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Zusammenfassung

Die medizinische 3D-Bildgebung als relativ junge Disziplin hat sich den letzten Jahr-
zehnten des 20. Jahrhunderts in grofler Geschwindigkeit entwickelt. Sie ist aus der
heutigen Diagnostik nicht mehr wegzudenken und in Kombination mit Methoden der
Bildverarbeitung bildet sie beispielsweise die Grundlage von Strahlentherapieplanun-
gen und bildgestiitzten Eingriffen.

Um die mittlerweile groBen Mengen anfallender Daten zu bewéltigen, bedarf es der
computergestiitzten Analyse von volumentrischen, medizinischen Scans. Dabei spielt
die automatische Extraktion von relevanten Bildmerkmalen — sogenannten Deskrip-
toren — eine entscheidende Rolle. In letzter Zeit sind datengetriebene Methoden des
maschinellen Lernens die treibende Kraft auf diesem Gebiet. Haufig werden dabei
ganze Routinen der Bildverarbeitung durch vollintegrierte, trainierbare Faltungsnetze
ersetzt. Deren Erfolg hidngt bei komplexen Herausforderungen aber mafigeblich von
der Menge und Qualitdt vorhandener Trainingsdaten sowie den ihnen zugeordneten
Annotierungen ab.

Die vorliegende Arbeit verfolgt daher das Paradigma einer klaren Abgrenzung zwi-
schen datengetriebenem Repréisentationslernen und anschlieBendem Einsatz in Op-
timierungs- oder Klassifizierungsstrategien fiir unterschiedlichste Problemstellungen.
Dabei werden Methoden zum Deskriptorlernen sowohl in Anbetracht unterschiedlicher
Datenlagen (mono- bzw. multimodal) als auch fiir verschiedene Arten der Anwendung
(Registrierung, Transfer von Organannotierungen) entwickelt.

Uber Loésungen fiir die Registrierung von Bildpaaren hinaus, die sich aufgrund ana-
tomischer Variationen und grofler Deformationen stark unterscheiden, liefert die vor-
liegende Arbeit zwei weitere wichtige, wissenschaftliche Beitrédge: einerseits entwickelt
sie ein Ende-zu-Ende-trainierbares Rahmengeriist zum datengetriebenen Lernen von
Deskriptoren, die innerhalb eines iterativ optimierten Registrierungsverfahrens zur An-
gleichung multimodaler, thorakoabdominaler Volumendaten eingesetzt werden. Ande-
rerseits stellt sie ein auf rdumlichen Relationen beruhendes, uniiberwachtes Lernverfah-
ren vor, dass aus potentiell beliebig grofien, annotationsfreien Bildmengen selbststén-
dig inhdrente, anatomische Zusammenhénge erfasst. Die im Rahmen der Arbeit zur
Beurteilung des Separierungsparadigmas durchgefithrten Experimente bestétigen, dass
die Kombination datengetrieben erlernter Deskriptoren und klassischer, jahrzehntelang
erforschter Methoden sowohl im Vergleich zu rein klassischen als auch zu vollstédndig
Faltungsnetz-basierten Verfahren gewinnbringend ist.
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Kapitel 1

Einleitung

1.1 Motivation

Seit Mitte des letzten Jahrhunderts hat die Verbreitung von Computern viele Be-
reiche des téglichen Lebens durchdrungen und grundlegend verdndert. Auch in der
Medizin hat deren Verwendung vollig neue Gebiete erschlossen. So liefern heutzuta-
ge nicht-invasive, bildgebende Verfahren wie die Computertomographie (CT) oder die
Magnetresonanztomographie (MRT) teilweise fast in Echtzeit hochauflésende, dreidi-
mensionale Einblicke in den menschlichen Korper. Der Rekonstruktion der Bildvolu-
mina aus den Rohdaten liegen komplexe Berechnungen zugrunde, die erst durch den
Einsatz und die Verfiigbarkeit immer leistungsstarkerer Computer moglich sind.

Durch die steigende Verfiigbarkeit dieser 3D-Scanner gehort Bildgebung mittlerweile
zum Standardrepertoire der klinischen Diagnostik und geht folglich mit einer ebenfalls
steigenden Anwendungszahl und einem enormen Wachstum an zu verarbeitenden Bild-
daten einher. Laut dem Bundesamt fiir Strahlenschutz ergibt sich in Deutschland pro
Jahr und Einwohner ein Anstieg an CT-Untersuchungen von 0.06 im Jahr 1996 auf
0.14 in 2012 [Bundesamt fiir Strahlenschutz, 2016]. Ebenso eindrucksvoll belegt dies
die Versechsfachung an MRT-Untersuchungen von 0.02 auf 0.12 im gleichen Zeitraum.

Angesichts dieser schieren Masse an anfallendem Bildmaterial sollte es ein Ziel der
medizinischen Bildverarbeitung sein, die medizinischen Experten bei der Begutach-
tung der Daten zu Entlasten und dazu geeignete Verfahren zu entwickeln. Fiir die
automatisierte Analyse von volumetrischen, medizinischen Scans spielt die Extraktion
von relevanten Bildmerkmalen eine bedeutende Rolle.

Die vorliegende Arbeit befasst sich dabei mit dem automatisierten Erlernen soge-
nannter Deskriptoren. Die Ubersichtsarbeit zu medizinischen Deskriptoren in Noguei-
ra u.a., 2017 definiert sie sinngeméf} als Algorithmen, die das Ziel verfolgen, effizient
zusammenfassende Reprasentationen fiir Bildbereiche oder auch fiir ganze Bilder zu
finden. Wie in Abb. 1.1 angedeutet, eignen sich diese Darstellungen dann im Anschluss
als Grundlage fiir vielfdltige Verwendungen.

Im Kontext dieser Arbeit werden die neu entwickelten Lernverfahren fiir Deskripto-
ren vorwiegend fiir die Aufgabe der Bildregistrierung, also der Angleichung eines Bild-
paares, herangezogen, die grofie klinische Relevanz besitzt. Beispielsweise kann dieser
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Medizinische Volumendaten Faltungsnetz-basiertes Deskriptorlernen Anwendung

Registrierung

Abb. 1.1: Faltungsnetz-basiertes Deskriptorlernen in medizinischen Volumenbilddaten er-
moglicht verschiedene Anwendungen wie beispielsweise Bildregistrierung oder den
Transfer von Organannotierungen.

Prozess wie in Brock u. a., 2006 zur Angleichung von Bildpaaren bei der Verlaufskon-
trolle einer Tumorbehandlung eingesetzt werden. Dabei dient sie der Kompensation
zeitlich bedingter Verédnderungen der iibrigen anatomischen Strukturen - die sowohl
kurzfristig durch Begewungseinfliisse des Atmens und des Herzschlages ausgelost wer-
den, als auch langerfristig unter anderem durch Verdauungstétigkeiten im Abdominal-
bereich verursacht werden -, um Volumenverdnderungen des Tumorgewebes zu quanti-
fizieren, die fiir oder gegen den Erfolg einer durchgefiihrten Therapie sprechen. Ebenso
bedarf es robuster Registrierungsverfahren und auflerdem spezieller Deskriptoren, wenn
wie in Heinrich u.a., 2013b zusétzlich die Fusion komplementérer Informationen aus
verschiedenen Bildgebungsmodalitédten fiir einen Patienten wéihrend einer Intervention
vorgesehen ist. Ist beispielsweise die Ubertragung eines anatomischen Atlas eines Pati-
enten - also von aufwendigen, durch medizinische Experten angefertigen Annotationen
bestimmer Organe oder Strukturen - auf einen anderen Patienten zu Vergleichszwe-
cken angedacht, bestehen fiir Verfahren zur Interpatientenregistrierung aufgrund der
grofen natiirlichen Variabilitdt des menschlichen Organismus ebenso groflen Herausfor-
derungen. Wiederum stellt sich die Frage, wie korrespondierende Strukturen lediglich
aufgrund von Grauwertinformationen als einander zugehorig erkannt werden sollen, so
dass auch hier der Einsatz von Deskriptoren notwendig wird.

Fir den menschlichen Betrachter stellt die Aufgabe der rdumlichen Korrespondenz-
findung zunéchst kein grofles Problem dar. Dabei wird aber aufler Acht gelassen, dass
das zur visuellen Erfassung der Umwelt notwendige Erkennen von Mustern sich iiber
Millionen Jahre entwickelt hat und unbewusst ablduft. Die Umsetzung dieser Féhig-
keiten in Computeralgorithmen erfordert dagegen ein hohes Mafl an Expertise, um
beispielsweise eine Zuordnung von Objekten unter verschiedenen Beleuchtungseinfliis-
sen oder Farb- und Texturausprigungen in Basisklassen wie Hund, Auto oder Stuhl
vorzunehmen, wie sie bereits Kleinkinder intuitiv beherrschen. Die Machtigkeit des



1.2 Aufbau & Beitrédge der Arbeit

evolutiondr entstandenen, visuellen Systems zeigt sich auch in Levenson u. a., 2015, in
dem Tauben trainiert werden kénnen, benigne von malignen Strukturen in Histologie-
aufnahmen der menschlichen Brust zu unterscheiden.

Ausgelost durch den Erdrutschsieg der in Krizhevsky u.a., 2012 vorgestellten Me-
thodik bei der ImageNet Challenge (beschrieben in Deng u.a., 2009) zur Bildklas-
sifikation und durch die Verfiigbarkeit immer groferer Bilddatenmengen im Internet
zu Trainingszwecken, erleben Faltungsnetzwerke als eine spezielle Form des maschi-
nellen Lernens in der Bildverarbeitung seit 2012 eine Renaissance. Im Gegensatz zu
klassischen Verfahren des maschinellen Sehens werden die Parameter der Faltungs-
netze anhand von Trainingsbeispielen problemangepasst und datengetrieben erlernt.
Dabei bleibt es dem Algorithmus selbst iiberlassen, welche Details z.B. in Form der
Detektion von Kanten oder auch deren Ausrichtung zueinander zu beachten sind, um
problembezogen eine korrekte Ausgabe zu generieren.

Aufgrund der Méchtigkeit von tiefen Faltungsnetzwerken sowie der Veroffentlichung
nutzerfreundlicher, modularer Frameworks zur Umsetzung dieser Lernverfahren um-
fasst die Anwendung das Deep Learnings inzwischen oftmals vollintegriert den ge-
samten Ablauf von Bildverarbeitungsmethoden. Fiir das Beispiel der Bildregistrierung
bedeutet dies allerdings, dass sich oftmals nicht mehr klar unterscheiden lasst, wel-
che Teile des Netzwerkes zum Extrahieren von robusten Deskriptoren einerseits und
zur Vorhersage von Transformationsparametern fiir die Bildangleichung andererseits
zustéandig sind.

Angesichts ihrer unbestrittenen Erfolge in vielen Bereichen des maschinellen Sehens,
erreichen Faltungsnetze aber zum Beispiel im Kontext der medizinischen Bildregistrie-
rung zur Zeit noch nicht das Genauigkeitsniveau jahrelang erforschter und optimierter,
klassischer Verfahren auf diesem Gebiet. Ob die medizinische Bildregistrierung daher
im Allgemeinen weiter von Deep Learning-Methoden profitieren kann und ob im Spe-
ziellen die vollstindig integrierten Architekturen unumgéinglich sind, ist momentan
offen.

Die vorliegende Arbeit untersucht daher Methoden des (namensgebenden) Deskrip-
torlernens in Medizinischen Volumenbilddaten, die eine klare Abtrennung zwi-
schen dem datengetriebenen Reprdsentationslernen und der anschlieflenden Verwen-
dung in Kombination mit effizienten, hochgenauen, klassischen Methoden vornehmen.

1.2 Aufbau & Beitriage der Arbeit

Abb. 1.2 veranschaulicht die Einordnung der kapitelweise vorgestellten, neu entwi-
ckelten Methoden anhand des Grades an Uberwachung, der fiir das jeweilige Deskrip-
torlernverfahren eingesetzt werden muss und der als roter Faden fiir den inhaltlichen
Aufbau der Arbeit dient. Dieser reicht von starker Uberwachung in Form explizit ma-
nuell durch Experten bestimmter Landmarken in Kapitel 3, zu schwacher, indirekter
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Starke Uberwachung Vollstdandig Uniiberwacht

Kapitel 3 Kapitel 4 Kapitel 5 Kapitel 6
. Vor-/Nachteile Ende-zu-Ende-trainierbarer Lernverfahren . GroRe Deformationen . Indirekte Uberwachung
. Multimodale Registrierungsprobleme . Problemspezifische Gradientenrickfiihrung

Abb. 1.2: Einordnung des Aufbaus der methodischen Kapitel der Arbeit.

Uberwachung durch Segmentierungen in den Kapiteln 4 & 5 und miindet schlieflich in
komplett un- bzw. selbst-tiberwacht gelernte Deskriptoren in Kapitel 6.

Zunichst werden in Kapitel 2 flir die Arbeit grundlegende Verfahren und Begriffe
eingefiihrt. Fiir jedes anschlieBende, methodische Kapitel ergibt sich als Zielfragestel-
lung, ob und inwiefern sich die jeweils vorgeschlagene Methode fiir das datengetriebene
Deskriptorlernen in medizinischen Bildvolumina eignet. Dabei wird jedes neu entwi-
ckelte Verfahren kapitelweise 1) in den Kontext aktueller Vergleichsarbeiten aus der
Literatur gestellt, 2) detailliert methodisch dargelegt, 3) im Experiment mit medizini-
schen Bilddaten evaluiert und 4) abschlieend diskutiert.

Kapitel 3 & 4 untersuchen zwei neuartige, hybride Methoden zur Bildregistrierung
unter Verwendung sowohl diskret als auch kontinuierlich optimierter, klassischer Ver-
fahren. Kapitel 3 betrachtet dabei zundchst einen durch gepaarte Lungenlandmarken
auf CT-Bilddaten stark tberwacht trainierten Ansatz, der mittels geeigneter Problem-
formulierung effiziente Bindrdeskriptoren lernt. Aufgrund des hohen Aufwandes zur
Erstelung manueller Annotationen stellt Kapitel 4 dagegen eine auf Organsegmentie-
rungen basierende und daher auf eine abgeschwdichte Form der Uberwachung zuriick-
greifende Methode zur Registrierung multimodaler Herzaufnahmen vor.

Untersuchen die vorherigen Kapitel von der eigentlichen Anschlussaufgabe losge-
16ste, eigenstandige Lernstrategien, so verfolgt Kapitel 5 einen sogenannten Ende-zu-
Ende-trainierbaren Ansatz. Dazu werden die zur eigentlichen Registrierung notwendi-
gen Berechnungsschritte so formuliert, dass sich Informationen {iber die Qualitat der
bisher erlernten Deskriptoren in Bezug auf die Genauigkeit an die Faltungsnetzpara-
meter zuriickreichen lassen. Dabei werden verschiedene Modellierungsansétze fiir die
Bestimmung der schrittweisen Bildangleichung und Regularsierer betrachtet und je-
weils wiederum unter schwacher Uberwachung multimodale Bilddaten - in diesem Fall
des Thorakoabdominalbereiches - fiir die Experimente herangezogen.
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Das den Methodenteil abschlielende Kapitel 6 stellt ein neu entwickeltes Verfahren
zum untberwachten Lernen von Deskriptoren in medizinischen Volumenbilddaten vor.
Die Formulierung einer geeigneten, intrinsischen Lernaufgabe versetzt das Faltungs-
netz in die Lage, in den Bilddaten inhérent vorliegende anatomische Zusammenhénge
selbst zu erkennen. Dadurch lasst sich die Trainingsdatenmenge potentiell um belie-
big viele Bilddaten erweitern, da keinerlei Annotationen notwendig sind. Das Poten-
tial dieses Ansatzes wird im experimentellen Vergleich zu anderen Deskriptoren fiir
die Ubertragung thorakaler CT-Atlassegmentierungen auf ungesehene Patientendaten
verdeutlicht.

Schliefllich fasst Kapitel 7 die im Rahmen der Arbeit gewonnenen Erkenntnisse zu-
sammen und gibt einen Ausblick auf sich ergebende, weiter zu untersuchende Frage-
stellungen.

Uber die Einordnung auf Grundlage des Grades an Uberwachung hinaus, lassen sich
die wissenschaftlichen Beitrdge der Arbeit - wie in Abb. 1.2 dargestellt - folgen-
dermaflen gruppieren:

e Auf Grund des zuvor besprochenen, indirekten Zusammenhangs zwischen seman-
tisch informativen Bildmerkmalen und guter Registrierungsqualitit ist ein Ende-
zu-Ende-Training von Deskriptoren nicht immer zielfiihrend. Daher beleuchten
Kapitel 3 & 4 alternative Zweischritt-Hybridmethoden; Kapitel 5 untersucht ein ex-
plizit integriertes, Ende-zu-Ende-umgesetztes Verfahren. Die klare Abgrenzung der
modularen Aufgabenstellungen zum Deskriptorlernen und Generieren der Anpas-
sungsparameter wihrend des Bildverarbeitungsprozesses steht dabei im Mittelpunkt.
Dartiberhinaus werden die in Kapitel 3, 4 & 5 vorgestellten Deskriptoren alle auf
Bildpaaren evaluiert, bei denen grofie Deformationen auszugleichen sind.

e Kapitel 3 & 6 entwickeln Methoden der indirekten Uberwachung zum Lernen
von Deskriptoren, indem einerseits eine Korrespondenzfindungsaufgabe bei Lungen-
landmarken in Form starker Uberwachung genutzt wird und dann jedoch relative
Verschiebungsfelder gesucht werden. Andererseits werden durch geeignetes Formu-
lieren einer Lernaufgabe komplett uniberwacht aussagekriftige Reprisentationen
generiert.

e Losungen fiir multimodale Registrierungsprobleme werden in Kapitel 4 & 5
vorgestellt. Diese Verfahren dienen der Fusion komplementérer Bildinformationen.
Multimodale Daten bilden die Grundlage klinisch hochrelevanter Anwendungen un-
ter anderem bei Bestrahlungstherapien oder bildgestiitzten Eingriffen.

e Uber die eigentlichen Architekturentscheidungen der eingesetzten Faltungsnetze hin-
aus befassen sich Kapitel 3 & 5 im Rahmen ihrer jeweiligen Anwendungen mit pro-
blemspezifisch angepasster Gradientenriickfiithrung, also mit Erweiterungen
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der grundlegenden Umsetzung von tiefen maschinellen Lernverfahren im Allgemei-
nen.

Alle vorgestellten Neuentwicklungen haben aufwendige Peer-Review-Verfahren durch-
laufen, sind im Rahmen internationaler Fachkonferenzen oder als Beitriage renommier-
ter Journals publiziert und in Anhang A zusammengefasst.



Kapitel 2
Grundlagen

Diese Arbeit baut einerseits auf einer Vielzahl verschiedener modell-basierte Metho-
den auf, die im Bereich der medizinischen Bildverarbeitung schon lange essentieller
Bestandteil aktiver Forschung waren und auch zukiinftig bleiben werden und anderer-
seits auf lernbasierte Verfahren, die durch Entwicklungen, die die Verfiigbarkeit von
Daten betreffen, relativ neu ins Zentrum des wissenschaftlichen Interesses geriickt sind.

Im Rahmen der in dieser Arbeit entwickelten Verfahren zum Lernen von Deskrip-
toren stehen dabei als Anwendung die optimierungsbasierte Bildregistrierung als eine
Kernaufgabe der medizinischen Bildverarbeitung und als methodische Grundlage Fal-
tungsnetzwerke, deren Verwendung in den letzten Jahren nahezu alle Bereiche der
computergestiitzen Bildverarbeitung durchdrungen hat, im Vordergrund.

Dieses Grundlagenkapitel erldutert zunédchst in Abschnitt 2.1 die Notwendigkeit so-
genannter Deskriptoren zur Beurteilung von Bilddhnlichkeit vor dem Hintergrund me-
dizinischer Daten. Anschliefend widmet es sich der Einfithrung in Bildregistrierung am
Beispiel zweier sog. klassischer Verfahren in Abschnitt 2.2. Darauf folgt in Abschnitt
2.3 die Vorstellung der allen neuen, in dieser Arbeit vorgestellten Ansétze zugrunde-
liegenden Faltungsnetzwerke. Auch hier werden die zum Verstdndnis notwendigen Be-
grifflichkeiten anhand zweier konkreter Architekturen erldutert. Zum Abschluss wird in
Abschnitt 2.4 die Zusammenfiihrung beider Bereiche zur Faltungsnetzwerk-basierten
Registrierung wiederum durch aktuelle Verfahren demonstriert, so dass eine Einord-
nung der einzelnen Verfahren aus den nachfolgenden Kapitel der vorliegenden Arbeit
ermoglicht wird.

2.1 Deskriptoren & Ahnlichkeitsmafle

In der medizinischen Bildverarbeitung und im Speziellen bei der im néachsten Ab-
schnitt 2.2 detailliert vorgestellten Bildregistrierung stellt sich hdufig das Problem,
dass in zwei oder mehreren Bildern korrespondierende, markante Strukturen als ein-
ander zugehorig erkannt und rdumlich angeglichen werden sollen. Dies wirft zum einen
die Frage auf, wie sich die - fiir den menschlichen Betrachter oftmals intuitiv 16sbare
- Aufgabe der Identifikation von sich rdumlich-strukturell hervorhebenden Positionen
(auch Landmarken genannt) mittels automatisierter Verfahren umsetzen lasst. Zum
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Anderen schliet sich die Frage an, wie die Ahnlichkeit eines Bildpaares vor und nach
einem solchen Angleichungsprozess objektiv quantifiziert werden kann. Die nachfol-
genden Abschnitte beinhalten jeweils beispielshafte Ansétze zur Beantwortung dieser
Fragestellungen.

2.1.1 Deskriptoren

Die Identifikation von Landmarken in Bilddaten stellt hdufig den ersten Schritt einer
ganzen Verarbeitungskette dar. Eine beispielhafte, klassische Anwendungen wére die
effiziente Suche dhnlicher Bilder in Datenbanken anhand eines Abgleiches der darin
jeweils vorliegenden Landmarken. Im medizinischen Kontext sollten korrespondieren-
de, anatomische Strukturen jeweils entsprechend durch Landmarken gekennzeichnet
werden. Damit diese Landmarken sich aber zur Beschreibung (lat.: descriptor - der
Beschreiber) und damit auch zur Korrespondenzfindung aufgrund des lokalen Bildin-
haltes eignen, miissen sie diese Information aussagekréftig kodieren.

Idealerweise wéren die gefundenen Représentationen dabei invariant gegeniiber ver-
schiedenen Einflussfaktoren. Dazu zdhlen Verdnderungen, die die Gréfe des beschriebe-
nen Bereiches betreffen. Aber auch Rotationen oder Kontrastschwankungen sollten le-
diglich geringe Auswirkungen auf den resultierenden Deskriptor haben. Neben anderen
Arbeiten mit dieser Zielsetzung haben im Bereich der Computer Vision die skaleninva-
riante Merkmalstransformation (engl.: scale invariant feature transform, kurz: SIFT)
aus Lowe, 2004, deren Weiterentwicklung in Form beschleunigter, robuster Merkmale
(engl.: speeded up robust features, kurz: SURF) aus Bay u.a., 2006 und auch das Hi-
stogram orientierter Gradienten-Verfahren (engl.: Histogram of Gradients, kurz: HoG)
aus Dalal u. a., 2005 grole Bekanntheit erlangt. Diesen Verfahren ist gemeinsam, dass
sie Strukturinformationen auf verschiedenen Auflésungsstufen beispielsweise in Form
der Orientierung von Kanten erfassen. Dazu werden die erdachten Ablaufprotokolle
zur Erhebung dieser Reprasentation strikt eingehalten - im Gegensatz zum Paradig-
ma des datengetriebenen Erlernens von Deskriptoren, das in Abschnitt 2.3 zu den
Faltungsnetzen beleuchtet wird.

An dieser Stelle soll das Deskriptorkonzept anhand zweier weiterer, manuell defi-
nierter Vertreter im Kontext medizinischer Daten illustriert werden. Im Rahmen die-
ser Arbeit werden sowohl die BRIEF-Deskriptoren (engl.: binary robust independent
elementary features) aus Calonder u.a., 2010 als auch das MIND-Verfahren (engl.:
modality independent neighbourhood descriptor) aus Heinrich u. a., 2012 zum Vergleich
mit methodischen Neuentwicklungen in spéteren Kapiteln herangezogen und daher
schematisch eingefiihrt.

BRIEF-Deskriptoren: Die grundlegende Idee dieses Verfahrens ist bestechend
einfach, aber effektiv: zu Beginn wird anhand einer Gaufiverteilung eine festgelegte
Anzahl von n Zufallspaaren rdumlicher Koordinaten entsprechend der Dimensionalitét
der betrachteten Bilder gezogen. Abb. 2.1 enthélt links beispielhaft ein zweidimensio-
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Abb. 2.1: Schematische Ilustration der BRIEF-Deskriptoren. Links: Beispielhaftes Muster
von Vergleichspaaren zentriert um eine rot markierte Position innerhalb der rechten
Niere eines Patienten. Rechts: Fiir einen weiteren Patienten ist eine Wahrscheinlich-
keitskarte dargestellt, die basierend auf Ahnlichkeitsberechnungen mit dem gleichen
Muster die am ehesten korrespondierende Position innerhalb dessen Leber anzeigt.

nales Muster an Vergleichspaaren, das um eine Position innerhalb der rechten Niere
eines Beispielpatienten angeordnet ist. Dieses Muster dient dazu Helligkeitsverglei-
che zwischen den einzelnen Partnerpositionen anzustellen. Mittels eines resultierenden
Vektors der Lénge n wird pro Vergleich bindr mit Nullen und Einsen kodiert, ob die
Intensitdt der ersten Position grofler ist als die der zweiten Position. Durch die bitwei-
se Kodierung lassen sich auch hochdimensionale Deskriptoren effizient anhand ihrer
Hamming-Distanzen einem Ahnlichkeitsvergleich unterziehen, also durch die Summe
der sich unterscheidenden Bits. Zur Illustration der Aussagekraft der BRIEF-Methodik
ist rechts in Abb. 2.1 eine Wahrscheinlichkeitskarte dem Schichtbild eines zweiten Pa-
tienten iiberlagert. Basierend auf den erhobenen Deskriptoren zeigt sie die am ehesten
korrespondierende Position zu der durch das rote Kreuz markierten Stelle im linken
Bild an.

MIND-Deskriptoren: Im Rahmen der Arbeit liegen oftmals multimodale Bild-
daten vor, d.h. Aufnahmen verschiedener Bildgebungsverfahren. In der Regel bestehen
zwischen korrespondierenden Gewebetypen dabei nicht durch Funktionen trivial ab-
bildbare Intensitdtszusammenhénge. Dies kann anschlieende Verarbeitungsschritte -
beispielsweise zur paarweisen Bildregistrierung - vor grofle Herausforderungen stellen.
FEine Moglichkeit diesem Problem zu begegnen wird in Heinrich u. a., 2012 durch die
modalititsunabhdngigen Nachbarschaftsdeskriptoren eingefithrt. Ziel dieses Verfahrens
ist es, unter Anwendung des Konzepts der Selbstdhnlichkeit, das in Shechtman u. a.,
2007 erfolgreich eingesetzt wird, lokale Strukturinformation anstelle der Intensitdten
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Abb. 2.2: Schematischer Ablauf zur Erhebung von MIND-Représetationen. Die erste Spalte
enthilt korrespondierende MRT-Gehirnschichten eines Patienten unter verschiede-
nen Aufnahmeprotokollen. Die rot markierten Bereiche sind in der mittleren Spalte
vergroflert und mit einem 5 x 5-Gitter iiberlagert dargestellt. Dieser Anordnung
entsprechend werden in der letzten Spalte die resultierenden, 25-dimensionalen
Feature-Vektoren des zentral gelegenen Pixel gezeigt. Sie ergeben sich aus dem
Vergleich des jeweils blau markierten Bildausschnittes mit den weiteren Gitterele-
menten und liefern trotz nicht-linearer Intensitdtsbeziehungen der Eingabebilder
aufgrund der strukturellen Ubereinstimmungen #dhnliche Deskriptoren.

als Grundlage einer Ahnlichkeitsbetrachtung zwischen Bildern verschiedener Modalité-
ten zur Verfligung zu stellen. Dadurch wird die Anwendung einfacher, monomodaler
Ahnlichkeitsmafle erméoglicht, von denen eines im nichsten Abschnitt 2.1.2 vorgestellt
wird.

Die Formel zur Berechnung der MIND-Représentation ist durch

1 D,(I
MIND(Z, %, 1) = Lexp(— 2oL XX +7)

- Via b TER (2.1)

gegeben. Dabei dient n der Normalisierung und die Elemente r € R legen die Ver-
gleichspositionen zur Bestimmung der Selbstdhnlichkeit mit dem um x zentrierten
Bildausschnitt fest. Daraus ergibt sich unter Beachtung eines Ausgleichsterms V (7, x)
fiir die Intensitéitsvarianzen mit Hilfe eines AhnlichkeitsmaBes D, zwischen dem zen-
tralen Ausschnitt und dem zu vergleichenden Nachbar ein R-dimensionaler Vektor.
Weitere Details konnen Heinrich u. a., 2012 entnommen werden und beziiglich des ge-
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wahlten MaB3 D), sei unter einem Vorgriff auf die Summe der quadratischen Differenzen
des nichsten Abschnittes verwiesen.

Abb. 2.2 veranschaulicht das Vorgehen anhand eines Beispiels fiir multimoda-
le MRT-Gehirnscans, resultierend aus verschiedenen Aufnahmeprotokollen. Zunéchst
sind die Ausgangsschichtbilder in der ersten Spalte dargestellt. Fiir die zentral inner-
halb der rot markierten Boxen gelegenen Bildausschnitte wird mittels eines 5 x 5-
Gitters (mittlere Spalte) und Formel 2.1 die jeweilige MIND-Repréisentation erhoben.
Dies bedeutet, dass fiir den zentral im blauen quadrat gelegenen Pixel sein zugehoriger
Bildausschnitt paarweise mit den iibrigen Ausschnitten des Gitters verglichen wird. In
der letzten Spalte wird der resultierende 25-dimensionale Vektor raumlich dem Git-
ter folgend angeordnet, so dass die strukturelle Ubereinstimmung trotz nicht-linearer
Intensitdtszusammenhénge der zugrundeliegenden Gewebedarstellungen sichtbar wird.

Da Deskriptoren fiir sich genommenm noch keine Beurteilung von Ahnlichkeiten
zwischen zwei oder mehreren Bildern erlauben, fiihrt der néchste Abschnitt beispielhaft
zwei in der medizinischen Bildverarbeitung gebriuchliche Ahnlichkeitsmafe ein.

2.1.2 Ahnlichkeitsmafle

Zur Beurteilung der Ahnlichkeit zweier Bilder oder auch verschiedener Bildausschnitte
bedarf es objektiver Mafizahlen. Beispielsweise sollte die Ahnlichkeit bei Eingabe des
gleichen Bildes maximal bzw. die Distanz minimal sein. Ein erfolgreicher Bildanglei-
chungsprozess zeichnet sich daher im Vergleich zum Ursprungszustand nach erfolgter
Transformation durch eine geringere Distanz aus.

Im Falle monomodaler Daten, also Bildern des gleichen Aufnahmegeréts, ist vor
der Anwendung komplexerer Distanzmafle haufig die Summe der quadratischen
Differenzen (engl.: sum of squared differences, kurz: SSD) die erste Wahl. Dabei
werden iiber den gesamten Bildbereich €2 pro Bildposition x die Intensitétsdifferenzen
zwischen zwei Bildern A und B aufsummiert

SSD(A,B) = > (A(x) — B(x))? (2.2)

x€eN

Im Fall mehrkanaliger Bilder, wie sie sich beispielsweise durch entsprechende Deskrip-
torreprasentationen ergeben, wird dieser Vorgang entlang der zusétzlichen Dimension
wiederholt und ebenfalls aufsummiert. Auf diese Weise lésst sich unter Anwendung des
im vorigen Abschnitt beschriebenen MIND-Verfahrens die Ahnlichkeit zwischen mul-
timodalen Bildpaaren auf die Anwendung eines simplen Distanzmafes zuriickfithren.
Uber die SSD hinaus gibt es weitere Distanzmafle, wie z.B. normalisierte Kreuzkorre-
lation oder die Summe der absoluten Differenzen.

Im Gegensatz zu den bereits genannten Ansétzen gibt es allerdings auch Verfahren,
die ohne vorherige Transformation der Bilddaten in einen gemeinsamen Raum arbeiten.

11
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Abb. 2.3: Illustration der mutual information als Ahnlichkeitsmaf. Das erste Bild zeigt die
aus Abb. 2.2 bekannten, korrespondierenden MRT-Gehirnschichten in Form einer
Schachbrettdarstellung, allerdings nicht perfekt zueinander ausgerichtet. Dement-
sprechend weist das Histogramm der gemeinsamen Grauwertverteilung weniger kla-
re Anhdufungen ortlich gemeinsam auftretender Grauwerte auf. Im Gegensatz dazu
steigt der Ahnlichkeitswert von 0.4396 auf 0.9622 bei korrekter Ausrichtung zuein-
ander und das gemeinsame Histogramm weist eine stdrkere Ballung zusammen
auftretender Grauwerte auf.

Im Hinblick auf die Angleichung multimodaler Bildpaare ist dabei prominent die
mutual information aus Maes u.a., 1997 als Ahnlichkeitsmal zu nennen. Diese
informationstheoretisch begriindete Metrik misst den Grad der Abhéngigkeit zweier
als Zufallsvariablen A und B aufgefasster Bilder bzw. zwischen deren gemeinsamer
Grauwertverteilung p4 g und den zugehorigen, einzelnen Randverteilungen p4 und pp
durch (a.b)
PAB\G,

NI ) = 2 (a0 o (i o) (23)
wobei a und b die einzelnen Grauwerte bezeichnen.

Abb. 2.3 verdeutlicht exemplarisch ebenfalls wieder anhand zweier MRT-Gehirnscans
verschiedener Aufnahmeprotokolle den gesteigerten MI-Wert und das klarer stuktu-
riertere Histogramm bei perfekter Angleichung (rechts) im Gegensatz zur raumlich
verschobenen Anordnung (links).

2.2 Bildregistrierung

Der als Bildregistrierung bezeichnete Prozess definiert die rdumliche Transformation
eines Bildes, so dass es einem Referenzbild im Sinne eines definierten Mafies zunehmend
dhnlich wird und stellt ein fundamentales Werkzeug im Hinblick auf die medizinische
Bildverarbeitung dar.

Uberblicksarbeiten zu der Thematik finden sich beispielsweise in Maintz u. a., 1998,
Rueckert u.a., 2019 oder Sotiras u.a., 2013. Die medizinische Bildregistrierung bil-
det unter Anderem die Grundlage fiir die Fusion komplementérer Informationen aus
verschiedenen Aufnahmemodalitdten bei Interventionen, wie in Heinrich u.a., 2013b
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Abb. 2.4: Beispielhafte Bildtransformationen: Die urspriingliche Erscheinungsform des fixed
Bildes (links) ldsst sich unter Anwendung einer global auf den gesamten Bildbereich
wirkenden affinen Transformation (Rotation & Translation) aus dem mittleren mo-
ving Bild rekonstruieren. Die zusétzlichen lokalen Deformationen der nicht-rigiden
Transformation des weiteren moving Beispiels (rechts) bediirfen dagegen etwa ei-
nes B-Spline-Transformationsmodells, um mittels einer Registrierung kompensiert

zu werden.

demonstriert, und ermoglicht ebenso die Tumorverlaufskontrolle durch zeitlich aufein-
ander folgende Patientenscans in Brock u. a., 2006.

Grundlegend lassen sich anhand des Transformationsmodells verschiedene Arten der
Registrierung unterscheiden, z.B. sich global auf das ganze Bild gleich auswirkende af-
fine Transformationen oder in ihren Auswirkungen lokal begrenzte, deformierbare Re-
gistrierungen. Abb. 2.4 enthélt in der Mitte die Darstellung eines Bildes, das sich mit-
hilfe eines affinen Modells in seine Ausgangsform tiberfiihren ldasst und ebenfalls rechts
ein Beispiel, das etwa eines B-Spline-Modells zur Angleichung bedarf. Speziell im Fall
der vorliegenden Arbeit stehen Methoden im Vordergrund, die sich zur Bestimmung
lokaler Deformationen eines Bildes zur Angleichung an ein anderes eignen - sogenann-
te paarweise deformierbare Registrierungsverfahren. Die besondere Herausforderung
dabei ergibt sich aus der Notwendigkeit, rdumlich teilweise stark variierende, dichte,
nicht-lineare Transformationsfelder zu bestimmen, mit deren Hilfe das Ausgangsbild
verformt wird, um dem Referenzbild &hnlich zu werden.

Um eine gemeinsame formale Grundlage fiir alle nachfolgenden Registrierungsverfah-
ren zu schaffen, werden an dieser Stelle einige Begriffe definiert, die von den konkreten
Auspragungen der anschliefenden Beispielverfahren aufgegriffen werden. Das zu regis-
trierende Bildpaar (F, M) besteht aus einem Referenzbild F, das im Folgenden auch
als fized Bild (engl.: fest) bezeichnet wird, und aus einem zu verformenden Bild M,
auch mowing Bild genannt. Mit Hilfe einer Transformation ¢, die als Vektorfeld an
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jeder Bildposition festlegt, ldsst sich folgendes Optimierungsproblem iiber eine Ener-
giefunktion formulieren

argmin E(p) = D(SF,p o Sm) + aR(p), (2.4)
©

welches beschreibt, wie das moving Bild M zu verformen ist. Die Minimierung die-
ses Ausdruckes iiber eine geeignete Wahl von ¢ fithrt dazu, dass die Anwendung der
Transformation ¢ auf eine Reprisentation des moving Bildes, das z.B. in Form einer
Deskriptordarstellung S vorliegen kann, dieses der Repréisentation der Referenz S r
moglichst angleicht. Die Ahnlichkeit wird dabei mithilfe eines DistanzmaBes D, das
problemspezifisch definiert wird, berechnet. Zusétzlich sorgt ein sogenannter Regula-
risierer R dafiir, dass das Verschiebungsfeld gewilinschte Eigenschaften aufweist. Im
Kontext der medizinischen Bildverarbeitung sind insbesondere Effekte unerwiinscht,
die z.B. unplausible Faltungen von Organen bedingen wiirden und werden daher unter
anderem mittels geeigneter Glattheitsanforderungen durch den Regularisierer bestraft.
Faltungen treten auf, wenn eine nicht-invertierbare Transformation vorliegt und daher
negative Jakobi-Determinanten an den entsprechenden Positionen des dazugehorigen
Vektorfeldes auftreten.

Um die bisher bewusst abstrakt, aber dafiir allgemein giiltig gehaltenen Begriffe zu
konkretisieren, werden im Anschluss zwei Verfahren besprochen, die im Rahmen dieser
Arbeit genutzt werden. Zunéchst erlautert Abschnitt 2.2.1 das diskret optimierte deeds-
Registrierungsframework, welches als Grundlage der monomodalen Registrierungs-
experimente fiir die gelernten Lungen-CT-Deskriptoren in Kapitel 3 herangezogen wird
und auferdem als Vergleichsmethode in Kapitel 4 dient. Daran anschlieBend wird mit
SimpleElastiz ein Vertreter fir kontinuierlich optimierte Verfahren vorgestellt, der in
Kapitel 5 neben anderen als Vergleichsverfahren genutzt wird. Im Gegensatz zu den im
Anschluss ebenfalls behandelten Faltungsnetzwerk-basierten Verfahren aus Abschnitt
2.4, werden beide Methoden den klassischen Registrierungsalgorithmen zugeordnet,
die ohne Elemente des maschinellen Lernens arbeiten.

2.2.1 Diskret optimierte Registrierung mittels deeds

Als erstes Beispiel sogenannter klassischer Registrierungsalgorithmen wird im Folgen-
den das deeds-Verfahren in seiner corrField-Variante aus Heinrich u. a., 2015a unter
Einbezug von Korrespondenzfeldern (engl.: correspondence fields, kurz: corrField) in
seinen grundlegenden Bestandteilen vorgestellt. Im Folgenden wird deeds synonym fiir
diese Variante verwendet. In Kombination mit den SSC-Deskriptoren aus Heinrich
u. a., 2013b stellt das Verfahren um eine kontinuierliche Optimierung in Riithaak u.a.,
2017b erweitert den Stand der Technik auf dem in Castillo u.a., 2009 beschriebenen
DIR-lab COPD Datensatz dar. Dariiberhinaus wird speziell dieses Verfahren auch be-
reits im Hinblick auf die in Kapitel 3 entwickelte hybride Registrierungsmethodik etwas
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ausfithrlicher erldutert, da es das algorithmische Riickgrat zur klassischen Bestimmung
der Verschiebungsfelder unter Eingabe von mittels Faltungsnetzwerken generierter De-
skriptoren bildet.

Grundsétzlich liefert die Methode ein Vektorfeld als Ausgabe, welches korrespondie-
rende Strukturen zwischen dem fized Bildvolumen F und dem moving Volumen M
durch die positionsweise enthaltenen Verschiebungsvektoren beschreibt. Damit diese
Verschiebungsfelder effizient bestimmt werden, braucht es die Abfolge dreier Schritte:
1) miissen Landmarken - héufig auch als Keypunkte bezeichnet - extrahiert werden,
2) miissen Ahnlichkeitsberechnungen korrespondierender Positionen unter einer de-
finierten Menge von Verschiebungen berechnet werden und 3) wird schlie8lich noch
eine MRF-basierte raumliche Regularisierung des Feldes durchgefithrt (engl.: markov
random fields, kurz: MRF).

Im Vergleich zu anderen Methoden, die aussschlielich auf reguliren (Kontrollpunkt-
)Gittern arbeiten, ist deeds dariiberhinaus auch in der Lage auf einer geringeren Anzahl
sparlich verteilter Keypunkte K zu arbeiten. In Rithaak u.a., 2017b - einer Arbeit die
ebenfalls die deeds-Methodik verwendet - wird beispielsweise der Forstner-Operator
zur Detektion potentieller Keypunkte im fized Bild eingesetzt. Die Anwendung auf
einem reguldren Gitter lasst sich demgegeniiber als Spezialfall auffassen.

Ziel des eigentlichen Registrierungsvorganges ist es nun jedem Keypunkt an Position
x im fized Bild einen Verschiebungsvektor d dermaflen zuzuweisen, dass die resultie-
rende Position ¢ = x + d im moving Bild eine moéglichst dhnliche Struktur enthélt.
Dafiir schreitet der deeds-Ansatz den gesamten, diskretisierten Suchraum ab. Dieser
vergleicht mit seinen dichten Verschiebungsvektoren um die entsprechende Position x
in M herum, welcher Bildinhalt auf die zu registrierende Bildposition passt. Der Such-
raum wird dabei anhand von Verschiebungen aus d € Q = {0, £q, £2q, ..., +lnas - ¢}
quantisiert. g gibt die Schrittweite an und l,,4, - ¢ die grofitmogliche Bewegung.

Je nach Problemstellung muss zur Beurteilung der Ahnlichkeit und zum Auffinden
korrespondierender Positionen zwischen dem zu registrierenden Bildpaar ein geeignetes
Distanzmafl D gewéhlt werden - wie in Abschnitt 2.1 beschrieben. Bei monomoda-
len Problemen kann eine einfache Berechnung der quadratischen Differenzen bereits
ausreichend sein, wohingegen ohne geeignete Transformation der Eingaben im Falle
multimodaler Daten beispielsweise die mutual information eine passende Wahl dar-
stellen kann.

Im Hinblick auf die Plausibilitdt der Verschiebungsfelder sollte ein Regularisierungs-
term R wie in Gleichung 2.4 erwahnt eingesetzt werden. Das deeds-Verfahren setzt den
nachfolgend beschriebenen Ansatz ein, um zu starken Gradienten der Deformationen
vorzubeugen. Pro Bildposition sind die Verschiebungsvektoren bisher isoliert berechnet
worden und lassen die Bewegungen innerhalb ihrer jeweiligen direkten Nachbarschaften
auBer Acht. Aus diesem Grund nutzt das deeds-Verfahren eine MRF-basierte Regulari-
sierung. Zunéchst wird dabei ein minimaler Spannbaum auf den als Knoten aufgefass-
ten Keypunkten innerhalb der Lungenbilddaten aufgebaut und definiert dadurch die
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Menge der Kanten (engl.: edges) £ des MRF-Modells. Sollten sich zwei im Baum di-
rekt verbundene Landmarken 4, j in ihren Verschiebungsvektoren d;, d; unterscheiden,
bestraft dies der Regularisierungskostenterm

|d; — dy |
Ixi = x5+ [1(xi) — 1(x5)| /o1

R(di,d;) = (2.5)

Durch Betrachten des euklidischen Abstandes der Landmarkenpositionen zueinander
sowie deren absoluter Intensitdtsdifferenzen im Nenner des Ausdrucks wird ihre rdum-
liche Beziehung beriicksichtigt. Je ndher und ahnlicher sich beide sind, desto héher
fallen die zusétzlichen Kosten bei unterschiedlichen Verschiebungen aus. Die Gesam-
tenergie eines bestimmten Verschiebungsfeldes u setzt sich dann aus der gewichteten
Kombination der Deskriptor-basierten Unédhnlichkeiten mit den Regularisierungskos-
ten zusammen:

Eu)=a > Dk)+ > 7R(d;d;). (2.6)
keK e;;€E

Um diesen Energieterm zu minimieren und ein optimales Verschiebungsfeld zu erhal-
ten, wird die sog. belief propagation in zwei Richtungen (vorwirts, riickwarts) zum
Nachrichtenaustausch (engl.: message passing) genutzt. Ausgehend von den Blattkno-
ten werden beim Durchschreiten des Baumes - wie in Felzenszwalb u. a., 2005 beschrie-
ben - Nachrichten m (engl.: messages) von den Kindern ¢ eines Knotens i entlang der
Kanten e; ; zu seinen Eltern j ausgetauscht und angepasst durch

<04D (di) + R(di,dj) + Y mc(di)> (2.7)
(&

Obwohl im Sinne des Energieoptimierungsproblems das beste Verschiebungsfeld be-
rechnet wird, enthélt dieses in der Praxis dennoch héufig noch Unplausibilitdten. Ein
Weg, deren Anzahl zu verringern, besteht im Erzwingen symmetrischer Randvertei-
lungen, da diese fehlerhafte Korrespondenzen reduzieren. Idealerweise sollte folgen-
des Zweischrittverfahren ein unverdndertes Bild ausgeben: zunéchst berechnet man
das Verschiebungsfeld in Richtung F' — M basierend auf allen Landmarkenpositio-
nen k und erhélt die verschobenen Samplingpositionen k7. = kr + dg,. Interpre-
tiert man diese nun als Landmarkenpositionen k,, und berechnet das Feld fiir die
umgekehrte Richtung M — F, so sollte das resultierende Bild zu F' identisch sein.
Da die Randverteilungen leF und Mf;M in den seltensten Féllen symmetrisch sind,
definiert man die tatsdchlich betrachtete, gemittelte Vorwérts-Energie als My (i) =
%(MI{F (1) + Ml’iM(|Q\ —1)). i bezeichnet dabei einen ein dimensionalen Index tiber alle
Verschiebungen. Nach dem Optimierungsprozess werden mithilfe von Parabeln um die
Minima der Randverteilungen an jeder Landmarke noch Subvoxel-genaue Verfeinerun-
gen der diskreten Verschiebungsvektoren vorgenommen.
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Abb. 2.5: Nach Klein u.a., 2015: Schematische Darstellung der Registrierungskomponenten
des iterativen, kontinuierlich optimierten SimpleFlastiz-Frameworks.

Zum Abschluss kommen thin plate splines zur Generierung eines dichten Feldes iiber
die Keypunktpositionen hinaus zum Einsatz, das schliefflich die Ausgabe des gesamten
Ablaufes darstellt. Die Anwendung dieses Verschiebungsfeldes auf das mowving Bild
fiihrt dann zu der gewiinschten Angleichung an das Referenzbild.

2.2.2 Kontinuierlich optimierte Registrierung mittels SimpleFElastix

Der vorangehende Abschnitt behandelt mit dem deeds-Verfahren aus Heinrich u. a.,
2015a eine Registrierungsmethode, die aufgrund der diskreten Optimierungsstrategie
durchweg ableitungsfrei arbeitet. Innerhalb der Gruppe klassischer Registrierungsal-
gorithmen gibt es aber auch eine Vielzahl von Ansétzen, die mit Hilfe von Gradienten-
abstiegsverfahren die Parameter vorher festgelegter Transformationsmodelle iterativ
anpassen, um Gleichung 2.4 zu minimieren und eine geeignete Wahl fiir die Parameter
des gewahlten Transformationsmodells zu treffen.

Ein Beispiel bildet das in Marstal u. a., 2016 vorgestellte SimpleElastiz-Framework,
welches das modulare Entwerfen geeigneter Registrierungspipelines erméglicht. Durch
die vorgegebene Zielstellung die Elastiz-Bibliothek fiir medizinische Bildregistrierung
aus Klein u.a., 2009 einem breiten Publikum, plattformiibergreifend zur intuitiven
Prototypisierung verfiigbar zu machen, bietet es sich zur Modellierung eines Vergleichs-
verfahrens bei den Experimenten der in Kapitel 5 entwickelten Methodik an.

Die Entwickler stellen vorgefertigte Protokolle mit robusten Standardeinstellungen
beispielsweise fiir die Registrierung von Gehirnscans bereit. Die klare Strukturierung
der einzelnen Komponenten erlaubt dariiberhinaus sowohl das Austauschen einzelner
Module als auch eine freie, problemangepasste Definition der Parameter. Abbildung
2.5 gibt einen schematischen Uberblick iiber die wichtigsten, zu definierenden Kompo-
nenten.

Die Eingabe besteht aus dem zu registrierenden (F, M)-Bildpaar. Um das verfriihte
Verharren in lokalen Minima zu vermeiden, wird eine Multiskalen-Strategie wahrend
der Optimierung verwendet. Hierzu werden iiblicherweise nacheinander erst Versionen
des Bildpaares in niedriger Auflésung zueinander ausgerichtet und die so ermittelten

17



Kapitel 2 Grundlagen

Transformationsparameter dienen dann als Ausgangspunkt fiir die ndchst-héhere Auf-
l6sungsstufe. Die Anzahl der Auflésungsstufen sowie die Art des Herunterrechnens der
FEingabebilder sind dabei zu wihlenden Parameter der Bildpyramiden.

Der sampler (deutsch, sinngeméf: Bildabtaster) legt die Positionen innerhalb des
Bildpaares fest, an denen unter Anwendung der aktuell ermittelten Transformations-
parameter mit Hilfe der gewéhlten Metrik die Ahnlichkeit beurteilt wird. Zur Aus-
wahl stehen beispielsweise das pro Durchlauf zuféllige Generieren von Positionen, um
mit vermindertem Rechenaufwand mdoglichst zeitsparend die Parameterupdates zu be-
stimmen, aber auch das Abtasten mittels regulérer Gitter, die die volle Auflésung der
Bilddaten nutzen.

Die Wahl des Transformationsmodells erweist sich oftmals als entscheidend fiir die
Qualitat der Registrierung. Im Fall einer Intra-Patienten-Registrierung von CT- und
MRT-Kopf-Aufnahmen bietet sich unter der plausiblen Annahme vernachlissigbarer
anatomischer Verdnderungen - da beispielsweise die adulten Schédelknochen in der
Regel zwischen zwei Aufnahmen nicht deformiert werden - die Wahl eines rigiden, also
lediglich auf Rotationen und Verschiebungen beschrankten Modells an (siche Abb. 2.4
mittig). Dieses zeichnet sich im dreidimensionalen Fall durch 6 Freiheitsgrade (entlang
der drei Bildachsen je ein Rotationswinkel und eine Verschiebung) aus, welche dann
die Menge der Transformationsparameter ¢ aus Gleichung 2.4 bilden. Im Falle von
Inter-Patienten-Registrierungen beispielsweise zur Ubertragung eines Atlas von Orga-
nannotierungen eines Patienten auf einen bisher nicht annotierten, anderen Patienten
machen die grofle Variabilitidt der Organe im thorakoabdominal Bereich, aber auch
atmungsbedingte Verformungseffekte den Einsatz nicht-parametrischer Methoden wie
z.B. B-Spline-Transformationsfelder mit zum Teil Millionen von Freiheitsgraden not-
wendig (siehe Abb. 2.4 rechts), die ebenfalls Teil der SimpleFElastiz-Bibliothek sind.

Bevor die Ahnlichkeit an den mittels des sampler-Moduls spezifizierten Positionen
beurteilt werden kann, muss das mowving Bild M basierend auf den Parametern ¢
des gewéhlten Transformationsmodells angepasst werden. Da in der Regel die zu den
Positionen im fized Bild F korrespondierenden Punkte unter Anwendung von ¢ nicht
mehr auf die ganzzahligen Indizes des Pixelgitter fallen, an denen die Bildinformation
in Form von Grauwerten vorliegt, muss durch Interpolationsmethoden Abhilfe geschaf-
fen werden. Zur Auswahl stehen dabei die Zuweisung des rdumlich gesehen néchsten
Nachbarn auf dem Gitter als sog. Nearest Neighbour-Ansatz, aber auch eine lineare
Interpolation iiber die direkten Nachbarn oder eine B-Spline-Interpolation, welche je
nach Ordnung die Intensitéitswerte einer erweiterten Nachbarschaft miteinbezieht.

Zur anschlieenden Beurteilung der Bildédhnlichkeit bedingt durch die momentan
zur Angleichung bestimmten Transformationsparameter ¢ stellt das SimpleFlastiz-
Framework ebenfalls verschiedene Metriken bereit. Dazu zéhlen die bereits aus Ab-
schnitt 2.1.2 bekannten SSD- und mutual information-Mafle fir monomodale re-
spektive multimodale Registrierungsprobleme. Dariiberhinaus besteht aber auch die
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2.3 Faltungsnetzwerke

Moglichkeit z.B. die normalisierte Kreuzkorrelation, welche in der Lage ist robust lokale
Helligkeitsschwankungen auszugleichen, als Distanzmaf einzusetzen.

Als letzter Schritt zur vollstdndigen Definition eines iterativen, also schrittweisen
Verfahrens zur Optimierung der Transformationsparameter muss eine von vielen Stra-
tegien zur Parameteranpassung festgelegt werden. Wie bereits erwédhnt, handelt es
sich im Gegensatz zur vorangehenden Methodik nicht um ein diskretes Registrierungs-
verfahren. Basierend auf der analytischen Strategie zur Minimierung mathematischer
Ausdriicke, wird zunéchst die Energiegleichung 2.4 nach den Transformationsparame-
tern ¢ differenziert. Anschliefend wird das resultierende Gleichungssystem Null gesetzt
und hinsichtlich der Parameter gelost. Dies bedingt die Differenzierbarkeit aller bislang
beschriebenen Schritte, was fiir die Module des SimpleFElastiz-Frameworks der Fall ist.
Konkrete, effiziente Umsetzungen zur iterativen Bestimmung der Parameteranpassun-
gen Ay auf der Grundlage von

OE(p) 8D®ﬂwoSM)+a8R@)

i
= 2.
dp dp dyp 0 (2:8)

fiir z.B. verschiedene Arten des Transformationsmodells oder des Regularisierungs-
terms sind Bestandteil aktiver Forschung und finden sich unter anderem ausfiihrlich in
Rithaak u.a., 2017a, Modersitzki, 2004 oder Modersitzki, 2009. Zur schrittweisen Ak-
tualisierung der Parameter kann abschlieend ebenfalls aus einer Vielzahl verschiede-
ner Verfahren wie stochastischem Gradientenabstieq oder der Quasi-Newton L-BFGS-
Methode - um nur zwei zu nennen - gewahlt werden.

Aber nicht die Neuentwicklung einer Registierungsstrategie steht im Vordergrund
der vorliegenden Arbeit, sondern die Suche nach Mdglichkeiten, wie Verfahren des
maschinellen Lernens und insbesondere solche unter Einsatz von Faltungsnetzen aus-
sagekriftige Deskriptoren lernen koénnen, die dann beispielsweise it klassischen Re-
gistrierungsverfahren kombiniert werden kénnen. Daher beldsst es die Einfiihrung zu
Registrierungsverfahren bei den beiden obigen, klassischen Strategien und wendet sich
nun den bei allen entwickelten Verfahren dieser Arbeit genutzten Faltungsnetzwerken
ZU.

2.3 Faltungsnetzwerke

Neuronale Netze erleben seit einigen Jahren eine Renaissance und stellen fiir viele
Anwendungen auf dem Feld des maschinellen Lernens den momentanen Stand-der-
Technik dar. Im Bereich der Computer Vision verdanken sie ihren enormen Populari-
tatsschub der Arbeit Krizhevsky u. a., 2012. Darin beschreiben die Autoren den Einsatz
tiefer Faltungsnetzwerke (engl.: deep convolutional neural networks, kurz: DCNNs) auf
dem Datensatz der in Deng u. a., 2009 beschriebenen ImageNet-Challenge zur Klassifi-
kation von Bildern. Im Jahr 2012 gewinnen sie diesen Wettbewerb mit groffem Abstand
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zu den weiteren Teilnehmern und vermelden einen sprunghaften Genauigkeitszuwachs
verglichen mit den Vorjahresergebnissen.

Obwohl die grundlegenden Mechanismen der angewandten Methodik - beispiels-
weise der Fehlerriickfithrungsalgorithmus aus Hecht-Nielsen, 1992 zur Anpassung der
trainierbaren Netzwerkgewichte (engl.: backpropagation) - bereits seit geraumer Zeit
erforscht sind und beispielsweise prominent in LeCun u.a., 1998 auf dem MNIST-
Datensatz angewandt werden, haben grofitenteils zwei Entwicklungen dem momenta-
nen Siegeszug der CNNs Vorschub geleistet. Einerseits triagt die breite Verfiigbarkeit an
Trainingsdaten durch das Internet dazu bei, selbst Netzwerke mit mehreren Millionen
Parametern so zu trainieren, dass eine Uberanpassung auf Trainingsbeispiele aufgrund
zu kleiner Datenmengen verhindert wird. Andererseits verkiirzt die optimierte Auslage-
rung der rechenintensiven Datenverarbeitung von neuronalen Netze auf leistungsstarke
Grafikprozessoren (engl.: graphical processing unit, kurz: GPU) die Berechnungszeit
auf ein akzeptables Maf3 - von zum Teil immer noch mehreren Tagen - und ermdglicht
wahrend der spiateren Anwendung Zeitersparnisse um mehrere Groflenordnungen im
Vergleich zu CPU-basierten Verfahren.

Eine umfassende Einfiihrung in das Thema deep learning ermoglicht beispielsweise
das Werk Goodfellow u. a., 2016 und der Review-Beitrag LeCun u. a., 2015 der Autoren
LeCun, Bengio und Hinton, die fiir ihre Pionierarbeiten 2018 mit dem Turing-Award
geehrt wurden, liefert einen Uberblick iiber grundlegende Entwicklungen auf dem Feld.

Abb. 2.6 stellt die Struktur eines neuronalen Netzes beispielhaft dar und umfasst da-

bei sowohl eine lineare - also durch eigenstindige Gewichte zwischen Eingabe- und
erster versteckter Repriasentation vollverbundene - Schicht als auch eine fir die Art
der Netze namensgebende Faltungsschicht. Letztere nutzt im Fall der zweiten Schicht
zur Rekombination der Datenpunkte beispielhaft immer wieder die gleichen drei, pro
Ausgabe farblich gruppierten Gewichte. Dies fiihrt zu bedeutenden Parametereinspa-
rungen und setzt die Idee der gleitenden Anwendung eines Filters auf die Eingaben
um. Trainiert man das Netzwerk zum Beispiel zur Klassifikation der Eingabedaten, soll
das der entsprechenden Klasse zugeordnete Ausgabeneuron unter der Eingabe eines
zugehorigen Bildreprisentanten die hochste Aktivierung aufweisen. Die Verwendung
spezieller Normalisierungsschichten stabilisiert die CNN-basierte Datenverarbeitung
und die Einfithrung von Nicht-Linearitédten erhoht dartiberhinaus die Modellierungs-
kapazitdt des Verfahrens. Unter Anwendung eines geeigneten Strafterms lassen sich
mit Hilfe des backpropagation-Algorithmus alle trainierbaren Gewichte des Netzwerkes
rein datengetrieben anpassen. Diese Art des problemangepassten Filter-Lernens be-
griindet die Méachtigkeit der Methodik im Vergleich zu Verfahren, die zur Extraktion
aussagekraftiger Représentationen auf manuell definierte Filter angewiesen sind.

Eine duflerst erfolgreiche Faltungsnetzarchitektur wird im nachfolgenden Abschnitt
2.3.1 beispielhaft eingefiihrt. Zum einen bildet sie den Unterbau einiger Vergleichsme-
thoden bei Experimenten im Rahmen der vorliegenden Arbeit neu entwickelten Ver-
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Eingabeschicht versteckte Schichten Ausgabeschicht

Lineare Schicht Faltungsschicht

Abb. 2.6: Vereinfachte Darstellung eines Neuronales Netzes mit verschiedenen Schichttypen.
Dargestellt durch blaue Kanten verrechnen die vollverbundenen Netzwerkgewichte
der linearen Schicht die Eingaben (blaue Punkte) zur ersten, versteckten Reprisen-
tation. Angedeutet durch jeweils farbliche Gruppierung generieren im Sinne einer
Faltung danach immer wieder die gleichen drei Gewichte bei der Verarbeitung der
Vorgiangerwerte die zweite Représentation. Diese gewichtete Rekombination wird
bis zur Ausgabeschicht in Verbindung mit weiteren Elementen zur Datennormali-
sierung oder Einfithrung von Nichtlinearitdten durch geeignete Aktivierungsfunk-
tionen weitervollzogen. Im Falle einer Klassifikationsaufgabe wiirden die Gewichte
dahingehend trainiert, dass das zur Eingabe passende, sog. Ausgabeneuron die zah-
lenméBig grofite Aktivierung erfahrt und die Zuordnung zur entsprechenden Klasse
anzeigt.

fahren. Zum Anderen ist sie von den in Abschnitt 2.3.2 beschriebenen Auto-Enkodern
abzugrenzen, die die Grundlage der in Kapitel 4 erdachten Methodik bilden.

2.3.1 Das UNet

In Ronneberger u.a., 2015 stellen die Autoren ein Verfahren zur Bildsegmentierung -
also der pixelweisen Zuweisung zu Klassen wie z.B. Vorder- und Hintergrund - vor und
wenden es zur Zellsegmentierung an. Dabei erweitern sie das in Long u.a., 2015 be-
schriebene Vorgehen zur Definition sogenannter vollstindig faltungsbasierter Netzwerke
(engl.: fully convolutional networks, kurz: FCNs), die erstmals durch geeigneten Ein-
satz von Randbehandlungen und der Formulierung vollverbundener Ausgabeschichten
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Abb. 2.7: UNet-Architektur: Die dargestellte Wahl der Featurekanéle entspricht der Metho-
de aus Ronneberger u.a., 2015. Entlang des kontrahierenden Pfades schlieflen an
die Faltungsschichten maz pooling-Operationen zur Auflésungsveringerung an. Ent-
lang des expandierenden Abschnittes werden transponierte Faltungen zur Auflo-
sungserhohung genutzt. Lokale Information wird mittels skip connections durch
Konkatenation aus dem kontrahierenden Pfad weitergegeben, um zusammen mit
Kontextinformation niedrigerer Auflésungen problemspezifisch aussagekréftige Re-
prasentationen zu generieren.

in Form von 1 x 1-Faltungen eine pixelweise und nicht mehr nur globale Klassifikation
von Eingaben durch CNNs einfiihren.

Abb. 2.7 ldsst auf den ersten Blick die namensgebende U-Struktur der UNet-Archi-
tektur erkennen. Diese besteht aus drei Teilen. Zunéchst gibt es einen kontrahierenden
Pfad, der fiir das Erlernen aussagekraftiger Repriasentationen geeignet ist, welche durch
niedrigere Auflésung globalere Zusammenhénge besser erfassen. Anschliefend bildet
die niedrigste Auflésungsstufe einen Flaschenhals, bei dem die urspriinglich rdumliche
Information teilweise und &hnlich zu einem Auto-Enkoder auf gelernte, hoherdimen-
sionale Kodierungen relevanter Bestandteile abgebildet wird. Hiervon ausgehend kann
schliellich die gewiinschte Représentation auf der Ausgangsauflésung mit dem ezxpan-
dierenden Pfad generiert werden.

Im Vergleich zur FCN-Struktur aus Long u.a., 2015 ergeben sich dabei zwei ent-
scheidende Unterschiede. Zunéchst ist das UNet in seinem Aufbau symmetrisch. Die
dadurch bedingte, vergleichsweise grofie Anzahl lernbarer Filter auf dem expandieren-
den Pfad erlaubt den uneingeschréinkten Transfer relevanter Information und die pro-
blemspezifische Aufbereitung der Flaschenhalskodierungen. Auflerdem leisten die skip
connections ausgestaltet durch Konkatenierung anstelle von Summation einen weite-
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ren entscheidenden Beitrag (graue Pfeile). Die Eingabe zur ersten Faltungsoperation
auf dem expandierenden Pfad wird durch die Konkatenation aus zwei Teilen gebildet:
Zum Einen werden die jeweils letzten Merkmalskarten (engl.: feature maps) der Fal-
tungsoperationen zur Generierung geeigneter Représentationen (rote Pfeile) auf der
gleichen Ebene des kontrahierenden Pfades verwendet. Zum Anderen werden die Re-
konstruktionen der letzten Darstellungen (griine Pfeile) des expandierenden Pfades der
darunterliegenden Auflésungsstufe herangezogen. Auf diese Weise lésst sich lokale In-
formation aus dem kontrahierenden Pfad gemeinsam mit Kontextinformation aus dem
expandierenden Pfad zu einer generell aussagekraftigeren Représentation vereinen.

Uber den Einsatz zur Bildsegmentierung hinaus findet die UNet-Architektur in der
medizinischen Bildverarbeitung auch haufig Anwendung zur Bildregistrierung. Zwei
dahingehende Beispiele werden im Abschnitt 2.4 vorgestellt. Vorher wird aber noch
im néchsten Abschnitt ein spezieller, vom UNet abzugrenzender Faltungsnetz-Auto-
Enkoder (engl.: convolutional auto encoder, kurz: CAE) im Hinblick auf die in Kapitel
4 entwickelte Methode eingefiihrt.

2.3.2 Form-restringierender Faltungsnetz-Auto-Enkoder

Da die final implementierte Registrierungsprozedur der Methodik in Kapitel 4 maf-
geblich auf der in Bouteldja u.a., 2019 vorgestellten und in Abbildung 2.8 illus-
trierten CAE-Architektur fufit, werden als Vorgriff die Besonderheiten dieses Form-
restringierenden Faltungsnetzwerk-Auto-Enkoders im Folgenden dargestellt.

Die erste Besonderheit besteht darin, dass im Gegensatz zum momentanen Stand-
der-Technik-Verfahren, den im vorherigen Abschnitt beschriebenen UNet aus Ronne-
berger u. a., 2015, die Segmentierungen der Organstrukturen génzlich ohne skip connec-
tions gelernt und erstellt werden. Diese Art des Netzwerkdesigns orientiert sich hier
also viel stiarker an uspriinglichen Umsetzungen der Auto-Enkoder-Idee: eine robuste
Représentation der Eingabe in einem Formraum zu finden, der aufgrund seiner nied-
rigeren Dimensionalitit sowohl den Enkoder E (Abb. 2.8, links) als auch den Dekoder
D (rechts) zwingt, sich auf die wesentlichen - hier anatomischen - Merkmale der abge-
bildeten Eingabe zu fokussieren, um eine méglichst identische Version als Ausgabe zu
reproduzieren. Dadurch, dass also die komplette, relevante Information anhand dieser
Zwischenform erfasst werden muss, erlaubt die Manipulation dieser Eintrdge das Gene-
rieren neuer Ausgabeformen durch den Dekoderteil. Dies ist mit der UNet-Architektur
nicht mdoglich, da die skip connections zwischen den jeweiligen Abstraktionsleveln die
FEingabe viel enger mit der Ausgabe verzahnen und so unter Umstéinden die Formre-
prasentationen ignorieren.

Damit der Formraum aber sinnvoll strukturiert ist, d.h. dass benachbarte Kodierun-
gen mittels des Dekoders auch nur leicht verdnderte Formen generieren, muss man die
zweite Besonderheit des Ansatzes beachten. Wahrend des Trainings werden im Hin-
blick auf die spitere Verwendung zur multimodalen Registrierung sowohl CT- und
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Abb. 2.8: Schematische Darstellung des Auto-Enkoder-Faltungsnetzwerkes aus Bouteldja
u. a., 2019. Die Abkiirzung ”conv(3x3x3-s1-10C)” bezeichnet eine Faltungsschicht
mit Filtergrofie 3x3x3, einer Schrittweite von 1x1x1 und 10 Ausgabekanéilen.
kodiert die Eingabe in den 2 -8 -9 -11 = 1584- dimensionalen Formraum. Die
niedrig-dimensionale Formkodierung wird anschliefend vom Dekoder D zuriick in
eine Segmentierung tiberfithrt. Zur Abbildung multimodaler Eingaben in den ge-
meinsamen Formraum besitzt E etwa dreimal so viele Parameter wie D.

MRT-Herz-Bilddaten I; als auch ihre zugehorigen Segmentierungen S; (i = 1, ..., N) al-
ternierend als Eingabe genutzt. Das Verarbeiten der Segmentierungen entspricht dabei
einer direkten Umsetzung des Auto-Enkoder-Ansatzes.

Durch eine spezielle Trainingsroutine angelehnt an Jetley u.a., 2016 soll im Form-
raum dann bei Eingabe von CT- oder MRT-Bildern sichergestellt werden, dass de-
ren Kodierungen moglichst dhnlich zu derjenigen bei Eingabe der korrespondierenden
Segmentierung ist. Dies soll die Interpolation sinnvoller Zwischenformen beim Durch-
schreiten des Formraumes von einer Eingabebildkodierung zur derjenigen der anderen
Modalitédt erlauben, um anschlieBend einen iterativen Registrierungsprozess, der im
Zentrum von Kapitel 4 steht, anleiten zu kénnen. Dementsprechend verarbeitet der
Enkoder multimodale Eingabedaten (CT, MRT & Segmentierungen) und projiziert
deren gesamtes raumliches Volumen in einen gemeinsamen Formraum.

Da der Enkoder £ doméneninvariant lernen muss, d.h. er soll sowohl Formen in Ge-
stalt von Segmentierungen als auch multimodale Bildinhalte in einen gemeinsamen
Raum transfomieren, wird seine Anzahl an trainierbaren Parametern etwa dreimal so
grof3 gewahlt, wie die des Dekoders D und entfernt sich dabei vom symmetrischen
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Aufbau des UNets. Denn D wird nur dahingehend optimiert, die zuvor von E gene-
rierten Formkodierungen wieder in Segmentierungen umzuwandeln, wahrend E neben
der Verarbeitung verschiedener Modalitaten auch gleichzeitig die wesentlichen globalen
Merkmale der Eingabebilder erfassen muss.

Uber die pixelweise Zuordnung von Klassenzugehorigkeiten oder die Generierung
von Zwischenformen hinaus, lassen sich die beschriebenen Faltungsnetze aber auch zum
Zweck der Bildregistrierung einsetzen. Im néchsten Abschnitt werden dazu zwei weitere
Beispiele aus der Literatur eingefiihrt, die sich auf die UNet-Architektur stiitzen.

2.4 Faltungsnetzwerk-basierte Registrierung

Bisher sind in diesem Grundlagenkapitel die klassischen Verfahren der Bildregistrie-
rung und Faltungsnetzwerke unabhéngig voneinander vorgestellt worden. Aus metho-
discher Sicht liegt es allerdings nahe, Faltungsnetzwerke nicht nur zu Segmentierungs-
zwecken einzusetzen. In der Tat sind auch auf dem Gebiet der medizinischen Bildre-
gistrierung eine Vielzahl an Ideen entwickelt worden, wie CNNs zur Pradiktion von
Verschiebungsfeldern genutzt werden konnen.

Anfingliche Methoden, wie z.B. in Rohé u.a., 2017 beschrieben, haben sich auf
das Imitieren der Ausgaben klassischer Verfahren beschrinkt und verbuchen dabei
drastische Laufzeitreduzierungen, sind in der zu erwartenden Qualitét aber durch ihre
Ausgangsverfahren limitiert.

Dementsprechend lasst sich seit der Arbeit aus Vos u.a., 2017 ein Trend zu voll-
umfanglich CNN-basierten Methoden verzeichnen, von denen zwei ausgereifte, auf dem
UNet-basierende Vertreter namens VoxelMorph aus Balakrishnan u. a., 2019 und Label
Reg aus Hu u.a., 2018 im Folgenden besprochen werden. Da letztere das Reprasenta-
tionslernen und die Vorhersage von Transformationsparametern nicht modular trenn-
bar in ein Faltungsnetzwerk integrieren, dienen sie als Vergleichsmethoden fir die im
Rahmen der Arbeit in den Kapiteln 3, 4 und 5 entwickelten Algorithmen, welche die
Strategie einer klaren Aufteilung in trainierbare Deskriptoren zur Kombination mit
iterativen Registrierungsverfahren verfolgen.

2.4.1 VoxelMorph

Die Autoren des in Balakrishnan u.a., 2019 eingefiihrten VozelMorph-Algorithmus
beschreiben ihr Verfahren als uniiberwachtes, voll-umfénglich CNN-basiertes Regis-
trierungsverfahren. Abb. 2.9 zeigt schematisch das Zusammenspiel seiner Hauptbe-
standteile.

Durch geeignete Trainingseingaben, die beispielsweise durch Augmentierungsstrate-
gien wie elastische Bilddeformationen zunehmend komplexe Transformationen simu-
lieren, werden die Parameter 6 der genutzten UNet-Architektur g bei Eingabe eines
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Abb. 2.9: Schematischer Ablauf des VozelMorph-Verfahrens aus Balakrishnan u. a., 2019: Fiir
ein Bildpaar (F, M) als Eingabe generiert eine UNet-dhnliche CNN-Architektur ein
Verschiebungsfeld . Unter Anwendung des Spatial Transformer-Moduls wird das
moving Bild M zur Anpassung an F' transformiert. Wahrend des Trainings wird
die Kombination der Abweichung Lg;,, zwischen F' und ¢ o M mit einem auf ¢
berechneten Regularisierungsterm Lg,,00tn zur Adaption der Netzwerkparameter 6
genutzt.

Bildpaares (F, M) dahingehend adaptiert, dass die finale CNN-Schicht ein sinnvolles
Verschiebungsfeld ¢ ausgibt.

Zentral fiir die Riickfithrung des Gradienten erweist sich dabei die Arbeit Jader-
berg u.a., 2015, welche das Spatial Transformer-Modul einfiihrt. Dieses erlaubt das
differenzierbare Abtasten eines Bildes an Positionen, die durch das Verschiebungsfeld
vorgegeben sind und in der Regel nicht mit den urspriinglichen Gitterpositionen iiber-
einstimmen. Basierend auf bilinearer - bzw. im dreidimensionalen Fall trilinearer -
Interpolation ergibt sich die Moglichkeit anteilig die Bestandteile des Gradienten so-
wohl an das Verschiebungsfeld als auch an die aktuelle moving Bildreprasentation,
welche ebenfalls das Resultat einer CNN-Ausgabe darstellen kann, weiterzuleiten.

Fir monomodale Bildpaare ldsst sich anhand geeigneter Distanzmafle wie SSD
oder NCC ein Strafterm aus der Kombination von Lg;, (F, ¢ o M), basierend auf der
Differenz zwischen dem fized Bild F' und dem transformierten moving Bild M, sowie
dem Glattheitsregularisierer Lg,o0th () berechnen.

Abb. 2.9 zeigt exemplarisch, dass diese Methode nach Abschluss des Trainings in
lediglich einem Vorwértsdurchlauf durch das Netz unter Laufzeiten im Sub-Sekunden-
Bereich ein Verschiebungsfeld ¢ generiert, das sowohl affine Transformationen als auch
lokale Deformationen berticksichtigt.

Ein konzeptionell sehr dhnlicher Ansatz wurde zuvor in Vos u.a., 2017 publiziert.
In Hering u. a., 2019 trainieren die Autoren nacheinander drei UNet-Architekturen in
dhnlicher Weise fiir verschiedene Auflsungsstufen einer Bildpyramide und nutzen als
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Abb. 2.10: Schematischer Ablauf des Label Reg-Verfahrens aus Hu u. a., 2018: Fiir ein Bild-
paar (F, M) als Eingabe generiert eine UNet-dhnliche CNN-Architektur ein Ver-
schiebungsfeld ¢. Unter Anwendung des Spatial Transformer-Moduls wird im Ge-
gensatz zur VozelMorph-Methode die moving Segmentierung M, zur Anpassung
an Fy transformiert. Wahrend des Trainings wird die Kombination der Abwei-
chung Lg;my, zwischen Fy und ¢ o Mg mit einem auf ¢ berechneten Regularisie-
rungsterm Lgmnootn zur Adaption der Netzwerkparameter 6 genutzt. Die gelben
Kreise verdeutlichen moégliche Nichtberiicksichtigung relevanter Strukturen durch
den ausschliefllich den Objektvordergrund fokussierenden Strafterm.

zusétzliches Distanzmafl normalisierte Gradientenfelder. Schliellich demonstriert die
Arbeit Eppenhof u.a., 2019 ein weiteres Verfahren zum Training einer VozelMorph-
dhnlichen Architektur. Dabei dienen im Gegensatz zur Methode aus Hering u. a., 2019
unter kontinuierlich gestalteten Ubergingen fiir verschiedene Auflésungsstufen gene-
rierte Ausgaben ¢ auf dem expandierenden Pfad zur Transformation von M.

2.4.2 Label Reg

In Hu u.a., 2018 wird ein schwach-iiberwachtes, multimodales Registrierungs-
verfahren vorgestellt, dessen urspriingliche Anwendung auf die Registrierung von Ul-
traschallbildern zu MRT-Aufnahmen abzielt. Im Kontext dieser Arbeit dient es als
Vergleichsverfahren fiir die neu entwickelten, multimodalen Ansétze in den Kapi-
teln 4 & 5, sowie als CNN-basierter Registrierungsvertreter auf den monomodalen
Lungen-CT-Daten in Kapitel 3.

Der VozelMorph-Methode dhnlich lernt das Faltungsnetzwerk wéhrend des Trainings
sowohl fiir die Modalitdt des moving Bildes als auch fiir diejenige des fized Bildes
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aussagekriftige Feature zu extrahieren und schliefilich ein dichtes Verschiebungsfeld
auszugeben.

Abb. 2.10 stellt der Ubersicht halber den Ablauf des Algorithmus anhand seiner
Hauptbestandteile dar. Der Loss Lg;,, wird im Gegensatz zu VoxelMorph nicht basie-
rend auf den Eingabebildern der Modalitdten berechnet, sondern aufgrund der Differen-
zen zwischen den zugehorigen, kanalweise und gegléttet vorliegenden Segmentierungen
korrespondierender Organstrukturen. Zur spéateren Testzeit werden dann lediglich die
eigentlichen Bilddaten bendtigt. In der Abbildung ist aber bereits ein Problem der rein
Segmentierungs-basierten Fehlerriickfiihrung durch die gelben Kreise hervorgehoben:
Da zum GroBteil nur dem Vordergrund zugehérige Strukturen in die Ahnlichkeitsbe-
rechnung miteinflieen, kénnen sich die Parameter 6 des CNN gegebenenfalls auf diese
Bildinhalte {iberanpassen und die dritte dargestellte, weifle Struktur unberiicksichtigt
lassen. Dies bewirkt unter Umsténden groflere Fehler beim spéateren Transformieren
des moving Bildes an die Referenz. Aktuelle Weiterentwicklungen der Autoren des
VoxelMorph-Verfahrens greifen den Segmentierungs-basierten Strafterm auf und kom-
binieren ihn mit den Grauwert-Ahnlichkeitsmetriken. Die Autoren in Ha u.a., 2020
nutzen dariiberhinaus eine Kaskade von zwei U-Nets zum Reprasentationslernen und
dazu noch mehrere Netzwerke zur Bestimmung lokaler Deformationen.

Anschliefend an diesen Grundlagenteil der Arbeit folgt nun das erste methodische
Kapitel der Arbeit, dass sich mit stark-iiberwachtem Lernen von Deskriptoren auf
Lungen-CT-Daten zur monomodalen Registrierung beschéftigt. Im Gegensatz zu
den hier eingefiihrten Vergleichsverfahren aus der aktuellen Literatur, setzen alle im
Folgenden entwickelten Algorithmen auf klar zu identifizierende Bestandteile des De-
skriptorlernens in den angewandten, mit klassischen Verfahren kombinierten Methoden
des maschinellen Lernens.
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Kapitel 3

Stark-iiberwachtes Deskriptorlernen in
3D Lungen-CT-Bilddaten

Dieses erste methodische Kapitel der vorliegenden Arbeit stellt einen neuen
Ansatz und Experimente vor, die das generelle Erlernen von aussagekraftigen
Deskriptoren mithilfe tiefer Faltungsnetzwerke demonstrieren. Ergebnisse die-
ses Verfahrens einer stark-iiberwachten, monomodalen Korrespondenzfin-
dungsaufgabe in dreidimensionalen Lungen-CT-Bildern sind in dem als best pa-
per-pramierten Bildverarbeitung fiir die Medizin 2018-Beitrag Blendowski u. a.,
2018a verdffentlicht. Ausgehend von dieser Methode wird untersucht, ob sich die
so erlernten Deskriptoren eignen, Intrapatientenbildpaare verschiedener Atem-
phasen aufeinander zu registrieren. Die weiterfithrenden, vergleichenden Expe-
rimente auf afu einem 6ffentlichen COPD-Datensatz bilden den Inhalt des Bei-
trags Blendowski u.a., 2018b im International Journal for Computer Assisted
Radiology and Surgery, welcher auch im folgenden Kapitel behandelt wird.

3.1 Einleitung & Motivation

Fabbri u. a., 2003 und Rabe u. a., 2007 zufolge steht die chronisch obstruktive Lunge-
nerkrankung (engl.: chronic obstructive pulmonary disease, kurz: COPD) weltweit an
vierter Stelle der haufigsten Todesursachen.

Da die Diagnose einer Krankheit den ersten Schritt zu ihrer Bekdmpfung bildet, kon-
nen Assistenzverfahren im klinischen Alltag einen gesundheitsférderlichen Beitrag zur
Detektion betroffener Lungenregionen in Lungen-CT-Aufnahmen von Patienten leis-
ten. Arzte nutzen dabei die Bildregistrierung, um eingeschlossene Luft in schlecht be-
liifteten Bereichen der Lunge zu lokalisieren. Der klinisch relevante Parameter der Ven-
tilation lésst sich aus diesen Informationen sehr genau schétzen [Reinhardt u. a., 2008].
Unter der Voraussetzung, dass fiir betrachtete Patienten Volumenbilddaten verschiede-
ner Atmungszeitpunkt vorliegen, wurde in Heinrich u. a., 2015a ein Ansatz vorgestellt,
der mittels diskreter Optimierung exzellente Ergebnisse auf einem COPD-Benchmark
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Kapitel 3 Stark-iiberwachtes Deskriptorlernen in 3D Lungen-CT-Bilddaten

Datensatz [Castillo u.a., 2009] liefert. Im Gegensatz zu bildintensitétsbasierten, kon-
tinuierlichen Methoden verarbeitet das darin vorgeschlagene Registrierungsframework
auchjene Bildpaare robust, die grofie, atembedingte Verschiebungen (> 40mm) auf-
weisen. Der Erfolg dieses sog. deeds-Frameworks, das in Abschnitt 2.2.1 vorgestellt
wurde, liegt im diskreten Optimierungsansatz begriindet, der Ahnlichkeitsberechnun-
gen in einem quantisierten Suchraum unter Einbezug auch gréflerer Verschiebungen
gestattet, welche den Einzugsbereich der Feature-Extraktoren iibersteigen und daher
kontinuierliche Methoden stark fordern.

Bislang wurden zur Représentation der lokalen Bildinformation wahrend der An-
wendung von deeds nutzerdefinierte und manuell entworfene Features eingesetzt, um
die Ahnlichkeitsberechnungen zwischen den zu registrierenden Bildpaaren durchzu-
fiithren. Zunehmend bilden aber automatisch anpassbare, tiefe Faltungsnetzwerke die
Speerspitze der Weiterentwicklungen in den Bereichen des Maschinellen Sehens und
der medizinischen Bildverarbeitung. Dies ist hauptséchlich bedingt durch ihre Fahig-
keit datengetrieben aufgabenspezifische Reprisentationen zu erlernen. Die in diesem
Kapitel durchgefiihrten Experimente zielen darauf ab zu untersuchen, ob sich die Auf-
gabe der optimierten Korrespondenzfindung wahrend des Registrierungsprozesses auch
bewerkstelligen ldsst, wenn man die nutzerspezifisch entworfenen Bildfeature durch au-
tomatisiert gelernte Bilddeskriptoren ersetzt.

Hinsichtlich der Verarbeitung von Volumenbilddaten durch deep learning Ansétze
treten verschiedene Probleme auf. Da sich bisher ein Grofiteil der Forschungsarbeit
auf diesem Gebiet mit zweidimensionalen Bilddomé&nen befasst, lassen sich viele im
Bereich des Maschinellen Sehens entwickelte Strategien nicht unverdndert auf drei-
dimensionale, medizinische Bilddaten wie CT-Aufnahmen iibertragen. Beispielsweise
lassen sich duflerst prézise Organsegmentierung erstellen, wenn fiir diese Standardauf-
gabe der medizinischen Bildanalyse DCNNs in Form der in Abschnitt 2.3.1 erlduterten
UNet-Architekturen eingesetzt werden [Ronneberger u. a., 2015]. Allerdings setzen so-
wohl die Speicher- als auch die Rechenanforderungen dem Architekturdesign der Netze
enge Grenzen: im Vergleich zu ihren zweidimensionalen Entsprechungen ist einerseits
die Anzahl der Kanéle und andererseits auch die Tiefe der Netzwerke z.B. in der
Arbeit von Cigek u.a., 2016 zur Segmentierung dreidimensionaler Bilddaten deutlich
reduziert. Aus diesem Grund stellt das Architekturdesign eines 3D-DCNNs fiir die als
noch schwieriger einzuschétzende Vorhersage korrekter, dichter dreidimensionaler Ver-
schiebungsfelder zur Registrierung von Bildpaaren eine Herausforderung im Hinblick
auf momentane Hardwarebeschrankungen dar.

Um den Ressourcenhunger dreidimensionaler Registrierungsalgorithmen zu reduzie-
ren, werden in diesem Kapitel bindre Deskriptoren gelernt, indem der Einsatz eines
zusétzlichen Strafterms die Gewichte des DCNN auf die Ausgabe bindrer Werte be-
schrinkt. Dies ermdglicht eine duBerst effiziente Berechnung der Ahnlichkeiten lokaler
Bildrepréasentationen wiahrend der Auswertung des verschobenen mowving Bildes unter
Ausnutzung spezieller Befehlssitze.
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3.1 Einleitung & Motivation

Inspiriert durch die Methodik aus Weinzaepfel u. a., 2013 wird daher vorgeschlagen,
eine Zwei-Schritt-Strategie zu verwenden, die sich am Ablauf klassischer Bildregis-
trierungsalgorithmen orientiert. Dazu wird die nichtlineare Registrierung als diinn-
besetztes Landmarken-Korrespondenzfindungs-Problem (engl. sparse keypoint mat-
ching) formuliert, dem sich eine thin plate spline-Interpolation anschliefit. Im ersten
Schritt sollen dazu aussagekréaftige Bilddeskriptoren extrahiert werden, welche die Vor-
teile des datengetriebenen Lernens nutzen. Im zweiten Schritt werden sie eingesetzt, um
verlassliche Korrespondenzen im diskreten Optimisierungsprozess der Verschiebungs-
vektorbestimmung zu finden. Da die vorgeschlagene Zwei-Schritt-Strategie Methoden
des deep learnings mit traditionellen Optimisierungstechniken verbindet, ldsst sich von
einem Hybridansatz sprechen.

Um aussagekriftige Deskriptoren zur Registrierung mit einem DCNN zu trainieren,
wird Metriklernen Korrespondenzfindung auf manuell annotierten Bilddaten als Hilfs-
problem herangezogen. Im Gesamtkontext der entwickelten Methoden im Rahmen der
vorliegenden Arbeit handelt sich daher es um das am stiarksten iiberwachte Verfah-
ren, da sich das Lernen der monomodalen Deskriptoren auf punktuell exakt definierte
Landmarken medizinischer Experten stiitzt.

Der Aufbau dieses Kapitels stellt sich wie folgt dar: zuerst wird ein kurzer Uber-
blick an verwandter Literatur diskutiert, bevor im Methodenabschnitt 3.2 eingehend
der im Rahmen der vorliegenden Arbeit entwickelten Ansatz erldutert wird, indem
detailliert auf das Zusammenspiel beider Teile des hybriden Modells eingegangen wird.
Um die Anwendbarkeit der vorgeschlagenen Methodik zu untersuchen, werden im Ab-
schnitt 3.3 Experimente auf dem DIR-lab 3D COPD Patienten Datensatz beschrieben
und durchgefiihrt sowie in Abschnitt 3.4 die zugehorigen Ergebnisse prisentiert. Ab-
schlieBend umfasst Abschnitt 3.5 die Diskussion der experimentellen Ergebnisse samt
abschlieender Schlussfolgerungen.

3.1.1 Literatur

Obwohl speziell im zweidimensionalen Fall voll-integrierte, CNN-basierte Registrie-
rungsansétze wie das FlowNet aus Dosovitskiy u. a., 2015 erfolgreich eingesetzt werden,
bleibt das Generieren dreidimensionaler Verschiebungsfelder fiir medizinische Bildvo-
lumina eine Herausforderung.

Vielversprechende deep learning-Ansétze wurden in z.B. in Vos u.a., 2017, Rohé
u.a., 2017, Hu u.a., 2018 und Balakrishnan u.a., 2019 vorgeschlagen, aber wie die
Autoren von Hering u.a., 2019 feststellen, fallt diesen Methoden das Erfassen und
Vorhersagen grofler - beispielsweise bei Lungenbildern atmungsbedingter - Verschie-
bungen schwer. Daher schlagen letztere im Sinne einer Multilevel-Strategie den Einsatz
von drei aufeinanderfolgenden CNNs fiir verschiedene Auflésungsstufen vor, um auch
groBere Verschiebungen erkennen zu kénnen.
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Wie einleitend bereits erwidhnt, wihlt der hier vorgeschlagene Hybrid-Ansatz einen
anderen Weg und macht sich die diskrete Optimierung iiber eine Menge an vorgege-
benen, auch sehr groflen Verschiebungsvektoren zu nutze. Daher kommt er mit der
Anwendung lediglich eines CNNs zur Deskriptorextraktion aus, wenn auch mit deut-
lich langeren Laufzeiten durch die anschlieBende Verarbeitung im klassischen Regis-
trierungsframework.

Um diesen Nachteil einzuddmmen, werden bindre Feature-Vektoren trainiert. Der-
artige Bilddeskriptoren werden bereits auch ohne Verwendung von gelernten Faltungs-
netzwerken erfolgreich zum Auffinden korrespondierender Positionen in Bilddaten ein-
gesetzt: in Calonder u.a., 2010 werden die in Abschnitt 2.1.1 vorgestellten BRIEF-
Deskriptoren entwickelt, um Ahnlichkeitsvergleiche mit effizienten Berechnungen der
Hamming-Distanzen unter Ausnutzung von xor und popcnt Instruktionen durchzu-
fithren. Diese Art von Deskriptoren ist in der Lage lokale Umgebungen durch die
Auswertung von Intensitétsvergleichen eines Zufallsmusters um den zentralen Pixel
aussagekréiftig zu codieren und erlaubt in Eilertsen u. a., 2017 beispielsweise in Echt-
zeit berechnete Schatzungen des Optischen Flusses zwischen zwei Bildern. Durch die
effizienten Rechenoperationen kommt das beschriebenes Verfahren dabei sogar ohne
den Riickgriff leistungsstarke GPUs aus, da moderne Prozessorinstruktionssitze um
den Faktor 8 beschleunigte Berechnungen erlauben, sofern FlieBkommaarithmetik zur
Distanzberechnung durch ihr binédres Gegenstiick ersetzt wird [Mula u.a., 2017].

In Heinrich u.a., 2013b fithren die Autoren erfolgreich das Konzept der Patch-
basierten Berechnung lokaler Selbstdhnlichkeiten in die dreidimensionale medizinische
Bildverarbeitung ein. Ihr entwickelter SSC-Deskriptor (engl.: self-similarity context,
kurz: SSC) wird bei den spéteren Experimenten als Vergleichsmethode dienen sowie
in diversen Kombinationen mit den im Rahmen dieser Arbeit trainierten Deskriptoren
eingesetzt.

Im Gegensatz zu den bisher erwdhnten, uniiberwachten Methoden, passen CNN-
basierte Ansétze wihrend des Trainings eine Vielzahl von Gewichten lernbarer Fal-
tungsfilter an, um daten- und aufgabenspezifische Features zu erlernen. Wie beispiels-
weise in Liu u.a., 2016 beim Erlernen von Hashfunktionen zum Auffinden &hnlicher
Bilder in groflen Datenmengen demonstriert, ist dieses Erlernen von Deskriptoren vor-
teilhaft.

Auch im Kontext der medizinischen Bildverarbeitung werden CNNs mittlerweile
héufig eingesetzt. Die Umsetzung zufélliger, aber fester Intensitdtsvergleiche nach dem
Vorbild der BRIEF-Deskriptoren durch geeignete Codierung in spérlich-besetzten Fil-
terkernen der ersten Schicht eines CNNs wird in Heinrich u. a., 2017 eingefiihrt. Aller-
dings richtet sich dieses Vorgehen darauf aus ein grofles rezeptives Feld zu erhalten,
um genug Kontextinformation fiir akkurate Pankreassegmentierungen zu aggregieren,
anstatt bindre Ausgabefeature zu produzieren. Weitere 3D-CNN-Architekturen pro-
duzieren ebenfalls vielversprechende Ergebnisse, z.B. bei der Erkennung bosartiger
Knoten innerhalb der Lunge in Dou u. a., 2017 oder zur Prostatasegmentierungen in
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Milletari u. a., 2016. Allerdings stimmen die Ziele dieser Verfahren nicht mit der in die-
sem Kapitel anvisierten Registrierung iiberein. In Conjeti u. a., 2017 werden schlief$lich
gelernte, speichereffiziente Bindrdeskriptoren vorgeschlagen, allerdings nur fiir den Fall
zweidimensionaler Bilder.

Der in diesem Kapitel vorgeschlagene Ansatz untersucht daher das Erlernen von
Binardeskriptoren basierend auf lediglich einigen Landmarkenkorrespondenzen. An-
schliefend kommen die generierten Repréasentationen im bereits existierenden deeds-
Framework zur Feature-basierten Bildregistierung zum Einsatz. Hinsichtlich des zu
untersuchenden Problems ist die im hohen Mafle nicht-lineare Natur der Registrierung
von Lungenbildern aus verschiedenen Atemphasen zu beachten. Ansétze der kontinu-
ierlichen Methoden der Optimierung enden dabei hiufig in lokalen Minima, sofern sie
nicht verschiedene Auflésungsstufen einsetzen. In Muenzing u. a., 2014 vergleichen die
Autoren drei verschiedene kontinuierliche Registrierungsverfahren und ermitteln relati-
ve hohe durchschnittliche Landmarken Fehler auf den DIR-Lab COPD Daten (1.58 mm
Avants u. a., 2008, 4.68 mm Glocker u. a., 2008, 2.19 mm Modat u.a., 2010). In Hein-
rich u. a., 2015a wird jedoch einen wesentlich geringeren Fehler nur von 1.08 mm unter
Verwendung einer diskreten Optimierung in Kombination mit einer Regularisierung er-
reicht, die auf Markov-Zufallsfeldern (engl.: markov random fields, kurz: MRF) beruht.
Aus diesem Grund nutzt das im Folgenden vorgestellte Verfahren die in Heinrich u. a.,
2013a erstmals eingefiihrte Methode. Die Vermeidung der iterativen Optimierung so-
wie die parallele Auswertung einer Vielzahl moglicher diskreter Verschiebungsvektoren
erhohen die Robustheit des finalen Verschiebungsfeldes.

3.2 Methoden

Im Hinblick auf die Registrierung von 3D-Lungen-CT-Bilddaten, wird in Abschnitt
3.2.1 auf das Design des tiefen Faltungsnetzwerkes sowie auf dessen Trainingsprozess
zum Metriklernen unter Einsatz eines triplet loss eingegangen. Anwendung finden die
trainierten Deskriptoren anschliefend beim Einsatz im deeds-Registrierungsframework,
das bereits im Grundlagenabschnitt 2.2.1 eingefiihrt wurde. Abbildung 3.1 vermittelt
einen ersten graphischen Eindruck des Zusammenspiels beider Schritte im vorgeschla-
genen Hybridkonzept.

3.2.1 3D-CNN-basiertes Lernen von Binardeskriptoren

Im Verarbeiten dreidimensionaler medizinischer Bilddaten entstehen viele Probleme
schon aufgrund von Beschrinkungen durch die Speicher- und Rechenleistungen. Aus
diesem Grund ist der in Zhang u.a., 2017 vorgeschlagene Modulaufbau in Form von
Bindrbdumen innerhalb der Netzarchitektur fiir die entwickelte Methodik interessant.
Die Autoren motivieren die Wahl dieser Strukturform hauptséichlich aus zwei Griinden.
Einerseits wollen sie vom Anstieg der expressiven Kapazitat bzw. Kodierungsmaoglich-
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Einatmung Ausatmung Einatmung Ausatmung

A

[Ibin(8) — bin@)llx < [Ibin(@) — bin(@)|x
- d1 wire die passende Verschiebung

/

—
~
& m I = bin()

1) Training eines CNNs, um korrespondierende Landmarken
zwischen maximaler Ein- und Ausatmung zu erkennen

2) Nutze die gelernten Deskriptoren, um wahrend der Registrierung unter
diversen Verschiebungen Ahnlichkeiten zu evaluieren;
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Abb. 3.1: Grundlegende Bestandteile des vorgeschlagenen Hybridansatzes: 1) CNN-basierte
Hilfsaufgabe zum Deskriptorlernen; 2) Ahnlichkeitsberechnungen fiir diverse Ver-
schiebungsvektoren wihrend der diskreten Registrierung basierend auf den erlern-
ten Deskriptoren.

keiten tieferer Netze profitieren. Andererseits soll so das vanishing gradient-Problem
— also der mit zunehmendem Abstand zur Ausgabeschicht immer kleiner werdender
Gradienten — angegangen werden. Diese fiir zweidimensionalen Daten vorgeschlagene
Architektur zeichnet sich im Vergleich zu anderen Methoden bei zunehmender Tie-
fe durch ein moderateres Wachstum der Parameterzahl aus, so dass sie sich fiir eine
Erweiterung auf dreidimensionale Daten zur Extraktion von Deskriptoren gut eignet.

Eine im Rahmen der Arbeit entwickelte Modifikation der Architektur ist in Blendow-
ski u. a., 2018a verdffentlicht. Die Neuerung besteht im Hinzufiigen residualer Verbin-
dungen, welche durch die charakteristisch skip connections der erfolgreichen ResNet-
CNNs aus He u.a., 2016 inspiriert sind. Diese Anpassung erleichtert den Gradienten-
fluss zusétzlich innerhalb der hier vorgeschlagenen, erweiterten Bindrbaum-Struktur
(engl.: extended binary tree, kurz: EBT).

Abbildung 3.2 stellt schematisch den Aufbau eines solchen EBT-Moduls aus seinen
einzelnen Bestandteilen dar. Die neu eingefiihrte, residuale Verbindung der Einga-
bekandle mit der Ausgabe ist durch den roten Block speziell markiert. Entlang der
Dimensionen der Featurekanéle, erinnert die Struktur auferdem an die DenseNet-
Architekturen aus Huang u. a., 2017.

Im Folgenden werden die Charakteristika der neu entwickelten EBT-Module formal
definiert. Die zu verarbeitende Eingabe X eines solchen Moduls ist durch bxcxdxhxw
in ihren Dimensionalitdten beschrieben. Dabei stehen b fiir die Batchgrofle, ¢ fir die
Anzahl der Kanéle, d fiir die raumliche Tiefendimension, sowie A und w fiir deren Hohe,
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respektive Breite. Die Verarbeitung der Eingabe X zur Ausgabe Y ist im hochsten
Abstraktionsgrad durch

Y := fepr(Xs W) = fpra(X; W) + X (3.1)

definiert. Dabei stellt der zweite Summand die residuale Verbindung sicher.

Die Machtigkeit der Funktion fpr4(X;W) aufgrund der Anzahl ihrer lernbaren
Gewichte wird anhand dreier Grofien festgelegt, die aus der Anzahl der Kanéle C,
der Baumtiefe d (wéhlbar aus {1, ...,log2C'}) und der Filtergrofie k bestehen. In der
Terminologie von Graphen und hier im Speziellen von Baumstrukturen bildet X den
Wurzelknoten und wird aus Griinden formaler Konsistenz mit Xg jeft, bezeichnet. Beim
Hinabsteigen des Baumes in Richtung seiner Blattknoten kommen auf jeder Ebene k
zwei solcher lernbarer Funtionen zum Einsatz. fy o und fi rigne werden jeweils auf
den linken Kindknoten Xy _1 jeft der vorherigen Ebene angewandt, so dass die namens-
gebende, aber nicht balancierte Bindrbaumstruktur entsteht. Im Detail umfassen die
Funktionen fj . die weitgehend gebréuchliche Sequenz von Faltungsfiltern - mit Filter-
kerngréflen von 3 x 3 x 3 - mit anschlieenden Batch-Normalisierungsblocken gefolgt
von ReLU-Aktivierungsfunktionen. Wahrend die rdumlichen Dimensionen der Einga-
bedaten bei der Verarbeitung in den einzelnen Baumebenen des EBT-Moduls unver-
andert bleiben, besitzen die jeweiligen Kindsknoten Xy jeft = f.1e ft(Xk_Lleft; Wi left)
und Xy right = fi,right(Xk—11eft; Wh,right) die Anzahl an 2% Kanélen. Diese entspricht
jeweils der Halfte der Kanile ihrer Eingabe Xy _1 1oy aus der dariiberliegenden Ebene.

Die finale Ausgabe des Moduls Y setzt sich aus der Konkatenation jedes rechten
Featuretensors eines Kindsknoten sowie des letzten linken Blattknotens zusammen

IBraA(Xs W) = concat(Xy right; ---» Xd,right» Xd,left) (3.2)

Betrachtet man den schematischen Aufbau innerhalb des EBT-Modules in Abbil-
dung 3.2 um 90° entgegen des Uhrzeigersinnes rotiert, so lésst sich die typische Mul-
tiskalen-Enkoder-Dekoder-Struktur erkennen, die beispielsweise erfolgreich in Ronne-
berger u. a., 2015 als UNet (siehe Abschnitt 2.3.1) eingesetzt wird, - allerdings entlang
der Featurekanaldimensionen.

Als Grundstruktur des eigentlichen CNNs wird in der entwickelten Methode ein
Zwei-Pfad-Netzwerk verwendet. Die gelernten Featuremaps entlang des oberen Pfades
in Abbildung 3.2 werden einer hoheren Anzahl an Transformationen unterworfen, ins-
besondere durch die Verwendung von zwei direkt aufeinander folgenden EBT-Modulen
der Baumtiefe 4. Dahingegen dient der untere Pfad dazu die Eingabedaten in niedrige-
rer Auflésung im Sinne einer gleichzeitig angewandten multi-resolution-Strategie noch
einmal tieferen Netzschichten zuzufiihren. Diese Eingabereprésentationen werden un-
ter Kinsatz von maz pooling-Operationen und eines Faltungsfilters mit Kerngrofie 1
generiert, der daher lediglich zum Sicherstellen der richtigen Kanalanzahl zum additi-
ven Zusammenfiihren beider Pfade dient. Im anschliefenden, gemeinsamen Netzwerk-
teil erhoht der Einsatz von weiteren 4 EBT-Modulen der Baumtiefe 4 die abbildende
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Abb. 3.2: Schematische Darstellung der Deskriptor-CNN-Architecture samt gewéhlten Para-
metern & detaillierte Ilustration des Extended Binary Tree-Modules (EBT).

Kapazitit des Models weiter. Nach einem weiteren Downsampling mit lernbaren Ge-
wichten schliefen sich noch zwei voll verbundene Schichten zur finalen Transformation
auf den Ausgabetensor an.

Die Gewichte des Netzwerks werden mithilfe eines triplet loss-Ansatzes trainiert,
um aussagekraftige Deskriptoren zu generieren. Der in Abbildung 3.3 illustrierte Ab-
lauf zeigt, dass jeweils eine Anker-Landmarke a aus einem Patientenbild zum Zeit-
punkt maximaler Einatmung, eine korrespondierende Landmarke p wiahrend der Aus-
atmung sowie eine nicht passende Landmarkenposition n gegeben sein miissen. Um
diese Landmarken herum werden die Volumina innerhalb des rezeptiven Feldes durch
das CNN in den Featureraum transformiert. Durch Formulierung des Strafterms als
Liripiet = maz{d(a,p)—d(a,n)+m,0} lernt das Netzwerk Deskriptoren, die im Featur-
eraum so abgebildet werden, dass der Abstand d(a,n) zwischen dem Anker a und dem
negativen Beispiel n um einen Sicherheitsbereich m, (engl.: margin, in der Abbildung
rot unterlegt) grofler ist, als die Distanz d(a, p) zu seinem korrespondierenden Partner
P.

Im Hinblick auf den anvisierten Einsatz von xor- und popcount-Operationen zum
effizienten Berechnen der Registrierungsdhnlichkeiten wird ein zusétzlicher Strafterm
Lguant verwendet. Die signum-Funktion findet als letzter Deskriptorextraktionsschritt
Anwendung, da die hier genutzte Registrierung ausschliefllich binidre Eingabedaten
erwartet. Von hashing-basierten Suchmethoden ist bekannt, dass eine solche naive
Quantisierung zu drastischen Qualitédtseinbriichen fithren kann [Simons u.a., 2019].
Lquant sorgt fiir vorzugsweise bindr verteilte Eintrdge in den Deskriptortensoren, da
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Abb. 3.3: Illustration des triplet loss-Ansatzes: Volumina entsprechend der rezeptiven Feld-
grofle eines zu trainierenden CNNs werden um die Anker-Landmarke a, den kor-
respondierenden Partner p und um das negative Beispiel n in den Featureraum
transformiert. Sollte die Distanz d(a,n) kleiner als ein zusétzlicher Sicherheitssaum
m additiv um d(a,p) sein, schliagt sich dies auf die Kostenfunktion beim Training
nieder.

Eintrdge in b;, die stark von {—1, 1} abweichen, betraft werden. Dabei wird die in Liu
u. a., 2016 vorgeschlagene Definition iibernommen

bits

['quant = Z |||bz| - 1”1 (33)
i=1

b bezieht sich hier auf die bits-dimensionale Featurereprisentation des zentral im re-
zeptiven Feld gelegenen Voxel. Um den Quantisierungsschritt noch besser erlernbar zu
machen, wird anstelle der ReLLU-Funktion als letzte Aktivierung vor der finalen voll
verbundenen Schicht ein tangens hyperbolicus (kurz: tanh) genutzt. Dieser hat im Ge-
gensatz zur ReLU-Aktivierung mit [0, 1] einen Bildbereich von [—1, 1]. Schliefilich setzt
sich der gesamte Strafterm zusammen durch

L= Etm’plet +o- ﬁquant (34)

3.2.2 MRF-basierte Registrierungs mittels deeds

Das im Grundlagenabschnitt 2.2.1 beschriebene deeds-Verfahren kommt in der hier
entwickelten, hybriden Zwei-Schritt-Methodik als Optimierungsalgorithmus der Regis-
trierung zum Einsatz. Dazu sind an dieser Stelle zwei Details hinsichtlich der konkreten
Umsetzung des Verfahrens zu erldutern.

Zunéachst wird die notwendige Detektion potentieller Keypunktpositionen im fixed
Bild F durch den Férstner-Operator analog zu Rithaak u.a., 2017b bewerkstelligt.
Sie werden durch ihre sog. distinctiveness (deutsch: Unverwechselbarkeit) D(x) =
1/trace((Gy, * (VFVFEFT))™1) nach vorangehender Gaufifilterung G, charakterisiert.
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Damit aus der zunéchst groflen Zahl an infrage kommenden Positionen lediglich eine
kleinere, aber iiber das gesamte Patientenvolumen verteilte Menge tibrig bleibt, wird ei-
ne Grauwert-Dilatation G,, iiber kubische Nachbarschaftsregionen durchgefithrt. Auf
diesem Ergebnis fithrt dann die Operation D* = maxyeq,, D(y) eine lokale Nicht-
Maximum-Unterdriickung durch, so dass K schliefilich nur Landmarken enthalt, die
D(kr) = D*(kp) geniigen.

Die Wahl des Distanzmafl D zur Beurteilung der Ahnlichkeit und dem Auffinden
korrespondierender Positionen zwischen dem zu registrierenden Bildpaar tragt der spe-
ziellen Bindrform der genutzten Deskriptoren Rechnung. Wie in Abschnitt 3.2.1 be-
schrieben, werden die Deskriptoren an jeder Position in F' und M durch ihre bindren
Représentationen Fy, and My, codiert, so dass sich die Abweichung ihrer Bildinhalte
(engl.: dissimilarities) D an den Positionen kr und 1 effizient iiber ihre Hamming-
Distanzen berechnen lasst

D(kp,1) =1/|P| Y E{Fu(kp +p) & Myp(1+p)} (3.5)
pEP

@ und = bezeichnen die xor- und popcount-Operationen an Positionen p innerhalb
eines lokalen Bildausschnittes P. Sind die Kosten aufgrund der paarweisen Distan-
zen bekannt, so lasst sich schlieflich unter Beriicksichtigung der benachbarten Ver-
schiebungsvektoren ein Transformationsfeld zur Angleichung des Eingabebildpaares
bestimmen.

3.3 Experimente

Da das in diesem Kapitel vorgestellte Hybridverfahren aus der schrittweisen Anwen-
dung zweier Komponenten besteht, bietet es sich an, zunachst die Fahigkeiten des
vorgeschlagenen tiefen Faltungsnetzwerkes zu untersuchen. Mit der Aufgabe einer Kor-
respondenzfindung von Landmarken (engl.: keypoint retrieval task) zwischen verschie-
denen Bildpaaren wird gepriift, wie robust und aussagekréiftig die extrahierten Binér-
deskriptoren sind. Im zweiten Teil der Experimente wird die Registrierungsgenauigkeit
des gesamten Verfahrens unter Einsatz der erlernten Deskriptoren mittels der deeds-
Registrierung im Vergleich zu klassischen Bildfeaturen sowie zu einer Kombination
beider Ansétze beleuchtet.

Der in Castillo u. a., 2009 beschriebene, anspruchsvolle DIR-Lab Benchmark-Daten-
satz dient allen Experimenten als Grundlage. Er beinhaltet 10 paarweise 3D-CT-Scans
(Ein- & Ausatmungsphase), die hier auf die Lungenregion zugeschnitten wurden. Zwei
beispielhafte Schnittbilder sind in Abb. 3.1 dargestellt. Fiir jedes dieser Paare sind
jeweils 300 manuell von medizinischen Experten definierte Landmarken verfiighar, so
dass sich zwischen den beiden Atemphasen korrespondierende Positionen bestimmen
lassen.
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Um das entwickelte Verfahren einem aktuellen, Ende-zu-Ende-trainierten CNN-Re-
gistrierungsansatz gegeniiberzustellen werden auflerdem noch weitere Experimente auf
Segmentierungen der Lungenfliigel der COPD-Daten durchgefiihrt.

3.3.1 Lernen von Deskriptoren mittels anatomischer
Landmarkenkorrespondenzen

Dieses erste Experiment soll Aufschluss dariiber geben, inwieweit die mittels der be-
schriebenen Faltungsnetzarchitektur zu extrahierenden Deskriptoren ihre lokalen Bild-
regionen aussagekriftig beschreiben. Zum Training der Deskriptoren wird das Land-
marken-basierte Triplet-Metrik-Lernen (siehe Abb. 3.3) genutzt, da dessen Lernziel mit
der intendierten Verwendung der Deskriptoren wihrend der Registrierung vergleichbar
ist: Featurereprasentationen von korrespondierenden Landmarkenpaaren aus den Ein-
und Ausatmungsphasen eines Patienten sollen hohe Ahnlichkeiten aufweisen, solche
unterschiedlicher Landmarken hingegen geringe. Im Kontext von Faltungsnetzwerken
mit ihrer hohen Zahl an lernbaren Parametern stellen 10 Patientenpaare a 300 Land-
marken eine vergleichsweise kleine Datenbasis zum Trainieren dar. Um ein mogliches
Overfitting zu verhindern, werden in den Ausatmungsphasen pro Patient noch 3000
weitere Landmarken extrahiert. Wie in Heinrich u. a., 2015a vorgeschlagen, wird der
Forstner-Operator genutzt, um Positionen zu ermitteln, die sich durch ihre Struktur
auszeichnen, und so die Menge erweitern, aus der der richtige Partner wiahrend des Trai-
nings gefunden werden muss. Um die Robustheit der erlernten Binérreprésentationen
zu priifen, wird untersucht, ob die zugehorige Position der Ausatmungsphase mittels ei-
ner k-Néchsten-Nachbarnsuche (kurz: kNN) durch Bestimmung der Hamming-Distanz
aus der Menge aller Landmarken gefunden wird. Im besten Fall sollte jede zugehorige
Position dem néchsten Nachbarn der Landmarke entsprechen (k=1).

Der Trainingsablauf dieses ersten Experiments ist in Blendowski u.a., 2018a be-
schrieben. Das Testen der trainierten Netze nutzt eine leave-one-patient-out-Strategie
und pro Aufteilung der Patientenmenge werden jeweils noch zwei zufillig gezogenen
Patientendatensétze zu Validierungszwecken verwendet. Die implementierte Netzarchi-
tektur umfasst ca. 220.000 Parameter und ist im deep learning-Framework PyTorch
umgesetzt. Alle Modelle werden auf einer Nvidia GTX 1050 Ti 4GB GPU mit einer
BatchgroBe von 128 Eingabevolumina & 253 Voxeln pro Patient in je etwa 90 Minuten
trainiert. Der Hyperparameter des Sicherheitssaumes beim triplet loss wird empirisch
auf m = 5 festgelegt und der Anteil der Quantisierungsfehlerkosten am Gesamstraf-
term £ wird mit o = 0.005 gewichtet.

Nach jeder Epoche, weldhe aus 4096 zufillig gezogenen Triplets besteht, wird der ak-
tuelle Zustand des Netzes anhand zuriickgehaltenen Validierungsdaten evaluiert. Dies
ermoglicht, diejenige Parameterkonfiguration des Netzes fiir die abschlieBende Nutzung
auf den Testdaten zu speichern, welche wihrend der 250 Trainingsepochen den nied-
rigsten Validierungsfehler aufweist (sog. early stopping). Zur Anpassung der Parame-
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ter wird der Adam-Optimierer aus Kingma u. a., 2014 mit sich exponentiell von intial
0.003 auf 0.0001 verringernder Lernrate eingesetzt. Die genaue Anzahl der eingesetzten
EBT-Module (n = 2, n = 4) im konkret implementierten Faltungsnetz resultiert aus
empirischen Tests in frithen Experimenten.

Im Unterschied zum ,naiven“ Informationsgehalt von 32 Bit-Gleitkomma-Werten
in den Eingabevolumina der Groe 25% wird die lokale Umgebung jeder Position nun
durch einen nur 256 Bit Deskriptor beschrieben. Es lasst sich also ein Kompressions-
faktor von ~ 2000 erreichen. Zum Vergleich dient in den Experimenten der in Heinrich
u. a., 2013b beschriebene SSC-Deskriptor (siche Abb. 3.4). Dieser codiert 12 Ahnlich-
keitsberechnungen von rdumlich um den zentralen Voxel angeordneten Bildausschnit-
ten in je 5 Bit, so dass ein 64 Bit grofles Speicherfeld ausreicht, um das Ergebnis zu
speichern. Um eine Vergleichbarkeit hinsichtlich der expressiven Kapazitit der Deskrip-
toren zu gewahrleisten, werden zusétzlich zum initialen SSC-Deskriptor noch weitere
drei Nachbarn an jeweils leicht verschobenen Koordinaten (um 2 Voxel entlang jeder
Achse) zu einer ebenfalls 256 Bit umfassenden Reprisentation zusammengefasst. Letz-
tere wird dann im Folgenden mit SSC bezeichnet und ebenfalls zum Auffinden der
Landmarken-Korrespondenzen herangezogen.

3.3.2 Deskriptor-basierte diskrete Registrierung

Im Folgenden wird die Registrierungsqualitdt der erlernten Featurereprasentationen
untersucht. Dazu werden mehrere Kombinationen aus verschiedenen Deskriptoren ge-
nutzt.

Generell sind zwei Vorbereitungsschritte fiir die Anwendung des Registrierungsfra-
meworks vonnoten. Auf den Einatmungsbildern der Patienten, die aus Laufzeitgriin-
den in halber Auflssung (ca. 2mm3 Voxelgréfe) vorliegen, werden mit dem Forstner-
Operator Landmarkenpositionen zur Deskriptorextraktion ermittelt und zur Registie-
rung genutzt. Insbesondere werden die manuellen Positionen der medizinischen Ex-
perten hier nicht als Vorwissen eingesetzt, sondern lediglich spéater als Testkriterium.
Dies wahrt die Unabhéngigkeit dieses Expertenwissens zur Laufzeit auf bisher ungese-
henen Datensétzen. Auf den als moving Bildern betrachteten Ausatmungsbildern, die
ebenfalls auflésungsreduziert sind, werden allerdings an jeder Position des Bildgitters
die jeweiligen Deskriptoren erhoben. Dies erméglicht, dass ausgehend von den Land-
markenpositionen der Einatmung nun die Ahnlichkeit aller diskreten Verschiebungen
bestimmt werden kann. Danach wird der Nachrichtenaustausch zur Regularisierung
auf dem minimalen Spannbaum der irreguliar verteilten Landmarken durchgefiihrt,
wie in Abschnitt 2.2.1 erldutert. Es sei noch einmal darauf verwiesen, dass es sich bei
den CT-Scans fiir die jeweiligen zur Testzeit eingesetzten Faltungsnetze im Sinne der
leave-one-patient-out-Strategie um ungesehene Daten handelt.

Die Art der extrahierten Deskriptoren variiert pro durchgefithrtem Experiment. Der
CNN-Deskriptor besteht aus einer 256 Bit-Reprasentation des Eingabevolumens um
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den zentralen Voxel von Interesse. Im vorangehenden Abschnitt 3.3.1 wird der Auf-
bau des ebenfalls 256 Bit langen SSC-Deskriptors erldutert, der auch hier zum Ein-
satz kommt. Dariiberhinaus werden noch weitere Featurereprisentationen generiert,
die zusédtzliche Arten von Nachbarschaften betrachten. SSC9 erhebt den originalen 64
Bit-SSC-Deskriptor an den Landmarkenpositionen sowie 8 weitere, benachbarte SSC-
Features. Letztere verteilen sich auf die Ecken eines umgebenden Wiirfels mit einer
Seitenldnge von 4 Voxeln, so dass ein 576 Bit-Deskriptor entsteht. Analog ist CNN9
strukturiert, allerdings ergibt sich aus 256 Bits pro Position insgesamt ein 2304 Bit-
Feature. Der gleich grofile SSC9z4-Deskriptor folgt ebenfalls diesem Aufbau, nutzt da-
bei aber wieder das 256 Bit-SSC-Design. Auflerdem wird auch ein Combi-Deskriptor
mit 640 Bit untersucht. Dieser kombiniert die 256 Bit-CNN-Repréisentation an der
Landmarkenposition mit 6 weiteren SSC-Features, die mit kleinen Verschiebungen
von +2 Voxeln entlang der Achsen extrahiert werden. Abb. 3.4 zeigt die jeweiligen
rdumlichen Strukturen der Deskriptoren.

Zunéchst bietet sich ein Vergleich der Registrierungsgenauigkeit zwischen den Repréa-
sentationen CNN und SSC an, die auch beim Landmarken-Korrespondenzfindungspro-
blem in Abschnitt 3.3.1 herangezogen werden. Aufgrund deren 256 Bit-Gestalt und der
Anwendung der vollen Registrierungspipeline samt Regularisierung (sieche Abschnitt
2.2.1) erhalt dieses Experiment das Kiirzel 266-mrf. Ein Vergleich zwischen den beiden
Deskriptoren dhnlicher Grole Combi und SSC9 findet in Experiment 640-mrf statt.
Dem gegeniiber steht in 640-no_reg die Betrachtung, wie sich das Auslassen der Regu-
larisierung auf die Registrierungsgenauigkeit auswirkt. Selbiges wird in 2304-no_reg
beibehalten, um zu untersuchen, ob CNN9- und SSC9z/-Feature durch ihr grofleres
rezeptives Feld in der Lage sind, auch rdumlich weiter entfernte Korrespondenzen zu
erkennen.

3.3.3 Vergleich mit Ende-zu-Ende-trainierten
Registrierungsverfahren

In Hu u. a., 2018 wird ein schwach-iiberwachtes, multimodales Registrierungsver-
fahren vorgestellt, das urspriinglich zur US-MRT-Registrierung eingesetzt wird und in
2.4.2 kurz eingefiithrt wurde. Da dieser Ansatz nur fiir eine kleine Anzahl an rdumlich
ausgedehnten und nicht exakt lokalisierten manuellen Landmarken entwickelt wurde,
miissen die Daten fiir dieses Experiment angepasst werden. Anstelle der Nutzung von
Landmarken werden manuelle Segmentierungen der Lungenlappen erstellt und zum
Training fiir den Label Reg-Ansatz verwendet, um dem Vorgehen von Hu et al. mog-
lichst &hnlich zu sein. Die leave-one-patient-out-Strategie wird aber auch in diesem
Falle genutzt, um die sonstigen Randbedingungen der Experimente beizubehalten.
Allerdings werden analog zur Beschreibung in Hu u. a., 2018 die Dice-Werte der anno-
tierten Strukturen als Giitemafl beibehalten.
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Abb. 3.4: Riumliche Darstellungen zur Verdeutlichung des Aufbaus der verschiedenen, einge-
setzten Deskriptorarten. Die Position des betrachteten Voxels ist mit roter Umran-
dung gekennzeichnet. SSC-Deskriptoren sind im Gegensatz zu den CNN-Vertretern
klassische, manuell definierte Feature.

Dartiberhinaus ldsst sich das selbst-iiberwachte, in Abschnitt 2.4.1 beschriebe-
ne VoxelMorph-Verfahren aus Balakrishnan u. a., 2019 ebenfalls auf diesen Datensatz
anwenden und nach einer Trainingsphase zur Registrierung der beiden verschiedenen
Atemphasen pro Patient nutzen. In diesem Fall wird wieder auf die Bestimmung der
TRE-Werte zuriickgegriffen.

3.4 Ergebnisse
Entsprechend der Zweiteilung der Experimente, présentiert der erste Teil des folgen-

den Abschnittes die Ergebnisse des Landmarken-Korrespondenzfindungsproblems. An-
schlieend werden die Resultate der erlernten Deskriptoren innerhalb der diskreten de-
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Abb. 3.5: Resultate des Landmarken-Korrespondenzfindungsproblems. Links: Wiedererken-
nungsraten: Combi & binCNN vs. SSC Heinrich u. a., 2013b; rechts: Normalisierte
Verteilung der CNN-Ausgabewerte

eds-Registrierung auf dem anspruchsvollen DIR-lab COPD-Datensatz beziiglich ihrer
rdumlichen Beschreibungsfihigkeit dargelegt. Hinsichtlich der paarweisen Registrie-
rung wird zum Vergleich auch das Ergebnis der Ende-zu-Ende-trainierten Methode
aus Hu u.a., 2018 angegeben, sowie Werte fiir VozelMorph aus der Literatur.

3.4.1 Evaluation des Landmarken-Korrespondenzfindungsproblems

Die linke Seite in Abb. 3.5 veranschaulicht die mittlere Wiedererkennungsrate beim
Landmarken-Korrespondenzfindungsproblem des in diesem Kapitel entwickelten und
trainierten CNN-Binérdeskriptor (blau). Gemittelt iiber die Patienten ist dazu ist auf
der vertikalen Achse der Anteil der 300 manuell annotierten Landmarken aufgetra-
gen, fir welchen die Menge der k-Néchsten-Nachbarn den korrespondierenden Partner
enthdlt. Im Vergleich dazu ist in rot das Ergebnis des SSC-Deskriptors als Mafistab
dargestellt. Weiterhin illustriert die gelbe Kurve das Abschneiden des ebenfalls entwi-
ckelten Combi-Deskriptors. Dabei liegt die Wiedererkennungsrate des CNN-basierten
Deskriptors konstant oberhalb derjenigen des untrainierten Vergleichsmafistabes, bei-
spielsweise ldsst sich bei k = 10 eine Verbesserung von 53% auf 73% feststellen. Das
durchweg beste Ergebnis der drei herangezogenen Deskriptoren erzielt die Kombination
des CNN-Deskriptors mit SSC-Features, mit 85% bei k& = 10.

Um den Einfluss des zusétzlichen Strafterms zur Binarisierung der Netzausgabe zu
visualisieren, dient die rechte Seite in Abb. 3.5. Dort ist die Entwicklung hin zu ei-
ner Binérverteilung in den Vektoreintrdgen der CNN-Feature {iber die Trainingsepo-
chen hinweg nachzuvollziehen. Wahrend der ersten 80 Epochen dominiert Liyipe¢ zur
sinnvollen Transformation &hnlicher Landmarken in den Featureraum. Anschlieffend
fokusiert sich das CNN-Training auf das Ausgeben von Werten nahe {—1,1}. Ohne
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Tabelle 3.1: Resultate der Registrierungsaufgabe. Angebegen wird jeweils die mittlere Regis-
trierungsgenauigkeit iiber alle 10 Patienten. SSC9 erreicht den iiber alle Land-
marken und Patienten gemittelten geringsten target registration error (TRE).
Zur Einordnung sind die TRE-Werte des vollstindig CNN-basierten, Ende-
zu-Ende-trainierten VoxelMorph-Ansatzes aus Balakrishnan u.a., 2019 aufge-
fithrt. Im Vergleich mit dem auf Segmentierungen der Lungenlappen wiederum
Ende-zu-Ende-trainierten Label Reg-Verfahren aus Hu u. a., 2018 zeigt sich die
mrf-640-Combi-Methodik hinsichtlich der Dice-Metrik deutlich iiberlegen.

Experiment  Deskriptor & average TRE @ maximum TRE
NN .00+04 15.66 £ 5.1
256-mrf ¢ 3.00£0.48 5.06 £ 5.18 mit MRF-
SSC 1.97£0.51 14.44 £5.48
Combi 1.59 £ 0.27 9.47 4+ 3.13 .
640-mrf Regularisierer
SSC9 1.49+0.33 12.14 £ 5.46
Combi 9.61 +£0.77 40.27 £ 5.16
640-no_reg omot ohne MRF-
SS5C9 11.44 +£1.33 43.94 + 3.82
CNN9 4.70 +0.93 37.80 + 11.04 .
2304-no_reg Regularisierer
SSC9x4 7.27+1.53 37.74 + 6.56
aus
VoxelMorph  integriert 9.18 £4.48 —
Hansen u. a., 2020
Experiment  Deskriptor @ Dice
init 0.761 £ 2.33 Lungen-
Label Reg integriert 0.817 + 3.27 lappen-
640-mrf Combi 0.894 + 2.06 Annotierung

den Quantisierungsterm Lgyqns sinkt die Wiedererkennungsrate in den durchgefiihrten
Experimenten beispielsweise bei k& = 10 auf ~ 60% herab.

3.4.2 Evaluation der Registrierungsgenauigkeit

Tabelle 3.1 enthilt eine Ubersicht aller durchgefiihrten Registrierungsexperimente. Fiir
jede innerhalb des deeds-Frameworks eingesetzte Deskriptorart werden die mittleren
Werte sowohl fiir den durchschnittlichen target registration error (TRE) als auch fiir
den maximalen TRE iiber alle 10 Testpatienten hinweg aufgefiihrt. Diese Werte quan-
tifizieren die Unterschiede zwischen den durch die Registrierung geschétzten Landmar-
kenpositionen und den tatsachlich durch die medizinischen Experten im Einatmungs-
scan annotierten Positionen.
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3.4 Ergebnisse

Im Rahmen des 640-mrf Experiments werden die besten Registrierungswerte er-
reicht. Den geringsten TRE erzielt dabei die SSC9-Architektur mit geringfiigig besse-
ren Werten als die Combi-Feature. Allerdings erreichen letztere den besten Wert be-
ziiglich des maximalen TREs. Die ebenfalls unter Regularisierung ausgefithrten SSC-
Experimente fithren zu vergleichbaren Fehlergrofien. Die lediglich um den zentralen
Voxel basierte CNN-Reprisentation weist dahingegen schon etwas grofiere Genauig-
keitsabweichungen auf.

Betrachtet man die Experimente 640-no_reg unter Ausschluss der Regularisierung,
so stellt man fest, dass nun die Kombination aus gelernten und klassischen Featu-
ren dem manuell entworfenen SSC9-Deskriptor iiberlegen ist. Schliellich néhert sich
der CNN-basierte CNN9-Deskriptor unter Einbezug einer grofieren Nachbarschaftsbe-
trachtung den mittleren TRE-Werten der Verfahren mit Regularisierung an.

Insgesamt legen die Ergebnisse nahe, dass die SSC-Feature im Vergleich lokal ro-
bustere Beschreibungen von Lungenscans liefern konnen. Insbesondere das 640-mrf
Experiment lasst aber den Riickschluss zu, dass die Anreicherung der SSC-Feature um
CNN-basierte Représentationen zu einem stérkeren Einfluss auch regionaler Informa-
tion fiihrt. Dies begiinstigt die Vorhersage auch groflerer, atmungsbedingter Bewegun-
gen. Diesen Eindruck verstidrken auch die ermutigenden Ergebnisse der CNN9-Feature
ohne Einsatz von Regularisierung. Sie erreichen TRE-Werte von 4.7mm und demons-
trieren damit ihre Fahigkeit robust Korrespondenzen zwischen beiden Atemphasen zu
erkennen. Abb. 3.6 untermauert dies weiterhin, indem sich in der linken Grafik unter
FEinbezug des Regularisierers kaum Genauigkeitsunterschiede zwischen den manuell de-
finierten und den erlernten Deskriptoren ergeben. Im Gegensatz dazu zeigt sich ohne
Regularisierung auf der rechten Seite, dass die Beriicksichtigung regionaler Informati-
on durch die CNN-Verfahren im Vergleich deutliche Genauigkeitszuwéchse ermdoglicht.
Beispielhaft vergleicht Abb. 3.7 visuell die transformierten Ausatmungsbilder des Pati-
enten 2 auf den zugehorigen Einatmungsscan. Das Berticksichtigen regionaler Informa-
tion durch den CNN-basierten Combi-Deskriptor verbessert die Ubereinstimmung im
Vergleich des rechten Bildes zum mittleren (SSC9) an der durch den Pfeil markierten
Stelle.

3.4.3 Vergleich mit einem Ende-zu-Ende-trainierten
Registrierungsverfahren

Fiir den Vergleich mit einem aktuellen Ende-zu-Ende-trainierten Registrierungsnetz-
werk wird das Label Reg-Verfahren aus Hu u.a., 2018 herangezogen. Nach Abschluss
des Trainings generiert das Verfahren fiir ungesehene Testpaare dichte Verschiebungs-
felder. Da auf den Lungenlappensegmentierungen trainiert wurde, die eine Anpassung
grofifldchiger Bereiche verursacht, wird diese Aufgabe auch fiir einen fairen Vergleich
herangezogen - d.h. anstatt die TRE-Werte als stark lokales Maf§ zu betrachten, wird
die Gesamtiiberlappung der anatomischen Struktur betrachtet. Gegeniiber den initia-
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Abb. 3.6: Prozentuale, kummulative Darstellung der TRE-Werte. Links: Unter Einbezug des
Regularisierers féllt lediglich der reine CNN-Deskriptor leicht zuriick. Rechts: Ohne
Regularisierung trigt die erlernte Beachtung regionaler Information mafigeblich zur
Robustheit der faltungsnetzbasierten Deskriptoren bei.

Abb. 3.7: Visuelle Registrierungssergebnisse anhand eines Sagittalschnittes durch den Ein-
atmungsscan von Patient 2. Links: Uberlagerung des nicht-registrierten, zugehori-
gen Ausatmungsscan. Mitte & Rechts: Die transformierten Ausatmungsscans un-
ter Anwendung der Verschiebungsfelder basierend auf SSC9- (m) und Combi-
Deskriptoren (r). Die roten Pfeile heben die verbesserte Ubereinstimmung an ei-
ner anatomischen UnregelméfBigkeit durch die Verwendung regionaler Information
durch den CNN-Ansatz hervor.
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3.5 Diskussion & Zusammenfassung

len, durchschnittlichen Dice-Werten von 76.0% iiber 4 annotierte Lungenlappen verbes-
sern sich diese Werte auf 81.7%. Wendet man nun die Verschiebungsfelder, die mittels
der Combi-Deskriptoren und des deeds-Verfahrens im 640-mrf-Experiment berechnet
werden auf die gleichen Segmentierungen an, so wird ein deutlich besseres Ergebnis von
89.4% erzielt. Letzteres, obwohl diese Segmentierungsmasken im Gegensatz zu Label
Reg bei der hybriden Methodik nicht zu Trainingszwecken genutzt wurden.

Laut Hansen u.a., 2020 erreicht das VoxelMorph-Verfahren hinsichtlich des Target-
Registration-Errors Werte von 9.18 mm. Diese liegen im Bereich der Combi-Deskriptoren
ohne die Verwendung einer Regularisierung. Der nur halb so grofle TRE-Wert der
SS5C9z4-Deskriptoren unterstreicht hingegen, dass voll umfassend CNN-basierte, Ende-
zu-Ende-trainierte Registrierungsmethoden gerade auf kleinen Datensdtzen noch nicht
die Genauigkeiten klassischer, diskreter Methoden erreichen.

3.5 Diskussion & Zusammenfassung

Dieses Kapitel zeigt, dass das stark-iiberwachte Training von monomodalen De-
skriptoren im Rahmen einer Landmarken-Korrespondenzfindungsaufgabe moglich ist
und dass diese in einem diskreten Registrierungsframework gewinnbringend eingesetzt
werden kénnen. Die mittels der CNN9-Feature erreichten Registrierungsgenauigkeiten
ohne jegliche komplexe, graphenbasierte Regularisierungsstrategie zeigen Wege fiir wei-
tere Forschungsarbeiten auf diesem Gebiet auf. Sei es in Form schneller, interaktiver
Korrespondenzfindung oder sogar globaler, nicht-rigider Registrierung, die dank ihrer
gelernten Deskriptoren nicht auf affine Vorregistrierung oder manuelles Zurechtschnei-
den auf sog. regions of interest angewiesen ist. Dariiberhinaus miissen alle Ergebnisse
vor dem Hintergrund des Trainingsprozesses der Deskriptoren betrachtet werden. Im
Gegensatz zu im Allgemeinen sehr robusten, manuell entworfenen Deskriptoren, wel-
che sogar fast strukturlose Bildbereiche durch hohe Selbstdhnlichkeitswerte sinnvoll
codieren, ist das Verhalten der CNN-basierten Reprasentationen in diesen Situationen
bislang nicht eindeutig vorherzusehen. Dies riihrt daher, dass aufgrund der starken
Uberwachung im Training nur anatomisch markante Positionen beim Anpassen der
lernbaren Netzparameter eine Rolle spielen. Dennoch erleichtert diese Art von Sur-
rogataufgabe gerade das Auffinden von Korrespondenzen mit gréflerem rdumlichen
Abstand, da der Fokus wirklich auf genaue Korrespondenzen und nicht nur bloe Ahn-
lichkeit potentiell verschiedener Landmarken gelegt wird. Dementsprechen kénnen sich
zukiinftige Arbeiten auch mit aufwendigeren Trainingsstrategien befassen, die der ei-
gentlichen Ahnlichkeitssuche wihrend der Registrierungsaufgabe noch niher kommen.

Im Vergleich zu Stand-der-Technik Ende-zu-Ende-trainierten Registrierungsverfah-
ren von Hu u. a., 2018 und Balakrishnan u. a., 2019 zeigt sich allerdings gerade hinsicht-
lich grofler atembedingter Verschiebungen der Vorteil diskreter Optimierungsansétze,
wie sie in der entwickelten Hybridmethodik zum Einsatz kommt.
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Insgesamt betrachtet wird ein CNN-basiertes Verfahren entwickelt um aussagekraf-
tige 3D-Binérdeskriptoren zu lernen. Diese zeigen im Vergleich zu manuell entworfe-
nen Deskriptoren eine iiberlegene Wiedererkennungsrate beziiglich der direkten Korre-
spondenzsuche. Da sich in den eigentlichen Registrierungsexperimenten das Verhéltnis
umgekehrt darstellt, zeigt sich die Notwendigkeit einer weiteren Verbesserung des Trai-
ningsprozesses. Die Kombination beider Repréasentationsarten aber, welche die Vorteile
der lokalen Robustheit manueller Deskriptoren mit der regionalen Informationsextrak-
tion des CNN-Part verbindet, ermdglicht die insgesamt beste Registrierungsgenauig-
keit. Die Synergie datengetriebener Lernverfahren kombiniert mit Domanenwissen iiber
die Wichtigkeit von beispielsweise Kanten- und Orientierungsinformation der manuell
definierten Deskriptoren weist deshalb ebenfalls auf Méglichkeiten fiir weitere Arbeiten
hin.

Im néchsten Kapitel wird ebenfalls ein zweistufiges Verfahren zur Registrierung me-
dizinischer Volumenbilddaten entwickelt, allerdings dann unter schwach-iiberwach-
tem Training und fiir ein multimodales Problem - also hinsichtlich dieser Punkte
unter noch grofleren Herausforderungen.
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Kapitel 4

Schwach-iiberwachtes Deskriptorlernen
in multimodalen 3D Herz-Bilddaten

Das nachfolgende, zweite methodische Kapitel dieser Arbeit untersucht ein
multimodales CT-MRT-Registrierungsproblem auf ungepaarten Herzdaten.
Dazu werden mit Hilfe eines speziellen Auto-Enkoders schwach-iiberwacht
gelernte Deskriptoren zum iterativen Fiihren des segmentierungsbasierten Re-
gistrierungsprozess eingesetzt. Die entwickelte Methodik ist im Beitrag Blen-
dowski u.a., 2020a im International Journal for Computer Assisted Radiology
and Surgery veroffentlicht worden.

4.1 Einleitung & Motivation

Zu diagnostischen Zwecken eingesetzte Bildgebungsverfahren wie CT und MRT haben
unterschiedliche Stédrken beispielsweise in Bezug auf ihre zeitliche Auflésung oder die
Darstellung verschiedener Gewebearten. Insbesondere die nicht-rigide Registrierung
beider Modalitédten ist aber klinisch hochst relevant beispielsweise bei Bild-gestiitzten
FEingriffen oder der Strahlentherapie. Kapitel 3 illustriert mit dem Problem der Kom-
pensation atembedingter Bewegungen bereits bei Registrierungen auftretende Schwie-
rigkeiten - neben anderen Faktoren wie fortschreitenden, morphologischen Verédnde-
rungen durch Krankheiten. Im multimodalen Kontext kommen dariiber hinaus z.B.
noch hochgradig nicht-lineare Intensitdtsbezichungen fiir korrespondierende Gewebe-
arten erschwerend hinzu.

In diesem Kapitel wird daher eine Methodik vorgeschlagen, die auf einem speziell
anhand von Segmentierungen gelernten, zwischen beiden Modalitédten geteilten, ab-
strakten Formraum basiert. Das Ziel dieser gemeinsamen Abstrahierung ist es, das
multimodale Registrierungsproblem der gleichzeitigen rdumlichen Anpassung und
des Abstimmens der Intensitidten zu vereinfachen. Diese schwach-iiberwacht ge-
lernten Transformationen erméglichen eine Rekonstruktion der anatomischen Formen
unabhéingig von ihren Modalitaten, so dass eine schrittweise geleitete Registrierung
zwischen CT- und MRT-Herzbildern durchgefithrt werden kann.
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In Anbetracht der bisherigen Arbeit ergeben sich sowohl durch die Art der zu re-
gistrierenden Bilddaten samt zu lernenden Deskriptoren im multimodalen Umfeld
als auch in der Form der Uberwachung Verinderungen zu Kapitel 3. Letztere ist im
Gegensatz zu den manuellen, exakten Landmarken nun nur noch schwach in Form
von Segmentierungen gegeben.

Inhaltlich wird nachstehend zunichst in Abschnitt 4.1.1 ein kurzer Uberblick an
relevanter Literatur gegeben. Abschnitt 4.2 greift einerseits den zugrunde liegenden
Auto-Enkoder-Ansatz aus Abschnitt 2.3.2 auf und fithrt andererseits die daraufbasie-
rende Registrierungsmethode ein. Anschliefend werden in Abschnitt 4.3 die deskriptive
Qualitéat der Transformation in den nicht-linearen Formraum sowie die Robustheit der
schrittweise geleiteten Registrierung untersucht. Schliellich folgen in Abschnitt 4.4
noch eine Diskussion der Ergebnisse und ein Ausblick auf weitere, sich daraus erge-
bende Fragestellungen.

4.1.1 Literatur

Zur Beurteilung, wie gut ein Bildpaar korrespondierende Strukturen ortlich iiberein-
stimmend abbildet, benétigt man AhnlichkeitsmaBe Hajnal u. a., 2001. Handelt es sich
dabei um Bilder der gleichen Modalitét, kann die Summe der quadratischen Grauwert-
differenzen bereits dieser Aufgabe geniigen. Aufgrund der hochgradig nicht-linearen
Beziehung zwischen Intensitatswerten gleicher Gewebearten im Falle der Registrierung
von Bildern verschiedener Modalitéten, sind dabei methodisch komplexere Strategien
notwendig.

Dazu zéhlt klassischerweise die Ahnlichkeitsberechnung mittels mutual information,
einer Methode der Informationstheorie, die von Maes u. a., 1997 erstmals auf Probleme
der medizinischen Bildregistrierung angewendet und die in Abschnitt 2.1.2 vorgestellt
wurde. In Zéllei u. a., 2003 weisen die Autoren allerdings nach, dass irrefithrende statis-
tische Korrelationen fir bestimmte Bildmuster entstehen konnen, die keine real vorlie-
gende, anatomische Entsprechung haben. Daraus resultierende, unplausible raumliche
Transformationen kénnen vermieden werden, wenn als alternative Strategie die Uber-
fiihrung der Bilddaten verschiedener Modalitaten in einen gemeinsamen Raum verfolgt
wird.

Die aus Kapitel 3 bereits bekannten und in Heinrich u. a., 2012 vorgeschlagenen SSC-
bzw. MIND-Deskriptoren stellen ein solches Verfahren dar. Trotz der iiberzeugenden
Ergebnisse dieser manuell entworfenen Deskriptoren beschéftigen sich viele Arbeiten
aufgrund der Erfolge von CNNs mit lernbaren Représentationen, allerdings zumeist
nur fiir Bilder gleicher Ursprungsmodalitdten. Da dieses Kapitel ein multimodales
Registrierungsproblem zum Gegenstand hat, ist auf den in Abschnitt 2.4.2 vorgestell-
ten Ansatz aus Hu u.a., 2018 zu verweisen. Dieser benttigt zum Training allerdings
eine in diesem Umfang fiir medizinische Bilddaten hdufig nicht vorhandene Datenbasis
von mehr als 100 gepaarten MRT- und Ultraschall-Patientenscans samt Annotationen.
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4.2 Methoden

Ein unter Ausnutzung von Forminformation als a-priori-Wissen lernbares Verfahren fiir
eine neue Modalitdt ohne Verfligbarkeit gepaarter Daten wird in Joyce u.a., 2018 vor-
gestellt. Diese Methode hat aber die Bildsegmentierung und nicht die Bildregistrierung
zum Ziel.

Der in Abschnitt 4.2 beschriebene Ansatz verfolgt eine segmentierungsbasierte Re-
gistrierungsstrategie. Fiir eine umfassende Ubersicht und Einfiihrung in die Thematik
sei der geneigte Leser auf Maintz u.a., 1998 und Sotiras u.a., 2013 verwiesen. Ei-
ne obere Schranke fiir die abschlieend zu erzielende Registrierungsgenauigkeit stellt
im Fall der angewandten Methodik die Qualitdt der zugrundeliegenden Segmentie-
rung der Zielstruktur dar. Statistische Formmodelle bieten einen klassischen Ansatz
zur Generierung von Segmentierungen. Gerade in diesem Bereich sind mithilfe von Fal-
tungsnetzwerken aber grofle Genauigkeitszuwéchse erzielt worden, so dass in Bouteldja
u. a., 2019 eine Faltungsnetz-basierte Auto-Enkoder-Methode entwickelt wurde, die in
Abschnitt 2.3.2 erldutert wird und im Folgenden als Grundlage dient.

Darauf aufbauend adressiert die in diesem Kapitel prasentierte Methode einige Pro-
bleme Deep Learning-basierter Registrierungsansitze. Im Gegensatz zu den Arbeiten
von Rohé u. a., 2017 oder Dosovitskiy u. a., 2015 werden weder gepaarte, bereits regis-
trierte Bilddaten noch Landmarken oder auch die korrekten (synthetischen) Deforma-
tionsfelder zum Training benotigt. Durch die lediglich schwache Uberwachung in
Form von Segmentierungen, auf die auch Hu u. a., 2018 oder Joyce u. a., 2018 in ihren
Arbeiten zuriickgreifen, entfillt das aufwendige Generieren dieser Art von Grundwahr-
heiten.

Der im vorliegenden Kapitel entwickelte Ansatz stellt in dieser Form zwei Neuerun-
gen bereit. Einerseits wird d&hnlich wie in Kapitel 3 ein klassisches optimierungsbasiertes
Registrierungsframework genutzt, hier aber in Kombination mit schwach-iiberwacht
gelerntem Form-Vorwissen, an Stelle der zuvor herangezogenen stark-iiberwacht ge-
nerierten Bindr-Deskriptoren. Dadurch lésst sich die Abhédngigkeit des Lernens eines
modalititsunabhéngigen Ahnlichkeitsmafies von paarweise zum Trainieren benédtigten
Korrespondenzen aufbrechen. Andererseits ermoglicht die spezielle Art des Trainings
der Formen das schrittweise Fiihren des Registrierungsprozesses durch Interpolationen
von Zwischenrepréisentationen der betrachteten anatomischen Strukturen.

4.2 Methoden

Die detaillierte Einfiilhrung des entwickelten multimodalen Registierungsansatzes
setzt zunéchst das Verstdndnis des gewdhlten Form-Generators voraus. Denn die Me-
thode stiitzt sich auf die Annahme, dass plausible Korrespondenzen beim Bildan-
passungsprozess zwischen zwei grundlegend verschiedenen Bilddoménen wie CT- und
MRT-Daten einfacher anhand von zugehorigen Segmentierungen identischer Struk-
turen durchzufithren sind. Aus diesem Grund wird die verwendete CAE-Architektur
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bereits im Grundlagenabschnitt 2.3.2 beschrieben und an dieser Stelle wird nur auf
problemspezifische Anderungen, die die Trainingsprozedur betreffen, eingangen. Durch
interpolierte Formen zwischen den anzugleichenden Bildern wird der eigentliche Regis-
trierungsalgorithmus in die Lage versetzt, potentiell starke nicht-lineare Deformation
iterativ gefithrt in mehreren kleinen, statt in einem grofien Schritt zu ermitteln. Die
Details dieses Vorgehens werden dann in Abschnitt 4.2.2 erldutert.

4.2.1 CAE zur Form-restringierten Segmentierung

Die grundlegende Funktionsweise des CNN-Auto-Enkoders wird aus der Veroffentli-
chung von Bouteldja u.a., 2019, wie in Abschnitt 2.3.2 beschrieben und in Abb. 2.8
dargestellt, iibernommen. Im Detail ist dabei anzumerken, dass abhéngig von der je-
weiligen Trainingseingabe die erste Faltungsschicht des Netzwerkes ausgetauscht wird,
da die Multi-Organ-Segmentierungen in Form von One-Hot-kodierten Mehrkanalbil-
dern und im Gegensatz dazu die CT- und MRT-Daten als Ein-Kanal-Grauwertbilder
vorliegen. Dem Netzwerk werden dann beim Training jeweils ausschliellich aus Grau-
wertbildern oder Segmentierungen bestehende Mini-Batches présentiert.

Im Falle der Segmentierungen verarbeitet die gesamte Auto-Enkoder-Architektur
die Eingabe, so dass die Parameter der beiden Bestandteile £ und D mit Hilfe des
Cross Entropy-Loss (kurz: CE) basierend auf dem Rekonstruktionsfehler angepasst
werden. Bei der Eingabe von CT- und MRT-Bilddaten sollen durch das Faltungsnetz
ebenfalls die zugehorigen Segmentierungen generiert werden. Nach Berechnung des
CE-Losses CE{D(E(I;)),S;} - zwischen den zur schwachen Uberwachung vorlie-
genden Segmentierungsgrundwahrheiten S; und den vom Faltungsnetz rekonstruierten
Formen D(E(I;)) - werden wéhrend der Fehlerriickfiihrung hingegen nun die Parame-
ter des Dekoders D fixiert und nur die des Enkoders E angepasst. Auflerdem folgt
die Umsetzung dieses Kapitels einer leichten Abénderung in Bouteldja u.a., 2019 ge-
geniiber der Pionierarbeit Jetley2016. Die Verwendung eines CE-Loss auf den rekon-
struierten Formen im Bildraum anstelle einer direkten Minimierung der ¢;-Distanzen
||E(I;) — E(S;)||1 im Formraum liefert — der potentiell grofieren Anfalligkeit fir va-
nishing gradients unter Verwendung des Dekoders zum Trotz — den Autoren zufolge
qualitativ bessere Ergebnisse.

4.2.2 Iterativ gefiihrte Registrierung

Angenommen es liegt ein erfolgreich trainierter, wie in Abschnitt 2.3.2 beschriebener
CAE zur Form-restringierten Segmentierung vor, dann lésst sich dieser zum Zweck
einer multimodalen Bildregistrierung heranziehen. Der schematische Ablauf der in
diesem Kapitel entwickelten Methode ist in Abbildung 4.1 illustriert.
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Fiir ein zu registrierendes Bildpaar (F, M), bei dem das moving Bild M dem fized
Bild F anzugleichen ist, lasst sich dieses — im Gegensatz zu Kapitel 3 — kontinuierlich
formulierte Problem durch

argmin D(Sx,poSy) + aR(p) (4.1)
%)

formalisieren. Es wird diejenige Transformation ¢ gesucht, die ein Distanzmafl D zwi-
schen den CAE-generierten Segmentierungen und einen additiven, fiir plausible De-
formationen zustédndigen Regularisierungsterm R minimiert. Demzufolge besteht der
erste Schritt der entwickelten Methode darin, die jeweiligen Formkodierungen FE(F)
bzw. E(M) im gemeinsamen Formraum zu erstellen.

Die grundlegende Annahme des Verfahrens besteht darin, dass eine lineare Interpola-
tion zwischen beiden Kodierungen im Formraum n — 1 glatt ineinander tiberfithrbare,
CAE-generierte Segmentierungen Sz g = D(E(F/M)) generiert, in dem der Aus-
druck

Sy =D (B(M) - 2 (B(M) - B(F) ) (42)

n

ausgewertet wird. Dabei wird A € {0,...,n} so gewédhlt, das Sy = S entspricht und
S,, = Sr. Diese im Bildraum nicht-linear transformierten, zwischen den Formen von F
und M liegenden Segmentierungen sollen den Registrierungsprozess iterativ fithren, um
abschlieflend das moving Bild M anhand des resultierenden Feldes zu transformieren.
Insbesondere bei groflien Deformationen kann es zu fehlerhaften Transformationen von
M kommen, wenn lokale Minima der Kostenfunktion beim Optimieren erreicht werden.
Aus diesem Grund wird das komplexe Suchen einer direkten, optimalen Transformation
Ydirect zerlegt in eine Vielzahl kleinerer und daher einfacherer Deformationen

Ddirect X P © Pn—10 0 P20 Q] (4.3)

Dabei lésst sich mittels der Anzahl n die Stédrke der Deformationen zwischen zwei In-
terpolationsschritten kontrollieren. Nutzt man die One-Hot-Darstellung der Segmen-
tierungen, so lasst sich wiederum der CE-Loss nutzen, um als Distanzmaf im Schritt k&
die Anpassungsgiite der transformierten Segmentierung ¢ o Sx_1 und S zu beurteilen
und somit die aktuelle Transformation ¢y zu bestimmen.

Damit das Verfahren anatomisch plausible Transformationen bevorzugt, bestraft
der Regularisierungsterm einerseits abrupte lokale Anderungen im Deformationsfeld,
indem die Summe der quadratischen Differenzen zwischen dem Feld und einer geglétte-
ten Version seiner Selbst einflieffit. Andererseits werden auch zu grofie Deformationen
direkt durch die Summe der quadrierten Léngen von Verschiebungsfeldvektoren be-
riicksichtigt, so dass sich folgender Ausdruck ergibt:

R = 1¢* = Crmootnlls + £*]13: (4.4)
xEN

53



Kapitel 4 Schwach-iiberwachtes Deskriptorlernen in multimodalen 3D Herz-Bilddaten
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Abb. 4.1: Tterativ gefithrte Registrierung: Zunéichst werden die Formkodierungen E(M) und
E(F) des moving Bildes M und des fized Bildes F bestimmt. Anschlieflend werden
mittels linearer Interpolation im Formraum Zwischenkodierungen bestimmt und
durch den Dekoder D zu Segmentierungen Sy, ..., S,, rekonstruiert. Dies ermoglicht
die schrittweise Berechnung kleinerer Transformationen ¢; zwischen S; und S;_;
anstelle einer potentiell sehr grofien Deformation ¢girect um Sg an S,, nicht mehr
nur in lediglich einem Schritt anzugleichen.

Da die Kostenfunktion ausschliellich aus ableitbaren Termen besteht, nutzt die Um-
setzung im Rahmen dieser Arbeit die im PyTorch-Framework implementierte autograd
engine. Mit Hilfe des Adam-Optimierers lassen sich die Parameter des Transforma-
tionsmodells und damit die Verschiebungsfeldvektoren durch das Gradientenabstiegs-
verfahren anpassen. Um die Anzahl der Parameter des Transformationsmodells zu
beschranken, nutzt die hier vorgestellte Methode ein im Vergleich zu den Bilddaten
grobmaschigeres Netz an Kontrollpunkten. An jedem dieser Punkte wird ein dreidi-
mensionaler Verschiebungsvektor d9 geschétzt, der in Kombination mit seiner rdumli-
chen Identitdt ¢d? dann die Transformation gpi = 14d9 + d9 an dieser Stelle beschreibt.
Abschlieflend wird das dichte Verschiebungsfeld fiir jeden Bildpunkt durch trilineare
Interpolation bestimmt.

4.3 Experimente & Ergebnisse

Die vorgeschlagene, schwach-iiberwacht trainierte, multimodale Registrierungs-
methodik dieses Kapitels basiert auf der Angleichung von Organsegmentierungen. Die
Umwandlung der jeweiligen CT- und MRT-Grauwertbilder in Segmentierungen stellt
somit die Transformation in einen gemeinsamen Raum dar. Dabei ist zu beachten,
dass die Giite dieser Segmentierungen bereits eine obere Genauigkeitsschranke fiir die
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anschliefflende Registrierung bildet, da letztere idealisiert von absolut korrekten For-
men ausgeht und die tatsédchlichen Eingangsinformationen der Bilder nicht beachtet.
Um die Effekte dieser Limitierung abzuschéitzen, wird vor dem eigentlichen, multi-
modalen Registrierungenexperiment noch eine weitere, dahingehende Untersuchung
durchgefihrt.

Zunéchst soll die Funktionalitdt der vorgeschlagenen Enkoder-Dekoder-Architektur
zur Generierung Form-restringierter Segmentierungen untersucht werden. Im zweiten
Experiment wird mit einer variierenden Anzahl an Zwischenschritten die vorgeschla-
gene, iterativ gefithrte Registrierung beleuchtet. Um letztere in den Kontext anderer
Verfahren einordnen zu kénnen, werden sie wiederum mit aus Kapitel 3 bekannten
Verfahren verglichen. Das in Abschnitt 2.4.2 eingefithrte LabelReg aus Hu u.a., 2018
ist dabei ein Vertreter Ende-zu-Ende-trainierter, rein CNN-basierter Verfahren, wéh-
rend das in Abschnitt 2.2.1 vorgestellte SSC-deeds-Framework aus Heinrich u. a., 2013b
einen Vergleich im Hinblick auf klassische Registrierungsansétze erlauben soll.

Alle Experimente werden auf dem Trainingsdatensatz der Multi-Modality Whole He-
art Segmentation Challenge durchgefiihrt. Dieser enthélt je 20 ungepaarte Herzscans
der Modalitdten CT und MRT samt Annotationen verschiedener Herzstrukturen durch
medizinische Experten. Genaue Informationen finden sich in Zhuang u. a., 2019. Die
Datenvorverarbeitung umfasst ein Resampling auf isotropische Voxelgréfien von 1.5 x
1.5 x 1.5mm? und ein einheitliches Zurechtschneiden der Volumina auf 144 x 122 x 168
Voxel, so dass die Strukturen von Interesse vollstindig enthalten sind. Aulerdem wer-
den die Grauwertbilder im Anschluss mittelwertbefreit sowie standardisiert. Um aussa-
gekriftige Resultate zu gewéhrleisten, werden alle Experimente in Form einer 4-fachen
Kreuzvalidierung durchgefiihrt. Das heifit pro Durchlauf werden jeweils unterschied-
liche Mengen von 15 CT-MRT-Bildpaaren zum Training und die je verbleibenden 5
Bildvolumina als Testdaten genutzt, so dass jedes Bildpaar nur genau einmal in den
Testdaten vorkommt.

4.3.1 CAE-basierte Segmentierung

Da die vorgeschlagene Registrierungsmethode plausibler Herzsegmentierungen bedarf,
wird zuerst die Robustheit des gewédhlten Segmentierungsverfahrens untersucht. Po-
tentiell lasst das Entfernen der skip connections schlechtere Ergebnisse im Vergleich
zum Stand der Technik in Form von UNet-Architekturen erwarten. Es sei noch ein-
mal darauf hingewiesen, dass sich aber nur so die zuséatzlichen, iiber die Kodierungen
im Formraum hinausreichenden Abhéngigkeiten vermeiden lassen. Letztlich ermog-
licht erst dies die Interpolation verschiedener Formkodierungen zur Rekonstruktion
der Zwischensegmentierungen fiir die gefiihrte Registrierung.

Dem experimentellen Prozedere aus Bouteldja u. a., 2019 folgend, wird das Faltungs-
netz iiber 1000 Epochen hinweg mit einer Mini-Batch-Gréfle von 3 trainiert. Letztere
enthalten abwechselnd entweder CT- und/oder MRT-Grauwertbilder oder ausschlie3-
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Abb. 4.2: Beispielhafte Darstellung einer CAFE-basierten Segmentierung: (a) Uberlagerung
einer Expertensegmentierung auf die axiale CT-Aufnahme aus (b); (¢) CAE-
generierte Segmentierung; 3D-Renderings der gegebenen Grundwahrheit (d) und
des korrespondierenden CAE-Ergebnisses (e).

lich Herzsegmentierungen. Die Parameter des Modells werden wéahrend des Trainings
mit Hilfe des Adam-Optimierers angepasst, dessen initiale Lernrate empirisch auf 0.002
festgelegt wird und nach jeweils 30 Epochen um den Faktor 0.9 reduziert wird. Die in
Abbildung 2.8 mit detaillierter Parameterangabe illustrierte Architektur beeinhaltet
fiir jede Faltungsschicht eine anschliefende Sequenz aus Batch-Normalisierungs- und
LeakyReL U-Aktivierungsschichten. Eine Ausnahme bildet die finale Ausgabeschicht,
deren Faltungen sich nur eine softmaz-Funktion anfiigt. Diese ergibt wahrend des Trai-
nings in Kombination mit einem log-likelihood-Loss den CE-Loss auf den rekonstruier-
ten Formen. Dartiber hinaus werden affine Transformationen zur Datenaugmentierung
genutzt und ein weight decay von 107> zur Vermeidung einer Uberanpassung einge-
setzt.

Um den Einfluss des Entfernens der skip connections beurteilen zu kénnen, wird
dariiberhinaus eine ansonsten identische UNet-Architektur unter Einbezug dieser Ver-
bindungen dem gleichen Protokoll folgend trainiert.

Als Genauigkeitsmafl wird der Dice-Koeffizient gemittelt {iber alle Strukturen wéh-
rend der 4-fachen Kreuzvalidierung herangezogen.

Die Stand-der-Technik UNet-Faltungsnetze erzielen sowohl bei den CT-Daten mit
einem durchschnittlichem Dice-Wert von 0.87 als auch im Fall der MRT-Daten mit
0.84 bessere Ergebnisse als die zum Einsatz flir die iterativ gefiihrte Registrierung
abgewandelte CAE-Architektur mit Werten von 0.84 respektive 0.79. Rein qualita-
tiv lasst sich aber z.B. anhand von Abbildung 4.2 belegen, dass die CAE-generierten
Segmentierungen dennoch starke, lediglich glattere Ubereinstimmung mit den Exper-
tensegmentierungen aufweisen. Abbildung 4.3 gibt dariiberhinaus ebenfalls qualitativ
Aufschluss tiber die Struktur des Formkodierungsraumes. Auf der linken Seite (a) ist
mittels einer tSNE-Darstellung eine zweidimensionale Projektion der kodierten CT-
bzw. MRT-Daten samt Kodierung der zugehdrigen Segmentierungen durch den CAE
abgebildet. Daraus lésst sich entnehmen, dass die Kodierung der Grauwertbilder wie
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Abb. 4.3: tSNE-Plots des gelernten Formraumes: In (a) zeigt sich die gewiinschte Néhe der
transformierten Kodierungen von Grauwertbildern zu ihren zugehorigen Segmen-
tierungskodierungen. (b) Die lineare Interpolation von Kodierungen entlang der
griin-gestrichelten Linie erzeugt glatt ineinander zu iiberfithrende Rekonstruktio-
nen.

gewiinscht nahe bei ihren Segmentierungen liegen. Dies erlaubt den Riickschluss, dass
beide Eingabemodalititen sinnvoll in einen gemeinsamen Raum transformiert werden.
Auf der rechten Seite in (b) sind dann beispielhaft einige Kodierungen aus dem Form-
raum mittels des Dekoders zu Segmentierungen rekonstruiert. Insbesondere die lineare
Interpolation von Zwischenformen entlang der griin-gestrichelten Linie demonstriert
den beabsichtigen glatten Ubergang der Anfangs- in die Endform.

4.3.2 Iterativ gefiihrte Registrierung

Unter Verwendung der vorangehend trainierten Faltungsnetzwerke zur Generierung
von Segmentierungen soll nun das entwickelte iterative Registrierungsverfahren un-
tersucht werden - insbesondere, ob plausiblere Verschiebungsfelder berechnet werden,
wenn der Prozess durch intermediéire, generierte Segmentierungen gefiithrt wird.

In den Experimenten wurde dies mit einer zur Fiithrung des Angleichungsprozes-
ses steigenden Anzahl n interpolierter Formrekonstruktionen S; zwischen der fiir das
moving Bild generierten Segmentierung Sy = Sg und der ebenfalls durch den CAE
generierten Zielsegmentierung Sr = S,, untersucht.

Dazu werden die selben Gruppen beziiglich der 4-fachen kreuzvalidierten Experimen-
te des vorangehenden Abschnittes genutzt, so dass sich pro Gruppe durch die Regis-
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Abb. 4.4: Registrierungsergebnisse fiir 20 MRT-CT-Paare: Gemittelte Dice-Werte zwischen
transformierten MRT-Segmentierungen medizinischer Experten sowie jener fiir die
CT-Bilddaten, unter steigender Zahl n hintereinander ausgefithrter Zwischenschrit-
te g, 0 0w1. n =15 (rot) erziel dabei die besten Ergebnisse und iibertrifft ein-
deutig die direkte Registrierung(n = 1, hellblau) mit einem Genauigkeitszuwachs
von 0.117 im Bezug auf die Dice-Werte. Die gestrichelten Balken illustrieren das
Ergebnis der SSC-deeds-Vergleichsmethode aus Heinrich u. a., 2013b.

trierung von jeweils 5 MRT-moving-Bilddatensétzen auf 5 CT-fized-Scans eine Anzahl
von 25 Paaren ergibt. Dabei wird die Anzahl der aufeinanderfolgenden Transformatio-
nen von n = 1 - was einer direkten Registrierung von S, und Sr entspricht - iiber
n = {3,5,8} schlielich auf n = 15 erhoht. Die Registrierungsaufgabe ist aufgrund
der genutzten Daten als herausfordernd zu beurteilen, da neben den unterschiedli-
chen Bildmodalitdten zuséatzlich ungepaarte Daten verschiedener Patienten mit grofer
anatomischer Variabilitdt verarbeitet werden. Zur Berechnung der einzelnen Verschie-
bungsfelder ¢; kommt wiederum jeweils ein Adam-Optimierer mit Lernrate von 0.01
fir 50 Epochen zum Einsatz. Diese Anzahl an Iterationen hat sich wéihrend der Ex-
perimente empirisch als ausreichend erwiesen, um eine Konvergenz von ¢ o Si_; in
Richtung Sj zu gewéhrleisten. Das zugrundeliegende Gitter an Kontrollpunkten, de-
ren Verschiebungsvektoren optimiert werden, hat eine Schrittweite von 8 Voxeln und
der zusétzliche Regularisierer R soll mit einer Gewichtung von a = 0.01 die Glattheit
von ¢ sicherstellen.

Abbildung 4.4 enthilt die erreichten Dice-Werte fiir jede segmentierte Herzstruktur
unter Verwendung verschiedener Schrittzahlen zur Fiihrung des Registrierungsprozes-
ses durch intermedidre Segmentierungen. Diese Werte berechnen sich in Gestalt eines
indirekten Qualitdtsmafles mittels der jeweils vorliegenden Expertensegmentierungen
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Tabelle 4.1: Ergebnisse der evaluierten Ansétze. Das Label Reg-Verfahren aus Hu u. a., 2018
verbessert die bereits initiale Ubereinstimmung von NO_REG nur geringfii-
gig, wohingegen die hier entwickelte Methodik der iterativ gefithrten Registrie-
rung (IGR) mit n = 15 eine hohere Genauigkeit als das klassische SSC-deeds-
Verfahren aus [Heinrich u. a., 2013b] erreicht.

Methode NO REG Label Reg IGRn=1 S85C-deeds IGR n=15
Dice 0.331 0.352 0.536 0.608 0.653

fiir die CT-Scans und deren transformierter Gegenstiicke fiir die MRT-Scans, da bei-
spielsweise direktere, Grauwert-basierte Ahnlichkeitsmetriken im multimodalen Fall
schwerlich anwendbar sind. Die betrachteten Strukturen setzen sich zusammen aus der
Pulmonararterie (PA), der Aorta, dem rechten & linken Atrium (RA/LA), dem rechten
& linken Ventrikel (RV/LV) und dem Myokard (MYO).

Zur besseren Einordnung wird der initiale Dice-Wert ohne jegliche Transformationen
durch alleinige Uberlagerung der Grundwahrheiten in dunkelblau angegeben. Ebenso
visualisieren die gestreiften Balken die Ergebnisse eines klassischen Registrierungsf-
rameworks - des speziell fiir multimodale Probleme entworfenen und in Kapitel 3
besprochenen SSC-deeds-Verfahrens aus Heinrich u. a., 2015b. Als ein weiteres Ver-
gleichsverfahren wird der Ende-zu-Ende-trainierbare, CNN-basierte Label Reg-Ansatz
aus Hu u. a., 2018 in Form seiner frei zugénglichen Implementierung herangezogen. Die
lediglich geringe Verbesserung des durchschnittlichen, initialen Dice-Wertes von 33%
auf 35% lasst wie schon in den Experimenten des vorangehenden Kapitels den Schluss
zu, dass dieses Verfahren eine weitaus groflere Trainingsdatenmenge zum Erzielen bes-
serer Resultate benotigt.

Die in diesem Kapitel entwickelte Methodik der iterativ gefithrten Registrierung er-
reicht bei Komposition n = 15 (rot in Abb. 4.4) Transformationen ¢; im Mittel eine
Verbesserung von 11.65% gegeniiber der direkten Registrierung beziiglich der mittle-
ren Dice-Werte (53.62% zu 65.27%). Die Anwendung eines Wilcoxon-Rangsummen-
Tests belegt die statistische Signifikanz dieses Anstieges (p = 7.98 x 10~%). Wihrend
beide Methoden nahezu faltungsfreie, plausible Verschiebungsfelder generieren (% an
Eintrdagen der Jakobideterminante < 0: 0.001), so demonstriert die grolere Standard-
abweichung der Jakobideterminante als Maf} fiir Volumenénderungen bei der iterativ
gefiihrten Methodik (0.2210 zu 0.3994), die erhdhte Flexibilitdt beim Ausgleichen der
anatomischen Variabilitdt. Auch wenn der Anstieg der Dice-Werte mit wachsenser Zahl
an Iterationen immer geringer wird, so belegen die gestapelten, horizontalen Balken-
diagramme dennoch eine kontinuierliche Verbesserung. Zum Abschluss der rein quan-
titativen Resultate gibt Tabelle 4.1 noch einmal zusammenfassend den Uberblick der
verglichenen Methoden.

Abbildung 4.5 illustriert exemplarisch das Registrierungsresultat eines Patientenpaa-
res qualitativ vor und nach der Registrierung. Die untere Reihe verdeutlicht die rdéum-
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Abb. 4.5: Beispielhafte Registrierung eines MRT-CT-Bildpaares. Oben v.l.n.r.: initialer MRT-
Axialschnitt M; gleiche Schicht nach Registrierung 15 o - - - 0 o1 0 M; zugehérige
CT-Schicht F. Die gelben Pfeile weisen auf schlecht angeglichene Koérperoberfla-
chen im Gegensatz zu den besser angepassten Vordergrundstrukturen hin. Unten
v.lnr.: F & M Schachbrettdarstellungen vor / nach Registrierung mit iiberlager-
ten Vordergrundsegmentierungen.

liche Angleichung der Vordergrundstrukturen in Form von Schachbrett-Darstellungen
mittels {iberblendeter Vordergrundsegmentierungen der Herzstrukturen ebenfalls vor
und nach dem Prozess. Hinsichtlich der Herzstrukturen weisen deren Uberginge an
den Schachfeldgrenzen lediglich kleine Unstetigkeiten auf, da diese Anatomien die CE-
Loss-Minimierung unter Verwendung des Adam-Optimierers fithren. Im Gegensatz zu
diesen, grofleren Deformationen unterworfenen Bildbereichen bleiben die Hintergrund-
strukturen nahezu unberiihrt (siehe gelbe Pfeile an den Korperoberfliachen).

4.4 Diskussion & Zusammenfassung
Der in diesem Kapitel entwickelte Ansatz liefert zufriedenstellende Ergebnisse hin-
sichtlich der Vergleichsverfahren sowie in Anbetracht der Herausforderungen multi-

modaler Bildregistrierung. Die durchgefithrten Experimente liefern Einblicke sowohl
in Schwéchen, aber auch Starken der zweistufigen Methodik.
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Das zur Formkodierung genutzte Faltungsnetzwerk ist in der Lage, Eingabedaten
verschiedener Modalitdten zu verarbeiten und dennoch einen kompakten sowie glatten
Formraum zu lernen. Dahingehend ermoglicht es die Rekonstruktion realistischer, in-
termedidrer Formen ziwschen den MRT- und CT-Daten fiir die anschlieende Aufgabe
der iterativ gefiihrten Registierung. Dennoch fiihrt das Entfernen der skip connections
aus der Architektur zum erwarteten Genauigkeitsriickgang bei den Segmentierungen.
Da diese allerdings zur Fiithrung Registrierung genutzt werden, ergibt sich dadurch eine
obere Grengze fiir deren maximale, zu erreichende Genauigkeit, da z.B. diinne Struktu-
ren wie das Myokardium einen Verlust beziiglich ihres Grades an dargestellten Details
verzeichnen. Zukiinftige Experimente kénnten also nach Wegen suchen, diesen Verlust
an rdumlicher Information durch Alternativen zu skip connections auszugleichen.

Die weiterfiihrenden Experimente zur Registrierungsgenauigkeit der gesamten Me-
thode bestédtigen die eingangs formulierte Hypothese, dass eine Hintereinanderaus-
flihrung mehrerer kleiner Transformationen zu besseren Resultaten fiihrt, als das di-
rekte Bestimmen einer moglicherweise sehr groflien Deformation. Dieser Effekt zeigt
sich am prominentesten beim Ubergang von einem auf 5 Schritte und beginnt dann
zunehmend in eine Séttigung iiberzugehen. Dennoch unterstreichen die weiteren Zu-
gewinne bei weiter vergroflerter Anzahl an intermedidren Représentationen, dass die
Zwischenschritte entlang des Interpolationspfades den Registrierungsprozess nicht zu
unplausiblen Transformationen verleiten und dass der Formraum selbst daher als aus-
reichend glatt angenommen werden kann. Die vorgestellte Methode zur iterativen Fiih-
rung des Registrierungsprozesses mit n = 15 Schritten erzielt zwar héhere Dice-Werte
hinsichtlich der rdumlichen Angleichung betrachteter Vordergrundstrukturen als das
klassische SSC-deeds-Verfahren aus Heinrich u. a., 2013b, vernachléssigt im Gegensatz
aber jegliche Strukturinformation im Objekthintergrund. Dies zeigt sich deutlich in
den Schachbrett-Darstellung der Abbildung 4.5 bei Betrachtung der Kérpergrenzen.
Weitere Ansétze kénnten sich daher mit rédumlich aussagekréftigeren Distanzkarten
anstelle von rein diskretisierten Segmentierungen befassen oder eine leicht verstérk-
te Uberwachung unter Einbezug von gréfieren Klassenanzahlen oder von Landmarken
zulassen.

Neben der eigentlich entwickelten Methode wurde in diesem Kapitel zusétzlich eine
Moglichkeit realisiert, CAE-generierte Formraume auf ihre Plausibilitdt hin zu pri-
fen. Indem die Idee der gefithrten Registrierung basierend auf Rekonstruktionen der
interpolierten Formkodierungen genutzt wird, konnte eine erhohte Anzahl an Zwi-
schenschritten bei gleichzeitiger Abnahme der Registrierungsgenauigkeit z.B. auf einen
nicht-glatten Formraum hindeuten.

Zusammengefasst stellt dieses Kapitel ein iterativ gefiithrtes, multimodales Bild-
registrierungsverfahren fiir medizinische Volumendaten vor. Die Idee des Deskriptor-
lernens im Kontext dieser Arbeit setzt dabei das gemeinsame Erlernen eines geteilten
Formraumes mittels eines CNN-basierten Enkoder-Dekoder-Models um. Dabei erzielt
die zweistufige Methode mit nur schwach-iiberwachtem Training durch Segmentie-
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rungen ungepaarter Daten die besten Resultate der betrachteten Registrierungsverfah-
ren. Im Vergleich zum vorangehenden Kapitel 3 hat dabei die Stirke der Uberwachung
abgenommen. Dennoch liegt weiterhin ein Zwei-Schritt-Verfahren vor, bei dem die
Deskriptoren zur Reprisentation der medizinischen Volumendaten noch nicht mit Hil-
fe des eigentlichen, als Anwendung herangezogenen Registrierungsproblems trainiert
werden. Dieser Schritt hin zu Ende-zu-Ende-trainierten Verfahren wird im néchsten
Kapitel vollzogen.
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Kapitel 5

Schwach-iiberwachtes Deskriptorlernen

in multimodalen thorakoabdominalen
Bilddaten

Das dritte methodische Kapitel stellt zwei Umsetzungen einer Idee fiir schwach-
iiberwacht gelernte Deskriptoren auf multimodalen, thorakoabdominalen
CT- & MRT-Schichtaufnahmen vor. Im Gegensatz zu den vorangehenden Kapi-
teln handelt es sich dabei um Ende-zu-Ende-trainierbare Anséitze, die die Ein-
bindung von Faltungsnetzwerken in iterativ optimierte Registrierungsschemata
erlauben. Beide Implementierungen eignen sich zur Schétzung von im thorako-
abdominalen Bereich typischen groflen Deformationen. Das erste Verfahren
nutzt eine geschlossen darstellbare Losung fiir deren Bestimmung. Das zwei-
te Verfahren greift dagegen auf eine spezielle, differenzierbare Methode zum
Lésen von Gleichungssystemen zurtick.

Inhaltlich stiitzt sich dieses Kapitels auf den Beitrag Blendowski u. a., 2019a zur
International Conference on Medical Imaging with Deep Learning sowie auf die
Publikation Blendowski u. a., 2020b im Special Issue zur International Confe-
rence on Medical Imaging with Deep Learning im Journal Medical Image Ana-
lysis.

5.1 Einleitung & Motivation

Die beiden vorangehenden Kapitel 3 & 4 haben beleuchtet, inwiefern mithilfe von Fal-
tungsnetzwerken erlernte Deskriptoren in Kombination mit klassischen Registrierungs-
ansdtzen gewinnbringend genutzt werden kénnen. Im Gegensatz zu diesen klassischen
Methoden, die seit Jahrzehnten Gegenstand aktiver Forschung sind, nahern sich die
Resultate von Ansétzen zur Registrierung, die vollumfénglich auf Faltungsnetzwerkar-
chitekturen setzen, vergleichsweise langsam dem bisherigen Stand-der-Technik - in An-
betracht der bahnbrechenden Erfolge auf den Gebieten der Klassifizierung und Seg-
mentierung. Dies lasst sich einerseits durch die zusétzliche Anzahl an zu trainierenden
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Parametern sowohl zur Extraktion von Featuren als auch zur Vorhersage des Verschie-
bungsfeldes erklaren, andererseits aber auch durch die zum Training grofler Netze zu
geringe Verfligbarkeit annotierter Daten, beispielsweise in Form von Landmarkenkorre-
spondenzen durch medizinische Experten. Dartiberhinaus befasst sich ein Grofiteil der
Forschungsarbeit mit Bildern gleicher Modalitéten, so dass Registrierungsalgorithmen
nur kleinere Verdnderungen z.B. beziiglich der Helligkeit ausgleichen miissen. Da eine
korrekte Diagnostik hdufig aber vom Vergleich zusammengehoriger Strukturen unter
Aufnahmen durch verschiedene Modalitdten abhéngt, ist es notwendig auch fiir diesen
noch starker herausfordernden Anwendungsfall Registrierungslésungen zu entwickeln.
Die Notwendigkeit aussagekriftige, gemeinsame Repréasentationen verschiedener Mo-
dalitdten zu generieren ergibt sich auch bei bildgestiitzten Eingriffen, die beispielsweise
auf Risikostrukturabgrenzung einer vorangehenden Dosisplanung basierend auf CT-
und MRT-Daten wéihrend Strahlentherapien Anwendung finden. In Kapitel 4 wird da-
zu ein Verfahren entwickelt, dass zundchst die Strukturen von Interesse identifiziert,
durch entsprechende Segmentierungen kennzeichnet und anschliefend ausschlieflich
diese einander angleicht. Weitere, bereits bestehende und relevante Ansétze werden im
néachsten Abschnitt aufgefiihrt und ebenfalls kurz vorgestellt.

5.1.1 Literatur

Generell lassen sich klassische Verfahren zur multimodalen Registrierung grob in
zwei Klassen einordnen. Entweder wird eine Metrik genutzt, die die Ahnlichkeit der
anzugleichenden Eingabebilder trotz unterschiedlichem Geradteursprungs messen kann
- z.B. mittels der in Maes u. a., 1997 vorgestellten mutual information als Distanzmaf.
Oder eine Transformation der Eingabebilder in einen gemeinsamen Raum ermdoglicht
die Anwendung eines etablierten monomodalen Ahnlichkeitsmafies. Die in Heinrich
u. a., 2012 vorgestellten, modalitdtsunabhéngigen und auf Selbstdhnlichkeitsdarstel-
lungen beruhenden MIND-Deskriptoren seien dabei als beispielhafter Vertreter der
zweiten Kategorie genannt. Der Schritt vom manuellen Entwurf der Feature hin zu
einer Ende-zu-Ende-trainierbaren Umsetzung der Idee der Selbstdhnlichkeit wird von
den Autoren in Kim u. a., 2017 vollzogen, wenn auch nur im monomodalen Anwen-
dungsfall auf nicht-medizinischen Daten.

Die Untersuchung einer kiinstlichen Konvertierung vorliegender Daten zur jeweils
anderen Modalitdt und zuriick wird in Tanner u.a., 2018 mittels ungepaarter, sog.
cycle-GANs (engl.: generative adversarial networks) vorgenommen. In Mahapatra u. a.,
2018 werden GANs dann zur multimodalen Bildregistrierung von Retinascans heran-
gezogen. Beiden Verfahren ist gemein, dass aufgrund ihrer generativen Natur nicht
ausgeschlossen werden kann, dass in Wirklichkeit nicht vorliegende Strukturen als fiir
das Netzwerk plausibler Bildinhalt einbezogen werden.

Abgesehen von GA N-basierten Methoden und im Gegensatz zu klassischen Bildregis-
trierungsansétzen ist eine Vielzahl an Verfahren entstanden, die den gesamten Prozess
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der Berechnung von Verschiebungsfeldern, direkt ausgehend von den Eingabebildern, in
einem einzigen Vorwértsdurchlauf durch die jeweilige Netzarchitektur bewerkstelligen.
Dieses Vorgehen verhindert allerdings klar abgrenzbare Teile der Netzwerkstrukturen
zu identifizieren, die z.B. alleine fiir die Feature-Extraktion oder die Registrierung ver-
antwortlich zeichnen. Als Beispiele lassen sich hier die Enkoder-Dekoder-Architekturen
des SVF-Net aus Rohé u.a., 2017 oder VozelMorph aus Balakrishnan u.a., 2019 an-
fiihren. In der Arbeit von Lee u. a., 2019 wird zwar bereits die Idee einer Trennung des
Feature-Lernens und des Registrierens erwihnt, allerdings gelingt es den Autoren eben
nicht, die Zustdndigkeiten der einzelnen Module klar zu definieren, da sie schlieflich
doch alle Netzwerkteile miteinander verbinden. Insbesondere im Hinblick auf gréfiere,
initiale Verschiebungen, wie sie bei der Registrierung von Lungen-CT-Bildern der Ein-
und Ausatmungsphase auftreten, offenbaren beispielsweise in Eppenhof u.a., 2019,
Hering u.a., 2019 oder Vos u.a., 2019 vorgestellte, nicht-iterative Enkoder-Dekoder-
Verfahren mit Fehlern in Groflenordnungen von 2-3mm Schwéchen im Vergleich zu
konventionellen Methoden - wie z.B. aus Rithaak u.a., 2017b -, mit Fehlern von unter
einem Millimeter auf schwierigen COPD-Daten.

Ebenso benétigen Umsetzungen wie das FlowNet aus Dosovitskiy u.a., 2015 oder
auch die bereits aus den vorangehenden Kapiteln bekannte Label Reg-Methode aus Hu
u. a., 2018 sehr grofle Datensédtze mitsamt korrespondierenden Grundwahrheiten zum
Training.

In Anbetracht dessen bezieht die im Fortlauf des Kapitels vorgestellte Methodik
Inspiration aus dem DSAC-Ansatz aus Brachmann u.a., 2017 (engl.: differentiable
RANSAC - differenzierbarer RANSAC) - einer ableitbaren Umsetzung des klassischen
RANSAC-Algorithmus (engl.: random sample consensus - etwa: Ubereinstimmung mit
einer zufélligen Stichprobe). Diese modulare, aber dennoch Ende-zu-Ende-trainierbare
Methode wird dort lediglich zur Schétzung einiger weniger Homographie-Parameter
eingesetzt, entwickelt aber die Idee das Regressionsproblem klar von den Deskriptor-
modulen des Netzwerkes zu trennen.

Die Arbeiten aus Xiong u. a., 2013 oder Gutierrez-Becker u.a., 2017, zielen auf das
iiberwachte Lernen einer Abstiegsrichtung wéhrend eines Optimierungsprozesses. Al-
lerdings verarbeiten sie lediglich monomodale Eingaben und sind aulerdem nicht Ende-
zu-Ende-trainierbar. Im Gegensatz dazu nutzt der Ansatz dieses Kapitels Abstiegs-
richtungen verschiedenster Angleichungsstadien, die wéihrend des iterativen Optimie-
rungsprozess als eine Form der kontinuierlichen Uberwachung dienen, zum Erlernen
der Deskriptoren. Dazu werden hier anstelle von ganzen Verschiebungsfeldern nur Or-
gansegmentierungen als Form des schwacher Uberwachung benétigt.

Zielsetzung: In den nachfolgenden Abschnitten werden dazu zwei Umsetzungen
des SUITS-Algorithmus (iiberwachter, iterativer Abstieg, engl.: SUpervised ITerative
deScent) préasentiert. Dieser soll das Training von Faltungsnetzwerken zur Extrak-
tion vergleichbarer Reprasentationen trotz unterschiedlicher Eingabemodalititen im

65



Kapitel 5 Schwach-iiberwachtes Deskriptorlernen auf multimodalen Thoraxdaten

Hinblick auf Registrierungen erméglichen. Dazu muss sichergestellt werden, dass sinn-
volle Gradienten durch Fehlerriickfithrung als eine Form schwacher Uberwachung
nutzbar werden. Im Unterschied zu Methoden der erlernten Imitation des Optischen
Flusses, soll hier die Verflechtung von Erscheinung und Deformation der betrachteten
Strukturen gelést werden. Diese Idee entspringt einer Arbeit zur Gesichtsanalyse aus
Shu u. a., 2018. Dies erlaubt die Einbindung von Faltungsnetzwerken in einen konven-
tionellen, iterativen Registrierungsansatz zur regularisierten, B-Spline-basierten Opti-
mierung. Speziell letzteres fithrt dazu, dass bereits Architekturen mit vergleichsweise
wenigen Parametern aussagekréftige, multimodale Feature erlernen konnen, da die
Schéatzung des Verschiebungsfeldes explizit nicht Aufgabe des Netzes ist, sondern durch
klassische, aber differenzierbare Verfahren bewerkstelligt wird.

Beide SUITS-Verfahren nutzen zum Erlernen aussagekréaftiger, multimodaler Re-
prasentationen riickgefiithrte Gradienten, die auf der schrittweisen Anpassung im Trai-
ning vorhandener Organsegmentierungen basieren. Die erste Umsetzung des SUITS-
Algorithmus in Abschnitt 5.2 setzt im Hinblick auf die Implementierung innerhalb
eines autograd frameworks eine Methode um, die eine geschlossene Losungsform zur
Berechnung der iterativen Verschiebungsparameteranpassungen bereitstellt. Im An-
schluss wird mit SUITS 2.0 in Abschnitt 5.3 ein in mehrfacher Hinsicht tiberarbeitetes
Verfahren beleuchtet, das iiber die urspriingliche Machbarkeitsstudie hinaus fiir die
Anwendung auf dreidimensionalen Daten geeignet ist. Dazu wird ein zunéchst komple-
xeres, differenzierbares Verfahren zum Losen spérlich besetzter Gleichungssysteme ent-
wickelt, dessen Einsatz aber im Gegenzug strukturelle Vereinfachungen des Trainings-
und Testprozesses der multimodalen Registrierungen erméglicht.

5.2 SUITS

5.2.1 Methoden

Dieser Abschnitt fithrt in die Grundlagen der entwickelten Methodik zur ersten Um-
setzung des SUITS-Algorithmus ein. Der generelle Ablauf innerhalb der ersten Mach-
barkeitsstudie auf zweidimensionalen, multimodalen Bilddaten sowohl wéhrend der
Training- als auch zur Inferenzphase ist in Abb. 5.1 dargestellt. Daraus lasst sich die
modulare Interaktion ablesen, die einerseits die Extraktion aussagekréftiger, daten-
getrieben gelernter Feature und andererseits die iterativ ablaufende Schatzung des
Verschiebungsfeldes ermdéglicht. Im Folgenden wird der methodische Inhalt des fiir den
entwickelten Ansatz essentiellen B-Spline Descent-Moduls erldutert, bevor das gesamte
Zusammenspiel der einzelne Teile betrachtet wird.
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Abb. 5.1: Schematischer Uberblick: Wihrend des Trainings kommen zwei Adam-Optimierer
zum Einsatz; der Grid Optimierer (griin) passt die Verschiebungsfeldparameter
auf Grundlage der inkrementellen Anderungen A(u,V)geqt pro B-Spline-Descent-
Moduliteration an (C). Der Feature Optimierer (orange) aktualisiert die lernbaren
Gewichte der Faltungsnetze (Operationstracking eines Durchlaufes von B-D) ba-
sierend auf der Uberwachung des Differenzensignals im Vergleich zu den SDMs (A
- einmalig vorberechnet). Zur eigentlichen Laufzeit ist ausschlielich der Grid Opti-
mierer zum Anpassen des Verschiebungsfeldes unter Beriicksichtigung der fixierten
Features (MIND/CNNFeat) aktiv.

5.2.1.1 B-Spline Descent Modul

Das Vorgehen des SUITS-Ansatzes ist motiviert durch den klassischen Ablauf einer
Feature-basierten, iterativen Bildregistrierung und unterscheidet sich somit von aktu-
ellen CNN-basierten voll-integrierten Ein-Schritt-Verfahren. Unter der Voraussetzung,
dass sowohl das fized Bild f als auch das moving Bild m durch Auswahl geeigneter
Charakteristika in einem gemeinsamen Featureraum vorliegen, kénnen beispielsweise
Methoden des Optischen Flusses genutzt werden. Die Annahme konsistenter Grauwer-
tebereiche als notwendige Bedingung zur Verwendung monomodaler Ahnlichkeitsme-
triken ist in diesem Fall berechtigt. Darauf fuflend wird das B-Spline Descent-Modul
eingefiihrt (graue Blocke in Abb. 5.1). Als Eingabe erwartet das Modul mehrkanalige
Feature-Reprasentationen M und F' der Bilder m respektive f sowie die aktuellen Ver-
schiebungsfeldparameter (u,v) der letzten Iteration. Aus diesen Informationen wird
dann die inkrementelle Anderung A(u,v) der Parameter als Ausgabe berechnet. An
jeder Pixelposition des Bildes gibt (u, v) mittels eines zweidimensionalen Vektors die
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Verschiebungen fiir m zur Angleichungen an f an und A(u,v) beinhaltet die zugeho-
rigen, nach jeder Iteration vorzunehmenden Anpassungen.

An dieser Stelle ist zu betonen, dass zum beabsichtigten Erlernen aussagekréftiger
Feature durch vorgeschaltete CNNs ein Gradientenfluss durch den Berechnungsprozess
der A(u,v)-Anpassung gewéhrleistet werden muss.

Um A(u,v) im Hinblick auf das genutzte autograd-Framework als Ausgabe des B-
Spline Descent-Moduls zu berechnen, wird ein weit verbreiteter Energieterm genutzt
und zur vereinfachten Auswertung mittels einer Taylor-Approximation erster Ordnung
linearisiert. In Papenberg u. a., 2006 wird nachgewiesen, dass dieses Vorgehen im Fal-
le kleiner Verschiebungsfeldanpassungen beim iterativen Transformieren des mowving
Bildes legitim ist. Pro Pixelposition und Bildkanal nimmt der Energieterm die Form

Ec(uc(x),ve(x)) = 5 (Me(x) + Me oz - ue(x) + Mgy - Ve(x) — Fc(x))2 (5.1)

+ 5 (ue(x) + ve(x))?

an, wobei M, 5./, die partiellen Ableitungen des moving Bildes fiir Kanal ¢ bezeichnet
und der Term 3 (u.(x)+v.(x))? regularisierend durch die Betrafung zu groBer Verschie-
bungsfeldverdnderungen wirkt. Das Berechnen der partiellen Ableitungen %
zur Minimierung dieses Ausdruckes beziiglich der Verschiebungsfeldparameter sowie
geeignetes Sortieren der resultierenden Terme fiithrt auf ein lineares Gleichungssystem

mit der Form

[ Mzax + )\ Mc,axMc,ay (52)

Mc,ach,ay Mgay +A

uc(X)] _ [(Fc - Mc)Mc,ax‘|
ve(x) (Fo — M) M, py

Durch seine spezielle Form erlaubt das Gleichungssystem den Einsatz der Sherman-
Morrison-Woodbury-Formel. Mit deren Anwendung ergibt sich ein matrixinversions-
freier Ausdruck zur Berechnung der Verschiebungsfeldanpassungen durch

u.(x) B 1 (Fe — Mc)M, oy
VC(X) a A+ Mc%ax + M02,<9y (FC - MC)MCaay

(5.3)

Da diese Losungen pro Kanal unabhéngig voneinander bestimmt werden, stiitzt sich
dieser Ansatz auf das Vorgehen der Autoren in Guimond u.a., 2002 und mittelt die
einzelnen Losungen iiber die Kanéle, um eine gemeinsame Verschiebungsparameteran-
passung A(u,v) auszugeben. Das inversionsfreie, direkte Losen des Gleichungssys-
tems bildet den eigentlichen Kern des entwickelten Verfahrens. Es ermoglicht durch
die Komposition aus ausschlielich ableitbaren Operationen einen ungehinderten Gra-
dientenfluss bei der Verwendung innerhalb eines autograd-Frameworks wie dem hier
eingesetzten und in Paszke u.a., 2017 vorgestellten PyTorch.
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Da es sich an den klassischen Ansétzen zur Bildregistrierung orientiert, erlaubt auch
die in diesem Kapitel entwickelte Methode die Anwendung im Vergleich zum tatséchli-
chen Pixelgitter niedriger aufgeloster Verschiebungsfelder zur effizienteren algorithmi-
schen Umsetzung. Um die notwendigen, dichten Felder zur Transformation des moving
Bildes daraus zu rekonstruieren, wird wie in Tustison u.a., 2013 ein kardinaler B-
Spline dritter Ordnung zur Interpolation an den Zwischenstellen genutzt. Aufgrund
ihrer rekursiven Natur und der Definition auf einem uniformen Pixelgitter entspricht
die Interpolation zwischen den Knotenvektoren dem mehrfachen Anwenden eines Glat-
tungsfilters und kann in Form einer Faltung durchgefiihrt werden. Zur konkreten und
effizienten Umsetzung wird eine ebenfalls ableitbare upsampling-Schicht gefolgt von
zwei average pooling-Schichten genutzt.

In frithen Experimenten zeigt sich, dass trotz A\ = (M — F)? als lokal adaptiver
Wahl, wie sie in Vercauteren u.a., 2009 vorgeschlagen wird, hdufig aufgrund starker
lokaler Anderungen unplausible Verschiebungsfeldanpassungen generiert werden. Wie
schon in Kapitel 4 wird daher ein zusétzlicher Glattungsregularisierer genutzt, der
Abweichungen zwischen A(u,v) und einer gegléttenen Version ihrer selbst bestraft.

Insgesamt liefert das B-Spline Descent-Modul also bereits eine Verschiebungsparame-
teranpassung A(u, v) zuriick, die mit Standardoptimierern zur Registrierung genutzt
werden kann. Der néchste Abschnitt behandelt, wie das Modul im grofieren Kontext
zur schwach-iiberwachten, multimodalen Registrierung herangezogen wird.

5.2.1.2 SUITS-Algorithmus

Aus dem letzten Abschnitt geht hervor, dass Bildpaare, die der Voraussetzung konsis-
tenter Grauwertbereiche geniigen, mithilfe des B-Spline Descent-Moduls iterativ durch
entsprechendes Bestimmen der Verschiebungsfeldparameter zueinander registriert wer-
den konnen. Ziel der Verfahren dieses Kapitels ist allerdings die Registrierung multi-
modaler Bildpaare, die diese Annahme gerade nicht erfiillen. Aus diesem Grund wird
unter Verwendung des B-Spline Descent Moduls eine erste SUITS-Version als algorith-
misches Schema entwickelt. Der Einsatz von Faltungsnetzen soll darin das Erlernen
von Transformationen der Eingabedaten in einen gemeinsamen Bildraum erlauben, so
dass die Voraussetzung konsistenter Grauwertbereiche wieder gegeben ist.

Da das Verfahren wéihrend des Trainings vom Einsatz zweier Optimierer abhingt,
orientiert sich die methodische Einfithrung anhand deren jeweilger Zustdndigkeiten.
Im néchsten Abschnitt wird zuerst erkléart, wie innerhalb einer Iteration die Gewichte
der Faltungsnetzwerke zur Abbildung der Bilddaten in den gemeinsamen Featureraum
trainiert werden. Daran anschliefend wird erldutert, wie sich der gesamte iterativ op-
timierte Registrierungsprozess gestaltet und sichergestellt wird, dass aussagekréftige
Feature fiir alle Zeitpunkte der Angleichung generiert werden.

Training der Feature CNNs: Das Training der Faltungsnetzwerke zur Extrakti-
on vergleichbarer Repréasentationen trotz unterschiedlicher Eingabemodalitéiten basiert
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auf der Idee, sinnvolle Gradienten durch Fehlerriickfiihrung als eine Form schwacher
Uberwachung zu nutzen.

Dazu umfasst der dargestellte Ablauf aus Abb. 5.1 auf der rechten Seite wiahrend des
Trainings eine Hilfsreprédsentation der Eingabebilder. Wéhrend die Faltungsnetze die
Transformation der jeweiligen ungepaarten Eingabebilder bewerkstelligen sollen, lie-
gen fiir jedes Bild Organsegmentierungen medizinischer Experten vor. Diese Segmen-
tierungen werden in ihre korrespondierenden Distanzkartendarstellungen (engl. signed
distance map, kurz: SDM) umgewandelt (Abb. 5.1 A), d.h. in den entsprechenden Bild-
kandlen werden pro Label die euklidischen Distanzen zur Organgrenze mit positiven
bzw. negativen Werten im Hinter- bzw. Vordergrund codiert. Auf diese Art bilden
sie eine simple Form eines gemeinsamen Featureraumes, die beispielhaft in Abb. 5.2
illustriert ist.

An dieser Stelle greift nun die Idee der schwachen Uberwachung durch sinnvol-
le Gradientenriickfithrung. Dem entwickelten Verfahren liegt die Annahme zugrunde,
dass die korrespondierenden SDMs eingegeben in das rechte B-Spline Descent-Modul
aus Abb. 5.1 eine Verschiebungsfeldanpassung A(u,v)spys generieren, die eine ver-
niinftige Schétzung fiir die anhand der Bilddaten durch die Faltungsnetzwerke und das
linke B-Spline Descent-Modul berechneten A(u, v)geqt sind. Auf diese Art ist es mog-
lich, dass anhand der mittleren, quadratischen Abweichung (engl. mean squared error,
kurz: MSE) beider Anpassungsschritte M SE(A(u,V)peat, A(u, v)spas) ein Fehlersi-
gnal zu den Gewichten der Faltungsnetzwerke geleitet wird. Diese werden durch einen
als Feature Optimierer bezeichneten Adam Optimierer aktualisiert. Dessen Anpassun-
gen wirken sich ausschlieflich auf die Gewichte der CNNs aus (D) und berechnen sich
anhand durch das autograd-Framework verfolgter Operationen bis einschlielich zur
Bestimmung von A(u, V) peqt-

Iterative Bildregistrierung: Die eigentliche, iterativ optimierte Registrierung des
Eingabebildpaares wird durch den FEinsatz des als Grid Optimierer benannten Adam
Optimierers durchgefithrt. Das griin-gepunktete Rechteck in Abb. 5.1 umfasst den
Operationsbereich, der seitens der autograd-Routinen durch den Grid Optimierer ver-
folgt wird. Anhand der Ausrichtung der aktuell gelernten Featurereprasentationen des
Bildpaares basierend auf den Verschiebungsfeldparametern (u,v) (B) wird durch das
B-Spline Descent-Modul ein Anpassungsschritt A(u, v)peqr (C) generiert. Dieser wird
dann zur Aktualisierung des Verschiebungsfeldes (u,v) durch den Grid Optimierer
umgesetzt. Dabei ist zu beachten, dass das (u, v)-Feld sowohl bei der Transformati-
on der Faltungsnetz-basierten Darstellung des Bildpaares als auch bei derjenigen der
SDM-Représentation zur Anwendung kommt. Von daher korrigiert der SDM-Teil des
Schemas unplausible Aktualisierungsschritte durch die Featurerepréisentationen ledig-
lich indirekt - durch die Uberwachung wihrend des Faltungsnetztrainings (D) wie
im vorangehenden Abschnitt beschrieben-, anstatt selbst die Registrierungsrichtung
aktiv vorzugeben.

70



5.2 SUITS

Da die entwickelte Methodik zur Testzeit auf Feature zuriickgreift, die von zu diesem
Zeitpunkt fixierten Faltungsnetzen generiert werden, ist es notwendig, dass diese Re-
prasentationen wihrend des gesamten Registrierungsprozesses hilfreich sind - also von
initial grofien bis hin zu final geringen Unterschieden aussagekréftig sind. Die Definition
eines speziellen Trainingsschemas soll dies ermdglichen. Ausgehend von einer gegebe-
nen, maximalen Anzahl an Optimierungsiterationen wird vor jeder Zusammenstellung
eines Mini-Batches fiir den aktuellen Trainingsschritt eine zuféllige Anzahl pro Bildpaar
an vorher durchzufiihrenden Registrierungsschritten gezogen. Dadurch beinhaltet ein
Mini-Batch Bilderpaare verschiedenster Angleichungsphasen. Das entwickelte Verfah-
ren unterscheidet sich dabei beispielsweise von einem Multiphasen-Regressions-Ansatz
aus Xiong u.a., 2013, da die Feature mithilfe fixierte Netzwerke extrahiert werden und
somit wihrend des gesamten iterativen Registrierungsprozess anwendbar sein miissen.

Wie ein Grofiteil der klassischen Registrierungsverfahren erméglicht auch die hier
eingefiihrte Methode die Anwendung einer Multiskalenstrategie. Dazu wird schrittwei-
se ein initial sehr grobes Verschiebungsfeldparametergitter fiir eine bestimme Anzahl
an inkrementellen Aktualisierungen verwendet. Anschliefend wird das Kontrollpunkt-
gitter verfeinert, in dem die (u, v)-Parameter fiir die nichste Stufe durch Interpolation
hochskaliert werden.

Nach Abschluss des Trainings werden zur Inferenzzeit die CNN-basierten Représen-
tationen der bislang ungesehen Bilder - ohne die Notwendigkeit zusétzlicher Annota-
tionen - fiir die festgelegte Anzahl an Optimierungsschritten registriert (blaue Box in
Abb. 5.1). Das schliefllich resultierende Verschiebungsfeld (u, v) (griine Box) lésst sich
dann auf das moving Bild anwenden, um es dem fized Bild strukturell anzugleichen.
Die algorithmischen Details sowohl der Trainings- als auch der Inferenzphase sind in
Form von Pseudocode in Alg. 1 & 2 noch einmal zur weiteren Verdeutlichung des
Ablaufes dargestellt.

5.2.2 Experimente & Ergebnisse

Um im Rahmen der Machbarkeitsanalyse die generelle Anwendbarkeit der vorgeschla-
genen Methode zu priifen, werden multimodale Registrierungen auf ungepaarten 2D-
Coronalschnitten durchgefithrt. Die Bilddaten dazu stammen aus dem thorakoabdo-
minalen Bereich der CT- und MRT-Aufnahmen des in Jimenez-del-Toro u.a., 2016
vorgestellten VISCERAL Datensatzes. Zusétzlich werden die ebenfalls vorliegenden
Expertensegmentierungen der Leber, der Milz, der Nieren sowie der Psoas Major Mus-
keln wihrend des Trainings genutzt, um als eine Form der schwachen Uberwachung
zu dienen. Um die Giite der Registrierung zur Testzeit mithilfe der CNN-basierten Re-
prasentationen beurteilen zu konnen, wird wie im vorangehenden Kapitel 4 der Dice-
Wert herangezogen.

Als Vorverarbeitung werden alle Bilddaten auf eine isotrope PixelgréBe von 1.5mm?
standardisiert. Um zu grofle inhaltliche Unterschiede zwischen den betrachteten 2D-

71



Kapitel 5 Schwach-iiberwachtes Deskriptorlernen auf multimodalen Thoraxdaten

Algorithm 1: Schematischer Uberblick der Trainingsprozedur

Input: CT- & MRT-Bilder + Organsegmentierungen
Output: Trainierte CNNs zur Feature-Extraktion
Initialisiere FEATURE CNNs;
Initialisiere FEATURE OPTIMIERER & binde CNN-PARAMETER an;
Initialisiere GRID OPTIMIERER & binde die Verschiebungsparameter (u,v) an;
Generiere ein PAAR-PRASENTATIONSSCHEMA; // verschiedene Angleichungsphasen
Berechne fixe Distanzkarten Mspyr & Fspar, // vgl. As in 5.1
for #Auflosungsskalen do
while batch pairs in PAAR-PRASENTATIONSSCHEMA do
// Aufgezeichnet durch FEATURE OPTIMIERER
Berechne Myeq = CNNer(m) & Freat = CNNagrr(f); // vgl. Bs
// NICHT aufgezeichnet durch FEATURE OPTIMIERER
for #Iterationen per Skala do
// Fihre mehrere Verschiebungsfeldparameteradaptionen durch
Berechne GridUpdate A(u,v)peq: = BSDModul(Mpeat, Freat, (1, v));
// vgl. Cs
Nutze GRID OPTIMIERER um (u,Vv) durch A(u,v)peq+ anzupassen;
end
// Aufgezeichnet durch FEATURE OPTIMIERER
Berechne A(u,v)peqr = BSDModul(Mpeat, Freat, (U, V));
Berechne A(u,v)spy = BSDModul(Mspar, Fspar, (u,v));
Berechne MSE(A(u, V) peat, A(u,v)spar) als Loss; // vgl. Ds
Nutze FEATURE OPTIMIERER um die CNN-PARAMETER anzupassen
end

end

Algorithm 2: Schematischer Uberblick der paarweisen Registrierung zur Infe-
renzzeit

Input: CT- & MRT-Bildpaare; durch Algorithmus 1 trainierte CNNs
Output: transformiertes moving Bild, Verschiebungsfeldparameter (u, v)
Initialisiere GRID OPTIMIERER & binde die Parameter (u,v) an;
for #Auflosungsskalen do
Berechne Moot = CNNgr(m) & Frear = CNNwygr(f); // vgl. Bs
for #Iterationen per Skala do
Berechne GridUpdate A(u, V) peqr = BSDModul(Mpeat, Freat, (0, v));  // vgl.
Cs
Nutze GRID OPTIMIERER um (u,Vv) durch A(u,v)peq: anzupassen;
end

end
Transformiere m entsprechend (u, v);
return transformiertes moving Bild, (u,v)
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Abb. 5.2: Beispielhafte thorakoabdominal Schnitte: (von links nach rechts) CT-Schnitt samt
Expertensegmentierung; Distanzkarte (SDM) der Leber (CT); MRT-Schnitt samt
Expertensegmentierung; Distanzkarte des Hintergrundes (MRT).

Schnitten auszugleichen, die aus patientenindividuellen anatomischen Gegebenheiten
resultieren, werden die dreidimensionalen Daten zunéchst mit dem deeds-SSC-Ansatz
aus Heinrich u. a., 2013a vorregistriert und anschlieSend auf eine Grofle von 320x312
Pixeln zugeschnitten. Dieser Schritt resultiert im Mittel iiber das Patientenkollektiv
immer noch in groBe, initiale Nicht-Ubereinstimmungen von lediglich 44% Dice. Der in
dieser ersten Version entwickelte SUITS-Algorithmus hat dann als Ziel die nicht-rigiden
Deformationen innerhalb der nun in etwa korrespondierenden Schichten auszugleichen.
Neben den bereits erwdhnten Distanzkarten enthélt Abb. 5.2 beispielhafte Schichtbil-
der samt unterlegter Organsegmentierungen einiger Patienten.

Um die Anwendbarkeit des B-Spline Descent-Moduls zu priifen, wird zunéchst auf
jeglichen Einsatz trainierbarer Faltungsnetzwerke verzichtet und eine monomodale
CT-Registrierung direkt auf den Grauwertintensitdten durchgefihrt. Bei diesen nicht-
iiberwachten Registrierungen erhoht sich der initiale Dice-Wert von 0.44 auf 0.69
und bestétigt die Funktionalitdt der implementierten Methode zur Aktualisierung der
Verschiebungsfeldparameter.

Damit eine Einordnung der entwickelten Methode im Vergleich zu aktuellen, nicht-
trainierbaren Verfahren stattfinden kann, wird der zur Anwendung im multimoda-
len Kontext entwickelte, manuell entworfene MIND-Deskriptor aus Heinrich u. a., 2012
genutzt, der sich zur Extraktion robuster und aussagekraftiger Reprasentationen eig-
net. Dazu muss lediglich der Schritt der Featureextraktion im vorgeschlagenen Fra-
mework adaptiert werden, d.h. die Faltungsnetzmodule werden durch die Generie-
rung der MIND-Deskriptoren ersetzt. Dariiberhinaus wird in Form des SimpleElastix-
Frameworks aus Marstal u. a., 2016 ein weiteres - im Grundlagen-Kapitel in Abschnitt
2.2.2 beschriebenes - Stand-der-Technik-Verfahren zur Registrierung von Bildpaaren
verschiedener Modalitdten als weiterer Vergleich eingesetzt. Diese Methode nutzt eine
mutual information-Metrik zur Bestimmung der Ahnlichkeit und greift auf ein vier-
stufiges Multiresolutionsverfahren nach vorangehender affiner Vorregistrierung zuriick.

Trainings- und Netzarchitekturdetails: Alle Verfahren werden auf den glei-
chen 10 Schnittbildern pro Modalitéat evaluiert, was bei den vorliegenden, ungepaarten
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Tabelle 5.1: Strukturelle Details der im SUITS-Algorithmus genutzten FEATCNNS.

Faltungsschicht 1 2 3 4 5 6 7
Kanale,;,, 1 4 6 6 8 8 8
Kanélegq, s 4 6 6 8 8 8 8

Padding 3 3 2 2 2 1 1
Filtergrofe 7 7 5 5 5 3 3
Group-Normalisierung ja ja ja ja ja ja nein
Aktivierung tanh tanh tanh tanh tanh tanh —

Daten 100 mogliche Registrierungspaare ergibt. Da das hier entwickelte Verfahren al-
lerdings auf eine Trainingsphase angewiesen ist, wird das Patientenkollektiv jeweils
zufillig in 7 Trainingsbilder - also 49 Trainingspaare - und 9 verbleibende Paare zur
Auswertung der Registrierungsgenauigkeit aufgeteilt. Dieses Vorgehen wird insgesamt
10 Mal wiederholt und fiir alle drei Methoden werden zum Vergleich anschlieend die
mittleren Dice-Werte iiber die betrachteten Organstrukturen erhoben.

Im Falle der lernbaren Faltungsnetze als Featureextraktoren wird fir beide Modali-
tiaten die gleiche feedforward-Architektur aus jeweils sieben Faltungsblocken genutzt,
die in Tabelle 5.1 durch Angabe der gewahlten Blocke samt Hyperparameterwahl pro
Schicht beschrieben ist. Wahrend der Trainingsprozedur werden die Distanzkarten ge-
neriert, um mittels des B-Spline Descent-Moduls das notwendige Gradientensignal zur
Uberwachung der Verschiebungsfeldaktualisierungen zu berechnen. Die SDMs werden
sowohl fiir den Objekthintergrund als auch fiir jedes Organ der manuellen Experten-
segmentierungen erstellt und in eigenen Bildkanélen hinterlegt. Da die Rohdaten der
SDMs initial grofle Unterschiede aufgrund der Variabilitdt hinsichtlich Organgréfien
und -positionen aufweisen, wird deren Wertebereich auf [—1, 1] - wie in Abb. 5.2 ersicht-
lich - durch Anwendung der Funktion tanh(0.01-x) normalisiert. Dieses Vorgehen sorgt
weiterhin fiir einen vergleichbaren Wertebereich zwischen den SDM-Repréasentationen
und den Faltungsnetzausgaben, so dass das Training der CNN-Parameter erleichtert
wird.

Unter Beachtung des oben beschriebenen Trainingsprozedere, das die Verarbeitung
von Bildpaaren unterschiedlicher Angleichungsphasen sichert, werden die Gewichte der
Faltungsnetze mittels des Feature Optimierers nach jeder flinften Iteration des Grid
Optimierers angepasst. Dies soll gewéahrleisten, dass geniigend grofie und somit im Sin-
ne der Gradienteniiberwachung ausreichend informative, raumliche Anpassungsschritte
vollzogen werden, um anschliefend sinnvolle Adaptionen der Faltungsnetze zur Trans-
formation in den gemeinsamen Bildraum durchzufithren. Beziiglich der Hyperparame-
terwahl nutzen der Feature Optimierer und der Grid Optimierers initiale Lernraten
von 0.001 bzw. 0.005. Im Sinne der Multiskalenstrategie werden 3 unterschiedlich feine
Kontrollpunktgitter genutzt, beginnend mit anfanglichen Schrittweiten von Kontroll-

74



5.2 SUITS

punkten an jedem 20., iiber jeden 10. bis zu jedem 7. Pixel. Auf jeder Stufe werden
sowohl wahrend des Trainings als auch spéater zur Inferenz 300 Verschiebungsfeldanpas-
sungen A(u,v) berechnet - also insgesamt pro Bildpaar 900 Optimierungsiterationen.
Mit einer Gewichtung von 0.025 wird dem Regularisierungsterm, der Abweichungen
zwischen A(u,v) und ihrer geglatteten Version betrachtet, auf der letzten Stufe mehr
Einfluss beigemessen als auf den beiden vorangehenden mit 0.0125. Als Batchgro-
Be werden aufgrund hardwareseitiger Speicherbeschrankungen jeweils zwei Bildpaare
gleichzeitig wahrend des Trainings verarbeitet. Auflerdem werden nur Gradienten aus
Regionen zuriickgefiihrt, die aufgrund ihrer N&dhe zu Organgrenzen als relevant fiir
das Erlernen aussagekréftiger, modalitdtsinvarianter Représentationen erachtet wer-
den. Diese Regionen werden aus den Distanzkarten durch Maskierung von Bereichen,
in denen abs(SDMj,,(x)) < 0.1 gilt, bestimmt.

Nach Beendigung des Trainings werden zur Inferenz alle Parameter wie oben be-
schrieben beibehalten. Unter Fixierung der Faltungsnetzwerke werden dann ausschlie3-
lich unter Einsatz des Grid Optimierers die Verschiebungsfeldanpassungen zur Regis-
trierung durchgefiihrt. Aus diesem Grund entféllt die Notwendigkeit zur Inferenz auf
die zuséitzlichen Informationen zur Uberwachung mittels Segmentierungen zuzugrei-
fen. Auch im Falle des Experimentes, bei dem die Faltungsnetze durch die MIND-
Deskriptoren ersetzt werden, ist lediglich der blau unterlegte Bereich in Abb. 5.1 von
Noéten.

Ergebnisse: Beginnend mit einer qualitativen Darstellung zeigt Abb. 5.3 das Re-
sultat einer CT-zu-MRT-Registrierung. In der oberen Reihe sind zunéchst jeweils die
urspriinglichen CT- und MRT-Schnittbilder samt iiberlagerter Expertensegmentierun-
gen zu sehen. Anschlielend sind sowohl fiir den Einsatz der MIND-Deskriptoren im
entwickelten Framework, als auch fiir die trainierten Faltungsnetzwerke als Feature-
extraktoren die CT-Segmentierungen basierend auf den jeweilig generierten Verschie-
bungsfeldern verformt und zum Vergleich tber das MRT-Zielschnittbild tiberlagert
illustriert. Dabei erreicht der Einsatz von MIND-Deskriptoren einen Dice-Wert von
0.63 und das in diesem Kapitel entwickelte CNN-basierte Verfahren verbessert den ur-
spriinglichen Wert von 0.40 weiter auf 0.71. Die untere Reihe zeigt ganz links mithilfe
der Verformung eines Gitters die Auswirkungen des CNN-basierten Verschiebungsfel-
des nach Abschluss der 900 Iterationen unter Einsatz des B-Spline Descent-Moduls. Die
daran anschliefenden Schachbrett-Darstellung vermittelt einen Eindruck der anfing-
lich vorliegenden, rdumlichen Organrelationen. Dariiberhinaus zeigen die Schachbrett-
darsellungen der beiden Verfahren die nach der Registrierung verbesserte rdumliche
Korrespondenz und insbesondere im Fall des Faltungsnetz-gestiitzten Vorgehens gute
Ergebnisse fiir die Organgrenzen der Leber - trotz grofer initialer Distanz bei diesem
Beispielpaar.

Tabelle 5.2 enthalt hingegen die Dice-Werte als quantitative Kennzahlen der Expe-
rimente. Fir 10 Durchldufe mit zufélligen Aufteilungen in Trainings- und Testmen-
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Abb. 5.3: Beispielhafte Ergebnisse: (oben) CT- & MRT-Schnittbilder unterlegt mit ihren zu-
gehorigen Segmentierungen sowie Darstellung des MRT-Zielbildes {iberlagert mit
transformierten CT-Segmentierungen unter Einsatz der MIND-Deskriptoren bzw.
der trainierten Faltungsnetzwerke. (unten) Ein entsprechend dem CNN-basiert ge-
neriertem Verschiebungsfeld transformiertes Gitter; Schachbrettdarstellungen der
anfinglichen, rdumlichen Organrelationen sowie nach Transformation mittels der
jeweiligen Verschiebungsfelder.

gen der ungepaarten Bilddaten werden insgesamt 90 Registrierungen durchgefiihrt.
Im Mittel schneidet dabei das entwickelte Verfahren unter Anwendung trainierter Fal-
tungsnetze zur Transformation in einen gemeinsamen Bildraum mit durchschnittlichen
Dice-Werten von 0.72 am besten ab. Das etablierte SimpleElastiz-Framework als Ver-
treter klassischer Registrierungsverfahren iiberzeugt ebenfalls mit leicht niedrigeren,
finalen Dice-Werten von 0.70. Die manuell entworfenen MIND-Deskriptoren folgen in
geringem Abstand und verbessern den initialen Wert von 0.53 auf 0.66. Wahrend das
MIND-Verfahren gute Ergebnisse auf den Psoas Major Muskeln liefert, iiberzeugt das
vorgestellte Verfahren insbesondere durch seine Robustheit hinsichtlich groffler Organ-
strukturen wie der Leber und der Milz.

5.2.3 Diskussion

Die als Machbarkeitsstudie entworfene, erste Version des SUITS-Algorithmus erfiillt ih-
ren Zweck und erlaubt eine neuartige Integration von Ende-zu-Ende-trainierten, CNN-
basierten und multimodalen Reprasentationen in ein klassisches Registrierungspro-
zedere.
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Tabelle 5.2: Dice-Werte der betrachteten Verfahren: Verglichen mit den initialen Uberlage-
rungen erreichen alle Methoden Verbesserungen durch sinnvolle, raumliche An-
passungen. Wéhrend die MIND-basierten Registrierungen speziell auf feineren
Strukturen wie den Psoas Major Muskeln iiberzeugen, zeigen die CNN-basierten
Représentationen Stéirken bei grofien Organen wie Leber und Milz.

Organ
Experiment Leber Milz 1.Niere r.Niere [.PsoasM r.PsoasM %]
Initial 0.56  0.37 0.52 0.55 0.53 0.65 0.53
SimpleElastix 0.75 0.68 0.58 0.72 0.68 0.76 0.70
MIND Deskriptor | 0.67  0.45 0.70 0.69 0.72 0.75 0.66
Feature CNNs 0.83 0.64 0.74 0.68 0.72 0.73 0.72

Die im Experiment erzielten Ergebnisse weisen nach, dass Faltungsnetzwerke fiir den
herausfordernden Fall ungepaarter Bilddaten mit lediglich schwacher Uberwachung
durch Organsegmentierungen aussagekraftige Transformationen in einen gemeinsamen
Bildraum erlernen kénnen. Diese trainierten Reprasentationen sind anschliefend direkt
innerhalb des iterativen Multiskalen-Registrierungsverfahrens einsetzbar. Wahrend die
manuell entworfenen MIND-Deskriptoren speziell kleinere Stukturen iiberzeugend an-
gleichen, profitert die iterative Registrierung vom vergleichsweise grofien rezeptiven
Feld der mehrschichtigen Faltungsnetze, so dass insbesondere grofie Organe einfacher
zueinander ausgerichtet werden konnen. Es ist dabei noch einmal hervorzuheben, dass
die entwickelte Methode es ermoglicht, sich der Notwendigkeit dichter, punktweiser
Korrespondenzen zu entledigen, da zuséatzlich nur Organsegmentierungen wéahrend des
Trainings bendtigt werden.

Zusammenfassend unterstiitzen die durchgefithrten Experimente die Annahme, dass
die klare Separierung der Architektur in Teile, welche einerseits zum Erlernen des
gemeinsamen Bildraumes dienen und andererseits im klassischen Sinne fiir die iterativ
optimierte Registrierung verantwortlich zeichnen, vorteilhaft ist. Dadurch bietet sich
eine Alternative zu den iiblichen Parameter-intensiven, vollintegrierten und Ende-zu-
Ende-trainierten Registrierungsnetzwerken.

Im néchsten Abschnitt wird dieser Pfad weiter verfolgt und unter Einsatz eines wei-
teren Verformungsmodells auf ein dreidimensionales, multimodales Registrierungs-
problem erweitert.

5.3 SUITS 2.0

Im vorangehenden Abschnitt 5.2, dessen inhaltliche Grundlage die Verdffentlichung
Blendowski u.a., 2019a bildet, wird eine Ende-zu-Ende-trainierbare, multimodale
Registrierungsstrategie eingefithrt. Es wird ein Weg aufgezeigt, wie die Integration
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von Faltungsnetzwerken zur Erhebung modalitatsinvarianter Repréasentationen in einer
klassischen Registrierungspipeline gelingen kann.

Weiterhin soll der Lernprozess zur Extraktion aussagekréftiger Feature basierend auf
schwacher Uberwachung durch Organsegmentierungen geleitet werden, wie z.B. in
Hu u.a., 2018 vorgeschlagen. Im Gegensatz zu einer Vielzahl anderer Arbeiten, die
sich mit dem Erlernen und Vorhersagen des Optischen Flusses befassen, bleibt der
Fokus auch bei dieser Umsetzung auf der Trennung von struktureller Bildinformation
und Anpassung der Deformationsparameter. Es handelt sich daher um eine weitere
Ausprigung des SUITS-Algorithmus - publiziert in Blendowski u. a., 2020b -, allerdings
mit mehreren grundlegenden Anderungen.

1) Im Gegensatz zur Verwendung von lediglich zweidimensionalen Bilddaten im
Sinne einer Machbarkeitsanalyse, wird im Folgenden der Schritt zur herausfordern-
den, dreidimensionalen Registrierung von ungepaarten, thorakoabdominalen CT- und
MRT-Aufnahmen vollzogen.

2) Die urspriingliche Beschrankung auf ein Verfahren zum Bestimmen der Trans-
formationsparameteranpassung, das auf die Existenz einer geschlossenen Losung hin-
sichtlich des resultierenden Gleichungssystems angewiesen ist, um die Ende-zu-Ende-
Trainierbarkeit sicherzustellen, wird in diesem Kapitel iiberwunden. Dazu wird eine
Gradientenriickfithrung durch Loésungsverfahren fiir lineare Gleichungssysteme imple-
mentiert, so dass die Kombination mit einem in Brox u. a., 2004 eingefiihrten, etablier-
ten und iterativen GauB-Newton-Anpassungsschema moglich ist. Trotz des Mehrauf-
wandes an theoretischer Vorarbeit ergeben sich dadurch strukturelle Vereinfachungen
hinsichtlich des Ablaufschemas im Vergleich zur ersten SUITS-Version.

3) Im Vergleich zur vorangehenden Version wird eine Y-formige Netzwerkstruktur
genutzt, um durch die geteilten Gewichte in den tieferen Schichten die Transformation
der multimodalen Eingabedaten in vergleichbare Représentationen zu erleichtern.

4) Schliefllich wird die Art der Loss-Berechnung von einer direkten Bestrafung abwei-
chender Parameteranpassungen umgestellt auf das Betrachten der Ubereinstimmungs-
giite von im Trainingsfall vorliegenden Expertensegmentierungen.

5.3.1 Methoden

Dieser Abschnitt dient der detaillierten und umfassenden Einfithrung der abgednder-
ten, zweiten Version des SUITS-Algorithmus zur multimodalen Bildregistierung. In
Abb. 5.4 ist der schematische Ablauf der Methodik illustiert und umfasst sowohl die
Trainings- als auch die Inferenzphase. Die modularen Bestandteile sind mit ihren je-
weiligen Beziehungen zueinander dargestellt, die das Loslosen des iterativen Registrie-
rungsprozess vom Lernen aussagekraftiger Reprasentationen zum Ziel haben. Zunéchst
wird das Zusammenspiel der Module innerhalb des gesamten Verfahrens erldautert, be-
vor eingehend die Implementierung der ableitbaren, iterativen Berechnung der Trans-
formationsparameteranpassung dargelegt wird.
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Abb. 5.4: Schematischer Aufbau der Methode. Auf der linken Seite (hellblaue Box) ist der
iterative Prozess zur Inferenzzeit abgebildet. Pro Durchlauf wird das moving Bild
entsprechend den aktuellen Verschiebungsparametern u” transformiert und die Fea-
turereprasentationen R,/ i der beiden Eingabebilder mittels der Y-férmigen
Faltungsnetzarchitektur (gelb) generiert. Basierend auf diesen Darstellungen be-
rechnet anschlieend das Transformationsparameteranpassungsmodul das Upda-
te Au fiir die niichste Iteration. Die zufillige Auswahl einer Iteration kbeck—1
zur Anpassung der Faltungsnetzgewichte, ermdglicht unter Ausnutzung verfiigbarer
Organsegmentierungen wéhrend des Trainings das Erlernen robuster Feature, die
wahrend des gesamten iterativen Registrierungsprozesses eingesetzt werden konnen.
Beim Durchlauf der Iteration k°?“* werden alle Operationen mittels einer autograd
engine aufgezeichnet (griin gestrichelte Pfeile) und Au* wird in diesem Schritt mit-
hilfe der FEATCNN-basierten Reprasentationen berechnet. Anhand des schwach-
iiberwachten, Segmentierungs-basierten Losses, der auf der rechten Seite darge-
stellt ist, ergibt sich ein Gradientenriickfluss hin zu den lernbaren Gewichten des
FEATCNNS (gepunktete, rote Pfeile).
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5.3.1.1 SUITS 2.0-Algorithmus

Wie in der vorangehenden Version besteht die Zielstellung des SUITS 2.0-Algorithmus
im Angleichen multimodaler Bilddaten. Daher bleibt das Einbringen von Vorwissen
notwendig, um dem Problem der zunéchst nicht-vergleichbaren Bildintensitatsvertei-
lungen zu begegnen. Anstatt deshalb auf eine passende Ahnlichkeitsmetrik zuriickzu-
greifen, wird auch hier weiterhin die Strategie verfolgt, mittels schwacher Uberwa-
chung durch Organsegmentierungen die Gewichte von Faltungsnetzwerken zur Featu-
reextraktion datengetrieben zu lernen.

Bisher stellen die in Heinrich u. a., 2012 vorgestellten MIND-Deskriptoren eine Stand-
der-Technik-Referenz insbesondere zur CT-MRT-Registrierung dar, indem sie das Kon-
zept der Selbstdhnlichkeit zur Transformation der Bilddaten in einen vergleichba-
ren Stukturraum nutzen. Bereits im vorangehenden Abschnitt zur ersten Version des
SUITS-Algorithmus haben sie innerhalb eines iterativen Optimierungsverfahrens und
ohne spezielle Metriken unter Beweis gestellt, dass sich auf ihrer Grundlage multimo-
dale Registrierungen durchfiihren lassen. Im Fortgang soll nun beleuchtet werden, ob
sich in einer vergleichbaren Registrierungspipeline Faltungsnetzwerke einsetzen lassen,
deren Gewichte initial auf die Replikation von MIND-Deskriptoren trainiert sind, um
anschlieend datengetrieben noch verfeinert zu werden.

Auch dabei stellt sich wieder die Frage nach der konkreten algorithmischen Ausge-
staltung der Gradientenriickfithrung zur Anpassung der Netzwerkparameter.

Diese soll wieder im Zuge des paarweisen Bildregistrierungsproblems untersucht wer-
den, d.h. wéhrend der Suche einer geeigneten Transformation u (in Gleichung 2.4
urspriinglich ¢ benannt, hier aber der intuitiveren Lesbarkeit als Vektorfeld mit u
bezeichnet), die das Minimierungsproblem

min D (R fiz(x), Rmov(x + 1)) + C(u) (5.4)

betrachtet. Die gefundende Lsung sollte an jeder Position x der mowving-Bildrepréasen-
tation Ry,0p moglichst gut mit derjenigen des fized Bildes R y;, iibereinstimmen - im
Sinne eines Distanzmafles D und zusétzlicher Nebenbedingungen C (engl.: constraints,
um Konflikte mit den Reprisentationen R zu vermeiden), wie beispielsweise der gefor-
derten Glattheit des Verschiebungsfeldes.

Der nachstehende Abschnitt soll Aufschluss dariiber gewdhren, wie diese aussage-
kraftigen, gemeinsamen Bildrepriasentationen gelernt werden kénnen.

Training der Feature CNNs: Grundsétzlich wird wie in der ersten SUITS-Version
auf eine Form von schwacher Uberwachung zuriickgegriffen, um eine Adaption
der MIND-vortrainierten Faltungsnetze durch Riickfithrung sinnvoller Gradienten zu
erreichen. Abb. 5.4 deutet bereits im Prozessfluss der rechten Seite an, dass die wihrend
des Trainings zur Verfiigung stehenden Organsegmentierungen in der Funktion eines
vergleichbaren Bildraumes genutzt werden.
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Zur Inferenzzeit verfolgt der Ansatz die Strategie klassischer, iterativer Registrierun-
gen (vgl. schwarze Pfeile), so dass innerhalb des modularen Aufbaus mehrere Durch-
ldufe zur Berechnung der schrittweisen Verschiebungsfeldparameteranpassungen vor-
genommen werden. Eine Iteration geht von den Verschiebungen u”* (orange) aus und
endet auch nach deren Anpassung dort. u* sind dabei dichte Verschiebungsfelder zur
Beschreibung nicht-rigider, lokaler Deformationen.

Bei jedem Durchlauf k£ wird zunédchst das moving Bild entsprechend der aktuellen
Parameter u” transformiert. AnschlieBend werden sowohl das fized als auch das trans-
formierte mowving Bild mittels des Y-formigen Faltungsnetzes in ihre Featurerepra-
sentationen tberfihrt. Diese dienen dem Transformationsparameteranpassungsmodul
als Eingabe, um die Verschiebungsfeldparameteranpassungen Au*~! zu berechnen. In
frithen Experimenten hat sich herausgestellt, dass diese Y-Struktur sich insbesondere
durch das Teilen der Gewichte in den tieferen Schichten dazu eignet, eine Transforma-
tion der Eingabedaten verschiedener Modalitédten in vergleichbare Représentationen zu
erreichen. Mit Riicksicht auf Nachvollziehbarkeit des Verfahrens kapselt dieses Modul
die mathematische Methodik und wird im Fortlauf noch eigens erldutert. Wahrend der
Registrierung werden die Ausgaben dieses Modules schliellich unter Beriicksichtigung
eines Schrittweitenparameters v zu den Verschiebungsfeldparametern fiir die néchste

Iteration addiert:
k

uf =u" 4y Auh mit u® =0 (5.5)
An dieser Stelle muss wiederum auf eine Besonderheit das Training betreffend hin-
gewiesen werden, bevor auf den eigentlichen Gradientenfluss hin zu den Gewichten
des FEATCNNS eingegangen wird. Aufgrund der Orientierung an klassischen, itera-
tiven Verfahren, bei denen manuell entworfene Bilddeskriptoren auf gleichbleibende
Weise wahrend des ganzen Prozesses berechnet werden, bleiben auch die FEATCNNSs
beim Einsatz innerhalb des SUITS 2.0-Algorithmus wie schon in der ersten Version fix.
Daher bleibt die Notwendigkeit bestehen, dass die erlernten Feature robust und aus-
sagekriftig zu jeder Phase des Angleichungsprozesses von Bildpaaren genutzt werden
koénnen. Im Training kommen dabei erneut die Organsegmentierungen zum Einsatz, um
den Registrierungsprozess zu fithren. Dazu wird das Tranformationsparameteranpas-
sungsmodul fir eine zuféllige Iterationsanzahl kp,cr, — 1 direkt auf die Segmentierungen
angewandt, da sie eine monomodale und somit valide Eingabe darstellen. Nach Ab-
schluss dieser Iterationen wird das urspriingliche moving Grauwertbild entsprechend
uvack =1 transformiert.

Fiir alle weiteren Schritte wihrend der nichsten, anstehenden Iteration zeichnet eine
autograd engine jegliche Operationen auf und erlaubt dadurch einen Gradientenriick-
fluss (griin gestrichelte Pfeile). Zuerst extrahiert das FEATCNN die entsprechenden
Reprisentationen REtack =1 des moving Bildes bzw. R f;, des fized Bildes. Danach wird
das Update Au*tecr—1 yom Transformationsparameteranpassungsmodul auf Grundla-
ge der FEATCNN-Reprasentationen berechnet - und nicht basierend auf den Segmen-
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tierungen wie in den vorangehenden Iterationen. Gleichung (5.5) folgend ergibt sich
daraus direkt u’eack,

Um nun die Gewichte des FEATCNN dermafien zu adaptieren, dass eine Transfor-
mation der multimodalen Eingabebilder in einen gemeinsamen Raum vollzogen wird,
kommt die schwache Uberwachung in Form der vorliegenden, kanalweise kodierten
Organsegmentierungen zum Einsatz. Wie im rechten Teil der Abb. 5.4 zu sehen, be-
notigt man die transformierte moving Segmentierung S*ack. Mithilfe dieser ist man in
der Lage einen Fehlerterm zu berechnen, der den Gradientenfluss zur Adaptierung der
Faltungsnetzgewichte auslost (rot gepunktete Pfeile). Zur Verwendung kommt hier ein
cross entropy loss zwischen der transformierten Segmentierung und der mittels einer

arg max-Operation entlang der Kanaldimension umgewandelten Zielsegmentierung.
Lguide = ECE(S,]ffgg’“, arg max Syig) (5.6)

Man beachte, dass S¥ack aufgrund der trilinearen Interpolation wihrend der Tranfor-
mation nicht mehr ausschliellich Werte aus {0, 1} enthélt und dementsprechend einen
sinnvollen Gradientenfluss erméglicht.

In zusammengefasster Form findet sich das oben beschriebene Vorgehen auch als

Pseudocode in Algorithmus 3.

5.3.1.2 Transformationsparameteranpassung

Die Erlduterungen des vorangehenden Abschnittes dienen dazu den schematischen Ab-
lauf zur Riickfithrung informativer Gradienten hin zu den Faltungsnetzwerkgewich-
ten durch eine schwache Uberwachung herauszuarbeiten. Die eigentlichen Erwei-
terungen im Vergleich zum urspriinglichen, in Abschnitt 5.2 vorgestellten SUITS 2.0-
Algorithmus sind bisher im Transformationsparameteranpassungsmodul gekapselt.
Das zuerst entwickelte SUITS-Verfahren nutzt einen Demons-basierten, iterativen
Registrierungsansatz aufgrund der geschlossenen Losung zur Adaption der Transfor-
mationsparameter, welche innerhalb der autograd engine eine verhaltnisméafig sim-
ple Gradientenriickfithrung erlaubt. In der weiterentwickelten, zweiten Version wird
ein Parameteranpassungsverfahren in Anlehnung an die iterative Methode aus Brox
u. a., 2004 mit Diffusionsregularisierung umgesetzt. Diese Formulierng der Glattheits-
bedingung erweist sich in frithen Experimenten zur Ermittlung dreidimensionaler Ver-
schiebungsfelder gegeniiber der Demons-basierte Variante des urspriinglichen SUITS-
Algorithmus als robuster. Da die Variante jedoch auf einer Gauf-Newton-Optimierung
basiert, wird das Losen eines groflen, wenn auch spérlich-besetzten linearen Gleichungs-
systems (LGS) erforderlich. Letzteres lésst sich beispielsweise mittels eines algebrai-
schen Multigrid-Verfahrens (AMG) 16sen, wie es in Ruge u. a., 1987 entwickelt wird.
An dieser Stelle sei noch einmal ausdriicklich darauf hingewiesen, dass alle Auspréa-
gungen des SUITS-Algorithmus der vollstdndigen Differenzierbarkeit jeglicher im Ver-
lauf durchgefithrten Operationen bediirfen. Vor diesem Hintergrund ist es dementspre-
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Algorithm 3: Schematischer Ablauf des SUITS 2.0-Algorithmus aus Abb.5.4

als Pseudocode.

Input: Thoracoabdominale CT- & MRT-Bilddaten + Organsegmentierungen
Output: Trainierte CNNs zur Feature-Extraktion

Initialisiere FEATCNN;

Initialisiere FEATURE OPTIMIERER & binde die FEATCNN-PARAMETER an;

for epx < 0 to #epochs do

Setze u® = 0:

Ziehe ein zufélliges Batch an Patientenpaaren;

Wahle kpqer zufallig aus [0, #iterations];

for k < 1 to kpger, — 1 do

// NICHT aufgezeichnet durch FEATURE OPTIMIERER

Setze die fixed Organsegmentierung Sy, als fixed Reprasentation R ¢iz;

Setze die moving Organsegmentierung S,,0, als moving Reprasentation R ,,00;

Berechne REL durch Transformation der moving Organsegmentierung R 00
entsprechend u*~1;

Generiere AuF~! mittels des Transformationsparameteranpassungsmoduls;

Setze u* = uF~! + . AuF~!

end

// Zur Iteration kp,.; aufgezeichnet durch FEATURE OPTIMIERER

Berechne Ry, mittels FEATCNN als fixed Représentation;

Berechne RFeack—1 als moving Reprisentation durch Transformation des moving
Grauwertbildes entsprechend u*»ec*~! unter Anwendung von FEATCNN;

Generiere Au*tack—1 mittels des Transformationsparameteranpassungsmoduls;

Setze ukvack = yhvack—1 - Aukracr—1.

Berechne Skvack durch Transformation der moving Organsegmentierung entsprechend

back.

u ;

Berechne den cross entropy-Loss Lgyide = Lo p(Skrack Syiz) zur Rickfiihrung des

mov

Gradienten und adaptiere die FEATCNN-Gewichte;

end
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chend notwendig auch das Losen des LGS ableitbar zu gestalten, damit der Gradienten-
fluss durch diesen Schritt korrekt zur schlussendlichen Anpassung der Faltungsnetz-
parameter weitergeleitet wird. Dieser Mehraufwand an theoretischer Vorarbeit wird
aber durch strukturelle Vereinfachungen wie dem Entfallen des Grid Optimierers auf-
gewogen, da das méchtigere Parameteranpassungsmodell beispielsweise bereits ohne
Berticksichtigung des Momentum zur sinnvollen Adaption der Verschiebungsvektoren
fiihrt.

Nachfolgend wird nun das methodische Fundament dieser diffusionsregularisierten
Registrierungsmethode gelegt. Danach wird detailliert die Berechnung der lokalen
Gradienten zur Implementierung des AMG-Losungsverfahrens innerhalb der PyTorch-
autograd engine besprochen.

AMG-Diffusion: Fiir den SUITS 2.0-Algorithmus wird ein iterativer Ansatz unter
Verwendung von Diffusionsregularisierung eingesetzt, der durch das in Brox u. a., 2004
vorgestellte Verfahren inspiriert ist. Die Autoren erweitern die bahnbrechende Arbeit
von Horn u.a., 1981 darin um einen zusétzlichen Strafterm.

Als Ausgangspunkt zur Anpassung der Transformationsparameter u soll die Ener-

giegleichung
1) 0 d 0
2Ha:cRmov(X) U 5 Rmou (%) - Wy + 5= Romou (X) - 1
DY
+Rmov(X) = Rypia(x)| + 5 IVull3 = min B(u) (5.7)
2

optimiert werden. Wie schon in der Ursprungsversion des SUITS-Algorithmus ldsst
sich auch hier wieder unter der Annahme kleiner, iterativer Anpassungsschritte die
Linearisierung des Terms Rop(X + U/, /) durch eine Taylor-Approximation erster
Ordnung rechtfertigen. Dabei kommen die jeweiligen Ableitungen %Rmov nach
den Dimensionen x/y/z zum Einsatz. Das Ableiten nach den entsprechenden Dimen-
sionsbestandteilen von u fiihrt bei der Minimierung auf die Ausdriicke

8Ej(um/y/z) o 0 0 0
W — (Rmov (X) * Uy + @Rmov(x) : uy + %Rmov(x) s Uz
0

!

+Rmov (X) - szz (X)>
wobei —Aug /. = Lu,,/. gilt und L den Laplace-Operator auf dem Voxelgitter
darstellt. In einer lokalen 6er-Nachbarschaft V¥ um die Position x gilt fiir Au, /. (x)

die Anndherung 3> ug /(1) — 6 - uy,/y,.(X).
leNg
Auch der erneuerte Ansatz verfolgt eine iterative Strategie zur Anpassung der Ver-

schiebungsfeldparameter und beginnt mit u® = 0. Wihrend jeder Iteration ergibt sich

die Reprisentation RF . des moving Bildes durch die Transformation entsprechend
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der aktuellen Verschiebung u* = u*~! + Au*~!. Dies setzt die Kenntnis von Au*~!
voraus und bedarf daher der Lésung von folgendem, spérlich-besetztem LGS nach z

— (R = Rpia) © £RECL — ALuk™!

mov Oz ' vYmov
A z=| —(Rhg = Rpiz) © & Rhgs — ALui ! (5.9)
— (Rbos = Ryin) © £ Rhgy — ALk~

Dabei stellt © eine elementweise Multiplikation dar, R4,/ i sind Diagonalmatrizen
und A besitzt die Blockmatrixgestalt

2
9 k-1 9 k-1 0 k-1 0 k-1 0 pk—1
( ox Rmov) + )‘ : L ox Rmov oy Rmov oz Rmov 0z Rmov

2
%Rk_l @Rk—l (%Rk_l) + )L %Rk—l QRk—l

mov Qg ' Y mov mov mov 9z ' Ymov

2
0 pk—1 0 pk— 0 pk—1 0 pk— 0 pk—
SRELIREL  AREIAREL (ZREL) 4A-L

mov mov gy ' Ymov mov

Um Verwechslungen hinsichtlich der Variablenbenennung vorzubeugen, bezeichnet z =
AuF! = [u,, uy, uZ]T die aktuellen Transformationsparameteranpassungen und bein-
haltet nicht den Laplace-Operator. Der Herleitung in Brox u. a., 2004 folgend ergeben
sich die Terme —)\Lug/_yl/z auf der rechten Seite der Gleichung durch das Regularisieren
der Summe aus aktueller Updaterichtung und den Verschiebungsparametern zum vor-
herigen Durchlauf )\||V(u§/_y1/z + Au’;/_yl/z)H%. Unter Beachtung dieser Zusammenhénge
ergibt sich (5.9) unmittelbar aus (5.8) durch Separation und Umarrangement der zu
Au’;/_yl/z gehorenden Terme aus den drei resultierenden Minimierungsgleichungen.

Da fiir Gleichung (5.9) - im Gegensatz zum Demons-Ansatz aus Abschnitt 5.2 der
ersten SUITS-Version - keine geschlossene Losungsform existiert, wird zur effizienten
Bestimmung der Transformationsparameteranpassung von einem algebraischen Mul-
tigrid-Losungsverfahren Gebrauch gemacht. Insbesondere in Bezug auf die inhérente
Verfolgung einer Multiskalenstrategie bietet sich dieses Verfahren zusétzlich zu seiner
schnellen Konvergenz in diesem Zusammenhang an.

Insgesamt ergibt sich das gesuchte Update Au*~! der Transformationsparameter im
gekapselten Modul also durch die AMG-basierte Losung von Gleichung (5.9).

Lokale Gradienten von LGS-Losungsverfahren: Nach der Erlduterung des
schematisschen Aufbaus sowie der mathematischen Grundlagen der iterativen Regis-
trierungsmethode bleibt die Frage zu klaren, wie eine Gradientenriickfithrung durch
anzuwendende Losungsverfahren fiir lineare Gleichungssysteme gelingt.

Da der SUITS 2.0-Algorithmus im Rahmen der PyTorch-autograd engine umge-
setzt wird, benotigt man - wie bei vielen anderen Frameworks auch - die korrekte
Bestimmung lokaler Gradienten hinsichtlich aller Eingaben der aktuell betrachteten
Schicht. Diese sind in Bezug auf die an ihren Ausgéngen anliegenden Gradienten, die
von tieferen Netzwerkschichten ausgehend vom momentanen Loss generiert werden, zu
berechnen.
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Grundsétzlich wire die Losung von Gleichung (5.9) in ihrer Form A -z =[...] = b
durch den Ausdruck z = A~!. b gegeben. Allerdings verbietet sich die Bestimmung
der Inversen einer spéarlich-besetzten Matrix aufgrund des zu erwartenden Speicher-
und Rechenaufwandes. Dies hat aber zur Folge, dass die folgenden, standardméafigen
Ausdriicke zur Bestimmung der lokalen Gradienten zunédchst nicht ohne Weiteres An-
wendung finden kénnen:

MATRIX-VEKTOR-MULTIPLICATION

vorwarts: M-v=w, M € R"™" v,w e R"
riickwiirts: grad@v = M7” . grad@w (5.10)
gradQwy - [vq, ..., U]
grad@QM = :

gradQw,, - [v1, ..., U]

Um zu verdeutlichen, welche Gradienten wiahrend des Riickwartsflusses an den jeweili-
gen Variablen y anliegen, wird hier die Notation grad@y eingefiihrt. Diese ist Synonym
zu den Kettenregeltermen der in Hecht-Nielsen, 1992 beschriebenen backpropagation-
Bestandteile zum Einsatz in autograd engines und soll helfen den Blick durch Ersetzen
partieller Ableitungssymbole auf das Wesentliche zu lenken.

Betrachtet man Gleichung (5.9), so gilt es den Gradienten fiir den Term b auf der
rechten Seite zu bestimmen. In frithen Experimenten hat sich gezeigt, dass die Gra-
dientenberechnung der Differenzbilder (Rﬁ;}) — Rfm) den weitaus grofiten Einfluss
auf die Anpassung der zu lernenden Faltungsnetzparameter hat. Im Gegensatz dazu
hat sich die Speicher-intensive Bestimmung der Matrixgradienten als vernachldssigbar
herausgestellt.

Zur tatséchlichen Bestimmung von grad@b ldsst sich ausgehend von einem Aus-
druck, der anfinglich die inverse Systemmatrix enthélt, ein Weg verfolgen, der deren
explizite Berechnung umgeht. Beginnend mit z = A~! - b nutzt man unter Beachtung
von Gleichung (5.10), dass grad@b = (A‘l)T-grad@z gilt. Die Multiplikation beider

-1
Seiten mit ((A‘l)T) = AT fiihrt dann zu
AT . grad@b = gradQz

Diese Gleichung ist aber wiederum unter Anwendung des AMG-Verfahrens wéihrend
der Gradientenriickfithrung 16sbar

grad@b = amg_solve (grad@z, AT) (5.11)

und die gesuchte GroBe grad@b ergibt sich somit ohne explizite Berechnung von A1,
Vor der abschlieBenden Zusammenfassung aller zur Gradientenriickfiithrung durch ein
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LGS-Losungsverfahren notwendigen Schritte zur Verwendung innerhalb einer auto-
grad engine in Algorithmus 4, sei der Vollstdndigkeit halber noch die Berechnung von
grad@A durch

grad@by - [z1, ..., 2]
grad@A = —1- : (5.12)
grad@by, - [21, ..., 2]

aufgefiihrt.

Algorithm 4: Pseudocode zur schichtweisen Einbindung von LGS-
Losungsverfahren in autograd engines.
LSESolverForward(A,b):
Berechne x = amg_solve(b, A);
Speichere die Tensoren A, b & x fiir den backward-Schritt;
return x ;
LSESolverBackward (grad@x):
Lade die gespeicherten Tensoren A, b & x;
Berechne grad@b = amg_solve(grad@x, AT);

grad@by - [x1, ..., Tp]
Berechne grad@A = —1 - : return grad@A, grad@b
grad@by,, - [x1, ..., 2]

5.3.2 Experimente

Um die Erweiterung des entwickelten Registrierungsverfahrens zu untersuchen, werden
wie im vorangehenden Abschnitt 5.2 ungepaarte, multimodale CT-MRT-Bilddaten
verwendet. Nach Abschluss der vorherigen Machbarkeitsstudie, wird der Schritt weg
von der Anpassung zweidimensionaler Schichtbilder hin zu dreidimensionalen Trans-
formationen vollzogen. Auch die Experimente zur zweiten SUITS-Version fuflen auf
den Thorakoabdominalaufnahmen des in Jimenez-del-Toro u.a., 2016 vorgestellten
VISCERAL-Datensatzes.

Aus den vorliegenden gold corpus-Trainingsdaten wird pro Modalitat jeweils eine
Untermenge von 20 Patienten ausgewéhlt. Sie enthalten fiir jeden Patienten die be-
reits aus den vorangehenden Experimenten bekannten, von medizinischen Experten
erstellten Organsegmentierungen - namentlich der Leber, der Milz, der linken & rech-
ten Nieren sowie der linken & rechten Psoas Major Muskeln. Diese Annotationen dienen
dann wihrend des Trainings der vorgeschlagenen Methode als Uberwachung. Als ein-
heitliche Vorverarbeitungsschritte werden die Bilder fiir alle Experimente zuerst auf
ein isotropes Voxelspacing von 2.0 mm? (coronal: 138, sagittal: 187, axial: 192 Voxels)
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umgerechnet und einer z-Tranformation zur Normalisierung der Eingaben unterzogen.
Mittels dem in Heinrich, 2018 beschriebenen, multiskalen Blockmatching-Ansatz - der
beispielsweise in einer MRT-zu-Ultraschall-Gehirn-Registrierungschallenge [Xiao u. a.,
2019] den Stand-der-Technik darstellt - werden alle Aufnahmen affin vorregistriert.
Dabei kommen paarweise Transformationen unter Beachtung eines Bias-korrigierten
Mittelwertes durch Matrix-Logarithmen (detailliert dargelegt in Modat u.a., 2014)
zum Einsatz. In Summe fiihren diese Schritte zu einer robusten, initialen Ausrichtung
der Daten.

Aufgrund der Aufteilung der iiberwachten Methoden in Trainings- und Testpha-
sen, werden die Datensétze jeweils in 15 Trainings- und 5 Testpatienten pro Modalitéat
gruppiert. Da die Daten wie bereits erwdhnt ungepaart vorliegen, ergeben sich dar-
aus 225 mogliche Interpatientenregistrierungen wiahrend des Trainings und 25 Paare
per Durchlauf im Test. Bei allen Registrierungen werden die CT-Bilder als mowving
Bilder den fixzed MRT-Scans angeglichen. Als Hardware steht dabei eine Nvidia RTX
2070 GPU zur Verfiigung und softwareseitig stiitzt sich die Implementierung auf das
PyTorch-Framework.

Der besseren Ubersicht halber werden bei den Experimenten zwei Kategorien unter-
schieden. Zum Einen werden baseline-Experimente mit vergleichbaren Methoden aus
verwandten Arbeiten durchgefithrt. Zum Anderen soll die Registrierungsgenauigkeit
der neu-entwickelten Methode sowohl mit als auch ohne datengetriebene Adaption der
FEATCNN-Gewichte beleuchtet werden.

5.3.2.1 Baseline-Experimente

SimpleElastix-MI: Um die Ergebnisse der weiterentwickelten Methode spéter bes-
ser einordnen zu konnen, wird wieder das in Marstal u. a., 2016 beschriebene und in
Abschnitt 2.2.2 erlduterte SimpleFElastiz-Verfahren als robuste und in vielfachen Ar-
beiten genutzte Vergleichsmethode herangezogen. In Gegeniiberstellung zum SUITS
2.0-Algorithmus dient sie als Représentat klassischer, multimodaler Registrierungs-
methoden und setzt dabei die mutual information als informationstheoretisch moti-
viertes Distanzmaf ein.

Da die Daten bereits affin vorregistriert sind, kommt das von den Autoren des Ver-
fahrens vorgeschlagene Standardprotokoll zur nicht-rigiden Registrierung zur Anwen-
dung. Dieses umfasst eine 4-skalige Auflésungshierarchie mittels nicht-linearer, quadra-
tischer B-Spline-Transformationen zur mutual information-basierten Angleichung der
Bildpaare. Unter Vorgriff auf die FEATCNN-Experimente und durch empirische Wahl
nach initialen Testlaufen werden die Kontrollpunkte zum Zwecke der Vergleichbarkeit
an jedem 4. Voxel platziert.

Voxelmorph: Erstmals in Balakrishnan u. a., 2019 beschrieben und im Grundlagen-
abschnitt 2.4.1 eingehender erldutert, stellt der VoxelMorph-Ansatz ein uniiberwach-
tes, vollstandig CNN-basiertes Registrierungsverfahren dar. Einserseits hat dies den
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Vorteil, dass zur Testzeit lediglich ein Vorwartsdurchlauf geniigt, um somit in kurzer
Zeit eine paarweise Registrierung zu bestimmen. Andererseits sind sowohl Featureex-
traktion als auch Generierung der Transformationsparameter in einem Faltungsnetz
integriert und im Gegensatz zur SUITS-Methode nicht klar voneinander abzugrenzen.

VozxelMorph optimiert zur Vorhersage seines dichten Verschiebungsfeldes eine UNet-
dhnliche Architektur und erwartet als Eingabe ein kanalweise konkateniertes Bildpaar
aus fized und moving Daten. Als Trainingsloss wird wie bei vergleichbaren Verfahren ei-
ne Kombination aus einem Ahnlichkeitsmaf8 und einem Regularisierungsterm benotigt.
Diese setzt sich daher nicht grundlegend von konventionellen, iterativen Verfahren ab,
so dass es die resultierenden Registrierungsgenauigkeiten der verschiedenen Methoden
zu untersuchen gilt.

Basierend auf einer &ffentlich zugénglichen Referenzimplementierung sollen die je-
weiligen Testpaare zueinander registriert werden. Um VozelMorph in die Lage zu ver-
setzen auch im multimodalen Kontext sinnvoll zu trainieren, werden differenzierbar
implementierte MIND-Feature aus dem transformierten mowving und dem fized Bild
extrahiert, damit der von den Autoren vorgesehene MSE-Loss eingesetzt werden kann.
Dies markiert einen entscheidenden Unterschied zum SUITS 2.0-Algorithmus. Dort
werden die MIND-vortrainierten Faltungsnetze hinsichtlich des daran anschlieBenden
Registrierungsverfahrens datengetrieben adaptiert und nicht die rdumliche Transfor-
mation der Bilddaten erlernt. Der bereits implementierte Diffusionsregularisierer bleibt
mit einer Gewichtung von 0.1 am Lossterm unangetastet und das Faltungsnetz wird
fiir 15000 Batches mittels des Adam-Optimierers (initiale Lernrate: 0.0001) trainiert.

5.3.2.2 FeatCNN-Experimente

FeatCNN-Struktur: Nach der Beschreibung der Vergleichsmethoden steht nun die
entwickelte, zweite SUITS-Version im Vordergrund. Die grundlegende Netzarchitektur
des FEATCNN folgt der Form eines Y. Dies soll der multimodalen Natur der Ein-
gabedaten Rechnung tragen und ermdéglicht zundchst entlang der oberen, getrennten
Aste zwei Schichten zur Verarbeitung jeweils einer Modalitéit. AnschlieBend werden
die endgiltigen Featurerepriasentationen aus beiden Eingabestréme von drei gemein-
sam genutzten Faltungsschichten generiert.

Das insgesamt pro Verarbeitungsstrom fiinf Schichten tiefe Faltungsnetz besitzt
~ 155.000 trainierbare Parameter und Tabelle 5.3 umfasst eine detaillierte Aufschliis-
selung im Hinblick auf die konkrete Wahl der Hyperparameter aller Schichten. Die
SUITS 2.0-Methodik soll in den Experimenten darauf untersucht werden, ob Vorwis-
sen in Form MIND-Deskriptoren durch die Faltungsnetze in die iterative Registrierung
miteingebracht werden kann sowie ob sich diese initialen Représentationen iiber ihre
urspriingliche, manuell definierte Form hinaus datengetrieben verfeinern lassen. Dazu
werden die FEATCNNS zuerst als MIND-Replikatoren trainiert. Fur 5000 Iteratio-
nen werden die Patientenbilder aus dem gold corpus der VISCERAL-Daten genutzt,
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Tabelle 5.3: Strukturelle Details des Y-formigen FEATCNNS.

Faltungsschicht 1 2 3 4 5
Kanéle,;,, 1 16 32 32 32
Kaniilegys 16 32 32 32 12
Dilatation 2 1 1 1

Schrittweite 1
Padding 1
Filtergrofle 5 3 3 3 3
Instance-Normalisierung ja ja ja ja nein
Aktivierung ReLU ReLU ReLU ReLU Sigmoid
geteilte Gewichte nein nein ja ja ja

damit nach Abschluss des Trainings das Y-formigen Faltungsnetz moglichst dhnliche
12-Kanal-Représentationen wie die urspriingliche MIND-Implementierung sowohl fiir
CT- als auch fir MRT-Eingaben liefert. Dabei kommt ein Adam-Optimierer mit in-
itialer Lernrate von 0.001 in Kombination mit einem L1 — Loss zum Einsatz. Dieses so
erlernte pre-trained MIND FEATCNN findet in beiden, nachfolgenden Experimenten
Anwendung.

An dieser Stelle sei erwéhnt, dass die Verarbeitung von Eingabebilddaten durch
das FEATCNN insgesamt ein Heruntersamplen der Auflésung um den Faktor 4 nach
sich zieht. Aus diesem Grund muss im Anschluss an die Berechnung des Transforma-
tionsparameteranpassungsschrittes Au® eine entsprechende Hochinterpolation des Ver-
schiebungsvektorfeldes durchgefiithrt werden, um die urspriingliche Bilddimensionalitét
zur Anwendung innerhalb des iterativen Registrierungsframeworks wiederherzustellen.
Das Zusammenspiel dieses trilinearen Upsamlings und eines Mittelwertoperators mit
Filtergrofle 5 zur Erstellung des dichten Verschiebungsfeldes entspricht einem quadra-
tischen B-Spline-Transformationsmodell mit Kontrollpunkten an jedem vierten Voxel.
Die Wahl des Schrittweitenparameters v = 1 wahrend der Verschiebungsvektorfeldan-
passung erfolgt empirisch.

Pre-trained MIND & iterative Diffusionregularisierung: Neben den Ver-
gleichsmethoden aus der verwandten Literatur ist bereits dargelegt worden, dass die
FEATCNNS, deren Gewichte mittels des SUITS 2.0-Algorithmus datengetrieben ad-
aptiert werden sollen, zunéchst im Sinne der Generierung von MIND-Featuren vortrai-
niert werden, um die multimodalen Eingaben zu verarbeiten. Aus diesem Grund soll
zur besseren Einordnung des SUITS 2.0-Algorithmus auch die Registrierungsgenauig-
keit des erarbeiteten iterativen Verfahrens unter Ausnutzen dieser Form des Vorwissen
untersucht werden. Dazu bleiben die Gewichte der vortrainierten Faltungsnetzwerke
fixiert und werden ohne weitere Adaption zur Registrierung aller 25 Testbildpaare ein-
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gesetzt. AnschlieBend werden jeweils 15 Iterationen des AMG-Losungsverfahrens unter
Gewichtung der Regularisierung mit A = 10 durchgefiihrt.

SUITS 2.0 mit pre-trained MIND-Featuren: Mithilfe dieses abschliefenden
Experiments soll auf die Frage eingegangen werden, ob die Einbindung datengetrie-
bener, Ende-zu-Ende-trainierbarer Faltungsnetze als Feature-Extraktoren in den ite-
rativen Registrierungsprozess Vorteile gegeniiber manuell definierten Deskriptoren wie
MIND bietet. Wie auch beim pre-trained MIND-Experiment handelt es sich hierbei um
ein Verfahren, dass Vorwissen bereits bei der Erhebung geeigneter Bildreprisentationen
nutzt - im Gegensatz zu VozrelMorph oder dem angewandten SimpleElastiz-Protokoll,
die es in die Wahl der Distanzmetrik einbeziehen. Zur Testzeit unterscheidet sich dieses
SUITS 2.0-Verfahren nicht vom Experiment des vorangehenden Abschnittes.

Um die Gewichte des Faltungsnetzes nun aber anzupassen, wird die im Folgenden
dargelegte Strategie genutzt. Ein Adam-Optimierer mit initialer Lernrate von 107°
passt fiir Eingabebatches aus immer 3 zufélligen Trainingspaaren fiir 250 Durchldufe
die Parameter des FEATCNNSs an. Wie in Abschnitt 5.3.1.1 bereits eingefiihrt, wird im
Sinne des Erlernens von Représentationen, die fiir jede Phase der Registrierung aussa-
gekriftig sein sollen, die Anzahl vorheriger, basierend auf Segmentierungen gefiihrter
Iterationen kpqcr, € [0, 15] dabei wiederum zufillig gezogen. Eine weitere Besonderheit
im Training stellt die Relaxierung des Regularisierungsparameters auf A = 5 dar. Dies
liegt in den resultierenden, vergleichsweise grofleren Deformationen wéihrend der Ite-
ration kpger begriindet und zieht im Sinne des Informationsgehaltes einen stéirkeren
Gradientenriickfluss basierend auf den cross entropy-Differenzen der Segmentierungs-
bilder nach sich.

5.3.3 Ergebnisse & Diskussion

Die Ergebnisse der im Rahmen dieses Kapitels durchgefiihrten Experimente werden in
Abb. 5.6 und Abb. 5.7 zunéchst ubersichtshalber dargestellt. Dazu werden die Dice-
Werte fiir alle sechs betrachteten Organstrukturen aller Testregistrierungspaare ange-
geben, ebenso wie die zugehorigen 95%-Hausdorf-Distanzen. Tabelle 5.4 enthélt die
gleiche Information noch einmal in numerischer Form.

Es ist ersichtlich, dass das etablierte SimpleFlastiz-Verfahren die erwartet robusten
Registrierungsergebnisse fiir alle 25 ungepaarten Eingabekombinationen liefert und
somit eine solide Messlatte fiir alle weiteren Methoden bildet. Die initialen Dice-Werte
von 41.3% vor der rdumlichen Angleichung steigen nach Anwendung des Verfahrens auf
45.9%. Dahingegen bleibt die anfangliche mittlere 95%-Hausdorff-Distanz von 36.4mm
unverdndert.

Die Anwendung von VozelMorph als Vertreter der nicht-iterativen, CNN-basierten
Ansétze liefert einen iiberzeugenden Zuwachs auf 47.4% hinsichtlich der Dice-Werte.
Ebenso sinkt die mittlere 95%-Hausdorff-Distanz auf 35.1mm trotz der herausfordern-
den, multimodalen Natur des betrachteten Problems.
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Abb. 5.5: Exemplarisches Ergebnis einer Interpatientenregistrierung. Mittels des SUITS 2.0-
Algorithmus wird das moving CT-Bild (rechts) an das fized MRT-Bild (links) an-
geglichen. Das resultierende, transformierte Bild wird in der Mitte gezeigt und die
vorliegende MRT-Expertensegmentierung wird als Uberlagerung iiber alle Bilder
gelegt, um die erreichte rdumliche Angleichung vor und nach dem Prozess zu illus-
trieren.
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Abb. 5.6: Boxplot-Darstellung der Dice-Werte aller 25 multimodalen, ungepaarten Interpa-
tientregistrierungen und Mittelwerte per Organ fiir Leber, Milz, linken & rechten
Psoas Major Muskel (1 & r pmm) und linke & rechte Niere. Folgendes Farbsche-
ma wird zur Unterscheidung der Experimente angewandt: initiale Dice Werte = |
SimpleElasticx W, VoxelMorph M | pre-trained MIND & iterative Diffusionsregula-
risierung M und SUITS 2.0 | .
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Tabelle 5.4: Ergebnisse (& Dice-Werte und 95%-Haussdorf-Distanz (in mm)) aller 25 multi-
modaler, ungepaarter Interpatientregistrierungen. Die p-Werte ergeben sich mit-

tels eines Wilcoxon-Vorzeichen-Rang-Tests und beschreiben die statistische Si-
gnifikanz der SUITS 2.0-Methode.

HD95 Leber Milz 1 pmm r pmm 1 Niere r Niere|mean std | p-val
Initial 60.9 49.1 46.5 239 199 181 |36.4 27.1/1.7-107°
SimpleElastix 60.0 46.4 472 252 21.1 18.8 |36.5 26.6/3.6-10~*

Voxelmorph m 58.8 43.6 46.7 229 21.1 17.7 |35.1 25.8| 0.03

pre-trained MIND m | 59.0 48.7 43.7 20.9 20.8 16.5 |34.9 27.4(9.0-107°
SUITS 2.0 m 57.8 46.5 424 206 19.7 16.0 |33.9 26.7 -

Dice Leber Milz 1 pmm r pmm 1 Niere r Niere|mean std | p-val
Initial 47.1 35.0 30.2 43.4 486 452 |41.3 0.19/1.3-107°
SimpleElastix 57.3 45.2 35.6 50.4 45.0 43.6 |46.4 0.20/2.9-107°

Voxelmorph m 59.1 46.3 35.0 492 46.0 50.2 |484 0.17]2.7-1073

pre-trained MIND m | 51.2 39.3 39.5 58.2 523 527 | 482 0.22(4.6-107°
SUITS 2.0 m 55.4 44.3 41.8 59.2 553 543 [51.1 0.21 -

Verglichen mit beiden bisher getesteten Methoden aus verwandten Arbeiten iiber-
trifft die SUITS 2.0-Variante der iterativen Registrierung unter Einsatz der pre-trained
MIND-Feature in Kombination mit Diffusionsregularisierung deren Ergebnisse. Mit fi-
xierten Faltungsnetzparametern werden ein durchschnittlicher Dice-Wert von 48.4%
und eine mittlere 95%-Hausdorff-Distanz von 34.9mm erzielt. Diese Ergebnisse be-
legen die Funktionalitidt der eingesetzten Berechnung zur iterativen Anpassung der
Transformationsparameter in Verbindung mit dem Vorwissen in Form der erlernten
MIND-Replikationen durch die Faltungsnetze.

Der SUITS 2.0-Algorithmus in seiner Ausprédgung als Ende-zu-Ende-trainierbarer
und daher datengetriebener Ansatz erreicht zusammen mit einer Diffusionsregularisie-
rung schliellich sowohl mit 51.3% den hochsten durchschnittlichen Dice-Wert als auch
mit 33.8mm die niedrigste mittlere 95%-Hausdorfl-Distanz. Abb. 5.5 zeigt mittels coro-
naler Schnitte durch ein exemplarisches Patientenpaar die CT-Bilddaten vor und nach
der Registrierung. Zur Unterstiitzung sind alle Bilder mit den Organsegmentierungen
des fired MRT-Scans unterlegt, so dass die verbesserte rdumliche Ubereinstimmung im
mittleren Bild nach der Transformation entsprechend des Verschiebungsfeldes deutlich
sichtbar ist.

Unterzieht man die mittleren Dice-Werte und 95%-HausdorfI-Distanzen pro Testre-
gistrierungspaar einem Wilcoxon-Vorzeichen-Rang-Tests, so demonstriert Tabelle 5.4,
dass die Genauigkeitszuwéichse unter Anwendung der SUITS 2.0-Methode im Vergleich
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Abb. 5.7: Boxplot-Darstellung 95%-Hausdorf-Distanzen aller 25 multimodalen, ungepaarten
Interpatientregistrierungen und Mittelwerte per Organ fiir Leber, Milz, linken &
rechten Psoas Major Muskel (1 & r pmm) und linke & rechte Niere. Das Farbschema
folgt Abb. 5.6.

Tabelle 5.5: Quantitative FErgebnisse verschiedener Registrierungsverfahren auf dem
MMWHS-Datensatz aus Kapitel 4 in Form ihrer Dice-Werte.

Methode

Dice

INIT
0.331

Label Reg  guided-1
0.352 0.476

MIND-pre
0.418

SUITS 2.0 guided-15
0.536 0.653

zu allen anderen Verfahren auch statistisch signifikant sind. Insgesamt lasst sich aus
diesen Experimenten also die Schlussfolgerung ziehen, dass die Umsetzung der Ende-
zu-Ende-trainierbaren SUI'TS-Methodik nicht nur in Kombination mit einer weiteren
Variante zur Berechnung der Transformationsparameteranpassung sinnvolle Ergebnis-
se liefert, sondern dass die datengetriebene Anpassung der Faltungsnetzgewichte dar-
iiberhinaus wiederum zu einer erhohten Registrierungsgenauigkeit beitragt.

MMWHS-Vergleichsexperimente

Da ein Vergleich mit der in Kapitel 4 entwickelten multimodalen, iterativ mittels Seg-
mentierungen gefithrten Registrierung nahe liegt, wird der im Vorangehenden beschrie-
bene SUITS 2.0-Algorithmus ebenfalls auf den Datensatz der Multi-Modality Whole
Heart Segmentation Challenge angewandt. Das Training folgt dabei dem in Abschnitt
5.3 beschriebenen Ablauf mit Ausnahme einer Anpassung an die unterschiedliche Gro-
Be des Datensatzes. Da pro Modalitdt jeweils nur 10 statt 20 Patientendatensétze
vorliegen, werden jeweils 8 CT- und MRT-Volumenscans pro Durchlauf zur 5-fachen
Kreuzvalidierung genutzt und die verbleibenden 4 Paare im Testfall als CT-zu-MRT-
Registrierung evaluiert.

Tabelle 5.5 enthélt die erreichten Dice-Werte verschiedener Verfahren. Im Vergleich
zu den vortrainierten, MIND-basierten Feature-CNNs innerhalb des iterativ optimier-
ten Frameworks ergibt sich durch die datengetriebene Adaption unter Anwendung des
SUITS 2.0-Algorithmus ein Genauigkeitszuwachs von 0.418 auf 0.536. Der Einsatz des
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(a) (b) (c)

Abb. 5.8: Qualitatives Registrierungsergebnis des SUITS 2.0-Verfahren auf den MMWHS-
Daten mit tiberlagerten Organlabeln. a) moving CT-Bild, b) transformiertes CT-
Bild, ¢) fized MRT-Bild.
Im Vergleich zu Abb. 4.5 erreicht der SUITS 2.0-Algorithmus auch im Labelhinter-
grund plausible Angleichungen der Korperstrukturen.

Verfahrens fiihrt also auch auf diesem Datensatz zu quantitativ messbaren Ergebnisver-
besserungen unter Ausnutzung erlernter Featurereprisentationen in einem iterativen,
diffusionsregularisierten Registrierungsansatz.

Die Genauigkeit des iterativ, basierend auf Segmentierungen gefithrten Verfahrens
aus Kapitel 4 mit einem Wert von 0.653 bei 15 Iterationen wird zwar nicht erreicht,
Abb. 5.8 zeigt aber im Vergleich zu den qualitativen Ergebnissen in Abb. 4.5 gerade im
Hintergrund deutlich plausiblere Transformationen - also in Regionen die nicht durch
Organlabel im Training abgedeckt werden. Beispielsweise folgt die Lunge in cranialer
sowie in ventraler Richtung deutlich dem Verlauf im fixred-MRT-Bild. Im Vergleich zu
Verfahren wie Label Reg aus Hu u. a., 2018, die sich fast ausschlieffilich auf die Anpas-
sung der Vordergrundstrukturen fokussieren, lasst sich dies durch die geringere Anzahl
trainierbarer Parameter erkliren, die eine zu groe Uberanpassung vermeidet. Letzte-
re konnte im Fall zu tiefer UNet-Architekturen aus der inhdrenten Modellierung der
im Training prédsentierten Organlabel resultieren, deren Transformation dann im An-
schluss durch die Netzwerke umgesetzt wird. Im Gegensatz zu den SUITS-Algorithmen
gibt es aber keine Moglichkeit diese Uberlegungen zu priifen, da unklar ist, welche
Netzwerkteile fiir die Extraktion geeigneter Repréisentationen oder die Vorhersage der
Transformationen verantwortlich zeichnen.
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5.4 Zusammenfassung

In diesem Kapitel sind zwei Varianten des SUITS-Frameworks entwickelt und vorge-
stellt worden. Im Sinne einer Machbarkeitsstudie beleuchtet die erste Umsetzung in
Abschnitt 5.2 - basierend auf einer geschlossenen Loésungsform der Parameteranpas-
sung leicht in einer autograd engine umsetzbar - die Anpassungsgiite zweidimensionaler,
multimodaler Thorakoabdominalschichtbilder.

Dabei lisst sich experimentell nachweisen, dass die schwache Uberwachung durch
Organsegmentierungen ohne punktweise definierte Korrespondenzen die zur Transfor-
mation genutzten Faltungsnetzwerke in die Lage versetzt, aussagekriftige Reprasenta-
tionen zu erlernen. Diese erste Version stiitzt bereits die Annahme, dass klar zuweisbare
Teilaufgaben in der Architektur, welche das Erlernen der Transformation in einen ge-
meinsamen Bildraum von der iterativ optimierten Registrierung separieren, vorteilhaft
sind und eine Alternative zu den iiblichen Parameter-intensiven, vollintegrierten und
Ende-zu-Ende-trainierten Registrierungsnetzwerken bieten.

Mit der Umsetzung des SUITS 2.0-Algorithmus in Abschnitt 5.3 als ein zuséitz-
liches Vorgehen zur Berechnung der iterativen Transformationsparameteranpassung
wird der Schritt zur Registrierung dreidimensionaler Thorakoabdominaldaten vollzo-
gen. Die durchgefiihrten Experimente zu dieser Methode zeigen, dass sich die explizite
Auftrennung des Erlernens aussagekréftiger Reprasentationen und der rdumlichen An-
passung auch hier gewinnbringend auf das betrachtete, herausfordernde multimoda-
le Registrierungsproblem auswirken. Im Gegensatz zur Methode aus Lee u.a., 2019,
die keine klare Trennung der Feature- und Transformationsschichten erreicht, erfiil-
len beide Auspriagungen des SUITS-Algorithmus dieses definierte Ziel. Das entwickelte
SUITS 2.0-Verfahren tibertrifft dahingehend sowohl mit SimpleElastiz einen Stand-
der-Technik-Vertreter klassischer Ansétze [Marstal u. a., 2016], der sich auf ein mutual
information-Distanzmafl in Kombination mit nicht-rigiden Deformationsschritten ei-
ner multiskalen Hierarchie stiitzt, als auch mit VoxelMorph ein neueres, vollumfanglich
CNN-basiertes Ein-Schritt-Verfahren [Balakrishnan u. a., 2019].

Auch auf den Vergleichsexperimenten beziiglich des MM WHS-Datensatz aus Kapitel
4 liefert das SUITS 2.0-Verfahren robuste Registrierungsergebnisse und zeigt gerade
auch in der Anpassung von Regionen, die wihrend des Trainings nicht mit Annotatio-
nen versehen sind, dass aussagekréftige Repriasentationen gelernt werden.

Da beide Varianten - insbesondere aber die zweite Version des vorgeschlagenen Al-
gorithmus fiir den Einsatz auf dreidimensionalen Daten - auch in Anbetracht einer
vergleichsweise geringen Menge an Trainingsdaten in der Lage sind sinnvolle Registrie-
rungen zu erstellen, zeigen sie eine Alternative auf fiir weitere multimodale Problem-
stellungen. Ein Grund dafiir besteht in der iibertragbaren Anwendbarkeit der regula-
risierten, iterativen Bildangleichung, die zu einer um den Faktor 10 kleineren Anzahl
an Parametern (= 10°) im Vergleich zu ausschlieflich CNN-basierten Verfahren mit
integriertem multimodalen Featurelernen (typischerweise > 10%). Dieses Vorgehen

96



5.4 Zusammenfassung

beschréinkt schon durch die Kapazitdtsbeschrankung der Faltungsnetze das Problem
der Uberanpassung.

Verglichen mit der monomodalen COPD-Lungenregistrierung aus Kapitel 3, bei
der Deskriptoren unter Ausnutzung einer Hilfsaufgabe vortrainiert wurden, oder der
Arbeit in Simonovsky u.a., 2016, die fiir T1-T2-Hirnbildpaare mittels einer Klassifi-
kationsaufgabe ein geeignetes Distanzmafl lernen soll, haben die SUITS-Algorithmen
den Nachweis erbracht, dass das Einbringen von Vorwissen in die Netzwerkparameter
mit deren anschlieBender Ende-zu-Ende-Adaption in einem iterativen Verfahren nicht
nur moglich ist, sondern auch deutliche Verbesserungen hinsichtlich der zu l6senden
Registrierungsaufgabe bewirkt.

Dariiberhinaus zeigt dieses Kapitel, dass diese datengetriebene Adaption zur Gewin-
nung aussagekriftiger Reprisentationen durch eine Form schwacher Uberwachung
in einer multimodalen Registrierungsproblemstellung auch angesichts sehr knapper
Trainingsdaten moglich ist.

Das nachfolgende und abschliefende Methodenkapitel befasst sich schliefilich mit
der Frage, wie das Lernen von Deskriptoren in medizinischen Bilddaten auch génz-
lich uniiberwacht vonstattengehen kann, falls nur vereinzelte oder auch gar keine
Expertenannotationen zur Verfligung stehen.
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Kapitel 6

Uniiberwachtes Deskriptorlernen in
3D-CT-Thoraxdaten

Das vierte und abschliefende methodische Kapitel befasst sich mit der Fragestel-
lung, ob und inwiefern sich aussagekraftige Deskriptoren rein durch Bilddaten
getrieben und ohne jegliche Form der Uberwachung von aufien erlernen und
nutzen lassen. Die zu diesem Zweck entwickelte Methode erfasst mittels rdumli-
cher Relationen auf den Patientendaten die intrinsisch vorliegenden Anatomie-
Informationen und ist im Beitrag Blendowski u. a., 2019b in den Proceedings der
Fachtagung International Conference on Medical Image Computing and Com-

puter Assisted Intervention publiziert und liegt diesem Kapitel zugrunde.

6.1 Einleitung & Motivation

Alle in den vorangehenden Kapiteln dieser Arbeit entwickelten Verfahren nutzen Fal-
tungsnetze als zentralen Baustein bei der Generierung robuster Représentationen fiir
die jeweilige Bearbeitung einer daran anschlieSfenden Registrierungsaufgabenstellung.
Es ist bereits wiederholt angeklungen, dass DCNNs ihre dominierende Stellung auf-
grund der Fahigkeit erlangt haben, aussagekriftige Feature nicht wie bisherige Stand-
der-Technik-Methoden durch manuelles Design unter expliziter Berticksichtigung von
Doménenwissen zu Erlernen, sondern dabei datengetrieben unter abgestuften Formen
von Uberwachung zu stehen. Begiinstigt durch die stetig anwachsende Flut an Bild-
daten im Internet in Kombination mit Informationen zum Bildinhalt oder auch durch
von Laien zu bewerkstelligenden Annotationsaufgaben sind im Bereich der Computer
Vision in jiingster Zeit beeindruckende Erfolge z.B. bei autonomen Fahrzeugen erzielt
worden.

Im Gebiet der medizinischen Bildverarbeitung fallen zwar ebenfalls durch die immer
breitere Verfiigbarkeit bildgebender Systeme wie Ultraschall-, CT- oder MRT-Scanner
in groflen Ausmaflen Bilddaten an. Allerdings gibt es abgesehen von globalen Klas-
sifikationen in Form von Befundungen durch medizinisches Personal erst anfingliche
Schritte wie z.B. in Maier-Hein u. a., 2016 pixelweise Operationsinstrumente in Videos
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durch Laien lokalisieren und annotieren zu lassen. Insbesondere hinsichtlich dreidimen-
sionaler Volumenbilder ist die Datenlage an hochqualitativen Trainingscorpi duflerst
sparlich, da der Zeitaufwand durch zusédtzliche Raumdimensionen enorm steigt und
gerade aber Radiologen als bendtigte Experten zu Spitzenverdienern zéhlen.

Wiederum in der Computer Vision behilft man sich bei spérlichen Mengen an Trai-
ningsdaten mit dem sog. transfer learning. Dabei werden zunéchst Faltungsnetze auf
groflen, Offentlich zugénglichen Daten trainiert. Unter der Annahme, dass die ersten
Schichten der Netze der Detektion struktureller Informationen wie Kanten dienen und
erst die hinteren Schichten beispielsweise mit einer Klassifikation befasst sind, ldsst
sich ein bereits trainiertes Netz auf einen neuen Datensatz transferieren und mittels
geringerer Lernrate auf das eigentliche Problem adaptieren.

Als Zielstellung dieses Kapitels ergibt sich daraus im Hinblick auf medizinische Da-
ten, ein Verfahren zu entwickeln, das vollig unabhéngig von Annotationen einzig auf
Zusammenhénge innerhalb der Bilddaten zuriickgreift, um die Gewichte von Faltungs-
netzen zu trainieren. Dabei sollen aussagekriftige Reprédsentationen entstehen, die
dann im Sinne des transfer learning gewinnbringend auf ein Problem mit zu gerin-
ger Datenlage angewandt werden konnen.

6.1.1 Literatur

Im medizinischen Kontext gibt es eine Vielzahl an Verwendungszwecken fiir Faltungs-
netze, die unterschiedlich starke Formen der Uberwachung nutzen. Uber die bisheri-
gen, im Rahmen dieser Arbeit entwickelten Methoden und deren verwandter Literatur
hinaus, beschéftigen sich z.B. die Autoren in Ferrante u.a., 2018 mit einem Registrie-
rungsansatz beruhend auf schwachen Annotationen. Teilweise kiinstlich verrauschte
Label werden in Reed u.a., 2015 zum Klassifizieren eingesetzt und in Roy u.a., 2019
wird ein Ansatz demonstriert, der Segmentierungen mithilfe einer nur kleinen Anzahl
an Trainingsdaten ermoglicht. Das bereits erwahnte transfer learning kommt in Shin
u.a., 2016 zum FKinsatz. Dort werden jeweils drei axiale 2D-Schnitte zur Detektion
von Lungenknoétchen genutzt, die vorher auf den natiirlichen Bilddaten des ImageNet-
Datensatzes aus Russakovsky u.a., 2015 trainiert wurden.

Da in diesem Kapitel aber an die zu entwickelnde Methode der Anspruch gestellt
wird ohne jede Form von Uberwachung durch Expertenwissen einsetzbar zu sein,
sind wiederum verschiedene Verfahren aus der Computer Vision von Interesse. Dort
haben sich in der ndheren Vergangenheit mehrere Methoden als erfolgreich erwiesen,
die die Idee einer Selbstiiberwachung umsetzen. Dabei werden in den unannotiert
vorliegenden Bilddaten Hilfsproblemstellungen definiert, deren Bewiltigung Faltungs-
netze in die Lage versetzen soll, sinnvolle Strukturrepriasentationen zu extrahieren.
Um letzteres sicherzustellen, miissen diese Hilfsaufgaben zumindest zwei Kriterien ge-
niigen. Einerseits sollten sich eine von den Faltungsnetzen gefundene Ldsung leicht
anhand der vorliegenden Daten tberpriifen lassen. Andererseits sollte ein angemesse-
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Abb. 6.1: 3D-Erweiterung der Hilfsaufgabe aus Doersch u.a., 2015: Ziel des DOERSCH-
Ansatzes [ ist die korrekte Einordnung der rdumlichen Anordnung zweier wiir-
felformiger Bildsubvolumen in eine von sechs moglichen Klassen, um die ersten
Schichten der Architektur, die im Sinne ihrer Primérfunktion zur Featureextrakti-
on als Descriptor 3D CNN aufgefasst werden, zu trainieren.

ner Schwierigkeitsgrad auch fiir die Notwendigkeit zum Erlernen eines gewissen Mafles
an inhaltlichem Bildversténdnis sorgen.

Zu diesen Verfahren lassen sich wie in Zhang u.a., 2016 vorgestellt das Befiillen
kiinstlich ausgeblendeter Bildinhalte (inpainting) und die Kolorisation von Graustu-
fenbildern zédhlen - ebenso wie die Vorhersage von Nachbarschaftsbeziehungen zwischen
Bildpatches, welche in erstmals in Doersch u.a., 2015 beschrieben wird. Dariiberhin-
aus werden in Doersch u. a., 2017 auch verschiedene Kombinationen dieser Methoden
untersucht.

In der medizinischen Bildverarbeitung reichen die Anwendungen selbst-iiberwach-
ter Verfahren vom Ausnutzen zeitlich aufeinanderfolgender MRT-Scans zur Wirbel-
sédulenbeurteilung in Jamaludin u.a., 2017, iiber behelfsmiBige Uberwachung zur
Segmentierung basierend auf einer Untermenge der Annotationen in Tajbakhsh u. a.,
2019, bis hin zu uniiberwachtem Lernen monomodaler Bildregistrierung in Vos u. a.,
2019.

Da der im Nachfolgenden entwickelte Ansatz eng mit dem Verfahren von Doersch
et al. aus ihrer Publikation Doersch u.a., 2015 verbunden ist, wird an dieser Stelle
dessen grundlegende Funktionsweise naher erlautert. Die Methode zieht als Hilfsauf-
gabe wiahrend des Trainings die Vorhersage der Nachbarschaftsbeziehung zweier, dem
Faltungsnetz prasentierter Bildausschnitte heran. Dabei hat das Netz die Klassifikati-
onsaufgabe zu bearbeiten, ob sich Patch 2 im Vergleich zu Patch 1 oberhalb, rechts,
unterhalb oder links befindet. Dem Verfahren ist es aufgrund des Detailreichtums und
der Vielzahl zueinander in rdumlicher Abhéngigkeit stehender Objekte in natiirlichen
zweidimensionalen Bildern moglich, ein inhdrentes Modell in den Gewichten derart
zu trainieren, dass semantisch aussagekréftige Représentationen anhand der Faltungs-
schichten generiert werden.

In Abb. 6.1 ist die direkte Erweiterung um eine Dimension des DOERSCH-Ansatzes
dargestellt. Das Verhéltnis zweier zuféllig gezogener Volumina muss dabei mit Hilfe
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eines siamesischen Faltungsnetzwerkes bestimmt werden. Zunéchst werden beide durch
das gleiche CNN — Descriptor 3D CNN genannt — in Featurevektoren umgewandelt.
Die Zuweisung in eine der sechs rdumlichen Beziehungen wird anschlieflend auf Basis
der Featurevektoren durch das 6 Neighbour CNN vorgenommen.

6.2 Methoden

Die Autoren des eingangs beschriebenen DOERSCH-Ansatz weisen in ihrer Verdffentli-
chung explizit auf Probleme beziiglich der Definition von Hilfsaufgaben hin. Sie stellen
fest, dass diese zum Erlernen aussagekréftiger, nicht-trivialer Deskriptoren einen ange-
messenen Schwierigkeitsgrad erreich miissen. Um dies sicherzustellen, sollten wahrend
des Trainings die présentierten Bildausschnitte nicht iiberlappen oder einfach zu iden-
tifizierende Strukturen, wie fortlaufende Linien enthalten.

In Anbetracht fiir diese Arbeit relevanter, dreidimensionaler CT- oder MRT-Volu-
menscans kommt erschwerend hinzu, dass ein Konflikt zwischen dem rezeptiven Feld
der Faltungsnetze und der Aufgabenschwierigkeit besteht. Wéahlt man den Bildaus-
schnitt zur Eingabe zu klein, wird unter Anderem in homogenen Bereichen (z.B. in
der Leber) zu wenig Kontext erfasst und die Aufgabe dadurch zu schwierig, um das
CNN sinnvoll zu trainieren. W&ahlt man im Gegensatz das Volumen zu grof3, enthélt
es schnell leicht zu identifizierende Ubergéinge vom Kérper zu Umgebungsluft. In die-
sem Fall wird die Hilfsaufgabe zu leicht. Im Nachfoldenden wird dieser Konflikt als
Kérpergrenzenproblem bezeichnet.

Trotz der speziellen Beschrankungen durch das Kérpergrenzenproblem bzw. des ab-
zuwéigenden Kompromisses zwischen der gréfle des rezeptiven Feldes und einem ange-
messenen Schwierigkeitsgrad der Hilfsaufgabe, ist die Idee der Selbst-Uberwachung
von hochster Relevanz in Anbetracht der geringen Verfiigbarkeit annotierter medizini-
scher Volumenbilddaten. Aus diesem Grund dient die Hilfsaufgabe aus Doersch u. a.,
2015 als Ausgangspunkt zur Entwicklung einer Adaption fiir dieses spezielle Problem.

Das angepasste Verfahren zeichnet sich durch zwei Charakteristika aus. Zum Einen
ermoglicht ein neuartiges Schema durch die Extraktion zweier grofler, planarer und
in ausreichendem Abstand zueinander befindlicher Bildauschnitte, dass die Pradiktion
fein abgestufter orthogonaler Versdtze als flexiblere Hilfsaufgabe in Form einer Re-
gression und nicht mehr in Form einer Klassifikation herangezogen werden kann. Zum
Anderen erhéht der Einsatz eines zuséitzlichen Decoder-Faltungsnetzes zur Vorhersage
zweidimensionaler heatmaps die Robustheit der Bestimmung der orthogonalen Versét-
ze im Vergleich zu deren direkten Schétzung. Im folgenden Abschnitt werden diese
Neuerungen im Detail erlautert.
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—| Descriptor 2D CNN

Heatmap

+| Descriptor 2D CNN i

Ay zuféllig senkrecht zur Ebene

Abb. 6.2: Ubersicht der entwickelten Methodik:

Links: pro Bildachse miissen orthogonale Versétze (A, Ay) zwischen den Zentren
zweier nicht-iiberlappender - da um Ay in axialer Richtung auseinander liegender-,
fast-planarer Volumen geschétzt werden, um das jeweilige Descriptor 2D CNN zu
trainieren.

Rechts: zwei Moglichkeiten zur Umsetzung der Versatz-Vorhersage-Hilfsaufgabe. 1)
REG2D B: Direkte Regression der beiden Werte durch fully connected-Schichten im
2 Param CNN. 2) HEATMAP B: Regression von (A1, As)-heatmaps unter Einbezug
von transposed convolutions im Heatmap CNN.

6.2.1 Selbst-iiberwachtes Feature-Lernen

Abb. 6.2 illustriert die bereits erwdhnten, grundlegenden Charakteristika der in diesem
Kapitel entwickelten Methode. Im Gegensatz zum Ausgangsverfahren aus Doersch u. a.,
2015 beruht dieses Verfahren nicht mehr auf wiirfelférmigen Subvolumen, sondern setzt
zur Implementierung eines neuartigen, selbst-iiberwachten Pre-Training-Schemas
zur Nutzung kontinuierlicher statt diskreter rdumlicher Beziehungen fast-planare Sub-
volumen ein.

Das eigentliche Pre-Training durch die neu definierte Hilfsaufgabe wird in Abb.
6.2 durch zwei coronale Schichten demonstriert. Zunéchst wird ein Anker-Patch (hell-
griines Rechteck) zuféllig innerhalb einer ebenfalls zufélligen Schicht des Bildvolumens
gezogen. Anschlieend wird in einem wiederum zufilligen Abstand A, der die Uberlap-
pungsfreiheit der fast-planaren Bildvolumen sicherstellt, eine zweite Schicht ermittelt.
Waiéhrend das Anker-Patch um einen durch ein oranges Viereck markierten Voxel zen-
triert ist, wird der zweite Bildausschnitt (gelbes Rechteck) um die zufillig gezogenen
Versitze (A1, Ag) (lila und blau) innerhalb dieser Bildschicht verschoben.

Dieses Vorgehen stellt sicher, dass beide Ausschnitte keine trivial zu identifizieren-
den Strukturen (wie sich fortsetzende Linien) enthalten. Dadurch ist die Hilfsaufgabe
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nicht mehr auf die Vorhersage diskreter Nachbarschaftsrelationen beschrénkt. Im Ver-
gleich dazu ermoéglichen die kontinuierlich gewahlten Bildverséitze nun ein ungemein
hoéheres Mafi an Variabilitdt. Die Transformation der wiirfelformigen Volumen einer
naiven Erweiterung des Verfahrens aus Doersch u.a., 2015 hin zu fast-planaren Aus-
schnitten erlaubt also im Wesentlichen die Vermeidung des Kérpergrenzenproblems.
Aufgrund des den Faltungsnetzen génzlich vorenthaltenen axialen Versatzes Ay fiihrt
die definierte Hilfsaufgabe zum inhdrenten Erlernen anatomischer Information in den
adaptierbaren Gewichten. Die Ausmafle der nahezu zweidimensionalen Bildausschnit-
ten ermoglicht den CNNs durch entsprechende, rezeptive Felder genug Kontext zu
erfassen. Die Zielvorgabe, die feingranular abgestuften rédumlichen Beziehungen der
Trainingsbildpaare korrekt zu erkennen, leitet die Faltungsnetze an, die intrinsischen,
anatomischen Zusammenhéange selbststdndig zu erlernen.

Analog zum bereits beschriebenen DOERSCH-Ansatz wird hier ebenfalls eine siame-
sische Netzwerkarchitektur pro Achse zur Deskriptorextraktion (Descriptor 2D CNN -
kurz: D2D-CNN) trainiert, die vektorwertige Représentationen fiir beide Bildausschnit-
te generiert. Allerdings werden statt des cross entropy-Loss fir die 6-Nachbarschafts-
klassen-Problematik nun kontinuierliche Regressionsansétze als Hilfsaufgabe genutzt.
Zum Einen lassen sich die beiden Versatzparameter (Aq, Ag) direkt als Ausgabe voll-
verbundener Schichten schétzen (engl.: fully connected). Zum Anderen lésst sich diesel-
be Information auch mittels aus dem Zentrum verschobener 2D-Gauflkurven codieren.
Unter Einbezug von transposed convolutions im Heatmap CNN-Part der Architektur
soll diese Darstellung aus den Vektorrepréisentationen rekonstruiert werden, um einen
in Payer u.a., 2016 erorterten, verbesserten Gradientenfluss auszunutzen.

Das beschriebene Pre-Training-Schema wird entlang jeder Bildachse durchgefiihrt.
Mittels der trainierten drei Descriptor 2D CNNs entsteht aus Konkatenation ihrer
jeweiligen Vektorreprasentationen schliellich ein 2.5-dimensionaler Deskriptor wie in
Abb. 6.3 dargestellt.

6.3 Experimente & Ergebnisse

Um die vorgeschlagenen Neuerungen zum selbst-iiberwachten Training obektiv be-
urteilen zu kénnen, werden die Verfahren mittels einer anschlieBend unabhéngig durch-
gefiihrten CT-Segmentierungsaufgabe geméf ihrer erreichten Dice-Werte verglichen.
Fir die Experimente wird der bereits aus den vorangehenden Kapiteln bekann-
te VISCERAL Anatomy3 Datensatz (siehe Jimenez-del-Toro u.a., 2016 fiir Details)
genutzt - im Speziellen die kontrastverstirkten thorakoabdominalen CT-Aufnahmen.
Wiéhrend des Trainings stehen 63 nicht-annotierte Bildvolumina des silver corpus zur
Verfiigung und zur Testzeit wird auf 19, mit medizinischen Expertenannotationen ver-
sehene CT-Scans zuriickgegriffen. Alle Bilddaten werden in Vorverarbeitungsschritten
zunichst auf ein isotropisches Voxelvolumen von 1.5mm3 gebracht und zusitzlich grob
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Abb. 6.3: Deskriptorextraktion: Nach pro Bildachse abgeschlossenem Training der Descrip-
tor 2D CNNs, lassen sich um die jeweiligen Positionen zentrierte, senkrecht zu-
einanderstehende Ausschnitte mittels der Faltungnetze in Vektorreprisentationen
umwandeln und zu einem Gesamtfeature konkatenieren.

auf eine Region zugeschnitten, die alle sechs Zielstrukturen der Segmentierungsaufga-
be (Leber, Milz, linke & rechte Niere, linker & rechter Psoas Major Muskel) umfasst.
Schlieflich ergibt sich fiir alle Patienten eine Bildgro8e von 243x176x293 (LR-AP-SI).
Davon unabhéingig wird im Folgenden zum Zweck einer klaren Notation jede Bildachse
auf den Bereich [—1, 1] normalisiert angenommen (d.h. jeweils mit Seitenldnge 2), um
die Beschreibung der einzelnen Experimente zu erleichtern.

Heatmap (M)-basiertes Netzwerktraining

An dieser Stelle sei zunédchst noch einmal erwédhnt, dass im Sinne der 2.5D-Featureex-
traktion die im Fortlauf beschriebene Trainingsprozedur jeweils pro Bildachse gepaart
mit einem eigenen Heatmap CNN ein Mal durchgefithrt wird (axial, coronal und sag-
gital). Jeweils drei benachbarte Schichten bilden in Form kanalweiser Eingaben eines
zweidimensionalen Bildes die fast-planaren Subvolumen. In Voxeldimensionen haben
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sie die Ausmafie 3 x 422 mit Seitenlingen von 0.8 und 0.05 in Normalenrichtung, was
117x97x9mm in Patientendimensionen entspricht.

Entsprechend der visuellen Beschreibung in Abb. 6.2, wird zunéchst ein Anker-Patch
mit zufilligem, aus einer Gleichverteilung iiber [—0.5,0.5]% gezogenem Zentrum ge-
wahlt. Der zweite Bildausschnitt wird so ermittelt, dass er aus einer Schicht gezogen
wird, die mindestens Ay = 0.125 und hochstens Ag = 0.25 in Normalenrichtung ent-
fernt liegt. Dieser senkrechte Versatz wird wéahrend der Parameteranpassung der Fal-
tungsnetze nicht verwendet. Die innerhalb der Bildebene liegenden Versatzparameter
(A1, Ag) als eigentliches Vorhersageziel der Hilfsaufgaben werden zu Beginn des Trai-
nings gleichverteilt aus den Intervallen £[0.25,0.3] und aus Bereichen bis zu +[0, 0.7]?
gegen Ende des Trainingsprozesses randomisiert gewahlt. Die anfangliche Wahl einer
unteren Versatzschranke von mindestens £0.25 erleichtert den Trainingsprozess, durch
einen grofleren Gradientenfluss basierend auf zu diesem Stadium starker zueinander
verschobenen Bildausschnitten.

Dieser Gradient wird anhand der Unterschiede zwischen der Vorhersage des Fal-
tungsnetzwerkes und der als Grundwahrheit aus (A1, Ag) generierten Heatmap in Form
eines MSE-Losses bestimmt. Die genaue Bestimmung der Grundwahrheit ist durch

heaty(i, j, Ay, Ag) = 10 - ¢~ 15 [0/9-20)4(/9-20)7] (6.1)

mit (i,7) € {—9, -8, ..., +8,+9}? gegeben und hat schliellich die Form von zweidimen-
sionalen 19x19-Bildern.

3D Doersch (/')-basiertes Netzwerktraining

Im Gegensatz zum vorherigen 2.5D-Ansatz wird zur Erweiterung des urspriinglich
zweidimensionalen Verfahrens aus Doersch u. a., 2015 ein dreidimensionales Faltungs-
netzwerk (D3D-CNN) zur Featureextraktion genutzt. In Kombination mit dem dar-
an anschliefenden 6 Neighbor CNN lassen sich die 6 moéglichen, rdumlichen Relatio-
nen zweier wiirfelformiger Bildausschnitte zueinander als Hilfsaufgabe mittels eines
cross entropy-Loss trainieren. Das Anker-Volumen hat in diesem Fall die Ausmafie von
253 Voxeln mit einer normalisierten Seitenlinge von 0.4 und wird aus dem Intervall
[—0.5,0.5]® des Bildvolumens gezogen, um sich sicher innerhalb des Kérpers zu be-
finden. Das zweite Volumen wird zuféllig aus einem der sechs in Frage kommenden
Nachbarn bestimmt und leicht um zuféllige Werte verschoben, damit die bereits an-
gesprochenen Effekte durch leicht identifizierbare, fortlaufende Strukturen vermieden
werden.

Hyperparameterwahl zur Trainingszeit

Sowohl die neu entwickelte Methode des selbst-iiberwachten Lernens als auch der
DoOERSCH-Ansatz werden auf vergleichbare Art und Weise trainiert. Beide Male wird
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CNN D2D 2 Pasaw (EHGHUNAPE]  D3D | 6 Neighbor
Input Bilddaten D2D Feature D2D Feature Bilddaten D3D Feature
Schicht 1 Conv(3,32,3,1) | Conv(128,128,1,1) Conv(128,64,1,1) Conv(1,16,5,1) Conv(384,64,1,1)
MP(2,2),GN,LR GN,LR GN,LR GN,LR GN,LR
Schicht 2 Conv(32,32,3,1) Conv(128,64,1,1) Conv(64,32,1,1) Conv(16,32,3,2) Conv(64,64,1,1)
MP(2,2),GN,LR GN,LR GN,LR GN,LR GN,LR
Schicht 3 Conv(32,32,3,1) Conv(64,32,1,1) Conv(32,16,1,1) Conv(32,32,3,2) Conv(64,32,1,1)
GN,LR GN,LR GN,LR GN,LR GN,LR
SCthht 4 Conv(32,64,3,1) Conv(32,2,1,1) ConvTP(16,16,5,1) Conv(32,32,3,2) Conv(32,6,1,1)
GN,LR — GN,LR GN,LR —
Conv(16,16,3,1)
GN,LR
interp(11x11)
Schicht 5 Conv(64,64,3,1) ConvTP(16,16,5,1) Conv(32,32,3,1)
GN,LR GN,LR GN,LR
Conv(16,8,3,1)
GN,LR
Schicht 6 Conv(64,64,3,1) ConvTP(8,4,5,1) Conv(32,32,5,1)
GN,LR GN,LR GN,LR
interp(19x19)
Schicht 7 Conv(64,64,3,1) Conv(4,1,1,1) Conv(32,192,3,1)
GN,LR — GN,LR
(x,y,2,¢)-in (42,42,1,3) (1,1,1,128) (1,1,1,128) (25,25,25,1) (1,1,1,192)
(x,y,2,¢)-out (1,1,1,64) (1,1,1,2) (19,19,1,1) (1,1,1,192) (1,1,1,6)
# Parameter 139.744 27.138 28.189 393.392 31.238

Tabelle 6.1: Netzwerkarchitekturen. Folgende Abkiirzungen werden fiir die Bestandtei-
le genutzt: 1.) Conv(TP)(Cin, Cout, kernel, dilation) = (Transposed)Convolution,
2.) MP(kernel, stride) = MaxPooling, 3.) GN = GroupNorm, 4.) LR = Leaky-
ReLU, 5.) interp(Breite, Hohe) = Hochskalieren auf die spezifizierte Dimensio-
nalitét

ein Adam-Optimierer mit initialer Lernrate von 5 - 107° eingesetzt und mit einer
BatchgroBle von 8 wird jedes Verfahren fiir 800.000 Iterationen auf zufélligen Bild-
ausschnittpaaren trainiert. Als Ausgabe entstehen pro betrachteter Bildposition nach
Verarbeitung durch die entsprechenden, fiir die Deskriptorextraktion zustdndigen Fal-
tungsnetzwerke Featurevektoren der Léange 192. Tabelle 6.1 enthilt dabei die Details
zum Aufbau der Faltungsnetze samt Informationen zu allen Hyperparametern einge-
setzter Schichten.

An dieser Stelle sei angemerkt, dass alle CNNs zur Featureextraktion 1.) mit ~ 400k
adaptierbaren Parametern vergleichbare Modellkapazititen besitzen, 2.) in Form sia-
mesischer Netzwerke trainiert werden und 3.) ihre Ausgaben an ebenfalls vergleichbar
maéchtige Netzwerke weiterleiten, die sich hauptsachlich auf die Lésung der Hilfsaufga-
be fokussieren.

Vergleichsexperimente & Ablationsstudie

Um die beiden bisher vorgestellten, selbst-iiberwachten Lernansitze nicht nur un-
tereinander, sondern auch im Vergleich zu weiteren Deskriptoren beurteilen zu kénnen,
werden dariiberhinaus noch zwei weitere Verfahren beschrieben und genutzt, sowie im
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Sinne einer Ablationsstudie zusétzlich zur entwickelten HEATMAP B-Methode ein wei-
teres Experiment durchgefiihrt.

Xavier2D: Auch ohne Training der D2D-CNNs und allein mit anhand der Xavier-
Methode aus Glorot u.a., 2010 initialisierten Netzwerkgewichten lassen sich h&ufig
bereits robuste Représentationen aus Bilddaten gewinnen. Die Verwendung dieser Art
von Deskriptoren soll im Experiment daher Riickschliisse auf eine untere zu erwartene
Qualitdt erlauben, um somit im Falle starker Genauigkeitszuwéchse den Trainingsauf-
wand der vorgeschlagenen HEATMAP-Methode zu rechtfertigen, da zur Testzeit beide
Verfahren identisch sind und die gleiche Architektur verwenden.

GVDiff B: Um die bislang vorgestellten, durchgehend CNN-basierten Verfahren ge-
geniiber klassischen Deskriptoren einzuordnen, werden die BRIEF-Deskriptoren (engl.:
binary robust independent eficcient feature) aus Calonder u. a., 2010 genutzt. Diese be-
schreiben einen Voxel durch eine Vielzahl an paarweisen Intensitétsvergleichen (engl.:
grey value differences - kurz: GVDiff) mittels eines einmalig zu Beginn zufillig festzule-
genden Umgebungsmusters. Um eine Vergleichbarkeit der Ergebnisse zu gewéhrleisten,
stammt dieses Muster aus einer dreidimensionalen Gaufiverteilung mit einer Standard-
abweichung von 0.4 und entspricht daher dem rezeptiven Feld der CNN-basierten Me-
thoden. Mit einer Anzahl an 192 Vergleichen entstehen dann ebenfalls Featurevektoren
der gleichen Dimensionalitét.

Reg2D (M)-basiertes Netzwerktraining: Im Sinne einer Ablationsstudie soll mit die-
sem Experiment der Einfluss der Verwendung von Heatmaps beleuchtet werden. Dazu
wird die vorgeschlagene Hilfsaufgabe im Vergleich zum ersten Experiment dahingehend
abgedndert, dass eine direkte Regression der Versatzparameter (A1, Ag) durchgefiihrt
wird. Es findet also keine Rekonstruktion rdumlicher Informationen mehr statt wie bei
der Kombination von D2D-CNNs mit den Heatmap CNNs. Stattdessen operieren die
eingesetzten voll-verbundenen Schichten und der Gradientenfluss auf Grundlage des
L1-Losses im Anschluss an die D2D-CNNs einzig auf eindimensionalen Featurevekto-
ren. Auch fiir dieses Experiment finden sich die Netzwerkdetails in Tabelle 6.1.

Art der Evaluation

An dieser Stelle muss die Art der Evaluation hinsichtlich der Aussagekraft der betrach-
teten Deskriptoren erldutert werden. Dabei ist zu betonen, dass wahrend des Trainings
der selbst-iiberwacht lernenden Verfahren HEATMAPE, DOERSCH! und REG2DME
keine Organannotationen, sondern ausschliefllich die 63 Grauwertbilddatensétze des
silver corpus zum Einsatz kommen. Im Anschluss daran wird auf eine Feinabstim-
mung durch weiteres Training mittels des Zieldatensatzes verzichtet, um die Aussa-
gekraft der zu vergleichenden Deskriptoren alleine den verschiedenen Trainings- oder
Designmethoden zuschreiben zu kénnen.

Bildlich gesprochen stellt sich die Evaluation folgendermaflen dar. Zu Trainingszei-
ten stehen den Verfahren ausschliefllich Bilddaten eines bestimmten Volumenscanners
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Abb. 6.4: Links: Durchschnittliche Dice-Werte fiir verschiedene Methoden bei ansteigender
Anzahl an verfiigbaren Atlasdaten. Rechts: t-SNE-Darstellungen belegen die deutli-
chere Separierung hochdimensionaler Deskriptorcluster der vorgeschlagenen HEAT-
MAP B-Methode im Vergleich zum DOERSCH [-Verfahren.

zur Verfiigung. Nach Abschluss des Trainings wird nun eine Teilmenge der mit Ex-
pertenannotationen versehenen Datensétze des gold corpus in Form von Atlanten zu-
gianglich. Nun sollen fiir weitere ungesehen Testbilddaten mittels einer approximativen
k-Néchste-Nachbarn-Suche (kNN) die Organlabel aus den Atlanten tibertragen wer-
den. Dazu wird die Suche mit Hilfe der effizienten Vantage Point Forest-Methode aus
Heinrich u. a., 2016 (Hyperparameterwahl: £ = 21 mit 15 Bédumen) basierend auf den
Featurevektordarstellungen der ungesehen Testdaten und der Atlasbilddaten umge-
setzt.

Die beiden Vergleichsverfahren XAvIER und GVDIFFE folgen abgesehen vom Aus-
lassen eines vorangehenden Trainings dem gleichen Evaluationsschema.

Die Experimente werden schliellich jeweils in Form einer zweifachen Kreuzvalidie-
rung auf den 19 gold corpus-Daten (Aufteilung: 1-10, 11-19) ausgefiihrt. Dabei wird
weiterhin der Einfluss einer wachsenden Anzahl zur Verfiigung stehender Atlasdaten
beim Labeltransfer untersucht, in dem schrittweise zuerst ein Datensatz (one-shot) bis
hin zu einer Menge 9 Atlanten bei Suche der kNN zur Verfiigung stehen. Diese Label-
transferaufgabe wird an jedem vierten Voxel - dies entspricht 192.720 Positionen pro
Testbild - durchgefiihrt.

6.4 Ergebnisse & Diskussion

Tabelle 6.2 enthélt die mittleren Dice-Werte aller 6 betrachteten Organstrukturen fiir
den Fall, dass die grofitmogliche Menge von neun Atlanten zur kNN-Suche wiahrend der
Testzeit zur Verfiigung steht. Ein qualitatives Beispielergebnis fiir die Labeltransferauf-
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Kapitel 6 Uniiberwachtes Deskriptorlernen in 3D-CT-Thoraxdaten

(a) EXPERTE (b) HEATMAP (c) REG2D (d) DOERSCH (e) GVDIFF

Abb. 6.5: Visualisierung des Segmentierungsergebnis der verschiedenen Ansétze innerhalb der
Coronalschicht eines Beispielpatienten.

gabe unter eben diesen Bedingungen wird in Abb. 6.5 innerhalb einer Coronalschicht
fiir einen Patienten gezeigt.

Der Genauigkeitsverlauf beziiglich einer ansteigenden Anzahl an zur Verfiigung ste-
henden Atlanten fiir die kNN-basierten Organsegmentierungen ist mithilfe der mittle-
ren Dice-Werte im linken Teil von Abb. 6.4 aufgefiihrt. Daraus ist abzulesen, dass das
in diesem Kapitel neu entwickelte Pre-Training-Verfahren unter Einsatz der Heatmaps
durchgehend die besten Ergebnisse erzielt und schon fiir eine One-Shot-Segmentierung
- also mit nur einem verfiigharen Atlanten - eine Dice-Genauigkeit von ~ 55% erreicht.
Der in der Ablationsstudie betrachtete REG2D-Alternativansatz liefert die néchst-
besten Werte und ist ebenfalls durchgingig genauer als die direkte, dreidimensionale
Erweiterung des DOERSCH-Ansatzes. Auch im Vergleich zu den weiteren Deskriptoren
sind beide auf dem hier neu entwickelten Schema zum selbst-iiberwachten Lernen
eindeutig vorzuziehen und demonstrieren auf diese Art die Uberlegenheit der vorge-
stellten Methode. An dieser Stelle sei auflerdem erwihnt, dass der vollstdndig selbst-
iiberwachte HEATMAP-Ansatz auch einem elaboriertem Trainingsverfahren aus Roy
u. a., 2020 fir One-Shot-Segmentierungen unter Einbezug von Labeldaten {iberlegen
ist, dass auf dem gleichen Datensatz geringere Dice-Werte von 52.6% liefert.

Die zusétzliche Visualisierung der hochdimensionalen Organdeskriptorcluster mittels
t-SNE-Darstellungen im rechten Teil von Abb. 6.4 unterstreicht durch die deutliche-
re Abgrenzung der verschiedenen Klassen bei Anwendung des HEATMAP-Verfahrens im
Vergleich zum DOERSCH-Ansatz die gesteigerte Aussagekraft zur rdumlich-anatomischen
Beschreibung der so erhobenen Deskriptoren. Beispielsweise hinsichtlich der Leber
(blau) und der Milz (orange) unterstiitzt die Betrachtung eines gréfieren raumlichen
Kontext beim Lernen sichtlich die Separierung der Cluster und demzufolge auch das
beispielhafte Segmentierungsergebnis der beiden Strukturen in Abb. 6.5.
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6.5 Zusammenfassung

Experiment Leber Milz 1Niere r Niere 1Psoas r Psoas &
85.3  65.7 66.3 53.5 50.4 65.6 64.2 + 2.9
81.4  54.0 63.4 51.0 49.0 60.9 60.0 £2.9

DoERSCH 76.9  43.0 59.0 51.2 49.1 52.3 55.2+3.1
80.7  58.2 54.5 43.0 29.0 37.1 50.4+£5.0
XAVIER 70.1  28.3 17.2 3.3 24.5 27.1 28.4+1.0

Tabelle 6.2: Mittlere Dice-Werte in % tiber Aufteilungen der Kreuzvalidierung.

6.5 Zusammenfassung

Im zuriickliegenden Kapitel wird eine neuartige Strategie des selbst-iiberwachten
Lernens von Deskriptoren vorgestellt, die es ermdglicht ausschlieflich anhand von in
groflen Mengen vorliegenden Volumenbilddaten von Patienten inhérente Informatio-
nen zu extrahieren. Sie setzt sich somit von allen Methoden in anderen Kapiteln die-
ser Arbeit ab, welche in unterschiedlicher Form auf Uberwachung angewiesen sind.
Dazu wird ausgehend von einer in Doersch u.a., 2015 vorgeschlagenen Methode fiir
zweidimensionale, natiirliche Bilder ein neues Hilfsproblem formuliert. Dieses nutzt
die zusatzliche Raumdimension der Volumendaten zu seinem Vorteil, indem mittels
fast-planarer Subvolumen kleine, kontinuierliche Versitze entlang der Bildebene zur
Definition der rdumlichen Relation dienen und dadurch der Ubergang von einer Pro-
blemformulierung als Klassifikation hin zur Formulierung in Form Regression gelingt.
Dieser in allen drei Raumorientierungen wiederholte Prozess ermoglicht die instrinsi-
sche Kodierung anatomischer Zusammenhénge innerhalb der Faltungsnetzwerke und
somit die Extraktion aussagekréiftiger, vortrainierter Deskriptoren - ohne Vorwissen
beispielsweise durch die Vorgabe einer einzusetzenden Metrik einzubringen.

Die Evaluation des Verfahrens zeigt, dass die auf diese Weise trainierten Deskrip-
toren in einer kNN-basierten Labeltransferaufgabe ohne problemspezifische Parame-
teranpassung einen grofien Anstieg von 55.2% auf 65.6% hinsichtlich der Dice-Werte
im Vergleich zur Erweiterung des Verfahrens aus Doersch u.a., 2015 zur Folge ha-
ben. Dabei iibertrifft das entwickelte Verfahren vollstdndig uniiberwacht sogar einen
Stand-der-Technik-Ansatz zur One-Shot-Segmentierung auf den &ffentlichen thorako-
abdominalen VISCERAL-CT-Daten.

Zukiinftige Arbeiten konnen den Einfluss verschiedener Architekturentscheidungen
bei der Definition der eingesetzten Faltungsnetze beleuchten. Verschiedene Einsatzsze-
narien mit oder ohne Feinabstimmung der Parameter sollten die Einsatzberechtigung
der Methodik weiter untersuchen. Insgesamt betrachtet eréffnet der vorgestellte, neuar-
tige Ansatz aber einen Weg die grofie und noch weiter anwachsende Zahl medizinischer
Volumenbilddaten auch ohne zeitaufwendiges, manuelles Annotieren sinnvoll einzuset-
zen.
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Kapitel 7
Zusammenfassung und Ausblick

In dieser Arbeit wurden verschiedene Methoden entwickelt, um datengetrieben un-
ter Anwendung von Faltungsnetzwerken Deskriptoren fiir die medizinische Bildanalyse
zu erlernen. Allen Ansétzen ist dabei gemein, dass sie auf einer klaren Separierung
der Extraktion von Deskriptoren und den darauf folgenden Anwendungen beruhen.
Unter Beachtung dieses Separierungsparadigmas konzentrierten sich die Experimtente
anschlieend auf die wissenschaftliche Fragestellung, welche der neuentwickelten Me-
thoden den grofiten Anwendungsnutzen ermdoglichen.

Innerhalb der Bildregistrierung wird dieses algorithmische Vorgehen beispielsweise
durch Vergleiche mit klassischen Methoden, aber auch mit vollstindig integrierten
Faltungsnetzansétzen zur Bestimmung der Transformationsparameter untersucht.

Die Hauptbeitrdge der Arbeit ergeben sich dabei wie folgt:

e in Kapitel 3 durch das Formulieren eines geeigneten Hilfsproblems in Form der
Zielstellung einer Korrespondenzsuche zum Training der Deskriptornetzwerke. Diese
steht in nahem Bezug zur eigentlichen Registrierung eines Bildpaares, da auch diese
Aufgabe unter Vorgabe von Metriken oder manuell definierten Deskriptoren geldst
wird. Weiterhin bewirkt die Verwendung eines zusétzlich eingefiihrten Strafterms ei-
ne nahezu verlustfreie Binarisierung der Deskriptoren. Dadurch wird das Ausnutzen
spezieller Befehlstze fiir effiziente Ahnlichkeitsberechnungen erméglicht.

e in Kapitel 4 durch das schrittweise Optimieren einer multimodalen Bildregistrie-
rung mit Hilfe von semantischer Forminterpolation. Dieses Vorgehen erlaubt auch
sich stark voneinander unterscheidende Herzanatomien sinnvoll ineinander iiberzu-
fiihren. Zu diesem Zweck wird linear zwischen Deskriptoren der automatisch ge-
schitzten Segmentierungen interpoliert, die als Formkodierungen vorliegen. Durch
den Einsatz der Faltungsnetz-Auto-Enkoder ist die Transformation zwischen Form-
und Bildraum hochgradig nichtlinear und dadurch in der Lage auch komplexe ana-
tomische Variationen zu erfassen und abzubilden.

e in Kapitel 5 durch die Ende-zu-Ende-trainierbare Kombination aus Faltungsnetzen
zum datengetriebenen Lernen von Deskriptoren und klassischen Registrierungsver-
fahren zur iterativen Bestimmung von Transformationsparametern. Dadurch redu-
ziert sich im Vergleich zu voll-integrierten Faltungsnetzanséitzen die Anzahl der zu
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trainierenden Parameter deutlich und dadurch ebenso die notwendige Menge an
Trainingsdaten.

e in Kapitel 6 durch eine neue Strategie vollstandig uniiberwacht Deskriptoren in Vo-
lumendaten zu lernen. Diese ermoglicht Faltungsnetzwerken anhand raumlicher Re-
lationen instrinsische anatomische Zusammenhéange zu erfassen - ganz ohne weiteres
Vorwissen, beispielsweise beziiglich einzusetzender Metriken, zu bendtigen.

An dieser Stelle sei noch einmal auf den Umfang der Herausforderungen verwiesen, de-
nen im Rahmen der Arbeit zum datengetriebenen Deskriptorlernen begegnet wurde.
Bedingt durch 1) unterschiedliche Datengrundlagen wurden sowohl Untersuchungen
zu Ende-zu-Ende-trainierten Deskriptoren als auch zu hybriden Zweischrittverfahren
angestellt. Dariiberhinaus wurde 2) die Eignung der indirekten Uberwachung bei der
Anwendung eines Hybridverfahrens und zum Atlastransfer geprift, wobei letzterer auf
Deskriptoren basiert, die ohne jegliches, zuséatzliches Trainingswissen erlernt wurden.
AuBlerdem beschrankt sich die Arbeit nicht auf monomodale Bildpaare, sondern zeigt
auch Wege zur Bewéltigung 3) herausfordernder, multimodaler Registrierungsprobleme
mit ihren nicht-funktional abbildbaren Grauwertbeziehungen zwischen korrespondie-
renden Gewebetypen auf. Schliellich wurden auch 4) spezielle Losungen durch proble-
mangepasste Gradientenriickfiihrungen abseits der Standardvorgehensweisen bei Fal-
tungsnetzwerken entwickelt. Diese erlauben zusétzliche Effizienzsteigerungen einerseits
durch das Generieren von Bindrdeskriptoren und andererseits durch die Anwendung
etablierter, fortgeschrittener Losungsverfahren fiir sparlich besetzte Gleichungssyste-
me.

Trotz der Erfolge, die die neu entwickelten Methoden jeweils in den Experimenten im
Hinblick auf ihre Anwendungen erzielen, ergeben sich fiir alle Verfahren Limitierungen
und weitere, in zukiinftigen Untersuchungen zu beantwortende Forschungsfragen.

e Beziiglich der Methodik aus Kapitel 3 ldsst sich feststellen, dass die Hilfsaufgabe der
Korrespondenzfindung das Faltungsnetz prinzipiell in die Lage versetzt expressive
Deskriptoren fiir die vorliegenden Landmarken zu lernen. Die Diskrepanz zwischen
dieser Aufgabe und der tatsdchlichen Anwendung in der Registrierung erweist sich
aber stéarker als erwartet. Dies macht sich besonders in Bereichen bemerkbar, welche
sparlich durch Landmarken besiedelt sind. Dort sind die generierte Reprasentationen
weniger ausssagekriftig.

FEin denkbarer Losungsansatz bestiinde in der Umsetzung eines Ende-zu-Ende-trai-
nierbaren Trainingsschemas wie in Kapitel 5. In Heinrich, 2019 wurde in der Zwi-
schenzeit ein faltungsnetzbasierter und daher differenzierbarer Registrierungsansatz
entwickelt, der sich stark an diskreten Vorgehensweisen zur Abtastung des Verschie-
bungsvektorsuchraumes orientiert. Auf diese Weise konnte das urspriinglich einge-
setzte Verfahren adidquat erweitert werden.
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e Hinsichtlich der Neuentwicklung in Kapitel 4 ist der niedrigere Grad der Uberwa-
chung in Form von Organsegmentierungen statt manuell exakt annotierter Punkt-
korrespondenzen positiv zu vermerken. Dennoch ergeben sich auch wahrend des Re-
gistierungsvorgangs hier abseits der annotierten Strukturen Probleme: dieser wird
nur durch die Glattheitsanforderungen der Verschiebungsfelder mitangepasst, da das
angewandte Verfahren nur die annotierten Vordergrundorganstrukturen in Betracht
zieht.

Mogliche Ansatzpunkte fir Verbesserungen wéren einerseits die Beriicksichtigung
weiterer Segmentierungen. Andererseits kénnte das implementierte, iterativ gefiihr-
te Registrierungsverfahren beispielsweise in alternierender Schrittfolge auf bereits
bekannte, multimodale Methoden wie MIND-Représentationen zuriickgreifen oder
die mutual information als Distanzmaf} einsetzen.

e Mit Blick auf Kapitel 5 erweist sich das Erstellen des linearen Gleichungssystems im
abschlieBenden SUITS 2.0-Framework als aufwendig.

Diesbeziiglich konnte untersucht werden, ob im Sinne des genutzten, algebraischen
Multigridlosungsverfahrens direkt eine kleinere Version der Systemmatrix basierend
auf den Eingabebildern ebenfalls durch den Einsatz von Faltungsnetzen vorhergesagt
werden kann. Dieser Schritt zur Dimensionsreduktion wird ohnehin im Lésungspro-
zess vollzogen und liefle sich dabei durch zusétzliche Bedingungen weiter optimieren.
So kénnten Bereiche, die besonders informative Strukturen beinhalten, verstérkt Be-
achtung finden, so dass die Systemmatrix nicht mehr alle Nachbarschaftsbeziehungen
des Bildgitters gleichrangig betrachtet, sondern durch Spérlichkeitsnebenbedingun-
gen die Matrixeintrage dahingehend gewichtet oder erlernt.

o Im Kontext der in Kapitel 6 vorgeschlagenen, uniiberwachten Lernmethodik stellt
sich die Frage, ob ein Faltungsnetz grofierer Kapazitit anatomische Zusammenhénge
noch besser erfassen kann, wenn es auf multimodalen Eingaben gleicher Korperre-
gionen trainiert wird. Potentiell lieBen sich damit wiederum modalitdtsunabhéngige
Deskriptoren fiir die naheliegende Anwendung in der Bildregistrierung generieren.
Dazu Bedarf es allerdings der Entwicklung geeigneter Trainingsstrategien, die die
zu erwartende, anfinglich grole Diskrepanz zwischen den Eingaben verschiedenen
Ursprungs iiberbriicken.

Generell gilt, dass die im Rahmen der Arbeit genutzten Methoden des maschinellen
Lernens immer von der Giite der zum Training zur Verfiigung stehenden Daten ab-
héngig sind. Aus diesem Grund wére der Zugang zu weiteren, qualitativ hochwertigen
und mit Annotationen versehenen Bilddaten wiinschenswert. Einerseits um die entwi-
ckelten Verfahren in weiteren Testlaufen auf ihre Robustheit und Generalisierbarkeit
zu priifen, andererseits aber auch um noch méchtigere Modelle zu trainieren.

Fiir das ultimative Fernziel eines Transfers der entwickelten Verfahren in die klini-
sche Praxis sind im Hinblick auf die Anwender Forschungsanstrengungen zu intensi-
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vieren, die Akzeptanz dieser Systeme steigern. Dazu zéhlen zum einen Methoden der
Konfidenzabschétzungen, also wie sicher sich das System seiner Vorhersage ist. Eben-
so wichtig ist zum anderen die Nachvollziehbarkeit einer Entscheidungsfindung, um
Einblick in die sonst als Blackbox aufgefassten Verfahren zu gewinnen.

Insgesamt bleibt als Fazit dieser Arbeit - trotz der sich hieraus neu ergebenden
Fragestellungen - festzuhalten, dass das datengetriebene Deskriptorlernen in der me-
dizinischen Bildverarbeitung unter verschiedensten Voraussetzungen moglich ist und
gewinnbringend fiir vielfaltige Anwendungen, insbesondere die Bildregistrierung, ein-
gesetzt werden kann.
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