
From the Institute of Information Systems
of the University of Lübeck

Director: Prof. Dr. rer. nat. habil. Ralf Möller

Taming Exact Inference in
Temporal

Probabilistic Relational Models

Dissertation
for Fulfilment of
Requirements

for the Doctoral Degree
of the University of Lübeck

from the Department of Computer Sciences

Submitted by

Marcel Gehrke
from Hamburg

Lübeck 2019

First referee Prof. Dr. Ralf Möller
Second referee Prof. Dr. Maciej Liśkiewicz
Date of oral examination December 17, 2021
Approved for printing.

Abstract

In information technology settings, multiple sensors gather data over time. With many
sensors constantly sending data, manually analysing data is infeasible. Therefore, such
data needs to be analysed automatically with reference to a model, to support automatic
decision making or to provide recommendations for suitable decisions. One approach to
construct a respective model is using machine learning and deriving a probabilistic model
with random variables encoding the structure in data. In a model, for each known object,
random variables are learned including the relations between the objects, leading to huge
models. Probabilistic relational models compactly encoded a known number of individ-
uals, and performing inference on probabilistic relational models allows for efficiently
answering queries with a known number of individuals. However, standard (static) infer-
ence approaches for probabilistic relational models do not account for temporal aspects
of gathered data. Existing approaches for temporal probabilistic relational models are
approximate, such that any error can stem either from the model or the approximate
inference approach. In this dissertation we study the problem of exact repeated inference
in temporal probabilistic relational models. In particular, we present the lifted dynamic
junction tree algorithm to remedy these challenges w.r.t. temporal inference.
The lifted dynamic junction tree algorithm is an exact algorithm to efficiently answer-

ing multiple queries in temporal probabilistic relational models. The algorithm leverages
the strengths of the lifted junction tree algorithm and the interface algorithm. The lifted
dynamic junction tree algorithm ensures preconditions of lifting while proceeding in time
to form a fully lifted forward backward algorithm. We also extend the query language
of the algorithm with conjunctive queries and assignment queries as well as maximum
expected utility queries to support decision making. Further, we make contributions
w.r.t. lifted evidence. On the one hand, we introduce uncertain evidence, i.e., (lifted)
events combined with probabilities. On the other hand, we tame the effect of evidence
on a lifted representation as evidence can ground a temporal relational model over time.
Therefore, we present an algorithm for retaining an approximated lifted representation
with a small and bounded error.
We empirically evaluate each contribution of this dissertation, thoroughly testing how

the algorithms perform while increasing the number of instances and the maximum num-
ber of time steps. Further, for each part we provide an extensive theoretical analysis.
We also investigate the connection to the lifted junction tree algorithm and the interface
algorithm as well as connections between lifting and handling temporal aspects.

iii

Kurzfassung

In Informationssystemen erheben eine Vielzahl von Sensoren Daten. Mit vielen Sen-
soren, die durchgehend Daten senden, ist ein manuelles Analysieren von Daten unmöglich.
Um viele Daten analysieren zu können, muss diese Analyse automatisch mit Bezug auf
ein Modell erfolgen. Das Ergebnis der Analyse könnte eine Entscheidung sein, welche
das System direkt umsetzt oder die Ausgabe einer Empfehlung, was eine vernünftige
Entscheidung wäre. Eine Möglichkeit, ein entsprechendes Modell zu konstruieren ist,
maschinelles Lernen zu benutzen und ein probabilistisches Modell herzuleiten, welches
mittels Zufallsvariablen die Struktur der Daten widerspiegelt. In einem Modell werden
Zufallsvariablen sowohl für eine bekannte Anzahl von Individuen, welche von den Sen-
soren beobachtet werden, als auch für die Beziehungen zwischen den Individuen gelernt.
Effizientes beantworten von Anfragen in probabilistischen Modellen mit einer bekannten
Anzahl von Individuen wird durch Inferenz auf probabilistische relationale Modellen er-
möglicht. Bestehende (statische) Inferenzverfahren für probabilistische relationale Mod-
elle behandeln jedoch zeitliche Aspekte der gesammelten Daten nicht effizient. Beste-
hende Inferenzverfahren für temporale probabilistische relationalen Modellen sind ap-
proximativ, so dass ein möglicher Fehler entweder durch Approximationen beim Lernen
des Modells entstanden sein können oder durch ein Approximieren bei einer Schlussfol-
gerung entstanden sein können. In dieser Dissertation untersuchen wir das Problem der
exakten wiederholten Inferenz in temporalen probabilistischen relationalen Modellen um
die aufgezeigten Probleme zu beheben. Insbesondere präsentieren wir hierfür den Lifted
Dynamic Junction Tree Algorithmus.
Der Lifted Dynamic Junction Tree Algorithmus ist ein exakter Algorithmus, der ver-

wendet werden kann, um eine Vielzahl von Anfragen für temporale probabilistische rela-
tionale Modelle effizient zu beantworten. Der Algorithmus nutzt die Stärken des Lifted
Junction Tree Algorithmus und des Interface Algorithmus zu seinem Vorteil. Der Lifted
Dynamic Junction Tree Algorithmus stellt während des Übergangs von einem Zeitschritt
zum nächsten Vorbedingungen des Liftings sicher, um einen gelifteten Vorwärts-Rückwärts-
Algorithmus zu formen, der, wenn das Modell es zulässt, nicht groundet. Außerdem er-
weitern wir die Anfragesprache des Algorithmus um konjunktive Anfragen und
Zuweisungsanfragen sowie Anfragen bzgl. eines maximal erwarteten Nützlichkeitwertes
zur Unterstützung der Entscheidungsfindung. Des Weiteren steueren wir neue Erken-
ntisse zu gelifteten Beobachtungen bei. Zum einen führen wir unsichere Beobachtun-
gen ein, d.h. (geliftete) Ereignisse kombiniert mit Wahrscheinlichkeiten. Zum anderen
untersuchen wir die Auswirkungen von Beobachtungen, da Beobachtungen in einem

v

temporalen relationalen Modell über die Zeit zu Groundings führen kann. Um dieses
Problem zu zähmen, präsentieren wir einen Algorithmus für die Beibehaltung eine gelifteten
Repräsentation, indem wir in einem Modell Symmetrien mit einem kleinen begrenzten
Fehler approximieren.
Wir werten jeden Beitrag dieser Dissertation empirisch aus und überprüfen, wie die

Algorithmen funktionieren, während wir die Anzahl der Instanzen und die maximale
Anzahl der Zeitschritte erhöhen. Darüber hinaus erarbeiten wir für jeden Teil der Arbeit
eine umfangreiche theoretische Analyse. Wir untersuchen außerdem die Verbindung zum
Lifting Junction Tree Algorithmus und dem Interface Algorithmus sowie die Beziehung
zwischen Lifting und dem Behandeln zeitlicher Aspekte.

vi

Acknowledgments

First of all, I would like to thank my supervisor, Ralf Möller. His suggestions throughout
my PhD time turned out to be invaluable. He always comes around the corner with new
paper ideas. Once he explained the idea, his final remarks were always something along
the lines of “Now you only have to TEX it”, which obviously never was as easy as just
writing it down. The ideas and the discussions that followed the ideas were always a
great help. Having compiled quite some papers, made writing this thesis an easier task
as most of the content was already written down. Also thank you for trusting me when
I started to come up with my own ideas and also for always pushing me to take the next
step as well as for always supporting me. I also would like to thank Maciej Liśkiewicz
for reviewing my thesis and Thomas Eisenbarth for chairing my defense.

The past few years have also greatly been shaped by my colleagues, friends, and family.
To Angela and Nils, thank you for always having an eye on us and helping whenever
possible. To my colleagues for the inspiring discussions during our coffee breaks and the
amazing journeys we did together. Thank you to the Mannemers for getting me to walk
10,000 steps a day, which helps me a lot to clear my head after a long working day, and
for always being there for me. Thank you to my parents and my grandparents for always
believing in me and for making this amazing adventure possible. Thank you, Tanya, for
always being there for me, for the past 11 years, for all the amazing journeys we had, for
always pushing me to be my best and to leave my comfort zone, and for always being
there for me. Thank you for always sticking with me, even when the times were not so
easy. I am looking forward to our journey ahead, knowing that we can achieve anything.

Thank you!

Marcel Gehrke
Lübeck, April 2022

vii

Contents

List of Figures xiii

List of Algorithms xv

List of Symbols xvii

List of Abbreviations xix

1 Introduction 1
1.1 Related Work . 2
1.2 Contributions . 4
1.3 Structure . 6

2 Preliminaries 11
2.1 Exact Inference in Probabilistic Relational Models 11

2.1.1 Parameterised Probabilistic Models 11
2.1.2 Inference using the Lifted Junction Tree Algorithm 15
2.1.3 Preventing Groundings . 19

2.2 Exact Inference for Temporal Probabilistic Propositional Models 24
2.2.1 Dynamic Bayesian Networks . 25
2.2.2 Inference using the Interface Algorithm 26

I The Lifted Dynamic Junction Tree Algorithm 29

3 Exact Inference in Temporal Probabilistic Relational Models 31
3.1 Parameterised Probabilistic Dynamic Models 32
3.2 Exact Inference with the Lifted Dynamic Junction Tree Algorithm . . . 34

3.2.1 Construction of FO Jtree Structures from a PDM 34
3.2.2 Forward Pass . 38
3.2.3 Backward Pass . 40

3.3 Query Answering Plan . 42
3.3.1 Preserving FO Jtree Instantiations 42
3.3.2 On Demand FO Jtree Instantiation 42
3.3.3 Combining Instantiation Approaches 43

ix

Contents

3.4 Ensuring Preconditions of Lifting . 44
3.4.1 Preventing Groundings while Calculating Temporal Messages . . 45
3.4.2 Discussion . 49

3.5 Complete Specification of the Lifted Dynamic Junction Tree Algorithm . 51

4 Theoretical Analysis 57
4.1 Soundness . 57
4.2 Completeness . 59
4.3 Complexity . 62

4.3.1 LJT . 62
4.3.2 LDJT . 63
4.3.3 Comparison to the Ground Interface Algorithm 65
4.3.4 Space and Time Requirements of Different Query Answering Plan 66

5 Evaluation 69
5.1 Filtering Queries . 70
5.2 Prediction and Hindsight Queries . 75
5.3 Count Conversions while Calculating Temporal Messages 81
5.4 Preventing Groundings while Calculating Temporal Messages 83
5.5 Evidence . 84

6 Interim Conclusion 87

II Extending the Query Language 89

7 Conjunctive Queries 91
7.1 Conjunctive Queries in LJT . 92
7.2 Conjunctive Queries in LDJT . 93
7.3 Theoretical Analysis . 97

7.3.1 Soundness . 97
7.3.2 Completeness . 98
7.3.3 Complexity . 98

7.4 Evaluation . 100
7.5 Interim Conclusion . 102

8 Assignment Queries 103
8.1 Most Probable Assignments in LJT . 104
8.2 Most Probable Assignments in LDJT . 106

8.2.1 MPE Queries . 106
8.2.2 MAP Queries . 108
8.2.3 Discussion . 109

x

Contents

8.3 Theoretical Analysis . 109
8.3.1 Soundness . 110
8.3.2 Completeness . 110
8.3.3 Complexity . 111

8.4 Evaluation . 111
8.5 Interim Conclusion . 112

9 Maximum Expected Utility 113
9.1 Lifted Maximum Expected Utility . 115

9.1.1 Parameterised Probabilistic Decision Models 115
9.1.2 Maximum Expected Utility . 116

9.2 Lifted Temporal Maximum Expected Utility 118
9.2.1 Parameterised Probabilistic Decision Models 118

9.3 Solving the MEU Problem with meuLDJT 119
9.4 Theoretical Analysis . 121

9.4.1 Soundness . 121
9.4.2 Completeness . 122
9.4.3 Complexity . 123

9.5 Evaluation . 124
9.6 Interim Conclusion . 125

III Extending Evidence Handling 127

10 Uncertain Evidence 129
10.1 LVE for Uncertain Evidence . 130

10.1.1 Evidence in LVE . 130
10.1.2 Uncertain Evidence in LVEevi . 132
10.1.3 Theoretical Analysis . 133

10.2 LJT for Uncertain Evidence . 134
10.2.1 Evidence in LJT . 134
10.2.2 Uncertain Evidence in LJT . 135
10.2.3 Theoretical Analysis . 136

10.3 Empirical Case Study . 137
10.4 Interim Conclusion . 138

11 Taming Reasoning in Temporal Probabilistic Relational Models 139
11.1 Preliminaries . 142
11.2 Temporal Approximate Merging . 143

11.2.1 Keeping Reasoning Polynomial Problem 143
11.2.2 Keeping Reasoning Polynomial with TAMe 145

xi

Contents

11.3 Theoretical Analysis . 150
11.4 Evaluation . 154
11.5 Interim Conclusion . 156

12 Outlook 157

13 Conclusion 161

Bibliography 163

Publications 171

xii

List of Figures

2.1 Parfactor graph for Gex . 13
2.2 Minimised FO jtree of Gex (local models under the parclusters) 17
2.3 FO Jtree of Gex extended to illustrate how LJT prevents groundings . . 23
2.4 FO Jtree of Gex extended and fused to illustrate how LJT prevents

groundings . 23
2.5 Bex

→ a two-slice temporal Bayesian network for model Gex 25
2.6 Simple abstraction of a possible sequence of jtrees using the interface

algorithm (Murphy, 2002) . 27

3.1 Gex0 the first time step for model Gex . 32
3.2 Gex→ the two-slice temporal parfactor graph for model Gex 33
3.3 Gex0 with interface parfactor . 36
3.4 FO jtree Jex0 structure . 36
3.5 1.5-slice TPM F ext with gIt−1 and gIt . 37
3.6 FO jtree Jext structure . 37
3.7 Forward pass of LDJT without C3

3 (local models and labelling in grey) . 39
3.8 Backward pass of LDJT without C3

3 (local models and labelling in grey) 40
3.9 J3 and J4 with unnecessary groundings 46
3.10 J3 and J4 after preventing groundings of forward passes 47
3.11 J3 and J4 after preventing groundings of forward and backward passes . 48
3.12 Groundings LDJT cannot prevent . 50

5.1 Filtering queries for one representative and all PRVs, y-axis: runtimes
[seconds, log], x-axis: time steps . 71

5.2 Runtimes for DJT, y-axis: runtimes [seconds, log], x-axis: time steps . . 72
5.3 Filtering queries for all instances and all PRVs, y-axis: runtimes [seconds,

log], x-axis: time steps . 74
5.4 Prediction queries for different domain sizes, y-axis: runtimes [seconds,

log], x-axis: time steps . 76
5.5 Hindsight queries for different domain sizes, y-axis: runtimes [seconds,

log], x-axis: time steps . 77
5.6 Hindsight queries for different domain sizes and a large T , y-axis: run-

times [seconds, log], x-axis: time steps 78

xiii

List of Figures

5.7 Prediction and hindsight queries for different domain sizes, y-axis: run-
times [seconds, log], x-axis: time steps 79

5.8 Always querying all time steps from each time step for different domain
sizes, y-axis: runtimes [seconds, log], x-axis: time steps 80

5.9 Count conversions in α messages for different domain sizes, y-axis: run-
times [seconds, log], x-axis: time steps 82

5.10 Preventing groundings, y-axis: runtimes [seconds, log], x-axis: time steps 83
5.11 Evidence for different number of symmetry groups, y-axis: runtimes [sec-

onds] . 85

7.1 Conjunctive query runtimes [seconds, log], x-axis: time steps, log 101

8.1 MPE and MAP runtimes [seconds, log], x-axis: time steps, log 112

9.1 PDecM of Gex . 116
9.2 PDDecM of Gex . 119
9.3 Maximum expected utility queries for two possible actions [seconds, log],

x-axis: horizon . 124
9.4 Maximum expected utility queries for three possible actions [seconds, log],

x-axis: horizon . 125

10.1 Runtimes for query answering . 137
10.2 Runtimes for LJT steps . 137

11.1 Gex→ to illustrate TAMes . 142
11.2 FO jtree J3 without C3

3 and FO jtree J4 to illustrate TAMe 142
11.3 Runtimes [seconds], x-axis: #symmetry groups 155

xiv

List of Algorithms

1 FO Jtree Construction for a PDM (G0, G→) 35
2 Preventing Groundings for FO Jtree (J0, Jt) during a Forward Pass . . . 46
3 Preventing Groundings for FO Jtrees (J0, Jt) during a Backward Pass . 48
4 LDJT Alg. for PDM (G0, G→), Queries {Q}Tt=0, Evidence {E}Tt=0 52

5 Answer Conjunctive Query for Unrolled FO Jtree J for Time Steps t to
t+ δ and Conjunctive Query Q . 94

6 LDJTcon for Conjunctive Query Q . 96

7 LJTmpe for PM G and Evidence E . 105
8 LDJTmpe for PDM G and Evidence E0:T 107

9 meuLJT for a PDecM G, Queries {Q}, Evidence {E} 117
10 meuLDJT for a PDDecM G, Queries {Q}Tt=0, Evidence {E}Tt=0, and Hori-

zon h . 119

11 Lifted Absorption (Taghipour et al., 2013c). 131
12 Evidence Handling in LVEevi . 133
13 Evidence Handling in LJTevi . 135

14 Temporal Approximate Merging . 145

xv

List of Symbols

R Randvar
X Logvar
A PRV
A Set of PRVs
A Sequence of PRVs
X Set of logvars
X Sequence of logvars
#X [R(X)] (P)CRV
h Histogram
R(A) Range of a PRV
D(X) Domain of a logvar
A = a,R = r Event
E Evidence, set of events
Q Query term
C, (X , CX) Constraint restricting logical variables
> Constraint where no restriction applies
φ Potential function
g, φ(A)|C , φ(A) Parfactor
G Model
gr(P) Grounding
rv(P) PRVs with constraints
lv(P) Logvars
θ Substitution, alignment
J FO jtree
C Parcluster
Sij Separator
Gi Local model
mij Message
J ′ Subtree
G′ Submodel
wg Ground width
w# Counting width
t Current time steps

xvii

List of Symbols

T Maximum number of time steps
nJ Number of nodes in an FO jtree
m Number of queries
n′J Number of nodes in a subtree
n Largest domain size of all logvars
r Largest range size of all PRVs
n# Largest domain size of all counted logvars
r# Largest range size of PRVs in CRVs
M2lv Class of models with two logvars per parfactor
M1prv Class of models with one logvar per PRV
Q Set of query terms, conjunctive query
Q|C Set of query terms under constraint C, conjunctive

query
CQ, CQlift Class of (liftable) conjunctive queries
T CQ, T CQlift Class of (liftable) temporal conjunctive queries
p Potential
φP Potential in φ storing also assignments
φA Assignment in φ storing also assignments

xviii

List of Abbreviations

BN Bayesian network

DBN dynamic Bayesian network

2TBN two-slice temporal bayesian network

PM parameterised probabilistic model

PDM parameterised probabilistic dynamic model

2TPM two-slice temporal parameterised model

PDecM parameterised probabilistic decision model

PDDecM parameterised probabilistic dynamic decision model

MLN Markov logic network

MLDN Markov logic decision network

DMLN dynamic Markov logic network

QA query answering

randvar random variable

logvar logical variable

PRV parameterised randvar

CRV counting randvar

parfactor parametric factor

jtree junction tree

FO jtree first-order junction tree

parcluster parameterised cluster

VE variable elimination

xix

List of Abbreviations

LVE lifted variable elimination

LJT lifted junction tree algorithm

LDJT lifted dynamic junction tree algorithm

MPE most probable explanation

MAP maximum a posteriori

MEU maximum expected utility

KRP keeping reasoning polynomial

TAMe temporal approximate merging

xx

Chapter 1

Introduction

Areas such as healthcare, logistics, or publishing and cross-sectional aspects such as IT
security involve temporal probabilistic relational data. These areas incorporate many
objects in relation to each other with changes over time, and also include uncertain-
ties about object existence, attribute value assignments, or relations between objects.
Throughout this dissertation, we use a publishing example. Publishing (the relational
part) involves publications (objects) for many authors (objects), streams of papers over
time (the temporal part), and uncertainties, for example, due to missing or incomplete
information. We need efficient inference algorithms for temporal probabilistic relational
data (Vlasselaer et al., 2014). Further, in applications we need exact inference algorithms,
because approximate solutions might not be sufficient (Wemmenhove et al., 2007).
A possibility to answer queries for temporal, probabilistic, and relational data is to

use temporal probabilistic databases (TPDBs) (Dignös et al., 2012; Dylla et al., 2013).
TPDBs are efficient to answer historical queries. For example, if one is interested in
whether David Beckham and Zinedine Zidan ever played together for Real Madrid, one
can pose a historical query to a TPDB and the result contains different time intervals
with assigned probabilities whether the statement holds. Another form of queries are
deductive queries for discrete time steps. For such queries on a database, one needs an
expressive query language. For example, one could ask queries with a temporal datalog
(Chomicki and Imieliński, 1988) program to a database, possibly a TPDB. In a datalog
program, one has to specify influences of attributes or random variables (randvars).
However, evaluating such a datalog program can be polynomial in the database size.
To answer deductive queries for discrete time steps, we propose to build more expres-

sive and compact models to answer queries more efficiently. In the asking deductive
queries with a datalog program on a database, the database would correspond to the
model and the datalog program would correspond to the query. The more expressive
model that we propose basically consists of the combination of a database and a datalog
program. Thus, influences are directly encoded in the model. By increasing the expres-
siveness of models to directly represent influences in models, the expressiveness of the
query language can be reduced. Further, using a compact model, we propose to answer
queries on submodels, and thereby avoid repeated calculations to answer multiple queries
efficiently. With a model, query answering reduces to computing marginal distributions

1

Chapter 1 Introduction

at discrete time steps. As a consequence, answering queries is polynomial w.r.t. domain
sizes of so-called logical variables (logvars) instead of the size of a database. In this
dissertation, we study the problem of repeated exact inference to answer multiple queries
in temporal probabilistic relational models. More precisely, we study the problems of
answering hindsight, filtering, and prediction queries, which are different kinds of tem-
poral deductive queries, in the first part of this dissertation. We solve the problem by
introducing the lifted dynamic junction tree algorithm (LDJT). Additionally, we extend
the query language of LDJT to be able to solve even more problems.

1.1 Related Work

For inference on temporal probabilistic propositional models, a naive approach would be
to unroll a model for a number of time steps, i.e., to instantiate a temporal pattern for
a number of time steps, and use any algorithm for static, i.e., non-temporal, models.
However, Papai et al. (2012) show how crucial proper handling of temporal aspects
is compared to unrolling the model. To prevent unrolling a model, Murphy (2002)
proposes the interface algorithm consisting of a forward and a backward pass, which uses
a separation of time steps to apply static inference algorithms. The interface algorithm
has the following advantages: The separation allows for only keeping one time step in
memory and uses only the necessary state descriptions of randvars to proceed from a
time step to the next. Thus, instead of the completely unrolled model only one time
step is stored in memory. Additionally, the separation allows for caching descriptions of
states from previous time steps as well as performing computations on demand based on
queries. However, the interface algorithm is defined only for propositional models, which
leads to a runtime complexity exponential in the number of model objects.
First-order probabilistic inference leverages relational aspects of a model. For mod-

els with known domain sizes, first-order probabilistic inference uses representatives for
groups of indistinguishable, known objects, also known as lifting (Poole, 2003). Poole
(2003) introduces parametric factor graphs or parameterised probabilistic models (PMs)
to represent probabilistic relational models and proposes lifted variable elimination (LVE)
as an exact inference algorithm on relational models. LVE saves computations by reusing
intermediate results for isomorphic subproblems (so-called lifted summing out). De Salvo
Braz (2007) extends LVE by generalising lifted summing out. Further, Milch et al. (2008)
introduce counting to lift certain computations where lifted summing out does not apply.
Apsel and Brafman (2011) refine counting to lift even more cases and Taghipour et al.
(2013b) generalise counting further. Taghipour et al. (2013c) extend LVE to its current
form by decoupling the algorithm from the language used to specify objects.
(L)VE can answer single queries efficiently. To answer multiple queries efficiently, Lau-

ritzen and Spiegelhalter (1988) introduce the junction tree algorithm, which allows for
answering multiple queries efficiently in probabilistic propositional models using variable

2

1.1 Related Work

elimination (VE). To benefit from the ideas of the junction tree algorithm and LVE,
Braun and Möller (2016) present the lifted junction tree algorithm (LJT) that performs
exact first-order probabilistic inference on relational models given a set of queries. How-
ever, static inference algorithms do not account for temporal behaviours, which often
makes temporal inference infeasible.
Current approaches for lifted inference in temporal probabilistic relational models are

approximate. Additionally to being approximate, these approaches involve unnecessary
groundings or are not designed to handle multiple queries efficiently. Ahmadi et al.
(2013) propose lifted loopy belief propagation. From a propositional factor graph, they
build a compressed factor graph, i.e., a relational factor graph, by using a colouring
algorithm, and construct a dynamic Markov logic network (DMLN). On the DMLN,
Ahmadi et al. apply lifted loopy belief propagation with the idea of the factored fron-
tier algorithm (Murphy and Weiss, 2001), which is an approximate counterpart to the
interface algorithm, to handle temporal aspects of DMLNs. Geier and Biundo (2011)
present an online inference algorithm for DMLNs, similar to the work of Papai et al.
(2012). Both approaches slice DMLNs, i.e., perform inference on one time step at a time,
to run well-studied static Markov logic network (MLN) inference algorithms (Richardson
and Domingos, 2006) on each slice. Even though, Geier and Biundo (2011) use MLNs,
they perform inference on ground factor graphs with a so-called expanding frontier belief
propagation (Nath and Domingos, 2010b), which performs adaptive inference for chang-
ing evidence. Thus, they reuse computations in case new evidence does not render the
computations incorrect. But they do not perform lifted inference. Further, the approxi-
mation error depends on a given inference problem and the introduced error might even
be unbounded depending on the approximation scheme. Thus, an approximation error
might render obtained results insufficient. Furthermore, Papai et al. also present how
much computed marginal distributions of approximation techniques can differ, which
makes the need for exact algorithms even more apparent.
Thon et al. (2011) introduce CPT-L, a probabilistic model for sequences of relational

state descriptions with a partially lifted inference algorithm. The idea is to solve a part
of the overall inference problem directly at the first-order level and solve the rest of
the inference problem by compiling it into a binary decision diagram. Further, there
are approaches for temporal probabilistic relational models without performing lifted
inference. Two ways of performing approximative online inference using particle filtering
are described by Manfredotti (2009) and Nitti et al. (2013). Vlasselaer et al. (2016)
introduce an exact approach for temporal probabilistic relational models, but perform
inference on a ground knowledge base. Similar to LDJT, the approach presented in this
dissertation, Vlasselaer et al. (2016) also leverage the interface idea, but they apply the
idea to knowledge compilation (Darwiche, 2009) in temporal propositional models.
Current approaches, performing inference in temporal probabilistic relational models

are approximate, leaving the problem of exact inference open. Niepert and Van den
Broeck (2014) show that with a lifted solution, the problem of exact inference is tractable.

3

Chapter 1 Introduction

Further, approximate approaches only solve the filtering problem, leaving the problem
to answer hindsight and prediction queries open as well. The problem to answer multiple
queries in temporal relational models efficiently is also still open. To solve these open
problems, we propose the so-called LDJT, including a relational forward backward pass,
which leverages the well-studied LVE and LJT algorithms. Next, we have a look at the
contributions of this dissertation and thereby, the parts that form LDJT.
Throughout this dissertation, we assume familiarity with dynamic Bayesian networks

(DBNs) (see Murphy (2002)) as well as factor graphs and their relation to Markov net-
works (see Taghipour (2013); Van den Broeck (2013)).

1.2 Contributions

In this dissertation, we make a number of contributions to temporal lifted inference. We
can summarise the contributions as follows.

(1) Temporal extension to PMs and temporal FO jtrees To be able to specify a
temporal relational model, we define a temporal extension to PMs. Using parameterised
probabilistic dynamic models (PDMs), we show how first-order junction tree (FO jtree)
structures can be constructed such that we have a temporal copy pattern of FO jtrees
with each FO jtree allowing for inference over exactly on time step. This contribution
comprises (i) identifying parameterised randvars (PRVs) that make one time step con-
ditionally independent from the next and (ii) constructing two FO jtree structures with
these PRVs in a single parameterised cluster (parcluster).

(2) Lifted query answering on temporal FO jtrees To be able to proceed in time and
thereby, answer filtering and prediction queries, we introduce a relational forward pass.
To be able to go back in time and thereby, answer hindsight queries, we introduce a rela-
tional backward pass. Additionally, we also ensure preconditions of lifting by preventing
unnecessary groundings, when moving in time. Further, we propose an initial query
answering plan such that LDJT answers queries efficient w.r.t. computational efforts as
well as memory usage.

(3) Soundness, completeness, and complexity results for LDJT We show that LDJT
is sound. Further, we show that the completeness results, i.e., model classes for which
a lifted solutions are guaranteed, of LJT are not fully transferable due to the temporal
aspects handled by LDJT. We also analyse the complexity of LDJT, demonstrating
that LDJT is even in the worst case bounded by the complexity of unrolling a temporal
model and using LJT. Lastly, we demonstrate the correspondence of LDJT to the ground
interface algorithm to show that lifting is crucial.

4

1.2 Contributions

(4a) Lifted temporal QA for conjunctive queries on temporal FO jtrees We extend
the query answering step of LDJT to handle conjunctive queries, in which a single query
may contain a set of query terms. The challenge for LDJT arises when the query terms
do not appear in a single time step.

(4b) Soundness, completeness, and complexity results for temporal conjunctive
queries For conjunctive queries, not only the model but also the query influences
whether groundings occur. Thus, the completeness results now also account for the
class of queries next to the model class.

(5a) LDJT version for solving temporal MPE queries We present how LDJT can
solve temporal most probable explanation (MPE) queries using a max-out instead of a
sum-out, while keeping just one time step at a time in memory.

(5b) LDJT version for solving temporal MAP queries Solving maximum a posteriori
(MAP) queries is harder compared to MPE queries as max-out and sum-out operations
are not commutative. To solve temporal MAP queries, we combine the LDJT version to
answer temporal MPE queries and LDJT.

(5c) Soundness, completeness, and complexity results for LDJT versions answering
MPE and MAP queries We show completeness for assignment queries over complete
time steps given liftable models. Further, we show the correspondence to the complexity
of the LDJT versions for solving MPE and MAP queries to LDJT.

(6a) LJT version for solving MEU queries for decision support To allow for decision
support, we extend PMs with action and utility nodes. Further, we present a version of
LJT to solve the maximum expected utility (MEU) problem.

(6b) LDJT version for solving temporal MEU queries We present an LDJT version
to solve the temporal or sequential MEU problem. The LDJT version can reuse many
computations for action assignments while answering MEU queries as LDJT handles the
temporal aspects efficiently.

(6c) Soundness, completeness, and complexity results for LJT and LDJT versions
answering MEU queries We draw similarities between answering MEU queries and
marginal queries and show that the completeness results of LDJT can be transferred.
Further, we show in the complexity results that using LDJT is faster compared to un-
rolling either a model or a temporal FO jtree and using LJT to answer MEU queries.

5

Chapter 1 Introduction

(7a) LVE version for handling uncertain evidence Uncertain evidence means that
events are not only true or false but occur with a certain probability. To handle uncertain
evidence, LVE cannot use the absorption operator anymore as it is optimised for evidence
that is certain. Hence, we present an LVE version for uncertain evidence.

(7b) LJT version for handling uncertain evidence Similar to LVE, with uncertain
evidence LJT also cannot use the absorption operator anymore. Thus, we also present
an LJT version for uncertain evidence that can be used for LDJT for temporal models.

(7c) Soundness and completeness results for LVE and LJT versions handling uncer-
tain evidence We show that uncertain evidence does not change completeness results.

(8a) Taming the effect of temporal evidence Evidence can slowly ground a model over
time. To tame the effects of evidence, we present temporal approximate merging (TAMe)
to use approximate symmetries to restore a lifted representation while proceeding in time.

(8b) Error bounds for taming the effect of temporal evidence We show that the
error TAMe introduces while approximating symmetries is indefinitely bounded. Further,
we show that TAMe is able to approximate symmetries and thereby, restore a lifted
representation to keep reasoning polynomial for temporal models.

1.3 Structure

In the next chapter, we present preliminaries for this dissertation. We recapitulate PMs
as the representation formalism based on Poole (2003); Taghipour et al. (2013c); Braun
(2020) and present LJT to answer multiple queries with PMs based on Braun (2020).
For exact temporal propositional inference, we propose the interface algorithm based on
Murphy (2002).
Afterwards, we present the contributions of this dissertation. We divided the contri-

butions into three parts.

• Part I presents LDJT as the main algorithm of this dissertation to efficiently answer
multiple queries for temporal probabilistic relational models.

– Chapter 3 presents PDMs and LDJT including FO jtree structures construc-
tion (Contributions 1, 2).

– Chapter 4 presents a theoretical analysis of LDJT, looking at soundness, com-
pleteness, and complexity (Contribution 3).

– Chapter 5 presents an empirical evaluation testing five aspects of LDJT.

This first part was mainly published in

6

1.3 Structure

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction
Tree Algorithm. In Proceedings of the 23rd International Conference on
Conceptual Structures, pages 55–69. Springer, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Back-
ward Algorithm for Multiple Queries. In Proceedings of the 32nd In-
ternational Florida Artificial Intelligence Research Society Conference
(FLAIRS-32), pages 464–469. AAAI Press, 2019

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary
Groundings in the Lifted Dynamic Junction Tree Algorithm. In 8th Inter-
national Workshop on Statistical Relational AI at the 27th International
Joint Conference on Artificial Intelligence, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Towards Preventing Un-
necessary Groundings in the Lifted Dynamic Junction Tree Algorithm. In
Proceedings of KI 2018: Advances in Artificial Intelligence, pages 38–45.
Springer, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary
Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceed-
ings of the AI 2018: Advances in Artificial Intelligence, pages 556–562.
Springer, 2018

In this basic form, LDJT answers multiple hindsight, filtering, and prediction queries
for each time step efficiently.

• Part II contains extensions to the query language of LDJT.

– Chapter 7 presents LDJT for conjunctive queries, allowing for a set of query
terms in a single query (Contribution 4a).

– Chapter 8 presents LDJT versions for assignment queries, i.e., MPE or MAP
queries (Contributions 5a, 5b).

– Chapter 9 presents LJT and LDJT for MEU queries, including extending
PDMs to parameterised probabilistic dynamic decision models (PDDecMs)
(Contributions 6a, 6b).

Each chapter contains a theoretical analysis (Contributions 4b, 5c, and 6c) as well
as an empirical evaluation. The second part is based on the following conference
and workshop papers, which we extend in this dissertation with a full theoretical
and empirical analysis.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Multiple Con-
junctive Queries with the Lifted Dynamic Junction Tree Algorithm. In

7

Chapter 1 Introduction

Proceedings of the AI 2018: Advances in Artificial Intelligence, pages
543–555. Springer, 2018

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph
Strumann, and Jost Steinhäuser. Towards Lifted Maximum Expected
Utility. In Proceedings of the Joint Workshop on Artificial Intelligence
in Health in Conjunction with the 27th IJCAI, the 23rd ECAI, the 17th
AAMAS, and the 35th ICML, pages 93–96. CEUR-WS.org, 2018

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph
Strumann, and Jost Steinhäuser. Lifted Maximum Expected Utility. In
Proceedings of Artificial Intelligence in Health, pages 131–141. Springer
International Publishing, 2019

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Maxi-
mum Expected Utility. In Proceedings of the 32nd Canadian Conference
on Artificial Intelligence, Canadian AI 2019, pages 380–386. Springer,
2019

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Most
Probable Explanation. In Proceedings of the 24th International Confer-
ence on Conceptual Structures, pages 72–85. Springer, 2019

• Part III makes contributions w.r.t. evidence in LVE, LJT, and LDJT.

– Chapter 10 presents handling uncertain evidence with LVE, LJT, and LDJT
(Contribution 7a, 7b) and completeness results for uncertain evidence (Con-
tribution 7c).

– Chapter 11 presents taming the effect of temporal evidence by approximat-
ing symmetries in LDJT (Contribution 8a) as well as error bounds for the
approximation (Contribution 8b).

The last part is based on the following conference papers

Marcel Gehrke, Tanya Braun, and Ralf Möller. Uncertain Evidence for
Probabilistic Relational Models. In Proceedings of the 32nd Canadian
Conference on Artificial Intelligence, Canadian AI 2019, pages 80–93.
Springer, 2019

Marcel Gehrke, Ralf Möller, and Tanya Braun. Taming Reasoning in
Temporal Probabilistic Relational Models. In Proceedings of the 24th
European Conference on Artificial Intelligence (ECAI 2020), pages 2592–
2599, 2020

The first part and all chapters in part two and three end with an interim conclusion.
In Chapter 12, we provide possible future directions lifted temporal inference, including

8

1.3 Structure

changing domain sizes as well as incorporating also spatial data and thereby, spatial
uncertainty. Chapter 13 concludes this dissertation.

9

Chapter 2

Preliminaries

To move towards an inference algorithm for relational temporal models, we begin by
recapitulating the lifted junction tree algorithm (LJT) (Braun, 2020) and the interface
algorithm (Murphy, 2002). LJT exactly answers multiple queries in relational static
models efficiently and the interface algorithm answers queries for propositional temporal
models efficiently.

2.1 Exact Inference in Probabilistic Relational Models

We recapitulate parameterised probabilistic models (PMs) as a representation for rela-
tional static models, which includes the semantics of the model as well as the correspond-
ing inference problems. Afterwards, we present LJT, which solves the inference problems
by clustering a model into submodels and using lifting techniques to answer queries.

2.1.1 Parameterised Probabilistic Models

In the following, we use a publication example similar to the so-called competing work-
shop example from Milch et al. (2008) as a running example. We are interested whether
a certain research topic is hot. Therefore, we determine how many people do research
and publish papers as well as attend conferences in that topic. To model the example, we
use that each random variable (randvar) regarding publications, persons doing research
and attendance to conferences behaves in the same way w.r.t. a topic being hot. Hence,
we do not want to model and reason for each randvar individually. A PM allows for
modelling and reasoning over sets of randvars. A PM combines first-order logic with
probabilistic models, representing first-order constructs using logical variables (logvars)
as parameters. In a PM, we use logvars to obtain parameterised randvars (PRVs) to
represent a set of randvars. This form of PM originates from the work by Poole (2003),
but we present the definitions given by Braun (2020). We first define a PRV with all its
components.

Definition 2.1.1 (PRV, constraint). Let R be a set of randvar names, L a set of logvar
names, andD a set of constants. All sets are finite. A PRV A is a syntactical construct of

11

Chapter 2 Preliminaries

a randvar R ∈ R possibly combined with logvars L1, . . . , Ln ∈ L into R(L1, . . . , Ln), n ≥
0. If n = 0, the PRV is parameterless and constitutes a propositional randvar. The
term R(A) denotes the possible values (range) of a PRV A. An event A = a denotes
the occurrence of PRV A with range value a ∈ R(A). As is common, we abuse notation
and write a instead of A = a if A is clearly identifiable. If the range is boolean, we
denote A = true by a and A = false by ¬a with a possibly being parameterised. For
a set of PRVs A = {A1, . . . , An}, we define R(A) =

⋃n
i=1R(Ai). For a sequence of

PRVs A = (A1, . . . , An), we define R(A) = ×ni=1R(Ai). Each logvar L has a domain
D(L) ⊆ D. A substitution θ = {Xi → ti}ni=1 = {X → t} replaces each occurrence
of logvar Xi with term ti, ti ∈ L or ti ∈ D(Xi). A constraint is a tuple (X , CX) of a
sequence of logvars X = (X1, . . . , Xn) and a set CX ⊆ ×ni=1D(Xi). A PRV A, or logvar
L, under constraint C is given by A|C , or L|C , respectively. The symbol > for C marks
that no restrictions apply, i.e., CX = ×ni=1D(Xi). |> may be omitted in A|> or L|>.

The term lv(P) refers to the logvars in P , which may be a set of PRVs or a constraint.
The term gr(P) denotes the set of all instances of P w.r.t. given constraints. An instance
is an instantiation (grounding) of P , replacing the logvars in P with a set of constants
from the given constraints. Constraints act as an abstraction for, e.g., instances stored
in a database. Let us now model our illustrative example.

Example 2.1.1 (PRV). We use the randvar names Att, DoR, Hot, and Pub for at-
tends conference, does research, hot topic, and publishes in, respectively, and the logvar
names X for researchers, and J for journals. From the names, we build PRVs Att(C),
DoR(X), Hot, and Pub(X, J). The domain of X is {alice, bob, eve} and J has do-
main {springer, aaai_press}. The ranges of Att(X), DoR(X), Hot, and Pub(X, J)
are binary. A constraint C = (X, {alice, bob}) for X allows for restricting X to a sub-
set of its domain, in this case to alice and bob. Using the constraint, the expression
gr(DoR(X)|C) evaluates to {DoR(alice), DoR(bob)}. The expression gr(DoR(X)|>)
also contains DoR(eve).

With PRVs, we need to define how to determine set relations and operations as well
as how to perform element tests, to be able to compare PRVs against each other.

Definition 2.1.2. Let two sets A′|C′ and A′′|C′′ of constrained PRVs be given. Semanti-
cally,

A′|C′ ◦ A′′|C′′ iff gr(A
′
|C′) ◦ gr(A

′
|C′),

where ◦ ∈ {=,⊂,⊆,⊃,⊇,∪,∩}. An element test of a PRV A|C ∈ A′|C′ is determined by
gr(A|C) ⊆ gr(A′|C′). An element test of an instance of a PRV P (x) ∈ A′|C′ or P (x) ∈ A|C
is determined by P (x) ∈ gr(A′|C′) or P (x) ∈ gr(A|C) respectively.

In most cases, one does not need to compare groundings when determining such re-
lations or operations but can rather work on the PRVs and their constraints. E.g., for

12

2.1 Exact Inference in Probabilistic Relational Models

Hot

g0

Pub(X, J)

Att(X)

g1

DoR(X)

Figure 2.1: Parfactor graph for Gex

an equality of two PRVs, the randvar names and the constraints have to coincide. If
one were to assume that different logvar names mean different distinct domains, one
might not even need to compare constraints but only the randvar names and the logvars
appearing in the PRVs.
We still need a way to set PRVs into relation. Here, parametric factors (parfactors)

come into play. A parfactor describes a factor, mapping argument values to real values
(potentials), of which at least one is non-zero.

Definition 2.1.3 (Parfactor, PM). Let Φ be a set of factor names, X ⊆ L a set of
logvars, A = (A1, . . . , Ak) a sequence of PRVs, built from R and X, and (X , CX) a
constraint on X. Using a function φ : ×ki=1R(Ai) 7→ R+, φ ∈ Φ, a parfactor is given
by ∀x ∈ CX : φ(A)|(X ,CX), substituting X with x in A. For short, we write φ(A) (no
substitution), omitting |(X , CX) if >. A set of parfactors {gi}ni=1 forms a PM.

The definitions permit models with only propositional randvars. The term lv(P) can
also refer to logvars in a parfactor and a PM. The term gr(P) also refers to the set of
instances of a parfactor or a PM, leading to a set of grounded parfactors in both cases.
The term rv(P) refers to the set of PRVs with their constraints in a parfactor or PM.

Example 2.1.2 (Parameterised model). Now, we build the PM Gex with the parfactors:

g0 = ∀j, x ∈ D(J)×D(X) : φ0(Pub(x, j), Hot, Att(x))|> = φ0(Pub(X,J), Hot, Att(X))

g1 = ∀x ∈ D(X) : φ1(DoR(x), Hot,Att(x))|> = φ1(DoR(X), Hot, Att(X))

We omit the concrete mappings of φ0 and φ1. Parfactors g0 and g1 have the constraint
>, meaning they hold for all instances. Fig. 2.1 depicts Gex as a parfactor graph and
shows PRVs as nodes, which are connected via undirected edges to nodes of parfactors in
which they appear.

Semantics The semantics of a PM G is given by grounding w.r.t. constraints and build-
ing a full joint distribution. In case of a propositional model, grounding does not apply,
i.e., gr(G) = G. With Z as the normalisation constant, G represents the full joint

13

Chapter 2 Preliminaries

probability distribution

PG =
1

Z

∏
f∈gr(G)

f, Z =
∑

v∈R(rv(gr(G)))

∏
φ(A)∈gr(G)

φ(πA(v))

where πA(v) denotes a projection of the current set of range values v onto A. Three
main types of queries in the query answering (QA) problem are:

(i) a probability of a particular event, i.e., P (Q = q),

(ii) a marginal probability distribution of a randvar, i.e., P (Q), or

(iii) a conditional probability distribution of a randvar given a set of events,
i.e., P (Q|{Ej = ej}mj=1).

Answering such queries reduces to computing marginal distributions w.r.t. the full joint
distribution of a model. We define a query on a parameterised model as follows.

Definition 2.1.4 (Query, QA problem). A query P (Q|{Ej = ej}mj=1) consists of a
query term Q, which is a grounded PRV or propositional randvar, and a set of events
{Ej = ej}mj=1, where E

j are grounded PRVs or propositional randvars and ej ∈ R(Ej)
fixed range values. With a query term and a non-empty set of events, the query is for a
conditional distribution. If the set of events is empty, the query is for a marginal distri-
bution. For querying a probability, the query needs to include an event Q = q as query
term. The QA problem refers to the problem of computing a probability (distribution)
for a query.

Example 2.1.3 (Queries). For Gex, P (Hot) is a query without a set of events asking for
the marginal distribution of Hot. The expression P (Hot|DoR(eve) = true) is a query
with a single event DoR(eve) = true.

Queries may contain a set of events. Further, the events can also contain symmetries,
which can be used for efficient inference. Symmetries in this case mean the same event
for multiple groundings. If the underlying model contains PRVs, the set of events may
contain symmetries whenever events occur w.r.t. instances of the same PRV. Thus, a set
of parfactors can encode the set of events, one parfactor for each subset of events that
concern one PRV with the same observation.

Definition 2.1.5 (Evidence). A parfactor ge = φe(E(X))|Ce specifies evidence for a set
of events {E(xi) = o}ni=1 of a PRV E(X). Factor φe maps the value o to 1 and the
remaining range values of E(X) to 0. Constraint Ce encodes the observed groundings xi

of E(X), i.e., Ce = (X, CX) and CX = {xi}ni=1.

14

2.1 Exact Inference in Probabilistic Relational Models

Example 2.1.4 (Evidence). Assume we observe DoR(eve) = true, which is only one
event. The parfactor φe(DoR(X))|Ce represents that eve does research as follows: The
factor φe has the mappings φe(true) = 1 and φe(false) = 0. Ce restricts the domain of X
to eve. As Ce contains one grounding, we can simplify φe(DoR(X))|Ce to φe(DoR(eve))
because Ce is a singleton constraint, meaning eve is the only sequence in Ce.
Assume that there were 100 people in Gex and we observed the value DoR(xi) = true

for 90 of them, i.e., the set of events was {DoR(xi) = true}90
i=1. Then, C

e would restrict
the domain of X to x1, . . . , x90 in φe(DoR(X))|Ce.

Evidence encoded in parfactors enables an inference algorithm to efficiently handle
evidence: The idea is to split parfactors into two, one for the instances with evidence
and one for the remaining instances. Then, the parfactor affected by evidence can handle
evidence, while the other remains untouched after updating its constraint. The process
of splitting up the instances in such a manner is called shattering. Further, the inference
algorithm can still employ lifted techniques and does not need to calculate solutions to
the QA problem on a ground level (Van den Broeck and Darwiche, 2013). Thus, even
symmetries in the evidence help to reduce repeated calculations. Now, we look at LJT,
an algorithm to perform inference for multiple queries efficiently.

2.1.2 Inference using the Lifted Junction Tree Algorithm

Having a representation for relational models with uncertainty, we need an efficient infer-
ence algorithm, that is to say an inference algorithm performing calculations in a lifted
fashion. Let us first give an overview of the steps of LJT (Braun and Möller, 2016) and
then have a detailed look at each step. LJT provides efficient means to answer queries
P (Qi|E), with Qi ∈ Q a set of query terms, given a PM G and a set of evidence E, by
performing the following steps:

(i) Construct a first-order junction tree (FO jtree) J for G, as a helper structure.

(ii) Enter E in J .

(iii) Pass messages, to use conditional independences to answer multiple queries.

(iv) Compute answer for each query Qi ∈ Q.

Now, we go through every step. While explaining the steps, we use operators of lifted
variable elimination (LVE) such as shattering, multiplying, and lifted summing out (see
(Taghipour et al., 2013c) for a detailed explanation and definition of the operators).
We first define an FO jtree, which LJT uses to efficiently answer multiple queries. To
be able to define an FO jtree, we begin by defining parameterised clusters (parclusters).
Parclusters are the nodes of an FO jtree, which LJT uses to answer a query on a submodel
of a PM.

15

Chapter 2 Preliminaries

Definition 2.1.6 (Parcluster, FO jtree). Let X be a set of logvars, A a set of PRVs
with lv(A) ⊆ X, and (X , CX) a constraint on X. Then, ∀x ∈ CX : A|C denotes a
parcluster, substituting X in A with x. We write A|(X ,CX) for short. We omit |(X , CX)
if the constraint is >. Definition 2.1.2 regarding set relations and operations of sets of
PRVs also applies to parclusters.
An FO jtree for a model G is a cycle-free graph J = (V,E), where V ⊆ 2rv(G) is

the set of nodes and E ⊆ {{i, j}|i, j ∈ V, i 6= j} the set of edges. Each node in
V is a parcluster Ci. J must satisfy three properties: (i) ∀Ci ∈ V : Ci ⊆ rv(G).
(ii) ∀g ∈ G : ∃Ci ∈ V : rv(g) ⊆ Ci. (iii) If ∃A ∈ rv(G) : A ∈ Ci ∧ A ∈ Cj , then ∀Ck on
the path between Ci and Cj : A ∈ Ck (running intersection property). An FO jtree is
minimal if by removing a PRV from a parcluster, the FO jtree ceases to be an FO jtree,
i.e., it no longer fulfils all properties. The set Sij , called separator of edge {i, j} ∈ E,
is defined by Ci ∩ Cj . The term nbs(i) refers to the neighbours of node i, defined by
{j|{i, j} ∈ E}. Each Ci ∈ V has a local model Gi and ∀g ∈ Gi : rv(g) ⊆ Ci. The local
models Gi partition G.

LJT constructs a valid and minimal FO jtree (Braun, 2020). A valid FO jtree contains
all PRVs of G, but also only these PRVs. Each parfactor is assigned to exactly one
parcluster. Thus, the combination of all local models make up G. Further, if a PRV
occurs in at least parcluster Ci and Cj , that PRV also occurs in all parclusters on the
path from Ci to Cj . Additionally, an FO jtree restricts elimination orders for a PM G.
For example, to answer a query, all PRVs except the query term need to be eliminated
from G. LVE eliminates PRVs using lifted summing out and LJT uses LVE for tis
calculations. To be able to apply lifted summing out, certain preconditions have to hold.
Thus, heuristics exist to select an elimination order to answer a query without having to
ground. The fact that an FO jtree restricts elimination orders is also the reason why one
cannot simply lift the interface algorithm, but an exact lifted algorithm has to ensure
preconditions of lifting while proceeding in time, as we will see in Section 3.4.

Example 2.1.5 (FO jtree construction). Figure 2.2 shows a valid and minimal FO jtree
of Gex, with two parclusters,

C1 = ∀j, x ∈ D(J)×D(X) : {Hot,Att(x), Pub(x, j)}|> = {Hot,Att(X), Pub(X, J)},
C2 = ∀x ∈ D(X) : {Hot,Att(x), DoR(x)}|> = {Hot,Att(X), DoR(X)},

with {Hot,Att(X)}, as the separator S12. The FO jtree is minimal as removing any
PRV leads to violating, e.g., that all randvars of a parfactor are contained in at least
one parcluster. The combination of all local models make up Gex. Here, each parfactor
from the PM makes up the local model of a parcluster, the ideal case to answer queries.
Having the smallest possible submodels in each parcluster of the FO jtree, means that
LJT has to eliminate the minimal number of PRVs for query answering. However, such a
scenario also means that LJT has to calculate and send the maximum number of messages

16

2.1 Exact Inference in Probabilistic Relational Models

Hot,
Att(X),
Pub(X,J)

{g0}

C1

Hot,
Att(X),
DoR(X)

{g1}

C2

{Hot,Att(X)}

Figure 2.2: Minimised FO jtree of Gex (local models under the parclusters)

during message passing, which is the worst case for message passing. In the following, we
detail how LJT performs message passing. Throughout the dissertation, we also work on
FO jtrees with more parfactors in a local model of a parcluster, resulting in less messages
during message passing but higher query answering efforts.

Having an FO jtree, LJT prepares the FO jtree for query answering by entering ev-
idence in the FO jtree, followed by message passing. Therefore, LJT uses the set of
events, builds evidence parfactors from events, and “enters” evidence into the FO jtree.
Each evidence parfactor only contains one PRV with corresponding event assignment
and constraint. For each evidence parfactor, LJT “enters” the evidence parfactor to each
parcluster containing the PRV of the evidence parfactor. Therefore, LJT searches for
a parcluster containing the PRV of the evidence parfactor and adds the parfactor to
the parcluster. The running intersection property ensures, that if a PRV is contained
in multiple parclusters, the PRV is contained in all parclusters on the path between all
of the parclusters. Thus, having found one parcluster with the PRV, LJT can use the
separators to check whether the PRV is also contained in other parclusters. If the PRV
is also contain in another parcluster, LJT also adds the parfactor to that parcluster.
For each evidence parfactor that is added to a corresponding parclusters, LJT performs

a so-called shattering operation, i.e., split the parfactors of the local model into parts
with and without evidence. Basically, LJT multiplies the evidence parfactor e with the
parfactor l from the local model. Therefore, LJT splits l into two parts l′ and l′′. The
first part l′ is for the instances without evidence. Thus, the parfactor l′ is unchanged, just
the domain of the logvar is reduced, i.e., the instances for which LJT has evidence are
not anymore included in the domain of the logvar. The second part l′′ is for the instances
with evidence. Hence, the parfactor l′′ has a constraint with exactly the instances for
which LJT has evidence. Now, LJT could multiply e with l′′. All rows of the parfactor l′′

that disagree with the evidence would be set to 0 and could be removed. LJT has a so-
called absorption step, to efficiently compute a parfactor that is equivalent to multiplying
an evidence parfactor onto another parfactor and dropping the disagreeing lines.

Example 2.1.6 (Evidence entering). Let us assume that we know that bob does research.
Thus, we enter DoR(bob) = true as evidence in the FO jtree. First, LJT builds an
evidence parfactor ge = φe(DoR(X) = true)|Ce with Ce restricted to bob in our example,

17

Chapter 2 Preliminaries

i.e., Ce = (X, {bob}). In case we also know that alice does research, then Ce would be
restricted to bob and alice and so on. Having the evidence parfactor ge, LJT enters ge

in the FO jtree. To enter ge, LJT searches for a parcluster containing DoR(X), which
C2 does. Hence, LJT adds ge to C2. Now, LJT checks whether any separator of C2

contains DoR(X), which is not the case for S12. Therefore, LJT does not need to add
ge to another parcluster.
Now, LJT first splits the parfactor g1, into two parts namely g1′ and g1′′ . The parfactor

without the evidence, g1′ , is basically unchanged, with the only difference that the con-
straint C is not top anymore, but C = (X, {alice, eve}), i.e., all instances without bob.
The constraint of g1′′ is changed to C = (X, {bob}). Thus, LJT can multiply ge with g1′′ ,
resulting in all lines of g1′′ to be 0 where DoR(X) 6= true. As these lines do not hold
any information, LJT can remove them and drop DoR(bob) to reduce computation costs.
The steps of evidence entering are more efficiently defined in the absorption operator.

The last step to prepare an FO jtree before query answering is message passing. An
idea of LJT is to use submodels to answer queries. To be more precise, LJT uses par-
clusters to answer queries. In general, one possibility to answer queries is to compute a
full joint distribution and then eliminate all none query terms, i.e, multiply all parfactors
and sum out all non-query terms. However, in the current state of an FO jtree, the par-
clusters do not necessarily hold all state descriptions of their corresponding PRVs, i.e.,
the full joint distribution for each parcluster only consists of its assigned parfactors. To
be able to answer queries correctly, a parcluster Ci has to query its neighbours for their
state descriptions of the PRVs from Ci, i.e., a parcluster asks for the joint distribution of
its PRVs from other parclusters. The neighbours of Ci might in turn need to query their
neighbours to answer the query. Such recursive querying can be efficiently implemented
using dynamic programming. To directly distribute all state descriptions, LJT performs
a so-called message pass. Each parcluster has local state descriptions, due to the parfac-
tors and evidence assigned to them. Only after local state descriptions of each parcluster
is distributed through the FO jtree, LJT can use any parcluster the contains the query
term to answer the query. Message passing consists of an inbound and an outbound pass.
After a message pass, each parcluster obtains the complete state descriptions of its PRVs
instead of each parcluster querying for the partial state descriptions from other parclus-
ters. During the messages pass, the influences of a PRV to other PRVs are distributed
throughout the parclusters. To compute a message, LJT eliminates, i.e., applies lifted
summing out to, all non-separator PRVs from the local model and received messages of
the parcluster. To calculate a message, incoming messages from the designated receiver
of the message to be calculated are ignored. A message is a parfactor as it contains PRVs,
a mapping of these PRVs to potentials, and a constraint. After a complete message pass,
each parcluster has all the state descriptions required to answer queries about its PRVs.

Example 2.1.7 (Message passing). During the inbound phase of message passing, LJT
sends a message m12 from C1 to C2 and during the outbound phase a message m21

18

2.1 Exact Inference in Probabilistic Relational Models

from C2 to C1. To calculate m12, LJT eliminates the PRV Pub(X,J) from C1. Having
calculated m12, LJT sends the message to C2.
For m21, LJT eliminates DoR(X) from C2, more precisely from the parfactors g1′ and

g1′′ . Here, LJT only eliminates the PRVs from the parfactors in its local model, even
though C2 already has one received message. To calculate the message, LJT eliminates
DoR(X) from g1′ and g1′′ by lifted summing out. Finally, LJT sends m21 to C1.

After message passing, LJT is ready to answer queries by finding a parcluster contain-
ing the query term and eliminating all non-query terms in its local model and received
messages.

Example 2.1.8 (Query answering). Having prepared the FO jtree, by evidence entering
and message passing, LJT can answer queries on the FO jtree. If we would like to know
whether Hot holds given bob does research, we query P (Hot|DoR(bob) = true) for which
LJT can use parcluster C2. LJT eliminates DoR(X) and Att(X) from C2’s local model
G2, g1′ and g1′′, which are the two shattered parfactors, combined with the received m21.

As mentioned before, to eliminate a PRV, LJT uses lifted summing out. The idea
is to compute variable elimination (VE) for one case and exponentiate the result for
isomorphic instances. Lifted summing out has some preconditions to be applicable, e.g.,
the PRV has to have all logvars that are contained in a parfactor (Taghipour et al.,
2013c).

Example 2.1.9 (Lifted summing out). In Gex the parfactor g0 has two logvars and one
PRVs, namely Pub(X, J), contains both logvars. Hence, LJT can apply lifted summing
out directly to Pub(X, J). Afterwards, LJT can apply lifted summing out to Att(X).
However, in case LJT needs to compute a message that only contains Hot and Pub(X, J),
then LJT could not apply lifted summing out to Att(X) as it does not contain all logvars.
LVE cannot eliminate Att(X) as Pub(X, J) has the logvar J , which is not contained in
Att(X). Hence, without any other techniques to prevent grounding, LVE would have to
ground to eliminate Att(X) from g0.
In case LJT would only want to eliminate Hot from the parfactor g1 it would have a

similar problem. Also for this parfactor, LVE cannot apply lifted summing out to Hot
directly. Hence, without any other techniques to prevent grounding, LVE would also have
to ground to eliminate any PRV from g1.

As there are preconditions for lifted summing out, we have a look at how LJT ensures
that it can always apply lifted summing out if the model allows for a lifted solution.

2.1.3 Preventing Groundings

A lifted solution to a query given a model means that LJT computes an answer without
grounding a part of the model. Unfortunately, not all models have a lifted solution

19

Chapter 2 Preliminaries

because LVE, the basis for LJT, requires certain conditions to hold (Taghipour et al.,
2013c) as we have just seen. Therefore, these models involve groundings with any exact
lifted inference algorithm. Grounding a logvar is expensive and, during message passing,
may propagate through all nodes. LJT has a few approaches to prevent groundings
(Braun and Möller, 2017), some originate from LVE and others are specific to LJT and
occur due to a non-optimal elimination order.

Lifted Variable Elimination A syntactic construct to prevent groundings is a counting
randvar (CRV). The idea behind a CRV is to prevent groundings of a PRV where it does
not matter which randvars have a certain range value, but only how many. The range of
a CRV is a set of histograms. A particular range value is a histogram that specifies for
each range value v of the underlying randvar how many randvars have this value v. A
count-conversion helps us to solve our problem form Example 2.1.9, but let us first look
at an example.

Example 2.1.10 (CRV as a compact encoding). Let us have a look at the randvars
behind a boolean PRV R(X) to illustrate CRVs. Assuming we have a factor φ, mapping
the boolean arguments R1, R2, and R3, for the three randvars behind R(X), to potentials,
which is the output of the factor, that is defined as follows:

(¬r1,¬r2,¬r3) 7→ 1, (¬r1,¬r2, r3) 7→ 2, (¬r1, r2,¬r3) 7→ 2, (¬r1, r2, r3) 7→ 3,

(r1,¬r2,¬r3) 7→ 2, (r1,¬r2, r3) 7→ 3, (r1, r2,¬r3) 7→ 3, (r1, r2, r3) 7→ 2 (2.1)

In all cases, three false values map to 1. Two false values and one true value map to
2. One false value and two true values map to 3. Three true values map to 2. Now,
assume a factor ψ with one CRV and a logvar L, denoted as ψ(#L[R(L)]). Histograms
range from [0, 3] to [3, 0], as there are 3 interchangeable arguments, with the first position
referring to true and the second to false. The factor is defined as follows:

[0, 3] 7→ 1, [1, 2] 7→ 2, [2, 1] 7→ 3, [3, 0] 7→ 2 (2.2)

[2, 1] maps to 2 and [1, 2] maps to 3. As the randvars are interchangeable, both factors
encode the same information, but the CRV is a more compact representation. Equa-
tion (2.1) has 23 = 8 mappings, Eq. (2.2) has

(
3+2−1

2−1

)
= 4 mappings (3 randvars, each

with 2 range values), which is no longer exponential w.r.t. the number of original inputs.

CRVs are one important construct of LVE to enable lifted computations for, e.g.,
query answering, and LJT uses LVE for its calculations and lifted dynamic junction tree
algorithm (LDJT), one of the main contributions of this dissertation, in turn uses LJT.
We formally define a CRV next.

Definition 2.1.7 (Parameterised CRV). Let R(X)|C denote a PRV under constraint C
where lv(R(X)) = {X}, meaning either X is a singleton set or other inputs to R are

20

2.1 Exact Inference in Probabilistic Relational Models

constants. Then, the expression #X [R(X)|C] denotes a CRV. Its range is the space
of possible histograms. A histogram h is a set of tuples {(vi, ni)}mi=1, v

i ∈ R(R(X)),
ni ∈ N, m = |R(R(X))|, and

∑m
i=1 n

i = |gr(X|C)|. A shorthand notation for the set of
tuples is [n1, . . . , nm]. As a function, h takes a range value vi and returns the associated
count ni from the tuple (vi, ni). If {X} ⊂ lv(P (X)), the CRV is a parameterised CRV
(PCRV) representing a set of CRVs. Since counting binds logvar X, lv(#X [R(X)]) =
lv(R(X)) \ {X}.

Having the definition of a CRV, we can revise Example 2.1.9 to see how a count-
conversion can prevent groundings. A count-conversion on a PRV is basically turning
the PRV into a PCRV. To be able to count-convert a PRV from a parfactor also some
preconditions such as that the logvar, which we want to count, does not occur in another
PRV of that parfactor (Taghipour et al., 2013c).

Example 2.1.11 (CRV to prevent groundings). With a count-conversion, LJT can pre-
vent many groundings. As we saw in Example 2.1.9, LVE cannot directly eliminate
Att(X) without grounding. But, LVE can count-convert the J in Pub(X, J). After the
count-conversion, lv(#J [Pub(X, J)]) returns {X} and thus, the logvar X is the only re-
maining logvars and Att(X) contains all logvars in the parcluster. Hence, now LJT can
apply lifted summing out to eliminate Att(X).
However, if one wants to directly eliminate Hot from g0, LVE can not apply lifting sum-

ming out. LVE could count-convert J from Pub(X, J). The X cannot be count-converted
as it occurs in both Pub(X, J) and Att(X). Thus, even after the count-conversion, Hot
would not contain all logvars of the parfactor, which is a precondition for lifted summing
out. Therefore, the elimination order is important to obtain a lifted solution.

As we can see in Example 2.1.11, an elimination order can render a lifted solution
impossible. In addition to lifting preconditions, an FO jtree in LJT also poses restrictions
on the elimination order. When calculating messages, an FO jtree determines which
PRVs from a parcluster have to be eliminated, namely all PRVs that do not occur in
the separator. Now, we take a look at how LJT prevents unnecessary groundings, which
occur due to a non-ideal elimination order in an FO jtree.

Lifted Junction Tree Algorithm During message passing, LJT eliminates PRVs by
lifted summing out. Thus, in case LJT cannot apply lifted summing out, even after
count-conversion, it has to ground logvars. The separators in an FO jtree restrict the
elimination order. Hence, some PRVs have to be eliminated before others while calculat-
ing messages, which can lead to grounding if lifted summing out is not applicable. Based
on the elimination order, unnecessary groundings can occur, while another elimination
order would not require groundings. In the propositional case the elimination order only
influences how many factorisations can be leveraged to avoid building a full joint distri-
bution, i.e., keep the size of intermediate results relatively small. In the lifted case the

21

Chapter 2 Preliminaries

elimination order also influences whether LJT can calculate a lifted solution. Finding an
optimal elimination order in general is NP-hard (Darwiche, 2009). LJT checks whether
unnecessary groundings can occur and adjusts the elimination order accordingly.
LJT applies three tests to check whether groundings occur during message passing.

The first test checks if LJT can apply lifted summing out. In case LJT can apply
lifted summing out on a PRV to calculate a message, the PRV cannot cause unnecessary
groundings during message passing of LJT. In case LJT cannot apply lifted summing
out on a PRV, the second test checks to whether groundings can be prevented by count-
converting. Unfortunately, even if a count-conversion prevents unnecessary grounding in
a parcluster, the count-conversion can lead to groundings in another parcluster. The third
test validates that a count-conversion will not result in groundings in another parcluster.
Now, we present the problem and the checks formally, and afterwards we illustrate the

checks using Gex. During message passing, a parcluster Ci = Ai
|Ci sends a message mij

containing the PRVs of the separator Sij to parcluster Cj . To calculate the message mij ,
LJT eliminates the parcluster PRVs not being part of the separator, i.e., Aij := Ai \Sij ,
from the local model and all messages received from other nodes other than j, i.e.,
G′ := Gi ∩ {mil}l 6=j . To eliminate A ∈ Aij by lifted summing out from G′, we replace
all parfactors g ∈ G′ that include A with a parfactor gE = φ(AE)|CE that is the lifted
product, i.e., the multiplication of the parfactors that include A. Let SijE := Sij ∩ AE
be the set of randvars in the separator that occur in gE . For lifted message calculation,
it necessarily has to hold ∀S ∈ Sij

E ,

lv(S) ⊆ lv(A). (2.3)

Otherwise, A does not include all logvars in gE .
A count conversion may induce Eq. (2.3) for a particular S if

(lv(S) \ lv(A)) is count-convertible in gE . (2.4)

In case Eq. (2.4) holds, LJT count-converts L, yielding a (P)CRV in mij , otherwise, LJT
grounds.
Unfortunately, a (P)CRV can lead to groundings in another parcluster. Hence, count-

conversion helps in preventing a grounding if all following messages can handle the re-
sulting (P)CRV. Formally, for each node k receiving S as a (P)CRV with counted logvar
L, it has to hold for each neighbour n of k that

S ∈ Skn ∨ L count-convertible in gS . (2.5)

LJT adjusts the elimination order in case the checks determine that groundings would
occur by message passing between these two parclusters, which is the case

(i) either if Eq. (2.3) and Eq. (2.4) do not hold

22

2.1 Exact Inference in Probabilistic Relational Models

Hot,
Att(X),
Pub(X, J)

{g0}

C1

Hot,
Att(X),
DoR(X)

{g1}

C2

B(J),
Pub(X,J),
C(X)

{g2}

C3

{Hot,Att(X)}{Pub(X,J)}

Figure 2.3: FO Jtree of Gex extended to illustrate how LJT prevents groundings

(ii) or if Eq. (2.3) does not hold, Eq. (2.4) holds, and Eq. (2.5) does not hold.

To adjust the elimination order, LJT applies a so-called fusion operator to two parclus-
ters, which merges these two parclusters. The idea behind fusing is twofold. On the
one hand, fusing the parclusters changes the elimination order by reducing restrictions
imposed on the elimination order by an FO jtree and thereby, leads to preventing un-
necessary grounding. On the other hand, by fusing the parclusters, LJT does not have
to recompute incoming messages to the fused parcluster.

Example 2.1.12 (Preventing groundings in LJT). Figure 2.3 shows an extended example
of Gex to illustrate how LJT prevents unnecessary groundings. Basically, Gex is extended
with one new parfactor, g2 = ∀j, x ∈ D(J) × D(X) : φ2(B(j), Pub(x, j), C(x))|>. For
the message m31 from C3 to C1, LJT needs to eliminate B(J) and C(X). To eliminate
B(J), LJT cannot apply lifted summing out. LJT also cannot apply a count-convert X
in Pub(X, J). Thus, Eq. (2.3) and Eq. (2.4) do not hold as the logvar X occurs in two
PRVs and in one of these PRV together with another logvar. Hence, the checks determine
a grounding, and LJT fuses C3 and C1.
Figure 2.4 shows the FO jtree with the nodes fused. For the message m12 from C1

to C2, LJT needs to eliminate B(J), C(X), and Pub(X, J). To eliminate Pub(X, J),
LJT first checks Eq. (2.3), which holds. To eliminate C(X), Eq. (2.3) holds To eliminate
B(J), Eq. (2.3) does not hold, but Eq. (2.4) and Eq. (2.5) do hold. Hence, LJT can
eliminate B(J) by count-converting X in Att(X). Thus, LJT can calculate m12 without
having to ground. For the message m21 from C2 to C1, LJT needs to eliminate DoR(X).
Here, Eq. (2.3) holds. Thus, the checks determine no more unnecessary groundings.

Hot,Att(X),
B(J), C(X),
Pub(X, J)

{g0, g2}

C1

Hot,
Att(X),
DoR(X)

{g1}

C2

{Hot,Att(X)}

Figure 2.4: FO Jtree of Gex extended and fused to illustrate how LJT prevents groundings

23

Chapter 2 Preliminaries

LJT allows for efficiently and exactly answering multiple queries on static relational
models. But, our goal is to efficiently answer multiple queries exactly for relational
temporal models. For propositional models, the interface algorithm (Murphy, 2002)
allows for exact answers to multiple queries for propositional temporal models. Next, we
have a look at the interface algorithm.

2.2 Exact Inference for Temporal Probabilistic Propositional
Models

Murphy (2002) provides in detail an introduction into Bayesian networks (BNs), dynamic
Bayesian networks (DBNs), their connections, and how to perform inference on the cor-
responding models in detail. In the following, we will give a brief overview over inference
for DBNs. The interface algorithm is defined on DBNs. A DBN basically is a temporal
extension to BNs, which is defined by a prior for the first time step and a temporal copy
pattern (Murphy, 2002). One possibility to perform inference on DBNs is to unroll a
DBN for a given number of time steps and use any inference algorithm for BNs. Unfor-
tunately, it might not be possible to simply append new time steps while reusing results
from previous time steps. In case one cannot append additional time steps, one has to
redo all the steps starting from unrolling. Additionally, the unrolled network tends to
become very large, as it contains the same information for every time step explicitly,
making inference infeasible.
In general, proceeding in time in temporal models boils down to using inference results

from time step t in combination with new evidence to answer queries for time step t+ 1.
We want to compute P (At+1 | e1:t+1), where At+1 is the set to state variables from time
step t+ 1 and e1:t+1 are the observations from the first time step up to time step t+ 1.

P (At+1 | e1:t+1) ∝ P (et+1 | At+1) ·
∑
at

P (At+1 | at) · P (at | e1:t) (2.6)

Equation (2.6) shows how to proceed in time by using the previous time step for temporal
models which follows the Markov assumption (Russell and Norvig, 1995).
To efficiently solve Eq. (2.6), the interface algorithm (Murphy, 2002) comes into play.

The idea is to identify randvars, which temporally d-separate time steps. D-separation
means that state descriptions about these randvars renders one time step independent
from the next. Thus, instead of summing over all at, the interface algorithm sums
over some of the at that make time steps independent. More specifically, the interface
algorithm passes on a description of the state that is needed to answer queries in the
next time step. Using d-separation, one can perform inference on one time step and
dynamically add new time steps. Further, one is only required to keep the current time
step in memory and not all time steps. Additionally, calculations can be carried out
on-demand based on queries.

24

2.2 Exact Inference for Temporal Probabilistic Propositional Models

Hott−1Pubt−1(alice, aaai_press)

Attt−1(alice)DoRt−1(alice)

HottPubt(alice, aaai_press)

Attt(alice)DoRt(alice)

Figure 2.5: Bex
→ a two-slice temporal Bayesian network for model Gex

To recap the interface algorithm, we first recapitulate DBNs as the representation for
which the algorithm is defined. Afterwards, we present how the interface algorithm builds
temporal d-separated junction tree (jtree) structures (Murphy, 2002) for inference and
demonstrate how the structures are reused for multiple queries and time steps.

2.2.1 Dynamic Bayesian Networks

A DBN models temporal behaviour using BNs for discrete time steps (Murphy, 2002).
Even though, the name of DBNs include the term “dynamic”, stationary processes are
modelled, i.e., the structure of the model does not change from one time step to the next
and the behaviour of the underlying process remains unchanged.

Definition 2.2.1. A DBN is a pair of BNs (B0, B→) where

• B0 is a BN for the first time step including priors, and

• B→ is a two-slice temporal bayesian network (2TBN), which models temporal be-
haviour.

The semantics of a DBN is also given by unrolling the DBN for a given number of
time steps and forming a full joint distribution. To unroll a DBN, one starts with B0

and then expands the BN using B→ for the given number of time steps.

Example 2.2.1 (Dynamic Bayesian network). Figure 2.5 shows a 2TBN B→ for our
example and X = alice, J = aaai_press. B0 can be imagined as all the nodes and edges
from time step t−1 with priors. The 2TBN is basically a temporal copy pattern, defining
the temporal behaviour and consisting of two BNs, one for time step t − 1 and one for
t, connected via edges to model the temporal behaviour. Further, we can see that only a
subset of the randvars influences the next time step and that a BN is a directed acyclic
graph. Using the DBN, we can unroll it for a given number of time steps T , by first
instantiating B0 and then using the temporal copy pattern B→ to append the BN until
the desired time step T is reached, which is the semantics of a DBN.

Now, we need a way to efficiently answer multiple queries on a DBN.

25

Chapter 2 Preliminaries

2.2.2 Inference using the Interface Algorithm

The interface algorithm exploits the fact that the set of nodes with outgoing edges, called
interface It, to the next time slice from B→ d-separates the past from the future. With
the randvars of I0, the randvars of It for time step 0, the interface algorithm builds a jtree
for the BN B0. While constructing the jtree, the algorithm ensures that the randvars
from I0 end up in one cluster of the jtree to be able to answer a query over I0 to pass the
state descriptions onwards to the next time step. To build a jtree and its clusters from a
BN, one way is to first moralise and then triangulate the BN. By adding edges between
all nodes from I0 in the triangulated network, the interface algorithm can ensure that
I0 builds a clique and thus, ends up in a cluster of a jtree. The cluster containing I0 is
labeled out-cluster.

Example 2.2.2 (Identifying interface variables and building a jtree for B0). In our
example, It is made up by Hott and Attt(alice). The interface algorithm builds a jtree J0

for B0 and ensures during the creation that I0 ends up in a cluster of the jtree. Thus, the
interface algorithm first moralises B0, i.e., the graph is turned into an undirected version
by also adding edges between parent nodes. In the moralised graph, the interface algorithm
adds edges between the interface randvars. Thus, the algorithm adds edges between Hott
and Attt(alice). Lastly, the algorithm constructs a jtree by triangulating the graph and
finding clusters. The cluster containing Hot0 and Att0(alice) is then labeled out-cluster.

Let us now build a jtree structure for the remaining time steps. As information about
the nodes from It render one time step independent from the next, we do not need the
complete 2TBN, but only the nodes from It for time step t−1 and the complete network
for the time step t. Thus, the algorithm turns B→ into a 1.5TBN, Ft, by removing all non
interface nodes Nt−1 and their edges from the first slice of B→, Ft = B→ \Nt−1 Murphy
(2002). Now, it constructs a jtree Jt for Ft and ensures that It−1 and It each end up
in clusters of the jtree. The cluster containing It−1 is labeled in-cluster as a separation
from the past and the cluster containing It is labeled out-cluster as a separation from
the future.

Example 2.2.3 (Building the jtree structure for B→). First, the interface algorithm con-
structs Ft out of B→. Therefore, the algorithm removes all non interface nodes from time
step t − 1. In our example, DoRt−1(alice) and Pubt−1(alice, aaai_press) are the non-
interface randvars. Additionally, all edges in the time step t − 1 from B→ are removed.
Hence, we are left with the randvars Hott−1 and Attt−1(alice) without any edges for the
first time step, but, the edges between time steps and within time step t remain intact.
Now, the interface algorithm first moralizes Ft. Afterwards, all interface randvars from
It−1 are connected by edges as well as the interface randvars from It. Finally, the algo-
rithm triangulates the graph to construct a jtree of the temporal copy pattern. The cluster
containing Hott−1 and Attt−1(alice) is labeled in-cluster and the cluster containing Hott
and Attt(alice) is labeled out-cluster.

26

2.2 Exact Inference for Temporal Probabilistic Propositional Models

I0

In0/Out0

N0

I0

In1

I1

Out1

N1

I1

In2

I2

Out2

N2

...

J0 J1 J2

I0 I1

Figure 2.6: Simple abstraction of a possible sequence of jtrees using the interface algo-
rithm (Murphy, 2002)

Now, we investigate how to proceed in time using the structures. To proceed in time,
the idea is to compute a message over It−1 from the out-cluster of Jt−1, i.e., eliminate all
non interface randvars from the out-cluster. The so-called αt−1 message is then passed on
to in-cluster of Jt combining all past state descriptions in a single message to completely
d-separate the jtrees from each other. Thereby, the interface algorithm efficiently solves
Eq. (2.6). The α message to proceed in time is also just another query and allows for
dynamically adding new time steps. Additionally, one can answer a predefined set of
queries for each time step on the jtree, and multiple queries can be solved efficiently on
a jtree.

Example 2.2.4 (Proceeding in time using the interface algorithm). Figure 2.6 illustrates
how the interface algorithm uses the in- and out-clusters of the jtrees J0 and Jt for the
first three time steps to proceed in time. The figure is taken from Murphy (2002) for
illustrative purposes. There can be additional clusters between the in- and out-clusters of
a jtree as well as additional clusters connected to the in-clusters of a jtree. To reason for
t = 0, the interface algorithm uses J0. First, a junction tree algorithm enters evidence
in J0, passes messages, and answers queries. Queries can be either filtering queries, i.e.,
queries for the current time step, hindsight queries, i.e., queries for a previous time step,
or prediction queries, i.e., a time step in the future. For all queries, the queried time
step is explicitly referred in the query time, by the name of the randvar. The interface
algorithm then computes a message using the out-cluster of J0, by summing out all non-
interface variables, to pass the message on via the separator, i.e., interface I0, to J1.
For all t > 0, the interface algorithm instantiates Jt on-demand for that time step. The
interface algorithm recovers the state of the model by adding the message from the out-
cluster of Jt−1 to the in-cluster of Jt. For t = 1 the interface algorithm instantiates
J1 and then adds the message from J0 to J1’s in-cluster. After the interface algorithm
recovers the previous state by adding the message, it behaves as it did for t = 0. A
junction tree algorithm enters evidence in J1 if available, passes messages, and answers
queries. During message passing, information from I0 is distributed through the jtree J1

and hence present in the out-cluster to compute the message over I1.

27

Part I

The Lifted Dynamic Junction
Tree Algorithm

Chapter 3

Exact Inference in Temporal Probabilistic
Relational Models

In the following, we tackle our goal, namely the problem of exact inference in tempo-
ral relational probabilistic models. To that end, we begin by introducing parameterised
probabilistic dynamic models (PDMs) as a representation for probabilistic relational tem-
poral models. A PDM is an undirected probabilistic graphical model. For PDMs, we also
define different kinds of temporal queries, i.e., hindsight, filtering, and prediction queries,
as well as the corresponding query answering problems. Afterwards, we present with
LDJT an algorithm to solve the query answering problems. For LDJT, we introduce how
to construct timewise-independent FO jtrees from a PDM. The constructed FO jtrees
contain a minimal set of PRVs to m-separate the FO jtrees. M-separation means that
information about these PRVs renders FO jtrees independent from each other, analo-
gously to d-seperation, the counterpart for directional models. To perform inference
on the FO jtrees, we introduce a forward pass to solve the filtering and prediction QA
problems and a backward pass to solve the hindsight QA problem efficiently. Especially
while answering hindsight or prediction queries, computations can be reused. To save
computations and efficiently use resources at hand, we propose a QA plan. Further, we
illustrate how LDJT ensures preconditions of lifting by preventing unnecessary ground-
ings that occur based on an non-ideal elimination order. Lastly, we combine all pieces in
LDJT, i.e., the first relational forward backward algorithm.
This chapter is based on the following publications:

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree
Algorithm. In Proceedings of the 23rd International Conference on Conceptual
Structures, pages 55–69. Springer, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Back-
ward Algorithm for Multiple Queries. In Proceedings of the 32nd Interna-
tional Florida Artificial Intelligence Research Society Conference (FLAIRS-
32), pages 464–469. AAAI Press, 2019

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary
Groundings in the Lifted Dynamic Junction Tree Algorithm. In 8th Interna-

31

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

tional Workshop on Statistical Relational AI at the 27th International Joint
Conference on Artificial Intelligence, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Towards Preventing Unneces-
sary Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceed-
ings of KI 2018: Advances in Artificial Intelligence, pages 38–45. Springer,
2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary
Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceedings
of the AI 2018: Advances in Artificial Intelligence, pages 556–562. Springer,
2018

3.1 Parameterised Probabilistic Dynamic Models

To define PDMs, we use two PMs and the idea of how BNs give rise to DBNs. We define
PDMs based on the first-order Markov assumption, i.e., a time slice t only depends on
the previous time slice t−1. Further, the underlying process is stationary, i.e., the model
behaviour does not change over time.

Definition 3.1.1 (PDM). A PDM G is a pair of PMs (G0, G→) where

• G0 is a PM representing the first time step and

• G→ is a two-slice temporal parameterised model (2TPM) with At−1 and At where
Aπ is a set of PRVs from time slice π.

Example 3.1.1 (PDM). Figure 3.1 depicts Gex0 , the first time step of our model Gex.
Basically, Gex0 is the same parfactor graph as shown in Fig. 2.1. The only difference is
that now the PRVs and parfactors are from the first time step. Additionally, each PRV
has another parfactor as a form of prior for that PRV.
Figure 3.2 shows Gex→ and thus, defines how the model Gex behaves over time. Gex→

consists of Gex for time step t− 1 and for time step t with inter-slice parfactors for the

Hot0

g0
0

Pub0(X, J)

Att0(X)

g1
0

DoR0(X)

gp0

gd0

gh0

ga0

Figure 3.1: Gex0 the first time step for model Gex

32

3.1 Parameterised Probabilistic Dynamic Models

Hott−1

g0
t−1

Pubt−1(X, J)

Attt−1(X)

g1
t−1

DoRt−1(X)

Hott
g0
t

Pubt(X,J)

Arrt(X)

g1
t

DoRt(X)
gH

Figure 3.2: Gex→ the two-slice temporal parfactor graph for model Gex

behaviour over time. Hence, on the left, we can see the parfactor graph as shown in
Fig. 2.1 for time step t− 1 and on the right the same parfactor graph for time step t. gH

is the inter-slice parfactor, modelling temporal behaviour.

Semantics The semantics of a PDM G is given by first unrolling G for T time steps,
grounding the unrolled model w.r.t. constraints, and building a full joint distribution.
In case of a propositional model, grounding does not apply, i.e., gr(unroll(G,T)) =
unroll(G,T), where unroll unrolls a PDM G for T time steps into a PM. With Z as the
normalisation constant, PG represents the full joint probability distribution

PG =
1

Z

∏
f∈gr(unroll(G,T))

f, Z =
∑

v∈R(rv(gr(unroll(G,T))))

∏
φ(A)∈gr(unroll(G,T))

φ(πA(v))

where πA(v) denotes a projection of the current set of range values v onto A. With the
difference that now randvars are assigned a time step t, the three main types of queries
in the QA problem are again:

(i) a probability of a particular event, i.e., P (Qt = qt),

(ii) a marginal probability distribution of a randvar, i.e., P (Qt), or

(iii) a conditional probability distribution of a randvar given a set of events,
i.e., P (Qπ | {Ejt = ejt}j,t). Also written P (Qiπ|E0:t).

Answering such queries is equal to computing marginal distributions w.r.t. a model’s
joint distribution. We define a query on a parameterised model as follows.

Definition 3.1.2 (Temporal queries). A query P (Qπ | {Ejt = ejt}j,t) consists of a query
term Qπ, which is a grounded PRV or propositional randvar from time step π, and a set
of events {Ejt = ejt}j,t, where E

j
t are grounded PRVs or propositional randvars from time

step t and ejt ∈ R(Ejt) are fixed range values. We write E0:t as a short form for evidence
from the first time step up to time step t and Et as a short form for evidence from time
step t . The problem of answering a query P (Qπ | e0:t) w.r.t. a model is called prediction
for π > t, filtering for π = t, and hindsight for π < t.

33

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

Example 3.1.2 (Temporal queries). For the examples, we represent that no event takes
place during a time step with the ⊥ symbol. For Gex, P (Hot0) is a query without a set of
events asking for the marginal distribution of Hot for the first time step. P (Hot2 |
⊥0, DoR1(alice) = true,⊥2,⊥3, DoR4(bob) = true,⊥5) is a hindsight query with a
single event DoR(alice) = true for time step 1, a single event DoR(bob) = true for
time step 4, and no events for all other time steps. P (Hot5 | ⊥0, DoR1(alice) =
true,⊥2,⊥3, DoR4(bob) = true,⊥5) is a filtering query and P (Hot8 | ⊥0, DoR1(alice) =
true,⊥2,⊥3, DoR4(bob) = true,⊥5) is a prediction query.

Now, we show how we efficiently perform exact lifted temporal inference with PDMs.

3.2 Exact Inference with the Lifted Dynamic Junction Tree
Algorithm

To perform exact inference efficiently on PDMs, we introduce LDJT. Before we go
into details, we provide a rough overview of LDJT. LDJT efficiently answers queries
P (Qiπ|E0:t), with Qiπ ∈ Qt, a set of queries for a time step t, and Qt ∈ {Qt}Tt=0, a set
of sets of queries for all time steps, possibly the same for all time steps, given a PDM G
and evidence {Et}Tt=0, i.e., events for all time steps, by performing the following steps:

(i) Construct two FO jtrees J0 and Jt with in- and out-clusters from G.

(ii) For t = 0, use J0 to enter E0, pass messages on J0, answer each query term
Qiπ ∈ Q0, and calculate forward message α0.

(iii) For t > 0, instantiate Jt for the current time step t, add αt−1 to the in-cluster,
enter Et in Jt, pass messages on Jt, answer each query term Qiπ ∈ Qt, and calculate
a forward message αt.

In the following, we investigate how LDJT can build FO jtrees from a PDMs. After-
wards, we propose a forward and a backward pass for LDJT to proceed in time.

3.2.1 Construction of FO Jtree Structures from a PDM

For LDJT, we adapt the idea of the interface algorithm and lift it to the first-order case
to benefit from LJT. Thus, LDJT constructs two FO jtrees, one structure for the initial
time step and one for all other time steps. While constructing the FO jtree structures,
LDJT ensures that the structures are temporally m-separated. Moreover, LDJT ensures
that the interface PRV occur in one cluster, to easily compute the state description for
temporal m-separation. In case each FO jtree is time separated from the previous and
next FO jtrees, LDJT can perform inference on one time step at a time. LDJT constructs

34

3.2 Exact Inference with the Lifted Dynamic Junction Tree Algorithm

Algorithm 1 FO Jtree Construction for a PDM (G0, G→)

function DFO-JTREE(G0, G→)
It := Set of interface PRVs for time slice t
gI0 := Parfactor for I0

G0 := gI0 ∪G0

J0 := Construct minimised FO jtree for G0 and remove gI0
gIt−1 := Parfactor for It−1

gIt := Parfactor for It
Ft := {φ(A)|C ∈ G→ | ∀A ∈ A : A /∈ At}
Gt := (gIt−1 ∪ gIt ∪ Ft)
Jt := Construct minimised FO jtree for Gt and remove gIt−1 as well as gIt

return (J0, Jt, It)

an FO jtree structure for G0 with an out-cluster and one structure for G→ with an in-
cluster and out-cluster. Therefore, LDJT first identifies the interface PRVs It, i.e., the
PRVs which have successors in the next slice, for a time slice t. We define It as follows:

Definition 3.2.1 (Interface PRVs). The forward interface is defined as It = {Ait |
∃φ(A)|C ∈ G : Ait ∈ A ∧ ∃A

j
t+1 ∈ A}. The set of non-interface PRVs is Nt = At \ It.

Example 3.2.1 (Identifying interface PRVs). LDJT uses G→ to identify interface PRVs.
In G→, gH is the only parfactor that contains PRVs from multiple time steps. Hence,
LDJT finds exactly one parfactor having at least one PRV from time step t − 1 and at
least one PRV from time step t. gH connects the PRVs Hott−1, Attt−1(X), and Hott.
Thus, It−1 contains Hott−1 and Attt−1(X).

In case the PRVs of I end up in a single parcluster, LJT can easily compute a message
over I. The general idea of ensuring that interface PRVs I end up in a single parcluster
is to add a parfactor gI over I to the corresponding PM. To not alter the semantics of
the PDM, gI has uniform potentials in the mappings, i.e., gI maps all input values to
1. Thereby, the PDM remains semantically the same. In an FO jtree, the PRVs of each
parfactor are contained in at least one parcluster. Hence, by adding gI to a PM, the
resulting FO jtree has a parcluster containing I, which LDJT can use as an interface.
The steps of FO jtree constructions are shown in Alg. 1. LDJT constructs two FO jtree

structures J0 and Jt from G0 and G→ respectively. To construct J0, LDJT uses G0 and
adds a parfactor gI0 over I0 to G0. In J0, gI0 is assigned to a local model of a parcluster
and LDJT labels that parcluster as out-cluster. To prevent unnecessary multiplications,
LDJT then removes gI0 from J0.

Example 3.2.2 (Constructing Jex0). To construct Jex0 , LDJT adds a parfactor gI0 to
Gex0 . The parfactor gI0 connects the PRVs from I0, namely Hot0 and Att0(X), and φI0

35

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

maps the four assignments to 1. Figure 3.3 depicts the resulting PM. The only difference
to Fig. 3.1 is gI0. Using the new Gex0 , LDJT constructs the Jex0 structure. Figure 3.4
shows the corresponding FO jtree structure. The parcluster C1

0 contains the PRVs from
I0. Hence, LDJT labels C1

0 as out-cluster and removes gI0 from the local model of C1
0.

Leaving gI0 would only result in superfluous multiplications with 1 and LDJT only needs
it to ensure the present of an out-cluster.

LDJT constructs Jt using G→ for all other time steps. To construct Jt, LDJT first
prepares G→. During inference, LDJT uses Jt to account for the state from the previous
time step t− 1 and answer queries on the current time step t. A description of the state
from the interface PRVs suffices to describe the past. Thus, LDJT can prepare the time
slice for time step t − 1 to only include PRVs from It−1. Hence, LDJT transforms the
2TPM G→ into a 1.5-slice TPM Ft, that is to say LDJT eliminates all parfactors from
G→, which only have PRVs from the first time step. We define the 1.5-slice TPM Ft in
the following way:

Definition 3.2.2. Ft = {φ(A)|C ∈ G→ | ∀A ∈ A : A /∈ Ai
t}

During the construction of Jt, LDJT still needs to ensure that Jt obeys the interface
idea. Therefore, LDJT ensures that Jt has at least one parcluster containing all PRVs
from It−1 and at least one parcluster containing all PRVs from It. Hence, LDJT adds
parfactors gIt−1 and gIt to Ft. Now, LDJT constructs Jt from Ft. Finally, LDJT labels the
parcluster which has gIt−1 assigned as in-cluster and the parcluster which has gIt assigned
as out-cluster. Lastly, LDJT removes gIt−1 and gIt from the local models.

Example 3.2.3 (Constructing Jex→). LDJT starts by turning the 2TPM Gex→ into a 1.5-
slice TPM F ext . Therefore, LDJT removes all parfactors and all non-interface PRVs
Nt−1 from time slice t − 1 of Gex→. Hence, LDJT removes g0

t−1, g
1
t−1, DoRt−1(X), and

Pubt−1(X, J) from Gex→ to obtain F ext . To ensure that Jex→ has an in-cluster and an
out-cluster, LDJT adds gIt−1 and gIt to Ft. Analogous to the construction of Jex0 , gIt−1

connects Hott−1 and Attt−1(X) and φIt−1 maps all four rows to 1 and gIt connects Hott

Hot0

g0
0

Pub0(X, J)

Att0(X)

g1
0

DoR0(X)

gI0

gp0

gd0

gh0

ga0

Figure 3.3: Gex0 with interface parfactor

Hot0,
Att0(X),
Pub0(X, J)

{g0
0, g

p
0}

C1
0 out-cluster

Hot0,
Att0(X),
DoR0(X)

{g1
0, g

a
0 , g

d
0 , g

h
0}

C2
0

{Hot0, Att0(X)}

Figure 3.4: FO jtree Jex0 structure

36

3.2 Exact Inference with the Lifted Dynamic Junction Tree Algorithm

Hott−1

Attt−1(X)
gIt−1

Hott
g0
t

Pubt(X, J)

Attt(X)

g1
t

DoRt(X)
gIt

gH

Figure 3.5: 1.5-slice TPM F ext with gIt−1 and gIt

Hott−1,
Attt−1(X),

Hott
{gH}

in-clusterC1
t

Hott,
Attt(X),
Pubt(X, J)

out-cluster

{g0t }

C2
t

Hott,
Attt(X),
DoRt(X)

{g1t }

C3
t

{Hott} {Hott, Attt(X)}

Figure 3.6: FO jtree Jext structure

and Attt(X) and φIt maps all rows four to 1. Figure 3.5 shows the PM corresponding to
F ext with gIt−1 and gIt added.

Having prepared Gex→, LDJT constructs the structure Jex→ , which is depicted in Fig. 3.6
with three parclusters. Basically, it is the same structure as shown in Fig. 2.2 with the
addition of a parcluster for the incoming interface and the inter-slice parfactor. Addi-
tionally, we can see that C1

t contains the PRVs from gIt−1 and that that C2
t contains the

PRVs from gIt . Therefore, LDJT labels C1
t as in-cluster and C2

t as out-cluster.

Having the FO jtree structures, we now illustrate how LDJT can use the structures to
perform inference by combining an out-cluster and an in-cluster from consecutive time
steps. The FO jtree J0 has an out-cluster with the PRVs from I0, and Jt has an in-cluster
with the PRVs from It−1 and an out-cluster with the PRVs from It. Thus, LDJT can
“connect” the in- and out-clusters of the FO jtrees, i.e. send a message over It from the
out-cluster of Jt to the in-cluster of Jt+1 . Due to the interface, the clusters contain a
minimal set of PRVs to m-separate the FO jtrees. As mentioned, m-separation means
that state descriptions about these PRVs renders FO jtrees independent from each other.
LDJT uses that given state descriptions about the interface PRVs, the current FO jtree
is independent of the FO jtrees from previous time steps.

Next, we present a forward pass for LDJT to be able to answer filtering and prediction
queries. Afterwards, we present a backward pass to also answer hindsight queries.

37

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

3.2.2 Forward Pass

To proceed in time, LDJT requires a forward pass. The idea of the forward pass is to use
the out-cluster of Jt−1, calculate a message over the interface PRVs It−1, and then add
the message to the in-cluster of the FO jtree for the next time step. While the out-cluster
of Jt−1 and the in-cluster of Jt both can contain more PRVs than just It−1, they exactly
share the PRVs from It−1. Thus, one could also think of It−1 being the separator in case
one would connect Jt−1 and Jt with an edge between the out- and in-cluster. Hence, from
that perspective LDJT performs a message pass in one direction to proceed in time.
As J0 and Jt are valid FO jtrees, LDJT can leverage LJT to perform inference on the

FO jtrees. LDJT uses J0 for the first time step, enters the evidence of the first time
step in J0, and performs a message pass. After the message pass, LDJT answers all
queries for the first time step. Having answered all queries, LDJT proceeds in time.
LDJT preserves the current state to pass it on to the next time slice. To preserve the
state, LDJT computes a forward message called α0. To compute the message, LDJT
sums out all non-interface PRVs from the out-cluster of J0 and stores the result in
α0. The interface PRVs are exactly the PRVs that have an influence on the next time
slice and thus, describe all information needed to answer queries for the next time step.
Afterwards, LDJT proceeds to the next time step.
For all time steps t > 0, LDJT uses the structure of Jt. LDJT instantiates Jt for the

current time step t and recovers the state of the previous time step by adding αt−1 to
the in-cluster of Jt. Again, LDJT enters evidence for the current time step and performs
a message pass. During message passing, also state descriptions from the α message are
distributed. After query answering, LDJT sums out all non-interface PRVs from the
out-cluster of Jt and saves the result in αt. Using the interface clusters, the FO jtrees
are m-separated from one time step to the next and LDJT can use Jt for all t > 0.

Example 3.2.4 (Proceeding in time). Figure 3.7 depicts how LDJT proceeds from time
step 3 to 4. First, LDJT enters evidence for t = 3 in J3, distributes local information
by message passing, and answers all queries for time step 3. To proceed to time step
4, LDJT preserves the description of the state of the interface PRVs. To capture the
state, LDJT sums out the non-interface PRV Pub3(X, J) from C2

3 and saves the result
in message α3. LDJT sums out Pub3(X, J) of the parfactor g0

3 as well as the received
messages m12

3 and m32
3 . After proceeding in time, LDJT instantiates J4 and adds α3 to

the in-cluster, C3
4. Now, LDJT enters evidence for t = 4 in J4 and performs a message

pass. During message passing, LDJT accounts for α3. For example, while calculating
m12, LDJT eliminates Hot3 and Att3(X) from gH as well as α3. Thus, α3 is also
accounted for when calculating α4.

With α messages, LDJT can proceed in time. Now, we illustrate, that the α mes-
sages also encode information about previous evidence. To calculate α messages, LDJT
accounts for the incoming messages as well as the local model of the out-cluster. Dur-

38

3.2 Exact Inference with the Lifted Dynamic Junction Tree Algorithm

Hot2,
Att2(X),
Hot3
{gH}

in-clusterC1
3

Hot3,
Att3(X),
Pub3(X, J)

out-cluster

{g03}

C2
3

Hot3,
Att3(X),
DoR3(X)

{g13}

C3
3

α3

Hot3,
Att3(X),
Hot4
{gH}

in-cluster C1
4

Hot4,
Att4(X),
Pub4(X, J)

out-cluster

{g04}

C2
4

Hot4,
Att4(X),
DoR4(X)

{g14}

C3
4

{Hot3} {Hot3, Att3(C)} {Hot4} {Hot4, Att4(C)}

Figure 3.7: Forward pass of LDJT without C3
3 (local models and labelling in grey)

ing evidence entering, parfactors are shattered into groups with and without evidence.
Thus, in case there are shattered logvars in It, the shattered groups are present at the
out-cluster of Jt, either due to its local model or received messages. Therefore, when
LDJT calculates an α message, the message also stores information about the different
groups. By then adding α to the next time step, the information about the different
groups is also present at the next time step, even though LDJT always instantiates a
vanilla FO jtree from the corresponding structure. A vanilla FO jtree is a newly instan-
tiated FO jtree from the corresponding structure for the current time step without any
entered evidence or calculated message.

Example 3.2.5 (Evidence entering). Let us assume that alice does research at time step
3. Thus, LDJT enters an evidence parfactor encoding DoR3(alice) = true in J3. LDJT
adds the evidence parfactor to C3

3, where X is split into a part for alice and into a part
for all other instances. During message passes, the message m32

3 contains two parts,
one for alice and one for all other instances. LDJT then accounts for the two parts,
while calculating α3, which in turn also has two parts. The parfactors of α3 are in turn
accounted for during the message passing in J4. Thus, LDJT accounts for evidence.

Using the forward pass, LDJT answers filtering and prediction queries. To answer
filtering queries, LDJT uses the FO jtree of the current time step, after LDJT entered
evidence and passed messages. To answer prediction queries, LDJT uses the evidence up
to the current time steps and asks a query for a time step in the future. Thus, LDJT needs
to perform forward passes, without new evidence to distribute the state descriptions up
until the current time step, while accounting for the temporal model behaviour.

Example 3.2.6 (Answering filtering and prediction queries). Assume we have the fol-
lowing queries: P (Hot3 | .., DoR3(alice) = true), P (Hot4 | .., DoR3(alice) = true),
and P (Hot8 | .., DoR3(alice) = true). In J3, LDJT enters DoR3(alice) = true and
passes messages. After the message pass, LDJT answers the filtering query and re-
turns the conditional probability distribution of H3. For the prediction query P (Hot4 |
.., DoR3(alice) = true), LDJT computes α3, instantiates J4, and adds α3 to the in-
cluster of J4. As it is a prediction query, LDJT has no evidence for time step 4 and
directly performs a message pass. Afterwards, LDJT uses a parcluster to answer the pre-
diction query. For the prediction query P (Hot8 | .., DoR3(alice) = true), LDJT needs to

39

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

apply additional forward passes until it instantiated J8. Each forward pass is composed
of calculating an αt−1 message, adding αt−1 to the in-cluster of Jt, and performing a
message pass in Jts. Using J8, LDJT answers the second prediction query.

With a forward pass, LDJT can answer filtering and prediction queries. To answer
hindsight queries, LDJT needs to propagate state descriptions to previous time steps.

3.2.3 Backward Pass

Using the forward pass, LDJT propagates state descriptions from the the first time
step through all time steps in between to the current time step. Thus, the current
FO jtree contains state descriptions about all previous time step encoded in the current
α message. Hindsight queries use the additional evidence from subsequent time steps to
answer marginal distribution queries P (Qiπ|E0:t) about an earlier time step, i.e., π < t.
The basic idea here is to use newly observed events to reduce uncertainty about states in
previous time steps. For a backward pass to distribute state descriptions also to previous
time steps, LDJT also uses the in- and out-clusters.
To perform a backward pass, LDJT uses the in-cluster of Jt, calculates a βt message

over the interface PRVs, and sends βt to the out-cluster of Jt−1. To calculate βt, LDJT
has to ignore the αt−1 message, received from the out-cluster of Jt−1. After LDJT
calculates βt by summing out all non-interface PRVs, it proceeds with the previous time
step. LDJT adds the βt message to the out-cluster of Jt−1.

Example 3.2.7 (Backward pass). Figure 3.8 depicts the backward pass of LDJT. LDJT
uses the in-cluster of J4 to calculate β4. LDJT sums out Hot4 from the local model of
C1

4, g
H , as well as the received message m21

4 . α3 is not accounted for as the designated
receiver of β4 is the sender of α3. Having calculated β4, LDJT proceeds to the previous
time step and adds β4 to the out-cluster of J3. The information of β4 is then distributed
through J3 during message passing.

With a backward pass, LDJT can answer hindsight queries. To propagate the in-
formation, LDJT passes the state descriptions back through every time step between
the current time step to the queried time step. In case LDJT only needs to propagate
back state descriptions through a time step, but has no queries for that particular time

Hot2,
Att2(X),
Hot3
{gH}

in-clusterC1
3

Hot3,
Att3(X),
Pub3(X, J)

out-cluster

{g03}

C2
3

C3
3

β4

Hot3,
Att3(X),
Hot4
{gH}

in-cluster C1
4

Hot4,
Att4(X),
Pub4(X, J)

out-cluster

{g04}

C2
4

Hot4,
Att4(X),
DoR4(X)

{g14}

C3
4

{Hot3} {Hot4} {Hot4, Att4(X)}

Figure 3.8: Backward pass of LDJT without C3
3 (local models and labelling in grey)

40

3.2 Exact Inference with the Lifted Dynamic Junction Tree Algorithm

step, it can reduce computational efforts during a message pass and only ensure that all
information are present at the in-cluster to calculate the β message.
Let us now illustrate how LDJT answers hindsight queries.

Example 3.2.8 (Answering hindsight queries). Assuming that the topic is hot in the
current time step 15, we would like to know whether alice did research at time step 5 and
whether alice published at aaai_press at time step 10. LDJT answers the conditional dis-
tribution queries P (Qi15|E0:15), Qi15 ∈ Q15 with E15 consisting of {Hot15 = true} and the
set of query terms Q15 consisting of at least {Pub10(alice, aaai_press), DoR5(alice)}.
To answer the queries, LDJT instantiates J15, adds α14 to the in-cluster of J15, enters

the evidence {Hot15 = true}, and passes messages, such that LDJT is able to answer
any query for time step 15. In this case, LDJT does not have any filtering queries, but
solely hindsight queries. To answer the hindsight queries, LDJT has to perform backward
passes until it reaches the queried time step. Hence, LDJT calculates β15 and adds β15 to
the out-cluster of J14. As LDJT also does not have any queries for time step 14, it only
needs to ensure that all necessary state descriptions are available to calculate β14. Thus,
during message passing, LDJT selects the in-cluster as root and stops after the inbound
phase. By doing so, LDJT has all necessary state descriptions present at the in-cluster
to calculate β14, but would not be able to use any other parcluster for query answering,
which it also does not need to in this case. LDJT keeps performing backward passes until
it reaches time step 10. In J10, LDJT adds β11 to the out-cluster of J10 and performs a
complete message pass, i.e., pass inbound and outbound messages. With the complete
message pass, all information is distributed and thus, LDJT can use a parcluster for
query answering. Hence, LDJT can answer P (Pub10(alice, aaai_press)|Hot15 = true).
To answer the hindsight query P (DoR5(alice)|Hot15 = true), LDJT does not have

to start from time step 15 again, but can proceed from time step 10 to propagate the
information to time step 5. Thus, LDJT performs five additional backward passes to
propagate the information from time step 15 to time step 5. Having accounted for β6 in
J5, LDJT can answer the hindsight query P (DoR5(alice)|Hot15 = true).

If performing solely forward passes, i.e. answering only filtering and prediction queries,
LDJT only needs to keep the current FO jtree in memory. In case LDJT only proceeds
in time, LDJT can forget calculations of previous time steps as the forward message
encodes all necessary state descriptions to separate the past from the present and thus,
previous time steps can be forgotten. However, in case one also wants to answer hindsight
queries, LDJT has to perform computations on FO jtrees from previous time steps during
a backward pass. Hence, LDJT needs an efficient way to perform computations on
FO jtrees from previous time steps w.r.t. memory consumption. Additionally, we already
have seen that sometimes LDJT does not need to perform a complete message pass, but
only an inbound message pass, leading to performance considerations as a trade off to
being memory efficient. Next, we set up a query answering plan such that LDJT performs
only those computation it needs to answer queries.

41

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

3.3 Query Answering Plan

During a backward pass, LDJT has different options to instantiate FO jtrees with differ-
ent implications for performing calculations again as well as memory consumption. For
a query answering plan, we start by investigating two approaches how LDJT can obtain
FO jtrees from previous time steps. The first approach is to preserve all instantiated
FO jtrees from the forward pass. The second approach is to instantiate FO jtrees on-
demand using evidence and α messages, which is only possible due to the m-separation of
the FO jtrees and the forward pass of LDJT. Afterwards, we combine the instantiation
approaches into a query answering plan. For the query answering plan, we assume that
for each time step LDJT has the same set of queries, i.e., the queries do not change over
time and are known in advance.

3.3.1 Preserving FO Jtree Instantiations

Preserving all instantiated FO jtrees, including computed messages, is time-efficient since
the approach reuses already performed computations. Thereby, LDJT only needs to
account for the newly added β message inside an FO jtree, as this is the only change
compared to the previous message pass. By selecting the out-cluster as the root node
for an outbound message pass, this leads to n− 1 instead of 2 · (n− 1) messages, where
n is the number of parclusters. Additionally, if LDJT does not answer any queries on
the current FO jtree, LDJT may only pass messages from the out-cluster to the in-
cluster. The in-cluster receives the new state descriptions from the out-cluster and the
remaining messages are still valid as at all others parclusters the information does not
change. Further, the required FO jtree is already instantiated and does not need to be
instantiated again. The main drawback is the memory consumption, as each FO jtree
needs to be stored, which is not always feasible with an increasing number of time steps.

3.3.2 On Demand FO Jtree Instantiation

Instead of keeping all FO jtrees in memory, LDJT can also instantiate an FO jtree on
demand. Here, on demand means that LDJT instantiates an FO jtree that is not in
memory for computations just in time. To instantiate an FO jtree on demand, LDJT
enters evidence, α and β messages, and repeats a message pass. Instantiating FO jtrees
on demand is space efficient compared to storing all FO jtrees. Each FO jtree consists
of assigned parfactors, messages, including α and β, as well as evidence. Thus, evidence
and α message is only a small fraction compared to an FO jtree. With on demand
instantiation, LDJT can answer hindsight queries even for time steps very far in the past
as it is feasible to store required information for more time steps. However, LDJT has to
repeat computations. LDJT repeats the steps to instantiate the FO jtree. If LDJT does
not answer any queries on the on demand instantiated FO jtree, it needs to compute

42

3.3 Query Answering Plan

n− 1 messages, by selecting the in-cluster as the root for the inbound message pass. To
prepare an FO jtree for query answering, LDJT has to perform a complete message pass,
which results in twice as many messages compared to preserving FO jtree instantiations.
For a query answering plan, let us combine the instantiation approaches to be efficient

w.r.t. calculations and memory consumption. Assume that for every time step LDJT
answers a predefined set of queries, i.e., for each time step LDJT answers some hindsight
queries always with the same offset as well as some filtering queries, and some prediction
queries. Then LDJT knows how many backward passes (and forward passes) it has to
perform for each time step. With always the same offset, the hindsight and prediction
query answering problem is called a fixed-lag query answering problem. The idea of
fixed-lag query answering can be compared to processing a data stream with a sliding
window (Özcep et al., 2015), where each window stores a processable amount of data. To
preserve FO jtrees instantiated for faster answering of hindsight queries is comparable to
sliding windows in stream data processing as one only stores a processable amount of data
in a window. Additionally, often in stream data processing, one has predefined queries,
which are executed for each window. LDJT preserves a reasonable amount of FO jtrees
and while LDJT proceeds in time an FO jtree gets removed from the sliding window and
an FO jtree gets added to the sliding window. With a known fixed-lag, a combination of
our two approaches is highly advantageous. A combination is also advantageous in case
prediction queries and their corresponding offset are predefined.

3.3.3 Combining Instantiation Approaches

As both instantiation approaches have advantages and disadvantages, we leverage the
strengths of both by combining them. LDJT can preserve FO jtrees for the fixed-lag and
instantiate all other FO jtrees on-demand to allow for on-demand queries, i.e., special
queries for a particular time step. Thereby, LDJT can preserve a certain number of
FO jtrees instantiated, for fast query answering, as LDJT would need to compute fewer
messages. Additionally, with a predefined set of queries, LDJT knows for each FO jtree if
there is a query for that time step. Thus, in case there is no query for that particular time
step but only for time steps even further in the past, LDJT can perform an inbound pass
with the in-cluster as root to be able to calculate the β message while only performing
the necessary computations. In case a hindsight query is even further in the past, LDJT
instantiates FO jtrees on-demand using evidence and α messages as it is not always
feasible to store all FO jtrees and α messages require only a fraction of memory in
comparison to FO jtrees. Hence, combining the approaches leads to a query answering
plan that is efficient w.r.t. calculations and memory usage.

Example 3.3.1 (Combining instantiation approaches with a fixed-lag). Assuming the
fixed hindsight lag is 10, LDJT can preserve the last 10 FO jtrees and instantiate addi-
tional FO jtrees on-demand. Thus, for the hindsight queries, which LDJT answers for

43

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

each time step, LDJT only needs to perform one outbound message pass to prepare an
FO jtree for query answer and needs to calculate even fewer message if there is no query
for a time step. If LDJT only has one predefined hindsight query for t− 10, then LDJT
may propagate messages only from the out-cluster to the in-cluster for all FO jtrees but
the one for t− 10. For the last FO jtree, LDJT then has to perform an outbound mes-
sage pass from the out-cluster to prepare that FO jtree for message passing. Hence, by
storing the FO jtrees for the last 10 time steps, LDJT can reuse many computations with
a manageable overhead w.r.t. memory consumption.
If an on-demand hindsight query has a lag of 20, LDJT can instantiate the FO jtrees

starting with Jt−11. While answering the default hindsight queries, LDJT already prop-
agates information back to 10 time steps earlier. Hence, LDJT can proceed from Jt−10,
calculate βt−10, and then instantiate Jt−11 using evidence for t−11, αt−12, and βt−10. In
case there is no query for time step t− 11, LDJT may perform only an inbound message
pass with the in-cluster as root to calculate βt−11. Here a complete inbound message
pass is needed and not only the messages from out-cluster to in-cluster as there are no
messages stored for that time step. For Jt−20, LDJT performs a complete message pass
to be able to answer queries on that FO jtree and thus, to answer the hindsight query.

With a predefined set of queries that LDJT answers for every time step, LDJT can
construct an efficient query answering plan w.r.t. memory consumption and which mes-
sages it has to compute. Nonetheless, there still is a potential for investigating heuristics
to also efficiently deal with on-demand queries that are often queried for multiple time
steps. Another heuristic could deal with which messages LDJT has to compute. Poten-
tially one could also investigate that LDJT does not always need to prepare the FO jtree
for query answering but only a subset of parclusters given the predefined queries, leaving
room for improvement.
Knowing how LDJT answers hindsight, filtering, and prediction queries, we now show

how LDJT prevents unnecessary grounding to be a lifted forward backward algorithm,
and then we combine all pieces and present LDJT as a whole.

3.4 Ensuring Preconditions of Lifting

We can distinguish between two different message passes in LDJT, namely an intra and
an inter FO jtree message passing. Intra FO jtree message passing takes place inside
of an FO jtree. Inter FO jtree message passing takes place between two FO jtrees. In
both cases unnecessary groundings can occur if the elimination order of an FO jtree does
not ensure preconditions of lifting. To prevent groundings during intra FO jtree message
passing, Braun and Möller propose to fuse parclusters (see Section 2.1.3). LDJT also
performs inter FO jtree message passing, during forward and backward passes. During
an inter FO jtree message pass, a message is sent from one time step to another. Hence,
LDJT instantiates the FO jtree structure for two consecutive time steps. Unfortunately,

44

3.4 Ensuring Preconditions of Lifting

having two FO jtrees from different time steps, LDJT cannot fuse parclusters from dif-
ferent FO jtrees. Otherwise, LDJT would not use temporal independences anymore to
reason over only one time step. Hence, LDJT requires a different approach to prevent-
ing unnecessary groundings during inter FO jtree message passing. In the following, we
present how LDJT prevents grounding and discuss prevention of groundings during intra
and inter FO jtree message passing as well as the implications for a lifted run.

3.4.1 Preventing Groundings while Calculating Temporal Messages

The goal of LDJT is to calculate a lifted solution, if the corresponding model allows for
lifted computations. Currently, there might be algorithm induced groundings while cal-
culating temporal messages. To ensure preconditions of lifting while computing temporal
messages, we introduce an extension operator on FO jtree structures. LDJT’s extension
performs the following three steps: (i) check whether temporal messages induce ground-
ings, (ii) prevent groundings by extending the set of interface PRVs, and (iii) prevent
groundings within one time step with the fusion step of LJT. Algorithm 2 outlines the
steps. In the following, we discuss each step in detail.

Checking for Temporal Message Groundings To determine whether calculating tem-
poral messages induces groundings, LDJT uses Eqs. (2.3) to (2.5). For the forward pass,
LDJT applies the equations to check whether the αt−1 message from Jt−1 to Jt leads
to groundings. More precisely, LDJT checks for possible but unnecessary groundings for
the temporal message between J0 and J1 as well as between two temporal FO jtree copy
patters, namely Jt−1 to Jt for t > 1. Based on the FO jtree construction of LDJT, the
structures for J0 and Jt are different. The parfactors assigned to the out-clusters can
be different and also the PRVs that LDJT has to eliminate calculating an α message.
Therefore, LDJT checks whether calculations of α0 and αt, for t > 0, induce groundings.
LDJT checks all PRVs A ∈ Aij , where i refers to the out-cluster from Jt−1, j refers to

the in-cluster from Jt, and Aij refers to the set of PRVs that LDJT needs to be eliminate
calculating α messages, for groundings for t = 1 as well as for t > 1. In case Eq. (2.3)
holds for A, no additional checks for A are necessary as eliminating A does not induce
groundings. Otherwise, LDJT checks whether a count-conversion allows for applying
lifted summing out on A. In case Eq. (2.4) holds, LDJT tests whether Eq. (2.5) holds
in Jt. Here, Eq. (2.5) does not necessarily need to hold for all neighbours. But at least
on the path from in-cluster to out-cluster the count-conversion should not introduce any
groundings. For LDJT not having groundings in temporal messages is crucial as these
groundings propagate through all time steps. Allowing groundings in parclusters that do
not influence temporal messages is not desirable but still better than having groundings
in temporal messages. But groundings on the path of temporal messages have to be
prevented if possible. Overall, if Eqs. (2.4) and (2.5) hold, eliminating A does not lead
to groundings, but if Eq. (2.4) or Eq. (2.5) fail, groundings occur.

45

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

Algorithm 2 Preventing Groundings for FO Jtree (J0, Jt) during a Forward Pass

function PreventForwardGroundings(J0, Jt)
Ci := J0(out-cluster)
Cj := J1(in-cluster) . Jt instantiated for t = 1
Aα0 := Ci \ Sij
for A ∈ Aα0 do

if A induces groundings then . Based on Eqs. (2.3) to (2.5)
Add A to Cj

Ci := Jt−1(out-cluster)
Cj := Jt(in-cluster)
Aαt−1 := Ci \ Sij
for A ∈ Aαt−1 do

if A induces groundings then . Based on Eqs. (2.3) to (2.5)
Add A to Cj

Prevent unnecessary groundings for Jt
return Jt

Extending Interface Separators If eliminating A leads to groundings, LDJT delays the
elimination to a point where the elimination does no longer lead to groundings. Therefore,
LDJT adds A to the in-cluster of Jt, which results in A also being added to the interface.
Later in our theoretical analysis, we also show that delaying eliminations does not change
the semantics. Based on the way LDJT constructs the FO jtree structures, the FO jtrees
stay valid. Hence, LDJT does not need to eliminate A in the out-cluster of Jt−1 anymore,
where the elimination induces groundings.

Checking for Intra FO Jtree Groundings By delaying the elimination, calculating α
messages will not induce groundings anymore. Unfortunately, the delayed elimination
might induce (unnecessary) groundings inside the Jt structure. To check for and prevent
unnecessary groundings in Jt, LDJT uses fusion of LJT as as described in Section 2.1.3.
While checking for unnecessary groundings, again it is crucial that no groundings occur
on the path from the in-cluster to the out-cluster. As mentioned before, in case delaying

Pub2(X,J),
Hot2, DoR2(X),

Hot3
{gH}

in-clusterC1
3

Hot3,
Att3(C), DoR3(X),

Pub3(X, J)

out-cluster

{g03 , g13}

C2
3

α3

Pub3(X,J),
Hot3, DoR3(X),

Hot4
{gH}

in-cluster C1
4

Hot4,
Att4(C), DoR4(X),

Pub4(X, J)

out-cluster

{g04 , g14}

C2
4

{Hot3} {Hot4}

Figure 3.9: J3 and J4 with unnecessary groundings

46

3.4 Ensuring Preconditions of Lifting

eliminations results in inducing groundings, but not on the path from the in-cluster to
the out-cluster, then delaying eliminations is still worth it as LDJT could calculate α
messages using lifting techniques, but will not guarantee a lifted solution is general.
Let us have a look at the central idea of ensuring lifting preconditions while calculating

temporal messages.

Example 3.4.1 (Checking for unnecessary groundings during a forward pass). Figure 3.9
shows Jt instantiated for time step 3 and 4 with the following example Gex→:

gH = ∀j, x ∈ D(J)×D(X) : φH(DoRt−1(x), Hott−1, Pubt−1(x, j), Hott)|>

g0
t = ∀j, x, c ∈ D(J)×D(X)×D(C) : φ0

t (Pubt(x, j), Hott, Attt(c))|>

g1
t = ∀x, c ∈ D(X)×D(C) : φ1

t (DoRt(x), Hott, Attt(c))|>

J3 refers to Jt−1 and J4 refers to Jt. LDJT checks for groundings while calculating tem-
poral messages for the temporal copy pattern. To compute α3, LDJT eliminates Att3(C)
from C2

3’s local model. Hence, LDJT checks whether the elimination leads to groundings.
In this example, Eq. (2.3) does not hold, since Att3(C) does not contain all logvars, X
and J are missing. Additionally, Eq. (2.4) is not applicable as X appears in two PRVs
and in one PRV with logvar J .
As eliminating Att3(C) leads to groundings, LDJT extends the parcluster C1

4 with
Att3(C). Thereby, LDJT also extends the interface with Att3(C) and in turn changes
the elimination order. Due to the extension, LDJT does not need to eliminate Att3(C)
in C2

3 anymore and therefore, calculating α3 does not lead to groundings.
However, LDJT has to check whether adding the PRV Att3(C) leads to groundings in

C1
4. Figure 3.10 shows the instantiations, after LDJT added Attt−1(C) to the in-cluster

of Jt. For the extended parcluster C1
4, LDJT needs to eliminate the PRVs Hot3, Att3(C),

DoR3(X), and Pub3(X, J). To eliminate Pub3(X, J), LDJT first count-converts logvar
C in the PRV Att3(C) and then Eq. (2.3) holds for Pub3(X, J). Afterwards, LDJT can
eliminate DoR3(X) and then the count-converted Att3(C) as well as the PRV Hot3 as
Eq. (2.3) holds for all of them. Thus, by adding the PRV Attt−1(C) to the in-cluster of
Jt and thereby to the interface, LDJT can prevent unnecessary groundings. Additionally,
as LDJT uses this FO jtree structure for all time steps t > 0, i.e., the changes to the
structure also hold for all t > 0.

Pub2(X, J),
Hot2, DoR2(X),
Att2(C), Hot3

{gH}

in-clusterC1
3

Hot3,
Att3(C), DoR3(X),

Pub3(X, J)

out-cluster

{g03 ,g13}

C2
3

α3

Pub3(X, J),
Hot3, DoR3(X),
Att3(C), Hot4

{gH}

in-cluster C1
4

Hot4,
Att4(C), DoR4(X),

Pub4(X, J)

out-cluster

{g04 , g14}

C2
4

{Hot3} {Hot4}

Figure 3.10: J3 and J4 after preventing groundings of forward passes

47

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

Algorithm 3 Preventing Groundings for FO Jtrees (J0, Jt) during a Backward Pass

function PreventBackwardGroundings(J0, Jt)
Ci := Jt−1(out-cluster)
Cj := Jt(in-cluster)
Aβt := Cj \ Sji
for A ∈ Aβt do

if A induces groundings then
Add A to i and J0(out-cluster)

Prevent unnecessary groundings for J0

Prevent unnecessary groundings for Jt
return (J0, Jt)

Pub2(X,J),
Hot2, DoR2(X),
Att2(C), Hot3

{gH}

in-clusterC1
3

Hot3, Hot4,
Att3(C), DoR3(X),

Pub3(X, J)

out-cluster

{g03 ,g13}

C2
3

β4

Pub3(X,J),
Hot3, DoR3(X),
Att3(C), Hot4

{gH}

in-cluster C1
4

Hot4, Hot5,
Att4(C), DoR4(X),

Pub4(X, J)

out-cluster

{g04 , g14}

C2
4

{Hot3} {Hot4}

Figure 3.11: J3 and J4 after preventing groundings of forward and backward passes

For the forward pass from J0 to J1, LDJT identifies the identical unnecessary ground-
ings. Therefore, without extending the in-cluster of Jt with Attt−1(C), calculating α0

would induce groundings. In this case, by extending the in-cluster of Jt with Attt−1(C),
LDJT also prevents unnecessary groundings while calculating α0.

So far, we have only focused on how LDJT can prevent unnecessary groundings during
a forward pass, as LDJT has to apply a forward pass for each time step. Nonetheless, in
the same fashion, LDJT can also prevent unnecessary groundings during a backward pass.
The general idea is outlined in Alg. 3. LDJT needs to check whether the calculation of any
β message induces groundings. Therefore, LDJT uses the in-cluster of the Jt structure
and checks whether eliminating any PRV to calculate βt induces groundings. LDJT then
adds all PRVs that induce groundings to the out-clusters of J0 and Jt. Lastly, LDJT
checks J0 and Jt for unnecessary groundings.

Example 3.4.2 (Preventing groundings during a backward pass). In the example of
Fig. 3.10, LDJT needs to eliminate Hot4 to calculate β4. Hot4 occurs in gH with
Pub3(X,J), DoR3(X), Att3(C), and Hot3. LDJT cannot apply lifted summing out
on Hot4 and the logvar X cannot be count-converted as it occurs in two PRVs. Thus,
eliminating Hot4 induces groundings. To prevent the groundings, LDJT adds Hot4 to
the out-cluster of J3. Hence, calculating β4 no longer induces groundings, but LDJT still
has to check for groundings in J3. In J3 for m21, LDJT may first count-convert C, then

48

3.4 Ensuring Preconditions of Lifting

eliminate Pub3(X, J). Afterwards, it eliminates DoR3(X). Finally, LDJT can eliminate
the count-converted PRV Att3(C) and Hot4. Thus, Hot4 does not cause any groundings
in J3 and LDJT prevents unnecessary groundings during forward and backward passes.
Hence, adding H1 to the out-cluster of J0 and Hott+1 to the out-cluster of Jt for the
forward pass as well as adding Attt−1(C) to the in-cluster of Jt for the backward pass
resolves unnecessary groundings.

3.4.2 Discussion

In the following, we end by discussing workload and performance aspects of preventing
grounding of intra and inter FO jtree message passing. Afterwards, we present model
constellations where LDJT cannot prevent groundings.

Performance One needs to ensure preconditions of lifting when lifting an algorithm as
shown by the fact that LDJT has to prevent unnecessary groundings. The additional
workload for the extension operation of LDJT is moderate. In the best case, LDJT
checks Eqs. (2.3) to (2.5) for calculating two messages, namely for the αt−1 message and
for the message LDJT passes from in in-cluster of Jt in the direction of the out-cluster of
Jt. In the worst case, LDJT needs to check 1+(m−1) messages, where m is the number
of parclusters on the path from the in-cluster to the out-cluster in Jt. These messages
need to be checked twice, once for α0 and once for αt.
From a performance point of view, increasing the size of the α messages and of a

parcluster is not ideal, but always better than the impact of groundings, which would
result in ground calculations for each time step. By applying the intra FO jtree message
passing check, LDJT may fuse the in-cluster and out-cluster, which most likely results
in a parcluster with many PRVs of the model. Increasing the number of PRVs in a
single parcluster increases LDJT’s workload for query answering. But even with the
increased workload, a lifted run is faster than grounding as we will empirically show
in our evaluation. However, in case the checks determine that a lifted solution is not
obtainable, using the initial model with local clustering is the best solution due to the
smaller parclusters.
LDJT uses the FO jtree construction of LJT, which includes the fusion step. Apply-

ing fusion before extension is also more efficient as fusing the out-cluster with another
parclusters could increase the number of its PRVs and thus, LDJT would have to rerun
the extension check. Hence, LDJT first applies fusion and then extension.

Groundings LDJT Cannot Prevent In the following, we have a look at a case where ex-
tension cannot prevent groundings. The case can be described with a PRV that depends
on it predecessors.
Fusing the in-cluster and out-cluster during extension is a case for which LDJT cannot

prevent groundings. For such a case to happen, LDJT cannot eliminate a PRV A in the

49

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

Pubt−1(X, J),
DoRt−1(X),
Pubt(X, J)

{gP }

in-clusterC1
t

Hott, Attt(J),
DoRt(X),
Pubt(X, J)

out-cluster

{g0t , g1t }

C2
t

αt

Pubt(X, J),
DoRt(X),

Pubt+1(X, J)

{gP }

in-cluster C1
t+1

Hott+1, Attt+1(J),
DoRt+1(X),
Pubt+1(X, J)

out-cluster

{g0t+1, g
1
t+1}

C2
t+1

{Pubt(X, J)} {Pubt+1(X, J)}

Figure 3.12: Groundings LDJT cannot prevent

out-cluster of Jt−1 without grounding. Thus, LDJT adds A to the in-cluster of Jt. The
checks for testing whether LDJT can eliminate A on the path from the in-cluster to the
out-cluster of Jt fail. Thereby, LDJT fuses all parclusters on the path between the two
parclusters, but LDJT still cannot eliminate A. LDJT has not been able to eliminate A
in the out-cluster of Jt−1 without groundings as well as on the path from the in-cluster
to the out-cluster in Jt. Hence, LDJT also cannot eliminate A in the fused parcluster
on the subtree from in-cluster to the out-cluster without grounding. Even worse, LDJT
cannot eliminate A from time step t− 1 and t in the out-cluster to calculate αt without
grounding. For an unrolled model, a lifted solution might be possible, however, with
many PRVs in a single parcluster since, in addition to other PRVs, a single parcluster
contains A for all time steps. Depending on domain sizes and the maximum number of
time steps, either using LDJT with groundings or using the unrolled model with LJT is
advantageous as we show in the empirical evaluation.

Example 3.4.3 (Groundings LDJT cannot prevent). Assume the following Gex→:

g0
t =∀j, x ∈ D(J)×D(X) : φ0(Pubt(x, j), Hott, Attt(j))|>

g1
t =∀j, x ∈ D(J)×D(X) : φ1(DoRt(x), Hott, Attt(j))|>

gP =∀j, x ∈ D(J)×D(X) : φP (Pubt(x, j), DoRt(x), Pubt+1(x, j))|>

Figure 3.12 depicts FO jtrees for two time steps of Gex→. To calculate αt, LDJT could
count-convert X in Pubt(X, J) from g0

t and count-convert X in DoRt(X) from φ1. Af-
terwards, LDJT can multiply the parfactors and eliminate Attt(J) using lifted summing
out. Now, LDJT can count-convert J in Pubt(X, J), leading to both variables being
count-converted, and finally, summing out Hott. Unfortunately, the count-conversions
lead to groundings in C1

t+1 as LDJT cannot count-convert X and J in gP . To eliminate
Pubt(X, J) for the message from C1

t+1 to C2
t+1, LDJT first needs to multiply αt and gP .

However, in αt Pubt(X, J) is completely count-converted and gP contains two PRVs both
with the logvars X and J . Therefore, LDJT cannot count-convert X and J in gP . Hence,
preparing gP for the multiplication with αt leads to grounding gP .
The extension step of LDJT now would try to delay the eliminations of Hott and

Attt(J) to prevent the groundings. However, trying to eliminate Hott and Attt(J) at

50

3.5 Complete Specification of the Lifted Dynamic Junction Tree Algorithm

C1
t+1 leads to a similar problem. LDJT can eliminate Pubt(X, J) by multiplying gI

and g0
t . Afterwards, LDJT has a parfactor that includes Hott, Attt(J), DoRt(X),

and Pubt+1(X, J). From that parfactor, LDJT needs to eliminate Hott, Attt(J), and
DoRt(X), which leads to groundings because X as well as J cannot be count-converted
without groundings.
LJT fuses C1

t+1 and C2
t+1. Unfortunately, LDJT also does not eliminate

Pubt+1(X,J) in the fused parcluster to calculate αt+1. After multiplying gI and g0
t and

eliminating Pubt(X, J), LDJT has the same problem as before fusing. Therefore, LDJT
also cannot eliminate the PRVs here without inducing groundings, even after applying all
known techniques to prevent algorithm-induced groundings.

Let us now combine all pieces, i.e., the forward pass, the backward pass, and ensuring
preconditions of lifting, to obtain a relational forward backward algorithm for efficiently
solving the hindsight, filtering, and prediction problems by obtaining a lifted solution if
the corresponding model allows for a lifted temporal solution. Afterwards, we also look
at the theoretical bounds of LDJT, including the model classes for which it is complete.

3.5 Complete Specification of the Lifted Dynamic Junction
Tree Algorithm

Algorithm 4 outlines LDJT and its inputs. LDJT constructs FO jtree structures J0

and Jt and the set of interface PRVs using the function DFO-JTREE as described in
Section 3.2.1. The construction of the structures also includes the fusion step of LJT
to prevent unnecessary groundings within an FO jtree as described in Section 2.1.3.
Then, LDJT checks the structures for unnecessary groundings while calculating temporal
messages and prevents them (cf. Section 3.4).
Afterwards, LDJT answers queries by entering evidence, message passing, query an-

swering for the current time step, and proceeding in time. With the AnswerQuery proce-
dure, LDJT answers hindsight, filtering, and prediction queries. LDJT answers filtering
and prediction queries as described in Section 3.2.2 with the ForwardPass function and
hindsight queries as described in Section 3.2.3 with the BackwardPass function. For
query answering, LDJT starts by identifying the query type of the current query, namely
hindsight, filtering, and prediction. To perform filtering, LDJT passes the query and the
current FO jtree to LJT to answer the query. For prediction queries, LDJT applies the
forward pass until it reaches the time step of the query and then answers the query. To
answer hindsight queries, LDJT applies the backward pass until the time step of the
query is reached and answers the query.
The AnswerQuery procedure is the point to implement a query answering plan (cf.

Section 3.3) Answering multiple queries on an FO jtree is efficient as LJT reuses com-
putations to answer queries. With a good query answering plan, LDJT reuses as many
computations as possible to answer queries while also being memory efficient.

51

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

Algorithm 4 LDJT Alg. for PDM (G0, G→), Queries {Q}Tt=0, Evidence {E}Tt=0

procedure LDJT(G0, G→, {Q}Tt=0, {E}Tt=0)
t := 0
(J0, Jt, It) := DFO-JTREE(G0, G→)
(J0, Jt) := PreventForwardGroundings(J0, Jt)
(J0, Jt) := PreventBackwardGroundings(J0, Jt)
while t 6= T + 1 do

Jt := LJT.EnterEvidence(Jt,Et)
Jt := LJT.PassMessages(Jt)
for qπ ∈ Qt do

AnswerQuery(J0, Jt, qπ, It, α, t)
(Jt, t, α[t− 1]) := ForwardPass(J0, Jt, t, It)

procedure AnswerQuery(J0, Jt, qπ, It, α, t)
while t 6= π do

if t > π then
(Jt, t) := BackwardPass(J0, Jt, It, α[t− 1], t)

else
(Jt, t,_) := ForwardPass(J0, Jt, It, t)

LJT.PassMessages(Jt)
print LJT.AnswerQuery(Jt, qπ)

function ForwardPass(J0, Jt, It, t)
αt :=

∑
Jt(out-cluster)\It Jt(out-cluster)

t := t+ 1
Jt(in-cluster) := αt−1 ∪ Jt(in-cluster)
return (Jt, t, αt−1)

function BackwardPass(J0, Jt, It, αt−1, t)
βt :=

∑
Jt(in-cluster)\It(Jt(in-cluster) \ αt−1)

t := t− 1
Jt(out-cluster) := βt+1 ∪ Jt(out-cluster)
return (Jt, t)

For example, a robot with a stream of location data always queries where he was 2
and 4 time steps ago. LDJT can first answer hindsight query with a lag of 2. For the
hindsight query with a lag of 4, LDJT can reuse the calculations performed during the
hindsight query with a lag of 2, namely, it starts the backward pass for the query with

52

3.5 Complete Specification of the Lifted Dynamic Junction Tree Algorithm

lag 4 at Jt−2 and does not need to recompute the already performed two backward passes
for lag 2. For a query answering plan, there are two options to reuse the computations.
To reuse computations, the first option for a query answering plan is that the hindsight

queries are sorted based on the time difference to the current time step. Here, LDJT
preserves the FO jtree from the last hindsight query and performs additional backward
passes. The second option is to preserve the calculated β messages for the current time
step and instantiate the FO jtree closest to the currently queried time step. Analogously,
LDJT also reuses computations for prediction queries. Additionally, under the presence
of prediction queries, LDJT uses the computed αt to proceed to the next time step as
otherwise LDJT would compute the same αt message twice. However, given new evidence
for a new time step, all other α and β messages that LDJT has calculated for the previous
time step are invalid.
Now, we illustrate how LDJT works.

Example 3.5.1 (LDJT). Assume that the query terms are:

• {Hot0, Pub0(alice, aaai_press), Hot2, Pub2(alice, aaai_press)}0,

• {Hot1, Pub1(alice, aaai_press), Hot3, Pub3(alice, aaai_press)}1,

• {Hot0, Pub0(alice, aaai_press), Hot2, Pub2(alice, aaai_press), Hot4,
Pub4(alice, aaai_press)}2,

• {⊥3}3, and

• {Hot0, Pub0(alice, aaai_press), Hot2, Pub2(alice, aaai_press), Hot4,
Pub4(alice, aaai_press)}4

and the evidence is:

• {DoR0(alice) = true,DoR0(eve) = true}0,

• {DoR1(alice) = true,DoR1(eve) = true}1,

• {⊥2}2,

• {DoR3(bob) = true}3, and

• {DoR4(alice) = true,DoR4(eve) = true}4.

We have queries for time steps 0, 1, 2, and 4 and evidence for time steps 0, 1, 3, and 4.
Providing LDJT with queries, evidence, and PDM Gex, we illustrate how LDJT works.
LDJT first sets the current time step to be 0 and then constructs the FO jtree structures

J0 and Jt. Therefore, LDJT applies DFO-Jtree construction to Gex0 , which is depicted
in Fig. 3.1, and Gex→, which is depicted in Fig. 3.2, and obtains Jex0 , which is shown in

53

Chapter 3 Exact Inference in Temporal Probabilistic Relational Models

Fig. 3.4, and Jext , which is shown in Fig. 3.6. The FO jtree construction of LJT, which
LDJT uses after it changed the PMs Gex0 and Gex→ already includes fusion to prevent
groundings. Nonetheless, LDJT still has to check for unnecessary groundings while the
calculation of temporal messages. Thus, LDJT first checks and prevents unnecessary
groundings while calculating α messages and applies first the PreventForwardGroundings
function from Alg. 2 and then the PreventBackwardGroundings function from Alg. 3 to
Jex0 and Jext . The checks find no unnecessary groundings and return Jex0 and Jext .
With the structures Jex0 and Jext , LDJT can proceed to answer queries. The current

time step 0 is not equal to 4 + 1. Hence, LDJT enters the main while loop. LDJT begins
by entering the evidence for the first time step in Jex0 . LDJT builds an evidence parfactor
encoding DoR0(alice) = true and DoR0(eve) = true and enters the evidence parfactor to
the corresponding parcluster of Jex0 . Afterwards, LDJT performs a message pass on Jex0

to distribute the information of the local models and the evidence. Having Jex0 prepared,
LDJT can start to answer queries. For time step 0, LDJT answers the query terms Hot0,
Pub0(alice, aaai_press), Hot2, and Pub2(alice, aaai_press), that is, two filtering and
two prediction queries. First, LDJT answers the query for query term Hot0. In the
AnswerQuery procedure, LDJT does not enter the while loop as the query term is for
the current time step. Thus, LDJT can directly use Jex0 to answer the query. The same
holds for the next query term Pub0(alice, aaai_press). For the query term Hot2, LDJT
enters the while loop, as 0 6= 2. As 0 < 2 holds, LDJT applies a forward pass. During the
forward pass, LDJT calculates α0, increases t by one, instantiates J1, and adds α0 to J1.
To prepare J1, LDJT then performs a message pass. An efficient query answering plan
determines that only an inbound phase with the out-cluster as root suffices as currently
LDJT has no queries to be answered for time step 1. As 1 is still smaller than 2, LDJT
performs another forward pass and prepares J2. After the message pass on J2, LDJT can
answer the query term Hot2 using J2. The last query term is Pub2(alice, aaai_press).
In the AnswerQuery procedure, LDJT again enters the while loop since 0 < 2 holds.
However, LDJT can reuse computations and directly use J2 to answer the query. Now,
LDJT has answered all queries for time step 0.
With all queries answered for the first time step, LDJT proceeds to the next time step.

Therefore, LDJT performs a forward pass. However, LDJT has already calculated α0

during a prediction query. Thus, LDJT does not to compute α0 again. As mentioned
earlier, the α messages store state descriptions about groups that are split due to evidence.
Hence, α0 contains parfactors constrained to alice and eve as well as parfactors for all
other persons. During this forward pass, LDJT only increases t by 1.
LDJT remains in the main while loop. Hence, LDJT enters the evidence for t = 1 in

J1. LDJT builds an evidence parfactor encoding DoR1(alice) = true and DoR1(eve) =
true and enters the evidence parfactor into the corresponding parclusters of Jex1 . During
messages passing, LDJT distributes state descriptions of local models. Now, the local
models also contain α0 and thereby, state descriptions from time step 0. Answering the
query terms Hot1, Pub1(alice, aaai_press), Hot3, and Pub3(alice, aaai_press), which

54

3.5 Complete Specification of the Lifted Dynamic Junction Tree Algorithm

again are two filtering and two prediction queries, leads to the same steps, which we omit,
as in time step 0. After answering all queries for time step 1, LDJT again performs a
forward pass to proceed in time.
For time step 2, LDJT does not have any evidence. Thus, LDJT can reuse Jex2 , for

which LDJT already performed an inbound message pass while answering prediction
queries from time step 1. To complete message passing, LDJT performs an outbound
message pass. For the time step 2, LDJT has two hindsight, two filtering, and two
prediction queries. LDJT again uses the current FO jtree Jex2 to answer the two filtering
queries, Hot2 and Pub2(alice, aaai_press), and performs two forward passes for the
prediction queries, Hot4 and Pub4(alice, aaai_press). For the query terms Hot0 and
Pub0(alice, aaai_press), 2 > 0 holds in the AnswerQuery procedure. Hence, LDJT
performs a backward pass. LDJT calculates β2 using the in-cluster of Jex2 and adds β2 to
the out-cluster of Jex1 . Since LDJT does not have any hindsight query for time step 1, the
query answering plan of LDJT determines that LDJT only needs to perform an inbound
message pass with the in-cluster of Jex1 as root to be able to calculate β1. As 1 is still
larger than 0, LDJT performs another backward pass. LDJT propagates state descriptions
from time step 2 back to time step 0, to be able to answer the hindsight queries. Using
Jex0 , LDJT answers the query terms Hot0 and Pub0(alice, aaai_press).
Since LDJT does not have to answer queries for time step 3, it is only important

that information about the evidence, local models, and α2 is present at the out-cluster
of J3, to calculate α3. The message passing step on Jex3 ensures that all necessary state
descriptions to calculate α3 are present at the out-cluster. Thus, LDJT proceeds in time
by performing a forward pass.
For time step 4, LDJT first enters evidence and performs a message pass. The queries

LDJT answers for time step 4 are similar to the queries for time step 2. The only differ-
ence is that LDJT has hindsight queries for different time steps. Here, we omit answering
the filtering and prediction queries since the procedure from time step 0 and 2 remains the
same. To answer the two hindsight queries Hot2 and Pub2(alice, aaai_press), LDJT
again performs two backward passes. To answer the remaining two hindsight queries
Hot0 and Pub0(alice, aaai_press), LDJT only needs to perform two additional back-
ward passes, as it can start from Jex2 , which LDJT instantiated to answer the hindsight
queries Hot2 and Pub2(alice, aaai_press). Having answered all queries for time step 4,
LDJT again performs a forward pass. Now, the while loop check fails, as 5 = 5 and LDJT
leaves the while loop. In case one would add new evidence and queries for additional time
steps, LDJT would proceed to answer these queries.

In Example 3.5.1, we have illustrated how LDJT works as a whole and how it efficiently
can reuse computations for the temporal aspects. Before we also empirically evaluate
LDJT, we first take a look from a theoretical perspective at how LDJT performs in
principle.

55

Chapter 4

Theoretical Analysis

This chapter presents soundness, completeness, and complexity results of LDJT. In this
context, soundness means that the algorithm produces answers equivalent to answers of
any sound inference algorithm. Completeness investigates for what kind of classes of
models the lifted algorithm provides an answer without grounding. A class of models is
characterised in terms of logvars, e.g., one class consists of all possible models built with
at most 2-logvars in a parfactor (2-logvar models). First, we take a look at soundness
and then at completeness of LDJT. Finally, we investigate the complexity of LDJT and
its instantiation approaches.

4.1 Soundness

To show that LDJT is sound, i.e., all numbers are computed correctly, we show that all
parts of LDJT are sound. We begin with the soundness of FO jtree constructing and
end with the soundness of query answering.
Braun (2020) show that the FO jtree construction of LJT is sound. For LDJT, we

show that the constructed FO jtree structures obey the interface idea. Additionally, we
show that after extension, FO jtrees structures are still valid.

Theorem 4.1.1. LDJT constructs FO jtree structures with interface PRVs in a single
parcluster.

Proof. To ensure that interface PRVs I end up in a single parcluster, LDJT uses that LJT
constructs a valid FO jtree. In a valid FO jtree, it has to hold that for each parfactor, of
the underlying PM, its PRVs must be contained in at least one parcluster of the resulting
FO jtree. Thus, by having a parfactor with I as arguments in a PM, LJT constructs an
FO jtree with at least one parcluster that contains I. LDJT adds gI0 to G0 and constructs
an FO jtree J0. As the structure J0 is a valid FO jtree, at least one parcluster contains at
least all PRVs of gI0 . Further, LDJT adds gIt−1 and gIt to G→ and constructs an FO jtree
Jt. Hence, one parcluster contains all PRVs of gIt−1 and one parcluster contains all PRVs
of gIt . Therefore, LDJT constructs FO jtree structures that obey the interface idea.

For the FO jtree construction of LDJT, we additionally need to show that the FO jtree
structures are still valid after LDJT prevents unnecessary groundings.

57

Chapter 4 Theoretical Analysis

Theorem 4.1.2. The extension step of LDJT is sound, i.e., yields a valid FO jtree.

Proof. In the FO jtree structures before extension, the separator between FO jtree Jt−1

and Jt consists of exactly It−1. Thus, by taking the intersection of the PRVs in Jt−1

and Jt, we get the set of PRVs from It−1. While LDJT calculates αt−1, it only needs
to eliminate PRVs A not contained in the separator It−1. Therefore, none of A ∈ A is
contained in any parcluster of Jt. Hence, by adding A to the in-cluster of Jt, LDJT does
not violate any FO jtree properties. After extension, the resulting FO jtree structures still
fulfil all FO jtree properties. The running intersection property still holds, as extension
only adds PRVs, which previously were not included in the corresponding FO jtrees
structure. Additionally, semantically a PDM corresponds to the unrolled ground model.
Therefore, all added PRVs are included in the model and we do not change the assigned
parfactors. Thus, all FO jtree properties still hold. Further, as we do not change the
assigned parfactors, the full joint distribution of the model remains the same. The proof
also holds in the other direction, to prevent groundings during a backward pass

Using the FO jtree structures, we now show that the forward pass of LDJT is sound,
leading to sound filtering and prediction query answering.

Theorem 4.1.3. LDJT is sound regarding filtering and prediction queries, i.e., LDJT
produces the same results as LJT does for an unrolled PDM.

Proof. The interface PRVs m-separate time steps for a given PDM. Further, LDJT
ensures that the FO jtrees for the initial time step and the copy pattern have an in-
cluster and an out-cluster consisting of interface PRVs. The interface message αt is
equivalent to having the PDM unrolled for t time steps with evidence entered for each
time step and calculating a query over the interface. To perform filtering for t+1, LDJT
uses LJT to distribute the information contained in αt, which accounts for all evidence
and model behaviour including time step t, and the entered evidence for time step t+1 in
Jt+1 during the inbound and outbound phase of message passing. Hence, all parclusters
of Jt+1 receive information accounting for all evidence until time step t + 1. Therefore,
LDJT can use Jt+1 to perform filtering for t + 1 and prediction can be reformulated as
filtering without new evidence added. As each αt message is equivalent to calculating
a query over the interface PRVs and LDJT performs sound operations of LJT within a
time step, the forward pass of LDJT is sound.

Finally, we show that also the backward pass of LDJT is sound.

Theorem 4.1.4. LDJT is sound regarding hindsight queries, i.e., LDJT produces the
same results as LJT does for an unrolled PDM.

Proof. LDJT enters evidence for time step t into FO jtree Jt. Additionally, the αt−1

message describes the influences of all evidence and the model behaviour up until t− 1.

58

4.2 Completeness

Thus, each FO jtree contains evidence up to the time step the FO jtree is instantiated
for. During a backward pass, LDJT distributes state descriptions from Jt backwards.
Therefore, LDJT performs an inter FO jtrees backward message pass over the interface
separator. The βt message is correct, since all necessary state descriptions are present
and accounted for while calculating the βt message. The βt message, which LDJT adds
to Jt−1 as well as the αt−1 message, are then accounted for during the message pass inside
Jt−1. Following this approach, every FO jtree included in the backward pass contains all
information, as the α message encodes all past information and the β message encodes
all information from the future. Thus, it suffices to apply the backward pass until LDJT
reaches the desired time step and does not need to apply the backward pass until t = 0.
Further, LDJT constructs valid and sound FO jtree structures. The FO jtree struc-

tures can be unrolled, instead of unrolling the underlying PDM. Providing LJT with the
sound unrolled FO jtree, LJT would compute the very same α and β messages, as well
as all other messages. Hence, LJT produces the very same results as LDJT. Thus, as
LJT is sound, the calculations of LDJT are also sound.

Having shown that LDJT is sound, we now investigate for which models LDJT is
complete that is it answers queries without grounding.

4.2 Completeness

In the following, we show completeness results for LDJT. Taghipour et al. (2013d) show
that LVE with generalised counting is complete for 2-logvar models and Braun (2020)
show that LJT is complete for 2-logvar models. The same completeness results also hold
for other exact static lifted inference algorithms (Van den Broeck, 2011). A 2-logvar
model has at most two logvars in each parfactor. In general, with completeness, one can
classify the models for which a probabilistic inference algorithm runs in polynomial time
w.r.t. the domain size.

Definition 4.2.1 (2-logvar models). LetM2lv be the model class of 2-logvar models.

Theorem 4.2.1. LVE and LJT are complete for PDMs that are inM2lv .

Proof. LVE and LJT are complete forM2lv and if a PDM G is a fromM2lv , then the
unrolled version of G is also from M2lv and thus, LVE and LJT are complete for G.
Therefore, LVE and LJT answer queries in polynomial time w.r.t. the domain size by
computing a lifted solution.

Theorem 4.2.2. LDJT is not complete for all models inM2lv.

Proof. Example 3.4.3 shows a model from M2lv and LDJT does not guarantee a lifted
solution for that model. Hence, LDJT is not complete for all models inM2lv.

59

Chapter 4 Theoretical Analysis

With the counterexample from Example 3.4.3, we have shown that LDJT is not com-
plete for all 2-logvar models. Similar counter examples can also be build with other
inter-slice parfactors. For example with the inter-slice parfactors

gP =∀j, x ∈ D(J)×D(X) : φP (DoRt(x), Pubt+1(x, j))|>

gD =∀j, x ∈ D(J)×D(X) : φD(Pubt(x, j), DoRt+1(x))|>,

we can construct a similar counterexample. The main problem here is that in the inter-
slice parfactors there is at least one PRV with two logvars for time slice t and at least
one PRV with two logvars for time slice t + 1. Such a pattern leads to the fact that we
cannot eliminate PRVs with fewer logvars without eliminating PRVs with two logvars
first.

By unrolling the corresponding model and using LJT, it builds a parcluster containing
the PRV Pubt(X, J) for all time steps. Most likely, the FO jtree consists of very few
parclusters, which basically results in performing LVE on the unrolled model. Further,
by clustering a PRV for all time steps in one parcluster, the model is not time-separated
anymore. We also could adjust the extension of LDJT to allow for such parclusters
and therefore, be also complete for 2-logvar models. However, with LDJT, we aim at
handling temporal aspects efficiently, which is not given anymore by performing LVE
on the unrolled model. Therefore, we trade in completeness to handle temporal aspects
efficiently. Later on, we also empirically analyse the trade off.

Theorem 4.2.3. LDJT is complete for models fromM2lv with inter-slice parfactors that
do not have PRVs with two logvars for time slice t and t+ 1.

Proof. For the proof, we consider the three cases that remain, namely:

i) Only PRVs with at most one logvar in inter-slice parfactors,

ii) only PRVs with two logvars for time slice t in inter-slice parfactors, and

iii) only PRVs with two logvars for time slice t+ 1 in inter-slice parfactors,

Case i) means that an out-cluster can have PRVs with two logvars, but all of them
can be eliminated at the out-cluster. Therefore, there cannot be any algorithm-induced
groundings while calculating an α message as Eq. (2.3) holds. Additionally, the same
argumentation also holds for β messages during backward passes with an in-cluster.
Inside a time step, LJT ensures that it is complete for 2-logvar models. Thus, LDJT is
complete for case i).
Case ii) means that at least one PRV with two logvars is in the interface. Therefore,

out-clusters and in-clusters have at least one PRV p with two logvars. As trying to
eliminate the non-interface PRVs could lead to count-converting the two logvars of p,

60

4.2 Completeness

these count-conversions then could lead to groundings in an in-cluster. Therefore, all
descriptions about PRVs from an out-cluster need to be sent to an in-cluster. However,
between an in-cluster and an out-cluster, LDJT can eliminate p and afterwards the
remaining PRVs from time-slice t: In the inter-slice parfactors, p only occurs for time
slice t, but not for time-slice t+ 1. On the path from the in-cluster to the out-cluster, αt
is multiplied with the inter-slice parfactors. Multiplying αt with the inter-slice parfactors
ensures that LDJT can eliminate p. Further, p cannot occur for time slice t + 1 in the
inter-slice parfactors. Thus, LDJT can eliminate the remaining PRVs from time-slice t
with generalised counting. Hence, all PRVs that need to be eliminated for αt+1 can be
eliminated using lifted operations. The argumentation is valid for a forward pass as well
as for a backward pass. Hence, LDJT is complete for case ii).
Case iii) is similar to case i). To calculate temporal messages there are no algorithm-

induced groundings. The difference is that on the path from an in-cluster to an out-
cluster, LJT might need to prevent algorithm-induced groundings by fusion, which in
the worst case leads to merging in-cluster and out-cluster. However, when calculating a
temporal message, LDJT eliminates all two logvar PRVs, and then generalised counting
ensures that LDJT does not have to ground. Therefore, LDJT is complete for all three
cases, which, in turn, means that LDJT is complete for 2-logvar models with inter-slice
parfactors that do not have PRVs with two logvars for time slice t and t+ 1.

Taghipour (2013, Section 6.7) conjectures that one could easily generalise the counting
operation to also allow counting of multiple logvars. Thus, from a theoretical point of
view, by generalising the counting operation even further, one could solve our grounding
problem, making LDJT also complete for all 2-logvar models. However, Taghipour (2013,
Section 6.7) also mentions that additional research on this counting problem is needed.

Definition 4.2.2 (1-logvar PRV models). LetM1prv be the model class where each PRV
has at most 1 logvar.

Corollary 4.2.1. LDJT is complete forM1prv.

Proof. The proof directly follows from Thm. 4.2.3 and Taghipour (2013, Thm. 7.2).

In general, completeness results for relational inference algorithms assume liftable evi-
dence. In case evidence breaks symmetries, query answering might not run in polynomial
time but in exponential time w.r.t. domain sizes. Also, even if an algorithm is not com-
plete for a certain class, the algorithm might still be able compute a lifted solution for
some models of that class. For example, LDJT calculates a lifted solution for the model
in Example 3.4.1, even though LDJT is not complete for 3-logvar models.
Next, we have a look at the complexity of LDJT.

61

Chapter 4 Theoretical Analysis

4.3 Complexity

For the runtime complexity of LDJT, we first present the complexity of LJT based on
Braun (2020). Additionally, LDJT also has different space complexities, depending on
the instantiation approach, which in turn also has an influence on the runtime complexity.

4.3.1 LJT

The complexity of LJT depends on an FO jtree constructed from a corresponding PM G.
In the propositional case (Darwiche, 2009), the runtime complexity of a jtree corresponds
to the number of randvars in the cluster with the most randvars, also called ground width.
We define the lifted width of an FO jtree (Braun, 2020) and recapitulate the complexity
of each step of LJT as well as the overall complexity of LJT.

Definition 4.3.1. The lifted width wJ is a pair (wg, w#), where wg is the largest number
of PRVs in any parcluster of J and w# is the largest number of CRVs in any parcluster
of J .

Further, n is the largest domain size among lv(G), n# is the largest domain size of the
counted logvars, r is the largest range size in a G, r# is the largest range size among the
PRVs in the CRVs, and nJ being the number of nodes in J . The largest possible factor
in J is given by rwg · nw#·r#

.
Let us now go through the steps of LJT. The steps that make up the overall com-

plexity of LJT are FO jtree construction, evidence entering, message passing, and query
answering. The effort of FO jtree construction is negligible compared to the other run-
time complexities, as it only depends on an intermediate representation to construct the
FO jtree as well as wg and w#, but not the ranges.
Evidence entering consists of absorbing evidence at each applicable node.

Lemma 4.3.1. The complexity of absorbing an evidence parfactor is

O(nJ · log2(n) · rwg · nw#·r#
). (4.1)

Passing messages consists of calculating messages with LVE.

Lemma 4.3.2. The complexity of passing messages is

O(nJ · log2(n) · rwg · nw#·r#
). (4.2)

The last step is query answering, which consists of finding a parcluster and answering
a query on an assembled submodel.

Lemma 4.3.3. The complexity of answering a set of ground queries {Qk}mk=1 is

O(m · log2(n) · rwg · nw#·r#
). (4.3)

62

4.3 Complexity

We now combine the stepwise complexities to present the complexity of LJT by adding
up the complexities in Eqs. (4.1) to (4.3).

Theorem 4.3.1. The complexity of LJT is

O((nJ +m) · log2(n) · rwg · nw#·r#
). (4.4)

Knowing the complexity of LJT, we now investigate the complexity of LDJT.

4.3.2 LDJT

For LDJT, the complexity of the FO jtree construction is also negligible. Compared
to LJT, the complexity of the FO jtree construction of LDJT only differs in constant
factors. The construction of the FO jtree structures J0 and Jt is actually the very same
as for LJT. The difference is that two FO jtrees are constructed. For extension, LDJT
additionally performs checks on two messages and twice the fusion step of LJT. The
additional checks are constant factors and therefore, do not change the complexity of the
FO jtree construction.
For the complexity analysis of LDJT, we assume that the FO jtree structures of LDJT

are minimal and do not induce groundings. Further, we slightly change the definition
from Definition 4.3.1, as we now consider a PDM G and two FO jtrees, J0 and Jt.

Definition 4.3.2. Let wJ0 = (w0
g , w

0
#) be the lifted width of J0 and let wJt = (wtg, w

t
#)

be the lifted width of Jt. The lifted width wJ of a pair (J0, Jt) is a pair (wg, w#), where
wg = max(w0

g , w
t
g) and w# = max(w0

#, w
t
#).

Further, T is the maximum number of time steps, n is the largest domain size among
lv(G), n# is the largest domain size of the counted logvars, r is the largest range size in G,
r# is the largest range size among the PRVs in the CRVs, and nJ being the max(nj0 , njt).
The largest possible factor is given by rwg ·nw#·r#

. Hence, we always look at the highest
number that occurs either in J0 or Jt.
Evidence entering consists of absorbing evidence at each applicable node.

Lemma 4.3.4. The complexity of absorbing an evidence parfactor is

O(T · nJ · log2(n) · rwg · nw#·r#
). (4.5)

The difference to LJT and Eq. (4.1) is that LDJT does not only enter evidence in each
parcluster of a FO jtree, but enters evidence in each instantiated FO jtree. Overall, there
is evidence for up to T time steps. Therefore, LDJT enters evidence in T FO jtrees.
Passing messages consists of calculating messages with LJT for every time step. Here,

we consider the worst case, i.e., for each time step querying the first and last time step,
the average case, i.e., hindsight and prediction queries with a constant offset, and the
best case, i.e., only filtering queries.

63

Chapter 4 Theoretical Analysis

Lemma 4.3.5. The worst case complexity of passing messages is

O(T 2 · nJ · log2(n) · rwg · nw#·r#
). (4.6)

The average case complexity of passing messages is

O(T · nJ · log2(n) · rwg · nw#·r#
). (4.7)

The best case complexity of passing messages is

O(T · nJ · log2(n) · rwg · nw#·r#
). (4.8)

Equation (4.2) shows the complexity of one complete message pass in an FO jtree.
The message pass consists of calculating 2 · (nJ − 1) messages and each message has a
complexity of O(log2 n · rwg · nw#·r#

). One difference in LDJT compared to LJT is that
LDJT needs to calculate 2 ·(nJ−1)+2 messages for the current FO jtree, because LDJT
calculates an α and a β message in addition to the normal message pass. For theFO jtree
used to answer prediction or hindsight queries, LDJT calculates 2 · (nJ −1)+1 messages,
as LDJT calculates either an α or β message respectively. Additionally, LDJT computes
at least one message pass for each time step and at most a message pass for all time
steps for each time step. Therefore, we investigate the worst, average, and best case
complexity of message passing in LDJT.
The worst case for LDJT is that for each time step there is a query for the first and

the last time step. Therefore, for each of the T time steps, LDJT would need to perform
a message pass in all T FO jtrees, leading to T · T message passes. Hence, LDJT would
perform a message pass for the current time step t, a backward pass from t to the first
time step, which includes a message pass on each FO jtree on the path, and a forward
pass from t to the last time step, which include a message pass on each FO jtree on
the path. These message passes are then executed for each time step. Thus, LDJT
performs overall T ·T message passes. The complexity of Eq. (4.6) is also the complexity
of LJT given an unrolled FO jtree constructed by LDJT and evidence for each time step.
However, the complexity of message passing for LDJT is normally much lower, as one is
hardly ever interested in always querying the first and the last time step.
The best case for LDJT is that it only needs to answer filtering queries. That it to say

it needs to calculate 2 · (nJ − 1) + 1 messages for each FO jtree, as LDJT calculates an
α for each FO jtree. Further, LDJT needs to perform exactly one message pass on each
instantiated FO jtree. Therefore, LDJT needs to pass messages on T FO jtrees.
The average case for LDJT is that for each time step LDJT answers a constant number

of hindsight and prediction queries. Assume for each time step, LDJT has a query for
t− 10 and t+ 15. Then, LDJT needs to perform 25 message passes to answer all queries
for one time step. Therefore, LDJT passes messages 25 · T times. In general, prediction
and hindsight queries are often close to the current time step and T can be huge.

64

4.3 Complexity

Under the presence of prediction and hindsight queries, LDJT does not always need to
calculate 2 ·(nJ−1) messages for each FO jtree. In case LDJT has no query for time step
t, but only needs Jt to calculate an α or β message, then calculating (nJ − 1) messages
suffice for Jt. By selecting the out-cluster for a prediction queries and respectively the
in-cluster for a hindsight queries as root, then all required messages are present at the
out-cluster or the in-cluster to calculate an α or β message. Hence, an efficient query
answering plan can reduce the complexity of message passing with constant factors.
The last step is query answering, which consists of finding a parcluster and answering

a query on an assembled submodel. For query answering, we combine all queries in one
set instead of having a set of queries for each time step.

Lemma 4.3.6. The complexity of answering a set of queries {Qk}mk=1 is

O(m · log2(n) · rwg · nw#·r#
). (4.9)

The complexity for query answering in LDJT does not differ from the complexity of
LJT. Nonetheless, the number of queries m for LDJT is often higher than the number
of queries m for LJT.
We now combine the stepwise complexities to arrive at the complexity of LDJT by

adding up the complexities in Eqs. (4.5) to (4.9).

Theorem 4.3.2. The worst case complexity of LDJT is

O(((T 2 + T) · nJ +m) · log2(n) · rwg · nw#·r#
). (4.10)

The average case complexity of LDJT is

O((T · nJ +m) · log2(n) · rwg · nw#·r#
). (4.11)

The best case complexity of LDJT is

O((T · nJ +m) · log2(n) · rwg · nw#·r#
). (4.12)

4.3.3 Comparison to the Ground Interface Algorithm

In this section, we show that lifting is crucial when it comes to temporal models, where
multiple instances influence the next time step. Therefore, we show that the complexity
of the ground interface algorithm is exponential in the number of instances influencing
the next time step, while the runtime complexity of LDJT is independent of the domain
sizes (except for the log2(n) part). The implication of this result is that even for small
domain sizes lifting is necessary, otherwise, the algorithm becomes infeasible.
For LJT compared to a ground junction tree algorithm, the speed up is twofold. The

first speed up is that LJT has fewer nodes in an FO jtree than the corresponding ground
jtree has, i.e., ngr(J) >> nJ . The other speed up originates from the counted part,

65

Chapter 4 Theoretical Analysis

n
w#·r#
. Under the presence of counting, the lifted width is smaller than the ground

width. Further, Taghipour et al. (2013a) shows that in models that do not require count-
conversions, the lifted width is equal to the ground width. Therefore, the factor rwg

of the complexity of LJT is the same as the ground width of a junction tree algorithm
without count-conversions.
From a complexity perspective, LDJT has another advantage over the interface al-

gorithm. The wg part of lifted width wJ from LDJT is much lower compared to the
ground tree width of the interface algorithm. The interface algorithm ensures that all
randvars that have successors in the next time step are grouped in one cluster of an jtree.
Therefore, the corresponding jtree has at least |gr(It)| randvars in a cluster. Thus, the
ground width wg of the interface algorithm depends on the domain sizes of the interface
PRVs. The lifted width wJ with its part wg of LDJT is independent of the domain sizes
of the interface PRVs. Hence, the lifted width, even without count-conversions, is much
smaller compared to the ground width. Therefore, LDJT can answer queries for large
domain sizes, which can be infeasible for the interface algorithm.
Overall, we can show that LDJT handles temporal models also with large domain sizes.

Thus, lifting greatly matters and already for small domain sizes LDJT with all its parts,
including ensuring preconditions of lifting, is necessary to compute solutions for models.
For large domain sizes, the ground interface algorithm becomes infeasible, while LDJT
can obtain a solution with a low runtime complexity.

4.3.4 Space and Time Requirements of Different Query Answering Plan

Now, we look at the space and time requirements of different query answering plans.

Space Requirements The local models of parclusters have the biggest impact on the
memory consumption of an FO jtree. They encode all necessary state descriptions to
answer queries with a parcluster. Now, we investigate the number of rows stored as
our space requirement. The space requirement of LDJT is determined by the maximum
number of rows for all parfactors and the maximum number of rows for all messages,
including α and β messages. In the best case, the number of rows stored in an FO jtree
is R = rl ·m + rk−1 · (2 · nJ), where r is the largest possible range, l is the maximum
number of PRVs in a parfactor, m is the number of parfactors, k is the maximum number
of PRVs in a parcluster, nJ is the number of parclusters. Roughly speaking, rl ·m denotes
the size of a model and dot(2 ·nJ) the size of messages. We look at the best case as we do
not include evidence and assume that LDJT calculates the messages solely using lifted
summing out, which means that no count-conversions or groundings occur.
Each parfactor has at most rl rows and LDJT assigns exactly m parfactors in the local

models. Thus, rl · m provides the maximum number of rows for the local model. As
the PRVs in different parclusters cannot be completely overlapping, a message contains
at most k − 1 PRVs. During a complete intra FO jtree message pass, LDJT calculates

66

4.3 Complexity

2 ·(nJ−1) messages. Additionally, LDJT calculates 2 messages (α and β) during an inter
FO jtree message pass. Thus, each message has at most rk−1 rows, and 2 · nJ messages
are calculated.
If LDJT preserves all FO jtrees instantiated, the space requirement is T · R, where T

is the maximum number of time steps. In case LDJT instantiates FO jtrees on-demand,
the space requirement is R + (T − 1) · a, where a is the size of an α message, which is
ri
i, where i is the number of PRVs in the interface and ri is the maximum number of

possible values of a PRV in I. Thus, the space requirements for instantiating FO jtrees
on-demand is composed of the rows for the current FO jtree and all previous α messages.
Now, we are interested in the difference in terms of space requirements of the two

approaches. R−a provides the space requirement difference for one time step, but LDJT
needs to store R − a many rows for T − 1 time steps, resulting in a space requirements
difference of (T−1)·(R−a) rows. R−a is rl ·m+rk−1·(2·nJ−1) as we subtract exactly one
message. Thus, the space requirements for instantiating FO jtrees on-demand is much
lower than preserving all instantiated FO jtrees, as we only need to store one message,
instead of all messages and parfactors, for each time step. Thus, due to the much lower
space consumption of instantiating FO jtrees, LDJT can in principle answer hindsight
queries with huge lags.

Time Requirements To answer queries, LDJT needs to enter evidence again and per-
form a complete message pass in case LDJT instantiates an FO jtree. Therefore, LDJT
would not only perform T times evidence entering, but if we always have hindsight queries
with a lag of 10, then LDJT would need to perform 10 · T times the evidence entering.
If LDJT answers queries on a preserved FO jtree, LDJT does not enter evidence again,
resulting in T times the evidence entering, but LDJT only needs to account for the new
β message. Therefore, an out-bound pass with the out-cluster as root suffices, resulting
in nJ − 1 messages, to be able to answer queries. Additionally, LDJT can also only
calculate a new β message if no queries are asked for the given time step. To calculate a
β message using a preserved FO jtree, LDJT only needs to propagate messages from the
out-cluster to the in-cluster. To calculate a β message with instantiating an FO jtree on
demand, LDJT performs an inbound pass with the in-cluster as root.
The space gain comes at a cost of redoing calculations. Further, to answer hindsight

queries, LDJT has to ensure that the necessary state descriptions are available at the
corresponding parcluster for each time step inside the lag.
Preserving a limited number of FO jtrees is advantageous for fast query answering.

However, as preserving FO jtrees requires significantly more memory, LDJT cannot pre-
serve all FO jtrees. To allow hindsight queries with a huge lag, LDJT has to instantiate
FO jtrees on demand and thereby redo computations.

67

Chapter 5

Evaluation

This chapter empirically investigates LDJT to support claims of the theoretical anal-
ysis. In the evaluation, we compare LDJT to DJT, LJT with an unrolled FO jtree,
LJT with an unrolled model, and UUMLN (Geier and Biundo, 2011). DJT is the inter-
face algorithm, as explained in Section 2.2, and UUMLN is an approach for dynamic
Markov logic network (DMLN) and therefore temporal probabilistic relational mod-
els (available here https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.
090/Software/slice-dmlns-V1.0.zip). Further, Papai et al. (2012) propose another
approach for DMLN, for which we could not find an implementation. But, Papai et al.
claim that their runtimes are equal to UUMLN. However, to the best of our knowledge,
UUMLN always answers queries for all ground instances and does not employ lifting
techniques for their calculations. For the evaluation, we use variations of Gex to support
claims of the theoretical analysis. There are no default data sets for temporal probabilis-
tic relational models. The existing data sets for probabilistic relational models include
less PRVs than our example and only result in one parcluster. Thus, to efficiently eval-
uate LDJT, we use variations of Gex. We run all experiments on a virtual machine with
16 GB of RAM.
In the theoretical analysis, we make at least the following claims:

• LDJT runs in at most polynomial time w.r.t. domain sizes given a lifted computa-
tion is achieved.

• In the best and average case, LDJT runs in linear time w.r.t. the maximum number
of time steps.

• In the worst case, LDJT runs in quadratic time w.r.t. the maximum number of
time steps, which is the same as unrolling the FO jtrees and using LJT.

• It is not always feasible to keep all FO jtrees in memory.

Based on these claims, in the empirical evaluation we run the following experiments:

(i) Filtering Queries:

• Does LDJT run in linear time w.r.t. the maximum number of time steps?

69

https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Software/slice-dmlns-V1.0.zip
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.090/Software/slice-dmlns-V1.0.zip

Chapter 5 Evaluation

• How does the domain size influence runtimes?

• How does the number of queries influence runtimes?

• How does LDJT compare to approximate approaches such as UUMLN (Geier
and Biundo, 2011) from a run time perspective?

(ii) Prediction and Hindsight Queries:

• Does LDJT run in linear time w.r.t. the maximum number of time steps?

• How do prediction and hindsight queries influence runtimes?

• Are the runtimes of LDJT, with always a prediction query to the last time
step and a hindsight query to the first time step, bounded by unrolling an
FO jtree and using LJT?

• Is it feasible to keep all FO jtrees in memory?

• Can LDJT answer hindsight queries with huge lags?

(iii) Count Conversions:

• Does LDJT run in linear time w.r.t. the maximum number of time steps?

• How does the domain size influence runtimes?

(iv) Preventing Groundings:

• Does the effort to prevent groundings pay off?

• Is it sometimes better to unroll the model and obtain a lifted solution com-
pared to handling temporal aspects efficiently and suffer groundings?

(v) Evidence:

• How does the domain size influence runtimes?

• How does the number of symmetry groups influence runtimes?

5.1 Filtering Queries

For filtering queries, we use a variation of Gex, with the main difference that now also
the PRV Hot is parameterised with X to have the biggest impact on the model while
increasing the domain size of X. By only having filtering queries, we have the best case
for LDJT from a complexity perspective w.r.t. message passes. To investigate whether
LDJT runs in linear time w.r.t. the maximum number of time steps and how domain
sizes influence runtimes, we evaluate LDJT, DJT, LJT with an unrolled FO jtree, and
LJT with an unrolled model by asking filtering queries on representatives of each PRV.
Further, to compare these approaches to UUMLN, we also ask queries for each instance.

70

5.1 Filtering Queries

0 20 40 60 80 100

10−1

100

101

102

103

LDJT
DJT
LJT FOJT
LJT Model

(a) Runtimes for n = 10
0 20 40 60 80 100

10−1

100

101

102

103

LDJT
LJT FOJT
LJT Model

(b) Runtimes for n = 100

0 20 40 60 80 100

10−1

100

101

102

103

LDJT
LJT FOJT
LJT Model

(c) Runtimes for n = 1000
0 20 40 60 80 100

10−1

100

101

102

103 LDJT
n = 10
n = 100
n = 1000

(d) Runtimes for LDJT

Figure 5.1: Filtering queries for one representative and all PRVs, y-axis: runtimes [sec-
onds, log], x-axis: time steps

Querying Representatives To investigate whether LDJT runs in linear time w.r.t. the
maximum number of time steps, we compare runtimes of LDJT for different maximum
number of time steps T . To investigate the influence of domain sizes, we evaluate LDJT
by fixing the domain sizes for all but one logvar and increase the domain size for this
logvar. For this part of the evaluation, we vary T between 10 and 100, always increasing it
by 10, i.e., we ask filtering queries for each PRV and time step for T = 10, afterwards for
T = 20, and so on. Further, we vary the domain size for the logvar X, i.e., |D(X)| = 10,
|D(X)| = 100, and |D(X)| = 1000, while leaving |D(P)| = 3 unchanged. For the runtimes
of LJT with an unrolled FO jtree and LJT with an unrolled model, we only perform one
message pass instead of T message passes, which would correspond to having the model
and getting queries and evidence for one time step after the other. One message pass for
LJT represents the best case possible for LJT. But With one message pass, LJT also
answers slightly different queries, i.e., only filtering queries for a single time step and
the remaining time steps hindsight or prediction queries. Figures 5.1a to 5.1d show the
results of the evaluation.
Figure 5.1a shows the runtimes of LDJT, DJT, LJT with an unrolled FO jtree, and

LJT with an unrolled model for |D(X)| = 10. By comparing LDJT and DJT, we can
see that being able to calculate a lifted solution is much faster. The speed up of more
than an order of magnitude can be explained by the fact that DJT needs to perform

71

Chapter 5 Evaluation

each operation for each ground instance and, as shown in Section 4.3.3, the interface is
also dependent on the domain size. The runtimes of LJT with an unrolled model are not
linear, but at least polynomial in T . Here, LJT builds an FO jtree based on the unrolled
model and the constructed FO jtree is not optimised for temporal models. In this case, by
increasing T , also the lifted tree width wJ increases as well as the number of parclusters
nJ as the number of PRVs increases with T . Hence, the runtimes of LJT with an unrolled
model are not linear w.r.t. T . Therefore, by not handling temporal aspects, LJT with an
unrolled model is much slower compared to LDJT. LJT with an unrolled FO jtree is only
slightly slower compared to LDJT. Here, LJT unrolls the FO jtree structures of LDJT.
Thus, LJT uses an FO jtree optimised for the temporal case. However, LJT with an
unrolled FO jtree is still slower than LDJT. LJT with an unrolled FO jtree performs a
complete message pass, i.e., LJT sends messages from the first time step to the last time
step and back again. Even though LDJT also performs a complete message pass inside
one FO jtree, LDJT only sends messages from the first time step to the last time step
and therefore computes fewer messages. The difference is in calculating β messages. The
speedup mostly originates from calculating fewer messages, as LDJT and LJT with an
unrolled FO jtree can use the very same parcluster to answer the queries. Another speed
up of LDJT is that LJT has a bigger search space to find the corresponding parcluster.
Nonetheless, with only one message pass LJT only answers filtering queries for a single
time step and the queries for the remaining time steps are either hindsight or prediction
queries. To also answer all queries as filtering query, LJT would need to perform T
message passes, which would significantly increase runtimes. Nonetheless, LDJT already
outperforms the best case for LJT making the need for temporal approaches apparent.
Figure 5.1b depicts the runtimes of LDJT, LJT with an unrolled FO jtree, LJT with

an unrolled model for |D(X)| = 100 and the runtime of the approaches for |D(X)| = 1000
are shown in Figure 5.1c. Here, we can see the same behaviour as for |D(X)| = 10. The
main differences are that our implementation DJT could not handle the higher domain
sizes and that the runtimes of the other approaches are slightly elevated.
So far, the questions whether LDJT runs in linear time w.r.t. the maximum number of

time steps and how the domain size influences runtimes are still open. Figure 5.1d shows

0 20 40 60 80 100

10−1

100

101

102

103

DJT
n = 10
n = 11
n = 12
n = 13
n = 14

Figure 5.2: Runtimes for DJT, y-axis: runtimes [seconds, log], x-axis: time steps

72

5.1 Filtering Queries

the runtimes of LDJT, for |D(X)| = 10, |D(X)| = 100, and |D(X)| = 1000. We can see
that LDJT runs in linear time w.r.t. T for filtering queries independent of the domain
sizes. Further, we can see that the domain sizes have a small impact on the runtimes. For
example from |D(X)| = 10 to |D(X)| = 100, LDJT needs about twice as long. Hence, by
having 10 times as many instances for X the runtimes only multiply by 2. Comparing
|D(X)| = 10 to |D(X)| = 1000, the runtimes take about an order of magnitude longer.
This can be explained with the log2 n in the complexity of LDJT as with an increasing
domain size the exponent for indistinguishable instances also increases.
Figure 5.2 shows the runtimes of DJT for increasing domain sizes. Here, the runtimes

drastically increase for slight increments, making the need for a lifted solution apparent.

Querying Each Instance Let us now compare LDJT to UUMLN (Geier and Biundo,
2011). We use the very same setting as for querying representatives. The difference is that
we now query gr(rv(Gex)) for each time step as UUMLN does not support asking specific
queries, but always answers queries for each grounding. With a lifted algorithm, such
as LJT and LDJT, querying a representative suffices, because all other instances of that
group behave exactly the same and thus, have identical marginal distribution. However,
by increasing the number of instances in the domain of the logvar X, we now also increase
the number of queries. Hence, we can also show the influence of the number of queries
on the runtimes. Overall, UUMLN is an approach for DMLN, which to the best of our
knowledge does not employ any lifting techniques. For UUMLN, Geier and Biundo use
the expanding frontier belief propagation (Nath and Domingos, 2010b), which performs
adaptive inference for changing evidence. Nath and Domingos (2010a) also propose a
similar solution using lifting, but that is to the best of our knowledge not incorporated
in UUMLN. Papai et al. (2012) compare their approximate approach against UUMLN
showing that they reach the same runtimes but have a different level of accuracy on their
test set. As LDJT is an exact algorithm, we are interested how fast LDJT is compared to
UUMLN. Thus, is a lifted exact algorithm faster than an approximate ground algorithm?
The results of the evaluation are shown in Figs. 5.3a to 5.3d, with a limit of 1 day for
the runtimes.
In addition to LDJT, DJT, LJT with an unrolled FO jtree, and LJT with an unrolled

model, we also use UUMLN with Gibbs sampling and UUMLN with time sliced Gibbs
sampling for this evaluation. For |D(X)| = 10, the runtimes are depicted in Fig. 5.3a.
For LDJT, DJT, LJT with an unrolled FO jtree, and LJT with an unrolled model, we can
see a similar behaviour as shown in Fig. 5.1a. The difference is that they all take slightly
longer as they need to answer 60 instead of 4 queries for each time step. Additionally,
we can see that LDJT is up to two magnitudes faster than UUMLN. Thus, LDJT lifts
indistinguishable instances makes it feasible to calculate exact solutions instead of having
to approximate with an unknown and possbile unbounded error. UUMLN with the time
slice option seems to be independent of the maximum number of time steps. To the

73

Chapter 5 Evaluation

●

●
●

● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

10−1

100

101

102

103

104

105

LDJT
DJT
LJT FOJT
LJT Model

●

●

UUMLN Slice
UUMLN

(a) Runtimes for n = 10

●

●
●

●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

10−1

100

101

102

103

104

105

LDJT
LJT FOJT
LJT Model

●

●

UUMLN Slice
UUMLN

(b) Runtimes for n = 100

●

0 20 40 60 80 100

10−1

100

101

102

103

104

105

LDJT
LJT FOJT
LJT Model

● UUMLN

(c) Runtimes for n = 1000
0 20 40 60 80 100

10−1

100

101

102

103

104

105 LDJT
n = 10
n = 100
n = 1000

(d) Runtimes for LDJT

Figure 5.3: Filtering queries for all instances and all PRVs, y-axis: runtimes [seconds,
log], x-axis: time steps

best of our understanding, they adapt to new evidence. Hence, the approach is time
independent as we have not included evidence in this evaluation.
Figure 5.3b shows the runtimes for |D(X)| = 100 and the runtimes for |D(X)| = 1000

are depicted in Fig. 5.3c. Again, DJT could not perform inference on these large domains.
We can see similar trends between Fig. 5.3a and Fig. 5.1a, i.e., the runtimes are only
elevated as they need to answer more queries. For |D(X)| = 1000, UUMLN could only
produce a result for 10 time steps and UUMLN with the slice option could not produce
any results at all within a day of calculations. Further, LJT with an unrolled model, also
could only produce results for up to 40 time steps within a day of calculations.
The runtimes of LDJT for different domain sizes are depicted in Fig. 5.3d. We can

see that increasing the domain sizes leads to an increase of about an order of magnitude
for the runtimes. The runtimes increase as much because we did not only increase the
domain sizes by a factor of 10, but also have 10 times as many queries for each time step.
There is a linear dependency of the number of queries and the runtimes as the number
of queries becomes the dominate factor in the runtime complexity.
Overall, to answer the questions for filtering queries, we can say that:

• LDJT runs in linear time w.r.t. the maximum number of time steps for filtering
queries.

74

5.2 Prediction and Hindsight Queries

• With a lifted solution and without any count-conversions, increasing domain sizes
only increases runtimes by a logarithmic factor.

• For each query, LDJT needs to eliminate the non-query terms from a corresponding
parcluster. Therefore, increasing the number of queries also increases the runtimes
by a linear factor.

• LDJT can find exact solutions to queries orders of magnitudes faster compared to
UUMLN calculating only approximate solutions.

5.2 Prediction and Hindsight Queries

Next, we evaluate prediction and hindsight queries instead of only filtering queries. For
this part of the evaluation, we use the same model as for evaluating filtering queries.
We begin by including prediction queries. Afterwards, we include hindsight queries and
evaluate whether there is a difference between performing 10 times prediction or hindsight
given a lifted solution without count-conversions. Further, we empirically investigate for
how many time steps LDJT can keep FO jtrees in memory. Finally, we combine prediction
and hindsight queries.

Prediction Queries Similar to filtering queries for one representative, we now have one
filtering and one prediction query, 10 time steps into the future, for one representative
of each PRV and time step. The results are shown in Figs. 5.4a to 5.4d
Figures 5.4a to 5.4c show the runtimes of the approaches, except for UUMLN, for
|D(X)| = 10, |D(X)| = 100, and |D(X)| = 1000. The runtimes of LDJT alone for the
three domain sizes are depicted in Fig. 5.4d. In these figures, we can see highly similar
curves as we have seen for filtering queries for one representative. By comparing Figs. 5.4a
to 5.4c to Figs. 5.1a to 5.1c and Fig. 5.4d to Fig. 5.1d, we can see that the curves are
slightly elevated. The elevation can be explained as follows: For each time step, LJT
needs to answer 4 additional prediction queries. LJT still only performs a single message
pass. Again, we look at the best case for LJT, but answer slightly different queries,
just the number of queries for each time step is identical. LDJT and DJT perform 10
additional message passes on an FO jtree for each time step to be able to answer the
prediction queries. Hence, LDJT and DJT perform 10 additional message passes and
4 additional queries for each time step compared to only answering filtering queries.
Overall, LDJT also answers the queries in linear time w.r.t. the maximum number of
time steps under the presence of prediction queries with a constant offset. Thus, the
runtimes of LDJT for each time step only increase by a constant factor.

Hindsight Queries Next, we investigate wether there is a difference between hindsight
and prediction queries given a lifted solution without count-conversions. Similar to the

75

Chapter 5 Evaluation

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
DJT
LJT FOJT
LJT Model

(a) n = 10
0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(b) n = 100

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(c) n = 1000
0 20 40 60 80 100

10−1

100

101

102

103

104 LDJT
n = 10
n = 100
n = 1000

(d) Runtimes for LDJT

Figure 5.4: Prediction queries for different domain sizes, y-axis: runtimes [seconds, log],
x-axis: time steps

prediction queries, we ask one filtering and one hindsight query with 10 time steps into
the past for each PRV and time step as well as on-demand instantiation for hindsight
queries. The results are shown in Figs. 5.5a to 5.5d.
Figures 5.5a to 5.5c show the runtimes for |D(X)| = 10, |D(X)| = 100, and |D(X)| =

1000. The runtimes of LDJT alone for the three domain sizes are depicted in Fig. 5.5d.
Comparing Figs. 5.5a to 5.5c to Figs. 5.4a to 5.4c and Fig. 5.5d to Fig. 5.4d, we can
see that the curves are highly similar. For each domain size, answering hindsight or
prediction queries with the same off set yields similar runtimes. Thus, we can say that
answering hindsight or prediction queries given a lifted solution without count-conversions
takes about the same time in our evaluation. In both cases, LDJT needs to perform 10
additional message passed and answer 4 additional queries for each time step. The only
difference is whether an α or β message needs to be computed, i.e, only the parcluster
which is used to calculate a message over the same PRVs changes.
Now, we have a look at how many FO jtrees LDJT can keep in memory as keeping

FO jtrees in memory is mostly crucial for hindsight queries. Therefore, we increase T up
to 10000. Figures 5.6a to 5.6c show the runtimes for |D(X)| = 10, |D(X)| = 100, and
|D(X)| = 1000. The runtimes of LDJT alone for the three domain sizes are depicted
in Fig. 5.6d. In Figs. 5.6a to 5.6c, we can see that LJT could only unroll the FO jtrees

76

5.2 Prediction and Hindsight Queries

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
DJT
LJT FOJT
LJT Model

(a) n = 10
0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(b) n = 100

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(c) n = 1000
0 20 40 60 80 100

10−1

100

101

102

103

104 LDJT
n = 10
n = 100
n = 1000

(d) Runtimes for LDJT

Figure 5.5: Hindsight queries for different domain sizes, y-axis: runtimes [seconds, log],
x-axis: time steps

for about 7000 time steps. Thus, with bounded memory, LDJT cannot always preserve
all FO jtrees in memory. Hence, being able to instantiate FO jtrees from α message
and evidence again is crucial, because α message and evidence require far less memory
compared to an FO jtree. Therefore, LDJT can answer queries with huge lags only
because LDJT is able to instantiate FO jtrees on demand while answering hindsight
queries. Additionally, in Fig. 5.6d, we can see that the behaviour of LDJT remains the
same also with large T ’s.

Combination of Prediction and Hindsight Queries Knowing how prediction and hind-
sight queries influence the runtime of LDJT, we now combine hindsight, filtering, pre-
diction queries for each time step. Here, we empirical evaluate two aspects, namely a
combination of hindsight, filtering, prediction queries with a fixed offset as well as query-
ing always the first and the last time step for each time step. The results for a fixed
offset, here 10 time steps into the past and 10 time steps into the future, are shown in
Figs. 5.7a to 5.7d. The results for always querying the first and last time step are shown
in Figs. 5.8a to 5.8f.
Figures 5.7a to 5.7c show the runtimes for |D(X)| = 10, |D(X)| = 100, and |D(X)| =

1000. The runtimes of LDJT alone for the three domain sizes are depicted in Fig. 5.7d.

77

Chapter 5 Evaluation

0 2000 4000 6000 8000 10000

10−1

100

101

102

103

104

LDJT
LJT FOJT

(a) n = 10
0 2000 4000 6000 8000 10000

10−1

100

101

102

103

104

LDJT
LJT FOJT

(b) n = 100

0 2000 4000 6000 8000 10000

10−1

100

101

102

103

104

LDJT
LJT FOJT

(c) n = 1000
0 2000 4000 6000 8000 10000

10−1

100

101

102

103

104

LDJT
n = 10
n = 100
n = 1000

(d) Runtimes for LDJT

Figure 5.6: Hindsight queries for different domain sizes and a large T , y-axis: runtimes
[seconds, log], x-axis: time steps

In these figures, we can see highly similar curves as we have seen for hindsight, filtering,
and prediction queries. By comparing Figs. 5.7a to 5.7c to either Figs. 5.4a to 5.4c or
Figs. 5.5a to 5.5c, and comparing Fig. 5.7d to either Fig. 5.4d or Fig. 5.5d, we can see
that the curves for hindsight and prediction queries are slightly elevated. Further, we can
see that the elevation is about the same as we have seen before from comparing Figs. 5.4a
to 5.4c or Figs. 5.5a to 5.5c to Figs. 5.1a to 5.1c. Thus, we see what is to be expected,
namely that also a combination of the query types only adds the additional workload of
the prediction and hindsight queries to the overall runtime.
Analogous to the elevated runtimes of prediction queries, we can explain the elevation

in this setting. LJT needs to answer 8 additional query, the hindsight and prediction
query, for each time step, but still only performs one message pass. LDJT and DJT
perform 20 additional message passes on an FO jtree for each time step to be able to
answer the hindsight and prediction queries. Thus, LDJT and DJT perform 20 additional
message passes and 8 additional queries for each time step compared to only answering
filtering queries. Here, we can also see that LDJT sometimes is slower compared to LJT
with an unrolled model, because LDJT performs more message passes to answer the
actual queries. Nonetheless, it is still impressive that LDJT requires roughly the same
time, while calculating roughly 20 times as many messages. Overall, LDJT answers the
queries in linear time w.r.t. the maximum number of time steps under the presence of

78

5.2 Prediction and Hindsight Queries

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
DJT
LJT FOJT
LJT Model

(a) n = 10
0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(b) n = 100

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(c) n = 1000
0 20 40 60 80 100

10−1

100

101

102

103

104 LDJT
n = 10
n = 100
n = 1000

(d) Runtimes for LDJT

Figure 5.7: Prediction and hindsight queries for different domain sizes, y-axis: runtimes
[seconds, log], x-axis: time steps

hindsight and prediction queries with a constant offset. Thus, the runtimes of LDJT for
each time step only increase by a constant factor for each time step due to answering
a combination of hindsight and prediction queries. Further, the runtime elevation is a
combination of the runtime elevation for hindsight and prediction queries.
Having empirically evaluated the best and average complexity case of LDJT, we still

need to evaluate the worst case for LDJT, namely always querying the first and last time
step from each time step. Figures 5.8a to 5.8f show the runtimes for the approaches
for |D(X)| = 10, |D(X)| = 100, and |D(X)| = 1000. In Figs. 5.8a, 5.8c and 5.8e LJT
performs one message pass and inFigs. 5.8b, 5.8d and 5.8f LJT performs a message pass
for each time step. As expected, Figs. 5.8a, 5.8c and 5.8e are even further elevated
compared to Figs. 5.7a to 5.7c. Further, now LJT with an unrolled FO jtree is always
faster compared to LDJT as LDJT computes roughly 100 times more messages. However,
to answer the very same queries, i.e., the same hindsight, filtering, and prediction queries,
LJT would have to perform a message pass for each time step. The corresponding
runtimes are depicted in Figs. 5.8b, 5.8d and 5.8f and as we can see then LDJT is always
the fastest approach again.
With LJT performing one message pass for each time step and therefore answering

the very same queries as LDJT and DJT, we can see that now LDJT is again always

79

Chapter 5 Evaluation

faster compared to LJT with an unrolled FO jtree. Even though from a complexity
perspective LDJT and LJT with an unrolled FO jtree are the same, LDJT actually
needs to compute fewer messages. For T = 100, LJT with an unrolled FO jtree roughly
calculates 600 messages and LDJT computes only about 500 messages for each time step
for our example. The difference originates from calculating only the necessary α and β
messages. Further, LDJT answers queries on an FO jtree with 3 parclusters, while LJT
has an FO jtree with 299 parclusters. Thus, identifying the parcluster to answer a query
is easier for LDJT.

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
DJT
LJT FOJT
LJT Model

(a) n = 10
0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
DJT
LJT FOJT
LJT Model

(b) n = 10, all message passes

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(c) n = 100
0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(d) n = 100, all message passes

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(e) n = 1000
0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(f) n = 1000, all message passes

Figure 5.8: Always querying all time steps from each time step for different domain sizes,
y-axis: runtimes [seconds, log], x-axis: time steps

Overall, to answer the questions for hindsight and prediction queries, we can say that:

80

5.3 Count Conversions while Calculating Temporal Messages

• LDJT runs in linear time w.r.t. the maximum number of time steps for hindsight
queries, prediction queries, and combination of both with a fixed offset.

• With a lifted solution and without any count-conversions, prediction and hindsight
queries with the same offset influence the runtimes roughly the with same overhead.

• LDJT runs in quadratic time w.r.t. the maximum number of time steps for always
querying the first and the last time step.

• With always querying the first and the last time step, the runtimes of LDJT are
bounded by unrolling the FO jtree and using LJT.

• LDJT cannot always keep all FO jtrees in memory.

• LDJT answer hindsight queries with huge lags, because it can instantiate FO jtrees
from α messages and evidence during a backward pass.

5.3 Count Conversions while Calculating Temporal
Messages

Knowing the influences of hindsight, filtering, and prediction queries for a completely
lifted run without any count-conversions, we now investigate the influence of count-
conversions. Thus, we use a variation of Gex with count-conversions in α and β messages
to evaluate the influences of count-conversions. Therefore, we vary the domain size for
the logvar C, i.e., |D(C)| = 10, |D(C)| = 100, and |D(C)| = 1000, with C being the
logvar that LDJT count-converts. For the runtimes of LJT with an unrolled FO jtree and
LJT with an unrolled model, LJT only performs one message pass instead of T message
passes. As we have already evaluated the influence of prediction and hindsight queries,
we now focus on filtering queries for one ground PRV. Figures 5.9a to 5.9d show the
results of the evaluation.
In Figs. 5.9a to 5.9c we can see the runtimes of LDJT, LJT with an unrolled FO jtree,

and LJT with an unrolled model for |D(C)| = 10, |D(C)| = 100, and |D(C)| = 1000.
We have not included DJT, because even for the smallest domain size DJT has not
completed a single run. Further, as we have seen in Section 4.3.3, DJT anyhow clusters
all ground interface PRVs together. Thus, unlike for LJT compared to a ground JT
algorithm, LDJT always works on a tree where wg of the lifted width is lower compared
to the ground width of DJT. LJT only has a smaller wg of the lifted width compared to
the ground width of an JT algorithm in the presence of count-conversions. In all three
figures, we can see similar trends in the curves. LJT with an unrolled model always takes
the longest and LJT with an unrolled FO jtree bounds the runtimes of LDJT. Further,
we can see that increasing the domain size also increases the runtimes. Generally, the
results do not differ much from the runtimes for filtering queries, shown in Figs. 5.1a

81

Chapter 5 Evaluation

0 20 40 60 80 100

10−1

100

101

102

103

104 LDJT
LJT FOJT
LJT Model

(a) n = 10
0 20 40 60 80 100

10−1

100

101

102

103

104 LDJT
LJT FOJT
LJT Model

(b) n = 100

0 20 40 60 80 100

10−1

100

101

102

103

104

LDJT
LJT FOJT
LJT Model

(c) n = 1000
0 20 40 60 80 100

10−1

100

101

102

103

104
LDJT
n = 10
n = 100
n = 1000

(d) Runtimes for LDJT

Figure 5.9: Count conversions in α messages for different domain sizes, y-axis: runtimes
[seconds, log], x-axis: time steps

to 5.1c. The main difference is that now increasing the domain sizes has a bigger impact
compared to runs without count-conversion.

Let us now have a look at the runtimes of LDJT, which are depicted in Fig. 5.9d.
We can see that the runtimes of LDJT are linear w.r.t. the maximum number of time
steps. Further, we can see that the runtimes increase by increasing the domain sizes. For
example increasing the domain size from |D(C)| = 100 to |D(C)| = 1000, LDJT roughly
takes an order of magnitude longer to answer the corresponding queries. In the runtime
complexity of LDJT, the largest domain size of a count-conversions is a term that is
exponentiated with the maximum number of count-conversions in a parcluster times the
maximum number of range values of a CRV. Thus, the runtimes are polynomial w.r.t. to
the domain size of logvars that are count-converted.

Overall, to answer the questions for count-conversions we can say that:

• LDJT runs in linear time w.r.t. the maximum number of time steps.

• The runtimes of LDJT are polynomial w.r.t. to the largest domain size of logvars
that are count-converted.

82

5.4 Preventing Groundings while Calculating Temporal Messages

5.4 Preventing Groundings while Calculating Temporal
Messages

Let us now evaluate why LDJT needs the preventing grounding step as described in Sec-
tion 3.4. For the evaluation, we use a variation of Gex that allows to prevent groundings.
Further, we compare the runtimes of LDJT with and without preventing groundings and
the runtimes of unrolling the model with LJT with only one message pass.
In Fig. 5.10a, we can see the runtimes of LDJT with and without preventing groundings

and the runtimes of unrolling the model with LJT for |D(X)| = 10. Overall, the model
has 110 groundings for each time step. What we can see is that at first, using LJT with
an unrolled model is faster compared to using LDJT without preventing groundings.
However, after about 400 time steps LDJT without preventing groundings becomes faster,
due to handling temporal aspects efficiently. For this evaluation, LJT with an unrolled
model constructs an FO jtree with only 2 parcluster as we would expect with PRV
becoming correlated over time. Thus, the size of a parcluster grows fast with an increasing
number of time steps. Additionally, we can see that LDJT with preventing groundings
is several orders of magnitude faster compared to LDJT without preventing groundings.
For LDJT with preventing groundings, we also increase the domain size of X to 100

and 1000. The corresponding runtimes are depicted in Fig. 5.10b. The runtimes are
as expected for a lifted run in LDJT. Hence, we can say that the small overhead of
preventing grounding is always well spent compared to grounding.
Overall, to answer the questions for preventing groundings, we can say that:

• The effort to prevent groundings pays off.

• It is sometimes better to unroll the model and obtain a lifted solution compared
to handling temporal aspects and suffering groundings.

0 200 400 600 800 1000

10−1

100

101

102

103

104

105

LDJT
LDJT Groundings
LJT Model

(a) n = 10
0 200 400 600 800 1000

10−1

100

101

n = 10
n = 100
n = 1000

(b) Runtimes for LDJT

Figure 5.10: Preventing groundings, y-axis: runtimes [seconds, log], x-axis: time steps

83

Chapter 5 Evaluation

5.5 Evidence

Finally, let us evaluate the influence of evidence on LDJT. For this part of the evaluation
we use the same model we have used for the hindsight, filtering, and prediction queries
evaluation. We do not evaluate how increasing the number of instances for which we
have evidence influences runtimes as this has already been throughly evaluated for LJT.
However, we evaluate how we increase the number of distinct groups for which we observe
evidence influences a temporal system. Thereby, LDJT needs to always reason over a
given number of groups for each time step. To evaluate the influence of evidence, we
provide symmetric evidence, i.e., we have groups of instances that behave the same. By
behaving the same, we mean that they receive the same evidence for each time step,
but the evidence can change from one time step to the next. For example, we have a
group of instances, which receives DoR4(X ′) = true and DoR6(X ′) = false. Hence,
we observe that these instances do research at time step 4 and do not do research at
time step 6. For the evaluation, we again vary the domain size for the logvar X, i.e.,
|D(X)| = 10, |D(X)| = 100, and |D(X)| = 1000, and we provide evidence for X. While
creating symmetry groups, we always leave 10% of the instances without evidence and
distribute the rest evenly on the number of symmetry groups for doing research. For
example, with |D(X)| = 100 and 2 symmetry groups, we have a group of 10 instances
without evidence and two groups of each 45 instances with symmetric evidence. Thus,
overall LDJT reasons over 3 groups.
In Fig. 5.11a we can see the runtimes for LDJT with T fixed to 100 for 2 up to 10

symmetry groups with evidence. Thus, LDJT needs to reason over 3 to 11 groups as we
always have one group without evidence and that for every time step. Lifted inference
in general is defined to run in polynomial time w.r.t. the domain size. We can observe
in Fig. 5.11a that LDJT runs in polynomial time w.r.t. number of symmetry groups.
By introducing more symmetry groups, LDJT needs to perform the same eliminations
more often as it needs to eliminate the same PRVs for each symmetry group. However,
from a complexity perspective, we would expect a rather linear increase in runtimes. For
n = 1000, the complexity between 2 and 10 symmetry groups is that 2 symmetry groups
implies a factor of 2 · log2(450)+log2(100) and using 10 symmetry groups implies a factor
of 10 · log2(90) + log2(100). Hence, from a complexity perspective the runtimes should
not increase in a polynomial way w.r.t. the number of symmetry groups. However, by
increasing the number of symmetry groups, the messages that LDJT calculates and the
local models contain more parfactors. With more parfactors, a heuristic for determining
the next best action also has a much larger search space. Thus, the actual runtimes
behaviour differ from the to be expected runtime behaviour based on the runtime com-
plexity.
Figures 5.11b to 5.11d depict the runtimes of LDJT for 2, 5, and 10 symmetry groups.

In these figures, we can see that the runtimes for a fixed domain size again are linear w.r.t.
the maximum number of time steps. Without evidence, we have observed a logarithmic

84

5.5 Evidence

2 4 6 8 10

0
50

0
15

00

LDJT
n = 10
n = 100
n = 1000

(a) T = 100, x-axis: symmetry groups
0 20 40 60 80 100

0
50

15
0

25
0

35
0

LDJT
n = 10
n = 100
n = 1000

(b) 2 symmetry groups, x-axis: time steps

0 20 40 60 80 100

0
50

15
0

25
0

35
0

LDJT
n = 10
n = 100
n = 1000

(c) 5 symmetry groups, x-axis: time steps

0 20 40 60 80 100

0
50

0
15

00

LDJT
n = 10
n = 100
n = 1000

(d) 10 symmetry groups, x-axis: time steps

Figure 5.11: Evidence for different number of symmetry groups, y-axis: runtimes [seconds]

increase in the runtime when increasing the domain sizes. With evidence, the increase
does not seem to be logarithmic anymore. From a complexity perspective, increasing
domain sizes increases the runtime by a logarithmic factor that is multiplied with a
linear but constant factor. Roughly, in the LVE implementation by Taghipour (https://
dtai.cs.kuleuven.be/software/lve), the constraints contain the excluded individuals,
and we use that implementation as the basis for our implementation. Thus, with more
symmetry grounds and increasing domain sizes, the list of excluded individuals also grows.
For the actual runtimes the complexity of constraints for each parfactor also influence
the runtime, leading to the observed behaviour in Figs. 5.11b to 5.11d.
Overall, to answer the questions how evidence influences the runtimes, we can say that:

• With evidence, the runtimes are linear w.r.t. the domain size.

• LDJT runs in polynomial time w.r.t. number of symmetry groups.

Before we extend the query language of LDJT, we provide an interim conclusion for
the basic for of LDJT with hindsight, filtering, and prediction queries.

85

https://dtai.cs.kuleuven.be/software/lve
https://dtai.cs.kuleuven.be/software/lve

Chapter 6

Interim Conclusion

We present LDJT to exactly and efficiently answer multiple hindsight, filtering, and
prediction queries for temporal probabilistic relational models. To the best of our knowl-
edge, LDJT is the first relational forward backward algorithm. LDJT answers multiple
queries by reusing a compact FO jtree structure for multiple queries and time steps. The
ensured temporal m-separation of FO jtrees allows for reusing computations and for re-
ducing memory consumption, making a relational forward backward algorithm possible
and answering hindsight queries with huge lags feasible. To obtain a relational forward
backward algorithm, we explain how to construct FO jtree structures and computes tem-
poral messages on these structures with LDJT (Contribution 1). To efficiently handle
different types of queries, hindsight, filtering, and prediction queries, we present a query
answering plan that is efficient w.r.t. computations and memory consumption (Contri-
bution 1). We also show that one cannot always simply lift a propositional algorithm,
but also has to ensure lifting preconditions, especially when additional constraints on
an elimination exist. To ensure lifting preconditions in LDJT, we introduce a step to
prevent unnecessary groundings (Contribution 2). Further, we show that for temporal
probabilistic relational models one has to trade off completeness with handling tempo-
ral aspects efficiently (Contribution 3). Additionally, we show that query answering
for temporal probabilistic relational models with the propositional interface algorithm
becomes infeasible for large domain sizes, as it is exponential in the randvars in the
interface (Contribution 3). With a lifted solution, LDJT does not encounter the prob-
lem of the propositional interface algorithm, making query answering feasible even for
large domain sizes (Contribution 3). Empirical results show that the runtime of LDJT
is linear in the number of time steps and significantly outperforms LJT when answering
identical queries. Overall, answering hindsight, filtering, and prediction queries becomes
manageable in combination with lifting.
Interesting future work includes a tailored automatic learning algorithm for PDMs,

parallelisation of LDJT as well as using local symmetries. For learning a temporal model,
one may need a forward backward algorithm, such as the Baum–Welch algorithm (Baum
et al., 1970). Thus, we now take the first step to be able to learn temporal probabilistic
relational models. The presented backward pass could also be helpful with incrementally
changing models, i.e., parfactors, PRVs, or individuals changing from one time step to

87

Chapter 6 Interim Conclusion

the next. Depending on the semantics, changes could also influence previous time steps
and therefore, a backward pass is needed. Another interesting direction is extending
LDJT to handle continuous time.
In the next part, we extend the querying language with conjunctive queries, assignment

queries, and maximum expected utility (MEU) queries.

88

Part II

Extending the Query Language

Chapter 7

Conjunctive Queries

The first extension to the query language that we investigate is conjunction of queries.
LDJT in its basic form answers queries with single ground query terms. However, one
might also be interested in the marginal distribution of a conjunction of ground query
terms. Conjunctive queries can be, for example, used to perform probabilistic complex
event processing (Wang et al., 2013). In our publishing example, this could correspond
to asking how likely it is that bob does research in time step t, publishes in aaai_press
in t + 2, and attends a conference in t + 6. In other domains, such as healthcare, one
might be interested whether an Alzheimer patient put his jacket on before leaving his
home. Such temporal patterns can be modelled with temporal conjunctive queries.
In this chapter, we introduce LDJTcon to answer multiple temporal conjunctive queries

efficiently. LJT answers conjunctive queries by merging a subtree of an FO jtree, which
contains all query terms (Braun and Möller, 2018a). The idea here is to reuse compu-
tations already performed during a message pass. However, the underlying assumption
to reuse computations is that query terms of a conjunctive query can be found closely
together in an FO jtree. If the query terms only appear in opposite leaf nodes of an
FO jtree, the subtree and the FO jtree fall together in the worst case. In temporal mod-
els, we cannot assume that query terms of a conjunctive query only span a small subtree,
but they will most likely span several time steps. Therefore, we show how to avoid elim-
inations of query terms to answer multiple conjunctive queries efficiently. Further, by
avoiding eliminations, LDJTcon only slightly increases the size of parclusters, compared
to merging subtrees. Thereby, LDJTcon allows for reusing more computations to answer
multiple conjunctive query for different representatives.
In the following, we begin by recapitulating how LJT answers static conjunctive queries

based on Braun and Möller (2018a). Afterwards, we introduce LDJTcon. Lastly, we
analyse LDJTcon theoretically as well as evaluate it empirically and conclude by looking
at possible extensions.
This chapter is based on the following publication:

Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Multiple Conjunc-
tive Queries with the Lifted Dynamic Junction Tree Algorithm. In Proceedings
of the AI 2018: Advances in Artificial Intelligence, pages 543–555. Springer,
2018

91

Chapter 7 Conjunctive Queries

In addition to what the paper contains, we present how to use LDJTcon without unrolling
an FO jtree for conjunctive queries, as well as theoretical analysis and empirical results.

7.1 Conjunctive Queries in LJT

Braun and Möller (2018a) present LJTcon for conjunctive queries. To allow for conjunc-
tive queries, we begin by extending Definition 2.1.4 to allow for multiple query terms in
a query for a PM G.

Definition 7.1.1. Given grounded PRVs Q and grounded PRVs with fixed range values
E = {Ei=ei}i, the expression P (Q|E) denotes a conjunctive query w.r.t. P (G).

Having the possibility to ask conjunctive queries, we still need means to answer them
with LJTcon. To answer single term queries, LJT finds a parcluster that contains the
query term and uses that parcluster to answer the query. In general, after message
passing, a parcluster can answer queries about all of its PRVs. Even more, LJTcon

can also directly answer conjunctive queries about ground PRVs that occur together in
a parcluster. In case, the corresponding PRVs of conjunctive query terms do not occur
together in a parcluster, then LJTcon cannot use any parcluster alone for query answering.
Thus, LJTcon builds a parcluster containing all query terms to leverage its default query
answering behaviour. To do so, LJTcon identifies a subtree containing all query terms.
LJTcon merges the subtree into one parcluster to answer the query. Further, LJTcon can
still use the messages calculated during the initial message pass, which enter the subtree
from the outside. Thus, after merging the subtree, LJTcon can directly use LVE on the
local model of the merged subtree with the messages to answer a conjunctive query.

Example 7.1.1 (Answering conjunctive queries). For our initial example Gex, depicted
in Fig. 2.1, one possible FO jtree is shown in Fig. 2.2, which has two parclusters. One par-
cluster contains the PRVs Hot, Att(X), and Pub(X, J) and the other parcluster contains
the PRVs Hot, Att(X), and DoR(X). Assume that we have the queries P (Hot,Att(bob))
and P (Pub(bob, springer), DoR(bob)). For each query, LJTcon finds a subtree containing
the query terms. The query terms of the first query, P (Hot,Att(bob)), are contained in
both parclusters. Hence, LJTcon can use either of the parclusters to answer the query,
without having to merge any parclusters. For the other query, no parcluster contains both
query terms. One parcluster contains the PRV Pub(X,J) and the other parcluster the
PRV DoR(X). Hence, the subtree for the query terms spans the two parclusters shown in
Fig. 2.2. To answer P (Pub(bob, springer), DoR(bob)), LJTcon then merges the two par-
clusters, resulting in one parcluster containing all query terms. Now, LJTcon can answer
the query P (Pub(bob, springer), DoR(bob)).

LJTcon is highly efficient if the query terms only span a small subtree in comparison
to the corresponding FO jtree. With a small subtree, LJTcon can still use most of the

92

7.2 Conjunctive Queries in LDJT

messages calculated for the FO jtree. Additionally, the size of a parcluster only increases
slightly with a small subtree. However, in temporal models, the subtree can consist of
several time steps, resulting in a large subtree, which can be more or less equivalent to
an unrolled FO jtree for these time steps. Therefore, hardly any messages can be reused.
Further, with LDJT it can be the case that the messages for all other excerpt the current
time step need to be computed for the conjunctive query. Hence, merging a subtree does
not have the advantage of reusing many messages. Merging a large subtree also leads to
a huge parcluster. Answering multiple queries on that huge parcluster also unnecessarily
increases runtimes.

7.2 Conjunctive Queries in LDJT

Next, we introduce LDJTcon to answer multiple temporal conjunctive queries. In case
there only are conjunctive filtering queries, meaning that all query terms are from the
same time step, then we use LJTcon. However, in case the query terms of a conjunctive
query are from time step t up to time step t + δ, LJTcon would need to instantiate
FO jtrees for δ time steps and identify a subtree for the combination of δ FO jtrees. The
subtree contains at least (δ−2)×m+2 parclusters, where m is the number of parclusters
on the path between in- and out-cluster. Thus, merging the parclusters of the subtree
leads to a parcluster with many PRVs. Further, we have seen that the runtime of LJT
depends on the maximum number of PRVs in a parcluster. Hence, we propose LDJTcon,
an approach to answer multiple temporal conjunctive queries, which merges fewer PRVs
in a parcluster.
Before we introduce LDJTcon, we extend Definition 3.1.2 to allow for multiple query

terms in a temporal query.

Definition 7.2.1. Given a PDM G, grounded PRVs Qt and grounded PRVs with fixed
range values E0:t = {Eit = eit}i,t, P (Qt|E0:t) denotes a query w.r.t. P (G).

Each query that LDJTcon answers can be a conjunctive query. To answer a conjunctive
query, LDJTcon needs a parcluster containing all query terms. LDJTcon constructs this
parcluster without over-approximating the number of PRVs as much as if merging a
subtree. Basically, LDJTcon avoids eliminations of query terms to obtain one parcluster
with all query terms. To send a message from parcluster C1 to C2, LDJT eliminates
all PRVs from C1 that are not included in the separator S12. Hence, LDJTcon extends
separators with PRVs corresponding to the query terms. To be able to answer multiple
conjunctive queries that only differ in the representative, LDJTcon does not only add
the query terms to the separator but the corresponding PRVs. A PRV is in a separator
iff the PRV is contained in associated parclusters. To avoid the elimination of a PRV,
LDJTcon adds the PRV to all parclusters on the path from the parcluster, where the PRV
would be eliminated, to a designated parcluster. By extending parclusters with query

93

Chapter 7 Conjunctive Queries

Algorithm 5 Answer Conjunctive Query for Unrolled FO Jtree J for Time Steps t to
t+ δ and Conjunctive Query Q
procedure AnswerConjunctiveQuery(J ,Q)

root := Parcluster with the most query terms from time step t+ δ
for all Leaf parcluster p ∈ J do

current := p
while current 6= root do

qt := Q∩ current
next := next parcluster on the path to root
next := next+ qt
current := next

J := LJT.PassMessages(J)
LVE.AnswerQuery(root,Q)

PRVs, LDJTcon avoids the elimination of the query terms to answer conjunctive queries
by leveraging the behaviour of LDJT for answering a query.
A naïve approach to extend parclusters is to add the query PRVs to all parclusters of

the relevant time steps. Unfortunately, by over-approximating the extension of parclus-
ters, the number of PRVs in each parcluster increases, and unfortunately the complexity
of LVE depends on the PRVs in parclusters.
For ease of explanation, we start with a semi-naive approach to add the query PRVs

on demand, which is outlined in Alg. 5. To answer a conjunctive query, the semi-naive
approach instantiates FO jtree J for the time steps t to t + δ of Q. From J , the semi-
naive approach selects a root parcluster, which contains most of the query terms from
Q and is from the last time step of J , as designated receiver of all query PRVs. Now,
the semi-naive approach needs to avoid the elimination of the query terms of Q to the
root parcluster. Therefore, starting from each leaf parcluster, the semi-naive approach
traverses the path to the root parcluster. As FO jtrees are cycle-free graphs, there is
exactly one path from each leaf parcluster to the root parcluster. While traversing the
paths, the semi-naive approach checks whether a parcluster contains query PRVs and
adds the query PRVs to all parclusters on the path to the root parcluster. Thereby,
the semi-naive approach avoids the elimination of query terms to the root parcluster.
Another way of interpreting the extension of the root parcluster is to add all the query
terms of Q to the root parcluster and then ensure the running intersection property of
an FO jtree. After root is extended, the semi-naive approach has to repeat a message
pass, as the PRVs in parclusters changed. Lastly, the semi-naive approach can use LVE
to answer the conjunctive query with the local model of the root parcluster.
Unfortunately, by avoiding eliminations of query terms, the semi-naive approach needs

to perform an extra message pass and needs to unroll the FO jtree for δ time steps, as

94

7.2 Conjunctive Queries in LDJT

outlined in Alg. 5. Nonetheless, the approach is still advantageous over identifying a
subtree and merging the subtree into one parcluster for conjunctive queries over multiple
time steps. Even though the work to answer one conjunctive query is the same, our ap-
proach is parallelisable and the search space for the elimination order is smaller. Further,
for a second conjunctive query with the same query PRVs but different groundings, the
work of the message pass can be reused.

Example 7.2.1 (Answering conjunctive queries with the semi-naive approach). Assume
that we are interested in Pubt(x1, j1), Hott+2, and DoRt+2(x1). Figure 3.7 shows our
example model unrolled for time step 3 and 4, without parcluster C3

3. For the conjunctive
query P (Pub2(eve, springer), Hot4, DoR4(eve)), LDJTcon can apply the steps of Alg. 5
to answer the query. First, LDJTcon selects C3

4 as root parcluster because C3
4 is from

the latest time step and is the parcluster containing most of the query terms in t = 4.
Second, LDJTcon extends the parclusters on the path from the leaf parclusters C1

3 and
C3

3 to the root. C1
3 includes the query term Pub2(eve, springer). Hence, LDJT adds

Pub2(X, J) to all parclusters on the path to the root parcluster, namely C1
4, C2

4, and
root C3

4. No additional parcluster on the path from C1
3 to root contains any query term

that is not contained in C3
4. The same holds for the path from C3

3 to root. Third, LDJTcon

performs a message pass on the extended FO jtree. Last, LDJTcon uses root to answer
the conjunctive query. LDJTcon increases the maximum number of PRVs in a parcluster
from 3 to 4, allowing it to efficiently answer multiple conjunctive query, e.g., also for
alice and bob. By performing merging, all parclusters would be merged in a parcluster
with 9 PRVs. Further, instead of increasing the size of a parcluster with merging by 6
PRVs, LDJTcon increases the size of a parcluster only by 2 PRVs. Thus, by merging,
fewer computations could be reused to answer conjunctive queries for alice and bob.

Even though Alg. 5 is well-suited to illustrate the idea of LDJTcon, Alg. 5 still has room
for improvement, e.g., currently, in case there are paths to the root parclusters join, they
are traversed multiple times. Further, LDJTcon could directly perform message passing,
while extending the parclusters and in case one only wants to use the unrolled FO jtree
to answer conjunctive query with different grounding of the query PRVs, an inbound
pass to the root parcluster would suffice to answer the conjunctive query. Furthermore,
instead of unrolling FO jtrees, LDJTcon can use temporal messages to avoid unrolling.
Therefore, let us now introduce LDJTcon.
Algorithm 6 outlines LDJTcon. The basic idea still is to avoid elimination of query

terms. Unlike Alg. 5, Alg. 6 works on one time step at a time, traverses each parcluster
only once, and requires only a single inbound message pass over all time steps. First,
LDJTcon determines the earliest i and latest j time step that is queried in a conjunctive
queryQ. To only require one inbound message pass, LDJTcon performs a forward message
pass from time step i to j. Therefore, LDJTcon instantiates an FO jtree for time step
i and performs a message pass with the out-cluster as root. During each message pass,
LDJTcon adds the corresponding PRVs of Q to each separator. Hence, query terms are

95

Chapter 7 Conjunctive Queries

Algorithm 6 LDJTcon for Conjunctive Query Q
procedure LDJTcon(J0, Jt,Q)

i := earliest in Q
j := latest in Q
while i 6= j do

Ji := FO jtree instantiated for time step i
root := Ji(out− cluster)
Inbound message pass with root as root and Q in each separator
Calculate new αi with Q in the separator
i := i+ 1

Jj := FO jtree instantiated for time step j
root := Parcluster with the most query terms from Jj
Inbound message pass with root as root and Q in each separator
LVE.AnswerQuery(root,Q)

not eliminated during a message pass, but passed through to time step j. An inbound
message pass to the out-cluster as root suffices because LDJTcon only needs to be able to
calculate αi. For αi, LDJTcon also adds the corresponding PRVs of Q to the separator.
By going through each time step from i to j in this fashion, LDJTcon propagates all query
terms to time step j. LDJTcon performs an inbound message pass with the parcluster
having the most query terms in Jj as root. Then, LDJTcon uses this parcluster to
answer Q. Therefore, with one inbound forward message pass, LDJTcon can answer Q
by avoiding to eliminate PRVs of Q until Q is collected in one parcluster.

Example 7.2.2 (Answering conjunctive queries with LDJTcon). We again assume the
conjunctive query P (Pub2(eve, springer), Hot4, DoR4(eve)). As described in Alg. 6,
LDJTcon first determines the earliest i and latest j time step of the conjunctive query,
i.e., i = 2 and j = 4. In the while loop, LDJTcon then instantiates J2 and performs
an inbound message pass with the out-cluster, C2

2, as root. During the message pass,
LDJTcon extends the separators with Pub2(X, J), Hot4, DoR4(X). Now, LDJTcon can
use C2

2 to calculate α2, for which LDJTcon also extends the separator with Pub2(X, J),
Hot4, and DoR4(X). Then, LDJTcon does the same for time step 3.
For time step 4, LDJTcon leaves the while loop, instantiates J4, and selects C3

4 as root,
because it holds the most query terms in J4. After an inbound message pass, LDJTcon can
answer the conjunctive query. Using C3

4, LDJT
con can also answer conjunctive queries

for other representatives while reusing the computations from the message pass. Further,
LDJTcon only traverses each parcluster once with only one inbound message pass.

Knowing how LDJTcon works, we have a look at a theoretical analysis of LDJTcon.

96

7.3 Theoretical Analysis

7.3 Theoretical Analysis

This section investigates soundness, completeness, and complexity of LDJTcon.

7.3.1 Soundness

To show that LDJTcon is sound, we show the message pass of LDJTcon to be sound.
Thereby, LDJTcon can use the selected parcluster to answer a corresponding conjunctive
query. For LDJTcon and LJTcon, a parcluster needs to contain all query terms for the
algorithms to be able to answer the corresponding conjunctive query. LDJTcon avoids
the elimination of the corresponding query term PRVs. Therefore, we show that the
message pass with avoiding eliminations is sound.

Theorem 7.3.1. LDJTcon is sound regarding a conjunctive query Q, i.e., LDJTcon

produces the same results as LJTcon does for an unrolled FO jtree of a PDM.

Proof. During a message pass of LDJTcon, it extends all separators with the correspond-
ing PRVs of Q. By extending separators, LDJTcon ensures that the PRVs of Q are not
eliminated during a message pass. Hence, Q is present at the last parcluster of the mes-
sage pass. Further, the FO jtrees instantiated during the message pass of LDJTcon are
still valid FO jtrees. For them to be valid FO jtrees three properties have to hold. The
first property is that all PRVs in a parcluster must originate from the underlying model,
which they do as all PRVs come from the corresponding unrolled PDMs. The second
property ensures that all parfactors are assigned to parclusters. The message pass does
not change parfactors assignments. Thus, also the second property still holds during the
message pass of LDJTcon. The last property is the running intersection property. By
extending separators, LDJTcon does not eliminate PRVs of Q during a message pass any-
more. Thus, LDJTcon basically adds the corresponding PRVs from their first occurrence
to one parcluster of the latest time step. Hence, the PRVs are added to all parclusters
from the initial parcluster to the last root parcluster. Therefore, LDJTcon also ensures
the running intersection property.
Further, LDJTcon and LJTcon perform the same calculations only possibly in a different

order. LJTcon finds a subtree containing all PRVs of Q and then eliminates everything
but Q from that parcluster. LDJTcon still eliminates all PRVs that are not in a separator
to calculate a message. Hence, LDJTcon has in the end a parcluster containing the PRVs
of the root parcluster from the last time step as well as the PRVs of Q. Further, the
inbound message pass suffices to propagate all state descriptions to that parcluster so
that LDJTcon can use exactly that one parcluster to answer the conjunctive query. All
other parclusters, do not necessarily receive all messages and therefore, cannot be used for
query answering. However, after the inbound message pass and answering Q, LDJTcon

performed the very same calculations as LJTcon. The only difference is that LJTcon

first collects all parfactors and then starts to eliminate, while LDJTcon already starts to
eliminate while collecting parfactors.

97

Chapter 7 Conjunctive Queries

7.3.2 Completeness

In general, we cannot make any completeness statements for LDJTcon. Even if LDJTcon

works on a model, for which LDJT is complete (c.f. Thm. 4.2.3), the conjunctive query
can result in a case where LDJTcon cannot eliminate a PRV with two logvars. For such
a case, we have already shown in Thm. 4.2.2 that LDJT is not complete. However, in
case we do not only restrict the model to be of a certain class, but also the conjunctive
query, then we can make statements about the completeness of LDJTcon.
For LJTcon, the query class CQlift is restricted to query terms with at most one

constant of each logvar (Braun, 2020). Otherwise, there could be a conjunctive query in
which each instance of each logvar occurs in a different ground PRV, leading to grounding
logvars. Unfortunately, for LDJTcon, CQlift is not restrictive enough.

Theorem 7.3.2. LDJTcon is not complete for CQlift.

Proof. CQlift allows for query terms with two constants. Then, LDJTcon would extend
separators with a PRV with two logvars. Thus, there can be the case that LDJTcon

would not eliminate a PRV with two logvars for several time steps, which corresponds to
Thm. 4.2.2. Therefore, LDJTcon is not complete for CQlift.

In case LDJTcon would only extend separators with the query terms of a conjunctive
query instead of the corresponding PRVs, LDJTcon would be complete for CQlift. Ex-
tending separators with query terms adds only PRVs with zero logvars, which is a subset
of 1-logvar models. The problem with CQlift and LDJTcon is that CQlift allows PRVs
with two logvars and LDJTcon may need to eliminate a PRV with zero logvars, which
cannot be guaranteed to be performed without groundings.

Definition 7.3.1 (Liftable temporal conjunctive queries). Let T CQlift be the class of
temporal conjunctive queries with query terms having at most one constant of each logvar
and at most one logvar for each PRV.

Theorem 7.3.3. LDJTcon is complete for T CQlift given a liftable model and evidence.

Proof. Adding PRVs with at most one logvar to separators does not result in groundings
due to generalised counting. Further, the model stays in the same class for which LDJT
and thereby LDJTcon is complete. By bounding the number of constants for each logvar,
there is only one split for each logvar. The number of splits is dependent on the number
of logvars and not the domain size. Therefore, LDJTcon is complete for T CQlift

7.3.3 Complexity

The complexity of LDJT depends on the lifted width. In LDJT, the number of PRVs
in a separator is always a subset of the parclusters that the separator connects. Thus,
in LDJT, the number of PRVs in a message is always smaller than the number of PRVs

98

7.3 Theoretical Analysis

in the largest parcluster. Unfortunately, for LDJTcon, the number of PRVs in a message
can be higher than the number of PRVs in the largest parcluster.
If extending separators of LDJTcon does not result in a message with parfactors having

more PRVs as argument than PRVs in the largest parcluster, then the complexity of
message passing of LDJTcon would be the same as for LDJT. Further, as LDJTcon only
performs an inbound message pass, LDJTcon only calculates nJ −1 instead of 2 · (nJ −1)
messages, without α and β message, for each time step. Then, the only difference would
be in answering queries, where the largest parcluster would be extended with the number
of corresponding PRVs from the conjunctive query. Unfortunately, we cannot guarantee
that the number of PRVs in a message will never extend the lifted width of LDJT. Hence,
we first define a lifted width for LDJTcon and then investigate the combined complexity
of LDJTcon with a conjunctive query.

Definition 7.3.2. Let (w0∪Q
g , w0∪Q

) be the lifted width of J0 with the PRVs of Q added
to each parcluster of J0 and let (wt∪Qg , wt∪Q#) be the lifted width of Jt with the PRVs of
Q added to each parcluster of Jt. The lifted width wcqJ of a pair (J0, Jt) and conjunctive
query Q is a pair (wcqg , w

cq
), where wcqg = max(w0∪Q

g , wt∪Qg) and wcq# = max(w0∪Q
, wt∪Q#).

The lifted width wJ of LDJT only depends on the FO jtrees. For conjunctive queries,
the lifted width wcqJ also depends on a conjunctive query Q. Let us now investigate the
complexity of LDJTcon. LDJTcon uses the same evidence as LDJT does and therefore,
does not need to enter evidence itself. In addition to the message passes of LDJT,
LDJTcon now also needs to perform message passes for conjunctive queries. Let us again
have a look at the best, average, and worst case complexity for o distinct conjunctive
queries for each time step.

Lemma 7.3.1. The worst case complexity of conjunctive query message passes is

O(o · T 2 · nJ · log2 n · rw
cq
g · n

wcq
·r#

). (7.1)

The average case complexity of conjunctive query message passes is

O(o · T · nJ · log2 n · rw
cq
g · n

wcq
·r#

). (7.2)

The best case complexity of conjunctive query message passes is

O(o · T · nJ · log2 n · rw
cq
g · n

wcq
·r#

). (7.3)

In the worst case, the earliest time step in a conjunctive query is the first time step
and the latest is the last time step and there is such a query for each time step. Hence,
LDJTcon performs a message pass over all time steps for each time step. Further, Eq. (7.1)
now uses wcqJ , because the message pass is dependent on a conjunctive query. Addition-
ally, LDJTcon performs a message pass for each distinct conjunctive query for each time

99

Chapter 7 Conjunctive Queries

step. In the best case, we only have conjunctive queries for the current time step and in
the average case, the number of time steps in conjunctive queries is constant.
For each distinct query, LDJTcon can answer the conjunctive query for each time step

for different representatives.

Lemma 7.3.2. The complexity of answering a set of conjunctive queries {Qk}pk=1 for
different representatives is

O(p · log2 n · rw
cq
g · n

wcq
·r#

). (7.4)

LDJTcon answers the p conjunctive queries with different representatives on the same
parcluster, which is bounded by wcqJ . To answer the same conjunctive query for different
representatives, LDJTcon only needs to eliminate non-query terms from one parcluster.
Thus, the difference to LJTcon is that the parcluster is extended only by the PRVs of
the query terms instead of all PRVs of the subtree. Therefore, the number of PRVs that
LDJTcon needs to eliminate for the second query is normally much lower.
We now combine the stepwise complexities to arrive at the complexity of LDJTcon by

adding up the complexities in Eqs. (4.5) to (4.9) and (7.1) to (7.4).

Theorem 7.3.4. The worst case complexity of LDJTcon is

O((((T 2 + T) · nJ +m) + (o · T 2 · nJ + o · p)) · log2 n · rwg · nw#·r#
). (7.5)

The average case complexity of LDJTcon is

O(((T · nJ +m) + (o · T · nJ + o · p)) · log2 n · rw
cq
g · n

wcq
·r#

). (7.6)

The best case complexity of LDJTcon is

O(((T · nJ +m) + (o · T · nJ + o · p)) · log2 n · rw
cq
g · n

wcq
·r#

). (7.7)

The complexities of Eqs. (7.5) to (7.7) are the combination of Eqs. (4.10) to (4.12) and
the additional workload to answer conjunctive queries. Thus, the overall complexity of
LDJTcon consists of the complexity of LDJT and the complexity of conjunctive queries.

7.4 Evaluation

For the evaluation, we use Gex as described in Section 5.1. Further, we vary the domain
size for the logvar X, i.e., |D(X)| = 10, |D(X)| = 100, and |D(X)| = 1000, while setting
|D(P)| = 3. We compare the runtimes of LJTcon with an unrolled model, LJTcon with
an unrolled FO jtree, and LDJTcon. For each run, we ask the following conjunctive
queries {Hot0(xi), HotT−1(xi), HotT (xi)}3i=1 and {Hot0(xi), HotT (xi)}3i=1, resulting in

100

7.4 Evaluation

●

●

●

●

●
●

●
●

●
●

●

●

●

●

25 27 29 211

10−1

100

101

102

103

104

105 LJT FO jtreeLJT model

●

LDJT
n = 10
n = 100
n = 1000

Figure 7.1: Conjunctive query runtimes [seconds, log], x-axis: time steps, log

6 conjunctive queries for each run. We also vary the maximum number of time steps T .
The query terms of the second query are a subset of the query terms of the first query.
Further, each conjunctive query always queries the first time step (Hot0(xi)) and the
last time step (HotT (xi)). We ask such queries, to evaluate our claim that LDJTcon will
be faster starting with the second query.
Figure 7.1 shows the runtimes. We can see that LDJTcon is always significantly faster

compared to LJTcon. After query-induced message passing, LDJTcon can answer the
queries efficiently on a small parcluster. The work to answer the first query is roughly the
same for LDJTcon and LJTcon with an unrolled FO jtree. However, for the second query,
LJTcon with an unrolled FO jtree again has to many PRVs from huge subtree, basically
spanning the complete FO jtree. Therefore, with more than one of such conjunctive
queries, where LDJTcon can reuse the computations from its message pass, LDJTcon

is significantly faster compared to LJTcon. One interesting aspect is that even though
LJTcon with an unrolled model is always slower compared to LJTcon with an unrolled
FO jtree, LJTcon with an unrolled model answers the queries faster. The message pass
on the unrolled model just takes significantly longer, but LJTcon can reuse some of the
computations, i.e., the subtree does not span nearly the complete FO jtree. Thus, LJTcon

with an unrolled model is faster w.r.t. answering queries but takes significantly longer
on message passing. Increasing the domain sizes, produces the to be expected behaviour
for LJTcon and LDJTcon.
In summary, we can say that LDJTcon is significantly faster in case it can reuse the

computations of the message pass. Further, LDJTcon again has the advantage of requiring
less memory as it can work on one time step at a time and does not need to merge a

101

Chapter 7 Conjunctive Queries

possibly huge subtree, making it efficient for temporal models.

7.5 Interim Conclusion

We present LDJTcon to answer conjunctive queries by avoiding eliminations of query
terms (Contribution 4a). To avoid eliminations, LDJTcon increases parclusters with
query PRVs until all query PRVs are in one parcluster. LDJTcon efficiently answers mul-
tiple conjunctive queries for different representatives or if a query terms of a conjunctive
query are a subset of query terms from another conjunctive query. Theoretical (Contri-
bution 4b) and empirical results show that extending can significantly save computations
for multiple conjunctive queries compared to using LJTcon on an unrolled FO jtree.

102

Chapter 8

Assignment Queries

The second extension to the query language that we investigate is assignment queries.
LDJT in its basic form answers marginal queries. However, one might also be interested
in the most probable assignment of PRVs given evidence. In our publishing example, such
a query could correspond to asking for the the most probable assignment for all PRVs,
given that bob publishes in aaai_press in t+2 and attends a conference in t+6. In other
domains, such as healthcare, one might be interested in the most probable assignment
w.r.t conditions of patients given some test results.
The general idea of assignment queries compared to marginal queries is that one is

interested in the most likely state, i.e., the most likely range value of a PRV, given
some evidence. Thus, the general problem of assignment queries is to calculate the most
probable values of some PRVs given evidence for other PRVs.
In this chapter, we introduce LDJTmpe and LDJTmap to answer multiple temporal

assignment queries efficiently. LJTmpe and LJTmap already answer static assignment
queries (Braun and Möller, 2018b; Braun, 2020). We propose to combine LDJT and
LJTmpe to answer temporal assignment queries efficiently. There are two types of assign-
ment queries, namely most probable explanation (MPE), which asks for the assignment
of all PRVs for which we do not have evidence, and maximum a posteriori (MAP), which
asks for the assignment of some PRVs for which we do not have evidence.
In the following, we begin by presenting how LJTmpe and LJTmap answer static assign-

ment queries based on Braun and Möller (2018b). Afterwards, we introduce LDJTmpe

and LDJTmap. Lastly, we analyse LDJTmpe and LDJTmap theoretically as well as em-
pirically evaluate LDJTmpe and LDJTmap.
This chapter is based on the following publication:

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Most Prob-
able Explanation. In Proceedings of the 24th International Conference on
Conceptual Structures, pages 72–85. Springer, 2019

In addition to the content of the publication, we also present a theoretical analysis and
empirical results of LDJTmpe and LDJTmap.

103

Chapter 8 Assignment Queries

8.1 Most Probable Assignments in LJT

Based on Braun and Möller (2018b), we now define MPE queries and provide an intuition
of how LJTmpe solves the MPE problem.

Definition 8.1.1 (MPE problem). Given a PMG and evidenceE, find the most probable
assignment for all PRVs V in G for which there is no evidence given. Thus, the MPE
problem is to solve the following expression: arg maxv P ((V = v)|C |E = e), V ∩E = ∅.

The basic idea of calculating an MPE, compared to answering marginal distribution
queries, is to use a maximisation instead of a summation to eliminate PRVs. To ef-
ficiently calculate maximisations for relational probabilistic static models, Braun and
Möller (2018b) propose a lifted maximisation for the current version of LVE (Taghipour
et al., 2013c) and also apply it to LJT (Braun and Möller, 2016), resulting in LJTmpe.
LJTmpe calculates a lifted solution to the MPE problem. Hence, LJTmpe uses the fact

that instances behave the same for assignments. Thus, for a PRV, LJTmpe needs to store
the number of instances for the range values of that PRV, which maximise the potential.
Hence, LJTmpe stores a histogram encoding the assignment.

Example 8.1.1 (Histograms in LJTmpe). Assume an MPE is that two people are doing
research and one does not do research. Then, it is the same if either alice and bob, alice
and eve, or bob and eve do research. Thus, LJTmpe only needs to store a histogram with
[2, 1] for the PRV DoR(X).

To compute an MPE, LJTmpe does not only need to store assignments for PRVs,
but also potentials, as we want the assignment that maximises the potential. Thus, to
calculate an MPE, the function φ in a parfactor φ(A)|C maps arguments to a pair of a
potential and a set of histograms for already maxed out PRVs. By storing the potential
and a set of histograms, LJTmpe can read out the MPE after the last maxing out.

Example 8.1.2 (Parfactors in LJTmpe). LJTmpe can answer an MPE query for Gex

shown in Fig. 2.1. Assume that we have no evidence. That means, LJTmpe calculates the
most probable assignment for all PRVs. After the last maxing out, a parfactor could look
like this: φ()→ (p, {[6, 0]Pub, [3, 0]DoR, [3, 0]Att, [1, 0]Hot}). LJTmpe can use that parfactor
to directly read out the most probable assignment, namely {[6, 0]Pub, [3, 0]DoR, [3, 0]Att,
[1, 0]Hot}, as well as a corresponding potential, p.

Knowing how histograms help us while computing an MPE, we now take a look at
how LJTmpe answers MPE queries efficiently. Algorithm 7 outlines the steps LJTmpe

performs. The first two steps are the same steps as for marginal queries. LJTmpe first
builds a corresponding FO jtree J from a PM G and enters evidence afterwards. The
main difference compared to marginal queries is that LJTmpe only performs an inbound
message pass. LJT performs a complete message pass for marginal queries, to efficiently

104

8.1 Most Probable Assignments in LJT

Algorithm 7 LJTmpe for PM G and Evidence E

procedure LJTmpe(G,E)
Build FO jtree J using G
Enter E in J
Perform an inbound message pass on J
Answer MPE query

answer multiple queries. However, only one MPE query exists for a given set of evidence,
for which LJTmpe needs to max out all PRVs without evidence. Thus, as long as one
parcluster has all information, which a root has, after an inbound message pass, LJTmpe

can answer the MPE query using that parcluster. The other important difference is that
LJT performs a maxing out compared to a summing out to eliminate a PRV. After the
inbound message pass, LJTmpe maxes out the remaining PRVs from the root cluster of
the inbound message passing. Lastly, LJTmpe can directly read out the MPE which lead
to the highest potential.

Example 8.1.3 (Answering an MPE query with LJTmpe). Figure 2.2 depicts an FO jtree
J for our example PM Gex. After the evidence entering, LJTmpe performs an inbound
message pass with, e.g., C1 as root. Thus, LJTmpe calculates the message m21: LJTmpe

eliminates DoR(X) from C2 by applying lifted maxing out. For each case where the
range values of Hot and Att(X) are the same and only the range value of DoR(X)
differs, LJTmpe keeps the higher potential of the range value and saves the range value
of DoR(X) to max out DoR(X). Hence, m21 contains a parfactor with 4 rows and each
row contains the maximum potential and whether a true or false assignment of DoR(X)
leads to the potential. After LJTmpe sends m21 to C1, C1 holds all state descriptions
necessary to answer an MPE query. In C1, LJTmpe still has to eliminate Hot, Att(C),
and Pub(X, J) by applying lifted maxing out. Having eliminated all PRVs, LJTmpe can
return the most probable assignment given the evidence.

Another assignment query is an MAP query, where we are interested in the most
probable assignment only for a subset of PRVs. Again, we first define the MAP problem
and then provide an intuition how LJTmap as a combination of LJT and LJTmpe solves
the MAP problem efficiently.

Definition 8.1.2 (MAP problem). Given a PM G, evidence E, and a set U|C′ ⊆ V|C , an
MAP problem refers to the problem of finding an assignment for U|C′ with the highest
probability w.r.t. PG, i.e., given S|C′′ = V|C \ U|C′ : The MAP problem is to solve
arg maxu P ((U = u)|C′ |E = e) = arg maxu

∑
s∈S|C′′

P ((U = u)|C′ , (S = s)|C′′ |E = e).

Unfortunately, summing out and maxing out PRVs are not commutative. This non-
commutativity leads to a restriction of the elimination order. For an MAP query, an

105

Chapter 8 Assignment Queries

algorithm needs to sum out PRVs before maxing out query PRVs (Braun and Möller,
2018b). Hence, the problem of solving an MAP is in general harder compared to solving
the MPE problem (Sharma et al., 2018). To compute a lifted solution to the MAP
problem, lifting imposes additional restrictions on the elimination order, making the
problem even harder than in the propositional case.
LJTmap is a combination of LJT and LJTmpe. Even though the MAP problem is in

general harder, for LJTmap we can identify two types of harmless MAP queries. Harmless,
in this case, means that LJTmap can answer an MAP query without grounding. If an
MAP queries is over all PRVs from a parcluster or connected parclusters, LJT can use
the message pass from marginal queries, in which LJT sums out PRVs. These MAP
queries are harmless in case the message passing of LJT does not induce groundings.
Based on the elimination order induced by separators, all other PRVs are summed out
and LJTmpe can calculate an MPE for the PRVs from the (connected) parcluster(s).

Example 8.1.4 (Harmless MAP query). Assume that we are interested in the assignment
of Hot, Att(X), and Pub(X, J). Hence, LJT needs to sum out DoR(X) and LJTmpe

needs to max out Hot, Att(X), and Pub(X, J). To answer the query, LJTmpe can use
C1. During the message pass for marginal queries, LJT calculates the message m21 for
which it eliminates DoR(X). With m21, C1 holds all state descriptions necessary to
answer the assignment query. Thus, LJTmpe calculates an MPE on C1 to answer the
MAP query.

Unfortunately, LJTmpe and LJTmap do not efficiently handle temporal aspects of
PDMs. Thus, we now introduce LDJTmpe and LDJTmap to efficiently answer assign-
ment queries for relational temporal models.

8.2 Most Probable Assignments in LDJT

In this section, we investigate how MPE and MAP queries can be solved efficiently for
temporal relational models and discuss the need of a temporal approach.

8.2.1 MPE Queries

We now define temporal assignment queries, introduce LDJTmpe, and investigate how
LDJTmpe efficiently answers temporal MPE queries.

Definition 8.2.1 (Temporal MPE problem). Given a PDM G and evidence E0:T for all
time steps, we are interested in the most probable assignment for all PRVs V in G for
which there is no evidence specified. Thus, the temporal lifted MPE problem is to solve
the following expression arg maxv P ((V = v)|C |{Ei = ei}Ti=0), V ∩E = ∅.

The basic idea of solving the temporal lifted MPE problem is also to use a maximisation
instead of summation, which LDJT uses for marginal queries. The Viterbi algorithm is

106

8.2 Most Probable Assignments in LDJT

Algorithm 8 LDJTmpe for PDM G and Evidence E0:T

procedure LDJTmpe(G,E0:T)
Build FO jtree J0 and Jt using G
t := 0
while t 6= T + 1 do

Recover previous state from temporal assignment message γt−1, γ0 = ∅
Enter Et in Jt
Perform an inbound message pass on Jt with out-cluster as root
Calculate temporal assignment message γt based on out-cluster of JT

Answer MPE query using out-cluster of JT

one approach to solve the temporal propositional MPE problem by applying a max-
product algorithm instead of a sum-product algorithm (Russell and Norvig, 1995)
Algorithm 8 outlines how LDJTmpe efficiently solves the temporal lifted MPE problem.

The basic idea for LDJTmpe is a combination of LDJT and LJTmpe. The first step in
Alg. 8 is to construct the FO jtree structures J0 and Jt as described in Alg. 1. Using
the structures, LDJTmpe enters a loop where for every time step, it recovers the previous
state, enters evidence for the current time step, performs an inbound message pass with
the out-cluster as root, and calculates γt to preserve the current time step. The main
differences are that LDJTmpe calculates γt by maxing out instead of αt by summing out
and that LDJTmpe only performs an inbound message pass with the out-cluster as root.
After LDJTmpe propagates all the information to the last time step and leaves the loop,
LDJTmpe answers the MPE query.
To calculate γt, LDJTmpe maxes out all non-interface PRVs from the out-cluster of

Jt. As LDJTmpe only needs to answer one MPE query, over all time steps, it suffices
to always perform an inbound message pass with the out-cluster as root. This way, the
out-cluster has all information required to calculate γt. For the last time step, LDJTmpe

uses the out-cluster to answer the MPE query. LDJTmpe answers the MPE query by
maxing out the PRVs of the out-cluster and reading out the most probable assignment
to all PRVs for which there is no evidence.

Example 8.2.1 (Answering temporal MPE queries with LDJTmpe). For our example
PDM Gex, LDJTmpe first builds FO jtree structures Jex0 and Jext , which are the same
structures as for marginal queries. For time step 0, LDJTmpe does not have a previous
state to recover. Thus, LDJTmpe directly enters evidence for time step 0 in Jex0 . On Jex0 ,
LDJTmpe performs an inbound message pass with the out-cluster as root and calculates
γ0 by maxing out all non-interface PRVs from the out-cluster. For time step 1, LDJTmpe

instantiates Jex1 from Jext . Figure 3.7 depicts the FO jtree instantiations for time step
3 and 4. LDJTmpe adds γ0 to the in-cluster, C1

1, of J
ex
1 , enter evidence for time step

1, and performs an inbound message pass with C2
1 as root. Hence, LDJTmpe calculates

107

Chapter 8 Assignment Queries

two messages, namely m12
1 and m32

1 . With m12
1 and m32

1 , C2
1 holds all the information

necessary to calculate γ1, by maxing out Pub1(X, J). LDJTmpe proceeds in this fashion
until it reaches the last time step T . In JexT , the out-cluster C2

T holds all the information
to answer the MPE query. After maxing out HotT , AttT (X), and PubT (X, J), LDJTmpe

can directly read out the assignments for all PRVs from each time step.

Now, we investigate temporal lifted MAP queries.

8.2.2 MAP Queries

First, we define temporal MAP queries and then investigate how LDJTmap solves the
temporal lifted MAP problem. LDJTmap is a combination of LDJT, for lifted summing
out, and LDJTmpe, for lifted maxing out.

Definition 8.2.2 (Temporal MAP problem). Given a PM G, evidence E0:T , and a set
U|C′ ⊆ V|C , anMAP problem refers to the problem of finding an assignment forU|C′ with
the highest probability w.r.t. PG, i.e., given S|C′′ = V|C \U|C′ : The temporal lifted MAP
problem is to solve the following expression arg maxu P ((U = u)|C′ |{Ei = ei}Ti=0) =

arg maxu

∑
s∈S|C′′

P ((U = u)|C′ , (S = s)|C′′ |{Ei = ei}Ti=0).

LDJTmap, a combination of LDJT and LDJTmpe, answers MAP queries efficiently. an
MAP query over a parcluster is also harmless for LDJTmap. One feature of LDJT is
that an α message separates one time step from the next. Thus, LDJTmap can efficiently
answer MAP queries over complete time steps and reuse α messages computed while
answering marginal queries. In the case of MAP queries over complete time steps, the
non-commutativity of summing out and maxing out does not lead to a restriction of
the elimination order. Hence, using LDJTmap, we can easily identify that MAP queries
over complete time steps are harmless. Additionally, LDJTmap reuses computations from
marginal queries to answer MAP queries over complete time steps.

Example 8.2.2 (Harmless temporal MAP queries). Assume we are only interested in
the assignment of all PRVs from the last 20 time steps. Then, LDJTmpe can instantiate
JT−20, add αT−21, start solving an MPE, and read out the most probable assignments for
the last 20 time steps at the out-cluster of JT . The αT−21 message includes all necessary
state descriptions corresponding to the summing out of all PRVs from time step 0 to
T − 21 (without the interface variables being summed out for time step T − 21).

By using α messages to separate time steps and identify harmless MAP queries,
LDJTmap actually does not return the assignments of the queries for the last t time
steps, but also for the interface variables of time step t−1. However, using α messages is
convenient as LDJT calculates them anyhow and they make it easy to identify harmless
MAP queries.

108

8.3 Theoretical Analysis

8.2.3 Discussion

This section discusses how LDJTmpe and LDJTmap efficiently handle temporal aspects
compared to LJTmpe and LJTmap for MPE and MAP queries.

MPE Queries If we unroll a PDM into a PM and use LJTmpe, the FO jtree would not
necessarily be constructed in a way to handle the temporal aspects efficiently and thus,
would have an impact on the performance. However, if we unroll an FO jtree based on
the structures J0 and Jt from LDJTmpe, then from a computational perspective, LJTmpe

and LDJTmpe would perform the same calculations possibly in a different order. By
selecting the out-cluster of the last time step as the root for LJTmpe, both algorithms
would actually compute exactly the same messages.
Nonetheless, there still is a difference in the memory consumption. LJTmpe needs to

store the complete unrolled FO jtree. Thus, all messages, evidence, and local models for
all time steps need to be stored in memory, which might not always be feasible for a
high number of maximal time steps. Further, the search space for the next operation to
perform is significantly smaller. Overall, from a computational point of view, LJTmpe

only performs as well as LDJTmpe does if using the FO jtree construction of LDJTmpe.
Irregardless, the memory consumption of LDJTmpe is always significantly lower due to
efficiently handling temporal aspects.

MAP Queries As we have already mentioned, assignment queries over complete time
steps are safe for LDJTmap either the last few time steps using an α message or time
steps in between other time steps using an α and a β message. Additionally to being
safe, these queries could also be of high interest as often one might not be interested in
the assignment of all PRVs, but only in the PRVs of the last few time steps. Further,
while answering marginal queries with LDJT, LDJTmap can simply store the calculated
α messages for assignment queries. Thus, for MAP queries over complete time steps,
LDJTmap reuses computations and only needs to store one FO jtree at a time.
To answer MAP queries over complete time steps with LJTmap, we again could provide

it with an unrolled FO jtree, analogous to MPE queries. Here, we would again have
overhead on the memory consumption. Nonetheless, also with LJTmap, we could use
the message pass of LJT, which includes a complete message pass with inbound and
outbound phase, and apply LJTmpe on the time steps for which we want to know the
assignment. However, LDJT normally computes fewer messages compared to LJT for
temporal models. Hence, LDJTmap significantly outperforms LJTmap for MAP queries.

8.3 Theoretical Analysis

This section investigates soundness, completeness, and complexity of LDJTmpe and
LDJTmap. The results are highly similar to the results of LDJT.

109

Chapter 8 Assignment Queries

8.3.1 Soundness

To show soundness of LDJTmpe, we show that LDJTmpe and LJTmpe with an unrolled
model perform the same calculations and therefore, compute equivalent results.

Theorem 8.3.1. LDJTmpe is sound, i.e., LDJTmpe computes the same results as LJTmpe

does for an unrolled PDM.

Proof. LJTmpe is sound. Basically, LDJTmpe unrolls an FO jtree for T time steps and
performs an inbound message pass. Thus, LDJTmpe produces the same result as unrolling
an FO jtree, providing it to LJTmpe, and LJTmpe performing an inbound message pass
with one special parcluster as root. The calculations are equivalent. Hence, as LJTmpe

is sound, LDJTmpe is also sound.

LDJTmap is a combination of LDJT and LDJTmpe.

Theorem 8.3.2. LDJTmap is sound, i.e., LDJTmap computes the same results as LJTmap

does for an unrolled PDM.

Proof. Given both LDJT and LDJTmpe are sound, soundness of the combination of both
for queries over time steps follows.

8.3.2 Completeness

We begin by showing that the completeness results of LDJT are transferable to LDJTmpe.
For LDJTmap, we only show completeness for assignment queries over complete time
steps, i.e., queries where summing out turns to maxing out are after an α message.
The main difference between LDJT and LDJTmpe is whether the approach uses lifted

summing out or lifted maxing out. These two operators have the same preconditions
from a lifting point of view, i.e., in case one of the two operators can be applied without
having to ground the other operator can also be applied without having to ground.

Theorem 8.3.3. LDJTmpe is complete for the same models as LDJT.

Proof. In case lifted summing out can be applied, lifted maxing out can also be applied.
Thus, LDJT and LDJTmpe can obtain a lifted solution for the very same models.

LDJTmap is a combination of LDJT and LDJTmpe. Unfortunately, summing out and
maxing out are not commutative. Thus, additional restrictions on the elimination order
and thereby, completeness exists. We focus on showing completeness for LDJTmap when
asking for assignments of PRVs from complete time steps.

Theorem 8.3.4. LDJTmap is complete for the same models as LDJT and LDJTmpe, in
case we ask assignment queries over complete time steps.

110

8.4 Evaluation

Proof. With assignment queries over complete time steps, LDJTmap can use the fact
that LDJT has already summed out all other variables to calculate the corresponding
α and β message. Thus, LDJTmap consists for these queries of performing LDJT for
the first time steps and start to perform LDJTmpe on a newly instantiated FO jtree for
the remaining time steps. Thereby, assignment queries over complete time steps do not
impose additional restrictions on the elimination order. Hence, the completeness results
of LDJT and LDJTmpe can also be applied to LDJTmap for assignment queries over
complete time steps.

8.3.3 Complexity

There are two main differences between LDJT and LDJTmpe, namely lifted summing out
and a complete message pass for each FO jtree against lifted maxing out and only an
inbound message pass for each FO jtree. However, these differences do not change the
complexity. Lifted summing out and lifted maxing out have the same complexity. Both
operators need to eliminate PRVs and the complexity depends on the number of rows.
Performing a complete message pass compared to only an inbound message pass differs
only in a constant factor. Further, Lemma 4.3.5 already does not include the 2 · (nJ − 1)
for the complete message pass, but only nJ as all other factors are constant. Therefore,
the complexity results of LDJT can be directly transferred to LDJTmpe.
LDJTmap is a combination of LDJT and LDJTmpe. From a complexity point of

view, LDJT and LDJTmpe are the same. Thus, the complexity results from LDJT and
LDJTmpe can also be directly transferred to LDJTmap.

8.4 Evaluation

For the evaluation, we use Gex as described in Section 5.1. Further, we vary the domain
size for the logvar X, i.e., |D(X)| = 10, |D(X)| = 100, and |D(X)| = 1000, while
setting |D(P)| = 3. Additionally, we vary the maximum number of time steps T from
10 to 10000. Figure 8.1 shows the runtimes for the corresponding MPE queries as well
as MAP queries always asking for the assignment of the last 20 time steps. We only
present runtimes for LDJT as LJT and LDJT perform the very same calculations to
answer MPE queries, because both perform only an inbound message pass. The only
difference between LJT and LDJT w.r.t. MPE queries is the memory consumptions but
not calculations. For MAP queries, the benefit of LDJT over LJT from Chapter 5 still
hold. LDJT answers MAP queries faster compared to LJT, but we would only reproduce
the results from Chapter 5. Thus, we only present runtimes for LDJT.
In Fig. 8.1, we can see that the runtimes for the MAP queries are as to be expected

linear w.r.t. the maximum number of time steps. The runtimes of MPE queries up
to about 1.000 are also as expected linear w.r.t. the maximum number of time steps.
However, for larger T , the runtimes of LDJT are no longer linear. By increasing T ,

111

Chapter 8 Assignment Queries

23 25 27 29 211 213

10−1

100

101

102 MPE MAP
n = 10
n = 100
n = 1000

Figure 8.1: MPE and MAP runtimes [seconds, log], x-axis: time steps, log

LDJT needs to store assignments for an increasing number of PRVs. The assignments
are part of the messages. Thus, the size of messages grow w.r.t. T as more assignments
need to be stored. The growing message size and the addition of even more assignments
is also the reason for the behaviour of MPE queries. Even though, compared to LJT,
LDJT is memory efficient as it only keeps one time step in memory, LDJT runs into
memory problems for 5000 and more time steps.
Overall, we can say that the runtimes for the MAP are as to be expected. However, as

the number of stored assignments grow with the maximum number of time steps, LDJT
is not linear w.r.t. the maximum number of time steps for MPE queries.

8.5 Interim Conclusion

We present LDJTmpe to efficiently solve the temporal MPE problem for temporal proba-
bilistic relational models (Contribution 5a). The idea is to use lifted maxing out instead
of lifted summing out, which LDJT uses, to eliminate PRVs. Additionally, we show that
LDJTmap (Contribution 5b) can efficiently answer MAP queries over the last x time
steps (Contribution 5c). Further, by comparing LDJT and LDJTmpe against LJT and
LJTmpe on a theoretical level, we show that an efficient handling of temporal aspects is
necessary and that LDJT and LDJTmpe significantly outperform LJT and LJTmpe for
temporal models.

112

Chapter 9

Maximum Expected Utility

The last extension to the query language that we investigate deals with expected utility
queries. With the last extension, we take the first steps towards enabling LDJT to also
support decision making. LDJT in its basic form cannot reason about optimal actions
w.r.t. some predefined rewards or utilities. LDJT can answers marginal queries and
from these results, one could possibly also determine which action one probably wants
to perform next. However, evaluating all marginals for at least one PRV by hand can be
quite cumbersome. Therefore, we now extend PMs and PDMs with actions and utilities,
to directly query what the best action is. For example, one could ask which option is
better to improve ones reputation with the options being attending a conference now
without a publication and spending time on doing research to possibly later attend a
conference with a publication.
The general idea of expected utility queries is similar to marginal queries. The main

difference is that in addition to obtaining the current belief state of PRVs, these belief
states are multiplied with corresponding predefined utility values. By selecting an action
that maximises the expected utility, one can solve the MEU problem. Thus, the general
problem of expected utility queries is to calculate the best action, i.e., the action that
maximises the expected utility given evidence.
In this chapter, we present parameterised probabilistic decision models (PDecMs) and

parameterised probabilistic dynamic decision models (PDDecMs). Further, we introduce
LJTmeu to answer multiple marginal and expected utility queries efficiently for static
probabilistic relational models and LDJTmeu to answer multiple marginal and expected
utility queries efficiently for temporal probabilistic relational models. By calculating an
exact solution to the MEU problem, LJTmeu and LDJTmeu can be used to explain the
suggested decision. For an exact solution, the effect of each possible action needs to
be checked. Thus, LJTmeu and LDJTmeu check all influences of each action, making it
explainable why the algorithms suggest an action. Further, asking additional marginal
queries allows for making the decisions explorable. In this context, explorable means that
one can ask additional queries to better understand the suggested action. Hence, LJT
and LDJT answering multiple marginal queries efficiently allows for making the decisions
efficiently explorable.
For static models, Nath and Domingos (2009) introduce Markov logic decision net-

113

Chapter 9 Maximum Expected Utility

works (MLDNs), which include action and utility nodes. Nath and Domingos calculate
approximate solutions to the static MEU problem in a completely grounded way (Nath
and Domingos, 2010b) based on MLDNs. Another approach of Nath and Domingos is
approximate (Nath and Domingos, 2010a). Further, Apsel and Brafman (2011) propose
an exact lifted solution to the MEU problem based on the work by Nath and Domingos
(2009). These approaches are designed to handle single queries. However, we propose to
answer multiple queries efficiently, i.e., a combination of marginal and expected utility
queries. Van den Broeck et al. (2010) propose an approach that in theory could answer
multiple queries efficiently. Even though the approach only defines utility queries, the
compiled structure could in theory be used to also also answer marginal queries. The
approach of Van den Broeck et al. (2010) provides exact and approximate solutions to
the MEU problem. However, they do not employ any lifting techniques. Unfortunately,
to obtain an exact solution an algorithm has to iterate over all actions. While iterating
over all possible actions to calculate an exact solution to the MEU problem, our approach
can reuse the FO jtree structures and computations
Additional research focuses on sequential decision making by investigating first-order

(partially observable) Markov decision processes (FO (PO)MDPs) (Sanner and Boutilier,
2007; Joshi et al., 2009; Sanner and Kersting, 2010). In contrast to FO POMDPs, which
support offline decision making, we propose to support probabilistic online decision mak-
ing, which allows for reacting to observations as well as for query answering. Additionally,
our approaches allow for asking additional marginal queries.
In the following, we present PDecMs and LJTmeu. Afterwards, we show how LDJTmeu

solve the temporal lifted MEU problem with PDDecMs. Lastly, we theoretically and em-
pirically evaluate LJTmeu and LDJTmeu and conclude by looking at possible extensions.
This chapter is based on the following publications:

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph
Strumann, and Jost Steinhäuser. Towards Lifted Maximum Expected Utility.
In Proceedings of the Joint Workshop on Artificial Intelligence in Health in
Conjunction with the 27th IJCAI, the 23rd ECAI, the 17th AAMAS, and the
35th ICML, pages 93–96. CEUR-WS.org, 2018

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph
Strumann, and Jost Steinhäuser. Lifted Maximum Expected Utility. In Pro-
ceedings of Artificial Intelligence in Health, pages 131–141. Springer Interna-
tional Publishing, 2019

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Maximum
Expected Utility. In Proceedings of the 32nd Canadian Conference on Artifi-
cial Intelligence, Canadian AI 2019, pages 380–386. Springer, 2019

In addition to the contributions of the publications, we also present a theoretical analysis
and also empirical results for LJTmeu and LDJTmeu application.

114

9.1 Lifted Maximum Expected Utility

9.1 Lifted Maximum Expected Utility

In this section, we introduce actions and utilities for PMs forming PDecMs, define the
MEU problem for PDecMs, and show how LJTmeu solves the MEU problem.

9.1.1 Parameterised Probabilistic Decision Models

Let us extend PMs with action and utility nodes, resulting in PDecMs.

Definition 9.1.1 (PDecM). Let Φu be a set of utility factor names. The range of action
PRVs is a set of disjoint actions and the range of utility PRVs is R. A parfactor with
a utility PRV U is a utility parfactor u. We denote u with µ(A)|C , where U ∈ A and
C a constraint on lv(A). Function µ : ×Ai∈(A\{U})R(Ai) 7→ R, µ ∈ Φu, is identical for
gr(A|C). Its output is the additive change of U ’s value and we only have one U . The
default initial utility value is 0. A PDecM G is a PM that also contains utility parfactors.
Let Gu refer to the utility parfactors in G and rv(Gu) refer to all probability PRVs in
Gu. Gu represents the combination of all utilities UG =

∑
f∈gr(Gu) f .

µ functions return a utility, i.e., a scalar, which makes comparing utility values easy.
After the evaluation of a µ function, the initial value U = i is changed by the output
value, j, resulting in the new value U = i + j. As a utility parfactor contains a utility
PRV, the functions does not use the utility PRV as input but solely as output.

Example 9.1.1 (Utilities). With utilities we can model influences of doing research,
publishing, and attending a conference w.r.t. a topic being hot. If an individual only does
research without publishing and attending conferences, we can model that the individual
gets a negative utility. However, if an instance publishes and attends conferences, then
that individual gets a positive (relatively high) utility. Only attending conferences could
also have a slightly positive influence on the utility of the instance and whether a topic is
hot. Similar for all other possible combinations we have to assign a utility value.

With utilities incorporated, we look at actions. To model actions, we introduce an
action PRV with the actions in its range. Hence, we have one PRV modeling disjoint
actions. To execute an action, we set the value of the action PRV to the action, which we
want to perform, similarly to providing evidence for marginal queries. Thus, the range of
an action PRV B(X) consists of different actions, lets say b1, ..., bn, and by setting B(X)
to the action, let us say b1, i.e., B(X) = b1, we can select an action.

Example 9.1.2 (Actions and utilities). We extend the example with actions and utilities.
In Fig. 9.1, we can see one action node (square), one utility node (diamond), and one
utility parfactor (crosses). The action PRV B(X) has two actions in its range, namely
b1, submit a paper, and action b2, keep on researching for writing a paper later on.
The state of a current paper from a researcher and B(X) influence the utility. There are

two possibilities, namely submitting the paper if one feels the paper is ready for publication

115

Chapter 9 Maximum Expected Utility

Hot

g0

Pub(X, J)

Att(X)

g1

DoR(X)
ga

Util

B(X)

Figure 9.1: PDecM of Gex

or keeping on working on the paper to improve it. One can decide to keep working on the
paper, even though the paper might be ready for publication. By doing so, it is possible
that other researchers come up with a similar idea, rendering the own paper outdated.
Thus, one always needs to consider that submitting a paper too early might delay the
publication of that paper unnecessarily and submitting a paper too late can render that
paper obsolete.

Now, we take a look at how one can calculate a best action w.r.t. a PM and given
utilities.

9.1.2 Maximum Expected Utility

To select the best action, we define expected utility queries on a PDecM.

Definition 9.1.2 (Expected utility query). Given a PDecM G, a query term Q, and
events E, the expression P (Q|E) denotes a probability query w.r.t. PG. Given an assign-
ment a for an action in G, the expression U(Q,E,a) refers to a utility w.r.t. UG. The
expected utility of G is defined by

eu(G|E,a) =
∑

v∈range(rv(Gu))

P (v|E,a) · U(v,E,a) (9.1)

The inner part of the summation in Eq. (9.1) calculates a belief state P (v|E,a) and
combines it with corresponding utilities U(v,E,a). By summing over all randvars from
Gu, one obtains a scalar representing the expected utility. LVE allows for exactly com-
puting an expected utilities. Based on expected utility, we define the MEU as follows.

Definition 9.1.3 (MEU problem). Given a PDecM G and evidence E, the MEU problem
is given by

meu[G,E] =

(
arg max

a
eu(G|E,a),max

a
eu(G|E,a)

)
(9.2)

116

9.1 Lifted Maximum Expected Utility

Equation (9.2) suggests a naive algorithm for calculating an MEU, namely by iterating
over all possible action configurations, computing an expected utility for each configura-
tion using LVE, an iteration that one cannot avoid if asking for an exact solution. The
action assignment that maximises the expected utility is selected. As the utility value is
a scalar, the expected utility w.r.t. configurations can be easily compared. Therefore, we
also can easily determine configurations whose expected utility lie within an ε margin,
making the actions hardly discriminable w.r.t. utilities.

Example 9.1.3 (Maximum Expected Utilities). The action PRV in Gex has two pos-
sible actions. By setting B(X) = b1, we turn on B1. By setting B(X) = b2, we turn
on B2. Thus, in our example to calculate the MEU, we need to iterate over two ac-
tion assignments. For each expected utility, we obtain a scalar, allowing us to easily
compare them and return the action with the MEU and the expected utility value. If
all researcher/paper behave the same, we only need to iterate over two actions. In
case we obtain different evidence for, say, two groups of researchers, X1 and X2, we
need to iterate over the actions for both groups. Hence, we would need to iterate over
{B(X1) = b1, B(X2) = b1}, {B(X1) = b2, B(X2) = b1}, {B(X1) = b1, B(X2) = b2},
and {B(X1) = b2, B(X2) = b2}. In general, we need to iterate over rn actions, where
r is the number of actions in the range of an action PRV and n the number of differ-
ent groups. Assuming, we have ten researchers in two groups and two possible actions.
Solving the MEU in a lifted way, we need to iterate over 22 = 4 actions. Without the
lifting idea, we would need to iterate over 210 = 1024 actions. Therefore, solving the
MEU problem in a lifted way makes the problem manageable.

To solve the MEU problem, we can extend LJT to meuLJT. Allowing utility parfactors
in parclusters is straightforward. Basically, we only need to consider that G is not a PM
anymore but a PDecM and that the local models are composed of utility and probability
parfactors of G. While constructing the FO jtree, meuLJT treats the utility parfactor
in the same way as probability parfactors. With the parclusters, meuLJT distributes
state descriptions of all parfactors by message passing. In this case meuLJT excludes
the utility parfactor from the message pass. As only one utility parfactor exists in a
PDecM, meuLJT also does not need to perform a message pass for utility values. Then,

Algorithm 9 meuLJT for a PDecM G, Queries {Q}, Evidence {E}
procedure meuLJT(G, {Q}, {E})

J := FO-JTREE(G)
J := EnterEvidence(J,E)
J := PassProbMessages(J)
AnswerMEUQuery(J)
AnswerQueries(Jt,Qt)

117

Chapter 9 Maximum Expected Utility

the parcluster with the utility parfactor in its local model can answer utility queries.
Algorithm 9 outlines the described idea of meuLJT.

Example 9.1.4 (meuLJT). In our example. the action PRV B(X) is only connected to
the utility parfactor. Thus, B(X) does not influence the belief state of Att(X), DoR(X),
Pub(X, J), or Hot. In such a case, the efficiency of meuLJT can benefit from the under-
lying FO jtree. For example, the FO jtree has one parcluster with only the utility parfactor
in the local model, then meuLJT passes the probability belief state to that parcluster dur-
ing message passing. Additionally, selecting another action does not change that belief
state. Hence, the belief state still holds when selecting a new action and meuLJT does
not have to perform a message pass again. Thus, the effort to calculate a new expected
utility boils down to answer a new query without having to perform another message pass.

Knowing how meuLJT can calculate the best action, let us extend the problem to the
temporal case and present meuLDJT.

9.2 Lifted Temporal Maximum Expected Utility

We define PDDecMs with action and utility nodes to support temporal decision making.
Finally, we define the temporal MEU problem for PDDecMs and introduce meuLDJT.

9.2.1 Parameterised Probabilistic Decision Models

For a PDDecM, which extends a PDecM to the temporal case, we define a utility transfer
function to connect two utility PRVs from different time steps.

Definition 9.2.1 (PDDecM). A utility transfer function λ has utility PRVs U as input
and one utility PRV Uo as output. Additionally, λ can have non utility PRVs as input.
λ specifies how the value of Uo is additively changed when transferring from time step
t to t + 1. A PDDecM is a pair of PDecMs (G0, G→) with Gu→ also possibly containing
utility transfer functions. Given a PDDecM G, a temporal MEU query asks for the action
sequence (range values for each action PRV in G over time) that maximises the overall
expected utility in G up to the current time step.

Example 9.2.1 (PDDecM). Figure 9.2 shows a PDDecM for our example. The main
difference to Fig. 9.1 is that now, we can also see a utility transfer parfactor gU in black.
Further, as the action influences whether one keeps on working on the current paper, the
action now also influences DoR(X) in the next time step. PDDecMs encode trade-offs
of performing actions, e.g., submitting now or keeping to work on the paper, in transfer
utility parfactors. Connecting Utilt−1 and Utilt with a utility transfer parfactor gU makes
utility PRVs time-dependent and allows for discounting. For example, gU specifies that
the value of Utilt−1 is reduced by 5 and then added to Utilt.

118

9.3 Solving the MEU Problem with meuLDJT

Algorithm 10 meuLDJT for a PDDecM G, Queries {Q}Tt=0, Evidence {E}Tt=0, and
Horizon h
procedure meuLDJT(G0, G→, {Q}Tt=0, {E}Tt=0, h)

(J0, Jt, It) := DFO-JTREE(G0, G→)
while t 6= T + 1 do

Jt := LJT.EnterEvidence(Jt,Et)
Jt := LJT.PassProbMessages(Jt)
Jt := LJT.PassUtilMessages(Jt)
AnswerQueries(Jt,Qt)
AnswerMEUQuery(Jt, h)
(Jt, t, α[t− 1]) := ForwardPassJt, t)

Equation (9.2) defines how to calculate the MEU for a PDecM and a PDDecM. Using
a utility transfer function, we see the problem as an iterative filtering problem. The
expected utility is calculated for one time step and then the utility value is transferred to
the next time step. Therefore, the utility value of the latest time step is the overall utility
value. Due to the inherent uncertainty of PDDecMs, calculating the best actions is only
feasible for a finite horizon as one needs to iterate over all possible action assignments.
Next, we investigate how meuLDJT can solve the temporal lifted MEU problem.

9.3 Solving the MEU Problem with meuLDJT

We illustrate how meuLDJT incorporates utilities and solves the MEU problem for one
utility PRV and parfactor for each time step.

Including Utilities Algorithm 10 outlines how meuLDJT includes utilities. Similar to
LDJT for PDMs, meuLDJT first builds FO jtree structures for a PDDecM. As mentioned
earlier, allowing utility parfactors in parclusters is straightforward. While construct-

Hott−1

g0
t−1

Pubt−1(X, J)

Attt−1(X)

g1
t−1

DoRt−1(X)
gat−1

Utilt−1

Bt−1(X)

Hott

g0
t

Pubt(X, J)

Attt(X)

g1
t

DoRt(X)
gat

Utilt

Bt(X)

gU

gH

gB

Figure 9.2: PDDecM of Gex

119

Chapter 9 Maximum Expected Utility

ing the FO jtree, meuLDJT treats the utility parfactor in the same way as probability
parfactors. With the parclusters, meuLDJT distributes local information by message
passing. To calculate the probability messages, meuLDJT excludes utility parfactors
as they do not influence the probability distributions. Using the probability messages,
meuLDJT can calculate the current utility value and can distribute the value as long
as the utility PRV is in the separator. To calculate utilities, utility parclusters need to
know the probability distributions, which are distributed to each parcluster during mes-
sage passing. Using the probability distributions, for each group meuLDJT calculates
a utility value and multiplies the value by the number of groundings. The new utility
value is then added to the old utility value. Further, the utility transfer function ensure
the transfer of utility values, while the behaviour of LDJT ensures preserving the current
state.

Answering MEU Queries meuLDJT can answer MEU queries for a finite horizon. The
horizon defines how far meuLDJT predicts the future. For a given horizon, meuLDJT
tests all action sequences to find the best action sequence. To do so, meuLDJT con-
structs all action sequences for a horizon. meuLDJT constructs rh+1

a action sequences,
where ra is the overall range of action PRVs, i.e., number of actions and h the horizon.
For each action sequence, meuLDJT enters the sequence as evidence and answers the ex-
pected utility query for that sequence. Finally, after having tested all action sequences,
meuLDJT returns the best action sequence and the expected utility value.

Example 9.3.1 (Calculating utilities over time). Assume that t = 3 and we only have a
horizon of 1 to answer an MEU query. First, meuLDJT constructs the action sequences.
With the two range values of our action PRV B(X), there are four action sequences.
For example, the first action sequence is B3(X) = b1 and B4(X) = b1. Then, meuLDJT
enters B3(X) = b1 in the FO jtree for time step 3. Message passing on the FO jtrees
is performed in two steps. The first step is to calculate probability messages. The sec-
ond step is to calculate utility messages. meuLDJT uses the probability messages and
the evidence, which includes the current action, and distributes the utility through the
FO jtree. After message passing, each parcluster can answer queries about its PRVs.
Thus, meuLDJT can answer multiple probability and utility queries efficiently as it can
reason over representatives. To proceed in time, meuLDJT uses the out-cluster to calcu-
late an α message over the interface PRVs, which now includes Utilt. Hence, the current
belief state and utility value is stored in the α message and then added to the in-cluster of
the next time step. Using the utility transfer function, the current FO jtree contains the
overall utility value. Next, meuLDJT enters B4(X) = B1 in the FO jtree for time step
4 and performs the two message passes. Last, meuLDJT calculates the expected utility
value, stores it to for comparison, and proceeds with the next action sequence.
For the next sequence, B3(X) = B1 and B4(X) = B0, meuLDJT can reuse previous

calculations. meuLDJT has already calculated the expected utility and probabilities for

120

9.4 Theoretical Analysis

the subsequence B3(X) = B1. Thus, meuLDJT can directly continue with B4(X) = B0

by using the previously calculated α3 for B3(X) = B1. meuLDJT calculates the expected
utility value for the sequence B3(X) = B1 and B4(X) = B0 and proceeds until the
expected utility values for all four sequences are calculated. Finally, returns the action
sequence with the MEU as well as the corresponding utility value.

As seen in the example, meuLDJT does not need to start from scratch for each utility
query, but can reuse previous calculations, which can be significant for large subsequences.
Thereby, meuLDJT helps to make the combinatorial problem behind solving the temporal
MEU problem more manageable. Additionally, by calculating an exact solution to the
temporal MEU problem, the proposed best action sequence of meuLDJT is explainable.
meuLDJT calculates the expected utility for each action sequence for a finite horizon.
Thus, the output is the action sequence with the highest expected utility. To make the
proposed action sequence even more explainable, the sequence can be explored by asking
additional marginal queries. As meuLDJT is based on LDJT, meuLDJT can efficiently
answer multiple marginal queries. The marginal queries can be used to check a gut feeling
against the best action sequence. Further, one could also ask marginal queries for action
sequences that one would expect to be good action sequences. Hence, with meuLDJT,
one can explain and explore action sequences. Now, let us have a look at the theoretical
analysis of meuLDJT.

9.4 Theoretical Analysis

This section investigates soundness, completeness, and complexity of meuLDJT.

9.4.1 Soundness

To investigate the soundness of meuLDJT, we first look into meuLJT and show that
meuLJT is sound for one utility parfactor.

Theorem 9.4.1. meuLJT is sound, i.e., it produces the same best action as any exact
ground algorithm, for one utility parfactor.

Proof. LJT is sound and meuLJT uses LJT for the probability calculations. For the
message pass, meuLJT only takes probability parfactors into account. Leading to the
very same messages as if the utility parfactor would not be in the model. Thus, marginal
queries are still sound. To calculate an expected utility, meuLJT needs to calculate a
belief state of the PRVs from the utility parfactor. As the marginal queries are sound,
the belief state of the PRVs is also sound. Hence, by multiplying the belief state with
the utility parfactor, accounting for groundings by eliminating logvars, which LJT does,
and summing over the range values, meuLJT soundly calculates an expected utility. By
iterating over all possible actions, meuLJT solves the temporal MEU problem. Further,

121

Chapter 9 Maximum Expected Utility

meuLJT calculates the same result as any ground algorithm, as meuLJT is based on
sound computations of LJT.

One difference between meuLJT and meuLDJT is that meuLDJT has more than one
utility parfactor because meuLDJT has one utility parfactor for each time step. Thus,
for meuLDJT, we also show that passing utility values is sound.

Theorem 9.4.2. meuLDJT is sound, i.e., it produces the same best action sequence as
any exact ground algorithm.

Proof. LDJT is sound and meuLDJT uses LDJT for the probability calculations. Thus,
marginal hindsight, filtering, and prediction queries are still sound. To calculate the new
utility value, meuLDJT calculates the utility value and adds it to the old utility value.
While calculating the utility value, meuLDJT accounts for the groundings, namely it
calculates the utility value for one representative and multiplies it by the number of
groundings. As all instances behave the same, each would contribute the same utility
value in a ground model. Hence, by calculating a utility for one representative and
multiplying the utility by the number of groundings, meuLDJT obtains the same result
a ground algorithm would obtain. Additionally, the message passing inside of an FO jtree
ensures that the current utility value is known at all relevant parclusters and the transfer
function preserves the value over time.

Knowing that meuLDJT is sound, we now look at the completeness of meuLDJT.

9.4.2 Completeness

To show completeness of meuLDJT, we use the completeness of LDJT. By not distin-
guishing between utility and probability parfactors, i.e., by treating them all the same for
the completeness analysis, we can transfer completeness results of LDJT to meuLDJT.
Hence, the interface PRVs also account for the PRVs in utility transfer parfactors.

Theorem 9.4.3. meuLDJT is complete for the same models as LDJT.

Proof. Inside a time step, meuLDJT first performs a probability message pass, where
the utility parfactors are not accounted for. Thus, the completeness of LDJT still holds
for this message pass. The utility message pass only distributes the current utility value,
but does not eliminate any PRVs. Therefore, the utility message pass does not change
anything w.r.t. completeness. As the utility PRV can also be parameterised, we need
to account for it while proceeding in time. The interface PRVs account for the PRVs
in the utility transfer parfactors. Thus, for temporal messages, which now also includes
the utility value, completeness results of LDJT also apply for meuLDJT. Therefore,
meuLDJT is complete for the same models as LDJT.

Thus, the completeness results of LDJT can be transferred to meuLDJT. Now, we
take a look at the complexity of meuLDJT.

122

9.4 Theoretical Analysis

9.4.3 Complexity

For the complexity of meuLDJT, we investigate the complexity of answering one MEU
query with meuLDJT. In general, meuLDJT constructs rh+1

a action sequences, where
ra is the overall range of action PRVs, i.e., number of actions and h the horizon. Thus,
in the worst case, meuLDJT would need to go over rh+1

a action sequences, leading to
rh+1
a message passes for each of the h+ 1 FO jtrees as meuLDJT computes the message
passes of h+1 time steps. However, as we mentioned, meuLDJT can reuse computation.
By reusing computations, meuLDJT needs to compute

∑h+1
i=1 r

i
a message passes and ex-

pected utility queries. For the current time step, there are only r1
a actions possible. For

the next time step, there are r2
a actions possible because, for each action from the cur-

rent time step, there are r1
a actions possible in the next time step and so on. Therefore,

meuLDJT needs to compute
∑h+1

i=1 r
i
a message passes and expected utility queries. Fur-

ther, the geometric series
∑h+1

i=1 r
i
a can be rewritten as ra·(1−rh+1

a)
1−ra = ra·(rh+1

a −1)
ra−1 , which is

from a complexity perspective bounded by rh+1
a . Hence, from a complexity perspective,

meuLDJT only needs to perform rh+1
a message passes on a small FO jtree, while meuLJT

needs to perform rh+1
a message passes on an FO jtree with a higher lifted width and more

parclusters.
Now, we take a look at the step wise complexity of meuLDJT and then combine the

step wise complexities to the overall complexity of meuLDJT. Again, we use the notion
from Section 4.3.2. Further, the lifted width now also includes the utility parfactors.
Evidence entering consists of absorbing evidence at each applicable node.

Lemma 9.4.1. The complexity of absorbing an evidence parfactor is

O(rh+1
a · nJ · log2 n · rwg · nw#·r#

). (9.3)

For each FO jtree, meuLDJT needs to set the current action as evidence. Thus, to
answer one MEU query, meuLDJT needs to set evidence in

∑h+1
i=1 r

i
a FO jtrees.

Passing messages consists of calculating messages with LJT for every action sequence.

Lemma 9.4.2. The complexity of passing messages is

O(rh+1
a · nJ · log2 n · rwg · nw#·r#

). (9.4)

As we mentioned, meuLDJT can reuse some calculations leading to
∑h+1

i=1 r
i
a instead

of (h+ 1) · rh+1
a message passes.

For each different action in the action sequences, meuLDJT also needs to compute an
expected utility query.

Lemma 9.4.3. The complexity of answering an MEU query is

O(rh+1
a · log2 n · rwg · nw#·r#

). (9.5)

123

Chapter 9 Maximum Expected Utility

Answering an expected utility query or a marginal query is the same from a com-
plexity perspective. Overall, for rh+1

a action sequences, meuLDJT has
∑h+1

i=1 r
i
a different

actions, leading to
∑h+1

i=1 r
i
a expected utility queries. In addition to the expected utility

queries, meuLDJT also needs to compute
∑h+1

i=1 r
i
a α messages, but that only leads to a

multiplication by 2 in Eq. (9.5).
We now combine the stepwise complexities to arrive at the complexity of LDJT by

adding up the complexities in Eqs. (9.3) to (9.5).

Theorem 9.4.4. The overall complexity of meuLDJT to answer one MEU query with a
horizon of h is

O(rh+1
a · nJ · log2 n · rwg · nw#·r#

). (9.6)

9.5 Evaluation

5 10 15 20

10−2

10−1

100

101

102

103

104

105
LJT LDJT

n = 10
n = 100
n = 1000

Figure 9.3: Maximum expected utility queries for two possible actions [seconds, log],
x-axis: horizon

Let us now evaluate meuLJT and meuLDJT. For the evaluation, we use the example
model from this chapter, but again with the PRV Hot being parameterised with X.
We provide meuLJT with the unrolled model and compare it against meuLDJT while
increasing the horizon. We vary the domain size for the logvar X, i.e., |D(X)| = 10,
|D(X)| = 100, and |D(X)| = 1000, while setting |D(P)| = 3. Additionally, we evaluate
our example model with two actions, i.e., there are two range values for the action PRV,
as well as with three actions, i.e., there are three range values for the action PRV.

124

9.6 Interim Conclusion

5 10 15 20

10−2

10−1

100

101

102

103

104

105

106 LJT LDJT
n = 10
n = 100
n = 1000

Figure 9.4: Maximum expected utility queries for three possible actions [seconds, log],
x-axis: horizon

Figure 9.3 shows the runtimes for two possible action with a horizon up to 20 time
steps. For meuLDJT, we can see that increasing the horizon by one doubles the runtime.
The behaviour can be explained with the rh+1

a from the complexity results, as ra is 2.
Further, as expected meuLDJT is always faster compared to meuLJT. meuLJT needs
to compute the same number of message passes, just on the FO jtree constructed from
the unrolled model instead of a small FO jtree encoding a single time step.
Figure 9.4 shows the runtimes with a horizon up to 18 time steps for three actions.

Here, we stopped some runs as answering the MEU for a horizon of 16 with |D(X)| = 1000
took roughly 10 days. Nonetheless, we can also see that the runtimes increase by a factor
of three if we increase the horizon by one. For this setting, ra is 3. Hence, the runtimes
depicted in Figs. 9.3 and 9.4 can be explained quite well by the results of the complexity
analysis. In both cases increasing the domain sizes to 1000 significantly increases the
runtimes. However, without lifting calculating an MEU for so many randvars with such
a horizon would be infeasible.

9.6 Interim Conclusion

We present PDDecMs, an extension to PDMs, and meuLDJT (Contribution 6a and 6b)
for sequential probabilistic online decision support by calculating a solution to the lifted
temporal MEU problem. By maximising the expected utility, meuLDJT can calculate
a best action sequence. We also show that using meuLDJT is more efficient than using

125

Chapter 9 Maximum Expected Utility

meuLJT with an unrolled model (Contribution 6c). Further, meuLDJT can efficiently
answer a combination of expected utility, hindsight, filtering, and prediction queries. Thus,
meuLDJT can support decision support and can help to understand the suggested deci-
sion by also efficiently answering multiple marginal queries.
We currently check whether meuLDJT can reuse computations from previous expected

utility calculations by, e.g., identifying dominant actions for belief state regions.

126

Part III

Extending Evidence Handling

Chapter 10

Uncertain Evidence

In this part of the dissertation, we focus on evidence in temporal probabilistic relational
models. We begin by investigating uncertain evidence, i.e., observations that are not
either true or false, but with a probability p true and with 1 − p false. Additionally,
we would like to investigate that evidence can slowly ground a temporal probabilistic
relational model. To benefit from lifted calculations, we propose a method to approximate
symmetries to restore a lifted representation after evidence has slowly grounded a model.
So far lifted inference approaches have only dealt with certain evidence, i.e., evidence

parfactors where exactly one range value is mapped to 1 and all other range values are
mapped to 0. In this chapter, we investigate uncertain evidence, i.e., evidence that is
assigned more than one range value with a potential greater than 0.
For Bayesian networks, work on uncertain evidence exists, sometimes called soft evi-

dence in contrast to certain, i.e., hard evidence (Chan and Darwiche, 2005; Pearl, 2001,
2014; Jeffrey, 1990; Peng et al., 2010). To the best of our knowledge, lifted inference
algorithms only handle certain evidence. In this chapter, we interpret uncertain evi-
dence in the sense of a priori distributions, which is closely related to Pearl’s method
of virtual evidence (Pearl, 2014). This chapter includes two main contributions, (i) an
algorithm, LVEevi, for handling uncertain evidence w.r.t. probabilistic relational models
and (ii) LJTevi, for handling uncertain evidence for multiple queries. Additionally, we
show soundness and completeness results for LVEevi and LJTevi and a brief empirical
case study.
The remainder of this chapter is structured as follows: First, we recapitulate how LVE

handles certain evidence and then present LVEevi to handle uncertain evidence. Second,
we recapitulate how LJT handles certain evidence and then present LJTevi to handle
uncertain evidence. Then, we present an empirical case study and show that from a
runtime perspective certain and uncertain evidence roughly put the same overhead on
the execution time. Last, we conclude with upcoming work.
This chapter is based on the following publication:

Marcel Gehrke, Tanya Braun, and Ralf Möller. Uncertain Evidence for Prob-
abilistic Relational Models. In Proceedings of the 32nd Canadian Conference
on Artificial Intelligence, Canadian AI 2019, pages 80–93. Springer, 2019

129

Chapter 10 Uncertain Evidence

10.1 LVE for Uncertain Evidence

Currently, evidence in LVE, and therefore, LJT as well as LDJT, is always certain.
However, sensors often are not completely reliable or some test may be more precisely
performed in a hospital compared to a test in a general practice (Steinhäuser and Kühlein,
2015). Before we incorporate uncertain evidence in LVE, we take a closer look at how
LVE handles certain evidence.

10.1.1 Evidence in LVE

Evidence displays symmetries if observing the same value for n instances of a PRV
(Taghipour et al., 2013c). In a parfactor gE = φE(R(X))|CE , a potential function φE

and constraint CE encode the observed values and instances for PRV R(X).

Example 10.1.1 (Entering evidence). Assume we observe the value true for ten randvars
of the PRV Att(X). The corresponding parfactor is φE(Att(X))|CE . CE represents the
domain of X restricted to the 10 instances and φE(true) = 1 and φE(false) = 0.

A technical remark: To absorb evidence, we split all parfactors gi that cover R(X),
called shattering (Braz et al., 2005), restricting Ci to those tuples that contain gr(R(X)|CE)

and a duplicate of gi to the rest. gi absorbs gE .
To understand evidence entering, let us have a look at lifted absorption, which is

outlined in Alg. 11, without including CRVs for ease of explanation. The operator uses
a count function defined as follows.

Definition 10.1.1 (Count function). Given a constraint C = (X , CX), for any Y ⊆ X
and Z ⊆ X \Y, the function countY|Z : CX → N is defined by

countY|Z(t) = |πY(CX ./Z πZ(t))|.

i.e., for a tuple t ∈ CX, it outputs how many constants for Y co-occur with the value of
Z in t. We define countY|Z(t) = 1 for Y = ∅. Y is count-normalised w.r.t. Z in C iff

∃n ∈ N : ∀t ∈ CX : countY|Z(t) = n.

If n exists, we call it the conditional count of Y given Z in C, denoted by countY|Z(C).

Before we take a closer look at the operator, we illustrate the count function.

Example 10.1.2 (Count). Consider the constraint C = ((X, J), {(eve, springer),
(alice, aaai_press), (alice, springer), (bob, aaai_press), (bob, springer)}). With X =
{X, J}, Y = {J}, and Z = {X}, the count function calculates the following for tuple
(eve, springer): First, it projects (eve, springer) onto {X}, which leaves (eve). Then, it
joins eve with the tuples from C, i.e., (eve, springer), and projects the tuples onto {J},

130

10.1 LVE for Uncertain Evidence

Algorithm 11 Lifted Absorption (Taghipour et al., 2013c).
Operator absorb
Inputs:
(1) g = φ(A)|C : a parfactor in G
(2) Ai ∈ A with Ai = R(X)
(3) gE = φE(R(X))|CE : an evidence parfactor
Let Xexcl = X \ lv(A \Ai);
L′ = lv(A) \Xexcl;
o = the observed value for R(X) in gE

Preconditions:
(1) gr(Ai|Ci) ⊆ gr(Ai|CE)

(2) Xexcl is count-normalised w.r.t. L′ in C.
Output: φ′(A′)|C′ , with
(1) A′ = A \Ai
(2) C ′ = πlv(C)\Xexcl(C)

(3) φ′(. . . , ai−1, ai+1, . . .) = φ(. . . , ai−1, o, ai+1, . . .)r with r = CountXexcl|L′(C)

Postcondition: G ∪ {gE} ≡ G \ {g} ∪ {gE ,absorb(g,Ai, gE)}

which results in a set with one element, (springer). Last, it outputs the cardinality of
the set, here 1. For (alice, aaai_press), the first projection yields (alice), with the join
resulting in (alice, aaai_press) and (alice, springer) and the second projection resulting
in (aaai_press) and (springer), yielding a cardinality of 2. Thus, there does not exist a
unique n for all tuples in C, that is, J is not count-normalised w.r.t. X in C.
Now, consider the constraint C ′ = ((X, J), {(alice, aaai_press), (alice, springer),

(bob, aaai_press), (bob, springer)}). Here, each tuple leads to a count of 2 given X =
{X, J}, Y = {J}, and Z = {X} and thus, J is count-normalised w.r.t. X in C ′. The
conditional count of J given X in C ′ is 2. In case, alice and bob would additionally
publish another journal, the count would be 3. The count in this case is important as
absorbing evidence eliminates as many instances as the count function yields, and thus,
LVE needs to exponentiate the result with the count.

absorb has as inputs an evidence parfactor gE with evidence for a PRV Ai and a
parfactor g, which contains Ai. As a precondition, Ai covers at most the randvars of
gE in g. Thus, LVE often performs a shattering before absorption to split parfactors
into parts with and without evidence. The other precondition relates to logvars being
eliminated during absorption. For the output parfactor, the operator deletes Ai from
g, reducing the dimensions in g. The operator also projects the constraint C of g onto
the remaining logvars. Lastly, it collects all potentials that agree with the evidence,
i.e., where Ai = o, and exponentiates them accordingly. As the operator performs a

131

Chapter 10 Uncertain Evidence

dimension reduction by deleting Ai from the argument sequence, rather than keeping the
argument and setting all potentials where Ai 6= o to 0, LVE has to apply the absorption
operator to each parfactor that contains Ai.

Example 10.1.3 (Absorb operation). To illustrate the absorb operator, assume that
eve attends a conference, i.e., Att(eve) = true. LVE builds an evidence parfactor gE =
φE(Att(X))|CE , with CE = (X, {eve}). As g0 and g1 contain Att(X), both need to
absorb gE. To absorb gE in g0, LVE first splits g0 into g0′ for eve and g0′′ for all other
instances, i.e., alice and bob. With gE and g0′ as inputs, the first precondition holds as
both gE and g0′ have X restricted to eve. Since Xexcl = X \ lv(Hot, Pub(X, J)) = ∅,
i.e., no logvars are eliminated, Xexcl is count-normalised and r = 1. Hence, the operator
can proceed. It removes Att(X) from g0′. The constraint remains unchanged. Lastly, all
potentials that agree with Att(eve) = true remain and are exponentiated to the power of
1. Similarly, gE gets absorbed in g1.

One could also perform lifted absorption by multiplying gE into g, which leads to
potentials of 0 wheneverAi 6= o. Afterwards, one could drop the mappings with potentials
of 0 and then eliminate Ai from the argument sequence as after dropping the mappings,
Ai = o in all remaining mappings, holding no further information. However, absorption
as in Alg. 11 only works for certain evidence.

10.1.2 Uncertain Evidence in LVEevi

The main differences to certain evidence and its handling are to be found in in specifying
evidence, constructing evidence parfactors, and handling evidence parfactors within LVE.
Currently, one event has a potential of 1, while all others have a potential of 0 in an
evidence parfactor. With uncertain evidence, we need to be able to specify potentials
different from 0 and 1 for possible events of a PRV. However, evidence should not incur
a scaling factor. Therefore, individual events of a PRV A have assigned a potential p
with p ∈ [0, 1] and the potentials of all possible events of A add up to 1. We allow for
two options to specify potentials for events. The first option is to specify the potential
for each possible event of a PRV Ai with the sum of the potentials being 1. LVEevi then
constructs an evidence parfactor gE = φE(Ai)|CE accordingly. The second option is to
specify a subset of the events with the sum of the potentials s being at most 1. LVEevi

constructs an evidence parfactor gE = φE(Ai)|CE , distributing the residual potential
1− s on the remaining range values in a max-entropy style (Thimm and Kern-Isberner,
2012). Constructing evidence parfactors in such a way ensures that all range values have
a potential and that the potentials add up to 1, and thereby, ensuring the requirements
of uncertain evidence parfactors.

Example 10.1.4 (Uncertain evidence). Assume the potential of eve attending a con-
ference is 0.9. We may specify the evidence using a complete distribution, Att(eve) =

132

10.1 LVE for Uncertain Evidence

Algorithm 12 Evidence Handling in LVEevi

1: procedure addEvidence(G, gE)
2: if gE is uncertain then
3: Add gE to G
4: else
5: Absorb gE in G

((true, 0.9), (false, 0.1)). The other option is to only specify Att(eve) = (true, 0.9), a
subset of the distribution. Then, LVEevi would distribute the remaining 0.1 max-entropy
alike on the remaining range values, while constructing the evidence parfactor. With
Att(X) being boolean, there is only one other range value, namely false, which would be
assigned a potential of 0.1. In case of another range value, e.g., workshops_only, then
both would be assigned a potential of 0.05. Assigning a distribution to evidence still al-
lows for specifying certain evidence. Given Att(eve) = ((true, 1)), all other range values
would be assigned the potential 0, which is identical to the evidence so far in LVE.

We now present LVEevi to handle uncertain evidence while answering a query. The
workflow of LVEevi is identical to LVE. Instead of absorbing all evidence E in affected
parfactors, a case distinction occurs, which is specified in Alg. 12, for each evidence
parfactor gE constructed for E. If gE contains certain evidence, gE is absorbed in G
as before. If gE is uncertain evidence, gE is added to G. During query answering, the
uncertain evidence is then properly accounted for since gE is multiplied into the model at
one point and therefore, influences a queried distribution accordingly. Next, we discuss
theoretical results of LVEevi.

10.1.3 Theoretical Analysis

In this section, we investigate soundness and completeness of LVEevi. We do not consider
complexity aspects as uncertain evidence leads to an additional multiplication of evidence
parfactors instead of absorptions. Thus, from a complexity perspective, there hardly is
any difference. First, let us have a look at the soundness of LVEevi.

Theorem 10.1.1. LVEevi is sound, i.e., computes a correct result for a query Q given
an input model G and evidence E.

Proof. Since both LVEevi and LVE handle certain evidence in the same way and LVE is
sound (Taghipour et al., 2013c), LVEevi is sound w.r.t. certain evidence. We interpret
uncertain evidence as an a priori distribution for events. LVEevi simply adds evidence
parfactors of uncertain evidence to a model. During query answering, LVEevi then han-
dles these parfactors as part of the model, multiplying evidence parfactors into other

133

Chapter 10 Uncertain Evidence

parfactors accordingly, thus, accounting for evidence as a form of an a priori distribu-
tion. LVE is sound (Taghipour et al., 2013c) w.r.t. its operation and therefore, also
multiplication, thus, LVEevi is sound for uncertain evidence.

Second, let us have a look at the completeness of LVEevi.

Theorem 10.1.2. LVEevi is complete for unary evidence, i.e., the runtime complexity
is polynomial in the domain sizes of the model logvars.

Proof. Given certain, unary evidence, i.e., evidence which can be represented in a parfac-
tor with an evidence PRV using one-logvar, LVE is complete (Van den Broeck and Davis,
2012; Taghipour et al., 2013d). Replacing certain, unary evidence with uncertain, unary
evidence with a given distribution leads to the same number of splits during shattering
and the number of splits is linear per evidence PRV and model parfactor (Taghipour et
al., 2013c). Thus, LVEevi still has a time complexity polynomial in the domain sizes of
the model logvars given uncertain, unary evidence and the completeness results for unary
evidence from LVE also hold for LVEevi.

Let us now have a look at the implication of uncertain evidence for LJT.

10.2 LJT for Uncertain Evidence

LVEevi handles uncertain evidence efficiently for single queries. To handle multiple
queries efficiently, we incorporate uncertain evidence into LJT based on the same prin-
ciples that have guided the adaptation of LVE to handle uncertain evidence. Before we
present LJTevi, we first take a closer look at how LJT handles evidence.

10.2.1 Evidence in LJT

Evidence handling in LJT generally works by performing the following steps: (i) Con-
struct evidence parfactors. (ii) Enter evidence parfactors into FO jtree. (iii) Shatter local
models on entered evidence parfactors. (iv) Absorb evidence parfactor in local models.
Basically, LJT handles evidence in each local model as LVE does in its input model.
In each parcluster that covers an evidence PRV, LJT tests each parfactor for evidence
absorption. If a parfactor in a local model covers the evidence PRV, LJT shatters the
parfactor on the evidence and lets the affected parfactor absorb the evidence parfac-
tor. Whenever a separator no longer covers an evidence PRV, LJT can omit checking
the subtree beyound the neighbour associated with the separator based on the running
intersection property.

Example 10.2.1 (Evidence entering). Again, assume that eve attends a conference as
certain evidence with an evidence parfactor gE = φE(Att(X))|CE , with CE = (X, {eve}).

134

10.2 LJT for Uncertain Evidence

Then, LJT enters gE in Jex. The PRV Att(X) occurs in C1 and C2. LJT shatters the
local models G1 and G2, i.e., g0 and g1. LJT splits g0 into g0′ for eve and g0′′ for all
other instances, in this case, alice and bob. Analogously, LJT splits g1 into g1′ and g1′′.
Finally, LJT absorbs gE in g0′ and g1′ . After the absorption, all local models encode
information about certain evidence and the overall model.

Knowing how LJT handles certain evidence, we present LJTevi to efficiently handle
uncertain evidence for multiple queries.

10.2.2 Uncertain Evidence in LJT

LJTevi is based on LJT and is able to handle uncertain evidence as well. Evidence may
be specified in the same manner as for LVEevi, which allows for certain evidence as well
as uncertain evidence, partially or fully specified with distributions, whose potentials
add up to 1. LJTevi has the same workflow as LJT. Algorithm 13 describes the steps to
enter an evidence parfactor gE in an FO jtree J . Again, a case distinction occurs. If gE

encodes certain evidence, LJTevi works as LJT, absorbing gE in the affected parfactors
of all parclusters that cover the evidence PRV. If gE encodes uncertain evidence, LJTevi

adds gE to one local model of a parcluster that covers the evidence PRV. During message
passing, the information about the evidence is distributed to all other parclusters, which
makes it apparent why uncertain evidence should only be added to one local model.
In case LJTevi would add the uncertain evidence parfactor to all parclusters containing
the evidence PRV, then the evidence would be distributed during message passing and
accounted for multiple times. One could directly shatter a local model of the chosen
parcluster and multiply gE into it. But, the operations are optional: LJTevi uses LVE
for its calculations, which is able to handle gE accordingly and multiply gE into other
parfactors when necessary, resulting in more efficient multiplications.

Example 10.2.2 (Uncertain evidence with LJTevi). Assume that eve is attending a con-
ference with a potential of 0.9. So, LJTevi builds an evidence parfactor gE =

Algorithm 13 Evidence Handling in LJTevi

1: procedure enterEvidence(J, gE)
2: if gE is uncertain then
3: Add gE to the local model of one parcluster, which contains the PRV of gE

4: Shatter local model (optional)
5: Multiply gE into local model (optional)
6: else
7: Enter gE in all parclusters, which contain the PRV of gE

8: Shatter local models
9: Absorb gE

135

Chapter 10 Uncertain Evidence

φE(Att(X))|CE = ((true, 0.9)), (false, 0.1), with CE = (X, {eve}), as would LVEevi.
Now, LJTevi only needs to find one parcluster containing Att(X), instead of all par-
clusters containing Att(X). Both parclusters C1 and C2 from Fig. 2.2 contain Att(X).
LJTevi randomly chooses to add gE to C2. As the remaining part is optional, we opt
against it for efficiency reasons. Evidence entering now is complete.
During message passing, LJTevi sends m21 from C2 to C1. To calculate m21, LJTevi

splits g1 into g1′ for eve and g1′′ for all other instances. Then, LJTevi eliminates DoR(X)
from g1′ and g1′′ . Afterwards, LJTevi sends m21, which contains gE, g1′ , and g1′′ , to C1.
In m21, we can easily see that LJTevi propagates evidence to all parclusters containing
the PRV of the evidence parfactor as it is an explicit part of the message.

Knowing how LJTevi handles uncertain evidence, let us discuss theoretical implications
of LJTevi compared to LJT.

10.2.3 Theoretical Analysis

This section investigates soundness and completeness of LJTevi. Similar to LVEevi it
also holds for LJTevi that the complexity remains roughly the same as for LJT, as the
main difference between LJTevi and LJT is to perform a multiplication of an evidence
parfactor compared to absorption. First, let us have a look at the soundness of LJTevi.

Theorem 10.2.1. LJTevi is sound, i.e., computes a correct result for a query Q given
an input model G and evidence E.

Proof. For certain evidence, LJTevi computes the same result as LJT since they perform
the same steps. Given that LJT is sound (Braun, 2020), LJTevi is sound. For uncertain
evidence, LJTevi adds evidence parfactors once to a local model of one parcluster. During
message passing and query answering, LJTevi then properly accounts for the evidence as
an a priori distribution for the given events. For the message passing and multiplication
of the uncertain evidence with other parfactors, LJTevi uses LVE. As LVE is sound,
LJTevi is in turn also sound for uncertain evidence.

Second, let us have a look at the completeness of LJTevi.

Theorem 10.2.2. LJTevi is complete for unary evidence, i.e., the runtime complexity
is polynomial in the domain sizes of the model logvars.

Proof. The completeness results for unary evidence and LVE (Van den Broeck and Davis,
2012; Taghipour et al., 2013d) extend also to LJT. Following the same argument as in
the proof of completeness for LVEevi, Section 10.1.3, the change from certain to uncer-
tain evidence over one distribution does not lead to groundings, which means that the
runtime complexity is still polynomial in the domain sizes of the model logvars and the
completeness results extend to LJTevi.

136

10.3 Empirical Case Study

For uncertain evidence, we do not need to handle anything special in the temporal
case. Thus, to also have uncertain evidence for temporal models, LDJT, or more precisely
LDJTevi can simply use LJTevi as a subroutine to handle uncertain evidence efficiently.
Finally, we have a look at runtimes of LVEevi and LJTevi compared to LVE and LJT.

10.3 Empirical Case Study

We have implemented a prototype version of LJTevi and adapted an LVE implementation
by Taghipour (https://dtai.cs.kuleuven.be/software/lve) for uncertain evidence.
Given the changes from certain to uncertain events in LVE and LJT and their effects
on completeness, we expect implementations of the algorithms to accomplish similar
runtimes for certain and uncertain evidence given that certain evidence does not cancel
out a majority of the model. If certain evidence exists for a majority of the PRVs in a
model, the dimension reduction during absorption leaves a very small model, enabling
fast query answering. Thus, we use the running example with a domain size of 1000
and add certain evidence Att(X) = ((true, 1)) as well as uncertain evidence Att(X) =
((true, 0.8), (false, 0.2)), covering 0% to 100% of gr(Att(X)) in 10% steps. The query
term is DoR(x1000). We look at two aspects, (i) runtimes for answering a single query
with LVEevi and LJTevi and (ii) runtimes of the LJTevi steps.
Figure 10.1 shows runtimes in milliseconds [ms] for answering a single query with

LVEevi (triangles) and LJTevi (circles) with evidence coverage ranging from 0% to 100%
on the x-axis. The filled symbols show runtimes for certain evidence. The hollow symbols
show runtimes for uncertain evidence. As expected, LJT runtimes are lower than LVE
runtimes since LJT is able to use a smaller submodel compared to the original input
model. For LJTevi, certain evidence leads to lower runtimes than uncertain evidence
due to the dimension reduction as well as its preprocessing. Evidence is already handled
when LJTevi starts answering the query. And as the submodel for query answering is
rather small, the dimension reduction has a comparatively large impact. For LVE, certain

Evidence coverage in %

R
un

tim
es

 [m
s]

100

101

102

103

0 20 40 60 80 100

LVE certain
LVE uncertain

LJT certain
LJT uncertain

Figure 10.1: Runtimes for query answering

Evidence coverage in %

R
un

tim
es

 [m
s]

10−2

10−1

100

101

102

103

104

0 20 40 60 80 100

Constr. certain
Constr. uncertain

Evi. certain
Evi. uncertain

Msg. certain
Msg. uncertain

Figure 10.2: Runtimes for LJT steps

137

https://dtai.cs.kuleuven.be/software/lve

Chapter 10 Uncertain Evidence

evidence leads to larger runtimes as the overall impact of the dimension reduction is not
as large and absorption in itself is a rather expensive operation, even though is leads to
faster runtimes afterwards. The increase in runtimes from 0% to 10% evidence as well as
the decrease in runtimes from 90% to 100%, which occurs for both certain and uncertain
evidence, comes from shattering on evidence. With 0% and 100% evidence, no splits are
necessary, which means smaller models in terms of the number of parfactors to handle.
Figure 10.2 shows runtimes in milliseconds [ms] of the steps construction (diamond),

evidence entering (squares), and message passing (triangles) of LVEevi with evidence
coverage ranging from 0% to 100% on the x-axis (filled = certain, hollow = uncertain).
Evidence has no influence on construction. Therefore, runtimes are nearly the same
for certain and uncertain evidence. Certain evidence leads to larger runtimes as LJTevi

absorbs the evidence during this step. Uncertain evidence is simply added to a local
model and thus, entering uncertain evidence does not depend on evidence coverage.
Message passing with uncertain evidence takes slightly longer than with certain evidence
as the dimension reduction also helps during message calculation.
Overall, the case study shows that uncertain evidence leads to similar runtimes for

LVEevi and LJTevi compared to certain evidence with a limited scope. Comparing run-
times for domain sizes of 10 to domain sizes of 1000 shows that even though the domain
sizes rise by a factor of 100, runtimes only rise by a factor of 2.7 to 8.6 for uncertain
evidence and LJTevi. As uncertain evidence basically leads to an additional parfactor
and a limited number of splits, we expect empirical results from Chapter 5 as well as
from (Braun and Möller, 2018c; Braun, 2020) to also hold for LVEevi and LJTevi, with
both algorithms outperforming the ground case.

10.4 Interim Conclusion

We present LVEevi (Contribution 7a) and LJTevi (Contribution 7b), i.e., versions of
LVE and LJT, which incorporate uncertain evidence and allow for similar runtimes as
before. We specify how to construct and handle uncertain evidence. LVEevi and LJTevi

close the gap to temporal probabilistic databases (TPDBs) to also allow for uncertain
evidence in probabilistic relational models. Further, uncertain evidence does not influence
completeness results of LVE, LJT, and LDJT (Contribution 7c).
Next, we have a look into implications of evidence in lifted solutions for temporal

probabilistic relational models. Evidence can slowly ground a model over time and
thereby, strip inference off the benefits of lifting. To benefit from lifted computation,
we investigate how we can use approximate symmetries to restore a lifted representation
over time and therefore, use lifted operations .

138

Chapter 11

Taming Reasoning in Temporal
Probabilistic Relational Models

A key challenge for performing efficient inference in temporal probabilistic relational
models is that evidence can slowly ground a model over time. Thus, in this chapter, we in-
vestigate a method to use approximate symmetries to restore a lifted, i.e., non-grounded,
representation while proceeding in time. In general, reasoning in lifted representations
has a complexity polynomial in domain sizes. But, models dissolve into ground instances
by evidence, which no longer permits reasoning in polynomial time, making query answer-
ing infeasible for any reasoning algorithm, exact or approximate. Thus, a key challenge
during inference in temporal models is to restore a lifted representation. Therefore, we
formulate and study the problem of keeping reasoning polynomial (KRP) in temporal
models to tame the effect of evidence for efficient query answering.
We begin by giving an intuition of how evidence can slowly ground a model. In a

temporal probabilistic relational model, we would need completely symmetric evidence
for a group to calculate a lifted solution for that group. Symmetric evidence in this case
means that we observe the very same event for all instances of that group within one time
step, i.e., with a boolean PRV, we either observe true, false, or nothing for all instances
of this group within one time step. However, in case we observe non-symmetric evidence
for a group of instance that group will slowly ground. With a boolean PRV, we can have
3 groups after one time step, one group with the event being true, one group with the
event being false, and one group without evidence. After two time steps, we can already
have 9 as the 3 groups from before can each be split into 3 groups again and so on.

Example 11.0.1 (Symmetric and non-symmetric evidence). Assume that |D(X)| =
100 and that we observe evidence for DoR(X). Symmetric evidence would be that we
observe DoR(X ′) = true for D(X ′) = {x1, ..., x50} as well as DoR(X ′′) = false for
D(X ′′) = {x51, ..., x100} for the first time step. For the next time step, we may observe
DoR(X ′) = false for D(X ′) = {x1, ..., x50} as well as DoR(X ′′) = false for D(X ′′) =
{x51, ..., x100} and, in the time step after that, we could possibly observe DoR(X ′) = false
for D(X ′) = {x1, ..., x50} as well as DoR(X ′′) = true for D(X ′′) = {x51, ..., x100}. Thus,
within one time step we observe the same event for all instances within one symmetry
group, but the events can change over time.

139

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

For non-symmetric evidence we could observe DoR(X ′) = true for D(X ′) =
{x1, ..., x30}, DoR(X ′′) = false for D(X ′) = {x31, ..., x60}, and nothing for D(X) =
{x61, ..., x100}. Just focusing on the first group: In the next time step, we may ob-
serve DoR(X ′) = true for D(X ′) = {x1, ..., x10}, DoR(X ′′) = false for D(X ′′) =
{x11, ..., x20}, and nothing for D(X) = {x21, ..., x30} (and the same for the other two ini-
tial groups). Thereby, after only two time steps, the 100 instance would already be split
into 9 groups. Following the scheme, after 3 time steps, we could already have 33 groups.
After 4 time steps, we could have 34 groups. Finally, after 5 time steps, everything could
be grounded with each instance having its own group because every time one instance of
a group behaves differently as we observe a different event for that instance, the instance
is split from that group. Thus, after only five time steps, each of the 100 instances could
already have a unique evidence sequence leading to a completely grounded model.

To the best of our knowledge, none of the existing inference approaches for temporal
probabilistic relational models tackle the KRP problem. Ahmadi et al. (2013) propose a
colour passing scheme to obtain a lifted representation of a DMLN using exact symme-
tries. The colour passing scheme is highly efficient to find exact symmetries in a model.
One could also apply the colour passing scheme to find exact symmetries while transi-
tioning from one time step to the next. However, to solve the KRP problem, one needs
to find approximate symmetries efficiently. Thus, the KRP problem is still open.
For static relational models, approaches exist to approximate symmetries as evidence

may ground even a static model (Van den Broeck and Davis, 2012). Van den Broeck
and Darwiche (2013) approximate lifted binary evidence. Singla et al. (2014) propose
approximate lifting techniques, which group together distinguishable objects and treat
them identically. Venugopal and Gogate (2014) form clusters of objects and project the
marginal distribution of one object to all objects of a cluster. Both approaches introduce
an unknown bias into the distributions of the groups. Van den Broeck and Niepert (2015)
present an unbiased approach for approximating symmetries. However, these approaches
do not account for temporal aspects.
Thus, we present temporal approximate merging (TAMe) as an approach to solve the

KRP problem in temporal models. Specifically, TAMe incorporates (i) clustering to group
submodels and (ii) statistical significance checks to test the groups to be merged. Model
structure and behaviour are captured in a set of functions that define local distributions
for the randvars in the model. Clustering forms groups of functions based on the similarity
between local distributions. The significance checks allow for determining the fitness of
the clustering. If the clustering is deemed fit, each group is merged, yielding an unbiased
approximation. In exchange for faster runtime, TAMe introduces a bounded error, which
becomes negligible over time.
Boyen and Koller (1998) show that for stationary processes, evidence can lead to con-

ditional dependences in temporal probabilistic propositional models, making inference
infeasible. They propose to introduce additional randvars to achieve conditional inde-

140

pendences between subprocesses even under evidence. Further, Boyen and Koller show
that, for any approximation scheme of belief state representations, the error decreases
exponentially as the process evolves, making the introduced error bounded indefinitely
(Boyen and Koller, 1998). Their approach and TAMe are related as in both cases ev-
idence can make inference infeasible. However, TAMe aims at automatically restoring
a lifted representation. In summary, the cause, namely evidence, is the same for both
problems but the means to make inference feasible again differ highly. Nonetheless, we
show that we can build upon their theoretical result to prove that an approximation error
of TAMe is bounded indefinitely.
The temporal behaviour of a model is the reason why approximation errors are indefi-

nitely bounded in stationary processes and why distributions converge over time. While
transitioning from one time step to the next, each time the inference engine multiplies the
model behaviour on the distributions or potentials of (P)RVs, i.e., the parfactors of the
copy pattern are multiplied on the current state of the system for each time step. Hence,
in case we observe only slightly different evidence for instances, the model behaviour
becomes such a big factor that the distributions of the (P)RVs converge.

Example 11.0.2 (Model behaviour). Assume that we observe for one instance a different
event for each time step. So in the first time step, we observe for x1 a different event
than for the rest, leading to splitting x1 from the rest. In the next time step, we could
observe for x2 a different event than for the rest, leading to splitting x2 from the rest.
Thus, after 100 time steps, we would have a completely grounded model as each instance
has its own unique evidence sequence. However, in this example we observe in each time
step the same event for 99 instances as only one instance behaves differently. Thus, the
belief state of each instance will be most likely about the same after the 100 time steps
as the temporal model behaviour becomes a rather large factor. The model behaviour gets
multiplied on the potentials for each time step and therefore, will be a huge factor in
comparison to one different event over 100 time steps.

TAMe is applicable to different formalisms and algorithms. However, we discuss TAMe
as part of LDJT for two reasons: First, when advancing in time, LDJT computes a
minimal message that is the source of the most splits of the next time step. Applying
TAMe on this message tackles the KRP problem at its root. Second, using TAMe with
an exact algorithm allows for attributing errors to merging rather than imprecisions
during reasoning. Additionally, TAMe is deterministic in its approximation, thereby,
avoiding problems with sampling rates or ergodicity. Empirical results show that TAMe
significantly improves the performance of LDJT in general, while keeping errors small
and attributable to merging. Further, results show that the significance checks prevent
unnecessary errors.
In the following, we slightly adapt the running example. Then, we present TAMe,

which includes clustering, significance checks, and merging. Lastly, we evaluate TAMe
theoretically and empirically.

141

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

Rept−1(X)

g0
t−1

Pubt−1(X, J)

Attt−1(X)

g1
t−1

DoRt−1(X)

Rept(X)

g0
t

Pubt(X, J)

Attt(X)

g1
t

DoRt(X)

gR

Figure 11.1: Gex→ to illustrate TAMes

This chapter is based on the following paper:

Marcel Gehrke, Ralf Möller, and Tanya Braun. Taming Reasoning in Tem-
poral Probabilistic Relational Models. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI 2020), pages 2592–2599, 2020

11.1 Preliminaries

For this chapter, we slightly change our running example. In our example so far, the
inter -slice parfactor contains Hott. Thus, a PRV from time slice t in the inter -slice
parfactor has no logvars. Hence, no splits of logvars are carried over from one time slice
to the next as all logvar are eliminated when Hott−1 and Attt−1(X) are eliminated from
gH . However, in this chapter, we investigate how to undo splits that carry over from one
time step to the next. Figure 11.1 shows Gex→ for this chapter. The main difference is
that we have replaced the PRV Hot with a PRV Rep(X) as well as gH with gR. Thereby,
the splits of X carry over from one time step to the next, as, X is not eliminated from
one time step to the next in this model.
The intuition behind the changed example is that we are interested in the reputation

of researches rather than whether a particular topic is hot. For example, we can observe
AAAI conference attendance, which changes over time as, unfortunately, getting papers
accepted at consecutive conferences is difficult. Nonetheless, people with high attendance
usually have a good reputation.
Before we present TAMe, we recapitulate how LDJT proceeds in time. The FO jtrees

in LDJT contain a minimal set of PRVs to m-separate time steps, which means that
information about these PRVs renders FO jtrees independent from each other. Querying

Rep2(X),
Att2(X),
Rep3(X)

{gR}

in-clusterC1
3

Rep3(X),
Att3(X),
DoR3(X)

out-cluster

{g13}

C2
3

C3
3

α3

Rep3(X),
Att3(X),
Rep4(X)

{gR}

in-cluster C1
4

Rep4(X),
Att4(X),
DoR4(X)

out-cluster

{g14}

C2
4

Rep4(X),
Att4(X),
Pub4(X, J)

{g04}

C3
4

{Rep3(X)} {Rep4(X)} {Rep4(X), Att4(X)}

Figure 11.2: FO jtree J3 without C3
3 and FO jtree J4 to illustrate TAMe

142

11.2 Temporal Approximate Merging

a minimal set of PRVs with LVE in an FO jtree combines all information to m-separate
time steps. To obtain the minimal set, LDJT uses interface PRVs It of G→.
To proceed in time, LDJT calculates a forward message αt over It using the out-cluster

of Jt. Hence, αt contains exactly the necessary state descriptions , as a set of parfactors,
to be able to answer queries in the next time step. Afterwards, LDJT adds αt to the
local model of the in-cluster of Jt+1.
Figure 11.2 depicts passing on the current state from time step 3 to 4. To capture the

state at t = 3, LDJT sums out the non-interface PRV DoR3s(X) from the local model
and received messages of C2

3 and saves the result in message α3. Increasing t by one,
LDJT adds m3 to C1

4’s local model. Thus, α3 contains all state descriptions to separate
time step 4 from the past. However, α3 also possibly carries over splits from previous
time steps to time step 4.

11.2 Temporal Approximate Merging

Before we introduce TAMe, we start by introducing the problem that TAMe solves.

11.2.1 Keeping Reasoning Polynomial Problem

In a temporal probabilistic relational model, evidence can slowly ground the model over
time by introducing splits. We propose to name the problem of finding how to undo
splits to retain a lifted solution over time, keeping any error unbiased and necessary, as
the KRP problem. Retaining a lifted solution over time means that lifted algorithms
run in polynomial time w.r.t. the domain size if a lifted solution exists (Niepert and
Van den Broeck, 2014). To solve the KRP problem, an approach is required to identify
any number of clusters based on how similar φ’s of parfactors are and combine them. Our
understanding of an unbiased and necessary error, is that all data points are weighted
the same and that the approximation error is as small as possible while providing a
high gain. To keep the error unbiased and necessary, groundings need to be accounted
for and the identified cluster means have to approximate all points of the clusters well.
Unfortunately, to combine similar φ’s, we cannot use the colouring algorithm by Ahmadi
et al. (2013) as it uses exact symmetries.
Even though LDJT instantiates vanilla FO jtree structures from G→, αt carries over

splits caused by evidence. Formally, the problem is that in a model Gt = {git}ni=1 at time
step t, many parfactors are split. Whenever evidence leads to a split of a parfactor, the
split carries over to subsequent time steps. Thus, Gt has the following form:

{gi,1t , . . . , gi,mt }ni=1,m ∈ N+. (11.1)

For each i, the different gi,jt = φi,jt (Ai)|Ci,j , 1 ≤ j ≤ m, have the same arguments Ai

but different constraints Ci,j and varying functions φi,jt as a result of evidence. The

143

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

assumption is that some gi,jt have similar φ’s as differences introduced by evidence are
minimal or otherwise are overcome by model behaviour over time, i.e., potentials of the
parfactors align again. Then, one can combine similar φ’s while introducing only a small
and bounded error in exchange for faster reasoning. In the theoretical analysis, we show
that the assumption holds, by showing that φ’s converge, allowing them to be merged,
and that the error TAMe introduces is bounded.

Example 11.2.1 (Splitting of parfactors). Assume that we observe alice doing research
in time step 3. Then, LDJT enters an evidence parfactor encoding DoR(X ′) = true for
D(X ′) = {alice} in J3. In J3, the parcluster C2

3 contains the PRV DoR(X). Entering
the evidence parfactor in C2

3 leads to splits in the local model of C2
3. The parfactor g1

3

is split into a parfactor for alice and into another parfactor with a constraint encoding
that the parfactor holds for all instances but alice. During message passing, the splits
carry over. Thus, the parfactors g0

3 and gR are also split into two parts. One part for
alice and another part for all other instances. Therefore, all parfactors about the logvar
X are split in the same way into the same amount of groups, i.e., in the local modes of
J3 are parfactors g0,1

3 , g1,1
3 gR,1 about alice and parfactors g0,2

3 , g1,2
3 gR,2 about all other

instances.

The idea for restoring a lifted representation is to merge those gi,jt with similar φ’s into
one parfactor

gi,kt = φi,kt (Ai)|Ci,k (11.2)

where φi,kt represents a merged version of the combined φi,jt and Ci,k is a union of the
combined Ci,j . Merging all parfactors that behave similarly for each i leads to a G′t of
the following form with parfactors as in Eq. (11.2) and l < m:

{gi,1t , . . . , gi,lt }ni=1 (11.3)

With TAMe, we present a merging scheme that takes a model G as given in Eq. (11.1)
and computes a model G′ as given in Eq. (11.3). It is reasonable to apply TAMe to
G when transitioning from time step t to t + 1 as the transition transfers any splits as
well. In general, G may be any parfactor model and one may also transfer the idea to
a DMLN model (Ahmadi et al., 2013). But, models may be very large, e.g., consist of
the union of all local models of an FO jtree Jt, such that finding groups for each i is too
costly. Therefore, we propose to make TAMe a subroutine of LDJT. Transitioning from
t to t+ 1 requires computing message αt, which provides a state description of t that is
relevant to t + 1. Applying TAMe to αt prepares a message with fewer groups, leading
to fewer splits in Jt+1. Additionally, αt normally has considerably fewer parfactors than
Gt. Next, we explain in detail how to get from Eq. (11.1) to Eq. (11.3) with TAMe.

144

11.2 Temporal Approximate Merging

Algorithm 14 Temporal Approximate Merging
procedure TAMe(Model G, Radius ε, Significance τ)

P← partitioning of G based on logvars . Eq. (11.4)
for each partition P ∈ P do

P ← multiply overlapping parfactors . Eq. (11.5)
K← DBSCAN(P , ε, 2, rsim)
if ANOVA(K, rsim′, τ) rejects H0 then

G← G \ P
for each cluster K ∈ K do

G← G ∪ {K merged} . Eq. (11.7)

11.2.2 Keeping Reasoning Polynomial with TAMe

Algorithm 14 outlines TAMe to solve the KRP problem. Inputs are a model G, possibly
αt, as well as two additional parameters, radius ε and significance level τ , which become
important later on. The first step is to preprocess G for easier handling in subsequent
steps. The main loop describes how a clustering algorithm identifies groups for merging
and how groups are merged if TAMe deems the clusters to fit. The upcoming paragraphs
discuss the individual steps of Alg. 14.

Model Partitioning

The preprocessing of G is a consequence of the following considerations. A challenge that
arises from a model as given in Eq. (11.1) is that merging parfactors for each i indepen-
dently of each other may lead to different groups that cause splits again, undoing any
merging efforts. Basically, i stands for one parfactor that is split into multiple parfactors
with different constraints and φ’s by evidence. Using an i at random and transferring
the grouping of the i parfactors to all other parfactors may lead to unreasonable groups
for the other i’s. A safe option is to multiply parfactors with overlapping constraints into
one parfactor which in a worst case leads to a single cluster and very large parfactors
that no longer explicitly represent independencies and may complicate calculations for
messages and queries. Within LDJT, one could trace back if a set of parfactors in αt
originates from the message that has come from the direction of the in-cluster to the
out-cluster as this message contains information about the past and is the origin of the
most splits in αt. Therefore, it may be possible to identify a unique i in αt as a reasonable
source for merging. However, there are no guarantees to find such an i. Instead, we opt
to partition the parfactors in G based on the logvars appearing in G into a set P of sets
of parfactors. Each partition P ∈ P has a set of logvars Xp that has been affected in the
same way by splitting due to evidence. Formally, P has the form

P = {gi,1t , . . . , gi,mt }
np

i=1 (11.4)

145

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

with lv(gi,jt) ⊆ Xp.

Example 11.2.2 (Partitioning). In our example, αt contains the state descriptions of the
PRVs Rept(X) and Attt(X). Both PRVs are parameterised with logvar X. Observing
evidence, e.g., for DoRt(X) influences X and thereby also Rept(X) and Attt(X) in
the same way, i.e., the same splits occur. Hence, for αt we only have one partition.
Even by looking at the complete model instead of only the α messages, we only have
one partition. Observing evidence for X causes splits in all parfactors in the same way.
Further, observing evidence for Pubt(X, J) causes splits in X and J . Thus, here the
logvars X and J would be effected in the same way by splitting due to evidence, leading
again to one partition as all parfactors are effected by same way by splits due to evidence.
In case we would have another logvar Y , which does not occur with X or J in a

parfactor, then we would have a second partition. However, in case Y would occur with
either X or J in a parfactor, we again would only have one partition.

The next step is to identify groups of parfactors in each partition that behave similarly.

Parfactor Clustering

After partitioning G, each partition P ∈ P of the form in Eq. (11.4) has parfactors whose
constraints overlap between all i for each j. Therefore, TAMe multiplies all parfactors
with overlapping constraints into one parfactor before starting with identifying groups.
If there exist gi,jt s.t. lv(gi,jt) = Xp, each i refers to m parfactors with the same constraint
over all i’s for each j, i.e, the constraints are the same at position j for all i’s. Then,
multiplication in P to combine PRVs with the same constraints boils down to

P =

{ np∏
i=1

gi,1t , . . . ,

np∏
i=1

gi,mt

}
= {gp,1t , . . . , gp,mt } (11.5)

where multiplying parfactors corresponds to the LVE operation ofmultiply, c.f. (Taghipour
et al., 2013c).
To identify groups of parfactors with similar behaviour, one needs to specify (i) what

“similar behaviour” means and (ii) how to find such groups automatically. We first
consider the second item, which influences specifying the first item.
TAMe needs to identify an unknown number of groups based on how similar φ’s are.

Density-based clustering groups similar points into an unknown number of groups. There-
fore, TAMe uses density-based clustering. For the evaluation, we instantiate TAMe with
density-based spatial clustering of applications with noise (DBSCAN) (Ester et al., 1996;
Schubert et al., 2017) as the clustering approach. In the following, we illustrate how
density-based clustering fits into the overall scheme of TAMe using DBSCAN. DBSCAN
identifies data points as core points if in their neighbourhoods, determined by a radius
ε around a point, lie a certain number minPts of other data points. A core data point

146

11.2 Temporal Approximate Merging

makes up a cluster along with all the data points in its neighbourhood, which recursively
proceeds with the next core data point in the neighbourhood. To determine data points
in a neighbourhood, DBSCAN requires a distance function as an input. DBSCAN is able
to detect outliers, i.e., points which do not occur in any neighbourhood. For the purpose
of clustering parfactors, we set minPts to 2 to be able to cluster even two parfactors.
The distance measure should assess how similarly parfactors behave, with 0 meaning
identical behaviour and larger values meaning less similar behaviour.
To determine the similarity of the behaviour of two parfactors, one could calculate

marginal distributions for a PRV that occurs with split constraints and compare if the
marginals are in a certain ∆ area. However, marginal distributions could result from
completely different potentials and be similar by chance. The potentials of a parfactor
on the other hand specify the current weight for each possible assignment. Thus, in case
the ratio of the potentials of two parfactors are similar, they also have similar marginal
distributions and behave similarly.

Example 11.2.3 (Similar parfactors). A parfactor mapping to 4 and 2 and another
parfactor mapping to 8.1 and 3.9 behave similarly. Both parfactors weight the first as-
signment about twice as much as the second. Assuming both parfactors are independent
from the rest and only have one grounding each, the marginals for true would be 0.667
and 0.675 respectively, i.e., less than 0.01 apart from each other. The same case arises
for two parfactors mapping to 〈4, 2〉 and 〈4.1, 1.9〉 respectively.

Such potentials, when thought of as vectors, have a small angle between them, i.e.,
a high cosine similarity, which we use to specify “similar behaviour”. For the setup of
the similarity of two parfactors gi,j1t = φi,j1t (Ai)|Ci,j1 and gi,j2t = φi,j2t (Ai)|Ci,j2 , we use a
function rsim : (×ni=1range(A

i) 7→ R+,×ni=1range(A
i) 7→ R+) 7→ R+ that is defined as

follows:

rsim(φi,j1t , φi,j2t) = 1−

∑
a∈range(Ai)

φi,j1t (a) · φi,j2t (a)

√ ∑
a∈range(Ai)

φi,j1t (a)2 ·
√ ∑

a∈range(Ai)

φi,j2t (a)2
(11.6)

The result of Eq. (11.6) lies in the interval [0, 1]. The fraction is the definition of the
cosine similarity. We calculate 1 minus the fraction to get a “distance” measure, in which
a lower value means a closer distance.
As a consequence of rsim with its codomain [0, 1] as the distance function for DB-

SCAN, ε needs to be ≤ 1. Overall, the inputs of DBSCAN for clustering parfactors are a
partition P of parfactors, ε, minPts = 2, and rsim. The radius ε trades off cluster sizes
with accuracy. The output is a clustering of P , i.e., a set K of sets in which each K ∈ K
is a set of parfactors that are assumed to behave similarly.

147

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

Fitness of Clustering

The question that remains after clustering is: How good is the clustering? The clustering
is highly influenced by the choice of the radius ε, which leads to large clusters if set to a
high value but may also blur the potentials in the merged parfactor to a higher degree.
One could calculate the error introduced by the clustering w.r.t. a given PRV B by

comparing marginal distributions of B before and after merging. However, if a model al-
ready is highly shattered, the computational effort can be very high to compute marginal
distributions before merging.
DBSCAN clusters together parfactors with a small angle between them. So a clustering

fits if the variance of angles within clusters is low and the variance of angles between
clusters is high. Analysis of variance (ANOVA) (Fisher, 1925) is a statistical method to
test for significance of a clustering. In our setup, ANOVA computes the variance of each
parfactor in a cluster K ∈ K w.r.t. the mean parfactor of K as well as the variance of
the mean parfactor of K w.r.t. the mean parfactor of all points in K. Hence, it provides
an indication of how good the clustering separates parfactors.
ANOVA is used to accept or reject hypotheses. The default hypothesis is that the

means of all clusters are equal. For our problem, the default hypothesis H0 is that
the mean parfactors of the clusters are equal, i.e., are not statistically significant to
discriminate clusters. The goal is to be able to reject H0, that is to say there is more
difference between than within clusters. In case TAMe can reject H0, at least one cluster
is significantly different from the others.
To compute a mean parfactor of a cluster K, TAMe calculates the average of all poten-

tials while accounting for groundings. Formally, given a set of parfactors {φi,jt (Ai)|Ci,j}mj=1,
a mean parfactor gi,kt = φi,kt (Ai)|Ci,k is determined by

φi,kt (a) =

∑m
j=1 |gr(φ

i,j
t (a)|Ci,j)|φi,jt (a)|Ci,j

|gr(φi,kt (a)|Ci,k)|
(11.7)

for each a ∈ range(Ai) and Ci,k is a union of the different Ci,j . Thus, TAMe goes through
all potentials and for each assignment, adds the current potential, which is multiplied by
the number of groundings of the current parfactor. After all potentials for one assignment
are added up and the groundings are accounted for, TAMe divides the potential by the
number of overall groundings to obtain a mean potential.

Example 11.2.4 (Mean parfactor). To illustrate Eq. (11.7), consider a cluster with 3
parfactors. The first parfactor maps to the potentials 2 and 1 with 2 groundings, the
second maps to 3.9 and 1.9 with 5 groundings, and the third maps to 8.1 and 4 with
1 grounding. To calculate the mean potential, TAMe calculates for the first mapping
(2 ·2+5 ·3.9+1 ·8.1)/8 = 3.95 and for the second mapping (2 ·1+5 ·1.9+1 ·4)/8 = 1.9375.
Thus, the mean parfactor maps to 3.95 and 1.9375 with 8 groundings.

148

11.2 Temporal Approximate Merging

To calculate variances of parfactors, TAMe uses rsim as the clusters have been built
based on rsim. The intuition behind the choice is that if two parfactors have a very small
angle between their potentials, then the variance of the potentials would be close to 0.
The variance increases with the angle between potentials. As the number of groundings
influences the new potentials, we also include the number of groundings while calculating
variances. A parfactor that represents more groundings has a greater weight than one
parfactor with one grounding. As we have a grounding semantics, grounding a parfactor
with more instances leads to more factors contributing to the full joint distribution.
After computing a mean parfactor gi,kt for each cluster K ∈ K and an overall mean

parfactor gi,mt based on all parfactors in K, ANOVA proceeds to compute the variation
between groups, i.e., MSG, and the variation within groups, i.e., MSE, using Eq. (11.6)
and the groundings of parfactors:

MSG =
1

l − 1

∑
K∈K

|gr(gi,kt)| · (rsim(gi,kt , gi,mt))2

MSE =
1

m− l
∑
K∈K

∑
gi,jt ∈K

|gr(gi,jt)| · (rsim(gi,jt , g
i,k
t))2

where l = |K|, i.e., number of clusters, and m = |gr(K)|, i.e., number of overall ground-
ings. Computing F = MSG

MSE , ANOVA compares F against a critical value Fcrit, which
depends on τ , l−1, andm−l and can be looked up in a pre-computed table. If F ≤ Fcrit,
TAMe accepts H0 and discards the clustering. In case TAMe rejects H0, i.e., F > Fcrit,
there is more difference between clusters than within clusters and TAMe proceeds to
merging parfactors in each cluster.

Merging Parfactors

The new parfactor for each cluster K ∈ K is the mean parfactor gi,kt , which is already
computed by ANOVA. TAMe replaces P in G with the merged parfactors. Then, TAMe
proceeds with the next partition, identifying and checking a clustering for the new parti-
tion, until all partitions are processed. The result is a model whose parfactors are merged
versions of the input model, partially restoring a lifted representation. Given a forward
message αt, the output is a message that possibly contains fewer groups within logvars
and thus, prevents ongoing splitting over time.

Application Cycle

As ANOVA may determine that the clustering is not fit enough, TAMe may incur over-
head if TAMe cannot merge groups. Therefore, TAMe does not need to be applied at
every time step. Normally, the model is slowly grounded over time with evidence, but if

149

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

the groups behave similarly, which is the case due to the impact of the model, the reoc-
curring application of the model behaviour results in the potentials being similar enough
for TAMe to merge them. Thus, based on how much evidence splits up the model, the
interval of how often TAMe should be used as a subroutine needs to be determined.
Next, we look at theoretical implications of TAMe.

11.3 Theoretical Analysis

We show that TAMe introduces a necessary, unbiased, and bounded error and that TAMe
keeps reasoning polynomial.

Proposition 11.3.1. TAMe errors are necessary and unbiased.

Due to a density-based clustering, TAMe clusters parfactors with similar φ’s. ANOVA
determines the fitness of clusterings to prevent unnecessary errors. By accounting for
groundings during merging, the error is unbiased.
Knowing that TAMe produces necessary and unbiased errors, let us have a look at the-

oretical bounds of the approximation error TAMe introduces as well as whether groups
with only slightly different evidence actually do converge, allowing TAMe to keep rea-
soning polynomial. Boyen and Koller (1998) show that for a Markov process with a
stochastic transition model Q, an error introduced by an approximation of a belief state
is at least reduced by the factor (1−γQ) when transitioning from t to t+1, with γQ being
a so-called minimal mixing rate. γQ is the minimal extent to which the model behaviour
causes an approximation to converge to the true belief state while transitioning from
one time step to the next. From that insight, they induce that an error δ introduced by
approximating a belief state of a temporal process is bounded indefinitely by δ/γQ. We
use γQ for two contributions, (i) TAMe introduces a bounded error and (ii) TAMe is able
to merge parfactors to keep reasoning polynomial.
The proof that TAMe introduces a bounded error is based on Boyen and Koller (1998).

We begin by showing that a PDM G is a Markov process with a stochastic transition
model Q. Afterwards, we define the so-called minimal mixing rate γQ for G and use γQ
to show that the error TAMe introduces is bounded indefinitely.

Lemma 11.3.1. A PDM is a Markov process with a stochastic transition model Q.

Proof. A PDM (G0, G→) follows the first-order Markov assumption and therefore, is a
Markov process. Further, in a PDM, the PM G→ describes how a model transitions
from one belief state to the next. Given the semantics of a PM, G→ forms a stochastic
transition model Q. Therefore, it holds that a PDM is a Markov process with a stochastic
transition model Q.

To show that the error TAMe introduces is bounded indefinitely, we begin by proposing
some notations. Let Ω = {ω1, .., ωn} refer to the state space for time slice t − 1, i.e.,

150

11.3 Theoretical Analysis

the previous time slice, and Ω′ = {ω′1, .., ω′n} refer to the state space for time slice t, i.e.,
the current time slice. For a PDM G, Ω consists of ×A∈gr(At−1)R(A) and Ω′ consists of
×A∈gr(At)R(A) from G→. Thus, Ω contains all possible worlds from time slice t − 1 of
G→ and Ω′ contains all possible worlds from time slice t of G→. A world is one particular
assignment of all grounded PRVs. After renaming, the state spaces Ω and Ω′ are the
same, i.e., the only difference is that in Ω all randvars are from time slice t − 1 and in
Ω′ the same randvars are from time slice t. Further, G→ represents a process from Ω
to Ω′. Further, let ωi1 ∈ Ω be one possible world and let ωi2 ∈ Ω be another possible
world. Then, for some posterior world ω′j ∈ Ω′, the probability of transferring from ωi1
to ω′j is P (ω′j | ωi1) and the probability of transferring from ωi2 to ω′j is P (ω′j | ωi2) w.r.t.
PG→ . The queries ask for the probability of a certain world, here ω′j , in time slice t given
the assignments of a world from time slice t − 1, ωi1 or ωi2 , as evidence. Using these
notations, we define the so-called minimal mixing rate for a PDM.

Definition 11.3.1 (Minimal mixing rate). For a PDM with a stochastic transition model
Q, the minimal mixing rate of Q is

γQ = min
i1,i2

n∑
j=1

min[P (ω′j | ωi1), P (ω′j | ωi2)]

Basically, γQ describes the extent to which all pairs of possible worlds from time slice
t − 1 at least agree on all possible worlds in time slice t based on the temporal model
behaviour. The value of γQ is always between 0 and 1. The intuition behind γQ ∈ [0, 1]
is that summing over all possible worlds from time slice t yields 1, i.e.,

∑n
j=1 P (ω′j) = 1.

However, for γQ we do not only sum over all possible worlds from time slice t, but have
possible worlds from time slice t − 1 as evidence. Thus, roughly speaking we multiply
the probabilities of the possible world from time slice t with a value between 0 and 1.
Therefore, γQ is between 0 and 1.
To be able to measure the distance between the true belief state, let us say ϕ, and an

approximation of that true belief state, let us say ψ, we introduce the Kullback–Leibler
divergence (Kullback and Leibler, 1951), also called KL-divergence. The KL-divergence
can be used to measure the discrepancy of a distribution and its approximation.

Definition 11.3.2 (KL-divergence). If ϕ and ψ are two distributions over the same
space Ω, the KL-divergence of ϕ to ψ is given by:

D(ϕ||ψ) =
∑
ω∈Ω

ϕ(ω) log
ϕ(ω)

ψ(ω)

For each summand, we multiply the probability of the true belief state ϕ(ω) with the
logarithm of the division of the probabilities of ϕ(ω) and its approximation ψ(ω). Thus,
in case ϕ(ω) = ψ(ω) the distance is 0 and otherwise the distance is greater than 0.

151

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

Further, let ϕ′ and ψ′ be the distributions corresponding to ϕ and ψ induced over Ω′ by
G→. With the KL-divergence, we can define how an approximation error gets reduced
by the model behaviour while transitioning from time step t − 1 to time step t. Then,
with the minimal mixing rate γQ ∈ [0, 1] the following holds:

D(ϕ′||ψ′) ≤ (1− γQ)D(ϕ||ψ). (11.8)

Based on Definition 11.3.2, two distributions, in this case the true belief state and an
approximation of the true belief state, converge with at least γQ. That is to say the belief
state of the approximation converges to the true belief state with the rate γQ. In terms
of KL-divergence, converging means that the distance between the true belief state and
the approximation of the true belief state is reduced at least by the factor (1−γQ) while
transitioning from one time step to the next.
Now, we can show that the error that TAMe introduces is indefinitely bounded. Let

σ be the true belief state, let σ̂ be TAMe applied to σ, i.e., an approximation of σ, and
let σ̃ be TAMe applied to σ̂, i.e., an approximation of the approximated belief state.
TAMe is constantly applied, e.g., every time step. Thus, TAMe approximates an already
approximated belief state. Hence, to measure the error that TAMe introduces, we need
to compare the KL-divergence of σ to σ̂ against the KL-divergence of σ to σ̃. Further,
there exists a δ such that the following holds:

D(σ||σ̃)−D(σ||σ̂) ≤ δ. (11.9)

Using Eq. (11.9), we can deduce that applying TAMe introduces an error of at most
δ. The underlying assumption of Eq. (11.9) is that by applying an approximation, the
distance of the approximated belief state to the true belief state increases. By apply-
ing TAMe, the distance between the true belief state and its approximation is at most
increased by δ.
Before TAMe merges parfactors and thereby, approximates a belief state, TAMe uses

a significance check to determine the fitness of a proposed clustering. Therefore, one can
use the significance check to obtain a small δ. Additionally, from Eq. (11.8), we know
the distance of an approximation to the true belief state is reduced at least by the factor
(1 − γQ) while transitioning from t to t + 1. Using these insights, we can provide error
bounds for TAMe.

Theorem 11.3.1. TAMe error is indefinitely bounded by δ/γQ.

Proof. We have shown that a PDM is a Markov decision process with a stochastic tran-
sition matrix Q that has a minimal mixing rate γQ. TAMe approximates the belief state
of the interface It and LDJT computes the transition from t − 1 to t. From Eq. (11.9),
we know that applying TAMe increases the distance of the approximated belief state
to the true belief state by at most δ. Further, from Eq. (11.8) we know that LDJT

152

11.3 Theoretical Analysis

reduces the distance between the approximated belief state and the true belief state at
least by the factor (1 − γQ) with each transition. To show that the error is indefinitely
bounded, we need to show that the accumulated error over all time steps is bounded.
Thereby, the distance between the approximated belief state and the true belief state
is also bounded. For the current time step, TAMe introduces an error of δ, the error
from the previous time step is at most (1 − γQ) · δ, and the error from the first ap-
proximation is (1 − γQ)t−1 · δ at time step t. By approximating each time step, the
expected error up to time step t accumulates to δ + (1− γQ) · δ + ...+ (1− γQ)t−1 · δ =∑t

i=0 δ · (1− γQ)i ≤
∑∞

i=0 δ · (1− γQ)i = δ/γQ. For the last step, we apply the geometric
series, i.e.,

∑∞
i=0 δ · (1 − γQ)i = δ/1 − (1 − γQ) = δ/γQ . Thus, the error is indefinitely

bounded by δ/γQ.

Let us now prove that TAMe keeps reasoning polynomial by showing that TAMe can
merge distributions and thereby, LDJT can calculate a lifted solution.

Theorem 11.3.2. TAMe keeps reasoning polynomial.

Proof. Without loss of generality, assume we observe evidence for one unary and boolean
PRV B(Y). Observing events for multiple instances of logvar Y can split Y into at most
three parts, i.e., the true, the false, and the unknown part. Hence, for each time step,
LDJT can only assign true, false, or unknown to each grounded PRV of B(Y). For a
huge n, where |D(Y)| = n, there always is a large number of ground PRVs with the
same subsequence of events. In case these ground PRVs have been split by evidence, the
minimal mixing rate γQ ensures that the distributions of the ground PRVs converge again.
With a subsequence of length o say, the distance between the split distributions of these
ground PRVs is reduced by (1 − γQ)o. Therefore, the split distributions converge again
and TAMe will merge the split distributions at some point in time. Merging parfactors
ensures that LDJT calculates a solution in polynomial time w.r.t. domains.

Based on Thm. 11.3.2 and the minimal mixing rate γQ, we show that without new
evidence, TAMe obtains a fully lifted representation again and that the representation
represents the true belief state.

Corollary 11.3.1. Without new evidence, TAMe obtains a fully lifted representation
with the true belief state.

Proof. During each transition from t to t+1, γQ ensures that approximated distributions
converge to the true distribution as the distributions converge at least by the factor
(1− γQ). Thus, the approximated distributions converge to the true belief state without
new evidence. Further, all groups have the same origin. Therefore, all groups converge
to the same true belief state. Hence, TAMe can merge all groups and thereby, obtain a
fully lifted representation at some point in time again without new evidence.

153

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

Thus, TAMe solves the KRP problem. Since the underlying distributions of φ’s con-
verge, TAMe is able to merge φ’s allowing TAMe to keep reasoning polynomial. Further,
TAMe introduces a bounded, unbiased, and necessary error.

11.4 Evaluation

For the evaluation, we compare runtimes of LDJT with and without TAMe and have a
look at the introduced error. We use the model Gex from this chapter with |D(X)| = 100
and divide these 100 persons equally into symmetry groups, where members of each
group behave identically over time. For one time step, each symmetry group has the
same evidence, but the evidence can change from one time step to the next. To break
symmetries within a group, evidence may be missing with a probability of 0.1 for each
person. We split D(X) into 2 to 10 symmetry groups and generate evidence for 20 time
steps. For each symmetry group i, LDJT answers At+π(xi) for π = {0, 5, 10}, i.e., a
filtering and two prediction queries, in each time step t for all 20 time steps.
We vary ε and the interval I of how often LDJT applies TAMe. The parameterτ is

fixed to 0.005. Based on the problem at hand, an appropriate τ needs to be determined
in advance (Benjamin et al., 2018). The three options we evaluate are, from conservative
to aggressive: 1) I = 5, ε = 5 · 10−14, 2) I = 5, ε = 5 · 10−2, and 3) I = 2, ε = 5 · 10−2.
TAMe with Option 1 mostly merges parfactors that only differ in a scaling factor. TAMe
with Options 2 and 3 also merges parfactors that slightly differ in their ratio. With
I = 2, LDJT calls TAMe every other time step, and with I = 5 every fifth time step.
Figure 11.3 shows runtimes of LDJT without TAMe and with TAMe for the three

options. The number of symmetry groups is plotted on the x-axis. With more symmetry
groups, evidence can ground the model faster over time. Thus, the runtimes correlate
to the number of groups. For 5 symmetry groups, LDJT without TAMe takes about
twice as long as LDJT with TAMe using the conservative option (1), answering 300
queries for the 20 time steps. However, for 8 symmetry groups, LDJT without TAMe
is slightly faster. As merging depends on evidence, which here is randomly generated,
TAMe may not always be able to trade off its overhead. TAMe with Option 2 merges
more parfactors. Hence, every fifth time step, LDJT answers queries on fewer groups,
which are then again split up by evidence. With the most aggressive option (3), LDJT
applies TAMe every other time step and thus answers queries on highly lifted models.
In summary, even by only merging parfactors that hardly differ, TAMe merges enough

parfactors to improve runtimes of LDJT. TAMe with Options 2 and 3 improves runtimes
of LDJT significantly. Overall, TAMe is able to save runtime of LDJT of up to 2 orders
of magnitude. Knowing that TAMe can significantly improve the performance of LDJT,
we look at the costs of the speed up, namely the introduced error.
Table 11.1 shows the error in the marginals for 10 symmetry groups for the most aggres-

sive option, when performing filtering, 2 time step prediction, and 4 time step prediction

154

11.4 Evaluation

2 4 6 8 10

0
10

00
20

00
30

00 LDJT
I = 5, ε = 10−14

I = 5, ε = 10−2

I = 2, ε = 10−2

Figure 11.3: Runtimes [seconds], x-axis: #symmetry groups

π Max Min Average

0 0.0001537746121 0.0000000001720 0.0000191206488
2 0.0000000851654 0.0000000000001 0.0000000111949
4 0.0000000000478 0 0.0000000000068

Table 11.1: Introduced error; I = 2, ε = 5 · 10−2, 10 symmetry groups

for each instance and each time step. For filtering queries, the error is already negligible
and decreases for prediction queries. Thus, the empirical evaluation underscores that
TAMe can keep reasoning polynomial, introducing only a negligible error. Further, the
error converges to the true belief state without new evidence as the prediction queries
show. Next, we take a look at the significance check.
To empirically evaluate the significance check, we run LDJT with TAMe on a model

once with and once without the significance check. Table 11.2 shows the introduced errors
for these runs. The maximum error hardly differs between the two runs, which is is due to
the error being bounded. Further, the minimum error is lower with the significance check
as the significance check does not accept all proposed clusters. Discarding a clustering
and thus, not following through with another approximation, the current approximation
and the true belief state continue to converge based on the mixing rate. Lastly, the

Max Min Average

w 0.0002259927071 0.0000000000000 0.0000104567643
w/o 0.0002260554389 0.0000000000168 0.0000137870835

Table 11.2: Introduced error; with and without significance test

155

Chapter 11 Taming Reasoning in Temporal Probabilistic Relational Models

average error without the significance check is around 32% higher. Even though in this
case both average errors are negligible on an absolute scale, the average error on a relative
scale without the significance check does increase significantly.
Overall, we show empirically that TAMe does not introduce any unnecessary error due

to the significance check and that TAMe keeps reasoning polynomial for LDJT.

11.5 Interim Conclusion

Evidence often grounds a temporal model over time. Consequently, inference runtimes
suffer. Hence, the idea is to use approximate symmetries to restore a lifted representation
and thus, keep reasoning polynomial by taming evidence. To the best of our knowledge,
we present the first approach solving the KRP problem for temporal relational proba-
bilistic models. The algorithm can be used within any (exact or approximate) temporal
inference algorithm (Contribution 8a). The main idea is that instances of parfactors
with similar ratios between potentials behave similarly. To merge parfactors, TAMe uses
a the forward message of LDJT as this message is smaller than the model and causes
splits in the next time step. To identify similar instances, TAMe uses density-based
clustering with the cosine similarity as a distance measure, which captures similarity of
potentials. TAMe applies ANOVA to the clustering result to check if the cluster means
significantly discriminate the clusters. We show that TAMe can merge parfactors as
their distributions converge and that TAMe introduces a bounded error (Contribution
8b). Additionally, the approximated distributions converge to the true distributions and
without new evidence TAMe obtains a fully lifted representation again. Empirical results
show that LDJT with TAMe significantly outperforms LDJT without TAMe. The results
support our analysis that TAMe retains a lifted solution, while keeping the introduced
error negligible. Hence, LDJT with TAMe produces fast and precise results.
Future work includes how to approximate evidence (Van den Broeck and Darwiche,

2013) to cause fewer splits in temporal models. Additionally, we plan to look into using
TAMe for forgetting. One could imagine that we have a number of objects, but sometimes
new objects are introduced and old object disappear, Here, we could use the ideas of
TAMe to handle the forgetting and insertion of new objects.

156

Chapter 12

Outlook

Before we conclude, we present our ideas for changing domains over time as an interest-
ing direction of inference in temporal probabilistic relational models. Changing domains
means that the number of instances to reason over changes over time, i.e., some instances
get added and others get removed. Interesting questions concern, for example, the se-
mantics of changing domains, e.g., are we allowed to assume that an instance got added
only on this time step or has the change of the domain size also an influence on previous
time steps. Having a proper semantics for changing domains, we can also think about
changing domains to identify a world which best explains our observations. Based on
these questions, in the following, we provide a semantics for changing domain sizes. Af-
terwards, we investigate the possibility that there is uncertainty about when exactly a
change in a domain size happens. Finally, we look into forgetting and reusing instances.

Semantics Having a grounding semantics, changes in domain sizes are straightforward
if we can say with certainty that the change occurs from one time step to the next.
In the ground model, the change in domain sizes would result in adding or removing
corresponding randvars. Thus, from one time step to the next, the full joint distribution
would change. Further, observing evidence for newly added instances might have an effect
on other PRVs and their instances. The change could influence hindsight queries. Such a
case in a ground model means that newly added randvars could be connected over other
randvars to randvars of other instances in previous time steps. Then, observing evidence
for the newly added randvars also influences randvars of other instances in previous time
steps and could change the distributions in hindsight queries.
However, a forward message when the domain size increases between time steps is not

as straightforward. Here, we could imagine that we have an inter-slice parfactor mapping
St−1(X) to St(X) and |D(X)| = 10 for time step t− 1 and |D(X)| = 11 for time step t.
In such a case, LDJT would have to split X in time slice t into the x’s from time step
t− 1 and the x’s from time step t. Thus, LDJT would introduce a new group to reason
over by adding new instances. Further, for all PRVs LDJT may have a form of priors for
the very first time step. The following question arrises: Should the newly added randvar
also have priors and if yes, which priors. We could use the very same prior as for the very
first time step. But is it reasonable to do so as the model has already been proceeding

157

Chapter 12 Outlook

in time? Additionally, by using the priors from the first time step, LDJT would have to
hope that it could merge the newly added group with other groups at some point in time
with TAMe to not get lost in reasoning over too many groups. Another approach for the
prior would be to use the posterior of St−1(X) as a prior for St(x11). Such an approach
goes along with the idea that the instances behave identically. Further, in such a fashion,
LDJT would not have to split x11 from the rest and thereby, would not introduce a new
group. Therefore, using the posterior of the previous time step would be valid based on
the assumptions we make about the model. The approach becomes more involved, in
case the X in St−1(X) is split into multiple parts. Here, one could use the posterior of
the group that encodes the most instances.

Uncertain Changes Another interesting part in changing domain sizes would be uncer-
tainties. Assume that there is an oracle telling you that within the next ten time steps
the domain size will increase by one, then there is an uncertainty about when exactly the
domain change happens. Such an oracle could describe, for example, how a population
changes over time. With uncertainties, one has to reason over distributions of full joint
distributions. The uncertainty could be modelled as a distribution over time steps stating
how likely different domain sizes are. In such a case with discrete time steps, one might
be able to combine full joint distributions w.r.t. how probable their corresponding domain
sizes are. But the combination of the full joint distributions is not a trivial case as their
sizes do not match. To be able to reason with such an uncertainty, LDJT could answer
queries on the applicable full joint distributions and combine the marginal distributions
with how probable the corresponding full joint distributions are.
Formally, for each full joint distribution we would have a tuple (p, PG), where p is

the probability that the full joint distribution PG of a particular domain size change is
applicable. Then, LDJT can answer queries w.r.t. the different PG, multiply the result
with p and sum over all applicable full joint distributions. To determine how probable
a full joint distribution is, LDJT has to account for the distribution over time encoding
how the domain size changes. For the first time step within this temporal domain size
uncertainty, LDJT can calculate the probability of the domain size staying the same as
well as the probability of the domain size changing based on the defined uncertainty
distribution. In our earlier example, that corresponds to the probability that the domain
size remains at 10 or changes to 11. After the first time step, LDJT has two full joint
distributions with probabilities of how likely they are. Thus, LDJT also needs to compute
a forward message for both full joint distributions. In the next time step, LDJT again
can calculate how likely it is that the domain size is still 10 as well as how likely it is
that there are already 11 instances. The case that there are still 10 instances is the
more trivial case. Here, LDJT has to use the forward message from the previous time
step with also 10 instances. The case where there are 11 instances in time step t + 1
can originate from both full joint distributions from time step t. Either, the domain has

158

already changed in the last time step to 11 or the domain size changes in the current time
step from 10 to 11. Therefore, how probable the full joint distributions in t+ 1 are needs
to be combined with how probable the full joint distributions are in time step t. Hence,
the number of full joint distributions increases over time. If necessary, to reduce the
number of full joint distributions, LDJT could either approximate full joint distributions
by pruning highly unlikely full joint distributions or could apply TAMe to combine some
full joint distributions that are already over 11 instances. After the last time step of the
domain size uncertainty, LDJT has only full joint distributions over 11 instances, which
then can be again combined based on how probable the different full joint distributions
are to consolidate the full joint distributions into a single full joint distribution again.
The end is also reached in case LDJT receives an event about the newly added instance.
Then, LDJT is certain that there are 11 instances for the current time step, but still
needs to consolidate the full joint distributions.
With continuous time steps, uncertain changes could also be of interest to Gaussian

processes (Rasmussen, 2003). To the best of our knowledge, the time when an event
is observed is certain in Gaussian processes. Temporal uncertainty when an event is
observed could also be an interesting extension for Gaussian processes. However, in
Gaussian processes one would not restrict the uncertainty to domain size changes but
have in general vagueness about when an event is observed.

Forgetting and Reusing Instances Having a fully defined semantics for changing do-
mains, one could also think about using temporal probabilistic relational models to per-
form discourse analysis. Assume we want to analyse a novel. In a novel, instances or
persons may vary in different chapters. By varying, we mean that sometimes instances
do not occur in a chapter, are newly introduced, or appear again after several chapters.
To solve such a scenario, one needs to be able to determine which possible world best
describes the evidence. Thus, one needs to solve an optimisation problem over possi-
ble worlds with different domain sizes and different instance assignments. To solve the
optimisation problem, one needs to be able to determine whether introducing a new
instance or reactivating an already existing instance, including the observed events for
that instance, makes a world more probable. To forget an instance between chapters,
one could imagine to define an approach in the spirit of TAMe to not drown in a sea of
superfluous knowledge. Therefore, in such a case to solve the optimisation problem one
also needs to account for the value of information. Storing too many observations and
forgetting too few instances will cause runtimes to drastically suffer, while forgetting too
much knowledge might make it infeasible to discriminate possible worlds leading to an
over-approximated and thereby, not useable result. To be able to solve the optimisation
problem, we have already taken a crucial step with TAMe.

159

Chapter 13

Conclusion

In this thesis, we present LDJT with multiple extension. LDJT efficiently answers multi-
ple hindsight, filtering, and prediction queries for temporal probabilistic relational models
(Contribution 1). Further, we show that simply lifting a propositional algorithm might
result in grounding a model unnecessarily. To ensure preconditions of lifting, LDJT
prevents unnecessary groundings (Contribution 2). In our theoretical analysis of LDJT
(Contribution 3), we show that there is a trade off between handling temporal aspects
efficiently and lifting, resulting in restricting completeness results for lifted inference algo-
rithms for LDJT. Further, our complexity results indicate that lifting especially matters
in the temporal case as in the ground case the interface and thereby the ground width
increases with the domain size. The empirical evaluation of LDJT also shows that lift-
ing matters as well as that, for temporal probabilistic relational models, an inference
algorithm has to handle temporal aspects efficiently.
In its base form, LDJT can answer marginal queries with a single query term efficiently.

To allow more query types, we extend the query language of LDJT in Part II. The first
extension to the query language that we present is conjunctive queries (Contribution 4a
and 4b). To answer conjunctive queries, LDJTcon delays the elimination of PRVs of query
terms until all query terms are in a single parcluster. In a temporal model, the parclusters
holding the query terms can be far apart leading to a huge subtree in between them.
Therefore, LDJTcon does not merge subtrees (as LJT does), but delays the elimination. In
the empirical evaluation, we also show that LDJTcon is beneficial for multiple conjunctive
queries, e.g., referring to different representatives. For assignment queries (Contribution
5a, 5b, and 5c), our second extension we show how LDJT can handle temporal aspects
efficiently. Further, we identify safe MAP queries, namely queries over complete time
steps, e.g., the last 20 time steps, which are of great practical interest. The last extension
that we present is maximum expected utility queries (Contribution 6a, 6b, and 6c) to
support decision making.
In Part III, we introduce uncertain evidence (Contribution 7a, 7b, and 7c) and tame

the effects of evidence over time (Contribution 8a and 8b). Evidence grounding a model
over time is a key challenge for inference in temporal probabilistic relational models.
TAMe solves the KRP problem by restoring a lifted representation. We theoretically
show that TAMe introduces a bounded error and that TAMe solves the KRP problem.

161

Chapter 13 Conclusion

To the best of our knowledge LDJT is the first exact inference algorithm for temporal
probabilistic relational models calculating a lifted solution if the model permits. In
addition to hindsight, filtering, and prediction queries, LDJT also allows for other types
of queries such a conjunctive, assignment, or maximum expected utility queries. Lastly,
with TAMe, we solve a key challenge for inference in temporal probabilistic relational
models allowing for approximating symmetries to keep reasoning polynomial.
Besides the changing domain sizes in Chapter 12, another interesting direction for

future work is temporal and spatial uncertainties. So far, LDJT deals with (certain)
temporal data. A first step would be to include spatial data, in a similar fashion as we
added temporal aspects with PDMs to PMs, as another dimension of PRVs and extend
LDJT to also reason over spatial data. Thereby, LDJT could handle certain temporal
spatial data. However, there often are uncertainties also in temporal and spatial data.
For example an ancient object might be pin pointed to originate from the early first
century somewhere in the south of Greece. Hence, there are uncertainties about the
exact year and the exact location.
A first approach could be to model the uncertainties with uncertain evidence. Thus,

providing the locations as uncertain evidence and observing that the object was created
in a some years with uncertain evidence. However, using uncertain evidence might be
an over-simplification. Instead of uncertain evidence, distributions over temporal and
spatial uncertainty might be the more precise representation. Thus, one would have un-
certainties in two dimensions. Such a scenario can be compared to a partially observable
Markov decision process (POMDP), where one cannot observe the state location exactly.
However, in our scenario, we do not only have uncertainties about the location, but also
the time. In general, there already exists work for spatio-temporal event detection (Yin
et al., 2009). However, the idea of distributions for temporal and spatial uncertainty
induces exciting new research opportunities.

162

Bibliography

Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Exploiting
Symmetries for Scaling Loopy Belief Propagation and Relational Training. Machine
learning, 92(1):91–132, 2013.

Udi Apsel and Ronen I. Brafman. Extended Lifted Inference with Joint Formulas. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, pages 11–
18. AUAI Press, 2011.

Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A Maximization Tech-
nique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains.
The Annals of Mathematical Statistics, 41(1):164–171, 1970.

Daniel Benjamin, James Berger, Magnus Johannesson, Brian Nosek, E.-J Wagenmakers,
Richard Berk, Kenneth Bollen, Björn Brembs, Lawrence Brown, Colin Camerer, David
Cesarini, Christopher Chambers, Merlise Clyde, Thomas Cook, Paul De Boeck, Zoltan
Dienes, Anna Dreber, Kenny Easwaran, Charles Efferson, and Valen Johnson. Redefine
Statistical Significance. Nature Human Behaviour, 2(1):6, 2018.

Xavier Boyen and Daphne Koller. Tractable Inference for Complex Stochastic Processes.
In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,
pages 33–42. Morgan Kaufmann Publishers Inc., 1998.

Tanya Braun and Marcel Gehrke. Inference in Statistical Relational AI. In Proceedings of
the 24th International Conference on Conceptual Structures, pages xvii–xix. Springer,
2019.

Tanya Braun and Ralf Möller. Lifted Junction Tree Algorithm. In Proceedings of KI
2016: Advances in Artificial Intelligence, pages 30–42. Springer, 2016.

Tanya Braun and Ralf Möller. Preventing Groundings and Handling Evidence in the
Lifted Junction Tree Algorithm. In Proceedings of KI 2017: Advances in Artificial
Intelligence, pages 85–98. Springer, 2017.

Tanya Braun and Ralf Möller. Counting and Conjunctive Queries in the Lifted Junc-
tion Tree Algorithm. In Postproceedings of the 5th International Workshop on Graph
Structures for Knowledge Representation and Reasoning. Springer, 2018.

163

Bibliography

Tanya Braun and Ralf Möller. Lifted Most Probable Explanation. In Proceedings of the
23rd International Conference on Conceptual Structures, pages 39–54. Springer, 2018.

Tanya Braun and Ralf Möller. Parameterised Queries and Lifted Query Answering.
In IJCAI-18 Proceedings of the 27th International Joint Conference on Artificial In-
telligence, pages 4980–4986. International Joint Conferences on Artificial Intelligence
Organization, 2018.

Tanya Braun. Rescued from a Sea of Queries: Exact Inference in Probabilistic Relational
Models. PhD thesis, 2020.

Rodrigo De Salvo Braz, Eyal Amir, and Dan Roth. Lifted First-order Probabilistic Infer-
ence. In IJCAI05 Proceedings of the 19th International Joint Conference on Artificial
intelligence, pages 1319–1325. Morgan Kaufmann Publishers Inc., 2005.

Hei Chan and Adnan Darwiche. On the Revision of Probabilistic Beliefs using Uncertain
Evidence. Artificial Intelligence, 163(1):67 – 90, 2005.

Jan Chomicki and Tomasz Imieliński. Temporal Deductive Databases and Infinite Ob-
jects. In Proceedings of the seventh ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 61–73. ACM, 1988.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge Univer-
sity Press, 2009.

Rodrigo de Salvo Braz. Lifted First-Order Probabilistic Inference. PhD thesis, Ph. D.
Dissertation, University of Illinois at Urbana Champaign, 2007.

Anton Dignös, Michael H Böhlen, and Johann Gamper. Temporal Alignment. In Proceed-
ings of the 2012 ACM SIGMOD International Conference on Management of Data,
pages 433–444. ACM, 2012.

Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A Temporal-Probabilistic
Database Model for Information Extraction. Proceedings of the VLDB Endowment,
6(14):1810–1821, 2013.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based Al-
gorithm for Discovering Clusters in Large Spatial Databases with Noise. In KDD’96
Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, pages 226–231. AAAI Press, 1996.

R.A. Fisher. Statistical Methods for Research Workers. Edinburgh Oliver & Boyd, 1925.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Hindsight Queries with Lifted
Dynamic Junction Trees. In 8th International Workshop on Statistical Relational AI
at the 27th International Joint Conference on Artificial Intelligence, 2018.

164

Bibliography

Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Multiple Conjunctive Queries
with the Lifted Dynamic Junction Tree Algorithm. In Proceedings of the AI 2018:
Advances in Artificial Intelligence, pages 543–555. Springer, 2018.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algorithm.
In Proceedings of the 23rd International Conference on Conceptual Structures, pages
55–69. Springer, 2018.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary Groundings in
the Lifted Dynamic Junction Tree Algorithm. In 8th International Workshop on Statis-
tical Relational AI at the 27th International Joint Conference on Artificial Intelligence,
2018.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary Groundings in
the Lifted Dynamic Junction Tree Algorithm. In Proceedings of the AI 2018: Advances
in Artificial Intelligence, pages 556–562. Springer, 2018.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Towards Preventing Unnecessary Ground-
ings in the Lifted Dynamic Junction Tree Algorithm. In Proceedings of KI 2018: Ad-
vances in Artificial Intelligence, pages 38–45. Springer, 2018.

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann,
and Jost Steinhäuser. Towards Lifted Maximum Expected Utility. In Proceedings of
the Joint Workshop on Artificial Intelligence in Health in Conjunction with the 27th
IJCAI, the 23rd ECAI, the 17th AAMAS, and the 35th ICML, pages 93–96. CEUR-
WS.org, 2018.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Maximum Expected
Utility. In Proceedings of the 32nd Canadian Conference on Artificial Intelligence,
Canadian AI 2019, pages 380–386. Springer, 2019.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Most Probable Expla-
nation. In Proceedings of the 24th International Conference on Conceptual Structures,
pages 72–85. Springer, 2019.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Algo-
rithm for Multiple Queries. In Proceedings of the 32nd International Florida Artificial
Intelligence Research Society Conference (FLAIRS-32), pages 464–469. AAAI Press,
2019.

Marcel Gehrke, Tanya Braun, and Ralf Möller. Uncertain Evidence for Probabilistic
Relational Models. In Proceedings of the 32nd Canadian Conference on Artificial In-
telligence, Canadian AI 2019, pages 80–93. Springer, 2019.

165

Bibliography

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Strumann,
and Jost Steinhäuser. Lifted Maximum Expected Utility. In Proceedings of Artificial
Intelligence in Health, pages 131–141. Springer International Publishing, 2019.

Marcel Gehrke, Ralf Möller, and Tanya Braun. Taming Reasoning in Temporal Proba-
bilistic Relational Models. In Proceedings of the 24th European Conference on Artificial
Intelligence (ECAI 2020), pages 2592–2599, 2020.

Thomas Geier and Susanne Biundo. Approximate Online Inference for Dynamic Markov
Logic Networks. In Proceedings of the 23rd IEEE International Conference on Tools
with Artificial Intelligence, pages 764–768. IEEE, 2011.

Richard C Jeffrey. The Logic of Decision. University of Chicago Press, 1990.

Saket Joshi, Kristian Kersting, and Roni Khardon. Generalized First Order Decision
Diagrams for First Order Markov Decision Processes. In IJCAI09 Proceedings of the
21st International Joint Conference on Artifical Intelligence, pages 1916–1921. Morgan
Kaufmann Publishers Inc., 2009.

Solomon Kullback and Richard A Leibler. On Information and Sufficiency. The Annals
of Mathematical Statistics, 22(1):79–86, 1951.

Steffen L. Lauritzen and David J Spiegelhalter. Local Computations with Probabilities
on Graphical Structures and their Application to Expert Systems. Journal of the Royal
Statistical Society. Series B (Methodological), 50(2):157–224, 1988.

Cristina E Manfredotti. Modeling and Inference with Relational Dynamic Bayesian Net-
works. PhD thesis, Ph. D. Dissertation, University of Milano-Bicocca, 2009.

Brian Milch, Luke S. Zettlemoyer, Kristian Kersting, Michael Haimes, and Leslie Pack
Kaelbling. Lifted Probabilistic Inference with Counting Formulas. In AAAI08 Pro-
ceedings of the 23rd National Conference on Artificial Intelligence - Volume 2, pages
1062–1068. AAAI Press, 2008.

Kevin Murphy and Yair Weiss. The Factored Frontier Algorithm for Approximate In-
ference in DBNs. In Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, pages 378–385. Morgan Kaufmann Publishers Inc., 2001.

Kevin Patrick Murphy. Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, University of California, Berkeley, 2002.

Aniruddh Nath and Pedro Domingos. A language for relational decision theory. In
International Workshop on Statistical Relational Learning, 2009.

166

Bibliography

Aniruddh Nath and Pedro Domingos. Efficient Lifting for Online Probabilistic Infer-
ence. In Proceedings of the 6th AAAI Conference on Statistical Relational Artificial
Intelligence, AAAIWS’10-06, pages 1193–1198. AAAI Press, 2010.

Aniruddh Nath and Pedro M Domingos. Efficient Belief Propagation for Utility Maxi-
mization and Repeated Inference. In AAAI10 Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, pages 1187–1192. AAAI Press, 2010.

Mathias Niepert and Guy Van den Broeck. Tractability through Exchangeability: A
New Perspective on Efficient Probabilistic Inference. In AAAI14 Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, pages 2467–2475. AAAI
Press, 2014.

Davide Nitti, Tinne De Laet, and Luc De Raedt. A Particle Filter for Hybrid Relational
Domains. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2764–2771. IEEE, 2013.

Özgür Özcep, Ralf Möller, and Christian Neuenstadt. Stream-Query Compilation with
Ontologies. In Proceedings of the AI 2015: Advances in Artificial Intelligence. Springer,
2015.

Tivadar Papai, Henry Kautz, and Daniel Stefankovic. Slice Normalized Dynamic Markov
Logic Networks. In NIPS12 Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 2, pages 1907–1915. Curran Associates Inc.,
2012.

Judea Pearl. On Two Pseudo-Paradoxes in Bayesian Analysis. Annals of Mathematics
and Artificial Intelligence, 32(1-4):171–177, 2001.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Rea-
soning. Elsevier, 2014.

Yun Peng, Shenyong Zhang, and Rong Pan. Bayesian Network Reasoning with Uncer-
tain Evidences. International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 18(05):539–564, 2010.

David Poole. First-order probabilistic inference. In IJCAI03 Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence, pages 985–991. Morgan Kaufmann
Publishers Inc., 2003.

Carl Edward Rasmussen. Gaussian Processes in Machine Learning. In Summer School
on Machine Learning, pages 63–71. Springer, 2003.

Matthew Richardson and Pedro Domingos. Markov Logic Networks. Machine learning,
62(1):107–136, 2006.

167

Bibliography

Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson
Education, 1995.

Scott Sanner and Craig Boutilier. Approximate Solution Techniques for Factored First-
order MDPs. In 17th International Conference on Automated Planning and Scheduling,
page 288–295. AAAI Press, 2007.

Scott Sanner and Kristian Kersting. Symbolic Dynamic Programming for First-order
POMDPs. In AAAI10 Proceedings of the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, pages 1140–1146. AAAI Press, 2010.

Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. DB-
SCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM
Transactions on Database Systems (TODS), 42(3):19, 2017.

Vishal Sharma, Noman Ahmed Sheikh, Happy Mittal, Vibhav Gogate, and Parag Singla.
Lifted Marginal MAP Inference. In Proceedings of the 34th Conference on Uncertainty
in Artificial Intelligence, pages 917–926. AUAI Press, 2018.

Parag Singla, Aniruddh Nath, and Pedro M Domingos. Approximate Lifting Techniques
for Belief Propagation. In AAAI14 Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, pages 2497–2504. AAAI Press, 2014.

Jost Steinhäuser and Thomas Kühlein. Role of the General Practitioner. In Patient
Blood Management, pages 61–65. Thieme, 2015.

Nima Taghipour, Jesse Davis, and Hendrik Blockeel. First-order Decomposition Trees.
In NIPS13 Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 1, pages 1052–1060. Curran Associates Inc., 2013.

Nima Taghipour, Jesse Davis, and Hendrik Blockeel. Generalized Counting for Lifted
Variable Elimination. In International Conference on Inductive Logic Programming,
pages 107–122. Springer, 2013.

Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik Blockeel. Lifted Variable
Elimination: Decoupling the Operators from the Constraint Language. Journal of
Artificial Intelligence Research, 47(1):393–439, 2013.

Nima Taghipour, Daan Fierens, Guy Van den Broeck, Jesse Davis, and Hendrik Blockeel.
Completeness Results for Lifted Variable Elimination. In Artificial Intelligence and
Statistics, pages 572–580, 2013.

Nima Taghipour. Lifted Probabilistic Inference by Variable Elimination. PhD thesis, Ph.
D. Dissertation, KU Leuven, 2013.

168

Bibliography

Matthias Thimm and Gabriele Kern-Isberner. On Probabilistic Inference in Relational
Conditional Logics. Logic Journal of IGPL, 20(5):872–908, 2012.

Ingo Thon, Niels Landwehr, and Luc De Raedt. Stochastic relational processes: Efficient
inference and applications. Machine Learning, 82(2):239–272, 2011.

Guy Van den Broeck and Adnan Darwiche. On the Complexity and Approximation of
Binary Evidence in Lifted Inference. In NIPS13 Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2, pages 2868–2876.
Curran Associates Inc., 2013.

Guy Van den Broeck and Jesse Davis. Conditioning in First-order Knowledge Compi-
lation and Lifted Probabilistic Inference. In AAAI12 Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, pages 1961–1967. AAAI Press, 2012.

Guy Van den Broeck and Mathias Niepert. Lifted Probabilistic Inference for Asymmetric
Graphical Models. In AAAI15 Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 3599–3605. AAAI Press, 2015.

Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De Raedt. DT-
PROBLOG: A Decision-theoretic Probabilistic Prolog. In AAAI10 Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 1217–1222. AAAI
Press, 2010.

Guy Van den Broeck. On the Completeness of First-Order Knowledge Compilation for
Lifted Probabilistic Inference. In NIPS11 Proceedings of the 24th International Confer-
ence on Neural Information Processing Systems, pages 1386–1394. Curran Associates
Inc., 2011.

Guy Van den Broeck. Lifted Inference and Learning in Statistical Relational Models.
PhD thesis, KU Leuven, 2013.

Deepak Venugopal and Vibhav Gogate. Evidence-Based Clustering for Scalable Inference
in Markov Logic. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 258–273. Springer, 2014.

Jonas Vlasselaer, Wannes Meert, Guy Van den Broeck, and Luc De Raedt. Efficient
Probabilistic Inference for Dynamic Relational Models. In Proceedings of the 13th
AAAI Conference on Statistical Relational AI, AAAIWS’14-13, pages 131–132. AAAI
Press, 2014.

Jonas Vlasselaer, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc
De Raedt. TP-Compilation for Inference in Probabilistic Logic Programs. International
Journal of Approximate Reasoning, 78:15–32, 2016.

169

Bibliography

YH Wang, Kening Cao, and XM Zhang. Complex Event Processing over Dis-
tributed Probabilistic Event Streams. Computers & Mathematics with Applications,
66(10):1808–1821, 2013.

Bastian Wemmenhove, Joris M Mooij, Wim Wiegerinck, Martijn Leisink, Hilbert J Kap-
pen, and Jan P Neijt. Inference in the Promedas Medical Expert System. In Conference
on Artificial Intelligence in Medicine in Europe, pages 456–460. Springer, 2007.

Jie Yin, Derek Hao Hu, and Qiang Yang. Spatio-Temporal Event Detection using Dy-
namic Conditional Random Fields. In IJCAI09 Proceedings of the 21st International
Jont Conference on Artifical Intelligence, pages 1321–1326. Morgan Kaufmann Pub-
lishers Inc., 2009.

170

Publications

Conference Papers

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Dynamic Junction Tree Algo-
rithm. In Proceedings of the 23rd International Conference on Conceptual Struc-
tures, pages 55–69. Springer, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Towards Preventing Unnecessary
Groundings in the Lifted Dynamic Junction Tree Algorithm. In Proceedings of KI
2018: Advances in Artificial Intelligence, pages 38–45. Springer, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary Groundings
in the Lifted Dynamic Junction Tree Algorithm. In Proceedings of the AI 2018:
Advances in Artificial Intelligence, pages 556–562. Springer, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Multiple Conjunctive
Queries with the Lifted Dynamic Junction Tree Algorithm. In Proceedings of the
AI 2018: Advances in Artificial Intelligence, pages 543–555. Springer, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Relational Forward Backward Al-
gorithm for Multiple Queries. In Proceedings of the 32nd International Florida
Artificial Intelligence Research Society Conference (FLAIRS-32), pages 464–469.
AAAI Press, 2019

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Stru-
mann, and Jost Steinhäuser. Lifted Maximum Expected Utility. In Proceedings of
Artificial Intelligence in Health, pages 131–141. Springer International Publishing,
2019

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Maximum Expected
Utility. In Proceedings of the 32nd Canadian Conference on Artificial Intelligence,
Canadian AI 2019, pages 380–386. Springer, 2019

Marcel Gehrke, Tanya Braun, and Ralf Möller. Uncertain Evidence for Probabilistic
Relational Models. In Proceedings of the 32nd Canadian Conference on Artificial
Intelligence, Canadian AI 2019, pages 80–93. Springer, 2019

171

Publications

Marcel Gehrke, Tanya Braun, and Ralf Möller. Lifted Temporal Most Probable
Explanation. In Proceedings of the 24th International Conference on Conceptual
Structures, pages 72–85. Springer, 2019

Marcel Gehrke, Ralf Möller, and Tanya Braun. Taming Reasoning in Temporal Prob-
abilistic Relational Models. In Proceedings of the 24th European Conference on
Artificial Intelligence (ECAI 2020), pages 2592–2599, 2020

Workshop Papers

Marcel Gehrke, Tanya Braun, and Ralf Möller. Preventing Unnecessary Groundings
in the Lifted Dynamic Junction Tree Algorithm. In 8th International Workshop
on Statistical Relational AI at the 27th International Joint Conference on Artificial
Intelligence, 2018

Marcel Gehrke, Tanya Braun, and Ralf Möller. Answering Hindsight Queries with
Lifted Dynamic Junction Trees. In 8th International Workshop on Statistical Re-
lational AI at the 27th International Joint Conference on Artificial Intelligence,
2018

Marcel Gehrke, Tanya Braun, Ralf Möller, Alexander Waschkau, Christoph Stru-
mann, and Jost Steinhäuser. Towards Lifted Maximum Expected Utility. In Pro-
ceedings of the Joint Workshop on Artificial Intelligence in Health in Conjunction
with the 27th IJCAI, the 23rd ECAI, the 17th AAMAS, and the 35th ICML, pages
93–96. CEUR-WS.org, 2018

Extended Abstracts

Tanya Braun and Marcel Gehrke. Inference in Statistical Relational AI. In Proceed-
ings of the 24th International Conference on Conceptual Structures, pages xvii–xix.
Springer, 2019

172

	Contents
	List of Figures
	List of Algorithms
	List of Symbols
	List of Abbreviations
	Introduction
	Related Work
	Contributions
	Structure

	Preliminaries
	Exact Inference in Probabilistic Relational Models
	Parameterised Probabilistic Models
	Inference using the Lifted Junction Tree Algorithm
	Preventing Groundings

	Exact Inference for Temporal Probabilistic Propositional Models
	Dynamic Bayesian Networks
	Inference using the Interface Algorithm

	The Lifted Dynamic Junction Tree Algorithm
	Exact Inference in Temporal Probabilistic Relational Models
	Parameterised Probabilistic Dynamic Models
	Exact Inference with the Lifted Dynamic Junction Tree Algorithm
	Construction of FO Jtree Structures from a PDM
	Forward Pass
	Backward Pass

	Query Answering Plan
	Preserving FO Jtree Instantiations
	On Demand FO Jtree Instantiation
	Combining Instantiation Approaches

	Ensuring Preconditions of Lifting
	Preventing Groundings while Calculating Temporal Messages
	Discussion

	Complete Specification of the Lifted Dynamic Junction Tree Algorithm

	Theoretical Analysis
	Soundness
	Completeness
	Complexity
	LJT
	LDJT
	Comparison to the Ground Interface Algorithm
	Space and Time Requirements of Different Query Answering Plan

	Evaluation
	Filtering Queries
	Prediction and Hindsight Queries
	Count Conversions while Calculating Temporal Messages
	Preventing Groundings while Calculating Temporal Messages
	Evidence

	Interim Conclusion

	Extending the Query Language
	Conjunctive Queries
	Conjunctive Queries in LJT
	Conjunctive Queries in LDJT
	Theoretical Analysis
	Soundness
	Completeness
	Complexity

	Evaluation
	Interim Conclusion

	Assignment Queries
	Most Probable Assignments in LJT
	Most Probable Assignments in LDJT
	MPE Queries
	MAP Queries
	Discussion

	Theoretical Analysis
	Soundness
	Completeness
	Complexity

	Evaluation
	Interim Conclusion

	Maximum Expected Utility
	Lifted Maximum Expected Utility
	Parameterised Probabilistic Decision Models
	Maximum Expected Utility

	Lifted Temporal Maximum Expected Utility
	Parameterised Probabilistic Decision Models

	Solving the MEU Problem with meuLDJT
	Theoretical Analysis
	Soundness
	Completeness
	Complexity

	Evaluation
	Interim Conclusion

	Extending Evidence Handling
	Uncertain Evidence
	LVE for Uncertain Evidence
	Evidence in LVE
	Uncertain Evidence in LVEevi
	Theoretical Analysis

	LJT for Uncertain Evidence
	Evidence in LJT
	Uncertain Evidence in LJT
	Theoretical Analysis

	Empirical Case Study
	Interim Conclusion

	Taming Reasoning in Temporal Probabilistic Relational Models
	Preliminaries
	Temporal Approximate Merging
	Keeping Reasoning Polynomial Problem
	Keeping Reasoning Polynomial with TAMe

	Theoretical Analysis
	Evaluation
	Interim Conclusion

	Outlook
	Conclusion
	Bibliography
	Publications

