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1 GENERAL INTRODUCTION

M
AGNETIC RESONANCE IMAGING (MRI) is a well-established non-invasive imaging

modality for medical diagnostics and many research disciplines, which provides

unique anatomical and functional insights into the living human body [1–3]. As a central

characteristic, MRI provides various contrast mechanisms enabling unparalleled soft

tissue differentiation. As such, diffusion-weighted imaging (DWI) [4–8] incorporates a

special MRI contrast mechanism that allows to encode the three-dimensional diffusion

process into the MRI signal, using the abundant water molecules in the human body

to probe the tissue micro-structure far below the actual image resolution. The char-

acterization of the diffusion process provides sensitive markers for stroke diagnostics

and to differentiate the abnormal tissue cellularity of cancer [7]. The analysis of direc-

tional diffusion anisotropies can further be linked to the white matter connectivity al-

lowing to study the physiological brain function as well as pathological alterations [4].

Besides the brain, the diffusion contrast also offers valuable tissue characterization for

body anatomies like the liver or the heart, although body imaging usually suffers from

faster signal decays and more complex motion profiles [4].

DWI sequences are particularly demanding due to the high gradient hardware re-

quirements and its inherent sensitivity to patient motion including physiological and

voluntary effects [8, 9]. Therefore, clinical applications have been dominated for many

years by single-shot echo-planar imaging (EPI) acquisitions [8], which rapidly acquire

one snapshot image per signal excitation [10]. Moreover, the image acquisitions com-

monly make use of parallel imaging techniques [11] like SENSE [12, 13] or GRAPPA [14]

employing multiple receive coils with varying spatial sensitivity profiles.

The need for improved image resolution and signal-to-noise ratio (SNR) has been

fostering multi-shot applications [8] which obtain the image information from multiple

successively acquired data segments offering more flexible sampling [15, 16]. However,

the motion sensitivity of DWI entails signal variations which spoil the correlations be-

tween the individual shot datasets and severely affect image quality. As a major source

of shot variations in DWI, the displacements from tiny subject motion [17] and cardiac

pulsations of the brain [18, 19] during the strong diffusion-sensitizing gradients lead to

shot-specific phase accruals. Macroscopic motion of the patient is another inconvenient

and costly [20] source of signal variations, which involves further secondary sampling-

related artifacts [21, 22]. Hence, the signal variations must be appropriately taken into

account to harvest the joint information from large multi-shot multi-coil datasets.

Model-based image reconstructions for MRI [23] move beyond the classical inverse

Fourier transform, parameterizing the signal variations in tailored signal models. Un-

fortunately, the parameter identification is typically ill-posed and non-linear [24]. This

challenging problem gives rise to a wide variety of methods for estimating the shot-

specific phase maps [17, 18, 25–42] and macroscopic motion [43, 44] in multi-shot DWI

including different strategies to sense the signal variations and solve or substitute the

ill-posed problem. Navigated methods, for example, use additional signals in the MRI

sequence for the parameter identification, while self-navigated methods deduce naviga-

tion signals from the imaging data itself. In addition, MRI has been revolutionized by

compressed sensing [45] and deep learning [46, 47] which exploit the compressibility of

data in appropriate domains to regularize the ill-posed problem. The multitude of mod-

els, navigation strategies and constraints constitutes a wide and active research field.
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This thesis explores four new model-based image reconstructions [48–51] for

motion-corrected multi-shot DWI in the human brain addressing relevant confounding

factors for both clinical and research practice. Starting from pure shot phase correc-

tions, the proposed methods explore additional 2D in-plane and fully 3D rigid motion

modeling with different navigation strategies. Overall, the main contributions of this

dissertation for multi-shot DWI include:

1. Deep learning support for self-navigated shot phase estimations in an alternating

optimization [48] with conventional image reconstruction (Section 3.1),

2. A self-navigated algorithm [49] with shot phase and rigid in-plane motion correc-

tion enabling high segmentations (Section 3.2),

3. A navigated algorithm [50] with shot phase and rigid in-plane motion correction

for fast and robust image reconstructions (Section 4.1),

4. A comparison of the navigated and self-navigated algorithms for shot phase and

rigid in-plane motion correction (in Section 4.1),

5. A navigated algorithm [51] with shot phase and 3D rigid motion correction includ-

ing simultaneous multi-slice sampling and multi-slice-to-volume registration in a

full-volume image reconstruction (Section 4.2).

This work is separated into five main chapters. After the introduction, the second chap-

ter provides a brief introduction to MR image formation, DWI and its multi-shot model-

ing. The third chapter covers the two self-navigated image reconstruction approaches,

including the deep learning supported shot phase estimation and the rigid in-plane mo-

tion corrections. The fourth chapter contains the two navigated algorithms, presenting

the rigid in-plane and the fully 3D rigid motion corrections. The final chapter puts the

presented approaches together in a generalized context providing a joint discussion and

conclusions. Note that the order of the chapters on self-navigated and navigated meth-

ods is unrelated to any technological preferences but rather attempts to group similar

reconstruction concepts.
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2
THEORETICAL BACKGROUND

Diffusion-weighted imaging has been present in the MR research community for almost

40 years and is still a rapidly evolving research field with continuous innovations ranging

from sequence design with advanced encoding technologies over intelligent reconstruc-

tion strategies to high-end diffusion modeling and post-processing. At the same time,

DWI is a challenging imaging contrast due to the demanding hardware requirements

and its inherent motion sensitivity. This work contributes to the technical developments

of multi-shot DWI in the presence of shot phase variations and patient gross motion.

This chapter provides a theoretical background of the image encoding and reconstruc-

tion which is required to provide a comprehensible description of the thesis contribu-

tions. The first section gives a brief introduction to magnetic resonance imaging and

the state-of-the-art image formation principles that are relevant for DWI along with the

corresponding reconstruction philosophies. The second section introduces diffusion-

weighted imaging, describes the modeling framework for multi-shot DWI and reviews

related work on this topic.

The theoretical background in this thesis is presented with a focus on multi-shot DWI.

For a broader theoretical coverage, the reader is referred to textbooks on MRI [1–3], con-

vex optimization [52, 53] and inverse problems [24]. For the topic of this dissertation,

specialized articles on diffusion-weighted imaging [4–8], model-based reconstruction

[23], motion correction in MRI [21, 22] and simultaneous multi-slice acquisition [54] are

recommended.
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2.1
MR IMAGE FORMATION

An MRI sequence is built from radio-frequency excitation pulses, which produce a de-

tectable transverse magnetization, and a spatial encoding process that allows to resolve

the image. Today’s MR image formation is mainly driven by two powerful signal encod-

ing technologies: the Fourier encoding using gradient fields and the sensitivity encod-

ing using localized coil sensitivity profiles. Although these technologies are mutually

independent in the first place, their interplay has been fruitfully developed over the last

decades and still represents an active research field. This section begins with some ele-

mentary MRI principles. Next, a selection of image formation techniques for the state-

of-the-art of DWI is presented covering slice-selective excitations, the Fourier and the

sensitivity encoding. In the end, simultaneous multi-slice imaging is introduced, which

has led to considerable scan accelerations at minor SNR penalty for DWI.

MAGNETIC RESONANCE IMAGING PRINCIPLES

Magnetic resonance imaging in today’s clinics predominantly examines the resonance of

hydrogen nuclei (protons) and is based on three types of magnetic fields that are jointly

applied to obtain non-invasive tomographic images [1]. First, a strong static magnetic

field B0, by convention applied along the longitudinal z direction, induces a net magne-

tization in the object, whose equilibrium value is proportional to the present magnetic

field and the spin density of the object. Moreover, the nuclear spins exhibit the magnetic

resonance phenomenon at the Larmor frequency in the presence of a magnetic field B:

ω= γB, (2.1)

where γ is the gyromagnetic ratio, which is γ′ = γ/(2π) = 42.58 MHz/T for protons. Sec-

ond, a transmit radio-frequency (RF) field B+
1 , which is applied at the Larmor frequency

in the transversal x-y-plane, excites the spin system and produces transverse magneti-

zation components, which themselves precess at the Larmor frequency.

By Faraday’s law of induction, the precessing magnetization is detectable by trans-

versely aligned receiver coils, which sense complex-valued signals using phase-sensitive
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2 THEORETICAL BACKGROUND

acquisitions [1]. The return to the thermodynamic equilibrium of the spin system is gov-

erned by two relaxation processes. The longitudinal magnetization recovers with time

constant T1via energy dissipation into the local environment, whereas the transverse

magnetization decays with the statistical loss of phase coherence described by the relax-

ation constant T2. The Larmor precession and the relaxation processes jointly describe

the basic MR spin dynamics in the Bloch equations [1].

As the third field, the gradient field G provides the fundamental spatial encoding

technology for MRI [1]. The gradient coils are designed, one for each of the three or-

thogonal spatial directions, to produce a longitudinal (z) magnetic field component that

varies linearly along the gradient axis. The linear field variation causes a frequency mod-

ulation according to Eq. 2.1, which translates to a linear phase accrual of the transverse

magnetization characterized by the spatial frequency:

k(t ) = γ

∫t

0
G(τ)dτ. (2.2)

The baseband signal equation describes the signal formation acquired in the volume

of interest (VOI) after demodulation with the Larmor frequency ω0 = γB0 ignoring the

relaxation terms [1]:

d(k) =
∫

VOI
ρ(r)e− j kr dr. (2.3)

Hence, the linear spatial phase modulation induced by the gradient field effectively en-

codes the Fourier, or k-space, representation of the detectable transverse magnetization.

The acquired MR data d is therefore the Fourier representation of the image object ρ. k

and r are the k-space and spatial coordinates, respectively. The image is readily recov-

ered by an inverse Fourier transform that is efficiently implemented in practice using the

fast Fourier transform (FFT).

SLICE-SELECTIVE EXCITATION

In the thermal equilibrium, the object magnetization is aligned with the main magnetic

field B0. Governed by the Bloch equations, the magnetization can be excited to obtain

receivable transverse components using a RF magnetic field applied on-resonance in the

transversal plane [1]. In the presence of the homogeneous B0 field, a resonant RF pulse

equally excites the full volume and is called non-selective. Using an additional gradient

field, the resonance frequency varies spatially and the excitation can thus be restricted

to a specific region by RF pulses with dedicated frequency bands. By this selective excita-

tion, the image encoding can be slice-specifically localized reducing the acquisition and

reconstruction to a manageable two-dimensional problem. DWI sequences are com-

monly based on slice-selective excitations [5] and they are therefore considered in this

work.

The resonance condition of an ideal slice with a rectangular profile in the presence

of a gradient field corresponds to a rectangular radio-frequency band according to the

linear Larmor relation in Eq. 2.1. The time-domain RF pulse for this single-band (SB)

excitation has a sinc waveform WSB(t ) =∆ f sinc(π∆ f t ) with the frequency∆ f = γ′Gz ∆z

and the slice thickness ∆z.
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2.1 MR IMAGE FORMATION

The complex-valued RF pulse RFSB(t ) in the transverse plane can be constructed us-

ing the RF waveform WSB and a phase modulation term [54]:

RFSB(t ) =WSB(t ) · e jωl t , (2.4)

where ωl accounts for the Larmor frequency offset caused by the spatial offset zl of slice

l from the iso-center via ωl = γGz zl . The infinite sinc waveform WSB(t ) is replaced by

filtered finite waveforms in practice.

FOURIER ENCODING

As briefly outlined before, the gradient system provides the basic encoding technology

of MRI and offers a flexible sampling machinery for various applications. After some

general sampling considerations, this subsection introduces the echo-planar imaging

(EPI) concept for fast snap-shot imaging, which has become the workhorse of state-of-

the-art DWI and functional MRI. Different undersampling strategies are covered for EPI

and, finally, multi-shot acquisition techniques are introduced.

Sampling considerations

In MRI, the gradient fields are used to apply spatially linear phase modulations to the

excited transverse magnetization. According to the signal equation in Eq. 2.3, a specific

phase modulation corresponds to acquiring a spatial frequency weight at k of the im-

age object’s k-space representation. By playing out a sequence of gradients, the spatial

frequency content can be successively encoded and sampled. The sampling trajectory

describes the acquisition sequence covering the set of sampling positions K.

According to the Nyquist theorem, a signal can be unambiguously recovered if it is

band-limited to half of the sampling frequency [1]. This condition relates the Cartesian

image field of view FOVi and its resolution ∆ri to the k-space sampling width Wi and its

increment ∆ki by FOVi = ∆k−1
i

and ∆ri = W −1
i

for the spatial encoding dimensions i ∈
{x, y, z}. An image is fully sampled if the k-space sampling in K satisfies these relations.

The discretized Fourier image encoding is described by the forward model relating

the k-space data vector ď ∈C
Nk with Nk samples to the image ρ ∈C

Np with Np pixels:

ď = M̌ F̌ ρ, (2.5)

involving the Fourier operator F̌ (Np×Np ) and the sampling operator M̌ (Nk×Np ), which

applies a mask for the Nk samples of the sampling trajectory K. In case of full Cartesian

Nyquist sampling, Nk = Np and the sampling operator is the identity M̌ = INp . The

image ρ = F̌ H ď is then efficiently recovered using the FFT.

Standard spin warp imaging [55] repeatedly performs three steps to sample the

Cartesian k-space grid of an image. First, a slice-selective RF pulse produces transverse

magnetization for one slice. By this restriction along the slice direction, the encoding

is reduced to a 2D imaging task. In the second phase encoding step, a gradient pulse

adjusts the spatial frequency weighting along one in-plane direction. In the third fre-

quency encoding step, one line of k-space samples is acquired in the residual orthogonal

in-plane direction under a constant readout gradient. The procedure is repeated line-

by-line until the k-space grid is fully sampled. In the following, the coordinates x, y and

z denote the readout, phase and slice encoding direction, respectively.
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2 THEORETICAL BACKGROUND

Single-shot echo-planar imaging

Spin warp imaging uses multiple excitations, also called shots, which jointly yield the

required image information in k-space. Such multi-shot approaches are prone to shot-

specific variations that spoil the overall data consistency and produce image artifacts.

DWI sequences are naturally sensitive to motion and produce strong inter-shot varia-

tions [8]. Therefore, single-shot EPI [10], which rapidly acquires the k-space in one single

shot, has become a clinical standard for DWI by avoiding the multi-shot variations.

Single-shot EPI is a fast image acquisition technique that samples the spatial fre-

quencies of the image by a one-time k-space traversal in a zig-zag pattern [10]. Figure

2.1 shows a spin-echo sequence with EPI sampling and the associated k-space trajectory.

Starting with the sequence in Fig. 2.1a, the slice-selective excitation (90◦) and the refo-

cusing (180◦) RF pulse form a spin echo at the image echo time TEi mg , around which the

EPI acquisition is centered. The readout gradients are played out with alternating signs

successively producing gradient echoes, while the gradients blips in the phase encoding

direction ky induce small ∆ky steps. The resulting single-shot EPI k-space trajectory is

shown in Fig. 2.1b. Starting from the k-space center, the trajectory moves to the upper

left by the dephasing gradients on the read and phase encoding channel. The sampling

starts under the initial read train lobe alternately moving left and right in readout direc-

tion kx parted by ∆ky blips, which shift the sampling line-by-line along ky .

RF

Read

Phase

Slice

a b90° 180°

Image

echo

TEimg

kx

ky
Δky

Figure 2.1: EPI sampling overview. (a) Spin-echo sequence example with EPI sampling. A slice-selective RF

excitation pulse (90◦) and a refocusing pulse form a spin-echo at the image echo time TEi mg . The image echo

is sampled by the EPI acquisition window centered around TEi mg . (b) Single-shot EPI k-space trajectory.

Single-shot EPI offers fast acquisitions and remains relatively robust to off-resonance

effects, but it suffers from several limiting factors [9]. The high acquisition speed at

full k-space coverage avoids multi-shot variations and also reduces the impact of mo-

tion through the mere scan time reduction. Apart from ramp sampling, EPI is a Carte-

sian method, which allows for efficient reconstructions without further interpolation. In

contrast, single-shot EPI resolution is limited by the signal decay through T∗
2 blurring

and the technical as well as physiological gradient limitations which impede sampling

speed-ups [9]. Off-resonance effects from eddy currents, local field inhomogeneities and

susceptibility variations manifest as geometric distortions in the low-bandwidth phase

encoding direction [9]. In addition, EPI suffers from Nyquist ghosting [56], which results

from inconsistencies between the odd and even phase encoding lines.
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2.1 MR IMAGE FORMATION

Figure 2.2: Overview of common EPI k-space trajectories at equal resolution. (a) Standard single-shot EPI. (b)

Two-fold regular undersampling for single-shot EPI. The gray dotted lines indicate k-space positions that were

not sampled. (c) Partial Fourier undersampling for single-shot EPI. (d) Multi-shot EPI with 2 interleaves and

partial Fourier sampling. The individual interleaves are indicated by different colors. Note that each of the

two interleaves is interpretable as an individual single-shot experiment. The gray boxes mark the symmetric

partial Fourier sampling areas, which restrict the resolution of the object phase.

EPI acquisitions are frequently combined with undersampling and multi-shot strate-

gies, which are visualized in Fig. 2.2. The standard single-shot EPI sampling is shown in

Fig. 2.2a for comparison. Regular undersampling is a common technique to accelerate

the trajectory and balance speed, resolution, artifacts and noise. Undersampled acqui-

sitions violate the Nyquist criterion causing aliasing in the image space signal, which is

described by its point spread function:

ˇPSF = F̌ H M̌ H M̌ F̌ . (2.6)

The aliased image ρ̌ is described by the PSF using Eq. 2.5 as ρ̌ = F̌ H M̌ H ď = ˇPSF ρ. Paral-

lel imaging techniques like SENSE [12], which are discussed in the next subsection, can

resolve the aliasing from undersampled trajectories to a certain extent using the addi-

tional coil sensitivity encoding. By this, common sampling trajectories can be acceler-

ated intentionally violating the Nyquist rate. Figure 2.2b shows the shortened single-shot

EPI train for regular undersampling, which regularly skips k-space lines by taking larger

steps R ∆ky with reduction factor R (R = 2 for this example).

11



2 THEORETICAL BACKGROUND

Another common scan acceleration for EPI is the partial Fourier acquisition, which

exploits smoothness assumptions of the signal phase. Partial Fourier trajectories asym-

metrically omit parts of the higher frequencies in the phase encoding direction ky , as

shown in Fig. 2.2c. According to the symmetry properties of the Fourier transform, the

k-space signal d of a purely real-valued image ρ comprises Hermitian symmetry [3]:

d(k) = d⋆(−k). (2.7)

It is therefore sufficient to acquire half of the k-space for real-valued images. MR images

are usually not real-valued, but the phase is often assumed to be smooth. As a relaxation

of the full Hermitian symmetry, partial Fourier acquisitions sample more than half of

the k-space, usually 60-70%, and assume that the image phase is fully described by the

symmetric area in the k-space center, which is shaded in gray in Fig. 2.2c.

There are several approaches to exploit the phase smoothness for the recovery of the

full k-space signal [3]. One common algorithm, for example, uses projections onto con-

vex sets (POCS) to iteratively enforce data consistency in k-space and phase smoothness

in image-space. The data consistency step projects the image estimate on the measured

k-space data and the phase smoothness step substitutes the image ρ by |ρ| · e jθ with

the smooth phase map θ obtained from the fully sampled gray area. Besides the partial

Fourier approach along ky , the same philosophy can be used to asymmetrically reduce

the sampling in readout direction kx , which is called partial echo acquisition.

The regular undersampling and partial Fourier acceleration techniques have pushed

the technical limitations of single-shot EPI and have therefore found widespread clinical

acceptance. Nevertheless, a relaxation of the single-shot aspirations offers flexibility for

EPI that can be used to mitigate artifacts and improve SNR or resolution.

Multi-shot echo-planar imaging

Multi-shot techniques repeat the single-shot sequence multiple times and sequentially

acquire different k-space subsets per shot, which are also called segments or interleaves

for EPI. Figure 2.2d shows an example with 2-fold segmentation in phase encoding di-

rection [15, 16] including partial Fourier acquisition. Each individual segment can be

interpreted as a single shot with regular undersampling. Without partial Fourier sam-

pling, the two shots jointly yield the full k-space.

In this way, the sampling speed in the low-bandwidth ky direction is increased, which

results in less geometric distortions at the cost of fewer k-space coverage of the signal.

Multi-shot scans lengthen the total acquisitions time and allow trading off SNR, artifacts,

image resolution and hardware constraints [9]. On the other hand, segmented acquisi-

tions are prone to inter-shot variations and require dedicated reconstruction models to

combine the shot datasets. Another possible multi-shot approach is readout-segmented

EPI [29], which performs segmentation in the readout direction kx .

Besides EPI, non-Cartesian trajectories like spiral or radial sampling offer beneficial

PSF patterns [13] and higher motion robustness [57]. Non-Cartesian Fourier encod-

ing generally requires some sort of interpolation to translate the samples to a Cartesian

image grid. The interpolation is commonly implemented by a gridding operation [58]

that replaces the sampling operator M as for CG-SENSE [13]. The downsides of non-

Cartesian acquisitions are the increased computational requirements due to the addi-

tional interpolation and the susceptibility to off-resonance-related blurring effects [57].
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2.1 MR IMAGE FORMATION

COIL SENSITIVITY ENCODING

The second major technology for MRI encoding is parallel imaging [11], which uses

phased arrays for parallel signal reception. Instead of one huge homogeneous coil, mul-

tiple surface coils are arranged around the object. The localized and inhomogeneous coil

sensitivity profiles pick up less patient-induced noise allowing for considerable SNR im-

provements [11]. The spatial encoding of dedicated coil designs provides valuable data

redundancies among the coil signals, which can be leveraged to unravel the aliasing of

undersampled data by methods like SENSE [12, 13] or GRAPPA [14]. Therefore, parallel

imaging has found widespread adoption offering either speed, resolution or SNR gains.

Extended signal equation

The Fourier-based signal model in Eq. 2.3 is extended to incorporate the inhomoge-

neous sensitivity profile cc(r) of receive coil c at location r [12]. The received data dc of

coil c integrates the Fourier components of the sensitivity-weighted image:

dc(k) =
∫

VOI
ρ(r) cc(r) e− j kr dr. (2.8)

A discrete realization of the sampling with known sensitivity and gradient encoding

can be translated to a SENSE forward model, as visualized in Fig. 2.3, describing the data

vector d ∈C
Nc Nk for Nc coils and Nk k-space samples [12]:

d = M F C ρ., (2.9)

including the sensitivity operator C (Nc Np×Np ). The Fourier operator F (Nc Np×Nc Np )

and the sampling operator M (Nc Nk ×Nc Np ) are adapted with block-diagonal structure

to the multi-coil setting. The model can be written in image-space using the PSF:

d̃ = F H M H d = (PSF · C ) ρ = C̃ ρ, (2.10)

where the PSF and the SENSE operator have been merged into C̃ (Nc Np ×Np ). Regular

Cartesian undersampling as presented in Fig. 2.2b results in a dirac-comb PSF in image-

space, which produces small numbers of regularly spaced aliasing pixels ρr and thereby

disentangles the linear system C̃ into small problem subsets with matrix C̃r [12]:

d̃r = C̃r ρr. (2.11)

Figure 2.3: Visualization of the SENSE forward model with two coils. The image ρ is encoded by the sensitivity

operator C , the Fourier operator F and the sampling operator M (trajectory indicated by orange arrows).
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2 THEORETICAL BACKGROUND

Image reconstruction

The image subproblems based on a weighted ℓ2-norm penalty are independently solved

using the pseudo-inverse [12]:

ρr = (C̃ H
r Ψ

−1 C̃r)−1 C̃ H
r Ψ

−1 d̃r, (2.12)

with the noise covariance matrix Ψ for SNR-optimal reconstruction, which is obtained

in a noise pre-scan [11]. The SNR implications [12] can be summarized for the aliasing

pixel a in the aliasing group r as:

SNRred
r,a =

SNRfull
r,a

gr,a

p
R

. (2.13)

The factor
p

R in the denominator takes into account the reduced number of samples

for accelerated acquisitions with reduction factor R. The g-factor gr,a quantifies the

local noise propagation properties depending on the coil geometry and the k-space

trajectory-induced aliasing:

gr,a =
√

(C̃ H
r Ψ−1 C̃r)−1

a,a (C̃ H
r Ψ−1 C̃r)a,a ≥ 1. (2.14)

The g-factor is greater or equal to one and represents an important aspect of coil designs

as it expresses the capability to disentangle a pixel in a certain location from its aliases.

The coil sensitivity data can either be obtained from a pre-scan [12] or from calibra-

tion data [14, 59] within an image dataset. Sensitivity estimation from a pre-scan avoids

changes to the imaging sequence and is acquired once in advance. Data-inherent cali-

bration, on the other hand, is performed by sampling additional calibration data during

the acquisition window. This technique might capture sensitivity changes due to, for

example, motion or field drifts, but interferes with the sampling design.

In case of non-Cartesian sampling or motion-induced trajectory deviations, the ef-

fective PSF has a more complex shape in image-space and does not separate as for reg-

ular Cartesian undersampling. A pseudo-inverse solution for the full linear model in

Eq. 2.9 is generally intractable. The ℓ2-norm data discrepancy is normally solved by

methods like conjugate gradients (CG) [24] as for CG-SENSE [13]. As a preconditioner

for the CG method, an intensity correction can be applied to normalize the pixel-wise

sensitivities of all coils and enable faster convergence of the optimization. The intensity

correction operator Ĩ is constructed from the coil sensitivities by [13]:

( Ĩ )p,p =
1

√

∑

c|cc(rp)|2
, (2.15)

for each pixel p. The diagonal operator is then integrated into the normal equations for

the CG method with the forward model A = MFC from Eq. 2.9 as:

(Ĩ AH A Ĩ ) (Ĩ−1 ρ) = Ĩ AH d, (2.16)

The intensity corrected algorithm effectively solves for (Ĩ−1 ρ) and the final image is thus

recovered by: ρ = Ĩ (Ĩ−1 ρ). In practice, such algorithms involve some kind of regulariza-

tion like weighted Tikhonov regularizations [24], smoothness-enforcing total variation

(TV) regularizations [24] or sparsity-enforcing ℓ1-norm regularizations as used for com-

pressed sensing [45].
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2.1 MR IMAGE FORMATION

SIMULTANEOUS MULTI-SLICE ENCODING

Simultaneous multi-slice (SMS) acquisitions excite multiple slices at the same time us-

ing specialized RF pulses. The signals of the slices are superimposed in the acquired data

through the joint SMS reception. The simultaneous slice package must therefore be dis-

entangled in a dedicated reconstruction. This subsection describes the design of SMS

pulses, its sequence integration and SENSE-based reconstruction approaches.

The selective excitation of one slice through a single-band RF pulse was described in

Eq. 2.4. To excite multiple slices simultaneously, the corresponding single-band pulses

are added to a multi-band (MB) RF pulse [54]. The complex-valued MB pulse RFMB is

commonly separated into the RF waveform WMB, which describes the excitation wave-

form for each of the NMB individual slices, and a slice-specific phase modulation term:

RFMB(t ) =WMB(t ) ·
NMB−1

∑

l=0

e jωl t + jφRF
l . (2.17)

The circular frequency ωl accounts for the spatial offset zl of slice l from the iso-center

via ωl = γGz zl . The phase offsets φRF
l

are slice-specifically tunable to reduce the peak

RF power [60] of the total SMS RF pulse. As mentioned for the single-band case, the

ideal sinc waveform is replaced by filtered finite waveforms in practice. The single-slice

excitation represents the special case with NMB = 1 and φRF
l

= 0.

SMS is usually considered in conjunction with controlled aliasing in parallel imaging

(CAIPI) schemes for improved g-factor properties. CAIPIRINHA [61, 62] uses dedicated

RF phase modulations [54] to impose slice-specific linear phase modulations in phase

encoding direction, which translate to different slice shifts in image space and improve

the spatial coil encoding. This formalism has been adopted for EPI by blipped-CAIPI [63]

using gradient blips in the slice encoding direction instead of RF encodings.

An extension to blipped-CAIPI SMS [64] requires two adaptions of the spin-echo se-

quence. First, the single-band RF pulses are replaced by multi-band pulses according

to Eq. 2.17 with equally spaced slices. Second, CAIPI blips ∆kz are added to the slice

encoding during the EPI. An adapted sequence is visualized in Fig. 2.4.

RF

Read

Phase

Slice

a b

c

MB 90° MB  180°

Image
echo

Figure 2.4: EPI sampling overview with SMS extension. (a) Spin-echo sequence with EPI and blipped-CAIPI

SMS sampling. The RF pulses are changed to multi-band pulses adding phase modulated sinc-like waveforms

to excite or refocus multiple slices. Slice gradient blips ∆kz in the image-echo EPI acquisitions produce indi-

vidual slice shifts that significantly improve the coil encoding. The slice encoding is shown with a FOV/3 shift

between adjacent slices. (b, c) kx -ky and ky -kz trajectories.
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2 THEORETICAL BACKGROUND

SMS-adapted SENSE reconstructions need to manage the additional encoding di-

mension, slice shifts and slice undersampling patterns [54]. The extra dimension can

either be handled by implementing a 2D-SENSE approach [65] or by artificially concate-

nating the slice dimension in phase encoding direction (1D-SENSE). The slice shifts are

integrated by adapting the PSF or simply shifting the coil sensitivity maps in the recon-

struction. Zahneisen et al. [66, 67] embedded the SMS sampling (and undersampling)

into a pseudo-3D k-space formalism, which connects blipped-CAIPI SMS to the SENSE

signal equation (Eq. 2.8) and enables efficient SENSE algorithms.

SMS with blipped-CAIPI encoding has found widespread use in DWI, because it al-

lows for a direct reduction of the number of excitations by the MB factor at only minor

g-factor penalty [54]. In comparison, in-plane acceleration in the first place only reduces

the trajectory length and an omission of excitations is penalized by a drastically reduced

SNR. Drawbacks of SMS include an increased susceptibility to off-resonances, slice leak-

age artifacts arising from incomplete unaliasing in a SMS group, and potential slice-wise

Nyquist ghosting effects.
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2.2
DWI AND MULTI-SHOT MODELING

The diffusion contrast in MRI lends singular, non-invasive insights into the diffusion

mechanisms of living subjects [4]. The contrast characteristics contain valuable infor-

mation about the tissue micro-structures that are of particular interest for both clinical

and research domains. DWI has been dominated for many years by single-shot acqui-

sition techniques, which are robust but limited in resolution and corrupted by strong

geometric distortions. Multi-shot DWI offers potentials to overcome these limitations,

but the segmented acquisition, on the other hand, is by design prone to shot-wise signal

variations, which have to be taken into account by appropriate modeling. This section

starts with an introduction to diffusion-weighted imaging, followed by a description of

the state-of-the-art modeling for the diffusion-related shot variations. Next, the devel-

oped models are combined to the multi-shot reconstruction problem. Finally, a litera-

ture review on related algorithms is provided.

DIFFUSION-WEIGHTED IMAGING

DWI uses strong diffusion-sensitizing gradients [6] to probe the Brownian motion of the

spins within the tissue anatomies, obtaining the diffusion contrast with valuable struc-

tural information at the scale of 10 µm [4]. This remarkable method for micro-structural

imaging has found widespread application in both neurological research and clinical

practice. In neurology, DWI is used as a non-invasive technique to study in-vivo brain

function and connectivity. At the same time, the diffusion contrast has become an indis-

pensable part of the diagnostics for cancer, stroke and multiple sclerosis. A recent review

of applications and technical developments was provided by Miller and Wu [8].

Stejskal-Tanner diffusion encoding

Diffusion-weighted images are normally acquired using the Stejskal-Tanner sequence

[6]. The RF pulses and gradient encodings of such a sequence are visualized in Fig. 2.5a.

Starting with the basic sequence, the slice-selective excitation (90◦) and the first refo-

cusing (180◦) RF pulse form a spin echo at the echo time TEi mg . Two identical diffusion

gradients, placed before and after the 180◦ pulse, sensitize the sequence to tiny displace-
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RF

Read

Phase

Slice

a b90° 180° 180°

Image

echo

TEimg TEnav

Navigator

echo

Figure 2.5: Stejskal-Tanner diffusion sequence with EPI sampling and an optional navigator echo. a: Basic

diffusion-weighted spin-echo sequence. A slice-selective RF excitation pulse (90◦) and a refocusing pulse

(180◦) form a spin-echo at the center of the image echo sampling window. The strong diffusion-sensitizing

gradients (dotted lines) before and after the refocusing pulse introduce the diffusion-weighting of the signal.

b: A second 180◦ pulse optionally refocuses the signal and forms another spin-echo for a low-resolution nav-

igator acquisition. The sequence uses echo-planar imaging (EPI) for image and navigator sampling. Please

note that the sequence supports segmented image echo acquisitions by an appropriately designed sampling.

ments of the magnetization along the gradient direction. The spatially linear phase ac-

crual of the diffusion gradients cancels out exactly under ideal static conditions, while

the phase reversal remains incomplete for protons that have moved along the gradient

direction. Averaged over a voxel, the stochastic Brownian motion of the magnetization

results in a phase dispersion leading to a signal attenuation that depends on the local

diffusion characteristics [6]. The image sampling of the diffusion-weighted image data

is centered at the echo time TEi mg .

A common extension introduces a second refocusing pulse after the image echo to

acquire a low-resolution navigator at echo time TEnav [31] as shown in Fig. 2.5b. The

additional signal provides valuable image information at a coarse resolution especially

if the image echo is undersampled. Such navigated acquisitions have been investigated

to overcome motion-related artifacts by model-based reconstructions [28, 31, 44, 50].

Diffusion tensor model

The Stejskal-Tanner equation characterizes the diffusion weighting of each voxel as an

exponential decay governed by a three-dimensional apparent diffusion tensor and the

diffusion encoding properties [6]. Let Q = {1, ..., Nq} be the set of Nq diffusion-weighted

experiments. The signal ρq(r) for a diffusion experiment q ∈ Q is related to the non-

diffusion weighted signal ρ0(r) by:

ρq(r) = ρ0(r) e−bq gT
q D(r) gq . (2.18)

For in-vivo experiments, the phase of ρq and ρ0 are normally dropped to reduce the in-

fluence of physiological disturbances [6]. The apparent diffusion tensor D (3×3), mea-

sured in mm2/s, is sampled in the direction of the unit diffusion gradient vector gq and

is weighted by the diffusion encoding strength bq, called b-value, with units s/mm2.
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2.2 DWI AND MULTI-SHOT MODELING

The scalar diffusion encoding strength bq and the unit diffusion direction vector

gq span a three-dimensional diffusion-weighting space, which is called the q-space [8].

DWI scans normally use multiple diffusion encodings to characterize the 3D diffusion

properties of each voxel. Joint samplings of both the spatial and diffusion dimensions

are rather time-consuming, but the DWI contrast variations in the q-space are rather

smooth. Models like the mono-exponential diffusion tensor model in Eq. 2.18 formulate

the low-dimensional correlations through the symmetric tensors, which require only six

voxel parameters to describe the q-space relations. Nevertheless, it should be noted that

the tensor model is a relatively simple approximation to real-world diffusion character-

istics and there are many extensions to this basic model using, for example, generalized

tensor concepts or multiple tissue compartments within each individual voxel [6]. Clin-

ical diffusion experiments are usually sampled in multiple q-space directions with one

fixed b-value, which is called single-shell acquisition. In contrast, multi-shell scans ac-

quire multiple shells and model relations among them [8].

Clinical diffusion-weighted imaging is often acquired in three orthogonal diffusion

directions with a constant b-value b. Note that the spatial dependence of r is dropped

here for the following pixel-specific measures. The three acquisitions probe the diagonal

of the diffusion tensor D. The mean diffusivity Dav g is a basic isotropic DWI measure

connected to the trace of the apparent diffusion tensor D:

Dav g = trace(D)/3. (2.19)

For three orthogonal measurements, Dav g is just the average apparent diffusion coef-

ficient (ADC) of the three directions. The geometric mean of the (magnitude) images

is called isotropic diffusion-weighted image ρi so and represents an image with averaged

attenuation of ρ0 according to the mono-exponential DTI model in Eq. 2.18:

ρi so =
(

∏

q∈Q

|ρq|
)|Q|−1

= |ρ0| e−b |Q|−1 ∑

q∈Q gT
q D gq . (2.20)

The isotropic DWI is connected to the mean diffusivity by ρi so = |ρ0| e−bDav g for three

orthogonal measurements.

In diffusion tensor imaging (DTI), the symmetric diffusion tensor D with 6 unknown

parameters per voxel is estimated from the DWIs in Q and at least one non-diffusion-

weighted image from Q0 by standard regularized regression [6]. The diffusion ellip-

soids corresponding to the symmetric tensors are typically analyzed using an eigenvalue

decomposition to derive measures of anisotropy, which are related to the local micro-

anatomy within the tissue.

The fractional anisotropy (FA) is a common measure to quantify the normalized vari-

ance of the tensor eigenvalues λi for i = {1,2,3}:

FA =
√

3

2

√

√

√

√

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 +λ2

2 +λ2
3

, (2.21)

with the mean eigenvalue λ̄. The values range from zero to one. An FA measure of zero

means isotropic diffusion, whereas one indicates completely anisotropic characteristics.
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2 THEORETICAL BACKGROUND

FA is commonly visualized in colored images, where the anisotropy measure controls the

voxel’s brightness and the color is adapted to the main diffusion direction, which is the

eigenvector associated with the highest eigenvalue. The RGB color-code is red for left-

right, green for anterior-posterior and blue for feet-head vector components.

This work is focused on single-shell DWI and DTI models for image reconstruction.

The DTI evaluations in this work are performed using the Dipy library for python [68].

In the following explanations, the diffusion experiment subscript q is dropped, when the

formulations are equally valid for all diffusion directions, as for general image encoding

techniques.

MODELING OF SHOT VARIATIONS

Variations of the signal density over the scan time may be caused by magnetic field fluc-

tuations or motion. The impact of the variations onto the signal acquisition depends on

its effective interaction with the MR sequence and may lead to image artifacts or even

irreversible signal loss. This work focuses on motion-related effects, although the gen-

eral approach can be adopted for other signal variations. For further background on the

multifaceted effects of motion on the MR signal acquisition, a review by Zaitsev et al.

[22] is recommended.

Model-based reconstructions for multi-shot imaging require a shot-specific signal

model describing the data formation and a shot model connecting the individual shot

datasets. The shot-specific signal equation is based on the two established encoding

engines of MRI: the Fourier encoding of the MR gradient system and the coil sensitivity

encoding provided by phased arrays. As for single-shot imaging, it is commonly assumed

that the violation of the encoding model by the signal variations remains negligible.

The signal equation from Eq. 2.8 can then be adopted for multi-shot imaging, relat-

ing the shot image ρs of shot s to the data ds,c with the set of sampling positions Ks:

ds,c(k) =
∫

VOI
ρs(r) cc(r) e− j kr dr, k ∈Ks. (2.22)

A discrete realization of the sampling is represented by a linear encoding model with the

shot data vector ds ∈C
Nc Nk and the shot image vector ρs ∈C

Np :

ds = Ms F C ρs. (2.23)

Next, the shot model describes how the shot images ρs for s ∈ S are related to the

underlying joint image ρ. S is the set of shots. The trivial approach, which ignores shot

variations completely, corresponds to the identity mapping ρs(r) = ρ(r) for all s ∈ S and

results in a standard SENSE encoding model without further shot-specific parameters.

In the following, two types of shot variations, which are important for multi-shot

DWI and which are addressed in this work, are presented in detail: shot phase variations

and inter-shot macroscopic motion. Figure 2.6 visualizes both effects for a single-slice

multi-shot experiment. The datasets of the four shots are sampled with different EPI

interleaves (Fig. 2.6b) and are subject to varying phase maps and macroscopic motion

states (Figs. 2.6a and c). The trivial SENSE reconstruction, which is blind to the shot

variations, results in severe ghosting and blurring as shown in Fig. 2.6d.
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2.2 DWI AND MULTI-SHOT MODELING

Shot 0 Shot 1 Shot 2 Shot 3 SENSE

kx

Figure 2.6: Example of the shot variations for a single-slice 4-shot DWI case. a: Visualization of a single-slice

acquisition under 3D shot-to-shot bulk motion. b: Multi-shot sampling with 4 interleaves. c: Shot images

estimated from motion-corrupted in-vivo data showing continuous in-plane rotations over the shots and sig-

nificant shot phase variations. The images are separated by half into magnitude and phase (left/right) to em-

phasize and illustrate again the complex-valued nature of the MR signals. d: SENSE reconstruction of all shots

ignoring the multi-shot variations. The shot phase variations cause ghosting artifacts, whereas the macro-

scopic motion leads to a geometric shot signal mismatch and blurring of the image structures.

Shot-to-Shot phase variations

Shot-to-shot phase variations arise mainly from tiny patient motion [17] and cardiac

pulsation of the brain [18, 19] during the diffusion encoding. Such inevitable motion

effects influence the phase accrual and lead to an incomplete shot-specific phase rever-

sal of the strong diffusion-sensitizing gradients. General nonlinear shot phase variations

can be incorporated into the model as shot phase maps ϕs with shot index s [18, 32]:

ρs(r) = ρ(r) e jϕs(r), (2.24)

which translates to a diagonal shot phase matrix Φs = diag(e jφs ) per shot s:

ρs =Φs ρ. (2.25)

Each shot phase operator Φs (Np ×Np ) generally involves Np real-valued phase param-

eters and, thus, tremendously increases the number of unknown variables. Smoothness

assumptions [18, 28] are commonly imposed to reduce the number of effective phase

variables balancing phase accuracy with SNR. Nevertheless, the assumption remains

questionable as there are high-frequent phase components in MRI signals [34].

Macroscopic shot motion

Patient gross motion between the shots involves all kinds of geometric transformations

happening to the image during the acquisition. The time between two shots of the same

anatomy, which is related to the repetition time TR, is on the order of seconds and thus

considerably longer than the sequence itself, which is about 100ms. Therefore, macro-

scopic shot motion is commonly modeled as inter-shot motion with one motion state

per shot and intra-shot motion during the fast acquisition is neglected. The inter-shot

motion is described by a coordinate transformation TΩ,s giving ρs(r) = ρ(TΩ,s(r)).
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For DWI, rigid rotational components, described by the transformation TR , addition-

ally change the diffusion gradient direction g in the patient frame [43] by T −1
R (g). The

diffusion tensor model in Eq. 2.18 can be used to correct for potential contrast varia-

tions, based on a diffusion tensor map. For a shot s, the joint image ρ is thus affected by

the geometrical coordinate transformation TΩ,s and the diffusion contrast-reweighting

according to the directional variation g̃s = T −1
R,s(g)−g:

ρs(r) = ρ(TΩ,s(r)) e−b g̃T
s D(TΩ,s(r)) g̃s . (2.26)

For discrete realizations, this can be included using matrix formulations [69]:

ρs =ΩsΥs ρ, (2.27)

with the macroscopic motion operator Ωs (Np × Np ) and the diffusion contrast-

reweighting operator Υs (Np ×Np ).

A numerical implementation for macroscopic inter-shot motion requires the defi-

nition of a motion model for the coordinate transformation TΩ,s and an interpolation

scheme. The number of shot parameters depends on the selected motion model, rang-

ing from 3 parameters per shot for 2D rigid in-plane motion, over 12 parameters for 3D

affine motion up to pixel-wise deformation vectors for elastic transformations. Head

motion is well captured by rigid motion models due to the fixation of the skull, whereas

the motion profiles might be generally non-rigid for other anatomies, requiring affine

or elastic transformations. Besides the motion transformation, the diffusion contrast

correction requires a spatial map of symmetric tensors giving rise to six dimensions per

voxel. The tensor map is not shot-specific but determines the effective contrast accord-

ing to the shot-specific rotation parameters.

Joint shot model

The joint signal model for multi-shot DWI includes both the shot phase variations and

macroscopic inter-shot motion:

ρs(r) = ρ(TΩ,s(r)) e−b g̃T
s D(TΩ,s(r)) g̃s e jϕs(TΩ,s(r)), (2.28)

which relates to a linear shot model for a discrete realization:

ρs =ΦsΩsΥs ρ. (2.29)

Hence, the shot model requires estimating shot-specific phase maps for the operator Φs,

shot-specific motion parameters for Ωs, and pixel-wise diffusion tensors along with the

shot-specific rotation parameters for Υs.

Further signal variations

The model formulation is generally based on two assumptions. First, the shot model is

assumed to sufficiently describe the relation of the shot data to one individual, consis-

tent joint image. Second, the signal encoding model remains unaffected and valid, apart

from the modeled effects. The two models thus respectively constitute consistency of

the image object and the image encoding.

22



2.2 DWI AND MULTI-SHOT MODELING

Besides shot phases and macroscopic motion, there are several other signal varia-

tions that can be encountered by dedicated model-based reconstructions [23]. Among

those are B0-field inhomogeneities, which affect the signal phase evolution especially

for long readouts leading to geometric distortions in phase encoding direction for EPI or

blurring for spiral sampling. The resulting image artifacts can be mitigated by dedicated

acquisitions like read-out segmented EPI [29] or by integrating B0-map estimates into

the reconstruction [70, 71]. Other approaches address multiple chemical shift-encoded

species [71], intra-shot rigid motion [72] or relaxation parameter estimation [73].

Regarding the signal encoding model, model-based reconstructions may include

sampling trajectory deviations [74] or unknown coil sensitivities [75]. Nyquist ghosting

from odd/even echo inconsistencies for EPI is normally corrected in advance based on

a reference scan [8], but can also be addressed by a self-navigated reconstruction [76].

MULTI-SHOT RECONSTRUCTION PROBLEM

The signal encoding and shot models jointly describe the relation between the multi-

shot data and the underlying image. This subsection formulates the multi-shot DWI

reconstruction problem and categorizes strategies to perform the optimization.

Joint multi-shot DWI problem

The multi-shot problem with shot phase and macroscopic motion variations [43] is

based on the data consistency of the shot-wise linear signal models in Eq. 2.23 and en-

forces similarity through the shot models in Eq. 2.29:

minimize
1

2

∑

s∈S′
‖Ms F C ρs −ds‖2

2

subject to ρs =ΦsΩsΥs ρ, s ∈ S′,

(2.30)

where the joint image ρ and the shot parameters in Φs, Ωs and Υs are the optimization

variables. The adapted set of included shots S′ allows to reject deteriorated shot datasets

from the optimization remaining with N ′
shot s

= |S′| included shots.

Substituting the shot models for ρs into the signal model yields an unconstrained

formulation that integrates the shot variations as part of the image encoding:

minimize
ρ,Φs,Ωs,Υs

1

2

∑

s∈S′
‖Ms F C ΦsΩsΥs ρ−ds‖2

2. (2.31)

For a compact notation, the shot forward models can be integrated into a multi-shot

forward model with the stacked multi-shot multi-coil data vector d̀ ∈C
N ′

shot s
Nc Nk :

A ρ = d̀, (2.32)

and the forward operator A = M̀ F̀ C̀ Φ̀ῺῪP (N ′
shot s

Nc Nk ×Np ). The grave accents indi-

cate multi-shot operators, which embed the shot operators into block diagonal matrices.

The joint shot phase operator Φ̀, for example, contains the individual shot phase opera-

tors Φs with s ∈ S′ on the diagonal and zeros off the diagonal. The shot copy operator

P (N ′
shot s

Np ×Np ) vertically stacks N ′
shot s

identity matrices INp providing a copy of the

joint image ρ for each shot in S′.
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By this, the optimization problem can be compactly rewritten as:

minimize
ρ,Φ̀,Ὼ,Ὺ

1

2
‖M̀ F̀ C̀ Φ̀ῺῪ Pρ− d̀‖2

2. (2.33)

Typically, a regularization term is added to the functional to include some form of

prior knowledge about the image or shot parameters and thereby improve the prob-

lem conditioning [23]. Common choices are variations of the Tikhonov regularization,

smoothness, sparsity and total variation constraints. Recently, deep learning methods

have been studied as tools to learn useful representations of the data and support [47] or

even replace [46] the reconstruction.

The joint optimization of the image and shot parameters is demanding due to the

non-convexity of the problem and the large problem size. The metric landscape for

macroscopic motion and phase parameters is subject to local minima and requires care-

ful optimization [77]. Moreover, even relatively small datasets with 256×256 single-slice

image size, 16 coils and 4 shots lead to forward models exceeding the size of 1 million ×
65,000. Such matrices are too large to be densely stored in memory and require exploit-

ing the sparse problem structure.

Strategies for solving the multi-shot DWI problem

If the shot parameters are known, Eq. 2.31 represents a convex but still large linear re-

construction problem for the joint image ρ. For Cartesian sampling, the aliasing pat-

tern reduces to small pixel groups, for which the pseudoinverse involved in the SENSE

reconstruction (Eq. 2.12) is feasible. Nevertheless, macroscopic motion generally in-

troduces deviations from the intended sampling and requires dedicated iterative algo-

rithms to unfold the resulting aliasing pattern. Some gradient-based algorithms allow

to perform the optimization requiring only matrix-vector products of an image estimate

with the forward model and its adjoint [23]. The algorithms can then easily exploit di-

agonal or other sparse matrix structures and use the FFT. The convergence properties

thereby largely depend on the condition number, which is the ratio of the largest and

the smallest singular value of the forward model [24]. Common iterative algorithms are

the conjugate gradient (CG) method [24] used in CG-SENSE [13] and proximal methods

like the fast iterative shrinkage-thresholding algorithm (FISTA) [53] used for compressed

sensing algorithms [45].

Shot parameter estimation strategies are often divided into extra-navigated, navi-

gated, self-navigated, and navigator-free algorithms depending on the data that is used

for this step [39, 40]. Extra-navigated techniques derive the parameters from an external

device, such as an optical camera for motion tracking [21]. This strategy can be im-

plemented with extra equipment independent of the MR scanner and does not need

sequence changes. Navigated techniques use additional MR signals for this and, thus,

interfere with the MR sequence but without requiring extra hardware. Self-navigated

methods estimate the shot parameters from the image data itself exploiting data redun-

dancies, which are provided by parallel imaging. Navigator-free techniques use problem

reformulations without an explicit estimation of the shot parameters. The latter can, for

example, be achieved by incorporating the shot models through low-rank constraints

into the optimization [78]. By this, some non-convex problems can be converted into
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2.2 DWI AND MULTI-SHOT MODELING

equivalent convex formulations, but not every problem is expressible in this way. Self-

navigated and navigator-free methods are considered data-driven and often involve de-

manding iterative algorithms. At the same time, these methods do not need extra equip-

ment, scan time or sequence changes.

Image correction strategies are furthermore separated into prospective and retro-

spective methods. The latter estimate the modeled variations and perform the image

correction as an off-line step after the acquisition. Conversely, prospective methods use

the shot parameter estimates to update the sequence in real-time and directly acquire

uncorrupted data. The immediate correction during the scan poses on-line demands

for the shot parameter estimation and not every variation can be implemented prospec-

tively on the scanner, i.e. bulk motion is representable by 3D MR gradient changes, while

shot phases are hard to predict and almost uncorrectable by the scanner encoding.

MULTI-SHOT DWI ALGORITHMS

The variety of optimization algorithms, regularizations, navigation schemes, and encod-

ing technologies has been continuously growing over the last decades along with the

increasing performance of the available computers, pushing forward the role of model-

based image reconstruction [23]. This subsection is based on the review of recent data-

driven multi-shot DWI algorithms from the published article in Ref. [49], which is ex-

tended to extra-navigated and navigated methods here.

The literature provides a wide range of multi-shot DWI methods employing different

strategies to solve the optimization. In general, all algorithms correct for phase varia-

tions from physiological motion due to its severe and unavoidable nature in multi-shot

DWI. Conversely, macroscopic motion is mainly neglected. Table 2.1 gives an overview

of key methods for shot phase and macroscopic motion modeling in multi-shot DWI.

Shot phase corrected algorithms

Shot phase corrections for DWI reach back almost 30 years and started with navigated

methods using 1D navigator projections in readout direction [17]. Later both in-plane

directions were addressed [25] to estimate zeroth and first order phase terms, which are

mainly caused by small rigid body motion. The 1D approaches were outperformed by 2D

navigators using low-resolution spiral [26] and EPI [27] scans. In 2003, Miller and Pauly

extended the model to nonlinear phase maps from 2D navigators to address pulsatile

brain motion from cardiac activity and to remove the time-consuming cardiac triggering

[18]. Subsequent navigated techniques embedded the nonlinear phase variations into a

multi-coil formulation [28], which yields the shot phase-corrupted multi-shot problem

without macroscopic motion:

minimize
ρ,Φs

1

2

∑

s∈S′
‖Ms F C Φs ρ−ds‖2

2. (2.34)

With navigated phase operators Φs, this optimization problem can be solved using CG.

The resulting problem is often interpreted as a virtual sensitivity encoding C Φs with

Nshot s Nc shot phase-adapted sensitivities cc(r)e jϕs(r). In analogy to SENSE, efficient

image-space algorithms were published for Cartesian trajectories that solve the recon-

struction problem by matrix inversion for the reduced aliasing pixel groups according to

the PSF [31].

25



2 THEORETICAL BACKGROUND

T
a

b
le

2
.1

:
C

h
ro

n
o

lo
g

ic
a

l
list

o
f

k
e

y
m

u
lti-sh

o
t

D
W

I
m

e
th

o
d

s
fo

r
sh

o
t

p
a

ra
m

e
te

r
a

n
d

/o
r

m
a

c
ro

sc
o

p
ic

m
o

tio
n

e
stim

a
tio

n
.

k
-sp

a
c

e
w

in
d

o
w

s
o

r
k

e
rn

e
ls

a
re

in
d

ic
a

te
d

b
y

a
p

re
c

e
d

in
g

‘k
-

’.
P

a
rtia

l
F

o
u

rie
r

a
c

q
u

isitio
n

s
fo

r
E

P
I

a
re

m
a

rk
e

d
b

y
‘P

F
’.

S
te

a
d

y-sta
te

fre
e

p
re

c
e

ssio
n

(S
S

F
P

)
a

n
d

sp
in

w
a

rp
sa

m
p

lin
g

a
c

q
u

ire
o

n
e

k
-sp

a
c

e
lin

e
p

e
r

a
c

q
u

isitio
n

,ra
p

id
stim

u
la

te
d

e
c

h
o

a
c

q
u

isitio
n

m
o

d
e

(S
T

E
A

M
)

a
c

q
u

ire
s

m
u

ltip
le

p
h

a
se

e
n

c
o

d
in

g
lin

e
s

p
e

r
sh

o
t

sim
ila

r
to

E
P

I.

A
lg

o
rith

m
A

u
th

o
rs

Y
e

a
r

N
a

v
ig

a
tio

n
A

lte
rn

a
tin

g
M

o
tio

n
C

o
rre

c
tio

n
S

a
m

p
lin

g
S

M
S

ty
p

e
stru

c
tu

re
P

h
a

se
G

ro
ss

tra
je

c
to

ry
in

c
lu

sio
n

A
n

d
e

rso
n

a
n

d
G

o
re

[1
7

]
1

9
9

4
1

D
-n

a
v.

-
0

.
&

1
.

o
rd

e
r

k
x

-
S

p
in

w
a

rp
-

B
u

tts
e

t
a

l.
[2

5
]

1
9

9
6

1
D

-n
a

v.
-

0
.

&
1

.
o

rd
e

r
k

x
-k

y
-

E
P

I
-

B
u

tts
e

t
a

l.
[2

6
]

1
9

9
7

2
D

-n
a

v.
-

0
.

&
1

.
o

rd
e

r
k

x
-k

y
-

E
P

I
-

A
tk

in
so

n
e

t
a

l.
[2

7
]

2
0

0
0

2
D

-n
a

v.
-

0
.

&
1

.
o

rd
e

r
k

x
-k

y
-

E
P

I
-

P
R

O
P

E
L

L
E

R
P

ip
e

e
t

a
l.

[ 3
2

]
2

0
0

2
se

lf-n
a

v.
-

k
-T

ria
n

g
u

la
r

-
R

o
ta

te
d

E
P

I
-

M
ille

r
a

n
d

P
a

u
ly

[1
8

]
2

0
0

3
2

D
-n

a
v.

-
k

-R
e

c
ta

n
g

u
la

r
-

S
S

F
P

-

L
iu

e
t

a
l.

[3
3

]
2

0
0

5
se

lf-n
a

v.
-

k
-H

a
m

m
in

g
-

S
p

ira
l

-

A
tk

in
so

n
e

t
a

l.
[2

8
]

2
0

0
6

2
D

-n
a

v.
-

G
a

u
ssia

n
-

E
P

I
-

U
e

c
k

e
r

e
t

a
l.

[ 3
4

]
2

0
0

9
se

lf-n
a

v.
-

N
o

fi
lte

r
-

S
T

E
A

M
-

IR
IS

Je
o

n
g

e
t

a
l.

[ 3
1

]
2

0
1

3
2

D
-n

a
v.

-
k

-H
a

m
m

in
g

-
E

P
I

+
P

F
-

M
U

S
E

C
h

e
n

e
t

a
l.

[3
5

]
2

0
1

3
se

lf-n
a

v.
-

T
V

-
E

P
I

+
P

F
-

S
E

N
S

E
+

C
G

T
ru

o
n

g
a

n
d

G
u

id
o

n
[3

6
]

2
0

1
4

se
lf-n

a
v.

-
M

e
d

ia
n

-
S

p
ira

l
-

S
F

-M
U

S
E

Z
h

a
n

g
e

t
a

l.
[3

7
]

2
0

1
5

se
lf-n

a
v.

X
G

a
u

ssia
n

-
E

P
I

+
P

F
-

C
h

a
n

g
e

t
a

l.
[7

9
]

2
0

1
5

se
lf-n

a
v.

-
T

V
-

E
P

I
+

P
F

X

P
O

C
S

M
U

S
E

C
h

u
e

t
a

l.
[3

8
]

2
0

1
5

se
lf-n

a
v.

X
k

-H
a

n
n

-
E

P
I

+
P

F
-

H
e

rb
st

e
t

a
l.

[8
0

]
2

0
1

5
e

xtra
-n

a
v.

-
T

V
3

D
R

ig
id

E
P

I

P
O

C
S

-IC
E

G
u

o
e

t
a

l.
[3

9
]

2
0

1
6

se
lf-n

a
v.

X
k

-T
ria

n
g

u
la

r
-

S
p

ira
l

-

A
M

U
S

E
G

u
h

a
n

iy
o

g
i

e
t

a
l.

[4
3

]
2

0
1

6
se

lf-n
a

v.
-

T
V

2
D

R
ig

id
E

P
I

+
P

F
-

D
a

i
e

t
a

l.
[6

4
]

2
0

1
7

2
D

-n
a

v.
-

C
o

m
p

a
c

t
k

-k
e

rn
e

l
-

E
P

I
+

P
F

X

H
e

rb
st

e
t

a
l.

[8
1

]
2

0
1

7
e

xtra
-n

a
v.

-
T

V
3

D
R

ig
id

E
P

I
+

P
F

X

M
U

S
S

E
L

S
M

a
n

i
e

t
a

l.
[ 4

0
]

2
0

1
7

n
a

v.-fre
e

-
L

o
w

-ra
n

k
-

E
P

I
+

P
F

-

D
o

n
g

e
t

a
l.

[4
4

]
2

0
1

8
2

D
-n

a
v.

-
C

o
m

p
a

c
t

k
-k

e
rn

e
l

2
D

R
ig

id
E

P
I

-

S
h

o
t-L

L
R

H
u

e
t

a
l.

[4
1

]
2

0
1

8
n

a
v.-fre

e
-

L
o

w
-ra

n
k

-
E

P
I

+
P

F
-

S
M

S
-N

E
A

T
R

B
ilg

ic
e

t
a

l.
[7

7
]

2
0

1
9

se
lf-n

a
v.

-
D

L
im

a
g

e
p

rio
r

-
E

P
I

X

S
M

S
M

U
S

S
E

L
S

M
a

n
i

e
t

a
l.

[8
2

]
2

0
2

0
n

a
v.-fre

e
-

L
o

w
-ra

n
k

-
E

P
I

+
P

F
X

S
P

A
-L

L
R

H
u

e
t

a
l.

[4
2

]
2

0
2

0
n

a
v.-fre

e
-

L
o

w
-ra

n
k

-
E

P
I

+
P

F
-

26



2.2 DWI AND MULTI-SHOT MODELING

The first self-navigated approaches employed a two-step strategy, obtaining the shot

phase maps first and then reconstructing the joint image. Initially, the approaches used

the fully sampled central k-space to estimate the low-resolution phase variations for

rotated EPIs in PROPELLER [32] and variable density spirals [33]. After that, the algo-

rithms leveraged the data redundancy provided by parallel imaging to reconstruct high-

resolution shot images from undersampled data and used them for the same two-step

procedure, as done by Uecker et al. [34] and in MUSE [35] and SENSE+CG [36]. These

algorithms with SENSE-based self-navigation are limited to relatively low segmenta-

tions, because the individual shot reconstructions become increasingly ill-conditioned

for higher segmentation. The g-factor noise [12] thus propagates into the shot images

deteriorating the phase estimates. Smoothness-enforcing phase filters are used to trade

off SNR with artifacts from over-smoothing.

To address the g-factor problem for self-navigated algorithms, SF-MUSE [37], POC-

SMUSE [38] and POCS-ICE [39] use an alternating strategy to repeatedly estimate the

shot phase variations and the joint image. POCS-ICE is presented in more detail here,

because it serves as a reference method in this work. The algorithm uses projections

onto convex sets (POCS) to alternately perform shot image and joint image updates. Ini-

tialized by zero, the algorithm performs a shot data projection through the SENSE-based

forward model by inserting the measured shot data samples into the current shot im-

age estimates. After eliminating the shot phase by a low-resolution triangular k-space

window, the phase-corrected shots are averaged to an updated joint image. The joint

image is combined with the shot phase estimates and projected back again to the shot

data. The iterative feedback successively supports the shot estimation by an updated

joint image enabling higher segmentations.

In contrast, the navigator-free algorithms MUSSELS [40] and Shot-LLR [41] de-

rive compressible matrices with non-empty null spaces from the correlations of the

phase-disturbed shot models and thereby achieve a convex formulation for the phase-

corrupted multi-shot problem. SPA-LLR [42] is a locally low-rank approach that exploits

the q-space compressibility of DTI using the correlations of the diffusion directions.

These approaches are navigator-free, because the shot parameters are not explicitly in-

cluded but enforced through iteratively posed low-rank matrix constraints.

As a new versatile technology for image processing, deep learning (DL) techniques

are entering the field of MR image reconstruction during the recent years. A first ap-

proach for shot phase-corrected multi-shot DWI was proposed by Bilgic et al. [77],

termed network acceleration estimation for tempered reconstruction (NEATR). This

method applies a U-Net for image enhancement to a MUSSELS [40] reconstruction and

uses the improved joint images for an explicit shot phase estimation by a projected gra-

dient descent method [83]. Finally, a joint image is reconstructed using the updated

shot phase estimates by a conventional multi-shot reconstruction method. Hence, this

method starts from a navigator-free algorithm and performs deep learning-supported

self-navigation for phase-corrected multi-shot DWI.

Joint shot phase and macroscopic motion corrected algorithms

A generalized matrix framework for macroscopic motion corrected reconstructions of

multi-shot data was published by Batchelor et al. in 2005 [69] and combined with par-

allel imaging by Bammer et al. in 2007 [84]. The latter multi-coil approach reconstructs
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2 THEORETICAL BACKGROUND

shot images from undersampled data using SENSE (as for the phase corrections above),

determines rigid motion parameters using image registration and performs a macro-

scopic motion-compensated multi-shot reconstruction.

Image registration algorithms optimize a similarity metric Msi m between a fixed im-

age ρ f i x (r) and a moving image ρmov (TΩ(r)) to find the optimal motion parameters of

the coordinate transformation TΩ [85]:

minimize
Ω

Msi m

(

ρ f i x (r), ρmov (TΩ(r))
)

. (2.35)

The metric, the interpolation strategy and the optimizer must be adequately designed

for the application-specific registration task. The image registration metric is usually

different from the data consistency functional employed for image reconstruction.

More recent (non-DWI) algorithms perform alternating optimizations of the data

consistency functional by repeatedly estimating the joint image with fixed shot param-

eters and, next, the shot parameters with a fixed joint image [86, 87]. The functional

equals Eq. 2.31 without the diffusion-related shot phase operator Φs and shot contrast

operator Υs. The shot motion parameter update is performed by Newton’s method,

while the image reconstruction uses CG. Nevertheless, macroscopic motion estimation

in the diffusion realm is additionally complicated by the low SNR, the diffusion-related

phase and contrast variations, and the multi-contrast nature between diffusion- and T2-

weighted images as well as amongst the diffusion directions themselves. Therefore, DWI

requires specialized solutions to address the macroscopic motion problem.

For self-navigated multi-shot DWI, AMUSE [43] extends the two-step MUSE frame-

work for shot phase-corrected reconstructions [35] by macroscopic motion and the dif-

fusion contrast corrections. The algorithm reconstructs shot navigators using SENSE

and obtains the shot-wise rigid in-plane motion parameters by rigid registration.

AMUSE furthermore uses the rotation parameters and a diffusion tensor estimate from

the shot navigators to equalize the shot contrasts when the diffusion-sensitization direc-

tion changes. Analogous to the two-step phase-corrected algorithms, the motion esti-

mation is sensitive to noise propagation of the shot navigators, which limits its use to low

segmentations. A navigated method for macroscopic motion and shot phase corrected

multi-shot DWI was proposed by Dong et al. [44]. This method uses the low-resolution

sampling of a second navigator echo to estimate the phase maps and the rigid in-plane

shot motion parameters by image registration.

Extra-navigated methods are mostly based on optical camera tracking and imple-

mented as prospective motion corrections to directly acquire uncorrupted data [21]. A

multi-shot DWI approach with prospective motion correction was published by Herbst

et al. [80], in which rigid motion parameters are provided by external tracking, while

the shot phase variations are estimated by SENSE-based shot reconstructions using the

MUSE approach. The on-line estimation also allows to adapt the diffusion-sensitizing

gradients to the motion on the fly and thereby reduce shot contrast variations and signal

loss due to incomplete gradient refocusing [88].

Data rejection strategies

The multi-shot reconstruction assumes that the encoding model remains unaffected by

the adverse signal variations. However, strong motion during the sequence can result
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2.2 DWI AND MULTI-SHOT MODELING

in complete signal loss if, for example, the excited volume has fully left the volume that

experiences the refocusing pulse. In this case, data rejection schemes are integrated to

remove datasets that are compromised and would rather decrease image quality.

Several data rejection criteria can be found in the literature to reject degenerate shots

from the reconstruction. Navigator energy-based criteria apply a threshold to the energy

of each shot navigator with respect to a signal reference [26, 27]. Shots that have experi-

enced significant signal loss are thus detected and can be removed. A similar approach

measures the correlation of the shot navigators with respect to an image reference [32].

Other algorithms use first [30] or higher [37] moments of the k-space signal to detect

relevant image-space phase effects for DWI that lead to k-space peak shifting or broad-

ening effects. Instead of a complete rejection, some approaches prefer a data weighting

by the criterion to at least partially use the SNR provided by the degenerate signals [28].

SMS integration for enhanced image encoding

Simultaneous multi-slice imaging with blipped-CAIPI offers an effective slice encoding

strategy that achieves considerable scan accelerations at low g-factor penalty. SMS has

been successfully combined with multi-shot DWI through a self-navigated approach by

Chang et al. [79] and a navigated approach by Dai et al. [64]. The combined encoding al-

lows to distribute the aliasing in more dimensions and, in this way, make efficient use of

the 3D coil sensitivity profiles. The adjustment of the SMS factor and the number of shots

offers more flexible sampling to trade off scan time, SNR, and geometric distortions. SMS

MUSSELS, a MUSSELS extension, provides a navigator-free shot phase correction for

multi-shot SMS data [82]. Herbst et al. have furthermore extended the prospective rigid

motion correction for multi-shot DWI to SMS acquisitions using camera-based extra-

navigation [81].

Convergence criteria for iterative algorithms

The iterative algorithms covered in this work require criteria to evaluate the convergence

and to stop the algorithm for an appropriate tolerance τ. Commonly, a maximum num-

ber of iterations is set to avoid unmanageable reconstruction scenarios.

The residual norm criterion measures the normalized euclidean distance between

the measured data d and the synthetic data Aρ from the image estimate ρ with the for-

ward model A [13]:

δr (ρ) =
‖Aρ−d‖2

‖d‖2
. (2.36)

This criterion is often used to stop the conjugate gradients method.

A similar ℓ2-norm criterion measures the euclidean distance of the joint images from

two subsequent iterations [39]:

δs (ρ(k),ρ(k−1)) =
‖ρ(k) −ρ(k−1)‖2

2

‖ρ(k−1)‖2
2

, (2.37)

where k is the iteration number. Instead of an evaluation of the optimization functional,

this criterion evaluates the progression of the image results. This criterion is connected

to the normalized root-mean-square error nRMSE(ρ,ρr e f ) =
√

δs (ρ,ρr e f ) for image

quality evaluation between an image ρ and a reference image ρr e f .
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3
SELF-NAVIGATED

MULTI-SHOT DWI

Self-navigated approaches derive the shot parameters of the optimization problem from

the imaging data itself. The MR sequence therefore does not require navigator acqui-

sitions and can thus be shortened providing more efficient sampling. Instead of the

navigator signal, self-navigated approaches rely on more expensive computational mod-

els. The joint optimization for image and shot parameters in multi-shot DWI is often of

a non-convex nature and, thus, represents challenging reconstruction problems. The

first section of this chapter investigates the potential of a proximal gradient method with

deep learning-based image priors for the shot phase estimation. The second section in-

cludes macroscopic in-plane motion and presents an alternating image reconstruction

framework with joint shot phase and 2D rigid in-plane motion correction.
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3.1
SHOT PHASE ESTIMATION WITH

DEEP LEARNING SUPPORT

In this work, a self-navigated iterative reconstruction algorithm is proposed for high-

quality multi-shot DWI, which adopts a proximal gradient method to perform shot phase

updates and includes a U-Net to improve the joint image magnitude prior for this step.

This data-driven framework incorporates the deep learning module for an enhanced

shot phase estimation, while keeping a conventional joint image production. The U-

Net is trained on reliable navigator-based reference data to mitigate phase cancella-

tion artifacts in joint multi-shot images. The proposed algorithm with and without U-

Net support is compared to a self-navigated and a navigated reference algorithm. The

U-Net approach effectively mitigates phase-related signal cancellation artifacts. The

improved joint image priors effectively regularize the shot phase estimation, enabling

self-navigated multi-shot diffusion-weighted echo-planar imaging for challenging and

highly segmented datasets.

This section is based on a conference submission to the 2020 ISMRM & SMRT Virtual Conference & Exhibition.

(Abstract number: 4367, 2020, Ref. [48])
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3 SELF-NAVIGATED MULTI-SHOT DWI

INTRODUCTION

The shot phase variations in multi-shot DWI have been addressed by a wide variety of

methods over the last decades, which are either based on navigator signals [17, 18, 25–

31] or fully data-driven [32–41]. A detailed historical review is provided in Section 2.2.

Data-driven approaches are usually proposed to improve the scan efficiency by sparing

the navigation signal in the sequence, but, conversely, rely on more expensive computa-

tional models. Nevertheless, the data-driven algorithms still depend on the condition-

ing of the signal encoding model and break down for high segmentations or strongly

corrupted datasets.

Deep learning techniques are currently investigated to push the image reconstruc-

tion limits for ill-conditioned datasets by introducing prior knowledge learned from ref-

erence data. Bilgic et al. [77] proposed a four-step approach, termed network estimated

artifacts for tempered reconstruction (NEATR), to improve the shot phase estimation.

After a SMS MUSSELS reconstruction [82], a U-Net performs image enhancement on the

resulting image. The improved joint image is then used as an image prior for a shot phase

estimation using a projected gradient descent method [83]. Finally, the joint image is re-

constructed by a conventional multi-shot reconstruction method using the updated shot

phase estimates. The neural network is thus trained for an image enhancement task to

remove artifacts in SMS MUSSELS reconstructions. The final image reconstruction is

performed without deep learning.

The following work presents the magnitude-regularized phase estimation (MAPE)

framework with U-Net support that adopts the proximal gradient descent method for

shot phase estimation with a fixed joint image [83]. In contrast to NEATR, the proposed

method repeatedly integrates the neural network as a regularization tool into an alter-

nating reconstruction that continuously provides enhanced image priors for the shot

phase estimation. A prior MUSSELS-based reconstruction can thus be omitted. More-

over, the training data generation is based on the navigated IRIS method [31], which rep-

resents a robust clinically accepted reference for multi-shot DWI and offers time savings

for the learning task. After the training process, the data-driven framework with U-Net

support can be employed for un-navigated sequences.

MODEL-BASED IMAGE RECONSTRUCTION

The self-navigated MAPE algorithm optimizes the shot phase-corrected multi-shot

problem in Eq. 2.34 with respect to the shot phase estimates φ̂s ∈ R
Np and the joint

image estimate ρ̂ ∈C
Np :

(ρ̂,φ̂s) = argmin
ρ,φs

∑

s∈S′
‖MsFC (e jφs ◦ ρ)−ds‖2

2 + λρRρ(ρ) + λφ Rφ(φs). (3.1)

s is the shot index from the set of included shots S′. ◦ is the element-wise Hadamard

product. The diagonal operator formulation Φs = diag(e jφs ) (in Eq. 2.25) is equivalent to

the element-wise product (e jφs ◦ ρ), whereby the latter is used to obtain an explicit ex-

pression of the shot phase vectors φs here. The regularization terms contain the respec-

tive weight parameters λφ and λρ as well as the regularization functions Rφ : RNp →R
Np

and Rρ : CNp →C
Np with Np image pixels.
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3.1 SHOT PHASE ESTIMATION WITH DEEP LEARNING SUPPORT

MAPE ALGORITHM

The proposed framework consists of three iteratively repeated steps and is visualized in

Fig. 3.1. The algorithm is initialized with zero shot phase maps resulting in the identity

operator Φs = INp . This corresponds to a phase-uninformed SENSE reconstruction of

the joint image from the multi-shot data:

ρ̂ = argmin
ρ

∑

s∈S′
‖MsFC ρ−ds‖2

2 +λρRρ(ρ), (3.2)

A weighted ℓ2-norm regularization function was implemented as Rρ(ρ) = ‖W ρ‖2
2 with a

weight matrix W (Np ×Np ). A body coil magnitude image w from the SENSE reference

scan was used for the weighting (W )p,p = w−1
p per pixel p. With zero shot phase maps

and the complementary sampling masks Ms, the problem is equivalent to a single-shot

SENSE reconstruction [12] of the merged multi-shot k-space data as in Eq. 2.12. The

resulting joint image estimate is prone to ghosting and signal cancellation artifacts due

to the neglected shot phase variations.

In the first step of the algorithm, a neural network (NN) performs image enhance-

ment on the joint image ρ̂ to provide an improved joint image magnitude prior ρ̃ ∈ R
Np

for the subsequent shot phase estimation. The NN, represented by fN N : CNp → R
Np , is

trained to mitigate shot phase-related artifacts and denoise the joint image magnitude:

ρ̃ = fN N (ρ̂). (3.3)

The NN can be bypassed to omit the deep learning module, which corresponds to a mag-

nitude mapping fN N (ρ) = abs(ρ), where abs takes the element-wise absolute value here.

In the second step, the shot phases φs ∈R
Np are optimized as proposed by Ong et al.

[83] using a proximal gradient descent method [53] of the phase part only, while the joint

magnitude image is hold fix:

φ̂s = argmin
φs

‖MsFC (e jφs ◦ ρ̃)−ds‖2
2 + λφ Rφ(φs). (3.4)

The phase regularization function Rφ : RNp →R
Np is implemented as an ℓ1-norm mini-

mization of the signal in the Daubechies 6 wavelet domain [83]. The update rule is inde-

pendent for the individual shots and is therefore fully parallelizable.

The framework furthermore allows to perform the gradient updates with only the

central k-space portion on a reduced resolution. This measure imposes phase smooth-

ness [36] and tremendously decreases the computational demands due to the reduced

number of pixels. To implement this, the k-space data is cropped to the required reso-

lution and the coil sensitivities are adapted by linear interpolation. The image prior is

cropped in k-space to the reduced resolution window and masked to the acquired sam-

ples for partial Fourier acquisition. The shot images (e j φ̂s ◦ ρ̃) are finally upsampled

using a triangular k-space window to recover the high-resolution shot phase maps φ̂s.

In the third step, the shot phase-corrected multi-shot problem is solved using the

conventional IRIS formalism [31] with the updated shot phase maps in Φ̂s = diag(e j φ̂s ):

ρ̂ = argmin
ρ

∑

s∈S′
‖MsFC Φ̂s ρ−ds‖2

2 +λρRρ(ρ). (3.5)
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Figure 3.1: Magnitude regularized phase estimation (MAPE) framework for shot phase-corrected multi-shot

DWI with deep learning support. The method is initialized by phase-uninformed SENSE of the joint multi-

shot data. The resulting joint image contains severe artifacts due to the uncorrected shot phase variations.

The iterative algorithm then repeatedly executes three steps until convergence. First, a U-Net performs artifact

reduction of the joint image ρ̂ yielding the joint image magnitude prior ρ̃. Second, the shot phase maps φ̂s
are updated by a proximal gradient descent with fixed joint image magnitude ρ̃. Third, a conventional phase-

informed multi-shot algorithm reconstructs an enhanced joint image ρ̂, which is fed back to the first step.

The NN thereby remains isolated from this joint image production step and enters only

as an image prior for the shot phase estimation. Going on with the enhanced joint im-

age ρ̂, the three steps are repeated in an iterative fashion until either the δs -criterion

(Eq. 2.37), which is the euclidean distance of two subsequent joint images, falls below a

tolerance τs or a maximum number of iterations is exceeded.

DEEP LEARNING IMPLEMENTATION

The deep learning-based artifact reduction was implemented through a U-Net [89]. The

implementation is described in the following regarding the training data generation, the

network architecture and the training process.

Training data was synthesized from in-vivo navigated multi-shot DWI data for a

residual learning task [90] using the forward model with randomly scaled in-vivo phase

variations. The data generation included the following seven steps:
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1. Reconstruct clean multi-shot images by the navigated IRIS algorithm [31].

2. Randomly sample image slices and DWI directions from a uniform distribution.

3. Prepare in-vivo shot phases for the forward modeling: The shot navigator phases

are unwrapped (using restoration.unwrap_phase from the scipy library) and scaled

by a factor drawn from a Gaussian distribution with zero mean and variance of 0.5.

Low-resolution object phases from the clean IRIS images are removed by a trian-

gular k-space window of halved matrix size as done for POCS-ICE [39] to match

the reconstruction conditions.

4. Apply the forward model using the random shot phases, the coil sensitivity maps

and the original Fourier shot sampling.

5. Add noise with SNR of approx. 20 (manually matched to in-vivo conditions).

6. Produce phase-corrupted input images by performing phase-blind SENSE [12].

7. Produce residual targets by subtracting the input images from the ground truths.

A U-Net[89] was set up in PyTorch as visualized in Fig. 3.2. The network maps the

input image of size (2, 240, 240) with magnitude and phase in the two channels to a

magnitude output image of the size (1, 240, 240). The network is build from blocks, each

concatenating a (3× 3) 2D convolution layer, 2D batch normalization (BN) [91], recti-

fied linear unit (ReLU) activation and a dropout layer (5%). The encoder path composes

two of such blocks on each of five resolution levels, whereby the number of channels is

doubled per level from 32 on full resolution to 512 channels on the coarsest level. The

decoder path is structured in symmetric equivalence, except for the integration of the

skip connections on each resolution level. Downsampling is performed by max pooling

and upsamling by bilinear interpolation. For this regression task, the output layer is a

2D convolution layer (without BN and ReLU activation) combining the 32 channels to a

single-channel output. In total, the network comprises 7,852,513 parameters.

22 32 32 32 32 196

6464192

128128384128128

128 256 256768256 256

256 512 512

646432

64

+

Conv > BN > ReLU > Dropout

Bilinear Upsampling

Conv

Max Pooling

Identity

Figure 3.2: U-Net architecture in a residual learning setting for the MAPE framework. The network maps a

complex input image of size (2, 240, 240), where the magnitude and phase are stacked in the two channels,

to a magnitude output image of size (1, 240, 240). The U-Net consists of 5 resolution levels and applies two

blocks of 2D convolutions (Conv), batch normalization (BN), ReLU activations and dropout layers per level.

The number of channels is indicated below the blocks. Skip connections are marked by green arrows. The

output layer is a single 2D convolution layer.
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The U-Net was trained with standard training parameters and additional on-the-fly

data augmentation. The ADAM [92] optimizer (beta1 = 0.5, beta2 = 0.999) was used for

100 epochs with a batch size of 30. The training was executed using ℓ1-loss. The learning

rate was started with 10−5 amd reduced to 5 ·10−6 and 10−6 after every 40 epochs. The

training was performed on a GeForce RTX 2080 Ti. Further data augmentation during

the training process involved random flipping of the training images along both in-plane

axes. Moreover, the network should also perform well on uncorrupted datasets, because

it is supposed to be used within a converging iterative process. Therefore, 25% of the

corrupted input images were replaced by their clean counterparts to achieve a solid rep-

resentation of uncorrupted images in the training set.

METHODS

IMAGE ACQUISITION

The aim of the deep learning supported MAPE method is to facilitate robust self-

navigated multi-shot DWI without navigators. Nonetheless, additional navigation is

used in this work to provide robust ground truth data for the learning task in the de-

manding diffusion realm. The navigated Stejskal-Tanner sequence, shown in Fig. 2.5,

provides a navigator acquisition with moderate undersampling, which offers diffusion

shot phase information at low g-factor penalty. The navigators can be omitted for the

intended self-navigated usage after the network has been trained, allowing to shorten

the sequence and thereby achieve more time-efficient volume coverage.

Diffusion-weighted brain data was acquired from 7 healthy volunteers. Informed

consent was attained according to the rules of the institution. The data was acquired on

a 3T Philips Ingenia Scanner using a 13-channel head coil (Philips, The Netherlands).

DWI data was sampled with 4, 5 and 8 shots and DTI data with 5 shots. Important

scan parameters are listed in Table 3.1. Furthermore, the acquisitions used spectral

pre-saturation with inversion recovery (SPIR) for fat suppression [93], volume shimming

and interleaved slice scan order. In contrast to standard DWI scans, no averaging was

performed. Coil sensitivity maps were acquired in a gradient-echo prescan. EPI ramp

samples were interpolated to the Cartesian positions by gridding [58] and an odd/even

Nyquist correction was applied for the EPI data using an EPI reference scan [94].

ALGORITHM OVERVIEW

The MAPE framework is evaluated in two versions, one with and one without deep learn-

ing. The first version including the U-Net is explicitly termed MAPE+U-NET in the

following evaluations. A second deep learning-free version that skips the U-Net with

fN N (ρ) = abs(ρ) is just called MAPE. The proposed methods are compared to the navi-

gated IRIS method [31] and the self-navigated POCS-ICE algorithm [39].

The IRIS method is used as the gold standard for the network training and the evalu-

ation, as it represents a robust reconstruction method of clinical importance. The POCS-

ICE implementation generally follows the published descriptions, except for the changes

mentioned in the following to improve the comparability of the methods. The four meth-

ods were used to reconstruct the DWI and DTI datasets of subjects that were not included

in the training data.
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Table 3.1: In-vivo measurement parameters for multi-shot DWI and DTI scans with varying segmentations.

Parameters DWI DTI

#shots (=segmentation factor) 4 5 8 5

Partial Fourier factor 0.63 0.62 0.63 0.62

Resolution (R×P×S) / mm3 1×1×4 1×1×4 1×1×4 1×1×4

Image size (R×P) 232×228 232×225 232×216 232×225

Number of slices (S) 26 26 2 4

Slice gap / mm 0.4 0.4 0.4 8

Repetition time TR/ s 5 5 5 5

b-value / (s/mm2) 1,000 1,000 1,000 1,000

#diffusion directions Np 3 3 3 15

Image echo time TEi mg / ms 69 66 63 66

Navigator echo time TEnav / ms 141 126 104 126

Navigator reduction factor 1.62 2.00 2.00 2.00

Scan time [m:ss] 1:50 2:15 3:30 7:15

IMPLEMENTATION DETAILS

The MAPE methods were executed with a maximum of 60 feedback iterations (60 joint

image updates) and 5 shot phase updates per iteration. POCS-ICE was performed with a

maximum of 300 iterations, so that the number of shot phase updates equals 300 for all

iterative methods. For the 8-shot datasets, a maximum of 500 shot phase updates was

set, implemented by increasing the number of feedback iterations for MAPE. The image

difference criterion δs of two subsequent iteration in Eq. 2.37 was used with tolerance

τs = 10−8. Coil compression [95] was applied for all self-navigated methods with a prin-

cipal component analysis threshold of 99%, reducing the set of coils from 13 to 7. The

regularization parameter for the MAPE methods and IRIS was set to λρ = 10−2.

The shot phase estimation by the proximal gradient descent involves several imple-

mentation details. The smoothness-enforcing k-space window of the phase estimation

was set to 5 mm for all self-navigated methods, which is equal to the navigator resolution

and thus makes the navigated and self-navigated methods comparable. The resolution

reduction of the MAPE methods was accordingly adapted and the regularization param-

eter was set to λφ = 103. Following Ref. [49], the forward model of the shot phase estima-

tion was formulated in image space using the shot PSF according to Eq. 2.6. Moreover, a

coil sensitivity mask was generated from the body coil reference image w by threshold-

ing the absolute values at 10% of its maximum. Then, 10 binary closings and 5 binary

dilations were performed on the mask using the scipy library.

The implementation of the proximal gradient descent method for the shot phase up-

dates involves an appropriate step size strategy. Typically, the maximum eigenvalue of

the forward model is a useful measure to set the step size of the proximal gradient de-

scent [83], but it is hard to estimate for the present problem size. Therefore, the step size

of the proximal gradient descent method was scaled once in the beginning to a maxi-

mum step of π/12 per shot. The proximal method was then implemented using a simple
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step size strategy [96], which was implemented to reduce the step size by a factor of 0.1

if the functional value after the gradient step has increased.

Partial Fourier reconstructions were included by homodyne approaches [2]. The

multi-shot SENSE reconstructions used by the navigated IRIS [31] and (iteratively) by the

MAPE methods employed two steps. First, a low-resolution image is reconstructed from

the symmetrically sampled k-space portion. This image is upsampled by a 1D-Hann k-

space window in the phase encoding direction to obtain the low-resolution phase map

on the full grid. Second, the unsampled k-space portion is recovered by enforcing con-

jugate symmetry after correcting for the phase map. For POCS-ICE, the low-resolution

phase map is obtained in a post-processing step using 1D-Hann k-space windowing,

followed by the homodyne reconstruction.

The data for the deep learning task were generated from the 4- and 5-shot DWI scans

of the 7 subjects with 26 slices and 3 diffusion directions. Thus, in total 1,092 raw images

were available (7 subjects × 2 segmentation factors × 26 slices × 3 DWI directions). Fol-

lowing the data synthesis described above, 715 input and target images were created for

each of the 14 subject-segmentation combinations obtaining approximately 10,000 im-

ages in total. A subject-wise training/test split of 6/1 was used to separate training and

test data. The full simulation dataset was jointly normalized so that the absolute values

lie in the interval [0,1]. Finally, the images were padded to (240, 240) image size.

RESULTS

U-NET PERFORMANCE

The U-Net’s ability to reduce shot phase-related artifacts in the joint images is crucial to

provide valuable image priors for the shot phase estimation. The performance of the NN

on the test dataset is analyzed in Fig. 3.3 in comparison to the target images.

Figure 3.3a contains the target image along with the U-Net input and output for two

example slices with different levels of corruption. The input image of Example 1 ap-

pears similar to the target image and does not contain visible shot phase-related ghost-

ing artifacts, only a slightly decreased SNR. The noise level appears slightly reduced in

the U-Net output yielding a nRMSE reduction from 11% to 8%. Example 2 is subject

to severe ghosting artifacts from the shot phase variations (orange arrows). The U-Net

largely suppresses the signal cancellations and recovers the overall object support well

while bringing down the nRMSE from 46% to 19%. Nevertheless, some image features

are missing and the NN introduces blurring in the areas with strong artifacts (blue ar-

row). Figure 3.3b shows a nRMSE boxplot statistic over the complete test set with 1400

images. The median nRMSE is reduced from 17.5% to 12.2% and the lower/upper quar-

tiles are reduced from 13.3% / 29,0% to 9.8% / 16.6%.

The U-Net consistently improves the joint image estimates measured by nRMSE over

the testset. Although the image quality of the one-time U-Net output is not sufficient in

case of phase-corrupted datasets, it is still capable to recover the overall shape already

after one application. It thus provides a more consistent object support for subsequent

shot phase estimations. For uncorrupted or converging joint image estimates, the im-

pact of the network is small and a denoising characteristic is observable on the test data,

which are important features to maintain convergence in an iterative process.
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Figure 3.3: U-Net performance on the test dataset. a: Network input and output images of two example slices

from the test dataset compared to the target image. The nRMSEs with respect to the target are indicated below

the images. Example 1 appears free from input phase corruptions and the U-net obtains a similar but slightly

denoised output. Example 2 contains strong ghosting artifacts (orange arrows) in the input image that are

effectively mitigated in the output at the cost of blurring (blue arrow). b: nRMSE statistic over the full test set.

The U-Net Output shows significantly reduced errors.

MULTI-SHOT DWI RECONSTRUCTIONS - MODERATE SEGMENTATIONS

In-vivo multi-shot data from the test set was reconstructed by the four methods to eval-

uate the performance of MAPE and MAPE+U-Net, where the latter algorithm involves

the iterative U-Net applications.

The multi-shot reconstruction performance over the test set is compiled in Tab. 3.2

considering the nRMSE to the IRIS reference and the reconstruction time per phase it-

eration. The overall nRMSE is reduced for the MAPE methods, whereby MAPE+U-NET

outperforms MAPE. The reconstruction times per phase iteration are comparable for

POCS-ICE and MAPE+U-Net and reduced to approximately two thirds for MAPE with-

out the U-Net. Each U-Net application takes on average approximately 1.2 s, leading to

about 0.24 s time difference per phase iteration between MAPE and MAPE+U-Net (as the

NN is applied every five phase updates).

Table 3.2: nRMSE and duration mean and standard deviations of 78 self-navigated multi-shot DWI reconstruc-

tions per segmentation factor. The nRMSE was calculated with respect to the navigated IRIS algorithm.

Algorithm #shots POCS-ICE MAPE MAPE+U-Net

nRMSE / %
4 shots 19.24±8.40 15.29±5.51 15.10±5.14

5 shots 23.86±6.97 19.37±5.78 18.82±4.98

Duration per phase update / s
4 shots 0.41±0.12 0.26±0.08 0.49±0.13

5 shots 0.53±0.12 0.29±0.06 0.53±0.09
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Figure 3.4: Comparison of the self-navigated iterative reconstruction algorithms to the navigated IRIS method

for challenging 5-shot DWI examples at b = 1000 s/mm2. The final joint images are shown along with the

nRMSE with respect to the navigated IRIS (to be interpreted with care). Example 1 in the brain base is subject

to strong phase disturbances (orange arrows), which are improved for MAPE and substantially mitigated for

MAPE+U-Net. The residual ghosting visible for POCS-ICE in Example 2 is suppressed by both MAPE methods.

Figure 3.4 shows two example slices from the 5-shot DWI reconstructions. Exam-

ple 1 is a slice from the brain base that comprises considerable shot phase variations.

Compared to the navigated IRIS reference, POCS-ICE suffers from residual ghosting and

signal cancellations, while MAPE reduces the dropouts and MAPE+U-Net appears clos-

est to the reference (orange arrows). The respective nRMSE dropped accordingly from

56.7% over 30.1% to 26.9%. Example 2 shows residual ghosting at the frontal lobe and an

increased nRMSE of 25.7% for POCS-ICE, while the MAPE methods appear ghost-free at

similar nRMSE of 16.8% and 16.5% (blue arrows).

The MAPE framework outperforms POCS-ICE providing more reliable shot phase es-

timates. For challenging datasets, MAPE+U-Net benefits from the improved image pri-

ors of the U-Net leading to more consistent phase estimates and thereby reduces the

ghosting artifacts considerably. On average, MAPE+U-Net slightly improves on MAPE,

which shows that the U-Net is especially helpful in ill-conditioned situations.

MULTI-SHOT DWI RECONSTRUCTIONS - HIGH SEGMENTATION

To evaluate the characteristics under strongly ill-conditioned in-vivo settings, the self-

navigated algorithms were applied to 8-shot datasets with 500 phase updates. The final

joint images are visualized along with three example shot phase maps in Fig. 3.5.

POCS-ICE contains residual aliasing artifacts after 500 iterations (orange arrow) and

achieves a nRMSE of 52% with respect to the navigated IRIS reference. The estimated

shot phase maps strongly deviate from the reference navigator phases in the central

brain areas and contain residual aliasing artifacts (red arrows). MAPE without the U-Net
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Figure 3.5: Self-navigated in-vivo results for highly segmented 8-shot echo-planar DWI with b = 1000 s/mm2.

POCS-ICE is subject to severe residual aliasing artifacts, caused by erroneous shot phase estimates (red arrows)

from imperfect pixel unfolding. MAPE reduces the aliasing artifacts, but still comprises pronounced shading

artifacts in the frontal lobe. Herein, the U-Net support greatly improves the capability of MAPE to capture

important phase characteristics for the highly segmented data.

considerably mitigates the artifacts compared to POCS-ICE and achieves 32% nRMSE,

but remains with some artifacts at the frontal lobe (blue arrow) caused by residual phase

inconsistencies for ill-conditioned shots (green arrow). MAPE+U-Net appears aliasing-

free and achieves the lowest error.
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The U-Net, which was trained for 4- and 5-shot data, successfully supports the image

reconstruction for higher segmentation. The deep learning module proofs to be effec-

tive in ill-conditioned situations and obtains artifact-free self-navigated reconstructions

even for highly segmented 8-shot DWI. For such high segmentations, the individual shot

problems are extremely undersampled (R = 8) and SENSE-based shot phase navigation

therefore gets very ill-conditioned, especially for shots whose sampling trajectory omit

the high-energy k-space center. Even iterative methods like POCS-ICE comprise shot

phase artifacts from incomplete unfolding, especially in the central brain, where the coil

sensitivity distinction is poor resulting in a high g-factor. The fixed joint image magni-

tude and the low-resolution reconstruction of MAPE provide valuable regularization for

the individual shot phase estimations. The U-Net furthermore improves the quality of

the joint image priors for the phase estimation. Reducing ghosting artifacts and provid-

ing object support in areas with strong signal cancellations, the U-Net support results in

more effective phase updates, in particular for ill-conditioned situations.

MULTI-SHOT DTI RECONSTRUCTIONS

The 5-shot 15-direction in-vivo DTI data was reconstructed for each diffusion direction

using the navigated IRIS reference algorithm and the three self-navigated approaches.

The diffusion tensors were estimated by a linear least squares fit over all diffusion direc-

tions using the Dipy package for python [68]. Figure 3.6 compares the colored fractional

anisotropy maps of POCS-ICE and MAPE+U-NET to the reference algorithm.

Example 1 in Fig. 3.6 shows a slice through the lateral ventricles comprising the

strongly anisotropic diffusion characteristic of the corpus callosum, which connects the

two brain hemispheres. POCS-ICE and MAPE+U-Net result in FA maps that are very sim-

ilar to the navigated reference algorithm. Both self-navigated algorithms deliver com-

parable high-quality results for this well-conditioned dataset. Example 2 is a transver-

sal slice through the third ventricle involving more challenging shot phase variations.

POCS-ICE suffers from residual phase-induced signal cancellations in the underlying

multi-shot DWI images that spoil the tensor estimates in the central brain area, whereas

MAPE+U-Net mitigates the DWI artifacts leading to diffusion tensor results comparable

to the reference (white arrows). By this, MAPE+U-Net also shows its generalization capa-

bilities over the diffusion directions, as the network was trained on three orthogonal dif-

fusion directions only. Around the third ventricle, the self-navigated algorithms present

structural FA and SNR differences compared to the IRIS reference (orange arrows) that

are unrelated to shot phase inconsistencies in the underlying DWI images.

DISCUSSION

The main contributions of the MAPE framework are threefold. First, it adapts the al-

ternating phase cycling algorithm proposed by Ong et al. [83] for multi-shot DWI and

thereby provides self-navigated high-quality image reconstructions. Second, the frame-

work offers a comprehensible integration of deep learning to support the ill-conditioned

shot phase estimation. Third, the proposed neural network training is based on navi-

gated data to overcome the problem of missing reference data for DWI. Overall, the U-

Net effectively regularizes the shot phase updates by improved joint image priors. Work-

ing on the joint image level, it is not bound to a fixed segmentation factor. MAPE+U-Net
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Figure 3.6: Colored fractional anisotropy maps for 5-shot in-vivo DTI datasets with 15 diffusion directions

and b = 1000 s/mm2. For Example 1, the self-navigated algorithms obtain similar high-quality results com-

pared to the IRIS reference. For Example 2, POCS-ICE structurally differs from the reference in central brain

areas caused by residual shot phase inconsistencies, while the MAPE+U-Net results nicely coincide with the

navigated reference in this area (white arrows). Nevertheless, the self-navigated algorithms show structural

differences to the navigated reference (orange arrows) requiring clinical evaluation of the methods apart from

the shot phase inconsistencies.

enables self-navigation for high segmentation factors and challenging datasets. At the

same time, the U-Net is kept isolated from the final image reconstruction, which facili-

tates the interpretation of potential artifacts by means of the underlying shot phase esti-

mates. For low segmentations or small phase variations, MAPE+U-Net performs similar

to MAPE, because the individual shot problems are well-conditioned and the regulariza-

tion imposed by the U-Net’s joint image priors is not critical.

The shot phase estimation of MAPE depends on three main components: the encod-

ing model, the phase smoothness filter and the joint image prior. The encoding model

consists of the SENSE and the Fourier encoding, whose properties determine the con-

dition of the shot forward model. The SENSE encoding could be improved by coil de-

signs with higher channel numbers and optimized sensitivity profiles [12]. Regarding

the Fourier encoding, non-Cartesian sampling trajectories like the multi-shot spiral pro-

vide a more randomized sampling that improves the denoising potential [45]. Moreover,

the spiral shots contain valuable low-resolution information from the k-space center for
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each shot. Conversely, non-Cartesian trajectories come with more expensive image re-

constructions and are more prone to blurring artifacts [57].

Phase smoothness is imposed by low-resolution windowing functions in k-space for

both POCS-ICE and MAPE. The central k-space has a higher SNR compared to outer re-

gions for normal MRI images. Appropriate filtering can therefore improve the SNR for

the shot problem at the cost of missing important high-resolution phase effects [34].

MAPE can convert the low-resolution conditions to immediate computational gains,

because the shot phase updates are directly performed on reduced resolution. In con-

trast, POCS-ICE iteratively projects the shot image estimates onto the sampled shot data

and averages the shot images to a joint image after suppressing the low-resolution shot

phases [39]. By this, the shot phase resolution can not be reduced without changing the

resolution of the joint image.

Finally, MAPE holds the image magnitude fixed for the proximal gradient updates

that are just performed on the reduced set of phase parameters [83]. The quality of the

joint image priors is crucial to pose the gradient phase updates well, because a magni-

tude misfit affects the phase gradients through a non-linear relation. Hence, alternating

updates of both the shot phases and the joint image are required to obtain high-quality

image reconstructions.

The current major limitations are the small homogeneous dataset used in this study

and the accessibility of reliable reference data. The current results represent a proof-

of-concept study on a relatively small dataset from a single scanner. To achieve clinical

acceptance, implementation and testing on larger multi-scanner and -site datasets are

required. The generalization capabilities to untrained diffusion directions and segmen-

tation factors were shown for the DTI data and 8-shot DWI data, respectively. Neverthe-

less, the effects of varying scan parameters, such as the b-value, the echo times, repe-

tition times, resolution or other anatomies, on the network performance are subject to

future work and represent an important concern for clinical adoption.

The self-navigated algorithms were evaluated with respect to the navigated IRIS al-

gorithm [31] as a gold standard. IRIS-based methods have been authorized for clinical

use and have been commercially available for a few years. Nevertheless, the DTI results

of the navigated and self-navigated approaches show different SNR and structural DTI

properties as outlined for Fig. 3.6. The results suggest further critical evaluations of

the differences between navigated and self-navigated methods and, in general, limit the

validity of the navigated reference method as a gold standard for structural DTI evalua-

tions, because it relies on navigator information that can be compromised by the high

navigator echo time. There might be a transitions zone where self-navigated approaches

are not only more scan time-efficient but also more reliable than their navigated coun-

terparts. However, for the present evaluation of shot phase estimates and the amount

of artifacts in the resulting joint images, the navigated IRIS method represents a reliable

reference method.

The comparison of MAPE+U-Net to other deep learning-based multi-shot DWI

methods is another major issue. The NEATR algorithm [77] performs image enhance-

ment on MUSSELS reconstructions [40], followed by a final phase estimation and im-

age reconstruction. A balanced reference dataset for a performance comparison of the

methods is missing, apart from the accessibility of the algorithms for comparison.
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Future research projects could integrate the deep learning support with convex refor-

mulations of the shot phase problem like MUSSELS [40]. The proximal gradient descent

algorithm for the shot phase estimation is based on a non-convex problem formula-

tion. In the recent years, low-rank approaches have achieved convex reformulations of

the shot phase-corrected multi-shot DWI reconstruction leveraging either local k-space

[40] or image-space [41] correlations of the shots or exploiting the q-space similarity [42]

over multiple diffusion directions in DTI. Extensions of the proposed method to incor-

porate low-rank constraints could provide convergence guarantees and benefit from the

learning-based regularization in ill-conditioned cases.

CONCLUSIONS

To summarize, the proposed magnitude-regularized phase estimation (MAPE) offers

an effective iterative framework to improve the shot phase estimation in self-navigated

multi-shot DWI. Moreover, it supports segmentation-independent deep learning inte-

gration for the SNR-critical shot phase estimation, while keeping a conventional, inter-

pretable joint image production. Future work is required to validate the deep learning

integration on larger datasets.
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3.2
SELF-NAVIGATED RIGID IN-PLANE

MOTION CORRECTION

Multi-shot techniques offer improved resolution and signal-to-noise ratio for diffusion-

weighted imaging, but make the acquisition vulnerable to shot-specific phase variations

and inter-shot macroscopic motion. Several model-based reconstruction approaches

with iterative phase correction have been proposed, but robust macroscopic motion

estimation is still challenging. Segmented diffusion imaging with iterative motion cor-

rected reconstruction (SEDIMENT) uses iteratively refined data-driven shot navigators

based on sensitivity encoding (SENSE) to cure phase and rigid in-plane motion artifacts.

The iterative scheme is compared in simulations and in-vivo to a non-iterative reference

algorithm for echo-planar imaging with up to six-fold segmentation. The SEDIMENT

framework supports partial Fourier acquisitions and furthermore includes options for

data rejection and learning-based modules to improve robustness and convergence.

This section is based on a publication in NMR in Biomedicine [49].

(Volume: 33, Issue: 12, 2020)
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INTRODUCTION

Besides the inevitable shot-specific phase variations in multi-shot DWI, macroscopic

inter-shot motion during the lengthy diffusion scans produces mismatches of individ-

ual segments and severely compromises image quality. Multi-shot DWI with shot phase

and rigid in-plane motion correction has already been addressed by two methods using

either self-navigation [43] or additional MR navigators [44]. Navigated techniques pro-

vide easily accessible navigation signals, but require a prolonged sequence leading to

less SNR-efficient sampling. Therefore, this work focuses on data-driven approaches for

shot phase and macroscopic motion correction in multi-shot DWI. A detailed review of

the multi-shot DWI algorithms is provided in Section 2.2.

The self-navigated augmented MUSE (AMUSE) algorithm extends the two-step

MUSE framework [35], which reconstructs individual SENSE-based shot navigators and

uses the filtered shot phases for a multi-shot reconstruction. AMUSE furthermore uses

the SENSE navigators to obtain shot-wise macroscopic motion states by rigid registra-

tion and a tensor estimate over all diffusion directions. Thus, the algorithm corrects also

for diffusion contrast variations, which arise from the change in the effective diffusion

direction according to the shot-specific rotations. Analogous to the one-time phase es-

timation, the registration and tensor estimates are sensitive to noise propagation effects

within the SENSE-based shot navigators, which could be enhanced by iteratively rein-

forcing data consistency. For non-DWI multi-shot applications, iterative rigid motion

estimations have achieved improved image quality by enforcing SENSE-based data con-

sistency [84, 86, 87, 97–99], but the iterative integration of both physiological phase and

macroscopic motion correction for DWI has still been challenging.

The proposed SEDIMENT method, short for segmented diffusion imaging with it-

erative motion corrected reconstruction, is a self-navigated alternating algorithm that

subsequently improves the SENSE-based shot navigators, the shot parameters and the

joint multi-shot image. The proposed contrast corrections have been shown to improve

the DTI results, but the robust estimation of the initial diffusion tensor poses another

challenging problem for higher segmentations apart from the motion estimates. There-

fore, the diffusion contrast corrections were excluded from this work. The SEDIMENT

method is presented for brain EPI. Moreover, the framework enables partial Fourier (PF)

reconstructions [2] to harvest SNR by reducing the echo times for EPI.

MODEL-BASED IMAGE RECONSTRUCTION

The SEDIMENT framework addresses the multi-shot DWI problem with shot phase vari-

ations and macroscopic in-plane motion between the shots as visualized in Fig. 2.6. The

joint multi-shot DWI problem optimizes for the joint image ρ, the shot phase operators

Φs and the shot-wise macroscopic motion operators Ωs similar to Eq. 2.30:

minimize
∑

s∈S′
‖Ms F C ρs −ds‖2

2

subject to ρs =ΩsΦs ρ, s ∈ S′.
(3.6)

s is the shot index from the set of included shots S′. Note that the SEDIMENT framework

was set up with reversed shot operators Φs and Ωs compared to the multi-shot problem
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formulation in Eq. 2.30. This means that the phase maps are defined in rigid alignment

with the joint image. Considering in-plane motion and assuming that the object stays

within the FOV, the phase content is well represented in both ways. The shot images, be

it navigated or self-navigated, are thus aligned to the joint image by Ω
H
s before the phase

map extraction.

Plugging the equality constraints into the objective function yields an unconstrained

formulation of the multi-shot problem:

minimize
ρ,Φs,Ωs

∑

s∈S′
‖F C ΩsΦs ρ−d s‖2

2. (3.7)

SEDIMENT FRAMEWORK

SEDIMENT adopts SENSE navigation to estimate both motion-induced phase variations

and macroscopic motion for multi-shot DWI reconstruction and embeds it into an iter-

ative scheme. Inspired by POCS-ICE [39], the algorithm alternates between the shot-

wise data consistency in k-space (objective function of Eq. 3.6) and the joint image con-

straints in image space (constraint functions in Eq. 3.6), but extends this scheme by

continuous macroscopic motion corrections and optionally includes partial Fourier ac-

quisitions and data rejection. SEDIMENT and the reference algorithm MC-SENSE+CG

(Macroscopic motion corrected SENSE+CG) are shown in Fig. 3.7. Iteration superscripts

were dropped to provide an uncluttered notation. The operations are always performed

on the up-to-date estimates.

Initialization

SEDIMENT estimates the first shot images ρi ni t
s ∈C

Np using initial CG-SENSE [13]. The

conjugate gradient (CG) method includes an intrinsic regularization attenuating low sin-

gular values [24]. The iteration number controls the regularization and thus balances

aliasing and noise propagation [100].

Symmetry projection

Partial Fourier techniques assume that the spatial frequency content of the object’s

phase is limited in phase-encoding direction [2]. The reconstruction therefore imposes

another low-resolution constraint on the phase using a conventional phase projection

operator [101]. For this, the signal phase is substituted by the constrained low-resolution

phase vector θs ∈R
Np with Np image voxels:

θs =∡

(

Fpe
H V1 Fpe ρi ni t

s

)

, s ∈ S′, (3.8)

ρs = abs(ρi ni t
s ) ◦ e jθs , s ∈ S′. (3.9)

The operator Fpe (Np × Np ) denotes the 1D-FFT in phase-encoding direction and V1

(N × N ) is a 2D window with 1D Hann shape in phase-encoding direction. ∡ extracts

the element-wise phase, j is the imaginary number, the abs function takes the element-

wise absolute value, ◦ is the (element-wise) Hadamard product and ρs ∈ C
Np is the s-

th shot image estimate. The superscript H denotes the Hermitian of an operator. For

full Fourier acquisitions, this step is skipped by setting ρs = ρi ni t
s . Note that the par-

tial Fourier phase constraint also limits the maximum frequency content of the motion-

induced shot phase estimates.
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Figure 3.7: Schematic diagrams of the presented motion corrected multi-shot DWI algorithms. a: SEDIMENT.

b: MC-SENSE+CG (non-iterative reference algorithm). Both schemes estimate complex-valued shot images

from the data by initial CG-SENSE. The shots navigate macroscopic and physiological motion estimations

yielding macroscopic parameters and phase maps. SEDIMENT optionally includes symmetry projections for

partial Fourier acquisition and data rejection before shot combination and feedback to the data projection.

MC-SENSE+CG employs a final multi-shot CG to solve for the joint image.

Motion estimation

The shot-image guesses navigate macroscopic and physiological motion estimations.

The shot-wise operator for macroscopic motion Ωs allows to include various motion

models, such as rigid, affine or elastic transformations. In the context of brain imag-

ing, this work performs rigid registration of the shot magnitude images as presented in

AMUSE [43]. The shot with the highest total correlation to all other shots is chosen as

registration reference with index sr e f once in advance. The shots are then aligned by ap-

plying the estimated motion transformation. Next, the physiological motion correction

requires the estimation of the motion-induced shot phase variations φs ∈ R
Np . Assum-

ing spatial smoothness, the phase maps are extracted from low-resolution data using a

2D triangular k-space window [39]:

φs =∡
(

F2d
H V2 F2d Ω

H
s ρs

)

, s ∈ S′. (3.10)

Here, Ω
H
s ρs is the aligned shot image, F2d (Np × Np ) the 2D-FFT operator and V2

(Np ×Np ) the window function. The phase operator is constructed by Φs = diag(e jφs ).

After correcting for macroscopic and physiologic motion, a joint image estimate ρ̂s =
Φ

H
s Ω

H
s ρs can be obtained for each shot.
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Optional data rejection

The initial set of shots S can be reduced to make the reconstruction robust against un-

modeled artifacts by data rejection. Besides shot mismatches due to through-plane mo-

tion or failed registration, patient motion can affect the MR signal evolution and the dif-

fusion encoding in various ways [22] leading to severely corrupted shot data. By exclu-

sion from the current set S′, corrupted shots can be rejected before shot combination by

analyzing k-space peak broadenings [30, 37], correlation measures [102] or other means.

In this work, the normalized root-mean-square error (nRMSE) of shot s with respect

to the registration reference sr e f is evaluated in every iteration:

nRMSEs =
‖ρ̂s − ρ̂sr e f

‖2
2

‖ρ̂sr e f
‖2

2

. (3.11)

A shot index is rejected from S′ when nRMSEs exceeds a given threshold η. This measure

includes both residual magnitude and phase variations.

Shot combination

The joint image ρ is obtained by complex averaging of the motion corrected shot images:

ρ =
1

|S′|
∑

s∈S′
ρ̂s. (3.12)

The operator |S′| is the cardinality of the set S′ representing the number of averaged

shots. For known motion operators, the joint image constraints in Eq. 3.6 can be inter-

preted as a consensus constraint for the unconstrained joint problem in Eq. 3.7. This is

related to an average projection operator [53].

Apart from the projection, the joint image could also be retrieved by solving the ex-

tended SENSE problem in Eq. 3.7 using CG as in AMUSE [43], but the complex averaging

involves relatively low computational loads for the use in an iterative scheme and reuses

the previous shot-wise joint image guesses ρ̂s.

Shot data projection

The shot data projection recovers shot images ρ
pr o j
s from the joint image ρ and rein-

forces SENSE-based data consistency for each shot [39]. For Cartesian trajectories, the

data projection just substitutes the estimated data points by actually measured ones,

whereas unsampled k-space positions remain unchanged [101]:

ρ
pr o j
s =ΩsΦsρ, s ∈ S′, (3.13)

ρi ni t
s =ρ

pr o j
s +C H F H M H

s (ds −Ms F C ρ
pr o j
s ), s ∈ S′. (3.14)

Hence, the shot estimates are updated by the joint image and fed back into the iterative

scheme which is repeated until convergence.
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ACCELERATION STRATEGIES

The SEDIMENT scheme is furthermore accelerated using coil compression [95, 103, 104]

and the point spread function (PSF) of regularly undersampled Cartesian EPI [12, 99]. As

the SENSE matrix size scales linearly with the number of coils Nc , the computational

expense of the SENSE updates can be reduced by coil compression.

Moreover, the PSF of Cartesian trajectories can be used to substitute the k-space un-

dersampling [39, 101] by pure image space operations. In general, Cartesian undersam-

pling corresponds to a convolution with a shah-shaped PSF in image space [12].

Regarding multiple uniformly undersampled EPI interleaves, the trajectories are

equal, except for a shot-specific shift from the k-space origin. The k-space undersam-

pling thus involves three concatenated image space operations. Firstly, the trajectory is

shifted back to the origin by multiplying a phase ramp Φ
shi f t
s (Nc Np ×Nc Np ) in image

space. Secondly, the k-space undersampling of the centered trajectory is applied by PSF

convolution represented by PSF (Nc Np ×Nc Np ). Finally, the trajectory offset is reversed

by the conjugate phase ramp to obtain the original shifted trajectory for each shot:

F H M H
s Ms F =Φ

shi f t
s

H
PSF Φ

shi f t
s . (3.15)

This PSF formulation is an identity, not an approximation, for substituting the FFTs.

Note that the image space operations require that the number of pixels in phase-

encoding direction is divisible by the reduction factor. Furthermore, partial Fourier ac-

quisitions exclude this acceleration as the truncated sampling affects the Cartesian PSF.

METHODS

REFERENCE ALGORITHMS

The proposed algorithm was compared to the MC-SENSE+CG reference scheme and an-

other variant of the SEDIMENT framework. All algorithms start by the CG-SENSE initial-

ization, followed by macroscopic motion estimation, shot alignment and physiological

motion estimation as shown in Fig. 3.7.

MC-SENSE+CG is a non-iterative algorithm that solves the joint multi-shot diffusion

problem in Eq. 3.7 using CG. The method can be interpreted as SENSE+CG [36] extended

by macroscopic motion estimation. Phase unwrapping and 2D median filtering were

used for physiological motion estimation. MC-SENSE+CG is also basically similar to

AMUSE [43] as it obtains shot estimates using SENSE, extracts the motion parameters

and calculates the final image once. AMUSE further corrects for diffusion contrast vari-

ations caused by rotational motion which is neglected in this work. Regarding the scope

of this work, a dedicated partial Fourier scheme for MC-SENSE+CG was excluded.

Prior-MC SEDIMENT (Prior Macroscopic Motion Corrected SEDIMENT) adapts the

iterative procedure of SEDIMENT, but skips the macroscopic motion estimation after the

initial estimate. This variant was implemented to evaluate the necessity of combined

iterative physiological and macroscopic motion correction. The repetitive registration

should yield performance gains to justify the increased computational load.
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NUMERICAL SIMULATIONS

The algorithms were evaluated both in simulations and in-vivo. The simulations were

performed using the BrainWeb phantom [105] from the T1-weighted normal brain

database and 1 × 1 × 1mm3 resolution. The phantom was padded to a matrix size of

256×⌊256/Nshot s⌋Nshot s in readout and phase-encoding direction, respectively, ensur-

ing equal but shifted trajectories for all EPI shots.

The simulation data was prepared by five steps according to the forward model. First,

the motion-induced phase variations were created and applied for each shot as ran-

dom functions of second spatial order as presented by Hu et al.[106]. Second, shot-wise

rigid in-plane motion was uniformly sampled from a range of ±5pix (equals ±5mm) and

±10deg and the shot data was transformed accordingly. Third, 12 2D Gaussian sensitiv-

ity maps were arranged circularly around the image center. The disturbed shot data was

multiplied by the CSMs to obtain multi-shot multi-coil data. Fourth, complex Gaussian

noise with zero mean and equal variance for the real and imaginary parts was added in

image-space according to the predefined SNR. Finally, the data was undersampled in

k-space according to the shot trajectories (optionally also including partial Fourier ac-

quisition).

The BrainWeb phantom was prepared for {2,3,4,5,6} shots and SNRs of {5,10,15,20}

without partial Fourier trajectories. The simulation data was reconstructed by the three

algorithms without data rejection. The nRMSE and reconstruction time were used to

measure performance. Total performance was measured as the average over 10 random

simulation cases for each shot-SNR pair.

IN-VIVO EXPERIMENTS

The in-vivo experiments were executed on a 3 Tesla Philips Ingenia Scanner (Philips

Healthcare, Best, The Netherlands) using a head coil with 13 channels. The data was

obtained from six healthy volunteers. Informed consent was attained according to the

rules of the institution.

The multi-shot echo-planar brain DWI experiments were performed using conven-

tional Stejskal-Tanner diffusion encoding within a spin echo sequence [5] and magneti-

zation prepared fat suppression [93]. The DWI data was obtained in both full and partial

Fourier acquisitions with 4 and 6 shots for a b-value of 1000 s/mm2 in three orthogo-

nal directions. The subjects were asked to perform random in-plane motion from shot

to shot within the head coil. DTI experiments were executed with 4 and 5 shots for a

b-value of 1000 s/mm2 in 15 diffusion directions. Here, both static and gross motion-

corrupted data were acquired. Coil sensitivity maps were acquired by precalibration.

Relevant parameter settings are listed in Table 3.3.

The multi-shot datasets were reconstructed using the three presented algorithms.

The data rejection threshold was set to η = {0.4, 0.55, 0.7} for segmentations of {4,5,6},

respectively, if not stated otherwise. For DTI, the joint images from the individual multi-

shot reconstructions for each diffusion direction were aligned with the non-DWI (b =
0 s/mm2) image using an affine motion model. The registration, tensor estimation and

fractional anisotropy (FA) calculations [4] were performed using the Dipy library [68].
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Table 3.3: In-vivo measurement settings for DWI and DTI experiments with varying segmentation and partial

Fourier strategies.

Experiment DWI DTI

Acquisition Full Fourier Partial Fourier Partial Fourier

Number of shots 4 6 4 6 4 5

TE/ms 98 89 65 61 68 66

TR/s 5 5 5 5 5 5

Matrix size R 232 232 232 232 232 232

Matrix size P 228 222 228 222 228 225

In-plane resolution / mm 0.957 0.957 1.000 1.000 1.000 1.000

Slice thickness / mm 4 4 4 4 4 4

Partial factor 1.000 1.000 0.632 0.622 0.632 0.622

b-value / s/mm2 1,000 1,000 1,000 1,000 1,000 1,000

#diffusion directions 3 3 3 3 15 15

IMPLEMENTATION DETAILS

The reconstructions were conducted using Python 3.6.5 on a system with a 2.7 GHz In-

tel Core i7 4-core CPU and 16 GB RAM. The preparations of the coil sensitivity maps

included masking and coil compression [95]. The sensitivities were masked [12] by a

magnitude signal thresholding with a body coil reference image. The threshold was set

to 10% of the body coil magnitude maximum value. In addition, binary closing (10 iter-

ations) and binary dilations (5 iterations) were performed using the scipy library. In sim-

ulations, the phantom was used as the reference image for thresholding after smoothing

by a 2D Gaussian filter (σ = 15). Coil compression was performed by principal com-

ponent analysis with 99%-threshold using the singular value decomposition in numpy.

This resulted in a reduction from 13 to 7 coils.

Non-uniform sampling on EPI ramps was adjusted by gridding in advance and an

odd/even correction based on an EPI reference scan was used to prevent Nyquist ghost-

ing [94]. Fourier transforms were performed using the FFT of the numpy library. The

PSF-based undersampling was used whenever possible (not for partial Fourier acquisi-

tion) to avoid FFTs including data projections and CG gradient computations.

The CG iterations were stopped if the residual norm criterion [13] dropped below the

tolerance τr = 10−4. In addition, a maximum iteration count was empirically set to 12

and 10 for single- and multi-shot reconstructions, respectively. Coil sensitivity normal-

ization [13] was applied for all CG methods.

The macroscopic motion was estimated using the rigid registration described in the

fast elastic image registration [107] framework. After an exhaustive presearch, the reg-

istration performs a Gauss-Newton scheme with Armijo’s step size rule. A normalized

gradient field [85] metric was used to stabilize the registration against intensity varia-

tions in the g-factor areas [12].

To stabilize convergence, the shots were aligned at their joint average location af-

ter each registration by subtracting the mean rigid parameters of all included shots (in

S′) [86, 108]. Furthermore, registration parameters below 0.01pix (about 10µm) and

0.01deg were ignored and set to zero. Registration accuracies below this threshold were

assumed immoderate hampering convergence.
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The rigid shot alignment with Ωs was performed using the k-space formulation pro-

posed by Cordero-Grande et al. [86]. Translations were applied in k-space by multiplying

phase ramps according to the Fourier shift theorem. Rotations were implemented as a

concatenation of three shears applied in k-space [109]. The action of Ωs was thus imple-

mented by subsequent rotational and translational operators.

The SEDIMENT phase filters were k-space window functions avoiding phase un-

wrapping. For physiological motion estimation, the shot phases φs were smoothed by

a 2D triangular window in k-space using 2D-FFTs [39]. For full Fourier acquisition, the

window size was scaled to half the image size. For partial Fourier acquisitions, the range

in phase-encoding direction was limited to the symmetric area. MC-SENSE+CG used

the phase unwrapping and 2D median filter from the scipy library. The median filter ker-

nel was set to 9 x 9 pixels applied on unwrapped full resolution phases. Phase estimation

was disabled for non-DWI datasets (b0 = 0 s/mm2). Partial Fourier projection phases θs

were obtained by a 2D window with 1D Hann shape in phase-encoding direction scaled

to the size of the symmetric sampling area in the k-space center.

The iterative algorithms were stopped either by a convergence criterion or by a max-

imum iteration count. The mean-square difference criterion of subsequent iterations in

Eq. 2.37 was used with a tolerance τs = 10−6. The maximum iteration count was set to

200 iterations.

RESULTS

SIMULATION RESULTS

The outcomes of the multi-shot DWI BrainWeb simulations are compiled in Fig. 3.8.

The bar plots in Figs. 3.8a and b show the nRMSE and the durations over varying seg-

mentations for all three methods, namely MC-SENSE+CG, Prior-MC SEDIMENT and

SEDIMENT. The algorithms perform similarly for low segmentations, whereas, for more

than three shots, the iterative methods achieve significantly lower errors than MC-

SENSE+CG. Moreover, SEDIMENT outperforms Prior-MC SEDIMENT in terms of qual-

ity, but the reconstructions are prolonged by the registration step in each iteration com-

pared to Prior-MC SEDIMENT.

A BrainWeb reconstruction example and the corresponding convergence are visual-

ized in Figs. 3.8c and d. The SEDIMENT image (Fig. 3.8c) appears artifact-free com-

pared to the ground truth, while the others comprise residual aliasing in the center from

registration mismatch. The MC-SENSE+CG reconstruction additionally contains signal

dropouts indicating phase-induced errors. The nRMSE of 0.1165, 0.092 and 0.0255 for

MC-SENSE+CG, Prior-MC SEDIMENT and SEDIMENT matches the visual impression.

The algorithms took 7.25s, 24.95s and 52.77s, respectively. The nRMSE convergence

(Fig. 3.8d) of the iterative methods drops under the MC-SENSE+CG error level after few

iterations. Prior-MC SEDIMENT converges steadily to 0.092 after 45 iterations, whereas

the convergence of SEDIMENT appears bumpier reaching 0.0255 in iteration 64.

The BrainWeb simulations emphasize the importance of iterative reconstruction,

especially for high segmentations. Exceeding three shots, the SENSE-induced g-factor

penalty [12] increasingly deteriorates the shot navigators resulting in corrupted final im-

ages. The iterative phase estimation realized by Prior-MC SEDIMENT effectively cures
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Figure 3.8: Evaluation of three multi-shot DWI algorithms in BrainWeb [105] simulations. a: nRMSE. b: Dura-

tion. The nRMSE and the duration are compiled with SNR = 10 for varying segmentations. The bars indicate

10-fold averaged mean values, while the box plot whiskers contain the full value range. c: A 4-shot example

with SNR = 10 is shown with the final images next to the static ground truth, the nRMSE and the durations.

The SEDIMENT image contains no visible artifacts, whereas Prior-MC (SEDIMENT) and MC-SENSE+CG com-

prise residual aliasing (red arrows) from insufficient macroscopic motion estimates. The MC-SENSE+CG has

shading artifacts (blue arrows) related to deteriorated phase guesses. d: The nRMSE convergence is evaluated

and the error level of the non-iterative MC-SENSE+CG is visualized for comparison.

ghosting and shading artifacts compared to MC-SENSE+CG, but in the presence of rigid

motion, Prior-MC SEDIMENT relies on the initial macroscopic motion guess, which has

proven to be occasionally insufficient.

SEDIMENT’s repeated gross motion estimation refines the associated parameters at

the cost of increased computational load. The convergence with in-plane rigid motion

estimation is more unsteady due to its non-convex nature, but, nevertheless, SEDIMENT

decently reconstructs even severely corrupted datasets. Besides, there are cases in which

the present motion is not completely corrected by SEDIMENT. Convergence was sta-

bilized by averaging the shot motion parameters [108] and limiting the registration to

±0.01pix and ±0.01deg.

IN-VIVO RESULTS

The in-vivo performance of the three algorithms for full and partial Fourier multi-shot

DWI is compared for 6-shot datasets in Fig. 3.9. The full Fourier reconstructions in

Fig. 3.9a show the final shot and joint magnitude images of MC-SENSE+CG, Prior-MC

SEDIMENT, and SEDIMENT. The dataset contains only minor inter-shot gross motion.

MC-SENSE+CG uses the initial CG-SENSE shot images and performs no further shot

updates. These shot images thus also represent the shot initializations of the other

two methods. The individual shots comprise strong noise propagation artifacts in ar-

eas where the signal is suppressed due to the CG regularization by early stopping [24].

The MC-SENSE+CG joint image is strongly corrupted by ghosting and signal dropout,

whereby the anatomical structures, such as the interhemispheric fissure, appear un-

blurred. This suggests sufficiently accurate rigid motion estimation in the first step, but

deficient phase estimation. The iterative recoveries appear artifact-free and are hardly

distinguishable. The convergence according to Eq. 2.37 in Fig. 3.9c is almost congruent.
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Figure 3.9: Full and partial Fourier reconstructions of 6-shot motion corrupted in-vivo DWI datasets for the

three algorithms. a: Full Fourier images. b: Partial Fourier images. The full and partial reconstructions contain

the final shot and joint magnitude images for the diffusion-weighted (b = 1000 s/mm2) datasets with 13 coils.

Reconstruction times are indicated below the algorithm names. The partial Fourier factor was 0.622. Although

full and partial Fourier results of two different volunteers and slices are compared, one can appreciate the vary-

ing T2-weighting of the partial Fourier approach. c: Convergence of full Fourier acquisition. d: Convergence

of partial Fourier acquisition. The convergence progression is almost congruent in c, compared to the varying

shape in d. Moreover, the joint magnitude image of SEDIMENT in iteration 50 is inserted in d.
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3 SELF-NAVIGATED MULTI-SHOT DWI

The partial Fourier dataset in Fig. 3.9b appears severely affected by inter-shot gross

motion. The MC-SENSE+CG shot images contain similar artifacts as in Fig. 3.9a as well

as blurring in phase-encoding direction from uncorrected partial Fourier acquisition.

The MC-SENSE+CG joint image is severely deteriorated. Prior-MC SEDIMENT cured

the shot phase-related artifacts by iterating over the phase, but the images still comprise

strong blurring from inadequate registration. SEDIMENT yields decent final images.

The partial Fourier convergence criterion in Fig. 3.9d drops unsteadily for both iter-

ative methods. SEDIMENT needed less iterations (but more time) due to the enhanced

consistency by repeated image registration. The joint image of SEDIMENT at iteration 50

was inserted to analyze the convergence unsteadiness. Most phase-related artifacts have

already been corrected at this point, but the image is still gross motion corrupted, which

is visibly reduced in the final image. The figure shows two slices from different subjects

to capture the diversity and the differing levels of motion corruption in the data. Thus,

a direct comparison is not possible, but, in general, partial Fourier data comprise less

T2-weighting and can potentially increase SNR compared to full Fourier scans.

The in-vivo results demonstrate successful image reconstructions for up to six shots

with the given receive array. If no macroscopic motion is present or if the first registration

provides sufficiently accurate parameters, no quality issue can be observed for Prior-

MC SEDIMENT. Conversely, SEDIMENT has been shown to recover decent images even

for inaccurate initial gross motion guesses as demonstrated in Fig. 3.9b. The SENSE-

enabled registration apparently casts the algorithm into a sufficiently accurate (but still

possibly local) minimum.

IN-VIVO DATA REJECTION

For some datasets, the motion-corrected SEDIMENT reconstruction failed due to the

non-convex nature of the problem. In these cases, the SNR of the shot images normally

impedes the estimation of sufficiently accurate rigid motion parameters. Figure 3.10

shows a final joint image example and the convergence criteria, respectively, of a 6-shot

SEDIMENT reconstruction with and without data rejection.
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Figure 3.10: SEDIMENT reconstruction of 6-shot motion corrupted in-vivo DWI data with and without shot

rejection. a: The final joint magnitude images with and without rejection are displayed. b: The respective

convergence criteria are compared and the black dashed line indicates the current number of rejected shots.

SEDIMENT with rejection starts with just 2 shots (4 rejected) and sequentially incorporates further shots con-

tinuously checking the rejection criteria. In this example, all shots are finally included and contribute to the

joint image reconstruction with improved SNR.
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3.2 SELF-NAVIGATED RIGID IN-PLANE MOTION CORRECTION

The SEDIMENT reconstruction without rejection is blurred by rigid shot motion mis-

matches. The iterative shot data rejection with a tolerance of η= 0.46 results in an uncor-

rupted image. The convergence of SEDIMENT with shot rejection comprises two strong

strikes compared to the relatively continuous evolution without rejection. The black dot-

ted line indicates the number of rejected shots in each iteration.

The iterative data rejection of SEDIMENT initially excludes four shots by the nRMSE

consistency measure and combines just the two remaining shots. These two shots con-

tribute to the joint reconstruction and together enhance SNR. This, in turn, improves

the conditions for image registration in subsequent iterations so that more and more

shots can be included by consistency until, after about 25 iterations, all shots contribute

to the final image. The convergence spikes in Fig. 3.10b coincide with the inclusion of

further shots. Hence, iterative rejection improves the overall convergence by selectively

including shots based on a consistency measure.

IN-VIVO DTI RESULTS

For the in-vivo DTI data, the multi-shot datasets for each diffusion direction were recon-

structed by SEDIMENT. Using Dipy [68], the resulting joint images per direction were

aligned by affine registration to subsequently estimate the tensors.
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Figure 3.11: FA maps and estimated rigid motion parameters of SEDIMENT reconstructions for static and

macroscopic motion-corrupted in-vivo multi-shot DTI data. a: FA maps of two subjects with 5-fold (upper

row) and 4-fold (bottom row) segmentation. The left column shows the SEDIMENT-based FA maps acquired

under static conditions (no voluntary motion). The remaining data was acquired during in-plane motion.

The center column shows SEDIMENT results without gross motion correction and data rejection. Subject 1

only performed small gross motion during the scan, which produced blurring and kinks in the FA maps (pink

arrow). Subject 2 performed strong motion during the scan (about ±10 deg and ±5 mm). The uncorrected

mismatch severely deteriorated the SEDIMENT reconstructions resulting in a poor FA map. The iterative rigid

correction is able to mitigate the motion-induced artifacts, except for minor blurring and noise-like artifacts

(red arrows). Note that the static and motion case of Subject 1 show slightly different slices. b: Estimated rigid

motion parameters for the motion case over the full data acquisition (shot index is a surrogate of time).

61
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The resulting FA maps for a 4-shot and a 5-shot case from two different subjects are

presented in Fig. 3.11a. The left column contains FA maps for static reference acquisi-

tions without voluntary gross motion. The center and the right columns show FA maps

under voluntary gross motion. In the center column, macroscopic motion correction

and data rejection were disabled and only the phase correction was active (Partial Cor-

rections). The right column shows SEDIMENT-based FA maps, in which all corrections

were applied (Full Corrections). Note, that the aforementioned SEDIMENT options just

affect the reconstructions of the individual diffusion directions. The calculation of the

presented FA maps always involved prior affine registration of the different direction-

wise images, which may or may not contain gross motion artifacts. Figure 3.11b shows

the rigid motion parameters estimated by SEDIMENT over the full data acquisition. The

shot index indicates the chronological excitation number in the experiment and there-

fore represents a surrogate of time.

Subject 1 moved just slightly during the scan (about ±2 deg and ±2 mm), which

produced blurring and kinks from the rigid mismatch, which propagate through the

direction-wise reconstructions into the tensor estimates (pink arrow). The motion cor-

rection greatly reduces these artifacts, except for minor blurring and noise-like struc-

tures (red arrows), and recovers important white matter structures. In contrast, Subject

2 performed large movements during the scan (about ±10 deg and ±5 mm). The strong

misalignment led to heavy gross motion artifacts in the direction-wise reconstructions,

which render the FA maps unusable. The iterative motion correction is able to align

the shot data sufficiently to restore the overall structures and the SNR of the motion-

corrupted data compared to the static reference.

DISCUSSION

SEDIMENT provides decent multi-shot DWI reconstructions in the presence of physio-

logical and inter-shot in-plane macroscopic motion. The model-based algorithm suc-

cessfully combines multiple segments and augments the coverage of motion corruption

scenarios shown in Fig. 2.6. The iterative scheme achieves superior image quality com-

pared to non-iterative methods like AMUSE [43] making higher EPI segmentations feasi-

ble, albeit the achievable segmentation is still limited for two reasons. Firstly, the g-factor

penalty affects the SENSE-based shot motion navigators, which impedes data consis-

tency for high segmentations and impairs robustness. Secondly, the computational load

increases with the number of shots.

The initial CG-SENSE shot-image guesses crucially affect the robustness to deal with

the non-convex macroscopic motion estimation. SEDIMENT generally uses convex op-

timization strategies so that it can only produce acceptable results for sufficiently pre-

cise initial guesses. Herein, SENSE provides a reliable technique to resolve the under-

sampling and thereby empowers the algorithm to leverage non-convex motion effects.

SEDIMENT has even shown convergent behavior with acceptable results for visibly inac-

curate initial motion estimates. In general, the condition of the individual SENSE-based

shot problems determines both convergence and the feasibility itself.

SENSE-based shot navigators generally benefit from enhanced coil orthogonality,

more channels or proper regularization [110]. Moreover, the trajectory and its under-

sampling pattern affect the g-factor characteristics. Spirals [39], variable-density spi-
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3.2 SELF-NAVIGATED RIGID IN-PLANE MOTION CORRECTION

rals [33] or Cartesian trajectories with extra lines for self-navigation [32, 34] provide cru-

cial low-resolution signal for motion estimation. In contrast, the EPI interleaves acquire

varying amounts of central k-space energy resulting in different degradations of the shot

reconstructions. As an example, the single shots 0 to 5 in Fig. 3.9b contain about 25, 9, 8,

5, 26, 27% of the total signal energy, which qualitatively matches the visual impression.

Moreover, randomized sampling schemes enable supportive sparsity-enforcing regular-

ization [45] of the joint problem in Eq. 3.6, but this is difficult to be realized for EPI.

In addition, partial Fourier acquisition allows for significant echo time reductions,

which, at the same time, improves the feasibility of T2-critical applications for abdom-

inal diffusion. The rapid T2 signal decay experienced, for example, in prostate DWI

complicates image recovery for conventional EPI trajectories. Partial Fourier techniques

shorten the k-space trajectory so that the echo top is reached earlier. The echo time

reduction can help to increase SNR and reduces T2 imprinting issues in DWI. Never-

theless, partial Fourier reconstructions require the signal phase to be slowly varying in

phase-encoding direction. This assumption might be unjustified due to, for example,

susceptibility variations, strong field inhomogeneities or flow [2] and must be reconsid-

ered for each application scenario.

Iterative data rejection is a crucial reconstruction element to improve robustness by

including only consistent shot data. As an example, the shot combination might be-

come unfavorable for failed registrations, through-plane motion or contrast variations

[22] when intra-shot motion occurs during the diffusion encoding process. For this pur-

pose, the iterative SEDIMENT approach allows one to selectively include datasets for

consistent reconstruction improving convergence and reliability.

Compared to AMUSE [43], which is mimicked by MC-SENSE+CG in the present work,

the current SEDIMENT implementation for multi-shot DWI neglects the implications of

rotational motion onto the diffusion contrast and is thus only valid for small rotations

under the assumption of a smooth q-space. Considering the integration of SEDIMENT

into a DTI framework, the refined motion estimates could be leveraged to achieve more

accurate tensor estimates. However, the initial tensor estimation becomes more chal-

lenging for higher segmentations as well. Using the initial SENSE-based shot estimates,

the g-factor penalty complicates appropriate initial tensor guesses. In contrast, the

consistency-based integration into the iterative framework further increases the com-

putational load and raises questions about the numerical stability of the tensor model.

Hence, the integration of SEDIMENT into a DTI framework is subject to future research.

Currently, SEDIMENT neglects macroscopic motion-induced variations of the coil

sensitivity maps by making several assumptions. The use of equal CSMs firstly implies

that the electromagnetic properties at each point in space remain unchanged after small

macroscopic object motion. The coil setup is thereby assumed to be at rest and indepen-

dent of the body, in contrast to setups that are attached. Secondly, macroscopic motion

disturbance of the low-resolution SENSE reference scan is neglected. Thirdly, the coarse

SENSE reference scans cover the whole motion range of the subject within the coil. As an

alternative approach, sensitivity estimation could be incorporated into the model-based

images reconstruction [75].

The presented retrospective algorithms could further be fruitfully fused with

prospective motion correction approaches [21]. Strong subject motion can corrupt the
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DWI data in various ways stressing the implemented motion models. Prospectively nav-

igated acquisitions reduce the prevalent artifacts in the data providing enhanced condi-

tions for retrospective corrections.

Possible future extensions to SEDIMENT involve learning-based modules for rigid

motion estimation, phase denoising and data rejection. Hitherto, the rigid registration

and the phase estimation ignore the SENSE-related g-factor distribution over the image,

which could be used to suppress areas of high noise propagation. Moreover, their imple-

mentation normally includes filters, thresholds and weighting factors that are manually

determined and which are sensitive to SNR and, thus, the segmentation.

Feature-based deep learning modules could provide enhanced motion parameter

estimates and rejection tools, which are separable from the joint image recovery. As

an example, Bilgic et al. [77] proposed to jointly denoise the magnitudes of segmented

multi-echo reconstructions using a neural network and to use the denoised magnitudes

to regularize phase estimation using phase cycling [83]. The enhanced phase maps are

then used for conventional reconstruction. In this way, the influence of neural networks

is restricted to the estimation of motion parameters and erroneous estimates appear

with well-defined artifact shapes in the conventional physics-based reconstruction. This

modular inclusion opposes fully end-to-end approaches like Variational Networks [47]

or AUTOMAP [46].

CONCLUSIONS

SEDIMENT is a SENSE-navigated iterative scheme that improves state-of-the-art multi-

shot DWI reconstruction, correcting for motion-induced phase variations and rigid

inter-shot in-plane motion. The continuously refined shot motion estimates enable the

consistent combination of multiple shot datasets, thereby making high EPI segmenta-

tions feasible in the presence of macroscopic motion. The algorithm supports partial

Fourier reconstructions and strategies for shot data rejection to boost SNR and robust-

ness. The presented scheme provides an adjustable modular framework enhancing re-

construction quality and speed to ease clinical adoption of the method for DWI.
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Navigated approaches derive the shot parameters of the optimization problem from ad-

ditional MR signals that are integrated into the scan sequence. The navigator signals

commonly involve benign reconstruction problems to access the shot parameters cir-

cumventing the joint estimations of image and shot parameters, which are generally

non-convex and computationally demanding. As a major drawback, navigation reduces

the scan efficiency through the additional sampling and it relies on the accuracy of

the navigation signal for the shot parameter estimation. Nevertheless, navigated ap-

proaches for multi-shot DWI provide robust imaging solutions that are widely used for

shot phase correction in clinical practice. This chapter extends the multi-shot DWI mod-

els to macroscopic motion correction and evaluates the potential of the shot navigator

signals to address this challenging but important clinical problem of subject motion.

The first section of this chapter investigates a navigated multi-shot DWI reconstruction

including rigid in-plane corrections and compares the performance to the self-navigated

approach of Section 3.2. The method presented in the second section integrates simul-

taneous multi-slice acquisitions into the multi-shot problem and leverages the data sup-

port in slice direction to estimate and correct for three-dimensional rigid motion.
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NAVIGATED RIGID IN-PLANE

MOTION CORRECTION

Macroscopic motion is a costly problem for clinical MRI and represents a serious im-

age quality factor for multi-shot DWI, which is especially prone to shot-wise signal

variations. This section investigates the potential of 2D navigators in multi-shot DWI

acquisitions for joint shot phase and rigid in-plane motion corrections. A navigated

SENSE-based reconstruction algorithm for multi-shot DWI is proposed that includes

navigator-based corrections of the shot phase, rigid in-plane motion and optionally

motion-induced shot contrast variations. The reconstruction furthermore utilizes a data

rejection scheme to encounter through-plane motion and irreversible signal loss. The

navigated method is compared to a self-navigated algorithm for 4- and 5-shot in-vivo

DTI. The motion estimation from low-resolution navigator data enables high-quality im-

age reconstructions comparable to self-navigated results but with faster reconstruction

times. In the evaluations over multiple subjects and segmentations, the navigated re-

constructions are found to be more robust against strong motion corruption and high

segmentations.

This section is based on a conference submission to the 2020 ISMRM & SMRT Virtual Conference & Exhibition.

(Abstract number: 4339, 2020, Ref. [50])
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INTRODUCTION

The shot-to-shot phase variations in multi-shot DWI have been successfully studied and

addressed in the last decades by a multitude of navigated [17, 18, 25–31], self-navigated

[32–41] and navigator-free [40, 41] methods allowing to exploit the resolution and SNR

gains of segmented acquisitions. Macroscopic motion during the lengthy DWI scans

entails a challenging problem extension that has been approached just recently by self-

navigated [43, 49] and navigated [44, 50] reconstruction models.

AMUSE [43] is a self-navigated method using SENSE-based [12] shot images from

the interleaved data to estimate the shot phases, rigid in-plane motion and even diffu-

sion tensors for shot contrast correction maps. Depending on the SENSE-based shot im-

ages, AMUSE suffers from the g-factor penalty [12] for increasing segmentations, which

is reduced by the iterative SEDIMENT algorithm [49] at the cost of an increased compu-

tational burden. Dong et al. [44], in contrast, used a navigated acquisition to robustly

estimate the shot phase and rigid in-plane motion parameters and proposed a motion-

corrected GRAPPA-based [14] reconstruction. Nevertheless, comparisons of navigated

and self-navigated methods are missing.

This work builds on the navigated IRIS method [31], short for image reconstruc-

tion using image-space sampling function, that uses 2D navigators to estimate the shot

phase maps. The proposed algorithm, termed IRIS with rigid in-plane correction (IRIS-

RiCo), extends the use of the navigators by rigid in-plane registration of the magnitude

images and embeds the obtained rigid parameters into an efficient SENSE-based im-

age reconstruction. The proposed navigated IRIS-RiCo algorithm is compared to the

self-navigated SEDIMENT method [49] for in-vivo multi-shot DTI data. Furthermore,

a navigator-based correction of the diffusion contrast variations from head rotations is

described, but the resulting image quality improvements require further evaluation.

MODEL-BASED IMAGE RECONSTRUCTION

The general multi-shot DWI problem with macroscopic motion correction is given by Eq.

2.31. The method proposed here uses MR navigation signals to estimate the shot vari-

ation parameters of each shot s, i.e. the phase map for the shot phase operator Φs, the

2D rigid motion parameters for the macroscopic motion operator Ωs and the weighting

map for the contrast-reweighting operator Υs. The navigation reduces the demanding

non-convex problem in Eq. 2.31 to a convex problem for the joint image vector ρ:

minimize
ρ

1

2

∑

s∈S′
‖Ms F C ΦsΩsΥs ρ−ds‖2

2 +λ‖ρ‖2
2. (4.1)

A Tikhonov regularization with weight λ was added to stabilize the reconstruction. The

set of included shots S′ is determined by a correlation-based shot rejection [32]. In anal-

ogy to Eq. 2.33, the formulation with multi-shot operators is:

minimize
ρ

1

2
‖M̀ F̀ C̀ Φ̀ῺῪP ρ− d̀‖2

2 +λ‖ρ‖2
2, (4.2)

which is summarized by the multi-shot forward operator A = M̀ F̀ C̀ Φ̀ῺῪP for given

shot parameters in the following. P provides a joint image copy for each shot to match
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the processing of the block-diagonal multi-shot operators indicated by grave accents.

This model is solved separately for every diffusion direction q of Nq total directions.

This work compares two versions of the navigated algorithm with rigid motion cor-

rection, which are visualized in Fig. 4.1. The first version is termed IRIS with rigid

in-plane correction (IRIS-RiCo) and neglects the shot contrast variations by settings

Υs = INp with the identity matrix INp . Np is the number of pixels. The phase varia-

tions and the rigid shot alignment, on the other hand, remain active. The second ver-

sion is termed IRIS with rigid in-plane and contrast correction (IRIS-CoCo) and involves

all operators including Υs. Compared to IRIS-RiCo, IRIS-CoCo involves the additional

navigator-based tensor estimation to estimate the shot contrast variations on low reso-

lution, which is indicated by a blue color code and dashed arrows in Fig. 4.1.

IRIS WITH RIGID IN-PLANE CORRECTION (IRIS-RICO)
The description of the proposed IRIS-RiCo algorithm is separated into three parts: the

navigator reconstruction, the shot parameter estimation and the joint image reconstruc-

tion from the interleaved high-resolution data.

Navigator reconstruction

The complex navigator data is upsampled to full resolution using a triangular k-space

window to reduce Gibb’s ringing [3]. The upsampled navigator data is then recon-

structed using SENSE [12] with a Tikhonov regularization [24] yielding the shot navigator

images ρs. The regularization weight was empirically set to λnav = 10−2. As the coil sen-

sitivity maps are assumed invariant to head motion, the inversion matrices of SENSE can

be calculated once for all navigators of a slice.

Shot parameter estimation

The next step estimates the shot parameters from the navigator images ρs to tune the

multi-shot reconstruction involving macroscopic motion estimation, phase extraction

and data rejection. The phase extraction obtains the shot phase maps φs by taking the

pixel-wise argument of the complex-valued images. The shot phase operators are then

constructed by Φs = diag(e j φs ) for each shot s.

The shot-wise macroscopic motion is parameterized by a rigid in-plane model. The

three rigid motion parameters (two translations and one rotation) per shot are estimated

from the shot magnitude images by rigid registration. The reference shot index sr e f for

the registration is chosen once in advance by analyzing the mutual shot correlations in

the unaligned state. The shot with the highest overall correlation to all other shots is cho-

sen as the reference. The macroscopic motion operator Ωs is implemented as proposed

by Cordero Grande et al [86]. The rigid resampling employs a k-space formulation using

the Fourier shift theorem for translations and a factorization into three shears [109] for

rotations. The resampling is based on 1D-FFTs and requires a sufficiently large FOV to

avoid wrap-around effects at the image edges for large in-plane motion.

The data rejection excludes significantly deteriorated shot signals from the joint im-

age reconstruction based on a correlation measure [32]. For this, the corrected shot nav-

igators ρ̂s are calculated by ρ̂s = Υ
H
s Ω

H
s Φ

H
s ρs. Note again that IRIS-RiCo effectively

drops the shot contrast-reweighting operator Υs by setting it to the identity Υs = INp .

The reference shot is selected once more as the one with the highest correlation to all

other shots. The correlation threshold for shot rejection was set to 95%.
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Figure 4.1: SENSE-based reconstruction scheme for multi-shot DWI with navigated motion and contrast cor-

rection. First, the moderately subsampled navigator images are recovered by SENSE [12]. Second, the naviga-

tors are used to calibrate shot-wise macroscopic motion parameters, phase maps and data rejection criteria.

For optional shot contrast corrections (shown on the right-hand side with dashed lines and blue color code),

navigator diffusion tensors are estimated from all diffusion directions after affine alignment to produce shot

contrast-reweighting maps according to the shot rotation. The shot parameters including the optional con-

trast maps are used in the multi-shot SENSE model to reconstruct the joint image.

Joint image reconstruction

The joint multi-shot image reconstruction is performed individually for each diffusion

direction using the conjugate gradients (CG) method [24]. The intensity correction op-

erator Ĩ proposed by Pruessmann et al. [13] is included for preconditioning. Compiling

the multi-shot forward model A as in Eq. 4.2, the normal equations to solve by CG are:

(Ĩ AH AĨ +λĨ Ĩ ) (Ĩ−1ρ) = Ĩ AH d. (4.3)
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Note that the intensity correction is approximative in the presence of head movements,

because motion leads to a shot-specific coil intensity imprint. However, the sensitivities

are smooth and the static coil weighting was found to approximate the motion case well

for preconditioning. With intensity correction, the CG effectively solves for (Ĩ−1ρ) so that

the final image is recovered by: ρ = Ĩ (Ĩ−1ρ). The regularization weight was empirically

set to λ= 10−3. The CG is stopped if either the residual norm [13] drops below τr = 10−6

or 30 iterations are exceeded.

ADD-ON: IRIS-RICO WITH CONTRAST CORRECTION (IRIS-COCO)
Besides the macroscopic misalignment, subject rotations change the effective diffusion-

weighting direction in the patient frame, leading to shot contrast variations. IRIS-

CoCo estimates a tensor map from the low-resolution navigators and determines shot

contrast-reweighting maps for the joint reconstruction. The extended processing is in-

dicated in Fig. 4.1 by dotted arrows and the blue color. Rejected shots are excluded.

Shot contrast-reweighting

The estimation of shot contrast-reweighting maps consists of four steps. First, the nav-

igator magnitudes are aligned using an affine in-plane registration. The affine motion

operator of shot s is denoted by ΩA,s. The additional zoom and shear parameters of the

affine mapping are considered to encounter potential eddy current-induced distortions

between the diffusion directions [9].

Second, the navigator DTI analysis is performed using all single-shot navigators

(NqNi shots without rejection) to obtain a tensor estimate D̂p for each voxel p. The

diffusion direction gs of each shot s is corrected beforehand using the shot rotation pa-

rameters gR,s = T −1
R,s(gs), where the rotational transformation TR,s is determined from the

concatenated rigid and affine transformations. By this, the tensor estimation takes into

account the corrected diffusion direction for each single-shot navigator avoiding biases

in the tensor data from contrast mixing of the multi-shot datasets as in Ref. [44].

Third, the shot contrast correction maps υs are calculated per voxel p as in Eq. 2.28

using the tensor estimate D̂p and the shot-wise directional difference g̃s = T −1
R,s(gs)−gs:

(υs)p = e−b g̃T
s D̂p g̃s (4.4)

Finally, the adjoint affine mapping Ω
H
A,s transforms the contrast correction maps

υs back to be in alignment with the joint image. The contrast-reweighting operators

are constructed by Υs = diag(ΩH
A,sυs). The contrast-reweighting operators are then em-

ployed in the joint image reconstruction as part of the forward model A in Eq. 4.3.

METHODS

DATA ACQUISITION AND PREPROCESSING

Multi-shot echo-planar DTI data with 4 and 5 shots were acquired using a 2D-navigated

Stejskal-Tanner diffusion sequence [31] as presented in Fig. 2.5. The data was obtained

from 8 healthy volunteers on a 3T Philips Ingenia Scanner using a 13-channel head coil.

Informed consent was obtained according to the rules of the institution. Spectral pre-

saturation with inversion recovery (SPIR) was used for fat suppression [93]. Relevant

scan parameters are listed in Table 4.1.
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Table 4.1: Sampling parameters of the diffusion tensor imaging scans.

Parameters DTI scans

#interleaves Ni 4 5

TR 5000 ms 5000 ms

TE image \navigator echo 68\139 ms 66\126 ms

FOV (R × P × S) 232×228×16 mm3 232×225×16 mm3

Resolution image 1.0×1.0×4.0 mm3 1.0×1.0×4.0 mm3

Resolution navigator 5.0×5.0×4.0 mm3 5.0×5.0×4.0 mm3

#slices Nz 4 4

Partial Fourier factor 0.614 0.622

b-value 1,000 s/mm2 1,000 s/mm2

#diffusion directions Nd 15 15

#T2-weighted acquisitions 2 2

Scan time [m:ss] 5:50 7:15

The DTI experiments described in Table 4.1 were done twice with different motion-

related instructions. In the first scan, the volunteers were asked to remain still. For the

second scan, they were asked to perform continuous in-plane motion with a "no" head

shake trajectory. A gradient-echo prescan was used to acquire coil sensitivity maps once

in advance [12]. EPI ramp samples were gridded to the Cartesian sampling position prior

to the proposed reconstruction and, to reduce Nyquist ghosting, EPI reference data was

acquired for odd/even phase correction [94].

EXPERIMENTAL DESIGN

The image reconstructions were performed on a system with a 2.7 GHz Intel Core i7 4-

core CPU and 16 GB RAM. The algorithms were implemented in Python 3.6.9. IRIS-RiCo

and IRIS-CoCo were compared to two reference algorithms to evaluate the macroscopic

motion correction performance for the in-vivo multi-shot DTI data. The first reference

method was the basic IRIS method [31], which performs the shot phase corrections while

neglecting macroscopic motion. The phase correction and data rejection are performed

as described for the proposed methods in this work. The second reference method is the

self-navigated SEDIMENT algorithm [49] presented in Section 3.2, which also performs

rigid in-plane and shot phase corrections.

In this work, the evaluation of the navigated and self-navigated methods is based on

a comparison of the image reconstruction results for static and the associated motion-

disturbed datasets. Therefore, the final images of all methods are registered to the high-

resolution IRIS reconstruction of the static T2-weighted case (b = 0 s/mm2). The final

alignment uses an affine multi-scale registration with a mutual information metric and

is resampled by linear interpolation. The diffusion gradient directions for the DTI pro-

cessing are corrected for rotations of the concatenated joint affine alignment and the

mean rigid parameters of the shots involved in the multi-shot image reconstruction.
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The performance of the rigid motion correction was compared qualitatively by an-

alyzing the DWI image results of the different methods. Tensor estimates and FA maps

were calculated using Dipy [68]. A quantitative nRMSE assessment is provided by com-

paring the reconstructed images under motion conditions with the associated static im-

ages from the same algorithm to avoid biases towards a specific algorithm. It should be

noted that the evaluation under motion conditions is challenging. The proposed com-

parison with a static reference suffers from inevitable through-plane motion that occurs

during the macroscopic motion-disturbed scans. Therefore, the validity of the static im-

ages as reference data is limited. This has also impeded evaluations of the subtle contrast

corrections in IRIS-CoCo, which are superimposed by the anatomical variations due to

through-plane motion in this study. However, the static data still serves as a sufficiently

accurate reference for the nRMSE evaluation of the DWI images.

IMPLEMENTATION DETAILS

The sensitivity and Fourier operator implementations follow the descriptions of SEDI-

MENT [49]. The sensitivity operator C involves masking and coil compression [95]. The

mask is obtained from a body coil reference image by thresholding the magnitude image

at 10% of its maximum. Then, the mask is processed by 10 binary closings and 5 dila-

tions. The coil compression uses a principal component analysis with a 99% threshold.

The aliasing for EPI manifests in phase encoding direction so that the PSF is one-

dimensional without support in the readout direction. Therefore, the EPI data is brought

to hybrid ky -x-space and the Fourier operator F involves only 1D-FFTs in phase encod-

ing direction. Without partial Fourier sampling, the undersampling can be completely

represented in image-space, which can further reduce the computational demands [49].

For partial Fourier undersampling, the proposed joint image reconstruction of the

interleaved data is embedded into a homodyne two-step strategy [2]. In the first step,

the image reconstruction is performed from the low-resolution k-space center, which is

symmetrically covered by the sampling. For this, the data is downsampled by a k-space

window function with 1D-Hann shape in phase encoding direction. The low-resolution

multi-shot problem is solved by CG and the phase map is extracted yielding the low-

resolution object phase. Second, the full interleaved data is pre-weighted by an asym-

metric s-shape window in k-space [2] followed by the CG reconstruction. The s-shape

window obtains a uniform weighting of the signal partition with conjugate even sym-

metry (Eq. 2.7) in k-space, which is related to the real-valued signal in image space by

Fourier symmetry properties. The final image is then recovered from the joint image of

the second step by eliminating the low-resolution phase from the first step and taking

the real part. This processing enforces the conjugate even symmetry in k-space after the

image-space correction of the estimated low-resolution phase.

The rigid and affine navigator registrations employ the preregistration of the fast

elastic image registration (FEIR) framework [107] with a normalized gradient field met-

ric [85]. After the rigid registration, the motion states are centered within each multi-

shot experiment by subtracting the mean from the rigid shot motion parameters.For the

affine navigator alignment in IRIS-CoCo, the registration reference is the first shot of the

non-DWI (b = 0 s/mm2) images. The affine alignment uses linear interpolation, which is

the default processing of Dipy [68] for tensor estimation.
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Figure 4.2: Five in-vivo multi-shot DWI examples reconstructed with the different motion correction algo-

rithms. (Top row): IRIS corrects for shot-to-shot phase variations only. (Middle row): SEDIMENT applies

self-navigated shot phase and rigid in-plane motion correction. (Bottom row): IRIS-RiCo performs navigated

shot phase and rigid in-plane motion correction. All methods suppress ghosting artifacts from the shot phase

variations. The IRIS results contain strong image artifacts from macroscopic subject motion (white arrows),

whereas SEDIMENT and IRIS-RiCo reduce the artifacts by rigid in-plane modeling in the reconstruction. The

method is applicable to both non-DWI (left column) and DWI (other columns) multi-shot data.

RESULTS

MOTION CORRECTION FOR IN-VIVO DWI

Figure 4.2 shows five DWI examples from different subjects to qualitatively assess the

image reconstructions under gross motion conditions. IRIS [31] (upper row) performs

no rigid motion correction, while SEDIMENT [49] (middle row) uses a self-navigated

and IRIS-RiCo (bottom row) the proposed navigated rigid motion correction approach.

All reconstruction methods employ shot phase corrections leading to DWI re-

sults that are free from the characteristic phase-induced ghosting artifacts and signal

dropouts. The IRIS results comprise strong blurring artifacts (white arrows) for the

macroscopic motion-corrupted datasets, which are well resolved by the self-navigated

SEDIMENT and the navigated IRIS-RiCo algorithm, which both perform 2D rigid motion

corrections. The results include successful image reconstructions of both T2-weighted

(non-DWI) and DWI data with different segmentation factors.
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Figure 4.3: Normalized root-mean-square error (nRMSE) statistics per subject comparing the image recon-

struction methods under macroscopic motion conditions. The nRMSE was calculated with respect to the ref-

erence images under static conditions after rigid alignment of the datasets. One subject was excluded from

the statistics, because the table top moved between the scans under static and motion conditions causing a

through-plane offset. Both rigid in-plane corrected methods improve on the IRIS results, whereby IRIS-RiCo

produces lower median values in three of four subjects and generally shows smaller inter-quartile ranges.

IMAGE QUALITY EVALUATION FOR IN-VIVO DWI
The nRMSE performance of the self-navigated SEDIMENT [49] and the navigated IRIS-

RiCo methods are quantitatively compared over all DWI reconstructions in Fig. 4.3. Dur-

ing the DTI processing, all reconstructed images were aligned to the first T2-weighted

IRIS image under static conditions by rigid image registration. The nRMSE is then cal-

culated for the aligned image magnitudes and compares each motion-disturbed image

to the respective image under static conditions, which is reconstructed by the same al-

gorithm (IRIS, SEDIMENT, IRIS-RiCo) to avoid biases towards specific algorithms. The

evaluation is visualized per subject to analyze the performance separately for different

volunteers with their respective motion profiles. Please note that the availability of refer-

ence data and thus the nRMSE quantification are problematic and should only indicate

overall trends.

The rigid in-plane corrected methods SEDIMENT (purple) and IRIS-RiCo (blue) con-

sistently reduce the nRMSEs over all subjects compared to the IRIS method [31] (orange),

which neglects macroscopic motion. The median value is lower for IRIS-RiCo than for

SEDIMENT in three of four subjects. Moreover, the navigated IRIS-RiCo shows less vari-

ation in the image reconstruction results, as measured by the inter-quartile ranges of the

box-plots, compared to the self-navigated SEDIMENT.

The reconstruction times per slice of the navigated IRIS-RiCo method were on av-

erage approximately 15 s, while IRIS-CoCo with its additional navigator DTI evaluation

took 17 s. The self-navigated SEDIMENT algorithm, which optimizes the shot parame-

ters and the joint image in an alternating fashion, required on average 52 s and took 55

iterations. Neglecting macroscopic motion in the reconstruction model, IRIS allows for

an efficient image-space solution that took only 3.5 s on average, but it shows compro-

mised image quality for motion-disturbed datasets.
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Figure 4.4: In-vivo DTI reconstruction results for two gross motion-corrupted datasets compared to static ref-

erence data. (a): Colored FA maps for a static (left column) and a motion-corrupted case (other columns),

reconstructed once with IRIS, the proposed navigated IRIS-RiCo and self-navigated SEDIMENT. b: Rigid mo-

tion estimates of IRIS-RiCo for both subjects. Subject 1 performed minor gross motion (±1 mm, ±2 deg),

while Subject 2 moved heavily throughout the scan (±6 mm, ±14 deg) causing strong gross motion artifacts

for IRIS (white arrows). Both the navigated and the self-navigated method with rigid in-plane motion correc-

tion recover great parts of the structural information. Please note that the static and motion cases might show

slightly different structures due to through-plane motion between the scans.

MOTION CORRECTION FOR IN-VIVO DTI
Figure 4.4 shows the different DTI reconstruction results for two motion-disturbed

datasets in comparison to a static reference. Colored fractional anisotropy (FA) maps

for two subjects are presented in Fig. 4.4a, along with the estimated rigid motion param-

eters of IRIS-RiCo in Fig. 4.4b.

IRIS provides decent image quality for the static datasets with high SNR and sharp

anatomical delineation. Under macroscopic motion conditions, the IRIS reconstruc-

tions suffer from strong artifacts that propagate into the tensor estimates and severely

degrade the FA maps. Both rigid in-plane motion-corrected methods successfully re-

duce the motion artifacts in the underlying DWI images recovering the structural infor-

mation and a reasonable SNR level under continuous subject motion throughout the

whole scan.
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Figure 4.5: Residual artifacts for the motion-corrected multi-shot DWI reconstructions in challenging in-vivo

examples. IRIS-RiCo and SEDIMENT generally improve the visual appearance of the images, but residual arti-

facts might persist in the reconstructed images. Some IRIS-RiCo reconstructions show minor residual blurring

artifacts (blue arrows). SEDIMENT reconstructions might not be able to resolve the strong shot misalignments

(orange arrows) in challenging motion cases and signal cancellation artifacts caused by residual inconsisten-

cies of the self-navigated shot phase estimation might persist.

RESIDUAL ARTIFACT EVALUATION

Macroscopic motion estimation is a challenging non-convex task, especially in the low-

SNR diffusion realm. Moreover, the signal perturbations might not be sufficiently cap-

tured by the employed rigid in-plane model. Figure 4.5 gives an overview of residual

artifacts that persist in the reconstructions for SEDIMENT and IRIS-RiCo.

The IRIS reconstructions in Fig. 4.5 show 5 slice examples with different types of

macroscopic motion corruption. Example 1 and 2 contain relatively small initial motion

corruptions and are well recovered by SEDIMENT, whereas IRIS-RiCo comprises minor

residual blurring of the fine structures (blue arrows). Nevertheless, the reconstructed

images of IRIS-RiCo are substantially improved compared to IRIS. Example 3 and 4 are

heavily affected by gross motion in the IRIS reconstructions. Here, IRIS-RiCo greatly

reduces the image artifacts so that the inter-hemispheric fissures appear well-resolved.

For these challenging cases, SEDIMENT is not able to estimate appropriate rigid shot pa-

rameters, so that several misaligned shot ghosts remain in the resulting images (orange

arrows). In addition, insufficient shot phase estimates of SEDIMENT lead to residual

signal dropouts in some cases (red arrows).

79



4 NAVIGATED MULTI-SHOT DWI

Within the studied data, 3.75% of the IRIS-RiCo images appeared with residual blur-

ring artifacts as indicated by blue arrows in Fig 4.5. SEDIMENT was prone to stronger

misalignment artifacts as indicated by the orange arrows that occured in 6.25% of the

cases, especially for the higher 5-shot segmentation.

CONTRAST CORRECTION EXAMPLE

IRIS with rigid in-plane and contrast correction (IRIS-CoCo) employs the low-resolution

navigators for the challenging diffusion tensor pre-estimation from motion-corrupted

data. However, the differences between IRIS-RiCo and IRIS-CoCo are subtle and, at

the same time, the requested in-plane assumption of the motion study design is not

perfectly possible leading to through-plane motion components in practice. Reliable

ground truth reference data for a precise contrast evaluation is thus missing and the ad-

verse effects are biasing the small contrast corrections. Therefore, Figure 4.6 shows a

reconstruction example of IRIS-CoCo with navigated contrast correction. A thorough

evaluation is subject to future work.

 
a b c

d e f

Contrast-reweighting Map
for Example Shot

Image DTINavigator DTI

10x Absolute DifferenceIRIS-CoCoIRIS-RiCo

Figure 4.6: Example of a navigator-based shot contrast correction for 4-shot DTI data. (a) Low-resolution nav-

igator FA map. (b) High-resolution image-echo FA map from IRIS-CoCo. (c) Contrast correction map derived

from the navigator tensor estimates for a shot with approximately 10 degrees clockwise in-plane rotation. By

this, an intended diffusion gradient direction along the inter-hemispheric fissure in the static patient frame

(orange arrows) effectively weights the anatomy in the rotated shot frame (blue arrow). (d, e) The associated

multi-shot reconstructions without and with contrast correction, respectively. (f) The 10-fold magnified differ-

ence image reveals variations below 5% signal magnitude, especially in highly anisotropic brain regions. The

accuracy evaluation of this approach in simulations is subject to future research.
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The navigator-based fractional anisotropy map (Fig. 4.6a) captures the structures

of the image-echo FA map (Fig. 4.6b) reconstructed by IRIS-CoCo at a coarse level.

The navigator tensor estimates are used to calculate contrast-reweighting maps for each

shot according to the rotation parameters (Fig. 4.6c), which are then used in the high-

resolution image-echo reconstruction of IRIS-CoCo (Fig. 4.6e). The resulting corrections

are below 5% of the image magnitudes even for this 4-shot dataset with considerable in-

plane rotations of approximately 10 degrees. In addition to the relatively small contrast

variations resulting from the rotations that are feasible within a head coil, the contrast

errors are averaged over all shots in a segmented acquisition.

DISCUSSION

IRIS-RiCo demonstrates the feasibility of navigated multi-shot brain DWI in the pres-

ence of shot-to-shot phase variations and macroscopic in-plane motion and allows for

fast image reconstructions. The low-resolution navigators enable robust estimations of

shot phases, rigid in-plane motion and shot rejection criteria. The proposed navigated

method achieves comparable image quality with state-of-the-art self-navigated image

reconstructions, while showing improved robustness in challenging imaging situations,

such as heavy motion corruption or high segmentation. However, a direct comparison

of navigated and self-navigated reconstructions is challenging due to the lack of reliable

reference data and depends on the respective sequence implementations.

NAVIGATION VERSUS SELF-NAVIGATION - A DIFFICULT COMPARISON

IRIS-RiCo uses single-shot low-resolution navigators to estimates the shot phase and

rigid motion parameters that are required for the multi-shot DWI reconstruction model.

Navigation prolongs the scan time, but provides valuable low-resolution information for

each shot of the interleaved scan and, by this, circumvents demanding alternating op-

timizations. In contrast, self-navigated methods like SEDIMENT [49] estimate the shot

parameters from the undersampled image-echo interleaves and, thus, depend on the

conditioning of the undersampled problem, which is further complicated by the non-

convexity of motion estimation. With increasing segmentation, the noise propagation

dramatically spoils the self-navigated estimation of phase maps and rigid parameters

requiring many iterations to achieve acceptable image quality, whereas the navigator

unfolding is independent of the image-echo segmentation.

A comparison of navigated and self-navigated methods depends on the effective se-

quence properties and is thus specific to the use case. Besides several sampling-specific

factors, the SNR of the shot navigators depends on the achievable echo time. This, in

turn, is bounded by the duration of the diffusion-weighting process, which is related

to its strength and the employed gradient system, and the image-echo sampling, which

might employ partial Fourier or other acceleration strategies. Therefore, the navigator

quality varies with the sequence settings for a DWI scan and influences the relative per-

formance of navigation and self-navigation. Especially for non-brain applications like

abdominal DWI, the fast signal decay precludes late navigator samplings with high echo

times. In the same way, self-navigation is affected by the image-echo time and the ef-

fective shot undersampling of the interleaved scan. Hence, the presented results do not

directly generalize to other sequence setups and anatomies.
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Another challenging problem is the reliability of the reference data for the method

comparison in the presence of motion. In this work, the image reconstructions of macro-

scopic motion-disturbed data were compared to results from static data. However, the

instructed in-plane motion profile is commonly mixed with through-plane components

in practice, which corrupt the image quality assessment and spoil the alignment of the

static and motion-corrupted data. Thus, the image quality measures must be interpreted

with care in these settings. As an alternative, simulations could create corrupted data

from clean static image reconstructions giving access to the ground truth for the im-

age quality assessment. Nevertheless, the simulations require a realistic matching of the

image-echo and navigator-echo SNR properties for the specific setup.

NAVIGATED VERSUS SELF-NAVIGATED IMAGE RECONSTRUCTION

The properties of the navigation and self-navigation signals have various effects on the

shot parameter estimation and, by this, influence the characteristics of the image recon-

struction results. As outlined in Table 2.1, navigated methods commonly involve one sin-

gle shot parameter estimation from the reconstructed navigators. Some self-navigated

methods also use one shot parameter estimation step, but for segmentations of four and

above alternating optimizations as for SEDIMENT [49] are normally beneficial to achieve

high image quality.

The navigated IRIS-RiCo algorithm achieved relatively robust shot parameter esti-

mates obtaining reasonable rigid shot motion parameters even for challenging datasets.

The shot navigators are reconstructed from single-shot acquisitions with moderate un-

dersampling and equal trajectories providing reliable shot navigators even for high

image-echo segmentation. The shot phase extraction and the rigid registration there-

fore remain relatively benign problems leading to robust image quality improvements

with less variability as discussed for Fig. 4.3. As a major disadvantage, the navigated pro-

cessing assumes that the shot parameter estimation is sufficiently captured on a coarse

resolution. In some occasions, minor residual blurring therefore remained in the recon-

structed images as presented in Fig. 4.5. Nevertheless, the low-resolution navigators

have overall proven valuable capturing the shot phases and rigid motion profiles with

sufficient accuracy in the presented study.

In contrast, the self-navigated SEDIMENT algorithm [49] alternately optimizes the

shot parameters and the joint image on the full resolution. By this, the algorithm shows

good convergence properties for minor residual misalignments persisting between the

shots, so that the repeated image registrations resolve small blurring artifacts well. As the

shot models comprise relatively high undersampling, the self-navigated shot parameter

estimation suffers from noise propagation effects and therefore crucially depends on a

reliable parameter initialization for the non-convex problem. Moreover, the optimiza-

tion tries to resolve the superimposed phase-related and misalignment-related artifacts

at the same time. Hence, SEDIMENT requires many iterations for challenging datasets

and phase artifacts might remain in the image reconstructions (see Fig. 4.5).

The navigated IRIS-RiCo method provides faster reconstructions with comparable

image quality to SEDIMENT at the cost of a less efficient sampling. Future modeling

frameworks could combine the advantages of both approaches using navigator-based

reconstructions to initialize the self-navigated algorithm if residual artifacts persist.
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EVALUATION OF THE CONTRAST CORRECTION

The contrast correction by IRIS-CoCo was presented in a qualitative manner and re-

quires further evaluation to confirm the benefits of the navigator-based tensor estima-

tion. Comparisons to IRIS-RiCo contained signal magnitude differences below 5% even

for strong in-plane rotations above 10 degrees, as the variations are subtle and the multi-

shot combination further averages the contrast variations. The single-shot navigators

provide unbiased contrast properties and require only a correction of the diffusion di-

rection for motion-corrected tensor estimates. Although the low-resolution navigators

might not capture fine structural variations, it at least includes the anisotropic structures

on a coarse level for this challenging problem.

In the current study, the evaluation with respect to the static data was impeded by

the presence of through-plane motion, which overlaid the subtle corrections by anatom-

ical through-plane variations. To overcome the reference data problem, future projects

could employ simulations or extended motion models to cope with through-plane mo-

tion and achieve meaningful contrast correction evaluations.

MODEL LIMITATIONS

The current model includes only in-plane macroscopic motion and makes several as-

sumptions about its effects on the signal encoding and the data sampling. The rigid

in-plane model provides an effective though rather simple model for the complex im-

plications of motion onto the MR sequence [22]. The proposed framework deals with

through-plane motion only by data rejection excluding shots from the multi-shot recon-

struction that drop below the correlation threshold. The same similarity-based rejection

can identify compromised shots that suffer from significant signal loss caused by intra-

shot motion during the sensitive DWI sequence. As an important alternative or exten-

sion, prospective methods [21] allow for online rigid motion corrections of the sampling

[80] and the diffusion gradients [88], for example, based on cameras [111].

Besides the direct effects, the imaging signals are affected by several secondary mo-

tion artifacts that spoil the image reconstruction and the shot image registrations. Geo-

metric distortions caused by off-resonance or susceptibility variations mainly manifest

in the phase encoding direction, which changes under motion conditions. Shot combi-

nations and similarity metrics for image registration suffer from these shot-wise signal

variations, which could be addressed by additional B0 map modeling [112]. Moreover,

the coil sensitivities are assumed to be invariant to head motion and sufficiently covered

by a coarse gradient echo prescan, which is less affected by geometric distortions than

EPI. To overcome these limiting factors, the sensitivity information could be incorpo-

rated into the model [75] and by this derived from the EPI data itself.

CONCLUSION

The proposed navigated multi-shot DWI approach efficiently recovers high-quality DWI

images and represents a robust alternative to self-navigated algorithms, especially for

high segmentations and strong in-plane motion. The low-resolution navigators have

proven useful to capture and monitor motion-induced shot variations and provide ben-

eficial data support to address the demanding non-convex motion problems of DWI.
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4.2
SIMULTANEOUS MULTI-SLICE AND

3D RIGID MOTION CORRECTION

Besides in-plane rigid motion, through-plane motion components pose an important

and challenging issue in clinical practice. This section aims at improving the robustness

of diffusion-weighted imaging data acquired with segmented simultaneous multi-slice

echo-planar imaging against in-plane and through-plane rigid motion. The proposed

algorithm incorporates a 3D rigid motion correction and wavelet denoising into the im-

age reconstruction of segmented SMS-EPI diffusion data. Low-resolution navigators are

used to estimate 3D rigid motion parameters by simultaneous-multi-slice-to-volume

registration and the shot diffusion phase corruptions. The shot-wise rigid motion and

phase parameters are then integrated into a SENSE-based full-volume reconstruction

for each diffusion direction. The algorithm is compared to a navigated SMS reconstruc-

tion without gross motion correction in simulations and in-vivo studies with 4-fold in-

terleaved 3-SMS diffusion tensor acquisitions. Simulations demonstrate high fidelity

achieved in the simultaneous-multi-slice-to-volume registration, with sub-millimeter

registration errors and improved image reconstruction quality. In-vivo experiments val-

idate successful artifact reduction in 3D motion-compromised in-vivo scans with a tem-

poral motion resolution of approximately 0.3 s. This work demonstrates the feasibility of

retrospective 3D rigid motion correction from shot navigators for segmented simultane-

ous multi-slice DWI.

This section is based on a manuscript under revision submitted to MRM [51].

(revision submitted on Feb 24, 2021)
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INTRODUCTION

Multi-shot imaging [15, 16] is a promising technique for DWI to overcome the short-

comings of single-shot EPI, but it increases the sensitivity to shot-to-shot variations.

Besides the phase variations [17–19], the lengthy DWI scans are prone to macroscopic

inter-shot motion that has so far been addressed only by in-plane rigid modeling in ret-

rospective motion-corrected image reconstructions using either navigators [44, 50] or

self-navigation [43, 49]. However, through-plane motion poses an important practical

problem for image quality and also for intelligent patient tracking to enable adaptive

sampling approaches. Prospective methods [21] have already been proposed for 3D

rigid motion-corrected multi-shot DWI using camera-based extra-navigation [80, 88],

but they require extra hardware and depend on the sensor accuracy. Therefore, retro-

spective corrections offer an important alternative, which represents a challenging esti-

mation task for multi-shot DWI requiring data support in the slice dimension.

Besides the in-plane accelerations through multi-shot imaging, simultaneous multi-

slice [54] (SMS) approaches offer signal support in the slice direction and scan time

reductions without an immediate loss of SNR. Controlled aliasing in parallel imaging

(CAIPI) techniques [61, 62] improved the coil encoding efficiency and were success-

fully combined with EPI by blipped-CAIPI [63] and SENSE [66, 67]. Combining SMS and

multi-shot DWI, several algorithms have been proposed for shot-to-shot phase correc-

tions with navigated [64], self-navigated [79, 113] and navigator-free [82] approaches.

Further macroscopic motion corrections have been developed using external tracking

devices and intermediate non-diffusion-weighted navigators [81]. Recent retrospective

approaches exploit SMS acceleration for single-shot EPI to obtain signal support in the

slice direction and propose SMS-to-volume registration for 3D rigid motion-corrected

fMRI [114, 115] and diffusion tensor fitting [116].

This work extends the navigated IRIS approach for segmented DWI [31] to SMS [64]

and investigates the potential of 3D rigid motion-corrected DWI reconstructions. IRIS

[31] uses 2D low-resolution navigators to sense the shot-to-shot phase variations and

integrates them into an efficient SENSE-based [12] algorithm. The proposed algorithm,

termed motion-aware SMS-accelerated and interleaved image creation (MoSaIC) for

DWI, estimates shot phase maps and 3D rigid motion from low-resolution SMS naviga-

tors and reconstructs motion-corrected DWI volumes per diffusion direction. Further-

more, an SMS extension for the IRIS [31] algorithm, termed SMS-IRIS, is implemented

serving as a phase-navigated reference algorithm without rigid motion correction.

MODEL-BASED IMAGE RECONSTRUCTION

SEGMENTED SIMULTANEOUS MULTI-SLICE DWI SAMPLING

The proposed method is based on the navigated Stejskal-Tanner spin-echo sequence for

DWI [31] shown in Fig. 2.5. Here, this sequence is extended to SMS and blipped-CAIPI

encoding as shown in Fig. 4.7, following the descriptions by Dai et al. [64] (see also

Fig. 2.4 on blipped-CAIPI SMS encoding). The first spin echo samples the interleaved

high-resolution image echo, while a second spin echo acquires a low-resolution naviga-

tor echo at a lower undersampling rate. The echo-spacings are adjusted to match the

off-resonance induced distortions in phase encoding direction for both samplings.
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Figure 4.7: Stejskal-Tanner spin-echo sequence diagram for navigated multi-shot DWI with SMS extension.

The sequence uses multi-band radio frequency (RF) excitation (MB 90◦) and refocusing (MB 180◦) pulses to

form the image and navigator echo for SMS acquisition. The dotted lines indicate the diffusion-sensitizing

gradients. In-plane accelerations are achieved using interleaved EPI for the image echo and single-shot EPI

with moderate regular undersampling for the navigator echo. Slice gradient blips are added for blipped-CAIPI

encoding with slice-specific shifts, which significantly improve the coil encoding capabilities. The image echo

is sampled with a FOV/3 shift between adjacent slices, while the navigator slices are shifted by FOV/2.

The reconstruction problem for segmented SMS DWI under shot-to-shot phase vari-

ations und macroscopic motion is shown in Figure 4.8. The high-resolution SMS im-

ages per interleave in Fig. 4.8b were produced from an in-vivo case using the motion-

informed forward model. The shot phase and macroscopic motion variations cause se-

vere ghosting and blurring for the motion-unaware 2D-SENSE [67] in Fig. 4.8c, while

MoSaIC suppresses the artifacts through shot phase and 3D rigid motion estimation.

MODEL FORMULATION FOR 3D MOTION CORRECTED DWI
The model extension to address through-plane motion requires a full-volume recon-

struction framework as used in Ref. [87], rather than the standard slice-by-slice recon-

struction. The slice positions of an SMS stack in the scanner frame are determined by the

slice gradients and the RF excitation, being thus independent of subject motion in the

first place. For pure in-plane motion, the anatomies therefore stay in the same SMS stack

as long as the object remains within the FOV. For through-plane motion, new anatomies

enter the slice positions decoupling the strict assignment of anatomies to SMS slice

stacks so that a full-volume reconstruction is required to resolve the motion. The model

furthermore assumes that the signal encoding remains unchanged in the scanner frame

and is explicitly unaffected by macroscopic subject motion. Thus, the spatial profiles of

the coil sensitivities stay valid during the whole scan.

To facilitate the model description, some notations are given here in advance. Nx , Ny

and Nz are the number of voxels in read-out, phase, and slice encoding direction giving

in total Nρ = Nx Ny Nz voxels. The volume is sampled with Nc coils, NMB simultaneously

acquired slices and Ni interleaves. A full volume is covered by Ng = Nz /NMB SMS slice

group excitations. Each of the Nd diffusion directions is thus sampled by Nshot s = Ni Ng

shots. For full interleaved sampling, the number of samples is Nb = Nc Nshot s (Ny /RP )Nx

with a shot reduction RP = Ni in phase encoding direction.
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Figure 4.8: Segmented SMS DWI sampling and reconstruction problem for a 4-fold interleaved 3-SMS DWI

acquisition. (a) This example visualizes the segmented SMS sampling. (b) The variations of two interleaves

from the same SMS slice group are shown (please note that here magnitude and phase are illustrated for

each dataset) along with two SENSE-based reconstructions given in (c). The two interleaves contain diffusion-

related shot-to-shot phase variations (orange arrows) causing ghosting and signal dropouts in a CAIPI-adapted

2D-SENSE reconstruction. Secondly, macroscopic motion, here in-plane, (red arrow) is a common problem,

which blurs anatomical structures. Moreover, through-plane motion mixes the anatomies of different slice

groups. MoSaIC is a navigated technique that produces full volume reconstructions per diffusion direction

with 3D rigid motion and shot phase corrections. This can be seen in (c) for the transversal example slice as

well at the coronal reformat next to it.

The individual shot operators of the forward model are visualized in Fig. 4.9. The in-

dividual (and parallelizable) shot operators are stacked in block-diagonal structure into

the following multi-shot operators. Based on the formulated assumptions, the forward

model relates the multi-shot and multi-coil data d̀ ∈C
Nb to the image volume ρ ∈C

Nρ by

several linear operators and a complex Gaussian white noise vector η ∈C
Nb :

d̀ = M̀F̀ Θ̀C̀ Φ̀M̀ sms
Ωρ+η. (4.5)

First, the macroscopic motion operator Ω (Nshot s Nz Ny Nx ×Nz Ny Nx ) resamples the im-

age volume according to the macroscopic shot motion parameters. Second, the slice-

sampling operator M̀ sms (Nshot s NMB Ny Nx ×Nshot s Nz Ny Nx ) selects the SMS slices ex-

cited for each shot. Third, the physiological motion operator Φ̀ (Nshot s NMB Ny Nx ×
Nshot s NMB Ny Nx ) applies the shot- and slice-specific phase variations, followed by the

coil weighting of the sensitivity operator C̀ (Nc Nshot s NMB Ny Nx × Nshot s NMB Ny Nx ).

Fifth, the CAIPI operator Θ̀ (Nc Nshot s Ny Nx × Nc Nshot s NMB Ny Nx ) combines the SMS

slices including CAIPI shifts. Finally, the coil images are Fourier transformed by F̀ to

sample the shot-specific trajectories using M̀ (Nc Nshot s (Ny /RP )Nx × Nc Nshot s Ny Nx ).

Here, Ω directly includes the shot copy operator P by Ω= ῺP and Υ is neglected.
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Figure 4.9: Illustration of the shot-specific forward model employed for motion-corrected segmented SMS DWI

(using a SMS factor of 2). The image volume is resampled by the macroscopic motion operator Ωs according

to the motion transformation of shot s. The slice-sampling operator M sms
s selects the shot-specific slices. The

signal is weighted by the diffusion shot phases and coil sensitivities in Φs and C(s). Θ(s) applies the blipped-

CAIPI encoding and slice combination followed by the Fourier operator F(s) and shot-specific sampling Ms.

The subscript (s) with shot index s in parentheses indicates shot operators that are identical for all shots. The

multi-shot operators (Eq. 4.5) are obtained by embedding the shot operators in block-diagonal structure.

SMS-ADAPTED IMAGE RECONSTRUCTION PROBLEM

The optimization problem for motion-corrected segmented SMS DWI is stated as a reg-

ularized data discrepancy minimization:

minimize
ρ,Φ̀,Ὼ

‖M̀F̀ Θ̀C̀ Φ̀M̀ sms
Ὼρ− d̀‖2

Ψ−1 + λR(ρ), (4.6)

where the weighted norm ‖ · ‖2
Ψ−1 = ( · )H

Ψ
−1 ( · ) integrates the noise covariance matrix

Ψ for SNR-optimal reconstruction as used for SENSE [12]. R is a regularization function

and λ a weighting factor. The proposed MoSaIC algorithm employs an ℓ1-norm regu-

larization R(ρ) = ‖V ρ‖1 in a wavelet domain [45] with transform operator V (Np ×Np ).

The image volume ρ, the shot phase operator Φ̀ and the macroscopic motion operator Ὼ

are considered unknown. The problem is difficult to optimize due to the non-convexity

associated with both Ὼ and Φ̀.

Navigation approaches are used to linearize and simplify the non-convex optimiza-

tion by estimating reconstruction parameters from an additional signal [31, 44, 64]. The

proposed method leverages the low-resolution navigator echo to estimate the shot phase

operator Φ̀ and the macroscopic motion operator Ὼ. For known Φ̀ and Ὼ, Eq. with ℓ1-

norm regularization represents a convex optimization problem for ρ, which can be read-

ily solved using fast gradient projections (FGP) [96].
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METHODS

DATA ACQUISITION AND PREPROCESSING

DTI data were acquired using a navigated Stejskal-Tanner spin-echo sequence with

blipped-CAIPI [63] simultaneous multi-slice excitation similar to the work by Dai et al.

[64]. Unlike this publication, the prewinder phase offset φoffset was implemented as orig-

inally proposed [63], as for this SENSE implementation the samples are not required to

lie on an integer-valued k-space grid. Thus, the kz -sampling is centered around zero by:

φoffset =−
(D −1)

2

2π

D
, D ∈N, (4.7)

for a FOVy /D CAIPI shift between two adjacent SMS slices. The first image echo was

sampled at high-resolution in an interleaved fashion with a CAIPI shift of FOVy /NMB

(D1 = NMB ). The second echo used a moderately accelerated low-resolution sampling

with a fixed CAIPI shift of FOVy /2 (D2 = 2). The navigator CAIPI shift was fixed for sim-

plicity reasons. Given the z-encoding capabilities of the used 32-channel coil, the CAIPI

encoding showed sufficient slice disentangling capabilities. The SMS slice groups were

sampled in an interleaved ordering to reduce slice crosstalk [54]. Fat suppression was

performed by spectral pre-saturation with inversion recovery (SPIR) [93]. The SMS slices

were excited with slice-specific RF phases to reduce the peak B1 [54]. Further sampling

parameters are listed in Table 4.2.

Table 4.2: Sampling parameters of the diffusion tensor imaging scans. *The EPI factor is given for the k-space

sampling without partial Fourier reduction.

Parameters DTI scan

TR 3000 ms

TE image \navigator echo 70 \145 ms

FOV (R × P × S) 232×228×120 mm3

Resolution image \navigator 1.0×1.0×4.0 \5.0×5.0×4.0 mm3

#slices Nz 30

Multi-band factor NMB 3

CAIPI shift image \navigator (FOV / 3) \(FOV / 2)

#interleaves Ni 4

In-plane reduction RP image \navigator 4 \1.62

Partial Fourier factor image \navigator 0.632 \1.000

Echo spacing image \navigator 1.3361 \0.5829 ms

EPI factor* image \navigator 57 \27

b-value 1,000 s/mm2

#diffusion directions Nd 15

#T2-weighted acquisitions 2

Scan time [m:ss] 3:30
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The data were acquired on a 3T Philips Ingenia Scanner (Best, The Netherlands) us-

ing a 32-channel head coil. The scan session was carried out on five healthy volunteers.

Informed consent was attained according to the rules of the institution. The DTI scan

with 15 diffusion directions was performed twice under different motion conditions:

1. Static: no voluntary motion

2. Motion: separated into four parts:

a. T2-weighted images no voluntary motion (for b = 0 s/mm2 data)

b. DW directions #0-4 no voluntary motion

c. DW directions #5-9 continuous in-plane motion ('head shake ')

d. DW directions #10-14 continuous through-plane motion ('nodding ')

The subjects were asked to move at moderate rates of change to avoid the dominance

of macroscopic intra-shot motion effects on the sensitive DWI sequence and provide

sufficient non-compromised data. Coil sensitivity maps were acquired once in advance

using a gradient-echo prescan [12]. The EPI data preprocessing involved gridding the

ramp samples in the readout direction and applying odd/even echo Nyquist ghost cor-

rection, based on EPI reference data jointly acquired for all SMS slices [94]. The SMS

phase from isocenter offsets in the slice direction was corrected for both the image and

the navigator echo in advance [63, 66].

PROPOSED ALGORITHM: MOSAIC
The proposed navigated algorithm, termed motion-aware SMS-accelerated and inter-

leaved image creation (MoSaIC) for DWI, is described in the following four sections: nav-

igator reconstruction, navigator analysis, linear operator construction and full-volume

image reconstruction. The first three steps are performed for the full DTI dataset, while

the latter can be parallelized over the diffusion directions. Figure 4.10 provides an

overview of the reconstruction pipeline.

Navigator reconstruction

The navigator data are upsampled to the high-resolution voxel size of the image echo us-

ing zero padding in k-space and a triangular apodization window to reduce Gibbs ring-

ing [3]. The navigators are reconstructed by 2D-SENSE [67] with Tikhonov regularization

(regularization parameter λnav = 0.05) recovering the unfolded slice groups of each shot,

which are shown in the green box on the bottom left of Fig. 4.10. Finally, residual slice-

specific phases from RF excitation and blipped-CAIPI slice encoding are corrected.

Navigator analysis

The navigator analysis contains a shot phase extraction, a shot rejection and a macro-

scopic motion estimation. The phase extraction module obtains the phase maps φs,l of

shot s and slice l for all diffusion-weighted shots from the low-resolution navigators.

Compromised shots are rejected using robust statistics on the ℓ2-norm of the

diffusion-weighted navigator shot data. The shot rejection module uses the median

absolute deviation (MAD) over all diffusion-weighted shot datasets and excludes shots

whose energy, measured by the ℓ2-norm, drops below the threshold of 5 ·MAD from the
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Figure 4.10: Overview of the proposed MoSaIC algorithm for a DTI acquisition. The DTI acquisition time-

line loops over the diffusion-/T2-weightings, the interleaves and the SMS groups (listed from outer to inner

loops). All shot navigators are reconstructed by 2D-SENSE [67] (left green box) and the shot navigators from

the reference TR (orange) are stacked to a full reference volume for registration. Next, the navigators are used

to calculate shot rejection criteria, phase maps per shot and slice, and macroscopic motion by multi-slice-

to-volume registration. The full-volume reconstruction uses the shot-specific parameters (for Ωs, Φs, Rs) to

reconstruct motion-corrected high-resolution image volumes separately for each diffusion direction.

median. The threshold was empirically set from analyzing the motion-corrupted navi-

gators over multiple subjects and diffusion directions. The MAD criterion filters shots,

which suffer from a significant SNR loss, while remaining robust against such outliers.

Rejected shots are excluded from the registration strategy and from the full-volume im-

age reconstruction.

The macroscopic motion module estimates 3D rigid motion parameters using a shot-

wise multi-slice-to-volume registration together with a motion detection strategy. The

navigators are downsampled to roughly isotropic resolution of (4mm)3. The first full

diffusion-weighted navigator volume (orange square in Fig. 4.10) is used as the reference

volume and is set as the moving image for the registration. This choice avoids resampling

issues of the discrete simultaneous multi-slice data [117].
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The multi-slice-to-volume registration was implemented in SimpleITK [118] with the

following subtasks:

1. Volume-to-volume (Vol2Vol) registration of full navigator volumes per TR

a. Method of moments pre-alignment

b. Gradient descent-based registration

2. Motion detection per diffusion direction (from Vol2Vol parameters)

3. SMS-to-volume (SMS2Vol) registration per shot (in acquisition order)

if motion is detected

a. Linear interpolation of Vol2Vol parameters to shot time points

b. Warm start: choose either Vol2Vol or previous SMS2Vol shot parameters

by similarity evaluation through the registration metric

c. Gradient descent-based registration

2. Median filter

The method of moments estimates rigid translations and rotations from the first and

second statistical moments of the volumes. The registration uses the mutual informa-

tion metric with 25 histogram bins, a 3D rigid versor transform and B-Spline interpola-

tion. The maximum number of iterations for gradient optimizations was 1000. For the

Vol2Vol registration, the gradient descent uses a regular step size strategy with a mini-

mum step of 10−6.

The motion detection checks for each diffusion direction whether any rigid Vol2Vol

parameter deviates more than 0.2mm or 0.2deg from the median among the Ni sub-

volumes (TRs). This threshold was empirically set from accuracy analyses in registration

simulations. If no motion is detected for a diffusion direction, the macroscopic motion

operator Ὼ is replaced by the identity operator I . Otherwise, the Vol2Vol preregistra-

tion parameters of the full TR volume are linearly interpolated to the shot time points.

Then, a warm start strategy is employed that compares the registration metric for the

interpolated Vol2Vol parameters and the SMS2Vol parameters of the previous shot. The

subsequent gradient-based optimization is started from the preferred initial parameters

and uses a line search strategy with at most 20 (line search) iterations. For SMS2Vol reg-

istration, the metric is evaluated only at SMS slice positions using a metric mask. Finally,

a median filter (kernel size 5) is applied to each rigid motion parameter over time to

ensure smoothness and to filter outliers.

Linear operator construction

The macroscopic motion operator Ὼ for the high-resolution reconstruction is imple-

mented as described by Cordero-Grande et al. [86]. Translations use the Fourier shift

theorem, whereas rotations are factored into three shears [109], which are implemented

via three 1D-FFTs. Moreover, the image ρ is reconstructed on an extended FOV to handle

the FFT-related interpolation boundary conditions.

The operator Φ̀ multiplies the sampled slices by the shot- and slice-specific naviga-

tor phase maps φs,l . Moreover, encoding phases from the blipped-CAIPI image-space

representation, off-isocenter encoding and slice-specific RF excitation phases φRF
l

are
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integrated into Φ̀, ensuring a continuous volume phase for the complex-valued interpo-

lation in Ὼ. The coil sensitivities in the operator C are masked using a reference image

and compressed [95] using a PCA with a threshold of 97% (resulting in 13 from initially

32 channels). The CAIPI operator Θ̀ applies the integer-valued shifts in image space and

adds up the SMS group. The EPI data are then masked in ky -x-space using a 1D-FFT F̀ ,

where it is masked according to the shot-specific EPI sampling trajectories by M̀ .

Full-volume image reconstruction

The full-volume reconstruction is based on FGP [96]. The algorithm is initialized by the

motion-unaware SMS-IRIS solution described below. Then, gradient updates and soft

thresholding in the Daubechies 4 wavelet domain with transform V are iteratively per-

formed. λ was empirically set to 30. The FGP is stopped if either 100 iterations are ex-

ceeded or the normalized ℓ2-norm difference of two subsequent iterations δs (Eq. 2.37)

drops below the tolerance τs = 10−5.

As the estimation of the Lipschitz constant for the FGP algorithm is demanding, a

backtracking strategy was implemented [96]. The Lipschitz constant is initialized by the

squared maximum absolute value of the coil sensitivity profiles. The Lipschitz constant

is then increased by a factor of 1.5 if the objective function for the image estimate exceeds

a quadratic approximation bound [96].

REFERENCE ALGORITHM: SMS-IRIS
The reference algorithm omits macroscopic motion during the image reconstruction.

The static conditions, represented by an identity matrix I for the macroscopic motion

operator Ὼ = I , decouple the SMS slice group signals from each other and reduce the

SENSE problem to small groups of aliasing pixels.

IRIS [31], short for image reconstruction using image-space sampling function, is a

SENSE formalism incorporating shot-to-shot phase variations from a navigator for inter-

leaved single-slice EPI. In this work, a SMS extension, termed SMS-IRIS, is introduced,

which requires the adaption of IRIS to the interleaved phase encoding in kz -ky -space

[67]. SMS-IRIS can also be interpreted as a SENSE-based formulation of the navigated

method by Dai et al. [64] or as a navigated version of SMS-based MUSE [79].

For SMS-IRIS, the shot- and slice-specific phase mapsφs,l are estimated as described

for MoSaIC. The non-iterative algorithm incorporates a weighted Tikhonov regulariza-

tion Rρ = ‖W ρ‖2
2 with weighting matrix W (Np ×Np ). W is constructed from the inverse

absolute values of a motion-free T2-weighted image filtered by a triangular window of

about 4 mm isotropic k-space extent. λ = 10−2 was set empirically. Moreover, the shot

rejection is adopted to exclude severely compromised shots. This navigated algorithm

yields time-efficient reconstructions without macroscopic motion correction providing

the MoSaIC initialization and a reference method in this work.

EXPERIMENTAL DESIGN

The proposed algorithms were evaluated in simulation and in-vivo studies. The static

and motion-compromised in-vivo data were reconstructed using SMS-IRIS and MoSaIC.

Unsampled k-space portions from partial Fourier acquisitions are recovered by projec-

tions onto convex sets (POCS) [2]. The algorithms were implemented in Python 3.6.9.

Computations were performed on a cluster node with 48 GB RAM.
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A tensor model was fit to the reconstructed images using Dipy [68] after affine reg-

istration, rotation correction of the diffusion directions and PCA-based DTI denoising

[119]. The registration was performed in two subsequent steps using a rigid and an

affine preregistration of the fast elastic image registration (FEIR) framework [107] with

a normalized gradient field metric [85]. The first rigid alignment uses the FFT-based

resampling [86] described above. The second affine alignment is resampled with the

SimpleITK [118] B-Spline interpolation. The first T2-weighted image of the static dataset

was set as the registration reference. The diffusion direction per image volume (after

the multi-shot reconstruction) was corrected for the estimated rotations from the aver-

age MoSaIC and the DTI alignment parameters [44]. The PCA thresholding τ-factor was

set the default value 2.3 and the SNR was estimated using Dipy’s PCA noise estimation.

Fractional anisotropy (FA) maps [4] and isotropic diffusion images [7] were calculated.

For the simulations, the motion-free SMS-IRIS reconstructions were used as ground

truth data. Ten rigid motion trajectories were simulated by Gaussian processes for four

motion scenarios, namely no, rigid in-plane, rigid through-plane and fully 3D rigid mo-

tion. The variances were set to 0.01 rad2and 0.5 mm2. Diffusion phase maps were cre-

ated by 3D second-order polynomials with random polynomial weights sampled accord-

ing to Hu et al. [106]. The sampling was adapted to the in-vivo data with 4-shot 3-SMS

acquisition as well as FOV/3 and FOV/2 CAIPI shifts for image and navigator echo, re-

spectively. The simulation data were created by selecting random diffusion directions

from the ground truth data, applying the forward model and adding uncorrelated com-

plex Gaussian noise in k-space, whereby the SNR was matched to the in-vivo data.

The simulation data were recovered by SMS-IRIS and four MoSaIC variants to assess

the registration components. All variants exclude rejected shots beforehand:

a. MoSaIC Static: No macroscopic motion correction (Ὼ= I ),

b. MoSaIC Vol2Vol: Rigid parameters of Vol2Vol registration,

c. MoSaIC SMS2Vol: Rigid parameters of Vol2Vol and SMS2Vol registration,

d. MoSaIC (default): Rigid parameters of Vol2Vol and SMS2Vol registration

if motion was detected and MoSaIC Static otherwise.

The simulation results of all methods were registered to the ground truth by FEIR

[107] with a rigid model, as the final volume registration of SMS-IRIS was considered

standard DWI processing for a fair nRMSE comparison.

The simulation results were compared by the target registration error (TRE), normal-

ized root-mean-square error (nRMSE) and reconstruction time. The TRE [120] evaluates

the mean Euclidian distance over the registered coordinates ur of target points r :

TRE(T ′
s,T ∗

s ) =
∑

(s,r )∈Target‖T ′
s(ur )−T ∗

s (ur )‖2

|Target|
, (4.8)

where T ′
s is the estimated and T ∗

s the true coordinate transformation of shot s. The target

was defined as a mask derived from the ground truth by thresholding the absolute values

at 5% of its maximum and selecting the SMS slices of each shot s. The cardinality |Target|
is the number of target points over all shots and slices (per diffusion direction).
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RESULTS

SIMULATED DWI RESULTS

The DWI motion simulations provide a quantitative assessment of the registration and

reconstruction performance. Figure 4.11 gives an overview of the simulation results for

SMS-IRIS and the four MoSaIC variants.
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Figure 4.11: Full-volume reconstruction results of simulated 4-shot 3-SMS data with random rigid trajectories

and diffusion phases. Ten cases were simulated for different motion states, namely static, in-plane, through-

plane and fully 3D rigid motion. (a, b) show the target registration error (TRE) and nRMSE, respectively, for

SMS-IRIS and four MoSaIC variants as standard boxplots with whiskers of 1.5 times the interquartile range.

(c) Reconstruction examples without motion and with heavy fully 3D rigid motion are compared. (d) Rigid

motion estimates including the final full-volume registration to the reference (leading also to non-zero motion

parameters for SMS-IRIS and MoSaIC static). Without motion, all methods provide results with similar visual

appearance (arrows). If motion is present, MoSaIC with its SMS2Vol registration improves anatomical delin-

eation (arrows) by taking into account sub-volume (sub-TR) shot-to-shot motion.
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For all algorithms, TRE and nRMSE increase in Figs. 4.11a and 4.11b with the de-

grees of freedom of the simulated motion profile. MoSaIC Static with wavelet denois-

ing shows similar TRE and reduced nRMSE compared to SMS-IRIS. If motion is present,

SMS2Vol outperforms Vol2Vol registration in terms of TRE and nRMSE, which itself im-

proves on the static methods. MoSaIC provides similar results to MoSaIC SMS2Vol. For

the static case, SMS-IRIS, MoSaIC Static and MoSaIC (with its motion detection) have a

low TRE, which increases slightly from MoSaIC Vol2Vol to SMS2Vol. Figure 4.11c shows

two transversal slice examples. For the first motion-free case, the results appear simi-

lar to the ground truth. The interhemispheric fissure is well resolved for all methods.

For the second 3D motion case, SMS-IRIS shows heavy blurring artifacts from inter-shot

motion. MoSaIC is able to mitigate the motion artifacts and shows less blurring than

MoSaIC Vol2Vol. The underlying motion estimates for the fully 3D rigid motion case are

provided in Fig. 4.11d.

The simulations show that the navigator with 5×5×4mm3 resolution enables sub-

millimeter TREs and improved image quality of the high-resolution full-volume recon-

structions. The achieved registration accuracy does not visibly differ between in- and

through-plane motion (Fig. 4.11a), although the nRMSE shows increased interquartile

ranges for through-plane motion implying higher variation (Fig. 4.11b). This could be re-

lated to the increased susceptibility to interpolation errors in the coarse slice direction. If

motion is present, the high temporal resolution of the SMS2Vol outperforms the Vol2Vol

registration, which, in turn, improves on SMS-IRIS. Thus, the shot-to-shot motion esti-

mation per SMS slice group captures continuous motion trajectories better, while hav-

ing the same reconstruction complexity as MoSaIC Vol2Vol. The rigid motion estimates

in Fig. 4.11d support this observation overall. Nevertheless, the motion parameters can

contain temporary discrepancies above the sampling time resolution at some points, e.g.

for the y-rotation at 5.0 s. If no motion is present, the SMS2Vol registration (used for Mo-

SaIC SMS2Vol and MoSaIC) is more instable and introduces higher errors, whereby the

visual appearance is not visibly degraded (Fig. 4.11c). MoSaIC uses the motion detec-

tion that switches off the SMS2Vol registration for small Vol2Vol estimates and thereby

mitigates this downside by incorporating awareness of the achievable registration accu-

racy. The nRMSE improvements for through-plane motion demonstrate the benefits of

the 3D motion over the 2D in-plane motion correction.

IN-VIVO DWI RESULTS

An overview of the in-vivo full-volume DWI reconstructions with different motion types

is given in Fig. 4.12. Reconstruction examples of SMS-IRIS and MoSaIC in Fig. 4.12a are

related to the associated rigid motion estimates of MoSaIC in Fig. 4.12b by a color code.

The images appear similar for the static case, whereas MoSaIC mitigates motion artifacts

for the remaining cases (arrows). The motion detection was triggered for all datasets,

whereby the SMS2Vol registration parameters remain almost constant for the static case

(blue). Strong in-plane (z) rotations are detected for the orange and green datasets, lead-

ing to reduced blurring for MoSaIC. Light (red) and heavy (purple) nodding motion with

rotations about the right-left axis (x) smear the structures in the coarse through-plane

direction for SMS-IRIS, which are reduced by MoSaIC. Despite the 3D rigid corrections,

residual artifacts remain for cases with heavy motion and the image quality of the static

97



4 NAVIGATED MULTI-SHOT DWI

datasets might not be fully recoverable. For the static/motion datasets of the five sub-

jects, the data rejection excluded 1/23, 1/9, 2/24, 0/0, 1/3 of 680 total shots.
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Figure 4.12: Segmented SMS image reconstructions without and with motion correction for in-vivo data. (a)

Example slices of the full-volume reconstructions are shown for SMS-IRIS and MoSaIC, whereby different mo-

tion types have been present during the associated acquisitions. (b) The estimated rigid trajectories of MoSaIC

are plotted and associated to the images by a color code. MoSaIC provides similar image quality for the static

dataset (blue) and mitigates macroscopic motion artifacts in the presence of both in-plane (orange and green)

and through-plane (red and purple) motion (compare close-ups). The proposed motion detection was trig-

gered for all cases.

IN-VIVO DTI RESULTS

Figure 4.13 compares static and motion-disturbed DTI results for SMS-IRIS and MoSaIC.

The estimated shift and rotation parameters of MoSaIC are displayed in Figs. 4.13a and

b, respectively, and rejected shots are indicated. The time resolution is TR/Ng = 3/10s

with the number of SMS groups Ng yielding >3 Hz motion sampling frequency. For the

static DTI dataset, the affine alignment resulted in 1.0042±0.0047 and −3 ·10−5 ±0.0035

for the non-rigid zoom and shear parameters, respectively.
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Figure 4.13: SMS-IRIS and MoSaIC reconstructions of in-vivo DTI datasets measured under static and motion-

disturbed conditions. (a, b) The rigid shifts and rotations for the motion-disturbed dataset determined by

MoSaIC are shown (mint green color code). The dashed lines with the same color in the background (see close-

ups) provide the underlying Vol2Vol registration, whereas the black vertical lines indicate shots that were au-

tomatically rejected. (c) Isotropic DWI images of SMS-IRIS are shown under static and (d) motion conditions,

along with the MoSaIC reconstruction in (e). (f-h) Colored FA maps are displayed in the same order. MoSaIC

recovers blurred structures (white arrows), improves the grey to white matter differentiation in the isotropic

DWIs (orange arrows) and improves the directional fidelity in the colored FA maps (yellow arrows).

The DTI analysis underlines the benefits of shot-to-shot motion correction for in-

vivo data. The static reconstructions comprise high SNR and clear delineation of the

brain gyri and fractional anisotropies. The estimated motion trajectories reflect the mo-

tion study design, comprising roughly no motion in the first, in-plane in the second and

through-plane motion in the last third. The shot rejection is active at 85 s and 140 s.

Compared to SMS-IRIS, MoSaIC reduces blurring of motion-corrupted brain structures

and improves the gray-to-white matter differentiation (orange arrows) as well as the di-

rectional accuracy of the tensor results (yellow arrows).
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4 NAVIGATED MULTI-SHOT DWI

A quantitative histogram evaluation of the FAs and tensor traces between static and

motion-corrupted reconstructions is presented for three subjects in Fig. 4.14. The over-

laps of the histograms from motion-corrupted datasets with the histograms from the

static datasets are evaluated using the Kullback-Leibler divergence (KLD) [24]. MoSaIC

reduces the dissimilarity measured by the KLD over all subjects.

Parameter Method 
Kullback–Leibler divergence 

Subject 1 Subject 2 Subject 3 

FA 
SMS-IRIS 0.0280 0.0534  0.0030  

MoSaIC 0.0134 0.0304 0.0011 

Trace
SMS-IRIS 0.0494  0.1836  0.0346  

MoSaIC 0.0389 0.1446 0.0344 

 

Subject 1 Subject 2 Subject 3 

a

b

Figure 4.14: Quantitative histogram comparisons of SMS-IRIS and MoSaIC results between static and motion-

disturbed datasets for three subjects. (a): Fractional anisotropy (upper row) and trace (bottom row) histograms

are shown for three subjects (columns). The static SMS-IRIS (green) results are compared to SMS-IRIS (or-

ange) and MoSaIC (blue) under motion conditions. The MoSaIC histograms for motion datasets (blue) are

overall closer to SMS-IRIS for static datasets (green) than the SMS-IRIS histograms for motion datasets (or-

ange). However, MoSaIC still shows significant differences to the static cases. Please note that the comparison

involves a resampling of the motion datasets from their specific reconstruction grids and a direct compari-

son is not trivial. (b): Histogram overlap evaluations of the motion cases to the associated static cases by the

Kullback-Leibler divergence (KLD). The histogram distances of MoSaIC, measured by the KLD, decrease for all

subjects compared to SMS-IRIS.

The image quality improvements of MoSaIC come at the cost of higher computa-

tional complexity. The durations of the main processing steps are given in Table 4.3 for

the DTI dataset in Fig. 4.13. The highest computational cost of MoSaIC is placed by the

FFT-based interpolation requiring multiple 1D-FFTs over the 3D data per shot and FGP

iteration, which can be drastically reduced if no motion is detected.
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Table 4.3: Reconstruction times of main processing steps. The numbers are given for a dataset containing

17 volumes (15 diffusion- + two T2-weighted contrasts) with 256×240×30 size (R × P × S), multi-band 3, 10

SMS slice groups, 4 interleaves and 32 coils. Besides the total CPU times on an Intel Xeon Silver 4214 CPU @

2.20GHz, the key performance indicators (KPIs) provide insights into the processing times per relevant cost

driver indicating also potentials for parallelization. The MoSaIC durations are considered with 3D rigid correc-

tion and without (Ὼ= I ), depending on the motion detection switch.

Processing step Reference CPU Time KPI

quantity [h:mm:ss] s / cost driver

Navigator 2D-SENSE All navigators 0:04:28 26.8 s/SMS group

Navigator Vol2Vol All navigators 0:01:53 1.66 s/TR volume

Navigator SMS2Vol All navigators 0:55:26 4.89 s/shot

MoSaIC - 3D rigid correction DWI direction 6:11:11 317.02 s/FGP iteration

MoSaIC - no rigid correction DWI direction 0:04:22 17.96 s/FGP iteration

SMS-IRIS per volume DWI direction 0:02:03 12.32 s/SMS group

RESIDUAL ARTIFACT EVALUATION

The MoSaIC reconstructions are affected by several residual artifact types. Figure 4.15

compiles four types of artifacts (white arrows) that were encountered for MoSaIC. In all

four cases, MoSaIC improves the blurring from head motion, but some artifacts remain,

such as residual blurring of the interhemispheric fissure (Fig. 4.15a), overlays of different

susceptibility-induced deformations (Fig. 4.15b), residual signal shadings (Fig. 4.15c)

and low SNR as well as speckled noise structures for strong motion cases (Fig. 4.15d).
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Figure 4.15: Examples of residual artifacts in MoSaIC reconstructions. MoSaIC mitigates macroscopic motion

artifacts compared to SMS-IRIS, but some residual problems can remain. (a) Blurring might remain if the regis-

tration accuracy is insufficient. (b) Rotations cause shot-specific effects from off-resonances like susceptibility

artifacts that are erroneously combined. (c) Ghosting and slice leakage can result from residual shot-to-shot

phase inconsistencies. (d) Spoiled navigator diffusion phase estimates degrade the image quality.
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SAMPLING DENSITY EVALUATION

Another problem arises from the fact that some anatomies might remain unsampled

if they have left the FOV. Especially for through-plane motion, lower brain areas might

leave or enter the FOV in feet-head direction. Nevertheless, the motion estimates give

valuable information about the sampling locations, which can be translated to sampling

densities in image space. The motion-aware sampling density estimation presented in

Fig. 4.16 counts how many samples fall into the 3D cuboid Voronoi area of each voxel,

given the rigid parameter estimates. The result can be smoothened by a Gaussian in-

plane kernel (σ= 2). The sampling density provides beneficial information, which could

be used for dedicated reacquisition strategies or to tag low SNR regions.
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Figure 4.16: Image-space sampling density estimation by Voronoi partitions for regular SMS EPI under shot-

specific motion. (a) SMS-IRIS shows strong motion-induced blurring from both in- and through-plane rota-

tions for the presented dataset, which is resolved by MoSaIC (b). Nevertheless, the SNR falls off towards the

right occipital lobe. (c) Sampling density in the image domain. (d) Sampling density after smoothing with a

2D Gaussian window. The numbers on the filtered sampling density plot indicate, how often a particular area

in the image domain has been sampled in presence of motion. The analysis indicates that the affected area

below the red line remained effectively unsampled, as it left the FOV due to nodding-type head motion.

DISCUSSION

MoSaIC provides 3D rigid motion-corrected full-volume reconstructions for navigated

DWI with SMS and interleaved EPI sampling. The navigator shot images are employed

to estimate the shot-specific phase variations, rigid motion states, and data rejection cri-

teria. The multi-band excitation not only increases the SNR [54] per unit time by
p

NMB ,

but also provides valuable data support in the slice direction enabling high temporal res-

olution through-plane motion evaluation. The performance of MoSaIC was evaluated in

simulations and in-vivo for DTI scans with 4 shots and NMB = 3 yielding shot motion

estimates at roughly 3 Hz temporal resolution.

UNMODELED SHOT VARIATIONS

Several unmodeled shot variations [8] spoil the shot similarity for image registration and

multi-shot image reconstructions. First, local off-resonance effects manifest as geomet-

ric distortions in phase encoding direction for EPI. As head rotations vary the effective

phase encoding direction, the local distortions differ per shot (Fig. 4.15b). Geometric

distortions can be reduced by readout-segmented acquisitions [29, 30] or corrected by

model extensions accounting for off-resonance effects using B0 map estimates [112].
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4.2 SIMULTANEOUS MULTI-SLICE AND 3D RIGID MOTION CORRECTION

This improves the shot navigator similarity for registration and offers higher local shot

consistency for multi-shot reconstructions. In the current setting, the distortions also

introduce mismatches of the EPI data and the gradient-echo sensitivity pre-scan, which

could be avoided estimating the sensitivities from the non-DWI EPI data by ESPIRiT [59].

Second, field inhomogeneities can introduce slice-specific gradient timing offsets that

are not captured by the current pre-scan and introduce Nyquist ghosting. The slice-

adaptive odd-even corrections could be addressed by model-based estimations [121].

Third, eddy currents especially from the strong diffusion-sensitizing gradients induce

generally affine transformations and exceed rigid modeling. Although the zoom and

shear parameters were rather small in this study, they depend on the sequence and

the system tuning. The field deviations can be reduced by twice-refocused sequences

[27] or corrected by model-based reconstructions [23]. Alternatively, the motion model

could be extended to affine transformations. Fourth, the effective diffusion direction

is affected by subject rotations leading to shot-wise diffusion contrast variations [43].

The presented framework assumes for each diffusion direction that the induced contrast

variations are negligible under sufficiently small rotations. Contrast corrections can be

introduced by imposing q-space relations [8, 42, 43] between the shots.

NAVIGATOR ANALYSIS

Navigation is prone to potential signal differences between the image and the naviga-

tor data. Intra-shot motion might spoil the acquisition windows differently, affect the

navigator refocusing and lead to a geometric mismatch [22]. A central assumption of

the current multi-shot model is that the object comprises one consistent phase map,

whose shot variations are completely described by the navigator phase and the encod-

ing model. However, residual phase inconsistencies and noise from intra-shot motion

might impede proper pixel unfolding in the full-volume image reconstruction, which

can lead to ghosting (Fig. 4.15c) and speckled noise (Fig. 4.15d) artifacts. Self-navigation

is currently intractable for the studied motion-disturbed data due to the large g-factor

penalty. The lack of viable shot reference data from the image echo impedes the evalua-

tion of intra-shot motion leaving this as an open issue for further studies. The resolution

of the single-shot navigator introduces another discrepancy for phase and macroscopic

motion estimation.

The SMS-to-volume registration is itself a challenging problem [117] that requires

careful design of the parameter initialization and gradient optimization. Regarding the

warm start strategy, the exploitation of time correlations in combination with the chal-

lenging optimization landscape can cause temporal discrepancies of the registration pa-

rameters as described for Fig. 4.11. The registration accuracy is further impeded by the

low SNR of DWI, the coarse navigator resolution, intra-shot motion and the unmodeled

shot variations. Thus, MoSaIC might suffer from residual blurring artifacts (Fig. 4.15a).

FULL-VOLUME IMAGE RECONSTRUCTION

The encoding model mainly determines the quality of the shot navigators and the full-

volume image reconstructions comprising the k-space sampling trajectory and the sen-

sitivity encoding. The deployment of other potentially non-Cartesian trajectories and

improved coil setups might be beneficial [13]. As part of the sampling trajectory, this

also applies to optimizations of the navigator CAIPI shift, which was FOV/2 in this work.
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4 NAVIGATED MULTI-SHOT DWI

MoSaIC solves the multi-shot problem with ℓ1-norm regularization by fast gradient

projections, and the sparsity-enforcing regularization was shown to reduce the nRMSE

in simulations. With an ℓ2-norm regularization, the multi-shot problem is tractable by

the conjugate gradients method [24], whereby both methods require one application of

the forward model and its adjoint per iteration.

The choice of interpolation is a crucial trade-off balancing image quality and com-

putational cost. The macroscopic motion operator Ὼ resamples the image volume for

all shots, twice per FGP iteration. GPU-based implementations [86] can significantly ac-

celerate this processing. Furthermore, the motion detection of MoSaIC analyses the vol-

umetric preregistration parameters for significant variations and allows circumventing

the expensive image resampling.

MoSaIC is currently restricted to anisotropic resolution with coarse slice thickness,

which might be overcome by improved slice encodings. The reduction of the slice thick-

ness quickly becomes SNR-critical for the proposed acquisition and requires enhanced

slice encoding, such as simultaneous 3D multi-slab approaches [113] or radio-frequency

slice encoding [122]. Thinner slices should ease the relative interpolation burden, but,

at the same time, they are affected more severely by motion.

INFORMED SAMPLING AND RECONSTRUCTION

MoSaIC uses a rather simple shot rejection analyzing the navigators energy content sim-

ilar to Ref. [26]. More elaborate criteria to detect degenerate signals involve correlation

measures [32] or k-space signal moments [30]. The reacquisition of deteriorated signals

[30] presents a valuable extension to exclude malicious data without sacrificing SNR.

Through the 3D rigid motion estimation, MoSaIC is furthermore aware of the spatial

sampling density making reacquisitions of undersampled areas in image-space feasible

as discussed for Fig. 4.16.

Prospective methods [21] represent an important alternative for macroscopic mo-

tion corrections. Prospective control allows for affine online corrections of the gradient

coordinate system mitigating the motion artifacts directly in the acquisition and thereby

facilitates the computational burden. The online adaption of the diffusion gradient [88]

and phase encoding direction can thus reduce shot contrast and distortion variations.

Conversely, prospective methods depend on the functionality of the external sensor sys-

tem and cannot account for local motion transformations and phase variations [21]. In

synergistic use, prospective methods could improve the database and ease the interpo-

lation by reducing the residual motion, while the retrospective corrections cover remain-

ing artifacts to enable highly motion-robust DWI.

CONCLUSIONS

The proposed MoSaIC framework improves diffusion-weighted imaging quality in the

presence of head motion. The use of navigation and SMS acquisitions enable 3D rigid

registration for motion-corrected full-volume reconstructions, which was presented for

4-shot 3-SMS DTI. The presented algorithms make combined use of SMS and interleav-

ing allowing flexible balancing of SNR and scan time. This model-based strategy offers

potentials for smart motion-aware image sampling and reconstruction to improve the

robustness of DWI in clinical practice.
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R
OBUSTNESS against subject motion in MRI is a multi-faceted problem that involves

approaches from patient coaching over fast acquisitions to adaptive reconstructions

[22] and needs to trade off the sequence and processing requirements for realistic use

cases. DWI is a particularly motion-sensitive sequence [9] putting high demands on both

hardware and software to enable diagnostic imaging. Multi-shot DWI entails shot-to-

shot phase inconsistencies and macroscopic misalignments, but also comes with mul-

tiple secondary motion-related effects including DWI contrast variations, EPI artifacts

like geometric distortions and Nyquist ghosting, and signal deteriorations from intra-

shot motion [8]. Furthermore, the complex interaction of motion with the sequence [22]

requires a careful balancing of the SNR properties of image and potential navigator sig-

nals, acquisition and reconstruction times, and the model complexity.

THESIS CONTRIBUTIONS

This dissertation contributes to the field of multi-shot DWI reconstructions by investi-

gating the potentials of different navigation strategies and motion models with increas-

ing complexity as briefly outlined in Chapter 1. The four algorithms were shown to sig-

nificantly improve image quality in the presence of shot-to-shot phase variations and

macroscopic subject motion addressing important practical problems. An overview of

the algorithms developed in this thesis is presented in Table 5.1.

Table 5.1: Model-based image reconstructions for multi-shot DWI developed as part of this dissertation.

Algorithm Section
Acquisition Motion Correction Deep

Navigated SMS Phase Maps Rigid Learning

MAPE+U-Net [48] 3.1 × × X × X

SEDIMENT [49] 3.2 × × X 2D ×
IRIS-RiCo [50] 4.1 X × X 2D ×
MoSaIC [51] 4.2 X X X 3D ×

Shot-to-shot phase variations [17–19] pose a challenging high-dimensional problem

requiring a full phase map per shot. MAPE+U-Net [48] uses a neural network that effec-

tively reduces phase-related artifacts in common SENSE reconstructions providing en-

hanced magnitude image priors to stabilize the ill-conditioned shot phase estimation.

The magnitude-regularized phase estimation is embedded into an iterative algorithm

which alternately improves the shot phase maps and the joint image, where the joint im-

age reconstruction is kept isolated without deep learning. The U-Net for self-navigated

usage is trained on simulation data from navigated image reconstructions [31].

In contrast to the NEATR approach [77] which uses the neural network as a post-

processing step to improve a preceding MUSSELS reconstruction [40, 82], MAPE inte-

grates the U-Net as an iterative regularization module into the alternating reconstruc-

tion. Nevertheless, the presented work represents a proof-of-concept study on a small

training set and requires further validation and a comparison to NEATR [77] on a larger

database. A related method, called NAMER [72], similarly performs image enhancement

on multi-shot images with a U-Net to provide improved image priors for the rigid pa-
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rameter estimation. For a combination of MAPE and NAMER, the current U-Net could

be retrained on DWI data with simulated shot phase and rigid motion corruption.

Multi-shot DWI reconstructions have been extended to rigid in-plane motion cor-

rections by the self-navigated AMUSE algorithm [43], which derives the shot parameters

once from SENSE-based [12] shot image reconstructions. However, the g-factor penalty

of SENSE [12] impedes high segmentation factors. The proposed SEDIMENT [49] al-

gorithm therefore includes the shot phase and rigid in-plane corrections into an alter-

nating reconstruction. The repeated feedback over the joint multi-shot image stabilizes

the SENSE-based shot problems [39, 101] and improves the shot phase and rigid motion

estimates making higher segmentations feasible.

Besides the self-navigation, a navigated GRAPPA-based [14] image reconstruction

with shot phase and rigid in-plane motion correction has been presented by Dong et

al. [44], but a comparison between the navigated and self-navigated methods is miss-

ing so far. This work proposes a navigated SENSE-based algorithm termed IRIS-RiCo

[50], which is compared to the self-navigated SEDIMENT [49] algorithm for 4- and 5-shot

DTI evaluating the implications of the navigation signals onto the image reconstruction.

Both navigation strategies enable effective motion artifact reductions. However, the nav-

igated approach is more robust for challenging datasets with strong motion or high seg-

mentation, while the iterative self-navigation is more prone to fail disentangling the shot

motion. Conversely, the coarse navigator resolution can affect the image registration ac-

curacy leading to minor residual blurring in some datasets.

Through-plane motion is an important limitation of previous retrospective multi-

shot DWI methods, which is addressed only through data rejection. To solve this im-

portant practical problem, the MoSaIC algorithm [51] adapts the navigated multi-shot

DWI acquisition with simultaneous multi-slice sampling [64]. The resulting SMS nav-

igators are used for shot phase estimation and multi-slice-to-volume [117] registration

enabling navigated full-volume reconstructions with 3D rigid shot motion correction.

By this, MoSaIC is an MR image-based alternative to the existing 3D rigid motion cor-

rections based on optical cameras [80, 81], which require the extra sensor equipment.

Furthermore, the shot phase variations are intractable by camera-based navigation and

are therefore obtained by SENSE-based self-navigation, which is limited by the g-factor.

A joint comparison of the navigated and extra-navigated methods is therefore required.

MoSaIC could further be implemented as a prospective correction method, following the

work for fMRI by Hoinkiss et al. [115]. This, however, poses online requirements on the

navigator registration, which is infeasible in the current implementation.

The four presented algorithms exhibit varying abilities to be integrated into current

clinical routines. IRIS-RiCo [50] is based on the clinically used IRIS method [31] and

the extension proposed in this work includes common rigid in-plane registrations. The

reconstruction generally follows a similar work flow as IRIS with a single successive opti-

mization of the shot parameters and the joint image facilitating the practical implemen-

tation. In contrast, the alternating optimizations of MAPE+U-Net [48] and SEDIMENT

[49] offer image quality improvements at the cost of increased computational and sta-

bility requirements, representing higher hurdles for practical uses. Finally, the recon-

struction times of the MoSaIC method with 3D rigid motion corrections are currently

infeasible for practical use, requiring further research to enable clinical adoption.
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MODELING LIMITATIONS

Model-based image reconstructions provide effective means for motion artifact reduc-

tion in multi-shot DWI and build an important cornerstone to achieve robust MRI. How-

ever, the challenging non-convex optimization problems constitute several limitations

of the presented methods that are discussed with respect to the navigation strategies,

the motion models and the computational demands.

Navigation strategies represent a practical and efficient way to deal with the non-

convexity of the joint multi-shot image and parameter reconstruction. Tracking devices

like cameras for extra-navigation have been shown to capture rigid motion parameters

well [21], while MR navigators are capable of sensing phase variations [26] and macro-

scopic motion [44]. Although these navigation strategies provide robust indicators for

the signal variations, they remain problem substitutes of the image data consistency

functional. As a major source of discrepancy, the presented navigated methods assume

that the phase variations and the macroscopic motion are accurately captured on the

coarse navigator resolution. This might lead to insufficient registration accuracy (Figs.

4.5 and 4.15a) or residual phase inconsistencies (Fig. 4.15c), but the navigator sam-

pling has to trade off image resolution and SNR for proper navigation. Intra-shot mo-

tion or different off-resonance induced distortions constitute further signal discrepancy

sources. In contrast, self-navigated methods directly optimize the image data consis-

tency avoiding the signal discrepancy, but they generally suffer from the noise propaga-

tion effects [12] of the individual undersampled shot problems. At the same time, the

comparison of navigated and self-navigated method is hindered by the lack of reliable

reference data, as discussed fir IRIS-RiCo on page 81. This issue also impedes the evalu-

ation of the structural tensor differences presented in Fig. 3.6 for MAPE+U-Net.

Being developed for the brain, the application of the methods for body anatomies

like in abdominal and prostate imaging changes the SNR relations and motion condi-

tions. Body imaging is characterized through a fast T2 signal decay [4], which might

render navigator signals from the second spin-echo unusable due to the high echo time.

This issue favors the use of self-navigation in body applications, especially for sequences

with strong diffusion encoding and long sampling windows. Regularized reconstruc-

tions like the U-Net supported MAPE [48], presented in Section 3.1, can thus help reduc-

ing the SNR issue. In addition, the macroscopic motion profiles in the body do usually

require affine or even elastic components, which entails a larger parameter space and

requires adapted optimization and interpolation strategies. For this, SEDIMENT [49]

could be extended to non-rigid motion models. Moreover, the role of through-plane mo-

tion along with the increased respiratory activity [4] potentially supports applications of

self-navigated SMS-to-volume registrations [114, 115] similar to MoSaIC [51].

Following the discussion for MoSaIC [51] in Section 4.2, the macroscopic motion

models investigated in this thesis neglect several secondary sampling-related variations,

which degrade both the image and shot parameter estimations. First, EPI is prone to

off-resonance induced geometric distortions in the low-bandwidth phase encoding di-

rection, which obstructs the overall geometric fidelity of the images. The head motion

moreover varies the phase encoding direction inducing shot-specific distortions, which

spoil the shot consistency for both the joint image reconstructions and image registra-

tions. The distortions can be reduced using readout segmented acquisitions [29, 30],
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prospective motion correction [21] or by including an estimated B0 off-resonance map

into the image reconstruction [112]. Second, eddy currents introduce mainly affine im-

age transformations, which are observable between different diffusion directions and

could be further reduced using twice-refocused DWI sequences [27] or by adapted re-

construction models [23]. Third, Nyquist ghosting was corrected in this work using EPI

prescans, but head motion and off-resonance effects might lead to odd/even variations

during the scan, which are addressable by adaptive modeling [121].

The shot-specific diffusion contrast variations from subject rotations [43] were

mostly neglected as a secondary motion artifact in the present work, considering that

rotations in common head coils are limited and the contrast variations are averaged over

the shots. Nevertheless, these variations present a confounding factor for high-fidelity

tensor applications. Prospective corrections of the gradient direction [88] offer a conve-

nient solution to this problem. Despite this, retrospective contrast corrections [43] are

possible but require a tensor estimate, which suffers from noise amplification in case of

high segmentations. The potential of navigator-based low-resolution tensor estimates

for contrast correction, as described in Section 4.1, requires further validation.

The employed motion models focus on inter-shot variations, establishing motion

awareness on the time scale of the sequence duration with approximately 100 ms. Sig-

nal deteriorations and spin history effects resulting from the complex, non-linear in-

teractions of motion [22] with the sequence are a major problem for motion-corrupted

DWI, which is normally handled by similarity-based data rejections. Recent methods like

NAMER [72] address intra-shot motion by separating the EPI train into multiple intra-

shot segments for the motion estimation of inconsistent shots, which are optimized in

a deep learning-supported image reconstruction. Such methods pave the way towards

intra-shot motion and potentially avoid losing data by rejection. Nevertheless, the ben-

efits of such methods must be critically balanced with the computational demands con-

sidering adaptive resampling strategies as potentially beneficial alternatives.

Finally, another limitation is the computational load that is involved especially with

macroscopic motion-corrections and volumetric image reconstructions. The applica-

tion of the large forward models represents the main computational expense of the pre-

sented algorithms, which was shown to be reducible by dedicated GPU implementa-

tions as shown by Cordero-Grande et al. [86]. At the same time, improvements in the

field of algorithmic solvers, such as the FGP algorithm [96], boost the expensive iterative

optimizations involved for motion correction. In addition, effective heuristics like the

motion detection of MoSaIC [51] have proven valuable avoiding the costly resampling

operations if the dataset appears motion-free.

FOSTERING ACQUISITION AND RECONSTRUCTION SYNERGIES

The main limitations of the model-based image reconstructions can be related to the

achievable signal-to-noise ratios, the non-convexity of the optimization problem and

the high computational demands. Although the limitations are challenging for the re-

construction on its own, joint developments with acquisition technologies have the po-

tential to innovate the future MR image production using improvements of the signal

encoding, the optimization methods, and regularizations enabling the design of adap-

tive image acquisition and reconstruction strategies for robust MRI.
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5 GENERAL DISCUSSION AND CONCLUSIONS

The SNR of the image and navigator reconstructions is mainly determined by the

encoding-related conditioning of the forward model. The Fourier operator can be com-

bined with non-Cartesian trajectories like variable density spirals. The sampling order

from low to high frequencies offers motion-robustness and the oversampling of the k-

space center provides data redundancies supporting self-navigated methods [57]. More-

over, the PSF of spirals spreads the aliasing more inconsistently over the FOV improv-

ing the g-factor properties of the image encoding [57]. The extension to non-Cartesian

trajectories requires interpolation procedures like gridding [58], which can be included

into the k-space sampling operator M̀ as in CG-SENSE [13]. The major drawbacks of

non-Cartesian acquisitions are the higher susceptibility to gradient- and off-resonance-

related blurring and the increased computational load from the gridding operator [57].

Besides the sampling trajectory, the employed forward models further rely on the

encoding capabilities of the receive coil setup expressed through the orthogonality of

the sensitivity operator [11]. Hence, improved coil design and more channels help to

increase the capabilities to disentangle aliased pixels. In the presence of motion, the

common usage of coil sensitivities from a prescan must be carefully reconsidered, as

the sensitivities have been effectively measured only in the initial position and must be

extrapolated to non-object regions. Moreover, non-Cartesian sampling techniques like

WAVE-CAIPI [123] are able spread the aliasing more evenly in the three spatial dimen-

sions allowing to make more efficient use of the 3D coil sensitivity profiles.

To achieve full brain coverage, the methods in this work compile independent single-

slice or simultaneous multi-slice acquisitions to subsequently fill the full volume stack.

However, the employed encoding with slice-selective excitations is incapable to achieve

isotropic resolution, because the reduction of the slice thickness quickly becomes SNR-

critical for the presented methods. Some recent approaches combine SMS with a phase

encoding in the slice direction [113, 124], so that multiple thick slabs are excited and the

additional slice encoding allows to resolve thin slices within each slab. Alternatively, RF

encoding strategies [122, 125] can also provide an improved slice encoding to achieve

isotropic DWI. Nevertheless, reducing the slice thickness further intensifies the motion

sensitivity, so that the proposed methods become even more relevant.

Navigation is a key feature for both prospective and retrospective corrections to

achieve motion-robust multi-shot DWI reconstructions. Navigators, be it camera-based

tracking of rigid motion [111] or image-based phase navigation [26], provide useful guid-

ance for the non-convex motion-corrected multi-shot DWI problem. A continuous mo-

tion awareness enables prospective scan adaption directly providing a database with re-

duced errors [21] and an improved problem conditioning for a subsequent retrospective

correction of the residual artifacts. Severely deteriorated shots can be selectively reac-

quired [30] to stabilize the image reconstruction without SNR losses as experienced for

data rejection. In addition, navigated reconstructions like IRIS-RiCo [50] can be used as

a starting point for self-navigated reconstructions like SEDIMENT [49], providing valu-

able initializations for the ill-conditioned non-convex search. This kick-start of the joint

optimization helps balancing the acquisition and reconstruction times and improves the

convergence properties. The navigators provide continuous awareness of the scan situ-

ation and thus enable intelligent acquisition and reconstruction strategies.
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SUMMARY

Multi-shot acquisitions offer improvements in SNR and resolution for diffusion-

weighted imaging (DWI), but the contrast-related sensitivity to motion complicates the

combination of the individual shot datasets. The main signal variations for DWI include

the inevitable shot-to-shot phase variations and macroscopic subject motion. Model-

based image reconstructions incorporate the motion-induced signal variations into the

optimization problem and jointly estimate the image along with the motion parameters.

However, the joint optimizations are typically non-convex, ill-posed and computation-

ally demanding, depending particularly on the motion model. Therefore, several naviga-

tion strategies exist to sense the motion parameters from different types of signals. This

dissertation proposes four reconstruction models for motion-corrected multi-shot DWI

that are either navigated, using additional MR signals in the sequence, or self-navigated,

using the imaging data itself. The four algorithms investigate the use of deep learning to

improve the shot phase estimation and evaluate different navigation strategies for retro-

spective corrections of 2D in-plane and 3D rigid patient motion.

The self-navigated estimation of the shot phase maps from the segmented image

data is a high-dimensional problem, which suffers from noise amplification for increas-

ing segmentations. This work evaluates the use of a U-Net to suppress ghosting artifacts

for phase-corrupted multi-shot combinations and stabilize the shot phase estimation

in an alternating optimization. The U-Net is shown to provide enhanced image mag-

nitude priors for the shot phase estimation, yielding improved image quality for highly

segmented multi-shot DWI. By design, the U-Net interacts only with the shot phase es-

timation, restricting the influence on the joint images to phase-related ghosting.

A recently published multi-shot DWI reconstruction further includes macroscopic

motion by rigid in-plane modeling between the shot datasets and derives the rigid mo-

tion parameters from the undersampled shot data. To encounter the SNR penalty for

increasing segmentations, the algorithm proposed in this work performs alternating op-

timizations of the shot phase, rigid in-plane and joint image parameters instead of a

single estimation. The repeated multi-shot updates reduce the noise amplification for

the individual undersampled shot problems achieving refined shot parameters and im-

proved image quality by self-navigation in the presence of subject motion.

An alternative approach uses additional low-resolution MR navigator signals to sense

the shot phase and rigid in-plane parameters, but a side-by-side comparison of the nav-

igation strategies is missing so far. This work proposes a motion-corrected image re-

construction algorithm that derives the shot phase and rigid in-plane motion parame-

ters once from shot navigator images. The navigated and self-navigated strategies are

compared for in-vivo multi-shot data, proving both effective in reducing in-plane mo-

tion artifacts. The navigated strategy shows improved robustness to high segmentations

and strong motion, but occasionally suffers from small residual blurring, which demon-

strates the difficulties of one-time navigator image registrations at low resolution.
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Through-plane motion is another major practical problem that is not captured by

the rigid in-plane motion models. This work employs a navigated multi-shot DWI se-

quence with simultaneous multi-slice (SMS) acquisition to increase the sampling ef-

ficiency and obtain data support in the slice direction for 3D motion estimation with

high temporal resolution. The low-resolution SMS navigators are used to estimate the

shot-specific phase maps and 3D rigid motion states using a multi-slice-to-volume reg-

istration. The shot parameters then guide a model-based full-volume reconstruction

per diffusion direction including wavelet denoising. The proposed method is validated

in simulations and in-vivo, achieving sub-millimeter target registration errors and im-

proved image quality with reduced motion artifacts.

This work is dedicated to model-based image reconstructions which provide effec-

tive means to address the shot-to-shot phase variations and macroscopic motion in

multi-shot DWI. The proposed methods offer powerful data-driven tools to exploit the

joint information in large imaging datasets. Although further technical developments

are still necessary, this dissertation presents new motion correction strategies that are

directly applicable to state-of-the-art imaging methods in clinical practice, and also con-

tributes to the research field evaluating demanding iterative algorithms to improve the

robustness against noise and through-plane motion. The model parameterizations, the

navigation strategies and regularizations by deep learning or wavelet denoising were

shown to play a major role to effectively constrain the ill-posed motion correction prob-

lems. The described models allow extensions for further signal variations and novel en-

coding schemes. Overall, the model-based motion navigation builds the basis for adap-

tive image acquisition and reconstruction strategies paving the way for robust, efficient,

and high-quality diffusion-weighted imaging.
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Segmentierte Akquisitionstechniken ermöglichen Verbesserungen des Signal-Rausch-

Verhältnisses und der Auflösung in der diffusionsgewichteten Magnetresonanztomo-

graphie (dMRT). Die Kombination der einzelnen Datensegmente wird aber durch die

Bewegungsempfindlichkeit des Diffusionskontrastes signifikant beeinträchtigt. Zu den

wichtigsten Signalvariationen der dMRT zählen die unvermeidbaren segmentspezi-

fischen Phasenvariationen und die makroskopischen Patientenbewegungen. Modell-

basierte Bildrekonstruktionen berücksichtigen diese Signalvariationen und schätzen

die Bild- und Bewegungsparameter gemeinsam. Allerdings sind solche gemeinsamen

Optimierungsprobleme häufig nichtkonvex, schlecht gestellt und rechenaufwendig.

Aus diesem Grund finden diverse Navigationsstrategien Anwendung, die die Bewe-

gungsparameter aus unterschiedlichen Signaltypen ableiten. Diese Dissertation er-

arbeitet vier neue bewegungskorrigierte Rekonstruktionsmethoden für die segmen-

tierte dMRT. Dabei kommen sowohl navigierte Methoden zum Einsatz, die zusätzliche

MRT-Signale in der Messsequenz für die Bewegungsschätzung nutzen, als auch selbst-

navigierte Methoden, die die segmentierten Bilddaten dafür verwenden. Auf Grundlage

der vier Algorithmen wird zum einen die Unterstützung der Phasenschätzungen durch

maschinelles Lernen untersucht, zum anderen werden die unterschiedlichen Naviga-

tionsstrategien zur Korrektur rigider 2D- und 3D-Bewegungsmuster evaluiert.

Die selbstnavigierte Schätzung der Phasenvariationen aus den Datensegmenten ist

ein hochdimensionales Problem, das für zunehmende Segmentierung unter Rausch-

propagationseffekten leidet. Diese Arbeit untersucht die Fähigkeit eines neuronalen

Netzwerks, des sog. U-Nets, zur Unterdrückung phaseninduzierter Replika-Artefakte in

segmentierten Datensätzen mit dem Ziel, die segmentspezifischen Phasenschätzungen

in einem alternierenden Algorithmus zu stabilisieren. Es wird gezeigt, dass das U-Net

wertvolle Startschätzungen der gemeinsamen Bildmagnitude bereitstellt, wodurch die

Phasenschätzung stabilisiert und die finale Bildqualität für hochsegmentiertes dMRT

verbessert wird. Das U-Net interagiert dabei nur mit der Phasenschätzung, wodurch

das neuronale Netzwerk von der Bildproduktion entkoppelt bleibt, was potenzielle Stö-

rungen auf phaseninduzierte Artefakte beschränkt.

Ein kürzlich publizierter Algorithmus integriert makroskopische Patientenbewe-

gungen in eine segmentierte dMRT-Rekonstruktion, indem rigide 2D-Bewegungen in

der Bildebene zwischen den Datensegmenten modelliert und einmalig aus den un-

terabgetasteten Bilddaten geschätzt werden. Um den Rauschpropagationseffekten für

hohe Segmentierungen zu begegnen, wird in dieser Arbeit ein alternierender Algorith-

mus vorgestellt, der die Phasenvariationen, die rigiden Bewegungsparameter und das

gemeinsame Bild in einem iterativen Optimierungsprozess bestimmt. Die wiederholte

Einbindung aller Datensegmente reduziert die Rauschverstärkung der einzelnen un-

terabgetasteten Segmentrekonstruktionen und verbessert dadurch sowohl die Bewe-

gungsparameter als auch die Bildqualität im Falle makroskopischer Patientenbewegung.
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Ein alternativer Ansatz nutzt zusätzliche MRT-Navigatorsignale mit niedriger Auflö-

sung, um die Phasenvariationen und die rigiden Bewegungsparameter zu schätzen. Ein

direkter Vergleich der unterschiedlichen Navigationsstrategien fehlt allerdings. Diese

Dissertation beschreibt dazu einen navigierten Algorithmus, der die Phasenvariatio-

nen und die rigiden 2D-Bewegungsparameter für jedes Segment aus den Navigator-

bildern bestimmt. Der navigierte und der selbstnavigierte Algorithmus werden anhand

von segmentierten In-Vivo-Daten verglichen. Dabei erweisen sich beide als effektiv,

um Artefakte aus 2D-Bewegungen zu reduzieren. Die navigierte Methode ist robuster

gegenüber hohen Segmentierungen und starken Bewegungen, leidet jedoch vereinzelt

unter Unschärfeartefakten, die auf die Schwierigkeit einmaliger Bewegungsschätzungen

aus niedrigaufgelösten Navigatorbildern zurückzuführen sind.

Bewegungen, die orthogonal zur Schichtrichtung der Bildkodierung statt-

finden, stellen ein weiteres praktisches Problem dar, das von den rigiden 2D-

Bewegungsmodellen in der Bildebene nicht erfasst wird. Ein in dieser Arbeit ent-

wickelter Algorithmus verbindet eine segmentierte und navigierte dMRT-Sequenz

mit einer Technologie zur simultanen Akquisition mehrerer Schichten, um damit

nicht nur die Messeffizienz zu steigern, sondern auch Datenunterstützung in der

Schichtrichtung für die 3D-Bewegungsschätzungen mit hoher Zeitauflösung zu

erhalten. Die mehrschichtigen Navigatoren mit niedriger Auflösung werden zur

Schätzung der Phasenvariationen und der rigiden 3D-Bewegungskomponenten mittels

einer Mehrschicht-zu-Volumen-Registrierung verwendet. Die ermittelten Parameter

steuern dann eine modellbasierte Volumenrekonstruktion pro Diffusionsrichtung

mit einer Regularisierung für spärlich-verteilte Signale. Simulationen und In-Vivo-

Rekonstruktionen ergeben für die vorgeschlagene Methode Registrierungsfehler im

Submillimeterbereich und eine Verbesserung der Bildqualität durch die Reduktion der

Bewegungsartefakte.

Diese Dissertation leistet Beiträge zur modellbasierten Bildrekonstruktion von seg-

mentierten dMRT-Daten und beschreibt effektive Algorithmen zur Korrektur von seg-

mentspezifischen Phasenvariationen und makroskopischen Patientenbewegungen. Die

Methoden erweisen sich dabei als leistungsfähige, datengetriebene Werkzeuge zur

gemeinsamen Auswertung großer Bildgebungsdatensätze. Diese Arbeit stellt Strate-

gien zur Bewegungskorrektur vor, die unmittelbar in der klinischen Praxis anwend-

bar sind, beschreibt aber auch aufwendigere, iterative Algorithmen, die robuster gegen

Rauschen und 3D-Bewegungsmuster sind, jedoch weiterer technischer Entwicklung für

den klinischen Einsatz bedürfen. Die Leistungsfähigkeit der Bewegungskorrekturen

hängt maßgeblich von den Modellparametrisierungen, den Navigationsstrategien und

effektiven Regularisierungen auf Basis des maschinellen Lernens und der Spärlichkeit

(engl. sparsity) der Signale ab. Die untersuchten Modelle sind außerdem auf weitere

Signalvariationen und Kodierungstechnologien erweiterbar. Zusammenfassend zeigt

sich die modellbasierte Bewegungsnavigation als Kernelement für zukünftige, adap-

tive Strategien zur Bildakquisition und -rekonstruktion, die eine robuste, effiziente und

hochwertige diffusionsgewichtete Bildgebung ermöglichen.
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ABBREVIATIONS

ADC Apparent diffusion coefficient

BN Batch normalization

CAIPI Controlled aliasing in parallel imaging

CG Conjugate gradients

DL Deep learning

DTI Diffusion tensor imaging

DWI Diffusion-weighted imaging

EPI Echo-planar imaging

FA Fractional anisotropy

FFT Fast Fourier transform

FGP Fast gradient projections

FISTA Fast iterative shrinkage-thresholding algorithm

GRAPPA Generalized autocalibrating partially parallel acquisitions

IRIS Image reconstruction using image-space sampling function

MAD Median absolute deviation

MB Multi-band

MRI Magnetic resonance imaging

NN Neural network

nRMSE Normalized root-mean-square error

PF Partial Fourier

POCS Projections onto convex sets

PSF Point spread function

ReLU Rectified Linear Unit

RF Radio frequency

SB Single-band

SENSE Sensitivity encoding

SMS Simultaneous multi-slice

SNR Signal-to-noise ratio

SPIR Spectral pre-saturation with inversion recovery

SSFP Steady-state free precession

STEAM Stimulated echo acquisition mode

TRE Target registration error

TV Total variation

VOI Volume of interest
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