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1 Abkürzungsverzeichnis 

 

AD  Alzheimer’s Disease 

AMSTAR  Assessment of Multiple SysTemAtic Reviews  

APOE Apolipoprotein E 

CI Confidence Interval 

DNA Deoxyribonucleic Acid 

EAF Effect Allele Frequency 

EOAD  Early Onset Alzheimer’s Disease 

eQTL Expression Quantitative Trait Loci 

FUMA Functional Mapping and Annotation of Genome-Wide Association 

Studies 

GSA Global Screening Array 

GWAS Genome-Wide Association Study 

HWE Hardy-Weinberg-Equilibrium 

IGAP International Genomics of Alzheimer’s Project 

IKMB Institut für Klinische Molekularbiologie 

ITIM Immunoreceptor Tyrosinebased Inhibitory Motif 

LD Linkage Disequilibrium 

LIGA Lübecker Interdisziplinäre Plattform für Genomanalytik 

LOAD  Late Onset Alzheimer’s Disease 

MAF Minor Allele Frequency 

MECIR Methodological Expectations for the Conduct, Reporting and 

Updating of Systematic Reviews of Interventions 

MIRNETAD MicroRNA Dysfunction in Alzheimer's Disease 

mRNA Messenger Ribonucleic Acid 

NICE National Institute for Health and Care Excellence 

OR Odds Ratio 

PCA Principal-Component-Analyse 

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-

Analyses 

QC Quality Control 

QUOROM  Quality Of Reporting Of Meta-Analyses 

RNA Ribonucleic Acid 
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SE Standard Error 

Siglec Sialic acid-binding immunoglobuline-like lectins 

SNP Single Nucleotide Polymorphism 

WHO World Health Organisation 

  



 

  
ANASTASIA PAULSSEN 3 

 

2 Einleitung und Fragestellung 

2.1 Morbus Alzheimer als Krankheitsbild 

 

“Alzheimer’s disease starts when a protein that should be folded up properly  

misfolds into a kind of demented origami” 

- Gregory A. Petsko –  

 

Mit diesem Satz beschrieb Gregory A. Petsko, Professor of Neurology an der Harvard 

Medical School, im Rahmen seines TED-Talks im Jahr 2008 mit informellem 

Sprachgebrauch die Pathogenese der Demenz vom Alzheimer-Typ [15, 87]. Unter dem 

Begriff „Demenz“ ist ein Syndrom meist neurodegenerativer Genese gemeint, deren 

Hauptsymptom eine Verschlechterung von kognitiven Fähigkeiten mit Verlust der 

Alltagskompetenz ist. Die Alzheimer Krankheit (auch: Morbus Alzheimer; engl. Alzheimer‘s 

Disease; AD) ist mit bis zu 80% aller Fällen die häufigste Form der Demenz [15] . Sie ist 

nach dem deutschen Psychiater und Pathologen Alois Alzheimer benannt, der das klinische 

und pathologische Bild der Erkrankung erstmals im Jahr 1907 beschrieb [3]. 

Das klinische Bild der AD lässt sich grob in vier Stadien einteilen [14]. Ein mehrere Jahre 

dauerndes präklinisches (mit anderen Worten: präsymptomatisches) Stadium ist durch 

milde Gedächtnisstörung und bereits vorhandene pathologische degenerative 

Veränderungen in Gehirnkortex und Hippocampus gekennzeichnet, ohne dass die 

täglichen Aktivitäten beeinträchtigt werden. Dieses Stadium wird auch „silent stage“ 

genannt [30]. Als Nächstes beginnt das milde Stadium der AD mit Störung des täglichen 

Lebens aufgrund Konzentrations- und Gedächtnisverlustes, zeitlicher und örtlicher 

Desorientierung, Stimmungslabilität und Depressionsmanifestation. Das dritte Stadium ist 

ein bereits moderates Stadium, das durch Impulskontrollstörung und schwere 

Beeinträchtigung der kognitiven Fähigkeiten wie Lesen, Schreiben und Sprechen, sowie 

Erkennen von Familienmitgliedern gekennzeichnet ist [53, 112]. Das Spätstadium der AD 

führt zu massiven kognitiven und funktionellen Beeinträchtigungen wie Dysphagie, 

Miktionsstörungen und Abnahme von Aktivität bis zu Bettlägerigkeit. Diese 

fortgeschrittenen Komplikationen können zum Tod führen [14]. 

Aktuelle Zahlen der World Health Organisation (WHO) zeigen auf, dass die AD mittlerweile 

zu den zehn häufigsten Todesursachen weltweit gehört. In Europa und in den USA belegt 

die AD im Jahr 2019 bereits den dritten Platz der häufigsten Todesursachen [113].  
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Die Inzidenz steigt weiterhin in hohem Tempo - es wird geschätzt, dass bis zum Jahr 2050 

die Zahl der Menschen mit der Alzheimer Krankheit 131.5 Millionen übersteigen wird [104]. 

Es kann daher davon ausgegangen werden, dass die AD nicht nur eine aktuelle 

sozioökonomische Belastung ist, sondern auch weiterhin eine große zukünftige 

Herausforderung für die Gesundheits- und Sozialsysteme sein wird. Diese Statistik und die 

alarmierenden Prognosen verdeutlichen den notwendigen Bedarf von neuen 

therapeutischen Strategien. Trotz erheblicher weltweiter Forschungsfortschritte gibt es 

zurzeit jedoch keine kausale Therapie der AD, sondern nur kurzfristig erfolgreiche 

Methoden zur Linderung der Symptome (z. B. durch Gabe von Acetylcholinesterase-

Inhibitoren [14]). Ein erfolgversprechendes Potential wird jedoch in der Entwicklung von 

neuen Therapiemöglichkeiten, unter anderem dem Genom-Editing und anderen 

molekularen und stammzellbasierten Therapien gesehen [89]. 

2.2 Ätiologie der AD 

Nach aktuellem wissenschaftlichen Forschungsstand wird die Ätiopathogenese der AD 

durch die abnorme Ablagerung von β-Amyloid und Tau-Protein erklärt [108]. Die Struktur 

und Funktion von Proteinen (sowie deren Dysfunktion) wird laut dem zentralen Dogma der 

Molekularbiologie maßgeblich von Genen bestimmt, d.h. der Abfolge von Nukleotiden in 

der DNA [88].  Für viele Fälle der frühmanifesten Form der AD (engl. „Early onset 

Alzheimer‘s disease“; EOAD; Erkrankungsbeginn <65 Jahre) sind seltene, aber nahezu 

vollständig penetrante Mutationen in den Genen Amyloid-Vorläuferprotein (APP), Presenilin 

1 und 2 (PSEN1, PSEN2) verantwortlich. Diese monogenen Formen der AD machen 

allerdings mit deutlich weniger als 5% nur einen sehr geringen Anteil aller AD-Fälle aus 

[10]. Die häufigste Form der Erkrankung ist die spätmanifeste AD (engl. „late onset 

Alzheimer‘s disease“; LOAD; Erkrankungsbeginn ≥65 Jahre), die auf ein komplexes 

Zusammenspiel von genetischen und nicht-genetischen Faktoren zurückzuführen ist. Für 

den überwiegenden Teil des LOAD-Risikos (einer häufig zitierten Studie zufolge ~70% [56]) 

sind genetische Faktoren verantwortlich, weswegen diese Form der Erkrankung häufig 

auch als „polygene AD“ bezeichnet wird. Der stärkste bekannte genetische Risikofaktor für 

diese Form ist das Epsilon 4-Allel (ε4-Allel) des Apolipoprotein-E-Gens (APOE) [10, 26, 96, 

105]. Es wird geschätzt, dass dieses Allel die Heritabilität der AD, d.h. den Anteil der 

Erkrankung der durch genetische Faktoren verursacht wird, zu nahezu 50% erklärt [4].  

Dies bedeutet im Umkehrschluss, dass es andere Risikogene der LOAD geben muss, die 

für die andere Hälfte der geschätzten Heritabilität verantwortlich sind. Die Suche nach 

weiteren LOAD-Risikogenen ist seit den 1980’er Jahren Gegenstand eines großen Teils 

der AD-Forschung und ist auch Gegenstand dieser Dissertation. 
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2.3 Genetische Assoziationsstudien der spätmanifesten Form der AD 

Genetische Assoziationsstudien sind ein wichtiges Instrument zur Identifizierung von 

genetischen Risikofaktoren komplexer Erkrankungen. Das klassische Studiendesign zur 

Assoziationsprüfung ist die Fall-Kontroll-Studie, bei der die Häufigkeit einer von 

genetischen Markern innerhalb einer Gruppe erkrankter Probanden (Fälle) und einer 

zweiten, aus gesunden Personen bestehenden Gruppe (Kontrollen), miteinander 

verglichen wird. Eine (signifikant) erhöhte oder erniedrigte Häufigkeit eines genetischen 

Markers in der Fall-Gruppe deutet auf ein (statistisch) größeres oder kleineres Risiko für 

die Entstehung einer bestimmten Krankheit hin. Einzelnukleotid-Polymorphismen (engl. 

„single nucleotide polymorphism“; SNP) sind heutzutage die am häufigsten getesteten 

Marker in genetischen Assoziationsstudien. Ein SNP beschribt eine Variation in der DNA-

Sequenz, bei deren sich typischerweise die Allele an einer Nukleotidbase unterscheiden. 

Eine signifikant assoziierte Variante kann dabei auch selbst krankheitsbeeinflussende 

funktionelle Effekte auslösen (sog. direkte Assoziation, z. B. verursacht durch Aminosäure-

austauschende Polymorphismen). Sehr viel häufiger werden aber indirekte Assoziationen 

beobachtet, d.h. dass einer signifikant assoziierten Variante kein unmittelbar funktionell-

relevanter Effekt zugeordnet werden kann. Dies ist z. B. der Fall, wenn der assoziierte SNP 

im Kopplungsungleichgewicht (engl. „linkage disequilibrium“; LD) mit der eigentlichen 

krankheitsbeeinflussenden Variante steht, diese selbst aber nicht getestet wurde [58, 109]. 

Des Weiteren unterscheidet man zwischen Kandidatengen-Studien, in denen eine 

genetische Assoziationsanalyse mit typischerweise wenigen Polymorphismen, die 

aufgrund bestimmter Kriterien („Kandidatengen“) ausgewählten wurden, durchgeführt 

werden und sog. genomweiten Assoziationsstudien (engl. „genome-wide association 

study“; GWAS), in denen im Extremfall das gesamte Genom eines Organismus ohne 

vorherige Hypothese bzgl. des Kandidatenstatus der Varianten analysiert wird [58, 101]. 

Experimentell war der Kandidatengenansatz für lange Zeit (~1980-2006) technisch die 

einzige Möglichkeit der Durchführung einer genetischen Assoziationsstudie. In diesem, jetzt 

häufig als „Pre-GWAS-Ära“ bezeichneten Zeitabschnitt, wurden im Alzheimer-Feld bereits 

tausende solcher Kandidatengen-Studien veröffentlicht, die einen Zusammenhang 

zwischen der AD und buchstäblich hunderten von mutmaßlichen Risikoallelen in 

verschiedenen Genen festgestellt oder ausgeschlossen haben. Um diese Ergebnisse 

besser verfolgen zu können und eine bessere übergreifende Interpretation der 

veröffentlichten Daten zu ermöglichen, wurde von der Arbeitsgruppe von Prof. Bertram im 

Jahr 2005 eine öffentlich zugängliche Datenbank für genetische Assoziationsstudien der 

AD erstellt (AlzGene-Datenbank), die alle seinerzeit publizierten Assoziationsstudien in 
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einen Katalog erfasst hat und die unter der URL http://www.alzgene.org erreichbar ist [2]. 

Diese Datenbank stellte nicht nur ein leistungsfähiges Instrument zur Verbesserung des 

Verständnisses der AD-Genetik dar, sondern diente auch für die potenzielle Suche nach 

den Genkandidaten bei anderen polygenen Erkrankungen. In 2007 wurden die Ergebnisse 

einer ersten systematischen Meta-Analyse der in AlzGene erfassten Kandidatengen-

Studien in der Zeitschrift Nature Genetics veröffentlicht [9]. Neben der Bestätigung der 

Assoziation mit dem bereits oben erwähnten ε4-Allel im APOE-Gen hat diese Meta-Analyse 

insgesamt 24 Polymorphismen in 13 weiteren Kandidatengenen als studienweit signifikant 

assoziiert ermittelt, d.h. in ACE, CHRNB2, CST3, ESR1, GAPDHS, IDE, MTHFR, NCSTN, 

PRNP, PSEN1, TF, TFAM und TNF [9]. Bemerkenswert ist, dass die nachfolgend 

durchgeführten GWAS nur sehr wenige dieser AD-Kandidatengene aus der „Pre-GWAS-

Ära“ validiert haben [10]. 

Seit dem Jahr 2007 wurden in ca. 60 GWAS viele weitere AD-assoziierte Polymorphismen 

in anderen Risikogenen entdeckt. Der mit Abstand am stärksten – sowohl basierend auf 

der Effektstärke als auch in Bezug auf die statistische Evidenz - assoziierte 

Polymorphismus aller AD-GWAS ist das schon oben beschriebene ε4-Allel im APOE-Gen. 

Die zum Zeitpunkt der Schriftlegung aktuellsten und von der Stichprobenanzahl größten 

AD-GWAS sind die Studien von Jansen et al. [48] und Kunkle et al. [54], die im Jahr  2019 

ebenfalls in der Zeitschrift Nature Genetics publiziert wurden. Laut der Einschätzung von 

Bertram und Tanzi [10] zeigen die meisten Ergebnisse dieser beiden Studien eine gute 

Übereinstimmung miteinander. Insgesamt wurden 32 Risikoloci für die LOAD identifiziert, 

27 davon mit „häufigen“ Polymorphismen, d.h.  Varianten, in denen das seltene Allel eine 

Frequenz von ≥1% in der Normalbevölkerung hat (s. Tabelle 1), und 5 weitere mit seltenen 

Varianten (Frequenz <1%; s. Tabelle 2). 
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Tabelle 1: Übersicht von häufigen LOAD-Varianten [10] 

 

Tabelle 2: Übersicht von seltenen LOAD-Varianten [10] 

Zu den wichtigsten GWAS-Erkenntnissen (bisher) gehört ein verbessertes Verständnis der 

molekularen Pathogenese der AD. Eine unerwartete aber über die bisherigen GWAS 

hinweg relativ konsistente Erkenntnis war, dass viele GWAS-Gene, die signifikante 

Assoziationen mit dem AD-Risiko zeigen, einen Bezug zur menschlichen Immunantwort 

haben [10]. Auch die Ergebnisse von Genexpressionsstudien bestätigen diesen Befund, 

weil z. B. die GWAS-Risikogene besonders hoch in immunsystemrelevanten Geweben wie 

Milz, Leber, Leukozyten, aber vor allem in den Mikrogliazellen exprimiert sind [48].  

Folgenden AD-Risikogenen, die via GWAS identifiziert wurden, wird laut [6, 10] ein Bezug 

zum Immunsystem / Immunantwort zugeschrieben (s. auch Abbildung 1): ABCA7, ABI3, 

CD2AP, CD33, CLU, CR1, EPHA1, HLA-DRB5/DRB1, INPP5D, MS4A6A/MS4A6E, 

PLCG2, TREM2, TYROBP, SPI1, PLCG2 und CD33. Für diese Arbeit besonders 

interessant ist die Assoziation mit dem Gen CD33, das im Nachfolgenden näher 

beschrieben werden soll. 

Eine Übersicht aller AD-bezogenen Risikogene und deren Funktionen ist in der Abbildung 

1 schematisch dargestellt. 
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Abbildung 1: AD-Gene-Overview [56] 

Legende: Interne Farbe entspricht der Funktion. Gelb eingekreiste Gene beeinflussen den Stoffwechsel des 

Amyloid-Vorläuferproteins; rot eingekreiste Gene beeinflussen den Tau-Stoffwechsel 

2.4 CD33 Gen: Aufbau, Funktion und Assoziation mit der AD 

Das CD33-Gen (engl. „cluster of differentiation 33“) liegt auf dem langen Arm vom 

Chromosom 19 (19q13.33) und spielt eine wichtige Rolle in der Regulation der 

Immunzellfunktionen der sog. „angeborenen Immunantwort“. Das Gen kodiert das „myeloid 

cell surface antigen CD33“-Protein, ein Zelloberflächen-Rezeptor aus der Familie der 

Siglec-Proteine (sialic acid-binding immunoglobuline-like lectins) und wird daher auch als 

Siglec-3 bezeichnet [33]. Die Expression des kodierten Proteins findet am stärksten an 

hämatopoetischen und phagozytischen Zellen und an Mikrogliazellen im Gehirn statt [5, 

120]. Mikroglia sind im Gehirn und Rückenmark angesiedelte Makrophagen, die eine 

zentrale Rolle in der ersten (d.h. angeborenen) Immunantwort spielen [115]. 

Erste Hinweise auf eine genetische Assoziation zwischen Polymorphismen im CD33-Gen 

und dem LOAD-Risiko wurden in einer familien-basierten GWAS der Arbeitsgruppe von 

Prof. Bertram bereits im Jahr 2008 beschrieben (mit SNP rs3826656) [8]. Ähnliche Befunde, 

d.h. eine genomweit signifikante Assoziation mit dem LOAD-Risiko, wurden nachfolgend in 

mehreren Fall-Kontroll-GWAS anderer Arbeitsgruppen berichtet (v.a. mit SNP rs3865444) 

[45, 73]. Eine Metaanalyse aus den beiden Studien mit insgesamt 18.762 Fällen und 29.827 

Kontrollen zeigte erneut eine signifikante Assoziation zwischen diesem SNP und AD mit 

einem OR von 0,91 (P-Wert = 1.6 × 10−9, 95%-CI: 0.88 – 0.9) [73]. Eine weitere GWAS von 

Lambert et al. aus dem Jahr 2013 konnte diese Entdeckung mit einem OR von 0,99 und 
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dem P-Wert von 0,69 allerdings nicht bestätigen, obwohl es keine größeren Unterschiede 

in den eingeschlossenen Datensätzen oder in den verwendeten analytischen Ansätzen gab 

[55]. Die aktuellste und derzeit größte GWAS zum AD-Risiko, die im Jahr 2019 von Jansen 

et al. veröffentlicht wurde [48], zeigte erneut eine genomweite Signifikanz für die 

Assoziation zwischen rs3865444 und dem Risiko der LOAD (P-Wert von 6.3×10−9). In 

dieser Metaanalyse wurden 71.880 Fälle und 383.378 Kontrollen eingeschlossen. Um die 

statistische Aussagekraft zu erhöhen, wurde in dieser GWAS die „AD-by-Proxy“ 

Klassifizierung verwendet, womit bereits eine vorhandene elterliche AD Diagnose als 

Kriterium genügte, um in die Gruppe der AD-Fälle eingeschlossen zu werden. 

Zusammenfassend lassen die derzeit verfügbaren GWAS auf einen genomweit 

signifikanten Zusammenhang zwischen dem CD33-Gen und dem AD-Risiko schließen [35, 

41]. 

Die meisten bis dato durchgeführten GWAS beziehen sich ausschließlich auf Probanden 

von nordeuropäischer („weißer“) Abstammung. Andere ethnische Gruppen wurden v.a. im 

Kontext von Kandidatengenstudien infolge der primären GWAS-Ergebnisse untesucht. So 

gibt es z. B. zahlreiche genetische Assoziationsstudien in Studienpopulationen ost-

asiatischer Abstammung (z. B. aus China oder Japan), die auf eine Assoziation der am 

häufigsten untersuchten CD33 SNPs getestet haben [68, 106, 118]. Weitere 

Assoziationsstudien gab es auch in anderen Abstammungsgruppen, z. B. in der Gruppe mit 

weiß-hispanischer Herkunft  [83, 91] oder in der Gruppe mit afrikanischer Abstammung [64]. 

Qualitativ beurteilt deuten diese Studien darauf hin, dass CD33 auch in anderen 

Abstammungsgruppen eine Assoziation mit dem AD-Risiko aufweist, allerdings erscheint 

dies aufgrund der teilweise widersprüchlichen Datenlage nicht ganz so eindeutig wie bei 

den Studien mit nordeuropäischer Abstammung. Um hierzu eine quantitative Einschätzung 

zu erlangen, wurden anhand der publizierten Daten bereits mehrere Metaanalysen zum 

Thema durchgeführt. Exemplarisch seien hier die zwei neuesten Metaanalysen aus dem 

Jahr 2018 aufgeführt und näher beschrieben, nämlich die Studien von Jiang et al. [50] und 

von Moreno-Grau et al. [72].  

Die umfangreichste Metaanalyse zur Assoziation zwischen dem Gen CD33 und AD wurde 

von Jiang et al. [50] erfasst und in der Zeitschrift Annals of Translational Medicine publiziert. 

Die Autoren haben 17 Studien (inkl. 3 GWAS) mit insgesamt 127.435 Teilnehmern in die 

Metaanalyse zu dem SNP rs3865444 eigeschlossen und 4 Studien mit 1.810 Probanden in 

die Metaanalyse zu dem SNP rs3826656. Zudem wurde eine Subgruppenanalyse von 

verschiedenen Populationen durchgeführt. Die Autoren haben eine signifikante Assoziation 

zwischen dem A-Allel des SNPs rs3865444 und einem geringeren AD-Risiko festgestellt 

(OR = 0.94; 95%-CI: 0.90 – 0.98). In der Subgruppenanalyse konnte dieser Effekt lediglich 
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in der Gruppe mit europäischer Abstammung bestätigt werden (OR = 0.92; 95%-CI: 0.90 – 

0.94). In der ostasiatischen Population zeigte sich dieser Zusammenhang nicht signifikant 

(OR = 0.87; 95%-CI: 0.65 – 1.17). Des Weiteren zeigten die Ergebnisse dieser Studie keine 

signifikante Assoziation zwischen dem SNP rs3826656 und dem AD-Risiko (OR = 0.94; 

95%-CI: 0.62 – 1.41) [50]. Nach einer detaillierten Auseinandersetzung im Rahmen dieser 

Dissertation mit der Publikation von Jiang et al. wurde ersichtlich, dass diese Metaanalyse 

mehrere methodischen Fehler aufweist, auf die ich in der Diskussion (Kapitel 5.2) noch 

genauer eingehen werde. 

Eine weitere Metaanalyse zu diesem Thema wurde von Moreno-Grau et al. [72] in der 

Zeitschrift Oncotarget publiziert. Diese Studie hat sich hauptsächlich mit dem SNP 

rs3865444 des CD33-Gens beschäftigt. In der Metaanalyse wurden nicht nur die Daten aus 

einer eigenen Fall-Kontroll-Studie eingeschlossen, sondern auch die von 13 weiteren 

Studien inkl. einer GWAS. Die gesamte Stichprobengröße umfasste 90.913 Personen. Die 

Ergebnisse dieser Metaanalyse haben mit dem o.g. SNP rs3865444 ebenfalls keine 

signifikante Assoziation  mit dem AD Risiko gezeigt (OR = 0.98, 95%-CI: 0.93 – 1.04, P-

Wert = 0.48) [72]. In der Diskussion unten (Kapitel 5.2.2) wird auch auf die Qualität dieser 

Studie noch im Detail eingegangen.  

Basierend auf den ersten GWAS-Ergebnissen, die auf eine Involvierung von CD33 in der 

AD hindeuteten, haben zahlreiche Arbeitsgruppen auch funktionell-genetische Experimente 

durchgeführt und veröffentlicht. Malik et al. fand z. B. im Jahr 2013 heraus, dass die 

gesamte CD33-mRNA im Gehirn von Alzheimer-Erkrankten um etwa 25% erhöht ist und 

dass die CD33-Expression durch das seltene Allel (A-Allel) des SNP rs3865444 etwas 

verringert ist [65]. Dasselbe Allel wurde in den oben beschriebenen GWAS mit einem 

verminderten Risiko der AD assoziiert, so dass basierend auf den Daten von Malik et al. 

ein möglicher Mechanismus der CD33-Assoziation in der Genexpression begründet liegen 

könnte. Eine andere Genexpressionsstudie von Gricuic et al. bestätigte die Verringerung 

sowohl der CD33-Expression als auch der β-Amyloid-Belastung im Gehirn [41]. Aufgrund 

der bisher beschriebenen Effektrichtungen könnte also eine verminderte CD33-Expression 

protektiv (bzw. eine höhere Expression schädlich) in Bezug auf das AD-Risiko wirken. Eine 

graphische Darstellung der Funktion des schützenden seltenen Allels von SNP rs386544 

ist in der Abbildung 2 schematisch dargestellt. Die höheren CD33-Expressionswerte im 

Gehirn führen demnach zu weniger AD-typischen neuropathologischen Veränderungen in 

Gehirnen von Trägern des protektiven A-Allels [41]. 
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Abbildung 2: Schematische Darstellung der Funktion des schützenden Minor-(A-)Allels des CD33-SNP 
rs3865444 [41] 

CD33 gehört zu der Immunglobulin-Superfamilie, es hat somit eine Immunglobulin-Domäne 

und die gleiche Faltungs-Struktur [120]. CD33 umfasst sieben kodierende Exone und 

enthält eine V-Typ-Immunglobulin-ähnliche Domäne (V-Ig), mehrere extrazelluläre C2-Ig-

Domänen und ein zytosolisches Immunrezeptor-Tyrosin-basiertes inhibitorisches Motiv 

(engl. „immunoreceptor tyrosinebased inhibitory motif“; ITIM), sowie eine ITIM-ähnliche 

Sequenz [35, 120]. Die V-Ig-Domäne ist erforderlich für die Hemmung der β-Amyloid-

Aufnahme in den Mikrolgiazellen [40]. Mithilfe der ITIM-Domäne spielt der CD33-Rezeptor 

eine inhibierende Rolle und führt zu einer Hemmung von vielen zellulären Prozessen der 

angeborenen Immunantwort wie Phagozytose, Apoptose oder Zytokinfreisetzung [41]. Das 

seltenere A-Allel des CD33-SNP rs3865444 erhöht die Wahrscheinlichkeit der alternativen 

mRNA-Prozessierung zugunsten von Transkripten ohne Exon 2, das V-Ig kodiert [41]. Das 

wiederum führt zu einer verringerten Expression von CD33 in voller Länge und einer 

erhöhten Expression von CD33-ΔV-Ig-Isoform (D2-CD33-Isoform), die laut Zhao et al. [120] 

und Griciuc et al. [41] mit einem verringertem Alzheimer-Risiko einhergeht. Des Weiteren 

stellten Estus et al. die Hypothese auf, dass die D2-CD33-Isoform die Aktivierung von 

Mikroglia durch ähnliche Mechanismen wie TREM2 (engl. „triggering receptor expressed 

on myeloid cells 2“), einem anderen immunsystemrelevanten LOAD-Risikogen [61], 

auslöst. CD33 und TREM2 gehören zu den Immunrezeptoren der Zellmembran, die mit 

dem Ko-Rezeptor DAP12 interagieren [35]. TREM2 fördert hierbei die zelluläre 

Phagozytose und Chemotaxis direkt durch den Ko-Rezeptor DAP12 [41].  



 

  
ANASTASIA PAULSSEN 12 

 

Die Phosphorylierung der ITIM-Domäne von CD33 führt indirekt über intrazelluläre 

Signalmoleküle (Phosphatasen SHP1 und SHP2) zur Inhibierung der zellulären 

Signalübertragung [41]. Das funktionelle Zusammenspiel zwischen dem CD33, D2-CD33 

und TREM2 Rezeptoren ist in der Abbildung 3 schematisch dargestellt. 

 

Abbildung 3: Zusammenspiel zwischen den Mikroglia-Rezeptoren CD33 und TREM2 [41] 

Laut dieser Hypothese führt also die Verringerung der hemmenden Wirkung von CD33 

und/oder die Erhöhung der TREM2-Aktivität zu einer Steigerung der Funktion der 

Mikrogliazellen. Das wiederum könnte zu einem Rückgang der Ablagerungen von β-

Amyloid und Tau-Protein führen und somit zur Reduktion der AD-relevanten 

neuropathologischen Veränderungen [41].  

Generell könnte ein besseres Verständnis der ätiopathogenetischen Mechanismen, ob und 

wie das CD33-Gen die LOAD beeinflusst, einen weiteren Beitrag zur pharmakologischen 

Therapieentwicklung leisten [6]. In diesem Zusammenhang wurde die Vermutung 

aufgestellt, dass die Reduzierung des Einflusses des CD33-Proteins durch 

pharmakologische Mittel, wie z. B. Antikörper-Therapien, das Risiko und den Schweregrad 

der AD verringern könnten [35].  
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2.5 Fragestellung und Ziel der Arbeit 

Wie oben ausgeführt, weisen die bisher zur Rolle des CD33-Gens in Bezug auf das AD-

Risiko durchgeführten genetischen Assoziationsstudien unterschiedliche, teilweise 

widersprüchliche Effekte auf. Es ist daher von Interesse die aktuelle Datenlage zur 

Assoziationsevidenz zwischen Polymorphismen im CD33-Gen in publizierten Fall-Kontroll-

Studien systematisch und quantitativ aufzuarbeiten und nach dem heutigen Stand der 

Evidenz zu beurteilen. Des Weiteren weist die Expression des CD33-Gens im Gehirn von 

AD-Patienten, die das protektive Allel eines der AD-assoziierten SNPs (rs3865444) tragen, 

in einigen Studien geringere Werte auf. Dies könnte zu einem vermehrten Abbau des 

schädlichen Aβ42-Proteins führen und somit das in den genetischen Assoziationsstudien 

beobachtete verminderte Krankheitsrisiko erklären. Diese Vorarbeiten bedürfen allerdings 

noch einer unabhängigen Replikation und Ausweitung, um z. B. andere genetische 

Faktoren, die die CD33-Genexpression im Gehirn regulieren, zu identifizieren. Beide 

Punkte werden in der vorliegenden Arbeit in den folgenden zwei Fragestellungen 

bearbeitet: 

 

1. Welche genetischen Polymorphismen des CD33-Gens beeinflussen das Risiko der 

AD unter systematischer Betrachtung der derzeit verfügbaren Literatur?  

Zur Beantwortung dieser Fragestellungen wurde ein systematischer Review der 

verfügbaren Literatur durchgeführt und die exzerpierten Daten anhand von Metaanalysen 

quantitativ ausgewertet. Hierbei wurde insbesondere auch der Frage nachgegangen, ob 

Unterschiede in den Risikoeffekten nachweisbar sind, wenn die Studienpopulationen nach 

ethnischer Abstammung getrennt analysiert werden. 

2. Welche genetischen Polymorphismen zeigen eine Assoziation mit der Expression 

des CD33-Gens im Gehirn von AD Patienten und Kontrollpersonen?   

Zur Beantwortung dieser Fragestellung wurden genomweite Genotypdaten mit CD33- 

Gehirnexpressionsdaten zusammengeführt und im Kontext einer sog. eQTL-GWAS 

ausgewertet. Bei der Auswertung wurde ein besonderes Augenmerk auf die Frage gelegt, 

ob es eine Überlappung mit den meta-analysierten AD Risiko-SNPs aus der ersten 

Fragestellung gibt. 
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3 Material und Methoden 

3.1 Metaanalyse und systematischer Review 

Zur Beantwortung der ersten Fragestellung meiner Dissertation wurde ein systematischer 

Review der Literatur mit anschließenden Metaanalysen als Verfahren genutzt.  

Unter einem systematischen Review wird eine Übersichtsarbeit verstanden, welche 

versucht zu einer konkreten Fragestellung den aktuellen Forschungsstand zu identifizieren, 

Primärquellen zu selektieren und zu bewerten, sowie die zugehörigen relevanten Daten zu 

sammeln [1, 25, 70].  Hierfür wurden die Primärquellen (hier: genetische 

Assoziationsstudien) gesucht, identifiziert, gelesen und im Falle der entsprechenden 

Relevanz die Daten in eine Tabelle extrahiert (s. Anhang 1).  

Unter einer Metaanalyse wird die systematische Zusammenfassung und anschließende 

Darstellung von Ergebnissen einzelner Primärquellen verstanden. Hierfür werden durch 

statistische Methoden die einzelnen Ergebnisse der inkludierten Studien – unter 

Berücksichtigung ihres jeweiligen Größeneffektes – quantitativ in ein mathematisches 

Gesamtergebnis synthetisiert. Die entsprechenden Auswertungen werden häufig in Form 

von sog. Forrest-Plots abgebildet. [12, 38, 70]  

Aufgrund der Objektivität beim Analysieren und Kombinieren verschiedener Ergebnisse 

werden Metaanalysen als wissenschaftliche Methodik mit einer der höchsten qualitativen 

Beweiskraft angesehen [1].   

 

Abbildung 4: Qualitative Beweiskraft unterschiedlicher wissenschaftlichen Methoden [1] 
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3.2 Methodische Vorgehensweise 

Es wurde nach etablierten wissenschaftlichen Vorgehensweisen und Leitlinien zur 

Durchführung und Auswertungen von systematischen Reviews und Metaanalysen gesucht, 

um sich an diesen in der vorliegenden Arbeit zu orientieren. 

Mittlerweile beschäftigt sich eine Vielzahl an Organisationen mit zugehörigen Datenbanken, 

Leitlinien (engl. guidelines) und Checklisten mit der Durchführung von systematischen 

Reviews. In diesem Zusammenhang sind u.a. das Cochrane Handbook for Systematic 

Reviews of Interventions [43], das Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) [84], das National Institute for Health and Care Excellence (NICE) 

[79], und das NHS Centre for Reviews and Dissemination [117] genannt. Die in publizierten 

systematischen Reviews am häufigsten aufgeführten Referenzen sind das PRISMA 

Statement und das Cochrane Handbook [52]. In der vorliegenden Arbeit habe ich mich 

dementsprechend auch an dem PRISMA Statement und dem Cochrane Handbook 

orientiert, um eine methodisch qualitativ hochwertige Durchführung des systematischen 

Reviews sowie der Auswertung der extrahierten Daten mittels Metaanalyse sicherzustellen.   

Cochrane ist eine in dem Vereinten Königreich ansässige internationalen Non-Profit 

Organisation, welche 1993 gegründet worden ist und mit Mitgliedern aus über 130 Ländern 

das Ziel verfolgt, innerhalb der Gesundheitsbranche hoch-qualitative Informationen 

bereitzustellen, um entsprechende fundierte Entscheidungen zu. Hierfür werden 

insbesondere auch systematische Reviews erstellt und deren Daten anschließend in Form 

von Metaanalysen zusammengefasst. Das Cochrane Handbook for Systematic Reviews of 

Interventions beschreibt neben den Grundprinzipien, die Vorgehensweise zur Erstellung 

systematischen Reviews und Metaanalysen, um diese innerhalb dem Cochrane Netzwerk 

zu veröffentlichen [43, 86].  

PRISMA ist ein im Jahr 2009 überarbeiteter empfehlender Leitfaden, basierend auf dem 

zuvor durch ein internationales Netzwerk an Forschern im Gesundheitsbereich entwickelten 

QUOROM Statement („Quality Of Reporting  Of Meta-Analyses“), welches vorrangig das 

Ziel verfolgt, die Qualität von Metaanalysen randomisierter kontrollierten Studien zu 

verbessern. Das PRISMA Statement beinhaltet eine PRISMA Checkliste mit 27 Punkten 

und einem PRISMA Flow Diagram, welches in vier Phasen aufgeteilt ist  [70, 84, 86]. 

Der PRISMA Statement Leitfaden und der Leitfaden in Form des Cochrane Handbook for 

Systematic Reviews of Interventions sind miteinander kompatibel. Das von Cochrane 

entwickelte „MECIR” Protokol (engl. methodological expectations for the conduct, reporting 

and updating of systematic reviews of interventions) zitiert z. B. an unterschiedlichen Stellen 
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direkt die Empfehlungen des PRISMA-Statements und hat deren Vorgehensweise 

entsprechend eingearbeitet, um die Konformität zum PRISMA-Statement sicherzustellen 

[43, 70, 86]. Mit Orientierung an dem Cochrane Handbook und dem PRISMA Statement 

leitete sich daher auch die weitere methodische Vorgehensweise dieses Teils meiner 

Dissertationsarbeit ab. Des Weiteren habe ich die PRISMA Checklist von 2020 [70, 84] 

ausgefüllt (s. Anhang 2). 

3.3 Auswahlkriterien inklusive Ein- und Ausschlusskriterien 

Um zu bestimmen ob identifizierte Studien im späteren Auswahlprozess berücksichtigt 

werden wurden zunächst Ein- und Ausschlusskriterien festgelegt.  

Die Einschlusskriterien zur Auswahl der Studien wurden wie folgt festgelegt: 

 Genetische Assoziationsstudien mit direktem Bezug zur AD 

 Studien in denen das CD33-Gen explizit benannt wird  

 Studie englischsprachig  

Die Ausschlusskriterien zur Auswahl der Studien wurden wie folgt festgelegt: 

 Studien ohne Angaben zu Fall- und Kontrollgruppen 

 Studien mit geringen Fall- und Kontrollgruppen (< 100 Teilnehmern) 

 Studien zu denen keine Volltext-Publikation gefunden wurde  

Eine detaillierte Gruppierung der Studien ist nicht erforderlich gewesen.   

3.4 Informationsquellen und Datensuchstrategie 

Zur Identifizierung der relevanten Studien wurde eine Literaturrecherche über das Online-

Portal „PubMed“ des US-amerikanischen „National Center for Biotechnology Information“ 

(NCBI) durchgeführt [74]. Zusätzlich wurden in so identifizierten Studien die aufgeführten 

Referenzen geprüft, um ggf. weitere relevante Studien zu identifizieren. Die letzte 

Auswertung der Suchergebnisse bei PubMed hat am 31.12.2020 stattgefunden. Das Datum 

31.12.2020 stellt somit den aktuellsten Stand der vorliegenden Arbeit dar. 

Als Datensuchstrategie erfolgte auf PubMed die Suche mit dem folgenden „keywords 

string“: „CD33 AND ALZ*“. Die Suchkriterien wurden bewusst sehr generell gefasst, um 

möglichst viele relevante Studien zu identifizieren. Hierbei wurde in Kauf genommen, dass 

die allermeisten der unter diesem String identifizierten Studien keine genetischen 

Assoziationsstudien zu CD33-Polymorphismen darstellten.  
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3.5 Auswahl der Studien und Datensammlung  

Die Beurteilung, ob eine identifizierte Studie die Einschlusskriterien erfüllt bzw. ob 

vorhandene Ausschlusskriterien dazu führen, dass eine Studie nicht berücksichtig wird 

erfolgte manuell und durch mich. Anschließend erfolgte eine unabhängige Nachkontrolle 

der durchgeführten Studienauswahl und eingeschlossenen Daten durch eine fachkundige 

Mitarbeiterin der Arbeitsgruppe (Frau Olena Ohlei), sowie stichprobenhaft durch Prof. 

Bertram selbst. 

Es wurden keine Werkzeuge zur Automatisierung des Auswahlprozesses genutzt, weder 

bei der initial manuell durchgeführten Studienauswahl noch bei der Nachkontrolle.  Den in 

die Auswahl einbezogenen Studien wurden die Informationen manuell entnommen und 

tabellarisch in einer Microsoft-Excel-Datei gespeichert, s. Anhang 1.  

Um Heterogenität zwischen den in die Metaanalyse eingeschlossenen Studien zu 

minimieren und eine einheitliche, standardisierte Vergleichbarkeit zu schaffen erfolgte mit 

den vorhandenen Daten zunächst eine Plausibilitätsprüfung der OR (Odds Ratio). In den 

Ergebnissen der eingeschlossenen Studien, die nicht nach dem additiven genetischen 

Transmissionsmodell kalkuliert worden sind (sondern z. B. unter Annahme eines 

autosomal-dominanten oder –rezessiven Modells), wurde die Berechnung der OR und SE 

eigenständig durchgeführt, um die Ergebnisse nach additivem Modell darzustellen. In den 

Fällen, wo einzelnen Daten zu Allelen nicht vorhanden waren erfolgte eine Berechnung der 

Allelenfrequenzen aus den MAF (engl. „minor allele frequency“), sowie reportierten Zahlen 

zu verwendeten Fällen und Kontrollen der jeweiligen Publikation. Generell wurden, wenn 

verfügbar, Daten aus unadjustieren Assoziationsanalysen entnommen, d.h. Daten ohne 

Anpassung an Alter, Geschlecht und / oder APOE Status, um die Vergleichbarkeit der 

Ergebnisse zwischen den Studien zu erhöhen.  

Die Berechnung der Allelfrequenzen (z. B. aus Genotyphäufigkeiten) erfolgte mit der 

Software Excel und die Berechnung der OR und SE basierend auf den vorhandenen 

Allelenfrequenzen erfolgte mit der Software RevMan 5.4.1 der Cochrane Organisation [23]. 
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3.6 Statistiche Auswertung und Reduzierung von Biases in der Metaanalyse 

Für die Berechnung der nachfolgend durchgeführten Metaanalysen wurde die Software 

RStudio in der Version 1.2.5019 von dem Unternehmen RStudio, Inc. genutzt. Dies erfolgte 

v.a. unter Anwendung des „R package meta“ in der Version 4.15-1 basierend auf den 

Konzepten und Modellen zur Metaanalyse von Schwarzer et al. (2015) [94]. Des Weiteren 

wurden mit der Skriptsprache R Code die Metaanalyse-Ergebnisse in Form von Forrest-

Plots visualisiert, um z. B. die OR mit 95% Konfidenzintervall abzubilden.  

Als statistisches Modell für die Metaanalysen wurde vorrangig das sog. „random effects“ 

Modell anstelle eines „fixed effect“ Modells verwendet [12]. Fixed-effect-Metaanalysen 

wurden nur dann berechnet, wenn die folgenden zwei Kriterien erfüllt waren: 1) alle 

eingeschlossenen Studien bezogen sich auf dieselbe Abstammungsgruppe und 2) es gab 

keinen Hinweis auf eine Heterogenität größer 50% zwischen den einzelnen 

Studienergebnissen. Letztere wurde mittels der I2-Metrik bewertet [44]. I2 quantifiziert den 

prozentualen Anteil der Gesamtvariation über die eingeschlossenen Studien hinweg, der 

auf Heterogenität zurückzuführen ist. I2 wird aus der Q-Statistik (Cochran’s 

Heterogenitätsstatistik) berechnet und üblicherweise wie folgt interpretiert: I2-Werte bis 25% 

werden als „geringe“ Evidenz für Heterogenität angesehen, Werte ab 75% als „starke“ 

Heterogenität und Werte dazwischen als „moderat“ [44]. Allerdings wird I2 nicht als 

Teststatistik betrachtet, sondern nur als Maß [90]. Eine signifikante Heterogenität besteht 

bei einem nominellen Signifikanzniveau von 5 % [90]. Die verwendeten R-Skripte zur 

Durchführung der Metaanalysen ist in Anhang 3 beigefügt.  

Biases (Verzerrungsrisiken) entstehen gemäß der Cochrane Collaboration und dem AWMF 

Insitut für Medizinisches Wissensmanagement entweder in der einzelnen individuellen 

Studie oder im Ergebnis der durchgeführten Metaanalyse, indem beispielsweise einzelne 

Studien bewusst nicht berücksichtigt werden, dessen Ergebnisse nicht dem Interesse des 

Autors der Metaanalyse entsprechen. Zur Reduzierung derartiger Verzerrungen in den hier 

durchgeführten Metaanalysen wurde die AMSTAR Checkliste verwendet [43, 93, 97], s. 

Anhang 4.  

Das Hardy-Weinberg-Equilibrium (HWE) wurde verwendet, um die eine generelle 

Qualitätsüberprüfung der eingeschlossenen Studien zu leisten, da Abweichungen vom 

HWE auf technische Probleme der verwendeten Genotypisierungsassays hinweisen 

können [47]. In diesem Zusammenhang sei bereits bemerkt, dass die 

Genotypeverteilungen in allen eingeschlossenen Studien in keinem Fall eine Abweichung 

vom HWE zeigten. 
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Ein weiterer wichtiger Grund für Verzerrungen von Metaanalyseergebnissen ist das 

Vorliegen eines sog. „Publication Bias“ [12]. Dieser Bias entsteht z. B. dann, wenn nicht alle 

durchgeführten Studien veröffentlicht werden, insbesondere die Studien mit einem 

negativen (im Sinne von: nicht statistisch signifikanten) Ergebnis. Der Hintergrund kann der 

Glaube sein, dass Studien mit schwachen und nicht signifikanten Effekt als nicht wertvoll 

erachtet werden, oder eigenen Ergebnissen zuwiderlaufen. Um einen möglichen 

Publication Bias zu identifizieren werden häufig sog. Funnel-Plots erstellt. Sind die in diesen 

Plots dargestellten „Trichter“ (engl. Funnel) nicht symmetrisch, könnte dies auf einen 

Publication Bias hinweisen [12, 24, 43, 93]. Da die Bewertung der Symmetrie der Funnel-

Plots subjektiv ist, wird zur Objektivierung der Datenlage häufig der von Egger et al. 

vorgeschlagene „Egger-Test“ (eine bestimmte Art der Regressionsanalyse zur Bestimmung 

der Assymetrie in Funnel-Plots) durchgeführt. Liegt der p-Wert dieses Egger-Tests unter 

<0,05 kann dies auf das Vorleigen eines signifikanten Publikations-Bias hinweisen [32, 94, 

95]. In der vorliegenden Arbeit wurde für jede durchgeführte Metaanalyse ein Funnel-Plot 

erstellt und bewertet, s. Anhang 5. Zur Objektivierung einer möglichen Assymetrie wurde 

auch der Egger Test durchgeführt, s. Anhang 6.  

3.7 Datengenerierung und statische Auswertung eQTL-GWAS  

Humane Proben. Für die eQTL-GWAS-Analysen konnte ich auf entsprechende 

Hochdurchsatzdaten der Arbeitsgruppe von Prof. Bertram zurückgreifen, die bisher mit 

dieser Fragestellung noch nicht ausgewertet wurden. Bei den verwendeten Proben 

handelte es sich um DNA- bzw. RNA-Proben, die aus postmortem gesammelten 

Gehirnproben (entorhinaler Kortex) von insgesamt 90 AD-Fällen und 90 Kontrollen 

extrahiert wurden. Die Proben wurden von Kooperationspartnern der Oxford BrainBank 

gesammelt und an die Arbeitsgruppe im Rahmen des „MiRNetAD“-Projekts transferiert und 

dort molekular analysiert [29, 103].  

Die Erlaubnis zur Analyse der Biomaterialien (DNA- bzw. RNA-Proben) wurde durch die 

Ethikkommission der Universität zu Lübeck (Aktenzeichen 19-392A vom 22.09.2019) 

bestätigt, s. Anhang 7 

Genotypisierungsdaten. Für die genoweite SNP-Genotypisierung der 180 

Studienteilnehmer wurde der „Global Screening Array“ (GSA) mit „shared custom content“ 

(Illumina, Inc.) benutzt, der insgesamt 696.375 SNPs je DNA-Probe enthält. Die 

molekularen Daten wurden am Institut für Klinische Molekularbiologie (IKMB) generiert und 

durch Frau Olena Ohlei aus der Arbeitsgruppe LIGA einer initialen Qualitätskontrolle (engl. 
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Quality Control; QC) und nachfolgend Genotypimputation unterzogen (s. [46] für eine 

detailierte Darstellung der Methoden).  

Die „post-imputation“ QC wurde dann von mir auf dem „Omics“ Rechencluster der 

Universität zu Lübeck in der Linux-Umgebung mittels der PLINK v2 Software [11] 

vorgenommen. Auf der SNP-Ebene umfasste dies den Ausschluss von SNPs mit folgenden 

Kriterien: 1) Imputations-Qualitäts-Score r2 < 0.7; 2) MAF < 1%; 3) 

Genotypisierungseffizient <0.98 %, 4) HWE-Deviation p < 5e-6 (in Kontrollen). Auf der 

Sample-Ebene erfolgte der Ausschluss von Probanden mit folgenden Kriterien: 1) Personen 

mit Diskrepanzen in genetischen vs. reportierten Geschlecht; 2) Duplizierte Samples / MZ-

Zwillinge; 3) Verwandschaftsverhältnisse > vierten Grades (Pi-hat >0.05); 4) Proben mit 

implausibler Heterozygotie (mean (het) ± 6*SD). Die Erfassung der 

Populationszugehörigkeit erfolgte mittels Principal-Component-Analyse (PCA). Nach der 

post-Imputations-QC verblieben 7.417.011 SNPs von 177 Probanden (davon 87 Fälle und 

90 Kontrollen) zur eQTL-GWAS-Analyse.  

Genexpressionsdaten. In denselben Gehirnproben wurden transkriptom-weite 

Genexpressionsprofile mittels RNA-Sequenzierung generiert, die als abhängige Variable 

(„expression“) in den eQTL-Analysen benutzt wurden. Die molekularen Daten wurden 

ebenfalls am IKMB generiert und durch einen Mitarbeiter der Arbeitsgruppe LIGA (Herrn 

Marcel Schilling) prozessiert und qualitätskontrolliert. Sämtliche experimentellen und 

bioinformatischen Schritte sind in [29] beschrieben. Für die hier durchgeführten eQTL-

GWAS-Analysen wurden mir die normalisierten Expressionsdaten aller Transkripte zum 

CD33-Gen (Ensembl-ID: ENSG00000105383) [33] überlassen und diese als abhängige 

Variable in den linearen Regressionsmodellen der eQTL-GWAS verwendet.  

Statistische Analysen. Die eigentliche eQTL-GWAS-Analysen erfolgten unter Verwendung 

eines linearen Regressionsmodells unter Verwendung von imputierten SNPs-Dosages (als 

unabhängigen Variablen) nach dem additiven Transmissionsmodell unter Einbeziehung 

des Geschlechts und der drei ersten populationsspezifischen Hauptkomponenten aus der 

oben beschriebenen PCA Um einen Einfluss des Diagnosestatus zu kontrollieren wurde 

dieser ebenfalls als Kovariable eingeschlossen. Alle eQTL-GWAS-Analysen erfolgten 

mittels der PLINK v2 Software [11]. Die Post-GWAS Analysen (d.h. im Kontext dieser 

Arbeit: Gen-basierte GWAS und Auswertung bestimmter Annotationden der assoziierten 

SNPs und Gene) wurden mittels des „Functional Mapping and Annotation of Genome-Wide 

Association Studies“ (FUMA; [111]) Tools durchgeführt.  
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4 Ergebnisse 

4.1 Metaanalysen genetischer Assoziationsstudien zur Rolle des CD33-Gens in der AD 

4.1.1 PRISMA Flow Chart 

Die Suche nach den in Kapitel 3.4. beschriebenen Verfahren ergab ergab 146 Studien, die 

bis zum 31.12.2020 in der PubMed-Datenbank aufgeführt waren. Im Anschluss wurde in 

den so identifizierten Studien noch manuell nach den Verweisen auf andere relevante 

Publikationen gesucht und in der Auswahl berücksichtigt. Zusätzlich wurden hierdurch 3 

weiteren Studien mit aufgenommen. Insgesamt wurden somit 149 Studien identifiziert. 

Die identifizierten Studien wurden anschließend auf die definierten Ein- und 

Ausschlusskriterien überprüft. Alle Publikationen waren auf Englisch erfasst und von allen 

lag mir eine Volltextversion vor.  

Aus dieser Vorauswahl wurden nach dem Screening der Abstrakte 110 Studien 

ausgeschlossen, da diese keine genetischen Assoziationsstudien per se darstellten. Die 39 

verbliebenen Studien wurden im Volltext gesichtet. Hiervon wurden 10 weitere 

Publikationen ausgeschlossen: 3 Metaanalysen und 2 Übersichtsarbeiten. Die anderen 5 

ausgeschlossenen Studien haben sich entweder mit einer anderen Thematik beschäftigt 

oder haben SNPs lediglich in der Nähe von CD33 identifiziert. Am Ende dieses Prozesses 

verblieben 29 Studien, deren Daten für die Metaanalysen dieses Teils meiner Dissertation 

verwendet wurden.  

Aus diesen 29 Studien wurden dann die relevanten Daten zur Assoziationsevidenz 

entnommen und in eine Tabelle überführt. Bei diesem Prozess stellte sich heraus, dass bei 

drei Studien nicht ausreichend Daten vorhanden waren (z. B. fehlten Angaben zur OR, CI 

oder SE); diese Studien wurden daraufhin ebenfalls ausgeschlossen. Ferner wurden die 2 

GWAS von Lambert et al. [55] und von Naj et al. [73] aufgrund der vollständigen 

Überlappung der Datensätze mit der GWAS von Jansen et al. [48] ausgeschlossen. Des 

Weiteren wurden die Datensätze „GERAD1“ und „EADI1“ aus der Studie von Hollingworth 

et al. [45] und die Datensätze „Mayo2“ („Jacksonville“, „Rochester“ und „Autopsy“) und 

„ARUK“ aus der Studie von Carrasquillo et al. [20] aussortiert, weil diese bereits in den 

Datensätzen „IGAP“ und „ADSP“ der GWAS von Jansen et al. [48] zusammengeführt 

wurden.  

Alle 24 in die Metaanalysen eingeschlossenen genetischen Assoziationsstudien sind vom 

Studiendesign Fall-Kontroll-Studien, bei zwei Studien handelete es ich um GWAS [45] [48]. 

Für den SNP rs3865444 wurden 21 Studien (22 Datensätze) in die Metaanalyse 

eingeschlossen [20, 22, 28, 31, 45, 48, 49, 51, 59, 64, 66–68, 71, 72, 83, 91, 102, 106, 110, 
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119], für SNP rs3826656 6 Studien [48, 51, 59, 66, 71, 118]. Jeweils 3 Studien wurden für 

die SNPs rs1697553 [22, 45, 48], rs2455069 [45, 48, 92], rs12459419 [48, 51, 92] und 

rs35112940 [48, 85, 92] einbezogen. Weitere Details zu den eingeschlossenen Studien 

sind in den Abschnitten zu den jeweilig metaanalysierten SNPs zu finden. 

Zur visuellen Darstellung der Vorgehensweise der Studienauswahl wurde sich an  „PRISMA 

Flow Diagram 2020“ orientiert [70, 84]. Das Flussdiagramm ist in der Abbildung 5 

dargestellt.  

 

Abbildung 5: Flussdiagramm basierend auf dem PRISMA flow chart 2020 
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4.1.2 Überblick Ergebnisse der eigenen Metaanalysen 

Insgesamt wurden in dieser Arbeit sechs CD33-Polymorphismen (rs3865444, rs3826656, 

rs1697553, rs2455069, rs12459419, rs35112940) metaanalysiert. Wenn möglich, erfolgte 

im jeweiligen SNP eine separate Subgruppen-Analyse nach Stratifizierung für ethnische 

Abstammung.  

Die Stichprobengrößen variierten hierbei je nach SNP von 1.193 zu 476.187. Bei der 

Analyse der separaten Untergruppen nach ethnischer Abstammung variierten die 

Stichprobengrößen zwischen 845 (rs3865444 – „hispanic whites“) und 467.369 (rs3865444 

– „north european“).  

Insgesamt zeigten alle sechs metaanalysierten CD33-Polymorphismen Evidenz für eine 

nominal signifikante Assoziation mit dem AD-Risiko in mindestens einer der durchgeführten 

Analysen (s. Tabelle 3): drei SNPs zeigten dabei einen signifikant protektiven Effekt für AD 

(rs3865444, rs12459419 und rs35112940), während drei SNPs mit erhöhtem Risiko für die 

AD assoziiert waren (rs3826656, rs1697553 und rs2455069).  

Population 
N 

Studien 

N Probanden Metaanalyse Heterogenität 

Fälle Kontrolle OR 95%-CI P-Wert I2 P-Wert 

rs3865444 A vs. C 

Alla 21 80784 395403 0.92 0.77 - 1.10 0.36 99% 0 

North European 9 76632 390737 0.99 0.98 - 0.99 3.41e-09 24% 0.22 

East Asiana 8 3180 3588 1.01 0.81 - 1.27 0.93 86% < 0.01 

White Hispanica 2 354 491 0.88 0.63 - 1.23 0.46 53% 0.15 

rs3826656 G vs. A 

Alla 6 73168 384825 1.11 0.95 - 1.29 0.20 73% < 0.01 

East Asian 4 1008 1090 1.25 1.10 - 1.42 8.20e-04 7% 0.36 

rs1697553 G vs. A 

All 3 72879 384903 1.01 1.01 - 1.01 5.28e-07 0% 0.53 

rs2455069 G vs. A 

North European 3 72921 385025 1.01 1.01 - 1.01 6.87e-07 0% 0.53 

rs12459419 T vs. C 

All 3 72441 384372 0.99 0.98 - 0.99 6.48e-09 0% 0.87 

rs35112940 A vs. G 

North European 3 72344 384107 0.99 0.98 - 0.99 1.14e-05 33% 0.23 

Tabelle 3: Überblick der Ergebnisse der hier durchgeführten Metaanalysen; a Verwendung des „random 
effects“ Modell aufgrund mindestens „moderater“ Heterogenität (beurteilt anhand I2-Methrik; s. Methoden)  

In den nachfolgenden Abschnitten wird auf die jeweiligen sechs SNPs detaillierter 

eingegangen und die Besonderheiten der Resultate beschrieben.  
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4.1.3 SNP rs3865444 

Dieser Polymorphismus des CD33-Gens zog in der von mir im Rahmen dieser Arbeit 

gesichteten Literatur die meiste Aufmerksamkeit der Forschenden auf sich. Die publizierten 

GWAS und mehrere Kandidatengen-Studien haben bisher widersprüchliche Ergebnisse 

erbracht, was die Assoziation zwischen dem SNP rs3865444 und dem LOAD-Risiko betrifft 

(s. Kapitel 2.4). Die bisher publizierten Metaanalysen zu diesem Thema haben ebenfalls 

bislang keinen einheitlichen Konsens erzielt (s. Kapitel 4.1.10).  

In die Metaanalyse für diesen CD33-Polymorphismus wurde die in dieser Arbeit größte 

Anzahl (21 Publikationen mit 22 Datasets) an genetischen Assoziationsstudien (inkl. 2 

GWAS) für LOAD mit der umfangreichsten Stichprobengröße (476.187 Probanden) 

eingeschlossen. 

Abbildung 6 zeigt den Forrest-Plot der eingeschlossenen 21 Studien zu diesem SNP. Diese 

Metaanalyse erfolgte zunächst ohne Subgruppen-Analyse nach Populationen und zur 

Auswertung wurde aufgrund der großen Heterogenität der eingeschlossenen Studien (I2 = 

99%) das „random effects“ Modell angewendet.   

 

Abbildung 6: Forrest-Plot für den SNP rs3865444 (random effects Modell; A vs. C) nach Einschluss aller 

ethnischen Abstammungsgruppen 

Als Ergebnis zeigt sich, dass das Minor-(A)-Allel von SNP rs3865444 mit einem reduzierten 

LOAD-Risiko verbunden ist und somit einen protektiven Effekt hat. Das Ergebnis dieser 
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Metaanalyse war allerdings nicht statistisch signifikant (OR = 0.92, 95%-CI: 0.77 – 1.10; P-

Wert = 0.36). 

Bei Betrachtung des dazugehörigen Funnel-Plots (Abbildung 7) zeigt sich, dass dieser 

symmetrisch ist. Der Egger-Test bestätigt dies mit einem P-Wert von 0.4156 als objektivem 

Nachweis diese Einschätzung. Es besteht somit kein Hinweis auf einen „publication bias“. 

 

Abbildung 7: Funnel-Plot für den SNP rs3865444 nach Einschluss aller ethnischen Abstammungsgruppen 

Im Anschluss wurden die Studien noch einmal unter Berücksichtigung ihrer ethnischen 

Abstammungen getrennt analysiert, d.h. nach nordeuropäischer Herkunft (engl. „north 

european“), nach ostasiatischer Herkunft (engl. „east-asian“) und nach hispanischer 

Herkunft (engl. „white hispanic“). Nur in der Subgruppen-Analyse der Nordeuropäer wurde 

eine signifikante Assoziation des SNPs rs3865444 (Minor-(A)-Allel) mit einem geringeren 

AD-Risiko festgestellt (OR = 0.99, 95%-CI: 0.98 – 0.99; P-Wert = 3.41e-09). Der Forrest-

Plot ist in Abbildung 8 dargestellt. Die zu dem SNP rs3865444 gehörigen Funnel-Plots sind 

im Anhang 5 dieser Arbeit abgebildet.  

 
Abbildung 8: Forrest-Plot für den SNP rs3865444 (fixed effects Modell; A vs. C); nur nordeuropäische 

Abstammung 
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Auch wenn die Heterogenität der Metaanalyse in der Gruppe der Nordeuropäer niedrig ist 

(I2 = 24%), erkennt man, dass das Signal hauptsächlich durch die Daten aus der GWAS 

von Jansen et al. bedingt ist (Gewichtung: 99,55%). Das Wiederholen der Analyse nach 

Weglassen der GWAS von Jansen et al. zeigt zwar eine Erhöhung der Effektstärke (OR = 

0.94), jedoch verringert sich die Signifikanz (P-Wert = 0.08), s. Abbildung 9. 

 
Abbildung 9: Forrest-Plot für den SNP rs3865444 (fixed effects Modell; A vs. C); nur nordeuropäische 

Abstammung nach Ausschluss der GWAS von Jansen et al. [48] 

Bei der Betrachtung der Ergebnisse der Subanalyse in der Gruppe der ostasiatischen 

Abstammung (Abbildung 10) ist besonders auffällig, dass die Effektrichtung der Summary-

OR konträr zu der Effektrichtung in der nordeuropäischen Population ist (OR = 1.01 vs. OR 

= 0.99). Somit zeigt der SNP rs3865444 in der ostasiatischen Herkunft keinen protektiven 

Effekt für LOAD, sondern einen (sehr leichten) Risiko-erhöhenden Effekt. Diese 

Konstellation könnte dadurch erklärt werden, dass der SNP rs3865444 sich in der 

ostasiatischen Kohorte in ausgeprägtem LD mit einem der anderen CD33-Risikoloci 

rs3826656 befindet (s. Kapitel 4.1.9). Das Ergebnis der Metaanalyse ist allerdings 

statistisch nicht signifikant (P-Wert = 0.93). Trotz der Betrachtung von Studien mit 

ausschließlich ostasiatischer Abstammung ist die Heterogenität der Effekstärkenschätzer 

der eingeschlossenen Studien hoch (I2 = 86%); dies ist der Grund für die Anwendung des 

„random effects“ Modells. 

 
Abbildung 10: Forrest-Plot für den SNP rs3865444 (random effects Modell; A vs. C); nur ostasiatische 

Abstammung 

Involved Studies

Fixed effect model

Heterogeneity: I2 = 21%, t2 = 0.0033, p  = 0.26
Test for overall effect: z = −1.74 (p  = 0.08)

Carrasquillo (Norway)
Carrasquillo (Poland)
Hollingworth (deCODE)
Omoumi
Ebbert
Walker
Moreno−Grau
Siokas
Javor

Year of Study

2011
2011
2011
2014
2014
2015
2018
2020
2020

Cases

4752

 327
 467
 925
 580
 326
  97

1500
 324
 206

Controls

7359

 541
 187
 612
 524

2093
  96

2494
 325
 487

0.5 1 2

Odds Ratio OR

0.94

0.89
1.00
0.85
0.76
1.00
1.13
1.01
0.85
0.79

95%−CI

[0.88; 1.01]

[0.70; 1.13]
[0.72; 1.39]
[0.68; 1.06]
[0.63; 0.91]
[0.84; 1.19]
[0.74; 1.71]
[0.91; 1.12]
[0.45; 1.60]
[0.43; 1.46]

Weight

100.00%

7.86%
4.20%
9.09%

14.05%
14.88%

2.63%
44.97%

1.12%
1.21%

Involved Studies

Random effects model

Heterogeneity: I2 = 86%, t2 = 0.0870, p < 0.01
Test for overall effect: z = 0.09 (p  = 0.93)

Deng
Chung
Miyashita
Tan
Mao
Jiao
Zhang
Li

Year of Study

2012
2012
2013
2013
2015
2015
2016
2020

Cases

3180

 190
 290
 891
 612
 126
 229
 380
 462

Control

3588

 193
 554
 844
 612
 129
 318
 475
 463

0.5 1 2

Odds Ratio OR

1.01

2.08
0.70
1.04
1.44
0.66
0.90
1.04
0.72

95%−CI

[0.81; 1.27]

[1.53; 2.85]
[0.51; 0.96]
[0.92; 1.18]
[1.18; 1.76]
[0.43; 1.03]
[0.68; 1.20]
[0.82; 1.32]
[0.57; 0.91]

Weight

100.00%

11.82%
11.74%
14.60%
13.65%

9.75%
12.25%
13.07%
13.12%



 

  
ANASTASIA PAULSSEN 27 

 

Die Subgruppen-Analyse der hispanischen Population zeigte eine Assoziation des Minor-

(A)-Allels des SNPs rs3865444 mit einem geringeren LOAD-Risiko (OR = 0.88, 95%-CI: 

0.63 – 1.23). Die Effektrichtung passt zu der in der nordeuropäischen Population. Das 

Ergebnis ist allerdings statistisch auch nicht signifikant (P-Wert = 0.46). Man muss dabei 

jedoch berücksichtigen, dass in dieser Analyse die kleinste Anzahl an Primärstudien 

eingeschlossen wurde: mit 354 AD-Fällen und 491 Kontrollen umfasste die 

Stichprobengröße dieser Metaanlyse somit die wenigsten Studienteilnehmer. Aufgrund der 

relativ hohen Heterogenität der eingeschlossenen Primärstudien (I2 = 53%) wurde auch hier 

das „random effects“ Modell zur Auswertung angewendet.  

Der entsprechende Forrest-Plot ist in der Abbildung 11 dargestellt. 

 

Abbildung 11: Forrest-Plot für den SNP rs3865444 (random effects Modell; A vs. C); nur hispanische 
Abstammung 

4.1.4 SNP rs3826656 

Der allererste Report über eine mögliche genetische Assoziation zwischen dem CD33-Gen 

und dem LOAD-Risiko basierte auf SNP rs3826656 und wurde in einer familien-basierten 

GWAS der Arbeitsgruppe im Jahr 2008 publiziert [8].  

Erwähnenswert ist es, dass sich für diesen Polymorphismus die Allelfrequenzen zwischen 

verschiedenen Populationen stark unterscheiden, eine Tatsache, die bei den anderen hier 

untersuchten SNPs nicht der Fall war. Z. B. wird in der nordeuropäischen 

Abstammungsgruppe das A-Allel als Major-Allel aufgeführt (G=0.24, A=0.76 [80]), in der 

Gruppe der ostasiatischen Herkunft ist es aber andersherum (G=0.7, A=0.3 [80]). Die 

Allelfrequenzen in der hispanischen Kohorte unterscheiden sich hierbei nicht wesentlich 

von denen der Nordeuropäer (G= 0.22, A=0.78 [80]).  

Das Ergebnis dieser Metaanalyse über vier unabhängige Studien zeigt, dass in der Gruppe 

mit ostasiatischer Abstammung das Major-(G)-Allel von SNP rs3826656 nominal signifikant 

mit einem erhöhtem LOAD-Risiko assoziiert ist (OR = 1.25, 95%-CI: 1.10 – 1.42; P-Wert = 

8.2e-04). Der Forrest-Plot ist in der Abbildung 12 dargestellt. Der Heterogenitätswert dieser 

Analyse ist niedrig (I2 = 7%), daher wurde hier das „fixed effect“ Modell zur Auswertung 

angewendet. 
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Der entsprechende Funnel-Plot ist in der Abbildung 13 zu finden. Der Egger-Test bestätigt 

mit einem P-Wert von 0.2273, dass kein Hinweis auf einen „publication bias“ besteht, 

obwohl die Teststärke hierfür aufgrund der kleinen Stichprobengröße nur gering ist. 

 

Abbildung 12: Forrest-Plot für den SNP rs3826656 (fixed effects Modell; G vs. A); nur ostasiatische 
Abstammung 

 

Abbildung 13: Funnel-Plot für den SNP rs3826656; nur ostasiatische Abstammung 

 

Wenn die Daten aus allen Studien über alle Abstammungsgruppen hinweg in einer Analyse 

kombiniert werden, zeigt das G-Allel ebenfalls ein erhöhtes Risiko (OR = 1.11; 95%-CI: 0.95 

– 1.29), allerdings ist dieser Effekt nicht statistisch signifikant (P-Wert = 0.2). In der 

Abbildung 14 ist der dazugehöriger Forrest-Plot dargestellt. Erwartungsgemäß zeigt die 

Heterogenitätsanalyse für diese kombinierten Analysen einen vergleichsweise hohen Wert 

(I2 = 73%).   

Weil es nicht genügend unabhängige Datensätze gab (n=1), war eine Subanalyse in der 

nord-europäischen Population nicht möglich. Die Ergebnisse der neuesten Metaanalyse 

von Jansen et al. ergaben allerdings mit einem Null-Effekt keine Hinweise auf eine 

Assoziation des SNPs rs3826656 mit AD in der Gruppe der Nordeuropäer (OR = 1.0; 95%-

CI: 1.0 – 1.01 [48]). 
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Abbildung 14: Forrest-Plot für den SNP rs3826656 (random effects Modell; G vs. A); nach Einschluss aller 
ethnischen Abstammungsgruppen 

4.1.5 SNP rs1697553 

Die Analyse des SNP rs169755 zeigt, dass das Minor-(G)-Allel eine signifikante Assoziation 

mit erhöhtem LOAD-Risiko besitzt, wenngleich die OR nur unwesentlich von 1 abweicht 

(OR = 1.01; 95%-CI: 1.01 - 1.01; P-Wert = 5.28e-07). Der vergleichsweise kleine P-Wert 

dieser Metaanalyse liegt begründet in der Größe der Stichprobe der GWAS von Jansen et 

al. (n=455.258). In Abbildung 15 ist der dazugehörige Forrest-Plot dargestellt. Der 

entsprechende Funnel-Plot ist in Anhang 5 dargestellt. Die weiteren Subanalysen nach 

ethnischer Abstammung waren in diesem Fall nicht angezeigt, da es nur eine einzige 

Primärstudie zur ostasiatischen Population gab und diese nur für 0,01% des 

Gesamteffektes verantwortlich war.  

 

Abbildung 15: Forrest-Plot für den SNP rs1697553 (fixed effects Modell; G vs. A); nach Einschluss aller 
ethnischen Abstammungsgruppen 

4.1.6 SNP rs2455069 

Die Metaanalyse des SNP rs2455069 Polymorphismus zeigte ähnliche Ergebnisse wie 

SNP rs1697553: es wurde eine signifikante Assoziation des Minor-(G)-Allels mit dem 

LOAD-Risiko in der nordeuropäischen Population festgestellt (OR = 1.01; 95%-CI: 1.01 – 

1.01; P-Wert: 6.87e-07). Der Grund, weshalb die Ergebnisse der beiden SNPs (rs2455069 

und rs1697553) sich stark ähneln, liegt darin begründet, dass diese Polymorphismen sich 

im vollständigen LD befinden (s. Kapitel 4.1.9), also die Genotypverteilungen sich nahezu 

perfekt entsprechen. Der Forrest-Plot zu dem SNP rs2455069 ist in der Abbildung 16 

dargestellt. Der dazugehörige Funnel-Plot ist im Anhang 5 zu finden.  

Involved Studies

Random effects model

Heterogeneity: I2 = 73%, t2 = 0.0236, p < 0.01
Test for overall effect: z  = 1.28 (p  = 0.20)

Yuan
Mao
Jiao
Moreno
Jansen
Li

Year of Study

2012
2015
2015
2017
2019
2020

Cases

73168

  191
  126
  229
  280

71880
  462

Control

384825

   180
   129
   318
   357

383378
   463

0.5 1 2

Odds Ratio OR

1.11

1.20
1.76
1.19
0.77
1.00
1.20

95%−CI

[0.95; 1.29]

[0.89; 1.63]
[1.19; 2.61]
[0.92; 1.54]
[0.59; 0.99]
[1.00; 1.01]
[0.99; 1.46]

Weight

100.00%

13.39%
9.87%

15.49%
15.46%
26.87%
18.92%

Involved Studies

Fixed effect model

Heterogeneity: I2 = 0%, t2 = 0, p = 5.28e−01
Test for overall effect: z = 5.02 (p = 5.28e−07)

Hollingworth (AD−IG)
Chung
Jansen

Year of Study

2011
2013
2019

Cases

72879

  709
  290

71880

Controls

384903

   971
   554

383378

0.75 1 1.5

Odds Ratio OR

1.01

0.90
1.09
1.01

95%−CI

[1.01; 1.01]

[0.73; 1.11]
[0.68; 1.75]
[1.01; 1.01]

Weight

100.00%

0.04%
0.01%

99.95%



 

  
ANASTASIA PAULSSEN 30 

 

 

Abbildung 16: Forrest-Plot für den SNP rs2455069 (fixed effects Modell; G vs. A); nur nordeuropäische 
Abstammung  

4.1.7 SNP rs12459419 

Betrachtet man die Ergebnisse dieser Metaanalyse (OR = 0.99; 95%-CI: 0.98 – 0.99; P-

Wert = 6.48e-09), zeigt sich, dass das Minor-(T)-Allel des SNPs rs12459419 einen 

signifikant protektiven Effekt auf das AD-Risiko hat. Man muss dabei jedoch 

berücksichtigen, dass der CD33-Polymorphismus SNP rs12459419 sich im vollständigen 

LD mit dem SNP rs3865444 befindet (s. Kapitel 4.1.9). Wie auch in anderen Metaanalysen 

dieser Arbeit, wurde das meiste Gewicht der GWAS von Jansen et al. [48] zugeordnet. Der 

Forrest-Plot ist in der Abbildung 17 dargestellt. Im Anhang 5 ist der dazugehörige Funnel-

Plot zu sehen.  

 

Abbildung 17: Forrest-Plot für den SNP rs12459419 (fixed effects Modell; T vs. C); nach Einschluss aller 
ethnischen Abstammungsgruppen 

4.1.8 SNP rs35112940  

Die Ergebnisse (OR = 0.99; 95%-CI: 0.98 – 0.99; P-Wert = 1.14e-05) der Metaanalysen für 

diesen SNP zeigen, dass das Minor-(A)-Allel signifikant mit einem geringeren LOAD-Risiko 

assoziiert ist. Man sollte jedoch bedenken, dass dieser SNP sich in starkem LD mit den 

Polymorphismen rs3865444 und rs12459419 befindet (s. Kapitel 4.1.9) und die Ergebnisse 

sich für alle drei Polymorphismen also bedingen. In der Abbildung 18 ist der dazugehörige 

Forrest-Plot dargestellt. Auch an dieser Stelle ist das Signalgewicht – wie auch schon bei 

den anderen hier metaanalysierten SNPs – stark durch die GWAS von Jansen et al. 

beeinflusst. Der Funnel-Plot ist im Anhang 5 abgebildet.  
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Abbildung 18: Forrest-Plot für den SNP rs35112940 (fixed effects Modell; A vs. G); nur nordeuropäische 
Abstammung  

4.1.9 Zusammenfassung der in dieser Arbeit berechneten Metaanalysen 

Zusammenfassend lässt sich feststellen, dass alle sechs im Rahmen dieser Arbeit 

metaanalysierten CD33-Polymorphismen mindestens in einer der durchgeführten 

Subanalysen eine mindestens nominal signifikante Assoziation mit der AD zeigen (s. 

Tabelle 3). Die teilweise sehr ähnlichen Metaanalysen-Ergebnisse erklären sich durch die 

Tatsache, dass ein Teil der metaanalysierten SNPs in den hier betrachteten 

Abstammungsgruppen miteinander korrelieren (Tabelle 4). 

Die Tabelle 4 stellt die Korrelation der oben beschriebenen SNPs untereinander in den 

nordeuropäischen und ostasiatischen Populationen mittels LD-Berechnung (r2-Metrik) dar. 

Unter LD versteht man die nicht zufällige Assoziation von Allelen, die mit hoher 

Wahrscheinlichkeit gemeinsam vererbt werden.  

 rs3826656 rs1697553 rs3865444 rs12459419 rs2455069 rs35112940 

rs3826656 
 

0.206 0.111 0.111 0.206 0.058 
 

rs1697553 0.246 
 

0.405 0.405 1.0 0.27 
 

rs3865444 0.475 0.025 
 

1.0 0.405 0.626 
 

rs12459419 0.454 0.026 0.968 
 

0.405 0.626 
 

rs2455069 0.246 1.0 0.025 0.026 
 

0.27 
 

rs35112940 n.a n.a n.a n.a n.a 
 

 

 
Tabelle 4: LD-Statistik der sechs behandelten AD-Risiko-SNPs der Metaanalysen aus Kapitel 4.1  

Legende: oberhalb der Diagonale und hellblau – für die nordeuropäische Population, unterhalb der Diagonale 

und dunkelblau – für die ostasiatische Population. „n.a.“ Keine Daten verfügbar. 
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Die LD-Matrix zeigt, dass die CD33-Polymorphismen rs3865444 und rs12459419 eine 

komplette Assoziation in der nordeuropäischen Population (r2 = 1) und eine sehr starke 

Assoziation in der ostasiatischen Population (r2 = 0.968) aufweisen. Das heisst, dass die 

jeweiligen Allele und Genotypen nahezu immer gemeinsam vererbt werden und sich daher 

die Assoziationsergebnisse entsprechen (müssen). 

Des Weiteren befinden sich die beiden SNPs in einem starken LD mit dem SNP rs35112940 

in der Gruppe der nordeuropäischen Abstammung (r2 = 0.626). Dementsprechend wurden 

auch für alle drei Polymorphismen ein signifikant protektiver Effekt auf das AD-Risiko (OR 

= 0.99) festgestellt (in der nordeuropäischen Population des SNPs rs3865444 und 

rs35112940, und in der kombinierten Analyse der nordeuropäischen und ostasiatischen 

Abstammungsgruppen des SNPs rs12459419). 

Der SNP rs3826656 befindet sich in den Datensätzen mit ostasiatischer Abstammung nur 

in einem nur mittelgradig ausgeprägten LD mit dem SNP rs3865444 (r2 = 0.475) und mit 

dem SNP rs12459419 (r2 = 0.454). In der nordeuropäischen Population besteht zwischen 

diesen Varianten allerdings kein nennenswertes LD (r2 = 0.111). Die Ergebnisse der 

Metaanalysen zeigen, dass der SNP rs3826656 nur in der ostasiatischen Population 

signifikant mit einem erhöhten AD-Risiko verbunden ist (OR = 1.25). Lediglich in der 

ostasiatischen Kohorte wurde bei dem SNP rs3865444 eine ähnliche Effektrichtung 

festgestellt (OR = 1.01). Der Unterschied in den Effektstärken könnte am nur mittelgradig 

ausgeprägten LD (r2 = 0.475) und/oder an den unterschiedlichen Fallzahlen (3180 vs. 1008) 

in den Metaanalysen liegen. 

Die SNPs rs2455069 und rs1697553 befinden sich im vollständigen 

Kopplungsungleichgewicht in der nordeuropäischen und ostasiatischen Population (r2 = 1). 

Diese zwei Polymorphismen wurden daher in den durchgeführten Metaanalysen als 

signifikante AD-Risikoloci mit dem gleichen Ergebnis (OR = 1.01) identifiziert. 
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4.1.10 Vergleich mit anderen Metaanalysen 

In Tabelle 5 ist eine Zusammenfassung der Ergebnisse zur Assoziation von CD33-

Polymorphismen und dem AD-Risiko aus der vorliegenden Arbeit, sowie aus den früher 

publizierten Metaanalysen dargestellt [7, 50, 60, 66, 72, 102]. Die Studien wurden anhand 

der Stichprobengröße, Anzahl der in den Metaanalysen eingeschlossenen Publikationen / 

Datensätze und der Metaanalyse-Ergebnissen (OR, 95%-CI und P-Wert) verglichen. Die 

publizierten Metaanalysen haben sich hauptsächlich mit den CD33-Polymorphismen 

rs3865444 und rs3826656 beschäftigt. Auf die Qualität der hier dargestellten Publikationen 

wird noch einmal detailliert in der Diskussion eingegangen. Generell ist anzumerken, dass 

die Metaanalysen dieser Dissertation in allen Fällen die größeren Datensätze umfassen 

und somit (derzeit) als aktuellste und präziseste Schätzung der Effektstärken der 

analysierten Polymorphismen aufgefasst werden kann.  

Fasst man die Ergebnisse der Metaanalysen zusammen, zeigt sich, dass die Autoren 

(inklusive der Autorin der vorliegenden Dissertation) zu dem Schluss kommen, dass das 

Minor-(A)-Allel des SNPs rs3865444 einen signifikant protektiven Effekt für LOAD zeigt, 

wenn man alle Populationen gemeinsam analysiert. Das gleiche Resultat findet man in den 

Subanalysen der nordeuropäischen Population. Der direkte Vergleich der Ergebnisse der 

Metaanalysen in der Gruppe der ostasiatischen Abstammung demonstriert allerdings 

widersprüchliche Ergebnisse. Diese Arbeit, sowie die von Li et al. [60] und Mao et al. [66] 

identifizieren das Minor-(A)-Allel des SNPs rs3865444 als LOAD-Risikoloci, wenn man nur 

Stichproben mit ostasiatischer Herkunft betrachtet (OR-Variation von 1.01 bis 1.22). Die 

Analysen von Bao et al. [7] und Jiang et al. [50] zeigten aber einen konträren Effekt (OR = 

0.86 und 0.87 entsprechend). Das statistische Signifikanzniveau variierte in den 

gemeinsamen Metaanalysen aller Populationen des SNPs rs3865444 dabei von P-

Wert=0.003 zu P-Wert=0.95 und erfüllte in keinem Fall das Kriterium der genomweiten 

Signifikanz (P-Wert < 5E-08). Ähnliche Ergebnisse findet man in den Subanalysen der 

ostasiatischen Population mit P-Wert-Variation von 0.276 bis 0.93. Von den Subanalysen 

der nordeuropäischen Population haben zwei - die vorliegende Arbeit und die Metaanalyse 

von Li et al. [60] – ein (mindestens nominales) statistisches Signifikanzniveau erreicht (s. 

Tabelle 5).  

Betrachtet man die Ergebnisse der Metaanalysen zur Assoziation vom SNP rs3826656 und 

AD-Risiko in der gemischten Stichprobe, lässt sich feststellen, dass auch hier eine 

Unstimmigkeit vorliegt. Die Resultate der vorliegenden Arbeit legen nahe, dass das G-Allel 

des CD33-Polymorphismus rs3826656 mit einem erhöhtem LOAD-Risiko verbunden ist 

(OR = 1.11; P-Wert = 0.20), wogegen die Studie von Jiang et al. [50] einen signifikant 
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protektiven Effekt dieses Allels aufwies (OR = 0.94; P-Wert < 0.01). Zwei weitere 

Metaanalysen (die vorliegende Arbeit und die Studie von Mao et al. [66]) zeigen, dass das 

Major-(G)-Allel mit dem SNP rs3826656 in der ostasiatischen Population statistisch 

signifikant das AD-Risiko erhöht (OR = 1.25 und 1.39, respektive). Der Grund für die 

Unstimmigkeit könnte zum Teil an der unterschiedlichen Anzahl der in die Analysen 

eingeschlossenen Primärstudien und Stichprobengrößen, sowie an Fehlern in der 

Datenextraktion und -analyse liegen.  Eine qualitative Beurteilung jeder der hier erwähnten 

Metaanalysen ist ausführlich in der Diskussion dargestellt. 

 

 

Autor, 

Publikationsjahr 

N Studien 
N Probanden 

Metaanalysen-Ergebnisse 

Datensätze Publikationen OR 95%-CI P-Wert 

rs3865444 A vs. C - All 

Current Study 22 21 476187 0.92 0.77 - 1.10 0.36 

Li, 2015 27 8 86759 0.97 0.92 - 1.02 0.264 

Bao, 2016 33a 11 123347 0.94 0.90 - 0.98 0.003 

Jiang, 2018 38a 16 127435 0.93 0.90 - 0.97 < 0.01b 

Moreno-Grau, 2018 29 14 90913 0.98 0.93 - 1.04 0.472 

Siokas, 2019c 13 8 11996 0.99 0.84 - 1.18 0.95 

rs3865444 A vs. C - East Asian 

Current Study 8 8 6768 1.01 0.81 - 1.27 0.93 

Li, 2015 4 4 4186 1.22 0.86 - 1.73 0.276 

Mao, 2015 5 5 4441 1.10 0.79 - 1.52 0.576 

Bao, 2016 4 4 4186 0.86 0.58 - 1.27 n.a 

Jiang, 2018 6 6 4988 0.87 0.65 - 1.17 < 0.01b 

rs3865444 A vs. C – European 

Current Studyd 10 9 467369 0.99 0.98 - 0.99 3.41e-09 

Li, 2015 17 2 74998 0.93 0.91 - 0.95 1.73e-09 

Bao, 2016 29a 7 119161 0.93 0.90 - 0.95 n.a 

Jiang, 2018d 31a 9 122447 0.91 0.89 - 0.93 0.04b 

rs3826656 G vs. A - All 

Current Study 6 6 457993 1.11 0.95 - 1.29 0.20 

Jiang, 2018 4 4 1810 0.94 0.62 - 1.41 < 0.01b 

rs3826656 G vs. A - East Asian 

Current Studyd 4 4 2098 1.25 1.10 - 1.42 8.20e-04 

Mao, 2015 2 2 626 1.39 1.09 - 1.76 0.008 

a Überlappende Datensätze 
b am ehesten P-Wert der Heterogenitätsanalysen  
c Dominantes Modell 
d Fixed effect Modell 

Tabelle 5: Vergleich der Ergebnisse dieser Arbeit mit publizierten Metaanalysen 
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4.2 Genetische Determinanten der CD33-Expression im menschlichen Gehirn 

Der zweite Analyseschwerpunkt dieser Arbeit befasste sich mit der Frage, ob und welche 

DNA-Sequenzvarianten eine signifikante Assoziation mit der Expression des CD33-Gens 

im menschlichen Gehirn zeigen. Diese Frage ist u. a. für eine initiale funktionelle 

Einordnung der in Abschnitt 4.1. beschriebenen Metaanalyseergebnisse der genetischen 

Assoziationsstudien interessant: Zeigen die bisher im Fokus der Literatur stehenden und 

oben metaanalysierten CD33-SNPs auch eine Assoziation mit der Expression des CD33-

Gens? Lassen sich hierdurch evtl. die genetischen Assoziationsergebnisse besser 

einordnen und / oder prioritisieren? Zur Beantwortung dieser Frage hatte ich Zugang zu in 

der Arbeitsgruppe im Rahmen separater Projekte generierten RNA-Sequenzierungsdaten 

sowie genomweiten SNP-Genotypisierungsdaten, die ich im Kontext einer eQTL-GWAS 

zusammengeführt habe. In der nachfolgenden Ergebnisdarstellung konzentriere ich mich 

zuerst auf die bekannten, in Abschnitt 4.1. beschriebenen CD33-SNPs, d.h. mögliche cis 

eQTL-Effekte. Da mir für diese Analysen aber genomweite SNP-Genotypisierungsdaten zur 

Verfügung standen, konnte ich die Suche nach möglichen eQTLs der CD33-Expression auf 

das gesamte Genom ausweiten. Die Darstellung der so generierten trans eQTL-GWAS-

Ergebnisse erfolgt im zweiten Teil dieses Abschnitts. 

4.2.1 Ergebnisse der cis eQTL-Analysen zur CD33-Genexpression 

Die folgende Tabelle 6 gibt einen Überblick über die cis eQTL-Effekte von den in dem 

Abschnitt 4.1 beschriebenen sechs CD33-Polymorphismen. Keiner dieser SNPs zeigte eine 

signifikante Assoziation mit der Expression des CD33-Gens im Gehirn. Die SNPs 

rs1697553 und rs2455069 zeigten allerdings Ergebnisse, die das nominale statistische 

Signifikanzniveau nur leicht überschritten haben (P-Werte von 0,0515 und 0,0534, 

respektive). Insbesondere der in der Literatur am häufigsten mit AD in Verbindung 

gebrachte SNP rs3865444 zeigte aber keine Assoziation mit der CD33-Expression im 

Gehirn (P-Wert = 0.589).  

SNP Genort Effekt vs. Ref. Allel EAF P-Wert 

rs3865444 19:51727962 A vs. C 0.302017 5.89e-01 

rs3826656 19:51726613 G vs. A 0.781886 8.07e-02 

rs1697553 19:51727322 G vs. A 0.459989 5.15e-02 

rs2455069 19:51728641 G vs. A 0.459981 5.34e-02 

rs12459419  19:51728477 T vs. C 0.302161 5.92e-01 

rs35112940 19:51738917 A vs. G 0.184041 4.47e-01 

Tabelle 6: Cis eQTL-Statistiken der sechs behandelten AD-Risiko-SNPs der Metaanalysen aus Abschnitt 4.1 
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In meiner eQTL-GWAS-Analyse habe ich aber auch noch weitere SNPs in der CD33-

Region auf Assoziation mit der Genexpression testen können. In Tabelle 7 sind die Top-10 

(nach P-Wert) cis eQTL-Effekte aus diesen Analysen zusammengefasst. Diese zehn SNPs 

gehören der generellen CD33-Region auf Chromosom 19, +/-500kb (von 51,228,335 bis 

52,243,274) an. Insgesamt wurden in diesem Abschnitt 3442 SNPs auf Assoziation 

getestet, von denen 382 unabhängig (d.h. nicht in LD; hierfür wurde ein Grenzwert von 

r2=0.3 genutzt) waren. Die Resultate dieser Analysen zeigten zwar zahlreiche nominal 

signifikante Befunde, allerdings keines mit genomweiter Signifikanz. Obwohl die Top-10 

Polymorphismen das nominale Signifikanzniveau z. T. deutlich unterschritten (die P-Werte 

variieren von 0.0005 [rs75310023] bis 0.0037 [rs77742698]), ergab die Gen-weite 

Bonferroni-Korrektur (d.h. Adjustierung für alle 382 unabhängigen SNPs in dieser Region, 

α = 0.05/382 = 1.31e-04), dass keiner dieser SNPs den Schwellenwert der Gen-weiten 

Signifikanz erreichen. D.h. dass selbst die signifikanteste der hier beobachteten cis eQTL-

Assoziation noch im Bereich des zufällig Erwartbaren (=Nullhypothese) liegt. Keiner dieser 

zehn Top cis eQTL-Polymorphismen zeigt eine Überlappung mit AD-Risiko-SNPs. Im 

Gegenteil: im Vergleich zu den sechs in Kapitel 4.1 beschriebenen SNPs, die sich allesamt 

im 5‘ Abschnitt des CD33-Gens befinden, liegen diese nominal assoziierten Varianten eher 

in der Nähe des 3‘-Endes. Im Anhang 9 sind die Resultate der cis eQTL-Analysen in der 

„cis“ CD33-Region zusammengefasst.   

SNP Genort Effekt vs. Ref. Allel EAF P-Wert 

rs75310023 19:52195270 T vs. C 0.0628541 5.21e-04 

rs7251465 19:51350791 G vs. A 0.0832032 1.00e-03 

rs78177998 19:51345264 C vs. T 0.0834825 1.63e-03 

rs56397626 19:51346522 G vs. A 0.0831101 1.78e-03 

rs146018038 19:52203444 A vs. T 0.0359383 2.97e-03 

rs78652800 19:52203223 C vs. A 0.0362542 3.07e-03 

rs74552391 19:52197292 G vs. A 0.046586 3.63e-03 

rs77133866 19:52197489 G vs. A 0.046586 3.65e-03 

rs35018336 19:52197457 C vs. T 0.046681 3.66e-03 

rs77742698 19:52197496 T vs. C 0.0466169 3.70e-03 

Tabelle 7: Teststatistiken der Top-10 cis eQTL-SNPs der CD33-Genexpression im Gehirn 

Interessanterweise zeigte eine in silico Modellierung der potentiellen funktionellen Effekte 

(mittels des „variant effect predictor“ Tools der Ensembl-Datenbank [34]), dass viele dieser 

Top-10 CD33 cis eQTL-Varianten in Bereichen lokalisiert sind, die möglicherweise einen 

genregulatorischen Effekt haben (z. B. Kolokalisierung mit long non-coding RNAs oder 

micro RNAs; s. Anhang 10). Trotz der fehlenden Gen-weiten Signifikanz der eQTL-



 

  
ANASTASIA PAULSSEN 37 

 

Assoziationen, erscheint ein funktioneller Zusammenhang zwischen diesen Varianten und 

der CD33-Genexpression zumindest nicht unplausibel. Ein kausaler funktioneller 

Zusammenhang kann allerdings nur in dafür geeigneten laborexperimentellen Ansätzen 

nachgewiesen werden.  

4.2.2 Ergebnisse der trans eQTL-GWAS-Analysen zur CD33-Genexpression 

Wegen des Vorliegens von genomweiten SNP-Genotypisierungsdaten konnte ich in dieser 

Arbeit auch nach möglichen trans eQTL-Effekten suchen. Als „trans“ wurden hier alle 

Varianten gezählt, die nicht in der unmittelbaren CD33-Region lokalisiert waren („cis“, s. 

Abschnitt 4.2.1). Nach ausführlicher QC (s. Methoden) blieben für die genomweiten eQTL-

Analysen 7.417.011 SNPs übrig. In Abbildung 19 ist der dazugehörige sog. Manhattan-Plot 

der SNP-basierten GWAS-Analysen dargestellt. Die rote Linie stellt die weithin im 

Genomanalyse-Feld verwendete Schwelle für genomweite Signifikanz dar (P-Wert <5e-08). 

Diese Schwelle wurde von insgesamt drei SNPs auf den Chromosomen 5, 6, und 8 

unterschritten (Tabelle 8). Die MAF für alle drei genomweit assoziierten SNPs war mit 

Werten zwischen 1 und 5% allerdings vergleichsweise niedrig, so dass ein falsch-positiver 

Befund aufgrund der kleinen Stichprobengröße nicht ausgeschlossen werden kann. 

Darüber hinaus wurden zusätzlich zu den drei SNPs weitere 90 Loci gefunden, die 

mindestens genomweit suggestive Assoziationsevidenz (P-Wert < 1e-05; Anhang 8) 

zeigten. Der in Abbildung 20 dargestellte Quantil-Quantil-(QQ)-Plot zeigte keine 

nennenswerte Evidenz für eine Inflation der genomweiten Teststatistiken. Im 

Nachfolgenden konzentriere ich mich v. a. auf eine Darstellung der drei in diesen Analysen 

identifizierten genomweit-signifikanten trans eQTL-GWAS-Signale. Im letzten Abschnitt 

werden auch noch kurz zwei Beispiele der Gen basierten GWAS-Ergebnisse dargestellt, 

von denen allerdings keines die Schwelle der genomweiten Signifikanz unterschritt. 

 

Abbildung 19: SNP-basierter Manhattan-Plot der eQTL-GWAS-Resultate zur CD33-Genexpression 
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Abbildung 20: Quantile-quantile-(QQ-)Plot von GWAS Übersichtsstatistik 

 

SNP rs112851200 auf Chromosom 5q14.1 

SNP rs112851200 ist in einem nicht-kodierenden, intronischen Genabschnitt des MTX3-

Gens lokalisiert. Mit einem P-Wert von 1.72742e-10 zeigte dieser SNP die signifikanteste 

Assoziation mit der Expression vom CD33-Gen im Gehirn in den hier durchgeführten 

Analysen. Die GTEx-Datenbank (v8) zeigt weitere signifikante eQTL-Effekte in Bezug auf 

die Expression von MTX3 in der Schilddrüse und in kultivierten Fibroblastenzelllinien [16], 

aber keine in den von GTEx analysierten Gehirnproben.  

Das MTX3-Gen kodiert das Protein Metaxin-3 und ist laut GTEx-Datenbank (v8) im 

Menschen ubiquitär exprimiert. Die genaue Funktion von Metataxin-3 ist noch nicht 

abschließend geklärt, laut der Datenbank UniProt wird aber eine Involvierung bei dem 

Transport von Proteinen in die Mitochondrien vermutet [107]. Im „GWAS-Catalog“, einer 

Datenbank zu publizierten GWAS an menschlichen Phänotypen, sind bisher keine SNPs in 

MTX3 als GWAS-Signale aufgeführt. Obwohl in den Literaturdatenbanken bisher keine 

Informationen über die Assoziation des SNP rs112851200 oder anderen SNPs im MTX3-

Gens mit der menschlichen Immunantwort oder mit AD-relevanten Phänotypen aufgeführt 

werden, ist erwähnenswert, dass in unmittelbarer Nähe (~50kb) das Gen THBS4 

SNP Genort Nächstgelegenes Gen Effekt vs. Ref. Allel MAF P-Wert 

rs112851200 5:79283742 MTX3 A vs. G 0.05964 1.72742e-10 

rs55934141 6:23536354 RP4-810F7.1 A vs. C 0.008946 3.42703e-08 

rs2353260 8:113119752 RNU4-37P / CSMD3 A vs. G 0.01988 4.75634e-08 

Tabelle 8: Top SNPs der trans eQTL-GWAS-Analysen zur CD33-Genexpression 
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(Thrombospondin-4) lokalisiert ist, das erst kürzlich als Teil der astrozytischen Gensignatur 

bei chronischer Neurodegeneration identifiziert wurde [27]. Ob und wie dieser Befund im 

Verhältnis zur CD33-vermittelten Immunantwort steht ist aber unklar.  

SNP rs55934141 auf Chromosom 6p22.3  

Dieser SNP ist laut UCSC-Genombrowser in keinem kodierenden Element lokalisiert. Das 

mit ca. 138 kbp nächstgelegene annotierte Gen ist RP4-810F7.1 (ENSG00000219453), das 

laut Ensembl-Datenbank ein Ferritin-Pseudogen ohne bekannte Funktion ist. Mit einem P-

Wert von 3.42703e-08 zeigte SNP rs55934141 eine genomweit signifikante Assoziation mit 

der Expression des CD33-Gens im Gehirn. Die GTEx-Datenbank zeigte eine generell nur 

sehr schwache Expression von RP4-810F7.1 im Menschen und keine weiteren eQTL-

Effekte für den SNP rs55934141 auf GTEx reportiert.  

Auch im GWAS-Katalog wurde bisher keine Daten über die Assoziation dieses Gens mit 

der menschlichen Immunantwort oder der AD aufgeführt. Die erweiterte Suche nach 

Einträgen in der unmittelbaren Nähe des assoziierten SNPs (Region chr6:23286454-

23786454) ergab allerdings mehrere GWAS-Befunde mit Bezug zum Immunsystem, z. B. 

der Lymphozyten- und Monozyten-Zahl im Blut sowie der Immunantwort im Zuge einer 

Infektion mit Pockenviren (Variola) [75]. Eine funktionelle Verbindung zur CD33-vermittelten 

Immunantwort erscheint somit zumindest möglich, wenngleich es derzeit keine Studien gibt, 

die dies direkt belegen.  

SNP rs2353260 auf Chromosom 8q23.3  

Auch der dritte identifizierte SNP rs2353260 liegt laut UCSC-Genombrowser nicht in einem 

bekannten kodierenden Abschnitt des menschlichen Genoms. Dieser SNP zeigte eine 

gerade noch genomweit signifikante Assoziation (P-Wert von 4.75634e-08) mit der 

Expression des CD33-Gens im Gehirn. Die nächstgelegenen Gene sind RNU4-37P 

(ENSG00000222146; ebenfalls als Pseudogen annotiert; Abstand ca. 42kb) und CSMD3 

(CUB and sushi domain-containing protein 3; Abstand ca. 120kb).   

Letzteres kodiert für ein Protein aus der Familie der CSMD-Proteine, die Reaktionen 

zwischen extrazellulären Proteinen und Zellmembranproteinen vermittelt, sowie die 

Synapsenbildung im ZNS reguliert [69, 99]. Dazu passend ist die prädominante Expression 

dieses Gens im menschlichen ZNS-Gewebe in GTEX (v8) [17]. Mizukami et al. berichteten 

im Jahr 2016, dass das CSMD3-Gen an der Verzweigung der Dendriten der Hippocampus-

Neuronen beteiligt ist [69]. Im Jahr 2003 wurde CSMD3 von Shimizu et al. als ein Gen-

Kandidat für familiäre myoklonische Epilepsie postuliert [98]. Außerdem wurden Mutationen 

des CSMD3-Gens auch bei Patienten mit Autismus und Schizophrenie beschrieben [69]. 
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Basierend auf diesen Erkenntnissen kann konkludiert werden, dass die Dysfunktion des 

CSMD3-Gens zu Anomalien der dendritischen Entwicklung und dadurch möglicherweise 

zu neurologischen und psychiatrischen Störungen führen kann. Dazu passen die Einträge 

im GWAS-Katalog, der Varianten in diesem Gen mit mehreren ZNS-relevanten Funktionen 

aufführt, z. B. dem Tourette-Syndrom und Insomnie [76]. Allerdings werden dort derzeit 

keine Assoziationen mit Immunantwort-relevanten Phänotypen beschrieben, so dass der 

Zusammenhang mit der CD33-Funktion unklar bleibt.   

4.2.3 Gen-basierte eQTL-GWAS Ergebnisse zur CD33-Genexpression im menschlichen Gehirn 

In den Gen-basierten GWAS-Analysen werden die SNP-basierten GWAS-Ergebnisse mit 

einem im FUMA-Tool integrierten Algorithmus (MAGMA; [57]) aggregiert. Dies erlaubt eine 

übergeordnete Einschätzung der Assoziationsevidenz auf Gen-Ebene. Durch die kleinere 

Anzahl an annotierten Genen reduziert sich damit die genomweite Signifikanzschwelle auf 

α = 2.684e-6. Diese Schwelle ist im Manhattan-Plot in Abbildung 21 wieder durch die rote 

Linie markiert. Wie ersichtlich, wurde dieser Schwellenwert aber von keinem der 

eingeschlossenen Gene unterschritten, d.h. dass in der Gen-weiten GWAS i. Ggs. zu den 

SNP-basierten Analysen (s.o.) keine genomweiten Signale identifiziert wurden. Der 

dazugehörige QQ-Plot (Abbildung 22) zeigt keine Evidenz für eine Inflation der 

genomweiten Gen-basierten Teststatistiken.  

 

Abbildung 21: Gen-basierter Manhattan-Plot 
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Abbildung 22: Quantile-quantile-(QQ-)Plot des genbasierten Tests 

Trotz der fehlenden Evidenz für eine genomweit signifikante Assoziation mit der CD33-

Genexpression sollen hier die zwei signifikantesten Ergebnisse der Gen-basierten GWAS-

Analysen kurz zusammengefasst werden. Die stärkste Assoziation (P-Wert 1.1188e-05) 

wurde mit dem RCN1-Gen (Reticulocalbin-1) auf Chromosom 11p13 identifiziert. 

Reticulocalbin-1 ist ein kalzium-bindendes Protein, von dem vermutet wird, dass es vor 

allem die kalzium-abhängige Zelladhäsion beeinflusst [82]. Die Dysregulation des RCN1-

Proteins wurde bisher bei einer Vielzahl von Krankheiten festgestellt, u.a. bei 

onkologischen, kardiovaskulären und neuromuskulären Erkrankungen [21]. Eine 

wachsende Anzahl von Studien hat die Überexpression von RCN1 bei Mammakarzinomen, 

Leberzellkarzinomen, Nierenzellkarzinomen, Kolonkarzinomen und anderen Tumoren 

gefunden. Basierend auf diesen Ergebnissen wird RCN1 als Onkogen bei der 

Tumorentstehung und Tumorprogression eingeordnet [21]. Einen Zusammenhang mit der 

menschlichen Immunantwort ist in den im GWAS-Katalog aufgeführten Studien zum 

Zeitpunkt der Schriftlegung dieser Arbeit allerdings nicht evident [77]. 

Das in den Gen-basierten GWAS-Analysen am zweitstärksten assoziierte Gen (P-Wert 

1.7377e-05) ist KIF3C (engl. „kinesin superfamily protein 3C“), das auf Chromosom 2p23.3 

lokalisiert ist. Das KIF3C-Protein gehört zur Kinesin-Superfamilie, die eine Klasse der 

Mikrotubulus-abhängigen Motorproteine darstellt [36]. Diese Proteine wandeln die ATP-

Energie in eine mechanische Energie um. Somit steuern die den intrazellulären Transport 

von Makromolekülen und Organellen. Im Gegensatz zu RCN1 wird KIF3C im ZNS 

besonders stark exprimiert [18]. In separaten Analysen wurde berichtet, dass KIF3C im ZNS 

nicht nur in Neuronen, sondern auch in Astrozyten exprimiert wird [36]. Des Weiteren gibt 
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es Hinweise, dass das KIF3C-Protein am Wachstum und der Regeneration von Axonen 

nach Verletzung beteiligt ist [42]. Gao et al. [36] fanden im Jahr 2020 heraus, dass die 

Überexpression des KIF3C-Gens in den Gliazellen deren Zellproliferation, Migration und 

Invasion fördert und die Zellapoptose unterdrückt. Interessanterweise gibt es im GWAS-

Katalog derzeit keine klaren Evidenzen für eine Involvierung mit Gehirnfunktion-relevanten 

Phänotypen, wohl aber mit einigen möglicherweise Immunsystem-relevanten 

Ausprägungen, wie z. B. der Leukozytenanzahl im Blut [78]. Ob und wie dieser Befund in 

Verbindung mit der CD33-vermittelten Immunantwort steht bleibt aber zur Schriftlegung 

unklar. 

4.2.4. Zusammenfassung der eQTL-GWAS-Befunde in Bezug auf die CD33-Genexpression im 

Gehirn 

Zusammenfassend lässt sich feststellen, dass in den von mir durchgeführten eQTL-GWAS-

Analysen zur CD33-Expression im Gehirn einige interessante Assoziationssignale 

beobachtet wurden, die möglicherweise mit der CD33-Funktion in Verbindung stehen. 

Diese wurden v. a. als trans-Effekte evident, d.h. mit Genloci, die allesamt in größerer 

Entfernung (>500kb) zum CD33-Gen selbst lokalisiert waren. Genloci in cis, d.h. die in 

unmittelbarer Umgebung des CD33-Gens lokalisiert sind, zeigten dagegen keine 

(statistisch) besonders herausragenden Effekte basierend auf den generierten GWAS P-

Werten. Der kleinste cis eQTL-Effekt wurde mit SNP rs75310023 beobachtet (P-

Wert=5.21e-04), war aber nach Bonferroni-Korrektur nicht-signifikant auf Gen-Ebene. 

Insbesondere von den in Abschnitt 4.1. ausführlich analysierten AD-Risiko-SNPs zeigte 

keiner eine nennenswerte Assoziation mit der Expression des CD33-Gens in diesem 

Datensatz. Dies deutet entweder darauf hin, dass solche Effekte mit den AD-Risiko-SNPs 

nicht existieren (und damit der Mechanismus der beobachteten genetischen Assoziation 

nicht primär über die Genexpression vermittelt wird) oder dass die statistische Trennschärfe 

(Power) solche Effekte zu identifizieren in dem von mir verwendeten Gehirn-Datensatz nicht 

ausreichend war (s. auch Diskussion).   
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5 Diskussion 

5.1 Diskussion der wissenschaftlichen Relevanz der vorliegenden Dissertation 

Allgemeine Relevanz. Die Aktualität und die wissenschaftliche Relevanz des Themas der 

vorliegenden Dissertation ergibt sich aus der hohen Prävalenz der AD. Laut WHO leben 

derzeit mehr als 55 Millionen Menschen mit Demenz weltweit [114]. Da die Bevölkerung in 

fast allen Ländern älter werden wird, wird erwartet, dass die Prävalenz der AD (die ca. 70% 

aller Demenz-Fälle ausmacht) im Jahr 2030 auf 78 Millionen und im Jahr 2050 auf 139 

Millionen ansteigen wird [114]. Basierend auf diesen hohen und steigenden 

Erkrankungszahlen sind auch die damit assoziierten Krankheitskosten enorm. Allein im 

Jahr 2015 wurden sie global auf 818 Milliarden US-Dollar geschätzt [63]. Im Zuge der 

vorausgesagten Prävalenz-Erhöhung werden auch diese Krankheitskosten (85% hiervon 

kommen durch familiäre und soziale Belastungen zustande) weiter dramatisch steigen [63]. 

Darüber hinaus hat sich seit dem Anfang der COVID-19 Pandemie die AD als eine der 

wichtigsten Komorbiditäten dieser respiratorischen Krankheit herausgestellt, was 

wirtschaftliche Kosten und Zeitaufwand für pflegende Angehörige nochmals erhöht hat 

[116]. 

Spezifische Relevanz. In einer kürzlich in Nature Genetics veröffentlichten Analyse zum 

Erfolg von Arzneimittelstudien kamen die Autoren zu dem Schluss, dass die Auswahl von 

„Drug-Targets“, die durch genetische Studien supportiert sind, die Erfolgsrate in klinischen 

Studien verdoppeln könnte [81]. Das Ziel dieser Promotion lag darin, ein besseres 

Verständnis über die komplexen Zusammenhänge zwischen genetischer Veranlagung und 

dem AD-Risiko in Bezug auf das CD33-Gen zu gewinnen, das von einigen Autoren bereits 

als möglicher pharmakologischer Therapieansatz ausgemacht wurde [13, 39]. 

Um unser Verständnis der Rolle des CD33-Gens in der Pathogenese der AD zu vertiefen 

habe ich in dieser Arbeit zwei Ansätze verfolgt. Erstens habe ich unter Zusammenführung 

sämtlicher derzeit verfügbarer publizierter Evidenz untersucht, welche genetischen 

Polymorphismen des CD33-Gens das AD-Risiko beeinflussen. Hier habe ich sechs 

Polymorphismen mit mindestens nominal signifikanter Assoziation identifiziert, drei davon 

mit einem protektiven Effekt, die anderen drei mit Risiko-erhöhenden Effekten. Zweitens 

habe ich mittels genomweiter Daten analysiert, welche genetischen Polymorphismen eine 

Assoziation mit der Expression des CD33-Gens im Gehirn von AD Patienten und 

Kontrollpersonen zeigen. In diesen Analysen habe ich herausgefunden, dass drei SNPs die 

Schwelle der genomweiten Signifikanz unterschritten. Alle drei assoziierten SNPs waren 

trans Varianten, d.h. sie lagen nicht in unmittelbarer Nähe des CD33-Gens. Im Gegensatz 

dazu zeigte keiner der sechs in dem ersten Teil der Arbeit metaanalysierten AD-Risiko-
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SNPs (alle in cis) einen nennenswerten Einfluss auf die CD33-Expression in menschlichen 

Gehirnproben. 

Im Nachfolgenden diskutiere ich die Ergebnisse meiner Arbeit im Kontext der aktuellen 

Literatur und hebe die Stärken und insbesondere die Schwächen der von mir 

durchgeführten Analysen hervor.  

5.2 Diskussion der Ergebnisse der Metaanalysen 

5.2.1 Zusammenfassung der wichtigsten Ergebnisse 

In den durchgeführten Metaanalysen wurden die SNPs rs3865444, rs3826656, rs1697553, 

rs2455068, rs12459419 und rs35112940 des CD33-Gens auf eine Assoziation mit dem 

LOAD-Risiko anhand der Zusammenführung von 24 relevanten Primärstudien, die sich in 

ihren Ergebnissen zum Teil unterschieden haben, untersucht. Zusammenfassend lässt sich 

hierzu festhalten, dass zwischen allen untersuchten Polymorphismen in mindestens einer 

der analysierten Populationen eine statistisch signifikante Assoziation mit dem Auftreten 

der AD besteht.  

Der für den Forschungsdiskurs bisher relevanteste SNP rs3865444 und im kleineren 

Ausmaß der SNP rs3826656 haben, basierend an den Erkenntnissen der vorliegenden 

Arbeit, den AD-assoziierten Status bekräftigt. Für den SNP rs3865444 wurde in die 

Metaanalyse die größte Anzahl an Primärstudien eingeschlossen, inklusive der zur 

Schriftlegung aktuellsten und umfangreichsten AD-GWAS aus dem Jahr 2019 [48]. Das 

Minor-(A)-Allel des SNPs rs3865444 zeigte sich hierbei in der Gruppe der Probenden mit 

nordeuropäischer Abstammung als signifikanter AD-protektiver Polymorphismus. In den 

Analysen für andere Populationen wurden dahingegen keine statistisch signifikanten 

Assoziationen detektiert. Von besonderem Interesse ist die Beobachtung, dass die 

Effektrichtung der Metaanalyse des SNPs rs3865444 in der ostasiatischen Population 

konträr zu der Effektrichtung der Nordeuropäer war. Die LD-Berechnung kann hierfür als 

Erklärung dienen: die SNPs rs3865444 und rs3826656 befinden sich in der Population der 

Ostasiaten, i. Ggs. zu den Nordeuropäern, in moderatem LD (Tabelle 4). Genau in dieser 

Population zeigt sich das Major-(G)-Allel des SNPs rs3826656 in meiner Analyse als 

signifikanter AD-Risikofaktor. 

Weiterhin lässt sich unter Berücksichtigung der LD-Struktur herleiten, dass die SNPs 

rs12459419 und rs35112940 eine signifikante Assoziation mit einem reduziertem AD-Risiko 

aufgrund ihres starken LD mit rs3865444 zeigen.  

Um möglichst umfangreiche Ergebnisse zu der Rolle des CD33-Gens bei der Entstehung 

der AD zu erhalten, habe ich in dieser Arbeit erstmals Metaanalysen zu zwei weiteren 
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SNPs, d.h. rs1697553 und rs2455069, durchgeführt. Diese Polymorphismen befinden sich 

sowohl in Nordeuropäern als auch in Ostasiaten in komplettem LD miteinander. Folglich 

zeigten die Minor-(G)-Allele beider SNPs als Ergebnis eine signifikante Assoziation mit dem 

Auftreten der AD. 

Als Fazit lässt sich festhalten, dass ich durch die Integration der Ergebnisse mehrerer 

Primärstudien in die Metaanalysen ein besseres Verständnis über die komplexen 

Zusammenhänge zwischen CD33-Polymorphismen und der AD gewinnen und die Rolle 

des CD33-Gens als wichtigem AD-Risikogen bestätigen konnte. 

5.2.2 Vergleich der erhobenen Metaanalyse-Ergebnisse mit der Literatur 

Bis zum Zeitpunkt der Literatursuche (31.12.2020) wurden sechs Metaanalysen, die eine 

quantitative Kombination der Ergebnisse mehrerer genetischen Assoziationsstudien 

darstellen, zu diesem Thema publiziert. Im Kapitel 4.1.10 habe ich einen Überblick über die 

(z. T. unterschiedlichen) Ergebnisse dieser Studien zusammengestellt. Auch wenn 

Metaanalysen in der Hierarchie der Evidenz die höchstwertigste Stellung einnehmen [1] ist 

damit keine pauschale Aussage über den wissenschaftlichen, qualitativen Wert einer 

individuellen Metaanalyse möglich. So kann eine falsch ausgewertete Metastudie sogar 

einen geringeren bzw. falschen wissenschaftlichen Wert im Vergleich zu einer Einzelnen, 

sauber durchgeführten Assoziationsstudie haben. Nachfolgend möchte ich daher eine 

Einschätzung der Berichtsqualität der bisher veröffentlichten Metaanalysen ausführen. 

Qualitative Beurteilung der Metaanalyse von Jiang et al. [50] 

Die 2018 in Annals of Translational Medicine publizierte Metaanalyse von Jiang et al. gehört 

zu den größten und aktuellsten Übersichtsarbeiten zum Thema. Dennoch weist diese Arbeit 

in der methodischen Vorgehensweise, sowie auch in der Darstellung der Ergebnisse 

mehrere Limitationen auf, welche die Aussagekraft m. E. reduzieren. Zuerst erfolgte in der 

Metaanalyse laut Methodenbeschreibung keine Kontrolle auf und keine Eliminierung von 

duplizierten Datensätzen. So überlappen die „ADGC“-Datensätze („ADGC-GWAS“ und 

„ADGC-REP“) von Naj et al. [73] mit dem „ADGC“-Datensatz von Lambert et al. [55]. Ferner 

sind die Datensätze „GERAD1“ und „EADI1“ von Hollingworth et al. [45] sind dieselben wie 

die Datensätze „GERAD“ und „EADI“ von Lambert et al. [55] Der Datensatz „Mayo2“ 

(„Jacksonville“, „Rochester“ und „Autopsy“) von Carrasquillo et al. [20] wurde ebenfalls in 

den „ADGC“-Datensatz von Lambert et al. [55] zusammengeführt. Keine dieser 

Überlappungen der verwendeten Studienpopulationen wurde augenscheinlich von Jiang et 

al. berücksichtigt. D.h., dass von den 127.435 Probanden, die von Jian et al. in die 

Metaanalyse von SNP rs3865444 eingeschlossenen wurden, 39.750 Teilnehmer (also fast 
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1/3 der gesamten Stichprobe) doppelt analysiert wurden. Des Weiteren fiel auf, dass die 

Autoren dieser Arbeit bei manchen eingeschlossenen Studien nicht korrekt ermittelt haben, 

ob es sich bei dem Effektallel (und den entsprechenden OR-Schätzern) um das Minor- oder 

das Major-Allel handelt. Somit wurde die Effekt-Richtung in den Fall-Kontroll-Studien von 

Deng et al. [28] und Jiao et al. [51] für den SNP rs3865444 nicht entsprechend angepasst 

und daher falsch von Jiang et al. berücksichtigt. Auch in der Metaanalyse zu dem SNP 

rs3826656 wurde offensichtlich kein Abgleich der Effektallele vorgenommen: die 

Effektrichtung der Studie von Mao et al. [66] ist mit  Effektrichtungen der Studien von Yuan 

et al. [118] und Jiao et al. [51] in der Metaanalyse von Jiang et al. entgegengesetzt 

dargestellt, obwohl sie in der Darstellung der Primärstudien in dieselbe Richtung zeigen. 

Der OR-Wert von einer weiteren Fall-Kontroll-Studien, die in die Metaanalyse von Jiang et 

al. zu dem Polymorphismus rs3826656 eingeschlossen wurden [71], ist nicht 

nachvollzierbar, weil er sich aus keinen in der Primärstudie gegebenen Daten errechnen 

lässt.  Zuletzt möchte ich erwähnen, dass die in der Publikation als P-Werte der 

Metaanalysen dargestellten Werte am wahrscheinlichsten die P-Werte der 

Heterogenitätsanalysen darstellen. Dies lässt sich dadurch belegen, dass die in den 

Forrest-Plots dargestellten P-Werte sich auf die Heterogenitätsanalysen beziehen und 

dieselben Werte sich aber in der Beschreibung der Signifikanz wiederholen. Somit sind die 

für diese SNPs angegebenen Signifikanz-Werte dieser Metaanalysen 

höchstwahrscheinlich schlicht falsch dargestellt. Die vergleichsweise großen Unterschiede 

in den Ergebnissen der hier vorgelegten Dissertation und der Publikation von Jiang et al. 

sind m. E. durch diese Unterschiede (und wahrscheinlich: Fehler in der Jiang et al. 

Publikation) erklärlich.  

Qualitative Beurteilung der Metaanalyse von Moreno-Grau et al. [72] 

Die Metaanalyse von Moreno-Grau et al. wurde ebenfalls im Jahr 2018 publiziert, im Journal 

Oncotarget. Die Autoren dieser Studie haben sich ausschließlich auf den SNP rs3865444 

des CD33-Gens konzentriert und eine eigene Fall-Kontroll-Studie durchgeführt, die später 

mit den Ergebnissen aus 13 anderen Datensätzen per Metaanalyse kombiniert wurde. Die 

duplizierten Datensätze aus dem IGAP-Dataset (s.o.) wurden hier richtigerweise aus der 

Analyse ausgeschlossen. Trotzdem fiel auch diese Arbeit dem Fehler anheim, die 

Effektrichtung aus der Studie von Jiao et al. [51] nicht anzupassen, obwohl die Allele in der 

Arbeit offensichtlich auf dem komplementären Strang dargestellt sind. Im Vergleich zu der 

vorliegenden Dissertation erfolgte diese Metaanalyse nur zu einem der CD33-

Polymorphismen (rs3865444) und ausschließlich in der Gesamtpopulation, ohne dass die 

ethnischen Subgruppenanalysen durchführt wurden. Des Weiteren war die 
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Stichprobengröße der Metaanalyse von Moreno-Grau deutlich kleiner als die der 

vorliegenden Arbeit (90 913 [72] vs. 476.187 [diese Arbeit]), was durch den fehlenden 

Einschluss der Daten der Jansen-GWAS [48] bedingt war. Trotz der Unterschiede gab es 

keine relevanten Unterschiede in den Ergebnissen (Effektrichtung bzw. Signifikanz). 

Qualitative Beurteilung der Metaanalyse von Li et al. [60] 

Li et al. untersuchten in ihrer systematischen Übersichtsarbeit und Metaanalyse, die im Jahr 

2015 in der Zeitschrift Molecular Neurobiology publiziert wurde, lediglich den 

Zusammenhang zwischen dem SNP rs3865444 und dem AD-Risiko. Hierbei wurden die 

Daten für ostasiatische, europäische und nordamerikanische Populationen getrennt 

analysiert. Keiner der anderen CD33-Polymorphismen wurden für dieses Papier 

berücksichtigt. Nach meiner Durchsicht dieser Arbeit gab es i. Ggs. zu den oben 

dargestellten keinen Anhalt für methodische Fehler. Im direkten Vergleich mit der 

vorliegenden Arbeit war die Anzahl der in die Metaanalysen für den SNP rs3865444 

eingeschlossen Studien allerdings sehr viel kleiner (8 [60] vs. 21 [hier] in der 

Gesamtanalyse aller Populationen, 2 [60] vs. 9 [hier] in der europäischen Population und 4 

[60] vs. 8 [hier] in der ostasiatischen Population), sowie die der Stichprobengröße (86.756 

[60] vs. 476.187 [hier]  in der Gesamtanalyse aller Populationen, 74.998 [60] vs. 467.369 

[hier] in der europäischen Population und 4.186 [60] vs. 6.768 [hier] in der ostasiatischen 

Population), was der großen zeitlichen Differenz in der Durchführung beider Studien, 2015 

[60] vs. 2020 [diese Arbeit] geschuldet ist. Die Ergebnisse haben sich allerdings nicht in der 

Effektrichtung oder in der Signifikanz unterschieden. 

Qualitative Beurteilung der Metaanalyse von Mao et al. [66] 

Mao et al. fokussierten sich in deren Arbeit, die im Jahr 2016 in der Zeitschrift Neuroscience 

Letters erschien, ausschließlich auf Datensätze ostasiatischer Herkunft. Sie haben hierfür 

eine eigene genetische Assoziationsstudie für AD durchgeführt und anschließend die 

Ergebnisse mit anderen Fall-Kontroll-Studien zu diesem Thema metaanalysiert. Für das 

CD33-Gen wurden im Rahmen dieser Metaanalysen zwei Polymorphismen untersucht 

(rs3865444 und rs3826656). Die wichtigsten Unterschiede der Analysen der hier 

vorgelegten Dissertation im Vergleich mit der Metaanalyse von Mao et al. liegen in der 

Anzahl der eingeschlossenen Studien (5 [66] vs. 8 [hier] für den SNP rs3865444 und 2 [66] 

vs. 4 [hier] für den SNP rs3826656) und in den Stichprobengrößen (4.441 [66] vs. 6.768 

[hier] für den SNP rs3865444 und 626 [66] vs. 2098 [hier] für den SNP rs3826656). Was 

die Ergebnisse betrifft, gab es keine gravierenden Unterschiede, d.h. sowohl Mao et al. als 

auch diese Arbeit kamen zu dem Schluss, dass die SNPs rs3865444 und rs3826656 in der 
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ostasiatischen Population zu den AD-Risikoloci gehören, allerdings zeigte lediglich der SNP 

rs3826656 eine signifikante Assoziation mit der AD. 

Qualitative Beurteilung der Metaanalyse von Bao et al. [7] 

Die Metaanalyse von Bao et al., die im Jahr 2016 in der Zeitschrift Medical Science Monitor 

publiziert wurde, konzentrierte sich auf den CD33-Polymorphismus rs3865444 und auf zwei 

andere AD-Risikogene (ABCA7 und TOMM40). Diese Metaanalyse wies in der Art der 

Durchführung und Darstellung der Ergebnisse beim SNP rs3865444 jedoch deutliche 

Einschränkungen auf, welche die Aussagekraft der erhobenen Ergebnisse meiner Ansicht 

nach reduzieren. Ähnlich wie in der oben beschriebenen Metaanalyse von Jiang et al. 

erfolgte im Rahmen dieser Arbeit keine Kontrolle bzw. Eliminierung von duplizierten 

Datensätzen (zusammengeführte Datensätze der IGAP-Studie, s. o.). Dadurch wurden 

39.750 von 123.347 Probanden doppelt in die Analyse eingeschlossen. Auch die Richtung 

des Effekts der Studie von Deng et al. [28] wurde nicht angepasst, was zu einer falschen 

Berücksichtigung dieser Studie in den Metaanalysen führte. Ferner wurden zu den 

Subanalysen in Populationen ostasiatischer und europäischer Abstammung keine P-Werte 

angegeben, was es erschwert, eine Aussage zur statistischen Signifikanz der Ergebnisse 

zu machen. Anhand der publizierten OR-Werten und CI lässt sich aber annehmen, dass 

der SNP rs3865444 in europäischen Stichproben signifikant (OR = 0.93; CI: 0.90-0.95) und 

in ostasiatischen Stichproben nicht signifikant (OR = 0.86; CI: 0.58-1.27) mit der AD 

assoziiert war. 

Qualitative Beurteilung der Metaanalyse von Siokas et al. [102] 

Die neuste Metaanalyse zur Assoziationsevidenz zwischen SNPs des CD33-Gens und dem 

AD-Risiko wurde von den Autoren Siokas et al. im Jahr 2019 in der Zeitschrift Journal of 

Molecular Neuroscience veröffentlicht. Diese Arbeit hat eine eigene Fall-Kontroll-Studie in 

einem griechischen Datensatz durchgeführt, die anschließend mit sieben weiteren 

Primärstudien metaanalysiert wurde. Die Ergebnisse haben keine signifikante Assoziation 

zwischen LOAD und dem CD33-Polymorphismus rs3865444 in der gemischten Analyse in 

fünf verschiedenen genetischen Modellen (co-dominant, dominant, recessive, over-

dominant, log-additive) nachgewiesen. Erwähnenswert ist, dass die Primärstudienanzahl 

und Stichprobengröße in Siokas et al. deutlich kleiner als die in der hier vorgelegten 

Metaanalyse waren, d.h. 8 [102] vs. 21 [hier], sowie 11.996 [102] vs. 476. 187 [hier]. Dies 

ist v.a. der Tatsache geschuldet, dass Siokas et al. keine der publizierten GWAS 

eingeschlossen hatten. Der SNP rs3865444 wurde in der Metaanalyse von Siokas et al. in 

keinem der angewandten Modelle statistisch signifikant mit der AD assoziiert berichetet, 
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was allerdings den Ergebnissen meiner Arbeit in der gemischten Analyse nicht widerspricht. 

Weitere Subgruppenanalysen in verschiedenen Abstammungsgruppen wurden in der 

Metaanalyse von Siokas et al. allerdings nicht verfolgt.  

5.2.3 Stärken und Schwächen dieses Teils der Arbeit 

Aufgrund ihrer Aktualität ist eine der größten Stärken dieses Teils der Arbeit, dass die 

durchgeführten Metaanalysen jeweils den aktuellsten Forschungstand zur Beurteilung der 

Assoziation der CD33-Polymorhismen und des LOAD-Risikos darstellt, zumindest bis zum 

letzten Datum der Literatursuche am 31.12.2020. Im Vergleich zu bisherigen Metaanalysen 

wurde die größte Anzahl an Primärstudien und somit auch die größte Stichprobenanzahl in 

den Metaanalysen berücksichtigt, was die Aussagekraft der Ergebnisse erhöht. Des 

Weiteren wurde in dieser Arbeit bis dato die höchste Anzahl an Polymorphismen des CD33-

Gens metaanalysiert. Schließlich habe ich versucht durch die Anwendung der PRISMA-

Checklist die Qualität der Übersichtsarbeit und der darin durchgeführten Metaanalysen in 

höchsten Maße zu gewährleisten. Z. B. habe ich durch die Darstellung eines an die 

PRISMA-Flow-Chart angelehnten Flussdiagrammes und die tabellarische Darstellung der 

Ergebnisse die Arbeit möglichst transparent und nachvollziehbar gemacht. Basierend auf 

den qualitativen Beurteilungen anderer zu diesem Thema publizierter Metaanalysen stelle 

ich außerdem fest, dass ich in meiner Arbeit einige offensichtliche Fehler der 

Vorgängerstudien vermeiden konnte, was die Aussagekraft der Ergebnisse dieser 

Dissertation weiter erhöht. Selbstverständlich kann ich dennoch nicht ausschließen, dass 

sich trotz sorgfältigster Vorgehensweise auch in meine Arbeit Fehler eingeschlichen haben 

(s. nächster Abschnitt). 

Trotz der Befolgung gängiger Richtlinien zur Durchführung systematischer Metaanalysen 

von genetischen Assoziationsstudien gibt es auch in dieser Arbeit einige Schwächen, auf 

die ich im Folgenden hinweisen möchte. Die erste potenziellen Einschränkung betrifft die 

verwendete Suchstrategie, die möglicherweise einige in Frage kommende Studien nicht 

identifiziert hat, z. B. solche, die nicht in der Literaturdatenbank PubMed aufgeführt wurden. 

Ich habe versucht, diese mögliche Limitaiton durch Abgleich der Referenzlisten der 

identifizierten Primärpublikationen zu minimieren. Zweitens, kann ein zumindest teilweise 

fehlerhaftes Verfahren zur Datenextraktion und -darstellung trotz mehrfacher unabhängiger 

Kontrolle und Prüfung durch eine zweite und teilweise dritte fachkundige Person nicht 

komplett ausgeschlossen werden. Drittens erfolgte aufgrund fehlender Daten in einigen 

eingeschlossenen Studien die Berechnung der Effektstärken anhand der angegebenen 

MAF-Werte/Allele bzw. die eine Umrechnung der publizierten Daten, um möglichst „reine“ 

(d.h. nicht APOE-adjustierte) OR-Werte zu erhalten. Dieses Prozedere wurde analog zu 
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den Vorläuferstudien der Arbeitsgruppe gewählt [9]. Auch wenn sich in den vorgelegten 

Metaanalysen offensichtlich keine wesentlichen Veränderungen der Effektstärken ergeben 

haben, könnten unterschiedliche Berechnungsformen zu leicht unterschiedlichen 

Ergebnissen führen. Viertens habe ich für die Metaanalysen nur das additive Modell 

berechnet, andere genetische Transmissions-Modelle habe ich im Rahmen dieser 

Dissertation dagegen nicht berücksichtigt. Obwohl dies die gängige Praxis in genetischen 

Assoziationsstudien komplex-genetischer Erkrankungen darstellt [9, 62], kann nicht 

ausgeschlossen werden, dass die Berücksichtigung anderer Transmissionmodelle weitere 

Assoziationsevidenzen zu Tage gefördert hätte. Fünftens konnten hinsichtlich der 

ethnischen Abstammung lediglich Aussagen zu den nordeuropäischen und ostasiatischen 

Populationen getroffen werden. Dies war der Tatsache geschuldet, dass Daten zu anderen 

Abstammungsgruppen entweder ganz fehlten oder in nicht aussagekräftiger Anzahl 

vorlagen, so dass Metaanalysen zu diesen Populationen im Kontext dieser Arbeit nicht 

möglich waren. Um diese Situation in der Zukunft zu verbessern sind neue 

Assoziationsstudien zur Rolle der CD33-Polymorphismen und dem LOAD-Risiko in 

weiteren Abstammungsgruppen, z. B. denen aus Afrika oder dem südasiatischen Kontinent, 

notwendig. 

5.3 Diskussion der Ergebnisse der eQTL GWAS Analysen 

5.3.1 Zusammenfassung der wichtigsten Ergebnisse 

In diesem Teil der Arbeit habe ich selbständig eQTL-GWAS-Analysen zur Expression des 

CD33-Gens in humanen postmortem Gehirnproben durchgeführt. Dies wurde ermöglicht 

durch das parallele Vorliegen von genomweiten SNP-Genotypisierungs- und RNA-

Sequenzierungsdaten in Proben des entorhinalen Kortex von n~200 AD-Patienten und 

Kontrollprobanden, die im Rahmen anderer Forschungsprojekte der Arbeitsgruppe 

generiert wurden. Die übergeordnete Frage dieses Teils der vorgelegten Dissertation war, 

ob und welche genetischen Polymorphismen (d.h. SNPs) einen signifikanten Effekt auf die 

Expression des CD33-Gens in dieser Stichprobe zeigen. Ein besonderes Augenmerk lag 

dabei auf den in Abschnitt 4.1. metaanalysierten sechs CD33-Polymorphismen. Die Klärung 

möglicher eQTL-Effekte ist nicht zuletzt daher von besonderem Interesse, weil von einigen 

Autoren bereits postuliert wurde [41, 65], dass der Mechanismus der beobachteten 

genetischen Assoziationen durch eine erhöhte CD33-Expression im Gehirn erklärt werden 

könnte. Zumindest in den im Rahmen dieser Arbeit analysierten Gehirnproben konnte in 

den durchgeführten cis eQTL-Analysen jedoch kein erwähnenswerter Zusammenhang in 

diese Richtung beobachtet werden: keiner der sechs in den Metaanalysen 

krankheitsassoziierten CD33-SNPs zeigte gleichzeitig eine signifikante Assoziation mit der 

Expression des CD33-Gens. Wenn man das Ergebnis mit den Ergebnissen der 
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durchgeführten Metaanalysen zusammen betrachtet, legen diese Befunde den Schluss 

nahe, dass der Mechanismus der beobachteten genetischen Assoziationen mit dem LOAD-

Risiko nicht bzw. nicht hauptsächlich über die Genexpression vermittelt ist. Allerdings gibt 

es zu dieser Konklusion einige Limitationen, die ich weiter unten ausführe. 

In einem zweiten Analyseschritt wurden zusätzlich weitere DNA-Sequenzvarianten in cis 

Lokalisation zum CD33-Gen, also in +/-500kb Entfernung zum Transkriptionsstart oder -

Ende, auf mögliche Assoziationen mit der CD33-Expression im Gehirn untersucht. Von 

insgesamt 3442 analysierten SNPs, die in diesem Genabschnitt liegen (davon waren 

aufgrund der lokalen paarweisen LD-Struktur aber nur 382 als unabhängig zu betrachten) 

zeigte keine Variante eine Evidenz für genomweite Assoziation mit der CD33-Expression. 

Auch nach Bonferroni-Korrektur für alle unabhängigen im CD33-Bereich analysierten SNPs 

lag der signifikanteste eQTL P-Wert immer noch im Bereich der Nullhypothese. Die hier 

durchgeführten cis eQTL-Analysen legen somit nahe, dass genetische Polymorphismen im 

CD33-Gen nicht (bzw. nicht stark) in die eigene Expression im menschlichen Gehirn 

involviert sind, zumindest nicht in dem hier untersuchten Bereich des entorhinalen Kortex. 

Diese Ergebnisse decken sich weitestgehend mit denen der GTEx-Datenbank (V8), wo 

zwar einige moderate cis eQTL-Effekte beschrieben sind, diese sich aber alle auf 

subkortikale Regionen des Gehirns beschränken [19].   

Zuletzt habe ich die Suche nach möglichen genetischen Determinanten der CD33-

Expression auf das gesamte Genom ausgeweitet im Kontext von trans eQTL-Analysen. Die 

SNP-basierte GWAS-Analyse ergab dabei drei SNPs, die das genomweite 

Signifikanzniveau (P-Wert <5x10-8) unterschritten haben. Die signifikanteste Assoziation 

zeigte hierbei der SNP rs112851200, der sich in einem Intron des MTX3-Gens befindet. In 

diesem Zusammenhang ist interessant, dass ein anderes in kurzem Abstand zu MTX3 

lokalisiertes Gen (THBS4), bereits mit neurodegenerativen Prozessen in Verbindung 

gebracht wurde [27]. Der zweite genomweit signifikante trans eQTL-SNP (rs55934141) liegt 

im intergenischen, nicht-kodierenden Bereich des Genoms. Allerdings befinden sich laut 

GWAS-Katalog in unmittelbarer Nähe andere GWAS-Befunde, die einen Bezug zur 

Funktion des Immunsystems zeigen. Diese Koexistenz von unabhängigen Befunden legt 

nahe, dass ein Zusammenhang mit der CD33-vermittelten Immunantwort bestehen könnte, 

obwohl diese Konklusion der weiteren Überprüfung bedarf. Der dritte SNP rs2353260, der 

ebenfalls im intergenischen Bereich des Genoms liegt, hat das genomweite 

Signifikanzniveau nur marginal unterschritten. Interessanterweise wurde das dem SNP 

nächstliegende Gen, CSMD3, bereits funktionell mit dem Dendritenwachstum im Gehirn in 

Verbindung gebracht [98], was zumindest eine hypothetische Verbindung mit dem 

Enstehungsrisiko der AD darstellen könnte. Schließlich hat keines der Gen-basierten 
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Ergebnisse meiner trans eQTL-GWAS-Analysen die Schwelle der genomweiten Signifikanz 

unterschritten. Die zwei Gene mit der stärksten Assoziation mit der CD33-Expression im 

Gehirn (RCN1 und KIF3C) wurden in Abschnitt 4.2.3 detaillierter geschildert. 

Erwähnenswert ist die Tatsache, dass das KIF3C-Gen nicht nur im zentralen Nervensystem 

stark exprimiert wird, sondern auch immunsystemrelevanten Funktionen ausweist, welche 

potenzielle Berührungspunkte mit der Immunantwort haben könnte, die durch das CD33-

Gen vermittelt wird. 

5.3.2 Stärken und Schwächen dieses Teils der Arbeit 

Zu den Stärken der hier durchgeführten eQTL-Analysen gehört die Verwendung von 

genomweiten SNP- bzw. RNA-Expressionsdatensätzen, die in denselben Proben nach 

standardisierten Hochdurchsatz-Verfahren gewonnen wurden. Die zugrundeliegenden 

Proben entstammten ferner einer AD-relevanten Region (d.h. dem entorhinalen Kortex) des 

menschlichen Gehirns, für die es bisher nur sehr wenige Datensätze vergleichbarer Größe 

gibt. Durch das parallele Vorhandensein der genomweiten Genotypisierungsdaten, musste 

ich meine Suche nach potenziellen eQTLs der CD33-Expression nicht auf bestimmte 

Genomabschnitte beschränken, sondern konnte sie auf das gesamte Genom ausweiten. 

Trotz dieser Stärken ist die Aussagekraft auch dieses Teils der Arbeit durch einige 

Limitation möglicherweise eingeschränkt. Hierzu gehört zuallererst die mit einer effektiven 

n=177 vergleichsweise kleine Stichprobengröße. Obwohl dieser Stichprobenumfang für 

postmortem Analysen des menschlichen Gehirns noch als vergleichsweise groß 

anzunehmen ist (zum Vergleich: die GTEx-Datenbank hatte für viele AD-relevante kortikale 

Regionen in ihrer V8 eine kleinere effektive Stichprobengröße, z. B. Amygdala (n=129), 

Hippocampus (n=165)), ist die Stichprobe im Kontext von GWAS-Analysen, die sich 

heutzutage häufig auf mehrere Hunderttausend Teilnehmer beziehen, als klein anzusehen. 

Dennoch gibt es nach meinem Kenntnisstand nur wenige Projekte, die eine vergleichbare 

oder gar größere Anzahl an postmortem Gehirnproben mit parallelen generierten 

genomweiten Genotypisierungs und RNA-Sequenzierungsdaten vorliegen haben, insofern 

sind die hier präsentierten Ergebnisse durchaus aus „state-of-the-art“ anzusehen. Sobald 

größere Stichprobengrößen verfügbar sind, sollten die hier ermittelten cis und trans eQTL-

Ergebnisse aber unabhängig überprüft werden. Zweitens sind Genexpressionsstudien 

generell von einer Reihe von technischen (z. B. RNA-Extraktionsverfahren, 

Lagerungsbedingungen, RNA-Integrität, Post-Mortem-Interval) und biologischen (z. B. 

Alter, Zelltypzusammensetzung, Grad der Erkrankung, Todesumstände) Variablen 

beeinflusst, deren Messung und Berücksichtigung aufgrund der Vielzahl möglicher 

Faktoren schwierig bis unmöglich ist. Davon sind u. U. auch die Ergebnisse meiner 
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Analysen beeinträchtigt. Allerdings möchte ich hierbei hervorheben, dass inter-individuelle 

Unterschiede in diesen möglichen Störvariablen (engl. „confounder“) für die hier 

durchgeführten genetischen Assoziationsanalysen nur dann relevant sind, wenn sie sich 

systematisch über die verschiedenen Genotypgruppen hinweg unterscheiden. Diese 

Möglichkeit ist sehr unwahrscheinlich, da die Genotypen zum Zeitpunkt der 

Probenakquirierung nicht bekannt waren und die Gehirne in der Reihenfolge des 

Todeszeitpunktes gesammelt und gelagert wurden, nicht aber in Abhängigkeit von 

genetischen Faktoren, z. B. bestimmten APOE-Genotypen, o. ä. Drittens und teilweise 

zusammenhängend mit dem vorherigen Punkt, könnte der Diagnosestatus, d.h. ob es sich 

um einen AD-Patienten/Patientin oder eine Kontrollperson handelt, dann zu einer 

Verzerrung der eQTL-Analysen führen, wenn ein analysierter SNP gleichzeitig mit dem 

Krankheitsrisiko assoziiert ist, was ja z. B. für alle sechs metaanalysierten CD33-SNPs 

zutrifft. Diese mögliche Verzerrung wurde durch Einschluss des Diagnosestatus als 

Störvariable in die eQTL-Analysen ausgeschlossen (s. Kapitel 3). Viertens können in den 

hier durchgeführten eQTL-Analysen nur Aussagen zu möglichen Expressionseffekten im 

entorhinalen Kortex, nicht aber zu anderen Gehirnregionen getroffen werden. Fünftens 

lagen für die RNA-Sequenzierungsexperimente nur Gesamtgewebeproben vor (engl. „bulk 

tissue“), die nicht nach den vorliegenden unterschiedlichen Zelltypen aufgetrennt wurden. 

Das Vorliegen derartiger Zelltyp-spezifischer Datensätze aus menschlichen Gewebeproben 

würde auch eine Zelltyp-spezifische RNA-Sequenzierung erlauben (engl. „single cell 

sequencing“), die möglichen Unterschiede in den RNA-Sequenzprofilen und eQTL-Effekte 

beleuchten könnte. Die Durchführung von Zelltyp-spezifischen eQTL-Analysen wäre ein 

logischer und interessanter nächster Schritt bei der Charakterisierung von genetischen 

Effekten in der Genexpressionsregulierung. 

5.4 Schlussfolgerung und Ausblick  

In der vorliegenden Dissertation wurde die Rolle des CD33-Gens in der Entstehung der AD 

anhand von genetischen Metaanalysen und genomweiten eQTL-Analysen evaluiert. Diese 

Arbeit stellt den aktuellsten Forschungsstand in beiden Bereichen dar und bestätigt, dass 

SNPs rs3865444, rs3826656, rs1697553, rs2455068, rs12459419 und rs35112940 zu den 

AD-assoziierten Polymorphismen gehören und somit das CD33-Gen ein AD-Risikogen 

darstellt.   

Die gewonnenen genetischen Assoziationsergebnisse lassen sich durch die hier 

durchgeführten eQTL-Analysen besser einordnen, da die Ergebnisse dieses Teils der 

Arbeit nahelegen, dass die beobachteten genetischen Assoziation nicht bzw. nicht 

ausschließlich auf Effekte die die Genexpression betreffen zurückgeführt werden können. 
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Es wurden im Rahmen dieser Arbeit aber weitere genetische eQTL-assoziationssignale 

beobachtet, die mutmaßlich mit der immunologischen CD33-Funktion in Beziehung stehen 

können.  

Obwohl aus der vorliegenden Arbeit neue Erkenntnisse über die Zusammenhänge 

zwischen dem CD33-Gen und AD-Risiko resultieren, bietet dieses Gebiet weitergehend 

viele Herausforderungen für die zukünftige Forschung. Diese Projekte könnten sich z. B. 

auf die Betrachtung weiterer AD-assoziierter Polymorphismen im CD33-Gen konzentrieren. 

Im Hinblick auf die untersuchten Abstammungsgruppen ist zu erkennen, dass der Hauptteil 

der bisherigen Untersuchungen in nordeuropäischen Datensätzen durchgeführt worden ist, 

gefolgt von Datensätzen ostasiatischer Abstammung. Genetische Assoziationsstudien mit 

weiteren Abstammungsgruppen könnten hier weitere Subgruppenanalysen ermöglichen 

und sind daher wichtig. Des Weiteren könnte und sollte ein kontinuierliches Verfolgen der 

Literaturdatenbanken erfolgen, um neue Publikationen zu diesem Thema in aktualisierten 

Metaanalysen einfließend zu bewerten.  

Das Forschungsgebiet bietet jedoch noch weitere Potentiale. Zukünftige wissenschaftliche 

Arbeiten könnten an den bisherigen Erkenntnissen anknüpfen, indem weitere Analysen zu 

epigenetischen Modifikationen durchgeführt werden.  
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6 Zusammenfassung (Abstract) 

Genetik spielt bei der Entstehung der Alzheimer-Krankheit (AD) eine wichtige Rolle, die 

geschätzte Heritabilität für die spätmanifeste AD beträgt 56-79% [37]. Dank einer Vielzahl 

von genetischen Assoziationsstudien (v.a. GWAS) sind seit dem Jahr 2008 fast 50 AD-

Risikoloci reportiert worden [100]. Zahlreichen, v.a. in neueren GWAS identifizierten, AD-

Risikogenen wird ein Bezug zur Immunabwehr zugeschrieben [10]. Die vorliegende Arbeit 

beschäftigte sich mit einem dieser AD-Risikoloci, d.h. mit dem Gen CD33. Ziel dieser 

Dissertation war es, zu untersuchen, ob und wie CD33-Polymorphismen die Entwicklung 

der AD und die CD33-Expression in menschlichen Gehirnen beeinflussen. 

Für den ersten Teil meiner Arbeit habe ich einen systematischen Review der aktuellen 

Literatur der genetischen Assoziationsstudien von CD33 und dem AD-Risiko durchgeführt 

und alle relevanten Daten in Metaanalysen kombiniert. Obwohl es schon andere publizierte 

Metaanalysen zu dieser Fragestellung gibt, stellt meine Arbeit die derzeit umfangreichste 

und aktuellste Zusammenführung von genetischen Assoziationsdaten zum Thema dar. Alle 

sechs identifizierten und metaanalysierten CD33-Polymorphismen zeigten dabei in 

mindestens einer der untersuchten Abstammungsgruppen einen statistisch signifikanten 

Zusammenhang mit dem AD-Risiko. Hierbei war die Datenlage für Probanden mit 

nordeuropäischer Abstammung am umfangreichsten. Insgesamt betrachtet liefern die hier 

generierten Ergebnisse überzeugende Beweise dafür, dass drei CD33-Polymorphismen 

das Risiko der AD signifikant erhöhen, wogegen drei weitere Varianten eine signifikante 

Assoziation mit reduzierten AD-Risiko zeigten.  

Im zweiten Teil meiner Dissertation habe ich mich mit der Frage beschäftigt, ob und wenn 

ja welche genetischen Polymorphismen einen Einfluss auf die CD33-Genexpression im 

menschlichen Gehirn zeigen. Hierfür konnte ich CD33-Genexpressionsdaten (des 

entorhinalen Kortex) und genomweite SNP-Genotypisierungsprofile von insgesamt 177 

Probanden nordeuropäischer Abstammung im Kontext von eQTL-GWAS-Analysen 

zusammenführen. Diese Analysen zeigten, dass nur die trans Varianten (also solche, die 

nicht in unmittelbarer Nähe zum CD33-Gen lokalisiert sind) genomweit signifikante 

Assoziation mit der Expression des CD33-Gens zeigten. Interessanterweise wiesen keiner 

der sechs in dem ersten Teil der Arbeit untersuchten Polymorphismen (und auch keine 

weiteren cis Varianten) nennenswerte Assoziationssignale auf.  

Insgesamt lässt sich aus dieser Arbeit schließen, dass das CD33-Gen zwar einen wichtigen 

AD-Risikolocus darstellt, diese Assoziation aber eher nicht über die Genexpression 

vermittelt wird. Zukünftige Studien sollten die genetischen Analysen auf andere Ethnien 

ausweiten und die Pathomechanismen z. B. mittels funktioneller Experimente aufklären. 
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8 Anhang 

Anhang 1: Datensatz der für die Metaanalysen verwendeten Studien  

Der gesamte Datensatz der für die Metaanalysen verwendeten Studien befindet sich in 
Form einer MS-Excel-Datei auf der beigefügten CD-ROM 
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Anhang 2: ausgefüllte PRISMA 2020 Checkliste für die vorliegende Dissertation 

Section and 
Topic  

Item  Checklist item  Location where item is reported  

TITLE   

Title  1 Identify the report as a systematic review. Kapitel 2.5 - Fragestellung und Ziel der 
Arbeit 

ABSTRACT   

Abstract  2 See the PRISMA 2020 for Abstracts checklist. Kapitel 6 - Zusammenfassung (Abstract) 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the context of existing knowledge. Kapitel 2 – Einleitung und Fragestellung 

Objectives  4 Provide an explicit statement of the objective(s) or question(s) the review addresses. 

METHODS   

Eligibility criteria  5 Specify the inclusion and exclusion criteria for the review and how studies were grouped for the 
syntheses. 

Kapitel 3.3 - Auswahlkriterien inklusive 
Ein- und Ausschlusskriterien 

Information 
sources  

6 Specify all databases, registers, websites, organisations, reference lists and other sources searched 
or consulted to identify studies. Specify the date when each source was last searched or consulted. 

Kapitel 3.4 - Informationsquellen und 
Datensuchstrategie 

Search strategy 7 Present the full search strategies for all databases, registers and websites, including any filters and 
limits used. 

Selection 
process 

8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including 
how many reviewers screened each record and each report retrieved, whether they worked 
independently, and if applicable, details of automation tools used in the process. 

Kapitel 3.5 - Auswahl der Studien und 
Datensammlung 

Data collection 
process  

9 Specify the methods used to collect data from reports, including how many reviewers collected data 
from each report, whether they worked independently, any processes for obtaining or confirming data 
from study investigators, and if applicable, details of automation tools used in the process. 

Data items  10a List and define all outcomes for which data were sought. Specify whether all results that were 
compatible with each outcome domain in each study were sought (e.g. for all measures, time points, 
analyses), and if not, the methods used to decide which results to collect. 

10b List and define all other variables for which data were sought (e.g. participant and intervention 
characteristics, funding sources). Describe any assumptions made about any missing or unclear 
information. 

Study risk of 
bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) 
used, how many reviewers assessed each study and whether they worked independently, and if 
applicable, details of automation tools used in the process. 

Kapitel 3.6 - Statische Auswertung und 
Reduzierung von Biases in der 
Metaanalyse 
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Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis 
or presentation of results. 

 
 
 
 
 
 
 
 

Kapitel 3.6 - Statische Auswertung und 
Reduzierung von Biases in der 
Metaanalyse 

Synthesis 
methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating 
the study intervention characteristics and comparing against the planned groups for each synthesis 
(item #5)). 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of 
missing summary statistics, or data conversions. 

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 

13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-
analysis was performed, describe the model(s), method(s) to identify the presence and extent of 
statistical heterogeneity, and software package(s) used. 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. 
subgroup analysis, meta-regression). 

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 

Reporting bias 
assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from 
reporting biases). 

Certainty 
assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an 
outcome. 

RESULTS   

Study selection  16a Describe the results of the search and selection process, from the number of records identified in the 
search to the number of studies included in the review, ideally using a flow diagram. 

Kapitel 4.1.1 - PRISMA Flow Chart 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why 
they were excluded. 

Study 
characteristics  

17 Cite each included study and present its characteristics. Kapitel 4.1.1 - 
PRISMA Flow Chart  
Kapitel 7 - Literaturverzeichnis 

Risk of bias in 
studies  

18 Present assessments of risk of bias for each included study. n/a 

Results of 
individual 
studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) 
and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured 
tables or plots. 

Anhang 1 

Results of 
syntheses 

20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. Kapitel 4.1.2 - Überblick Ergebnisse der 
eigenen Metaanalysen 
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20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the 
summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical 
heterogeneity. If comparing groups, describe the direction of the effect. 

Kapitel 4.1 - Metaanalysen genetischer 
Assoziationsstudien zur Rolle des CD33-
Gens in der AD 

20c Present results of all investigations of possible causes of heterogeneity among study results. Kapitel 4.1.2 - Überblick Ergebnisse der 
eigenen Metaanalysen 20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized 

results. 

Reporting 
biases 

21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each 
synthesis assessed. 

n/a 

Certainty of 
evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. Kapitel 4.1 - Metaanalysen genetischer 
Assoziationsstudien zur Rolle des CD33-
Gens in der AD 

DISCUSSION   

Discussion  23a Provide a general interpretation of the results in the context of other evidence. Kapitel 5.2 - Diskussion der Ergebnisse 
der Metaanalysen 

23b Discuss any limitations of the evidence included in the review. Kapitel 5.2.3 - Stärken und Schwächen 
der Arbeit 23c Discuss any limitations of the review processes used. 

23d Discuss implications of the results for practice, policy, and future research. Kapitel 5.4 - Schlussfolgerung und 
Ausblick 
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Anhang 3: R Code für die Metaanalysen 

#Installiere Metastudien Auswertung-Libaries 

install.packages("meta") 

library(meta) 

 

#Dataset aus Tabelle in R Studio laden  

# Arbeitsordner angeben, in der die einzulesende csv liegt 

setwd("//xy/Data/Doktorarbeit/ Datentabelle)") 

 

# Einlesen der Tabelle 

library(readxl) 

data = read_excel("rs35112940.xlsx", col_types = c("text", "numeric", "numeric",  

                                               "numeric", "numeric", "numeric")) 

 

# Statische Auswertung mit Metagen 

# comb.fixed / comb.random wurden je nach effect model anpassen 

ergebnis = metagen(TE=log(OR), 

                   seTE=SE, 

                   data=data, 

                   studlab = Autor, 

                   n.e = cases, 

                   n.c = control, 

                   comb.fixed = FALSE, 

                   comb.random = TRUE, 

                   method.tau = "DL", 

                   #hakn = TRUE, 

                   #prediction = TRUE, 

                   sm = "OR") 
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# Ergebnis plotten 

# bei leftcols = "Null" wenn TE und seTE auch erscheinen sollen 

# test.overall.random =  TRUE oder test.overall.fixed =  TRUE bzw. w.random oder  

# w.fixed je nach effect model anpassen 

forest(ergebnis,  test.overall.random =  TRUE, layout = "meta",  scientific.pval =  TRUE, 
digits.pval.Q = 2, digits.pval = 2, leftcols = c("studlab", "Year", "n.e", "n.c"), leftlabs = 
c("Involved Studies", "Year of Study", "Cases", "Controls"), rightlabs = NULL, rightcols = 
c("effect", "ci", "w.random"), sortvar = Year, digits.weight = 2, type.fixed = "diamond", 
col.diamond.fixed = "blue", col.diamond.lines.fixed = "black", type.random = "diamond", 
col.diamond.random = "blue", col.diamond.lines.random = "black") 

 

# Funnel-Plot erstellen 

funnel(ergebnis) 

 

# Egger's Test (Test auf Publication Bias) 

metabias(ergebnis, method.bias = "Egger") 

metabias(ergebnis, method.bias = "Egger", k.min=1)$pval 

metabias(ergebnis, method.bias = "Egger", plotit = TRUE, k.min=1) 
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Anhang 4: ausgefüllte AMSTAR Checkliste für die vorliegende Dissertation 

 

1. Wurde die Übersichtsarbeit a priori geplant/definiert?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

2. Wurde die Studienauswahl und Datenextraktion von 2 Personen unabhängig 
voneinander ausgeführt?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

3. Wurde eine umfassende und systematische Literatursuche durchgeführt?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

4. Wurden unpublizierte Studiendaten und graue Literatur in der Übersichtsarbeit 
berücksichtigt?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

5. Wurden die Referenzen der ein- und ausgeschlossenen Studien in der Übersichtsarbeit 
angegeben?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

6. Wurden die Studiencharakteristika (Charakteristika der Patienten, Intervention(en) und 
Endpunkte) der eingeschlossenen Studien in Tabellenform oder ausführlich in Textform 
angegeben?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

7. Wurde das Verzerrungsrisiko der eingeschlossenen Primärstudien nach etablierten 
Methoden bewertet?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

8. Wurde das Verzerrungsrisiko der eingeschlossenen Studien in der 
Ergebnisinterpretation der Übersichtsarbeit berücksichtigt?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  
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9. Wurden die Studienergebnisse statistisch adäquat ausgewertet?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

10. Wurde potentieller Publikationsbias adressiert?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  

 

11. Wurden potentielle Interessenkonflikte adressiert?  

 JA   NEIN   UNKLAR  NICHT ANWENDBAR  
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Anhang 5: Funnel-Plots  

 

Anhang 5.1: Funnel-Plot für den SNP rs3865444; nur nordeuropäische Abstammung  

 

Anhang 5.2: Funnel-Plot für den SNP rs3865444; nur ostasiatische Abstammung  

 

Anhang 5.3: Funnel-Plot für den SNP rs3865444; nur hispanische Abstammung  
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Anhang 5.4: Funnel-Plot für den SNP rs3826656; nach Einschluss aller ethnischen Abstammungsgruppen  

 

 

Anhang 5.5: Funnel-Plot für den SNP rs1697553; nach Einschluss aller ethnischen Abstammungsgruppen 

 

Anhang 5.6: Funnel-Plot für den SNP rs2455069; nur nordeuropäische Abstammung  
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 Anhang 5.7: Funnel-Plot für den SNP rs12459419; nach Einschluss aller ethnischen Abstammungsgruppen 

 

 Anhang 5.8: Funnel-Plot für den SNP rs35112940; nur nordeuropäische Abstammung 

 

Anhang 6: Egger‘s-Test Ergebnisse 
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rs3865444 Alle ethnischen Abstammungsgruppen 0.4156 

rs3865444 Nordeuropäische Abstammung 0.1700 

rs3865444 Ostasiatische Abstammung 0.7018 

rs3865444 Hispanische Abstammung 0.0 

rs3826656 Alle ethnischen Abstammungsgruppen 0.2744 

rs3826656 Ostasiatische Abstammung 0.2273 

rs1697553 Alle ethnischen Abstammungsgruppen 0.6825 

rs2455069 Nordeuropäische Abstammung 0.3292 

rs12459419 Alle ethnischen Abstammungsgruppen 0.0713 

rs35112940 Nordeuropäische Abstammung 0.2551 
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Anhang 7: Votum der Ethikkomission  
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Anhang 8: Top-SNP-Tabelle trans eQTL-Ergebnisse  

Die Top-SNP-Tabelle trans eQTL-Ergebnisse als Excel-Datei befindet sich in Form einer 
MS-Excel-Datei auf der beigefügten CD-ROM. 

 

Anhang 9: Resultate der cis eQTL-Analysen in der „cis“ CD33-Region 

Die gesamten Resultate der cis eQTL-Analysen in der „cis“ CD33-Region befinden sich in 
Form einer MS-Excel-Datei auf der beigefügten CD-ROM. 

 

Anhang 10: VEP-Outputs 

Die VEP-Outputs als Excel-Datei befinden sich in Form einer MS-Excel-Datei auf der 
beigefügten CD-ROM. 
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