Aus der Klinik für Anästhesiologie der Universität zu Lübeck

Direktorin: Prof. Dr. med. C. Nau

Der Einfluss der Dauer des kardiopulmonalen Bypasses auf die Freisetzung putativer Biomarker für Nierenfunktionsstörungen

Inauguraldissertation

Zur Erlangung der Doktorwürde

Der Universität zu Lübeck

- Aus der Sektion Medizin -

Vorgelegt von Philipp Schlattmann aus Münster

1. Berichterstatter: Prof. Dr. med. M. Heringlake

2. Berichterstatter: Prof. Dr. med. D. Richardt

Tag der mündlichen Prüfung: 10. Januar 2023

Zum Druck genehmigt. Lübeck, den 10. Januar 2023

- Promotionskommission der Sektion Medizin -

Inhaltsverzeichnis

Inhaltsverzeichnis

A	bkürzur	ngsverzeichnis	.III
A	bbildun	gsverzeichnis	.VI
T	abellenv	verzeichnis	VII
1	Einle	eitung	1
	1.1	Allgemeine Einleitung	1
	1.2	Biomarker	2
	1.2.1	Neutrophile-Gelantinase-assoziiertes Lipocalin	2
	1.2.2	2 TIMP2 und IGFBP7	4
	1.3	Procalcitonin	5
	1.4	Klassifikation eines AKIs	6
	1.5	Pathophysiologie der Nierenfunktionsstörung bei herzchirurgischen Patienten	7
	1.6	Zielsetzung	9
2	Mate	erial und Methoden	. 10
	2.1	Studiendesign, Ethikvotum und Patientenkollektiv	. 10
	2.2	Datenerhebung.	. 13
	2.2.1	Klinische Untersuchung	. 14
	2.2.2	2 Biomarker-Bestimmung	. 14
	2.2.3	Nierenfunktion	. 16
	2.2.4	Intraoperatives Vorgehen und Monitoring	. 17
	2.2.5	Extrakorporale Zirkulation	. 18
	2.2.6	6 Operationsart	. 18
	2.2.7	7 Euroscore	. 19
	2.3	Statistik	. 20
3	Erge	bnisse	. 21
	3.1	Gesamtkollektiv	. 21
	3.1.1	Demographische und perioperative Charakteristika des Patientenkollektivs.	. 21
	3.2	Vergleich der demographischen Daten und der klinischen Ausgangssituation .	. 22
	3.3	Operative und postoperative Daten im Vergleich	. 23
	3.3.1	Blutgase und Elektrolyte	. 23
	3.3.2	2 Inflammationsmarker	. 25
	3.3.3	Myokardiale Nekrosemarker	. 26
	3.3.4	Beatmungsparameter, Blutgerinnung und Blutbild	. 26
	3.4	Hämodynamik	. 27

Inhaltsverzeichnis

	3.5	5	Therapie	28
	3.6	6	Postoperative Nierenfunktion	29
		3.6.1	Biomarker zur Prädiktion von AKI	31
	3.	7	Renale Biomarker	33
		3.7.1	Deskriptive Statistik	33
		3.7.2	Korrelationsanalysen	36
		3.7.3	Multiple Regression	38
		3.7.4	Morbiditäts- und Mortalitätsparameter	39
4		Disk	ussion	40
	4.	1	Kontext und Zielsetzung der Studie	40
	4.2	2	Diskussion der Ergebnisse	41
		4.2.1	Vergleich des Patientenkollektivs	41
		4.2.2	Validität von Biomarkern zur Frühdiagnostik von AKI	42
		4.2.3	Limitationen und Perspektiven	44
5		Zusa	mmenfassung	45
6		Lite	aturverzeichnis	46
7		Anh	ang	VIII
	7.	1	Prä-, intra und postoperative Daten, bzw. Outcome	VIII
	7.2	2	Patientencharakteristika	XXVI
	7.3	3	Intra- und postoperative allgemeine Daten	XXVIII
	7.4	4	Ethikvotum	XXIX
	7.5	5	Prämedikationsbogen	XXX
8		Danl	csagung	XXXI
9		Ehre	nwörtliche Erklärung	XXXII
1	0	Lebe	nslauf	XXXIII

Abkürzungsverzeichnis

Abkürzungsverzeichnis

ADQI	ıte Dialysis Quality Initiative
AF	Atemfrequenz
AKE	Aortenklappenersatz
AKI	Acute Kidney Injury
AKIN	cute-Kidney-Injury Networks
AKR	Aortenklappenrekonstruktion
ANOVA	analysis of variance
ASA	n Society of Anesthesiologists
AT3	Antithrombin III
Bg	
BGA	Blutgasanalyse
BIS	Bispektrale Index
BMI	Body-Mass-Index
сс	cross clamp
CK	Kreatininkinase
CKDEPI	Epidemiology Collaboration
CK-MB	ininkinase Muscle-Brain type
CPB	cardiopulmonary bypass
CPB-Lca	rdiopulmonary bypass – long
CPB-Scan	diopulmonary bypass - short
CRP	
CSA-AKI cardiac sur	gery-associated kidney inury
DNA	Desoxyribonucleinsäure
eGFR geschätzte	e glomeruläre Filtrationsrate
EK	Erythrozytenkonzentrat
EKZ	. extrakorporalen Zirkulation
ELISA Enzyme-	linked Immunosorbent Assay
ESRD	Endstage renal disease
F_iO_2 inspi	ratorische Sauerstofffraktion
nsp.	
GFR	. glomeruläre Filtrationsrate

Abkürzungsverzeichnis

HLM	Herzlungenmaschine
IGF	Insulin-like growth factor
IGFBP7	Insulin-like growth factor-binding protein 7
IL-6	Interleukin 6
INR	International Normalized Ratio
IQR	Interquartile Range
ITS	Intensivstation
kDa	Kilodalton
KDIGO	Kidney Disease-Improving Global Outcomes
KG	Körpergewicht
kgKG	Kilogramm Körpergewicht
KHK	Koronare Herzkrankheit
Lac	Laktat
LAE	Lungenarterienembolie
LOS-ICU	Intensivstation Verweildauer
LOS-KH	Krankenhaus Verweildauer
M	männlich
MAD	Mittlerer arterieller Druck
MDRD	Modification of Diet in Renal Disease
mmHg	Millimeter Quecksilbersäule
MWU	Mann-Whitney-U-Test
NGAL	Neutrophil gelatinase-associated lipocalin
NIRS	Nahinfrarotspektroskopie
NYHA	New York Heart Assosiacion
P	Beatmungsdruck
pCO ₂	Kohlendioxidpartialdruck
PCT	Procalcitonin
Peep	positiver endexspiratorischer Druck
PEEP	Positive End-Expiratory Pressure
P _{max}	Atemwegsspitzendruck
pO2	Sauerstoffpartialdruck
PTT	Partielle Thromboplastinzeit
PzvO2	Sauerstoffpartialdrucks

Abkürzungsverzeichnis

Injury", "Failure", "Loss" und "End stage renal disease"	RIFLEAkronym für ,,Risk",
Receiver-Operating Curve	ROC
Blutdruck	RR
Sauerstoffsättigung	sO ₂
zentralvenöse Sauerstoffsättigung	SzvO2
Transkatheter-Aortenklappen-Implantation	TAVI
Tidalvolumen	Tid
Tissue inhibitor of metalloproteinases 2	TIMP2
Thrombozytenkonzentrat	TK
zentralen Venendruck	ZVD

Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung 1: Flussdiagramm zur Auswahl der Patienten.	. 12
Abbildung 2: Darstellung der Operationsart, sowie der jeweiligen Verteilung des	
Patientenkollektivs.	. 18
Abbildung 3: Verlauf der Laktatkonzentration.	. 23
Abbildung 4: Vergleich der Sauerstoffsättigung und des Sauerstoffpertialdrucks, aus der	ſ
zentralvenösen BGA zum Zeitpunkt an der Herzlungenmaschine	. 24
Abbildung 5: Verlauf des Procalcitonins	. 25
Abbildung 6: Verlauf des mittleren arteriellen Blutdrucks.	. 27
Abbildung 7: Verlauf des zentralen Venendruckes.	. 28
Abbildung 8: Verlauf von Albumin _{Urin}	. 29
Abbildung 9: Verlauf von der Albumin _{Urin} /Kreatinin _{Urin} Ratio	. 30
Abbildung 10: Verlauf von Kreatinin im Plasma.	. 31
Abbildung 11: Prädiktivität der renalen Biomarker für ein postoperatives AKI Receiver-	-
Operating Curve Analyse	. 31
Abbildung 12: Perioperative Verlauf von TIMP2*IGFBP7Urin.	. 33
Abbildung 13: Perioperative Verlauf des TIMP2*IGFBP7 _{Urin} korrigiert	. 34
Abbildung 14: Perioperative Verlauf von NGAL _{Urin} .	. 35
Abbildung 15: Perioperative Verlauf von Kreatinin - korrigiertem NGAL _{Urin}	. 36

Tabellenverzeichnis

Tabellenverzeichnis

Tabelle 1: Einteilung des akuten Nierenversagens nach KDIGO (2012)	7
Tabelle 2: Klinische Untersuchungen	14
Tabelle 3: Signifikante Unterschiede der präoperativen Risikostratifizierung	22
Tabelle 4: pH _{arteriell bzw. venös} zu Beginn der extrakorporalen Zirkulation an der Herz	dungen-
maschine (HLM) und Lactat venös nach der HLM und 8 h postop	23
Tabelle 5: Verlauf von CK und CK-MB.	26
Tabelle 6: Verlauf von TIMP2*IGFBP7 _{Urin} .	34
Tabelle 7: Verlauf von NGAL _{Urin} korrigiert.	35
Tabelle 8: Korrelation zwischen der kardiopulmonalen Bypasszeit und den Bioma	arkern
bei Aufnahme auf die ITS.	37
Tabelle 9: Korrelationsanalyse zwischen NGAL / TIMP2 und NGAL / TIMP2*IC	3FBP737
Tabelle 10: Korrelationsanalyse zwischen Albumin _{Urin} und HLM-Zeit	38
Tabelle A 1: Prä-, intra- und postoperative Daten, bzw. Outcome	VIII
Tabelle A 2: Patientencharakteristika	XXVI
Tabelle A 3: Intra- und postoperative allgemeine Daten	XXVIII

1 Einleitung

1.1 Allgemeine Einleitung

Nierenfunktionsstörungen gehören zu den häufigsten und schwerwiegendsten Komplikationen kardiochirurgischer Eingriffe und gehen mit einer hohen Mortalität einher (Lassnigg et al. 2008; Lagny et al. 2015, 2015). Die Inzidenz von Nierenfunktionsstörungen variiert hierbei - je nach Definition - sehr stark und erreicht Werte von bis zu 30 % (Stafford-Smith et al. 2009). Nach den Empfehlungen des Acute-Kidney-Injury Networks (AKIN) wird diese Komplikation heute als Kardiochirurgie-assoziierte akute Nierenschädigung (Cardiac Surgery-Associated Kidney Inury (CSA-AKI)) bezeichnet (Bellomo et al. 2008).

Bislang fehlen fundierte pharmakologische Ansätze, die ein Auftreten dieser schwerwiegenden Komplikation verhindern oder die Prognose bei bereits eingetretener Nierenfunktionsstörung verbessern können (Heringlake et al. 2009; Ronco et al. 2008).

Bereits geringfügige postoperative Anstiege des Plasmakreatinins sind mit einer erhöhten Mortalität assoziiert (Lassnigg et al. 2008). Dabei gilt zu berücksichtigen, dass Änderungen der Plasmakonzentration von Kreatinin erst auftreten, wenn die glomeruläre Filtrationsrate (GFR) bereits um mehr als 50 % abgenommen hat (Baum et al. 1975). Infolgedessen wurden in den vergangenen Jahren verschiedene renale Biomarker entwickelt, welche bereits zu einem früheren Zeitpunkt Änderungen der Nierenfunktion aufzeigen sollen. Unterschieden werden hierbei Marker für glomeruläre sowie tubuläre Schäden. Der Entwicklung lag die Annahme zu Grunde, dass durch frühzeitiges Eingreifen in Form von nephroprotektiven Maßnahmen eine weitere Verschlechterung der Nierenfunktion vermieden werden könne. Zudem ist die Definition der akuten Nierenschädigung, welche in den aktuell zur Verfügung stehenden Klassifizierungssystemen (s.u.) anhand von Parametern der glomerulären Filtration und der Diurese erfolgt um das Stadium der "subklinischen Nierenschädigung" ergänzt worden. In diesem Stadium lässt sich noch keine Abnahme von GFR oder Diurese nachweisen lassen (McCullough et al. 2013a; McCullough et al. 2013b; Lassnigg et al. 2008).

In verschiedenen Studien hat sich allerdings gezeigt, dass auch extrarenale Faktoren Einfluss auf die Freisetzung renaler Biomarker nehmen und dass die Prädiktivität zur Vorhersage einer Nierenfunktionsstörung in bestimmten klinischen Situationen deutlich eingeschränkt zu sein scheint.

So können mehrere Arbeitsgruppen klar aufzeigen, dass die renale (und plasmatische) Freisetzung von Neutrophile-Gelatinase-assoziiertem Lipocalin (NGAL) auch von der kardiopulmonalen Funktion beeinflusst wird. Dabei hat die Plasmakonzentration von NGAL eine vergleichbare Vorhersagekraft für den Schweregrad einer Herzinsuffizienz wie natriuretische Peptide. Bei herzchirurgischen Patienten werden die Plasmakonzentration bzw. die renale Exkretion von NGAL von der Dauer der extrakorporalen Zirkulation beeinflusst (Paarmann et al. 2013; Parikh et al. 2011; Wagener et al. 2008).

Für den Einsatz bei herzchirurgischen Patienten wirft dies die Frage nach der Reliabilität renaler Biomarkern in diesem spezifischen Kontext auf. Insbesondere ist von Interesse, ob eine erhöhte Freisetzung renaler Biomarker nicht allgemein auf eine längere Phase der unphysiologischen Perfusion mittels Herzlungenmaschine und der assoziierten Inflammation zurückzuführen ist. Die längere kardiopulmonale Bypasszeit würde somit lediglich die Schwere des operativen Eingriffs widerspiegeln. Damit könnte, zumindest bei herzchirurgischen Patienten, die erhöhte Freisetzung renaler Biomarker ein Epiphänomen darstellen, müsste nicht zwangsläufig mit einer prognostisch ungünstigen Nierenschädigung einhergehen und könnte zu fehlerhaften therapeutischen Schlüssen führen.

Neben dem oben erwähnten NGAL, welches bereits sehr häufig im Kontext herzchirurgischer Eingriffe untersucht worden ist, wurden in den letzten Jahren zwei neue angesehene renale Biomarker, der Tissue Inhibitor of Metalloproteases (TIMP2) und das Insulin-like growth factor-binding protein 7 (IGFBP7) beschrieben, welche gegenwärtig als die zuverlässigsten Biomarker für die Vorhersage einer schweren Nierenschädigung betrachtet werden (Kashani et al. 2013).

1.2 Biomarker

1.2.1 Neutrophile-Gelantinase-assoziiertes Lipocalin

Das Neutrophile-Gelatinase-assoziierte Lipocalin ist ein 178 Aminosäure großes Protein und hat je nach Glykosylierungszustand eine Molekülmasse von 22-25 kDa. Es besteht aus einer disulfidverbundenen Polypeptidkette und gehört zur Familie der Lipocaline. Es wird durch das renale tubuläre Epithel exprimiert und als Reaktion auf eine tubuläre Schädigung sowohl im Blut, als auch Urin freigesetzt. NGAL kann innerhalb kürzester Zeit um das 1000-fache des Ausgangswertes ansteigen (Maisel et al. 2011; Kjeldsen et al. 1993; Mishra et al. 2005).

Die NGAL Expression ist vorwiegend in Tubulusepithelzellen nachgewiesen, die sich in einem Zustand der Proliferation und Regeneration befinden. Dies legt eine mögliche Beteiligung an Reparaturprozessen nahe (Mishra et al. 2003).

Ursprünglich ist NGAL in spezifischen Granula von humanen Neutrophilen nachgewiesen (Flower et al. 1991). Die Mehrheit von NGAL liegt in monomerer Form vor und wird vor allem durch geschädigte Nierentubuli sezerniert. Es gibt auch eine dimere Form, die vornehmlich von neutrophilen Granulozyten sezerniert wird, eine trimere Form sowie eine Komplexform mit neutrophiler Gelatinase (Kjeldsen et al. 1993; Yan et al. 2001; Cai et al. 2010; Mårtensson et al. 2012). Es wird in diversen Geweben, einschließlich Lunge, Leber, Niere sowie bei pathologischen und entzündlichen Prozessen exprimiert und gelangt so ins Plasma (Karlsen et al. 2010; Paragas et al. 2011).

Das Urin-NGAL scheint überwiegend aus den Epithelzellen des distalen Nephrons hervorzugehen. Bei Schädigung des proximalen Tubulussystems gelangt aufgrund von mangelnder Resorptionsfunktion jedoch auch ein Teil in den Urin (Mori et al. 2005).

Die biologische Aktivität des NGALs wird durch Bindung von Eisen beeinflusst. Sowohl in gebundener, als auch in ungebundender Form bindet es sich an Oberflächenrezeptoren verschiedener Zellen. Liegt NGAL in gebundener Form vor, kommt es zu einer Freisetzung sowie einem Konzentrationsanstieg von Eisen und einer daraus resultierenden Regulation eisenabhängiger Gene (Yang et al. 2002; Devireddy et al. 2005). In ungebundener Form bildet das NGAL ein Chelatkomplex mit dem intrazellulären Eisen und sorgt für einen Transport in den Extrazellularraum.

NGAL vermittelt so die Differenzierung von Nierentubuluszellen und Nephronen und ist an der Abschwächunug von Apoptose beteiligt. Daneben beeinflusst es viele weitere biologische Prozesse (Devireddy et al. 2001; Supavekin et al. 2003).

Durch die reduzierte Apoptoserate, mit gleichzeitiger Steigerung der normalen Proliferation der Nierentubuluszellen, kann NGAL protektiv auf renale Schädigungen einwirken. Außerdem kommt es durch eine erhöhte intrazelluläre Eisenkonzentration zu einer Hochregulation der Hämoxygenase-1, durch die die Tubuluszellen der Niere geschützt werden (Mishra et al. 2003; Mishra et al. 2004; Mori et al. 2005).

1.2.2 TIMP2 und IGFBP7

TIMP2 und IGFBP7 kristallisierten sich in zwei internationalen multizentrischen Studien, der Opal (Hoste et al. 2014) und der Sapphire-Studie (Kashini et al. 2013) im Vergleich zu einer großen Zahl anderer renale Biomarkern als jene heraus, die die höchste klinische Prädiktivität für die Detektion eines Acute kidney injurys (AKI) aufweisen. Dabei zeigte sich, dass das Produkt beider Biomarker für die Vorhersage eines AKIs innerhalb der ersten 12 h nach Probenentnahme signifikant aussagekräftiger ist, als die Konzentration der zum Zeitpunkt der Studie (2010 bis 2012) etablierten renalen Biomarker (Hoste et al. 2014; Kashini et al. 2013).

IGFBP7 und TIMP2 induzieren beide nach Schädigung der Niere einen G1-Phase Zellarrest und lassen sich im Urin nachweisen. Dies findet normalerweise etwa 24 - 48 h vor einem relevanten Anstieg des Serumkreatinins statt (Kashani et al. 2013; Hoste et al. 2014). Die Expression der Biomarker erfolgt im Falle eines AKIs ausschließlich im Tubulussystem, außerhalb des Tubulussystems, etwa durch eine verstärkte Filtration, sammeln sich keine AKI Biomarker an (Emlet et al. 2018; Emlet et al. 2017).

<u>Tissue Inhibitors of Metalloproteasen</u>

TIMP2 ist eines von vier Subtypen der Tissue Inhibitors of Metalloproteasen. Es ist ein nicht glykosyliertes Protein. Alle TIMP werden durch sechs Schleifen aus Disulfidbrücken in zwei Domänen gegliedert. Es handelt sich zum einen um den N-Terminalen inhibitorischen Teil und zum anderen um den substrat-bindenden C-Terminalen Teil. Je nach Konzentrationsvorkommen kann es eine aktivierende oder inhibierende Wirkung auf Metalloproteasen haben. Dies reguliert vor allem ihre destruierenden Gewebeeigenschaften. TIMP2 wird von verschiedenen Zelltypen produziert und ist somit in diversen Gewebearten des Körpers nachweisbar (Murphy et al. 1991; Murphy et al. 1994; DeClerck 2000).

Bei zellulärem Stress wird TIMP2 bereits in der Frühphase einer tubulären Verletzung im gesamten Tubulussystem freigesetzt. TIMP2 fördert den Stopp der G1-Zellzyklen in der geschädigten Zelle und verhindert so eine Teilung der DNA, bis zu dem Zeitpunkt in denen Reparaturmechanismen abgeschlossen sind (Yang et al. 2009).

Insulin-like growth factor-binding protein 7

Insulin-like growth factor-binding protein 7 (IGFBP7) ist ein 30 kDa großes Protein. Es ist eines von sieben Insulin like growth factor (IGF)-bindenden Proteinen und zählt zum IGF-System. IGFBPs transportieren die IGFs und regulieren so ihre Verfügbarkeit und die Aktivität. Dadurch beeinflussen sie das Wachstum, die Proliferation und die Apoptose von verschiedenen Zelltypen.

IGFBP7 hat eine niedrige Affinität zu IGF-1 und IGF-2, sowie eine IGF-unabhängige intrinsische Aktivität und weist eine hohe Affinität zu Insulin auf. Dies unterscheidet es von den anderen IGFBPs (Oh 1997). IGFBP7 wird von verschiedenen Geweben sezerniert und wirkt sowohl auto- als auch parakrin (Duan und Xu 2005). Es besitzt im Gegensatz zu den anderen IGFBPs nur eine hoch konservative N-terminale Domäne, die als Hauptbindungsstelle für IGFs fungiert. Die konservative C-terminale Domäne, die ebenfalls IGFs binden kann sowie der variable Mittelteil, der die Interaktionen der IGFBPs untereinander moduliert, fehlen (Duan und Xu 2005; Hwa et al. 1999).

Entsprechend der Wirkungsweise von TIMP2 handelt es sich um ein Schutzmolekül, welches bei zellulärem Stress freigesetzt wird. Nach Schädigung proximaler Tubuluszellen treten diese in einen G1 Zellarrest über. Dies verhindert, dass zuständige Moleküle, wie beispielsweise die Cycline den Zellzyklus weiterhin triggern können und Zellschäden so weiter vorangetrieben werden (Yang et al. 2009).

1.3 Procalcitonin

Procalcitonin (PCT) ist ein Entzündungsparameter, der auch nach unkomplizierten kardiochirurgischen Eingriffen bis zu 24 h nach dem Eingriff ansteigt. Das Ausmaß des Anstiegs hängt unter anderem von dem intraoperativen Verlauf und der Invasivität des chirurgischen Eingriffs ab. Eine Überschreitung des Werts von 5 ng/ml ist in diesem Zusammenhang eher unwahrscheinlich (Sponholz et al. 2006).

Beim PCT handelt es sich um ein 14 kDA großes Protein, welches die Vorstufe des Calcitonins bildet und von den C-Zellen synthetisiert wird. Das Molekül ist aus drei Teilen zusammengesetzt, dem Amino-Terminus, dem unreifen Calcitonin und dem Carboxyl-Terminus. Bei gesunden Menschen kann PCT in geringer Konzentration nachgewiesen werden (Wunder et al. 2004; Herrmann et al. 2000; Adamik et al. 2000).

Die Ausschüttung von PCT ist Bestandteil einer Reaktion auf Entzündungsprozesse (Whicher et al. 2001). Es wirkt wie ein Chemokin und sorgt nach seiner Induktion für eine Anreicherung von Monozyten in dem entsprechenden Areal. Nach Kontakt mit den Monozyten wirkt es wiederum hemmend auf diese und beeinflusst somit auch die Akutphasenantwort (Jones 2005; Hoffmann 1999). Es wird nach Schockereignissen, Gewebeschädigungen, Infektionen, sowie im Sepsisfall exprimiert (Tschaikowsky et al. 2002; Wanner et al. 2000). Ein Konzentrationsanstieg des PCTs zeigt sich bereits 4 h nach Ereignis, wobei nach 6 h der Höhepunkt erreicht wird. Die Plateauphase umfasst einen Zeitraum von 8 - 24 h (Delèvaux et al. 2003).

1.4 Klassifikation eines AKIs

Gegenwärtig existieren 3 verschiedene Konsensusdefinitionen (vgl. Tab. 1, S. 7) zur Graduierung einer akuten Nierenfunktionsstörung, welche sich im Verlauf aufeinander aufbauend ent-wickelt haben:

- die RIFLE (Akronym für "Risk", "Injury", "Failure", "Loss" und "End stage renal disease") Definition der Acute Dialysis Quality Initiative (2004), die für eine Vereinheitlichung der heterogenen klinischen Definitionen eines akuten Nierenversagens sorgte (ADQI) (Bellomo et al. 2004),
- die AKIN Definition des Acute Kidney Injury Networks (2007), welche die RIFLE Definiton modifiziert, indem sie auch einen Kreatinin-Anstieg von mind. 0,3 mg/dl innerhalb von 48 h als eine Form der akuten Nierenfunktionsstörung begründet. Das Stadium Endstage renal disease (ESRD) wird als Spätfolge/Endpunkte eines AKIs angesehen und findet keine Berücksichtigung in der Stadieneinteilung 1-3 (Mehta et al. 2007).
- die Definition der Kidney Disease Improving Global Outcomes (KDIGO) (2012) Initiative, welche den aktuellen Stand eines akuten Nierenversagens darstellt (Tab. 1) (Kellum et al. 2012).

Alle drei Konsensusdefinitionen betrachten aber sowohl Veränderungen des Serumkreatininwertes, der Urinproduktion und der Notwendigkeit einer Nierenersatztherapie.

Tabelle 1: Einteilung des akuten Nierenversagens nach KDIGO (2012). (Kellum et al. 2012)

	Serumkreatinin-Kriterien	Diurese-Kriterien
Stadium	Serumkreaumn-Kriterien	Diurese-Kriterien
1	• Anstieg um 0,3 mg/dL (26,5 μmol/L) (inner-	• <0,5 mL/kgKG/h
	halb von 48 h) oder	für 6–12 h
	• 1,5- bis 1,9-facher Anstieg (innerhalb von 7	
	Tagen)	
2	• 2- bis 2,9-facher Anstieg (innerhalb von 7	• <0,5 mL/kgKG/h
	Tagen)	für≥12 h
3	• ≥ 3-facher Anstieg (innerhalb von 7 Tagen)	• <0,3 mL/kgKG/h
	oder	für ≥24 h oder
	• Anstieg auf ≥ 4 mg/dL (353,6 µmol/L) oder	• Anurie für ≥12 h
	Beginn einer Nierenersatztherapie oder	>12 h
	• Patienten <18 Jahre: Abfall der eGFR auf	
	<35 mL/min/1,73 m ²	

Korrespondieren das Stadium der Serumkreatininkonzentration und die Urinausscheidung nicht, ist das jeweils höhere Stadium entscheidend.

1.5 Pathophysiologie der Nierenfunktionsstörung bei herzchirurgischen Patienten

Die pathophysiologischen Mechanismen, die zu einer Kardiochirurgie-assoziierten Nierenschädigung führen, lassen sich in prärenale, intrarenale und postrenale Faktoren unterteilen. Dabei können verschiedene Schädigungsmechanismen zu unterschiedlichen Zeiten und in unterschiedlicher Intensität einwirken und zu synergetischen Effekten führen.

Seitens der Acute Dialysis Quality Initiative (ADQI) werden folgende wesentliche Faktoren aufgeführt:

- Exogene sowie endogene Toxine,
- metabolische Faktoren,
- Ischämie und Reperfusion,
- die neurohormonale Aktivierung,
- Entzündungsprozesse und oxidativer Stress (Bellomo et al. 2008).

Exogene und endogene Toxine

Zu den exogenen Substanzen zählen Medikamente wie nichtsteroidale Antirheumatika und Antibiotika. Daneben wird dem Einsatz von Röntgenkontrastmitteln eine Bedeutung zugesprochen, eine besondere Rolle spielt hierbei das zeitliche Intervall zwischen der Verabreichung des Kontrastmittels und dem Beginn der herzchirurgischen Operation (Pannu und Nadim 2008; Ranucci et al. 2008). Zu den endogenen Einflussfaktoren zählen unter anderem das vermehrte Anfallen von Myoglobin, welches durch Schädigung der Skelettmuskulatur, meist im Zusammenhang mit einer Rhabdomyolyse, in den Kreislauf gelangt und zu entzündlich destruktiven Veränderungen im Tubulussystem führen kann (Bosch et al. 2009).

Metabolische Toxine

Ein präoperativ bekannter Diabetes mellitus sowie perioperative Hyperglykämien sind für herzchirurgische Patienten von prognostischer Relevanz und mit einem erhöhten Risiko für Nierenfunktionsstörungen assoziiert (Carson et al. 2002; Doenst et al. 2005; Heringlake et al. 2009; Ouattara et al. 2005). Durch die stressbedingte Ausschüttung von Katecholaminen kann es zusätzlich zu einem Anstieg von Glukose und Lactat kommen, was mit einer erhöhten postoperativen Komplikationsrate assoziiert ist (Ranucci et al. 2006).

Ischämie, Reperfusion und oxidativer Stress

Ein vermindertes Herzminutenvolumen, eine arterielle Hypertonie sowie embolische Ereignisse können über eine Hypoperfusion mit Abnahme des renalen Blutflusses konsekutiv zu einer Nierenischämie führen. Daraus resultiert ein vermehrtes Anfallen freier Sauerstoffradikale, was zu vermehrten Lipidoxidationen und Zellschäden führt. Dies führt zu einem Untergang von tubulären Epithelzellen, mit einem daraus resultierendem Nierenversagen (Dávila-Román et al. 1999; Devarajan 2006; Sutton et al. 2002).

Entzündungsprozesse und neurohormonale Aktivierung

Bei perioperativen Prozessen kommt es durch Freisetzung von Entzündungsmodulatoren wie beispielsweise Zytokinen zu Entzündungsprozessen. Diese können zu einer Verschlechterung der Nierenfunktion führen (McGuinness et al. 2008).

In Stresssituationen kommt es darüberhinaus zu einer Aktivierung des sympathischen Nervensystems und Renin-Angiotensin-Aldosteron-Systems (RAAS). Dies führt neben einer Minderperfusion zu einer Wasser- und Natriumchlorid- Retention der Niere, was zu einer Abnahme der Diurese führt (Clerico et al. 2006; Riddez et al. 1997).

1.6 Zielsetzung

Primäre Zielsetzung dieser prospektiven Observationsstudie ist es zu untersuchen, ob die Freisetzung der renalen Biomarker TIMP2 und IGFBP7 bei kardiochirurgischen Operationen von der Dauer der extrakorporalen Zirkulation beeinflusst wird.

Als sekundäre Fragestellungen sollen zudem untersucht werden:

- Ob die Dauer der extrakorporalen Zirkulation einen Einfluss auf die Prädiktivität des Produktes der beiden Biomarker TIMP2 und IGFBP7 für ein AKI darstellt.
- Ob sich ein Zusammenhang zwischen der renalen Freisetzung von NGAL und TIMP2 * IGFBP7 herausarbeiten lässt.
- Welchen Einfluss die Dauer der extrakorporalen Zirkulation auf die Inzidenz eines AKIs nimmt.

2 Material und Methoden

2.1 Studiendesign, Ethikvotum und Patientenkollektiv

Die vorliegende prospektive Observationsstudie vergleicht zwei Patientenkohorten, welche über einen unterschiedlich langen Zeitraum unter Einsatz der extrakorporalen Zirkulation operiert wurden. Um unter diesen Gegebenheiten möglichst standardisierte Bedingungen zu erzielen, wurden nur Patienten eingeschlossen, welche sich einem offenen Eingriff an der Aortenklappe unterzogen.

Nach positivem Votum der Ethikkommission (Aktenzeichen 14-022) der Universität zu Lübeck, wurden im Zeitraum vom 20.04.2014 bis zum 04.08.2015 Patienten in die Studie eingeschlossen. Die Teilnahme erfolgte nach einer umfangreichen mündlichen und schriftlichen Aufklärung, die am Vortag der Operation im Rahmen des Prämedikationsgespräches stattfand.

Ausgeschlossen wurden Patienten unter dem 18. und über dem 80. Lebensjahr sowie bei fehlender Einverständniserklärung. Um eine bessere Vergleichbarkeit zu erzielen, wurden ebenfalls Patienten mit den folgenden Diagnosen ausgeschlossen: terminale dialysepflichtige Niereninsuffizienz, chronische Niereninsuffizienz, Endokarditis, Sepsis, Pneumonie, Harnwegsinfektionen oder sonstigen Infektionskrankheiten. Daneben wurden Patienten mit einer interventionsbedürftigen koronaren Herzerkrankung (KHK), einer therapiebedürftigen Herzklappenveränderung, einer schweren pulmonal-arteriellen Hypertonie, einer schweren Herzinsuffizienz, einer deutlich reduzierten kardialen Pumpfunktion, einer Tumorerkrankung oder einem Diabetes mellitus von der Studie ausgeschlossen. Zudem wurden Patienten mit einer zusätzlichen Intervention, wie Verschluss des linken Vorhofs (LAA) oder Ablationsbehandlung, nicht in die Studie eingeschlossen.

Zur Fallzahlberechnung wurde eine vorangegangene Untersuchung zum Einfluss der Dauer des kardiopulmonalen Bypasses auf die renale Exkretion von NGAL, bei Patienten mit einer Bypasszeit < bzw. ≥ 118 Minuten, zugrunde gelegt. Daraus ergab sich, dass zum Nachweis eines signifikanten Unterschiedes ($\alpha = 0.8$; $\beta = 0.05$) 90 Patienten in zwei Gruppen untersucht werden müssten (Paarmann et al. 2013).

Material und Methoden

In dem Zeitraum von 2008 bis 2014 nahm die Anzahl der Transkatheter-Aortenklappen-Implantation (TAVI) erheblich zu. Die Anzahl der isolierten Aortenklappeneingriffe hat in diesem Zeitraum einen deutlichen Rückgang erfahren (Eggebrecht und Mehta 2016). Dieses Phänomen spiegelte sich ebenfalls in der Rekrutierung für diese Studie wider; zudem mussten bei den verbleibenden Patienten oft zusätzliche Behandlungen durchgeführt werden, die zum Ausschluss in unserer Studie führten. Aufgrund des schleppenden Einschlusses erfolgte nach 42 Patienten der Entschluss zu einer Zwischenanalyse. Diese zeigte, dass mit dem Ergebnis die primäre Fragestellung beantwortet werden kann, weshalb die Studie vorzeitig beendet wurde.

Von diesen 42 Studienteilnehmern mussten drei Patienten von der weiteren Untersuchung ausgeschlossen werden: Bei zwei Patienten lagen nicht alle notwendigen Laborergebnisse vor; bei einem anderen Patienten stellte sich nachträglich heraus, dass er an einer terminalen Dialysepflicht litt. 17 der verbliebenden 39 Patienten wurden der Kontrollgruppe zugeordnet, welche nur eine kurze Zeit unter Einsatz der Herzlungenmaschine (cardiopulmonary bypass - short (CPB-S Gruppe)) operiert wurden. 22 Patienten wurden somit der Observationskohorte zugewiesen, welche eine längere Herzlungenmaschinenzeit (cardiopulmonary bypass – long (CPB-L)) aufwiesen.

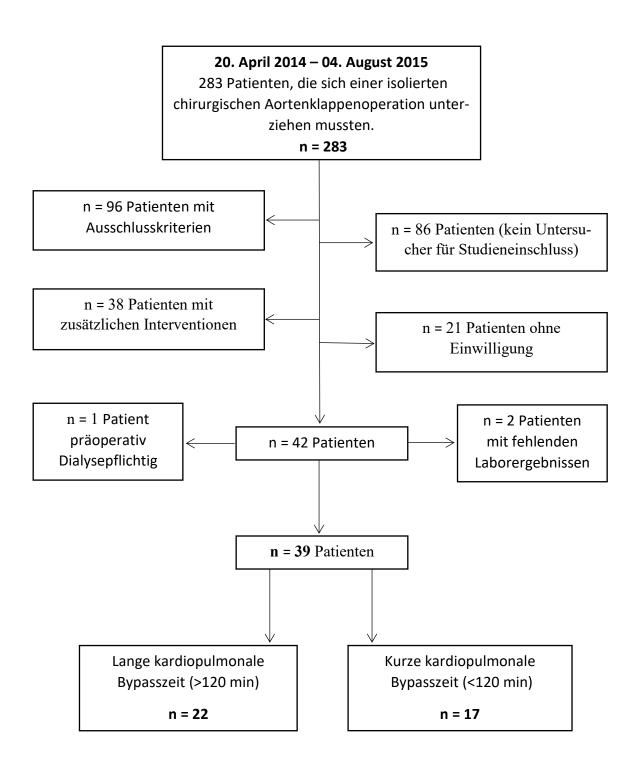


Abbildung 1: Flussdiagramm zur Auswahl der Patienten.

2.2 Datenerhebung

Zuerst wurde mit Hilfe eines Datenerfassungsbogens (vgl. 7.5) demographische Variablen, Dauermedikationen, der geplante operative Eingriff, sowie Laborparameter der Nierenfunktion erfasst. Um die Daten zu vervollständigen wurden zusätzlich die Patientenakten und die Laborparameter hinzugezogen.

Im Verlauf der Studie wurden zu den unten aufgeführten definierten Zeitpunkten Blut- und Urinproben entnommen. Wenn keine unmittelbare Bestimmung in einem Labor der Klinik oder als Point-of-Care erfolgen konnte, wurden die Proben durch Zentrifugation aufgearbeitet und bei -80°C bis zur weiteren Analyse gelagert. Eine Zusammenfassung der klinischen Untersuchung kann der Tabelle 2 entnommen werden.

Die folgenden Abnahmen erfolgten präoperativ:

- 1. Vor Narkoseeinleitung unter Raumluft (Blut / Urin),
- 2. nach Intubation vor Operationsbeginn (Blut / Urin),
- 3. vor Anschluss an die Herzlungenmaschine (Blut),
- 4. an der Herzlungenmaschine, 40 min nach Beginn (Blut),
- 5. nach der Herzlungenmaschine (Blut),
- 6. bei Verlegung auf die Intensivstation (Blut / Urin).

Die folgenden Abnahmen erfolgten postoperativ:

- 1. Bei Aufnahme auf die Intensivstation (Blut / Urin),
- 2. vier Stunden postoperativ (Blut / Urin),
- 3. acht Stunden postoperativ (Blut / Urin),
- 4. 12 Stunden postoperativ (Blut / Urin),
- 5. 24 Stunden postoperativ (Blut / Urin),
- 6. 48 Stunden postoperativ (Blut / Urin),
- 7. drei Monate postoperativ (Blut).

2.2.1 Klinische Untersuchung

Tabelle 2: Klinische Untersuchungen.

Messzeitpunkt	Prä op	Vor Op Be- ginn	Vor HLM	An HLM nach 40	Nach HLM	Bei Ver- le- gung	Auf- nah me auf	4 h post op	8 h post op	12 h post op	24 h post op	48 h post op	3 Mo- nate post op
Parameter				min			ITS						
BGA _{arteriell}	*	*	*	*	*	*	*	*	*	*	*	*	
BGA _{venös}	*	*	*	*	*	*	*	*	*	*	*	*	
kleines Blutbild	*						*	*	*	*	*	*	
CK, CK-MB, Myoglobin, Harnstoff	*						*	*	*	*	*	*	
Quick, PTT, AT III, Fibrinogen	*						*		*		*	*	
Albumin, Kreat- inin, NGAL	*,#						*,#	*,#	*,#	*,#	*,#	*,#	
TIMP2, IGFBP7	#						#	#	#	#	#	#	
CRP, PCT	*							*	*		*		
IL-6	*												
Bilirubin gesamt	*										*		
freies Hämoglo- bin, Haptoglobin	*						*				*		
Hämoglobin		#					#				#		
Kreatinin, Harn- stoff, Kalium													*
	Abnahmezeitpunkte: * = Blutentnahme; # = Urinentnahme												

2.2.2 Biomarker-Bestimmung

Die gesammelten Proben wurden nach Beendigung des Patienteneinschlusses in einem externen Labor untersucht. Dort wurden die Biomarker mit Hilfe eines Enzyme-linked Immunosorbent Assays (ELISA) im Urin bestimmt. Dieser bedient sich zwei verschiedener Antikörper, um ein Antigen nachzuweisen. Zunächst wird das Antigen auf einer Trägerplatte fixiert, die anschließend mit der zu bestimmenden Probe (z.B. Serum mit dem nachzuweisenden Antikörper) inkubiert wird. Dieser Antikörper, der auch als primärer Antikörper bezeichnet wird, bindet sich an das Antigen. Um diesen neu entstandenen Komplex sichtbar zu machen, wird in einem weiteren Schritt ein zweiter Antikörper benötigt.

Dieser hat neben seiner Funktion, sich an den primären Antikörper binden zu können, auch die Eigenschaft, durch eine enzymatische Reaktion, den nun neu entstandenen Gesamtkomplex zu färben. Je intensiver sich die Farbreaktion darstellt, desto höher ist die Konzentration des primären Antikörpers im Serum (Stryer et al. 2014).

Extern bestimmt wurden:

- NGAL: (BioPorto Diagnostics; Hellerup, Dänemark). Die minimale Nachweisgrenze des Tests liegt bei 0,008 ng/ml. Die Intraassay- und Interassay-Variation wurde an Hand von zwei Urinproben festgelegt und ergaben einen medianen Variationskoeffizienten von 3,4 % und 4,3 %, bzw. 4,7 % und 22,7 %.
- TIMP2: (R & D Systems; Minneapolis, Minnesota, USA). Die untere Nachweisgrenze des Tests liegt bei 0,011 ng/ml. Die Intraassay- und Interassay-Variation wurde anhand dreier Urinproben festgelegt und ergaben einen medianen Variationskoeffizienten von 4,2 %, 6,0 % und 6,5 % bzw. 7,8 %, 6,7 % und 6,2 %.
- IGFBP7: (Boster Antibody and ELISA experts; Pleasanton, USA). Die untere Nachweisgrenze liegt bei 625 pg/ml. Die Intraassay- und Interassay-Variation wurde anhand dreier Urinproben festgelegt und erbrachten einen medianen Variationskoeffizienten von 4,4 %, 4,5 % und 5,1 % bzw. 6,7 %, 6,9 % und 7,2 %.

Die bis dato durchgeführten Studien geben verschiedene Referenzbereiche für das Produkt aus IGFBP7*TIMP2_{Urin} vor, womit ein AKI nachgewiesen werden kann. Je nach Studie ergeben sich unterschiedliche Referenzwerte. Bei gesunden Patienten wurden Werte zwischen $0.04 - 2.25 \, (\text{ng/ml})^2/1000$ beobachtet (Chindarkar et al. 2016). Dabei hatten 46,3 % der Proben einen Wert < $0.3 \, (\text{ng/ml})^2/1000$, 53,35 % einen Wert < $0.4 \, (\text{ng/ml})^2/1000$ und 62,17 % einen Wert < $0.5 \, (\text{ng/ml})^2/1000$.

Bei kritisch kranken Patienten, mit einem AKI innerhalb von 12 Stunden nach Aufnahme auf Intensivstation (ITS), bestanden bei Aufnahme auf ITS mediane Urinwerte von TIMP2*IGFBP7 von 1,6 $(ng/ml)^2/1000$ (0,7-2,8), während Patienten ohne ein AKI Werte von 0,3 (0,2-0,8) $(ng/ml)^2/1000$ hatten (p < 0,001) (Bihorac et al. 2014).

Material und Methoden

Zur Auswertung der Studie wurde sich an den Referenzwerten des NephroCheck Tests (San Diego USA) orientiert, welcher der quantitativen Messung von TIMPs und IGFBP7 dient.

Die Referenzwerte des Tests liegen bei:

- $< 0.3 \text{ (ng/ml)}^2/1000 \text{ für ein geringes AKI Risiko,}$
- 0,3-2,0 (ng/ml)²/1000 beschreiben ein moderates Risiko,
- > 2,0 (ng/ml)²/1000 deklarieren ein hohes AKI Risiko.

Um die Veränderungen der Harnflussraten zu berücksichtigen, wurden die Urin-Biomarker (Biomarker im Urin aktuell) zusätzlich in Hinblick auf die Kreatinin Konzentration im Urin (Kreatinin im Urin aktuell) normalisiert, bzw. korrigiert und als solche angegeben:

- $NGAL_{Urin}$ korrigiert = $NGAL_{Urin}$ aktuell / Kreatinin $_{Urin}$ aktuell
- $TIMP2_{Urin}$ $korrigiert = TIMP2_{Urin}$ $aktuell / Kreatinin_{Urin}$ aktuell
- $IGFBP7_{Urin}$ $korrigiert = IGFBP7_{Urin}$ $aktuell / Kreatinin_{Urin}$ aktuell
- **TIMP2*IGFBP7**_{Urin} korrigiert = TIMP2*IGFBP7_{Urin} aktuell / Kreatinin_{Urin} aktuell

2.2.3 Nierenfunktion

Die Nierenfunktion wurde präoperativ und zu den jeweiligen Messzeitpunkten zum einen über das Plasmakreatinin und zum anderen über die Diurese evaluiert. Darüber hinaus erfolgte die Kalkulation der abgeschätzten glomerulären Filtrationsrate mittels der Modification of Diet in Renal Disease (MDRD) Formel. In verschiedenen Studien hat die MDRD Formel Vorteile gegenüber anderen verwendeten Formeln zur Berechnung der glomerulären Filtrationsrate (GFR) gezeigt, wie beispielsweise der zuvor häufig genutzten Cockcroft-Formel, bei der die vorherige Bestimmung eines 24 h Sammelurins notwendig ist (Levey et al. 1999).

eGFR (ml/min/1,73m²) =
$$186 \times (S_{Kreatinin} [mg/dl])^{-1.154} \times (Alter [in Jahren])^{-0.203} \times 0,742 (Frauen) \times 1,212 (schwarze Hautfarbe)$$

Die Erfassung von AKI erfolgte nach den KDIGO-Kriterien (1.4), wobei die Diureseerfassung nur über den Zeitraum von 48 Stunden, beziehungsweise bis zum Entfernen des Blasenkatheters durchgeführt werden konnte. Eine weitere Überprüfung des Plasmakreatinins

sollte drei Monate nach der Operation durchgeführt werden. Aufgrund einer nur geringen Rücklaufquote (n = 15) war eine sinnvolle Auswertung des Langzeitverlaufes leider nicht umsetzbar.

2.2.4 Intraoperatives Vorgehen und Monitoring

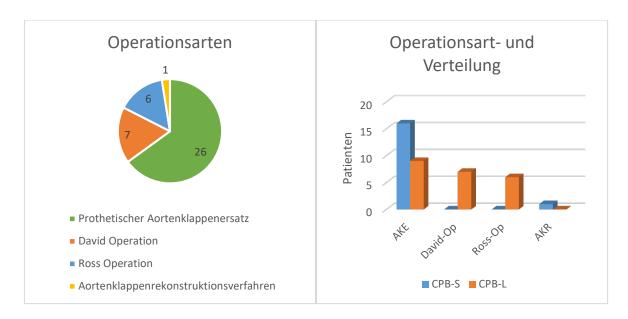
Die Operation sowie der perioperative Therapieverlauf erfolgten bei allen Patienten nach den Standards der Kliniken für Anästhesiologie sowie Herz- und thorakale Gefäßchirurgie der Universität zu Lübeck. Die hämodynamische Therapie richtete sich nach den Empfehlungen der S3-Leitlinie zur intensivmedizinischen Versorgung herzchirurgischer Patienten. Mit Ausnahme der zusätzlichen Blut- und Urinabnahmen wurde im Studienverlauf nicht von diesen Standards abgewichen. Das Monitoring erfolgte ebenfalls gemäß dieser S3-Leitlinie (Carl et al. 2010).

Zur Überwachung der Kreislaufparameter dienten ein zwei Kanal - Elektrokardiogramm (Ableitung II und V5), ein arterieller Zugang, der neben einer invasiven Blutdruckmessung auch Abnahmen arteriellen Blutes für die arterielle Blutgasanalyse (BGA) ermöglichte, ein Pulsoxymeter zur Überwachung der arteriellen Sauerstoffsättigung und ein zentraler Venenkatheter, welcher neben der permanenten Zufuhr von Flüssigkeiten und Medikamenten die Abnahme zentralvenösen Blutes zur Bestimmung der zentralvenösen Sauerstoffsättigung erlaubte. Zusätzlich erfolgte eine kontinuierliche zerebrale Sauerstoffsättigung mittels Nahinfrarotspektroskopie (NIRS).

Zu den Beatmungsparametern zählten die inspiratorische Sauerstoffkonzentration F_iO₂, der Frischgasfluss, der maximale Atemwegsdruck (P_{max}), der positive endexspiratorische Druck (PEEP), die Atemfrequenz, das Tidalvolumen und die endexspiratorische (endtidale) CO₂ – Konzentration (Kapnographie). Die Narkosetiefe wurde durch den bispektralen Index erfasst, die Ein- und Ausfuhr wurde bilanziert.

Die Einleitung der Narkose erfolgte mittels 0,5 μg/kg Körpergewicht (KG) Sufentanil, 2 bis 3 mg/kg KG Propofol und 0,6 mg/kg KG Rocuronium. Die Narkoseaufrechterhaltung erfolgte mittels kontinuierlicher Gabe von Sevofluran und Remifentanil. Zusätzlich erhielten alle Patienten vierstündlich 2-4 g Cephazolin. Die Volumen- und Flüssigkeitstherapie erfolgte leitliniengerecht mit balancierter kristalloider Lösung und Albumin.

2.2.5 Extrakorporale Zirkulation


Die in der Studie eingeschlossenen Patienten wurden alle unter Verwendung der extrakorporalen Zirkulation (EKZ) operiert, in moderater oder tiefer Hypothermie (34 °C - 28 °C nasopharyngeale Temperatur), die sich nach Operateur sowie Art der Operation richtete.

Durch Applikation einer kardioplegischen Lösung nach Buckberg wurde nach Abklemmen der Aorta ein Herzstillstand induziert. Um die gewonnene Asystolie aufrecht zu erhalten wurde alle 20 Minuten eine erneute Perfusion mit einer kardioplegischen Lösung durchgeführt.

Während des gesamten Zeitraums an der Herzlungenmaschine wurde eine nicht-pulsatile Perfusion mit einem mittleren arteriellen Blutdruck zwischen 50 und 70 mmHg durchgeführt.

2.2.6 Operationsart

Die in der Studie berücksichtigten Patienten unterzogen sich folgenden operativen Eingriffen: Ross-Operation, David-Operation, prothetischer Aortenklappenersatz, Aortenklappenrekonstruktion (vgl. Abb. 2). Sowohl David-, als auch Ross-Operationen veranschlagen aufgrund ihres operativen Vorgehens automatisch eine längere Herz-Lungen-Maschinen (HLM)-Zeit, was sie somit nur für die CPB-L Gruppe klassifiziert.

Abbildung 2: Darstellung der Operationsart (links), sowie der jeweiligen Verteilung des Patientenkollektivs (rechts). AKE = Prothetischer Aortenklappenersatz, AKR = Aortenklappenerkonstruktionsverfahren.

2.2.7 Euroscore

Der additive Euroscore (European System for Cardiac Operative Risk Evaluation) ist ein Risikomodell, dass die Mortalität nach herzchirurgischen Operationen berechnet. Demnach gibt es insgesamt 17 Risikofaktoren, die zur Berechnung des Sterberisikos dienen. Die einzelnen Faktoren wurden hierbei einer unterschiedlichen Punktewertigkeit zugeordnet. Der daraus resultierende Score ergibt das Risiko der Sterblichkeit. Diese Studie basiert auf Analysen mit 19.030 Patienten. Der Euroscore findet Berücksichtigung bei der jeweiligen Operationsauswahl, des einzelnen Patienten, die sich wiederum auf die kardiopulmonale Bypasszeit auswirkt (Nashef et al. 1999; Roques 1999).

Der additive Euroscore gibt bei Hochrisikopatienten ein zu niedriges und bei Patienten mit einem niedrigen Risiko zu hohe Risiken an (Seargeant et al. 2001). Aus diesem Grund wurde in einer Studie von insgesamt 14.799 Patienten der additive Euroscore mit dem logistischen Euroscore verglichen, mit dem Ergebnis, dass letzterer exakter in der Risikoprädiktion war. Die Überlegenheit des logistischen Euroscores wurde jedoch in verschiedenen Studien widerlegt, da dieser das Mortalitätsrisiko unterschätzte (Akar et al. 2011; Basraon et al. 2011; Gummert et al. 2009; Lebreton et al. 2011).

Um in einer Zeit, in der immer ältere und morbidere Patienten das Hauptpatientenkollektiv ausmachen, eine genauere Risikoprädiktion zu erfassen, wurde im Jahr 2012 der logistische Euroscore II erarbeitet. Eben jene Risikogruppe wurde bei herzchirurgischen Operationen exakter berücksichtigt und somit das Operationsrisiko genauer widergespiegelt (Nashef et al. 2012).

In dieser Studie wird dennoch auf den additiven Euroscore zurückgegriffen, da dieser zum Studienzeitpunkt der Standard Routine Score war.

2.3 Statistik

Die Daten wurden mit Hilfe von Microsoft Excel erfasst und mittels MedCalc Version 18 (MedCalc Software, Mariakerke, Belgium) ausgewertet.

Nach Überprüfung der Verteilung im Kolmogorov-Smirnov Test wurden Variablen, die auch nach logarithmischer Transformation nicht normal verteilt waren, mittels parametrischer Testverfahren (Friedman's Test gefolgt von Mann-Whitney U Test) analysiert und werden nachfolgend, wenn nicht anders dargestellt, als Median (mit quartile deviation) präsentiert. Normalverteilte Variablen wurden - ggf. nach logarithmischer Transformation - als ANOVA mit Messwiederholung, gefolgt von einem ungepaarten t-test analysiert und werden nachfolgend als Mittelwert und 95 % Konfidenzintervall dargestellt. Eine weitergehende Adjustierung für wiederholte Messungen erfolgte nicht. Die Prädiktivität der renalen Biomarker für ein postoperatives AKI erfolgte mittels Receiver-Operating Curve (ROC) Analyse. Korrelationen wurden mittels Spearman's Rang Korrelationstests ermittelt. Zusätzlich wurde eine multivariate Regressionsanalyse zu den Einflussfaktoren der unmittelbaren postoperativen Biomarkerkonzentration unter Berücksichtigung der signifikanten Unterschiede in der präoperativen Risikostratifizierung durchgeführt. Eingeschlossen wurden die folgenden Variablen: Alter, additiver Euroscore, Schweregrad der Herzinsuffizienz (NYHA-Stadium), American Society of Anesthesiologists- (ASA) Klassifikation, präoperative eGFR, pulmonalarterielle Hypertonie sowie Dauer der EKZ. Bei allen Analysen wurde ein p-Wert < 0,05 als signifikant betrachtet.

3 Ergebnisse

3.1 Gesamtkollektiv

3.1.1 Demographische und perioperative Charakteristika des Patientenkollektivs

Das untersuchte kardiochirurgische Patientenkollektiv umfasste 39 Teilnehmer, bestehend aus 27 Männern (69,2 %) und 12 Frauen (30,8 %).

Es ergab sich ein durchschnittliches Alter von 68 Jahren (48,8-74) in der CPB-S Gruppe und 49,5 (40-55) Jahren in der CPB-L Gruppe (p=0,011) sowie ein durchschnittlicher BMI von 25,6 kg/m² (24,6-29,9) in der CPB-S Gruppe und 26,1 kg/m² (24,4-29,2) in der CPB-L Gruppe (p=0,799). 16 Patienten (41%) rauchten.

Der additive Euroscore des Kollektivs lag bei 5 (2-6). 20 Patienten (51,3 %) hatten eine arterielle Hypertonie. Die Diagnose Diabetes mellitus war bei 2 Patienten (5,1 %) des Kollektivs zu finden, eine Niereninsuffizienz konnte bei keinem ermittelt werden. Alle Patienten dieser Studie unterzogen sich eines elektiven operativen Eingriffs.

3.2 Vergleich der demographischen Daten und der klinischen Ausgangssituation der CPB-S und CPB-L Gruppe

Bei der präoperativen Risikostratifizierung zeigten sich im Gruppenvergleich einige Unterschiede (vgl. Tab. 3). Bei der NYHA-Klassifikation wurden die Stadien I und II sowie III und IV jeweils zusammengefasst. Selbiges gilt für die ASA-Klassifikation.

Tabelle 3: Signifikante Unterschiede der präoperativen Risikostratifizierung.

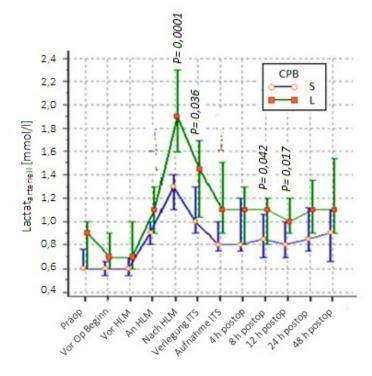
	CPB-S	CPB-L	p
	(n = 17)	(n = 22)	
NYHA I+II	9 (53 %)	18 (81,8 %)	0,015
NYHA III+IV	8 (47,1 %)	4 (18,2 %)	0,293
Pulmonalarterielle	5 (29,4 %)	0 (0 %)	0,009
Hypertonie			
Diuretika	9 (52,9 %)	1 (4,5 %)	0,001
Hämatokrit in %*	39 (37,5-41,3)	44 (39-45)	0,024
Sauerstoffpartialdruck	73 (65,8-85)	89,5 (76-100)	0,017
mmHg*			
Hämoglobin in g/dl*	13,1 (12,4-13,6)	14,6 (13,1-15,1)	0,019
GFR (MDRD)	86 (70-100,8)	92,5 (74-100)	0,64
$(m1/min/1,73m^2)$			
Euroscore	5 (2-6,3)	5 (2-6)	0,741
IGFBP7 _{Urin} (pg/ml)	3,1 (2,38-6,02)	5,31 (4,05-9,01)	0,034
CRP (mg/dl)	3,4 (1,6-5,1)	1,3 (0,7-2,1)	0,013

In Klammern = die Prozentangabe bzw. der interquartile range (IQR).

* = in arterieller Blutgasanalyse bestimmt.

p-Werte < 0,05 werden als signifikant gewertet.

Ansonsten unterschieden sich die Kollektive weder in den übrigen demographischen Daten, der präoperativen medikamentösen Therapie, der präoperativen Blutgasanalyse oder in den initialen Hämodynamik-Parametern (siehe Anhang 7.1, 7.2, 7.3).


3.3 Operative und postoperative Daten im Vergleich (CPB-S gegenüber CPB-L)

3.3.1 Blutgase und Elektrolyte

Intraoperativ zeigten sich im Bereich der venösen und arteriellen Blutgase signifikante Unterschiede zu verschiedenen Messzeitpunkten für den pH-Wert sowie für das Lactat, je arteriell bzw. venös.

Tabelle 4: Vergleich der CPB-S und CPB-L Gruppe bzgl. $pH_{arteriell}$ bzw. $pH_{ven\"{o}s}$ zu Beginn der extrakorporalen Zirkulation an der Herzlungenmaschine (HLM) und Lactat $_{ven\"{o}s}$ nach der HLM sowie 8 h postop.

	pHarteriell an HLM	M		pH _{venös} an HLM					
	CPB-S	p	CPB-S	CPB-L	p				
Median	7,35	7,28	0,012	7,29	7,26	0,022			
IQR	R 7,29-7,37 7,27-7		7-7,32		7,25-7,33 7,24-7,30				
	Lactat _{venös} nach	ı HLM		Lactat _{venös} 8 h postop					
	CPB-S CPB-			CPB-S	CPB-L	p			
Median 1,3		2	0,001	0,85	1,2	0,012			
IQR	1,1-1,43	1,5-2,4		0,8-1,1	0,8-1,4				
	p-Werte < 0,05 werden als signifikant gewertet.								

Abbildung 3: Verlauf der Laktatkonzentration (Lactat_{arteriell}) in der CPB-S und CPB-L Gruppe. p-Werte < 0.05 werden als signifikant gewertet.

Daneben zeigten sich weitere signifikante Unterschiede in den zentralvenösen BGAs der Sauerstoffsättigung (SzvO2) sowie des Sauerstoffpartialdrucks (PzvO2) zum Zeitpunkt an der HLM.

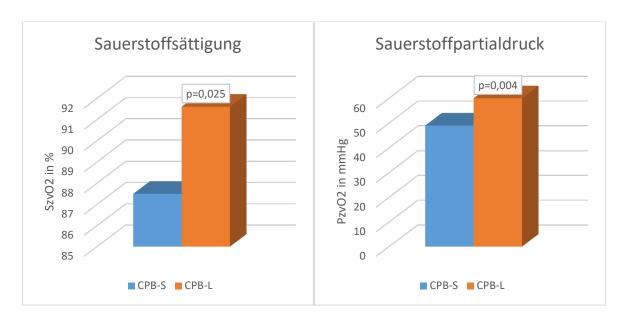


Abbildung 4: Vergleich der Sauerstoffsättigung (links) und des Sauerstoffpertialdrucks (rechts), aus der zentralvenösen BGA zum Zeitpunkt an der Herzlungenmaschine (nach 40 Minuten) in der CPB-S und CPB-L Gruppe. p-Werte < 0,05 werden als signifikant gewertet.

Alle weiteren Messergebnisse der Blutgase und Elektrolyte zu den jeweiligen Messzeitpunkten (Tab. A, vgl. 7.1) zeigten keine relevanten bzw. keine signifikanten Unterschiede und werden im Anhang aufgeführt.

3.3.2 Inflammationsmarker

Der Entzündungsparameter Procalcitonin wies 4 h postoperativ einen signifikanten Unterschied zwischen den Kohorten (vgl. Abb. 5) auf.

Bei den übrigen Enzymen konnten keine signifikanten Unterschiede zwischen den beiden Untersuchungsgruppen nachgewiesen werden.

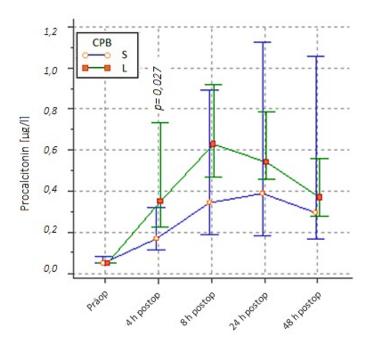


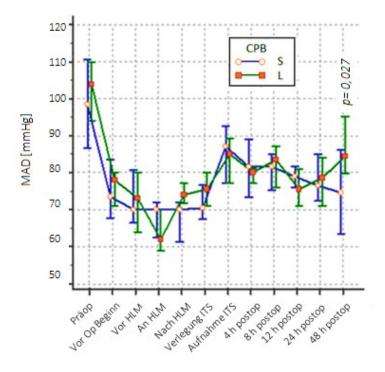
Abbildung 5: Verlauf des Procalcitonins (PCT) in der CPB-S und CPB-L Gruppe.

p-Werte < 0,05 werden als signifikant gewertet.

3.3.3 Myokardiale Nekrosemarker

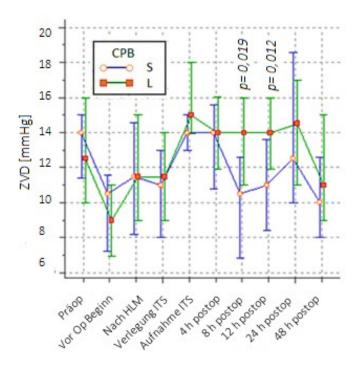
Sowohl die Kreatininkinase (CK) als auch die Kreatininkinase-MB (CK-MB) waren operativ und postoperativ erhöht und zeigten durchgehend signifikante Unterschiede zwischen den beiden Gruppen (Tab. 5).

Tabelle 5: Verlauf von CK und CK-MB in der CPB-S und CPB-L Gruppe. CK-MB präoperativ wurde auf Grund der sich im Norm befindenen CK Werte nicht mitbestimmt.


Messzeit-		CK			CK-MB				
punkt		CPB-S	CPB-L	p	CPB-S	CPB-L	p		
präop	Median	78	88	0,541					
	IQR	48-131	60-126						
Aufnahme	Median	246	388	0,005	33,3	48	0,018		
ITS	IQR	166-312	270-450		27,5-39,2	33,6-70,1			
4 h postop	Median	294	460	0,003	25,4	41,2	0,003		
	IQR	228-386	417-611		21,2-36,9	33,6-54,8			
8 h postop	Median	330	549	0,004	25,9	39,4	0,005		
	IQR	284-488	462-639		19,4-37,3	27,4-53			
12 h postop	Median	355	545	0,006	22,8	35,4	0,008		
	IQR	330-523	506-787		20,5-30,4	24,2-51			
24 h postop	Median	355	541	0,010	19,5	25,3	0,007		
	IQR	315-490	486-722		16-23,3	21,0-41,3			
48 h postop	Median	270	393,5	0,022	13,1	17,4	0,003		
	IQR	209-390	295-513		12,5-15,7	15-22,4			
	p-Werte < 0,05 werden als signifikant gewertet.								
	ITS = Intensivstation, IQR = interquartile range.								

3.3.4 Beatmungsparameter, Blutgerinnung und Blutbild

Die Beatmungsparameter wie der max. Inspirationsdruck, PEEP, Atemfrequenz und Tidalvolumen wiesen zu keinem der Messzeitpunkte signifikante Unterschiede auf. Lediglich die maximale arterielle Sauerstoffsättigung wies zum Zeitpunkt 24 h postoperativ einen signifikanten, aber klinisch nicht relevanten Unterschied auf (100 (99 - 100) gegenüber 100 (100 - 100) (p = 0,047). Die Gerinnungsparameter und das Blutbild wiesen zu keinem Messzeitpunkt signifikante Unterschiede auf (Tab. A1, vgl. 7.1).

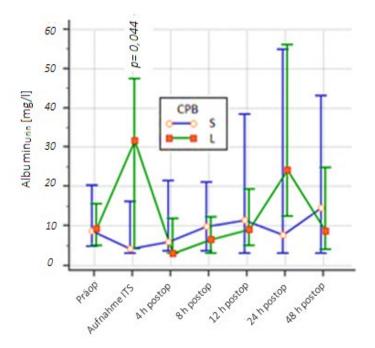

3.4 Hämodynamik

Es wurden insgesamt nur geringe oder als nicht relevant zu wertende Unterschiede bei den hämodynamischen Parametern zwischen beiden Gruppen beobachtet. Beim Blutdruck zeigten sich zwischen den beiden Gruppen kleinere Unterschiede. So wies der mittlere arterielle Druck (MAD) 48 h postoperativ (p = 0,027) einen signifikanten Unterschied auf (vgl. Abb. 6). Die übrigen mittleren arteriellen Messwerte zeigten im zeitlichen Verlauf keine Unterschiede zwischen den Gruppen (Tab. A1, vgl. 7.1).

Abbildung 6: Verlauf des mittleren arteriellen Blutdrucks, in der CPB-S und CPB-L Gruppe. p-Werte < 0,05 werden als signifikant gewertet.

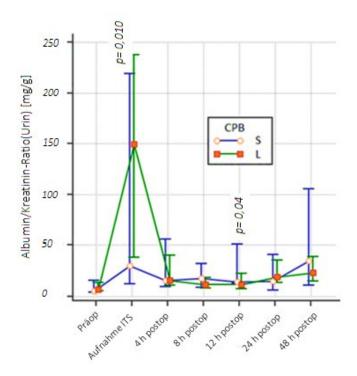
Beim zentralen Venendruck (ZVD) zeigten sich 8 h (p = 0.019) und 12 h postoperativ (p = 0.012) signifikante Unterschiede (Abb. 7).

Abbildung 7: Verlauf des zentralen Venendruckes (ZVD) in der CPB-S und CPB-L Gruppe. p-Werte < 0,05 werden als signifikant gewertet.


Die übrigen Hämodynamik Parameter zeigten mit Ausnahme beim NIRS $_{links}$ zum Zeitpunkt an der Herzlungenmaschine mit 70 (59-74) vs. 77 (68-69) (p = 0,020) keine weiteren signifikanten Unterschiede auf (Tab. A1, vgl. 7.1).

3.5 Therapie

Es gab nur kleine und nicht als klinisch signifikant zu betrachtende Unterschiede beim Einsatz und der Dosierung von Medikamenten, insbesondere auch bei den Inotropika, Vasopressoren und der Diuretika. Signifikante Unterschiede fielen lediglich bei je einem Messzeitpunkt von Insulin, Sevofluran und Remifentanil auf. Die Dauer der postoperativen Beatmung zeigte keine signifikanten Unterschiede im Gruppenvergleich (Tab. A1, vgl. 7.1).


3.6 Postoperative Nierenfunktion

Unmittelbar postoperativ und bei Aufnahme auf die ITS, zeigten sich signifikante Unterschiede im Albumin_{Urin}. Hier wies die Gruppe CPB-S einen Wert von 4,3 mg/l (2,99-11,02) und die Gruppe CPB-L einen Wert von 29,5 mg/l (2,99-47,6) auf (p = 0,044).

Abbildung 8: Verlauf von Albumin_{Urin} in der CPB-S und CPB-L Gruppe. p-Werte < 0.05 werden als signifikant gewertet.

Die Albumin $_{Urin}$ /Kreatinin $_{Urin}$ Ratio, wies zu dem Zeitpunkt bei der Aufnahme auf die ITS ebenfalls zwei signifikante Unterschiede auf. In der Gruppe CPB-S ergaben sich Werte von 26,43 mg/g (10,66-47,88), in der CPB-L Gruppe 106,23 mg/g (23,13-253,19) (p = 0,011). Zum anderen ergaben sich 12 h postop in der Gruppe CPB-S Werte von 15,55 mg/g (12,25-39,00), in der CPB-L Gruppe 10,22 mg/g (6,31-22,34) (p = 0,040).

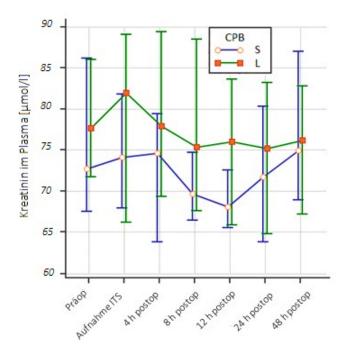
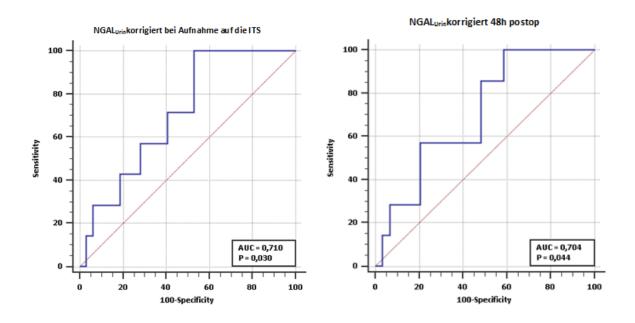


Abbildung 9: Verlauf der Albumin_{Urin}/Kreatinin_{Urin} Ratio in der CPB-S und CPB-L Gruppe. p-Werte < 0.05 werden als signifikant gewertet.

Das Kreatinin im Plasma zeigte im perioperativen Verlauf keine signifikanten Unterschiede. In Betracht auf die Einteilung nach KDIGO zeiget sich in Bezug auf die Kreatinin Kriterien eine Inzidenz in der CPB-S Gruppe von 4 (10,3 %) vs. 2 (5,1 %) in der CPB-L Gruppe, wobei p = 0,221 ist. Im Hinblick auf die Urin-Kriterien nach KDIGO zeigte sich eine Inzidenz von 1 (2,6 %) in der CPB-S Gruppe, vs. 0 (0 %) in der CPB-L Gruppe, wobei p = 0,054 (vgl. Abb. 10, S. 31).

Die Inzidenz eines AKIs in Gesamtbetrachtung der KDIGO-Kriterien betrug 5 (17,9 %) in der CPB-S Gruppe, vs. 2 (5,1 %) in der CPB-S Gruppe, wobei p = 0,106 ist.


Danach fand sich (bei n = 39) kein signifikanter Unterschied in der Inzidenz von AKI nach KDIGO Kriterien.

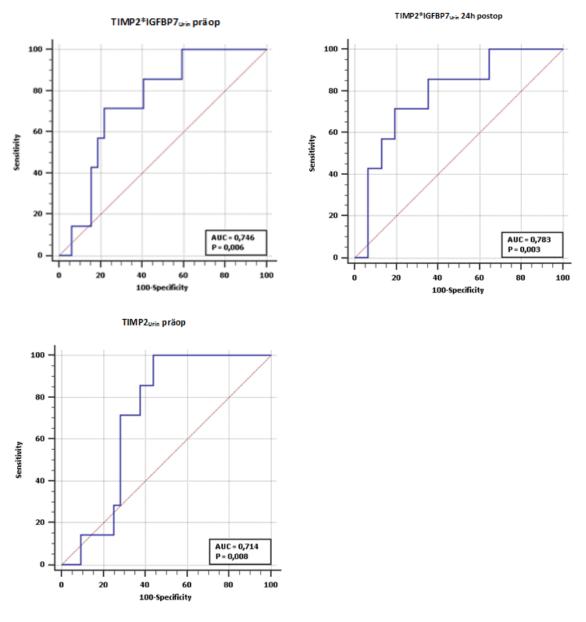
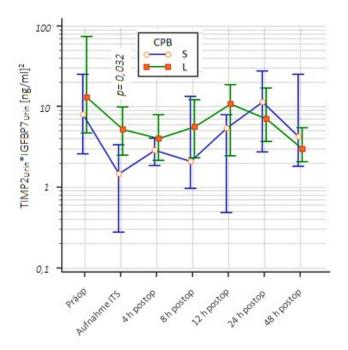


Abbildung 10: Verlauf von Kreatinin im Plasma in der CPB-S und CPB-L Gruppe. p-Werte < 0,05 werden als signifikant gewertet.

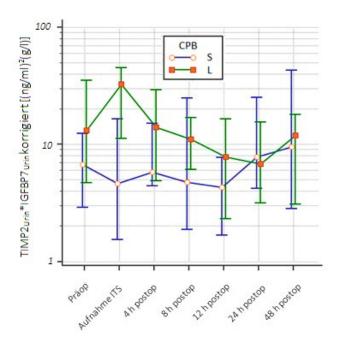
3.6.1 Biomarker zur Prädiktion von AKI

Die Prädiktivität der renalen Biomarker für ein postoperatives AKI erfolgte mittels Receiver-Operating Curve (ROC) Analyse. Es zeigte sich, dass es bei einigen Biomarkern signifikante Unterschiede gab (Abb. 11).


Abbildung 11: Prädiktivität der renalen Biomarker für ein postoperatives AKI Receiver-Operating Curve (ROC) Analyse in der CPB-S und CPB-L Gruppe. p-Werte < 0,05 werden als signifikant gewertet.

3.7 Renale Biomarker

3.7.1 Deskriptive Statistik


TIMP2*IGFBP7 sowie TIMP2*IGFBP7_{Urin} waren nach logarithmischer Transformation normal verteilt.

Bei der ANOVA Testung mit Messwiederholung zeigte sich bei TIMP2*IGFBP7_{Urin} ein signifikanter Unterschied (p = 0,041). Im anschließend gepaarten T-Test von TIMP2*IGFBP7_{Urin} zeigte sich zum Zeitpunkt der Aufnahme auf die ITS ebenfalls ein signifikanter Unterschied.

Abbildung 12: Der perioperative Verlauf von TIMP2*IGFBP7Urin in der CPB-S und der CPB-L Gruppe. ANOVA mit Messwiederholung, gefolgt von ungepaarten t-Tests. p-Werte < 0,05 werden als signifikant gewertet.

Bei TIMP2*IGFBP7_{Urin} korrigiert zeigte sich im perioperativen Verlauf kein signifikanter Unterschied zwischen Patienten mit kurzer und langer Bypasszeit (p = 0.084).

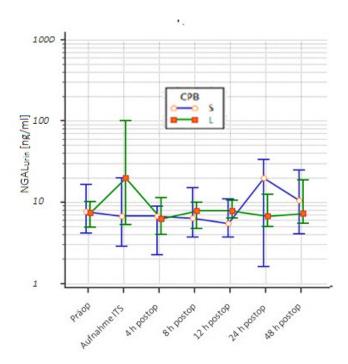


Abbildung 13: Der perioperative Verlauf des TIMP2*IGFBP7_{Urin} korrigiert in der CPB-S und der CPB-L Gruppe. Beim ANOVA Test mit Messwiederholung zeigte sich lediglich ein nicht-signifikanter Trend (p = 0.084). p-Werte < 0.05 werden als signifikant gewertet.

Tabelle 6: Der Verlauf von TIMP2*IGFBP7_{Urin} in der CPB-S und der CPB-L Gruppe. Ungepaarter T-Test

TIMP*IGFBP	p				
ungepaarter	präop	7,16 (2,71-18,92)	15,08 (6,37-35,68)	0,243	
T-Test	Aufnahme ITS	0,88 (0,31-2,46)	3,46 (1,54-7,76)	0,032	
(log-	4 h postop	2,62 (1,17-5,87)	3,72 (2,25-6,13)	0,411	
adjustiert)	8 h postop	2,81 (10,4-7,62)	5,29 (2,75-10,20)	0,244	
	12 h postop	2,25 (0,85-5,90)	6,44 (3,15-13,18)	0,067	
CPB-S n = 12 $CPB-L n = 19$	24 h postop	7,69 (2,60-22,77)	9,00 (5,1-15,92)	0,762	
CI B-L II – 19	48 h postop	4,96 (1,75-14,03)	3,44 (1,96-6,04)	0,474	
	p-Werte < 0,05 werden als signifikant gewertet.				

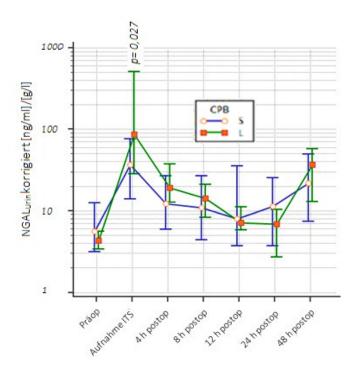

Die Werte von NGAL und NGAL $_{Urin}$ korrigiert wiesen auch logarithmisch keine Normalverteilung auf. Im Friedman Test zeigte NGAL keinen signifikanten Unterschied (p = 0,098 in der CPB-S / p = 0,401 in der CPB-L Gruppe), wohingegen das NGAL $_{Urin}$ korrigiert einen signifikanten Unterschied zeigte (p = 0,004 in der CPB-S / p = 0,00001 in der CPB-L Gruppe).

Abbildung 14: Der perioperative Verlauf von NGAL_{Urin} in der CPB-S und der CPB-L Gruppe. Im Friedman Test zeigte sich kein signifikanter Unterschied. p-Werte < 0.05 werden als signifikant gewertet.

Tabelle 7: Der Verlauf von NGAL_{Urin} korrigiert in der CPB-S und der CPB-L Gruppe. Mann-Whitney-U Test

NGAL	NGAL _{Urin} korrigiert					
	Messzeitpunkt	CPB-S	CPB-L	p		
MWU	präop	6,86 (3,09-13,43)	4,95 (3,42-7,41)	0,671		
	Aufnahme	32,9 (12,67-73,09)	161,8 (32,81-1023)	0,027		
	ITS					
	4 h postop	11,71 (4,51-23,33)	18,68 (7,59-37,94)	0,106		
	8 h postop	10,9 (6,58-26,41) ₍₁₆₎	14,34 (8,33-30,43)	0,594		
	12 h postop	8,07 (3,88-23,85)(15)	7,27 (5,78-12,82) (21)	0,49		
	24 h postop	14,14 (7,76-27,91)	7,81 (2,69-14,46) (21)	0,163		
	48 h postop	23,78 (7,67-49,14) ₍₁₅₎	22,89 (10,13-57,59) ₍₂₁₎	0,785		
	p-	Werte < 0,05 werden als s	ignifikant gewertet.			

Abbildung 15: Der perioperative Verlauf von Kreatinin – korrigiertem $NGAL_{Urin}$ in der CPB-S und der CPB-L Gruppe. Mann-Whitney-U Test. p-Werte < 0.05 werden als signifikant gewertet.

Im Hinblick auf den Verlauf der renalen Biomarker zeigten sich signifikante Unterschiede zwischen den Gruppen mit kurzer und langer EKZ. Bei Aufnahme auf die Intensivstation fanden sich in der CPB-L Gruppe signifikant höhere Werte für TIMP2*IGFBP7_{Urin} (vgl. Abb. 12, S. 33) und das Kreatinin-korrigierte NGAL_{Urin} (vgl. Abb. 15). Die Konzentrationen des Kreatinin-korrigierten Produktes aus TIMP2_{Urin} und IGFBP7_{Urin} (vgl. Abb. 13, S. 34) sowie von NGAL_{Urin} (vgl. Abb. 14, S. 35) ohne Kreatinin-Korrektur zeigten numerisch ähnliche Verläufe, verfehlten allerdings statistische Signifikanzen. Im weiteren postoperativen Verlauf zeigten sich keine weiteren, signifikanten Gruppenunterschiede zwischen den Biomarkern.

3.7.2 Korrelationsanalysen

Bei Aufnahme auf die ITS konnte ein moderater positiver Zusammenhang zwischen der kardiopulmonalen Bypasszeit und den Biomarkern NGAL_{Urin}, dem korrigierten NGAL_{Urin}, TIMP2_{Urin}, dem korrigierten TIMP2_{Urin}, dem Produkt aus TIMP2_{Urin} und IGFBP7_{Urin}, sowie dem korrigierten Produkt aus TIMP2_{Urin} und IGFBP7_{Urin} nachgewiesen werden (Tab. 8, S. 37).

Tabelle 8: Korrelation zwischen der kardiopulmonalen Bypasszeit und den Biomarkern bei Aufnahme auf die ITS in der CPB-S und CPB-L Gruppe.

Messzeitpunkt	Korrelation	
NGAL _{Urin}	Spearmans Koeffizient 0,386	
	Signifikanzniveau p 0,0139	
	95% Konfidenzintervall	0,0846 - 0,623
NGAL _{Urin} korrigiert	Spearmans Koeffizient	0,383
	Signifikanzniveau p	0,0146
	95% Konfidenzintervall	0,0816 - 0,621
TIMP2 _{Urin} * IGFBP7 _{Urin}	Spearmans Koeffizient	0,371
	Signifikanzniveau p	0,0185
	95% Konfidenzintervall	0,0670 - 0,612
TIMP2 _{Urin} * IGFBP7 _{Urin} korrigiert	Spearmans Koeffizient	0,372
	Signifikanzniveau p	0,0180
	95% Konfidenzintervall	0,0689 - 0,613
p-Werte < 0,05 werde	n als signifikant gewertet.	

In der Rang-Korrelation nach Spearmann fanden sich zudem signifikante Zusammenhänge zu zahlreichen Messzeitpunkten (Tab. 9).

Tabelle 9: Korrelationsanalyse zwischen NGAL / TIMP2 und NGAL / TIMP2*IGFBP7 in der CPB-S und CPB-L Gruppe.

Messzeitpunkt	Korrelation	NGAL _{Urin} /	NGAL _{Urin} /
-		TIMP2 _{Urin}	TIMP2*IGFBP7 _{Urin}
Präoperativ	Spearmans Koeffizient	0,458	0,361
	Signifikanzniveau p	0,003	0,022
	95% Konfidenzintervall	0,171-0,674	0,06-0,61
Aufnahme ITS	Spearmans Koeffizient	0,728	0,610
	Signifikanzniveau p	0,0001	0,0001
	95% Konfidenzintervall	0,539-0,847	0,368-0,774
4 h postop	Spearmans Koeffizient	0,438	
	Signifikanzniveau p	0,005	n. sig.
	95% Konfidenzintervall	0,146-0,659	
8 h postop	Spearmans Koeffizient	0,341	n. sig.
	Signifikanzniveau p	0,034	
	95% Konfidenzintervall	0,029-0,593	n. sig.
12 h postop	Spearmans Koeffizient	0,417	
	Signifikanzniveau p	0,010	n. sig.
	95% Konfidenzintervall	0,107-0653	
24 h postop	Spearmans Koeffizient	0,469	0,418
	Signifikanzniveau p	0,003	0,0081
	95% Konfidenzintervall	0,180-0,683	0,118-0,648
48 h postop	Spearmans Koeffizient	0,334	0,313
	Signifikanzniveau p	0,044	0,060
	95% Konfidenzintervall	0,011-0,593	-0,013-0,578
	p-Werte < 0,05 werder	als signifikant gewei	rtet.

Zudem zeigten sich Korrelationen bei der Albuminurie und der HLM-Zeit in der Rang-Korrelation nach Spearmann zum Zeitpunkt zur Aufnahme auf die ITS (vgl. Tab. 10).

Tabelle 10: Korrelationsanalyse zwischen Albumin U_{rin} und HLM-Zeit in der CPB-S und CPB-L Gruppe.

Messzeitpunkt	Korrelation	Albunmin _{Urin} /HLM-Zeit
Präoperativ	Spearmans Koeffizient	-0,0264
n = 36	Signifikanzniveau p	0,879
	95% Konfidenzintervall	-0,352-0,305
Aufnahme ITS	Spearmans Koeffizient	0,411
n = 37	Signifikanzniveau p	0,011
	95% Konfidenzintervall	0,101-0,649
4 h postop	Spearmans Koeffizient	0,036
n = 38	Signifikanzniveau p	0,829
	95% Konfidenzintervall	-0,287-0,352
8 h postop	Spearmans Koeffizient	-0,113
n = 35	Signifikanzniveau p	0,518
	95% Konfidenzintervall	-0,43-0,229
12 h postop	Spearmans Koeffizient	-0,244
n = 35	Signifikanzniveau p	0,158
	95% Konfidenzintervall	-0,534-0,097
24 h postop	Spearmans Koeffizient	-0,158
n = 35	Signifikanzniveau p	0,366
	95% Konfidenzintervall	-0,466-0,185
48 h postop	Spearmans Koeffizient	-0,134
n = 35	Signifikanzniveau p	0,442
	95% Konfidenzintervall	-0,447-0,208
	p-Werte < 0,05 werden als signifika	nt gewertet.

3.7.3 Multiple Regression

In der multiplen Regressionsanalyse (backward regression) zeigte sich unter Berücksichtigung von Faktoren wie Alter, additivem Euroscore, Dauer des kardiopulmonalen Bypasses, der NYHA – und ASA – Klassifikation sowie der eGFR, dass die Dauer des kardiopulmonalen Bypasses ein unabhängiger Prädiktor der renalen Exkretion von TIMP2*IGFBP_{Urin} zum Zeitpunkt der Intensivaufnahme war. Ein Modell mit TIMP2*IGFBP7_{Urin} korrigiert war nicht möglich, da keine der Variablen eingeschlossen wurde.

3.7.4 Morbiditäts- und Mortalitätsparameter

Der postoperative Verlauf zeigte im Hinblick auf die Katecholamin- und Volumentherapie keine signifikanten Unterschiede (Tab. A1, vgl. 7.1).

Die mittlere Verweildauer auf der intermediate care Station betrug in beiden Gruppen einen Tag und zeigte keinen signifikanten Unterschied. Die Krankenhausverweildauer betrug in der CPB-S Gruppe 9 Tage (5,6-10,4) und in der CPB-L Gruppe 8 Tage (7-9). Es zeigte sich kein signifikanter Unterschied.

Im Hinblick auf die postoperative Mortalität über die Krankenhausverweildauer hinaus können auf Grund der fehlenden zurückgesandten Daten, keine Aussagen getroffen werden.

4 Diskussion

4.1 Kontext und Zielsetzung der Studie

Ziel dieser Studie ist die Analyse des Zusammenhanges zwischen der Freisetzung der Biomarker TIMP2, IGFBP7 und der Dauer der extrakorporalen Zirkulation bei kardiochirurgischen Operationen. Weiter soll untersucht werden, ob die Dauer einen Einfluss auf die Prädiktivität der beiden Biomarker TIMP2, IGFBP7 für ein AKI darstellt, ob sich ein Zusammenhang zwischen der renalen Freisetzung von NGAL und TIMP2 / IGFBP7 herausarbeiten lässt und welchen Einfluss die Dauer der extrakorporalen Zirkulation auf die Inzidenz eines AKI nimmt.

Akute Nierenfunktionsstörungen sind eine häufige Komplikation bei herzchirurgischen Patienten und mit einer erheblichen Zunahme von Kurz- und Langzeitmortalität verbunden (Shi et al. 2016; Lagny et al. 2015). Bislang beschreibt die Literatur keine klaren Konzepte zur Prophylaxe eines sich entwickelnden AKIs, auch zur Therapie fehlen hier fundierte Ansätze (Heringlake et al. 2009; Ronco et al. 2008). Konsekutiv besteht ein hohes klinisches und wissenschaftliches Interesse an Verfahren, die die Frühdiagnostik eines AKIs bestimmen können, da dies dazu beitragen könnte, einen schwereren Nierenschaden abzumildern oder gar zu vermeiden. In diesem Kontext wurden verschiedene Biomarker zur Frühdiagnostik von AKI entwickelt, welche das Verständnis renaler Schädigungen um ein weiteres Stadium (subklinisches AKI) - erweitert hat. In diesem neuen Stadium sollen Überschreitungen der Grenzwerte der Biomarker bereits frühzeitig auf die Gefahr eines Nierenschadens ohne dessen Eintreten hinweisen (McCullough et al. 2013b; McCullough et al. 2013a). Neuere Beobachtungen deuten darauf hin, dass gewisse Biomarker im Urin, wie das TIMP2 und das IGFBP7, zur Früherkennung eines AKI dienen und in diesem Zusammenhang zur Risikostratifizierung beitragen können (Pilarczyk et al. 2015).

Aus klinischer Sicht ist es wichtig zu berücksichtigen, welche Faktoren die Freisetzung renaler Biomarker beeinflussen und ob es Störfaktoren gibt, die die Validität der Testergebnisse beeinträchtigen. Angelehnt daran, haben verschiedene Studien für den Bereich der Versorgung von herzchirurgischen Patienten gezeigt, dass die Dauer des kardiopulmonalen Bypasses einen Einfluss auf die postoperative Freisetzung renaler Biomarker nimmt (Paarmann et al. 2013; Parikh et al. 2011).

Die Ergebnisse der vorliegenden Untersuchung zeigen, dass es einen Zusammenhang zwischen der kardiopulmonalen Bypasszeit und der Freisetzung der AKI Biomarker gibt. Patienten, die sich den standardisierten Bedingungen einer offenen Aortenklappenoperation, einer längeren Bypass- und Operationsdauer unterzogen, zeigten eine erhöhte Freisetzung der neuen AKI Biomarker NGAL_{Urin}, Produkt aus TIMP2_{Urin} und IFGBP7_{Urin}, Produkt aus korrigiertem TIMP2_{Urin} und IGFBP7_{Urin} sowie korrigiertes TIMP2_{Urin}. Erstaunlicherweise geht diese nicht einher mit einer erhöhten Rate (nach klassischer Kreatinin/Diurese Definition). Im Gegensatz dieser Annahme entwickelten sogar mehr Patienten mit einer kurzen Bypassund Operationsdauer eine klinisch relevante Nierenfunktionsstörung.

4.2 Diskussion der Ergebnisse

4.2.1 Vergleich des Patientenkollektivs

Da naturgemäß die Patienten für diese Studie nicht im Hinblick auf die Dauer der Operation und der extrakorporalen Zirkulation randomisiert werden konnten, unterschieden sich die Vergleichsgruppen im Hinblick auf ihr Risiko für ein postoperatives AKI. Die CPB-S Gruppe war im Durchschnitt 14,7 Jahre älter als die CPB-L und wies einen niedrigeren präoperativen Hämatokrit auf. Beide Faktoren haben einen risikoerhöhenden Einfluss für ein AKI. Die mit dem Alter zunehmende Morbidität spiegelt sich auch bei den Vorerkrankungen der CPB-S Gruppe wider. Hier zeigte die pulmonal arterielle Hypertonie signifikante Häufungen, welche für intra- und postoperative hämodynamische Störungen prädisponierend ist (Nashef et al. 1999; Parolaari et al. 2012; Roques 1999; Swaminathan et al. 2003). Im Einklang damit zeigte sich perioperativ ein globales hämodynamisches Profil, welches mit der schlechten kardiopulmonalen Leistung vereinbar ist. Aus klinischer Sicht erscheint die erhöhte Rate an AKI in der CPB-S Gruppe somit durchaus plausibel.

4.2.2 Validität von Biomarkern zur Frühdiagnostik von AKI

Neben dem bereits häufig eingesetzten Biomarker NGAL werden zunehmend IGFBP7 und TIMP2 zur Frühdiagnostik eines AKIs und zur renalen Risikostratifizierung eingesetzt (Pilarczyk et al. 2015). Die Ergebnisse einzelner Studien zu diesen Biomarkern sind insgesamt nicht einheitlich. Auch ihre Prädiktivität wird unterschiedlich stark bis gar nicht gesehen. Ein wesentliches Problem scheinen die nicht einheitlich verwendeten Cut-off Werte zu sein, die zu unterschiedlichen Ergebnissen führen können (Song et al. 2017; Paarmann et al. 2013). NGAL scheint generell ein schlechter Marker für kardiopulmonale Funktionen zu sein (Parikh et al. 2011).

Es gibt nicht selten unterschiedliche Biomarkertests zur Analyse der Proben, was ebenfalls die Vergleichbarkeit verschiedener Studien reduziert. Des Weiteren trifft die aktuelle Studienlage noch keine fundierte Aussage über potentiell beeinflussender Variablen, die im Zusammenhang mit der Freisetzung von Biomarkern berücksichtigt werden müssten und in welcher Beziehung diese zu einander stehen.

In diesem Kontext haben wir den Zusammenhang der Freisetzung von AKI Biomarkern sowie die Länge des kardiopulmonalen Bypasses diskutiert. Wie in Kapitel 3.6 und 3.7 dargestellt zeigt sich zumindest eine moderate Korrelation zwischen der Dauer der kardiopulmonalen Bypasszeit und der Freisetzung der einzelnen Biomarker zum direkten postoperativen Zeitpunkt, welche sich als signifikant herausstellte. Somit lässt sich schlussendlich nicht validieren ob die Biomarker tatsächlich einen Nierenschaden dokumentieren oder ihre Freisetzung klinisch nur als Epiphänomen zu werten ist. Es stellt sich also die Frage, ob eine Expression der neuen AKI Biomarker auch außerhalb der Niere stattfinden kann bzw. durch andere Faktoren beeinflusst wird.

Dies steht allerdings im Widerspruch zu einer kürzlich veröffentlichten Arbeit von J. A. Kellum, der mit seiner Forschungsgruppe mit Hilfe von primären Zellkulturen die Expression und die Sekretion von Biomarkern in menschlichen Nierenepithelzellen nachgewiesen hat. Die Studiengruppe hat zumindest für IGFBP7 gezeigt, dass der Biomarker sich auf das proximale Tubulussystem beschränkt, wohingegen TIMP2 im gesamten Tubulussystem exprimiert wird. Anhand der direkten konstitutiven Expression, Sekretion der Biomarker und ihrer Modulation durch ischämische Insulte in vitro, legt Kellum die Überlegung nahe, dass die erhöhten Werte der Biomarker im Urin während eines AKIs auf die Reaktion der Niere

auf Stress oder Verletzungen zurückzuführen sind. Die Expression der AKI Biomarker außerhalb der Niere mit verstärkter Filtration durch den Glomerulus wird ausgeschlossen (Emlet et al. 2017; Emlet et al. 2018).

Ergänzend hierzu stellt sich die Frage, ob die Dauer des kardiopulmonalen Bypasses einen Einfluss auf die Sauerstoffversorgung der Niere hat. Gerade das Nierenmark hat aufgrund seiner ohnehin physiologisch geringen Sauerstoffperfusion nur eine begrenzte funktionelle Reserve, was sie gegenüber Schwankungen anfällig macht (Brezis und Rosen 1995). M. Ranucci beschreibt in seiner Arbeit, dass eine relative Hypoperfusion, also ein nicht ausreichendes Sauerstoffangebot um den Sauerstoffbedarf zu decken, während des kardiopulmonalen Bypasses unter anderem für Nierenschäden und AKIs verantwortlich ist (Ranucci et al. 2005; Ranucci 2007). Unsere Studie ist unter sehr standardisierten Bedingungen durchgeführt worden. Interessanterweise ist die Sauerstoffsättigung während des kardiopulmonalen Bypasses in der CPB-L Gruppe signifikant höher, was für ein besseres Sauerstoffangebot in dieser Gruppe spricht und die Vermutung nahelegt, dass die untersuchten Biomarker in dieser Gruppe niedriger sein sollten. In unserer Studie zeigte sich jedoch, dass die Biomarker in der CPB-L Gruppe direkt postoperativ signifikant höher anstiegen, als in der CPB-S Gruppe.

Diese Erkenntnisse gekoppelt mit den ansonsten standardisierten Bedingungen, sprechen gegen eine Freisetzung der Biomarker, aufgrund unterschiedlicher Perfusion während des kardiopulmonalen Bypasses. Somit scheint die Dauer des kardiopulmonalen Bypasses von Relevanz zu sein. Aufgrund dessen stellen unsere Studienergebnisse den aktuellen Nutzen und die Prädiktivität der Biomarker unter den derzeitigen Bedingungen zur Bestimmung eines frühzeitigen AKIs in Frage.

Neben den neuen Biomarkern haben wir auch das Outcome der postoperativen Nierenfunktion angesehen. Die signifikante Albuminurie und die signifikante Albuminurin/Kreatininurin Ratio zeigen, dass bei zunehmender CPB eine passagere Schädigung der glomerulären Membran entsteht. Diese geht allerdings nicht mit einem erhöhten Risiko für AKI nach KDIGO-Definition einher. Zumal in der Gruppe mit einer kurzen CPB numerisch mehr A-KIs aufgetreten sind. Die Dauer des kardiopulmonalen Bypasses bei unserem Patientenkollektiv scheint nur zu einem geringen Ausmaß bei der Entwicklung eines AKIs nach klassischer Kreatinin/ Diurese Definition beizutragen. Betrachten wir die neuen Biomarker, speziell IGFBP7*TIMP2_{Urin}, so tritt hier in 19 von 39 verschiedenen Fällen ein AKI auf, wenn

eine Verdopplung der Ausgangswerte (>100 %) als signifikanter Anstieg angenommen wird. Trotz eines moderaten Zusammenhangs zwischen dem Anstieg der Referenzwerte eines A-KIs nach KDIGO und dem Anstieg der Werte von IGFBP7*TIMP2_{Urin}, steht diese Anzahl in einem starken Kontrast zu den nur 7 AKI-Fällen, die nach KDIGO-Definition entstanden sind. Dies wirft auch hier wieder die Frage nach dem Nutzen der neuen Biomarker in der Kardiochirurgie auf.

4.2.3 Limitationen und Perspektiven

Die Auswertung unserer Proben erfolgte mit Hilfe einzelner Biomarker-Kits der Firmen BioPorto Diagnostics (NGAL), Boster Biological Technology (IGFBP7) und R&D Systems (TIMP2) und nicht mittels des häufig eingesetzten NephroCheckTM Test.

In Zukunft werden weitere Studien notwendig sein, die eindeutig beweisen, dass die neuen Biomarker dazu geeignet sind, einen frühzeitigen Nierenschaden aufzuzeigen und das eine daraus resultierende entlang der Biomarker geführte Therapie zu einer Verbesserung des Outcomes führt.

Es gibt erste Studien von Meersch und Zarbock, die nahelegen, dass die Biomarker einen frühzeitigen Nierenschaden aufzeigen. In ihrer Studie deklarierten die Autoren Hochrisikopatienten für ein AKI mittels dem Produkt aus IGFBP7 und TIMP2 im Urin > 0,3 (ng/ml)²/1000 4 h nach Herzoperationen. Nach Randomisierung erfolgte die Zuteilung in eine Kontrollgruppe, die nach Standardversorgung behandelt wurden und in eine Interventionsgruppe, die einer streng kontrollierten Umsetzung der KDIGO – Richtlinien unterlagen. Insgesamt konnte die Studie in der Interventionsgruppe ein signifikant niedrigeres Auftreten von AKIs nach 72 h darstellen, bei ebenfalls niedrigeren Biomarkerwerten 12 h postoperativ. Anzumerken ist allerdings, dass das Studienergebnis im Widerspruch zu unseren Daten steht, jedoch hatte die richtlinienkonforme Intervention keinen Einfluss auf das Auftreten von sekundären Ereignissen, wie Krankenhausaufenthalt und Intensivstation. Weiter stellt sich die Frage nach der Ursache des geringeren Auftretens von AKIs - handelt es sich um ein Einzelphänomen der veränderten Parameter oder aber um eine Kombination des KDIGO CT surgery bundle (Meersch et al. 2017).

5 Zusammenfassung

Eine hohe Mortalität bedingt durch Nierenfunktionsstörungen steht seit Jahren an der Spitze der schwerwiegendsten Komplikationen von kardiochirugischen Eingriffen. Aufgrund der variierenden Inzidenz einer Nierenfunktionsstörung besteht daher dringender Handlungsbedarf im Bereich der Vorhersehbarkeit und der daraus ableitbaren Primärprävention. Ziel der durchgeführten Studie war es daher herauszufinden, ob die Dauer des kardiopulmonalen Bypasses einen Einfluss auf die Freisetzung von Biomarkern hat, welche derzeit zur Vorhersage einer Nierenfunktionsstörung eine zunehmende Rolle besitzen. Im Speziellen wurden die neuen Biomarker TIMP2, IGFBP7 bzw. deren Produkt, sowie das schon länger bekannte NGAL untersucht.

Im Rahmen einer prospektiven Observationsstudie wurden 39 Patienten, welche einen herzchirugischen Eingriff benötigten, untersucht. Das Kollektiv wurde in zwei Gruppen gesplittet, welche sich in der extrakorporalen Zirkulation voneinander unterschieden. Als Zuordnungsmerkmal wurde eine Operationszeit von kleiner bzw. größer 120 Minuten gewählt. Die Biomarker wurden zu verschiedenen Zeitpunkten vor, während und nach der Operation im Urin ermittelt. Als Referenzwerte für eine Nierenfunktionsstörung wurde die Inzidenz für ein AKI anhand der AKIN-Klassifikation graduiert.

Die Ergebnisse der Studie lassen sich dahingehend zusammenfassen, dass die Dauer der kardiopulmonalen Bypasszeit nur ein geringes Maß an Einfluss auf die Vorhersehbarkeit einer Nierenfunktionsstörung nach AKIN hat. Nachgewiesen werden konnte, dass bei den neuen Biomarkern, im speziellen das Produkt aus TIMP2_{Urin} und IGFBP7_{Urin}, postoperativ in 19 von 39 Fällen ein AKI auftritt, wenn die Verdopplung der Ausgangswerte (>100 %) als signifikant zählen.

In der Studie kam es jedoch nicht zu einem häufigeren Anstieg nach den definierten AKIN Parametern. Insgesamt finden sich (bei n=39) keine signifikanten Unterschiede in der Inzidenz von AKI nach KDIGO-Kriterien (n=7) zwischen den beiden Untersuchungsgruppen. Unter Berücksichtigung der Limitationen dieses prospektiven Ansatzes, zeigen die Ergebnisse, dass die neuen Biomarker keinen ausreichenden Nutzen in der Kardiochirugie haben, um eine ausreichende Vorhersage hinsichtlich Nierenschädigung tätigen zu können. Um den gerechfertigten Einsatz der neuen Biomarker in der Kardiochirurgie wissenschaftlich beurteilen zu können, sind weitere Studien von Nöten.

6 Literaturverzeichnis

Adamik B, Kübler-Kielb J, Golebiowska B, Gamian A, Kübler A: Effect of sepsis and cardiac surgery with cardiopulmonary bypass on plasma level of nitric oxide metabolites, neopterin, and procalcitonin. Correlation with mortality and postoperative complications. Intensive care medicine **26**, 1259–1267 **(2000)**

Akar A, Kurtcephe M, Sener EA, Durdu S, Kunt A, Güvenir H: Validation of the EuroSCORE risk models in Turkish adult cardiac surgical population. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery **40** (3), 730–735 **(2011)**

Baum N, Dichoso C, Carlton C: Blood urea nitrogen and serum creatinine. Physiology and interpretations. Urology **5** (5), 583-588 (1975)

Basraon J, Chandrashekhar Y, John R, Agnihotri A, Kelly R, Ward H, Adabag S: Comparison of risk scores to estimate perioperative mortality in aortic valve replacement surgery. The Annals of thoracic surgery **92** (2), 535–540 **(2011)**

Bellomo R, Ronco C, Kellum J, Mehta R, Palevsky P: Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs. The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Critical care **8** (4), R204-12 (**2004**)

Bellomo R, Auriemma S, Fabbri A, D'Onofrio A, Katz N, McCullough PA, Ricci Z, Shaw A, Ronco C: The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). The International journal of artificial organs **31** (2), 166–178 **(2008)**

Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, Fitzgerald R, Ng Gong M, Graham DD, Gunnerson K, Heung M, Jortani S, Kleerup E, Koyner JL, Krell K, Letourneau J, Lissauer M, Miner J, Nguyen HB, Ortega LM, Self WH, Sellman R, Shi J, Straseski J, Szalados JE, Wilber ST, Walker MG, Wilson J, Wunderink R, Zimmerman J, Kellumet JA: Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. In: American journal of respiratory and critical care medicine **189** (8), 932–939 (2014)

Bosch X, Poch E, Grau JM: Rhabdomyolysis and acute kidney injury. The New England journal of medicine **361** (1), 62–72 **(2009)**

Brezis M, Rosen S: Hypoxia of the renal medulla—its implications for disease. New England Journal of Medicine **332** (10), 647–655 (**1995**)

Cai L, Rubin J, Han W, Venge P, Xu S: The origin of multiple molecular forms in urine of HNL/NGAL. Clinical journal of the American Society of Nephrology 5 (12), 2229–2235 (2010)

Carl M, Alms A, Braun J, Dongas A, Erb J, Goetz A, Goepfert M, Gogarten W, Grosse J Heller A, Heringlake M: S3 guidelines for intensive care in cardiac surgery patients. Hemodynamic monitoring and cardiocirculary system. German medical science, GMS e-journal 8 (2010)

Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH: Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. Journal of the American College of Cardiology 40 (3), 418–423 (2002)

Chindarkar NS, Chawla LS, Straseski JA, Jortani SA, Uettwiller-Geiger D, Orr RR, Kellum JA, Fitzgerald RL: Reference intervals of urinary acute kidney injury (AKI) markers [IGFBP7]·[TIMP2] in apparently healthy subjects and chronic comorbid subjects without AKI. Clinica Chimica Acta 452, 32–37 (2016)

Clerico A, Recchia FA, Passino C, Emdin M: Cardiac endocrine function is an essential component of the homeostatic regulation network. Physiological and clinical implications. American journal of physiology. Heart and circulatory physiology **290** (1), H17-29 **(2006)**

Dávila-Román VG, Kouchoukos NT, Schechtman KB, Barzilai B: Atherosclerosis of the ascending aorta is a predictor of renal dysfunction after cardiac operations. The Journal of thoracic and cardiovascular surgery **117** (1), 111–116 **(1999)**

DeClerck YA: Interactions between tumour cells and stromal cells and proteolytic modification of the extracellular matrix by metalloproteinases in cancer. European Journal of Cancer **36** (10), 1258–1268 (**2000**)

Delèvaux I, André M, Colombier M, Albuisson E, Meylheuc F, Bègue R, Piette J, Aumaître O: Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Annals of the rheumatic diseases **62** (4), 337–340 **(2003)**

Devarajan P: Update on mechanisms of ischemic acute kidney injury. Journal of the American Society of Nephrology **17** (6), 1503–1520 **(2006)**

Devireddy LR, Teodoro JG, Richard FA, Green MR: Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science (New York, N.Y.) **293** (5531), 829–834 (**2001**)

Devireddy LR, Gazin C, Zhu X, Green MR: A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell **123** (7), 1293–1305 **(2005)**

Doenst T, Wijeysundera D, Karkouti K, Zechner C, Maganti M, Rao V, Borger MA: Hyperglycemia during cardiopulmonary bypass is an independent risk factor for mortality in patients undergoing cardiac surgery. The Journal of thoracic and cardiovascular surgery **130** (4), 1144 (2005)

Duan C, Xu Q: Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. General and comparative endocrinology **142** (1-2), 44–52 **(2005)**

Eggebrecht H, Mehta RH: Transcatheter aortic valve implantation (TAVI) in Germany 2008-2014. On its way to standard therapy for aortic valve stenosis in the elderly? EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology **11** (9), 1029–1033 **(2016)**

Emlet DR, Wen X, Kellum JA: Comments on the Review 'Biomarkers in acute kidney injury - pathophysiological basis and clinical performance' Acta Physiol 2017, 219, 556-574. An update on kidney localization of IGFBP7 and TIMP2. Acta physiologica (Oxford, England) 222 (2), 556-574 (2018)

Emlet DR, Pastor-Soler N, Marciszyn A, Wen X, Gomez H, Humphries WH, Morrisroe S, Volpe JK, Kellum JA: Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2. Differential expression and secretion in human kidney tubule cells. American Journal of Physiology-Renal Physiology **312** (2), F284-F296 **(2017)**

Flower DR, North AC, Attwood TK: Mouse oncogene protein 24p3 is a member of the lipocalin protein family. Biochemical and biophysical research communications **180** (1), 69–74 **(1991)**

Gummert J, Funkat A, Osswald B, Beckmann A, Schiller W, Krian A, Beyersdorf F, Haverich A, Cremer J: EuroSCORE overestimates the risk of cardiac surgery. Results from the national registry of the German Society of Thoracic and Cardiovascular Surgery. Clinical research in cardiology: official journal of the German Cardiac Society 98 (6), 363–369 (2009)

Heringlake M, Kindgen-Milles D, Hackmann F, Haake N, Kielstein J, Lance M, Lufft H, Just S, Trabold B, Scherlitz A, Schirmer U, Schmitt D, Vargas-Hein O, Markewitz A: Pathophysiologie, Prophylaxe und Therapie von Herzchirurgie-assoziierten Nierenfunktionsstörungen. Zeitschrift für Herz- Thorax- Gefäßchirurgie 23 (6), 349–373 (2009)

Herrmann W, Ecker D, Quast S, Klieden M, Rose S, Marzi I: Comparison of procalcitonin, sCD14 and interleukin-6 values in septic patients. Clinical chemistry and laboratory medicine **38** (1), 41–46 **(2000)**

Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA: Phylogenetic Perspectives in Innate Immunity. Science (New York, N.Y.) 284 (5418), 1313–1318 (1999)

Hoste EAJ, McCullough PA, Kashani K, Chawla LS, Joannidis M, Shaw AD, Feldkamp T, Uettwiller-Geiger DL, McCarthy P, Shi J, Walker MG, Kellum JA, Sapphire Investigators: Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association **29** (11), 2054–2061 **(2014)**

HwaV, Oh Y, Rosenfeld RG: The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocrine reviews 20 (6), 761–787 (1999)

Jones SA: Directing transition from innate to acquired immunity. Defining a role for IL-6. Journal of immunology **175** (6), 3463–3468 **(2005)**

Karlsen JR, Borregaard N, Cowland JB: Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-alpha is controlled by IkappaB-zeta but neither by C/EBP-beta nor C/EBP-delta. The Journal of biological chemistry **285** (19), 14088–14100 **(2010)**

Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Ng Gong M, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EAJ, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmelé T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent J-L, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA: Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Critical care (London, England) 17 (1), R25 (2013)

Kellum J, Lameire N, Aspelin P, Barsoum R, Burdmann E, Goldstein S, Herzog C, Joannidis M, Kribben A, Levey A: Kidney disease. Improving global outcomes (KDIGO) acute kidney injury work group. KDIGO clinical practice guideline for acute kidney injury. Kidney international supplements **2** (1) S. 1-138 **(2012)**

Kjeldsen L, Johnsen AH, Sengeløv H, Borregaard N: Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. The Journal of biological chemistry **268** (14), 10425–10432 **(1993)**

Lagny M-G, Jouret F, Koch J-N, Blaffart F, Donneau A-F, Albert A, Roediger L, Krzesinski J-M, Defraigne J-O: Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification. BMC nephrology 16, 76 (2015)

Lassnigg A, Schmid ER, Hiesmayr M, Falk C, Druml W, Bauer P, Schmidlin D: Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery. Do we have to revise current definitions of acute renal failure? Critical care medicine **36** (4), 1129–1137 (2008)

Lebreton G, Merle S, Inamo J, Hennequin J-L, Sanchez B, Rilos Z, Roques F: Limitations in the inter-observer reliability of EuroSCORE. What should change in EuroSCORE II? European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery **40** (6), 1304–1308 **(2011)**

Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine. A new prediction equation. Modification of Diet in Renal Disease Study Group. Annals of internal medicine **130** (6), 461–470 (1999)

Maisel AS, Mueller C, Fitzgerald R, Brikhan R, Hiestand BC, Iqbal N, Clopton P, van Veldhuisen DJ: Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure. The NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. European Journal of Heart Failure Eur J Heart Fail 13 (8), 846–851 (2011)

Mårtensson J, Xu S, Bell M, Martling C-R, Venge P: Immunoassays distinguishing between HNL/NGAL released in urine from kidney epithelial cells and neutrophils. Clinica chimica acta; international journal of clinical chemistry 413 (19-20), 1661–1667 (2012)

McCullough PA, Bouchard J, Waikar SS, Siew ED, Endre ZH, Goldstein SL, Koyner JL, Macedo E, Doi K, Di Somma S, Lewington A, Thadhani R, Chakravarthi R, Okusa MD, Duranteau J, Doran P, Yang L, Jaber BL, Meehan S, Kellum JA, Haase M, Murray PT, Cruz D, Maisel A, Bagshaw SM, Chawla LS, Mehta RL, Shaw AD, Ronco C: Implementation of novel biomarkers in the diagnosis, prognosis, and management of acute kidney injury. Executive summary from the tenth consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contributions to nephrology **182** 5–12 **(2013a)**

McCullough PA Shaw AD, Haase M, Bouchard J, Waikar SS, Siew ED, Patrick TM, Ravindra LM, Claudio R: Diagnosis of acute kidney injury using functional and injury biomarkers. Workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contributions to nephrology **182**, 13–29 **(2013b)**

McGuinness J, Bouchier-Hayes D, Redmond JM: Understanding the inflammatory response to cardiac surgery. The surgeon: journal of the Royal Colleges of Surgeons of Edinburgh and Ireland 6 (3), 162–171 (2008)

Meersch M, Schmidt C, Hoffmeier A, van Aken H, Wempe C, Gerss J, Zarbock A: Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers. The PrevAKI randomized controlled trial. Intensive care medicine **43** (11), 1551–1561 **(2017)**

Mehta R, Kellum J, Shah S, Molitoris B, Ronco C, Warnock D, Levin A: Acute Kidney Injury Network. Report of an initiative to improve outcomes in acute kidney injury. Critical care 11 (2), R31 (2007)

Mishra J, Dent C, Tarabishi R, Mitsnefes MM, Ma Q, KellyC, Ruff SM, Zahedi K, Shao M, Bean J, Mori K, Barasch J, Devarajan P: Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet (London, England) **365** (9466), 1231–1238 **(2005)**

Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J, Devarajan P: Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. Journal of the American Society of Nephrology **14** (10), 2534–2543 **(2003)**

Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P: Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. Journal of the American Society of Nephrology **15** (12), 3073–3082 **(2004)**

Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D'Agati V, Devarajan P, Barasch J: Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. The Journal of clinical *investigation* 115 (3), 610–621 (2005)

Murphy G, Houbrechts A, Cockett MI, Williamson RA, O'shea M, Docherty AJ: The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochemistry **30** (33), 8097–8102 **(1991)**

Murphy G, Willenbrock F, Crabbe T, O'shea M, Ward R, Atkinson S, O'Connell J, Docherty A: Regulation of Matrix Metalloproteinase Activity. Ann NY Acad Sci 732 (1 Inhibition of), 31–41 (1994)

Nashef S, Roques F, Michel P, Gauducheau E, Lemeshow S, Salamon R: European system for cardiac operative risk evaluation (EuroSCORE). European Journal of Cardio-Thoracic Surgery **16** (1), 9–13 **(1999)**

Nashef S, Roques F, Sharples L, Nilsson J, Smith C, Goldstone A, Lockowandt U: Euroscore II. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery **41** (4), 734-44; discussion 744-5 **(2012)**

Oh Y: IGFBPs and neoplastic models. New concepts for roles of IGFBPs in regulation of cancer cell growth. Endocrine 7 (1), 111–113 (1997)

Ouattara A, Lecomte P, Manach YL, Landi M, Jacqueminet S, Platonov I, Bonnet N, Riou B, Coriat P: Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology 103 (4), 687–694 (2005)

Paarmann H, Charitos E, Beilharz A, Heinze H, Schön J, Berggreen A, Heringlake M: Duration of cardiopulmonary bypass is an important confounder when using biomarkers for early diagnosis of acute kidney injury in cardiac surgical patients. Applied Cardiopulmonary Pathophysiology, 284-297 **(2013)**

Pannu N, Nadim MK: An overview of drug-induced acute kidney injury. Critical care medicine **36** (4 Suppl), 216-23 **(2008)**

Paragas N, Qiu A, Zhang Q, Samstein B, Deng S-X, Schmidt-Ott KM, Viltard M, Yu W, Forster CS, Gong G, Liu Y, Kulkarni R, Mori K, Kalandadze A, Ratner AJ, Devarajan P, Landry DW, D'Agati V, Lin C-S, Barasch J: The Ngal reporter mouse detects the response of the kidney to injury in real time. Nature medicine **17** (2), 216–222 **(2011)**

Parolari A, Pesce L, Pacini D, Mazzanti V, Salis S, Sciacovelli C, Rossi F, Alamanni F: Risk factors for perioperative acute kidney injury after adult cardiac surgery. Role of perioperative management. The Annals of thoracic surgery **93** (2), 584–591 **(2012)**

Parikh CR, Coca SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Wang Z, Edelstein CL, Devarajan P, Patel UD, Zappitelli M, Krawczeski CD, Passik CS, Swaminathan M, Garg AX, TRIBE-AKI Consortium: Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. Journal of the American Society of Nephrology **22** (9), 1748–1757 **(2011)**

Pilarczyk K, Edayadiyil-Dudasova M, Wendt D, Demircioglu E, Benedik J, Dohle DS, Jakob H, Dusse F: Urinary [TIMP-2]*[IGFBP7] for early prediction of acute kidney injury after coronary artery bypass surgery. Annals of intensive care **5** (1), 50 (**2015**)

Ranucci M: Perioperative renal failure. Hypoperfusion during cardiopulmonary bypass? Seminars in cardiothoracic and vascular anesthesia 11 (4), 265–268 (2007)

Ranucci M, Ballotta A, Kunkl A, de Benedetti D, Kandil H, Conti D, Mollichelli N, Bossone E, Mehta RH: Influence of the timing of cardiac catheterization and the amount of contrast media on acute renal failure after cardiac surgery. The American journal of cardiology 101 (8), 1112–1118 (2008)

Ranucci M, De Toffol B, Isgrò G, Romitti F, Conti D, Vicentini M: Hyperlactatemia during cardiopulmonary bypass. Determinants and impact on postoperative outcome. Critical care (London, England) **10** (6), 167 **(2006)**

Ranucci M, Romitti F, Isgrò G, Cotza M, Brozzi S, Boncilli A, Ditta A: Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. The Annals of thoracic surgery 80 (6), 2213–2220 (2005)

Riddez L, Hahn RG, Brismar B, Strandberg A, Svensén C, Hedenstierna G: Central and regional hemodynamics during acute hypovolemia and volume substitution in volunteers. Critical care medicine **25** (4), 635–640 (1997)

Ronco C, Kellum JA, Bellomo R: Cardiac surgery-associated acute kidney injury. The International journal of artificial organs 31 (2), 156–157 (2008)

Roques F: Risk factors and outcome in European cardiac surgery. Analysis of the EuroSCORE multinational database of 19030 patients. European Journal of Cardio-Thoracic Surgery **15** (6), 816–823 **(1999)**

Sergeant P, Worm E, Meyns B: Single centre, single domain validation of the EuroSCORE on a consecutive sample of primary and repeat CABG. European Journal of Cardio-Thoracic Surgery **20** (6), 1176–1182 **(2001)**

Shi Q, Hong L, Mu X, Zhang C, Chen X: Meta-analysis for outcomes of acute kidney injury after cardiac surgery. Medicine **95** (49) **(2016)**

Song Z, Ma Z, Qu K, Liu S, Niu W, Lin T: Diagnostic prediction of urinary TIMP-2 x IGFBP7 for acute kidney injury. A meta-analysis exploring detection time and cutoff levels. Oncotarget **8** (59), 100631–100639 (**2017**)

Sponholz C, Sakr Y, Reinhart K, Brunkhorst F: Diagnostic value and prognostic implications of serum procalcitonin after cardiac surgery. A systematic review of the literature. Critical care **10** (5), R145 **(2006)**

Stafford-Smith M, Shaw A, Swaminathan M: Cardiac surgery and acute kidney injury. Emerging concepts. Current opinion in critical care **15** (6), 498–502 **(2009)**

Stryer L: Stryer Biochemie. In: Berg J, Gregory, J, Tymoczko J, Stryer L: Erforschung der Proteine und Proteome. 7: Aufl, 85-92, Berlin, Heidelberg, **2014**

Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P: Differential gene expression following early renal ischemia/reperfusion. Kidney international **63** (5), 1714–1724 (2003)

Sutton TA, Fisher CJ, Molitoris BA: Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney international **62** (5), 1539–1549 **(2002)**

Swaminathan M, Phillips-Bute B, Conlon P, Smith P, Newman M, Stafford-Smith M: The association of lowest hematocrit during cardiopulmonary bypass with acute renal injury after coronary artery bypass surgery. The Annals of thoracic surgery **76** (3), 784–791 **(2003)**

Tschaikowsky K, Hedwig-Geissing M, Schiele A, Bremer F, Schywalsky M, Schüttler J: Coincidence of pro- and anti-inflammatory responses in the early phase of severe sepsis. Longitudinal study of mononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients. Critical care medicine **30** (5), 1015–1023 (**2002**)

Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT: Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. American journal of kidney diseases: the official journal of the National Kidney Foundation **52** (3), 425–433 (2008)

Wanner GA, Keel M, Steckholzer U, Beier W, Stocker R, Ertel W. (2000) Relationship between procalcitonin plasma levels and severity of injury, sepsis, organ failure, and mortality in injured patients. Critical care medicine **28** (4), 950–957 **(2000)**

Whicher J, Bienvenu J, Monneret G: Procalcitonin as an acute phase marker. Annals of clinical biochemistry **38**, 483–493 **(2001)**

Literaturverzeichnis

Wunder C, Eichelbrönner O, Roewer N: Are IL-6, IL-10 and PCT plasma concentrations reliable for outcome prediction in severe sepsis? A comparison with APACHE III and SAPS II. Inflammation research: official journal of the European Histamine Research Society [et al.] **53** (4), 158–163 **(2004)**

Yan L, Borregaard N, Kjeldsen L, Moses MA: The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. The Journal of biological chemistry 276 (40), 37258–37265 (2001)

Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J: An iron delivery pathway mediated by a lipocalin. Molecular cell 10 (5), 1045-1056 (2002)

Yang Q-H, Liu D-W, Long Y, Liu H-Z, Chai W-Z, Wang X-T: Acute renal failure during sepsis. Potential role of cell cycle regulation. The Journal of infection 58 (6), 459–464 (2009)

7.1 Prä-, intra- und postoperative Daten, bzw. Outcome der CPB-S Gruppe vs. CPB-L Gruppe, n = 39

Tabelle A 2: $Pr\ddot{a}$ -, intra- und postoperative Daten, bzw. Outcome der CPB-S Gruppe vs. CPB-L Gruppe, n=39.

Parameter	Messzeit- punkte	CPB-S	CPB-L	p- Wert
n		17	22	
Beatmungspar	ameter			
P _{max (max)}	T2	16 (14-20)	17 (15-18)	0,913
[mmHg]	T3	18 (15-20)	17 (15-20)	0,429
	T5	18 (15-23)	18 (15-20)	0,924
	T6	17 (15-21)	20 (17-22) (18)	0,234
	T7	17 (15-20)	19 (16-21) (20)	0228
	T8	16 (15-19) (11)	18 (15-22) (17)	0,298
P _{max(min)}	T2	16 (14-19)	17 (14-18)	0,692
[mmHg]	T3	18 (15-20)	17 (15-18)	0,289
	T5	18 (15-22)	17 (15-20)	0,913
	T6	17 (15-21)	19 (15-20) (18)	0,692
	T7	17 (15-20)	19 (16-21) (20)	0,139
	T8	16 (15-19) (11)	18 (15-22) (17)	0,298
Peep _(max)	T2	5 (5-6)	5 (5-6)	0,692
[mmHg]	T3	5 (5-6)	5 (5-6)	0,928
	T5	6 (5-7)	5 (5-7)	0,965
	T6	6 (5-7)	6 (5-8)	0,813
	T7	7 (7-8)	7 (7-7) (21)	0,612
	T8	7 (7-8) (11)	7 (7-7) (17)	0,758
Peep _(min)	T3	5 (5-6)	5 (5-6)	0,863
[mmHg]	T5	6 (5-7)	5 (5-7)	0,826
. 03	T6	6 (5-7)	6 (5-7)	0,693
	T7	7 (7-8)	7 (7-7) (21)	0,963
	T8	7 (7-7) (11)	7 (6-7) (17)	0,466
	1			
AF _(max)	T2	11 (10-12)	12 (10-12)	0,299
[1/min]	T3	10 (10-12)	11 (10-12)	0,248
	T5	11 (10-13)	11 (10-12)	0,866
	T6	12 (10-13)	12 (10-12) (18)	1
	T7	13 (12-14)	14 (12-14) (20)	0,537
	T8	12 (10-15) (11)	13 (12-14) (17)	0,161

A.E.	T2	10 (10-12)	11 (10-12)	0,15
AF _(min)	T3	10 (10-12)	11 (10-12)	0,13
[1/min]	T5	11 (10-12)	11 (10-12)	0,223
	T6	12 (10-13)		
	T7	/	12 (10-12) (18)	0,974
		13 (12-13)	13 (12-14) (20)	0,578
	T8	12 (10-15) (11)	12 (12-14) (17)	0,886
Tid _(max)	T2	500 (461-520)	502 (460-544)	0,568
[ml]	T3	489 (427-530)	500 (460-530)	0,308
[IIII]	T5	467 (430-520)	500 (476-540)	0,437
	T6	480 (420-518)	488 (440-530) (18)	0,350
	T7	517 (460-615)	548 (455-634) (20)	0,584
	T8	480 (423-540) (11)	585 (486-620) (17)	0,121
Tid _(min)	T2	471 (439-503)	483 (468-517)	0,121
	T3	468 (432-504)	499 (470-528)	0,202
[ml]	T5	466 (430-501)	487 (460-514)	0,137
	T6	461 (429-493)	477 (445-510) (18)	0,367
	T7	524 (475-572)	558 (503-613) (20)	0,403
	T8	492 (443-540) (11)	497 (348-647) (17)	0,939
Blutgase und E		1 92 (11 3-340) (II)	1 97 (340-047) (17)	0,939
pO2 (max)	T1	100 (98-100)	100 (98-100)	0,67
[mmHg]	T2	100 (100-100)	100 (100-100)	0,985
[mmrg]	T3	100 (99-100)	100 (100-100)	0,281
	T4	100 (99-100)	100 (99-100)	0,405
	T5	100 (99-100)	99 (99-100)	0,423
	T6	100 (99-100)	100 (100-100)	0,054
	T7	100 (100-100)	100 (100-100)	0,696
	T8	100 (100-100)	100 (100-100)	0,823
	T9	100 (99-100)	100 (99-100)	0,423
	T10	100 (99-100)	100 (99-100)	0,368
	T11	100 (99-100)	100 (100-100)	0,072
	T12	100 (98-100)	100 (99-100)	0,859
pO2 (min)	T1	98 (95-99)	98 (96-99)	0,611
[mmHg]	T2	99 (97-99)	98 (97-99)	0,901
[mmrg]	T3	99 (98-99)	99 (98-99)	0,727
	T4	99 (98-100)	99 (98-99)	0,717
	T5	98 (96-99)	98 (97-99)	0,619
	T6	98 (96-100)	99 (98-99)	0,224
	T7	100 (99-100)	100 (99-100)	0,963
	T8	98 (95-99)	98 (96-100)	0,419
	T9	96 (95-98)	97 (95-99)	0,245
	T10	97 (95-98)	97 (95-99)	0,924
	T11	94 (93-97)	96 (93-97)	0,522
	T12	97 (95-98)	97 (95-99)	0,859

C-1-:	T-1	1 15 (1 12 1 10)	1 15 (1 12 1 10)	0.461
Calcium	T1	1,15 (1,13-1,18)	1,15 (1,13-1,18)	0,461
BGA arteriell	T2	1,18 (1,12-1,21)	1,14 (1,11-1,2)	0,683
[mmol/L]	T3	1,17 (1,11-1,2)	1,15 (1,14-1,19)	0,673
	T4	1,17 (1,11-1,2)	1,17 (1,11-1,2)	0,703
	T5	1,21 (1,19-1,26)	1,2 (1,14-1,23)	0,207
	<u>T6</u>	1,22 (1,18-1,23)	1,16 (1,12-1,23) (18)	0,327
	<u>T7</u>	1,19 (1,17-1,23)	1,17 (1,15-1,23)	0,422
	T8	1,18 (1,13-1,21)	1,16 (1,13-1,18)	0,282
	T9	1,17 (1,15-1,19)	1,14 (1,11-1,16)	0,020
	T10	1,15 (1,12-1,17)	1,13 (1,1-1,15)	0,077
	T11	1,17 (1,12-1,18)	1,12 (1,11-1,16) (21)	0,107
	T12	1,15 (1,12-1,19) (16)	1,15 (1,1-1,17) (6)	0,606
Chlorid	T1	106 (104-107)	106 (105-107)	0,859
BGA arteriell	T2	106 (105-108)	107 (105-109)	0,692
[mmol/L]	T3	108 (106-110)	107 (105-109)	0,405
	T4	107 (105-108)	105 (104-106)	0,146
	T5	110 (108-111)	110 (109-112)	0,210
	T6	109 (109-110)	111 (110-113) (18)	0,063
	T7	110 (109-110)	111 (109-113)	0,114
	T8	108 (108-110)	110 (109-111)	0,03
	T9	109 (108-110)	109 (108-110)	0,324
	T10	108 (106-110)	109 (107-110)	0,375
	T11	106 (105-108)	107 (104-109) (21)	0,610
	T12	107 (105-108) (16)	107 (101-109) (6)	0,853
	·			
Glucose	T1	98 (93-104)	103 (95-106)	0,505
BGA arteriell	T2	96 (91-100)	97 (90-101)	0,849
[mg/dl]	T3	97 (91-100)	99 (95-106)	0,370
	T4	171 (152-195)	184 (155-210)	0,302
	T5	121 (111-141)	132 (115-172)	0,350
	T6	114 (100-126)	102 (92-119) (18)	0,306
	T7	109 (97-130)	100 (89-133)	0,615
	T8	138 (120-163)	136 (120-144)	0,455
	T9	137 (125-162)	141 (125-152)	0,775
	T10	135 (127-147)	124 (118-144)	0,206
	T11	136 (109-172)	123 (109-138) (21)	0,159
	T12	138 (110-178) (16)	131 (124-166) (6)	0,971
	112	130 (110 170) (10)	131 (121 100) (0)	0,571
Kalium	T1	3,7 (3,6-3,8)	3,7 (3,5-4)	0,630
BGA arteriell	T2	3,6 (3,4-3,8)	3,7 (3,5-3,8)	0,521
	T3	3,9 (3,7-4,1)	4,1 (3,9-4,3)	0,044
[mmol/L]	T4	5,2 (4,7-5,5)	5,6 (5,4-6)	0,04
[IIIIIO/L]		3,4 (7,1-3,3)	` '	
		49 (46-5)	$1.4 \times (4.4 - 5)$	10212
[mmor <i>E</i>]	T5	4,9 (4,6-5)	4,8 (4,4-5)	0,212
[mmov E]	T5 T6	4,7 (4,5-4,8)	4,3 (4,1-4,7) (18)	0,040
[mmor <i>L</i>]	T5			

	T10	4,5 (4,3-4,7)	4,6 (4,3-4,8)	0,733
	T11	4,5 (4,2-4,6)	4,2 (3,9-4,4) (21)	0,028
	T12	4,5 (4,3-4,6) (16)	4,4 (4,2-4,8) (6)	0,917
				/
Hämatokrit	T1	39 (38-41)	44 (39-45)	0,024
BGA arteriell	T2	36 (34-39)	39 (37-41)	0,060
[%]	T3	37 (33-38)	38 (37-43)	0,054
	T4	31 (29-34)	32 (28-35)	0,454
	T5	29 (26-31)	28 (26-31)	0,588
	T6	31 (28-33)	29 (26-32) (18)	0,501
	T7	31 (29-35)	31 (27-35)	0,620
	T8	33 (28-36)	33 (30-35)	0,807
	T9	33 (27-36)	32 (28-34)	0,383
	T10	34 (27-35)	32 (28-34)	1
	T11	32 (27-34)	29 (27-32) (21)	0,659
	T12	30 (28-33) (16)	28 (26-32) (6)	0,395
		(10)	- () (0)	0,-00
HCO ₃ -	T1	(25,1-27,2)	(24,3-27)	0,265
BGA arteriell	T2	(24,5-27,4)	(23-26,6)	0,106
[mmol/L]	T3	(24,2-26,6)	(23,7-26,6)	0,870
[2]	T4	(23,6-26,5)	(23-25,2)	0,106
	T5	(23,7-26,7)	(24,1-26)	0,436
	T6	(24,6-26)	(24,5-26,3) (18)	0,465
	T7	(24,9-26,1)	(24-26,5)	0,392
	T8	(23,9-25,3)	(23,4-27)	0,154
	T9	(23,9-25,3)	(24,5-26,3)	0,089
	T10	(24-25,7)	(24,2-26,7)	0,211
	T11	(25-26,9)	(25,8-27,9) (21)	0,248
	T12	(24,9-27,8) (16)	(23,9-29,8) (6)	0,971
	112	[(= 1,5 = 7,0) (10)	[(-2,3, -3,0) (0)	0,571
Hämoglobin	T1	13,1 (12,4-13,6)	14,6 (13,1-15,1)	0,019
BGA arteriell	T2	(11,6-12,8)	(12,3-13,7)	0,090
[g/dl]	T3	12,2 (11,2-12,5)	12,7 (12,2-13,6)	0,054
[8]	T4	(9,4-10,8)	(10-11,4)	0,226
	T5	(9,1-10,5)	(8,9-10,2)	0,636
	T6	(9,5-10,7)	(9,2-10,6) (18)	0,679
	T7	(10,1-11,3)	(9,6-11,1)	0,431
	T8	(10,2-11,7)	(10,1-11,6)	0,873
	T9	(10,2-11,7)	(10-11,3)	0,497
	T10	(9,7-11,4)	(9,8-11,2)	0,876
	T11	(9,0-10,8)	(9,4-10,7) (21)	0,785
	T12	(9,4-10,4) (16)	(8,2-11,2) (6)	0,709
		(-), (10)	[(-)) (0)	7,. 07
Natrium	T1	137 (135-138)	136 (135-137)	0,328
BGA arteriell	T2	137 (135-139)	136 (135-137)	0,340
[mmol/L]	T3	138 (137-139)	136 (135-138)	0,024
	T4	134 (132-135)	131 (130-133)	0,004
			` '	
	T5	135 (133-136)	135 (133-137)	0,774

	T7	137 (136-138)	137 (135-139)	0,913
	T8	138 (137-139)	139 (137-141)	0,732
	T9	137 (137-140)	138 (137-140)	0,583
	T10	138 (136-140)	138 (137-139)	0,622
	T11	136 (135-138)	136 (135-138) (21)	0,500
	T12	136 (135-138) (16)	136 (134-137) (6)	0,479
		7 ()	7 (1)	
Lactat BGA arteriell	T1	0,6 (0,6-0,8)	0,9 (0,6-1)	0,146
[mmol/L]	T2	0,6 (0,5-0,7)	0,7 (0,6-0,9)	0,135
. ,	T3	0,6 (0,5-0,7)	0,7 (0,6-1)	0,242
	T4	0,9 (0,8-1,0)	1,1 (0,9-1,3)	0,061
	T5	1,3 (1,1-1,5)	1,9 (1,5-2,3)	0,000
				3
	T6	1 (0,9-1,3)	1,5 (1-1,7) (18)	0,044
	T7	0,8 (0,7-1,0)	1,1 (0,8-1,7)	0,052
	T8	0,8 (0,7-1,2)	1,1 (0,8-1,3)	0,135
	T9	0,8 (0,7-1,0)	1,1 (0,8-1,2)	0,028
	T10	0,8 (0,7-1,0)	1 (0,9-1,2)	0,030
	T11	0,9 (0,7-1,2)	1,1 (0,9-1,4) (21)	0,162
	T12	0,9 (0,7-1,1) (16)	1,1 (0,9-1,3) (6)	0,064
	112	0,7 (0,7 1,1)(10)	1,1 (0,7 1,3) (0)	0,001
pCO _{2 BGA arteriell}	T1	38 (36-42)	38 (35-41)	0,595
[mmHg]	T2	44 (39-47)	40 (38-43)	0,288
[mmrg]	T3	49 (43-53)	50 (45-53)	0,703
	T4	47 (45-49)	50 (45-52)	0,200
	T5	45 (43-52)	45 (43-50)	0,702
	T6	48 (41-53)	50 (42-54) (18)	0,539
	T7	43 (39-47)	46 (39-51)	0,295
	T8	44 (42-47)	46 (43-50)	0,454
	T9	44 (42-48)	44 (41-48)	0,892
	T10	45 (42-50)	44 (41-47)	0,355
	T11	42 (38-43)	42 (39 -46) (21)	0,333
	T12	41 (35-46) ₍₁₆₎	41 (37-44) (6)	0,883
	112	 	T1 (37-TT)(6)	0,003
pH _{BGA} arteriell	T1	7,44 (7,43-7,45)	7,44 (7,41-746)	0,956
P11 BGA arteriell	T2	7,39 (7,35-7,42)	7,44 (7,41-740)	0,935
	T3	7,33 (7,29-7,42)	7,33 (7,3-7,36)	0,568
	T4	7,34 (7,29-7,38)	7,28 (7,27-7,32)	0,308
	T5	7,35 (7,29-7,37)	7,35 (7,31-7,37)	0,020
	T6	7,32 (7,3-7,38)	, (, , , ,	
	T7		$7,32 (7,3-7,35)_{(18)}$	0,414
		7,4 (7,35-7,43)	7,37 (7,33-7,41)	0,289
	T8	7,36 (7,34-7,37)	7,36 (7,33-7,41)	0,785
	T9	7,36 (7,35-7,39)	7,37 (7,34-7,41)	0,376
	T10	7,37 (7,34-7,39)	7,38 (7,35-7,41)	0,164
	T11	7,41 (7,4-7,44)	7,4 (7,44-7,42) (21)	0,702
	T12	7,42 (7,4-7,44) (16)	7,43 (7,42-7,45) ₍₆₎	0,579

pO ₂ BGA arteriell	T1	73 (66-84)	90 (76-100)	0,017
[mmHg]	T2	267 (153-331)	271 (211-327)	0,796
[mmHg]	T3	265 (173-284)	270 (208-297)	0,765
	T4	225 (172-277)	202 (183-252)	0,703
	T5	190 (139-265)	199 (114-262)	1
	T6	176 (149-246)	211 (125-258) (18)	0,826
	T7	209 (168-265)	208 (124-292)	0,820
	T8	132 (106-149)	148 120-171 ()	0,389
	T9	153 (119-182)	139 (109-180)	0,744
	T10	129 (103-159)	117 (99-166)	0,744
	T11	89 (68-102)	91 (84-118) (21)	0,248
	T12	86 (69,5-97) ₍₁₆₎	96 (79-107) ₍₆₎	0,248
	112	00 (09,3-97)(16)	90 (79-107)(6)	0,439
$\overline{\mathrm{sO}_2}$	T1	97 (96-98)	98 (96-99)	0,077
[%]	T2	99 (98-99)	99 (98-99)	0,211
[,•]	T3	99 (98-99)	99 (98-99)	0,174
	T4	99 (98-99)	99 (98-99)	0,540
	T5	99 (98-99) (17)	99 (98-98)	0,202
	T6	99 (98-99)	99 (98-99) (18)	0,236
	T7	100 (99-99)	99 (99-99)	0,086
	T8	99 (98-99)	99 (98-99)	0,654
	T9	99 (98-99)	99 (98-99)	0,683
	T10	99 (99-99)	99 (97-99)	0,058
	T11	98 (97-99)	98 (98-99) (21)	0,360
	T12	98 (96-98) (16)	98 (97-99) ₍₆₎	0,337
	112	70 (70 70) (10)	70 (77 77)(0)	0,557
pH _{BGA venös}	T2	7,35 (7,32-7,37)	7,34 (7,31-7,35)	0,454
1 Berryenes	T3	7,29 (7,26-7,34)	7,29 (7,25-7,33)	0,624
	T4	7,29 (7,25-7,33)	7,26 (7,24-7,3)	0,022
	T5	7,3 (7,27-7,32)	7,31 (7,28-7,34) (22)	0,387
	T6	7,29 (7,25-7,32) (16)	7,28 (7,23-7,31) (17)	0,407
	T7	7,34 (7,30-7,35) (16)	7,32 (7,29-7,33) (22)	0,423
	T8	7,31 (7,3-7,33)	7,31 (7,29-7,35) (21)	0,640
	T9	7,33 (7,31-7,34)	7,33 (7,3-7,36)	0,522
	T10	7,33 (7,31-7,33) (13)	7,34 (7,32-7,35) (16)	0,081
	T11	7,36 (7,35-7,38)	7,36 (7,35-7,39) (21)	0,929
	T12	7,37 (7,35-7,39)	7,41 (7,38-7,44)	0,004
	112	1,37 (1,33 1,33)	7,11 (7,50 7,11)	0,001
Lactat BGA venös	T2	0,7 (0,6-0,7)	0,8 (0,6-1)	0,225
[mmol/L]	T3	0,7 (0,6-0,8)	0,8 (0,7-1,0)	0,057
	T4	1 (0,9-1,1)	1,2 (1-1,4)	0,115
	T5	1,3 (1,1-1,4)(16)	2 (1,5-2,4) (22)	0,0002
	T6	1,1 (1-1,2)(16)	1,4 (1-1,7) (17)	0,053
	T7	1 (0,8-1,2) (16)	1,2 (1-1,8) (22)	0,090
	T8	0,9 (0,8-1,2)	1,1 (0,9-1,4) (21)	0,209
	T9	0,8 (0,8-1,1)	1,2 (0,8-1,4)	0,007
	T10	0,9 (0,8-1,2) (13)	1 (0,8-1,3) (16)	0,628
	T11	0,9 (0,7-1,4)	1,1 (0,9-1,4) (21)	0,324

	T12	1,1 (0,9-1,3)	1,1 (1-1,2)	0,597
		(-))	1 - 1 - (1 - 1 - 1 - 1 - 1 - 1 - 1	3,027
pCO _{2 BGA venös}	T2	52 (47-54)	50 (46-54)	0,568
[mmHg]	T3	58 (57-62)	56 (51-61)	0,892
	T4	54 (48-55)	55 (51-57)	0,274
	T5	53 (50-56)	54 (46-56) (22)	0,487
	T6	54 (52-60) (16)	56 (53-63) (17)	0,176
	T7	52 (45-57) (16)	55 (51-58) (22)	0,225
	T8	52 (51-56)	53 (50-56) (21)	0,592
	T9	53 (50-55)	53 (49-55)	0,754
	T10	52 (48-54) (13)	52 (49-55) (16)	0,809
	T11	49 (46-52)	48 (45-53) (21)	1
	T12	48 (45-54)	46 (44-49)	0,144
		10 (10 0 1)	1.0 (1.1.19)	
pO _{2 BGA venös}	T2	46 (39-50)	48 (43-50)	0,586
[mmHg]	T3	51 (47-58)	57 (49-58)	0,307
	T4	49 (45-60)	60 (56-68)	0,004
	T5	50 (44-54)	51 (47-57) (22)	0,269
	T6	52 (43-56) (16)	50 (44-57) (17)	0,900
	T7	37 (34-44) (16)	39 (34-44) (22)	0,756
	Т8	41 (38-44)	41 (37-43) (21)	0,480
	Т9	39 (37-42)	35 (33-41)	0,064
	T10	40 (34-42) (13)	37 (34-40) (16)	0,482
	T11	34 (31-37)	35 (31-36) (21)	0,953
	T12	31 (27-34)	31 (30-35)	0,419
			· · · · · · · · · · · · · · · · · · ·	
sO _{2 BGA venös}	T2	81 (79-86)	84 (78-85)	0,399
[mmHg]	T3	86 (83-89)	88 (84-89)	0,328
	T4	88 (84-92)	92 (90-95)	0,025
	T5	87 (83-91)	88 (84-91) (22)	0,412
	T6	86 (80-90)(16)	87 (82-89) (17)	0,986
	T7	73 (70-80) ₍₁₆₎	78 (70-82) (22)	0,287
	T8	77 (76-79)	79 (72-82) (21)	0,845
	T9	77 (72-79)	73 (70-79)	0,348
	T10	77 (69-79)(13)	74 (70-79) (16)	0,894
	T11	71 (65-75)	72 (69-77) (21)	0,240
	T12	63 (58-70)	69 (65-74)	0,062
Renale Biomark	ær		· · · · · · · · · · · · · · · · · · ·	•
TIMP2*IG-	Fried-	0,2013	0,055	
FBP7kk	man			
TD Maticana		0.07 (0.04.00.04)	11 55 (4 50 60 00)	0.212
TIMP2*IGFBP7	T1	8,35 (2,34-20,24)	11,57 (4,50-68,89)	0,213
P(F1)=0,0013	T7	1,33 (0,29-3,62)	5,44 (1,85-10,34)	0,031
P(F2)=0,0075	T8	2,28 (1,72-3,93)	3,60 (1,92-7,78)	0,336
	T9	3,70 (1,10-10,91) (16)	4,83 (2,27-16,50)	0,322
	T10	4,72 (0,79-7,71) ₍₁₅₎	7,98 (1,85-18,70) (21)	0,049
	T11	9,42 (6,07-20,17)	7,06 (2,93-27,68) (21)	0,826
	T12	4,36 (2,82-24,76) (15)	$3,03(2,09-7,25)_{(21)}$	0,328

IGFBP7kk	T1	2,42 (1,06-5,64)	4,52 (2,42-8,67)	0,106
ISI DI / KK	T7	7,75 (3,97-30,41)	15,22 (7,29-34,73)	0,223
P(F1)=0,011	T8	10,19 (3,11-13,34)	9,99 (6,27-26,55) (16)	0,38
P(F2)=0,0001	T9	3,8 (1,83-9,51) (16)	4,32 (2,96-11,88)	0,329
	T10	3,03 (1,25-5,68) (15)	3,18 (2,32-4,41) (21)	0,86
	T11	4,01 (1,42-12,59)	2,87 (1,71-4,67) (21)	0,355
	T12	7,97 (3,75-17,12) (15)	14,2 (3,46-38,61) (21)	0,49
IGFBP7	T1	P(F1)=0,005	P(F2)=0,34	
NGALkk	T1	6,86 (3,09-13,43)	1 05 (2 12 7 11)	0,671
P(F1)=0,004	T7	32,9 (12,67-73,09)	4,95 (3,42-7,41) 161,8 (32,81-1023)	0,071
P(F2)=0,0001	T8	11,71 (4,51-23,33)	18,68 (7,59-37,94)	0,027
1 (12)-0,0001	T9	10,9 (6,58-26,41) (16)	14,34 (8,33-30,43)	0,100
	T10	, (, , , , , , , , , , , , , , , , , ,		0,394
		8,07 (3,88-23,85) ₍₁₅₎	7,27 (5,78-12,82) (21)	
	T11 T12	14,14 (7,76-27,91)	7,81 (2,69-14,46) (21)	0,163
	112	23,78 (7,67-49,14) (15)	22,89 (10,13-57,59) ₍₂₁₎	0,785
NGAL	T1	P(F1)=0,098	P(F2)=0,401	
TYOTE	111	1(11) 0,000	1 (12) 0,101	
TIMP2kk	T1	P(F1)=0,079	P(F2)=0,0001	
		, ,		
TIMP2	T1	2,67 (1,18-4,7)	2,53 (1,06-7,02)	0,692
P(F1)=0.005	T7	0,53 (0,35-1,01)	1,33 (0,80-1,76)	0,047
P(F2)=0,0002	T8	1,11 (0,64-1,82)	1,18 (0,795-1,52) (16)	0,91
	T9	1,79 (1,03-2,17) (16)	1,86 (0,99-3,59)	0,535
	T10	1,23 (0,70-2,18)(15)	2,57 (1,20-3,54)(21)	0,061
	T11	1,84 (1,31-3,51)	1,89 (1,41-4,14) (21)	0,639
	T12	1,58 (0,67-2,7) (15)	1,15 (0,46-1,82) (21)	0,217
				1
Kreatinin	T1	1,25 (0,84-2,42)	1,70 (0,92-2,13)	0,724
	T7	0,226 (0,11-0,46)	0,175 (0,11-0,28)	0,341
	T8	0,41 (0,28-0,54) (16)	0,31 (0,19-0,46) (16)	0,229
	T9	0,61 (0,47-0,80)	0,57 (0,44-0,95)	0,955
	T10	0,87 (0,48-1,07) (16)	1,01 (0,71-1,43) (21)	0,193
	T11	1,35 (0,43-2,05)	1,35 (0,98-2,05) (21)	0,430
	T12	0,47 (0,25-0,96) (16)	0,45 (0,17-1,08) (21)	0,927
Blutbild	l ma	1.00 (1.00 1.00)	1.50 (1.10.5.15)	0.0==
Erythrozyten	T1	4,38 (4,03-4,82)	4,78 (4,13-5,17)	0,075
	T7	3,37 (2,95-3,73)	3,24 (2,9-3,81)	0,724
	T8	3,63 (2,98-3,94)	3,44 (3,18-3,97)	0,978
	T9	3,53 (3-3,89)	3,31 (3,15-3,78)	0,664
	T10	3,47 (3-3,74)	3,27 (3,08-3,69)	0,704
	T11	3,37 (2,76-3,59)	3,13 (2,85-3,54) (21)	0,746
	T12	3,11 (2,9-3,29)	3 (2,73-3,43)	0,650
т 1	T-1	(2(5275)	(7(5775)	0.644
Leukozyten	T1	6,3 (5,2-7,5)	6,7 (5,7-7,5)	0,644

	T7	7,9 (7,3-10,6)	9,9 (7,1-12,8)	0,128
	T8	11,8 (9,8-14,6)	12,7 (10,3-16,9)	0,550
	T9	10,5 (9,3-14,6)	12,1 (10,8-14,4)	0,786
	T10	11,3 (9,3-14)	12 (9,7-13,9)	0,892
	T11	11,8 (10,1-14)	12,3 (11,2-14,7)(21)	0,499
	T12	11,6 (10,3-12,5)	12,1 (10,2-13,5)	0,591
		,	, , ,	•
Hämoglobin	T1	13,1 (12,4-14,3)	14,5 (12,5-15,5)	0,082
C	T7	9,9 (9,4-11,2)	9,7 (8,7-11,5)	0,438
	T8	10,8 (9,1-11,7)	10,4 (9,3-11,6)	0,946
	T9	10,85 (9-11,5)	10,05 (9,2-11,1)	0,488
	T10	10,6 (9-11,4)	9,7 (8,8-10,9)	0,603
	T11	10,2 (8,5-10,6)	9,2 (8,6-10,75) (21)	0,757
	T12	9,3 (8,73-9,8)	9 (8,55-10,2)	0,756
Thrombozyten	T1	205 (176-233)	213 (187-238)	0,656
J	T7	133 (111-154)	122 (108-137)	0,404
	T8	143 (129-157)	139 (122-156)	0,735
	T9	139 (123-155)	137 (119-156)	0,894
	T10	141 (129-153)	140 (122-159)	0,972
	T11	132 (122-143)	129 (108-151) (21)	0,812
	T12	124 (110-138)	129 (113-145)	0,621
		/	/ /	
Hämatokrit	T1	38,5 (36,2-41,8)	41,7 (36,1-44,5)	0,162
	T7	28,7 (27,1-32,1)	27,9 (25,5-32)	0,447
	T8	32,3 (27,2-34)	30,2 (27,7-33,7)	0,693
	T9	31,6 (27,3-33,9)	29,4 (27,2-32,6)	0,439
	T10	30,4 (27,3-33,2)	28,8 (26,7-31,9)	0,436
	T11	29,6 (25,4-31,6)	27 (25,7-30,9) (21)	0,714
	T12	27,8 (25,8-29,6)	26,6 (24,2-29,5)	0,315
Kreatinin _{Plasma}	T1	P(F1)=0,556 (n=15)	P(F2)=0,07 (n=22)	
Klinische Chemi	ie			•
Bg	T1	8,5 (6,7-10,6)	8,1 (6,5-16,3)(21)	0,789
	T11	7,5 (6,58-9,93)	9,76 (7,15-15,55) (20)	0,247
			1	<u> </u>
freies Hb	T1	35 (26,8-47,8)	55,5 (37-70) (18)	0,102
	T7	274 (171,8-483,8)	352 (235,3-486,8) (19)	0,438
	T11	43 (37-52,5)	50 (41,3-69) (19)	0,059
Inflammationsm	arker			
PCT	T1	0,05 (0,05-0,05) (16)	0,05 (0,05-0,06) (18)	0,657
	T8	0,19 (0,12-0,34)	0,32 (0,2-0,64)	0,034
	T9	0,35 (0,19-0,62) (16)	0,59 (0,43-0,87)	0,061
	T11	0,36 (0,17-0,55)		0,382
	T12	0,30 (0,20-0,55)	0,35 (0,13-0,52) (21)	0,792
	T11	0,36 (0,17-0,55)	0,49 (0,28-0,74) (21)	0,382
	114	0,50 (0,20-0,55)	0,33 (0,13-0,32)(21)	0,772

CRP	T1	3,4 (1,6-5,1)	1,3 (0,7-2,1)	0,013
	T8	4 (3,02-6,9)	4,8 (3,2-6)	0,81
	T9	15,2 (10,7-23,8)	22,6 (13,3-27,9)	0,126
	T11	113,5 (89,1-144)	126 (101,7-157,3) (21)	0,367
	T12	178 (107-222,3)	185,5 (153-251)	0,288
	<u> </u>			·
Haptoglobin	T1	1,17 (0,56-1,41)	0,86 (0,49-1,15)(19)	0,392
	T7	0,49 (0,12-0,64)	0,22 (0,08-0,44) (21)	0,078
	T11	0,32 (0,17-0,61) (16)	0,51 (0,38-0,63) (19)	0,185
Blutgerinnung				
AT3	T1	87,5 (74,5-96)	91 (79,5-99,5)	0,340
	T7	61,5 (55-67)	65 (57-69)	0,399
	T9	72 (66-77,5)	71,5 (67-85)	0,702
	T10	73,5 (72-77)(11)	75 (62,8-82,3) (16)	0,814
	T11	72 (65-78)	71 (64,8-83,3) (21)	0,535
	T12	72 (66,8-77,5)	74,5 (67-84)	0,713
Fibrinogen	T1	3,4 (3,1-3,7)	3 (2,7-3,6)	0,176
	T7	2,8 (2,5-3,1)	2,4 (2,2-2,7)	0,040
	Т9	3 (2,9-3,4)	3,1 (3,03-3,4)	0,055
	T10	3 (3-3,4) (11)	3,1 (3-3,4) (16)	0,439
	T12	5,1 (5-5,5)	5,1 (4,8-5,6)	0,552
				1
INR	T1	1,06 (1,03-1,08)	1,03 (1-1,09)	0,586
	T7	1,27 (1,2-1,34)	1,32 (1,24-1,37)	0,430
	T9	1,17 (1,13-1,25)	1,19 (1,13-1,22)	0,989
	T10	1,17 (1,14-1,22) ₍₁₁₎	1,20 (1,12-1,22) (16)	0,767
	T11	1,26 (1,17-1,28)	1,19 (1,14-1,24) (21)	0,260
	T12	1,1 (1,06-1,13)	1,06 (1,04-1,10)	0,144
PTT	T1	21 5 (20, 25)	21.5 (20.20)	0.002
r I I	T7	31,5 (30-35)	31,5 (29-38)	0,903
	T9	36 (33-40) 33,5 (30-36)	35 (31,5-42)	0,924
	T10	, \	32 (30-37)	0,713
	T11	41 (34-47,5) (11)	37 (33-43,5) (16)	0,633
	T12	52,5 (43-62)	48 (45,8-63) ₍₂₁₎	_
	112	44 (39,8-49)	41,5 (39-49)	0,650
Quick	T1	94 (89,5-97,5)	95,5 (89-100)	0,729
	T7	68 (61-73)	64,5 (58-68)	0,725
	T9	78 (70,3-84,5)	76 (68-82)	0,200
	T10	73 (66,8-82,8) (11)	74(71-81) ₍₁₆₎	0,604
	T11	70,5 (68-81) c	75 (69-80) (21)	0,554
	T12	87 (85-91,5)	91 (85,8-99)	0,334
Hämodynamik		07 (03 71,3)	71 (00,0 77)	0,127
BIS _(max)	T1	97 (94-98)	97 (92-98)	0,719
	T2	52 (45-57)	46,5 (43-54)	0,715
	T3	46 (42-47,5) (16)	42,5 (39-50)	0,321
	T4	41,5 (40-48)	40,5 (35-44)	0,248

	T5	46 (42-53)	46 (45-49)	0,913
	T6	45 (41-49)	44 (40,8-49,5) (21)	0,8
BIS _(min)	T1	96,5 (93-98)	95 (92-97)	0,279
()	T2	41,5 (38-49)	43,5 (39-47)	0,807
	T3	41 (33-44,5) (16)	38 (33-44)	0,734
	T4	39,5 (37,5-41)	38 (30-40)	0,145
	T5	41 (38-45)	36 (30-44)	0,121
	T6	41 (38-44)	42 (38,3-46,3) (21)	0,833
	<u> </u>			
NIRS _{rechts}	T1	67,5 (61-74)	73 (64-81)	0,142
	T2	73,5 (63-75)	73,5 (71-78)	0,253
	Т3	79,5 (64-84)	79,5 (75-88)	0,135
	T4	71 (59-75)	77,5 (68-82)	0,006
	T5	75 (62-82)	78 (70-83)	0,377
	Т6	69,5 (68-83)	78 (70-85)	0,135
	T7	58,5 (51-71,5)	65 (59,3-78,3)	0,11
	Т8	70 (62,5-73,5)	69 (64-74,8)	0,568
	Т9	73 (65-75) (15)	71 (66-77,3)	0,802
	T10	69 (61-73) (14)	67 (64-74) (18)	0,970
	T11	71 (70-74) (10)	67 (65-72,8) (19)	0,396
NIRS _{links}	T1	70 (63-72)	71 (67-78)	0,383
	T2	73,5 (66-77)	73 (67-80)	0,634
	T3	80 (66-84)	77,5 (74-82)	0,673
	T4	69 (61-80)	74,5 (71-87)	0,061
	T5	79,5 (63-84)	75,5 (72-85)	0,634
	T6	75,5 (67-83)	79,5 (70-85)	0,471
	T7	62 (50,8-71,5)	62 (59-74)	0,428
	Т8	70 (63-73,8)	68 (64-76)	0,955
	T9	71 (64,3-75,5) (15)	72 (64-74)	0,926
	T10	70,5 (63-75)(14)	71 (61-75) (18)	0,924
	T11	70 (66-72) ₍₁₀₎	69 (64,3-71,5) ₍₁₉₎	0,612
HF _(max)	T1	69 (69-72)	69 (62-81)	0,924
TII (max)	T2	70 (60-77)	69 (61-77)	0,935
	T3	72 (59-76)	69 (60-78)	0,859
	T5	85 (80-90)	88 (85-98)	0,105
	T6	84 (81-86)	88 (85-94)	0,103
	T7	84 (79-87)	84 (76-90)	0,849
	T8	91 (83-101)	95 (89-104)	0,226
	T9	91 (83-98)	93 (87-105)	0,683
	T10	89 (84-105)	94 (82-100)	0,828
	T11	88 (81-105)	102 (91-110)	0,025
			100 (94-109) (21)	0,877
	T12	91100-1/11		0,0//
HF(min)	T12	95 (86-125) 69 (64-71)		
HF _(min)	T1	69 (64-71)	66 (60-78)	0,881
HF _(min)	T1 T2	69 (64-71) 52 (64-71)	66 (60-78) 53 (50-59)	0,881 0,596
HF _(min)	T1 T2 T3	69 (64-71) 52 (64-71) 51 (47-61)	66 (60-78) 53 (50-59) 56 (47-59)	0,881 0,596 0,924
HF _(min)	T1 T2	69 (64-71) 52 (64-71)	66 (60-78) 53 (50-59)	0,881 0,596

	T8	83 (80-87)	79 (74-85)	0,100
	T9	83 (80-88)	79 (74-85)	0,115
	T10	80 (76-85)	76 (71-85)	0,283
	T11	75 (69-80)	77 (72-85)	0,673
	T12	82 (73-97)	80 (76-89) (21)	0,921
	112	02 (13 71)	00 (70 07)(21)	0,721
ZVD _(max)	T2	14 (11-15)	13 (10-17)	0,924
, ,	T3	11,5 (9-12)	11 (7-13)	0,902
	T4	5 (3-8)	5,5 (4-8)	0,902
	T5	12,5 (10-15)	14 (10-17)	0,881
	T6	12 (8-14)	12 (8-14) (20)	0,854
	T7	15 (13-17)	18 (16-21)	0,021
	T8	17 (15-23)	21 (18-24)	0,084
	T9	13 (10-17)	18,5 (14-22)	0,01
	T10	13 (10-17)	16 (12-21)	0,113
	T11	18 (14-22)	22 (15-25)	0,073
	T12	9 (8-18,3) (17)	11 (8-15)	0,809
ZVD _(min)	T2	12,5 (10-15)	11 (8-15)	0,643
2 · 2 (mm)	T3	9,5 (6-11)	11 (7-13)	0,117
	T4	5 (3-8)	5,5 (4-8)	0,733
	T5	9 (7-13)	14 (10-17)	0,055
	T6	11 (8-12)	12 (8-14) (20)	0,682
	T7	13,5 (12-17)	17 (12-21)	0,063
	T8	11 (9-13)	12 (9-15)	0,595
	T9	9,5 (7-13)	11 (7-15)	0,488
	T10	9,5 (6-12)	11 (7-14)	0,165
	T11	9 (8-12)	10,5 (8-14)	0,459
	T12	9 (6-10,5) (17)	8,5 (6-13)	0,659
	112) (0 10,0)(1/)	(0.10)	0,000
RR _{systolisch (max)}	T1	154,5 (126-170)	145 (129-159)	0,596
, , ,	T2	135 (119-153)	129,5 (121-139)	0,523
	T3	125,5 (110-140)	120,5 (110-132)	0,577
	T5	113 (97-118)	110 (100-120)	0,654
	T6	117 (110-125)	112 (107-125)	0,673
	T7	113,5 (106-120)	114 (102-128)	0,654
	T8	145 (125-151)	141,5 (126-160)	0,644
	T9	130 (122-144)	136 (122-153)	0,693
	T10	125,5 (116-135)	125 (120-144)	0,913
	T11	136 (126-151)	138,5 (124-151)	0,924
	T12	140 (125-145)	130,5 (120-140)	0,090
				<u> </u>
RR _{systolisch (min)}	T1	131,5 (110-169)	139,5 (123-155)	0,838
	T2	101 (98-110)	99,5 (91-111)	0,523
	T3	97,5 (79-109)	87 (81-101)	0,438
	T5	81 (51-99)	55,5 (49-69)	0,211
	T6	92 (87-100)	89,5 (84-98)	0,496
	T7	109,5 (100-118)	112 (99-125)	0,438
	T8	99 (90-103)	87 (80-101)	0,055
	T9	105 (92-110)	98 (89-104)	0,075

	T10	103,5 (92-115)	96 (86-111)	0,348
	T11	107 (94-115)	96 (84-100)	0,03
	T12	76 (64-80)	66,5 (60-70)	0,084
MAD	T1	00.5 (00.100)	120 5 (122 155)	0.644
MAD _(max)	T1	99,5 (88-109)	139,5 (123-155)	0,644
	T2	97 (87-108)	99,5 (91-111)	0,407
	T3	84,5 (77-91)	87 (81-101)	0,957
	T4	72,5 (69-80)	53 (48-57)	0,946
	T5	74 (70-83)	55,5 (49-69)	0,550
	T6	78 (71-85)	89,5 (84-98)	0,414
	T7	82,5 (75-90)	112 (99-125)	0,734
	T8	95,5 (81-109)	87 (80-101)	0,430
	T9	88,5 (75-97)	98 (89-104)	0,295
	T10	80 (75-87)	96 (86-111)	0,028
	T11	88 (76-101)	96 (84-100)	0,369
	T12	93 (82-100)	66,5 (60-70)	0,196
1617		00 (04 40=)	0.5 (04.40.5)	0.060
MAD _(min)	T1	88 (81-107)	95 (81-105)	0,860
	T2	71,5 (62-78)	71,5 (64-80)	0,596
	T3	67 (59-74)	62,5 (57-70)	0,436
	T4	53,5 (50-65)	53 (50-60)	0,754
	T5	53 (49-67)	54,5 (47-62)	0,828
	T6	65 (61-67)	61 (59-67)	0,355
	T7	77 (70-86)	78 (74-86)	0,664
	Т8	69 (65-72)	63 (57-70)	0,055
	T9	74,5 (67-81)	74 (63-77)	0,135
	T10	73 (68-75)	69,5 (64-76)	0,271
	T11	73,5 (70-77)	69 (66-74)	0,053
	T12	60 (50-75)	60 (54-65)	0,913
DD	T1	70 (62.90)	72 (67 92)	0.201
$RR_{diastolisch(max)}$		70 (62-80)	73 (67-82)	0,301
	T2	71 (64-79)	71 (62-79)	0,644
	T3	61 (59-72)	65 (60-73)	0,471
	T5	61 (60-69)	60,5 (55-68)	0,765
	T6	61,5 (53-70)	61,5 (54-70)	0,924
	T7	62,5 (56-72)	66 (60-69)	0,786
	T8	75 (60-82)	70 (69-85)	0,968
	T9	64,5 (60-70)	71,5 (67-85)	0,064
	T10	62,5 (54,8-66,5)	69 (62,5-77,8)	0,077
	T11	69,5 (65-80)	71,5 (62-79)	0,913
	T12	100 (78-116)	100 (98-105)	0,823
RRdiastolisch(min)	T1	70 (63-80)	70 (65-81)	0,568
TCCutastonscn(min)	T2	56,5 (51-60)	56,5 (49-64)	0,828
	T3	51,5 (44-60)	51,5 (43,3-55,8)	0,828
	T5	49 (46-53)	49 (45-55)	0,780
	T6	50 (45-55)	49,5 (46-54)	0,828
	T7	58,5 (51-71)	63 (58-68)	0,828
	T8		_ ` /	0,714
	18	55 (50-57)	51,5 (44-62)	0,288

	Т9	56 5 (50 66)	50 (52 64)	0.907
	T10	56,5 (50-66)	59 (52-64)	0,807
		54,5 (50-66)	54 (50-60)	0,568
	T11	55,5 (51-61)	57,5 (50-60)	0,913
N/ 1 1: 1 N	T12	67,5 (55-78)	70,5 (67-74)	0,377
Myokardiale Ne			07.5 ((0.100)	0.741
CK	T1	78 (48-131)	87,5 (60-126)	0,541
	T7	246 (165,5-311,5)	388 (270-450)	0,005
	T8	294 (228-386)	460 (417-611)	0,003
	T9	330 (284-488)	548,5 (462-639)	0,004
	T10	354,5 (330-523)	545 (506-787)	0,006
	T11	355 (315-490)	541 (486-721,5) (21)	0,010
	T12	270 (209-390)	393,5 (295-513)	0,022
CK-MB	T7	33,3 (27,5-39,2) (12)	48 (33,6-70,1) (20)	0,018
	T8	25,4 (21,2-36,9)	41,2 (33,6-54,8)	0,003
	T9	25,9 (19,4-37,3)	39,4 (27,4-53)	0,005
	T10	22,75 (20,5-30,4)	35,4 (24,2-51)	0,008
	T11	19,5 (16-23,3)	25,3 (21-41,3) ₍₂₁₎	0,007
	T12	13,1 (12,5-15,7) ₍₁₃₎	17,4 (15-22,4) (21)	0,003
Myoglobin	T1	33 (28,75-40,75)	33 (27-40,25) (15)	0,910
	T7	233,5 (165-280)	253 (182-329)	0,447
	T8	164 (134,5-256,5)	204 (163-278)	0,130
	T9	172,5 (155-275)	189 (165-303) (21)	0,291
	T10	184 (128-253)	185 (142-253)	0,704
	T11	154 (117-182)	146 (110-203,8) (21)	0,978
	T12	60 (52,3-100,5)	79 (53-93)	0,630
Nierenparamete	er	, , , , ,	/	
GFR CKDEPI	T1	94 (75-116)	112,5 (82-123,8)	0,089
	T7	97,5 (84-114)	109 (89-120)	0,259
	T8	101 (89-115)	107,5 (87-123)	0,550
	T9	97 (90,8-114,3)(17)	113,5 (88-123)	0,246
	T10	102,5 (91-119)	(91-122)115	0,289
	T11	98,5 (83-125)	117 (97-122)	0,321
	T12	102 (70,3-123,5) (17)	116,5 (89-122)	0,208
		102 (10,6 126,6)(11)	110,0 (05 122)	0,200
GFR(MDRD)		P(F1)=0,696 (n=17)	P(F2)=0,052 (n=22)	
Albumin _{Plasma}	T1	42,1 (38,9-44,3)	43,5 (42-46,2) (21)	0,102
	T7	32,1 (29,2-33,3)	32 (29,5-33,1)	0,924
	T8	36,8 (34,7-38,2)	36,1 (33,9-38,6) (21)	0,888
	T9	37,6 (34,3-38,8) (16)	37,2 (35,6-39)	0,953
	T10	36,6 (33,9-39,1) (17)	35,2 (34,5-38,3) (20)	0,563
	T11	35,3 (32,7-37,2) (17)	35,2 (33,9-36,4) (20)	0,879
	T12	34,4 (31,6-36,1) (17)	34,6 (32,5-35,4)	0,887
Albumin _{Urin}	T1	9,5 (6,2-17,3) (17)	9,3 (4,6-15,9)(21)	0,499
	T7	4,3 (3-11)(17)	29,5 (3-47,6)	0,044
	1 /	T,J (J-11)([/)	27,3 (3-77,0)	0,044

	T8	6,6 (4-13,9)	3,2 (3-14,7)	0,216
	T9	8,55 (4,8-19,3) ₍₁₆₎	5,7 (3-14,3)	0,210
	T10		` ,	
	T11	12,7 (7,6-22,5) (17)	10,2 (3,4-19,7)	0,427
		24,8 (4,8-60,9) (16)	25,7 (12,2-75,7)	0,564
	T12	14,5 (3-37,9) (16)	11,2 (3-38,1)	0,811
Alb Krea _{Urin}	T1	7,9 (3,6-14,3) (17)	6,2 (3,2-13,3) (21)	0,670
Alo_Kica _{Urin}	T7	26,49 (11,1-45,6) (17)	125,3 (26,4-279,3)	0,070
	T8	17,5 (8,8-60,9)		0,817
	T9	17,4 (8,6-33,6) (16)	16 (9,4-46,7) 11 (5,8-22,1)	0,421
	T10	, , , , , , ,		
	T11	15,6 (12,3-39) (17)	10,2 (6,3-22,3)	0,040
		23,5 (12,7-44,2) ₍₁₆₎	18,1 (8,9-36)	0,462
	T12	37 (10,4-62,8) (16)	24 (13,8-41,4)	0,668
Kreatinin _{Urin}	T1	13,4 (7,9-19,4) (17)	17,4 (10,5-20) (21)	0,597
Teatimin Urin	T7	2,7 (1,5-2,9)(17)	2,5 (1,9-3)	0,988
	T8	• • • • • • • • • • • • • • • • • • • •	` '	
	T9	4,3 (3,5-5,6)	4,7 (2,5-5,7)	0,447
	T10	5,9 (4,6-7,9) ₍₁₆₎	5,4 (3,9-7,7)	0,883
		8,5 (4,3-11,2) ₍₁₇₎	8,6 (7,5-13,1)	0,453
	T11	12,6 (5,3-18,5) (16)	14 (8,9-18,2)	0,451
	T12	5,1 (3,7-8,9) ₍₁₆₎	6,5 (2,7-11,5)	0,790
Hb _{Urin}	T7	0,015 (0,015-0,015)(16)	0.015 (0.015 1.2)	0,011
ΠυUrin	T11			
Medikamente/ T		0,015 (0,015-0,015)(16)	0,015 (0,015-0,015)(19)	0,697
Cafedrin	T2	0 (2-20)	0 (0-0)	0,220
Carcarin	T3	20 (0-77,5)	0 (0-70)	0,507
	T4	0 (0-0)	0 (0-70)	0,307
	T5	0 (0-0)	0 (0-0)	0,277
	T6	0 (0-0)	0 (0-0)	0,190
	10	0 (0-0)	0 (0-0)	0,381
Theodrenalin	T2	0 (0-1)	0 (0-0)	0,220
111000010101111	T3	1 (0-3,88)	0 (0-3,5)	0,540
	T4	0 (0-0)	0 (0-0)	0,287
	T5	0 (0-0)	0 (0-0)	0,196
	T6	0 (0-0)	0 (0-0)	0,381
	10] 0 (0 0)	0 (0 0)	0,501
Tranexamsäure	T3	0 (0-0,01)	0 (0-0,01)	0,856
	T4	0,059 (0,04-0,08)	0,062 (0,05-0,08)	0,654
	T5	0,08 (0,07-0,1)	0,21 (0,16-0,28)	0,0001
	T6	0,04 (0,03-0,06)	0,06 (0,05-0,08)	0,026
	T7	0,04 (0,03-0,06)	0,03 (0,02-0,05)	0,174
	T8	0,32 (0,03-0,4)	0,32 (0,03-0,40)	0,710
	T9	0,32 (0,03-0,4)	0,32 (0,03-0,40)	0,710
	T10	0,32 (0,28-0,4)	0,32 (0,28-0,40)	0,447
	110	0,54 (0,40-0,4)	0,50 (0,2 T -0,50)	0,223
	T11	0,6 (0,40-0,72)	0,18 (0,0-0,40)	0,007

Hananin	T3	20600	22500	0.202
Heparin	13	30600	32500	0,392
	T10	(29600-35200)	(27700-40000)	0.415
	T10	1600 (1600-1600)	1600 (1600-1900) 7200 (6000-8400)	0,415
	T11	6450 (5800-8400)	/	0,967
	T12	19500	19200	0,430
		(15000-24000)	(12400-20600)	
Dobutamin	T3	0 (0-0)	0 (0-0)	0,517
	T4	0 (0-0)	0 (0-0)	0,517
	T5	0 (0-0)	0 (0-0)	0,538
	T6	0 (0-0)	0 (0-0)	0,831
	T7	0 (0-0)	0 (0-0)	0,237
	T8	0 (0-0)	0 (0-0)	0,401
	T9	0 (0-0)	0 (0-0)	0,676
	T10	0 (0-0)	0 (0-0)	0,676
	T11	0 (0-0)	0 (0-0)	0,715
	-	10.40.0	10 (0.0)	10.105
Vasopressin	T3	0 (0-0)	0 (0-0)	0,190
	T4	0,01 (0-0,1)	0 (0-0,18)	0,190
	T5	0 (0,03-0,24)	0,23 (0,09-0,4)	0,531
	T6	(0-0,08)	0,1 (0-0,19)	0,190
	T7	0,05 (0-0,15)	0 (0-0,08)	0,497
	T8	0,03 (0-0,33)	0,04 (0-0,49)	0,481
	T9	0 (0-0,45)	0 (0-0,3)	0,905
	T10	0 (0-0,25)	0 (0-0,36)	0,882
	T12	0 (0-0)	0 (0-0)	0,429
Noradrenalin	Т3	0 (0-0)	0 (0-0,01)	0,854
Notaurenann	T4	0,01 (0-0,08)	0,02 (0-0,18)	0,834
	T5	0,01 (0-0,08)	0,02 (0-0,18)	0,820
	T6	0,02 (0-0,08)	0,11 (0-0,19)	0,104
	T7	0,07 (0-0,15)	0 (0-0,06)	0,157
	T8	0,04 (0-0,41)	0,02 (0-0,45)	0,943
	T9	0 (0-0,6)	0 (0-0,3)	0,399
	T10	0 (0-0,4)	0 (0-0,25)	0,876
	T11	0 (0-0,3)	(0-0,06)	0,857
	T12	0 (0-0)	0 (0-0)	0,460
Levosimendan	T3	0 (0-0,13)	0 (0-0)	0,120
	T4	0 (0-0,09)	0 (0-0)	0,774
	T5	0 (0-0,1)	0 (0-0)	0,765
	T6	0 (0-0,04)	0 (0-0)	0,653
	T7	0 (0-0,04)	0 (0-0)	0,871
	T8	0 (0-1,06)	0 (0-0)	0,68
	T9	0 (0-0,5)	0 (0-0)	0,537
	T10	0 (0-0)	0 (0-0)	0,881
	T12	0 (0-0)	0 (0-0)	0,538

$ \begin{array}{ c c c c c c c c } \hline Kalium_{Perfusor} & T2 & 0.83 (0-1.25) & 0.8 (0-1.3) & 0.874 \\ \hline T3 & 3.5 (2.5-4.58) & 3.8 (2.3-7.2) & 0.652 \\ \hline T4 & 3.25 (1.67-4.42) & 4.2 (0.83-5) & 0.540 \\ \hline T5 & 2.88 (1.25-5) & 3 (0-9.02) & 0.989 \\ \hline T6 & 1.38 (0.41-2.5) & 1.1 (0-3.5) & 0.772 \\ \hline T7 & 2.5 (1-2.92) & 1.7 (0.62-3.8) & 0.543 \\ \hline T8 & 20 (10-20) & 18 (8-20) & 0.592 \\ \hline T9 & 17.5 (8-31.25) & 18 (0-21) & 0.428 \\ \hline T10 & 17 (5-20) & 10 (0-20) & 0.473 \\ \hline T11 & 47.25 (12-60) & 24.3 (10-42.3) & 0.210 \\ \hline T12 & 87.5 (60-120) & 60 (15-105) & 0.149 \\ \hline \\ Insulin & T2 & 0 (0-0) & 0 (0-0) & 0.531 \\ \hline T3 & 0 (0-0.83) & 0 (0-0) & 0.421 \\ \hline T4 & 2.5 (1-6) & 3.25 (1.67-5) & 0.827 \\ \hline T5 & 0.05 (0-3.75) & 5.1 (0.83-10.41) & \textbf{0.005} \\ \hline T6 & 0 (0-0) & 0 (0-0) & 0.392 \\ \hline T7 & 0 (0-0) & 0 (0-0) & 0.392 \\ \hline T7 & 0 (0-0) & 0 (0-0) & 0.295 \\ \hline T9 & 3 (0.4) & 0 (0-2) & 0.147 \\ \hline T10 & 3.5 (0-8) & 0 (0-5) & 0.526 \\ \hline T11 & 0.6 (0-20) & 1.75 (0-13) & 0.954 \\ \hline T12 & 0 (0-9) & 0 (0-0) & 0.273 \\ \hline \\ Sevofluran & T2 & 1 (0.7-1.2) & 1.03 (0.88-1.19) & 0.734 \\ \hline T3 & 1.4 (1.25-1.6) & 1.5 (1.47-1.73) & \textbf{0.018} \\ \hline T4 & 1.5 (1.4-1.7) & 1.5 (1.5-1.8) & 0.366 \\ \hline T5 & 1.5 (1.4-1.7) & 1.5 (1.5-1.8) & 0.366 \\ \hline T5 & 1.5 (1.4-1.7) & 1.5 (1.5-1.8) & 0.366 \\ \hline T5 & 1.5 (1.5-1.6) & 1.5 (1.34-1.6) & 0.833 \\ \hline \\ Remifentanil & T2 & 0.14 (0-0.25) & 0.17 (0.001-0.3) & 0.418 \\ \hline T3 & 0.77 (0.5-1) & 1.01 (0.75-1.25) & 0.142 \\ \hline T4 & 0.89 (0.68-1.21) & 1 (0.66-1.25) & 0.586 \\ \hline T5 & 1.25 (0.92-1.5) & 3.37 (2.75-3.75) & \textbf{0.0001} \\ \hline T6 & 0.63 (0.52-0.83) & 0.85 (0.66-1.08) & \textbf{0.034} \\ \hline T7 & 0.5 (0.38-0.75) & 0.31 (0.13-0.5) & 0.07 \\ \hline T8 & 1.38 (0.6-2.15) & 1.5 (0.95-2.4) & 0.541 \\ \hline T9 & 0 (0-0) & 0 (0-0) & 0 (0-0) & 0.850 \\ \hline T10 & 0 (0-0) & 0 (0-0) & 0.00-0 & 0.00-0 \\ \hline T10 & 0 (0-0) & 0 (0-0) & 0.00-0 & 0.00-0 \\ \hline T10 & 0 (0-0) & 0 (0-0) & 0.00-0 & 0.00-0 \\ \hline T10 & 0 (0-0) & 0 (0-0) & 0.00-0 & 0.00-0 \\ \hline T10 & 0 (0-0) & 0 (0-0) & 0.00-0 & 0.00-0 \\ \hline T10 & 0 (0-0) & 0 (0-0) & 0.00-0 & 0.00-0 \\ \hline T10 & 0 (0-0) & 0 (0-0) & 0.00-0 & 0.00-0 \\ \hline T10 & 0 (0-0)$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kalium _{Perfusor}	T2	0,83 (0-1,25)	0,8 (0-1,3)	0,874
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T3	3,5 (2,5-4,58)	3,8 (2,3-7,2)	0,652
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T4	3,25 (1,67-4,42)	4,2 (0,83-5)	0,540
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T5	2,88 (1,25-5)	3 (0-9,02)	0,989
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T6	1,38 (0,41-2,5)	1,1 (0-3,5)	0,772
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T7	2,5 (1-2,92)	1,7 (0,62-3,8)	0,543
$ \begin{array}{ c c c c c c c c } \hline T10 & 17 (5-20) & 10 (0-20) & 0,473 \\ \hline T11 & 47,25 (12-60) & 24,3 (10-42,3) & 0,210 \\ \hline T12 & 87,5 (60-120) & 60 (15-105) & 0,149 \\ \hline \hline T12 & 0 (0-0) & 0 (0-0) & 0,531 \\ \hline T3 & 0 (0-0,83) & 0 (0-0) & 0,421 \\ \hline T4 & 2,5 (1-6) & 3,25 (1,67-5) & 0,827 \\ \hline T5 & 0,05 (0-3,75) & 5,1 (0,83-10,41) & \textbf{0,005} \\ \hline T6 & 0 (0-0) & 0 (0-0) & 0,000 \\ \hline T7 & 0 (0-0) & 0 (0-0) & 0,392 \\ \hline T7 & 0 (0-0) & 0 (0-0) & 0,295 \\ \hline T9 & 3 (0-4) & 0 (0-2) & 0,147 \\ \hline T10 & 3,5 (0-8) & 0 (0-5) & 0,526 \\ \hline T11 & 0,6 (0-20) & 1,75 (0-13) & 0,954 \\ \hline T12 & 0 (0-9) & 0 (0-0) & 0,273 \\ \hline \\ Sevofluran & & & & & & & & & & & & & & & & & & &$		T8	20 (10-20)	18 (8-20)	0,592
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T9	17,5 (8-31,25)	18 (0-21)	0,428
$ \begin{array}{ c c c c c c } \hline T12 & 87,5 & (60-120) & 60 & (15-105) & 0,149 \\ \hline \hline Insulin & T2 & 0 & (0-0) & 0 & (0-0) & 0,531 \\ \hline T3 & 0 & (0-0,83) & 0 & (0-0) & 0,421 \\ \hline T4 & 2,5 & (1-6) & 3,25 & (1,67-5) & 0,827 \\ \hline T5 & 0,05 & (0-3,75) & 5,1 & (0,83-10,41) & \textbf{0,005} \\ \hline T6 & 0 & (0-0) & 0 & (0-0) & 0,392 \\ \hline T7 & 0 & (0-0) & 0 & (0-0) & 0,497 \\ \hline T8 & 0 & (0-0) & 0 & (0-0) & 0,295 \\ \hline T9 & 3 & (0-4) & 0 & (0-2) & 0,147 \\ \hline T10 & 3,5 & (0-8) & 0 & (0-5) & 0,526 \\ \hline T11 & 0,6 & (0-20) & 1,75 & (0-13) & 0,954 \\ \hline T12 & 0 & (0-9) & 0 & (0-0) & 0,273 \\ \hline \\ Sevofluran & & & & & & & & & & & & & & & & & & &$		T10	17 (5-20)	10 (0-20)	0,473
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T11	47,25 (12-60)	24,3 (10-42,3)	0,210
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T12	87,5 (60-120)	60 (15-105)	0,149
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Insulin		` /		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 (0-0,83)		0,421
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					0,827
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			`		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0 (0-0)	0 (0-0)	0,392
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			· /	0 (0-0)	0,497
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T8	0 (0-0)	0 (0-0)	0,295
$ \begin{array}{ c c c c c c c }\hline T11 & 0,6 & (0-20) & 1,75 & (0-13) & 0,954 \\\hline T12 & 0 & (0-9) & 0 & (0-0) & 0,273 \\\hline \\ \hline Sevofluran & T2 & 1 & (0,7-1,2) & 1,03 & (0,88-1,19) & 0,734 \\\hline T3 & 1,4 & (1,25-1,6) & 1,5 & (1,47-1,73) & \textbf{0,018} \\\hline T4 & 1,5 & (1,4-1,7) & 1,5 & (1,5-1,8) & 0,366 \\\hline T5 & 1,5 & (1,4-1,7) & 1,53 & (1,5-1,8) & 0,493 \\\hline T6 & 1,5 & (1,25-1,6) & 1,5 & (1,34-1,6) & 0,833 \\\hline \\ \hline Remifentanil & T2 & 0,14 & (0-0,25) & 0,17 & (0,001-0,3) & 0,418 \\\hline T3 & 0,77 & (0,5-1) & 1,01 & (0,75-1,25) & 0,142 \\\hline T4 & 0,89 & (0,68-1,21) & 1 & (0,66-1,25) & 0,586 \\\hline T5 & 1,25 & (0,92-1,5) & 3,37 & (2,75-3,75) & \textbf{0,0001} \\\hline T6 & 0,63 & (0,52-0,83) & 0,85 & (0,66-1,08) & \textbf{0,034} \\\hline T7 & 0,5 & (0,38-0,75) & 0,31 & (0,13-0,5) & 0,07 \\\hline T8 & 1,38 & (0,6-2,15) & 1,5 & (0,95-2,4) & 0,541 \\\hline T9 & 0 & (0-0) & 0 & (0-0) & 0,850 \\\hline T10 & 0 & (0-0) & 0 & (0-0) & 1 \\\hline \end{array}$		Т9	3 (0-4)		0,147
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T10	3,5 (0-8)	0 (0-5)	0,526
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T11	0,6 (0-20)	1,75 (0-13)	0,954
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		T12	0 (0-9)	0 (0-0)	0,273
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- TO	1 (0.7.1.2)	1.02 (0.00.1.10)	0.524
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sevofluran				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	` '	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
T3 0,77 (0,5-1) 1,01 (0,75-1,25) 0,142 T4 0,89 (0,68-1,21) 1 (0,66-1,25) 0,586 T5 1,25 (0,92-1,5) 3,37 (2,75-3,75) 0,0001 T6 0,63 (0,52-0,83) 0,85 (0,66-1,08) 0,034 T7 0,5 (0,38-0,75) 0,31 (0,13-0,5) 0,07 T8 1,38 (0,6-2,15) 1,5 (0,95-2,4) 0,541 T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 0 (0-0) 1		T6	1,5 (1,25-1,6)	1,5 (1,34-1,6)	0,833
T3 0,77 (0,5-1) 1,01 (0,75-1,25) 0,142 T4 0,89 (0,68-1,21) 1 (0,66-1,25) 0,586 T5 1,25 (0,92-1,5) 3,37 (2,75-3,75) 0,0001 T6 0,63 (0,52-0,83) 0,85 (0,66-1,08) 0,034 T7 0,5 (0,38-0,75) 0,31 (0,13-0,5) 0,07 T8 1,38 (0,6-2,15) 1,5 (0,95-2,4) 0,541 T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 0 (0-0) 1	Pamifantanil	Т2	0.14 (0.0.25)	0.17 (0.001.0.3)	0.418
T4 0,89 (0,68-1,21) 1 (0,66-1,25) 0,586 T5 1,25 (0,92-1,5) 3,37 (2,75-3,75) 0,0001 T6 0,63 (0,52-0,83) 0,85 (0,66-1,08) 0,034 T7 0,5 (0,38-0,75) 0,31 (0,13-0,5) 0,07 T8 1,38 (0,6-2,15) 1,5 (0,95-2,4) 0,541 T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 0 (0-0) 1	Kemmentami			ì	
T5 1,25 (0,92-1,5) 3,37 (2,75-3,75) 0,0001 T6 0,63 (0,52-0,83) 0,85 (0,66-1,08) 0,034 T7 0,5 (0,38-0,75) 0,31 (0,13-0,5) 0,07 T8 1,38 (0,6-2,15) 1,5 (0,95-2,4) 0,541 T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 0 (0-0) 1			` '		
T6 0,63 (0,52-0,83) 0,85 (0,66-1,08) 0,034 T7 0,5 (0,38-0,75) 0,31 (0,13-0,5) 0,07 T8 1,38 (0,6-2,15) 1,5 (0,95-2,4) 0,541 T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 1					
T7 0,5 (0,38-0,75) 0,31 (0,13-0,5) 0,07 T8 1,38 (0,6-2,15) 1,5 (0,95-2,4) 0,541 T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 0 (0-0) 1			`	` '	
T8 1,38 (0,6-2,15) 1,5 (0,95-2,4) 0,541 T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 0 (0-0) 1					
T9 0 (0-0) 0 (0-0) 0,850 T10 0 (0-0) 0 (0-0) 1					
T10 0 (0-0) 0 (0-0) 1				7 \ 7	
				. /	
p-Werte < 0,05 werden als signifikant gewertet.			· /		1

Nach Überprüfung der Verteilung im Kolmogorov-Smirnov Test wurden Variablen, die auch nach logarithmischer Transformation nicht normal verteilt waren, mittels parametrischer Testverfahren (Friedman's Test gefolgt von Mann-Whitney U Test) analysiert und werden nachfolgend, wenn nicht anders dargestellt, als Median (mit quartile deviation) präsentiert.

Normalverteilte Variablen wurden – ggf. nach logarithmischer Transformation - als ANOVA mit Messwiederholung gefolgt von einem ungepaarten t-test analysiert und werden nachfolgend als Mittelwert und 95 % Konfidenzintervall dargestellt.

T1-T12 beschreiben die jeweiligen Abnahmezeitpunkte, bzw. Ablesezeitpunkte der Proben: T1 = Präop, T2 = vor Op Beginn, T3 = Vor HLM, T4 = An HLM (nach 40 min), T5 = Nach HLM, T6 = Bei Verlegung, T7 = Aufnahme auf ITS, T8 = 4 h postp, T9 = 8 h postop, T10 = 12 h postop, T11 = 24 h postop, T12 = 48 h postop.

7.2 Patientencharakteristika CPB-S-vs.-CPB-L-Studie, n =39

Tabelle A 3: Patientencharakteristika CPB-S-vs.-CPB-L-Studie, n = 39

Katergorie	Patienten-	Gesamt	CPB-S	CPB-L	p-
	gruppe				Wert
Anzahl Fälle		39	17	22	
Demographi-	männlich	27 (69,2 %)	10 (58,8	17 (77,3 %)	0,222
sche			%)		
Daten	weiblich	12 (30,8 %)	7 (41,2 %)	5 (22,7 %)	0,222
	Alter	52 (44-69)	68 (49-74)	49,5 (40-55)	0,011
	BMI	26 (25-29)	26 (25-30)	26 (25-29)	0,799
Kardiovasku-	Nikotin	16 (41 %)	7 (41,1 %)	9 (40,9 %)	0,898
läre Vorerkran-	Art. Hypertonie	20 (51 %)	12 (70%)	8 (36 %)	0,06
kungen	Diabetes	2 (5,1 %)	2 (11,8 %)	0	0,113
	Pulm.art.	5 (12,8 %)	5 (29,4%)	0	0,009
	Hypertonie				
	COPD	5 (12,8 %)	4 (23,5 %)	1 (4,5 %)	0,097
	Hyperlipidämie	11 (28 %)	7 (41,2 %)	4 (18,2%)	0,15
	Alkoholabusus	0	0	0	0,527
	Drogenabusus	0	0	0	0,527
	Asthma bronchi-	0	0	0	0,527
	ale				
	LAE	0	0	0	0,527
	Niereninsuff.	0	0	0	0,527
	Harnwegsinfekt	0	0	0	0,527
	Pulm.Infekt	0	0	0	0,527
	Hyperurikämie	2 (5,1 %)	2 (11,8 %)	0	0,113
	Hyperlipidämie	11 (27,5 %)	7 (38,9 %)	4 (18,2 %)	0,15
	KHK	5 (12,5 %)	4 (22,2 %)	1 (4,5 %)	0,097
Präoperative	Phenopro-	2 (5,1 %)	0	2 (9,1 %)	0,195
Medikation	coumon				
	AT1-Antagonist	1 (2,6 %)	0	1 (4,5 %)	0,366
	Antiarrhytmika	2 (5,1 %)	0	2 (9,1 %)	0,195
	NOAC/ DOAC	2 (5,1 %)	1 (5,6 %)	1 (4,5 %)	0,886
	Antidiabetika	2 (5,1 %)	2 (11,8 %)	0	0,113
	Allopurinol	2 (5,1 %)	2 (11,8 %)	0	0,113
	Ca2+-Blocker	5 (12,5 %)	3 (16,7 %)	2 (9,1 %)	0,477
	Diuretika	10 (25,6 %)	9 (52,9 %)	1 (4,5 %)	0,001
	Statine	9 (23,1 %)	6 (35,3 %)	3 (13,6 %)	0,143
	Betablocker	17 (43,6 %)	8 (47 %)	9 (36,4 %)	0,391
	ASS	10 (25,6 %)	5 (29,4 %)	5 (22,7 %)	0,717
	ACE-Hemmer	17 (43,6 %)	8 (47 %)	9 (36,4 %)	0,391
OP-Art	Ross-Op	6 (15,4 %)	0	6 (27,3 %)	0,018
	David-Op	7 (18 %)	0	7 (31,8 %)	0,009
	AKE	25 (64,1 %)	16 (94,4 %)	9 (40,9 %)	0,002
	AKR	1 (2,6 %)	1 (5,6 %)	0	0,269

Präoperative	NYHA1-2	27 (69,2%)	9 (53 %)	18 (81,8 %)	0,015	
Risiko-	NYHA3-4	12 (30,8 %)	8 (47,1 %)	4 (18,2 %)	0,293	
stratifizierung	ASA1-2	3 (7,7, %)	1 (5,6 %)	2 (9,1 %)	0,713	
	ASA3-4	36 (92,3 %)	15 (94,1 %)	21 (95,5 %)	0,713	
	Euroscore	5 (2-6)	5 (2-6)	5 (2-6)	0,741	
	Z.n.	1 (2,5 %)	0	1 (4,5 %)	0,366	
	Myokardinfarkt					
p-Werte < 0,05 werden als signifikant gewertet.						

Absolute Anzahl mit prozentualem Anteil pro Gruppe für kategorische Variablen im Chi-Quadrat gerechnet bzw. Median mit IQR bei kontinuierlichen Variablen mit Mann-Whitney-U gerechnet.

7.3 Intra- und postoperative allgemeine Daten

Tabelle A 4: Intra- und postoperative allgemeine Daten, CPB-S-vs.-CPB-L-Studie, n = 39.

Katergorie	Patienten-	Gesamt	CPB-S	CPB-L	p-Wert
	gruppe				
Anzahl Fälle		39	17	22	
Blutpro-	EK-Gabe	0	0	0	0,91
duktegabe	TK-Gabe	0	0	0	1
Intraoperative	Herzlungen-	141	85	189	0,0001
Parameter	maschinenzeit	(85-205)	(77-93)	(175-204)	
	(min)				
	Kardiopulmo-	144 (37)	84	190	0,0001
	nale Bypasszeit	(87-208)	(73-96)	(174-205)	
	(min)				
	Aortenklemm-	120	69	152	0,0001
	zeit (min)	(71-168)	(61-77)	(135-170)	
Postoperative	LOS_ICU	1 (1-2)	1 (1-2)	1 (1-1)	0,135
Parameter	LOS-KH	9 (7-10)	9 (6-10)	8 (7-9)	0,965
	p-Werte < 0,05 w	erden als signi	fikant gewert	et.	

Nach Überprüfung der Verteilung im Kolmogorov-Smirnov Test wurden Variablen, mittels parametrischer Testverfahren (Friedman's Test gefolgt von Mann-Whitney U Test) analysiert und werden nachfolgend, wenn nicht anders dargestellt, als Median (mit quartile deviation) präsentiert. Normalverteilte Variablen wurden als ANOVA mit Messwiederholung gefolgt von einem ungepaarten t-test analysiert und werden nachfolgend als Mittelwert und 95 % Konfidenzintervall dargestellt.

7.4 Ethikvotum

Universität zu Lübeck - Ratzeburger Allee 160 - 23538 Lübeck

Herrn Prof. Dr. med. Matthias Heringlake Klinik für Anaesthesiologie

im Hause

nachrichtlich: Frau Prof. Nau, Direktorin der Klinik für Anaesthesiologie Ethik-Kommission Vorsitzender: Herr Prof. Dr. med. Alexander Katalinic Universität zu Lübeck Stellv. Vorsitzender: Herr Prof. Dr. med. Frank Gieseler Ratzeburger Allee 160 23538 Lübeck

Sachbearbeitung: Frau Janine Erdmann Tel.: +49 451 500 4639 Fax: +49 451 500 3026

ethikkommission@uni-luebeck.de

Aktenzeichen: 14-022 Datum: 12. März 2014

Sitzung der Ethik-Kommission am 06. März 2014 Antragsteller: Herr Prof. Heringlake

Titel: Der Einfluss der Dauer des kardiopulmonalen Bypasses auf die Freisetzung putativer Biomarker für Nierenfunktionsstörungen

Sehr geehrter Herr Prof. Heringlake,

der Antrag wurde unter berufsethischen, medizinisch-wissenschaftlichen und berufsrechtlichen Gesichtspunkten geprüft.

Die Kommission hat nach der Berücksichtigung folgender **Hinweise** keine Bedenken: In die Patienteninformation ist ein Abschnitt mit der Überschrift "Nachuntersuchung" einzufügen und genauer zu beschreiben, was dabei auf den Teilnehmer zukommt (z.B. wann muss z.B. der Brief an den behandelnden Arzt abgegeben werden). Der Patientenaufkleber sollte auf der Einwilligungserklärung und nicht auf der Patienteninformation kleben). Es braucht nur eine Patientenunterschrift auf der Einwilligungserklärung. Es ist nicht nachvollziehbar, warum eine einseitige Testung geplant ist, ein zweiseitiges Konfidenzintervall wäre wünschenswert.

Bei Änderung des Studiendesigns sollte der Antrag erneut vorgelegt werden. Über alle schwerwiegenden oder unerwarteten und unerwünschten Ereignisse, die während der Studie auftreten, muß die Kommission umgehend benachrichtigt werden. Die ärztliche und juristische Verantwortung des Studienleiters und der an der Studie teilnehmenden Ärzte bleibt entsprechend der Beratungsfunktion der Ethikkommission durch unsere Stellungnahme unberührt.

Mit freundlichem Gruß bin ich

Prof. Dr. med. Alexander Katalinic

Vorsitzender

■Prof. Dr. Katalinic
(Soz.med / Epidemiologie, Vorsitzender)
■Herr Prof. Dr. Gieseler
(Med. Klinik, 1 Stellv. Vorsitzender)
Herr Prof. Barkhausen
(Strahlentherapie)
■Herr Dr. Bausch
(Chirungie)
■Herr Prof. Dr. Borck
(Med. u. Wiss.geschichte)
■Frau Farries
(Richterin am Amtsgericht Lübeck)

☐Herr Dr. Fieber
(Stellv. Dir. am Amtsgericht Reinbek)
☐Frau B. Jacobs
(Pflege, PIZ)
☐Frau PD Dr. Jauch-Chara
(Psychiatrie)
☐Herr PD Lauten
(Kinder- und Jugendmedizin)
☐Herr Prof. Moser
(Neurologie)

Herr Prof. Rehmann-Sutter (Med. u. Wiss.geschichte) Berau Prof. Dr. M. Schrader (Plastische Chirurgie) Berau Prof. E. Stubbe (Theologin) Berer Dr. R. Vonthein (Zentrum für Klinische Studien) Berau Prof. Zühlke (Humangenetik)

7.5 Prämedikationsbogen

CPB_AKI_Biomarker (Kürzel Pat.Nr.-Geb.Jahrgang(00)) Prämedikation (>18.⊔, < 80.⊔) Geschlecht männlich / weiblich Alter Größe BMI kg/cm² (<30kg/cm²) Gewicht kg Zig / Tag Nikotinabusus ру (<8 Zig/Tag + <8 Jahre) Alkoholabusus ja / nein Drogenabusus ja / nein kardiale Erkrankungen art HTN ja /nein KHK ja / nein Therapie: pulm-art HTN ja/nein, wenn ja PAP: Myokardinfarkt: NYHA: LVEF: RVEF: Echo: COPD ja / nein LAE ja/nein pulmonale Erkrankungen Asthma ja/nein pulm. Infekt ja /nein Niereninsuffizienz ja / nein wenn ja Ausschluß von der Studie Harnwegsinfekt ja/nein GFR K+ Crea (präop) µmol/l Harnstoff Diab. mell. ja/nein wenn ja Ausschluß von der Studie Hyperurikämie ja/nein Hyperlipidämie ja/nein Arteriosklerose ja/nein, wenn ja wo: EuroScore: ASA-Klassifikation: Dauermedikation: geplanter operativer Eingriff: geplante OP-Dauer: geplante HLM-Dauer: Prämedikation:

ja / nein

Midazolam 3,75mg Tbl. p.o. 1h vor Untersuchungsbeginn

nachbetreuender Hausarzt / Kardiologe:

8 Danksagung

Zunächst möchte ich der Direktorin der Klinik für Anästhesiologie der Universität zu Lübeck, Frau Prof. Dr. med. Nau, für die Möglichkeit der Durchführung dieser Arbeit in Ihrer Klinik danken.

Mein ausdrücklicher Dank gilt meinem Doktorvater, Herrn Prof. Dr. med. Matthias Heringlake, für die Überlassung dieses Themas, sowie die Unterstützung und hervorragende Betreuung während der Fertigung dieser Dissertation. Seine Erfahrungen, Ideen und Ratschläge waren eine große Hilfe und entscheidend für das Gelingen dieser Dissertation.

Ebenfalls danken möchte ich Dr. med. Astrid Berggreen, die neben Prof. Dr. med. Matthias Heringlake gerade in der Datengewinnung sowie Rekrutierung der Patienten mir als Ansprechpartnerin zur Seite stand.

Danken möchte ich auch den Mitarbeiter/innen der Klinik für Anästhesiologie sowie der Klinik für Herz- und thorakale Gefäßchirurgie der Universität zu Lübeck für die Bereitstellung und Beschaffung von Daten und Probenmaterialien.

Insbesondere danke ich meinen Eltern, denen diese Arbeit gewidmet ist, für Ihre bedingungslose Unterstützung in jeder Lebenslage.

Meiner Freundin danke ich für Ihr Durchhaltevermögen, mich zu ermutigen und zu unterstützen, während der gesamten Bearbeitungszeit.

Meinen Freunden danke ich für die mentale Unterstützung sowie der nötigen Abwechslung, die sie mir neben dieser Arbeit ermöglicht haben.

Ehrenwörtliche Erklärung

9 Ehrenwörtliche Erklärung

Sehr geehrte Damen und Herren,

hiermit erkläre ich, dass ich an keiner anderen Stelle einen Antrag auf die Zulassung zur Promotion gestellt oder bereits einen Doktortitel auf Grundlage des vorgelegten Studienabschlusses erworben und mich auch nicht einer Doktorprüfung erfolglos unterzogen habe (dies schließt äquivalenteVerfahren bzw. Titel außerhalb Deutschlands ein).

Ich versichere außerdem, dass ich die an der medizinischen Fakultät der Universität Lübeck zur Promotion eingereichte Arbeit mit dem Titel:

"Der Einfluss der Dauer des kardiopulmonalen Bypasses auf die Freisetzung putativer Biomarker für Nierenfunktionsstörungen" in der Klinik für Anästhesiologie unter der Anleitung von

Prof. Dr. med. Matthias Heringlake

- 1. Selbst verfasst, alle Teile eigenständig formuliert und keine fremden Textteile übernommen habe, die nicht als solche gekennzeichnet sind. Darüber hinaus keine anderen als die in dieser Arbeit genannten personellen, technischen und sachlichen Hilfen oder Hilfsmittel benutzt habe;
- 2. dass die zuständige ärztliche Direktorin Prof. Dr. med. C. Nau damit einverstanden ist, dass die Abhandlung als Dissertation eingereicht wird;
- 3. dass die Durchführung der Untersuchungen an Patienten durch die Ethikkommission der Universität zu Lübeck vor Beginn dieser nach positivem Votum am 12.03.2014 (EthikantragAktenzeichen: 14-022) genehmigt wurde;
- 4. dass ich mit der Veröffentlichung meinens Lebenslaufes im Rahmen des Promotionsverfahrens (Dissertation) einverstanden bin.

Lübeck, 18.12.2021

Philipp Schlattmann