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1. General introduction 

The environment abounds with sensory information. For instance, having a conversation with 

a friend in a café, human listeners are surrounded by all the background noises such as the 

sizzling from the coffee machine or the chitchat from the strangers at the next table. The mental 

faculty to prioritize the task-relevant targets (e.g., a friend’s voice) while ignoring the task-

irrelevant distractors (e.g., chitchat from others) is referred to as selective attention (Desimone 

& Duncan, 1995). Given limited resources in the human brain, selective attention is crucial for 

successful performance in goal-directed tasks (e.g., successful communication with a friend). 

 The human brain is dynamic with moment-to-moment changes in its state of excitability 

(Bishop, 1932; M. X. Cohen, 2017). The oscillatory nature of the human brain is said to be 

instrumental to the selection of task-relevant targets. Research has suggested that the processing 

of task-irrelevant distractors may not be collateral but rather an independent process from the 

selection of targets (Gundlach et al., 2022; Wöstmann et al., 2019). How the dynamics of the 

brain correspond to the proneness to distractors, however, has been largely neglected in the 

literature. This thesis aims at filling this gap by examining how the endogenous (i.e., neural 

oscillations) or the exogenous (temporal or statistical regularities from the environment) 

dynamics explain the behavioural dynamics of the proneness to distraction. 

 

1.1 Selective attention 

The café scenario describes the “cocktail party” phenomenon, which set a milestone in the study 

of selective attention (Cherry, 1953). Broadbent’s filter theory of attention (1958) posited that 

selective attention functions as a selective filter, where the task-irrelevant information is filtered 

out based on basic physical features. Subsequently, different theories of the attentional filter 

have sprung regarding at which stage the distractors are filtered out (e.g., Deutsch & Deutsch, 

1963; Treisman, 1960; Yantis & Johnston, 1990). This thesis adopts the view that selective 

attention consists of multiple loci of filters at different levels, and the task-irrelevant distractors 

may be filtered out at any given stage of processing. In the following, I will briefly outline the 

early versus late selection debate for a comprehensive view of the theories of the attentiona l 

filter.  
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1.1.1 Hierarchy of the attentional filter 

The stage at which distractors are filtered out has long been debated in attentional filter ing 

research. The early selection view (Broadbent, 1958) holds that only basic properties of the 

unattended sounds, such as location (e.g., Hirsh, 1950; Poulton, 1953) and pitch (e.g.,  Cherry, 

1953; Egan et al., 1954; Spieth et al., 1954), are processed while the higher-order properties, 

such as the semantic features, are entirely filtered out. Studies examining attentional filter ing 

usually employed a dichotic listening task where participants were instructed to attend to one 

ear and ignore the other. In the seminal paper (Cherry, 1953), participants were able to identify 

the gender of the talker and whether the auditory input was a speech from the ignored ear. 

However, participants failed to report features such as the language of the ignored speech. 

Subsequent evidence in favour of the early selection view showed a poor memory recognit ion 

of the to-be-ignored items (Moray, 1959).  

The late selection view, on the other hand, posited that both targets and distractors are 

processed perceptually in parallel, and the selection process only takes place afterwards during 

the post-perceptual processes (Duncan, 1980). This view was based on empirical studies which 

showed inconsistency with the early selection view (e.g., Gray & Wedderburn, 1960; Peters, 

1954). For example, semantically similar distractors interfered with the attended targets more 

than semantically dissimilar distractors (Peters, 1954), demonstrating that the ignored 

distractors were processed on the semantic level at least to a certain degree. In Gray & 

Wedderburn (1960), instead of reporting the words and syllables from the attended side, 

participants reported a meaningful sentence that was interspersed between attended and ignored 

sequences. These studies suggest that the task-irrelevant stimuli are processed at least to some 

extent. 

To accommodate both the empirical evidence supporting the early and the late selection 

views, Treisman (1960, 1964) proposed the attenuation model. According to Treisman (1960, 

1964), instead of being completely filtered out, the task-irrelevant distractors are rather 

attenuated. Then, the distractors were filtered out based on the corresponding “threshold”. Thus, 

the selection of distractors may still be possible depending on how low the threshold is, which 

can be determined by factors such as the importance or familiarity of the input. For instance, 

one’s own name has a higher priority (Moray, 1959), and hence a lower threshold to pass 

through the attentional filter. Treisman’s theory modified the original theory of the attentiona l 

filter (Broadbent, 1958) by introducing flexibility in the filtering process.  
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Instead of siding with either early or late selection, the load theory of attention 

hypothesised that the locus of the attentional filter depends on the task demand, namely the 

perceptual load and cognitive load of the current task (Lavie, 1995, 2005; G. Murphy et al., 

2016). Specifically, distractors are filtered at an early stage if the perceptual load in the task-

relevant stimuli is sufficiently high. The perceptual load could be manipulated in different ways 

such as the number of items (e.g., Beck & Lavie, 2005; Lavie & De Fockert, 2003) or noise 

level (Gutteling et al., 2022). With high perceptual load, distractors are not processed and 

thereby do not interfere with the task-relevant selection process. On the other hand, with a low 

perceptual load, the human brain still has the capacity to process task-irrelevant distractors. 

Thus, in the low perceptual load condition, both the target and distractor can be processed 

perceptually. In such a case, the influence of the cognitive load would be evident. An increase 

in the working memory demand (e.g., the number of items held in working memory) would tax 

the cognitive control capacity, rendering it harder to suppress the interference of distractors. 

The distractor interference based on cognitive load is consistent with the late selection view 

where the post-perceptual process is engaged to filter out external distraction. 

 

1.1.2 The components of distraction 

Often in daily life, the relevant information is embedded in a multitude of irrelevant information. 

In these situations, human listeners need to both select the task-relevant target inputs (i.e., target 

selection) and suppress the task-irrelevant distractor inputs (i.e., distractor suppression) to 

achieve optimal goal-directed performance (Noonan et al., 2018). However, a search on the 

publications containing the search terms 

related to two constructs (target selection: 

“target enhancement” OR “target 

selection”; distractor suppression: 

“distractor suppression” OR “distractor 

inhibition” OR “distractor filtering” OR 

“noise suppression”) reveals a 

disproportional focus in the current body of 

literature leaning towards target selection 

(Figure 1.1).  

This thesis aims to provide evidence 

on the neglected side of the attentional filte r : 

Figure 1.1. Number of publications with the search terms related 

to target selection (white) and distractor suppression (blue) over 

the past 35 years. 
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the disruptive influence of external distractions. The final degree of distraction of the task-

irrelevant information depends on 1) the listener’s ability to suppress the anticipated distractor  

(i.e., distractor suppression), and 2) the listener’s general proneness to distraction (i.e., 

distractibility). Several reviews have attempted to provide a theoretical framework of 

distraction as a backbone for empirical investigations (Geng, 2014; Noonan et al., 2018; 

Schneider et al., 2021). However, the taxonomy in the current distraction literature regarding 

the different components of distraction has not been well defined. To anchor this thesis in the 

current literature, I will here briefly review different components of distraction and provide the 

rationale for the use of terminology in this thesis. Of note, this section mainly focuses on 

distractor suppression and distractibility; other factors contributing to distraction, such as 

distractor strength and attentional capture, are not discussed here (for a review on attentiona l 

capture, see Luck et al., 2021). 

 First, there are different forms of distractor suppression. The selective suppression or 

inhibition of the task-irrelevant distractors can involve reactive or proactive mechanism (Geng, 

2014). Reactive suppression refers to the inhibitory response to the distractor (Geng, 2014), 

which is particularly important when the distractor has the potency to capture attention (e.g., 

distractors with the salient feature). In Geng & DiQuattro (2010), when only the distractor was 

salient, participants were able to rapidly disengage from the processing of the salient distractor 

even when they made their first saccade towards the distractor. Distractor positivity (PD), a 

neural index used to study post-stimulus reactive distractor suppression, was larger with a faster 

target detection (Gaspar & McDonald, 2014; Jannati et al., 2013). On the other hand, proactive 

suppression describes the preparatory inhibition of the upcoming distractor (Noonan et al., 2018; 

van Moorselaar & Slagter, 2020). Proactive suppression takes place when the distractors are 

anticipated. One major neural correlate of preparatory distractor inhibition is the alpha 

oscillatory power (Schneider et al., 2021). For instance, the posterior alpha power increased 

with anticipated distractors that were more similar to the to-be-remembered targets (Bonnefond 

& Jensen, 2012). Alpha oscillatory power was also lateralised in spatial attention tasks, with a 

contralateral decrease and ipsilateral increase in alpha power to the attended side (Haegens et 

al., 2011; Kerlin et al., 2010; Worden et al., 2000). 

 Within the proactive suppression mechanism, there has been a debate regarding whether, 

and if so, to what extent is distractor suppression active (Noonan et al., 2018; Schneider et al., 

2021). Active suppression (or direct inhibition in Noonan et al., 2018) refers to distractor 

suppression independent of target selection, which was considered the flipside of target 
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enhancement. Automatic suppression (or secondary inhibition in Noonan et al., 2018), on the 

other hand, refers to the disengagement of distractor processing collateral to target enhancement. 

The major differentiation between the two could be manifested if a proper control condition 

was used: Instead of comparing directly between target enhancement and distractor suppression, 

the responses to the two conditions could be compared with a “neutral” condition where neither 

selection nor suppression is needed (Schneider et al., 2021). In the case of active suppression, 

a decrease in response to distractor suppression relative to the neutral condition should be 

observed. In the case of automatic suppression, there would be no difference between the 

distractor condition and the neutral condition.  

 Take alpha lateralisation as an example: The contralateral decrease in alpha power may 

lead to an ipsilateral increase via the interhemispheric inhibitory connection (Schneider et al., 

2021). To test whether there is an alpha power increase independent of target selection, 

Wöstmann et al. (2019) presented the target stimuli in front of the participants and the ignored 

stimuli on the side. The observation of alpha lateralisation without target-related alpha 

lateralisation supports the hypothesis that distractor suppression is independent of target  

selection. 

 Second, distractibility has been broadly defined as the general proneness to external 

distraction in the current body of literature. I use the word “broadly” here because the use of 

the term distractibility ranges from studies of individual traits (e.g., Forster & Lavie, 2016; 

Kanai et al., 2011), clinical diagnostics (e.g., Mayes & Calhoun, 2002), to the detrimenta l 

outcome with distractors in an experiment (e.g., Wais et al., 2012). Furthermore, distractibility 

has been related to numerous cognitive processes such as working memory capacity (Sörqvist 

& Rönnberg, 2014) and impulsivity (Amengual et al., 2022). While distractibility represents 

the proneness to distraction in all studies, the exact cognitive process of interest underlying such 

“proneness” varied from study to study. While some distractibility studies focused on the 

endogenous characteristics of individuals on a long temporal scale (e.g., Forster & Lavie, 2014), 

other studies assumed active suppression of distractors by equating distractibility with the 

ultimate detrimental influence of distraction (e.g., Gaymard et al., 2003; Wais et al., 2012). 

 In this thesis, I adopt the definition of distractibility in a strict sense as the endogenous 

proneness to external distraction. Under this definition, distractibility does not involve the 

inhibitory process specific to an anticipated distractor, in contrast with active suppression. It 

describes an endogenous characteristic of individuals that has the potential to fluctuate over 

time (K.L. Campbell et al., 2012; Forster & Lavie, 2014). Specifically, distractibility may be 
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subserved by the resolution of competition between goal-relevant information and potential 

external interference, which would involve cognitive control of working memory (Engle, 2002; 

Lavie, 2010; Sörqvist & Rönnberg, 2014). It may involve the mental capacity to store and 

prioritise information and has been associated with the frontal cortex (e.g., Chao & Knight, 

1995; Gaymard et al., 2003; Wais et al., 2012). However, as mentioned, a lot of previous studies 

on distractibility used post-stimulus neural measures (e.g., Bidet-Caulet et al., 2015; Chao & 

Knight, 1995) or the final behavioural detriments (e.g., Wais et al., 2012) as the dependent 

measure. These post-stimulus neural or behavioural responses may already include the active 

suppression of distractor. The inference of the neural and behavioural results to distractibility 

alone should thus be taken with caution.  

 As an interim summary regarding the many components which contribute to the ultimate 

distraction, I will go back to the café example with a twist: A puppy runs into the café when an 

individual is chatting with her friend. Distractibility determines how much she is susceptible to 

external unexpected distractions. If she is not so distractible, she may keep being engaged in 

the conversation with her friend without processing the entry of the puppy that much. If she is 

highly distractible, she may be immediately distracted by the unexpected puppy. Proactive 

distractor suppression occurs when she knows in advance that the puppy is coming, and she 

chooses to look away from the entrance. Reactive distractor suppression, on the other hand, 

occurs when she focuses back on the conversation with her friend after she processes the 

distracting puppy. Automatic suppression concerns the other distractors in the environment , 

such as the background music, which are left outside the focus of attention as she is chatting 

with her friend. The ultimate distraction, which can be indirectly measured as how much she 

has comprehended from her friend’s speech, is the consequence of the interplay between 

distractibility and distractor suppression.  

 

1.1.3 Distraction in working memory  

Attention and working memory are closely related to each other (Kiyonaga & Egner, 2013; 

Oberauer, 2019). While attentional filtering is said to be necessary for successful working 

memory encoding and maintenance (Lorenc et al., 2021; Oberauer, 2019), working memory 

may be important to attentional selection by holding relevant representations that control where 

a person directs her attention (A. Baddeley, 1996; de Fockert, 2013). Some researchers 

proposed that attention and working memory share a conceptual similarity in that both cognitive 

operations involve the selection of information, which is internal for working memory and 
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external for attention (Cowan, 2005; Kiyonaga & Egner, 2013; Panichello & Buschman, 2021). 

Given that the selection process, by definition, entails the deselection of task-irrelevant 

information, it is conceivable that the ability to ignore distractors is also important in working 

memory as in attentional selection. 

Working memory tasks were often used to study distraction (e.g., Colle & Welsh, 1976; 

West, 1999). One prominent example is the irrelevant sound task (Colle & Welsh, 1976; Salamé 

& Baddeley, 1982), in which participants are instructed to ignore auditory distractors while 

holding the order of the target numbers in memory, thereby rehearsing the target numbers in 

the phonological loop (Baddeley & Hitch, 1974). The irrelevant sound effect was quantified as 

the worsening of behavioural performance with the presence of auditory distractors.  The 

irrelevant sound effect was robust across different psycho-acoustic features of auditory 

distractors (Ellermeier & Zimmer, 2014), such as speech distractors (Buchner et al., 2004; 

Tremblay et al., 2000) or pure tone distractors (D. M. Jones & Macken, 1993; LeCompte et al., 

1997). Studies also demonstrated that the temporal information of the distractor (e.g., the 

temporal occurrence) modulates the working memory performance (Körner et al., 2019; 

Wöstmann et al., 2020). 

This thesis probes into the temporal dynamics of distraction by studying its disruptive 

influence on working memory. In particular, the first two studies manipulated the temporal 

onset (Study 1) or the temporal regularity in the onset (Study 2) of distractors presented during 

the maintenance phase of working memory, and the third study examined the influence of 

distractors presented simultaneously with the to-be-encoded targets (Study 3). The choice of 

paradigms, especially for Studies 1 and 2, is for practical reasons: if the target and the distractor 

are presented at the same time, changing the temporal information of the distractor will 

inevitably change the temporal relationship between the target and the distractor. It would be 

empirically difficult to isolate the temporal dynamics of target selection from distraction 

dynamics. Of note, it does not suggest that the phenomena examined in this thesis do not hold 

in a perceptual attention task or when target and distractor are presented simultaneously.  

 

1.1.4 Time as an important element of auditory attention 

Selective attention is commonly observed in both the visual (e.g., M. I. Posner et al., 1980; 

Theeuwes, 1993) and the auditory (Cherry, 1953; Shinn-Cunningham, 2008) modalities. Visual 

inputs and auditory inputs are said to be inherent in different dimensions: while visual inputs 



General introduction 

15 
 

are relatively stable, auditory inputs often change over time (Kubovy, 1988; Zoefel & 

VanRullen, 2017). For example, the coffee mug on the table stays in the same position over 

time unless someone moves it, but the music in the café keeps unfolding over time. The 

differences in the inherent properties of the sensory inputs may lead to a difference in the 

implementation of the attentional filter in the two modalities.  

Time is speculated to be an essential element of audition (Kubovy, 1988). From the 

regular ticking of a clock in the room, to auditory events that have a complex spectrotemporal 

structure such as speech (Ding et al., 2017), there is often a (quasi-)rhythmic structure in 

auditory events. Target selection depends on the successful object formation (Shinn-

Cunningham, 2008), which is largely based on the spectrotemporal structure in audition 

(Shamma et al., 2011), in contrast with the spatial configuration important in visual object 

formation (J. Feldman, 2003). Note that the notion of a bias to space or time in the two 

modalities does not suggest that vision is strictly spatial and audition strictly temporal. Rather, 

it suggests that the two systems may be biased in response to temporal or spatial manipulat ions 

(Wilsch et al., 2020).   

In auditory selective attention, there are mainly two types of interference an auditory 

distractor can impose on target selection (Mattys et al., 2012; Shinn-Cunningham, 2008). 

Energetic masking occurs when two auditory inputs are presented concurrently. The overlap of 

the auditory inputs decreases the intelligibility of the to-be-attended input. An example of 

energetic masking includes the classic dichotic listening task used to study attentional filter ing 

(e.g., Cherry, 1953; Moray, 1959). Information masking describes the disruptive influence of 

the distractors that cannot be attributed to energetic masking, which includes factors such as 

semantic interference (Cooke et al., 2008) and distractor uncertainty (Brungart & Simpson, 

2004). This thesis employed energetic masking and/or informational masking in different 

studies when appropriate. The choice of masking depends on the exact research question in 

each study.  

 

1.2 The brain dynamics in attentional filtering 

The brain activities are inherently rhythmic (Groppe et al., 2013; Keitel & Gross, 2016): the 

neuronal ensembles periodically fluctuate between higher and lower levels of excitability over 

time (Bishop, 1932; M. X. Cohen, 2017; Mitzdorf, 1985). Neural oscillations are suggested to 

be important to the orchestrations between regions of the neural network (Fries, 2015). There 
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has been a growing consensus that the inherent neural oscillations may play a critical role in 

cognition (Keitel et al., 2022; Schroeder & Lakatos, 2009). Specifically, studies showing 

modulation of neural oscillatory responses by different cognitive tasks suggest that neural 

oscillations may serve as the physiological implementation of cognition (Fries, 2015; Herweg 

et al., 2020; Ward, 2003). Here, I will introduce how the dynamics in the brain are associated 

with attentional selection to lay the groundwork for motivating how the following features of 

the dynamical brain may potentially be important to distraction. 

 

1.2.1 The blinking attentional spotlight  

The notion that rhythms of the brain are fundamental to the endogenous rhythms of cognition 

has gained traction in recent years. With the periodic fluctuations of neural excitability over 

time, there should be times when the brain is more ready to sample the external world (Bishop, 

1932; Keitel et al., 2022). The momentary phase of neural oscillations indexes the states of 

excitability, which may predict the alternation between sampling of the environment with 

higher or lower precision (VanRullen, 2016). If we densely probe the cognitive system across 

time with high enough temporal resolution, we will be able to capture a temporal profile of the 

underlying states of the cognitive system by observing temporal fluctuations of the related 

behavioural performance. 

Attention, which was long considered as a spotlight that shines constantly (M. I. Posner 

et al., 1980), has recently been hypothesised to be blinking over time (Buschman & Kastner, 

2015; VanRullen et al., 2007). The underlying state of attention was probed by varying the 

onset time of the target stimulus presented after a cue. Attentional sampling was found to wax 

and wane in a subsecond scale, with evidence from delta/theta frequency (ca. 2 – 8 Hz; 

Fiebelkorn et al., 2013; Kayser, 2019; Landau & Fries, 2012) to alpha frequency range (ca. 8 – 

12 Hz; Busch et al., 2009). Other than the sampling of external attended items, the sampling of 

internal memory representation also fluctuated in the theta frequency range (Schmid et al., 2022; 

ter Wal et al., 2021). The behavioural rhythms in attention and memory studies are proposed to 

originate from the orchestration of the relevant neural networks (Fiebelkorn et al., 2018; 

Fiebelkorn & Kastner, 2020), such as the frontoparietal network in attentional sampling 

(Helfrich et al., 2018) or the hippocampus in the sampling of internal memory representation 

(ter Wal et al., 2021). Nevertheless, researchers have questioned the reliability of the 

behavioural rhythms of attention with studies showing small (e.g., Plöchl et al., 2022) or even 
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null results (e.g., van der Werf et al., 2022) of temporal dynamics in cognition (Ten Oever et 

al., 2022). 

A prediction central to the notion of rhythmic cognition is that the fluctuations of neural 

excitability at the relevant brain regions before stimulus onset would predict the fluctuations in 

behavioural performance (VanRullen, 2016; VanRullen et al., 2011). If behavioura l 

fluctuations originate from the fluctuations in the brain, behavioural performance will vary with 

the pre/peri-stimulus neural phase at similar frequencies as the behavioural rhythm. Several 

studies have uncovered such phase-behaviour relationship at frequencies similar to the typical 

frequencies found in the attentional rhythms (Busch & VanRullen, 2010; Helfrich et al., 2018; 

Landau et al., 2015). For example, in an electrocorticography study, the theta neural phase in 

the frontoparietal network was associated with participant’s target detection performance , 

which also showed a temporal structure at 4 to 5 Hz (Helfrich et al., 2018). The behavioura l 

and neural evidence collectively provide affirmative evidence on rhythmic cognition.  

With the rich evidence supporting the blinking attentional spotlight, however, the 

evidence of whether the vulnerability to distraction, i.e., distractibility, may also exhibit 

temporal fluctuations is scarce. Studies have shown that the distractor onset time may modulate 

its disruptive influence on task performance (Körner et al., 2019; Wöstmann et al., 2020). 

Regarding the temporal dynamics of distraction, preliminary evidence suggests that the 

behavioural and neural measures of distraction may fluctuate at a slow temporal scale (< 4 Hz; 

Wöstmann et al., 2020). Consistent with the notion that distraction may also be rhythmic, a 

previous study showed a stronger phasic relationship between pre-target theta rhythm and 

stimulus detection when the stimulus was in the unattended location than in the attended 

location (A. M. Harris et al., 2018), suggesting that fluctuations in neural excitability may also 

explain the processing of stimuli outside of the attentional spotlight. These studies serve as a 

precursor pointing to the notion that distractibility exhibits temporal dynamics.  

 

1.2.2 Do exogenous rhythms modulate attention? 

Rhythms are ubiquitous in the external environment, and the human brain often makes use of 

these exogenous rhythms to guide behaviour (Lakatos et al., 2019). For instance, human’s 

sleep-wake cycle (i.e., circadian rhythm) is aligned with the rising and setting of the sun (i.e., 

the diurnal cycle). It is natural to tap along with the tempo of the music to which one is listening.  

While the previous section introduced the endogenous fluctuations of attention, this section 

highlights the current literature on how exogenous rhythms may play a role in target selection.  
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The dynamic attending theory posits that attentional resources are temporally aligned, 

that is, entrained, to the exogenous, to-be-attended rhythmic stream (Large & Jones, 1999). The 

theory adopts the view that attention has a rhythmic property, with waxing and waning 

attentional resources over time. In the face of exogenous rhythmic events, the attentiona l 

rhythm may adapt to the temporal regularity embedded in the events. Temporally regular events 

are predictable in time, which allows the attentional system to form the prediction of when the 

next event may occur (i.e., temporal expectation). The formation of temporal expectation 

facilitates the cognitive system to optimally allocate resources to the predicted onset time of the 

event, thereby facilitating the processing of the sensory event.  

The dynamic attending theory has gained support from a rich body of literature on the 

behavioural level (e.g., Barnes & Jones, 2000; Correa & Nobre, 2008; M. R. Jones, 1981; 

Mathewson et al., 2012). Behavioural performance such as accuracy/sensitivity (e.g., Barnes & 

Jones, 2000; Cravo et al., 2013; M. R. Jones et al., 2002; Rohenkohl et al., 2012) and reaction 

time (e.g., Lakatos et al., 2008; Morillon et al., 2016) is better with temporally regular stimuli 

versus temporally irregular stimuli. One hypothesis based on the dynamic attending theory is 

that after being entrained to the exogenous rhythm, the cognitive system maintained the 

attentional rhythm for a few cycles (Lakatos et al., 2013). Deviating from the expected stimulus 

onset will thus have a detrimental influence on target selection (Hickok et al., 2015; M. R. Jones 

et al., 2002; but see Bauer et al., 2015).  

Entrainment, on the neural level, is said to be implemented via the temporal alignment 

of an optimal neural phase to the predicted onset time of the exogenous input (Lakatos et al., 

2019; Obleser & Kayser, 2019). One of the neural outcomes of entrainment is the concentration 

of neural phase at frequencies similar to the frequency of the exogenous rhythm (e.g., Henry & 

Obleser, 2012; Stefanics et al., 2010). For instance, in Lakatos et al. (2008), temporally regular 

visual and auditory streams were presented in an interleaving manner (i.e., anti-phasic). 

Macaque monkeys were trained to attend to either of the two streams and respond to the deviant 

target. Delta oscillations in the primary visual cortex were entrained to the rhythm of the 

attended visual stream, as shown by delta phase coherence. Interestingly, the delta phase was 

concentrated at the anti-phase when the visual stream was ignored.   

The opposite phasic concentration between the attended and the ignored stream begs a 

question: Does entrainment require attention? If entrainment is specific to the processing of 

attended stimuli, the anti-phasic concentration in the ignored stream may be a by-product of the 

phase concentration observed in the attended stream. Alternatively, entrainment may also take 
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place when the external events are ignored, leading to an independent phase concentration that 

is anti-phasic of the optimal phase for attention. To test against the two hypotheses, one can 

examine if one’s behavioural performance or neural response is modulated by the temporal 

regularity of distractors in the absence of an attended rhythm. 

Surprisingly, the evidence on the behavioural disruption of temporally (ir)regular 

distractors is scant and inconsistent. For example, Makov & Zion Golumbic, (2020) showed 

that participants were better at detecting the deviance in unmasked targets when the 

concurrently presented distractors were temporally regular versus irregular. In the context of 

the irrelevant sound task, the serial recall performance was facilitated by (D. M. Jones & 

Macken, 1995) or disrupted (Parmentier & Beaman, 2015) with temporally regular distractors 

in different studies. Given the inconsistency in the current literature, a systematic investiga t ion 

that probes into the scope of behavioural detriment with regard to the temporal regularity of 

distractors is warranted.  

 

1.2.3 Brain dynamics in feature-based prediction 

The human brain is posited as an active agent who constantly makes predictions of future event 

based on past experience (Friston, 2005; Ivry & Knight, 2002; Von Helmholtz, 1867). In 

essence, the brain forms a generative model of the world based on the regularities embedded in 

the sensory evidence. For example, one should predict that the sun will rise from the east 

because it has been rising every day from the east. If the upcoming event does not match with 

the prediction (e.g., the sun comes up from the west today), a prediction error will occur to 

inform the model to update for the next prediction. The predictive process is not limited to 

predicting when (i.e., temporal prediction; see the previous section), but also predicting what 

(i.e., feature-based prediction; Schwartze et al., 2011) the upcoming stimulus would be. 

Attention and prediction are two major pillars in the study of human cognition. Studies 

using a passive listening task showed that even outside the focus of attention, the brain is 

capable of forming a generative model based on the regularities in the task-irrelevant events 

(Garrido et al., 2009; Näätänen et al., 2007; Winkler & Czigler, 2012). The extracted 

regularities ranged from the global probability of a stimulus feature (López-Caballero et al., 

2016; Sato et al., 2000) to the local transition probability between stimuli (Koelsch et al., 2016; 

Lieder et al., 2013; Mittag et al., 2016). The deviation from the prediction based on the 

generative model would elicit mismatch negativity (MMN; Näätänen & Michie, 1979), which 
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is theorised as a prediction error signal that calls for a model update (Winkler, 2007). The 

converging evidence on prediction outside of attention raised two questions: How would the 

neural response be modulated when the predictive process occurs within the spotlight of 

attention? Would task-irrelevant events outside of the attentional spotlight with different levels 

of predictability possess different potency to distract? This thesis is mainly concerned with the 

latter question in relation to distraction. I will nevertheless briefly discuss the current literature 

pertaining to the two questions for comprehensiveness.    

There has been a divergence in the views regarding the relationship between attention 

and prediction (Heilbron & Chait, 2018; Schröger et al., 2015). The first view theorised 

attention as a gain that amplifies the neural response irrespective of prediction (e.g., Garrido et 

al., 2018). The second view treated attention as precision inference on the reliability of the 

prediction error (Feldman & Friston, 2010). In such a case, predictable stimuli would have a 

higher precision, leading to a larger amplification of the neural response compared with 

unpredictable stimuli by attention (Hsu et al., 2014; Kok et al., 2012). The dynamics between 

attention and prediction have still been under debate as both views received empirical support 

(e.g., Garrido et al., 2018; Hsu et al., 2014; Kok et al., 2012). For example, the stimulus-evoked 

responses were larger only when the stimuli were both attended and predictable in Hsu et al. 

(2014), concurring the latter view where attention and prediction interact. However, Garrido et 

al. (2018) showed that attention enhanced neural responses in the predictable and unpredictab le 

conditions to the same extent, supporting the former view.  

If the brain can extract regularities and make predictions from the task-irrelevant events, 

do different levels of predictability in the task-irrelevant events lead to a different potency of 

these events to distract? The prevalent view holds that predictable distractors yield less 

distraction due to expectation suppression (Noonan et al., 2018; van Moorselaar & Slagter, 

2020). Expectation suppression posits that the processing of expected distractors is attenuated 

as they contain little information (Noonan et al., 2018). Predictable distractors, which lead to a 

higher expectation, should thus be less distracting and reduce the corresponding behavioura l 

detriments. Studies on spatial prediction largely agree with the notion by showing better 

behavioural performance with a predictable distractor location (Failing, Wang, et al., 2019; 

Noonan et al., 2016; B. Wang et al., 2019). 

Outside the realm of spatial prediction, however, empirical results depict a rather 

complex picture of how distractor predictability may play a role in the ultimate degree of 

distraction. Southwell et al. (2017) demonstrated that change detection performance was better 
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with repeating tone distractors versus random tone distractors. Another study found that the 

influence of context predictability hinged on the dissimilarity between the target and distractor 

(Töllner et al., 2015). On the other hand, trial-wise predictability of the distractor’s presence 

(Bogaerts et al., 2022) and semantic predictability of the distractors (Wöstmann & Obleser, 

2016) did not modulate behavioural performance. The inconsistent results from these studies 

suggest that there may be some underlying factors that potentially modulate the influence of 

feature-based prediction on distractor processing. 

 

1.3 Research questions 

The overarching aim of this thesis is to elucidate the temporal dynamics of distraction.  

Traditionally, attentional selection has been the focus when studying attentional filtering in 

cognitive neuroscience, with the theoretical foundation of selective attention leaning towards 

the selection of task-relevant targets (M. I. Posner et al., 1980). Nevertheless, task-irrelevant 

distractors are everywhere in the external environment. Empirical evidence shows that our brain 

does not fully shunt the distractors out of the attention system. Rather, the brain is prone to 

external distractors (e.g., Chao & Knight, 1995; Gaspar & McDonald, 2014) and may engage 

in active suppression of the distractors (Geng, 2014; Schneider et al., 2018). As we are 

constantly bombarded by external distractors, the question arises: How do the temporal 

mechanisms of distraction unfold in time?  

  To this end, three behavioural and electrophysiological studies with a total of 136 

participants probed each aspect of the potential temporal mechanisms of distraction. Figure 

1.2A illustrates the major elements of this thesis, namely, endogenous brain dynamics and 

exogenous distractor dynamics, using the barking puppies as an example of distractors. Study 

1 (Chapter 3) sheds light on the endogenous rhythms of distractibility by relating the momentary 

neural state with the ultimate behavioural detriments of distraction (Figure 1.2B, top). 

Distractibility is a construct that has long been assumed to, if at all, only change on a slow 

temporal scale, such as over developmental stages (K.L. Campbell et al., 2012) or within an 

experimental session (Forster & Lavie, 2014). This study aims at revealing the dynamic nature 

of distractibility on a faster, subsecond, temporal scale. 

 Having uncovered an endogenous distractibility rhythm, Study 2 (Chapter 4) asks if the 

proneness to distraction can be entrained, by studying whether temporally regular distractors 

influence the eventual memory recall of targets (Figure 1.2B, middle). The current evidence on 
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the effect of distractors’ regularity in time is inconsistent, with results supporting the facilita t ion 

(D. M. Jones & Macken, 1995) and the disruption (Parmentier & Beaman, 2015) by temporally 

regular distractors. In a series of 4 behavioural experiments, this study systematica l ly 

investigates the potential factors influencing the modulatory effect of the temporal regularity of 

distractors on both the precision of memory representation (i.e., accuracy) and response 

behaviour (e.g., speed and confidence).  

 As no strong evidence was found on the role of temporal prediction of the distractor in 

modulating the precision of memory representation, Study 3 moves to elucidating the brain 

dynamics associated with feature-based prediction, i.e., predicting what the stimulus is, in 

distraction (Chapter 5; Figure 1.2B, bottom). The load theory of attention (Lavie, 1995) is a 

well-received framework depicting how perceptual load and cognitive load modulate distractor 

interference. However, whether the load theory still holds in the auditory modality remains 

unclear (S. Murphy et al., 2017). This study asks whether the impact of feature-based distractor 

prediction on behavioural and neural responses hinges on perceptual or cognitive load, based 

on the framework of the load theory of attention. In summary, this thesis aims at uncovering 

the many facets of how auditory distraction unfolds in time. 

Figure 1.2. Overview of the 3 studies in the present thesis on the temporal dynamics of distraction. The left column (A) displays 

the major themes in this thesis, namely the endogenous dynamics of the brain (top) and exogenous dynamics in distractors, 

which include temporal and feature-based regularity (bottom). The right column (B) depicts the central research question for 

each study in this thesis. Study 1 (top) focuses on capturing the cyclical fluctuations of distractibility, which would result in 

fluctuations in the behavioural measure of distraction (dashed line). Study 2 (middle) studies whether the distractibility 

dynamics can be entrained by temporally regular distractors (black dog barks) compared to temporally irregular distractors 

(grey dog barks). Study 3 (bottom) investigates if the brain forms distractor expectations from the feature-based regularity  

(identity of the barking dog).  
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2. Methodological background 

In this chapter, I will first briefly overview the choice of stimulus materials across studies in 

this thesis. Second, I will introduce the underlying neurophysiological mechanism of 

electroencephalography (EEG), the basics of EEG analyses, and the source localization method 

used in the thesis. Specific methodological details for each study will be introduced in the 

methods section of the corresponding chapter. 

 

2.1 Stimulus materials: Essential features of distractors 

Two types of distractors were used in this thesis: pitch and speech stimuli. For each experiment, 

pitch or speech stimuli were chosen based on two major considerations: 1) the stimulus’s 

potency to distract, and 2) the temporal precision of the stimulus.  

The distractor’s potency to distract can be quantified indirectly by measuring the 

detriment in the behavioural performance relating to the target stimuli (Wöstmann et al., 2022): 

A more distracting distractor will interfere with the target performance to a larger extent, 

rendering poorer behavioural performance. One can argue that an absence of behavioural effect 

with distractors signifies a successful suppression of the distractor. However, the absence of a 

distractor effect may be attributed to the lack of distractor interference. In this thesis, the 

distractor’s potency to distract was ensured by either comparing the behavioural performance 

between distractor present or absent conditions (Studies 1 and 2), or between distractors with 

different strengths (e.g., signal-to-noise ratio with targets, Study 3). 

As this thesis mainly focuses on the temporal dynamics of distraction, the temporal 

precision of the distractor is also important. Changes in stimulus properties such as duration 

(Kaukoranta et al., 1989) or inter-stimulus interval (Pereira et al., 2014) have been shown to 

modulate the corresponding neural response. Temporally imprecise stimuli may thus be a 

potential confound. In Study 1 and Study 2 where the effect of temporal onset on distraction 

were probed, the temporal precision in distractors was prioritised. 

When should pitch or speech stimuli be used? While speech materials have been shown 

to exert a large detrimental influence on working memory (Ellermeier & Zimmer, 2014), pitch 

materials can be manipulated with higher temporal precision. Study 1 focuses on uncovering 

the endogenous rhythm of distraction, which requires high temporal precision in the distractors. 

Therefore, pure tones were used for both target tones and distractor tone structures to ensure 
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temporal precision. In Study 2, pure tone distractors were used in Experiment 1 and 2 to probe 

into the modulatory effect of the temporal regularity of distractors. With an absence of a 

temporal regularity effect in those experiments, speech distractors were used in Experiment 3 

and 4 to increase the degree of distraction. When using speech stimuli as distractors, we 

increased the temporal precision of the distractors by shortening all spoken numbers used to a 

fixed duration (i.e., 350 ms) by using the Praat software. In Study 3, speech distractors were 

used as the potency of distractor to distract was prioritised over temporal precision, as feature-

based predictability, instead of temporal predictability, is the main interest of this study. 

 

2.2 Irrelevant sound paradigm 

In Studies 1 and 2, variants of the irrelevant sound paradigm (Colle & Welsh, 1976; Salamé & 

Baddeley, 1982) were used to study the temporal mechanisms of distraction. Here, I will briefly 

describe the basic structure of the experimental design used in these studies. 

 Essentially, the irrelevant sound paradigm consists of three phases: encoding, 

maintenance, and retrieval. During the encoding phase, the to-be-remembered stimuli are 

presented. While the to-be-remembered stimuli were a sequence of spoken numbers typically 

used (e.g., Salamé & Baddeley, 1989), other to-be-remembered stimuli such as tone-frequency 

(Study 1) or an array of visual numbers (Experiment 4 in Study 2) were used in this thesis. 

During the maintenance phase, participants are instructed to maintain the memory 

representation of the encoded item while ignoring the auditory distractors presented. During the 

retrieval phase, participants had to report how well they remember the to-be-remembered 

stimuli by either comparing the to-be-remembered stimuli with a probe stimulus (in Study 1 

and Experiment 4 in Study 2) or recall the order of the to-be-remembered stimuli (in Experiment 

1 to 3 in Study 2). The distractor’s interference is measured by the behavioural detriment in the 

task with or without distractors, or with different levels of distraction. 

 

2.3 Electroencephalography 

The current thesis employed electroencephalography (EEG) to study the dynamics of the 

brain’s neural activity. EEG is a measure of the electrical activities in the brain (Berger, 1931). 

It has a relatively high temporal resolution compared to other brain imaging methods which 

indirectly measured blood flow associating with neuronal activation (e.g., MRI, fNIRS ; 
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Sejnowski et al., 2014). The high temporal resolution of EEG makes it a good candidate for the 

investigation of temporal dynamics of the brain.  

 

2.3.1 The neurophysiological basis of EEG 

Essentially, EEG measures the voltage fluctuations of the extracellular currents integrated 

across a neuronal population. The amplitude of the electrical activities should be large enough 

to be detected by the electrodes placed on the scalp. Hence, the post-synaptic activities of the 

pyramidal neurons are considered the major contributor to the scalp-level EEG activities. The 

parallel organization of the pyramidal cells (Mitzdorf, 1985) and the relatively slow temporal 

integration of the post-synaptic potential (Jackson & Bolger, 2014) allows the summation of 

the electrical activities across a neuronal ensemble. Excitatory postsynaptic activity involves an 

influx of the positive charged Ca+ and Na+ ions into the neuron, creating a negatively charged 

extracellular region, i.e., sink, relative to the other regions of the neuron. The voltage difference 

between the two ends of a neuron creates a dipole, the summation of which across a neuronal 

ensemble is detected by scalp EEG (Nunez & Srinivasan, 2006).  

Each dipole contributes to the voltage measured at all electrodes through volume 

conduction. However, the relative contribution of the dipole depends on its orientation and its 

distance from the scalp electrode. For instance, radial dipoles that are closer to the surface have 

a stronger impact on the surface EEG placed above the dipole. Depending on the orientation of 

the dipoles, the resultant scalp distribution may be vastly different even if the dipoles are in 

proximation with one another (Jackson & Bolger, 2014). It is thus essential, in order to localize 

the neural response of interest, to apply source localization methods (see Section 2.3.3).  

 

2.3.2 The basics of EEG analyses 

The excitation and inhibition of a neuronal ensemble wax and wane over time, producing a 

rhythmic, oscillatory, pattern on EEG (Bishop, 1932). We can study EEG signals by quantifying 

their temporal and spectral dynamics using, e.g., amplitude, power, and phase. The 

physiological underpinning of each property has been discussed in previous literature (Buzsáki 

& Draguhn, 2004; Sauseng & Klimesch, 2008; Woertz et al., 2004). In the following, I will 

explain the basics of these oscillatory properties and the possible neurophysiologica l 

underpinnings. 
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 Figure 2.1 shows the oscillatory properties using a 5-Hz sine wave as an example. The 

frequency of a signal corresponds to the number of cycles the signal has per second. For instance, 

a theta oscillation roughly has 3 to 7 cycles per second (i.e., 3 – 7 Hz). Amplitude refers to the 

strength of the signal, which is usually measured as power (the square of amplitude). Phase 

refers to the angular/polar representation of the signal at a given time point (i.e., peak refers to 

the highest point of a signal, and trough the lowest). Physiologically, EEG amplitude is said to 

reflect the strength of the sustained activity of a neuronal ensemble, which has a temporal 

resolution of hundreds of milliseconds (Woertz et al., 2004). Instantaneous phase of EEG, on 

the other hand, is associated with the momentary firing patterns of a neuronal ensemble 

(Buzsáki & Draguhn, 2004; K. D. Harris et al., 2002; Hirase et al., 1999).  

 In this thesis, different analysis methods are used depending on the respective research 

question. For instance, event-related potential (ERP) technique was used to study the amplitude 

of stimulus-evoked neural responses that are consistent in timing (i.e., phase-locked) in Study 

1 and Study 3. In Study 1, trial-wise instantaneous phase values were captured to investigate 

the momentary fluctuations of the neural oscillatory response. In Study 3, oscillatory power in 

the alpha frequency band (i.e., 8 – 12 Hz) was measured to examine the strength of neural 

activity. The analyses used in each study will be described, in detail, in the method sections of 

the respective chapter. 

 

Figure 2.1. Illustration of a 5 Hz rhythm in the time domain (A) or as a unit cycle (B). 

 

2.3.3 Source localisation 

The inverse problem states that there is no unique solution in deriving the underlying 

source activities from the surface sensor (i.e., electrode) data. Different methods have been 

derived throughout the years to mitigate the problem (e.g., equivalent dipole, LORETA, 

beamformer etc; Halder et al., 2019). The beamformer approach has gained popularity in the 
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past decades as it does not require a priori assumptions about the number nor the distribution 

of sources. In Study 1, one of the beamformer localisation methods called linearly constrained 

minimum variance (LCMV; Sekihara & Nagarajan, 2008; Van Veen et al., 1997) was used to 

localise the dynamics in distractibility. The beamformer localisation method will be briefly 

described here.  

The basic ingredients required for the beamformer source localisation are as follows: A 

forward model describes how each source location contributes to the spatial distribution on the 

sensor space. To obtain the forward model, the following elements are needed: First, a source 

model derived from an individual MRI scan is needed to indicate the locations of the sources. 

In case when individual MRI scan is not available, a standard MRI template can be used. Second, 

a head model (e.g., the standard boundary element method volume conduction model; Fuchs et 

al., 2002) is needed to describe how the source currents flow through the volume conductor, 

which entails the brain, the skull, and the scalp tissue. Third, electrode positions are needed for 

the co-registration between the MRI scan and the electrodes. All three elements are used to 

estimate the lead field matrix, which contains the solution relating the source electrical activity 

and the potential on the EEG electrodes (Van Veen et al., 1997). 

The inverse model is estimated with a goal to transform the data in the sensor space to 

the source space by applying a set of weights (i.e., spatial filter) on the sensor data (Westner et 

al., 2022). The spatial filter estimates the relative contribution of each channel to the respective 

source location. The exact algorithm of estimating the spatial filter differs between different 

source localization methods. The LCMV method uses the lead field matrix and the covariance 

matrix of the time-series EEG data across channels to estimate the spatial filter (Van Veen et 

al., 1997). The covariance matrix is derived from the EEG data at the time window of interest. 

At each source location, the relative contributions of the sensor signals are estimated with the 

goal to maximise the output of the given source location and minimise the output from all other 

source locations.  

With the estimated spatial filter, the time-series data on the sensor space can be 

projected onto the source space by multiplying the data matrix with the spatial filter. The neural 

signature of interest, such as pre-stimulus single-trial neural phase (Study 1), can then be 

calculated on the source space 
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3. Study 1: Slow neural oscillations explain temporal fluctuations in distractibility1 

 

3.1 Introduction 

Selective attention enables humans to focus on relevant information at the expense of 

distraction. The brain prioritizes representations of relevant events while filtering out task-

irrelevant distractors (Desimone & Duncan, 1995; Picton et al., 1971). Recent research posited 

that distractor processing is not merely collateral to attentional sampling of targets but may 

follow its own dynamics (Schneider et al., 2018; Wöstmann et al., 2019, 2020). The behavioura l 

detriments induced by different kinds of distractors (i.e., distraction) and the neuro-cognit ive 

mechanisms that counteract distraction (i.e., suppression) have been studied in some detail 

(Bonnefond & Jensen, 2012; Geng & DiQuattro, 2010; van Moorselaar et al., 2020; Weisz et 

al., 2020; Wöstmann et al., 2019). However, the temporal dynamics and the neurobiologica l 

basis of the proneness to distraction (i.e., distractibility) are largely unknown.  

Distractibility has long been neglected in the theoretical formulation of rhythmic 

attention. Originally assumed to be static (M. I. Posner et al., 1980), the attentional spotlight 

was proposed to be blinking at a subsecond time scale in a theta-like rhythm (i.e., 3–8 Hz; 

Buschman & Kastner, 2015; Fiebelkorn & Kastner, 2019). Behaviourally, it is manifested via 

the waxing and waning of behavioural performance in target selection (Fiebelkorn et al., 2013; 

Ho et al., 2017; Kubetschek & Kayser, 2021; Landau & Fries, 2012) or working memory 

(Schmid et al., 2022; ter Wal et al., 2021) performance at similar frequencies. However, the 

temporal dynamics outside of the attentional spotlight are not well understood. While previous 

research studied how distractibility unfolds on relatively long temporal scales of minutes (i.e., 

during an experimental session; Forster & Lavie, 2014) or years (i.e., across stages of 

development; K.L. Campbell et al., 2012; Kannass et al., 2006), we found preliminary evidence 

for fluctuating distractibility on a subsecond scale following rhythmic presentation of auditory 

targets (Wöstmann et al., 2020). To isolate distractibility dynamics from rhythmic entrainment 

or preparatory suppression, we here employ a design that uses non-rhythmic stimuli and 

distractors that occur unexpectedly.  

 A central prediction of rhythmic attention is that the phase of slow neural oscillat ions 

explains fluctuations in behaviour (VanRullen, 2016). The prediction is based on the notion that 

rhythmic attention arises from the periodic excitability of the attention-related brain network 

                                                                 
1 This chapter is adapted from the preprint published by Lui et al. (2022) 
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(Fiebelkorn & Kastner, 2019; VanRullen, 2016). In the human brain, theta neural phase (3–8 

Hz) is assumed to reflect moment-to-moment changes in neural excitability (Lakatos et al., 

2005). Theta phase in brain regions beyond sensory cortices, such as fronto-parietal regions and 

the hippocampus, has been associated with fluctuations in target detection (Helfrich et al., 2018) 

and working memory encoding (Rutishauser et al., 2010; Siegel et al., 2009), respectively. 

While previous research has related distractibility to supra-modal regions in frontal (Chao & 

Knight, 1995; Wais et al., 2012) or parietal (Kanai et al., 2011) cortex, it is unclear whether and 

in which networks the momentary neural dynamics may subserve the waxing and waning of 

distractibility.  

Here, we ask if the brain spontaneously alternates between states of higher and lower 

distractibility and whether such fluctuations have the potency to explain behavioura l 

consequences of distraction. If so, we would expect to observe a brain-behaviour relation 

between the pre-distractor brain state and the distractor-induced detriment in task performance.  

To this end, we employed a pitch discrimination task wherein an auditory distractor could occur 

at variable and unexpected times in-between two target tones. A total of 17,280 behavioura l 

and neural responses in the electroencephalogram (EEG) in N=30 participants revealed that 

behavioural sensitivity and distractor-evoked neural responses fluctuated in sync across 

distractor onset times in ~3–5 cycles per second. Critically, pre-distractor theta phase in left 

inferior frontal and insular cortex regions explained behavioural performance fluctuations. 

These effects were absent in trials without distractors, reinforcing their specificity to distractor-

related neural processing.  

 

3.2 Methods 

 

3.2.1 Participants 

Thirty participants (20 females, 10 males; mean age = 23.67, SD = 3.56) took part in the EEG 

experiment. They provided written informed consent and were compensated by either €10/hour 

or course credit. Participants were right-handed according to the Edinburgh Handedness 

Inventory (Oldfield, 1971) (mean score = 92), with self-reported normal hearing, normal or 

corrected-to-normal vision, and no psychological or neurological disorders. All procedures of 

the current study were approved by the ethics committee of the University of Lübeck.   
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3.2.2 Stimuli and procedure 

Participants performed a pitch discrimination task wherein they decided whether the first (tone 

1) and the second (tone 2) target tones in a trial were the same or different in pitch. Prior to the 

experiment, they were instructed to answer as accurately and as fast as possible. The target 

tones were 75 ms long pure tones with 5 ms rise and fall periods. In each trial, the frequenc ies 

of tone 1 were randomly selected between musical note A#3 (233 Hz) and G#5 (830.6 Hz), 

while that of tone 2 was either the same (50%) or different (higher or lower, 25% each) in 

frequency compared to tone 1.  

The pitch difference between tone 1 and tone 2 was titrated for each participant with an 

adaptive task (see below). The offset-to-onset interval between tone 1 and tone 2 was 1550 ms. 

Each distractor stimulus comprised 10 consecutive pure tones with 40 ms duration (400 ms in 

total). The frequencies of the pure tones in each distractor stimulus were randomly selected 

among the 12 tones between A#3 and G#5 with whole tone steps (A#3, C4, D4, E4, F#4, G#4, 

A#4, C5, D5, E5, F#5, and G#5), with the constraint that there would be no repetition betwee n 

consecutive tones. Each of the 12 tone frequencies appeared at each of the 10 positions with 

equal probability across trials. 

In-between the two target tones, a distractor was presented in 50% of trials (distractor -

present condition) and no distractor was presented in the remaining trials (distractor-absent 

condition). In the distractor-present condition, the distractor was presented at one of 24 

distractor onset times (0 ms to 1150 ms, 50-ms steps, relative to the offset of tone 1), which was 

selected at random on each trial. After the offset of target tone 2, participants had a 2000 ms 

response time window. To avoid potential temporal predictability effects of the onset of the 

next trial, the inter-trial intervals were randomly selected from a truncated exponentia l 

distribution (mean = 1460 ms), ranging between 730 and 3270 ms.   

The trial order was pseudo-randomized with no repetition in probe tone frequency and 

distractor onset for any two consecutive trials. In total, there were 12 trials for each unique 

condition (distractor-present/absent x distractor onset x same/different target pitch) and 1152 

trials for the whole experiment. All auditory materials were presented via Sennheiser 

headphones (HD 25-1 II). Responses were made using a response box (The Black Box Toolkit). 

The assignment of buttons to the response options (“same” or “different”) was counterbalanced 

across participants. Stimuli were presented via Matlab (MathWorks, Inc., Natick, USA) and 

Psychtoolbox (Brainard, 1997). The auditory stimuli were presented at approximately 70 dB 

SPL. 
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3.2.3 Adaptive staircase procedure 

Prior to the main experiment, each participant’s threshold for the pitch discrimination task was 

titrated using an adaptive staircase procedure, implemented in the Palamedes toolbox (Prins & 

Kingdom, 2018) for Matlab. For the initial 11 participants, the threshold was titrated to an 

approximate accuracy of 70.7%. As the overall accuracy was relatively high even after the 

adaptive staircase procedure for these 11 participants (mean = 79.59%, SD = 10.43%), the final 

16 participants performed an adaptive procedure altered to yield approximately 65% accuracy 

instead. Due to technical issues, the performance of the remaining three participants was tracked 

at 35% accuracy. As all relevant statistical analyses in the present study are within-subject, and 

as paired t-tests (2-tailed) comparing the behavioural performance between distractor-absent 

and distractor-present conditions were significant with (t29 = 8.11, p < .001) and without (t26 = 

9.41, p < .001) these participants, their data were included in the final analysis. 

 Each participant went through the adaptive staircase procedure two to three times , 

depending on the stability of the tracked threshold. There were in total 30 trials for each run of 

the adaptive staircase procedure with an initial pitch difference of 100 cents (i.e. 1 semitone) 

between tone 1 and 2. The minimum and maximum pitch difference possible in the task was 2 

cents and 2000 cents, respectively. For the procedure which tracked performance at ~70.7%, a 

two-down one-up procedure was used. Specifically, the pitch differences would decrease in 

steps of 10 cents if participants responded correctly (i.e., different), or increase in steps of 10 

cents if participants responded incorrectly (i.e., same) for 2 consecutive trials. For the procedure 

which tracked performance at ~65% procedure, the pitch differences would decrease in steps 

of 7 cents if participants answered correctly or increase in steps of 13 cents if they answered 

incorrectly. The pitch difference used in the main experiment was calculated by averaging the 

final 10 trials in the tracking run which converged to the most stable threshold, determined by 

visual inspection, in the ~70.7% procedure. The same procedure was used to average the final 

6 trials in the ~65% procedure. The overall accuracy averaged across all participants in the 

actual experiment was 73.58% (SD = 12.12%). 
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3.2.4 Behavioural data analysis 

To understand how distractors affect pitch discrimination performance in the framework of 

signal detection theory, we calculated sensitivity (d’) and criterion (c) separately for distractor-

present and -absent conditions, using the Palamedes toolbox (Prins & Kingdom, 2018) and the 

following formulas: 

(Formula 3.1)   Sensitivity = z (Hit rate) – z (False alarm rate) 

(Formula 3.2)  Criterion = –0.5 * (z (Hit rate) + z (False alarm rate)) 

Hit rate was defined as the “different” response when the two tones were different in 

pitch, and false alarm rate was the “different” response when the two tones were the same in 

pitch. Extreme values (0 or 1) of Hit rate or False alarm rate were adjusted (Macmillan & 

Kaplan, 1985): A rate of 0 was adjusted by dividing 1 by the number of trials multiplied by 2; 

while a value of 1 was adjusted by subtracting the same value from 1. Paired samples t-tests (2-

tailed) were used to compare sensitivity and criterion in distractor-present versus -absent 

conditions. 

To study the modulation of distractor onset times on behavioural measures in the 

distractor-present condition, sensitivity for each distractor onset time was calculated, resulting 

in a behavioural time course as a function of distractor onset time for each individual participant 

(see Figure S3.1 & S3.2). 

 

3.2.5 EEG recording and pre-processing 

The experiment was conducted in an electrically shielded sound-attenuated room. A modified 

10-20 international system with 64 Ag/Ag-Cl electrodes was used to record the EEG with a 

sampling rate of 1000 Hz (actiCHamp, Brain Products, München, Germany). The EEG 

recordings were band-pass filtered online from direct current (DC) to 280 Hz. TP9 was used as 

the online reference and FPz as the ground electrode. Impedances were kept below 20 kOhm 

for all but one participant. 

 Matlab R2018a (MathWorks, Inc., Natick, USA) and the Fieldtrip toolbox (Oostenveld 

et al., 2011) were used to pre-process and analyse EEG data. The continuous EEG data were 

filtered (high-pass, 1 Hz; low-pass, 100 Hz) before they were segmented into epochs (-2 to 2.5s) 

time-locked to tone 1 onset. Independent component analysis (ICA) was used to identify and 
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reject components corresponding to artefacts such as eye blinks, eye movements, and muscle 

activity (average percentage of components removed = 26.46%, SD = 8.89%). Afterwards, EEG 

data were re-referenced to the average of all electrodes. Epochs with amplitude changes >160 

microvolts were rejected (average percentage of epochs removed = 1.35%, SD = 2%).  

 To obtain distractor-evoked neural responses, data were re-epoched to the onset of the 

distractor (-1 to 1 s) with a 200ms baseline period. Epochs belonging to the same conditions 

(distractor-present/absent) and distractor onset time (0 – 1150ms, 50-ms steps) were then 

averaged into ERP waveforms. The spectral amplitude of distractor-evoked responses at 25 Hz, 

which corresponds to the temporal structure of the distractor, was extracted using FFT on the 

ERP waveform in the time window from 0 to 520ms after distractor onset. Spectral amplitude 

was averaged across electrodes F1, Fz, F2, FC1, FCz, and FC2. For each participant, the 24 

spectral amplitudes, corresponding to the 24 distractor onset times, resulted in a neural time 

course of distractor processing as a function of distractor onset time (see Figure S3.1 & S3.2).  

 Distractor-evoked inter-trial phase coherence (ITPC) was also calculated across 

frequencies (1 – 10 Hz, 1-Hz steps) and time windows (-0.2 – 0.7 s, 0.05-s steps) for each 

electrode. First, Fourier coefficients were calculated (using windows with a fixed length of 0.5 

s; hanning taper). Then, the complex Fourier coefficients were divided by their magnitude and 

averaged across trials. ITPC was calculated by taking the absolute value (i.e., magnitude) of the 

average complex coefficient. 

3.2.6 Modulation of neural and behavioural measures by distractor onset time 

To test whether and how distractor onset time modulates neural and behavioural measures, we 

used linear mixed-effect models with sine- and cosine-transformed distractor onset time, similar 

to Wöstmann et al. (2020). For time courses of sensitivity and spectral amplitude of the 

distractor-evoked ERP at 25 Hz separately, we first subtracted the individually fitted quadratic 

trend (computed with the polyfit function in Matlab) from the original time course for each 

participant (see Figure S3.1 & S3.2) as the quadratic trend was not of interest in the current 

study (Huang et al., 2015).  

Then, we designed sine- and cosine-transformed distractor onset time vectors using the 

following formulas,  

(Formula 3.3)  Sine predictor = sin (2 * π * f * distractor onset time) 
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(Formula 3.4)  Cosine predictor = cos (2 * π * f * distractor onset time) 

Where f denotes the frequency of interest (0.5 – 8 Hz, 0.5-Hz steps). Next, we regressed the 

detrended sensitivity and spectral amplitude of ERP time courses on sine and cosine predictors 

using linear mixed models (using the fitlme function in Matlab) for each frequency of interest 

using the following formulas: 

(Formula 3.5) z(sensitivity) ~ z(sine predictor) + z(cosine predictor) + (1|participant) 

(Formula 3.6) z(25-Hz ERP) ~ z(sine predictor) + z(cosine predictor) + (1|participant) 

The spectral magnitude for each frequency was computed by taking the square root of the sum 

of squared beta coefficients of sine and cosine predictors: 

(Formula 3.7)  Spectral magnitude = sqrt (sine coef2 + cosine coef2) 

         Statistical significance of the spectral magnitude was determined by comparing the 

spectral magnitude of the empirical data with the 95th percentile of a permutation distribution, 

which was generated by shuffling the original behavioural/neural time course and performing 

the same analysis 5,000 times. 

         To test whether the sensitivity and spectral amplitude of the distractor-evoked ERP at 

25 Hz are co-modulated, for each participant, cross-correlation coefficients across time lags of 

the two signals were obtained (using the “xcorr” function on z-scored time courses in Matlab). 

Again, we ran a similar linear mixed model as explained above, but this time with sine- and 

cosine-transformed time lags as predictors and used the correlation coefficients from the cross-

correlation as the outcome measure. The spectral magnitude was obtained using formula 3.7 

and statistical significance with the same permutation method mentioned above. 

   

3.2.7 Phasic modulation of behavioural sensitivity 

To explore the role of pre-distractor neural dynamics on pitch discrimination performance, we 

examined whether the pre-distractor oscillatory phase relates to behavioural sensitivity. To this 

end, we examined the quadratic fit of sensitivity as a function of neural phase in source space.  

 First, we implemented the source analysis using the Fieldtrip toolbox. First, a standard 

volume conduction model and standard electrode locations were used to calculate the leadfie ld 
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matrix with 10-mm resolution. We applied the linearly constrained minimum variance (Van 

Veen et al., 1997) (LCMV) beamformer approach on the 10 Hz lowpass filtered data centred 

around distractor onset (-1 to 1s). We calculated a common filter including all trials by 

calculating the covariance matrix estimates. There were in total 2,015 source locations inside 

the brain.  

 Second, a quadratic fit analysis resolved by frequency and time probed the spectral and 

temporal specificity of the phasic modulation of perceptual sensitivity. To obtain trial-wise 

phase values for each source location, the following procedure was implemented for each trial 

in each source location: First, the single-trial EEG time course was projected into the source 

space using the common filter. Then, a sliding window (0.4s duration; moving in 50-ms steps 

from –0.3 to +0.3s relative to distractor onset) was employed to transform the data into the 

frequency domain (using FFT). Note that the time point of the sliding window refers to the mid-

point of each time window. For instance, the time window centred at -0.3 included data from -

0.5 to -0.1 s. The respective phase value of each frequency (2.5 – 8 Hz in 0.5-Hz steps) was 

then calculated using the angle function in MATLAB. The phase values of all trials were binned 

into 9 bins of equal size, ranging from -pi to pi, followed by a calculation of sensitivity for each 

bin. The quadratic fit of sensitivity across phase bins was estimated using the polyfit function 

(order = 2) in MATLAB. As a result, we obtained a quadratic fit index for each source location, 

frequency, and time of interest.  

We used a source-level cluster-based permutation test (Maris & Oostenveld, 2007) to 

find significant clusters in voxel-frequency-time space that would exhibit phasic modulation of 

sensitivity. Dependent-samples t-tests were used to contrast quadratic fit coefficients against 

zero, followed by clustering of adjacent bins with significant effects in voxel-frequency- t ime 

space. To derive cluster p-values, summed t-values in observed clusters were tested against 

5,000 permutations with shuffled condition labels (two-tailed). 

To demonstrate that the significant cluster found in the above analysis does not 

primarily originate from the auditory cortex, we localised, for comparison, the distractor -

evoked inter-trial phase coherence (ITPC) at 3 – 7 Hz, strongly assumed to emerge at least to 

large degrees from the supratemporal plane and auditory cortex (Koerner & Zhang, 2015; 

Mayhew et al., 2010; Oya et al., 2018), with the following procedure for each voxel: For each 

trial, we projected the time series EEG data into source space using the same common filter as 

in the analysis on the phasic relationship with behaviour. Then, we transformed the source-

projected data (0 – 300 ms after distractor onset) to the frequency domain using FFT. The same 
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calculation as on the sensor level was used to calculate the ITPC for each frequency. ITPC 

across frequencies 3 – 7 Hz were then averaged to obtain one distractor-evoked ITPC value for 

each voxel. 

 

3.3 Results 

In the current electroencephalography (EEG) and behavioural study, we aimed at (1) 

uncovering the temporal fluctuations in distraction, and (2) exploring the relationship between 

such fluctuations and momentary neural phase at similar frequencies. To this end, we varied 

the onset time of an auditory distractor that was presented in-between two to-be-compared tones 

in a variant of a pitch discrimination task. 

We probed this research question in the auditory modality as temporal information is 

especially important to auditory attentional selection (Shamma et al., 2011). During the task, 

participants (N = 30) had to identify whether the two target tones were the same or different in 

pitch (Figure 3.1A). The distractor was a fast-varying, 25-Hz modulated sequence of tones that 

differed in pitch, which allowed us to extract its induced 25-Hz neural response (Ding & Simon, 

2009). 

Distractors were present in half of the trials and absent in the remaining trials. In 

distractor-present trials, the distractor onset was uniformly distributed across 24 onset times (0 

– 1.15 s, in 0.05 s steps, after tone 1 offset). In distractor-absent trials, no distractor was 

presented between the two tones. The inclusion of distractor-absent trials serves two purposes. 

First, we could verify that the distractors had the potency to distract by comparing behavioura l 

performance for distractor-present versus distractor-absent trials (Wöstmann et al., 2022). 

Second, participants could not anticipate whether or when a distractor would occur in a given 

trial, which eliminated potential effects of such anticipation on behavioural performance 

(Grabenhorst et al., 2021) or pre-stimulus neural activity (Dürschmid et al., 2018; Herbst et al., 

2022; Stefanics et al., 2010). 

 

3.3.1 Distractors interfere with pitch discrimination performance 

To examine the potency of the distractors to distract, we compared participants’ sensitivity and 

criterion (response bias) of the pitch discrimination task between distractor-present and -absent 
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trials. Participants were less sensitive to the pitch difference (t29 = -8.11, p = <.001, Cohen’s d 

= -1.48), and had a more conservative response criterion (i.e., more “same pitch” responses; t29 

= 2.83, p = .008, Cohen’s d = 0.52) on distractor-present trials (Figure 3.1B).  

 

Figure 3.1. A) Schematic of a distractor-present trial. Participants were instructed to indicate whether the two target tones 

(grey) were the same (probability = 50%) or different (higher, probability = 25%; or lower, probability = 25%) in pitch. A 10-

tone-pip distractor sequence (white) with a 25-Hz temporal structure (i.e., 40-ms tone-pip duration; total duration 400 ms) was 

presented at one of the 24 distractor onset times (dashed lines). In distractor-absent trials, no distractor was presented. B) 

Behavioural results comparing distractor-present and -absent conditions. Coloured circles indicate single-subject data. Insets 

show bar graphs of perceptual sensitivity (left panel) and criterion (right panel) for distractor-present (solid bar) and distractor-

absent (gradient bar) conditions, respectively. Error bars show ±1 SEM. ** p < .01. *** p < .001. 

3.3.2 Behavioural and neural measures of distraction co-fluctuate across time 

Does the impact of distraction on neural activity and goal-directed behaviour exhibit 

fluctuations across time? To test this, we varied distractor onset time and examined whether 

behavioural and neural measures of distraction would show modulations at frequencies up to 8 

Hz. Behaviourally, perceptual sensitivity was calculated as an indirect measure of distraction: 

The more distracted, the lower the sensitivity in pitch discrimination should be (Figure 3.2A, 

yellow, see Figure S3.1 for individual participants’ time courses). Neurally, we calculated the 

distractor-evoked event-related potential (ERP; Figure 3.2B) for each distractor onset time and 

used a fast Fourier transform (FFT) to extract its amplitude at 25 Hz, which corresponded to 
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the modulation rate of the frequency-modulated distractor tone sequence (Figure 3.2A, blue, 

see Figure S3.1 for individual participants’ time courses). 

To examine temporal fluctuations of distraction, we used linear mixed-effects models 

with sine- and cosine- transformed distractor onset time as predictors to model behavioural (i.e., 

perceptual sensitivity) and neural (i.e., distractor-evoked ERP) time courses as the outcome 

measures. This method outperforms other methods for studying the phasic modulation of 

behavioural and neural responses (Zoefel et al., 2019) and has also been used previously 

(Wöstmann et al., 2020) to extract temporal fluctuations in the vulnerability of working memory 

to distraction. A quadratic trend was observed in the behavioural time course in Figure 3.2A as 

the earliest and latest distractors were most distracting due to their temporal proximity to the 

target tones. Before running linear mixed models, we removed the quadratic trends in the two 

measures as they were not of interest in the current study (Huang et al., 2015). 

 Figure 3.2E and F show the spectral magnitude (0.5–8 Hz, 0.5-Hz steps) resulting from 

linear mixed models on detrended perceptual sensitivity (Figure 3.2C, yellow) and detrended 

ERP amplitude (Figure 3.2C, blue), respectively. Statistical significance was derived by testing 

empirical spectral magnitude against the 95th percentile of a permutation distribution, which 

was derived from shuffling the behavioural and neural time courses, respectively, 5,000 times 

(see Methods for details). 

At the behavioural level, distractor onset time modulated sensitivity below 5 Hz. At the 

neural level, distractor onset time modulated the distractor-evoked ERP at 4 and 5 Hz. Similar 

results were obtained in a control analysis, where temporal fluctuations in sensitivity in 

distractor-present trials were compared against distractor-absent trials (instead of permuted 

distractor-present trials; Figure S3.3).  

If these periodic neural dynamics serve as the basis for the apparent behavioura l 

fluctuations, we should observe the synchronization of the behavioural and neural time courses 

by a common rhythm. To test this, we also examined the co-modulation of sensitivity and 

distractor-evoked ERP by distractor onset time. We first calculated the cross-correlation 

coefficients of the behavioural and neural time courses for individual participants (Figure 3.2D). 

We then ran a linear mixed model with the cross-correlation coefficient as the outcome measure 

and sine- and cosine-transformed time lag as predictors. 

Figure 3.2G shows that sensitivity and distractor-evoked ERP are co-modulated at 3.5 

and 5 Hz. At lag 0, there was a negative correlation between sensitivity and the distractor- 



Study 1: Slow neural oscillations explain distractibility 

39 
 

 Figure 3.2. A) Average sensitivity (yellow solid line) and 25-Hz amplitude of the distractor-evoked event-related potential 

(ERP; blue solid line) across distractor onset times. Shaded areas show ±1 SEM across participants. Dashed lines show 

respective quadratic trends. B) Top panel: Distractor-evoked ERP waveform averaged across all distractor onset times at 

electrode Fz (20 – 30 Hz bandpass filtered for visualization purpose). The shaded grey area marks the time window used to 

extract the 25-Hz amplitude of the distractor-evoked ERP. The inset shows the scalp map of the 25-Hz amplitude of the 

distractor-evoked ERP (derived via an FFT on the distractor-evoked ERP waveform). Bottom panel: Distractor-evoked inter-

trial phase coherence (ITPC) from 1 – 10 Hz and -0.2 s – 0.6 s at Fz. Brain surface shows the ITPC values (frequencies: 3 – 7 

Hz; time window: 0 – 0.3 s) in source space, which reflects the auditory response to the distractor. The white outline indicates 

the top 1% voxels with the largest ITPC values. C) Detrended time courses of behavioural and neural outcome measures. 

Shaded areas show ±1 SEM across participants. D) Solid line shows average correlation coefficients, derived by averaging 

single-subject cross-correlations of sensitivity and distractor-evoked ERP time courses, as a function of temporal lags. The 

shaded area shows ±1 SEM across participants. E-G) Spectral magnitude across frequencies (0.5 – 8 Hz, 0.5-Hz step) for (E) 

detrended sensitivity, (F) distractor-evoked ERP, and (G) the cross-correlation between the two. Shaded areas show the 95th 

percentile of the permutation distribution generated from 5,000 permutations. * p < .05. ** p < .01. (uncorrected) 
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evoked ERP, consistent with the notion that stronger distractor encoding (i.e., larger distractor-

evoked ERP) corresponds to worse task performance (i.e., lower sensitivity). T-tests against 

zero on the (Fisher-z transformed) correlation coefficients across participants show that this 

correlation at time lag 0 was close to statistical significance (Pearson’s r: t29 = -1.85, p = 0.08, 

mean Pearson’s r = -0.08; Spearman’s r: t29 = -2.13, p = 0.04, mean Spearman’s r = -0.10). 

As a control analysis, the same analysis pipeline was run on the data in the distractor -

absent condition by randomly assigning a “distractor onset” for each distractor-absent trial, 

which did not reveal any significant co-modulation (Figure S3.4): Neither time courses of 

sensitivity nor distractor-evoked ERP were modulated by distractor onset time; time lags did 

not modulate the cross-correlation of these two at any frequency. The temporal co-fluctuat ions 

of behavioural and neural measures of distraction at 3 – 5 Hz in distractor-present trials may be 

a manifestation of an underlying distractibility rhythm, which we probed into next. 

 

3.3.3 Pre-distractor neural phase in the inferior frontal/insular cortex explains the 

distraction  

If the human brain hosts an endogenous rhythm that underlies distractibility dynamics, the 

neural state prior to distractor onset should explain the participant’s momentary vulnerability 

to interference by a distractor. To test this, we studied how the pre-distractor neural phase relates 

to our previously established proxy of distraction, that is, behavioural sensitivity. We asked 

when in time and in which brain network(s) such an endogenous rhythm underlying 

distractibility would show up. 

We employed source-projected EEG time courses to extract the quadratic relationship 

between the binned pre-distractor neural phase and perceptual sensitivity. For each trial (Figure 

3.3A), we first transformed a source-projected EEG data segment (0.4 s; sliding window) into 

the frequency domain using FFT. We then extracted the neural phase for a given frequency 

(Figure 3.3B). To calculate sensitivity sorted by phase bin, we first sorted the trials according 

to their phase values into 9 phase bins of equal size, followed by the calculation of perceptual 

sensitivity for each bin (see Figure S3.5 for individual participants’ sensitivity by phase bin). 

The same procedure was repeated for a range of frequencies (2.5 – 8 Hz, 0.5-Hz steps) and time 

windows (-0.3 – 0.3 s around distractor onset, 0.05-s steps). A cluster-based permutation test 

with the dimensions time, frequency, and voxels, wherein the quadratic fit was tested against 

zero, revealed a positive significant cluster (Figure 3.3C; the same analyses with 7, 8, and 10 



Study 1: Slow neural oscillations explain distractibility 

41 
 

phase bins yielded comparable clusters across all dimensions and comparable statistica l 

significance). The quadratic modulation of sensitivity by neural phase at 2.5 – 7.5 Hz was most 

prominent in the left insular and the inferior frontal cortices in the time window spanning ~300 

ms before distractor onset (cluster p-value = .026, two-tailed; see Figure S6 for brain surface 

plots from other viewing angles).  

 

Figure 3.3. A-B) Illustration of the source-level analysis. A) Example of a single-trial source-projected EEG time course. The 

moving window (grey) was used to transform segments of the data into the frequency domain using FFT. The first grey window 

corresponds to the first time window used in the time-resolved analysis (i.e., -0.5 to -0.1 s). B) Spectral representation of the 

data segment in (A). Phase values across frequencies were extracted and trials were binned according to their phase values into 

9 phase bins for each frequency, time window, and source location. The bar graph shows exemplary sensitivity values calculated 

from the trials sorted by phase bin. A quadratic trend was fitted to the sensitivity values across phase bins (purple solid line). 

C) Results of a cluster-based permutation test, which tested quadratic fits in time-frequency-source space against zero. The top 

panel shows the t-values (df = 29) across frequencies and time windows, averaged across all the voxels belonging to the 

significant positive cluster. The black contour indicates the positive significant cluster. The right column shows individual 

participants’ quadratic coefficients for each frequency, collapsed across the time windows included in the significant cluster. 

The bottom row shows individual participants’ quadratic coefficients across time windows, collapsed across frequencies and 

voxels included in the significant cluster. The bottom left panel shows the cluster peak effect (3 Hz; -0.2 s), which resides 

mainly in the left inferior frontal cortex and insular cortex. Only the t-values of the positive significant cluster are shown. The 

black contour indicates the regions with the top 1% t-values across the whole brain. The t-values were interpolated and projected 

onto MNI coordinates for visualization purposes. The white contour indicates distractor-evoked neural activity, quantified as 

the top 1% inter-trial phase coherence (ITPC) in the post-distractor time window (i.e., 0 – 0.3 s) at 3 – 7 Hz (shown also in 

Figure 2B). The bottom right panel shows centred perceptual sensitivity sorted by phase bins in the positive cluster at 3 Hz 

averaged across participants. Grey thin lines show individual centred perceptual sensitivity . 
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To test whether the significant cluster overlaps with sources of auditory-evoked activity 

in auditory cortex regions, we compared its source with the source of distractor-evoked inter-

trial phase coherence (ITPC) at 3 – 7 Hz (shown also in Figure 3.2B, bottom panel). Importantly, 

although the two effects were localized in proximal cortical regions (Figure 3.3C, bottom panel), 

their core regions were mostly non-overlapping. 

For control, we conducted the same analysis on the distractor-absent trials, which 

revealed no significant cluster (Figure S3.7). We also tested the relationship between the pre-

distractor neural phase and the post-distractor neural measure of distraction (i.e., 25-Hz 

amplitude of the distractor-evoked ERP), which did not reveal a significant effect (Figure S3.8).  

 

3.4 Discussion 

The current study aimed to unravel the temporal dynamics of distractibility, using a pitch 

discrimination task with auditory distractors. The eventual degree of distraction and the neural 

processing of distractors were respectively quantified by distractor-evoked performance 

detriments and neural responses in the human electroencephalogram (EEG). We made a series 

of interesting observations.  

First, the ~3 – 5 Hz fluctuations of behavioural sensitivity across distractor onset time 

urged for the question of whether the same fluctuations are observed in the human brain’s 

response to distractors. Consistently, we found that the distractor-evoked neural response 

covaries with behavioural sensitivity at similar frequencies. Second, while behavioura l 

sensitivity and the distractor-evoked neural response might partly reflect post-perceptual 

processes (such as distractor suppression), we asked whether the brain hosts an endogenous 

oscillation that shapes the momentary state of distractibility. Confirming this, we found that the 

pre-distractor neural phase in the left inferior frontal/insular cortex explained rhythmic 

fluctuations in the momentary degree of distraction.  

These major findings support the notion that temporal fluctuations in distractibility on 

a subsecond time scale can be explained by slow neural oscillatory dynamics in a cortical 

network beyond the auditory cortex. 
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3.4.1 The proneness to distraction is inherently dynamic 

The current study sheds light on the dynamics of distractibility, which is an important factor 

often neglected in previous attention research on distraction and suppression. The ultimate 

degree of detriment that a distractor will cause depends on two endogenous factors: the 

momentary proneness to distraction (i.e., distractibility) and the ability to suppress a distractor 

(i.e., distractor suppression). On the one hand, research on distractor suppression often did not 

disentangle the active suppression of distractors (Schneider et al., 2021) from variations in 

distractibility. On the other hand, research on distractibility rather treated it as an individua l 

characteristic that, if at all, only changes on a slow temporal scale such as within an 

experimental session (Forster & Lavie, 2014) or across developmental stages (Kannass et al., 

2006). The temporal trajectory of distractibility on a faster, subsecond, time scale had hitherto 

been left unknown. 

With distractor-evoked behavioural and neural measures, we were able to encapsulate 

the temporal trajectory of distraction, which fluctuates on a subsecond temporal scale consistent 

with the rate of rhythmic sampling in attention (Fiebelkorn et al., 2013; Ho et al., 2017; 

Kubetschek & Kayser, 2021; Landau & Fries, 2012) and working memory (Cruzat et al., 2021; 

Schmid et al., 2022; ter Wal et al., 2021). With analysis of the pre-distractor neural oscillatory 

phase, we were able to trace this distractibility back to a slow neural oscillatory fluctuation in 

the inferior frontal and insular cortex (see below for an in-depth discussion). Participants could 

not anticipate whether or when the distractor would occur, thereby not being able to engage in 

preparatory suppression of the upcoming distractor (Geng, 2014). The combined analysis of the 

pre-distractor neural phase and post-distractor neural and behavioural measures 

complementarily elucidates how the brain alternates between states of higher and lower 

distractibility. These insights are essential for the inclusion of an explicit account of distraction 

in models of attention in psychology and neuroscience. 

Fluctuations of distractibility at 3 – 5 Hz in the current study unveil the dynamic nature 

of attention, which was underappreciated in the static spotlight metaphor of attention (M. I. 

Posner et al., 1980). The attentional sampling of the to-be-attended external stimuli (Fiebelkorn 

et al., 2013; Ho et al., 2017; Kubetschek & Kayser, 2021) or internal memory representation 

(Cruzat et al., 2021; Schmid et al., 2022; ter Wal et al., 2021) has been shown to exhibit 

temporal fluctuations at similar frequencies. The waxing and waning of attentional sampling 

may index inter-areal coordination between the attentional network and the sensory areas of the 

brain (Dugué & VanRullen, 2017), which is associated with the alternation between stronger 
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and weaker attentional sampling over time (Fiebelkorn & Kastner, 2019). With much evidence 

on the temporally dynamic nature of the attentional spotlight, however, there is a lack of 

theoretical foundation for the inherent dynamics of cognition outside of this spotlight (Lui & 

Wöstmann, 2022). With the observed fluctuations of distractibility in the theta frequency range, 

an extension of the existing theory of dynamic attentional sampling to temporally dynamic 

distraction is warranted. 

While our results demonstrate that distractibility exhibits temporal fluctuations, they do 

not reveal whether such fluctuations are independent of the fluctuations found in the attentiona l 

sampling of memory content. Participants in the current study had to maintain the memory 

representation of the pitch of tone 1 during a trial. The theta fluctuations found in the current 

study thus may represent the sampling of the internal representation of tone 1, with higher 

distractibility hypothetically occurring during the phase of reduced sampling of the memory 

representation. Alternatively, observed theta fluctuations may represent independent 

fluctuations in the proneness to distraction. Previous neuroimaging studies found that the 

suppression of distracting inputs may be independent of the sampling of attended inputs  

(Noonan et al., 2016; Schneider et al., 2018; Wöstmann et al., 2019). Future investigations may 

manipulate both the target and distractor onset time to examine the relationship between the 

temporal fluctuations underlying attentional sampling and distractibility.  

Of note, as the main analysis approach used here (comparing empirical time courses to 

time courses that were shuffled in time) does not distinguish between periodic and aperiodic 

temporal structure (Brookshire, 2022), we are careful to conclude from the respective results 

alone that distractibility is rhythmic. However, it does not negate the possibility that there is a 

periodic temporal structure in distractibility. The premise of rhythmic cognition is that the 

apparent fluctuations of performance reflect the periodic orchestration between brain regions 

(Fiebelkorn & Kastner, 2019). In addition to fluctuations in behavioural performance, neural 

evidence is, therefore, essential to elucidate the rhythmicity of cognition (Fiebelkorn, 2022; 

Wöstmann, 2022). The current study shows a correspondence between slow neural oscillatory 

phase and behaviour (using an analysis approach that does not employ shuffling- in-time), 

consistent with the notion that distractibility is rhythmic. Future advancements in the analysis 

approach to directly test the periodicity in cognition will further strengthen our understand ing 

of the distractibility dynamics.  
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3.4.2 Neural dynamics of distractibility originate in inferior frontal/insular cortices  

The localisation of neural phase effects underlying distractibility dynamics beyond auditory 

cortex regions might suggest that the proneness to distraction is supra-modal. In research on 

visual distraction, brain regions in frontal and parietal cortices have been associated with 

distractor interference in lesions (Chao & Knight, 1995) or transcranial magnetic stimula t ion 

(Kanai et al., 2011; Wais et al., 2012) studies. The functional connectivity between the left 

inferior frontal cortex and hippocampus is associated with the disruptive influence of task-

irrelevant visual distraction on working memory (Wais et al., 2010). While the current study 

examined distractibility in the auditory modality, the neural origins found here overlap with 

previous research on distraction in the visual modality. 

 The observed relationship between perceptual sensitivity and the inferior frontal/insular 

theta phase suggests that fluctuations in distractibility may be related to the cognitive control 

of working memory. The left inferior frontal cortex is assumed to be critical to the resolution 

of competition between the maintenance of goal-relevant information and the interference from 

the external distraction (Irlbacher et al., 2014; Tops & Boksem, 2011; Wais et al., 2012). The 

anterior insula is theorised as a gatekeeper to the brain regions responsible for the goal-related 

cognitive control (Molnar-Szakacs & Uddin, 2022), and is part of the ventral attention system 

(Eckert et al., 2009). Specifically, the insular cortex may support the switching between 

networks important to internally directed and externally directed cognition, respectively (Uddin, 

2015). The frontal theta rhythm is associated with cognitive control (B. Berger et al., 2019; 

Cavanagh & Frank, 2014; Kamarajan et al., 2004) and the prioritization of the relevant memory 

representation (Riddle et al., 2020). Taken together, theta oscillations in the inferior frontal and 

insular cortices may reflect the orchestration of the cognitive control system to maintain the 

internal memory representation and suppress potentially distracting external inputs. 

 Against what might have been expected, the pre-distractor neural phase did not predict 

fluctuations in the distractor-evoked neural response (Figure S3.8). However, this null result 

might rest on the distractor-evoked ERP being a rather unspecific proxy of distraction. 

Components of the distractor-evoked ERP have been shown to reflect cognitive operations 

other than distraction, such as the reactive suppression (Feldmann-Wüstefeld & Vogel, 2019; 

Hickey et al., 2009; B. Wang et al., 2019) or stimulus prediction (Volosin & Horváth, 2014). 

Distractibility dynamics may only account for a small amount of variance in the distractor -

evoked ERP.  
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3.5 Conclusion 

The present study demonstrates that human proneness to distraction is not uniformly distributed 

across time but fluctuates on a subsecond timescale in cycles of ~3 – 5 Hz. In the brain, time 

windows of higher distractibility are coined by stronger neural responses to distractors. 

Furthermore, the slow neural phase in the left inferior frontal/insular cortex regions explains 

fluctuations in distractibility. These results unravel the temporal dynamics of distractibility and 

thereby help explain human processing of an abundant kind of stimulus in increasingly complex 

environments, that is, irrelevant and distracting input.  
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3.6 Supplementary information 

 

Figure S3.1. Time courses of raw sensitivity (yellow) and distractor-evoked ERP (25-Hz amplitude of distractor-evoked 

ERP; blue) for each individual participant. 

 

 

 

Figure S3.2. Detrended (quadratic trend removed) sensitivity (yellow) and distractor-evoked ERP (blue) time courses for 

each individual participant.   
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Figure S3.3. The left panel shows the sensitivity time courses for distractor-present (solid) and distractor-absent (dashed) 

conditions. The right panel shows the averaged frequency spectra, derived from FFT on single-subject time courses. 

Shaded areas show ±1 SEM across individual participants. Asterisks show statistical significance when comparing the 

spectral magnitude of distractor-present versus -absent conditions (using uncorrected dependent-samples t-tests). * p < .05 

** p < .01 
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Figure S3.4. The same analysis pipeline as shown in Figure 3.2, applied here to the distractor-absent condition.  
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Figure S3.5. Individual sensitivity (grey line) and quadratic fit (purple line) across phase bins of the significant positive 

cluster at 3 Hz. 
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Figure S3.6. Brain surface plots of the cluster peak effect (3 Hz; -0.2 s) from left lateral (top left), right lateral (top right), left 

medial (bottom left), and right medial (bottom right) views show t -values for the comparison of the quadratic fit of the 

sensitivity sorted by phase bins against zero. The t -values were interpolated and projected onto MNI coordinates for 

visualization purposes. 
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Figure S3.7. Results of the cluster-based permutation test, across time windows and frequencies, on the quadratic relationship 

between neural phase and sensitivity for the distractor-absent condition. The figure shows t-values (df = 29) averaged across 

all the voxels belonging to the significant positive cluster in the distractor-present condition shown in Figure 3.3. No significant 

cluster was found in the distractor-absent condition. 

 

 

Figure S3.8. Results of the cluster-based permutation test, across time windows and frequencies, on the quadratic relationship 

between neural phase and distractor-evoked ERP amplitude at 25 Hz. The figure shows t-values (df = 29) averaged across all 

the voxels belonging to the significant positive cluster testing the quadratic relationship between neural phase and behavioural 

sensitivity shown in Figure 3.3. As expected, and not of main interest in the current study, a significant cluster in the post-

stimulus time window (i.e., >0s) was found. More importantly, no significant cluster was found in the pre-distractor time 

window (i.e., <0 s). 
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4 Study 2: Effects of temporally regular versus irregular distractors on goal-directed 

cognition and behaviour2 

 

4.1 Introduction 

Sensory events in human environments often possess an inherent temporal structure (e.g., a 

ticking clock in the living room). Some of these events are relevant for goal-directed behaviour, 

while others are irrelevant and potentially distracting. Dynamic attending theory (Large & Jones, 

1999) suggests that temporal regularity of task-relevant stimuli guides attentional resources to 

the expected onsets of stimuli, and hence facilitates sensory processing at these time points. 

The prevalence of temporal regularity in task-irrelevant stimuli urges the question of whether 

temporal regularity of distraction impacts humans’ execution of goal-directed cognitive 

operations.  

Shielding memory representation against external distraction is important to 

successfully maintain relevant information (Lorenc et al., 2021; Oberauer, 2019). The 

irrelevant-sound task (Colle & Welsh, 1976; Salamé & Baddeley, 1982), in which participants 

need to maintain the order of target numbers in memory while ignoring auditory distractors, 

provides a gateway to probe how different psycho-acoustic features of distractors interfere with 

working memory. The irrelevant-sound effect refers to the observation that, compared with 

stationary background noise or silence, memory interference is larger for irrelevant sounds, 

such as speech distractors (e.g., Buchner et al., 2004; Salamé & Baddeley, 1989; Tremblay et 

al., 2000) or sequences of pure tones with changing frequencies (e.g., D. M. Jones & Macken, 

1993; LeCompte et al., 1997), although the size of the irrelevant-sound effect is typically larger 

for speech versus tone distractors (Ellermeier & Zimmer, 2014; LeCompte et al., 1997). Of 

relevance to the present study, the degree of interference has also been shown to be modulated 

by the violation (e.g., Röer et al., 2014), or the lack of (e.g., T. Campbell et al., 2002) repeating 

structure in the distractor sequence, which could be explained by the auditory deviant 

hypothesis (Cowan, 1995, 1999) or by the changing-state hypothesis ( D. Jones et al., 1992, 

1999). Violation of the regular structure of distractor sequences may interfere with working 

memory by means of attentional capture, which refers to the orientation of attentional resources 

to a stimulus outside the current focus of attention when the stimulus deviates from expectation 

(Röer et al., 2014; Schröger & Wolff, 1998). Alternatively, a changing-state distractor (e.g., A-

                                                                 
2 This chapter is adapted from the article published in Scientific Reports by Lui & Wöstmann (2022). 
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C-D-J-E as opposed to A-A-A-A-A) is supposed to interfere with the order of target stimuli 

maintained in memory in the irrelevant-sound task (T. Campbell et al., 2002; Hughes, Tremblay, 

et al., 2005). 

 Given the rich evidence on how different features of distractors interfere with working 

memory, the paucity of studies on the role of temporal regularity of distractors is surprising. 

The current study aimed at filling this gap by investigating how the temporal regularity of 

distractor sequences influences goal-directed working memory. The onset time of distraction 

has recently been shown to modulate working memory interference (Körner et al., 2019; 

Wöstmann et al., 2020), demonstrating that temporal features of distractors may play an 

important role in the susceptibility to distraction in working memory tasks. When it comes to 

temporal regularity, temporally irregular distractors were recently found to be more disruptive 

to the detection of deviance in unmasked targets (Makov & Zion Golumbic, 2020). For 

concurrently presented target and distractor streams, this study supports the view that 

temporally regular versus irregular distractors differentially interfere with goal-directed 

cognitive operations. In studies using irrelevant-sound tasks, however, inconsistent results were 

found, such that participants either performed better (D. M. Jones & Macken, 1995) or worse 

(Parmentier & Beaman, 2015) with regular versus irregular distractors. It is thus an unresolved 

question whether and how the temporal regularity of distractors during memory retention 

affects working memory performance. 

 Different theoretical accounts may give rise to different predicted effects regarding how 

the temporal regularity of distractors may disrupt working memory. Within the theoretical 

framework of the irrelevant-sound effect, previous studies explained the differential effect of 

isochronous versus random temporal structures on serial memory accuracy based on the 

changing-state hypothesis. Temporally regular distractor sequences may facilitate (D. M. Jones 

& Macken, 1995) or interfere with (Parmentier & Beaman, 2015) the perceptual organiza t ion 

of distractors, thereby modulating the precision of the serial memory representation. However, 

previous evidence also showed that serial order memory depends on the position, rather than 

the timing, of targets (Gorin, 2020; Ng & Maybery, 2005). Whether a violation of the temporal 

regularity of distractors acts as a changing-state sequence and influences serial order memory 

thus remains unclear. Of note, the current study does not strictly test the changing-state 

hypothesis as the distractors used within each individual experiment were implemented either 

as a steady-state (in Experiments 1 & 2) or a changing-state (in Experiments 3 & 4) sequence.  
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Alternatively, according to the auditory deviant hypothesis, temporally regular 

distractors may facilitate the formation of an expectation regarding when the next distractor 

may occur. The deviation from temporal regularity may then potentially capture attention, 

rendering the distractors harder to ignore. Distractor sequences with temporal deviants interfere 

with the serial recall of concurrently presented to-be-remembered sequences (Hughes, Vachon, 

et al., 2005). Electrophysiological studies also revealed that the human auditory system detects 

changes in the temporal regularity of ignored stimuli (Näätänen et al., 1993), which suggests 

the general potency of temporal (ir)regularity captures attention. 

More generally, the temporal regularity of distractors may facilitate or disrupt the 

shielding of working memory from distractions based on different theoretical considerations. 

First, some stimulus properties that typically facilitate auditory target processing (e.g., acoustic 

detail and voice familiarity) were shown to disrupt memory performance when occurring in the 

distractor (Kreitewolf et al., 2019; Wöstmann & Obleser, 2016). As the temporal regularity of 

targets typically aids target processing (Morillon et al., 2016; Rohenkohl et al., 2012), 

temporally regular distractors may in turn be more distracting to the participants. Second, 

temporal expectation formed by regular temporal structures may decrease the degree of 

distraction. Previous evidence shows that participants performed better when they had 

foreknowledge about the deviation in distractors (Hughes et al., 2013), suggesting that 

expectation may reduce susceptibility to distraction. 

 The inconsistent evidence in the current body of literature may be due to different 

reasons, and the current study probed into each of the following conjectures, using a series of 

experiments. First, the temporal regularity effect may vary depending on the type of temporal 

(ir)regularity employed. As mentioned, the violation of temporal regularity embedded in the 

distractor sequence may also potentially capture attention. It is therefore important to test 

whether deviation from temporal regularity of distractors influences working memory 

performance. Experiment 1 in the current study investigated the deviant effect in time by 

manipulating the stimulus onset asynchrony of a final distractor tone in a distractor sequence. 

Experiment 2 manipulated temporal regularity by using isochronous (regular) versus random 

(irregular) temporal structure for all items in a distractor sequence. 

Second, the modulatory effect of temporal regularity in the distractor sequences on 

working memory may depend on the type of sound events used in the irrelevant-sound 

task(Wöstmann et al., 2022). Studies on temporal regularity in distraction used distractors from 

a wide range of stimuli, spanning from pure tones (Bauer et al., 2015) to speech items 
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(Parmentier & Beaman, 2015). It is possible that the temporal regularity effect is more 

prominent with distractors that are more difficult to ignore. Thus, we started out with pure tone 

distractors in Experiments 1&2 and found that their temporal (ir)regularity did not affect 

working memory recall accuracy. We then employed spoken numbers as distractors in 

Experiments 3&4 to increase the degree of distraction. 

Third, previous studies focused largely on primary performance metrics like the 

accuracy of memory recall, which reflects the precision of memory representation. However, it 

is conceivable that temporally regular versus irregular distractors rather affect secondary 

performance metrics of response behaviour during memory retrieval, which may involve 

metacognitive evaluation and threshold setting (Goldsmith & Koriat, 2007; Koriat & Goldsmith, 

1996). Metacognition, usually operationalized as confidence rating, refers to one’s evaluat ion 

and knowledge of the cognitive processes (Flavell, 1979). Metacognitive monitoring and 

control have been suggested to be involved in strategic regulation during memory recall (Koriat 

& Goldsmith, 1996). Specifically, response bias may represent a threshold in memory 

recognition: a participant would only respond that they remember the item (i.e., “old” item) if 

their confidence is higher than a certain threshold, which is related to faster response time  

(Atkinson et al., 1974; Banks & Atkinson, 1974; Juola et al., 1971). Therefore, studying how 

the temporal regularity of distractors influences response speed, confidence, and response bias 

would be required to obtain a comprehensive understanding of whether the temporal 

(ir)regularity of auditory distraction reaches awareness.  

It is possible that, instead of interfering with the serial order memory as suggested by 

the changing state hypothesis, the temporal regularity of distractors may have a more general 

impact on the goal-directed response behaviour. In such case, instead of directly interfer ing 

with the serial memory recall accuracy, the temporal regularity of distractors may modulate the 

response behaviour (e.g., response speed and bias) which are less reflective of the serial 

memory maintenance but still sensitive to how distractors affect goal-directed behaviour 

(Kattner & Bryce, 2021; Makov & Zion Golumbic, 2020). Previous research found that 

temporal regularity of target stimuli increases confidence ratings, which was attributed to an 

increase in processing fluency, or the subjective experience of ease during information 

processing (Alter & Oppenheimer, 2009; Stevenson & Carlson, 2020). Furthermore, previous 

studies revealed a facilitatory effect of temporal regularity on response time in target detection 

tasks (Morillon et al., 2016; Rohenkohl et al., 2012; Salet et al., 2021), suggesting that the 

periodicity in regular stimuli may facilitate motor preparation. To explore whether temporal 
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regularity of distractors also modulates processes other than the precision of items represented 

in memory, we included secondary performance metrics response time in Experiment 3, as well 

as response bias and confidence ratings in Experiment 4. In addition, we included visual 

distractors in Experiment 4 to investigate if the temporal regularity effect of distractors on 

working memory, if any, is modality-specific.  

Across Experiment 1 to 4 in the current study, different variants of working memory 

tasks were used to investigate whether the temporal regularity of distractor affects working 

memory. Overall, we found no temporal regularity effect on the primary performance metric 

memory recall accuracy. However, temporal regularity was found to modulate participants’ 

secondary performance metrics, reflected by response speed in Experiment 3, as well as 

response bias and confidence in Experiment 4. 

 

4.2 Methods 

 

4.2.1 Participants  

Across all 4 experiments, N = 90 native German speakers (70 females, 20 males) aged 19 to 64 

years (mean = 24.81, SD = 3.95) participated, among which N = 89 participants were included 

in the analyses. All participants provided written informed consent. Participation was 

compensated financially or by course credit. According to self-report, all participants were 

right-handed, had normal hearing, and had normal or corrected-to-normal vision. The 

experimental procedures were approved by the local ethics committee of the University of 

Lübeck and in accordance with the Declaration of Helsinki. 

Due to technical issues, one participant in Experiment 1 finished only 184 out of 250 

trials, the rhythmicity rating of one participant in Experiment 2 was not recorded, and the data 

of one participant in Experiment 3 were overwritten and thus missing. Two participants 

participated in more than two of our experiments that were at least 5 months apart from each 

other. Detailed information on participant samples for individual experiments can be found in 

Table 1.  
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4.2.2 Stimuli and procedure 

Inspired by the well-established irrelevant-sound paradigm (Colle & Welsh, 1976), we used 

serial working memory tasks (Experiment 1-3) and a recognition memory task (Experiment 4) 

to present temporally regular versus irregular distractors during memory retention. For all 

experiments, each trial consisted of a memory encoding, retention, and retrieval phase. Prior to 

the execution of the main task, participants were instructed to maintain the order (Experiment 

1 to 3) or the position (Experiment 4) of the target stimuli in mind while ignoring the distractor 

sequence presented during the retention period. The distractor onset delay, i.e., the onset of the 

distractor sequence after the offset of the target stimuli, varied across trials (see “Distractor 

onset delay” in Table 1). Here, we describe the general experimental design and important 

manipulations for each experiment (see Table 1 for all details).  

 In Experiment 1 (Figure 4.1A), a target sequence with numbers from 1 to 9 was 

presented visually in the center of the screen, in a random order, during the encoding period. 

The duration of each number presentation was 300ms, the stimulus onset asynchrony (SOA) 

between numbers was 600ms, and the total duration of the target stimuli was 5100ms. During 

the retention period, a distractor sequence was presented. The distractor sequence consisted of 

eight 1000-Hz pure tones with a 4-Hz presentation rate (i.e., SOA of 250ms). The SOA of the 

last distractor tone was manipulated across 5 levels: 125ms, 187.5ms, 250ms, 312.5ms, and 

375ms. Regularity of the distractor sequence was given when the last distractor tone SOA was 

identical (i.e., 250ms; Regular) versus different (i.e., 125, 187.5, 312.5, and 375ms; Irregular) 

from the SOAs of the previous tones. After the retention period, participants recalled the target 

number sequence by typing it on the number pad of a keyboard. Afterwards, feedback was 

provided with green and red underscores under correct and incorrect answers, respectively. 

 In Experiment 2 (Figure 4.1B), the target was a pseudo-random permutation of German 

utterances of the digits 1 to 9, pronounced by a female speaker, with the constraint that no 

succeeding numbers (e.g., 3 and 4) be presented consecutively. The average duration of the 

numbers was 595ms and the SOA between numbers was 750ms (Wöstmann & Obleser, 2016). 

The distractor sequences consisted of eight 440-Hz pure tones (i.e., musical note A4) and were 

either temporally regular or irregular. For the regular sequence, the SOA was 250ms (4 Hz). 

For irregular sequence, the SOA was randomly selected between 100 and 400ms (10ms steps), 

with the constraint that the average SOA, as well as the last SOA, were each 250ms. In the 

retrieval period, participants navigated the screen with a mouse and selected the numbers from 

a number pad presented on the screen. No feedback was provided afterwards. 
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 The target stimuli in Experiment 3 (Figure 4.1C) consisted of 8 numbers (numbers 1 to 

8) also in a pseudo-randomized order as in Experiment 2, spoken either by a female or a male 

speaker. The numbers were shortened to 350ms using Praat (version 6.1.16; 

http://www.praat.org/). The perceptual centre of each stimulus was determined by first creating 

the 15-Hz lowpass-filtered envelope of the stimulus using Hilbert transform, and then finding 

the time point where the envelope reached 50% of the peak of the first syllable (Morton et al., 

1976; Wöstmann et al., 2018). The interval between the perceptual centres of the numbers was 

750ms. The temporal regularity of the distractor was manipulated in the same way as in 

Experiment 2, where spoken numbers of the distractor sequence were spoken by a female voice 

in case the target was spoken by a male voice and vice versa. For regular sequences, the SOA 

was 750ms (1.33 Hz). For irregular sequences, the SOA was randomly selected between 400 

and 1100ms (10ms steps), with the constraint that the average SOA, as well as the last SOA, 

were each 750ms. Furthermore, a lower bound of temporal irregularity was implemented by the 

constraint that the standard deviation of SOAs within a trial was larger than 200ms. As in 

Experiment 2, participants navigated on the screen with a mouse to select the numbers on the 

number pad. No feedback was provided also in Experiment 3. 

In Experiment 4 (Figure 4.1D), instead of having an acoustically presented number 

sequence, the target stimulus was a visually presented 3x3 matrix, including 8 numbers in 8 

positions (the centre of the matrix was empty during encoding). The target stimulus was 

presented for 2000ms. The same parameters for the distractor stimuli as Experiment 3 were 

used in the auditory modality, except that the SOA for the irregular sequence was randomly 

selected using 16.7ms steps to account for the refresh rate (60 Hz) of the monitor, such that the 

irregular sequences were comparable between auditory and visual modalities. In the visual 

modality, the number sequences were presented in the centre of the screen consecutively with 

the same manipulation in terms of the temporal regularity of the distractors. After the retention 

period, a display with one probe number at one position was presented. Participants had to 

identify whether the probe number matched the target number in the encoding display at this 

position. The button assignment (i.e., left versus right) was counterbalanced for “match” versus 

“no match” responses across participants. Afterwards, participants indicated how confident 

they were that they answered correctly on a 4-point scale (1 = not confident at all, 4 = very 

confident). Participants also received no feedback in Experiment 4. 

In addition to Experiments 1 to 4, a control experiment (N = 18, mean age = 23.68 years, 

SD = 2.83, 16 females, 2 males) was conducted to demonstrate the strength of interference by 

http://www.praat.org/
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the tone and spoken number distractors, respectively, relative to when there was no distractor 

(i.e., quiet control condition). The target stimuli and response method were the same as in 

Experiment 3. The experiment was divided into four blocks with the lengths of the retention 

period fixed within each block. For half of the blocks, the retention period was 5s as in 

Experiment 2; for the other half, the retention period was 8s as in Experiment 3. In the 5s 

retention blocks, either no distractor (quiet control; 50% of all trials) or a tone sequence 

(distractor presence; 50% of all trials) used in Experiment 2 was presented during the retention 

period. The tone sequence was either temporally regular (50% of the distractor presence trials) 

or irregular (50% of the distractor presence trials) to maintain the same context as in the main 

experiment. Trials with different temporally regular and irregular distractors were combined in 

the analysis. The manipulations were the same in the 8s retention blocks, but with the spoken 

number sequences from Experiment 3 serving as distractors. There were 192 trials in total and 

48 trials for each of the four conditions [distractor (present vs absent) x retention period (5s vs 

8s)]. Block order was counterbalanced between participants, with half of the participants 

starting the experiment with the 5s retention period block and the other half with the 8s retention 

period block. 

The relatively long retention periods (3 to 8s) in the current study were chosen to ensure 

a large enough dynamic range to manipulate the SOAs in the irregular condition. For example, 

in Experiment 3, given that the duration of speech stimuli was 350ms, we manipulated the 

temporal structure by constraining the SOAs to be within the 400-1100ms range with a mean 

of 750ms, the SOA employed in the temporally regular condition. As a result, the distractor 

sequence was relatively long (~5.6s) and a long retention period was employed. Differentia l 

distraction by speech of varying acoustic detail was also found in a previous study with a 

retention period longer than the one used in the current study (Wöstmann & Obleser, 2016). As 

the main research interest in the current study was to unravel the difference between temporally 

regular and irregular distractors, we compared the outcome measures between temporally 

regular and irregular conditions, holding the retention period constant between conditions 

within each experiment. 

In all experiments, participants were instructed to keep their eyes open and not to speak 

the target numbers out loud. They were instructed to fixate the fixation cross in the middle of 

the screen during the encoding (for Experiment 2, 3, and 4) and retention (for Experiment 1 to 

4) period whenever a fixation cross was presented.  
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Figure 4.1. In all four experiments (A-D), participants maintained the target numbers in memory during the retention period 

while ignoring the distractors (blue/orange). In Experiment 1 (A), temporal regularity of distractors was manipulated by altering 

the onset of the last distractor tone such that it was either identical (regular, blue), or shorter/longer (irregular, red) than the 

stimulus onset asynchrony of the preceding distractor sequence. In Experiments 2 to 4 (B-D), the temporal regularity of the 

distractors was operationalized by the isochronous (regular, blue) or irregular (red) temporal structure of the entire sequence of 

distractors. After the retention period, participants responded with a mouse to select the numbers in their order of presentation 

from a visually presented number pad (Experiments 2 & 3), with a number pad on a keyboard (Experiment 1), or with a response 

pad (Experiment 4). 

 

To check whether temporally regular distractors were perceived as more rhythmic than 

temporally irregular distractors, we also included a rhythmicity rating for distractor sequences 

after Experiments 2 & 3. Participants listened to all of the distractor sequences that were 
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presented in the main experiment and rated how rhythmic they found each distractor sequence 

on a scale from 1 (not rhythmic at all) to 7 (very rhythmic) by clicking the number on the screen 

with a mouse. The distractor sequences were presented in a randomised order. 

Experiments 1, 3, and 4 were implemented using MATLAB (MathWorks, Inc., Natick, 

USA) and Psychophysics Toolbox (Brainard, 1997). Experiment 2 was implemented as an 

online study, using Labvanced (Finger et al., 2017). Participants used headphones for 

Experiments 1, 3, and 4, while approximately half of the participants (N = 10) used headphones 

and the other half (N = 9) used speakers in Experiment 2 (according to self-report). The auditory 

materials were presented at comfortable listening levels. Details of all experiments are listed in 

Table 1.  

 

4.2.3 Analysis 

For Experiments 1 to 3, we analysed the effect of temporal regularity on working memory 

performance with repeated-measures ANOVAs or paired t-tests (2-tailed), using the data of 

individual experiments. To increase the power of the analysis, we also ran a mixed-design 

ANOVA for the combined data of Experiments 1–4 with temporal regularity as the within-

subject factor and experiment as the between-subject factor. Accuracy was operationalised as 

the proportion correct of the serial recall, which, on the single-trial level, could take on 10 

possible values (0-9/9) in Experiments 1 & 2, 9 possible values (0-8/8) in Experiment 3, and 2 

binary values (0 = incorrect and 1 = correct) in Experiment 4. To delineate whether the 

empirical data speak to the alternative versus the null hypothesis, we complemented frequentist 

statistical analyses with the Bayes Factor (BF10; Dienes, 2014; Jeffreys, 1939). As an effect size, 

we report requivalent, which is bound between 0 and 1 (Rosenthal & Rubin, 2003). requivalent was 

derived from Cohen’s d in the paired t-tests or eta-squared (η2) from the repeated-measures 

ANOVAs using the transformation provided in an online tool (Lenhard & Lenhard, 2016) 

(https://www.psychometrica.de/effect_size.html). 

For Experiment 1, we ran a paired t-test with the factor regularity, referring to the 

temporal delay between the last two distractor tones, which could either agree with the delays 

between all distractors earlier in the sequence (i.e., 250ms; denoted regular) or differed 

systematically (i.e., 125, 187.5, 312.5, or 375ms; denoted irregular). In addition, we ran 

repeated-measures ANOVAs to test the effect of the exact delay (in ms) between the last two 

distractor tones (denoted final distractor onset), as well as the absolute deviation of this delay 

https://www.psychometrica.de/effect_size.html
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from a regular distractor (i.e., |250ms – delay between last two distractor tones|; denoted final 

distractor deviation).  

For Experiments 2 & 3, paired t-tests were used with the factor regularity, which 

referred to the temporal structure of the whole distractor sequence. We tested whether 

temporally regular distractors were perceived as more rhythmic than the temporally irregular 

distractors in Experiment 2 and 3, respectively, using paired t-tests with regularity as the factor. 

In Experiment 3, we recorded participants’ response time in addition to accuracy. Response 

time (RT) was defined as the time interval between the presentation of the number pad on the 

screen and participants’ first button press. We first converted response time into speed (1/RT), 

and then excluded 6% of the slowest (3%) and fastest (3%) trials (Ratcliff, 1993). We analysed 

the effect of temporal regularity on speed by replacing accuracy with speed in the analysis.  

For Experiment 4, response time was defined as the time interval between the 

presentation of the response screen and the button press. We also converted response time into 

speed (1/RT) and excluded 6% of the slowest (3%) and fastest (3%) trials together with the 

trials without a response (approximately 3%). We implemented two analysis approaches. First, 

to examine whether there is an interaction between distractor modality and regularity, we 

employed repeated-measures ANOVAs on each outcome measure (i.e., accuracy, speed, and 

confidence) separately, with the factors modality and regularity. As the modality x regular ity 

interaction was not significant, we collapsed across visual and auditory distractors for further 

analyses.  

 In addition, we ran trial-wise linear mixed models including trial number and distractor 

onset delay for all aforementioned analyses. As the patterns of the trial-wise analyses and the 

analyses on aggregated data converged, the results of the linear mixed models are not presented 

here. 

Second, in Experiment 4, we used signal detection theory (Macmillan & Creelman, 

2004) to derive sensitivity and response bias (criterion) separately for Regular and Irregular 

conditions, respectively, using Equations 4.1 and 4.2: 

Equation 4.1: Sensitivity = z (Hit rate) – z (False alarm rate) 

Equation 4.2: Criterion = -0.5 * (z (Hit rate) + z (False alarm rate)) 

Hit rates and false alarm rates of 0 or 1 for individual participants were replaced by 1/2N, 

where N refers to the number of trials (Macmillan & Kaplan, 1985). Since sensitivity and 



Study 2: Effects of temporal regularity of distractors on cognition 

64 
 

response bias cannot be derived for single trials, we only used paired sample t-tests to test for 

the effects of distractor regularity. 

As participants responded significantly more conservatively in the regular condition 

(i.e., more positive response bias) in Experiment 4, we further investigated the effect of 

regularity on the outcome measures. Higher response bias means that participants tend to 

respond “different” (i.e., “no” response), which suggests that participants may have different 

confidence ratings depending on whether the target and probe displays matched. Hence, we 

included the factor match, which classifies whether the target and probe displays were the same 

(match = 1; correct response = “same”) or different (match = 0; correct response = “different”), 

into a 2-way repeated-measures ANOVA including the factor distractor regularity. We did not 

repeat these analyses on sensitivity and response bias as the factor match was taken into account 

while calculating the two measures (i.e., hit rate: response “same”, match = 1). As in 

Experiments 1 to 3, we also included effect sizes and Bayes factors to quantify the strength of 

the evidence towards the alternative hypothesis. Bayes factors indicate the comparison between 

the likelihood of an alternative hypothesis to that of a null hypothesis (Jeffreys, 1939). For 

statistically significant results (i.e., p < .05), we used the Bayes factor not to decide whether 

there is an effect, but rather to estimate the strength of the evidence. More critically, for null 

results (i.e., p > .05), we used the Bayes factor to indicate whether the result is more likely to 

reflect the absence of evidence or evidence for the absence of an effect. Conventionally, Bayes 

factors (BF10) > 3 indicate that the observed data are substantially more likely to speak to the 

alternative hypothesis than the null hypothesis, and vice versa with Bayes factors < 1/3. Bayes 

factors of 1 indicate that the data do not speak to either the alternative hypothesis or the null 

hypothesis. 

Post-hoc power analyses with 20 and 89 participants were conducted, approximate ly 

matching the number of participants in individual experiments and the total number of 

participants, respectively. With N = 20, alpha = .05, and power = 0.80, the minimum effect size 

needed to reliably observe a significant effect (in a paired samples t-test) was r = 0.31. With N 

= 89, alpha = .05, and power = 0.80, the minimum effect size needed to reliably observe a 

significant effect was r = 0.15. The temporal regularity effects observed in the current study 

were smaller than these minimum effect sizes. We also compared the effect sizes observed in 

the current study to previous studies from the literature which found the effects of the temporal 

regularity of distractors on memory recall accuracy (D. M. Jones & Macken, 1995; Parmentier 

& Beaman, 2015). The effect sizes in the current study (e.g., r = 0.009 in the combined analys is) 
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are considerably smaller than the effect sizes obtained in these studies, which were r = 0.42 (D. 

M. Jones & Macken, 1995) and r = 0.19 (Parmentier & Beaman, 2015), respectively. All 

statistical analyses were conducted in jamovi (version 1.6.23; www.jamovi.org). 

 

Table 4.1. Details of experimental manipulations for each experiment.  

Note. m indicates male. f indicates female. # indicates number. n indicates sample size.  

  

  
Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Participants Sample size n=21 (14f, 7m) n=19 (18f, 1m) n=20 (16f, 4m) n=30 (22f, 8m) 
 

Age (years; M=mean; 

SD=standard 

deviation) 

20-64  

(M=26.95, 

SD=2.7) 

19-38  

(M=24.8, 

SD=5.74) 

19-27  

(M=22.7, SD=2.25) 

19-32  

(M=24.7, 

SD=3.54) 

Encoding Target duration 5.1s ~6.6s  ~5.6s 2s 
 

# of targets 9 9 8 8 

Retention Retention duration 3s 5s 8s 8s 
 

Distractor onset delay 0.5-1s 1.035-1.835s 1.035-1.835s 1.035-1.835s 
 

Distractor type pure tones (1000 

Hz) 

pure tones  

(440 Hz) 

spoken numbers spoken numbers/ 

numbers on screen 
 

Distractor duration 1.675-1.925s 1.8s ~5.6s ~5.6s 
 

Factors (# levels) SOA (5) Regularity (2) Regularity (2) Regularity (2) x 

Modality (2) 

Retrieval Response device keyboard mouse mouse response pad 
 

Outcome measure Accuracy  Accuracy Accuracy, Speed 

(1/RT) 

Accuracy, Speed 

(1/RT),  

Criterion, 

Confidence 
 

Number of trials 250 (50 per 

condition) 

108 (54 per 

condition) 

120 (60 per 

condition) 

256 (64 per 

condition) 
 

Number of blocks 5 2 2 4 
 

Inter-trial interval 1s 1s 1s 0.73 to 4s 
 

Block design? No No No Modality 

(visual/auditory) 

Apparatus Lab/online  Lab study Online study Lab study Lab study 

 
Sound presentation Headphone 

(Sennheiser HD 

280 Pro) 

Headphone (n = 

10), speakers (n = 

9) 

Headphone 

(Sennheiser HD 280 

Pro) 

Headphone 

(Sennheiser HD 

280 Pro) 

http://www.jamovi.org/
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4.3 Results 

 

4.3.1 Temporal regularity of distractors does not affect working memory recall 

accuracy 

We tested whether temporally regular versus irregular distractors would differentially affect 

working memory recall accuracy. Across Experiments 1–4, regular distractors did not interfere 

more with recall accuracy than irregular distractors (F1,85 = 0.31, p = .577, r = 0.009). The Bayes 

Factor for this contrast (BF10 = 0.24) 

provides evidence for the absence of an 

effect of temporally regular versus 

irregular distractors on the accurate 

recall from working memory. The 

interaction between distractor regular ity 

and experiment was also not significant 

(F1,85 = 0.51, p = .680, r = 0.020, BF10 = 

0.10), suggesting that the absence of the 

distractor regularity effect was 

consistent across all four experiments. 

No significant effect of 

distractor regularity (regular versus 

irregular) was found in the analyses for 

individual experiments as well. For 

Experiment 1 (Figure 4.2A), whether 

the delay between the last two distractor 

tones was the same (regular) or different 

(irregular) from the 250-ms delays 

between previous tones in the sequence 

did not affect task accuracy (t20 = –0.32, p 

= .975, r = 0.004, BF10 = 0.23). Also, the 

exact delay of the final distractor tone (i.e., 

final distractor onset) and the absolute 

deviation of the final distractor tone from 

regular distractor (i.e., final distractor 

Figure 4.2. Serial recall performance in Experiment 1 (A), 

Experiment 2 (B), and Experiment 3 (C). A) Proportion correct for 

different deviations of the sequence-final distractor tone from 

temporal regularity in Experiment 1. B) Proportion correct in 

regular and irregular conditions in Experiment 2. C, left) 

Proportion correct in Experiment 3 for regular and irregular 

distractors. C, right) Response speed (1/RT). Bars show averages 

across all participants. Lines show data from individual 

participants. n.s. not significant. ** p < .01. 
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deviation) did not affect working memory recall accuracy (final distractor onset effect, F4,80 = 

0.51, p = .725, r = 0.039, BF10 = 0.09; final distractor deviation effect, F2,80 = 0.36, p = .701, r 

= 0.025, BF10 = 0.17). In Experiment 2, regular distractor tone sequences were not more 

distracting than irregular sequences (t18 = 1.12, p = .279, r = 0.127, BF10 = 0.41; Figure 4.2B). 

Similarly, no effect on working memory recall accuracy was found for temporally regular 

versus irregular sequences of spoken numbers in Experiment 3 (t18 = 0.07, p = .945, r = 0.008, 

BF10 = 0.24; Figure 4.2C, left panel). Importantly, however, temporally regular distractors were 

perceived as more rhythmic than irregular distractors in both Experiment 2 (t17 = 2.32, p = .033, 

r = 0.264, BF10 = 2.00) and Experiment 3 (t18 = 8.02, p <10-5, r = 0.677, BF10 > 105). 

To ensure that the lack of a temporal regularity effect cannot be attributed to a weak 

distraction effect in general, we additionally compared memory recall accuracy in the 

distractor-presence condition with a distractor-absence condition (i.e., quiet control condition) 

in a control experiment (Figure 4.3). The distractor presence x retention duration interaction 

was significant (F1,17 = 29.10, p < .001, r = 0.114, BF10 = 13.36), suggesting that the disruptive 

effect by different distractors varied. Post-hoc tests revealed that participants performed worse 

when tone distractors (t17 = -3.30, p = .008, r = 0.336, BF10 = 6.68) and when spoken number 

distractors (t17 = -6.17, p < .001, r = 0.588, BF10 = 2174.82) were presented, compared with the 

quiet control with the same retention period duration. Participants’ memory recall accuracy did 

not differ for different retention period durations in the quiet control condition (t17 = -0.10, p 

= .921, r = 0.012, BF10 = 0.24). They performed worse with speech distractors in the 8s retention 

period block than with tone distractors in the 5s retention period block (t17 = -4.68, p < .001, r 

= 0.483, BF10 = 142.80). In sum, results of the control experiment demonstrated that the 

distractors used in the main experiments were indeed distracting. 

Figure 4.4 shows the effects of distractor modality and regularity on different outcome 

measures in Experiment 4. For auditory compared with visual distractors, accuracy was lower 

(F1,29 = 9.96, p = .004, r = 0.193, BF10 = 203.82) and responses were faster (F1,29 = 15.92, p 

< .001, r = 0.193, BF10 > 105), but confidence did not differ significantly (F1,29 = 2.45, p = .129, 

r = 0.115, BF10 = 2.66). The main effect of regularity and the modality x regularity interaction 

were not significant for any of the measures (all F < 1.5, all p > .25). 
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Figure 4.3. (A) Illustration of the trial structure in the control experiment, which was largely identical to the trial structure in 

Experiment 3. (B) Four conditions were implemented to cross the factors distractor (present vs absent) and duration of retention 

period (5s vs 8s). (C) Proportion correct scores in each condition in the control experiment. Lines show data from individual 

participants. ** p < .01. *** p < .001. 

4.3.2 Temporal regularity of distractors affects response behaviour  

We tested whether the temporal regularity of distractors influences secondary performance 

metrics in Experiments 3 & 4. As we additionally recorded response time in Experiment 3, we 

also investigated the effect of temporal regularity on the speed of the first manual response (i.e., 

first click on a number on the response screen). Participants responded significantly faster when 

the distractor sequence during retention was temporally regular (Fig. 2C, right panel; t18 = 3.61, 

p = .002, r = 0.383, BF10 = 20.3).  

In Experiment 4, we also probed into the effect of distractor regularity using outcome 

measures derived from signal detection theory. Figure 4.5A and B show sensitivity and 

response bias (criterion), respectively, in regular and irregular conditions. We collapsed across 

modalities as no interaction between distractor modality and regularity was found in the 

previous analyses. Participants’ sensitivity was not modulated by the temporal regularity of the 

distractor (t29 = 0.62, p = .542, r = 0.056, BF10 = 0.23). However, they responded more 

conservatively (i.e., higher tendency to respond “probe differs from encoding display”) when 
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the distractor was temporally regular versus irregular (t29 = 2.50, p = .019, r = 0.222, BF10 = 

2.67). 

Figure 4.4. Bars show average accuracy (A), speed (B), and confidence rating (C) for distraction in different modalities (visual 

vs. auditory) and for regular vs. irregular distractors in Experiment 4. Lines show data from individual participants. n.s. not 

significant. * p < .05. ** p < .01. *** p < .001. 

 

To follow-up on the effect of distractor regularity on response bias, we split up the 

metacognitive measure confidence in Experiment 4 for trials in which the memory probe 

matched versus mismatched with the encoding display. We thus used a repeated-measures 

ANOVA with the factors match and regularity, which revealed a significant match x regular ity 

interaction on confidence with moderate evidence towards the alternative hypothesis (F1,29 = 

9.03, p = .005, r = 0.075, BF10 = 3.18). Figure 4.5C shows that participants were more confident 

in trials with regular distractors when the probe and target numbers did not match, and vice 

versa in the match condition.  

Figure 4.5. Sensitivity (A) and criterion (B) for temporally regular versus irregular distractors in Experiment 4. Bars shows 

means across all participants (N = 30). Lines show data from individual participants. (C) Interactive effect of temporal regularity  

and match, which refers to whether the memory probe matched with the encoding display, on confidence. n.s. not significant . 

* p < .05. ** p < .01.   
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4.4 Discussion 

In the present study, we systematically manipulated different aspects of temporal regularity in 

distractor sequences and probed their impact on working memory. Distractor regularity did not 

modulate memory recall (Experiments 1-3) or recognition accuracy (Experiment 4), 

demonstrating that the absence of this effect is robust and generalises to different variations of 

working memory paradigms and operationalisations of temporal regularity. Nevertheless, 

regular versus irregular distractors had an influence on response behaviour, as reflected in 

response speed (Experiment 3), response bias, and confidence (Experiment 4). Our findings 

show that although temporal regularity of distractors does not inevitably affect primary 

performance metrics (recall accuracy), (ir)regularity of distractors does not go unnoticed and 

affects secondary performance metrics, which are often neglected in this field of research. A 

comprehensive understanding of auditory distraction requires that existing models of attention 

include secondary performance measures beyond recall accuracy. 

 

4.4.1 No effect of temporal regularity of distractors on memory recall accuracy  

The null results found in the current study may seem, at first glance, at odds with a previous 

study where the temporal regularity of distractors influenced target detection performance  

(Makov & Zion Golumbic, 2020). A crucial difference, however, is that all experiments in the 

present study separated the distractor in time from the target stream, which eliminated potential 

masking or interference effects during the encoding period. Thus, the present study tested the 

interfering effect of temporally regular versus irregular distractors on memory retention only, 

whereas higher interference for temporally regular distractors in the study by Makov & Zion 

Golumbic (2020) might reflect interference of target encoding. 

Previous studies found inconsistent evidence for memory interference by temporally 

regular versus irregular distractors (D. M. Jones & Macken, 1995; Parmentier & Beaman, 2015). 

D. M. Jones & Macken (1995) suggested that a temporally irregular distractor sequence 

implements a changing-state sequence, which increases the disruption of working memory. In 

contrast, Parmentier & Beaman (2015) argued that irregular distractor sequences exhibit less 

distraction since distractors that are closer in time in an irregular stream might be grouped 

together, resulting in fewer transitions between units (Bridges & Jones, 1996). Both accounts 

approached temporal regularity of distractors as an attribute that influenced the degree of 

distraction by means of sequence segmentation. The current study could not support the 
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speculations from either study as we found that regular versus irregular distractors did not affect 

memory retrieval at all, neither in the analyses on individual experiments nor the combined 

analysis. Of note, both studies mentioned had distractors presented throughout the entire 

encoding and maintenance period. It is thus possible that the temporal regularity of distractors 

has a bigger impact on memory encoding than on maintenance. Also, the current study only 

presented the distractor sequences in a portion of the retention period. In theory, it is possible 

that a longer sequence of distractors is needed to detect a temporal regularity effect of distractors 

on memory maintenance. 

The current study revealed a null effect of temporal regularity of distractors on working 

memory recall accuracy by ensuring that the absence of an effect was not specific to certain 

experimental manipulations. Across the four experiments, we included visual or auditory 

targets, different distractor stimuli (e.g., pure tones or spoken numbers), as well as different 

manipulations of temporal regularity (e.g., violation or build-up of temporal regularity). We 

also complemented frequentist statistical analysis with Bayesian statistics to reveal whether 

non-significant results were more likely to arise from a true null effect (BF < 1) or were 

indifferent to null versus alternative hypotheses (BF = 1; Jeffreys, 1939). The Bayes factors 

smaller than .33 across different analyses (e.g., BF10 = 0.24 in the combined analysis of 

Experiments 1-4) suggest that temporal regularity of distractors during memory retention does 

not affect memory recall accuracy.  

Here, we discuss three possible explanations for why the temporal regularity of 

distractors did not influence working memory performance. First, the influence of temporal 

regularity of distractors on memory retention may be frequency-specific. In attention research, 

rhythmic stimuli have been shown to modulate participants’ performance maximally at 2 – 3 

Hz (Farahbod et al., 2020), which falls into the range of the hypothesised resonance frequency 

of the attention network (Helfrich et al., 2019). It is possible that a resonance frequency also 

exists for the vulnerability to distraction. In a recent study, we found that the vulnerability to 

speech distractors fluctuates at around 2.5 Hz (Wöstmann et al., 2020). It might thus be that the 

frequencies of temporally regular distractors in the current study were either too slow (1.33 Hz 

in Experiment 3 and 4) or too fast (4 Hz for Experiment 1 and 2) to exert an influence on the 

eventual memory recall that would differ from temporally irregular distractors. 

Second, it is possible that the irregular temporal structure we used in the current study, 

albeit being physically aperiodic, may be perceived as rhythmic by the participant. However, 

we do not consider it likely due to the results of the rhythmicity rating in Experiments 2 and 3. 
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In the current study, we defined temporal (ir)regularity in a strict manner by isochronous versus 

non-isochronous temporal structures. Stimuli with non-isochronous temporal structure, such as 

metrical musical rhythm or jittered SOA, may also be perceived as rhythmic and hence 

influence behaviour similarly to those with isochronous temporal structure (C. Keitel et al., 

2017; Lakatos et al., 2008; Obleser et al., 2017). As we also included rhythmicity ratings in 

Experiments 2 & 3, we additionally compared the perceived rhythmicity between temporally 

regular and irregular distractors. Temporally regular distractors were indeed perceived as more 

rhythmic than irregular distractors. It is thus not likely that the absence of the effect arises from 

perceived rhythmicity of temporally irregular distractors in the current study. 

Third, while previous studies demonstrated that neural or behavioural responses could 

be entrained by, i.e., temporally aligned to, temporally regular target stimuli (Obleser & Kayser, 

2019), whether temporally regular distractors also exert similar influence remained unclear. 

The absence of effect in the current study agrees with the view that entrainment requires 

attention (Lakatos et al., 2013, 2019). In contrast with how we can better attend to the target 

stimuli presented at the expected time point, we are not more or less distracted by distractors 

presented at the expected time point compared with distractors presented at a random time point.  

 

4.4.2 Secondary performance metrics are sensitive to temporal regularity of distractors   

The results in Experiments 3 & 4 revealed that the temporal regularity of distractors posed an 

influence on participants’ response behaviour. Temporal structures of stimuli, such as higher 

cueing frequency (Lin et al., 2021) or periodicity (Heynckes et al., 2020; Morillon et al., 2016), 

were found to have an impact on response speed. Consistently, in Experiment 3, participants 

responded faster after being exposed to regular distractors compared to irregular distractors. 

The facilitatory effect of temporal regularity on response speed might suggest that the readiness 

to respond may be modulated by the temporal regularity in distractors. A previous study using 

button presses as responses did not find a speed difference between rhythmic versus no 

distractors (Gorin et al., 2016). The current study differed from this study in terms of the 

operationalisation of temporal regularity (i.e., identical SOA versus repeating temporal 

structure), response type (i.e., by mouse versus by button presses), and control condition (i.e., 

irregular temporal structure versus quiet). In agreement with the present study, a recent study 

showed that temporal regularity of target stimuli led to motor preparation when a mouse was 

used as response device (Salet et al., 2021). Hence, it is possible that the periodicity embedded 
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in regular distractors in Experiment 3 facilitates response speed through increased motor 

preparation.  

No such speed difference between regular and irregular distractors was found in 

Experiment 4, which may be attributed to the difference in response type or task between the 

two experiments. Participants knew the first number to select from the response screen already 

during the retention period in Experiment 3, while they only knew the correct button press when 

the probe number was displayed on the response screen in Experiment 4. As a result, 

participants had ample time to prepare for the motor response in Experiment 3, but not in 

Experiment 4.  

In Experiment 4, temporal regularity of distractors did not affect the accuracy of 

working memory but rather secondary performance metrics of participants. We found that 

response bias was more positive for regular distractors, indicating a stronger tendency to report 

a mismatch between encoding and probe displays and to respond “different”. Since this effect 

was unexpected, we can here only speculate about the underlying mechanisms. Response bias, 

and associated confidence ratings, were previously found to be subject to various factors such 

as the probability of a signal (Rhodes & Jacoby, 2007; Vickers & Leary, 1983). While we 

balanced the trial number of match and mismatch trials in Experiment 4, only 1 out of 8 numbers 

would match with the probe number in a match trial. This low probability of a match (i.e., signal) 

within a trial may contribute to the generally conservative behaviour of participants. With 

temporally regular distractors, participants may lean more towards their preferred response 

behaviour, which eventually results in more conservative (Experiment 4) and faster responses 

(Experiment 3). Furthermore, participants’ higher confidence when correctly responding 

“different” for trials with a regular versus irregular distractor is in line with this interpretation.  

The distraction-effects on secondary performance metrics (speed & response bias) and 

metacognition (confidence) found in the current study speaks to the necessity to acknowledge 

these measures when the goal is to derive a comprehensive understanding of auditory 

distraction (Beaman et al., 2014). The role of distraction in the metacognitive evaluation of 

working memory performance has only been considered recently (Beaman et al., 2014; Kattner 

& Bryce, 2021). Beaman et al. (2014) found that distraction during encoding and retrieval 

interfered with the resolution of metacognitive monitoring when compared with quiet control. 

Kattner & Bryce (2021) showed that confidence diminished with a higher degree of distraction 

during encoding and retention. Our study demonstrated that distractors presented solely in the 

retention period also pose an influence on metacognitive evaluation and response behaviour, 
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suggesting that the effect of distraction may be pervasive on cognition but also on 

metacognition. 

 

4.5 Conclusion 

The current study demonstrates that temporal regularity in the distractor stream during the 

retention period influenced response behaviour in working memory tasks. While distractor 

regularity in time did not affect the precision of the memory representation, it modulated the 

response behaviour and metacognitive evaluation of memory recall or recognition, reflected by 

response speed, bias, and confidence. The results of the current study set the stage for future 

research by showing the impact of temporal regularity in task-irrelevant stimuli on the often-

neglected secondary performance metrics of goal-directed behaviour. Theoretically, the current 

study highlights the importance to yield a comprehensive understanding of how auditory 

distraction reaches awareness, and ultimately impacts task-relevant cognitive processes, by 

including these secondary performance metrics in existing models of attention. 

  



Study 3: Does distractor predictability modulate signatures of selective attention? 

75 
 

5. Study 3: Does distractor predictability modulate behavioural and neural signatures 

of selective attention? 

 

5.1. Introduction 

The human brain constantly makes predictions of external events, even when they are outside 

of the centre of attention and distracting. Whether and how making predictions of these task-

irrelevant distractors may facilitate or interfere with the ability to ignore them has only recently 

gained traction in the literature (e.g., Noonan et al., 2018; van Moorselaar & Slagter, 2020). 

Research on the influence of distractor predictability on its interference has mostly focused on 

global statistics on the distractor location (e.g., Failing et al., 2019; Wang et al., 2019). The 

current study aims at exploring the behavioural modulation and neural correlates related to 

distractor predictability derived from local statistics. 

Predictable distractors are suggested to yield less disruptive influence on behavioura l 

performance via expectation suppression (Noonan et al., 2018; van Moorselaar & Slagter, 2020). 

Expectation suppression is based on the prevalent predictive processing framework (Friston, 

2005; Rao & Ballard, 1999) and is posited to take place irrespective of the task relevance of the 

stimulus (van Moorselaar & Slagter, 2020). According to the predictive processing framework 

(Friston, 2005; Rao & Ballard, 1999), the human brain forms a prediction of the incoming 

stimulus based on the statistical regularities embedded in the stimulus history. An error signal, 

i.e., a prediction error, would be generated when the incoming stimulus does not match with 

the expected stimulus and an update of the prediction model is warranted. The reduction in 

information to be processed in predictable distractors leads to a higher expectation and renders 

the predictable distractors easier to be ignored.  

 While distractor suppression by expectation receives much empirical support in recent 

years, the empirical evidence mostly came from spatial attention studies manipulating the 

global probability (i.e., item frequency) of distractor location (Failing et al., 2019; Wang et al., 

2019; see van Moorselaar et al., 2020 where feature-based expectation was included) in the 

visual modality. While these studies contributed greatly to the understanding of distractor 

expectation, they do not suffice to provide a comprehensive view for the following reasons: 

First, using global probability to manipulate distractor expectation inevitably introduces a 

confound called intertrial priming, which refers to the influence of the preceding trial when a 

stimulus is repeatedly presented (Maljkovic & Nakayama, 1994, 1996). While some studies 
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could still find behavioural modulation by distractor expectation after accounting for intertr ia l 

priming (e.g., Failing, Feldmann-Wüstefeld, et al., 2019; Golan & Lamy, 2022; Goschy et al., 

2014; but see van Moorselaar et al., 2021), the intertrial priming effect is not negligible and 

should be avoided by experimental design (e.g., Bogaerts et al., 2022).    

Second, apart from global statistics such as item frequency, the human brain was shown 

to also employ local statistics in predicting future events (Koelsch et al., 2016; Mittag et al., 

2016). Specifically, the human brain is capable of detecting transition probability, which refers 

to the probability of each possible transition between/within items (Meyniel et al., 2016). A 

higher global probability does not only reflect a higher absolute item frequency; it also entails 

a higher probability of item repetition within a sequence. The expectation suppression account 

posits a reiterative process that takes place according to the statistical regularity at the local 

scale (Chelazzi et al., 2019; Noonan et al., 2018). Showing the formation of distractor 

expectation with local transition probability free from the influence of global statistics provides 

direct evidence supporting expectation suppression. 

Third, spatial and feature-based distractor expectation may not have the same influence 

on distractor interference. Although both types of expectation were shown to employ 

frontoparietal regions, some cortical regions showed more activity in spatial attention versus 

feature-based attention (Giesbrecht et al., 2003). The spatiotemporal pattern of parietal activity 

was also found to differ for spatial and feature-based attention (Greenberg et al., 2010). Van 

Moorselaar et al. (2020) found an interaction between spatial distractor expectation and feature -

based distractor expectation on reaction time. Feature-based expectation may thus not influence 

the behavioural and neural responses in the same way as spatial expectation. Given that most 

of the studies thus far investigated the influence of spatial expectation on distractor interference, 

more evidence on feature-based expectation is needed to yield a more comprehens ive 

understanding of distractor expectation. 

A scrutiny of the relatively thin body of literature on distractor predictability at the local 

scale reveals a less straightforward picture than the evidence in global probability. While one 

previous study showed better change detection performance when the distractor contained a 

repeating and thus regular tone sequence (Southwell et al., 2017), others studies on semantic 

predictability of speech distractor (Wöstmann & Obleser, 2016) or trial-by-trial predictability 

of distractor presence (Bogaerts et al., 2022) did not. In a previous study (Ma & Abrams, 2022), 

participants were able to suppress salient distractors even when they were unpredictable. The 

inconsistency in the literature is surprising given that numerous studies demonstrated that the 
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brain is capable of extracting local statistical regularities, such as the transition probability, in 

a sequence outside the focus of attention (Dürschmid et al., 2018; Koelsch et al., 2016; Mittag 

et al., 2016). The inconsistent evidence begs the question of whether distractor predictability’s 

influence on the final degree of distraction hinges on other factors related to distractor 

interference.  

 The load theory of attention may provide a cursor regarding the possible directions in 

which distractor predictability influences the ultimate distraction (Lavie, 1995; Lavie & Tsal, 

1994; G. Murphy et al., 2016). The load theory of attention proposed that when the perceptual 

load in the environment is sufficiently high, the task-irrelevant distractors are not processed, 

reducing their potency to distract. On the other hand, cognitive control is an essential factor 

influencing the degree of distraction when the perceptual load is low. In such a case, increasing 

cognitive load (e.g., increasing working memory load) would essentially reduce the cognitive 

control capacity, thereby increasing the degree of distraction. There has been a rich body of 

literature on the visual modality supporting the load theory of attention (e.g., de Fockert et al., 

2001; Gutteling et al., 2022; Lavie & De Fockert, 2003), demonstrating the ultimate detriments 

posed by distractors depend on the perceptual or cognitive load of a task. In the auditory 

modality, however, whether distractor interference depends on the perceptual load of the task 

remains unclear (S. Murphy et al., 2017).   

 How may distractor expectation interact with perceptual or cognitive load? There has 

been, to our knowledge, no direct evidence regarding the interaction between load and distractor 

expectation. In Töllner et al. (2015), the predictability of target-distractor similarity modulated 

performance only when the target and the distractor were dissimilar, which could be interpreted 

as evidence in favour of the hypothesis that lower perceptual load leads to higher distractor 

interference when target and distractor are predictable. For cognitive load, working memory 

recall accuracy of digits in a primary task was found to differ with different levels of semantic 

predictability in the secondary task, showing that stimulus predictability in one task may 

influence the performance of another concurrent task (Hunter & Pisoni, 2018). Under the 

framework of the load theory, we hypothesise that distractor predictability had a larger 

influence on the ability to ignore distractors with a lower perceptual load or with a higher 

cognitive load. 

 Given the scarcity of behavioural evidence of the local predictability of distractors, the 

neural evidence showing distractor processing with varying local predictability is as limited. 

Only a handful of electrophysiological studies examined the neural mechanism underpinning 
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distractor expectation in the visual modality (e.g., Noonan et al., 2016; van Moorselaar et al., 

2020, 2021; Wang et al., 2019). Those studies only manipulated expectation by global statistics 

and were mostly interested in two forms of neural measures: Alpha lateralisation, a well-

established neural index of attentional selection (Haegens et al., 2011; Kerlin et al., 2010; 

Worden et al., 2000), and event-related potential (ERP) components. Among those studies, only 

one discovered an effect of location probability on pre-stimulus alpha lateralisation (B. Wang 

et al., 2019). N2pc and distractor positivity (PD) components, which are the two typical 

candidates when studying visual spatial attention, were also associated with the global 

probability of both targets and distractors (van Moorselaar et al., 2020; B. Wang et al., 2019) 

or only with the global probability of distractors (e.g., late PD in van Moorselaar et al., 2021).  

 While the expectation suppression account posits that there exists a preparatory neural 

mechanism in relation to ultimate distraction, the timing in which distractor expectation exerts 

an influence on distractor processing is still a subject of debate (van Moorselaar & Slagter, 

2020). Specifically, it is unclear whether distractor expectation already influenced pre-stimulus 

neural measures of distraction or is only evident at the post-stimulus stage. Instead of a 

modulatory influence on pre-stimulus alpha lateralisation, van Moorselaar & Slagter (2020) 

showed that the brain may form a distractor template before distractor onset when the distractor 

was predictable using multivariate pattern analysis. Expectation built by distractor 

predictability may thus be reflected in other pre-stimulus neural measures other than alpha 

lateralisation. Second, although alpha lateralisation was generally regarded as a neural response 

reflecting preparatory selection, recent studies have shown post-stimulus alpha lateralisation in 

selective attention (Bacigalupo & Luck, 2019; Klatt et al., 2018a; van Diepen et al., 2016) or 

working memory (Klatt et al., 2018b) paradigms. It is also conceivable that alpha lateralisa t ion 

serves as a neural correlate of reactive attentional filtering which is modulated by distractor 

predictability. 

There is a longstanding line of research elucidating the ERP correlates of predictive 

processing (e.g., Abbasi et al., 2022; Schoknecht et al., 2022; Sussman et al., 1998) or 

attentional selection (e.g., Wöstmann et al., 2015). Before the stimulus onset, contingent 

negative variation (CNV), a slow wave component traditionally associated with timing 

(Kononowicz & Penney, 2016; Walter et al., 1964), may also reflect other cognitive operations 

such as attentional selection (Wöstmann et al., 2015), working memory (Wiener & Thompson, 

2015), and expectation (Chennu et al., 2013). Post-stimulus sustained responses have been 

associated with working memory (Schneider et al., 2020), the proneness to distraction (Chao & 
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Knight, 1998; Vogel et al., 2005), and the predictive process (Coderre et al., 2020; León-

Cabrera et al., 2019). Furthermore, modulations of the early ERPs such as N1 have also been 

observed in previous studies examining factors such as perceptual load (Sabri et al., 2013) and 

working memory load (Sabri et al., 2014). Distractor predictability may potentially have an 

interactive influence with the perceptual or cognitive load on the cascade of ERP responses  

underlying different cognitive operations.   

 The aim of the current study was twofold: First, we aimed to demonstrate the formation 

of distractor expectation by local transition probability. Second, we probed into the neural 

mechanism of distractor expectation with the focus on two main neural measures: Alpha 

lateralisation and ERP components. Of note, this chapter presents the preliminary data of N = 

15. The statistical analyses and the conclusion derived from the results should only be 

considered with caution due to insufficient power.  

  To this end, participants performed a selective attention task where they had to attend 

to one side of the auditory input and ignore the other side. On the attended stream with different 

perceptual loads, participants performed a working memory task while ignoring the other 

stream, which could either be predictable or unpredictable. Behaviourally, we found that 

participants’ behavioural sensitivity was modulated by the interaction of perceptual load, 

working memory load, and distractor predictability. Neurally, we found that post-stimulus 

alpha lateralisation differed between predictable and unpredictable distractors. We also found 

that CNV and sustained frontal negativity were modulated by the interaction between working 

memory load and distractor predictability. These results collectively demonstrate that the 

human brain not only forms expectations solely based on the local statistical regularity of the 

to-be-ignored distractors; but is also subject to distractor expectation in its influence on the 

ultimate degree of distraction. 

 

5.2. Methods 

 

5.2.1. Participants 

Fifteen university students (10 females 5 males, mean age = 25.4, SD = 3.58), who were either 

native German speakers or non-native German speakers with high German proficiency, 

participated in the EEG experiment for either course credits or €10/hour with written informed 

consent. According to self-report, they were right-handed (mean Edinburg Handedness 
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Inventory score = 86.1; Oldfield, 1970), had normal hearing, and had no neurological or 

psychological disorders. All experimental procedures were approved by the local ethics 

committee of the University of Lübeck.  

 

5.2.2. Stimuli and Procedure 

Participants performed a version of the n-back task (Figure 5.1A) with the manipula t ion 

of working memory load (1 versus 2 back), signal-to-noise ratio (SNR; 0 dB versus -10 dB), 

and distractor predictability (predictable versus unpredictable). The auditory stimuli used in the 

current study were German numbers from 1 to 8, spoken by a female talker, and were shortened 

to 350 ms using the Praat software (version 6.1.16).  

Before each block (Figure 5.1A), a cue was presented in the centre of the screen to 

indicate the to-be-attended side (left or right) and the working memory load (1-back or 2-back) 

of that block. Participants were instructed to attend to the cued side (target stream) and ignore 

the other side (distractor stream). For each trial, the target and the distractor numbers were 

presented simultaneously. Onset-to-onset interval between 2 numbers of a stream was 2s.  

The working memory load was manipulated by the number of targets participants had 

to maintain in memory. In the target stream, a number sequence consisting of the target numbers 

was presented in a randomised manner. Participants had to press the response button whenever 

the current target matched with the target 1 or 2 numbers prior to the current number. For 

example, in the 1-back block, participants had to press a button whenever a number was 

presented 2 times in a row (e.g., 2-2). In the 2-back block, participants had to press a button 

when the current number at trial n was the same as the number before the previous number at 

trial n – 2 (e.g., 2-3-2). In each block, 20% of the trials (i.e., 24 trials) contained a match where 

participants should press a button.  

The perceptual load was manipulated by the SNR between target and distractor streams 

(Figure 5.1B, left), which was analogous to the noise manipulation in a visual study of 

perceptual load (Gutteling et al., 2022). Specifically, the target stream was either presented at 

the same intensity as the distractor stream at 70 dB SPL or 10 dB SPL softer than the distractor 

stream. This means that the targets were presented at 70 dB SPL in half of the blocks (i.e., SNR 

at 0 dB) or 60 dB SPL in another half (i.e., SNR at -10 dB). Participants were not informed of 

the SNR before each block. Instead, they were told prior to the main experiment that the 

loudness in the main experiment may vary from block to block. 
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Distractor predictability was operationalised as the transition probability of the 

distractor numbers in each block (Figure 5.1B, right). In the predictable block, a randomly 

generated 4-number pattern was presented repeatedly over the block, resulting in a transition 

probability of 1. In the unpredictable block, the same 4 numbers were presented in a pseudo-

random order, with the constraints that each number at trial n was different from the previous 

number at trial n – 1 and the number before at trial n – 2. The constraints were implemented to 

avoid unwanted potential confounds such as repetition suppression (Grill-Spector et al., 2006) 

or negative priming (Maljkovic & Nakayama, 1994). This resulted in a transition probability of 

0.5 for each distractor number after the first two numbers in a block.  

There were 16 blocks in total, with each unique block (e.g., SNR 0 dB, 1-back, 

predictable distractors) repeating twice in the experiment. For each participant, the numbers 1 

to 8 were randomly sorted into two groups. In half of the blocks, one group of numbers served 

as targets while the other group served as distractors, and vice versa in the other half of the 

blocks with the same conditions. Similarly, participants attended to the left side in half of the 

blocks and to the right side in the other half of the blocks with the same conditions. There were 

120 target/distractor pairs per block and 1920 target/distractor pairs for the whole experiment. 

The auditory materials were presented via the Sennheiser headphone (HD 25-1 II). A response 

box (The Black Box Toolkit) was used to collect behavioural responses. Stimuli were presented 

with Psychtoolbox (Brainard, 1997) and Matlab (MathWorks, Inc., Natick, USA).  

 

5.2.3. Behavioural analysis 

To study how distractor predictability modulates behavioural performance under different 

conditions, we calculated the outcome measures under signal detection theory (Macmillan & 

Kaplan, 1985), sensitivity (d’), and criterion (i.e., bias; c), with Palamedes toolbox (Prins & 

Kingdom, 2018) for each condition of SNR, working memory load, and distractor predictability. 

The first one (for 1-back block) or two (for 2-back block) trials of each block were excluded in 

the behavioural analysis as there would be no previous number to be compared to. A hit was 

defined as a button press when the target number at trial n matched with the previous number 

at trial n – 1 (for 1-back condition) or the number at trial n – 2 (for 2-back condition). A false 

alarm was defined as a button press when the target number in trial n did not match with the 

number at a previous trial (n – 1 for 1-back and n – 2 for 2-back condition). Sensitivity was 

calculated by subtracting the z-transformed false alarm rate from the z-transformed hit rate. The 
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criterion was calculated by adding the z-transformed hit and false alarm rate and then 

multiplying the number by -0.5.  

 

Figure 5.1. Experimental design (A-B) and behavioural results (C). A, left) A schematic of a block (attend-left, 1-back) during 

the experiment. Participants attended to one side (attended) while ignoring the other side (ignored). The cue display stayed on 

the screen during the whole block in the experiment. Participants had to press the red button whenever the current number 

matched with a previous number. A, right) The visual cues used in the experiment. Participants were informed of the attended 

side and the working memory task before each block. B, left) Manipulations on the attended stream. Perceptual load and 

cognitive load were manipulated by changing the stimulus intensity in the attended stream (signal-to-noise ratio) and the 

number of stimuli held in working memory (n-back), respectively. B, right) Manipulation of distractor predictability in the 

ignored stream. Predictability was operationalised as the transition probability between the distractors. C) Behavioural 

sensitivity (left) and criterion (right) by the factors SNR, working memory load, and distractor predictability.  Bars show the 

averaged behavioural performance. Grey lines show data from individual participants. * p < .05.   
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Equation 5.1: Sensitivity (d’) = z (Hit) – z (False alarm) 

Equation 5.2: Criterion (c) = -0.5 * (z (Hit) + z (False alarm)) 

A hit or false alarm rate of extremes values (0 or 1) was adjusted with the corrected 

value, which was computed by dividing 1 by 2 times the number of trials (Macmillan & Kaplan, 

1985). A value of 0 was replaced by the corrected value, while a rate of 1 was adjusted by 

subtracting the corrected value from 1. Since sensitivity and criterion can only be derived using 

aggregated data, we employed two repeated measures ANOVAs with factors SNR, working 

memory load, and distractor predictability on the two behavioural measures separately.  

 

5.2.4. EEG recording and pre-processing 

The experiment was done in a sound-attenuated and electrically shielded room. EEG data were 

recorded using the 10-10 international system with 64 Ag/Ag-Cl electrodes (actiCHamp, Brain 

Products, München, Germany) with an online bandpass filter from direct current (DC) to 280 

Hz. The sampling rate was 1000 Hz. TP9 (left mastoid) and FPz were the online reference and 

ground electrodes, respectively. For all participants, the impedances of the electrodes were kept 

below 20 kOhm. 

 The EEG data were pre-processed using Matlab R2018a (MathWorks, Inc., Natick, 

USA) and the Fieldtrip toolbox (Oostenveld et al., 2011) with the following procedure: First, 

the continuous data were filtered (high-pass filter: 0.1 Hz; low-pass filter: 100 Hz) and then 

segmented into epochs of 2 s (-1 to 1s) time-locked to the target/distractor pair onset. Then, 

artefacts such as eye blink and muscle activity were identified and rejected by using 

independent component analysis (ICA). On average across participants, 32.17% of the 

components were rejected (SD = 6.67%). A bad channel (i.e., CP1) on one participant was 

interpolated after rejecting the ICA components. EEG epochs were re-referenced to the average 

of all electrodes. Afterwards, trials containing absolute EEG amplitudes exceeding 160 V 

were excluded. The first one (for 1-back block) or two (for 2-back block) trials of each block, 

which were excluded in the behavioural analysis, were also excluded in the EEG analysis.  

  

5.2.5. Analysis of alpha lateralisation 

Single-trial EEG data were decomposed into time-frequency representations via a fast Fourier 

transform (FFT) with a moving time window of 500 ms (Hanning taper). Complex Fourier 
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coefficients were obtained from -1 to 1 s (steps of 0.05 s) relative to target and distractor onset, 

and in a frequency range from 1 to 50 Hz in steps of 1 Hz.  

 Attentional modulation index (AMI) was calculated per time point and frequency on the 

absolute power to quantify the degree of attentional selection. First, trials belonging to the 

attend-left condition or the attend-right condition, respectively, were averaged. Then, AMI was 

obtained by the difference in the power spectra between the attend-left and attend-right 

conditions divided by the sum of the two: 

 AMI = (Power attend-left – Power attend-right) / (Power attend-left + Power attend-right) 

A positive AMI means that the alpha power when participants attended left was higher than 

when participants attended right. As attentional selection is said to be reflected by a 

contralateral decrease in alpha power and an ipsilateral increase in alpha power to the attended 

side (Worden et al., 2000), we would expect a higher AMI at the electrodes in the left 

hemisphere compared to those in the right hemisphere.  

To test for alpha lateralisation, we averaged the AMI across frequencies within the alpha 

frequency band (i.e., 8 – 12 Hz) and across a selection of posterior electrodes belonging to the 

left and right hemispheres, respectively. The electrodes of interest were the same as in a 

previous study using the same EEG acquisition system (Wöstmann et al., 2019), which included 

TP9/10, TP7/8, CP5/6, CP3/4, CP1/2, P7/8, P5/6, P3/4, P1/2, PO7/8, PO3/4, and O1/2. A cluster 

permutation test (two-tailed) was conducted to find the time window in which the AMI in the 

left electrodes was larger than that in the right electrodes. The AMI difference between left and 

right electrodes was close to significant following the onset of target and distractor (i.e., 0.25 

to 0.55 s). 

 To examine the influence of distractor predictability on alpha lateralisation, we further 

calculated the alpha lateralisation index (ALI) using the same set of electrodes as the previous 

analysis. For trials with predictable distractors, trials belonging to attend-left and attend-right 

conditions were averaged separately. Then, for each of the average power spectra, the alpha 

power (i.e., 8 – 12 Hz) in the electrodes on the contralateral side was subtracted from that on 

the ipsilateral side, and then divided by the sum of the two.  

ALI = ( ipsi –  contra) / ( ipsi +  contra) 

 The ALIs for the attend-left and the attend-right conditions were then averaged. ALIs 

for unpredictable distractors were calculated in the same way. 
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 The ALIs between 0.25 to 0.55s, the time window where the previous cluster-based 

permutation test was close to significance, were averaged for further statistical testing. One-

sample t-tests against zero were conducted for the ALI in predictable and unpredictab le 

conditions, respectively. A paired-sample t-test (two-tailed) comparing predictable and 

unpredictable distractors was conducted to test whether there was a difference in ALI between 

the predictable and the unpredictable conditions. 

 

5.2.6. ERP analysis 

The EEG epochs were first baseline corrected (-0.2 to 0 s) and re-referenced to the average of 

mastoid electrodes (i.e., TP9 and TP10). Then, the EEG epochs belonging to each condition 

(SNR X working memory load X distractor predictability) were averaged to compute the event -

related potential (ERP) waveform.  

 The ERP components N1, P2, sustained frontal negativity (SFN), and contingent 

negative variation (CNV) were studied in the current study. For N1 and P2 components, the 

time window was determined by the mean amplitude around the peak of the grand average ERP 

waveform across all conditions and all participants. The N1 amplitude was extracted at 75ms 

to 125ms post-stimulus onset, which was 50ms around the peak amplitude at 100ms. For the 

P2 amplitude, the positive peak in the grand average ERP waveform was at 180ms and the time 

window used to extract P2 amplitude was from 155 to 205ms. As the effect of the sustained 

frontal negativity was robust and stable across time, the ERP data between 400 to 900ms were 

averaged to obtain the sustained frontal negativity. 

 Instead of amplitude, the slope of the ERP waveform in the pre-stimulus time window 

(-800 to 0ms) was used as the measure of CNV by fitting a linear trend on the ERP waveform 

of each condition using the “polyfit” function on Matlab (order = 1). CNV slope instead of 

amplitude was used to avoid the spurious effect resulting from the choice of baseline. A baseline 

between -200 and 0ms was chosen in the current study to examine the post-stimulus ERP 

components. However, the time window right before stimulus onset would coincide with the 

time window at which CNV amplitude would be the most prominent. A previous studies also 

used the linear trend of pre-stimulus neural activity to measure the strength of CNV (Chennu et 

al., 2013). Hence, we decided to calculate the linear trend of the pre-stimulus EEG activity with 

a rather long time window (i.e., 800ms) to capture the progression of pre-stimulus neural 

activity.  
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 The electrode with the maximum amplitude (slope for CNV) for each ERP component, 

as well as the two adjacent electrodes at the left- and the right-hand side, were used to calculate 

the ERP amplitude. As a result, The N1 amplitude was calculated using electrodes C1, Cz, and 

C2. The P2 amplitude was calculated using electrodes FC1, FCz, and FC2. The sustained frontal 

negativity was calculated using electrodes F1, Fz, and F2. Lastly, CNV was calculated using 

electrodes PO3, POz, and PO4.  

We examined the effect of SNR, working memory load, and distractor predictability on 

each ERP component using single-trial linear mixed-effects models. For each trial, we averaged 

the amplitudes of the EEG data at the time windows and electrodes of interest. Then, we 

regressed the ERP component on the main effects and interaction effects of the predictors and 

participant as a random intercept. All variables in the model were z-score transformed. 

 In the case where a working memory load and distractor predictability showed an 

interaction, we further tested the effect of predictability for 1- and 2-back trials separately. We 

also tested the effect of working memory load for predictable and unpredictable distractors , 

respectively. 

 

5.2.7. Analysis of the brain-behaviour relationship 

Lastly, we tested whether the neural measures of interest, i.e., CNV, SFN, and ALI, predicted 

behavioural performance. For each neural measure, we ran single-trial generalized linear 

mixed-effect models using logistic regression, with accuracy (0 = incorrect, 1 = correct) as the 

outcome variable and each neural measure as the predictor.  

 

5.3. Results 

 

5.3.1. The modulation of behavioural sensitivity by distractor predictability depends on 

the load 

To understand how distractor predictability may exert influences on behavioural performance 

under different load conditions, we tested how behavioural sensitivity (d’) and criterion (c) were 

modulated by the factors SNR, working memory load, and distractor predictability using 

repeated measures ANOVAs on each of the behavioural measures separately. 
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 For behavioural sensitivity (Figure 5.1C, left), the interaction SNR x working memory 

load x distractor predictability was significant (F1,14 = 5.70, p = .03, η2
p = 0.29), suggesting that 

the modulation of memory performance by distractor predictability depended on both 

perceptual and cognitive load. Post-hoc analysis indicated that under the 2-back condition, the 

interaction between SNR and distractor predictability was close to significance (F1,14 = 4.23, p 

= .06, η2
p = 0.23). Figure 5.1C shows that participants were more sensitive in the match between 

the current number and memory representation with unpredictable distractors when SNR is 0, 

but less sensitive with unpredictable distractors when the target had a lower intensity than the 

distractor (i.e., SNR = -10 dB).  

 For criterion (Figure 5.1C, right), participants performed more conservatively (i.e., a 

higher tendency of not responding) when the working memory load was high (F1,14 = 12.72, p 

= .003, η2
p = 0.48). Other than that, there was no significant main effect of SNR, distractor 

predictability, or any interaction between the three factors (all p > .06).  

 

5.3.2. Distractor predictability affects post-stimulus alpha lateralisation 

To investigate whether alpha lateralisation was modulated by distractor predictability, we first 

demonstrated the existence of alpha lateralisation by comparing the attentional modulat ion 

index (AMI) between the left and the right hemispheres (Figure 5.2A). A positive AMI means 

higher oscillatory power in the attend-left versus attend-right conditions. A cluster permutation 

test (two-tailed) across time points found a close-to-significant cluster between 0.25 to 0.55 s 

post-stimulus onset (tsum = 18.68, p = .06).  

 Second, we investigated whether alpha lateralisation differed in strength with distractor 

predictability (Figure 5.2B). We only probed into distractor predictability as it was the major 

interest of the current study. We thus collapsed across the other factors, SNR and working 

memory load, in this analysis. We calculated the alpha lateralisation index (ALI) for trials with 

predictable and unpredictable distractors, respectively, and analysed the ALI difference in the 

same time window of the close-to-significant cluster in the AMI analysis (i.e., 0.25 to 0.55 s). 

The posterior alpha power was more lateralised when the distractors were unpredictable versus 

predictable (t14 = 2.40, p = .02, Cohen’s d = 0.59). T-tests against zero (two-tailed) show that 

ALI with unpredictable distractors was significantly larger than zero (t14 = 2.92, p = .01, 

Cohen’s d = 0.75). ALI with predictable distractors, however, was not (t14 = 1.18, p = .26, 

Cohen’s d = 0.28). 
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Figure 5.2. Results of alpha lateralisation by distractor predictability. A) Top panel shows the scalp map of the attentional 

modulation index (AMI) at the post-stimulus cluster and 8 – 12 Hz (outlined in black at the bottom panel). The bottom panel 

shows the time- and frequency-resolved AMIs at a subset of electrodes in the left (left  column) and right (right column) 

hemispheres. With a priori electrodes and frequencies of interests, a cluster test showed that the AMI in left electrodes was 

more positive than the AMI in right electrodes between 0.25 to 0.55 s post target  and distractor onset, which was close to 

significance (p = .06). Inset shows the comparison between AMI in the left and right hemispheres at the time window derived 

from the cluster test. Bars show averaged AMI across the a priori electrodes and frequencies, and across the time window 

indicated by the cluster test. Lines show data from individual participants. B) Time-resolved alpha lateralisation index (ALI) 

around target and distractor presentation. Lines show averaged ALI across participants for predictable (blue) and unpredictable 

(red) distractors. Shaded areas with the same colour show ±1 SEM across participants. The grey shaded area showed the time 

window of interest, which was derived from the previous cluster permutation test in the AMI analysis. Inset shows the averaged 

ALI across time for predictable and unpredictable distractors (bar). Grey lines show individual data. * p < .05.  

 

5.3.3. Perceptual/cognitive load and distractor predictability modulate event-related 

potentials 

Next, we investigated the effects of perceptual load, working memory load, and distractor 

predictability on different ERP components (Figure 5.3). We focused on sustained frontal 

negativity (SFN), contingent negative variation (CNV), N1, and P2. 

 The SFN amplitude (Figure 5.3A) was modulated by the interaction between working 

memory load and distractor predictability (β = -0.02, SE = .006, t28199 = -2.93, p = .003), as well 

as the main effect of the two factors (working memory load: β = 0.03, SE = .006, t28199 = 4.38, 

p < .001; distractor predictability: β = -0.01, SE = .006, t28199 = -2.53, p = .01). Specifica lly, 

when the distractors were predictable, the SFN amplitude was smaller when participants 

performed a 2-back task than when they performed a 1-back task (β = 0.045, SE = .008, t14103 

= 5.42, p < .001). In the 2-back condition, the SFN amplitude with predictable distractors was 

smaller than with unpredictable distractors (β = -0.032, SE = .008, t14103 = -3.83, p < .001). 

Furthermore, SFN amplitude was smaller with high perceptual load, as shown by the main 
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effect of SNR (β = -0.013, SE = .006, t28199 = -2.30, p = .02). The other interaction terms were 

not statistically significant (all p > .35).   

 For the CNV slope (Figure 5.3B), we also found an interaction between working 

memory load and distractor predictability (  = -0.01, SE = .006, t28199 = -1.99, p = .046). 

Specifically, the CNV slope was only larger in the 2-back condition versus the 1-back condition 

when the distractors were unpredictable (  = -0.02, SE = .008, t14100 = -2.50, p = .01). We 

observed no such effect between 2- and 1-back with predictable distractors (  = 0.002, SE 

= .008, t14100 = 0.30, p = .77). All the other main effects and interactions were not significant 

(all p > .1). 

 The perceptual load had an influence on the early ERPs N1 (Figure 5.3C) and P2 (Figure 

5.3D). For both N1 and P2, the amplitude was larger when the target stream was presented at 

the same intensity (i.e., 0 dB) as the distractor stream, compared with when the target stream 

was at a lower intensity (N1:   = -0.02, SE = .006, t28199 = -2.82, p = .005; P2:   = 0.03, SE 

= .006, t28199 = 4.33, p < .001). There was no other significant main effects or interaction 

between the two ERP components (all p > .1). 

 In sum, distractor predictability had an interactive influence on slow neural activit ies 

both before and after target/distractor onset, together with working memory load. The 

interactions were driven by larger neural responses in the unpredictable 2-back condition 

compared with other conditions. SNR had an impact on the stimulus-driven ERP components 

such as N1 and P2 and did not interact with distractor predictability or working memory load. 
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Figure 5.3. Grand-average event-related potential (ERP) waveforms for Fz (A), POz (B), Cz (C), and FCz (D). Each electrode 

represents the peak effect of the respective ERP component. Grey shaded areas indicate the time window in which the ERP 

component was extracted. Left insets show the scalp maps for each ERP component within the time window of interest. Right 

insets show the major results for each component. Bars indicate averaged ERP amplitude or slope across participants, while 

grey lines show individual ERP amplitudes or slopes. ERP amplitudes or slopes shown in the bars were extracted from the peak 

electrode and its two adjacent electrodes.  * p < .05. ** p < .01. *** p < .001. 

 

5.3.4. Pre-stimulus neural activity predicts behavioural sensitivity 

Last but not least, we probed into the brain-behaviour relationship by relating the strength of 

each neural measure, CNV, sustained frontal negativity (SFN), and ALI, to accuracy in the n-

back task. To this end, we used a generalised linear mixed-effects model using logist ic 

regression (i.e., logit link function) to regress accuracy on the strength of neural measures. CNV 

slope significantly predicted accuracy (  = -0.08, SE = .03, t28205 = -2.73, p = .006), in that a 
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more negative CNV slope is associated with better performance (Figure 5.4). For post-stimulus 

neural measures, however, neither SFN (  = 0.02, SE = .03, t28205 = 0.77, p = .44) nor ALI (  = 

-0.007, SE = .03, t28205= -0.25, p = .8) predicted the behavioural outcome.  

 

 

Figure 5.4. Brain-behaviour relationship between pre-stimulus CNV slope and behavioural sensitivity. A more negative CNV 

slope is related to better behavioural performance. For visualisation purposes, trials were binned according to the strength of 

the CNV slope. Behavioural sensitivity was calculated across trials within each bin. Bars show averaged behavioural sensitivity 

across participants. Grey lines show individual behavioural sensitivity. Statistical testing was done on the single-trial level by 

regressing accuracy on the CNV slope using logistic regression in the generalised linear mixed-effects model. ** p < .01. 
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5.4. Discussion 

The current study elucidated the potency of predictable versus unpredictable distractors to 

interfere with the behavioural and neural responses in a working memory task. Behavioura l ly, 

distractor predictability interacted with both SNR and working memory load in its influence on 

participants’ memory performance. Neurally, post-stimulus alpha lateralisation was higher 

when the distractors were unpredictable; distractor predictability and working memory load had 

an interactive influence on pre- and post-stimulus sustained ERP responses. These preliminary 

results suggest that expectation can be formed solely by local transition probability in the to-

be-suppressed distractors and modulates the degree to which the distractors permeate through 

the attentional filter. 

 

5.4.1. Local statistics of distractors play a role in the ultimate distraction  

The current study is among the first few studies (Bogaerts et al., 2022; Southwell et al., 2017) 

that probe into how the ultimate distraction could be influenced by the local transition 

probability free from the influence of global statistics. Note that in a general sense, global 

probability (i.e., item frequency) is subsumed within transition probability as transition 

probability entails both item repetition, which would be concomitantly higher with higher 

probability, and item alternation (Meyniel et al., 2016). In the current study, by equating the 

global probability of each distractor number (25%) in both predictable and unpredictab le 

conditions, the only difference between predictable and unpredictable distractors rests within 

the local transition probability of the next distractor given the identity of the current number. 

The difference in behavioural performance with predictable versus unpredictable distractors 

can thus be attributed to expectation formed from the local predictability in the distractor strea m. 

 The interactive effect of distractor predictability on behavioural sensitivity deviates 

from the conclusion derived from studies on the global probability of distractors, which states 

that more predictable distractors reduce their potency to distract (van Moorselaar & Slagter, 

2020). It could be due to the difference between the strength of expectation generated from 

local predictability and that from global probability (Meyniel et al., 2016). It takes fewer trials 

to extract statistical regularities in terms of repetition (e.g., predicting “A” from the sequence 

“A-A”) compared with alternation (e.g., predicting “A” from the sequence “A-B-A-B”). The 

expectation built from global probability, which involves item repetition, may thus be stronger 

than the expectation built from local transition probability, which involves both repetition and 
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alternation. Alternatively, the human brain may use different systems to build expectations 

based on global versus local statistics. The local and global probability were said to be 

implemented in different neural networks (Arjona et al., 2018). The difference in the underlying 

neural implementations of global and local predictability may give rise to the difference in their 

effect on distractor interference. Future studies may test the neural correlates of the global 

versus local distractor expectation to resolve the influence of expectation derived from different 

levels of statistics. 

 The interactive influence of distractor predictability with perceptual/cognitive load may 

potentially reconcile the inconsistent evidence on local distractor expectation. Broadly speaking, 

the results in the current study are consistent with the load theory of attention, in that the exact 

influence of distractor predictability may depend on the perceptual load or cognitive load in a 

study. Whether distractor predictability was beneficial to target-related performance may 

depend on the study design, such as whether the perceptual load was high (Southwell et al., 

2017) or whether the participants were cognitively taxed (Hunter & Pisoni, 2018). More data 

are needed for a solid conclusion on how distractor predictability interacts with perceptual and 

cognitive load. 

 While behavioural performance is not always better with predictable distractors in the 

current study, it does not necessarily imply that the current results speak against the expectation 

suppression account. The ultimate degree of distraction is a consequence of a cascade of neural 

responses associated with distraction. Expectation suppression is based on the theoretical 

predictive processing account which concerns the modulation of neural responses by stimulus 

expectation (Noonan et al., 2018). We should take into account the neural components of 

distraction to arrive at a more comprehensive picture.        

 

5.4.2. Distractor expectation reduces reactive distractor filtering 

Alpha lateralisation was most prominent in the post-stimulus time window in the current study 

(i.e., 0.25 to 0.55 s), which may serve as a reactive inhibition of external distraction. Alpha 

lateralisation has mainly been associated with preparatory selective attention, which was 

supported by an increase in alpha lateralisation in the cue-stimulus interval (Haegens et al., 

2011; B. Wang et al., 2019; Wöstmann & Obleser, 2016). However, its strictly proactive role 

in selective attention has recently been questioned (Antonov et al., 2020; van Diepen et al., 

2016). Instead of merely concerning the preparatory selection of task-relevant events, alpha 
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lateralisation may also be involved in reactive stimulus processing or filtering, which is 

manifested as an increase in alpha lateralisation in the post-stimulus time window. Several 

studies have demonstrated post-stimulus alpha lateralisation in visual attention (Bacigalupo & 

Luck, 2019; van Diepen et al., 2016), auditory attention (Klatt et al., 2018a, 2018b), in the 

absence of a spatial cue (Klatt et al., 2018a), or when spatial information was held in working 

memory (Klatt et al., 2018b). As the task in the current study involved working memory, it is 

possible that the post-stimulus alpha lateralisation subserves the selection and suppression of 

the internal working memory representation based on task relevance after stimulus onset. 

 What role does distractor predictability play in attentional selection indexed by alpha 

lateralisation? Previous studies aiming at understanding how distractor expectation modulates 

alpha lateralisation ascribed alpha lateralisation as a preparatory response to the upcoming 

distraction, and thus focused on the pre-stimulus interval (van Moorselaar et al., 2020; B. Wang 

et al., 2019). In the current study, post-stimulus alpha lateralisation was only observed with 

unpredictable distractors. Instead of not having an influence at all, distractor predictability’s 

influence on distractor filtering may be more evident in the reactive stage of stimulus processing. 

The strength of external distraction was found to increase alpha responses (Bonnefond & Jensen, 

2012). Distractors that are unpredictable may be more difficult to be ignored, leading to 

enhanced reactive suppression.  

 We found no pre-stimulus alpha lateralisation in the current study, which was consistent 

with the previous studies examining expectation with fixed visual features (Noonan et al., 2016; 

van Moorselaar et al., 2020). Only one previous study found a pre-stimulus alpha lateralisa t ion 

effect with distractor expectation; this study differed from the other studies in that only 

distractor location was predictable (B. Wang et al., 2019). In the current study, participants may 

rely less on spatial expectation as they could also employ feature-based expectation for 

distractor suppression, resulting in a less profound pre-stimulus alpha lateralisation which was 

associated mainly with spatial attention (van Moorselaar et al., 2020). Alternatively, the absence 

of pre-stimulus alpha lateralisation may be due to the sustained attention across the whole block. 

Previous studies found alpha lateralisation at its peak after cue onset and could still be observed 

after the first stimulus onset (Tune et al., 2018; Wöstmann et al., 2021). As participants only 

had to focus their attention on one side throughout the whole block, the pre-stimulus alpha 

lateralisation may have tapered off over time, and thus not evident in the time window before 

each presentation of the target and the distractor. 

  



Study 3: Does distractor predictability modulate signatures of selective attention? 

95 
 

5.4.3. Distractor expectation indirectly influences higher-order cognitive operations 

The interactions between distractor predictability and cognitive load on slow ERP responses, 

namely, sustained frontal negativity (SFN) and CNV, suggest that distractor expectation formed 

by local transition probability indirectly influences higher-order cognitive operations such as 

attentional selection and working memory. Both pre- (Kononowicz & Penney, 2016) and post- 

(Kaiser, 2015) stimulus slow neural activities are said to reflect higher-order cognition such as 

optimisation for the upcoming cognitive operation and working memory, respectively. In the 

current study, the neural responses with unpredictable distractors and high cognitive load were 

larger compared with neural responses in a subset of other conditions. For instance, in the 2-

back condition, the SFN amplitude was larger for unpredictable distractors versus predictable 

distractors. The CNV slope with unpredictable distractors in the 2-back condition was larger 

than that in the 1-back condition. Distractor predictability may reduce the cognitive resources 

employed during a difficult task. 

Sustained slow wave activity in the anterior electrodes may reflect the post-stimulus 

cognitive operations essential to the current working memory task, such as working memory 

updating or distractor interference in working memory. Post-stimulus sustained activities such 

as frontal negativity (Schneider et al., 2020) or delta power (Rac-Lubashevsky & Kessler, 2018) 

have been ascribed to the updating or maintenance of working memory representation. In the 

face of distraction, individuals with higher versus lower working memory capacity showed a 

different sustained response (Vogel et al., 2005); individuals with a frontal lesion showed a 

larger SFN when compared with healthy control (Chao & Knight, 1998). With regard to 

predictive processing, previous studies also found a modulation in sustained negative response 

by contextual (Coderre et al., 2020) or semantic predictability (León-Cabrera et al., 2019). 

Given the association with different cognitive operations, the modulation of sustained 

negativity in the current study may arise from the change in shielding working memory 

representation by distractor interference due to the predictive processing of the distractors. 

Here, participants needed to both update the working memory representation and shield 

the representation from external distraction in order to successfully perform the task. In addition, 

they may make use of the predictability in the distractor sequence to optimise the attentiona l 

selection and working memory processes. As distractor predictability had both a main effect 

and interaction effect on sustained frontal negativity, we hereby speculate that distractor 

expectation, as formed by local transition probability, reduces the resources needed for the 
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prediction making process. Distractor expectation may reduce the potency of a distractor to 

interfere with the working memory update or maintenance. 

 Apart from the post-stimulus neural response, distractor predictability also showed an 

indirect influence on pre-stimulus neural activity, suggesting that distractor expectation may 

play a role in the preparatory attentional selection. Traditionally studied as a correlate of motor 

timing (Walter et al., 1964), CNV has been theorised as a process of resource optimisation by 

a change in the brain’s excitability (Kononowicz & Penney, 2016). CNV is also associated with 

the allocation of attentional resources under different degrees of distraction (Wöstmann et al., 

2015), and is related to attention capacity (Kropp et al., 2001). In a previous study on temporal 

orienting (Capizzi et al., 2013), CNV amplitude was also modulatory by stimulus history (i.e., 

the timing information of the previous trial) and cognitive load (i.e., single versus dual task). 

The current study found that the CNV slope was stronger in 2-back versus 1-back condition 

only when the distractors were unpredictable. It is conceivable that only with distractors that 

are difficult to ignore do participants need stronger attentional selection in a more difficult task 

(i.e., 2-back task).  

We found that pre-stimulus neural activity explains the ultimate behavioura l 

performance. Specifically, a larger CNV slope corresponded to a higher perceptual sensitivity. 

The results are along the line with some studies relating CNV with behavioural responses 

(Hillyard, 1969; Hillyard et al., 1971; McAdam & Rubin, 1971; see however Perdok & Gaillard, 

1979). The brain-behaviour relationship found in the current study suggests that more 

preparatory effort is beneficial to attentional selection, and ultimately behavioural performance.  

 Through its own or interaction with the working memory load, predictable distractors 

led to reduced neural signatures of higher-order cognition in general. These results are largely 

consistent with the expectation suppression account. While larger post-stimulus sustained 

activity (i.e., SFN) was associated with higher proneness to distraction (Chao & Knight, 1995, 

1998), larger ipsilateral increase and contralateral decrease in alpha activity were associated 

with higher distractor suppression (Haegens et al., 2012). It is possible that predictable 

distractors reduce both the proneness to distraction and the ability to suppress distraction. The 

relative contribution of the proneness to distraction and distractor suppression thus gives rise to 

differential behavioural outcomes under different load and predictability conditions. Of note, 

the current study did not test the proneness to distraction and distractor suppression separately. 

Further studies which allow the differentiation of the two processes should be done to elucidate 

the contribution of distractor predictability on each of the respective cognitive operations. 
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5.4.4. The interference by distractor expectation does not hinge on perceptual load 

While perceptual load modulated the amplitude of the stimulus-evoked early ERPs (i.e., N1 and 

P2), it did not interact with neither cognitive load nor distractor predictability on the neural 

level. The absence of interaction is surprising, given that perceptual load interacted with the 

other factors on the behavioural level. The lack of modulation is also inconsis tent with the load 

theory of attention, according to which distractor interference is more prominent with low 

perceptual load. We hereby speculate on two possible reasons why perceptual load did not have 

a strong influence on neural responses. 

 First, it is possible that perceptual load simply does not play a role in auditory distraction. 

Although numerous studies in the visual modality supported the notion that perceptual load 

modulated distractor interference (de Fockert et al., 2001; Gutteling et al., 2022; Lavie & De 

Fockert, 2003), the corresponding evidence in the auditory modality is less clear (S. Murphy et 

al., 2017). With different manipulations of auditory perceptual load, previous studies failed to 

find concurring evidence of its influence on distractor processing (Gomes et al., 2008; Melara 

et al., 2021; S. Murphy et al., 2013). Melara et al. (2021) speculated that studies of visual and 

auditory perceptual load differed in that in visual studies, the perceptual load was usually 

manipulated in a selective paradigm where participants had to locate the task-relevant stimulus 

among the other stimuli. In auditory studies, participants had to focus on the task-relevant 

stimulus and filter out the task-irrelevant ones. The selective versus filtering nature of selective 

attention studies in different modalities may lead to its different sensitivity to the modulat ion 

of perceptual load. 

 Second, the manipulation of perceptual load in the current study may not be drastic 

enough to interfere with distractor processing. The current study manipulated perceptual load 

by signal degradation (i.e., lower intensity in the target stream), which was found to modulate 

distractor interference in the visual modality (Gutteling et al., 2022). However, the translation 

of such manipulation from visual to auditory modality may have weakened its modulatory 

influence. Previous studies attempted to reveal the influence of perceptual load on distraction 

by manipulating perceptual similarity (Melara et al., 2021; S. Murphy et al., 2013, experiment 

1), inter-stimulus interval (Gomes et al., 2008), and task difficulty (S. Murphy et al., 2013, 

experiment 2). However, the perceptual load effect on distractor processing did not support the 

perceptual load theory in these studies. The effect may be only evident in a subset of tasks or 

stimuli, which could be further examined in future studies. 
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5.5. Conclusion 

In summary, the current study demonstrated that distractor predictability based on local 

statistics modulated the ultimate degree of distraction. On the behavioural level, distractor 

predictability interacted with both cognitive and perceptual task demands in their influence on 

the working memory representation of the to-be-remembered target. On the neural level, higher 

distractor predictability diminishes reactive filtering of distraction and potentially has an 

interactive impact on attentional selection or working memory maintenance. These results 

demonstrate that the final degree of behavioural distraction may be subject to distractor 

expectation by the relative suppression of neural responses, which are associated with different 

cognitive operations which may be facilitatory or detrimental to the filtering of the distractor. 

The interplay between the neural responses subserving different cognitive operations may give 

rise to a dynamical modulation of behavioural distraction by distractor expectation. 

  



General discussion 

99 
 

6. General discussion 

With three empirical studies, the present thesis investigates the behavioural and brain dynamics 

of distraction. The major goal of this thesis is to elucidate the temporal mechanisms underlying 

distraction. While detailed discussions for each aspect of the temporal mechanisms can be found 

in the discussion sections of each study, I will review the essential topics of this thesis from a 

broader perspective. I will first examine how each study in this thesis may or may not elucidate 

the different components of distraction by revisiting the distraction framework. Second, I will 

discuss the extent to which distraction is dynamic. Third, I will argue that behavioural evidence 

is of primary importance in the study of distraction. Finally, I will discuss the methodologica l 

concerns in studying behavioural rhythms in the current literature.   

 

6.1. Summary of the experimental results 

Study 1 investigated the temporal dynamics and neurobiological basis of distractibility. 

Specifically, EEG was recorded while participants performed a pitch discrimination task with 

an auditory distractor which occurred unexpectedly in time. Behavioural sensitivity and 

distractor-evoked neural response were found to wax and wane across distractor onset time 

between 3 and 5 Hz, demonstrating that the ultimate degree of distraction fluctuates in a 

subsecond temporal scale. Furthermore, the neural phase of theta oscillations prior to distractor 

onset explained the fluctuations in behavioural sensitivity in the inferior frontal and insular 

cortex regions. Control analyses using trials without a distractor showed an absence of such an 

effect, reinforcing that the behavioural and brain dynamics are specific to distractor-related 

processes. These results showed that the periodic brain oscillations in regions associated with 

cognitive control of working memory are tightly linked to fluctuating distractibility.  

 Study 2 set out to elucidate whether distractibility can be entrained. We ran 4 

behavioural experiments and 1 control experiment to systematically search for the temporal 

regularity effect on the proneness to distraction by using different variants of the irrelevant 

sound task (Colle & Welsh, 1976; Salamé & Baddeley, 1982). Temporal irregularity was 

operationalized by a violation of a regular tone sequence (Experiment 1), and by irregular onset-

to-onset delays in sequences of tone (Experiment 2) or speech items (Experiments 3&4), 

respectively. In all experiments, the temporal regularity of distractors did not influence 

participants’ memory recall or recognition performance. Instead, the temporal regularity of 

distractors modulated secondary performance metrics: The motor response was faster 
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(Experiment 3) and participants were more conservative in reporting a “match” between the 

probe and the item in memory (Experiment 4). The present results demonstrate that the temporal 

regularity of the task-irrelevant inputs does not necessarily affect the precision of memory 

representations (i.e., accuracy) but rather the response behaviour (e.g., response speed and bias). 

 Study 3 aimed at exploring the behavioural and brain dynamics of distractor 

predictability. Essentially, we examined the potential factors modulating the influence of 

distractor predictability on working memory performance and explored the potential neural 

correlates of distractor expectation with a behavioural and electrophysiological study. In a 

working memory task where participants had to match the current number with a previously 

presented number, participants had to attend to one number stream from one side (i.e., attended 

stream) and ignore the number stream from the other side (i.e., ignored stream). In the attended 

stream, perceptual load and cognitive load were manipulated by the stimulus intensity and 

working memory load, respectively. In the ignored stream, distractor predictability was 

manipulated by the local transition probability within the number sequence while holding the 

global probability (i.e., item frequency) of the numbers equally probable. Behavioural results 

showed an interaction between distractor predictability, perceptual load, and cognitive load: 

Distractor predictability had a different influence on behavioural sensitivity under different 

perceptual and cognitive load conditions. Neurally, distractor predictability reduced post-

stimulus alpha lateralisation, a well-received neural correlate of attentional filtering. On top of 

that, distractor predictability interacted with cognitive load in its modulation of pre- and post-

sustained neural responses. These results suggested that distractor expectation derived from 

local statistics shapes the potency of a distractor to interfere with working memory performance.  

 

6.2. The components of distraction revisited 

Distraction is a multi- faceted construct. The behavioural measure of distraction captures the 

final detriment arising from different underlying distractor-related processes. Although it is 

crucial to measure behavioural performance to understand the disruptive influence of a 

distractor, a behavioural response only provides one measure of the final distraction and does 

not inform of the potential contributions from the different underlying components of 

distraction. By means of experimental design and neuroimaging methods, some components 

can be studied in isolation from the other distractor-related processes (Wöstmann et al., 2022). 

In this section, I will first recap the essential components of distraction. Then, I will discuss 

how different components may contribute to the final degree of distraction in each study. 
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 Aside from the external factors such as distractor strength and the cognitive load of a 

task, the final degree of distraction mainly depends on two endogenous factors: distractibility 

and distractor suppression. The variability of distractibility in an experiment has often been 

neglected as it is considered to only unfold in relatively long temporal scales such as in years 

(K. L. Campbell et al., 2012; Kannass et al., 2006). It is suggested to change with age and is 

associated with the frontal cortex. Distractibility was studied cross-sectionally by comparing 

between age groups (K. L. Campbell et al., 2012; Chadick et al., 2014) and between patients 

with frontal lesions and healthy control (Chao & Knight, 1995, 1998). Researchers have 

recently acknowledged the need to tease apart the different types of distractor suppression 

(Noonan et al., 2018; Schneider et al., 2021; Wöstmann et al., 2022). For instance, active, 

independent distractor suppression is recommended to be separated from the automatic 

deselection of task-irrelevant events collateral to target selection (Schneider et al., 2021). The 

brain may be engaged in proactive suppression, which involves a preparatory inhibition of 

anticipated distractors, or reactive suppression, which refers to the reactive disengagement of a 

distractor that is often salient (Geng, 2014; Wöstmann et al., 2022). 

While the present thesis is primarily concerned with the temporal dynamics of 

distraction, each study positioned itself differently within the framework of distraction. Of note, 

not all of the studies here aimed at dissociating one component of distraction from the others. 

In all studies, distractibility and distractor suppression both contributed to the ultimate degree 

of behavioural distraction. In the following, I will review how distractibility and distractor 

suppression may play a role in each study. In some studies, the differentiation between the 

components was more subtle. I will rely on reverse inference in such a case and speculate on 

the possible underlying mechanisms. 

 In Study 1, we were able to isolate distractibility from distractor suppression processes 

by using distractors that occurred unexpectedly, both in terms of whether or when they would 

occur. We could capture the variability in distractibility within an individual, which fluctua tes 

in a second. Note that the conclusion of fluctuating distractibility does not solely come from 

the cyclical modulation of behavioural or neural time courses by distractor onset time (Figure 

3.2). As both the behavioural sensitivity and distractor-evoked neural responses were post-

distractor measures, they may reflect both distractibility and distractor suppression.  

The conclusion that distractibility, but not distractor suppression, fluctuates in Study 1 

is mainly based on the following reasoning. First, as the distractor was presented in only half 

of the trials and randomly across possible distractor onset times, participants could not 
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anticipate the occurrence of a distractor in a given trial and thus could not engage in proactive 

suppression. Second, the phasic relationship between neural oscillations and the behavioura l 

measure of distraction was specific to the pre-distractor time window, which speaks against the 

hypothesis that the fluctuations in the final degree of distraction come from the fluctuations in 

post-stimulus distractor processing such as reactive suppression. Lastly, the task difficulty and 

distractor strength were not manipulated in Study 1, avoiding the influence of these exogenous 

factors on the variability in distraction.  

In contrast, Study 2 was purely a behavioural study and thus did not include neural 

measures which are typically associated with distractibility (e.g., frontal activation; L. L. Chao 

& Knight, 1995) nor distractor suppression (e.g., alpha lateralisation; Worden et al., 2000). We 

conducted a purely behavioural study as the main interest of Study 2 was to push the extent to 

which temporal regularity plays a role in the primary (i.e., accuracy) and secondary (e.g., speed, 

confidence) performance metrics.  

 Which component(s) of distraction would Study 2 be probing into if there were 

meaningful behavioural evidence of a temporal regularity effect of distractor? Entrainment 

describes the temporal alignment of an oscillatory system in accordance with another 

exogenous oscillatory system (Lakatos et al., 2019). It is possible that temporally regular 

distractors would temporally align the distractibility dynamics found in Study 1, so that the 

distractors could occur at an optimal phase of distractibility. Alternatively, temporally expected 

distractors may facilitate proactive suppression of the anticipated distractor (Gresch et al., 2021). 

The difference between the two hypotheses lies in whether the temporally regular distractors 

would modulate the general proneness to all distractors or only to the specific distractor which 

is anticipated. 

 Study 3 explored the influence of distractor predictability on a cascade of neural 

responses. As we did not aim to distinguish between distractibility and distractor suppression, 

both may contribute to the ultimate degree of distraction. With its endogenous fluctuations, 

distractibility may explain some variations within the behavioural consequence of distraction. 

The fluctuations in distractibility, as it is endogenous (Study 1) and not modulated by external 

temporal regularity (Study 2), may impact the behavioural detriment of distraction randomly 

across all conditions.  

 It is plausible that distractor suppression and the exogenous factor cognitive load jointly 

played a role in explaining the ultimate degree of distraction in Study 3. While distractor 

predictability was hypothesised to engage proactive suppression of the distractor, the timing in 
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which the influence of distractor predictability becomes evident is still under debate (van 

Moorselaar & Slagter, 2020). In previous studies of visual attention, distractor predictability 

was found to modulate neural responses which are typically associated with reactive filter ing 

(PD; van Moorselaar et al., 2021; Wang et al., 2019). The decrease in post-target/distractor pair 

alpha lateralisation with high distractor predictability suggests that reactive distractor filter ing 

may be influenced by distractor expectation. Furthermore, distractor expectation and cognitive 

load may jointly influence the potency of a distractor to distract via modulating the preparatory 

and reactive processes of selective attention (Wöstmann et al., 2015) and working memory 

(Schneider et al., 2020) as shown in the modulation of sustained neural responses. 

All in all, while distractibility and distractor suppression jointly contributed to the 

ultimate detriments of distraction, they may have played different roles in the 3 studies in the 

present thesis. Note that in all 3 studies, we did not distinguish active suppression from 

automatic suppression as we did not implement a proper baseline condition to delineate between 

the two. A neutral stimulus with which no distractor suppression is needed would further our 

understanding of how active distractor suppression would play a role in the unfolding of 

distraction in time.  

 

6.3. The temporal dynamics of distraction 

Why is it important to study the temporal dynamics of distraction? The current research on 

dynamics in cognition mainly focuses on the processing of task-relevant targets and neglects 

the potential dynamics in the processing of task-irrelevant distractors (Buschman & Kastner, 

2015; Schroeder & Lakatos, 2009). The human brain is ubiquitous in its oscillatory signatures 

(Buzsáki & Draguhn, 2004), which is closely tied to the behavioural dynamics of attention 

(Fiebelkorn & Kastner, 2019; Haegens & Zion Golumbic, 2018). However, the oscillatory 

dynamics of the brain are not limited to attention-related networks (A. Keitel & Gross, 2016). 

How the brain dynamics outside of the attention-related network are associated with the 

behavioural dynamics of the cognitive processes outside the spotlight of attention remains 

unknown. The present thesis investigates the temporal mechanisms of distraction, namely, the 

endogenous fluctuations of distractibility (Study 1), entrainment by temporally regular 

distractors (Study 2), and distractor expectation formed by local statistics (Study 3). Together, 

the 3 empirical studies set the boundary to which distraction exhibits temporal dynamics. 
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6.3.1. The endogenous and exogenous rhythms of distraction 

The proneness to distraction is inherently dynamic but cannot be entrained, according to the 

results from Studies 1 and 2 (Figure 6.1).  

 The ebbing and flowing of distractibility found in Study 1 urge for an extension of the 

theoretical formulation of the blinking attentional spotlight. The blinking spotlight of attention 

posits that attentional sampling waxes and wanes over time as if the attentional spotlight is 

blinking regularly (Buschman & Kastner, 2015; VanRullen et al., 2007). The cyclica l 

fluctuations of attention were hypothesised to originate from the cyclical fluctuations of neural 

excitability in the perceptual/attentional neural network (Fiebelkorn & Kastner, 2019; 

VanRullen, 2016). Under this framework, anything outside of the attentional spotlight is 

invisible and implicitly assumed to be static.  

Study 1 showed that contrary to what is originally assumed, the “invisible” realm 

outside the attentional spotlight is also blinking. The orchestration between the brain and 

behavioural dynamics of distraction in theta-like cycles reveals the pervasiveness of rhythmic 

cognition beyond target selection. Of note, it is still unclear whether the brain dynamics in the 

brain regions responsible for the fluctuations in the attentional spotlight and distractibility are 

independent of each other. It is also possible that the synchronisation between the frontoparie ta l 

attention network, the neuronal network associated with rhythmic attention (Helfrich et al., 

2018), and the left inferior frontal/insula cortical regions found in Study 1 gives rise to the 

distractibility dynamics. 

 The results in Study 2 converge with the view that entrainment requires attention 

(Lakatos et al., 2019). Entrainment was said to be instrumental to the sensory selection of task-

relevant events (Haegens & Zion Golumbic, 2018; Schroeder & Lakatos, 2009), and was 

proposed to be controlled by attention. Lakatos et al. (2019) proposed that entrainment serves 

as a mechanism to prioritise task-relevant rhythmic inputs by amplifying the neural response to 

the selected input while diminishing the influence of task-irrelevant inputs. The absence of 

evidence in the primary performance metrics in Study 2, with the support of Bayesian statistics, 

is consistent with this view.  

The modulatory influence of the temporal regularity of distractors on the secondary 

performance metrics suggests that the exogenous rhythm in distractors may not go unnoticed. 

Participants seemed to lean towards the preferred response behaviour when the distractors were 

temporally regular, resulting in a faster response (Experiment 3, Study 2) and more conservative 
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bias (Experiment 4, Study 2). The periodicity in temporally regular distractors may facilitate 

motor preparation (Morillon et al., 2016). The disruptive influence of temporal irregularity in 

distractors may be small and only manifested in measures that are more sensitive to small 

disruptions such as metacognitive measures (Kattner & Bryce, 2021). 

 Studies 1 and 2 shed light on the extent to which distraction is related to the endogenous 

(i.e., brain) and exogenous (i.e., distractor regularity in time) dynamics. Figure 6.1 illustra tes 

the similarity and differences between target processing (Fiebelkorn et al., 2013; Henry et al., 

2014; Ho et al., 2017; Hsu et al., 2014; Rohenkohl et al., 2012) and distractor processing in 

terms of the endogenous and exogenous dynamics. While rhythmic cognition within and 

outside of the attentional spotlight is a general phenomenon concomitant to neural dynamics, 

entrainment serves as amplification and adjustment of such rhythms specific to the attentiona l 

spotlight.  

 

6.3.2. The role of temporal and feature-based expectation in distraction 

Expectations built by local transition probability (Study 3), but not temporal regularity (Study 

2), modulated the potency of the distractors to interfere with the working memory performance  

(Figure 6.1). These results raise the question: To what extent does distractor expectation play a 

role in the interfering influence on task performance? 

 Distractor expectation by temporal regularity may only have a subtle influence on 

cognitive operations needed in a working memory task, based on the results of the primary and 

secondary performance metrics in Study 2. In previous studies, violation of temporal regular ity 

in the task-irrelevant stream elicited a mismatch brain response (e.g., Jacobsen & Schröger, 

2003; Yabe et al., 1997), suggesting that the temporal regularity embedded in task-irrelevant 

events can be detected by the brain. By presenting distractors with or without temporal 

regularity simultaneously with temporally regular targets, Makov & Zion Golumbic (2020) 

showed that the change detection performance was better with unmasked targets when the 

distractors were temporally regular. While temporally anticipated distractors have been shown 

to lessen the overall interference to task performance (Menceloglu et al., 2017; van Ede et al., 

2018), Gresch et al. (2021) directly tested how temporally predictable distractors, with fixed 

temporal occurrence relative to the target, facilitate the shielding of memory representation 

from external interference. The studies using the irrelevant sound paradigm, however, showed 
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mixed results on the influence of temporal regularity on distractor interference (e.g., D. M. 

Jones & Macken, 1995; Parmentier & Beaman, 2015).  

  Drawing from the results of other empirical studies, the subtle influence of temporal 

expectation in Study 2 may be due to its lack of temporal contingency with the targets. In the 

aforementioned studies where temporal expectation facilitated performance (Gresch et al., 2021; 

Makov & Zion Golumbic, 2020; Menceloglu et al., 2017), temporally predictable distractors 

were also temporally contingent on the targets. For example, in Gresch et al. (2021), the 

predictable distractors were fixed in terms of their interval from the target. In Makov & Zion 

Golumbic (2020), temporally regular distractors also shared a predictable temporal relationship 

with the target. Specifically, the temporal relationship between the target (presentation rate at 

1.6 Hz) and the distractor (2 Hz) changed periodically at the beat frequency of the two streams 

(0.4 Hz). The temporal contingency between the target and distractor may provide more 

information on the temporal occurrence of the upcoming probe (Gresch et al., 2021) or target 

stimulus (Makov & Zion Golumbic, 2020), thereby facilitating task performance. In Study 2, 

although the distractor sequence is temporally regular, the onset of the distractor sequence after 

target offset was random across trials to avoid the potentially confounding effect of temporal 

contingency. The lack of temporal regularity effect in Study 2 may thus be explained also as 

the lack of temporal contingency effect. Future studies could test the role of temporal 

contingency between the target and distractor to delineate its effect from the temporal regular ity 

effect of distraction. 

 Distractor expectation by local transition probability, on the other hand, has an indirect 

influence on the final degree of distraction, as shown by the interaction between distractor 

predictability and task demands in Study 3. Similar to temporal expectation, feature-based 

regularity in task-irrelevant events could also be detected by the brain (Näätänen & Michie, 

1979). The brain responds to the violation of various types of regularity ranging from stimulus 

repetition (Lui et al., 2021; Sams et al., 1983) to transition probability (Koelsch et al., 2016; 

Mittag et al., 2016). Apart from violation, the brain also responds to the formation of regular ity 

in that neural responses to external events were upregulated if the events were predictable 

(Barascud et al., 2016; Dürschmid et al., 2018).  

 While expectation suppression is a well-received account in explaining distractor 

expectation’s impact on distractor processing (Noonan et al., 2018; van Moorselaar & Slagter, 

2020), further understanding of the explanatory scope of expectation suppression on how 

distractor predictability worsens or ameliorates distractor interference is warranted. One major 
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consideration is whether expectation suppression is limited to explaining behavioural evidence, 

neural evidence, or both. The neural results in Study 3 are consistent with the expectation 

suppression account, in that the neural responses are diminished when the distractors were 

predictable, especially for alpha lateralisation and post-stimulus frontal sustained responses. On 

the behavioural level, however, the direction in which distractor expectation influenced 

behavioural performance differed across perceptual and cognitive load conditions.  

 Psychological suppression should not be confused with neural suppression (Schneider 

et al., 2021; Wöstmann et al., 2022), as a psychological phenomenon is often a consequence of 

multiple underlying neurobiological components (Miller, 2010; Waschke et al., 2021). In 

research on distractor expectation, the theoretical backbone of the expectation suppression 

account is mainly concerned with the neural suppression in response to the expected inputs 

(Friston, 2005). As distraction is a multi- faceted construct (see Section 1.1.3 and 6.2), the neural 

suppression corresponding to the distractor-related processing can mean the suppression at one 

or more than one of the components of distraction. One possibility is that the neural responses 

reflecting the distractor encoding and the ability to filter out distractors are both diminished 

with predictable distractors. As the suppression of the two components would lead to an 

opposite effect on the degree of distraction, the ultimate direction of behavioural effect would 

depend on the relative suppression of the respective component. Neural suppression of 

distractor may not necessarily lead to psychological suppression of distractor. 

 Would temporal and feature-based distractor expectation have an interactive influence 

on the degree of distraction? In attention studies, the temporal expectation was shown to 

facilitate the extraction of feature-based regularity in the attended stimuli (Schwartze et al., 

2011). Participants had a better change detection performance when they attended to the 

rhythmic stimuli that were more predictable (Foldal et al., 2022). However, there was no 

interaction between temporal and feature-based regularity on the neural responses to frequency 

deviant when participants were instructed to ignore the stimuli (Schwartze et al., 2011, 2013). 

For the task-irrelevant distractors, the temporal and feature-based expectation may also not 

interact in their potency to interfere with task performance. 
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Figure 6.1. Illustration of the temporal dynamics of (A) target processing, which were examined in previous studies, and (B) 

distractor processing, which were examined in the 3 empirical studies in this thesis. 

 

6.4. The primacy of behavioural evidence in the study of distraction 

Throughout this thesis, behavioural evidence plays an unequivocal role in the understanding of 

distraction. In Studies 1 and 3, we studied the brain and behavioural dynamics by relating the 

behavioural evidence with neural evidence. In Study 2, we only conducted behavioura l 

experiments in an attempt to elucidate whether distraction can be entrained by exogenous 

rhythms. In this section, I will argue for the primacy of behavioural evidence in the study of 

distraction due to the task-irrelevant and multi- faceted nature of distraction. 

In opposition to the previously prevalent view that all psychological phenomena can be 

reduced to neurobiology (Bickle, 2003; Nagel, 1961), more and more researchers recognised 

the insufficiency of understanding cognition with neuroscientific evidence alone (Grasso et al., 

2021; Krakauer et al., 2017; Marshall, 2009). The basic tenet of such an argument is that with 

neuroscientific evidence, we only acquire knowledge of cognition at the lower level of 

implementation (Marr, 1982). Understanding the neural implementation does not necessitate 

the understanding of the higher algorithmic level, which constitutes the trajectory of the 

cognitive process. Metaphorically, understanding all the components of a chessboard does not 

necessitate an understanding of how to play chess. Similarly, understanding all the biologica l 

components does not guarantee the mapping of the behavioural trajectory of an organism 

(Krakauer et al., 2017). 

Distractors are task-irrelevant by definition. What distinguishes a task-irrelevant 

distractor from other task-irrelevant events is that a distractor interferes with task performance. 

Modulation of behavioural detriments by distraction is thus recommended to make sure that the 
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human brain is engaged in distractor processing (Wöstmann et al., 2022). One can also argue 

that a lack of behavioural detriment by distraction can be attributed to the successful 

suppression of a distractor. However, with an absence of evidence, the hypothesis of successful 

distractor suppression cannot be delineated from the hypothesis that the intended distractor did 

not possess the potency to distract. The distractors used in Study 1 and Study 2 were shown to 

be distracting by comparing the behavioural performance with or without a distractor. In Study 

3, rather than showing a behavioural detriment with distraction, an interactive effect was found 

in the behavioural performance by distractor type and with different task difficulties.  

 A well-designed behavioural experiment enables us to investigate the trajectory of the 

cognitive process, thereby laying down a theoretical foundation for the underlying neural 

mechanism (Buschman & Kastner, 2015). A lack of such a theoretical foundation would render 

the neural evidence hard to interpret. In the study of distraction, the delineation between 

different cognitive components of distraction is a prerequisite to shed light on the neural 

implementation of these components (Wöstmann et al., 2022). For example, we were able to 

isolate the distractibility dynamics in Study 1 by 1) ensuring that the distractor could not be 

expected in both its occurrence and its temporal occurrence, and 2) relating pre-distractor brain 

dynamics with the behavioural dynamics of distraction. On the contrary, we could not find a 

modulatory effect of temporal regularity on the behavioural level in Study 2. In the absence of 

a behavioural effect, additional neural results would not be needed as there is no cognitive 

phenomenon to be explained.  

 

6.5. The methodological considerations in studying the rhythms of cognition 

Although neural oscillations have been studied for decades (Bishop, 1932; Doelling & Assaneo, 

2021), the separation between periodic oscillations from aperiodic neural activities has gained 

much attention in recent years (Donoghue et al., 2020; He, 2014). On a frequency spectrum, 

the periodic and aperiodic neural activities are manifested as the band-limited peak power at 

specific frequencies and the background power spectrum exhibiting a 1/f slope, respectively.  

Periodic and aperiodic oscillations are suggested to both have physiological significance. 

Periodic oscillations have been suggested to reflect the coordination of neural ensembles (X.-J. 

Wang, 2010); aperiodic oscillations and the excitation/inhibition balance in the brain are 

correlated (Gao et al., 2017). With distinctive physiological origins, researchers have proposed 

ways to isolate periodic activities from aperiodic signals to ascertain the investigation of 

periodic components (e.g., Donoghue et al., 2020; Wen & Liu, 2016).  
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In a similar vein, in the current literature on the endogenous rhythm of cognition, 

whether the dynamics found in behavioural measures of cognition are periodic is under debate  

(Brookshire, 2022; Re et al., 2022; Wöstmann, 2022). The major opposing argument states that 

instead of testing the periodicity of the behavioural time course, the shuffling- in-time method 

used in rhythmic cognition research tests the presence of a temporal structure against its absence 

(Brookshire, 2022). By shuffling the data in time, the aperiodic temporal structure along with 

the periodic temporal structure is destroyed. Hence, when comparing the original frequency 

spectrum versus the frequency spectrum generated from the shuffled data, one is testing against 

the baseline condition without a temporal structure. As a result, the existing method does not 

delineate the periodic temporal structure from the aperiodic temporal structure in a time series 

signal. While Brookshire (2022) rightfully points out the methodological consideration in 

studying rhythmic cognition, it does not entirely invalidate the notion that cognition is rhythmic. 

The critical evidence in rhythmic cognition lies within the relationship between neural and 

behavioural dynamics.  

Studies of rhythmic cognition are usually limited in their trial count, rendering the 

behavioural time course less reliable (Fiebelkorn, 2022). In a typical behavioural experiment 

studying rhythmic cognition, the stimulus onset time should be densely sampled in order to 

capture a temporal profile of behavioural performance with a temporal resolution sufficient for 

spectral analysis (Kienitz et al., 2022). With a higher number of stimulus onset times, the 

experiment would be substantially longer if a higher trial number is aimed for, which is often 

impractical. Similarly, increasing the maximum stimulus onset interval would also inevitab ly 

lengthen the experiment time. As a result, a compromise among the length of the time course, 

temporal resolution, and trial numbers is needed, leading to a relatively low signal-to-noise ratio 

in the behavioural measure (Fiebelkorn, 2022).  

The study of the brain-behaviour relationship can mitigate the problem of a low signal-

to-noise ratio on the behavioural level and provide a key understanding of rhythmic cognition.  

The search for behavioural dynamics of cognition is based on the notion that the phase of neural 

oscillations signifies different states of perceptual or attentional sampling (Fiebelkorn & 

Kastner, 2019; VanRullen, 2016). The phase and amplitude of neural oscillations are measured 

over a long snippet of neural data, which provides a reliable neural measure on a single-tr ia l 

level. Then, the neural phase can be used to predict the variability in behaviour. Compared with 

behavioural evidence alone, the relationship between neural phase and behavioural fluctuat ions 

would be stronger evidence for rhythmic cognition (Fiebelkorn, 2022; Wöstmann, 2022). The 
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phasic relationship between slow neural oscillations and behavioural fluctuations has been 

demonstrated in attention (Busch et al., 2009; Helfrich et al., 2018; Landau et al., 2015) and in 

working memory (Siegel et al., 2009; ter Wal et al., 2021) research, in favour of the notion that 

cognition is rhythmic. 

To answer whether the dynamics in cognition are periodic, Brookshire proposed two 

possible solutions (Brookshire, 2022). However, the two analysis methods are not without their 

caveats. For instance, the autoregressive method generates a surrogate frequency spectrum that 

comprises clear peaks for each permutation; the 1/f aperiodic shape of the frequency spectrum 

is only manifest on the averaged permuted frequency spectrum (Re et al., 2022). On the other 

hand, the robust estimation method has a low true-positive rate (Brookshire, 2022). To delineate 

periodic from aperiodic cognitive dynamics, Re et al. (2022) proposed the parameterisation of 

the frequency spectrum of the behavioural time course (e.g., Helfrich et al., 2018), which is 

methodologically similar to the study of periodic neural dynamics (Donoghue et al., 2020; Wen 

& Liu, 2016). A proper analysis method to extract the periodicity in behavioural dynamics of 

cognition would advance our understanding of rhythmic cognition.  

 

6.6. Limitations 

There are a few limitations in the present thesis. First, the present thesis did not answer whether 

the temporal mechanisms of distraction are independent of attention. With the focus on the 

temporal trajectory of distraction, we did not manipulate the corresponding temporal properties 

in the attended stimuli. For instance, the target stimuli in Study 1 were pure tone pips without 

rhythmicity; Study 2 used either temporally regular target numbers (Experiments 1 to 3) or a 

visual target array without rhythmicity (Experiment 4). Research has suggested that distractor-

related processing can be independent of target-related processing (Gundlach et al., 2022; 

Schneider et al., 2018; Wöstmann et al., 2019). However, in this thesis, we cannot eliminate the 

possibility that the distractibility dynamics are tethered to the dynamics in attention in Study 1. 

In Study 3, while we demonstrated that distractor expectation influences the behavioural and 

neural responses of the target/distractor pair, we cannot tell if the influence is from changes 

directly in distractor processing, indirectly in target processing, or both. To test the 

independence of the temporal mechanism of distraction from attention, additional experimenta l 

manipulations should be included. For instance, in Study 1, the stimulus onset interval of the 

second target can be varied to capture the attentional dynamics and its interaction with the 

distractibility dynamics. In Study 3, we can test the influence of distractor predictability on 
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alpha lateralisation when distractors are presented on the side and targets are presented on the 

front (similar to the setup used in Wöstmann et al., 2019). This way, we can confidently attribute 

any modulation of alpha lateralisation by distractor predictability to distractor filtering. 

 Second, the importance to have a clear taxonomy regarding the different components of 

distraction is acknowledged in this thesis. Nevertheless, not all components could be separately 

studied in the 3 empirical studies. For instance, in all 3 empirical studies, we could not 

disentangle between active versus automatic distractor suppression without a “neutral” stimulus 

with which the independent decrease in the response to distractor can be teased apart from pure 

target selection (Schneider et al., 2021; Wöstmann et al., 2022). By experimental design and 

pre-distractor neural measure, we were able to isolate distractibility in Study 1. In Study 3, 

however, we could only rely on reverse inference to speculate the role of proactive versus 

reactive suppression with the help of neural results (see Section 6.2). Reverse inference by 

neural evidence should be taken with caution as it commits a logical fallacy of affirming the 

consequent (Poldrack, 2006); further studies testing the hypothesis based on such inference are 

needed to test the individual components. Having a clear definition of each component helps to 

avoid erroneous reverse inference and design future experiments tailored to the components 

pertaining to distraction. 

Research in oscillatory behavioural dynamics such as rhythmic cognition and 

entrainment often faces an empirical question: What is the optimal frequency underlying the 

dynamic behaviour? It is possible that the frequencies in the temporally regular distractors in 

Study 2 (1.33 Hz in Experiment 3 and 4; 4 Hz in Experiment 1 and 2) mismatched from the 

eigenfrequency of distractibility, which was found to oscillate in 3 – 5 Hz in Study 1. Neural 

networks may exhibit a frequency-specific pattern in response to an input (i.e., eigenfrequency 

in Helfrich et al., 2019). The exact frequency may be different depending on different factors 

such as the task requirement (Watrous et al., 2013) or the modality (Zoefel & VanRullen, 2017). 

The empirical question is to which frequency is the neural network the most sensitive. The ideal 

way to answer such a question is to include a wide range of frequencies and extract the 

frequency with the peak response. In the study of rhythmic cognition, this can be achieved by 

increasing the temporal resolution when sampling the stimulus onset time. In the study of 

entrainment, one can include a few more conditions where the exogenous rhythmic events 

oscillate in different frequencies. In practice, however, these methods drastically increase the 

experimental time and are often not feasible.  
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Of note, the effect sizes for the temporal dynamics of cognition seem to be small, with 

studies failing to report temporal fluctuations in attention (van der Werf et al., 2022), the effect 

of temporal regularity (Bauer et al., 2015; Lin et al., 2021), or distractor expectation with trial-

by-trial predictability (Bogaerts et al., 2022). The effect size for distractor suppression was 

shown to be smaller than target selection (Wöstmann et al., 2019). Similarly, the effect sizes 

across the empirical studies in this thesis are also of small to medium size. For instance, the 

comparison of spectral magnitude between the co-fluctuations (i.e., cross-correlation) in 

distractor-present versus absent trials in Study 1 has a Cohen’s d of 0.66, suggesting that the 

co-fluctuations of distraction are of medium effect size (J. Cohen, 1988). Similar or smaller 

effect sizes are found in Studies 2 and 3 (Temporal regularity effect on speed in Study 2: d = 

0.23; Distractor predictability effect on alpha lateralisation: d = 0.41). Future studies should 

take the effect sizes into consideration to ensure sufficient statistical power in studying the 

temporal dynamics of distraction.  

 

6.7. Translational implications 

The investigation of the temporal dynamics of distraction in the present thesis has potential 

translational importance in understanding the psychopathology and pathophysiology of 

psychiatric disorders.  

Impairments in cognitive operations are suggested to be an essential component, or even 

the underlying mechanism, of psychiatric disorders (Etkin et al., 2013; Morozova et al., 2022). 

The investigation of aberrant cognition in clinical populations may provide more information 

on the psychopathology of psychiatric disorders, thereby providing insights into potential 

intervention or treatment methods. In the study of rhythmic attention, researchers have recently 

started putting their focus on the abnormality of the attentional rhythms in the clinica l 

population and found that the endogenous rhythm of attention is retained for individuals with 

schizophrenia (Reavis et al., 2022). On the other hand, aberrant predictive processes have been 

theorised to underlie the pathologies of a few psychiatric disorders (Friston et al., 2014), such 

as obsessive-compulsive disorder (Fradkin et al., 2020), autism (Van de Cruys et al., 2014), and 

schizophrenia (Sterzer et al., 2018, 2019).  

Attention-deficit hyperactivity disorder (ADHD), a developmental disorder that is 

characterised by inattention and/or hyperactivity and impulsivity (DSM-V), has been associated 

with impairments in various cognitive operations such as executive function and response 
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inhibition (J. Posner et al., 2020). Increased distractibility is one of the prominent features of 

ADHD (Fassbender et al., 2009; Friedman-Hill et al., 2010; Gumenyuk et al., 2005). The 

cognitive deficits in interference suppression in the ADHD population were accompanied by 

deficits in the activation of brain regions such as the left inferior frontal cortex and insula 

(Vaidya et al., 2005). The ADHD population also showed hyperactivation in the left insula 

cortex in the face of negative emotional stimuli (Vetter et al., 2018). In Study 1, we have traced 

the origin of distractibility dynamics to the left inferior frontal and insula cortical regions (see 

Chapter 3). It is conceivable that the ADHD population would exhibit an aberrant distractibility 

rhythm which is associated with the atypical activation pattern in the related brain regions. 

Another clinical population that showed impairment in the proneness to distraction is 

individuals with schizophrenia (Bergman et al., 1995; Oltmanns et al., 1978). The positive 

symptoms of schizophrenia such as hallucination (Horga et al., 2014) and delusion (Schmack 

et al., 2015) have been associated with deficient predictive processes (Sterzer et al., 2018). 

While the negative symptoms such as cognitive deficits and blunted emotional expression are 

suggested to be more detrimental in the long run (McCutcheon et al., 2020), its 

psychopathology in the framework of the predictive process is less well-studied (Jeganathan & 

Breakspear, 2021). Reduction in the pre-attentive mismatch response (i.e., mismatch negativity; 

MMN) was found in the schizophrenia population compared to healthy control (Kirihara et al., 

2020; Wacongne, 2016), suggesting that the deficits in the predictive process are already 

evident outside the centre of attention. Whether and how the deficient predictive process may 

influence negative symptoms such as distractibility remains unknown. Understanding how the 

aberrant predictive process in the task-irrelevant domain modulates the proneness to distraction 

may help to arrive at a more comprehensive understanding of the negative symptoms of 

schizophrenia.    
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7. Conclusion 

The three behavioural and electrophysiological studies in this thesis collectively elucidate the 

many facets of how distraction unfolds in time. Throughout this thesis, distraction is shown to 

(1) exhibit endogenous dynamics, (2) not entrained by exogenous rhythms, and (3) be 

influenced by distractor expectation formed by local statistics. The empirical results of this 

thesis urge for a theoretical reformulation of different aspects of auditory distraction. 

 First, the endogenous proneness to distraction fluctuates with a rate of approximately 3 

– 5 cycles per second. The temporal fluctuations are demonstrated by the co-fluctuations of the 

behavioural and neural measures of distraction by distractor onset time. The distractibility 

dynamics were found to originate from the left inferior frontal cortex and insula cortex, which 

may serve as a nexus for the orchestration between the maintenance of goal-related memory 

representation and interference from the potential external distraction. The discovery of the 

endogenous dynamics in distractibility urges a theoretical reformulation of the spotlight theory 

of attention by acknowledging the existence of dynamic cognition outside the spotlight of 

attention. 

 Second, the proneness to distraction is not entrained by exogenous rhythmic events. The 

temporal regularity of distractors did not have a direct impact on the precision of memory 

representation (i.e., primary performance metric), but rather indirectly on response behaviour 

such as speed and metacognition (i.e., secondary performance metric). The results suggest that 

although distractibility may follow an endogenous rhythm, it is not influenced by exogenous 

rhythms. However, the exogenous rhythms embedded in a distracting sequence may not go 

unnoticed. Rather, they may play an indirect role by influencing motor preparation or the 

response bias during a working memory task. The null results in the primary performance 

metric and significant results in the secondary performance metrics demonstrate the necessity 

to incorporate cognitive operations such as metacognition into the theorisation of auditory 

distraction. 

 Third, distractor expectation can be formed by the local transition probability in the 

distracting sequence even without the influence of global statistics. Furthermore, the influence 

of distractor expectation on the ultimate degree of distraction depends on the perceptual and 

cognitive load of the task. Electrophysiological results showed that distractor expectation and 

cognitive load interactively influenced the neural correlates of attentional selection. Distractor 

expectation also reduced the reactive filtering of the distractor. While the neurophysiologica l 

evidence largely converges with the prevalent expectation suppression account under the 
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predictive processing framework, which states that distractor expectation reduces the response 

to a distractor, behavioural evidence showed mixed results in the direction in which distractor 

expectation influences the potency to distract. In future studies, the delineation between neural 

and psychological suppression should be carefully examined when considering the modulatory 

influence of distractor expectation. 

All in all, distraction is a dynamic construct whose temporal mechanism has long been 

neglected. Elucidating how the ignored side of the attentional filter unfolds in time, we can 

better understand how to situate ourselves in a complex world full of distractions. 
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Summary 

 

Introduction 

The environment abounds with sensory information. Selective attention describes the 

prioritisation of task-relevant targets while ignoring the task-irrelevant distractors. As the 

human brain is limited in resources, selective attention is essential for successful performance 

in goal-directed tasks. The stage at which the distractors are filtered out has long been debated 

in previous research. While previous evidence supports both early (Broadbent, 1958; Treisman, 

1960) and late selection (Duncan, 1980), researchers have proposed that the locus of the 

attentional filter depends on the perceptual and cognitive load of the current task (Lavie, 1995; 

2005).  

With a disproportional focus on target selection in attentional filtering research, 

researchers recently started to probe into the mechanisms by which task-irrelevant distractors 

are filtered out. The final degree of distraction mainly depends on two endogenous factors: 

distractibility and distractor suppression. Distractibility describes the endogenous proneness to 

external distraction (Forster & Lavie, 2016; Mayes & Calhoun, 2002; Wais et al., 2012). 

Previous studies assumed distractibility to evolve, if at all, only on a long temporal scale such 

as across developmental stages (K.L. Campbell et al., 2012; Kannass et al., 2006) or 

experimental sessions (Forster & Lavie, 2014). The temporal trajectory of distractibility on a 

shorter temporal scale within one second has been unclear. 

Researchers have recently suggested delineating different forms of distractor 

suppression (Geng, 2014; Wöstmann et al., 2022). For instance, the selective inhibition of 

distractors can involve the reactive disengagement of distractor processing (i.e., reactive 

suppression; Geng, 2014) or preparatory inhibition of the anticipated distractors (i.e., proactive 

suppression; Geng, 2014). Furthermore, active distractor suppression independent of the target 

selection process should be distinguished from the collateral deselection of task-irrelevant 

events (i.e., automatic suppression; Schneider et al., 2021). 

The overarching aim of the present thesis is to elucidate how distraction unfolds in time 

with a focus on endogenous brain dynamics and exogenous distractor dynamics. The human 

brain is ubiquitous in neural oscillations (Groppe et al., 2013; Keitel & Gross, 2016). Neural 

oscillations have been suggested to be instrumental to the temporal dynamics of cognitive 

operations (Keitel et al., 2022; Schroeder et al., 2009). The external environment is full of 
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regular structures which are predictable in time or in terms of distractors’ features. With three 

empirical studies, this thesis set out to elucidate how endogenous brain dynamics and 

exogenous distractor dynamics play a role in the unfolding of distraction. 

The endogenous brain dynamics have been suggested to subserve the endogenous 

rhythms of cognition (VanRullen, 2016; Fiebelkorn & Kastner, 2018). The spotlight of attention, 

which was long assumed to be static (M. I. Posner et al., 1980), has recently been theorised to 

be blinking over time (VanRullen et al., 2007). The waxing and waning of attentional sampling 

are proposed to be concomitant with the waxing and waning in the excitability of the relevant 

neural networks (VanRullen, 2016; Fiebelkorn & Kastner, 2018), which led to the prediction 

that the neural phase in these relevant brain regions could explain the fluctuations in behavioura l 

performance (Helfrich et al., 2018). In the study of distraction, the temporal dynamics of 

distractibility is largely unknown, with preliminary evidence suggesting < 4 Hz fluctuations of 

the behavioural and neural measures of distraction (Wöstmann et al., 2020).  

Rhythms are ubiquitous in the external environment. In attention research, it has been 

established that the human brain makes use of external rhythms for the selection of task-relevant 

inputs (Large & Jones, 1999; Lakatos et al., 2019; Obleser & Kayser, 2019). When it comes to 

distraction, the evidence of the behavioural modulation by the temporal regularity of distractors 

is mixed. Studies found facilitatory (Jones & Macken, 1995; Makov & Zion Golumbic, 2020) 

or disruptive (Parmentier & Beaman, 2015) effect of the distractor regularity in time on the 

final behavioural outcome, which calls for a systematic investigation of the scope of 

behavioural detriment by distractors with different levels of temporal regularity. 

The human brain is posited as an active agent which constantly makes predictions of 

the external world based on past experience (Friston, 2005; Ivry & Knight, 2002; Von 

Helmholtz, 1867). A rich body of literature shows that the brain is capable of extracting the 

statistical regularity embedded in task-irrelevant events (e.g., Naatanen & Michie, 1989; Sato 

et al., 2000; Mittag et al., 2016). Whether the task-irrelevant events with different levels of 

predictability possess different potency to distract remains unclear. Studies on the spatial 

expectation of distractors show converging evidence in support of the notion that predictable 

distractors are less distracting (i.e., expectation suppression; Noonan et al., 2018). Nevertheless, 

studies using local predictability, such as transition probability of distractor presence (Bogaerts 

et al., 2020) or semantic predictability (Wöstmann et al., 2016) did not support the expectation 

suppression account. The inconsistent results from these studies suggest that there may be some 
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underlying factors that potentially modulate the influence of feature-based prediction on 

distractor processing. 

 

Experiments and Results 

In Study 1, we recorded EEG while participants performed a pitch discrimination task with an 

auditory distractor in between the two target pure tones. The distractor occurred unexpectedly 

both in its temporal occurrence and its occurrence. We found that behavioural sensitivity and 

distractor-evoked neural response co-fluctuated at a subsecond time scale with between 3 and 

5 cycles per second (i.e., 3 – 5 Hz). Furthermore, the pre-distractor phase of neural oscillat ions 

in similar frequencies explained the fluctuations in behavioural sensitivity, which showed the 

strongest evidence in the inferior frontal and insular cortical regions. These results demonstrate 

that distractibility follows inherent dynamics which originate from the periodic oscillations in 

regions associated with cognitive control. 

  We turned from endogenous to exogenous dynamics of distraction in Study 2. With 4 

behavioural experiments, we aimed at pushing the scope of distractor interference by distractors 

with different levels of temporal regularity. While the precision of memory representation (i.e., 

primary performance metric) was not modulated by the temporal regularity of distractors, 

response behaviour such as speed or response bias varied with the temporal regularity of 

distractors. For instance, participants were faster in memory recall and had a more conservative 

bias when the distractors were regular in time. The results suggest that the temporal regular ity 

of distractors may have an impact on the often-neglected cognitive operations other than 

working memory, and ultimately influence the task-relevant cognitive process.   

 Having not found an influence of the exogenous temporal dynamics on the ultimate 

degree of distraction, we explored how the brain and behavioural dynamics could be modulated 

by expectation formed by distractor predictability on a local scale. Specifically, we investigated 

whether local transition probability embedded in the distractors, which are free from the 

influence of global statistics, would facilitate the formation of distractor expectation. 

Furthermore, we hypothesised that the influence of distractor expectation on the potency to 

distract depends on the perceptual or cognitive load of the current task. Behaviourally, distractor 

predictability interacted with stimulus intensity and working memory load in its influence on 

the working memory recognition performance. On the neural level, post-target/distractor pair 

alpha lateralisation was reduced with predictable distractors. Distractor predictability also 
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influenced the pre- and post-stimulus sustained responses by interacting with the working 

memory load. The results are consistent with the view of neural suppression by expectation, 

which may give rise to the dynamical modulation of behavioural distraction. 

 

Discussion 

Our findings demonstrate that 1) distractibility follows endogenous dynamics, 2) the proneness 

to distraction does not depend on the exogenous rhythms embedded in distractors, and 3) the 

potency of a distractor to interfere with task performance is indirectly influenced by distractor 

expectation derived from local statistics.  

 Distraction is a multi-faceted construct. However, the taxonomy in the current body of 

literature with regard to the components of distraction has not been well defined (e.g., Geng, 

2014; Schneider et al., 2021). Separating the endogenous proneness to distraction (i.e., 

distractibility) from the suppression of external distraction (i.e., distractor suppression), and 

disentangling the many forms of distractor suppression (e.g., proactive versus reactive 

suppression), is needed to arrive at a coherent framework of distraction (Wöstmann et al., 2022). 

A theoretical foundation of distraction would further our understanding of the behavioura l 

trajectory and neural implementation of distraction. 

  While distraction has been suggested to operate independently from target selection, 

the extent to which distraction exhibits similar temporal dynamics as shown in attention 

research remains unknown. We demonstrate the scope of temporal dynamics in distraction by 

showing that distractibility exhibits endogenous dynamics but is not subject to exogenous 

dynamics. This highlights that rhythmic cognition is a general phenomenon tethered to the 

neural dynamics of the relevant neural regions; Entrainment by exogenous rhythms is an 

attention-specific process that may serve as an amplification of task-relevant inputs needed for 

successful task performance (Lakatos et al., 2019). 

  In the absence of evidence on the influence of temporal regularity in exogenous inputs, 

neural suppression by expectation still holds in terms of distractor expectation derived from 

local transition probability. Expectation formation is suggested to be a reiterative process where 

the prediction model of the upcoming distractor is updated (Friston, 2005). The modulation of 

post-stimulus alpha lateralisation and sustained neural activities may subserve the changes in 

distractor filtering and the shielding of memory representation from distraction, respectively. 

The cascade of neural responses associated with distractor expectation accentuates the 
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importance to study the relative contribution of different components of distraction in the 

unfolding of distraction with different levels of expectation.  
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Zusammenfassung 

 

Einführung 

Die Umwelt ist reich an sensorischen Informationen. Selektive Aufmerksamke it 

beschreibt die Priorisierung aufgabenrelevanter Ziele bei gleichzeitiger Ausblendung 

aufgabenirrelevanter Ablenkungen. Da die Ressourcen des menschlichen Gehirns begrenzt sind, 

ist die selektive Aufmerksamkeit eine wesentliche Voraussetzung für die erfolgre iche 

Bewältigung zielgerichteter Aufgaben. Die Phase, in der die Ablenkungen herausgefiltert wird, 

ist in der bisherigen Forschung lange umstritten gewesen. Während es sowohl Belege für eine 

frühe (Broadbent, 1958; Treisman, 1960) als auch für eine späte Selektion (Duncan, 1980) gibt, 

haben Forschende vorgeschlagen, dass der Ort des Aufmerksamkeitsfilters von der 

wahrnehmungsbezogenen und kognitiven Belastung der aktuellen Aufgabe abhängt (Lavie, 

1995; 2005).  

Da sich die Forschung im Bereich der Aufmerksamkeitsfilterung unverhältnismäß ig 

stark auf die Zielselektion konzentriert, haben Forschende vor kurzem damit begonnen, die 

Mechanismen zu untersuchen, durch die aufgabenirrelevante Distraktoren herausgefilte rt 

werden. Der endgültige Grad der Ablenkung hängt hauptsächlich von zwei endogenen Faktoren 

ab: Ablenkbarkeit und Unterdrückung von Distraktoren. Die Ablenkbarkeit beschreibt die 

endogene Anfälligkeit für externe Ablenkung (Forster & Lavie, 2016; Mayes & Calhoun, 2002; 

Wais et al., 2012). Frühere Studien gingen davon aus, dass sich Ablenkbarkeit, wenn überhaupt, 

nur auf einer langen zeitlichen Skala entwickelt, etwa über Entwicklungsstufen (K.L. Campbell 

et al., 2012; Kannass et al., 2006) oder experimentelle Sitzungen (Forster & Lavie, 2014). Der 

zeitliche Verlauf der Ablenkbarkeit auf einer kürzeren zeitlichen Skala mit einer Dauer von 

maximal einer Sekunde war bisher unklar. 

Forschende haben kürzlich vorgeschlagen, verschiedene Formen der Unterdrückung 

von Distraktoren zu unterscheiden (Geng, 2014; Wöstmann et al., 2022). So kann die selektive 

Unterdrückung von Distraktoren die reaktive Unterbrechung der Verarbeitung von Distraktoren 

(d. h. reaktive Unterdrückung; Geng, 2014) oder die vorbereitende Unterdrückung der 

erwarteten Distraktoren (d. h. proaktive Unterdrückung; Geng, 2014) beinhalten. Darüber 

hinaus sollte die aktive, vom Zielauswahlprozess unabhängige Unterdrückung von Distraktoren 

von der kollateralen Deselektion aufgabenirrelevanter Ereignisse unterschieden werden (d. h. 

automatische Unterdrückung; Schneider et al., 2021). 



 

159 
 

Das übergeordnete Ziel der vorliegenden Arbeit ist es, zu klären, wie sich Ablenkung 

im Laufe der Zeit entfaltet, wobei der Schwerpunkt auf der endogenen Dynamik des Gehirns 

und der exogenen Dynamik der Ablenkungsfaktoren liegt. Im menschlichen Gehirn sind 

neuronale Oszillationen allgegenwärtig (Groppe et al., 2013; Keitel & Gross, 2016). Es wird 

angenommen, dass neuronale Oszillationen für die zeitliche Dynamik kognitiver Vorgänge von 

Bedeutung sind (Keitel et al., 2022; Schroeder et al., 2009). Die Umwelt ist voller regelmäß iger 

Strukturen, die zeitlich oder in Bezug auf die Eigenschaften von Distraktoren vorhersehbar sind. 

Mit drei empirischen Studien soll in dieser Arbeit geklärt werden, wie die endogene Dynamik 

des Gehirns und die exogene Dynamik der Distraktoren bei der Entfaltung der Ablenkung eine 

Rolle spielen. 

Es wird angenommen, dass die endogene Hirndynamik den endogenen Rhythmen der 

Kognition untergeordnet ist (VanRullen, 2016; Fiebelkorn & Kastner, 2018). Lange Zeit wurde 

Aufmerksamkeit als eine Art statischer Scheinwerfer betractet (M. I. Posner et al., 1980). 2007 

wurde jedoch die Theorie aufgestellt, dass er „blinkt“, die Aufmerksamkeit also nicht statisch 

ist, sondern oszillert (VanRullen et al., 2007). Es wird angenommen, dass das Zu- und 

Abnehmen der Aufmerksamkeitsabtastung mit dem Zu- und Abnehmen der Erregbarkeit der 

relevanten neuronalen Netzwerke einhergeht (VanRullen, 2016; Fiebelkorn & Kastner, 2018), 

was zu der Annahme führte, dass die neuronale Phase in diesen relevanten Hirnregionen die 

Schwankungen der Verhaltensleistung erklären könnte (Helfrich et al., 2018). In der 

Ablenkungsforschung ist die zeitliche Dynamik der Ablenkbarkeit weitgehend unbekannt, 

wobei vorläufige Erkenntnisse auf < 4 Hz-Fluktuationen der verhaltensbezogenen und 

neuronalen Maße der Ablenkung hindeuten (Wöstmann et al., 2020).  

Rhythmen sind in der Umwelt allgegenwärtig. In der Aufmerksamkeitsforschung wurde 

festgestellt, dass das menschliche Gehirn die externen Rhythmen für die Auswahl 

aufgabenrelevanter Inputs nutzt (Large & Jones, 1999; Lakatos et al., 2019; Obleser & Kayser, 

2019). Was die Ablenkung betrifft, so ist die Evidenz zur Verhaltensmodulation durch die 

zeitliche Regelmäßigkeit von Distraktoren gemischt. In Studien wurden förderliche (Jones & 

Macken, 1995; Makov & Zion Golumbic, 2020) oder störende (Parmentier & Beaman, 2015) 

Auswirkungen der zeitlichen Regelmäßigkeit von Distraktoren auf das endgült ige 

Verhaltensergebnis festgestellt, was eine systematische Untersuchung des Ausmaßes der 

Beeinträchtigung des Verhaltens durch Distraktor mit unterschiedlicher zeitlicher 

Regelmäßigkeit erfordert. 
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Das menschliche Gehirn wird als aktiver Akteur angesehen, der auf der Grundlage 

früherer Erfahrungen ständig Vorhersagen über die Außenwelt trifft (Friston, 2005; Ivry & 

Knight, 2002; Von Helmholtz, 1867). Eine umfangreiche Literatur zeigt, dass das Gehirn in der 

Lage ist, statistische Regelmäßigkeiten zu extrahieren, die in aufgabenirrelevante Ereignisse 

eingebettet sind (z. B. Naatanen & Michie, 1989; Sato et al., 2000; Mittag et al., 2016). Ob die 

aufgabenirrelevanten Ereignisse mit unterschiedlichem Grad an Vorhersagbarkeit eine 

unterschiedliche Ablenkungswirkung haben, bleibt jedoch unklar. Studien zur räumlichen 

Erwartung von Distraktoren zeigen konvergierende Belege für die Annahme, dass 

vorhersehbare Ablenker weniger ablenkend sind (d. h. Erwartungsunterdrück ung; Noonan et 

al., 2018). Studien mit lokaler Vorhersagbarkeit, wie z. B. der Übergangswahrscheinlichke it 

des Vorhandenseins von Distraktoren (Bogaerts et al., 2020) oder semantischer 

Vorhersagbarkeit (Wöstmann et al., 2016), unterstützten jedoch nicht den Ansatz der 

Erwartungsunterdrückung. Die widersprüchlichen Ergebnisse dieser Studien deuten darauf hin, 

dass es einige zugrundeliegende Faktoren geben könnte, die den Einfluss der 

merkmalsbasierten Vorhersage auf die Verarbeitung von Distraktoren modulieren könnten. 

 

Experimente und Ergebnisse 

In Studie 1 wurde die neuronale Aktivität mittels EEG erhoben, während die Teilnehmer*innen 

eine Tonhöhenunterscheidungsaufgabe mit einem auditiven Distraktor zwischen den beiden 

Ziel-Reintönen durchführten. Der Distraktor trat sowohl in seinem zeitlichen Auftreten als auch 

in seinem Auftreten unerwartet auf. Wir fanden heraus, dass die behaviorale Sensitivität und 

die durch den Distraktor hervorgerufene neuronale Reaktion auf einer Zeitskala im 

Millisekundenbereich mit 3 bis 5 Zyklen pro Sekunde (d. h. 3 - 5 Hz) gemeinsam schwankten. 

Darüber hinaus erklärte die Prä-Distraktor-Phase neuronaler Oszillationen mit ähnlichen 

Frequenzen die Fluktuationen der Verhaltensempfindlichkeit, die sich am stärksten in den 

inferioren frontalen und insularen kortikalen Regionen zeigte. Diese Ergebnisse zeigen, dass 

die Ablenkbarkeit einer inhärenten Dynamik folgt, die ihren Ursprung in den periodischen 

Oszillationen in Regionen hat, die mit der kognitiven Kontrolle verbunden sind. 

  In Studie 2 wandten wir uns von der endogenen zur exogenen Dynamik der 

Ablenkbarkeit. Mit 4 Verhaltensexperimenten wollten wir den Umfang der 

Ablenkungsinterferenz durch Distraktoren mit unterschiedlicher zeitlicher Regelmäßigke it 

ausweiten. Während die Präzision der Gedächtnisrepräsentation (d. h. die primäre 

Leistungsmetrik) nicht durch die zeitliche Regelmäßigkeit der Distraktoren moduliert wurde, 
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variierte das Antwortverhalten wie Geschwindigkeit oder Antwortverzerrung mit der zeitlichen 

Regelmäßigkeit der Distraktoren. So waren die Teilnehmer*innen beispielsweise schneller im 

Gedächtnisabruf und hatten eine konservativere Tendenz, wenn die Distraktoren zeitlich 

regelmäßig waren. Die Ergebnisse deuten darauf hin, dass die zeitliche Regelmäßigkeit der 

Ablenkungen einen Einfluss auf die oft vernachlässigten kognitiven Operationen außerhalb des 

Arbeitsgedächtnisses haben und letztlich den aufgabenrelevanten kognitiven Prozess 

beeinflussen kann.   

 Nachdem wir keinen Einfluss der exogenen zeitlichen Dynamik auf den finalen Grad 

der Ablenkung gefunden hatten, untersuchten wir, wie die Gehirn- und Verhaltensdynamik 

durch die Erwartung moduliert werden könnte, die durch die Vorhersagbarkeit der Distraktoren 

auf lokaler Ebene entsteht. Insbesondere untersuchten wir, ob die in den Distraktoren 

eingebettete lokale Übergangswahrscheinlichkeit, die frei vom Einfluss globaler Statistiken ist, 

die Bildung der Distraktor-Erwartung erleichtern würde. Außerdem stellten wir die Hypothese 

auf, dass der Einfluss der Ablenkungserwartung auf die Ablenkungsfähigkeit von der 

perzeptuellen oder kognitiven Belastung der aktuellen Aufgabe abhängt. Auf der 

Verhaltensebene beeinflusste die Vorhersagbarkeit des Distraktor in Wechselwirkung mit der 

Stimulusintensität und der Belastung des Arbeitsgedächtnisses die Erkennungsleistung im 

Arbeitsgedächtnis. Auf neuronaler Ebene war die Alpha-Lateralisierung des Paares Post-

Target/Distraktor bei vorhersehbaren Distraktoren reduziert. Die Vorhersagbarkeit des 

Distraktors beeinflusste auch die anhaltenden Reaktionen vor und nach dem Stimulus, indem 

sie mit der Belastung des Arbeitsgedächtnisses interagierte. Die Ergebnisse stimmen mit der 

Auffassung überein, dass die neuronale Unterdrückung durch Erwartung zu einer dynamischen 

Modulation der Verhaltensablenkung führen kann. 

 

Diskussion 

Unsere Ergebnisse zeigen, dass 1) die Ablenkbarkeit einer endogenen Dynamik folgt, 2) die 

Neigung zur Ablenkung nicht von exogenen Rhythmen abhängt, die in Distraktoren eingebettet 

sind, und 3) die Stärke eines Distraktors, die Aufgabenerfüllung zu beeinträchtigen, indirekt 

von der aus lokalen Statistiken abgeleiteten Distraktor-Erwartung beeinflusst wird.  

 Ablenkung ist ein vielschichtiges Konstrukt. Allerdings ist die Taxonomie in der 

aktuellen Literatur in Bezug auf die Komponenten der Ablenkung nicht gut definiert (z. B. 

Geng, 2014; Schneider et al., 2021). Die Trennung der endogenen Neigung zur Ablenkung (d. 
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h. Ablenkbarkeit) von der Unterdrückung externer Ablenkung (d. h. Unterdrückung von 

Distraktoren) und die Entflechtung der vielen Formen der Unterdrückung von Distraktoren (z. 

B. proaktive versus reaktive Unterdrückung) sind notwendig, um zu einem kohärenten Rahmen 

der Ablenkung zu gelangen (Wöstmann et al., 2022). Eine theoretische Grundlage der 

Ablenkung würde unser Verständnis des Verhaltensverlaufs und der neuronalen Umsetzung der 

Ablenkung fördern. Obwohl angenommen wurde, dass Ablenkung unabhängig von der 

Auswahl des Zielreizes funktioniert, ist nicht bekannt, inwieweit Ablenkung eine ähnliche 

zeitliche Dynamik aufweist wie in der Aufmerksamkeitsforschung gezeigt. Wir demonstrieren 

den Umfang der zeitlichen Dynamik bei Ablenkung, indem wir zeigen, dass Ablenkbarkeit eine 

endogene Dynamik aufweist, aber keiner exogenen Dynamik unterworfen ist. Dies unterstreicht, 

dass rhythmische Kognition ein allgemeines Phänomen ist, das mit der neuronalen Dynamik 

der relevanten neuronalen Regionen zusammenhängt; die Anziehung durch exogene Rhythmen 

ist ein aufmerksamkeitsspezifischer Prozess, der als Verstärkung von aufgabenrelevanten 

Inputs dienen kann, die für eine erfolgreiche Aufgabenerfüllung erforderlich sind (Lakatos et 

al., 2019). 

  In Ermangelung von Beweisen für den Einfluss der zeitlichen Regelmäßigkeit exogener 

Inputs gilt die neuronale Unterdrückung durch Erwartung immer noch in Bezug auf die aus der 

lokalen Übergangswahrscheinlichkeit abgeleitete Erwartung eines Distraktors. Es wird 

angenommen, dass die Erwartungsbildung ein sich wiederholender Prozess ist, bei dem das 

Vorhersagemodell des kommenden Distraktors aktualisiert wird (Friston, 2005). Die 

Modulation der Post-Stimulus-Alpha-Lateralisierung und die anhaltenden neuronale n 

Aktivitäten könnten den Veränderungen bei der Filterung von Distraktoren bzw. der 

Abschirmung der Gedächtnisrepräsentation vor Ablenkung dienen. Die Kaskade neuronaler 

Reaktionen, die mit der Erwartung eines Distraktors einhergeht, macht deutlich, wie wichtig es 

ist, den relativen Beitrag verschiedener Komponenten der Ablenkung bei der Entfaltung der 

Ablenkung mit unterschiedlichen Erwartungsniveaus zu untersuchen. 

 


