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Abstract

The normal (or Gaussian) distribution might be the most famous and most used sta-
tistical distribution. Reasons for the wide applicability of the Gaussian distribution are
twofold. First, we find natural phenomena that follow exactly or approximately the nor-
mal distribution. Second, representing the normal distribution can be done by using only
two statistics - the mean and the variance - and calculations are relatively easy and fast,
making it a suitable distribution for machine learning with good time performance when
modeling continuous behavior. Probabilistic graphical models (PGMs) have their origin
in discrete environments and are used to describe the dependence (or conditional inde-
pendence) of random variables (randvars) in a graphical structure. Since many real-world
examples require modelling with continuous randvars, we work with Gaussian distributed
PGMs in this dissertation. The core functionality for PGMs is query answering, where
we focus on answering conditional probability queries. In this dissertation, we contribute
to solving the problem of efficient query answering algorithms in three different Gaussian
PGM setups.
First, we work on query answering in Gaussian Bayesian networks that contain indis-

tinguishable randvars. The aim is to work with representatives of the indistinguishable
randvars instead of using all individual randvars (ground level) themselves which is known
as lifting. The crucial point is allowing for individual observations of randvars. Rand-
vars are only indistinguishable as long as there is no further evidence. Indistinguishable
randvars are treated and modeled in the same way and have identical influence on other
randvars in the model. As soon as the randvars for specific individuals are known, this
additional knowledge should be usable in the graphical model. We contribute new algo-
rithms for the construction of a lifted joint distribution and for lifted query answering.
The runtime improvements of lifted algorithms are realized when the models contain very
many randvars. Second, we look at dynamic versions of Gaussian Bayesian networks.
The development along a time dimension introduces structure that can be exploited for
more efficient query answering. We investigate the relationship between dynamic Gaus-
sian Bayesian networks and Gaussian Processes. Third, we look into a more general
structure where randvars can be Gaussian or discrete. These graphical models are called
hybrid PGMs and can be converted into GMMs. We develop a new algorithm for ap-
proximate query answering that can be used when the number of mixture components
gets very high.
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Kurzfassung

Die Normalverteilung (oder Gaußverteilung) ist wohl die berühmteste und meistgenutzte
statistische Verteilung. Es gibt zwei konkrete Gründe für die breite Nutzung der Gauß-
verteilung. Erstens gibt es natürliche Phänomene, die entweder exakt oder zumindest an-
nährend gaußverteilt sind. Zweitens bedarf es nur zwei Parametern – den Mittelwert und
die Varianz – um die Verteilung zu spezifizieren. Berechnungen mit der Gaußverteilung
sind relativ einfach und schnell, was vor allem für Anwendungen im maschinellen Lernen
wichtig ist – besonders, wenn kontinuierliche Variablen beteiligt sind. Probabilistische
graphische Modelle (PGMs) wurden ursprünglich mit diskreten Zufallsvariable entwickelt
und werden genutzt um die Beziehungen (oder die bedingten Unabhängigkeiten) zwis-
chen Zufallsvariablen zu modellieren. Da aber viele Anwendungen aus der realen Welt
die Modellierung von kontinuierliche Zufallsvariablen benötigen, arbeiten wir in dieser
Dissertationsschrift mit normalverteilten PGMs. Die Kernfunktionalität eines PGMs
ist es Anfragen an das Modell zu beantworten; hier haben wir den Fokus auf kondi-
tional Verteilungen, die sich durch die Nutzung von Beobachtungen ergeben. Die Lösung
des Problems der effizienten Anfragebeantwortung ist nicht trivial aber in vielen An-
wendungsfällen (gerade mit einer großen Anzahl an Zufallsvariablen) relevant. In dieser
Dissertationsschrift tragen wir zur effizienten Anfragebeantwortung in drei verschiedenen
Szenarien von normalverteilten PGMs mit neuen Algorithmen bei.
Als erstes arbeiten wir an der Beantwortung von Anfragen in normalverteilten Bayess-

chen Netzen, die ununterscheidbare Zufallsvariablen enthalten. Das Ziel ist es mit
Repräsentanten der ununterscheidbare Zufallsvariablen zu rechnen, anstatt alle individu-
ellen Zufallsvariablen zu nutzen. Die Nutzung von Repräsentanten, anstatt von Indi-
viduen ist auch unter dem Term Lifting bekannt. Der Kern ist, dass man immer noch
erlaubt auf individueller Ebene Beobachtungen anzustellen. Die ununterscheidbaren Zu-
fallsvariablen, die gleiches Verhalten und gleichen Einfluss auf andere Zufallsvariablen
haben, sind eben nur ununterscheidbar solange keine Evidenz vorliegt. Wir präsentieren
neue Algorithmen zur Konstruktion von einer gelifteten multivariaten Verteilung und
zu gelifteten Beantwortung von Modellanfragen. Als zweites schauen wir auf dynamis-
che Varianten von normalverteilten Bayesschen Netzen. Die gleichbleibende Entwick-
lung von Zufallsvariablen über die Zeit wird in der Beantwortung von Modellanfragen
genutzt. Wir untersuchen in diesem Kontext den Zusammenhang zwischen dynamischen
normalverteilten Bayesschen Netzen und Gaußprozessen. Als drittes arbeiten wir mit
einer etwas generelleren Struktur, sogenannte hybride Bayesschen Netzen, die sowohl nor-
malverteilte als auch diskrete Zufallsvariablen enthalten. Diese Modelle können auch in
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Kurzfassung

Gaußsche Mischverteilungen, die aus mehreren Komponente bestehen umgewandelt wer-
den. Wir präsentieren einen neuen Algorithmus für approximative Anfragebeantwortung,
der bei Mischverteilungen mit einer hohen Anzahl an Komponenten und Dimensionen zu
einer Zeitersparnis führt.
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Chapter 1

Introduction

The normal (or Gaussian) distribution might be the most famous and most used statis-
tical distribution (Forbes et al., 2011). The normal distribution was first described by
Abraham de Moivre (1738), who had seen it as an approximation for the binomial distri-
bution. Carl Friedrich Gauss (1857) refined the understanding of the normal distribution
as a statistical distribution.
Reasons for its wide applicability are twofold. First, we find natural phenomena that

follow exactly the normal distribution like the position of a particle subject to diffusion
(Maxwell, 1860) or that follow approximately the normal distribution, e.g., the height dis-
tribution of women (Schilling et al., 2002). Second, representing the normal distribution
can be done by using only two statistics - the mean and the variance - and calculations
are relatively easy and fast, making it a suitable distribution for machine learning with
good time performance when modeling continuous behavior.
Probabilistic graphical models (PGMs) have their origin in discrete environments and

are used to describe the dependence (or conditional independence) of random variables
(randvars) in a graphical structure (Koller and Friedman, 2009). One well-known exam-
ple of a PGM in action is the application called Pathfinder, which is assisting practitioners
with diagnosis of lymph-node diseases (Heckerman et al., 1992). Unfortunately, perform-
ing inference in PGMs can be computationally costly, and thus efficient algorithms for
inference in discrete models have been an active research area over the last decades (Mad-
sen et al., 2005; Frey and Jojic, 2005; Mooij, 2010; Ankan and Panda, 2015; Shih and
Ermon, 2020). Many real-world examples require modelling with continuous randvars.
Consequently, Gaussian PGMs and their related model types experience an increase in
attention from the machine learning community. Developing new approaches for efficient
query answering in Gaussian PGMs with focus on Gaussian Bayesian networks (GBNs)
and describing the connection to related models like Gaussian mixture models (GMMs)
as well as Gaussian processes (GPs) is the core of this dissertation.

1.1 The Problem of Query Answering

Query answering in general is the basic problem defined on every model. Query an-
swering can be interpreted as asking a question (query) to the model and expecting a
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Chapter 1 Introduction

response (query answer). In PGMs, queries work with probability distributions. Focus
of this dissertation is the conditional probability query that contains evidence about
randvars and expects the conditional distribution of the queried randvars as an answer
(see Section 2.2). Efficiency in query answering is referring to answering a query with
as little computational resources as possible in terms of time and space. For Gaussian
PGMs and multivariate Gaussians, the query answering algorithm has a cubic complex-
ity with respect to the number of randvars in the graph because of matrix inversion
and multiplication (Liu et al., 2020). Cubic complexity for query answering is already
an improvement compared to query answering in discrete PGMs. The problem of ex-
act conditional probability query answering in discrete PGMs is NP-hard (Koller and
Friedman, 2009). High runtime complexities result in high runtimes of query answering
algorithms when many randvars are involved in the model. When the algorithms are
used in real-world applications, high runtimes can result in failure of the desired task
because the environment changes faster than the query answer is produced.

Researchers have been working on finding efficient algorithms for the query answering
problem in PGMs for many years (Lauritzen and Spiegelhalter, 1988; Kschischang et al.,
2001; Braun and Möller, 2016). In general, special structure being present either in the
queries or in the models is used to speed up exact query answering or clever heuristics
are used for approximation. In this dissertation, we look into three different kinds of
special structures. First, we work on query answering in Gaussian PGMs that contain
indistinguishable randvars. The aim is to work with representatives of the indistinguish-
able randvars instead of using all individual randvars (ground level) themselves which is
known as lifting (Poole, 2003). The crucial point is that we still want to be able to make
individual observations of randvars. Randvars are only indistinguishable as long as there
is no further evidence. An example (that we will detail out in Section 3.2) is that the
health status of multiple patients is modeled. As long as there is no further evidence
about individual patients, they are treated and modeled in the same way and have identi-
cal influence on other randvars in the model. As soon as the health status for individuals
is known, this knowledge should be usable in the graph. The runtime improvements of
lifted algorithms are realized when the models contain very many randvars. Second, we
look at dynamic versions of Gaussian PGMs. The development of randvars along a time
dimension introduces structure that can be exploited for more efficient query answering.
We investigate the relationship between dynamic Gaussian Bayesian networks (DGBNs)
and GPs. Third, we look into a more general structure where randvars can be Gaussian
or discrete. These graphical models are called hybrid PGMs and can be converted into
GMMs. One interpretation for hybrid or mixture models is a combination of multiple
expert models into one combined model (ensemble). We develop a new algorithm for
approximate query answering that can be used when the number of mixture components
gets very high.

2



1.2 Contributions

1.2 Contributions

This dissertation contains a number of contributions to inference in Gaussian PGMs.
The contributions are summarised as follows.

(1) Lifting of joint representations A Gaussian PGM can be converted into a multi-
variate Gaussian distribution. With this contribution, we develop a lifted representation
for the multivariate Gaussian distribution and introduce an approach to construct the
distribution from a GBN that contains indistinguishable randvars.

(2) Lifted operations lifted query answering When working with a joint distribution,
operations for adding, multiplying, and inverting elements of the covariance matrix are
needed. With this contribution, we develop the lifted version of the algebraic operations
needed and avoid grounding by using only the lifted joint representation, thus decreasing
the runtime complexity of the operations.

(3) Lifted query answering We develop two approaches for lifted query answering,
significantly improving the runtime complexity for answering queries compared to query
answering on ground level. We perform a theoretical complexity analysis and a experi-
mental evaluation of the developed algorithms.

(4) GP representations To combine PGMs with GPs, we develop GP representations,
consisting of a mean and a kernel function, for three different types of DGBNs: One-
dimensional Gaussian Markov chains, Gaussian hidden Markov models, and two-timeslice
DGBNs, resulting in more flexible kernel representations of the time transition properties.

(5) Approximate query answering in GMMs We contribute an approximate query an-
swering algorithm for highly complex GMMs, i.e., GMMs with a high number of dimen-
sions and components. We perform a theoretical complexity analysis and a experimental
evaluation of the developed algorithms, showing a significant speed-up.

1.3 Structure

After this introduction, we start with a chapter on preliminaries for probability distri-
butions in general and more specifically PGMs and their Gaussian based counterparts.
Following the preliminaries, the dissertation is divided into three chapters covering dif-
ferent topics related to efficient query answering.

• Chapter 3 presents lifting for GBNs (Contributions 1, 2, and 3).

– Section 3.1 presents lifting specific preliminaries.
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Chapter 1 Introduction

– Section 3.2 introduces a running example for a lifted/parameterized GBN that
is used throughout the chapter to illustrate the approaches and operations
developed.

– Section 3.3 presents algorithms for constructing a lifted representation of the
joint distribution given a lifted/parameterized GBN.

– Section 3.4 presents lifted implementations of operations needed for working
with the lifted joint distribution.

– Section 3.5 presents algorithms for lifted query answering using a lifted joint
distribution.

– Section 3.6 presents complexity analyses for constructing the lifted joint dis-
tribution and for lifted query answering.

– Section 3.7 presents an experimental evaluation of the algorithms developed
for constructing the lifted joint distribution and lifted query answering.

– Section 3.8 contains a discussion of the results in lifting GBNs and potential
next steps.

The third chapter is based on the following publications:

Mattis Hartwig and Ralf Möller. Lifted Query Answering in Gaussian
Bayesian Networks. In Proceedings of the 10th International Conference
on Probabilistic Graphical Models, volume 138 of Proceedings of Machine
Learning Research, pages 233–244. PMLR, 2020

Mattis Hartwig, Tanya Braun, and Ralf Möller. Handling Overlaps When
Lifting Gaussian Bayesian Networks. In IJCAI-21 Proceedings of the 30th
International Joint Conference on Artificial Intelligence, pages 4228–
4234. IJCAI Organization, 2021

Mattis Hartwig, Ralf Möller, and Tanya Braun. An Extended View on
Lifting Gaussian Bayesian Networks. Submitted to Elsevier Artificial
Intelligence Journal

• Chapter 4 contains the work on connecting DGBNs to GP for time series modelling
(Contribution 4).

– Section 4.1 presents the GP specific preliminaries, covering GPs, kernel func-
tions and multi-output settings.

– Section 4.3 presents a GP for a one-dimensional Gaussian Markov chain.

– Section 4.4 presents a GP for a Gaussian hidden Markov model.

– Section 4.5 presents a GP for a multi-dimensional two-timeslice DGBN.
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– Section 4.6 discusses the results in encoding specific DGBNs as GPs for time
series modelling.

The fourth chapter is based on the following publications:

Mattis Hartwig, Marisa Mohr, and Ralf Möller. Constructing Gaussian
Processes for Probabilistic Graphical Models. In FLAIRS-20 Proceedings
of the 33rd International Florida Artificial Intelligence Research Society
Conference. AAAI Press, 2020

Mattis Hartwig and Ralf Möller. How to Encode Dynamic Gaussian
Bayesian Networks as Gaussian Processes? In AJCAI-20 Proceedings of
the Australasian Joint Conference on Artificial Intelligence, pages 371–
382. Springer, 2020

• Chapter 5 presents an approximate query answering algorithm for GMMs (Contri-
bution 5).

– Section 5.1 presents the preliminaries for GMMs.

– Section 5.2 presents the developed approximation approach.

– Section 5.3 presents the complexity analysis for the approximation algorithm.

– Section 5.3 presents the experimental results the approximation algorithm.

– Section 5.5 discusses the the results of this chapter.

The fifth chapter is based on the following publication.

Mattis Hartwig, Marcel Gehrke, and Ralf Möller. Approximate Query
Answering in Complex Gaussian Mixture Models. In ICBK-19 Proceed-
ings of the 2019 IEEE International Conference on Big Knowledge, pages
81–86. IEEE, 2019

The dissertation concludes with Chapter 6, where we discuss the contributions and
give an outlook to further research.
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Chapter 2

Overarching Technical Preliminaries

This chapter contains the basic definitions and concepts for PGMs and Gaussian distri-
butions, which will be used in all following chapters. Preliminaries that are only used
within one chapter will be introduced in that respective chapter. Throughout this disser-
tation, we use bold symbols for vectors, sets, sequences, and matrices, and thin symbols
for scalars or individual elements. For sets where we want to emphasize that this is the
super set from which following subsets are drawn, we use the calligraphic font (e.g., X ).

2.1 Fundamentals of Probability Distributions

The syntax for working with probability distribution is as follows. Given a set of randvars
X = {X1, ..., XN}, the joint probability distribution over the randvars is denoted as
P (X ) = P (X1, . . . , Xn). The values a randvar X can take are given by its range R(X).
If a particular randvar is given a value, we call it an event Xi = xi.
Given a joint probability distribution P (X ), there are two main semantic constructs

that are interesting. First, the marginal distribution, which contains the probability
distribution over a subset of possible events for a subset of random variables. The
marginal distribution is denoted as P (Xi = xi), where Xi ∈ X and xi ∈ R(Xi). The
second is the conditional probability distribution, which contains the probability of a
set of random variables given a set of events. The conditional probability is denoted as
P (Xi = xi|Xj = xj) where Xj denote the variables for which we have evidence. The
marginal distribution can be calculated by summing up all probabilities that lead to the
specific event

P (Xi = xi) =
∑

x∈R(X∈X\Xi)

P (Xi = xi,X = x). (2.1)

The summing process is also referred to as marginalization. For continuous ranges, the
randvars in X can take infinitely many values, resulting in an integral over the range.
The conditional probability distribution can be calculated by using two marginal dis-

tributions:

P (Xi = xi|Xj = xj) =
P (Xi = xi ∧Xj = xj)

P (Xj = xj)
(2.2)
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In probability theory one well-known rule is the Bayes rule that follows from Expres-
sion (2.2):

P (Xi = xi|Xj = xj) =
P (Xj = xj |Xi = xi)P (Xi)

P (Xj)
(2.3)

.

2.2 Probabilistic Graphical Models

The fundamental structure for PGMs are graphs. We follow the definitions from Koller
and Friedman (2009).

Definition 2.2.1 (Graph, path). A graph G consists of a set of vertices X = {X1, ..., XN}
and a set of edges ξ. Edges can be directed between two vertices Xi → Xj or undirected
Xi —Xj . We say that X1, ..., Xk form a path in graph G(X , ξ) if, for every i = 1, ..., k
there is either a directed edge Xi → Xi+1 or undirected edge Xi —Xi+1. A path is
directed if at least one edge along the path is directed.

In general, graphs can also contain directed and undirected edges and thus be mixed
graphs. In this dissertation we focus on directed graphs.

Definition 2.2.2 (Cycle, directed acyclic graph, parents). A cycle is a directed path
X1, ..., Xk where X1 = Xk. A graph G(X , ξ) is called a directed acyclic graph if all edges
in ξ are directed edges and if the graph contains no cycles. The set of parents Pa(Xi)
of a randvar Xi is defined as all {Xk|Xk → Xi ∈ ξ.

PGMs model the stochastic behavior of randvars. In general, PGMs serve as a compact
representation of the probabilistic joint distribution of the randvars and allow for a
factorisation of the joint distribution. There are multiple types of PGMs, e.g. Markov
random fields, Bayesian networks (BNs) and factor graphs Koller and Friedman (2009).
In this dissertation we focus on Bayesian networks.

Definition 2.2.3 (Factorization, Bayesian network). Let G be a directed acyclic graph
G(X,E) whose vertices represent randvars X = {X1, ..., XN}. A distribution P over the
same space factorizes according to G if P can be expressed as a product

P (X1, ..., Xn) =

n∏
i=1

P (Xi|Pa(Xi)). (2.4)

A Bayesian network is a pair (G,P ) of the graph G and a set of conditional probability
tables P (Xi|Pa(Xi)) associated with G’s nodes, where P factorizes over G.

Since vertices in a BN represent randvars, we use the same symbol X for vertices and
randvars. The BN structure encodes conditional independencies between randvars. Any
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randvar Xi is conditionally independent of all non-descending randvars given its parents
Pa(Xi). For iterating over a set of randvars that are part of a BN, we use a topological
ordering of the randvars.

Definition 2.2.4 (Topological ordering). Let X be a set of randvars within a BN. A
topological ordering of the randvars in X is any ordering that ensures that a child nodeXi

comes always after its parent node Xk. In a BN, there is always at least one topological
ordering possible.

In general, BNs are used to represent join probability distributions in a sparse way (by
using the factorization implied by the network structure). Learning or choosing a net-
works structure comes with trade-offs. A very simple structure that allows for relatively
quick query answering might not capture all characteristics of the true joint probability
distribution. On the other hand choosing a simple structure might be beneficial if the
underlying joint probability distribution contains many conditional independencies.
Having introduced a representation for a joint probability distribution, we now define

how to use the distribution with query answering. In general, there are different types of
queries. When we refer to queries in this dissertation, we mean conditional probability
queries (marginal queries being a special type of conditional probability queries). One
other example for a query type is the most probable explanation (MPE) query, also
known as the maximum a posterior (MAP) query.

Definition 2.2.5 (Query). A query P (Q|E = e) consists of a query randvar set Q ⊆ X ,
and a set of events E = e with E ⊆ X .

We use the special term marginal query for queries that do not contain any evidence,
i.e., E = ∅ and the term conditional query for queries that contain evidence.

2.3 The (Multivariate) Gaussian Distribution

A single Gaussian distribution N (µ, σ2) is defined by its mean µ and its variance σ2. The
distribution of a single Gaussian randvar Xi is described with the probability density
function

fXi,µ,σ(xi) =
1

(2πσ2)
1
2

exp
(
− 1

2σ2
(xi − µ)2

)
. (2.5)

In short, we write
Xi ∼ N

(
µ, σ2

)
. (2.6)

For continuous variables probability is only defined for a range of values. The proba-
bility that a random variable Xi takes a value of less than xi is defined as

P (Xi ≤ xi) =

∫ xi

−∞
fXi,µ,σ(xi)dx (2.7)
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With Expression (2.7) we can calculate the probability over any interval for Xi.
An N -dimensional multivariate Gaussian distribution over values x of a set of N

randvars X = {X1, ..., XN} is defined by an N -dimensional mean vector µ and an
N ×N -dimensional symmetric covariance matrix Σ. The probability density function is
given by

fX,µ,Σ(x) =
1

(2π)
N
2 |Σ|

1
2

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (2.8)

In short, we write again
X ∼ N (µ,Σ) . (2.9)

Gaussian distributions are easy to use for calculations because they are closed under
multiplication and the integral can be calculated analytically. Both characteristics are
useful for working with probabilities.
When we have a multivariate Gaussian Distribution as our model, we ask queries with

respect to the model. The query is defined in Definition 2.2.5 and we can calculate all
integrals to come up with the marginal distributions and calculate the new distribution
based on Expression (2.2). Fortunately, there exists a better algorithm for calculating
the conditional probability distribution queried by P (Q|E = e) in a multivariate Gaus-
sian Distribution (Koller and Friedman, 2009). The conditional distribution is again a
Gaussian distribution

P (Q|E = e) = N (µ?,Σ?) , (2.10)

where µ? and Σ? can be calculated analytically with

µ∗ = µQ + ΣQEΣ−1
EE(e− µE), (2.11)

Σ∗ = ΣQQ −ΣQEΣ−1
EEΣEQ. (2.12)

The subscripts containing sets refer to the subset of entries in µ and Σ corresponding
to the randvars in given sets.
The upper bound for the time complexity of query answering with respect to a multi-

variate Gaussian distribution is in O(N3) where N is the number of randvars. The time
complexity is driven by the matrix multiplications and matrix inversions necessary for
Expressions (2.11) and (2.12).

2.4 Gaussian Probabilistic Graphical Networks

Having continuous randvars in a BN is not trivial. Marginalizing out randvars in the
continuous case uses integrals over the randvars that should be marginalized. In the
general form, there is no algorithm known to solve those integrals, which motivates more
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restrictive forms that avoid intractability. Shachter and Kenley (1989) have introduced
Gaussian Bayesian networks (GBNs) under the name Gaussian influence diagrams as a
possibility to have continuous distributed randvars in a BN, that allows for tractable
inference.

Definition 2.4.1. A Gaussian Bayesian network is a BN in which all randvars are con-
tinuous and normally distributed. The edges represent linear relationships between the
randvars. As in BNs, the joint density can be factorized using the conditional probability
densities of Xi with i = 1, ..., N given it parents Pa(Xi):

P (Xi|Pa(Xi)) ∼ N

µi +
∑

Xk∈Pa(Xi)

βk,i(xk − µk), σ2
i

 , (2.13)

where µk and µi are node means, σ2
i is the node variance, βk,i represents the influence of

parent Xk on its child Xi and xk refers to the observed value for Xk.

Later in the thesis we also might write µXi instead of µi. Whenever it is clear to
which randvar the mean value is referring, we use the short form. Remark: The linear
influence β is here multiplied with the parent’s deviation from the mean (xk−µk), which
is following the structure by Shachter and Kenley (1989). Other authors multiply the
linear factor directly with the variable value µk (Koller and Friedman, 2009). Using the
deviation has the benefit, that the marginal means are equivalent to the node means,
whereas using the variable name requires a further conversion step. Semantically both
structures can be converted into multivariate Gaussian distributions.

Definition 2.4.2 (Kronecker delta). Given two items A and B, the Kronecker delta
function is defined as

δA,B =

{
1 if A = B

0 otherwise
. (2.14)

In this dissertation, items are for example indexes or randvars.

Similarly to the discrete case, the GBN is a sparse representation for the multivariate
Gaussian distribution described in Expression (2.8). The multivariate joint Gaussian
distribution can be constructed from a GBN using an algorithm by Shachter and Kenley
(1989), which has been implemented both in matrix notation and non-matrix notation.
Using non-matrix notation, we can loop twice over the randvars and use the following
equation for calculating the entries within the covariance matrix inductively,

Σi,j =
∑

Xk∈Pa(Xj)

Σi,kβk,j + δi,jσ
2
i , (2.15)

where i, j ∈ 1, . . . , N and i < j and δ is the Kronecker delta function as defined in
Definition 2.4.2.
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X1P (X1)

X2P (X2 | X1)

X3 P (X3 | X1, X2)

X4 P (X4 | X2)

β1,2

β1,3

β2,3

β2,4

Figure 2.1: Example (G)BN with four randvars

Example 2.4.1 (Construction of the covariance matrix). Given a network with four
randvars X1, X2, X3 and X4 as visualized in Fig. 2.1, we use Expression (2.15) to
calculate the joint distribution inductively:

Σ1,1 = σ2
1

Σ2,1 = Σ1,2 = Σ1,1β1,2

Σ2,2 = Σ2,1β1,2 + σ2
2

Σ3,1 = Σ1,3 = Σ1,1β1,3 + Σ1,2β2,3

Σ3,2 = Σ2,3 = Σ2,1β1,3 + Σ2,2β2,3

Σ3,3 = Σ3,1β1,3 + Σ3,2β2,3 + σ2
3

Σ4,1 = Σ1,4 = Σ1,2β2,4

Σ4,2 = Σ2,4 = Σ2,2β2,4

Σ4,3 = Σ3,4 = Σ3,2β2,4

Σ4,4 = Σ4,2β2,4 + σ2
4

Using matrix notation, we store the linear dependencies in a transition matrix T , where
an entry Ti,j contains the value βi,j and describes the linear relationship between parent
Xi and child Xj . A zero entry is equivalent to no direct edge between the randvars in the
GBN. Using matrix notation we can calculate the off-diagonal entries of the covariance
matrix Σi,j belonging to a randvar Xj in one step by

Σi,j = Σi,iT i,j (2.16)

and the transpose
Σj,i = ΣT

i,j , (2.17)

where i = {1, ..., j − 1}. The on-diagonal entries are calculated with

Σj,j = Σj,iT i,j + σ2
j . (2.18)

The starting point is
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Algorithm 1 Converting a GBN to a multivariate Gaussian joint distribution (matrix
notation)

procedure ConstructJoint(Topologically sorted randvars X)
N ← |X|
Initialize N ×N -dimensional covariance matrix Σ
Σ1,1 ← σ2

X1

for i ∈ 1, ..., N do
j ← 1, . . . , i− 1
Σj,i ← Σj,jT j,i
Σi,j ← ΣT

j,i

Σi,i ← Σi,jT j,i + σ2
Xi

return Σ

Σ1,1 = σ2
1. (2.19)

The algorithm for constructing the covariance matrix using matrix notation is de-
scribed in Alg. 1.

Example 2.4.2 (Construction of the covariance matrix with matrix notation). Convert-
ing Example 2.4.2 into matrix notation results in

Σ1,1 = σ2
1,

Σ2,1 = Σ1,2 = Σ1,1T1,2,

Σ2,2 = Σ2,1T1,2 + σ2
2,

Σ3,1:2 = Σ1:2,3 = Σ1:2,1:2T 1:2,3,

Σ3,3 = Σ3,1:2T 1:2,3 + σ2
3,

Σ4,1:3 = Σ1:3,4 = Σ1:3,1:3T 1:3,4,

Σ4,4 = Σ4,1:3T 1:3,4 + σ2
4,

where

T =


0 β1,2 β1,3 0
0 0 β2,3 β2,4

0 0 0 0
0 0 0 0

 .
It is important to remark that we use the joint distribution for query answering is this

thesis. This might seem odd because we do not use a local propagation scheme which is
a core feature of PGMs. In the next chapter, we will see that we still use the structure
of the network, when developing query answering operations. Nevertheless investigating
local schemes — especially for lifted query answering — is an interesting path for further
research.
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Chapter 3

Lifting Gaussian Bayesian Networks

One way to improve efficiency of query answering is to exploit certain characteristics
of the PGM at hand. Poole (2003) introduces first-order probabilistic inference, which
exploits symmetries in a model by combining indistinguishable instances using logical
variables (logvars) to reason with representatives for the represented instances. The in-
stances are only indistinguishable as long as no evidence is introduced, i.e., as long as
the instances are not observed. Using a compact representation and performing infer-
ence with representatives is also referred to as lifting and has been an active research
field in the past years (Kimmig et al., 2015; Sharma et al., 2018; Holtzen et al., 2020).
Lifting has its benefits if the groups of randvars are large, which is usually the case when
relationships of randvars on instance level are concerned. In discrete settings, lifting has
shown remarkable efficiency gains for query answering. For discrete PGMs, Taghipour
et al. (2013) present a lifted variable elimination algorithm and for repeated query an-
swering Braun and Möller (2016) develop a lifted version of the junction tree algorithm
originally proposed for proposiitional PGMs by Lauritzen and Spiegelhalter (1988). In
the continuous setting, Choi et al. (2010) present a lifted version of variable elimination
in factor graphs (a different type of PGMs that is not focus of this dissertation) with
Gaussian pairwise potentials. In this chapter, we look at how to apply lifting to GBNs
which is a different class of PGMs that has not been lifted before. This chapter is based
on the following publications:

Mattis Hartwig and Ralf Möller. Lifted Query Answering in Gaussian Bayesian
Networks. In Proceedings of the 10th International Conference on Probabilistic
Graphical Models, volume 138 of Proceedings of Machine Learning Research,
pages 233–244. PMLR, 2020

Mattis Hartwig, Tanya Braun, and Ralf Möller. Handling Overlaps When
Lifting Gaussian Bayesian Networks. In IJCAI-21 Proceedings of the 30th
International Joint Conference on Artificial Intelligence, pages 4228–4234.
IJCAI Organization, 2021

Mattis Hartwig, Ralf Möller, and Tanya Braun. An Extended View on Lifting
Gaussian Bayesian Networks. Submitted to Elsevier Artificial Intelligence
Journal
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This chapter contains the first three contributions of this dissertation. We start by
explaining the lifting-specific preliminaries and introducing a running example used
throughout this chapter. Then, we develop a lifted version of Shachter and Kenley’s
(1989) ground-level algorithm to construct a joint distribution from a GBN (Contribu-
tion 1) and how to work with the lifted joint distribution using lifted operations (Con-
tribution 2). Afterwards, we describe an algorithm using the lifted joint distribution
for lifted query answering (Contribution 3). The new approaches are evaluated with
complexity analyses and experiments measuring runtimes.

3.1 Lifting Preliminaries

This section covers preliminaries specific for lifting GBNs. In slight abuse of notation,
we use set operations for sequences, where we apply the operation to the set containing
the sequence elements but keep the sequence order intact.

3.1.1 Parameterized randvars

Parameterized randvars (PRVs) allow for grouping of indistinguishable randvars. In-
distinguishable randvars share the same characteristics in terms of node means, node
variances and parent structure. Logvars identify groups and PRVs to represent a set of
indistinguishable randvars. The aim of lifting is to work solely with the PRVs as repre-
sentatives for the randvars we get when the logvars of the PRVs are instantiated. The
model in which all PRVs are instantiated with the logvar constants is called the ground
model and the model that only contains PRVs the lifted model.

Definition 3.1.1 (Parameterized randvar, grounding). Let ξ be a set of randvar names
and D be a set of logvar names. A Parameterized random variable Y is a syntactical
construct of a randvar name ξ ∈ ξ combined with a sequence of logvar names z ⊆ D
into ξ(z). We use X to refer to all ground level randvars and L to refer to sequence of
all logvars with a fixed ordering. The domain D(L) = {l1, ..., lH} contains the constants
of logvar L ∈ L. The domain of a sequence of logvars is defined as D(L) = ×L∈LD(L).
The term lv(Y ) refers to the logvars of Y , i.e., L. Grounding a PRV Ys with a cor-
responding logvar Ls results in a set of randvars gr(Ys) = {ξs(l1), ..., ξs(l

H)}, with
D(Ls) = {l1, ..., lH}.

The number of randvars represented by a PRV Y is determined by the domain size
of its logvars, i.e., |D(lv(Y ))|. A propositional randvar X can be interpreted as a PRV
Y = X(L) with |D(L)| = 1. When we say a randvars X belongs to a PRV Y , we
mean that X ∈ gr(Y ). Each PRV Y also has a range denoted as R(Y ) that contains the
possible values for randvars gr(Y ) analogously to the range of individual randvars R(X).
In this dissertation, we work with continuous normally distributed randvars which results
in the general R(X) = R. Instead of specifying a discrete conditional probability table
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for each PRV, we specify a lifted node mean η and lifted node variance λ, that apply to
all randvars in gr(Y):

λ = σ2
X , for X ∈ gr(Y ). (3.1)

Parents of Ys are denoted as Yu ∈ Pa(Ys).

3.1.2 Parameterized Gaussian Bayesian Networks

Instead of N ground randvars X1, . . . , XN , a parameterized GBN contains M PRVs
Y1, . . . , YM . Each PRV Ys, with s = 1, ...,M , has a lifted node mean ηs and lifted
node variance λs. Edges are also defined between PRV nodes. An edge between a
parent Yu and a child Ys has a corresponding variable ζYu,Ys 6= 0 that describes the
linear relationship between the PRVs analogously to the β in propositional GBNs of
Definition 2.4.1. Grounding a PRV Ys leads to a set of ground randvars gr(Ys) with
|gr(Ys)| = |D(Ls)| that have the same mean and variance. Grounding a topologically
ordered list of PRVs results in a topologically ordered list of ground randvars because
the parent-child relationships for each ground randvar are defined by the parent-child
relationships of the corresponding PRV. A propositional randvar X can be interpreted
as a PRV Y s with |D(Ls)| = 1. Given a parent PRV Ys and a child PRV Yt, the
logvar sequences can be either disjoint or overlapping resulting in different conditional
independencies between parent and child randvars.
Disjoint logvar sets: The logvars Ls of the parent PRV Ys and the logvars Lt of the child

PRV Yt are disjoint, i.e. Ls ∩ Lt = ∅. Disjoint logvar sets result in a relationship
from every randvar in gr(Ys) to every randvar in gr(Yt).

Overlapping logvar sets: The logvars Ls of the parent PRV Ys and the logvars Lt of
the child PRV Yt overlap, i.e., LO = Ls ∩ Lt 6= ∅. Grounding results in a relation
where each child node is influenced by all |D(Ls \Lt)| parents that share the same
grounding of LO.

To get better intuition of the influence of overlaps on the ground network, see Fig. 3.2.
For ease of notation, we assume that all sequences L ⊂ L are in line with the ordering
in L. This sorting places no restriction on the expressivity of the model. In the course
of this dissertation, we need the following helper functions regarding logvar sequences.

Definition 3.1.2 (Seq-, dim- and ov-function). Let L be a logvar and Ls ⊆ L and
Lt ⊆ L two sequences of logvars. Then, we define

dim(L,Ls) =

{
|D(L)| if L ∈ Li
1 otherwise

(3.2)

ov(L,Ls,Lt) =

{
1 if L ∈ (Ls ∩Lt)
0 otherwise.

(3.3)

Additionally, we need two helper functions when working with randvars and PRVs.
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Definition 3.1.3 (Any- and lif-function). For a PRV Y and a randvar X with X ∈
gr(Y ), the operation any(Y ) returns any individual randvar belonging to PRV Y . The
operation lif(X) returns the corresponding PRV, here lif(X) = Y .

3.2 Introducing a Running Example

We setup a running example to illustrate the operations performed in this chapter, which
can be seen in Fig. 3.1. The example is of course designed to show-case what is going on
in the formulas throughout the chapter and not to be fully realistic, also containing not
too serious elements like modelling the coffee consumption of doctors and nurses.

Effectiveness(Medicine)

Intake(Medicine, Patient)

Severeness(Patient)

Healthiness(Patient)

Workload(Doctor)

Usage(Coffee-machine)

Thirst(Nurse)

Including overlap

No overlap

Figure 3.1: Running Example

The example contains the randvars Effectiveness (E), Intake (I), Severeness (S),Health-
iness (H), Workload (W), Thirstiness (T), and Usage (U) and the logvars Medicine (M),
Patient (P), Doctor (D), Nurse (N), and Coffee-machine (C). Randvars and logvars are
combined into PRVs and put into dependence as follows: The Effectiveness of aMedicine,
E(M), and the Severeness of a Patient ’s disease, S(P ), have an influence on the Intake
of a specific Medicine for a Patient, I(M,P ). The Severeness of a Patient ’s disease and
the Intake of a specific Medicine for a Patient have then an influence on the Healthiness
of a Patient, H(P ), after the treatment, which then influence the Workload of the Doc-
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tors W (D). The Workload of the Doctors and the Thirst of the Nurses, T (N), have an
influence on the Usage of the Coffee-machine, U(C). In the following sections, we will
use individual parts of this network as a demonstrator. The starting point for us is the
blue box, where PRVs do not contain an overlap between their logvar sequences, followed
by a generalization for the parts that contain overlaps (orange box). We use a topological
ordering of (E(M), S(P ), I(M,P ), H(P ), T (N),W (D), U(C)) for our example, together
with a global logvar sequence L = (M,P,N,D,C) defining the global logvar ordering.
In the formal descriptions, we always have an iterator (often denoted as s = 1, . . . ,M)
over the PRVs. In our example calculations, we try to use the PRV names as often as
possible, but when iterating over example PRVs, e.g., within a sum, we use Y1, . . . , Y7 as
synonyms for E(M), S(P ), I(M,P ), H(P ), T (N), W (D), U(C) respectively, to ensure
better readability. We also define two helper functions:

Definition 3.2.1 (PRV position, preceding PRVs). Given a set of PRVs Y and an
ordering O, we define pos(Ys) of a PRV Ys ∈ Y to return the position in the ordering

pos(Ys) = s (3.4)

and pre(Ys) to return all PRVs preceding Ys

pre(Ys) = {Yr|r < s}. (3.5)

The parameters λ,η and ζ of the parameterized GBN are as follows

λ =



λE(M)

λS(P )

λI(M,P )

λH(P )

λT (N)

λW (D)

λU(C)


=



1
2
3
1
2
3
4


,η =



ηE(M)

ηS(P )

ηI(M,P )

ηH(P )

ηT (N)

ηW (D)

ηU(C)


=



1
0
3
0
2
3
4


, and

ζE(M),I(M,P ) = 2

ζS(P ),I(M,P ) = 5

ζS(P ),H(P ) = −3

ζI(M,P ),H(P ) = 4

ζH(P ),W (D) = −2

ζT (N),U(C) = 2

ζW (D),U(C) = 3

. (3.6)

The domain size of the PRVs in the network is defined by the cardinality of the logvar
domains, stored in what we later refer to as a cardinality vector τ . In our example
calculations, we use the following domain sizes:

τ =


τM
τP
τN
τD
τC

 =


3
2
3
2
3

 . (3.7)

Behind this parameterized GBN lies a grounded GBN. If the logvar M has three con-
stants, D(M) = {Medicine1,Medicine2,Medicine2}, and the logvar P two constants,
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Chapter 3 Lifting Gaussian Bayesian Networks

D(P ) = {John,Mary}, the resulting ground network of the first three PRVs E(M),
S(P ), and I(M,P ) would consist of 11 randvars, each with their own µ, σ2, and β values
to store. Figure 3.2 shows a partial visualisation of the ground network. With a domain
size of ten medicines and 100 patients the ground network of only the first three PRVs
would already contain 1,110 randvars. This explosion of the number of randvars shows
how important efficient approaches to handling those networks are.

I(John, Medicine1)

S(John)

E(Medicine1)

I(John, Medicine2) I(John, Medicine3)

E(Medicine2) E(Medicine3)

I(Mary, Medicine1) I(Mary, Medicine2) I(Mary,Medicine3)

S(Mary)

Figure 3.2: Grounding parts of the running example

Of course there are also unrealistic assumptions occurring in the modeling of this sim-
plified real-world scenario. For example we assume that the health levels of all patients
influence the workload of all doctors, whereas in reality probably certain doctors are
responsible for a specific group of patients. This assumption could be relaxed by intro-
ducing a new logvar that could be the station or department where a doctor works and
where a patient is treated. But as said, our example should be very simple and focus on
containing different types of relationships to better illustrate the upcoming ideas.
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3.3 Constructing the Lifted Joint Distribution

3.3 Constructing the Lifted Joint Distribution

The starting point for constructing a lifted joint given a parameterized GBN is the
grounded implementation of Alg. 1 originally developed by Shachter and Kenley (1989).
This section describes a lifted version of the algorithm. If the number of indistinguishable
instances is high, the covariance matrix of the multivariate normal distribution is filled
with many duplicate values. We present a lifted representation for more efficient memory
usage and faster calculations. We start by explaining the basic case where PRVs are
not allowed to have overlapping logvar sets using the non-matrix notation, followed by
a matrix version of the same algorithms. Both approaches have their own intuition,
adding their own contribution to the discussion of (parameterized) GBNs. The non-
matrix notation gives better intuition of how conditional independencies in the network
result in less summations, when summing up all influences caused by parent randvars. It
also shows very clearly how identical values occur in the case of indistinguishable randvars
and how identical values can simplify calculations. The matrix notation however is better
suited for generalizing the algorithm for the overlapping case, because we can exploit
block structure within the matrices to simplify equations, enabling scenarios such as one
part of the running example, where the severeness of a patient’s illness only influences
the intake of medicine for that specific patient.

3.3.1 The Base Case Without Overlaps - Non-matrix Notation

The algorithm by Shachter and Kenley (1989) starts with a topologically ordered list of
randvars in the GBN. As already described in the previous chapter in Expression (2.15),
the symmetric covariance matrix Σ of the joint distribution P (X ) = N (µ,Σ) is created
inductively by

ΣXj ,Xi = ΣXi,Xj =

 ∑
Xk∈Pa(Xj)

ΣXi,Xk
βXk,Xj

+ δXi,Xjσ
2
Xi
, (3.8)

here indexed using full randvar names, with i < j meaning Xi comes before Xj in
the topological ordering. For better reference during this chapter, we have repeated the
equation but instead of using the short indexing with i and j, we index with the full
randvar name, to be more consistent when introducing PRVs into the equation.
Instead of looking into propositional randvars Xi and Xj , we are now looking at two

sets of equally behaving randvars gr(Ys) and randvars gr(Yt) grouped into PRVs Ys and
Yt with s, t = 1, ...,M , respectively. In the ground case, we would calculate the covariance
between all |D(Ls)| randvars gr(Ys) and all |D(Lt)| randvars gr(Yt). If there exists a
parent child relationship between Yu and Ys, all indistinguishable randvars gr(Yu) are
parents of all randvars gr(Ys) due to the non-overlap in the logvar sequences. Based on
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Chapter 3 Lifting Gaussian Bayesian Networks

these known relationships we can reformulate Expression (3.8) into

ΣXi,Xj =

 ∑
Yu∈Pa(lif(Xj))

 ∑
Xk∈gr(Yu)

ΣXi,Xk
βXk,Xj

+ δXi,Xjσ
2
Xi
. (3.9)

The sum in parentheses works on ground level. Based on Section 3.1.2, all βXk,Xj

for Xk ∈ gr(Yu) are equal to ζlif(Xk),lif(Xj) in the non-overlapping case. If ΣXi,Xk
was

equal for all Xi and Xk, we could calculate it once and multiply it with the number
of randvars |D(Lu)| in gr(Yu) to replace the sum. However, if Xi is equal to Xk, the
recursive ΣXi,Xk

contains a different value due to the Kronecker delta term resulting in
an additional summand. The delta term within ΣXi,Xk

prevents us from multiplying
ΣXi,Xk

ζlif(Xk),lif(Xj) with the number of randvars |D(Lu)| to replace the sum. To get
rid of the sum in parentheses nevertheless, we differentiate between Xi being a parent of
Xj and Xi not being a parent Xj :
Case 1: If the randvar Xi is no parent of the randvar Xj , the δXi,Xk

σ2
Xi

term in
the referenced ΣXi,Xk

is always zero, resulting in a fully equal covariance ΣXi,Xk
for all

randvars Xk ∈ gr(Yu), which reduces the second summation to a product between any
covariance Σi,any(Yu), the number of parent randvars |D(Lu)|, and the linear dependency
ζYu,lif(Xj):

ΣXi,Xj =

 ∑
Yu∈Pa(lif(Xj))

ΣXi,any(Yu)|D(Lu)|ζYu,lif(Xj)

+ δXi,Xjσ
2
Xi
. (3.10)

Case 2: If the randvar Xi is a parent of the randvar Xj , then exactly one randvar
in gr(Yu) will be equal to randvar Xi, which would result in a different covariance Σi,k.
The key is, that if randvar Xi is a parent of randvar Xj , all other randvars gr(lif(Xi))
of the corresponding PRV lif(Xi) are also parents of randvars gr(lif(Xj)). This means
that, independent of the specific randvar in the covariance function, there will always be
exactly one covariance ΣXi,Xk

where the δXi,Xk
σ2
Xi

is nonzero.
Based on the two cases, we can reformulate Equation 3.9 into

ΣXi,Xj

=

 ∑
Yu∈Pa(lif(Xj)

(
ΣXi,any(Yu)|D(Lu)|+ δYu,lif(Xj)λlif(Xk)

)
ζYu,lif(Xj)

+ δXi,Xjλlif(Xi).

(3.11)

Since the sum over Yu ∈ Pa(lif(Xj)) is equal for all combinations between randvars
gr(lif(Xi)) and randvars gr(lif(Xj)), we introduce a new symbol ρ to store this value
that is equal for all randvars belonging to the same PRV. ρ can be seen as a PRV
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covariance matrix. Introducing this new matrix as a result of the sum in Expression (3.11)
results in

ρYs,Yt =
∑

Yu∈Pa(Yt)

(ρYs,Yu |D(Lu)|+ δYu,XtλYu) ζYu,Yt . (3.12)

The last term δXi,Xjλlif(Xi) of Expression (3.11) only needs to be added if the ground
covariance between two equal randvars Xi and Xi is calculated. This additional value
is already stored in the λ vector. We can use the PRV covariance ρ matrix and the λ
vector to calculate a ground covariance with

ΣXi,Xj = ρlif(Xi),lif(Xj) + δXi,Xjλlif(Xi). (3.13)

Expressions (3.12) and (3.13) show that we can calculate the ground covariance matrix
only using ρ and λ. All lifted covariances ρYs,Yt can be stored in an M ×M -dimensional
matrix ρ and the variances λXs can be stored in an M -dimensional vector λ, no longer
requiring storage depending on domain sizes.

In addition to the covariance matrix, the multivariate Gaussian also needs a mean
vector µ. The ground mean-vector consists of the means of all randvars. Since the
randvars gr(Ys) of a PRV Ys have the same mean, the M -dimensional PRV mean vector
η is a lifted version of µ. We get the mean for a ground randvar Xi by expanding the
lifted mean vector η as µXi = ηlif(Xi).

In summary, to store all information of the lifted joint distribution over M PRVs
Y1, ..., YM , we need anM -dimensional lifted mean vector η, anM ×M -dimensional PRV
covariance matrix ρ, and an M -dimensional node variance vector λ. Additionally, we
need to store the cardinalities of the randvars, i.e., the domain sizes of the corresponding
logvar sequences, needed in Expression (3.12). In the case with no overlap, each PRV
has its own set of logvars so we could store cardinalities in an M -dimensional vector but
in preparation of the general case, we store individual domain sizes in a |L|-dimensional
cardinality vector τ . Let us look at our example to see Expression (3.12) at work.

Example 3.3.1. As a basis, we use the blue part with no overlapping logvars of the
parameterized GBN visualized in Fig. 3.1. The parameters for λ and ζ are defined in
Expressions (3.6) and (3.7). The lifted calculations from Expression (3.12) to construct
the joint covariance matrix are as follows:
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ρH(P ),H(P ) = 0, because H(P ) has not parent

ρH(P ),T (N) = 0, because T (N) has not parent

ρT (N),T (N) = 0, because T (N) has not parent

ρH(P ),W (D) = (ρH(P ),H(P )τP + λH(P ))ζH(P ),W (D) = (0 · 2 + 1)(−2) = −2

ρT (N),W (D) = (ρT (N),H(P )τP + 0)ζH(P ),W (D) = (0 · 2 + 0)(−2) = 0

ρW (D),W (D) = (ρW (D),H(P )τP + 0)ζH(P ),W (D) = (−2 · 2 + 0)(−2) = 8

ρH(P ),U(C) = (ρH(P ),T (N)τN + 0)ζT (N),U(C) + (ρH(P ),W (D)τD + 0)ζW (D),U(C)

= (0 · 3 + 0)2 + (−2 · 2 + 0)3 = −12

ρT (N),U(C) = (ρT (N),T (N)τN + λT (N))ζT (N),U(C) + (ρT (N),W (D)τD + 0)ζW (D),U(C)

= (0 · 3 + 2)2 + (0 · 2 + 0)3 = 4

ρW (D),U(C) = (ρW (D),T (N)τN + 0)ζT (N),U(C) + (ρW (D),W (D)τD + λW (D))ζW (D),U(C)

= (0 · 3 + 0)2 + (8 · 2 + 3)3 = 57

ρU(C),U(C) = (ρU(C),T (N)τN + 0)ζT (N),U(C) + (ρU(C),W (D)τD + 0)ζW (D),U(C)

= (4 · 3 + 0)2 + (57 · 2 + 0)3 = 366

The resulting ρ matrix is then

ρ =


0 0 −2 −12
0 0 0 4
−2 0 8 57
−12 4 57 366

 .
Getting the variance of H(Doctor1) results in a grounding of

ΣW (Doctor1),W (Doctor1) = ρW (D),W (D) + λW (D) = 8 + 3 = 11.

Appendix A.1 contains the same example calculated on ground level using Expres-
sion (2.15). In the ground matrix, the values from λ are added to the diagonal resulting
for example in a value of 370.

In the next section, we will look at the same case of a parameterized GBN without
overlap using the matrix notation.

3.3.2 The Base Case Without Overlaps - Matrix Notation

In this section, we use the matrix notation of Shachter and Kenley’s (1989) approach for
which pseudocode can be found in Alg. 1. Before diving into the algorithm, we introduce
two basic rules for working with identity and all-ones matrices that are essential for the
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3.3 Constructing the Lifted Joint Distribution

matrix notation version. An all-ones matrix J contains one values in every entry and an
identify matrix I contains one values on the diagonal and zeros everywhere else.
The first rule relates to the multiplication of all-ones matrices and has been covered

by Timm (2002). The second rule follows directly from the first one.

Lemma 3.3.1. Given two all-ones matrices A = JE×F and B = JF×G with E,F,G ∈ N,
the product of the two matrices is again an all-ones matrix multiplied by F

AB = JE×FJF×G = FJE×G (3.14)

Proof. With matrix algebra, each entry at position (i, j), with i ∈ {1, ..., E} and j ∈
{1, ..., G} of the resulting matrix is calculated by the sum

F∑
k=1

ai,kbk,i =
F∑
k=1

1 = F. (3.15)

An E × G dimensional matrix whose elements are all equal to F can be written as
FJE×G.

The second lemma follows directly from Lemma 3.3.1.

Lemma 3.3.2. Given matrices

A = pJE×E + qIE×E , (3.16)
B = rJE×E + sIE×E and (3.17)
C = tJE×G (3.18)

it holds that

AB = uJE×E + vIE×E and (3.19)
AC = wJE×G (3.20)

with

u = Epr + ps+ qr, (3.21)
v = qs and (3.22)
w = Ept+ qt. (3.23)

Proof. Using the distributivity characteristics of matrix multiplication and Lemma 3.3.1,
it holds that

AB = uJE×E + vIE×E

= (pJE×E + qIE×E)(rJE×E + sIE×E)

= EprJE×E + psJE×E + qrJE×E + qsIE×E

= (Epr + ps+ qr)JE×E + qsIE×E

(3.24)
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and

AC = uJE×E + vIE×E

= (pJE×E + qIE×E)(tJE×G)

= EptJE×E + qtJE×E

= (Ept+ qt)JE×E .

(3.25)

For better readability, we restate Expressions (2.16) to (2.19) as the starting point for
the lifted construction using matrix notation:

ΣX1,X1 = σ2
X1
, (3.26)

ΣXi,Xj = ΣXi,Xi
TXi,Xj , (3.27)

ΣXj ,Xi
= ΣT

Xi,Xj
, (3.28)

ΣXj ,Xj = ΣXj ,Xi
TXi,Xj + σ2

Xj
. (3.29)

For lifting the Shachter and Kenley algorithm, we structure the covariance matrix Σ
and the transition matrix T into M ×M blocks. For s, t ∈ {1, . . . ,M}, we identify the
blocks with Σgr(Ys),gr(Yt) and T gr(Ys),gr(Yt). In the non-overlapping scenario, the blocks
of the T matrix are either filled with zeros or filled with the corresponding ζYs,Yt values
for the relationship between two PRVs Ys and Yt:

T gr(Ys),gr(Yt) = ζYs,Yt · J|D(Ls)|×|D(Lt)|, (3.30)

where J|D(Ls)|×|D(Lt)| is the |D(Ls)| × |D(Lt)|-dimensional all-ones matrix.
The diagonal blocks of T are always zero, because self-reference is not allowed in (pa-

rameterized) GBNs. This structure allows us to go blockwise through Expressions (3.26)
to (3.29). For any t ∈ {1, ...,M} and s = {1, ..., t− 1}, it holds that

Σgr(Y1),gr(Y1) = λY1I|D(L1)|×|D(L1)|, (3.31)

Σgr(Y s),gr(Yt) = Σgr(Y s),gr(Y s)T gr(Y s),gr(Yt), (3.32)

Σgr(Yt),gr(Y s) = ΣT
gr(Y s),gr(Yt)

, (3.33)

Σgr(Yt),gr(Yt) = Σgr(Yt),gr(Y s)T gr(Y s),gr(Yt) + λYtI|D(Lt)|×|D(Lt)|. (3.34)

The initial block is always the identity matrix I multiplied with the node variance of
the first PRV. We use an induction-like approach to show that the covariance matrix
can be again calculated and stored in a lifted way. We show how the first iteration of
Expressions (3.31) to (3.34) works out and then generalize further.
Expression (3.32) is a multiplication of the first block Σgr(Y1),gr(Y1) with the transition

matrix block T gr(Y1),gr(Y2)
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Σgr(Y1),gr(Y2) = Σgr(Y1),gr(Y1)T gr(Y1),gr(Y2)

= λY1I|D(L1)|×|D(L1)|ζY1,Y2J|D(L1)|×|D(L2)|

= λY1ζY1,Y2J|D(L1)|×|D(L2)|,

(3.35)

where the matrix multiplication with the identity matrix (as the neutral element) has
no effect. The next block on the diagonal using Expression (3.34) is calculated by

Σgr(Y2),gr(Y2) = Σgr(Y2),gr(Y1)T gr(Y1),gr(Y2)

= λY1ζY1,Y2J|D(L2)|×|D(L1)|ζY1,Y2J|D(L1)|×|D(L2)| + λY2I|D(L2)|×|D(L2)|

= λY1ζ
2
Y1,Y2 |D(L1)|J|D(L2)|×|D(L2)| + λY2I|D(L2)|×|D(L2)|,

(3.36)

where we use Lemma 3.3.1 in the multiplication of the two all-ones matrices.
In further steps, when calculating Expression (3.32) or Expression (3.34), there are

several PRVs in Y s. With block matrix multiplication rules, we can calculate the result-
ing blocks Σgr(Y s),gr(Yt) individually. We use s ∈ 1, ..., t− 1 as an index to iterate over
the blocks:

Σgr(Ys),gr(Yt) =
t−1∑
k=1

Σgr(Ys),gr(Yk)T gr(Yk),gr(Yt). (3.37)

Based on Lemma 3.3.2, we know that the resulting block Σgr(Ys),gr(Yt) can be expressed
by a multiple of the all-ones matrix, if all Σgr(Y s),gr(Y s) have a structure of aJ+ bI. For
the off-diagonal blocks, we have shown that they follow this structure if their preceding
blocks follow the structure as well. The formula for the on-diagonal blocks can also be
converted to a summation:

Σgr(Yt),gr(Yt) = Σgr(Yt),gr(Y s)T gr(Y s),gr(Yt) + λYtI|D(Lt)|×|D(Lt)|

=
t−1∑
k=1

Σgr(Yt),gr(Yk)T gr(Yk),gr(Yt) + λYtI|D(Lt)|×|D(Lt)|.
(3.38)

Based on Lemma 3.3.2, the summation over k results again in a multiple of the all-
ones matrix. On the diagonal, there is the identity matrix addition. In this induction-like
approach, we only need to show that the starting point is also following the structure,
which is the case based on Expression (3.31). The beauty of this approach lies in the
closed form of the matrix structure under the operations performed in the algorithm.
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The reader might have wondered why we have put such an emphasis on the relatively
simple Lemma 3.3.2, but finding a lifted structure that is closed under the operations
performed in the algorithm by Shachter and Kenley (1989) will also be key for the
following generalizations.

Closing the loop to the previous section, we can now store the factor of the all-ones
matrix of each block in the M ×M dimensional matrix ρ and the factor of the identity
matrix, only present on the diagonal blocks, in the M dimensional vector λ to have
a lifted representation of the joint covariance matrix. Additionally, we again store the
domain size of each logvar in the cardinality vector τ . Grounding a full block can be
done by

Σgr(Ys),gr(Yt) = ρYs,YtJτs×τt + δYs,YtλsIτs×τs . (3.39)

To get a specific covariance between two ground randvars Xi and Xj , we select the
entries of the block matrix in Expression (3.39) by

ΣXi,Xj = ρlif(Xi),lif(Xj) + δXi,Xjλlif(Xi), (3.40)

which is the same equation as Expression (3.13) for the non-matrix notation case. Let
us revisit Example 3.3.1, but this time illustrate how calculations can be understood in
terms of block matrix operations.

Example 3.3.2. Our ground matrix T has the following structure

T =



0 0 0 0 0 −2 −2 0 0 0
0 0 0 0 0 −2 −2 0 0 0
0 0 0 0 0 0 0 2 2 2
0 0 0 0 0 0 0 2 2 2
0 0 0 0 0 0 0 2 2 2
0 0 0 0 0 0 0 3 3 3
0 0 0 0 0 0 0 3 3 3
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


=


0τP×τP 0τP×τN −2JτP×τD 0τP×τC
0τN×τP 0τN×τN 0τN×τD 2JτN×τC
0τD×τP 0τD×τN 0τD×τD 3JτD×τC
0τC×τP 0τC×τN 0τC×τD 0τC×τC



We will only show a few block matrix notations and will do repeat the full example here.
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The full example can be found in Appendix A.2.

Σgr(H(P )),gr(H(P )) = λH(P )IτP×τP = 1IτP×τP

Σgr(H(P )),gr(T (N)) = Σgr(H(P )),gr(H(P ))T gr(H(P )),gr(T (N)) = IτP×τP 0τP×τN = 0τP×τN

Σgr(T (N)),gr(T (N)) = Σgr(T (N)),gr(H(P ))T gr(H(P )),gr(T (N)) + λT (N)IτN×τN

= 0τN×τP 0τN×τP + λT (N)IτN×τN = 0JτN×τN + 2IτN×τN

Σgr(H(P )),gr(W (D)) = Σgr(H(P )),gr(H(P ))T gr(H(P )),gr(W (D))

+ Σgr(H(P )),gr(T (N))T gr(T (N)),gr(W (D))

= 1IτP×τP (−2)JτP×τD + 0τP×τN 0τN×τD = (−2)JτP×τD
Σgr(T (N)),gr(W (D)) = Σgr(T (N)),gr(H(P ))T gr(H(P )),gr(W (D))

+ Σgr(T (N)),gr(T (N))T gr(T (N)),gr(W (D))

= 0τN×τP (−2)JτP×τD + 2IτN×τN 0τN×τD = 0JτN×τD
Σgr(W (D)),gr(W (D)) = Σgr(W (D)),gr(H(P ))T gr(H(P )),gr(W (D))

+ Σgr(W (D)),gr(T (N))T gr(T (N)),gr(W (D))

+ λW (D)IτD×τD

= (−2)JτD×τP (−2)JτP×τD + 0τD×τN 0τN×τD + λW (D)IτD×τD

= (−2) · (−2) · τPJτD×τD + λW (D)IτD×τD = 8JτD×τD + 3IτD×τD

The example shows how using Lemma 3.3.1 and Lemma 3.3.2 results in the same ρ values
as in Example 3.3.1.

We have introduced two approaches for constructing the lifted representation of the
covariance matrix of ρ and λ, allowing us to work with the blue part of our running
example in Fig. 3.1. Next, we will focus on generalizing the matrix approach to allow
overlaps between logvar sequences.

3.3.3 Allowing for Overlaps

Up until this point, the logvar sequences of connected PRVs are not allowed to have
overlaps. However, as the orange box in the running example in Fig. 3.1 shows, overlaps
are important to introduce further conditional independencies into the model and thus
make the model more expressive. When allowing overlaps between the logvars of a parent
and a child PRV, the connections on ground level only exist if the groundings share the
same instances of the overlapping logvars. Referring to our previously discussed case,
these additional independencies violate the equality assumption used in Expression (3.12)
for the non-matrix notation and the structure of the T matrix in Expression (3.30) for the
matrix notation. From here on, we will focus on the matrix notation. Therefore, we start
with specifying the general form of the transition matrix T given overlaps. Afterwards,
we construct a lifted representation of the covariance matrix anew.
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Chapter 3 Lifting Gaussian Bayesian Networks

General Form of the Transition Matrix

For the new lifted representation, we will need the Kronecker product of matrices.

Definition 3.3.1 (Kronecker product). Given a m× n matrix A and a p× q matrix B
the Kronecker product is defined as

A⊗B =

A1,1B . . . A1,nB
...

. . .
...

Am,1B . . . Am,nB

 . (3.41)

We use the same M × M dimensional block structure for the transition matrix as
introduced in the previous section. Given a parent PRV Ys and a child PRV Yt, a full
logvar overlap, i.e., Ls = Lt, would mean that each randvar in gr(Ys) has exactly one
connection to only one randvar in gr(Yt), namely, where Ys and Yt are grounded with the
same constants. Given a global ordering, a full overlap results in a block design where
the ζ value is only present on the diagonal:

T gr(Ys),gr(Yt) = ζYs,YtI|D(Ls)|×|D(Lt)|. (3.42)

If the full overlap logvar sequence Ls = Lt contains more than one logvar, we can
reformulate Expression (3.42) into

T gr(Ys),gr(Yt) = ζYs,YtI|D(Ls)|×|D(Lt)| = ζYs,Yt
⊗
L∈Ls

I|D(L)|×|D(L)|. (3.43)

Adding any non-overlapping logvar Lp in the parent sequence implies that previously
one randvar is now replaced by |D(Lp)| randvars, which leads to a Kronecker multipli-
cation of a J|D(Lp)|×1 column vector (parent variables correspond to rows). Analogously,
a non-overlapping additional logvar Lc in the child PRV results in a Kronecker multipli-
cation of a J1×|D(Lc)| row vector. Depending on the global ordering of the logvars, we
get the following general formula for T , with J0 = I:

T gr(Ys),gr(Yt) = ζYs,Yt
⊗

L∈seq(Ls,Lt)

J
ov(L,Ls,Lt)
dim(L,Ls)×dim(L,Lt)

. (3.44)

The ov-function in Expression (3.44) controls if an identity matrix (overlap) or an
all-ones matrix (non-overlap) is needed. For the non-overlapping logvars, the Kronecker
product contains either a column or row vector dependent on the logvar being in the
child or parent logvar sequence.
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3.3 Constructing the Lifted Joint Distribution

Example 3.3.3. For the overlapping part (in orange) of our example in Fig. 3.1, the
transition matrix T has following the block structure

T =


0|D(M)|×|D(M)| 0|D(M)|×|D(P )| T gr(E(M)),gr(I(M,P ) 0|D(M)|×|D(P )|
0|D(P )|×|D(M)| 0|D(P )|×|D(P )| T gr(S(P )),gr(I(M,P ) T gr(S(P )),gr(H(P ))

0|D(M,P )|×|D(M)| 0|D(M,P )|×|D(P )| 0|D(M,P )|×|D(M,P )| T gr(I(M,P )),gr(H(P ))

0|D(P )|×|D(M)| 0|D(P )|×|D(P )| 0|D(P )|×|D(M,P )| 0|D(P )|×|D(P )|

 ,
with

T gr(E(M)),gr(I(M,P ) = ζE(M),I(M,P )I|D(M)|×|D(M)|J1×|D(P )|,

T gr(S(P )),gr(I(M,P ) = ζS(P ),I(M,P )J1×|D(M)|I|D(P )|×|D(P )|,

T gr(S(P )),gr(H(P )) = ζS(P ),H(P )I|D(P )|×|D(P )| and

T gr(I(M,P )),gr(H(P )) = ζI(M,P ),H(P )J|D(P )|×1I|D(P )|×|D(P )|.

Since Expression (3.44) gives us a fixed rule to create a ground version of the transition
matrix T , we can store all information needed in the cardinality vector τ , containing the
domain sizes of the logvars, and the lifted transition matrix ζ.

Constructing the Covariance Matrix

The new general form allowing for the transition matrix T based on a lifted representation
ζ allows for overlaps between logvar sequences. We investigate how this new structure
of T influences Expressions (3.31) to (3.34). Analogously to the non-overlapping case,
we use an induction-like approach to show that all blocks follow a fixed structure, which
enables a lifted storage of the covariance matrix Σ. For ease of argumentation, we need
the concept of a Kronecker sequence and Kronecker factors.

Definition 3.3.2 (Kronecker sequence, Kronecker factor). Given a logvar sequence L,
we define a Kronecker sequence as any Kronecker product sequence⊗

L∈L
H |D(L)|×|D(L)|, (3.45)

where the matrix H is either an identity matrix I or an all-ones matrix J. We call every
factor H |D(L)|×|D(L)| in the Kronecker sequence a Kronecker factor.

For a logvar sequence Ls, there are 2|Ls| different Kronecker sequences following Def-
inition 3.3.2, because for each logvar L ∈ Ls, there are two possible Kronecker factors
(I|D(L)|×|D(L)| and J|D(L)|×|D(L)|). To identify one of the possible Kronecker sequences,
we use a |Ls|-dimensional index vector of zeroes and ones, where a zero stands for an
identity matrix and one for an all-ones matrix, and J as basis with J0 = I and J1 = J.
For example, the vector 0 = (0 . . . 0) references the Kronecker sequence of only identity
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matrices, whereas 1 = (1 . . . 1) references the Kronecker sequence of only all-ones ma-
trices. Each position in the vector corresponds to one logvar L ∈ Ls and thus to one
Kronecker factor. The set of possible vectors is referenced by Φs. To iterate over all pos-
sible Kronecker sequences, we iterate over all possible index vectors, i.e., combinations of
zeroes and ones, denoted as qs ∈ Φs. To iterate over all possible Kronecker sequences of
an overlapping logvar sequence Ls∩Lt in a logvar sequence Ls∪Lt, we write qs,t ∈ Φs,t

for short, with qs,t being padded with ones at those positions that do not correspond
to overlapping logvars. That means that the set Φs,t for two non-overlapping logvar
sequences only contains a single vector of ones.

Lemma 3.3.3. Given a transition matrix T with a structure from Expression (3.44)
and the inductive application of Expressions (3.31) to (3.34), the diagonal blocks of the
covariance matrix Σ follow the structure

Σgr(Ys,Ys) =
∑
qs∈Φs

ρ
qs
s,s

⊗
L∈Ls

J
πL(qs)
|D(L)|×|D(L)|, (3.46)

and off-diagonal blocks of the covariance matrix Σ follow

Σgr(Ys,Yt) =
∑

qs,t∈Φs,t

ρ
qs,t
s,t

⊗
L∈Ls∪Lt

J
qexp(qs,t,L)

dim(L,Ls)×dim(L,Lt)
, (3.47)

with

qexp(qs,t, L) =

{
πL(qs,t) if L ∈ (Ls ∪Lt),
1 otherwise.

(3.48)

The tensor ρ contains M ·M vectors, with each vector ρs,t having a length of 2|D(Ls∩Lt)|.
Each of the values can be indexed with one vector qs,t referring to the corresponding
Kronecker sequence.

Proof. We use an induction proof. First, we assume that Lemma 3.3.3 is true for any
current block structure of the covariance matrix. Then we show that all following blocks
of the covariance matrix using the condition from Lemma 3.3.3 stay in the format. Last,
we show that Expression (3.31) is a valid starting point that fulfils the structure as well.
Expression (3.46) is a special case of Expression (3.47) as both logvar sequences in-

volved are equal, i.e., qs,t = qs = qt (Ls = Lt), and dim and qexp simplifying to their
first cases.
Inserting the general equation for a block from the transition matrix from Expres-

sion (3.44) and the equation for a block from the covariance matrix from Expression (3.47)
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3.3 Constructing the Lifted Joint Distribution

into the equation for calculating a new block in the covariance matrix from Expres-
sion (3.37) for one arbitrary c k results in

Σgr(Ys),gr(Yk)T gr(Yk),gr(Yt) =∑
qs,k∈Φs,k

ρqs,ks,k

⊗
L∈Ls∪Lk

J
qexp(qs,k,L)

dim(L,Ls)×dim(L,Lk)

ζYk,Yt ⊗
L∈Lk∪Lt

J
ov(L,Lk,Lt)
dim(L,Lk)×dim(L,Lt)


(3.49)

Multiplying sequences of Kronecker products can be rewritten using the mixed-product
property in its general form (Broxson, 2006):

(A1 ⊗A2 ⊗ ...⊗An)(B1 ⊗B2 ⊗ ...⊗Bn) = (A1B1 ⊗A2B2 ⊗ ...⊗AnBn). (3.50)

We use Expression (3.50) to align the Kronecker factors that correspond to the same
logvar. For each logvar L (and thus Kronecker factor), there are thus seven possible Kro-
necker factor combinations resulting from the occurrence of the logvar in the sequences
Ls, Lk, and Lt:

1. L ∈ Ls, L /∈ Lt and L ∈ Lk, result: I|D(L)|×|D(L)|J|D(L)|×1 = J|D(L)|×1

2. L ∈ Ls, L /∈ Lt and L /∈ Lk, result: I|D(L)|×|D(L)|J|D(L)|×1 = J|D(L)|×1

3. L /∈ Ls, L ∈ Lt and L ∈ Lk, result: J1×|D(L)|I|D(L)|×|D(L)| = J1×|D(L)|

4. L /∈ Ls, L ∈ Lt and L /∈ Lk, result: 1 · J1×|D(L)| = J1×|D(L)|

5. L /∈ Ls, L /∈ Lt and L ∈ Lk, result: J1×|D(L)|J|D(L)|×1 = |D(L)|

6. L ∈ Ls, L ∈ Lt and L ∈ Lk, result: I|D(L)|I|D(L)|×|D(L)| = I|D(L)|×|D(L)|

7. L ∈ Ls, L ∈ Lt and L /∈ Lk, result: J|D(L)|×1J1×|D(L)| = J|D(L)|×|D(L)|

The structure in Expression (3.49) defines that only permutations exist for logvars in
the overlap between Ls and Lt. The seven cases confirm this structure. Cases 1 and 2
result in the same Kronecker factor independently of Lk. The same holds for Cases 3
and 4. Case 5 adds a |D(L)| factor to all summands but does not affect the structure.
Cases 6 and 7 are the only cases where L is part of the overlap between LS and Lk.
Here, the structure is dependent on L being in Lk, but as said L will be also part in the
permutation anyway. Each result is stored in the ρ vector at the position corresponding
to the Kronecker sequence. Every entry of the new ρ(i,j) vector can be calculated as
follows:

ρ
qs,t
s,t =

t−1∑
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q), (3.51)
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where the selection in the second sum is controlling that the results are stored in the
ρ-entry corresponding to the correct Kronecker sequence.
The transpose calculation in Expression (3.33) stays in the same structure implied by

Expression (3.47):

ΣT
gr(Ys,Yt)

=

 ∑
qs,t∈Φs,t

ρ
qs,t
s,t

⊗
L∈seq(Ls,Lt)

J
qexp(qs,t,L)

dim(L,Ls)×dim(L,Lt)

T

=
∑

qs,t∈Φs,t

ρ
qs,t
s,t

⊗
L∈seq(Ls,Lt)

J
qexp(qs,t,L)

dim(L,Lt)×dim(L,Ls)

=Σgr(Yt,Ys).

(3.52)

Based on the equation for calculating a new off-diagonal block, we apply Expres-
sion (3.34) to calculate a new on-diagonal block. The only difference to the off-diagonal
case is that we also add the PRV variance λYt to the diagonal after calculating the ρ vec-
tor using Expression (3.51), meaning, we add the PRV variance λYt to the one summand
indexed by 0:

ρ0
t,t ← ρ0

t,t + λYt . (3.53)

The last part of the proof is to show that the starting point is in line with our assump-
tions. Based on Expression (3.31), the vector ρY1,Y1 contains the value λY1 at position
ρ0
Y1,Y1

. This position is corresponding to the Kronecker sequence full of identity matrices.
All other vector entries corresponding to different Kronecker sequences are zero. This
structure serves at as a valid starting point. We began the proof by suggesting a closed
structure for the blocks in the covariance matrix. We have shown that an inductive
creation of the covariance matrix keeps the structure and have formulated a valid start-
ing point. Thus we have a valid lifted representation together with lifted operations for
constructing and storing the covariance matrix.

The proof for Lemma 3.3.3 has also equipped us with an expression to calculate the
lifted covariance matrix, stored in the ρ tensor containing M ·M lifted vectors, where
each vector ρs,t has a dimensionality of 2|Ls∩Lt|. The lemma enables us to calculate
the lifted joint distribution for any parameterized GBN and store it in a set of lifted
variables. Remark: In the overlapping case, ρ is a tensor, which reduces to a matrix in
the non-overlapping case.
Table 3.1 contains an overview of the ground and lifted way to store the joint distri-

bution. The dimensionality of the ρ is the worst case, only occurring if there are logvar
sequence overlaps involving all logvars in L.
We have now described an algorithm for constructing a lifted version of the covariance

matrix of the joint distribution. The lifted mean vector and the lifted version of the
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3.3 Constructing the Lifted Joint Distribution

Table 3.1: Variables in ground in and lifted representation of the joint distribution

Grounded Lifted
Variable Dimensionality Variable Dimensionality

Randvars/PRVs X N Y M

Covariance Σ N ×N ρ M ×M × 2|L|

Mean µ N η M
Domain sizes implicit τ |L|

covariance matrix together form the lifted joint distribution. For better reference of the
covariance structure described by Expression (3.47) in later calculations, we define terms
to refer to the elements of the structure:

Definition 3.3.3 (Kronecker component block, Kronecker permutation set). We define
a Kronecker component block as a matrix that follows the structure of Expression (3.47).
We call all possible Kronecker sequences occurring in the Kronecker component block
the Kronecker permutation set.

Before moving on the defining matrix operations for the lifted joint distribution, we
look at an example. Example 3.3.4 describes constructing the lifted covariance matrix in
the overlapping scenario visualized in the orange box of Fig. 3.1.

Example 3.3.4. We build upon the transition matrix T set up in Example 3.3.3. In
the formulas, we assume that the index variables q have an implicit connection to the
logvars they represent. When writing the values of for example qs,t, the link to Ls and
Lt is lost. Therefore, we subscript the 0 and 1 values with the logvar they are connected
to. Setting up the first element of the lifted covariance matrix is straight forward:

ρE(M),E(M) =

(
ρ0M

1,1

ρ1M
1,1

)
=

(
λE(M)

0

)
=

(
1
0

)
.

Next, we calculate our first off-diagonal entry based on Expression (3.51):

ρE(M),S(P ) =
(
ρ1M1P

1,2

)
=

( ∑
q∈σqs,t (Qs,s)

ρqs,sζs,t
∏

L∈(Ls\Lt)

|D(L)|πL(q)
)

=
(

(ρ0M
1,1 · 0) + (ρ1M

1,1 · 0)
)

=
(
0
)
.
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With s = t = pos(S(P )) = 2, the second on-diagonal block is built by

ρS(P ),S(P ) =

(
ρ0P

2,2

ρ1P
2,2

)
=


∑t−1

n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)

∑t−1
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)

+

(
λS(P )

0

)

=


∑

q∈σ0P ({1M1P })

ρq2,1ζ1,2

∏
L∈{M}

|D(L)|πL(q)

∑
q∈σ1P ({1M1P })

ρq2,1ζ1,2

∏
L∈{M}

|D(L)|πL(q)

+

(
λS(P )

0

)

=

(
0 + λS(P )

ρ1M1P
1,2 · ζ1,2 · |D(M)|πM (1M1P )

)
=

(
λS(P )

0 · 0 · 3

)
=

(
λS(P )

0

)
=

(
2
0

)
.

This result is not surprising, because ρ1,1 has the same structure as ρ2,2 and in the topo-
logical ordering both could be exchanged, because both have no parents. The covariance
between E(M) and I(M,P ) is the first non-trivial example. Here, s = pos(E(M)) = 1
and t = pos(I(M,P )) = 3:

ρ1,3 =

(
ρ0M1P

1,3

ρ1M1P
1,3

)
=


∑t−1

n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)

∑t−1
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)



=


∑

q∈σ0M 1P
({0M ,1M})

ρq1,1ζ1,3

∏
L∈∅

|D(L)|πL(q) +
∑

q∈σ0M 1P
({1M1P })

ρq1,2ζ2,3

∏
L∈∅

|D(L)|πL(q)

∑
q∈σ1M 1P

({0M ,1M})

ρq1,1ζ1,3

∏
L∈∅

|D(L)|πL(q) +
∑

q∈σ1M 1P
({1M1P })

ρq1,2ζ2,3

∏
L∈∅

|D(L)|πL(q)


=

(
ρ0M

1,1 ζ1,3

ρ1M
1,1 ζ1,3 + ρ1M1P

1,2 ζ2,3

)
=

(
1 · 2

0 · 2 + 0 · 5

)
=

(
2
0

)
.
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For s = pos(S(P )) = 2 and t = pos(I(M,P )) = 3, the block is

ρ2,3 =

(
ρ1M0P

2,3

ρ1M1P
2,3

)
=


∑t−1

n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)

∑t−1
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)



=


∑

q∈σ1M 0P
({1M1P })

ρq2,1ζ1,3

∏
L∈∅

|D(L)|πL(q) +
∑

q∈σ1M 0P
({0P ,1P })

ρq2,2ζ2,3

∏
L∈∅

|D(L)|πL(q)

∑
q∈σ1M 1P

({1M1P })

ρq2,1ζ1,3

∏
L∈∅

|D(L)|πL(q) +
∑

q∈σ1M 1P
({0P ,1P })

ρq2,2ζ2,3

∏
L∈∅

|D(L)|πL(q)


=

(
ρ0P

2,2ζ2,3

ρ1M1P
2,1 ζ1,3 + ρ1P

2,2ζ2,3

)
=

(
2 · 5

0 · 2 + 0 · 5

)
=

(
10
0

)
.

For s = pos(I(M,P )) = 3 and t = pos(I(M,P )) = 3, we omit the product in the
second step, because the set Ln \Lt is always empty, and get

ρ3,3 =


ρ0M0P

3,3

ρ0M1P
3,3

ρ1M0P
3,3

ρ1M1P
3,3

 =



∑t−1
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)

∑t−1
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)

∑t−1
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)

∑t−1
n=1

∑
q∈σqs,t (Qs,n)

ρqs,nζn,t
∏

L∈(Ln\Lt)

|D(L)|πL(q)


+


λI(M,P )

0
0
0



=



∑
q∈σ0M 0P

({0M1P ,1M1P })

ρq3,1ζ1,3 +
∑

q∈σ0M 0P
({1M0P ,1M1P })

ρq3,2ζ2,3∑
q∈σ0M 1P

({0M1P ,1M1P })

ρq3,1ζ1,3 +
∑

q∈σ0M 1P
({1M0P ,1M1P })

ρq3,2ζ2,3∑
q∈σ1M 0P

({0M1P ,1M1P })

ρq3,1ζ1,3 +
∑

q∈σ1M 0P
({1M0P ,1M1P })

ρq3,2ζ2,3∑
q∈σ1M 1P

({0M1P ,1M1P })

ρq3,1ζ1,3 +
∑

q∈σ1M 1P
({1M0P ,1M1P })

ρq3,2ζ2,3


+


λI(M,P )

0
0
0



=


0

ρ0M1P
3,1 ζ1,3

ρ1M0P
3,2 ζ2,3

ρ1M1P
3,1 ζ1,3 + ρ1M1P

3,2 ζ2,3

+


λI(M,P )

0
0
0

 =


3

2 · 2
10 · 5

0 · 2 + 0 · 5

 =


3
4
50
0

 .

Next, we present to develop operations to work with the lifted joint in order to then
develop a lifted query answering algorithm.
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3.4 Operators for the Lifted Joint Distribution

In this section, we develop a framework for working with the lifted joint distribution as
a prerequisite for answering queries in the next section. For conditional query answer-
ing using Expression (2.11) and Expression (2.12), we need operations for addition and
subtraction, for multiplication, and for inversion. We have already used some of these
operations in the construction of the covariance matrix, but here we define them more
formally. We apply these operations to blocks that follow the same structure as the
blocks in the covariance matrix.

3.4.1 Addition and Subtraction

Addition and subtraction of Kronecker component blocks is simple. The precondition is
that the Kronecker component blocks share the same Kronecker permutation set. The
factors belonging to the same Kronecker sequence in the Kronecker component blocks
are added or subtracted to get the resulting Kronecker component block.

Example 3.4.1. Two Kronecker component blocks of the same Kronecker permutation
set are added: (

50L

31L

)
+

(
20L

21L

)
=

(
70L

51L

)

3.4.2 Multiplication

Multiplying two Kronecker component blocks ΣYs,Yk and ΣYk,Yt comes down to a re-
peated application of Expression (3.49) because every summand of ΣYs,Yk is multiplied
with every summand of ΣYk,Yt , with each summand following the same structure as the
T matrix, meaning we can calculate the values in the resulting Kronecker component
block in a lifted way as follows:

ρqs,t =

1∑
qs,k=0

1∑
qk,t=0

id(qs,t, or(qs,k, qk,t))ρ
qs,k
s,k ρ

qk,t
k,t

∏
L∈Lk

|D(L)|lexp(L,q(s,k),q(k,t)), (3.54)

with or(qs,k, qk,t) as the bitwise or-operation, a function id that returns 1 if the resulting
logvar sequence of the or-operation is identical to the values in q(s,t) at the logvar positions
referenced in q(s,t), i.e.,

id(qs,t, q) =

{
1 if πqs,t(q) = qs,t,

0 otherwise,
(3.55)
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and a function lexp

lexp(L, qs,k, qk,t) =

{
1 (L ∈ Lk \Ls ∨ πL(qs,k) = 1) ∧ (L ∈ Lk \Lt ∨ πL(qk,t) = 1),

0 otherwise,
(3.56)

which returns 1 if the referenced logvar L fulfils both parts of a conjunction. The first
part asks that L occurs only in Lk and not Ls or that the value of L in qs,k is 1, which
can only happen if the first disjunct is false. The second part asks the same regarding t
instead of s. The returned value as an exponent ensures that the factor of the domain
size |D(L)| occurs whenever two all-ones matrices meet.
The main idea of Expression (3.54) is to take into account all possible combinations of

J and I matrices that occur in the summations of both blocks. Expression (3.54) shows
that the Kronecker component block structure is closed under multiplication, which is
necessary to combine it with other operations or to multiply several Kronecker compo-
nent blocks without leaving the structure. Block matrix equation rules allow us to use
Expression (3.54) also for multiplying rows or matrices of structured blocks as long as
the dimensions match.

Example 3.4.2. We take the resulting ρ2,3 and ρ3,3 Kronecker component blocks from
Example 3.3.4:

ρres =

(
ρ1M0P
res

ρ1M1P
res

)

We focus on calculating ρ1M0P
res , the other entry is calculated analogously. In the

iteration, we calculate the id operation for all combinations of elements of Φ2,3 and Φ3,3.
For better readability, we calculate them separately:

id(1M0P , or(1M0P , 0M0P ))
id(1M0P , or(1M0P , 0M1P ))
id(1M0P , or(1M0P , 1M0P ))
id(1M0P , or(1M0P , 1M1P ))
id(1M0P , or(1M1P , 0M0P ))
id(1M0P , or(1M1P , 0M1P ))
id(1M0P , or(1M1P , 1M0P ))
id(1M0P , or(1M1P , 1M1P ))


=



id(1M0P , 1M0P )
id(1M0P , 1M1P )
id(1M0P , 1M0P )
id(1M0P , 1M1P )
id(1M0P , 1M1P )
id(1M0P , 1M1P )
id(1M0P , 1M1P )
id(1M0P , 1M1P )


=



1
0
1
0
0
0
0
0


We only write down the elements of the sum that have a result of 1 for id function.

Then, we have four different calls of lexp function, which we also write down separately
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for better readability:
lexp(M, 1M0P , 0M0P )
lexp(P, 1M0P , 0M0P )
lexp(M, 1M0P , 1M0P )
lexp(P, 1M0P , 1M0P )

 =


(True ∨ True) ∧ (False ∨ False)

(False ∨ False) ∧ (False ∨ False)
(True ∨ True) ∧ (False ∨ True)

(False ∨ False) ∧ (False ∨ False)

 =


0
0
1
0


Then, the resulting ρ entry is calculated as follows:

ρ1M0P
res =

∑
q2,3∈Φ2,3

∑
q3,3∈Φ3,3

id(1M0P , or(q2,3, q3,3))ρ
q2,3
2,3 ρ

q3,3
3,3

∏
L∈{M,P}

|D(L)|lexp(L,q(2,3),q(3,3))

=ρ1M0P
2,3 ρ0M0P

3,3

∏
L∈{M,P}

|D(L)|lexp(L,1M0P ,0M0P )

+ ρ1M0P
2,3 ρ1M0P

3,3

∏
L∈{M,P}

|D(L)|lexp(L,1M0P ,1M0P )

=ρ1M0P
2,3 ρ0M0P

3,3 · 1 + ρ1M0P
2,3 ρ1M0P

3,3 |D(M)| = 10 · 3 · 1 + 10 · 50 · 3 = 1530.

The other entries of the resulting ρ vector are calculated analogously.

3.4.3 Lifted Matrix Inversion

In this section, we look at how to invert a matrix following the structure from Lemma 3.3.3.
We start by understanding how to invert individual blocks of the matrix and then apply
the block matrix inversion algorithm.

Inverting a Diagonal Kronecker Component Block

The Kronecker component blocks on the diagonal follow a specific form researched by
Searle and Henderson (1979). For this inversion, we use Lemma 3.4.1 by Searle and
Henderson (1979) for which they provide a detailed deduction and proof in their work.

Lemma 3.4.1. Given

V p =

1∑
q=0

θq(J
qp
np ⊗ ...⊗ Jq1np

), (3.57)

of order Np =
∏p
i=1 ni where qi refers to the entries in q and ni to each dimension, the

inverse is given by

V −1
p =

1∑
q=0

κq(J
qp
np ⊗ ...⊗ Jq1np

), (3.58)

where

Rp =

[
1 0
1 np

]
⊗ ...⊗

[
1 0
1 n1

]
(3.59)
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and
κ = R−1 1

Rθ
. (3.60)

There are two main benefits of Lemma 3.4.1. First, it works fully in a lifted way
because it does not involve any matrix operations dependent on the cardinality of the
all-ones and identity matrices. Second, it stays within the Kronecker component block
structure, making it possible to use the result in all upcoming calculations analogously to
working with other blocks in the covariance matrix. The individual ni dimension values
correspond to the values in the cardinality vector τ of the lifted joint distribution.

Definition 3.4.1 (Inv). Let ρs,s be a vector of the lifted covariance tensor and τ be
the cardinality vector that can be filtered for the cardinalities corresponding to the PRV
Ys. We call the function that is returning the inverse of Kronecker component block
structured matrix corresponding PRV Ys based on Lemma 3.4.1 INV (ρs,s, τ ).

Interestingly, the approach used in the non-overlapping scenario (Hartwig and Möller,
2020b) is a special case of Lemma 3.4.1, where the Kronecker sequences consist of only
one term. Lemma 3.4.1 simplifies into Lemma 3.4.2 (Searle and Henderson, 1979).

Lemma 3.4.2. Let L be an G×G matrix of the form L = aJ + bI. Then the inverse of
L can be calculated analytically by L−1 = xJ + yI, where

x = − a

b(aG+ b)
and y =

1

b
. (3.61)

Proof. To prove this lemma, we follow the definition of an inverse LL−1 = I. Solving
the equation LL−1 = (aJ + bI)(xJ + yI) = I is equivalent to solving the linear equation
system (LES)

(a+ b)(x+ y) + (G− 1)ax = 1, (3.62)

(a+ b)x+ a(x+ y) + (G− 2)ax = 0. (3.63)

Solving the LES for x and y results in Equation 3.61.

Now that we can invert individual blocks on the diagonal and multiply them with
other blocks from the covariance matrix without changing the structure, we can apply
the block matrix inversion algorithm.

Block Matrix Inversion

To break down the inversion, we use the block matrix inversion formula (Bernstein, 2009):[
Ã B̃

C̃ D̃

]−1

=

[
O P
Q R

]
=

[
Ã
−1

+ Ã
−1
B̃F̃

−1
C̃Ã

−1 −Ã−1
B̃F̃

−1

−F̃−1
C̃Ã

−1
F̃
−1

]
, (3.64)
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where F̃ = D̃ − C̃Ã−1
B̃.

To invert a full matrix Z that follows the structure of the covariance matrix, we use the
lifted inversion of individual blocks together with lifted matrix multiplication recursively.
The steps within the recursive approach are defined as follows. Pseudocode can be found
in Alg. 2.

Algorithm 2 Lifted recursive block matrix inversion
1: function LiftedInversion(ρ, τ ) . lifted representation as an input
2: if τ .size = 1 then
3: ρinv ← Inv(ρ1,1, τ ) . based on Definition 3.4.1
4: return ρinv

5: ρÃ ← ρ1,1

6: ρB̃,ρC̃ ← ρ1,2:K ,ρ2:K,1

7: ρD̃ ← ρ2:K,2:K

8: ρ
Ã
−1 ← LiftedInversion(ρÃ, τ ) . recursive call

9: ρF̃ ← ρD̃− multi(ρC̃ ,ρÃ−1 ,ρB̃, τ ) . based on Expression (3.54)
10: ρ

F̃
−1 ← LiftedInversion(ρF̃ , τ ) . recursive call

11: ρO,ρP ,ρQ,ρR ← multi(ρÃ,ρB̃ρC̃ ,ρF̃ ) . Expressions (3.54) and (3.64)
12: ρinv ← Stack(ρO,ρP ,ρQ,ρR) . based on Expression (3.64)
13: return ρinv . lifted representation of the inverse as an output

Step 1: The input for the function is the lifted representation ρ and τ of the matrix
Z. If the matrix ρ has only one element, Z would consist of only one block and we
can use Lemma 3.4.1 to calculate the lifted representation of Z−1. The resulting ρres is
returned and the function call terminates. If ρ has more than one element the algorithm
continues.
Step 2: The grounded matrix Z would be split into four blocks based on Equation

3.64. These four blocks are constructed of the K × K blocks forming the matrix Z
(where K is decreased by one in each recursion step). In our fully lifted algorithm, we
analogously split the tensor ρ:

• Ã = B1,1, ρÃ = ρ1,1,

• B̃ = B1,2:K , ρB̃ = ρ1,2:K

• C̃ = B1,1, ρC̃ = ρ2:K,1

• D̃ = B2:K,2:K , ρD̃ = ρ2:K,2:K

Step 3: The inversion function is called for the lifted representation of Ã and Step 1
will directly return the lifted inverse. The lifted version ρF̃ of matrix F̃ can be calculated
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using the lifted multiplication rules from Expression (3.54). The inversion algorithm is
recursively called for ρF̃ .
Step 4: Once the recursive call returns the lifted inverse for ρF̃ , λF̃ and τ F̃ , the

blocks the lifted representations for O, P , Q and R can be calculated using Expres-
sion (3.54). Based on Expression (3.64), the four lifted representations of O, P , Q and
R are combined into ρZ−1 .
Having now the ability to work with the lifted version of the covariance matrix, we

look into using this lifted joint representation and the lifted operations to answer queries.

3.5 Lifted Query Answering

This section covers query answering using the lifted joint distribution. As described in
the preliminaries, a query P (Q|E = e) with respect to the ground model is defined by
its query variables Q ⊂ X and the evidence E = e with E ⊂ X . The query answer is
a conditional probability distribution over the variables Q given the evidence. Of course
we could also query individual events Q = q but because we can use the query answer
for the full distribution of Q to single out events in a second step we focus on querying
the distribution over Q.
To calculate the conditional distribution we use the special algorithm for Gaussian

distributions introduced in Expression (2.11) and Expression (2.12), which we repeat
here for better readability:

µ∗ = µQ + ΣQEΣ−1
EE(e− µE), (3.65)

Σ∗ = ΣQQ −ΣQEΣ−1
EEΣEQ. (3.66)

The special properties of the Gaussian distribution allow us to avoid solving integrals
in the process of marginalization. In the upcoming subsections, we develop algorithms
based Expression (3.65) and Expression (3.66) that work with the lifted joint distribution
instead of the ground distribution.

3.5.1 Lifted Answering of a Marginal Query

The algorithm for obtaining a marginal distribution of a multivariate normal distribution
is trivial, because all matrix calculations in Expression (3.65) and Expression (3.66) can
be omitted when having an empty matrix ΣEE . One can simply select the means µQ
and covariance sub-matrix ΣQQ corresponding to the queried randvars and insert them
into the probability distribution

P (Q) = N (µQ; ΣQQ). (3.67)

For the lifted case, we select the means by µQ = ηlif(Q), ground the covariance matrix
Σ with Expression (3.47), and then select the elements with ΣQQ.
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3.5.2 Lifted Answering of a Conditional Query

We define a few helper functions:

Definition 3.5.1 (const, perm, gr). Given a set of grounded randvarsX, a PRV Y with
a randvar name ξ, a sequence of constants l and a set of sequences of constants ι, we
define the following three helper functions:

constL(X) = {σL(l)|ξ(l) ∈X}, (3.68)

perm(X) = {l|l ∈ ×L∈lv(lif(X))constL(X)}, (3.69)

gr(Y, ι) = {ξ(l′)|ξ(l′) ∈ gr(Y ) ∧ πLY
(l) = l′ ∧ l ∈ ι}. (3.70)

When answering a conditional query based on Expression (3.65) and Expression (3.66),
we need to apply the following operations:

1. lifted addition when adding the lifted version of ΣQQ to ΣQEΣ−1
EEΣEQ,

2. lifted multiplication in ΣQEΣ−1
EEΣEQ and in ΣQEΣ−1

EE ,

3. lifted inversion in Σ−1
EE , and

4. lifted handling of the ground evidence values e−µE and the combination with the
lifted result of ΣQEΣ−1

EE .

The covariance matrix Σ follows a structure that allows addition, multiplication, and
inversion. However, this structure is not necessarily given for ΣQQ,ΣQE ,ΣEQ, and
ΣEE . For inversion and matrix multiplications, all blocks in these matrices need to
follow the Kronecker block structure with matching dimensions. The Kronecker block
structure is given when all ground level observation randvars E and query randvars Q
have the same set of instantiated logvars. We call the query to be liftable if E and Q
fulfil this condition with respect to the lifted joint distribution ρ and τ . More formally
liftability is defined as:

Definition 3.5.2 (Liftable query). Given a set of PRVs Y and a corresponding set of
logvars L, a query P (Q|E = e), with E ⊂ gr(Y) and Q ⊂ gr(Y), is liftable if it fulfils

(∀Y ∈ lif(E) : gr(Y, perm(E ∪Q)) ∈ E) ∧ (∀Y ∈ lif(Q) : gr(Y, perm(E ∪Q)) ∈ E).
(3.71)

Definition 3.5.2 ensures that matrices ΣQQ,ΣQE ,ΣEQ, and ΣEE of a liftable query
follow the Kronecker block structure needed to perform matrix multiplications and inver-
sions in a lifted way. The restriction excludes all queries that do not follow the Kronecker
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block structure from being calculated in a lifted way. One example for a non-liftable query
would be a query having ground randvars of the same PRV in both evidence set and query
set. In the non-overlapping logvar case, Expression (3.71) is always true as long as rand-
vars belonging to the same PRV are not present in both query and evidence set. The
matrix operations enable lifted calculations of Operations 1-3 in above’s list, resulting in
the conditional covariance Σ∗. The last operation (4 in above’s list) means calculating
the conditional mean µ∗, which involves handling evidence. The easiest way to handle
evidence is to do the calculations on ground level which means using the ground level µQ
and ground result of ΣQEΣ−1

EE to do a grounded matrix multiplication with the ground
level vector e − µE (corresponding to operation 4 in the list above). Even with this
grounding, performing the other steps in a lifted way already brings major time savings
because more complex matrix operations are still avoided, but we are not satisfied yet.
Therefore, we look into cases next where we can group the ground level evidence to fur-
ther reduce the time complexity. Section 3.6 contains the detailed complexity discussion
for all steps and approaches discussed here.

3.5.3 Grouping the Evidence

In general, the difficulty of handling evidence in a lifted way is that evidence itself occurs
on a ground level, i.e., evidence contains individual randvars including their values. In
the continuous setting, it is very unlikely that the same evidence value will occurs for two
different randvars. If we assume perfect measure accuracy and a fully continuous setting,
the chance for measuring the same value twice is zero (or infinitely close to zero). In the
non-overlapping case, different evidence values are not a big deal because every observed
randvar of a PRV has the same effect on all randvars belonging to another PRV. Thus,
we can group the evidence within each observed PRV by summing up all ground values
for the PRV in e − µE and multiplying it with the corresponding term from the lifted
result of ΣQEΣ−1

EE . The resulting vector along the K PRVs for which we have evidence
is given by 

∑
Eh∈gr(Y E

1 )(eh − µh)
...∑

Eh∈gr(Y E
K )(eh − µh)

 . (3.72)

In the case of overlapping logvar sequences, summing up the evidence for the whole PRV
does not work because every overlap introduces independencies, i.e., not all randvars of
one PRV have the same effect on all randvars of another PRV. Next, we look at how we
can still lift part of the calculations involved in the overlapping case.
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Two-PRV Case

We begin with a scenario of only two PRVs before generalizing it to multiple PRVs. We
have one PRV YQ = lif(Q) whose instances are (partially) queried and one PRV YE =
lif(E) whose instances are (partially) observed in the query P (Q|E = e). Evidence
randvars only influence query randvars that share the same constants. In a liftable query
based on Definition 3.5.2, the number of evidence randvars is equal for each queried
variable but the actual observed evidence values can be different. In the ground case,
the operation is a multiplication of a Kronecker component block ΣQEΣ−1

EE and the
evidence vector (e − µE). Every row of the Kronecker component block is multiplied
with the same vector (e−µE). Non-overlapping logvar sequences between the observed
YE and the queried PRV YQ result in duplicates in the Kronecker component block, in a
way that logvars only present in YE lead to duplicate columns and logvars only present
in YQ lead to duplicate rows. Duplicates in the rows will lead to the same conditional
mean value for the corresponding ground query randvars and duplicates in the columns
will lead to the same influence of evidence randvars onto ground randvars. To combine
the randvars with the same influence and same result, we group along the overlapping
logvars. We denote the overlaps in the logvar sequences as LO = Llif(Q) ∩ Llif(E) and
group the evidence along the constants lO of the overlapping logvars, with lO ∈D(LO),
and add up the evidence values:

sumevE(YE , lO) =
∑

e− µE | E = e ∧ E ∈ gr(YE , {lO}) (3.73)

The conditional mean vector is grouped along the same set of instance sequences

µYQ =

µYQ,l1O...
µYQ,lGO

 =

ηYQ...
ηYQ

+

νYQ,l1O...
νYQ,lGO

 , (3.74)

where G is the number of groups and given by G = |constLO
(Q)|. The entries νYQ,lgO ,

with g = 1, ..., G are given by

νYQ,lgO
= νYQ,lgO,YE

, (3.75)

with

νYQ,lgO,YE
=

∑
lO∈instLO

(E)

∑
q∈QLQ,LE

sumevE(YE , l
g
O)ρqYQ,YEfilter(l

g
O, lO, q), (3.76)

and

filter(lgO, lO, q) =

{
1 πσq=0(q)(l

g
O) = πσq=0(q)(lO),

0 otherwise,
(3.77)
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where q in the selection is a placeholder for all positions in q. The filter function ensures
that independencies between randvars in Q and E are taken into account. In a full
overlap, the sum simplifies to Expression (3.72).

Multi-PRV Case

Having solved the case for one evidence and one query PRV, we now relax the restriction
on the number of PRVs and allow for multiple PRVs. The liftable query rule from
Definition 3.5.2 still applies, but even with this rule there might be different overlapping
sets for each evidence PRV to the queried PRVs. The sequence of all overlapping logvars
between any PRV in Q and any PRV in E is still given by LO = Llif(Q) ∩ Llif(E).
For each query PRV YQ, the groups for the final mean µYQ,lgO and for the result of the
Kronecker component block multiplication νYQ,lgO are given by instLO

(Q), such that lgO ∈
instLO

(Q). If we have more than one evidence PRV, the equality of νYQ,lgO = νYQ,lgO,YE
in

Expression (3.75) does not hold anymore, because all evidence randvars might influence
the mean values. Expression (3.76) still works for all individual evidence PRVs and query
PRVs but can contain different groupings that need to be combined in a way that the
values in νYQ,lgO,YE are sorted into the correct group of νYQ,lgO . The grouping is done by

νYQ,lO =
∑

YE∈lif(E)

νYQ,l′O,YEmatch(l′O, lO), (3.78)

with

match(l′O, lO) =

{
1 πL′O(lO) = l′O,

0 otherwise,
(3.79)

where L′O is referring to the logvar sequence corresponding to the constants in l′O. Values
calculated in Expression (3.78) can then be put into Expression (3.74) for the final query
answer.

3.5.4 Example Queries and Calculations

In this section, we cover a few example queries to illustrate the liftability characteristic
and the calculations performed in query answering. All queries use our running example
from Fig. 3.1.

Example 3.5.1. Given the lifted joint distribution in Appendix A.3, we define the follow-
ing queries, where we omit set parentheses and value assignments for better readability.

1. P (H(P1)|E(M1), E(M2), S(P1))

2. P (H(P1), H(P2)|S(P1), S(P2), I(M1, P1), I(M1, P2), I(M2, P1), I(M2, P2))

3. P (U(C1), U(C2)|H(P1), H(P2))
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4. P (H(P1)|I(M1, P1), S(P2))

5. P (H(P1)|H(P2))

The entries of the evidence vector e for every query are the natural numbers beginning
with one.
Query 1: Query 1 is a liftable query and we have only one constant defining the

groups for the conditional mean. The query answer is given by:

ρ∗H(P ) =

(
ρ0P
H(P )

ρ1P
H(P )

)
=

(
1

6642

)
; η∗H(P ) = 48; Σ∗H(P1) = 6643;µ∗H(P1) = 48

Query 2: Query 2 is a liftable query and we have two constants defining the groups
for the conditional mean. The query answer is given by:

ρ∗H(P ) =

(
ρ0P
H(P )

ρ1P
H(P )

)
=

(
49
64

)
;

(
η∗H(P ),P1

η∗H(P ),P2

)
=

(
50
70

)
;

Σ∗ =

[
113 64
64 113

]
;

(
µ∗H(P1)

µ∗H(P2)

)
=

(
50
70

)
Query 3: Query 3 is a liftable query. We have only one single group because there is

no overlap between query and evidence. The query answer is given by:

ρ∗U(C) =

(
ρ0P
U(C)

ρ1P
U(C)

)
=

(
3

152430

)
; η∗U(C) = −2048;

Σ∗ =

[
152434 152430
152430 152434

]
;

(
µ∗U(C1)

µ∗U(C2)

)
=

(
−2048
−2048

)
Query 4: Query 4 is a non-liftable query because P1 and P2 occur in the query but

we only have a measurement for I(M1,P1). The mismatch between the constants in the
query set and the evidence set for the for Patient logvar (P1 and P2 versus only P1)
contradicts Definition 3.5.2.
Query 5: Query 5 is a non-liftable query because randvars of the same PRV occur in

the evidence and the query set. Whenever the evidence set and the query set PRVs are
not disjoint the symmetry condition in Definition 3.5.2 is contradicted.

The example shows, that there are queries that we currently cannot calculate in a
lifted way. Query answering is still possible using ground level operations. Of course it
would be beneficial to allow for partial lifted algorithms which we will discuss later in
the outlook.
We have lifted approaches for constructing the joint distribution and lifted query an-

swering algorithms for working with the lifted joint. We have also shown in a running
example how all operations can be used and how queries can be answered in a lifted way.
Next, we evaluate the complexity gains by a theoretical complexity analysis.
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3.6 Complexity Analysis

This section covers the runtime and space complexity of creating the joint distribution
and the runtime complexity of answering conditional probability queries. Let us specify
the parameters used for this complexity analysis. We have N randvars in the GBN
combined into M PRVs. The terms NE and NQ denote the number of randvars in
the evidence and the query set respectively, whereas the terms ME and MQ denote
the number of PRVs referenced in the evidence and query set respectively. The term
Λ denotes the number of logvars and S the longest logvar sequence. In general, we
focus on the upper bound of the runtime complexity. There are matrix inversion and
multiplication algorithms that have a runtime complexity of less than O(N3), but for
simplicity and without changing the overall argumentation, we take O(N3) as an upper
bound (Davie and Stothers, 2013; Le Gall, 2014).

3.6.1 Complexity for Constructing the Joint Distribution

The only time-consuming part when creating the lifted joint is to generate the joint
covariance matrix, since the mean values of the nodes just need to be stored into a vector
(for the lifted and grounded approach).

Ground Complexity

Constructing the ground version of the joint probability distribution calculates theN×N -
dimensional covariance matrix by iterating in two loops over the randvars. In each step,
the covariance between two randvars Xi and Xj , with j > i, is calculated by taking into
account all randvars Vk that occur earlier than Xj , i.e., k < j, in the topological ordering,
resulting in an upper bound of O(N3). The space complexity of storing the covariance
matrix Σ and the mean vector µ is O(N2 +N) = O(N2).

Lifted Complexity

The lifted algorithm to construct the lifted joint distribution as presented in Section 3.3
is fully independent on the number of randvars N , no matter if the network contains
overlaps or not. To construct the M ·M ρ vectors, two iterations over all M PRVs are
necessary. To calculate one individual new ρs,t vector, we need to iterate over the PRVs
Yu prior in the topological ordering to Yt, i.e., u < t, and for each of these PRVs Yu, we
iterate at most over 2S possible Kronecker sequences. Combining these iterations results
in an overall runtime complexity of O(M32S). In a parameterized GBN, it is typically
M � N and 2S � N , which results in significant speed up. The space complexity
to store all values in ρ is O(M22S). In the non-overlapping scenario, 2S reduces to
a constant because even if a PRV has a logvar sequence with more than one logvar,
the logvars can be combined into a single logvar without influencing the model. When
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combining logvars, the domain size increases for the combined logvar but this has no
effect on the construction runtime as visible in the complexity classes.

3.6.2 Complexity for Conditional Query Answering

For query answering, we need to look at the four operations listed in Section 3.5.2.

Ground Complexity

Matrix addition has a complexity of O(N2
Q) because every element in the matrix needs to

be visited at least once. The calculation of the evidence vector e−µE has a complexity
of O(NE). The inversion of evidence covariance matrix has a complexity of O(N3

E). The
involved matrix multiplications have either a complexity of O(N2

QNE) and O(NQN
2
E).

Combining all operations results in a complexity for query answering of O(N3
E+NQN

2
E+

N2
QNE). Depending on the partitioning of evidence and query set, either the term N3

E

or the term N2
QNE dominates the complexity. Matrix addition and calculation of the

evidence vector are out-weighted by the other terms.

Lifted Complexity

Multiplying two Kronecker component blocks has a complexity of O(22S) because in
the worst case we need to iterate fully through all permutations of possible Kronecker
sequences. Thus, the matrix multiplications (Items 2 and 3 in the list in Section 3.5.2)
have complexity of O(M2

EMQ22S) and O(MEM
2
Q22S).

The inversion of one individual Kronecker component block from the diagonal of the
covariance matrix involves the multiplication of two at most 2S × 2S matrices resulting
in a complexity of O(23S). In the block matrix inversion we have at most ME recursive
function calls and Kronecker component block multiplications of at most ME blocks,
resulting in a combined inversion complexity of O(ME23S +M2

E2S).
To calculate the mean vector we still have ground operations. Grounding the result of

ΣQEΣ−1
EE takes O(NQNE) time and multiplying it with the ground level evidence vector

e − µE is in O(NQNE) as well. This is still a linear relationship to both NQ and NE .
Overall, this results in a complexity of O(M2

EMQ22S +MEM
2
Q22S +ME23S +NQNE).

With the grouping of the evidence along the overlapping logvar instances, we reduce
NQ to GQ where GQ = |D(LQ ∩LE)| refers to the number of instances that occur both
in Q and E. The biggest time-savings occur if there is a relatively even split between
queried variables and evidence variables, when they have no or little overlap. When
there is a full overlap between evidence PRVs and query PRVs, then GQ = NQ and the
grouping will not lead to efficiency gains. In the non-overlapping case, there is only one
group, i.e., GQ = 1, which is consistent with the linear dependency on NE reported in
Hartwig and Möller (2020b).
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Table 3.2: Experiment setups

Experiment PRVs Domain sizes Query

Overlap E(M), S(P ),
I(M,P ), H(P )

τM , τP = 21, ..., 2K
Q = gr(H(P )),
E = gr(S(P ))

Mixed E(M), S(P ), I(M,P ),
H(P ),W (D)

τM , τD = 21, ..., 2K ,
τP = 2

Q = gr(W (D)),
E = gr(E(M))

No Overlap H(P ), T (N),
W (D), U(C)

τP , τT , τN = 21, ..., 2K ,
τC = 2

Q = gr(U(C)),
E = gr(H(P ), T (N))

Theorem 3.6.1. The complexity of query answering as described in Section 3.5 including
evidence grouping is given by

O(M2
EMQ22S +MEM

2
Q22S +ME23S +GQNE). (3.80)

3.7 Empirical results

We show in this empirical study that the complexity gains translate into practice in an
implementation in Python code. We verify the theoretical complexity analysis in the
experiments. First, we evaluate the lifted construction of the joint distribution described
in Section 3.3. Second, we evaluate the conditional query answering. We use three dif-
ferent sub-graphs of our running example along with three different queries focusing on
different preconditions for the query answering algorithm. The first experiment (over-
lap) uses the sub-graph in the orange box, focusing on the full overlap between logvar
sequences in query and evidence set. The second experiment (mixed) uses the orange
box with the added workload of doctors PRV W (D), focusing on a query where grouping
plays an important role because of balanced query and evidence set. The third example
(no overlap) uses the sub-graph in the blue-box, focusing on a case where there is no
overlap between any evidence and query randvars (also not along the path) but where the
query-set is hold constant while the evidence set is increased. In all three experiments,
we increase certain domain sizes to see the influence on the runtime in both the ground
and the lifted approach. Table 3.2 contains the PRVs, domain sizes, and queries used in
the experiments. Figure 3.3 shows the results, which we discuss next.

3.7.1 Experimental Constructions

We run the lifted and grounded construction algorithms for all three experiments in
Table 3.2. As described in the theoretical analysis, the runtime should be independent of
the logvar domain size (cardinality), which is validated in all three experiments as can be
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Chapter 3 Lifting Gaussian Bayesian Networks

seen in Fig. 3.3 (a-c). Overall, the runtime in the construction of the overlap experiment
is lowest, because the number of PRVs and the number of logvars involved in the PRVs is
lowest. The slight up and downs in the lifted scenarios are due to the very low runtime
(milliseconds) and comparably high effect of slight shifts in background processes.

3.7.2 Experimental Query Answering

For query answering, we also use the three experiments from Table 3.2. In all cases,
we observe both lifted variants to be outperforming the grounded algorithm from a
certain logvar domain size onwards (see Fig. 3.3). In the non-overlapping case (f), where
we have a constant number of queried randvars, both lifted algorithms outperform the
ground algorithm significantly and show only a linear with respect to the number of
evidence randvars increase as expected. When comparing the orange and green lines
in Fig. 3.3 (f), we see no speed-ups between the lifted query answering using evidence
grouping and the lifted query answering without evidence grouping because the linear
factor of NQ is constant and small. In the overlap experiment in Fig. 3.3 (d), where we
also have an overlap between the logvars in Q and E, we see that the lifting algorithm
with grouping is worse than the algorithm without grouping. Because of the full overlap
betweenQ and E all groups will have exactly one evidence entry resulting in no efficiency
gains. With higher domain sizes, the difference between grouping and non-grouping gets
smaller because the constant overhead of handling the groups has relatively less effect.
In the mixed scenario in Fig. 3.3 (e), we have high speed-ups for the lifted algorithm
with grouping compared to the lifted algorithm without grouping. This speed-up occurs,
because we have no overlaps between Q and E, resulting in one big group for which the
evidence can be summed up, resulting in the elimination of the large NQ factor.

3.8 Intermediate Discussion

We have presented lifting for GBNs. We have developed algorithms for constructing a
lifted joint distribution for the non-overlapping case and generalized the representation
and construction algorithm to allow for overlaps between the logvars sequences (Contri-
bution 1). We have developed operations to work with the lifted joint distribution in a
fully lifted way including addition, multiplication, and inversion (Contribution 2). The
operations provide the basis for the lifted query answering algorithms developed (Con-
tribution 3). We have shown with a theoretical complexity analysis and an experimental
evaluation that we can achieve significant performance improvements compared to the
ground level implementations of the algorithms. A running example has been used to
illustrate a possible application and all theoretical operations and algorithms for better
comprehensibility.
For future research on lifting GBNs, there are mainly three open issues that could

trigger further research. First, we have have made some restrictions for liftable queries.
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Figure 3.3: Evaluation of experiments
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Adding mechanisms to allow for a broader class of queries through combination of lifted
and ground treatment would broaden the possible areas for applications. Second, for
lifting in general, we assume indistinguishable randvar instances. One interesting ques-
tion is how to treat not indistinguishable but very similar randvar instances. It would be
interesting to understand in which circumstances approximations can fulfil error bounds
and be thus a valid alternative for exact query answering. There are existing ideas
for understanding error bounds when dealing with changed preconditions by Van den
Broeck and Niepert (2015) and Gehrke et al. (2020) in discrete environments. Third,
current approaches are either lifting discrete PGMs or continuous. Understanding, how
to work with hybrid algorithms, e.g., the hybrid version of the junction tree algorithm
by Lauritzen and Jensen (2001), could be an interesting path forward.
The upcoming chapter looks into a different cause for complexity in a Gaussian PGM,

namely adding a dynamic dimension. We will investigate the relationship between dif-
ferent Gaussian Dynamic PGMs and GPs.
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Chapter 4

Gaussian Probabilistic Graphical Models
and Gaussian Processes

Relatively recently, Gaussian processes (GPs) have been brought into focus of the machine
learning community (Rasmussen, 2006) and have triggered a lot of research (Quinonero-
Candela and Rasmussen, 2005; Matthews et al., 2018; Liu et al., 2020). Anologously
to Gaussian PGMs, GPs also use Gaussian distributions for modelling the behavior
of randvars. The applications of GPs are quite vast including, regression problems,
classification problems, multi-output modelling, time series modelling, etc. (Rasmussen,
2006; Roberts et al., 2013; Frigola-Alcalde, 2016; Álvarez et al., 2012).
GPs have a very general structure as we will see in the upcoming sections. Because of

this general structure other models have been restated using the GP notation. Examples
for approaches or models that have been reformulated as GPs are Bayesian regression,
Support Vector Machines, neural networks, and certain types of Kalman filters (Schulz
et al., 2018; Seeger, 199; Lee et al., 2018; Reece and Roberts, 2010b). In this chapter,
we focus on the relationship between dynamic Gaussian Bayesian network (DGBNs)
and GPs for time series modelling. Both models — DGBNs and GPs — use Gaussian
distributions for randvars at specific time points. So it is intuitive that if we restate the
rules for constructing the probability distribution of a DGBNs in GP notation, we could
get an equivalent probability distribution (just with a different form of representation).
In contrast to DGBNs, GPs are typically defined on a continuous time dimension and
in addition allow direct inference without propagation of evidence through a network.
Additionally, an existing GP that models a certain behavior can be easily extended
or adapted by making changes to its covariance function, e.g., by combining it with
other covariance functions specialized on other characteristics, as we will see later in this
chapter. Drawbacks of GPs are that modeling multiple outputs is challenging (Álvarez et
al., 2012; Liu et al., 2018) and that modeling multi-outputs with a detailed interpretable
(in)dependence structure as it is done in a GBN is currently not possible. Typical multi-
output examples come from the field of geostatistics, where the concentration of toxic
metals and the pH-value might be modeled as two separate outcomes and influence each
other (Álvarez et al., 2019).
This chapter is based on the following publications:

55



Chapter 4 Gaussian Probabilistic Graphical Models and Gaussian Processes

Mattis Hartwig, Marisa Mohr, and Ralf Möller. Constructing Gaussian Pro-
cesses for Probabilistic Graphical Models. In FLAIRS-20 Proceedings of the
33rd International Florida Artificial Intelligence Research Society Conference.
AAAI Press, 2020

Mattis Hartwig and Ralf Möller. How to Encode Dynamic Gaussian Bayesian
Networks as Gaussian Processes? In AJCAI-20 Proceedings of the Aus-
tralasian Joint Conference on Artificial Intelligence, pages 371–382. Springer,
2020

The remainder of this chapter has the following structure. We start by explaining
the preliminaries about DGBN and GPs, followed by a discussion of their respective
benefits. Afterwards, we discuss related work that draws connections between relation
based models and GPs. Then, we construct GPs for three types of DGBNs. We conclude
with a discussion of benefits of encoding DGBNs into GPs, and present potential future
research.

4.1 Gaussian Process Specific Preliminaries

In this section, we introduce DGBNs, GPs, and kernel functions for GPs. Afterwards,
we discuss the advantages of the two models, which also motivates combining them.

4.1.1 Dynamic Gaussian Bayesian Networks

We have introduced GBNs in Section 2.4. DGBNs model the behavior of randvars over
time. For specifying time steps, we use the index t. In DGBNs, time is discrete with
t = 0, ..., T̃ . We use T̃ to avoid confusion with the matrix transpose operation. In this
chapter, we assume a Markov property of order 1 for the DGBNs.

Definition 4.1.1 (Order-1 Markov property). A DGBN has an order-1 Markov property
if the set of randvars Xt+1 at time step t+ 1 is only dependent on the set of randvars Xt
at time step t.

The term randvar could stand for each individual node X(t)
d in the DGBN or for

an Xd which develops over time. To be consistent with the terminology used in the
previous chapters, we use the term randvar for each individual node X(t)

d at a specific
time and the term time-dependent randvar (tdvar) for variable Xd that develops over
time t. So in total, we have a number of D tdvars, a number of T̃ + 1 time steps, and a
number of N = D · (T̃ + 1) randvars in the network. We specify three types of DGBN:
A one-dimensional Gaussian Markov chain, a Gaussian hidden Markov model, and a
two-timeslice DGBN. Illustrations of the three models can be found in Fig. 4.1.
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Figure 4.1: Three examples for different types of DGBNs: a) Gaussian Markov chain b)
Gaussian hidden Markov model c) two-timeslice DGBN

One-Dimensional Gaussian Markov Chain

A one-dimensional Gaussian Markov chain describes the behavior of one tdvar X1. It
is defined by a starting distribution P (X(0)) and a linear transition βt,t+1 = βX1 . The
conditional distributions of all further time steps are based on Definition 2.4.1 given by

P (X(t+1)|X(t)) ∼ N
(
µX1 + βX1(x(t) − µX1), σ2

X1

)
. (4.1)

Gaussian Hidden Markov Model

A two-dimensional Gaussian hidden Markov model describes the behavior of tdvar X1,
that usually cannot directly be measured, but introduces a tdvar X2, which can be
measured. The Gaussian hidden Markov model is defined by a starting distribution
P (X

(0)
1 ), a linear time transition β

X
(t)
1 ,X

(t+1)
1

= βX1 , and a linear dependency βX1,X2

between X(t)
1 and X(t)

2 . The conditional distributions are based on Definition 2.4.1 and,
analogously to Expression (4.1), given by
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P (X
(t+1)
1 |X(t)

1 ) ∼ N
(
µX1 + βX1(x

(t)
1 − µX1), σ2

X1

)
(4.2)

and
P (X

(t)
2 |X

(t)) ∼ N
(
µX2 + βX1,X2(x

(t)
1 − µX1), σ2

X2

)
. (4.3)

Dynamic Gaussian Bayesian Network

The most general case for our description is a DGBN. We follow Murphy (2002) and use
a two-timeslice notation, where we have one starting point P (X (0)) defined by the node
means and node variances of all tdvars in X , and a transition matrix defining the edges
between two time steps. Fig. 4.2 contains an illustration of the two-timeslice notation for
the example DGBN in Fig. 4.1c. The conditional distributions based on Definition 2.4.1
and analogously to Expression (4.1) are given by

P (X
(t+1)
d |X (t)) ∼ N

µXd
+

∑
X

(t)
k ∈Pa(X

(t+1)
d )

βk,d(x
(t)
k − µXk

), σ2
Xd

 . (4.4)

Since the linear relationships do not change over the time, we can store them in a
transition matrix M , where a non-zero entry at position (d, d′) stands for a linear rela-
tionship between X(t)

d and X(t+1)
d′ . The transition matrix for the example in Fig. 4.2 is

given by

M =


β1,1 β1,2 0 0
0 β2,2 β2,3 0
0 β3,2 β3,3 β3,4

0 0 β4,3 0

 . (4.5)

For further details on (Gaussian) dynamic BNs, we refer to Murphy (2002).

4.1.2 Gaussian Processes

We define GPs according to Rasmussen (2006).

Definition 4.1.2 (Gaussian Process). A Gaussian Process is defined by a mean function
m : T→ R, a kernel function k : T×T→ R, and a spatial dimension T. A Gaussian Pro-
cess describes a collection of randvars, any finite number of which have a joint Gaussian
distribution.

Similar to DGBNs, GPs can result in a multivariate Gaussian distribution if they
are sampled for a specific set of random variables. In classic GPs, we have one tdvar
whose behavior over time t is described. Each element of the randvar set mentioned
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Figure 4.2: A DGBN represented in two-timeslice notation with a transition matrix

in Definition 4.1.2 is thus associated with a time step. One difference between DGBNs
and GPs is, that the GP not only defines a specific distribution for a randvar at a
specific number of time steps but an infinite-dimensional distribution for randvars at all
possible time steps in the feature space of the kernel function (see Definition 4.1.3). By
evaluating the mean and covariance function of a GP for multiple time steps t, we get
the distribution of the randvars at the time steps in t:

P (Xt) = N (m(t),K(t, t)), (4.6)

where K(t, t) is a covariance matrix generated by plugging into the covariance function
k(t, t′) all values in t. The result of m(t) is a mean vector, whereas the result K(t, t) is
a covariance function (if k is a valid kernel, see Definition 4.1.3).
Instead of describing the relationships as parent child relations as in DGBNs, we use

the covariance function (kernel) to describe the similarity of randvars (here at different
points in time). The kernel influences the design of the distributions sampled from a
GP. Remark: A GP can also be interpreted as a distribution over functions. The spatial
dimension is the input for all functions in the distribution. Thus when evaluating all
functions in the distribution for a potential input we get a distribution over outputs
instead of a single value (see right side of Fig. 4.4).
The syntax for query answering in a GP is equal to the conditional probability queries

in multivariate Gaussian distributions as introduced in Section 2.3. We use a query
set Q and an evidence set E containing the queried randvars and evidence randvars
respectively. The evidence randvars E and the observed values e form events E = e.
Additionally, we use tQ to denote the set of query time points and tE to denote the set
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of evidence time points. The evidence time points tE and the evidence randvars directly
correspond to each other in such a way that a randvar in this dynamic model is always
associated with a time point. For Q and tQ it is the same.
The semantic of query answering is that the response should contain the posterior

distribution P (Q|E = e) over randvars in Q conditioned on the observations E = e. To
calculate the posterior distribution, we first form the joint probability distribution of the
evidence and query randvars using Expression (4.6):

P (Q,E) = N
([
m(tE)
m(tQ)

]
,

[
K(tE , tE) K(tE , tQ)
K(tQ, tE) K(tQ, tQ)

])
. (4.7)

where K(tE , tQ) is again a covariance matrix generated by evaluating the covariance
function k for all combinations of elements in tE and tQ. Having the joint distribution
defined we can use the same algorithm avoiding solving integrals by applying Expres-
sions (2.11) and (2.12) from Section 2.3. The posterior distribution is then given by

P (Q|E = e) = N(µ∗,Σ∗), (4.8)

where
µ∗ = m(tQ) +K(tQ, tE)K(tE , tE)−1(e−m(tE)) (4.9)

and
Σ∗ = K(tQ, tQ)−K(tQ, tE)K(tE , tE)−1K(tE , tQ). (4.10)

Because we use functions to generate the covariance matrix and the mean vector, we
can use any number of points on the spatial axis in the query. The posterior distribution
is always based on a discrete number of points, but the number of points can be chosen
freely. Fig. 4.3, inspired by Roberts et al. (2013), illustrates how the posterior as of a
GP with three evidence points can be generated over a) a relatively sparse query set
(tQ = 1, 3, 4, 5, 7, 9, 10) or over b) a very a dense query set (1000 steps in the interval
between 0 and 10), looking like continuity. The grey area in Fig. 4.3 is corresponding to
the confidence interval of two standard deviations and the line (or dots) in the middle
of the confidence interval are the mean values in that respective time step. The red-
dots refer to observed values. When looking closely even observed values can have a
uncertainty, which depends on the modelling choices in the covariance function.

4.1.3 Kernel Functions

As mentioned above, kernel functions are used to construct the covariance matrix between
any features (in our case timepoints) in a GP. We define valid kernels based on Rasmussen
(2006).

Definition 4.1.3 (Valid kernel functions). A valid kernel function (or just kernel) k :
T× T→ R for a GP, where T is the feature space, needs to fulfil two characteristics:
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Figure 4.3: A GP with 3 evidence points at timepoints 2, 6, and 8, where a) contains a
sparse query set (tQ = 1, 3, 4, 5, 7, 9, 10) of the posterior and b) a relatively continuous
one (1000 steps in the interval between 0 and 10) (Roberts et al., 2013)

• any resulting matrix needs to be symmetric, i.e., k(t, t′) = k(t′, t) for all t and t′,

• any resulting matrix needs to be positive semi-definite, i.e., symmetric and inquality∑n
i=1

∑n
j=1 cicjk(ti, tj) ≥ 0 for n ∈ N , t1, ..., tn ∈ T, c1, ..., cn ∈ R must be true.

In literature, a kernel is also called symmetric or semi-definite if it fulfils the conditions.

Kernels define how the values at different points influence each other and thus define
how the posterior distributions look like. For GPs, the feature space is the spatial
dimension of the GP. The most-used kernel in GP use-cases is the squared exponential
kernel

kse(t, t
′) = σ2 exp

(
−(t− t′)2

2`2

)
, (4.11)

where σ2 and ` are hyperparameters for signal noise and lengthscale (roughly speaking
how strongly the feature’s associated value changes) respectively. Another kernel that is
often used is the so-called linear kernel

klin(t, t′) = σ2
b + σ2(t− c) · (t′ − c), (4.12)

where c, σ2
b , and σ

2 are hyperparameters for the offset (roughly speaking the x-coordinate
that all the lines in the posterior cross), the uncertainty of the offset, and the variance
respectively. A kernel for modeling periodic behavior is the periodic kernel

kper(t, t
′) = σ2 exp

(
− 2

`2
sin2

(
π
|t− t′|
p

))
, (4.13)
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where σ2, `, and p are hyperparameters for signal noise, lengthscale, and period length
(the distance after which values are repeated) respectively. Example plots of how kernels
influence the shape of the posterior distribution for all three kernels can be found in
Fig. 4.4.
Valid kernels can be constructed using other kernels. Bishop (2006) lists valid opera-

tions for constructing kernels. We use the following subset of these operations in later
sections.

Lemma 4.1.1. Given valid kernels k1(t, t′), k2(t, t′), and a constant c ∈ R, the following
constructed kernels are also valid:

k(t, t′) = ck1(t, t′), (4.14)
k(t, t′) = k1(t, t′) + k2(t, t′), (4.15)
k(t, t′) = exp(k1(t, t′)), (4.16)
k(t, t′) = k1(t, t′)k2(t, t′). (4.17)

The feature space T in this dissertation is the temporal space and thus continuous
T = R if not stated otherwise. In the following sections, we will assume to have a
temporal space even though the rules would also apply for other feature spaces.

4.1.4 Multi-output Kernels

As mentioned above, classic GPs model the behavior of the values of a single tdvar that
develops time. Multi-output GPs model more than one tdvar over time . In our case, we
would like to model an arbitrary number of tdvars in a DGBN over the time dimension.
To model a number of D tdvars, a multi-output kernel k : T × T → RD, which can
construct covariance matrices for multi-outputs, is needed. If we look at T̃ different
points, the covariance matrix in the one-dimensional setup is T̃ × T̃ -dimensional.With
D output dimensions (tdvars), the covariance matrix is DT̃ × DT̃ -dimensional. An
illustration of the covariance matrix design can be found in Fig. 4.5.
A general notation for a multi-output kernel is

k((d, t), (d′, t′)), (4.18)

where d is referring to a tdvar Xd and t to a point in time. The kernel allows us to
calculate the covariance between any tdvar Xd at any time t with any other variable Xd′

at time t′.
In general, multi-output kernels can have any kind of structure but need to fulfil the

conditions in Definition 4.1.3. Álvarez et al. (2012) has defined two special types of
multi-output kernels that fulfil the conditions Definition 4.1.3, namely separable kernels
and sum of separable kernels. We will use those types later to prove the validity of the
constructed kernel for the Gaussian hidden Markov model.
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(a) Squared exponential kernel

(b) Linear kernel

(c) Periodic kernel

Figure 4.4: Illustration of the influence of kernels on the posterior distribution generated
by a GP with one point of evidence at tE = 1. The red area corresponds to the confidence
interval of two standard deviations and the read line corresponds to the most probable
assignment (the means at each timepoint in the posterior).

63



Chapter 4 Gaussian Probabilistic Graphical Models and Gaussian Processes

Figure 4.5: Illustration of multi-output covariance matrices for two example timesteps

Definition 4.1.4 (Separable kernel). A multi-output kernel with output dimension d
and spatial dimension t is separable if it can be separated in one kernel being dependent
on d and one being dependent on t, i.e.,

k((d, t), (d′, t′)),= k(t, t′)k(d, d′). (4.19)

Definition 4.1.5 (Sum of separable kernels). A kernel that is constructed by a sum of
separable kernels has a structure given by

k(t, t′) =
R∑
r=1

kr(t, t
′)kr(d, d

′) =
R∑
r=1

kr(t, t
′)Br, (4.20)

where Br is a D×D-dimensional symmetric and positive semi-definite matrix and R ∈ N
is the number of summands.

The purpose of the B matrices is to describe the relationships between the different
dimensions (tdvars). The simplest setting is if Br is a diagonal matrix. Then, all outputs
are treated in a completely independent way. In our DGBN, this would be the case if
there were no connections between any of the different randvars X(t)

d and X
(t+1)
d′ for

d 6= d′, i.e. no connection between randvars from one time slice to the next one.
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4.1.5 Comparing Probabilistic Graphical Models to Gaussian Processes

DGBNs have several benefits that make them straightforward to use. One benefit is that
they can capture (conditional) dependencies and independencies of the randvars very
intuitively (Koller and Friedman, 2009), i.e. DGBNs can incorporate expert knowledge.
It is possible to construct a network entirely by expert knowledge but it is also possible
to use expert knowledge as a prior for a probability distribution (Flores et al., 2011).
Gaussian Hidden Markov models and DGBNs can model a probability distribution over
multiple randvars on a discrete time dimension. Last but not least, PGMs have al-
ready been used in many applications. Therefore a wide range of inference and learning
algorithms have been developed (Koller and Friedman, 2009).
Using GPs also has benefits. GPs have a continuous spatial dimension which allows

for modeling continuous changes directly and without the need of discretization. GPs are
nonparametric in a sense that they are not fixed in the numbers of parameters they learn
but rather use a flexible number of observations. Additionally, GPs directly incorporate a
quantification of uncertainty. Because of their joint Gaussian characteristics, calculating
posterior distributions is straightforward and relatively efficient (Roberts et al., 2013).
Converting PGMs to GPs while retaining the benefits described above is a promising

approach that we pursue in this chapter to exploit the benefits of both approaches.

4.2 Related Work on the Relationship Between PGMs and
GPs

There have been three different streams to bring PGMs together with GPs. One research
stream known as relation learning uses multiple GPs to identify probabilistic relations
or links within sets of entities (Xu et al., 2009; Yu et al., 2006). A second research
stream uses GPs for transition functions in state space models. Frigola-Alcalde (2016)
has investigated different techniques for learning state space models that have GP pri-
ors over their transition functions. Turner (2012) has explored change point detection
in state space models using GPs. A third research stream focuses on constructing co-
variance functions for GPs to mimic certain behaviors from other models. Reece and
Roberts (2010b) have shown that they can convert a specific Kalman filter model for the
near constant acceleration model into a kernel function for a GP and then Reece and
Roberts (2010a) combine that kernel function with other known kernels to get better
results for predictions in target tracking. Rasmussen (2006) has done a lot of work to
describe the relationship between stationary auto-regressive models and also described
the kernel for a non-stationary Wiener process (the min kernel) that we reuse in this
chapter as well. The results of this chapter contribute to the third research stream by
providing a novel approach to converting three types of DGBNs into GPs, namely the
one-dimensional Gaussian Markov chain, the Gaussian hidden Markov model, and the
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two-timeslice DGBN.

4.3 Gaussian Processes for Gaussian Markov Chains

In this section, we construct a GP for the Gaussian Markov chain model. We start by
constructing a kernel function, continue with proving its validity, and end by describing
the full GP.

4.3.1 Constructing the Kernel

We reuse a contribution in the paper by Shachter and Kenley (1989), which we have
already used in the previous chapter as a reference for constructing covariance matrices of
GBNs. To prove correctness of their inductive approach for constructing the covariance
matrix, Shachter and Kenley (1989) have used the following lemma that we reuse for
constructing the kernel function. Since the GP starts at t = 0 , we also use zero as a
starting index in the GBN (in contrast to the previous section where we used a starting
index of one).

Lemma 4.3.1. For N+1 topologically ordered randvars Xi ∈ X , i = 0, . . . , N in a GBN,
let σ2

i be the node variance of Xi and T ∈ RN+1×N+1 be a matrix, where the entries βi,k,
describe the linear relationship between a parent Xi and its child Xk. If Xi is no parent
of Xk, the entry is zero. For a fixed j ∈ {0, . . . , N}, let Σ0:j,0:j be the covariance matrix
between all randvars X0 to Xj, and T s,j ∈ Rj−1×1, s = (0, . . . , j − 1), the corresponding
part of T . We define the following two matrices

Sj :=


Σ0:j,0:j 0 . . . 0

0 σ2
j+1 . . . 0

...
...

. . .
...

0 0 . . . σ2
N

 , (4.21)

U j :=

Ij×j T s,j 0
0 1 0
0 0 IN−j×N−j

 . (4.22)

Let D be the diagonal matrix containing the node variances. Then it holds that

Σ = SN = UT
N ...U

T
0DU0...UN , (4.23)

where Σ ∈ RN+1×N+1 is the covariance matrix of the equivalent multivariate Gaussian
distribution for the above defined GBN.
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To define a GP, a kernel function must be constructed that maps arbitrary time points
t and t′ to a covariance value. Therefore, we convert the inductive multiplication of the
matrices in Expression (4.23) into a kernel function.
In the case of a Markov chain, each value on the diagonal of D is σ2

X1
and N = T̃ .

The (T̃ + 1)× (T̃ + 1) dimensional matrix T has entries β at the positions (s, s+ 1) for
s = 0, ..., T̃ , which describe the linear relationship along the time dimension of X1, and
zeros everywhere else:

T =



0 βX1 0 . . . 0
0 0 βX1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βX1

0 0 0 . . . 0


. (4.24)

Consequently, the matrix U i is the identity matrix of size T̃ + 1× T̃ + 1 plus the βX1

at position (i, i + 1). By multiplying all U -matrices as indicated above, we obtain the
diagonal matrix

T̃∏
i=0

U i =



1 βX1 β2
X1

. . . βT̃X1

0 1 βX1 . . . β
(T̃−1)
X1

0 0 1 . . . β
(T̃−2)
X1

...
...

...
. . .

...
0 0 0 . . . 1


. (4.25)

The same applies for the left part of the Expression (4.23):

T̃∏
i=0

UT
i =


1 0 0 . . . 0
βX1 1 0 . . . 0
β2
X1

βX1 1 . . . 0
...

...
...

. . .
...

βT̃X1
βT̃−1
X1

βT̃−2
X1

. . . 1

 . (4.26)

Since all values on the diagonal-matrixD have the same scalar value σ2
X1

, we can move
σ2
X1

at the beginning of the equation, resulting in

Σ = UT
T̃
...UT

0DU0...U T̃ = σ2
X1

T̃∏
i=0

UT
i

T̃∏
i=0

U i. (4.27)

To come up with a kernel, we need a function that results in the correct element in the
covariance matrix. Based on matrix algebra the item at position (i, j) can be calculated
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by multiplying row i from Expression (4.26) with column j from Expression (4.25). For
i = j (the diagonal of the resulting covariance matrix), we calculate the covariance with

βiX1

βi−1
X1

βi−2
X1

βi−3
X1
...

β0
X1

0
...
0


·



βiX1

βi−1
X1

βi−2
X1

βi−3
X1
...

β0
X1

0
...
0



T

=
i∑

k=0

(βkX1
)2. (4.28)

For i 6= j, we denote the difference as ∆ = |i−j|. Because of the symmetry of matrices
in Expressions (4.25) and (4.26) there is no difference between the cases j > i and j < i.
Let j > i, then the j-th vector contains more elements and in addition elements with
higher exponents. These changing values are only relevant in the first i entries because
all other entries are multiplied with zero. Substituting j by i+ ∆ results in:

βiX1

βi−1
X1

βi−2
X1
...

β0
X1

 ·

βjX1

βj−1
X1

βj−2
X1
...

βj−iX1



T

=


βiX1

βi−1
X1

βi−2
X1
...

β0
X1

 ·

βi+∆
X1

βi+∆−1
X1

βi+∆−2
X1
...

β∆
X1



T

=
i∑

k=0

βkX1
βk+∆
X1

= β∆
X1

i∑
k=0

(βkX1
)2.

(4.29)

To ensure symmetry of the kernel, we also need to include the case i > j, which leads
to replacing i by min(i, j) and ∆ by |i− j| in Expression (4.29), resulting in

β
|i−j|
X1

min(i,j)∑
k=0

(βkX1
)2. (4.30)

Expression (4.30) has the structure of a partial sum of a geometric series.

Definition 4.3.1 (Geometric series, partial sum). A geometric series
∑

k ak is a series
for which the ratio of each two consecutive terms ak+1/ak is a constant function of the
summation index k. A partial sum of the first n + 1 elements of a geometric series can
be calculated in closed form by

n∑
k=0

brk = b

(
1− rn+1

1− r

)
. (4.31)
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We reformulate Expression (4.30) using the formula for the partial sum of a geometric
series from Expression (4.31) and replace i and j with t and t′ respectively:

k(t, t′) = σ2
X1
β
|t−t′|
X1

1− β2 min(t,t′)+2
X1

1− β2
X1

. (4.32)

By using the partial sum of a geometric series we can only work with β 6= 1. That is
not an issue because a value of β = 1 the sum in Expression (4.30) would simplify to
the min-kernel, which is a known kernel for the Wiener process Rasmussen (2006). By
converting the approach of Shachter and Kenley (1989) into a closed formula, we have
shown that Expression (4.32) can be used to construct a covariance matrix that encodes
the characteristics of the one-dimensional Gaussian Markov chain. Next, we show that
the Expression (4.32) is indeed a valid kernel.

4.3.2 Kernel Validity

To prove the validity of Expression (4.32) as a kernel function for a GP, we use the
characteristics that kernels can be constructed of other kernels using the equations from
Lemma 4.1.1. This additional step is necessary because we broaden the feature space
from T = N to T = R. We show that the two factors

ka(t, t
′) = σ2

X1
β
|t−t′|
X1

and (4.33)

kb(t, t
′) =

1− β2 min(t,t′)+2
X1

1− β2
X1

(4.34)

of the Expression (4.32) are valid kernels. Then, based on Expression (4.17), our con-
structed kernel being the product of the two factors is a valid kernel as well. The exponent
|t− t|′ is the one dimensional case of the Euclidean distance kernel (Bishop, 2006). With
Expression (4.14) and the exponential rule from Expression (4.16) ka(t, t′) is a valid
kernel.
To show that the function kb(t, t

′) is a valid kernel, we use the summation in Ex-
pression (4.29). Expression (4.29) converts the fraction back into a sum of exponential
functions that have a positive numbers n = 1, ...,min(t, t′) as the exponents. Based on
Expression (4.15), Expression (4.16), and the fact that min(t, t′) is a valid kernel (Ras-
mussen, 2006), the function kb(t, t′) is a valid kernel. Consequently, Expression (4.32) is
a valid kernel for a GP.

4.3.3 Defining the Gaussian Process

Having constructed a valid kernel function, we also need a mean function for the GP.
Since the mean stays the same in a DGBN, we have a constant mean function

m(t) = µX1 . (4.35)
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With the covariance function from Expression (4.32) and the mean function from
Expression (4.35), we have constructed the desired GP for a Gaussian Markov chain.
The hyperparameters for the constructed GP are βX1 , σ2

X1
, and µX1 . Example plots

with hyperparameters βX1 = 1.2, σ2
X1

= 1.2, and µX1 = 0 can be found in Fig. 4.6.
Fig. 4.6 also shows the Markov property of the kernel, because an additional evidence
point at t = 1 in Fig. 4.6 (b) does not change the distribution after the point t = 4, when
comparing it to Fig. 4.6 (a).

(a) Evidence for tE = 4

(b) Evidence for tE = {1, 4}

Figure 4.6: Illustration of the constructed GP for one-dimensional Gaussian Markov
chains

We have generalized the feature space from N to R in a way, that the probability
distribution of a one-dimensional Gaussian Markov chain can be also sampled using the
constructed GP. Furthermore, we can now sample also distributions including randvars at
fractional or real time points. Of course we have made the assumption that the observed
behavior formalized in Expression (4.32) also happens in between discrete time points.
This assumption effects in no way the distributions that we get by putting in discrete
time points and thus allows for generalizing without making compromises on the original
one-dimensional Gaussian Markov chain. Next, we look at how to describe the Gaussian
hidden Markov model as a GP.
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4.4 Gaussian Processes for Hidden Markov Models

In a Gaussian hidden Markov model, there are two tdvars X1 and X2. We have Ex-
pressions (4.2) and (4.3) for the distributions over X1 and X2. Similar to the previous
section, we start with constructing the kernel function, continue with proving its validity
and finish with defining the full resulting GP including its hyperparameters.

4.4.1 Constructing the Kernel

We generalize the kernel from the previous section to support the two randvars as outputs.
We use the general form of the multi-output kernel from Expression (4.18), where d can
be 1 or 2. We know that based on Expression (2.15) that the covariance is always
influenced by parent-child relationships. Since the introduction of X2 has no influence
on the parent structure of X1, the covariance of X1 developing over t is unchanged. We
can write:

k((1, t), (1, t′)) = k(t, t′) = σ2
X1
β
|t−t′|
X1

1− β2 min(t,t′)+2
X1

1− β2
X1

. (4.36)

For the kernel k((1, t), (2, t′)), we know that each Xt′
2 has a parent of Xt′

1 which has
the same linear relationship βX1,X2 . We can thus construct k((1, t), (2, t′)) by using
Expressions (2.15) and (4.36):

k((2, t′), (1, t)) = k((1, t), (2, t′)) = k((1, t)(1, t′))βX1,X2 . (4.37)

The last part that needs to be constructed is the covariance k((2, t), (2, t′)) between
two X2 randvars. With Expression (2.15) and with the knowledge that the only parent
of Xt

2 is Xt
1 the covariance is given by

k(2, t), (2, t′)) = k((2, t)(1, t′))βX1,X2 + δt,t′σ
2
X

= k((1, t)(1, t′))β2
X1,X2

+ δt,t′σ
2
X . (4.38)

Combining Expressions (4.36) to (4.38) results in the final kernel

k((d, t), (d′, t′)) =


k((1, t)(1, t′)), if d, d′ = 1,

k((1, t)(1, t′))β2
X1,X2

, if d 6= d′,

k((1, t)(1, t′))β2
X1,X2

+ δtt′σ
2
X2
, if d, d′ = 2.

(4.39)

4.4.2 Kernel Validity

To prove validity, we convert the kernel from Expression (4.39) into the structure of a
sum of separable kernels following Definition 4.1.5. We rewrite the cases as individual
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kernels such that the kernels are returning zero, when the case condition is not met:

k1(d, d′) = εd,d′,1, (4.40)

k2(d, d′) = 1− δd,d′ , and (4.41)

k3(d, d′) = εd,d′,2, (4.42)

where εd,d′,d∗ is equal to 1 if d = d′ = d∗ and otherwise zero. Expressions (4.40) to (4.42)
are valid kernels themselves because they are symmetric and their eigenvalues are {1, 0},
{0, 1}, and {1, 1} respectively, making them positive semi-definite.
With Expressions (4.40) to (4.42), Expression (4.39) can be rewritten to

k((d, t), (d′, t′)) = k1(d, d′)k((1, t)(1, t′))

+ k2(d, d′)k((1, t)(1, t′))βX1,X2

+ k3(d, d′)(k((1, t)(1, t′))β2
X1,X2

+ δt,t′σ
2
X2

). (4.43)

The sum of separable kernels structure in Expression (4.43) proves that the constructed
kernel is a valid kernel to be used in a GP.

4.4.3 Defining the Gaussian Process

As in the previous case, constructing the mean function is fairly simple. Analogously to
the single-variable case, the mean functions for X1 and X2 are constant resulting in

m(d, t) =

{
µX1 , if d = 1,

µX1 , if d = 2.
(4.44)

For the constructed GP, we have a set of hyperparameters θ = {µX1 , µX2 , βX1 , βX1,X2}.
Again we have generalized the feature space from N to R and made the assumption that
the behavior described by the kernel in Expression (4.39) is also happening in fractional
and real time steps. Next, we look at how to described DGBNs as GPs.

4.5 Gaussian Processes for Dynamic Gaussian Bayesian
Networks

In a DGBN, we have tdvars X1, ..., XD evolving over time t = 0, ..., T̃ . Again, we start
by constructing a kernel. In contrast to the two previous sections the constructed kernel
includes operations that cannot be easily generalized to a continuous time dimension.
Therefore, we have a discussion on needed next steps to allow for continuity. We follow-
up by a quick validity discussion which is not problematic here, because we do not change
the feature space and conclude with defining the resulting GP.
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4.5.1 Constructing the Kernel

Again, we use Lemma 4.3.1 to find a general formula for the multi-output kernel. Since
the σ2-values for all tdvars stay constant over time, the matrix D has repeating diagonal
entries every D entries. We denote A for all D ×D-dimensional blocks that are on the
diagonal of D. The block A itself is constructed by

A = diag(σ2
X1
, ..., σ2

XD
). (4.45)

The N + 1×N + 1-dimensional matrix T from Lemma 4.3.1, containing all linear rela-
tionships in the DGBN, has the T̃ + 1× T̃ + 1-dimensional block structure visualized in
Fig. 4.5. Using the transition matrix M for transitions of tdvars from one time step to
the next results in

T =


0 M 0 0 . . . 0
0 0 M 0 . . . 0

0
...

...
. . . . . .

...
0 0 0 . . . 0 M

 . (4.46)

Given structure for the matrix T , we can group the multiplications of matrices U from
Expression (4.23) in Lemma 4.3.1. With D dimensions, we can multiply D consecutive
matrices from U t to U t+D−1 that would belong to the randvars within one time step:

Ot =

tD+(D−1)∏
i=tD

Ui =


ItD 0 0 0
0 ID M 0
0 0 ID 0
0 0 0 I(T̃−t−1)D

 . (4.47)

With block matrix multiplication and the construction of matrices Ot, we can reformulate
the multiplication from Lemma 4.3.1 into

N∏
i=0

U i =
T̃∏
t=0

Ot =


I M M2 . . . MT̃

0 I M . . . MT̃−1

0 0 I . . . MT̃−2

...
...

...
. . .

...
0 0 0 . . . I

 . (4.48)

The fullN+1×N+1 covariance matrix would be calculated by using Expression (4.23).
In our kernel function, we only want to calculate the D×D block containing the covari-
ances between two time steps t and t′. We would get this matrix by multiplying the t-th
row of blocks from UT

N ...U
T
0 , with the t′-th column of DU0...UN . If t = t′, we have
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Mt

Mt−1

Mt−2

...
M0

0
...
0



T

·



AMt

AMt−1

AMt−2

...
AM0

0
...
0


=

t∑
k=0

(MT )
k
AMk, (4.49)

where M0 = I.
In the case t 6= t′, we start with looking at t < t′. The t-th row of blocks contains less

non-zero blocks than the t′-th. With block matrix multiplication, only the first t blocks
are multiplied with non-zero matrices, making the other blocks irrelevant. The blocks in
the t′-th column also have higher exponents, where the difference is given by t′− t. Thus,
the multiplication of the t-th row of blocks with the t′-th column of blocks results in


Mt

Mt−1

...
M0


T

·


AMt′

AMt′−1

...
AMt′−t

 =

t∑
k=0

(MT )
k
AMk+(t′−t) =

(
t∑

k=0

(MT )
k
AMk

)
Mt′−t (4.50)

For the case t > t′, the t-th row contains more non-zero blocks than the t′-column.
Analogously to Expression (4.50) the multiplication results in


Mt

Mt−1

...
Mt−t′


T

·


AMt′

AMt′−1

...
AM0

 =

t′∑
k=0

(MT )
k+(t−t′)

AMk = MT t−t′
t′∑
k=0

(MT )
k
AMk. (4.51)

With the transpose multiplication rule

(U · V )T = V T ·UT (4.52)

it is clear that Expression (4.51) is the transpose of Expression (4.50), which is also
expected based on the symmetry conditions on the covariance matrix.
Combining Expression (4.50) and Expression (4.51) results in a kernel function of

k(t, t′) =


(∑min(t,t′)

k=0 (MT )kAMk
)

M|t−t′|, t ≤ t′,((∑min(t,t′)
k=0 (MT )kAMk

)
M|t−t′|

)T
, t > t′.

(4.53)
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4.5.2 Continuity Discussion

In general, a GP is defined over a continuous scale. Having a continuous scale would be
a benefit compared to the discrete DGBN. For a GP to be continuous, the kernel needs
to be defined for t, t′ ∈ R. In the previous two cases we did find a closed form of the
kernel, that could be easily generalized to the feature space of R using the continuously
defined partial sum of a geometric series. In the case for the DGBN, we have not such a
formula. The two key issues are that neither the summation term nor the exponential of
the matrix M are necessarily uniquely defined for t ∈ R.
For the DGBN, we keep the time-scale discrete but we discuss a few ideas how to

generalize the kernel for a continuous case. The summation is dependent on the minimum
value of t and t′, meaning that if the smaller of the two values is a natural number,
the summation is defined. When setting up the covariance matrix for timesteps t we
feed in the Cartesian product of t and t into the kernel, so if one of those time-points
is not an integer value there will be at least one entry, where the minimum function
of Expression (4.53) returns a non integer value. Müller and Schleicher (2005) have
discussed specific fractional sums but a full mathematical consideration is not in the
scope of this section. The exponent |t− t|′ is real-valued if t or t′ are real numbers. For
rational exponents, the result is defined by the n-th root

M( q
d

) =
d
√

Mq. (4.54)

The n-th root can have none, exactly one, or multiple solutions, depending on the struc-
ture of M. A full continuous definition of the GP would need to handle the cases where
there is no exact solution or put further restrictions on the transition matrix M.

4.5.3 Kernel Validity

Since we stay in the discrete space and directly follow the proven approach from Shachter
and Kenley (1989) for constructing a valid covariance matrix, the kernel is resulting in
a symmetric and positive semi-definite covariance matrix and thus a valid kernel. When
generalizing to the continuous setting by solving the issues discussed in the previous
section, a further kernel validation is needed.

4.5.4 Defining the Gaussian Process

We have defined the covariance function in Expression (4.53). Again, the mean function
stays constant and is given by

m(d, t) = µXd
. (4.55)

The hyper parameters for the GP are the mean values and all entries of the time
transition matrix M .
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Figure 4.7: Combination of a periodic kernel with the one-dimensional Markov chain
kernel from Expression (4.32)

Overall, we have now constructed three kernels for three different types of DGBNs.
For two of them we have been able to generalize to a continuous time scale and for one
we had to stay on a discrete one. Next, we conclude the chapter by a discussion of the
results.

4.6 Intermediate Discussion

In this chapter, we have encoded one-dimensional Gaussian Markov chains, Gaussian
hidden Markov models, and two-timeslice DGBNs as GPs, demonstrating the generalizing
power of GPs (Contribution 4). For the first two models, the constructed kernel function
allows for a continuous treatment of the time dimension, which is a useful add-on to the
classic dynamic PGM approach with a discrete time-scale allowing for varying intervals
of observations. A continuous time scale avoids defining a sample rate when introducing
evidence into the model. Additionally, tdvars can be queried at any real-valued point
in time. The two-timeslice DGBN kernel is so far only defined on a discrete time scale
but might be further generalized to a continuous scale in future research. Here, we have
identified the challenges that need to be solved to allow for continuous treatment. One
challenge is to handle the fractional sum and the other is to handle real valued matrix
exponents in the kernel function.
For all constructed kernels, we have shown that the kernel is valid, resulting in a

symmetric and positive semi-definite covariance matrix. The Markov-property of the
kernel is preserved and the kernel function can be combined with other kernels to allow
for different covariance structures. Fig. 4.7 contains an illustration of a combination of
a periodic kernel with the one-dimensional Markov chain kernel from Expression (4.32).
Introducing periodic behavior into a Gaussian Markov chain is not trivial in the PGM
notation. In the new GP notation, we can simply combine kernels to combine their
characteristics.
The kernels also allow for more efficient query answering. Instead of propagating

evidence through the network, we can construct the evidence covariance matrices and
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directly calculate the posterior distribution for any chosen query time-point. In this
chapter we have also impacted the theoretical research in the areas of PGMs and GPs
Bringing together different perspectives and the underlying concepts can benefit both
research areas. Existing methods from one area can be possibly transferred to the other
research stream and enhance existing applications and vice versa. Also, further research
can be better directed because scholars in different research groups can work more closely
together.
Further research could focus on evaluating whether the newly defined kernels and

their characteristics can enhance existing use cases of GPs for time series modeling.
Additionally, it would be interesting to see if existing use cases of DGBNs can be enhanced
by either having less run-time for inference, in the presence of a continuous time scale,
or by combining the new kernels with existing ones.
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Chapter 5

Approximate Query Answering in
Complex Gaussian Mixture Models

The models we discussed in the previous chapters work only with Gaussian distributed
randvars. Of course there are real-world examples that do not follow a fully Gaussian
distributed setup. In such situation, hybrid PGMs, i.e. PGMs with Gaussian and discrete
randvars, can be used for flexibility. Hybrid PGMs can be transformed into Gaussian
mixture models (GMMs). Thus query answering in hybrid PGMs is connected to query
answering in GMMs, which is focus of this chapter.
GMMs are a set of weighted multivariate Gaussian distributions, whereas each element

of the set is called a component. GMMs have been used very widely for modeling com-
plex probabilistic distributions across diverse fields including agriculture, medicine, and
bioinformatics (McLachlan et al., 2019). If the dimensions of the probability distribution
and number of mixture components are large, the computational costs for calculating
posterior distributions grow. In nonparametric approaches, the number of components is
not limited before learning the model (Rasmussen, 2000) allowing the mixture to grow in
its number of components dependent on the data that is fed into the model. Examples
for these models are infinite GMMs (Rasmussen, 2000) and nonparametric BNs (Hanea
et al., 2015; Ickstadt et al., 2011). These nonparametric models have been used more
widely recently and several use cases from different fields have been identified (Hanea
et al., 2015). Existing exact query answering algorithms that work along the seman-
tics of the query language perform calculations for all mixture components separately,
which works very well for models with low dimensionality and a low number of compo-
nents (Petersen, 2011). If the model complexity grows the computational costs increase
rapidly.
In this chapter, we describe an approach to speed up the query answering in GMMs

with focus on calculating conditional probability distributions. The approach uses the
fact that the posterior weights of mixture components can be calculated with relatively
little cost and combined with a modified version of a quick-select algorithm to identify the
most important mixture components for the posterior distribution. The relatively costly
step of calculating a posterior distribution for each mixture is only performed on the
priority components, which significantly reduces the overall runtime. In situations with
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a high number of components and dimensions, the approximate approach is significantly
faster while maintaining a low error bound.
This chapter is based on the publication:

Mattis Hartwig, Marcel Gehrke, and Ralf Möller. Approximate Query An-
swering in Complex Gaussian Mixture Models. In ICBK-19 Proceedings of the
2019 IEEE International Conference on Big Knowledge, pages 81–86. IEEE,
2019

The remainder of this chapter has the following structure. We begin by introducing
GMMs, explain how highly complex mixture models can emerge, and introduce how query
answering works in GMMs. Afterwards, we introduce our approximate approach followed
by a detailed complexity comparison and an evaluation. The chapter is concluded by a
discussion of the intermediate results.

5.1 GMM Preliminaries

This section introduces GMMs and explains how highly complex GMMs can emerge.
For further information on mixture models or Gaussian distribution, we refer to Bishop
(2006).

5.1.1 Gaussian Mixture Models

In Section 2.3, we describe the characteristics of Gaussian distributions, allowing for rela-
tively easy calculations. Unfortunately, not all real-world phenomena can be represented
well enough with a pure Gaussian distribution. To keep some of the nice features of
Gaussian distributions and gain flexibility in the representation, mixtures of Gaussians
have been developed, which use a set of weighted multivariate Gaussian distributions.
A mixture of multivariate Gaussians can approximate any density function up to an
arbitrary accuracy (Alspach and Sorenson, 1972).
A mixture model over a set of randvars X is defined as a set of K probability distri-

butions P (X|θk) and K corresponding weights w(k):(
{P (X|θk)}K1 , {w(k)}K1

)
, (5.1)

where θk includes the parameters of the corresponding probability distribution, with
w(k) ≥ 0 and

K∑
k=1

w(k) = 1. (5.2)

Each pair of a probability distribution and a weight is called a mixture component or just
component. A mixture model describes a joint probability distribution of the following
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form:

P (X) =

K∑
k=1

w(k)P (X|θk) (5.3)

Each component can be interpreted as an expert whose weight is a measure for his
relative “expertise” (Gormley and Frühwirth-Schnatter, 2018). Since the weights sum-up
to one the weights basically form a discrete probability distribution over the parameters.
A mixture model is called a GMM if all distributions P (X|θk) are Gaussians. In a GMM,
each parameter set θk contains a mean µk and a covariance matrix Σk.

5.1.2 Motivating High-Complexity Mixtures

The complexity of GMMs is driven by the number of dimensions and the number of
components. The number of dimensions is equivalent to the number of randvars in
X (in this chapter we refer to it with dimensions because this term is often used in
connection with mixture models). The number of components in a mixture model is often
fixed but nonparametric models are used to make the number of components dependent
on the amount of data that is fed into the model, resulting in a possibly very high
number of components (Rasmussen, 2000). One example for high dimensions in models
are medical diagnosis networks. The famous “Computer-based Patient Case Simulation
probabilistic model” (CPCS-PM) has 422 dimensions and the “Quick Medical Reference
Bayesian Network” (QMR-BN) even has 4040 dimensions (Pradhan et al., 1994; Shwe et
al., 1991). Hybrid BNs containing discrete and Gaussian randvars can be restated into
GMM notation, which makes our work applicable in these fields as well (Shachter and
Kenley, 1989). Nonparametric BNs are a special type of BNs, where both the number
of dimensions and the number of components can get arbitrary large depending on the
data that has been used to learn the model (Ickstadt et al., 2011).
In general, a high number of components, which can be interpreted as a high number

of experts, allows for very specific “expert opinions” in the model. Query answering in
these mixtures can be interpreted as asking all experts based on a certain evidence. Since
the knowledge of the experts depends on the evidence, we should ask different experts
for different sets of evidence (having a broken leg, no one would ask a dentist). An
approximate algorithm that does not wait for the full answer of every expert but can
anticipate which expert’s opinions are needed for the specific evidence is a contribution
to make highly complex GMMs more usable.

5.1.3 Query Answering

Answering a conditional probability query P (Q|E = e) as defined in Definition 2.2.5
requires calculating the posterior distribution for each component weighted with the
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posterior weight of the component:

P (Q|E = e) =

K∑
k=1

w(k|E = e)P (Q|E = e,θk). (5.4)

The conditional distribution P (Q|E = e,θk) in each component is computed using
Expressions (2.11) and (2.12) from Section 2.3.
According to the Bayes rule (see Expression (2.3)), to calculate the posterior weight

w(k|E = e), we calculate the likelihood given the observation multiplied with the prior
and divided by the overall likelihood of observing E = e:

w(k|E = e) =
w(k)P (E = e|k)

P (E = e)
. (5.5)

The fact that not only the component posterior distributions change but also the
weights of posterior mixture change can be counter-intuitive. The intuition behind is
that each component has an area where it is knowledgeable. It is also called a mixture
of experts (Gormley and Frühwirth-Schnatter, 2018). The evidence therefore has an
impact on the probability of a component to be an “expert” for that case. Remark: In
classic mixture of experts models, combining the expert opinions into one query answer
is known as pooling (Zhang and Ma, 2012). Approaches can be majority votes or linear
combination. The classic query answering approach in Expression (5.4) is a weighted
linear combination using the posterior component weights.
As apparent in Expressions (2.11) and (2.12), the calculation of the conditional covari-

ance matrix involves matrix inversion and matrix multiplication. Both computations are
polynomial and thus are driving the complexity of the query answering algorithm (Boyd
and Vandenberghe, 2018). A classic query answering approach repeats the inference steps
for each mixture component. The result is that execution time grows linearly with the
number of components and polynomially with the number of dimensions which causes a
need for faster approximate approaches. We will revisit the runtime complexity of the
classic approach as a baseline in the complexity analysis in Section 5.3.

5.2 Approximation Approach

To improve the query answering runtime, the idea of our approximation approach is to
divide the calculation in Expression (5.4) into two steps. First, we calculate the posterior
weights for all components based on Expression (5.5). Second, we use these posterior
weights to prioritize components based on an allowed error bound and only calculate
the conditional distribution based on Expressions (2.11) and (2.12) for the prioritized
components. As an intuition, we can think of our first step as an approximation of the
expert knowledge given some evidence. In the second step, we only ask experts and wait
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for their answers if they contribute enough to the final answer. In this section, we start
with detailing our concrete algorithm and then show that a predefined error bound is
met.

5.2.1 Detailed Algorithm

Algorithm 3 Recursive select top-L elements function
1: procedure SelectComponents(list, errorBound, sC) . sC list used to store the

selected components
2: size← list.size
3: pivot← Partition(list, 0, size− 1) . partitions the list and returns the pivot

element
4: partSum←Sum(list[pivot : size]) . sums the right part of the partitioned list
5: if partSum < errorBound then
6: Add(sC, list[pivot : size]) . adds the right part to the selected components
7: newBound← errorBound− partSum
8: SelectComponents(list[0 : pivot], newBound, sC) . recursively calls on

left partition with new bound
9: else

10: if pivot 6= 0 then
11: SelectComponents(list[pivot : size], errorBound, sC) . recursively

calls on right partition with old bound
12: else
13: Add(sC, list[pivot : size]) . adds the final component and terminates

The algorithm is given a GMM with K components and N dimensions (number of
randvars). The randvars are split into queried randvars Q and measured randvars E. A
given error bound ε specifies the desired accuracy of the approximation.

Step 1: Calculate Posterior Weights

To calculate the posterior weights, the evidence E = e and the priors w(k) are put in
Expression (5.5). This calculation is performed for all components and the result is an
unsorted list that contains all posterior weights. Because of the conjugate nature of the
weight distribution, all the posterior weights still sum up to one, see Expression (5.2).

Step 2: Component Selection

The goal is to select a subset Υ ⊆ {1, . . . ,K} of all mixture components such that the
difference between the conditional probability distribution of the subset Υ (the approx-
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imation) and the exact conditional probability distribution of the whole mixture as in
Expression (5.4) is smaller than the error bound ε in any point, i.e.,

∑
k∈{1,...,K}

w(k|E = e)P (Q|E = e,θk)−
∑
k∈Υ

w(k|E = e)P (E = e,θk) ≤ ε. (5.6)

To save runtime, the size of subset should be as small as possible. Unfortunately, a
direct minimization of the size of Υ would involve the computation of the conditional
probability distributions of all components, which would result in the exact solution
anyhow. We have developed a method that selects a subset Υ that fulfills Expression (5.6)
without calculating the full posterior for every component. Our algorithm selects the top-
L components whose sum of posterior weights is at least 1 − ε (in Expression (5.6) we
describe why the error bound holds). A naive approach would sort the whole list and
would then select the top-L components until their sum reaches 1 − ε but would need
on average O(Klog(K)) time. Our approach is similar to the Quick-Select algorithm
(Hoare, 1961) and like Quick-Select also has O(K) average runtime (for pseudocode of
the recursive procedure, see Alg. 3). One element of the unsorted list is selected as a
pivot element that is used to partition the list. Afterwards, the right (bigger) part is
summed up. If this sum is smaller than the needed accuracy, the complete right part
is selected and only the left part needs to be checked further. For the left part, the
same partitioning is done again and the selection function is called recursively with a
new accuracy decreased by the sum of the right part. If the sum of the right part is
bigger, the left part can be ignored and the right part needs to be checked further. The
recursive process starts again but this time with an unchanged needed accuracy because
no elements have been selected yet. The quick-select algorithm has an average runtime of
O(K) as long as the pivot is not systematically chosen badly because then each partition
step reduces the list size by a fraction which results in linear runtime (Hoare, 1961). The
number of element swaps in the partitioning process is smaller or equal to the number
of components in the larger partition. The same is true for the additional summing-up
that is needed by our selection algorithm. Since both have the same upper bound, we
stay in the complexity of O(K).

Step 3: Completing the Posterior

In the last step, the posterior probability distribution of each of the L selected mixture
components is calculated based on Expressions (2.11), (2.12) and (5.4). The new posterior
mixture with L components represents the answer of the conditional probability query.
The next section discusses the error bound in more detail and explains why it holds

even without calculating the exact posterior distributions for all components.
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5.2.2 Error Bound

We need to show that our approximation fulfills the defined error bound in Expres-
sion (5.6).

Theorem 5.2.1. The error bound∑
k∈{1,...,K}

w(k|E = e)P (Q|E = e,θk)−
∑
k∈Υ

w(k|E = e)P (Q|E = e,θk) ≤ ε (5.7)

described in Expression (5.6) holds when using the approximation approach to select the
top-L components in Υ.

Proof. We can shorten Expression (5.6) by subtracting all components in the selected
set Υ which leaves us with components that are not selected:

∑
k∈{1,...,K}\Υ

w(k|E = e)P (Q|E = e,θk) ≤ ε. (5.8)

We know that the sum of all the component weights is equal to 1 (see Expression (5.2)
and Expression (5.5)). The sum of the weights of the selected components is bigger than
1− ε, resulting in the sum of the ignored component weights being lower than ε:∑

k∈{1,...,K}\Υ

w(k|E = e) ≤ ε. (5.9)

Because P (Q|E = e,θk) is a probability function, its value is always lower or equal to
1 resulting in

w(k|E = e)P (Q|E = e,θk) ≤ w(k|E = e). (5.10)

Combining Expressions (5.8) to (5.10) results in:∑
k∈{1,...,K}\Υ

w(k|E = e)P (Q|E = e,θk) ≤
∑

k∈{1,...,K}\Υ

w(k|E = e) ≤ ε. (5.11)

The inequality in Expression (5.11) shows us that Expression (5.6) and Expression (5.8)
are always true if we select the components according to our algorithm, which proves the
theorem.

Thm. 5.2.1 shows that we stay in the error bound when using the approximation
approach. Next, we analyse the run-time complexity of the approximation.
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5.3 Complexity Analysis

We define

• N as the number of randvars (dimensions) in X ,

• C as the number of measured variables in E ,

• K as the number of mixture components,

• L as the number of selected components by the approximation algorithm, and

• L
K = Γ as the component utilization factor (Γ = 1 means that all components need
to be used in the posterior to meet the error bound)

In the classic implementation, we have to calculate K times a posterior weight and K
times a posterior probability. For the calculation of the posterior weights, two multipli-
cations of two matrices with the dimensions C × C and an inversion of a C × C matrix
have to be performed (see Expressions (2.11), (2.12) and (5.5)). The runtime of both
operations grows polynomial and the function that describes all necessary operations is in
Ω(C2) and O(C3) resulting in a O(KC3) complexity for calculating the posterior weights
for all components (Boyd and Vandenberghe, 2018). To calculate the posterior probabil-
ity distribution for each component based on Expressions (2.11) and (2.12), we need to
perform a C×C matrix inversion and a matrix multiplication involving two (N−C)×C
matrices (one being transposed) which results in a function in O(K(N−C)3) to describe
all necessary operations. In a realistic setup, it often holds that N � C, resulting in a
complexity of O(KN3).
In the approximate algorithm, the first step is identical and therefore has a complexity

of O(KC3). The second step spends additional runtime to save runtime later in step 3.
As described in Section 5.2 selecting the top-L components that meet our error bound
can be done in O(K). The function describing the last step is in O(ΓK(N−C)3) because
only L of the K components need to be used. Comparing the two approaches shows that
we have runtime savings if:

K + ΓK(N − C)3 ≤ K(N − C)3 (5.12)

⇔ 1 + Γ(N − C)3 ≤ (N − C)3 (5.13)

⇔ 1

(N − C)3
+ Γ ≤ 1 (5.14)

⇔ Γ ≤ 1− 1

(N − C)3
(5.15)

Expression (5.15) shows that the utilization factor Γ can be nearly one for high N − C,
which means that we even get a runtime improvement if we use most of the components
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and the number of dimensions is not too small. For complex mixture structures used in
practice, the condition should be always true resulting in a significant speed up. In the
next section, we look at the actual time savings of the approximation approach.

5.4 Experimental Evaluation

We look at two evaluations. Evaluation 1 focuses on the linear runtime of the top-L com-
ponent selection and Evaluation 2 focuses on the time savings of the whole approximation
algorithm compared to the exact implementation.

5.4.1 Evaluation 1: Top-L Selection

We evaluate the top-L algorithm with weight lists of different sizes. To get realistic test
data, the lists are generated by a Dirichlet process, a process that is also often used to
generate mixture models (Görür and Rasmussen, 2010). The evaluation is performed
with different values for the α-parameter of the Dirichlet process. The α-parameter is
responsible for the layout of the distribution. A high α-parameter results in a more
peaky distribution, which means that a few components have high weights and others
small weights. For each combination of number of components and α-parameter, we
perform 200 runs and take the average runtime.
Fig. 5.1 shows the linear behavior of our selection algorithm independently of the

chosen α-parameter of the Dirichlet process.

5.4.2 Evaluation 2: Time Savings

To evaluate the actual time savings compared to the exact implementation, we look
at the time savings dependent on the number of mixture components and number of
dimensions. Our starting mixture has an uniform weight distribution where the mean
vectors and covariance matrices are randomly generated.
Table 5.1 shows the average runtime measurements for the exact and approximate

algorithm using an error bound of ε = 0.01. The measurements show that when the
complexity get really high (1250 components and 1250 dimensions) that the run-time of
the base algorithm explodes. Simulations for even more complex GMMs were not possible
anymore. Even more important than the absolute savings are the relative improvements.
Table 5.2 shows that the runtime saving factor ( runtime exact

runtime approx.) increases with the number
of components and the number of dimensions, which we also assumed based on the
complexity analysis. Interestingly, the time savings of the approximation always outweigh
the additional cost for selecting the top-L components, even in relatively low complex
situations. In the high complexity case in our evaluation, the approximate algorithm
performs up to 40 times than the exact implementation. That factor is high enough
to make mixture models applicable in situations where they otherwise would lead to
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Figure 5.1: Runtime [s] (y-axis) for different list sizes [#] (x-axis)

unreasonably high computational costs. We can also observe that the error bound has
not a huge effect on the time savings. With some irregularities (potentially connected to
processes running in the background), we can see a tendency that a more relaxed error
bound leads to more runtime savings.

Table 5.1: Average exact and approximate query answering runtime in seconds (ε = 0.01)

Comp.
Exact Approximate

Dimensions Dimensions
10 50 250 1250 10 50 250 1250

10 0.003 0.003 0.008 0.369 0.002 0.002 0.003 0.066
50 0.014 0.013 0.035 1.778 0.007 0.007 0.010 0.120
250 0.064 0.066 0.166 8.847 0.032 0.033 0.047 0.619
1250 0.315 0.337 0.836 869.411 0.161 0.165 0.231 20.740

5.4.3 Evaluation 3: Used Components

The third evaluation investigates the number of components used in the approximate
approach and the results should be connected to the results in the time savings evaluation
because the run-time is driven by the number of components for which the posterior
distribution needs to be calculated. Table 5.3 contains the average number of components
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Table 5.2: Average time saving factor of approximate vs exact algorithm for three different
error bounds

Comp.
ε = 0.01 ε = 0.05 ε = 0.1

Dimensions Dimensions Dimensions
10 50 250 1250 10 50 250 1250 10 50 250 1250

10 1.7 1.4 2.4 5.6 2.1 1.2 1.9 6.7 1.5 1.6 2.5 7.3
50 2.1 1.9 3.4 14.9 1.9 2.0 3.3 12.8 1.9 2.0 3.5 13.9

250 2.0 2.0 3.5 14.3 1.9 2.1 3.5 19.6 1.9 2.1 3.7 18.0
1250 2.0 2.0 3.6 41.9 1.9 2.1 3.7 34.6 2.0 2.1 3.7 36.2

used for different error bounds and show that for more restrictive error bounds the number
of used components gets larger. It is reasonable that the approximation also needs more
components if the underlying model has more components. Similar to the time-savings,
the number of dimensions also has a positive effect on the number of components but
much less than the number of components. In general, the number of used components
for the restrictive error bound in Table 5.3 is around 5%.

Table 5.3: Average number of used components for different error bounds

Comp.
ε = 0.1 ε = 0.01 ε = 0.001

Dimensions Dimensions Dimensions
10 50 250 1250 10 50 250 1250 10 50 250 1250

10 1.2 2.0 1.0 1.1 1.1 2.2 2.3 1.2 2.2 2.2 2.8 2.4
50 1.8 1.7 1.9 1.6 2.8 2.6 2.4 2.8 2.5 2.5 2.5 3.3

250 5.3 4.2 5.1 3.1 7.8 7.1 7.4 9.1 9.4 10.8 11.8 12
1250 15.6 16.7 16.8 19.3 32 36.3 35.2 34 43.4 49.8 54.2 53.2

5.5 Intermediate Discussion

This chapter contributes a new approximate query answering algorithm for conditional
probability distributions in highly complex GMMs. In our theoretical complexity analy-
sis, we have proven that the additional costs of selecting the top-L mixture components
are easily outweighed by the time-savings of calculating fewer conditional probability
distributions. Using randomly generated test mixtures, we have shown that we can re-
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alize significant time savings in high-complexity setups. These high complexity setups
will become more frequent when concepts such as nonparametric BNs or infinite mix-
ture models are used more widely. At the same time, our approximate approach offers
runtime savings that can make high complex GMMs applicable in situations where the
calculation of the exact solution of a conditional probability query is currently leading
to unacceptable runtime.
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Final Discussion

Efficiently answering queries is the backbone of many artificial intelligence applications.
Especially when agents based on PGMs have to make decisions or give recommendations
in a time sensitive environment, run-time efficiency is a key factor of success. We sum-
marise the contributions of this dissertation towards efficient query answering in Gaussian
PGMs and discuss the effect on artificial intelligence research in general. Afterwards, we
discuss some directions for future research in general.

6.1 Contributions

This dissertation contains three paths whose common denominator is a connection to
efficient query answering in Gaussian PGMs. We summarise the contributions of the
three paths as follows.

Lifting GBNs We introduce a lifted representation for the joint multivariate Gaussian
joint distribution and present algorithms to construct the lifted joint distribution from
a parametized GBN. The algorithms presented for constructing the lifted join cover a
more restricted GBN architecture, where logvar sequences are disjoint, and a more gen-
eral GBN architecture allowing for overlapping logvar sequences. We develop algebraic
operations for addition, multiplication, and inversion to work with the lifted joint. The
algebraic operations are used in lifted query answering. The lifting of the algorithm takes
two steps. The first step includes ground level handling of all evidence, whereas the sec-
ond version of the algorithm allows for grouping evidence that has an identical effect
on the queried randvars. We evaluate construction and query answering in a thorough
complexity analysis, proving significant speed-ups. The construction of the lifted joint
is completely decoupled from the logvar domain sizes, whereas the query answering still
needs some operations to be performed on ground level; but with reduced coupling to the
logvar domain sizes (from cubic to linear). An experimental evaluation shows that the
lifted algorithms achieve significant performance improvements compared to the ground
level implementations of the algorithms.
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Enconding DGBNs as GPs We show how to encode three different DGBNs (one-
dimensional Gaussian Markov chains, Gaussian hidden Markov models, and two-timeslice
DGBNs) as GPs, demonstrating the generalizing power of GPs. We have developed the
needed kernel functions and show that kernels for one-dimensional Gaussian Markov
chains and Gaussian hidden Markov models allow for continuous treatment of the time
dimension, which is a useful add-on to the classic DGBN approach with a discrete time-
scale. All constructed kernels are valid and result in symmetric and positive semi-definite
covariance matrices. The Markov property of the kernel is preserved and the kernel func-
tion can be combined with other kernels to allow for different covariance structures.

Approximate query answering in GMMs We present an algorithm for approximate
query answering in highly complex GMMs meeting a predefined error bound. The ap-
proximation approach efficiently selects the most important components for the posterior
probability distribution using the relative time-efficient calculation of the posterior com-
ponent weights and a quick-select inspired selection algorithm. A thorough complexity
analysis proves the speed-up while staying in a defined error bound. Additionally, ex-
perimental evaluations measure the runtime improvements in an implementation of the
designed algorithms.

6.2 Conclusion

Looking at the described contributions it is fair to say that our work has an impact
on the research of query answering in PGMs. We have developed new forms of query
answering along three types of Gaussian PGMs, allowing for better understanding and
implementation of use cases involving PGMs and continuous variables. More specifically,
we have impact along three directions:
Our work on lifting closed the gap in existing research for continuous GBNs, which were

not liftable before. Being able to connect different levels of reasoning and inference —
in our case first order inference and propositional inference — is key to enable complex
models in scenarios where the elements in the model also have different hierarchical
levels. This allows us to connect the modelling of individuals, e.g. the patient bob, with
their group or class, e.g. patients in general. With our research we have broadened the
potential applications of the lifting concept to use cases involving continuous random
variables with parent child relationships.
The detailed relationships between DGBNs and GPs will enable researchers from both

fields to benefit each-other’s ideas, methods and approaches. Additionally, inference
techniques from both fields can lead to performance increases when applied in the right
context.
The work on approximate query answering in GMMs has two effects. On the one

hand, it might be an enabler for query answering in PGMs that have been learned using
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nonparametric approaches. On the other hand, it is a step to further work in hybrid
PGMs.

6.3 Future Research

Throughout this dissertation, we have identified many interesting paths for further re-
search. We focus on the ones that are most promising from our perspective.

Lifted query answering in hybrid models Currently existing lifting approaches as well
as lifting approaches presented in this dissertation cover lifting for either discrete models
or Gaussian models. Understanding how to apply lifting in the hybrid context would be
very interesting for future research. Hybrid BNs are a good place to start for develop-
ing lifted hybrid representations. The hybrid version of the junction tree algorithm by
Lauritzen and Jensen (2001) could be an interesting algorithm to lift.

Handling non-liftable queries When being exposed to non-liftable queries, the pre-
sented algorithms fall back into a full grounding of the needed covariance matrices and
mean vectors. The full grounding is also necessary when only a few observed randvars
break out of the needed symmetry. We have two ideas to handle these slight deviations
from the needed structure. One idea is to handle parts of the operations in a lifted way
and other parts in a grounded way. One would need to develop rules for splitting and
combining the query operations in a way that exploits the structure that is present in
the evidence and query set but can also handle the deviations without grounding the
whole model. The second idea is to make additional assumptions or fake observations
(i.e. evidence that is not observed but used as an approximation to achieve symmetry in
the query), to ensure full liftability of the query. Here, theoretical work on error bounds
would be needed to ensure that the query answer is meaningful for the application.

Time-continuity for DGBN kernels The designed DGBN kernel is so far only defined
on a discrete time-scale but might be further generalized to a continuous scale in future
research. Challenges that need to be solved are a fractional sum and a real matrix
exponent in the kernel function. Additionally, a kernel validation on the new generalized
feature space is needed.
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Further Lifting Examples

A.1 Ground Level Covariance Construction

We use Expression (2.15) to inductively calculate the ground covariance matrix. We start
with writing out the whole sum.

ΣH(Patient1),H(Patient1) = 0 + σ2
H(Patient1) = 1,

ΣH(Patient1),H(Patient2) = 0,

ΣH(Patient2),H(Patient2) = 0 + σ2
H(Patient2) = 1,

ΣH(Patient1),T (Nurse1) = 0,

ΣH(Patient2),T (Nurse1) = 0,

ΣH(Nurse1),T (Nurse1) = 0 + σ2
H(Nurse1) = 2,

ΣH(Patient1),T (Nurse2) = 0,

ΣH(Patient2),T (Nurse2) = 0,

ΣH(Nurse1),T (Nurse2) = 0,

ΣH(Nurse2),T (Nurse2) = 0 + σ2
H(Nurse2) = 2,

ΣH(Patient1),T (Nurse3) = 0,

ΣH(Patient2),T (Nurse3) = 0,

ΣH(Nurse1),T (Nurse3) = 0,

ΣH(Nurse2),T (Nurse3) = 0,

ΣH(Nurse3),T (Nurse3) = 0 + σ2
H(Nurse3) = 2,

ΣH(Patient1),W (Doctor1) = ΣH(Patient1),H(Patient1)βH(Patient1),W (Doctor1)

+ ΣH(Patient1),H(Patient2)βH(Patient2),W (Doctor1)

= 1 · (−2) + 0 · (−2) = −2

ΣH(Patient2),W (Doctor1) = ΣH(Patient2),H(Patient1)βH(Patient1),W (Doctor1)

+ ΣH(Patient2),H(Patient2)βH(Patient2),W (Doctor1)
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= 0 · (−2) + 1 · (−2) = −2

ΣT (Nurse1),W (Doctor1) = ΣT (Nurse1),H(Patient1)βH(Patient1),W (Doctor1)

+ ΣT (Nurse1),H(Patient2)βH(Patient2),W (Doctor1)

= 0 · (−2) + 0 · (−2) = 0

ΣT (Nurse2),W (Doctor1) = ΣT (Nurse2),H(Patient1)βH(Patient1),W (Doctor1)

+ ΣT (Nurse2),H(Patient2)βH(Patient2),W (Doctor1)

= 0 · (−2) + 0 · (−2) = 0

ΣT (Nurse3),W (Doctor1) = ΣT (Nurse3),H(Patient1)βH(Patient1),W (Doctor1)

+ ΣT (Nurse3),H(Patient2)βH(Patient2),W (Doctor1)

= 0 · (−2) + 0 · (−2) = 0

ΣW (Doctor1),W (Doctor1) = ΣW (Doctor1),H(Patient1)βH(Patient1),W (Doctor1)

+ ΣW (Doctor1),H(Patient2)βH(Patient2),W (Doctor1)

+ σ2
W (Doctor1)

= −2 · (−2) +−2 · (−2) + 3 = 11

ΣH(Patient1),W (Doctor2) = ΣH(Patient1),H(Patient1)βH(Patient1),W (Doctor2)

+ ΣH(Patient1),H(Patient2)βH(Patient2),W (Doctor2)

= 1 · (−2) + 0 · (−2) = −2

ΣH(Patient2),W (Doctor2) = ΣH(Patient2),H(Patient1)βH(Patient1),W (Doctor2)

+ ΣH(Patient2),H(Patient2)βH(Patient2),W (Doctor2)

= 0 · (−2) + 1 · (−2) = −2

ΣT (Nurse1),W (Doctor2) = ΣT (Nurse1),H(Patient1)βH(Patient1),W (Doctor2)

+ ΣT (Nurse1),H(Patient2)βH(Patient2),W (Doctor2)

= 0 · (−2) + 0 · (−2) = 0

ΣT (Nurse2),W (Doctor2) = ΣT (Nurse2),H(Patient1)βH(Patient1),W (Doctor2)

+ ΣT (Nurse2),H(Patient2)βH(Patient2),W (Doctor2)

= 0 · (−2) + 0 · (−2) = 0

ΣT (Nurse3),W (Doctor2) = ΣT (Nurse3),H(Patient1)βH(Patient1),W (Doctor2)

+ ΣT (Nurse3),H(Patient2)βH(Patient2),W (Doctor2)

= 0 · (−2) + 0 · (−2) = 0

ΣW (Doctor1),W (Doctor2) = ΣW (Doctor1),H(Patient1)βH(Patient1),W (Doctor2)

+ ΣW (Doctor1),H(Patient2)βH(Patient2),W (Doctor2)

= −2 · (−2) +−2 · (−2) = 8
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ΣW (Doctor2),W (Doctor2) = ΣW (Doctor2),H(Patient1)βH(Patient1),W (Doctor2)

+ ΣW (Doctor2),H(Patient2)βH(Patient2),W (Doctor2)

+ σ2
W (Doctor2)

= −2 · (−2) +−2 · (−2) + 3 = 11

ΣH(Patient1),U(Coffee1) = ΣH(Patient1),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣH(Patient1),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣH(Patient1),T (Nurse3)βT (Nurse3),U(Coffee1)

+ ΣH(Patient1),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣH(Patient1),W (Doctor2)βW (Doctor2),U(Coffee1)

= 0 · 2 + 0 · 2 + 0 · 2 + (−2) · 3 + (−2) · 3 = −12

ΣH(Patient2),U(Coffee1) = ΣH(Patient2),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣH(Patient2),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣH(Patient2),T (Nurse3)βT (Nurse3),U(Coffee1)

+ ΣH(Patient2),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣH(Patient2),W (Doctor2)βW (Doctor2),U(Coffee1)

= 0 · 2 + 0 · 2 + 0 · 2 + (−2) · 3 + (−2) · 3 = −12

ΣT (Nurse1),U(Coffee1) = ΣT (Nurse1),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣT (Nurse1),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣT (Nurse1),T (Nurse3)βT (Nurse3),U(Coffee1)

+ ΣT (Nurse1),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣT (Nurse1),W (Doctor2)βW (Doctor2),U(Coffee1)

= 2 · 2 + 0 · 2 + 0 · 2 + 0 · 3 + 0 · 3 = 4

ΣT (Nurse2),U(Coffee1) = ΣT (Nurse2),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣT (Nurse2),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣT (Nurse2),T (Nurse3)βT (Nurse3),U(Coffee1)

+ ΣT (Nurse2),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣT (Nurse2),W (Doctor2)βW (Doctor2),U(Coffee1)

= 0 · 2 + 2 · 2 + 0 · 2 + 0 · 3 + 0 · 3 = 4

ΣT (Nurse3),U(Coffee1) = ΣT (Nurse3),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣT (Nurse3),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣT (Nurse3),T (Nurse3)βT (Nurse3),U(Coffee1)
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+ ΣT (Nurse3),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣT (Nurse3),W (Doctor2)βW (Doctor2),U(Coffee1)

= 0 · 2 + 0 · 2 + 2 · 2 + 0 · 3 + 0 · 3 = 4

ΣW (Doctor1),U(Coffee1) = ΣW (Doctor1),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣW (Doctor1),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣW (Doctor1),T (Nurse3)βT (Nurse3),U(Coffee1)

+ ΣW (Doctor1),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣW (Doctor1),W (Doctor2)βW (Doctor2),U(Coffee1)

= 0 · 2 + 0 · 2 + 0 · 2 + 11 · 3 + 8 · 3 = 57

ΣW (Doctor2),U(Coffee1) = ΣW (Doctor2),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣW (Doctor2),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣW (Doctor2),T (Nurse3)βT (Nurse3),U(Coffee1)

+ ΣW (Doctor2),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣW (Doctor2),W (Doctor2)βW (Doctor2),U(Coffee1)

= 0 · 2 + 0 · 2 + 0 · 2 + 8 · 3 + 11 · 3 = 57

ΣU(Coffee1),U(Coffee1) = ΣU(Coffee1),T (Nurse1)βT (Nurse1),U(Coffee1)

+ ΣU(Coffee1),T (Nurse2)βT (Nurse2),U(Coffee1)

+ ΣU(Coffee1),T (Nurse3)βT (Nurse3),U(Coffee1)

+ ΣU(Coffee1),W (Doctor1)βW (Doctor1),U(Coffee1)

+ ΣU(Coffee1),W (Doctor2)βW (Doctor2),U(Coffee1)

+ σ2
U(Coffee1)

= 4 · 2 + 4 · 2 + 4 · 2 + 57 · 3 + 57 · 3 + 4 = 370

ΣH(Patient1),U(Coffee2) = ΣH(Patient1),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣH(Patient1),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣH(Patient1),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣH(Patient1),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣH(Patient1),W (Doctor2)βW (Doctor2),U(Coffee2)

= 0 · 2 + 0 · 2 + 0 · 2 + (−2) · 3 + (−2) · 3 = −12

ΣH(Patient2),U(Coffee2) = ΣH(Patient2),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣH(Patient2),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣH(Patient2),T (Nurse3)βT (Nurse3),U(Coffee2)
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+ ΣH(Patient2),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣH(Patient2),W (Doctor2)βW (Doctor2),U(Coffee2)

= 0 · 2 + 0 · 2 + 0 · 2 + (−2) · 3 + (−2) · 3 = −12

ΣT (Nurse1),U(Coffee2) = ΣT (Nurse1),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣT (Nurse1),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣT (Nurse1),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣT (Nurse1),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣT (Nurse1),W (Doctor2)βW (Doctor2),U(Coffee2)

= 2 · 2 + 0 · 2 + 0 · 2 + 0 · 3 + 0 · 3 = 4

ΣT (Nurse2),U(Coffee2) = ΣT (Nurse2),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣT (Nurse2),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣT (Nurse2),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣT (Nurse2),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣT (Nurse2),W (Doctor2)βW (Doctor2),U(Coffee2)

= 0 · 2 + 2 · 2 + 0 · 2 + 0 · 3 + 0 · 3 = 4

ΣT (Nurse3),U(Coffee2) = ΣT (Nurse3),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣT (Nurse3),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣT (Nurse3),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣT (Nurse3),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣT (Nurse3),W (Doctor2)βW (Doctor2),U(Coffee2)

= 0 · 2 + 0 · 2 + 2 · 2 + 0 · 3 + 0 · 3 = 4

ΣW (Doctor1),U(Coffee2) = ΣW (Doctor1),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣW (Doctor1),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣW (Doctor1),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣW (Doctor1),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣW (Doctor1),W (Doctor2)βW (Doctor2),U(Coffee2)

= 0 · 2 + 0 · 2 + 0 · 2 + 11 · 3 + 8 · 3 = 57

ΣW (Doctor2),U(Coffee2) = ΣW (Doctor2),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣW (Doctor2),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣW (Doctor2),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣW (Doctor2),W (Doctor1)βW (Doctor1),U(Coffee2)
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+ ΣW (Doctor2),W (Doctor2)βW (Doctor2),U(Coffee2)

= 0 · 2 + 0 · 2 + 0 · 2 + 8 · 3 + 11 · 3 = 57

ΣU(Coffee1),U(Coffee2) = ΣU(Coffee1),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣU(Coffee1),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣU(Coffee1),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣU(Coffee1),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣU(Coffee1),W (Doctor2)βW (Doctor2),U(Coffee2)

= 4 · 2 + 4 · 2 + 4 · 2 + 57 · 3 + 57 · 3 + 4 = 366

ΣU(Coffee2),U(Coffee2) = ΣU(Coffee1),T (Nurse1)βT (Nurse1),U(Coffee2)

+ ΣU(Coffee1),T (Nurse2)βT (Nurse2),U(Coffee2)

+ ΣU(Coffee1),T (Nurse3)βT (Nurse3),U(Coffee2)

+ ΣU(Coffee1),W (Doctor1)βW (Doctor1),U(Coffee2)

+ ΣU(Coffee1),W (Doctor2)βW (Doctor2),U(Coffee2)

+ σ2
U(Coffee2)

= 4 · 2 + 4 · 2 + 4 · 2 + 57 · 3 + 57 · 3 + 4 = 370

Calculations for U(Coffee3) are omitted. The resulting covariance matrix is

Σ =



1 0 0 0 0 −2 −2 −12 −12 −12
0 1 0 0 0 −2 −2 −12 −12 −12
0 0 2 0 0 0 0 4 4 4
0 0 0 2 0 0 0 4 4 4
0 0 0 0 2 0 0 4 4 4
−2 −2 0 0 0 11 8 57 57 57
−2 −2 0 0 0 8 11 57 57 57
−12 −12 4 4 4 57 57 370 366 366
−12 −12 4 4 4 57 57 366 370 366
−12 −12 4 4 4 57 57 366 366 370


.

A.2 Lifted Covariance Construction - Matrix Notation

We use Expression (3.38) to construct the covariance matrix. Factors infront of all-ones
matrices and identity matrices can be stored lifted using ρ and λ.

Σgr(H(P )),gr(H(P )) = λH(P )IτP×τP = 1IτP×τP

Σgr(H(P )),gr(T (N)) = Σgr(H(P )),gr(H(P ))T gr(H(P )),gr(T (N)) = IτP×τP 0τP×τN = 0τP×τN
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Σgr(T (N)),gr(T (N)) = Σgr(T (N)),gr(H(P ))T gr(H(P )),gr(T (N)) + λT (N)IτN×τN

= 0τN×τP 0τN×τP + λT (N)IτN×τN = 0JτN×τN + 2IτN×τN

Σgr(H(P )),gr(W (D)) = Σgr(H(P )),gr(H(P ))T gr(H(P )),gr(W (D))

+ Σgr(H(P )),gr(T (N))T gr(T (N)),gr(W (D))

= 1IτP×τP (−2)JτP×τD + 0τP×τN 0τN×τD = (−2)JτP×τD
Σgr(T (N)),gr(W (D)) = Σgr(T (N)),gr(H(P ))T gr(H(P )),gr(W (D))

+ Σgr(T (N)),gr(T (N))T gr(T (N)),gr(W (D))

= 0τN×τP (−2)JτP×τD + 2IτN×τN 0τN×τD = 0JτN×τD
Σgr(W (D)),gr(W (D)) = Σgr(W (D)),gr(H(P ))T gr(H(P )),gr(W (D))

+ Σgr(W (D)),gr(T (N))T gr(T (N)),gr(W (D))

+ λW (D)IτD×τD

= (−2)JτD×τP (−2)JτP×τD + 0τD×τN 0τN×τD + λW (D)IτD×τD

= (−2) · (−2) · τPJτD×τD + λW (D)IτD×τD = 8JτD×τD + 3IτD×τD

Σgr(H(P )),gr(U(C)) = Σgr(H(P )),gr(H(P ))T gr(H(P )),gr(U(C))

+ Σgr(H(P )),gr(T (N))T gr(T (N)),gr(U(C))

+ Σgr(H(P )),gr(W (D))T gr(W (D)),gr(U(C))

= 1IτP×τP 0JτP×τC + 0JτP×τN 2JτN×τC +−2JτP×τD3JτD×τC
= −2 · 3 · τDJτP×τC = −12JτP×τC

Σgr(T (N)),gr(U(C)) = Σgr(T (N)),gr(H(P ))T gr(H(P )),gr(U(C))

+ Σgr(T (N)),gr(T (N))T gr(T (N)),gr(U(C))

+ Σgr(T (N)),gr(W (D))T gr(W (D)),gr(U(C))

= 0JτN×τP 0JτP×τC + 2IτN×τN 2JτN×τC + 0JτN×τD3JτD×τC
= 2 · 2JτN×τC = 4JτN×τC

Σgr(W (D)),gr(U(C)) = Σgr(W (D)),gr(H(P ))T gr(H(P )),gr(U(C))

+ Σgr(W (D)),gr(T (N))T gr(T (N)),gr(U(C))

+ Σgr(W (D)),gr(W (D))T gr(W (D)),gr(U(C))

= −2JτD×τP 0JτP×τC + 0JτD×τN 2JτN×τC
+ (8JτD×τD + 3IτD×τD)3JτD×τC
= (8τD + 3)3 · 2JτD×τC = 57JτD×τC

Σgr(U(C)),gr(U(C)) = Σgr(U(C)),gr(H(P ))T gr(H(P )),gr(U(C))

+ Σgr(U(C)),gr(T (N))T gr(T (N)),gr(U(C))

+ Σgr(U(C)),gr(W (D))T gr(W (D)),gr(U(C))
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+ λU(C)IτC ,τC

= −12JτC×τP 0JτP×τC + 4JτC×τN 2JτN×τC
+ (57JτC×τD)3JτD×τC + λU(C)IτC ,τC

= (4 · 2τN )JτC×τC + (57 · 3τD)JτC×τC = 366JτC×τC + 4IτC ,τC

A.3 Full Lifted Joint Covariance

Here, we list all values of the lifted representation of the covariance matrix for the full
example visualized in Fig. 3.1.

ρ1,1 =

(
ρ0M

1,1

ρ1M
1,1

)
=

(
1
0

)
ρ1,2 =

(
ρ1M1P

1,2

)
=
(
0
)

ρ2,2 =

(
ρ0P

2,2

ρ1P
2,2

)
=

(
2
0

)

ρ1,3 =

(
ρ0M1P

1,3

ρ1M1P
1,3

)
=

(
2
0

)

ρ2,3 =

(
ρ1M0P

2,3

ρ1M1P
2,3

)
=

(
10
0

)

ρ3,3 =


ρ0M0P

3,3

ρ0M1P
3,3

ρ1M0P
3,3

ρ1M1P
3,3

 =


3
4
50
0


ρ1,4 =

(
ρ1M1P

1,4

)
=
(
8
)

ρ2,4 =

(
ρ0P

2,4

ρ1P
2,4

)
=

(
114
0

)

ρ3,4 =

(
ρ1M0P

3,4

ρ1M1P
3,4

)
=

(
582
16

)

ρ4,4 =

(
ρ0P

4,4

ρ1P
4,4

)
=

(
6642
192

)
ρ1,5 =

(
ρ1M1T

1,5

)
=
(
0
)

ρ2,5 =
(
ρ1P 1T

2,5

)
=
(
0
)
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ρ3,5 =
(
ρ1M1P 1T

3,5

)
=
(
0
)

ρ4,5 =
(
ρ1P 1T

4,5

)
=
(
0
)

ρ5,5 =

(
ρ0T

5,5

ρ1T
5,5

)
=

(
2
0

)
ρ1,6 =

(
ρ1M1D

1,6

)
=
(
−32

)
ρ2,6 =

(
ρ1P 1D

2,6

)
=
(
−228

)
ρ3,6 =

(
ρ1M1P 1D

3,6

)
=
(
−1228

)
ρ4,6 =

(
ρ1P 1D

4,6

)
=
(
−14054

)
ρ5,6 =

(
ρ1T 1D

5,6

)
=
(
0
)

ρ6,6 =

(
ρ0D

6,6

ρ1D
6,6

)
=

(
3

56216

)
ρ1,7 =

(
ρ1M1C

1,7

)
=
(
−192

)
ρ2,7 =

(
ρ1P 1C

2,7

)
=
(
−1368

)
ρ3,7 =

(
ρ1M1P 1C

3,7

)
=
(
−7368

)
ρ4,7 =

(
ρ1P 1C

4,7

)
=
(
−84324

)
ρ5,7 =

(
ρ1T 1C

5,7

)
=
(
4
)

ρ6,7 =
(
ρ1T 1D

6,7

)
=
(
337305

)
ρ7,7 =

(
ρ0C

7,7

ρ1C
7,7

)
=

(
4

2023854

)
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