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Abstract

For decades, general technological progress has ensured that automated and computer-
assisted medical image analysis has and will continue to become an increasingly impor-
tant aspect of clinical practice. In recent years, machine learning and deep learning
methods in particular have succeeded in setting new standards of quality in the field.
The focus is thereby largely on processing dense 2D and 3D medical scans, both in clin-
ical applications as well as in research. However, in many cases, sparse data structures
such as point clouds or keypoint graphs provide a more natural, direct representation
of anatomical structures, e.g. the vascular system of the heart/eye or the airways of
the lung. This also offers the potential for reduced memory and more efficient image
analysis. Thus, also due to recent methodological advances in the field of geometric
deep learning, i.e. adapting successful machine learning strategies to irregular domains,
there is an increased interest in the use of graph-based approaches for medical image
processing.

This thesis investigates which, how, and to what extent medical image analysis
tasks can benefit from point cloud and graph representations in combination with deep
learning methods. Various novel methods are developed and presented, covering a wide
range of medical applications. Point clouds from multiple time-of-flight cameras are
analysed for context monitoring in the operating room. Graph learning for semantic
segmentation is investigated for both body part extraction from point cloud models
as well as surface prediction on dense medical scans. Another important part of this
work is the incorporation of keypoint graphs into deep learning based registration
frameworks. Combinations of decoupled feature extraction using convolutional/graph
neural networks and efficient message passing algorithms have been developed and a
new deep learning architecture for optimising correspondence maps on a sparse keypoint
graph is being proposed.

The methodological contributions of this work all demonstrate the feasibility and
potential advantages of graph-based approaches in terms of improved accuracy as well
as memory and runtime efficiency. In many applications, they can provide clear added
value and should therefore be considered more often as a replacement or to complement
the prevailing dense, fully convolutional deep learning models. The findings of this
work and further research questions that can be derived from the methods presented
indicate great potential for future developments of graph learning in medical image
analysis.
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Zusammenfassung

Der allgemeine technologische Fortschritt sorgt seit Jahrzehnten dafür, dass die au-
tomatisierte und computergestützte medizinische Bildanalyse ein wichtiger Aspekt
der klinischen Praxis ist und bleiben wird. In den letzten Jahren ist es den Meth-
oden des maschinellen Lernens und insbesondere des Deep Learning gelungen, neue
Qualitätsmaßstäbe in diesem Bereich zu setzen. Der Fokus liegt dabei vor allem auf
der Verarbeitung von dichten medizinischen 2D- und 3D-Scans, sowohl in klinischen
Anwendungen als auch in der Forschung. In vielen Fällen stellen jedoch Datenstruk-
turen wie Punktwolken oder Keypoint-Graphen eine natürlichere, direktere Darstellung
anatomischer Strukturen, z.B. des Gefäßsystems des Herzens/Auges oder der Atemwege
der Lunge) dar. Darüber hinaus bieten sie im Allgemeinen das Potenzial für einen
reduzierten Speicherbedarf und eine effizientere Verarbeitung medizinische Bilder. Auch
aufgrund der jüngsten methodischen Fortschritte auf dem Gebiet des Geometric Deep
Learning, insbesondere der erfolgreichen Generalisierung von Machine Learning Metho-
den auf irregulären Domänen, besteht ein zunehmendes Interesse an der Verwendung
von Graph-basierten Ansätzen in der medizinischen Bildverarbeitung.

In dieser Arbeit wird untersucht inwieweit medizinische Bildanalyseaufgaben von
Punktwolken- und Graph-Repräsentationen in Kombination mit Deep-Learning-Metho-
den profitieren können. Es werden verschiedene Methoden entwickelt und vorgestellt,
die ein breites Spektrum an medizinischen Anwendungen abdecken. Punktwolken
von mehreren Time-of-Flight-Kameras werden für die Kontextüberwachung im Op-
erationssaal analysiert. Graph-Lernen zur semantischen Segmentierung wird sowohl
für die Extraktion von Körperregionen aus Punktwolkenmodellen als auch für die
Oberflächenprädiktion auf medizinischen Scans untersucht. Ein weiterer wichtiger Teil
dieser Arbeit ist die Einbeziehung von Keypoint-Graphen in Deep-Learning-basierte
Registrierungsverfahren. Dazu werden Kombinationen aus entkoppelter Merkmalsex-
traktion unter Verwendung von Convolutional/Graph Neural Networks und effizienten
Message Passing Algorithmen entwickelt und eine neue Deep-Learning-Architektur zur
Optimierung von Korrespondenzen auf einem Keypoint-Graphen vorgestellt.

Die methodischen Beiträge dieser Arbeit demonstrieren die potentiellen Vorteile von
Graph-basierten Ansätzen in Bezug auf verbesserte Genauigkeit sowie Speicher- und
Laufzeit-Effizienz. In vielen Anwendungen können sie einen klaren Mehrwert bieten
und sollten entsprechend häufiger als Ersatz oder Ergänzung zu den vorherrschenden
dichten Deep-Learning-Modellen in Betracht gezogen werden. Die Ergebnisse dieser
Arbeit und weitere Forschungsfragen, die sich aus den vorgestellten Methoden ableiten
lassen, weisen auf ein großes Potenzial für das Graph-Lernen in der medizinischen
Bildverarbeitung hin.
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Chapter 1

Introduction

1.1 Motivation

For decades, general technological progress has ensured that automated and computer-
assisted medical image analysis has and will continue to become an increasingly impor-
tant aspect of clinical practice. In recent years, machine learning and deep learning
methods in particular have succeeded in setting new standards in the field, including
diagnosis, disease monitoring, preoperative planning, intraprocedural guidance, and
treatment [De Fauw et al., 2018; Fauser et al., 2019; Lou et al., 2019; Nguyen et al.,
2020; Sardar et al., 2019]. By far the most commonly generated imaging data in medical
facilities worldwide are gridded two-dimensional and volumetric scans, e.g. X-ray or
ultrasound images and MRI or CT scans, respectively. In Germany alone, about 130
million X-ray and 12 million MRI examinations are performed every year [Nekolla et al.,
2017; OECD, 2021]. The past and current focus of research and applied methods on
these input modalities and dense processing of the data is therefore rarely questioned.
However, the description of medical (image) data as continuous, sparse point clouds and
graph structures offers enormous potential in many respects and attracts an increasing
amount of attention. Figure 1.1 shows an exemplary overview of different types and
use cases of point clouds and graphs in medical applications.

Often, graphs are direct and natural representations of human anatomical structures.
The vascular system of the heart and the eye or the airways of the lungs are typical
examples of anatomies based on graph (or tree) structures, but at least part of this
inherent geometric information is lost when stored in a dense, fixed grid (angiograms,
fundus images, CT). By extracting and transferring the anatomy into a more appropriate
graph representation, the rich structural information can be discovered and exploited
by learning-based automatic algorithms.

Point clouds and graphs are an alternative type of input modality in the context of
medical imaging that enables a number of exciting applications. With the availability
of affordable distance measuring devices, such as time-of-flight cameras, it is now
feasible to directly capture the geometry (represented as a point cloud) of an observed
scene by measuring the distances between the camera and the objects in the field of
view. Monitoring context information, such as body poses of surgeons and patients,
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Chapter 1 Introduction

Fig. 1.1: Medical image analysis methods are in the vast majority developed for processing
dense grid-based arrays such as CT and MRI scans. This figure, on the other hand,
exemplifies the wide variety of use cases for point clouds and graphs in medical
applications. In particular, with the emergence of affordable time-of-flight cameras
and methodological advances in machine learning on irregular domains, sparse point
clouds and graph structures attract an increasing amount of attention in the field of
medical image processing.
Brainlab AG, brainlab.com/de/journal, accessed 3 January 2022 (top left)
Deepmind, deepmind.com/blog, accessed 3 January 2022 (top center)
Shen et. al. 2021, github.com/uncbiag/shapmagn, accessed 3 January 2022 (bottom left)
Ramos et. al. 2018, pubmed.ncbi.nlm.nih.gov/30458717, accessed 3 January 2022 (bottom right)

for robot assisted interventions or marker-less motion tracking of a patient’s torso for
radiotherapy are only two of many clinical use cases [Bauer et al., 2013]. A recent
breakthrough in a further medical field, protein folding prediction, is also based in large
part on describing the relationships between individual amino acids as a graph, far
surpassing previous fixed grid based approaches using distance histograms [Jumper
et al., 2021].

Besides the advantage of the inherent available structural information, point clouds
and graphs are efficient data structures and thus have potential further advantages
in terms of speed, memory usage and precision. For grid based representations, a
trade-off must be made between the required memory and the distinguishable spatial
information. [Liu et al., 2019d] found for a point cloud segmentation benchmark that
for a feasible approach (≤ 12 GB of GPU memory) using a voxelised representation
with Convolutional Neural Networks (CNNs) up to 50% of original information (distin-
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1.2 Objectives

guishable points) is lost, while processing the full point cloud directly outperforms the
method with a 10 times lower memory footprint. When representing medical data as
point clouds (e.g. extracted from edge maps or surface segmentations) or evaluating
scans on only a subset of informative spatial locations (in arbitrarily shaped regions of
interest) the number of required datapoints can be massively reduced from millions (of
image voxels in a typical CT/MR scan) to only a few thousand (keypoints).

Recent developments in the field of machine learning enable the facilitated processing
of such sparse image representations. Graph Neural Networks (GNNs) [Bronstein
et al., 2017] are a class of deep learning methods for irregular domains, such as graphs,
pointclouds or meshes, and can be seen as direct counterparts to CNNs for grid based
learning. Unlike CNNs, which exploit the structured data input with fixed-size filter
kernels, a GNN provides specific aggregation mechanisms to deal with the variable
neighbourhood of nodes explicitly defined by the edges of the graph. In addition
to conventional methods for processing information on graphs, such as diffusion or
message-passing algorithms [Felzenszwalb et al., 2006], GNNs offer a learning-based
alternative. A brief introduction to GNNs can be found in Section 2.2.2.

Despite the variety of use cases and potential described previously, the best possible
integration of point clouds and graphs into medical (deep learning) algorithms, as well
as the advantages for most clinical problems, are in many cases unknown and far less
explored than methods that process dense, grid-based medical image data. This thesis
therefore investigates which, how, and to what extent medical image analysis tasks can
benefit from point cloud and graph representations in combination with deep learning
methods.

1.2 Objectives

The overall aim of this thesis is the development of methods for medical image analysis
tasks under the explicit consideration of sparse representations such as point clouds
and graphs. Given the impact that Deep Learning has had on this field in recent years,
the implications of learning methods in particular will also be investigated.

Based on the research question formulated at the very end of Section 1.1, the
objectives of the work can be summarised in more detail along the following three
aspects:

Which. . . Medical image analysis has become an essential part of clinical practice.
The most prominent tasks besides classification include landmark detection, semantic
segmentation and image registration, which are important components of a variety of
medical imaging pipelines. The goal is to address all three of these areas and assess the
feasibility (and ideally the merits) of integrating graph-based solutions. This broader
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Chapter 1 Introduction

view enables us to identify tasks that particularly benefit or where there is little/no
difference in performance compared to conventional grid-based image processing.

New clinical applications through new input data types, such as point clouds from
time-of-flight cameras, will be considered, but also the advancement of methods applied
to common medical images such as CT and MRI scans (e.g. by extracting and processing
informative keypoint graphs).

How. . . Sparse (3D) point clouds and keypoint graphs can be processed either as
projections (cf. X-Ray vs. CT), dense voxelisations or directly. Each alternative
may have its own advantages and disadvantages, which will be investigated. For
example, standard 2D and 3D spatial filters (e.g. in CNNs) can be efficiently applied
to projections and voxelisations, respectively, but information may be lost and the
representation becomes unnecessarily dense. Working directly on the graphs, on the
other hand, brings different new challenges. The first problem when extracting keypoint
graphs from medical scans is the creation of the graph itself. The optimal sampling of
the necessary keypoints is a design choice and depending on the type of application,
different methods may be suitable. In this work, three approaches are considered: 1)
explicit prediction of sampling locations, 2) use of a heuristic interest point detector,
and 3) randomised selection of points within a suitable region of interest (ROI).

The methodological focus of this work is on the automatic analysis of medical image
data with the help of graph representations. Various learning and non-learning based
methods are used to achieve this goal. Conventional grid-based 2D or 3D feature
extractors (handcrafted, CNNs) can be applied to projection images and dense voxel
representation or be evaluated at sparse keypoint locations only later in the process,
which also enables a desirable separation of feature extraction and optimisation. When
processing information directly on graphs, the use of Graph Neural Networks (GNNs)
is investigated in particular depth, both for the extraction of informative feature
descriptors and for learnable graph-based optimisation. In addition, conventional
graph-based methods such as diffusion approaches, Gaussian Mixture Models (GMMs)
or message passing algorithms are considered (often together with deep learning based
feature extraction).

To what extent. . . A main goal is to advance medical image analysis methods using
graph representations, which can be measured by widely used performance metrics
such as the F1 score for semantic segmentation labels or landmark distances for image
registration tasks. Since point clouds and graphs are efficient data structures and
further offer potential for theoretical improvements in runtime and memory usage
(which can be of great benefit in clinical practice), this should also be reflected in the
evaluation.

4



1.3 Organisation and Contributions

1.3 Organisation and Contributions

Throughout this thesis, a series of methodological approaches for the integration
of point clouds and graphs in medical imaging tasks are developed, evaluated and
discussed. The organisation can be divided into three parts. First, Chapter 2 introduces
general information about the medical image analysis tasks addressed in this thesis and
methodological foundations of relevant deep learning and graphical inference methods.
The main part comprises the methodological Chapters 3 to 6. Each of these chapters
is structured in a consistent manner and begins with a brief introductory summary,
placing it in the context of the thesis. Then, new methodological developments on the
topic are described, following a self-contained presentation scheme: 1. Introduction
(including motivation, relevant related work and scientific contributions), 2. Methods
(proposal and explanation of the new approach), 3. Experiments and Results and

Fig. 1.2: Schematic overview of the methodological chapters. The contents cover a wide
range of different input modalities , medical image analysis tasks anatomies ,
scientific/clinical topics and (learning) methods .

5



Chapter 1 Introduction

4. Discussion and Conclusion. Figure 1.1 illustrates the thematic organisation of the
individual chapters, while the following chapter outline highlights the main scientific
contributions:

• Chapter 3 deals with the detection of anatomical landmarks (of the human upper
body pose) in point clouds of an operating scene generated from multiple time-of-
flight sensors. The point clouds are converted to grid-based representations (2D
projection images and 3D voxel occupancy grids) and processed with conventional
CNN architectures. In a multi-view setup the utilisation of 2D projection images
enables the exploitation of widespread pre-trained 2D CNNs, which boosts the
landmark detection accuracy when the results are fused in 3D. For the frequent
occurring of implausible poses (e.g. partially swapped left and right body side)
a mitigation strategy is developed. A self-supervised Convolutional Autoencoder
(CAE) learns an implicit pose graph embedding that restricts the output space to
anatomical plausible predictions. The developed methods were published in:

• [Hansen et al., 2019b] Hansen, L., Diesel, J., and Heinrich, M. P. “Regularised
Landmark Detection with CAEs for Human Pose Estimation in the Operating
Room”. In: Bildverarbeitung für die Medizin 2019 –BVM 2019. 2019, pp. 178–183.
BVM Award for the second best scientific paper.

• [Hansen et al., 2019e] Hansen, L., Siebert, M., Diesel, J., and Heinrich, M. P. “Fusing
Information From Multiple 2D Depth Cameras for 3D Human Pose Estimation in
the Operating Room”. International Journal of Computer Assisted Radiology and
Surgery 14 [11], 2019, pp. 1871–1879.
Invited BVM 2019 special issue paper - IF: 2.924.

• Chapter 4 marks the transition from the grid-based processing to the explicit
exploitation of the point cloud and graph structures and properties. In the first part,
a point cloud of the human body again forms the input, but in contrast to Chapter
3, a dense pointwise semantic segmentation is to be predicted. For this purpose, a
supervised learning method is developed that can extract semantic features using
only diffusion operators and isotropic 1×1 convolutions, illustrating the feasibility
and robustness of learning on graphs. The second part investigates possibilities to
transfer graph based learning for semantic segmentation to dense medical images.
CNNs, that extract local features from image based intensity patches, and GNNs based
on an anatomical keypoint graph, that enable global communication, are combined in
a supervised learning framework for the task of semantic edge detection in abdominal
CT and X-Ray images. In comparison to a fully convolutional dense processing of
the scans, the approach shows superior performance both in accuracy and efficiency.
The presented methods are based on the following two publications:

6



1.3 Organisation and Contributions

• [Hansen et al., 2019a] Hansen, L., Diesel, J., and Heinrich, M. P. “Multi-Kernel
Diffusion CNNs for Graph-Based Learning on Point Clouds”. In: Geometry Meets
Deep Learning –ECCV 2018 Workshops. 2019, pp. 456–469.

• [Hansen et al., 2019d] Hansen, L. and Heinrich, M. P. “Sparse Structured Prediction
for Semantic Edge Detection in Medical Images”. In: International Conference on
Medical Imaging with Deep Learning –MIDL 2019. 2019, pp. 250–259.
Early accepted (27% of all submissions) - 40% acceptance rate.

• In the previous chapters, feature extraction and task-specific inference are always
considered jointly. In contrast, Chapter 5 investigates the decoupling of feature
learning and graph-based optimisation for the task of medical image registration. As
proposed in the first part of this chapter, sparse keypoint graphs allow for particularly
efficient inference, which can be achieved by a combination of CNN-based supervised
feature extraction and iterative graphical message passing algorithms. Subsequently,
methods are presented that use GNNs to extract features on anatomical keypoint
graphs, which can then be processed by conventional inference methods (Coherent
Point Drift, Loopy Belief Propagation). For the considered task of exhale to inhale
lung CT alignment the sparse keypoint registration methods boosted with learned graph
features surpass the non-learned counterpart as well as dense learning based methods
both in accuracy and runtime (even without any image/intensity information). All
developed algorithms are described in published works:

• [Hansen et al., 2021c] Hansen, L. and Heinrich, M. P. “Revisiting Iterative Highly
Efficient Optimisation Schemes in Medical Image Registration”. In: Medical Image
Computing and Computer Assisted Intervention –MICCAI 2021. 2021, pp. 203–212.
33% acceptance rate.

• [Hansen et al., 2019c] Hansen, L., Dittmer, D., and Heinrich, M. P. “Learning
Deformable Point Set Registration with Regularized Dynamic Graph CNNs for
Large Lung Motion in COPD Patients”. In: Graph Learning in Medical Imaging
–MICCAI 2019 Workshops. 2019, pp. 53–61.

• [Hansen et al., 2021a] Hansen, L. and Heinrich, M. P. “Deep Learning Based
Geometric Registration for Medical Images: How Accurate Can We Get Without
Visual Features?” In: Information Processing in Medical Imaging –IPMI 2021. 2021,
pp. 18–30.
Oral presentation (9% of all submissions) - 30% acceptance rate.

• While the focus of Chapter 5 is on learned input features and conventional inference,
Chapter 6 presents a sparse and learnable optimisation framework for medical image
registration. Handcrafted input image features and a combination of CNNs and
GNNs allow for a smooth local and global regularisation of similarity costs on a

7



Chapter 1 Introduction

sparse keypoint graph. The approach sets the current state-of-the-art for learning
based methods on breath-hold lung CT and is published in:

• [Hansen et al., 2021b] Hansen, L. and Heinrich, M. P. “GraphRegNet: Deep Graph
Regularisation Networks on Sparse Keypoints for Dense Registration of 3D Lung
CTs”. IEEE Transactions on Medical Imaging 40 [9], 2021, pp. 2246–2257.
IF: 10.048.

Finally, in Chapter 7, the presented methods are summarised and main findings are
discussed with regard to this thesis’ research question of which, how, and to what extent
medical image analysis tasks can benefit from point cloud and graph representations
in combination with deep learning methods. To conclude with, ongoing and further
promising research directions are highlighted.

8



Chapter 2

Background

The purpose of this chapter is to provide brief and concise foundations for the algorithms
presented in the following methodological chapters. Section 2.1 first summarises the
medical image analysis tasks considered in this thesis - landmark detection, seman-
tic segmentation and image registration - and describes datasets and metrics used.
Methodological background is then given in Section 2.2, which includes descriptions of
Deep Learning using Convolutional Neural Networks, their counterparts for non-regular
domains, Graph Convolutinal Networks, as well as non-learning based graphical models.

2.1 Medical Image Analysis Tasks

Landmark Detection Semantic Segmentation Image Registration

Fig. 2.1: Schematic overview of different exemplary medical image analysis tasks.

The image analysis tasks addressed in this work include landmark detection, se-
mantic segmentation and image registration (see Figure 2.1). Landmark detection
is investigated in the context of human pose estimation, specifically predictions of
joints from point clouds, for clinical context monitoring in Chapter 3. For the task of
semantic segmentation, two different applications are discussed in Chapter 4, namely
body part prediction, again in point cloud data, and edge detection on CT and X-Ray
scans. The last two methodological chapters both deal with medical image registration,

9



Chapter 2 Background

more specifically with registration of inter- and intra-patient scans on CT and MR and
shallow and breath-hold lung CT scans.

2.1.1 Landmark Detection

Landmark detection is the task of localising and identifying specific keypoints in an
image. It is closely related to the more general problem of object detection but instead
of a bounding box, a single coordinate must be predicted for each landmark. Landmark
detection is a fundamental problem in computer vision, with two main applications
being face recognition and human pose estimation. Respective surveys give a broad
overview of the topics [Chen et al., 2020; Wu et al., 2019]. Medical image analysis
has a wide range of applications for landmark detection, for example as initial step in
automatic determination of standard (2- and 4-chamber) views in cardiac MRI [Le et al.,
2017] or for computation of fetal biometric parameters such as biparietal diameter,
femur diaphysis length and head circumference [Salomon et al., 2019]. A comprehensive
overview is included in [Litjens et al., 2017]. Landmark detection methods can be
broadly divided into atlas-, appearance- and image-based approaches (cf. [Alansary
et al., 2019]). Atlas-based methods rely on accurate registration between a target
and reference image to transfer landmarks. Appearance and/or shape models leverage
spatial priors to infer keypoints, while image-based methods include all approaches
that learn descriptive features for the landmarks directly from the raw input. The
last category includes, in particular, deep learning methods using convolutional neural
networks, which are now predominantly used and are also applied in this work. For
deep learning approaches, different variants exist to eventually regress the landmarks
from the learned image features (see Figure 2.2). Formally, we can define the task
of predicting a set of N distinctive landmarks L = l1, . . . , lN from an input volume
V as L = Θ(V ), where Θ is a universal function approximator, parametrised by the
weights of a CNN. In this simplest setting, the landmark coordinates are regressed
directly. However, it has been shown that structured predictions can lead to more
accurate localisations in many applications [Newell et al., 2016]. For this purpose,
Gaussian heatmaps H = H1, . . . , HN , which represent the landmark positions L, are
used as supervision for training the network, i.e. H̃ = Θ(V ), where H̃ are the heatmaps
predicted by the network. Then, during inference, a landmark coordinate li can be
obtained as li = arg max H̃i. A potential problem for certain applications is that the
argmax function is not differentiable and thus no further loss functions or the like
can be defined directly on the landmark coordinates. The alternative is to use an
argsoftmax function where the heatmap (normalised to sum to one) is integrated over
the voxel coordinates c. Thus, a landmark li can be derived as

li =
∑

c

c ∗ H̃i(c). (2.1)
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Fig. 2.2: Illustration of commonly used landmark regression variants in CNN-based methods.

Datasets This thesis addresses the task of landmark detection in the context of
clinical monitoring of surgeons in an operating room by predicting body joints. The
dataset used for training and evaluation is called MVOR (Multi-View Operating Room)
[Srivastav et al., 2018] and consists of 732 multi-view frames from three RGB-D cameras
providing registered depth and anonymised rgb images synchronised in time. The images
were recorded in an operating room at the University Hospital of Strasbourg over a
period of four days. For the task of 2D and 3D pose estimation the ground truth
annotations consist of 2926 and 1061 upper-body poses, respectively. An upper-body
pose is defined by a total of ten joints (upper head, neck, shoulders, elbows, wrists and
hips).

Metrics For evaluation in 3D the mean joint position error (MPJP), i.e. the Euclidean
distance between the predicted and ground truth landmarks in centimetres, can be
used. However, for landmark detection on 2D images (as in Section 3.1) the metric
must account for different scales: The percentage of correct keypoints (PCK) with a
threshold of α assumes a prediction as correct if it falls within α · max(bboxh, bboxw)
pixels of the ground truth annotation, where bboxh and bboxw are the height and width
of the persons enclosing bounding box, respectively.
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2.1.2 Semantic Segmentation

Semantic segmentation describes the pixelwise classification of images and is an impor-
tant tool for the automatic understanding and further processing of objects in images,
which is used in a variety of applications. In the field of computer vision, these are,
for example, the segmentation of roads for autonomous driving [Feng et al., 2020], the
segmentation of workpieces on production lines for industrial quality inspection [Wu
et al., 2020] or the generation of real-time maps from satellite images [Mohanty et al.,
2020]. Application areas in medical imaging are similarly numerous and diverse, as
discussed in [Litjens et al., 2017]. Prominent examples include quantitative monitoring
of tumours in initial and follow-up scans [Myronenko, 2018], segmentation of organs and
other anatomical structures for the extraction of clinical parameters (volume, diameter,
etc.) [Ghavami et al., 2019] or labelling of target structures for computer-assisted
interventions [Wang et al., 2019b]. The simplest methods for semantic segmentation
are point-based, which means that only the intensity values of the pixels themselves
are considered for classification. Single or multiple thresholds are used to generate the
segmentations. To achieve more coherent results, neighbourhoods or regions can be
included in the process, as for instance in the region growing algorithm [Adams et al.,
1994]. In most cases, this approach requires user interaction, for example to create
initial scribbles in the image. The objective of edge-based methods is to delineate the
contours of target objects as accurately as possible. This class of methods includes,
for example, live wire segmentation [Barrett et al., 1997] or active contours (snakes)
[Chan et al., 2001]. All previous methods have mainly processed local image data,
whereas model-based approaches can consider global information and a priori knowledge.
The most popular of these are statistical shape models [Heimann et al., 2009] and
deep learning algorithms, which are now the most widely methods used for semantic
segmentation. The U-Net [Ronneberger et al., 2015], a fully convolutional encoder
decoder architecture that combines low level and high level information through skip
connections, has emerged as a standard tool for this task. With the nnUNet [Isensee
et al., 2021], there also exists a sophisticated software framework that makes time-
consuming hyperparameter searches obsolete and yields state-of-the-art results for a
variety of datasets.

Datasets Three different datasets are used for training and evaluating the semantic
segmentation algorithms proposed in Chapter 4. The first dataset, employed for point
cloud segmentation in Section 4.1, is the publicly available FAUST dataset [Bogo et al.,
2014], which consists of 100 surface meshes of 10 different subjects, each scanned in 10
different poses (training: subjects 1-7 (70 shapes), validation: subject 8, (10 shapes),
test: subjects 9-10 (20 shapes)). The 3D meshes have a resolution of 6890 vertices
and point-wise correspondences between the shapes have been semi-automatically
established for all points. The points were manually labelled on a reference shape
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and transferred to all other shapes via the known point correspondences. The 15
labels correspond to the head, thorax, abdomen, left/right hand, left/right lower arm,
left/right upper arm, left/right foot, left/right lower leg and left/right upper leg. The
popular public VISCERAL [Jimenez-del-Toro et al., 2016] and JSRT [Shiraishi et al.,
2000] datasets serve for the task of dense segmentation of CT and X-Ray scans in
Section 4.2, respectively. The VISCERAL dataset is composed of of CT and MR scans
of 30 subjects, with up to 20 expert annotated anatomical structures per scan, such as
liver, spleen, and kidneys. The JSRT dataset consists of 247 X-Ray scans, which are
extended by [Van Ginneken et al., 2006] with manually delineated contours of the lung,
heart and clavicles.

Metrics Commonly used metrics for segmentation evaluation are the Dice similarity
coefficient (DSC) and the 95% Hausdorff distance (HD95). The DSC measures the
overlap between two binary segmentation labels as DSC = 2T P

2T P +F P +F N , where TP,
FP and FN describe true positive, false positive and false negatives matches. The
Hausdorff distance, on the other hand, describes the maximum surface distance between
two segmentations. To reduce the effect of outliers, the HD95 metric uses the 95th
percentile instead of the maximum distance.

2.1.3 Image Registration

Image registration is the process of spatially transforming an image so that it is as
similar as possible to a reference image in terms of a particular image metric. It is
an important tool in general image processing, for example when stitching together
individual satellite images [Ma et al., 2018] or when creating correspondences in SLAM
frameworks [Sarlin et al., 2020], but its main field of application is medical imaging.
An overview on the subject of medical image registration can be found, for example, in
[Rueckert et al., 2019]. Examples of applications include fusion of scans from different
modalities (e.g. CT and MRI) to provide comprehensive visual information during
surgery [Heinrich et al., 2013b], progress monitoring of nodules in follow-up lung CT
scans after interventions [Zheng et al., 2007] or markerless motion compensation during
radiotherapy [Seregni et al., 2017]. Registration of a fixed (F) and a moving (M) image
is usually described as an optimisation problem of the form

argmin
φ

D(F , φ ◦ M) + λR(φ), (2.2)

where φ denotes a transformation model (e.g. an affine transformation matrix, a
B-spline parametrised model or a dense displacement vector field), D a distance metric,
that measures the similarity of the fixed and warped moving image and R an additional
regularisation term weighted by λ that enforces smoothness of the transformation
(typically by constraining spatial derivatives). Continuous optimisation has been one
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Fig. 2.3: Schematic side-by-side comparison between conventional (iterative) (left) and Deep
Learning based image registration (right). Components with reduced opacity indicate
that they are only being used during an offline training phase.

of the most widely used registration methods in the last decades. The main idea is
that the parameters of a transformation model are iteratively updated using a gradient
descent method so that equation 2.2 is minimised. Approaches differ primarily in
the choice of the transformation model, similarity metric and optimisation method.
Other algorithmic decisions include the use of multi-scale strategies and the type of
interpolation method. An example of a popular framework for iterative continuous
registration is SimpleElastix [Marstal et al., 2016], which implements a variety of
choices for the aspects mentioned. Recently, several deep-learning registration methods
have been proposed that drastically reduce runtimes by moving the optimisation to
an offline training phase [Balakrishnan et al., 2019; Hu et al., 2018; Vos et al., 2019].
At their core, however, they strongly resemble conventional methods, since the same
objective function is minimised (using the same similarity metrics, transformation
models, etc.). Figure 2.3 illustrates both approaches. Another class of algorithms to
be mentioned, which like continuous optimisation belongs to the conventional (non
learning-based) approaches, are discrete methods, based on MRF (see Section 2.2.3 for
details) optimisation schemes [Glocker et al., 2011; Heinrich et al., 2013a].
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Datasets Two abdominal CT/MRI and two lung CT datasets are used for training
end evaluation of registration methods in Chapters 5 and 6. Both abdominal datasets
are from the Learn2Reg competition [Hering et al., 2022], the first containing 30
CT scans with 13 manually labelled anatomical structures (spleen, left/right kidney,
gallbladder, oesophagus, liver, stomach, aorta, inferior vena cava, portal vein and
splenic vein, pancreas and left/right adrenal gland) for interpatient registration, while
the second consists of 16 intrapatient CT-MRI scan pairs with liver, spleen and kidney
segmentations. All further methods are evaluated on the DIR-Lab 4DCT and COPDgene
datasets [Castillo et al., 2009, 2013], each consisting of 10 inhale and exhale scan pairs
(shallow breathing for 4DCT and breath-hold scans for COPDgene) with 300 manually
annotated landmark correspondences.

Metrics An important accuracy metric for image registration is the target registration
error (TRE), that measures Euclidean distances of fixed and corresponding warped
moving landmarks. This of course requires manual landmark correspondences that
are time-consuming to annotate and therefore only available in a few datasets. An
alternative is to evaluate the alignment of segmentation labels after registration, for
which the same metrics as for image segmentation (see 2.1.2) can be used. In addition
to the registration accuracy, the smoothness of the deformation field, which indicates
plausibility of the transformation, is an important evaluation criterion and can be
derived from the standard deviation of the Jacobian determinant of the deformation
field [Leow et al., 2007].

2.2 Methodological Background

The methods developed in this thesis investigate graph approaches in medical deep
learning and build on basic methods from the respective domains. Section 2.2.1 describes
Convolutional Neural Networks, as the most prominent deep learning architectures for
structured processing, which are extensively adopted as components throughout this
work. Graph Neural Networks as counterparts to CNNs for irregular domains are then
summarised as they play an equally important role in the development of the methods
presented. Finally, graphical models and message-passing algorithms are described,
which are mainly used for the decoupled feature learning and optimisation for image
registration presented in Chapter 5.

2.2.1 Convolutional Neural Networks

Artificial neural networks represent the current state of the art for many machine
learning applications. Especially in the field of computer vision, continuous progress in
image understanding has been achieved in recent years with the help of convolutional
neural networks (CNNs). Although modern CNNs were described and successfully
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Fig. 2.4: A typical convolutional neural network architecture for classification of pathological
indications in medical CT scans.

applied for the recognition of handwritten digits as early as 1989 in [LeCun et al., 1989],
the begin of the current technological leap through AI can be attributed in particular
to the win of the ImageNet Data Challenge [Deng et al., 2009] by [Krizhevsky et al.,
2012] in 2012. The availability of large amounts of annotated image data as well as high
performance GPUs for the computationally intensive training process have contributed
significantly to this success. For a comprehensive introduction and overview of Deep
Learning including CNNs, see [Goodfellow et al., 2016].

Figure 2.4 illustrates a typical convolutional neural network, exemplified by the
classification task of identifying pathological CT scans. It consists of alternating
convolutional and pooling layers to extract descriptive features (feature maps) from
the input image. This is followed by one or more fully connected layers with the
number of output neurons corresponding to the number of possible classes (two in the
example: healthy and pathological). Convolutional layers differ from fully connected
layers, where each input neuron is connected to each output neuron, by the spatially
organised, locally limited filters that are applied to the entire image in a sliding window
approach. The advantage of the shared weights is a significant reduction of network
parameters and exploitation of the generally assumed translation invariance of image
features. After every few convolutional layers, pooling operations are employed, which
reduce the resolution of the feature maps and thus not only contribute to further data
reduction, but also increase the receptive field and prevent overfitting. The objective
of training the CNN is that, given an input image, the output neuron corresponding
to the class of the image has the highest activation. This can be achieved in a purely
data-driven manner by adjusting all trainable network parameters using a suitable loss
function and the backpropagation algorithm. In order to model non-linear decision
boundaries and to ease training, activation functions (e.g. Rectified Linear Units
(ReLUs)) are usually applied after convolutional layers. Dropout [Srivastava et al.,
2014], batch normalisation [Ioffe et al., 2015], residual connections [He et al., 2016]
and many other techniques have ensured a continuously improved and more robust
training. For pixel-level tasks such as segmentation or registration, special convolutional
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network architectures have been developed, of which the U-Net [Ronneberger et al.,
2015] is the most well-known and commonly used. It consists of an encoder path with
convolutional and pooling layers and a symmetric decoder path in which feature maps
recover higher resolutions through upsampling (or learnable transposed convolutions).
As in the classification task, global features and context are learned in the encoder
part and then spatially propagated with each layer in the decoder part. An important
part of the architecture are skip connections (implemented as concatenation) from
the feature maps of the encoder to the corresponding feature maps of the decoder,
which allow important local information to be preserved. Works such as the nnUNet
incorporate the UNet in a comprehensive software framework that can be used to
configure hyperparameters (number of layers, feature channels) fully automatically and
achieve robust state-of-the-art results for medical segmentation tasks. Work such as
the nnUNet [Isensee et al., 2021] incorporates the UNet into a comprehensive software
framework that, among other things, allows hyperparameters (number of layers, feature
channels) to be configured fully automatically and thus robust state-of-the-art results
to be achieved for a variety of medical segmentation tasks.

2.2.2 Graph Neural Networks

For the central topic of this thesis, deep learning on graphs for medical image process-
ing, CNNs are only partially applicable, namely whenever dense representations are
considered, e.g. in Chapter 3, where point clouds are first voxelised and then processed.
For direct learning on point clouds or keypoint graphs, however, it is necessary to
employ methods of geometric deep learning, a relatively new research field that aims to
generalise neural network models to non-regular domains, comprehensively outlined
in [Bronstein et al., 2017]. First approaches were based on the spectrum of the graph
Laplacian [Bruna et al., 2014], but an inherent drawback of these methods are that
they rely on prior knowledge of the graph structure to define local neighbourhoods. To
gain independence from a fixed graph topology, [Kipf et al., 2017; Mikael et al., 2015]
proposed to limit the support size of the learned spectral filters. More recent alternative
approaches employ spatial instead of spectral filters. These include for example the
PointNet [Qi et al., 2017a], which simply ignores local neighbourhoods, or methods
that learn local parameterised patches using Gaussian mixture models [Monti et al.,
2017] or triangular meshes [Masci et al., 2015]. They can be considered as special cases
of EdgeConvs [Wang et al., 2019a], which describe a more general concept of graph
convolutions and, apart from initial experiments on learnable diffusion approaches in
Chapter 4, are adopted in most of the methods presented in this work. Following the
notation of [Wang et al., 2019a], the general concept of graph convolutions is introduced,
while specific implementations, including network architectures, are described directly
in the respective method chapters. Figure 2.5 illustrates the EdgeConv operation. A
Graph G = (V, E) is defined as a set of n vertices V and edges E ⊆ V × V . Each vertex
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Fig. 2.5: Illustration of an EdgeConv (adapted from [Wang et al., 2019a]).

is represented by an F-dimensional feature vector xi ∈ RF , which in the simplest case,
e.g. when extracting keypoints from medical 3D scan, consists of three coordinates, but
can be extended depending on the application, e.g. by flattened patches of intensity
values. In the methods presented, the graph itself is usually created from the k-nearest
neighbors defined on the keypoint coordinates. However, with additional knowledge,
it could also be constructed more specifically for a particular application, e.g. if bi-
furcations in anatomical graphs such as the airway tree are known. The EdgeConv
operation for a node xi consists of two steps: 1) the computation of edge features eij

for all neighboring nodes and 2) a symmetric aggregation function □, i.e. the feature
vector is updated as

x′
i = □

j:(i,j)∈E
eij . (2.3)

The aggregation function □ can be, for example, the sum, average or maximum of the
features and is applied channel-wise. Edge features are defined as eij = hΘ(xi, xj), where
hΘ : RF × RF → RF ′ is a function with learnable parameters Θ, usually implemented
as multi-layer perceptrons. While the choice of hΘ is arbitrary, e.g. the PointNet
[Qi et al., 2017a] uses hΘ(xi, xj) = hΘ(xi), which only considers global features, the
function definition employed in this thesis is

hΘ(xi, xj) = hΘ(xi, xj − xi), (2.4)

which combines both, global features (xi) and local information (xj − xi). In particular,
edge features eij can be computed as

eij = ReLU(θ · xi + ϕ · (xj − xi)) (2.5)

with trainable parameters Θ = (θ, ϕ) and a Rectified Linear Unit (ReLU) as activation
function.
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2.2.3 Graphical Models and Message Passing

Chapter 5 investigates decoupled feature learning and optimisation for the task of
medical image registration. In most cases, the optimisation process is considered as
inference on a discrete graphical model. Therefore, a brief summary of the underlying
basic principles, namely Markov random fields and belief propagation, is given in this
section.

Markov Random Fields Markov random fields are undirected graphs, where
each node represents a random variable and the edges model stochastic dependencies
[Bishop et al., 2006]. In the presented methods for medical image registration, the
graph is usually constructed as k-NN graph from distinctive keypoints extracted from
volumetric medical scans. The goal is then to assign discrete labels li ∈ L (quantised
3D displacement vectors for volumetric registration) to each node xi. A corresponding
MRF energy function EMRF can thus be formulated (cf. Equation 2.2) as

EMRF(L) =
∑

i

D(li) +
∑

i

∑
j:(i,j)∈E

R(li, lj), (2.6)

where D and R represent unary (data term) and pairwise (regularisation term) poten-
tials, respectively (cf. [Glocker et al., 2008]). In the context of image registration the
data term models the correspondence quality, while the regularisation term ensures a
smooth deformation field. Specific implementation details are then described in the
respective method chapters.

Belief Propagation Belief propagation is a message passing algorithm for inference
on graphical models (including MRFs). In this overview as well as the presented
methods, the min-sum algorithm is considered. A message mij from a node xi to a
node xj is defined as

mij(lj) = min
li

D(li) + R(li, lj) +
∑

k:(k,i)∈E\j

mki(li)

 . (2.7)

The marginal distribution can be determined as the sum of all incoming messages plus
the respective data term. As evident from the equation, the algorithm is only exact on
graphs that have no loops. One possibility is therefore to convert the undirected graphs
into trees, e.g. using Prim’s algorithm for minimum spanning trees. Alternatively, belief
propagation can also be applied iteratively (loopy belief propagation), which leads to
an approximate solution whose convergence, however, is not guaranteed. For this, all
messages are initialised with ones and the computation of the messages is performed in
parallel, as there is no specific order of the nodes. [Felzenszwalb et al., 2006] summarise
further ideas for efficient belief propagation in vision tasks.
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Chapter 3

Pose Graphs for Clinical Context
Monitoring

This first methodological chapter addresses the task of human pose estimation from
point clouds in the clinical context of an operating room. It is investigated in which
way the irregular input data can be processed as dense representations, more precisely
projections (depth images) and voxelisations, using deep convolutional neural networks.
Another focus of the approach presented here is the regularisation of the implicit output
pose graph, which is composed of the individual joint detections. In the first part
(Section 3.1) of this chapter it is demonstrated that a state-of-the-art CNN developed
for 2D human pose estimation on natural rgb images is also a suitable model for
projected point cloud images. It is further shown that frequently occurring predictions
of implausible poses (e.g. missing or symmetrically swapped joints) can be reduced
by constraining the output pose space by training a CAE with a low dimensional
embedding and employing it as post-processing step. The method is published in
[Hansen et al., 2019b]. In Section 3.2 the extension of the approach to 3D and a
multi-camera setting is described (published in [Hansen et al., 2019e]). For this, 2D
joint predictions from each camera view are projected back in 3D space and processed
as a fused voxelised 3D point cloud.

3.1 Regularised Landmark Detection with CAEs

3.1.1 Introduction

Human pose estimation is a typical computer vision task that has been studied for
decades and is a key component for a variety of higher level applications ranging
from motion control in video games or car entertainment systems to video surveillance
and behavioural understanding. The conventional estimation process is driven by the
underlying image data, capturing local appearance, as well as structured prediction
to produce globally plausible poses. Similar to other fields, purely data driven deep
learning methods, in particular convolutional neural networks (CNNs) yield impressive
results on public datasets and have nowadays replaced hand-crafted features and
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graphical models. With their success research shifts to more challenging scenarios. Pose
estimation in clinical environments offers great opportunities by providing contextual
information about the patient or staff for assistance and monitoring systems, but also
has to cope with strong occluded and cluttered settings such as the operating room.
At the same time clinical pose estimation datasets are much smaller than large-scale
annotated datasets like MPII [Andriluka et al., 2014] making it harder to reliably
train deep learning models. Explicit regularisation of predicted poses is a possibility to
recover plausible poses.

3.1.1.1 Related Work

Early successful methods for human pose estimation relied on hand-crafted image
features and sophisticated body part models [Felzenszwalb et al., 2008]. “DeepPose”
[Toshev et al., 2014] was the first work that trained a deep neural network to directly
regress joint positions. Following the success of CNNs for the image classification task
subsequent methods used CNNs in a fully convolutional manner to generate heatmaps
of joint locations [Wei et al., 2016]. In general, predicting heatmaps showed to be more
robust than directly regressing pixel positions. Recent state-of-the-art pose estimators
often adopt variants of stacked hourglass networks (SHGs) [Newell et al., 2016] as basic
building blocks. SHGs capture both local and global context within multi-scale CNN
architectures. Stacking multiple of these “hourglasses” combined with intermediate
supervision further improves the network’s final performance.

The most recent methods described above model the human body only implicitly. In
this work we aim at explicitly regularising poses and therefore consider research that
uses global priors in neural networks. Convolutional Autoencoders (CAEs) [Masci et al.,
2011] were introduced as unsupervised feature extractors. They reduce the input data
with spatial filters and pooling operations into a latent space from which the original
input must be reconstructed. The learned features from the encoder can then be reused
in a supervised classification task. [Oktay et al., 2017] showed that the CAEs latent
space could also be used to regularise segmentation of ultrasound images. Therefore
during training, the model predictions are forced to follow the distribution of the learnt
low dimensional representations of priors. In the field of human pose estimation [Tekin
et al., 2016] trained an autoencoder on 3D joint locations to regress the 3D positions
from 2D images via its regularised latent space.

3.1.1.2 Contributions

In this work we investigate how SHG, a state-of-the art human pose estimator, performs
in a challenging clinical setting. We show that SHG models trained on normalised
depth images yield a similar performance on the MVOR dataset [Srivastav et al., 2018]
as RGB based methods and can therefore conclude that the use of depth images is a
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suitable image modality to tackle privacy concerns in visual health care applications.
Given the small amount of training data (in contrast to non-clinical settings), we
observe frequent anatomically implausible pose predictions. We therefore propose a
CAE based post-processing of predicted poses. Our experiments show that this new
approach can reliable recover poses from input perturbations such as joints that are
missing or symmetrically switched.

3.1.2 Methods

Our architecture for regularised pose estimation consists of two independent components
– an SHG that predicts heatmaps from raw input data and a CAE to recover plausible
poses from the initial joint locations. See Figure 3.1 for a schematic overview of the
two-stage pipeline.

3.1.2.1 Pose Estimation

Pose estimation of input image data, e.g. RGB or depth, is conducted with SHGs from
[Newell et al., 2016]. The output of the network is a heatmap with N channels, where N

is the number of landmarks to detect. The final predictions are given by the maximum
activation of the heatmap. Ground truth targets consist of a 2D Gaussian (kernel)
centred on the corresponding joint location. One “hourglass” consists of multiple
convolution and pooling layers to process features down to a very low resolution,
whereby at each pooling step one further convolution is applied at the current level
and added to the corresponding layer on the symmetric bottom-up sequence. Multiple
“hourglasses” with intermediate supervision can be stacked to further improve the
performance.

SHG – Pose Estimation CAE – Pose Regularization

Fig. 3.1: We propose a two-stage architecture for regularised pose estimation from single depth
images. A stacked hourglass network infers heatmaps for human joint locations. In a
subsequent step a convolutional autoencoder corrects implausible pose predictions.
The two networks are trained separately, whereby the pose regulariser is explicitly
forced to learn a body model via perturbations of the input data.
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3.1.2.2 Pose Regularisation

For regularisation of implausible poses we propose a convolutional autoencoder that is
trained with different synthetic perturbations on the input data to enforce the explicit
learning of a body pose model. The CAE is composed of two parts, the encoder and
the decoder. In the encoding step a heatmap with N channels is transformed into
a small-low-dimensional feature map (e.g. 4x4 pixels) by a series of convolution and
pooling layers. With every convolution the number of features is doubled. After the
last pooling layer the spatial relation is broken and the flattened tensor is fed into
a two-layer neural network. The number of output features of the last linear layer
specifies the dimension of the latent representation and should be small enough to force
the CAE to learn a representative body pose embedding. The decoder reverses the
operations of the encoding, whereby convolutions and pooling operations are replaced by
transposed convolutions and indexed unpooling, respectively. To ensure that the CAE
can actually act as a pose regulariser typical pose errors are explicitly incorporated in
the training. In this work we propose three different synthetic augmentations: swapping
two corresponding joints of the left and right body part, removing a single joint and
applying a high random offset to one of the joints. All input channels are randomly
scaled and Gaussian noise is added to further reduce the risk of learning an identity
mapping.

3.1.3 Experiments and Results

All experiments were conducted on the MVOR dataset [Srivastav et al., 2018]. It
consists of 732 multi-view frames from three RGB-D cameras providing registered
depth and anonymised rgb images synchronized in time. The images were recorded
in an operating room at the University Hospital of Strasbourg over a period of four
days. Each day was used as one fold in a 4-fold cross validation. For the task of 2D
pose estimation the ground truth annotations consist of 2926 bounding boxes and
upper-body poses. As evaluation metric we use the percentage of correct keypoints
with a threshold of 0.2 (PCK), whereby a prediction is assumed as correct if it falls
within 0.2 · max(bboxh, bboxw) pixels of the ground truth annotation.

3.1.3.1 Pose Estimation

We first evaluate the pose estimation network on both image modalities, depth and
RGB. The SHG with two stacks is implemented in PyTorch. Training was performed
for 50 epochs with the Adam optimizer and an initial learning rate of 2.5e−4. The
objective function is the mean squared error between the predicted and ground truth
heatmaps. We use random affine transformations to augment the input data. For
training with depth images it was crucial to normalise each image independently to
correct for different distances of the person to the camera.
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3.1 Regularised Landmark Detection with CAEs

head shoulder elbow wrist hip mean

OpenPosergb 91.0 88.8 74.5 58.1 56.4 73.8
AlphaPosergb 87.7 88.9 77.8 64.7 61.8 76.2

SHGrgb 97.0 90.5 77.4 79.5 71.7 83.2
SHGdepth 97.6 90.5 78.2 80.0 71.2 83.5

w/o
reg.

CAE
reg.

swap 80.3 97.1
remove 90.0 96.6

offset 90.7 96.5

Fig. 3.2: Qualitative and quantitative results on the MVOR dataset. The example images show
ground truth (left), SHG predictions (middle) and CAE regularised joints (right).
Body poses were inferred from depth frames and overlayed on rgb images for better
visualization. Independent quantitative evaluations (using the PCK metric) were
conducted for both the pose estimation and pose regularisation step and are shown
in the left and right table, respectively.

Results Fig. 3.2 shows the results of the SHG models. Training with the two image
modalities gives a similar PCK of approximately 83.5. For comparison, PCK values of
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two further pose estimation methods, OpenPose [Cao et al., 2017] and AlphaPose [Fang
et al., 2017], are reported from [Srivastav et al., 2018]. We note that both estimators
are pretrained on MPII without fine-tuning on MVOR.

3.1.3.2 Pose Regularisation

The general training setting is the same as for our pose estimation network. The CAE
encodes body poses in a 16-dimensional latent vector. During training Gaussian noise
with a std of 0.05 is added to the input heatmap and one of the three perturbations (swap,
remove, offset) is applied with a probability of 0.1 each. We evaluate the capability of the
CAE to recover plausible poses for each input perturbation independently by applying
the corresponding augmentation strategy on all test images. In a last experiment we
regularise the predicted heatmaps from the SHG by feeding them directly into the
CAE.

Results The isolated evaluation of our CAE shows improved mean PCK values of
80.3 to 97.1, 90.0 to 96.6 and 90.7 to 96.5 for the swap, remove and offset perturbation,
respectively. The subsequent regularisation of the SHG predictions on depth images
leads to a mean PCK of 84.4. Qualitative results in Fig. 3.2 visualise the regularisation
of implausible and incomplete poses.

3.1.4 Discussion and Conclusion

We successfully validated a state-of-the-art pose estimator, namely SHG, for upper
body pose estimation in a new challenging clinical environment. Thereby, we could
show that depth frames as input modality reached a better performance than blurred
RGB images, implying that depth information can be a natural choice for computer
vision algorithms in health care applications that depend on anonymised input data.
Our CAE based regularisation can reliable recover plausible poses from a set of input
perturbations and as a simple and independent post processing step the CAE leads to
a small improvement in mean PCK. To further improve on the results the CAE could
be incorporated in an end-to-end training in the pose estimation step, e.g. using the
latent space for a regularisation loss as in [Tekin et al., 2016]. Finally, we believe our
self-supervised regularisation method has great potential for future use in landmark
detection and foresee further research in different domains, e.g. localisation in CT or
MRI volumes.
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3.2 2D Boosted 3D Pose Graph Estimation

3.2.1 Introduction

Robust human pose estimation is a key component for many of today’s and future
computer vision tasks. Areas of usage range from surveillance systems to entertainment
solutions to autonomous driving. Likewise, precise knowledge of 3D joint positions of
clinical personnel is a valuable information for context aware assistance and monitoring
systems in clinical settings such as operating rooms. Knowing joint locations of all actors
during an operation over time enables many different applications. As an important
base feature in action recognition tasks [Yao et al., 2012], the human body pose is
essential for the automatic analysis and the improvement of surgical workflows [Padoy
et al., 2012]. It may further help to enable a safe human-robot interaction during future
collaborative robotic surgeries [Jacob et al., 2013]. Gesture based control systems form
a third application area, where human body poses play a major role: [Yusoff et al.,
2013] use arm gestures to navigate MRI or CT images during surgery, whereas [Dietz
et al., 2016] propose to control the operating light by simple hand gestures.

Real clinical environments present special challenges for the task of human pose
estimation. An operating room is a visually complex scene with difficult lighting
conditions, frequent clutter and occlusions from different medical devices. Besides the
patient, many clinical staff are visible in the scene during an operation, often working
simultaneously directly at or near the operating table. Hospital clothing that must be
worn during an operation is usually wider and less formfitting than everyday clothes.
Moreover, we identified two reasons for possible privacy concerns in using RGB videos
in the operating room: 1. While the images used for the computation of body poses
may be transient in a final application, in a first step and for clinical studies/trials the
video data must be permanently stored and usually manually annotated to train and
evaluate today’s machine learning methods. 2. Security breaches in hospital networks
have become more common [McCoy et al., 2018]. In such worst-case scenarios, attackers
may gain access to video material of patients in a most vulnerable situation. This
makes it preferable to work with unidentifiable visual data, such as blurred RGB or
depth images [Silas et al., 2015]. Finally, clinical datasets for 3D joint localization are
much fewer and smaller than for the general setting.

Given the constraints listed above, depth images may serve as input modality for a
clinical 3D human pose estimation framework. Depth frames offer informative visual
data, while at the same time providing a decent degree of privacy for patients and staff.
In contrast to RGB or near infra-red (NIR) images, a clear identification of people is
hardly possible [Silas et al., 2015]. Additionally, depth cameras are less sensitive to
changing lighting conditions. A network of multiple depth cameras is a straight forward
solution to reduce the problem of occlusions by medical devices or other people and can
be easily mounted and calibrated in a closed setting such as the operating room. To
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overcome the limited databases in clinical environments, large scale annotated datasets
for joint localization such as MPII [Andriluka et al., 2014] or Human3.6m [Ionescu
et al., 2013] can be used to support a learning system wherever possible.

3.2.1.1 Related Work

2D Pose from RGB As a key problem for computer vision tasks, human pose
estimation from single RGB images has been studied for more than 15 years. Early
methods relied on hand-crafted features and explicit body part models [Andriluka et al.,
2009; Felzenszwalb et al., 2008; Mori et al., 2004]. However, as many other topics in
computer vision, human pose estimation gained more attention with the breakthrough
of deep convolutional neural networks (DCNNs). Consequently, “DeepPose” [Toshev
et al., 2014] was the first work that proposed to train a DCNN to directly regress
joint positions from an input image. Recent state-of-the-art bottom-up and top-down
methods often adopt the approach of [Newell et al., 2016] and generate heatmaps of
joint locations in a fully convolutional manner [Cao et al., 2017; Chen et al., 2018b;
Newell et al., 2017; Xiao et al., 2018].

3D Pose from RGB Much research has concentrated on inferring 3D prediction from
RGB images, which is an ill-posed problem in the presence of perspective distortion.
[Pavlakos et al., 2017] adopted stacked hourglass networks from [Newell et al., 2016]
for this task by regressing voxel likelihoods for each joint instead of two dimensional
heatmaps. Another family of works directly regresses spatial coordinates of the human
joints with respect to a known root joint. A simple baseline is proposed from [Xiao
et al., 2018], where 2D joints, predicted from the input image, are directly lifted in the
3D space by a shallow neural network. [Katircioglu et al., 2018] pretrain an autoencoder
on 3D skeleton data to learn a latent representation for human body poses. Afterwards,
a DCNN is trained to directly regress from the input image to the latent space. They
argue, that the latent representation constraints the network to output plausible poses.

3D Pose from Depth Data-driven methods, often based on random forests, predict
3D joints directly from single depth images, either by segmenting body parts [Shotton
et al., 2011] or directly regressing the x, y, z coordinates [Girshick et al., 2011; Jung
et al., 2016]. A DCNN approach is proposed by [Haque et al., 2016]. The network
learns viewpoint invariant features enabling it to make predictions even from extreme
views, e.g. a top-view. Alternatively, given the intrinsic parameters of the camera, a
depth image can also be represented as a three dimensional point cloud. The model
from [Moon et al., 2018] processes the voxelized point cloud with an adopted hourglass
network [Newell et al., 2016] for 3D input and outputs per voxel likelihoods for each
body joint. To compensate for the large memory footprint of processing volumes instead
of images they adjusted the feature channels in each networks component.
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Pose Estimation in Clinical Settings Finally, research on human pose estimation
in clinical environments is briefly summarized. In-bed pose estimation is approached in
several publications [Achilles et al., 2016; Chen et al., 2018a; Liu et al., 2019b]. Other
methods deal with pose estimation of clinical staff in the operating room [Belagiannis
et al., 2016; Kadkhodamohammadi et al., 2017, 2021].. [Belagiannis et al., 2016] propose
a DCNN processing of RGB images from up to 5 views combined with 3D pictorial
structures. Also on RGB input relies the approach of [Kadkhodamohammadi et al.,
2021], where 2D joint detections from each view are fused to a 3D prediction via epipolar
geometry. In our preliminary work [Hansen et al., 2019b], we demonstrated that depth
images can reach the same accuracy for 2D pose estimation in clinical settings as RGB
images, but did not infer 3D positions from the detected 2D joints.

3.2.1.2 Contributions

In this work, we aim to bring robust 3D human pose estimation to the clinical domain.
Considering the challenges and conditions of a clinical environment, such as the operating
room, we investigate a 3D joint estimation framework based on a network of multiple
depth cameras. We consider a two-step architecture. 2D heatmaps are generated
from depth images of each camera. These probabilities of joint positions are fused
in a combined point cloud, which is then voxelised to a fixed grid. An autoencoder,
pretrained to encode a latent presentation of human poses, processes the fused input to
generate final 3D voxel likelihoods for each joint. Closest to our approach is the work
of [Moon et al., 2018], but it uses only a single depth image and does not exploit 2D
information. Our main contributions can be summarized as follows:

• To the best of our knowledge, our approach is the first that fuses 2D information
from multiple depth sources in a single volume to predict voxel probabilities for 3D
landmark localisation.

• Moreover, we show that encoding the 3D human pose in the latent space of the fully
convolutional autoencoder boosts the performance of our pose estimation model.

• We validate our approach on the challenging MVOR dataset Srivastav et al., 2018
against several baseline methods and in different ablation experiments, demonstrating
the advantages of its individual components

3.2.2 Methods

In this section, we present our approach for 3D human pose estimation from multiple
depth cameras. Figure 3.3 illustrates the overall idea. In this work, we deal with the
problem of single person pose estimation, meaning multiple people in an image are
already annotated by individual bounding boxes and we process each cropped person
instance by itself. Therefore, our method can easily be incorporated in a multi person
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Fig. 3.3: The schematic of 2D information fusion for 3D human pose estimation. We predict
2d joint probabilities on each individual depth map. The heatmap information can
be fused in a point cloud, which is voxelised and eventually processed by the the 3D
pose convolutional autoencoder to obtain 3D voxel probabilities for each joint. For
visualisation purposes, all joints are depicted in a single feature channel.

pose estimation framework in a top-down manner using a generic bounding box detector
[Liu et al., 2016; Ren et al., 2015] beforehand.

Input to our method are cropped depth images x1, . . . , xN from 1 to N cameras.
Additionally, intrinsic camera parameters and the transformation matrices T1, . . . , TN ,
that transform 3D camera coordinates to 3D world coordinates, are given. The first
step in our two-stage architecture is to predict probabilities of 2D joint positions from
each depth frame. Here, we use the approach from [Xiao et al., 2018], explained in
more detail in Section 3.2.2.1. As we have given the depth information as well as the
intrinsics and extrinsics of each camera, we can generate a combined point cloud P from
all views with the obtained joint heatmaps as additional features (see Section 3.2.2.2).
However, for several reasons the feature point cloud only provides a rough estimate of
the desired 3D joint positions. Firstly, as depth cameras only provide surface distances
the detected probabilities of joint positions lie on the person’s body surface, missing an
additional (oriented) offset to the real 3D position. Another problem is the difference
in spatial proximity in the depth image and the point cloud, respectively. While the
predicted and ground truth joint may be very close to each other in the 2D image
plane, they may be off by meters in the 3D point cloud. This can happen if the 2D
detection is not accurately localized in the depth image and thus correspond to far
off depth values. The same applies for partly and completely occluded joints. Lastly,
in our setting probabilities of joints from up to N views are taken into account, that
must be combined in a single prediction. Therefore, to solve the issues mentioned
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above, we make use of a second neural network, the proposed 3D pose convolutional
autoencoder, that is further described in Section 3.2.2.3. Input to the network is the
voxelized pointcloud V . The autoencoder is pretrained in a self-supervised fashion using
ground truth 3D joint annotations from the public Human3.6m dataset [Ionescu et al.,
2013] to encode the space of plausible human poses and outputs voxel likelihoods for
each joint. Final pose coordinates are obtained by finding the maximum probability for
each joint, whereby subvoxel accuracy can be obtained when considering neighbouring
voxels for the final prediction. Therefore, the joint position is offset by a quarter of a
voxel in the direction of the next highest neighbor (considering a fixed number of six
neighbour voxels).

3.2.2.1 2D Pose CNN

The 2D pose CNN, denoted as ϕ in Figure 3.3, is adopted from Xiao et al., 2018. It
uses a ResNet [He et al., 2016] as backbone network for image feature extraction. To
generate heatmaps from the deep and low resolution feature space the authors employ
several transposed convolutional layers. The regression target for the pose CNN is a
multi-channel heatmap consisting of 2D Gaussians (with a given standard deviation)
centered on each respective joint location. For implementation details and further
insights, we refer to the original publication. Here, the CNN is pretrained with color
images on the MPII human pose dataset [Andriluka et al., 2014] and then finetuned
to adapt to the depth modality. The network is trained view-agnostic. Thus, we use
the same model for 2D heatmap regression from each depth map xi. We refer to an
obtained heatmap as ϕ(xi) = (ϕ(xi)1, . . . , ϕ(xi)J), where J denotes the number of
predicted joints.

3.2.2.2 2D-3D Information Fusion

In the next step, we aim to fuse the obtained 2D joint information from multiple views.
Using the intrinsics of each camera N point clouds are generated from the depth images.
With the given transformation matrices T1, . . . , TN each point cloud can be represented
in the same reference system. Each point in the combined point cloud P consists of
three coordinates and the corresponding J probability features. For further processing
and voxelisation, the center of mass of the person is estimated from the point cloud
coordinates that are equally weighted by all probability features. Note that in [Moon
et al., 2018] an additional network is trained to predict the center, whereas in our case
the rough 3D joint locations are sufficient to directly infer a decent estimation. The
target person is then cropped from the point cloud by a cuboid filter with fixed edge
length positioned at the estimated center of mass. For voxelisation, the 3D space is
discretised based on a pre-defined voxel size and for each joint the probabilities of all
points inside one voxel are averaged to obtain the corresponding voxel value. Thus,
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the dimension of the voxelised input V = (V1, . . . , VJ) for the 3D pose convolutional
autoencoder is determined by the voxel size and the edge length of the cuboid filter used
for cropping the combined point cloud. The number of feature channels corresponds to
the number of joints J .

3.2.2.3 3D Pose CAE

The architecture of our 3D pose convolutional autoencoder (CAE) is illustrated in
Figure 3.4. It is composed of three simple operations: non-strided 3D convolutions,
3D convolutions with stride 2 and 3D transposed convolutions with stride 2. The
encoder part of the network starts with a non-strided convolution with a large kernel
of size 7 × 7 × 7. Afterwards, the obtained feature map is alternating processed by
non-strided convolutions and convolutions with stride 2, that halves the feature maps
resolution. At the same time the number of feature channels are increased with 128
features at the lowest resolution. Thus, the input is compressed by approximately
30 ∗ J of its original size. To reconstruct the 3D heatmaps from the latent space three
transposed convolutions with stride 2 and a kernel size of 4 × 4 × 4 are employed before
the final 1 × 1 × 1 convolution. Rectified linear units (ReLUs) are used after every
convolutional operation except the last one as non-linearities. The goal of the network
is to predict voxel likelihoods for each joint, given the volumetric input V described in
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Fig. 3.4: A block diagram of the proposed 3D pose convolutional autoencoder. Convolutional
operations are represented by the colored arrows and corresponding labels, specifying
kernel sizes and output feature channels.
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the previous section. The prediction target V ∗ = (V ∗
1 , . . . , V ∗

J ) is generated from the
ground truth 3D joint positions as follows:

V ∗
j (u, v, w) = exp

(
−(u − uj)2 + (v − vj)2 + (w − wj)2

2σ2

)
, (3.1)

where the j-th joints 3D ground truth position is (uj , vj , wj), quantised in voxel
coordinates, and σ denotes the standard deviation of the Gaussian kernel.

We aim to encode a space of plausible human poses in the CAEs latent space to
regularise our predictions. Therefore, the network is pretrained in a self-supervised
fashion. Input and target heatmap are generated from 3D ground truth poses from the
Human3.6m dataset [Ionescu et al., 2013] as described above. Following the idea of
denoising autoencoders [Vincent et al., 2010] to obtain good representations, all input
channels of the input volume are randomly scaled and Gaussian noise is added. To even
further reduce the risk of simply learning an identity mapping, we introduce several
sources of noise, explicitly forcing the autoencoder to gain a deeper understanding
of human body poses. Joints are either randomly added, removed and swapped or
a large offset is added. The CAE needs to correct this perturbations to reach a low
reconstruction error. In our human pose estimation framework, the CAE is trained in
three stages: First, the network is pretrained as just described using only pertubated
ground truth heatmaps (60 training epochs). Next, the decoder part is frozen and we
regress from the voxelised input point cloud V into the latent space (30 training epochs)
and finally, the complete network, including the decoder, is finetuned for another 30
epochs. This training strategy is also employed in [Katircioglu et al., 2018].

3.2.3 Experiments and Results

All experiments were conducted on the challenging MVOR dataset [Srivastav et al.,
2018]. It consists of 732 multi-view frames from three RGB-D cameras providing
registered depth and RGB images synchronised in time. The images were recorded
in an operating room at the University Hospital of Strasbourg over a period of four
days. For robust evaluation, each day was used as one fold in a 4-fold cross validation
setting (57/330/223/122 images). For the task of 3D pose estimation, the ground truth
annotations consist of 1061 upper-body poses, whereby the person is visible in one, two
and three views in 132, 426 and 503 cases, respectively. An upper-body pose is defined
by a total of ten joints (upper head, neck, shoulders, elbows, wrists and hips). As
evaluation metric we use the 3D mean per joint position (MPJP) error in centimeters.

We compare our approach to the V2V-PoseNet [Moon et al., 2018], a state-of-the-art
method for 3D pose estimation from voxelised input from single depth images. Here,
for a fair comparison, we also use the fused voxelisation from all available depth images.
Different ablation studies investigate the effectiveness of individual aspects of our
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approach. In the simplest baseline experiment, we use our 3D architecture as a direct
pose estimator with the combined voxelised point cloud as input. The CNN is not
pretrained to encode a representative pose space and no 2D information is used. To
show the advantage of 2D-3D information fusion the next baseline utilize the probability
of 2D joint positions but is still trained from scratch. The last comparison is between
the 3D CAE with encoded pose space trained with and without the introduced noise.
In a further experiment, we investigate the usefulness of having multiple cameras for
3D human pose estimation in clinical settings, here, the operating room. Therefore, we
report MPJP error of our best model with respect to the number of supporting views
for each annotation.

3.2.3.1 Implementation Details

We implement our pose estimation framework in PyTorch [Paszke et al., 2019]. All
models are trained for 120 epochs. Adam optimization is used with an initial learning
rate of 0.001. To stabilise training the learning rate is decayed by a multiplicative factor
of 0.1 after 60 and 90 epochs. Additionally, we employ batch normalisation throughout
all layers with a mini batch size of 16. The edge lengths of the cuboid filter are chosen
as 200 cm each, which accommodates for the largest expected person. The combined
point cloud is augmented with a random scale and a rotation around the z-axis. For the
voxelisation of the point cloud, we use a pre-defined voxel size of approximately 3 cm3.
The 3D heatmap targets are generated with a σ value of 2. Parameters are chosen
based on hyperparameter optimisation on our method and kept fixed for all baseline
experiments. For 2D pose estimation [Xiao et al., 2018] and the reference method
V2V-PoseNet [Moon et al., 2018], we utilise the publicly available implementations1.

3.2.3.2 Results

Quantitative results of our approach in comparison with the reference method and the
baseline experiments are depicted in Table 3.1. A p-value of 0.0435 indicates statistical
significance of the difference in joint position errors between the V2V-PoseNet and
our proposed approach (calculated with the Wilcoxon signed rank test). The different
baseline experiments show a constant increase in mean MPJP error, starting from
12.1 cm for the 3D network without pose encoding and without probabilities of 2D
joint positions as input. Table 3.2 shows that increasing the number of supporting
views, decreases the mean MPJP error (from 11.9 cm for one view to 7.1 cm for three
views). With a mean MPJP error of 8.0 cm the localisation accuracy of the challenging
wrist joints is more than halved (from 17.0 cm for one view). Qualitative results are
illustrated in Figure 3.5. For better visualisation, the RGB images are shown instead

1[Xiao et al., 2018]: https://github.com/Microsoft/human-pose-estimation.pytorch
[Moon et al., 2018]: https://github.com/dragonbook/V2V-PoseNet-pytorch
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Table 3.1: Comparison of 3D MPJP error (mean±std) in cm on the MVOR dataset for the
reference method and several baselines. Head joints are omitted because they
already yield extreme low errors and thus, are not suitable for comparison. The
input modality is stated in brackets: ‘img’ for depth only and ‘hm’ for 2D joint
heatmaps (generated from [Xiao et al., 2018]).

shoulder elbow wrist hip mean

V2V-PoseNet (img) 4.9±5.3 8.2 ± 7.0 12.6 ± 10.0 10.0±7.5 8.9 ± 6.1

ours w/o pose enc. (img) 6.9 ± 7.7 12.1±9.9 17.5 ± 11.6 11.9±8.6 12.1±7.6
ours w/o pose enc. (hm) 5.3 ± 6.0 7.9 ± 7.1 12.8 ± 9.4 10.3±8.6 9.1 ± 6.3

ours w/o noise (hm) 5.5 ± 7.0 7.9 ± 7.0 11.3 ± 9.9 10.0±9.0 8.6 ± 6.4

ours (hm) 5.2 ± 6.5 7.6±7.2 11.1±10.1 9.5±7.4 8.3±6.3

Table 3.2: 3D MPJP error (mean±std) in cm on the MVOR dataset with respect to the
number of supporting views.

shoulder elbow wrist hip mean

one view 6.0 ± 3.5 13.0 ± 6.2 17.0 ± 9.3 11.4 ± 7.5 11.9 ± 4.3
two views 5.6 ± 5.1 8.1 ± 6.3 13.5 ± 11.4 9.7 ± 5.0 9.2 ± 5.2

three views 4.7 ± 7.9 6.4 ± 7.6 8.0 ± 7.9 9.2 ± 8.9 7.1 ± 7.2

of the input depth frames. A visual inspection yields accurate and overall consistent
predictions. Lastly, we report the runtime of our pipeline for a detection based on three
views. We utilised a GTX 1070 and measured a time of 51 ms (3 × 7 ms for 2D joint
detection, 10 ms for voxelisation and 20 ms for 3D joint detection).

3.2.4 Discussion and Conclusion

We proposed a 2D-3D information fusion approach for human pose estimation from
multiple depth cameras. On the MVOR dataset, we demonstrated that our approach
is able to robustly predict 3D human poses even in challenging scenarios, where body
parts of nearby people or medical devices protrude in a bounding box and e.g. cause
occlusions. We performed slightly better than a state-of-the-art pose estimator on the
same dataset showing that fusion of 2D information and additional pose encoding is
a feasible approach for 3D landmark localization. The desired accuracy in the joint
position error clearly depends on the clinical application, however, reported average
MPJP errors of < 5 cm for the RGB to 3D joints task of the 2018 Pose Track Challenge
[Andriluka et al., 2018] indicate room for further improvement. While the introduced
noise for explicitly learning the pose space gave slightly improved results, we believe
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Fig. 3.5: Qualitative results of our approach on samples from the MVOR Dataset. We show
the three RGB images and corresponding views of the 3D poses. Green poses depict
the ground truth, whereas the red poses are generated from our method.
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that the approach has further potential, e.g. by incorporating graphical models. The
analysis of the localisation error with respect to the number of supporting views clearly
shows that our method is capable of utilizing different views to increase accuracy.
Finding an optimal arrangement for the cameras in the operating room may be a
direction for future research. With a total running time of 51 ms on a mid-range GPU
the framework is also suitable for real time applications. To this point, our method
consists of two separated steps: The 2D pose estimation on the depth images and the
3D pose estimation from the voxelised input point cloud. Incorporating both steps in a
single end-to-end framework may lead to superior performance and is clearly of high
interest for further research.
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Chapter 4

Semantic Segmentation on Anatomical
Graphs

The following chapter describes the methodological transition from dense processing of
the input data to graph-based approaches, exemplified by the medical imaging task of
semantic segmentation. In the first part (Section 4.1), a method for deep learning on
irregular domains published in [Hansen et al., 2019a] is presented, which is based on
a combination of learnable 1x1 convolutions and feature propagation using multiple
diffusion kernels. As an area of application, point clouds of people are again considered,
but in contrast to the previous chapter, for pointwise segmentation instead of landmark
detection. Section 4.2 then develops an approach to apply the idea of sparse processing
to segmentation of dense medical CT and X-Ray scans. For this, image patches are
sampled at sparse, descriptive key points and processed with a graph neural network
before the spatial predictions are finally accumulated in a dense output array. This
method is published in [Hansen et al., 2019d].

4.1 Multi-Kernel Diffusion CNNs for Graph-Based
Learning

4.1.1 Introduction

The vast majority of image acquisition and analysis has so far focused on reconstructing
and processing dense images or volumetric data. This is mainly motivated by the
simplicity of representing data points and their spatial relationships on regular grids and
storing or visualising them using arrays. In particular convolutional operators for feature
extraction and pooling have seen increased importance for denoising, segmentation,
registration and detection due to the rise of deep learning techniques. Learning spatial
filter coefficients through backpropagation is well understood and computationally
efficient due to highly optimised matrix multiplication routines for both CPUs and
GPUs.

However, many alternative imaging devices such as time-of-flight based 3D scanners
or ultrasound that is based on reflectance measurements are not necessarily optimally
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represented on dense 3D grids. Instead these sparse measurements can be stored and
processed more naturally and effectively using point clouds that are connected by edges
forming an irregular graph. Moreover, 3D data from multiple sources can be easily
combined if represented as point clouds.

The supervised feature learning and further analyses on these irregular domains is a
research area that is still in its early stage, in particular in the context of deep learning.
The main limitations of previous approaches are their dependency on an equal number
of nodes in all graphs (e.g. derived from point clouds) and the same topology, i.e.
ordering of nodes and edge connections. Furthermore, some operations on irregular
graphs are inefficient for parallel hardware, which limits their usefulness in real world
scenarios.

4.1.1.1 Related Work

Of all hierarchical feature learning models, convolutional neural networks have shown
to be one of the most successful approaches for a wide variety of tasks [Ren et al., 2015].
Attempts to transfer the concepts from the two dimensional image domain directly
to a sparsely sampled 3D space include e.g. volumetric CNNs [Maturana et al., 2015]
and multi-view CNNs [Su et al., 2015]. However, due to the sparseness of the observed
space both techniques lack computational efficiency.

Another class of works addresses this problem more generally by studying the intrinsic
structure of data on non-Euclidean and irregular domains. Noteworthy are in particular
spectral descriptors that are based on the eigenfunctions and eigenvalues of the Laplace-
Beltrami operator. The proposed methods include heat kernel signatures (HKS) [Sun
et al., 2009], wave kernel signatures (WKS) [Aubry et al., 2011] and learnable optimal
spectral descriptors (OSD) [Litman et al., 2014]. Spectral CNNs, defined on graphs,
were first introduced in [Bruna et al., 2014]. The main drawback of this method is
that it relies on prior knowledge of the graph structure to define a local neighbourhood
for weight sharing. Consequently, the idea of graph convolutions has been extended
in [Kipf et al., 2017; Mikael et al., 2015] by limiting the support size of the learned
spectral filters, making them independent of graph topology. In [Boscaini et al., 2016;
Masci et al., 2015; Monti et al., 2017] another approach is presented, which defines
a new form of local intrinsic patches on point clouds and general graphs, where the
weights parametrising the construction of patches are learned. Graph attention networks
Velickovic et al., 2018 learn a functional mapping to define pairwise weights based on
the concatenated features of the involved nodes. The localised spectral CNN (LSCNN)
[Boscaini et al., 2015], which derives local patches from the windowed Fourier transform,
can be seen as a combination of the spectral and the spatial method. [Bronstein et al.,
2017] provides a comprehensive review of current research on this topic.

Deep learning applied directly on unordered point sets is considered in the PointNet
framework [Qi et al., 2017a; Qi et al., 2017b]. The input point set is recursively
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partitioned into smaller subsets and max pooling is used as a symmetric function to
aggregate information regardless of point ordering.

Closest to our approach is the work of [Atwood et al., 2016], that uses a power
series of the transition matrix on a graph as diffusion operation to capture local node
behaviour, while we additionally employ multiple diffusion constants to build the filter
kernels based on different variants of the normalised Laplacian. Moreover, we found
it critically to build our network in a multi-layer fashion which was not considered in
Atwood et al., 2016.

4.1.1.2 Contributions

In this work, we propose a simplified architecture that helps to overcome the limitations
stated above, i.e. it can be employed for both grid and irregular graphs, has a comparable
or better computational performance than classic CNNs and is theoretically connected to
research on mean field inference approaches for graphical models in computer vision. As
detailed in Section 4.1.2, we propose multi-kernel diffusion convolutional neural networks
(mkdCNNs) based on two simple building blocks: isotropic, rotationally-invariant graph
diffusion operators that propagate information across edges (on the graph) and trainable
1×1 convolutions that manipulate features for each node individually. When employing
multiple diffusion constants for the information propagation, which are linearly combined
with the following 1×1 convolution, powerful regional features, e.g. curvature, can
be learned. A random walk approach is considered to further simplify the diffusion
process. In Section 4.1.3 we successfully validate the proposed multi-kernel diffusion
convolutional network on the tasks of learning pointwise correspondences between point
clouds of different human poses as well as segmenting body parts.

4.1.2 Methods

Input to our network is a matrix P ∈ Rn×f , where the i-th row corresponds to one of
n points pi ∈ Rf of a point cloud in an f -dimensional feature space.

4.1.2.1 Network Architecture

Figure 4.1 visualises our proposed mkdCNN composed of the building blocks described
below in detail. The layer input is a feature map defined on a graph. The weighted
edges of the graph determine the feature propagation between nodes implemented as
diffusion operation. The feature learning step consists of 1 × 1 convolutions followed
by non-linear activations. Therefore, its support is limited to each individual node.
Stacked mkdCNN layers can be used in networks for global classification, with a final
symmetric pooling function (e.g. max or average pooling), or for semantic node-wise
segmentation in a fully convolutional manner.
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4.1.2.2 Input Feature Graph

The simplest way to capture and represent local geometry in a point cloud is via a
k-nearest neighbour graph Gk, where Nk(pi) denotes the set of the k-nearest neighbours
of a point pi and edge weights are defined by a distance metric distij between two
points pi and pj . An adjacency matrix A for the graph is constructed with entries

aij =

exp(−dist2
ij)

2·σ2 ), if pj ∈ Nk(pi)
0, otherwise

,

where σ denotes a scalar diffusion coefficient. In our work we employ multiple diffusion
constants yielding different weighting schemes for the same graph. Spectral graph
analysis Chung et al., 1997 allows us to extract further geometric properties from the
point cloud, e.g. an intrinsic order of points, via the symmetric normalised graph
Laplacian Lsym = I − D−1/2AD−1/2. I denotes the identity matrix. The degree
Matrix D is solely defined by its diagonal elements dii =

∑
j aij . For large point clouds

it may be necessary to approximate the highly sparse matrix Lsym to maintain the
computational efficiency of deep networks on GPUs. For this purpose, we can perform
an eigendecomposition using only the first m ≪ n eigenvalues, such that

Lsym = QΛQ⊺,

where the diagonal matrix Λ holds the m eigenvalues and Q the corresponding eigen-
vectors. An alternative to the symmetric Laplacian is the random walk normalised
Laplacian Lrw = I − D−1A.

Input Feature
Graph

mkdCNN Layer mkdCNN Layer Output Graph

Fig. 4.1: Example of a two layer multi-kernel Diffusion CNN for node classification: Given
an arbitrary input graph with f -dimensional features (left), we employ alternating
layers of topology-independent diffusion operators with multiple isotropic kernels that
propagate information across the graph, followed by 1×1 convolutions and activations
that act on nodes individually and learn abstract representations of features (middle).
In the end class predictions for each node a determined by a final 1 × 1 convolution
(right).
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Input point features can be arbitrarily defined depending on the application and
additional given information. For graphs derived from or based on regular grids like
2D images and 3D volumes such features may be simple grayscale values/patches or
more suitable approaches, e.g. extraction of BRIEF descriptors [Calonder et al., 2010].
Real world coordinates and surface normals can be extracted from 3D point clouds
from stereo vision or time-of-flight systems. Once a graph is defined, the spectrum of
the Laplacian itself can be used for feature extraction, e.g. B-spline based geometry
vectors [Litman et al., 2014]. Furthermore, the construction of the mkdCNN makes
it possible to learn meaningful information with no input features at all. In this case
point features are simply initialized with ones.

4.1.2.3 mkdCNN Layer

Each of our proposed mkdCNN layers consists of two separated steps: the diffusion
operation and the feature learning.

To propagate features across the graph the Laplacian is used, thus making the
propagation step for features independent of employed graph topologies and applicable
to graph datasets with varying numbers of nodes. Essential to our mkdCNN layer is
the use of multiple isotropic diffusion kernels as visualized in Figure 4.2. Together with
the following node-wise feature learning, expressive regional features with different local
support can be extracted from the non-linear combination of all kernels. The diffused
point cloud values P ′ can be computed as the solution of the diffusion process

P ′ = (λLsym + I)−1P,

where λ denotes the diffusion time Desbrun et al., 1999. Approximating Lsym with few
eigenvectors as mentioned above yields an efficient computation, as

P ′ = Q(λΛ + I)−1Q⊺P.

Fig. 4.2: Visualisation of multiple isotropic diffusion kernels (for one point on the chest of a
subject) employed in a single feature propagation step of our mkdCNN Layer.
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Therefore, diffusion is mainly affected by the parameters k, σ and λ, that give control
over the locality of the feature propagation. As our network can be trained in an
end-to-end manner those parameters can either be learned or determined on a holdout
validation set. As an alternative diffusion operation, that does not involve the costly
matrix inversion, we also considered a random walker, such that

P ′ = (I − Lrw)tP.

In this case the diffusion parameters are k, σ and the number of diffusion steps t.
Parallels to conditional random fields (CRFs) can be drawn. Our diffusion operation
corresponds to one message passing step with the difference that the approximate mean
and variance of features are propagated instead of an exact inference of all variables as
in CRFs. In [Krähenbühl et al., 2011] a similar approach for efficient and approximate
inference on grid-graphs is proposed that involves convolving a downsampled set of
message variables with truncated Gaussian kernels.

In our proposed network, features are solely learned through 1 × 1 convolutions
followed by a non-linearity. Besides adding depth to the network this choice is based on
the analogy of our design with CRFs, where a label compatibility function is learned to
penalize the assignment of different labels to nodes with similar properties [Krähenbühl
et al., 2011]. Note that in CRFs the dimensionality of signals residing on each node is
limited to the number of output labels and thus the compatibility function is restricted
to only learn interactions across few classes, whereas in our approach the compatibility
is established between feature maps. Furthermore, the exclusive use of 1×1 convolutions
would make it conceptually easy to incorporate well studied building blocks from recent
deep learning literature such as dense or residual connections into our network. Instance
normalisation and dropout are used to stabilise training and we employ a block of two
1 × 1 kernels each.

4.1.3 Experiments and Results

Our new method is evaluated in two experiments: point descriptor learning and semantic
body parts segmentation. We make use of the publicly available FAUST dataset [Bogo
et al., 2014], which consists of 100 surface meshes of 10 different subjects, each scanned
in 10 different poses. The 3D meshes have a resolution of 6890 vertices and point-wise
correspondences between the shapes have been semi-automatically established for all
points. As we are only interested in the scanned point clouds, we do not consider the
given triangulations in our experiments. Following [Boscaini et al., 2015] we split the
dataset in a disjoint training (subjects 1-7, 70 shapes), validation (subject 8, 10 shapes)
and test set (subjects 9-10, 20 shapes).
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Fig. 4.3: Visualisation of distances in the descriptor space between all points on a selection of
shapes from the FAUST test set and a single point on a reference shape (upper left).
Cold colors correspond to small distances. Distances are saturated at the median.
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Fig. 4.4: Comparison of descriptor performances on the FAUST test set. For four comparison
methods and our approach we report the cumulative match characteristic
(CMC), receiver operating characteristic (ROC) and the correspondence quality, which
measures the distance between matched and ground truth points on the underlying
mesh of the point cloud.

4.1.3.1 Point Descriptor Learning

The graph Laplacian for all point clouds was computed using k = 100 nearest neighbours.
We employed a four layer mkdCNN using the random walk diffusion operation with
parameters σ = {0.0125, 0.025, 0.05, 0.1, 0.125, 0.25, 0.5, 1}, t = 7 and no features on
the input graph. All parameters were chosen according to automatic hyperparameter
optimisation on the validation set. To train the descriptors we used a triplet hinge loss
function - i.e. given a point on a randomly sampled shape its normalized Euclidean
distance in the descriptor space to a non-corresponding point (on another random
sampled shape) should be larger by a margin (here empirically set to 0.2) than its
distance to a corresponding point (on another randomly sampled shape). The descriptor
dimension was set to 16. Training was performed for 50 epochs with the Adam optimiser
and an initial learning rate of 10−4. For each optimisation step we considered 6890
triplets. We implemented our architecture in PyTorch [Paszke et al., 2019] and train a
model (0.15 million free parameters) on a Nvidia GTX 1070 8GB in around five hours.
At test time the extraction of all 6890 descriptors for one shape takes approximately 5
seconds. This time is dominated by the computation of the diffusion operation. Given
precomputed diffusion operators our system is able to produce a throughput of 100k
points per second.

We compare our mkdCNN to four other spectral descriptor approaches, namely HKS
[Sun et al., 2009], WKS [Aubry et al., 2011], OSD [Litman et al., 2014] and LSCNN
[Boscaini et al., 2015]. Publicly available implementations of the approaches were used
and parameters (e.g. k for the computation of the graph Laplacian) optimised on the
validation set.

Results Figure 4.4 shows different evaluation results for all approaches on the FAUST
test set. First, the cumulative match characteristic (CMC) is shown. It evaluates the
retrieval performance by testing if the correct corresponding point on one shape can be
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found inside the next k-nearest neighbours from the set of all points of another shape.
The k-nearest neighbours are determined by Euclidean distances in the descriptor
space and the mean over all points and over all shapes is reported. The hit rate
@kNN = 10 improved from 0.29 (HKS), 0.35 (WKS), 0.41 (OSD) and 0.52 (LSCNN)
to 0.73 (mkdCNN). The receiver operating characteristic (ROC) plots the true positive
rate against the false positive rate of point pairs at several distance thresholds in
the descriptor space. For a better distinction between the approaches, we plot the
ROC curve in semilogarithmic scale. The measurements for the correspondence quality
follow [Kim et al., 2011]. The ground truth meshes are used to compute the geodesic
distances between all points on a shape and the percentage of point pair matches that
are at most r-geodesically apart from their corresponding ground truth points are
reported. For the mkdCNN this means that over 80% of point matches have a geodesic
distance to their ground truth points of 10 cm or less.

Figure 4.3 visualises qualitative results of descriptors learned with the mkdCNN. A
point is selected on a reference shape (on the right hand and left shoulder, respectively)
and its distance in the descriptor space to all other points on the same and other shapes
of the test set is computed. The distances are color-coded, where cold colors correspond
to small distances. For most of the shapes distinct peaks around the ground truth are
observable.

4.1.3.2 Semantic Body Parts Segmentation

The FAUST dataset does not include point-wise semantic labels for human body parts.
Therefore, we labelled the points manually on a reference shape and transferred the
labels to all other shapes via the known point correspondences. An exemplary ground
truth labelling can be seen in Figure 4.7 (left). The 15 labels correspond to the head,
thorax, abdomen, left hand, left lower arm, left upper arm, left foot, left lower leg,
left upper leg, right hand, right lower arm, right upper arm, right foot, right lower
leg and right upper leg. The semantic segmentation on the FAUST dataset was also
investigated in [Kleiman et al., 2018], but only up to intrinsic symmetry (e.g. no
distinction between right and left foot).

The default mkdCNN configuration for the semantic body parts segmentation is
the same as for the descriptor learning task: the graph Laplacian is computed with
k = 100 nearest neighbors; we use the random walk diffusion operation with diffusion
parameters σ = {0.0125, 0.025, 0.05, 0.1, 0.125, 0.25, 0.5, 1} and t = 7; no initial features
are used on the input graph. For the classification task another 1 × 1 convolution is
employed after the fourth mkdCNN layer producing softmax scores. The model is
trained with a cross-entropy loss weighted with the root of inverse label frequencies and
the Adam optimizer (initial learning rate: 10−4). Training is stopped after 50 epochs.
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General Results Figure 4.5 depicts segmentation results for a selection of point
clouds from the FAUST test set. The mkdCNN produces accurate and precise point
cloud labels, even for challenging poses (fourth column: touching hands, fifth column:
right foot touches left knee). A Dice overlap of 0.95 ± 0.04 (averaged over all labels
and all shapes of the test set) confirms the good visual impression.

Ablation Study Results To understand the effect of different parameter and
architectural choices in the mkdCNN, we perform several ablation experiments on the
segmentation task. The default configuration for all experiments is the one described
above. Using the exact diffusion process instead of the random walk approach yields
a slightly improved Dice (0.96 ± 0.03 vs 0.95 ± 0.04) at the cost of a much higher
inference time (approximately 20 s and 5.5 s, respectively) due to the costly matrix
inversion. Further evaluation results are shown as box-plots of Dice coefficients in
Figure 4.6 (top row). In our first ablation experiment we study the effect of different
number of diffusion kernels, i.e. the number of employed weighting schemes for the
diffusion operation, on the segmentation results. Increasing the number of different

Fig. 4.5: Visualisation of segmentation results on a selection of shapes from the FAUST test
set. While the segmentation is visually convincing for most 3D point clouds, small
inconsistencies can be observed. On the third shape in the top row points of the
right lower arm , right upper arm , left lower arm and left upper arm are not
always assigned to the correct side of the body. The same applies for points of the
right upper leg and left upper leg on the fourth shape in the top row.
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Fig. 4.6: Body parts segmentation results on the FAUST test set studying different parameter
settings and data disturbances. Default configuration parameters are highlighted in
bold.

σ values from one to eight (and thus also increasing the total number of trainable
weights of subsequent 1 × 1 convolution layers from 40k to 150k) improves the mean
Dice from 0.85 ± 0.11 to 0.95 ± 0.04. Particular interesting is the decreased standard
deviation which implies a gain in robustness with respect to the variability between
shapes. For the second experiment the number of mkdCNN Layers was set to 1, 2, 4
and 8, respectively. With an increased number of layers the size of the feature maps was
reduced in order to keep the number of free parameters approximately the same for each
configuration. Thus, the performance gain is introduced through a deeper mkdCNN
architecture and not attributed to an increased capacity of the network. A difference in
Dice overlap is especially recognizable between a one-layer and a two-layer mkdCNN.
Another parameter that is not directly connected to the mkdCNN architecture but
has a notable effect on the segmentation outcome is the number of nearest neighbors k

for the creation of the graph Laplacian from a given point cloud. For the mkdCNN
it seems to be an advantage to be build on top of a graph with many locally highly
interconnected nodes. The mean Dice coefficient increases from 0.88 ± 0.04 (k = 5) to
0.95 ± 0.04 (k = 100).
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Fig. 4.7: Examples of our different data disturbance experiments. In this Figure Gaussian
noise with a standard deviation of 0.03 is added to the ground truth points. The
ratio for missing data points as well as added outliers is 0.3.

Robustness Rests Results A desirable property of a point cloud processing network
is robustness against any disturbances of the input data. In a number of experiments
we investigate the effect of different data disturbances on the segmentation results.
Network parameters were not adapted for the robustness experiments. Figure 4.7
depicts the impact of the studied point perturbations on an exemplary ground truth
point cloud. Robustness against noise is tested with random Gaussian noise added
to the input cloud. We employ different standard deviations for the Gaussian (std =
{0.01, 0.02, 0.03, 0.04, 0.05}). With a std of 0.02 the mean Dice coefficient is still
approximately at 0.90. The results deteriorates with a std of 0.03 but Figure 4.7 shows
that the noise is already at a very high level and unresolvable ambiguities exists in
this synthetic ground truth. In the next experiment we remove points at random
with a certain ratio. Even if every second point is removed the mkdCNN produces
segmentations with a mean Dice of 0.75 without the need of adapting the network
parameters. To investigate how the network can cope with outliers we randomly add
points within the shapes bounding box. Added points are labelled as background. The
results show that the segmentation task has become more difficult with the additional
background class but is very robust against the ratio of outliers. Even for an outlier
ratio of 0.5, i.e. half of all points belong to the background class, the Dice overlap is
above 0.80. Figure 4.6 (bottom row) summarises the results of all data disturbance
experiments.

4.1.4 Discussion and Conclusion

We have presented a new, simple architecture for descriptor learning and semantic
segmentation on point clouds. By decoupling the graph propagation and feature learning
step the mkdCNN overcomes the limitations of topology dependent approaches. Using
the Laplacian and its approximation enables an efficient implementation of the diffusion
of feature maps defined on sparse nodes that is transferable to different graphs and we
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showed that by providing multiple different kernels stronger features can be learned in
each subsequent Layer. For the task of descriptor learning on point clouds from the
FAUST dataset the mkdCNN (without any input features) shows better performance
than a number of other spectral descriptors and learning approaches. Experiments on
manually labeled body parts on the point clouds demonstrate the general feasibility
of our approach for the task of semantic segmentation, even for highly noisy input
(Gaussian noise, missing points, outliers). We validated several choices for our network
architecture in ablation experiments and showed that a multi-layer mkdCNN with a
high number of diffusion kernels build on top of a locally highly interconnected graph
gives the best segmentation results in terms of Dice overlap. Visual inspection of the
segmented point clouds expose rare failure cases due to ambiguities in the symmetry of
the human body.

Overall the results for both tasks are very promising and demonstrate a substantial
improvement over both hand-crafted spectral features and graph convolution approaches.
Especially the proposed use of multiple kernels and the consistent employment of
mkdCNN layers in a multi-layer fashion helped to decrease error rates for Dice coefficients
in our investigated segmentation task by 66% when using eight instead of a single
diffusion kernel and by 52% when increasing the depth from one to four layers. This is a
significant improvement to the simple diffusion CNN in the work of Atwood et al., 2016,
which is related to our mkdCNN in a configuration with only one kernel and a single
layer. Despite using only topology-invariant and isotropic kernels, the learned non-linear
combination in our proposed multi-kernel network help to create expressive and highly
discriminative filters that enable accurate graph node classification. When visually
inspecting the point descriptor similarity in Figure 4.3 it appears that the learned
16-dimensional feature vectors do not differentiate well between symmetric structures
(e.g. left and right shoulder). However, the semantic labeling tasks demonstrated that
the subtle global differences in the human pose are sufficient to correctly label and
distinguish between the right and left half of the body. For some rare cases the evident
errors are indeed the inconsistent assignment of points to the correct side of the body
(see Figure 4.5 top row, third and fourth column).

Our mkdCNN framework provides some straightforward potential extensions for
further improvements while maintaining its general design and inherent computational
efficiency. Until now, we did not consider signals on our input point cloud but features
like fast point feature histograms (FPFH) [Rusu et al., 2009], RGB values (acquired
with real-world 3D scanners like the Kinect) or spectral features can potentially increase
the networks performance. In this work we investigated the feasibility of the mkdCNN
for learning on point clouds. As the diffusion operation is based on the graph Laplacian
the network can be easily employed for general graphs. Testing our approach on graph
datasets like Cora or PubMed Sen et al., 2008 may yield interesting new insights. An
interesting research direction in general is to enable the possibility to not only learn
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features of a graph but also the connections (edge weights) between nodes and therefore
incorporate mkdCNN into graph attention approaches [Velickovic et al., 2018].

4.2 Sparse Structured Prediction for Semantic Edge
Detection

4.2.1 Introduction

The vast majority of medical image acquisition and analysis has so far focused on
reconstructing and processing dense data. This is mainly motivated by the simplicity
of representing data points and their spatial relationships on regular grids and storing
or visualising them using arrays. In particular convolutional operators for feature
extraction and pooling have seen increased importance for denoising, segmentation,
registration and detection due to the rise of deep learning techniques. Learning spatial
filter coefficients through backpropagation is well understood and computationally
efficient due to highly optimized matrix multiplication routines for both CPUs and
GPUs. However, for many computer vision tasks in medical image analysis such as
landmark or edge detection it seems unnecessary and expensive (in terms of time and
memory limitations) to process images end-to-end with dense methods, e.g. fully-
convolutional networks or encoder-decoder architectures. Therefore, in this work, we
aim to show new possibilities in the area of deep learning to process image data on
sparse and irregular instead of dense grids. The feasibility of our suggested approach is
demonstrated on the problem of semantic edge detection in CT and X-ray images.

4.2.1.1 Related Work

Of all hierarchical feature learning models, CNNs have shown to be one of the most
successful approaches for a wide variety of tasks such as classification, bounding box
regression and segmentation [He et al., 2017; Ronneberger et al., 2015]. Lately, another
class of works (graph convolutional neural networks (GCNNs)) attempts to transfer
these well-known concepts from the two dimensional image domain to non-Euclidean
and irregular domains. Spectral CNNs, defined on graphs, were first introduced in
[Bruna et al., 2014]. The main drawback of the proposed method is that it relies on
prior knowledge of the graph structure to define a local neighbourhood for weight
sharing. [Mikael et al., 2015] extended the ideas to graphs where no prior information
on the structure is available. While [Bruna et al., 2014; Mikael et al., 2015] relied on
splines for the formulation of their graph convolutional operators, [Kipf et al., 2017] uses
truncated Chebyshev polynomials that allow for clear description of the support size of
the learned spectral filters. [Bronstein et al., 2017] provides a comprehensive review of
current research on this topic. In the medical domain GCNNs were successfully applied
in a number of applications such as population-based disease prediction [Parisot et al.,
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2017], metric learning for brain connectivity graphs [Ktena et al., 2017] and survival
analysis on pathological images [Li et al., 2018].

Edge detection is a key task in computer vision applications and is studied for decades
[Canny, 1986]. [Dollár et al., 2013] chose a data-driven approach using random decision
forests to predict structured labels from input image patches. This technique was
successfully applied in the medical domain for multi-modal registration of ultrasound
and CT/MRI images [Oktay et al., 2015]. [Xie et al., 2015] is the first deep learning
method to explicitly learn edges. Features are extracted with a modified VGGNet and
all layers are trained with deep supervision. In the end side outputs from different VGG
Layers are fused to output a final edge map. State-of-the-art detectors for semantic
edge detection mainly resemble encoder-decoder architectures that are trained with
specialised loss terms [Liu et al., 2020; Yu et al., 2017].

4.2.1.2 Contributions

In this work we make a first step towards dense prediction from a few sparse sampling
points using deep learning methods. We bring together the robustness of grid based
CNNs and the flexibility of GCNNs in a single framework for pixel-level structured
prediction. In this, our work differs from [Li et al., 2018], which used GCNNs for
global context aggregation for image labelling. Our main contributions is the sparse
structured prediction network (SSPNet). Furthermore, we successfully provide a first
proof-of-concept for our new approach by evaluating it on the challenging task of
semantic edge detection in medical images.

4.2.2 Methods

In this section, we present our proposed approach for sparse structured prediction for
semantic edge detection. Figure 4.8 illustrates the general idea of our method. Input
to our pipeline is an image x. A light-weight CNN ϕ, called sample CNN, extracts
potentially informative locations from the image and outputs a single channel sample
map ϕ(x). A fixed number N of sample coordinates ((x1, y1), . . . , (xN , yN )) are drawn
following a multinomial distribution with probabilities proportional to the sample map’s
values. Depending on the application many alternatives of extracting sampling locations
are conceivable, e.g. for landmark detection one could initialize the sample map with
the mean locations of the landmarks in the training set. At the given positions, patches
(p1, . . . , pN ) are extracted from the input image x. Furthermore, a simple distance
graph Gσ is generated. The adjacency matrix A of the graph Gσ is given by entries

aij = exp
(

−d2
ij

2 · σ2

)
,
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Class-agnostic Loss 𝐿𝑐𝑎

Patches (𝑝1, … , 𝑝𝑁)

Input Image (𝑥)

Sample CNN
𝜙 .

Sample Map (𝜙 𝑥 )

SSPNet
Φ .

GT Edgescs (𝑦𝑐𝑠)GT Edgesca (𝑦𝑐𝑎)

Prediction (Φ(𝑝1,… , 𝑝𝑁))

Class-specific Loss 𝐿𝑐𝑠

Semantic Edge Detection

Fig. 4.8: Our general idea for sparse semantic edge detection. We train a lightweight fully-
convolutional CNN with a class-agnostic loss to output an informative heatmap
from which samples are drawn with probabilities proportional to its values. Image
patches are extracted around the chosen locations and our proposed SSPNet processes
the generated patch graph to output a semantic edge activation for each sampling
point. To recover a dense prediction all edges are accumulated in an array and the
class-specific loss is applied to update the SSPNet’s parameters.

where σ is a scalar diffusion coefficient and dij denotes the euclidean distance between
two sampling locations (xi, yi) and (xj , yj). Again, depending on the application and
given priors the graph may be initialized accordingly. Next, the extracted image patches
(p1, . . . , pN ) as well as the graph Gσ serve as input to our proposed SSPNet (explained
in detail below), which predicts edges for each input image patch and accumulates all
predictions on a dense grid weighted by their class-specific confidence. This semantic
edge map is our final output. While the focus of this work is clearly on the SSPNet, in
the following we also shortly describe the training of the sample CNN.

4.2.2.1 Sample CNN

The sample CNN ϕ is based on a lightweight version of the holistically-nested architec-
ture in Xie et al., 2015. We significantly cut the networks capacity by removing deeper
layers and use reduced numbers of filters. In total the network consists of only three
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CNN Encoder

CNN Structure Head

GCNN Semantic Head

AvgPool
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Hough Voting

Prediction (Φ(𝑝1,… , 𝑝𝑁))
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Fig. 4.9: The proposed sparse structured prediction net (SSPNet) expects a graph of patches
sampled at informative image locations. For each patch a CNN encoder extracts a set
of feature maps, which are further processed by 1) the structure head that predicts
local edge activations and 2) the semantic head where global context is aggregated
by a GCNN. We perform a weighted Hough voting to accumulate all predictions and
recover a dense semantic edge map.

layers (each with two 3 × 3 convolutions + relu activation). Layer 2 and 3 start with
convolutions with stride 2 resulting in the network’s receptive field size of 23. After
each layer a side output ŷi is generated by a further 1 × 1 convolution and sigmoid
activation. Side outputs are concatenated and fused to form a final prediction ŷ0 by
a 1 × 1 convolution and sigmoid activation. The sample CNN is trained with deep
supervision on all outputs using the loss function from Deng et al., 2018 which combines
the binary cross-entropy (BCE) and Dice loss (DICE) to

Lca =
3∑

i=0
αBCE(ŷ0, yca) + βDICE(ŷ0, yca).

In the loss term yca depicts the class-agnostic version of the ground truth edge map
and α and β control the weighting of the two losses. Trading robustness for precise
localization the final sample map is obtained from prediction y0 after multiple average
pooling steps with stride 1.

4.2.2.2 SSPNet

As stated above input for our SSPNet Φ are the extracted image patches (p1, . . . , pN )
as well as the graph Gσ. The network itself consists of a CNN encoder part, a structure
and semantic head and a final Hough voting step to recover a dense prediction from the
single patches. An overview of our proposed SSPNet is given in Figure 4.9. The CNN
encoder applies four convolutions (kernel sizes: 5, 3, 3, 3) with relu activations on each
image patch. The resulting feature maps are further processed by two network heads.
The structure head consists of three transposed convolutions (kernel sizes 3, 3, 3) and
relu activations. The final structured prediction is obtained by a 1 × 1 convolution with
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sigmoid activation. The semantic head aggregates global context information and is
modeled with a GCNN. Input features on our graph are the average pooled feature
maps from the CNN encoder. We also experiment with explicitly adding the sampling
coordinates as additional informative features. For this part of our work we decided to
strive for simplicity and use a simple random walk diffusion with a single σ kernel to
pool features across our input graph Gσ [Atwood et al., 2016; Hansen et al., 2019a].
The diffusion process can be described by the diffusion matrix

L = I − D−1A,

where I denotes the identity matrix and the degree matrix D is solely defined by its
diagonal elements dii =

∑
j aij . By matrix multiplication with the input feature vector

a weighted average pooling across edges of the graph is employed. The diffusion pooling
is followed by two 1 × 1 convolutions with relu activations. In total we employ two
of the described graph convolutions. Final semantic confidence scores for each node
(sampling locations) on the graph are obtained by a 1 × 1 convolution with sigmoid
activation. As Hough voting has been proven to be effective for locating shapes in
images [Ballard, 1981; Lindner et al., 2015] we accumulate the structured predictions
from all image patches on a dense grid (with C channels, where C corresponds to
the number of semantic classes) and weight each prediction with the corresponding
semantic confidence score. Furthermore, each grid point is normalized by the number
of predictions made for this point. Note that by construction the final semantic edge
map holds values between 0 and 1 and we can apply our class-specific similar to our
class-agnostic loss as

Lcs =
C−1∑
i=0

wi(αBCE(ŷ(i), y(i)
cs ) + βDICE(ŷ(i), y(i)

cs )),

where ycs depicts the one-hot encoded semantic ground truth edges, such that pixels
can belong to multiple labels. Classes may be weighted by the parameters wi.

4.2.3 Experiments and Results

We validate the feasibility of our approach on two different datasets for the task of
semantic edge detection. The first dataset consists of 10 2D coronal slices of abdominal
CT scans from VISCERAL [Jimenez-del-Toro et al., 2016] and the second dataset is the
JSRT dabase of 247 chest X-ray images [Shiraishi et al., 2000]. As validation metric we
use the F-score on the fixed contour threshold (ODS), where the threshold is determined
from all images in the test dataset. Before evaluation the thresholded predictions are
thinned and spurious detections (< 10 pixels) are removed. ODS metrics are computed
for each semantic class individually and we report the mean value. We compare our
approach against three different 5-Layer UNet implementations (UNet-S, UNet-M,
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UNet-L). The UNet-S has a comparable capacity in terms of learnable parameters as
our SSPNet, whereas the UNet-L has almost 2.5 as many parameters.

4.2.3.1 Implementation Details

All models were trained for 300 and 100 epochs for VISCERAL and JSRT, respectively.
ADAM optimisation was used with an initial learning rate of .02. We employ batch
normalization with a mini batch size of 4 and an exponential learning rate schedule with
a multiplicative factor of 0.99 to stabilize training. The images are augmented with a
random affine transformation. The graph for the SSPNet is computed with a σ value
of 0.1 and normalized coordinates. We set the α and β parameters of the loss terms to
.001 and 1, respectively. Class weights were applied corresponding to the organ label
occurrences for all experiments with the UNet variants. During training and at test
time we sample patches at 500 and 2000 locations, respectively. All hyperparameters
were determined by grid search for our simplest baseline method and kept fixed for all
further experiments.

4.2.3.2 VISCERAL

We perform initial experiments on 10 2D coronal slices of abdominal CT scans from
VISCERAL in a leave-one-out fashion. The images are resampled to an isotropic
pixelsize of 1.5mm2 and cropped to dimensions of 320 × 312 without any guidance. We
consider ground truth labels for seven anatomical structures: liver, spleen, bladder,
left kidney, right kidney, left psoas major muscle (pmm) and right pmm. Besides
our described architecture we test three other baselines of the approach: A SSPNet
employing only 1 × 1 convolutions instead of the GCNN, the GCNN without sampling
coordinates as additional input features and the network of 1 × 1 convolutions with
sampling coordinates as additional features.

Results Qualitative and quantitative results are depicted in Figure 4.10. The GCNN
outperforms the network with only 1 × 1 convolutions in both cases with and without
sampling coordinates as additional features, although the result is much clearer in the
second case (ODS of .690 against .786). The best SSPNet with an ODS of .827 yields
a higher score than the UNet-S and Unet-M and performs only slightly worse than
the UNet-L (ODS of .769, .791 and .834 respectively). Without class-weighting the
UNet variants perform worse with ODS values of .763, .773 and .817, respectively. In
contrast, the SSPNet showed similar results with and without class weighting. The
visual comparison shows a clearer outline of the psosas muscels and a better detection
of the unary bladder in favor of the SSPNet.
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Parameters Samples ODS

UNet-S ∼500k dense .769
UNet-M ∼900k dense .791
UNet-L ∼1300k dense .834

SSPNet – 1 × 1 conv. ∼500k 2000 .690
SSPNet – GCNN ∼500k 2000 .786
SSPNet – 1 × 1 conv. + coords. ∼500k 2000 .801
SSPNet – GCNN + coords. ∼500k 2000 .827

Fig. 4.10: Qualitative and quantitative results on VISCERAL. The images show edge overlays
from seven anatomical structures: liver , spleen , bladder , left kidney , right
kidney , left psoas major muscle (pmm) and right pmm . Our approach outlines
edges of the psoas muscles much clearer and also detects the urinary bladder.

4.2.3.3 JSRT

The JSRT database consists of 247 chest X-ray images that were downsampled to
dimensions of 256 × 256. A four-fold cross validation was employed to compute the
results. We test the SSPNet with additional sampling coordinates as input features
against the three UNet implementations UNet-S, UNet-M and UNet-L. Ground truth
labels are generated from the provided landmarks for five anatomical structures: left
lung, right lung, left clavicle, right clavicle and heart.

Results Qualitative and quantitative results are depicted in Figure 4.11. The SSPNet
yields a slightly higher OSD score of .900 than the UNet-L with .884, though visual
results are mostly comparable. However, in some cases the UNet misses parts of the
edges of the heart whereas the SSPNet can follow informative gradients along its outline.

4.2.4 Discussion and Conclusion

In this work we proposed a new approach for structured prediction for semantic edge
detection from a few sparse sampling locations on an image. To the best of our
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Parameters Samples ODS

UNet-S ∼500k dense .874
UNet-M ∼900k dense .878
UNet-L ∼1300k dense .884

SSPNet – GCNN + coords. ∼500k 2000 .900

Fig. 4.11: Qualitative and quantitative results on the JSRT chest X-ray database. The images
(from left to right: original X-ray, ground truth, Unet-L, SSPNet) show edge
overlays from five anatomical structures: left lung , right lung , left clavicle ,
right clavicle and heart . The UNet misses parts of the edges of the heart whereas
our approach successfully follows informative gradients along its outline.

knowledge the SSPNet is the first deep learning network that combines structured
prediction with CNNs and global context aggregation with graph convolutions to recover
a dense output. In our experiments on VISCERAL and JSRT we showed that the
SSPNet performed better or on par with several UNet variants while having the lowest
number of trainable parameters.

For future work, incorporating the SSPNet in an end-to-end learning framework
instead of working with an explicitly trained sample CNN is clearly of high interest. This
may be achieved by using a more complex GCNN model with attention mechanisms,
e.g. [Monti et al., 2018], which could lead the selection of sampling locations. With
an extension to 3D volumes, our approach can be evaluated on medical datasets with
stronger memory and computational limitations. While in this work the focus was on
edge detection, other tasks for structured prediction, such as landmark detection in
medical images, may also be suited well for our approach.

In conclusion, we showed that our SSPNet is feasible for semantic edge detection in
medical images and we believe that it can be used as a potential alternative to dense
encoder-decoder architectures for general pixel-level image tasks in deep learning.
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Chapter 5

Decoupled Feature Learning and Sparse
Graphical Optimisation for Medical
Image Registration

This chapter presents a total of three graph-based approaches for the task of medical
image registration. The main methodological focus and difference to the previous chap-
ters is the decoupling of deep learning based feature extraction and (sparse graphical)
optimisation. The first contribution (Section 5.1), published in [Hansen et al., 2021c],
deals with a sparse loopy belief propagation algorithm for keypoint based abdominal
CT and CT-MR registration, that is extended by an efficient displacement candidates
sampling scheme. The algorithm is further boosted by additionally processing semantic
label maps, that were separately trained with a state-of-the-art UNet architecture.
The following methods presented in Sections 5.2 and 5.3 are both combining learned
geometric features from anatomical keypoint graphs extracted from lung CT scans
with conventional point cloud registration algorithms, highlighting the feasibility and
benefits of decoupled graph learning for medical image registration. Both approaches
are separately published in [Hansen et al., 2019c] and [Hansen et al., 2021a], respectively.

5.1 Revisiting Iterative Highly Efficient Optimisation
Schemes

5.1.1 Introduction

While the main focus of this work is on investigating the general problem of efficient
medical image registration, we here specifically deal with the clinical task of inter- and
intra-patient alignment of abdominal CT/MR scans. Enabling deformable multimodal
fusion (of thorax and abdomen) has numerous medical applications, e.g. for aligning
pre-interventional scans for image-guided (radio)therapy and multimodal diagnostic.
Inter-subject CT registration can enable statistical modelling of variations of abdominal
organs for abnormality detection and to provide a canonical atlas space.
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Medical image registration is often considered a task with substantial computation
times that may prevent its application in clinical workflows. While fully-convolutional
segmentation networks can produce contours almost instantly, a classical iterative
registration algorithm may often take minutes to converge. Hence, deep learning based
image registration has been proposed to improve run times, so far however often with
a degradation in alignment quality. The recent comprehensive medical registration
challenge Learn2Reg showed that especially for large internal motion and multimodal
fusion tasks, conventional methods are more robust and accurate than learning based
approaches at the cost of longer runtimes. Yet little effort has recently been devoted
in designing new iterative optimisation strategies for registration. GPU-accelerated
optimisation routines have been explored in the AirLab framework [Sandkühler et al.,
2020] and as instance refinement in the DL-based VoxelMorph and PDD [Balakrishnan
et al., 2019; Heinrich, 2019]. Discrete optimisation may inherently reduce the number
of iterations but has large memory requirements and either limited accuracy or a fixed
capture range.

We hypothesis that a suitable combination of discrete and iterative schemes has been
mostly overlooked in previous research but could provide new perspectives for medical
registration without learning. We also note, that the limited availability of GPUs in
clinical setups is often disregarded for run times - hence speeding up CPU computation
bring real benefits. Since registration algorithms are often used as versatile tools to
handle a variety of tasks an evaluation on complementary applications is desirable:
here we consider monomodal inter-subject abdominal CT registration and multimodal
intra-patient CT/MR fusion both in affine/rigid and nonlinear settings.

5.1.1.1 Related Work

Learning-based registration can be roughly subdivided in metric- and label-supervised
approaches or combinations of them, where most algorithms employ a fully-convolutional
multi-scale CNN architecture with (potentially multiple) spatial transformer layers
[Balakrishnan et al., 2019; Mok et al., 2020]. Since, the alignment target can often not be
determined alone by a limited number of manually segmented structures - e.g. fissures
and lobes are not sufficient to guide intra patient lung registration - metric-supervised
methods may be considered more general. In conventional image registration a generic
similarity metric (possible based on hand-crafted features) is optimised together with a
regulariser in a multi-scale and usually iterative fashion.

Two popular MRF-based discrete optimisation approaches, drop [Glocker et al.,
2008] and deeds Heinrich et al., 2013a are related to our work. Drop employs Fast-PD
as optimisation backend, limits the complexity by sampling discrete displacements
only along the 3 principal axes (31 possible vectors in 3D) and iteratively refines
the matching. It uses a B-spline transformation, in a multi-resolution setting and
local cross-correlation as metric. Deeds relies on the faster MST-BP optimisation
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[Felzenszwalb et al., 2005], and uses a dense discrete displacement search (up to 5000
vectors each). It employs a multi-scale approach with up to 5 warps, MIND features
[Heinrich et al., 2013b] for similarity and symmetry constraints. Both methods run in
≈ 1 minute on multi-thread CPUs.

The closest work to our method in learning based registration is linearised multi-
sampling [Jiang et al., 2019], which was proposed as an extension for spatial transformer
networks to tackle the noisy gradient estimation in differentiable trilinear interpolation.
Different to other DL-registration approaches the gradient with respect to a sub-pixel
displacement is not determined by differentiating the interpolation coefficients directly,
but instead a hyperplane is fitted at a small number of random sampling points in
the proximity of the current displacement. Using the slope of this plane as gradient
estimation was shown to be more stable especially for difficult transformations.

5.1.1.2 Contributions

We propose an efficient strategy for dynamically solving a regularised cost function that
is founded in graph-based optimisation and surpasses most conventional and learning-
based registration algorithms in terms of accuracy and speed. Similar to multi-sampling
we employ a randomised set of displacement candidates nearby the previous solution at
each iteration. But instead of directly computing a metric-based displacement gradient,
we perform a probabilistic discrete optimisation using a sparse variant of loopy belief
propagation (LBP) [Felzenszwalb et al., 2006] for the joint regularised cost function.
In contrast to dense discrete optimisation, the space of considered displacements is
reduced by orders of magnitudes and no fixed range of motion has to be pre-defined.
The methods improves runtimes - with <1 seconds GPU or <5 seconds CPU - compared
to DL registration, while matching or exceeding accuracy on three demanding tasks for
inter- and intra-patient registration of CT-CT and MR-CT of the abdomen.

5.1.2 Methods

Our method comprises a spatially randomly distributed sampling of control points (key-
points) and a conventional feature extraction step using hand-crafted contrast-invariant
descriptors followed by the proposed iterative (dynamic) loopy belief propagation opti-
misation of a regularised registration cost function. The registration is performed in
a small number of outer iterations in which the displacement search is dynamically
changed based on the probabilistic estimate of the inner optimisation iterations for
LBP. The feature descriptors can be efficiently evaluated on-line through indexing or
nearest neighbour interpolation for each keypoint in the fixed image and each candidate
in the moving image. Finally, either a trimmed least square or thin-plate spline fitting
is employed to obtain either a linear transform or extrapolate a nonlinear displacement
field.
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Algorithm: iterative LBP registration
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Fig. 5.1: Schematic overview and pseudo-code of our proposed iterative optimisation approach
for keypoints based 3D medical image registration using loopy belief (LBP) message
passing.

We employ MIND with self-similarity context with 12 channels [Heinrich et al., 2013b]
as state-of-the-art descriptor and enhance the capturing of spatial context by sampling a
small local patch of size 3x3x3 of these descriptors at each keypoint positions pfi

, result-
ing in a 324-dimensional vector. We use a symmetric k-nearest neighbour (kNN) graph
on the set of keypoints in the fixed scan Pf with edges (ij) ∈ E that connect keypoints
pfi

and pfj
. To optimise a regularised cost function that minimises the dissimilarity

between feature vectors in fixed and - at a displaced position - in the moving scan we use
the sum of squared difference metric and define a diffusion like regulariser. In discrete
optimisation the regularisation term is considered for each pair of possible candidate
displacement for each edge using rpq

ij =
∣∣∣(cp

i − pfi
) − (cq

j − pfj
)
∣∣∣2
2
. In contrast to most

common discrete optimisation schemes, the set of candidates cq
j is not pre-determined or

even equally spaced for each keypoint but dynamically adapted throughout iterations.
The actual optimisation is performed in a few inner iterations, where messages are
passed in parallel that enable the exchange of information across the graph and a more
accurate deformation estimation. The algorithm is described in detail in [Felzenszwalb
et al., 2006] and uses the following equation to compute outgoing messages mt

i→j from
pfi

to pfj
at iteration t: mt

i→j = min1,...,q,...l

(
di + αrq

ij − mt−1
j→i +

∑
(h,i)∈E mt−1

h→i

)
.

Once each LBP optimisation has converged, new candidates are drawn from a local
neighbourhood (uniformly spatially distributed) and the search region can gradually
adapt to the true optimum. To extrapolate from the final correspondences to a dense
displacement either thin-plate splines or affine least-squares fitting is employed. A
visual overview of the concept with a brief pseudo-code is given in Fig. 5.1.
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Compared to conventional stochastic gradient descent methods our proposed optimisa-
tion scheme benefits from the discrete setting of the search that finds the combinatorial
minimum of a wide range of displacements. In contrast to commonly used loopy belief
propagation (which iterates only over steps of message passing) we introduce a second
and important outer iteration over the capture ranges of displacements. This approach
is to the best of our knowledge the first that couples a discrete belief propagation
optimisation with a sparsely distributed and locally adaptive solution space of potential
displacements for each control point.

5.1.3 Experiments and Results

To demonstrate the effectiveness and robustness of our iterative optimisation approach,
we perform a comprehensive evaluation on three challenging abdominal datasets covering
inter- and intra-patient, multimodal (CT/MR) as well as pre- and non-pre-aligned
registration tasks. The datasets are described in detail in Section 5.1.3.1. The evaluation
metrics are outlined below and closely follow the evaluation design of the L2R challenge,
assessing accuracy and smoothness of the displacement field as well as the runtime of
the algorithm. Finally, we describe implementation and configuration details of our
proposed and comparison methods. All methods and experiments (with exception of
drop2) were implemented and evaluated using the latest version of PyTorch (v1.7.1).

5.1.3.1 Datasets

CT-CT (L2R 2020) For our experiments on inter-patient alignment of abdominal
CT scans we use the corresponding dataset (Task 3) from the Learn2Reg (L2R) challenge
[Hering et al., 2022]. It contains 30 abdominal CT scans with 13 manually labelled
anatomical structures: spleen, right kidney, left kidney, gall bladder, esophagus, liver,
stomach, aorta, inferior vena cava, portal and splenic vein, pancreas, left adrenal
gland, and right adrenal gland. The image data and labels themselves stem from [Xu
et al., 2016] and were pre-registered to a canonical space and resampled to same voxel
resolution and spatial dimensions (192x160x256). We report evaluation results on the
predefined validation set, which describes a subset of 10 CT scans and 45 registration
pairs.

CT-CT To study the effect of non-pre-aligned data and thus more complex defor-
mations on the different registration methods we also consider the original data from
[Xu et al., 2016]. The segmentation labels, resampling procedure of the CT scans and
validation pairs remain the same as described above.

MR-CT Inter-patient alignment of abdominal CT to MR is investigated on 16
selected scan pairs from different trials in The Cancer Imaging Archive (TCIA) project
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[Akin et al., 2016; Clark et al., 2013; Erickson et al., 2016; Linehan et al., 2016]. Four
different sized organs (liver, spleen, left and right kidney) were manually labelled by us
for each MR-CT scan pair to assess the registration accuracy. The data (with exception
of a withheld test set) will be made publicly available as part of a larger dataset for
abdominal registration later this year. Pre-processing comprises resampling the scan
pairs to an isotropic resolution of 2 mm and cropping/padding to consistent voxel
dimensions of 192 × 160 × 192. We report evaluation results over all 16 MR-CT pairs.

5.1.3.2 Evaluation Metrics

The used evaluation metrics cover the three most important aspects of medical image
registration: 1) registration accuracy, 2) smoothness of the displacement field and
3) runtime of the algorithm. We assess the accuracy by means of alignment of the
manually labelled organ segmentations using the Dice similarity metric (F1 score).
In addition, the plausibility of the deformation field is of great clinical relevance and
can be estimated by the standard deviation of the (logarithmic) Jacobian determinant
[Kabus et al., 2009; Leow et al., 2007] (SDlogJ). Finally, we report the runtime of the
registration methods, both on CPU (Apple M1) and GPU (NVIDIA RTX 2080 Ti),
including all necessary computations after reading the images until predicting the final
dense displacement field.

5.1.3.3 Comparison Methods and Hyper-Parameters

We employ a number of different related state-of-the-art learning- and optimisation-
based registration methods in comparison to our proposed iterative LBP approach.
Hyperparameters for ours and all comparison methods were selected on a subset of
training scans for CT-CT and a small number of validation scans for MR-CT. Note,
that iterative registration methods are much less sensitive to manual parameter choices
than deep learning approaches. First, we substantially extended and improved upon
the original VoxelMorph method [Balakrishnan et al., 2019] by replacing the simplistic
U-Net with a two-stream architecture and a custom MIND-based metric-loss. Despite
these advancements VoxelMorph+ (VM+) does not yield satisfactory results for very
large misalignments (CT-CT w/o pre-align and MR-CT). Second, the overall runner-up
in the Learn2Reg challenge, PDD-net [Heinrich et al., 2020], again with MIND loss, is
used with all available extensions: multiple warps and instance optimisation for CT-CT,
as well as affine least squares fitting for MR-CT. Third, drop2 a recent re-implementation
of [Glocker et al., 2008] is used as a related baseline for discrete optimisation. We
explored a wide range of settings and found that diffusion regularisation and an initial
B-spline spacing of 80mm in combination with the following settings worked best:
cross-correlation (weight: 0.25) and entropy correlation (weight: 0.5) for CT-CT and
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MR-CT respectively with three pyramid levels each: 12mm, 8mm, 4mm for CT-CT
and 8mm, 6mm, 4mm for MR-CT with a doubling of the iterations for the latter.

Furthermore, we evaluate two alternatives to our proposed method, all with the same
metric patch-based MIND-SSC and one (nonlinear, for CT-CT (L2R 2020)) or two
warps (affine + nonlinear, for CT-CT and MR-CT): dense 3D displacement sampling
with LBP and continuous Adam optimisation with diffusion regularisation. For our
proposed method, we chose 20 outer and 3 inner (LBP) iterations, where 12 (CT-CT) or
16 (MR-CT) displacement candidates are drawn from a uniform distribution for each of
2048 (or 8192 for nnUNet features) keypoints using capture ranges that start from ±15
voxels and linearly decrease to ±3 voxels. For Adam we employed a learning rate of 0.1
and 100 iterations. For the dense variant of LBP, we considered 113 displacements in
parallel with a range of ±30 voxels. The regularisation is performed on a kNN graph
with 10 nearest neighbours for the LBP variants and 16 neighbours for Adam. The
regularisation weight (alpha) is set to 2.5 (LBP) and 0.2 (Adam), respectively. For all
methods (with exception of Voxelmorph+) a coarse and convex binary mask is used to
restrict registration to the region of interest (which includes approximately 50% of the
original number of image voxels).

5.1.3.4 Results

Quantitative and qualitative results of our experiments are shown in Table 5.1 and
Figure 5.2, respectively. For the pre-aligned CT-CT dataset our proposed iterative
LBP approach yields a Dice score of 40.1%, which is competitive to the best performing
deep learning based comparison method, PDD-Net, with 41.5%. The sparse candidate
sampling strategy of our method enables fast runtimes of <1 second on GPU and
approximately 5 seconds on CPU. Making use of label information (weakly supervised
learning for Voxelmorph+, using nnUNet [Isensee et al., 2021] softmax features for
optimisation based approaches) consistently and significantly improves the registration
results by 8.5% points (VoxelMorph+), 18% points (Adam), 22% points (dense LBP)
and 25.1% (iterative LBP). The inference time of the network is included in the total
runtimes of the optimisation based methods. Our methods final Dice score of 65.2%
is also comparable to the reported score of 67% of the winning entry (LapIRN Mok
et al., 2020) of the L2R challenge on the hidden test set (validation and test results
are generally comparable). Results on the non-pre-aligned CT-CT data show only
a moderate decrease in Dice score of 37.7% for our method (-2.4% points). Other
comparison methods are less robust, e.g. drop2 or Adam, decrease by 5.5% points
and 5.7% points Dice score, respectively. In this experiment, in addition to the Dice
metric, we evaluate the 95th percentile of the Hausdorff Distance (HD95) to further
highlight the differences between the state-of-the-art continuous optimiser (Adam) and
our proposed iterative LBP approach. We find initial values of 30.14 voxels, which
are reduced by Adam to 26.1 voxels. Our proposed method can substantially and
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statistically significantly (p < 0.0002 using a Wilcoxon signed rank test) improve upon
this with an error of only 17.3 voxels. For the inter-patient MR-CT dataset our iterative
LBP method clearly yields the best Dice score of 76.4% with runtimes of 1.0 seconds
on GPU and approximately 13 seconds on CPU.

5.1.4 Discussion and Conclusion

Differences to drop2, the iterative MRF registration technique proposed in [Glocker et
al., 2008]: while the general idea of solving registration as iterative discrete optimisation
is similar our method differs in a number of important design choices that greatly
improve accuracy and runtime. First, our model uses a sparse keypoint graph and
computes the similarity cost of displacements separately for each node, while [Glocker
et al., 2008] uses a grid-based model. We employ a feature-based metric and found
that spatially sampling one high-dimensional vector per keypoint sufficiently captures
similarity and no spline interpolant has to be evaluated. Loopy belief propagation is
used as discrete optimisation backend, which has a simpler implementation, provides
probabilistic estimates and lends itself to parallelism. Finally, our displacement sampling

Table 5.1: Quantitative evaluation results of proposed and comparison methods on all three
abdominal datasets considered. Runtimes are given for both GPU and CPU
(GPU/CPU). Experiments in the first half (after the first double rule) are based on
similarity metrics (MIND, NCC), while experiments in the second half (after the
second double rule) make use of label information.

CT-CT (L2R 2020) CT-CT MR-CT

Dice
[%]

SDlogJ Time
[s]

Dice
[%]

SDlogJ Time
[s]

Dice
[%]

SDlogJ Time
[s]

Initial 25.1 11.6 26.5

VM+ 35.4 .134 0.2/13
PDD-Net 41.5 .129 1.4/73 35.1 .131 1.4/73 63.6 .210 1.0/37

drop2 37.0 .147 -/43 31.5 .132 -/43 56.2 .109 -/68
Adam 36.6 .080 1.6/27 30.9 .087 2.7/46 71.1 .074 2.7/46

dense LBP 38.6 .119 0.8/14 36.4 .098 1.3/23 71.7 .085 1.3/23
iter LBP 40.1 .093 0.6/5 37.7 .092 1.0/13 76.4 .075 1.0/13

VM+ 43.9 .162 0.2/13
Adam 54.6 .046 3.4/52

dense LBP 62.1 .170 2.2/33
iter LBP 65.2 .088 1.9/22
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GT Initial iterative LBP PDD-Net drop2

Fig. 5.2: Qualitative results of selected methods (coronal view). Row 1-2: Overlayed warped
moving CT scan and warped segmentation labels for inter-patient CT-CT (L2R 2020).
Row 3-4: intra-patient MR-CT. PDD and our proposed iterative LBP achieve more
regular transformations than drop2 and are both very close to the ground truth for
inter-subject alignment. Our method yields the highest accuracy for multimodal
fusion especially at organ boundaries (lungs, kidneys).

injects more randomness by avoiding an axis parallel selection of motion vectors and
thus converges faster.

We have developed an efficient discrete optimisation framework for versatile medical
image registration that contrary to recent trends does not rely on learned convolutions
and improves both runtime and accuracy compared to deep learning registration. This
avoids lengthy preparations for supervised training and makes our method generally
applicable. In addition, separating label prediction and optimisation-based registration
offers improved explainability for clinicians compared to end-to-end learning methods
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(black box approach). The extensive experimental validation on three different ab-
dominal registration tasks demonstrate substantial advantages over both unsupervised
learning based and previous (iterative) discrete optimisers. We believe this is due to
the following reasons: 1) our method avoids regular grids and dynamically adapts the
shape of the solution space, finding an optimal balance between coverage and accuracy.
2) the combination of locally discriminative image features and globally regular graph
optimisation can more efficiently address the computational demands on medical image
registration than convolutional network architectures. A further surprising outcome is
the competitiveness of Adam optimisation using regularisation across keypoints and
MIND as loss term. This shows that iterative optimisation for registration should always
be considered as a strong baseline when discussing new learning-based approaches. Fu-
ture work could further reduce the complexity of supervised nnUNet feature extraction
through quantisation and pruning.

5.2 Deformable Point Set Registration with Regularised
GNNs

5.2.1 Introduction

Registration, i.e. determining a spatial transformation that aligns two images or point
sets, is a fundamental task in medical image and shape analysis and a prerequisite for
numerous clinical applications. It is widely used for image-guided intervention, motion
compensation in radiation therapy, atlas-based segmentation or monitoring of disease
progression. Non-rigid registration is ill-posed and thus a non-convex optimisation
problem with a very high number of degrees of freedom. In addition, the medical
domain poses particular challenges on the registration task, e.g. non-linear intensity
differences in multi-modal images or high inter-patient variations in anatomical shape
and appearance.

5.2.1.1 Related Work

Iconic registration Voxel-based intensity-driven medical image registration has been
an active area of research, which can e.g. be solved using discrete [Glocker et al., 2008]
optimisation of a similarity metric and a regularisation constraint on the smoothness of
the deformation field. Data driven deep learning methods based on convolutional neural
networks (CNNs), have only recently been used in the field of medical image registration.
In [Vos et al., 2019] an iconic and unsupervised learning approach is introduced that
learns features to drive a registration and replaces the iterative optimisation with a
feed-forward CNN. While achieving impressive runtimes of under a second on a GPU
the accuracy for CT lung motion estimation is inferior to conventional methods. Weak
supervision in the form of landmarks or multi-label segmentations was used in the CNN
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framework of [Hu et al., 2018], where the similarity measure is based on the alignment
of the registered labels.

Geometric Registration To capture large deformations, e.g. present in intra-patient
inhale-exhale examinations of COPD patients [Castillo et al., 2013] or vessel-guided
brain shift compensation [Bayer et al., 2018], geometric registration models - based
on keypoints or surfaces - offer a promising solution. Point-based registration has
not yet profited from the advantages of deep feature learning due to the restriction of
conventional CNNs to densely gridded input. Many current geometric methods (e.g.
[Bayer et al., 2018] and [Ravikumar et al., 2019]) are based on the well-established
coherent point drift (CPD) algorithm [Myronenko et al., 2010]. In addition to 3D
coordinates, they incorporate further image or segmentation-derived features, such as
point orientations or scalar fractional anisotropy (FA) values [Ravikumar et al., 2019].

Geometric Deep Learning While these hand-crafted features clearly improved on
the results of the CPD, recent methods from the field of geometric deep learning [Bron-
stein et al., 2017] would enable a data-driven feature extraction directly from point
sets. The PointNet framework [Qi et al., 2017a] was one of the first approaches to
apply deep learning methods to unordered point sets. A limitation of the approach
is that is does not consider local neighbourhood information, which was addressed in
[Wang et al., 2019a] by dynamically building a k-nearest-neighbour graph on the point
set and thus also enabling feature propagation along edges in that graph. Combining
convolutional feature learning with a differentiable and robustly regularised fitting
process has first been proposed for multi-camera scene reconstruction in [Brachmann
et al., 2017] (DSAC), but has so far been limited to rigid alignment.

Large Deformation Lung Registration Both iconic and geometric approaches
have often been found to yield relative large residual errors for large motion lung
registration (forced inhale-to-exhale): e.g. 4.68 mm for the discrete optimisation
algorithm in [Glocker et al., 2008] applied to the DIR-lab COPD data [Castillo et
al., 2013] and 3.61 mm (on the inhale-exhale pairs of the EMPIRE10 challenge) for
[Ehrhardt et al., 2010], which used both keypoint- and intensity-based information.
Learning the alignment of such difficult data appears to be so far impossible with
intensity-driven CNN approaches that already struggle with more shallow breathing in
4D-CT [Vos et al., 2019]. Thus being able to directly match vessel- and airway trees
based on geometric features alone can provide a valuable pre-alignment for further
intensity-based registration (cf. [Heinrich et al., 2015]) or be directly used in clinical
applications to perform atlas-based labelling of anatomical segments and branchpoints
for physiological studies [Tschirren et al., 2005].
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5.2.1.2 Contributions

Our work contributes two important steps towards data-driven point set registration
that enables the incorporation of deep feature learning into a regularised CPD fitting
algorithm. First, we utilise dynamic graph CNNs [Wang et al., 2019a] in an auxiliary
metric learning task to establish robust correspondences between a moving and a fixed
point set. These learned features are shown to yield an improved modelling of prior
probabilities in the CPD algorithm. Since all operations of the CPD algorithm are
differentiable, we secondly show that it is possible to further optimise the parameters
of the feature extraction network directly on the registration task. To evaluate our
method we register keypoints extracted from inhale and exhale states in lung CT-scans
from the challenging DIR-Lab COPD dataset [Castillo et al., 2013] showing the general
feasibility of a deep learning point set registration framework in an end-to-end manner
and with only geometric information.

5.2.2 Methods

In this section, we introduce our proposed method for deformable point set registration
with deeply learned features. Figure 5.3 summarises the methods general idea. Input
to our method are the fixed point set PF and the moving point set PM . While we
make no assumptions on the number of points or correspondences in the input point
sets, we assume a further set of keypoint correspondences with PF for the supervised
learning task, which is denoted as PC . We compute geometric features from PF and
PM with a shared dynamic graph CNN (DGCNN [Wang et al., 2019a]) ϕ. The spatial
positions together with the extracted descriptors are input to the feature based CPD
algorithm that produces displacement vectors for all points in PM . We then employ
thin-plate splines (TPS) [Bookstein, 1989] as a scattered data interpolation method to
compute the displacements for PC , which yields the transformed point set P

′
C . Finally,

we can compute the mean squared error (MSE) of the Euclidean distance between
correspondences in PF and P

′
C as a loss L for the optimisation of the feature extraction

network ϕ. In the following, we describe the descriptor learning with the DGCNN
as well as the extensions to the CPD algorithm to exploit point features as prior
probabilities.

5.2.2.1 Descriptor Learning on Point Sets with Dynamic Graph CNNs

Our proposed network architecture for geometric feature extraction is illustrated in
Figure 5.4. A key component is the edge convolution introduced in [Wang et al., 2019a],
that dynamically builds a k-Nearest-Neighbor (kNN) graph from the points in the input
feature space and then aggregates information from neighbouring points to output a
final feature map. We employ several edge convolutions with DenseNet style feature
concatenation to efficiently capture both local and global geometry. The final feature
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Fig. 5.3: Illustration of our proposed method for supervised non-rigid point set registration.
While we investigate the problem of 3D registration, here, point sets are depicted
in two dimensions for simplicity. Also, point sets are underlaid with coronal lung
CT slices as visualization aides. No image information is used in our registration
pipeline.

descriptor is obtained by fully connected layers that reduce the point information to a
given dimensionality. We restrict the output descriptor space by L2 normalisation to
enable constant parametrisation of subsequent operations in the registration pipeline
which stabilizes network training. To establish robust initial correspondences between
the moving and fixed point set the model is pretrained in an auxiliary metric learning
task using a triplet loss.

5.2.2.2 Feature-Based Coherent Point Drift

The CPD algorithm formulates the alignment of two point sets as a probability density
estimation problem. The points in the moving point set PM are described as centroids
of gaussian mixture models (GMMs) and are fitted to the points in the fixed point set
PF by maximizing the likelihood. To find the displacements for PM the Expectation
Maximization (EM) algorithm is used, where in the E-step point correspondence
probabilities C are computed and in the M-step the displacement vectors are updated.
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Fig. 5.4: Proposed network architecture for geometric feature extraction from the fixed and
moving point set. Input is a three-dimensional point set and the network computes a
16-dimensional geometric descriptor for each of the 4096 points. The number of layer
neurons for each operation is specified in the corresponding brackets.

We incorporate the learned geometric feature descriptors ϕ(PF ) and ϕ(PM ) as additional
prior probabilites with

C(PF , ϕ(PF ), PM , ϕ(PM )) = Cpos(PF , PM ) + α · Cfeat(ϕ(PF ), ϕ(PM )), (5.1)

where Cpos denotes the spatial point correspondence described in [Myronenko et al.,
2010], α is a trade-off and scaling parameter and

Cfeatmn(ϕ(PF )n, ϕ(PM )m) = exp(− 1
2 · ρ2 ∥ϕ(PF )n − ϕ(PM )m∥2) (5.2)

with n = 1 . . . N and m = 1 . . . M . N and M denote the number of points in PF

and PM , respectively. In addition to the parameter ρ in Eq. 5.2, that controls the
width of the Gaussian, the CPD algorithm includes three more free parameters: w, λ

and β. Parameter w models the amount of noise and outliers in the point sets, while
parameters λ and β control the smoothness of the deformation field.

5.2.3 Experiments and Results

Registering the fully inflated to exhaled lungs is considered one of the most demanding
tasks in medical image registration, which is important for analysing e.g. local ventila-
tion defects in COPD patients. We use the DIR-Lab COPD data set [Castillo et al.,
2013] with 10 inhale-exhale pairs of 3D CT scans for all our experiments. The thorax
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volumes are resampled to isotropic voxel-sizes of 1 mm and a few thousands keypoints
are extracted from inner lung structures with the Foerstner operator. Automatic
correspondences to supervise the learning of our DGCNN are established using the
discrete and intensity-based registration algorithm of [Heinrich et al., 2015], which has
an accuracy of ∼1 mm. In all experiments, no CT-based intensity information is used
and all processing relies entirely on the geometric keypoint locations.

In our first experiment, we learn point descriptors directly in a supervised metric
learning task. Therefore, a triplet loss is employed forcing feature similarity between
corresponding keypoint regions in point set pairs. The inhale and exhale point set form
the positive pair, while points from the permuted exhale point set yield as negative
examples. These learned features can be directly used in a kNN registration. We then
investigate the combination of spatial positions and learned descriptors in the feature-
based CPD algorithm. Finally, in our concluding experiment, the feature network is
trained in an end-to-end manner as described in Section 5.2.2 to further optimize the
pretrained geometric features.

5.2.3.1 Implementation Details

Due to the limited number of instances in the used dataset we perform a leave-one-out
validation, where we evaluate on one inhale and exhale point set and train our network
with the remaining nine pairs. During training we use farthest point sampling to obtain
4096 points from the inhale and exhale point set, respectively. Each evaluation is run
ten times and results are averaged to account for the effect of the sampling step. The
employed network parameters are specified in Figure 5.4. For the CPD algorithm (250
iterations) we use following parameters: α = 0.05, ρ = 0.5 w = 0.1, λ = 5 and β = 1.
For the end-to-end training we relax parameters ρ and β to 0.25 and 0.5, respectively,
to allow for further optimization of input features.

Fig. 5.5: Qualitative results in terms of 3D motion vectors on test case #5. The magnitude is
color coded from blue (small motion) to red (large motion).
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Table 5.2: Results for the 10 inhale and exhale CT scan pairs of the DIR-Lab COPD data
set Castillo et al., 2013. The mean target registration error (TRE) in mm is
computed on the 300 expert annotated landmark pairs per case. The p-values are
obtained by a rank-sum test over all 3000 landmark errors with respect to our best
performing approach.

Case
#

initial center-aligned triplet +
kNN@20

CPD triplet +
CPD (ours)

end-to-end
(ours)

1 26.3 17.8 8.1 5.5 4.2 3.4
2 21.8 14.7 15.6 8.4 9.3 8.9
3 12.6 10.6 6.4 2.7 2.5 2.4
4 29.6 19.0 8.3 4.8 3.4 3.2
5 30.1 18.4 7.8 8.4 5.2 4.6
6 28.5 16.2 7.5 14.0 5.1 4.3
7 21.6 10.2 6.3 3.0 2.6 2.5
8 26.5 17.4 6.3 6.8 4.3 3.9
9 14.9 14.1 9.0 3.5 3.1 3.6
10 21.8 19.6 14.9 7.4 7.5 7.4

mean 23.4 15.7 9.0 6.4 4.7 4.3
std 11.9 7.0 5.5 5.2 4.1 3.6

p-val < 10−4 < 10−4 < 10−4 < 10−4 1.4 · 10−2 -

5.2.3.2 Results

Qualitative results are shown in Figure 5.5 where our approach demonstrates a good
trade-off between the very smooth motion of the CPD and the potential for large
correspondences of the features from triplet-learning. Our quantitative results that are
evaluated on 300 independent expert landmark pairs for each patient demonstrate that
registering the point clouds directly with CPD (3D coordinates as input) yield a relatively
large target registration error (TRE) of 6.4±5.2 mm (see Table 5.2). Employing kNN
registration based on a DGCNN trained with keypoint correspondences to extract
geometric features without regularization is still inferior with a TRE of 9.0±5.5 mm
highlighting the challenges of this point-based registration task and the difficulties of
addressing the deformable alignment with one-to-one correspondence search. Combining
the geometric features of a pre-trained DGCNN with the regularizing CPD that is
extended to use 19-dimensional inputs (16 features + 3 coordinates) yields a substantial
improvement over each individual method with a TRE of 4.7±4.1 mm. Finally, using
end-to-end learning to back-propagate the regularized alignment errors through the
iterative point drift layers to further improve the feature learning shows another small
but significant improvement to 4.3±3.6 mm. These alignment errors cannot be directly
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compared to the large variety of image- and feature-based registration algorithms that
reached 3.6 mm [Ehrhardt et al., 2010], 4.7 mm [Glocker et al., 2008] or 1.1 mm
[Heinrich et al., 2015] for similar datasets, but were based on intensity information,
while our comparison is restricted to purely geometric approaches without intensity. In
addition, a better outcome would be expected by extending the keypoint extraction to
focus on vessel- or airway-based nodes and to include anatomical tree-based edges in
the graph model. Nevertheless, the results clearly showed that our models are already
able to directly learn semantic geometric features in a data-driven manner based on
the inherent correspondence information.

5.2.4 Discussion and Conclusion

We have presented a new method for deformable point set registration that learns
geometric features from irregular point sets using a dynamic graph CNN (DGCNN)
together with a regularizing and fully differentiable high-dimensional coherent point
drift (CPD) model. Our results clearly indicate that geometric feature learning, even
from relatively uninformative point clouds, is possible with DGCNNs and can be further
enhanced when incorporating the CPD model into the optimization. Evaluated on
challenging inhale-exhale lung registration of COPD patients we achieve an improvement
of 2.1 mm over the classical CPD method and are competitive with many classical image-
based registration algorithms despite the fact that no intensity information is used.
In addition to these encouraging findings, we believe that alternative regularization
models to the CPD, that require fewer iteration steps could have potential to further
improve this approach. In future works, many more applications, e.g. surface point
shape alignment and analysis, could benefit from deep point registration.

5.3 Deep Learning Based Geometric Registration without
Visual Features

5.3.1 Introduction

Current learning approaches for medical image analysis predominantly consider the
processing of volumetric scans as a dense voxel-based task. However, the underlying
anatomy could in many cases be modelled more efficiently using only a sparse subset
of relevant geometric keypoints. When sufficient amounts of labelled training data
are available and the region of interest can be robustly initialised, sparse surface
segmentation models have been largely outperformed by dense fully-convolutional
networks in the past few years [Isensee et al., 2021]. However, dense learning based
image registration has not yet reached the accuracy of conventional methods for
the estimation of large deformations where geometry matters - e.g. for inspiration-
expiration lung CT alignment. The combination of iconic (image-based) and geometric
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registration approaches have excelled in deformable lung registration but they are often
time-consuming and rely on multiple steps of pre-alignment, mask-registration, graph-
based optimisation and multi-level continuous refinement with different image-based
metrics [Rühaak et al., 2017]. In this work, we aim to address 3D lung registration as a
purely geometric alignment of two point clouds (a few thousand 3D points for inhale and
exhale lungs each). While this certainly reduces the complexity of the dense deformable
3D registration task, it may also reduce the accuracy since intensity- and edge-based
clues are no longer present. Yet, we demonstrate in our experimental validation that
even this limited search range for potential displacements leads to huge and significant
gains compared to dense learning based registration frameworks - mainly stemming
from the robustness of our framework to implicitly learn the geometric alignment of
vessel and airway trees.

5.3.1.1 Related Work

Point Cloud Learning Conventional point cloud registration (iterative closest point,
coherent point drift [Besl et al., 1992; Myronenko et al., 2010]) often focused on the
direct alignment of unstructured 3D points based on their coordinates. Newer work on
graph convolutional learning has demonstrated that relevant geometric features can be
extracted from point clouds with neighbourhood relations defined on kNN graphs and
enable semantic labelling or global classification of shapes, object parts and human
poses and gestures [Bronstein et al., 2017; Qi et al., 2017a]. Graph Convolutional
Networks (GCN) [Kipf et al., 2017] define localised filter and use a polynomial series of
the graph Laplacian (Tschebyscheff polynomials) further simplified to the immediate
neighbourhood of each node. The graph attention networks introduced in [Velickovic et
al., 2018] are a promising extension based on attention mechanism. Similarly, dynamic
edge convolutions [Wang et al., 2019a] achieve information propagation by learning
a function that predicts pairwise edge weights based on previous features of both
considered nodes.

Learning Based Image Registration In image registration, learning based methods
have surpassed their untrained optimisation-based counterparts in terms of accuracy
and speed for 2D optical flow estimation, where millions of realistic ground truth
displacement fields can be generated [Sun et al., 2018a]. Advantages have also been
found for certain 3D medical registration tasks, for which thousands of scans with
pixel-level expert annotations are available and the complexity of deformations is well
represented in the training dataset [Balakrishnan et al., 2019; Mok et al., 2020; Xu
et al., 2019]. As evident from a recent medical registration challenge [Hering et al.,
2022], deep learning has not yet reached the accuracy and robustness for inspiration to
expiration CT lung registration, where detailed anatomical labels are scarce (learning
lobe alignment might not directly translate into low registration errors [Hering et al.,
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2021]) and the motion is large and complex. Even for the simpler case of shallow
breathing in 4D CT, few learning-based works have come close to the best conventional
methods (e.g. [Rühaak et al., 2017]) despite increasingly complex network pipelines
[Fu et al., 2020].

Learning Graphical Registration More recent research in computer vision has also
explored geometric learning for 3D scene flow [Liu et al., 2019c] that aims to register
two 3D point clouds by finding soft correspondences. The challenge stems from the
difficulty of jointly embedding two irregular point cloud (sub-)sets to enable end-to-end
learning of geometric features and correspondence scores. Other recent approaches in
point set registration/matching combine deep feature learning with GCNs and classical
optimisation techniques, to solve the optimal transport [Puy et al., 2020] or reformulate
traditional matching algorithms into deep network modules [Sarlin et al., 2020]. In the
medical domain, combining sparse MRF-based registration [Sotiras et al., 2010] and
multi-level continuous refinement [Rühaak et al., 2017] yielded the highest accuracy for
two 3D lung benchmarks comprising inspiration and expiration [Castillo et al., 2013;
Murphy et al., 2011].

We strongly believe that geometry can be a key element in advancing learning based
registration and that the focus on visual features and fully-convolutional networks
has for certain applications diverted research from mathematically proven graphical
concepts that can excel within geometric networks.

5.3.1.2 Contributions

We propose a novel geometric learning method for large motion estimation across lung
respiration that combines graph convolutional networks on keypoint clouds with sparse
message passing. Our method considers geometric registration as soft correspondence
search between two keypoint clouds with a restricted set of candidates from the moving
point cloud for each fixed keypoint. 1) We are the first to combine edge convolutions
as end-to-end geometric feature learning from sparse keypoints with differentiable
loopy belief propagation (discrete optimisation) for regularisation of displacements on a
kNN graph adapted to irregular sets of candidates for each node. 2) Our compact yet
elegant networks, demonstrate surprisingly large gains in accuracy and outperform deep
learning approaches that make use of additional visual clues by more than 50% reduced
target registration errors for lung scans of COPD patients. 3) We present a further
novel variant of our approach that discretises the sparse correspondence probabilities
using differentiable extrapolation for a further six fold gain in computational efficiency
and with similar accuracy.
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Fig. 5.6: Overview of our proposed method for accurate point cloud alignment using geometric
features combined with loopy belief propagation in an end-to-end trainable deep
learning registration framework.

5.3.2 Methods

5.3.2.1 Loopy Belief Propagation for Regularised Registration of Keypoint
Graphs

We aim to align two point clouds, a fixed point cloud Pf (|Pf | = Nf ) and a moving
point cloud Pm (|Pm| = Nm). They consist of distinctive keypoints pfi

∈ Pf and
pmi ∈ Pm. We further define a symmetric k-nearest neighbour (kNN) graph on Pf

with edges (ij) ∈ E that connect keypoints pfi
and pfj

. A displacement vector vi ∈ V

for each fixed keypoint pfi
is derived from soft correspondences from a restricted set

of possible candidates cp
i ∈ Ci (determined by l-nearest neighbour search (|Ci| = l) in

the moving point cloud Pm). The regularised motion vector field V is inferred using
loopy belief propagation enforcing spatial coherence of motion vectors. The data cost
dp

i (di = (d1
i , . . . , dp

i , . . . , dl
i)) for a fixed point pfi

and a single candidate cp
i is modeled

as
dp

i = ∥θ(pfi
) − θ(cp

i )∥2
2 , (5.3)

where θ(.) denotes a general feature transformation of the input point (e.g. deep
learning based geometric features, see Section 5.3.2.2). Especially in this case of sparse
to sparse inference, missing or noisy correspondences can lead to severe registration
errors. Therefore, a robust regularisation between neighbouring fixed keypoints (defined
by edges (ij) ∈ E) is enforced by penalizing the deviation of relative displacements.
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Fig. 5.7: Illustration of proposed message passing scheme for keypoint registration. The current
outgoing message for the considered keypoint is composed of the candidates data
cost and incoming messages from the previous iteration. In addition, the squared
deviation (weighted by α) of candidate displacements is minimised for a coherent
motion across the kNN graph. Reverse messages are not shown for visual clarity.

The regularisation cost rpq
ij (rq

ij = (r1q
ij , . . . , rpq

ij , . . . , rlq
ij)) for two fixed keypoints pfi

, pfj

and candidates cp
i , cq

j can then be described as

rpq
ij =

∥∥∥(cp
i − pfi

) − (cq
j − pfj

)
∥∥∥2

2
. (5.4)

To compute the marginal distributions of soft correspondences over the fixed kNN
graph we employ N iterations of loopy belief propagation (min-sum algorithm) with
outgoing messages mt

i→j from pfi
to pfj

at iteration t defined as

mt
i→j = min

1,...,q,...l

(
di + αrq

ij − mt−1
j→i +

∑
(h,i)∈E

mt−1
h→i

)
. (5.5)

The hyperparameter α weights the displacement deviation penalty and thus controls
the smoothness of the motion vector field V . Initial messages m0

i→j are set to 0. A
graphical description of the presented message passing scheme is also shown in Figure
5.7 and for further in-depth details on efficient belief propagation the reader is referred
to [Felzenszwalb et al., 2006].

Fast Approximation Using a Discretised Candidates Space While the proposed
message passing approach is easily parallelisable, it still lacks some efficiency as the
number of messages to compute for each keypoint is dependent on the number of
neighbours k. We propose to reduce the number of message computations per node
to 1 by discretising the sparse candidates cost di in a dense cost volume Di with
fixed grid resolution r. Voxelisation of sparse input has been used in point cloud
learning to speed up computation [Liu et al., 2019d]. Di can be efficiently populated
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using nearest neighbour interpolation at (normalised) relative displacement locations
op

i = (op
ix

, op
iy

, op
iz

) = cp
i − pfi

, evaluating

Di(u, v, w) = 1
Nu,v,w

l∑
p=1

I
[
⌊op

ix
r⌋ = u, ⌊op

iy
r⌋ = v, ⌊op

iz
r⌋ = w

]
dp

i , (5.6)

where (following notations in [Liu et al., 2019d]) I[·] denotes a binary indicator that
specifies whether the location op

i belongs to the voxel grid (u, v, w) and Nu,v,w is a
normalisation factor (in case multiple displacements end up in the same voxel grid).
By operating on the dense displacement space Di, we can employ an efficient quadratic
diffusion regularisation using min convolutions [Felzenszwalb et al., 2006] that are
separable in dimensions and also avoid the costly computation of k different messages
per node. Approximation errors stem solely from the discretisation step.

5.3.2.2 Geometric Feature Extraction with Graph Convolutional Neural
Networks

Distinctive keypoint graphs that describe plausible shapes contain inherent geometric
information. These include local features such as curvature but also global semantics
of the graph (e.g. surface or structure connectivity). Recent work on data-driven
graph convolutional learning has shown that descriptive geometric features can be
extracted from point clouds with neighbourhood relations defined based on kNN graphs.
Edge convolutions [Wang et al., 2019a] can be interpreted as irregular equivalents to
dense convolutional kernels. Following notations in [Wang et al., 2019a] we define edge
features eij = hθ(fi, fj − fi), where fi denote F -dimensionsal features on points pi ∈ P

(first feature layer given as fi = pi). The edge function hθ computes the Euclidean inner
product of the learnable parameters θ = (θ1, . . . , θ′

F ) with fi (keypoint information)
and fj − fi (local neigbourhood information). The F ′-dimensional feature output f ′

i of
an edge convolution is then given by

f
′
i = max

(i,j)∈E
eij , (5.7)

where the max operation is to be understood as a dimension-wise aggregation function.
Employing multiple layers of edge convolutions in a graph neural network and applying
it to the fixed and moving point clouds (Pf , Pm) yields descriptive geometric features,
which can be directly used to compute candidate data costs (see Equation 5.3).
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5.3.2.3 Deep Learning Based End-to-End Geometric Registration
Framework

Having described the methodological details, we now summarise the full end-to-end
registration framework (see Figure 5.6 for an overview). Input to the registration
framework are the fixed Pf and moving Pm point cloud. In a first step, descriptive
geometric features are extracted from Pf and Pm with a graph convolutional network θ

(shared weights). The network consists of three edge convolutional layers, whereby edge
functions are implemented as three layers of 1 × 1 convolutions, instance normalisation
and leaky ReLUs. Feature channels are increased from 3 to 64. Two 1 × 1 convolutions
output the final 64-dimensional point feature embeddings. Thus, the total number of
free trainable parameters of the network is 26880. In general, the moving cloud will
contain more points than the fixed cloud (to enable an accurate correspondence search).
To account for this higher density of Pm, the GCN θ acts on the kNN graph for Pf and
on the 3kNN graph for Pm. As described in Section 5.3.2.1 the geometric features θ(Pf )
and θ(Pm) are used to compute the candidates cost and final marginal distributions
are obtained from N iterations of (sparse or discretised) loopy belief propagation. As
all operations in our optimisation step are differentiable the network parameters can
be trained end-to-end. The training is supervised with ground truth motion vectors
v̂i ∈ V̂ (based on 300 available manual annotated and corresponding landmark pairs)
using an L1 loss (details on integral regression of the predicted motion vectors V from
the marginals in Section 5.3.2.4).

5.3.2.4 Implementation Details: Keypoints, Visual Features and Integral
Loss

While our method is generally applicable to a variety of point cloud tasks, we adapted
parts of our implementation to keypoint registration of lung CT.

Keypoints We extract Förstner keypoints with non-maximum suppression as de-
scribed in [Heinrich et al., 2015]. A corner score (distinctiveness volume) is computed
using D(x) = 1/ trace

(
(Gσ ∗ (∇F∇F T ))−1

)
, where Gσ describes a Gaussian kernel

and ∇F spatial gradients of the fixed/moving scans computed with a seven-point
stencil. Additionally, we modify the extraction to allow for a higher spatial density of
keypoints in the moving scan by means of trilinear upsampling of the volume before
non-maximum suppression. Only points within the available lung masks are considered.

Visusal Features To enable a fair comparison to state-of-the-art methods that
are based on image intensities, we also evaluate variants of all geometric registration
approaches with local MIND-SSC features Heinrich et al., 2013b. These use a 12-channel
representation of local self-similarity and are extracted as small patches of size 3 × 3 × 3
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with stride=2. The dimensionality is then further reduced from 324 to 64 using a PCA
(computed on each scan pair independently).

Integral Loss As motivated before, we aim to find soft correspondences that enable
the estimation of relative displacements, without directly matching a moving keypoint
location, but rather a probability for each candidate. A softmax operator over all
candidates is applied to the negated costs after loopy belief propagation (multiplied
by a heuristic scalar factor). These normalised predictions are integrated over the
corresponding relative displacements. When considering a discretised search space (the
dLBP variant), final displacements are obtained via integration over the fully quantised
3D displacement space. To obtain a dense displacement field for evaluation (landmarks
do not necessarily coincide with keypoints), all displacement vectors of the sparse
keypoints are accumulated in a displacement field tensor using trilinear extrapolation
and spatial smoothing. This differentiable dense extrapolation enables the use of an L1
loss on (arbitrary) ground truth correspondences.

5.3.3 Experiments and Results

To demonstrate the effectiveness of our novel learning-based geometric 3D registration
method, we perform extensive experimental validation on the DIR-Lab COPDgene data
[Castillo et al., 2013] that consists of 10 lung CT scan pairs at full inspiration (fixed)
and full expiration (moving), annotated with 300 expert landmarks each. Our focus
lies in evaluating point cloud registration without visual clues and we extract a limited
number of keypoints (point clouds) in fixed (≈2000 each) and moving scans (≈6000
each) within the lungs. Since, learning benefits from a variability of data, we add 25
additional 3D scan pairs showing inhale-exhale CT from the EMPIRE10 [Murphy et al.,
2011] challenge, for which no landmarks are publicly available and we only include
automatic correspondences generated using [Heinrich et al., 2015] for supervision. We
performed leave-one-out cross validation on the 10 COPD scans with sparse-to-dense
extrapolation for landmark evaluation. Training was performed with a batch size of 4
and an initial learning rate of 0.01 for 150 epochs. All additional hyperparamters for
baselines and our proposed methods (regularisation cost weighting α, scalar factor for
integral loss, etc.) were tuned on case #4 of the COPDgene dataset and left unaltered
for the remaining folds.

Overall, we compare five different algorithms that work purely on geometric informa-
tion, five further methods that use visual input features and one deep-learning baseline
for dense intensity registration (the winner of the Learn2Reg 2020 challenge LapIRN
[Mok et al., 2020]). Firstly, we compare our proposed sparse-LBP regularisation with
geometric feature learning (sLBP+GF) to a version without geometric learning (sLBP)
and coherent point drift [Myronenko et al., 2010] without (CPD) and with geometric
feature learning (CPD+GF). The non-learning based methods directly use the keypoint
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Table 5.3: Results of methods based on geometric features and optimisation on the COPDgene
dataset [Castillo et al., 2013]. We report the target registration error (TRE)
in millimeters for individual cases as well as the average distance and standard
deviation over all landmarks. The average GPU runtime in seconds is listed in the
last row.

Case
#

initial CPD CPD+GF sLBP sLBP+GF
(ours)

dLBP+GF
(ours)

1 26.33 3.02 2.75 2.55 1.88 2.14
2 21.79 10.83 5.96 8.69 6.22 6.69
3 12.64 1.94 1.88 1.56 1.53 1.68
4 29.58 2.89 2.84 3.57 2.63 3.01
5 30.08 3.01 2.70 3.01 2.02 2.42
6 28.46 3.22 3.65 2.85 2.21 2.69
7 21.60 2.52 2.44 1.87 1.64 1.83
8 26.46 3.85 3.58 2.08 1.93 2.14
9 14.86 2.83 2.58 1.53 1.55 1.82
10 21.81 3.57 5.57 3.15 2.79 3.72

mean 23.36 3.77 3.40 3.08 2.44 2.81
std 11.86 2.54 1.35 2.09 1.40 1.50

time 7.63 7.66 2.91 3.05 0.49

coordinates (x,y,z) as input features. In addition, we evaluate the novel discretisation
of sparse candidates that is again integrated into an end-to-end geometric learning with
differentiable LBP regularisation (dLBP+GF) and leads to substantial efficiency gains.
The results clearly demonstrate the great potential of keypoint based registration for the
complex task of large deformable lung registration. Numerical and qualitative results
are shown in Table 5.3 and Figure 5.8, respectively. Even the baseline methods using
no features at all, CPD and sLBP, where inference is based only on optimisation on the
extracted keypoint graphs, achieve convincing target registration errors of 3.77 mm

and 3.08 mm. Adding learned geometric features within our proposed geometric
registration framework leads to relative improvements of 10% (CPD+GF) and 20%
(sLBP+GF), respectively. For the efficient approximation of our proposed appraoch
(dLBP+GF) the TRE increases by approximate 0.35 mm but at the same time the
average runtime is improved six fold to just below 0.5 seconds (which is competitive
with dense visual deep learning methods such as LapIRN (see Table 5.4)). A statistical
test (Wilcoxon signed-rank test calculated over all landmark pairs) with respect to
our proposed method (sLBP+GF) shows that improvements on all other comparison
methods are highly significant (p < 0.001). We made great efforts to use state-of-the-art
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Table 5.4: Results of methods based on visual features on the COPDgene dataset [Castillo
et al., 2013]. We report the average TRE and standard deviation in millimeters over
all landmarks. The average GPU runtime in seconds is listed in the last column.
For easier comparison we also add the results of our "geometry only" approaches.

mean std time

Initial 23.36 11.86

FLOT+MIND 5.87 1.30 1.63
LapIRN 4.99 1.98 1.08

FE+MIND 3.83 1.21 16.71
sPDD+MIND 3.16 0.69 2.17
CPD+MIND 2.40 0.81 13.12

sLBP+MIND (ours) 1.74 0.38 4.65
sLBP+GF (ours) 2.44 1.40 3.05
dLBP+GF (ours) 2.81 1.50 0.49

learning-based 3D scene flow registration methods and obtained only meaningful results
when incorporating the visual MIND features for FLOT [Puy et al., 2020] and heavily
adapting the FlowNet3d embedding strategy [Liu et al., 2019c] (denoted as FE+MIND).
FlowNet3d aims to learn a flow embeddings (FE) using a concatenation of two candidate
sets (from connected graph nodes), which does not lead to satisfactory results due to
the permutation invariant nature of these sparse candidates. Hence, we designed a layer
that captures all pairwise combinations and leads to a higher dimensional intermediate
tensor that is fed into 1 × 1 convolutions and is projected (with max-pooling) to a
meaningful message vector. For FLOT, we replaced the feature extraction with the
handcrafted MIND-PCA embeddings and also removed the refinement convolutions
after the optimal transport block (we observed severe overfitting in our training setting
when employing the refinement). The sPDD method is based on the probabilistic
dense displacement (PDD) network and was modified to operate on the sparse fixed
keypoints (instead of a regular grid as in the original published work [Heinrich, 2019]).
Results for the state-of-the-art learning based 3D scene flow registration methods and
further comparison experiments using visual input features can be found in Table 5.4.
Our proposed sparse registration approach using visual MIND features (sLBP+MIND)
achieves a TRE well below 2 mm and thus, improves on the geometry based equivalent
(sLBP+GF) by 0.7 mm. However, the extraction of visual features slows down the
inference time by 1.6 and 4.1 (dLBP+GF) seconds, respectively. Notably, all proposed
geometric registration methods achieve results on par with or significantly better (e.g.
more than 50% gain in target registration error w.r.t the dense multi-scale network
LapIRN) than the deep learning based comparison methods with additional visual
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(f) dLBP+GF(e) sLBP+GF(d) sLBP

(c) CPD+GF(b) CPD(a) GT

Fig. 5.8: Qualitative results of different geometric methods ((b)-(f)) on case #1 of the
COPDgene dataset [Castillo et al., 2013]. The ground truth motion vector field is
shown in (a). Different colors encode small (blue) and large motion (red).

features. Conventional registration methods achieve TREs around 1 to 1.5 mm with
runtimes of 3 to 30 minutes [Avants et al., 2008; Heinrich et al., 2015; Rühaak et al.,
2017].

5.3.4 Discussion and Conclusion

We believe our concept clearly demonstrates the advantages of decoupling feature
extraction and optimisation by combining parallelisable differentiable message passing
for sparse correspondence finding with graph convolutions for geometric feature learning.
Our method enables effective graph-based pairwise regularisation and compact networks
for robustly capturing geometric context for large deformation estimation. It is much
more capable for 3D medical image registration as adaptations of scene flow approaches,
which indicates that these methods may be primarily suited for aligning objects with
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repetitive semantic object/shape parts that are well represented in large training
databases.

We demonstrated that even without using visual features, the proposed geomet-
ric registration substantially outperforms very recent deep convolutional registration
networks that excelled in other medical tasks. The reason for this large performance
gap can firstly lie in the complexity of aligning locally ambiguous structures (vessels,
airways) that undergo large deformations and that focusing on relatively few relevant
3D keypoints is a decisive factor in learning meaningful geometric transformations.
Our new idea to discretise the sparse candidate displacements into a dense embedding
using differentiable extrapolation yields immensive computational gains by reducing
the number of message computations (from k = 9 to 1 per node) and thereby also
enabling future use within alternative regularisation algorithms.

While our experimental analysis was so far restricted to lung anatomies, we strongly
believe that graph-based regularisation models combined with geometric learning will
play an important role for tackling other large motion estimation tasks, the alignment
of anatomies across subjects for studying shape variations and tracking in image-guided
interventions. Being able to work independently of visual features opens new possibilities
for multimodal registration, where our method only requires comparable keypoints
to be found, e.g. using probabilistic edge maps [Oktay et al., 2015]. In addition, the
avoidance of highly parameterised CNNs can establish new concepts to gain a better
interpretability of deep learning models.
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Chapter 6

Learning Sparse Graphical Optimisation

The fourth, concluding methodological chapter deals with the question of the extent
to which not only feature extraction, as in the previous chapter, but also sparse
optimisation can be learned in a data-driven manner. A combination of a local CNN
and global GNN is trained to solve a sparse 3D MRF on a keypoint graph extracted
from lung CT scans in an unsupervised manner. In addition to the novel deep-learning
architecture, the form of supervision, a dense spatial transformer integrated into the end-
to-end training for the sparse key points, is of methodological interest. The framework
is comprehensively described and evaluated in Section 6.1 as published in [Hansen et al.,
2021b].

6.1 Deep Graph Regularisation Networks on Sparse
Keypoints

6.1.1 Introduction

The automated analysis of multiple thoracic CT scans plays an important role for diag-
nosis and treatment planning of pulmonary diseases including, lung cancer [Flampouri
et al., 2006], COPD [Galbán et al., 2012], emphysema or pneumonia [Pan et al., 2020].
Comparing normal dose inspiration CT with (ultra-)low dose expiration scans helps to
reveal subtle local differences in air flow, important for COPD and asthma diagnosis
and treatment, that are otherwise only measurable globally or with highly complex
functional imaging modalities (xenon CT or helium MRI [Beek et al., 2004]). Accurate
deformable intra-patient registration between different respiratory levels is vital for
localised ventilation measurements [Reinhardt et al., 2008]. In order to improve accu-
racy and robustness as well as wide adoption of thoracic image registration in clinical
practice, deep machine learning could play an important role. Recently, multi-resolution
pyramid networks [Mok et al., 2020] showed great success at a multi-task registration
challenge [Hering et al., 2022] (e.g. ranking 1st for large deformation estimation in
abdominal CT), however, as other state-of-the-art DL-based registration algorithms it
fails to produce acceptable registration accuracy for large motion estimation for the
task of inspiration to exhale CT and only provides reasonable robustness for shallow
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breathing. As discussed below, graphical optimisation models have helped to overcome
these challenging for conventional registration approaches and graphical deep learning
methods are destined to become the key element in further improving the applicability
of learning based 3D medical image registration within the thorax.

6.1.1.1 Related Work

Discrete graphical optimisation models or Markov Random Fields (MRF), that include
graph cuts [Glocker et al., 2008], message passing [Felzenszwalb et al., 2006; Heinrich
et al., 2013a] and mean-field inference, are able to solve complex global regularisation
tasks given a suitable and densely sampled unary cost term. Yet, for 3D medical image
registration the degrees of freedom are enormous with thousands of deformation control
points (nodes in graph) and up to tens of thousands of potential displacements (labels
in MRF solution space, cf. [Heinrich et al., 2015]). Hence, besides requiring additional
fine-tuning stages for subvoxel accuracy [Rühaak et al., 2017] MRF-based registration
tends to be slow and memory extensive. This may also prevent the use of complex
graphical models for 3D registration in end-to-end trainable geometric learning models.
So far graph models have been mainly limited to post-hoc regularisation of segmentation
predictions (CRF as RNN) [Kamnitsas et al., 2017; Zheng et al., 2015], which used
approximate mean-field inference of conditional random fields (CRF). In [Knobelreiter
et al., 2017] an architecture with unary and pairwise convolutional neural networks
(CNNs) was proposed for two-view stereo estimation. Our own prior work [Heinrich
et al., 2020; Heinrich, 2019], addressed DL-based 3D registration with a discretised
displacement space and differentiable CRF regularisation, but was limited to coarsely
and robustly aligning abdominal organs across patients, which is very different to the
detail required for lung vessel alignment. In the context of regional object detection,
an end-to-end trainable parts-based model was designed with CNNs in [Girshick et al.,
2015], where the MRF inference based on distance-transform regularisation was unrolled.
Subsequent research has demonstrated the ability to integrate probabilistic graphical
models into a deep network [Johnson et al., 2016] and to infer relations of temporal
time points in video analysis.

Most recent DL approaches that tackle intra-patient CT lung registration rely on
multi-resolution, cascaded U-Net architectures [Fu et al., 2020; Hering et al., 2019]
that have a large number of trainable parameters, but still fall short of the accuracy of
efficient conventional registration techniques [König et al., 2018]. Recurrent networks in
combination with parametrised transformation models are investigated in [Sandkühler
et al., 2019]. In computer vision, using a discretised displacement space, the so-called
correlation layer, for DL-based optical flow estimation is currently considered state-of-
the-art for complex and large motion estimation, cf. [Ilg et al., 2017; Sun et al., 2018a].
However, as discussed in [Heinrich, 2019] they are not easy to adapt to 3D motion due
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to processing all displacements as flattened feature channels, which leads to a huge
number of trainable parameters and severe memory limitation in medical scans.

For a comprehensive introduction into current geometric deep learning using graph
convolutional networks (GCNs), we refer to [Bronstein et al., 2017]. Most relevant in
our context are the PointNet [Qi et al., 2017a], which ignores the local connectivity
of point clouds for simplicity, the diffusion based graph convolution network that is
restricted to isotropic graph filters [Duvenaud et al., 2015] and newer edge weighted
graph networks [Wang et al., 2019a]. Graph attention networks introduced in [Velickovic
et al., 2018] are another related and promising research direction based on the attention
mechanism that was popularised in machine translation and medical image analysis
[Schlemper et al., 2019]. Both latter methods achieve a more dynamic information
propagation that can be considered close to the expressiveness of MRF message passing
by learning a function that predicts pairwise edge weights based on previous features
of both considered nodes. A number of 3D vision applications have been recently
addressed using graph convolutions, in particular semantic point segmentation [Huang
et al., 2018; Tchapmi et al., 2017].

6.1.1.2 Contributions

In this work, we substantially extend our short paper submission at MIDL 2020, a
proof of concept demonstrating that the estimation of large deformations is possible
with high accuracy from compact PCA displacement embeddings [Hansen et al., 2020].
Here, we focus on a novel concept of learning informative spatial relations on a sparse
irregular grid of distinctive keypoints for the prediction of dense displacement fields in
an unsupervised setting and therefore make three important contributions:

1. Propose a lightweight network architecture particular designed for learning-based
medical image registration, called GraphRegNet, composed of convolutional and
graph neural network layers that act on the discrete displacement space and spatial
dimensions, respectively, to predict regularised displacement vectors on a sparsely
sampled irregular grid.

2. In contrast to our preliminary work in [Hansen et al., 2020], learn a low dimensional
displacement embedding in an unsupervised fashion, which enables compressed
message passing (using GCNs) on the inherent geometric structure of the generated
keypoint graph.

3. Formulate an unsupervised dense warping loss on the fixed and moving image that
enables gradient flow through the predicted displacements (by integral regression)
at the sparse keypoint locations ("inverse gridsample").

Experiments on the challenging task of exhale to inhale CT lung registration suggest
that our unsupervised learning approach is able to extract similar (and even more
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accurate) information from the keypoint graph as competing methods that use exact
graphical message passing. A series of ablation studies justify our different architectural
choices for the GraphRegNet and we advance the state of the art for deep learning
registration methods on the two widely used DIR-Lab 4D CT [Castillo et al., 2009] and
COPDgene Castillo et al., 2013 datasets to average TREs of 1.39 mm and 1.34 mm,
respectively.

Paper Outline Details on the individual steps of our proposed deep-learning based
framework for exhale to inhale CT lung registration are given in Section 6.1.2. These
include first of all the preprocessing of the raw lung CT scans, e.g. to account for
different volume sizes, and the generation of a distinctive keypoint graph from the fixed
(inhale) image. Next, we outline the computation of a set of discrete dense displacement
maps from descriptive image features (here: MIND-SSC features [Heinrich et al.,
2013b]). We then describe the estimation of the final dense deformation field from the
individual displacement maps in our methodological contributions, the GraphRegNet
and the unsupervised sparse warping loss. In Section 6.1.3 our registration framework
is extensively evaluated. In ablation studies different network architecture choices
are examined and our method is compared to other recent deep learning registration
approaches. A thorough discussion of the main findings of this work and a final
conclusion follow in Section 6.1.4.

6.1.2 Methods

Let IF denote the fixed and IM the moving image. In this work we focus on voluminous
and single channel lung CT images, i.e. IF , IM : R3 → R. The fixed and moving image
are defined as the inhale and exhale scan of the paired setting, respectively. The aim of
the intrapatient registration process is to estimate a displacement field D : R3 → R3

that best aligns the inhale and exhale image. Figure 6.1 shows an overview of our
proposed deep learning registration framework. Individual steps and details of our
method are described in the next sections.

6.1.2.1 Preprocessing

In a first step, inhale and exhale images are affinely aligned. For this purpose, lung
segmentations are computed on all images using thresholding and morphological filters.
Images are cropped to their lung mask bounding boxes (BB) (+ a fixed margin). For
each scan pair an affine transformation is determined that fits the BB of the exhale lung
mask to the BB of the inhale lung mask and is applied to the exhale image. This leaves
the estimation of nonlinear deformations for the registration framework. Subsequently,
all images are resampled to a fixed volume size of D×H×W and grayscale values (in
Hounsfield units (HU)) are clipped and normalized to lie in the range of 0 to 1.
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Fig. 6.1: Overview of our novel deep learning framework for keypoint-based dense deformable
image registration. Feature maps FF and FM (here: MIND features [Heinrich et al.,
2013b]) are extracted from both, the fixed (IF ) and moving (IM ) image (Section
6.1.2.3). Additionally, a set of sparse keypoints P is identified at distinctive locations
in the fixed image using the Foerstner operator [Förstner et al., 1987] (Section 6.1.2.2).
Correlating the sampled MIND features at the keypoints in the fixed image and
dense displaced locations L in the moving image, yields a cost tensor C for each
keypoint (Section 6.1.2.4). We then predict displacement vectors with our proposed
GraphRegNet θ, that consists of three neural network modules. First, an encoder
CNN θE learns a low-dimensional displacement embedding for each cost tensor,
then we employ a GCN θG that distributes the learned embeddings across the kNN
graph of the keypoints to achieve spatial regularisation (Section 6.1.2.5). Final
displacement vectors are obtained via integration over the predefined displacement
space L, weighted by probabilities of the predicted softmax map of the decoder
CNN θD. All displacment vectors of the sparse keypoints are accumulated in the
displacement field tensor D using trilinear extrapolation (+ spatial smoothing), which
makes this densification operation fully differentiable and enables the use of an MSE
loss L on the fixed and warped moving MIND image, guiding the training process in
an unsupervised fashion (Section 6.1.2.6).

6.1.2.2 Distinctive Keypoints

Well distributed, distinctive and informative keypoints are of importance for the
proposed graph based registration. Moreover, working on a sparse set of keypoints
allows to cope with the large memory requirements of a correlation based approach
on 3D medical data. For the keypoint extraction we follow previous works in lung
registration [Heinrich et al., 2015; Polzin et al., 2013], employing the Foerstner interest
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operator [Förstner et al., 1987], which is run-time efficient and led to state-of-the-art
results in lung registration for conventional methods [Rühaak et al., 2017]. Alternatively,
a keypoint graph can be constructed from vessel segmentations (cf. [Fu et al., 2020]).
The keypoints are computed from the spatial gradients ∇IF of the fixed image, that
are smoothed with a Gaussian kernel Gσ1 , σ1 describing the variance. A distinctive
score S for each voxel in IF is given by

S(IF ) = 1
Tr((Gσ1 ∗ (∇IF ∇IT

F ))−1)
. (6.1)

High responses in S correspond to distinctive locations. To obtain a well distributed
set of keypoints P we apply a max pooling operation with kernel size d and stride 1
to S, which yields Smax, and only add keypoints p = (px, py, pz) to P that have equal
response in S and Smax (non-max suppression). Additionally, we restrict the location
of keypoints to the lung region (given by the precomputed inhale masks). Finally, the
number of keypoints in P is adapted to a fixed number NP by farthest point sampling
(if |P | >= NP ) or insertion of random points already present in P (if |P | < NP ).
The farthest point sampling algorithm starts with a random point of a point set and
iteratively adds points to the sampling that have the farthest distance to all currently
sampled points. Thus a well distributed coverage of the original point set is guaranteed.

6.1.2.3 Image Feature Extraction

Since in the context of this work we are strongly focusing on the prediction and
regularisation of displacement vectors in an unsupervised learning setting, we use the
well established modality independent neighbourhood descriptor (MIND) as image
features and leave a deep learning based feature extraction or evaluation of further
handcrafted image features (e.g. NGF [Haber et al., 2006]) as a future task. The MIND
descriptor was first proposed in [Heinrich et al., 2011] for the task of multi-modal
image registration and extended in [Heinrich et al., 2012; Heinrich et al., 2013b]. It
uses the concept of self-similarity by defining six neighbors around the central voxel of
interest and compares the patch-wise intensity difference between neighbors of a certain
distance, resulting in a 12 channel feature map. We extract MIND descriptors for both,
the fixed and moving image, yielding feature representations FF , FM : R3 → R12. In
addition to the subsequent feature correlation, the extracted MIND descriptors also
serve as signals for the unsupervised warping loss (see Section 6.1.2.6).

6.1.2.4 Feature Correlation

Following previous work on discrete 3D medical registration [Heinrich et al., 2013a,
2015] and the successful methods for 2D optical flow estimation [Ilg et al., 2017; Sun
et al., 2018a] we perform a similarity search for all fixed features FF (p) sampled at
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keypoints p ∈ P and moving features FM (p + l) sampled at potential displacement
locations l = (lx, ly, lz) ∈ L = q · {−lmax, . . . , −1, 0, 1, . . . , lmax}3. The displacement
search region is fully specified by the variables q, the quantisation step size, and q · lmax,
the largest expected displacement. Employing the sum of squared differences (SSD) as
similarity metric yields the cost tensor

C(p, l) = 1
12

11∑
i=0

(F i
F (p) − F i

M (p + l))2, (6.2)

where F i
F and F i

M denote the i-th channel of the respective 12 channel feature map.
We note that the spatial dimensions [1-3] of the cost tensor are sparse, i.e. defined
only for the set of keypoints P , while the displacement dimensions [3-6] are spanned by
the dense displacement search space. This means that for the evaluation of FM (p + l)
all displacements l for each keypoint p have to be considered, which greatly reduces
the risk of missing correspondences (in contrast to sparse point cloud registration).
To account for noisy similarities we smooth the cost tensor C with a Gaussian kernel
Gσ2 along the displacement dimensions. However, this does not impose an explicit
regularisation on the cost tensors and they may still have a large proportion of poor
correspondences or multiple local optima (as can be observed in Figure 6.1), which
brings with it the need of robust global regularisation as proposed and described in the
following section.

6.1.2.5 GraphRegNet

We now aim to predict a sparse displacement field DS that assigns a displacement vector
d = (dx, dy, dz) to each keypoint p ∈ P . The searched function θ(C) = DS is modeled
by our proposed GraphRegNet, a novel deep network architecture, whose parameters
are learned in an unsupervised, end-to-end training process. In the following we describe
a single layer of the GraphRegNet (for deeper networks, two or more layers can be
stacked). The first part of the network architecture is a lightweight encoder CNN θE that
operates on the displacement dimensions of C (for each keypoint). It consists of three
convolutional layers with a stride of 2. Starting with 4 output channels, the number
of feature channels is doubled with each layer. Next, the predicted low dimensional
displacement embeddings are concatenated with the coordinates of respective keypoints.
A GCN θG takes the displacement embeddings as input (possibly with shared weights
if the embeddings still have dimensions that are non-singleton) and distributes them
across the kNN graph of P . We employ three graph convolutions (edge convolutions
[Wang et al., 2019a]) in a DenseNet [Huang et al., 2017] fashion (always concatenating
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the input tensor of previous and current layers) and keep the number of output feature
channels constant. An edge convolution is defined as

f ′
i = ReLU( avg

(i,j)∈E
eij) (6.3)

following notations in [Wang et al., 2019a] and describes the non-linear transformation of
a feature vector fi at point pi ∈ P . The edge features eij = hθ(fi, fj −fi) are aggregated
per dimension by averaging over all edges (i, j) ∈ E of the kNN graph. The function
hθ denotes the Euclidean inner product of learnable parameters θ = (θ1, . . . , θ|f ′

i |) with
the concatenated keypoint (fi) and local neigbourhood features (fj − fi). The decoder
CNN θD predicts the displacement vectors d using an integral regression approach [Sun
et al., 2018b], which combines the advantages of direct (continuous output, end-to-end
training) and heatmap (superior performance, constrained output space) regression.
Similar to the encoder CNN the decoder operates solely on the displacement dimensions.
Two upconvolutions (trilinear upsampling + convolution) and a subsequent single
convolutional layer output a single channel feature map Hp for each keypoint. The
final displacement vector d can now be determined by integration over the displacement
search region L weighted by the (softmax) normalized predictions H̃p as

d =
∑
l∈L

l · H̃p(l). (6.4)

Training with direct regression of displacement vectors was also tested but could not
converge. To stabilise forward and backward propagation we employ skip connections
that concatenate the encoder and decoder feature maps of the same resolution stage and
add a further convolution to combine the features (resembles an U-Net architecture but
with a GCN in embedding layer, that acts on the spatial dimensions). All convolutions
have a kernel size of 3 and are followed by an instance normalisation layer and a Leaky
ReLU.

The detailed network architecture of the GraphRegNet with a total number of
∼33.000 trainable parameters is summarised in Figure 6.2. Subindices E1, G1, D1,
etc. represent the corresponding layer of the encoder, graph network and decoder,
respectively. The specific output sizes apply to a displacement space with lmax = 14.
The number of keypoints is omitted for the sake of clarity as it is the same for all
layers (NP = 2048). Kernel and kNN sizes correspond to the dimensions of the
learnable filters for conventional and to the number of (k) nearest neighbors for edge
convolutions, respectively. Skip connections specify layer outputs that are concatenated
for further processing. All convolutional layers (except for #23) are followed by instance
normalization and a leaky ReLU as non-linear activation function. Upsampling uses
trilinear interpolation. Also, we denote if a layer acts on displacement (D) or spatial
(S) dimensions.
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p = (x, y, z)
3D Coords. P

#1

#2

#3

#4-6

#8

#7

#9

#10

#11

#12

#13

#14

#15-17

#19

#18

#20

#21

Cost Tensor C
#23

Conv
EdgeConv
Upsample + Conv
Conv + Upsample

#22

Size Kernel /
kNN

Stride # Ch.
(in/out)

Skip Dim

3D Coords. 1 −/3 #4-6,
#15-17

Cost Tensor 293 −/1 #12

θE1

#1 Conv 153 33 2 1/4 #10 D
#2 Conv 83 33 2 4/8 #8 D
#3 Conv 43 33 2 8/16 #5,#6 D

θG1

#4 EdgeConv 43 15 1 19/16 #6 S
#5 EdgeConv 43 15 1 35/16 S
#6 EdgeConv 43 15 1 51/16 S

θD1

#7 Upsample 83 D
Conv 83 33 1 16/8 D

#8 Conv 83 33 1 16/8 D

#9 Upsample 153 D
Conv 153 33 1 8/4 D

#10 Conv 153 33 1 8/4 D

#11 Conv 153 33 1 4/1 D
Upsample 293 D

θE2

#12 Conv 153 33 2 2/4 #22 D
#13 Conv 83 33 2 4/8 #19 D
#14 Conv 43 33 2 8/16 #16,#17 D

θG2

#15 EdgeConv 43 15 1 19/16 #17 S
#16 EdgeConv 43 15 1 35/16 S
#17 EdgeConv 43 15 1 51/16 S

θD2

#18 Upsample 83 D
Conv 83 33 1 16/8 D

#19 Conv 83 33 1 16/8 D

#20 Upsample 153 D
Conv 153 33 1 8/4 D

#21 Conv 153 33 1 8/4 D
#22 Conv 153 33 1 4/1 D

#23 IntReg 1 1/3 D

Fig. 6.2: Block diagram of the GraphRegNet architecture used in our experiments. Detailed
information on the individual layers can be found in the corresponding Table.
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The integral displacement regression layer is abbreviated as IntReg and represents the
transition from a discrete to a continuous displacement space.

To summarise, the GraphRegNet is a novel learnable message passing network archi-
tecture that predicts a global optimal (in the sense of the training target) transformation
from initial correspondence costs at individual keypoints. Therefore, we employ conven-
tional CNNs (θE , θD) with trainable filters acting on the dense displacement dimensions
of the cost tensor (in an encoder/decoder style) and use a graph neural network (θG)
to learn to distribute the compressed cost messages across the irregular keypoint graph.

6.1.2.6 Sparse-to-Dense Supervision

All network parts are trained end-to-end in an unsupervised fashion using a mean
squared error loss L = MSE(FF , D(FM )) on the fixed and warped moving MIND
features, where D describes a dense displacement field. Additionally, the loss is
masked with the precomputed inhale mask. D is obtained from the predicted sparse
displacements DS . Therefore, all displacements d ∈ DS are accumulated in a dense,
low resolution tensor (initialized with zeroes) at respective keypoints p using trilinear
extrapolation. Subsequently, the tensor is smoothed three times using average pooling
with a kernel size of 5 and a stride of 1. Trilinear upsampling of the tensor yields the
final displacement field D. See Figure 6.1 for visual comprehension. As all operations
(in particular the integral regression and the trilinear extrapolation) are differentiable
we can employ the dense warping loss to supervise the graph regularisation on the
sparse keypoints. An explicit regularisation loss as used in many other deep learning
frameworks did not show any benefit and is omitted. We attribute this to the trilinear
extrapolation and subsequent spatial averaging of the displacement vectors of (only a few
thousand) sparse keypoints which imposes an implicit smoothness on the displacement
field (similar to spline transformation models with few control points in conventional
image registration).

In the inference stage the predicted displacement field D can eventually be used to
warp the moving 3D CT image and align the inhale and exhale phase of the observed
lung anatomy.

6.1.3 Experiments and Results

To assess the accuracy of our method and validate different architectural choices, we
conduct several experiments on two challenging inspiration-expiration benchmarks,
namely the DIR-Lab 4D CT [Castillo et al., 2009] and COPDgene [Castillo et al., 2013]
datasets. Especially the COPDgene dataset is of great importance for the validation
of deep learning registration methods to cope with large deformations as it consists
of breath-hold CT scans with much larger initial registration errors (in comparison to
the 4D CT data acquired from patients with normal resting breathing). Each dataset
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Fig. 6.3: Qualitative results of our proposed GraphRegNet registration framework. Each row
visualizes registration results for one scan pair from the COPDgene dataset in saggital
view. The first and second column show color overlays (orange: inhale scan, blue:
exhale scan) for the initial and final alignment, respectively. Well aligned structures
appear gray or white due to the addition of RGB values. The third and fourth
columns are two different representations of the predicted displacement field (after
affine prealignment). In the third column 2D displacement vectors of the saggital
plane are color coded using the HSV color wheel in the top right. The fourth column
shows a deformed regular grid after applying the displacement field. The Jacobian of
the transformation within in the lung is visualized in the last column. The color bar
in the right indicates the correspondence between color and Jacobian values.

contains ten scan pairs. As a set of 20 training pairs is considered to be small for a
deep learning approach we include 25 additional scans from two public lung registration
datasets (Empire10 [Murphy et al., 2011], POPI [Vandemeulebroucke et al., 2007])
and all experiments were carried out using a 5-fold cross validation. Figure 6.3 shows
qualitative results for two scan pairs from the COPDgene dataset.

6.1.3.1 Implementation Details

We implemented our proposed registration framework using the deep learning library
PyTorch [Paszke et al., 2019] running on a NVIDIA Titan RTX. During preprocessing
all scan pairs are resampled to a fixed volume size of D×H×W = 192×160×192 and
clipped at HU values of −1000 and 1500. All hyperparameters were tuned on the
training cases of the first fold and left unaltered for all other folds and experiments.
We extract NP = 2048 keypoints from the fixed image with the described Foerstner
method using a max pooling kernel of size d = 5 and a Gaussian kernel with variance
σ1 = 1.4. For the displacement search region L the quantization step size is set to
q = 2 and the largest expected displacement to 28 (lmax = 14). The cost tensor C is
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smoothed with a Gaussian Kernel with variance σ2 = 1. For the regularisation network
we stack two of the described GraphRegNet layers and the edge convolutions operate
on a keypoint graph with k = 15 nearest neighbors. An increased accuracy can be
reached with a two level approach. For the refinement stage the warped moving image
(using the predicted displacement field) defines the new moving image. Additionally, we
relax some framework parameters. This includes the number of keypoints Np = 3072,
the quantisation step size q = 1 and the largest expected displacement lmax = 8. For
the second level a new regularisation network is trained from scratch. In each stage
we train the GraphRegNet for 150 epochs with a batch size of 1 using the Adam
optimizer, which took approximately 3.5 hours on the GPU. The initial learning rate
is set to 0.1. For further details we refer to the publicly available implementation
at https://github.com/multimodallearning/graphregnet. In our experiments a
single GraphRegNet has only ∼33.000 trainable parameters. The total computation
time for the final displacement field is less than 2 seconds (including the refinement
stage). Most of the time is spent in the SSD computation of the similarities (40%),
followed by the extraction of the Foerstner keypoints and the generation of the kNN
graph (30%). The extraction of MIND image features and the forward path of the
GraphRegNet take up 12% and 17% of the time, respectively. For inference the GPU
memory usage is less than 4 GB (less than 11 GB for training when using gradient
checkpointing).

6.1.3.2 Comparison Methods

In this section we give a brief description of related comparison methods (recent deep
learning approaches) for exhale to inhale lung CT registration. Common to all methods
is that they only report results on the DIR-Lab 4D CT data but not on the more difficult
(in terms of larger deformations/initial errors) COPDgene dataset. Therfore, we also
adapt the public implementation (https://github.com/voxelmorph/voxelmorph) of
the widely used Voxelmorph registration framework [Balakrishnan et al., 2019] with
few extensions and evaluate it on both DIR-Lab datasets.

DLIR [Vos et al., 2019] The unsupervised Deep Learning Image Registration
(DLIR) framework of de Vos et. al. is one of the first deep learning approaches for 3D
medical registration. Analogous to conventional image registration an image similarity
measure is optimized during the training stage. The authors propose a multi-resolution
method by stacking multiple CNNs and providing input images of different resolution
to predict the final displacement.

Ep18 [Eppenhof et al., 2018] Eppenhof et. al. took a supervised approach by
applying synthetic transformations to a set of training images and learn to directly
predict the known deformation. They could show that with this usage of strong data
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6.1 Deep Graph Regularisation Networks on Sparse Keypoints

augmentation and strong supervision a relatively small dataset is sufficient to achieve
acceptable registration accuracy.

OSL [Fechter et al., 2020] The work of Fechter et. al. is the most recent proposal
for a deep learning framework for medical image registration. It mainly explores
the idea of using deep neural networks in a one shot learning (OSL) setting as a
drop-in replacement for conventional registration frameworks but could neither reach
the registration accuracy of conventional approaches nor could benefit from the fast
runtimes deep learning networks offer in inference.

LRN [Fu et al., 2020] The LungRegNet of Fu et. al. marks (to our knowledge)
the current state of the art for deep learning based methods on the DIR-Lab 4D
CT dataset. The authors used a vessel enhancing preprocessing and an additional
adversarial network to enforce realistic deformations. A huge drawback of their method
is complexity of the architecture that leads to a reported inference time of 1 minute
using a powerful NVIDIA Tesla V100 GPU.

mlVN [Hering et al., 2019] Hering et al. proposed a deep learning based multi-level
variational image registration network (mlVIRNET). It uses three resolution stages
with progressively trained CNNs (initialised with CNN weights from preceding levels).
The training on 500 lung CT scans is supervised with edge based normalized gradient
fields (NGF) as image similarity measure, second order curvature regularisation and
additional manual lobe segmentations.

BMRF [Blendowski et al., 2019] The work of Blendowski et. al. is a two-step
hybrid approach. First, a deep network is trained to output descriptive binary features
in a patch-based landmark retrieval task. The extracted features are then combined
with handcrafted MIND-SSC image descriptors and used as input features for the
B(inary)MRF-regularised deformable registration framework.

VM+ [Balakrishnan et al., 2019] The Voxelmorph framework of Balakrishnan et.
al. is a widely used single-level deep learning method for deformable image registration.
As most other approaches it uses a U-Net like CNN to predict a displacement field
(from the concatenated fixed and moving image), that warps the moving image and
(during training) optimizes an image similarity metric. We extend the implementation
(indicated by +) to a multi-level approach (three warps, no end-to-end learning) and
employ the same MSE loss on MIND features we use in the rest of our own experiments.

LIRN [Mok et al., 2020] LIRN is a multi-resolution pyramid registration network.
In contrast to [Hering et al., 2019] the CNNs at different levels are trained end-to-end
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6.1 Deep Graph Regularisation Networks on Sparse Keypoints

and it maintains full feature maps throughout the coarse-to-fine optimization scheme.
The method was the overall winner of the recent multi-task medical image registration
challenge Learn2Reg [Hering et al., 2022] and its implementation is publicly accessible
(https://github.com/cwmok/LapIRN).

FE+ [Liu et al., 2019c] The FlowNet3D [Liu et al., 2019c] is an end-to-end trainable
deep learning network for predicting scene flow between two point clouds. It relies on
a flow embedding (FE) layer based on the concatenation of two candidate sets (from
connected nodes in the k nearest neighbors graph of the fixed and moving point cloud).
Initial experiments lead to unsatisfactory results due to the permutation invariance of
the sparse candidates, which is why we extended the FE layer to capture all pairwise
combinations of candidates which leads to a higher dimensional intermediate tensor
that is fed into 1 × 1 convolutions and is projected to a meaningful embedding using
max-pooling (FE+). For this experiment, Foerstner keypoints are extracted from both,
the fixed and the moving image, and MIND feature patches at the sparse keypoints are
used as input to the FE+ layer.

PDD+ [Heinrich, 2019] Own previous work of Heinrich, the PDD net, uses approxi-
mate minconvolutions and mean field inference to regularise the displacement similarities
on a regular grid. The network consists of only six trainable weighting and offset parame-
ters. For a fair comparison to our proposed method we extended (indicated by the + sign)
the original implementation (https://github.com/multimodallearning/pdd_net) to
operate on the irregular keypoint graph, use the same dense warping loss and employ a
second (refinement) stage.

MST A non-deep learning method that is a close GPU reimplemenation of the
CorrField method [Heinrich et al., 2015] with a focus on fast computation time.
While the computation of the final displacement field took more than a minute using
the C++ implementation (http://www.mpheinrich.de/software.html), the GPU
version needs less than 5 seconds. For the sake of fast inference, some features (e.g.
inverse consistency) are missing from the original method. A minimum spanning tree
(MST) is generated from the set of sparse keypoints, which enables exact message
passing using belief propagation on the graph to regularise the displacement costs.

6.1.3.3 Ablations Studies

In a second batch of experiments we aim to evaluate the general design choices of
our proposed GraphRegNet. All methods in this group use the described keypoint
based registration framework and only differ in the way they predict the displacements
d ∈ DS from the cost tensor C. Again, we give a short overview over the different
ablation studies.
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Chapter 6 Learning Sparse Graphical Optimisation

RW In this ablation experiment we replace the GraphRegNet with a non-deep learning
approach, a random walk (RW) [Aldous, 1989] based on the graph Laplacian that
distributes the cost tensor over the kNN graph. This method serves as weak baseline
for following experiments as a deep learning model should easily learn a better (or
at least comparable) solution provided that there are a sufficient number of trainable
parameters and the network design itself allows it.

NoReg A baseline that highlights the problem of large proportion of poor initial
correspondences from the feature similarity computation and thus, the importance of
explicit spatial regularisation. In this experiment the GCN θG is removed from the
architecture. Additionally, we do not add keypoint coordinates to the displacement
embeddings. The network is only able to learn on the local displacement dimensions
and smooth across the displacements of the cost tensor.

Coords In this configuration we set k = 1, which means that there are no connections
between keypoints on the kNN graph. General spatial information can only be exploited
from the concatenated keypoint coordinates (Coords) using multi-layer perceptrons
(MLPs). Within this setting the GCN θG is similar to the PointNet Qi et al., 2017a
architecture.

SL A single-level (SL) baseline, that does not use a second (refinement) stage.

Unif. Instead of extracting distinctive keypoints using the Foerstner operator, we
sample keypoints on a uniform (Unif.) grid (within the lung mask). The number of
keypoints NP is kept the same.

6.1.3.4 Target Registration Error

Our main evaluation metric is the target registration error (TRE) between (medical)
expert-annotated landmarks. Both DIR-Lab datasets provide 300 manually annotated
landmark correspondences for each scan pair. Table 6.1 provides an overview over
quantitative results for all comparison methods and conducted experiments. With
an average landmark distance of 8.46 mm and 23.36 mm initial registration errors
vary greatly between the 4D CT and COPDgene dataset, respectively. However, most
comparison methods only report landmark distances for the 4D CT dataset, for which
the various multi-level and multi-resolution approaches based on U-Net like encoder
decoder architectures reach accuracies from 2.89 mm (VM+) to 2.03 mm (LapIRN).
The currently published state of the art for deep learning methods is at 1.59 mm (LRN).
The proposed GraphRegNet within our keypoint based registration framework improves
the TRE by ∼13% to 1.39 mm. For the COPDgene dataset we can report the TREs
of BMRF and our own experiments for VM+, LapIRN, FE+, PDD+ and MST that
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Table 6.2: Comparison of our deep learning approach to a selection of popular conventional
registration frameworks on the COPDgene dataset. We report the mean and
standard deviation of the target registration error in millimeters as well as the
average computation time of the algorithms on GPU and/or CPU. For a detailed
run-time analysis of our method we refer to Section 6.1.3.1.

TRE avg. computation time (GPU/CPU)

DIS-CO [Rühaak et al., 2017] 0.82 ± 0.97 - / 5 minutes
ANTs [Song et al., 2010] 1.79 ± 2.10 - / 3 hours

Elastix [Klein et al., 2009] 1.32 ± 1.24 - / 14 minutes
NiftyReg [Modat et al., 2010] 2.19 ± 2.00 - / 9 minutes

ours 1.34 ± 1.44 2 seconds / 30 seconds

are at 1.59 mm, 7.89 mm, 4.99 mm, 4.76 mm, 2.16 mm and 1.60 mm, respectively.
Here, the GraphRegNet reduces the average landmark distance to 1.34 mm. Figure 6.4
shows a detailed comparison of all methods of our keypoint-based experiments on the
COPDgene dataset. In ablation studies we observe a reduction in TREs of ∼67%
when exploiting neighborhood information on the kNN graph using edge convolutions
(Coords –> Ours), ∼24% after a refined alignment with a two level approach (SL –>
Ours) and ∼11% when sampling keypoints at distinctive instead of uniform locations
(Unif. –> Ours). For experiments where we have registration errors for all landmark
pairs available we perform the Wilcoxon signed-rank test and can confirm statistical
significance (at least p < 0.05) for all methods and ablation studies with respect to our
proposed approach.

6.1.3.5 Jacobian Determinant

For the assessment of realistic and well regularised deformations we evaluate the
standard deviation (a value 0 would describe an entirely smooth transformation) and
the fraction of negative values (image foldings) of the Jacobian determinant within the
lungs. With average fractions of 0.02 % and 0.15 % (maximum: 0.21 % and 0.83 %)
the deformation for both datasets, 4D CT and COPDgene, have a small amount of
image foldings. The standard deviation of the Jacobian determinant is 0.13 and 0.21,
respectively, which compares well with comparison methods VM+ (0.11 and 0.20),
LapIRN (0.12 and 0.17), FE+ (0.15 and 0.32), PDD+ (0.10 and 0.19) and MST (0.10
and 0.18). The smoothness of the transformation and a typical local distribution of the
Jacobian determinant can also be visually inspected in Figure 6.3.
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Fig. 6.4: Cumulative distribution of target registration errors in millimeters for all keypoint
based methods on all landmark pairs of the COPDgene [Castillo et al., 2013] dataset.
In addition, the dotted lines visualize the 75th percentiles of the TRE, which are
1.61 mm (Ours), 1.73 mm (Uniform), 1.80 mm (MST), 2.09 mm (SL), 2.27 mm
(PDD+), 2.43 mm (RW), 4.38 mm (Coords) and 5.25 mm (NoReg).

6.1.4 Discussion and Conclusion

Our proposed GraphRegNet shows significantly improved results over a number of
comparison and state-of-the-art methods for deep learning based medical registration
on the widely used DIR-Lab 4D CT [Castillo et al., 2009] dataset. It surpasses the
registration accuracy of the best performing method, the LungRegNet [Fu et al., 2020]
with 1.59 mm, by more than 13% while it needs only a fraction (< 2 seconds) of the
reported computation time of approximately 1 minute. The low number of model
parameters and fast training times are another advantage over comparison methods.
For the more difficult (in terms or larger initial deformations) COPDgene [Castillo
et al., 2013] dataset the improvements are even more obvious.

While most comparison methods do not report results on the closely related COPDgene
dataset, we conducted own experiments with the state-of-the-art LapIRN registration
framework as representative approach for the widely used U-Net like encoder-decoder
architectures. Here, our keypoint-based discrete registration could reduce the TRE of
4.99 mm by approximately 70 %. Also, the high TREs of VM+ and LapIRN clearly
show the difficulty of U-Net approaches to cope with large deformations in this lung
registration task (even when employed in a multi-level and multi-resolution fashion).
In contrast, with 1.34 mm the registration accuracy of the GraphRegNet is comparable
(and even slightly better) on the COPDgene and 4D CT (1.39 mm) dataset and further
highlights the ability of a discrete deep learning registration framework to accurately
align images with large initial deformations. Another related subarea of medical image
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analysis, anatomical landmark localization, could benefit from this finding as it also
often operates on large and discrete search spaces. In comparison to conventional
registration approaches, such as the work from Rühaak et. al. Rühaak et al., 2017 (with
0.82 mm the first method that reached the inter-observer variability on the COPDgene
dataset), the registration accuracy of the GraphRegNet still lags behind. At the same
time our method benefits from the fast inference of deep neural networks and with less
than 2 seconds is much faster than [Rühaak et al., 2017], which reports a computation
time of 5 minutes for a single registration. Well established registration software such
as ANTs [Song et al., 2010], Elastix [Klein et al., 2009] or NiftyReg [Modat et al.,
2010] perform worse or on par with our approach (1.79 mm (boosted [Muenzing et al.,
2014]), 1.32 mm and 2.19 mm (boosted Muenzing et al., 2014), respectively) while
taking from 9 minutes to 3 hours for a single scan pair (values taken from [Eppenhof
et al., 2018; Muenzing et al., 2014]), which shows that the gap in accuracy between
conventional and deep learning based registration continues to close. With respect to
architectural choices we can conclude that the largest improvement in accuracy stems
from our novel deep network architecture that explicitly learns a descriptive embedding
on the displacement dimensions (a significant difference compared to works such as
FlowNet[Ilg et al., 2017] or PWC-Net[Sun et al., 2018a]) and uses graph convolutions as
a data-driven, trainable regulariser (cf. NoReg/Coords/RW ). Further important parts
of our framework are the use of a second refinement stage (cf. SL) and the sampling
of distinctive keypoints (cf. Unif.). Finally, we would like to highlight the results of
our GraphRegNet in comparison to the MST method. While MST uses exact message
passing on the minimum spanning tree of the extracted keypoints, our approach is able
to learn this step entirely from data with additional supervision and thus surpasses
the exact method. This finding might have identified a general approach for the use of
machine learning in the field of discrete optimisation.

In this work, we have presented a novel deep network architecture for learning
well-regularised dense displacement fields in a discrete and keypoint-based registration
framework. Our GraphRegNet combines CNN and GCN layers in a single network,
which allows to learn deep feature embeddings (using a convolutional encoder decoder net
that acts on the displacement dimensions) but at the same time distribute information
on a sparse and high resolution irregular grid. A novel differentiable sparse-to-dense
warping loss allows to supervise the training of our network on a sparse keypoint
graph with dense and descriptive image features. In the evaluation on two challenging
exhale to inhale lung CT datasets we could advance the state of the art for deep
learning methods while also improving the run time for conventional approaches from
minutes to seconds. A series of ablation studies demonstrated significant improvements
of individual architectural choices and highlights the great potential of discrete and
keypoint-based deep learning approaches (in contrast to fully integrated encoder decoder
architectures) for 3D medical registration.
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While, in this work, we focused mainly on the part of learning accurate displacements
from the cost tensor, for future research we especially see potential for further learning
and improvements of the input data, i.e. the image features and keypoint graph. Image
features could also be learned in an end-to-end training (instead of using fixed MIND
features) and a more descriptive keypoint graph (e.g. from vessel trees) would enable a
more targeted graphical message passing (compared to the nearest neighbour heuristic
on Foerstner keypoints). Finally, we believe that our method generalises well to other
registration tasks with large deformations, e.g. the alignment of inter-patient abdominal
CT, where keypoints sampled on surfaces of anatomical structures enable the generation
of an expressive input graph.
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Summary

In the previous four chapters, various novel methods for deep learning based medical
image analysis tasks have been developed and presented with a common focus on
the processing and exploitation of sparse representations (point clouds and keypoint
graphs). The proposed methods cover a wide range of different input modalities, clinical
tasks and target anatomies, and thus, each contributes to answering the exploratory
research question regarding the benefits of point clouds and graph representations for
medical image analysis tasks formulated in detail at the outset of this work.

In this concluding part, the main contributions of the approaches presented in the
methodological chapters are first summarised (Section 7.1) and then put in the context
of the research question (Section 7.2). Ongoing research in the field of graph learning
in medical imaging is outlined, as well as promising future research directions that can
be derived from the approaches presented in this work (Section 7.3).

7.1 Contributions

Exploitation of Pretrained CNNs for Processing Point Clouds and Implicit
Learning of Relations in Graphical Models With the emergence of affordable
time-of-flight cameras, point clouds have entered commercial and scientific applications
of scene understanding and can be considered as a novel type of image modality for
clinical analysis tasks. Chapter 3 investigated the task of clinical context monitoring
using point clouds from a multi-camera setup in the operating room. For this purpose,
the pose of the surgeons (joint landmarks such as head, shoulder, wrists etc.) should
be detected reliably and accurately. Here, the point clouds were considered as 2D
projections (depth images) and dense voxelisations, which enabled their processing with
conventional CNNs. An initial pose estimation on depth images led to significantly
better detection results than direct predictions from 3D representations, since the used
2D CNNs could be pretrained on large image data sets (a common approach in computer
vision), which is generally infeasible for point clouds due to the lack of available data.
By sparse fusion of the 2D detection results via the point cloud representations from
multiple cameras, this advantage could also be exploited for 3D pose estimation. While
this method has already yielded state-of-the art results, there have been occasional
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predictions of generally implausible poses (e.g. partial confusion of left and right
body parts). To mitigate this behaviour, a self-supervised denoising Convolutional
Autoencoder was employed in a post-processing step that was trained to recover poses
altered by artificial semantic noise (swapping, removing or displacing landmarks). The
experiments confirmed the anticipated regularising effect of the implicit pose graph
embedding that restricts the output space to anatomical plausible predictions.

In summary, this chapter has demonstrated that for certain clinical applications
grid-based representations (projections and voxelisations) are a suitable approach in
handling sparse point clouds, in particular because they enable to employ pre-trained
CNNs and to implicitly learn relations in graphical models with ease.

Demonstrating Feasibility and Efficiency of Graph Neural Networks for Seg-
mentation Learning on Point Clouds and Dense Medical Scans Transitioning
from dense processing of sparse point clouds to direct exploitation of the graph structure,
two exemplary applications for semantic segmentation were investigated in Chapter
4. First, sticking to point clouds from time-of-flight cameras and the human pose, a
supervised graph-based learning method for segmenting body parts was developed,
and second, an approach examining how sparse representation learning can be applied
in the conventional field of medical image segmentation on dense CT or X-Ray scans
was presented. In the first part, it was shown that a repeated interleaving of isotropic
diffusion operations (with multiple fixed diffusion coefficients to account for different
local/global context) and learnable 1×1 convolutions suffices to extract semantic labels
from raw point clouds with only point coordinates as input features, highlighting the
rich inherent information of graph representations. A limitation of the approach is that
the diffusion process is static and robust hyperparameters (diffusion coefficients) need
to be determined, which was addressed in [Wang et al., 2019a] by replacing the diffusion
operation with learnable edge convolutions (adopted in own subsequently developed
methods). When applying the concept of sparse graph-based segmentation to dense
medical scans, the first task is to create a meaningful anatomical graph from the image
data. One option that has been shown in the experiments to be a robust approach
across different datasets is to use a very shallow and light-weight CNN that estimates
a coarse probability map for the target anatomy from which keypoints can then be
sampled. A novel combination of an Encoder CNN (for patch based feature extraction
at keypoint locations), a GNN (for global geometric feature propagation) and a Decoder
CNN (for spatial decoding of segmentation labels) enables efficient end-to-end learning
at high resolutions. In all experiments conducted, this method provided better or on
par segmentation results than a UNet with a much lower complexity (far fewer trainable
parameters and thus reduced risk of overfitting).
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Overall, the methods presented in Chapter 4 have made an important contribution
to demonstrating the feasibility of graph-based learning methods for clinical imaging
tasks (here: semantic segmentation on both point clouds and dense medical scans).

Sparse Graphical Optimisation with Decoupled Geometric Feature Extrac-
tion Enables Accurate and Runtime Efficient Keypoint Registration While
the previous chapters described end-to-end learning methods, Chapter 5 focused on
the question of how the advantages of decoupled deep learning feature extraction
and conventional keypoint-based graphical optimisation can be combined. A direct
methodological advantage is that the approaches presented in this chapter, which
strictly decouple feature extraction and optimisation, are no black-box algorithms
(unlike end-to-end learning methods) and may thus achieve greater clinical acceptance.
Furthermore, applied to the task of medical image registration, it has been shown that
both the efficiency and runtime of deep learning methods as well as the accuracy of
conventional methods have been matched and in many cases exceeded, in particular for
images with large displacements such as those encountered in inter- and intra-patient
registration for thoracic and abdominal scans. In the first part, a registration algorithm
based on sparse graphical message passing was extended with an iterative local adapta-
tion of the solution space, resulting in very fast runtimes of less than a second on GPU
and less than 15 seconds on CPU (comparable to the fastest end-to-end deep learning
frameworks). Using handcrafted image features as metric, this approach has already
achieved state-of-the-art target registration errors. The experiments further showed,
that the method is easily adaptable to a supervised setting (availability of anatomical
segmentation labels for a training subset) with greatly improved results by training
a CNN segmentation model and using the predictions as additional input features.
This strategy differs from popular deep learning registration approaches, which use
anatomical labels only as supervision during training (direct vs. indirect loss), and, as
demonstrated, offers the flexibility to employ any optimisation method with minimal
runtime overhead. The second part of the chapter examined methods for exhale to
inhale lung CT registration based solely on sparse keypoints extracted from the CT
scans with an interest point detector (corresponding for the most part to pulmonary
bifurcations and airway trees). The Coherent Point Drift algorithm and Loopy Belief
Propagation were chosen as conventional optimisation baselines, for both of which
it could be shown that additional learned keypoint features with GNNs significantly
boosted the final alignment. Using only the learned features from the keypoint graphs,
both methods could already outperform dense state-of-the-art deep learning registration
frameworks. This shows convincingly again how much information is embedded in the
geometries of the anatomical graphs alone and challenges design choices of popular
deep learning registration architectures. [Hering et al., 2021] also suggested that the
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incorporation of a keypoint loss helps to mitigate the problem, however, only cases
with shallow breathing were considered.

All methods described in this Chapter 5 exploit graphical displacement optimisation
over sparse rather than dense locations, which makes them runtime and memory efficient
and thus enable a comprehensive exploration of the displacement search space, which
has been shown to can be further constrained by decoupled feature extraction using
CNNs and GNNs.

Combination of CNNs and GNNs to solve Sparse 3D MRFs for Medical
Image Registration Chapter 6 complements Chapter 5 in that it replaced the
conventional graphical optimisation step by a novel deep learning architecture, that
learns to solve a 3D MRF on a keypoint graph for estimating well-regularised dense
displacement fields. CNN and GNN layers, that act on the displacement and spatial
dimensions, respectively, are combined in a single end-to-end network with similarity
cost tensors evaluated at sparse keypoint location as input and predicted displacement
vectors as output. Extrapolation of the sparse displacements to a dense field enables an
image-based similarity metric to be employed for training the network. Optimisation
over sparse keypoints rather than a regular grid was on the one hand necessary to deal
with the large memory footprint (in particular during training), but the experiments
also found significant improvements in registration accuracy.

The approach presented sets the current state-of-the-art for breath-hold exhale to
inhale lung CT registration for deep learning methods and reduces the gap to the most
accurate conventional methods to less than 0.5 mm with orders of magnitude faster
runtimes. Besides the progress in the application of learning-based registration, methods
derived in this chapter are also an important contribution toward the development of a
general deep learning network architecture for solving 3D MRFs on irregular graphs.

7.2 Research Findings

In this section, the contributions of this thesis summarised before will be put in the
context of the research question of which, how, and to what extent medical image
analysis tasks can benefit from point cloud and graph representations in combination
with deep learning methods and the associated objectives formulated in Chapter 1. To
ensure a presentation coherent with the introduction, the discussion is again guided by
the following three aspects:

Which. . . The methods presented in this thesis have broadly covered the tasks of
landmark detection, semantic segmentation and image registration, three of the most
relevant topics in medical image processing. The focus for each task was on investigating
the processing and integration of point clouds and graph-based approaches.
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Point clouds from time-of-flight cameras enable completely novel clinical applications,
as demonstrated in Chapter 3 with a framework for 3D human pose estimation in the
operating room, enabling clinical context-aware assistance and monitoring systems (au-
tomatic analysis and improvement of surgical workflows, safe human–robot interaction,
etc.).

Similar to landmark estimation in point clouds, full semantic segmentation of the
human body as presented in Chapter 4 is feasible and of broad clinical interest for
patient monitoring applications, such as estimation of body weight and height or
contactless measurement of pulse and temperature from different body parts. For
conventional medical imaging input modalities such as CT and X-Ray scans, deep
learning for semantic surface segmentation on extracted keypoints graphs also showed
convincing results (see Chapter 4). Application areas include time-constrained settings
and mobile/embedded systems due to the memory and runtime efficiency reached by
the sparseness of the data and processing method. The findings are also of interest for
research on radiation dose reduction, as learning on keypoint graphs may make the
acquisition of sparsely sampled medical images conceivable.

The medical image registration methods presented in Chapter 5 and Chapter 6 have
comprehensively addressed key point-based approaches for different image modalities
(CT/MR), inter- and intra-patient registration, and two challenging (potentially highly
displaced) anatomical regions of interest, namely the thorax and abdomen. Since the
methods not only demonstrate state-of-the-art accuracy, but also very fast runtimes,
they can be employed in various application areas, such as aligning preoperative scans
for image-guided therapy and multimodal diagnostics, nodule tracking, statistical
evaluation of variations of organs for pathology detection or to generate a canonical
atlas space.

Although, for obvious reasons, not all areas and applications of medical image analysis
have been covered, a comprehensive overview of different tasks that benefit from point
cloud processing and the exploitation of keypoint graphs has been provided. Not only
have new areas emerged for applications such as context analysis using point clouds,
but it has also been possible to incorporate graph learning and optimisation successfully
in many conventional medical imaging tasks like segmentation and registration.

How. . . Various novel methods for handling point clouds and exploiting sparse
keypoint graphs in medical applications were developed and presented in this thesis.

One viable option is to ignore the sparseness of point clouds and treat the data
as dense projections (depth images) or voxelisations, as it has been investigated in
Chapter 3. Although this approach certainly has its shortcomings, such as occlusion in
projection images or loss of information through discretisation, several advantages have
been identified in this particular application of 3D human body pose estimation for scene
understanding. Depth images have many structural similarities (edges, proportions,

113



Chapter 7 Summary

etc.) to natural colour images, which enabled the use of CNNs pre-trained on publicly
available very large datasets of natural images for feature extraction, significantly
improving prediction accuracy. It has also been demonstrated that 3D CAEs can,
through self-supervised training, encode an implicit graph model for pose determination
thus constraining the valid output pose space and correct implausible predictions.

The direct processing of point clouds for learning-based tasks has been addressed
in the methodological development of multi-kernel diffusion CNNs in Chapter 4, a
graph neural network approach that combines diffusion operations on nearest neighbour
graphs of different locality with learnable 1×1 convolutions. Although similar in many
aspects, edge convolutions developed in parallel in [Wang et al., 2019a], which employ
an aggregation mechanism and edgewise convolutions instead of the diffusion operation,
offer more flexibility and have been adopted in subsequent methods. Chapter 4 also
described how graph learning can be applied to dense medical scans for structured
prediction tasks like segmentation. By sampling a distinctive keypoint graph from the
image, employing a neural graph network for feature propagation and a dense voting
scheme to densify the predictions, an efficient alternative to conventional dense encoder-
decoder architectures has been presented that in addition to intensity information can
also exploit the inherent structural information of the underlying anatomical graph.

The methods for medical image registration presented in Chapter 5 have in common
a clear disentanglement of learning based feature extraction and differentiable sparse
graphical optimisation of displacements. For feature extraction, it has been shown
that both, the dense processing with UNet architectures (and subsequent evaluation at
sparse sampled locations), but also the training of GNNs directly on keypoint graphs are
suitable and efficient approaches. However, for sparse graphical optimisation, message
passing algorithms have clearly prevailed over a deformable point cloud registration
approach (coherent point drift) in the experiments. In particular, since through an
adaptive iterative extension of the loopy belief propagation method, the runtime
efficiency could be greatly improved.

In Chapter 6, it was demonstrated that optimisation on keypoint graphs in the
context of registration can also be learned. Using a combination of CNNs that filter
similarity tensors at the local level in the displacement dimension and GNNs that learn
a globally optimal solution, an MRF-like registration problem can be solved within an
end-to-end training framework.

In summary, following approaches for incorporating point clouds and graphs into
medical imaging tasks have been thoroughly investigated: processing dense representa-
tions of point clouds with regular CNNs, trainable diffusion networks, dense structured
prediction from keypoint graphs, disentangling feature extraction and sparse graphical
optimisation, and solving MRFs with a CNN/GNN combination.
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To what extent. . . All the approaches presented were comprehensively compared in
experiments with the respective state-of-the-art methods, to not only prove feasibility
but also show advances in the field.

The pose estimation framework introduced in Chapter 3 significantly improves on
the landmark distance error of previous approaches through the 2D to 3D fusion
(from approximately 9 cm to 8 cm), and further prevents the prediction of completely
implausible poses through the pose constraints of the CAE. The largest errors are
made in the exact localisation of the extremities, especially the wrist joints (average
landmark distance to the ground truth of 11 cm). For a final assessment of accuracy,
an inter-rater error would be beneficial, which, however, is currently not available for
the dataset.

In Chapter 4, it has been shown that a diffusion network with only 1×1 convolutions
as learnable function is capable of segmenting body parts of point clouds with F1 scores
of 0.95 (slightly worse results when introducing different types of noise). Wrongly
segmented predictions were often global inaccuracies such as confusing left and right
parts of the body. When applying graph learning to dense segmentation on medical
scans (also Chapter 4), better or results on-par with those of UNet models could be
achieved. At the same time, the AI models used are less than half the size (500k versus
1300k trainable parameters) and are evaluated at only 2000 keypoint patches, making
the method appealing for memory-constrained applications.

The keypoint-based registration methods presented in Chapter 5 have significantly
improved the runtime compared to conventional methods (from minutes to subseconds)
and have shown that registration accuracy can benefit greatly from decoupled deep
learning feature extraction, especially in supervised settings (increase of Dice overlap
from 40% to 65% for abdominal CT registration with anatomical segmentations).
However, it should be noted that particularly the precision in the respective ROIs
improves and the risk of label bias, i.e. overfitting towards certain anatomies, is
introduced. Based on the application example of breath-hold lung CT registration, it
could also be demonstrated that recent dense deep learning registration frameworks
are only marginally suitable for the prediction of large displacements and are easily
outperformed by graph learning methods, even when processing just the anatomical
graph without any image information (>50% reduced target registration error).

The learning method for graphical optimisation presented in Chapter 6 represents
the deep learning based state-of-the-art for this task. It closes the gap in accuracy to
conventional methods to about 0.3 mm with significantly shorter runtimes.

For all medical imaging tasks considered, the inclusion of graph-based approaches
has either improved accuracy metrics, reduced runtime and memory requirements, or
both.
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Fig. 7.1: Trend over the last five years in medical image analysis research on the topic of point
clouds and keypoint graphs (search query: (point clouds OR keypoints OR graphs)).
Publications in the top conferences and journals in the field (MICCAI, IPMI, MIDL,
TMI, MedIA) were considered.

7.3 Recent Developments and Outlook

The objective of this work has been to investigate graph-based methods for solving
medical image analysis tasks. Figure 7.1 shows the increase in publications of the-
matically related scientific works at medical imaging conferences and journals over
the last five years, which highlights the importance of this topic as an active area of
research. To better position the presented work in this context a brief summary of
recent developments and applications of graph learning in medical image processing is
given below.

Current Related Work Point clouds continue to play a vital role in scene un-
derstanding for health-related applications. In addition to environment tracking in
operating rooms during surgery, as addressed in this work, ambulant or home-based
fall detection systems in elderly care [Gutiérrez et al., 2021] as well as in-bed context
monitoring of ICU or IMCU patients [Liu et al., 2019a] are of great clinical interest.
Point clouds and derived graphical representations are also increasingly exploited in
medical segmentation and reconstruction tasks either to directly infer solid surface
models while imposing shape constraints [Gaggion et al., 2021; Kong et al., 2021;
Nakao et al., 2021]. They are also used to generally improve segmentation results
through graph features [Garcia-Uceda Juarez et al., 2019; Soberanis-Mukul et al., 2020;
Tan et al., 2021]. Graph approaches enable learning-based classification/grading of
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whole-slide histology images, which is only possible with patch processing when using
dense CNNs due to the enormous memory demands [Wojciechowska et al., 2021; Zhou
et al., 2019]. Great progress has also been made in the field of disease diagnosis on MRI
and fMRI scans, as GNNs show promise for a successfully modelling of functional and
structural connectivity of the brain [Li et al., 2021; Ma et al., 2020; Yan et al., 2021;
Yao et al., 2021]. Furthermore, graph relations can be established not only at the image
level but also at the population level, thus leveraging relationships between patients
to improve downstream classification tasks [Cosmo et al., 2020; Parisot et al., 2017].
For the task of medical image registration multiple works find, similar to the solutions
proposed here, that incorporating descriptive keypoints can substantially reduce the
registration error [Evan et al., 2022; Hering et al., 2021; Shen et al., 2021].

Limitations and On-going Work Regarding the own methods presented, despite
the overall favourable outcomes, for all approaches certain limitations exist and addi-
tional research questions arise, which could be answered in future investigations. Several
of them are in fact already studied in our own on-going work (see List of Publications).

The approaches presented in Chapter 3 improved the state of the art in 3D human
pose estimation in a clinical setting, but the landmark errors at more difficult joints such
as wrists remained relatively large. The VAE used to build a restrictive pose embedding
space was able to prevent most but not all estimates of implausible poses and does
not guarantee anatomically correct predictions. Further anatomical constraints such
as bone lengths, angles or symmetries can be used in objective functions to improve
the accuracy of the predicted pose graph [Bigalke et al., 2022a]. If bone lengths are
known in advance (for example, from reliable predictions in unobstructed views), the
landmark detection could also be replaced by an explicit regularised fitting of a fixed
pose graph to the point cloud data. It is also very likely that a temporal analysis
instead of the currently employed single-frame approach would lead to better results
with fewer outliers. In addition to efforts to improve the accuracy of the method, its
application in other areas, in particular for in-bed pose estimation of patients, is of
great clinical interest [Bigalke et al., 2021a,b].

The graph-based segmentation network introduced in Chapter 4 yielded partly better
partly on-par Dice scores compared to a dense U-Net on different datasets. At the
same time, it has a significantly smaller number of trainable parameters and evaluates
the scans at only 2000 distinctive keypoints. However, this lower complexity does not
directly translate to a faster runtime, due in particular to the random memory access
on the GPU for the irregular graph structure [Liu et al., 2019d]. To circumvent this and
still benefit from the reduced complexity, it would be conceivable to integrate graph
convolutions directly into a dense regular multiscale U-net architecture by replacing the
expensive 3x3x3 kernels with rotation-invariant message passing mechanisms [Weihsbach
et al., 2022]. A further limitation of the method is the two-step approach, where first a
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CNN is trained to predict distinctive regions for sampling keypoints, which are then
exploited in the actual segmentation network. An end-to-end approach could further
increase segmentation accuracy, as key point sampling and feature learning would then
mutually benefit from one another [Evan et al., 2022; Sarlin et al., 2020].

Incorporation of keypoints and graph based optimisation in deep learning image
registration led to accurate registration results as shown in Chapter 5. The main focus
was on point cloud based registration, so it is of interest to investigate whether dense
deep learning networks, such as the widely used Voxelmorph framework, could also
benefit from keypoints, e.g. by replacing the commonly used spatial transformers with
keypoint supervision [Heinrich et al., 2022]. The keypoint graphs employed in the
presented methods are either derived from heuristic interest point detectors such as the
Förstner operator or randomly sampled from regions of interest. Extraction of more
semantically descriptive anatomical graphs, such as airway trees in CT lung registration
or organ surfaces, has the potential of further improving target registration quality
[Falta et al., 2022b]. An open research question remains the data-driven end-to-end
learning of sampling locations for deformable keypoint based image registration [Evan et
al., 2022; Sarlin et al., 2020]. Furthermore, the decoupling of structure and appearance
inherent in the graph-based approach, as well as the reduced network complexity, offer
potential for research in the fields of domain adaptation and interpretability [Bigalke
et al., 2022b].

The trainable graph network to solve 3D MRFs presented in Chapter 6 yielded state-
of-the-art results for deep learning based registration of large motion breath-hold lung
CT scans. Alternative approaches to address learning-based optimisation are likewise
conceivable. In particular, recurrent approaches that more closely resemble conventional
gradient descent methods could benefit in terms of accuracy as well as runtime (in
particular on keypoints) from data-driven deep learning as a form of population-based
instance optimisation [Falta et al., 2022a].

In general, for all learning methods presented in this thesis, the results depend
on the quality and quantity of the underlying data sets. In addition to the rela-
tively small public data sets used here it would therefore be desirable to train the
models on additional (annotated) images in order to observe convergence with re-
spect to the data. Finally, although all algorithms have been made publicly available
(https://github.com/multimodallearning) when possible (restrictions apply for indus-
trial cooperations), it would be an advantage for the future usage of the methods
to make them accessible as a modular and self-configuring framework, similar to the
efforts for the nnUNet [Isensee et al., 2021]. The objective would be to configure the
registration algorithm using both task-agnostic rule-based design/architecture decisions
(based on expert knowledge) and automatic hyperparameter optimisation (evaluation
of a target metric on validation data) in such a way that user intervention is no longer
necessary and optimal results are achieved even on diverse datasets, such as those
included in the current Learn2Reg challenge [Hering et al., 2022].
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