of the burst and the number of events seen in this burst is com-

pared with the allowed values.

The specifications are formally defined in Appendix A.1 in the appendix.

8.2.2. EPU Optimisation for Simple Recursions

Section 5.9 introduced the recursion optimisation with the foldLift operator. The
section evaluates the effect of this optimisation. The dependency graph of the spec-
ifications eventchain and runtime contains no cycles, such that the optimisation
does not apply here. However, they are included for reference to compare the per-
formance of cyclic and acyclic specifications. The specification incdec is mutually
recursive and hence not rewritten with the foldLift operator. The specifications tog-
gle, rosace and resetcount each contain one recursive specification, i. e. cycle
in the dependency graph. We compare the performance of these specifications with
and without the usage of the foldLift operator. The specification burst contains

296

8.2. Real-World Specifications

ev
en

tc
hain

ru
ntim

e

to
ggle

ro
sa

ce

incd
ec

res
et

co
unt

bu
rst

0

5

10

15

20

25

2
1
.7

7
.6

8

1
4
.2

9

3
.1

2

1
.0

5

7
.6

8

3
.1

2

1
.4

9

1
.4

7

0
.7

4

0
.5

9
0
.6

6

throughput [MEvents/s]

Figure 8.8.: Throughput of different specifications on the EPU backend with
foldLift, without foldLift, and with foldLift used only for the counting. See
Tables A.3 and A.4 in Appendix A.3 for the data table.

two cycles in the dependency graph, which can both be expressed using foldLift. We
compare three cases:

– The entirely unoptimised specification,
– the variant with the unoptimised detection of the burst start and the optimised

event count, and
– the variant where both recursions are optimised.

The second case is relevant because counting events is a fairly common operation
available as a macro in TeSSLa’s standard library and thus available in optimised
versions. The detection of the burst start, however, is specific for this use case and
thus rewritten using foldLift manually.

Figure 8.8 shows the results of the comparison: The foldLift optimisation improves
the throughput by up to an order of magnitude. The specification rosace is not only
slowed down by the recursion but also by the complex structure of the dependency

297

8. Evaluation

ev
en

tc
hain

ru
ntim

e

to
ggle

ro
sa

ce

incd
ec

res
et

co
unt

bu
rst

0

20

40

60

80

100

120

2
1
.7

7
.6

8 1
4
.2

9

3
.1

2

1
.0

5 7
.6

8

3
.1

2

4
9
.9

3

4
9
.9

1

4
9
.9

5

4
9
.9

1

4
0
.4

8 5
0
.0

5

3
3
.2

94
1
.9

5

1
0
2
.6

1

3
9
1
.1

4

9
2
.2

7
3
.4

5

1
1
1
.4

1

4
5
.0

4

1
.4

1

1
.2

1
1
.0

5

0
.8

1

3
.2

5 7
.3

5

0
.5

2

throughput [MEvents/s]

Figure 8.9.: Throughput of different specifications on different backends:
EPU, FPGA, compiler and interpreter. The vertical axis is cropped

at 120 MEvents/s. See Table A.2 in Appendix A.3 for the data table.

graph, making the optimisation less effective in this case. Similar reasoning applies
to the burst. We can see that the optimisation works best for that specification
if applied to all recursive definitions. The partial application only to the counting
part of the specification – shown in red in the plot – has nearly no effect because
the remaining recursion still significantly reduces the throughput.

As a consequence of the above experiments, the optimisation with foldLift was used
in all following experiments whenever possible, i. e. for all recursive specifications
except indec and recursion (see below).

8.2.3. Backend Comparison

The results of measuring the specifications on the four different backends are shown
in Figure 8.9. The raw data is included in Table A.2 in Appendix A.3.

298

8.2. Real-World Specifications

First of all, we can see that the throughput on the FPGA is always in the range
of 50 MEvents/s. This is the theoretical maximum with a clock speed of 100 MHz
and an event encoding alternating between the event’s timestamps and values with
every other cycle. The specifications incdec and burst drop significantly below this
maximum. In both cases, queues are used to distribute the events to multiple targets
because some operations depend on several streams. Introducing additional queues,
in general, does not affect the throughput, but introducing additional queues into
recursive cycles affects how many clock cycles are needed to evaluate the recursion.

Next, we can observe that the software compiler performs rather well. However,
we can already see that the size of the specification has a considerable influence on
the throughput: While the throughput on the FPGA stays close to 50 MEvents/s,
the throughput of the compiled software backend varies from about 40 to nearly
400 MEvents/s. We will investigate this relationship further in the next section.

The EPUs perform rather well and in the same order of magnitude as the FPGA in
the cases of the specifications eventchain, runtime, toggle and resetcount.
We can observe the maximal throughput for an aggregating specification which has
to relate every generated event to the previous event: The specification toggle has
a throughput of about 100/7 MEvents/s, which indicates that the internal pipeline
of an individual EPU needs seven steps to decode an instruction, fetch the old value
from memory and write the new value to the memory again. In the case of the
specification eventchain, the EPUs can utilise the fact that not every input event
starts a new event chain. In case of the specifications rosace and burst the EPUs
perform not that well. It can be assumed that this is mainly because of the many
dependencies between the operators. It stands out that these two specifications are
also those with the smallest throughput on the interpreter. Finally, the specification
incdec is performing poorly on the EPUs. It is even significantly slower than on
the interpreter. This specification entirely consists of two mutual recursions which
are not optimised using foldLift. Instead the two recursions are both realised using
Definition 5.15 (Commands for Blocking last) from Section 5.6. While expressing
arbitrary specifications on the EPUs might be desirable, they do not perform well
on mutual recursive specifications. Setups combining preprocessing on the EPUs
with further processing in software seem more reasonable.

For direct comparison of the EPUs and the software compiler, one must keep in
mind that the software compiler drastically benefits from running specifically one
specification while the EPUs can utilise their pipeline structure much better on
parallel specifications. See Section 8.3.3 for a detailed investigation on this.

As expected, the interpreter is the slowest of all backends. However, in some simple
cases like the specifications toggle or resetcount, the results are not entirely
out of the picture. However, those are precisely those cases where the compiled

299

8. Evaluation

backends excel, too. The architecture of the interpreter prevents most compile-
time or runtime optimisation from taking place because no static code analysis can
identify recurring patterns. The executed code entirely depends on the object graph
representing the dependency graph built in the memory at runtime.

8.3. Synthetic Specifications

Synthetic benchmark specifications allow the investigation of the throughput as a
function of different specification properties, i. e. the depth of the specification, the
recursion depth of the specification, and the number of inputs.

8.3.1. Specification Depth

The specification long consists of a variable number of counting blocks chained after
another. Figure 8.10 shows the dependency graph of this specification on the left. It
is a synthetic specification that does not compute an actual result. Every counting
block except the first one produces the same results again. It was taken care of that
none of the backends utilises this fact in its optimisations. This specification serves
as a simple specification with an adjustable size that works on all backends with a
reasonable range of sizes.

Figure 8.11 shows the throughput on the different backends as a function of the depth
of the specification. The raw data is included in Tables A.5 to A.8 in Appendix A.3.
We can see how the EPUs’ and the FPGA’s throughput are utterly unaffected by the
specification’s size due to their pipelining. As discussed in the previous section, they
run with their maximal throughput of about 100/7 MEvents/s or 50 MEvents/s,
respectively. The interpreter and the compiled backend show a similar behaviour on
different scales: The runtime roughly depends linearly on the size of the specification
resulting in the depicted decay of the throughput.

Figure 8.12 shows the hardware consumption of the synthesised specification on the
FPGA. The space consumption of the actual specification can be almost neglected
compared to the size of the Xillybus I/O control logic. (See Section 7.6 for more
information on Xillybus.) The relatively large input and output buffers are not
synthesised into lookup tables but using dedicated memory modules on the FPGA,
making them appear small but distributed all over the hardware layout. The space
consumption of the I/O logic and the input and output FIFOs are independent of the
actual specification. Figure 8.13 shows how the space consumption of the synthesised
specification changes with the size of the specification. One can see that synthesising
the TeSSLa operators onto hardware does not consume much space. Even on this

300

8.3. Synthetic Specifications

x

last

lift

default

...

last

lift

default

n
tim

es

x

last

lift

...

lift

default

lift

...

lift

n
tim

es
10

−
n

tim
es

a

last

lift

default

...

last

lift

default

. . .

. . .

. . .

. . .

. . .

. . .

. . .

j

last

lift

default

...

last

lift

default

10
tim

es

n times

Figure 8.10.: Dependency graphs of synthetic specifications long, recursion
and inputs with the parameter n indicating the specification depth, the specifi-
cation’s recursion depth and the specification’s parallelism, respectively.

301

8. Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

100

101

102

specification depth

throughput [MEvents/s]

EPUs
FPGA

interpreter
compiler

Figure 8.11.: Throughput of long in dependence of the specification depth with
different backends. See Tables A.5 to A.8 in Appendix A.3 for the data tables.

302

8.3. Synthetic Specifications

Figure 8.12.: Hardware utilisation of the specification long with size 1 visu-
alised in Xilinx Vivado. The following parts of the hardware design are coloured:

the input FIFO before the actual monitor, 32 bit × 512 entries, the output
FIFO after the actual monitor, same size, the Xillybus I/O logic and the
actual specification.

303

8. Evaluation

Figure 8.13.: Hardware utilisation of the specification long with sizes 1, 10,
100 and 1000 from left to right visualised in Xilinx Vivado manually edited to
show only the actual specification without Xillybus and the input and output
FIFOs. See Figures A.1 to A.4 in Appendix A.4 in the appendix for the entire
visualisations as generated by Xilinx Vivado.

middle-class FPGA hardware, there is plenty of space available. The paragraph
on queue depth in Section 7.4.4 describes how the throughput can be optimised by
additional queues, which are larger than the trivial queue size 1. However, this might
lead to massive consumption of either lookup tables or dedicated memory modules
depending on the realisation of the internal FIFOs.

8.3.2. Recursion Depth

The dependency graph of the recursion is shown in the middle of Figure 8.10. It is
a synthetic benchmark with an adjustable recursion depth. The idea of this bench-
mark is to keep the size of the specification as constant as possible while adjusting
the recursion depth. The additional lift operations could be easily combined into a
single lift, and it was again taken care of that none of the compilers does this in an
optimisation phase. Since this specification is intended to measure the influence of
recursion depth on the throughput, foldLift was not used.

Figure 8.14 shows the throughput of the different backends as a function of the
recursion depth. The raw data is included in Tables A.15 to A.18 in Appendix A.3.
On the left, we can see that the throughput of the compiled backend is more or less
constant, with much noise. Although this was not investigated further in this thesis,
this noise likely comes from different LLVM optimisation phases applying different
translations for the different specifications.

304

8.3. Synthetic Specifications

2 4 6 8 10
0

20

40

60

80

100

recursion depth

throughput [MEvents/s]

FPGA
compiler

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

recursion depth

throughput [MEvents/s]

EPUs
interpreter

Figure 8.14.: Throughput of recursion in dependence of the recursion depth
with different backends. See Tables A.15 to A.18 in Appendix A.3 for the data
tables.

The FPGA’s throughput decays in steps of two because another queue is added into
the recursive loop with every other extension of the recursion depth. Every queue
adds two additional cycles needed to evaluate the loop because of the alternating
encoding of timestamps and values. Increasing the size from 2 to 4 halves the
throughput from the maximum of about 50 MEvents/s to about 25 MEvents/s.

On the right of Figure 8.14 we can see the throughput of the EPUs and the inter-
preter. The interpreter shows the same behaviour as the compiled backend but on
an entirely different scale. As discussed in the previous sections, the EPUs are inef-
ficient for unoptimised recursions. The throughput dropping below the interpreter’s
performance makes clear that the EPUs do not evaluate recursions efficiently.

8.3.3. Number of Inputs

The specification inputs consists of n long chains of ten blocks summing up their
input event’s values. Figure 8.10 shows the dependency graph on the right. The
specifications are entirely independent with separate inputs. The considerations on
synthetic specifications from the previous two sections also apply here.

Using these long chains allows the hardware backends to utilise their (outer) pipelin-
ing more so that we can compare the influence of parallelism on the compiled backend
and the hardware backends on a similar scale: Figure 8.15 shows the throughput of

305

8. Evaluation

1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

80

90

100

number of inputs

throughput [MEvents/s]

EPUs
EPUs s. t.

FPGA
FPGA IA

FPGA IA s. t.
compiler

compiler s. t.

Figure 8.15.: Throughput of input in dependence of the number of inputs with
different backends. The abbreviation s. t. in the legend stands for measurements
with the same timestamp across all input, and IA indicates the usage of an Input
Adapter. See Tables A.19 to A.24 in Appendix A.3 for the data tables.

306

8.3. Synthetic Specifications

these three backends as a function of the number of parallel independent inputs of the
specification. The raw data is included in Tables A.19 to A.24 in Appendix A.3.

We distinguish two different measurements:

• Using the same timestamps for all parallel inputs, i. e. having an event for
every input with every timestamp, and

• using different timestamps for every event, i. e. having a new timestamp for
every individual event independent from the input.

As already established in the introduction to this chapter, we measure the through-
put, i. e. the number of input events processed per time. Unlike the previous ex-
periments, we now vary the number of input streams. So in the case of entirely
independent specification with independent inputs and outputs synthesised on the
FPGA, the throughput is directly proportional to the number of inputs. This rela-
tion is indicated by the orange plot in Figure 8.15. Without further restrictions of
the sources and targets, there is no other upper limit for the throughput than the
size of the FPGA. However, this is a theoretical consideration as most applications
impose limits on the availability of input events and the processing of output events.
Hence, in this case, we do consider at least one aspect of I/O in the measurement:
An input adapter (see Section 8.1.4) was used, feeding all of the specifications in-
puts from a single input data stream. We can see no increase in the throughput for
different timestamps and an increase up to about 90 MEvents/s in the case of the
same timestamps. This difference can be explained entirely by the event encoding
of the shared input stream fed in the input adapter.

For the EPUs, we can see the throughput increases up to nearly 100 MEvents/s with
seven parallel inputs. In this case, the internal pipeline of the individual EPUs is
used optimally. The EPUs perform with the maximal throughput of 100 MEvents/s,
the maximal theoretical speed of processing one event per cycle. Note that there
is no difference between the same timestamps and different timestamps because
timestamps and values are passed on in parallel between the EPUs.

In the case of the software compiler, we can observe the following effect: We see
nearly no influence of the number of inputs on the throughput using the same times-
tamp. It does not make a big difference if more events are fed through a smaller
specification or if fewer events are fed through a larger specification. However, in
the case of different timestamps, we see a problematic effect on the compiled back-
end: Since the compiled backend is synchronous in that all operators are evaluated
for every timestamp, a considerable overhead is created because large parts of the
specification are irrelevant for a specific timestamp. While this makes the hardware
backends faster, it slows down the software backend drastically.

307

8. Evaluation

1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

number of inputs

throughput [MEvents/s]

interpreter
interpreter sync

Figure 8.16.: Throughput of input in dependence of the number of inputs with
the interpreter. The abbreviation s. t. in the legend stands for measurements with
the same timestamp across all input. See Tables A.25 and A.26 in Appendix A.3
for the data tables.

The interpreter shows the same behaviour on a different scale as shown in Fig-
ure 8.16. The raw data is included in Tables A.25 and A.26 in Appendix A.3.

For this synthetic specification, an obvious solution would be to execute multiple
software backends on the independent input data. However, the same behaviour also
occurs for specifications that are not entirely independent but have the same charac-
teristics that large parts of the specification are not executed for certain timestamps.
In those cases, one could think of different possible optimisations: Either one could
still cut those specifications into separate specifications executed in parallel on dif-
ferent backends that are communicating, or one could add optimised conditions to
the generated code, avoiding unnecessary code execution. Both solutions are future
work and are not evaluated in the context of this thesis.

8.3.4. Summary

Figure 8.17 shows a qualitative summary of throughputs behaviour on the different
backends when properties of the specifications are adjusted.

Interpreter and compiler show the same behaviour on a different scale. The inter-
preter is significantly slower than the other backends because building and executing
an object graph from the dependency graph at runtime prevents most compile-time
and runtime optimisations. On the other hand, the compiled backend is much faster
because the entire code sits inside one big outer loop using only local variables. This

308

8.3. Synthetic Specifications

Specification Depth Recursion Depth Number of Inputs

Compiler
& Interpreter

EPUs

FPGA
Synthesis

Figure 8.17.: Qualitative overview of the throughput as a function of the depth
of the specification, the recursion depth of the specification, and the parallelism
of the specification on the different backends.

loop greatly benefits from compile-time optimisation of the Rust compiler and the
LLVM backend.

Increasing the size of the specification makes it slower on the software backends. It
does not matter if parts of the specification are used or not. The pure size of the
specification determines how long one iteration of the loop takes. The synchronous
approach is simple and well suited for further optimisation but not well suited for
independent events with different timestamps. As discussed in the previous sections,
one might use multiple parallel monitors to overcome this limitation.

For the EPUs, we have shown that the general approach of a configurable hardware
pipeline works. The throughput is independent of the specification depth. However,
recursive specifications are not efficient on synchronous pipelines. Additionally, the
general concept of synthesising a configurable network onto an FPGA, which is
already a configurable network, adds multiple layers of abstraction to the system,
which slows everything down and consumes much space. The EPUs can use their
inner pipeline per EPU, resulting in a speedup for parallel specifications up to the
theoretical maximum of reading one event per clock cycle. In less ideal situations of
not entirely independent specifications conflicting memory access can cause pipeline
stalls on EPUs, resulting in smaller throughputs.

309

8. Evaluation

We can conclude that the performance of the EPUs highly depends on the structure
of the input data and the specification: The EPUs can use their inner pipeline best
if the specification consists of many mostly independent parts and the input data is
structured so that not every input event is relevant for every part of the specification.
Otherwise, the same memory address is used too quickly in succession, leading to
the inner pipeline’s stalls. As discussed in [WGJ+21], the EPUs were designed for
precisely this form of data dependency between the different parts of the specification
in combination with such a structure of the input data: The EPUs are supposed to
provide a fast engine for evaluating many specifications in parallel on data traces
with a high event frequency.

The synthesised FPGA backend is much better suited for complex recursive speci-
fications. Local asynchronous recursions on the FPGA do not slow down the entire
computation since the recursion depth only influences the throughput on that partic-
ular branch of the specification. Figure 8.17 depicts the worst case of a specification
consisting only of one growing recursive loop. The FPGA can facilitate parallelism
of the specification. Under the assumption of independent event sources, indepen-
dent specifications can run entirely independently on the FPGA without influencing
each other.

8.4. Comparison of Workflows

This final section of the evaluation considers the different setups and especially the
steps involved in compiling a specification for the different backends. The integration
setup for the software compiler was presented in Section 4.5, the one for the EPUs in
Section 5.10, and the setup for the hardware synthesis in Section 7.6. The following
paragraphs summarize the compilation process for each backend:

Interpreter Just like the other backends, the interpreter can be used together with
the compiler frontend discussed in Section 4.4.4: The compiler frontend performs
parsing, type checking and constant folding. The interpreter interprets the TeSSLa
specification processed in this way immediately and without further compilation
steps.

Software Compiler The software compiler compiles a TeSSLa specification into
source code of the target programming language, in the case of this evaluation Rust.
This source code is then compiled using the target language’s compiler, i. e. the Rust
compiler.

310

8.4. Comparison of Workflows

co
m

pi
ler

EP
Us

FP
G

A

0:10
0:20
0:30
0:40
0:50
1:00

3:00
3:10
3:20
3:30
3:40

1.4 3.
6

18
9.

6

compilation time [min:s]

co
m

pi
ler

EP
Us

FP
G

A

1.9 3.
7

19
7.

1

co
m

pi
ler

EP
Us

FP
G

A

29
.7

21
7.

8

Figure 8.18.: Compilation time of LONG on different backends with different
specification depths: 2 on the left, 20 in the center and 200 on the right. The
compilation time results from the following involved parties: TeSSLa compiler,

Rust compiler, hardware synthesis, and hardware implementation. See
Table A.27 in Appendix A.3 for the data table.

EPUs The EPU compiler generates a configuration file which is then used as input
to a configuration software provided by Accemic that configures the EPU hardware
via USB. It further provides input and output mappings used to generate the input
and interpret the output of the EPUs.

FPGA Synthesis The FPGA synthesis integrates the compiler frontend with the
Chisel compiler and generates a Verilog module. This module can then be imported
into a Verilog project handling the I/O, i. e. providing input events and processing
output events. This project is synthesized and uploaded on the FPGA with Xilinx
Vivado.

Figure 8.18 shows exemplary compilation times for the different workflows for three
scenarios: A small specification, a large specification, and a huge specification. In

311

8. Evaluation

the case of the EPUs, the huge specification is missing because it does not fit on
the EPUs. The measured compilation includes all compilation steps but does not
include uploading the compiled specification onto the target hardware. In the case of
the FPGA synthesis, the compilation does not include the out-of-context synthesis
for the input FIFO (110 s), the Xillybus logic (71 s), and the output FIFO (98 s)
because those can be reused when the specification is changed. The compilation
times were measured on a MacBook Pro (15-inch, 2018) with 2.6 GHz Intel Core
i7 and 32 GB 2400 MHz DDR4 RAM using Java 1.9 and Rust 1.44. The FPGA
synthesis was executed in Xilinx Vivado 2018.2 on a virtual machine on VMware
Fusion 12 with four processor cores and 16 GB RAM.

One can clearly see that the FPGA synthesis takes significantly longer than the
compilations for the other backends. However, the central problem of the FPGA
synthesis is the lack of integration of the compiler with the Xilinx synthesis: The
error handling during the compilation can become very tedious: Complicated errors
issued by Xilinx Vivado must be manually traced back to the TeSSLa specification.
In order to fix these problems, one either has to adjust the TeSSLa specification
in non-intuitive ways or adjust the parameters of the heuristic used for the queue
placement. Such adjustments require detailed knowledge of the inner workings of
the compile process and the synthesis, which the average TeSSLa user does not
have.

8.5. Conclusion

The evaluation has shown that the compiled software backend efficiently works for
the considered real-work specifications, as long as they are executed individually.
Comparing the absolute values for the throughput on the different backends is biased
because the throughput depends on the used hardware. However, we can see a clear
trend: The FPGA synthesis works well on the examined real-world specifications,
too. The EPUs are less efficient on these individual specifications.

However, the comparison of the real-world specifications considers the execution of
individual specifications that are relatively small. The synthetic specifications pro-
vide insights into the general behaviour of the different backends for more complex
specifications. The performance of the software backend is independent of the re-
cursion depth but drops significantly for an increased specification depth or number
of inputs. The EPUs and FPGA synthesis can utilise the inherent parallelisation
of the hardware: Their performance is independent of the specification depth, and
multiple independent inputs do not influence each other. The EPUs’ throughout
can increase up to 100 MEvents/s, and the FPGA’s throughput is only limited by
its I/O.

312

8.5. Conclusion

Recursive specifications do not work well on hardware, especially not on EPUs. The
FPGA synthesis is affected by this issue, too, but handles it much better due to its
asynchronous processing. From the evaluated selection of real-world specifications,
we can deduce that many practical specifications do not need complex recursions.
All but one specification requires either no recursion or simple recursions that can
be expressed with foldLift. Only the incdec contains mutual recursive definitions,
which are very inefficient on the EPUs.

Regarding the resource utilisations, the EPUs can only handle specifications up to
a certain specification depth. The concrete limit depends on the used hardware,
but this limit can be reached as the experiment with adjustable specification depth
shows. The size of the specification limits the FPGA synthesis, but the synthetic
specifications show that this does not pose a serious limitation in practice. The same
reasoning applies even more strongly to the software backend: There is a general
limit of the specification size, but this is not reached.

We have seen that the software compiler is simple to use and does not have any ad-
ditional requirements. The compilation for the EPUs is similarly simple, but highly
specialised hardware is required. The compilation for the FPGAs is a complicated
manual process, but less specialised hardware is required.

All in all, the software backend is the easiest to use and works reasonably fast in
many cases without any form of parallelisation. The EPUs perform well on simple
specifications and can provide fast processing up to 100 MHz in case of multiple
inputs/parallel processing. The FPGA synthesis is not suited for rapid prototyping
but seems promising for synthesising a carefully crafted specification onto hardware
for long-running tests.

The best approach highly depends on the event sources and the workflow: For inter-
active debugging sessions with continuously adjusted specifications, the EPUs are
the best solution if input streams with high event rates are available on the hard-
ware. If the input streams are available in a software setting, the compiled software
backend is sufficient in many cases, especially if only individual specifications are
evaluated. The software backends and the EPUs are well suited for long term eval-
uation without interactive adjustments, too. However, the FPGAs can be faster for
large specifications in this setting. The manual compilation process of the FPGA
synthesis is not suited for interactive debugging, but the extra effort may be justified
for this setting.

313

9 Conclusion and Future Work

This chapter concludes the thesis with a summary of the main contents and results.
The second section presents an overview of open issues and possible extensions.

9.1. Conclusion

This thesis defined monitor constructions for TeSSLa for four different backends:
Interpreter, software compiler, EPUs and FPGA synthesis. The introduction mo-
tivated two main research questions. The first question Q1 deals with the formal
relation between the TeSSLa semantics on streams and the different implementa-
tions. Their relation to the TeSSLa semantics and correctness was shown using
different abstractions of the monitoring semantics. An empirical evaluation of their
performance tackled the second research question Q2 regarding the efficiency of the
implementations. It has shown that while the software compiler is fast enough for
most specifications, the FPGA synthesis can utilise hardware parallelism to provide
constant throughput for long specifications. The EPUs are most efficient for mostly
independent inputs with high event frequency.

The TeSSLa semantics on streams is based on straightforward definitions of the basic
operators last, lift and delay. Its simplicity comes from the absence of any consid-
erations regarding progress or incomplete streams. The extension to the monitoring
semantics on monitoring streams naturally adds these considerations using sets of
streams representing all possible refinements of incomplete streams. Existing results
on TeSSLa were adopted to this novel monitoring semantics: It was proven that the
fixed point is unique, i. e. for every combination of incomplete input streams, the
output streams are uniquely defined. Further, the expressiveness of TeSSLa could
be characterised as follows: For every function on monitoring streams, which is
Scott-continuous, preserves full knowledge, and is future independent, there is a
behavioural equivalent TeSSLa specification.

This thesis deals with online monitoring, i. e. input events are processed when they
occur, and output events are generated based on the input events that occurred so
far. The input traces are obtained by observing a system with discrete events at

315

9. Conclusion and Future Work

arbitrary timestamps. The TeSSLa operators are designed such that it is sufficient
to store a finite number of events in the monitor.

The interpreter and the software compiler are based on the same formalism. The syn-
chronised monitoring function is an abstraction of the monitoring semantics. It uses
a global progress across all streams. The input streams are assumed to be already
synchronised, i. e. the synchronisation of the input streams happens before the actual
monitoring. The synchronised streams do not require a fixed step width. The syn-
chronised monitoring function can create additional events at arbitrary timestamps,
leading to TeSSLa’s ability to process and create Zeno streams. The synchronous
implementation computes the next timestamp in every step. The next timestamp
is either internally generated by a delays operator or the next timestamp from the
input stream. The interpreter and the compiler are the most general implementation
in the sense that they support any TeSSLa specification with arbitrary immutable
data structures.

The interpreter and the compiled monitor execute a specification on a CPU in a
single thread. Comparing the four different backends showed that the compiled
software monitors are the most efficient solution for complex specifications with
arbitrary recursions. The size of the recursion does not influence the throughput.
The interpreter is by orders of magnitude slower than the compiled monitor because
it represents the specification’s flow graph as an object graph in the memory. The
dynamic evaluation of this object graph limits the effect of most compile-time and
JIT optimisations of the Scala compiler and the JVM.

The EPUs are based on the same synchronous semantics. Instead of a single syn-
chronous execution, the flow graph is mapped onto a pipeline of processing units
inspired by data flow processors. The formal EPU model is used to show the cor-
rectness of the translation of a TeSSLa specification into a configuration for EPUs.
The EPUs support primitive data types, i. e. Boolean and integer values.

This thesis only considers timestamp-conservative specifications for the translation
toward EPUs. The EPUs are not designed for the synchronisation required to insert
additional timestamps into the synchronous event stream. The EPUs still realise
the principle of arbitrary timestamps in the form of sparse coding, i. e. there is
no explicit message encoding the absence of events for specific timestamps. This
approach makes representing and processing timed event streams efficient, but it is
also one of the main reasons why recursive specifications require additional explicit
progress messages and synchronisation on the EPUs.

Although the EPUs are slower than the compiled software monitors on single specifi-
cations, the evaluation has shown that the EPUs perform very well for their intended
use case: They are made to monitor simple specifications on high-frequency streams
and mostly independent inputs with a few dependencies. In this scenario, the EPUs

316

9.1. Conclusion

can utilise the parallelisation of the hardware with their pipeline. The reconfigura-
tion can be automated and is fast enough such that interactive debugging sessions
with continuously adjusted specifications work similarly well as with the compiled
software monitors.

It was shown that the EPUs can evaluate all timestamp-conservative specifications
with primitive data types. However, more complex and especially recursive speci-
fications are not handled efficiently by the EPUs. The translation of the blocking
last performs poorly due to its complexity. It is possible to rewrite simple recursions
with the foldLift operator that allows more efficient translations: Recursively defined
streams are translated into sequentially executed commands on a single EPU. Even
if this runs counter to the pipelining principle of the EPUs, it is more efficient for
simple recursions. The execution of such a sequence of commands on the EPUs still
follows the idea of data flow processors. Instead of a program stored sequentially
in memory processed by a CPU that increments a program counter, each command
has a pointer referring to its successor that is processed as the next command by
the EPU.

The FPGA synthesis can utilise the parallelism of the hardware even further using
an asynchronous evaluation approach. The flow graph is directly mapped onto
the hardware, i. e. the operators are translated into their corresponding channel
operators connected through channels corresponding to the edges of the flow graph.
The abstract monitoring semantics is an abstraction of the monitoring semantics
that preserves the individual progress per stream. The translation into the formally
defined operator networks implements this asynchrony by explicitly encoding the
individual progress of every stream. Instead of a global synchronisation, the input
streams of every operator are synchronised locally per operator.

The synthesis supports primitive data types, i. e. Boolean and integer values of ar-
bitrary but fixed size, as well as option data types with an additional flag indicating
the extra value ⊥ and tuples of fixed size. The asynchrony allows efficient eval-
uation of complex specifications on the hardware. Even in the case of recursive
specifications, only the recursive branch of the flow graph is slowed down.

The synthesis, however, comes with several engineering problems: The heuristics of
the queue placement are based on empirical parameters. The compiler generates a
Verilog module which is then processed further by Xilinx Vivado. If any errors occur
in this final compilation stage, it is complicated for the user to relate the issues with
specific parts of the specification.

The empirical findings of this thesis can be summarised as follows: First, the evalu-
ation with the real-world examples shows that all three realisations are feasible for
actual usage. The real-world specifications have shown that all three solutions are
sufficient in many cases.

317

9. Conclusion and Future Work

The evaluation did not show that one of the three implementations is fundamentally
superior to the others. Instead, the best solution depends on the trace source in
terms of structure, number and frequency of events, as well as on the depth, size
and recursion depth of the specification.

The evaluation carried out cannot provide precise limits as to when a specification
can be evaluated most efficiently with which approach, as this depends heavily on
the hardware platforms available. Especially, the FPGA hardware used for the
EPUs and the synthesis is not directly comparable. Nevertheless, a clear tendency
can be seen from the experiments, showing that the three backends are especially
promising in different application areas and – depending on the concrete setting –
every solution can outperform the others in some cases: The software is most flexible
for complex specifications with long recursions aggregating information along the
trace; the FPGA synthesis can compile large specifications, and the throughput
stays independent of the specification size, i. e. the specification’s depth and its
number of inputs; and the EPUs can provide high throughput up to 100 MEvents/s
for the setting that they are optimised for: Evaluating many specifications in parallel
that are mostly independent.

The software monitor offers flexibility and efficiency. It allows interactive debugging
and rapid adjustment of specifications. The software backend is the most efficient
for complex specifications with long cycles in the dependency graph. However, the
experiments with the real-world specifications have shown that the software monitors
are sufficient for executing individual specifications and can even outperform the
hardware monitors in some situations.

The EPUs can be almost equally flexible and even more efficient for their special
use case of mostly independent inputs with a few dependencies. The synthetic spec-
ifications were able to show that the EPUs can reach their theoretical maximum of
100 MEvents/s in that setting. For interactive debugging sessions with continuously
adjusted specifications, the EPUs are the best solution if input streams with high
event rates are available on the hardware.

Finally, the FPGA synthesis is less flexible because adjusting the specification re-
quires an entirely new synthesis, but it can be the most efficient solution for large
specifications as its performance is independent of the size of the specification. The
throughput of the hardware synthesis is independent of the specification depth and
can thus outperform the software for larger specifications. Further, the measured
throughputs are often close to the theoretical maximum of 50 MEvents/s on the
available hardware. Both the software monitors as well as the EPUs are suited for
long-term evaluations without interactive adjustments, but the FPGAs can be more
efficient in this setting for large specifications. For example, in the case of the ar-
tificial specification long they outperformed the EPUs and the software monitor
for specifications with a depth of about ten counting blocks chained after another.

318

9.2. Outlook and Future Work

Manual compilation of the FPGA synthesis is not suitable for interactive debugging,
but for long-term observations, the extra effort may be justified.

9.2. Outlook and Future Work

The final section of the thesis discusses several possible improvements and extensions
based on the foundations of this work.

As already mentioned, more engineering is needed for the FPGA synthesis. Using
the block RAM of the FPGA for the queues instead of its registers is a promising
improvement. This adjustment would drastically decrease the resource utilisation
of the queues and therefore allow the synthesis of even larger specifications. A
more sophisticated extension is the improvement of error handling during synthesis.
Can errors, especially negative slack reported by the Xilinx Vivado synthesis, be
mapped back to the TeSSLa specification? Ideally, a negative slack would lead to
an adjustment of the parameters used in the heuristic for the queue placement.
Additional queues might be able to increase the slack.

The evaluation has clearly shown that the EPUs cannot efficiently process complex
recursive specifications. However, the foldLift can express typically occurring simple
recursions much better. This raises the question of how much can be gained from
simplifying the EPUs if one removes their ability to express blocking last. For
example, the additional inputs and outputs, the configurable switching network, the
blocking counter and the ATSC command handling could be removed.

In the case of the software compilation, this thesis focuses on translating the TeSSLa
specification into a generic programming language using only features of structured
programming, in particular, no jumps. However, many optimisations are based on
automata and jump tables to avoid executions of unused code. By abandoning the
idea of a generic translation, one could use specific features of the target language.

Further, the software compilation discussed in this thesis is entirely sequential. In
the setting of online monitoring, one could try to utilise the compositionality of
TeSSLa specifications to introduce parallelisation into the software compilation: A
TeSSLa specification can be split into several specifications such that one monitor’s
output is used as the following monitor’s input. The independent monitors can be
scheduled on different CPU cores or even different processors. For offline monitoring
and trace analysis, one could also consider splitting the trace and independently
processing the parts. The results can then be joined together in a later processing
step, following the established map-reduce pattern [DG10].

319

9. Conclusion and Future Work

A natural approach to overcoming the limitations of the individual backends is their
combination. Combining the software and hardware backends is a promising ap-
proach. The software is most efficient for complex specifications with complex data
structures, and the hardware is more efficient on specifications without complex re-
cursions and only works with simple data types. A manual combination is mainly
an engineering task. An automatic approach to splitting the specification and de-
termining which part to assign to which backend would require some estimation of
the event frequency of streams.

The monitoring semantics introduced in this thesis is inspired by the approach to
handling streams with partial information in [LSS+19]. The monitoring semantics
can handle the absence of information in the middle of the stream. The abstract
monitoring semantics is no longer capable of that. However, the formalisations
introduced in this thesis are very well suited for an extension towards partial infor-
mation. This leads to the next question of how partial information can be efficiently
represented on the hardware backends.

The software backend can handle complex data structures as long as they are
immutable. The efficient implementation of immutable data structures leads to
the aggregate update problem [HB85] addressed for TeSSLa software monitors
in [KLS+22]. Some complex data structures can be implemented naturally on hard-
ware, too. For example, finite maps can be implemented in the memory of an FPGA.
Compared to the software backend, however, treating overflows of the finite data
structures on the hardware is of greater importance. The overflow of data structures
like maps and sets could be handled using similar approaches as for partial informa-
tion. An exemplary specification with a queue that can only hold a finite number
of entries and thus has to remove older entries with every enqueuing was already
discussed in [LSS+19]. This approach could be extended to hardware synthesis.

320

A Evaluation Appendix

The appendix contains additional details on the performed experiments for the eval-
uation.

A.1. Specifications

This section defines the specifications used in the evaluation in Section 8.2.1.

eventchain

Input Streams: q0w, q0r , q1w, q1r , q2w, q2r ∈ SU

Specification:

startTime = time(q0w)
a = last(startTime, q0r)
b = last(a, q1w)
c = last(b, q1r)
d = last(c, q2w)
e = last(d, q2r)

firstResponse = lift(new)(e, prev(e))
responseTime = lift(sub)(time(firstResponse), firstResponse)

Lifted functions:

new(a, b) =

a if a ̸= b,

⊥ otherwise.
sub(a, b) = a− b

Output Stream: responseTime ∈ ST

The dependency graph is shown in Figure 8.4 in Section 8.2.1.

321

A. Evaluation Appendix

runtime

Input Streams: call, ret ∈ SU

Specification:

r = on(ret, time(ret) − time(call))

Output Stream: r ∈ ST

The dependency graph is shown in Figure 8.5 in Section 8.2.1.

toggle

Input Streams: x ∈ SU

Specification:

second = default(lift(not)(last(second, x)), true)

Lifted function:

not(x) = ¬x

Output Stream: second ∈ SB

The dependency graph is shown in Figure 8.5 in Section 8.2.1.

rosace

Input Streams: read,write ∈ SU

Specification:

trigger = merge(read,write)
second = default(lift(not)(last(second, trigger)), true)

bad = second ∧time(read) − time(write) < 10
error = lift(filterTrue)(bad)

Lifted functions:

filterTrue(a) =

□ if a = true,
⊥ otherwise.

322

A.1. Specifications

not(x) = ¬x

Output Stream: error ∈ SU

The dependency graph is shown in Figure 8.6 in Section 8.2.1.

incdec

Input Streams: setInc, getInc, setDec, getDec ∈ SU

Specification:

value = merge(last(incValue, setInc), last(decValue, setDec), 0)
incValue = lift(inc)(last(value, getInc))
decValue = lift(dec)(last(value, getDec))

Lifted functions

inc(i) = i+ 1
dec(i) = i− 1

Output-Stream: value ∈ SN

The dependency graph is shown in Figure 8.6 in Section 8.2.1.

resetCount

Input Streams: e, reset ∈ SU

Specification:

count = default(lift(rc)(e, reset, last(count, e)), 0)

Lifted function:

rc(e, r, ℓ) =

0 if r ̸= ⊥ ∧ e = ⊥,
1 if r ̸= ⊥ ∧ e ̸= ⊥,
ℓ+ 1 if r = ⊥ ∧ e ̸= ⊥,
⊥ otherwise.

Output Stream: count ∈ SN

The dependency graph is shown in Figure 8.5 in Section 8.2.1.

323

A. Evaluation Appendix

burst

Input Stream: e : SU

Specification:

timeE = time(e)
starts = lift(detectStart)(timeE , last(starts, timeE))

c = default(lift(rc)(e, starts, last(c, e))
ok = lift(valid)(c, default(time(e) < starts +5000, true))

Lifted functions:

detectStart(t, ℓ) =

t if ℓ = ⊥ ∨ t− ℓ ≥ 7000,
⊥ otherwise.

rc(e, r, ℓ) =

0 if r ̸= ⊥ ∧ e = ⊥,
1 if r ̸= ⊥ ∧ e ̸= ⊥,
ℓ+ 1 if r = ⊥ ∧ e ̸= ⊥,
⊥ otherwise.

valid(count, inTime) = count ≤ 5 ∧ inTime

Output Stream: ok ∈ SB

The dependency graph is shown in Figure 8.7 in Section 8.2.1.

A.2. Generators

In the following pseudocode the notation a..b represents a range from a to b including
both a and b and a...b represents a range from a to b including a but excluding b. For
every occurrence of such a range instead of a concrete value we assume that a value
from that range is drawn with an even distribution using the PRNG described in
Section 8.1.1. Statements with a given chance are either executed or not depending
on the output of the PRNG.

324

A.2. Generators

Input generator for burst

advance 23...29.9 ms
loop

4..6 times
unit event e
advance 1...1.3 ms

advance 1...5.2 ms

Input generator for eventchain

advance 23...25.3 ms
loop

unit event q2r
advance 1...1.1 ms
unit event q0w with 1/10 chance
advance 30...33.0 ms

unit event q1r
advance 1...1.1 ms
unit event q2w
advance 30...33.0 ms

unit event q0r
advance 1...1.1 ms
unit event q1w
advance 30...33.0 ms

Input generator for incdec

advance 23..23000 ns
loop

unit event getInc
advance 1..1000 ns
with 4.2% chance

unit event getDec
advance 1..1000 ns
unit event setInc
advance 1..1000 ns

otherwise

325

A. Evaluation Appendix

unit event setInc
advance 1..1000 ns
unit event getDec
advance 1..1000 ns

unit event setDec
advance 1..1000 ns

Input generator for resetCount

advance 23...29.9 ms
loop

with 1
30

chance
unit event reset
unit event e with 1

5
chance

otherwise
unit event e

advance 1...1.3 ms

Input generator for rosace

advance 23..23000 ns
loop

with 4.2% chance
unit event read
advance 1..1000 ns
unit event write
advance 1..1000 ns

otherwise
unit event write
advance 1..1000 ns
unit event read
advance 1..1000 ns

Input generator for runtime

advance 23...69 ms
loop

unit event call
advance 1...3 ms

326

A.2. Generators

unit event ret
advance 1...3 ms

Input generator for toggle

advance 23...69 ms
loop

unit event x
advance 1...3 ms

Input generator for long

advance 1 ns
loop

event x with value −17..23
advance 1 ns

Input generator for recursion

loop
advance 100...200 ns
unit event x

Input generator for inputs

loop
∀ i ∈ {a, . . . , j} // depending on size

advance 100...1100 ns
event i with value 0...1000

Input generator for inputs with same timestamps

loop
advance 100...1100 ns
∀ i ∈ {a, . . . , j} // depending on size

event i with value 0...1000

327

A.3. Measurement Data

A.3. Measurement Data

number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 · 104 1 · 102 204,345 0.49
1 · 104 1 · 103 1,990,076 0.50
1 · 104 1 · 104 20,427,270 0.49
1 · 103 1 · 105 214,301,660 0.47
1 · 102 1 · 106 2,241,338,228 0.45
1 · 101 1 · 107 23,103,290,353 0.43
1 · 101 1 · 108 212,104,736,183 0.47

Table A.1.: Runtime of burst in the interpreter with different trace length. See
Figure 8.1 in Section 8.1 for the plot.

329

A. Evaluation Appendix

spec backend number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
eventchain EPU 1 · 100 2 · 103 92,180 21.70
eventchain FPGA 1 · 100 2 · 103 40,060 49.93
eventchain compiler 3 · 101 1 · 108 2,384,022,033 41.95
eventchain interpreter 1 · 101 1 · 107 7,077,297,560 1.41
runtime EPU 1 · 100 2 · 103 260,310 7.68
runtime FPGA 1 · 100 2 · 103 40,070 49.91
runtime compiler 3 · 101 1 · 108 974,589,742 102.61
runtime interpreter 1 · 101 1 · 107 8,337,885,724 1.20
toggle EPU 1 · 100 2 · 103 139,940 14.29
toggle FPGA 1 · 100 2 · 103 40,040 49.95
toggle compiler 3 · 101 1 · 108 255,661,581 391.14
toggle interpreter 1 · 101 1 · 107 904,942,849 11.05
rosace EPU 1 · 100 2 · 103 640,780 3.12
rosace FPGA 1 · 100 2 · 103 40,070 49.91
rosace compiler 3 · 101 1 · 108 1,084,636,969 92.20
rosace interpreter 1 · 101 1 · 107 12,395,441,747 0.81
incdec EPU 1 · 100 2 · 103 1,900,600 1.05
incdec FPGA 1 · 100 2 · 103 49,410 40.48
incdec compiler 3 · 101 1 · 107 136,144,602 73.45
incdec interpreter 1 · 101 1 · 107 3,076,022,924 3.25
resetcount EPU 1 · 100 2 · 103 260,480 7.68
resetcount FPGA 1 · 100 2 · 103 39,960 50.05
resetcount compiler 3 · 101 1 · 107 89,755,478 111.41
resetcount interpreter 1 · 101 1 · 107 1,360,060,540 7.35
burst EPU 1 · 100 2 · 103 641,520 3.12
burst FPGA 1 · 100 2 · 103 60,080 33.29
burst compiler 3 · 101 1 · 107 222,010,441 45.04
burst interpreter 1 · 101 1 · 107 19,112,866,384 0.52

Table A.2.: Throughput of different specifications on different backends. In
case of the EPU backend the foldLift optimisation is applied where possible. See
Figure 8.9 in Section 8.2.3 for the plot.

330

A.3. Measurement Data

spec number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
toggle 1 · 100 2 · 103 1,340,630 1.49
rosace 1 · 100 2 · 103 1,361,040 1.47
resetcount 1 · 100 2 · 103 2,701,510 0.74
burst 1 · 100 2 · 103 3,375,030 0.59

Table A.3.: Throughput of different specifications on the EPU backend without
the foldLift optimisation. See Figure 8.8 in Section 8.2.2 for the plot.

spec number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
burst 1 · 100 2 · 103 3,040,550 0.66

Table A.4.: Throughput of burst on the EPU backend with the foldLift opti-
misation used only for the counting. See Figure 8.8 in Section 8.2.2 for the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 2 · 104 14.31
15 1 · 100 2 · 104 14.31

Table A.5.: Runtime of long with EPUs. See Figure 8.11 in Section 8.3.1 for
the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 1 · 107 200,000,020 50.00
10 1 · 100 1 · 107 200,000,030 50.00
100 1 · 100 1 · 107 200,000,140 50.00

Table A.6.: Runtime of long with FPGA. See Figure 8.11 in Section 8.3.1 for
the plot.

331

A. Evaluation Appendix

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 5 · 101 1 · 106 90,886,323 11.00
2 5 · 101 1 · 106 196,931,039 5.08
3 5 · 101 1 · 106 257,720,207 3.88
4 5 · 101 1 · 106 343,080,960 2.91
5 5 · 101 1 · 106 420,098,789 2.38
6 2 · 101 1 · 106 534,839,615 1.87
7 2 · 101 1 · 106 596,911,548 1.68
8 2 · 101 1 · 106 653,112,019 1.53
9 2 · 101 1 · 106 733,448,338 1.36
10 2 · 101 1 · 106 799,609,658 1.25
11 1 · 101 1 · 106 865,397,424 1.16
12 1 · 101 1 · 106 952,970,782 1.05
13 1 · 101 1 · 106 1,048,707,461 0.95
14 1 · 101 1 · 106 1,111,509,669 0.90
15 1 · 101 1 · 106 1,212,550,195 0.82
16 1 · 101 1 · 106 1,294,163,384 0.77
17 1 · 101 1 · 106 1,356,669,363 0.74
18 1 · 101 1 · 106 1,470,340,867 0.68
19 1 · 101 1 · 106 1,492,344,314 0.67
20 1 · 101 1 · 106 1,528,674,981 0.65
21 1 · 101 1 · 106 1,661,308,387 0.60
22 1 · 101 1 · 106 1,687,632,062 0.59
23 1 · 101 1 · 106 1,710,547,569 0.58
24 1 · 101 1 · 106 1,815,989,087 0.55
25 1 · 101 1 · 106 1,859,339,047 0.54
26 1 · 101 1 · 106 1,953,162,596 0.51
27 1 · 101 1 · 106 2,027,288,836 0.49
28 1 · 101 1 · 106 2,107,824,638 0.47
29 1 · 101 1 · 106 2,141,703,793 0.47
30 1 · 101 1 · 106 2,222,212,378 0.45

Table A.7.: Runtime of long in the interpreter. See Figure 8.11 in Section 8.3.1
for the plot.

332

A.3. Measurement Data

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 102 1 · 107 42,455,063 235.54
2 1 · 102 1 · 107 69,896,287 143.07
3 1 · 102 1 · 107 95,230,580 105.01
4 1 · 102 1 · 107 121,009,501 82.64
5 1 · 102 1 · 107 148,092,561 67.53
6 1 · 102 1 · 107 191,250,729 52.29
7 1 · 102 1 · 107 207,005,864 48.31
8 1 · 102 1 · 107 243,450,276 41.08
9 1 · 102 1 · 107 259,950,389 38.47
10 1 · 102 1 · 107 291,571,671 34.30
11 1 · 102 1 · 107 315,873,267 31.66
12 1 · 102 1 · 107 357,339,146 27.98
13 1 · 102 1 · 107 362,939,398 27.55
14 1 · 102 1 · 107 412,174,181 24.26
15 1 · 102 1 · 107 446,523,945 22.40
16 1 · 102 1 · 107 474,324,084 21.08
17 1 · 102 1 · 107 499,858,835 20.01
18 1 · 102 1 · 107 520,682,614 19.21
19 1 · 102 1 · 107 553,483,858 18.07
20 1 · 102 1 · 107 587,497,267 17.02
21 1 · 102 1 · 107 615,795,883 16.24
22 1 · 102 1 · 107 629,904,953 15.88
23 1 · 102 1 · 107 664,520,439 15.05
24 1 · 102 1 · 107 692,079,049 14.45
25 1 · 102 1 · 107 724,266,821 13.81
26 1 · 102 1 · 107 752,526,318 13.29
27 1 · 102 1 · 107 789,869,221 12.66
28 1 · 102 1 · 107 813,756,208 12.29
29 1 · 102 1 · 107 840,189,373 11.90
30 1 · 102 1 · 107 874,616,947 11.43

Table A.8.: Runtime of long with a compiled monitor in Rust reading events
from an array. See Figure 8.11 in Section 8.3.1 and Figure 8.3 in Section 8.1.2
for the plots.

333

A. Evaluation Appendix

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 3 · 101 1 · 107 42,161,575 237.18
2 3 · 101 1 · 107 68,638,228 145.69
3 3 · 101 1 · 107 104,338,535 95.84
4 3 · 101 1 · 107 122,876,031 81.38
5 2 · 101 1 · 107 157,195,923 63.61
6 2 · 101 1 · 107 182,200,834 54.88
7 2 · 101 1 · 107 221,069,518 45.23
8 2 · 101 1 · 107 239,754,759 41.71
9 2 · 101 1 · 107 274,378,524 36.45
10 2 · 101 1 · 107 303,601,965 32.94
11 2 · 101 1 · 107 326,702,867 30.61
12 2 · 101 1 · 107 363,233,575 27.53
13 2 · 101 1 · 107 379,554,820 26.35
14 2 · 101 1 · 107 412,145,522 24.26
15 2 · 101 1 · 107 442,657,608 22.59
16 2 · 101 1 · 107 477,401,822 20.95
17 2 · 101 1 · 107 505,337,253 19.79
18 2 · 101 1 · 107 533,898,996 18.73
19 2 · 101 1 · 107 561,349,963 17.81
20 1 · 101 1 · 107 594,868,885 16.81
21 1 · 101 1 · 107 621,718,719 16.08
22 1 · 101 1 · 107 651,316,829 15.35
23 1 · 101 1 · 107 692,291,093 14.44
24 1 · 101 1 · 107 708,075,582 14.12
25 1 · 101 1 · 107 750,113,810 13.33
26 1 · 101 1 · 107 774,332,259 12.91
27 1 · 101 1 · 107 812,987,064 12.30
28 1 · 101 1 · 107 836,036,458 11.96
29 1 · 101 1 · 107 869,971,770 11.49
30 1 · 101 1 · 107 902,631,076 11.08

Table A.9.: Runtime of long with a compiled monitor in Rust generating the
events in the monitor. See Figure 8.3 in Section 8.1.2 for the plot.

334

A.3. Measurement Data

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 3 · 101 1 · 107 191,893,012 52.11
2 3 · 101 1 · 107 209,288,573 47.78
3 3 · 101 1 · 107 240,498,695 41.58
4 3 · 101 1 · 107 266,037,323 37.59
5 2 · 101 1 · 107 298,568,966 33.49
6 2 · 101 1 · 107 336,275,912 29.74
7 2 · 101 1 · 107 360,108,437 27.77
8 2 · 101 1 · 107 386,973,528 25.84
9 2 · 101 1 · 107 427,971,649 23.37
10 2 · 101 1 · 107 445,267,423 22.46
11 2 · 101 1 · 107 478,131,160 20.91
12 2 · 101 1 · 107 500,682,003 19.97
13 2 · 101 1 · 107 522,440,147 19.14
14 2 · 101 1 · 107 552,051,045 18.11
15 2 · 101 1 · 107 585,286,405 17.09
16 2 · 101 1 · 107 614,749,028 16.27
17 2 · 101 1 · 107 643,426,801 15.54
18 2 · 101 1 · 107 658,988,193 15.17
19 2 · 101 1 · 107 711,228,446 14.06
20 1 · 101 1 · 107 718,046,716 13.93
21 1 · 101 1 · 107 761,880,473 13.13
22 1 · 101 1 · 107 798,851,023 12.52
23 1 · 101 1 · 107 806,356,772 12.40
24 1 · 101 1 · 107 834,501,908 11.98
25 1 · 101 1 · 107 864,310,910 11.57
26 1 · 101 1 · 107 932,197,753 10.73
27 1 · 101 1 · 107 930,659,250 10.75
28 1 · 101 1 · 107 956,980,042 10.45
29 1 · 101 1 · 107 987,008,010 10.13
30 1 · 101 1 · 107 1,038,327,175 9.63

Table A.10.: Runtime of long with a compiled monitor in Rust reading events
from a binary file. See Figure 8.3 in Section 8.1.2 for the plot.

335

A. Evaluation Appendix

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 5 · 101 1 · 107 115,108,411 86.87
2 5 · 101 1 · 107 154,213,936 64.84
3 5 · 101 1 · 107 186,693,330 53.56
4 5 · 101 1 · 107 209,600,857 47.71
5 2.5 · 101 1 · 107 270,277,015 37.00
6 2.5 · 101 1 · 107 313,317,769 31.92
7 2.5 · 101 1 · 107 349,931,168 28.58
8 2.5 · 101 1 · 107 395,040,110 25.31
9 2.5 · 101 1 · 107 416,186,503 24.03
10 2.5 · 101 1 · 107 502,192,217 19.91
11 2.5 · 101 1 · 107 509,126,384 19.64
12 2.5 · 101 1 · 107 573,332,915 17.44
13 2.5 · 101 1 · 107 648,424,424 15.42
14 2.5 · 101 1 · 107 705,324,338 14.18
15 2.5 · 101 1 · 107 726,477,490 13.77
16 2.5 · 101 1 · 107 807,393,266 12.39
17 2.5 · 101 1 · 107 864,756,539 11.56
18 2.5 · 101 1 · 107 930,784,136 10.74
19 2.5 · 101 1 · 107 951,975,985 10.50
20 2.5 · 101 1 · 107 994,735,067 10.05
21 2.5 · 101 1 · 107 996,262,936 10.04
22 2.5 · 101 1 · 107 1,024,798,746 9.76
23 5 · 100 1 · 107 19,511,254,316 0.51
24 5 · 100 1 · 107 23,182,482,390 0.43
25 5 · 100 1 · 107 24,351,205,401 0.41
26 5 · 100 1 · 107 26,720,707,734 0.37
27 5 · 100 1 · 107 26,803,498,679 0.37
28 5 · 100 1 · 107 28,457,711,393 0.35
29 5 · 100 1 · 107 27,950,136,947 0.36
30 5 · 100 1 · 107 29,131,451,612 0.34

Table A.11.: Runtime of long with a compiled monitor in Java reading events
from an ArrayList. See Figure 8.3 in Section 8.1.2 for the plot.

336

A.3. Measurement Data

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 102 1 · 107 56,414,772 177.26
2 1 · 102 1 · 107 92,182,443 108.48
3 1 · 102 1 · 107 153,947,047 64.96
4 1 · 102 1 · 107 172,890,409 57.84
5 5 · 101 1 · 107 207,971,713 48.08
6 5 · 101 1 · 107 244,282,516 40.94
7 5 · 101 1 · 107 287,720,960 34.76
8 5 · 101 1 · 107 321,092,695 31.14
9 5 · 101 1 · 107 369,685,599 27.05
10 5 · 101 1 · 107 403,611,467 24.78
11 5 · 101 1 · 107 451,690,090 22.14
12 5 · 101 1 · 107 457,071,750 21.88
13 2.5 · 101 1 · 107 554,769,174 18.03
14 2.5 · 101 1 · 107 587,175,093 17.03
15 2.5 · 101 1 · 107 634,930,335 15.75
16 2.5 · 101 1 · 107 689,760,685 14.50
17 2.5 · 101 1 · 107 780,226,537 12.82
18 2.5 · 101 1 · 107 697,012,571 14.35
19 2.5 · 101 1 · 107 822,764,168 12.15
20 2.5 · 101 1 · 107 862,241,176 11.60
21 2.5 · 101 1 · 107 907,608,105 11.02
22 2.5 · 101 1 · 107 968,641,897 10.32
23 5 · 100 1 · 107 19,697,085,457 0.51
24 5 · 100 1 · 107 23,556,932,732 0.42
25 5 · 100 1 · 107 24,284,851,519 0.41
26 5 · 100 1 · 107 24,565,081,899 0.41
27 5 · 100 1 · 107 25,201,218,749 0.40
28 5 · 100 1 · 107 26,355,000,608 0.38
29 5 · 100 1 · 107 26,302,536,265 0.38
30 5 · 100 1 · 107 28,371,086,716 0.35

Table A.12.: Runtime of long with a compiled monitor in Java reading events
from an array. See Figure 8.3 in Section 8.1.2 for the plot.

337

A. Evaluation Appendix

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 5 · 101 1 · 107 314,910,361 31.76
2 5 · 101 1 · 107 356,673,584 28.04
3 5 · 101 1 · 107 368,331,088 27.15
4 5 · 101 1 · 107 455,482,677 21.95
5 5 · 101 1 · 107 493,139,546 20.28
6 5 · 101 1 · 107 524,186,272 19.08
7 5 · 101 1 · 107 539,341,968 18.54
8 5 · 101 1 · 107 598,544,745 16.71
9 5 · 101 1 · 107 611,871,085 16.34
10 3 · 101 1 · 107 680,844,087 14.69
11 3 · 101 1 · 107 707,735,632 14.13
12 3 · 101 1 · 107 707,319,073 14.14
13 3 · 101 1 · 107 813,360,494 12.29
14 3 · 101 1 · 107 849,765,657 11.77
15 3 · 101 1 · 107 883,555,421 11.32
16 3 · 101 1 · 107 997,008,603 10.03
17 3 · 101 1 · 107 1,008,440,908 9.92
18 3 · 101 1 · 107 1,048,516,161 9.54
19 3 · 101 1 · 107 1,090,875,171 9.17
20 2 · 101 1 · 107 1,162,163,782 8.60
21 2 · 101 1 · 107 1,205,447,676 8.30
22 2 · 101 1 · 107 1,240,629,188 8.06
23 2 · 101 1 · 107 20,581,595,278 0.49
24 2 · 101 1 · 107 24,764,218,324 0.40
25 5 · 100 1 · 107 25,331,132,132 0.39
26 5 · 100 1 · 107 26,943,967,294 0.37
27 5 · 100 1 · 107 28,568,458,247 0.35
28 5 · 100 1 · 107 28,694,563,788 0.35
29 5 · 100 1 · 107 28,611,482,278 0.35
30 5 · 100 1 · 107 29,810,854,786 0.34

Table A.13.: Runtime of long with a compiled monitor in Java reading events
from a binary file. See Figure 8.3 in Section 8.1.2 for the plot.

338

A.3. Measurement Data

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 5 · 101 1 · 107 55,031,923 181.71
2 5 · 101 1 · 107 96,375,368 103.76
3 5 · 101 1 · 107 135,019,584 74.06
4 5 · 101 1 · 107 189,825,305 52.68
5 2.5 · 101 1 · 107 227,047,434 44.04
6 2.5 · 101 1 · 107 266,527,259 37.52
7 2.5 · 101 1 · 107 304,807,979 32.81
8 2.5 · 101 1 · 107 318,353,101 31.41
9 2.5 · 101 1 · 107 360,732,475 27.72
10 2.5 · 101 1 · 107 426,692,094 23.44
11 2.5 · 101 1 · 107 435,028,712 22.99
12 2.5 · 101 1 · 107 476,450,042 20.99
13 2.5 · 101 1 · 107 558,846,522 17.89
14 2.5 · 101 1 · 107 588,630,770 16.99
15 2.5 · 101 1 · 107 650,885,786 15.36
16 2.5 · 101 1 · 107 698,459,391 14.32
17 2.5 · 101 1 · 107 745,943,303 13.41
18 2.5 · 101 1 · 107 785,306,568 12.73
19 2.5 · 101 1 · 107 830,273,239 12.04
20 2.5 · 101 1 · 107 886,362,434 11.28
21 2.5 · 101 1 · 107 956,252,611 10.46
22 2.5 · 101 1 · 107 957,569,432 10.44
23 5 · 100 1 · 107 19,766,721,742 0.51
24 5 · 100 1 · 107 22,855,646,809 0.44
25 5 · 100 1 · 107 23,605,091,223 0.42
26 5 · 100 1 · 107 24,605,476,669 0.41
27 5 · 100 1 · 107 25,723,924,486 0.39
28 5 · 100 1 · 107 26,443,267,828 0.38
29 5 · 100 1 · 107 27,436,330,765 0.36
30 5 · 100 1 · 107 29,920,376,543 0.33

Table A.14.: Runtime of long with a compiled monitor in Java generating the
events in the monitor. See Figure 8.3 in Section 8.1.2 for the plot.

339

A. Evaluation Appendix

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 2 · 103 1,863,140 1.07
2 1 · 100 2 · 103 2,423,040 0.83
3 1 · 100 2 · 103 2,982,880 0.67
4 1 · 100 2 · 103 3,542,860 0.56
5 1 · 100 2 · 103 3,902,790 0.51
6 1 · 100 2 · 103 4,662,800 0.43
7 1 · 100 2 · 103 5,222,510 0.38
8 1 · 100 2 · 103 5,782,580 0.35
9 1 · 100 2 · 103 6,342,770 0.32

Table A.15.: Runtime of recursion with EPUs. See Figure 8.14 in Sec-
tion 8.3.2 for the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 2 · 103 40,090 49.89
2 1 · 100 2 · 103 60,090 33.28
3 1 · 100 2 · 103 60,090 33.28
4 1 · 100 2 · 103 80,090 24.97
5 1 · 100 2 · 103 80,090 24.97
6 1 · 100 2 · 103 100,090 19.98
7 1 · 100 2 · 103 100,090 19.98
8 1 · 100 2 · 103 120,090 16.65
9 1 · 100 2 · 103 120,090 16.65
10 1 · 100 2 · 103 140,090 14.28

Table A.16.: Runtime of recursion with FPGA. See Figure 8.14 in Sec-
tion 8.3.2 for the plot.

340

A.3. Measurement Data

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 101 1 · 106 1,293,576,656 0.77
2 1 · 101 1 · 106 1,282,129,736 0.78
3 1 · 101 1 · 106 1,287,247,647 0.78
4 1 · 101 1 · 106 1,288,393,030 0.78
5 1 · 101 1 · 106 1,284,132,299 0.78
6 1 · 101 1 · 106 1,284,469,244 0.78
7 1 · 101 1 · 106 1,297,113,069 0.77
8 1 · 101 1 · 106 1,291,197,404 0.77
9 1 · 101 1 · 106 1,284,472,190 0.78
10 1 · 101 1 · 106 1,264,121,985 0.79

Table A.17.: Runtime of recursion in the interpreter. See Figure 8.14 in Sec-
tion 8.3.2 for the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 5 · 102 1 · 106 10,565,228 94.65
2 5 · 102 1 · 106 10,048,449 99.52
3 5 · 102 1 · 106 9,959,853 100.40
4 5 · 102 1 · 106 10,491,837 95.31
5 5 · 102 1 · 106 10,035,661 99.64
6 5 · 102 1 · 106 10,291,439 97.17
7 5 · 102 1 · 106 9,689,444 103.21
8 5 · 102 1 · 106 10,055,936 99.44
9 5 · 102 1 · 106 11,152,585 89.67
10 5 · 102 1 · 106 10,971,842 91.14

Table A.18.: Runtime of recursion with a compiled monitor in Rust reading
events from an array. See Figure 8.14 in Section 8.3.2 for the plot.

341

A. Evaluation Appendix

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 2 · 104 1,401,920 14.27
2 1 · 100 2 · 104 701,970 28.49
3 1 · 100 2 · 104 468,780 42.66
4 1 · 100 2 · 104 352,150 56.79
5 1 · 100 2 · 104 282,190 70.87
6 1 · 100 2 · 104 235,700 84.85
7 1 · 100 2 · 104 202,390 98.82
8 1 · 100 2 · 104 202,360 98.83
9 1 · 100 2 · 104 202,290 98.87
10 1 · 100 2 · 104 202,190 98.92

Table A.19.: Runtime of inputs with EPUs. See Figure 8.15 in Section 8.3.3
for the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 2 · 104 1,401,920 14.27
2 1 · 100 2 · 104 701,970 28.49
3 1 · 100 2 · 104 468,780 42.66
4 1 · 100 2 · 104 352,150 56.79
5 1 · 100 2 · 104 282,190 70.87
6 1 · 100 2 · 104 235,700 84.85
7 1 · 100 2 · 104 202,390 98.82
8 1 · 100 2 · 104 202,360 98.83
9 1 · 100 2 · 104 202,290 98.87
10 1 · 100 2 · 104 202,190 98.92

Table A.20.: Runtime of inputs with EPUs and same timestamps. See Fig-
ure 8.15 in Section 8.3.3 for the plot.

342

A.3. Measurement Data

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 1 · 104 200,050 49.99
2 1 · 100 1 · 104 200,060 49.99
3 1 · 100 1 · 104 200,070 49.98
4 1 · 100 1 · 104 200,080 49.98
5 1 · 100 1 · 104 200,090 49.98
6 1 · 100 1 · 104 200,100 49.98
7 1 · 100 1 · 104 200,110 49.97
8 1 · 100 1 · 104 200,120 49.97
9 1 · 100 1 · 104 200,130 49.97
10 1 · 100 1 · 104 200,140 49.97

Table A.21.: Runtime of inputs with FPGA. See Figure 8.15 in Section 8.3.3
for the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 1 · 100 1 · 104 200,050 49.99
2 1 · 100 1 · 104 150,060 66.64
3 1 · 100 1 · 104 133,410 74.96
4 1 · 100 1 · 104 125,080 79.95
5 1 · 100 1 · 104 120,090 83.27
6 1 · 100 1 · 104 116,770 85.64
7 1 · 100 1 · 104 114,400 87.41
8 1 · 100 1 · 104 112,620 88.79
9 1 · 100 1 · 104 111,250 89.89
10 1 · 100 1 · 104 110,140 90.79

Table A.22.: Runtime of inputs with FPGA and same timestamps. See Fig-
ure 8.15 in Section 8.3.3 for the plot.

343

A. Evaluation Appendix

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 3 · 101 1 · 107 438,282,992 22.82
2 3 · 101 1 · 107 943,497,022 10.60
3 3 · 101 1 · 107 1,501,698,020 6.66
4 3 · 101 1 · 107 1,933,665,874 5.17
5 3 · 101 1 · 107 2,493,617,556 4.01
6 3 · 101 1 · 107 3,038,784,779 3.29
7 3 · 101 1 · 107 3,549,832,799 2.82
8 3 · 101 1 · 107 4,195,010,789 2.38
9 3 · 101 1 · 107 4,721,059,822 2.12
10 3 · 101 1 · 107 5,480,912,964 1.82

Table A.23.: Runtime of inputs with a compiled monitor in Rust reading
events from an array. See Figure 8.14 in Section 8.3.2 for the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 3 · 101 1 · 107 454,581,374 22.00
2 3 · 101 1 · 107 450,094,565 22.22
3 3 · 101 1 · 107 473,836,104 21.10
4 3 · 101 1 · 107 470,959,807 21.23
5 3 · 101 1 · 107 468,193,715 21.36
6 3 · 101 1 · 107 478,036,733 20.92
7 3 · 101 1 · 107 474,696,460 21.07
8 3 · 101 1 · 107 493,909,965 20.25
9 3 · 101 1 · 107 491,353,147 20.35
10 3 · 101 1 · 107 523,353,844 19.11

Table A.24.: Runtime of inputs with a compiled monitor in Rust reading events
from an array and same timestamps. See Figure 8.14 in Section 8.3.2 for the plot.

344

A.3. Measurement Data

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 3 · 101 1 · 105 95,947,040 1.04
2 3 · 101 1 · 105 175,342,749 0.57
3 3 · 101 1 · 105 253,340,832 0.39
4 3 · 101 1 · 105 336,888,281 0.30
5 3 · 101 1 · 105 420,987,502 0.24
6 3 · 101 1 · 105 499,716,627 0.20
7 3 · 101 1 · 105 581,990,990 0.17
8 3 · 101 1 · 105 656,499,892 0.15
9 3 · 101 1 · 105 726,384,785 0.14
10 3 · 101 1 · 105 810,786,992 0.12

Table A.25.: Runtime of inputs in the interpreter. See Figure 8.16 in Sec-
tion 8.3.3 for the plot.

size number
of runs

trace
length runtime [ns] throughput

[MEvents/s]
1 3 · 101 1 · 105 97,923,099 1.02
2 3 · 101 1 · 105 95,337,957 1.05
3 3 · 101 1 · 105 96,204,118 1.04
4 3 · 101 1 · 105 96,906,743 1.03
5 3 · 101 1 · 105 96,031,745 1.04
6 3 · 101 1 · 105 96,534,117 1.04
7 3 · 101 1 · 105 97,423,466 1.03
8 3 · 101 1 · 105 96,791,496 1.03
9 3 · 101 1 · 105 96,365,410 1.04
10 3 · 101 1 · 105 97,469,643 1.03

Table A.26.: Runtime of inputs in the interpreter with same timestamps. See
Figure 8.16 in Section 8.3.3 for the plot.

345

A. Evaluation Appendix

backend
spec.

depth
TeSSLa

compiler [s]
Rust

compiler [s]
FPGA

synthesis [s]
FPGA

impl. [s] total [s]
compiler 2 1.0 0.4 — — 1.4
compiler 20 1.3 0.6 — — 1.9
compiler 200 19.0 10.7 — — 29.7
EPUs 2 3.6 — — — 3.6
EPUs 20 3.7 — — — 3.7
FPGA 2 3.6 — 48.0 138.0 189.6
FPGA 20 4.1 — 49.0 144.0 197.1
FPGA 200 6.8 — 59.0 152.0 217.8

Table A.27.: Compilation time of LONG on different backends with different
specification depths. See Figure 8.18 in Section 8.4 for the plot.

346

A.4. Hardware Utilisation

A.4. Hardware Utilisation

Figures A.1 to A.4 below show the hardware consumption of the synthesised speci-
fication long on the FPGA. See Section 8.3.1 and Figure 8.13 for a discussion.

347

A. Evaluation Appendix

Figure A.1.: Hardware utilisation of the specification long with size 1 visualised
in Xilinx Vivado. The following parts of the hardware design are coloured: the
input FIFO before the actual monitor, 32 bit × 512 entries, the output FIFO
after the actual monitor, same size, the Xillybus I/O logic and the actual
specification.

348

A.4. Hardware Utilisation

Figure A.2.: Hardware utilisation of the specification long with size 10 visu-
alised in Xilinx Vivado. The following parts of the hardware design are coloured:

the input FIFO before the actual monitor, 32 bit × 512 entries, the output
FIFO after the actual monitor, same size, the Xillybus I/O logic and the
actual specification.

349

A. Evaluation Appendix

Figure A.3.: Hardware utilisation of the specification long with size 100 visu-
alised in Xilinx Vivado. The following parts of the hardware design are coloured:

the input FIFO before the actual monitor, 32 bit × 512 entries, the output
FIFO after the actual monitor, same size, the Xillybus I/O logic and the
actual specification.

350

A.4. Hardware Utilisation

Figure A.4.: Hardware utilisation of the specification long with size 1000 visu-
alised in Xilinx Vivado. The following parts of the hardware design are coloured:

the input FIFO before the actual monitor, 32 bit × 512 entries, the output
FIFO after the actual monitor, same size, the Xillybus I/O logic and the
actual specification.

351

List of Figures

1.1. Overview of the different semantics and implementations introduced
in this thesis . 14

3.1. Dependency graph of a well-formed specification 51
3.2. Dependency graph of a not-well-formed specification 52
3.3. Comparison of the filter operator and the sfilter operator 68
3.4. Visualisation how the fixed point is computed for the counting example 82
3.5. Visualisation how the fixed point is computed for a recursion with-

out a base case . 84
3.6. Visualisation of the evaluation of a not-well-formed simple recursion 85
3.7. Visualisation of the evaluation of a not-well-formed advanced recursion 85
3.8. Visualisation of the evaluation of a not-well-formed advanced recur-

sion over discrete data domain . 87
3.9. Visualisation of the evaluation of the period example 87
3.10. Visualisation of the evaluation of the period-recursion without base

case . 90
3.11. Visualisation of the evaluation of the variable frequency period . . . 90
3.12. Stream visualisation showing the allowed and forbidden causal de-

pendencies for a future-independent function on monitoring streams 97
3.13. Stream visualisation showing exemplary applications of a function

that is not future independent . 98
3.14. Exemplary application of a future-independent function 99

4.1. The common event driven synchronous execution scheme 106
4.2. Evaluation of the synchronous monitoring function for a variable

frequency period example . 125
4.3. UML class diagram of the interpreter 136
4.4. UML object diagram for the variable frequency period example . . . 137
4.5. Integration test setup for the software compiler in comparison with

the interpreter used as reference implementation 147

5.1. Von Neumann control flow architecture and basic data flow archi-
tecture . 151

5.2. Exemplary message routing between EPUs 154
5.3. Message frame encoding of the EPUs 155

353

List of Figures

5.4. Architectural overview of the components of an Event Processing
Unit (EPU) . 155

5.5. Schematic visualisation of the stages of the inner pipeline over time 158
5.6. EPU network diagram for the EPU network example 162
5.7. EPU network diagrams for the forward command and the com-

mands for time, the unary slift(f) and default 171
5.8. EPU network diagrams for the commands for merge and last 173
5.9. EPU network diagrams for the commands for the binary slift(f) and

filter . 175
5.10. EPU network diagram for the command for slift(ite) 176
5.11. EPU network diagram for the absolute value example 178
5.12. Exemplary evaluation of the absolute value example using the syn-

chronous semantics . 179
5.13. Exemplary evaluation of the EPU network derived from the absolute

value example . 179
5.14. EPU network diagrams for the commands for blocking last 183
5.15. EPU network diagram for the recursive example 186
5.16. Exemplary evaluation of the recursive example using the synchronous

semantics . 186
5.17. Exemplary evaluation of the EPU network derived from the recur-

sive example . 187
5.18. Schematic representation of an condition logic tree of depth 3 . . . 191
5.19. Condition tree . 193
5.20. Tree representations . 195
5.21. Adjusted EPU network diagram for the absolute value example . . . 196
5.22. Abstract flow graph of recursive specifications suitable for a simple

translation . 201
5.23. EPU network diagram for the simplified translation of the recursive

example . 202
5.24. EPU network diagrams for the commands for foldLift 205
5.25. Architectural overview diagram of the EPU hardware and test setup 208

6.1. Exemplary evaluation of the specification ℓ = last(v, r) with moni-
toring semantics in comparison with two abstractions 213

6.2. Visualisation of abstract monitoring streams 215
6.3. Comparison of the abstract monitoring semantics and the monitor-

ing semantics . 221
6.4. Comparison of the abstract monitoring semantics and the monitor-

ing semantics . 226
6.5. Variable frequency period with abstract monitoring streams 228

7.1. Top-down view of a simple, generic FPGA architecture 239

354

List of Figures

7.2. Simplified logic block . 239
7.3. Operator network of the variable frequency period specification . . . 257
7.4. Exemplary execution of the operator network for the variable fre-

quency period specification . 258
7.5. A channel connecting a source with a sink 262
7.6. Tuplification for parallel lift operators 274
7.7. Tuplification for parallel last operators 276
7.8. Integration Test Setup using PCI Express via Xillybus 277
7.9. Integration test setup for the simulation in software using Chisel’s

simulation engine Treadle . 279

8.1. Runtime and throughput of burst in the interpreter in dependence
of the trace length . 283

8.2. Distribution of the runtime of long (with a fixed specification depth
of 1) . 285

8.3. Throughput of long in dependence of the specification depth with
different compilers and I/O options 287

8.4. Dependency graph of the specification eventchain and simplified
architecture of the system under test 292

8.5. Dependency graphs of the specifications runtime, toggle and
resetcount . 293

8.6. Dependency graph of the specifications rosace and incdec 293
8.7. Dependency graph of the specification burst 294
8.8. Throughput of different specifications on the EPU backend 297
8.9. Throughput of different specifications on different backends 298
8.10. Dependency graphs of synthetic specifications long, recursion

and inputs . 301
8.11. Throughput of long in dependence of the specification depth with

different backends . 302
8.12. Hardware utilisation of the specification long with size 1 visualised

in Xilinx Vivado. 303
8.13. Hardware utilisation of the specification long with different sizes . 304
8.14. Throughput of recursion in dependence of the recursion depth

with different backends . 305
8.15. Throughput of input in dependence of the number of inputs with

different backends . 306
8.16. Throughput of input in dependence of the number of inputs with

the interpreter . 308
8.17. Qualitative overview of the throughput as a function of the depth

of the specification, the recursion depth of the specification, and the
parallelism of the specification on the different backends 309

355

List of Figures

8.18. Compilation time of LONG on different backends with different
specification depths . 311

A.1. Hardware utilisation of the specification long with size 1 visualised
in Xilinx Vivado. 348

A.2. Hardware utilisation of the specification long with size 10 visu-
alised in Xilinx Vivado. 349

A.3. Hardware utilisation of the specification long with size 100 visu-
alised in Xilinx Vivado. 350

A.4. Hardware utilisation of the specification long with size 1000 visu-
alised in Xilinx Vivado. 351

356

List of Tables

A.1. Runtime of burst in the interpreter with different trace length . . . 329
A.2. Throughput of different specifications on different backends 330
A.3. Throughput of different specifications on the EPU backend without

the foldLift optimisation . 331
A.4. Throughput of burst on the EPU backend with the foldLift opti-

misation used only for the counting 331
A.5. Runtime of long with EPUs . 331
A.6. Runtime of long with FPGA . 331
A.7. Runtime of long in the interpreter 332
A.8. Runtime of long with a compiled monitor in Rust reading events

from an array . 333
A.9. Runtime of long with a compiled monitor in Rust generating the

events in the monitor . 334
A.10. Runtime of long with a compiled monitor in Rust reading events

from a binary file . 335
A.11. Runtime of long with a compiled monitor in Java reading events

from an ArrayList . 336
A.12. Runtime of long with a compiled monitor in Java reading events

from an array . 337
A.13. Runtime of long with a compiled monitor in Java reading events

from a binary file . 338
A.14. Runtime of long with a compiled monitor in Java generating the

events in the monitor . 339
A.15. Runtime of recursion with EPUs 340
A.16. Runtime of recursion with FPGA 340
A.17. Runtime of recursion in the interpreter 341
A.18. Runtime of recursion with a compiled monitor in Rust reading

events from an array . 341
A.19. Runtime of inputs with EPUs . 342
A.20. Runtime of inputs with EPUs and same timestamps 342
A.21. Runtime of inputs with EPUs and same timestamps 343
A.22. Runtime of inputs with FPGA and same timestamps 343
A.23. Runtime of inputs with a compiled monitor in Rust reading events

from an array . 344

357

List of Tables

A.24. Runtime of inputs with a compiled monitor in Rust reading events
from an array and same timestamps 344

A.25. Runtime of inputs in the interpreter 345
A.26. Runtime of inputs in the interpreter with same timestamps 345
A.27. Compilation time of LONG on different backends with different

specification depths . 346

358

List of Definitions and Theorems

Definition 3.12 (Time Domain) . 41
Definition 3.13 (Data Domain) . 41
Definition 3.14 (Stream) . 41
Definition 3.15 (Timestamps of a Stream) 42
Definition 3.17 (Zeno [Lam02, Mos07, ZJLS00]) 42
Definition 3.20 (Limit of a Stream) . 44
Definition 3.21 (Functional View of a Stream) 44
Definition 3.22 (TeSSLa Syntax) . 45
Definition 3.23 (TeSSLa Semantics [Sch20]) 45
Definition 3.24 (Semantics of the Operator unit [Sch20]) 46
Definition 3.25 (Semantics of the Operator time [Sch20]) 46
Definition 3.26 (Semantics of the Operator lift [Sch20]) 47
Definition 3.27 (Semantics of the Operator last [Sch20]) 47
Definition 3.28 (Semantics of the Operator delay) 48
Definition 3.29 (Equivalence of TeSSLa Specifications) 49
Definition 3.30 (Flat [CHL+18]) . 50
Definition 3.31 (Dependency and Flow Graph [CHL+18]) 50
Definition 3.32 (Well-Formed TeSSLa Specification [CHL+18]) 50
Definition 3.35 (Semantics of the Operator nil) 53
Definition 3.36 (Semantics of the Operator const) 53
Definition 3.37 (Semantics of the Operator merge) 54
Definition 3.38 (Semantics of the Operators prev, sync and on) 54
Definition 3.39 (Semantics of the Operator slift) 56
Definition 3.40 (Semantics of the Operator filter) 56
Definition 3.41 (Semantics of the Operator default) 57
Definition 3.42 (Semantics of the Operator foldn) 58
Definition 3.43 (Semantics of the Operator fold) 59
Definition 3.44 (Semantics of the Operator reduce) 59
Definition 3.45 (Semantics of the Aggregation Operators count, sum, min-

imum and maximum) . 60
Definition 3.46 (Semantics of the Operator resetCount) 60
Definition 3.47 (Semantics of the Operator delayedLast) 61
Lemma 3.48 (Associativity of lift) . 64
Lemma 3.49 (Oversampling of Signals) . 64

359

List of Definitions and Theorems

Lemma 3.50 (Associativity of slift) . 64
Theorem 3.51 (Signal Lift and Default) . 66
Definition 3.52 (Semantics of the Operator sfilter) 67
Definition 3.53 (Semantics of the Operator prevn) 70
Definition 3.54 (Semantics of the Operator mdelay) 71
Definition 3.55 (Semantics of the Operator mdelayedLast) 72
Definition 3.56 (Semantics of the Operator shift) 73
Definition 3.57 (Monitoring Stream) . 74
Definition 3.58 (Monitoring Stream of Independent Events) 74
Definition 3.59 (Timestamps of a Monitoring Stream) 75
Definition 3.62 (Limit of a Monitoring Stream) 76
Definition 3.63 (Refinement Relation) . 77
Lemma 3.64 (Refinement Relation is a Dcpo) 77
Definition 3.65 (TeSSLa Operators on Monitoring Streams) 77
Definition 3.67 (TeSSLa Monitoring Semantics) 78
Definition 3.68 (Monitoring-Equivalence of TeSSLa Specifications) 79
Lemma 3.69 (Scott-Continuity of the TeSSLa Operators) 79
Lemma 3.81 (Construction of the Least Fixed Point) 89
Theorem 3.82 (Uniqueness of the Fixed Point in the Monitoring Semantics) 91
Lemma 3.83 (TeSSLa Monitoring Semantics is Scott-Continuous) 92
Definition 3.84 (Preserving Full Knowledge) 92
Lemma 3.85 (Relation Between TeSSLa Monitoring Semantics and TeSSLa

Semantics) . 93
Definition 3.86 (Maximal Refinement) . 93
Theorem 3.87 (TeSSLa Monitoring Semantics Produces Maximal Refine-

ment) . 94
Lemma 3.88 (Relation of Equivalence and Monitoring Equivalence) 95
Corollary 3.89 (Uniqueness of the Fixed Point in the Semantics) 95
Definition 3.90 (Segments of a Monitoring Stream up to a Timestamp) . . 96
Definition 3.91 (Future Independence) . 96
Lemma 3.94 (TeSSLa Monitoring Semantics is Future Independent) 99
Definition 3.95 (Timestamp Conservative) 100
Definition 3.96 (Timestamp-Conservative TeSSLa) 100
Lemma 3.97 (Timestamp-Conservative TeSSLa is Timestamp Conservative)100
Lemma 3.98 (Expressiveness of Timestamp Conservative TeSSLa) 100
Lemma 3.99 (Expressiveness of TeSSLa) 101
Definition 3.100 (Behavioural Equivalence) 102
Lemma 3.101 (Behavioural Equivalence of Scott-Continuous Functions) . . 102
Theorem 3.102 (Expressiveness of TeSSLa) 103

Definition 4.1 (Progress of a Monitoring Stream) 107
Lemma 4.2 (Future Independence Preserves Progress) 108

360

List of Definitions and Theorems

Definition 4.3 (Synchronised Stream) . 109
Definition 4.4 (Progress of a Synchronised Stream) 110
Definition 4.5 (Abstraction Function for Synchronised Streams) 110
Definition 4.6 (Concretisation Function for Synchronised Streams) 111
Lemma 4.7 (Abstraction Preserves Progress) 111
Definition 4.9 (Functional View of Synchronised Streams) 112
Definition 4.10 (Prefix Relation on Synchronised Streams) 113
Lemma 4.11 (Galois Connection for Synchronised Streams) 113
Definition 4.13 (Semantics of the Synchronous Operator units) 115
Definition 4.14 (Semantics of the Synchronous Operator times) 115
Definition 4.15 (Semantics of the Synchronous Operator lifts) 116
Definition 4.16 (Semantics of the Synchronous Operator lasts) 116
Definition 4.17 (Semantics of the Synchronous Operator delays) 116
Definition 4.18 (Joined Operator Function) 118
Definition 4.19 (Closed Operator Function) 118
Definition 4.20 (Synchronised Monitoring Function) 119
Theorem 4.24 (Correctness of Synchronised Monitoring) 126
Corollary 4.25 (Synchronised Monitoring is an Abstraction of the Moni-

toring Semantics) . 126
Corollary 4.26 (Synchronised Monitoring is Behavioural Equivalent to the

Monitoring Semantics) . 127
Definition 4.27 (Imperative Algorithm for the Synchronised Monitoring

Function) . 128
Lemma 4.28 (Correctness of the Imperative Algorithm for the Synchro-

nised Monitoring Function) . 129
Definition 4.29 (Delayed and Immediate Inputs) 131
Definition 4.30 (Message-Passing Implementation of the Closed Operator

Function) . 131
Lemma 4.31 (Correctness of the Message-Passing Implementation of the

Closed Operator Function) . 132
Definition 4.32 (Linearising Implementation of the Closed Operator Func-

tion) . 132
Lemma 4.33 (Correctness of the Linearising Implementation of the Closed

Operator Function) . 132

Definition 5.1 (EPU Command) . 160
Definition 5.2 (EPU Network) . 160
Definition 5.3 (Well-Formed EPU Network) 161
Definition 5.6 (Forward Command) . 172
Definition 5.7 (Command for time) . 172
Definition 5.8 (Commands for slift(f) With a Unary Arithmetic Operation

f) . 172

361

List of Definitions and Theorems

Definition 5.9 (Commands for default) . 173
Definition 5.10 (Commands for merge) . 173
Definition 5.11 (Commands for last) . 174
Definition 5.12 (Commands for slift(f) With a Binary Arithmetic Opera-

tion f) . 175
Definition 5.13 (Commands for filter) . 175
Definition 5.14 (Commands for slift(ite)) 176
Definition 5.15 (Commands for Blocking last) 182
Theorem 5.16 . 188
Definition 5.20 (Semantics of the Operator foldLift) 204
Definition 5.21 (Commands for foldLift) . 204

Definition 6.2 (Abstract Monitoring Streams [CHL+18]) 213
Definition 6.3 (Timestamps of an Abstract Monitoring Stream) 214
Definition 6.4 (Progress of an Abstract Monitoring Stream) 214
Definition 6.6 (Abstraction Function for Abstract Monitoring Streams) . . 216
Definition 6.7 (Concretisation Function for Abstract Monitoring Streams) . 216
Definition 6.8 (Functional View of Synchronised Streams) 217
Definition 6.9 (Prefix Relation on Abstract Monitoring Streams [CHL+18]) 217
Lemma 6.10 (Galois Connection for Abstract Monitoring Streams) 218
Definition 6.12 (Semantics of the Abstract Operator unit# [CHL+18]) . . . 219
Definition 6.13 (Semantics of the Abstract Operator time# [CHL+18]) . . 219
Definition 6.14 (Semantics of the Abstract Operator lift# [CHL+18]) . . . 219
Definition 6.15 (Semantics of the Abstract Operator last# [CHL+18]) . . . 220
Definition 6.18 (Semantics of the Operator delayR) 223
Definition 6.19 (Progressing TeSSLa) . 223
Lemma 6.20 (Expressiveness of Progressing TeSSLa) 224
Definition 6.21 (Semantics of the Abstract Operator delayR# [CHL+18]) . 225
Lemma 6.24 (Perfectness of the Abstract TeSSLa Operators) 229
Definition 6.25 (TeSSLa Abstract Monitoring Semantics [CHL+18]) 229
Lemma 6.26 (Construction of the Least Fixed Point [CHL+18]) 230
Theorem 6.27 (Uniqueness of the Fixed Point [CHL+18]) 230
Theorem 6.28 (TeSSLa Abstract Monitoring Semantics is an Abstraction) 231
Definition 6.30 (Preserving Full Knowledge on Abstract Monitoring Streams)232
Lemma 6.31 (Relation Between the Abstract TeSSLa Monitoring Seman-

tics and the TeSSLa Semantics) . 233
Corollary 6.32 (Equivalence of Abstract TeSSLa Specifications) 234

Definition 7.2 (Semantics of the Abstract Operator delayR‡) 241
Definition 7.3 (Semantics of the Abstract Operator last‡) 242
Definition 7.5 (Adjusted TeSSLa Abstract Monitoring Semantics) 243
Definition 7.6 (Extended Time Domain) 244

362

List of Definitions and Theorems

Definition 7.7 (Channel) . 244
Definition 7.8 (Channel Operator) . 245
Definition 7.9 (Operator Network) . 245
Definition 7.10 (Scheduling) . 245
Definition 7.12 (Operator Network Function) 246
Definition 7.13 (Channel Operator for unit#) 247
Definition 7.14 (Channel Operator for time#) 248
Definition 7.15 (Channel Operator for Unary lift#(f)) 248
Definition 7.16 (Channel Operator for binary lift#(f)) 249
Definition 7.17 (Channel Operator for last‡) 250
Definition 7.18 (Channel Operator for delayR‡) 251
Lemma 7.19 (Correctness of the TeSSLa Channel Operators) 252
Definition 7.20 (Translating TeSSLa Specifications to Operator Networks) 253
Definition 7.21 (Synchronising Operator Network) 253
Lemma 7.22 (TeSSLa’s Operator Networks are Synchronising) 253
Definition 7.23 (Progress of a Channel) . 254
Definition 7.24 (Progress Passing Channel Operators) 254
Definition 7.25 (Progress Consuming Channel Operators) 254
Lemma 7.26 (TeSSLa’s Channel Operators are Progress Passing and Con-

suming) . 254
Definition 7.27 (Progress Increasing Channel Operators) 255
Lemma 7.28 (Channel Operators for last‡ and delayR‡ are Progress In-

creasing) . 255
Theorem 7.29 (TeSSLa Operator Networks are Correct) 255
Definition 7.30 (Equivalence of TeSSLa Specifications Regarding Times-

tamps) . 271
Definition 7.31 (Subsumption of TeSSLa Specification) 272
Definition 7.32 (Dependent Streams) . 273
Definition 7.33 (Connected Cycles) . 273

363

Bibliography

[ABL95] Pascalin Amagbégnon, Loïc Besnard, and Paul Le Guernic. Implemen-
tation of the data-flow synchronous language SIGNAL. In PLDI, pages
163–173. ACM, 1995.

[AC03] Arvind and David E. Culler. Dataflow architectures. Annual Review of
Computer Science, 1:225–253, 11 2003.

[ACM02] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expres-
sions. J. ACM, 49(2):172–206, 2002.

[AFR16] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular pro-
gramming for quantitative properties of data streams. In ESOP, vol-
ume 9632 of Lecture Notes in Computer Science, pages 15–40. Springer,
2016.

[AJ94] Samson Abramsky and Achim Jung. Domain theory. In Samson Abram-
sky, Dov M. Gabbay, and T. S. E. Maibaum, editors, Handbook of logic
in computer science, volume 3. Clarendon Press, 1994.

[AMHM02] Guido Araujo, Sharad Malik, Zhining Huang, and Nahri Moreano. Dat-
apath merging and interconnection sharing for reconfigurable architec-
tures. In ISSS, pages 38–43. ACM / IEEE Computer Society, 2002.

[AUT17] AUTOSAR. Specification of Timing Extensions. Technical report, AU-
TOSAR, 2017.

[Bak20] Denis Bakhvalov. Benchmarking: compare measurements and check
which is faster. https://easyperf.net/blog/2019/12/30/
Comparing-performance-measurements, January 2020. [On-
line; accessed 04.12.2020].

[BB18] Jürgen Becker and Falco K. Bapp. The aramis project initiative - multi-
core systems in safety- and mixed-critical applications. In ARC, volume
10824 of Lecture Notes in Computer Science, pages 685–699. Springer,
2018.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-
wachs, Paul Le Guernic, and Robert de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE, 91(1):64–83, 2003.

365

https://easyperf.net/blog/2019/12/30/Comparing-performance-measurements
https://easyperf.net/blog/2019/12/30/Comparing-performance-measurements

Bibliography

[Ber00a] Gérard Berry. The Esterel v5 language primer. Centre de mathéma-
tiques appliquées, Ecole des mines and INRIA, 2000.

[Ber00b] Gérard Berry. The foundations of esterel. In Gordon D. Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language, and Interaction,
Essays in Honour of Robin Milner, pages 425–454. The MIT Press,
2000.

[Ber07] Gérard Berry. Scade: Synchronous design and validation of embedded
control software. In S. Ramesh and Prahladavaradan Sampath, editors,
Next Generation Design and Verification Methodologies for Distributed
Embedded Control Systems, pages 19–33. Springer Netherlands, 2007.

[Ber16] Gerard Berry. Formally unifying modeling and design for embedded
systems - A personal view. In ISoLA (2), volume 9953 of Lecture
Notes in Computer Science, pages 134–149, 2016.

[BFKS20] Jan Baumeister, Bernd Finkbeiner, Matthis Kruse, and Maximilian
Schwenger. Automatic optimizations for stream-based monitoring lan-
guages. In RV, volume 12399 of Lecture Notes in Computer Science,
pages 451–461. Springer, 2020.

[BFS+20] Jan Baumeister, Bernd Finkbeiner, Sebastian Schirmer, Maximilian
Schwenger, and Christoph Torens. Rtlola cleared for take-off: Monitor-
ing autonomous aircraft. In CAV (2), volume 12225 of Lecture Notes
in Computer Science, pages 28–39. Springer, 2020.

[BFST19] Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem
Torfah. FPGA stream-monitoring of real-time properties. ACM Trans.
Embed. Comput. Syst., 18(5s):88:1–88:24, 2019.

[BFST20] Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem
Torfah. FPGA stream-monitoring of real-time properties. CoRR,
abs/2003.12477, 2020.

[BG92] Gérard Berry and Georges Gonthier. The esterel synchronous program-
ming language: Design, semantics, implementation. Sci. Comput. Pro-
gram., 19(2):87–152, 1992.

[BHW+13] Rico Backasch, Christian Hochberger, Alexander Weiss, Martin
Leucker, and Richard Lasslop. Runtime verification for multicore soc
with high-quality trace data. ACM Trans. Design Autom. Electr. Syst.,
18(2):18:1–18:26, 2013.

366

Bibliography

[BJK+05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker,
and Alexander Pretschner, editors. Model-Based Testing of Reactive
Systems, Advanced Lectures [The volume is the outcome of a research
seminar that was held in Schloss Dagstuhl in January 2004], volume
3472 of Lecture Notes in Computer Science. Springer, 2005.

[BKH17] Mohamed Recem Boussaha, Raphaël Khoury, and Sylvain Hallé. Mon-
itoring of security properties using beepbeep. In FPS, volume 10723 of
Lecture Notes in Computer Science, pages 160–169. Springer, 2017.

[BL12] Alexander Brant and Guy G. F. Lemieux. ZUMA: an open FPGA
overlay architecture. In FCCM, pages 93–96. IEEE Computer Society,
2012.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime
verification for LTL and TLTL. ACM Trans. Softw. Eng. Methodol.,
20(4):14:1–14:64, 2011.

[BM76] J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory with Appli-
cations. Macmillan Education UK, 1976.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerland,
and Michael Stal. Pattern-Oriented Software Architecture, A System of
Patterns. Wiley, 1996.

[BPR10] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes
and Automata, volume 129 of Encyclopedia of mathematics and its ap-
plications. Cambridge University Press, 2010.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Inter-
active Systems - Focus on Streams, Interfaces, and Refinement. Mono-
graphs in Computer Science. Springer, 2001.

[BS14] Laura Bozzelli and César Sánchez. Foundations of boolean stream run-
time verification. In RV, volume 8734 of Lecture Notes in Computer
Science, pages 64–79. Springer, 2014.

[BS16] Laura Bozzelli and César Sánchez. Foundations of boolean stream run-
time verification. Theor. Comput. Sci., 631:118–138, 2016.

[Buc20] Thiemo Bucciarelli. Synthesis of stream-based monitors on fpgas. Mas-
ter’s thesis, Universität zu Lübeck, 2020.

[BVR+12] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
Chisel: constructing hardware in a scala embedded language. In DAC,
pages 1216–1225. ACM, 2012.

367

Bibliography

[CA13] Davor Capalija and Tarek S. Abdelrahman. A high-performance overlay
architecture for pipelined execution of data flow graphs. In FPL, pages
1–8. IEEE, 2013.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or ap-
proximation of fixpoints. In Robert M. Graham, Michael A. Harrison,
and Ravi Sethi, editors, Conference Record of the Fourth ACM Sympo-
sium on Principles of Programming Languages, Los Angeles, California,
USA, January 1977, pages 238–252. ACM, 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frame-
works. J. Log. Comput., 2(4):511–547, 1992.

[CFM+97] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger,
Robert Wilson, and Mario Wolczko. Compiling java just in time. IEEE
Micro, 17(3):36–43, 1997.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model check-
ing. The MIT Press, 1999.

[CGS20] Martín Ceresa, Felipe Gorostiaga, and César Sánchez. Declarative
stream runtime verification (hlola). In APLAS, volume 12470 of Lecture
Notes in Computer Science, pages 25–43. Springer, 2020.

[CHL+18] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Schef-
fel, Malte Schmitz, and Daniel Thoma. Tessla: Temporal stream-based
specification language. In SBMF, volume 11254 of Lecture Notes in
Computer Science, pages 144–162. Springer, 2018.

[CHS+18] Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte
Schmitz, Daniel Thoma, and Alexander Weiss. Hardware-based run-
time verification with embedded tracing units and stream processing.
In RV, volume 11237 of Lecture Notes in Computer Science, pages 43–
63. Springer, 2018.

[CKNZ11] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani.
Model checking and the state explosion problem. In Bertrand Meyer
and Martin Nordio, editors, Tools for Practical Software Verification,
LASER, International Summer School 2011, Elba Island, Italy, Revised
Tutorial Lectures, volume 7682 of Lecture Notes in Computer Science,
pages 1–30. Springer, 2011.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lus-
tre: A declarative language for programming synchronous systems. In
POPL, pages 178–188. ACM Press, 1987.

368

Bibliography

[CPP05] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A conservative
extension of synchronous data-flow with state machines. In EMSOFT,
pages 173–182. ACM, 2005.

[Dav19] Adam L. Davis. Reactive streams in Java. Apress, 2019.

[DDG+18] Normann Decker, Boris Dreyer, Philip Gottschling, Christian
Hochberger, Alexander Lange, Martin Leucker, Torben Scheffel, Simon
Wegener, and Alexander Weiss. Online analysis of debug trace data for
embedded systems. In DATE, pages 851–856. IEEE, 2018.

[DG88] Jack B. Dennis and Guang R. Gao. An efficient pipelined dataflow
processor architecture. In SC, pages 368–373. IEEE Computer Society,
1988.

[DG10] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data pro-
cessing tool. Commun. ACM, 53(1):72–77, 2010.

[DGH+17] Normann Decker, Philip Gottschling, Christian Hochberger, Martin
Leucker, Torben Scheffel, Malte Schmitz, and Alexander Weiss. Rapidly
adjustable non-intrusive online monitoring for multi-core systems. In
SBMF, volume 10623 of Lecture Notes in Computer Science, pages
179–196. Springer, 2017.

[DLT16] Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring mod-
ulo theories. Int. J. Softw. Tools Technol. Transf., 18(2):205–225, 2016.

[DM74] Jack B. Dennis and David Misunas. A preliminary architecture for a
basic data flow processor. In ISCA, pages 126–132. ACM, 1974.

[DMB+12] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu
Grosu, and Scott A. Smolka. On temporal logic and signal processing.
In ATVA, volume 7561 of Lecture Notes in Computer Science, pages
92–106. Springer, 2012.

[DMF12] Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A compressed
database for time series. In TMA, volume 7189 of Lecture Notes in
Computer Science, pages 143–156. Springer, 2012.

[DSS+05] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robin-
son, Bernd Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar
Manna. LOLA: runtime monitoring of synchronous systems. In TIME,
pages 166–174. IEEE Computer Society, 2005.

[EGN18] Benjamin J Evans, James Gough, and Chris Newland. Optimizing
Java: Practical Techniques for Improving JVM Application Perfor-
mance. O’Reilly Media, 2018.

369

Bibliography

[EH97] Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP,
pages 263–273. ACM, 1997.

[EKMS93] Marcel Erné, Jürgen Koslowski, Austin Melton, and George E Strecker.
A primer on galois connections. Annals of the New York Academy of
Sciences, 704(1):103–125, 1993.

[Eld18] Schuyler Eldridge. What benefits does chisel offer over classic
hardware description languages? https://stackoverflow.
com/questions/53007782/what-benefits-does-chisel-
offer-over-classic-hardware-description-languages,
October 2018. [Online; accessed 24.06.2021].

[FFS+19] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximil-
ian Schwenger, Marvin Stenger, Leander Tentrup, and Hazem Tor-
fah. Streamlab: Stream-based monitoring of cyber-physical systems.
In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages
421–431. Springer, 2019.

[FFST16] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem
Torfah. A stream-based specification language for network monitoring.
In RV, volume 10012 of Lecture Notes in Computer Science, pages 152–
168. Springer, 2016.

[FOPS20] Bernd Finkbeiner, Stefan Oswald, Noemi Passing, and Maximilian
Schwenger. Verified rust monitors for lola specifications. In RV, volume
12399 of Lecture Notes in Computer Science, pages 431–450. Springer,
2020.

[GDPM13] Arda Goknil, Julien DeAntoni, Marie-Agnès Peraldi-Frati, and Frédéric
Mallet. Tool support for the analysis of TADL2 timing constraints using
timesquare. In 2013 18th International Conference on Engineering of
Complex Computer Systems, Singapore, July 17-19, 2013, pages 145–
154. IEEE Computer Society, 2013.

[GH01] Dimitra Giannakopoulou and Klaus Havelund. Automata-based veri-
fication of temporal properties on running programs. In ASE, pages
412–416. IEEE Computer Society, 2001.

[GH17] Philip Gottschling and Christian Hochberger. Reep: A toolset for gen-
eration and programming of reconfigurable datapaths for event pro-
cessing. In 2017 IEEE International Parallel and Distributed Process-
ing Symposium Workshops, IPDPS Workshops 2017, Orlando / Buena
Vista, FL, USA, May 29 - June 2, 2017, pages 141–149. IEEE Computer
Society, 2017.

370

https://stackoverflow.com/questions/53007782/what-benefits-does-chisel-offer-over-classic-hardware-description-languages
https://stackoverflow.com/questions/53007782/what-benefits-does-chisel-offer-over-classic-hardware-description-languages
https://stackoverflow.com/questions/53007782/what-benefits-does-chisel-offer-over-classic-hardware-description-languages

Bibliography

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[GHS11] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankar-
alingam. Dynamically specialized datapaths for energy efficient com-
puting. In HPCA, pages 503–514. IEEE Computer Society, 2011.

[GL87] Thierry Gautier and Paul Le Guernic. SIGNAL: A declarative language
for synchronous programming of real-time systems. In FPCA, volume
274 of Lecture Notes in Computer Science, pages 257–277. Springer,
1987.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley, 1983.

[GS21] Felipe Gorostiaga and César Sánchez. Hlola: a very functional tool for
extensible stream runtime verification. In TACAS (2), volume 12652
of Lecture Notes in Computer Science, pages 349–356. Springer, 2021.

[GSM+99] Seth Copen Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu,
Srihari Cadambi, R. Reed Taylor, and Ronald Laufer. Piperench: A
coprocessor for streaming multimedia acceleration. In ISCA, pages 28–
39. IEEE Computer Society, 1999.

[GT05] Michael Grottke and Kishor S Trivedi. A classification of software faults.
Journal of Reliability Engineering Association of Japan, 27(7):425–438,
2005.

[Hal05] Nicolas Halbwachs. A synchronous language at work: the story of lustre.
In MEMOCODE, pages 3–11. IEEE Computer Society, 2005.

[Han18] James W. Hanlon. Writing synthesizable verilog. https:
//jameswhanlon.com/writing-synthesizable-verilog.
html, May 2018. [Online; accessed 15.01.2021].

[HB85] Paul Hudak and Adrienne G. Bloss. The aggregate update problem
in functional programming systems. In POPL, pages 300–314. ACM
Press, 1985.

[HK08] Ali R. Hurson and Krishna M. Kavi. Dataflow computers: Their history
and future. In Wiley Encyclopedia of Computer Science and Engineer-
ing. John Wiley & Sons, Inc., 2008.

[HK17] Sylvain Hallé and Raphaël Khoury. Event stream processing with beep-
beep 3. In RV-CuBES, volume 3 of Kalpa Publications in Computing,
pages 81–88. EasyChair, 2017.

371

https://jameswhanlon.com/writing-synthesizable-verilog.html
https://jameswhanlon.com/writing-synthesizable-verilog.html
https://jameswhanlon.com/writing-synthesizable-verilog.html

Bibliography

[HK18] Sylvain Hallé and Raphaël Khoury. Writing domain-specific languages
for beepbeep. In RV, volume 11237 of Lecture Notes in Computer Sci-
ence, pages 447–457. Springer, 2018.

[HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to automata theory, languages, and computation, 3rd Edition. Pearson
international edition. Addison-Wesley, 2007.

[HN03] Jerker Hammarberg and Simin Nadjm-Tehrani. Development of safety-
critical reconfigurable hardware with esterel. Electron. Notes Theor.
Comput. Sci., 80:219–234, 2003.

[HR01] Klaus Havelund and Grigore Rosu. Monitoring programs using rewrit-
ing. In ASE, pages 135–143. IEEE Computer Society, 2001.

[HR02] Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety
properties. In TACAS, volume 2280 of Lecture Notes in Computer
Science, pages 342–356. Springer, 2002.

[HRR91] Nicolas Halbwachs, Pascal Raymond, and Christophe Ratel. Generat-
ing efficient code from data-flow programs. In PLILP, volume 528 of
Lecture Notes in Computer Science, pages 207–218. Springer, 1991.

[Hug89] John Hughes. Why functional programming matters. Comput. J.,
32(2):98–107, 1989.

[Hut99] Graham Hutton. A tutorial on the universality and expressiveness of
fold. J. Funct. Program., 9(4):355–372, 1999.

[IKL+17] Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie
Wang, Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley,
Jim Lawson, and Jonathan Bachrach. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks, and transfor-
mations. In ICCAD, pages 209–216. IEEE, 2017.

[JBG+15] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang
Nguyen, and Dejan Nickovic. From signal temporal logic to FPGA
monitors. In MEMOCODE, pages 218–227. IEEE, 2015.

[JBGN16] Stefan Jaksic, Ezio Bartocci, Radu Grosu, and Dejan Nickovic. Quan-
titative monitoring of STL with edit distance. In RV, volume 10012 of
LNCS, pages 201–218. Springer, 2016.

[Kal19] Hannes Kallwies. Efficient code generation for stream-based specifica-
tions. Master’s thesis, Universität zu Lübeck, 2019.

[KL19] Agus Kurniawan and Wely Lau. Practical Azure Functions. Apress,
2019.

372

Bibliography

[Kle56] Stephen C Kleene. Representation of events in nerve nets and finite
automata. Automata studies, 34:3–41, 1956.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, volume 1241 of Lecture Notes in
Computer Science, pages 220–242. Springer, 1997.

[KLS+22] Hannes Kallwies, Martin Leucker, Torben Scheffel, Malte Schmitz, and
Daniel Thoma. Aggregate update problem for multi-clocked dataflow
languages. In CGO, pages 79–91. IEEE, 2022.

[KVB+99] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath
Kannan, Insup Lee, and Oleg Sokolsky. Formally specified monitoring
of temporal properties. In ECRTS, pages 114–122. IEEE Computer
Society, 1999.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In CGO, pages 75–88.
IEEE Computer Society, 2004.

[Lam02] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools
for Hardware and Software Engineers. Addison-Wesley, 2002.

[Lar14] Staffan Larsen. JDK-8040140: System.nanoTime() is slow and
non-monotonic on OS X. https://bugs.openjdk.java.net/
browse/JDK-8040140, April 2014. [Online; accessed 24.02.2022].

[Lat02] Chris Lattner. Llvm: An infrastructure for multi-stage optimization.
Master’s thesis, University of Illinois at Urbana-Champaign, 2002.

[Lat12] Chris Lattner. Llvm. In Amy Brown and Greg Wilson, editors, The
Architecture of Open Source Applications. lulu.com, 2012.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime
verification. J. Log. Algebraic Methods Program., 78(5):293–303, 2009.

[LSS+18] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and
Alexander Schramm. Tessla: runtime verification of non-synchronized
real-time streams. In SAC, pages 1925–1933. ACM, 2018.

[LSS+19] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and
Daniel Thoma. Runtime verification for timed event streams with par-
tial information. In RV, volume 11757 of Lecture Notes in Computer
Science, pages 273–291. Springer, 2019.

373

https://bugs.openjdk.java.net/browse/JDK-8040140
https://bugs.openjdk.java.net/browse/JDK-8040140

Bibliography

[LSS+20] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and
Alexander Schramm. Runtime verification of real-time event streams
under non-synchronized arrival. Softw. Qual. J., 28(2):745–787, 2020.

[Mar03] George Marsaglia. Xorshift RNGs. Journal of Statistical Software,
8(14):1–6, 2003.

[Max04] Clive Maxfield. The design warrior’s guide to FPGAs: devices, tools
and flows. Elsevier, 2004.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of
continuous signals. In FORMATS/FTRTFT, volume 3253 of Lecture
Notes in Computer Science, pages 152–166. Springer, 2004.

[Mos07] Pieter J. Mosterman. Hybrid dynamic systems. In Paul A. Fishwick, ed-
itor, Handbook of Dynamic System Modeling. Chapman and Hall/CRC,
2007.

[MRS17] Patrick Moosbrugger, Kristin Y. Rozier, and Johann Schumann. R2U2:
monitoring and diagnosis of security threats for unmanned aerial sys-
tems. Formal Methods in System Design, 51(1):31–61, 2017.

[Mye04] Glenford J. Myers. The art of software testing (2. ed.). Wiley, 2004.

[Ore44] Oystein Ore. Galois connexions. Transactions of the American Mathe-
matical Society, 55(3):493–513, 1944.

[Ort05] Jorge L. Ortega-Arjona. The pipes and filters pattern. A functional par-
allelism architectural pattern for parallel programming. In EuroPLoP,
pages 637–650. UVK - Universitaetsverlag Konstanz, 2005.

[Pac18] Vinicius Feitosa Pacheco. Microservice Patterns and Best Practices:
Explore patterns like CQRS and event sourcing to create scalable, main-
tainable, and testable microservices. Packt Publishing Ltd, 2018.

[PC90] Gregory M. Papadopoulos and David E. Culler. Monsoon: An explicit
token-store architecture. In ISCA, pages 82–91. ACM, 1990.

[PEB07] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry.
Compiling Esterel. Springer, 2007.

[PF11] Terence Parr and Kathleen Fisher. Ll(*): the foundation of the ANTLR
parser generator. In PLDI, pages 425–436. ACM, 2011.

[PGMN10] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copi-
lot: A hard real-time runtime monitor. In RV, volume 6418 of Lecture
Notes in Computer Science, pages 345–359. Springer, 2010.

374

Bibliography

[PMCR08] Rodolfo Pellizzoni, Patrick O’Neil Meredith, Marco Caccamo, and Grig-
ore Rosu. Hardware runtime monitoring for dependable cots-based real-
time embedded systems. In Proceedings of the 29th IEEE Real-Time
Systems Symposium, RTSS 2008, Barcelona, Spain, 30 November - 3
December 2008, pages 481–491. IEEE Computer Society, 2008.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE Computer Society, 1977.

[PQ95] Terence John Parr and Russell W. Quong. ANTLR: A predicated-
LL(k) parser generator. Softw. Pract. Exp., 25(7):789–810, 1995.

[PS14] Thomas B. Preußer and Rainer G. Spallek. Ready pcie data streaming
solutions for fpgas. In FPL, pages 1–4. IEEE, 2014.

[PSG+14] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre
Siron. The ROSACE case study: From simulink specification to
multi/many-core execution. In RTAS, pages 309–318. IEEE Computer
Society, 2014.

[RFB14] Thomas Reinbacher, Matthias Függer, and Jörg Brauer. Runtime ver-
ification of embedded real-time systems. Formal Methods in System
Design, 44(3):203–239, 2014.

[RH91] Frédéric Rocheteau and Nicolas Halbwachs. Implementing reactive pro-
grams on circuits: A hardware implementation of LUSTRE. In REX
Workshop, volume 600 of Lecture Notes in Computer Science, pages
195–208. Springer, 1991.

[RRS14] Thomas Reinbacher, Kristin Yvonne Rozier, and Johann Schumann.
Temporal-logic based runtime observer pairs for system health man-
agement of real-time systems. In Erika Ábrahám and Klaus Havelund,
editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems - 20th International Conference, TACAS 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, volume
8413 of Lecture Notes in Computer Science, pages 357–372. Springer,
2014.

[Sch20] Torben Scheffel. Expressiveness and Complexity of Stream-based Speci-
fication Languages. PhD thesis, Universität zu Lübeck, 2020.

[SJN+17] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl,
Udo Hafner, Ezio Bartocci, Dejan Nickovic, and Radu Grosu. Runtime

375

Bibliography

monitoring with recovery of the SENT communication protocol. In Ru-
pak Majumdar and Viktor Kuncak, editors, Computer Aided Verifica-
tion - 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part I, volume 10426 of Lecture Notes
in Computer Science, pages 336–355. Springer, 2017.

[SKK+99] Oleg Sokolsky, Sampath Kannan, Moonjoo Kim, Insup Lee, and Ma-
hesh Viswanathan. Steering of real-time systems based on monitoring
and checking. In WORDS (Fall), pages 11–18. IEEE Computer Society,
1999.

[SLD12] Aaron Spear, Markus Levy, and Mathieu Desnoyers. Using tracing to
solve the multicore system debug problem. Computer, 45(12):60–64,
2012.

[SLG94] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor.
Mathematical theory of domains, volume 22 of Cambridge tracts in the-
oretical computer science. Cambridge University Press, 1994.

[SMR15] Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier. R2U2:
monitoring and diagnosis of security threats for unmanned aerial sys-
tems. In Ezio Bartocci and Rupak Majumdar, editors, Runtime Ver-
ification - 6th International Conference, RV 2015 Vienna, Austria,
September 22-25, 2015. Proceedings, volume 9333 of Lecture Notes in
Computer Science, pages 233–249. Springer, 2015.

[SRU99] Jurij Silc, Borut Robic, and Theo Ungerer. Processor architecture -
from dataflow to superscalar and beyond. Springer, 1999.

[Ste18] Rachel Stephens. The state of the time series database mar-
ket. https://redmonk.com/rstephens/2018/04/03/the-
state-of-the-time-series-database-market/, April 2018.
[Online; accessed 10.03.2022].

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific journal of Mathematics, 5(2):285–309, 1955.

[Tho68] Ken Thompson. Regular expression search algorithm. Commun. ACM,
11(6):419–422, 1968.

[Vee86] Arthur H. Veen. Dataflow machine architecture. ACM Comput. Surv.,
18(4):365–396, December 1986.

[Ven98] Bill Venners. Inside the Java Virtual Machine. Mcgraw-Hill, 1998.

[Weia] Alexander Weiss. Event Processing. US 2021081145 A1, March 18,
2021.

376

https://redmonk.com/rstephens/2018/04/03/the-state-of-the-time-series-database-market/
https://redmonk.com/rstephens/2018/04/03/the-state-of-the-time-series-database-market/

Bibliography

[Weib] Alexander Weiss. Event Processing. EP 3792767 A1, March 17, 2021.

[WGJ+21] Alexander Weiss, Smitha Gautham, Athira Varma Jayakumar, Carl R.
Elks, D. Richard Kuhn, Raghu N. Kacker, and Thomas B. Preußer.
Understanding and fixing complex faults in embedded cyberphysical
systems. Computer, 54(1):49–60, 2021.

[WLa] Alexander Weiss and Alexander Lange. Trace-Data Processing and
Profiling Device. US 9286186 B2, March 15, 2016.

[WLb] Alexander Weiss and Alexander Lange. Trace-Data Processing and
Profiling Device. EP 2873983 A1, May 20, 2015.

[XILa] XILINX. 7 Series FPGAs Configurable Logic Block: User Guide.
UG474 (v1.8) September 27, 2016.

[XILb] XILINX. UltraScale Architecture Configurable Logic Block: User
Guide. UG574 (v1.5) February 28, 2017.

[XILc] XILINX. Vivado Design Suite: AXI Reference Guide. UG1037 (v4.0)
July 15, 2017.

[XILd] XILINX. Vivado Design Suite: FIFO Generator, LogiCORE IP Prod-
uct Guide. PG057 (v13.1) April 5, 2017.

[XILe] XILINX. Vivado Design Suite User Guide: Synthesis. UG901 (v2019.1)
June 12, 2019.

[ZJLS00] Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sas-
try. Dynamical systems revisited: Hybrid systems with zeno execu-
tions. In Nancy A. Lynch and Bruce H. Krogh, editors, Hybrid Systems:
Computation and Control, Third International Workshop, HSCC 2000,
Pittsburgh, PA, USA, March 23-25, 2000, Proceedings, volume 1790 of
Lecture Notes in Computer Science, pages 451–464. Springer, 2000.

377

	Acknowledgement
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Formalisms for Analysing Traces
	TeSSLa
	Contributions
	Outline
	Related Work

	Preliminaries
	TeSSLa
	Motivating Example
	Lifting Functions on the Data Domain to Streams
	Synchronisation of Events
	Filtering Events and Explicitly Handling the Absence of Events
	Timestamps, Previous Events and Event Creation
	Aggregating Data Along the Streams

	Semantics
	Streams
	Syntax
	Semantics
	Properties

	Common Derived Operators
	Operators Derived From lift
	Accessing Previous Values
	Signal Lift
	Default Values
	Recursive Equations
	Generating New Timestamps
	Implicit Type Conversions and Type Checking

	Design Choices
	Lifting Nested Functions
	Basic Operators
	Events and Signals
	Generating Zeno-Streams
	Memory Usage

	Monitoring
	Monitoring Streams
	Monitoring Semantics
	Examples
	Fixed Points in the Monitoring Semantics
	Relation to Semantics
	Maximal Refinement
	Fixed Points in the Semantics

	Expressiveness of TeSSLa
	Conclusion

	Interpreter and Software Compiler
	Semantics
	Progress
	Synchronised Streams
	Operator Functions
	Synchronised Monitoring Function
	Examples
	Correctness and Properties

	Implementation Concepts
	Imperative Algorithm for the Synchronised Monitoring Function
	Implementing the Closed Operator Function

	Interpreter
	Implementing the Closed Operator Function
	Implementing the Synchronised Monitoring Function
	Example
	Scala DSL

	Software Compiler
	Implementing the Synchronised Monitoring Function
	Implementing the Closed Operator Function
	Example
	Compiler Frontend

	Integration and Test Setup
	Trace Encoding
	Test Setup

	Conclusion

	TeSSLa on Embedded Procssing Units (EPUs)
	Data Flow Processors
	EPU Hardware
	Inner Pipeline

	Formal EPU model
	Execution of a single EPU
	Execution of an EPU Network
	Mapping Events to EPUs
	EPU Simulation

	EPU Commands for TeSSLa Operations
	Mapping the Dependency Graph on an EPU Network
	Example

	Recursion
	Example
	Expressiveness

	Fulfilling Hardware Restrictions
	Splitting Up EPU Commands
	Condition Configuration
	Placement of EPU Commands in the Network
	Enqueuing Commands

	Practical Simplifications
	Flow Graph Optimisations
	EPU Network Optimisations
	Translating Recursive Specifications

	Optimising Simple Recursions
	Integration and Test Setup
	Conclusion

	Implementing Asynchronous TeSSLa
	Abstract Monitoring Streams
	Abstract TeSSLa Operators
	Delay

	Abstract TeSSLa Semantics
	Quality of the TeSSLa Abstract Monitoring Semantics
	Equivalence of TeSSLa Specifications

	Conclusion

	FPGA Synthesis
	Finite Memory
	Operator Networks
	Translating TeSSLa to Operator Networks
	Imperative Semantics of the Operators
	Translating TeSSLa Specifications to Operator Networks
	Example
	Simplifications for Timestamp-Conservative Specifications

	Implementation Details
	Implementation of Channels
	Chisel
	Implementation of Channel Operators
	Implementation of Queues

	Tuplification Optimisation
	Timestamp Relations
	Dependencies
	Graph Transformations

	Integration and Test Setup
	Conclusion

	Evaluation
	Measurement Methods
	Event Generators
	Interpreter and Compiler
	EPUs
	FPGA Synthesis

	Real-World Specifications
	Specifications
	EPU Optimisation for Simple Recursions
	Backend Comparison

	Synthetic Specifications
	Specification Depth
	Recursion Depth
	Number of Inputs
	Summary

	Comparison of Workflows
	Conclusion

	Conclusion and Future Work
	Conclusion
	Outlook and Future Work

	Evaluation Appendix
	Specifications
	Generators
	Measurement Data
	Hardware Utilisation

	List of Figures
	List of Tables
	List of Definitions and Theorems
	Bibliography

