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Abstract

The European X-Ray Free Electron Laser (EuXFEL) is one of the most com-
plex machines on earth. Its large number of components, available system
observations, operational parameters, and the interconnectedness of many
sub-components motivate the need for automated fault detection and han-
dling.

In order to handle faults, component-specific solutions that meet indi-
vidual fault detection requirements can be considered. At the same time,
root cause analysis for the entire machine should account for existing inter-
dependencies between the components. This goal can be achieved using a
versatile and general framework that encompasses various algorithms, can
deal with the heterogeneity of the components, and can be used to find
solutions in a modular way.

In this thesis, the methodological focus is on the use of factor graphs,
which graphically represent probabilistic models, and inference-based al-
gorithms are described by the passing of messages on the graph. Due to
their capability of defining a versatile spectrum of models, factor graphs
can be used for different control, signal processing, or machine learning
tasks. In this thesis, factor graphs are applied to the fault detection of one
of the central components in the EuXFEL—the pulsed-mode operated su-
perconducting cavities. In addition, two alternative, deterministic methods,
not part of the factor graph framework, were tailored to the cavity model.
For one, a nonlinear parity space residual was defined for the cavity model,
characterized above all by its computational simplicity. The second deter-
ministic method is a parameter-based approach, which can make use of
already existing FPGA implemented components.

The methods are tested on vast amounts of cavity data from several
weeks of operation. The evaluation of these cavity measurements provided
new insights into the behavior of the cavities. In addition, the methods
are tested on the only so-far automatically detected cavity fault known as
quench. It was shown that anomalies could be detected before the onset of
a quench, which was not possible with previous methods.

The detection results confirm that rigorous and detailed analysis of
available component measurements can lead to new insights into system
characteristics that can help to avoid unwanted downtime of the machine.
The factor graphs of the inference-based algorithms present a first building
block for a fault detection scheme that can be expanded to other essential
components of the EuXFEL.
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Zusammenfassung

Der European X-Ray Free Electron Laser (EuXFEL) ist eine der komplexesten
Maschinen der Welt. Seine große Anzahl an Komponenten, die verfügbaren
Systembeobachtungen, die Betriebsparameter und die Verflechtung vieler
Teilkomponenten machen eine automatisierte Erkennung von Fehlern und
deren Behandlung erforderlich.

Um Fehler automatisiert handhaben zu können, sind komponentenspe-
zifische Lösungen notwendig, die den jeweiligen Anforderungen an eine
Fehlererkennung gerecht werden. Gleichzeitig sollten bei der Ursachen-
analyse für die gesamte Maschine die bestehenden Abhängigkeiten zwischen
den Komponenten berücksichtigt werden. Dieses Ziel kann durch ein viel-
seitiges und allgemeines Framework erreicht werden, das verschiedene
Algorithmen umfasst, mit der Heterogenität der Komponenten umgehen
kann und mit dem Lösungen modular gefunden werden können.

In dieser Arbeit wird der methodische Schwerpunkt auf die Verwendung
von Faktorgraphen gelegt, welche probabilistische Modelle grafisch reprä-
sentieren und auf denen inferenzbasierte Algorithmen durch die Weitergabe
von Nachrichten beschrieben werden. Aufgrund ihrer Fähigkeit, ein viel-
seitiges Spektrum von Modellen zu definieren, können Faktorgraphen für
unterschiedliche Aufgaben der Regelungstechnik, der Signalverarbeitung
oder des maschinellen Lernens eingesetzt werden. In dieser Arbeit werden
Faktorgraphen auf die Fehlerdetektion einer der zentralen Komponenten im
EuXFEL, den im Pulsmodus betriebenen supraleitenden Kavitäten, angewen-
det. Darüber hinaus wurden zwei deterministische Methoden, die nicht Teil
des Factor Graph Frameworks sind, auf das Hohlraummodell zugeschnitten.
Ein nichtlineares Parity Space-Residuum für das Hohlraummodell definiert,
welches sich vor allem durch seine Einfachheit auszeichnet. Die zweite de-
terministische Methode ist ein parameterbasierter Ansatz, der auf bereits
vorhandene FPGA-implementierte Komponenten zurückgreifen kann.

Die Methoden werden an einer großen Menge von Kavitätsdaten aus
mehreren Wochen Betrieb getestet. Die Auswertung dieser Daten ergab neue
Erkenntnisse über das Verhalten der Kavitäten. Darüber hinaus werden die
Methoden an dem einzigen bisher automatisch detektierten Kavitätsfehler,
dem Quench getestet. Es konnte gezeigt werden, dass Anomalien bereits
vor dem Einsetzen der untersuchten Quenche erkannt wurden, was mit
bisherigen Methoden nicht möglich war.

Die Ergebnisse der Untersuchung zeigen, dass eine gründliche und de-
taillierte Analyse der verfügbaren Komponentenmessungen zu neuen Er-
kenntnissen über die Systemeigenschaften führen kann, die helfen können,
ungewollte Stillstandszeiten der Maschine zu vermeiden. Die Faktorgra-
phen der inferenzbasierten Algorithmen stellen einen ersten Baustein für ein
Fehlererkennungssystem dar, welches auf andere wesentliche Komponenten
des EuXFEL erweitert werden kann.
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1
Introduction

The expansion of scientific knowledge is often based on observations made
with the help of specially developed instruments. It is crucial that such
instruments function reliably and without faults, and their maintenance is
therefore of high priority.

With time, the measurement apparatuses used for scientific experiments
have evolved significantly. In some cases their setups, scopes and sophistica-
tion can only be reached by dedicating decades of research towards their
development. These machines have become so complex that large amounts
of measuring devices are used to monitor and operate them. The use of the
thus acquired large amounts of data can benefit from the highly active fields
of research, treating the questions of, e.g., data-based classification, system
modeling, and prediction. The fruit of this research can be applied to the
detection of anomalous or unwanted behavior to ensure the reliable and
safe operation of complex machines.

In this thesis first steps towards automatized fault detection and mainte-
nance is addressed for the European X-Ray Free-Electron Laser (EuXFEL).

1.1 CONTEXT & MOTIVATION

The EuXFEL is a recently commissioned large-scale particle accelerator for
the exploration of the nano-world [1]. At the time of first commission [1] Altarelli et al., The European x-ray free-

electron laser technical design reportin September 2017, it broke several records with its ability to generate
high-repetition, high-frequency, coherent light flashes.

To reach the peak performance requirements of the EuXFEL, the compo-
nents, control systems, and sensors need to fulfill multiple high-end specifi-
cations, e.g., handling time scales of femtoseconds.

The increase in computing power and data collections, combined with
increasing demands on the machine drive the need for automating the
operation of individual components as well as the machine as a whole.
Methods for fault detection and handling, tuning of parameters, setting up
the machine, and monitoring the performance without the need of operator
intervention, all contribute to the overall goal of a fully automated particle
accelerator.

Fault detection and handling has gained more interest in order to avoid
downtime, which is not only expensive but also compromises ongoing ex-
periments performed by the machine users [2]. [2] Venkatasubramanian et al., “A review of

process fault detection and diagnosis: Part
I: Quantitative model-based methods”
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4 INTRODUCTION

Over the course of this thesis, work on automatic fault detection and
handling has notably increased, i.e., several (other) accelerator facilities
have started to direct research capacities towards this goal [3, 4].[3] Edelen et al., “Opportunities in machine

learning for particle accelerators”

[4] Tennant et al., “Superconducting radio-
frequency cavity fault classification using
machine learning at Jefferson Laboratory”

Early detection of component degradation as well as of sudden faults
and the identification of root causes can not only help to automate the
handling of such events and reduce downtime but can also reveal issues that
should be addressed during planned maintenance or the development of
new accelerator specifications.

Building a system capable of monitoring faulty behaviors for all com-
ponents which can fail or degrade, is challenging. Many of the compo-
nents of the EuXFEL are operated on high performance requirements using
closed-loop control. In addition, the components are interconnected through
physical interaction, e.g., mechanical and electromagnetic. They are also
interconnected through multiple control systems, detection systems, and
monitoring devices. Ten thousands of sensor measurements, operation, and
control parameters are available, carrying information about the machine’s
status and the occurrence of faults. The challenge is to extract that informa-
tion from the available data. Tackling this task requires a deep understanding
of the various sub-components and their individual requirements on fault
detection. At the same time it is important to consider that these components
are interconnected, and unwanted behavior in one part of the machine may
be caused by some other component.

For the development of component-specific solutions, methods developed
in, e.g., the fault diagnosis, control, and machine learning communities to
detect anomalies or handle faults should be considered. Those communities
have worked on vast amounts of methods which can be categorized into
methods that are model-based or data-driven, deterministic or probabilistic,
and many more.

In this thesis an approach is chosen with which the task of fault diagnosis
for this complicated system is addressed modularly. Instead of developing
one method which can deal with the heterogeneous measurements and sub-
system requirements at once, island-like solutions for individual components
should be set up. At the same time, the overall fault diagnosis task can
benefit from a framework in which these local solutions can be handled and
with which their merging can be achieved.

Probabilistic graphical models such as factor graphs, lend themselves
well to this concept. The factor graph framework is an abstraction tool to
represent dependencies between variables and with which inference based
algorithms can be expressed by the passing of messages on the graph.1 Factor1"A graphical model provides a natural and

intuitive medium for displaying dependen-
cies that exist between random variables.
In particular, the structure of the graphical
model clarifies the conditional independen-
cies in the associated probability models, al-
lowing model assessment and revision", M.
Jordan [5].

graphs are used to design probabilistic models and inference algorithms in
modular building blocks [6].2 Probabilistic models describe the distribution

[6] Murphy, Machine Learning: A Probabilis-
tic Perspective

2"I basically know of two principles for
treating complicated systems in simple ways:
the first is the principle of modularity
and the second is the principle of abstrac-
tion.[...]", M. Jordan [5].

over variables. With prior assumptions about the distribution of the involved
variables, and data carrying information about the system behavior, they are
used to handle decision, classification, or estimation tasks using probabilistic
inference. Their mix and match property allows adaptive algorithm design,
in which parts of the model can be exchanged when, e.g., new insight was
gained, the task specifications have changed, or more observable variables
should be added.

First attempts of making use of factor graphs for the fault diagnosis
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community have been published by [7, 8, 9, 10]. [7] Shen et al., “Spacecraft fault diagnosis
based on empirical mode decomposition and
directed factor graph”

[8] Gienger and Sawodny, “Data-based Pro-
cess Monitoring and Iterative Fault Diagno-
sis using Factor Graphs”

[9] Escobet et al., Fault diagnosis of dynamic
systems

[10] Li et al., “A robust graph optimization
realization of tightly coupled GNSS/INS in-
tegrated navigation system for urban vehi-
cles”

In this work they are used to graphically represent models and perform
inference using message passing to detect anomalies in one of the EuXFEL
components, the superconducting radio frequency (SRF) cavities.

1.2 FOCUS & SCOPE

As a first step towards the overall problem of fault detection, one sub-
component is considered in this thesis for which model-based approaches are
used to determine anomalous behavior and detect incipient fault symptoms.
This work focuses on the pulsed-mode operated superconducting cavities
of the EuXFEL. There are 808 SRF cavities installed in the EuXFEL which
are used to generate electromagnetic fields with which electron bunches are
accelerated. With a repetition rate of 10 Hz, in total, around 700 million
RF-pulses are generated each day.

Monitoring of the cavity currently consists of estimating pulse-wise pa-
rameters and thus fault related decisions are only taken on the time scale
of the pulses. Since the cavity is connected to several other components,
the RF-pulse measurements may also carry information about behavioral
changes of other subsystems. A particularly severe cavity-related fault, is
the breaking down of the superconductivity. These so-called quenches are
the only cavity-related faults that are actively detected.

Until now, no methods are available that may detect anomalous RF-pulse
behavior in a more general sense or determine the degree of anomaly within
the pulse. Anomalies in the RF-pulses are caused for a variety of reasons.
This thesis develops methods that can detect currently unspecified anomalies,
regardless of their level of severity, root cause, or characteristics. To do so,
three model-based residuals are applied to the cavity model, which define a
deviation between the expected system behavior of a nominal model and the
system’s behavior according to observations. The severity of the deviations
is assessed using a likelihood-ratio based evaluation.

Furthermore the intra-pulse detection of quenches using a Gaussian
mixture model (GMM) is assessed. To better understand what kind of
anomalies occur in user-run operation RF-pulses of two stations and over
several weeks of data is analyzed. With the detection methods developed,
characteristics of anomalous and severely anomalous RF-pulse behavior are
determined.

All methods which include probabilistic modeling are represented and
described in the factor graph framework, thus contributing the first building
blocks to which other components may be included.

1.3 CONTRIBUTIONS

The contributions of this thesis may be formulated as follows:

1. Generation of residuals between model and measurements for the SRF
cavities

• unscented Kalman filter residual generation using two nominal
cavity models
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• parameter-based residual generation based on the currently used
cavity parameter computations

• nonlinear parity space residual generation [11][11] Nawaz et al., “Anomaly Detection for
the European XFEL using a Nonlinear Parity
Space Method”

2. Evaluation of the residuals for anomaly and fault detection

• likelihood ratio based evaluation for the detection of anoma-
lies [12][12] Nawaz et al., “Fault Detection Method

for the SRF Cavities of the European XFEL”
• GMM model based evaluation applied to the detection of quenches [13]

[13] Nawaz et al., “Probabilistic model-
based fault diagnosis for the cavities of the
European XFEL” 3. Extensive data analysis

• implementation of the methods for the analysis of several weeks
of RF-pulses [14][14] Nawaz et al., “Anomaly Detection for

Cavity Signals-Results from the European
XFEL” • evaluation of the detection results, describing the characteristics

of the anomalies

• observation of data which indicate incipient quench symptoms [15][15] Nawaz et al., “Self-organzied critical
control for the european xfel using black
box parameter identification for the quench
detection system”

1.4 STRUCTURE OF THE THESIS

The thesis is structured in the following way:

É CHAPTER 2 introduces the main principles and components of the EuXFEL
focusing on the SRF cavities for which figure of merits, the available RF-
pulse measurements, and a nominal model is described. This chapter also
introduced the main probabilistic principles used in this thesis, such as the
expectation maximization algorithm, the notation of factor graphs and some
fundamental terms.

É CHAPTER 3 introduces the data sets used in this thesis, defines a heuristic
with which nominal RF-pulses were selected and introduces two alternative
cavity models which are used in later chapters to define the nominal behavior
of the cavity.

É CHAPTER 4 describes the fault and anomaly detection methods used in this
thesis. It describes three model-based residual generation methods as well as
two residual evaluation methods to detect anomalies and to detect quenches.
The probabilistic models are represented via message passing on factor
graphs. Then, a training of the GMM is given based on the expectation
maximization algorithm.

É CHAPTER 5 presents the results of applying the detection methods to all col-
lected RF-pulses, determining the amounts of anomalies detected, analyzing
some characteristics of the anomalies and categorizing them into severe
and non-severe anomalies. Undetected severe anomalies are described and
the proposed method to detect cavity faults is evaluated on the example of
quenches.
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Build model
cavity model for

RF-pulse operation

Chapter 3

Obtain hidden quantities
residual generation
residual evaluation

Chapter 4

Criticize model
performance of models

performance of residuals

Chapter 6

Apply model
application on long-term data

and thermal breakdowns

Chapter 5

Select data
Chapter 3

Revise Model: Chapter 7

FIGURE 1.1: Structure of the thesis described
as one iteration through box’s loop adapted
from [16], where inference- based algorithm
design is described as an iterative process.
This thesis thus runs through one iteration
this process.

É CHAPTER 6 evaluates the performance of the proposed models and residual
generation methods and draws some conclusions about how they can be
improved.

É CHAPTER 7 concludes the thesis, points out to some future ideas, and sum-
marizes the main findings of the thesis.





2
Preliminaries

É SYNOPSIS This chapter introduces properties of the X-ray Free-Electron Laser
(EuXFEL) facility, as well as the general principles on which the European
XFEL is build. It introduces the superconducting cavities as an essential part
of the machine and describes their functionality and purpose, as well as the
fundamental cavity model, which is used in later chapters a definition of
nominal cavity behavior.

In the second part of this chapter, an introduction to probability theory
and factor graphs is given. Some key terminology and the used notation are
introduced regarding random variables, probability distributions, and factor
graphs. Finally, the concept of residual generation and evaluation, which
plays an essential role for the remainder of this thesis, is introduced.

2.1 EUROPEAN XFEL

The EuXFEL is a pulsed X-ray laser light source, which generates laser flashes
of wavelengths in the X-ray spectrum with unprecedented high brilliance [1]. [1] Altarelli et al., The European x-ray free-

electron laser technical design reportIt is used to study the structure of materials on a nanometer scale and
processes with dynamics in the femtosecond range [17]. The EuXFEL is a [17] Ackermann et al., “Operation of a free-

electron laser from the extreme ultraviolet
to the water window”relatively new facility, first commissioned in 2017. The properties of the light

flashes produced are unique worldwide. The exceptional brilliance and the
high repetition rate make this light source very attractive for experimental
research in biology, chemistry, or material science. Due to the high demand
for the facility, the time allotted to each experiment is limited and unpredicted
downtime of the machine compromises ongoing experiments. The primary
objective of the EuXFEL facility is to reliably and safely produce the required
light flashes for the user experiments.

The following sections introduce the principle behind XFELs, their appli-
cation as well as some essential technical details.

2.1.1 Performance and User Experiments

The EuXFEL is used to study ultra-small objects of a tenth of a nanometer
as well as ultrafast processes with dynamics in the femtoseconds. These
properties can help to find answers to a broad range of research questions.
For example, new insights can be gained from obtaining 3-D images of

9
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viruses, biomolecules, or protein crystals. Other experiments aim to study
light-matter interaction on a femtosecond time-scale. Figure 2.1 shows the
visualization of a bacterial enzyme, which plays a vital role in the resistance
towards antibiotics. The data was taken at the EuXFEL.

FIGURE 2.1: False-colored image of two
Klebsiella pneumoniae bacteria (yellow) in-
teracting with a human white blood cell
(green). This image was one of the first
obtained at the EuXFEL [18].

Typical experimental setups generate diffraction patterns of the object
under consideration or use spectroscopy analysis [19]. The properties of

[19] Tschentscher and Feidenhans’l, “Start-
ing User Operation at the European XFEL”

the light flashes are key factors when determining which experiments are
possible. For example: The lower limit of the object size that can be investi-
gated is determined by the minimal possible wavelength of the light, and
the ability to study ultrafast processes is mainly determined by the duration
of each single flash. For a higher contrast of the images, the laser flashes’
intensity (brilliance) is a key factor.

At the EuXFEL, wavelengths down to 0.05 nm are possible, and the
brilliance of the light flashes is considerably higher than other XFEL machines.
Another essential property of the EuXFEL facility is the high repetition rate
of light flashes per second that can be delivered to the users. This is possible
because of the use of superconducting technology [20].[20] Brinkmann et al., “Prospects for CW

and LP operation of the European XFEL in
hard X-ray regime” Superconducting radio-frequency technology is referred to as SRF, whereas

normal conducting is referred to as NRF. In the next paragraph, a short in-
troduction to the principal setup of the physical process generating the light
flashes is given, including details concerning the setup of the EuXFEL.

2.1.2 General Principles and EuXFEL Setup

The X-ray flashes are generated using highly energized electron bunches.
Each electron bunch results in one X-ray laser flash. The process of gener-
ating the X-ray laser flashes can be roughly described in two phases, see
Figure 2.2. The first phase consists of generating the electron bunches and
accelerating them to their desired maximum energy levels (up to 17.5 GeV
at the EuXFEL). The generation and first acceleration of the electron bunches
occurs in the photo-injector [21]. The electron bunches are extracted from a[21] Ferrario et al., Conceptual design of the

XFEL photoinjector solid cathode by a laser beam. They are then accelerated to 6 MeV by an
interaction with a standing RF electromagnetic wave using an NRF gun. A
more detailed description of the acceleration process will follow in the next
section. After the photo-injector, the bunches are further accelerated in the

Injector Linear Accelerator Undulator Laser Light

I. Electron Beam Acceleration II. X-ray Generation

FIGURE 2.2: Main set up of the EuXFEL. First
electron bunches generated and accelerated
to the desired energy levels. Then these
electron bunches are used to generate the
desired X-rays.
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FIGURE 2.3: X-ray laser flashes are gener-
ated from electron bunches through SASE.
The electrons are forced to follow a sinu-
soidal path due to the magnetic field polar-
izations. In following this path, the electron
bunch starts emitting light.

first superconducting acceleration module and then enter the main accelera-
tion unit, i.e., the superconducting linear accelerator (LINAC) with an energy
level of 130 MeV [19]. The superconducting LINAC is divided into three
sections that are separated by bunch compressors. The bunch compressors
are essential components to shorten the bunch length to about 55µm [1]. [1] Altarelli et al., The European x-ray free-

electron laser technical design reportThe bunches pass through in total 101 superconducting accelerator mod-
ules. Each accelerator module is 12 m long and holds eight superconducting
electromagnetic wave resonators, called cavities. At the end of the LINAC,
the electron bunches exit with an energy level of up to 17.5 GeV.

In the second phase, the X-ray laser flashes are generated from the highly
energized electron bunches. This is achieved by forcing the electron bunches
onto a sinusoidal path using a setup of magnets that produce transverse pe-
riodic magnetic fields—the undulators. They thereby start emitting photons
in a self-amplified spontaneous emission (SASE) process [22]. This process [22] Geloni et al., “Coherence properties of

the European XFEL”is schematically shown in Figure 2.3. After passing through the undulators,
the electron bunches are of no further use and are deflected into the electron
dump. The X-ray flashes are distributed among five experimental halls in
which different research groups can perform their experiments.

The EuXFEL facility is mainly built underground with a total length
of 3.4 km. The largest part of the facility is the 2.2 km long superconducting
LINAC. The focus of this thesis is on on the SRF cavities in the LINAC with
which the electrons are accelerated.

2.1.3 Acceleration with Radio Frequency Resonators

The electrons are accelerated in SRF cavities by interacting with the electric
field gradient of an RF electromagnetic standing wave coupled into the cavity.
The electric fields act along the cavity axis. Figure 2.4(a) shows a snapshot
of the field distribution in a single-cell cavity. For maximal acceleration,
the passing of the bunches through the cavity center has to coincide with
the maximum of the RF electric field. This on-crest acceleration makes sure
that the maximum amount of energy is transferred to the electron bunch,
also called the electron beam. To reach energies of 17.5 GeV, the bunches
have to pass through such fields several times. It is common to join multiple
single-cell cavities together to a multi-cell cavity. In each cell, the bunches
are exposed to the same maximal RF-field. The cells are connected via an iris,
through which the electron beam can pass. The multi-cell cavities behave
like an assembly of weakly coupled single cavities. At the EuXFEL, nine-cell
superconducting cavities are used. Nine-cell cavities have nine fundamental
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(a) Single cell cavity. (b) 9-cell cavity. In the π-mode shown here, electric fields in neighboring cells are of opposite direction. [24]

FIGURE 2.4: Electromagnetic field distribu-
tion. The electric field is aligned to the beam
axis, the magnetic field surrounds it perpen-
dicularly. In on-crest acceleration the elec-
tron bunch passes through the center when
maximum electric field gradient is reached.

resonance modes. The mode used for the acceleration is the π-mode, for
which half an RF wavelength fits into each cell, see Figure 2.4(b). For an
on-crest acceleration in each cell, the RF frequency is chosen such, that half
of an RF period matches the time it takes for a bunch to pass from one cell to
the next. Since the electron bunches behave relativistically, i.e., their velocity
is approximately at the speed of light, a fixed frequency for all accelerating
cavities can be used [23].[23] Padamsee et al., RF superconductivity

for accelerators The acceleration of the electrons is a high power process, and unnecessary
power losses should be avoided. The process of coupling the RF waves into
the cavity and transferring their energy to the beam is not lossless and part
of the energy is dissipated through the cavity walls in the form of thermal
energy. In NRF cavities the heat load is a limiting factor in increasing the RF
pulse. Therefore in NRF XFELs a single bunch is accelerated for each RF pulse.
Since the SRF cavities’ resistance is orders of magnitude lower, the realizable
RF pulse length allows to accelerate multiple bunches. Further advantages
of using superconducting cavities, as well as the technical challenges in
operating these accelerator modules, are given in the next section.

2.1.4 Superconducting Technology

Superconductivity is a material property that reduces the ohmic resistance
of a material to zero when it is cooled below a critical temperature Tc . Direct
currents can flow without losses in superconducting materials. For alternat-
ing currents the resistivity is not zero, but far below that of conventional
conductors [23]. This effect considerably reduces power loss for the acceler-
ation of particles. Superconducting cavities thus assure a higher conversion
efficiency (20%) of the primary energy to the energy of the bunches [25].
It also enables longer bunch trains, i.e., a higher frequency of bunches, at
higher electromagnetic field gradients.

All accelerating cavities in the LINAC are superconducting nine-cell
TESLA-type cavities, made from solid niobium with a π-mode resonance
frequency of f 0 =1.3 GHz. The critical temperature of niobium is Tc = 9.5 K,
and for their operation, the cavities are bathed in liquid helium, cooling
them down to 2 K. The electromagnetic RF fields used for the acceleration
in a superconducting cavity induce a flow of alternating currents in a thin
surface layer of the cavity walls. The result is power dissipation in the
form of heat. This heat load limits the cavity’s maximum attainable field
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FIGURE 2.5: RF amplitude envelopes of elec-
tromagnetic fields in the cavity in pulsed
mode operation. The repetition rate of
the pulses is 10 Hz. Each pulse duration
is 1.3 ms long. Acceleration of the electron
bunches is possible during the flattop.

gradient and needs to be considered during the operation. The average
design acceleration gradient for each cavity is 23.6 MeV [19].1 [19] Tschentscher and Feidenhans’l, “Start-

ing User Operation at the European XFEL”

1Tests with TELSA cavities using recent im-
provements in the production process were
able to reach even higher gradients of up to
50 MeV [26].

2.1.5 Pulsed Mode Operation

To prevent large heat loads and to increase the maximum achievable electron
energy, the cavities are currently operated in short pulse (SP) mode. Pulsed
mode means, that the RF field is coupled into the cavities in bursts with
a constant repetition rate of 10 Hz [20]. Each RF burst is 1.3 ms long. In [20] Brinkmann et al., “Prospects for CW

and LP operation of the European XFEL in
hard X-ray regime”Figure 2.5 the SP operation mode is depicted by showing the amplitudes

of the electromagnetic wave bursts in the cavities. During each RF-pulse,
long bunch trains of up to 2700 bunches are accelerated resulting in the
repetition rate of 27000 X-ray flashes per second.

2.1.6 Subsystems for Cavity Operation

To meet the conditions for operating SRF cavities, several operations need
to be involved, e.g., the cooling of the cavities, the generation of a vacuum
inside the cavities as well as the connection to the RF power source.

The set-up for each cavity is organized on three different levels: The
single cavity, the cryomodule, and the RF station.

Each single cavity is equipped with a helium tank, a tuning system driven
by a stepping motor, a coaxial RF power coupler, a pickup probe (measuring
the RF fields), two higher-order mode (HOM) couplers and a piezo-electric
tuner. The stepper motor is used to tune the individual cavities for optimal
operation [27]. For a more precise tuning of the cavities, feed-forward [27] Przygoda et al., “Testing procedures for

fast frequency tuners of XFEL cavities”and iterative learning controlled piezoelectric tuners are installed for each
cavity [28, 29]. The higher-order mode couplers are used to assure that [28] Sekalsky et al., Lorentz Force Detuning

Compensation System for Accelerating Field
Gradients Up To 35 MV/m for Superconduct-
ing XFEL and Tesla Nine-Cell Cavities

[29] Paparella, “A control and systems theory
approach to the high gradient cavity detun-
ing compensation”

the π-mode is the dominant mode in the cavities, and the higher-order
modes, generated by the electron beam current, are coupled outside the
cavity.

On the second level, a group of eight cavities are cooled down to the
necessary temperatures in a cryomodule. In the cryomodule, several pipes
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are used to ensure a constant flow of liquid helium that stabilizes the cavities’
temperatures. Thus there is one cryogenic system for the regulation of the
temperature of eight SRF cavities.

Finally, four of these cryomodules, i.e., 32 cavities, are powered by one
klystron, which is referred to as one RF-station. The klystron amplifies the
RF signal of the station, coming from the low-lever RF controller output.

The fields in the cavity are controlled via a feedback controller, as well
as learning feed-forward methods implemented on hardware to control the
fields online [30, 31]. The controller input is the sum of the electromagnetic[30] Pfeiffer, “Symmetric grey box identifica-

tion and distributed beam-based controller
design for free-electron lasers”

[31] Schmidt, RF system modeling and con-
troller design for the European XFEL

field measurements in each cavity and its output is the sum of the non-
amplified electromagnetic field inputs to all cavities.

The behavior of the components is dependent on a set of parameters, and
they are themselves (open or closed-loop) controlled systems. The behavior
of the subcomponents, their parameter values, or operation settings can all
have an influence on the behavior of the cavity system.

2.2 SUPERCONDUCTING CAVITIES

Superconducting cavities are electromagnetic field resonators. To effectively
obtain a desired field gradient the SRF cavities need to be operated as closely
as possible to their resonance frequency. The range of acceptable divergence
from the resonance frequency is directly connected to their quality factor.
In this chapter, the main figures of merit are introduced, along with the
involved signals when operating the SRF cavities. A model describing the
input to output signal relationship of an SRF cavity is presented. Finally,
sources of disturbances and possible known cavity faults are introduced.

2.2.1 Figure of Merit

Some of the parameters introduced in the following sections are assumed to
be constant for all considerations in this thesis, whereas others may change
over time. Those parameters which can change, e.g., due to a fault, are
consistently denoted with superscripts, s.t., the continuous time variable t
or discrete time variable k can be used as a subscript. Parameters assumed
as static are consistently denoted with subscripts.

A prominent figure of merit for SRF cavities is their quality factor. The
quality factor relates the amount of dissipated energy in each RF cycle, to
the stored energy W inside the cavity, i.e.,

Q = 2π
f 0W
Pdiss

, (2.1)

where Pdiss is the dissipated power in each RF-cycle, and f 0 = 1.3 GHz is the
resonance frequency of TESLA SRF cavities used in the EuXFEL [32].[32] Schilcher, “Vector Sum Control of

Pulsed Accelerating Fields in Lorentz Force
Detuned Superconducting Cavities” There are two sources of power dissipation that are typically considered,

each characterized by its quality factor. The unloaded quality factor Q0

describes the power dissipated through the walls of the superconducting
material. The external quality factor Qex t represents the power dissipation
into an external load which occurs during the coupling process of the RF-
wave into the cavity. The loaded quality factor QL combines both dissipation
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sources and it is defined by

QL =
1

1
Qex t
+ 1

Q0

, (2.2)
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FIGURE 2.6: Frequency dependent ampli-
tude and phase of RF-wave in the cavity.
With a bandwidth of 140 Hz the supercon-
ducting cavities are very sensitive towards
detuning.

The cavities are operated with Q0�Qex t , i.e., power dissipation during
the coupling process is significantly higher than through the superconduct-
ing walls. The unloaded quality factor lies at Q0 ≈ 2× 1010, while the
external quality factor is in a range of 106 < Qex t < 107. Thus a common
approximation is that QL ≈ Qex t . The nominal loaded quality factor of the
TESLA cavities operated in pulsed-mode is around 4.6× 106 [1].

[1] Altarelli et al., The European x-ray free-
electron laser technical design report

Figure 2.6 shows the amplitude and phase dependencies of the RF-waves
on the frequency. When the cavity is operated at its resonance frequency f 0,
the amplitude of the cavity field peaks, and the phase is zero, which means
a maximal efficiency for the acceleration of the electron bunches.

Discrepancies between the driving frequency and the resonance fre-
quency is referred to as the detuning of the cavity defined by

f ∆ = f − f 0, (2.3)

where f is the constant driving frequency which is provided to all cavities
by the master oscillator.

The bandwidth of the cavity determines how sensitive the cavity is
towards detuning. The half-bandwidth describes the amount of detuning
needed to drop the amplitude by 3 dB. These −3 dB points are marked in
Figure 2.6. The bandwidth of the cavity is inversely proportional to the
quality factor of the cavity, i.e.,

f † =
f 0

2QL
, (2.4)

where f † is the half-bandwidth.

The high quality factor makes the SRF cavity particularly efficient in
accelerating the electron bunches, but it makes them also susceptible to de-
tuning. With a half-bandwidth of around 140 Hz, a divergence of 1× 10−4 %
reduces the amplitude by −3 dB.

The following section introduces all relevant RF-signals necessary to
represent the input to output cavity behavior which is used extensively in
the subsequent chapters.

Envelope Description

Pick-up antennas and RF waveguide directional couplers at each cavity ob-
serve three electromagnetic RF-waves. The observations’ sampling frequency
is three orders of magnitude smaller than the frequency of a single RF-cycle.
The observations thus describe the envelopes of the amplitude and phases of
each RF-wave. The driving RF-wave is typically termed the forward wave.2 2 It arrives from the master oscillator, is am-

plified by the klystron, and then distributed
through the waveguide system to the indi-
vidual cavity, into which it is coupled via the
input couplers.

The standing wave inside the cavity is termed the probe. Part of the forward
RF-wave is reflected at the coupler, called the reflected RF-wave. Each of
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these three waves can be represented by a phasor, i.e.,
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where |v
¯

F
t |, |v¯

P
t |, |v¯

R
t | ∈ C are the amplitudes and φF

t ,φ
P
t ,φ

R
t ∈ R[−180,180]

are the phases of the wave and the subscripts F, R, P stand for the forward,
reflected and probe signals, respectively. For the nominal cavity model
the real in-phase (I-) and the imaginary, quardrature (Q-) components of
the phasor are used. Both amplitude and phase are time-dependent. The
amplitude changes throughout a pulse for the forward signals. The phase
changes due to the effect of various detuning sources. The relationship
between forward and probe signals in the cavity is modeled in the subsequent
section with a nonlinear ordinary differential equation.

2.2.2 Nominal Cavity Model

Nominal multi-cell SRF cavity models are derived from the assumption that
each cell behaves like an LCR circuit, weakly coupled to their neighboring
cells.3 The LCR circuit is driven by an RF current generator, representing the3Details of the full LCR circuit model are

omitted here, but can be found in several
publications [33, 32, 34, 35]. forward RF wave coupled into the cavity. In the following, the total driving

voltage v
¯

D
t = v

¯
F
t ,∈ C describes the forward wave to the cavity. From this LCR

circuit model, the dynamic behavior of the cavities is derived with the use
of Kirchoff’s rule, which results in a second-order differential equation for
harmonic oscillators, i.e.,
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, (2.6)

When modeling the RF fields envelopes behavior, the second-order terms
can be neglected as they are small compared to the first order terms [32].[32] Schilcher, “Vector Sum Control of

Pulsed Accelerating Fields in Lorentz Force
Detuned Superconducting Cavities” By including a linearization around the resonance frequency f 0

t , a first-order
cavity model was derived

dv
¯

P
t

d t
+ 2π
�

f †
t − j f ∆t
�
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t = 2 f̃ †v
¯
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t , (2.7)

with the time-varying detuning

f ∆t =
�

f − f 0

t

�

, (2.8)

the constant parameter

f̃ † =
f 0

2Qex t

, (2.9)

and the half-bandwidth f † given in (2.4), also constant for nominal cavity
behavior. Since Qex t ≈QL (as described in the previous section), the nominal
assumption is that f̃ † ≈ f †. Using the I and Q representations to formulate
two coupled first order equations, the nominal cavity behavior may be
represented by

dvP,I
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d t
=− 2π f †vP,I
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t + 2 f †vF,I
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d t
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t + 2 f †vF,Q

t .

(2.10)
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This model is used later to determine changes in the cavity behavior, reflected
in the RF measurements.

2.2.3 Sources of Detuning

With the high quality factor of superconducting cavities, detuning poses
a considerable challenge for their operation. Small changes in detuning
will have a great effect on the fields in the cavities. In the following two
sources of detuning are described, Lorentz force detuning and microphonics.
Lorentz force detuning is caused by the fields in the cavity. Microphonics
are generally caused by external disturbances, e.g., vibrations. Since the
longitudinal tuning sensitivity is on the order of hundreds of 100 kHz mm−1,
cavity deformations of few hundreds nm results in a detuning variation
comparable to the cavity half-bandwidth [36]. [36] Pagani et al., The fast piezo-blade tuner

for SCRF resonators

É LORENTZ FORCES are the primary cause of detuning in pulsed mode operation.
They occur due to the interaction between the magnetic fields inside the
cavity and RF currents in the cavity wall [23]. The effect of Lorentz forces [23] Padamsee et al., RF superconductivity

for acceleratorson TESLA cavities is high, as the walls of the cavities are thin (2.8 mm).
When Lorentz forces act upon the cavity walls, they cause a deformation,
which in turn results in a shift of the resonance frequency and — depending
on the field amplitudes — can cause resonance frequency shifts far beyond
the bandwidth. While Lorentz forces are more prominent in magnitude in
pulsed operation, it also plays an important role for the continuous mode of
operation and both effects have been modeled. In steady state operation (or
continuous mode) with on-crest acceleration, Lorentz forces are proportional
to the square of the accelerating fields amplitude, i.e.,

f ∆t = −β |v¯
P

t |
2, (2.11)

with
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where β is the Lorentz force detuning constant [23]. According to (2.11)
the detuning is dependent on the squared accelerating fields which is the
reason why Lorentz force detuning is particularly dominant in large acceler-
ating fields. For pulsed mode operation, dynamic Lorentz force detuning is
described by a second order differential equation which assumes, that the
dynamic behavior can be modeled by superimposing the effect of a set of
mechanical resonance frequencies, i.e.,

d2 x m
t

d t2
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2 x m
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1
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d x m
t

d t
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2|v
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t |
2, m= 1, .., nm (2.13)

where x m
t is the detuning caused by the mechanical resonance mode m, γm

is the respective time-constant and βm the Lorentz force detuning constant
associated to the mode. The detuning over the pulse is then defined as

f ∆t =
nm
∑

m=1

x m

t , (2.14)

where nm is the number of considered modes [37, 34]. The driving sig- [37] Liepe et al., “Dynamic Lorentz force
compensation with a fast piezoelectric
tuner”

[34] Neumann, “Compensating microphon-
ics in SRF Cavities to ensure beam stability
for future Free-Electron-Lasers”
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nal is the square of the accelerating field. To compensate for the detuning
during operation, piezo-electric tuners are used in feed-forward compen-
sation, which relies on the assumption, that the Lorentz force detuning
characteristics for each cavity are highly repetitive from pulse to pulse [37].[37] Liepe et al., “Dynamic Lorentz force

compensation with a fast piezoelectric
tuner”

É MICROPHONICS are mechanical vibrations which affect the cavity. A defor-
mation of the cavity is then not due to the interaction with the RF-field, but
due to disturbances acting from outside the cavity. The sources of vibrations,
and therefore the frequency spectrum is diverse. Lower frequency sources in-
clude heavy machinery, mechanical vacuum pumps, compressors and pumps
from the cryogenic system. These kinds of vibrations can be transmitted
through the beamline, the ground, the supports and the cryostats [23]. Al-[23] Padamsee et al., RF superconductivity

for accelerators though microphonics are often unavoidable and are not necessarily due
to the malfunction of a component, they do represent unwanted behavior.
They have thus been listed as a fault category for the with continuous wave
operated superconducting cavities in [4].[4] Tennant et al., “Superconducting radio-

frequency cavity fault classification using
machine learning at Jefferson Laboratory”

2.2.4 Determining Detuning and Bandwidth

The following detuning and half-bandwidth calculations are used to control
the cavities’ detuning and monitoring.

First, the cavities half-bandwidth of the pulse is calculated from the RF-
pulse probe data, which can then be used to determine the detuning and
half-bandwidth for each sample during a pulse. Pulse-wise half-bandwidths
of the cavity can be estimated using the decay phase, i.e., the cavity systems’
free-response where the forward signal is shut off. The probe amplitude
decays according to

|v
¯

P

t |= e
1
τ t , (2.15)

where τ is the systems’ time constant which is related to the half-bandwidth
by

f † =
f 0

2QL
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1
2πτ

. (2.16)

The time constant is determined by fitting an exponential function to the
probe amplitude samples of the decay. For intra-pulse half-bandwidth and
detuning calculations (2.7) is used. Solving the equation for the detuning
results into
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whereas the half-bandwidth is given by
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The detuning and half-bandwidth calculations can be carried out by assum-
ing that the half-bandwidth f̃ † can be well approximated with the half-
bandwidth f † determined once with (2.16). When calculating the derivative
of the discrete probe measurements noise is introduced into the detuning
and half-bandwidth values. Filtering with a simple low-pass finite impulse
response filter (FIR) decreases the noise. An FPGA implementation of these
calculations can be found in [38]. [38] Rybaniec et al., “Real-time estimation

of superconducting cavities parameters”

2.2.5 Typical Cavity Faults

He

Nb

RF

defect

(a) Heating spot caused by de-
fect, temperature below critical
limit.

He

Nb

RF

defect

(b) Temperature rises above crit-
ical limit, causing a breakdown
of superconductivity.

FIGURE 2.7: Local rise of temperature in the
superconducting cavity walls due to a defect.

Typical cavity faults include the thermal breakdown of superconductivity,
called quench, multipacting and field emissions. Due to improvements in the
production process of the cavities, the occurrence of these faults has been
considerably lowered in recent years. In this thesis quenches play important
role for the results in Chapter 5, which is why this fault is introduced here.
Quenches causes the SRF cavity to partly loose their superconductivity.
Ideally, the conductivity throughout the cavity material is homogenous.
However, regions in the order of mm can show considerable discrepancies
of conductivity compared to the rest of the material, [39]. These spots are

[39] Champion et al., “Quench-limited SRF
cavities: failure at the heat-affected zone”

called defects. Alternating currents’ reactive parts flow right through these
effects, causing a considerable heat load. If the temperature at the edges
of these defects rises above the critical temperature of the superconducting
material Tc , the surrounding material becomes normal conducting, which
causes a thermal breakdown of the cavity, i.e. a quench.

Figure 2.7 depicts this effect schematically. Defects limit the performance
of a cavity as they lower the maximal possible peak values of the magnetic
fields and thus the maximally safely attainable RF-field gradient.

Cavities can recover from quenches when the RF power is lowered or
shut down, thus making it possible for the cavities to cool back down below
the critical temperature [15].

[15] Nawaz et al., “Self-organzied critical
control for the european xfel using black
box parameter identification for the quench
detection system”

The current method of quench detection sets a fixed threshold on the
moving averaged values of the loaded quality factor QL, [40]. The quench

[40] Ayvazyan et al., “Superconducting Cav-
ity Quench Detection and Prevention for the
European XFEL”

detection decision rule can best be described in the following way:

dq(QL

ip
) =











1 if QL
ip
− 1

K

ip
∑

j=ip−K

QL

j > 5× 105, quench,

0 if not a quench,

(2.19)

where ip is the index representing the pulse under consideration, and the
decision depends on the divergence between the current loaded quality
factor values from its moving average over the last K = 100 pulses. A
detection threshold of 5× 105 is currently used in operation.
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FIGURE 2.8: Uncalibrated RF-pulse measure-
ments of the field amplitudes for the driv-
ing wave (forward), the transmitted wave
(probe), and the reflected wave.

2.3 ACQUISITION AND CALIBRATION OF DATA

A considerable amount of data was stored and analyzed for the purpose of
this thesis. In the following section, the data acquisition system (DAQ) used
to access and store the data and the calibration of the data is presented.

2.3.1 Data Acquisition System

The DAQ system is designed to collect all front-end data via multicast-enabled
push protocol [41]. The DAQ collects the data at its pulse repetition rate,[41] Wilksen et al., “A Bunch-Synchronized

Data Acquisition System for the European
XFEL Accelerator” i.e., all samples associated to a pulse are stored after the end of an RF-pulse.

Each pulse is stamped with a unique pulse identification number (PID) as
well as a time-stamp, facilitating synchronization of different data streams
according to the PID.

The RF-data includes measurements of the forward, reflected, and probe
envelopes in their amplitude and phase for each RF-pulse. The data was
stored with a sampling rate of fs =1 MHz. Instead of storing the entire pulse
traces, the RF-measurements are cut off after 1.82 ms, when the pulse has
not yet faded away completely, see Figure 2.8.
The discrete RF data of the amplitude and phase is given by |v

¯
P |(kTs),φP(kTs)

for the probe, |v
¯

F |(kTs),φF(kTs) for the forward and |v
¯

R|(kTs),φR(kTs) for
the reflected, where k ∈ Z≥0 and Ts =

1
fs
=1µs. The sampling time Ts is

omitted from now on. The complex representations for these measurements
will be denoted by

v
¯

P

k =vP,I

k + jvP,Q

k ,

v
¯

F

k =vF,I

k + jvF,Q

k ,

v
¯

R

k =vR,I

k + jvR,Q

k ,

with v
¯

P
k, v

¯
F
k, v

¯
R
k ∈ C. The RF-data is stored in units of MV m−1 and deg, for

the amplitudes and phase traces, respectively.

In normal operation, all pulses have the same general structure, i.e., they
consist of three discernible parts. In the first phase, the filling phase starting
at k = kr , the RF field is ramped up, then the forward power is lowered at
the onset of the flattop phase at k = k f . In the final phase, the decay phase,
starting when the RF-pulse is switched off at k = kd , the cavity system is in
free-response.
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FIGURE 2.9: RF field measurements of the
amplitude before and after calibration. A
calibration of the signals is a prerequisite
for the fault detection methods. When not
calibrated, the signals do not represent phys-
ical behavior and therefore the cavity model
cannot be used.

Pulse Shape Properties

At the beginning of the filling phase, the forward wave is entirely reflected at
the input coupler. The acceleration of the electrons only takes place during
the flattop, and thus the amplitude and phase-stability requirements are
defined for the flattop phase. During the decay, i.e., v

¯
F
k = 0, the reflected

signal is equal to the probe signal inside the cavity. This is because both
pick-up antennas detect the same fields, i.e., the probe field fading away.
While one pick-up interprets the field as the reflected, the other interprets it
as the probe. In principle, the length of the filling, flattop, and decay times
can be altered. The RF data considered in this thesis have fixed filling, flattop,
and decay times, with the filling starting at sample kr = 20, the flattop at
k f = 770 and the decay at sample kd = 1420. The total number of samples
in each RF-pulse is ns = 1820. The measurements need to calibrated. The
calibration procedure is described in the subsequent section.

2.3.2 Calibration

The RF-measurements are calibrated according to [42]. While forward and [42] Pfeiffer et al., “Virtual cavity probe
generation using calibrated forward and re-
flected signals”reflected signals are measured by two independent but not perfect pick-up

antennas and a coupling between the two signals is often unavoidable, the
probe signal has its own pick-up antenna. The probe signal is thus used as a
reference for the calibration. When the signals are well-calibrated, the sum
of the complex forward and reflected signals must equal the probe signal,
i.e.,

v
¯

P

k = v
¯

F

k
c + v

¯
R

k
c , k = 1, ..., ns, (2.20)

where v
¯

F
k

c , v
¯

R
k

c are the calibrated forward and reflected signals respectively
and

v
¯

P

k
v = v

¯
F

k + v
¯

R

k, k = 1, ..., ns, (2.21)

where v
¯

P
k

v is the ’virtual probe’, which is the sum of the uncalibrated forward
and probe signals. In case the measurements are not calibrated, the forward
signals are not zero during the decay, and the reflected fields are not equal
to the probe see Figure 2.8. After calibration, the virtual probe should be
approximately equal to the measured probe, see Figure 2.9.
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The calibration procedure is explained in more detail in appendix 7.2.

2.4 PROBABILITY THEORY AND FACTOR GRAPHS

“Probability theory is nothing but common
sense reduced to calculation”

—Pierre Laplace, 1812 For notational reasons the following gives a very brief introduction into
the well known probability theory relevant for this thesis and introduces
factor graphs. Factor graphs are used as a unifying, graphical framework
for probabilistic models, and probabilistic inference can be described by the
passing of messages on the graph. In this thesis factor graphs are used for
the fault and anomaly detection of the pulsed mode operated SRF cavities.
The structure of a factor graph is defined by the joint probability distribution
which it represents. Nodes and edges are used to represent random variables
and probability distributions, respectively. Different notations exist. The rest
of this work follows the notation used, e.g., by [43, 44].[43] Loeliger et al., “The Factor Graph Ap-

proach to Model-Based Signal Processing”

[44] Loeliger, “An Introduction to Factor
Graphs”

Probability Distributions and Random Variables

A random variable is a function that maps the outcomes of a random event
to a value. Random variables can either be continuous or discrete. The prob-
ability distribution of a discrete random variable (probability mass function)
is often represented by a table and describes discrete random experiments
such as the rolling of a die. In this thesis, a discrete variable is used to rep-
resent fault-class categories of data. All other random variables that occur
are continuous whose distribution is described by the probability density
function. Continuous random variables describe states or measurements
which have continuous values such as in dynamical systems. To describe the
distributions over continuous random variables, the standard notation p(x)
is adopted, where x is a variable denoting any of the possible values of X . It
is common to use roman capital letters to represent random variables and
lower-case letters for their values.

2.4.1 Joint, Marginal and Conditional Probability

The joint probability is the probability distribution over multiple random
variables X1, ..., Xn, i.e., p(x1, ..., xn). Often, the distribution over a subset
of these variables or even just one is desired, which is called the marginal
probability distribution. In that case this marginal distribution needs to be
inferred from the joint distribution.

The conditional probability is the probability, that an event X = x occurs
given that another event Y = y has occurred, i.e., p(x |y).

2.4.2 Independence and Conditional Independence

Random variables may be mutually (unconditionally) independent or condi-
tionally independent. Mutual independence is given, when the joint prob-
ability of the variables can be expressed as the product of their marginals.
For example X and Y are mutually independent if

p(x , y) = p(x)p(y). (2.22)

Unconditional independence therefore only exists if the two variables do
not in any way influence each other. For models of the physical world, this
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is often not true. It is more common, that the variables are conditionally
independent, which means that their influence is not direct, but mediated
over some other random variable. For example, Z may be the mediator
random variable between X , Y , then

p(x , y|z) = p(x |z)p(y|z). (2.23)

Conditional independence is an important property for making Bayesian
inference more tractable and it is just these independency structures between
random variables, which are represented by probabilistic graphical models.

Theorem of Bayes

Many probabilistic algorithms rely on the use of the Bayes Theorem. It is a
consequence of the chain rule of probabilities, and describes the conditional
probability distribution

p(θ |x)
︸ ︷︷ ︸

posterior

=

l ikel ihood
︷ ︸︸ ︷

p(x |θ )

prior
︷︸︸︷

p(θ )
p(x)
︸︷︷︸

mar ginal

. (2.24)

Often, the prior p(θ ) needs to be chosen. It represents the assumptions made
concerning the distribution of θ before taking evidence (observations) into
account. The likelihood is the distribution over x for a given parameter θ
and it describes the measurement model.

2.4.3 Factor Graphs and Gaussian Message-Passing

Factor graphs are bipartite graphs, that represent existing independency
structures of the joint distribution.4 The graph structure displays the condi- 4Factor graphs are one approach of graph-

ically representing probabilistic models. A
concise introduction into probabilistic graph-
ical models can be found in [45, 46].

tional dependencies between the random variables. The remainder of the
document adopts the Forney-style factor graph (FFG) notation, in which
nodes represent factors whereas edges or half-edges represent either dis-
crete or continuous random variables, [47, 43].5 The following constraints [47] Forney, “Codes on graphs: Normal re-

alizations”

5The notation was first introduced by For-
ney in [47].

characterize FFGs:

1. There is a unique node for every factor.

2. There is a unique edge/half-edge for every variable.

3. The node for factor f connects to the edge for variable x ⇔ f is a
function of x .

Random variables are denoted by roman capital letters whereas observed
variables, i.e., instances of the random variable, are denoted by small let-
ters [43].

Example 1. Consider the probability distribution over the random vari-
ables X1, X2, X3 and X4 defined by

p(x1, x2, x3, x4, x5) = fa(x1, x2)fb(x2, x3, x4)fc(x4, x5). (2.25)

and the factors fa, fb, fc signify the conditional independence of the variables.
The factor graph of (2.25) is depicted in Figure 2.10.
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fa fb fc
→
µX2

←
µX2

←
µX4

X1 X2 X4 X5

X3

FIGURE 2.10: A Forney-style factor graph
representing (2.25). Arrow directions of the
edges are added to clarify the direction of
the messages. Messages along the arrow
direction are referred to as "forward mes-
sages", messages against the arrow direction
are referred to as "backward messages".

The factor graph structure depends solely on how the joint probability
distribution is factorized. Messages can then be propagated from one node
to the next to determine, e.g., the marginal distribution over one of the
variables. The following introduces these messages and their notation in
this thesis.

Example 2 (continued). Using the factorization defined in (2.25) the marginal
distribution over X2 is calculated by integrating the joint probability function
over all other variables, i.e.,

p(x2) =

∫

x1,x3,x4,x5

p(x1, x2, x3, x4, x5) dx1dx3dx4dx5

=

∫

x1

fa(x1)dx1

︸ ︷︷ ︸

→
µ X2

∫

x3,x4

fb(x2, x3, x4)

�∫

x5

fc(x4, x5)dx5

�

︸ ︷︷ ︸

←
µ X4

dx4dx3

︸ ︷︷ ︸

←
µ X2

. (2.26)

where by
→
µX2

,
←
µX2

and
←
µX4

are the messages propagated between nodes fa, fb

and fc as depicted in the factor graph representation in Figure 2.10.

Due to the factorization given in (2.25), solving the integral can be
described by a sequential calculation of multiple integrals as exemplified
in (2.26). In the factor graph framework, the product-wise computations
of (2.26) are interpreted as messages, denoted by

→
µX2

,
←
µX2

and
←
µX4

that
pass between the individual factor nodes. Thus, message passing captures
this step-wise concept of marginalization graphically, and makes use of the
computational efficiency gained by taking these factorizations into account.
This concept is also known as the sum-product algorithm [48].[48] Kschischang et al., “Factor Graphs and

the Sum-Product Algorithm” A message may be passed from node fa to node fb over the connecting
edge X2 or from node fb to node fa. The message is dependent on the node
from which it is sent and is a function of the edges’s variable. Thus, the
direction of message flow needs to be considered in the notation. To do
so, arrow directions are added to the edges. Messages propagated with
the direction of the arrow are denoted by

→
µX , and referred to as "forward

messages", messages propagated against the direction of the arrow are
denoted by

←
µX and referred to as "backward messages".66To sum up: Factor graphs are undirected

graphs, but the arrows help to notation-
ally clarify the message passing operations
needed for inference. Although the arrows
are added to the edges, they signify the direc-
tion of the messages and are more a property
of the node than of the edge.

The computation of the marginal for any variable in the factor graph,
e.g., µ̄X2

, is then expressed by the multiplication of the forward and back-
ward messages on the edge, i.e., µ̄X2

=
→
µX2

←
µX2

, where
→
µX2

and
←
µX2

are defined
in (2.26). For linear factors and cylce-free graphs exact solutions are ob-
tained. Other inference algorithms like variational Bayes [49], expectation[49]Winn and Bishop, “Variational message

passing” propagation [50], and particle filtering [51] have also been formulated using
[50] Minka, “Expectation propagation for
approximate Bayesian inference”

[51] Dauwels et al., “Particle methods as
message passing”
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message passing.

2.4.4 Prior Distributions and Observations

The computation of messages become especially simple when only linear
factor nodes and Gaussian priors are considered. All continuous priors
considered in this thesis are indeed assumed to be Gaussian. The multivari-
ate, n-dimensional Gaussian distribution is defined by

p(x) =N
�

x;mX , VX

�

=
1
p

(2π)n|VX |
exp
�1

2
(x −mX )V

−1
X (x −mX )

T
�

,
(2.27)

with x ∈ Rn, the mean mX ∈ Rn and the covariance matrix VX ∈ Rn×n.
Alternatively the Gaussian distribution can be parameterized in its weighted
mean ξX = V−1

X mX and information matrix WX = V−1
X , which will also be used

in this thesis.
Factors connecting only to one edge are prior distributions over that

edges’ variable, and are typeset slightly smaller compared to other factor
nodes. When the variable is observed, its prior is defined as a degenerate
Gaussian with zero variance, i.e., VX = 0 and a mean taking up the value of
the observation, e.g., mX = x̂ . This is represented in the factor graph by a
small solid black node. When no information about the prior distribution
is available, an uninformative prior can be used, defined as a degenerate
Gaussian with WX = 0.

Markov Model in Factor Graphs

Markov Models are used to model dynamic systems. The representation of
Markov models, e.g., state-space models in factor graphs has extensively
been covered, e.g., in [43]. Consider the following linear state-space model, [43] Loeliger et al., “The Factor Graph Ap-

proach to Model-Based Signal Processing”

Xk+1 = AXk +BUk + Ik,

Zk = CXk + Dk,
(2.28)

for k = 0, ..., K , where the random variables Uk ∈ Rl , Zk ∈ Rm and Xk ∈
Rn are the real-valued input, output and states respectively. The matri-
ces A, B and C are matrices of suitable dimensions. The system is subject to
Gaussian process noise Ik and measurement noise Dk. The joint probability
distributions up to some instant T of this system can be formulated by

p(x0:T ) = p(x0)
T
∏

k=1

p(xk|xk−1) T ∈ {0, ..., K} (2.29)

denoting the state transitions where the notation x0:T = x0, ..., xT is used,
and

p(z0:T |x0:T ) =
T
∏

k=0

p(zk|xk), (2.30)

denoting the output transitions conditioned on the states.
In factor graphs, these models are represented in slices, where each slice

represents the joint probability distribution at time k. The joint probability
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function of one slice includes the input, output, measurement and process
noise as well as several representations of the state variables.

Example 3. Consider the joint probability distribution of a single slice at
instant k:

p(xk, x ′′′k , x ′′k , x ′k, xk, x ′′′′k , xk−1, dk, ik, uk, zk), (2.31)

and its factorization

p(xk|x ′′′′k , x ′k)p(x
′
k|uk, x ′′k )p(x

′′|ik, x ′′′k )

· p(x ′′′k |xk−1)p(zk|x ′′′′k )p(zk)p(uk)p(dk)p(ik).
(2.32)

This factorization is described by the factor graph depicted in Figure 2.11.

The input values Uk and output values Zk are defined by degenerate
Gaussian priors and thus denoted by a solid black node. The priors of the
state variable Xk, process noise Ik, and measurement noise Dk are Gaussian
distributed and represented by slightly smaller factor nodes in the graph.
The state transitions are described by predefined factor node functions. The
multiplication with system matrices and the addition of two random variables
is achieved with the predefined "multiplication node" fA and "addition node" f+
respectively. Branching of a variable is achieved with the "equality node" f=
definition. For example

p(xk|x ′′′′k , x ′k) =δ(xk − x ′′′′k )δ(xk − x ′k), (2.33)

p(x ′′′k |xk−1) =δ(x
′′′
k −Axk−1), and (2.34)

p(xk|x ′′′′k , x ′k) =δ(xk − x ′′′′k )δ(xk − x ′k) (2.35)

for the addition, multiplication and equality node respectively. These nodes
are represented in the graph with symbols such as ’=’ and ’+’, which make
the factor graph easier to read. For Gaussian messages, these nodes have
tabulated updates, which describe the changes of the Gaussian parameters
after transitioning though the node. In Table 2.1, their factor function
definitions, as well as the tabulated update rules for Gaussian messages, are
given.

. . . =

C

+

NDk−1

Dk−1

zk−1

A + + =

B

C

+NDk

NIk

Xk−1 X ′′′k X ′′k

uk

Xk
′

Xk
′′′′

Zk
′

zk

Dk

Ik

. . .
Xk

FIGURE 2.11: Representation of the state
space model by a chain of identical factor
graph slices for each time instant k.
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2.4.5 Gaussian Mixture Models & Expectation-Maximization

This section briefly recounts the expectation-maximization (EM) algorithm
which is used in this thesis to train parameters of Gaussian Mixture Models
(GMM). A short introduction to the expecation-maximization algorithm,
where the training of GMMs is derived can be found, e.g., in [52]. [52] Bilmes, “A gentle tutorial of the EM

algorithm and its application to parameter
estimation for Gaussian mixture and hidden
Markov models”

A GMM or Gaussian mixture density is the weighted sum over a set of
Gaussian distributions [53]. GMMs are able to represent a large class of

[53] Reynolds, “Gaussian Mixture Models.”sample distributions as they can approximate arbitrarily shaped densities by
a smooth probability density function [52]. The probability density function
of a GMM is

p(x |θ ) =
nc
∑

i=1

wi N
�

x;mi , Vi

�

,
nc
∑

i=1

wi = 1, (2.36)

where the model parameters θ =
�

mi , Vi ,wi

	nc

i=1 denote the mean, the co-
variance matrix and the weights of each of the nc classes. The classes are
represented by a discrete random variable C and the weights wi of the GMM
denote the probability of each class to occur, i.e.,

P(C = ci) = wi . (2.37)

The GMM parameters denoted by θ =
�

mi , Vi ,wi

	nc

i=1 are estimated from
training data X , using the maximum (log-)likelihood of the training sets,
i.e.,7 7Since the logarithmic function is strictly

monotonically increasing it can be used to
simplify the calculations with Gaussian dis-
tributions without changing the results of
the optimization problem.

θ̂ = arg max
θ

ln p(X |θ ), (2.38)

thus the parameters are determined for which the likelihoods of the data set
is maximized, i.e., the parameters of a model should be chosen such, that
they best fit the data.

When the training data X is incomplete, which can be represented by
a set of latent variables Z, the EM algorithm may be used [54]. Instead [54] Dempster et al., “Maximum Likelihood

from Incomplete Data via the EM Algorithm”of directly maximizing likelihoods (which is often intractable), an iterative
procedure is adopted, making use of a convex lower bound to the original
likelihood function. The lower bound is defined by the expectation of the
log-likelihood

Q
�

θ |θ̂ j
�

= EpZ

�

ln p(Z ,X |θ )
�

, (2.39)

with

pZ = p
�

Z |X , θ̂ j
�

, (2.40)

=
f=

X

Y

Z
+

f+

X

Y

Z
A

fA

X Y

f= = δ(z − x)δ(z − y) f+ = δ(z − x + y) fA = δ(y − Ax)
→
ξZ=

→
ξX +

←
ξY

→
mZ=

→
mX +

→
mY

→
mY=A

→
mX

→
WZ=

→
WX +

←
WY

→
VZ=

→
VX +

→
VY

→
VY=A

→
VX A>

←
ξX=

←
ξY +

←
ξZ

←
mX=

←
mZ−

→
mY

←
ξX=A>

←
ξY

←
WX=

←
WY +

←
WZ

←
VX=

←
VZ+

→
VY

←
WX=A>

←
WY A

TABLE 2.1: Tabulated update rules for Gaus-
sian messages of three common nodes, i.e.,
the equality, the addition and the matrix
multiplication node. All three are used to
describe the joint probability distributions
in this thesis.



28 PRELIMINARIES

→
µ

EM(θ̂ j ,θ )

←
µ

EM(θ̂ j+1)

x

fb

fa

Θ

Xk Xk−1

fb

fa

Θk

FIGURE 2.12: General FG for EM. The
message

→
µEM defines the expectation step,

whereas
←
µEM carries the updated parame-

ters. This figure was adapted from [57].

where θ̂ j denote the parameters of iteration step j.
The EM algorithm consist of alternating between

1. the E-step: With pZ = p
�

Z |X , θ̂ j
�

obtain

Q
�

θ |θ̂ j
�

(2.41)

and

2. the M-step: Maximize
Q
�

θ |θ̂ j
�

, (2.42)

to obtain the updated parameters, i.e.,

θ̂ j+1 = arg max
θ

Q
�

θ |θ̂ j
�

, (2.43)

until the parameters converge, or the allotted time is over [52]. The E-[52] Bilmes, “A gentle tutorial of the EM
algorithm and its application to parameter
estimation for Gaussian mixture and hidden
Markov models”

step therefore consists of finding an expression for p
�

Z |X , θ̂ j
�

, whereas the
M-step results in update rules for the parameters. For the first iteration j = 0,
initial GMM parameters θ 0 = {ŵ0

i , m̂0
i , V̂0

i } should be chosen carefully [55],[55] Arthur and Vassilvitskii, k-means++:
The advantages of careful seeding e.g., using the k-means cluster solutions for the means and making additional

guesses for the weights and covariance matrices [56].[56] Kerenidis et al., “Quantum expectation-
maximization for Gaussian mixture models”

2.4.6 Expectation-Maximization on Factor Graphs

The general concept of performing EM on factor graphs was described
by Dauwels et. al [57] proposing the general factorization of f (x ,θ) =[57] Dauwels et al., “Expectation Maximiza-

tion as Message Passing” fa(θ ) fb(x ,θ ) as shown in Figure 2.12. The EM messages are not an instance
of the sum-product algorithm. Rather, they merge well with the factor graph
framework, e.g., when Gaussian distributions are used. The open half edge
represents the measurements x . Two messages are defined, i.e., a forward
EM message, which consists of the expectation step (2.41), represented by

→
µEM (θ̂

j,θ ) = eη(θ̂
j ,θ ) (2.44)

where
η(θ̂ j,θ ) = Epb(x |θ̂ j)[ln fb(x ,θ )], (2.45)

and Epb(θ̂ j) is the expectation with respect to the probability distribution pb(x |θ̂ j)

using the current model parameters θ̂ j, and a backward message

←
µEM (θ̂

j+1) = arg max
θ

�

fa
→
µEM (θ̂

j,θ )
�

, (2.46)
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is defined which carries the updated parameters of the maximization step. In
general fa and fb may also be factorizable, s.t. more involved distributions
can be represented. In particular, it is possible to define "local" expectation
messages if (2.45) can be formulated as a product such as

eη(θ̂
j ,θ ) = e
∑

k ηk(θ̂ j ,θk) =
∏

k

eηk(θ̂ j ,θk). (2.47)

One iteration step of the EM, assuming local messages are possible, then
consists of determining the forward message using the current parameters θ̂ j,
performing a forward-backward pass through fa,8 leading to the backward 8for which fa must be cycle-free

message (2.46), which then carry the updates of the parameters θ̂ j+1. In
this thesis, this relationship is used to define local EM-messages for the
estimation of the GMM parameters from noisy training data.

2.5 MODEL-BASED RESIDUAL GENERATION

Model-based fault detection and diagnosis is a vastly successful approach
for automatized fault handling. It relies on the idea, that a nominal system
model is available which adequately represent the expected nominal behav-
ior. Then, a signal, i.e., a residual is defined which captures the difference
between this expected nominal behavior and the observations of the system
describing the actual behavior of the system. When the system behaves as
expected, and all stochastic processes are neglected, this residual should be
equal to zero. If the residual diverges from zero, a fault has occurred. Since
the models cannot be perfect and the measurements are always subject to
noise, the residuals are commonly assumed to be zero-mean Gaussian distri-
butions and changes in the residuals are detected using change detection
approaches. The residuals can also be used to classify the type of fault. The
process of interpreting the residual values is termed residual evaluation.

This section briefly introduces the two deterministic residual generation
concepts which, apart from the probabilistic residual generation method
described in factor graphs, were used to analyze the RF-pulses in this thesis.
Parity-space and parameter-based are commonly used residual generation
approaches for model based fault diagnosis 9. Other residual generation 9Surveys covering residual generation

methods were, e.g., published by [58, 59,
60]methods include the use of principal component analysis, neural networks

or other black-box model approaches 10.
10An overview over the methods can be
found, e.g., in [2, 61, 62]

2.5.1 Parity Space

Parity space residual generation is based on analytical redundancy [63]. The [63] Kinnaert, “Fault diagnosis based on
analytical models for linear and nonlinear
systems-a tutorial”key concept of analytical redundancy is to define redundant expressions

within a nominal system model. In the fault-free, noise-free case, divergences
between the redundant expressions should be zero.11 11E. Chow and A. Willsky first proposed par-

ity space approaches for the generation of
analytical redundancy in 1984 [64].The general approach of nonlinear parity space generation is as follows:

Consider the nonlinear (deterministic) state-space model

d x t

d t
= f (x t , ut),

zt = h(x t , ut),
(2.48)
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where x t ∈ Rn is the state, ut ∈ Rl is the system input and zt ∈ Rm is the
system output. It is assumed, that the input and output signals, as well as
their derivatives

z(1)
t

, z(2)
t

, z(i)
t

, ..., u(1)
t

, u(2)
t

, u(i)
t

(2.49)

are known, with (i) indicating the order of the derivative. The states, how-
ever, may not be known. The goal is to find redundant expressions, which
only depend on the known signals. By multiple differentiations of (2.48),
redundant expressions of the unknown states can be formulated. These
expressions are then used to eliminate the unknown states and define a set
of residuals which are only dependent on the observed signals:

ri =Si

�

ut , zt , u(1)
t

, z(1)
t

, ..., u(i)
t

, z(i)
t

�

= 0,

i =1,2, ...
(2.50)

where Si is called the parity space. Depending on the kind of nonlinearity
this elimination step can be quite involved [65].[65] Bokor and Szabó, “Fault detection and

isolation in nonlinear systems”

2.5.2 Parameter-Based

Unwanted changes in the system behavior can have a significant effect on the
system’s parameter values. A residual based on those parameters is generated
such that the divergence between the system’s nominal parameters and
those estimated from (current) observations is computed [60]. The nominal[60] Isermann, Fault-Diagnosis Systems: An

Introduction from Fault Detection to Fault Tol-
erance parameter values must either be known, e.g., through expert knowledge, or

determined from nominal data, e.g., through parameter identification. If the
method is supposed to run online, an online estimation of the parameters is
needed, i.e., the estimation of the parameter can only depend on current and
past observations. If the system model is linear, the parameters are constants,
and the residual consists of the divergence of the estimated parameters’ value
from their nominal [66, 67, 68]. Then, parameter estimation methods such[66] Mulumba et al., “Robust model-based

fault diagnosis for air handling units”

[67] Kumar et al., “Development of parame-
ter based fault detection and diagnosis tech-
nique for energy efficient building manage-
ment system”

[68] Hu et al., “Photovoltaic fault detection
using a parameter based model”

as least-squares based approaches are used to determine the parameters
online.

In this thesis, the parameters of the cavity are determined according
to the FPGA implemented component, which is capable of computing the
parameters online.







3
Data Sets & Nominal Cavity Models

É SYNOPSIS In this chapter, the data sets are introduced. Then, cavity models
are defined which have the objective to represent nominal cavity behavior
when driven in SP-mode. The use of the model defined in (2.13) proved
to be challenging for this task. Thus two alternative models that represent
the Lorentz force detuning effect are proposed. A heuristic rule is defined
for the selection of nominal RF-pulses, which are needed to identify the
model parameters of each cavity. The models’ discretized version is given
and finally, to account for uncertainties in modeling and measurement noise,
uncertainty assumptions are included.

OVERVIEW

Anomaly and fault detection methods determine a measure of deviation
from nominal behavior [69]. While anomalies describe not further spec- [69] Ruff et al., “Deep one-class classifica-

tion”ified system or measurement behavior, faults are associated to a defined
phenomena. The performance of the detection scheme highly depends on
how accurately nominal behavior is defined.1 Thus, assumptions concerning 1The term nominal is chosen here (instead

of normal) to emphasize that it is not as-
sumed that the cavity behaves in an (how-
ever defined) optimal sense, but rather that
some selected properties are in an accept-
able range.

nominal cavity behavior, whether in the form of RF-pulse data or in the form
of a physical model (or both), need to be chosen carefully.

The models proposed in this chapter build the foundation from which the
difference between analytically obtained cavity outputs and the respective
measurements, i.e., residuals, are generated. Ideally the models represent
the true cavity behavior perfectly and the residuals obtained from nominal
RF-pulse behavior reduces to white noise [60]. The cavity model has so far [60] Isermann, Fault-Diagnosis Systems: An

Introduction from Fault Detection to Fault Tol-
erancenot been used for the generation of residuals. To fill this gap, two detuning

models are proposed with which the cavity output can be simulated.
The cavity-wise model parameters need to be identified from nominal

RF-pulses. Up until now, there are no methods available with which a pre-
selection of nominal pulses is possible.2 RF-pulse behavior can be evaluated 2The quench detection server is only ca-

pable of labeling the observed RF-pulses as
’quench’ or ’no quench’manually by an experienced operator, but so far no automatic labeling exists.

Thus, a heuristic rule is defined to select nominal RF-pulses for the training
of the cavity models.

The RF-pulses collected for this thesis are used for the modeling, the
residual generation and evaluation, as well as the testing of the proposed
anomaly detection methods. RF-pulses over several stations and varying time

33
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spans were collected. The structure of the data is described and properties
of the cavity operation are recounted.

The chapter is structured in the following way: First, the data sets are
introduced. Then the selection of nominal RF-pulses from these data sets is
described. Next, the proposed nominal cavity models are introduced. The
chapter ends with a discretized version of the models and the inclusion of
uncertainty for a stochastic cavity model representation.

3.1 DATA SELECTION

The RF-pulse data was collected via the DAQ, see Chapter 2.3.1, at several
time-periods between March 2019 and January 2020. The time-periods span
between three hours to more than 14 days at a time and include various
stations. In this section key properties of the selected time-spans for which
the data was stored, and rules with which nominal RF-pulses were selected
are described.

3.1.1 Cavity Operation Properties During Data Collection

Over 70 TB of RF-data from six different stations was collected and stored.
The data sets can be roughly categorized into

1. long-term measurements of nominal operation (several weeks)

2. data sets including thermal breakdowns (quenches)

3. data from "study times".

The long-term measurements are of two arbitrarily picked stations, i.e.,
A12.L3 and A17.L3.3 Piezo-electric detuning controllers were installed in3The names of the RF-stations result from

a numbering of the stations (A1, ..., A25);
"L3" indicates that the respective station is
located in the main LINAC.

all RF-stations of the EuXFEL after December 2019 and thus most of the
data considered in this thesis stems from a cavity operation without piezo-
electric detuning control. However, for station A17.L3 (which was used to
test the piezo-controller prior to the global installment) two weeks from
November 2019 include RF-pulses which were obtained with piezo-electric
detuning control.

One data set was stored in which the RF station is not in nominal op-
eration mode, but in "study time". The set-point of the station was altered
manually. This data set is used to determine the sensitivity of the detection
methods with respect to set-point changes. An overview of the selected data
sets is given in Table 3.1.

A total of six instances of quenches were stored. For those, RF-pulses of
around three hours prior to the quench were collected for the entire station,
i.e., for all 32 cavities. Table 3.2 summarizes the dates and cavities for which
the quench was detected.

Ramp-ups and ramp-downs occurring during the selected time-periods
were excluded from analysis, as were those cavities which were detuned.
Furthermore, pulses affected by a measurement inconsistency, which de-
tects single phase sample measurements as zero, when they are actually
around ±180 deg were corrected [14].[14] Nawaz et al., “Anomaly Detection for

Cavity Signals-Results from the European
XFEL”
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Station Beam Operation Piezo Quench Duration [h]

A17.L3 on nominal on/off yes 792

A12.L3 on nominal off none 480

A16.L3 on study off none 3.5

A11.L3 on nominal off yes 3

A24.L3 on nominal off yes 3

A20.L3 on nominal on yes 3

TABLE 3.1: Data set description of the com-
plete RF-pulse collection analyzed in this
thesis.

Date Station Cavity Time Piezo Name

22.03.2019 A17.L3 M4.C8 20:02:15 off I

23.03.2019 A17.L3 M1.C2 23:51:10 off II

07.10.2019 A11.L3 M1.C3 06:00:15 off III

07.10.2019 A25.L3 M2.C1 06:02:00 off IV-1

07.10.2019 A25.L3 M2.C6 06:02:00 off IV-2

13.02.2020 A20.L3 M4.C4 17:00:15 on Vpz

TABLE 3.2: Overview over six quenches,
which happened on five different days and
in different cavities. The names of the cav-
ities are defined by the cryogenic module
(M1, ..., M4) in which the cavity is installed
and the number of the cavity (C1, ..., C8)
in that module. To refer directly to singe
events, each set was given a name.

3.1.2 Data Set Descriptions

The full amount of collected RF-data was divided into different sets. First,
the structure of the data set and the notation used in this thesis to describe
the data per cavity, pulse and sample is introduced. Then the sets are briefly
described. It is important to make a distinction between those RF-pulses
collected from cavities with piezo-electric detuning controller and those
collected from cavities without. If a data set belongs to the former category,
it is marked by ”pz”, e.g., X pz .

Collected from the DAQ, the uncalibrated forward, probe and reflected
RF-pulse signals were stored in their amplitude and phase, respectively.
Each RF-pulse was then calibrated as described in 2.3.2, for which the
reflected signal is needed. After calibration, the reflected signals were no
longer needed. The following describes the data structure notation used
for the calibrated signals. Each data set contains I and Q measurements of
the forward and probe signals of np RF-pulses for each of the ncav cavities
belonging to the set. A RF-data set is described by

X =
¦

XF,I , XP,I , XF,Q, XP,Q
©

, (3.1)

where XF,I ,XF,Q,XP,Q,XP,I ,XR,Q ∈ Rncav×np×ns are tensors of the calibrated for-
ward I and Q, as well as the probe I and Q signals, and ns denotes the
total number of samples in each RF-pulse. When only parts of the full sets of
each cavity are needed, the following indexing notation is used: Choosing
the sample k for one cavity ic and all pulses ip is denoted as Xic ,:,k, i.e.,

Xic ,:,k =
¦

XF,I

ic ,:,k
, XP,I

ic ,:,k
, XF,Q

ic ,:,k
, XP,Q

ic ,:,k

©

. (3.2)
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Data Description Stations/ Cavities

M,Mpz selected nominal RF-pulses all

for training

M̃,M̃pz selected nominal RF-pulses all

for validation

Q,Qpz quenching RF-pulses stations listed in Table 3.2

S RF-pulses of C6.M1 of L17.L3 C6.M1 of L17.L3

T ,T pz non-severe data A12.L3, A17.L3

TABLE 3.3: Overview of different data sets.
RF-pulses collected when the piezo-electric
detuning controller was running, are de-
noted with "pz ".

This data structure is used for all data sets which are now introduced by
their names, their associated variable and their purpose in this thesis.

The nominal data sets M,Mpz are used to determine nominal cavity
parameter values as well as nominal characteristics of the anomaly/fault
detection methods. They are selected from the beginning of each collection
period for every cavity and are chosen such that they conform to specific
rules described in the next section. Each cavity has its own set of nominal
RF-pulses.

The validation data sets M̃,M̃pz are chosen according to the same
criteria as the nominal data sets, however, they are not used to determine
the cavity parameters but were set aside for model validation purposes.

RF-pulses associated to a quench event are denoted by Q,Qpz . The
quench data sets are the only ones with labels (through the current quench
detection system), i.e., each RF-pulse is either labeled as "quench" or as "no
quench". In this thesis a quench event is associated to multiple quenching
RF-pulses, which often have a cascading property. The severity of a quench
often gets worse from pulse to pulse and thus the first quenching RF-pulse
usually shows the smallest effect of the quench. After the detection of the
quench, the RF-signal of the station is switched off. Between the detection
of the first quench and the RF turn-off the station generated at least three
RF-pulses. This lead to the fact that each quench event contained at least
three quenching RF-pulse.

Table 3.2 shows six instances where a quench was detected. The first
two instances occurred in two different cavities of station A17.L3 with more
than 24 hours apart. Those quench events are referred to as events I and
II, respectively. Another quench occurred in A11.L3. This event is referred
to as event III. Only two minutes later, in a different station, i.e., A25.L3
two cavities quenched with one pulse apart. Although they can be seen as
one quench data set, in order to be able to refer to each cavity individually,
the two quench events are named IV-1 and IV-2. Finally one quench event
is considered, which occurred in January 2020. This quench event is the
only one analyzed in this thesis for which piezo-electric detuning control
was running. This event will be referred to as Vpz .

Anomalous behavior was manually observed (but not automatically
detected) in parts of the RF-pulses collected for cavity C6.M1 of station
A17.L3 when it was run without piezo-electric detuning control. To further
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analyze this behavior, the RF-pulses of that cavity were separated from the
rest of the station and collected in the data set S.

The non-severe data set T ,T pz is defined by those RF-pulses which were
recorded for the long-term data and for which no quenches were detected
and data set S was excluded. Those data sets are referred to as non-severe,
since any anomalies detected in that time-span did not immediately lead to
a shut-down of the station, and were not deemed severe by an expert.

Except for nominal training and nominal validation sets, the data sets
all entail consecutive RF-pulses and thus define a time period between the
fist and final time of recording the pulses.

3.1.3 Defining Nominal RF-Pulse Data

Each cavity has its own individual properties. These include the unavoidable
differences resulting from their manufacturing to the way they are tuned,
and at what set-point they are operated. Thus, to determine each cavities’
nominal parameter values, nominal RF-pulses of that cavity were needed.
While an expert may be able to manually select nominal RF-pulses, the
amounts of RF-pulses produced (600 each second for each cavity), and the
amount of data stored and analyzed for this thesis make such a manual
selection tedious. The following describes the heuristic rules that aim at
selecting RF-pulses such that the possibility of picking anomalous RF-pulses
is reduced.

For the RF-pulses to be nominal, they need to stem from nominal cavity
operation, i.e., those of a user-run. This entails that the gradient set-points
are fixed and do not exceed the limits of the stations. The cavities are tuned
close to resonance using the stepper motors, and the RF-stations are on-beam,
i.e., accelerating electron bunches for the generation of X-ray flashes. In
nominal operation, all feedback loops controlling the RF fields in the cavities
are closed, including the feed-forward, learning feed-forward, and the MIMO
controller. Since active resonance control using piezo-electric tuners became
available only after January 2020, for the data collected before that date,
operation without piezo controllers was considered nominal.

Furthermore, the RF-pulses are defined as nominal when they were not
labeled as or lead up to a quench or other RF-station trip, and when the
static detuning f̄ ∆ stayed within an acceptable range of ±25 Hz, [32]. The [32] Schilcher, “Vector Sum Control of

Pulsed Accelerating Fields in Lorentz Force
Detuned Superconducting Cavities”static detuning is defined as the mean detuning over the flattop of the pulse,

i.e.,

f̄ ∆ =
1

n f l t

kd−1
∑

k=k f

f ∆k , (3.3)

where n f l t are the number of samples in the flattop and f ∆k is determined
from (2.17) using numerical differentiations. For cavities tuned near reso-
nance, the mean static detuning is around 0 Hz. In the data sets taken in
2019, although in user-run, individual cavities were not tuned around 0 Hz.
Instead of excluding those cavities from the evaluation, the nominal detun-
ing is determined relative to the mean static detuning over several RF-pulses.
The threshold of acceptable divergence from the mean is again set at 25 Hz.
In Figure 3.1 static detuning values over three hours for a cavity without
piezo-electric control in the flattop are depicted. These variations are an
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FIGURE 3.1: Static detuning values over the
period of three hours. It is assumed that
nominal RF-pulses deviate from the mean
static detuning by ±25 Hz

extreme example and this behavior is not assumed to be nominal even for
cavity operation without piezo-electric detuning control [70, 71].[70] Branlard et al., “LLRF testing of super-

conducting cryomodules for the European
XFEL”

[71] Branlard et al., “LLRF tests of XFEL
cryomodules at AMTF: first experimental re-
sults”

In an online operation, nominal RF-pulses would be selected at the
beginning of the detection period for each cavity. The parameters derived
from those RF-pulses would then be used for the evaluation of the anomalies
of any future pulses.

For the estimation of the model parameters described in the subsequent
section, nn = 1000 pulses are used, selected randomly from the set of pulses
fulfilling the above defined requirements. Choosing nn = 1000 corresponds
to a confidence of 90%, that the estimation of the distribution parameters
is close to their actual values [72]. The following section introduces two[72] Neyman, “Outline of a theory of statisti-

cal estimation based on the classical theory
of probability” models for the Lorentz force detuning effects on the cavities.

3.2 NOMINAL CAVITY MODELS

The effect of Lorentz forces on the cavity were described in Chapter 2.2.3,
and a second order differential equation was introduced with which their
effects on the RF-fields can be modeled. However, identifying the necessary
parameters with the given RF-pulses turns out to be challenging and thus,
two alternative cavity models are proposed.

3.2.1 Detuning Model

In Chapter 2.2.3, a second-order system was used to describe superimposed
mechanical oscillations affecting the cavity due to field-dependent Lorentz
forces. When using this model structure for the cavities, the mechanical
resonance frequencies αm, the time constants γm, and the Lorentz force
detuning constants βm accompanying the most dominant resonant modes nm

need to be estimated.4 Furthermore, the initial values of each detuning4In continuous-wave operation, 20 me-
chanical modes were identified [34]. mode, i.e., the initial state vector, also needs to be determined. Determining

the parameters for each cavity should not interfere with a user-run. Thus,
measuring the cavities’ mechanical resonances, e.g., by exciting the modes
mechanically, is not practicable. Instead, the unknown parameters may
be determined from the RF-pulse measurements. Mechanical resonance
frequencies for TESLA SRF cavities were determined for the first three
modes in [73], and for the first four modes in [74], see Table 3.4. The[73] Czarski et al., “Cavity parameters iden-

tification for TESLA control system develop-
ment”

[74] Jugo et al., “Control algorithm tests
using a virtual CW SRF cavity”

mechanical frequencies are slow compared to the length of a single RF-pulse
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Mode 1 Mode 2 Mode 3 Mode 4 Unit

Frequency [74] 41.7 93.7 171.7 193.5 Hz

Frequency [73] 235 290 450 Hz

βm [73] 0.4 0.3 0.2 – Hz/(MV)2

TABLE 3.4: Frequency and Lorentz force de-
tuning parameters.

and the "missing" information about the system behavior between the pulses
is comparatively large.

Figure 3.2 depicts the first four frequencies as determined by [74], as-
suming a zero phase at time = 0. The dashed line at t f indicates the end
of a single RF-pulse measurement, its duration only barely surpassing the
first quarter of a full oscillation period for the highest frequencies. A proper
estimation of these frequencies from the pulses alone would result in a high
uncertainty of the estimated parameters, and first attempts to identify them
have been unsuccessful.

The following alternative detuning models make use of the fact that in
nominal user-run operation, the pulse to pulse variation of the detuning is
low. Both models are thus restricted to fixed vector-sum set-points of the
forward fields, which is assumed for nominal RF-station operation. Only
then are detuning traces reproduced accurately from pulse to pulse and are
only slightly (up to ±10 Hz) modulated by microphonics [37].

3.2.2 First Order Detuning Model

A first-order system is assumed which is similar to the polynomial fittings
proposed in [73] where piece-wise polynomials for the filling, flattop and
decay were used to determine the detuning estimations online. The first-
order system as used in this thesis, was previously proposed in [32]. It is [32] Schilcher, “Vector Sum Control of

Pulsed Accelerating Fields in Lorentz Force
Detuned Superconducting Cavities”given by

d x m
t

d t
= −

1
γm

x m

t − 2πβm|v¯
P

t |
2, (3.4)

where γm,βm are the characteristic detuning time and Lorentz force detuning
constants, respectively, and the total detuning is obtained by superimposing
the individual (first-order) detuning components x m

t ∈ R, i.e.,

f ∆t =
nm
∑

m=1

x m

t , (3.5)
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FIGURE 3.2: Mechanical modes in compari-
son to the length of a single RF-pulse. The
mechanical oscillations are slow in compari-
son to the single RF-pulse, ending at t f . In
addition two successive pulses are in rela-
tion to those oscillations far apart.
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where nm is the number of mechanical modes considered for the model.
The detuning parameters are estimated using the linear state space model
for the detuning described by (3.4) and (3.5). This is possible, because the
model defined by (3.4) and (3.5) can be decoupled from (3.6), when using
the detuning estimation f ∆t as the system output and the squared probe
signals |v

¯
P
t |

2 as its input.
The estimation of the model parameters is described in more detail in a later
part of this chapter. First, an alternative model is introduced which uses
the nominal detuning estimations as a fixed additional input to the cavity
model (3.6).

3.2.3 Model with Nominal Detuning Trace

The following model uses the nominal detuning over the RF-pulse as an
additional (and fixed) input to the cavity model.

This has, e.g., the practical advantage of restricting the number of states
to two such that the cavity model of (3.6) can then be formulated as

dvP,I
t

d t
=− 2π f †vP,I

t − 2πuI I I

t vP,Q

t + 2 f̃ †
�

vF,I

t + vB,I

t

�

,

dvP,Q
t

d t
= 2πuI I I

t vP,I

t − 2π f †vP,Q

t + 2 f̃ †
�

vF,Q

t + vB,Q

t

�

,

(3.6)

where uI I I
t is the nominal detuning value estimated from nominal RF-pulses.

Additionally for a fixed set-point operation of the cavity, the pulse to pulse
variations of the detuning should be negligible and the thus obtained nominal
model for the cavities may be very accurate. Instead of having to estimate
the mechanical parameters for the nm modes, the nominal detuning values
for the entire RF-pulse are used. Before describing the estimation procedures
for both models, their discretized versions are given.

3.2.4 Discretization

With the comparatively high sampling rate fs = 1 MHz, the Euler forward
method is chosen for the discretization of the model. The discrete-time
model may then be summarized to a set of difference equations describing
the electromagnetic properties of the cavity by

x I

k+1 =− a0 x I

k − 2πTs f ∆k x I I

k + b0u
I

k,

x I I

k+1 = 2πTs f ∆k x I

k − a0 x I I

k + b0u
I I

k

(3.7)

where Ts =
1
fs

and

a0 = −1+ f †Ts, b0 = 2π f †Ts. (3.8)

are the model parameters after discretization. The model outputs are then
defined by

y I

k =x I

k,

y I I

k =x I I

k ,
(3.9)
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where

uk =





uI
k

uI I
k



=





vF,I

k

vF,Q

k



 , yk =





y I
k

y I I
k



=





vP,I

k

vP,Q

k



 , (3.10)

are the input and output measurements.
When using the first-order models for the mechanical properties of the

cavity, the discretized states

x m

k+1 =− am x m

k + bm

�

x I

k
2 + x I I

k
2
�

,

f ∆k =
m=nm−3
∑

m=3

x m

k ,
(3.11)

are added, where

am = −1+
1
γm

Ts, bm = βmTs, (3.12)

are the discretized model parameters.
When alternatively using the nominal detuning values as an additional

input to the system, then
f ∆k = uI I I

k , (3.13)

where uI I I
k represents the additional discretized input.

Identifying the nominal parameters of the first-order and fixed-trace
models is described in the subsequent section.

3.3 DETERMINING NOMINAL CAVITY PARAMETERS

This section describes the identification of nominal parameters. For each
cavity ic , the parameters are determined from the calibrated nominal RF-
pulses Mic ,:,:, if ic refers to a cavity operated without piezo-electric control
and Mpz

ic ,:,:
, if for that cavity piezo-electric control was on. For the cavity

model defined by (3.7) the time-varying detuning of the cavity f ∆k , and the
pulse-wise half-bandwidths f †, f̃ † with f † ≈ f̃ † need to be determined for
each cavity.5 5As defined in Chapter 2: The parame-

ter f̃ † describes the bandwidth dominated
by the external quality factor and is assumed
constant over the RF-pulse, f † on the other
hand can change during an RF-pulse.

First the half-bandwidth is determined from the decay samples of the am-
plitude probe measurements as described in (2.16) for each of the RF-pulses
in Mic ,:,:, or Mpz

ic ,:,:
. The distribution of the half-bandwidth is assumed to

be Gaussian, i.e., for each cavity ic , it is described by the random variable F †,
with

F † ∼ p( f †|Mic , :, kd :ns
) =N
�

f †;mF† , VF†

�

, (3.14)

where kd : ns denote the samples of the decay of the RF-pulse and mF† , VF† ∈ R
are the estimated mean and variance, respectively. It is thus assumed that
the best (maximum likelihood) estimation of the nominal half-bandwidth
parameter is given by f † =mF† ≈ f̃ †.

The nominal bandwidth mF† is then used to determine the cavity-dependent
detuning, computed with the RF-pulses of Mic ,M

pz
ic

with the intra-pulse
parameter calculation described in (2.17), which is used for determining
the nominal detuning values for each cavity.

Each sample k of the detuning is assumed to be Gaussian distributed
over the set of nominal RF-pulses belonging to each cavity, i.e.,

F∆k ∼ p( f ∆k |Mic , :,k) =N
�

f ∆k ;mF∆k
, VF∆k

�

, (3.15)
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FIGURE 3.3: Nominal detuning traces of
a cavity operated with and without piezo-
electric detuning control. The piezo-electric
controller assures that the detuning values
during the flattop of the pulse are around
zero.

where mF∆k
, VF∆k

∈ R is the mean and variance of each detuning sample in
a pulse. Figure 3.3 shows nominal detuning traces mF∆k

including their
variance bounds of VF∆k

for the RF-pulses collected during a cavity operation
with (Mpz) and without (M) piezo-electric control.

The nominal detuning values mF∆k
are used as the additional input to each

cavity as described in (3.13), i.e., uI I I
k = mF∆k

. It is also used to determine
the first-order mechanical detuning parameters of (3.11).

3.3.1 Detuning Parameter Identification

The parameter values are identified using the grey-box model structure in
the form of a linear state space model given by a set of differential equations,
i.e.,

d x t

d t
=







− 1
γ1

0 0

0
... 0

0 0 − 1
γnm






x t + 2π









β1
...

βnm









u∗t ,

y ∗t =
�

1, ..., 1
�

x t

(3.16)

where u∗t = |v¯
P
t |

2 ∈ R and y ∗t = f ∆t ∈ R are virtual, i.e., estimated input and
outputs and

x t = [x
1
t , ..., xnm

t ]
T ∈ Rnm . (3.17)

The inputs u∗t are the estimated nominal detuning values mF∆k
of 3.15. The

identification of the parameters consists of determining the initial state vec-
tor x0 ∈ Rnm , the order of the model nm and identifying the time constants γm

and the Lorentz force detuning constants βm for each mode.
The algorithm is based on the least-squares method and was performed using
the grey-box estimation algorithm implemented in the System Identification
toolbox of MATLAB [75].[75], MATLAB version 9.3.0.713579

(R2017b) Best identification performances were obtained when choosing a model
order of nm = 4 for each cavity.

The quality of the identification is assessed by comparing the measured
probe signals to the forward simulation of the model using the forward
signal measurements. For comparison the normalized mean squared error is
determined, with a maximum fit of one. The initial states and parameters
used for the identification procedure are different for each cavity and are
determined using a random search with 60 iterations, see e.g. [76, 77], over[76] Bergstra and Bengio, “Random search

for hyper-parameter optimization”

[77] He et al., “AutoML: A Survey of the
State-of-the-Art”

a range of possible initial parameters and then selecting those initial param-
eters resulting in the highest overall fits. Both vP,I

k and vP,Q

k measurements
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could be predicted with normalized mean squared error fits between 0.70
and 0.98.

3.4 STOCHASTIC CAVITY MODEL

So far, uncertainties inherent to all physical processes are not accounted
for in the cavity model. To do so, the cavity state, input and output vectors
are now represented as random variables. Additional random variables are
introduced, modeling the process and measurement noise of the cavity.
Thus the following extended, stochastic cavity model may be considered:

X I

k+1 =− a0X
I

k − 2πTs F
∆

k X I I

k + b0U
I

k + I I

k,

X I I

k+1 = 2πTs F
∆

k X I

k − a0X
I I

k + b0U
I I

k + I I I

k ,

Z I

k =X I

k + D I

k,

Z I I

k =X I I

k + D I I

k ,

(3.18)

as well as the mechanical properties described by four detuning modes, i.e.,

X m

k+1 =− amX m

k + bm

�

X I

k
2 + X I I

k
2
�

+ I m

k ,

F∆k =
m=nm−3
∑

m=3

X m

k ,
(3.19)

where D I
k and D I I

k are Gaussian distributed random variables representing
the measurement noise of the system and I I

t and I I I
t are Gaussian distributed

random variables representing the process noise/ modeling uncertainty of
the electromagnetic system, whereas I m

k is the random variable representing
the noise in the detuning for each mode m.





4
Residual Generation & Evaluation

“A graphical model can be thought of as a
probabilistic database, a machine that can

answer "queries" regarding the values of the
sets of random variables. We build up the

database in pieces, using probability theory
to ensure that the pieces have a consistent

overall interpretation.”
—M. Jordan [46]

É SYNOPSIS In this chapter, the nominal cavity assumptions introduced in
the previous chapter are used to define three model-based residuals, each of
which describe a measure of divergence between the expected nominal cavity
behavior and the calibrated electromagnetic field measurements. Then, two
residual evaluation methods are introduced. The first method assumes
that only the nominal distribution is known and can be represented as a
Gaussian. The second method assumes that data pertaining information
about the fault distribution is available and different fault classes can be
modeled by a GMM. Both models are introduced in factor graphs and the
evaluations are described via Gaussian message passing. To obtain the GMM,
parameters need to be estimated. Finding the parameters from unclassified
data (training) is also described as message passing. The chapter ends
exploring the possibilities of combining the residual generation methods
with the evaluation methods in the factor graph framework.

OVERVIEW

All methods considered in this thesis rely on the principle of analytical redun-
dancy,1 which mainly involves the use of signal processing techniques such as 1as opposed to hardware redundancy, com-

mon for analogue fault detectionstate and parameter estimation. Observer-based estimators or Kalman filters
are used for linear state estimations whereas least squared methods have
successfully been applied for the estimation of parameters in the context of
analytical redundancy. Only the parity space approach does not use signal
processing techniques, rather, it rearranges the input/output equations to
obtain redundant expressions of the same variable.2 This chapter describes 2A thorough overview over the different

approaches is given, e.g., in [2, 61, 62]three residuals for the cavity system. The first is represented in a factor graph
using Gaussian message passing, extending the stochastic nominal cavity
model given in (3.18) with the assumption that a fault/anomaly has an
additive effect on the outputs. Other assumptions are possible, e.g., consider-
ing multiplicative and additive effects on all the states or the parameters as
described for other systems in [78, 79]. That the faults have a direct impact [78] Ding, Model-Based Fault Diagnosis Tech-

niques: Design Schemes, Algorithms, and
Tools

[79] Gertler, “Structured residuals for fault
isolation, disturbance decoupling and mod-
elling error robustness”

on the parameters of the cavity system is considered in the deterministic
parameter-based method.

For the factor graph based residual, the marginal distribution of the
residual is inferred via message passing, for which a linear approximation

45
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of the nonlinear state transition is chosen. Using linear approximations
has the advantage that the resulting messages are again Gaussian, making
subsequent calculations easier. The approximations are chosen such, that
when used to infer the states, they are the same as obtained by the unscented
Kalman filter which was first introduced in [80]. The residuals thus gen-[80] Julier and Uhlmann, “New extension

of the Kalman filter to nonlinear systems” erated are also known as the innovation process of the unscented Kalman
filter, which is a well-established residual generator for nonlinear system
models, first introduced in [81], and used, e.g., in [82, 83].[81] Mehra and Peschon, “An innovations

approach to fault detection and diagnosis in
dynamic systems”

[82] Nag et al., “Model based fault diagnosis
of low earth orbiting (leo) satellite using
spherical unscented kalman filter”

[83] Wei et al., “Sensor fault detection and
isolation for wind turbines based on sub-
space identification and Kalman filter tech-
niques”

Although Bayesian networks have long been recognized as a modeling
tool for probabilistic fault diagnosis schemes, see [84], factor graphs have

[84] Cai et al., “Bayesian networks in fault
diagnosis”

not been applied as extensively.3 Using factor graphs in the context of

3Fault diagnosis is used as an umbrella
term and refers to detecting and locating
the affected component and identifying the
type of fault that occurred.

fault diagnosis has also been explicitly proposed by [8], whereas [85] has

[8] Gienger and Sawodny, “Data-based Pro-
cess Monitoring and Iterative Fault Diagno-
sis using Factor Graphs”

[85] Verbert, “Fault diagnosis and mainte-
nance optimization for interconnected sys-
tems: With applications to railway and cli-
mate control systems”

described the task of fault diagnosis as an inference problem at its core.
The second residual proposed makes use of the computations of the intra-

pulse cavity parameters described by (2.17) and (2.18). Taking advantage
of the fact that these computations are already implemented as an FPGA
component, a straight-forward parameter-based method is defined.

Finally, a nonlinear, deterministic parity space residual for the electro-
magnetic part of the cavity model is proposed.

The aim of residual evaluation is to detect changes in the residual and
classify them either within a binary classification into nominal, anomalous
or into multiple fault classes. There is a diverse range of different residual
evaluation methods, such as statistical tests, geometric classifiers, support
vector machines, change-point detection algorithms or neural networks,
to name just a few. For an overview see, e.g., [60], whereas [86] gives a

[60] Isermann, Fault-Diagnosis Systems: An
Introduction from Fault Detection to Fault Tol-
erance

[86] Basseville and Nikiforov, Detection of
abrupt changes: theory and application

thorough introduction to change point detection.
Two residual evaluation methods that have been applied to different

systems in the past for the detection of anomalies or faults, are here defined
as Gaussian message passing algorithms in factor graphs. Both methods
assume Gaussian distributions for both nominal and faulty residuals.

The first assumes that only the nominal (Gaussian) distribution of the
residual is known, from which a statistically significant divergence can
be detected using likelihood ratios. Both model selection in general and
likelihood ratios in particular have already been mentioned in the factor
graph context in [87, 88]. Likelihood ratios are used extensively for change[87] Zarrin and Lim, “Belief propagation

on factor graphs for cooperative spectrum
sensing in cognitive radio”

[88] Laar and Vries, “A probabilistic model-
ing approach to hearing loss compensation”

detection, model selection and hypothesis testing and play an important role
for the detection of changes in data-streams [89, 90, 86].

[89] Lu et al., “Change detection techniques”

[90] Chandola et al., “Anomaly detection: A
survey”

The second evaluation method assumes that the distribution over the
residuals for both nominal and anomalous may be represented as a Gaussian
mixture model (GMM), see Chapter 2.4.5. Different Gaussian components
may refer to different classes of anomalies, making a multi-class evaluation
possible. Using GMMs for the purpose of anomaly and fault detection has
been studied before, see, e.g., [91, 92]. Different from the likelihood ratio[91] Heydarzadeh and Nourani, “A two-

stage fault detection and isolation platform
for industrial systems using residual evalua-
tion”

[92] Yu, “Bearing performance degradation
assessment using locality preserving projec-
tions and Gaussian mixture models”

based method, the classification results are probabilistic, i.e., the evaluation
result gives the probability that the current measurements describe one of
the considered fault classes or the nominal [93, 94]. Both the evaluation of

[93] Schwall et al., “A Probabilistic Vehicle
Diagnostic System Using Multiple Models.”

[94] Zhang et al., “A probabilistic fault detec-
tion approach: Application to bearing fault
detection”

residuals and the training of the GMM parameters are described in factor
graphs including both noisy and deterministic residuals. GMM parameters
can be obtained, e.g., using the expectation-maximization (EM) algorithm.
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Training GMMs with noisy data has been described, e.g., in [95]. In one of [95] Ozerov et al., “Uncertainty-Based
Learning of Gaussian Mixture Models from
Noisy Data”the following sections, the updates of the parameters defined in [95] are

obtained through message passing. Outlier detection has previously been
proposed to be handled in the factor graph framework using for example
a normal prior with unknown variance, for the estimation of impulsive
signals [96]. [96] Loeliger et al., “On sparsity by NUV-

EM, Gaussian message passing, and Kalman
smoothing”Finally the residual generation with the unscented Kalman filter, the

evaluation using GMMs and the training of the GMM can all be represented
in one factor graph, describing one possibility for an overall method to
classify the RF-pulse samples.

The residual generation, evaluation and GMM parameter training is
published in [13]. The parity space residual generation is published in [11]. [13] Nawaz et al., “Probabilistic model-

based fault diagnosis for the cavities of the
European XFEL”

[11] Nawaz et al., “Anomaly Detection for
the European XFEL using a Nonlinear Parity
Space Method”

4.1 PROBABILISTIC RESIDUAL GENERATION

The stochastic cavity model described with (3.18) can be generalized to a
hidden Markov model with l inputs, m outputs and n states, i.e.,

Xk+1 =a(Xk) +BUk + Ik

Zk =CXk + Dk,
(4.1)

where Xk ∈ Rn, Uk ∈ Rl , Zk ∈ Rm are the state, input and output random
variables and Ik ∈ Rn, Dk ∈ Rm denote the random variables for process
(modeling) and measurement uncertainty, respectively. The real-valued
matrices B ∈ Rn×l and C ∈ Rn×m and the nonlinear, deterministic function
a : Rn→ Rn define the dependency between the random variables for each
discrete time-step k.

Figure 4.1 depicts the factor graph of this model. The graph structure
is the same as that of the linear state-space model introduced in Chapter 2.
The nonlinearity of the cavity system dynamic is represented by a nonlinear
factor node, defined as

fa = δ(x
′′
k − a(xk−1)), (4.2)

and labeled with the nonlinear function "a" in the factor graph. For this
node, the message passing updates for a linear system matrix (Chapter 2.4.4,

. . . =

C

+

NDk−1

Dk−1

zk−1

a + + =

B

C

+NDk

NIk

Xk−1 X ′′′k X ′′k

uk

Xk
′

zk

Dk

Ik

. . .
Xk

FIGURE 4.1: State-space factor graph with
nonlinear factor node a. The structure of
the graph is the same as in Chapter 2.4.4.
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Table 2.1) do not apply, instead message passing definitions for a nonlinear
transformation is used. When inferring the distribution over any variable in
the graph, the Gaussian messages that pass through this node are subjected
to a nonlinear transformation. A nonlinear transformation of a Gaussian
distribution is, in general, not Gaussian. To be able to handle nonlinear
transformations while still retaining the computational simplicity of Gaus-
sian message passing everywhere else in the graph (but at the nonlinear
factor node), an approximation (linearization) of the nonlinear function a is
desirable. Various approximations that result in a Gaussian with features
of the exact distribution, e.g., the mode, or the mean and covariance can
be found in the literature. Message passing computations to perform such
approximations in the factor graph framework were proposed by [97]. One[97] Herzog et al., “Iterative Approximate

Nonlinear Inference via Gaussian Message
Passing on Factor Graphs” such approximation was chosen, which, when used for the estimation of the

state variable Xk is equal to the unscented Kalman filter.

4.1.1 Residual Generation with Factor Graphs

So far, the state-space model in (4.1) does not account for faulty system
behavior. A fault can have a multiplicative or an additive influence on the
states, the output, the parameters of the model or a combination of all.

In the following it is assumed that anomalous behavior of the system can
be detected via a continuous random variable Rk which enters the state-space
equations through the output equation, i.e.,

Xk+1 =a(Xk) +BUk + Ik

Zk =CXk + Dk + Rk.
(4.3)

In Figure 4.2 the residual Rk is added to the factor graph. The residual
reveals information about a divergence between the estimated outputs using
the nominal model and the measurements which may or may not reflect
that nominal behavior. Assuming (for now) that nothing is known about
possible cavity faults, and the residual should not be used when estimating
the distribution over any other random variable in the factor graph, the
connection with the factor graph is denoted by a dashed line.44Another possibility is to choose a non-

informative prior for the residual, which
should have no effect on the inferred dis-
tributions of any other variable in the graph.
However, a non-informative Gaussian prior,
is defined as a Gaussian with zero mean
and infinite variance. Assuming this kind
of prior for the residual is not an option as
that would mean that this variance would be
added to the variance of the measurements.
This, in turn, would mean that the measure-
ments would not influence the estimation of
the state variables, i.e., after the transition
through the equality node, see Table 2.1.

Determining the marginal likelihood of Rk,i.e.,

p(rk|u0:k, z0:k, i0:k, d0:k, x0) (4.4)

the residual distribution can be inferred. In the factor graph this is equivalent
to the backward message

←
µRk

. Assuming the observations of Zk and Uk are
known and deterministic, the forward message

→
µUk
=N (uk;

→
mUk

, 0) describ-
ing the inputs and the backward message

←
µZk
=N (zk;

←
mZk

, 0) describing the
outputs are degenerate Gaussian distributions and the associated prior nodes
in the factor graph are therefore denoted by a solid black node. Assuming fur-
ther that both measurement and process noise are zero-mean distributions,
i.e.,

→
mDk
=
→
mIk
= 0 the mean and covariance of the residual distribution

←
µRk
=N
�

rk;
←
mRk

,
←
VRk

�

, (4.5)
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FIGURE 4.2: State-space model is extended
with the continuous random variable Rk.
The marginal likelihood of that variable is
its backward message

←
µRk

which is used to
define the residual.

are given by

←
mRk
=
←
mZk
−C
� →

mX ′′k
+B

→
mUk

�

,
←
VRk
= C
� →

VX ′′k
+
→
VIk

�

CT+
→
VDk

,
(4.6)

where X ′′k denotes the state variable to the right of the nonlinear factor node,
and the forward message on that edge

→
µX ′′k
=N
�

x ′′k ;
→
mX ′′k

,
→
VX ′′k

�

(4.7)

is the approximated Gaussian distribution which results from the nonlinear
factor node definitions.

Measurement and modeling noise priors need to be selected to tune the
estimations. They are selected such that the residuals for nominal data are
zero-mean Gaussian, e.g., see [98]. [98] Åkesson et al., “A generalized autoco-

variance least-squares method for Kalman
filter tuning”The generated residual is a Gaussian distributed continuous random vari-

able with an estimated mean and covariance. When evaluating the residual,
the covariance estimation may or may not be taken into consideration. Both
possibilities are explored in later sections of this chapter.

Applied to the Cavity Model

Since the cavity system equations provide two outputs, the inferred nomi-
nal residuals are two-dimensional Gaussian distributions. Given that two
detuning models were proposed for the cavity system, two versions of the
unscented Kalman filter residuals are considered in this thesis. The first
residual is the one generated using the first-order detuning model, i.e.,

R fo

k ∼N
�

r fo

k ;mr fo
k

, Vr fo
k

�

(4.8)

where mr fo
k
∈ R2,1 and Vr fo

k
∈ R2,2 are the estimated mean vector and

covariance matrix, respectively generated for each sample k in the RF-pulse
and

r fo

k =

�

r I , fo

k

rQ, fo

k

�

(4.9)
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is the two-dimensional residual for I and Q components of the RF-signals,
respectively. Equivalently, the residuals generated using the fixed-detuning
model is denoted by

R ft

k ∼N
�

r ft

k ;mr ft
k

, Vr ft
k

�

(4.10)

where again mr ft
k
∈ R2,1 and Vr ft

k
∈ R2,2 are the mean vector and covariance

matrix estimations generated and

and r ft

k =

�

r I , ft

k

rQ, ft

k

�

(4.11)

are the residuals of I and Q components of the RF-signals when using the
fixed-detuning model.

4.2 DETERMINISTIC RESIDUAL GENERATION

In classical model-based fault detection, three methods have been used
extensively: The parity space, the observer-based and the parameter-based
approach.

In Chapter 2, these methods were introduced and the following thus only
defines their generation as specified for the cavity system. The parameter-
based residual is motivated by the fact that the values of the cavity parameters
over the duration of the pulse is already part of a FPGA component as
described in [38]. Deviations of the parameters can thus be obtained, when[38] Rybaniec et al., “Real-time estimation

of superconducting cavities parameters” the online estimations are compared to nominal expected parameter values
of each cavity. Furthermore the parameter space, consisting of detuning
f ∆ and half-bandwidth f † may be more sensitive towards anomalies or
faults affecting the cavity parameter properties, than both parity space and
unscented Kalman filter residuals.

This section presents two methods that define residuals based on the
cavity model described in Chapter 2.2.4. The methods are deterministic
since uncertainty in measurement and modeling is neglected.

4.2.1 Parameter-Based Residual

The SRF cavity is described by the nonlinear system model 2.2.4, which
includes the RF input-dependent detuning f ∆k and the half-bandwidth f †

k .
Since the cavities are currently operated in pulsed mode, the detuning is time-
varying over the pulse.5 The variations over the pulse for both parameters5 When the cavities are operated in CW,

detuning and half-bandwidth are assumed
constant, and an online estimation of the
parameters can be compared to constant val-
ues.

should be highly repetitive for nominal behaviors.

Nominal parameter changes over the RF-pulses for each cavity are deter-
mined from nominal data using the detuning (2.17) and half-bandwidth (2.18)
computation. In nominal operation, where the same inputs are used from
pulse to pulse, the half-bandwidth values and the detuning at sample k
should—apart from unavoidable uncertainties—be constant. For each cav-
ity ic , data stream vectors containing the values of all ns samples in an
RF-pulse for the nominal detuning f∆ = { f ∆k=1, ..., f ∆k=ns

} and nominal half-

bandwidth f† = { f †
k=1, ..., f †

k=ns
} for each cavity with data from the nominal

set M or Mpz .
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FIGURE 4.3: Half-bandwidth over an RF-
pulse with and without piezo-electric de-
tuning control. In the flattop the beam-
loading changes the half-bandwidth. With-
out a beam, the half-bandwidth should not
change over the pulse.

The sample distribution of each element in f∆ or f† can be described by a
Gaussian distributed random variable for each cavity ic and sample k, i.e.,

F †

k ∼ p( f †
k |Mic , :,k) = N

�

f †
k ;mF†

k
, VF†

k

�

, (4.12)

F∆k ∼ p( f ∆k |Mic , :,k) = N
�

f ∆k ;mF∆k
, VF∆k

�

, (4.13)

where mF†
k
, VF†

k
∈ R and mF∆k

, VF∆k
∈ R are the mean and variance of the half-

bandwidth and detuning estimations, respectively. An exemplary evolution
of the half-bandwidth over the RF-pulse of a cavity is depicted in Figure 4.3,
showing mean and standard deviation for each sample. Detuning over the
pulse was already shown in Figure 3.3.

Using the mean values of the nominal distributions, the following zero-
mean residuals for nominal RF-pulse behavior can be defined

r∆k = f̂ ∆k −mF∆k
(4.14)

r †

k = f̂ †
k −mF†

k
, (4.15)

where f̂ ∆k , f̂ †
k are the detuning and half-bandwidth values of the current

RF-pulse at sample k.
Both (4.14) and (4.15) are used to define the parameter-based residual as a
two-dimensional vector in each sample, i.e.,

rPB

k = [r
∆

k , r †

k]
T , (4.16)

where rPB

k ∈ R
1×2 for each evaluated sample at instant k.

4.2.2 Nonlinear Parity Space Method

The parity space method was introduced in Chapter 2. For the cavity sys-
tem, consider the discretized electromagnetic cavity model, first introduced
in (3.7) and repeated here for convenience:

x I

k+1 = −a0 x I

k − 2πTs f ∆k x I I

k + b0u
I

k (4.17)

x I I

k+1 = 2πTs f ∆k x I

k − a0 x I I

k + b0u
I I

k (4.18)

y I

k =x I

k,

y I I

k =x I I

k ,
(4.19)

where a0, b0 are constant parameters related to the nominal half-bandwidth,
see (3.7) and uI

k, uI I
k and y I

k, y I I
k are the I and Q input and output measure-

ments respectively.
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FIGURE 4.4: Residuals over RF-pulse
generated from the set of nominal RF-
pulses M,Mpz as defined in (4.22). The
mean values are deducted to obtain zero-
mean residuals over the pulse.

Two (redundant) expressions of the detuning f ∆k can be defined, by
solving both equations (4.17) and (4.18) for the detuning, which yields

�

f ∆k
�∗
=
−y I

k+1 − a0 y I
k + b0u

I
k

2πTs y I I
k

, (4.20)

�

f ∆k
�∗∗
=

y I I
k+1 + a0 y I I

k − b0u
I I
k

2πTs y I
k

, (4.21)

where
�

f ∆k
�∗

is the detuning derived from (4.17) and
�

f ∆k
�∗∗

is the detuning
derived from (4.18). The nonlinear parity space residual is then defined
as rk =
�

f ∆k
�∗ −
�

f ∆k
�∗∗

. Reformulating with a common denominator, leads
to

r ps′

k =
�

f ∆k
�∗

y I

k −
�

f ∆k
�∗∗

y I I

k . (4.22)

For the fault-free, noise-free case, i.e., only when model uncertainty is non-
existent and the measurements are noise-free r ps′

k = 0.
In reality, the parity space residuals generated from the nominal RF-

pulses M,Mpz have some deterministic divergences from zero, where
the model does not accurately represent the system behavior. Figure 4.4
depicts the deterministic divergences from zero, showing both the mean
and the variance bounds over the RF-pulse. To account for the inevitable
uncertainties in both measurement and model, the residual generated can
be expressed by

r ps′

k = r ps

k +N
�

r ps

k ;mr ps
k

, Vr ps
k

�

, (4.23)

r ps

k = r ps′

k −N
�

r ps

k ;mr ps
k

, Vr ps
k

�

, (4.24)

where mr ps
k
∈ R is determined from the set of nominal RF-pulses M,Mpz

for each cavity ic . When neglecting the variance and assuming Vr ps
k
= 0, i.e.,

the parity space residual proposed may be formulated as

r ps

k = r ps′

k −mr ps
k

, (4.25)

for each sample k.
Figure 4.5 summarizes the residual generation methods, with respect to

their modeling assumptions.
In the following section a likelihood ratio based evaluation method for

both the deterministic and probabilistic residuals is described in the factor
graph framework. To emphasize the mix and match property of factor
graphs, the following evaluation approaches are described independently
from the residual generation methods. Instead, some general data stream is
considered for which the evaluation methods are used to detect anomalies.
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Continuous Cavity Model

ẋ I

t =− 2π f † x I

t − 2π f ∆t x I I

t + 4π f̃ †uI

t + I I
t

ẋ I I

t = 2π f ∆t x I

t − 2π f † x I I

t + 4π f̃ †uI I

t + I I I
t

y I

t =x I

t + DI
t

y I I

t =x I I
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F † ∼N
�
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�
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�

F †
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�
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k
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k

�

Discrete Cavity Model

x I

k+1 =− a0 x I

k − 2πTs f ∆k x I I

k + b0u
I

k

x I I

k+1 = 2πTs f ∆k x I
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k , b0 = 2πmF† Ts

Detuning Trace Input

f ∆k = uI I I =mF∆k
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k
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1
γm
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Models for unscented Kalman filter (UKF)

Model for Parity Space (PS)

FIGURE 4.5: Nominal cavity models used in this thesis and an overview over the methods that
are associated to the respective cavity model aspects.
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4.3 EVALUATION WITH MODEL SELECTION/ HYPOTHESIS TESTING

The following model selection method assumes that the latest K , independent
observations from a data stream r= {r̂ j−K , ..., r̂ j} can best be modeled by one
of nM models {h1, ..., hnM

}. The models may be represented by a discrete
random variable H, where P(H = hi) is the probability that the model hi

is the generative model of the data stream. In this context, the terms
model selection and hypothesis testing can be used interchangeably. The
likelihood of the observed data for one of the models H = hi is then defined
as p(r|H = hi). The best model is determined by computing the posterior
probabilities over the models, i.e., using Bayes’ theorem (2.24)

P(H = hi|r)∝ p(r|H = hi)P(H = hi), (4.26)

where P(H = hi|r) is the posterior probability that the model H = hi gen-
erated the observed data. Then, the best model is chosen by selecting the
model with the highest P(H = hi|r).
In practice, the prior probability P(H = hi) can be determined from prior
knowledge but is often chosen subjectively or is assumed to be uniform [6].[6] Murphy, Machine Learning: A Probabilis-

tic Perspective When a uniform prior is assumed, the likelihoods p(r|H = hi) determine the
selection result.

Latent Model Parameters

Each of the considered models is defined by nΘ latent model parame-
ters θi = {θ 1

i
, ...,θ nΘ

i }. When the parameters of each model are unknown,
it is common to model them via a continuous random variable Θ with
model-dependent distributions p(θi|H = hi). Then

p(r|H = hi) =

∫

θi

p(r|θi, H = hi)p(θi|H = hi)dθi, (4.27)

is the marginal likelihood, also called the model evidence, obtained by
marginalizing over all parameters for each model H = hi. The full pos-
terior distribution is then given by

P(H = hi|r)∝
∫

θi

p(r|θi, H = hi)p(θi|H = hi)P(H = hi)
︸ ︷︷ ︸

p(r,θi ,Hdθi=hi)

dθi, (4.28)

where each model H = hi is constituted by their respective parameters θi

and thus

p(r|θi, H = hi) = p(r|θi). (4.29)

This straightforward approach to model selection/hypothesis testing can
easily be translated into a factor graph, and the model selection can be
performed using message passing.

4.3.1 Factor Graph Representation of Model Selection

In Figure 4.6 the factor graph of the joint distribution p(r,θi, H = hi), defined
by the right hand side of (4.28) is given. The graph represents the joint
distribution of each generative model for the observations r.
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p(r|θi)

p(θi |H = hi)

P(H = hi)

r̂

H

Θi

r̂ j−K r̂ j−K+1 . . . r̂ j

p(r j−K |θi) p(r j−K+1|θi) p(r j |θi)

= . . .

p(θi |H = hi)

P(H = hi)

Θi

H

FIGURE 4.6: Factor graph representation of
the model selection/hypothesis testing ap-
proach. Left: FFG model selection/hypoth-
esis testing distribution. A fully Bayesian
approach uses the marginal distribution
over H. Right: FFG of likelihood-based
change detection algorithms using the max-
imum likelihood of the marginal on Θ.

The model selection of (4.26) consist of determining the marginal on the
edge representing H, i.e.,

µH=hi
= P(H = hi|r̂) = P(H = hi)

∫

θi

p(θi|H = hi)p(r̂|θi)dθi

︸ ︷︷ ︸

←
µH=hi

. (4.30)

For anomaly detection only two competing models, i.e., a zero and an
alternative hypothesis are considered. The zero hypothesis h0 represents the
nominal, whereas the alternative hypothesis h1 represents the anomalous
distribution.

Bayes Factor

When no prior probability distribution of two competing models is available,
a uniform prior P(H = h0) = P(H = h1) is assumed. In that case the Bayes
factor is often used [6]. For a binary classification the Bayes factor is defined
by

BF0,1 =
µH=h1

µH=h0

=

←
µH=h1
←
µH=h0

, (4.31)

This means that the Bayes factor is determined from the ratio of the messages
representing one hypothesis, each. The model selection is thus equivalent to
picking the model with the higher marginal likelihood. To include a sense
of confidence over the selection, after all one model could be only slightly
better than the other, a scale of evidence for the Bayes factor is commonly
used [6].

Integrating over the parameters in (4.30) may, however, involve cumber-
some calculations. One reason for using likelihoods, which are described in
detail in the next paragraph is to circumvent these cumbersome calculations.

Likelihood-Based Tests

The following introduces likelihood-based hypothesis testing in factor graphs,
focusing on the likelihood ratio test. Here, this test is treated and understood
again through the factor graph model in Figure 4.6. Instead of marginalizing
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over the parameter distributions of the models, likelihoods are used and the
maximum likelihood of the parameters are determined.

The likelihoods are provided by message passing via the backward mes-
sage on Θ, i.e.,

←
µ
Θ=

∫

r

p(r|θi)p(r)dr= p(r̂|θi), (4.32)

and the maximum likelihood estimates of the parameters are used to compare
the models via likelihood ratios

LR0,1 =
max
θ1∈Θ1

←
µ
Θ (θi = θ1)

max
θ0∈Θ0

←
µ
Θ (θi = θ0)

=
max
θ1∈Θ1

p(r̂|θ1)

max
θ0∈Θ0

p(r̂|θ0)
=

p(r̂|θ̂1)

p(r̂|θ̂0)
, (4.33)

where Θ = Θ0 ∪Θ1 [86]. Equivalently the log-likelihood ratio which may[86] Basseville and Nikiforov, Detection of
abrupt changes: theory and application simplify the calculation is

Λ= ln
max
θ1∈Θ1

←
µ
Θ (θi = θ1)

max
θ0∈Θ0

←
µ
Θ (θi = θ0)

= ln
p(r̂|θ̂1)

p(r̂|θ̂0)
, (4.34)

where Λ is the log-likelihood ratio of the set of observations taken from a
data stream at k = j. The null hypothesis is rejected, if the ratio exceeds a
certain threshold ψth which is chosen according to an application-dependent
acceptable probability of false alarms ε, as is, e.g., described in [78]. This[78] Ding, Model-Based Fault Diagnosis Tech-

niques: Design Schemes, Algorithms, and
Tools test is referred to as generalized likelihood ratio test. In the following the

generalized likelihood ratio for Gaussian distributed hypotheses is described.

4.3.2 Generalized Likelihood Ratio for Gaussian Distributions

Again, the data is assumed to be i.i.d., i.e.,

p(r|θi) =
j
∏

k= j−K

p(rk|θi), (4.35)

represented by the factor graph in Figure 4.6, where the K individual mea-
surements of the data stream are connected through equality nodes.

In addition, the data is assumed to be zero-mean Gaussian distributed
when nominal, i.e. mR = θ0 = 0 , and a Gaussian distribution with mean
other than zero in case of an anomaly, i.e., mR = θ1 6= 0. It is thus as-
sumed, that changes in the residual only have an effect on the mean of the
distribution [78], i.e.,

p(rk|θi) =N
�

rk;mR = θi, VR

�

, (4.36)

where VR is the covariance of the zero hypothesis.
With known samples r̂, the backward message on Θ is the product of all

local likelihoods of each observation branch, i.e.,

←
µ
Θ (θi) =

j
∏

k= j−K

p(r̂k|θi). (4.37)

The mean value (and therefore the maximum value) for the zero-hypothesis
distribution is at θ0 = 0 whereas the change in mean θ1 is unknown but



EVALUATION WITH MODEL SELECTION/ HYPOTHESIS TESTING 57

−2 −1 0 1 2
0

20

40

60

observation

λ

−2 −1 0 1 2
0

0.05

0.1
pr

ob
ab

ili
ty

0 10 20
0

0.2

0.4

λ

pr
ob

ab
ili

ty

H = h1 H = h0

threshold ψth likelihood ratio λ

FIGURE 4.7: The general likelihood ratios
transform the moving average of a Gaussian
distributed variable into a χ2 distributed
variable according to the quadratic function
(left). Values further away from the Gaus-
sian mean are thus quadratically amplified
while values close to the mean are reduced
to zero.

can be estimated using the maximum likelihoods. According to (4.34), the
log-likelihood ratio is then

λk = ln
max
θ1∈Θ1

←
µ
Θ (θi = θ1)

max
θ0∈Θ0

←
µ
Θ (θi = θ0)

= ln
� ←
µ
Θ (θi = θ̂1)
�

− ln
� ←
µ
Θ (θi = θ0)
�

, (4.38)

where
θ̂1 = arg max

θ1∈Θ1

ln
� ←
µ
Θ (θi = θ1)
�

, (4.39)

for each evaluation of the latest K observations.
The maximum log-likelihood for θ1, leads to the log-likelihood ratio

λk =
K
2

� 1
K

k
∑

j=k−K

r̂T
j

�

V−1
R

� 1
K

k
∑

j=k−K

r̂ j

�

, (4.40)

where at each evaluation k, λk ∈ R+ has positive values. The derivation
of this result can, e.g., be found in [78]. The likelihood ratios are thus a
quadratic function of the last K observations’ mean value.

In Figure 4.7 the distributions of the moving average over two Gaussian
distributions are depicted. The Gaussian with zero-mean represents the
zero hypothesis. The quadratic function which determines the likelihood
ratios and given by (4.40) is depicted on the left. When the average of the
observations r̂ for a given window K are close to zero, the log-likelihood
ratios also take up values close to zero. With increased deviation from
zero, the log-likelihood ratios increase quadratically. Depending on what
probability of false alarm ε is chosen to be acceptable, the likelihood ratio
values may still be associated to the zero hypothesis. The transformation of
the Gaussian distribution results in χ2 distributions, depicted on the right.

Observations can then be evaluated according to a decision function
given by

dGLR(r̂) =







0 if ln
←
µ
Θ (θi = θ0)>ψth ln

←
µ
Θ (θi = θ̂1); h0 is chosen,

1 if ln
←
µ
Θ (θi = θ0)≤ψth ln

←
µ
Θ (θi = θ̂1); h1 is chosen,

(4.41)
where ψth is set according to an acceptable probability of false alarms ε. The
decision rule in terms of the log-likelihood ratio is thus

dGLR(r̂) =







0 if λk ≤ψth; h0 is chosen,

1 if λk >ψth; h1 is chosen.
(4.42)
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Using either the marginal or maximum likelihoods of (4.34), several other
standard model selection criteria, such as the Akaike information criterion
can be derived, this relationship is, e.g., described in [6]. A reconciliation[6] Murphy, Machine Learning: A Probabilis-

tic Perspective between the Bayesian approach of Bayes factors, and the likelihood ratios is
the Bayesian information criterion (BIC), which was derived by Efron [99].[99] Efron et al., “Scales of evidence for

model selection: Fisher versus Jeffreys”

4.4 EVALUATION WITH GAUSSIAN MIXTURE MODEL

The model selection method described in the previous section assumed little
knowledge about the distribution of the residuals in case of anomalous
system behavior. In this section, the residual space is assumed to be rep-
resented by several Gaussians, i.e., it can be modeled with a GMM. GMMs
were introduced in Chapter 2.4.5.

The GMM may be used to classify any number of discernible residual
groups, which, in turn, may also be represented by a GMM. For example,
when used for a binary classification (nominal/anomalous), one subset
of the Gaussian mixtures may represent the residuals’ anomalous behavior,
whereas all other Gaussian mixtures define the nominal behavior. To simplify
the notation, however, the following assumes that each Gaussian mixture
component represents one class of fault.

Evaluating data samples with a GMM consists of determining with what
probability that sample belongs to each class. Both deterministic and noisy
data can be evaluated.

4.4.1 A Factor Graph Representation for GMM

FIGURE 4.8: Example of a two-dimensional
Gaussian mixture with four components.

It is assumed, that each class of fault is modeled by a Gaussian distribution,
i.e.,

p(rk|C=ci) = N
�

rk;mi , Vi

�

. (4.43)

In Figure 4.8, as an example, such a GMM is depicted, where the underly-
ing data is two-dimensional and in total four Gaussian components were
included.

Classifying data with GMMs can be formulated as message passing in
factor graphs. To that end, a Gaussian mixture factor node is defined, which
represents the joint distribution of the time-dependent classes Ck = ck,i, and
the data. This node can be used for the evaluation of deterministic data or
noisy, Gaussian distributed data with known covariance. A prior on the class
probabilities P(Ck = ck,i) for each time-step k is included into the factor graph
model, denoted by P(Ck = ck,i). This prior may, e.g., represent additional
information about the class probabilities deduced from other observations.

The Gaussian mixture node describes the joint distribution of the data
and the class p(rk, Ck = ck,i|θ ), and is defined by a list, where each item
describes one class, i.e.,

fGM(rk, Ck = ck,i) = wi N
�

rk;mi , Vi

�

, (4.44)

with i ∈ 1, ..., nc . The discrete distribution prior P(Ck = ck,i) is defined by
weights w′k,i , i.e.,

P(Ck = ck,i) = w′k,i with i ∈ 1, ..., nc . (4.45)
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fGMP(Ck = ck,i)

RkCk

(a) Deterministic sample residual.
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NEk

fGMP(Ck = ck,i)

RkCk R′k

Ek

(b) Gaussian residual.

FIGURE 4.9: Residual evaluation with GMM
in factor graphs.

see Figure 4.9. Then, the forward message on
→
µRk

is a Gaussian mixture
message defined as

→
µRk
=

nc
∑

i=1

w′k,iwi N
�

rk;mi , Vi

�

. (4.46)

The evaluation of data from sample time k with a GMM consists of deter-
mining the marginal distribution over the classes Ck = ck,i, which is obtained
via message passing with µ̄Ck

=
→
µCk

←
µCk

. This marginal distribution depends
on whether noisy or deterministic data samples are evaluated. The next two
paragraphs distinguish between noisy and deterministic data samples.

É FOR NOISY DATA, Rk can be modeled as

R′k = Ek + Rk, where Ek ∼ N
�

ek; 0,
→
VEk

�

, (4.47)

the marginal over the classes Ck is

←
µCk
(Ck = ck,i) =

∫

rk

fGM(rk, Ck = ck,i)
←
µRk
(rk)drk

=wi N
�

←
mRk

;mi , Vi+
←
VRk

�

(4.48)

with
←
µRk
(rk)∝ p(rk|r ′k) = N

�

rk; r ′k,
→
VEk

�

, (4.49)

and
←
mRk
= r ′k.

Note that (4.48) is no longer a Gaussian distribution but the scalar value
of the non-normalized posterior class probability for class ck,i. The forward
message

→
µCk

is the discrete distribution prior, i.e.,
→
µCk
= P(Ck = ck,i) of (4.45).

The product of the forward and backward messages on Ck is then given by

ρk,i ∝
→
µCk

←
µCk
= wiw

′
k,i N
�

mRk
;mi , Vi+

→
VEk

�

, (4.50)

which is consistent with the (non-normalized) responsibilities ρk,i used for
the classification of noisy data as derived for example in [100]. [100] Kolossa et al., “Independent Compo-

nent Analysis and Time-Frequency Masking
for Speech Recognition in Multitalker Con-
ditions”É FOR DETERMINISTIC DATA, the variance is VEk

= 0, i.e.,

ρk,i ∝
→
µCk

←
µCk
= wiw

′
k,i N
�

←
mRk

;mi , Vi

�

, (4.51)

which corresponds to the results for deterministic classifications as derived,
e.g., in [101]. [101] Bishop, Pattern Recognition and Ma-

chine Learning
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Example 4. Consider the 2D-GMM build of nc = 4 Gaussian components,
with the prior class probabilities wi = 0.25, shown in Figure 4.10. The
evaluation of an observation sample, indicated in red at rk = [−1,1]T has
the following responsibilities:

ρk,1 = 0.0001, ρk,3 = 0.0006,

ρk,2 = 0.9817, ρk,4 = 0.0177.

If instead of the deterministic observation sample, the uncertainty of the
observation is known and described by a Gaussian, see Figure 4.11 then the
evaluation yields

ρk,1 = 0.001, ρk,3 = 0.5397,

ρk,2 = 0.0218, ρk,4 = 0.4372.

The deterministic evaluation thus assigns the sample to the Gaussian compo-
nent 2, whereas the noisy data sample with a mean equal to the deterministic
sample is assigned to the Gaussian component 3.1

2

3

4

FIGURE 4.10: Deterministic sample evalua-
tion.

1
2

3

4

FIGURE 4.11: Noisy sample evaluation.

GMMs are commonly determined through a training procedure from
unclassified data. Both training and evaluation of data using a GMM are
described in the following sections via message passing on factor graphs. In
particular, it is shown how noisy observations can be incorporated without
changing the factor graph definitions.

4.5 PARAMETER TRAINING FOR GAUSSIAN MIXTURE MODELS

The GMM model parameters are estimated in a training process from sets
of unlabeled data. One common approach to determine the parameters
of a GMM is to use the EM algorithm. Defining appropriate message pass-
ing schemes in factor graphs to express parameter estimation using the
EM algorithm has already been described by [57]. Chapter 2.4.5 gave a

[57] Dauwels et al., “Expectation Maximiza-
tion as Message Passing”

short introduction to the EM algorithm and its representation within the
factor graph framework. Now, the message passing details are presented
for learning a GMM from noisy measurements, i.e., when information about
the samples’ uncertainty is available for the training process. This training
has already been described independently from the factor graph framework,
e.g., by [95].[95] Ozerov et al., “Uncertainty-Based

Learning of Gaussian Mixture Models from
Noisy Data” This section is structured in the following way: First, the messages

proposed by [57] are determined for the noisy GMM training. The results
of the updates, which were derived independently from the factor graph
framework, are shortly recounted. Finally, these updates are recovered using
Gaussian message passing.

Expectation-Maximization with Noisy Residuals

In Chapter 2.4.5 the EM algorithm was described in two steps. The first step
was to define the expectation concerning the probability density function
over the latent variables given the current GMM parameter update θ̂ j. In the
second step—the maximization step—this expectation function is maximized
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with respect to the unknown GMM parameters, which then result in the
updated parameters θ̂ j+1. The following describes these steps and defines
the messages with which the EM algorithm can be performed in the factor
graph framework.

For the case that the data set consist of noisy observations, both the class-
memberships of the data and the underlying, noise-free observations are
unknown. Then, the training data set X consists of K noisy observations r ′k
and an estimation of the noise Ek, as defined in (4.47), i.e.,

X =
�

r ′k, Ek

	nK

k=0 . (4.52)

Since neither the noise-free data Rk, nor the class memberships Ck can be
measured, both are considered latent variables, i.e.,

Z = {Ck, Rk}
nK
k=0 . (4.53)

The EM message (2.44) representing the expectation step described in
Chapter 2.4.6 is then defined using

pb = p(C= c, r, |r′, θ̂ j), (4.54)

which is the joint distribution of the complete training sets which includes
the latent class, i.e., c= {c1,i1

, ..., cnK ,inK
}, and r= {r1, ..., rnK

}, and the obser-
vations r′ = {r ′1, ..., r ′nK

}. Then,

fb = p(C= c, r, r′|θ ), (4.55)

represents the joint distribution over both latent and observed data. The
forward message in (2.44) was defined as

→
µEM (θ̂

j,θ ) = eη(θ̂
j ,θ ) (4.56)

and here leads to

η(θ̂ j,θ ) =Q
�

θ |θ̂ j
�

=Ep(C=c,r,|r′,θ̂ j)

�

ln p(C= c, r, r′|θ )
�

. (4.57)

When the joint distribution can be described by the product of "local" distribu-
tions, local messages can be used which contribute to the E-step. Assuming
that

ln
�

p(C= c, r , r′|θ )
�

= ln
�

nK
∏

k=1

p(Ck = ck,i, rk, r ′k|θ )
�

=
nK
∑

k=1

ln
�

p(Ck = ck,i, rk, r ′k|θ )
�

,

(4.58)

and the fact that the summation over the GM components can be pulled
infront of the expectation, see [52], the function Q

�

θ |θ̂ j
�

necessary for the [52] Bilmes, “A gentle tutorial of the EM
algorithm and its application to parameter
estimation for Gaussian mixture and hidden
Markov models”

E-step can indeed be represented by the summation of local messages, i.e.,

Q
�

θ |θ̂ j
�

=
nK
∑

k=1

nc
∑

i=1

Ep(Ck=ck,i ,rk |r ′k ,θ̂ j)

�

ln p(Ck = ck,i, rk, r ′k|θi)
�

︸ ︷︷ ︸

ηk

. (4.59)

The factor graph in Figure 4.12 describes the local distributions and
their connections through the node fa. The factors of fa connect the local
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FIGURE 4.12: Factor graph for the training of
the GMM. In this thesis the priors NRk

stem
from the unscented Kalman filter residual
generation.

messages with equality nodes. In order to use the same Gaussian message
passing rules, i.e., the tabulated definitions of the equality node, the forward
EM message (2.44) needs to be reformulated. Then, the updates of the
noisy GMM training are obtained by the following message passing schedule.
A forward, backward pass through the equality nodes is done using the
local messages. For the backward pass, an uninformative prior is used at
the final equality node Θ′nK

. The message containing the updated GMM

parameters θ̂ j+1 is defined by the marginal on any of the parameter branches,
i.e.,

←
µEM (θ̂ j+1) = µ̄θ̂ j+1 . The backward messages

←
µEM is reformulated such,

that a forward/backward pass through the equality nodes using the rules of
Table 2.1 results in the updates needed to obtain θ̂ j+1.

4.5.1 GMM Training with Noisy Data Using EM

The EM parameter estimation for GMM models with noisy data has previously
been described independently from the factor graph framework, e.g., by
Ozerov et.al. [95]. The maximization of Q

�

θ |θ̂ j
�

with respect to θ , results[95] Ozerov et al., “Uncertainty-Based
Learning of Gaussian Mixture Models from
Noisy Data” in following parameter updates:

ŵ j+1

i =
1
nK

nK
∑

k=1

ρ j

k,i ,

m̂ j+1

i =
1
∑nK

k=1ρ
j

k,i

nK
∑

k=1

ρ j

k,im̄
j

Rk,i

V̂ j+1

i =
1
∑nK

k=1ρ
j

k,i

nK
∑

k=1

ρ j

k,i Ω
j

k,i − m̂ j+1

i m̂ j+1T

i

with Ω j

k,i = V̄ j

Rk,i
+ m̄ j

Rk,i
m̄ jT

Rk,i
,

(4.60)

where ŵ j+1

i , m̂ j+1

i and V̂ j+1

i are the updates of the weights, the mean and the
covariance matrix for each i = 1, ..., nc . They are dependent on m̄ j

Rk,i
, V̄ j

Rk,i
,

which are the mean and covariance of the unobserved noise-free marginal
distribution, respectively. A derivation of the "classical" approach without
using factor graphs is given in Appendix 7.2.

In the following section, these updates are recovered using a message
passing schedule for which the forward message

→
µEM is reformulated as a

Gaussian.
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4.5.2 EM Messages for GMM Training in Factor Graphs

The forward message
→
µEM is reformulated as a Gaussian, making it possible

to use the tabulated updates when passing through the equality nodes of fa.
It is shown that such a Gaussian—after forward and backward propagation
through equality nodes—carries results with which the updates of (4.60) can
be obtained. Rewriting the expectation function as a Gaussian distribution
is a common approach for message passing based EM. It allows the use of
the tabulated rules, which after all are defined only for Gaussian distributed
messages. Up until now, the forward message was defined by the expectation
given in (4.57), which can be reformulated into

Q
�

θ |θ j
�

=
nK
∑

k=1

nc
∑

i=1

ρk,i

�

ln wi + ln2π|Vi |+

1
2

trace
�

V−1
i (V̄Rk,i

+ m̄Rk,i
m̄T

Rk,i
)− 2V−1

i m̄Rk,i
mT

i + V−1
i mim

T
i

�

�

.

(4.61)
This formulation shows that the expectation function is dependent on the
responsibilities ρk,i , the marginal mean m̄Rk,i

and the covariance V̄Rk,i
of Rk.

A derivation for this can be found in Appendix 7.2. For each sample of
training data k = 1, ..., nK the marginal distributions of Ck = ck,i and Rk, can
be determined using message passing, i.e.,

µ̄Ck
=
→
µCk

←
µCk
= ρk,i ∝ wi ,N

�

←
mRk

;mi ,
←
VRk
+Vi

�

, (4.62)

µ̄Rk
=
→
µRk

←
µRk
= p(rk|r ′k, θ̂ j) = N

�

rk; m̄Rk,i
, V̄Rk,i

�

, (4.63)

where
←
VRk
=
→
VEk

,
←
mRk
= r ′k and the priors P(Ck = ck,i) are for now assumed to

be uniform but can be used to incorporate additional information from other
subsystems. To compute the marginals mean and covariance for µ̄Rk

the
tabulated definitions of the equality node can be directly applied because
computing the marginal of two Gaussian messages is equal to combining
them through the equality node. The mean and covariance marginals are
thus defined as

m̄Rk,i
= (

→
V
−1
i +

←
V
−1
Rk
)−1(

→
V
−1
i
→
mi +

←
V
−1
Rk

←
mRk
) (4.64)

and

V̄Rk,i
= (

→
V
−1
i +

←
V
−1
Rk
)−1. (4.65)

With the marginals computed, the local forward message is reformulated as
a Gaussian distribution with

→
µEM (θ̂

j

k
) = N
�

θ̂ ;mθ̂ j , Vθ̂ j

�

. (4.66)

Its mean mθ̂ j is composed of the marginal mean and covariance over Rk, see
(4.63), s.t.,

mθ̂
j
k
=
�

m̄ j

Rk,1
, rvect(Ω j

k,1), . . . , m̄ j

Rk,nc
, rvect(Ω j

k,nc
)
�T

with

Ω j

k,i =V̄ j

Rk,i
+ m̄ j

Rk,i
m̄ jT

Rk,i

(4.67)
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where mθ̂
j
k
∈ R(n·nc ·(1+n)), n is the dimension of the data sample, and rvect

rewrites the entries of a matrix as a row vector, e.g., considering some matrix

A=

�

a11 a12

a21 a22

�

, then rvect(A) = [a11, a12, a21, a22] . (4.68)

The covariance matrix Vθ̂ j
k

is a diagonal matrix and its entries are the respon-
sibilities ρ j

k,i , i.e.,

Vθ̂ j
k
=











ρ j

k,1 0 . . . 0

0 ρ j

k,2
...

. . .

0 ρ j

k,nc











−1

⊗ I, (4.69)

where I ∈ Rn(1+n), and ⊗ denotes the Kroneker product.

Updates for the GMM parameters (M-step) are obtained by connecting
the local expectation messages of (4.66) on the factor graph via equality
nodes.

With a forward propagation followed by a backward propagation through
these nodes, the message

←
µ

EM (θ̂
j+1) =N (θ̂ ;mθ̂ j+1 , Vθ̂ j+1) (4.70)

with

mθ̂ j+1=
�

˜̂m j+1

1 , . . . , ˜̂m j+1
nc

, rvect(˜̂V j+1

1 ), . . . , rvect(˜̂V j+1
nc
)
�T

(4.71)

and

Vθ̂ j+1 =
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⊗ I, (4.72)

is obtained, which contain the updates of (4.60), i.e.,
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(4.73)

Thus, the second order non-central moment ˜̂V j+1

i is obtained instead of the
covariance V̂ j+1

i as it was defined in (4.60). From these the updates given
in (4.60) are obtained by normalizing ˜̂w

j+1

i , such that
∑nc

i=1
˜̂w j+1

i = 1 and by

computing V̂ j+1

i = ˜̂V j+1

i − ˜̂m j+1

i
˜̂m j+1T

i . The straight forward derivation of this
result uses the tabulated update rules of the equality node recounted in
Table 2.1 and are given in detail in the Appendix 7.2.



COMBINING RESIDUAL GENERATION AND EVALUATION 65

4.6 COMBINING RESIDUAL GENERATION AND EVALUATION

The probabilistic residual generation was represented in factor graphs in
Figure 4.2. A complete factor graph including residual generation and eval-
uation can be determined, for which some considerations regarding the
message passing are discussed in the following paragraphs. For the deter-
ministic residual generation methods, the residuals can be understood as
deterministic observations, represented by the solid black nodes in Figure 4.6
and Figure 4.9(a).

4.6.1 Likelihood Ratio

As the likelihood ratio approaches described in 4.3.1 do not take into con-
sideration that the variance of the observations are available, and only the
deterministic residual mean values are used for the evaluation, a connection
between the two factor graphs is not necessary. If, however, it is assumed
that the variance is also used for the determination of the hypothesis test,
then a connection between the two factor graphs will automatically lead to
some loops between past unscented Kalman filter updates and the likelihood
ratio evaluations. In such a case convergence is not guaranteed, and loopy
belief propagation would have to be considered.

4.6.2 Gaussian Mixture Model

In Figure 4.13 the state-space model is merged with the GMM evaluation in
factor graphs, s.t., the forward message

→
µRk

is a Gaussian mixture message.

. . . = . . .

C

+

p̃GMMJCk

Xk

zk

R̃kCk

FIGURE 4.13: Merging the GMM factor node
to the state space model via the connection
of the residual variable.

Gaussian mixture distributions in Kalman filtering lead to an exponential
increase in the summands contributing to the mixture. Pruning and merging
methods are necessary to reduce the Gaussian mixture summands to a single
Gaussian [102]. To avoid this, the most likely mixture component is passed

[102] Runnalls, “Kullback-Leibler Approach
to Gaussian Mixture Reduction”

as forward message
→
µRk

, i.e., the Gaussian mixture message is pruned to a
single Gaussian. The forward message is thus fixed to the most probable class,
which is denoted as g, i.e., i = g ∈ nc of the GMM. Then, it is advantageous
to include the measurement noise Dk into the GMM, since according to (4.6)
the forward message is otherwise a degenerate Gaussian and the marginal
would always result into µ̄Rk

=
→
µRk

. Then

→
µR̃k
(r̃k) = N
�

r̃k;
→
mg +

→
mDk

,
→
Vg +

→
VDk

�

∀ g.

Including the measurement noise into the GMM definition does not change
the residual evaluation results.

4.7 DISCUSSION & SUMMARY

This chapter developed a full factor graph based method for the generation
of model based residuals and the evaluation for anomaly detection as well
as for fault classification. With the use of the factor graph framework multi-
ple aspects of the overall fault detection scheme for the SRF cavities were
uniformly represented. The stochastic nominal cavity model was extended
and the resulting residual was inferred using Gaussian message passing. The
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versatility of the approach was confirmed, e.g., both the Bayes factor and the
likelihood ratio test can be represented by the same factor graph. Although
the factor graphs can handle the propagation of uncertainty, it was shown
that they can also be used for the evaluation of deterministic data streams.
Training using the expectation-maximization algorithm to obtain the pa-
rameters needed for the GMM based fault classification approach were also
derived via Gaussian message passing on the same factor graph. It should
be noted, that the graph structure may represent other time-varying systems
in the EuXFEL. The message passing rules and the resulting inferences may
thus also be used to detect and classify faults in other systems. The model
selection representation could, e.g., also be directly used on steady state
systems or constant but noisy observables of any of the data streams in the
EuXFEL. Two deterministic, alternative approaches were also considered.
The first is based on the computations of the cavity-wise parameters, which
is therefore already implemented in the FPGA framework. In addition the
parity space algorithm was defined for the cavity model.







5
Detection Results

“Anomaly is when you don’t fit the expected
norm. Like "wait what is this?! It doesn’t

belong here." It’s what the system never
planned for but now has to adapt to. [...] ”

—LeCrae
É SYNOPSIS In this chapter the results of the data analysis is presented. Results

pertaining to the long-term data in which no critical events occurred and
to the quench data sets which recorded instances of thermal breakdown
in six different cavities are recounted. The results distinguish between the
different methods of residual generations introduced in the previous section.
Applying both detuning models, two unscented Kalman filter residuals are
distinguished. The one which generated the residuals using the first-order
model is referred to as UKF fo, whereas the other which generated residuals
using the fixed detuning traces is referred to as UKF ft. The parameter-based
residual is referred to as PB and the parity space method is referred to as
PS. Furthermore a distinction is made between those results generated
from RF-pulses with, and those generated without piezo-electric detuning
control. The likelihood ratio based residual evaluation is considered for the
detection of anomalies in general, whereas the GMM residual evaluation is
used specifically to detect quenches.

OVERVIEW

Monitoring of the EuXFEL cavities has so-far relied on the inspection of
pulse-wise cavity parameter values, i.e., the static detuning f̄ ∆ and the half-
bandwidth f †.1 In the time-range of micro-seconds, the cavities’ behavior 1In practice, instead of the half-

bandwidth f †, often the loaded quality
factor QL (which is inversely propor-
tional to f †) is inspected. Here, the
half-bandwidth values are preferred, but
the quality factor values are also specified
when necessary.

can "spontaneously," i.e., without intentional interference, deteriorate due
to, e.g., a quench, multipacting, or field emissions, which makes intra-
pulse detection desirable. However, slow-going effects or so-far undetected
phenomena may also deteriorate the quality of the RF-pulses.

Model-based approaches were proposed in the previous chapter with
which anomalous RF-pulses can be determined. The extent to which detected
anomalies correspond to meaningful RF-pulse deviations must be evaluated.2 2"Defining a normal region that encom-

passes every possible normal behavior is
very difficult. In addition, the boundary be-
tween normal and anomalous behavior is
often not precise. Thus an anomalous obser-
vation that lies close to the boundary can ac-
tually be normal, and vice versa."—V. Chan-
dola, [90].

Usually, the detection capability of a newly proposed method is evaluated
by comparing its results to those of an already established method. Then,
e.g., the number of anomalies detected by both methods (true positive),
the number of nominals detected by both methods (true negative), as well
as those when the methods are not in agreement (false negatives, false
positives) are often used as a metric. Since the methods described in this
thesis are the first to tackle this task and no ground truth is available, such

69
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an evaluation is not possible. Instead, the validity of a detected anomaly
is evaluated by comparing the severity of the anomalies to the pulse-wise
static detuning and half-bandwidth values.

Descriptive statistics are introduced to determine the severity of an
anomaly. The times of occurrence of the strongest anomalies per cavity was
determined and "hourly events" were identified, i.e., an increase of number
of anomalies in the first ten minutes of the hour.

Though these results confirm that so-far unnoticed effects can be found
when analysing the RF-pulses, none of those anomalies severely impaired
the RF-pulse operation. Thus, thresholds on the descriptive statistics of
a pulse are introduced, with the aim of detecting severe anomalies. With
these thresholds, severe anomalous pulses were detected in the data sets S
and Q,Qpz ,3 see Table 3.3 for a description of these data sets.3pz indicates that when this data was col-

lected, the piezo-electric detuning control
was on. To determine the detection capability of quenches, the number of quenches

classified as severe anomalies were investigated. It is assessed at what point
during the pulse the first detected quench of each quench event can be clas-
sified as severely anomalous. Then, the available quench examples together
with a set of nominal and anomalous RF-pulses were used to train GMMs as
proposed in Chapter 4.5. To train the GMM, both unscented Kalman filter
residuals UKF fo and UKF ft were used. The performance of the models was
evaluated by determining the number of false positives and false negatives
from the classifications of the quench detection system.

5.1 DESCRIPTIVE STATISTICS FOR RF-PULSE EVALUATION

All RF-pulses were evaluated based on the likelihood ratios described in
Chapter 4.3.2, i.e., λ was determined for each sample of all residuals. Each
sample in an RF-pulse is evaluated with

dk(λk) =







0 if λk <ψth, sample is nominal,

1 if λk ≥ψth, sample is anomalous,
(5.1)

where dk is the decision function that classifies the samples in an RF-pulse.
The threshold ψth was chosen according to a significance level of 0.01%,
i.e., a probability of false alarm ε= 0.01 was chosen. The threshold values
were determined from the table of the χ2(df) distribution and depend on
the degrees of freedom df that the residuals have [103].[103] Kokoska and Nevison, “Critical Values

For The Chi-Square Distribution”

0 5 10
0

0.5

1

observation

pd
f

df= 1
df= 2

FIGURE 5.1: χ2 probability density function
with one degree of freedom df= 1 and two
degrees of freedom df= 2, and the chosen
respective thresholds.

The parameter-based and unscented Kalman filter residuals have two
dimensions, therefore df= 2. The parity-space residual has only one, there-
fore df= 1. For one degree of freedom the threshold is ψth = 10.8, whereas
for two degrees of freedom it is ψth = 13.8. Figure 5.1 shows the proba-
bility density function of a χ2(df) distribution for df = 1 and df = 2, i.e.,
nominal values of PS residuals should have lower λ values than those of
UKF fo,UKF ftor PB.

To be able to handle the huge amounts of RF-pulse evaluation results,
pulse-wise descriptive statistics were stored instead of sample results. They
are used in the following chapters to gain insight into the severity of an
anomaly. Figure 5.2 depicts an example of the likelihood ratio values for
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FIGURE 5.2: Likelihood ratio values λ
for each sample in a pulse of the un-
scented Kalman filter residual UKF fo.
When λ≥ψth, the sample is classified as
anomalous. A pulse that contains an anoma-
lous sample is classified as anomalous. To
store information about the severity of the
anomaly, the mean and the maximum val-
ues of all λ in a pulse are determined and
stored.

the samples over a single pulse. The pulse-wise descriptive statistics are the
following:

É THE NUMBER of anomalous samples per pulse ip, i.e.,

na
ip
=

ns
∑

k=1

dk(λk), (5.2)

where dk(λk) is defined in (5.1) and ns = 1820 is the number of samples
in each pulse. It thus determines how much of the evaluated RF-pulse was
detected as anomalous.

É THE MEAN of all λk per pulse, i.e.,

mλ

ip
=

1
ns

ns
∑

k=1

λk, (5.3)

which determines an average pulse-wise divergence of the samples. Since
the likelihood ratio values can only be positive, i.e., λk ∈ R+, the mean
over the pulse mλ

ip
indicates on how strongly the residual diverges from its

nominal behavior, independent of the direction of divergence. The lager this
value is, the stronger the average divergence of the pulse.

É THE LARGEST value of λk in a pulse

λmax
ip
= max

k=1,...,ns

�

λk

	

, (5.4)

which gives insight into the largest divergence within a pulse.
Other statistics as the mode or the variance of λ over the RF-pulse were

also considered, but did not prove to give additional information relevant
for the subsequent result descriptions of the detection results.

5.2 ANOMALY DETECTION

For each residual generation method, the percentage of anomalies detected
in T and T pz is presented. The descriptive statistics introduced in the
previous section were used to determine the detected anomalies’ severity for
each cavity and the correlation of the mean divergence mλ to the pulse-wise
static detuning f̄ ∆ and half-bandwidth f † values was analyzed. The time
of occurrence for the strongest anomalies per cavity were analyzed for all
stations.
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(b) anomalous samples
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FIGURE 5.3: Percentage of detected anoma-
lous pulses and samples for the evalu-
ated long-term data obtained from sta-
tions A12.L3 and A17.L3 without piezo-
electric detuning control, and long-term
data with running piezo-electric detuning
control A17.L3pz . (a) Percentage of anoma-
lous pulses detected, where a pulse is clas-
sified as anomalous when the number of
detected anomalous samples in that pulse
is larger than zero, i.e., na > 0. (b) Percent-
age of anomalous samples, where a sam-
ple is classified as anomalous when the di-
vergence measure exceeds a defined thresh-
old λ >ψth.

5.2.1 Method-Dependent Detection Results

The residuals generated with each method using the samples in T and T pz

were classified as either nominal or anomalous according to (5.1). Pulses
were classified as anomalous if at least one of the samples was classified as
anomalous, i.e., a pulse is anomalous if na > 0. The percentage of anomalous
pulses and the percentage of anomalous samples is shown in Figure 5.3.
The results are grouped according to the involved stations, A12.L3, A17.L3
and A17.L3pz , where A17.L3pz stands for the evaluation results of T pz , i.e.,
the data where piezo-electric detuning control was running.

The parameter-based approach PB classified more than 95% of the
pulses and between 39% and 43% of the samples as anomalous. The
least amount of anomalies were detected using the parity-space PS method,
where 0%, 0.039% and 3.7% of the pulses, and 0%, 0.25% and 0.0004% of
the samples were classified as anomalous for A17.L3pz , A12.L3 and A17.L3
respectively. The amount of anomalies detected with either one of the un-
scented Kalman filter residuals lie in between these two methods. When us-
ing the first-order detuning model for the residual, i.e., UKF fo, 10.55%, 21.62%
and 15% anomalous pulses, and 0.34%, 1.43% and 0.38% anomalous sam-
ples for A17.L3pz , A12.L3 and A17.L3 respectively were detected. With the
fixed detuning model UKF ft 0.59%,15.86% and 5.04% anomalous pulses
and 0.006%, 2.52% and 0.31% anomalous samples were detected.

5.2.2 Anomalies per Cavity

Quantiles q, see Figure 5.4, were determined over all pulses per cavity
to represent the results. The lowest value represents q = 0.1 the highest
represents the q = 0.9 and q = 0.5 is represented by the highlighted marker
in the middle of the two values.q = 0.1 q = 0.5q = 0.4

FIGURE 5.4: Quantiles divide observations
into groups of occurrences. For example, the
quantile q = 0.1 is defined by the value for
which 10% of the observations have lower
values.

The first row of Figure 5.5 and Figure 5.6 shows the percentage of
RF-pulses classified as anomalous by the different residual generations for
each cavity of station A17.L3 and A17.L3pz , respectively. The number of
anomalies is different for each cavity and depends on the detection method.
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FIGURE 5.5: Cavity-wise results of A17.L3.
The station was running without piezo-
electric detuning control.While for some cavities no RF-pulse was classified as anomalous, for others

up to 100% of the RF-pulses were classified as anomalous.
Further characteristics of these anomalies described by mλ, λmax and na

are depicted in the second, third and final row of Figure 5.5.

Without Piezo Detuning Control

In Figure 5.5, it can be seen that none of the na values of q = 0.9 for
UKF fo values for exceeded 35%, and q = 0.5 did not exceed 15%, which
means that for a majority of the detected anomalies, less than half of the
RF-pulse samples exceeded the threshold at ψth = 13.8. The maximum
sample divergence, except for cavity 10 and 14, was less than twice the
threshold value and the mean divergence did not exceed ten. This shows
that for a majority of the detected anomalies the evaluated samples only
barely exceeded their threshold.

The total percentages of anomalies for UKF ft is smaller in comparison
and the values of q = 0.9 for mλ, λmax as well as na are higher than for
UKF fo. Thus, anomalies detected with UKF ft are fewer, but show more
severe divergence from nominal.

A much smaller percentage of anomalies was detected with PS, which
can mostly be characterized as RF-pulses for which less than 10% of the
pulse is anomalous, and the mean divergence mλ is low.

However for three cavities, for which less than 10% of the pulses were
classified as anomalous, the maximum divergence λmax was considerably
higher, reaching values above 700. This suggests, that those anomalous
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FIGURE 5.6: Cavity-wise results of A17.L3pz .
The station was running with piezo-electric
detuning control. RF-pulses had a few, strongly diverging samples. The PB method detected

almost 100% of the RF-pulses as anomalous. Other than for the methods
UKF fo, UKF ft, or PS, the mean and maximum divergences were compara-
tively high and for more than 50% of the samples exceeded the detection
threshold.

With Piezo Detuning Control

Figure 5.6 represents the results for A17.L3pz . Using UKF fo, UKF ft or PS
less anomalies were detected. For UKF ft the amounts of detected anomalies
decreased considerably and for PS none of the pulses classified as anoma-
lous. The majority of anomalies detected with UKF ft were associated to low
numbers of anomalous samples (less than 10% for q = 0.5), which only
barely exceeded the thresholds. The anomalies detected with UKF fo also had
low numbers of anomalous samples, although for two cavities almost 100%
of the RF-pulses had at least one sample which exceeded the threshold. PB
is the only approach for which similar amounts of anomalies were detected
even in piezo-on mode.

The differences in the detection results are addressed in the subsequent
chapter, in which the model assumptions for the different methods are
compared and evaluated.

The subsequent sections analyze the sensitivity of the different meth-
ods toward changes in the pulse-wise cavity parameters, i.e., the static
detuning f̄ ∆ and the half-bandwidth f †.
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FIGURE 5.7: Correlations between
pulse-wise static detuning f̄ ∆ and half-
bandwidth f † values to the mean likelihood
ratio mλ of RF-pulses from one cavity
without running piezo-electric detuning
control. It can be seen that the methods
have a different sensitivity towards changes
in static detuning and half-bandwidth.
Half-bandwidth and detuning seem to have
a linear correlation, whereas the nonlinear
correlation of detuning and mλ describes a
quadratic relation.

5.2.3 Correlation to Pulse-Wise Cavity Parameters

Further insight into what significance the detected anomalies have can be
gained when comparing them to changes of the pulse-wise static detuning f̄ ∆,
defined by (3.3) and half-bandwidth f † defined by (2.16). Figure 5.7 shows
a "plot matrix", in which each tile depicts the pairwise correlations between
the static detuning, half-bandwidth and the mean divergence mλ for each
RF-pulse. The different residual generation methods are distinguished by
color, and the parameter-based values are depicted in separate tiles, since
the ranges of maximally and minimally attained values is around ten times
higher and an elegant depiction in the same tile was not possible. Instead
of showing the auto-correlations on the diagonal tiles, histograms of the
respective parameters are depicted.

The plot matrix in Figure 5.7 was generated using the values of cavity
C1.M1.A17.L3 as an example, but qualitatively similar results were also
obtained for other cavities. The static detuning values are between −100 Hz
and 50 Hz, whereas the half-bandwidth values are between 142.5 Hz and
144 Hz. The second tile in the first row suggests a linear correlation between
the half-bandwidth values f † and the static detuning.

Centered around 0 Hz, the values mλ increase quadratically with the
divergence of the static detuning in both positive and negative directions.
How much the mλ values change with the static detuning is different for
each method. The parity space residuals change the least, whereas the
parameter-based residuals change the most. Between the two unscented
Kalman filter methods, UKF fo is less sensitive towards detuning changes
than UKF ft. A change in static detuning is thus, more or less severely, also
reflected in the residuals. The same correlation matrix plot was defined
for cavity C1.M1.A17.L3, i.e., operated with piezo-electric detuning control.
The results can be seen in Figure 5.8, where the static detuning values lie
between ±10 Hz. The quadratic correlations between f̄ ∆ and mλ are still
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FIGURE 5.8: Correlations between
pulse-wise static detuning f̄ ∆ and half-
bandwidth f † values to the mean likelihood
ratio mλ of RF-pulses from one cavity with
running piezo-electric detuning control.
The correlations between static detuning
and bandwidth have disappeared. The
quadratic correlation between the mean
likelihood ratios and the static detuning is
still visible for PB, UKF fo and UKF ft.

visible for UKF fo,UKF ft and PB but seem to have no effect on PS. It should
be noted that none of the RF-pulses of UKF fo, UKF ft or PS displayed here
was detected as anomalous, i.e., changes in detuning of that magnitude did
not lead to surpass the detection thresholds. The evaluations with PB, on the
other hand were all detected as anomalous. A smaller group of PB samples
can be seen to diverge further than the rest from zero. Explanations for this
are given in the subsequent chapter.

5.2.4 Time of Occurrence of Strong Anomalies

In this section the detected anomalies are further characterized with respect
to their times of occurrence. As the results showed so far, many anomalous
RF-pulses are associated to benign deviations from nominal, with low number
of samples only barely exceeding the thresholds. At the same time, the
severity of divergence differs from cavity to cavity. The following results
show the times in which the strongest anomalies selected from each cavity
occured.

Instead of choosing a threshold for each cavity, the 2000 strongest anoma-
lies of each cavity according to their mλ values obtained from UKF ft were
selected. The choice of UKF ft is arbitrary and analyzing the strongest anoma-
lies as defined by any of the other methods (UKF fo, PS, or PB) lead to quali-
tatively similar results. Since a station consists of 32 cavities, in total 62000
pulses were selected for A17.L3, A17.L3pz and A12.L3. Then, the time of
occurrence of these RF-pulses was determined via their individual RF-pulse
time-stamps. Figure 5.9 shows the amount of occurrences for each hour (0
to 24) of the day as well as each minute of the hour (0 to 59).

According to the results shown in Figure 5.9, when run without piezo-
electric detuning control, between 48% and 52% occurred between the 4th
and 9th hour and another 10% occurred at the 20th hour. When run with
piezo-electric detuning, an increase of the number of anomalies between
the 11th and the 13th hour was detected. For all stations, with and without
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FIGURE 5.9: Distribution of strong anoma-
lies over time for each hour in the day and
each minute of the hour.piezo-electric detuning control, more than 50% of anomalies happened in

the first ten minutes of each hour. This behavior is noteworthy and additional
information pertaining to what kind of anomalies were detected in the first
ten minutes are given in the subsequent section.

5.2.5 Characteristics of Hourly Events

The previous section has shown, that around half of the strongest anomalies
in each cavity occurred in the first ten minutes of the hour. In addition,
large values of mλ have been shown to be associated with large changes
in static detuning, see Chapter 5.2.3. In this section the "hourly events"
are characterized in more detail. First the pulse and sample-wise change
of the likelihood ratio λ values for such hourly events were studied. One
representative example is depicted in Figure 5.10 using the likelihood ratios
of UKF fo. The darker the color, the higher the value of λ. In total 2000
consecutive pulses are shown which is equivalent to almost 3.3 min.

The largest values of λk in that time interval occurred around the 200th
pulse and between the 1000th and 1500th sample. This means that the
largest anomalous behavior occurred during the end of the flattop and be-
ginning of the decay. It can be noted, that the divergence of the residual, as
evaluated by the likelihood ratios, did not immediately go back to zero but
slowly faded out during the course of around 2 min. It can further be noted,
that just before the main divergence, the likelihood ratio values were partic-
ularly small, which is represented in the figure by the almost white coloring.
The hourly events were further studied by comparing the distributions of
the pulse-wise cavity parameters according to the classifications of nominal,
anomalous and strongly anomalous. The result of one cavity of A17.L3
(running without piezo-control) is presented by a histogram in Figure 5.11.
The values were normalized for each group, s.t. they are represented as
probabilities, i.e., summing over the values of each group is equal to one.
From the distribution of the mλ values it can be seen, that anomalous and
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FIGURE 5.10: This is the hourly event repre-
sented as a heat graph. The darker the color,
the higher the values of λ. It represents
2000 consecutive pulses starting with one
of the hourly events resulting in the strong
anomalies.
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FIGURE 5.11: Histogram normalized to prob-
abilities of the hourly events compared to
the rest of the data. The events happening
every hours correspond to static detuning
increase and half-bandwidth decrease.

strongly anomalous pulses differed in their severity of mean divergence
from nominal. It can also be seen that in contrast to other anomalies, both
bandwidth and static detuning values changed for the strongest anomalies,
which in this case were all associated to an hourly event. For the hourly
event, the bandwidth decreased. In this example the detuning increased, but
in general both an increase or a decrease was observed. Independent of the
direction, for strong anomalies the detuning change compared to nominal
was in the range of 50 Hz to 150 Hz.

The following section describes severely anomalous pulses, which were
defined as those anomalies which diverged more strongly from nominal than
the so far analyzed strong anomalies.

5.3 DETECTION OF SEVERE ANOMALIES

While the anomalies detected in the previous section indicated sub-optimal
and undesired behavior, none of them could be associated to an unwanted
shut-down of the station. This section describes two detection rules to
distinguish the so-far encountered anomalies from "severe anomalies".4 An4Classification labels in order of severity:

• nominal

• anomalous

• strongly anomalous

• severely anomalous

example of so-far undetected, severely anomalous behavior is presented
using the data set S and the quench data sets Q,Qpz .

To explore anomalies with more severe divergence from nominal, two
decision rules (ds,I , ds,I I ) are formulated, which classify a pulse as severely
anomalous using the mean likelihood ratio divergences mλ and maximum
likelihood values λmax, respectively and thresholds for each method PB, PS,
UKF fo, and UKF ft are defined. RF-pulses with larger mean divergence mλ or
with larger maximum sample divergence λmax in the data sets T and T pz ,
(a total amount of around 17.5 million RF-pulses) were defined as severe
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PB PS UKF fo UKF ft

piezo off

αth 14075 38.5 72.2 229

βth 21144 1118 221 662

piezo on

αth 211 0.15 7.9 18.6

βth 1158 10.8 25.1 51.5

TABLE 5.1: Detection thresholds for each
method determined by the maximum at-
tained values in the non-severe data set.
A differentiation was only made between
piezo-on and piezo-off data sets.

anomalies.
The decision rules are formulated as follows:

É THE FIRST DECISION RULE classifies anomalous RF-pulses, i.e., pulses with na > 0
as severely anomalous with

ds,I (mλ) =







0 if mλ ≤ κIαth, anomalous pulse,

1 if mλ > κIαth, severely anomalous pulse,
(5.5)

where αth is the threshold on the mean likelihood divergences mλ determined
by

αth = max
ic=1,...,ncav
ip=1,...,np

�

mλ

ic ,ip

	

, (5.6)

where mλ

ic ,ip
are all values encountered in the evaluation of the non-severe

data sets T or T pz .

É THE SECOND DECISION RULE classifies anomalous RF-pulses, na > 0 as
severely anomalous according to

ds,I I (λmax) =







0 if λmax ≤ κI Iβth, anomalous sample,

1 if λmax > κI Iβth, severely anomalous sample,
(5.7)

where βth is the threshold on the maximum divergence λmax, which is deter-
mined by

βth = max
ic=1,...,ncav
ip=1,...,np

�

λmax
ic ,ip

	

, (5.8)

which, in turn, is the largest sample divergence λmax encountered in pulses
of all cavities in T or T pz .

The parameters κI ,κI I are introduced to tune the divergence between
the severe and not severe anomalies. For both decision rules, the tuning
parameters were set to κI = κI I = 1.05, setting the detection threshold at
a 5% larger value than the highest values encountered in T or T pz .

The threshold αth and βth are determined for each residual generation
method PB, PS, UKF fo, UKF ft once for an operation without piezo tuning
and once for an operation with piezo tuning, see Table 5.1. The determined
thresholds αth,βth are smaller for the piezo-on operation. A large difference
can also be noted between the different residual generation methods. The
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FIGURE 5.12: The cavity C6.M1 of station
A17.L3 showed large amounts of severe
anomalies for over three days. Using the
detection thresholds defined in (5.5), large
amounts of severe anomalies were detected
using the UKF fo or UKF ft residual genera-
tion methods.

parameter-based maximum value of mλ is much higher than the ones for PS,
UKF fo, or UKF ft. The lowest values were obtained for the PS residuals. Since
no anomalies were detected in T pz using the PS residuals, the threshold
on the mean divergence was set to αth = 0.26 and the threshold on the
maximum divergence was set on the sample threshold for PS, i.e., βth =
ψth = 10.8.

Both decision rules are used to identify severely anomalous RF-pulses
in the data sets Q,Qpz and S. While ds,I is only able to decide about the
severity on the level of pulses, ds,I I can decide about the severity both on
the level of pulses and on the level of samples.

5.3.1 The Strange Behavior of C6.M1

The data set S stems from 11 days of operating cavity C6.M1.A17.L3 in
March 2019. The cavity stood out, because the pulse divergence for both mλ

and λmax showed a change after around six days of operation. The detection
thresholds defined in Table 5.1 were used to determine severely anomalous
pulses for the cavity C6.M1.A17.L3. Using the UKF fo and UKF ft methods of
residual generation, severely anomalous behavior was detected over several
days. Evaluating the severity of the divergence with the detection thresholds
in Table 5.1, resulted in the detection of severe anomalies.

Figure 5.12 shows the detection results, for each pulse over the course
of 12 days. Just after six days, the first severely anomalous pulses were
detected by UKF fo, followed by UKF ft. After the first severe anomalous pulse,
both anomalous and even nominal RF-pulses were detected. Although the
PS residuals as well as the PB residuals did not exceed the thresholds to be
classified as severely anomalous, their values also increased notably over
that period of time. During that period, the vector-sum forward signal in
the station showed a steady increase. This points to the fact that the MIMO
controller compensated for the energy loss from the detuning and half-
bandwidth changes. After several days of severely anomalous RF-pulses a
different cavity of that same station quenched. Due to the quench, the station
was restarted, but the severely anomalous behavior of C6.M1 continued.
Two days later, another cavity in that station quenched which ended the
data collection period.

To gain additional insight, the histograms of the static detuning f̄ ∆ and
the half-bandwidth f † for nominal, anomalous and severely anomalous RF-
pulses was analyzed. In Figure 5.15 the static detuning and half-bandwidth
values for nominal, anomalous and severely anomalous RF-pulses according
to the detection results of UKF fo can be seen. The histograms were normal-
ized such that each group represents the distribution in probabilities, i.e.,
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FIGURE 5.13: Distribution of the static de-
tuning f̄ ∆ and half-bandwidth f † of pulses
exceeding the detection threshold for severe
anomalous behavior in C6.M1.L3 compared
to those which did not exceed the threshold.

the summarized values for each group equals one. The distribution of the mλ

values for the different groups show the thresholds set between nominal,
anomalous and severely anomalous.

The static detuning values vary between the three groups. Whereas the
nominal static detuning values stayed between f̄ ∆ = 0±20 Hz, the anoma-
lous RF-pulses’ static detuning fell in a range of f̄ ∆ =−110 Hz, and f̄ ∆ =10 Hz,
and the severely anomalous RF-pulses showed static detuning values of above
100 Hz and below −122 Hz.

The distribution of the half-bandwidth also differs for each group. For the
nominal RF-pulses, the half-bandwidth takes up values f † = 139.5±0.8 Hz,
the half-bandwidth values corresponding to anomalous RF-pulses are more
spread out between 138.5 Hz and 155.2 Hz. The majority of the half-bandwidth
increased from around f † =139 Hz to f † =141 Hz for the severe anomalies.
The lowest and highest half-bandwidth values corresponded to a maximum
loaded quality factor of QL = 4.7× 106 and a minimum of QL = 4.2× 106,
respectively. This nearly corresponds to a change of loaded quality factor de-
tected as a quench, see 2.2.5,5 which indicates that the severely anomalous 5The current quench detection system eval-

uates entire pulses on the basis of changes
in the loaded quality factor QL . When
the moving average of QL drops by more
than 0.5 · 106, a quench is detected

pulses corresponded to unwanted and yet undetected behavior at the time.

5.3.2 Severe Anomalies Incipient to Quench

Severe anomalies were also detected in the quench data sets. This section
summarizes the results obtained from analyzing the quench data sets with
respect to anomalous RF-pulses. Severely anomalous behavior was detected
in three of the five quench events, detected before the quench occurred. In
all three cases they were exclusively detected in at least one cavity which
was not the one that eventually quenched.

How many RF-pulses prior to the quench detection were classified as
severely anomalous depends on the residual generation method. In all cases
the earliest detection times and most amounts of severely anomalous pulses
were detected using the UKF fo residuals. The detection results for dsev,I are
presented in Figure 5.14.

For quench event I, severe anomalies were detected ≈1200 RF-pulses
(≈2 min) prior to a quench according to the first decision rule (5.5) whereas
no severe anomalies were detected according the second decision rule (5.7).
For quench events II and III, up to ≈ 400 RF-pulses (≈20 s) before the
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FIGURE 5.14: Detection of severe anomalies
prior to the detection server time here de-
noted by t = 0. For three of five analyzed
quench events severely anomalous behav-
ior was detectable for at least one of the
proposed methods. The most sensitive and
earliest detection results come from UKF fo.
In some cases severe anomalies are detected
in more than one cavity.

quench were classified as severely anomalous for both decision rules in one
cavity at first and then in two cavities simultaneously.

To further investigate characteristics of the severely anomalous pulses
detected prior to the quench, the static detuning and half-bandwidth distri-
butions for the groups nominal, anomalous, and severely anomalous (pre-
quench) were considered. In Figure. 5.15 an example of severely anomalous
pulses is shown where the UKF fo residuals were used for the evaluation.

The static detuning values for nominal RF-pulses are distributed around
zero, i.e., taking up values of f̄ ∆ = 0±20 Hz, and the half-bandwidth values
are between f † =141.7 Hz and f † =143.0 Hz. For the anomalous pulses, the
static detuning changes to f̄ ∆ = −60±8 Hz and the half-bandwidth increases
to values between f † =142.8 Hz and f † =143.5 Hz. Severely anomalous
pulses show static detuning values between −150 Hz and −200 Hz and the
half-bandwidth values increase even further to values between −143.5 Hz
and 145.1 Hz. This corresponds to a decrease of the loaded quality fac-
tor from 4.59× 106 to 4.48× 106, i.e., the loaded quality factor decreased
by 1.1× 105. This is around one fifth of what is necessary for the quench
detection system to set the alarm. For the time period in which the severely
anomalous pulses were detected prior to the quenches, not only the pulse-
wise descriptive statistics were stored but the likelihood ratios λ for each
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FIGURE 5.15: Distribution of the static de-
tuning f̄ ∆ and bandwidth f † of pulses ex-
ceeding the detection threshold for severe
anomalous behavior before a quench was
detected in not this but another cavity of the
station.

sample of every pulse. The results can be seen in Figure 5.16, where peculiar
behaving cavities were hand-picked and the magnitude of λ in each pulse,
i.e., the divergence from nominal is indicated for each sample (y-axis) and
each pulse (x-axis) through the intensity of the red color. The darker the
color, the stronger the divergence from nominal behavior as determined by
UKF fo. Qualitatively similar results were obtained using the values of UKF ft,
PS or PB.

The severe anomalies have a distinct signature development over the
pulses and samples. Particularly M4.C8 and M2.C7 of quench event I, M1.C5,
M2.C7 of quench event II and M1.C8, M3.C8 and M1.M8 of quench event
III suggest some kind of oscillating pattern. The strength of the anomalies
build up over several pulses, especially noticeable in flattop and decay of
the pulse. Even in quench event IV—for which no severe anomalies were
detected—a similar pattern arises albeit at a lower level of the likelihood
values λ.

During the strange behavior of the cavities, the vector sum forward field
increased, driven by the closed-loop controller. This steady increase may
have facilitated the quenching of the cavity.

In the subsequent section the time of quenches are investigated.

5.3.3 Times of Quenches

To determine the times the quenches occurred, additional quench events,
detected after the data collection period of this thesis, were taken under
consideration. The detection times and cavities were obtained from the
automatically logged records between June and December of 2020. The
quench events were separated into those that were detected when piezo-
electric detuning control was on and those for which it was off. The results
can be seen in Figure 5.17, where the times of occurrence was tracked for
each hour in the day and minute of the hour.

The quenches were detected on different days and in six different stations.
In total, 23 quench events were considered, of which 18 were with piezo-
electric detuning control. Nine of the piezo-on quench events happened in
one week, where the EuXFEL was operated at its full gradient, making it
more likely for the cavities to quench. Especially cavity M1.C3 of station A7
proved to be prone to quenching; eight of the quench events were detected
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FIGURE 5.16: Selected cavities for four of the
five quench events, showing severe anoma-
lous behavior before a quench is detected.
For each cavity the y-axis depicts the sam-
ples in the pulse, and the x-axis depicts the
number of pulses. In quench event I and II,
the quenching cavity shows no prior severely
anomalous behavior.

in that cavity. For the quenches with piezo-electric detuning control 37%
occurred in the first ten minutes of the hour. In the piezo-off cases 75%,
i.e., three of four quenches occurred in the first ten minutes of the hour. In
addition, almost one-fifth of the detected quenches happened between 6.00
and 6.03am, albeit on different days and cavities. The station of the quenches
analyzed in the previous chapter showed that a severe deviation of nominal
happened before the quenches occurred, leading to a vector-sum increase
of the forward power, which in turn made it more likely for the weakest
cavity to quench. The piezo-electric detuning control stabilizing the cavity
performance should prevent the station from increasing the vector-sum
gradient. Nevertheless, the detected quenches occurred more often in the
first ten minutes, as expected if the timing of the quench was random.
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FIGURE 5.17: Distribution of detected
quenches for each minute of the hour and
hour of the day. Seven out of 18 quench
events with running piezo-control were de-
tected in the first ten minutes of the hour,
which corresponds to almost 39%.

5.4 QUENCH DETECTION

In the previous section, characteristics of the severely anomalous RF-pulses
were analyzed by comparing the distribution of their static detuning and
half-bandwidth to those of nominal and anomalous RF-pulses. In this section,
the focus is on the detection of quenches rather than on incipient quench
behavior. The quenching data sets Q,Qpz are used to determine how many
quenches are classified as severely anomalous by either one of the proposed
decisions rules ds,I , ds,I I . Furthermore, the different methods are compared
concerning their ability to detect the first quenching RF-pulse of a quench
event.

In the second part of this section, the data from the quenching cavities
was used to train GMMs, one for each cavity. For the training of the GMMs,
both UKF fo and UKF ft residual generation methods were considered. The
detectability of quenches using the GMM is evaluated, determining false
positives and false negatives.

5.4.1 Likelihood Ratio Evaluation

In Table 5.7 the number of quenches not classified as severely anomalous are
given for each decision rule. The number was determined for all piezo-off
RF-pulses, i.e., quench events I to IV, as well as for the one piezo-on quench
event Vpz . In total 18 RF-pulses were classified as quench by the quench
detection system for the quench events I to IV whereas for Vpz in total 36 RF-
pulses were classified as quench. Thus, there are more RF-pulses classified
as a quench from piezo-on operation as from piezo-off operation. However,
the quenches of quench event Vpz all stem from the same cavity.

For both decision rules, the least amount of quenches not classified as
severely anomalous were determined using PB. Both times, the quenches
came from quench event II. None of the other methods classified these two

PB PS UKF fo UKF ft

ds,I ds,I I ds,I ds,I I ds,I ds,I I ds,I ds,I I

piezo off 2 2 3 17 2 3 4 3

piezo on 0 0 0 0 1 0 1 0

TABLE 5.2: Number of quenches not detected
as severe anomalies for each method.
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PB PS UKF fo UKF ft

κI κI I κI κI I κI κI I κI κI I

I 27 35 0.5 0.08 2.7 3.4 2.4 3.0

II 0.07 0.3 0.1 0.2 0.08 0.1 0.1 0.07

III 32 86 0.5 0.1 4.1 6.8 1.1 1.6

IV-1 12 59 0.9 0.2 3.4 6.4 1.1 1.7

IV-2 17 42 1.4 0.3 3.0 5.5 0.96 1.3

Vpz 21 111 13.4 2.6 0.7 1.6 0.4 1.3

TABLE 5.3: Factors by which the evaluated
residuals of the first quench in a quench
event exceeded the thresholds of severely
anomalous pulses. When the factor is below
1.05, the pulse was not classified as severely
anomalous. This is indicated by the gray
coloring.

as severely anomalous. The most amounts of quenches not classified as
severely anomalous stem from the PS approach. For the piezo-on operation,
on the other hand, both PB and PS were equally sensitive to the quenches,
classifying all of them as severely anomalous. For quenches detected in
piezo-on mode the methods UKF fo and UKF ft show the same performance,
whereas in piezo-off mode UKF fo is more sensitive in classifying a quench
as severely anomalous than UKF ft. The quenches not classified as severe
anomalies for the quench event Vpz are the first quenches of the set. In the
following, the detectability of the first quench of each set is considered.

Quench events usually have a cascading nature, in which the first quench
is the hardest to detect since the quenching of the SRF cavity just started.
For each first quench, the factors κI and κI I were determined. If κI > 1.05
or κI I > 1.05, then the quench was classified as severely anomalous. The
results can be seen in Table 5.3. Those quenches not classified as severely
anomalous are highlighted in the table in gray. The PB method detects most
of the first quenches as severely anomalous for both detection rules, with the
only exception of quench event II, for which none of the methods detected
the first quench as severely anomalous. The factors κI and κI I for PB are
considerably higher than any of the other methods. The largest factors
are obtained by the PB method, reaching values for the examples without
piezo-electric detuning control between 12 and 32 for κI as well as 35 to 86
for κI I .

The PS approach detects almost none of the first quenches as severely
anomalous for the piezo-off quench events I to IV-2. The piezo-on event Vpz ,
however, paints quite a different picture. Here, both detection thresholds
are not only surpassed but also the factors by which they are surpassed are
higher than those of UKF fo or UKF ft.

The UKF fo and UKF ft approaches both reach the same results, detecting
most of the first quenches, except for quench event II with neither decision
rule and quench event Vpz with the first decision rule ds,I . The factors κI ,κI I

for UKF fo are up to three times higher than the ones for UKF ft.

The second decision rule ds,I I can also be used to determine at which
point in the RF-pulse a sample is detected as severely anomalous. Thus
the earliest detection of severely anomalous behavior for the first quench
was determined. The results can be seen in Table 5.4, where the point
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PB PS UKF fo UKF ft

I 23% - 30% 29%

II - - - -

III 56% - 58% 63%

IV-1 68% - 70% 73%

IV-2 57% - 58% 61%

Vpz 37% 66% 74% 77%

TABLE 5.4: Percentage of the first quenching
RF-pulse after which the severely anomalous
detection thresholds βth was surpassed. The
earliest a quench was classified as severely
anomalous was during the filling of the pulse
(quench event I). Most of the quenches clas-
sified as severely anomalous were detectable
after around 60% of the pulse was over.

of first detection is given in terms of after what percentage of the pulse
the severity levels were surpassed. The first quenches were classified as
severely anomalous after 23% of the pulse was over for quench event I,
which corresponds to the end of the filling. However, most of the detections
were possible after 56% and 77% of the pulse was over.

The earliest detection was obtained using the PB method, particularly
obvious for Vpz .

The subsequent section explores the possibility of detecting quenches
via a GMM as proposed in Chatper 4.5.1

5.4.2 Gaussian Mixture Model Evaluation

For each of the quench events listed in Table 3.2, four GMMs were considered,
see Table 5.5. The first and second GMMs were trained using the UKF fo

residuals, and the third and fourth GMMs were trained using the UKF ft

residuals.

TABLE 5.5: For each quench event, four
GMMs were trained.

determ. noisy

UKF fo 1st GMM 2nd GMM

UKF ft 3rd GMM 4th GMM

In addition, the training of the first and third GMMs, included the noise
of the residuals, i.e., the estimated covariance matrix of each residual sample
(noisy training). For the training of the second and fourth GMMs, only the
residuals’ mean estimation was considered (deterministic training).

The training of the GMM entails the estimation of the Gaussian mixture
parameters θ =

�

mi , Vi ,wi

	nc

i=1 , i.e., of the mean mi , the covariance matrix Vi

and the weight wi for each of the nc Gaussian components, see Chapter 4.5.1.
The EM-based training of the GMMs was initialized with the following choice
of parameters:

• The number of Gaussian mixture components nc was selected from
a range between nc = 2, ..., 10. GMMs were trained for each number
of classes, and the lowest number with the highest performance with
respect to detecting quenches was chosen. For all cavities, the best per-
forming number of classes was either three or four. The performance
measure is explained in detail in the subsequent paragraph.

• The initial Gaussian mixture weights were selected to be uniform,
i.e., wi =

1
nc

.

• The initial mean values were determined using the k-means clustering
algorithm, which determines nc number of clusters with a maximal
divergence between the clusters’ centers. Initializing the GMM means



88 DETECTION RESULTS

with the centers obtained from the k-means algorithm is a common
approach [56].[56] Kerenidis et al., “Quantum expectation-

maximization for Gaussian mixture models”

• The initial covariance matrices for each Gaussian mixture component
were assumed to be a diagonal matrix in the same order of magnitude
as the covariance matrices of the nominal residuals.

The training of the GMMs was performed using randomly picked samples
from non-quenching and quenching RF-pulses. The size of the training data
set was determined by the number of available quenching RF-pulses, which
in turn depended on the quench set data. The smallest amount of quenching
RF-pulses was three, i.e., a total number of 3 · 1820 samples. The largest
amount of quenching RF-pulses for one cavity was 36, i.e. 36 ·1820 samples.
As has been shown in the previous section, not all samples of a quenching
RF-pulse describe anomalous behavior and thus up to 70% of an RF-pulse
was not classified as severely anomalous. To make sure quenching samples
are well represented, the ratio between non-quenching and quenching RF-
pulses was chosen to be one to two. From the total number of available
samples, 70% were used for the training and 20% for the validation for each
GMM. The rest of the quenching samples was set aside for testing the models.

The sample-based evaluation is defined by (4.50) when the covariance
estimations of the residuals are taken into account (noisy evaluation), or by
(4.51) when they are not taken into account (deterministic evaluation). The
evaluation in both cases consists of determining the responsibilities ρk,i for
each Gaussian component i in each sample k. Some of the GMs represent non-
quenching and nominal behavior, whereas the rest represent quenches. Since
only a binary decision is needed for a quench detection, the Gaussian mixture
components were interpreted in the following way: The Gaussian mixture
with smallest Euclidean distance from the origin to its mean was interpreted
as the "not quenching or nominal" component with i = inq ∈ 1, ..., nc . All
other GMs with i = 1, ..., nc except i = inq were summarized to represent
quenches. The quench class is thus represented by a mixture of Gaussians,
whereas the not quenching class is represented by a single Gaussian. Thus
the probability of a sample belonging to a quench is determined by

ρ
iq
k =
∑

i=1,...,nc\inq

ρk,i , (5.9)

whereas the probability to not belong to a quench is given by

ρ
inq

k = ρk,i , for i = inq, (5.10)

and

ρ
iq
k +ρ

inq

k = 1. (5.11)

The classification of the samples is based on a comparison between those
two probabilities, formalized by

dq(ρ
iq
k ,ρ

inq

k ) =







1 if
k
∑

j=k−K
ρ

inq

j ≤
k
∑

j=k−K
ρ

iq
j , quench,

0 else not a quench, possibly nominal,
(5.12)
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noisy deterministic

UKF fo UKF ft UKF fo UKF ft

FP 0 1 180 543

FN 2 3 2 3

FP* 1 0 0 3

FN* 1 1 0 0

TABLE 5.6: Amounts of false positves (FP)
and false negatives (FN) when comparing
GMM-based detection results with the clas-
sification of the quench detection system.
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FIGURE 5.18: The evolution of the pulse-
wise half-bandwidth values, and the detec-
tion of quenches according the GMM evalu-
ation just before a quench was detected.

i.e., when the moving average with a window size of K = 50 of the responsi-
bilities ρ

iq
k exceeds the moving average of ρ

inq

k , the sample is classified as
quenching.

The performance of the GMMs was assessed by the number of false
positives and false negatives. The smaller the number of false positives
and false negatives, the better the model’s performance. Since the quench
detection system can only classify entire pulses (intra-pulse detection is not
possible), a decision rule was used to derive the sample-level decision onto a
pulse-level decision. The pulse was classified as a quench when it contained
at least one sample classified as a quench.

The number of false positives and false negatives was determined from
3000 RF-pulses which were randomly picked over the complete time-span
available for that particular cavity and the entire set of quenching RF-pulses,
including the samples set aside for testing. The number of false positives and
false negatives are presented in Table 5.6. The total number of quenching
RF-pulses available from the data sets I to IV-2 are 18, whereas 36 quenching
RF-pulses are included in the quenching data set Vpz . At first glance, the
noisy approach’s performance appears to be better, i.e., fewer false positives
and false negatives than the deterministic approach. In particular, the num-
ber of false positives for both UKF fo and UKF ft residuals is higher for the
deterministic approach. However, all detected false positives turn out to be
detected just before the first quench. Figure 5.18 shows the pulses in which
false positives were detected concerning the pulse-wise half-bandwidth val-
ues from those RF-pulses. Using the deterministic GMM evaluation approach,
it was thus possible to detect quenches several pulses before they occurred.

The false negatives mainly stem from the first quench. While the GMMs
obtained from noisy training can detect three of six first quenches, the
deterministic approach is capable of detecting four out of six. For the piezo-
off examples I to IV-2, both training methods (noisy/deterministic) produce
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noisy deterministic

UKF fo UKF ft UKF fo UKF ft

A 34% 29% 20% 10%

B - - - -

C 59% 60% 29% 25%

D1 - - - -

D2 58% 58% 56 % 55%

E* - - 79% 74 %

TABLE 5.7: Percentage of pulse after which
the detection classified the samples as a
quench.
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FIGURE 5.19: UKF fo residual data of
quenches and non-quenching behavior. The
Gaussian mixture components are repre-
sented by their means and variance and
were trained using the noisy data (left) and
the deterministic data (right). False nega-
tives describe those quenches which were
not detected by the GMM.

the same amounts of undetected quenches.

The detectability of the first quenches is further examined, determining
after which percentage of the RF-pulse the quench was detected. The results
can be seen in Table 5.7.

In Figure 5.19 the data of non-quenching and quenching RF-pulses is
shown, as well as the mean and covariance of the trained GMMs using
the noisy training (left) and the deterministic training (right). The best
performance was obtained using three Gaussian mixture components for
the noisy training and four components for the deterministic training. The
green samples represent non-quenching RF-pulse behavior. The blue samples
represent a false negative, i.e., a pulse that was wrongly classified as non-
quenching. While the noisy trained GMM does not entail a Gaussian mixture
component that represents the green (non-quenching) RF-pulse adequately,
the deterministically trained does. The GMM trained with noisy data consid-
eration was not able to detect the first quench, whereas the determinstically
trained GMM detected it correctly. In Figure 5.20 the data samples over
each RF-pulse are smoothed using a moving average of K = 50 samples.
The data represented is thus directly generated from the same residuals of
Figure 5.19. The difference is that through smoothing the residual data
over the pulse, it becomes clear that multiple of the samples belonging to
the false-negatives clearly differentiate themselves from the non-quenching
behavior.
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FIGURE 5.20: The moving average of the
UKF fo residuals are presented for the same
pulses as depicted in Figure 5.19. All
quenches have distinct traces in the resid-
ual space and can be distinguished from the
non-quenching residual data, close to the
origin.

The differences between the resulting GMMs of noisy and deterministic
training can be explained as follows: The marginal mean (4.64) which is
needed for the GMM training, can be reformulated into

m̄Rk,i
=
→
Vi (

→
Vi +

→
VRk
)−1 ←mRk

+
→
VRk
(
→
Vi +

→
VRk
)−1 ←mi . (5.13)

The updated parameter for the GMM is determined by the weighted average
over these marginal means. The higher the uncertainty of the (observation)
sample

→
VRk

, the more "trust" is put onto the Gaussian mixture mean
←
mi in

each iteration step.

The covariance
→
VRk

is the unscented Kalman filter residual covariance
estimate. The covariance estimated by a linear Kalman filter depends en-
tirely on the process noise covariance and measurement covariance and
always decreases with time [104]. The estimated state covariance using an [104] Simon, “Optimal state estimation:

Kalman, H, and nonlinear approaches.
Hoboken”unscented Kalman filter depends on the nonlinear function. For the nominal

RF-pulses, the covariance showed a highly repetitive behavior, while the
covariance during a quenching pulse either increased or decreased relative
to the nominal covariance. In this particular example, the covariance of the
residual decreased for many of the anomalous pulses, thus putting a greater
weight onto the sample means, with the result that the GMM means drifted
towards those samples with low covariance.

5.5 DISCUSSION & SUMMARY

The following summarizes the main findings of this chapter and discusses
aspects of the results.

Discussion

The classification thresholds ψth were determined from the χ2 distribution
according to the acceptable false alarm rate of ε = 0.01. Thus, by design,
even when only nominal pulses were observed, 0.01% would be falsely
classified as anomalous. However, the percentages of detected anomalies in
the non-severe data sets T ,T pz were higher than ε= 0.01, which means
that the methods detected statistically significant changes in the RF-pulses.
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To determine in what sense those detected divergences do not conform
to the expected nominal behavior and whether they carry valuable informa-
tion about RF-pulses and/or cavity behavior, measures of divergence were
analyzed.66"Anomaly detection refers to the problem

of finding patterns in data that do not con-
form to expected behavior. [...] Anomalies
might be induced in the data for a variety
of reasons, [...] but all of the reasons have
the common characteristic that they are in-
teresting to the analyst."—V. Chandola et
al. [90]

It was shown that the mean divergence mλ of the detected anomaly
changes quadratically with the static detuning values f̄ ∆, i.e., stronger
anomalies can be associated to stronger changes of static detuning. The
anomalies detected in T ,T pz can thus be associated to microphonics, i.e.,
with disturbances acting on the cavities’ detuning, see 2.2.3. Microphonics
are part of any cavity operation and are treated as unavoidable disturbances
for which, e.g., the piezo-controller was designed. For the selection of nom-
inal RF-pulses in Chapter 3 and in line with expert opinion [32], it was[32] Schilcher, “Vector Sum Control of

Pulsed Accelerating Fields in Lorentz Force
Detuned Superconducting Cavities” assumed that microphonics leading to a change of detuning of ±25 Hz was

acceptable. However, the analysis showed that the cavities were subject to
much higher microphonics associated with changes in the static detuning of
up to ±100 Hz.

The quadratic relationship between static detuning and mean likelihood
ratios reflects the property of the likelihood ratio function, see Figure 4.7.
This shows that a change of static detuning corresponds to a divergence
of the residual distributions from their nominal, zero-mean distribution, as
assumed by the zero hypotheses described in Chapter 4.3.2.

The amounts of anomalies detected in nominal operation were deter-
mined for both a station operated with piezo-electric detuning control and
one without piezo-electric detuning control, which lead to considerably
different detection results. When no piezo-electric detuning control was run-
ning, more anomalies were detected than when operated with piezo-electric
detuning control. Since the piezo-controllers stabilize detuning during the
flattop, the cavities are more robust against microphonics. It should be
noted, however, that the anomaly detection methods evaluated the entire
RF-pulse (filling, flattop, and decay), whereas the detuning control only
acts on the flattop. Microphonics acting on filling and decay may thus also
be detected, even if, due to the piezo control, the flattop would not show
anomalous values.

Looking at the distribution of mean divergence, and maximum diver-
gence for all detected anomalies shows that around 50% of the anomalies,
independent of the methods are benign, only barely exceeding the thresholds
between nominal and anomalous. More interesting insight was gained by
focusing on the strongest anomalies per cavity.

It was also shown that around 50% of the anomalies with strongest mean
divergence stem from the first ten minutes of the hour caused by some so-far
unclassified "hourly event". These events occurred (more or less severely) in
all cavities of all considered stations and were shown to be associated with
a deviation of both half-bandwidth and static detuning. While the static
detuning either increased or decreased, the half-bandwidth decreased. A
decrease of the half-bandwidth f † is the same as an increase of the loaded
quality factor QL, depending on the loaded and external quality factor, i.e.,

QL =
1

1
Q0 + 1

Qex t

. (5.14)
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An increase of the loaded quality factor QL is most likely caused by an increase
of the external quality factor Qex t . The external quality factor can change
when the coupling of the RF signal into the cavity changes. For example, it
increases when a larger portion of the coupling antenna reaches into the
cavity. At this point, the cause for the changes is subject to speculation. For
example, it is possible that a mechanical or fluid-mechanical phenomenon
had occurred each hour, which causes the cavities to be subject to additional
pressure.

Detecting the hourly events was not vital to the safe operation of the
cavities since, so far, it could not be shown that they caused downtime. To
separate anomalies of similar and lower severity than the hourly events, two
detection thresholds were introduced. The thresholds were chosen such that
none of the anomalies so-far encountered would classify as severely anoma-
lous. This includes RF-pulses of 64 cavities (two stations) and several weeks
of operation. It turned out that severely anomalous (and so-far undetected)
RF-pulse behavior could be identified before three of the six quench events
and in the data sets containing RF-pulses of cavity C6.M1.A17.L3.

It was shown that the severe anomalies detected for A17.M1.C6 are
also associated with considerable changes in the static detuning and half-
bandwidth parameters. The static detuning of the pulses changed both in
the positive and in the negative direction obtaining values above 100 Hz. At
the same time, the values for the half-bandwidth increased. Other than for
the hourly events, this suggests that it was not the external quality factor Qex t

causing the change of half-bandwidth, but the unloaded cavity factor Q0.
The amount of change was so high that it nearly resulted in the detection of
a quench. This cavity might have suffered from irregular soft quenches over
several days without any currently implemented system being able to detect
it. It can be assumed that as a result of this the RF-station’s forward set-points
increased slowly over time, compensating for the energy loss due to this
abnormal behavior of the cavity. The increase of the set-point, on the other
hand, also meant that the RF station was slowly pushed further towards
its limit, making quenches more likely to happen. Indeed, the two quench
events I and II happened while C6.M1.A17.L3 behaved in an unexpected
manner. After the onset of anomalous RF-pulses in C6.M1.A17.L3, the vector-
sum drive slowly increased. Then quench event I happened. After restarting
the station, C6.M1.A17.L3 still behaved in an unexpected manner, again
causing a steady increase of the forward drive, and after another day, quench
event II happened. If the behavior of C6.M1.A17.L3 had been detected at
the time, an increase of forward power that compensates the losses would
not have been necessary, and both quench events could have possibly been
prevented.

Severe anomalies detected before a quench had similar consequences
on the vector sum. The severely anomalous RF-pulses could be associated
with a considerable increase of static detuning and an increase of the half-
bandwidth in at least one cavity of the affected station. As a result, the vector
sum control increased the forward power, making a quench more likely. What
brought on this kind of severe detuning change of half-bandwidth should
be investigated. Due to the stabilizing effect that the piezo-control has on
the system, such severe detuning should no longer lead to an increase of
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forward power. Assuming that the increase of RF power makes the quenches
more probable, they should thus become less likely when operated with
piezo-electric detuning control. However, 38% of the quenches from the
piezo-on operation were detected in the first ten minutes of the hour. This
may suggest that the identified hourly events have an influence on the
likelihood of quenches, which are still a limiting factor to the maximum
gradient operation of the EuXFEL and novel insights into the mechanisms
behind "spontaneous quenches" can help to prevent them in the first place.

The detectability of quenches was further analyzed, determining the
amounts of quenches classified as severely anomalous. The time of detection
during a pulse was determined for the first quench of each quench event. It
was also shown that the majority of first quenches analyzed were detectable
after 70% of the RF-pulse was over, which is approximately 200µs before
the end of the flattop. These results suggest that an intrapulse detection
followed by an adequately quick reaction, i.e., the lowering of the station’s
set-point, may be able to prevent the station from quenching.

In the final part of the chapter, GMMs were trained to detect quenches.
For each quench event GMM models were trained using the UKF fo and
UKF ft residuals once assuming them to be noisy and once assuming them
to be noise-free. The detection results showed very promising behavior in
detecting quenches, and no false positives were obtained. Using GMMs,
quenches were detected earlier in the pulse than with the severely anomalous
thresholds using the same residuals and—in some cases—even several pulses
prior to the first detection of a quench.77Understanding the mechanics behind

quenches and developing detection methods
have been studied for many years [105]. The chapter also gave insight into the detection capabilities of the pro-

posed residual generation methods. While the parity space approach showed
the least sensitivity towards changes in the RF-pulse behavior correlated to
static detuning changes, the parameter-based methods turned out to be very
sensitive towards changes, detecting over 50% of all analyzed samples as
anomalous. However, for the detection of quenches, the parameter-based
residuals showed the most promising results, with the least amounts of
undetected quenches and the earliest detection during the first quench. The
residuals’ properties are described and analyzed in greater detail in the sub-
sequent chapter, where all model assumptions on the residuals are evaluated
and critiqued.

Summary

In this chapter the detection results of analyzing several weeks of RF-pulses
was described. Metrics with which the severity of the detected anomalies
could be evaluated were defined as well as detection thresholds on those
metrics with which severe anomalies could be separated from the rest. It
was shown that the severity of the anomaly increased quadratically with
increasing changes of static detuning values and around 50% of the strongest
anomalies in each cavity occurred in the first ten minutes of the hour. Se-
vere anomalies were detected before some of the analyzed quench events,
making a severe detection before the onset of the quench possible. Severe
anomalies were also detected in a set of RF-pulses for which no fault was
detected. The detection of quenches was further analyzed showing that the
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parameter-based residual generation is the most sensitive towards quenches,
detecting most of the quenches as severely anomalous and having the ear-
liest time in the pulse for the first quench in which the samples exceed
the severely anomalous thresholds. The evaluation using GMMs showed
promising potential, being able to detect quenches early on in the pulse.
Using the timings of quench detection, it was shown that they, too have a
disproportionately large number in the first ten minutes of the hour. Further
investigations are necessary to find out the reason for the "hourly events"
as well as the reason why the quenches occur more often in the same time
slots.





6
Model Performance & Criticism

“All models are wrong”
—Box, 1976

É SYNOPSIS In this chapter both cavity models and the proposed residuals are
criticized regarding their performance in nominal conditions. First the two
detuning models described by (3.7) and (3.13) are evaluated with respect
to their simulation capability, i.e., how well they determine the outputs of
the cavity for given inputs. Then, characteristics of the residuals generated
from nominal RF-pulses are determined. The parameter-based method (PB),
the parity space method (PS), and the two unscented Kalman filter residuals
from the first-order detuning model (UKF fo), and the fixed detuning trace
input (UKF ft) are analyzed regarding their nominal properties. Finally the
methods’ sensitivity towards set-point changes and the effect of concept drift
is analyzed.

OVERVIEW

Model criticism seeks to determine whether a model is adequate for its
task,1 to identify its shortcomings, and determine where the model needs 1A measure of how well a model performs

is dependent on what task the model was
built for. If, for example, the model is used
to obtain predictions on a certain parame-
ter, then its ability to correctly make pre-
dictions of that parameter determines the
model quality.

to be improved [106, 16]. The models introduced in Chapter 3, formalize

[106] Guttman, “The use of the concept of
a future observation in goodness-of-fit prob-
lems”

[16] Blei, “Build, compute, critique, repeat:
Data analysis with latent variable models”

assumptions about nominal cavity behavior. Using these models, residuals
were defined, whereas the fact that the RF-pulses have a repetitive nominal
behavior played an important role. These assumptions are cross-validated
with the set of validation data M̃,M̃pz introduced in Chapter 3 using a
normalized mean squared error between the simulated and measured system
outputs. The previous chapter has shown, that the generated residuals
are capable of revealing interesting and so-far undetected cavity behavior.
However, differences in the residual generation methods were also noticeable
leading to different detection results between the methods. Reasons for
these differences are analyzed in this chapter by determining the validity
of assumptions used to generate the residuals. A "good" residual is zero-
mean Gaussian distributed when generated from nominal observations.
Shortcomings of the residual model are pointed out, i.e., where they fail to
produce a zero-mean Gaussian. In the final part of this chapter, the residual
generation methods’ sensitivity towards set-point changes is tested as well
as the influence of concept drift on their detection capabilities.

All analyses are performed using the nominal RF-pulses of station A17.L3
without and with piezo-electric detuning control.
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FIGURE 6.1: Model fits for cavity forward
simulations using the ’first-order’ as defined
in (3.7, 3.11) and the ’fixed-trace’ detun-
ing mode as defined in (3.13). Cavity 23
(M3.C7) was not taken into consideration as
it was not operated for beam acceleration.

6.1 DETUNING MODELS

In Chapter 3.2, two models for the RF-input dependent dynamic detuning
were proposed. The first uses a set of first-order differential equations to
emulate the detuning of the cavity over the course of an RF-pulse, and
the latter uses the nominal detuning estimations as an additional input
to the system. To determine the model performance, the inputs to the
cavities M F,I , M F,Q of M̃,M̃pz are used to simulate outputs, which are then
compared to the respective outputs M P,I , M P,Q. A comparison between the
simulation outcomes and the output data for all RF-pulses of the validation
sets are used to determine cavity-wise goodness of fits as well as the effect
of model uncertainties over the RF-pulses. The cavity model has two inputs,
the I and Q component of the forward RF wave, and two outputs, i.e., the I
and Q components of the RF probe wave. The model fits were determined
for each output individually.

6.1.1 Cavity-Dependent Model Performance

The model performance for each cavity model is evaluated using the normal-
ized mean squared error of every RF-pulse in M̃,M̃pz , which normalizes
between minus infinity and one, with one being the optimal fit, i.e.,

model fit= 1−
(yk − ŷk)2

(yk −
1
ns

∑k=ns
k=1 y:)2

, (6.1)

where ŷk is the simulated model output and yk is the measurement. From the
cavity-wise model fits obtained from each RF-pulse, the quantiles q = 0.1, 0.5
and q = 0.9 are determined. The results can be seen in Figure 6.1, where
the fits for the I and Q components are shown with the lowest boundary
representing q = 0.1, the middle marker representing q = 0.5 and the
highest boundary representing q = 0.9.
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FIGURE 6.2: Absolute forward simulation er-
rors represented with the values of q = 0.1,
for the first-order detuning model and the
fixed-trace model in both I and Q compo-
nents. The lower and upper boundaries of
the shaded areas denote q = 0.5 and q = 0.9
over all RF-pulses for each sample.

The I component can be simulated well with either first-order or fixed-
trace models, both resulting in an accuracy for all cavities above 0.96, and
small pulse to pulse variations (high precision). The Q component, however,
is more accurately modeled by the fixed-trace model, with fits above 0.7
as opposed to fits above 0.3 for the first-order model. An exception to this
performance is the first cavity, which shows considerably lower accuracy and
precision for both models. For the piezo-on mode of operation, the models
for both I and Q gain both accuracy and precision for both first-order and
fixed-trace detuning model.

6.1.2 Modeling Errors Over the RF-pulse

In the above section, a goodness of fit for the overall RF-pulses was deter-
mined. For this paragraph, the absolute simulation error of the I and Q
components for each pulse and cavity was determined. Then the quantiles
of q = 0.1,0.5, 0.9 were determined over all cavities ic and pulses ip for each
sample. The results can be seen in Figure 6.2, where the sample-wise q = 0.5
values are depicted by a solid line and q = 0.1 and q = 0.9 are represented
by the lower and upper bounds of the shaded areas. For a piezo-off mode
of operation, the first-order and the fixed-trace model have similar q = 0.5
values for the I component (err I), whereas the values of q = 0.9 of the first-
order models increase over the decay phase of the pulse, surpassing those
of the fixed-trace model and reaching their highest values at the end of the
pulse. For the Q component (err Q) the first-oder model has larger absolute
values which increase from filling over flattop to the decay, reaching higher
values than err I. In piezo-on operation, both models perform similarly in
the I component, for the Q component, the first-order model resulted in
higher absolute simulation errors. As in the previous section, model errors
are lower for piezo-on operation mode.
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FIGURE 6.3: Mean and standard devia-
tion over the RF-pulse of the parameter
based residuals r† and r∆ for all cavities
in M̃,M̃pz . Both the divergence of the
bandwidth and the detuning are frequen-
cies and their unit is thus in Hz.

6.2 RESIDUAL CHARACTERISTICS OF NOMINAL RF-PULSES

In this section characteristics of the proposed residuals (PB, PS, UKF fo,
UKF ft) generated from nominal RF-pulses are analyzed. Residuals generated
from M̃ are referred to as piezo-off residuals and residuals from M̃pz are
referred to as piezo-on residuals. The resulting residuals of all cavities are
analyzed with respect to their mean and standard deviation over the pulse.

6.2.1 Parameter-Based Residual

The parameter-based residuals rPB

k = [r
†, r∆] were determined as described

in (4.16), with r † and r∆ representing the bandwidth and detuning diver-
gences over the pulse from their nominal mean values, respectively. Fig-
ure 6.3 shows the mean and standard deviation for each sample in the
pulse of all considered cavities. Both residuals describe the divergence of
parameters which represent frequencies, and their units are thus in Hz. On
average (over the cavities), both piezo-on and piezo-off residuals based on
the detuning estimation have mean values close to zero for each sample in
the RF-pulse. The standard deviation of the piezo-off residuals is lower than
for the piezo-on residuals, the former reaching a maximum of 8 Hz.

The residuals based on the bandwidth estimations also have mean values
close to zero over the RF-pulse for both piezo-on and piezo-off operation.
The standard deviation is higher at the beginning of the pulse and shows
considerable increase during the flattop phase of the pulse at those time
intervals in which the beam was switched on. It should be noted that the
intervals of beam for the piezo-on data differed from the piezo-off data.
Hence the different times and lengths of divergence.
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FIGURE 6.4: Comparison of the parameter-
based residuals to a Gaussian distribution.

Figure 6.4 shows the results of analyzing to what degree each parameter
based residual is Gaussian distributed for a single cavity. Again a distinction
between piezo-on and piezo-off residuals was considered. The sample distri-
bution is compared to the theoretical, Gaussian distribution. A reference line
is drawn between the first quartile q = 0.25 and the third quartile q = 0.75
of the data, and extended to encompass all data values. When the residuals
are indeed Gaussian distributed, they align with the reference line describing
the Gaussian distribution. Although the figure represents only the pulses of
one cavity, qualitatively similar results were found for all cavities with this
method.

The residuals based on the detuning values r∆, are close to a Gaussian
distribution when operated with piezos. When the piezo-electric detuning
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FIGURE 6.5: Parity space residuals r ps gener-
ated from nominal RF-pulses M̃ and M̃pz .

control is off, their distribution diverges from a Gaussian. The bandwidth
based residuals r † both with and without piezo-electric control are not
Gaussian distributed.

6.2.2 Parity Space Residual

The parity space residual r ps determines the difference between two analyti-
cally redundant expressions of the detuning for each sample in the pulse,
see (4.22) which resulted in non-Gaussian distributed nominal traces. The
average of these nominal sample-wise values are subtracted to (ideally)
obtain a zero mean residual, see (4.24). The result of a single RF-pulse
parity space residual is depicted in Figure 6.5(a). −0,2 −0,1 0 0,1 0,2
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FIGURE 6.6: Gaussian distribution compared
to distribution of the parity space residual.

The values of the residual are between ± 0.25µHz. The mean and
standard deviation over all nominal piezo-on and piezo-off parity space
residuals are depicted in Figure 6.5(b). While the residual mean is close
to zero over the pulse, the standard deviation increases during the filling,
stays constant during the flattop and decays during the decay phase of the
RF-pulse.

Other than for the parameter-based residuals the difference between
the piezo-on and piezo-off residuals are small, with the piezo-off residuals
showing slightly lower standard deviation values.

Both piezo-on and piezo-off residuals can not be perfectly represented
by a Gaussian distribution as can be seen in Figure 6.6, where the lowest
and highest values diverge from the optimal Gaussian line. The reasons
being two fold. For one, the values of the residuals are restricted by the
quantization steps of the analogue to digital converter (ADC) and are thus
not continuous. Secondly, the standard deviation in filling and decay are
lower than in the flattop.

6.2.3 Unscented Kalman Filter Residuals
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FIGURE 6.7: Distribution of UKF ft residuals
compared to a Gaussian distribution. The
residuals of UKF fo generate qualitatively the
same results.

In this section quantiles of the generated residuals over all RF-pulses in the
nominal datasets are described, including the differences noted in the ones
with and without piezo-electric detuning.

Figure 6.9 shows the I and Q residuals for both detuning models of all
considered cavities. The averaged residual of the I component r I of UKF fo

and UKF ft, are similar both in mean and in standard deviation over the pulse.
For both piezo-on and piezo-off residuals, the mean values are close to zero
with a divergence burst at the end of the flattop and during the intervals
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FIGURE 6.8: Piezo-electric detuning control off

FIGURE 6.9: Mean and standard devia-
tion of the residuals generated from the
datasets M̃,M̃pz for each sample using
UKF fo and UKF ft.

of beam loading during the flattop. The residuals rQ for the Q components
show a difference between UKF fo and UKF ft. While UKF fo diverges from
a zero-mean for both piezo-on and piezo-off residuals, the divergences for
UKF ft are benign. Again, the transition from flattop to decay, but also from
filling to flattop is noticeable.

Additional divergences during beam-loading are noticeable during the
flattop, for which the mean residuals either slightly increase (piezo-off) or
decrease (piezo-on). Both for I and Q the residuals have values in the region
between ±0.005.

Residuals generated from the unscented Kalman filter are Gaussian
distributed. This is confirmed for UKF fo and UKF ft in Figure 6.7, in which
the nominal residuals of one cavity are shown. However, for those cavities
for which the model was less accurate, the Gaussianity is not as good.

6.3 GLR VALUES OF NOMINAL RESIDUALS

In this section the nominal residuals are evaluated with the likelihood ratios
described in Chapter 4.3.

The likelihood ratios of all considered cavities are analyzed over the
RF-pulse for each method. A distinction between piezo-on and piezo-off
is made and the first, fifth and ninth deciles are used to characterize the
evaluated data.

6.3.1 Cavity-Wise Characteristics

The cavity-wise likelihood ratios were determined from the nominal data
sets M̃,M̃pz and their distributions were analyzed. The results can be
seen in Figure 6.10. Each bar represents the q = 0.1 as its lowest value,
and q = 0.9 as its highest value. The fifth decile value is represented by the
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FIGURE 6.10: Likelihood ratio values λ
for each of the 32 cavities represented by
their q = 0.1, 0.5, 0.9 values. On the left, op-
erated without piezoelectric detuning con-
trol. On the right, operated with piezo-
electric detuning control.

middle marker. The corresponding thresholds ψth were added to the graphs.
If all residuals do indeed stem from a zero-mean Gaussian distribution, the
values for q = 0.5 should be at 2.7 and 4.7 for one and two degrees of
freedom, respectively.

The parameter-based method PB values of all cavities exceed the detec-
tion threshold, and little variance between the cavities was observed when
comparing q = 0.5 or q = 0.9. This means that the thresholds are exceeded
for all cavities when evaluating nominal residuals. The PS values are far be-
low the detection threshold. Both unscented Kalman filter likelihood ratios
vary from cavity to cavity, whereas UKF fo generated the larger likelihood
ratio values, e.g., for cavity 10 or 15.

The piezo-on residuals show lower variations in general. The variations
from cavity to cavity are lower as are the values of q = 0.9. For the PB
method, for example, the q = 0.5 values are similar for both piezo-on and
piezo-off residuals, but the q = 0.9 values are notably smaller across all
cavities.

Pulse-Wise Characteristics

Taking the complete set of likelihood ratios of all cavities in A17.L3, the
quantiles q = 0.1, q = 0.5 and q = 0.9 for each sample in a pulse was
determined for every method. The results can be seen in Figure 6.11, where
a dashed line is included, indicating the detection thresholds. The fifth
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FIGURE 6.11: Likelihood ratios of the dif-
ferent residual generation methods. The
values of q = 0.1 and q = 0.9 for each
sample are depicted as the upper and lower
bounds of the shaded area. They were de-
termined from the data of all cavities over
the RF-pulse. Values that exceed the detec-
tion threshold are counted as anomalous
samples.

decile is represented by a solid and a dashed line for piezo-on and piezo-off
operation respectively, whereas the quantiles q = 0.1 and q = 0.9 are defined
as the lower and upper boundaries of the shaded areas.

É PARAMETER-BASED For both piezo-on and piezo-off mode of operation, the
evaluated parameter-based residuals stay below the detection threshold for
q = 0.5 of each sample. The values of q = 0.9 all exceed the detection
threshold, particularly in the beginning of the pulse and during the beam
loading phases.

É PARITY SPACE The values of q = 0.9 for all samples in the pulse are well
below the detection threshold. When the piezo-electric detuning control
is on, the ninth decile values are slightly smaller than when it is off. The
transitions from filling to flattop and from flattop to decay show discernible
spikes. In addition the beam loading phases are visible, i.e., during those
times the ninth decile values slightly increase.

É UNSCENTED KALMAN FILTER Values for q = 0.9 of the evaluated residuals
of UKF fo and UKF ft stay below the detection threshold. In the filling and
in the flattop, the model of UKF fo show slight divergences from zero. In
addition, the influence of the beam can be seen between sample 700 and 800
of the pulse. Not considering the beam in the model does however not result
in likelihood ratios exceeding the thresholds, which means that the effect
of the beam is not statistically significant as defined by the selected threshold.

Up until now, this chapter described the properties related to the dif-
ferent models and residuals concerning a set of nominal RF-pulses. Model
uncertainty due to a change of operation setting or due to drifts can also
have an effect on the detection properties. In the following section, large
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amounts of not classified data is analyzed to determine the relevance of such
effects on the proposed methods.

6.4 RF SET-POINT DEPENDENCY AND CONCEPT DRIFTS

The first sections of this chapter were concerned with the characterization of
the evaluated RF-pulse nominal data, and determining model mismatches
over the RF-pulse. In the following section the focus shifts towards char-
acterizing the model quality over longer periods of time. Up until now it
was assumed that the forward fields are approximately constant and that
the behavior of the cavities does not change over time. However, since the
cavities are operated in closed-loop, the forward set-points may change over
time, which in turn can affect the detection results. It was also assumed that
the cavity system does not change over time, i.e., that the model parameters
are not subject to drifting. In this section both the effect of RF-field set-point
changes and possible cavity parameter drifts on the detection results are
analyzed.

6.4.1 Model-Dependent Concept Drift

Up until now, it was assumed that the nominal cavity parameters could be
determined once with nominal RF-pulses from the beginning of a detection
period. The anomaly detection is thus dependent on how well this data
reflects future nominal behavior of the system. When the distribution of
the RF-pulse data is non-stationary, the methods will suffer from concept
drift [107, 108, 109]. This can lead to an increase of misclassification of [107]Webb et al., “Characterizing concept

drift”

[108] Elwell and Polikar, “Incremental learn-
ing of concept drift in nonstationary envi-
ronments”

[109] Ditzler et al., “Learning in nonstation-
ary environments: A survey”

the data over time. Concept drifts are common in data streams, as the real
world is not as static as the determined models and especially slow drifts
only become noticeable over longer periods of time.

To analyze the drifting behavior, the magnitude and the average rate of
the drifts as defined by Webber et al. [107] are used. The drift magnitude
determines the difference between the distribution of some random variable
in two points in time, e.g., between time t0 and some later time t 6= t0, using
a distribution distance function returning a non-negative value.

t0

t

FIGURE 6.12: Scetch of a two-dimensional
drifting parameter in time. The magnitude
is shown by the red line as the distance be-
tween the two points. The path length is the
path taken by the variable between the two
times. Both characterize the drifts.

The average drift rate was determined by calculating the path length
between the two times. Figure 6.12 shows an example of a changing param-
eter, e.g., the mean of a two-dimensional Gaussian distribution over time.
While the magnitude simply describes the difference between the two times,
the path lengths characterizes the cummulated changes of the parameters
in between the two time-points. The average drift rate is then defined by

average ratet0,t =
path leng th

t − t0
. (6.2)

To analyze concept drifts for the cavities, changes in the distributions of
the average likelihood ratio mλ over the pulse were compared to changes of
the pulse-wise static detuning f̄ ∆ and half-bandwidth f † parameters, as well
as to changes of the average forward |v̄

¯
F | and probe |v̄

¯
P | gradients, which
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are defined by

|v̄
¯

F |=
1

n f l t

kd
∑

k=k f

|v
¯

F |, |v̄
¯

P |=
1

n f l t

kd
∑

k=k f

|v
¯

P |, (6.3)

which means they describe the average forward and probe amplitude value
during the flattop. The analysis of the drifts should reveal long-term changes
of the cavity behavior, which is why the moving averages of the above
mentioned parameters were determined with a window size of 72000, which
corresponds to a two hour window.

The results of magnitude and average drift rate can be seen in Figure 6.13
and Figure 6.14.

All plots have two y-labels, which was necessary to reasonably depict all
four methods and all four cavity parameters in the same plot. The cavity
parameters depicted in the plot have different units. While the detuning f ∆

and half-bandwidth f † changes are in Hz, the averaged forward and probe
measurements are in MV m−1. The methods on the other hand are repre-
sented by the values of mλ, i.e., the values in the plot inform about the
change in magnitude for a given time t. The results can be summarized as
follows

Piezo-electric detuning control off

Figure 6.13 shows that the averaged forward fields |v̄
¯

F | do not drift over the
course of the depicted three days. Half-bandwidth f †, static detuning f̄ ∆

and the probe fields |v̄
¯

P | do show drifts. The static detuning values, drifted
with magnitudes of up to 40 Hz. Half-bandwidth f † and averaged probe |v̄

¯
P |

show changes of maximally 0.4 Hz and 0.4 MV m−1, respectively, whereas
the forward parameter showed comparatively little drifts. The average
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FIGURE 6.14: Magnitude and average drift
rate for the pulse-wise cavity parameters
over several days of operation in piezo-off
mode.

likelihood ratio values mλ drift with different magnitude depending on the
method. The values generated with PB have the largest drift magnitudes
of up to 60, whereas the lowest magnitudes are obtained from PS. The
shapes of the magnitude and average rates are very similar throughout the
different methods and can also be found in the pattern of the pulse-wise
cavity parameters. In particular, the drifts in the average probe and static
detuning f̄ ∆ show a qualitative resemblance to the drifting of the mλ values.

Piezo-electric detuning control on

When the piezo-electric detuning control is on, the magnitude of the drifts
decreased considerably for all methods. The average rates of drifting in the
cavity parameter values decreased by a factor of ten and the same holds for
the methods UKF fo,UKF ft and PS. However, the effect of the drift on the
parameter-based method PB on the contrary increased by a factor of three.
The drifting of the static detuning f̄ ∆ is considerably lower. Average forward
and probe values drifted at a similar average rate. It can be noted, that the
UKF ft drifting shape is similar to the one of the static detuning.

6.4.2 Detection Result Dependence on Set-Point Changes

To determine the dependency of the methods UKF fo, UKF ft, PB, and PS
on set-point changes, RF-pulses were analyzed stemming from a set-point
sweep. The nominal model was trained on one set-point level, and, with
the model parameters obtained for that set, the RF-pulses were analyzed.
The results can be seen in Figure 6.15, where the mλ values are plotted for
each consecutive pulse in the set-point sweep. For the examined cavity, the
average forward values |v̄

¯
F | was altered from 12.5 to 11 MV m−1. Due to the

change of set-point, the static detuning value rose from around −50 Hz to
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FIGURE 6.15: The nominal parameters
were determined at a set-point level
of 12.6 MV m−1. Then the set-point
was lowered sucessively until a value of
11.1 MV m−1 was reached. The changes
in the glrt values for the different meth-
ods were determined. The parameter-based
method shows the strongest sensitivity to
set-point changes, while the parity space ap-
proach shows the least sensitivity.

around 50 Hz. The changes of mλ values are visible from the first step-wise
change of the set-point. The PS residuals show the least sensitivity towards
the set-point changes, showing no changes for the range considered. The
sensitivity of PB is the highest. Between the two unscented Kalman filter
approaches, UKF fo is less sensitive towards set-point changes than UKF ft.
The PB changes from mλ = 0 to mλ = 7000, which is around a factor 100
higher than the other methods. It can be noted that while the detuning and
the set-points show a linear change over the set-point sweep, the changes
in the mλ values seem to be better approximated by a quadratic behavior.
The further away detuning and set-point are to the training conditions of
the model, the larger the rate of divergence change.

6.5 DISCUSSION & SUMMARY

With the results of the previous chapter showing detection differences be-
tween the methods and the analysis of this chapter, the strengths and weak-
nesses of all methods are discussed. Suggestions towards future improve-
ment are given in the final chapter of this thesis.

É DETUNING MODELS The fixed detuning trace model was able to generate
good simulation results in both accuracy and precision. Differences between
the cavities and the pulse to pulse variation were small. Simulations using the
first order detuning model, were also capable of generating good simulation
results in both accuracy and precision. However, the performance was
not consistent for all cavities. The first-order model is dependent on a
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least-square based parameter identification step to determine the model
parameters, whereas the fixed-trace models are not. It appears that not
all parameters estimated through the identification method show the same
performance for different cavities.

É UNSCENTED KALMAN FILTER The results and performance of the unscented
Kalman filter approach depended on which model was used for the residual
generation. The UKF fo based residuals detected more pulses as anomalous,
but the majority of these pulses only slightly exceeding the threshold (benign
anomalies). For some of the cavities, almost 100% of the pulses had a few
samples that exceeded the detection threshold. These can be accounted
for model uncertainty of that cavity. The influence of the beam was not
significant and did not lead to nominal RF-pulses being classified as anoma-
lous. Concept drift and changes of set-point had a greater effect on the
detection result when using the fixed detuning model than when using the
first order model. This can be explained in two ways: For one, the first-order
model describes the detuning as a set of dynamic equations, dependent on
the squared probe amplitude as its inputs. Though the parameters of the
model were determined only for one set-point, smaller changes may still
be representable by those parameters. Another explanation is that for the
first order model larger variance was obtained for the nominal residuals and
thus the sensitivity towards changes is lower.

Some of the cavities did not produce Gaussian distributed residuals for
nominal RF-pulses. This, in turn lead to detected anomalies in nominal
RF-pulses. It also explains why for some of the cavities, 100% of the pulses
were anomalous in Chapter 5.

É PARAMETER-BASED METHOD Using the calculation of the intra-pulse de-
tuning and half-bandwidth as currently implemented for the generation of
a residual showed undesirable properties for the detection of anomalies
in general, classifying almost all pulses as anomalous. For the detection
of quenches, on the other hand this approach surpassed all other methods
with its sensitivity, reliably detecting quenches earlier in the pulse than the
other methods. In comparison to the other methods, the influence of the
beam is very noticable. Since the beam has not been included, most of the
detected anomalies can be classified as false positives. In addition, noise
especially in the beginning of the half-bandwidth calculations is significant.
The strong drifting property can be accounted to its sensitivity towards
detuning changes, which is primarily a challenge when operated without
piezo-electric detuning control. Since January of 2020 the operation of the
cavities was using piezos control, stabilizing the detuning in the flattop,
i.e., stabilizing the static detuning values. Drifting due to detuning should
considerably have lowered in piezo-on operation. However, the drifting was
also strong in piezo-on operation , but could not be directly associated to
changes of detuning. It is more likely that the drifts were caused by the
multiple changes of beam times in the pulse.

É PARITY SPACE METHOD Residuals generated with the parity space approach
were not Gaussian distributed for nominal RF-pulses. The reason here was
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PB PS UKF fo UKF ft

Beam loading dependence high low low low

Set-point dependence high low low to medium medium

Drift high low low low

Gaussian nominal residuals not fulfilled not fulfilled largely fulfilled fulfilled

TABLE 6.1: Comparing model uncertainty
for residual approaches. that the variance over the pulse changed and thus the values could not be

represented by a single Gaussian distribution. For the evaluation of the
residuals, however, this did not lead to false alarms. Instead, the resulting
likelihood ratios showed smaller values than expected. Since the parity space
method is not very sensitive towards changes in detuning, it also shows no
dependency on set-point changes or concept drifts. In piezo-on mode of
operation it was able to detect quenches as severely anomalous, which was
not the case for piezo-off operation. The parity space residuals approach is
the easiest in terms of implementation. To improve its performance, the beam
should be included into the model. While the two-dimensional residuals
could be used to distinguish faults according to direction and magnitude,
the one-dimensional parity space residual is only capable of distinguishing
according to magnitude. Since the concept drifts were mainly driven by
changes of static detuning, the parity space method showed the least amount
of concept drift sensitivity.

This chapter closes with a short summary of the obtained results, whereas
the focus lies on a direct comparison between the different residual models
and detection characteristics when using the generalized likelihood ratios.
The following sources of model uncertainty can be distinguished

1. Beam loading

2. Set-point changes

3. Concept drifts

4. Gaussianity of nominal residuals

Table 6.1 gives a qualitative overview over the performance of the methods
with respect to these sources of model uncertainty. The results are described
in relative terms, i.e., comparing the performance to all other residual models.

Summary

This chapter determined the performance of the detuning models and de-
scribed some differences between the residuals. Both detuning models have
a good performance, however the fixed trace model showed slightly better
simulation fits and less cavity wise variations in the model performance than
the first order method. Assumption of Gaussianity was best confirmed by
the unscented Kalman filter-based approach. The residuals methods were
further analyzed with respect to their sensitivity towards set-point changes
as well as concept drifts. The analysis showed that the parity space method
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was least affected by set-point changes or concept drifts, whereas the largest
sensitivity towards both set-point changes or concept drifts was determined
for the parameter-based method. The results also showed, that all meth-
ods may benefit from an inclusion of the beam loading into the system
model. While the exclusion of the beam for parity space and unscented
Kalman filter residuals turned out to be non-critical, the performance of the
parameter-based residual showed obvious downsides.





7
Conclusion & Outlook

“And now you do what they told ya, now
you’re under control”

—Rage Against the MachineIn this thesis probabilistic model-based methods were applied to the fault
and anomaly detection task of the pulsed mode operated SRF cavities of the
EuXFEL.

7.1 CONCLUSION

The probabilistic methods were conveyed in the factor graph framework,
which was able to lend itself to multiple tasks in the detection process.
Residual generation, residual evaluation, and parameter training were all
encompassed in the same factor graph. In addition to probabilistic methods,
two deterministic methods were considered.

The usefulness of the developed approaches as well as the benefits of
anomaly detection for the SRF cavities was shown by evaluating considerable
amounts of RF-pulses, analyzing long-term changes in those pulses, and
describing the main characteristics of the detected anomalies. Unwanted
and so far undetected behavior of the EuXFEL’s cavities was discovered that
may lead to new insights pertaining to the operation of the cavities in the
following way:

Firstly, it was shown that all considered cavities in the EuXFEL were
affected by an "hourly event". The characteristics of these events point to
a repetitive, strong microphonics phenomenon. The reliability with which
this phenomenon occurs in the same time period suggests a machine-related
cause. If the reason is understood, the effect on the cavities could be reduced,
or it could be prevented altogether.

Secondly, severe anomalies were detected directly before a quench, point-
ing thus to incipient system behavior resulting in a quench. These results can
help to understand why quenches appear to occur spontaneously, although
the gradient with which the cavity is operated lies below its quenching limit.
If the detection of the incipient behavior can be achieved reliably, it can also
result in the avoidance of quenches. It was also shown that an intrapulse
detection of quenches is possible. The times at which the quenches were
detected, suggest a relationship to the "hourly events", however, further
investigation is needed. Quenches occur more often when operated at maxi-
mum gradients. These results are therefore particularly interesting for the
high gradient operation of the EuXFEL.

113
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Finally, severe anomalies were detected for several days in one cavity
without being detected by the current system. It was shown that these
anomalies were related to considerable changes in static detuning and half-
bandwidth. The high detuning values in turn lead to an increase of forward
power as determined by the vector sum controller. When operated with
piezo-electric detuning, such substantial changes of static detuning would no
longer occur. However, a cavity affected by strong vibrations or soft quench-
ing over several days of operation should be detected as this could lead to
unnecessary wear of the involved components. Thus, this thesis confirmed
the need and benefit of a rigorous fault and anomaly detection scheme for
the SRF cavities. In particular, it was shown that relevant information could
be gained when monitoring the entire RF-pulses. The causes of the detected
anomalies have not been further investigated, but their characteristics sug-
gest that other sub-components may be involved.

The described detection results were obtained using three different resid-
ual generation approaches:

É THE UNSCENTED KALMAN FILTER residuals describe deviations between the
estimated and measured system outputs. They are thus capable of detecting
measurement faults directly. However, it was shown that they could also
detect changes that affect the cavity parameters, i.e., quenches or microphon-
ics. The unscented Kalman filter methods showed the best performance for
detecting severely anomalous pulses. They were successfully used to detect
quenches, in some cases several pulses earlier than the current detection
system. The unscented Kalman filter approach includes measurement and
process noise assumptions and it obtained zero-mean Gaussian distributed
residuals for all anomaly-free cavities. The approach can be advanced to
operate during ramp-ups or ramp-downs by extending the cavity model such
that it represents the nominal behavior also during set-point changes. For
an online operation, it is necessary that this approach can be programmed
into an FPGA component.

É THE PARITY SPACE residual determines the difference between two expres-
sions describing the detuning in the cavity model. It is the least sensitive
towards detuning changes and was not able to distinguish quenches from
anomalies associated with microphonics when the cavity was operated with-
out a piezo-electric detuning controller. When operated with piezo-electric
detuning control, the parity space residuals showed promising capabilities
in detecting quenches. Furthermore, it was the least dependent on set-
point changes. Its simplicity makes for easy online implementation. In fact,
while writing this thesis, the parity space approach has been implemented
for online operation and is currently tested on one to four cavities of the
EuXFEL.

É THE PARAMETER-BASED approach showed to be most sensitive towards
changes in parameters of the model, which is of advantage for the detection
of both quenches and severe microphonics. Furthermore, this approach
can rely on already implemented FPGA components, which would take the
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least effort towards online implementation. For this method the effects of
the beam should be included in the model and the noise inherent to the
parameter computation method should be taken into consideration.

7.2 OUTLOOK

Future work may be summarized in the following aspects:

É MODEL REVISION The influence of the beam should be included into the
cavity model. In particular when working with the parameter-based method,
including the beam is unavoidable for a good performance. To do so, one
can make use of the recently developed FPGA component for detuning and
half-bandwidth estimation which also includes the beam, see [110]. [110] Bellandi et al., “Online Detuning Com-

putation and Quench Detection for Super-
conducting Resonators”Unexpected behavior can also happen during ramp up or ramp down

phases of the machine. To be able to handle changes in set-points, the cavity
model needs to be extended.

It can be assumed that after including the beam into the model and when
the cavities are exclusively operated with piezo-electric detuning controllers,
issues of concept drift will decrease. Any residual slow changes in the model
may be considered for example by periodically updating the model [108]. [108] Elwell and Polikar, “Incremental learn-

ing of concept drift in nonstationary envi-
ronments”To reduce computation time, the cavity model should be linearized in

which case the unscented Kalman filter could be exchanged by a linear
Kalman filter. Efforts towards FPGA component design for detuning control
may then be reused or adapted for the residual generation purpose [111]. [111] Ushakov et al., “Developing Kalman

filter based detuning control with a digital
SRF CW cavity simulator”As an alternative to using the parameter computations, the cavity pa-

rameters could also be estimated using a Kalman filter, thereby filtering the
noise.

É HOURLY EVENT AND QUENCHING The temporal overlap of quenches and
the hourly events, as well as the incipient behavior before a quench should
be further investigated. If indeed an increase of pressure on the cavities,
occurring each hour makes quenches more likely, the RF field set-points
could be lowered in those minutes when operated in maximum gradient to
avoid the quenches.

É INTRAPULSE QUENCH DETECTION The use of GMMs for the detection of
quenches could be examined further. Instead of using the unscented Kalman
filter residuals, the parameter-based residuals could be used to train the
GMM. Then, the residual space spanned by half-bandwidth and detuning
has a direct physical interpretation which could be helpful to distinguish
between quenches and other faults. With more faulty data available, the
GMMs could be periodically updated and thus, over time, obtain a cavity-
specific model which may distinguish between nominal and different classes
of faults [112]. [112] Yan et al., “Gaussian mixture model us-

ing semisupervised learning for probabilistic
fault diagnosis under new data categories”

É FAULT DIAGNOSIS FOR THE EUXFEL In order to be able to determine the root
causes of faults for the cavities, information from other subsystems should
be included. Helium pressure, klystron signals or piezo-electric controller



116 CONCLUSION & OUTLOOK

signals can all be included into the detection system. At the same time, fault
and anomalies should also be detected in those components.

É FACTOR GRAPHS FOR OTHER SYSTEMS For the detection of faults in other
systems, new factor graphs may be developed, tailored to that components’
specific need. Since the factor graphs defined in this thesis describe general
models, they may also be used for other components. Both the GMM and
the state space model factor graph could be applied to components that are
best described by a dynamic model. Observations from other subsystems, or
assumptions about their behavior can be added to the existing factor graph.
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CALIBRATION

Taking into consideration, that cross-couplings between the forward and
reflected signals are possible, both in their real and imaginary parts, the
following relationship holds
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where a
¯
, b
¯
, c
¯
, d
¯
∈ C are complex calibration parameters which need to be

determined using pulse measurements. These parameters are determined
by the method of least squares. Since the measurement matrix of complex
forward and reflected is only two, i.e., the rank of the measurement matrix
two, the posed calibration problem is thus under-determined. To lower the
number of free parameters additional boundary conditions are introduced.
The first boundary condition poses the constraint that the calibrated forward
signal during the decay of the pulse should be equal to zero, i.e.,

v
¯

F

k
c = 0, k = kd , ..., ns, (7.2)

and the second boundary condition states that the probe and reflected
measurements during the decay should be equal, i.e.,

v
¯

P

k = v
¯

R

k
c , k = kd , ..., ns. (7.3)

In addition, the calibration coefficients b
¯

and c
¯
, which determine the cross

couplings between the forward and reflected signals need to be restricted. To
do so, some weighting factors are introduced, which bind the cross couplings.

GMM PARAMETER TRAINING WITH EM

To obtain the maximum likelihood solution for a GMM with noisy measure-
ments and latent class memberships, the EM algorithm is used to obtain the
parameters in an iterative way. The function for the maximization is given
by

θ j+1 = argmax
θ

Q
�

θ |θ j
�

. (7.4)

Taking into consideration, that
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for the maximization with regard to θ , the pdf of p(rk|r ′k) and p(r ′k) are
independent of the model parameters θ and therefore play no role when
determining the maximum with respect to θ . A simplified expression is used
to determine the updated parameters
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taking into consideration, that the trace operator is commutable, and that
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see [113], the expression results into
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Note, that the ln 2π can be neglected. In order to maximize with regard to
θ , the above expression has to be differentiated with respect to wi ,mi , Vi
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1. Differentiation with respect to wi and adding the constraint that
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GMM UPDATES FOR EM ALGORITHM

The updates of the EM algorithm for the GMM training were described by a
forward pass through the via equality nodes connected local messages of
each time step k. This means that the updates, using the described mean
and variance definitions of the Gaussian EM message, can be described using
the tabulated update rules of the equality node.

TABLE 1: Update equations for the equality
node.

=
f=

X

Y

Z

f= = δ(z − x)δ(z − y)
→
ξZ=

→
ξX +

←
ξY

→
VZ=

→
VX +

→
VY

The equality node update is recounted for convenience in Table 1.

The full forward pass through all equality nodes connected to the local
messages of each time step k results in an update of the information matrix
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given by
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and thus the updated variance is defined by
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The weighted mean, on the other hand, can also be directly defined by the
update rules of the equality node, i.e.,
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and since mθ̂ j+1 = Vθ̂ j+1ξθ̂ j+1 , the updates for each EM iteration defined
in (4.73) is obtained. The resulting messages carry all necessary components
of the final update solutions. Note also that all messages carrying the updates
of the parameters are the same for all time edges.
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