
From the Institute of Theoretical Computer Science

of the Universität zu Lübeck

Director: Prof. Dr. math. Rüdiger Reischuk

k-anonymous Microaggregation

Dissertation

for the Fulfillment of

Requirements for the

Doctoral Degree

of the Universität zu Lübeck

from the Department of Computer Sciences and Technical Engineering

Submitted by

Florian Thaeter

from Rendsburg

Lübeck 2021

First referee: Prof. Dr. Rüdiger Reischuk
Second referee: Prof. Dr. Esfandiar Mohammadi

Date of oral examination: 27.09.2021
Approved for printing. Lübeck, 29.09.2021

– ii –

Abstract

The subject of k-anonymous microaggregation is the most prominent way to
anonymize microdata. Introduced in the early nineties, it offers an attrac-
tive trade-off between privacy of data providers and utility for scientific re-
search. In short, microaggregation uses k-member clustering to cluster indi-
viduals into homogeneous clusters and releases aggregate vectors, representing
these clusters. Privacy of individuals is improved compared to simple methods
like pseudonymization, because re-identification attacks are severely limited by
the concept of hiding in a group of k. Increasing utility, which is usually mea-
sured in terms of cluster homogeneity, has been the most important research
interest in the past. In this thesis we take a look at the broader picture: Besides
improving microaggregation in the traditional way by presenting algorithms that
cause less distortion, we also introduce more time-efficient algorithms and clar-
ify open questions about the theoretical complexity of microaggregation. Aside
from these main achievements, this thesis offers a coherent mathematical model
of anonymization throughout every aspect of microaggregation research and sets
it into perspective with other anonymization methods and utility goals.

Zusammenfassung

Die k-anonyme Microaggregation ist die am weitesten verbreitete Möglichkeit
Mikrodaten zu anonymisieren. Sie wurde in den frühen neunziger Jahren vorge-
stellt und bietet ein ausgewogenes Verhältnis zwischen Anonymität der enthalte-
nen Personen und der Datennützlichkeit für wissenschaftliche Untersuchungen.
Kurz zusammengefasst verwendet die Microaggregation ein k-member Cluste-
ring um Individuen in homogene Cluster aufzuteilen und veröffentlicht dann
repräsentative Aggregationsvektoren für jedes dieser Cluster. Die Anonymität
der Individuen ist dabei im Vergleich zu simpleren Methoden wie der Pseudo-
nymisierung erhöht, da Reidentifikationsattacken durch das Konzept hiding in a
group of k erheblich erschwert werden. Das Erhöhen der Datennützlichkeit, wel-
che üblicherweise anhand der Clusterhomogenität gemessen wird, war bisher das
Hauptziel wissenschaftlicher Forschung. In dieser Arbeit wollen wir jedoch einen
breiter aufgestellten Ansatz verfolgen: Verbesserungen an der Microaggregation
im traditionellen Sinne, durch das Gestalten von Algorithmen, welche geringe-
re Störungen induzieren, sind dabei nur der Anfang. Weiter führen wir neue,
zeiteffizientere Algorithmen ein und klären offene Fragen bezüglich der theoreti-
schen Zeitkomplexität der Microaggregation. Darüber hinaus bietet die vorliegen-
de Dissertation ein mathematisches Modell der Anonymisierung, welches in allen
Aspekten der Forschung an Microaggregation Anwendung finden kann und den
Vergleich zu alternativen Anonymisierungs- und Datennützlichkeitsdefinitionen
ermöglicht.

– iii –

Danksagungen

An erster Stelle möchte ich Rüdiger Reischuk danken, der meine Promotion
als Co-Autor, Mentor und Doktorvater nicht nur mit seiner fachlichen Kompe-
tenz inhaltlich, sondern auch durch das Angebot einer vollen Promotionsstelle
finanziell ermöglicht hat. Weiter gilt mein Dank den Professoren und sonsti-
gen Kollegen am TCS, ITS und IFIS, welche mir stets wertvolle Anreize und
Feedback zu neuen Forschungsideen gegeben haben. Insbesondere möchte ich
Maciej Liśkiewicz, Esfandiar Mohammadi, Thomas Eisenbarth, Oliver Witt
und Tanya Braun für den wissenschaftlichen Austausch in diversen Forschungs-
treffen danken. Nicht vergessen möchte ich die Studierenden, welche ich bei der
Anfertigung ihrer Abschlussarbeiten unterstützen durfte: Vielen Dank an Finn,
Gudrun, Ivo, Mustafa und Yara. Es war immer eine Freude mit euch zu ar-
beiten. Ein ganz besonderer Dank geht an meine Familie: Jacqueline, Meike,
Hasko und Johanna, danke für alles!

– iv –

Contents

1 Introduction 1

2 Anonymity through Clustering: A Mathematical Model 4
2.1 Databases . 4
2.2 Anonymization . 6
2.3 Microaggregation . 8
2.4 Elementary Results Regarding Cost Computations 13

3 Microaggregation in a broader context 17
3.1 Non-Numerical Data . 19
3.2 Alternative Utility Units . 22
3.3 Stronger Anonymity Guarantees . 24

4 Complexity Results 32
4.1 The k-Means Clustering Problem . 32
4.2 Microaggregation Is Hard for k ≥ 3 . 36
4.3 Other Complexity Results and Open Problems 47
4.4 Related Results . 50

5 Maximum Distance Heuristics 53
5.1 Maximum Distance to Average Vector . 55
5.2 Experimental Evaluation of Maximum Distance Heuristics 65

6 Lloyd-based Heuristics 72
6.1 Lloyd’s Algorithm . 72
6.2 Probability-Constrained Lloyd . 76
6.3 Merge and Split Approach . 77
6.4 ONA and ONA* . 79
6.5 Experimental Evaluation of Lloyd-based Heuristics 85

7 Heuristics for Large Databases 92
7.1 Using MONDRIAN for Microaggregation . 92
7.2 Combining ONA∗ and MONDRIAN_V . 95
7.3 Experimental Evaluation of Near Linear Time Heuristics 97

– v –

8 Additional Techniques used in Microaggregation Heuristics 104
8.1 Minimum Spanning Tree Approach . 104
8.2 Two Fixed Reference Points . 105
8.3 Density-based Microaggregation . 105
8.4 Sorting-based Microaggregation . 106
8.5 Summary . 110

9 Microaggregation Algorithms with Approximation Guarantees 111
9.1 Existing Microaggregation Approximation 112
9.2 Overview of k-Means Approximations . 114
9.3 New Approaches for Microaggregation Approximation 116

10 Adapting Differential Privacy for Microdata Release 120
10.1 Differential Privacy in a Nutshell . 121
10.2 Using Differential Privacy to Protect Data Release 124
10.3 New Approaches to Differentially Private Data Release 136
10.4 Summary . 138

11 Conclusion 140

Bibliography 142

A Raw results of MDAV-like heuristics 147

B Raw results of Lloyd-based heuristics 153

C Raw results of Mondrian-based heuristics 159

D Publications 165

E Supervised Bachelor’s and Master’s Theses 167

– vi –

1

Introduction

Scientific research brought upon countless improvements to our society. By observing the
world and inferring results, humanity has been able to create technology improving nearly
every aspect of our lives, from the advancement of medical treatment to transportation,
urban planning and the economy as a whole. This progress has been and is only possible due
to the availability of data to conduct studies observing and describing the world. Without
data, there would be uncertainty. Microaggregation is a modern approach to one of the
most important problems regarding the collection and publication of data: privacy. By
applying this effective anonymization strategy we are able to publish so-called microdata
without the need of strong access restrictions harming the utility.

Microdata is the most basic form of data collected to be used for scientific studies. In
contrast to aggregated data, microdata contains specific information for each record indi-
vidually. In microdata individuals are described by tuples of attributes, typically visualized
by tables, in which rows describe the individuals and columns describe the attributes. In
the context of microdata, an individual might be a real or fictional person, a company, or
any other clearly defined entity. Attributes on the other hand might be unique identifiers,
numerical or categorical values like a persons height, weight or blood type. The purpose
of microdata is to perform statistical analyses to obtain information about dependencies
between attributes of individuals as well as relative frequencies of individuals with certain
attribute value combinations. For example, in medical data there could or could not be any
links between a specific disease and the age or gender of a patient. Another example would
be the effects on a person’s income depending on their place of residence which could be
learned from census data.

A major advantage of microdata compared to other forms of data is its universality.
Once collected, it can be used in different studies, investigating different issues. However,
its universality is also a disadvantage: By nature, microdata contains sensitive personal
information about individuals which comes with the obligation of privacy protection in
compliance with ethics, company guidelines and national laws such as the GDPR of the
European Union [26] or the PIPEDA of Canada [33]. While the exact definition of personal
data and allowed methods to protect it differ from context to context, a basic rule is that
data that can be used to identify an individual must not be published without some form
of access restriction. As access restrictions prohibit the intended use of microdata, it must
be assured that individuals cannot be identified. Not only are individuals identifiable from
data containing unique identifiers, but also re-identifiable if enough other information can be
gathered. This is called a re-identification attack. Such attacks can be thought of as stalking

– 1 –

1 Introduction

attacks by curious neighbors. This metaphor fits because it is assumed that neighbors know
their target quite well as they know a lot of attributes like (approximate) age, address,
gender, number of kids, and so on. In a less metaphorical way, the stalking neighbor
describes the combination of data from different sources, often referred to as background
knowledge attacks. At this point, the main problem analyzed in this thesis arises: How can
microdata be anonymized properly without losing the possibility of wide-range scientific
evaluation?

The demand for availability of data as well as the possibility of large-scale data dis-
tribution have increased significantly over the last decades and so it has become more and
more important to develop methods that allow the unrestricted publication of microdata,
enabled through anonymization. In an ideal world, anonymized microdata allows the same
scientific studies as the original microdata, but is not suitable to re-identify individuals
or even infer any unfavorable information about small groups of people. Unfortunately,
in practice, this perfect utility-preserving anonymization is impossible. Weak forms of
anonymization like the replacement of unique identifiers by pseudonyms can easily lead to
re-identification as demonstrated over and over by privacy scandals discovered by the media
and privacy researchers. Three famous examples of insufficient anonymization are the the
re-identification of Governor William Weld’s medical information [6], the AOL incident [5]
and the re-identification of anonymous movie reviews published by Netflix [56]. All these
attacks use the fact that most people are unique given only a few harmless-looking attribute
values, as demonstrated in [67] and [30]. However, reducing the data to coarse aggregates
or publish study results instead, might preserve privacy but also defeats the purpose of
microdata as a tool to share general purpose information.

Several techniques to find adequate trade-offs between anonymity and utility have
emerged since the late-nineties of the 20th century. While most of them came and went
unnoticed by the general public due to the sacrifice of too much utility and usability in the
name of privacy, there are two competing frameworks that offer attractive trade-offs and
slowly make their way into adaptation in more and more applications: k-anonymous mi-
croaggregation, which is designed for the anonymization of microdata as well as differential
privacy, which is used mostly for the protection of interactive data queries.

Microaggregation which is short for microdata aggregation uses the mathematical con-
cept of k-member clusterings. Small homogeneous clusters of individuals are created and
for each cluster the size as well as single representative attribute vectors are published. To
protect privacy, microaggregation relies on the concept of hiding in a group of individuals,
which states that there is some form of re-identification protection when only aggregates
of clusters with a certain minimum number of elements are reported. To protect utility,
microaggregation clusters are small compared to the total number of individuals and are
chosen data-dependent but independently of specific research goals.

Despite this specific use-case for k-member clustering, this thesis is not to be inter-
preted solely as a guideline for practical use of microaggregation. Instead, in the following
chapters the problem will be analyzed mostly from the perspective of asymptotic complexity
and comparative analysis of k-member clustering algorithms. As no efficient algorithms to
find optimal solutions are known, average case complexity and real-world utility is evalu-
ated by extensive experiments using benchmark databases. In the next chapter, a precise
definition of microaggregation and all other relevant concepts is given. Further, notions

– 2 –

1 Introduction

of anonymization cost are given and analyzed. Subsequently, chapter 3 sets microaggrega-
tion into perspective within the realm of other microdata privacy protection mechanisms.
The challenges of non-numerical data are discussed alongside alternative utility units and
stronger anonymity guarantees. Chapter 4 returns to a more theoretical approach to k-
member clustering. Its main result is a complete proof of NP-hardness of microaggregation
which was missing in literature before. Chapter 5, 6 and 7 focus on the development of im-
proved microaggregation heuristics using three different sets of techniques to achieve equal
amounts of privacy with less harm to utility. The algorithms MDAV∗ ONA∗ and MONA, which
were developed during the work on this thesis and are presented in chapters 5 to 7, signifi-
cantly improve upon previous state-of-the-art algorithms in the respective categories, which
is demonstrated by extensive experimental analyses. The topic of heuristics is completed
with chapter 8, which summarizes other microaggregation heuristics using unconventional
techniques. The main part of this thesis concludes in chapters 9 and 10 which cover the top-
ics of approximation guarantees and differential privacy in microaggregation, respectively.
In chapter 9 it is analyzed, why there seems to be a lack of microaggregation algorithms
for which worst case utility guarantees can be given, considering the large number of such
algorithms for similar clustering problems like k-means clustering. Chapter 10 on the other
hand gives a short introduction into differential privacy and discusses why there is no es-
tablished replacement of microaggregation using this more popular anonymization method.
Further, approaches to close this gap are discussed briefly. A short recap summarizing the
achievements and unanswered questions of this thesis is given in chapter 11. Finally, the
appendix consists of a list of publications extracted from the work on this thesis as well as
a list of bachelor’s and master’s theses supervised during that time. Moreover, additional
experimental results evaluating new microaggregation heuristics are given for completeness.

– 3 –

2

Anonymity through Clustering: A
Mathematical Model

This chapter is dedicated to define microaggregation and to discuss some of its relevant
properties used throughout the rest of this thesis. For this, we will take a look at databases,
anonymization in general and microaggregation in particular.

2.1
Databases

Finding a one-fits-all definition for databases is a difficult task. As most clustering al-
gorithms need some form of distance measure between elements, we would like to model
databases as collections of elements drawn from a metric space. However, this might not
cover all aspects of data. While distance measures for some categorical attributes like bi-
ological gender are straightforward, for other attributes like profession it might not be so
easy. In this definition that is used used in most parts of the upcoming text we neverthe-
less assume d-dimensional numerical data. This choice allows us to apply a wide range of
distance, anonymity and utility measures while being simple enough to keep definitional
overhead low. In section 3.1 the possibility of non-numerical data is explored.

Another important detail is the form of accumulation of data. There is no consistent
form to be found in the relevant literature. While sets are rarely used, we could use multisets
like e.g. in [57, 61] or sequences like e.g. in [60, 39]. In the context of differential privacy
a histogram-representation is commonly used (see [24]). In this main definition of data we
assume databases to be sequences of data elements, as this is the most specific form of the
aforementioned options. Whenever reasonable we might ignore the order of elements and
thus consider multisets. Databases that do not allow duplicates will be modeled as sets
when needed.

Definition 2.1 (Database).
A database element xi = (x1i , . . . , x

d
i) is a d-dimensional tuple of numerical data drawn

from Rd. A database X = x1, . . . , xn is a sequence of database elements, potentially includ-
ing duplicate elements. The set of all possible databases of n elements in d dimensions is
denoted by Xn×d.

A small example for a database according to our definition is included as table 2.1.

– 4 –

2 Anonymity through Clustering: A Mathematical Model

Table 2.1: The numerical database TestData used throughout this text contains two (QI)-
attributes and six elements. It is hence classified as a database X ∈ X6×2.

Element Attribute 1 Attribute 2
x1 3 6

x2 6 3

x3 9 3

x4 9 3

x5 12 6

x6 12 9

We will often need to address certain parts of a database to describe algorithms, define
anonymity and measure utility. The following notation is used for this purpose.

Definition 2.2 (Index Sets).
Concerning a database X, the index set Xx := {i|xi = x} contains all indices of elements
with attribute tuple x ∈ Rd inside the sequence X.

In the context of k-anonymity it is assumed that data attributes come in three forms:
Identifiers, Quasi-Identifiers and Confidential Attributes. For convenience these terms are
abbreviated I, QI and CA throughout this text. The first step of any anonymization should
be to remove all Identifiers. As these are unique identifying attributes like social insur-
ance numbers or full names, any occurrence of I-attributes in anonymized data contradicts
even the most basic definitions of privacy. Stopping now is a valid option comparable to
pseudonymization techniques. However, as discussed in the introduction, it is not a good
idea to do so. It is common knowledge, see [30, 5] for reference, that the combination of
seemingly harmless attribute values can lead to identification and attribute disclosure. To
respond to this problem, many authors in the area of k-anonymity categorize non-identifying
attributes in quasi-identifiers and confidential attributes. Only QIs are considered to be able
to identify individuals when combined. Typical examples are biological gender, date of birth
or current town of residence. Unlike QIs, CAs contain sensitive information like income or
severe diseases. However, as these attributes are not commonly known by someone trying
to match a database entry to an individual, we do not consider them quasi-identifiable.
According to this reasoning anonymization should provide privacy by deleting I-attributes
and by altering QI-attributes in some way, to protect leakage of CA-attributes.

In my opinion the idea of separating between QI and CA is critically flawed. In most
cases it is not clear whether an attribute is, or might become confidential in the future.
Take for example the attribute profession. While in most cases someone’s profession is not
considered confidential, for some it might be. Another problem is the implicit assumption
about the attacker’s knowledge when classifying an attribute as CA. Is it safe to assume,
the attribute income does not help identifying individuals? Further, what happens when
an attribute is clearly confidential and quasi-identifiable at the same time? A solution I
would like to suggest is to categorize every non-I-attribute as QI or in other words: do not
separate non-I attributes. When anonymization is done right, there is no identity disclosure
and hence confidential attributes are protected, even when classified as QI. Of course this
model does not fit any scenario. We will therefore take a closer look at separation into QI

– 5 –

2 Anonymity through Clustering: A Mathematical Model

and CA in the context of alternative syntactic anonymity guarantees in section 3.3. For the
main part of this text we will stick to my suggestion, concretely:

Remark 2.3.
For the purpose of anonymization, a database X is considered to contain quasi-identifiers
only.

2.2
Anonymization

The anonymity of a database is a syntactic property. It guarantees that for every individual
present in the data, there are at least k−1 other individuals with identical attribute values.
The reasoning behind this definition is a concept called hiding in a group of k [66, 40]. It
is assumed, k-anonymous data guarantees anonymity in the presence of an attacker with
specific background knowledge, capabilities and identification goals.

Definition 2.4 (k-Anonymity [59, 66]).
A database X is k-anonymous if and only if for all x ∈ Rd it holds |Xx| ≥ k or Xx = ∅.

A common scenario for k-anonymity preventing privacy loss of an individual contained
in public data is the stereotypical curious neighbor, asking themself why their target is
admitted to hospital: It is reasonable to assume, the neighbor knows quite a lot about the
target, so in a pseudonymized release of hospital records it would be easy to identify the
record belonging to the target and hence obtaining information about medical conditions of
their neighbor. If, however, the information is anonymized to be e.g. 10-anonymous prior to
release, the best our attacker can hope for is to find the right group of 10 or more individuals
in the data, which might or might not have similar attributes to their target. Even if the
right group is found, the goal of determining the medical condition of the target cannot be
achieved with certainty, because the respective attribute is also hidden in a group of 10 and
might be generalized, aggregated or suppressed in the data released.

When talking about anonymity guarantees like k-anonymity or differential privacy there
is a strong focus on the resulting data. But as our previous example shows, the process of
anonymization has a big impact on how well anonymity and data utility is preserved when
comparing two k-anonymous databases created out of the same original data using different
anonymization techniques. To get a deeper understanding of the methods used to transform
personally identifiable information into anonymized data it is necessary to define a precise
model of the anonymization process itself.

The main focus of this text is size conserving anonymization. This term describes all
forms of anonymization that alter attributes, but do not delete or change the order of the
elements in the database. This setting originates from clustering algorithms and is used for
all microaggregation algorithms.

Definition 2.5 (Size Conserving Anonymization).
A size conserving anonymization (SCA) algorithm µk : Xn×d → Xn×d is a deterministic or
probabilistic function parameterized with k, that guarantees µk(X) = X̂ is k-anonymous.

– 6 –

2 Anonymity through Clustering: A Mathematical Model

Determining the right measure of quality of a size conserving anonymization algorithm
is non-trivial. Although anonymity is already covered by guaranteeing k-anonymity, the
remaining utility of the resulting data can vary substantially from algorithm to algorithm.
Hence, we should measure quality by comparing utility between algorithms. A natural way
to do this would be to look at the research targets of the data recipient and to measure
utility accordingly. However, the strength of k-anonymous data release is its universality:
The concept of k-anonymity is designed to enable the same kinds of analyses as regular non-
anonymized data offers. We can therefore not assume a specific research goal considering
utility.

Fortunately, size conserving anonymization offers a valid alternative: It is possible to
measure the distance between original and anonymized data in a meaningful way. We will
now take a look at a general framework that is applicable for any kind of size conserving
anonymization algorithm. In the next section, introducing the concept of microaggregation,
the framework is specified to match the utility measurement found in the relevant literature.

Definition 2.6 (Distance).
Let dist : Rd × Rd → R+ be a distance function in Rd, f : Rn

+ → R+ an aggregation
function on sequences, x an element and finally X = x1, . . . , xn and X ′ = x′1, . . . , x

′
n two

sequences of elements of the same length.

1. The distance between two elements x and x′ is denoted dist(x, x′).
2. The distance between two sequences X andX ′ is dist(X,X ′) := f((dist(xi, x′i))i∈{1,...,n}).
3. The distance between an element x and a sequence X is

dist(x,X) := f((dist(x, xi))i∈{1,...,n}).

Depending on the use-case of the anonymization, several choices for dist and f are
possible. We could for example combine L1 distance with a sum aggregation or L2 distance
with a max aggregation. Independently of these choices we define the distortion of a size
conserving anonymization algorithm on a database as follows.

Definition 2.7 (SCA-Distortion).
Given a size conserving anonymization algorithm µk for any parameter k and a database
X, the SCA-distortion of µk on X is Dµk

(X) := dist(X,µk(X)).

In some cases, especially in the context of combining k-anonymity with differential
privacy, it might be necessary or beneficial to reduce the size of the database to obtain valid
anonymity guarantees. To capture this scenario the setting size reducing anonymization is
used.

Definition 2.8 (Size Reducing Anonymization).
A size reducing anonymization (SRA) algorithm µk : Xn×d → Xn′×d for n′ ≤ n is a

deterministic or probabilistic function parameterized with k which guarantees that µk(X) =

X̂ is k-anonymous.

In cases in which the number or order of elements is changed during anonymization,
a direct pre-post comparison is not possible. Nevertheless, general-purpose utility mea-
sures are achievable. An example for the use of size reducing anonymization is [40] where
size reducing anonymization is used to achieve differential private data publishing without

– 7 –

2 Anonymity through Clustering: A Mathematical Model

the addition of noise, defining a new category of utility. Another usage is the smallDB
mechanism [24], which defines utility for size reduced databases as the maximum distance
between the answers to queries on the original and the reduced databases and hence defines
a semantic utility measure under the assumption that a class of typical queries is known.

2.3
Microaggregation

Microaggregation is a technique achieving anonymity through clustering and is the main
theme of this text. It has been introduced by Anwar, Defays and Nanopoulos [3, 15] in 1993
and predates the formal notion of k-anonymity from Sweeney by about five years. A first
survey paper has been published in 1998 [51]. Similar to k-anonymity, microaggregation
algorithms work on databases with one- or higher-dimensional data elements. Further, both
rely on an anonymity factor k which describes the anonymity of the result. In contrast to k-
anonymity, microaggregation focuses on the process of anonymization rather than the result
itself and can be considered a technique to achieve k-anonymity. Elements are partitioned
into clusters of size at least k and then each element is replaced by a representative of its
cluster. As a result, microaggregated data is guaranteed to be k-anonymous.

At this point the following question might arise: What is offered by other k-anonymity
methods that cannot be achieved through microaggregation? The answer to that is gen-
erality. Because microaggregation relies on clustering, the data has to be drawn from
partially ordered sets to find a meaningful clustering and works best on metric spaces,
where distance measures can be used. Further, microaggregation is limited to clustering
approaches neglecting the possibilities offered by global suppression or generalization tech-
niques. Other k-anonymity algorithms might not have these limitations and could, in theory,
allow anonymization techniques that are applicable in more situations. Despite the similar-
ities, both research fields are quite active until today, and techniques have been developed
to overcome many shortcomings of both approaches. For example, there are techniques
that extend the applicability of microaggregation onto categorical data [72, 50] and both,
microaggregation and k-anonymity have been combined with differential privacy [40, 64].
Alternative k-anonymity approaches are discussed in chapter 3.

Before microaggregation can be defined formally, we need to clarify what exactly is
meant by partitioning into clusters of size at least k. In difference to the more common
k-clustering in which the data is split into k clusters of arbitrary size, a k-member clustering
partitions the data into an arbitrary number of clusters, each with at least k elements.

Definition 2.9 (k-Clustering and k-Member Clustering).
Given a database X ∈ Xn×d and an integer k ≥ 2, a clustering can be described by a

function

CX : {1, . . . , n} → {1, . . . , `}

defining clusters C1, . . . , C` and assigning elements to clusters referring to their respective
indices. When CX(i) = j, the element xi is assigned to the cluster Cj . Slightly abusing this
notation, we also write C(xi) and xi ∈ Cj referring to the cluster of an element xi and the

– 8 –

2 Anonymity through Clustering: A Mathematical Model

elements of a cluster Cj , respectively. Whenever X is unambiguous we write C instead of
CX .

A clustering C is a k-clustering iff ` = k, i.e. there are exactly k (potentially empty)
clusters.

A clustering C is a k-member clustering iff |Cj | ≥ k for all 1 ≤ j ≤ `, i.e. any cluster
has at least k elements.

General microaggregation is a size conserving anonymization built around a k-member
clustering, defining clusters and building an anonymized database out of original data. Each
element is represented and replaced by a cluster representative, which in combination with
a k-member clustering leads to k-anonymity.

Definition 2.10 (General Microaggregation).
Microaggregation is a three-step process.

1. k-member clustering: A database X is partitioned into ` clusters C1, . . . , C` with |Cj | ≥
k for all 1 ≤ j ≤ `.

2. Choosing representatives: A representative yj ∈ Rd is chosen for every cluster Cj .
3. Replacing: All elements xi of the database are replaced by a representative yj of their

cluster Cj = C(xi).

Because microaggregation is a size conserving anonymization scheme, distances and
aggregation are not only used in the clustering step, but also for evaluation of the SCA-
distortion. Throughout the literature the squared Euclidean distance δ(·, ·)2 is used for dist
and the sum aggregation is used for f for both clustering and utility measurement. Further
the cluster representatives are chosen as centroids.

Definition 2.11 (Cluster Centroid).
Given a cluster C of elements xi. The centroid of C is

c(C) :=
1

|C|
∑
xi∈C

xi.

General microaggregation algorithms can either be fixed-size or variable-size also called
strict or non-strict respectively. For fixed-size microaggregation all clusters are required to
have exactly k elements, where n/k 6∈ N only one cluster is allowed to be bigger. Variable-
size algorithms on the other hand do not further limit the clustering. As there is no benefit
of fixed-size microaggregation when using it for the concept of hiding in a group of k, most
modern algorithms use the greater possibilities of variable-size microaggregation to obtain
better utility without the need to decrease k [61, 58, 63].

As described above, databases are modeled as sequences. This implies the possibility
of duplicate elements. Whenever this happens a distinction between multiset-respecting
and non-multiset-respecting microaggregation can be made. See table 2.2 for an example
involving TestData from above. As for fixed-size microaggregation, the multiset-respecting
property limits the choice of allowed clusters. It requires that all elements with identical
data attributes are clustered together, potentially harming utility and preventing fixed-size
microaggregation. Using the preferred choices of the relevant literature we obtain a specific
type of microaggregation called common microaggregation.

– 9 –

2 Anonymity through Clustering: A Mathematical Model

Table 2.2: Two 3-anonymous databases created by microaggregation of the TestData
database (table 2.1). Both databases use centroids as cluster representatives, but as x3
and x4 have identical attribute tuples in TestData, the clustering on the left is multiset-
respecting while the clustering on the right is not.

Element At-
tribute 1

At-
tribute 2

x1 9 7

x2 8 3

x3 8 3

x4 8 3

x5 9 7

x6 9 7

(a) multiset-respecting

Element At-
tribute 1

At-
tribute 2

x1 6 4

x2 6 4

x3 6 4

x4 11 6

x5 11 6

x6 11 6

(b) non-multiset-respecting

Definition 2.12 (Common Microaggregation).
Common microaggregation describes a subset of the set of all possible general microaggre-
gation algorithms.

1. k-member clustering: A database X is partitioned into ` clusters C1, . . . , C` with |Cj | ≥
k for all 1 ≤ j ≤ `. The clustering may be non-strict and non-multiset-respecting.

2. Centroid calculation: A representative yj ∈ Rd is chosen as the centroid c(Cj) for every
cluster Cj .

3. Replacing: All elements xi of the database are replaced by the representative yj of their
cluster Cj = C(xi).

Instead of just looking at the global SCA-distortion of a microaggregation algorithm,
the choices of common microaggregation allow us to obtain much more detailed information
by considering the cost of particular clusters. Please note that most of the results below also
apply for general microaggregation algorithms that use cluster centroids as representative
i.e. strict and/or multiset-respecting common microaggregation algorithms.

Definition 2.13 (Distortion Cost).
Given a database X clustered into a set of clusters C = {C1, . . . , C`} by a common mi-
croaggregation algorithm µk (or any other clustering algorithm).

– Consider two tuples x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd. The Euclidean distance
between x and y is

δ(x, y) :=

√√√√ d∑
i=1

(xi − yi)2.

The squared Euclidean distance between x and y is

δ(x, y)2 =

d∑
i=1

(xi − yi)2.

– 10 –

2 Anonymity through Clustering: A Mathematical Model

– The cluster cost or cost of a cluster Cj is the intra-cluster sum of squared errors (SSE)
of Cj denoted and computed as cost(Cj) = SSE(Cj) :=

∑
x∈Cj

δ(x, cj)
2.

– The distortion cost of µk on X is the sum of all cluster costs: cost(X , µk) = cost(C) :=∑
Cj∈C cost(Cj).

As all elements of a cluster are replaced by the cluster centroid in step 3 of the mi-
croaggregation process, we obtain the cost of a cluster by calculating the intra-cluster sum
of squared errors. Adding up all cluster costs is equal to the distance dist(X,µk(X)) =∑

xi∈X δ(xi, C(xi))
2 and hence the SCA-distortion of a common microaggregation algo-

rithm is equal to the distortion cost described in definition 2.13. The question might arise
whether the choice of a centroid as cluster representative is optimal. A simple calculation
can confirm this hypothesis.

Theorem 2.14.
Consider any cluster Cj. SSE(Cj) =

∑
x∈Cj

δ(x, cj)
2 is minimal for cj = 1/|Cj |

∑
x∈Cj

x.

Proof.

SSE(Cj) =
∑
x∈Cj

δ(x, cj)
2 =

∑
x∈Cj

(x− cj)
2 =

∑
x∈Cj

(x2 − 2xcj + c2j).

By finding the root of the partial derivate

∂ SSE(Cj)

∂ cj
=
∑
x∈Cj

(2cj − 2x) = 2cj |Cj | − 2
∑
x∈Cj

x

we can see that the centroid

cj =
1

|Cj |
∑
x∈Cj

x

indeed minimizes the sum of squared errors.

Using a result from the research field of k-means clustering one can show even more: By
using the cluster size and distance of the representative to the cluster centroid it is possible
to calculate the increase in cluster cost caused by using a different representative than the
centroid. Theorem 2.15 is used but not proven in [4].

Theorem 2.15.
Let Cj be a cluster with centroid cj and z be an arbitrary (existing or hypothetical) element

within or not within Cj. Then∑
x∈Cj

δ(x, z)2 −
∑
x∈Cj

δ(x, cj)
2 = |Cj | · δ(cj , z)2.

– 11 –

2 Anonymity through Clustering: A Mathematical Model

Proof. ∑
x∈Cj

δ(x, z)2 −
∑
x∈Cj

δ(x, cj)
2 =

∑
x∈Cj

(x2 − 2xz + z2)−
∑
x∈Cj

(x2 − 2xcj + c2j)

=
∑
x∈Cj

(x2 − 2xz + z2)−
∑
x∈Cj

x2 − 2x ·

(∑
y∈Cj

y

|Cj |

)
+

(∑
y∈Cj

y

|Cj |

)2

=
∑
x∈Cj

(−2xz + z2)−
∑
x∈Cj

−2x ·(∑y∈Cj
y

|Cj |

)
+

(∑
y∈Cj

y

|Cj |

)2

=− 2z
∑
x∈Cj

x+ |Cj |z2 + 2

(∑
y∈Cj

y

|Cj |

)
·
∑
x∈Cj

x− |Cj | ·

(∑
y∈Cj

y

|Cj |

)2

=− 2z
∑
x∈Cj

x+ |Cj |z2 +
2
∑

x∈Cj
x

|Cj |
·
∑
x∈Cj

x− |Cj | ·
∑

x∈Cj
x2

|Cj |2

=− 2z
∑
x∈Cj

x+ |Cj |z2 +
2
∑

x∈Cj
x2

|Cj |
−
∑

x∈Cj
x2

|Cj |

=− 2z
∑
x∈Cj

x+ |Cj |z2 +
∑

x∈Cj
x2

|Cj |

=|Cj | ·

(∑x∈Cj
x

|Cj |

)2

− 2z

(∑
x∈Cj

x

|Cj |

)
+ z2

=|Cj | ·

(
c2j − 2zcj + z2

)
= |Cj | · δ(cj , z)2

As a consequence of theorem 2.14 it is easy to see that step 2 and 3 of definition 2.12
are simple deterministic computations whereas the complexity of microaggregation solely
depends on the implementation of step 1. Hence the formal microaggregation problems
used extensively in chapter 4 are defined as follows.

Definition 2.16 (Optimal k-Anonymous Microaggregation Problem).
Given a database X, the optimal k-anonymous microaggregation problem is to find a k-
member clustering C for X with minimum distortion cost.

Definition 2.17 (Decisional k-Anonymous Microaggregation Problem).
Given a database X and a number γ ∈ R, the decisional k-anonymous microaggregation

problem is to determine whether a k-member clustering C with distortion cost at most γ

exists for X.

– 12 –

2 Anonymity through Clustering: A Mathematical Model

2.4
Elementary Results Regarding Cost Computations

The squared Euclidean distance is commonly used for the computation of distances in
clustering problems. This is mostly because it offers some unique features like a linear
dependency of distances in different dimensions and other useful properties described in
this section. However, it should be noted that squared Euclidean distance does not form a
metric space, as the triangle inequality does not hold. A simple example for this is the set
of elements {x1 = (0, 0), x2 = (2, 1), x3 = (4, 0)} for which δ(x1, x2)

2 = δ(x2, x3)
2 = 5 but

δ(x1, x3)
2 = 16.

In some situations, especially for experimenting with microaggregation techniques on
paper, it might be desirable to calculate cluster cost using distances between elements and
without determining the cluster centroids first. The following result confirms the existence
of such an alternative computation method.

Theorem 2.18.
Consider any cluster Cj. The cost of Cj can be expressed as

cost(Cj) =
1

|Cj |
∑

{xa,xb}⊆Cj

δ(xa, xb)
2 =

1

2|Cj |
∑

(xa,xb)∈Cj×Cj

δ(xa, xb)
2.

Proof. Let s := |Cj |, c := c(Cj) and x1 to xs be the elements of Cj .

1

2s

∑
(xa,xb)∈Cj

δ(xa, xb)
2 =

1

2s

(x1 − x2)

2 + · · ·+ (x1 − xs)
2+

(x2 − x1)
2 + · · ·+ (x2 − xs)

2+

· · ·+
(xs − x1)

2 + · · ·+ (xs − xs−1)
2

=
1

2s

 s∑
a=1

(s− 1)x2a +

s∑
a=1

(s− 1)x2a −
s∑

a=1

s∑
b=1
b 6=a

2xaxb

=
1

2s

2(s− 1)

s∑
a=1

x2a − 2

s∑
a=1

s∑
b=1
b6=a

xaxb

=
s− 1

s

s∑
a=1

x2a −
1

s

s∑
a=1

s∑
b=1
b 6=a

xaxb (2.1)

– 13 –

2 Anonymity through Clustering: A Mathematical Model

cost(Cj) =

s∑
a=1

δ(xa, c)
2

=(x1 − c)2 + (x2 − c)2 + · · ·+ (xs − c)2

=

s∑
a=1

x2a + sc2 − 2c

s∑
a=1

xa =

s∑
a=1

x2a + sc2 − 2c · sc =
s∑

a=1

x2a − sc2

=

s∑
a=1

x2a −
1

s

(
s∑

a=1

xa

)2

=

s∑
a=1

x2a −
1

s

(
s∑

a=1

x2a + 2 ·
s∑

a=1

s∑
b=a+1

xaxb

)

=
s− 1

s

s∑
a=1

x2a −
2

s

s∑
a=1

s∑
b=a+1

xaxb

=
s− 1

s

s∑
a=1

x2a −
1

s

s∑
a=1

s∑
b=1
b 6=a

xaxb (2.2)

Since term 2.1 and term 2.2 are equal, the alternative computation method is correct.

Two natural operations on clusterings are the union of two clusters and the incorpo-
ration of an additional element into an existing cluster. Theorem 2.19 and corollary 2.20
provide useful guarantees regarding cluster cost in such situations. By applying theorem 2.15
we can precisely calculate the additional cost emerging from a set union. Using this prop-
erty in algorithms could potentially reduce computational complexity, as the cost of new
clusters might not need to be computed from scratch.

Theorem 2.19.
The union of any two clusters C1, C2 of a clustering C cannot have cost lower than the

sum of costs for both clusters alone:

cost(C1 ∪ C2) ≥ cost(C1) + cost(C2),

more precisely:

cost(C1 ∪ C2) =cost(C1) + cost(C2)

+ |C1| · δ(c(C1), c(C1 ∪ C2))
2

+ |C2| · δ(c(C2), c(C1 ∪ C2))
2.

Proof. Let s1 := |C1|, s2 := |C2|, c1 := c(C1), c2 := c(C2) and cU := c(C1 ∪ C2).

– 14 –

2 Anonymity through Clustering: A Mathematical Model

cost(C1 ∪ C2)

=
∑

x∈C1∪C2

δ(x, cU)
2

=
∑
x∈C1

δ(x, cU)
2 +

∑
x∈C2

δ(x, cU)
2 (C1, C2 disjoint)

=
∑
x∈C1

δ(x, c1)
2 + s1 · δ(c1, cU)2 +

∑
x∈C2

δ(x, c2)
2 + s2 · δ(c2, cU)2 (Theorem 2.15)

=cost(C1) + cost(C2) + s1 · δ(c1, cU)2 + s2 · δ(c2, cU)2

≥cost(C1) + cost(C2)

Corollary 2.20.
Adding an element x to a cluster Cj cannot decrease its cost:

cost(Cj ∪ x) ≥ cost(Cj),

more precisely:

cost(Cj ∪ x) = cost(Cj) + |Cj | · δ(c(Cj), c(Cj ∪ x))2 + δ(x, c(Cj ∪ x))2.

Corollary 2.21 is especially useful proving complexity results and optimality guarantees
for microaggregation algorithms.

Corollary 2.21.
If a clustering contains a cluster Cj of size at least 2k, Cj can always be split into two

clusters each of size at least k without increasing distortion cost of the resulting k-member
clustering.

The next corollary shows that we can obtain the centroid of a merged cluster without
any distance computations. In combination with theorem 2.19 this allows further improve-
ment in the update complexity of iterative clustering algorithms.

Corollary 2.22.
The centroid of the union of any two clusters C1, C2 can be computed from just sizes and

centroids of C1 and C2.

Proof. Let C := C1 ∪ C2, c1 := c(C1), c2 := c(C2), n1 = |C1| and n2 = |C2|. The centroid
of C is c(C) = c1·n1

n1+n2
+ c2·n2

n1+n2
.

Comparing distortion costs is particularly useful when several algorithms are bench-
marked against each other on the same database. However, as these costs are not normal-
ized, it is not possible to evaluate the effect of one microaggregation algorithm on different
databases just comparing distortion. For this purpose the scientific community around mi-
croaggregation introduced the notion of information loss. The distortion cost is divided by
a database-specific diversity resulting in a value ranging between 0 and 1.

– 15 –

2 Anonymity through Clustering: A Mathematical Model

Definition 2.23 (Information Loss).
The diversity ∆(X) of a databaseX is the total sum of squares between all elements xi ∈ X

and a global centroid c:

∆(X) = SST(X) :=

n∑
i=1

δ(xi, c)
2.

The information loss L(X,µk) of a common microaggregation algorithm µk on a databaseX
is

L(X,µk) :=
cost(X,µk)

∆(X)
.

As fact 2.24 shows, the information loss is effectively a normalized distortion cost of a
microaggregation algorithm µ on a database X. Because of this one often sees the value
multiplied by 100 and hence expressed as an percentage of information loss (see e.g. [61,
19]).

Fact 2.24.
Let X be a database and µk a common microaggregation algorithm, clustering X into a
set of clusters C = {C1, . . . , Cl}. If X contains at least two different elements, i.e. ∃x1, x2 :
|Xx1
| ≥ 1, |Xx2

| ≥ 1 and Xx1
6= Xx2

we obtain

0 ≤ L(X,µk) ≤ 1,

(otherwise L(X,µk) = 0/0).

Proof. The inequality 0 ≤ L(X,µk) = cost(X,µk)/∆(X) holds, because cost(X,µk) is
always non-negative and ∆(X) is always positive.

For L(X,µk) ≤ 1 we show that cost(X,µk) =
∑

Cj∈C
∑

x∈Cj
δ(x, c(Cj))

2 ≤ ∆(X) holds
for any partition of X into a clustering C: As ∆(X) is effectively the cost of the union of
all clusters, applying theorem 2.19 shows that no clustering can have a cost higher than
∆(X).

– 16 –

3

Microaggregation in a broader
context

The definitions of databases (definition 2.1), k-anonymity (definition 2.4) and size conserv-
ing anonymization (definition 2.5) are tailored towards microaggregation which relies on
numeric data and the computability of distances between elements. There are, however,
related methods that also use clustering to achieve k-anonymity but are clearly distinct
from microaggregation. This chapter is dedicated to these alternative approaches, their
data, utility and anonymity units.

The closest relative to microaggregation in the field of k-anonymity is the so-called
recoding scheme (e.g. [74]). While there are few links between both research fields, the
similarity of both approaches allows us to consider microaggregation in a broader context
and explore results that would apply if we alter our definitions slightly. The general idea
of a recoding scheme is to transform original d-dimensional database elements into new
elements drawn from a potentially different set of d dimensions. This allows for example to
generalize an attribute of an element to a range of possible attributes, or suppressing some
attributes entirely. Both techniques contribute to the uniformity of the data and as a result
work towards achieving k-anonymity.

There are two types of recoding schemes. A global recoding scheme partitions a
database X ∈ (D1 × · · · × Dd)

n into clusters Cj and changes the elements’ attributes
to some statistics about all elements of their cluster. In contrast to microaggregation these
statistics do not need to be in the form of single representative vectors but instead could
be e.g. information about the boundaries of clusters or the information that some attribute
values have been suppressed. A global recoding scheme is always multiset-respecting as the
clustering is based on the attributes of elements and no two identical elements could end
up in two different clusters.

Definition 3.1 (Global Recoding Scheme).
A global recoding scheme is a three-step process.

1. k-member clustering: A database X ∈ (D1×· · ·×Dd)
n is partitioned into ` multiset-

respecting clusters C1, . . . , C` with |Cj | ≥ k for all 1 ≤ j ≤ `.
2. Cluster statistics yj = (y1j , . . . , y

d
j) ∈ D′

1 × · · · × D′
d are computed for every cluster Cj .

3. Replacing: All elements xi of the database are replaced by the cluster statistics Yj of
their cluster Cj = C(xi) creating a new database Y ∈ (D′

1 × · · · × D′
d)

n.

A local recoding scheme is more general as it allows cluster assignment on a record by

– 17 –

3 Microaggregation in a broader context

record basis instead of clustering by attribute vectors. Clusters might overlap and hence
local recoding allows non-multiset-respecting clustering of data.

Definition 3.2 (Local Recoding Scheme).
A local recoding scheme is a global recoding scheme for which the k-member clustering in
step 1 does not have to be multiset-respecting:

1′. k-member clustering: A database X ∈ (D1 × · · · × Dd)
n is partitioned into ` clusters

C1, . . . , C` with |Cj | ≥ k for all 1 ≤ j ≤ `.

Note that suppression is achieved by allowing the empty string ε ∈ D′
i and that the orig-

inal and resulting databases in definition 3.1 and definition 3.2 are not necessarily databases
according to definition 2.1, as the attribute domain of X and Y might not be Rd. See sec-
tion 3.1 for generalized definitions of databases and k-anonymity. As a third note I would
like to emphasize that a local recoding scheme as defined in definition 3.2 is the most gen-
eral clustering algorithm defined as a size conserving anonymization algorithm. It allows to
replace any elements by arbitrary d-dimensional data, as long as k-anonymity is guaranteed
in the end. Typically, however, local recoding schemes act like global recoding schemes with
the option of duplicate data to be split in different clusters. An example for global and local
recoding is given in table 3.1.

Any global recoding scheme is also a valid local recoding scheme. Further any gen-
eral microaggregation algorithm can be interpreted as a local recoding scheme and any
multiset-respecting general microaggregation algorithm can be interpreted as a global re-
coding scheme where representative vectors are used as cluster statistics.

Table 3.1: Two 3-anonymous datasets created by a generalizing recoding of the TestData
database (table 2.1). As x3 and x4 have identical attribute tuples in TestData, the clustering
on the left is a global recoding while the clustering on the right is not.

Element At-
tribute 1

At-
tribute 2

x1 3− 12 6− 9

x2 6− 9 3

x3 6− 9 3

x4 6− 9 3

x5 3− 12 6− 9

x6 3− 12 6− 9

(a) global recoding

Element At-
tribute 1

At-
tribute 2

x1 3− 9 3− 6

x2 3− 9 3− 6

x3 3− 9 3− 6

x4 9− 12 3− 9

x5 9− 12 3− 9

x6 9− 12 3− 9

(b) local recoding

Many algorithms categorized as recoding schemes allow the data to be either numerical
or categorical, as long as there is a partial order for every dimension. They therefore
require slightly different definitions for databases and k-anonymity. In the first section of
this chapter we take a look at non-numerical data and how we need to alter our definitions
to enable us to apply microaggregation and recoding schemes in the presence of categorical
data.

The measurement of utility is also effected by allowing a wider range of data before and
after the anonymization. As microaggregation algorithms can be expressed as a constrained

– 18 –

3 Microaggregation in a broader context

type of recoding schemes, several utility measures designed with recoding schemes in mind
are also applicable for microaggregation. In the second section we will take a look at some
of these guarantees and compare them with our standard definitions of distortion, diversity
and information loss.

We conclude this chapter by taking a look at other syntactic anonymity guarantees
related to k-anonymity. While they once have been promising possible successors to k-
anonymity, most of these guarantees are now abandoned by the scientific community due to
utility concerns and the rise of semantic privacy guarantees like differential privacy which
promise to offer superior privacy with reasonable amounts of utility. Nevertheless, as this
thesis mainly covers results regarding k-anonymity, taking a closer look at the limits and
broader context of this aspect is needed as well.

3.1
Non-Numerical Data

Most real-world datasets contain non-numerical data. There are (partially) ordered non-
numerical attributes like university degree where one could agree that a master’s degree is
in a way more than a bachelor’s degree, but there is no natural mean of e.g. two bachelor’s-
and three master’s-degrees. Further, even if there is some sort of hierarchy given, this still
does not mean, that one can compute distances between attribute values: What is the
distance between a master’s degree and a Ph.D.? Is it greater than the distance between
a master’s degree and a bachelor’s degree? If so, how much greater is it? There also exist
unordered non-numerical attributes like profession, where there is no clear relationship or
distance measure between different attribute values like e.g. a dentist and a farmer.

Most recoding schemes allow categorical data only in the presence of user-defined gen-
eralization hierarchies, transforming unordered into partially ordered non-numerical data
(see e.g. [37, 75]). We will therefore concentrate on this scenario exclusively.

To incorporate non-numerical data, we need to alter a few of our definitions from
chapter 2 to allow for that change. To avoid any confusion about when to apply which
definition, please assume that any reference to databases and k-anonymity outside of this
chapter always uses the original definition from chapter 2. At first, a reformulation of
databases is needed, as our original definition does not allow elements outside of Rd.

Definition 3.3 (Extension of Definition 2.1 to Include Non-Numerical Data).
A database element xi = (x1i , . . . , x

d
i) is a d-dimensional tuple of data drawn from a set

D1 × · · · × Dd. A database is a sequence X = x1, . . . , xn of database elements, potentially
including duplicate elements. The set of all possible databases of n elements in dimensions
D1 × · · · × Dd is Dn×d := (D1 × · · · × Dd)

n.

Another subtle change is needed in the definition of k-anonymity. While the general
statement is still the same, we now allow non-numerical databases.

Definition 3.4 (Alternative Formulation of Definition 2.4 to Include Non-
Numerical Data).
A database X ∈ Dn×d is k-anonymous if and only if for all x ∈ D1 × · · · × Dd it holds
|Xx| ≥ k or Xx = ∅.

– 19 –

3 Microaggregation in a broader context

As stated before, microaggregation in its basic form described above is not able to
handle non-numerical data. Recoding schemes on the other hand are. However, to allow a
cluster to get assigned cluster statistics, we need the right tool. This tool is called hierarchy
trees. Hierarchy trees can be applied to any kind of numerical or categorical data and define
groups which dictate the data basis for cluster statistics.

Definition 3.5 (Hierarchy Trees).
An attribute hierarchy tree for (categorical or numerical) attributes from a set Dj is a

tuple Hj = (Nj , pj) consisting of a set of nodes Nj , representing sets of attribute values
d ∈ Dj and a parenting function pj assigning a parent node pj(n) to each node n ∈ Nj .
Leaf nodes (nodes which are not parent to any other node) consist of sets of single attribute
values. Every attribute value d ∈ Dj has a leaf node representing it. The root node rj ∈ Nj

contains all values from Dj , and pj(rj) = rj . The tree does not have to be binary and
has no restrictions regarding depth or balance. For numerical attributes, there might be
indefinitely many nodes.
A tuple of attribute hierarchy trees H(Dn×d) = (H1, . . . , Hd) for a d-dimensional attribute
space D1 × · · · × Dd defines generalization hierarchies for databases X ∈ Dn×d. The set of
all possible hierarchy trees for databases X ∈ Dn×d is denoted by H(Dn×d).

For a hierarchy tree Hj the size of a node n defined by a function sizeHj
: Nj → N

describes the number of leaves which have the node n as an ancestor. The size of any leaf
is 0 and the size of rj is |Dj |.

The closest common ancestor in a hierarchy treeHj is defined on a set of nodes N ′ ⊆ Nj

and is written as ccaHj
(N ′). The closest common ancestor of a single node is the node itself.

Hierarchy trees are especially useful for algorithms based on the most common recoding
paradigm: generalization. Generalization is an anonymization technique used in situations
in which distances between attributes cannot be computed but single values instead of
ranges or sets should be used as attribute representatives. Hence, it is often associated with
non-numerical data, but is compatible with numerical data as well.

Definition 3.6 (Generalization and Suppression).
A generalization algorithm µk : Dn×d × H(Dn×d) → D′

n×d is a local recoding scheme in
which the cluster statistics are computed based on the closest common ancestors of the
cluster elements in the respecting hierarchy trees.

A generalization algorithm uses suppression if it outputs yji = ε as cluster statistics
of a dimension j of any cluster Ci. A generalization algorithm using suppression is called
suppressing.

Let’s consider an example. Assume there are two attribute dimensions D1 and D2

describing the categorical attribute profession and the numerical attribute monthly net
salary in Euro, respectively. Typical hierarchy trees H1 and H2 might look like depicted in
figure 3.2. An exemplary database X ∈ D7×2 and a 2-anonymous generalization Y of it are
given in table 3.3.

– 20 –

3 Microaggregation in a broader context

profession
physician

dentist
dermatologist
ophthalmologist
surgeon
…

craftsperson

baker
carpenter

painter

electrician
…

…

(a) H1 for D1

R

[0, 1500]

…

…

…

(1500, 3000]

…

(3000, 5000]

…

(5000,∞)

…

(b) H2 for D2

Figure 3.2: Exemplary hierarchy trees H1 (a) and H2 (b) for attribute sets D1 =

{dentist, dermatologist, ophthalmologist, surgeon, baker, carpenter, painter, electrician, …}
and D2 = R.

Table 3.3: An original database X is generalized into a 2-anonymous database Y using
hierarchy trees of figure 3.2 and suppression.

Element At-
tribute 1

At-
tribute 2

x1 dentist 2800

x2 dentist 5800

x3 baker 2200

x4 painter 2900

x5 painter 3137

x6 surgeon 3137

x7 electrician 3137

(a) original database X ∈ D7×2

Element At-
tribute 1

At-
tribute 2

x1 dentist ε

x2 dentist ε

x3 craftsperson (1500, 3000]

x4 craftsperson (1500, 3000]

x5 ε 3137

x6 ε 3137

x7 ε 3137

(b) generalized database Y ∈ D′
7×2

– 21 –

3 Microaggregation in a broader context

3.2
Alternative Utility Units

Recoding schemes are not formally categorized as size conserving anonymization algorithms,
because attributes of elements are replaced not by other attributes from the same attribute
set, but by cluster statistics which potentially include values from other sets. Hence, apply-
ing SCA-distortion is not possible.

The community developed different utility measures applicable for recoding schemes.
Most of these measures are applicable for microaggregation algorithms as well. The most
basic utility measure thinkable is cluster size. There is a hard lower bound of k which allows
the concept of hiding in a group of k. Further, as anonymity is evaluated in a worst case
manner, having some clusters with more elements does not improve anonymity. Hence, one
could argue that bigger clusters unnecessarily reduce utility and that statistics regarding
cluster sizes of recoding algorithms somehow reflect quality of data. The discernability
metric CDM [7, 37] and normalized average equivalence class size metric CAV G [37] are the
most common variants of this approach.

Definition 3.7 (Utility Based on Cluster Size).
The discernability metric CDM describes the sum of squared cluster sizes of a k-member
clustering:

CDM =
∑̀
j=1

|Cj |2

The normalized average equivalence class size metric CAV G computes the average cluster
size, by dividing the number of elements n by the number of clusters `. The result is divided
by the anonymity guarantee k.

CAV G =
(n
`

)
/k

The reasoning behind CDM is that clusters are sanctioned over-linearly with growing
size which emphasizes the negative effect on homogeneity of any additional element to a
cluster. There is, however, a fundamental problem with this approach: Results between
different databases or even different k on the same database are not comparable. Larger
databases will inevitably result in a greater discernability. Further, as the cost of a cluster
grows over-linearly, raising the minimum cluster size k effectively sanctions additional ele-
ments to clusters more. This does not only introduce problems with comparability, but is
also counter-intuitive. As clusters are bigger anyway, we expect additional elements to do
less harm instead of more.

All of these problems are remedied in the CAV G metric. As average cluster size is
concerned, databases of different sizes are evaluated equally. Further, normalizing the result
by dividing by k eliminates the dependency on the minimum cluster size and sets the value
CAV G = 1 as the best case in any situation. The penalty of a clustering C can be expressed
by CAV G(C)−CAV G(OPT) = CAV G(C)− 1. Both clusters from table 3.1 have CDM = 18

and CAV G = 1 as both clusterings use the same cluster sizes.

– 22 –

3 Microaggregation in a broader context

One might ask whether cluster size actually accurately reflects utility. Of course the
answer to this question depends on the application and especially on the type of cluster
statistics that are computed, transforming a k-member clustering into a microaggregation
or recoding algorithm. For microaggregation and generalization, cluster size is a rather
weak indicator for utility. As cluster statistics are computed depending on the range of
attribute values inside a cluster, a good utility measure should take the range of elements
inside clusters into account. The normalized certainty penalty (NCP) introduced in [75]
implements this approach.

The NCP is defined for numerical, categorical or mixed databases, allows weighting
of certain attribute dimensions and considers distances between extreme attribute values
inside of clusters. However, the density of clusters is not evaluated.

Definition 3.8 (Normalized Certainty Penalty [75]).
The normalized certainty penalty (NCP) of an element xi is a weighted sum of penalties
of all dimensions j of xi:

NCP (xi) =

d∑
j=1

(
wj ·NCPDj

(xji)
)

If xji is numerical, NCPDj
(xji) is the difference between the largest and smallest at-

tribute value in dimension j inside of cluster C(xi) divided by the difference between the
largest and smallest attribute value in dimension j over the whole database:

NCPDj
(xji) =

maxj(C(xi))−minj(C(xi))

maxj(X)−minj(X)

If xji is categorical, NCPDj
(xji) considers the hierarchy tree Hj to determine the size of

the closest common ancestor of all attribute values of elements in dimension j and cluster
C(xi). This value is normalized by the total number of categories of Dj i.e. the number of
leaves in Hj :

NCPDj
(xji) =

sizeHj
(ccaHj

(C(xi)))

|Dj |

The normalized certainty penalty of a database X is

NCP (X) =

n∑
i=1

NCP (xi) =

n∑
i=1

d∑
j=1

(
wj ·NCPDj

(xji)
)
.

For both numerical and categorical attributes, an NCP of 1 is the worst case which
occurs when a cluster contains the elements with maximal distance to each other. An NCP
of 0 is achieved if only one attribute value occurs in a cluster. Again, this property holds
for numerical as well as for categorical data.

– 23 –

3 Microaggregation in a broader context

In difference to CDM and CAV G, NCP evaluates both clusterings from table 3.1 differ-
ently. The anonymization of table 3.1a has an NCP of 5.5 and table 3.1b has an NCP of
7.5, assuming all attributes j have weight wj = 1.

When NCP is used to compare the utility-preserving properties of generalization algo-
rithms, the penalty accurately measures the loss of information. Generalization does not
care for density and anonymizes based on extreme values inside of clusters only. Hence, for
categorical data, NCP measures the exact sizes of generalized attributes in the resulting
anonymized data. For numerical data, however, NCP might underestimate the cost, as it
ignores the fact that there might not be an ancestor node for the exact range of attribute
values inside a cluster. This rather technical problem can be fixed quite easily using one of
the following approaches:

– For numerical attributes j only allow hierarchy trees Hj which have nodes for every
subset of Dj .

– Change NCP so that size of cca is used for numerical attributes as well.
– Allow generalization algorithms to generalize numerical attributes based on extreme

values instead of hierarchy trees.

When it comes to other recoding algorithms beside generalization, NCP is less ap-
pealing. For microaggregation for example, the extreme values of attributes inside clusters
provide little information about utility, as distortion of data is based only on density. I.e.
in a dense cluster the difference between an original attribute value and an attribute value
after replacement with the centroid is typically smaller than in a sparse cluster.

A slightly different notation of the same utility concept can be found under the name
total information loss (Total-IL) in [12]. The main difference between NCP and Total-IL
is that for categorical data, in Total-IL the height of the closest common ancestor in a
hierarchy tree is divided by the total height of the hierarchy tree, whereas for NCP the
number of leaves reachable from a closest common ancestor is counted and divided by the
total number of leaves. Further, no attribute-weighting is used, although this could be
implemented quite easily. As both approaches are very similar, we will not go into further
details about Total-IL. For more information see [12].

3.3
Stronger Anonymity Guarantees

So far, the only anonymity guarantee considered was k-anonymity. We discussed new forms
of databases and new approaches to measure utility. However, until now we did not look
into different approaches of measuring anonymity. In the next few paragraphs we will take
a look at some alternatives to k-anonymity which emerged between 2007 and 2014. All
of these approaches try to improve anonymity guarantees given by k-anonymity by further
restricting the choice of clusters by a recoding scheme. It should be noted right away that
these constraints inevitably lead to a reduction in utility [11, 41]. For more information on
other anonymity guarantees see [28].

– 24 –

3 Microaggregation in a broader context

Diversity and Closeness

As mentioned in chapter 2, most syntactic anonymity guarantees assume data to be divided
into quasi-identifiers (QI) and confidential attributes (CA). Because most anonymity guar-
antees discussed in this section rely on a QI/CA separation, we first need to introduce some
new notations regarding these types of attributes.

Definition 3.9 (Quasi-Identifiers and Confidential Attributes).
Let X = x1, . . . , xn be a database of n elements drawn from D1 × · · · × Dd.

– The setsDQI ⊆ {1, . . . , d} andDCA ⊆ {1, . . . , d} withDQI∩DCA = ∅ andDQI∪DCA =

{1, . . . , d} are the sets of QI-dimensions and CA-dimensions respectively.
– The QI-value combination x[QI] of an element x ∈ D1 × · · · × Dd is the projection of

x into the dimensions from DQI . The CA-value combination x[CA] of an element x is
defined analogously.

– The sequences of QI-value combinations inside a cluster C or over a database X are
denoted as C[QI] and X[QI]. The sequences of CA-value combinations are defined
analogously.

– Concerning a databaseX, the index set of confidential attributes X[CA]x := {i|xi[CA] =

x} contains all indices of elements with CA-value combination x inside the sequence X.
– The probability distributions of QI-values inside a cluster C or over a database X are

denoted as P (C[QI]) and P (X[QI]). The probability distributions of CA-values are
defined analogously.

As we already discussed the problems and limitations of QI/CA separation, let us now
just assume this classification of attributes is given and reasonable for a database X.

In 2007 Machanavajjhala et al. introduced the security notion `-diversity [46]. Its goal
is to prevent an attacker to get too much information about the confidential attributes
of their target just by obtaining knowledge about the target’s cluster membership. An
attack scenario often referred to as attribute disclosure attack. The authors uncovered and
addressed the following problem with k-anonymous data: Even if an attacker might not be
able to distinguish between different elements of a cluster, they might obtain information
about the confidential attributes of their target by comparing the distribution of confidential
attribute values inside the target’s cluster with the distribution on the whole database. In
an extreme case, where a cluster is CA-uniform, an attacker might even obtain certainty
about their target. Table 3.4 shows a database vulnerable to attribute disclosure attacks.

There are several variants of `-diversity designed to mitigate the problem of attribute
disclosure [46, 39]. The most basic definition is given as definition 3.10.

Definition 3.10 (Distinct `-Diversity).
A k-anonymous databaseX categorized into quasi-identifiers QI and confidential attributes
CA is called `-diverse if in each cluster there are at least ` distinct CA-value combinations,
i.e.

∃x1∃x2 . . . ∃x`
(
∀{i,j}∈{1,...,`} (i = j ∨ xi[CA] 6= xj [CA]) ∧ ∀i

(
X[CA]xi[CA] ≥ 1

))
.

– 25 –

3 Microaggregation in a broader context

Table 3.4: This 4-anonymous table highlights a problem called attribute disclosure. The
frequency of the confidential attribute value 1 in the upper cluster is 1 while its frequency
is 1/2 globally.

Element QI-
Attribute 1

QI-
Attribute 2

CA-
Attribute

x1 7 4 1

x2 7 4 1

x3 7 4 1

x4 7 4 1

x5 3 7 2

x6 3 7 2

x7 3 7 3

x8 3 7 4

Although distinct `-diversity effectively prevents situations as depicted in table 3.4, a
large majority of certain values inside a cluster is still allowed, and might still provide an
attacker with some information about their target. An improved variant called Entropy
`-diversity provides greater protection at the cost of further limiting allowable clusters.

Definition 3.11 (Entropy `-Diversity).
The entropy of a cluster C regarding its sequence of CA-value combinations C[CA] is

E(C,CA) = −
∑

p∈P (C[CA])

p log p,

A k-anonymous database X is entropy `-diverse if for every cluster Cj of X it holds
E(Cj , CA) ≥ log `.

Entropy `-diversity bars clusters from being allowed, just because they include some
CA-outliers while being mostly homogeneous. However, if homogeneity of CA-values in a
databaseX is high, entropy `-diversity might be hard or even impossible to achieve. Further,
as discussed in [39], neither form of `-diversity is able to fully prevent attribute disclosure
because it is still allowed to form clusters whose CA-distributions are very different from
the CA-distribution over the whole database. Expressed in terms of information theory:
The notion of `-diversity might guarantee a high entropy of clusters, but does not give any
guarantees about mutual information between the CA-distribution inside the cluster and
globally. Hence, there is still a lot of possible information gain for an attacker, even on
`-diverse databases.

In an attempt to fix this, Li et al. introduced an anonymity notion called t-closeness [39].
This notion is the most restrictive among all syntactic anonymity notions. It only allows
clusters whose distributions of confidential attribute values is close to the distribution of
confidential attribute values on the whole database. The value t describes closeness between
both distributions and is usually measured by Earth Mover’s Distance.

Definition 3.12 (Earth Mover’s Distance ([39])).
Let P = (p1, p2, . . . , pm), Q = (q1, q2, . . . , qm) and di,j be the ground distance between

– 26 –

3 Microaggregation in a broader context

element i of P and element j of Q. Find a flow F = [fi,j] where fi,j is the flow of mass
from element i of P to element j of Q that minimizes the overall work:

WORK(P,Q, F) =

m∑
i=1

m∑
j=1

di,jfi,j

subject to the following constraints:

fi,j ≥ 0 1 ≤ i, j ≤ m (c1)

pi −
∑m

j=1 fi,j +
∑m

j=1 fj,i = qi 1 ≤ i ≤ m (c2)∑m
i=1

∑m
j=1 fi,j =

∑m
i=1 pi =

∑m
i=1 qi = 1 (c3)

These three constraints guarantee that P is transformed to Q by the mass flow F . The
Earth Mover’s Distance (EMD) is defined to be the total work of a minimal flow F , i.e.

EMD[P,Q] = min
F

WORK(P,Q, F).

EMD can be applied to numerical and categorical attributes as well. For numerical
attributes, continuous values have to be approximated to obtain discrete probability dis-
tributions in C and X. Besides this inconvenience, ground distance between elements i

and j is simply computed by the number of elements with probabilities between those for
i and j. For categorical attributes, the ground distance between two elements could be
e.g. the height of their closest common ancestor in the respecting hierarchy tree (as in the
total information loss measure described above) or the size of their cca (like in the NCP
measure).

Equipped with the EMD, we are now able to define t-closeness more formally:

Definition 3.13 (t-Closeness).
A cluster C within a database X is t-close if the distance between the distribution of a
confidential attribute in C and the distribution of the attribute in X is no more than a
threshold t, i.e.

EMD(P (C[CA]), P (X[CA])) ≤ t.

A k-anonymous database X is t-close if each cluster C ∈ {C1, . . . , C`} is t-close, i.e.

max
1≤j≤`

EMD(P (Cj [CA]), P (X[CA])) ≤ t.

Of course, t-closeness could also be defined with other distance measures than EMD.
However, as described by the authors in [39], there are some disadvantages when using e.g.
total variation distance or Kullback-Leibler divergence. It should be further noted that
t-closeness is generally considered to be private enough for most applications but not usable
in practice, as its utility is low [11, 41]. Further, the authors of t-closeness initially did not
specify an anonymization method to achieve this guarantee. However, in 2010 it was shown
that the Mondrian algorithm [37] can be adapted to yield t-closeness [38]. Further, in 2015
it was shown that common microaggregation could be efficiently adapted to create t-close
databases [65].

– 27 –

3 Microaggregation in a broader context

There are some interesting results regarding the connection between t-closeness and
differential privacy. In 2013 Soria-Comas et al. showed that a limited form of ε-differential
privacy using an uninformed attacker is achieved by an exp(ε)-close database, if instead of
EMD, another distance measure closer related to semantic privacy is used [62]. In 2015
Domingo-Ferrer et al. showed that a probabilistic variant of t-closeness is achieved when
differential privacy for CA-attributes is combined with k-anonymity for QI-attributes.

A slightly more utility-friendly variant of t-closeness called (n, t)-closeness was intro-
duced in 2010 [38]. To avoid confusion with n as the number of elements in a databaseX, we
will refer to it as (m, t)-closeness. The idea of (m, t)-closeness again is the anonymity con-
cept of hiding in a crowd. Wheres k-anonymity describes hiding in a crowd of k individuals
with identical quasi-identifiers, (m, t)-closeness further specifies hiding in a crowd of k indi-
viduals by requiring confidential attributes to appear as drawn from a similar distribution
than that of at least m individuals in the database. Hence, m ≤ n where (n, t)-closeness is
just t-closeness. Also n-anonymous databases are (m, 0)-close for every m allowed.

Definition 3.14 ((m, t)-Closeness).
A cluster C within a database X is (m, t)-close if there exists a superset C̃ ⊇ C with
|C̃| ≥ m and

EMD(P (C[CA]), P (C̃[CA])) ≤ t.

A database X is (m, t)-close if it is k-anonymous for some value k, and each cluster
C ∈ {C1, . . . , C`} of k or more elements with identical quasi-identifiers is (m, t)-close, i.e.

max
1≤j≤`

EMD(P (Cj [CA]), P (C̃j [CA])) ≤ t.

Of course, the utility of t- or (m, t)-close databases could be measured with the same
techniques as the utility of k-anonymous databases. Nevertheless, the authors introduced
a novel approach to measure utility involving entropy. However, as visualized in table 3.5,
closeness utility can be quite misleading in some cases.

Definition 3.15 (Closeness Utility).
Let X be a database anonymized into an (m, t)-close database X̂ with clusters C1, . . . , C`.
Let H(X) and H(Cj) be the information entropy of the distribution of confidential at-
tributes inside the database X and inside a cluster Cj , respectively.

The closeness utility of X̂ is

U(X̂) := H(X)−
∑

1≤j≤`

|Cj |
|X|

H(Cj)

Safe k-Anonymization

After 2010 new semantic anonymity guarantees not reliant on QI/CA-separation were de-
veloped. In 2012 Li et al. introduced safe k-anonymity as a building block of a differentially
private data publishing algorithm [40]. The main motivation of this approach is the de-
pendence of clusters on the attribute values of their members. As extreme values could

– 28 –

3 Microaggregation in a broader context

Table 3.5: Three variants of 2-anonymous (4, 0)-close clusterings. It can be observed that
perceived utility is not in accordance with closeness utility. Both, in database X̂1 and
database X̂2 an observer obtains full information about the CA-distribution for both QI = 1

and QI = 2. However, closeness utility differs by the maximum possible amount. On the
other hand, database X̂3 does provide significantly less information, but is evaluated like
database X̂1.

Element QI-
Attribute

CA-
Attribute

x1 1 1

x2 1 1

x3 1 2

x4 1 2

x5 2 1

x6 2 1

x7 2 2

x8 2 2

(a) Original database X; H(X) = 1

Element QI CA
x1 1 1

x2 1 1

x3 1 2

x4 1 2

x5 2 1

x6 2 1

x7 2 2

x8 2 2

(b) Database X̂1 with cluster-
ing C1 = {{x1, x2}, {x3, x4},
{x5, x6}, {x7, x8}};
U(X̂1) = 1

Element QI CA
x1 1 1

x2 1 1

x3 1 2

x4 1 2

x5 2 1

x6 2 1

x7 2 2

x8 2 2

(c) Database X̂2 with clustering
C2 = {{x1, x3}, {x2, x4},
{x5, x7}, {x6, x8}};
U(X̂2) = 0

Element QI CA
x1 1.5 1

x2 1.5 1

x3 1.5 2

x4 1.5 2

x5 1.5 1

x6 1.5 1

x7 1.5 2

x8 1.5 2

(d) Database X̂3 with cluster-
ing C3 = {{x1, x5}, {x2, x6},
{x3, x7}, {x4, x8}};
U(X̂3) = 1

– 29 –

3 Microaggregation in a broader context

influence cluster statistics greatly, cluster membership of individuals with extreme values in
one dimension might not be protected by the hiding in a crowd principle.

The remedy proposed for this problem requires the use of a data-independent clustering
algorithm which is applied to all elements individually, without respecting the k-member
clustering condition. To achieve k-anonymity anyway, a subsequent deletion of clusters with
less than k elements is applied.

Definition 3.16 (Strongly-Safe k-Anonymization).
A data-independent clustering Cind : D1 × · · · × Dd → {1, . . . , `} assigns a cluster to every
possible database element xi.
A strongly-safe k-anonymization is a three-step process.

1. A data-independent clustering Cind is defined.
2. A database X̂ is created out of a database X by applying Cind and creating a database

according to cluster statistics.
3. Clusters with less than k elements are removed from X̂.

Remark 3.17.
Under the condition that cluster representatives are chosen as elements x ∈ D1 × · · · × Dd,
a strongly-safe k-anonymization is a size reducing anonymization.

As for `-diversity and t-closeness, the perceived utility of the resulting databases is
severely limited by the data-independent clustering. Not only might there be clusters with
a lot more than k elements, which worsen cluster statistics, there might also be clusters
with almost k elements, which have to be removed entirely.

Another downside of this approach is that it is unclear how to measure utility for safe
anonymization algorithms. Depending on Cind the same algorithm on the same database
might deliver very different results. Obviously, information loss (see definition 2.23) cannot
be applied, even on numerical data, as the removal of elements prevents the application of
cost measures designed for SCA algorithms. CDM or CAV G might be applicable. However,
it should be applied before data removal and clusters with less than k elements have to
be sanctioned. As data removal might be anything from fine to detrimental depending on
the use case, there seems to be no simple solution on how to evaluate element removal and
hence utility of the resulting data.

Remark 3.18.
If instead of a data-independent clustering an ε-differentially private clustering is used,
the resulting database might preserve more information and can still be used to achieve
differential privacy on a database.

An anonymization scheme using ε-differentially private clustering is called ε-safe k-
anonymization.

Insensitive Microaggregation

Insensitive Microaggregation is a concept introduced by Soria-Comas et al. in 2014 [64]. It
describes a subset of common microaggregation algorithms that do not allow drastic changes
in the clustering on similar databases. Clusters are allowed to change in only one element
on databases that differ in at most one element. As a result the cluster centroids are more

– 30 –

3 Microaggregation in a broader context

stable and allow less information leakage about the membership of a particular element
inside a cluster. Insensitive Microaggregation can be understood as a method creating
databases with more privacy protecting than that offered by k-anonymity.

Definition 3.19 (Insensitive Microaggregation).
Let µ be a common microaggregation algorithm and CX

1 , . . . , CX
` the (mutually disjoint)

clusters µ creates when applied to a database X ∈ Xn×d.
Further let CX′

1 , . . . , CX′

` be the clustering µ creates on a database X ′ ∈ Xn×d which
differs from X in only one element.

The algorithm µ is insensitive if for all choices of X and X ′ there is a bijection between
the set of clusters CX and CX′ such that each pair of corresponding clusters differs at most
in a single element, i.e.

∀X∀X ′∀i∃j : |CX
i ∪ CX′

j | ≤ min{|CX
i |+ 1, |CX′

j |+ 1}.

As for safe k-anonymization, insensitive microaggregation is geared towards achieving
differential privacy. Its main idea is to lower the sensitivity of data by applying insensitive
microaggregation before using noise addition. As a lower sensitivity results in less noise
needed, utility can be improved. However, as microaggregation itself introduces uncertainty
as well, an improvement is not guaranteed and relies heavily on the implementation and
data [64].

– 31 –

4

Complexity Results

To get a better understanding of the complexity of k-anonymous microaggregation within
the context of other clustering problems, in the first section of this chapter we take a
look at similarities and differences between microaggregation and the related problem of
k-means clustering. Further, some well-known complexity results for k-means clustering
are recited. As one of the main results of this thesis, in section 4.2 a reduction from planar
3-SAT to the decisional k-anonymous microaggregation problem shows NP-hardness of the
microaggregation problem for all k ≥ 4 and d ≥ 2. Finally, in section 4.3 and section 4.4
additional complexity results and an overview of open problems in this area are stated.

4.1
The k-Means Clustering Problem

The k-anonymous microaggregation problem is similar to the well-known k-means clustering
problem [47] traditionally tackled by the Lloyd algorithm [45]. Both problems define the
search for a clustering with low distortion cost (see definition 2.13). However, in contrast to
the k-anonymous clustering, for k-means a k-clustering instead of a k-member clustering is
requested. Recall definition 2.9 for a definition of k-member clusterings and k-clusterings.

Definition 4.1 (Optimal k-Means Clustering Problem).
Given a database X, the optimal k-means clustering problem is to find a k-clustering C for
X with minimum distortion cost.

Definition 4.2 (Decisional k-Means Clustering Problem).
Given a database X and a number γ ∈ R, the decisional k-means clustering problem is to
determine whether a k-clustering C with distortion cost at most γ exists for X.

An interesting property of k-means clustering is that optimal clusterings are guaranteed
to produce Voronoi diagrams (see theorem 4.3). This characteristic proven in [10] and used
for example in [34] is especially useful to limit search space when building algorithms to
find optimal clusterings.

Theorem 4.3.
Let C = C1, . . . , C` be an optimal k-means clustering for a database X = (x1, . . . , xn) and

some integer k.

– 32 –

4 Complexity Results

Every element x from X is at least as close to the centroid of its own cluster C(x) as
to any other cluster’s centroid. More precisely,

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , `} δ(xi, c(C(xi)))
2 ≤ δ(xi, c(Cj))

2.

For k-anonymous microaggregation there is no similar result. As the example in fig-
ure 4.1 shows, there are scenarios in which the minimum cluster size constraint prevents
elements from being clustered with close neighbors.

CA CB

x1 x2 x3 x4

Figure 4.1: Visualization of an optimal 2-member clustering C = {CA, CB} for the database
X = (x1, x2, x3, x4) ∈ X4×1. It can be observed that x2 is closer to c(CB) than to c(CA) even
though x2 ∈ CA. Hence, theorem 4.3 is not applicable for k-anonymous microaggregation.

Another major difference between the two clustering problems is the behavior towards
multiset-respecting clusterings. Theorem 4.4, which is used but not proven in [48], states
that any optimal k-means clustering is, or can easily be made, multiset-respecting. As no
proof of theorem 4.4 seems to have been published so far, a proof is given below. As a direct
consequence of the proof, corollary 4.5 limits the occurrences of non-multiset-respecting
optimal k-means clusterings to rare and easily manageable edge-cases.

Theorem 4.4.
For any database X and any value k there is always an optimal k-means clustering C that

is multiset-respecting.
Any optimal k-means clustering that is not multiset-respecting can be transformed into

a multiset-respecting optimal k-means clustering in O(n) time.

Proof. Let C be an optimal k-means clustering that is not multiset-respecting. There are
two elements x1, x2 with δ(x1, x2)

2 = 0 such that x1 ∈ CA and x2 ∈ CB for clusters
CA 6= CB in C. Let cA := c(CA) and cB := c(CB) denote the centroids of both clusters.
From theorem 4.3 we know that δ(x2, cA)

2 = δ(x2, cB)
2 =: d2. In the following proof we

use this fact to determine differences in cost when x2 changes clusters from CB to CA. As
our computation shows, the cost is reduced or stays the same independently of d2 and |CA|.
Further we show that a cost equivalence is only possible for |CB| = 1.

Let CA+ := CA ∪ {x2}, CB− := CB \ {x2} be the new clusters and cA+ := c(CA+),
cB− := c(CB−) their new centroids. We further denote Euclidean distances a := δ(cA, cA+),
b := δ(x2, cA+), c := δ(cB, cB−) and their respective quadratic Euclidean distances a2,b2
and c2. See figure 4.2 for an overview.

– 33 –

4 Complexity Results

cA cA+ {x1, x2} cB cB−

a d

cb

d

Figure 4.2: Relative positions of centroids cA,cA+,cB,cB− and elements x1,x2. Relevant
Euclidean distances are indicated by distance bars below. Other elements from CA and CB

are not shown as their position is irrelevant for the proof. The distance d appears twice, as
x1 and x2 lie exactly in the middle of the connecting line between cA and cB. Please note
that all shown entities collapse to a single position if |CB| = 1.

From corollary 2.20 we know that

cost(CA+) = cost(CA) + |CA| · δ(cA, cA+)
2 + δ(x2, cA+)

2

= cost(CA) + |CA| · a2 + b2
(4.1)

and

cost(CB−) = cost(CB)−
(
(|CB| − 1) · δ(cB−, cB)

2 + δ(x2, cB)
2
)

= cost(CB)−
(
(|CB| − 1) · c2 + d2

)
.

(4.2)

We consider two cases. For the first case assume |CB| = 1. A simple computation using
theorem 4.3 shows that the cost is not increased by the re-clustering of x2.

|CA| · a2 + b2 = (|CB| − 1) · c2 + d2

|CB |=1⇔ |CA| · a2 + b2 = d2

Th. 4.3⇔ |CA| · 0 + 0 = 0.

(4.3)

For the second case assume |CB| > 1. Hence, to prove a cost reduction we need

|CA| · a2 + b2 < (|CB| − 1) · c2 + d2 (4.4)

to hold. From corollary 2.22 we know that

cA+ =
cA · |CA|+ x2
|CA|+ 1

(4.5)

and (using |CB| > 1)

cB− =
cB · |CB| − x2
|CB| − 1

. (4.6)

– 34 –

4 Complexity Results

Hence, we are able to express a and c in terms of d, |CA| and |CB| only.

a = δ(cA, cA+)
(4.5)
=
||x2 − cA||2
|CA|+ 1

=
d

|CA|+ 1
(4.7)

c = δ(cB, cB−)
(4.6)
=
||x2 − cB||2
|CB| − 1

=
d

|CB| − 1
(4.8)

To get rid of b2 in (4.4), we use the relation

b = d− a

⇔ b2 = (d− a)2

⇔ b2 = d2 − 2ad+ a2

⇔ b2 = d2 − 2d2

|CA|+1 +
(

d
|CA|+1

)2
.

(4.9)

Using (4.7), (4.8) and (4.9) we obtain

(4.4)

⇔ |CA| ·
(

d
|CA|+1

)2
+ d2 − 2d2

|CA|+1 +
(

d
|CA|+1

)2
< (|CB| − 1) ·

(
d

|CB |−1

)2
+ d2

⇔ |CA|d2+d2

(|CA|+1)2 −
2d2

|CA|+1 < d2

|CB |−1

⇔ |CA|+1
(|CA|+1)2 −

2
|CA|+1 < 1

|CB |−1

⇔− 1
|CA|+1 < 1

|CB |−1 .

(4.10)

It can be observed that re-clustering of x2 from CB into CA cannot increase cost,
and decreases cost whenever |CB| > 1, i.e. when CB has other elements beside x2. As,
by assumption, C is an optimal clustering, two elements on the same position can only
be clustered into different clusters C and C ′ if |C| = |C ′| = 1. A simple re-clustering
algorithm taking an optimal clustering C and merging all elements at the same position in
single clusters creates a multiset-respecting optimal clustering in O(n) time.

Note that empty clusters are created by the re-clustering operation used in the previous
proof. Hence, if there were clusters C ′′ with cost(C ′′) > 0, the cost could be reduced by using
an empty cluster to split C ′′, contradicting the optimality of the clustering. This further
limits the occurrences of non-multiset-respecting optimal k-means clusterings to clusterings
with a total cost of zero e.g. with clusters solely consisting of multiset elements from the
same position.

Corollary 4.5.
An optimal k-means clustering C with cost(C) > 0 is multiset-respecting.

Again, for k-anonymous microaggregation theorem 4.4 is not applicable. As the example
in figure 4.3 shows, there are databases X and values of k for which there is no optimal
clustering which is multiset-respecting.

– 35 –

4 Complexity Results

x1 {x2, x3} x4

a = 1 a = 1

Cj
Cluster
C1 ∈ Cj

Cluster
C2 ∈ Cj

cost(Cj)

C1 {x1, x2} {x3, x4} 0.5+0.5 = 1

C2 {x1, x4} {x2, x3} 2 + 0 = 2

C3 {x1, x2, x3, x4} {} 2 + 0 = 2

Figure 4.3: Visualization of a database X ∈ X4×1 for which an optimal 2-member clustering
cannot be multiset-respecting. Clustering C1 with clusters C1 = {x1, x2} and C2 = {x3, x4}
results in lower cost than both possible multiset-respecting clusterings C2 and C3. Note that
this is not a contradiction to corollary 4.5, as a k-means clustering with C1 = {x1} and
C2 = {x2, x3, x4} with a cost of 2/3 is possible.

The differences discussed above seem to indicate that k-anonymous microaggregation
is indeed a more difficult problem than k-means clustering. Considering complexity results
for k-means clustering, we know the following: It has been shown in [48] that k-means
clustering is NP-hard for d = 2 if k is variable. Further, from [2] we know that k-means
clustering is NP-hard for k = 2 if d is variable. However, using theorem 4.3, Inaba et al.
were able to prove that the k-means problem is solvable in polynomial time if both d and
k are fixed [34].

It is easy to see that for k-means clustering as well as for k-anonymous microaggregation,
NP-hardness for d = 2 dimensions implies NP-hardness for every d > 2 as any reduction
function f creating two-dimensional databases X can be replaced by a reduction function
f ′ using f and creating d-dimensional databases X ′ for d ≥ 2 out of X where an element
xi = (x1i , x

2
i) from X translates into an element x′i = (x1i , x

2
i , 0, . . . , 0). As dimensions 3 to

d from X ′ do not change the distortion cost of any clustering of X, f ′ is a valid reduction
function in any reduction originally using f .

Analogously, for k-means clustering any reduction proving NP-hardness for k = 2 can
be adapted to show NP-hardness for any k ≥ 2. Consider a reduction function f creating
a d-dimensional database X to be clustered into k = 2 clusters. An adapted reduction
function f ′ takes X and adds additional elements in great distance to each other and to
existing elements. For k = 3 one additional element is added, for k = 4, two, etc.

Considering k-anonymous microaggregation, hardness results for some values of k do not
translate that easily into hardness results for arbitrary other values of k. On the one hand,
this problem seems intuitively more difficult if the minimal size of a cluster is increased. On
the other hand having to deal with less clusters may make things easier.

4.2
Microaggregation Is Hard for k ≥ 3

In 2001 Oganian et al. claimed NP-hardness of the decisional k-anonymous microaggregation
problem for fixed values of k and d [57]. However, a proof was given for the case k = 3

– 36 –

4 Complexity Results

only. The authors used a reduction from planar exact cover by 3-sets (planar X3C) to
show that there is a solution to a planar X3C-instance (Q,T) if and only if a 2-dimensional
database X created by the reduction function f(Q,T) can be clustered by a 3-member
clustering with total cost equal to a fixed value computed from (Q,T). Further the authors
give instructions on how to adapt the result for other values of d. By allowing arbitrary
duplications of elements by the reduction function used, the result can be adapted to show
NP-hardness for fixed values of k which are multiples of 3. Although this result indicates
hardness for all fixed combinations of d ≥ 2 and k ≥ 3, no formal proof has been found so
far.

During the work for this dissertation the missing proof has been found. In this sec-
tion the reduction published in cooperation with Rüdiger Reischuk in [69] is presented. A
preliminary version of this work has been published in [68].

The proof for theorem 4.6 is given in three parts. In the first part a reduction is used
to show hardness of k-anonymous microaggregation for k = 4. Further, in the second and
third part, the reduction function is adapted to show hardness for all even and all odd values
of k ≥ 4. Together with the original result of Oganian et al., theorem 4.6 is proven.

Theorem 4.6.
Decisional k-anonymous microaggregation is NP-hard for fixed values of d ≥ 2 and k ≥ 3.

The Case k = 4

The reduction is inspired by a reduction from planar 3-SAT to optimal planar k-means
presented by Mahajan, Nimbhorkar and Varadarajan in 2009 [48]. A modified reduction
function is used to take into account the differences between k-means clustering and k-
anonymous microaggregation. The planar 3-SAT problem has been shown to be NP-hard
by Lichtenstein in 1982 [43].

Definition 4.7 (Planar 3-SAT Problem).
Let F be a 3-CNF formula with variables {v1, . . . , vn′} and clauses {c1, . . . , cm}. We call
G(F) := (V,E) the (undirected) graph of F , where

V = {vi | 1 ≤ i ≤ n′} ∪ {cj | 1 ≤ j ≤ m}
E = E1 ∪ E2 with
E1 = {(vi, cj) | vi ∈ cj or vi ∈ cj}
E2 = {(vj , vj+1) | 1 ≤ j < n′} ∪ {(vn′ , v1)}.

If G(F) is a planar graph, F is called a planar 3-CNF formula. The planar 3-SAT problem
is to determine whether a given planar 3-CNF formula F is satisfiable.

The theorem is proven for the case of k = 4 by creating a database X = X(F) with
d = 2 attributes and a cost bound γ from a Planar 3-SAT instance F . Let F have n′

variables vi and m clauses cj . For the correctness of this reduction we show that the 4-
anonymous microaggregation instance X(F) has a 4-member clustering C with cost(C) ≤ γ

if and only if F is satisfiable. This implies the claim for arbitrary d ≥ 2 by fixing further
attributes to constant values. Steps 1 to 6 show the construction steps of X(F) performed
by the reduction function f . Throughout the construction the planar 3-CNF formula F =

(v1 ∨ v2 ∨ v3) ∧ (v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v2) is used as an example.

– 37 –

4 Complexity Results

1. Consider G(F) with all E2 edges removed, i.e. G′(F) = (V,E1). Compute a planar
embedding E of G′(F) and for each variable vertex, assign labels κ ∈ {1, . . . ,m} to
incident edges according to a cyclic ordering. (See the left image of figure 4.4, edge
labels are not shown.)

2. Replace every variable vertex vi by a cycle Γi with m vertices v1i , . . . , vmi . Reroute an
edge e with label κ incident to vi to vκi . Observe that the embedding of G′(F) can
easily be translated into a planar embedding E ′ of the resulting graph G′′(F). (See the
right image of figure 4.4.)

v4

v3

v2

v1

c1

c3

c2

Γ1

Γ2

Γ3

Γ4

c1

c3

c2

Figure 4.4: Steps 1 and 2 of the construction for F = (v1∨v2∨v3)∧(v2∨v3∨v4)∧(v1∨v2).

c1

c3

c2

c1

c3

c2

S1

S2

S3

S4

Figure 4.5: Overview of steps 3 and 4 of the construction.

3. Place every vertex of G′′(F) on the integer grid Z2 and route graph edges along edges
of the grid ({(x, y), (x+ 1, y)} or {(x, y), (x, y + 1)}). Make sure that all vertices keep
a minimum Euclidean distance from each other, so that all edges connecting clause
vertices to a variable cycle are at least 4 grid squares apart. (See the left image of
figure 4.5.) Later on, pairs of vectors that will be the elements of the database are
derived from the grid points used for this embedding.

– 38 –

4 Complexity Results

v11

v21
v31

S1

Figure 4.6: Step 4 of the construction around the previous position of vertex v1. Note that
non-adjacent points p, p′ ∈ Pi on a circuit Si keep a minimum squared distance of at least
δ(p, p′)2 = 2 to each other.

c1
c1

α

α

α

Figure 4.7: Step 4 of the construction around vertex c1. After this step every clause vertex
is in squared distance of α to each of its variable circuits. Note that any two points p ∈ Pi,
p′ ∈ Pj of different circuits Si 6= Sj keep a minimum squared distance of at least δ(p, p′)2 = 2

to each other.

– 39 –

4 Complexity Results

4. Replace the embedding of an edge between a variable vertex vκi and a clause vertex cj
by a pair of parallel rectilinear paths separated by two grid squares. On the variable
vertex end, connect one path with the edge to vκ−1

i and the other path with the edge
to vκ+1

i , while keeping a minimum squared distance of 2 between any two points on
separate paths. (See figure 4.6)
At the end of the clause vertex, stop at distance 3 from cj and connect both paths by a

straight line to form a continuous circuit Si for every variable. Move every clause vertex
cj (the white dot in figure 4.7) to the center of the north-west grid square touching it
(the black dot). Extend all variable circuits Si aiming at a clause vertex cj so that the
squared Euclidean distance between Si and cj is exactly α := (5/2)2. Obviously every
circuit consists of an even number of grid edges. (See the right image of figure 4.5 for
an overview and figure 4.6 and figure 4.7 for details at variable and clause vertices.)

5. For the next step the following definition is needed.

Definition 4.8.
Let Pi be the set of all grid points on a circuit Si. Further, let P =

⋃
i∈{1,...,n′} Pi.

Two elements p, p′ ∈ P are adjacent iff both lie on the same circuit Si and are adjacent
in a circular ordering defined on Pi.

Fact 4.9.
The following properties are a result of construction steps 1–4.

5.1 |Pi| is even for every i.
5.2 For every p 6= p′ ∈ P it holds δ(p, p′)2 ≥ 1.
5.3 δ(p, p′)2 = 1 iff p and p′ are adjacent.
5.4 δ(p, p′)2 ≥ 2 iff p and p′ are not adjacent.

There are two possible perfect matchings of the nodes p ∈ Pi on any circuit Si. Fix
one of them and call it true matching from now on (the other one is subsequently called
false matching). A clause vertex cj belonging to a clause containing a variable vi is
either closer to a true-matching edge or a false-matching edge of the variable circuit Si.
If cj contains vi in positive form, and cj is closer to a true matching edge of Si, nothing
needs to be changed. This holds analogously for negated variable and false matching
edge. If, however, a matching is not according to the sign of a variable in a clause, the
variable circuit is modified near the clause vertex, to correct this (see figure 4.8 and
figure 4.9). The sets Pi are adapted in this case to include the 4 non-grid points that
are now part of Si, the results of fact 4.9 are, however, not affected.

6. To conclude the construction, database elements are created out of the resulting struc-
ture: To each p ∈ P we assign M = 2 database elements xp, x̃p whose attributes match
the position of p.1 To a clause vertex cj a single database element xcj is assigned anal-
ogously. Let ` := |P |

2 be half the number of circuit points. The cost threshold is set to
γ := `+ 4

5 · αm.

As stated in the construction, the squared distance between a circuit and a clause vertex
is α = (5/2)2. The squared distance between a clause vertex and both endpoints of an edge

1 We can avoid having identical database elements by separating xp and x̃p by a tiny amount ε.

– 40 –

4 Complexity Results

c1

S1

S2

S3

c1

S1

S2

S3

Figure 4.8: Step 5 of the construction around vertex c1. Edges of true matchings are
highlighted in blue. Note that the circuit S1 has to be modified near c1 because v1 is in
negative form in c1 and c1 is initially closer to a true matching edge. One the left: before
the modification, on the right: after the modification.

S1

1

1

1

1

1

1

Figure 4.9: Step 5 of the construction around vertex c1, zoom-in on the end of circuit S1.
Note that the matching on S1 is unaffected in other regions and that the distances stated
in fact 4.9 still hold.

– 41 –

4 Complexity Results

of a circuit closest to it is α + 1/4, all other circuit points are at least at squared distance
α+ 9/4 from the clause vertex.

As there are N = O(n′ ·m) vertices in step 3 of the construction, a grid of side length N

suffices. Thus, the number of database elements n is trivially bounded by O(M · (n′)2 ·m2),
where M denotes the number of duplicates corresponding to a grid point (M = 2 in the
construction so far). This bound can be improved to O(M · n′ · m2). The grid size can
be further decreased by limiting the amount of variable vertices vκi for a variable vi by the
actual degree of vi in G′(F). All elements of X (F) can be specified by binary strings of
length bounded by O(log(n′ ·m)).

Lemma 4.10.
The formula F is satisfiable if and only if the associated database X(F) has a 4-clustering

of cost at most `+ 4
5αm.

Proof of Lemma 4.10. (⇒) If the formula is satisfiable, every clause element can be clus-
tered with pairs of circuit points nearby: Consider a satisfying assignment of F . If vi = 1,
cluster its circuit points according to the true matching and if vi = 0 cluster according to
the false matching. Because every clause cj is satisfied, we are able to fix one of its satisfying
variables vi. Following the construction we are now able to cluster the clause element of cj
with two matched circuit points on the circuit for vi which are at squared distance α+ 1/4

from the clause element of cj . The cost of such a cluster C is

cost(C) =
4 + 4 (α+ 1/4)

5
= 1 +

4

5
α.

The total cost of the clustering is the sum of costs for m clusters of size 5 containing a
clause element and the costs for `−m clusters of size 4 containing both elements from two
adjacent circuit points each. As the cost for each of these clusters is 1, the total cost is as
claimed. See the left image of figure 4.10.

(⇐) We now assume, F is not satisfiable. Hence a clustering as described above is not
possible. To see that no clustering in this scenario can have cost smaller than `+ 4

5αm, we
consider possible alternative clusterings in this case.

1. The clustering is according to one of the perfect matchings on the circuits:
At least one clause element cj has to be included in a cluster from which at least

one circuit point is not nearby i.e. in squared distance at least α+ 9/4 from cj . See the
right image of figure 4.10. The best clustering in this scenario has m− 1 clusters, each
including two adjacent circuit points and a nearby clause element. As shown above, the
cost of such a cluster is 1 + 4

5α. Further there are (`−m) standard clusters with cost
of 1 each. One cluster remains. It has to incorporate four elements from two circuit
points in squared distance 1 of each other and the clause element cj in squared distances
α+ 1/4 and (at least) α+ 9/4 from the circuit points. The cost of this cluster is

4 + 2 (α+ 1/4) + 2 (α+ 9/4)

5
=

9

5
+

4

5
α.

Altogether the total cost for such clustering is at least

(`−m) + (m− 1)

(
1 +

4

5
α

)
+

(
9

5
+

4

5
α

)
= `+

4

5
αm+

4

5
= γ +

4

5
.

– 42 –

4 Complexity Results

α α

Figure 4.10: On the left: An optimal clustering for a satisfiable formula F clusters all
clause vertices with the next closest pair of grid points (consisting of 4 elements altogether).
On the right: If F is not satisfiable, a matching-based clustering has to incorporate at
least one clause vertex in a cluster in greater distance.

α α

p

Figure 4.11: On the left: If F is not satisfiable but all clause vertices are clustered with
two circuit points nearby, the clustering on that circuit cannot be matching-based. On the
right: If F is not satisfiable, a clustering could violate the multiset-respecting property to
decrease cost. In this case one of the two elements at a grid point p is clustered with a
clause vertex, the other one is clustered with all elements of two adjacent circuit points.

– 43 –

4 Complexity Results

2. The clustering on the circuits is not according to one of the perfect matchings. However,
all clause elements are clustered with two circuit points nearby:
This case is shown as the left image of figure 4.11. We obtain cost m

(
1 + 4

5α
)
for all

clusters containing clause elements. To describe an optimal clustering for the remaining
circuit points we have to make some assumptions.

2.1 There is a variable assignment which satisfies all but one clause. (If this would
not be the case, more clusters must differ from the clustering in (⇒), so the cost
would rise.)

2.2 Clusters consisting of elements from three circuit points can always be situated so
that their outer elements are in squared distance of 2 to each other i.e. the cluster
is around a corner of a circuit. (If this would not be the case, clusters containing
elements from three circuit points would be more expensive.)

The cheapest way to cluster the remaining elements is to cluster as many clusters
as possible according to the matching belonging to the almost-satisfying variable as-
signment. We obtain a clustering which is according to the true-matching near clause
elements which rely on the variable to be true and according to the false-matching near
clause elements which rely on the variable to be false. For clause elements which are
covered by other variable circuits we stick to the most convenient matching.

Observation: The cheapest method to change between clusters which are according
to one matching to clusters which are according to the other matching is by inserting
a cluster containing all elements from three adjacent circuit points. Since we assumed
that there is an assignment which satisfies all but one clause, we only need two of these
clusters to meet our goals. The cost for a cluster containing all elements from three
circuit points (using assumption b) is

4 + 4 + 8

6
=

8

3
.

Together with the clusters containing clause elements and the (`− (m+2)) matching
clusters the total cost is at least

(`− (m+ 2)) +m

(
1 +

4

5
α

)
+ 2

(
8

3

)
= `+

4

5
αm+

10

3
= γ +

10

3
.

3. A clause element which cannot be clustered with nearby circuit points is clustered with
both elements of a nearby circuit point and an additional element in squared distance
α + 9/4. The other element from the split circuit point is incorporated in the adjacent
matching-based cluster on the circuit, resulting in a cluster of 5 elements. The rest is
according to the clustering in (⇒). See the right image of Figure 4.11.
The cost for the cluster containing a clause point and 1.5 circuit points is

2 + 2(α+ 1
4) + (α+ 9

4)

4
=

3

4
α+

19

16

and the cost for the cluster of 2.5 circuit points is

4 + 2 + 4

5
= 2.

– 44 –

4 Complexity Results

Hence, the total cost is

(`− (m+ 1)) + (m− 1) · (1 + 4

5
α) + (

3

4
α+

19

16
) + 2 = `+

4

5
αm+

19

16
− 1

20
α

= `+
4

5
αm+

7

8
= γ +

7

8
.

Correctness of theorem 4.6 for k = 4 and d = 2 follows directly from Lemma 4.10.
Hardness for d > 2 can simply be argued by introducing dummy-dimensions with only
constant attribute values in any but two dimensions. Hence d can be increased without
altering the complexity of the problem in any way.

Adaption to All Even k ≥ 4

In this section the construction is adapted to obtain problem instances for larger even values
of k. With this modification the correctness of theorem 4.6 for all d ≥ 2 and all even k ≥ 4

is shown. This modification changes two details from construction step 6: The number
of elements on each grid point of the circuits is set to M = k/2 and the cost threshold
to γ := ` · k4 + k

k+1αm. This generalization results in an upper bound for the number of
database elements of the form n < O(k · n′ ·m2). Following the same construction rules as
above, for a satisfiable formula F the optimal cost is

(`−m) · k
4
+m · (

k/2)2 + k · (α+ 1/4)

k + 1

= (`−m) · k
4
+m ·

(
k

4
+

kα

k + 1

)
= ` · k

4
+

k

k + 1
αm = γ.

To show correctness for a non-satisfiable formula F , cases 1, 2 and 3 of Lemma 4.10 need
to be generalized as well.

1. In the case of a clustering according to one of the perfect matchings on the circuits,
at least one clause element has to be clustered with k/2 elements in squared distance
(α+ 1/4) and k/2 elements in squared distance (α+ 9/4). The resulting cost is at least

(`−m) · k
4
+ (m− 1) ·

(
k

4
+

kα

k + 1

)
+ 1 ·

(
(k/2)2 + k/2(α+ 1/4) + k/2(α+ 9/4)

k + 1

)

= (`−m) · k
4
+ (m− 1) ·

(
k

4
+

kα

k + 1

)
+

(
k

4
+

k(α+ 1)

k + 1

)
= ` · k

4
+

k

k + 1
αm+

k

k + 1
= γ +

k

k + 1
.

– 45 –

4 Complexity Results

2. When all clause elements are clustered with two circuit points nearby, we need to change
the clustering on the circuits. As for k = 4, the optimal clustering on the circuits is
according to one of the perfect matchings, which is not achievable in this situation.
Generalizing the setup from the k = 4 case we obtain cost

(`− (m+ 2)) · k
4
+m ·

(
k

4
+

kα

k + 1

)
+ 2 ·

(
k2

3
2k

)
= ` · k

4
+

k

k + 1
αm+

5

6
k = γ +

5

6
k.

3. We now allow a clause element to be clustered with only k − 1 other elements. The
remaining element of a circuit point is clustered with all elements from the adjacent
matching-based cluster. Otherwise the clustering is matching-based. The cost for this
scenario is at least

(`− (m+ 1)) · k
4
+ (m− 1) ·

(
k

4
+

kα

k + 1

)
+

(k2)
2 + 3

2k

k + 1
+

k
2 · (

k
2 − 1) + k

2 · (α+ 1
4) + (k2 − 1) · (α+ 9

4)

k

=
k3`+ k2`+ 4αk2m+ 8k2 − 4α− 6k − 9

4k(k + 1)

which is greater than γ for 1
8(3 +

√
281) < 3 ≤ k.

As these three cases still represent the cheapest k-member clusterings when F is not satis-
fiable, hardness for all even k ≥ 4 is proven.

Adaption to All Odd k ≥ 5

The construction is further adaptable to fit odd values of k ≥ 5. Instead of M = k/2

elements on each grid point of a circuit, now k+1
2 and k−1

2 elements are placed on adjacent
grid points on circuits. This is possible because there is an even number of grid points on
any circuit. The cost threshold is set to

γ =
k3`+ k2`+ 4αk2m− k`− `+m

4k(k + 1)

which is precisely the cost of a matching based clustering for a satisfiable formula F :

(`−m) · k
2 − 1

4k
+m · k

2 + 4αk + k − 1

4(k + 1)

=
k3`+ k2`+ 4αk2m− k`− `+m

4k(k + 1)

Again, we need to consider the cost of clusterings for unsatisfiable formulae F . As
before in cases 1 and 2 the cost cannot be smaller than γ when clustering a clause vertex
with a far-away circuit point or changing the matching based clustering on the circuits.
Further, for our choice of α, non-multiset-respecting clusterings cannot undercut the cost
of satisfiable clusterings either.

– 46 –

4 Complexity Results

1. Cluster according to circuit matchings. At least one clause element causes increased
clustering cost (see the right image of figure 4.10). The cost is at least

(`−m) · k
2 − 1

4k
+ (m− 1) · k

2 + 4αk + k − 1

4(k + 1)
+

k2 + 4αk + 5k − 5

4(k + 1)

=
k3`+ k2`+ 4αk2m+ 4k2 − k`− 4k − `+m

4k(k + 1)
.

This term is greater than γ for k > 1.
2. Cluster all clause elements with elements from two nearby circuit points (see the left

image of figure 4.11). The cost is at least

(`− (m+ 2)) · k
2 − 1

4k
+m · k

2 + 4αk + k − 1

4(k + 1)
+ 2 · k(2k − 2)

3k − 1
.

This term is greater than γ for 3k2 + 1 > 4k, i.e. k > 1.
3. Cluster clause elements for non-satisfied clauses in a non-multiset-respecting way as

depicted in the right image of figure 4.11. The cost is at least

(`− (m+ 1)) · k
2 − 1

4k
+ (m− 1) · k

2 + 4αk + k − 1

4(k + 1)

+
k2 + 4αk + 3k − 4α− 16

4k
+

k2 + 6k − 3

4(k + 1)

=
k3`+ k2`+ 4αk2m+ 8k2 − 4α− k`− 14k − `+m− 15

4k(k + 1)
.

This term is greater than γ for 4α + 14k + 15 < 8k2, i.e. for our choice of α = 6.25

from the original construction: k ≥ 4.

Summary

The construction and its adaptions cover all cases of fixed values of k ≥ 4 and d ≥ 2. Hence
for a full proof of theorem 4.6 only the case k = 3 is missing. The reduction cannot easily
be adapted to cover this case, as for k = 3 a non-multiset-respecting clustering can decrease
cost of databases created from non-satisfiable formulae below that of satisfiable ones (see
case 3 from the adaption to odd values of k). However, combining the result from Oganian
et al. with the reduction and its adaptions shown in this section, theorem 4.6 is proven for
all cases.

4.3
Other Complexity Results and Open Problems

In the previous section we discussed complexity of microaggregation for d ≥ 2 and k ≤ 3.
In this section we take a look at the remaining cases as well as other complexity results
regarding microaggregation.

– 47 –

4 Complexity Results

k = 2

An obvious open question is the case k = 2. Our construction from section 4.2 cannot be
extended to show hardness for k = 2. For k = 2 a cost reduction for the resulting database
X(F) is possible by clustering clause elements with only a single grid point, independently
of the matching on circuits. A database created out of a non-satisfiable formula F therefore
can be clustered with lower or equal cost compared to a matching based clustering for
satisfiable F . For a strict 2-member clustering for which every cluster has to be of size
exactly 2, the problem corresponds to finding a minimum weighted matching, which can
be solved in time O(n2.5) [55]. However, an optimal 2-member-clustering may also have
clusters of size 3, thus this problem is more general than the matching problem.

d = 1

In 2003 Hansen and Mukherjee showed that optimal k-anonymous microaggregation can be
solved in polynomial time for all fixed k and d = 1 [31]. Their proof is constructive and
uses a shortest-path based algorithm finding an optimal solution in O(max(n logn, nk2)).

A one-dimensional database X ′ is sorted in ascending order, resulting in a sorted
database X = (x1, x2, . . . , xn). Next, a weighted directed graph G(X) = (V,E,w) is
constructed. The set of nodes V = {0, 1, 2, . . . , n} contains the indices of elements in X

as well as a node with label 0, acting as the source of paths in later steps. Edges ex-
ist between any two nodes (i, j) if xj is between k and 2k elements after xi in X, i.e.
E = {(i, j) | i+ k ≤ j < i+ 2k}.

A corresponding cluster C(i,j) for an edge (i, j) is defined as the cluster of elements
xi+1, . . . , xj . The weight of an edge (i, j) is defined as the cost of its corresponding cluster,
i.e. w(i, j) = cost(C(i,j)) for all (i, j) ∈ E. A path P = (e1, . . . , em) on G(X) is a sequence
of edges e` ∈ E such that the second node of an edge e` = (va, vb) is always the first node
of the next edge e`+1 = (vb, vc). No edge or node can occur twice on P . The length of a
path P on G(X) is defined as the sum of weights of its edges.

A corresponding clustering C(P) of a path P from node 0 to node n is the union of
all clusters corresponding to edges on the path. An optimal solution for the k-anonymous
microaggregation problem on X ′ is found by computing a shortest path in G(X) from node
0 to node n. The shortest path P in G(X) defines a clustering C(P) which is argued to be
optimal. The following observations prove correctness of the algorithm:

– Every cluster in an optimal clustering corresponds to an edge of G(X).
– Every optimal clustering corresponds to a path from node 0 to node n in G(X).
– The length of a path from node 0 to node n is the distortion cost of the corresponding

clustering.

Sorting the database takes time O(n logn), graph construction takes time O(nk2) in-
cluding weight computation and finding the shortest path takes time O(nk) using the A∗

algorithm. In total, the time complexity is O(max(n logn, nk2)).

From k to k′

Another, more practical question is whether an optimal k-member clustering can be adapted
to optimal 2k-member or k/2-member clusterings by merging or splitting clusters, respec-

– 48 –

4 Complexity Results

tively. As figure 4.12 shows, instances, for which this is not possible, exist. There are opti-
mal 2-member clusterings which cannot be merged into optimal 4-member clusterings and
analogously there are 4-member clusterings which cannot be split into optimal 2-member
clusterings.

{x1, x2}

x3

x4

x5

x6

{x7, x8}

a2a

a

Cj
Cluster
C1 ∈ Cj

Cluster
C2 ∈ Cj

Cluster
C3 ∈ Cj

Cluster
C4 ∈ Cj

cost(Cj)

C1 {x1, x2} {x3, x5} {x4, x6} {x7, x8} 0 + a2
/2+ a2

/2+ 0 = a2

C2 {x1, x2, x3, x4} {x5, x6, x7, x8} {} {} 2 · 24a2
/4 = 12a2

C3 {x1, x2, x3, x5} {x4, x6, x7, x8} {} {} 2 · 31a2
/4 = 15.5a2

C4 {x1, x2, x7, x8} {x3, x4, x5, x6} {} {} 100a2
/4 + 20a2

/4 = 30a2

Figure 4.12: Visualization of a database X ∈ X8×2 for which C1 is an optimal 2-member
clustering and C2 is an optimal 4-member clustering. C3 and C4 are the only (somewhat
reasonable) 4-member clusterings that can be created by merging existing clusters from C1.
However, it can be observed that neither C3 nor C4 can achieve optimal cost. Further, by
splitting clusters from C2, no optimal 2-member clustering can be created. By adjusting the
scaling factor a, additional cost needed for applying the merging / splitting approach can
be shown to have no upper bound.

k = bn/2c

For the case k = bn2 c one might ask, whether an optimal 2-means clustering can be adapted
to obtain optimal k-member clusterings. As figure 4.13 shows, an optimal 2-means clustering
cannot always be adapted to obtain an optimal bn/2c-member clustering just by transferring
elements from the bigger to the smaller cluster. Instead, both clusters might need to swap
elements, which nullifies any potential advantage of a k-means clustering as a preprocessing
step of a k-anonymous microaggregation algorithm guaranteeing optimality.

Another idea might be to divide a database by a hyperplane through its geometrical
representation, as the problem would then be reduced to the problem of finding such optimal

– 49 –

4 Complexity Results

hyperplane. However, as figure 4.3 shows, convex hulls of optimal clusters might not be
disjoint. i.e. a hyperplane might not be sufficient to separate two optimal clusters.

x5 x6

{x1, x2} {x3, x4}

a

2a Cj
Cluster
C1 ∈ Cj

Cluster
C2 ∈ Cj

cost(Cj)

C1 {x1, x2, x3, x4} {x5, x6} 4a2
/4 + a2

/2 = 1.5a2

C2 {x1, x2, x5} {x3, x4, x6} 2 · 8a2
/3 = 16a2

/3

Figure 4.13: Visualization of a database X ∈ X6×2 for which C1 is an optimal 2-means
clustering and C2 is an optimal 3-member clustering. It can be observed, that C1 cannot be
transformed into an optimal 3-member clustering by moving elements from a bigger to a
smaller cluster.

4.4
Related Results

The high complexity of k-anonymous clustering is not limited to microaggregation algo-
rithms using distortion cost as optimization goal. In fact, for a number of related problems,
hardness results are known. In this section we take a closer look at some of the most
cited complexity results stating hardness of achieving k-anonymity with respect to several
optimization goals and anonymization strategies.

Complexity of Suppression and Generalization

In 2004, Meyerson and Williams analyzed the complexity of k-anonymous suppressors on
databases potentially including non-numerical or duplicate elements [54]. Databases and
k-anonymity are defined analogously to definition 3.3 and definition 3.4. A suppressor is
allowed to replace any element attributes by empty strings ε. A suppressor does not rely
on clustering and is hence conceptually different to a local recoding scheme. In fact, a
suppressor achieving k-anonymity might not be representable by a k-member clustering
algorithm, as suppression happens on an individual basis. The authors prove NP-hardness
for two variants of suppressors and the utility goal of suppressing as few attribute values as
possible.

Definition 4.11 (Decisional k-Anonymous Suppressor Problem).
Given a database X ∈ Dn×d and a number γ ∈ N, the decisional k-anonymous suppressor

– 50 –

4 Complexity Results

problem is to determine whether X can be made k-anonymous by suppressing at most γ

attribute values.

Theorem 4.12 ([54]).
The decisional k-anonymous suppressor problem is NP-hard for fixed k ≥ 3 and variable
d.

Proof sketch. The k-dimensional perfect matching problem2 is reduced to the decisional k-
anonymous suppressor problem. Given a k-uniform hypergraph H = (V,E) with |V | = n

and |E| = d, a database X ∈ {0, 1}n×d of binary attributes is created. Every element xvi

of X corresponds to a node vi ∈ V and every attribute dimension corresponds to an edge
ej ∈ E. When vi ∈ ej , xejvi = 0, otherwise x

ej
vi = 1. When a perfect matching M ⊆ E in

H exists, a suppressor is able to achieve k-anonymity by suppressing every attribute value
except for those corresponding to a node’s matching edge. As a result, n(d − 1) attribute
values are suppressed and the result is k-anonymous due to the k-uniformity of H. However,
if no perfect matching exists, more suppressions are needed to achieve k-anonymity. Hence,
by deciding whether a database can be made k-anonymous by suppressing at most n(d−1)

attribute values, we are able to decide, whether a perfect matching on H exists and hence
are able to solve the k-dimensional perfect matching problem.

Definition 4.13 (Decisional k-Anonymous Attribute Suppressor Problem).
Given a database X ∈ Dn×d and a number γ ∈ N, the decisional k-anonymous attribute

suppressor problem is to determine whether X can be made k-anonymous by suppressing
at most γ attribute dimensions in every element of X.

Theorem 4.14 ([54]).
The decisional k-anonymous attribute suppressor problem is NP-hard for fixed k ≥ 3 and

variable d.

Proof sketch. The proof is similar to that of theorem 4.12. Given a k-uniform hypergraph
H = (V,E), a database X is created in the same way as before. As attributes correspond to
edges, the suppression of an attribute j in every element results in a database corresponding
to a hypergraph H ′ = (V,E′) for which E′ = E \ {ej}. When H has a perfect matching,
the removal of d − n/k attributes corresponding to the non-matchings edges results in a
k-anonymous database. However, if H does not have a perfect matching, more attributes
need to be suppressed.

Suppressing attributes or even whole dimensions of databases is a valid approach to
achieve k-anonymity. However, as discussed in section 3.2 allowing generalization according
to hierarchy trees offers a more fine-grained approach to suppress information. Further,
using the NCP or Total-IL allows a more detailed image of information loss, applying
generalization and suppression. Nevertheless, according to [75] and [12] as NCP and Total-
IL optimizing generalizations are generalized approaches of minimal suppression, these more
sophisticated approaches are NP-hard, as well.

2 Equivalent to exact cover by k-sets, NP-hard for k ≥ 3 [29]

– 51 –

4 Complexity Results

Complexity of Cluster Size

In 2006, LeFevre et al. introduced the recoding scheme Mondrian producing k-anonymous
clusterings with good quality according to CDM and CAV G [37]. Mondrian is able to operate
as a global or local recoding scheme. By using a reduction from the partition problem, NP-
compleness of determining the existence of global recoding schemes given a fixed CAV G

bound is proven. As stated by the authors, this result is adaptable to CDM as well.

Definition 4.15 (Decisional k-Anonymous Cluster Size Problem).
Given a database X ∈ Dn×d and a number γ ∈ N, the decisional k-anonymous cluster size

problem is to determine whether X can be made k-anonymous by using a global recoding
scheme with a normalized average equivalence class size CAV G ≤ γ.

Theorem 4.16 ([37]).
The decisional k-anonymous cluster size problem is NP-complete for variable d and k.

Proof sketch. Given an instance of the partition problem, i.e. a set A of d positive in-
tegers {a1, . . . , ad}, create a database X with elements x ∈ {0, 1}d such that for every
element ai ∈ A there exist ai database elements x = (x1, . . . , x

i−1, xi, xi+1, . . . , xd) =

(0, . . . , 0, 1, 0, . . . , 0) consisting of a 1 in dimension i and 0s in every other dimension. Hence,
X ∈ {0, 1}∑n

i=1 ai×n. Further, let k =
∑n

i=1 ai

2 and γ = 1.
When A is a positive instance of partition, there exists a set A′ ⊆ A such that∑

ai∈A′ ai =
∑

aj∈A\A′ aj . Clustering all database elements x created from elements a ∈ A′

in a cluster C1 and all other database elements in a cluster C2 results in a multiset-respecting
k-member clustering with cluster sizes |C1| = |C2| = k and hence CAV G = 1. If, however,
A is a negative partition instance, any multiset-respecting k-member clustering of X must
result in a single cluster containing all database elements, so CAV G = 2. This concludes
the reduction and implies NP-hardness.

For membership in NP simply observe polynomial-time verifiability of a solution can-
didate to the decisional k-anonymous cluster size problem.

Of course, the hardness result is only applicable for global recoding schemes, as the
reduction requires a restriction to multiset-respecting clusterings. Deciding whether a local
recoding scheme exists with a given CAV G or CDM bound is trivial, as no restriction on
which elements can or cannot be clustered together is made. Hence, hardness originates
from a limitation to multiset-respectiveness. In comparison, microaggregation is NP-hard
regardless of such restriction, as discussed above.

– 52 –

5

Maximum Distance Heuristics

Univariate k-anonymous microaggregation can be solved efficiently in O(max(n logn, nk2))
time as shown in section 4.3. However, multidimensional k-anonymous microaggregation is
NP-hard for k ≥ 3 and d ≥ 2. Early microaggregation heuristics used univariate approaches
to solve the microaggregation problem for higher dimensional data as well. By assuming
the dimensions are statistically independent, d instances of univariate microaggregation ap-
proaches can anonymize d-dimensional databases (see e.g. [14]). As a result one obtains
d univariate, k-anonymous clusterings. Obviously, this approach has its limits, as in most
cases multidimensional data is compiled because of potential dependencies between attribute
dimensions. Hence, utility of the anonymized data for statistical analysis is severely im-
paired. Another primitive method proposed in [51] is to project multidimensional data onto
a single dimension by using principal component analysis or other projection techniques.
While this procedure might preserve some global dependencies between attributes, diverse
local clusters with few elements can hardly be preserved by such representation.

In this chapter we take a closer look at a class of multivariate microaggregation heuristics
called maximum distance heuristics. Before going into more detail, some notations need
to be introduced. For the clustering approaches introduced in this chapter, the order of
elements inside a database X or a cluster C is irrelevant. To simplify notations we consider
databases and clusters as sets of unique elements instead of sequences and index sets. The
usual set operations (∈,⊆, \,∪,∩) are used to indicate inclusion or exclusion of elements in
clusters. Keep in mind that databases including several identical-valued elements are still
allowed and all properties of clusters defined in chapter 2 are still valid, as the simplified
notation can easily be adapted to match the original one defined e.g. in definitions 2.1
and 2.9.

Definition 5.1 (Neighborhood and Closest Clusters).
Let X be a database and C a (potentially incomplete) clustering of X.

– The nearest neighbor of an element x ∈ X according to δ(·, ·)2 within a set of elements
S is noted ν(x, S).

– The `-neighborhood of an element x ∈ X within a set of elements S, noted N`(x, S)

is a cluster of size ` + 1 including x and its ` nearest-neighbors within S according to
δ(·, ·)2.

– An unassigned element is an element x ∈ X which has not jet been assigned to a cluster
C ∈ C during a clustering process. The set of unassigned elements U contains all such
elements.

– 53 –

5 Maximum Distance Heuristics

– The closest cluster of an element x ∈ X is the cluster

clos(x) := argmin
C∈C

δ(x, c(C))2.

In 1998 Mateo-Sanz and Domingo-Ferrer introduced the first truly multivariate mi-
croaggregation heuristic called MD (Maximum Distance) [51, 18]. Instead of dividing the
problem into independent subproblems or projecting a d-dimensional database onto a single
dimension, multidimensional data is handled in all dimensions simultaneously.

The algorithmic idea of MD is quite simple: When there are at least 2k elements, find
the two elements xr and xs in greatest distance to each other and build clusters Cr and Cs

out of xr and xs by clustering them with their respective k − 1 nearest neighbors. Repeat
until there are less than 2k elements. If between k and 2k−1 elements are remaining, create
an additional cluster with all remaining elements, otherwise assign all remaining elements
x to their closest existing cluster clos(x). How clos(x) is computed exactly is not disclosed
by the authors of MD. A reasonable choice from a complexity point of view would be to
look for the minimum distance between the element and the cluster centroids, as defined in
definition 5.1. For an analysis of alternative methods of computing clos(x) see section 5.1.
For a pseudocode of MD see algorithm 1.

Algorithm 1: MD [51]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let U ← X

2 Let C ← ∅
3 repeat
4 Let xr, xs ∈ U be the unassigned elements in greatest distance to each other
5 C ← C ∪ {Nk−1(xr, U)}
6 U ← U \Nk−1(xr, U)

7 C ← C ∪ {Nk−1(xs, U)}
8 U ← U \Nk−1(xs, U)

9 until |U | < 2k

10 if |U | ≥ k then
11 C ← C ∪ {U}
12 else
13 foreach x ∈ U do
14 clos(x)← clos(x) ∪ {x}

Any cluster in the resulting clustering has between k and 2k − 1 elements. Further,
for large databases most clusters would be of size exactly k, as the algorithm performs
a strict k-member clustering up until the last 2k − 1 elements are handled. However, as
several elements might be added to their closest clusters in the last step, the result might
contain several clusters of more than k elements, which prevents the algorithm from being
categorized as fixed-size. As the original paper lacks a detailed time complexity analysis,
the complexity of MD is evaluated in the proof of theorem 5.2.

– 54 –

5 Maximum Distance Heuristics

Theorem 5.2.
The worst case time complexity of algorithm 1 is O(n2 ·max{n/k, d}).

Proof. As distance computations between two elements take O(d) and the distances between
any two elements need to be computed, the computational time complexity of MD is at least
O(n2d). Additional time is needed, because step 4 to 8 are executed O(n/k) times. A naive
implementation of step 4 would sort all distances in the beginning and remove distances
between assigned elements from the sorted list each time clusters are formed. Sorting takes
time O(n2 logn2). However, removing assigned elements from the sorted list takes time
O(n2) each time clusters are formed. This results in an additional time complexity of
O(n2 logn2) + O(n3/k). Without sorting, a linear search through the distance matrix is
needed in each execution of step 4, which results in a time complexity of O(n3/k) and shows
that sorting is not beneficial. Hence, a total time complexity of MD ofO(n2·max{n/k, d}) can
be achieved. As for all common microaggregation algorithms, O(nd) is needed to compute
cluster centroids and create an anonymized database out of a k-member clustering. As this
process is the same for all microaggregation algorithms and additional time complexity is
majorized by the clustering parts of all currently known multidimensional microaggregation
heuristics, this part of the time complexity of microaggregation heuristics is omitted in time
complexity analysis from now on. Space complexity of MD is bounded by O(n2) as a matrix
of distances needs to be stored in order to avoid recalculation of distances.

As MD and other heuristics presented in this chapter are not known to achieve any
approximation guarantees, their performance is measured in terms of information loss and
runtime on several real and synthetic benchmark databases. In accordance with fact 2.24
information loss is reported in percentages, where 0% means no information loss and 100%
a worst case information loss, equal to that of an n-member clustering. See section 5.2 for
detailed information on hardware, software, databases and parameters used to conduct the
experiments presented in this chapter. Results of MD compared to other microaggregation
heuristics are presented in tables 5.3 to 5.6 as well as in appendix A.

5.1
Maximum Distance to Average Vector

Over the years, MD received several incremental updates, resulting in the algorithms MDAV
(Maximum Distance to Average Vector) [20], MDAV+ [61, 70], V-MDAV [61], and MDAV∗ [70]
which achieved competitive information losses and time complexities compared to other
microaggregation algorithms of their time. As all these algorithms are based on MD and use
distance computations to find cluster-generating elements, we refer to them as the class of
maximum distance heuristics from now on.

MDAV

A core idea behind MD is to create clusters in greatest distance to each other. This technique
is inspired by the one-dimensional clustering algorithm k-ward ([51]) which performs well,
because outliers are handled first. As outliers need to be included in some clusters, it might

– 55 –

5 Maximum Distance Heuristics

be better to include them right away to avoid a large sparely populated (and hard to cluster)
domain of elements later on. However, selecting the two elements with maximum distance
between each other is computationally expensive and ineffective when looking for outliers
in more than one dimension.

MDAV is an evolutionary improvement to MD reducing time complexity by using a different
strategy to find outliers. As the name suggests, in each round MDAV calculates the centroid
c(U) of all remaining unassigned elements x ∈ U and selects the element xr in greatest
distance to c(U). As for MD, MDAV chooses xs as the element in greatest distance to xr and
clusters xr as well as xs with their k − 1 nearest neighbors. Another difference between MD
and MDAV is the handling of the last elements. MDAV stops its initial behavior when less than
3k elements remain unassigned. If there are between 3k − 1 and 2k elements left, a global
centroid c and most distant element xr are computed a last time. Now, two clusters are
created: One including xr and its k − 1 nearest neighbors and another one with all other
elements remaining. However, if there are less than 2k elements left after the main loop
of MDAV, all remaining elements are clustered together in a single new cluster. In contrast
to MD, the resulting clustering is fixed-size, as only one cluster might have more than k

elements. Anonymity of the result is guaranteed, as after the main loop not less than k

elements remain. A pseudocode of MDAV is given in algorithm 2.

Algorithm 2: MDAV [20]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let U ← X

2 Let C ← ∅
3 repeat
4 Let c(U) be the centroid of U
5 Let xr ← argmaxx∈U δ(x, c(U))2

6 Let xs ← argmaxx∈U δ(x, xr)
2

7 C ← C ∪ {Nk−1(xr, U)}
8 U ← U \Nk−1(xr, U)

9 C ← C ∪ {Nk−1(xs, U)}
10 U ← U \Nk−1(xs, U)

11 until |U | < 3k

12 if |U | ≥ 2k then
13 Let c(U) be the centroid of U
14 Let xr ← argmaxx∈U δ(x, c(U))2

15 C ← C ∪ {Nk−1(xr, U)}
16 U ← U \Nk−1(xr, U)

17 C = C ∪ {U}

An important improvement of MDAV compared to MD is its reduced time complexity. As
there is no need to find two elements with greatest distance to each other but only distances
of all elements to given vectors, not all distances between any two elements need to be
computed. In fact, less than O(n2/k) distance computations are needed.

– 56 –

5 Maximum Distance Heuristics

Theorem 5.3.
The worst case time complexity of algorithm 2 is O(n2/k d).

Proof. In the first round, O(nd) time is needed to compute the centroid of all elements.
Further, O(nd) time is sufficient to find xr and xs. By using the selection algorithm, O(nd)

is also enough time to find the k − 1 nearest neighbors to xr and xs. In each following
round the number of remaining elements is reduced by 2k. Hence less distances need to be
computed in later rounds. As there are O(n/k) rounds the total time complexity of MDAV
is O(n2/k d).

As no distance matrix needs to be maintained, space complexity is trivially bounded
by O(nd), which is needed to store the original and anonymized database. As can be seen
in the experimental results presented in section 5.2, MDAV is faster and provides information
loss comparable to MD.

MDAV+

Another variation of MD is a nameless simplified version of MDAV used as a building block
for the V-MDAV algorithm by Solanas and Martínez-Ballesté in [61]. There are four main
differences to MDAV.

1. There is no xs element. In each round only one cluster is created around the element
xr in greatest distance to the global centroid.

2. The global centroid is not updated throughout the algorithm
3. The clustering loop is stopped when there are less than k elements, which are assigned

to their closest cluster.
4. All distances are computed and stored beforehand, as in MD.

My research in the context of the MDAV∗ algorithm published together with Rüdiger
Reischuk in [70] showed that the changes described in 1 to 3 deliver equivalent or slightly
lowered information losses while performing even faster than MDAV. Hence we introduced
the idea as a stand-alone algorithm called MDAV+.

Theorem 5.4.
The worst case time complexity of algorithm 3 is O(n2/k d).

Proof. Despite the claims made in [61], difference 4 does not lower time complexity of the
algorithm. As described above, only O(n2/k) distance computations are needed to find xr
and its k−1 nearest neighbors in O(n/k) clustering rounds. Hence, by computing distances
on the fly MDAV+ achieves the same time complexity of O(n2/k d) and space complexity of
O(nd) as MDAV.

In practice, MDAV+ is even faster than MDAV as the global centroid is not updated and
finding an xs element is more time consuming as finding another xr element, given that the
distances to the persistent global centroid are stored and sorted beforehand. MDAV+ is not
categorized as fixed-size, as like for MD, remaining elements are distributed among several
clusters. See section 5.2 for experimental results and algorithm 3 for a detailed description
of MDAV+.

– 57 –

5 Maximum Distance Heuristics

Algorithm 3: MDAV+ [61, 70]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let U ← X

2 Let C ← ∅
3 Let c(X) be the global centroid
4 repeat
5 Let xr ← argmaxx∈U δ(x, c(X))2

6 C ← C ∪ {Nk−1(xr, U)}
7 U ← U \Nk−1(xr, U)

8 until |U | < k

9 foreach x ∈ U do
10 clos(x)← clos(x) ∪ {x}

V-MDAV

The algorithm MDAV creates fixed-size k-member clusterings. Further, MD and MDAV+ assign
more than k elements to clusters only on the basis on handling remaining elements and not
as an integral part of the clustering process. The algorithm V-MDAV (Variable-sized MDAV)
proposed by Solanas and Martínez-Ballesté in [61] combines variable-sized clustering with
the maximum distance principle for the first time.

As in MDAV+, a persistant global centroid c(X) is used to find elements xr in greatest
distance to it. After xr is clustered with its k− 1 nearest neighbors, a process called extend
is used to decide whether additional unassigned elements should be clustered with xr. This
way, a cluster including xr may grow to up to 2k−1 elements before the process is stopped.
Informally, a cluster C is extended by the element xI ∈ U which is the unassigned element
closest to any element x ∈ C if and only if δ(x, xI)2 < γ ·δ(xI , xO)2 for the element xO ∈ U

being the unassigned element closest to xI . If xI is included, the process repeats, otherwise
it is halted. A pseudocode of V-MDAV is given as algorithm 4.

The gain factor γ dictates, how aggressively the extend process tries to include addi-
tional elements. Lets assume γ = 1. In this case xI is included in C if xI is strictly closer
to an element in C than to any unassigned neighbor. For γ < 1 the extension process is less
aggressive. To be included anyway, an element must be much closer to an element inside
C than to its closest unassigned neighbor. In an extreme case, for γ = 0 no extension is
possible at all. Hence for γ = 0, V-MDAV computes clusterings identical to those computed
by MDAV+. Analogously, for γ > 1 an element which is closer to its closest unassigned
neighbor than to an element in C might be included in C anyway.

To determine an optimal γ for a given database is an unsolved problem. Solanas and
Martínez-Ballesté proposed to use γ = 0.2 for so-called scattered databases and γ = 1.1 for
clustered databases. However, no criterion is disclosed on how to decide whether a database
is scattered or clustered.

Theorem 5.5.
The worst case time complexity of algorithm 4 is O(n2dk).

– 58 –

5 Maximum Distance Heuristics

Proof. The additional extension mechanism of V-MDAV comes at the cost of higher com-
putational complexity. Assume that distances are computed on-the-fly, as in our analysis
of MDAV+. It takes O(ndk) to find xI and xO as well as to decide whether to include xI
in a cluster C. As any cluster might be extended up to k − 1 times, the worst case time
complexity of the extension process is O(ndk2). Despite the extension there are still O(n/k)

clustering rounds V-MDAV uses. Hence, its total worst case time complexity is O(n2dk), a
noticeable slowdown compared to MDAV+.

Algorithm 4: V-MDAV [61]
input : database X and minimal cluster size k and gain factor γ
output: k-member clustering C = {C1, . . . , Cm}

1 Let U ← X

2 Let C ← ∅
3 Let c(X) be the global centroid
4 repeat
5 Let xr ← argmaxx∈U δ(x, c(X))2

6 Let C ← Nk−1(xr, U)

7 U ← U \ C
8 repeat
9 Let xI ← argminy∈U minx∈C δ(x, y)2

10 Let δI ← minx∈C δ(xI , x)
2

11 Let xO ← argminy∈U δ(xI , y)
2

12 Let δO ← δ(xI , xO)
2

13 if δI < γ · δO then
14 C ← C ∪ {xI}
15 U ← U \ {xI}
16 else
17 break

18 until |C| = 2k − 1

19 C ← C ∪ {C}
20 until |U | < k

21 foreach x ∈ U do
22 clos(x)← clos(x) ∪ {x}

Allowing clusters to have more than k elements is a natural way of improvement for
maximum distance heuristics. However, the implementation used in V-MDAV has some draw-
backs. Most importantly the greedy nature of the extend process used by V-MDAV ignores
the effect the inclusion of an additional element has on clusters to be created later. Even
though an element xI might be closer to the edge of a cluster than to its closet unassigned
neighbor xO, it might still be a bad idea to include xI because xO might need to substi-
tute xI by worse options, if it becomes assigned elsewhere. Another major problem is that
V-MDAV is not able to detect natural clusters of size less than k. As shown in figure 5.1,
the existence of a close neighbor to xI does not guarantee that xI can be clustered with

– 59 –

5 Maximum Distance Heuristics

mostly close neighbors. In an extreme case, xI and xO might be close to each other and
to C but isolated from other elements. Nevertheless, V-MDAV decides to include neither xI
nor xO given that XI and xO are closer to each other than to the cluster. Some minor
disadvantages, namely increased time complexity and the need to find a good parameter
γ further hinder the applicability of V-MDAV. More details on parameter influence, time
consumption and information loss of V-MDAV are given in section 5.2.

MDAV*

In 2018 together with Rüdiger Reischuk I proposed the algorithm MDAV∗ [70] as a way to to
mitigate the deficiencies of V-MDAV discussed above. As V-MDAV, MDAV∗ builds upon MDAV+

and adds a mechanism to extend clusters beyond the minimum threshold of k elements. The
main novelty of the heuristic MDAV∗ is to take into account the effects on nearby elements
when the extension of a cluster has to be decided and to handle cluster extension before
creating a new cluster instead of after the creation. When assigning elements to existing
clusters MDAV∗ considers the additional cost per element (marginal cost) a decision would
cause and greedily selects an optimal one.

After the choice of a new cluster origin xr ∈ U , MDAV∗ considers two options. The first
one is to build a new cluster Nk−1(xr, U) as usual. The second one is to extend the cluster
clos(xr) by xr in which case the cluster Nk−1(xr, U) cannot be built. Instead, the neighbors
of xr have to be assigned differently. For this, we take the nearest neighbor ν(xr, U) of xr
and consider establishing a new cluster around it. The underlying decision rule considers
the marginal cost in both cases and chooses the option of lower cost. If marginal cost is
equal, a new cluster is created. Still, this is only an estimate of the best possible usage of
xr because we do not know whether ν(xr, U) is ever chosen as the origin of a new cluster.
For the same reason the cluster around ν(xr, U) is not actually created at this time, even
if clos(xr) is extended by xr.

The cost divided by the number of elements k for creating a new cluster Nk−1(xr, U)

out of the element xr is

costN (xr) :=
cost(Nk−1(xr, U))

k

while the cost per element of extending the cluster clos(xr) by xr and establishing a new
cluster around ν(xr, U) (now assigning k + 1 elements) is

costE(xr) :=
cost(clos(xr) ∪ xr)− cost(clos(xr)) + cost(Nk−1(ν(xr, U), U \ {xr}))

k + 1
.

When there are exactly k elements left, costE(xr) cannot be computed. In this case
costE(xr) is thought to be infinity so a new cluster Nk−1(xr, U) is created. A parame-
ter γ is not used by MDAV∗. A complete description of MDAV∗ is included as algorithm 5.

Theorem 5.6.
The worst case time complexity of algorithm 5 is O(n2 d).

Proof. As before, closest clusters and neighborhoods can be computed in time O(nd).
Hence, a single execution of the clustering loop of MDAV∗ takes O(nd), just like MDAV+.

– 60 –

5 Maximum Distance Heuristics

Algorithm 5: MDAV∗ [70]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let U ← X

2 Let C ← ∅
3 Let c(X) be the global centroid
4 repeat
5 Let xr ← argmaxx∈U δ(x, c(X))2

6 Calculate costN (xr)

7 Calculate costE(xr)
8 if costE(xr) < costN (xr) then
9 clos(xr)← clos(xr) ∪ {xr}

10 U ← U \ {xr}
11 else
12 C ← C ∪ {Nk−1(xr, U)}
13 U ← U \Nk−1(xr, U)

14 until |U | < k

15 foreach x ∈ U do
16 clos(x)← clos(x) ∪ {x}

However, in contrast to MDAV+, we cannot guarantee a worst case limit of O(n/k) clustering
rounds, as the inclusion of an xr-element into an existing cluster reduces the size of U by
one element only. Thus, there might be up to O(n) clustering rounds and worst case time
complexity of MDAV∗ consequently is O(n2 d).

The example in figure 5.1 shows the difference in clustering behavior between V-MDAV
and MDAV∗. Both algorithms create the first cluster out of the elements x9 to x11 as x11
has maximum distance to the global centroid c(X) = 34. Next, x1 is chosen as xr-element.
In V-MDAV C2 is created out of x1 to x3. It is not extended by x4, as it has x5 as a close
neighbor for which δI ≥ γ · δO for all γ ≤ 4. MDAV∗ on the other hand does include x4 in
C2. At first, C2 is created out of x1 to x3. Next x4 is chosen as xr-element and marginal
costs for extension of C2 and creating a new cluster are evaluated. As costN (x4) ≈ 40.6

and costE(x4) ≈ 32.19, C2 is extended by x4. Also x5 is included in C2, as it becomes xr
element next, costN (x5) ≈ 40.6 and costE(x5) ≈ 2.6. As a result, in this scenario the total
clustering cost is significantly lower for MDAV∗.

Beyond MDAV*

Since the original publication in 2018 I have designed and tested several yet unpublished
improvements to MDAV∗ which are able to further lower information loss, as experimental
data provided in section 5.2 shows. For the purpose of this dissertation this adapted MDAV∗

heuristic is called MDAV∗
γ .

The first improvement is the re-introduction of a gain factor γ to adjust aggressiveness

– 61 –

5 Maximum Distance Heuristics

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

0

1

2

0 1 2 3 4 5 6 19 20 21 98 99 100

C2 C3 C1

(a) Clustering C1 by V-MDAV

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

0

1

2

0 1 2 3 4 5 6 19 20 21 98 99 100

C2 C3 C1

(b) Clustering C2 by MDAV∗

Figure 5.1: Example database X ∈ X11×2 in which V-MDAV clusters worse than MDAV∗,
because for all γ ≤ 4 V-MDAV does not detect that x4 should be included in C2. The global
centroid is c(X) = 34 and costs are cost(C1) = 258.8, cost(C2) = 21.2.

of extension for different databases. Like for V-MDAV a gain factor of γ = 0 causes the
algorithm to behave like MDAV+, whereas for γ = 1 the algorithm behaves like MDAV∗.
Again, values in between or above 1 are possible as well.

A second improvement made in cooperation with Mustafa Sahin added another exten-
sion criterion, which allows to extend a cluster C by an element xr even if ν(xr, U) cannot
be clustered cost effectively without xr. The additional criterion checks whether marginal
cost of xr and ν(xr) when clustered with C are lower than the marginal cost of elements in
the original cluster C:

costE2(xr) :=
cost(clos(xr) ∪ {xr, ν(xr, U)})− cost(clos(xr))

2

This check is applied when the extension rule of MDAV∗ opts for the creation of a new cluster
and is especially beneficial in situations in which either both xr and ν(xr, U) or none of them
should be included in C to minimize cost. As before, when there are exactly k elements
unassigned at the time of choosing xr, a new cluster will be created. Note that even in the
case costE2(xr) < costN (xr) the cluster clos(xr) is extended by xr only. This approach is
aimed at considering uncertainty about future clusters. Not including ν(xr, U) right away
allows it to be clustered somewhere else, when it is indeed not chosen as a new xr element
later on. However, if it is chosen as xr element, a new decision with more accurate data
can be done. In general, it is save to assume that delaying any extension decisions as long
as possible is safer, as these decisions relay on assumptions on the future clustering process,
which might not be accurate.

Another design decision is the application of the gain factor only for the original exten-
sion check. As the original and new extension check consider different scenarios, different

– 62 –

5 Maximum Distance Heuristics

gain factors will be optimal for each of them on a given database. However, introducing
a second gain factor γ′ would increase the amount of work to be done to tune parameters
disproportionately. Hence, I opted to omit a second gain factor altogether.

There is no difference in time or space complexity between MDAV∗ and MDAV∗
γ besides

the extra time needed to find a suitable γ for the database given. A pseudocode of MDAV∗
γ

is given as algorithm 6.

Algorithm 6: MDAV∗
γ

input : database X and minimal cluster size k and gain factor γ
output: k-member clustering C = {C1, . . . , Cm}

1 Let U ← X

2 Let C ← ∅
3 Let c(X) be the global centroid
4 repeat
5 Let xr ← argmaxx∈U δ(x, c(X))2

6 Calculate costN (xr)

7 Calculate costE(xr)
8 Calculate costE2(xr)

9 if costE(xr) < γ · costN (xr) or costE2(xr) < costN (xr) then
10 clos(xr)← clos(xr) ∪ xr
11 U ← U \ {xr}
12 else
13 C ← C ∪ {Nk−1(xr, U)}
14 U ← U \Nk−1(xr, U)

15 until |U | < k

16 foreach x ∈ U do
17 clos(x)← clos(x) ∪ {x}

When considering the possibility of cluster extension by two elements at once, one might
be tempted to generalize this behavior to consider the extension of up to k − 1 elements
at once, depending on the size of clos(xr). Despite the obvious increase in time complexity
there is another good reason not to pursue this approach: Deciding for a cluster extension
or cluster generation inherently uses assumptions about future clustering processes. When
more and more elements are included in this decisions, we also need to assume more about
their ideal clustering, all without being able to see the big picture of clustering opportunities
much later during the run of the algorithm. Hence, there is not only diminishing return
in including more elements in our extension check but also a negative impact of a decision
based on weak data preventing a simple design of even smarter extension rules.

– 63 –

5 Maximum Distance Heuristics

Determination of the Closest Cluster

As discussed in the introduction of this chapter, the closest cluster C to an element x is
assumed to be

clos(x) := argmin
C∈C

δ(x, c(C))2

for all heuristics so far. Another solution to this problem would be to consider cluster C

which contains the clustered element y closest to x, i.e.

clos′(x) := argmin
C∈C

min
y∈C

δ(x, y)2.

This operation would be similar to the computation of xI in V-MDAV. A third option
proposed in [70] is to choose the cluster C which has the minimal cost increase, when
extended with x among all current clusters, i.e.

clos′′(x) := argmin
C∈C

cost(C ∪ x)− cost(C).

As clos(·) is used to extend clusters and our main goal is to minimize information
loss, the third option seems to be the obvious choice. Fact 5.7 and corollary 5.8 further
indicate that choosing the closest cluster according to strategy 1 or 2 can indeed increase
cost compared to the third option.

Fact 5.7.
The distance measures between a cluster C and an element x used by clos(x) and clos′(x)
depend on the group size of C.

Proof. Consider a cluster C containing k elements, with equal attributes. Further there is
an element x with (Euclidean) distance of d to the elements of C. When including x in C,
the centroid of C shifts towards x and so cost(C) increases from 0 to

k ·
(

d

k + 1

)2

+

(
d− d

k + 1

)2

= d2
k

k + 1
.

Corollary 5.8.
A smaller cluster C can be a better extension partner for x, even if there is another cluster
C closer to it according to clos(x) or clos′(x).

However, experimental analysis depicted in table 5.7 indicate that at least for maxi-
mum distance heuristics there is a significant slowdown without adequate information loss
reduction of clos′′(·) compared to clos(·). Hence, no further effort is made to include clos′′(·)
into these heuristics.

– 64 –

5 Maximum Distance Heuristics

Overview

Table 5.2: Key properties of all maximum distance heuristics presented in this section.

Time Space Variable-Size Gain Factor Introduced Reference
MD O(n2 ·max{n/k, d}) O(n2) yes no 1998 [51]
MDAV O(n2/k d) O(nd) no no 2005 [20]
MDAV+ O(n2/k d) O(nd) yes no 2006 (2018) [61], [70]
V-MDAV O(n2k d) O(nd) yes yes 2006 [61]
MDAV∗ O(n2 d) O(nd) yes no 2018 [70]
MDAV∗

γ O(n2 d) O(nd) yes yes - -

5.2
Experimental Evaluation of Maximum Distance

Heuristics

To compare different heuristics several real and synthetic benchmark databases have been
used, in particular Census, Tarragona and EIA from the CASC project [17], Cloud1, Cloud2,
the Adult data set and the credit card clients data set from the UCI Machine Learning
Repository [42] as well as uniformly distributed synthetic databases SimU and clustered
synthetic databases SimC created as proposed in [16].

The Census database contains 1080 elements in 13 numerical attributes. It was created
using the Data Extraction System of the U.S. Bureau of Census in 2000. Tarragona con-
tains 834 elements in 13 numerical attributes. It contains company data from the Spanish
region Tarragona from 1995. The EIA (Energy Information Authority) data set consists
of 4092 elements in 15 attributes. As in previous works (see e.g. [16]) only a subset of 11
numeric attributes precisely 1 and 6 to 15 has been used. Cloud1 and Cloud2 have been
created using statistics from AVHRR images. These databases are commonly used for the
training and evaluation of machine learning algorithms, and both contain 1024 elements
with 10 attributes each. Adult consists of 48842 elements with 14 attributes. As for EIA,
only a subset of numerical attributes namely age, education number and hours per week
is used. This particular selection was suggested in [58]. It is used to test algorithms on
low-dimensional data. The Credit Card clients data set consists of 30000 elements in 24

numeric attributes. It contains inputs and predictive results from six data mining methods
and is used to evaluate algorithms on higher-dimensional data.

For experiments with uniformly distributed synthetic data, databases SimU0 to SimU24

were created. Each of them consists of 1000 elements in 10 independently chosen numer-
ical attributes. When reporting results on SimU, averages over all 25 databases are used.
Synthetic clustered data is tested in the same way. 25 databases SimC0 to SimC24 are cre-
ated and results are reported as averages over information losses and runtimes on all SimC
variants. To create a SimC database the probabilistic procedure depicted in algorithm 7
is used. In summary, 100 clusters with between 4 and 21 elements in close distance are
created and mixed with some additional unrelated (noise) elements.

For a meaningful test the attributes of the databases are standardized to mean value
0 and variance 1 prior to anonymization. This ensures that all dimensions have equal im-

– 65 –

5 Maximum Distance Heuristics

Algorithm 7: Creation of a SimC database [16]
output: Database X

1 Let X ← ∅
2 for i ∈ {0, . . . , 99} do
3 Draw element ci randomly from [−10000, 10000]10
4 X ← X ∪ {ci}
5 foreach ci ∈ {c0, . . . , c99} do
6 Let r ∈R {3, . . . , 20}
7 for j ∈ {1, . . . , r} do
8 Draw elements xji randomly from [−50, 50]10

9 xji ← ci + xji
10 X ← X ∪ {xji}

11 Let n = |X|
12 for i ∈ {0, . . . , bn/3c} do
13 Draw element yi randomly from [−10000, 10000]10
14 X ← X ∪ {yi}

pact on the anonymization process and information loss evaluation. As microaggregation is
dimension and order conserving, this standardization can be reversed after anonymization
and does not introduce further distortion. All information losses given in this evaluation are
expressed in percentages to be directly comparable with previously published results, see
definition 2.23. Computations have been performed based on single-threaded Java imple-
mentations on a PC equipped with an AMD Ryzen 9 5900X with 4.8 GHz turbo frequency
and 32 GB of DDR4-3200 MHz RAM.

Results

All algorithms are benchmarked against each other in the databases described above. For
each database experiments were made with all k ∈ {2, 3, 4, 5, 7, 10} to evaluate information
loss and performance for different anonymity guarantees. Because no simple and reliable
way of determining a good value of γ for the use with V-MDAV or MDAV∗

γ is known, values of
0 to 2 in steps of 0.1 are used for γ and information loss and time consumption is reported
only for the best result, i.e. lowest information loss, observed. Table A.9 in the appendix
summarizes the γ values used. All algorithms are compared in regards of information loss
and runtime. Further, average cluster sizes are compared for all variable-size algorithms.
For further results omitted in this section consult appendix A.

As expected, increasing k also increases information loss for any maximum distance
heuristic. Further, the differences between information losses on different databases out-
weighs the differences between different heuristics evaluated. There seem to be databases
that are more resistant to anonymization than others. This interpretation is further sup-
ported by the fact that no algorithm is consistently better than another algorithm on one
particular database, but consistently worse in another.

Ignoring time and space requirements, it can be observed that neither MDAV nor MDAV+

– 66 –

5 Maximum Distance Heuristics

are able to obtain better results than MD on average. Further, there seems to be little influ-
ence of the security parameter k on which of these three algorithms performs best. Despite
the fact that V-MDAV levitates variable-size mechanisms, has higher time complexity and is
evaluated for the best out of 21 gain factors γ, it delivers only a slight reduction in informa-
tion loss compared to MDAV+ on average. This slight reduction is indeed remarkable low as
we allow γ = 0 for our test, so V-MDAV can by design never be worse than MDAV+. In 11 out
of the 54 tests (combinations of different databases and anonymity parameters k) V-MDAV
is not able to use cluster extension at all, to reduce information loss. Hence, in these cases
γ = 0 is chosen. As our experiments show, MDAV∗ is able to outperform MDAV even without
the use of gain factors adjusted to a particular database. On average it achieves about 7%
and 4% lower information loss compared to MDAV+ and V-MDAV respectively. Adding an
adjustable gain factor and improved cluster extension mechanisms further improves MDAV∗

significantly. By allowing γ = 0 as well as γ = 1 it is further guaranteed that the algorithm
can never introduce information losses above those of MDAV+ or MDAV∗. In none of the per-
formed tests a gain factor of γ = 0 resulted in best information loss for MDAV∗

γ . Furthermore,
optimal gain factors for MDAV∗

γ are quite consistent, ranging from 0.6 to 1.1 over all test cases
compared to a range of 0 to 1 for V-MDAV. This shows that the cluster extension mechanism
of MDAV∗ and MDAV∗

γ is superior and easier to tune than that of V-MDAV.
The high time consumption of MD is as expected, given its much higher asymptotic

complexity, compared to newer heuristics. Between MDAV and MDAV+ which have the same
asymptotic time complexity, MDAV+ seems to profit more from larger values of d as e.g. found
in Credit Card for which it has less than half the time consumption of MDAV. Nevertheless,
even for low dimensional data like Adult, MDAV+ is still notably faster likely due to the
persistent global centroid as discussed in the previous section. The variable-size mechanics of
V-MDAV and MDAV∗ come at the cost of higher runtimes. However, the real-world performance
of V-MDAV does not seem to match its theoretical worst case time complexity of O(n2kd)

derived above. Instead of a linear increase in time consumption with increased k, the
algorithm becomes slightly faster for greater values of k. This behavior can be explained by
looking at the average cluster size and γ used (e.g. table A.9) to achieve optimal results in
our experiments. It can be observed, that only very few cluster extensions are made, given
they are profitable at all. As extending clusters is, per element, much more time consuming
than creating new clusters, the worst case time complexity of V-MDAV is not as relevant in
practice.

A similar, although weaker form of this behavior can be observed for MDAV∗ and MDAV∗
γ

which are not slower than e.g. MDAV+ by a factor of k. Unlike implied by the asymptotic
worst case time complexity of O(n2d) the heuristics are getting faster with larger values
of k. Both can be explained by the unusual high amount of cluster extension assumed for
computing the worst case complexity. However, as the average cluster sizes and used gain
factors are significantly higher than those of V-MDAV the new algorithms are in most cases
slower than V-MDAV.

Comparing not only information loss or performance isolated from each other but gen-
eral overall behavior instead, there is no clear best algorithm. When time is critical, MDAV+

should be considered, as it is the fastest of these algorithms while delivering results com-
parable to MD and MDAV which are much slower. When an addition factor of 2 in runtime
is acceptable, but there is no time to evaluate good gain factors, MDAV∗ is a good choice.

– 67 –

5 Maximum Distance Heuristics

However, if time consumption is secondary, the preferred choice should be MDAV∗
γ as it is

guaranteed to produce lower or equal information losses than MDAV+ and MDAV∗. Moreover,
as our experiments show, is not likely to perform worse than MD MDAV or V-MDAV on any real
world databases. Applying the original MD or MDAV heuristics should be avoided as there
seems to be no situation in which their increased time and space requirements result in any
meaningful advantage above newer maximum distance heuristics.

Table 5.3: Average percentage information loss difference between maximum distance heuris-
tics over all benchmarks. A value below 100 indicates that an algorithm causes less informa-
tion loss on average. Differences based on MD do not include data from the Adult database,
as it is too big to be handled with quadratic space requirements.

Information Loss Differences in %
from\to MD MDAV MDAV+ V-MDAV MDAV∗ MDAV∗

γ

MD 100 100.3 100.2 96.6 93.9 91.8

MDAV 100 99.9 96.2 92.6 89.8

MDAV+ 100 96.3 92.7 89.9

V-MDAV 100 96.2 93.1

MDAV∗ 100 96.7

MDAV∗
γ 100

– 68 –

5 Maximum Distance Heuristics

Table 5.4: Information losses, runtimes, average cluster sizes and used gain factors γ of
maximum distance heuristics on EIA ∈ X4092,11 from the CASC project. Average cluster
sizes are reported for variable-size heuristics only.

Information Loss in % on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.27 0.47 0.77 1.67 2.28 3.71

MDAV 0.31 0.48 0.67 1.67 2.17 3.84

MDAV+ 0.32 0.49 0.67 1.78 2.21 3.55

V-MDAV 0.23 0.46 0.67 1.06 2.21 2.79

MDAV∗ 0.22 0.45 0.62 0.91 2.03 2.63

MDAV∗
γ 0.20 0.39 0.54 0.82 1.66 2.18

Runtime in s on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 2.38 1.58 1.15 0.91 0.67 0.49

MDAV 0.23 0.15 0.10 0.09 0.07 0.06

MDAV+ 0.11 0.06 0.05 0.04 0.03 0.02

V-MDAV 0.15 0.13 0.10 0.11 0.08 0.13

MDAV∗ 0.37 0.24 0.18 0.14 0.10 0.09

MDAV∗
γ 0.30 0.22 0.18 0.18 0.18 0.14

Average cluster size on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.17 3.61 4.00 5.54 7.01 11.46

MDAV∗ 2.24 3.38 4.24 5.62 7.56 10.88

MDAV∗
γ 2.19 3.37 4.60 6.14 9.39 12.00

γ used on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.2 0.6 0.0 0.4 0.0 1.3

MDAV∗
γ 0.8 0.7 0.8 1.2 1.1 1.2

– 69 –

5 Maximum Distance Heuristics

Table 5.5: Information losses, runtimes, average cluster sizes and used gain factors γ of
maximum distance heuristics on Credit Card ∈ X30000,24 from the UCI repository. Average
cluster sizes are reported for variable-size heuristics only.

Information Loss in % on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 3.66 6.43 8.56 10.23 12.64 15.16

MDAV 3.66 6.40 8.53 10.17 12.58 15.18

MDAV+ 3.65 6.39 8.49 10.17 12.59 15.21

V-MDAV 3.64 6.38 8.49 10.17 12.58 15.17

MDAV∗ 3.65 6.44 8.48 10.22 12.36 14.67

MDAV∗
γ 3.59 6.25 8.25 9.83 12.11 14.47

Runtime in s on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 895.1 590.3 441.1 354.6 256.0 182.9

MDAV 16.4 11.8 9.4 8.6 6.2 5.3

MDAV+ 6.7 4.6 3.3 2.7 2.0 1.5

V-MDAV 15.4 11.4 9.9 8.9 8.1 7.3

MDAV∗ 24.5 17.2 14.4 12.7 10.8 9.2

MDAV∗
γ 28.2 19.3 16.0 13.7 12.1 9.8

Average cluster size on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.02 3.02 4.00 5.00 7.03 10.04

MDAV∗ 2.21 3.50 4.75 6.01 8.45 11.94

MDAV∗
γ 2.11 3.23 4.35 5.46 7.99 11.30

γ used on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.1 0.1 0.0 0.0 0.1 0.1

MDAV∗
γ 0.8 0.8 0.8 0.8 0.9 0.9

– 70 –

5 Maximum Distance Heuristics

Table 5.6: Mean information losses, runtimes and used gain factors γ of maximum distance
heuristics on sets of synthetic databases SimC = {SimC0, . . . , SimC24}. Sizes of SimCi

are between n = 1528 and n = 1765 for d = 10. Average cluster sizes are reported for
variable-size heuristics only.

Mean Information Loss in % on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 3.88 7.00 9.32 11.33 14.51 18.37

MDAV 3.86 6.93 9.32 11.26 14.46 18.45

MDAV+ 3.82 6.86 9.23 11.04 14.11 18.09

V-MDAV 3.32 6.19 8.35 10.16 13.14 16.97

MDAV∗ 3.36 6.00 8.17 9.66 12.32 15.69

MDAV∗
γ 3.28 5.73 7.61 9.16 11.65 14.84

Mean Runtime in s on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.12 0.08 0.06 0.05 0.04 0.03

MDAV 0.02 0.02 0.01 0.01 0.01 0.01

MDAV+ 0.01 0.01 0.01 0.01 0.00 0.00

V-MDAV 0.02 0.02 0.02 0.02 0.02 0.02

MDAV∗ 0.05 0.03 0.03 0.02 0.02 0.02

MDAV∗
γ 0.05 0.03 0.03 0.03 0.03 0.02

Mean γ used on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.2 0.4 0.5 0.5 0.7 0.8

MDAV∗
γ 0.8 0.8 0.8 0.8 0.9 1.1

Table 5.7: Results of MDAV∗ with alternative clos procedure on Credit Card

Information Loss in % on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV∗ 3.65 6.44 8.48 10.22 12.36 14.67

MDAV∗ with clos′′(·) 3.65 6.44 8.48 10.21 12.36 14.68

Runtime is s on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV∗ 24.5 17.2 14.4 12.7 10.8 9.2

MDAV∗ with clos′′(·) 228.0 135.1 99.7 80.8 60.8 49.2

– 71 –

6

Lloyd-based Heuristics

MDAV and its variants are considered to be the most popular heuristics for k-anonymous
microaggregation. There are, however, many alternatives that use other principles to achieve
the same goal. The topic of this chapter is the so-called Lloyd-based principle which is named
after the famous k-means clustering algorithm by Stuart Lloyd [45].

Adapting the round-based optimization process of Lloyd’s algorithm to create k-member
clusterings is no easy task as there are quite a lot of differences between both problems, as
discussed in section 4.1. Therefore, Lloyd-based heuristics are more diverse and complex
than MDAV-variants. Nevertheless, applying a Lloyd-like cluster optimization strategy has
been an obvious way to move forward in achieving microaggregation with lower information
loss, due to its success for k-means clustering.

Before going into more detail about the different approaches, we first recap Lloyd’s
algorithm and an important improvement called k-MEANS++. After that, we take a short
look at an early Lloyd-based approach called PCL. Next, a post-processing approach called
LMaS is discussed in detail. The last approaches discussed in this chapter are ONA and its re-
cent improvement ONA∗ which are state-of-the-art Lloyd-based heuristics able to outperform
any MDAV-variant with negligible computational overhead. Finally, LMaS, ONA and ONA∗ are
benchmarked against MDAV+ and MDAV∗ to set their performance into perspective.

6.1
Lloyd’s Algorithm

As defined in section 4.1, the concept of k-means clustering is similar to that of a k-member
clustering used for k-anonymous microaggregation and is commonly used in the field of data
mining. As for microaggregation, the goal of k-means clustering is to partition elements
in an d-dimensional space into clusters. Further, the quality of a partitioning is measured
by the same distortion cost function using the sum of squared errors. However, unlike k-
anonymous microaggregation, k-means clustering does not guarantee a minimum cluster
size, instead a fixed (maximum) number of clusters has to be achieved (see definitions 4.1
and 4.2).

Lloyd’s algorithm (abbreviated as LLOYD in the upcoming text) takes a database X

and a value k and creates a k-clustering C(X). The result is a valid solution to the k-
means clustering problem but not necessarily optimal. At first, k cluster centers are chosen.

– 72 –

6 Lloyd-based Heuristics

The standard procedure called Forgy method3 randomly chooses existing elements from the
database. Unlike the primitive method of creating artificial data vectors as initial centers,
this behavior ensures that initial cluster centers are in populated areas of the data space
and further that no empty clusters are created throughout the process.4 The alternative
random partition method assigns each element to a random center and creates the initial
cluster centers as the centroids of the resulting clustering.

After initialization the algorithm proceeds with two alternating steps. In the assign-
ment step each element is assigned to its closest cluster center using the squared Euclidean
distance. Afterwards, in the update step the cluster centers are moved to the centroids of the
clusters resulting from the previous assignment step. These steps are repeated until a con-
vergence condition it met. Convergence of the algorithm is not guaranteed due to numeric
imperfections and the possibility of toggling between equally good solutions. Even if the
algorithm achieves convergence, it will in general only find a local optimum. To guarantee
convergence in practice, the convergence criterion is chosen as a combination of a bound
on the difference between cost of the previous and current solution as well as a hard round
limit. Due to the probabilistic behavior of initial center generation, the algorithm is usually
executed several times to obtain a list of clusterings to choose from. A pseudocode of LLOYD
is given as algorithm 8.

Algorithm 8: LLOYD (Lloyd’s algorithm) [45]
input : database X and an integer k
output: k-clustering C = {C1, . . . , Ck}

1 Let C = {C1, . . . , Ck} ← {∅, . . . , ∅}
2 Create initial centers c1, . . . , ck
3 repeat
4 foreach x ∈ X do
5 Let i← argmin1≤j≤k δ(x, cj)

2

6 Ci ← Ci ∪ {x}
7 for 1 ≤ i ≤ k do
8 ci ← c(Ci)

9 until convergence

The intuition of LLOYD is to alternate between two optimization goals to achieve a locally
minimal distortion cost. On the one hand, in an optimal k-clustering and for given cluster
centers, any element should be assigned to its closest cluster center. On the other hand, for
given clusters, the center of any cluster should be the centroid of its elements. Alternating
these goals changes clusters and centers until a solution, which satisfies both conditions,
is created. However, optimality of the solution is not guaranteed, as both conditions are
necessary but not sufficient for optimal solutions.

It should be obvious that Lloyd’s algorithm cannot exceed the given limit on the number
of clusters k. It is allowed, but not beneficial to create empty clusters during the process of

3 Named after its author E. Forgy.
4 For the second condition to hold, it must be guaranteed that no two initial centers are chosen as elements

with identical attribute vectors.

– 73 –

6 Lloyd-based Heuristics

k-means clustering. When a cluster becomes empty after a reassignment step, the cluster
becomes lost, as no centroid can be computed and as a consequence, no more elements will
be assigned to the cluster. Hence, such situations need to be avoided, e.g. by using the
Forgy initialization.

Theorem 6.1.
Assuming i is the total number of rounds until convergence, the worst case time complexity

of algorithm 8 is O(ndki).

Proof. The time complexity of LLOYD depends on several factors. In each round O(nkd)

time is needed to find the closest cluster center to all elements. Further, it takes O(nd)

to update all centroids. Assuming initialization and checking the convergence criterion is
cheap, the total time complexity is O(ndki), where i is the total number of rounds until the
algorithm halts.

Of course it is of interest to further specify i. However, as discussed above, without a
hard round limit, the algorithm might never halt. Hence, a hard round limit is currently
the only way of specifying i.

k-means++

The main disadvantage of LLOYD is its lack of quality guarantees on the resulting clusterings.
In 2006, Arthur and Vassilvitskii proposed a major improvement called k-MEANS++ [4] fixing
this problems without sacrifices in practical data quality or time complexity. By using a
new initialization method, k-MEANS++ is able to guarantee the expected distortion cost
on any database X to be smaller or equal than 8(ln k + 2) times the distortion cost of an
optimal k-means algorithm on X, i.e.:

Theorem 6.2 ([4]).
For any database X and an optimal k-means clustering COPT (X) according to definition 4.1

the expected cost E[cost(C(X))] of a clustering C(X) created by k-MEANS++ is bounded by

E[cost(C(X))] ≤ 8(ln k + 2)cost(COPT (X)).

As for the forgy method, initial cluster centers are elements x ∈ X. The novelty of
k-MEANS++ is that centers are chosen with higher probability when they are in greater
distance to elements already chosen.

After the first center c1 is chosen at random, for any element x the minimum (Euclidean)
distance D(x) to any existing center c is computed. After that, an element x is chosen as
the next center by using the probability distribution defined by

p(X) =
D(x)2∑

x∈X D(x)2
.

The updating of D(·) and the selection of centers ci continues, until k centers are chosen.
After the initialization is done, LLOYD is executed as usual, beginning at step 3 of algorithm 8.
See algorithm 9 for a formal description of the new initialization process.

– 74 –

6 Lloyd-based Heuristics

Algorithm 9: k-MEANS++ initialization [4]
input : database X and an integer k
output: Set of initial centers C = {c1, . . . , ck}

1 Draw c1 randomly from X

2 Let C ← {c1}
3 for 2 ≤ i ≤ k do
4 foreach x ∈ X do
5 Let D(x)← minc∈C δ(x, c)

6 Draw ci from X by choosing x ∈ X with probability D(x)2∑
x∈X D(x)2

7 C ← C ∪ {ci}

The approximation factor of O(log k) is proven to be valid after initialization and clus-
tering every element with its closest cluster. As further steps of LLOYD cannot increase cost,
the guarantee is still valid when the algorithm halts. The proof further uses the known
cost increase that occurs when another element than the centroid is used as center (see
theorem 2.15, which is valid for k-means clustering as well) and the fact that in any k-
means clustering any element can and should be clustered with its closest cluster center
(see theorem 4.3).

On a high level, it is shown that the cost of the initial clustering C created by k-MEANS++
is lower or equal to 8 times the cost of an optimal clustering COPT , assuming a center is
chosen from every optimal cluster C ∈ COPT . It is further argued, that the chances of a
cluster C ∈ COPT not being represented by a center is bounded by O(log k). The full proof
can be found in the original publication (see [4]).

Unfortunately, the original paper does not give complexity bounds. However, assuming
efficient implementation it can be shown that the asymptotic time complexity of k-MEANS++
is not increased compared to LLOYD with traditional initialization.

Theorem 6.3.
The worst case time complexity of algorithm 9 is O(ndk).

Proof. Calculating D(x) takes O(ad), assuming there are a cluster centers already chosen.
Instead of recalculating D(x) from scratch after a new center c is chosen, it can be updated
by computing δ(x, c) only and comparing it to the previous value of D(x). In summary,
O(k) centers each require n distance computations of complexity O(d). Hence, throughout
the initialization it takes time O(ndk) to calculate and maintain D(·). The sum of mini-
mum distances can be computed and updated analogously within the same time complexity
bound.

To efficiently choose a new center according to p(X), assume a total ordering x1, . . . , xn
of elements x ∈ X and randomly draw a number r between 0 and

∑
x∈X D(x)2. The

element xi becomes the new center if
∑i−1

j=1 < r ≤
∑i

j=1. Maintaining and updating
the prefix sums takes O(n) for every new center chosen. So the total time complexity of
random center selection is O(nk). In total, the time complexity of k-MEANS++ initialization
is O(ndk) which is majorized by the complexity of O(ndki) of performing Lloyd-like cluster
optimization rounds.

– 75 –

6 Lloyd-based Heuristics

6.2
Probability-Constrained Lloyd

In 2013 Rebollo-Monedero et al. introduced the microaggregation heuristic PCL (Privacy-
constrained Lloyd) [58]. The main concept of the heuristic is to alter the optimization
goal of the assignment step from LLOYD to force it to create clusters of size at least k. To
explain the details of PCL a change of perspective is needed, as the algorithm assumes X to
be a random variable defined by the empirical distribution pX(x) of elements x in a given
database of n elements.

k-anonymity is expressed as probability constraints p0(C) = 1
bn/kc that apply to each

cluster C of the resulting clustering C and ensure np0(C) ≥ k. Membership of elements
in clusters is expressed by a probability mass function pC(C), for which pC(C) = p0(C) is
required. The update function is identical to that of LLOYD, as centroids should be used
for both clustering principles. Further, initialization and convergence can be handled as in
LLOYD, as well.

A cost function ck : C → R is found and computed for every cluster C to ensure
pC(C) = p0(C). Elements x are assigned to clusters Ci with center ci with

i = arg min
1≤j≤bn/kc

δ(x, cj)
2 + ck(Cj).

Besides performing the usual tasks of LLOYD, PCL needs to compute and update ck(·) to
achieve a valid k-member clustering. However, as the authors admit, this may not be possi-
ble for discrete probability distributions of X. Instead, a method assuming continuous data
and applying algorithms to solve systems of nonlinear equations is presented and relaxed
to handle (large) finite databases as well. Unfortunately, this leads to serious problems for
k < 500 and making PCL practically infeasible for microaggregation with k < 100. See [58]
for more details on how to compute ck. A pseudocode of PCL is included as algorithm 10.

Algorithm 10: PCL [58]
input : database X of size n = |X| and an minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let C = {C1, . . . , Cbn/kc} ← {∅, . . . , ∅}
2 Create initial centers c1, . . . , cbn/kc
3 Let initial cost ck(C)← 0 for all C ∈ C
4 repeat
5 Adjust ck(·) to satisfy pC(C) = p0(C) for each current C ∈ C
6 foreach x ∈ X do
7 Let i← argmin1≤j≤bn/kc δ(x, cj)

2 + ck(Cj)

8 Ci ← Ci ∪ {x}
9 for 1 ≤ i ≤ bn/kc do

10 ci ← c(Ci)

11 until convergence

– 76 –

6 Lloyd-based Heuristics

For an experimental evaluation the authors used k between 500 and 4000 for the Adult
database (see 5.2 for a definition) and k ≥ 1024 for experiments with 65536 Gaussian points
in 2 to 4 dimensions.

While no exact asymptotic computational complexity of PCL is stated by its authors,
their experiments show that it is likely to be quadratic in n. The constants, however, seem
way higher for PCL compared to MDAV variants. In situations (k = 1000, n between 30000

and 100000) in which MDAV takes between 0.1s and 1.5s to compute its output, PCL takes
between 70s and 800s.

Due to the lack of implementation details and non-applicability for small databases or
reasonable values of k, PCL has not been implemented during the work for this dissertation.
However, looking at the results provided by the authors of PCL, it is clear that an adaption
to LLOYD can give better results than a greedy heuristic like MDAV, at least in situations with
large k, n and a generous time budget. As we will see later in section 6.4, there is indeed
another way to adapt LLOYD resulting in excellent results, without the compromises made
by PCL.

6.3
Merge and Split Approach

Before we go into details on more modern approaches to adapt LLOYD, this section covers
a post-processing approach designed during my work for this dissertation. Although this
approach is still unpublished, due to the rise of native adaptions of LLOYD in recent years, it
is still worth mentioning what can be achieved just by adapting the results of LLOYD. The
basic idea of LMaS (Lloyd, Merge and Split) is simple: LLOYD or k-MEANS++ is executed on
a database X to obtain bn/kc clusters. Now clusters with less than k elements are merged
with neighboring clusters to obtain a k-member clustering. Afterwards clusters that became
larger than 2k elements are split by applying a simple microaggregation heuristic like MDAV+.

In an ideal scenario, the clusters generated by an bn/kc-means algorithm would be
close to those of a k-member clustering for the same utility goal of low information loss.
Hence, as LLOYD creates excellent results for k-means clustering, we could expect only a
small number of merge and split operations necessary and thus obtain a good solution for
k-anonymous microaggregation. In practice it can be observed that given the right choice
of parameters LMaS is able to match or even outperform MDAV∗

γ in terms of information loss.
However, due to the probabilistic behavior of Lloyd’s algorithm, the time needed to find
such a solution is significantly higher.

A general overview of LMaS is given as algorithm 11. There are three main steps
that make up the algorithm. First, k-MEANS++ (see algorithm 9) is applied to find an
bn/kc-means clustering. Next, the algorithm MERGE (see algorithm 12) is used to enforce
a minimum cluster size of k. Lastly, the SPLIT algorithm depicted in algorithm 13 is used
to minimize information loss by reducing the average cluster size without violating the k-
member requirement. As a probabilistic initialization is involved, LMaS should be executed
several times to obtain good solutions. However, it should be noted that MERGE and SPLIT
are deterministic, so the only difference between different runs of LMaS is caused by the
differences in the sets of initial centers created by the k-MEANS++ initialization.

– 77 –

6 Lloyd-based Heuristics

Theorem 6.4.
Given k ≤

√
n, the worst case time complexity of algorithm 11 is O(n2dik−1).

Proof. The first step of LMaS takes O(n2dik−1), as this is the time complexity of k-MEANS++
for bn/kc clusters on d-dimensional databases of size n. In the MERGE step, there are at most
O(n/k) merge operations until every cluster has at least k elements. Computing cluster
centroids takes O(nd) initially and O(kd) for each new cluster resulting from a merge
operation. Further, given the cluster centroids are known, it takes O(n/k d) to compute
distances to all centroids for any cluster that needs to be merged. In total, MERGE takes
O(nd+ n/k · (kd+ n/k d)) which is equal to O(n2dk−2) for k ≤

√
n. To analyze the time

complexity of SPLIT, the number of MDAV+ executions and the respecting database sizes
have to be considered. As the time complexity of MDAV+ is quadratic in n, the worst case
would be a single cluster containing all elements, which is a scenario that can indeed occur
after the execution of MERGE. Assuming this worst case, complexity of SPLIT is bounded
by O(n2dk−1). All together, again assuming k ≤

√
n, the time complexity of LMaS is

dominated by the complexity of k-MEANS++ and is hence equal to O(n2dik−1).

Algorithm 11: LMaS
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let C = {C1, . . . , Cbn/kc} ← k-MEANS++(X, bn/kc)
2 C ← MERGE(C, k)
3 C ← SPLIT(C, k)

Algorithm 12: MERGE
input : clustering C and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 repeat
2 foreach Ci ∈ C do
3 if 0 < |Ci| < k then
4 Let Cj ← argminC∈C δ(c(Ci), c(C))2

5 Ci ← Ci ∪ Cj

6 Cj ← ∅

7 C ← C \ {C ∈ C | |C| = 0}
8 until ¬∃C ∈ C with |C| < k

Correctness of LMaS should be obvious. Although k-MEANS++ is used, its approximation
guarantee does not translate to LMaS and the k-anonymous microaggregation problem. This
is because in a worst case, all clusters generated by k-MEANS++ have to be merged to obtain
k-anonymity.5 For experimental results of LMaS see section 6.5.

5 Consider a case in which bn/kc−1 clusters of size 1 and one cluster of all remaining elements are created
and bn/kc − 1 < k.

– 78 –

6 Lloyd-based Heuristics

Algorithm 13: SPLIT
input : clustering C and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let C′ ← ∅
2 foreach Ci ∈ C do
3 if |Ci| ≥ 2k then
4 C′ ← C′ ∪ MDAV+(Ci, k)

5 else
6 C′ ← C′ ∪ {Ci}

7 C ← C′

6.4
ONA and ONA*

ONA is another Lloyd-based microaggregation heuristic introduced by Soria-Comas et al.
in 2019 [63]. Despite its full name (Near-Optimal microAggregation) no approximation
guarantees are known. Nevertheless, ONA is the first microaggregation heuristic able to
adapt LLOYD to produce a k-member clustering even for small k on small databases.

ONA starts with a randomly generated k-member clustering and repeats the following
alternating steps until convergence: Iterate over all elements x and consider their cluster
C(x). If C(x) has more than k elements try to lower information loss by reassigning x to
another cluster Ctarget(x). If |C(x)| = k try to improve the clustering by dissolving C(x)

and redistribute its elements s ∈ C(x) to other clusters Ctarget(s) nearby. If the cost for
dissolving (costsD) is higher than the current cost of keeping the status quo (costK), nothing
is changed. Finally, split all clusters that have grown to size at least 2k by applying ONA
recursively. This rearrangement of elements is stopped when within a round no change has
occurred or a preset number of rounds has been reached.

As can be seen in the pseudocode of ONA given as algorithm 14, the clustering process
resembles that of LLOYD. Both start with a random initial clustering and move elements to
clusters with closer centroids. The main difference is that ONA does not move an element out
of a cluster, if this would violate the k-member condition. Further, ONA might dissolve or
create new clusters in a greedy way if there is some distortion to be avoided. Of course, ONA
is not able to start with an initial clustering generated by the Forgy method or k-MEANS++,
as a valid k-member clustering is required at any given stage of the algorithm. Instead, ONA
starts with a random clustering consisting of bn/kc clusters with at least k elements each.

Like LLOYD and LMaS, ONA suffers from unreliability caused by the probabilistic initial-
ization with a randomly generated k-member clustering. As for these algorithms, a bad
initialization inevitably leads to a bad output. While the authors do not provide any guide-
lines on how to tackle this problem, the standard approach would be to repeat the algorithm
several times and output the clustering with the best solution found, as proposed for LMaS,
as well.

The authors claim that ONA has the same worst case time complexity of O(ndki) as

– 79 –

6 Lloyd-based Heuristics

Algorithm 14: ONA [63]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Randomly generate k-member clustering C = {C1, . . . , Cm′}
2 repeat
3 foreach x ∈ X do
4 if |C(x)| > k then

// Should x be reassigned to another cluster?
5 C(x)← C(x) \ {x}
6 Let Ctarget(x)← argminC∈C δ(x, c(C))2

7 Ctarget(x)← Ctarget(x) ∪ {x}
8 else if |C(x)| = k then

// Should cluster C(x) be dissolved?
9 foreach s ∈ C(x) do

10 Let Ctarget(s)← argminC∈C\{C(x)} δ(s, c(C))2

11 Let Ctarget ←
⋃

s∈C(x){Ctarget(s)}
12 Let C′target ← ∅
13 foreach C ∈ Ctarget do
14 C′target ← C′target ∪ {C ∪ {s ∈ C(x) | Ctarget(s) = C}}
15 Let costK ← cost(C(x)) + cost(Ctarget)

16 Let costD ← cost(C′target)

17 if costK > costD then
18 C ← C \ ({C(x)} ∪ Ctarget)

19 C ← C ∪ C′target

// Split clusters that have become too large
20 foreach C ∈ C do
21 if |C| ≥ 2k then
22 C ← C \ {C}
23 C ← C ∪ ONA(C, k)

24 until convergence

– 80 –

6 Lloyd-based Heuristics

LLOYD but do not provide proof. Accounting for the fact that there are O(n/k) instead of
O(k) clusters in ONA and further that the dissolve operation reclusters O(k) elements at once
indicate that the time complexity of ONA cannot be linear in n. My analysis summarized in
theorem 6.5 and its proof shows that the time complexity of ONA is in fact quadratic in n.

Theorem 6.5.
Assuming ζ is the total number of rounds until convergence and ignoring any complexity

of recursive splitting of clusters, the worst case time complexity of algorithm 14 is bounded
by O(ζ(n2 + nk2)d).

Proof. To analyze complexity, let us break down the algorithm into several parts.

– Initialization: The time used for random initialization can be considered linear in n.
Further, initial computation of all centroids takes O(nd).

– Reassignment: Reassignment takes time O(ndk−1) as there are O(n/k) clusters at
any given time and distances in d dimensions need to be computed from x to all cluster
centroids. Updating the centroid of the target cluster takes O(kd).

– Dissolving: A dissolve process uses O(nd) to find Ctarget(s) for all s ∈ C(x). Both,
Ctarget and C′target can be computed in O(n). It takes O(k2d) to calculate cost for
costK and costD as well as to update all centroids of affected clusters, when C(x) is
indeed dissolved. All together, an execution of the dissolve process takes O((n+ k2)d)

regardless of whether the cluster is actually dissolved or not.
– Splitting: After an element x is handled, clusters that grew to 2k or more elements are

split. For this, ONA is applied recursively on databases of size O(k). As it is not trivial
to bound the maximum number of splits necessary per execution of the outer loop of
algorithm 14, it is not clear whether splitting increases the asymptotic complexity of
ONA as a whole. However, without knowing the complexity of ONA including splits, we
cannot bound the time complexity of a single split.

Putting things together and further ignoring additional complexity for splitting clusters, an
execution of the outer loop beginning in step 2 of algorithm 14 takes time O((n2 + nk2)d).
Including the number of repetitions ζ until convergence, the total time complexity of ONA
is O(ζ(n2 + nk2)d).

Regarding information loss ONA seems to be comparable to previous quadratic time
heuristics on real and synthetic benchmark databases. However, it was not possible for
me to reproduce the excellent empirical results claimed in [63]. Considering its problems
and relatively small improvements in regard to information loss of ONA compared to LMaS
and MDAV variants in the experiments shown in section 6.5, the question arises whether a
native Lloyd-based microaggregation heuristic can indeed outperform traditional heuristics
significantly.

ONA*

The algorithm ONA∗ published in cooperation with Rüdiger Reischuk in 2021 [71] confirms
this hypothesis. Improving upon ONA in several aspects, ONA∗ is able to anonymize databases
with consistently lower information loss than MDAV∗

γ , LMaS, or ONA while being deterministic.

– 81 –

6 Lloyd-based Heuristics

Replacing the random initial clustering by a good deterministic process increases the per-
formance significantly. We have analyzed the methodology of generating and rearranging
clusters in detail and designed better selection strategies. More precisely, we have inves-
tigated how the strategy of rearranging clusters in ONA can be improved. It turned out
that iterating over data points in an arbitrary order, which seems to be a good strategy
for k-clustering, is not as good for k-member clustering. Instead, iterating over clusters in
a well chosen order is computationally more efficient and, more importantly, gives better
utility. To do this, ONA∗ makes a more precise estimation concerning reassignment. Whereas
ONA bases its decision, whether and where to move an element x, solely on the distances
to centroids, ONA∗ also compares the actual cost before and after a possible reassignment.
The result is used to decide which element from a cluster is reassigned first and, of course,
whether any element should be reassigned at all. A final modification simplifies matters
substantially. Every cluster to be split by ONA has between 2k and 3k − 1 elements and
should consequently be divided into two parts. For this task ONA is not likely to find better
solutions than MDAV algorithms, but requires more time and risks computing a bad cluster-
ing due to its probabilistic initialization. Hence, we have replaced the recursive execution
of ONA by a call to MDAV∗, which first creates 2 clusters with exactly k elements on opposite
sides of the global centroid and afterwards assigns remaining elements to their closest cluster
which is likely to yield an optimal solution in this special case. A complete description of
ONA∗ is given as algorithms 15 to 17. Experiments comparing information loss and runtime
to variants of MDAV and other Lloyd-based heuristics are given in section 6.5.

Algorithm 15: ONA∗

input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let C = {C1, . . . , Cm′} ← MDAV∗(X, k)

// Split clusters that are too large
2 foreach C ∈ C do
3 if |C| ≥ 2k then
4 C ← C \ {C}
5 C ← C ∪ MDAV+(C, k)

6 repeat
// Phase 1: dissolving clusters

7 foreach Ci ∈ C with |Ci| = k do
8 C ← ONA∗-Dissolve(C, Ci)

// Phase 2: reassigning elements
9 foreach Ci ∈ C with |Ci| > k do

10 C ← ONA∗-Reassign(C, Ci)

11 until convergence

Correctness of ONA∗ is given by the fact that it is initialized with a valid k-member
clustering generated by MDAV∗and that neither split, nor dissolve, nor reassign are able to
create clusters with less than k elements. Note that the initial splitting loop is beneficial

– 82 –

6 Lloyd-based Heuristics

Algorithm 16: ONA∗-Dissolve
input : k-member clustering C = {C1, . . . , Cm} and cluster Ci

output: k-member clustering C = {C1, . . . , Cm′}

1 foreach s ∈ Ci do
2 Let Ctarget(s)← argminC∈C\{Ci} δ(s, c(C))2

3 Let Ctarget ←
⋃

s∈Ci
{Ctarget(s)}

4 Let C′target ← ∅
5 foreach C ∈ Ctarget do
6 C′target ← C′target ∪ {C ∪ {s ∈ Ci | Ctarget(s) = C}}
7 Let costK ← cost(Ci) + cost(Ctarget)

8 Let costD ← cost(C′target)

9 if costK > costD then
10 C ← C \ ({Ci} ∪ Ctarget)

11 C ← C ∪ C′target
// Split clusters that have become too large

12 foreach C ∈ C′target do
13 if |C| ≥ 2k then
14 C ← C \ {C}
15 C ← C ∪ MDAV∗(C, k)

Algorithm 17: ONA∗-Reassign
input : k-member clustering C = {C1, . . . , Cm} and cluster Ci

output: k-member clustering C = {C1, . . . , Cm′}

1 repeat
2 foreach s ∈ Ci do
3 Let Ctarget(s)← argminC∈C\{Ci} δ(s, c(C))2

4 Let improvement(s)←
(cost(Ci)− cost(Ci \ {s}))− (cost(Ctarget(s) ∪ {s})− cost(Ctarget(s)))

5 Let s′ = argmaxs∈Ci
improvement(s)

6 if improvement(s′) ≤ 0 then
7 break
8 else
9 Ci = Ci \ {s′}

10 Ctarget(s
′)← Ctarget(s

′) ∪ {s′}
// Split clusters that have become too large

11 if |Ctarget(s
′)| ≥ 2k then

12 C ← C \ {Ctarget(s
′)}

13 C ← C ∪ MDAV∗(Ctarget(s
′), k)

14 until |Ci| = k

– 83 –

6 Lloyd-based Heuristics

because MDAV∗ does not guarantee a maximum cluster size of 2k − 1 in general. However,
as shown in fact 6.6 when used as a split-subroutine on databases of size at most 3k − 1,
MDAV∗ guarantees a maximal cluster size of 2k − 1 in the resulting clustering.

Fact 6.6.
Let C = MDAV∗(X, k) for |X| ≤ 3k − 1 and k ∈ N.

∀C ∈ C : |C| ≤ 2k − 1

Proof. MDAV∗ starts by creating a cluster C1 with k elements. Now there are at most 2k− 1

elements remaining. As MDAV∗ always creates a new cluster, when there are k elements
remaining, C1 cannot be extended by k or more elements. Hence, C1 can never grow to 2k

or more elements. However, if a second cluster C2 is created at any time throughout the
run of the algorithm, at most k− 1 elements are left to be assigned to C1 or C2, so also C2

cannot obtain more than 2k − 1 elements.

For a low information loss, applicability of fact 6.6 and validity of the upcoming com-
plexity analysis of ONA∗ it is required that any cluster C ∈ C has less than 2k elements
before entering the main loop. However, as noted before, MDAV∗ is not able to give this
guarantee when applied to large sets of elements. Although these situations should occur
very rarely and never happened during my experiments, MDAV+ instead of MDAV∗ is applied
in initial splits. Unlike MDAV∗, MDAV+ can by design never create a cluster of 2k or more
elements. Nevertheless, MDAV+is not used in other parts of ONA∗ as MDAV∗ is able to deliver
lower information loss in general.

Theorem 6.7.
Assuming ζ is the total number of iterations of ONA∗, the worst case time complexity of

algorithm 15 is bounded by O((n2 + ζ (n2 + n k2)) d).

Proof. To determine the time complexity of ONA∗ let us again consider its basic building
blocks and let ζ be the number of repetitions until convergence. There are at most n/k

clusters Ci of size k which might be dissolved in phase 1. For each element s of such a
cluster its closest cluster Ctarget(s) can be found in time O(n/k d). For each cluster Ci

evaluating the cost function for it and the at most k clusters in Ctarget takes time O(k2d).
Splitting a cluster C` by MDAV∗ requires O(|C`|2 d) time. Each cluster Ci can give rise to

at most k splits of a cluster C` of size less than 3k, which adds up to O(k3d) computational
effort. Thus the total time of Phase 1 can be bounded by

n/k · (k ·O(n/k d) +O(k2d+ k3d)) = O((n2/k + n k2) d).

For Phase 2 one has to consider at most n/k clusters of size between k+1 and 2k− 1.
The loop starting in step 1 of algorithm 17 is executed less than k times. In each execution,
the computation of the closest centroid and the improvement for each element s of a cluster
take time O(n/k d) and O(k d) respectively. Now there can be at most one split adding
time O(k2 d). Hence, per cluster Ci at most O(n k d)+O(k3 d) time is needed. All together
this gives the upper bound

n/k · (O(n k d) +O(k3 d)) = O((n2 + n k2) d)

– 84 –

6 Lloyd-based Heuristics

for Phase 2. If the time O(n2 d) for the initialization by MDAV∗, initial splits and initial
calculation of cluster centroids is added we finally get

O((n2 + ζ (n2 + n k2)) d).

Beyond ONA*

There are, of course, still some ways of improvement for ONA∗. One of those improvements
would be to initialize ONA∗ with a heuristic even better than MDAV∗. By swapping out MDAV∗

by MDAV∗
γ , such an improvement could be achieved. As can be seen in table 6.2 in section 6.5

this variant of ONA∗, called ONA∗
γ , is indeed able to lower information loss slightly. However,

as for MDAV∗
γ the implementation of a gain factor γ has a downside as well. While the runtime

for fixed γ is similar to that of ONA∗, finding a good γ for a database is time-consuming
in itself, as no good strategy besides exhaustive search is known. Nevertheless, when time
consumption is secondary, MDAV∗

γ is a valid alternative, especially because its asymptotic
time consumption is not different from ONA∗.

As ONA∗-like re-clustering rounds can be applied to any initial clustering, one might
argue that any microaggregation heuristic might be improved by it, as ONA∗ cannot increase
information loss compared to its initial clustering. This approach is the source of the
algorithm MONA presented in the next chapter. By acting as a two-phase algorithm, MONA
is able to give its users control over a trade-off between time consumption and quality of
resulting data.

Overview

Table 6.1: Key properties of all Lloyd-based microaggregation heuristics presented in this
chapter.

Time Space Behavior Introduced Reference
PCL ≥ O(n2) O(nd) probabilistic 2013 [58]
LMaS O(n2dik−1) O(nd) probabilistic - -
ONA ≥ O(ζ(n2 + nk2)d) O(nd) probabilistic 2019 [63]
ONA∗ O(n2 + ζ(n2 + nk2))d) O(nd) deterministic 2021 [71]
ONA∗

γ O(n2 + ζ(n2 + nk2))d) O(nd) deterministic - -

6.5
Experimental Evaluation of Lloyd-based Heuristics

In this section the Lloyd-based heuristics are compared to each other and to a selection
of heuristics using the maximum distance principle. The same benchmark databases and
general test setting as presented in section 5.2 are used. Further, the probabilistic algorithms
LMaS and ONA are indexed with numbers µ ∈ {1, 10, 100, 1000} in the upcoming tables. An

– 85 –

6 Lloyd-based Heuristics

index of µ indicates that the algorithm has been executed µ times and only the result with
lowest information loss found is reported. For tables comparing runtimes, the numbers
reported are to be interpreted as the amount of time necessary to perform µ executions.
The gain factor γ for ONA∗

γ is used for initialization only and is optimized to minimize the
information loss of the final result. Hence, gain factors for ONA∗

γ might differ from those of
MDAV∗

γ even if both use γ just to initialize MDAV∗
γ .

Convergence for LLOYD and k-MEANS++ is assumed when the difference between cost
of the previous and current clusterings falls below 0.001 or when 50 rounds have passed,
whichever occurs first. Convergence for ONA is assumed when the clustering does not change
during a single clustering round. Alternatively, the algorithm is halted when 30 rounds have
passed. For nested ONA executions during split operations, the round limit is lowered to 10

on the second level and to 0 on the third level. Hence, nested ONA executions are not allowed
to split. Lastly, the convergence of ONA∗ and ONA∗

γ is handled like in ONA, without the need
to further limit split operations, as these are handled by MDAV∗ instead of ONA. In table 6.5
the number of rounds until convergence is shown for ONA, ONA∗ and ONA∗

γ on Census for
different values of k. It can be observed that convergence is usually reached in less than 10

rounds.
In figure 6.4 the consistency of 1000 runs of LMaS and ONA is displayed and compared on

the Census database for k = 10. Besides the obvious fact, that almost all executions of ONA
result in a lower information loss than even the best run of LMaS, the difference in consistency
is also of interest. It can be observed that results of ONA runs are more predictable and stable.
Hence, less executions of ONA are needed to obtain reliable results. Both heuristics have in
common, that by increasing the number of repetitions µ the probability of finding a very
bad solution grows faster than the probability of finding a very good one. It seems as if
the average solution is not far from the best one achievable in a reasonable amount of time.
Hence, few runs are needed to find relatively good solutions. Table 6.3 further indicates that
for both heuristics increasing the number of repetitions µ increases the highest information
loss observed by a lot, while lowest information loss and mean change only slightly. As
can be seen, there is some improvement to be gained by increasing µ. But when a good
confidence is aimed at, this increases the runtime significantly.

The general picture of information loss over all benchmark databases and values of k
according to section 5.2 is drawn in table 6.2. While LMaS reaches results comparable with
those of MDAV∗

γ , ONA is able to lower information losses below those achievable by any MDAV
variant or LMaS. Finally, ONA∗ is shown to be the algorithm with the lowest information
loss over all previous algorithms. It is topped only by ONA∗

γ which uses the extended cluster
extension mechanism of MDAV∗

γ and a gain factor γ in its initialization.
If we include the time consumption (see table 6.6, 6.7, 6.8 and appendix B) in our

analysis, a different conclusion needs to be made. As single executions of LMaS and ONA are
not able to deliver reliable results, they are needed to be executed several times, increasing
runtime significantly. Furthermore, even single executions of ONA require significantly more
time than any MDAV variant. Especially for large databases like Credit Card, execution times
of LMaS and ONA outweigh any improvements made over MDAV∗ or MDAV∗

γ . Even including
runtime, ONA∗ seems to be the best candidate here. It delivers lower information loss than
ONA or LMaS even if the probabilistic heuristics are allowed to be executed 100 times, while
ONA∗ needs to be run only once. Also there is no need to find a good gain factor γ as for

– 86 –

6 Lloyd-based Heuristics

MDAV∗
γ , as ONA∗ does not need to be adapted for different databases. As ONA∗ takes about

twice as long as MDAV∗
γ regardless of database size or k, it clearly shows that Lloyd-based

microaggregation heuristics are indeed superior to maximum distance based heuristics.
One side note to consider is an anomaly regarding the runtime of ONA. Unlike any other

microaggregation heuristic tested so far, the time consumption of ONA does not decrease
consistently with increasing k. This is despite the fact that the asymptotic worst case
time complexity of ONA is not very different from that of e.g. ONA∗. A possible explanation
is that ONA∗ relies heavily on the execution of MDAV∗, whose average time complexity is
anti-proportionally dependent on k.

Table 6.2: Average percentage information loss difference between a selection of maximum
distance and Lloyd-based heuristics over all benchmarks. A value below 100 indicates that
an algorithm causes less information loss on average. Differences based on ONA100 do not
include data from the Adult and Credit Card databases, as they are too big to be handled
with ONA100 within a reasonable amount of time.

Information Loss Differences in %
from\to MDAV+ MDAV∗ MDAV∗

γ LMaS100 ONA100 ONA∗ ONA∗
γ

MDAV+ 100 92.7 89.9 90.1 86.3 83.0 82.1

MDAV∗ 100 96.7 96.7 92.5 89.2 88.2

MDAV∗
γ 100 99.9 95.9 92.2 91.2

LMaS100 100 96.1 92.3 91.3

ONA100 100 96.6 95.4

ONA∗ 100 98.9

ONA∗
γ 100

Table 6.3: Statistics of the consistency of outputs on different numbers of LMaS and ONA
executions on the Census benchmark database for k = 10. The runtime and information
losses of MDAV∗ and ONA∗ are included for reference. As MDAV∗ and ONA∗ are deterministic,
they are executed only once.

lowest IL highest IL median mean variance runtime
MDAV∗ 14.00 14.00 14.00 14.00 0.00 0s

LMaS10 13.58 14.73 14.12 14.16 0.11 0s

LMaS100 13.56 15.47 14.28 14.38 0.21 1s

LMaS1000 13.56 15.95 14.36 14.41 0.17 10s

ONA10 12.50 13.11 12.83 12.84 0.04 1s

ONA100 12.49 13.51 12.77 12.80 0.04 7s

ONA1000 12.33 13.99 12.77 12.80 0.04 67s

ONA∗ 12.46 12.46 12.46 12.46 0.00 0s

– 87 –

6 Lloyd-based Heuristics

(a) LMaS

(b) ONA

Figure 6.4: Histograms of the information losses of 1000 executions of LMaS and ONA on the
Census database for k = 10. Both histograms use a bin size of 0.1. It can be observed that
ONA is more consistent. As both histograms are left-leaning (towards low information loss),
few runs are needed to find relatively good solutions.

– 88 –

6 Lloyd-based Heuristics

Table 6.5: Number of clustering rounds ζ until convergence for ONA and ONA∗ on the Census
database for different values of k. As ONA∗ and ONA∗

γ are deterministic, they are executed
only once.

k min ζ mean ζ max ζ

ONA1000 2 4 5.7 11

ONA1000 5 5 8.9 17

ONA1000 10 7 11.8 30

ONA∗ 2 5

ONA∗ 5 3

ONA∗ 10 6

ONA∗
γ 2 3

ONA∗
γ 5 4

ONA∗
γ 10 7

Table 6.6: Information losses and runtimes of a selection of maximum distance and Lloyd-
based heuristics on EIA ∈ X4092,11.

Information Loss in % on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV+ 0.32 0.49 0.67 1.78 2.21 3.55

MDAV∗ 0.22 0.45 0.62 0.91 2.03 2.63

MDAV∗
γ 0.20 0.39 0.54 0.82 1.66 2.18

LMaS100 0.19 0.39 0.56 0.80 1.67 2.04

ONA100 0.21 0.40 0.59 0.80 1.60 2.01

ONA∗ 0.20 0.37 0.52 0.79 1.63 1.99

ONA∗
γ 0.19 0.37 0.52 0.78 1.58 1.98

Runtime in s on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV+ 0.11 0.06 0.05 0.04 0.03 0.02

MDAV∗ 0.37 0.24 0.18 0.14 0.10 0.09

MDAV∗
γ 0.30 0.22 0.18 0.18 0.18 0.14

LMaS100 24.86 21.95 19.06 18.24 15.14 11.94

ONA100 78.41 97.59 56.13 147.08 24.84 21.68

ONA∗ 0.60 0.40 0.29 0.27 0.21 0.17

ONA∗
γ 0.51 0.38 0.30 0.28 0.32 0.21

γ used on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

ONA∗
γ 1.6 1.0 0.9 0.5 1.8 1.3

– 89 –

6 Lloyd-based Heuristics

Table 6.7: Information losses and runtimes of a selection of maximum distance and Lloyd-
based heuristics on Credit Card ∈ X30000,24. ONA is executed only 10 times in this tests, as
100 executions are too time consuming.

Information Loss in % on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV+ 3.65 6.39 8.49 10.17 12.59 15.21

MDAV∗ 3.65 6.44 8.48 10.22 12.36 14.67

MDAV∗
γ 3.59 6.25 8.25 9.83 12.11 14.47

LMaS100 3.89 6.48 7.92 9.28 11.36 13.42

ONA10 3.98 6.16 7.58 8.72 10.53 12.30

ONA∗ 3.50 5.86 7.53 8.65 10.23 12.24

ONA∗
γ 3.50 5.86 7.40 8.46 10.20 12.12

Runtime in s on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV+ 6.7 4.6 3.3 2.7 2.0 1.5

MDAV∗ 24.5 17.2 14.4 12.7 10.8 9.2

MDAV∗
γ 28.2 19.3 16.0 13.7 12.1 9.8

LMaS100 5438.9 4670.9 4138.9 3527.3 2821.5 2207.2

ONA10 961.9 1333.4 1188.5 1041.8 958.8 869.7

ONA∗ 49.3 42.9 35.4 36.5 32.8 29.6

ONA∗
γ 52.1 58.9 52.4 41.9 35.5 25.2

γ used on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

ONA∗
γ 1.1 1.0 1.7 1.2 1.1 0.9

– 90 –

6 Lloyd-based Heuristics

Table 6.8: Mean information losses and runtimes of a selection of maximum distance and
Lloyd-based heuristics on sets of synthetic databases SimC = {SimC0, . . . , SimC24}. Sizes
of SimCi are between n = 1528 and n = 1765 for d = 10.

Mean Information Loss in % on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV+ 3.82 6.86 9.23 11.04 14.11 18.09

MDAV∗ 3.36 6.00 8.17 9.66 12.32 15.69

MDAV∗
γ 3.28 5.73 7.61 9.16 11.65 14.84

LMaS100 3.45 5.44 6.87 8.08 10.06 12.57

ONA100 3.54 5.40 6.69 7.72 9.36 11.54

ONA∗ 3.16 5.20 6.59 7.68 9.33 11.40

ONA∗
γ 3.14 5.15 6.51 7.55 9.20 11.24

Mean Runtime in s on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MDAV+ 0.01 0.01 0.01 0.01 0.00 0.00

MDAV∗ 0.05 0.03 0.03 0.02 0.02 0.02

MDAV∗
γ 0.05 0.03 0.03 0.03 0.03 0.02

LMaS100 2.55 1.67 1.22 1.11 0.96 0.83

ONA100 13.31 11.72 10.15 9.27 7.74 6.23

ONA∗ 0.09 0.07 0.06 0.05 0.05 0.05

ONA∗
γ 0.08 0.07 0.07 0.06 0.06 0.05

Mean γ used on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

ONA∗
γ 1.1 1.2 1.0 1.0 0.9 0.7

– 91 –

7

Heuristics for Large Databases

In the previous two chapters we concentrated on heuristics that are able to introduce less
and less information loss while operating in the same rough time complexity of O(n2).
Unfortunately, these heuristics are not fast enough to handle very large databases of millions
of elements. In this chapter, we present solutions to this problem. In the first section an
efficient O(nd logn) k-member clustering algorithm is adapted to deliver acceptable results
for microaggregation. Improving this, section 7.2 focuses on combining the new heuristic
with ONA∗ to obtain a scalable class of heuristics MONA, which is able to operate between
near linear and quadratic time complexity while delivering adequate information losses for
each configuration. In section 7.3 an experimental evaluation is made.

7.1
Using MONDRIAN for Microaggregation

In 2006 LeFevre et al. introduced MONDRIAN, an anonymization algorithm that achieves k-
anonymity in O(nd logn) time [37]. The optimization goal of MONDRIAN is to create clusters
with cluster sizes as close to k as possible. Unlike previously presented heuristics, MONDRIAN
has not been designed for the k-anonymous microaggregation problem. Instead, MONDRIAN
is a local recoding scheme, aiming at minimizing the discernability metric CDM and the
normalized average equivalence class size metric CAV G of databases potentially including
numerical and categorical data as defined in section 3.2.

MONDRIAN may not be defined as a microaggregation algorithm, but it creates a k-
member clustering in the process of anonymization. Hence, its strategy can be used to
perform k-anonymous microaggregation by calculating and reporting centroids for each
cluster created. However, the question arises whether the resulting information loss is
comparable to state-of-the-art heuristics designed to minimize information loss.

The lower time complexity of MONDRIAN compared to maximum distance or Lloyd-based
heuristics is caused by the fact that no distances between elements are computed. Instead,
MONDRIAN resembles the process of sub-dividing a d-dimensional space by d-dimensional
trees. A database is interpreted as a d-dimensional space with the elements being points in
that space. In the first step, MONDRIAN splits the database into two clusters by projecting it
onto one of its d dimensions and dividing elements at the median. Subsequently, clusters are
divided further, potentially using different splitting dimensions for different (sub)clusters.
A cluster is no longer split and considered final if a split at the median would result in at

– 92 –

7 Heuristics for Large Databases

least one new cluster having less than k elements. Thus, in the final clustering the size of
each cluster is between k and 2k − 1.

Choosing a good splitting dimension for each cluster is a crucial part of the algorithm
when used as a microaggregation heuristic. Especially for higher-dimensional data, choosing
a less optimal splitting dimension might result in big and sparsely populated clusters, result-
ing in high information loss. But, as MONDRIAN is designed to minimize CDM or CAV G, the
choice of splitting dimensions has been far less important. MONDRIAN chooses the splitting
dimension for any cluster as the attribute dimension with widest range of values in that
cluster, a strategy aimed at reducing the area of clusters as far as possible. A pseudocode
of MONDRIAN is given as algorithm 18.

Algorithm 18: MONDRIAN [37]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 if |X| < 2k then
2 return X

3 Let dim← argmaxj∈{1,...,d}
(
maxxi∈X xji −minxi∈X xji

)
4 Let median← median({xdim

i | xi ∈ X})
5 Let lhs← ∅
6 Let rhs← ∅
7 foreach xi ∈ X do
8 if xdim

i ≤ median then
9 lhs← lhs ∪ {xi}

10 else
11 rhs← rhs ∪ {xi}

12 return MONDRIAN(lhs, k) ∪ MONDRIAN(rhs, k)

As can be seen in section 7.3, MONDRIAN is not able to create clusterings with information
losses as low as those of ONA or MDAV variants. However, as expected it takes significantly
less time. The clustering strategy of MONDRIAN can be interpreted as acting in rounds of
splitting every existing cluster of size at least 2k into two smaller clusters. There areO(logn)
splitting rounds where every element is assigned to a new, smaller cluster. Computation
of the splitting dimension can be done in time linear in d and n and computation of the
median can be done in O(n). Hence, the total time complexity of MONDRIAN is O(nd logn).

Choosing splitting dimensions according to the widest range rule might be problematic
as information loss is defined by cluster density rather than cluster area. During the work
for publication [71] I have investigated several alternative splitting criteria with the same
asymptotic time complexity and reached the conclusion that a significant improvement
could be achieved by choosing the splitting dimension as the dimension with the largest
variance of values. The resulting algorithm called MONDRIAN_V achieves about 15% lower
information loss on average over MONDRIAN in the tests provided in section 7.3. The splitting

– 93 –

7 Heuristics for Large Databases

rule of MONDRIAN_V has the same time complexity of O(nd) and can be formalized as

dim← argmaxj∈{1,...,d}

(∑
xi∈X

(
xji − c(X)j

)2)
.

A pseudocode of MONDRIAN_V is not included, as it is the same as algorithm 18 with step 3

replaced by the new splitting rule.
The improvement going from MONDRIAN to MONDRIAN_V shows that even for low-

dimensional data, the choice of the right way to split is quite important. A natural next
step is to increase the number of options for splits. Up to this point only splits according
to attribute values in a single dimension have been considered. The largest possible set of
splits would be the set of all hyperplanes dividing the database into two parts with a varying
amount of elements on each side. However, deciding which splitting hyperplane to choose
is a time consuming process, eliminating the performance gains made by MONDRIAN_V over
ONA∗.

In MONDRIAN_V splits can be interpreted as hyperplanes perpendicular to one of the
unit vectors e1, . . . , ed of the data space Rd dividing the elements into two clusters. The
next MONDRIAN based algorithm presented in [71] called MONDRIAN_V2D considers additional
splits. We now also allow hyperplanes that are perpendicular to a combination ej1j2 of a pair
of unit vectors e+j1j2 =

1√
2
· (ej1 + ej2) and e−j1j2 =

1√
2
· (ej1 − ej2). In other words, the set of

possible splits is expanded by hyperplanes that are 45◦ or 315◦ between any two unit vectors,
see Figure 7.1. As before, splits are made at the median of the dimension (or combination
of dimensions) with largest variance. Note that, by the prefactor 1√

2
we ensure measuring

variances in an orthonormal basis resulting in values comparable to those measured along
original dimensions which remains a valid option considered by MONDRIAN_V2D.

j1

j2

0◦

45◦
90◦

315◦

(
1√
2
, 1√

2

)

(
1√
2
,− 1√

2

)

(−1, 0) (1, 0)

(0,−1)

(0, 1)

Figure 7.1: Splits in MONDRIAN_V2D are perpendicular to a dimension j or to a combination
of two dimensions j1 and j2.

The number of possible splits for any given cluster increases from d to 2 ·
(
d
2

)
+ d = d2

since there are
(
d
2

)
pairs of dimensions to choose from and two orientations for each pair

together with the d options to split along a single dimension as before. The time complexity

– 94 –

7 Heuristics for Large Databases

of MONDRIAN_V2D increases to O(nd2 logn), but information loss further decreases as shown
in section 7.3. A pseudocode for MONDRIAN_V2D is given as Algorithm 19.

Algorithm 19: MONDRIAN_V2D
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 if |X| < 2k then
2 return X

3 Let (dim1, dim2, orientation)←
argmaxj1,j2∈{1,...,d},o∈{−1,1}

(∑
xi∈X

(
1√
2
·
(
xj1i + o · xj2i

)))
4 Let median← median({xdim1

i + orientation · xdim2
i | xi ∈ X})

5 Let lhs← ∅
6 Let rhs← ∅
7 foreach xi ∈ X do
8 if xdim

i ≤ median then
9 lhs← lhs ∪ {xi}

10 else
11 rhs← rhs ∪ {xi}

12 return MONDRIAN_V2D(lhs, k) ∪ MONDRIAN_V2D(rhs, k)

Of course, one could go even further and take combinations of 3 or more unit vectors and
additional angles between dimensions increasing the number of choices significantly. When
choosing 3 dimensions, there are

(
d
3

)
combinations plus additional possibilities of vector

directions within the spanned hypersphere. While this would most probably decrease infor-
mation loss further, time complexity starts to become an issue. While for low-dimensional
data the prospective reduction in information loss is limited, for high-dimensional data,
time consumption gets close to or even exceeds that of efficient heuristics using distance
computations like MDAV+ delivering significantly lower information losses. See e.g. table 7.6
for the effect on time consumption even two-dimensional splitting might have.

7.2
Combining ONA∗ and MONDRIAN_V

Computing distances between elements is an important part of clustering small sets of
elements in homogeneous clusters. However, as databases get bigger, individual distances
between elements are less and less important. Even a weak indicator like variance, separating
elements in great distance from each other, is sufficient to do a rough clustering. Hence,
the main use of MONDRIAN_V and MONDRIAN_V2D for microaggregation should be to avoid
bad decisions like splitting through a natural cluster while creating chunks of data that are
small enough to be handled by better but slower algorithms.

In [71] Rüdiger Reischuk and I propose to combine two methods, a MONDRIAN variant
as the fast heuristic in the beginning to split large clusters, and then ONA∗ as the heuristic

– 95 –

7 Heuristics for Large Databases

of better quality for a fine grained clustering of small clusters. The resulting algorithm is
named MONA (Mondrian ONA). The combination is flexibly governed by a parameter ρ that
can be chosen between 0 and 1. It defines the switch from MONDRIAN_V to ONA∗: clusters
of size larger than nρ are iteratively split by MONDRIAN_V, smaller ones are then handled
by ONA∗. Thus, we get a family of algorithms MONAρ, where MONA0 equals MONDRIAN_V and
MONA1 is identical to ONA∗. Analogously the algorithm MONA_2Dρ combines MONDRIAN_V2D
and ONA∗. The pseudocode of MONAρ is described in algorithm 20. A detailed description of
MONA_2D is omitted as it differs only in its splitting rule.

Algorithm 20: MONA (MONDRIAN_V combined with ONA∗)
input : database X, minimal cluster size k and split limit nρ

output: k-member clustering C = {C1, . . . , Cm}

1 if |X| < nρ then
2 return ONA∗(X, k)

3 Let dim← argmaxj∈{1,...,d}
(∑

xi∈X

(
xji − c(X)j

)2)
4 Let median← median({xdim

i | xi ∈ X})
5 Let lhs← ∅
6 Let rhs← ∅
7 foreach xi ∈ X do
8 if xdim

i ≤ median then
9 lhs← lhs ∪ {xi}

10 else
11 rhs← rhs ∪ {xi}

12 return MONA(lhs, k, nρ) ∪ MONA(rhs, k, nρ)

Since ONA∗ has quadratic time complexity in n, but is only applied to a bunch of
smaller databases, the total time complexity in the ONA∗-phase is reduced. Furthermore,
most computation time of MDAV or ONA variants is due to distance calculations between far
apart elements. But this has little influence on the local arrangements of elements. Thus,
saving these estimations in the MONDRIAN_V-phase does not increase the information loss
much. Still, there might occur a decrease of data quality in the MONDRIAN_V-phase if ONA∗

would have clustered elements together that lie on both sides of the median of a splitting
dimension used by MONDRIAN_V and are now assigned to different sub-problems. However,
for larger databases such cases can be expected to have only small influence.

Theorem 7.1.
For 0 < ρ ≤ 1 and k2 ≤ nρ the time complexity of MONAρ is bounded by O(n1+ρ d). When

further d logn < nρ, this bound holds for MONA_2Dρ as well.

Proof. In the ONA∗-phase MONAρ has to manage O(n
nρ) = O(n1−ρ) instances with input

size at most nρ. By applying theorem 6.7 we obtain a time complexity bound of O((n2ρ +

ζ(n2ρ+nρk2))d) for each of these instances. The time complexity of the MONDRIAN_V-phase
is obviously not larger than a complete run of this algorithm. Putting things together, the

– 96 –

7 Heuristics for Large Databases

total time complexity of MONAρ can be bounded by

O(nd logn) +O
(
n1−ρ

)
·O((n2ρ + ζ(n2ρ + nρk2))d)

= O(nd logn) +O((n1+ρ + ζ(n1+ρ + nk2))d).

For ρ > 0 the first term is majorized by the second. If k is small compared to n, which for
larger databases typically holds, and ζ is considered as a constant we get the desired result.

For MONA_2Dρ the first term gets an additional factor d. Using the additional require-
ment d logn < nρ the same bound holds.

As stated in the introduction of this section, MONDRIAN_V preprocessing can be applied
to all microaggregation algorithms. ONA∗ has been chosen because of its excellent ratio of
information loss to time consumption. Nevertheless, one might ask, whether it would be
beneficial to use faster algorithms like MDAV+, or adjustable algorithms like ONA∗

γ . Regarding
MDAV+, the results of a small sample of test cases are as expected. For the same values of ρ,
the results have slightly higher information loss but consume slightly less time. Although a
full test seems necessary to confirm this claim, combining MONDRIAN_V with MDAV+ might
be a viable alternative to MONA. Combining MONDRIAN_V with ONA∗

γ is more difficult to
recommend. As ONA∗

γ relies on expensive parameter tuning of the gain factor γ, it is less
time efficient and therefore less suitable in situations in which time is a limiting factor.

Overview

Table 7.2: Key properties of all MONDRIAN-based microaggregation heuristics presented in
this chapter.

Time Space Introduced Reference
MONDRIAN O(nd logn) O(nd) 2006 [37]
MONDRIAN_V O(nd logn) O(nd) 2021 [71]
MONDRIAN_V2D O(nd2 logn) O(nd) 2021 [71]
MONAρ O(n1+ρd) O(nd) 2021 [71]
MONA_2Dρ O(n1+ρd) O(nd) 2021 [71]

7.3
Experimental Evaluation of Near Linear Time

Heuristics

For the experiments presented in this section, the same general test setting and benchmark
databases as in 5.2 and 6.5 have been used. However, as algorithms aimed at large databases
are evaluated, there is little use in benchmarking small databases of only a few thousand
elements. Hence, MONDRIAN and MONA variants are tested on Credit Card and Adult only.
Additionally, a new very large database called Winnipeg has been added to the test suite.
Like Credit Card and Adult, the Winnipeg database is from the UCI machine learning
repository [42] in which it is called Crop mapping using fused optical-radar data set. It

– 97 –

7 Heuristics for Large Databases

consists of 325834 elements in 174 numeric dimensions and has been created by combining
satellite and radar images of cropland near the Canadian city of Winnipeg for the use as
a benchmark database for classification algorithms. Because the Winnipeg database is too
large to be handled by quadratic time heuristics like ONA∗, it is especially useful to measure
in which way MONDRIAN variants widen the applicability of microaggregation and to observe
how far MONA can reduce information loss in comparison to MONDRIAN variants.

A comparison of information losses between the different variants of MONDRIAN, MONA
and ONA∗ is given in table 7.3. It can be seen that MONDRIAN_V is able to lower infor-
mation losses to about 85% of those achieved by MONDRIAN. As this improvement comes
at no extra costs regarding time or space requirements we can consider MONDRIAN_V as a
new baseline upon which other heuristics have to improve. Adding two-dimensional splits
further decreases information loss, but comes at extra cost. In the case of Adult (see
table 7.4) the additional time consumption as well as the information loss improvements
of two-dimensional splits are small. This comes at no surprise as Adult consists of only
three-dimensional data. Far greater improvements are possible for Credit Card (see ta-
ble 7.5) which contains 24-dimensional data. However, this improvement comes at the cost
of about 10 times higher time consumption, caused by the d2 factor within the time com-
plexity of MONDRIAN_V2D. On even higher dimensional data like Winnipeg (see table 7.6)
the additional time consumption of two-dimensional splits becomes unjustified. Not only
does the information loss decrease only slightly, the time consumption of MONDRIAN_V2D
is even higher than that of MONA0.7 which is far superior at preserving utility. All together
MONDRIAN_V2D achieves about 89% of the information loss of MONDRIAN_V over all three
databases and k from 2 to 10.

Regarding MONA, the aforementioned tables as well as figures 7.7,7.8 and 7.9 indicate
large effects of even small split factors ρ. For ρ = 0.5 MONA causes only half as much
information loss as MONDRIAN_V, while consuming 2 to 3 orders of magnitude less time
compared to ONA∗. If even faster heuristics are needed, e.g. for databases consisting of
millions of elements, MONA0.3 might be a valid option, as first significant improvements
appear for ρ ≥ 0.3. When there is more time, MONA0.7 or MONA0.8 are able to narrow the gap
between the information loss of MONA and ONA∗ further, while still being significantly faster
than ONA∗.

Two aspects have to be considered when adding two-dimensional splitting to MONA. First
of all, the influence of two-dimensional splitting decreases with larger ρ, as less splits are per-
formed until ONA∗ takes over. Besides that, the same general behavior as for MONDRIAN_V2D
can be observed. If MONDRIAN_V2D profits from two-dimensional splitting, so will MONA_2D.

An irregularity one might observe from the data is the consistency of information losses
of MONDRIAN variants over different k on the same database. Whereas other heuristics suffer
from increased information loss for larger k, this is not necessarily true for them. The
reason is quite simple: As MONDRIAN uses its splitting rule until cluster sizes of less than
2k are achieved, there might not be a difference between e.g. k = 2 and k = 3 for different
sizes n of databases. Take for example Credit Card, which emits this behavior for all three
MONDRIAN variants and k ∈ {2, 3}. After 12 rounds of splitting, the average cluster size
is about 7.3, allowing for another split for k = 2 as well as for k = 3. However, after 13

rounds of splitting, the average cluster size falls to 3.66 which prevents another split for
both values of k, effectively creating the same clustering for both anonymity factors k.

– 98 –

7 Heuristics for Large Databases

Table 7.3: Average percentage information loss difference between a selection of heuristics
over Adult, Credit Card and Winnipeg. A value below 100 indicates that an algorithm
causes less information loss on average. Differences based on ONA∗ do not include data from
the Winnipeg database, as it is too big to be handled with ONA∗ within a reasonable amount
of time.

Information Loss Differences in %
from\to MONDRIAN MONDRIAN_V MONDRIAN_V2D MONA0.5 MONA_2D0.5 ONA∗

MONDRIAN 100 85.1 75.8 45.8 43.1 22.6

MONDRIAN_V 100 88.5 53.2 49.9 28.2

MONDRIAN_V2D 100 60.7 56.6 33.3

MONA0.5 100 93.8 61.4

MONA_2D0.5 100 66.1

ONA∗ 100

Table 7.4: Information losses and runtimes of MONDRIAN variants, ONA∗ and a selection of
MONA heuristics on Adult ∈ X48842,3.

Information Loss in % on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 0.249 0.508 0.508 0.508 0.917 0.917

MONDRIAN_V 0.206 0.407 0.407 0.407 0.757 0.757

MONDRIAN_V2D 0.188 0.387 0.387 0.387 0.705 0.705

MONA0.3 0.067 0.140 0.211 0.285 0.434 0.649

MONA_2D0.3 0.068 0.142 0.216 0.290 0.425 0.646

MONA0.5 0.050 0.106 0.161 0.211 0.322 0.465

MONA_2D0.5 0.050 0.102 0.156 0.206 0.302 0.456

MONA0.7 0.043 0.091 0.137 0.182 0.276 0.402

MONA_2D0.7 0.042 0.090 0.137 0.182 0.268 0.399

ONA∗ 0.039 0.081 0.123 0.165 0.243 0.357

Runtime in s on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 0.11 0.05 0.04 0.04 0.03 0.03

MONDRIAN_V 0.09 0.05 0.05 0.05 0.04 0.04

MONDRIAN_V2D 0.20 0.09 0.07 0.07 0.07 0.07

MONA0.3 0.33 0.20 0.17 0.38 0.41 0.70

MONA_2D0.3 0.36 0.22 0.20 0.40 0.37 0.69

MONA0.5 0.65 0.42 0.49 0.61 0.76 0.77

MONA_2D0.5 0.61 0.45 0.52 0.69 0.79 0.72

MONA0.7 4.45 2.86 2.85 2.76 2.47 2.10

MONA_2D0.7 4.54 3.03 3.14 2.90 2.62 2.16

ONA∗ 226.28 148.64 116.42 99.75 78.56 52.26

– 99 –

7 Heuristics for Large Databases

Table 7.5: Information losses and runtimes of MONDRIAN variants, ONA∗ and a selection of
MONA heuristics on Credit Card ∈ X30000,24.

Information Loss in % on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 30.33 30.33 41.47 41.47 43.75 50.71

MONDRIAN_V 24.05 24.05 32.54 32.54 34.12 39.27

MONDRIAN_V2D 17.85 17.85 24.52 24.52 25.78 30.30

MONA0.3 10.85 17.35 22.26 25.63 31.67 39.27

MONA_2D0.3 8.76 13.92 17.87 20.50 24.84 30.30

MONA0.5 7.74 12.56 15.99 18.53 22.45 26.59

MONA_2D0.5 6.87 10.96 13.89 16.16 19.50 22.95

MONA0.7 5.64 9.14 11.52 13.41 16.27 19.22

MONA_2D0.7 5.27 8.47 10.75 12.42 14.97 17.54

ONA∗ 3.50 5.86 7.53 8.65 10.23 12.24

Runtime in s on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 0.14 0.09 0.06 0.06 0.05 0.05

MONDRIAN_V 0.16 0.07 0.06 0.06 0.07 0.06

MONDRIAN_V2D 1.12 1.18 1.04 1.04 1.02 0.97

MONA0.3 0.34 0.20 0.17 0.13 0.14 0.06

MONA_2D0.3 1.21 1.14 1.07 0.98 1.03 0.96

MONA0.5 0.49 0.36 0.31 0.33 0.36 0.46

MONA_2D0.5 1.19 1.10 1.04 1.07 1.11 1.21

MONA0.7 1.64 1.14 1.08 1.06 1.06 1.25

MONA_2D0.7 1.94 1.79 1.62 1.56 1.62 1.75

ONA∗ 49.27 42.92 35.37 36.49 32.84 29.62

– 100 –

7 Heuristics for Large Databases

Table 7.6: Information losses and runtimes of MONDRIAN variants and a selection of MONA
heuristics on Winnipeg ∈ X325834,174.

Information Loss in % on Winnipeg
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 49.43 65.33 65.33 75.71 75.71 81.56

MONDRIAN_V 46.53 61.93 61.93 72.51 72.51 78.72

MONDRIAN_V2D 44.26 59.60 59.60 70.24 70.24 76.70

MONA0.3 30.01 44.15 52.50 57.98 64.91 70.93

MONA_2D0.3 29.37 42.96 50.98 56.32 63.09 69.03

MONA0.5 22.25 33.47 41.04 46.84 55.09 62.56

MONA_2D0.5 21.76 32.58 39.87 45.52 53.72 61.07

MONA0.7 15.64 23.38 28.30 31.68 36.34 40.74

MONA_2D0.7 15.34 22.85 27.38 30.59 34.94 39.01

Runtime in s on Winnipeg
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 6.8 6.4 6.2 5.9 5.8 5.6

MONDRIAN_V 9.4 8.8 8.7 8.7 8.7 8.3

MONDRIAN_V2D 1407.7 1475.3 1483.6 1485.4 1416.4 1323.5

MONA0.3 16.6 16.8 16.5 17.0 20.1 19.3

MONA_2D0.3 1489.9 1387.4 1342.1 1356.5 1394.2 1396.8

MONA0.5 45.7 42.0 41.0 40.6 42.3 51.0

MONA_2D0.5 1533.6 1223.9 1239.4 1208.0 1298.1 1285.7

MONA0.7 721.3 646.2 591.8 554.9 495.8 453.6

MONA_2D0.7 1810.3 1572.3 1597.0 1501.8 1386.3 1354.9

– 101 –

7 Heuristics for Large Databases

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fo

rm
at

io
n

Lo
ss

 in
 %

Split limit exponent ρ

MONDRIAN_V MONDRIAN_V2D ONA* MONA MONA_2D

Figure 7.7: Information Losses of MONA and MONA_2D for different split limits compared
to MONDRIAN_V variants and ONA∗ on the Adult database with n = 48842 and d = 3 for
k = 10. As nρ < 2k for ρ ≤ 0.2, both MONA and MONA_2D behave like their MONDRIAN_V
counterparts for these ρ.

5

10

15

20

25

30

35

40

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fo

rm
at

io
n

Lo
ss

 in
 %

Split limit exponent ρ

MONDRIAN_V MONDRIAN_V2D ONA* MONA MONA_2D

Figure 7.8: Information Losses of MONA and MONA_2D for different split limits compared to
MONDRIAN variants and ONA∗ on the Credit Card database with n = 30000 and d = 24 for
k = 10. As nρ < 2k for ρ ≤ 0.3, both MONA and MONA_2D behave like their MONDRIAN_V
counterparts for these ρ.

– 102 –

7 Heuristics for Large Databases

20

30

40

50

60

70

80

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
fo

rm
at

io
n

Lo
ss

 in
 %

Split limit exponent ρ

MONDRIAN_V MONDRIAN_V2D MONA MONA_2D

Figure 7.9: Information Losses of MONA and MONA_2D for different split limits compared to
MONDRIAN variants on the Winnipeg database with n = 325834 and d = 174 for k = 10. As
nρ < 2k for ρ ≤ 0.3, both MONA and MONA_2D behave like their MONDRIAN_V counterparts
for these ρ.

– 103 –

8

Additional Techniques used in
Microaggregation Heuristics

There are many microaggregation heuristics based on different principles that have not been
covered so far, mainly because they do not offer competitive information losses. Neverthe-
less, a full analysis of microaggregation heuristics would not be complete without looking
at ways to create k-member clusterings by other means than maximum distance, applying
Lloyd’s algorithm or Mondrian splitting. In this chapter we take a short look at other
microaggregation heuristics with some unique properties that separate them from more
established ones.

8.1
Minimum Spanning Tree Approach

In 2005 Laszlo and Mukherjee introduced a microaggregation heuristic based on minimum
spanning trees [36]. Similar to approaches altering Lloyd’s algorithm, they used a standard
k-means clustering approach and adapted it to create a k-member clustering.

To create a k-means clustering by MST, elements are considered to be vertices of a
complete weighted graph G = (V,E,w) with Euclidean distances as edge weights. An MST
is created on G and the longest (i.e. with highest weight) k − 1 edges are removed. The
resulting forest contains exactly k trees, each of which represents a cluster. As long edges
represent great distance between elements, the technique is suitable to create a clustering
of low information loss.

The adapted process to create k-member clusterings is quite similar. After the creation
of a global MST, edges are sorted in descending order according to their weight (Euclidean
distance). Going through all edges, an edge is removed if and only if both resulting trees
have at least k vertices. After all edges are considered, we obtain a forest that can easily
be transformed into a k-member clustering. As the process does not guarantee an upper
bound for the cluster size6, clusters of size ≥ 2k are suggested to be subsequently split by
applying maximum distance heuristics.

Time complexity of the algorithm is O(n2) which is needed both for creating an MST
and to decide which edges can or cannot be cut without violating the minimum size con-
straint. No approximation guarantees are given and experimental data obtained by the

6 Consider e.g. a star topology, which does not allow the removal of any edge.

– 104 –

8 Additional Techniques used in Microaggregation Heuristics

authors suggests that information loss is similar but not superior to that of MDAV.

8.2
Two Fixed Reference Points

TFRP is an incremental microaggregation clustering approach similar to maximum-distance
based heuristics. Introduced by Chang et al. in 2007 [13] TFRP calculates two artificial
elements R1 and R2 by finding minimum and maximum attribute values Gmin(X) and
Gmax(X) over all elements and dimensions, i.e. R1 = (Gmin(X), . . . , Gmin(X)) ∈ Rd,
R2 = (Gmax(X), . . . , Gmax(X)) ∈ Rd. Cluster-generating elements xr and xs are found in
greatest distance to G1 and G2. While G1 and G2 stay fixed during the run of the algorithm,
in each clustering round new xr and xs are selected and clustered with their respective (k−1)
nearest neighbors. When less than k elements remain, unassigned elements are assigned to
their closest clusters.

Unlike maximum-distance heuristics, TFRP has a second phase aimed at further reducing
information loss. For this, clusters are sorted in descending order according to their cluster
cost and a dissolve check is applied to each cluster in order. When the information loss can
be lowered by reassigning all of its elements, a cluster is dissolved, just as in the dissolve
phase of ONA and ONA∗. After each cluster has been processed, clusters of 2k or more
elements are split by applying the first phase of TFRP on these clusters.

While the performance is similar to MDAV+(both have time complexity O(n2dk−1)),
TFRP fails at delivering consistently lower information loss than MDAV-variants. Neverthe-
less, TFRP can be seen as a first attempt at including dissolve and split mechanisms to mi-
croaggregation heuristics which eventually led to modern implementations like ONA∗. The
heuristic DBA presented in the next section can be seen as an alternative to TFRP lowering
information loss at the cost of consuming significantly more time, while relying on the same
post-processing approach. Experimental data on both, compared to MDAV∗ and ONA∗, is
included in table 8.1.

8.3
Density-based Microaggregation

Density-based Microaggregation (DBA) is an algorithm including techniques from MDAV as
well as from TFRP, while being neither a maximum-distance nor a Lloyd-based heuristic. It
has been introduced by Lin et al. in 2010 [44] and predates modern Lloyd-based microag-
gregation heuristics.

In the first phase of DBA, clusters are created sequentially like in maximum-distance
heuristics. However, instead of using outlier elements as cluster-generating elements, clusters
are built around elements with highest density within unassigned elements. This process is
repeated until less than k elements remain unassigned. After that, remaining elements are
assigned to their closest clusters. In its second phase DBA tries to lower information loss by
dissolving clusters in inverse order of their original creation. Although applied in a much
simpler way, this check is identical to the dissolve check used by ONA and ONA∗. Finally, in

– 105 –

8 Additional Techniques used in Microaggregation Heuristics

a third phase, DBA splits large clusters by applying the MDAV heuristic. See algorithm 21 for
a complete description of DBA.

Although TFRP and DBA use similar split and dissolve mechanisms to ONA, the overall
procedure is quite distinct from Lloyd-based heuristics. TFRP and DBA operate in a single run
of creating an initial clustering and optimizing it afterwards. A cluster is either dissolved or
it is not, there is no reconsideration after changes in other parts of the clustering. Further,
the possibility of reassigning single elements is not used. Experimental data provided by
the authors of DBA indicate that information loss is on par with that of MDAV∗ but fails to
undercut it reliably. See table 8.1 for a comparison between TFRP, DBA, MDAV∗ and ONA∗.

The authors did not give complexity results or experimental data on time consumption.
To compute cost of k-neighborhoods for each element x, O(n2kd) time is needed. As after
each cluster creation the set of unassigned elements U changes, neighborhoods and clusters
have to be updated. Depending on the data structure used, this update process might be
more or less efficient. However, as O(n/k) clusters have to be created, there are O(n/k)

update cycles which are associated with some cost. Hence an optimistic approximation of
time complexity for DBA is O(n3d), which is too high for large databases.

Table 8.1: Comparison of information losses of TFRP, DBA, MDAV∗ and ONA∗ based on data
on TFRP provided in [13] and data on DBA provided in [44]. Only on EIA DBA is able to
deliver better results than MDAV∗.

Information Loss in %
k = 3 k = 4 k = 5 k = 10

MDAV∗ on Census 5.78 7.45 8.83 14.00

TFRP on Census ([13]) 5.80 7.64 8.98 13.96

DBA on Census ([44]) 5.58 7.59 9.05 13.52

ONA∗ on Census 5.27 6.71 8.04 12.46

MDAV∗ on Tarragona 16.15 19.19 22.26 34.74

TFRP on Tarragona ([13]) 16.88 19.18 21.85 33.01

DBA on Tarragona ([44]) 16.15 22.67 25.45 34.81

ONA∗ on Tarragona 15.11 17.79 20.48 31.15

MDAV∗ on EIA 0.45 0.62 0.91 2.63

TFRP on EIA ([13]) 0.43 0.60 0.91 2.59

DBA on EIA ([44]) 0.42 0.56 0.82 2.08

ONA∗ on EIA 0.37 0.52 0.79 1.99

8.4
Sorting-based Microaggregation

Another interesting approach has been presented by Mahmood, Kabir and Mustafa in
2012 [49]. The core idea of this so-called sorting-based microaggregation (SBM) is to sort
a database X by a specific multi-dimensional sorting algorithm and afterwards repeatedly
create clusters around the smallest and largest elements. Similar to MD, SBM tries to find
elements in greatest distance to build its clusters. Before discussing some crucial drawbacks
and oversights of SBM let us take a detailed look at its core functionality.

– 106 –

8 Additional Techniques used in Microaggregation Heuristics

Algorithm 21: DBA [44]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 Let U ← X

2 Let C ← ∅
3 Let counter← 0

4 repeat
5 foreach x ∈ U do
6 Let cost(x)← cost(Nk−1(x,U))

7 Let xr ← argminx∈U cost(x)
8 Let Ccounter ← Nk−1(xr, U)

9 C ← C ∪ {Ccounter}
10 U ← U \ Ccounter
11 counter← counter+ 1

12 until |U | < k

13 foreach x ∈ U do
14 clos(x)← clos(x) ∪ {x}
15 for i← (counter− 1) down to 0 do

// Should cluster Ci be dissolved?
16 foreach s ∈ Ci do
17 Let Ctarget(s)← argminC∈C\{Ci} δ(s, c(C))2

18 Let Ctarget ←
⋃

s∈Ci
{Ctarget(s)}

19 Let C′target ← ∅
20 foreach C ∈ Ctarget do
21 C′target ← C′target ∪ {C ∪ {s ∈ Ci | Ctarget(s) = C}}
22 Let costK ← cost(Ci) + cost(Ctarget)

23 Let costD ← cost(C′target)

24 if costK > costD then
25 C ← C \ ({Ci} ∪ Ctarget)

26 C ← C ∪ C′target

27 foreach C ∈ C do
28 if |C| ≥ 2k then
29 C ← C \ {C}
30 C ← C ∪ MDAV(C)

– 107 –

8 Additional Techniques used in Microaggregation Heuristics

While the sorting mechanism in the original paper is described in a more complicated
way, its effect can be reduced to the following process: For each dimension j consider a
sorted list of all xi in ascending order of their values. To each element xi assign the sum
of its ranks within these sorted lists. The resulting sorted database X ′ is a permutation of
elements in ascending order of their sum of ranks from the previous step. Ambiguities are
broken up arbitrarily. See table 8.2 for an example of this process.

Table 8.2: Example of the sorting mechanism used by SBM. Table (a) is the input database
X, table (b) describes intermediate steps and table (c) is the resulting sorted database X ′.

Element Attribute 1 Attribute 2
x1 7 6

x2 6 3

x3 9 7

x4 8 1

(a) Input database X

Element Rank 1 Rank 2 Rank Sum New Index
x1 2 3 5 3

x2 1 2 3 1

x3 4 4 8 4

x4 3 1 4 2

(b) Intermediate steps

Element Attribute 1 Attribute 2
x′
1 6 3

x′
2 8 1

x′
3 7 6

x′
4 9 7

(c) Sorted database X ′

After the database is sorted, two clusters are created. First, the first element x′1 is
clustered with its (k − 1)-nearest neighbors and afterwards the last element x′n is clustered
with its (k − 1)-nearest neighbors. Subsequently the database of remaining elements is
sorted and reduced again and again until less than 3k elements remain. If at least 2k

elements are left, the database is sorted one last time but only one cluster is created around
the smallest element. Remaining elements are clustered together in a single cluster of up to
2k − 1 elements.

Despite the novel idea of sorting-based microaggreagtion, SBM fails to compete with
maximum-distance heuristics like MDAV+. Furthermore, the original publication includes
false assumptions, missing information and questionable experimental results:

– The authors claim that after sorting, the smallest and largest elements are in greatest
(Euclidean) distance to each other among all pairs of elements. The database depicted
in table 8.3 is a counterexample to this claim. While the smallest element is x1 and the
largest is either x2 or x4, the greatest distance is between x3 and x4.

– 108 –

8 Additional Techniques used in Microaggregation Heuristics

Table 8.3: Exemplary database disproving the claim of maximum (Euclidean) distance
between the smallest and largest elements of sorted databases according to SBM.

Element Attribute 1 Attribute 2
x1 −1 −1.5
x2 1 1

x3 −2 1.5

x4 2 −1

– The authors propose to sort after each round of creating two clusters. However, as the
order of elements does not change when elements are removed, there is no need to sort
more than once.

– There is no time complexity analysis stated by the authors. It seems to be O(nd logn)
for sorting and O(n2/k d) for nearest-neighbor selection.

– The authors claim significantly lower information losses on standard databases com-
pared to MDAV and other heuristics. While there is no public reference implementation,
a re-implementation within the test suite of this thesis indicates significantly higher
information losses than stated by the authors (see table 8.4).

– The authors did not indicate what hardware and programming language was used to ob-
tain runtime results and their execution times reach minutes on EIA, which is extraordi-
nary high even accounting for unnecessary sorting and typical hardware from 2012 when
compared to similar maximum-distance algorithms discussed above. A comparison be-
tween original data and data from the test setting used throughout this dissertation is
given in table 8.4.

Table 8.4: Comparison of information loss and runtime results of SBM claimed in [49] and
based on re-implementation.

Information Loss in %
k = 3 k = 4 k = 5 k = 10

MDAV+ on Census 5.66 7.51 9.01 14.07

SBM on Census ([49]) 2.10 3.63 3.46 6.85

SBM on Census 6.47 9.47 10.58 16.66

MDAV+ on Tarragona 16.95 19.77 22.87 33.25

SBM on Tarragona ([49]) 9.86 12.00 18.17 32.13

SBM on Tarragona 18.71 22.98 28.25 32.59

MDAV+ on EIA 0.49 0.67 1.78 3.55

SBM on EIA ([49]) 0.40 0.53 0.80 1.77

SBM on EIA 0.63 0.87 2.19 4.41

Runtime in s

k = 3 k = 4 k = 5 k = 10

MDAV+ on EIA 0.06 0.05 0.04 0.02

SBM on EIA ([49]) 230 250 270 310

SBM on EIA 0.10 0.09 0.08 0.07

– 109 –

8 Additional Techniques used in Microaggregation Heuristics

8.5
Summary

Since 2005, several new heuristics have been introduced with the goal of replacing maximum
distance based microaggregation heuristics. So far, only the Lloyd-based approach presented
in chapter 6 has been successful in achieving this objective. Nevertheless, the approaches
presented in this chapter might inspire new ideas for improvements able to deliver even
better ratios between time consumption and information loss in the future.

– 110 –

9

Microaggregation Algorithms with
Approximation Guarantees

As can be seen in the previous four chapters, a lot of work has been done, trying to create
efficient microaggregation heuristics that work well in practice. However, for none of the
heuristics discussed previously, approximation bounds are known. For the problem of k-
means clustering there is a wide variety of polynomial time approximation algorithms, so
one might ask why so little is known about approximations of the similar problem of k-
anonymous microaggregation. In fact, only a single approximation algorithm with a rather
high approximation factor of O(k3) is known so far [19]. While there is no obvious reason,
why creating approximations for the microaggregation problem could be harder than for
the k-means clustering problem, we can observe several problems that prevent a simple
adaptation of k-means approximation schemes.

In this chapter we first take a look at µ-Approx, the only polynomial time microaggrega-
tion approximation known so far, include a short recap of k-means clustering approximations
and finally explore opportunities and problems on a way to create better approximation al-
gorithms for the microaggregation problem. But before we start, let us first recap the basic
definitions of approximation algorithms.

Definition 9.1 (Optimization Problem).
An optimization problem Π = (I, S, σ, f) is a tuple consisting of a set of problem instances
I, a set of solutions S, a mapping σ : I → 2S from problem instances i ∈ I to sets of feasible
solutions σ(i) ⊆ S and an objective function f : I × S → R+

0 , assigning a non-negative real
value to pairs of problem instances and feasible solutions.

An optimal solution OPT(i) to an instance i ∈ I is either a feasible solution of min-
imal or maximal objective function value, depending on whether Π is a minimization or
maximization problem.

Definition 9.2 (α-Approximation Algorithm).
Given an optimization problem Π = (I, S, σ, f), an algorithm A is an α-approximation

algorithm for Π if for any instance i ∈ I a solution s ∈ σ(i) is computed in polynomial
time7, such that

– f(s) ≤ α ·OPT(i), if Π is a minimization problem and
– f(s) ≥ OPT(i)/α, if Π is a maximization problem.

7 More precisely: in time polynomial in the size of i.

– 111 –

9 Microaggregation Algorithms with Approximation Guarantees

Fact 9.3.
For each n, d, k ∈ N, the optimal k-anonymous microaggregation problem is an optimiza-
tion problem Πµ with databases X ∈ Xn×d as inputs, k-member clusterings CX as feasible
solutions and the distortion cost function cost as objective function. The optimal solution
to a database X is the k-member clustering CX of minimal cost.

9.1
Existing Microaggregation Approximation

The currently only existing microaggregation approximation algorithm called µ-Approx has
been introduced by Domingo-Ferrer et al. in 2008 [19]. In a way it is similar to the mini-
mum spanning tree approach presented in section 8.1, as in both algorithms elements are
considered as vertices of a weighted graph with edge weights describing distances between
elements. However, in µ-Approx a weighted directed acyclic graph is used instead of a forest
of trees.

µ-Approx takes a database X ∈ Xn×d and an anonymity parameter k and creates a
weighted directed acyclic graph (DAG) G(X, k) := (V,E,w) for V := {1, . . . , n}, E ⊆
{(u, v)|u, v ∈ V } and w(u, v) := δ(xu, xv). The set of incoming edges of a node u ∈ V is
noted in(u), analogously the set of outgoing edges of a node u is noted out(u). Connected
components C ⊆ V of G(X, k) are non-extendable sets of nodes that are connected by
edges. As nodes of V are indices of elements within X, the set C of connected components
can also be interpreted as a clustering according to definition 2.9. As defined in chapter 5
we use N`(u, V

′) to denote the set of u ∈ V and the indices of the ` nearest neighbors of
xu according to δ2(·, ·) restricted to the set of elements xv with v ∈ V ′ ⊆ V . A solution to
the k-anonymous microaggregation problem can be obtained by considering each connected
component C as a cluster of its elements.

The algorithm µ-Approx consists of three sub-procedures called in order and only once.
After that, the following properties regarding the resulting graph are guaranteed:

1. Each vertex has at most one outgoing edge.
2. An edge (u, v) exists only if v is one of the k−1 nearest neighbors of u according to δ2.
3. The size of every connected component is at least k.
4. The size of every connected component is at most max(2k − 1, 3k − 5).

The first sub-procedure of µ-Approx called Forest creates a DAG that satisfies con-
dition 1 to 3 but not the upper limit of component size stated in condition 4. Next, in
the sub-procedure called Decompose, components of size s > max(2k − 1, 3k − 5) are split
up to satisfy condition 4. Finally, MDAV is used on all components that have 2k or more
elements. As there are between 2k and 3k − 5 elements, MDAV creates exactly 2 clusters,
of which one contains k and the other one all remaining elements. Forest and µ-Approx
are shown in algorithm 22 and algorithm 23, respectively. A pseudocode of MDAV is given
in algorithm 2 in chapter 5. Decompose consists of a lengthy case analysis which describes,
how all connected components of size s > max(2k− 1, 3k− 5) are split in total time O(n2)

without violating condition 3 in the resulting DAG. As its details are rather technical and

– 112 –

9 Microaggregation Algorithms with Approximation Guarantees

not needed to understand the approximation guarantees of µ-Approx, we will omit them
here. Consider the original publication for details.

Algorithm 22: Forest [19]
input : database X of size n and minimal cluster size k

output: DAG G = (V,E,w) with connected components C = {C1, . . . , Cm}

1 Let G = (V,E,w) with V ← {1, . . . , n} and E ← ∅
2 Let C be the set of connected components in G

3 repeat
4 Select any C ∈ C with |C| ≤ k

5 Select any u ∈ C with out(u) = 0

6 Select any v ∈ Nk−1(u, V \ C)

7 E ← E ∪ (u, v)

8 Let w(u, v)← δ(xu, xv)

9 Update C
10 until minC∈C |C| ≥ k

Algorithm 23: µ-Approx [19]
input : database X and minimal cluster size k

output: k-member clustering C = {C1, . . . , Cm}

1 G← Forest(X, k)

2 G← Decompose(G, k)

3 Let C be the set of connected components in G

4 foreach C ∈ C do
5 if |C| ≥ 2k then
6 C ← C \ {C}
7 C ← C ∪ MDAV(C, k)

Theorem 9.4 ([19]).
Given k ≤

√
n, the worst case time complexity of algorithm 23 is O(n2).

Theorem 9.5 ([19]).
µ-Approx is a 2(2k−1)(max(2k−1, 3k−5))2-approximation algorithm for the k-anonymous

microaggregation problem.

Proof sketch. By theorem 2.19 we know that step 4 to 7 of algorithm 23 cannot increase
cost. The approximation guarantee is shown to hold after step 2 already. Let E(C) describe
all edges in G between nodes from connected component C ∈ C, further let cost(C) indicate
the sum of costs of the clusters corresponding to the components C and COPT a k-member
clustering of optimal cost. Both C and COPT refer to the same database clustered. Two

– 113 –

9 Microaggregation Algorithms with Approximation Guarantees

inequalities are shown:

cost(C) ≤ max(2k − 1, 3k − 5)
∑
C∈C

 ∑
e∈E(C)

w(e)

2

(9.1)

∑
C∈C

 ∑
e∈E(C)

w(e)

2

≤ 2(2k − 1)max(2k − 1, 3k − 5)cost(COPT) (9.2)

The combination of equation 9.1 and 9.2 shows the desired approximation bound.

While an approximation guarantee of about O(k3) is quite high, in most cases µ-Approx
seems to create clusterings with utility comparable to that of clusterings created by max-
imum distance heuristics. Nevertheless, as empirical results in [19] show, for practical
applications, MDAV seems to be the better choice.

9.2
Overview of k-Means Approximations

In section 4.1 similarities and differences between the k-means and k-member clustering
problems are discussed. We have seen that despite the similarities, k-means seems to be
somewhat easier, both in terms of theoretical complexity classes as well as in properties
limiting the search space for optimal solutions. In short, we have seen that optimal k-
means clusterings are always multiset-respecting (see corollary 4.5) and that in any optimal
k-means clustering each element is in the cluster represented by the closest centroid to it
(see theorem 4.3). Both properties are missing in the k-member clustering problem. Unlike
k-anonymous microaggregation, k-means is further known to be solvable in polynomial time
if both d and k are fixed.

The wide availability of approximation algorithms for the k-means problem further
seems to indicate that k-means is easier to approximate than microaggregation for which
there is only a single non-trivial approximation algorithm, as described above. While it
is out of scope for this thesis to discuss k-means approximation algorithms in detail, we
now take a short look at some important results to see what can be learned from k-means
approximations in respect of finding approximations for the microaggregation problem.

Coresets

A common approach used throughout many k-means approximation algorithms is the reduc-
tion of search space for cluster centers to finite sets of candidates. Introduced by Matušek
in 2000 [52] and improved by Har-Peled and Mazumdar in 2004 [32] as well as by Feldman et
al. in 2007 [27] this technique is mainly used to create (1+ ε)-approximation algorithms for
k-means instances with constant k. While the details on how to create such coresets differ,
the main idea is to guarantee that the cost of an optimal clustering restricted to choose

– 114 –

9 Microaggregation Algorithms with Approximation Guarantees

cluster representatives from the coreset, is not higher than (1+ ε) times the cost of an unre-
stricted optimal clustering. This is guaranteed by placing center candidates on intersections
of integer grid lines or placing them around centroids of another k-means approximation
solution. Guarantees are shown by relying on the fact that for k-means clustering, each
element is contained in the cluster of its closest center.

Local Search

A well-known k-means approximation algorithm that achieves an approximation factor of
(9 + ε) in the general case in polynomial time has been introduced by Kanungo et al.
in 2004 [35]. The algorithm mostly referred to as the local search algorithm uses a discretiza-
tion of the d-dimensional space into a set S of candidates for cluster centers as presented
in [52]. Next, an arbitrary set of k initial centers is chosen from S. After this initialization
step, an iterative approach tries to lower distortion by replacing up to p current centers
by other center candidates from S. When no such improvement is possible, the process
reaches convergence and the algorithm holds. The algorithm is local in the sense that only
a fraction of centers is swapped in each step, hence both clusterings before and after the
swap are quite similar. The authors show that after convergence, the resulting clustering
C achieves cost(C) ≤ (3 + 2/p)2 cost(COPT) as long as COPT only uses centers from S. The
stated approximation factor of (9 + ε) holds for large values of p and includes inaccuracies
caused by the discretization, approximate convergence to reach polynomial runtime and the
difference between (3 + 2/p)2 and 9. Again, as the proof heavily relies on the fact that any
element is clustered with its closest center, it is not applicable for k-member clusterings.

k-Means++

As discussed in theorem 6.2, the k-MEANS++ algorithm offers expected cost bounded by
O(log k) times the cost of an optimal algorithm. In contrast to other approaches in this
section, this is achieved without relying on coresets but by cleverly picking initial cluster
centers for Lloyd’s algorithm. As we have already seen in section 6.1, this guarantee again
relies on the fact that any element is clustered with its closest center, so it is not applicable
for k-member clusterings.

LP Relaxation

A modern breakthrough in k-means approximation has been an LP-relaxation by Ahmadian
et al. in 2019 [1]. There have been LP-relaxations to clustering algorithms before, however,
as they typically rely on the triangle inequality, which does not hold for the squared Eu-
clidean distance, they could not be adapted to k-means (see section 2.4).

Starting with the LP-relaxation of the discrete8 k-means clustering problem depicted
in figure 9.1, the algorithm of Ahmadian et al. achieves an approximation guarantee of
(6.357 + ε) for any ε ≥ 0. The algorithm is highly complex but in essence relies on a
Lagrangian relaxation of the LP depicted in figure 9.1. For this, condition (4) is moved into

8 For discretization the coreset technique from [27] is used.

– 115 –

9 Microaggregation Algorithms with Approximation Guarantees

min
∑

i∈S,j∈X

xij · δ(j, i)2

s.t. (1)
∑

i∈S xij ≥ 1 ∀j ∈ X

(2) xij ≤ yi ∀j ∈ X, i ∈ S

(3)
∑

i∈S yi ≤ k

(4) xij , yi ≥ 0 ∀j ∈ X, i ∈ S

Figure 9.1: LP-relaxation of the discrete k-means clustering problem. There is a variable
yi for each center candidate i ∈ S, which indicates whether i is active or not. Further there
are variables xij that indicate whether a database element j ∈ X is included in the cluster
belonging to the center candidate i ∈ S. Distances δ(·, ·)2 do not use variables of the LP
but are instead computed and stored beforehand.

the objective, changing the objective function into

min
∑

i∈S,j∈X
xij · δ(j, i)2 + λ

(∑
i∈S

yi − k

)

which helps transforming fractional LP-solutions into valid solutions using only integers for
x and y. The resulting LP allows the activation of more or less than k centers, which needs
to be prevented by adjusting the activation cost λ accordingly. Doing this in polynomial
time is one of the major problems solved by Ahmadian et al.

9.3
New Approaches for Microaggregation Approximation

Adapting the method of Ahmadian et al. seems to be a valid approach to obtain better
approximation guarantees than the O(k3) bound of µ-Approx. This section is to be un-
derstood as a first part of such an adaptation. First, a simple method for discretization is
introduced as a replacement for more elaborate solutions in the original approach, which
are not applicable to k-member clusterings. In a second step, we take a look at the adapted
LP, which describes microaggregation instances. Future work should focus on the task of
evaluating a Lagrangian relaxation of this LP and to build a redistribution algorithm that
converts fractional LP solutions into valid clusterings.

Discretization of a k-Member Clustering Instance

From 2.14 we know that optimal centers of any clusters lie at the centroid of their elements.
As we further know that any optimal cluster has between k and 2k − 1 elements, a trivial
discretization of center candidates would be the set of centroids of all possible sets of k to
2k − 1 elements. Although this solution would guarantee that an optimal clustering can
still be found, it is impractical because of the computational overhead of

∑2k−1
i=k

(
n
i

)
centroid

computations and the handling of this large candidate set.

– 116 –

9 Microaggregation Algorithms with Approximation Guarantees

A simplified version of this strategy would only consider centroids of clusters of size 2,
regardless of k, reducing the complexity to (n2−n)/2. This would guarantee that there are
centroid candidates near and between any accumulation of elements. However, to obtain
approximation guarantees we need every centroid chosen in an optimal solution not to be
farther away than a fixed value ε from a centroid candidate, even in a worst case situation.
As simple examples show, there are situations in which optimal centroids are arbitrarily
far away from centroid candidates. Take for example the one-dimensional database of three
elements x1 = 0, x2 = x3 = α for any α ∈ N and consider k = 3. The set of center candidates
would be S = {α2 , α} but the correct optimal centroid for the only cluster possible would
be c = 2

3α which is in distance 1
6α from its closest center candidate. Hence, by scaling α

we obtain an unbounded rise in additional cost ε when choosing centroids from S instead
of taking optimal ones. Similar counterexamples exist for sets of centroids of other fixed
numbers of elements, including the set of elements as center candidates.

A third and more realistic approach would be to construct an ε-grid between the ex-
treme values of elements in each dimension and allow centroids at grid intersections. As a
consequence, no potential optimal centroid can be farther than

α :=

√
d ·
(ε
2

)2
=

√
dε

2

from any center candidate. By applying theorem 2.15 we obtain that additional cost is
bounded by∑

C∈C
|C| · δ(c(C), ĉ(C))2 ≤ n · α2 ∈ O

(
ndε2

)
compared to the cost of an optimal clustering with optimal centroid selection. Further,
assuming ∆j := (maxx∈X xj − minx∈X xj) for each dimension j, the size of such a center
candidate set would be∏

1≤j≤d

(
∆j

ε
+ 1

)
.

It should be obvious, that this simple approach is far from optimal and can easily be
improved by adapting the density of grids in more populated areas. Nevertheless, it shows
that there are indeed feasible solutions to reduce the set of centroids to a relatively small set
of candidates in polynomial time and introducing only an arbitrarily small approximation
error.

Adaptation of k-Means LP-Relaxation

The most important step in designing an LP relaxation of the k-anonymous microaggre-
gation problem is of course the formulation of a suitable LP. A simple adaptation of the
k-means LP of figure 9.1 results in an LP relaxation of the microaggregation problem. Note,
that all integer solutions to the LP depicted in figure 9.2 are valid k-member clusterings
and that an optimal integer solution is also an optimal solution to the microaggregation
problem.

– 117 –

9 Microaggregation Algorithms with Approximation Guarantees

min
∑

i∈S,j∈X

xij · δ(j, i)2

s.t. (1)
∑

i∈S xij = 1 ∀j ∈ X

(2) xij ≤ yi ∀j ∈ X, i ∈ S

(3)
∑

j∈X xij ≥ k · yi ∀i ∈ S

(4) xij , yi ≥ 0 ∀j ∈ X, i ∈ S

(5) xij , yi ≤ 1 ∀j ∈ X, i ∈ S

Figure 9.2: LP-relaxation of the discrete k-anonymous microaggregation problem. There
is a variable yi for each center candidate i ∈ S, which indicates whether i is active or not.
Further there are variables xij that indicate whether a database element j ∈ X is included
in the cluster belonging to the center candidate i ∈ S. Distances δ(·, ·)2 do not use variables
of the LP but are instead computed and stored beforehand.

A key difference between microaggregation and k-member clusterings is the fact that
cluster sizes for valid and optimal microaggregation solutions can be bounded by k ≤ |C| ≤
2k − 1. Hence, the solution set of the LP can safely be reduced by adding an additional
condition

(6)
∑
j∈X

xij ≤ (2k − 1)yi ∀i ∈ S.

As it has been the case for solutions of the k-means clustering LP, it is mostly impossible
to obtain a valid integer solution by rounding a fractional one. Not only can elements be split
up between several clusters to circumvent cluster sizes of more than k, also clusters might be
only partly active to allow less element mass being designated to them. Both problems can
only be avoided by global redistribution algorithms, because re-allocations are needed and
might propagate changes throughout the solution. A two-dimensional example comparing
an optimal microaggregation solution with an optimal solution to the LP relaxation is
shown in figure 9.3. Even though the integrality gap, i.e. the ratio between the values
of the objectives of optimal integer and optimal fractional solutions is quite small in this
example, there seems to be no easy way to exploit this. Instead, it can be seen that most
element allocations and center activeness need to be changed to obtain any valid solution.
As discussed above, a Lagrangian relaxation might help to reduce the work needed to obtain
a valid clustering from a fractional LP solution.

– 118 –

9 Microaggregation Algorithms with Approximation Guarantees

{x1, x2}

{x3, x4}

x5

{x6, x7}

{x8, x9}

a = 1 a = 1

b
=

0
.5

b
=

0
.5

1/3

2/3

2/3

2/3

2/3

2 · 1/3
2 · 2/3

2 · 2/3

2 · 1/3

1/3

2/3

2 · 2/3

2 · 2/3

2 · 1/3

2 · 1/3

(a) Optimal fractional LP solution

{x1, x2}

{x3, x4}

x5

{x6, x7}

{x8, x9}

a = 1 a = 1

b
=

0
.5

b
=

0
.5

1 1

2 · 1

2 · 1

1

2 · 1

2 · 1

(b) Optimal integer LP solution

Figure 9.3: Example comparing an optimal (fractional) LP solution to an optimal inte-
ger valued solution representing an optimal 3-anonymous microaggregation for the given
database X = (x1, . . . , x9) assuming a candidate set for centers generated by a 0.1-grid.
Crosses indicate active centers and arrows (partial) membership of elements in clusters.
Fractions at crosses and arrows indicate partial activeness of centers and partial member-
ship of elements in clusters, respectively. The value of the objective function (equal to
distortion cost for integer valued solutions) is 2.18 for solution (a) and 2.8 for solution (b).

– 119 –

10

Adapting Differential Privacy for
Microdata Release

In 2006 Dwork el al. introduced differential privacy as a new – semantic privacy guarantee
enabling private database queries [23]. Their work, published under the name Calibrating
Noise to Sensitivity in Private Data Analysis, can be seen as one of the most influential
inventions in modern privacy research, a feat for which the authors have been awarded the
Gödel prize in 2017 [25].

Unlike syntactic privacy guarantees like k-anonymity, differential privacy limits disclo-
sure of sensitive information regardless of attacker knowledge or data homogeneity, offering
superior privacy compared to k-anonymity. It has been widely adopted in many research
domains and in practice and is often seen as a new generation of privacy guarantee able
to replace most previous ones. Until today, differential privacy is one of the most active
research fields within computer and communication security.9

Recall, the topic of this thesis is the release of databases containing sensitive data
from individuals complying with two conflicting requirements: On the one hand we want
to protect the privacy of each individual contained in the database. On the other hand we
want the published data to be useful for a broad range of scientific research without limiting
its use case to specific analysis goals. While differential privacy could be used not only to
anonymize database queries but also for the unrestricted release of data, there are many
obstacles still to be solved for differential privacy to be able to replace microaggregation.

In this chapter we take a look at possible approaches to combine or replace microag-
gregation with or by differential private mechanisms. In the first section differential privacy
and the two most important means to achieve it are defined concisely. After that we take
a closer look at the achievements and shortcomings of existing approaches to combine mi-
croaggregation or k-anonymity with differential privacy. Finally, in the third section a path
for further research is offered.

9 As of March 2021 Google Scholar lists 152.000 results for differential privacy published in the year 2020

compared to 2000 for k-anonymity, 4000 for post quantum cryptography, 75.000 for 5G and 273.000 for
corona virus.

– 120 –

10 Adapting Differential Privacy for Microdata Release

10.1
Differential Privacy in a Nutshell

In simple terms, differential privacy is a promise made by a data collector to its data
providers (also called individuals). Individuals are guaranteed that any data published by
the data collector is nearly identical, whether their data is included or not. As this promise
is made to every data provider, it offers a protection not only in the average case but also
in a worst case, i.e. independently of the specific data provided by the individuals. In other
words, when data is released, each potential data provider can be assured that the (negative
or positive) effects they have to face are nearly independent of their participation, i.e.
whether they participate or not, the outcome is the same. Further, differential privacy offers
plausible deniability to the data providers, as the influence of one individual is undetectable.

A common misconception about differential privacy is that it prevents any harm to
data providers. However, such goal is unachievable as the objective of any study is a gain
of information usable to affect the real world. When participants need to be shielded from
any effect, no data, not even incorrect or fictional data may be published. As an example
consider a study on census data which finds that dog owners are twice as likely to be involved
in severe traffic accidents than a comparable group of cat owners. Whether this correlation
is accurate or not, whether the results are found using differential private data or not and
whether any particular dog owner’s data is included in the data or not is irrelevant for the
consequences any dog owner has to face when politics and insurance companies act on this
result.

To define differential privacy more formally, we need some mathematical prerequisites.
Definitions and results presented in this section follow the structure and notation used in
the book The Algorithmic Foundations of Differential Privacy by Cynthia Dwork and Aaron
Roth [24] as the techniques used in differential privacy are too different from microaggrega-
tion to adapt the notation presented in chapter 2.

Definition 10.1 (Probability Simplex).
Given a discrete set B, the probability simplex ∆(B) is

∆(B) =

P ∈ R|B| : pi ≥ 0 for all i and
|B|∑
i=1

pi = 1

 .

Definition 10.2 (Randomized Algorithm).
A randomized algorithm (mechanism)M with domain A, discrete range B and an internal
mapping M : A → ∆(B) returns a value b = M(a) with probability (M(a))b for each
b ∈ B.

In differential privacy, databases are represented as histograms X ∈ N|X | in which each
entry xi represents the number of elements of type i ∈ X within X. The size of a database
can be computed as ||X||1 =

∑|X |
i=1 |xi|.

– 121 –

10 Adapting Differential Privacy for Microdata Release

Definition 10.3 (Distance Between Databases).
The (`1-)distance between two databases X and Y is

||X − Y ||1 :=
|X |∑
i=1

|xi − yi|.

Definition 10.4 (Differential Privacy [24]).
A randomized algorithmM with domain N|X | is (ε, δ)-differentially private if for all S ⊆
Range(M) and for all X,Y ∈ N|X | such that ||X − Y ||1 ≤ 1:

Pr[M(X) ∈ S] ≤ exp(ε)Pr[M(Y) ∈ S] + δ,

where the probability space is over the coin flips of the mechanismM.
If δ = 0, we say thatM is ε-differentially private.10

Fact 10.5.
Some important facts about differential privacy:

– δ should be significantly smaller than the reciprocal of the size of the database to
prevent a simple sampling approach from being classified as private.

– For any two neighboring databases (ε, δ)-differential privacy guarantees that the abso-
lute privacy loss is bounded by ε with probability at least 1− δ.

– No data-independent post-processing done to the result of a differentially private mecha-
nism can decrease the privacy, i.e. the composition of any randomized data-independent
mapping f and an (ε, δ)-differentially private mechanismM is (ε, δ)-differentially pri-
vate.

– Privacy loss is additive: The composition of an (ε1, δ1)-differentially private mechanism
M1 and an (ε2, δ2)-differentially private mechanismM2 is (ε1+ε2, δ1+δ2)-differentially
private.

We now want to consider the two most common techniques used to achieve differential
privacy. The Laplace mechanism adds Laplacian noise to any output to hide the impact of
a single individual. The exponential mechanism samples from the set of all outputs with a
sampling distribution correlating with the utility of the outputs.

The Laplace Mechanism

The Laplace mechanism [23] is designed to provide privacy when numeric queries f : N|X | →
Rk are applied to databases X ∈ N|X |. It achieves differential privacy by adding Laplacian
noise to the output of a query. The amount of noise depends on the sensitivity of queries,
which describes the magnitude of changes to the output when a single element is added to
or removed from the database.
10 An alternative model of differential privacy considers ||x||1 as public and compares databases of the

same size that differ in a single element. Results using one of the definitions are usually adaptable to
the other one as well [9].

– 122 –

10 Adapting Differential Privacy for Microdata Release

Definition 10.6 (Sensitivity).
The `1-sensitivity of a function f : N|X | → Rk is

∆f := max
X,Y ∈N|X|

||X−Y ||1=1

||f(X)− f(Y)||1.

Definition 10.7 (Laplace Distribution).
The Laplace Distribution centered at 0 with scale b is a distribution with probability density
function

Lap(x | b) := 1

2b
exp

(
−|x|

b

)
and variance σ2 = 2b2.

We write Lap(b) to describe the Laplace distribution with scale b or a random variable
Γ ∼ Lap(b).

Definition 10.8 (Laplace Mechanism [24]).
Given any function f : N|X | → Rk, the Laplace mechanism is defined as

ML(X, f(·), ε) := f(X) + (Γ1, . . . ,Γk)

where Γi are i.i.d. random variables drawn from Lap(∆f/ε).

A simple calculation shows:

Theorem 10.9 ([24]).
The Laplace mechanism preserves (ε, 0)-differential privacy.

As the Laplace mechanism is the first and most prominent differential private mecha-
nism, there exists a rich toolbox of results regarding composability, utility and applicability
for a wide range of applications. See e.g. [24, 22, 73]. The most important property is
additive composition as described in fact 10.5: When two or more queries are applied to
the same database, privacy is diminished depending on the sum of all ε of the mechanisms
involved. As a result any data collector must either accept a loss in privacy over time or
instead limit the amount and sensitivity of queries allowed. While the first strategy is un-
acceptable in most applications, the second one might be achieved by releasing a fixed set
of query results or instead decreasing ε after each query, ultimately consuming all utility of
the data.

The Exponential Mechanism

There are situations in which the Laplace mechanism cannot be used effectively. For exam-
ple, consider a multiset of elements that occur with different frequencies. A query might
ask for the index of the element of highest frequency. Adding Laplacian noise to the correct
output and potentially rounding to the next index does not result in a sensible result un-
less the elements are in order. However, applying the Laplace mechanism independently to
queries of individual frequencies and reporting the highest value does not solve the problem
either, as too much noise is required due to additive composability.

– 123 –

10 Adapting Differential Privacy for Microdata Release

One solution to these problems is the exponential mechanism [53]. In the exponential
mechanism all possible results of a query are evaluated according to their utility for a specific
application. However, unlike ideal optimization algorithms there is no guarantee that the
best solution is returned. Instead a probability distribution is defined on all possible outputs.
By returning outputs of high utility with a higher probability than outputs of low utility,
the returned data is guaranteed to be useful for the specific application without giving up
privacy.

Before the exponential mechanism can be defined, a notion of utility sensitivity analo-
gous to (range)-sensitivity defined in definition 10.6 is needed.

Definition 10.10 (Utility Sensitivity).
Given any function f : N|X | →R, a utility function u : N|X | ×R → R maps each possible
result to a numeric utility. The sensitivity of a utility function u : N|X | ×R → R is

∆u : max
r∈R

max
X,Y ∈N|X|

||X−Y ||1=1

|u(X, r)− u(Y, r)|.

Definition 10.11 (Exponential Mechanism [24]).
The exponential mechanism ME(X,u,R, ε) selects and outputs an element r ∈ R with
probability proportional to exp

(
ε·u(X,r)
2∆u

)
.

Theorem 10.12 ([24]).
The exponential mechanism preserves (ε, 0)-differential privacy.

As the sensitivity is now defined as the difference in utility on neighboring databases,
large differences in query results are no obstacle any more. Picking up the maximum
frequency example from above it is conceivable that adding a single element to the multiset,
the index of the element of largest frequency changes significantly. However, the utility of
indices remains nearly identical as a single element cannot change the frequencies much.
Hence, when only the index of the element of highest frequency is requested, the exponential
mechanism is well better suited than the Laplace mechanism.

A strong argument for the use of the exponential mechanism are its utility guaran-
tees. As the probability of returning outputs falls exponentially when they have worse
utility, it is highly unlikely that an output with utility worse than the optimal utility minus
O((∆u/ε) log |R|) is returned. (See [24] for details.)

Of course, the exponential mechanism also has some disadvantages. For example, the
exponential mechanism has to evaluate utility for all or at least a significant amount of
possible query outputs which results in an increase in time complexity compared to the
Laplace mechanism.

10.2
Using Differential Privacy to Protect Data Release

Two trivial methods of publishing databases in a differentially private way are:

– 124 –

10 Adapting Differential Privacy for Microdata Release

1. Query the frequency of every possible element from X and use the Laplace mechanism
to protect the results. By combining and rounding all results a new database can be
created and published. As the final aggregation is data-independent, the privacy is
solely defined by the sensitivity of the queries.

2. Consider the set of all possible databases and a utility function u that measures similar-
ity between the synthetic and original database in some way. By using the exponential
mechanism a synthetic database similar to the original one is selected. For bigger ε the
probability for a more similar database increases. Any operations and analyses on this
database can be done without further reducing privacy.

Unfortunately, both approaches fail when attempting to implement them naively. While
for the first approach, the number of queries is just too high to allow small ε when relying
on additive composability, the second approach has two distinct problems. First, the set
of all possible databases is tremendously large, preventing an efficient way to compute all
utilities as needed. Further, there is no guarantee that the synthetic database is similar
to the original one in any other way than measured by u. Hence, we have to break the
elemental purpose of microaggregation: Release general purpose data without restrictions
on specific use cases.

SmallDB

Over the years there have been several attempts to allow the differentially private publication
of data by adapting one of the two attempts described above. The first algorithm we consider
is called SmallDB [8, 9, 24]. It has been proposed by Blum et al. [8, 9] and extended by
Dwork et al. [24] as an alternative to offline data synthesis using the exponential mechanism
described in attempt 2 from above. While the disadvantage of restricted utility guarantees
is still given, the time complexity and utility for specific queries of resulting data can
be improved significantly by applying SmallDB instead of a naive implementation of the
exponential mechanism. However, as we will see below, the algorithm is applicable only for
large databases.

The utility guarantees of SmallDB are limited to so-called linear queries, which ask
about the percentage or sum of elements with specific predicates g. In contrast to counting
queries which allow only binary predicates g : X → {0, 1}, linear queries allow g : X → [0, 1].
For example, How many smokers live in Vancouver? is a linear query, while What is the
variance in dimension j of the database? is not.

Definition 10.13 (Linear Query).
Given a universe X = {χ1, . . . , χ|X |} and a database X ∈ N|X |, a base query g : X → [0, 1]

asks to what extend an element χ has a specific property.
Using a base query g, a normalized linear query f : N|X | → [0, 1] has the form

f(X) :=
1

||X||1

|X |∑
i=1

xi · g(χi).

– 125 –

10 Adapting Differential Privacy for Microdata Release

Using a base query g, an un-normalized linear query f : N|X | → [0, ||X||1] has the form

f(X) :=

|X |∑
i=1

xi · g(χi).

A linear query is either an un-normalized or a normalized linear query.

In SmallDB the range of the exponential mechanism is limited to databases of size
log |Q|
α2 for a set of linear queries Q and an accuracy parameter α ∈ R. Further, the utility

is measured as the negative of the maximum difference between the output of any query
f ∈ Q on the original and synthetic database. See algorithm 24 for a detailed description
of SmallDB.

Algorithm 24: SmallDB [24]
input : database X ∈ N|X |, set of linear queries Q, ε ∈ R and α ∈ R
output: synthetic database Y ∈ N|X |

1 Let R← {Y ∈ N|X | : ||Y ||1 = log |Q|
α2 }

2 Let u : N|X | ×R → R with u(X,Y) := −maxf∈Q |f(X)− f(Y)|
3 Sample and Output Y ∈ R withME(X,u,R, ε)

(ε, 0)-differential privacy of SmallDB follows directly from the (ε, 0)-differential privacy
of the exponential mechanismME(X,u,R, ε). It should be noted that SmallDB is indeed
able to achieve sufficiently low time consumption even for very large databases, as the size
of R depends on |Q| and α alone. Using the fact ∆u ≤ 1/||X||1 for normalized linear queries,
SmallDB achieves the following utility guarantee for queries included in Q:

Theorem 10.14 ([24]).
Let Q be any class of normalized linear queries. Let Y be the database output by

SmallDB(X,Q, ε, α). Then with probability 1− β:

max
f∈Q
|f(X)− f(Y)| ≤ α+

2
(

log |X | log |Q|
α2 + log

(
1
β

))
ε||X||1

.

Further, for any database x with

||X||1 ≥
16 log |X | log |Q|+ 4 log

(
1
β

)
εα3

SmallDB(X,Q, ε, α2) achieves with probability 1− β

max
f∈Q
|f(X)− f(Y)| ≤ α.

As can be seen in algorithm 24 and theorem 10.14 neither complexity nor privacy
of SmallDB depends on the size of the database. However, utility does. For a worst case

– 126 –

10 Adapting Differential Privacy for Microdata Release

precision loss of α to hold with high probability, theorem 10.14 requires a minimum database
size in relation to the size of Q. Solving the size constraint for |Q| we obtain

|Q| ≤ 4 log(|X|)
√

β exp
(

α3ε||X||1
16 log(|X |)

)
. (10.1)

To allow the set of queries needed to reconstruct properties of X to be large enough,
equation 10.1 dictates that the accuracy factor α as well as the privacy leakage ε and the
size of the database ||X||1 must be large in relation to the size of the set of possible database
elements. Let us consider a simple example to analyze whether this bound is enough to
allow a publication of databases similar to those typically handled by microaggregation.
Consider a discretization of 5-dimensional data into 20 different values in each dimension,
i.e. |X | = 205. Further assume ε = 0.1 and β = 0.01. In table 10.1 the resulting upper
limits on |Q| according to equation 10.1 are shown. As can be seen, although we use a
generously rough discretization of a low-dimensional element domain and allow large errors
α (remember, we consider normalized linear queries ranged between 0 and 1) SmallDB seems
to be unable to handle reasonably small databases based on the guarantees given by Dwork
et al. Further relaxing ε and β does not help either as their effect in equation 10.1 is very
limited.

Table 10.1: Number of queries answerable for ε = 0.1, β = 0.01 and different values for α
and ||X||1. |X | has been set to 205.

α ||X||1 max |Q|

10−2

103 0

106 0

107 0

108 0

109 1

10−1

103 0

106 1

107 60

108 1018

109 10181

Further decreasing |X | does help, but becomes more and more unrealistic for large
databases of millions of elements. Although the number of queries is allowed to be expo-
nential in ||X||1 this result does not translate well into the context of data release. As we
cannot assume strict constraints on the use-case for the resulting database, it would be a
stretch to assume that a sub-exponential number of queries would be enough to accurately
translate the original database X into a synthetic database Y .

It should be obvious from the example that theorem 10.14 is not enough to allow
SmallDB in the context of general-purpose private data release as targeted by microaggre-
gation. However, by restricting queries to counting queries (i.e. restricting base queries to
g : X → {0, 1}) and using results from learning theory, Blum et al. were able to provide
stronger guarantees. To quote the stronger bounds we first need to introduce the concepts
of shattering and VC dimension from the field of algorithmic learning theory. Again, the
definitions are adapted from [24] to assure notational consistency.

– 127 –

10 Adapting Differential Privacy for Microdata Release

Definition 10.15 (Shattering).
A class of counting queries Q shatters a collection of elements S ⊆ X if for every T ⊆ S,
there exists an f ∈ Q such that {s ∈ S : f(s) = 1} = T .

Definition 10.16 (Vapnik-Chervonenkis (VC) Dimension).
A collection of counting queries Q has VC-dimension d if there exists some set S ∈ X of
cardinality |S| = d such that Q shatters S, and Q does not shatter any set of cardinality
d+ 1. This quantity is denoted by VC-DIM(Q).

Informally speaking, if a set of queriesQ shatters a set S, every subset T of S is uniquely
defined by a query f ∈ Q. Further, if for example VC-DIM(Q) = 3, there is no subset of
four elements from X such that each selection of these four elements is uniquely defined by
a function f ∈ Q, whereas there is at least one such subset of size 3. Typically by the VC
dimension the expressiveness of a set of queries is measured. Query sets with larger VC
dimension can express more complex questions but are harder to learn from examples.

Equipped with the notion of VC dimension we are now able to consider a stronger
utility guarantee for SmallDB than that offered by theorem 10.14.

Theorem 10.17 ([24]).
Let Q be any class of normalized counting queries. For any database X with

||X||1 ≥ O

 log |X |VC-DIM(Q) + log
(

1
β

)
εα3

SmallDB(X,Q, ε, α2) =: Y achieves with probability 1− β

max
f∈Q
|f(X)− f(Y)| ≤ α.

The new result is stronger than the previous one, because for any finite set of queries Q
it holds VC-DIM(Q) ≤ log |Q|. (See [24].) Analogous to equation 10.1 we can reformulate
theorem 10.17 into an upper bound for VC-DIM(Q):

VC-DIM(Q) ≤ O

α3ε||X||1 − log
(

1
β

)
log(|X |)

 (10.2)

Ignoring constants we can use equation 10.2 to see whether the applicability of SmallDB has
improved compared to the previous example using equation 10.1. The result can be found
in table 10.2.

To evaluate the usefulness of SmallDB for data release we need to determine the VC
dimension of reconstruction queries. As we are restricted to normalized counting queries
and do not assume which characteristics of the data are interesting to a data analyst, an
obvious choice would be range queries. By dividing the domain into small sub-spaces and
asking for the relative frequency of elements within these sub-spaces we obtain data usable
to construct a neutral representation of the original database, given the sub-domains are
small enough. Theorem 10.18 shows that the VC dimension of such queries is 2d for d-
dimensional data and sub-spaces defined by axis-aligned d − 1 dimensional hyperplanes.
While the result seems to be of general interest, I could not find an existing proof allowing
arbitrary values of d. Hence, a newly designed proof is included below.

– 128 –

10 Adapting Differential Privacy for Microdata Release

Table 10.2: Rough estimate on the maximum VC dimension of a query set answerable for
ε = 0.1, β = 0.01 and different values for α and ||X||1. |X | has been set to 205.

α ||X||1 max VC-DIM(Q)

10−2

103 0

106 0

107 0

108 0

109 6

10−1

103 0

106 6

107 66

108 667

109 6675

Theorem 10.18.
Let Qd for d ∈ N be a set of normalized range queries f : N|X | → [0, 1], X ⊆ Rd. Each

query f counts elements within a connected sub-space Sf ⊆ Rd defined by d−1 dimensional
hyperplanes that each are perpendicular to one of the unit vectors. VC-DIM(Qd) = 2d.

Proof. We first need to show that for arbitrary values of d ∈ N the set of queries Qd defined
by the sub-spaces shatters a set of elements Sd ⊆ Rd with |Sd| = 2d.

The set Sd is defined as the set of all negated and non-negated d-dimensional unit
vectors, i.e. Sd = {(1, 0, . . . , 0), (−1, 0, . . . , 0), . . . , (0, . . . , 0, 1), (0, . . . , 0,−1)}. For d = 1,
S1 = {1,−1}. It should be obvious thatQ1 shatters S1. It remains to show that Sd is indeed
shattered by Qd for d ≥ 2. By induction we know that Qd−1 shatters Sd−1. Each element of
Sd is 0 in every but one dimension. For each dimension j there are exactly two elements s1
and s2 with sj1 = 1 and sj2 = −1. By considering intervals [−0.5, 0.5], [−1, 0.5], [−0.5, 1] and
[−1, 1] in dimension j we can create sub-spaces including each subset of {s1, s2} together
with all other elements in Sd. Combinations of one interval per dimension result in a set
of sub-spaces of Rd including a set Td for each subset of Sd. The set of queries Q′

d ⊆ Qd

corresponding to these sub-spaces shatters Sd. So Sd is shattered by Qd as well. We obtain
VC-DIM(Qd) ≥ 2d.

We now show VC-DIM(Qd) ≤ 2d. Let f ∈ Qd be the query corresponding to the
smallest sub-space S including all elements from a set Sd of size 2d. In the first part of this
proof we have seen that a set of elements Sd can be shattered when each of the elements
lies on exactly one hyperplane bounding S. We now want to show that this is a necessary
property for any set of elements Sd that can be shattered by Qd. It should be obvious that
no element s can lie inside S but not on one of its bounding hyperplanes, as otherwise we
could not separate s from Sd \ {s} by any query f ′ ∈ Qd. It remains to show that no two
elements s and s′ share a common bounding hyperplane or in other words: each element
from Sd is the unique smallest or biggest element in one of the dimensions, when Sd is
projected onto this dimension.

Consider a bipartite graph G = (V,W,E). Each node vi ∈ V corresponds to an element
si ∈ Sd, each node wj ∈ W corresponds to one of the bounding hyperplanes pj of S. The
edge (vi, wj) ∈ E indicates that the element si corresponding to vi lies on the hyperplane

– 129 –

10 Adapting Differential Privacy for Microdata Release

pj corresponding to wj . As we have seen above, each element lies on at least one of the
bounding hyperplanes, so there is no isolated node within V .

We now want to label nodes from G to describe a subset of T ⊆ Sd that can be separated
from Sd\T by a valid query f ′ ∈ Qd. For this we use a labeling function l : V ∪W → {+,−}.
By labeling a node vi ∈ V positive, i.e. l(vi) = +, we indicate that si ∈ T , analogously a
negative label at a node vi′ ∈ V indicates si′ 6∈ T . Labels of nodes wj ∈W are determined
by the labels of nodes vi ∈ V connected to them by edges e ∈ E. When l(vi) = +, si
should be included in T . Hence, we cannot shrink S by moving pj towards the center of S.
This stability property of pj is indicated by labeling wj positive. However, when no node
vi connected to a node wj is labeled positive, wj is labeled negative.

To see that in Sd no two elements can share a common bounding hyperplane of S, we
assume any order of elements s1, . . . , s2d. To construct a contradiction assume s1 lies on
exactly two hyperplanes. We now begin to label G from v1 on to v2d with positive labels.
A visualization of the labeling process is given as figure 10.3. After labeling v1 positive,
the number of positive labels in V is 1 and in W is 2. Now, node after node, elements
and hyperplanes are labeled positive. The core observation of this construction is that a
node vi cannot exclusively be connected to nodes wj , which are already labeled positive,
as this would translate to the inseparability of si from s1, . . . , si−1. Hence, the labeling of
each element leads to the labeling of at least one additional hyperplane. So at some point
throughout the labeling process, every element wj is labeled positive. Most importantly,
this happens before node v2d is labeled. As v2d cannot be connected to any non-positively
labeled node wj , a contradiction is obtained: It is impossible to shatter Sd, when s1 is part
of it. Hence, elements cannot lie on the intersection of two hyperplanes bounding S. As
there are 2d elements and each of them must lie on exactly one bounding hyperplane, S
can only be minimal when there are no two elements sharing a hyperplane.

It remains to be shown that no set S′
d of size 2d + 1 can be shattered by Qd. Note

that any subset S of a set S′ which is shattered by a set of queries Q is also shattered by
Q. Now consider the extension of a set Sd with |Sd| = 2d by an additional element s′. Let
f ∈ Qd be the query corresponding to the smallest sub-space including all elements from
Sd. As we have shown above, each of the 2d hyperplanes bounding the sub-space defined
by f has a single element s ∈ Sd on it. Hence, there can be no hyperplane on which s′, but
no element from s lies on. However, as we have seen above, two elements cannot share a
common hyperplane when there are at least 2d elements. Further, for the same reason as
discussed above, s′ cannot lie inside the sub-space but not on one of the hyperplanes. There
is only one case left: s′ is outside of the sub-space defined by f , i.e. there is one dimension
j for which s′ is smaller or larger than any element from Sd. This implies that now there is
an element s ∈ Sd inside the smallest sub-space defined by a query f ′ including Sd ∪ {s′}
that does not lie on one of the bounding hyperplanes. Hence, there is no query f ′′ ∈ Qd

which includes Sd \ {s} and s′, but not s.
As none of the options lead to a set that is shattered by Qd, we conclude that no set Sd

of 2d elements can be extended by an additional element without losing the shatterability
property. So, VC-DIM(Qd) ≤ 2d.

Before we move on to the next approach, let us summarize the results of SmallDB. By

– 130 –

10 Adapting Differential Privacy for Microdata Release

v6

v5

v4

v3

v2

v1

w6

w5

w4

w3

w2

w1

?

+

+

+

+

+

+

+

+

+

+

+
+→

+→

+→

+→

+→

+→

Figure 10.3: Example graph relating elements s ∈ Sd and bounding hyperplanes of sub-
space S. As s1 is located on the intersection of two hyperplanes p1 and p2, there is no valid
labeling of nodes. Edge labels indicate which vi cause the wj ∈W to be labeled positive.

limiting the range of the exponential mechanism to databases of sizes defined only by |Q|
and α we are able to execute it more efficiently. However, only very large databases over
small data domains as inputs allow for small accuracy parameters α. Re-evaluating the
example shown in table 10.2 in the context of range queries on d-dimensional data shows
that more than a million elements are needed to handle coarsely discretized data for large
error terms α. Hence, the applicability of SmallDB is quite limited even considering queries
with limited VC dimension.

Interval Queries

As we have seen above, it may not be possible to reconstruct small databases using the
exponential mechanism. Another approach called ReleaseIntervals published by Blum
et al. ([8, 9]) adapts trivial strategy 1, i.e. applies the Laplace mechanism directly, to
reconstruct one-dimensional databases with interval queries. Although the original approach
is described for one-dimensional data only, it could be adapted to higher-dimensional data,
as we will discuss below.

Normalized interval queries are the one-dimensional equivalent of normalized range
queries. Given a database domain X ⊆ R and two elements a1 ∈ X and a2 ∈ R a normalized
interval query fa1,a2

: N|X | → [0, 1] is a normalized counting query asking for the relative
frequency of elements from a database X between a1 and a2. As normalized interval queries
are normalized counting queries, their sensitivity is ∆f = 1

||X||1 which dictates the amount
of Laplacian noise needed to protect them from leaking private information.

In ReleaseIntervals intervals instead of possible elements are queried so the trade-off

– 131 –

10 Adapting Differential Privacy for Microdata Release

between privacy, utility and performance can be adjusted and the privacy budget ε can be
used more targeted. Whereas trivial strategy 1 uses large parts of its privacy budget to
protect individual possible elements that are not even part of the database, which requires
a coarse discretization and a large time budget, the protection of interval queries is more
resource-conserving.

ReleaseIntervals uses a data-dependent adjustment of interval sizes to reflect dif-
ferent data densities in different regions of the data domain without assuming particu-
lar distributions. Interval sizes are adjusted to contain about α

6·||X||1 elements. As this
data-dependent segmentation is based on binary search and uses the same interval queries
used to create the output, little additional privacy budget is allocated to protect data-
dependent interval selection. After ReleaseIntervals has determined intervals, a multiple
of α

6·||X||1 elements are randomly drawn from X within the borders of each interval. See al-
gorithm 25 for a detailed description of ReleaseIntervals. Privacy and utility guarantees
for ReleaseIntervals are shown in theorem 10.19 and theorem 10.20, respectively.

Algorithm 25: ReleaseIntervals [9]
input : database X ∈ N|X | for X = {1, . . . , 2σ}, ε ∈ R and α ∈ R
output: synthetic database Y ∈ N|X |

1 Let α′ ← α/6

2 Let MaxIntervals← d4/3α′e
3 Let ε′ ← ε/(σ ·MaxIntervals)
4 Let Bounds be an array of length MaxIntervals
5 Let i← 1

6 Let Bounds[0]← 1

7 while Bounds[i− 1] < 2σ do
8 Let a← Bounds[i− 1]

9 Let b← (2σ − a+ 1)/2

10 Let inc← (2σ − a+ 1)/4

11 while inc ≥ 1 do
12 Let v ← fa,b(X) + Lap(1/(ε′||X||1))
13 if v < α′ then
14 b→ b− inc
15 else
16 b→ b+ inc
17 inc← inc/2
18 Let Bounds[i]← b

19 i← i+ 1

20 Output Y , a database that has α′m elements in each interval
[Bounds[j − 1],Bounds[j]] for each j ∈ [i], for any m > 1/α′.

Theorem 10.19 ([9]).
For any ε ∈ R, α ∈ R and X ∈ N|X |, ReleaseIntervals(X, ε, α) preserves (ε, 0)-

differential privacy.

– 132 –

10 Adapting Differential Privacy for Microdata Release

Theorem 10.20 ([9]).
Let Q be a set of normalized interval queries. For ε, α, β ∈ R and any database X ∈ N|X |

with X = {1, . . . , 2σ} and

||X||1 ≥
288σ

εα3
· log

(
8σ

βα

)
ReleaseIntervals(X, ε, α) =: Y with probability 1− β achieves

max
f∈Q
|f(X)− f(Y)| ≤ α.

Necessary database sizes for reasonable values of ε, α, β and σ are shown in table 10.4.
As can be seen, while the size requirement grows only slowly with the size of the database
domain, even for small domains of 2σ = 25 = 32 elements, at least 108 elements are needed
to achieve even weak utility guarantees of α = 0.1 and β = 0.01.

Table 10.4: Minimum database sizes for utility guarantee to hold. As in previous examples,
ε = 0.1 and β = 0.01 have been used. Different values for α and σ reflect different accuracy
requirements and domain sizes.

α σ min ||X||1

10−2

5 1011

10 1011

50 1012

100 1012

10−1

5 108

10 108

50 109

100 109

As claimed by Blum et al. in [9], ReleaseIntervals can be adapted to higher dimen-
sional data. For this, fix a dimension j and execute standard ReleaseIntervals up until
after step 19 of algorithm 25. Afterwards, each interval serves as a new database to be
handled individually by applying ReleaseIntervals with adjusted ε and α on another
dimension j′. The resulting process is similar to MONDRIAN discussed in chapter 7. However,
dimensions are handled in order and only once but are segmented in more smaller chunks
at once.

Privacy of the resulting algorithm is d · ε which can be explained using additive com-
position of the Laplace mechanism and the fact that the number of interval queries needed
is now multiplied by d. Generalizing theorem 10.20 to show utility bounds is not that
simple as numerous intervals used to create elements of the synthetic database can now
influence the total error of a range query. In one dimension there can only be two intervals
created by ReleaseIntervals that partly overlap with any given interval [a, b]. However,
answering an arbitrary range query in more than one dimension might involve data from all
ranges computed by ReleaseIntervals as a sub-space is not limited by two points but by
higher dimensional hyperplanes. E.g. for two-dimensional data, sub-spaces are limited by
axis-parallel edges, which can intersect with an arbitrary number of ranges used to define
Y .

– 133 –

10 Adapting Differential Privacy for Microdata Release

Histogram Queries

The goal of previous approaches presented in this section has been to create synthetic
databases that are in some way similar to the input database but aggregated and hence
smaller. We now take a look at a different approach. Instead of querying the database
and using the data to build a new smaller one, we publish the query results itself to
create a new database of the same size of the original one. A simple mechanism called
LaplaceHistograms presented in [73] is able to compute a noisy histogram of the data
while allowing small databases, errors and privacy parameters ε. It is essentially a precise
formalization of the first trivial method presented in the beginning of this section. However,
by avoiding additive composability it is sufficient to add relatively little noise.

The question How many elements of type χ are there? is formalized by so-called
histogram queries:

Definition 10.21 (Histogram Query).
Given a universe X = {χ1, . . . , χ|X |} and a database X ∈ N|X | a normalized histogram

query fχ : N|X | → [0, 1] for fχi
(X) := 1

||X||1xi is a normalized linear query counting the
number of occurrences of an element χi within a database X.

Algorithm 26: LaplaceHistograms [73]
input : database X ∈ N|X | drawn from any universe X , ε ∈ R
output: noisy histogram H ∈ R|X | of X

1 foreach xi ∈ X do
2 Let hi = fχi

(X) + Lap(1
ε·|X |)

3 Let H = (h1, . . . , h|X |)

As all but one query fχ for all χ ∈ X deliver the same results on neighboring databases,
the sensitivity of a combined query asking for the normalized frequency vector of every
possible universe element is 1/|X | instead of n · 1/|X | for n arbitrary normalized counting
queries. As a result, Laplacian noise of scale 1/(ε·|X |) is enough to guarantee ε differential
privacy:

Theorem 10.22 ([73]).
For any ε ∈ R and X ∈ N|X |, LaplaceHistograms(X, ε) preserves (ε, 0)-differential

privacy.11

Proof. On neighboring databasesX and Y only a single element is omitted or added. Hence,
X and Y differ on only one position i by either 0, +1 or −1, i.e. ∆H = 1/|X |. According to
the privacy guarantee of the Laplace mechanism (theorem 10.9) LaplaceHistograms(X, ε)

preserves (ε, 0)-differential privacy.

Compared to SmallDB and ReleaseIntervals, LaplaceHistograms has some impor-
tant advantages. First of all, it is applicable to small and large databases alike. Further,

11 In the original paper a different definition of differential privacy has been used. The statement and proof
have been adapted to fit the notation presented in definition 10.4.

– 134 –

10 Adapting Differential Privacy for Microdata Release

there is no restriction on dimensionality or a minimum database size to guarantee utility.
Its most important downside is probably its resource consumption. As |X | directly effects
the number of counting queries and the number of independent random noise values to be
generated, a coarse discretization of the data domain is needed to keep performance cost
manageable.

Strongly-Safe k-Anonymization

In definition 3.16 we presented strongly safe k-anonymization introduced by Li et al. [40] as
an adaption of the standard k-anonymity guarantee. Now that some basics of differential
privacy have been defined, we can re-evaluate this technique to see what it offers in the
context of differential privacy.

Recall that strongly safe k-anonymization is a three-step process defined by a data-
independent clustering Cind followed by the collection of cluster statistics of each cluster
when Cind is applied to a database X and a final step in which results from clusters of k− 1

or less elements are removed to achieve k-anonymity.
As the first step is data-independent, no privacy loss occurs in defining the clusters.

Nevertheless, as Li et al. show, strongly safe k-anonymization does not offer (ε, δ)-differential
privacy for any δ < 1 unless only a single cluster containing all elements is used in step 1.

The reason for this observation is simple: When the database domain X is divided
into more than one cluster, e.g. into two clusters C1 and C2, there must exist neighboring
databases X1 and X2, so that the amount of elements in C1 and C2 differs between X1 and
X2. Hence, even simple queries asking for the number of elements within each cluster would
reveal with certainty, whether X1 or X2 has been clustered. Expressing the core argument
of this proof in other words results in the following well-known fact:
Remark 10.23.
An (ε, δ)-differentially private mechanism cannot be deterministic, except δ = 1.

Li et al. further evaluated how pre-processing in the form of random sampling can
be used in combination with strongly safe k-anonymization to achieve differential privacy.
Note that as a result a private mechanism that does not rely on Laplacian noise or the
exponential mechanism is obtained.

Theorem 10.24 ([40]).
Let f(j;n, β) denote the probability of getting exactly j successes in n trials where each trial

succeeds with probability β, i.e. f(j;n, β) is the probability mass function for the binomial
distribution. Let k ∈ N, 0 < β < 1, ε ≥ − log(1− β), γ = exp(ε)−1+β

exp(ε) and

δ := max
n:n≥d k

γ
−1e

n∑
j>γn

f(j;n, β).

Any strongly safe k-anonymization algorithm is (ε, δ)-differentially private when pre-
ceded by a random sampling in which any element from a database X is included with
probability β.

As the privacy result given in theorem 10.24 is rather hard to grasp, consider some
examples of valid combinations of β, ε and δ shown in table 10.5. While privacy seems

– 135 –

10 Adapting Differential Privacy for Microdata Release

to be no issue according to table 10.5, there are no utility guarantees as for the other
mechanisms described above. The most hard to quantify type of utility loss is caused by the
data-independent clustering step. Without assuming the data follows a known distribution,
there is no way to bound utility loss to reasonable levels. Keep in mind that clusters that
contain k − 1 or less elements have to be removed and there is further no mechanism to
prevent a large fraction of elements to be contained in a single cluster.

Table 10.5: Combinations of β, ε and δ that guarantee (ε, δ)-differential privacy for strongly
safe k-anonymization preceded by β-sampling for k = 20. Data from [40].

β ε δ

0.05

0.25 7 · 10−10

0.5 4 · 10−6

1 2 · 10−3

0.1

0.25 3 · 10−14

0.5 2 · 10−9

1 8 · 10−6

0.2

0.25 2 · 10−19

0.5 4 · 10−14

1 6 · 10−9

A possible remedy would be to replace the data independent clustering by a clustering
algorithm that is (ε, 0)-differentially private which leads to the notion of ε-safe k-anonymity
for which similar results to theorem 10.24 can be shown. (See [40] for details.) In summary,
strongly-safe and ε-safe k-anonymization offer a way to publish cluster statistics without
assuming analysis goals, similar to microaggregation. It further shows that creating an (ε, 0)-
differentially private clustering algorithm suffices to build a private data release mechanism
that does not require very large database sizes. In the next section we take a look at a
possible approach to create such clusterings by adapting the MONDRIAN algorithm.

10.3
New Approaches to Differentially Private Data

Release

As we have seen in the previous section, there are many approaches to combine differential
privacy with the release of data. However, due to problems in regard of utility and com-
plexity, especially for small databases and large data domains, so far there is no algorithm
able to replace microaggregation entirely. Algorithms like SmallDB and ReleaseIntervals
offer complete solutions using standard techniques but good utility can be achieved only
on large and/or one-dimensional databases unless severe compromises are made regarding
privacy. Frameworks like safe k-anonymization allow the transformation of k-member clus-
tering algorithms into differentially private data release mechanisms. As the major part of
utility loss using this framework is due to the clustering algorithm, there might be oppor-
tunity in moving forward by designing clustering mechanisms that create stable clusters on
neighboring databases.

– 136 –

10 Adapting Differential Privacy for Microdata Release

Unfortunately, maximum distance and Lloyd-based microaggregation heuristics as de-
scribed in chapter 5 and 6 are particularly unstable, when it comes to small data perturba-
tions. A minimum requirement to achieve reasonable privacy in the sense of (ε, δ)-differential
privacy is that clusters stay mostly intact with only a few elements switching clusters, when
a single element is missing form the input database. MONDRIAN and its variants described
in section 7.1 seem to be better suited for this task.

Adapting Mondrian

Recall that in MONDRIAN there are two alternating tasks and a break condition that define
a k-member clustering: First, we need to find a good splitting dimension that defines on
which axis or between which axes to split. Next, we need to decide where to split exactly.
In all previous incarnations of MONDRIAN we used the median of the data projected onto
the splitting dimension as the split position. However, to achieve privacy, we need to re-
evaluate whether it might be a good idea to move the split slightly or to do fuzzy splitting
in a way that elements closer to the splitting hyperplane are more likely to switch sides.
Finally, when splitting results in smaller and smaller databases we need to re-consider the
break condition, because a hard size limit of 2k − 1 as used e.g. in MONDRIAN_V is easily
detectable. While I did not complete a full algorithm during my research, I want to present
some interesting insights and approaches.

Computing Variances

One core insight learned from MONDRIAN_V is that the selection of split dimensions based on
maximum variances is better suited to guarantee high cluster homogeneity than traditional
splitting rules based on maximum diameter measures.

A good starting point would be to look at differentially private variance computations.
A recent paper by Du et al. discusses this topic in detail [21]. The authors describe a
tool called EXPQ which uses the exponential mechanism to estimate arbitrary quantiles of
single dimensional data. By using EXPQ in the way described below, the authors are able to
compute an estimation of median and standard deviation. Firstly, an estimation m of the
median is computed by using EXPQ to find the center quantile of the data. Afterwards a new
database X ′ is created by taking Euclidean distances between all data elements and m. In
a final step EXPQ is used to estimate the center quantile of X ′ which is also an estimation
for the standard derivation of X. The result is ε-differentially private if the sum of privacy
budgets for both EXPQ calls is ε.

By using this approach we obtain an estimation of standard derivation instead of vari-
ance. However, as we are only interested in which dimension has the highest variance, there
is no need to increase the error by squaring the result obtained. Note that the algorithm
uses the median instead of the mean to compute distances to the data center. While this
approach increases errors, the median is more stable than the mean, which allows for a good
utility-privacy trade-off.

– 137 –

10 Adapting Differential Privacy for Microdata Release

Avoiding Additive Composition

To find the dimension of highest variance of a database consisting of d-dimensional data,
we can use the procedure described above on each dimension individually and take the
one that reports the highest value. However, due to additive composition of these variance
queries we can only use ε′ = ε/d for each of the queries to obtain ε-differential privacy for
the mechanism of finding the dimension of maximum variance. This result seems to be sub-
optimal because we pay with our privacy budget for a lot of information that is not needed.
Unlike for histogram queries described in the previous section, the omission or addition of
a single element changes the output of all queries, as a single element influences variances
in every dimension.

As only the index of the dimension of largest variance is needed, one might hope to
reduce privacy loss by avoiding to output individual variances as intermediate results. In [24]
a technique called Report Noisy Max is introduced to avoid additive composition for counting
queries, in which each database element potentially influences all counts. Report Noisy
Max uses Laplacian noise of scale 1/ε added to each of the d query results and guarantees
ε differential privacy under the condition, that only the index of the noisy query of highest
value is returned. Hence, compared to a naive approach, a factor d of additional noise scale
is saved.

Unfortunately, the privacy proof of Report Noisy Max relies heavily on the fact that
the Laplacian mechanism and counting queries are used. However, as EXPQ uses the ex-
ponential mechanism and variance or standard deviation might change significantly, when
single elements are removed, Noisy Arg Max cannot be used without adaptation.

Splitting and Breaking

Beside the problem of finding a good splitting dimension, we have to protect the actual
splitting process. For this we can rely on EXPQ to find a noisy median value of the data
projected onto the splitting dimension. Splitting accordingly and repeating the process
over and over leads to an ε-differentially private clustering process as requested by ε-safe
k-anonymization. Hence, preceding the clustering process by a random sampling and only
publishing cluster centroids and cluster sizes should allow privacy guarantees.

There is, however, another problem. For standard k-anonymity we stopped the split-
ting, when otherwise clusters with less than k elements would be created. Again, when
considering differential privacy, such hard bound cannot be obtained because it would be
detectable. However, when we drop the strict size constraint and stop the process at a noisy
threshold like αk + Lap(1/ε) for suitable α and ε, we can still obtain safe k-anonymization
without the necessity of cluster deletion.

10.4
Summary

In this chapter we have seen the possibilities and problems of applying differential privacy to
protect the release of sensitive information. Although there are several algorithms trying to
achieve this goal and despite promising attempts on a way to adapt the MONDRIAN algorithm,

– 138 –

10 Adapting Differential Privacy for Microdata Release

there still is no solution that replaces microaggregation in the context described throughout
this thesis. It remains to state that differential privacy is indeed the way to go, when attacker
knowledge is unpredictable and privacy is the highest priority when releasing data. For all
other cases involving the release of sensitive data, a modern microaggregation heuristic
like ONA∗ which is more efficient and utilitiy-preserving should be considered even though
privacy guarantees are weaker.

– 139 –

11

Conclusion

In this thesis we have discussed and advanced many aspects of k-anonymous microaggre-
gation. Before we come to a close let us recap the results of this dissertation and discuss
open problems and directions for further advancements regarding this topic. The first main
part of this thesis is the development and evaluation of several new heuristics, lowering
the time complexity and distortion cost of microaggregation significantly. While MDAV∗ and
MDAV∗

γ incrementally improve the traditional class of maximum distance heuristics and de-
liver lower information loss in quadratic time, ONA∗ combines MDAV∗ with a new Lloyd-based
post-processing and is able to lower information loss even further, without increasing the
overall asymptotic time complexity. According to the experimental evaluation made as part
of this thesis, ONA∗ and its variant ONA∗

γ are currently the most utility-preserving microag-
gregation heuristics suitable for all values of k. Their only contender for this title would
be PCL, which is another Lloyd-based heuristic briefly discussed in section 6.2. However,
as PCL is not applicable for values of k ≤ 100 without further compromises in utility and
time consumption, its practical relevance for microaggregation is limited. Besides the ef-
forts to lower information loss within the same time frame, this thesis presents significant
improvements for sub-quadratic time microaggregation heuristics. For situations in which
a quadratic time complexity is no option, like for databases of several million elements, the
algorithms MONA and MONA_2D presented in chapter 7 offer valid trade-offs between time
consumption and information loss. They use adapted MONDRIAN variants as a pre-processing
step and ONA∗ as the low-loss clustering algorithm that is applied, once database sizes have
been reduced to manageable sizes.

The second main part of this thesis are new results regarding the complexity of microag-
gregation. By using a graph theoretic approach and a reduction from 3-SAT, NP-hardness
of the k-anonymous microaggregation problem could be shown for all fixed values of d ≥ 2

and k ≥ 4. This is an important step assuring the necessity of heuristics, as previously
NP-hardness was only shown for the case k = 3. In addition to these two main results,
significant effort has been made to describe the model of microaggregation in a precise
mathematical way, compare microaggregation to alternative privacy and utility definitions
and to state and prove some key differences between the complexity and solution structure
of the k-clustering and k-member clustering problems.

There are, however, still a lot of open questions. A mainly academic issue is the question
whether k-anonymous microaggregation is NP-hard for fixed d ≥ 2 and k = 2. While the
answer to this question is of little relevance for the practical use of k-member clusterings
as a way to anonymize microdata, from a purely mathematical perspective it is interesting

– 140 –

11 Conclusion

because there seem to be good reasons for both possible answers to this question.
On a more practical note, there is of course still room for advancement of microaggre-

gation heuristics. Although the algorithms MDAV∗, ONA∗ and MONA_2D, developed as part
of this thesis, represent the state-of-the-art in microaggregation, there still seems to be a
chance to lower information loss even further. This could be achieved by tuning parameters,
introducing new splitting or re-clustering rules or combining them with new techniques. Es-
pecially interesting in this regard could be the alternative clustering techniques discussed
in chapter 8.

Besides these minor open questions and iterative improvements to be made, there are
two main issues that define the relevance and applicability of microaggregation in the future:
approximation guarantees and the advancement of differential privacy. In chapter 9 and 10
these problems, reasons for their difficulty and first results are discussed briefly. Due to the
fact that most microaggregation strategies that are successful in practice, cannot guarantee
to find good solutions, there is a big gap in our understanding of approximation algorithms
for this problem. Further, in contrast to the k-means clustering problem, no lower bounds
for approximability are known for microaggregation. Following the path of LP-relaxation
as discussed in section 9.3 could at least narrow this gap. Most of the microaggregation
heuristics discussed in this thesis can in some way be combined to obtain better initial
solutions, cut computational cost or improve upon results to further reduce information
loss. Therefore, there could also be hope to combine new approximation strategies with
established heuristics to efficiently find new clusterings with an even better trade-off between
time consumption and information loss than possible today.

The invention of differential privacy has influenced most modern data privacy results.
However, despite its popularity, there still is a lack of viable differentially private alternatives
to private microdata release as offered by microaggregation. As differential privacy clearly
offers the possibility of better and also provable privacy guarantees, there is a pressing need
to combine both methods. As the work on safe k-anonymization (see section 3.3 and 10.2)
shows, there is hope to use established microaggregation results without losing the option
for differential privacy. Possible approaches have been outlined in chapter 10. As discussed
in section 10.3 MONDRIAN seems to be a suitable candidate to start this undertaking.

– 141 –

Bibliography

[1] Ahmadian, S., Norouzi-Fard, A., Svensson, O., and Ward, J. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. In: SIAM Journal on
Computing 49(4):FOCS17–97, 2019.

[2] Aloise, D., Deshpande, A., Hansen, P., and Popat, P. NP-hardness of Euclidean
sum-of-squares clustering. In: Machine learning 75(2):245–248, 2009.

[3] Anwar, N Micro-aggregation-the small aggregates method. Tech. rep. Internal report.
Luxembourg: Eurostat, 1993.

[4] Arthur, D. and Vassilvitskii, S. k-means++: The advantages of careful seeding. In:
Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics. 2007, pp. 1027–1035.

[5] Barbaro, M. and Zeller, T. A Face Is Exposed for AOL Searcher No. 4417749. In: The
New York Times, 2006. url: https://www.nytimes.com/2006/08/09/technology/
09aol.html.

[6] Barth-Jones, D. The ’re-identification’ of Governor William Weld’s medical informa-
tion: a critical re-examination of health data identification risks and privacy protec-
tions. In: Then and Now, 2012.

[7] Bayardo, R. J. and Agrawal, R. Data privacy through optimal k-anonymization. In:
21st International conference on data engineering (ICDE’05). IEEE. 2005, pp. 217–
228.

[8] Blum, A., Ligett, K., and Roth, A. A Learning Theory Approach to Non-Interactive
Database Privacy. In: Proceedings of the Fortieth Annual ACM Symposium on The-
ory of Computing. STOC ’08. Victoria, British Columbia, Canada: Association for
Computing Machinery, 2008, pp. 609–618. doi: 10.1145/1374376.1374464.

[9] Blum, A., Ligett, K., and Roth, A. A Learning Theory Approach to Noninteractive
Database Privacy. In: Journal of the ACM (JACM) 60(2):1–25, 2013.

[10] Boros, E. and Hammer, P. L. On clustering problems with connected optima in
Euclidean spaces. In: Discrete Mathematics 75(1-3):81–88, 1989.

[11] Brickell, J. and Shmatikov, V. The cost of privacy: destruction of data-mining utility
in anonymized data publishing. In: Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM. 2008, pp. 70–
78.

[12] Byun, J.-W., Kamra, A., Bertino, E., and Li, N. Efficient k-anonymization using
clustering techniques. In: International Conference on Database Systems for Advanced
Applications. Springer. 2007, pp. 188–200.

[13] Chang, C.-C., Li, Y.-C., and Huang, W.-H. TFRP: An efficient microaggregation
algorithm for statistical disclosure control. In: Journal of Systems and Software
80(11):1866–1878, 2007.

– 142 –

https://www.nytimes.com/2006/08/09/technology/09aol.html
https://www.nytimes.com/2006/08/09/technology/09aol.html
https://doi.org/10.1145/1374376.1374464

Bibliography

[14] Defays, D and Anwar, M. Masking microdata using micro-aggregation. In: Journal
of Official Statistics 14(4):449, 1998.

[15] Defays, D and Nanopoulos, P. Panels of enterprises and confidentiality: the small
aggregates method. In: Proceedings of the 1992 symposium on design and analysis of
longitudinal surveys. 1993, pp. 195–204.

[16] Domingo-Ferrer, J., Martínez-Ballesté, A., Mateo-Sanz, J. M., and Sebé, F. Efficient
multivariate data-oriented microaggregation. In: The VLDB Journal—The Interna-
tional Journal on Very Large Data Bases 15(4):355–369, 2006.

[17] Domingo-Ferrer, J. and Mateo-Sanz, J. M. Reference data sets to test and compare
SDC methods for protection of numerical microdata. https://web.archive.org/web/
20190412063606/http://neon.vb.cbs.nl/casc/CASCtestsets.htm. 2002.

[18] Domingo-Ferrer, J. and Mateo-Sanz, J. M. Practical data-oriented microaggrega-
tion for statistical disclosure control. In: IEEE Transactions on Knowledge and Data
Engineering 14(1):189–201, 2002.

[19] Domingo-Ferrer, J., Sebé, F., and Solanas, A. A polynomial-time approximation to
optimal multivariate microaggregation. In: Computers & Mathematics with Applica-
tions 55(4):714–732, 2008.

[20] Domingo-Ferrer, J. and Torra, V. Ordinal, continuous and heterogeneous k-anonymity
through microaggregation. In: Data Mining and Knowledge Discovery 11(2):195–212,
2005.

[21] Du, W., Foot, C., Moniot, M., Bray, A., and Groce, A. Differentially private confidence
intervals. In: arXiv preprint arXiv:2001.02285, 2020.

[22] Dwork, C. Differential privacy: A survey of results. In: International conference on
theory and applications of models of computation. Springer. 2008, pp. 1–19.

[23] Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrating noise to sensitivity in
private data analysis. In: Theory of cryptography conference. Springer. 2006, pp. 265–
284.

[24] Dwork, C. and Roth, A. The algorithmic foundations of differential privacy. In: Foun-
dations and Trends in Theoretical Computer Science 9(3–4):211–407, 2014.

[25] European Association for Theoretical Computer Science Gödel Prize 2017. https:
//eatcs.org/index.php/goedel-prize. 2017.

[26] European Parliament and Council of the European Union Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on the protection of
natural persons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection Regulation).
2016. url: https://eur-lex.europa.eu/eli/reg/2016/679/oj.

[27] Feldman, D., Monemizadeh, M., and Sohler, C. A PTAS for k-means clustering
based on weak coresets. In: Proceedings of the twenty-third annual symposium on
Computational geometry. 2007, pp. 11–18.

[28] Fung, B. C., Wang, K., Chen, R., and Yu, P. S. Privacy-preserving data publishing:
A survey of recent developments. In: ACM Computing Surveys (CSUR) 42(4):1–53,
2010.

[29] Garey, M. R. and Johnson, D. S. Computers and Intractability. Vol. 174. W.H. Free-
man and Company, 1979.

– 143 –

https://web.archive.org/web/20190412063606/http://neon.vb.cbs.nl/casc/CASCtestsets.htm
https://web.archive.org/web/20190412063606/http://neon.vb.cbs.nl/casc/CASCtestsets.htm
https://eatcs.org/index.php/goedel-prize
https://eatcs.org/index.php/goedel-prize
https://eur-lex.europa.eu/eli/reg/2016/679/oj

Bibliography

[30] Golle, P. Revisiting the uniqueness of simple demographics in the US population. In:
Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM. 2006,
pp. 77–80.

[31] Hansen, S. L. and Mukherjee, S. A polynomial algorithm for optimal univari-
ate microaggregation. In: IEEE Transactions on Knowledge and Data Engineering
15(4):1043–1044, 2003.

[32] Har-Peled, S. and Mazumdar, S. On coresets for k-means and k-median clustering.
In: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
2004, pp. 291–300.

[33] Her Majesty, by and with the advice and consent of the Senate and House of Commons
of Canada Personal Information Protection and Electronic Documents Act (S.C.
2000, c. 5). 2000. url: https://laws-lois.justice.gc.ca/eng/acts/P-8.6/.

[34] Inaba, M., Katoh, N., and Imai, H. Applications of Weighted Voronoi Diagrams and
Randomization to Variance-based k-clustering: (Extended Abstract). In: Proceedings
of the Tenth Annual Symposium on Computational Geometry. SCG ’94. Stony Brook,
New York, USA: ACM, 1994, pp. 332–339. doi: 10.1145/177424.178042.

[35] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., and Wu,
A. Y. A local search approximation algorithm for k-means clustering. In: Computa-
tional Geometry 28(2-3):89–112, 2004.

[36] Laszlo, M. and Mukherjee, S. Minimum spanning tree partitioning algorithm
for microaggregation. In: IEEE Transactions on Knowledge and Data Engineering
17(7):902–911, 2005.

[37] LeFevre, K., DeWitt, D. J., and Ramakrishnan, R. Mondrian multidimensional k-
anonymity. In: 22nd International conference on data engineering (ICDE’06). IEEE.
2006, pp. 25–25.

[38] Li, N., Li, T., and Venkatasubramanian, S. Closeness: A new privacy measure for data
publishing. In: IEEE Transactions on Knowledge and Data Engineering 22(7):943–
956, 2010.

[39] Li, N., Li, T., and Venkatasubramanian, S. t-closeness: Privacy beyond k-anonymity
and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering.
IEEE. 2007, pp. 106–115.

[40] Li, N., Qardaji, W., and Su, D. On sampling, anonymization, and differential pri-
vacy or, k-anonymization meets differential privacy. In: Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security. ACM. 2012,
pp. 32–33.

[41] Li, T. and Li, N. On the tradeoff between privacy and utility in data publishing.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM. 2009, pp. 517–526.

[42] Lichman, M. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml.
2013.

[43] Lichtenstein, D. Planar formulae and their uses. In: SIAM Journal on Computing
11(2):329–343, 1982.

[44] Lin, J.-L., Wen, T.-H., Hsieh, J.-C., and Chang, P.-C. Density-based microaggregation
for statistical disclosure control. In: Expert Systems with Applications 37(4):3256–3263,
2010.

– 144 –

https://laws-lois.justice.gc.ca/eng/acts/P-8.6/
https://doi.org/10.1145/177424.178042
http://archive.ics.uci.edu/ml

Bibliography

[45] Lloyd, S. P. Least squares quantization in PCM. In: IEEE Transactions on Informa-
tion Theory 28(2):129–137, 1982.

[46] Machanavajjhala, A., Kifer, D., Gehrke, J., and Venkitasubramaniam, M. l-diversity:
Privacy beyond k-anonymity. In: ACM Transactions on Knowledge Discovery from
Data (TKDD) 1(1):3, 2007.

[47] MacQueen, J. Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability. Vol. 1. 14. University of California Press, 1967, pp. 281–297.

[48] Mahajan, M., Nimbhorkar, P., and Varadarajan, K. The planar k-means problem
is NP-hard. In: International Workshop on Algorithms and Computation. Springer.
2009, pp. 274–285.

[49] Mahmood, A. N., Kabir, M. E., and Mustafa, A. K. New multi-dimensional sort-
ing based k-anonymity microaggregation for statistical disclosure control. In: Inter-
national Conference on Security and Privacy in Communication Systems. Springer.
2012, pp. 256–272.

[50] Martínez, S., Sánchez, D., and Valls, A. Semantic adaptive microaggregation of cat-
egorical microdata. In: Computers & Security 31(5):653–672, 2012.

[51] Mateo Sanz, J. M. and Domingo Ferrer, J. A comparative study of microaggregation
methods. In: Qüestiió 22(3), 1998.

[52] Matoušek, J. On approximate geometric k-clustering. In: Discrete & Computational
Geometry 24(1):61–84, 2000.

[53] McSherry, F. and Talwar, K. Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07). IEEE.
2007, pp. 94–103.

[54] Meyerson, A. and Williams, R. On the complexity of optimal k-anonymity. In: Pro-
ceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems. ACM. 2004, pp. 223–228.

[55] Micali, S. and Vazirani, V. V. An O(
√
|V | · |E|) algorithm for finding maximum

matching in general graphs. In: 21st Annual Symposium on Foundations of Computer
Science (SFCS 1980). IEEE. 1980, pp. 17–27.

[56] Narayanan, A. and Shmatikov, V. Robust de-anonymization of large sparse datasets.
In: 2008 IEEE Symposium on Security and Privacy (SP 2008). IEEE. 2008, pp. 111–
125.

[57] Oganian, A. and Domingo-Ferrer, J. On the complexity of optimal microaggregation
for statistical disclosure control. In: Statistical Journal of the United Nations Economic
Commission for Europe 18(4):345–353, 2001.

[58] Rebollo-Monedero, D., Forné, J., Pallarès, E., and Parra-Arnau, J. A modification of
the Lloyd algorithm for k-anonymous quantization. In: Information Sciences 222:185–
202, 2013.

[59] Samarati, P. and Sweeney, L. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. Technical
Report. 1998.

[60] Sankar, L., Rajagopalan, S. R., and Poor, H. V. Utility-privacy tradeoffs in databases:
An information-theoretic approach. In: IEEE Transactions on Information Forensics
and Security 8(6):838–852, 2013.

– 145 –

Bibliography

[61] Solanas, A., Martinez-Balleste, A., and Domingo-Ferrer, J V-MDAV: a multivariate
microaggregation with variable group size. In: 17th COMPSTAT Symposium of the
IASC, Rome. 2006, pp. 917–925.

[62] Soria-Comas, J. and Domingo-Ferrer, J. Differential privacy via t-closeness in data
publishing. In: Privacy, Security and Trust (PST), 2013 Eleventh Annual Interna-
tional Conference on. IEEE. 2013, pp. 27–35.

[63] Soria-Comas, J., Domingo-Ferrer, J., and Mulero, R. Efficient Near-Optimal Variable-
Size Microaggregation. In: International Conference on Modeling Decisions for Arti-
ficial Intelligence. Springer. 2019, pp. 333–345.

[64] Soria-Comas, J., Domingo-Ferrer, J., Sánchez, D., and Martínez, S. Enhancing data
utility in differential privacy via microaggregation-based k-anonymity. In: The VLDB
Journal—The International Journal on Very Large Data Bases 23(5):771–794, 2014.

[65] Soria-Comas, J., Domingo-Ferrer, J., Sanchez, D., and Martinez, S. t-closeness
through microaggregation: Strict privacy with enhanced utility preservation. In: IEEE
Transactions on Knowledge and Data Engineering 27(11):3098–3110, 2015.

[66] Sweeney, L. k-anonymity: A model for protecting privacy. In: International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(05):557–570, 2002.

[67] Sweeney, L. Uniqueness of simple demographics in the US population. In: LIDAP-
WP4, 2000, 2000.

[68] Thaeter, F. Hardness of k-anonymous microaggregation. In: 17th Cologne-Twente
Workshop on Graphs and Combinatorial Optimization. Ed. by J. Hurink, S. Klootwijk,
B. Manthey, V. Reijnders, and M. S. Uiterkamp. Enschede, 2019, pp. 135–138.

[69] Thaeter, F. and Reischuk, R. Hardness of k-anonymous microaggregation. In: Discrete
Applied Mathematics, 2020. doi: 10.1016/j.dam.2020.10.005.

[70] Thaeter, F. and Reischuk, R. Improving Anonymization Clustering. In: SICHER-
HEIT 2018. Ed. by H. Langweg, M. Meier, B. C. Witt, and D. Reinhardt. Bonn:
Gesellschaft für Informatik e.V., 2018, pp. 69–82.

[71] Thaeter, F. and Reischuk, R. Scalable k-anonymous Microaggregation: Exploiting the
Tradeoff between Computational Complexity and Information Loss. In: Proceedings of
the 18th International Conference on Security and Cryptography (SECRYPT 2021).
2021, pp. 87–98.

[72] Torra, V. Microaggregation for categorical variables: a median based approach. In:
International Workshop on Privacy in Statistical Databases. Springer. 2004, pp. 162–
174.

[73] Vadhan, S. The complexity of differential privacy. In: Tutorials on the Foundations
of Cryptography. Springer, 2017, pp. 347–450.

[74] Willenborg, L. and De Waal, T. Elements of Statistical Disclosure Control. Vol. 155.
Springer Science & Business Media, 2012.

[75] Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., and Fu, A. W.-C. Utility-based
anonymization using local recoding. In: Proceedings of the 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. 2006, pp. 785–790.

– 146 –

https://doi.org/10.1016/j.dam.2020.10.005

A

Raw results of MDAV-like heuristics

Table A.1: Information losses of maximum distance heuristics on small databases (n ≤ 4092)

from the CASC project. Census ∈ X1080,13, Tarragona ∈ X834,13, EIA ∈ X4092,11.

Information Loss in % on Census
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 3.18 5.72 7.64 9.00 11.54 14.40

MDAV 3.18 5.69 7.49 9.09 11.60 14.16

MDAV+ 3.16 5.66 7.51 9.01 11.66 14.07

V-MDAV 3.16 5.66 7.51 8.98 11.59 14.04

MDAV∗ 3.16 5.78 7.45 8.83 11.37 14.00

MDAV∗
γ 3.11 5.59 7.24 8.61 11.04 13.77

Information Loss in % on Tarragona
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 9.31 16.98 19.54 22.53 27.52 33.18

MDAV 9.33 16.93 19.55 22.46 27.52 33.19

MDAV+ 9.29 16.95 19.77 22.87 28.26 33.25

V-MDAV 9.29 15.85 19.70 22.87 28.25 33.25

MDAV∗ 9.44 16.15 19.19 22.26 28.40 34.74

MDAV∗
γ 9.28 16.09 19.19 21.96 27.76 32.97

Information Loss in % on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.27 0.47 0.77 1.67 2.28 3.71

MDAV 0.31 0.48 0.67 1.67 2.17 3.84

MDAV+ 0.32 0.49 0.67 1.78 2.21 3.55

V-MDAV 0.23 0.46 0.67 1.06 2.21 2.79

MDAV∗ 0.22 0.45 0.62 0.91 2.03 2.63

MDAV∗
γ 0.20 0.39 0.54 0.82 1.66 2.18

– 147 –

A Raw results of MDAV-like heuristics

Table A.2: Information losses of maximum distance heuristics on small databases (n = 1024)

from the UCI repository. Cloud1 ∈ X1024,10, Cloud2 ∈ X1024,10.

Information Loss in % on Cloud1
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 1.21 2.18 3.42 4.23 5.59 7.35

MDAV 1.21 2.22 3.74 4.31 5.70 7.05

MDAV+ 1.20 2.23 3.78 4.31 5.56 6.98

V-MDAV 1.19 2.15 3.78 4.29 5.53 6.94

MDAV∗ 1.16 2.10 3.65 4.09 5.54 6.70

MDAV∗
γ 1.15 2.10 3.63 4.08 5.49 6.70

Information Loss in % on Cloud2
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.68 1.19 1.63 2.04 2.66 3.36

MDAV 0.68 1.21 1.70 2.03 2.69 3.40

MDAV+ 0.66 1.22 1.62 2.09 2.78 3.50

V-MDAV 0.66 1.19 1.62 2.05 2.77 3.46

MDAV∗ 0.64 1.09 1.52 1.87 2.50 3.28

MDAV∗
γ 0.63 1.09 1.48 1.86 2.48 3.23

Table A.3: Information losses of maximum distance heuristics on large databases (n ≥
30000) from the UCI repository. MD is not able to handle the Adult database, as it is too big
to be handled with quadratic space requirements. Credit Card ∈ X30000,24, Adult ∈ X48842,3.

Information Loss in % on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 3.66 6.43 8.56 10.23 12.64 15.16

MDAV 3.66 6.40 8.53 10.17 12.58 15.18

MDAV+ 3.65 6.39 8.49 10.17 12.59 15.21

V-MDAV 3.64 6.38 8.49 10.17 12.58 15.17

MDAV∗ 3.65 6.44 8.48 10.22 12.36 14.67

MDAV∗
γ 3.59 6.25 8.25 9.83 12.11 14.47

Information Loss in % on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD − − − − − −
MDAV 0.054 0.108 0.162 0.217 0.317 0.463

MDAV+ 0.053 0.107 0.163 0.217 0.317 0.464

V-MDAV 0.046 0.102 0.158 0.210 0.314 0.464

MDAV∗ 0.041 0.088 0.138 0.184 0.281 0.421

MDAV∗
γ 0.040 0.086 0.133 0.180 0.273 0.411

– 148 –

A Raw results of MDAV-like heuristics

Table A.4: Mean information losses of maximum distance heuristics on sets of
synthetic databases. SimU = {SimU0, . . . , SimU24}, SimUi ∈ X1000,10, SimC =

{SimC0, . . . , SimC24}. Sizes of SimCi are between n = 1528 and n = 1765 for d = 10.

Mean Information Loss in % on SimU
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 10.16 18.19 23.63 27.99 34.31 40.95

MDAV 10.12 18.15 23.65 28.07 34.58 41.03

MDAV+ 10.14 18.03 23.62 27.90 34.04 40.63

V-MDAV 10.13 17.99 23.55 27.80 34.01 40.43

MDAV∗ 10.12 17.76 23.10 27.28 33.37 39.66

MDAV∗
γ 10.05 17.63 23.03 27.12 33.31 39.56

Mean Information Loss in % on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 3.88 7.00 9.32 11.33 14.51 18.37

MDAV 3.86 6.93 9.32 11.26 14.46 18.45

MDAV+ 3.82 6.86 9.23 11.04 14.11 18.09

V-MDAV 3.32 6.19 8.35 10.16 13.14 16.97

MDAV∗ 3.36 6.00 8.17 9.66 12.32 15.69

MDAV∗
γ 3.28 5.73 7.61 9.16 11.65 14.84

Table A.5: Runtimes in s of maximum distance heuristics on small databases (n ≤ 4092)

from the CASC project. Census ∈ X1080,13, Tarragona ∈ X834,13, EIA ∈ X4092,11.

Runtime in s on Census
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.09 0.03 0.02 0.02 0.01 0.01

MDAV 0.04 0.01 0.01 0.01 0.01 0.01

MDAV+ 0.03 0.01 0.01 0.01 0.01 0.00

V-MDAV 0.04 0.02 0.01 0.01 0.01 0.01

MDAV∗ 0.08 0.04 0.03 0.03 0.02 0.02

MDAV∗
γ 0.03 0.02 0.02 0.01 0.01 0.01

Runtime in s on Tarragona
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.07 0.02 0.01 0.01 0.01 0.01

MDAV 0.03 0.01 0.01 0.01 0.01 0.00

MDAV+ 0.03 0.01 0.01 0.01 0.01 0.00

V-MDAV 0.03 0.01 0.01 0.01 0.01 0.00

MDAV∗ 0.06 0.03 0.02 0.02 0.02 0.02

MDAV∗
γ 0.02 0.01 0.01 0.01 0.01 0.01

Runtime in s on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 2.38 1.58 1.15 0.91 0.67 0.49

MDAV 0.23 0.15 0.10 0.09 0.07 0.06

MDAV+ 0.11 0.06 0.05 0.04 0.03 0.02

V-MDAV 0.15 0.13 0.10 0.11 0.08 0.13

MDAV∗ 0.37 0.24 0.18 0.14 0.10 0.09

MDAV∗
γ 0.30 0.22 0.18 0.18 0.18 0.14

– 149 –

A Raw results of MDAV-like heuristics

Table A.6: Runtimes in s of maximum distance heuristics on large databases (n ≥ 30000)

from the UCI repository. MD is not able to handle the Adult database, as it is too big to be
handled with quadratic space requirements. Credit Card ∈ X30000,24, Adult ∈ X48842,3.

Runtime in s on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 895.1 590.3 441.1 354.6 256.0 182.9

MDAV 16.4 11.8 9.4 8.6 6.2 5.3

MDAV+ 6.7 4.6 3.3 2.7 2.0 1.5

V-MDAV 15.4 11.4 9.9 8.9 8.1 7.3

MDAV∗ 24.5 17.2 14.4 12.7 10.8 9.2

MDAV∗
γ 28.2 19.3 16.0 13.7 12.1 9.8

Runtime in s on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD − − − − − −
MDAV 12.3 7.8 5.9 4.8 3.3 2.4

MDAV+ 9.4 6.0 4.6 3.9 2.8 2.2

V-MDAV 18.7 15.4 14.1 12.6 11.0 9.9

MDAV∗ 28.6 20.7 15.3 13.1 9.8 7.9

MDAV∗
γ 33.0 24.3 18.8 16.7 12.9 11.7

Table A.7: Mean runtimes in s of maximum distance heuristics on sets of syn-
thetic databases. SimU = {SimU0, . . . , SimU24}, SimUi ∈ X1000,10, SimC =

{SimC0, . . . , SimC24}. Sizes of SimCi are between n = 1528 and n = 1765 for d = 10.

Mean Runtime in s on SimU
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.03 0.02 0.02 0.01 0.01 0.01

MDAV 0.01 0.01 0.00 0.00 0.00 0.00

MDAV+ 0.01 0.00 0.00 0.00 0.00 0.00

V-MDAV 0.01 0.01 0.01 0.01 0.01 0.01

MDAV∗ 0.02 0.02 0.01 0.01 0.01 0.01

MDAV∗
γ 0.02 0.01 0.01 0.01 0.01 0.01

Mean Runtime in s on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MD 0.12 0.08 0.06 0.05 0.04 0.03

MDAV 0.02 0.02 0.01 0.01 0.01 0.01

MDAV+ 0.01 0.01 0.01 0.01 0.00 0.00

V-MDAV 0.02 0.02 0.02 0.02 0.02 0.02

MDAV∗ 0.05 0.03 0.03 0.02 0.02 0.02

MDAV∗
γ 0.05 0.03 0.03 0.03 0.03 0.02

– 150 –

A Raw results of MDAV-like heuristics

Table A.8: Average cluster sizes for variable-size maximum distance heuristics.

Average cluster size on Census
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.00 3.00 4.00 5.02 7.01 10.09

MDAV∗ 2.19 3.42 4.50 5.71 8.06 11.49

MDAV∗
γ 2.06 3.04 4.41 5.45 7.61 10.29

Average cluster size on Tarragona
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.00 3.02 4.03 5.02 7.25 10.17

MDAV∗ 2.15 3.39 4.53 5.67 8.26 11.42

MDAV∗
γ 2.04 3.22 4.56 5.25 7.13 10.56

Average cluster size on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.17 3.61 4.00 5.54 7.01 11.46

MDAV∗ 2.24 3.38 4.24 5.62 7.56 10.88

MDAV∗
γ 2.19 3.37 4.60 6.14 9.39 12.00

Average cluster size on Cloud1
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.00 3.14 4.16 5.02 7.01 10.04

MDAV∗ 2.17 3.32 4.47 5.48 7.70 10.89

MDAV∗
γ 2.13 3.32 4.32 5.36 7.31 10.89

Average cluster size on Cloud2
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.00 3.04 4.00 5.02 7.06 10.56

MDAV∗ 2.24 3.34 4.47 5.60 7.64 10.78

MDAV∗
γ 2.11 3.21 4.30 5.69 7.47 10.67

Average cluster size on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.02 3.02 4.00 5.00 7.03 10.04

MDAV∗ 2.21 3.50 4.75 6.01 8.45 11.94

MDAV∗
γ 2.11 3.23 4.35 5.46 7.99 11.30

Average cluster size on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 2.10 3.10 4.12 5.10 7.10 10.11

MDAV∗ 2.12 3.36 4.23 5.39 7.41 10.72

MDAV∗
γ 2.09 3.38 4.35 5.60 7.70 11.45

– 151 –

A Raw results of MDAV-like heuristics

Table A.9: Gain factors γ used for V-MDAV and MDAV∗
γ to achieve information losses reported

in table A.1 to table A.4. For SimU and SimC gain factors are chosen for individual
databases and mean γ is reported here.

γ used on Census
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.0 0.0 0.0 0.2 0.1 0.2

MDAV∗
γ 0.8 0.6 0.9 0.9 0.9 0.8

γ used on Tarragona
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.0 0.3 0.3 0.0 0.6 0.3

MDAV∗
γ 0.8 0.9 1.0 0.8 0.7 0.8

γ used on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.2 0.6 0.0 0.4 0.0 1.3

MDAV∗
γ 0.8 0.7 0.8 1.2 1.1 1.2

γ used on Cloud1
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.1 0.4 0.4 0.2 0.1 0.2

MDAV∗
γ 0.9 1.0 0.9 0.9 0.8 1.0

γ used on Cloud2
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.0 0.2 0.0 0.1 0.2 0.5

MDAV∗
γ 0.8 0.8 0.8 1.0 0.9 0.9

γ used on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.1 0.1 0.0 0.0 0.1 0.1

MDAV∗
γ 0.8 0.8 0.8 0.8 0.9 0.9

γ used on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.4 0.1 0.4 0.2 0.2 0.2

MDAV∗
γ 0.7 0.9 0.9 1.0 0.9 1.0

Mean γ used on SimU
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.1 0.2 0.2 0.2 0.1 0.2

MDAV∗
γ 0.9 0.9 0.9 0.9 1.0 1.0

Mean γ used on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

V-MDAV 0.2 0.4 0.5 0.5 0.7 0.8

MDAV∗
γ 0.8 0.8 0.8 0.8 0.9 1.1

– 152 –

B

Raw results of Lloyd-based heuristics

Table B.1: Information losses of Lloyd-based heuristics on small databases (n ≤ 4092) from
the CASC project. Census ∈ X1080,13, Tarragona ∈ X834,13, EIA ∈ X4092,11. Please take
results for LMaS10 and ONA10 with a grain of salt, as due to the low number of repetitions
these results might vary.

Information Loss in % on Census
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 3.47 6.00 7.71 9.14 11.39 14.27

LMaS100 3.37 5.78 7.49 8.84 11.00 13.81

LMaS1000 3.37 5.76 7.47 8.86 10.89 13.50

ONA10 3.51 5.61 7.02 8.25 10.28 12.32

ONA100 3.47 5.46 7.01 8.18 10.15 12.35

ONA1000 3.41 5.43 6.89 8.10 9.95 12.27

ONA∗ 3.06 5.27 6.71 8.04 10.07 12.46

ONA∗
γ 3.06 5.22 6.72 7.91 9.84 12.31

Information Loss in % on Tarragona
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 9.56 16.84 18.63 22.81 28.15 33.90

LMaS100 9.46 15.83 18.73 21.83 27.61 31.83

LMaS1000 9.20 15.79 18.33 21.67 27.25 31.78

ONA10 9.72 15.43 17.72 21.11 26.85 31.43

ONA100 9.49 15.01 17.83 20.84 26.35 30.87

ONA1000 9.17 14.86 17.56 20.78 26.42 30.84

ONA∗ 9.06 15.11 17.79 20.48 26.34 31.15

ONA∗
γ 9.05 15.10 17.76 20.49 26.12 30.51

Information Loss in % on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 0.19 0.40 0.57 0.81 1.73 2.09

LMaS100 0.19 0.39 0.56 0.80 1.67 2.04

LMaS1000 0.19 0.39 0.55 0.79 1.66 2.03

ONA10 0.22 0.41 0.60 0.84 1.66 2.03

ONA100 0.21 0.40 0.59 0.80 1.60 2.01

ONA1000 0.21 0.40 0.59 0.79 1.59 1.99

ONA∗ 0.20 0.37 0.52 0.79 1.63 1.99

ONA∗
γ 0.19 0.37 0.52 0.78 1.58 1.98

– 153 –

B Raw results of Lloyd-based heuristics

Table B.2: Information losses of Lloyd-based heuristics on small databases (n = 1024) from
the UCI repository. Cloud1 ∈ X1024,10, Cloud2 ∈ X1024,10. Please take results for LMaS10

and ONA10 with a grain of salt, as due to the low number of repetitions these results might
vary.

Information Loss in % on Cloud1
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 1.25 2.23 3.82 4.39 5.53 6.92

LMaS100 1.23 2.19 3.46 4.27 5.51 6.82

LMaS1000 1.23 2.20 3.39 4.25 5.43 6.78

ONA10 1.23 2.15 3.20 3.89 5.19 6.41

ONA100 1.20 2.13 3.20 3.82 4.95 6.37

ONA1000 1.20 2.11 3.15 3.81 4.97 6.35

ONA∗ 1.15 2.02 3.24 3.92 5.07 6.28

ONA∗
γ 1.13 2.02 3.10 3.68 4.92 6.28

Information Loss in % on Cloud2
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 0.66 1.15 1.56 1.89 2.45 3.17

LMaS100 0.66 1.13 1.54 1.87 2.43 3.14

LMaS1000 0.65 1.13 1.51 1.84 2.40 3.11

ONA10 0.68 1.11 1.46 1.78 2.28 3.00

ONA100 0.67 1.10 1.46 1.74 2.27 2.96

ONA1000 0.67 1.10 1.44 1.72 2.23 2.93

ONA∗ 0.61 1.04 1.40 1.71 2.22 2.92

ONA∗
γ 0.60 1.03 1.39 1.67 2.19 2.91

Table B.3: Information losses of Lloyd-based heuristics on large databases (n ≥ 30000)

from the UCI repository. Credit Card ∈ X30000,24, Adult ∈ X48842,3. Please take results for
LMaS10 and ONA10 with a grain of salt, as due to the low number of repetitions these results
might vary. LMaS1000 as well as ONA100 and ONA1000 have not been tested as they require
too much time.

Information Loss in % on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 3.89 6.53 7.95 9.32 11.50 13.48

LMaS100 3.89 6.48 7.92 9.28 11.36 13.42

ONA10 3.98 6.16 7.58 8.72 10.53 12.30

ONA∗ 3.50 5.86 7.53 8.65 10.23 12.24

ONA∗
γ 3.50 5.86 7.40 8.46 10.20 12.12

Information Loss in % on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 0.042 0.090 0.137 0.186 0.281 0.418

LMaS100 0.041 0.090 0.137 0.183 0.275 0.408

ONA10 0.047 0.094 0.139 0.182 0.262 0.374

ONA∗ 0.039 0.081 0.123 0.165 0.243 0.357

ONA∗
γ 0.039 0.081 0.122 0.161 0.241 0.353

– 154 –

B Raw results of Lloyd-based heuristics

Table B.4: Mean information losses of Lloyd-based heuristics on sets of synthetic databases.
SimU = {SimU0, . . . , SimU24}, SimUi ∈ X1000,10, SimC = {SimC0, . . . , SimC24}. Sizes of
SimCi are between n = 1528 and n = 1765 for d = 10. Please take results for LMaS10 and
ONA10 with a grain of salt, as due to the low number of repetitions these results might vary.
Means are taken over the results with lowest IL on each database.

Mean Information Loss in % on SimU
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 11.96 19.21 24.08 27.65 32.85 38.31

LMaS100 11.81 18.94 23.79 27.41 32.47 37.74

LMaS1000 11.70 18.82 23.56 27.11 32.24 37.45

ONA10 11.86 17.65 21.70 24.94 29.76 35.29

ONA100 11.73 17.45 21.50 24.68 29.60 34.93

ONA1000 11.60 17.31 21.36 24.49 29.36 34.72

ONA∗ 10.02 16.69 20.95 24.26 29.05 34.41

ONA∗
γ 9.98 16.58 20.85 24.13 28.98 34.23

Mean Information Loss in % on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 3.53 5.51 6.94 8.19 10.20 12.82

LMaS100 3.45 5.44 6.87 8.08 10.06 12.57

LMaS1000 3.43 5.38 6.81 8.01 9.94 12.40

ONA10 3.62 5.48 6.77 7.81 9.46 11.69

ONA100 3.54 5.40 6.69 7.72 9.36 11.54

ONA1000 3.50 5.33 6.63 7.66 9.30 11.45

ONA∗ 3.16 5.20 6.59 7.68 9.33 11.40

ONA∗
γ 3.14 5.15 6.51 7.55 9.20 11.24

– 155 –

B Raw results of Lloyd-based heuristics

Table B.5: Runtimes in s of Lloyd-based heuristics on small databases (n ≤ 4092) from the
CASC project. Census ∈ X1080,13, Tarragona ∈ X834,13, EIA ∈ X4092,11.

Runtime in s on Census
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 0.28 0.19 0.16 0.14 0.13 0.11

LMaS100 2.06 1.73 1.44 1.29 1.12 0.97

LMaS1000 19.12 16.39 14.40 13.03 11.28 9.66

ONA10 0.67 0.55 0.58 0.55 0.74 0.64

ONA100 5.77 5.67 5.76 5.77 5.98 6.51

ONA1000 55.97 60.44 61.10 59.82 64.64 66.62

ONA∗ 0.13 0.06 0.05 0.04 0.03 0.04

ONA∗
γ 0.05 0.05 0.03 0.03 0.04 0.08

Runtime in s on Tarragona
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 0.25 0.16 0.15 0.15 0.12 0.08

LMaS100 1.77 1.60 1.37 1.22 1.06 0.78

LMaS1000 16.84 14.53 13.10 11.96 9.67 7.61

ONA10 0.54 0.45 0.53 0.53 0.66 0.72

ONA100 4.44 4.92 5.18 5.68 6.90 8.29

ONA1000 44.30 47.60 51.69 55.93 64.92 82.95

ONA∗ 0.54 0.04 0.03 0.03 0.03 0.04

ONA∗
γ 0.04 0.03 0.03 0.02 0.04 0.05

Runtime in s on EIA
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 2.99 2.04 2.17 1.77 1.67 1.50

LMaS100 24.86 21.95 19.06 18.24 15.14 11.94

LMaS1000 243.84 213.34 189.83 176.39 150.34 117.41

ONA10 7.77 10.44 6.16 14.66 2.46 2.13

ONA100 78.41 97.59 56.13 147.08 24.84 21.68

ONA1000 837.56 1, 105.83 544.66 1, 554.26 254.84 231.22

ONA∗ 0.60 0.40 0.29 0.27 0.21 0.17

ONA∗
γ 0.51 0.38 0.30 0.28 0.32 0.21

– 156 –

B Raw results of Lloyd-based heuristics

Table B.6: Runtimes in s of Lloyd-based heuristics on large databases (n ≥ 30000) from
the UCI repository. Credit Card ∈ X30000,24, Adult ∈ X48842,3. LMaS1000 as well as ONA100

and ONA1000 have not been tested as they require too much time.

Runtime in s on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 599.0 560.2 481.8 418.5 339.0 255.9

LMaS100 5438.9 4670.9 4138.9 3527.3 2, 821.5 2, 207.2

ONA10 961.9 1333.4 1188.5 1041.8 958.8 869.7

ONA∗ 49.3 42.9 35.4 36.5 32.8 29.6

ONA∗
γ 52.1 58.9 52.4 41.9 35.5 25.2

Runtime in s on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 117.1 75.3 58.4 49.7 49.0 46.0

LMaS100 995.7 685.3 529.8 455.3 471.4 413.9

ONA10 5807.3 4859.9 4366.0 3203.9 2958.7 2482.2

ONA∗ 226.3 148.6 116.4 99.8 78.6 52.3

ONA∗
γ 196.0 136.0 105.4 92.5 72.8 52.2

Table B.7: Mean runtimes in s of Lloyd-based heuristics on sets of synthetic databases.
SimU = {SimU0, . . . , SimU24}, SimUi ∈ X1000,10, SimC = {SimC0, . . . , SimC24}. Sizes of
SimCi are between n = 1528 and n = 1765 for d = 10. Means are taken over the results
with lowest IL on each database.

Mean Runtime in s on SimU
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 0.13 0.10 0.09 0.08 0.07 0.06

LMaS100 1.08 0.90 0.82 0.74 0.65 0.59

LMaS1000 10.80 9.36 8.19 7.50 6.50 5.89

ONA10 0.53 0.55 0.56 0.54 0.55 0.55

ONA100 4.78 5.06 5.07 5.04 5.02 4.92

ONA1000 46.41 49.60 50.21 25.32 50.60 48.88

ONA∗ 0.03 0.03 0.03 0.03 0.03 0.03

ONA∗
γ 0.03 0.03 0.03 0.03 0.03 0.06

Mean Runtime in s on SimC
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

LMaS10 0.28 0.18 0.13 0.12 0.10 0.09

LMaS100 2.55 1.67 1.22 1.11 0.96 0.83

LMaS1000 25.48 17.13 12.55 11.69 10.18 8.61

ONA10 1.38 1.27 1.14 1.02 0.87 0.70

ONA100 13.31 11.72 10.15 9.27 7.74 6.23

ONA1000 130.25 117.87 104.38 93.46 77.78 64.23

ONA∗ 0.09 0.07 0.06 0.05 0.05 0.05

ONA∗
γ 0.08 0.07 0.07 0.06 0.06 0.05

– 157 –

B Raw results of Lloyd-based heuristics

Table B.8: Gain factors γ used for ONA∗
γ to achieve information losses reported in table B.1

to table B.4. For SimU and SimC gain factors are chosen for individual databases and mean
γ is reported here.

γ used for ONA∗
γ

k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

Census 0.9 1.2 1.0 1.1 1.2 1.7

Tarragona 0.7 1.9 1.1 1.0 1.1 1.3

EIA 1.6 1.0 0.9 0.5 1.8 1.3

Cloud1 1.3 1.0 1.5 1.1 1.1 1.0

Cloud2 1.1 0.9 1.0 0.8 1.4 1.9

Credit Card 1.1 1.0 1.7 1.2 1.1 0.9

Adult 1.0 0.9 0.9 1.2 1.1 1.1

SimU 0.9 1.1 1.1 1.0 1.0 1.0

SimC 1.1 1.2 1.0 1.0 0.9 0.7

– 158 –

C

Raw results of Mondrian-based
heuristics

Table C.1: Information losses of Mondrian-based heuristics on the Adult database. Adult ∈
X48842,3

Information Loss in % on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 0.249 0.508 0.508 0.508 0.917 0.917

MONDRIAN_V 0.206 0.407 0.407 0.407 0.757 0.757

MONDRIAN_V2D 0.188 0.387 0.387 0.387 0.705 0.705

MONA0.1 0.206 0.407 0.407 0.407 0.757 0.757

MONA_2D0.1 0.188 0.387 0.387 0.387 0.705 0.705

MONA0.2 0.105 0.407 0.407 0.407 0.757 0.757

MONA_2D0.2 0.099 0.387 0.387 0.387 0.705 0.705

MONA0.3 0.067 0.140 0.211 0.285 0.434 0.649

MONA_2D0.3 0.068 0.142 0.216 0.290 0.425 0.646

MONA0.4 0.060 0.124 0.187 0.248 0.381 0.569

MONA_2D0.4 0.060 0.125 0.190 0.250 0.376 0.561

MONA0.5 0.050 0.106 0.161 0.211 0.322 0.465

MONA_2D0.5 0.050 0.102 0.156 0.206 0.302 0.456

MONA0.6 0.048 0.099 0.149 0.198 0.303 0.439

MONA_2D0.6 0.048 0.097 0.149 0.195 0.286 0.430

MONA0.7 0.043 0.091 0.137 0.182 0.276 0.402

MONA_2D0.7 0.042 0.090 0.137 0.182 0.268 0.399

MONA0.8 0.041 0.089 0.132 0.175 0.264 0.386

MONA_2D0.8 0.042 0.087 0.132 0.176 0.257 0.381

MONA0.9 0.040 0.085 0.129 0.171 0.258 0.372

MONA_2D0.9 0.041 0.084 0.128 0.170 0.247 0.372

MONA1 0.039 0.081 0.123 0.165 0.243 0.357

– 159 –

C Raw results of Mondrian-based heuristics

Table C.2: Information losses of Mondrian-based heuristics on the Credit Card database.
Credit Card ∈ X30000,24

Information Loss in % on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 30.33 30.33 41.47 41.47 43.75 50.71

MONDRIAN_V 24.05 24.05 32.54 32.54 34.12 39.27

MONDRIAN_V2D 17.85 17.85 24.52 24.52 25.78 30.30

MONA0.1 24.05 24.05 32.54 32.54 34.12 39.27

MONA_2D0.1 17.85 17.85 24.52 24.52 25.78 30.30

MONA0.2 19.46 22.50 32.54 32.54 34.12 39.27

MONA_2D0.2 14.83 17.11 24.52 24.52 25.78 30.30

MONA0.3 10.85 17.35 22.26 25.63 31.67 39.27

MONA_2D0.3 8.76 13.92 17.87 20.50 24.84 30.30

MONA0.4 8.67 13.91 17.71 20.53 24.77 29.18

MONA_2D0.4 7.38 11.78 14.93 17.36 20.97 24.62

MONA0.5 7.74 12.56 15.99 18.53 22.45 26.59

MONA_2D0.5 6.87 10.96 13.89 16.16 19.50 22.95

MONA0.6 6.36 10.14 12.90 14.95 17.96 21.44

MONA_2D0.6 5.73 9.20 11.58 13.45 16.29 19.18

MONA0.7 5.64 9.14 11.52 13.41 16.27 19.22

MONA_2D0.7 5.27 8.47 10.75 12.42 14.97 17.54

MONA0.8 4.38 7.29 9.42 10.92 13.19 15.54

MONA_2D0.8 4.56 7.35 9.35 10.77 12.82 15.02

MONA0.9 4.07 6.79 8.79 10.15 12.26 14.48

MONA_2D0.9 4.18 6.83 8.68 10.07 11.95 13.91

MONA1 3.50 5.86 7.53 8.65 10.23 12.24

– 160 –

C Raw results of Mondrian-based heuristics

Table C.3: Information losses of Mondrian-based heuristics on the Winnipeg database.
Winnipeg ∈ X325834,174

Information Loss in % on Winnipeg
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 49.43 65.33 65.33 75.71 75.71 81.56

MONDRIAN_V 46.53 61.93 61.93 72.51 72.51 78.72

MONDRIAN_V2D 44.26 59.60 59.60 70.24 70.24 76.70

MONA0.1 46.53 61.93 61.93 72.51 72.51 78.72

MONA_2D0.1 44.26 59.60 59.60 70.24 70.24 76.70

MONA0.2 33.64 48.80 58.39 72.51 72.51 78.72

MONA_2D0.2 32.69 47.25 56.41 70.24 70.24 76.70

MONA0.3 30.01 44.15 52.50 57.98 64.91 70.93

MONA_2D0.3 29.37 42.96 50.98 56.32 63.09 69.03

MONA0.4 24.75 37.43 45.87 51.85 59.52 65.97

MONA_2D0.4 24.29 36.52 44.64 50.48 58.01 64.40

MONA0.5 22.25 33.47 41.04 46.84 55.09 62.56

MONA_2D0.5 21.76 32.58 39.87 45.52 53.72 61.07

MONA0.6 18.39 27.37 33.14 37.14 42.68 48.65

MONA_2D0.6 18.01 26.79 32.10 35.84 41.24 47.07

MONA0.7 15.64 23.38 28.30 31.68 36.34 40.74

MONA_2D0.7 15.34 22.85 27.38 30.59 34.94 39.01

MONA0.8 13.66 20.43 24.80 27.82 31.92 35.60

MONA_2D0.8 13.46 19.99 24.05 26.90 30.70 34.24

– 161 –

C Raw results of Mondrian-based heuristics

Table C.4: Runtimes in s of Mondrian-based heuristics on the Adult database. Adult ∈
X48842,3

Runtime in s on Adult
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 0.11 0.05 0.04 0.04 0.03 0.03

MONDRIAN_V 0.09 0.05 0.05 0.05 0.04 0.04

MONDRIAN_V2D 0.20 0.09 0.07 0.07 0.07 0.07

MONA0.1 0.12 0.05 0.04 0.05 0.03 0.04

MONA_2D0.1 0.22 0.10 0.07 0.07 0.06 0.06

MONA0.2 0.24 0.06 0.04 0.05 0.04 0.04

MONA_2D0.2 0.30 0.08 0.11 0.07 0.07 0.07

MONA0.3 0.33 0.20 0.17 0.38 0.41 0.70

MONA_2D0.3 0.36 0.22 0.20 0.40 0.37 0.69

MONA0.4 0.37 0.27 0.23 0.37 0.43 0.42

MONA_2D0.4 0.37 0.26 0.26 0.38 0.44 0.52

MONA0.5 0.65 0.42 0.49 0.61 0.76 0.77

MONA_2D0.5 0.61 0.45 0.52 0.69 0.79 0.72

MONA0.6 1.08 0.73 0.83 1.00 1.07 1.10

MONA_2D0.6 1.04 0.82 0.98 1.10 1.18 0.99

MONA0.7 4.45 2.86 2.85 2.76 2.47 2.10

MONA_2D0.7 4.54 3.03 3.14 2.90 2.62 2.16

MONA0.8 9.93 6.01 5.58 5.01 4.39 3.57

MONA_2D0.8 9.44 6.61 5.99 5.44 4.46 3.74

MONA0.9 51.56 36.14 28.09 22.71 15.83 10.80

MONA_2D0.9 50.66 35.86 28.13 22.77 15.69 11.65

MONA1 226.28 148.64 116.42 99.75 78.56 52.26

– 162 –

C Raw results of Mondrian-based heuristics

Table C.5: Runtimes in s of Mondrian-based heuristics on the Credit Card database.
Credit Card ∈ X30000,24

Runtime in s on Credit Card
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 0.14 0.09 0.06 0.06 0.05 0.05

MONDRIAN_V 0.16 0.07 0.06 0.06 0.07 0.06

MONDRIAN_V2D 1.12 1.18 1.04 1.04 1.02 0.97

MONA0.1 0.18 0.08 0.06 0.06 0.10 0.06

MONA_2D0.1 1.18 1.15 1.03 1.02 1.01 0.96

MONA0.2 0.28 0.15 0.06 0.06 0.06 0.08

MONA_2D0.2 1.19 1.27 1.00 1.01 0.99 0.95

MONA0.3 0.34 0.20 0.17 0.13 0.14 0.06

MONA_2D0.3 1.21 1.14 1.07 0.98 1.03 0.96

MONA0.4 0.42 0.27 0.25 0.25 0.28 0.36

MONA_2D0.4 1.16 1.10 1.04 1.05 1.08 1.15

MONA0.5 0.49 0.36 0.31 0.33 0.36 0.46

MONA_2D0.5 1.19 1.10 1.04 1.07 1.11 1.21

MONA0.6 0.99 0.71 0.67 0.64 0.77 0.83

MONA_2D0.6 1.42 1.35 1.24 1.24 1.28 1.46

MONA0.7 1.64 1.14 1.08 1.06 1.06 1.25

MONA_2D0.7 1.94 1.79 1.62 1.56 1.62 1.75

MONA0.8 6.14 4.87 4.15 3.67 3.41 3.38

MONA_2D0.8 6.74 5.02 4.38 4.19 3.72 3.62

MONA0.9 11.79 9.28 8.28 8.13 6.75 5.96

MONA_2D0.9 12.28 9.59 9.23 7.56 7.02 6.31

ONA∗ 49.27 42.92 35.37 36.49 32.84 29.62

– 163 –

C Raw results of Mondrian-based heuristics

Table C.6: Runtimes in s of Mondrian-based heuristics on the Winnipeg database.
Winnipeg ∈ X325834,174

Runtime in s on Winnipeg
k = 2 k = 3 k = 4 k = 5 k = 7 k = 10

MONDRIAN 6.8 6.4 6.2 5.9 5.8 5.6

MONDRIAN_V 9.4 8.8 8.7 8.7 8.7 8.3

MONDRIAN_V2D 1407.7 1475.3 1483.6 1485.4 1416.4 1323.5

MONA0.1 9.8 8.1 8.0 7.9 7.9 7.7

MONA_2D0.1 1766.1 1455.2 1487.7 1492.6 1420.8 1402.8

MONA0.2 12.6 11.8 11.5 8.0 8.4 8.1

MONA_2D0.2 1623.1 1360.2 1399.3 1363.2 1449.1 1392.6

MONA0.3 16.6 16.8 16.5 17.0 20.1 19.3

MONA_2D0.3 1489.9 1387.4 1342.1 1356.5 1394.2 1396.8

MONA0.4 27.8 28.7 27.9 28.3 30.7 38.2

MONA_2D0.4 1568.4 1348.1 1249.4 1246.6 1262.6 1294.7

MONA0.5 45.7 42.0 41.0 40.6 42.3 51.0

MONA_2D0.5 1533.6 1223.9 1239.4 1208.0 1298.1 1285.7

MONA0.6 171.6 149.9 139.5 133.6 122.9 126.6

MONA_2D0.6 1386.1 1283.0 1300.5 1266.7 1275.2 1246.4

MONA0.7 721.3 646.2 591.8 554.9 495.8 453.6

MONA_2D0.7 1810.3 1572.3 1597.0 1501.8 1386.3 1354.9

MONA0.8 3573.4 3215.4 2841.7 2753.5 2362.4 2098.5

MONA_2D0.8 4456.8 3767.2 3554.8 3409.7 3095.9 2789.4

– 164 –

D

Publications

2018 Improving Anonymization Clustering: This conference contri-
bution written in cooperation with Rüdiger Reischuk has been
presented at the 2018 edition of the regular convention SICHER-
HEIT of the security division of the German Informatics Society
(GI) held in Constance, Germany in April 2018. The paper has
been peer-reviewed and appeared in the conference proceedings
as part of the LNI (Lecture Notes in Informatics) series [70].
The paper introduces MDAV∗ as a new variant of maximum dis-
tance heuristics for the k-anonymous microaggregation problem.
It further introduces a preliminary version of the formal defini-
tions of microaggregation presented in chapter 2 of this thesis.

2019 Hardness of k-anonymous microaggregation: This workshop con-
tribution has been presented at the 17th edition of the Cologne-
Twente Workshop on Graphs and Combinatorial Optimization
held in Enschede, Netherlands in July 2019. The paper has been
peer-reviewed and appeared in the workshop proceedings [68].
The paper is an extended abstract of a work-in-progress version
of the complexity results presented in section 4.2 of this thesis.
It is restricted to cases in which k is part of the input and larger
than 25.

2020 Hardness of k-anonymous microaggregation: This journal paper
written in cooperation with Rüdiger Reischuk has been pub-
lished in October 2020 as a peer-reviewed corrected proof of
the Discrete Applied Mathematics journal [69]. It contains the
hardness result presented in section 4.2 in its final form.

– 165 –

D Publications

2021 Scalable k-anonymous Microaggregation: Exploiting the Trade-
off between Computational Complexity and Information Loss:
This conference contribution written in cooperation with Rüdi-
ger Reischuk has been presented at the 18th International Con-
ference on Security and Cryptography (SECRYPT 2021) in July
2021. The paper introduces ONA∗, MONDRIAN_V, MONDRIAN_V2D,
MONA and MONA_2D as presented in chapters 6 and 7. It has been
peer-reviewed and appeared in the conference proceedings [71].

– 166 –

E

Supervised Bachelor’s and Master’s
Theses

During my work for this dissertation I supervised several bachelor’s and master’s theses
with topics both related and unrelated to my own research activity.

Related

2018: Mustafa Sahin Evaluability preserving database anonymization with
the help of current algorithms:
In his bachelor’s thesis Mr. Sahin analyzed several max-
imum distance heuristics including MDAV∗ by empiri-
cal evaluation and further evaluated possible improve-
ments to MDAV∗.

2019: Finn Christian Stoldt Database Anonymization Based on k-means Algo-
rithms:
In his bachelor’s thesis Mr. Stoldt analyzed the existing
merge and split approach, evaluated possible improve-
ments by an evolutionary strategy and designed tools
to visualize information loss.

2021: Yara Sophie Schütt Design and Analysis of Anonymization Algorithms Pre-
serving Evaluability under Consideration of Differential
Privacy:
In her bachelor’s thesis Ms. Schütt analyzed the appli-
cability of SmallDB and safe k-anonymization for the
differentially private release of synthetic data similar to
an original database.

Unrelated

2016: Gudrun Mareike Amedick Placement of storage nodes in dynamic networks:
In her bachelor’s thesis Ms. Amedick used graph theo-
retical models to create algorithms finding optimal po-
sitions and capacities of storage nodes within idealized
power grids.

– 167 –

E Supervised Bachelor’s and Master’s Theses

2018: Ivo Heinecke Private Edit Distance on DNA:
In his master’s thesis Mr. Heinecke designed and ana-
lyzed methods to compute fast private edit distance on
human DNA. He used techniques that transform the
problem into private set operations on sets of genetic
markers.

– 168 –

	1 Introduction
	2 Anonymity through Clustering: A Mathematical Model
	2.1 Databases
	2.2 Anonymization
	2.3 Microaggregation
	2.4 Elementary Results Regarding Cost Computations

	3 Microaggregation in a broader context
	3.1 Non-Numerical Data
	3.2 Alternative Utility Units
	3.3 Stronger Anonymity Guarantees

	4 Complexity Results
	4.1 The k-Means Clustering Problem
	4.2 Microaggregation Is Hard for k3
	4.3 Other Complexity Results and Open Problems
	4.4 Related Results

	5 Maximum Distance Heuristics
	5.1 Maximum Distance to Average Vector
	5.2 Experimental Evaluation of Maximum Distance Heuristics

	6 Lloyd-based Heuristics
	6.1 Lloyd's Algorithm
	6.2 Probability-Constrained Lloyd
	6.3 Merge and Split Approach
	6.4 ONA and ONA*
	6.5 Experimental Evaluation of Lloyd-based Heuristics

	7 Heuristics for Large Databases
	7.1 Using MONDRIAN for Microaggregation
	7.2 Combining ONA* and MONDRIAN_V
	7.3 Experimental Evaluation of Near Linear Time Heuristics

	8 Additional Techniques used in Microaggregation Heuristics
	8.1 Minimum Spanning Tree Approach
	8.2 Two Fixed Reference Points
	8.3 Density-based Microaggregation
	8.4 Sorting-based Microaggregation
	8.5 Summary

	9 Microaggregation Algorithms with Approximation Guarantees
	9.1 Existing Microaggregation Approximation
	9.2 Overview of k-Means Approximations
	9.3 New Approaches for Microaggregation Approximation

	10 Adapting Differential Privacy for Microdata Release
	10.1 Differential Privacy in a Nutshell
	10.2 Using Differential Privacy to Protect Data Release
	10.3 New Approaches to Differentially Private Data Release
	10.4 Summary

	11 Conclusion
	Bibliography
	A Raw results of MDAV-like heuristics
	B Raw results of Lloyd-based heuristics
	C Raw results of Mondrian-based heuristics
	D Publications
	E Supervised Bachelor's and Master's Theses

