
From the Institute of Signal Processing
of the University of Lübeck

Director: Prof. Dr.-Ing. Alfred Mertins

Incorporating Prior Knowledge of
Invariances into Deep Models for

Computer Vision

Dissertation
for Fullfilment of

Requirements
for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences and Technical Engineering

Submitted by
M. Sc. Benjamin Coors

from Leonberg

Lübeck, 2022

First referee: PD Dr. A. Condurache
Second referee: Prof. Dr. E. Barth
Date of oral examination: 28.04.2022
Approved for printing. Lübeck, 02.05.2022

ii

Abstract

In the past decade, deep learning has revolutionized the field of computer vision. Nowa-
days, most challenging computer vision tasks are commonly solved with deep neural
networks. Yet, while neural networks can offer state-of-the-art performance, they gener-
ally require large labeled training datasets to fulfill their full potential. As the collection
and annotation of a large-scale computer vision dataset is work intensive and expensive, it
is therefore worth asking how deep learning’s hunger for data can be reduced.

One approach for improving the data efficiency of machine learning models such as
neural networks is the use of prior knowledge. A particularly powerful form of prior
knowledge are invariances, which define the visual distractors to which a model should
not pay attention to. In this thesis, three ideas for incorporating invariances into the
learning process, architecture or training data of deep neural networks are investigated.

First, an unsupervised similarity loss is proposed, which utilizes the fact that labels do
not change under a known set of geometric transformations of the input. This invariance
property acts as a regularizer when training an image classification model with little
labeled training data and enables the use of unlabeled data for semi-supervised learning.

Second, the SphereNet framework for learning spherical representations in omnidirec-
tional images is introduced. In contrast to regular perspective images, only few omnidirec-
tional datasets exist which are generally of smaller size than their perspective counterparts.
Here, SphereNet facilitates a transfer from the perspective to the omnidirectional do-
main by encoding invariance to the distortions in the equirectangular representation of
omnidirectional images into the architecture of deep convolutional neural networks.

Third, the Novel Viewpoint Adaptation (NoVA) model is presented which enables
an adaptation from a viewpoint in which a large labeled dataset is available to a novel
viewpoint, potentially within a novel domain, in which few or no labeled examples exist.
For this, NoVA utilizes the prior knowledge about the transformation between the two
viewpoints as well as the fact that the semantic labels in 3D space should be invariant to
the change in viewpoint to translate the input images and labels to the novel viewpoint.

iii

Extensive experiments validate the effectiveness of all three proposed methods in
comparison to current state-of-the-art baseline approaches for a variety of challenging
computer vision tasks including image classification, object detection, semantic segmen-
tation and optical flow.

iv

Kurzfassung

Deep Learning hat im vergangenen Jahrzehnt das Gebiet der Bildverarbeitung revolu-
tioniert. Heutzutage stellen tiefe neuronale Netze für eine Vielzahl an herausfordernden
Bildverarbeitungsaufgaben den Stand der Technik dar. Jedoch benötigen diese große
annotierte Trainings-Datensätze um ihr volles Potential auszuschöpfen. Da die Aufnahme
und Annotation solcher Datensätze allerdings sehr arbeits- und kostenintensiv ist, stellt
sich die Frage, wie sich der Hunger tiefer neuronaler Netze nach Daten reduzieren lässt.

Ein Ansatz um die Dateneffizienz maschineller Lernverfahren wie neuronaler Netze zu
verbessern ist die Nutzung von Vorwissen, insbesondere in Form von Invarianzen. Diese
definieren welchen visuellen Änderungen ein Bildverarbeitungsmodell keine Bedeutung
schenken sollte. In dieser Arbeit werden drei Ideen zum Einbau von Invarianzen in den
Lernprozess, die Architektur und die Trainingsdaten tiefer neuronaler Netze untersucht.

Erstens wird eine unüberwachte Ähnlichkeits-Fehlerfunktion vorgeschlagen, welche
darauf basiert, dass sich die Zielwerte nicht unter bestimmten geometrischen Transforma-
tionen des zugehörigen Eingabebildes verändern. Diese Invarianz-Eigenschaft agiert als
Regularisierer wenn ein Bildklassifikationsmodell mit wenigen annotierten Daten trainiert
wird und erlaubt die Nutzung von Daten ohne Zielwerte für semi-überwachtes Lernen.

Zweitens wird das SphereNet Framework zum Lernen sphärischer Repräsentationen
aus omnidirektionalen Bildern eingeführt. Im Gegensatz zu regulären perspektivischen
Bildern existieren nur wenige omnidirektionale Datensätze, welche allgemein von kleine-
rer Größe als ihre perspektivischen Gegenstücke sind. Hier ermöglicht SphereNet durch
die Einbindung von Invarianz zu Verzerrungen, welche durch die äquirektanguläre Re-
präsentation in omnidirektionalen Bildern hervorgerufen wird, in die Architektur tiefer
Faltungsnetze einen Transfer aus der perspektivischen zur omnidirektionalen Domäne.

Drittens wird das Novel Viewpoint Adaptation (NoVA) Modell präsentiert, welches ei-
ne Adaptation von einem Blickwinkel, in dem ein großer annotierter Datensatz verfügbar
ist, zu einem neuen Blickwinkel ermöglicht, welcher sich möglicherweise in einer ande-
ren Domäne befindet und in welchem wenige oder keine annotierten Daten vorhanden

v

sind. Hierbei nutzt NoVA das Vorwissen über die Transformation zwischen den zwei
Blickwinkeln sowie die Tatsache, dass die semantischen Zielwerte im 3D-Raum invariant
zu einer Änderung des Blickwinkels sein sollten, um die Eingabebilder und Zielwerte in
den neuen Blickwinkel zu übersetzen.

Umfangreiche Experimente bestätigen die Effektivität aller drei Ansätze im Vergleich
zu existierenden Ansätzen aus dem aktuellen Stand der Technik für eine Vielzahl von
herausfordernden Bildverarbeitungsaufgaben wie der Bildklassifikation, Objektdetektion,
semantischen Segmentierung und des optischen Flusses.

vi

Acknowledgments

I would like to thank my supervisors, PD Dr. Alexandru Paul Condurache and Prof.
Dr. Andreas Geiger, my colleagues at Bosch, in particular fellow Bosch PhD students
Felix, Julia and Matthias, my colleagues in the Autonomous Vision Group at the Max
Planck Institute for Intelligent Systems, Aditya, Aseem, Carolin, Cusuh, David, Despoina,
Eshed, Fatma, Joël, Kashyap, Katja, Lars, Mengqi, Michael2, Seungjun, Simon, Yiyi and
Zhaoyang, as well as my parents, Mechthild and Andreas, and my partner, Dongmyeong,
for their encouragement, guidance, patience and never-ending support throughout my
PhD journey.

vii

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Thesis Outline . 3

2 Theoretical Foundations 4
2.1 Invariance in Machine Learning Models 6
2.2 Invariance and Equivariance in Deep Neural Networks 12

2.2.1 Learning Invariance / Equivariance in Deep Models. 13
2.2.2 Deep Invariant and Equivariant Architectures 17
2.2.3 Deep Domain Invariance . 23

2.2.3.1 Feature-Level Adaptation 24
2.2.3.2 Image-Level Adaptation 26

3 Learning Transformation Invariant Representations with Weak Supervision 29
3.1 Method . 31
3.2 Experimental Evaluation . 34

3.2.1 Experimental Setup . 34
3.2.2 Supervised Learning on Rotated MNIST Subset 35
3.2.3 Semi-Supervised Learning . 37

3.2.3.1 Rotated MNIST . 37
3.2.3.2 German Traffic Sign Recognition Benchmark 39

3.3 Discussion . 41
3.4 Conclusions . 41

4 SphereNet: Learning Spherical Representations in Omnidirectional Images 43
4.1 Method . 46

4.1.1 Kernel Sampling Pattern . 46
4.1.2 Uniform Sphere Sampling . 50

viii

4.1.3 Spherical Transformer Network 51
4.1.4 Spherical Image Classification 52
4.1.5 Spherical Object Detection . 53
4.1.6 Spherical Semantic Segmentation 54
4.1.7 Spherical Optical Flow . 54

4.2 Experimental Evaluation . 57
4.2.1 Image Classification: Omni-MNIST 57
4.2.2 Object Detection . 61

4.2.2.1 FlyingCars . 61
4.2.2.2 Transfer Learning: OmPaCa 63

4.2.3 Semantic Segmentation: Stuttgart360 66
4.2.4 Optical Flow: FlyingThings 67

4.3 Conclusions . 69

5 NoVA: Learning to See in Novel Viewpoints and Domains 71
5.1 Method . 75
5.2 Experiments . 79

5.2.1 Experimental Setup . 79
5.2.2 Sim2Sim . 81
5.2.3 Sim2Real . 83

5.3 Conclusions . 86

6 Summary 88

A Appendix 90
A.1 NoVA Datasets . 90

A.1.1 Semantic Segmentation Classes 90
A.1.2 Viewpoint Transformation . 90

A.1.2.1 Sim2Sim . 92
A.1.2.2 Sim2Real . 92

A.2 Additional Qualitative Results for NoVA 93
A.2.1 Sim2Sim . 93
A.2.2 Sim2Real . 94

Symbols 103

ix

Abbreviations 104

Bibliography 106

x

Chapter 1

Introduction

Deep convolutional neural networks have revolutionized the field of computer vision and
currently offer state-of-the-art performance for many computer vision tasks. However,
their success comes with the need for large annotated training datasets, which take
considerable time and effort to create. While in some cases large annotated datasets
readily exist, novel application scenarios as well as different camera sensors or setups
often require the recording and labeling of new a dataset. In order to reduce the labeling
effort, it is thus worthwhile to investigate how performant computer vision models can be
trained when only limited or potentially no labeled data is available.

A well-studied approach to improve the data efficiency of a machine learning system is
the utilization of prior knowledge, particularly in the form of invariance or equivariance

with respect to a set of known transformations of the input data. While invariance signals
that a specific transformation should not affect the output of a model, equivariance signals
that the output of a model should transform in accordance with the input transformation.
For example, an image classification model should be invariant to translations or scale
changes of an object, whereas an object detection model should be equivariant to these
transformations as it needs to estimate an object’s bounding box. Thus, it is important
that the right invariance or equivariance property is chosen depending on the task at hand.

Recently, the benefits of incorporating invariance or equivariance have also been demon-
strated for deep neural networks. Yet, existing approaches are often limited to simple
geometric transformations such as rotations or to the single task of image classification.
In this thesis, three novel ideas for incorporating prior knowledge of invariances into
deep models are presented. The proposed methods cover a variety of transformations and
challenging computer visions tasks which are of high relevance for real-life applications
such as autonomous driving or advanced driver-assistance systems.

1

A first proposed method is concerned with learning invariance with respect to a
specific set of transformations in a deep image classification model. For the task of
image classification, transformations such as translations, rotations, scale changes or
deformations of an object in the scene do not change the identity of the object and
therefore should not influence the model’s classification. While variations in an object’s
scale or position occur naturally within a dataset, they can also be synthetically created
with the help of data augmentation (e.g. by rotating, cropping or warping the image).
The proposed method utilizes the simple insight that an image’s class should not change
under data augmentation to introduce a novel unsupervised similarity loss which acts as
an effective regularizer in the presence of little annotated training data and facilitates the
learning of transformation invariant representations in a semi-supervised manner.

A second proposed approach encodes invariance to distortions which are present
in omnidirectional images into the architecture of deep convolutional neural networks.
While large labeled datasets of perspective images are commonly available, few large-
scale omnidirectional datasets exist. At the same time, omnidirectional data comes
with the challenge of containing an additional factor of variation that is introduced by
the distortions in the equirectangular representation of omnidirectional images. Here,
an object’s appearance will vary greatly depending on its longitudinal position in the
image. This thesis presents the novel SphereNet framework which adapts the sampling
locations of the convolutional filters to effectively reverse the distortions and wraps the
convolutional filters around the image sphere, thereby enabling an improved transfer of
existing convolutional neural network models to the omnidirectional case for a variety of
tasks including object detection, semantic segmentation and optical flow estimation.

Finally, a third proposed model deals with adapting the training data for invariance to
a change in viewpoint. When applying a model that was trained with labeled data from a
given source viewpoint in a novel target viewpoint, it can be observed that the model’s
performance will drop significantly. Yet, while it is easy to record new data points in
the target viewpoint, it is a labor-intensive task to label them. Thus, the proposed Novel
Viewpoint Adaptation (NoVA) model utilizes the prior knowledge about the change in
viewpoint in order to translate the source view images and labels to the target viewpoint.
This translation is performed in an unsupervised way by utilizing an explicit representation
of the 3D scene geometry and does not require source-target view pairs. Based on the
translated source view data, a semantic segmentation model is then trained which performs
well in the target view despite having been trained without any true target view labels.

2

1.1 Contributions

In summary, this thesis makes the following contributions:

• A novel similarity loss which acts as an effective regularizer when little labeled
training data is available by utilizing labeled as well as additional unlabeled training
for learning a transformation invariant image classification model in a supervised
or semi-supervised manner [22].

• The SphereNet framework for learning spherical image representations from omni-
directional images by encoding distortion invariance into the filters of deep convolu-
tional neural networks. SphereNet retains the original spherical image connectivity
and, by building on regular convolutions, enables the transfer of perspective models
to omnidirectional inputs for a variety of computer vision tasks [20].

• The Novel Viewpoint Adaptation (NoVA) model for the unsupervised adaptation of
a labeled source view dataset to a novel target viewpoint in which no labeled data is
available. By utilizing the known transformation between the two viewpoints, the
viewpoint change itself no longer has to be learned by the model and NoVA instead
reduces the task to the well-studied problems of depth estimation, image inpainting
and stylization [21].

1.2 Thesis Outline

The structure of this thesis is as follows: Chapter 2 presents the foundations and current
state-of-the-art in the field on incorporating prior knowledge of invariances/equivariances
into deep neural network models for computer vision. In the following Chapter 3, the
proposed method on learning transformation invariance with weak supervision is pre-
sented. In Chapter 4, the SphereNet framework for learning spherical representations
from omnidirectional images is described. Chapter 5 then gives details on the Novel
Viewpoint Adaptation (NoVA) model that supports an unsupervised adaptation to a novel
viewpoint in which no labeled data is available. Finally, Chapter 6 draws conclusions
about the obtained results and outlines possible lines of future work.

3

Chapter 2

Theoretical Foundations

“ Recognition is the science and engineering of models that have effective

invariance and equivariance properties. ”
Ross Girshick, ICVSS, 2017

In this chapter, we will provide an introduction to the incorporation of prior knowledge
of invariances into machine learning and computer vision models. While the first part
of this chapter will focus on an overview on the foundations of invariance in machine
learning models, the second part of the chapter will go into depth on recent approaches
for incorporating invariance or equivariance into deep neural network models.

Prior knowledge, as defined by Schölkopf et al. [123], refers to all the information
about the task at hand which is available in addition to the training data itself. An example
of prior knowledge that is fundamental to machine learning is the general smoothness

assumption which states that a test example which is similar to a training example should
also be assigned to the same class or have a corresponding output. This assumption
enables a machine learning model to generalize from its training data to novel unseen test
examples. Another fundamental form of prior knowledge that is commonly utilized in the
field of image recognition is the prior knowledge about transformation invariances.

For many tasks, it is known that the features or output of an image recognition model
should not change under certain transformations of its input data. For example, the output
of a handwritten digit classifier should not change when a digit is slightly deformed,
rotated or scaled. In this case, the model should be invariant to these transformations.
More formally, we can say that the output of a classifier f for a given input x should be

4

t45

f f

"4" "4"

t45

f f

t45

f f

45° 90°+45t45

Figure 2.1: Equivariance (left) vs. Invariance (middle) vs. Covariance (right). While
the output of an equivariant function f preserves the input rotation t45 in its output, the
output of an invariant classification function f remains the same despite the transformation
of the input. On the other hand, the output of a covariant orientation estimation function
f changes as a function of the rotation of the input. Adapted from [98].

equal to its output for a transformed version of x with respect to a transformation t from a
set of transformations T :

f (x) = f (t(x)) (2.1)

However, not all tasks require a model to be invariant but may instead require the
output to be covariant or equivariant with respect to a transformation of the input. For
example, a model which is tasked with estimating the orientation of a handwritten digit
would struggle to do so based on rotation invariant features, which discard the information
about changes in digit orientation. Instead, it would benefit from covariant or equivariant
features that would not discard but contain the information about the change in digit
orientation. While an equivariant model would represent the transformation of the input
with the same transformation of its output (see Eq. (2.2)), a covariant model would
associate the transformation t of the input with a second transformation t ′ of the output,
that would itself be a function of t (see Eq. (2.3)). Fig. 2.1 visualizes this difference in
order to make the distinction between equivariance, invariance and covariance more clear.

t(f (x)) = f (t(x)) (2.2)

t ′(f (x)) = f (t(x)) (2.3)

Thereby, both invariance and equivariance can be seen as special cases of covariance
where t ′ = I, the identity, for invariance and t ′ = t for equivariance.

5

While historically the topic of transformation invariance has received more attention
in the research community (see the survey paper by Tuytelaars & Mikolajczyk [145]),
equivariance has recently come into more focus [14,17,19,72]. One reason for this change
is that the attention of the computer vision community has somewhat shifted from the
simpler task of image classification, which mostly benefits from transformation invariance,
to more challenging tasks such as object detection or pose estimation, in which equivariant
features are beneficial in order to predict an object’s position or pose. However, the choice
to which specific transformation a model should be invariant or equivariant is highly task-
specific and must be taken with care as invariance or equivariance properties which are
not adapted to the task at hand may have a negative impact on model performance [145].

Nowadays, many different approaches exist for incorporating invariance or equivariance
properties into a machine learning or image recognition model. In general, one can
distinguish approaches which aim to learn invariance from approaches that directly
encode invariance into the architecture of the model. Furthermore, one can distinguish
between global invariance approaches, that aim for invariance wrt. a global transformation
of the input, and local invariance approaches, which target invariance wrt. a transformation
of a local neighborhood of the input such as an image segment or an image patch.

Below, Chapter 2.1 will review the foundations of incorporating invariance and equivari-
ance into image recognition models. As the importance of local invariant feature detectors
and descriptors such as HOG [26] or SIFT [95] has diminished in recent years, we will fo-
cus our discussion on invariant and equivariant learning-based image recognition models.
Afterwards, Chapter 2.2 will give a more in-depth overview of approaches for encoding or
learning invariant or equivariant deep neural network models, which have recently gained
more interest in the computer vision research community. This part will also present the
related works that we will later utilize as baseline approaches in our experiments.

2.1 Invariance in Machine Learning Models

In this part, we will present the foundations for our later deep dive into invariant deep
models by looking at past ideas for incorporating invariance into machine learning
algorithms. Here, we will also introduce convolutional neural networks and highlight how
their invariance and equivariance properties played a key role in their recent success story
which has made them the go-to solution for nearly any computer vision problem.

6

One approach for incorporating invariance into a machine learning model such as a
neural network is to learn it from the training data. Given a suitable large enough labeled
training dataset, a large enough model capacity and long or unlimited time for training
a model can learn the desired transformation invariances from the data during training.
However, in order for the training data to be suitable for learning a desired invariance,
the training data must contain enough variation with respect to the transformation to
which the model should learn to be invariant. As this is difficult to measure and ensure,
data augmentation is commonly used to enlarge the training set with identity-preserving
transformed copies of training samples [2, 3, 103, 128].

The use of data augmentation for learning invariance has the advantage of being very
simple to implement, in particular for the task of image classification, where it usually
only requires an augmentation of the input data and not of the corresponding labels, as
well as being compatible with a wide variety of transformations. Yet, as reported by
Simard et al. [127], the use of data augmentation has the disadvantage of extending the
training dataset with samples that are heavily correlated with the original training samples.
This in turn slows down the training of the model significantly as it makes learning
algorithms such as backpropagation very inefficient. Furthermore, data augmentation
cannot guarantee that the desired invariances are actually learned as a lack of model
capacity or too short training time might result in the model not learning full invariance.

In order to place an additional soft constraint on the model to learn the desired invari-
ance from the training data, regularization can be used. An example for an invariance
inducing regularizer is Tangent Prop [127], which penalizes the derivatives of the classi-
fication function in the direction of the transformation to which the model should learn
to be invariant. This is implemented by modifying the weight-update rule to include an
additional regularization objective. Similar invariance inducing regularizers have also
been proposed for Support Vector Machine (SVM) models [9, 124].

An advantage of the use regularization over data augmentation is that it enables a model
to learn invariance from fewer rather than from more training samples, thereby effectively
improving the data efficiency of the training. However, unlike data augmentation, it is
not as simple to derive and implement as the influence of the regularization objective
has to be carefully tuned with respect to the original learning objective. Besides, as with
data augmentation, regularization cannot guarantee that the model learns the desired
invariance. Therefore, the invariance properties of a model trained with data augmentation
or regularization should ideally be measured and verified after training.

7

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

Figure 2.2: Local Connectivity of Convolutional Neural Networks. While a neuron s3
in a convolutional layer is only connected to a local neighborhood of width 3 (top), it is
connected to all spatial locations of the input in a fully-connected layer (bottom). Adapted
from [48].

A third approach for incorporating invariance into machine learning systems are model
constraints, that effectively hard-code the desired invariance into the architecture of the
model. Thus, unlike data augmentation or regularization, which both aim to learn an
(approximate) invariance from the training data, the use of model constraints can offer
invariance guarantees. Yet, it may not always be trivial to develop an invariant model
architecture, in particular if the model should not just be invariant to a single geometric
transformation such as translations or rotations but should be invariant to a larger set of
different and possibly more complex transformations of the input.

With regards to neural networks, a prominent example of encoding invariance and
equivariance constraints into the architecture of the model are Convolutional Neural

Networks (CNNs) [81], whose recent success in the field of computer vision can be partly
explained by their built in invariance and equivariance properties.

8

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

s1 s2 s3 s4 s5

x1 x2 x3 x4 x5

Figure 2.3: Parameter Sharing of Convolutional Neural Networks. Shared parameters
are indicated by black arrows. While the convolutional model shares parameters between
adjacent neurons (top), a fully-connected model has no parameter sharing (bottom).
Adapted from [48].

Convolutional Neural Networks and their predecessor the NeoCognitron [38] are
inspired by Hubel and Wiesel’s discovery of a hierarchical model of simple and complex
cells in the primary visual cortex of cats [60]. While simple cells respond to a stimulus
within a localized receptive field, a small region of the visual field that the cell responds
to, complex cells have a larger receptive field and exhibit spatial invariance in their output
as they pool over the responses of a number of simple cells.

This structure is replicated in a Convolutional Neural Network: Similar to the model of
Hubel and Wiesel, Convolutional Neural Networks also employ the concept of a local
receptive field. Unlike in a fully-connected layer, in which each neuron is connected to all
spatial locations of its input, each neuron in a convolutional layer is connected only to a
small local region of its input (see Fig. 2.2). The extent of a neuron’s local connectivity is
a hyperparameter of the network. It is shared between all neurons in a given layer.

9

1.7 1.6 1.0 0.7

0.1 1.0 0.6 0.0 0.4 0.3

1.5 1.7 1.6 1.0

0.4 0.1 1.0 0.6 0.0 0.4

0.2

0.9

0.3

0.7

Figure 2.4: Translation Equivariance of Convolutional Neural Networks. The output of
a convolutional layer, which is here visualized for a fixed convolutional kernel of width 3
with weights of 1 at every location, is equivariant to a translation of its input: As the input
is shifted to the right by one pixel from top to bottom, the output of the convolutional
layer is similarly shifted by one pixel to the right. Adapted from [48].

Neurons with the same local receptive field are stacked along the depth dimension.
Spatially adjacent neurons in a convolutional layer can have overlapping local receptive
fields. Here, the overlap is controlled by a stride hyperparameter which defines the fixed
spatial shift between local receptive fields of adjacent neurons. The stride along with a
layer’s receptive field size and its spatial padding of the input along the input borders
controls the spatial dimension of the output of a convolutional layer.

A given neuron has weights to every spatial location in its receptive field. Here, the
set of a neuron’s weights is referred to as a filter (or kernel). In order to keep the number
of weights of the network low, these weights are shared between neurons at the same
depth level of a convolutional layer (see Fig. 2.3). Thereby, these neurons detect the
same features at all spatial locations of the input. As a consequence, the output of a
convolutional layer is translation equivariant: When the input to a convolutional layer is
translated, its output is also translated. This property is visualized in Fig. 2.4.

10

1.0 1.0 0.6 0.4

0.1 1.0 0.6 0.0 0.4 0.3

1.0 1.0 1.0 0.6

0.4 0.1 1.0 0.6 0.0 0.4

0.2

0.4

0.3

0.4

Figure 2.5: Translation Invariance of Convolutional Neural Networks. The output of a
max-pooling layer is sensitive only to the maximum value in its neighborhood but not to
its exact location. Therefore, shifting an input by one pixel to the right from top to bottom
yields an unchanged output for more than half of the neurons. Adapted from [48].

Besides convolutional layers, CNNs commonly also utilize pooling layers, which are
inserted between successive convolutional layers and which can additionally perform a
downsampling operation. Commonly, max- or average-pooling is employed. The insertion
of a pooling layer results in translation invariance: A small shift of the input to a pooling
layer may not result in a changed output (see Fig. 2.5).

Similar concepts of encoding invariance properties have also been proposed by other
machine learning models such as in scattering networks [6], which can be seen as a
special case of convolutional neural networks. Similar to CNNs, scattering networks
cascade convolutions with non-linearities. However, unlike CNNs, they do not learn the
convolutional filters but instead utilize a fixed filter bank of scaled and rotated wavelet
filters that are obtained from a mother wavelet (e.g. a complex Morlet wavelet). In each
layer of the scattering network, this wavelet transform is preceded by an averaging and
followed by a modulus non-linearity, which yields a representation that is invariant to
small translations and stable to small deformations of the input.

11

Scattering networks have since been extended to invariance to rotations and scal-
ings [108, 126]. Yet, as scattering networks involve no learning, they are typically
combined with a trainable classifier such a Support Vector Machine (SVM). While they
show promise in a very low data regime, in which very little labeled data is available for
training, they are generally outperformed by modern convolutional neural networks which
highlights the benefit of using learnable instead of fixed filters. This is also one reason
why we focus our work in this thesis on incorporating or learning additional invariances
in (deep) convolutional networks that offer state-of-the-art performance. Indeed, scatter-
ing networks themselves have recently been combined with deep convolutional neural
networks in order to boost their performance, as proposed by Oyallon et al. [107].

Finally, it is important to note that unlike data augmentation and regularization, which
usually aim for (approximate) invariance with respect to global transformations of the
input data, for example by training with examples that have been globally transformed,
the pooling layers in scattering and convolutional networks encode local transformation
invariance. However, successive convolutional and pooling layers will increase the size
of the local invariance region and a deep model of convolutional and pooling layers can
thereby exhibit global translation invariance at the later network layers. Alternatively,
a global pooling operation can be used to transform a locally equivariant or invariant
representation into a globally invariant representation. Yet, as with the choice between
invariance and equivariance, the choice between local or global invariance / equivariance
is highly task-specific as tasks which do not require invariance or equivariance on a global
level may still benefit from it on a local level.

2.2 Invariance and Equivariance in Deep Neural Networks

In this section, we will review recent works on extending the invariance and equivariance
properties of deep convolutional neural networks from translations to a larger group of
transformations. We start by first looking at approaches which aim at learning invariance
or equivariance in Section 2.2.1. In a second part in Section 2.2.2 we then outline the most
relevant works on encoding additional invariance or equivariance properties into deep
neural networks. A final part in Section 2.2.3 focuses solely on deep domain invariance,
in which approaches utilize regularization as well as an adaptation of the input data to
learn invariance wrt. a change of the domain of the input data.

12

2.2.1 Learning Invariance / Equivariance in Deep Models.

Learning Invariance. While convolutional neural networks are by design equivariant to
translations, Lenc & Vedaldi show that CNNs also learn approximate equivariance to other
transformations in earlier layers of the network and approximate invariance in later layers
of the network [83]. Similarly, Goodfellow et al. find that deep convolutional networks
learn increasingly invariant features in each network layer, which suggests that depth is
generally helpful for learning invariance [49]. However, the invariances which are learned
by the network tend to be restricted to transformations which commonly occur in the
training data (e.g. horizontal flips or rescaling), whereas there are few invariant features
for unexpected or uncommon transformations such as vertical flips or 90◦ rotations [83].

Therefore, it is critical that the training dataset covers all of the transformations for
which invariance is desired. Yet, as it is often not feasible to record and label a dataset
that covers all desired transformations, data augmentation, which was introduced in the
previous section, is commonly used in deep learning to artificially inflate the training data
with transformed copies of the input images [75, 128]. Data augmentation is a simple
but effective approach approach to incorporate high-level a priori knowledge about the
desired invariances into the learning process of a deep network and is applicable to almost
any identity-preserving transformation. However, as the transformed copies carry only
little incremental information, data augmentation makes backpropagation inefficient and
the training slow [127]. For this reason, several works have investigated how invariance
can be more explicitly learned in deep neural networks [24, 55, 63, 76, 77, 102, 119, 156].

A well-studied method for learning spatial invariance in deep neural networks are spa-

tial transformer networks (STNs) [63]. In STNs a spatial transformer module, effectively
a small sub-network with its own learnable parameters, enables the model to actively
spatially transform its input data before it is fed into the main network. Here, the spatial
manipulation is conditioned on the input data itself and is trained end-to-end through
backpropgation of the main network’s loss to the spatial transformer. In order to apply
the spatial transformation of the input in a differentiable way, bilinear sampling is used.
Fig. 2.6 visualizes the structure of a spatial transformer network, in which a localization
network outputs the spatial transformation parameters ω . These parameters are then used
by a grid generator to create a sampling grid tω , which is applied to the input by a sampler
component. Incorporating a spatial transformer thereby enables a model to select a region
of interest in the input image and transform it to a canonical orientation or pose.

13

Localization net Grid
generator

ω tω

Sampler

xin xout

Figure 2.6: Spatial Transformer. A localization network predicts the transformation
parameters ω conditioned on an input image xin, based on which a grid generator creates
a transformation tω that is then applied by a warper to output xout . Adapted from [63].

Thereby, a spatial transformer can remove the variance wrt. spatial transformations
from the input data so that the following task network is no longer required to learn
invariance itself and the model as a whole becomes invariant. While spatial transformer
networks have influenced a number of follow-up works [35, 84, 85, 138], they cannot
offer invariance guarantees as they rely on the localization network to predict the correct
transformation for a given input image. Yet, the localization network may not generalize
to all input image transformation. Furthermore, STNs are limited to applying a single
global transformation to the input, which makes them inapplicable for multi-object vision
tasks such as object detection in which different objects may be transformed differently.

For this reason, Dai et al. present the idea of deformable convolutional networks

(DCNs). Instead of performing a global transformation of the input data as in spatial
transformer networks, DCNs locally transform intermediate feature maps of the network
by adapting the sampling grid locations of the convolutional and pooling kernels [24]. The
offsets to the regular sampling grid locations are predicted by an additional convolutional
or fully-connected layer which output an offset field (see Fig. 2.7). By not predicting
a global transformation but transforming the convolutional or pooling kernels locally,
DCNs are thus able to apply different transformations to different feature map regions,
which makes them suitable for complex, dense multi-object tasks. In fact, the authors
show that integrating deformable convolutions into state-of-the-art semantic segmentation
and object detection models significantly improves their performance.

14

conv

offset field

fin fout

deformable convolution

Figure 2.7: Deformable Convolution. A convolution layer predicts an offset field condi-
tioned on an input feature map fin. These offsets are added to the sampling grid locations
of a deformable convolution layer, which produces the output fout . Adapted from [24].

Yet, as in spatial transformer networks, deformable convolutional networks do not
utilize prior knowledge about the transformations to which the network should be invariant.
This means that the network itself has to learn from the training data which transformation
invariance would be useful for the task at hand. However, this may differ from the desired
invariance properties of the model. And as with other learning-based approaches, DCNs
cannot guarantee that invariance is successfully learned during training.

Another approach which enables a network to learn invariance to unknown transforma-
tions are tiled convolutional neural networks (Tiled CNNs) [102]. Here, weight sharing in
CNNs is adapted so that instead of adjacent units sharing their weights, only hidden units
which are k steps away from each other share their weights. By pooling across the output
of neighboring untied filters, this approach enables the network to learn additional local
invariances to transformations such as scaling or rotation. The authors show that despite
the reduction of weight sharing this idea improves model performance, in particular when
only limited labeled training data is available. Yet, in contrast to spatial transformer and
deformable convolutional networks, Tiled CNNs do not utilize an explicit representation
of the transformation to which the network learns to be invariant. This makes an analysis
into which invariances are actually learned by the network more complex.

15

Learning Equivariance. The use of pooling to achieve invariance in (tiled) convo-
lutional neural networks however has the drawback that it loses information about the
precise spatial relationships between high-level object parts in an image. This loss of local
information can be problematic even for tasks which exhibit global translation invariance
such image classification. For this reason, Hinton et al. [55] propose to replace the scalar
output of a regular CNN layer with a more informative vector output of a capsule, which
contains the probability of the presence of a visual entity as well as its instantiation
parameters such as its pose. Importantly, these instantiation parameters are trained to
be approximately equivariant wrt. so that a transformation of the object or object part is
represented by a corresponding change of the instantiation parameters.

The concept of capsules is combined with a dynamic routing scheme by Sabour
et al. [119], in which the pooling-based routing between layers of a CNN is replaced with
a routing-by-agreement approach, in which a capsule sends its output to an appropriate
parent capsule in the next layer. Intuitively, this dynamic routing approach aims at assign-
ing object parts, which have been detected by a lower-level capsule, to the correct object
whole in a higher-level level capsule. The authors show that a capsule network which
utilizes dynamic routing achieves state-of-the-art results on MNIST and significantly
improves upon a CNN baseline on an overlapping digit classification task.

What capsule networks are effectively solving is the inverse graphics task. While
computer graphics renders an image from a hierarchical geometric representation of
objects in the scene, inverse graphics or inverse rendering aims to deconstruct an image
into its hierarchical parts and their instantiation parameters. This goal is shared with other
recent works in the field of computer vision. However, unlike capsule networks, which
adapt an equivariant representation in all layers of the network, these often only learn a
single equivariant latent code in an encoder-decoder architecture, in which the encoder
performs inverse rendering and the decoder performs re-rendering [76, 156].

An example for this line of research are the Deep Convolution Inverse Graphics

Networks (DC-IGNs) by Kulkarni et al. [76]. Here, a variational autoencoder is trained to
learn a disentangled equivariant latent code by presenting the network with mini-batches
that only contain samples that vary wrt. a single variable during training. For example,
a mini-batch might contain samples in which only the angle of a face changes but the
face’s identity remains unchanged. By keeping all but one component of the latent code
constant, the encoder is then forced to represent the variation in the data with a single
equivariant neuron while all other neurons in the latent code are trained for invariance.

16

In contrast to DC-IGNs, which learn an equivariant representation without supervision
for the active transformation, Worrall et al. [156] impose explicit transformations on the
latent code by training with transformed image pairs and their relative transformation
vectors. Yet, this level of supervision is not commonly available in real-world datasets.
In fact, even the creation of mini-batches which only vary wrt. a single transformation
can be infeasible in real-world applications. Furthermore, both DC-IGNs as well as the
approach by Worrall et al. focus on learning equivariance wrt. the transformations of a
single object in an image, which is insufficient for complex, multi-object scenes.

An inverse-graphics approach for multi-object scenes was recently introduced by
Kundu et al. [77]. The proposed 3D-RCNN extends the popular R-CNN object detection
framework [46, 52, 116] to not only predict an object’s bounding box and class but also
its 3D shape and pose. 3D-RCNN represents an object’s shape with the help of shape
priors based on a collection of CAD models. As ground truth shape and pose information
are rarely available in real-world datasets, it also proposes a novel differentiable render-
and-compare loss. Here, the predicted 3D shape and pose are first utilized to render
segmentation masks and depth maps for each object in the scene, which are then compared
with ground truth instance segmentation and depth map annotations. Thereby, more
readily available 2D annotations can be utilized as supervision for the 3D shape and
pose parameters of the model. The render-and-compare loss is used to fine-tune the
network’s pose and shape prediction after first training the network on a synthetic dataset
that contains ground truth shape and pose information. In this way, 3D-RCNN achieves
state-of-the-art results on challenging benchmarks such as Pascal3D+ and KITTI.

As mentioned at several points in this section, the presented learning-based approaches
suffer from the drawback that they cannot offer any invariance or equivariance guarantees.
Therefore, another direction of research is interested in explicitly encoding invariance or
equivariance properties into the architecture of deep convolutional networks and thereby
guaranteeing these properties by design. We review the most relevant recent works below.

2.2.2 Deep Invariant and Equivariant Architectures

Whereas the above presented learning-based approaches are often compatible with a set
of different input transformations, methods that encode invariance or equivariance into
the network architecture are usually restricted to a single specific transformation. We
therefore structure this section wrt. the main transformation considered by each method.

17

m
ax

transformation-invariant
features

shared weights

Figure 2.8: TI-POOLING feeds multiple transformed (e.g. rotated) copies of an input
image into parallel Siamese network streams which share their weights. An element-wise
max-pooling operation then obtains transformation-invariant features. Adapted from [79].

2D Rotation Invariance. For encoding invariance to 2D rotations into deep convolu-
tional neural networks, Laptev et al. propose a network architecture which feeds multiple
rotated copies of an input into a parallel Siamese network [79]. A novel transformation-

invariant pooling (TI-POOLING) operator then pools over the feature maps of the trans-
formed input copies and selects an optimal canonical instance of the input to be passed on
to the subsequent fully-connected network layers (see Fig. 2.8). Similarly, Fasel & Gatica-
Perez propose an architecture in which a virtual input image generator creates multiple
transformed copies of an input which are fed into a CNN with shared feature maps [37].
By finding a canonical orientation of the input image, these approaches share similarities
with spatial transformer networks (STNs). Yet, while they have a computational overhead
at inference time compared to STNs due to multiple transformed copies being passed
through the network, their restriction to a specific set of transformations, which do not
have to be learned, results in a simpler model with shorter training time. However, as with
spatial transformers, a limitation of approaches which are based on augmenting the input
data is that they can only model invariance wrt. a single global transformation.

An alternative to creating rotated copies of an input, is to create a filter bank which
consists of rotated copies of one canonical filter which all share their weights [99].
Rotation invariance is then again achieved by using an orientation pooling layer which
pools over the responses of the multiple rotated versions of a single filter. In contrast
to approaches such as TI-POOLING, which are based on a rotation of the input data,

18

methods that rotate the filters of the network instead model invariance wrt. local rotations.
The authors show that incorporating local invariance can improve the performance of a
CNN compared to training with data augmentation on a texture classification task. Yet, in
many applications besides classification it is beneficial not to model rotation invariance
but equivariance, in particular for tasks that require an estimation of pose or orientation.

2D Rotation Equivariance. One approach for achieving rotation equivariance in con-
volutional neural networks is to transform their translation equivariance into equivariance
wrt. rotations by converting rotations into translation via a log-polar transform [35, 54].
While warped convolutions by Henriques & Vedaldi [54] achieve this by warping the
inputs to a fixed grid with a fixed polar origin, Esteves et al. first identify the object center
using a polar origin predictor before transforming the input into log-polar coordinates [35].
The convolutional classification networks in both models remain unchanged but now
operate on polar images. While these approaches achieve global rotational equivariance,
they break the translation equivariance property of CNNs which is problematic for tasks
that require a regression of object locations such as object detection.

Therefore, other approaches aim to achieve rotation equivariance in convolutional neural
networks in addition to translation equivariance. An example are the Group Equivariant

Convolutional Neural Networks (G-CNNs) proposed by Cohen & Welling [18]. Here,
regular convolutions, which shift a set of filters over the input, are replaced with group

convolutions (G-convolutions), that replace the shift transformation with a more general
transformation of the filters from a discrete symmetry group G. Specifically, they consider
the symmetry group G = p4, which consists of all translations and rotations by 90◦, and
the group G = p4m, which in addition also contains mirror reflections.

Their G-convolutions are implemented by first creating an augmented filter bank. For
this, the convolutional filters are transformed with rotations, in the case of G = p4, or, in
the case of G = p4m, with rotations and flips. The augmented filter bank is then applied
by using regular planar convolutions. While the output of a single G-convolutional layer
is equivariant wrt. the transformations of the considered symmetry group G, a subsequent
max-pooling operation over the rotations or rotation-flips results in a locally invariant and
globally equivariant representation. This property is visualized in Fig. 2.9 for a G-CNN
consisting of a single G-convolution followed by max-pooling. The authors show that by
extending weight sharing to rotated filter copies, they can not only improve performance
and data efficiency on a task which is explicitly rotation invariant (rotated-MNIST) but also
on a dataset of natural images that does not feature explicit image rotations (CIFAR10).

19

∑

Figure 2.9: Group Equivariant CNNs (G-CNNs). G-CNNs extend the equivariance
properties of CNNs to additional symmetry groups such as G = p4, which consists of
rotations by 90◦. For this, a G-CNN applies its convolution with 4 rotated versions of the
same kernel. Max-pooling over the orientations then produces a locally rotation invariant
and globally rotation equivariant representation. Adapted from [150].

A similar idea for extending CNNs to cyclic symmetry was also proposed by Dieleman
et al. [29]. However, instead of rotating the convolutional filters, they rotate the feature
maps, which adds the requirement that the input to the network has to be square. As in G-
CNNs, they also restrict themselves to rotations by multiples of 90◦ to avoid interpolation.

With regards to equivariance to non-90◦ rotations, Oriented Response Networks (ORNs)
by Zhou et al. [168] and Rotation Equivariant VectorField Networks (RotEqNets) by
Marcos et al. [98] use bilinear interpolation to rotate the filters by non-multiples of 90◦.
However, with an increase in considered rotation angles, the dimension of the resulting
feature maps increases accordingly. In order to keep a compact representation, RotEqNets
therefore directly pool over rotations after every convolutional layer and only pass forward
the maximum feature response (max) and its orientation (argmax). This is in contrast to
ORNs, which perform pooling over orientations only after the final convolutional layer.

Yet, the use of bilinear interpolation can be problematic as it introduces interpolation
artifacts which can harm model performance. A solution to perform non-90◦ rotations
without bilinear interpolation is presented by Steerable Filter CNNs (SFCNNs) [152].

20

SFCNNs build on G-CNNs but extend them to arbitrary filter orientations by using
steerable filters. These steerable filters are defined as linear combinations of elementary
circular harmonics filters, where the complex-valued weight of each elementary filter is
learned by the network during training. By manipulating the phase of the learned weights,
an exact rotation of the learned filters by a chosen number of orientations is performed.
The authors find that performance saturates when around 12 orientations are used.

A generalization to patch-wise equivariance wrt. continuous 360◦ rotations is presented
by Harmonic Networks (H-Nets) [155]. Similar to SFCNNs, H-Nets also utilize circular
harmonics but instead of learning a linear combination of circular harmonics, they directly
restrict the filters to be from the circular harmonics family. During training, H-Nets then
learn the radial profile and phase offset terms of the circular harmonics filters, which
control their shape and orientation. As the phase of a circular harmonics filter rotates
with a rotation of the input, its filter response is continuously rotationally equivariant. Yet,
despite their improved equivariance properties, H-Nets do not reach the performance of
RotEqNets or SFCNNs as their circular harmonics filters appear to lack discriminativity.

3D Rotation Equivariance. Several of the above presented ideas for encoding 2D
rotation equivariance have recently been extended to equivariance wrt. rotations in 3D.

For voxel-based representations, CubeNet by Worrall et al. [154] uses Klein’s four
group (Klein’s Vierergruppe) to extend G-CNNs to 3D roto-translation equivariance.
While the cube group S4 contains all 24 right-angle rotations of a cube, Klein’s four group
K4 is limited to an identity element plus three 180◦ rotations around each coordinate
axes, which CubeNet applies in order to create an augmented filter bank of transformed
convolutional filters. Similarly, Winkels & Cohen [153] propose 3D G-CNNs which also
build on group-convolutions but utilize different symmetry groups (D4, D4h, O or Oh).
Yet, while both CubeNet and 3D G-CNNs demonstrate improved data efficiency and
performance, they are limited to equivariance wrt. a discrete set of rotations.

In contrast, 3D Steerable CNNs [151], Tensor Field Networks (TFNs) [141] and N-body

Networks (NBNs) [71] achieve full rotation equivariance to the continuous SO(3) group.
However, the way in which they achieve this goal differs somewhat. 3D Steerable CNNs
adapt H-Nets for continuous equivariance to 3D rotations in voxel grids by replacing the
circular harmonics filters, which are used in H-Nets, with convolutional filters that are
restricted to the spherical harmonics family. Similarly, TFNs and NBNs also build on
H-Nets and restrict the convolutional filters to spherical harmonics but operate on point
clouds instead of voxel grids.

21

Spherical harmonics are also utilized by Spherical CNNs in order to learn SO(3)
equivariant representations from spherical images [16, 34]. An alternative to Spherical
CNNs for processing spherical images are the recently proposed Gauge Equivariant

CNNs and Icosahedral CNNs [15] which approximate spherical signals with signals on
the surface of an icosahedron. Unlike Spherical CNNs, they utilize the regular conv2d

convolution operator and thereby benefit from its highly optimized implementation in
modern deep learning frameworks. As a result, the computational cost and memory
requirement of running an Icosahedral CNN is significantly lower than the cost and
memory usage of running a Spherical CNN, especially at higher input resolutions.

Scale Invariance & Equivariance. Beside the multitude of works on encoding 2D
and 3D rotation invariance or equivariance into deep neural networks, some works have
recently also considered incorporating invariance or equivariance to scale variations.

As with rotation invariance, local scale invariance can be achieved by applying filters at
multiple scales and then max-pooling over the scale channel of the feature responses [66].
However, this only retains the maximum magnitude but discards the information about the
scale at which it occurred. Thus, Marcos et al. [97] utilize the vector field representation
of RotEqNets [98] to additionally encode the scale of the maximum feature response.
They thereby obtain a locally scale-equivariant network and demonstrate performance
improvements on scale-invariant classification and a scale factor regression task.

A further improvement was proposed by Ghosh & Gupta [44] who replace the regular
convolutional kernels with scale-steered kernels that use a log-radial harmonics filter
basis. In contrast to [66] and [97], which reshape an input before and after applying a
convolution, scale-steerable filters require no reshaping and thereby avoid interpolation
artifacts. Consequently, they outperform the models by Kanazawa et al. [66] and Marcos
et al. [97] on a scale-invariant classification task. However, the work by Ghosh & Gupta
only focuses on scale invariance but does not consider the case of scale equivariance.

In contrast, deep scale-spaces (DSS) introduced by Worrall & Welling [157] implement
discrete scale equivariance with the help of dilated convolutions. In order to avoid the need
for interpolation, they restrict themselves to integer dilations. Their results demonstrate a
large improvement in semantic segmentation performance on the challenging CityScapes
benchmark [23] compared to a regular CNN model.

Other Invariances. Other invariances which have been considered in deep neural
networks include permutation invariance, e.g. in the seminal work of PointNet [113], as
well as domain invariance, which we will discuss in the following section.

22

2.2.3 Deep Domain Invariance

Domain invariance is the focus of works in the field of domain adaptation (DA). Due
to the high relevance of domain adaptation techniques for later parts of this thesis, in
particular Chapters 3 and 5, we introduce the main DA concepts in detail in this section.

Domain adaptation deals with the problem of adapting a model from a source domain,
in which a large number of labeled training samples is available, to a target domain, which
is visually different from the source domain and in which little or no labeled training
data is available. While the former is referred to as the supervised scenario, the latter is
referred to as the unsupervised domain adaptation scenario, which will be the focus of
this section.

The need for performing domain adaptation arises as a model which has been trained
on source domain data will not perform well on target domain data if the source and target
domain data are not drawn from the same distribution and the two domains are too visually
different. This is for example the case for a model that has been trained on synthetic data
from simulation which will not perform well on real-world samples [57, 94, 112, 136].
While it is expensive and time-consuming to enable the training of a target domain model
by creating a new large labeled target domain dataset, it often requires little effort to
record some unlabeled target domain samples and, potentially, label a small set of them.

For supervised domain adaptation, the simplest approach is to fine-tune a model
that was trained on source domain data on the limited target domain data which is
available [45, 106]. However, this may result in overfitting when only few labeled target
samples are available and is not applicable in the unsupervised case in which no labeled
samples are available in the target domain. Thus, it is essential to utilize available
unlabeled samples in the target domain in addition to the labeled samples from the source
domain.

In the next sections we will review two classes of approaches for utilizing labeled
source domain data in addition to unlabeled target domain data to perform an unsupervised
domain adaptation in deep neural networks. The first class of approaches performs a
feature-level adaptation [39, 40, 91, 92, 147–149]. Feature-level methods aim at learning
features which are invariant to the domain shift from the source to the target domain data.
The second class of approaches are image-level approaches [4,56,125] which do not focus
on an adaptation of the features of a model but rather on an adaptation of the training data
by translating the source domain images to the style of the target domain.

23

so
ur

ce
da

ta
ta

rg
et

da
ta

co
nv

1
co

nv
1

co
nv

5
co

nv
5

fc
6

fc
7

fc
8

fc
7

fc
6

fc
ad

ap
t

fc
ad

ap
t

L c

so
ur

ce
la

be
l

L d

Figure 2.10: Feature-level Adaptation with Domain-Confusion Loss. Feature-level
adaptation is performed by inserting a domain confusion loss Ldomain into a two-stream
classification network architecture. Adapted from [149].

2.2.3.1 Feature-Level Adaptation

Feature-level domain adaptation approaches [39, 40, 91, 92, 147–149] aim at aligning the
feature distributions of the source and target domain via an additional loss term.

One class of feature-level approaches performs feature alignment by inserting an
additional domain confusion loss into a two-stream network architecture in which the
source and target network streams share their weights (see Fig. 2.10). The domain
confusion loss aims at minimizing the distance between source and target distributions
and is most widely based on Maximum Mean Discrepancy (MMD) [91, 92, 149]. For a
source dataset XS, a target dataset XT and a feature representation φ(·), which is the feature
map of the chosen adaptation layer f cadapt , the MMD metric is empirically estimated as
follows:

MMD(XS,XT) =
∣∣∣∣∣∣ 1
|XS| ∑

xS∈XS

φ(xS)−
1
|XT | ∑

xT∈XT

φ(xT)
∣∣∣∣∣∣ (2.4)

The network is then trained with a combination of a classification loss Lc(XS,YS),
which is applied on source domain data XS with corresponding labels YS, and the domain
confusion loss Ld(XS,XT) = λMMD2(XS,XT) with weight parameter λ . Other works
also utilize a domain confusion loss but instead minimize the difference in higher order
feature statistics [73,135,137] or replace MMD with a Joint Distribution Discrepancy [93].

24

so
ur

ce
da

ta
ta

rg
et

da
ta

co
nv

1

co
nv

5

fc
6

fc
7

fc
8

fc
d−

1

L c
L dfc

d−
2

gr
ad

ie
nt

re
ve

rs
al so

ur
ce

la
be

l
do

m
ai

n
la

be
l

Figure 2.11: Feature-level Adaptation with Domain-Adversarial Training. Feature-
level adaptation is performed by adding a domain classifier which is connected to the
feature extraction network by a gradient reversal layer. Adapted from [39].

Alternatively, the domain invariant features can be learned by domain-adversarial

training (see Fig. 2.11) [39,40,147,148]. Here, an additional domain classifier is attached
to the shared feature extraction part of the classification network. This domain classifier
which is parameterized by a sub-network with weights Wd is tasked with predicting the
domain of each input sample given a representation vector φ(·) from the classifier’s
feature extraction network. It is trained with a regular cross-entropy classification loss:

Ld =
NS+NT

∑
i=0

{
di log d̂i +(1−di) log(1− d̂i)

}
(2.5)

where d̂i ∈ {0,1} is the predicted and di the ground truth domain label for a sample
xi ∈ XS∪XT and NS,NT are the number of source and target samples, respectively.

Importantly, the domain classifier is attached to the classifier’s feature extractor via
a gradient reversal layer (GRL). While the GRL acts as an identity transform during
forward propagation, it reverses the domain classifier’s gradients by multiplying them
with a negative value -λ before passing them on to the classifier’s feature extractor

25

during backpropagation. As a consequence, the binomial cross-entropy for the domain
classification task is thus maximized wrt. the weights of the domain classifier Wd while it
is minimized wrt. the weights of the classifier’s feature extractor Wc.

While the domain classifier thus over the course of training learns to better discriminate
between source and target domain samples, the feature extraction network is adapted in a
way so that its features become more and more domain invariant, which in turn makes it
more and more difficult for the domain classifier to predict the domain of the input. When
training the full model in combination with a classification loss, the domain adversarial
training setup is therefore an effective way to learn features which are discriminative with
respect to the class of the input but also invariant with respect to the input’s domain.

However, aiming for domain invariance is not always optimal but can in fact be
detrimental to the discriminative power of a model [117]. The reason for this is that a
domain invariant model may ignore important individual characteristics of each domain, in
particular wrt. a pixel-level appearance shift between source and target domain data. Thus,
some works [5, 117] propose to also allow a model to learn the differences between the
source and target domain. Yet, these approaches are still based on an alignment on feature
level and do not enforce any semantic consistency, which means that the target features
of one class may be mapped to the source features of a different class. Therefore, an
alternative class of approaches considers a semantically-consistent image-level adaptation.

2.2.3.2 Image-Level Adaptation

Image-level domain adaptation methods [4, 56, 125] perform a distribution alignment
between the source and target domain in image space by translating source domain images
to the target domain. In contrast to feature-level approaches, they thereby offer a more
humanly interpretable adaptation, as they enable a visualization of the individual steps as
well as the quality of the adaptation from the source to the target domain.

Image-level adaptation is commonly performed with a variant of Generative Adversarial

Networks (GANs) [50]. In GANs, an adversarial loss enables the generation of images by
a generator network G which are indistinguishable from real images of a target domain
for a discriminator network D. For performing domain adaptation, we typically want
to condition this image generation on a source domain image. Conditional GANs [100]
have shown promising performance for image-to-image translation tasks [62] but require
source-target image pairs which are often not available in domain adaptation tasks.

26

GS→T

LGAN

DT

LsegfT

source
image

stylized
source

target
image

GT→S
reconstr.
sourceLcycle

source
label

Figure 2.12: Cycle-Consistent Image-level Adaptation. Image-level adaptation is per-
formed by training a CycleGAN with generators GS→T and GT→S and a discriminator DT
using a cycle-consistency loss Lcycle and an adversarial loss LGAN . The stylized source
images and original source labels are then used to train a task segmentation network fT
with a segmentation loss Lseg. Adapted and simplified from [56].

In the unpaired setting, Liu et al. [88] propose an unsupervised image-to-image transla-
tion framework based on Coupled GANs (CoGANs) [87] where consistency between the
two domains is enforced with weight sharing without a need for corresponding images
from the source and target domain. Other works [4,125,139] ensure a consistent unpaired
translation with an additional loss term that encourages similarity in a predefined metric
space, such as a content space [4], image space [125] or feature embedding space [139].

In contrast, Cycle-Consistent Adversarial Networks (CycleGANs) [169] offer a solution
for performing unpaired image-to-image translation without weight sharing or a predefined
similarity function. Instead, CycleGANs utilize a cycle-consistency loss which penalizes
differences between an original source image and a reconstruction of the source image
after it has been mapped to the target domain by a generator GS→T and subsequently
mapped back to the source domain by a second generator GT→S.

CycleGANs are successfully utilized for performing domain adaptation in the recently
proposed Cycle-Consistent Adversarial Domain Adaptation (CyCADA) model [56],
which is visualized in Fig. 2.12. CyCADA trains a CycleGAN in order to translate the
source domain images to the target domain and then utilizes the translated source domain
images in combination with the corresponding original source domain labels to train a task
semantic segmentation network fT , which performs well on real target domain images.
However, the use of a CycleGAN model by CyCADA means that two generator networks
have to be trained, of which only one is utilized to translate the source domain data to the
target domain during the actual adaptation process.

27

GS→T

LGAN

DT

LsegfT

source
image

stylized
source

target
image

fSLsem−con
source
label

source
label

Figure 2.13: Cycle-Free Semantically-Consistent Image-level Adaptation. As an al-
ternative to cycle-consistency, a semantic consistency loss Lsem−con can be applied which
is computed between the output of a source segmentation model fS, which is trained on
source data data, and the source segmentation label. This encourages the generator GS→T
to output images which are not only visually close to the target domain, as ensured by the
adversarial loss LGAN but also consistent with the semantics of the original source image.
Adapted and simplified from [146].

An alternative to the use of a CycleGAN model has been proposed by Tzeng et al. with
their Semantic Pixel-Level Adaptation Transform (SPLAT) approach [146]. Instead of the
use of cycle-consistency, SPLAT exploits a semantic consistency loss Lsem−con to ensure
the consistency between the semantics of a source image and a corresponding stylized
source image (see Fig. 2.13). . For this, the semantic consistency loss penalizes differences
between the source segmentation label and the predictions of a semantic segmentation
network fS, that has been trained on labeled source data, for a stylized source image.
As in CyCADA, SPLAT then utilizes the trained generator GS→T to translate the source
images to the target domain in order to train a task segmentation model fT .

While current state-of-the-art image-level domain adaptation such as CyCADA or
SPLAT work well for changes in image style such as adapting from synthetic to real-
world images [56, 146], they struggle with changes that require an understanding of the
scene geometry, which is the case when adapting to a different viewpoint. However, before
we will look into the viewpoint adaptation problem in Section 3, we will first present an
approach for learning transformation invariant representations with weak supervision.

28

Chapter 3

Learning Transformation Invariant
Representations with Weak Supervision

Training image classifiers which are robust to a specific set of geometric transformations
of the input is a central problem in computer vision. In this chapter, we investigate how a
novel unsupervised similarity loss can be used to learn invariance with respect to a variety
of geometric transformations of the input.

The most commonly used approach to ensure the robustness of a deep classifier model
to geometric transformations is data augmentation [75, 79, 128], in which the size of the
training set is artificially increased by augmentation (e.g. rotation, cropping or scaling) of
the training images. Data augmentation is very simple to implement and is compatible
with a large set of different input transformations. Furthermore, it also acts as a regularizer,
which prevents a classifier from overfitting to the training set. Yet, data augmentation
comes with the drawback that it does not explicitly enforce transformation invariance and
that it slows down training significantly as it makes backpropagation inefficient due to the
transformed samples being highly correlated with the original input samples.

An alternative to learning invariance by data augmentation is to utilize network ar-
chitectures which aim at transforming the input or intermediary feature maps of the
model in order to remove variance from the data. Examples for such resampling-based
approaches include spatial transformer networks (STNs) [63], which perform a global
spatial transformation of the input, and deformable convolutional networks (DCNs) [24],
which learn offsets to the regular sampling grid of the convolutional filters. However,
while these approaches increase the flexibility of a network in handling geometric trans-
formations, they assume that a canonical representation can be easily deduced from the
input. Furthermore, unlike our approach, they do not support the utilization of available
prior knowledge on which invariances would be helpful for a given task.

29

In contrast to learning-based approaches, several recent works propose to encode
invariances into the architecture of deep convolutional neural networks (CNNs) [18,70,130,
155, 168]. However, these methods are currently restricted to specific and comparatively
simple transformations such as rotations or flips and are non-trivial to extend. What is
more, they do not always build on regular convolutions and thus cannot necessarily utilize
the highly optimized implementation of the regular convolution operator in modern deep
learning frameworks. This also means that, unlike our proposed method, they cannot
necessarily build on the latest CNN architecture or training innovations.

In this chapter, we propose to leverage a novel unsupervised similarity loss for training
deep neural networks to learn invariance wrt. arbitrary geometric transformations. The
similarity loss is computed with respect to transformed copies of an input and presents
an effective regularizer to enforce the desired transformation invariances. As it builds on
data augmentation, the similarly loss is simple to implement for a large set of different
input transformation. Yet, in contrast to naı̈ve data augmentation, it explicitly enforces
transformation invariance and encourages smooth decision boundaries with respect to
transformations of the input. This makes the training more efficient and leads to improved
classification performance, in particular in the presence of little annotated examples.

Furthermore, unlike prior ideas for learning invariance, it also enables the easy incor-
poration of additional unlabeled examples, as the similarity loss does not require label
information and is thus suitable for enabling semi-supervised learning.

Our similarity loss shares some similarities with ideas from transformation-invariant
pooling (TI-POOLING) [79], which also utilizes multiple transformed copies of an input
but pools over the responses of the augmented input copies. This means that inference
time grows exponentially with the dimension of the transformation, thereby potentially
rendering this approach infeasible for real-time applications. In contrast, our loss presents
a soft constraint for learning invariance which does not affect test time performance.

The idea of using an input sample more than once in a forward pass has previously also
been proposed for protecting neural networks against adversarial perturbations [101, 163].
We similarly aim to improve model generalization but focus on transformation invariance
by enforcing similarity between feature representations of transformed input images.

The proposed approach is also related to prior work on self-supervised [1, 30, 104]
and semi-supervised learning [51, 121], in which similar auxiliary losses are utilized.
However, in contrast to these works, we directly optimize the desired loss metric and
utilize a similarity loss for learning transformation invariant representations.

30

Lsim

t1

σ(f2(t1))

Lc

t0

σ(f2(t0))

Lc

f2(t0)

f1(t0) f1(t1)

f2(t1)

(a) Siamese Network

N (0,σ2)

Lsim

t̃1

N (0,σ2)

N (0,σ2)

σ(f̃2(t1))σ(f2(t0))

t0

Lc

Ldenoise

Ldenoise

t̃0

σ(f̃2(t0))

Lc

Ldenoise

f1(t0)

f2(t0) f̂2(t0)

f̂1(t0)

t̂0

f̃2(t0)

f̃1(t0) f̃1(t1)

f̃2(t1)

(b) Ladder Network

Figure 3.1: Abstract network architectures considered in this work. A similarity loss Lsim
is placed on the the final layer of a Siamese (Fig. 3.1a) or ladder network (Fig. 3.1b) in
order to enforce similarity between the outputs of transformed copies of an input.

In detail, the contributions of this chapter are:

• We propose a similarity loss which acts as an additional regularizer and utilizes
unlabeled training data for learning transformation invariance.

• We present a detailed investigation on the weighting and placement of the loss.

• We show improved performance in supervised and semi-supervised learning on
rotated MNIST and GTSRB when little labeled data is available.

3.1 Method

While the proposed similarity loss is applicable to a variety of tasks, we use image
classification as a test bench in this work. Let x ∈ Rw×h×c denote an image of dimensions
w×h with c channels and let f : Rw×h×c→ RC be a non-linear mapping represented by
a neural network which takes an input image x and produces a score for each of the C

classes. Let further t0, t1 ∈ T denote two transformations from a set of transformations T
(e.g, rotation, affine, perspective) which take the input image x and produce transformed
versions t0(x) ∈ Rw×h×c and t1(x) ∈ Rw×h×c of it. Finally, let fl(t(x)) denote the feature
maps of the neural network in layer l when passing t(x) as input. For clarity, we will drop
the dependency on the input image x in the following.

31

In order to encourage a deep neural network to learn transformation invariant repre-
sentations, we propose the use of a similarity loss Lsim which penalizes large distances
between the predictions or feature embeddings of transformed copies of the input. In
its simplest form, the similarity loss is computed using a Siamese network architecture,
where the transformed copies of the input are simultaneously fed into separate streams
of the network that share their weights. By transforming both inputs, convergence of the
model is accelerated and overfitting to small label sets is avoided. An abstract network
architecture, where Lsim is applied at the final network layer L, is illustrated in Fig. 3.1a.

At inference time only a single stream of the network is used, keeping runtime constant
with respect to the size of the transformation space. For training, the similarity loss Lsim

is added to the supervised classification loss Lc, which is applied on the output of both
network streams, to form the total loss Ltotal where a weight parameter λ controls the
influence of Lsim:

Ltotal = Lc +λLsim (3.1)

Here, Lc is the usual cross-entropy loss which is applied to the softmax outputs
σ(fL(t0)) and σ(fL(t1)) of the final network layer L for the transformed input sample:

Lc =−
C

∑
i=1

yi logσi(fL(t0))−
C

∑
i=1

yi logσi(fL(t1)) (3.2)

where σi(x) = exp(xi)/∑
C
j=1 exp(x j) denotes the softmax function and where yi = 1 if i

is the ground truth class and yi = 0 otherwise.
The similarity loss encourages the output of the neural network at layer l, fl , to

be similar for both streams. It is defined as the distance between the outputs of the
transformed input pair at layer l for an appropriate distance metric D(·, ·):

Lsim =D(fl(t0), fl(t1)) (3.3)

We propose to use a distance metric which measures the correspondence between the
likelihood of the transformed input copies. More specifically, D(·, ·) is calculated by
flattening the network output fl at a given layer l and applying the softmax activation:

D(fl(t0), fl(t1)) =−
C

∑
i=1

σi(fl(t0)) logσi(fl(t1)) (3.4)

32

A similar distance metric has previously been proposed by [163] in order to stabilize
models against small input perturbations such as the addition of uncorrelated Gaussian
noise. It is inspired by the work of [101] on virtual adversarial training, which showed
that a distance function based on the Kullback-Leibler (KL) divergence smoothens the
model distribution with respect to the input around each data point. Our work extends this
approach to training models for invariance to geometric transformations of the input and
is the first to perform a detailed investigation on the optimal weighing and placement of
the loss.

Since the similarity loss Lsim does not require label information, it enables semi-
supervised learning with partially labeled data. Until recently, ladder networks were the
state-of-the-art architecture for semi-supervised learning [115]. Ladder networks are
denoising autoencoders with lateral connections, into which the similarity loss Lsim can
be easily integrated by duplicating the corrupted or uncorrupted encoder path of the ladder
network. The duplicated encoder path again shares its weight with the other encoder paths
of the ladder network. A simple ladder network architecture where the corrupted encoder
path of the ladder network is duplicated and Lsim is applied on the final output layer L is
illustrated in Figure 3.1b.

As before, Lsim is added to the total loss Ltotal where it serves as a second unsupervised
loss next to the denoising loss Ldenoise, which aims to minimize the difference between a
clean layer output fl and the output of a denoising function f̂l given a corrupted output f̃l

on all L layers of the network. The classification loss Lc is then computed on the outputs
of the noisy encoder paths f̃L where λdenoise is a weight parameter of the denoising loss
Ldenoise and f0(t0) = t0.

Ltotal = Lc +λdenoiseLdenoise +λLsim (3.5)

Lc =−
C

∑
i=1

yi logσi(f̃L(t0))−
C

∑
i=1

yi logσi(f̃L(t1)) (3.6)

Ldenoise =
L

∑
l=0
|| fl(t0)− f̂l(t0)||2 (3.7)

In all models, the classification loss Lc is only applied on the labeled training samples.
On the other hand, the similarity loss Lsim and, in case of a ladder network, the denoising
loss Ldenoise can be applied on both labeled and unlabeled samples of the training data in
order to perform semi-supervised learning.

33

(a) Rotated MNIST [80] (b) GTSRB [132]

Figure 3.2: Dataset Examples. Example images from the two datasets used in the experi-
mental evaluation of the proposed similarity loss for learning transformation invariance.

3.2 Experimental Evaluation

We first validate our approach in terms of learning rotation invariant representations on
the commonly used rotated MNIST task [80]. Second, we demonstrate the effectiveness
of our technique on the more challenging German Traffic Sign Recognition Benchmark
(GTSRB) [132]. Incorporating perspective invariances using the proposed similarity loss,
our method leads to significant improvements over the baselines for this task.

3.2.1 Experimental Setup

The rotated MNIST classification task [80] is the standard benchmark for evaluating trans-
formation invariance in neural networks [18, 79, 130, 155], despite possible ambiguities
between rotated digits such as a rotated 6 and 9. The rotated MNIST dataset (see Figure
3.2a) was created by rotating MNIST digits with uniformly sampled angles between
0 and 2π radians and consists of 12,000 training and 50,000 test samples. As in the
original MNIST dataset [82], the images are greyscale and of size 28× 28 pixels. We
split the dataset into 10,000 training and 2,000 validation samples for determining the
hyperparameter λ .

The German Traffic Sign Recognition Benchmark (GTSRB) [132] consists of 39,209
training and 12,630 test images with 43 classes in total. We rescale the original images
(see Figure 3.2b) of varying size to 32×32 pixels and normalize them.

In order to perform a fair comparison between data augmentation and the use of a
similarity loss, we make sure that every model is being shown the same amount of data
in each training epoch. As a similarity loss model utilizes each input sample x twice in
every training step under the transformations t0 and t1, we also present t0 and t1 to the

34

data augmentation baseline in each training step. During training, data augmentation is
performed online in a randomized manner. For rotated MNIST, t0 and t1 rotate the input
x in every training step with an angle which is uniformly sampled between 0 and 2π

radians.
In the case of GTSRB, we train for invariance to projective transformations, as traffic

signs need to be correctly classified from different angles and distances. The augmentation
with a projective transformation is performed by estimating an essential matrix using the
eight-point algorithm from a set of point correspondences between the image corners
and a randomized set of points. These points are randomly sampled from a uniform
distribution within a distance of ±6 pixels in both dimensions of the image corners.

For all experiments we use the same randomization seeds for model comparisons but
vary the seed across runs and for all experiments report the average numerical results over
five independent runs.

3.2.2 Supervised Learning on Rotated MNIST Subset

For supervised learning, we integrate the similarity loss Lsim into an all convolutional
network architecture [131] and use a subset of Ns = 100 labeled samples of the rotated
MNIST dataset for training, where each class is represented equally often (i.e., 10 times).

Our network closely resembles the CNN reference architecture for the rotated MNIST
task in [18]. This network is constructed from seven convolutional layers, where each
but the last layer uses filters of size 3× 3 while the last layer uses filters of size 4× 4.
The convolutional filters are applied with a stride of 1×1. A max-pooling layer of stride
and size 2×2 is inserted after the second convolutional layer. All but the last layer use
batch normalization [61] before ReLU nonlinearities, followed by dropout with a keep
probability of p = 0.7. On the last layer the softmax activation is applied. We use the
Adam optimizer [69] with a base learning rate of 0.001 and train with 100 samples per
mini-batch.

In a first experiment, we evaluate the effect of applying the similarity loss on different
layers l of the network (see Figure 3.3a). We find that applying the similarity loss on the
last layer results in the highest validation accuracy. This result is in line with findings
by [18], which showed that enforcing premature invariance in early layers of the network
is undesirable. For all future experiments, we therefore only apply the similarity loss on
the final output layer L of a network.

35

1 2 3 4 5 6 7
l

0.75

0.80

0.85

va
lid

at
io

n
ac

cu
ra

cy

(a) Similarity loss placement layer l

0 5 10 15 20
λ

0.84

0.85

0.86

0.87

0.88

va
lid

at
io

n
ac

cu
ra

cy

(b) Similarity loss weight parameter λ

Figure 3.3: Hyperparameter Study on the placement and weight of the similarity loss
on the supervised rotated MNIST task.

In addition, we perform a coarse hyperparameter search with a selected set of weight
parameters λ ∈ [1.0, 2.0, 3.0, 5.0, 7.5, 10.0, 15.0, 20.0]. The results are plotted in Figure
3.3b and show improved validation accuracies for a wide range of λ values compared
to using only data augmentation (λ = 0.0). While the performance is very robust to the
choice of the weight parameter λ , we can observe a drop in validation accuracy when λ

is large (λ = 20.0).
Table 3.1a confirms performance improvements on the test set for the proposed sim-

ilarity loss with λ = 5.0 when training for 100 epochs with Ns = 100 labeled samples.
Compared to a test error of 14.8% when training with data augmentation, we obtain an im-
proved test error of 13.4% when training with an additional similarity loss. Additionally,
we also obtain a better test error than our reimplementations of a harmonic network [155]
and a group-equivariant P4CNN [18], which replace the regular convolutions in the
network architecture with harmonic or group-equivariant convolutions, respectively.

As a baseline we also evaluate the performance on the full dataset of 12,000 labeled
examples. Here, no significant improvement is obtained by the similarity loss compared to
a data augmentation model (see Table 3.1b). Both data-driven methods are outperformed
by harmonic networks [155] and a group-equivariant P4CNN [18].

Our results suggest that applying a similarity loss improves generalization and outper-
forms data augmentation as well as encoded transformation invariances when the number
of labeled samples is small.

36

Table 3.1: Results for the Supervised Rotated MNIST task using Ns labeled samples.

Method Test error (%)
Harmonic Networks [155] 21.5
Data augmentation 14.8
P4CNN [18] 14.2
Similarity loss 13.4

(a) Ns = 100.

Method Test error (%)
Data augmentation 3.7
Similarity loss 3.6
P4CNN [18] 2.28
Harmonic Networks [155] 1.69

(b) Ns = 12,000.

3.2.3 Semi-Supervised Learning

The unsupervised nature of the similarity loss Lsim makes it suitable as an additional
guidance for semi-supervised learning problems in order to utilize unlabeled data.

3.2.3.1 Rotated MNIST

As a first architecture for semi-supervised learning on rotated MNIST, we use the
convolutional architecture from Section 3.2.2 and a subset of Ns = 100 labeled sam-
ples. Additionally, we use the remaining training samples as unlabeled data. Each
mini-batch is constructed from 100 labeled and 100 unlabeled samples, where Lc is
only applied on the labeled samples while Lsim is applied on the full mini-batch. As
before, we perform a hyperparameter study of the λ weight parameter from a set
λ ∈ [1.0,2.0,3.0,5.0,7.5,10.0,15.0,20.0] (see Figure 3.4). When comparing to the λ -
study for supervised learning (see Figure 3.3b), we can now observe higher validation
accuracies and again find the performance to be very robust.

Additionally, we perform a data ablation study where we vary the size of the labeled
training set Ns. The results of the data ablation study are visualized in Figure 3.5. The
figure demonstrates that the similarity loss is especially helpful when only very little
labeled data is available. The benefit of a similarity loss (for a weight parameter of
λ = 10.0 and 100 training epochs) is confirmed on the test set where the final test error is
lowered by more than 2% compared to training only with data augmentation (see Table
3.2a). Furthermore, the final test error is more than 1% lower compared to using the
similarity loss on only the labeled images, which confirms the ability of the similarity loss
to exploit additional unlabeled data.

37

0 5 10 15 20
λ

0.84

0.85

0.86

0.87

0.88

va
lid

at
io

n
ac

cu
ra

cy

Figure 3.4: Hyperparameter Study for
weight parameter λ on semi-supervised
rotated MNIST.

50 100 150 300
Ns

0.75

0.80

0.85

0.90

te
st

ac
cu

ra
cy

similarity loss

data augmentation

Figure 3.5: Accuracy vs. number of
labeled samples Ns on semi-supervised
rotated MNIST.

Table 3.2: Results for the Semi-Supervised Rotated MNIST Task using Ns = 100
labeled samples.

Method Test error (%)
Data augmentation 14.8
Similarity loss 12.2

(a) Siamese Network.

Method Test error (%)
Data augmentation 8.0
Similarity loss (clean path) 7.6
Similarity loss (noisy path) 6.8

(b) Ladder Network.

We also observe improved class separability when visualizing the learned feature
representations in the last layer of the model (see Figure 3.6).

For a second set of semi-supervised learning experiments, we incorporate the similarity
loss into the fully connected ladder network architecture proposed by [115] for the permu-
tation invariant MNIST task. It features layers of size 784-1000-500-250-250-250-10 with
respective denoising weight parameters λdenoise = [1000.0,10.0,0.10,0.1,0.1,0.1,0.1].
The noisy encoder path uses Gaussian corruption noise with standard deviation 0.3. We
train the network with mini-batches of 100 labeled and 256 unlabeled samples using the
Adam optimizer and a base learning rate of 0.02 for 300 training epochs.

Table 3.2b displays the final test accuracies for utilizing our similarity loss in a ladder
network with a weight parameter of λ = 20.0, which was determined in a separate
hyperparameter search. We again find the addition of a similarity loss to be beneficial.

38

6.0

0.0

6.0

2.0

6.0
7.0 6.0

2.0

1.0
1.0

4.0

0.0

7.0

7.0

3.0

8.0

5.0

6.0
9.01.0

6.0
9.0

8.0

9.0 9.0

1.0

4.0

8.0

5.0

6.0

5.0

1.0

0.0

5.0

4.0

8.0
8.0

3.0

2.0

0.0

9.0
9.0

0.0

5.0

6.0
1.0 3.01.0

1.0

0.0

7.0

8.0

5.0
3.0

5.0

4.0

8.0

4.0

0.0
2.02.0

5.0

1.0

0.0

9.0

4.0

7.0
6.07.0

9.0

0.0

3.0

5.0

7.0 3.0

9.06.0

3.0

6.0

2.0

1.0

8.0

1.0

2.0
2.0

4.0

9.0

9.0

7.0

7.0

7.0

0.0

9.0

3.0

0.0

7.0

5.0

7.0
1.0

8.0

1.0 7.0
1.0

0.0

3.0

4.0

4.0

0.0

3.01.0 1.0

5.0

0.0
2.0

9.0

2.0

4.0

8.0

6.0
6.0 6.07.0

4.0

9.0

7.0

7.0

5.0

3.0

3.0

1.0
6.0

2.0

3.0

2.0

4.0

7.0

4.0

1.0

9.0

7.0

7.0

0.0

7.04.0

5.0

1.0

1.0

1.0

9.0

7.0

8.0

9.0

8.0
0.0

3.0

8.0

6.0

2.0

3.0

2.0
0.0

6.0

2.0 0.0

4.0

6.0

6.0
0.00.0

0.0

9.0

9.0

7.0
6.0

5.0

0.0

1.0

5.0

8.0

3.0

1.0

9.0
9.0

4.0

6.0
8.0

5.0
5.0

4.0

1.0

2.0

6.05.0
7.0

7.0
6.07.0 8.0

3.0

2.0

2.0

5.0

5.0

2.02.0

6.0

2.0

2.0

4.0

9.0

7.0

1.0

8.0
8.0

0.0

2.0

5.0

3.0

7.0

6.0

0.0

4.0

5.0

5.0

3.0

8.0
8.0

7.0 0.00.0

4.0
1.0

2.0

3.0

8.0

2.0

4.0

9.0

9.0

0.0

0.0

4.0

8.05.0

8.0

7.0 8.07.0

7.0

0.0

9.0

6.0

7.0

1.0

6.0

9.0

1.0

5.0

0.0

8.0

2.0

3.0

4.0

1.0

8.0

8.0

8.0

4.0

7.0

5.0

0.0

3.0

3.0

7.0
9.06.0

4.0

2.0

6.0
0.0

9.0

9.0

7.0

8.0

4.0

1.0

6.0

3.0 9.0 9.0

1.0

0.02.0

7.0

5.0

7.07.0

9.0

4.0

3.0

7.0

0.0

9.09.01.0

2.0

1.0

3.0

6.0

8.0

5.0

0.0

9.0

2.0

8.0

9.07.0 6.0

4.0

0.0

2.0

8.0

3.0

2.0

5.0

4.0

7.0

8.0

3.0

0.0

2.0

2.0

4.0

3.0
1.0

3.0
4.0

2.0

4.0

7.0
1.0

1.0

4.0

4.0

8.0

7.0

5.0

4.0
8.0

8.0

0.0

1.0

5.0

4.0

4.0

7.0

6.0

4.0

4.0
4.0

1.0

7.0

4.0

4.0

9.0

4.0

4.0

7.0
6.0

2.0

8.0

7.0

8.0
8.0

5.0

5.0

3.0

7.0

7.0

0.0

2.0

3.0

2.0

1.0

4.0

2.0

4.0

7.0

2.0
0.0

1.0

4.0

5.0

1.0

9.0

5.0
5.0

1.0

7.0

8.0

9.0

1.0

7.0

6.0
6.0

8.0

0.0

8.0

8.0

6.0
1.0

8.0

0.0
0.0

9.0

6.0

8.0
8.0

1.0
8.0

1.0

0.0

4.0

6.0
1.0

2.0

7.0

3.0

6.0

2.0
2.0

7.0

4.0

3.0

9.0

4.0

8.0

4.0

3.04.0

4.0

3.0

2.0

5.0

0.0

7.0

4.0
7.0

0.0

4.0

8.0

6.0

3.0

1.0
6.0

6.0

6.01.0

5.0

7.0 3.0 1.0
7.0

3.0

3.0

1.01.0

9.0

8.0
6.0

0.0

4.0

8.0

4.0

5.0

1.0 6.0

4.0

9.0

9.0

3.0

5.0

2.0

1.0

5.0

1.0 9.0

7.0

6.07.0

3.0

7.07.0

9.0

3.0

7.0

8.0

3.0

5.0

0.0

(a) Data Augmentation

6.0

0.0

6.0

2.0

6.0

7.0

6.0

2.0

1.0
1.0

4.0

0.0

7.0

7.0

3.0

8.0
5.0

6.0

9.0

1.0

6.0

9.0

8.0

9.0
9.0

1.0

4.0

8.0

5.0

6.0

5.0

1.0

0.0

5.0

4.0

8.0
8.0

3.0
2.0

0.0

9.0
9.0

0.0

5.0

6.0

1.0

3.0

1.0

1.0

0.0

7.0
8.0

5.0

3.0

5.0

4.0

8.0

4.0

0.0

2.02.0

5.0

1.0

0.0

9.0

4.0

7.0
6.0

7.0
9.0

0.0

3.0

5.0

7.0

3.0

9.0

6.0 3.06.0
2.0

1.0
8.0

1.0

2.0
2.0

4.0 9.0

9.0 7.0 7.0
7.0

0.0

9.0

3.0

0.0

7.0

5.0

7.0

1.08.0 1.0

7.0

1.0

0.0

3.0

4.0

4.0

0.0

3.0

1.01.0

5.0

0.0

2.0

9.0

2.0

4.0

8.0

6.0

6.0

6.0

7.0

4.0

9.0

7.0
7.0

5.0

3.0
3.0

1.0

6.0
2.0

3.0

2.0

4.0

7.0

4.0

1.0

9.0
7.0

7.0

0.0

7.0

4.0

5.0 1.0
1.0

1.0
9.0

7.0

8.0

9.0

8.0

0.0

3.0

8.0

6.0 2.0

3.0

2.0

0.0

6.0

2.0

0.0

4.0

6.0 6.0

0.0

0.0

0.0

9.0
9.0

7.0
6.0

5.0

0.0

1.0

5.0

8.0

3.0

1.0

9.0

9.0

4.0

6.0

8.0

5.0

5.0

4.0
1.0

2.0

6.0

5.07.0

7.0

6.0
7.0

8.0

3.0

2.0

2.0

5.0

5.0

2.0
2.0

6.0

2.0
2.0

4.0

9.0 7.0

1.0
8.08.0

0.0

2.0

5.0

3.0
7.0

6.0

0.0

4.0
5.0

5.0

3.0

8.0
8.0

7.0

0.0

0.0

4.0

1.0

2.0

3.08.0

2.0

4.0

9.0

9.0

0.0

0.0

4.0

8.0

5.08.0

7.0

8.0

7.0

7.0

0.0

9.0
6.0 7.0

1.0

6.0

9.0

1.0

5.0

0.0

8.0

2.0

3.0

4.0

1.0
8.0

8.0

8.0

4.0

7.0

5.0

0.0

3.0
3.0

7.0

9.0
6.0

4.0

2.06.0

0.0

9.0
9.0

7.0

8.0

4.0
1.0

6.0 3.0

9.09.0

1.0

0.0

2.0

7.0

5.0

7.0

7.0
9.0

4.0

3.0
7.0

0.0

9.09.0

1.0

2.0

1.0

3.0

6.0

8.0

5.0

0.0

9.0

2.0

8.0

9.0 7.0

6.0

4.0

0.0

2.0

8.0

3.0

2.0

5.0

4.0

7.0

8.0

3.0

0.0

2.0
2.0

4.0

3.0

1.0

3.0

4.0

2.0

4.0

7.0

1.0

1.0

4.0
4.0

8.0

7.0

5.0

4.08.0

8.0

0.0

1.05.0

4.0
4.0

7.0
6.0

4.0

4.0

4.0

1.0

7.0

4.0
4.0

9.0

4.0

4.0

7.0

6.0

2.0

8.0

7.0

8.0
8.0 5.0

5.0

3.0 7.0
7.0

0.0

2.0

3.0

2.0

1.0

4.0

2.0

4.0
7.0

2.0

0.0

1.0

4.0

5.0 1.0
9.0

5.0
5.0

1.0

7.0

8.0

9.0

1.0

7.06.0
6.0

8.0

0.0

8.0
8.0

6.0

1.08.0

0.0
0.0

9.0

6.0

8.0
8.0

1.0

8.0

1.0

0.0

4.0

6.0

1.0

2.0

7.0

3.0
6.0

2.02.0

7.0

4.0

3.0

9.0

4.0

8.0

4.0

3.0

4.0

4.0

3.0

2.0

5.0

0.0

7.0
4.0

7.0

0.0

4.08.0

6.0

3.0

1.0

6.0

6.0
6.0

1.0
5.0

7.0

3.0

1.0

7.03.0

3.0

1.0
1.0

9.0

8.0

6.0

0.0

4.0

8.0
4.0

5.0 1.0

6.0

4.0

9.0

9.0

3.0

5.0

2.0

1.0

5.0

1.0

9.0
7.0

6.0

7.0

3.0 7.0
7.0

9.0

3.0
7.0

8.0

3.0

5.0

0.0

(b) Similarity Loss

Figure 3.6: Improved Class Separability. t-SNE visualizations of the learned feature
representations on the final network layer.

Incorporating it in the noisy encoder path results in a better performance of 6.8%
compared to a final test error of 7.6% in the clean encoder path. This can be explained
by the Gaussian noise of the noisy encoder path providing additional regularization.
Our results demonstrate that the use of a similarity loss also enables improving the
performance of a previous state-of-the-art model architecture, specially designed for the
semi-supervised learning task.

3.2.3.2 German Traffic Sign Recognition Benchmark

As a final experiment, we consider the German Traffic Sign Recognition Benchmark
(GTSRB) [132]. The network architecture for this task is an all-convolutional model,
which resembles the All-CNN-C architecture proposed by [131] for the CIFAR-10 task
[74]. It consists of nine convolution layers. The first four layers have 96, the, following
layers 192 filters, all of size 3× 3. They are applied with stride 1 except in the third
and sixth layer where a stride of 2 is used. After the final convolutional layer average
pooling is performed. Dropout is applied on the input with a probability of 0.2 and
on the convolutional feature maps with 0.5. All layers use ReLU nonlinearities, batch
normalization and weight decay of 0.001. A softmax activation is applied after the final
layer. The network is trained with stochastic gradient descent and Momentum with mini-
batches of 100 labeled and 100 unlabeled samples. A learning rate of 0.05 is decayed
over the course of 100 training epochs.

39

Table 3.3: Results for the semi-supervised GTSRB task with Ns = 2150.

Method Test error (%)
Data augmentation 14.8
Similarity loss 9.6

2150 4300 6450 8600
Ns

0.80

0.85

0.90

0.95

1.00

te
st

ac
cu

ra
cy

similarity loss

data augmentation

Figure 3.7: Accuracy vs. number of training samples on semi-supervised GTSRB.

In contrast with previous experiments on rotated MNIST, we now train for invariance
to projective transformations. Unlike rotations, these cannot be easily encoded into the
convolutional filters of a neural network. Here, the use of a similarity loss, which relies on
augmenting the training data (as described in Section 3.2.1), offers a simple, yet effective
solution to train CNNs for invariance to more complex geometric transformations.

The test results for semi-supervised learning on the GTSRB task for 50 samples per
class (i.e., 2150 samples in total) and λ = 10.0 are displayed in Table 3.3. We observe
a clear improvement in the final test accuracy from 14.8% to 9.6% when utilizing the
similarity loss, despite the model already being heavily regularized by dropout, weight
decay and batch normalization, which again indicates the effectiveness of the similarity
loss when little labeled data is available.

As for rotated MNIST, we again perform a data ablation study (see Figure 3.7). The
study shows that the improvement when using an additional similarity loss is largest when
Ns is small, but that even for larger sizes of the labeled training set the similarity loss
outperforms the data augmentation model.

40

3.3 Discussion

The experiments in Section 3.2 demonstrate the benefits of using the proposed similarity
loss in both supervised and semi-supervised learning tasks. Data augmentation works
well in practice for fully supervised problems when big labeled training sets are available.
However, in this work, we show that an additional similarity loss can act as an effective
regularizer, which improves upon data augmentation when little annotated training data
is available. The benefit of the proposed similarity loss is not limited to the “toy-like”
rotated MNIST task but extends to more complex geometric transformations of natural
images where even larger improvements can be obtained.

In addition, another contribution of our work concerns the fact that the proposed
similarity loss can be utilized for semi-supervised learning, where it can help to exploit
additional unlabeled data. The inclusion of the similarity loss in a semi-supervised
ladder network shows particular promise. With our proposed modification, we further
improve over an architecture which until recently was the state-of-the-art approach for
semi-supervised learning. As the rotated MNIST dataset has not been commonly used
to evaluate semi-supervised learning architectures we do not claim to set a new state-of-
the-art but consider the ladder network using an additional similarity loss to have highly
competitive performance.

In general, the use of an unsupervised similarity loss is a surprisingly simple idea which
can easily be integrated into any deep learning model. All it requires is to duplicate the
classification stream of the network and tune the λ hyperparameter. In our experiments, we
found the performance to generally be very robust to the choice of the weight parameter λ .
The similarity loss can be additionally combined with methods which encode invariances
directly into convolutional filters [18,155,168] and with architectures which enable neural
networks to handle geometric transformations more easily [24, 63].

3.4 Conclusions

This chapter proposed an unsupervised similarity loss which penalizes differences between
the predictions for transformed copies of an input for improved learning of transformation
invariance in deep neural networks on the rotated MNIST and German Traffic Sign
Recognition Benchmark classification tasks. We showed that our similarity loss acts as an
effective regularizer, which improves model performance when little annotated data is

41

available, in both supervised and semi-supervised learning. Future work could investigate
the application of the proposed similarity loss on a combination of network layers or an
adjustment of the weight parameter λ over the course of training. In addition, it could
consider the applicability and usefulness of a similarity loss for other computer vision
tasks besides image classification such as semantic segmentation or object detection.

While this work improves the use of data-driven methods based on augmenting the
training data for learning transformation invariance, there still remains a gap to techniques
which encode invariances to transformations directly into the filters of a convolutional
neural network when training on the full set of labels on rotated MNIST [18, 155, 168].
However, unlike the proposed similarity loss, which can easily be applied for a wide variety
of different transformations, these methods are currently limited to simple geometric
transformations such as rotations and generally focus on encoding a single additional
invariance or equivariance property into the network architecture.

Yet, there are scenarios for which the development of approaches that encode transfor-
mation invariance into the architecture of deep models is a promising avenue of research.
In particular, this is the case for tasks in which a single dominant transformation exists
that occurs regularly in the input data and which has the potential to negatively impact
model performance. In such cases, it can be highly beneficial for a model if it does not
have to utilize a large part of its model capacity in order to learn the desired invariance.
If this invariance instead is encoded into the model, this factor of variation is removed
and the model is able to use its full capacity to focus on other important aspects in the
data. In this way, encoding invariance into the network architecture can both improve the
performance of a model as well as enable faster learning from fewer training samples.

We look at one such scenario in the next chapter, where we present the SphereNet
framework for encoding invariance to the distortions which are present in the planar
projection of 360◦ omnidirectional images into deep convolutional neural networks.

42

Chapter 4

SphereNet: Learning Spherical Representations
in Omnidirectional Images

In this chapter, we present the SphereNet framework to learn spherical representations in
omnidirectional images. Over the last years, omnidirectional imaging devices have gained
in popularity due to their wide field of view and their widespread applications ranging
from virtual reality to robotics [58, 78, 114, 133, 134]. Today, omnidirectional action
cameras are available at an affordable price and 360◦ viewers are integrated into social
media platforms. Given the growing amount of spherical imagery, there is an increasing
interest in computer vision models (e.g., image classification, object detection) which are
optimized for this kind of data.

The most popular representation of 360◦ images is the equirectangular projection where
latitude and longitude of the spherical image are mapped to horizontal and vertical grid
coordinates, see Figs. 4.1+4.2 for an illustration. However, the equirectangular image
representation suffers from heavy distortions in the polar regions which implies that
an object will appear differently depending on its latitudinal position. This presents a
challenge to modern computer vision algorithms, such as convolutional neural networks
(CNNs) which are the state-of-the-art solution to many computer vision tasks.

While CNNs are capable of learning invariances to common object transformations
and intra-class variations, they require significantly more parameters, training samples
and training time to learn invariance to these distortions from data. This is undesirable as
data annotation is time-consuming and annotated omnidirectional datasets are scarce and
smaller in size than those collected for the perspective case. An attractive alternative is
to encode invariance to geometric transformations directly into a CNN, which has been
proven highly efficient in reducing the number of model parameters as well as the required
number of training samples [18, 155].

43

(a) 360◦ Cameras (b) 360◦ Image (c) Regular Kernel (d) SphereNet Kernel

Figure 4.1: Overview. (b) Capturing images with fisheye or 360◦ action cameras (see
Fig. 4.1a) results in images which are best represented on the sphere. (c) Using regular
convolutions (e.g., with 3×3 filter kernels) on the rectified equirectangular representation
(see Fig. 4.2b) suffers from distortions of the sampling locations (red) close to the poles.
(d) In contrast, our SphereNet kernel exploits projections (red) of the sampling pattern on
the tangent plane (blue), yielding filter outputs which are invariant to latitudinal rotations.

However, only few deep neural network architectures have so far been specifically
designed to encode invariance against the distortions in omnidirectional images into the
architecture of a deep learning model (see Section 2.2).

One is the graph-based approach for omnidirectional image classification by Khasanova
et al. [67]. While a graph representation solves the problem of discontinuities at the borders
of an equirectangular image, graph convolutional networks are limited to small graphs
and image resolutions (50×50 pixels in [68]) and have not yet demonstrated recognition
performance comparable to regular CNNs on more challenging datasets. In contrast, our
method also restores the spherical image connectivity but builds on regular convolutions,
which offer state-of-the-art performance for many computer vision tasks.

In concurrent work, Cohen et al. [16] proposed to use spherical CNNs for classification
and encode rotation equivariance into the network. However, often full rotation invariance
is not desirable as 360◦ images are mostly captured in a dominant orientation (i.e., it is
rare that the camera is flipped upside-down). Incorporating full rotation invariance in such
scenarios reduces discriminative power as evidenced by our experiments. Furthermore, it
is non-trivial to integrate either graph or spherical convolutions into network architectures
for more complex computer vision tasks like object detection. In fact, no results beyond
image classification are provided in the literature. In contrast, our SphereNet framework
readily allows for adapting existing CNN architectures as well as trained perspective CNN
models for object detection or other higher-level vision tasks to the omnidirectional case.

44

The most related work to SphereNet is the model by Su et al. [162] which processes
equirectangular images with regular convolutions filters but increases their size towards
the poles. However, this adaptation is a simplistic approximation of distortions in the
equirectangular format and implies that weights can only be shared along each row,
resulting in a significant increase in model parameters, which makes it hard to train their
model from scratch. In contrast, SphereNet retains weight sharing across all rows and
columns and better approximates the distortions in equirectangular images by adapting
the sampling locations instead of the size of the convolutional filters.

Several recent works also consider adapting the sampling locations of convolutional net-
works, either dynamically [25] or statically [64,96]. Unlike our work, these methods need
to learn the sampling locations during training, which requires additional model parame-
ters and training steps. In contrast, we take advantage of the known geometric properties
of omnidirectional cameras to inject this knowledge explicitly into a convolutional neural
network, thus avoiding distortions as illustrated in Figs. 4.1+4.2. As SphereNet builds on
regular convolutional filters, it naturally enables the transfer of CNNs between different
image representations by adapting the sampling locations of the convolution kernels. We
demonstrate this by training object detectors on perspective images and transferring them
to omnidirectional inputs. We provide extensive experiments on semi-synthetic as well as
real-world datasets which demonstrate the effectiveness of the proposed approach.

In summary, this chapter makes the following contributions:

• We introduce SphereNet, a framework for learning spherical image representations
by encoding distortion invariance into convolutional filters. SphereNet retains the
original spherical image connectivity and, by building on regular convolutions,
enables the transfer of perspective CNN models to omnidirectional inputs.

• We improve the computational efficiency of SphereNet using an approximately
uniform sampling of the sphere.

• We create novel semi-synthetic and real-world datasets for object detection, seman-
tic segmentation and optical flow in omnidirectional images.

• We demonstrate improved performance as well as SphereNet’s transfer learning
capabilities on the tasks of image classification, object detection, semantic segmen-
tation as well as optical flow and compare our results to several state-of-the-art
baselines.

45

(a) Sphere

−3.142 −1.571 0.000 1.571 3.142
longitude θ

−1.57

0.00

1.57

la
ti

tu
d

e
φ

(b) Equirectangular

Figure 4.2: Kernel Sampling Pattern at φ = 0 (blue) and φ = 1.2 (red) in spherical (a)
and equirectangular (b) representation. Note the distortion of the kernel at φ = 1.2 in (b).

4.1 Method

This section introduces the proposed SphereNet framework. First, we describe the
adaptation of the sampling pattern to achieve distortion invariance on the surface of the
sphere (Section 4.1.1). Second, we propose an approximation which uniformly samples
the sphere to improve the computational efficiency of our method (Section 4.1.2). Next,
we present details on the Spherical Transformer Network (Section 4.1.3). Finally, we
demonstrate how SphereNet can be incorporated into models for image classification
(Section 4.1.4), object detection (Section 4.1.5), semantic segmentation (Section 4.1.6)
and optical flow (Section 4.1.7), for which we propose a novel spherical optical flow
representation.

4.1.1 Kernel Sampling Pattern

The central idea of SphereNet is to lift local CNN operations (e.g. convolution, pooling)
from the regular image domain to the sphere surface where omnidirectional images can
be represented without distortions. This is achieved by representing the kernel as a small
patch tangent to the sphere (see Fig. 4.1d). Our model focuses on distortion invariance and
not rotation invariance, as in practice 360◦ images are mostly captured in one dominant
orientation. Thus, we consider upright patches which are aligned with the great circles of
the sphere.

More formally, let S be the unit sphere with S2 its surface. Every point s = (φ ,θ) ∈ S2

is uniquely defined by its latitude φ ∈ [−π

2 ,
π

2] and longitude θ ∈ [−π,π]. Let further
Π denote the tangent plane located at sΠ = (φΠ,θΠ). We denote a point on Π by its

46

coordinates x ∈R2. The local coordinate system of Π is hereby centered at s and oriented
upright. Let Π0 denote the tangent plane located at s = (0,0). A point s on the sphere is
related to its tangent plane coordinates x via a gnomonic projection [111].

While the proposed approach is compatible with convolutions of all sizes, in the
following we consider a 3×3 kernel, which is most common in state-of-the-art architec-
tures [53, 129]. We assume that the input image is provided in equirectangular format
which is the de facto standard representation for omnidirectional cameras of all form
factors (e.g. catadioptric, dioptric or polydioptric). In Section 4.1.2 we consider a more
efficient representation that improves the computational efficiency of our method.

The kernel shape is defined so that its sampling locations s(j,k), with j,k ∈ {−1,0,1}
for a 3×3 kernel, align with the step sizes ∆θ and ∆φ of the equirectangular image at the
equator. This ensures that the image can be sampled at Π0 without interpolation:

s(0,0) = (0,0) (4.1)

s(±1,0) = (±∆φ ,0) (4.2)

s(0,±1) = (0,±∆θ) (4.3)

s(±1,±1) = (±∆φ ,±∆θ) (4.4)

The position of these filter locations on the tangent plane Π0 can be calculated via the
gnomonic projection [111]:

x(φ ,θ) =
cosφ sin(θ −θΠ0)

sinφΠ0 sinφ + cosφΠ0 cosφ cos(θ −θΠ0)
(4.5)

y(φ ,θ) =
cosφΠ0 sinφ − sinφΠ0 cosφ cos(θ −θΠ0)

sinφΠ0 sinφ + cosφΠ0 cosφ cos(θ −θΠ0)
(4.6)

For the sampling pattern s(j,k), this yields the following kernel pattern x(j,k) on Π0:

x(0,0) = (0,0) (4.7)

x(±1,0) = (± tan∆θ ,0) (4.8)

x(0,±1) = (0,± tan∆φ) (4.9)

x(±1,±1) = (± tan∆θ ,±sec∆θ tan∆φ) (4.10)

We keep this pattern fixed. When applying the filter at a different location sΠ =(φΠ,θΠ),

47

−3.142 −1.571 0.000 1.571 3.142
longitude θ

−1.57

0.00

1.57
la

ti
tu

d
e
φ

SphereNet

CNN

(a) Left Boundary

−3.142 −1.571 0.000 1.571 3.142
longitude θ

−1.57

0.00

1.57

la
ti

tu
d

e
φ

SphereNet

CNN

(b) Top Boundary

Figure 4.3: Sampling Locations. This figure compares the sampling locations of
SphereNet (red) to the sampling locations of a regular CNN (blue) at the boundaries
of the equirectangular image. Note how the SphereNet kernel automatically wraps at the
left image boundary (a) while correctly representing the discontinuities and distortions at
the pole (b). SphereNet thereby retains the original spherical image connectivity which is
discarded in a regular convolutional neural network that utilizes zero-padding along the
image boundaries.

the inverse gnomonic projection is applied where ρ =
√

x2 + y2 and ν = tan−1 ρ:

φ(x,y) = sin−1
(

cosν sinφΠ +
ysinν cosφΠ

ρ

)
(4.11)

θ(x,y) = θΠ + tan−1
(

xsinν

ρ cosφΠ cosν− ysinφΠ sinν

)
The sampling grid locations of the convolutional kernels thus get distorted in the same

way as objects on a tangent plane of the sphere get distorted when projected from different
elevations to an equirectangular image representation. Fig. 4.2 demonstrates this concept
by visualizing the sampling pattern at two different elevations φ .

Besides encoding distortion invariance into the filters of convolutional neural networks,
SphereNet additionally enables the network to wrap its sampling locations around the
sphere. As SphereNet uses custom sampling locations for sampling inputs or intermedi-
ary feature maps, it is straightforward to allow a filter to sample data across the image
boundary. This eliminates any discontinuities which are present when processing omnidi-
rectional images with a regular convolutional neural network and improves recognition of
objects which are split at the sides of an equirectangular image representation or which
are positioned very close to the poles, see Fig. 4.3.

48

By changing the sampling locations of the convolutional kernels while keeping their
size unchanged, our model additionally enables the transfer of CNN models between
different image representations. In our experimental evaluation, we demonstrate how
an object detector trained on perspective images can be successfully applied to the
omnidirectional case. Note that our method can be used for adapting almost any existing
deep learning architecture from perspective images to the omnidirectional setup. In
general, our SphereNet framework can be applied as long as the image can be mapped
to the unit sphere. This is true for many imaging models, ranging from perspective over
fisheye1 to omnidirectional models. Thus, SphereNet can be seen as a generalization of
regular CNNs which encodes the camera geometry into the network architecture.

Implementation: As the sampling locations are fixed according to the geometry of
the spherical image representation, they can be precomputed for each kernel location at
every layer of the network. Further, their relative positioning is constant in each image
row. Therefore, it is sufficient to calculate and store the sampling locations once per
row and then translate them. We store the sampling locations in look-up tables. These
look-up tables are used in a customized convolution operation which is based on highly
optimized general matrix multiply (GEMM) functions [65]. As the sampling locations are
real-valued, interpolation of the input feature maps is required. For an arbitrary sampling
location (px, py) in a feature map f and an interpolation kernel g(a,b), interpolation is
defined as:

f (px, py) =
H

∑
n

W

∑
m

f (m,n)g(px,m)g(py,n) (4.12)

In our experiments, we compare nearest neighbor interpolation to bilinear interpolation.
The bilinear interpolation kernel is defined as:

g(a,b) = max(0,1−|a−b|) (4.13)

while the nearest neighbor kernel is defined as follows:

g(a,b) = δ (ba+0.5c−b) (4.14)

where δ (·) is the Kronecker delta function.

1While in some cases the single viewpoint assumption is violated, the deviations are often small in practice
and can be neglected at larger distances.

49

(a) Equirectangular (b) Uniform

−3.142 −1.571 0.000 1.571 3.142
longitude θ

−1.57

0.00

1.57

la
ti

tu
d

e
φ

(c) Uniform Sampling in the Image Plane

Figure 4.4: Uniform Sphere Sampling. Comparison of an equirectangular sampling grid
on the sphere with P = 200 points (a) to an approximation of evenly distributing P = 127
sampling points on a sphere with the method of Saff and Kuijlaars [120] (b, c). Note that
the sampling points at the poles are much more evenly spaced in the uniform sampling (b)
compared to the equirectangular representation (a) which oversamples in these regions.

4.1.2 Uniform Sphere Sampling

In order to improve the computational efficiency of our method, we investigate a more
efficient sampling of the spherical image. The equirectangular representation oversamples
the spherical image in the polar regions (see Fig. 4.4a), which results in near duplicate
image processing operations in this area. We can avoid unnecessary computation in the
polar regions by applying our method to a representation where data is stored uniformly
on the sphere, in contrast to considering the pixels of the equirectangular image.

To sample points evenly from a sphere, we leverage the method of Saff and Kuijlaars
[120] as it is fast to compute and works with an arbitrary number of sampling points
P, including large values of P. More specifically, we obtain points along a spiral that
encircles the sphere in a way that the distance between adjacent points along the spiral is
approximately equal to the distance between successive coils of the spiral. For all points
k with 1≤ k ≤ P, it sets φk and θk for 2≤ k ≤ P−1 to:

hk = −1+
2(k−1)

P−1
(4.15)

φk = arccos(hk)−
π

2
(4.16)

θk =
(

θk−1 +
3.6√

P
1√

1−h2
k

)
(mod 2π)−π (4.17)

while θ1 = θP =−π .

50

Transformation Encoder

Warp

xin xout

Figure 4.5: Spherical Transformer Network. A transformation encoder network outputs
the rotation parameters r specifying the axis v and angle β of rotation. The input xin is
warped to the output xout via bilinear interpolation according to r.

In order to sample omnidirectional images which are represented in the equirectangular
format without loss of information along the equator, we define P = b2Pe

π
c where Pe is

the number of sampling points in the equirectangular image. As visualized in Fig. 4.4
for an equirectangular image with Pe = 20×10 = 200 sampling points, this results in a
sampling grid of P = 127 points with a similar sampling density at the equator, while
significantly reducing the number of sampling points at the poles.

To minimize the loss of information when sampling the equirectangular image we use
bilinear interpolation. Afterwards, the image is represented by an P× c matrix, where c

is the number of image channels. Unlike the equirectangular format, this representation
no longer encodes the spatial position of each data point. Thus, we save this information
in a separate matrix. This location matrix is used to compute the look-up tables for the
kernel sampling locations as described in Section 4.1.1. Downsampling of the image is
implemented by recalculating a reduced set of sampling points. For applying the kernels
and downsampling the image nearest neighbor interpolation is used.

4.1.3 Spherical Transformer Network

As a baseline for the classification and detection tasks, we investigate the use of a Spherical

Transformer Network (SphereTN), which aims to undistort objects by performing a global
rotation of the spherical image conditioned on the input image. Compared to SphereNet,
the Spherical Transformer needs to learn how to undistort an object. Additionally, it
only performs a single global transformation of the input and may therefore be unable to
undistort multiple objects at once.

51

Similar to a Spatial Transformer Network (STN) [63], the Spherical Transformer
Network uses a localization network to predict a set of transformation parameters which
are used to resample the input image. However, unlike a Spatial Transformer which
typically outputs an affine transformation, a Spherical Transformer Network predicts and
applies a 3D rotation of the spherical image representation.

In order to avoid the gimbal lock problem, we do not represent the axial rotations using
Euler angles but instead leverage the axis-angle representation. More formally, we rotate
3D points y∈R3 located on the surface of the unit sphere S by applying a rotation y′ = Ry
where the rotation matrix R ∈ SO(3) is given as follows:

R = I +(sinβ)[v]×+(1− cosβ)[v]2× (4.18)

Here, v ∈ R3 is a unit vector defining the rotation axis and β denotes the rotation angle.
[v]× denotes the cross-product matrix and is an element of the Lie algebra so(3).

As v is a unit vector with two degrees of freedom, we are able to encode the rotational
component β as its length. More specifically, we parameterize the rotation axis v and
rotation angle β with a 3-dimensional vector r = β ·v which is the output of the localiza-
tion network conditioned on the input image. Note that after prediction, r can be easily
decomposed into β = ‖r‖2 and v = r/β .

The predicted transformation is applied to the omnidirectional image via differentiable
image sampling with bilinear interpolation [63]. See Fig. 4.5 for an illustration.

4.1.4 Spherical Image Classification

SphereNet can be integrated into a convolutional neural network for image classification
by adapting the sampling locations of the convolution and pooling kernels as described in
Section 4.1.1. Furthermore, it is straightforward to additionally utilize a uniform sphere
sampling (see Section 4.1.2), which we will compare to nearest neighbor and bilinear
interpolation on an equirectangular representation in the experiments. The integration of
SphereNet into an image classification network does not introduce novel model parameters
and no changes to the training of the network are required.

52

(a) Sphere

−3.142 −1.571 0.000 1.571 3.142
longitude θ

−1.57

0.00

1.57

la
ti

tu
d

e
φ

(b) Equirectangular

Figure 4.6: Spherical Anchor Boxes are gnomonic projections of 2D bounding boxes of
various scales, aspect ratios and orientations on tangent planes of the sphere. The above
figure visualizes anchors of the same orientation at different scales and aspect ratios on a
16×8 feature map on a sphere (a) and an equirectangular grid (b).

4.1.5 Spherical Object Detection

In order to perform object detection on the sphere, we propose the Spherical Single

Shot MultiBox Detector (SphereSSD), which adapts the popular Single Shot MultiBox
Detector (SSD) [89] to objects located on tangent planes of a sphere. SSD exploits a fully
convolutional architecture, predicting category scores and box offsets for a set of default
anchor boxes of different scales and aspect ratios. We refer the reader to [89] for details.
As in the regular SSD, SphereSSD uses a weighted sum between a localization loss and
confidence loss. However, in contrast to the original SSD, anchor boxes are now placed
on tangent planes of the sphere and are defined in terms of spherical coordinates of their
respective tangent plane, the width/height of the box on the tangent plane as well as an
in-plane rotation. An illustration of spherical anchor boxes is provided in Fig. 4.6.

In order to match anchor boxes to ground truth detections, we select the anchor box
closest to each ground truth box. During inference, we perform non-maximum suppression.
For evaluation, we use the Jaccard index computed as the overlap of two polygonal regions
which are constructed from the gnomonic projections of evenly spaced points along the
rectangular bounding box on the tangent plane.

53

(a) Image A (b) Image B

(c) Standard Flow Representation (d) Spherical Flow Representation

Figure 4.7: Spherical Flow resolves the errors which appear in standard flow at the
borders of the equirectangular image.

4.1.6 Spherical Semantic Segmentation

Similarly to the classification task (see Section 4.1.4), SphereNet can be integrated into a
convolutional neural network for semantic segmentation by adapting the convolutional and
pooling kernels, with no further changes to the training data or training scheme required
and no additional model parameters being introduced. Unlike classification networks,
semantic segmentation is a structured prediction problem with a high-dimensional output
(i.e., the semantic label map). Thus semantic segmentation networks typically comprise
an encoder and a decoder, often in combination with skip connections to retain fine details.
To avoid checkerboard-like artifacts of transposed convolution operations we use the
resize-convolution upsampling scheme proposed by Odena et al. [105], which consists of
separate steps of upsampling to a higher resolution and convolution to compute features.

4.1.7 Spherical Optical Flow

In order to perform optical flow prediction on omnidirectional images, we need to adapt the
optical flow formulation to the sphere. Regular optical flow is defined as a two-dimensional
vector in the image plane. However, for omnidirectional images this definition is flawed

54

as it introduces errors when objects cross the borders of the equirectangular image (see
high intensity regions at the borders of Fig. 4.7c). We therefore propose a novel spherical
optical flow formulation for omnidirectional images. Given two points on the sphere
(φa,θa), (φb,θb) we first compute their corresponding Cartesian coordinates a,b. We
then rotate a and b by θa around the z-axis and −φa around the y-axis so that the rotated
vector ar is aligned with the x-axis at (1,0,0). The spherical coordinates θu,φv of the
rotated vector br are then used as our novel spherical optical flow representation. While
this representation can handle optical flow across borders of an equirectangular image,
it is limited to a range of θu,φv ∈ [−π

2 ,
π

2], which we however consider to be sufficient
for the majority of omnidirectional optical flow applications. Fig. 4.7 visualizes how
this spherical optical flow representation resolves issues of the standard optical flow
formulation when objects cross the borders or poles of the equirectangular image.

Below, we briefly compare our proposed spherical optical flow formulation to a number
of alternative representations of optical flow for omnidirectional images.

First, a seemingly natural spherical flow representation could be defined as a three-
dimensional vector f , which is a product of the angle axis n and the angle α between the
two points in 3D:

f = n ·α (4.19)

n =
a×b
||a×b||2

(4.20)

α = arcsin(||a×b||2) (4.21)

f =
a×b
||a×b||2

· arcsin(||a×b||2) (4.22)

where a, b are the Cartesian coordinates of (φa,θa) and (φb,θb), respectively.
This corresponds to the widely used axis-angle representation for rotations. We vi-

sualize this three-dimensional flow representation in Fig. 4.8d for a scene in which all
objects rotate in the same direction around the camera. While this optical flow formulation
solves the problem of discontinuities for optical flow that crosses the borders or poles
of the equirectangular image, this representation, unlike standard optical flow, is not
translation invariant. Translation variant representations are difficult for convolutional
neural networks to learn as confirmed by our initial experiments. We thus do not consider
this to be a suitable representation. In addition, a three-dimensional flow is generally less
interpretable as it makes a direct comparison with standard flow images difficult.

55

(a) Image A (b) Image B

(c) Standard Flow (d) Spherical Flow (3D)

(e) Spherical Flow (tangent) (f) Spherical Flow (proposed)

Figure 4.8: Alternative Spherical Flow Representations: An overview of alternatives
to the proposed spherical flow representation.

A second alternative is given by considering the spherical flow on tangent planes of
the sphere. For a given start point (φa,θa) and end point (φb,θb) with φb = φa +∆φ and
θb = θa +∆θ , the spherical flow is defined as the gnomonic projection of (φb,θb) onto
the tangent plane at (φa,θa). As SphereNet already defines its filters on tangent planes
of the sphere, this seems like a suitable choice at first glance. While again solving the
discontinuities in the standard optical flow in equirectangular images, it additionally is
translation invariant. Unlike the first alternative, it is a two-dimensional representation,
which is easy to interpret (see Fig. 4.8e). However, the use of the gnomonic projection
results in the spacing of the projected spherical coordinate grid on the tangent plane
increasing very rapidly away from the center of the projection (φa,θa), thus severely

56

distorting large flows. This is undesirable as it means that larger flows would be penalized
more during training than to smaller flows, which could lead to a less accurate flow
estimation for smaller optical flows and thus suboptimal model performance.

In comparison to defining the optical flow on tangent planes of the sphere, our proposed
spherical flow representation (see Fig. 4.8f) has the same advantages (no discontinuities,
translation invariance, two-dimensional) but does not distort large optical flows vectors,
thereby making it the most suitable among the discussed formulations for representing
optical flow in omnidirectional images.

4.2 Experimental Evaluation

We first validate our model with respect to several existing state-of-the-art methods using
a simple omnidirectional MNIST classification task, before evaluating SphereNet on more
challenging object detection, semantic segmentation and optical flow tasks.

4.2.1 Image Classification: Omni-MNIST

For the classification task, we create an omnidirectional MNIST dataset (Omni-MNIST),
where MNIST digits are placed on tangent planes of the image sphere and an equirectan-
gular image of the scene is rendered at a resolution of 60×60 pixels.

We compare the performance of our method to several baselines. First, we compare to
a regular convolutional network operating on a equirectangular images (EquiCNN) or on
a cube map representation of the input (CubeCNN). We combine the EquiCNN model
with a Spherical Transformer Network (SphereTN) which learns to undistort parts of the
image by performing a global rotation of the sphere. In addition, we evaluate the graph
convolutional network of Khasanova et al. [67] and the spherical convolutional model of
Cohen et al. [16], for which we use the code published by the authors. As [67] does not
provide code, we reimplement their model based on code by Defferrard et al. [27].

The network architecture for all models consists of two blocks of convolution and
max-pooling, followed by a fully-connected layer. We use 32 filters in the first and 64
filters in the second layer and each layer is followed by a ReLU activation. The fully
connected layer has 10 output neurons and uses a softmax activation function. In the CNN
and SphereNet models, the convolutional filter kernels are of size 5×5 and are applied
with stride 1. Max pooling is performed with kernels of size 3×3 and a stride of 2.

57

Table 4.1: Classification Results on Omni-MNIST. Performance comparison on the
omnidirectional MNIST dataset.

Method Test error (%) # of Parameters

GCNN [67] 17.21 282K
S2CNN [16] 11.86 149K
CubeCNN 10.03 167K
EquiCNN 9.61 196K
EquiCNN+SphereTN 8.22 291K

SphereNet (Uniform) 7.16 144K
SphereNet (NN) 7.03 196K
SphereNet (BI) 5.59 196K

The Spherical Transformer Network uses an identical network architecture but replaces
the fully-connected output layer with a convolutional layer that outputs the parameters of
the rotation. After applying the predicted transformation of the Spherical Transformer the
transformed output is then used as input to the EquiCNN model.

Similarly, the graph convolutional baseline (GCNN) uses graph-conv layers with 32 and
64 filters of polynomial order 25 each, while the spherical CNN baseline (S2CNN) uses
an S2-conv layer with 32 filters and a SO(3)-conv layer with 64 filters. Downsampling
in the S2CNN model is implemented with bandwidths of 30,10,6 as suggested in [16].
Thus, all models have a comparable number of trainable model parameters (see Table 4.1).
In addition, all models are trained with identical training parameters using Adam, a base
learning rate of 0.0001 and batches of size 100 for 100 epochs.

Results on Omni-MNIST: Table 4.1 compares the performance of SphereNet with
uniform sphere sampling (Uniform), nearest neighbor interpolation in the equirectangular
image (NN) and bilinear interpolation in the equirectangular image (BI) to the baseline
methods. Our results show that all three variants of SphereNet outperform all baselines.

Despite its high number of model parameters, the graph convolutional (GCNN) model
struggles to solve the Omni-MNIST task. The spherical convolutional (S2CNN) model
performs better but is also outperformed by all CNN-based models. For the CNN-based
models, the CubeCNN has a higher test error than EquiCNN, most likely due to the
discontinuities at cube borders and varying digit orientation in the top and bottom faces.

58

Table 4.2: Digit Scale Evaluation on Omni-MNIST. Performance comparison on the
omnidirectional MNIST dataset for varying digit sizes.

Method Large Medium Small

GCNN [67] 17.21 20.35 28.54
S2CNN [16] 11.86 19.90 38.80
CubeCNN 10.03 11.37 24.46
EquiCNN 9.61 9.10 8.60
EquiCNN+SphereTN 8.22 8.69 8.46

SphereNet (Uniform) 7.16 6.91 8.77
SphereNet (NN) 7.03 6.32 7.51
SphereNet (BI) 5.59 5.03 5.89

Table 4.3: Digit Elevation Evaluation on Omni-MNIST. Performance comparison on
the omnidirectional MNIST dataset for varying digit elevation.

Method φd ∈ ±[0, π

8] φd ∈ ±[π

8 ,
π

4] φd ∈ ±[π

4 ,
3π

8] φd ∈ ±[3π

8 , π

2]

GCNN [67] 17.48 19.48 18.39 20.63
S2CNN [16] 11.63 11.45 11.41 11.49
CubeCNN 8.70 8.70 9.10 13.80
EquiCNN 7.02 8.64 9.17 11.34
EquiCNN+SphereTN 6.46 7.76 7.74 11.08

SphereNet (Uniform) 6.25 6.87 7.18 9.14
SphereNet (NN) 6.15 6.36 6.23 8.67
SphereNet (BI) 4.50 4.87 4.89 6.84

Table 4.4: Interpolation Evaluation for SphereNet on Omni-MNIST. Performance
comparison of SphereNet when varying the location of the bilinear interpolation (BI)
layers.

Bi-layers none conv1 conv2 pool1 pool2 conv1,2 pool1,2 all

Test error 7.03 6.31 6.25 6.47 6.25 6.18 6.17 5.59

59

The performance of the EquiCNN is improved when combined with a Spherical
Transformer Network (EquiCNN+SphereTN), demonstrating that the SphereTN is able to
support the classification task by predicting global sphere rotations and undistorting parts
of the image. However, it does not reach the performance of SphereNet, thus confirming
the benefit of encoding distortion invariance into the network architecture itself.

For SphereNet, the uniform sphere sampling (Uniform) variant performs similar to
the nearest neighbor (NN) variant, which demonstrates that the loss of information by
uniformly sampling the sphere is negligible. SphereNet with bilinear interpolation (BI)
overall performs best, improving upon all baselines by a significant margin.

In order to analyze these results more closely, we conduct further studies. First, we
test the effect of digit scale on the performance of the different models. To do so, we
generate the Omni-MNIST dataset at three different scales (small, medium, large) and
train and evaluate each model on all three variants. The results are shown in Table 4.2 and
demonstrates that the performance of the nearest neighbor (NN) and bilinear interpolation
(BI) variants of SphereNet is not significantly impacted by changes in digit scale. On the
other hand, the uniformly sampled variant (Uniform) drops in performance for smaller
digits, as in this case important information is lost at a smaller object scale. In contract,
the EquiCNN baseline performs slightly better for small digit scales, as smaller digits
minimize the amount of object distortion in the equirectangular image. The CubeCNN,
S2CNN and GCNN baselines all show significantly degraded performance for smaller
digit sizes, with the S2CNN model particularly struggling with digits of smaller size.

Second, we evaluate the performance of all models for different ranges of digit eleva-
tion φd (see Table 4.3). While the CubeCNN and EquiCNN models perform gradually
worse with increasing elevation and object distortion, the SphereNet variants offer near
constant performance for elevations φd ≤ 3π

8 . When further investigating the decrease
in SphereNet’s performance for elevations φd ∈ ±[3π

8 , π

2], we find it to be caused by a
sudden drop in performance to nearly 20% test error at the poles (φd = ±π

2) at which
SphereNet’s assumption of an upright object orientation no longer holds true. Unlike
SphereNet, S2CNN encodes full rotation equivariance and therefore is the only baseline
with near-constant performance over all digits elevations.

Finally, we evaluate which network layers benefit most from bilinear interpolation (BI)
over nearest neighbor interpolation (NN). Table 4.4 indicates that all layers benefit from
bilinear interpolation. The benefit is slightly larger in the second layers and increases
further when both convolutional and pooling layers utilize bilinear interpolation.

60

Figure 4.9: Detection Results on FlyingCars Dataset. The ground truth is shown in
green, our SphereNet (NN) results in red.

Table 4.5: Detection Results on FlyingCars Dataset. All models are trained and tested
on the FlyingCars dataset.

Method Test mAP (%) Training speed Inference Speed

EquiCNN+SphereTN 38.91 3.0 sec/step 0.232 sec/step
EquiCNN 41.57 1.7 sec/step 0.091 sec/step
EquiCNN++ 45.65 3.1 sec/step 0.175 sec/step
CubeCNN 48.42 1.8 sec/step 0.095 sec/step

SphereNet (NN) 50.18 2.1 sec/step 0.101 sec/step

4.2.2 Object Detection

4.2.2.1 FlyingCars

We now consider the object detection task. Due to a lack of suitable existing omni-
directional image benchmarks, we create the novel FlyingCars dataset. It combines
real-world background images of an omnidirectional 360◦ action camera with rendered
3D car models. For the 3D car models we select a subset of 50 car models from the
popular ShapeNet dataset [7], which are rendered onto the background images at different
elevations, distances and orientations.

The scenes are rendered using an equirectangular projection to images of dimension
512× 256, covering a complete 360◦ field of view around the camera. Each rendered
scene contains between one to three cars, which may be partially occluded. Object

61

bounding boxes are automatically extracted and represented by the lat/lon coordinates
(φi,θi) of the object’s tangent plane as well as the object width w and height h on the
tangent plane and its in-plane rotation α . All ground truth coordinates are normalized to a
range of [−1.0,1.0]. In total, the dataset comprises 1,000 test and 5,000 training images,
out of which a subset of 1,000 images is used as validation set.

For this task, we integrate the nearest neighbor variant (NN) of SphereNet into the
SphereSSD framework (see Section 4.1.5). Because the graph and spherical convolution
baselines are not applicable to the object detection task, we compare the performance
of SphereNet to a CNN operating on the cube map (CubeCNN) and equirectangular
representation (EquiCNN). The latter is again tested in combination with a Spherical
Transformer Network (EquiCNN+SphereTN).

Following [162] we evaluate a version of EquiCNN where the size of the convolutional
kernels is enlarged towards the poles to approximate the object distortion in equirect-
angular images (EquiCNN++). Like [162] we limit the maximum kernel dimension to
7×7. However, unlike [162] we keep weight tying in place for image rows with filters of
the same dimension, thus reducing the number of model parameters. We thereby enable
regular training of the network without kernel-wise knowledge distillation as in [162]. In
addition, we utilize pre-trained weights when kernel dimensions match with a pre-trained
network architecture so that not all model parameters need to be trained from scratch.

As feature extractor all models use a VGG-16 network [129], which is initialized with
weights pre-trained on the ILSVRC-2012-CLS dataset [118]. We change the pooling
kernels to size 3×3, use ReLU activations, L2 regularization with weight 4e−5 and batch
normalization in all layers of the network. Additional convolutional box prediction layers
of depth 256,128,128,128 are attached to layer conv5 3. Anchors of scale 0.2 to 0.95 are
generated for layer conv4 3, conv5 3 and the box prediction layers. The aspect ratio for
all anchor boxes is fixed to the aspect ratio of the side view of the rendered cars (2 : 1).
The full network is trained end-to-end in the SphereSSD framework with the RMSProp
optimizer, batches of size 5 and a learning rate of 0.004.

Results on FlyingCars: Table 4.5 presents the results for the object detection task on
the FlyingCars dataset after 50,000 steps of training. Following common practice, we
use an intersection-over-union (IoU) threshold of 0.5 for evaluation. Again, our results
demonstrate that SphereNet outperforms the baseline methods. Qualitative results of the
SphereNet model are shown in Fig. 4.9.

62

Figure 4.10: Detection Results on OmPaCa Dataset. The ground truth is shown in
green, our SphereNet (NN) results in red.

Compared to the classification experiments, the Spherical Transformer Network
(SphereTN) demonstrates less competitive performance as no transformation is able
to account for undistorting all objects in the image at the same time. It is thus outper-
formed by the EquiCNN. The performance of the EquiCNN model is improved when the
kernel size is enlarged towards the poles (EquiCNN++), but all EquiCNN models perform
worse than the CNN operating on a cube map representation (CubeCNN). The reason for
the improved performance of the CubeCNN compared to the classification task is most
likely that discontinuities at the patch boundaries are less often present in the FlyingCars
dataset due to the smaller relative size of the objects.

Besides accuracy, another important property of an object detector is its training and
inference speed. Table 4.5 therefore additionally lists the training time per batch and
inference time per image on an NVIDIA Tesla K20. The numbers show similar runtimes
for EquiCNN and CubeCNN. SphereNet has a small runtime overhead of factor 1.1 to 1.2,
while the EquiCNN++ and EquiCNN+SphereTN models have a larger runtime overhead
of factor 1.8 for training and 1.9 to 2.5 for inference.

4.2.2.2 Transfer Learning: OmPaCa

In addition, we consider the transfer learning task, where a model trained on a perspective
dataset is transferred to handle omnidirectional imagery. For this task we record a new
real-world dataset of omnidirectional images of real cars with a handheld action camera.
The images are recorded at different heights and orientations. The omnidirectional parked

cars (OmPaCa) dataset consists of 1,200 labeled images of size 512× 256 with more

63

Table 4.6: Transfer Learning Results on OmPaCa Dataset. We transfer detection
models trained on perspective images from the KITTI dataset [43] to an omnidirectional
representation and finetune the models on the OmPaCa dataset.

Method Test mAP (%)

CubeCNN 34.19
EquiCNN 43.43

SphereNet (NN) 49.73

than 50 different car models in total. The dataset is split into 200 test and 1,000 training
instances, out of which a subset of 200 is used for validation.

We use the same detection architecture and training parameters as in Section 4.2.2.1
but now start from a perspective SSD model trained on the KITTI dataset [43], convert it
to our SphereSSD framework and fine-tune for 20,000 iterations on the OmPaCa dataset.
For this experiment we only compare against the EquiCNN and CubeCNN baselines.
Both the EquiCNN+SphereTN as well as the EquiCNN++ are not well suited for the
transfer learning task due to the introduction of new model parameters, which are not
present in the perspective detection model and which would thus require training from
scratch.

Results on OmPaCa: Our results for the transfer learning task on the OmPaCa dataset
are shown in Table 4.6 and demonstrate that SphereNet outperforms both baselines. Unlike
in the object detection experiments on the FlyingCars dataset, the CubeCNN performs
worse than the EquiCNN by a large margin of nearly 10%, indicating that the cube map
representation is not well suited for the transfer of perspective models to omnidirectional
images. On the other hand, SphereNet performs better than the EquiCNN by more
than 5%, which confirms that the SphereNet approach is better suited for transferring
perspective models to the omnidirectional case.

A selection of qualitative results for the SphereNet model is visualized in Fig. 4.10.
As evidenced by our experiments, the SphereNet model is able to detect cars at different
elevations on the sphere including the polar regions where regular convolutional object
detectors fail due to the heavy distortions present in the input images. We provide a
qualitative comparison of the detection results in Fig. 4.11.

64

(a) EquiCNN (b) SphereNet (NN)

Figure 4.11: Qualitative Performance Comparison between EquiCNN and SphereNet
(NN) model on the OmPaCa dataset. The ground truth is shown in green, detections are
shown in red. Unlike SphereNet, the baseline EquiCNN model struggles to detect objects
in the polar regions of omnidirectional images (row 1−3) and, in general, outputs less
tight bounding boxes (row 4−5).

65

(a) Input Image (b) Ground Truth Segmentation

(c) EquiCNN Prediction (d) SphereNet Prediction

Figure 4.12: Qualitative Performance Comparison on the Stuttgart360 semantic seg-
mentation dataset. While the EquiCNN prediction features fragmented and incomplete
objects with holes, the objects in the SphereNet prediction are more complete and the
prediction overall has fewer outliers.

4.2.3 Semantic Segmentation: Stuttgart360

For the semantic segmentation task we record a new real-world dataset of crowded
pedestrian scenes in the city center of Stuttgart with a handheld omnidirectional camera.
The Stuttgart360 dataset is pixel-wise labeled with the classes human and background. It
consists of 250 training and 50 test images of dimension 512×256. The dataset size is
artificially increased during training by performing random rotations of the input images
and corresponding labels which do not violate the image’s overall upright orientation.

We compare our SphereNet model with nearest neighbor (NN) interpolation to an
EquiCNN baseline. Both models use a fully convolutional architecture as described
in [90] with a VGG-16 feature extractor [129] that is initialized with weights pre-trained
on the ILSVRC-2012-CLS dataset [118].

Results on Stuttgart360: Table 4.7 shows the results after training for 20,000 steps
with batches of size 2 on the Stuttgart360 dataset, demonstrating improved performance
for SphereNet compared to the EquiCNN baseline on the semantic segmentation task.

66

Table 4.7: Semantic Segmentation Results on Stuttgart360 Dataset. All models are
trained and tested on the Stuttgart360 semantic segmentation dataset.

Method Test IOU (%) Test IOUcontour (%)

EquiCNN 87.52 27.62

SphereNet (NN) 88.64 32.16

Overall, SphereNet improves upon the EquiCNN baseline by more than 1% IoU. When
only evaluating the pixels on the contour of the objects, the improvement is nearly 5%
IoU. This improvement is confirmed when visualizing the predictions of both models (see
Fig. 4.12), where we can observe that SphereNet produces less artifacts in its output and
that objects are more complete.

4.2.4 Optical Flow: FlyingThings

Finally, we consider the optical flow task. For this task we generate a novel synthetic
dataset of omnidirectional 360◦ flow (FlyingThings). Similarly to the FlyingCars dataset,
it is rendered in Blender at a resolution of 512×256 by placing between 5 to 10 models
from the ShapeNet dataset in front of real-world omnidirectional backgrounds.

The objects are initially placed at random locations and orientations on a sphere with
radius r = 0.75 surrounding the camera. They are moved on the sphere with randomly
and uniformly chosen translations ∆φ ,∆θ in the range [−π

8 ,
π

8] and rotated with Euler
angles α,β ,γ which are chosen uniformly at random from the interval [−0.25,0.25]. For
all rendered images the background does not move but is kept fixed. In total, the dataset
consists of 5,000 training, 500 validation and 500 test instances.

As in the semantic segmentation task, we compare SphereNet (NN) to an EquiCNN
model. As a base network architecture we use the FlowNetS model, as described in [31].
For the optical flow task, we disable SphereNet in the refinement part of the FlowNetS
model as we observe the use of spherical kernels in the upsampling steps leading to
artifacts in the learned optical flow. We train the network for 300,000 steps with a
learning rate of 0.0001 which is halved every 50,000 steps after the first 100,000 training
steps. While the EquiCNN model is trained with a standard optical flow representation, we
utilize the proposed spherical optical flow formulation (see Section 4.1.7) for training the

67

(a) Input Image A (b) Input Image B

(c) Ground Truth Standard Flow (d) Ground Truth Spherical Flow

(e) EquiCNN Prediction (f) SphereNet Prediction

Figure 4.13: Qualitative Performance Comparison on the FlyingThings spherical opti-
cal flow dataset, indicating improved performance for SphereNet in the polar and border
region of the equirectangular image.

SphereNet model. For evaluation, we transform the output of EquiCNN to the spherical
optical flow format and calculate the average end-point-error (EPE).

Results on FlyingThings: The results for the spherical optical flow experiments on the
FlyingThings dataset (see Table 4.8) show that the use of SphereNet in combination with
the novel spherical optical flow representation improves upon the EquiCNN baseline
which is trained on standard optical flow. While the quantitative improvement is small,
a qualitative comparison demonstrates that SphereNet noticeably improves over the
EquiCNN in the border and polar regions of the equirectangular image (see Fig. 4.13).

68

Table 4.8: Optical Flow Results on FlyingThings Dataset. All models are trained and
tested on the FlyingThings optical flow dataset.

Method Test EPE

EquiCNN 8.07e-05

SphereNet (NN) 7.84e-05

We expect further improvement of our model with more work on adapting the loss
of the FlowNetS model to the smaller range [−π

2 ,
π

2] of the novel spherical optical flow
representation as well as a more detailed investigation on the optimal layer placement of
SphereNet in the FlowNetS model, which has not been rigorously evaluated.

4.3 Conclusions

We presented SphereNet, a framework for deep learning with 360◦ cameras. SphereNet
lifts 2D convolutional neural networks to the surface of the unit sphere. By applying 2D
convolution and pooling filters directly on the sphere’s surface, our model effectively
encodes distortion invariance into the filters of convolutional neural networks. Wrapping
the convolutional filters around the sphere further avoids discontinuities at the borders
or poles of the equirectangular projection. By updating the sampling locations of the
convolutional filters we allow for easily transferring perspective CNN models to handle
omnidirectional inputs. Our experiments show that the proposed method improves upon
a variety of strong baselines in omnidirectional image classification, object detection,
semantic segmentation and optical flow.

We expect that with the increasing availability and popularity of omnidirectional sensors
in both the consumer market (e.g., action cameras) as well as in industry (e.g., autonomous
cars, robotics, virtual reality), the demand for specialized models for omnidirectional
images such as SphereNet will increase in the near future. Here, future research could
investigate how the flexibility of SphereNet could be exploited for other computer vision
tasks such as scene flow estimation or single image depth estimation. Another area of
future work may be to look into extending SphereNet to related camera models such as
fisheye cameras or to consider barrel distortion in general.

69

While SphereNet addresses one important scenario (e.g. the change to a different
camera model) in which we are missing labeled data, there remain other scenarios in
which we are similarly lacking labeled data but are unable to encode invariance into the
model or utilize a similarity loss for learning invariance.

One such scenario is the change to a novel viewpoint in which no data has yet been
labeled. In this case, we are unable to use the proposed similarity loss as an augmentation
of the training data is no longer trivial but would require a representation of the 3D
geometry of a scene in order to perform a warp to the novel viewpoint. Similarly, it is
also non-trivial to encode invariance to a change in viewpoint into a model.

An alternative to the use of a regularizer for learning invariance or the encoding of
invariance into the network architecture is the adaptation of the labeled training data,
which is available in a given source viewpoint, to the target viewpoint. This adaptation can
be performed with the help of available prior knowledge about the viewpoint change in a
learning-based manner. After adapting the source dataset to the desired target viewpoint,
a network can then be trained for viewpoint invariance by combining the adapted source
data with data from other viewpoints such as the original source viewpoint. Alternatively,
the network can also be trained only with the adapted source data if viewpoint invariance
is not required and the best model performance in the target viewpoint is desired.

In the next chapter, we introduce the Novel Viewpoint Adaptation (NoVA) model,
which utilizes available prior knowledge about a viewpoint change in order to perform
such a data-driven adaptation from a source to a novel target viewpoint.

70

Chapter 5

NoVA: Learning to See in Novel Viewpoints and
Domains

In this chapter, we present the Novel Viewpoint Adaptation (NoVA) model which enables
an adaptation from a viewpoint in which a large labeled dataset is available to a novel
viewpoint, potentially within a different domain, in which little or no labeled data is
available. For this chapter, we focus on the task of semantic segmentation which is highly
relevant for both autonomous driving as well as advanced driver-assistance. However,
the presented model is also applicable to other computer vision tasks with little to no
extensions required.

Deep neural networks for semantic segmentation require huge labeled datasets. How-
ever, as labeling is expensive and time-consuming, the re-use and transfer of existing
labeled datasets is desirable whenever possible. Yet, in many cases available datasets
do not exactly match the setup of the problem we are interested in but instead differ in
style (e.g. simulation vs. reality), camera model (e.g. rectilinear vs. omnidirectional) or in
camera viewpoint, which is the focus of this chapter.

While the adaptation to a different image style has been extensively addressed in
previous domain adaptation work [4, 56, 125, 146], viewpoint adaptation has not yet
been widely considered. However, as demonstrated by our experiments, such a change
in viewpoint can lead to a dramatic performance drop. Thus, we formally introduce
the challenge of domain and viewpoint adaptation and propose the Novel Viewpoint

Adaptation (NoVA) model. NoVA enables the adaptation of source domain data to the
view and style of a target domain in which no labeled data is available.

Specifically, we investigate the adaptation of a semantic segmentation model for the
task of autonomous driving. In this field of autonomous driving, large labeled datasets
exist [23, 42]. However, most of them are recorded from similar viewpoints, hindering

71

NoVA

Figure 5.1: NoVA enables the adaptation from a source domain view to a novel viewpoint
in a target domain. It performs a geometry-aware image and label translation from a
source (left) to a target (right) view, in which no labels exist.

their application to novel viewpoints. Here, NoVA enables the re-use and adaptation of
datasets to the novel viewpoints of autonomous buses, trucks or drones.

State-of-the-art domain adaptation approaches such as CyCADA [56] and SPLAT [146]
perform an image-level adaptation to translate source images to the style of the target
domain. Yet, these approaches struggle when faced with performing a semantically
consistent translation from the source domain to the novel viewpoint of the target domain,
as evidenced in our experiments. One reason for this is that, unlike NoVA, CyCADA
and SPLAT do not utilize an explicit depth representation of the scene but instead need
to learn the perspective transformation to a novel viewpoint end-to-end. While some
recent image-translation works utilize a depth representation to simulate synthetic foggy
images [122] or to preserve semantic information during image translation [11], we exploit
depth cues for adapting to a novel viewpoint.

A further limitation of current domain adaptation models is that they do not take a
translation of the source view segmentation labels into consideration. This is problematic
as the translated source images are no longer compatible with the original source labels,
which leads to a mismatch when using the translated source view images in combination
with the original source view labels for training the task segmentation network. In contrast,
NoVA utilizes its explicit representation of the scene geometry in order to translate both
the source view images and the source view labels to the target domain viewpoint.

The adaptation to a different camera is considered in some recent works but is limited

72

to an adaptation to a different camera style [164, 165] or to novel camera intrinsics [36].
With regards to adapting to a different viewpoint, Di Mauro et al. [28] consider the
adaptation to a single novel camera view. They do not perform image translation but
instead propose an encoder-decoder model in which the latent code corresponds to a
semantic segmentation map of the input. It is trained with a segmentation loss (source
images only), a reconstruction loss and an adversarial loss. Thus, unlike NoVA, their
model is not able to provide any task supervision in the target domain. Our experiments
confirm that NoVA compares favorably to their SceneAdapt method.

In very recent work, Tran et al. [142] propose a domain adaptation approach which,
similarly to NoVA, draws on ideas from novel view synthesis. They utilize a keypoint-
based appearance flow for a perspective transformation of source images to a novel
viewpoint and perform a photometric refinement using a CycleGAN. However, unlike
NoVA, they do not utilize a dense depth estimation but instead use a sparse representation
of a small number (i.e. 36) of 2D object keypoints. In contrast to NoVA, which is able to
utilize self-supervision for its depth estimators and supports depth estimation for complex
multi-object scenes, their keypoint localization network requires ground truth depth for
training and only supports the localization of keypoints for a single foreground object.

In the field of novel view synthesis (NVS), several models have been proposed for
generating novel views from a single input image. While some directly predict a novel
view using an encoder-decoder architecture [76,140,159] or generative adversarial network
[143, 160], others utilize the appearance flow, a dense flow field that specifies how to
warp the input to the target view [109, 167]. However, flow-based warping can lead to the
distortion of local structures in the output.

Liu et al. [86] demonstrated that an explicit representation of the 3D scene geometry
improves upon flow-based view synthesis. The benefit of an explicit depth representation
has also been confirmed in other recent NVS works [10, 12]. NoVA builds on this
insight but extends the geometry-aware image warping to unsupervised depth estimation
models [47, 166] and integrates it into a framework for domain and viewpoint adaptation.

Our NoVA pipeline is split into four stages, which can be trained jointly or indepen-
dently. First, we estimate the scene geometry by predicting a depth map from a source
image. Next, we utilize the predicted depth map as well as prior knowledge about the
transformation between the two viewpoints, which we assume to be given, to forward
warp the source image and label to the target view. A refinement network then performs
inpainting of occluded areas and stylizes the warped image in the style of the target

73

domain. Finally, we train a target segmentation network with the translated source data.
Thereby, NoVA effectively reduces the domain and viewpoint adaptation task to the

well-studied problems of depth estimation [33, 47, 166] and image inpainting [110, 158]
/ stylization [56, 146], for which deep neural networks have already demonstrated re-
markable performance. While NoVA builds on recent advances in supervised and self-
supervised depth estimation, it utilizes a novel residual refinement network which enables
the model to focus on filling in occluded image areas and updating the overall image style
without having to synthesize a new image from scratch.

Compared to current image-level domain adaptation approaches, which focus on
directly translating the source images to the target domain with a single generative model,
NoVA uses a modular architecture that utilizes an explicit representation of the scene
geometry. This enables NoVA to perform a geometry-aware translation of both source
images and labels to the target domain viewpoint. In addition, it makes it possible to
efficiently utilize information about how the source and target domain viewpoints are
related. This prior knowledge is commonly available yet not used by current state-of-the-
art domain adaptation models that are designed to mainly account for a change in image
style and not for a change in viewpoint.

We demonstrate the benefit of using NoVA over existing domain adaptation approaches
for adapting to a novel viewpoint within a simulation environment as well as for adapting
from simulation to a complex real-world dataset.

In summary, this chapter makes the following contributions:

• We introduce the task of domain and viewpoint adaptation, a variant of the domain
adaptation task for which the domains do not only differ in style but also correspond
to different viewpoints. In particular, we consider the unsupervised adaptation task,
in which no labels are available in the target domain viewpoint.

• We improve upon current domain adaptation models by using an explicit representa-
tion of the scene geometry that enables NoVA to forward warp source view images
and labels to the target domain. Thereby, the viewpoint change itself no longer has
to be learned and instead the task is reduced to the well-studied problems of depth
estimation and image inpainting/stylization.

• We demonstrate improved performance compared to state-of-the-art domain adap-
tation models on synthetic and challenging real-world datasets.

74

xS→T

yS→T ŷS→T

Ltask

yS

xS d̂S xTx̃S→T

R fR DTfD

fT

R

Lpho

LGAN

fTD f t

LGAN

+

Figure 5.2: NoVA Pipeline. A depth estimation model fD estimates a depth d̂S given a
source image xS. Based on d̂S, the source image xS and corresponding label yS are warped
by a differentiable rendering operator R to the target domain viewpoint. The warped
image xS→T is refined by a residual refinement network fR to create a refined image
x̃S→T . A discriminator DT ensures the realism of the refined image, while a photometric
consistency loss Lpho ensures consistency between the warped and refined image. A
segmentation model fT that predicts ŷS→T is trained with a task loss Ltask on the refined
images x̃S→T and warped labels yS→T . During training of fT , a feature-level discriminator
D f t ensures alignment between features of refined images x̃S→T and target images xT .

5.1 Method

This section introduces our Novel Viewpoint Adaptation (NoVA) framework. NoVA
performs a geometry-aware translation of source domain data to the target domain. It is
an unsupervised and unpaired method, requiring no annotations in the target domain nor
corresponding image pairs in the source and target domain.

The NoVA pipeline is split into four stages (see Fig. 5.2). In a first step, a depth map
is estimated from a given source domain image. Next, the source image and label are
forward warped to the viewpoint of the target domain. Afterwards, occluded areas are
inpainted and the style of the warped image is adapted to the style of the target domain
by a refinement network. Finally, the translated images and labels are utilized to train a
target segmentation network.

Problem Setup. We consider the challenging problem of domain and viewpoint
adaptation for the task of semantic segmentation. More precisely, we consider unsu-
pervised adaptation, where we are provided with a set of images XS and labels YS in
the source domain and with unpaired images XT and no labels in the target domain. In
addition, we assume to know the transformation between the source and target viewpoint
VS→T = (KS,KT ,RS→T , tS→T), where KS,KT are the camera intrinsics and RS→T , tS→T is
the transformation between source and target view. Based on the source dataset (XS,YS)

75

we can train a source segmentation model fS, parameterized by a CNN with weights Ws,
for K-way classification using a cross-entropy loss:

Ltask(fS,XS,YS) =

−E(xS,yS)∼(XS,YS)

K

∑
k=1

1k=yS log
(
σ(f (k)S (xS|Ws))

) (5.1)

where σ is the softmax function.
However, the source model will not perform well on images from the target view-

point, as evidenced in our experiments (see Section 5.2). Thus, we aim to train a target
segmentation network fT that is optimized for target domain images.

Depth Estimation. In order to utilize the prior knowledge about the transformation
between the source and target viewpoints, which is encapsulated in VS→T , we utilize an
explicit depth representation of the scene. In addition, this enables us to not only translate
the source domain images but also the corresponding source labels. Given a source view
image xS ∼ XS, a depth estimation network fD, parameterized by a CNN with weights Wd ,
estimates a depth map d̂S = fD(xS|Wd).

Rendering. Given a predicted source view depth map d̂S, we warp the source view
image xS as well as the corresponding source view label yS ∼ YS to the target view.
Using a differentiable rendering operator R we generate a target view image xS→T =

R(xS, d̂S,VS→T) and target view label yS→T =R(yS, d̂S,VS→T) according to VS→T . While
we allow backpropagation through R for warping the source images xS , we stop the
gradients from backpropagating throughR when warping the source labels yS.

While self-supervised monocular depth estimation methods utilize inverse warping to
provide supervision via view synthesis [41, 166], our problem setup, which considers
unpaired images, necessitates the use of forward warping. As in [144], we utilize a
forward-splatting approach. We first perform a forward projection of each pixel pS in the
source image to the pixels in the target frame pT using the inverse predicted depth d̂−1

S ,
the camera intrinsics KS,KT and the transformation between the views RS→T , tS→T :

px
T

py
T

1
d̂−1

T

∼
[

KT 0̂
0̂ 1

][
RS→T tS→T

0̂ 1

][
K−1

S 0̂
0̂ 1

]
px

S

py
S

1
d̂−1

S

 (5.2)

76

The target image is initialized with an empty canvas onto which the projected source
pixels are splatted. Several source pixels may map to the same target pixel, thus we
require the use of z-buffering to deal with occlusions. For this, we use a differentiable soft

z-buffer where the contribution of each source pixel to a target pixel is weighted according
to its inverse depth in the target view d̂−1

T . Finally, the image is normalized by a weighted
average of the contributions of points which splat to a given target pixel. For more details,
we refer the reader to [144].

Target View Refinement. As the target view may contain new scene content, which
was occluded or outside of the camera frame in the source view image, we refine the
warped image xS→T by inpainting blank image areas and stylizing the image in the target
domain style. This task is performed by a refinement network fR, which is parameterized
by a CNN with weights Wr. This network is not tasked with synthesizing an image from
scratch but instead only needs to output a residual r which is added to the warped source
image xS→T before the hyperbolic tangent activation in the network’s last layer to create
the refined image x̃S→T = tanh(xS→T + r). By modeling the refinement with a residual
connection, we make the inpainting task easier for the refinement network to learn and
encourage the network to keep the overall image structure of the warped image in the
refined image.

The supervision for training the refinement network is provided by a discriminator
network DT that is trained with an adversarial loss LGAN :

LGAN(G̃S→T ,DT ,XT ,XS)

= ExT∼XT [logDT (xT)]

+ExS∼XS [log(1−DT (G̃S→T (xS)))]

(5.3)

where the depth estimation, forward rendering and refinement steps are encapsulated into
a single virtual generator step G̃S→T = fR(R(xS, fD(xS|Wd),VS→T)|Wr).

As we do not assume to have any target labels available, we cannot apply the same
unsupervised refinement approach to the warped source labels ŷS→T . Instead, we use the
warped source labels directly without refinement to provide a sparse supervision signal
for training the target segmentation network fT , in which the task loss is only applied in
regions with label information.

Enforcing Photometric Refinement Consistency. An important aspect of the refine-
ment step is that the original scene structure and content of the warped source image

77

should be preserved. In order to enforce consistency between the warped and the refined
image, we propose a lightweight photometric refinement loss that penalizes differences
between the warped and the refined source pixels:

Lpho(GS→T , G̃S→T ,XS) =

λphoExS∼XS [||GS→T (xS)− G̃S→T (xS)||1]
(5.4)

where GS→T =R(xS, fD(xS|Wd),VS→T) and where λpho is a binary pixel-wise mask. The
weight λpho is 0 for empty pixels in the warped image xS→T , onto which no source pixel
was mapped, and 1 for all non-empty pixels.

While the refinement network has the freedom to change any warped source pixel if
desired, Lpho encourages the refinement network to effectively act as an inpainting model.
However, even when the source and target domains do not only differ in viewpoint but also
in their overall image style, we find the photometric refinement loss to be a lightweight
and effective alternative to a semantic [146] or cycle consistency loss [56].

Target Network Training. The target task network fT , which is parameter-
ized by a CNN with weights Wt , is trained with the translated source domain data.
Let us denote the translated source view dataset as (X̃S→T ,YS→T) where X̃S→T =

{ fR(R(xS, fD(xS|Wd),VS→T)|Wr)|xS ∈ XS}, YS→T = {R(yS, fD(xS|Wd),VS→T)|xS ∈
XS,yS ∈ YS}.

For training fT we again utilize the cross-entropy loss:

Ltask(fT , X̃S→T ,YS→T) =

−E(x̃S→T ,yS→T)∼(X̃S→T ,YS→T)

K

∑
k=1

1k=yS→T log
(
σ(f (k)T (x̃S→T |Wt))

) (5.5)

In addition, we perform feature-level alignment of fT between the the target images XT

and the refined images X̃S→T . For this, we add a discriminator D f t to distinguish between
features of target images and refined images:

LGAN(fT ,D f t , fT (X̃S→T |Wt),XT) =

Ex̃S→T∼X̃S→T
[logD f t(fT (x̃S→T |Wt))]+

ExT∼XT [log(1−D f t(fT (xT |Wt)))]

(5.6)

78

Overall Learning Objective. Our complete learning objective encapsulates the above
losses, which optimize for target view segmentation (Ltask, see Eq. (5.5)), image refine-
ment (LGAN , see Eq. (5.3)), photometric consistency (Lpho, see Eq. (5.4)) and feature
alignment (LGAN , see Eq. (5.6)):

LNoVA(fT , G̃S→T ,DT ,D f t ,XS,XT ,YS)

= Ltask(fT , X̃S→T ,YS→T)

+LGAN(G̃S→T ,DT ,XT ,XS)

+Lpho(GS→T , G̃S→T ,XS)

+LGAN(fT ,D f t , fT (X̃S→T |Wt),XT)

(5.7)

5.2 Experiments

In order to demonstrate the effectiveness of NoVA, we perform experiments to adapt to
a novel viewpoint within a simulation environment (see Section 5.2.2) as well as from
simulation to a complex real environment (see Section 5.2.3). In Section 5.2.1 we present
an overview of our experimental setup for both sets of experiments.

5.2.1 Experimental Setup

Datasets We utilize synthetic data generated in CARLA [32] as well as the real-world
dataset CityScapes [23]. In the CARLA simulation framework, we generate data from a
car and a truck viewpoint. For both views we generate 30 train, 15 test and 5 validation
sequences of 1,000 frames each, where every frame consists of a stereo RGB image
pair, a semantic segmentation label and a depth map of resolution 2048× 1024. In
CityScapes, we use 2975 train and 500 test frames with fine annotations. Details on the
semantic segmentation classes and on the viewpoint transformation for both experiments
is presented in the Appendix (see Section A.1).

Baselines. The naı̈ve baseline for all of our experiments is to train a segmentation
model fS on source data only. In addition, we use two state-of-the-art image-level domain
adaptation models, CyCADA [56] and SPLAT [146], as well as the SceneAdapt model by
Maura et al. [28] which is aims at adapting to a novel scene (i.e. a novel static viewpoint)
within the same domain. It should be noted that CyCADA and SPLAT have been proposed
for the general task of domain adaptation and not for domain and viewpoint adaptation.

79

For CyCADA, we follow the generator and discriminator architectures of [169]. The
input to both networks is resized to 512× 256. We train CyCADA with the Adam
optimizer, single image batches and a learning rate of 0.0002 for 20 epochs after which
the learning rate is linearly decayed to zero over the course of the next 20 epochs. We
adopt the same training scheme for SPLAT but replace the cycle-consistency with a
semantic-consistency loss that uses the source segmentation model. The SceneAdapt
model is constructed from an encoder based on our base segmentation network (see below)
and a decoder based on the generator models of CyCADA and SPLAT. The discriminator
architecture and training scheme are consistent with CyCADA and SPLAT.

NoVA. While our differentiable rendering formulation enables a joint end-to-end
training of the complete NoVA pipeline, we found it beneficial to train NoVA in stages.

For depth estimation, we evaluate three classes of estimators: A self-supervised, monoc-
ular approach [47], a supervised monocular approach [59] and a supervised stereo ap-
proach [8]. Each approach is trained on source images of resolution 512×256 as outlined
in the respective paper. For rendering, we bilinearly upsample the predicted depth maps to
match the source resolution of 2048×1024. In order to avoid empty pixels in the warped
output, the rendering operatorR outputs images and labels which are downscaled by a
factor of 4. The forward warped images are refined by a residual refinement network
fR that is based on the CyCADA generator architecture which is modified to include a
residual connection. The overall training scheme remains unchanged.

Segmentation Model. For the segmentation model we use a VGG16-FCN8s [90]. We
train it for 100,000 steps with batches of size 4 using a learning rate of 1e−3 with SGD
and momentum of 0.9. Feature-level adaptation is performed as described in [56].

Evaluation Metrics. We consider the metrics of mean intersection-over-union (mIoU),
frequency-weighted intersection-over-union (fwIoU) and pixel accuracy (pixAcc):

mIoU =
1
C ∑

i

nii

ti +∑ j n ji−nii
(5.8)

fwIoU =
1

∑k tk
∑

i

tinii

ti +∑ j n ji−nii
(5.9)

pixAcc =
∑i nii

∑i ti
(5.10)

where C is the number of segmentation classes, ni j is the number of pixels of class i

predicted as class j and ti = ∑ j ni j is the total number of pixels of class i.

80

5.2.2 Sim2Sim

For a first set of experiments, we aim to evaluate the task of viewpoint adaptation only.
To this effect, we select two domains which only differ in viewpoint but not in style.

Table 5.1 presents the results for adapting from a car to a truck viewpoint in the CARLA
simulation [32]. It shows that NoVA outperforms the scene and domain adaptation
baselines by a large margin on the task of viewpoint adaptation.

In fact, given ground truth depth, NoVA is able to get very close to reaching the
performance of a target oracle model, which is trained on the labeled target data. For
predicted depth estimation, we find that all variants of NoVA still compare favorably to
the baselines. Here, the supervised stereo model (stereo-sup) outperforms the monocular
self-supervised (mono-self) and the monocular supervised (mono-sup) approach.

For SceneAdapt, we find that it improves over the source segmentation model for
the viewpoint adaptation task. As for CyCADA and SPLAT, we find that both struggle
with the task. Because they are designed for domain adaptation and not for viewpoint
adaptation, they do not take a translation of the source labels to the target viewpoint into
consideration. This leads to a mismatch between the translated source images and the
original source labels. Indeed, we see that the performances of CyCADA and SPLAT
improve when we combine their translated images with the actual target labels. However,
even when using target view labels, their performances do not reach the level of NoVA.
This indicates that NoVA’s image translation pipeline is overall better adapted to the task
of viewpoint adaptation.

When inspecting the translated images of CyCADA and SPLAT (see Fig. 5.5), we
find that a shortcoming for both models is that the semantics of translated images are not
always consistent with the semantics of the source images. Interestingly, we find that
CyCADA is nonetheless able to reconstruct the source from the translated image well,
which suggests that it has learned to encode some of the source semantics in the noise of
the translated image (see Fig. 5.9) [13].

On the other hand, qualitative results for NoVA (see Fig. 5.3 and Fig. 5.4) demonstrate
that NoVA is effective in retaining the source image semantics in the refined images. As
shown by the ablation study in Table 5.2, training with forward warped image-label pairs
(xS→T ,yS→T) already results in a large performance gain in comparison to the source
segmentation model. NoVA’s residual refinement further improve NoVA’s performance
over a default refinement model that synthesizes its output image from scratch.

81

Table 5.1: Results for Viewpoint Adaptation on Sim2Sim. When tasked with adapting
a semantic segmentation model from a car to a truck viewpoint, in which no labels
are available, NoVA outperforms current state-of-the-art domain and scene adaptation
baselines and closes the gap to a target oracle model, which is trained on labeled target
data.

Method mIoU fwIoU pixAcc

Source Only 26.54 43.56 55.82
SceneAdapt [28] 26.63 54.65 68.15
CyCADA [56] 10.57 21.44 30.36
CyCADA [56] + trgt-labels 16.31 45.89 62.55
SPLAT [146] 13.63 22.77 32.26
SPLAT [146] + trgt-labels 18.81 45.12 59.29

NoVAmono−sel f 42.54 69.99 79.99
NoVAmono−sup 45.27 71.20 80.49
NoVAstereo−sup 49.67 76.44 84.97
NoVAGT 51.89 78.66 86.69

Target Oracle 52.72 79.96 87.81

Table 5.2: Ablation Study for NoVAGT on Sim2Sim. When the source and the target
domain are separated by a change in viewpoint only, NoVA’s forward warping of source
images and labels to the target domain yields the largest performance improvement over
training with source data only. A residual refinement, which inpaints occluded areas in
the forward warped images, improves over a default refinement, that needs to synthesize a
complete new image from scratch.

Method mIoU fwIoU pixAcc

Source Only 26.54 43.56 55.82

+ Forward Warping 47.81 75.74 84.11

+ Default Refinement 49.24 76.91 85.08
+ Residual Refinement 51.89 78.66 86.69

82

(a) Source Image (b) Warped Image (c) Refined Image (d) Warped Label

Figure 5.3: NoVAGT Performance on Sim2Sim. Given a source view frame, NoVA
forward warps the source image and label to the target viewpoint and refines the warped
image by inpainting occluded image areas with a residual refinement network.

(a) NoVAmono−sel f (b) NoVAmono−sup (c) NoVAstereo−sup (d) NoVAGT

Figure 5.4: NoVA Performance for Different Depth Estimators. NoVA can utilize
self-supervised and supervised monocular or stereo depth estimation models as well as
ground truth depth maps (top row: predicted depth, bottom row: refined images).

(a) Source Image (b) CyCADA (c) SPLAT (d) NoVAGT

Figure 5.5: Qualitative Comparison of NoVAGT to the Baselines on Sim2Sim. In
contrast to NoVA, the CyCADA and SPLAT baseline models do not ensure a semantic
consistency between the source image and the translated source image.

5.2.3 Sim2Real

In a second set of experiments we investigate the adaptation to a novel viewpoint in a
novel domain. For this, we aim to adapt from a truck viewpoint in the CARLA simulation
to a car viewpoint in the complex real-world dataset of CityScapes. In this setup, the
domain gap is now not only caused by a change in camera viewpoint but also by a change
in image style and overall scene complexity. We restrict our evaluation to the subset of
CityScapes classes which are present in CARLA.

83

(a) Source Image (b) Warped Image (c) Refined Image (d) Warped Label

Figure 5.6: NoVAGT Performance on Sim2Real. NoVA is able to adapt to the novel
viewpoint and style of the CityScapes dataset by forward warping to the target view and
refining the warped images in the style of the target domain.

(a) Source Image (b) CyCADA (c) SPLAT (d) NoVAGT

Figure 5.7: Qualitative Comparison of NoVAGT to the Baselines on Sim2Real. In
contrast to NoVA, the CyCADA and SPLAT baseline models fail to correctly adapt
semantic objects (e.g. cars) from the source to the target domain viewpoint.

Table 5.3 demonstrates that NoVA also improves upon the baseline methods in closing
the domain gap from a synthetic source domain to the novel viewpoint of a challenging
real-world target domain. Unlike for the viewpoint adaptation experiments, SceneAdapt
now yields no performance improvements over training a segmentation model with source
data only. This suggests that the SceneAdapt model is better suited for the viewpoint
adaptation task than for the joint domain and viewpoint adaptation task.

CyCADA and SPLAT demonstrate performance improvements with respect to the
source model on the Sim2Real task. However, they still perform worse than all NoVA
variants and a qualitative comparison to NoVA (see Fig. 5.7) reveals that they struggle
to correctly warp the appearance of semantic objects (e.g. cars) to the viewpoint of the
target domain. In the case of SPLAT, this can be explained by its semantic consistency
loss, which encourages semantic objects to reappear in the translated image at the same
spatial location as in the original source image.

Despite not using a cycle or semantic consistency loss, qualitative results in Fig. 5.6
and Fig. 5.7 confirm that NoVA preserves the scene semantics well when adapting to a
novel domain. This suggests that NoVA’s explicit forward warping in combination with
its residual refinement and photometric refinement loss offer a lightweight yet effective
alternative for ensuring consistency between source images and translated source images.

84

Table 5.3: Results for Domain and Viewpoint Adaptation on Sim2Real. When the
source and target domain differ in both viewpoint and style, NoVA again significantly
outperforms the state-of-the-art adaptation baseline models.

Method mIoU fwIoU pixAcc

Source Only 18.84 37.34 47.59
SceneAdapt [28] 11.54 30.65 37.23
CyCADA [56] 19.26 43.90 56.43
SPLAT [146] 21.01 49.42 60.99

NoVAmono−sel f 30.23 60.32 72.09
NoVAmono−sup 34.36 66.83 78.25
NoVAstereo−sup 32.96 63.95 75.09
NoVAGT 35.91 69.52 80.84

Target Oracle 51.30 79.82 88.36

Table 5.4: Ablation Study for NoVAGT on Sim2Real. While we again find forward
warping to be highly beneficial, residual refinement now yields a large improvement over
training with the forward warped data as the refinement adapts the warped images to the
style of the target domain.

Method mIoU fwIoU pixAcc

Source Only 18.84 37.34 47.59

+ Forward Warping 26.95 55.23 69.72

+ Default Refinement 30.41 58.30 68.97
+ Residual Refinement 35.91 69.52 80.84

In a second ablation study (see Table 5.4), we find NoVA’s forward warping component
again to be highly beneficial. However, compared to the results on the Sim2Sim task, the
residual refinement now improves upon the forward warping significantly, as the domains
are now also separated by a change in image style.

As opposed to the results on the Sim2Sim task, NoVA is now unable to fully close
the gap to the target oracle model that is trained on the labeled target data. We suspect
this may be due to CARLA lacking CityScapes’ overall diversity. Here, semi-supervised
adaptation with a limited number of labeled CityScapes examples can further improve
NoVA’s performance and help to close the gap to the target oracle model.

85

100 300 1000 2975

NT

35

40

45

50

m
Io

U

Figure 5.8: Semi-Supervised Adaptation on Sim2Real. Performance improves when
we combine NoVAGT ’s translated source domain dataset of size NS = 30,000 with a set
of labeled target examples from CityScapes of size NT .

(a) Source (b) Translated (c) Reconstructed

Figure 5.9: CyCADA on Sim2Sim. CyCADA learns to encode some of the source image
semantics in the noise of the translated image for the reconstruction of the source image.

As Fig. 5.8 visualizes, combining NT = 300 labeled CityScapes frames with NoVA’s
NS = 30,000 translated source frames can already boost NoVA’s mIoU-performance by
about 5% wrt. an unsupervised adaptation.

We present further image translation examples as well as qualitative semantic segmen-
tation results for NoVA and the baselines on both Sim2Sim and Sim2Real in Section A.2.

5.3 Conclusions

In this chapter, we introduced NoVA, a new model for adapting to novel viewpoints and
domains. NoVA performs a geometry-aware translation of source domain images and
labels to a target domain, in which no labeled examples are available. Our experiments on
the task of semantic segmentation demonstrate that NoVA significantly improves over
state-of-the-art domain adaptation models for adapting to novel views in simulation and
complex real world datasets.

86

An area of future work is to adapt the NoVA pipeline to support the generation of
higher resolution target domain data, possibly by incorporating an additional upscaling
step in the pipeline. Furthermore, the realism of the refined images is an obvious area for
improvement, where it could be beneficial to take over some of the recent advances from
the field of generative modeling. Lastly, while NoVA supports an end-to-end training
of its pipeline, we found it more stable to train the individual NoVA networks in stages.
Here, it may be interesting to investigate if and how an end-to-end training of NoVA can
be made more stable and performant.

NoVA is the third and final of our proposed approaches for incorporating prior knowl-
edge in the form of invariances into deep convolutional neural networks. In the next
chapter, we will conclude this thesis and give a brief outlook on possible directions of
future work.

87

Chapter 6

Summary

This thesis has proposed three approaches for the incorporation of prior knowledge in the
form of invariance into the training or architecture of deep convolutional neural networks
for tasks such as image classification, object detection, semantic segmentation or optical
flow. All three presented approaches have focused on the application areas of autonomous
driving and advanced driver-assistance systems in which the training of robust computer
vision models even from little labeled training data is of particularly high importance.

Our first proposed unsupervised similarity loss uses the invariance properties of image
labels under a given set of geometric transformations of the input data. Thereby, the
similarity loss acts as an effective regularizer when performing supervised learning from
small labeled datasets and additionally makes it possible to utilize unlabeled training data
in order to perform semi-supervised learning of an image classification model.

Second, the proposed SphereNet framework enables the learning of spherical represen-
tations for a variety of computer vision tasks in omnidirectional images. By encoding
invariance to the distortions which are present in the equirectangular representation of om-
nidirectional images into the filters of convolutional neural networks, SphereNet enables
a transfer of models from the perspective domain, in which large labeled datasets are
commonly available, to the omnidirectional domain, in which large datasets are scarce.

Third, the Novel Viewpoint Adaptation (NoVA) model performs an adaptation from a
viewpoint, in which a large labeled dataset is available, to a novel viewpoint, potentially
in a different domain, in which little or even no labeled data is available. By utilizing the
prior knowledge about the transformation between the two viewpoints, NoVA performs a
geometrically-aware translation of source view images and labels to the target domain
viewpoint and thus enables the training of a task network that performs well for target
view images.

88

We expect future work to continue to explore all three of the presented research
directions as well as flexible combinations of them for incorporating prior knowledge
of invariances or equivariances into deep neural networks. Indeed, the field of invariant
and equivariant deep neural networks is currently gaining more attention in the computer
vision research community and the number of published papers on invariant or equivariant
neural networks continues to grow.

While many of the current invariant network architectures have so far focused on the
task of classification, we have shown that invariance can also be highly beneficial for
more complex vision tasks. In fact, the extension of invariant and equivariant deep models
to tasks such as object detection or semantic segmentation is a fundamental requirement
to enable their use in many real-world applications. These include autonomous driving
and advanced driver-assistance systems, where the detection of other traffic participants
or the segmentation of the drivable path are core parts of any perception stack.

Yet, the adaptation of deep invariant/equivariant models in real-world applications does
not only depend on their ability to handle more complex vision tasks but also on whether
they can be fast and resource-efficient enough for the desired use-case. In the automotive
context, this generally means that a perception model must be real-time capable and also
that it must often fit on an embedded system with limited processing power and memory.
Here, additional research and engineering work will be required to enable the transfer of
newly developed research ideas into real-world production environments.

In general, a challenge remains to adapt established and proven network architectures,
learning procedures or software frameworks to support these novel models and training
approaches. However, this will be a crucial step in order to enable their widespread use
by practitioners outside of research circles and thereby establish these models as parts of
the common deep learning toolboxes and as cornerstones of modern computer vision.

89

Appendix A

Appendix

In this Appendix, we present more details on the datasets which were used in our NoVA
experiments and provide additional qualitative results for NoVA as well as the baselines.

A.1 NoVA Datasets

In this section, we provide additional details on the simulation and real-world datasets
which were used for our Sim2Sim and Sim2Real experiments.

A.1.1 Semantic Segmentation Classes

In total, we use 9 semantic classes. The mapping from dataset IDs and classes to training
labels for CARLA [32] and CityScapes [23] is defined in Table A.1, where −1 denotes
classes which are ignored during training. For CARLA, the pedestrian class is removed
as there are no pedestrians in the generated dataset. For CityScapes, classes which are
semantically equivalent to CARLA classes are mapped to the respective CARLA training
labels. For example, as CARLA features both cars and trucks in its vehicles class, the
respective CityScapes classes are mapped to the same training label as CARLA’s vehicles
class.

A.1.2 Viewpoint Transformation

NoVA utilizes the transformation VS→T between the source and target domain viewpoints
in order to warp the source images and labels to the target domain viewpoint. VS→T is
defined wrt. a coordinate system in which the x-axis points in the driving direction, the
y-axis points left and the z-axis points up.

90

(a) CARLA Mapping

ID Class Label
0 None -1
1 Buildings 0
2 Fences 1
3 Other -1
4 Pedestrians -1
5 Poles 2
6 RoadLines 3
7 Roads 3
8 Sidewalks 4
9 Vegetation 5

10 Vehicles 6
11 Walls 7
12 TrafficSigns 8

(b) CityScapes Mapping

ID Class Label
-1 License Plate -1
0 Unlabeled -1
1 Ego Vehicle -1
2 Rectification Border -1
3 Out of RoI -1
4 Static -1
5 Dynamic -1
6 Ground -1
7 Road 3
8 Sidewalk 4
9 Parking -1

10 Rail Track -1
11 Building 0
12 Wall 7
13 Fence 1
14 Guard Rail -1
15 Bridge -1
16 Tunnel -1
17 Pole 2
18 Polegroup -1
19 Traffic Light 8
20 Traffic Sign 8
21 Vegetation 5
22 Terrain -1
23 Sky -1
24 Person -1
25 Rider -1
26 Car 6
27 Truck 6
28 Bus -1
29 Caravan -1
30 Trailer -1
31 Train -1
32 Motorcycle -1
33 Bicycle -1

Table A.1: Mapping of dataset IDs and classes to training labels in CARLA and
CityScapes.

91

A.1.2.1 Sim2Sim

For Sim2Sim, the transformation between the car viewpoint in CARLA and the truck
viewpoint in CARLA is given by VSim2Sim = (KCARLA,KCARLA,RSim2Sim, tSim2Sim) where
KCARLA is:

KCARLA =

1024 0 1024
0 1024 512
0 0 1

 (A.1)

The rotation and translation between the two viewpoints is derived from the extrinsic
parameters of the two cameras. The car camera points straight forward (no rotation

along any axis) and is translated by tcar =
[
0.30 −0.11 1.30

]T
. In contrast, the truck

camera is rotated around the pitch axis by βy =−22.5◦ and translated by 2m wrt. the car

camera ttruck =
[
0.30 −0.11 3.30

]T
. Thus, the extrinsic transformation between the

two viewpoints for the Sim2Sim task is RSim2Sim = Ry(22.5◦) where Ry is the rotation

matrix around the y-axis and tSim2Sim =
[
0 0 2

]T

A.1.2.2 Sim2Real

For Sim2Real, the transformation between the truck viewpoint in CARLA and the car
viewpoint in CityScapes is given by VSim2Real = (KCARLA,KCityScapes,RSim2Real, tSim2Real)

where KCARLA is defined as in Eq. (A.1) and KCityScapes is:

KCityScapes =

2262.52 0 1096.98
0 2265.30 513.14
0 0 1

 (A.2)

The extrinsic parameters of the truck camera in CARLA remain unchanged. In
CityScapes, the camera is rotated around the pitch axis by β = 2.18◦ and around the

yaw axis by γ = 1.12◦. It is translated by tCityScapes =
[
1.70 0.10 1.22

]T
. Thus,

the extrinsic transformation between the truck viewpoint in CARLA and the car
viewpoint in CityScapes is given by RSim2Real = Rz(1.12◦)Ry(−20.32◦), tSim2Real =[
1.40 0.21 −2.08

]T
.

92

A.2 Additional Qualitative Results for NoVA

In this section, we present additional qualitative results for image translation and semantic
segmentation of the NoVA model as well as the baselines for the Sim2Sim and Sim2Real
tasks.

A.2.1 Sim2Sim

Figures A.1 to A.4 visualize the intermediary forward warped images, refined warped
images and forward warped labels for the different variants of NoVA. For the NoVA
variants that use depth estimation models instead of ground truth depth maps, we find
that a bilinear upsampling of the predicted depth maps from a resolution of 512×256
to a resolution of 2048× 1024 causes some artifacts in the warped images and labels.
However, the refinement model is able to remove some of these artifacts in the subsequent
image refinement step.

As Fig. A.5 shows, the CyCADA [56] and SPLAT [146] domain adaptation baselines
struggle with the viewpoint adaptation task. In contrast to NoVA, they are not designed
for viewpoint adaptation but for the more general task of domain adaptation. Thus, they
do not utilize an explicit depth representation but instead need to learn the perspective
transformation end-to-end to perform an image translation to a novel viewpoint. Further-
more, they only consider a translation of the source images to the target domain viewpoint,
which leads to a mismatch when using the translated source images in combination with
the original source labels for training the task segmentation network.

A comparison of the semantic segmentation performance of the baselines and NoVA is
visualized in Fig. A.7 for a VGG16-FCN8s network architecture [90], which was utilized
in the experiments of the main paper, as well as in Fig. A.6 for a DRN-26 model [161],
which was trained and evaluated in addition for this supplementary material. For the
Sim2Sim viewpoint adaptation task, we find that neither the source model that was trained
with the original source view dataset nor the domain adaptation baselines perform well. In
contrast, NoVA demonstrates good performance and comes close to matching the output
of a target oracle model that was trained with the labeled target viewpoint dataset.

93

A.2.2 Sim2Real

For the Sim2Real task, Figures A.8 to A.11 show the image and label translation for
the different variants of NoVA. We find that as the style of the CARLA and CityScapes
domains differs significantly, the refinement network does not only inpaint the warped
images but also adapts their overall style to the style of the target domain. Importantly, the
refinement retains the overall semantic structure of the warped images so that the refined
images are still consistent with the warped source labels.

The image translation for the CyCADA and SPLAT baselines is visualized in Fig. A.12.
We find that while it retains some of the source image semantics in the translated image
and successfully adapts the source images to the style of the target domain, it does not
correctly warp semantic objects (i.e. cars) to the target domain viewpoint. In the case of
SPLAT, this can be explained by its semantic consistency loss which encourages semantic
objects to reappear in the same image locations as in the original source segmentation
maps.

The semantic segmentation performance for the baselines and NoVA is visualized in
Fig. A.14 for a VGG16-FCN8s [90] and in Fig. A.13 for a DRN-26 [161] model. In
contrast to Sim2Sim, CyCADA and SPLAT now show improved performance over a
source segmentation model, whereas SceneAdapt [28] does not appear to be well suited
for adapting to a view in a novel domain. As before, NoVA compares favorably to the
baselines and gets close to matching the performance of a target oracle.

94

(a) Source Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.1: NoVAmono−sel f Translation on Sim2Sim.

(a) Source Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.2: NoVAmono−sup Translation on Sim2Sim.

95

(a) Input Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.3: NoVAstereo−sup Translation on Sim2Sim.

(a) Source Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.4: NoVAGT Translation on Sim2Sim.

96

(a) Source Images (b) CyCADA (c) SPLAT (d) Source Labels

Figure A.5: CyCADA and SPLAT Translation on Sim2Sim.

(a) Target Images (b) Source Model (c) CyCADA (d) NoVAGT (e) Target Oracle

Figure A.6: Comparison of Semantic Segmentation Performance on Sim2Sim for a
DRN-26 Model.

97

(a) Target Images (b) Source Model (c) CyCADA (d) SPLAT (e) SceneAdapt

(f) NoVAmono−sel f (g) NoVAmono−sup (h) NoVAstereo−sup (i) NoVAGT (j) Target Oracle

Figure A.7: Comparison of Semantic Segmentation Performance on Sim2Sim for a
VGG16-FCN8s Model.

98

(a) Target Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.8: NoVAmono−sel f Translation on Sim2Real.

(a) Source Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.9: NoVAmono−sup Translation on Sim2Real.

99

(a) Source Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.10: NoVAstereo−sup Translation on Sim2Real.

(a) Source Images (b) Warped Images (c) Refined Images (d) Warped Labels

Figure A.11: NoVAGT Translation on Sim2Real.

100

(a) Source Images (b) CyCADA (c) SPLAT (d) Source Labels

Figure A.12: CyCADA and SPLAT Translation on Sim2Real.

(a) Target Images (b) Source Model (c) CyCADA (d) NoVAGT (e) Target Oracle

Figure A.13: Comparison of Semantic Segmentation Performance on Sim2Real for
a DRN-26 Model.

101

(a) Target Images (b) Source Model (c) CyCADA (d) SPLAT (e) SceneAdapt

(f) NoVAmono−sel f (g) NoVAmono−sup (h) NoVAstereo−sup (i) NoVAGT (j) Target Oracle

Figure A.14: Comparison of Semantic Segmentation Performance on Sim2Real for
a VGG16-FCN8s Model.

102

Symbols

This list provides an overview of the notation that is shared across chapters.

X Input dataset
Y Label dataset
N Dataset size
I Identity matrix
K Intrinsic matrix
R Rotation matrix
W Model weights

x Input sample x ∈ X

y Label sample y ∈ Y

f Function
g Interpolation kernel
t Transformation

I Identity function
R Real numbers

D Distance metric
L Loss function
N Normal distribution
T Set of transformations

α,β ,γ Rotation angles
φ ,θ Spherical coordinates
δ Kronecker delta function
λ Weight parameter
σ Softmax function
∆ Step size

103

Abbreviations

BI Bilinear Interpolation
CAD Computer-Aided Design
CARLA Car Learning to Act
CNN Convolutional Neural Network
CoGAN Coupled GAN
CubeCNN Cube Map CNN
CyCADA Cycle-Consistent Adversarial Domain Adaptation
CycleGAN Cycle-Consistent Adversarial Network
DA Domain Adaptation
DC-IGN Deep Convolution Inverse Graphics Network
DCN Deformable Convolutional Network
DRN Dilated Residual Network
DSS Deep Scale-Spaces
EPE End-Point-Error
EquiCNN Equirectangular CNN
FCN Fully Convolutional Network
fwIoU Frequency-weighted Intersection-over-Union
G-CNN Group Equivariant Convolutional Neural Network
GAN Generative Adversarial Network
GCNN Graph Convolutional Neural Network
GRL Gradient Reversal Layer
GTSRB German Traffic Sign Recognition Benchmark
H-Net Harmonic Network
HOG Histogram of Oriented Gradients
IoU Intersection-over-Union
mAP Mean Average Precision
mIoU Mean Intersection-over-Union

104

MMD Maximum Mean Discrepancy
MNIST Modified National Institute of Standards and Technology database
NN Nearest Neighbor
NBN N-body Network
NoVA Novel Viewpoint Adaptation
NVS Novel View Synthesis
Omni-MNIST Omnidirectional MNIST
OmPaCa Omnidirectional Parked Cars
ORN Oriented Response Network
pixAcc Pixel Accuracy
R-CNN Region-based Convolutional Neural Network
ReLU Rectified Linear Unit
RotEqNet Rotation Equivariant Vector Field Network
S2CNN Spherical CNN
SFCNN Steerable Filter CNN
SGD Stochastic Gradient Descent
SIFT Scale-Invariant Feature Transform
SphereSSD Spherical Single Shot MultiBox Detector
SphereTN Spherical Transformer Network
SPLAT Semantic Pixel-Level Adaptation Transforms
SSD Single Shot MultiBox Detector
STN Spatial Transformer Network
SVM Support Vector Machine
t-SNE t-Distributed Stochastic Neighbor Embedding
TI-POOLING Transformation-Invariant Pooling
TFN Tensor Field Network

105

Bibliography

[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. In Proc. of the

IEEE International Conf. on Computer Vision (ICCV), 2015.

[2] H. S. Baird. Document image defect models. In L. O’Gorman and R. Kasturi,
editors, Document Image Analysis, pages 315–325. IEEE Computer Society Press,
1995.

[3] D. Beymer and T. Poggio. Face recognition from one example view. In Proc. of

the IEEE International Conf. on Computer Vision (ICCV), 1995.

[4] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised
pixel-level domain adaptation with generative adversarial networks. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[5] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan. Domain
separation networks. In Advances in Neural Information Processing Systems

(NIPS), 2016.

[6] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Trans. on

Pattern Analysis and Machine Intelligence (PAMI), 35(8):1872–1886, 2013.

[7] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan, Q. Huang, Z. Li,
S. Savarese, M. Savva, S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. Shapenet: An
information-rich 3d model repository. arXiv.org, 1512.03012, 2015.

[8] J.-R. Chang and Y.-S. Chen. Pyramid stereo matching network. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[9] O. Chapelle and B. Schölkopf. Incorporating invariances in non-linear support
vector machines. In Advances in Neural Information Processing Systems (NIPS),
2002.

[10] X. Chen, J. Song, and O. Hilliges. NVS machines: Learning novel view synthesis
with fine-grained view control. arXiv.org, 1901.01880, 2019.

106

[11] Y. Chen, W. Li, X. Chen, and L. V. Gool. Learning semantic segmentation from
synthetic data: A geometrically guided input-output adaptation approach. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[12] I. Choi, O. Gallo, A. J. Troccoli, M. H. Kim, and J. Kautz. Extreme view synthesis.
arXiv.org, 1812.04777, 2018.

[13] C. Chu, A. Zhmoginov, and M. Sandler. Cyclegan, a master of steganography. In
Advances in Neural Information Processing Systems (NIPS) Workshops, 2017.

[14] T. Cohen, M. Geiger, and M. Weiler. A general theory of equivariant nns on
homogeneous spaces. arXiv.org, 1811.02017, 2018.

[15] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling. Gauge equivariant convolu-
tional networks and the icosahedral CNN. In Proc. of the International Conf. on

Machine learning (ICML), 2019.

[16] T. S. Cohen, M. Geiger, J. Khler, and M. Welling. Spherical CNNs. In International

Conference on Learning Representations, 2018.

[17] T. S. Cohen, M. Geiger, and M. Weiler. Intertwiners between induced representa-
tions (with applications to the theory of equivariant neural networks). arXiv.org,
1803.10743, 2018.

[18] T. S. Cohen and M. Welling. Group equivariant convolutional networks. In Proc.

of the International Conf. on Machine learning (ICML), 2016.

[19] T. S. Cohen and M. Welling. Steerable cnns. In Proc. of the International Conf. on

Learning Representations (ICLR), 2017.

[20] B. Coors, A. Condurache, and A. Geiger. Spherenet: Learning spherical represen-
tations for detection and classification in omnidirectional images. In Proc. of the

European Conf. on Computer Vision (ECCV), 2018.

[21] B. Coors, A. Condurache, and A. Geiger. Nova: Learning to see in novel viewpoints
and domains. In Proc. of the International Conf. on 3D Vision (3DV), 2019.

[22] B. Coors, A. Condurache, A. Mertins, and A. Geiger. Learning transformation
invariant representations with weak supervision. In Proc. of the Conf. on Computer

Vision Theory and Applications (VISAPP), 2018.

[23] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene

107

understanding. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2016.

[24] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolu-
tional networks. Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2017.

[25] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolu-
tional networks. Proc. of the IEEE International Conf. on Computer Vision (ICCV),
1703.06211, 2017.

[26] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2005.

[27] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information

Processing Systems (NIPS), 2016.

[28] D. Di Mauro, A. Furnari, G. Patanè, S. Battiato, and G. M. Farinella. Scene
adaptation for semantic segmentation using adversarial learning. In Proc. of

International Conf. on Advanced Video and Signal Based Surveillance (AVSS),
2018.

[29] S. Dieleman, J. De Fauw, and K. Kavukcuoglu. Exploiting cyclic symmetry in
convolutional neural networks. In Proc. of the International Conf. on Machine

learning (ICML), 2016.

[30] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning
by context prediction. In Proc. of the IEEE International Conf. on Computer Vision

(ICCV), 2015.

[31] A. Dosovitskiy, P. Fischer, E. Ilg, P. Haeusser, C. Hazirbas, V. Golkov, P. v.d. Smagt,
D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional
networks. In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2015.

[32] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open
urban driving simulator. In Proc. Conf. on Robot Learning (CoRL), 2017.

[33] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image
using a multi-scale deep network. In Advances in Neural Information Processing

Systems (NIPS), 2014.

108

[34] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis. Learning so(3)
equivariant representations with spherical cnns. In Proc. of the European Conf. on

Computer Vision (ECCV), 2018.

[35] C. Esteves, C. Allen-Blanchette, X. Zhou, and K. Daniilidis. Polar transformer
networks. In Proc. of the International Conf. on Learning Representations (ICLR),
2018.

[36] J. M. Facil, B. Ummenhofer, H. Zhou, L. Montesano, T. Brox, and J. Civera.
CAM-Convs: Camera-Aware Multi-Scale Convolutions for Single-View Depth. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[37] B. Fasel and D. Gatica-Perez. Rotation-invariant neoperceptron. In Proc. of the

International Conf. on Pattern Recognition (ICPR), 2006.

[38] K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological

Cybernetics, 36(4):193–202, 1980.

[39] Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by backpropagation.
In Proc. of the International Conf. on Machine learning (ICML), 2015.

[40] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks.
Journal of Machine Learning Research (JMLR), 17:2096–2030, 2016.

[41] R. Garg, B. G. V. Kumar, G. Carneiro, and I. D. Reid. Unsupervised CNN for
single view depth estimation: Geometry to the rescue. In Proc. of the European

Conf. on Computer Vision (ECCV), 2016.

[42] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The KITTI
dataset. International Journal of Robotics Research (IJRR), 32(11):1231–1237,
2013.

[43] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The
KITTI vision benchmark suite. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2012.

[44] R. Ghosh and A. K. Gupta. Scale steerable filters for locally scale-invariant
convolutional neural networks. In Proc. of the International Conf. on Machine

learning (ICML) Workshops, 2019.

109

[45] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2014.

[46] R. B. Girshick. Fast R-CNN. In Proc. of the IEEE International Conf. on Computer

Vision (ICCV), 2015.

[47] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2017.

[48] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[49] I. J. Goodfellow, Q. V. Le, A. M. Saxe, H. Lee, and A. Y. Ng. Measuring invariances
in deep networks. In Advances in Neural Information Processing Systems (NIPS),
2009.

[50] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. C. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural

Information Processing Systems (NIPS), 2014.

[51] P. Haeusser, A. Mordvintsev, and D. Cremers. Learning by association - a versatile
semi-supervised training method for neural networks. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2017.

[52] K. He, G. Gkioxari, P. Dollr, and R. Girshick. Mask r-cnn. In Proc. of the IEEE

International Conf. on Computer Vision (ICCV), 2017.

[53] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

[54] J. a. F. Henriques and A. Vedaldi. Warped convolutions: Efficient invariance to
spatial transformations. In Proc. of the International Conf. on Machine learning

(ICML), 2017.

[55] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transforming auto-encoders. In
Proc. of the International Conf. on Artificial Neural Networks (ICANN), 2011.

[56] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and
T. Darrell. CyCADA: Cycle-consistent adversarial domain adaptation. In Proc. of

the International Conf. on Machine learning (ICML), 2018.

[57] J. Hoffman, D. Wang, F. Yu, and T. Darrell. Fcns in the wild: Pixel-level adversarial
and constraint-based adaptation. arXiv.org, 1612.02649, 2016.

110

[58] H.-N. Hu, Y.-C. Lin, M.-Y. Liu, H.-T. Cheng, Y.-J. Chang, and M. Sun. Deep 360
pilot: Learning a deep agent for piloting through 360◦ sports video. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[59] J. Hu, M. Ozay, Y. Zhang, and T. Okatani. Revisiting single image depth estimation:
Toward higher resolution maps with accurate object boundaries. In Proc. of the

IEEE Winter Conference on Applications of Computer Vision (WACV), 2018.

[60] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of
monkey striate cortex. Journal of Physiology (London), 195:215–243, 1968.

[61] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proc. of the International Conf. on Machine

learning (ICML), 2015.

[62] P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with
conditional adversarial networks. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2017.

[63] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial trans-
former networks. In Advances in Neural Information Processing Systems (NIPS),
2015.

[64] Y. Jeon and J. Kim. Active convolution: Learning the shape of convolution
for image classification. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017.

[65] Y. Jia. Learning Semantic Image Representations at a Large Scale. PhD thesis,
EECS Department, University of California, Berkeley, May 2014.

[66] A. Kanazawa, A. Sharma, and D. W. Jacobs. Locally scale-invariant convolutional
neural networks. In Advances in Neural Information Processing Systems (NIPS)

Workshops, 2014.

[67] R. Khasanova and P. Frossard. Graph-based classification of omnidirectional
images. In Proc. of the IEEE International Conf. on Computer Vision (ICCV)

Workshops, 2017.

[68] R. Khasanova and P. Frossard. Graph-based isometry invariant representation
learning. In Proc. of the International Conf. on Machine learning (ICML), 2017.

[69] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. of

the International Conf. on Learning Representations (ICLR), 2015.

111

[70] J. J. Kivinen and C. K. I. Williams. Transformation equivariant boltzmann machines.
In Proc. of the International Conf. on Artificial Neural Networks (ICANN), 2011.

[71] R. Kondor. N-body networks: a covariant hierarchical neural network architecture
for learning atomic potentials. arXiv.org, 1803.01588, 2018.

[72] R. Kondor and S. Trivedi. On the generalization of equivariance and convolution
in neural networks to the action of compact groups. In Proc. of the International

Conf. on Machine learning (ICML), 2018.

[73] P. Koniusz, Y. Tas, and F. Porikli. Domain adaptation by mixture of alignments of
second- or higher-order scatter tensors. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2017.

[74] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

[75] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing

Systems (NIPS), 2012.

[76] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum. Deep convolutional
inverse graphics network. In Advances in Neural Information Processing Systems

(NIPS), 2015.

[77] A. Kundu, Y. Li, and J. M. Rehg. 3d-rcnn: Instance-level 3d object reconstruction
via render-and-compare. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2018.

[78] W. Lai, Y. Huang, N. Joshi, C. Buehler, M. Yang, and S. B. Kang. Semantic-driven
generation of hyperlapse from 360 degree video. Proc. of IEEE Transactions on

Visualization and Computer Graphics, 2017.

[79] D. Laptev, N. Savinov, J. M. Buhmann, and M. Pollefeys. TI-POOLING:
transformation-invariant pooling for feature learning in convolutional neural net-
works. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2016.

[80] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In
Proc. of the International Conf. on Machine learning (ICML), 2007.

112

[81] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1(4):541–551, Dec. 1989.

[82] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proc. of the IEEE, 86(11):2278–2324, 1998.

[83] K. Lenc and A. Vedaldi. Understanding image representations by measuring their
equivariance and equivalence. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2015.

[84] C.-H. Lin and S. Lucey. Inverse compositional spatial transformer networks. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[85] C.-H. Lin, E. Yumer, O. Wang, E. Shechtman, and S. Lucey. St-gan: Spatial
transformer generative adversarial networks for image compositing. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2018.

[86] M. Liu, X. He, and M. Salzmann. Geometry-aware deep network for single-
image novel view synthesis. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2018.

[87] M. Liu and O. Tuzel. Coupled generative adversarial networks. In Advances in

Neural Information Processing Systems (NIPS), 2016.

[88] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation
networks. In Advances in Neural Information Processing Systems (NIPS), 2017.

[89] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C. Fu, and A. C. Berg.
SSD: single shot multibox detector. In Proc. of the European Conf. on Computer

Vision (ECCV), 2016.

[90] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic
segmentation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2015.

[91] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transferable features with
deep adaptation networks. In Proc. of the International Conf. on Machine learning

(ICML), 2015.

[92] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Unsupervised domain adaptation
with residual transfer networks. In Advances in Neural Information Processing

Systems (NIPS), 2016.

113

[93] M. Long, H. Zhu, J. Wang, and M. I. Jordan. Deep transfer learning with joint
adaptation networks. In Proc. of the International Conf. on Machine learning

(ICML), 2017.

[94] A. M. López, J. Xu, J. L. Gomez, D. Vázquez, and G. Ros. From virtual to real
world visual perception using domain adaptation - the DPM as example. In Domain

Adaptation in Computer Vision Applications., pages 243–258. Springer, 2017.

[95] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[96] J. Ma, W. Wang, and L. Wang. Irregular convolutional neural networks. Proc. of

Asian Conference on Pattern Recognition, 2017.

[97] D. Marcos, B. Kellenberger, S. Lobry, and D. Tuia. Scale equivariance in cnns
with vector fields. In Proc. of the International Conf. on Machine learning (ICML)

Workshops, 2018.

[98] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia. Rotation equivariant vector field
networks. In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2017.

[99] D. Marcos, M. Volpi, and D. Tuia. Learning rotation invariant convolutional filters
for texture classification. In Proc. of the International Conf. on Pattern Recognition

(ICPR), 2016.

[100] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv.org,
1411.1784, 2014.

[101] T. Miyato, S. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing
by virtual adversarial examples. In Proc. of the International Conf. on Learning

Representations (ICLR), 2016.

[102] J. Ngiam, Z. Chen, D. Chia, P. W. Koh, Q. V. Le, and A. Y. Ng. Tiled convolutional
neural networks. In Advances in Neural Information Processing Systems (NIPS),
2010.

[103] P. Niyogi, F. Girosi, and T. Poggio. Incorporating prior information in machine
learning by creating virtual examples. Proceedings of the IEEE, 86(11):2196–2209,
1998.

[104] M. Noroozi and P. Favaro. Unsupervised learning of visual representations by

114

solving jigsaw puzzles. In Proc. of the European Conf. on Computer Vision (ECCV),
2016.

[105] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and checkerboard artifacts.
Distill, 2016.

[106] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proc. IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), 2014.

[107] E. Oyallon, E. Belilovsky, and S. Zagoruyko. Scaling the scattering transform:
Deep hybrid networks. In Proc. of the IEEE International Conf. on Computer

Vision (ICCV), 2017.

[108] E. Oyallon and S. Mallat. Deep roto-translation scattering for object classification.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.

[109] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg. Transformation-grounded
image generation network for novel 3d view synthesis. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2017.

[110] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and A. A. Efros. Context
encoders: Feature learning by inpainting. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2016.

[111] F. Pearson. Map Projections: Theory and Applications. Taylor & Francis, 1990.

[112] X. Peng and K. Saenko. Synthetic to real adaptation with deep generative correla-
tion alignment networks. arXiv.org, 1701.05524, 2017.

[113] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2017.

[114] L. Ran, Y. Zhang, Q. Zhang, and T. Yang. Convolutional neural network-based
robot navigation using uncalibrated spherical images. Sensors, 17(6), 2017.

[115] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko. Semi-supervised
learning with ladder networks. In Advances in Neural Information Processing

Systems (NIPS), 2015.

[116] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time
object detection with region proposal networks. In Advances in Neural Information

Processing Systems (NIPS), 2015.

115

[117] A. Rozantsev, M. Salzmann, and P. Fua. Beyond sharing weights for deep domain
adaptation. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI),
2018.

[118] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale
visual recognition challenge. International Journal of Computer Vision (IJCV),
2015.

[119] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems (NIPS), 2017.

[120] E. B. Saff and A. B. J. Kuijlaars. Distributing many points on a sphere. The

Mathematical Intelligencer, 19(1):5–11, 1997.

[121] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In Advances in

Neural Information Processing Systems (NIPS), 2016.

[122] C. Sakaridis, D. Dai, S. Hecker, and L. Van Gool. Model adaptation with synthetic
and real data for semantic dense foggy scene understanding. In Proc. of the

European Conf. on Computer Vision (ECCV), 2018.

[123] B. Schoelkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press, 2002.

[124] B. Schölkopf, P. Simard, A. J. Smola, and V. Vapnik. Prior knowledge in support
vector kernels. In Advances in Neural Information Processing Systems (NIPS),
1998.

[125] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning
from simulated and unsupervised images through adversarial training. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[126] L. Sifre and S. Mallat. Rotation, scaling and deformation invariant scattering
for texture discrimination. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2013.

[127] P. Simard, B. Victorri, Y. LeCun, and J. Denker. Tangent prop - a formalism for
specifying selected invariances in an adaptive network. In Advances in Neural

Information Processing Systems (NIPS), 1992.

116

[128] P. Y. Simard, D. Steinkraus, and J. C. Platt. Best practices for convolutional
neural networks applied to visual document analysis. In Proc. of the International

Conference on Document Analysis and Recognition, 2003.

[129] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In Proc. of the International Conf. on Learning Representations

(ICLR), 2015.

[130] K. Sohn and H. Lee. Learning invariant representations with local transformations.
In Proc. of the International Conf. on Machine learning (ICML), 2012.

[131] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving
for simplicity: The all convolutional net. In International Conf. on Learning

Representations (ICLR) (workshop track), 2015.

[132] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Bench-
marking machine learning algorithms for traffic sign recognition. Neural Networks,
32:323–332, 2012.

[133] Y.-C. Su and K. Grauman. Making 360deg video watchable in 2d: Learning
videography for click free viewing. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), 2017.

[134] Y.-C. Su, D. Jayaraman, and K. Grauman. Pano2vid: Automatic cinematography
for watching 360 degree videos. In Proc. of the Asian Conf. on Computer Vision

(ACCV), 2016.

[135] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In
Proc. of the Conf. on Artificial Intelligence (AAAI), 2016.

[136] B. Sun and K. Saenko. From virtual to reality: Fast adaptation of virtual object
detectors to real domains. In Proc. of the British Machine Vision Conf. (BMVC),
2014.

[137] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain
adaptation. In ECCV 2016 Workshops, 2016.

[138] K. S. Tai, P. Bailis, and G. Valiant. Equivariant Transformer Networks. In Proc. of

the International Conf. on Machine learning (ICML), 2019.

[139] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image generation.
In Proc. of the International Conf. on Learning Representations (ICLR), 2017.

117

[140] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d models from single
images with a convolutional network. In Proc. of the European Conf. on Computer

Vision (ECCV), 2016.

[141] N. Thomas, T. Smidt, S. M. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley.
Tensor field networks: Rotation- and translation-equivariant neural networks for 3d
point clouds. arXiv.org, 1802.08219, 2018.

[142] L. Tran, K. Sohn, X. Yu, X. Liu, and M. Chandraker. Gotta adapt em all: Joint
pixel and feature-level domain adaptation for recognition in the wild. In Proc.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019.

[143] L. Tran, X. Yin, and X. Liu. Disentangled representation learning gan for pose-
invariant face recognition. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017.

[144] S. Tulsiani, R. Tucker, and N. Snavely. Layer-structured 3d scene inference via
view synthesis. In Proc. of the European Conf. on Computer Vision (ECCV), 2018.

[145] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey.
Foundations and Trends in Computer Graphics and Vision, 3(3):177–280, 2008.

[146] E. Tzeng, K. Burns, K. Saenko, and T. Darrell. SPLAT: semantic pixel-level
adaptation transforms for detection. arXiv.org, 1812.00929, 2018.

[147] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko. Simultaneous deep transfer across
domains and tasks. In Proc. of the IEEE International Conf. on Computer Vision

(ICCV), 2015.

[148] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain
adaptation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2017.

[149] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv.org, 1412.3474, 2014.

[150] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling. Rotation
equivariant cnns for digital pathology. In Medical Image Computing and Computer-

Assisted Intervention (MICCAI), 2018.

[151] M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. 3d steerable
cnns: Learning rotationally equivariant features in volumetric data. In Advances in

Neural Information Processing Systems (NIPS), 2018.

118

[152] M. Weiler, F. A. Hamprecht, and M. Storath. Learning steerable filters for rotation
equivariant cnns. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2018.

[153] M. Winkels and T. S. Cohen. 3d g-cnns for pulmonary nodule detection. In
International Conference on Medical Imaging with Deep Learning, 2018.

[154] D. Worrall and G. Brostow. Cubenet: Equivariance to 3d rotation and translation.
In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Proc. of the

European Conf. on Computer Vision (ECCV), 2018.

[155] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2017.

[156] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow. Interpretable
transformations with encoder-decoder networks. In Proc. of the IEEE International

Conf. on Computer Vision (ICCV), 2017.

[157] D. E. Worrall and M. Welling. Deep scale-spaces: Equivariance over scale.
arXiv.org, 1905.11697, 2019.

[158] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li. High-resolution
image inpainting using multi-scale neural patch synthesis. In Proc. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR), 2017.

[159] J. Yang, S. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with
recurrent transformations for 3d view synthesis. In Advances in Neural Information

Processing Systems (NIPS), 2015.

[160] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker. Towards large-pose face
frontalization in the wild. In Proc. of the IEEE International Conf. on Computer

Vision (ICCV), 2017.

[161] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual networks. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[162] K. G. Yu-Chuan Su. Flat2sphere: Learning spherical convolution for fast features
from 360◦ imagery. In Advances in Neural Information Processing Systems (NIPS),
2017.

[163] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving the robustness of deep

119

neural networks via stability training. In Proc. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2016.

[164] Z. Zhong, L. Zheng, S. Li, and Y. Yang. Generalizing a person retrieval model
hetero- and homogeneously. In Proc. of the European Conf. on Computer Vision

(ECCV), 2018.

[165] Z. Zhong, L. Zheng, Z. Zheng, S. Li, and Y. Yang. Camera style adaptation for
person re-identification. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2018.

[166] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsupervised learning of depth
and ego-motion from video. In Proc. IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2017.

[167] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View synthesis by
appearance flow. In Proc. of the European Conf. on Computer Vision (ECCV),
2016.

[168] Y. Zhou, Q. Ye, Q. Qiu, and J. Jiao. Oriented response networks. In Proc. IEEE

Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[169] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proc. of the IEEE International

Conf. on Computer Vision (ICCV), 2017.

120

	1 Introduction
	1.1 Contributions
	1.2 Thesis Outline

	2 Theoretical Foundations
	2.1 Invariance in Machine Learning Models
	2.2 Invariance and Equivariance in Deep Neural Networks
	2.2.1 Learning Invariance / Equivariance in Deep Models.
	2.2.2 Deep Invariant and Equivariant Architectures
	2.2.3 Deep Domain Invariance
	2.2.3.1 Feature-Level Adaptation
	2.2.3.2 Image-Level Adaptation

	3 Learning Transformation Invariant Representations with Weak Supervision
	3.1 Method
	3.2 Experimental Evaluation
	3.2.1 Experimental Setup
	3.2.2 Supervised Learning on Rotated MNIST Subset
	3.2.3 Semi-Supervised Learning
	3.2.3.1 Rotated MNIST
	3.2.3.2 German Traffic Sign Recognition Benchmark

	3.3 Discussion
	3.4 Conclusions

	4 SphereNet: Learning Spherical Representations in Omnidirectional Images
	4.1 Method
	4.1.1 Kernel Sampling Pattern
	4.1.2 Uniform Sphere Sampling
	4.1.3 Spherical Transformer Network
	4.1.4 Spherical Image Classification
	4.1.5 Spherical Object Detection
	4.1.6 Spherical Semantic Segmentation
	4.1.7 Spherical Optical Flow

	4.2 Experimental Evaluation
	4.2.1 Image Classification: Omni-MNIST
	4.2.2 Object Detection
	4.2.2.1 FlyingCars
	4.2.2.2 Transfer Learning: OmPaCa

	4.2.3 Semantic Segmentation: Stuttgart360
	4.2.4 Optical Flow: FlyingThings

	4.3 Conclusions

	5 NoVA: Learning to See in Novel Viewpoints and Domains
	5.1 Method
	5.2 Experiments
	5.2.1 Experimental Setup
	5.2.2 Sim2Sim
	5.2.3 Sim2Real

	5.3 Conclusions

	6 Summary
	A Appendix
	A.1 NoVA Datasets
	A.1.1 Semantic Segmentation Classes
	A.1.2 Viewpoint Transformation
	A.1.2.1 Sim2Sim
	A.1.2.2 Sim2Real

	A.2 Additional Qualitative Results for NoVA
	A.2.1 Sim2Sim
	A.2.2 Sim2Real

	Symbols
	Abbreviations
	Bibliography

