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Zusammenfassung

Die medizinische 3D-Bildgebung als relativ junge Disziplin hat sich den letzten Jahr-
zehnten des 20. Jahrhunderts in großer Geschwindigkeit entwickelt. Sie ist aus der
heutigen Diagnostik nicht mehr wegzudenken und in Kombination mit Methoden der
Bildverarbeitung bildet sie beispielsweise die Grundlage von Strahlentherapieplanun-
gen und bildgestützten Eingriffen.
Um die mittlerweile großen Mengen anfallender Daten zu bewältigen, bedarf es der

computergestützten Analyse von volumentrischen, medizinischen Scans. Dabei spielt
die automatische Extraktion von relevanten Bildmerkmalen – sogenannten Deskrip-
toren – eine entscheidende Rolle. In letzter Zeit sind datengetriebene Methoden des
maschinellen Lernens die treibende Kraft auf diesem Gebiet. Häufig werden dabei
ganze Routinen der Bildverarbeitung durch vollintegrierte, trainierbare Faltungsnetze
ersetzt. Deren Erfolg hängt bei komplexen Herausforderungen aber maßgeblich von
der Menge und Qualität vorhandener Trainingsdaten sowie den ihnen zugeordneten
Annotierungen ab.
Die vorliegende Arbeit verfolgt daher das Paradigma einer klaren Abgrenzung zwi-

schen datengetriebenem Repräsentationslernen und anschließendem Einsatz in Op-
timierungs- oder Klassifizierungsstrategien für unterschiedlichste Problemstellungen.
Dabei werden Methoden zum Deskriptorlernen sowohl in Anbetracht unterschiedlicher
Datenlagen (mono- bzw. multimodal) als auch für verschiedene Arten der Anwendung
(Registrierung, Transfer von Organannotierungen) entwickelt.
Über Lösungen für die Registrierung von Bildpaaren hinaus, die sich aufgrund ana-

tomischer Variationen und großer Deformationen stark unterscheiden, liefert die vor-
liegende Arbeit zwei weitere wichtige, wissenschaftliche Beiträge: einerseits entwickelt
sie ein Ende-zu-Ende-trainierbares Rahmengerüst zum datengetriebenen Lernen von
Deskriptoren, die innerhalb eines iterativ optimierten Registrierungsverfahrens zur An-
gleichung multimodaler, thorakoabdominaler Volumendaten eingesetzt werden. Ande-
rerseits stellt sie ein auf räumlichen Relationen beruhendes, unüberwachtes Lernverfah-
ren vor, dass aus potentiell beliebig großen, annotationsfreien Bildmengen selbststän-
dig inhärente, anatomische Zusammenhänge erfasst. Die im Rahmen der Arbeit zur
Beurteilung des Separierungsparadigmas durchgeführten Experimente bestätigen, dass
die Kombination datengetrieben erlernter Deskriptoren und klassischer, jahrzehntelang
erforschter Methoden sowohl im Vergleich zu rein klassischen als auch zu vollständig
Faltungsnetz-basierten Verfahren gewinnbringend ist.
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Kapitel 1

Einleitung

1.1 Motivation

Seit Mitte des letzten Jahrhunderts hat die Verbreitung von Computern viele Be-
reiche des täglichen Lebens durchdrungen und grundlegend verändert. Auch in der
Medizin hat deren Verwendung völlig neue Gebiete erschlossen. So liefern heutzuta-
ge nicht-invasive, bildgebende Verfahren wie die Computertomographie (CT) oder die
Magnetresonanztomographie (MRT) teilweise fast in Echtzeit hochauflösende, dreidi-
mensionale Einblicke in den menschlichen Körper. Der Rekonstruktion der Bildvolu-
mina aus den Rohdaten liegen komplexe Berechnungen zugrunde, die erst durch den
Einsatz und die Verfügbarkeit immer leistungsstärkerer Computer möglich sind.
Durch die steigende Verfügbarkeit dieser 3D-Scanner gehört Bildgebung mittlerweile

zum Standardrepertoire der klinischen Diagnostik und geht folglich mit einer ebenfalls
steigenden Anwendungszahl und einem enormen Wachstum an zu verarbeitenden Bild-
daten einher. Laut dem Bundesamt für Strahlenschutz ergibt sich in Deutschland pro
Jahr und Einwohner ein Anstieg an CT-Untersuchungen von 0.06 im Jahr 1996 auf
0.14 in 2012 [Bundesamt für Strahlenschutz, 2016]. Ebenso eindrucksvoll belegt dies
die Versechsfachung an MRT-Untersuchungen von 0.02 auf 0.12 im gleichen Zeitraum.
Angesichts dieser schieren Masse an anfallendem Bildmaterial sollte es ein Ziel der

medizinischen Bildverarbeitung sein, die medizinischen Experten bei der Begutach-
tung der Daten zu Entlasten und dazu geeignete Verfahren zu entwickeln. Für die
automatisierte Analyse von volumetrischen, medizinischen Scans spielt die Extraktion
von relevanten Bildmerkmalen eine bedeutende Rolle.
Die vorliegende Arbeit befasst sich dabei mit dem automatisierten Erlernen soge-

nannter Deskriptoren. Die Übersichtsarbeit zu medizinischen Deskriptoren in Noguei-
ra u. a., 2017 definiert sie sinngemäß als Algorithmen, die das Ziel verfolgen, effizient
zusammenfassende Repräsentationen für Bildbereiche oder auch für ganze Bilder zu
finden. Wie in Abb. 1.1 angedeutet, eignen sich diese Darstellungen dann im Anschluss
als Grundlage für vielfältige Verwendungen.

Im Kontext dieser Arbeit werden die neu entwickelten Lernverfahren für Deskripto-
ren vorwiegend für die Aufgabe der Bildregistrierung, also der Angleichung eines Bild-
paares, herangezogen, die große klinische Relevanz besitzt. Beispielsweise kann dieser
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Kapitel 1 Einleitung

Faltungsnetz-basiertes DeskriptorlernenMedizinische Volumendaten Anwendung

Registrierung

Labeltransfer

Abb. 1.1: Faltungsnetz-basiertes Deskriptorlernen in medizinischen Volumenbilddaten er-
möglicht verschiedene Anwendungen wie beispielsweise Bildregistrierung oder den
Transfer von Organannotierungen.

Prozess wie in Brock u. a., 2006 zur Angleichung von Bildpaaren bei der Verlaufskon-
trolle einer Tumorbehandlung eingesetzt werden. Dabei dient sie der Kompensation
zeitlich bedingter Veränderungen der übrigen anatomischen Strukturen - die sowohl
kurzfristig durch Begewungseinflüsse des Atmens und des Herzschlages ausgelöst wer-
den, als auch längerfristig unter anderem durch Verdauungstätigkeiten im Abdominal-
bereich verursacht werden -, um Volumenveränderungen des Tumorgewebes zu quanti-
fizieren, die für oder gegen den Erfolg einer durchgeführten Therapie sprechen. Ebenso
bedarf es robuster Registrierungsverfahren und außerdem spezieller Deskriptoren, wenn
wie in Heinrich u. a., 2013b zusätzlich die Fusion komplementärer Informationen aus
verschiedenen Bildgebungsmodalitäten für einen Patienten während einer Intervention
vorgesehen ist. Ist beispielsweise die Übertragung eines anatomischen Atlas eines Pati-
enten - also von aufwendigen, durch medizinische Experten angefertigen Annotationen
bestimmer Organe oder Strukturen - auf einen anderen Patienten zu Vergleichszwe-
cken angedacht, bestehen für Verfahren zur Interpatientenregistrierung aufgrund der
großen natürlichen Variabilität des menschlichen Organismus ebenso großen Herausfor-
derungen. Wiederum stellt sich die Frage, wie korrespondierende Strukturen lediglich
aufgrund von Grauwertinformationen als einander zugehörig erkannt werden sollen, so
dass auch hier der Einsatz von Deskriptoren notwendig wird.
Für den menschlichen Betrachter stellt die Aufgabe der räumlichen Korrespondenz-

findung zunächst kein großes Problem dar. Dabei wird aber außer Acht gelassen, dass
das zur visuellen Erfassung der Umwelt notwendige Erkennen von Mustern sich über
Millionen Jahre entwickelt hat und unbewusst abläuft. Die Umsetzung dieser Fähig-
keiten in Computeralgorithmen erfordert dagegen ein hohes Maß an Expertise, um
beispielsweise eine Zuordnung von Objekten unter verschiedenen Beleuchtungseinflüs-
sen oder Farb- und Texturausprägungen in Basisklassen wie Hund, Auto oder Stuhl
vorzunehmen, wie sie bereits Kleinkinder intuitiv beherrschen. Die Mächtigkeit des
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1.2 Aufbau & Beiträge der Arbeit

evolutionär entstandenen, visuellen Systems zeigt sich auch in Levenson u. a., 2015, in
dem Tauben trainiert werden können, benigne von malignen Strukturen in Histologie-
aufnahmen der menschlichen Brust zu unterscheiden.
Ausgelöst durch den Erdrutschsieg der in Krizhevsky u. a., 2012 vorgestellten Me-

thodik bei der ImageNet Challenge (beschrieben in Deng u. a., 2009) zur Bildklas-
sifikation und durch die Verfügbarkeit immer größerer Bilddatenmengen im Internet
zu Trainingszwecken, erleben Faltungsnetzwerke als eine spezielle Form des maschi-
nellen Lernens in der Bildverarbeitung seit 2012 eine Renaissance. Im Gegensatz zu
klassischen Verfahren des maschinellen Sehens werden die Parameter der Faltungs-
netze anhand von Trainingsbeispielen problemangepasst und datengetrieben erlernt.
Dabei bleibt es dem Algorithmus selbst überlassen, welche Details z.B. in Form der
Detektion von Kanten oder auch deren Ausrichtung zueinander zu beachten sind, um
problembezogen eine korrekte Ausgabe zu generieren.
Aufgrund der Mächtigkeit von tiefen Faltungsnetzwerken sowie der Veröffentlichung

nutzerfreundlicher, modularer Frameworks zur Umsetzung dieser Lernverfahren um-
fasst die Anwendung das Deep Learnings inzwischen oftmals vollintegriert den ge-
samten Ablauf von Bildverarbeitungsmethoden. Für das Beispiel der Bildregistrierung
bedeutet dies allerdings, dass sich oftmals nicht mehr klar unterscheiden lässt, wel-
che Teile des Netzwerkes zum Extrahieren von robusten Deskriptoren einerseits und
zur Vorhersage von Transformationsparametern für die Bildangleichung andererseits
zuständig sind.
Angesichts ihrer unbestrittenen Erfolge in vielen Bereichen des maschinellen Sehens,

erreichen Faltungsnetze aber zum Beispiel im Kontext der medizinischen Bildregistrie-
rung zur Zeit noch nicht das Genauigkeitsniveau jahrelang erforschter und optimierter,
klassischer Verfahren auf diesem Gebiet. Ob die medizinische Bildregistrierung daher
im Allgemeinen weiter von Deep Learning-Methoden profitieren kann und ob im Spe-
ziellen die vollständig integrierten Architekturen unumgänglich sind, ist momentan
offen.
Die vorliegende Arbeit untersucht daher Methoden des (namensgebenden)Deskrip-

torlernens in Medizinischen Volumenbilddaten, die eine klare Abtrennung zwi-
schen dem datengetriebenen Repräsentationslernen und der anschließenden Verwen-
dung in Kombination mit effizienten, hochgenauen, klassischen Methoden vornehmen.

1.2 Aufbau & Beiträge der Arbeit

Abb. 1.2 veranschaulicht die Einordnung der kapitelweise vorgestellten, neu entwi-
ckelten Methoden anhand des Grades an Überwachung, der für das jeweilige Deskrip-
torlernverfahren eingesetzt werden muss und der als roter Faden für den inhaltlichen
Aufbau der Arbeit dient. Dieser reicht von starker Überwachung in Form explizit ma-
nuell durch Experten bestimmter Landmarken in Kapitel 3, zu schwacher, indirekter
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Kapitel 1 Einleitung

Indirekte Überwachung

Starke Überwachung                                                                                       Vollständig Unüberwacht

Kapitel 3 Kapitel 4 Kapitel 5 Kapitel 6

Vor-/Nachteile Ende-zu-Ende-trainierbarer Lernverfahren Große Deformationen

Multimodale Registrierungsprobleme Problemspezifische Gradientenrückführung

Abb. 1.2: Einordnung des Aufbaus der methodischen Kapitel der Arbeit.

Überwachung durch Segmentierungen in den Kapiteln 4 & 5 und mündet schließlich in
komplett un- bzw. selbst-überwacht gelernte Deskriptoren in Kapitel 6.

Zunächst werden in Kapitel 2 für die Arbeit grundlegende Verfahren und Begriffe
eingeführt. Für jedes anschließende, methodische Kapitel ergibt sich als Zielfragestel-
lung, ob und inwiefern sich die jeweils vorgeschlagene Methode für das datengetriebene
Deskriptorlernen in medizinischen Bildvolumina eignet. Dabei wird jedes neu entwi-
ckelte Verfahren kapitelweise 1) in den Kontext aktueller Vergleichsarbeiten aus der
Literatur gestellt, 2) detailliert methodisch dargelegt, 3) im Experiment mit medizini-
schen Bilddaten evaluiert und 4) abschließend diskutiert.
Kapitel 3 & 4 untersuchen zwei neuartige, hybride Methoden zur Bildregistrierung

unter Verwendung sowohl diskret als auch kontinuierlich optimierter, klassischer Ver-
fahren. Kapitel 3 betrachtet dabei zunächst einen durch gepaarte Lungenlandmarken
auf CT-Bilddaten stark überwacht trainierten Ansatz, der mittels geeigneter Problem-
formulierung effiziente Binärdeskriptoren lernt. Aufgrund des hohen Aufwandes zur
Erstelung manueller Annotationen stellt Kapitel 4 dagegen eine auf Organsegmentie-
rungen basierende und daher auf eine abgeschwächte Form der Überwachung zurück-
greifende Methode zur Registrierung multimodaler Herzaufnahmen vor.
Untersuchen die vorherigen Kapitel von der eigentlichen Anschlussaufgabe losge-

löste, eigenständige Lernstrategien, so verfolgt Kapitel 5 einen sogenannten Ende-zu-
Ende-trainierbaren Ansatz. Dazu werden die zur eigentlichen Registrierung notwendi-
gen Berechnungsschritte so formuliert, dass sich Informationen über die Qualität der
bisher erlernten Deskriptoren in Bezug auf die Genauigkeit an die Faltungsnetzpara-
meter zurückreichen lassen. Dabei werden verschiedene Modellierungsansätze für die
Bestimmung der schrittweisen Bildangleichung und Regularsierer betrachtet und je-
weils wiederum unter schwacher Überwachung multimodale Bilddaten - in diesem Fall
des Thorakoabdominalbereiches - für die Experimente herangezogen.
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1.2 Aufbau & Beiträge der Arbeit

Das den Methodenteil abschließende Kapitel 6 stellt ein neu entwickeltes Verfahren
zum unüberwachten Lernen von Deskriptoren in medizinischen Volumenbilddaten vor.
Die Formulierung einer geeigneten, intrinsischen Lernaufgabe versetzt das Faltungs-
netz in die Lage, in den Bilddaten inhärent vorliegende anatomische Zusammenhänge
selbst zu erkennen. Dadurch lässt sich die Trainingsdatenmenge potentiell um belie-
big viele Bilddaten erweitern, da keinerlei Annotationen notwendig sind. Das Poten-
tial dieses Ansatzes wird im experimentellen Vergleich zu anderen Deskriptoren für
die Übertragung thorakaler CT-Atlassegmentierungen auf ungesehene Patientendaten
verdeutlicht.
Schließlich fasst Kapitel 7 die im Rahmen der Arbeit gewonnenen Erkenntnisse zu-

sammen und gibt einen Ausblick auf sich ergebende, weiter zu untersuchende Frage-
stellungen.

Über die Einordnung auf Grundlage des Grades an Überwachung hinaus, lassen sich
die wissenschaftlichen Beiträge der Arbeit - wie in Abb. 1.2 dargestellt - folgen-
dermaßen gruppieren:

• Auf Grund des zuvor besprochenen, indirekten Zusammenhangs zwischen seman-
tisch informativen Bildmerkmalen und guter Registrierungsqualität ist ein Ende-
zu-Ende-Training von Deskriptoren nicht immer zielführend. Daher beleuchten
Kapitel 3 & 4 alternative Zweischritt-Hybridmethoden; Kapitel 5 untersucht ein ex-
plizit integriertes, Ende-zu-Ende-umgesetztes Verfahren. Die klare Abgrenzung der
modularen Aufgabenstellungen zum Deskriptorlernen und Generieren der Anpas-
sungsparameter während des Bildverarbeitungsprozesses steht dabei im Mittelpunkt.
Darüberhinaus werden die in Kapitel 3, 4 & 5 vorgestellten Deskriptoren alle auf
Bildpaaren evaluiert, bei denen große Deformationen auszugleichen sind.

• Kapitel 3 & 6 entwickeln Methoden der indirekten Überwachung zum Lernen
von Deskriptoren, indem einerseits eine Korrespondenzfindungsaufgabe bei Lungen-
landmarken in Form starker Überwachung genutzt wird und dann jedoch relative
Verschiebungsfelder gesucht werden. Andererseits werden durch geeignetes Formu-
lieren einer Lernaufgabe komplett unüberwacht aussagekräftige Repräsentationen
generiert.

• Lösungen für multimodale Registrierungsprobleme werden in Kapitel 4 & 5
vorgestellt. Diese Verfahren dienen der Fusion komplementärer Bildinformationen.
Multimodale Daten bilden die Grundlage klinisch hochrelevanter Anwendungen un-
ter anderem bei Bestrahlungstherapien oder bildgestützten Eingriffen.

• Über die eigentlichen Architekturentscheidungen der eingesetzten Faltungsnetze hin-
aus befassen sich Kapitel 3 & 5 im Rahmen ihrer jeweiligen Anwendungen mit pro-
blemspezifisch angepasster Gradientenrückführung, also mit Erweiterungen
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Kapitel 1 Einleitung

der grundlegenden Umsetzung von tiefen maschinellen Lernverfahren im Allgemei-
nen.

Alle vorgestellten Neuentwicklungen haben aufwendige Peer-Review-Verfahren durch-
laufen, sind im Rahmen internationaler Fachkonferenzen oder als Beiträge renommier-
ter Journals publiziert und in Anhang A zusammengefasst.
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Kapitel 2

Grundlagen

Diese Arbeit baut einerseits auf einer Vielzahl verschiedener modell-basierte Metho-
den auf, die im Bereich der medizinischen Bildverarbeitung schon lange essentieller
Bestandteil aktiver Forschung waren und auch zukünftig bleiben werden und anderer-
seits auf lernbasierte Verfahren, die durch Entwicklungen, die die Verfügbarkeit von
Daten betreffen, relativ neu ins Zentrum des wissenschaftlichen Interesses gerückt sind.
Im Rahmen der in dieser Arbeit entwickelten Verfahren zum Lernen von Deskrip-

toren stehen dabei als Anwendung die optimierungsbasierte Bildregistrierung als eine
Kernaufgabe der medizinischen Bildverarbeitung und als methodische Grundlage Fal-
tungsnetzwerke, deren Verwendung in den letzten Jahren nahezu alle Bereiche der
computergestützen Bildverarbeitung durchdrungen hat, im Vordergrund.
Dieses Grundlagenkapitel erläutert zunächst in Abschnitt 2.1 die Notwendigkeit so-

genannter Deskriptoren zur Beurteilung von Bildähnlichkeit vor dem Hintergrund me-
dizinischer Daten. Anschließend widmet es sich der Einführung in Bildregistrierung am
Beispiel zweier sog. klassischer Verfahren in Abschnitt 2.2. Darauf folgt in Abschnitt
2.3 die Vorstellung der allen neuen, in dieser Arbeit vorgestellten Ansätze zugrunde-
liegenden Faltungsnetzwerke. Auch hier werden die zum Verständnis notwendigen Be-
grifflichkeiten anhand zweier konkreter Architekturen erläutert. Zum Abschluss wird in
Abschnitt 2.4 die Zusammenführung beider Bereiche zur Faltungsnetzwerk-basierten
Registrierung wiederum durch aktuelle Verfahren demonstriert, so dass eine Einord-
nung der einzelnen Verfahren aus den nachfolgenden Kapitel der vorliegenden Arbeit
ermöglicht wird.

2.1 Deskriptoren & Ähnlichkeitsmaße

In der medizinischen Bildverarbeitung und im Speziellen bei der im nächsten Ab-
schnitt 2.2 detailliert vorgestellten Bildregistrierung stellt sich häufig das Problem,
dass in zwei oder mehreren Bildern korrespondierende, markante Strukturen als ein-
ander zugehörig erkannt und räumlich angeglichen werden sollen. Dies wirft zum einen
die Frage auf, wie sich die - für den menschlichen Betrachter oftmals intuitiv lösbare
- Aufgabe der Identifikation von sich räumlich-strukturell hervorhebenden Positionen
(auch Landmarken genannt) mittels automatisierter Verfahren umsetzen lässt. Zum
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Anderen schließt sich die Frage an, wie die Ähnlichkeit eines Bildpaares vor und nach
einem solchen Angleichungsprozess objektiv quantifiziert werden kann. Die nachfol-
genden Abschnitte beinhalten jeweils beispielshafte Ansätze zur Beantwortung dieser
Fragestellungen.

2.1.1 Deskriptoren

Die Identifikation von Landmarken in Bilddaten stellt häufig den ersten Schritt einer
ganzen Verarbeitungskette dar. Eine beispielhafte, klassische Anwendungen wäre die
effiziente Suche ähnlicher Bilder in Datenbanken anhand eines Abgleiches der darin
jeweils vorliegenden Landmarken. Im medizinischen Kontext sollten korrespondieren-
de, anatomische Strukturen jeweils entsprechend durch Landmarken gekennzeichnet
werden. Damit diese Landmarken sich aber zur Beschreibung (lat.: descriptor - der
Beschreiber) und damit auch zur Korrespondenzfindung aufgrund des lokalen Bildin-
haltes eignen, müssen sie diese Information aussagekräftig kodieren.
Idealerweise wären die gefundenen Repräsentationen dabei invariant gegenüber ver-

schiedenen Einflussfaktoren. Dazu zählen Veränderungen, die die Größe des beschriebe-
nen Bereiches betreffen. Aber auch Rotationen oder Kontrastschwankungen sollten le-
diglich geringe Auswirkungen auf den resultierenden Deskriptor haben. Neben anderen
Arbeiten mit dieser Zielsetzung haben im Bereich der Computer Vision die skaleninva-
riante Merkmalstransformation (engl.: scale invariant feature transform, kurz: SIFT)
aus Lowe, 2004, deren Weiterentwicklung in Form beschleunigter, robuster Merkmale
(engl.: speeded up robust features, kurz: SURF) aus Bay u. a., 2006 und auch das Hi-
stogram orientierter Gradienten-Verfahren (engl.: Histogram of Gradients, kurz: HoG)
aus Dalal u. a., 2005 große Bekanntheit erlangt. Diesen Verfahren ist gemeinsam, dass
sie Strukturinformationen auf verschiedenen Auflösungsstufen beispielsweise in Form
der Orientierung von Kanten erfassen. Dazu werden die erdachten Ablaufprotokolle
zur Erhebung dieser Repräsentation strikt eingehalten - im Gegensatz zum Paradig-
ma des datengetriebenen Erlernens von Deskriptoren, das in Abschnitt 2.3 zu den
Faltungsnetzen beleuchtet wird.
An dieser Stelle soll das Deskriptorkonzept anhand zweier weiterer, manuell defi-

nierter Vertreter im Kontext medizinischer Daten illustriert werden. Im Rahmen die-
ser Arbeit werden sowohl die BRIEF-Deskriptoren (engl.: binary robust independent
elementary features) aus Calonder u. a., 2010 als auch das MIND-Verfahren (engl.:
modality independent neighbourhood descriptor) aus Heinrich u. a., 2012 zum Vergleich
mit methodischen Neuentwicklungen in späteren Kapiteln herangezogen und daher
schematisch eingeführt.
BRIEF-Deskriptoren: Die grundlegende Idee dieses Verfahrens ist bestechend

einfach, aber effektiv: zu Beginn wird anhand einer Gaußverteilung eine festgelegte
Anzahl von n Zufallspaaren räumlicher Koordinaten entsprechend der Dimensionalität
der betrachteten Bilder gezogen. Abb. 2.1 enthält links beispielhaft ein zweidimensio-
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2.1 Deskriptoren & Ähnlichkeitsmaße

Abb. 2.1: Schematische Illustration der BRIEF-Deskriptoren. Links: Beispielhaftes Muster
von Vergleichspaaren zentriert um eine rot markierte Position innerhalb der rechten
Niere eines Patienten. Rechts: Für einen weiteren Patienten ist eine Wahrscheinlich-
keitskarte dargestellt, die basierend auf Ähnlichkeitsberechnungen mit dem gleichen
Muster die am ehesten korrespondierende Position innerhalb dessen Leber anzeigt.

nales Muster an Vergleichspaaren, das um eine Position innerhalb der rechten Niere
eines Beispielpatienten angeordnet ist. Dieses Muster dient dazu Helligkeitsverglei-
che zwischen den einzelnen Partnerpositionen anzustellen. Mittels eines resultierenden
Vektors der Länge n wird pro Vergleich binär mit Nullen und Einsen kodiert, ob die
Intensität der ersten Position größer ist als die der zweiten Position. Durch die bitwei-
se Kodierung lassen sich auch hochdimensionale Deskriptoren effizient anhand ihrer
Hamming-Distanzen einem Ähnlichkeitsvergleich unterziehen, also durch die Summe
der sich unterscheidenden Bits. Zur Illustration der Aussagekraft der BRIEF-Methodik
ist rechts in Abb. 2.1 eine Wahrscheinlichkeitskarte dem Schichtbild eines zweiten Pa-
tienten überlagert. Basierend auf den erhobenen Deskriptoren zeigt sie die am ehesten
korrespondierende Position zu der durch das rote Kreuz markierten Stelle im linken
Bild an.
MIND-Deskriptoren: Im Rahmen der Arbeit liegen oftmals multimodale Bild-

daten vor, d.h. Aufnahmen verschiedener Bildgebungsverfahren. In der Regel bestehen
zwischen korrespondierenden Gewebetypen dabei nicht durch Funktionen trivial ab-
bildbare Intensitätszusammenhänge. Dies kann anschließende Verarbeitungsschritte -
beispielsweise zur paarweisen Bildregistrierung - vor große Herausforderungen stellen.
Eine Möglichkeit diesem Problem zu begegnen wird in Heinrich u. a., 2012 durch die
modalitätsunabhängigen Nachbarschaftsdeskriptoren eingeführt. Ziel dieses Verfahrens
ist es, unter Anwendung des Konzepts der Selbstähnlichkeit, das in Shechtman u. a.,
2007 erfolgreich eingesetzt wird, lokale Strukturinformation anstelle der Intensitäten

9



Kapitel 2 Grundlagen

Abb. 2.2: Schematischer Ablauf zur Erhebung von MIND-Repräsetationen. Die erste Spalte
enthält korrespondierende MRT-Gehirnschichten eines Patienten unter verschiede-
nen Aufnahmeprotokollen. Die rot markierten Bereiche sind in der mittleren Spalte
vergrößert und mit einem 5 × 5-Gitter überlagert dargestellt. Dieser Anordnung
entsprechend werden in der letzten Spalte die resultierenden, 25-dimensionalen
Feature-Vektoren des zentral gelegenen Pixel gezeigt. Sie ergeben sich aus dem
Vergleich des jeweils blau markierten Bildausschnittes mit den weiteren Gitterele-
menten und liefern trotz nicht-linearer Intensitätsbeziehungen der Eingabebilder
aufgrund der strukturellen Übereinstimmungen ähnliche Deskriptoren.

als Grundlage einer Ähnlichkeitsbetrachtung zwischen Bildern verschiedener Modalitä-
ten zur Verfügung zu stellen. Dadurch wird die Anwendung einfacher, monomodaler
Ähnlichkeitsmaße ermöglicht, von denen eines im nächsten Abschnitt 2.1.2 vorgestellt
wird.
Die Formel zur Berechnung der MIND-Repräsentation ist durch

MIND(I,x, r) = 1
n
exp(−Dp(I,x,x + r)

V (I,x) ), r ∈ R (2.1)

gegeben. Dabei dient n der Normalisierung und die Elemente r ∈ R legen die Ver-
gleichspositionen zur Bestimmung der Selbstähnlichkeit mit dem um x zentrierten
Bildausschnitt fest. Daraus ergibt sich unter Beachtung eines Ausgleichsterms V (I,x)
für die Intensitätsvarianzen mit Hilfe eines Ähnlichkeitsmaßes Dp zwischen dem zen-
tralen Ausschnitt und dem zu vergleichenden Nachbar ein R-dimensionaler Vektor.
Weitere Details können Heinrich u. a., 2012 entnommen werden und bezüglich des ge-
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wählten Maß Dp sei unter einem Vorgriff auf die Summe der quadratischen Differenzen
des nächsten Abschnittes verwiesen.
Abb. 2.2 veranschaulicht das Vorgehen anhand eines Beispiels für multimoda-

le MRT-Gehirnscans, resultierend aus verschiedenen Aufnahmeprotokollen. Zunächst
sind die Ausgangsschichtbilder in der ersten Spalte dargestellt. Für die zentral inner-
halb der rot markierten Boxen gelegenen Bildausschnitte wird mittels eines 5 × 5-
Gitters (mittlere Spalte) und Formel 2.1 die jeweilige MIND-Repräsentation erhoben.
Dies bedeutet, dass für den zentral im blauen quadrat gelegenen Pixel sein zugehöriger
Bildausschnitt paarweise mit den übrigen Ausschnitten des Gitters verglichen wird. In
der letzten Spalte wird der resultierende 25-dimensionale Vektor räumlich dem Git-
ter folgend angeordnet, so dass die strukturelle Übereinstimmung trotz nicht-linearer
Intensitätszusammenhänge der zugrundeliegenden Gewebedarstellungen sichtbar wird.

Da Deskriptoren für sich genommenm noch keine Beurteilung von Ähnlichkeiten
zwischen zwei oder mehreren Bildern erlauben, führt der nächste Abschnitt beispielhaft
zwei in der medizinischen Bildverarbeitung gebräuchliche Ähnlichkeitsmaße ein.

2.1.2 Ähnlichkeitsmaße

Zur Beurteilung der Ähnlichkeit zweier Bilder oder auch verschiedener Bildausschnitte
bedarf es objektiver Maßzahlen. Beispielsweise sollte die Ähnlichkeit bei Eingabe des
gleichen Bildes maximal bzw. die Distanz minimal sein. Ein erfolgreicher Bildanglei-
chungsprozess zeichnet sich daher im Vergleich zum Ursprungszustand nach erfolgter
Transformation durch eine geringere Distanz aus.
Im Falle monomodaler Daten, also Bildern des gleichen Aufnahmegeräts, ist vor

der Anwendung komplexerer Distanzmaße häufig die Summe der quadratischen
Differenzen (engl.: sum of squared differences, kurz: SSD) die erste Wahl. Dabei
werden über den gesamten Bildbereich Ω pro Bildposition x die Intensitätsdifferenzen
zwischen zwei Bildern A und B aufsummiert

SSD(A,B) =
∑
x∈Ω

(A(x)−B(x))2 (2.2)

Im Fall mehrkanaliger Bilder, wie sie sich beispielsweise durch entsprechende Deskrip-
torrepräsentationen ergeben, wird dieser Vorgang entlang der zusätzlichen Dimension
wiederholt und ebenfalls aufsummiert. Auf diese Weise lässt sich unter Anwendung des
im vorigen Abschnitt beschriebenen MIND-Verfahrens die Ähnlichkeit zwischen mul-
timodalen Bildpaaren auf die Anwendung eines simplen Distanzmaßes zurückführen.
Über die SSD hinaus gibt es weitere Distanzmaße, wie z.B. normalisierte Kreuzkorre-
lation oder die Summe der absoluten Differenzen.

Im Gegensatz zu den bereits genannten Ansätzen gibt es allerdings auch Verfahren,
die ohne vorherige Transformation der Bilddaten in einen gemeinsamen Raum arbeiten.
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MI = 0.4386 MI = 0.9622

Abb. 2.3: Illustration der mutual information als Ähnlichkeitsmaß. Das erste Bild zeigt die
aus Abb. 2.2 bekannten, korrespondierenden MRT-Gehirnschichten in Form einer
Schachbrettdarstellung, allerdings nicht perfekt zueinander ausgerichtet. Dement-
sprechend weist das Histogramm der gemeinsamen Grauwertverteilung weniger kla-
re Anhäufungen örtlich gemeinsam auftretender Grauwerte auf. Im Gegensatz dazu
steigt der Ähnlichkeitswert von 0.4396 auf 0.9622 bei korrekter Ausrichtung zuein-
ander und das gemeinsame Histogramm weist eine stärkere Ballung zusammen
auftretender Grauwerte auf.

Im Hinblick auf die Angleichung multimodaler Bildpaare ist dabei prominent die
mutual information aus Maes u. a., 1997 als Ähnlichkeitsmaß zu nennen. Diese
informationstheoretisch begründete Metrik misst den Grad der Abhängigkeit zweier
als Zufallsvariablen A und B aufgefasster Bilder bzw. zwischen deren gemeinsamer
Grauwertverteilung pA,B und den zugehörigen, einzelnen Randverteilungen pA und pB
durch

MI(A,B) =
∑
a,b

pAB(a, b) · log
(

pAB(a, b)
pA(a) · pB(b)

)
, (2.3)

wobei a und b die einzelnen Grauwerte bezeichnen.
Abb. 2.3 verdeutlicht exemplarisch ebenfalls wieder anhand zweier MRT-Gehirnscans

verschiedener Aufnahmeprotokolle den gesteigerten MI-Wert und das klarer stuktu-
riertere Histogramm bei perfekter Angleichung (rechts) im Gegensatz zur räumlich
verschobenen Anordnung (links).

2.2 Bildregistrierung

Der als Bildregistrierung bezeichnete Prozess definiert die räumliche Transformation
eines Bildes, so dass es einem Referenzbild im Sinne eines definierten Maßes zunehmend
ähnlich wird und stellt ein fundamentales Werkzeug im Hinblick auf die medizinische
Bildverarbeitung dar.
Überblicksarbeiten zu der Thematik finden sich beispielsweise in Maintz u. a., 1998,

Rueckert u. a., 2019 oder Sotiras u. a., 2013. Die medizinische Bildregistrierung bil-
det unter Anderem die Grundlage für die Fusion komplementärer Informationen aus
verschiedenen Aufnahmemodalitäten bei Interventionen, wie in Heinrich u. a., 2013b
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Abb. 2.4: Beispielhafte Bildtransformationen: Die ursprüngliche Erscheinungsform des fixed
Bildes (links) lässt sich unter Anwendung einer global auf den gesamten Bildbereich
wirkenden affinen Transformation (Rotation & Translation) aus dem mittleren mo-
ving Bild rekonstruieren. Die zusätzlichen lokalen Deformationen der nicht-rigiden
Transformation des weiteren moving Beispiels (rechts) bedürfen dagegen etwa ei-
nes B-Spline-Transformationsmodells, um mittels einer Registrierung kompensiert
zu werden.

demonstriert, und ermöglicht ebenso die Tumorverlaufskontrolle durch zeitlich aufein-
ander folgende Patientenscans in Brock u. a., 2006.

Grundlegend lassen sich anhand des Transformationsmodells verschiedene Arten der
Registrierung unterscheiden, z.B. sich global auf das ganze Bild gleich auswirkende af-
fine Transformationen oder in ihren Auswirkungen lokal begrenzte, deformierbare Re-
gistrierungen. Abb. 2.4 enthält in der Mitte die Darstellung eines Bildes, das sich mit-
hilfe eines affinen Modells in seine Ausgangsform überführen lässt und ebenfalls rechts
ein Beispiel, das etwa eines B-Spline-Modells zur Angleichung bedarf. Speziell im Fall
der vorliegenden Arbeit stehen Methoden im Vordergrund, die sich zur Bestimmung
lokaler Deformationen eines Bildes zur Angleichung an ein anderes eignen - sogenann-
te paarweise deformierbare Registrierungsverfahren. Die besondere Herausforderung
dabei ergibt sich aus der Notwendigkeit, räumlich teilweise stark variierende, dichte,
nicht-lineare Transformationsfelder zu bestimmen, mit deren Hilfe das Ausgangsbild
verformt wird, um dem Referenzbild ähnlich zu werden.

Um eine gemeinsame formale Grundlage für alle nachfolgenden Registrierungsverfah-
ren zu schaffen, werden an dieser Stelle einige Begriffe definiert, die von den konkreten
Ausprägungen der anschließenden Beispielverfahren aufgegriffen werden. Das zu regis-
trierende Bildpaar (F ,M) besteht aus einem Referenzbild F , das im Folgenden auch
als fixed Bild (engl.: fest) bezeichnet wird, und aus einem zu verformenden Bild M,
auch moving Bild genannt. Mit Hilfe einer Transformation ϕ, die als Vektorfeld an
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jeder Bildposition festlegt, lässt sich folgendes Optimierungsproblem über eine Ener-
giefunktion formulieren

arg min
ϕ

E(ϕ) = D(SF , ϕ ◦ SM) + αR(ϕ), (2.4)

welches beschreibt, wie das moving Bild M zu verformen ist. Die Minimierung die-
ses Ausdruckes über eine geeignete Wahl von ϕ führt dazu, dass die Anwendung der
Transformation ϕ auf eine Repräsentation des moving Bildes, das z.B. in Form einer
Deskriptordarstellung SM vorliegen kann, dieses der Repräsentation der Referenz SF
möglichst angleicht. Die Ähnlichkeit wird dabei mithilfe eines Distanzmaßes D, das
problemspezifisch definiert wird, berechnet. Zusätzlich sorgt ein sogenannter Regula-
risierer R dafür, dass das Verschiebungsfeld gewünschte Eigenschaften aufweist. Im
Kontext der medizinischen Bildverarbeitung sind insbesondere Effekte unerwünscht,
die z.B. unplausible Faltungen von Organen bedingen würden und werden daher unter
anderem mittels geeigneter Glattheitsanforderungen durch den Regularisierer bestraft.
Faltungen treten auf, wenn eine nicht-invertierbare Transformation vorliegt und daher
negative Jakobi-Determinanten an den entsprechenden Positionen des dazugehörigen
Vektorfeldes auftreten.
Um die bisher bewusst abstrakt, aber dafür allgemein gültig gehaltenen Begriffe zu

konkretisieren, werden im Anschluss zwei Verfahren besprochen, die im Rahmen dieser
Arbeit genutzt werden. Zunächst erläutert Abschnitt 2.2.1 das diskret optimierte deeds-
Registrierungsframework, welches als Grundlage der monomodalen Registrierungs-
experimente für die gelernten Lungen-CT-Deskriptoren in Kapitel 3 herangezogen wird
und außerdem als Vergleichsmethode in Kapitel 4 dient. Daran anschließend wird mit
SimpleElastix ein Vertreter für kontinuierlich optimierte Verfahren vorgestellt, der in
Kapitel 5 neben anderen als Vergleichsverfahren genutzt wird. Im Gegensatz zu den im
Anschluss ebenfalls behandelten Faltungsnetzwerk-basierten Verfahren aus Abschnitt
2.4, werden beide Methoden den klassischen Registrierungsalgorithmen zugeordnet,
die ohne Elemente des maschinellen Lernens arbeiten.

2.2.1 Diskret optimierte Registrierung mittels deeds

Als erstes Beispiel sogenannter klassischer Registrierungsalgorithmen wird im Folgen-
den das deeds-Verfahren in seiner corrField-Variante aus Heinrich u. a., 2015a unter
Einbezug von Korrespondenzfeldern (engl.: correspondence fields, kurz: corrField) in
seinen grundlegenden Bestandteilen vorgestellt. Im Folgenden wird deeds synonym für
diese Variante verwendet. In Kombination mit den SSC-Deskriptoren aus Heinrich
u. a., 2013b stellt das Verfahren um eine kontinuierliche Optimierung in Rühaak u. a.,
2017b erweitert den Stand der Technik auf dem in Castillo u. a., 2009 beschriebenen
DIR-lab COPD Datensatz dar. Darüberhinaus wird speziell dieses Verfahren auch be-
reits im Hinblick auf die in Kapitel 3 entwickelte hybride Registrierungsmethodik etwas
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ausführlicher erläutert, da es das algorithmische Rückgrat zur klassischen Bestimmung
der Verschiebungsfelder unter Eingabe von mittels Faltungsnetzwerken generierter De-
skriptoren bildet.
Grundsätzlich liefert die Methode ein Vektorfeld als Ausgabe, welches korrespondie-

rende Strukturen zwischen dem fixed Bildvolumen F und dem moving Volumen M
durch die positionsweise enthaltenen Verschiebungsvektoren beschreibt. Damit diese
Verschiebungsfelder effizient bestimmt werden, braucht es die Abfolge dreier Schritte:
1) müssen Landmarken - häufig auch als Keypunkte bezeichnet - extrahiert werden,
2) müssen Ähnlichkeitsberechnungen korrespondierender Positionen unter einer de-
finierten Menge von Verschiebungen berechnet werden und 3) wird schließlich noch
eine MRF-basierte räumliche Regularisierung des Feldes durchgeführt (engl.: markov
random fields, kurz: MRF).

Im Vergleich zu anderen Methoden, die aussschließlich auf regulären (Kontrollpunkt-
)Gittern arbeiten, ist deeds darüberhinaus auch in der Lage auf einer geringeren Anzahl
spärlich verteilter Keypunkte K zu arbeiten. In Rühaak u. a., 2017b - einer Arbeit die
ebenfalls die deeds-Methodik verwendet - wird beispielsweise der Förstner-Operator
zur Detektion potentieller Keypunkte im fixed Bild eingesetzt. Die Anwendung auf
einem regulären Gitter lässt sich demgegenüber als Spezialfall auffassen.
Ziel des eigentlichen Registrierungsvorganges ist es nun jedem Keypunkt an Position

x im fixed Bild einen Verschiebungsvektor d dermaßen zuzuweisen, dass die resultie-
rende Position ` = x + d im moving Bild eine möglichst ähnliche Struktur enthält.
Dafür schreitet der deeds-Ansatz den gesamten, diskretisierten Suchraum ab. Dieser
vergleicht mit seinen dichten Verschiebungsvektoren um die entsprechende Position x
inM herum, welcher Bildinhalt auf die zu registrierende Bildposition passt. Der Such-
raum wird dabei anhand von Verschiebungen aus d ∈ Q = {0,±q,±2q, ...,±lmax · q}3
quantisiert. q gibt die Schrittweite an und lmax · q die größtmögliche Bewegung.
Je nach Problemstellung muss zur Beurteilung der Ähnlichkeit und zum Auffinden

korrespondierender Positionen zwischen dem zu registrierenden Bildpaar ein geeignetes
Distanzmaß D gewählt werden - wie in Abschnitt 2.1 beschrieben. Bei monomoda-
len Problemen kann eine einfache Berechnung der quadratischen Differenzen bereits
ausreichend sein, wohingegen ohne geeignete Transformation der Eingaben im Falle
multimodaler Daten beispielsweise die mutual information eine passende Wahl dar-
stellen kann.
Im Hinblick auf die Plausibilität der Verschiebungsfelder sollte ein Regularisierungs-

term R wie in Gleichung 2.4 erwähnt eingesetzt werden. Das deeds-Verfahren setzt den
nachfolgend beschriebenen Ansatz ein, um zu starken Gradienten der Deformationen
vorzubeugen. Pro Bildposition sind die Verschiebungsvektoren bisher isoliert berechnet
worden und lassen die Bewegungen innerhalb ihrer jeweiligen direkten Nachbarschaften
außer Acht. Aus diesem Grund nutzt das deeds-Verfahren eine MRF-basierte Regulari-
sierung. Zunächst wird dabei ein minimaler Spannbaum auf den als Knoten aufgefass-
ten Keypunkten innerhalb der Lungenbilddaten aufgebaut und definiert dadurch die
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Menge der Kanten (engl.: edges) E des MRF-Modells. Sollten sich zwei im Baum di-
rekt verbundene Landmarken i, j in ihren Verschiebungsvektoren di,dj unterscheiden,
bestraft dies der Regularisierungskostenterm

R(di,dj) = ‖di − dj‖2√
‖xi − xj‖2 + |I(xi)− I(xj)|/σI

. (2.5)

Durch Betrachten des euklidischen Abstandes der Landmarkenpositionen zueinander
sowie deren absoluter Intensitätsdifferenzen im Nenner des Ausdrucks wird ihre räum-
liche Beziehung berücksichtigt. Je näher und ähnlicher sich beide sind, desto höher
fallen die zusätzlichen Kosten bei unterschiedlichen Verschiebungen aus. Die Gesam-
tenergie eines bestimmten Verschiebungsfeldes u setzt sich dann aus der gewichteten
Kombination der Deskriptor-basierten Unähnlichkeiten mit den Regularisierungskos-
ten zusammen:

E(u) = α
∑
k∈K
D(k, lk) +

∑
ei,j∈E

R(di,dj). (2.6)

Um diesen Energieterm zu minimieren und ein optimales Verschiebungsfeld zu erhal-
ten, wird die sog. belief propagation in zwei Richtungen (vorwärts, rückwarts) zum
Nachrichtenaustausch (engl.: message passing) genutzt. Ausgehend von den Blattkno-
ten werden beim Durchschreiten des Baumes - wie in Felzenszwalb u. a., 2005 beschrie-
ben - Nachrichten m (engl.: messages) von den Kindern c eines Knotens i entlang der
Kanten ei,j zu seinen Eltern j ausgetauscht und angepasst durch

mi(dj) = min
di

(
αD (di) +R(di,dj) +

∑
c

mc(di)
)

(2.7)

Obwohl im Sinne des Energieoptimierungsproblems das beste Verschiebungsfeld be-
rechnet wird, enthält dieses in der Praxis dennoch häufig noch Unplausibilitäten. Ein
Weg, deren Anzahl zu verringern, besteht im Erzwingen symmetrischer Randvertei-
lungen, da diese fehlerhafte Korrespondenzen reduzieren. Idealerweise sollte folgen-
des Zweischrittverfahren ein unverändertes Bild ausgeben: zunächst berechnet man
das Verschiebungsfeld in Richtung F → M basierend auf allen Landmarkenpositio-
nen k und erhält die verschobenen Samplingpositionen k∗F = kF + dkF

. Interpre-
tiert man diese nun als Landmarkenpositionen km und berechnet das Feld für die
umgekehrte Richtung M → F , so sollte das resultierende Bild zu F identisch sein.
Da die Randverteilungen Mf

kF
und M b

kM
in den seltensten Fällen symmetrisch sind,

definiert man die tatsächlich betrachtete, gemittelte Vorwärts-Energie als M s
k(i) =

1
2(Mf

kF
(i) +M b

kM
(|Q|− i)). i bezeichnet dabei einen ein dimensionalen Index über alle

Verschiebungen. Nach dem Optimierungsprozess werden mithilfe von Parabeln um die
Minima der Randverteilungen an jeder Landmarke noch Subvoxel-genaue Verfeinerun-
gen der diskreten Verschiebungsvektoren vorgenommen.
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Abb. 2.5: Nach Klein u. a., 2015: Schematische Darstellung der Registrierungskomponenten
des iterativen, kontinuierlich optimierten SimpleElastix-Frameworks.

Zum Abschluss kommen thin plate splines zur Generierung eines dichten Feldes über
die Keypunktpositionen hinaus zum Einsatz, das schließlich die Ausgabe des gesamten
Ablaufes darstellt. Die Anwendung dieses Verschiebungsfeldes auf das moving Bild
führt dann zu der gewünschten Angleichung an das Referenzbild.

2.2.2 Kontinuierlich optimierte Registrierung mittels SimpleElastix

Der vorangehende Abschnitt behandelt mit dem deeds-Verfahren aus Heinrich u. a.,
2015a eine Registrierungsmethode, die aufgrund der diskreten Optimierungsstrategie
durchweg ableitungsfrei arbeitet. Innerhalb der Gruppe klassischer Registrierungsal-
gorithmen gibt es aber auch eine Vielzahl von Ansätzen, die mit Hilfe von Gradienten-
abstiegsverfahren die Parameter vorher festgelegter Transformationsmodelle iterativ
anpassen, um Gleichung 2.4 zu minimieren und eine geeignete Wahl für die Parameter
des gewählten Transformationsmodells zu treffen.
Ein Beispiel bildet das in Marstal u. a., 2016 vorgestellte SimpleElastix-Framework,

welches das modulare Entwerfen geeigneter Registrierungspipelines ermöglicht. Durch
die vorgegebene Zielstellung die Elastix-Bibliothek für medizinische Bildregistrierung
aus Klein u. a., 2009 einem breiten Publikum, plattformübergreifend zur intuitiven
Prototypisierung verfügbar zu machen, bietet es sich zur Modellierung eines Vergleichs-
verfahrens bei den Experimenten der in Kapitel 5 entwickelten Methodik an.
Die Entwickler stellen vorgefertigte Protokolle mit robusten Standardeinstellungen

beispielsweise für die Registrierung von Gehirnscans bereit. Die klare Strukturierung
der einzelnen Komponenten erlaubt darüberhinaus sowohl das Austauschen einzelner
Module als auch eine freie, problemangepasste Definition der Parameter. Abbildung
2.5 gibt einen schematischen Überblick über die wichtigsten, zu definierenden Kompo-
nenten.
Die Eingabe besteht aus dem zu registrierenden (F ,M)-Bildpaar. Um das verfrühte

Verharren in lokalen Minima zu vermeiden, wird eine Multiskalen-Strategie während
der Optimierung verwendet. Hierzu werden üblicherweise nacheinander erst Versionen
des Bildpaares in niedriger Auflösung zueinander ausgerichtet und die so ermittelten
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Transformationsparameter dienen dann als Ausgangspunkt für die nächst-höhere Auf-
lösungsstufe. Die Anzahl der Auflösungsstufen sowie die Art des Herunterrechnens der
Eingabebilder sind dabei zu wählenden Parameter der Bildpyramiden.
Der sampler (deutsch, sinngemäß: Bildabtaster) legt die Positionen innerhalb des

Bildpaares fest, an denen unter Anwendung der aktuell ermittelten Transformations-
parameter mit Hilfe der gewählten Metrik die Ähnlichkeit beurteilt wird. Zur Aus-
wahl stehen beispielsweise das pro Durchlauf zufällige Generieren von Positionen, um
mit vermindertem Rechenaufwand möglichst zeitsparend die Parameterupdates zu be-
stimmen, aber auch das Abtasten mittels regulärer Gitter, die die volle Auflösung der
Bilddaten nutzen.
Die Wahl des Transformationsmodells erweist sich oftmals als entscheidend für die

Qualität der Registrierung. Im Fall einer Intra-Patienten-Registrierung von CT- und
MRT-Kopf-Aufnahmen bietet sich unter der plausiblen Annahme vernachlässigbarer
anatomischer Veränderungen - da beispielsweise die adulten Schädelknochen in der
Regel zwischen zwei Aufnahmen nicht deformiert werden - die Wahl eines rigiden, also
lediglich auf Rotationen und Verschiebungen beschränkten Modells an (siehe Abb. 2.4
mittig). Dieses zeichnet sich im dreidimensionalen Fall durch 6 Freiheitsgrade (entlang
der drei Bildachsen je ein Rotationswinkel und eine Verschiebung) aus, welche dann
die Menge der Transformationsparameter ϕ aus Gleichung 2.4 bilden. Im Falle von
Inter-Patienten-Registrierungen beispielsweise zur Übertragung eines Atlas von Orga-
nannotierungen eines Patienten auf einen bisher nicht annotierten, anderen Patienten
machen die große Variabilität der Organe im thorakoabdominal Bereich, aber auch
atmungsbedingte Verformungseffekte den Einsatz nicht-parametrischer Methoden wie
z.B. B-Spline-Transformationsfelder mit zum Teil Millionen von Freiheitsgraden not-
wendig (siehe Abb. 2.4 rechts), die ebenfalls Teil der SimpleElastix-Bibliothek sind.
Bevor die Ähnlichkeit an den mittels des sampler-Moduls spezifizierten Positionen

beurteilt werden kann, muss das moving Bild M basierend auf den Parametern ϕ

des gewählten Transformationsmodells angepasst werden. Da in der Regel die zu den
Positionen im fixed Bild F korrespondierenden Punkte unter Anwendung von ϕ nicht
mehr auf die ganzzahligen Indizes des Pixelgitter fallen, an denen die Bildinformation
in Form von Grauwerten vorliegt, muss durch Interpolationsmethoden Abhilfe geschaf-
fen werden. Zur Auswahl stehen dabei die Zuweisung des räumlich gesehen nächsten
Nachbarn auf dem Gitter als sog. Nearest Neighbour-Ansatz, aber auch eine lineare
Interpolation über die direkten Nachbarn oder eine B-Spline-Interpolation, welche je
nach Ordnung die Intensitätswerte einer erweiterten Nachbarschaft miteinbezieht.
Zur anschließenden Beurteilung der Bildähnlichkeit bedingt durch die momentan

zur Angleichung bestimmten Transformationsparameter ϕ stellt das SimpleElastix-
Framework ebenfalls verschiedene Metriken bereit. Dazu zählen die bereits aus Ab-
schnitt 2.1.2 bekannten SSD- und mutual information-Maße für monomodale re-
spektive multimodale Registrierungsprobleme. Darüberhinaus besteht aber auch die
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2.3 Faltungsnetzwerke

Möglichkeit z.B. die normalisierte Kreuzkorrelation, welche in der Lage ist robust lokale
Helligkeitsschwankungen auszugleichen, als Distanzmaß einzusetzen.
Als letzter Schritt zur vollständigen Definition eines iterativen, also schrittweisen

Verfahrens zur Optimierung der Transformationsparameter muss eine von vielen Stra-
tegien zur Parameteranpassung festgelegt werden. Wie bereits erwähnt, handelt es
sich im Gegensatz zur vorangehenden Methodik nicht um ein diskretes Registrierungs-
verfahren. Basierend auf der analytischen Strategie zur Minimierung mathematischer
Ausdrücke, wird zunächst die Energiegleichung 2.4 nach den Transformationsparame-
tern ϕ differenziert. Anschließend wird das resultierende Gleichungssystem Null gesetzt
und hinsichtlich der Parameter gelöst. Dies bedingt die Differenzierbarkeit aller bislang
beschriebenen Schritte, was für die Module des SimpleElastix-Frameworks der Fall ist.
Konkrete, effiziente Umsetzungen zur iterativen Bestimmung der Parameteranpassun-
gen ∆ϕ auf der Grundlage von

∂E(ϕ)
∂ϕ

= ∂D(SF , ϕ ◦ SM)
∂ϕ

+ α
∂R(ϕ)
∂ϕ

!= 0 (2.8)

für z.B. verschiedene Arten des Transformationsmodells oder des Regularisierungs-
terms sind Bestandteil aktiver Forschung und finden sich unter anderem ausführlich in
Rühaak u. a., 2017a, Modersitzki, 2004 oder Modersitzki, 2009. Zur schrittweisen Ak-
tualisierung der Parameter kann abschließend ebenfalls aus einer Vielzahl verschiede-
ner Verfahren wie stochastischem Gradientenabstieg oder der Quasi-Newton L-BFGS-
Methode - um nur zwei zu nennen - gewählt werden.
Aber nicht die Neuentwicklung einer Registierungsstrategie steht im Vordergrund

der vorliegenden Arbeit, sondern die Suche nach Möglichkeiten, wie Verfahren des
maschinellen Lernens und insbesondere solche unter Einsatz von Faltungsnetzen aus-
sagekräftige Deskriptoren lernen können, die dann beispielsweise it klassischen Re-
gistrierungsverfahren kombiniert werden können. Daher belässt es die Einführung zu
Registrierungsverfahren bei den beiden obigen, klassischen Strategien und wendet sich
nun den bei allen entwickelten Verfahren dieser Arbeit genutzten Faltungsnetzwerken
zu.

2.3 Faltungsnetzwerke

Neuronale Netze erleben seit einigen Jahren eine Renaissance und stellen für viele
Anwendungen auf dem Feld des maschinellen Lernens den momentanen Stand-der-
Technik dar. Im Bereich der Computer Vision verdanken sie ihren enormen Populari-
tätsschub der Arbeit Krizhevsky u. a., 2012. Darin beschreiben die Autoren den Einsatz
tiefer Faltungsnetzwerke (engl.: deep convolutional neural networks, kurz: DCNNs) auf
dem Datensatz der in Deng u. a., 2009 beschriebenen ImageNet-Challenge zur Klassifi-
kation von Bildern. Im Jahr 2012 gewinnen sie diesen Wettbewerb mit großem Abstand
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Kapitel 2 Grundlagen

zu den weiteren Teilnehmern und vermelden einen sprunghaften Genauigkeitszuwachs
verglichen mit den Vorjahresergebnissen.

Obwohl die grundlegenden Mechanismen der angewandten Methodik - beispiels-
weise der Fehlerrückführungsalgorithmus aus Hecht-Nielsen, 1992 zur Anpassung der
trainierbaren Netzwerkgewichte (engl.: backpropagation) - bereits seit geraumer Zeit
erforscht sind und beispielsweise prominent in LeCun u. a., 1998 auf dem MNIST-
Datensatz angewandt werden, haben größtenteils zwei Entwicklungen dem momenta-
nen Siegeszug der CNNs Vorschub geleistet. Einerseits trägt die breite Verfügbarkeit an
Trainingsdaten durch das Internet dazu bei, selbst Netzwerke mit mehreren Millionen
Parametern so zu trainieren, dass eine Überanpassung auf Trainingsbeispiele aufgrund
zu kleiner Datenmengen verhindert wird. Andererseits verkürzt die optimierte Auslage-
rung der rechenintensiven Datenverarbeitung von neuronalen Netze auf leistungsstarke
Grafikprozessoren (engl.: graphical processing unit, kurz: GPU) die Berechnungszeit
auf ein akzeptables Maß - von zum Teil immer noch mehreren Tagen - und ermöglicht
während der späteren Anwendung Zeitersparnisse um mehrere Größenordnungen im
Vergleich zu CPU-basierten Verfahren.

Eine umfassende Einführung in das Thema deep learning ermöglicht beispielsweise
das Werk Goodfellow u. a., 2016 und der Review-Beitrag LeCun u. a., 2015 der Autoren
LeCun, Bengio und Hinton, die für ihre Pionierarbeiten 2018 mit dem Turing-Award
geehrt wurden, liefert einen Überblick über grundlegende Entwicklungen auf dem Feld.
Abb. 2.6 stellt die Struktur eines neuronalen Netzes beispielhaft dar und umfasst da-
bei sowohl eine lineare - also durch eigenständige Gewichte zwischen Eingabe- und
erster versteckter Repräsentation vollverbundene - Schicht als auch eine für die Art
der Netze namensgebende Faltungsschicht. Letztere nutzt im Fall der zweiten Schicht
zur Rekombination der Datenpunkte beispielhaft immer wieder die gleichen drei, pro
Ausgabe farblich gruppierten Gewichte. Dies führt zu bedeutenden Parametereinspa-
rungen und setzt die Idee der gleitenden Anwendung eines Filters auf die Eingaben
um. Trainiert man das Netzwerk zum Beispiel zur Klassifikation der Eingabedaten, soll
das der entsprechenden Klasse zugeordnete Ausgabeneuron unter der Eingabe eines
zugehörigen Bildrepräsentanten die höchste Aktivierung aufweisen. Die Verwendung
spezieller Normalisierungsschichten stabilisiert die CNN-basierte Datenverarbeitung
und die Einführung von Nicht-Linearitäten erhöht darüberhinaus die Modellierungs-
kapazität des Verfahrens. Unter Anwendung eines geeigneten Strafterms lassen sich
mit Hilfe des backpropagation-Algorithmus alle trainierbaren Gewichte des Netzwerkes
rein datengetrieben anpassen. Diese Art des problemangepassten Filter-Lernens be-
gründet die Mächtigkeit der Methodik im Vergleich zu Verfahren, die zur Extraktion
aussagekräftiger Repräsentationen auf manuell definierte Filter angewiesen sind.

Eine äußerst erfolgreiche Faltungsnetzarchitektur wird im nachfolgenden Abschnitt
2.3.1 beispielhaft eingeführt. Zum einen bildet sie den Unterbau einiger Vergleichsme-
thoden bei Experimenten im Rahmen der vorliegenden Arbeit neu entwickelten Ver-
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AusgabeschichtEingabeschicht versteckte Schichten

Lineare Schicht Faltungsschicht

Abb. 2.6: Vereinfachte Darstellung eines Neuronales Netzes mit verschiedenen Schichttypen.
Dargestellt durch blaue Kanten verrechnen die vollverbundenen Netzwerkgewichte
der linearen Schicht die Eingaben (blaue Punkte) zur ersten, versteckten Repräsen-
tation. Angedeutet durch jeweils farbliche Gruppierung generieren im Sinne einer
Faltung danach immer wieder die gleichen drei Gewichte bei der Verarbeitung der
Vorgängerwerte die zweite Repräsentation. Diese gewichtete Rekombination wird
bis zur Ausgabeschicht in Verbindung mit weiteren Elementen zur Datennormali-
sierung oder Einführung von Nichtlinearitäten durch geeignete Aktivierungsfunk-
tionen weitervollzogen. Im Falle einer Klassifikationsaufgabe würden die Gewichte
dahingehend trainiert, dass das zur Eingabe passende, sog. Ausgabeneuron die zah-
lenmäßig größte Aktivierung erfährt und die Zuordnung zur entsprechenden Klasse
anzeigt.

fahren. Zum Anderen ist sie von den in Abschnitt 2.3.2 beschriebenen Auto-Enkodern
abzugrenzen, die die Grundlage der in Kapitel 4 erdachten Methodik bilden.

2.3.1 Das UNet

In Ronneberger u. a., 2015 stellen die Autoren ein Verfahren zur Bildsegmentierung -
also der pixelweisen Zuweisung zu Klassen wie z.B. Vorder- und Hintergrund - vor und
wenden es zur Zellsegmentierung an. Dabei erweitern sie das in Long u. a., 2015 be-
schriebene Vorgehen zur Definition sogenannter vollständig faltungsbasierter Netzwerke
(engl.: fully convolutional networks, kurz: FCNs), die erstmals durch geeigneten Ein-
satz von Randbehandlungen und der Formulierung vollverbundener Ausgabeschichten
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Abb. 2.7: UNet-Architektur: Die dargestellte Wahl der Featurekanäle entspricht der Metho-
de aus Ronneberger u. a., 2015. Entlang des kontrahierenden Pfades schließen an
die Faltungsschichten max pooling-Operationen zur Auflösungsveringerung an. Ent-
lang des expandierenden Abschnittes werden transponierte Faltungen zur Auflö-
sungserhöhung genutzt. Lokale Information wird mittels skip connections durch
Konkatenation aus dem kontrahierenden Pfad weitergegeben, um zusammen mit
Kontextinformation niedrigerer Auflösungen problemspezifisch aussagekräftige Re-
präsentationen zu generieren.

in Form von 1× 1-Faltungen eine pixelweise und nicht mehr nur globale Klassifikation
von Eingaben durch CNNs einführen.

Abb. 2.7 lässt auf den ersten Blick die namensgebende U-Struktur der UNet-Archi-
tektur erkennen. Diese besteht aus drei Teilen. Zunächst gibt es einen kontrahierenden
Pfad, der für das Erlernen aussagekräftiger Repräsentationen geeignet ist, welche durch
niedrigere Auflösung globalere Zusammenhänge besser erfassen. Anschließend bildet
die niedrigste Auflösungsstufe einen Flaschenhals, bei dem die ursprünglich räumliche
Information teilweise und ähnlich zu einem Auto-Enkoder auf gelernte, höherdimen-
sionale Kodierungen relevanter Bestandteile abgebildet wird. Hiervon ausgehend kann
schließlich die gewünschte Repräsentation auf der Ausgangsauflösung mit dem expan-
dierenden Pfad generiert werden.
Im Vergleich zur FCN-Struktur aus Long u. a., 2015 ergeben sich dabei zwei ent-

scheidende Unterschiede. Zunächst ist das UNet in seinem Aufbau symmetrisch. Die
dadurch bedingte, vergleichsweise große Anzahl lernbarer Filter auf dem expandieren-
den Pfad erlaubt den uneingeschränkten Transfer relevanter Information und die pro-
blemspezifische Aufbereitung der Flaschenhalskodierungen. Außerdem leisten die skip
connections ausgestaltet durch Konkatenierung anstelle von Summation einen weite-
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ren entscheidenden Beitrag (graue Pfeile). Die Eingabe zur ersten Faltungsoperation
auf dem expandierenden Pfad wird durch die Konkatenation aus zwei Teilen gebildet:
Zum Einen werden die jeweils letzten Merkmalskarten (engl.: feature maps) der Fal-
tungsoperationen zur Generierung geeigneter Repräsentationen (rote Pfeile) auf der
gleichen Ebene des kontrahierenden Pfades verwendet. Zum Anderen werden die Re-
konstruktionen der letzten Darstellungen (grüne Pfeile) des expandierenden Pfades der
darunterliegenden Auflösungsstufe herangezogen. Auf diese Weise lässt sich lokale In-
formation aus dem kontrahierenden Pfad gemeinsam mit Kontextinformation aus dem
expandierenden Pfad zu einer generell aussagekräftigeren Repräsentation vereinen.
Über den Einsatz zur Bildsegmentierung hinaus findet die UNet-Architektur in der

medizinischen Bildverarbeitung auch häufig Anwendung zur Bildregistrierung. Zwei
dahingehende Beispiele werden im Abschnitt 2.4 vorgestellt. Vorher wird aber noch
im nächsten Abschnitt ein spezieller, vom UNet abzugrenzender Faltungsnetz-Auto-
Enkoder (engl.: convolutional auto encoder, kurz: CAE) im Hinblick auf die in Kapitel
4 entwickelte Methode eingeführt.

2.3.2 Form-restringierender Faltungsnetz-Auto-Enkoder

Da die final implementierte Registrierungsprozedur der Methodik in Kapitel 4 maß-
geblich auf der in Bouteldja u. a., 2019 vorgestellten und in Abbildung 2.8 illus-
trierten CAE-Architektur fußt, werden als Vorgriff die Besonderheiten dieses Form-
restringierenden Faltungsnetzwerk-Auto-Enkoders im Folgenden dargestellt.
Die erste Besonderheit besteht darin, dass im Gegensatz zum momentanen Stand-

der-Technik-Verfahren, den im vorherigen Abschnitt beschriebenen UNet aus Ronne-
berger u. a., 2015, die Segmentierungen der Organstrukturen gänzlich ohne skip connec-
tions gelernt und erstellt werden. Diese Art des Netzwerkdesigns orientiert sich hier
also viel stärker an usprünglichen Umsetzungen der Auto-Enkoder-Idee: eine robuste
Repräsentation der Eingabe in einem Formraum zu finden, der aufgrund seiner nied-
rigeren Dimensionalität sowohl den Enkoder E (Abb. 2.8, links) als auch den Dekoder
D (rechts) zwingt, sich auf die wesentlichen - hier anatomischen - Merkmale der abge-
bildeten Eingabe zu fokussieren, um eine möglichst identische Version als Ausgabe zu
reproduzieren. Dadurch, dass also die komplette, relevante Information anhand dieser
Zwischenform erfasst werden muss, erlaubt die Manipulation dieser Einträge das Gene-
rieren neuer Ausgabeformen durch den Dekoderteil. Dies ist mit der UNet-Architektur
nicht möglich, da die skip connections zwischen den jeweiligen Abstraktionsleveln die
Eingabe viel enger mit der Ausgabe verzahnen und so unter Umständen die Formre-
präsentationen ignorieren.
Damit der Formraum aber sinnvoll strukturiert ist, d.h. dass benachbarte Kodierun-

gen mittels des Dekoders auch nur leicht veränderte Formen generieren, muss man die
zweite Besonderheit des Ansatzes beachten. Während des Trainings werden im Hin-
blick auf die spätere Verwendung zur multimodalen Registrierung sowohl CT- und
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Abb. 2.8: Schematische Darstellung des Auto-Enkoder-Faltungsnetzwerkes aus Bouteldja
u. a., 2019. Die Abkürzung ”conv(3x3x3 - s1 - 10C)” bezeichnet eine Faltungsschicht
mit Filtergröße 3×3×3, einer Schrittweite von 1×1×1 und 10 Ausgabekanälen. E
kodiert die Eingabe in den 2 · 8 · 9 · 11 = 1584- dimensionalen Formraum. Die
niedrig-dimensionale Formkodierung wird anschließend vom Dekoder D zurück in
eine Segmentierung überführt. Zur Abbildung multimodaler Eingaben in den ge-
meinsamen Formraum besitzt E etwa dreimal so viele Parameter wie D.

MRT-Herz-Bilddaten Ii als auch ihre zugehörigen Segmentierungen Si (i = 1, ..., N) al-
ternierend als Eingabe genutzt. Das Verarbeiten der Segmentierungen entspricht dabei
einer direkten Umsetzung des Auto-Enkoder-Ansatzes.
Durch eine spezielle Trainingsroutine angelehnt an Jetley u. a., 2016 soll im Form-

raum dann bei Eingabe von CT- oder MRT-Bildern sichergestellt werden, dass de-
ren Kodierungen möglichst ähnlich zu derjenigen bei Eingabe der korrespondierenden
Segmentierung ist. Dies soll die Interpolation sinnvoller Zwischenformen beim Durch-
schreiten des Formraumes von einer Eingabebildkodierung zur derjenigen der anderen
Modalität erlauben, um anschließend einen iterativen Registrierungsprozess, der im
Zentrum von Kapitel 4 steht, anleiten zu können. Dementsprechend verarbeitet der
Enkoder multimodale Eingabedaten (CT, MRT & Segmentierungen) und projiziert
deren gesamtes räumliches Volumen in einen gemeinsamen Formraum.
Da der Enkoder E domäneninvariant lernen muss, d.h. er soll sowohl Formen in Ge-

stalt von Segmentierungen als auch multimodale Bildinhalte in einen gemeinsamen
Raum transfomieren, wird seine Anzahl an trainierbaren Parametern etwa dreimal so
groß gewählt, wie die des Dekoders D und entfernt sich dabei vom symmetrischen
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Aufbau des UNets. Denn D wird nur dahingehend optimiert, die zuvor von E gene-
rierten Formkodierungen wieder in Segmentierungen umzuwandeln, während E neben
der Verarbeitung verschiedener Modalitäten auch gleichzeitig die wesentlichen globalen
Merkmale der Eingabebilder erfassen muss.
Über die pixelweise Zuordnung von Klassenzugehörigkeiten oder die Generierung

von Zwischenformen hinaus, lassen sich die beschriebenen Faltungsnetze aber auch zum
Zweck der Bildregistrierung einsetzen. Im nächsten Abschnitt werden dazu zwei weitere
Beispiele aus der Literatur eingeführt, die sich auf die UNet-Architektur stützen.

2.4 Faltungsnetzwerk-basierte Registrierung

Bisher sind in diesem Grundlagenkapitel die klassischen Verfahren der Bildregistrie-
rung und Faltungsnetzwerke unabhängig voneinander vorgestellt worden. Aus metho-
discher Sicht liegt es allerdings nahe, Faltungsnetzwerke nicht nur zu Segmentierungs-
zwecken einzusetzen. In der Tat sind auch auf dem Gebiet der medizinischen Bildre-
gistrierung eine Vielzahl an Ideen entwickelt worden, wie CNNs zur Prädiktion von
Verschiebungsfeldern genutzt werden können.
Anfängliche Methoden, wie z.B. in Rohé u. a., 2017 beschrieben, haben sich auf

das Imitieren der Ausgaben klassischer Verfahren beschränkt und verbuchen dabei
drastische Laufzeitreduzierungen, sind in der zu erwartenden Qualität aber durch ihre
Ausgangsverfahren limitiert.
Dementsprechend lässt sich seit der Arbeit aus Vos u. a., 2017 ein Trend zu voll-

umfänglich CNN-basierten Methoden verzeichnen, von denen zwei ausgereifte, auf dem
UNet-basierende Vertreter namens VoxelMorph aus Balakrishnan u. a., 2019 und Label
Reg aus Hu u. a., 2018 im Folgenden besprochen werden. Da letztere das Repräsenta-
tionslernen und die Vorhersage von Transformationsparametern nicht modular trenn-
bar in ein Faltungsnetzwerk integrieren, dienen sie als Vergleichsmethoden für die im
Rahmen der Arbeit in den Kapiteln 3, 4 und 5 entwickelten Algorithmen, welche die
Strategie einer klaren Aufteilung in trainierbare Deskriptoren zur Kombination mit
iterativen Registrierungsverfahren verfolgen.

2.4.1 VoxelMorph

Die Autoren des in Balakrishnan u. a., 2019 eingeführten VoxelMorph-Algorithmus
beschreiben ihr Verfahren als unüberwachtes, voll-umfänglich CNN-basiertes Regis-
trierungsverfahren. Abb. 2.9 zeigt schematisch das Zusammenspiel seiner Hauptbe-
standteile.
Durch geeignete Trainingseingaben, die beispielsweise durch Augmentierungsstrate-

gien wie elastische Bilddeformationen zunehmend komplexe Transformationen simu-
lieren, werden die Parameter θ der genutzten UNet-Architektur g bei Eingabe eines
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...

UNet: 𝑔𝜃(𝐹,𝑀) Verschiebungsfeld 𝜑 Warped 𝜑 ∘ 𝑀

Spatial 
Transformer

Fixed 𝐹

Moving 𝑀

𝐿𝑠𝑚𝑜𝑜𝑡ℎ(𝜑)

𝐿𝑠𝑖𝑚(𝐹, 𝜑 ∘ 𝑀)

Abb. 2.9: Schematischer Ablauf des VoxelMorph-Verfahrens aus Balakrishnan u. a., 2019: Für
ein Bildpaar (F,M) als Eingabe generiert eine UNet-ähnliche CNN-Architektur ein
Verschiebungsfeld ϕ. Unter Anwendung des Spatial Transformer-Moduls wird das
moving Bild M zur Anpassung an F transformiert. Während des Trainings wird
die Kombination der Abweichung Lsim zwischen F und ϕ ◦M mit einem auf ϕ
berechneten Regularisierungsterm Lsmooth zur Adaption der Netzwerkparameter θ
genutzt.

Bildpaares (F,M) dahingehend adaptiert, dass die finale CNN-Schicht ein sinnvolles
Verschiebungsfeld ϕ ausgibt.
Zentral für die Rückführung des Gradienten erweist sich dabei die Arbeit Jader-

berg u. a., 2015, welche das Spatial Transformer-Modul einführt. Dieses erlaubt das
differenzierbare Abtasten eines Bildes an Positionen, die durch das Verschiebungsfeld
vorgegeben sind und in der Regel nicht mit den ursprünglichen Gitterpositionen über-
einstimmen. Basierend auf bilinearer - bzw. im dreidimensionalen Fall trilinearer -
Interpolation ergibt sich die Möglichkeit anteilig die Bestandteile des Gradienten so-
wohl an das Verschiebungsfeld als auch an die aktuelle moving Bildrepräsentation,
welche ebenfalls das Resultat einer CNN-Ausgabe darstellen kann, weiterzuleiten.
Für monomodale Bildpaare lässt sich anhand geeigneter Distanzmaße wie SSD

oder NCC ein Strafterm aus der Kombination von Lsim(F,ϕ ◦M), basierend auf der
Differenz zwischen dem fixed Bild F und dem transformierten moving Bild M , sowie
dem Glattheitsregularisierer Lsmooth(ϕ) berechnen.
Abb. 2.9 zeigt exemplarisch, dass diese Methode nach Abschluss des Trainings in

lediglich einem Vorwärtsdurchlauf durch das Netz unter Laufzeiten im Sub-Sekunden-
Bereich ein Verschiebungsfeld ϕ generiert, das sowohl affine Transformationen als auch
lokale Deformationen berücksichtigt.
Ein konzeptionell sehr ähnlicher Ansatz wurde zuvor in Vos u. a., 2017 publiziert.

In Hering u. a., 2019 trainieren die Autoren nacheinander drei UNet-Architekturen in
ähnlicher Weise für verschiedene Auflösungsstufen einer Bildpyramide und nutzen als
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UNet: 𝑔𝜃(𝐹,𝑀) Verschiebungsfeld 𝜑 Warped 𝜑 ∘ 𝑀𝑠
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Abb. 2.10: Schematischer Ablauf des Label Reg-Verfahrens aus Hu u. a., 2018: Für ein Bild-
paar (F,M) als Eingabe generiert eine UNet-ähnliche CNN-Architektur ein Ver-
schiebungsfeld ϕ. Unter Anwendung des Spatial Transformer-Moduls wird im Ge-
gensatz zur VoxelMorph-Methode die moving Segmentierung Ms zur Anpassung
an Fs transformiert. Während des Trainings wird die Kombination der Abwei-
chung Lsim zwischen Fs und ϕ ◦Ms mit einem auf ϕ berechneten Regularisie-
rungsterm Lsmooth zur Adaption der Netzwerkparameter θ genutzt. Die gelben
Kreise verdeutlichen mögliche Nichtberücksichtigung relevanter Strukturen durch
den ausschließlich den Objektvordergrund fokussierenden Strafterm.

zusätzliches Distanzmaß normalisierte Gradientenfelder. Schließlich demonstriert die
Arbeit Eppenhof u. a., 2019 ein weiteres Verfahren zum Training einer VoxelMorph-
ähnlichen Architektur. Dabei dienen im Gegensatz zur Methode aus Hering u. a., 2019
unter kontinuierlich gestalteten Übergängen für verschiedene Auflösungsstufen gene-
rierte Ausgaben ϕ auf dem expandierenden Pfad zur Transformation von M .

2.4.2 Label Reg

In Hu u. a., 2018 wird ein schwach-überwachtes, multimodales Registrierungs-
verfahren vorgestellt, dessen ursprüngliche Anwendung auf die Registrierung von Ul-
traschallbildern zu MRT-Aufnahmen abzielt. Im Kontext dieser Arbeit dient es als
Vergleichsverfahren für die neu entwickelten, multimodalen Ansätze in den Kapi-
teln 4 & 5, sowie als CNN-basierter Registrierungsvertreter auf den monomodalen
Lungen-CT-Daten in Kapitel 3.
Der VoxelMorph-Methode ähnlich lernt das Faltungsnetzwerk während des Trainings

sowohl für die Modalität des moving Bildes als auch für diejenige des fixed Bildes
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Kapitel 2 Grundlagen

aussagekräftige Feature zu extrahieren und schließlich ein dichtes Verschiebungsfeld
auszugeben.
Abb. 2.10 stellt der Übersicht halber den Ablauf des Algorithmus anhand seiner

Hauptbestandteile dar. Der Loss Lsim wird im Gegensatz zu VoxelMorph nicht basie-
rend auf den Eingabebildern der Modalitäten berechnet, sondern aufgrund der Differen-
zen zwischen den zugehörigen, kanalweise und geglättet vorliegenden Segmentierungen
korrespondierender Organstrukturen. Zur späteren Testzeit werden dann lediglich die
eigentlichen Bilddaten benötigt. In der Abbildung ist aber bereits ein Problem der rein
Segmentierungs-basierten Fehlerrückführung durch die gelben Kreise hervorgehoben:
Da zum Großteil nur dem Vordergrund zugehörige Strukturen in die Ähnlichkeitsbe-
rechnung miteinfließen, können sich die Parameter θ des CNN gegebenenfalls auf diese
Bildinhalte überanpassen und die dritte dargestellte, weiße Struktur unberücksichtigt
lassen. Dies bewirkt unter Umständen größere Fehler beim späteren Transformieren
des moving Bildes an die Referenz. Aktuelle Weiterentwicklungen der Autoren des
VoxelMorph-Verfahrens greifen den Segmentierungs-basierten Strafterm auf und kom-
binieren ihn mit den Grauwert-Ähnlichkeitsmetriken. Die Autoren in Ha u. a., 2020
nutzen darüberhinaus eine Kaskade von zwei U-Nets zum Repräsentationslernen und
dazu noch mehrere Netzwerke zur Bestimmung lokaler Deformationen.

Anschließend an diesen Grundlagenteil der Arbeit folgt nun das erste methodische
Kapitel der Arbeit, dass sich mit stark-überwachtem Lernen von Deskriptoren auf
Lungen-CT-Daten zur monomodalen Registrierung beschäftigt. Im Gegensatz zu
den hier eingeführten Vergleichsverfahren aus der aktuellen Literatur, setzen alle im
Folgenden entwickelten Algorithmen auf klar zu identifizierende Bestandteile des De-
skriptorlernens in den angewandten, mit klassischen Verfahren kombinierten Methoden
des maschinellen Lernens.
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Kapitel 3

Stark-überwachtes Deskriptorlernen in
3D Lungen-CT-Bilddaten

Dieses erste methodische Kapitel der vorliegenden Arbeit stellt einen neuen
Ansatz und Experimente vor, die das generelle Erlernen von aussagekräftigen
Deskriptoren mithilfe tiefer Faltungsnetzwerke demonstrieren. Ergebnisse die-
ses Verfahrens einer stark-überwachten, monomodalen Korrespondenzfin-
dungsaufgabe in dreidimensionalen Lungen-CT-Bildern sind in dem als best pa-
per-prämierten Bildverarbeitung für die Medizin 2018 -Beitrag Blendowski u. a.,
2018a veröffentlicht. Ausgehend von dieser Methode wird untersucht, ob sich die
so erlernten Deskriptoren eignen, Intrapatientenbildpaare verschiedener Atem-
phasen aufeinander zu registrieren. Die weiterführenden, vergleichenden Expe-
rimente auf afu einem öffentlichen COPD-Datensatz bilden den Inhalt des Bei-
trags Blendowski u. a., 2018b im International Journal for Computer Assisted
Radiology and Surgery, welcher auch im folgenden Kapitel behandelt wird.

3.1 Einleitung & Motivation

Fabbri u. a., 2003 und Rabe u. a., 2007 zufolge steht die chronisch obstruktive Lunge-
nerkrankung (engl.: chronic obstructive pulmonary disease, kurz: COPD) weltweit an
vierter Stelle der häufigsten Todesursachen.
Da die Diagnose einer Krankheit den ersten Schritt zu ihrer Bekämpfung bildet, kön-

nen Assistenzverfahren im klinischen Alltag einen gesundheitsförderlichen Beitrag zur
Detektion betroffener Lungenregionen in Lungen-CT-Aufnahmen von Patienten leis-
ten. Ärzte nutzen dabei die Bildregistrierung, um eingeschlossene Luft in schlecht be-
lüfteten Bereichen der Lunge zu lokalisieren. Der klinisch relevante Parameter der Ven-
tilation lässt sich aus diesen Informationen sehr genau schätzen [Reinhardt u. a., 2008].
Unter der Voraussetzung, dass für betrachtete Patienten Volumenbilddaten verschiede-
ner Atmungszeitpunkt vorliegen, wurde in Heinrich u. a., 2015a ein Ansatz vorgestellt,
der mittels diskreter Optimierung exzellente Ergebnisse auf einem COPD-Benchmark
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Datensatz [Castillo u. a., 2009] liefert. Im Gegensatz zu bildintensitätsbasierten, kon-
tinuierlichen Methoden verarbeitet das darin vorgeschlagene Registrierungsframework
auchjene Bildpaare robust, die große, atembedingte Verschiebungen (> 40mm) auf-
weisen. Der Erfolg dieses sog. deeds-Frameworks, das in Abschnitt 2.2.1 vorgestellt
wurde, liegt im diskreten Optimierungsansatz begründet, der Ähnlichkeitsberechnun-
gen in einem quantisierten Suchraum unter Einbezug auch größerer Verschiebungen
gestattet, welche den Einzugsbereich der Feature-Extraktoren übersteigen und daher
kontinuierliche Methoden stark fordern.
Bislang wurden zur Repräsentation der lokalen Bildinformation während der An-

wendung von deeds nutzerdefinierte und manuell entworfene Features eingesetzt, um
die Ähnlichkeitsberechnungen zwischen den zu registrierenden Bildpaaren durchzu-
führen. Zunehmend bilden aber automatisch anpassbare, tiefe Faltungsnetzwerke die
Speerspitze der Weiterentwicklungen in den Bereichen des Maschinellen Sehens und
der medizinischen Bildverarbeitung. Dies ist hauptsächlich bedingt durch ihre Fähig-
keit datengetrieben aufgabenspezifische Repräsentationen zu erlernen. Die in diesem
Kapitel durchgeführten Experimente zielen darauf ab zu untersuchen, ob sich die Auf-
gabe der optimierten Korrespondenzfindung während des Registrierungsprozesses auch
bewerkstelligen lässt, wenn man die nutzerspezifisch entworfenen Bildfeature durch au-
tomatisiert gelernte Bilddeskriptoren ersetzt.
Hinsichtlich der Verarbeitung von Volumenbilddaten durch deep learning Ansätze

treten verschiedene Probleme auf. Da sich bisher ein Großteil der Forschungsarbeit
auf diesem Gebiet mit zweidimensionalen Bilddomänen befasst, lassen sich viele im
Bereich des Maschinellen Sehens entwickelte Strategien nicht unverändert auf drei-
dimensionale, medizinische Bilddaten wie CT-Aufnahmen übertragen. Beispielsweise
lassen sich äußerst präzise Organsegmentierung erstellen, wenn für diese Standardauf-
gabe der medizinischen Bildanalyse DCNNs in Form der in Abschnitt 2.3.1 erläuterten
UNet-Architekturen eingesetzt werden [Ronneberger u. a., 2015]. Allerdings setzen so-
wohl die Speicher- als auch die Rechenanforderungen dem Architekturdesign der Netze
enge Grenzen: im Vergleich zu ihren zweidimensionalen Entsprechungen ist einerseits
die Anzahl der Kanäle und andererseits auch die Tiefe der Netzwerke z.B. in der
Arbeit von Çiçek u. a., 2016 zur Segmentierung dreidimensionaler Bilddaten deutlich
reduziert. Aus diesem Grund stellt das Architekturdesign eines 3D-DCNNs für die als
noch schwieriger einzuschätzende Vorhersage korrekter, dichter dreidimensionaler Ver-
schiebungsfelder zur Registrierung von Bildpaaren eine Herausforderung im Hinblick
auf momentane Hardwarebeschränkungen dar.
Um den Ressourcenhunger dreidimensionaler Registrierungsalgorithmen zu reduzie-

ren, werden in diesem Kapitel binäre Deskriptoren gelernt, indem der Einsatz eines
zusätzlichen Strafterms die Gewichte des DCNN auf die Ausgabe binärer Werte be-
schränkt. Dies ermöglicht eine äußerst effiziente Berechnung der Ähnlichkeiten lokaler
Bildrepräsentationen während der Auswertung des verschobenen moving Bildes unter
Ausnutzung spezieller Befehlssätze.
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Inspiriert durch die Methodik aus Weinzaepfel u. a., 2013 wird daher vorgeschlagen,
eine Zwei-Schritt-Strategie zu verwenden, die sich am Ablauf klassischer Bildregis-
trierungsalgorithmen orientiert. Dazu wird die nichtlineare Registrierung als dünn-
besetztes Landmarken-Korrespondenzfindungs-Problem (engl. sparse keypoint mat-
ching) formuliert, dem sich eine thin plate spline-Interpolation anschließt. Im ersten
Schritt sollen dazu aussagekräftige Bilddeskriptoren extrahiert werden, welche die Vor-
teile des datengetriebenen Lernens nutzen. Im zweiten Schritt werden sie eingesetzt, um
verlässliche Korrespondenzen im diskreten Optimisierungsprozess der Verschiebungs-
vektorbestimmung zu finden. Da die vorgeschlagene Zwei-Schritt-Strategie Methoden
des deep learnings mit traditionellen Optimisierungstechniken verbindet, lässt sich von
einem Hybridansatz sprechen.
Um aussagekräftige Deskriptoren zur Registrierung mit einem DCNN zu trainieren,

wird Metriklernen Korrespondenzfindung auf manuell annotierten Bilddaten als Hilfs-
problem herangezogen. Im Gesamtkontext der entwickelten Methoden im Rahmen der
vorliegenden Arbeit handelt sich daher es um das am stärksten überwachte Verfah-
ren, da sich das Lernen dermonomodalen Deskriptoren auf punktuell exakt definierte
Landmarken medizinischer Experten stützt.
Der Aufbau dieses Kapitels stellt sich wie folgt dar: zuerst wird ein kurzer Über-

blick an verwandter Literatur diskutiert, bevor im Methodenabschnitt 3.2 eingehend
der im Rahmen der vorliegenden Arbeit entwickelten Ansatz erläutert wird, indem
detailliert auf das Zusammenspiel beider Teile des hybriden Modells eingegangen wird.
Um die Anwendbarkeit der vorgeschlagenen Methodik zu untersuchen, werden im Ab-
schnitt 3.3 Experimente auf dem DIR-lab 3D COPD Patienten Datensatz beschrieben
und durchgeführt sowie in Abschnitt 3.4 die zugehörigen Ergebnisse präsentiert. Ab-
schließend umfasst Abschnitt 3.5 die Diskussion der experimentellen Ergebnisse samt
abschließender Schlussfolgerungen.

3.1.1 Literatur

Obwohl speziell im zweidimensionalen Fall voll-integrierte, CNN-basierte Registrie-
rungsansätze wie das FlowNet aus Dosovitskiy u. a., 2015 erfolgreich eingesetzt werden,
bleibt das Generieren dreidimensionaler Verschiebungsfelder für medizinische Bildvo-
lumina eine Herausforderung.
Vielversprechende deep learning-Ansätze wurden in z.B. in Vos u. a., 2017, Rohé

u. a., 2017, Hu u. a., 2018 und Balakrishnan u. a., 2019 vorgeschlagen, aber wie die
Autoren von Hering u. a., 2019 feststellen, fällt diesen Methoden das Erfassen und
Vorhersagen großer - beispielsweise bei Lungenbildern atmungsbedingter - Verschie-
bungen schwer. Daher schlagen letztere im Sinne einer Multilevel-Strategie den Einsatz
von drei aufeinanderfolgenden CNNs für verschiedene Auflösungsstufen vor, um auch
größere Verschiebungen erkennen zu können.
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Wie einleitend bereits erwähnt, wählt der hier vorgeschlagene Hybrid-Ansatz einen
anderen Weg und macht sich die diskrete Optimierung über eine Menge an vorgege-
benen, auch sehr großen Verschiebungsvektoren zu nutze. Daher kommt er mit der
Anwendung lediglich eines CNNs zur Deskriptorextraktion aus, wenn auch mit deut-
lich längeren Laufzeiten durch die anschließende Verarbeitung im klassischen Regis-
trierungsframework.
Um diesen Nachteil einzudämmen, werden binäre Feature-Vektoren trainiert. Der-

artige Bilddeskriptoren werden bereits auch ohne Verwendung von gelernten Faltungs-
netzwerken erfolgreich zum Auffinden korrespondierender Positionen in Bilddaten ein-
gesetzt: in Calonder u. a., 2010 werden die in Abschnitt 2.1.1 vorgestellten BRIEF-
Deskriptoren entwickelt, um Ähnlichkeitsvergleiche mit effizienten Berechnungen der
Hamming-Distanzen unter Ausnutzung von xor und popcnt Instruktionen durchzu-
führen. Diese Art von Deskriptoren ist in der Lage lokale Umgebungen durch die
Auswertung von Intensitätsvergleichen eines Zufallsmusters um den zentralen Pixel
aussagekräftig zu codieren und erlaubt in Eilertsen u. a., 2017 beispielsweise in Echt-
zeit berechnete Schätzungen des Optischen Flusses zwischen zwei Bildern. Durch die
effizienten Rechenoperationen kommt das beschriebenes Verfahren dabei sogar ohne
den Rückgriff leistungsstarke GPUs aus, da moderne Prozessorinstruktionssätze um
den Faktor 8 beschleunigte Berechnungen erlauben, sofern Fließkommaarithmetik zur
Distanzberechnung durch ihr binäres Gegenstück ersetzt wird [Muła u. a., 2017].
In Heinrich u. a., 2013b führen die Autoren erfolgreich das Konzept der Patch-

basierten Berechnung lokaler Selbstähnlichkeiten in die dreidimensionale medizinische
Bildverarbeitung ein. Ihr entwickelter SSC-Deskriptor (engl.: self -similarity context,
kurz: SSC) wird bei den späteren Experimenten als Vergleichsmethode dienen sowie
in diversen Kombinationen mit den im Rahmen dieser Arbeit trainierten Deskriptoren
eingesetzt.
Im Gegensatz zu den bisher erwähnten, unüberwachten Methoden, passen CNN-

basierte Ansätze während des Trainings eine Vielzahl von Gewichten lernbarer Fal-
tungsfilter an, um daten- und aufgabenspezifische Features zu erlernen. Wie beispiels-
weise in Liu u. a., 2016 beim Erlernen von Hashfunktionen zum Auffinden ähnlicher
Bilder in großen Datenmengen demonstriert, ist dieses Erlernen von Deskriptoren vor-
teilhaft.
Auch im Kontext der medizinischen Bildverarbeitung werden CNNs mittlerweile

häufig eingesetzt. Die Umsetzung zufälliger, aber fester Intensitätsvergleiche nach dem
Vorbild der BRIEF-Deskriptoren durch geeignete Codierung in spärlich-besetzten Fil-
terkernen der ersten Schicht eines CNNs wird in Heinrich u. a., 2017 eingeführt. Aller-
dings richtet sich dieses Vorgehen darauf aus ein großes rezeptives Feld zu erhalten,
um genug Kontextinformation für akkurate Pankreassegmentierungen zu aggregieren,
anstatt binäre Ausgabefeature zu produzieren. Weitere 3D-CNN-Architekturen pro-
duzieren ebenfalls vielversprechende Ergebnisse, z.B. bei der Erkennung bösartiger
Knoten innerhalb der Lunge in Dou u. a., 2017 oder zur Prostatasegmentierungen in
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Milletari u. a., 2016. Allerdings stimmen die Ziele dieser Verfahren nicht mit der in die-
sem Kapitel anvisierten Registrierung überein. In Conjeti u. a., 2017 werden schließlich
gelernte, speichereffiziente Binärdeskriptoren vorgeschlagen, allerdings nur für den Fall
zweidimensionaler Bilder.
Der in diesem Kapitel vorgeschlagene Ansatz untersucht daher das Erlernen von

Binärdeskriptoren basierend auf lediglich einigen Landmarkenkorrespondenzen. An-
schließend kommen die generierten Repräsentationen im bereits existierenden deeds-
Framework zur Feature-basierten Bildregistierung zum Einsatz. Hinsichtlich des zu
untersuchenden Problems ist die im hohen Maße nicht-lineare Natur der Registrierung
von Lungenbildern aus verschiedenen Atemphasen zu beachten. Ansätze der kontinu-
ierlichen Methoden der Optimierung enden dabei häufig in lokalen Minima, sofern sie
nicht verschiedene Auflösungsstufen einsetzen. In Muenzing u. a., 2014 vergleichen die
Autoren drei verschiedene kontinuierliche Registrierungsverfahren und ermitteln relati-
ve hohe durchschnittliche Landmarken Fehler auf den DIR-Lab COPD Daten (1.58 mm
Avants u. a., 2008, 4.68 mm Glocker u. a., 2008, 2.19 mm Modat u. a., 2010). In Hein-
rich u. a., 2015a wird jedoch einen wesentlich geringeren Fehler nur von 1.08 mm unter
Verwendung einer diskreten Optimierung in Kombination mit einer Regularisierung er-
reicht, die auf Markov-Zufallsfeldern (engl.: markov random fields, kurz: MRF) beruht.
Aus diesem Grund nutzt das im Folgenden vorgestellte Verfahren die in Heinrich u. a.,
2013a erstmals eingeführte Methode. Die Vermeidung der iterativen Optimierung so-
wie die parallele Auswertung einer Vielzahl möglicher diskreter Verschiebungsvektoren
erhöhen die Robustheit des finalen Verschiebungsfeldes.

3.2 Methoden

Im Hinblick auf die Registrierung von 3D-Lungen-CT-Bilddaten, wird in Abschnitt
3.2.1 auf das Design des tiefen Faltungsnetzwerkes sowie auf dessen Trainingsprozess
zum Metriklernen unter Einsatz eines triplet loss eingegangen. Anwendung finden die
trainierten Deskriptoren anschließend beim Einsatz im deeds-Registrierungsframework,
das bereits im Grundlagenabschnitt 2.2.1 eingeführt wurde. Abbildung 3.1 vermittelt
einen ersten graphischen Eindruck des Zusammenspiels beider Schritte im vorgeschla-
genen Hybridkonzept.

3.2.1 3D-CNN-basiertes Lernen von Binärdeskriptoren

Im Verarbeiten dreidimensionaler medizinischer Bilddaten entstehen viele Probleme
schon aufgrund von Beschränkungen durch die Speicher- und Rechenleistungen. Aus
diesem Grund ist der in Zhang u. a., 2017 vorgeschlagene Modulaufbau in Form von
Binärbäumen innerhalb der Netzarchitektur für die entwickelte Methodik interessant.
Die Autoren motivieren die Wahl dieser Strukturform hauptsächlich aus zwei Gründen.
Einerseits wollen sie vom Anstieg der expressiven Kapazität bzw. Kodierungsmöglich-
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Einatmung Ausatmung

1) Training eines CNNs, um korrespondierende Landmarken 
zwischen maximaler Ein- und Ausatmung zu erkennen

Einatmung Ausatmung

2) Nutze die gelernten Deskriptoren, um während der Registrierung unter 
diversen Verschiebungen Ähnlichkeiten zu evaluieren;

Volumen an Position (x,y,z) zur Einatmung 
/       Volumina an Positionen (x,y,z) + d1 / d2

CNN = 𝑏𝑖𝑛( )

d1

d2

𝑏𝑖𝑛 − 𝑏𝑖𝑛( ) 𝐻 < 𝑏𝑖𝑛 − 𝑏𝑖𝑛( ) 𝐻

→ d1 wäre die passende Verschiebung

Abb. 3.1: Grundlegende Bestandteile des vorgeschlagenen Hybridansatzes: 1) CNN-basierte
Hilfsaufgabe zum Deskriptorlernen; 2) Ähnlichkeitsberechnungen für diverse Ver-
schiebungsvektoren während der diskreten Registrierung basierend auf den erlern-
ten Deskriptoren.

keiten tieferer Netze profitieren. Andererseits soll so das vanishing gradient-Problem
– also der mit zunehmendem Abstand zur Ausgabeschicht immer kleiner werdender
Gradienten – angegangen werden. Diese für zweidimensionalen Daten vorgeschlagene
Architektur zeichnet sich im Vergleich zu anderen Methoden bei zunehmender Tie-
fe durch ein moderateres Wachstum der Parameterzahl aus, so dass sie sich für eine
Erweiterung auf dreidimensionale Daten zur Extraktion von Deskriptoren gut eignet.

Eine im Rahmen der Arbeit entwickelte Modifikation der Architektur ist in Blendow-
ski u. a., 2018a veröffentlicht. Die Neuerung besteht im Hinzufügen residualer Verbin-
dungen, welche durch die charakteristisch skip connections der erfolgreichen ResNet-
CNNs aus He u. a., 2016 inspiriert sind. Diese Anpassung erleichtert den Gradienten-
fluss zusätzlich innerhalb der hier vorgeschlagenen, erweiterten Binärbaum-Struktur
(engl.: extended binary tree, kurz: EBT).

Abbildung 3.2 stellt schematisch den Aufbau eines solchen EBT-Moduls aus seinen
einzelnen Bestandteilen dar. Die neu eingeführte, residuale Verbindung der Einga-
bekanäle mit der Ausgabe ist durch den roten Block speziell markiert. Entlang der
Dimensionen der Featurekanäle, erinnert die Struktur außerdem an die DenseNet-
Architekturen aus Huang u. a., 2017.

Im Folgenden werden die Charakteristika der neu entwickelten EBT-Module formal
definiert. Die zu verarbeitende Eingabe X eines solchen Moduls ist durch b×c×d×h×w
in ihren Dimensionalitäten beschrieben. Dabei stehen b für die Batchgröße, c für die
Anzahl der Kanäle, d für die räumliche Tiefendimension, sowie h und w für deren Höhe,
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respektive Breite. Die Verarbeitung der Eingabe X zur Ausgabe Y ist im höchsten
Abstraktionsgrad durch

Y := fEBT (X;W) = fBTA(X;W) + X (3.1)

definiert. Dabei stellt der zweite Summand die residuale Verbindung sicher.
Die Mächtigkeit der Funktion fBTA(X;W) aufgrund der Anzahl ihrer lernbaren

Gewichte wird anhand dreier Größen festgelegt, die aus der Anzahl der Kanäle C,
der Baumtiefe d (wählbar aus {1, ..., log2C}) und der Filtergröße k bestehen. In der
Terminologie von Graphen und hier im Speziellen von Baumstrukturen bildet X den
Wurzelknoten und wird aus Gründen formaler Konsistenz mit X0,left bezeichnet. Beim
Hinabsteigen des Baumes in Richtung seiner Blattknoten kommen auf jeder Ebene k
zwei solcher lernbarer Funtionen zum Einsatz. fk,left und fk,right werden jeweils auf
den linken Kindknoten Xk−1,left der vorherigen Ebene angewandt, so dass die namens-
gebende, aber nicht balancierte Binärbaumstruktur entsteht. Im Detail umfassen die
Funktionen fk,· die weitgehend gebräuchliche Sequenz von Faltungsfiltern - mit Filter-
kerngrößen von 3 × 3 × 3 - mit anschließenden Batch-Normalisierungsblöcken gefolgt
von ReLU-Aktivierungsfunktionen. Während die räumlichen Dimensionen der Einga-
bedaten bei der Verarbeitung in den einzelnen Baumebenen des EBT-Moduls unver-
ändert bleiben, besitzen die jeweiligen Kindsknoten Xk,left = fk,left(Xk−1,left;Wk,left)
und Xk,right = fk,right(Xk−1,left;Wk,right) die Anzahl an C

2k Kanälen. Diese entspricht
jeweils der Hälfte der Kanäle ihrer Eingabe Xk−1,left aus der darüberliegenden Ebene.

Die finale Ausgabe des Moduls Y setzt sich aus der Konkatenation jedes rechten
Featuretensors eines Kindsknoten sowie des letzten linken Blattknotens zusammen

fBTA(X;W) = concat(X1,right, ...,Xd,right,Xd,left) (3.2)
Betrachtet man den schematischen Aufbau innerhalb des EBT-Modules in Abbil-

dung 3.2 um 90◦ entgegen des Uhrzeigersinnes rotiert, so lässt sich die typische Mul-
tiskalen-Enkoder-Dekoder-Struktur erkennen, die beispielsweise erfolgreich in Ronne-
berger u. a., 2015 als UNet (siehe Abschnitt 2.3.1) eingesetzt wird, - allerdings entlang
der Featurekanaldimensionen.
Als Grundstruktur des eigentlichen CNNs wird in der entwickelten Methode ein

Zwei-Pfad-Netzwerk verwendet. Die gelernten Featuremaps entlang des oberen Pfades
in Abbildung 3.2 werden einer höheren Anzahl an Transformationen unterworfen, ins-
besondere durch die Verwendung von zwei direkt aufeinander folgenden EBT-Modulen
der Baumtiefe 4. Dahingegen dient der untere Pfad dazu die Eingabedaten in niedrige-
rer Auflösung im Sinne einer gleichzeitig angewandten multi-resolution-Strategie noch
einmal tieferen Netzschichten zuzuführen. Diese Eingaberepräsentationen werden un-
ter Einsatz von max pooling-Operationen und eines Faltungsfilters mit Kerngröße 1
generiert, der daher lediglich zum Sicherstellen der richtigen Kanalanzahl zum additi-
ven Zusammenführen beider Pfade dient. Im anschließenden, gemeinsamen Netzwerk-
teil erhöht der Einsatz von weiteren 4 EBT-Modulen der Baumtiefe 4 die abbildende
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Abb. 3.2: Schematische Darstellung der Deskriptor-CNN-Architecture samt gewählten Para-
metern & detaillierte Illustration des Extended Binary Tree-Modules (EBT).

Kapazität des Models weiter. Nach einem weiteren Downsampling mit lernbaren Ge-
wichten schließen sich noch zwei voll verbundene Schichten zur finalen Transformation
auf den Ausgabetensor an.
Die Gewichte des Netzwerks werden mithilfe eines triplet loss-Ansatzes trainiert,

um aussagekräftige Deskriptoren zu generieren. Der in Abbildung 3.3 illustrierte Ab-
lauf zeigt, dass jeweils eine Anker-Landmarke a aus einem Patientenbild zum Zeit-
punkt maximaler Einatmung, eine korrespondierende Landmarke p während der Aus-
atmung sowie eine nicht passende Landmarkenposition n gegeben sein müssen. Um
diese Landmarken herum werden die Volumina innerhalb des rezeptiven Feldes durch
das CNN in den Featureraum transformiert. Durch Formulierung des Strafterms als
Ltriplet = max{d(a, p)−d(a, n)+m, 0} lernt das Netzwerk Deskriptoren, die im Featur-
eraum so abgebildet werden, dass der Abstand d(a, n) zwischen dem Anker a und dem
negativen Beispiel n um einen Sicherheitsbereich m, (engl.: margin, in der Abbildung
rot unterlegt) größer ist, als die Distanz d(a, p) zu seinem korrespondierenden Partner
p.
Im Hinblick auf den anvisierten Einsatz von xor- und popcount-Operationen zum

effizienten Berechnen der Registrierungsähnlichkeiten wird ein zusätzlicher Strafterm
Lquant verwendet. Die signum-Funktion findet als letzter Deskriptorextraktionsschritt
Anwendung, da die hier genutzte Registrierung ausschließlich binäre Eingabedaten
erwartet. Von hashing-basierten Suchmethoden ist bekannt, dass eine solche naive
Quantisierung zu drastischen Qualitätseinbrüchen führen kann [Simons u. a., 2019].
Lquant sorgt für vorzugsweise binär verteilte Einträge in den Deskriptortensoren, da
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a
CNN

p
CNN

n
CNN

Abb. 3.3: Illustration des triplet loss-Ansatzes: Volumina entsprechend der rezeptiven Feld-
größe eines zu trainierenden CNNs werden um die Anker-Landmarke a, den kor-
respondierenden Partner p und um das negative Beispiel n in den Featureraum
transformiert. Sollte die Distanz d(a, n) kleiner als ein zusätzlicher Sicherheitssaum
m additiv um d(a, p) sein, schlägt sich dies auf die Kostenfunktion beim Training
nieder.

Einträge in bi, die stark von {−1, 1} abweichen, betraft werden. Dabei wird die in Liu
u. a., 2016 vorgeschlagene Definition übernommen

Lquant =
bits∑
i=1
‖|bi| − 1‖1 (3.3)

b bezieht sich hier auf die bits-dimensionale Featurerepräsentation des zentral im re-
zeptiven Feld gelegenen Voxel. Um den Quantisierungsschritt noch besser erlernbar zu
machen, wird anstelle der ReLU-Funktion als letzte Aktivierung vor der finalen voll
verbundenen Schicht ein tangens hyperbolicus (kurz: tanh) genutzt. Dieser hat im Ge-
gensatz zur ReLU-Aktivierung mit [0, 1] einen Bildbereich von [−1, 1]. Schließlich setzt
sich der gesamte Strafterm zusammen durch

L = Ltriplet + α · Lquant (3.4)

3.2.2 MRF-basierte Registrierungs mittels deeds

Das im Grundlagenabschnitt 2.2.1 beschriebene deeds-Verfahren kommt in der hier
entwickelten, hybriden Zwei-Schritt-Methodik als Optimierungsalgorithmus der Regis-
trierung zum Einsatz. Dazu sind an dieser Stelle zwei Details hinsichtlich der konkreten
Umsetzung des Verfahrens zu erläutern.
Zunächst wird die notwendige Detektion potentieller Keypunktpositionen im fixed

Bild F durch den Förstner-Operator analog zu Rühaak u. a., 2017b bewerkstelligt.
Sie werden durch ihre sog. distinctiveness (deutsch: Unverwechselbarkeit) D(x) =
1/trace((Gσ ∗ (∇F∇F T ))−1) nach vorangehender Gaußfilterung Gσ charakterisiert.
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Damit aus der zunächst großen Zahl an infrage kommenden Positionen lediglich eine
kleinere, aber über das gesamte Patientenvolumen verteilte Menge übrig bleibt, wird ei-
ne Grauwert-Dilatation Gm über kubische Nachbarschaftsregionen durchgeführt. Auf
diesem Ergebnis führt dann die Operation D∗ = maxy∈GmD(y) eine lokale Nicht-
Maximum-Unterdrückung durch, so dass K schließlich nur Landmarken enthält, die
D(kF ) = D∗(kF ) genügen.
Die Wahl des Distanzmaß D zur Beurteilung der Ähnlichkeit und dem Auffinden

korrespondierender Positionen zwischen dem zu registrierenden Bildpaar trägt der spe-
ziellen Binärform der genutzten Deskriptoren Rechnung. Wie in Abschnitt 3.2.1 be-
schrieben, werden die Deskriptoren an jeder Position in F und M durch ihre binären
Repräsentationen Fb and Mb codiert, so dass sich die Abweichung ihrer Bildinhalte
(engl.: dissimilarities) D an den Positionen kF und l effizient über ihre Hamming-
Distanzen berechnen lässt

D(kF , l) = 1/|P|
∑
p∈P

Ξ{Fb(kF + p)⊕Mb(l + p)} (3.5)

⊕ und Ξ bezeichnen die xor- und popcount-Operationen an Positionen p innerhalb
eines lokalen Bildausschnittes P. Sind die Kosten aufgrund der paarweisen Distan-
zen bekannt, so lässt sich schließlich unter Berücksichtigung der benachbarten Ver-
schiebungsvektoren ein Transformationsfeld zur Angleichung des Eingabebildpaares
bestimmen.

3.3 Experimente

Da das in diesem Kapitel vorgestellte Hybridverfahren aus der schrittweisen Anwen-
dung zweier Komponenten besteht, bietet es sich an, zunächst die Fähigkeiten des
vorgeschlagenen tiefen Faltungsnetzwerkes zu untersuchen. Mit der Aufgabe einer Kor-
respondenzfindung von Landmarken (engl.: keypoint retrieval task) zwischen verschie-
denen Bildpaaren wird geprüft, wie robust und aussagekräftig die extrahierten Binär-
deskriptoren sind. Im zweiten Teil der Experimente wird die Registrierungsgenauigkeit
des gesamten Verfahrens unter Einsatz der erlernten Deskriptoren mittels der deeds-
Registrierung im Vergleich zu klassischen Bildfeaturen sowie zu einer Kombination
beider Ansätze beleuchtet.
Der in Castillo u. a., 2009 beschriebene, anspruchsvolle DIR-Lab Benchmark-Daten-

satz dient allen Experimenten als Grundlage. Er beinhaltet 10 paarweise 3D-CT-Scans
(Ein- & Ausatmungsphase), die hier auf die Lungenregion zugeschnitten wurden. Zwei
beispielhafte Schnittbilder sind in Abb. 3.1 dargestellt. Für jedes dieser Paare sind
jeweils 300 manuell von medizinischen Experten definierte Landmarken verfügbar, so
dass sich zwischen den beiden Atemphasen korrespondierende Positionen bestimmen
lassen.
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Um das entwickelte Verfahren einem aktuellen, Ende-zu-Ende-trainierten CNN-Re-
gistrierungsansatz gegenüberzustellen werden außerdem noch weitere Experimente auf
Segmentierungen der Lungenflügel der COPD-Daten durchgeführt.

3.3.1 Lernen von Deskriptoren mittels anatomischer
Landmarkenkorrespondenzen

Dieses erste Experiment soll Aufschluss darüber geben, inwieweit die mittels der be-
schriebenen Faltungsnetzarchitektur zu extrahierenden Deskriptoren ihre lokalen Bild-
regionen aussagekräftig beschreiben. Zum Training der Deskriptoren wird das Land-
marken-basierte Triplet-Metrik-Lernen (siehe Abb. 3.3) genutzt, da dessen Lernziel mit
der intendierten Verwendung der Deskriptoren während der Registrierung vergleichbar
ist: Featurerepräsentationen von korrespondierenden Landmarkenpaaren aus den Ein-
und Ausatmungsphasen eines Patienten sollen hohe Ähnlichkeiten aufweisen, solche
unterschiedlicher Landmarken hingegen geringe. Im Kontext von Faltungsnetzwerken
mit ihrer hohen Zahl an lernbaren Parametern stellen 10 Patientenpaare à 300 Land-
marken eine vergleichsweise kleine Datenbasis zum Trainieren dar. Um ein mögliches
Overfitting zu verhindern, werden in den Ausatmungsphasen pro Patient noch 3000
weitere Landmarken extrahiert. Wie in Heinrich u. a., 2015a vorgeschlagen, wird der
Förstner-Operator genutzt, um Positionen zu ermitteln, die sich durch ihre Struktur
auszeichnen, und so die Menge erweitern, aus der der richtige Partner während des Trai-
nings gefunden werden muss. Um die Robustheit der erlernten Binärrepräsentationen
zu prüfen, wird untersucht, ob die zugehörige Position der Ausatmungsphase mittels ei-
ner k-Nächsten-Nachbarnsuche (kurz: kNN) durch Bestimmung der Hamming-Distanz
aus der Menge aller Landmarken gefunden wird. Im besten Fall sollte jede zugehörige
Position dem nächsten Nachbarn der Landmarke entsprechen (k=1).
Der Trainingsablauf dieses ersten Experiments ist in Blendowski u. a., 2018a be-

schrieben. Das Testen der trainierten Netze nutzt eine leave-one-patient-out-Strategie
und pro Aufteilung der Patientenmenge werden jeweils noch zwei zufällig gezogenen
Patientendatensätze zu Validierungszwecken verwendet. Die implementierte Netzarchi-
tektur umfasst ca. 220.000 Parameter und ist im deep learning-Framework PyTorch
umgesetzt. Alle Modelle werden auf einer Nvidia GTX 1050 Ti 4GB GPU mit einer
Batchgröße von 128 Eingabevolumina à 253 Voxeln pro Patient in je etwa 90 Minuten
trainiert. Der Hyperparameter des Sicherheitssaumes beim triplet loss wird empirisch
auf m = 5 festgelegt und der Anteil der Quantisierungsfehlerkosten am Gesamstraf-
term L wird mit α = 0.005 gewichtet.
Nach jeder Epoche, weldhe aus 4096 zufällig gezogenen Triplets besteht, wird der ak-

tuelle Zustand des Netzes anhand zurückgehaltenen Validierungsdaten evaluiert. Dies
ermöglicht, diejenige Parameterkonfiguration des Netzes für die abschließende Nutzung
auf den Testdaten zu speichern, welche während der 250 Trainingsepochen den nied-
rigsten Validierungsfehler aufweist (sog. early stopping). Zur Anpassung der Parame-
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ter wird der Adam-Optimierer aus Kingma u. a., 2014 mit sich exponentiell von intial
0.003 auf 0.0001 verringernder Lernrate eingesetzt. Die genaue Anzahl der eingesetzten
EBT-Module (n = 2, n = 4) im konkret implementierten Faltungsnetz resultiert aus
empirischen Tests in frühen Experimenten.
Im Unterschied zum „naiven“ Informationsgehalt von 32 Bit-Gleitkomma-Werten

in den Eingabevolumina der Größe 253 wird die lokale Umgebung jeder Position nun
durch einen nur 256 Bit Deskriptor beschrieben. Es lässt sich also ein Kompressions-
faktor von ≈ 2000 erreichen. Zum Vergleich dient in den Experimenten der in Heinrich
u. a., 2013b beschriebene SSC-Deskriptor (siehe Abb. 3.4). Dieser codiert 12 Ähnlich-
keitsberechnungen von räumlich um den zentralen Voxel angeordneten Bildausschnit-
ten in je 5 Bit, so dass ein 64 Bit großes Speicherfeld ausreicht, um das Ergebnis zu
speichern. Um eine Vergleichbarkeit hinsichtlich der expressiven Kapazität der Deskrip-
toren zu gewährleisten, werden zusätzlich zum initialen SSC-Deskriptor noch weitere
drei Nachbarn an jeweils leicht verschobenen Koordinaten (um 2 Voxel entlang jeder
Achse) zu einer ebenfalls 256 Bit umfassenden Repräsentation zusammengefasst. Letz-
tere wird dann im Folgenden mit SSC bezeichnet und ebenfalls zum Auffinden der
Landmarken-Korrespondenzen herangezogen.

3.3.2 Deskriptor-basierte diskrete Registrierung

Im Folgenden wird die Registrierungsqualität der erlernten Featurerepräsentationen
untersucht. Dazu werden mehrere Kombinationen aus verschiedenen Deskriptoren ge-
nutzt.
Generell sind zwei Vorbereitungsschritte für die Anwendung des Registrierungsfra-

meworks vonnöten. Auf den Einatmungsbildern der Patienten, die aus Laufzeitgrün-
den in halber Auflösung (ca. 2mm3 Voxelgröße) vorliegen, werden mit dem Förstner-
Operator Landmarkenpositionen zur Deskriptorextraktion ermittelt und zur Registie-
rung genutzt. Insbesondere werden die manuellen Positionen der medizinischen Ex-
perten hier nicht als Vorwissen eingesetzt, sondern lediglich später als Testkriterium.
Dies wahrt die Unabhängigkeit dieses Expertenwissens zur Laufzeit auf bisher ungese-
henen Datensätzen. Auf den als moving Bildern betrachteten Ausatmungsbildern, die
ebenfalls auflösungsreduziert sind, werden allerdings an jeder Position des Bildgitters
die jeweiligen Deskriptoren erhoben. Dies ermöglicht, dass ausgehend von den Land-
markenpositionen der Einatmung nun die Ähnlichkeit aller diskreten Verschiebungen
bestimmt werden kann. Danach wird der Nachrichtenaustausch zur Regularisierung
auf dem minimalen Spannbaum der irregulär verteilten Landmarken durchgeführt,
wie in Abschnitt 2.2.1 erläutert. Es sei noch einmal darauf verwiesen, dass es sich bei
den CT-Scans für die jeweiligen zur Testzeit eingesetzten Faltungsnetze im Sinne der
leave-one-patient-out-Strategie um ungesehene Daten handelt.
Die Art der extrahierten Deskriptoren variiert pro durchgeführtem Experiment. Der

CNN -Deskriptor besteht aus einer 256 Bit-Repräsentation des Eingabevolumens um

40



3.3 Experimente

den zentralen Voxel von Interesse. Im vorangehenden Abschnitt 3.3.1 wird der Auf-
bau des ebenfalls 256 Bit langen SSC -Deskriptors erläutert, der auch hier zum Ein-
satz kommt. Darüberhinaus werden noch weitere Featurerepräsentationen generiert,
die zusätzliche Arten von Nachbarschaften betrachten. SSC9 erhebt den originalen 64
Bit-SSC-Deskriptor an den Landmarkenpositionen sowie 8 weitere, benachbarte SSC-
Features. Letztere verteilen sich auf die Ecken eines umgebenden Würfels mit einer
Seitenlänge von 4 Voxeln, so dass ein 576 Bit-Deskriptor entsteht. Analog ist CNN9
strukturiert, allerdings ergibt sich aus 256 Bits pro Position insgesamt ein 2304 Bit-
Feature. Der gleich große SSC9x4 -Deskriptor folgt ebenfalls diesem Aufbau, nutzt da-
bei aber wieder das 256 Bit-SSC -Design. Außerdem wird auch ein Combi-Deskriptor
mit 640 Bit untersucht. Dieser kombiniert die 256 Bit-CNN -Repräsentation an der
Landmarkenposition mit 6 weiteren SSC -Features, die mit kleinen Verschiebungen
von ±2 Voxeln entlang der Achsen extrahiert werden. Abb. 3.4 zeigt die jeweiligen
räumlichen Strukturen der Deskriptoren.
Zunächst bietet sich ein Vergleich der Registrierungsgenauigkeit zwischen den Reprä-

sentationen CNN und SSC an, die auch beim Landmarken-Korrespondenzfindungspro-
blem in Abschnitt 3.3.1 herangezogen werden. Aufgrund deren 256 Bit-Gestalt und der
Anwendung der vollen Registrierungspipeline samt Regularisierung (siehe Abschnitt
2.2.1) erhält dieses Experiment das Kürzel 256-mrf. Ein Vergleich zwischen den beiden
Deskriptoren ähnlicher Größe Combi und SSC9 findet in Experiment 640-mrf statt.
Dem gegenüber steht in 640-no_reg die Betrachtung, wie sich das Auslassen der Regu-
larisierung auf die Registrierungsgenauigkeit auswirkt. Selbiges wird in 2304-no_reg
beibehalten, um zu untersuchen, ob CNN9 - und SSC9x4 -Feature durch ihr größeres
rezeptives Feld in der Lage sind, auch räumlich weiter entfernte Korrespondenzen zu
erkennen.

3.3.3 Vergleich mit Ende-zu-Ende-trainierten
Registrierungsverfahren

In Hu u. a., 2018 wird ein schwach-überwachtes, multimodales Registrierungsver-
fahren vorgestellt, das ursprünglich zur US-MRT-Registrierung eingesetzt wird und in
2.4.2 kurz eingeführt wurde. Da dieser Ansatz nur für eine kleine Anzahl an räumlich
ausgedehnten und nicht exakt lokalisierten manuellen Landmarken entwickelt wurde,
müssen die Daten für dieses Experiment angepasst werden. Anstelle der Nutzung von
Landmarken werden manuelle Segmentierungen der Lungenlappen erstellt und zum
Training für den Label Reg-Ansatz verwendet, um dem Vorgehen von Hu et al. mög-
lichst ähnlich zu sein. Die leave-one-patient-out-Strategie wird aber auch in diesem
Falle genutzt, um die sonstigen Randbedingungen der Experimente beizubehalten.
Allerdings werden analog zur Beschreibung in Hu u. a., 2018 die Dice-Werte der anno-
tierten Strukturen als Gütemaß beibehalten.
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Abb. 3.4: Räumliche Darstellungen zur Verdeutlichung des Aufbaus der verschiedenen, einge-
setzten Deskriptorarten. Die Position des betrachteten Voxels ist mit roter Umran-
dung gekennzeichnet. SSC-Deskriptoren sind im Gegensatz zu den CNN-Vertretern
klassische, manuell definierte Feature.

Darüberhinaus lässt sich das selbst-überwachte, in Abschnitt 2.4.1 beschriebe-
ne VoxelMorph-Verfahren aus Balakrishnan u. a., 2019 ebenfalls auf diesen Datensatz
anwenden und nach einer Trainingsphase zur Registrierung der beiden verschiedenen
Atemphasen pro Patient nutzen. In diesem Fall wird wieder auf die Bestimmung der
TRE-Werte zurückgegriffen.

3.4 Ergebnisse

Entsprechend der Zweiteilung der Experimente, präsentiert der erste Teil des folgen-
den Abschnittes die Ergebnisse des Landmarken-Korrespondenzfindungsproblems. An-
schließend werden die Resultate der erlernten Deskriptoren innerhalb der diskreten de-
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Abb. 3.5: Resultate des Landmarken-Korrespondenzfindungsproblems. Links: Wiedererken-
nungsraten: Combi & binCNN vs. SSC Heinrich u. a., 2013b; rechts: Normalisierte
Verteilung der CNN-Ausgabewerte

eds-Registrierung auf dem anspruchsvollen DIR-lab COPD-Datensatz bezüglich ihrer
räumlichen Beschreibungsfähigkeit dargelegt. Hinsichtlich der paarweisen Registrie-
rung wird zum Vergleich auch das Ergebnis der Ende-zu-Ende-trainierten Methode
aus Hu u. a., 2018 angegeben, sowie Werte für VoxelMorph aus der Literatur.

3.4.1 Evaluation des Landmarken-Korrespondenzfindungsproblems

Die linke Seite in Abb. 3.5 veranschaulicht die mittlere Wiedererkennungsrate beim
Landmarken-Korrespondenzfindungsproblem des in diesem Kapitel entwickelten und
trainierten CNN-Binärdeskriptor (blau). Gemittelt über die Patienten ist dazu ist auf
der vertikalen Achse der Anteil der 300 manuell annotierten Landmarken aufgetra-
gen, für welchen die Menge der k-Nächsten-Nachbarn den korrespondierenden Partner
enthält. Im Vergleich dazu ist in rot das Ergebnis des SSC-Deskriptors als Maßstab
dargestellt. Weiterhin illustriert die gelbe Kurve das Abschneiden des ebenfalls entwi-
ckeltenCombi-Deskriptors. Dabei liegt die Wiedererkennungsrate des CNN-basierten
Deskriptors konstant oberhalb derjenigen des untrainierten Vergleichsmaßstabes, bei-
spielsweise lässt sich bei k = 10 eine Verbesserung von 53% auf 73% feststellen. Das
durchweg beste Ergebnis der drei herangezogenen Deskriptoren erzielt die Kombination
des CNN-Deskriptors mit SSC-Features, mit 85% bei k = 10.
Um den Einfluss des zusätzlichen Strafterms zur Binarisierung der Netzausgabe zu

visualisieren, dient die rechte Seite in Abb. 3.5. Dort ist die Entwicklung hin zu ei-
ner Binärverteilung in den Vektoreinträgen der CNN-Feature über die Trainingsepo-
chen hinweg nachzuvollziehen. Während der ersten 80 Epochen dominiert Ltriplet zur
sinnvollen Transformation ähnlicher Landmarken in den Featureraum. Anschließend
fokusiert sich das CNN-Training auf das Ausgeben von Werten nahe {−1, 1}. Ohne
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Tabelle 3.1: Resultate der Registrierungsaufgabe. Angebegen wird jeweils die mittlere Regis-
trierungsgenauigkeit über alle 10 Patienten. SSC9 erreicht den über alle Land-
marken und Patienten gemittelten geringsten target registration error (TRE).
Zur Einordnung sind die TRE-Werte des vollständig CNN-basierten, Ende-
zu-Ende-trainierten VoxelMorph-Ansatzes aus Balakrishnan u. a., 2019 aufge-
führt. Im Vergleich mit dem auf Segmentierungen der Lungenlappen wiederum
Ende-zu-Ende-trainierten Label Reg-Verfahren aus Hu u. a., 2018 zeigt sich die
mrf-640-Combi-Methodik hinsichtlich der Dice-Metrik deutlich überlegen.

Experiment Deskriptor ∅ average TRE ∅ maximum TRE

256-mrf
CNN 3.00± 0.48 15.66± 5.18

mit MRF-
SSC 1.97± 0.51 14.44± 5.48

640-mrf
Combi 1.59± 0.27 9.47± 3.13

Regularisierer
SSC9 1.49± 0.33 12.14± 5.46

640-no_reg
Combi 9.61± 0.77 40.27± 5.16

ohne MRF-
SSC9 11.44± 1.33 43.94± 3.82

2304-no_reg
CNN9 4.70± 0.93 37.80± 11.04

Regularisierer
SSC9x4 7.27± 1.53 37.74± 6.56

VoxelMorph integriert 9.18± 4.48 —
aus

Hansen u. a., 2020

Experiment Deskriptor ∅ Dice

init — 0.761± 2.33 Lungen-
Label Reg integriert 0.817± 3.27 lappen-
640-mrf Combi 0.894± 2.06 Annotierung

den Quantisierungsterm Lquant sinkt die Wiedererkennungsrate in den durchgeführten
Experimenten beispielsweise bei k = 10 auf ≈ 60% herab.

3.4.2 Evaluation der Registrierungsgenauigkeit

Tabelle 3.1 enthält eine Übersicht aller durchgeführten Registrierungsexperimente. Für
jede innerhalb des deeds-Frameworks eingesetzte Deskriptorart werden die mittleren
Werte sowohl für den durchschnittlichen target registration error (TRE) als auch für
den maximalen TRE über alle 10 Testpatienten hinweg aufgeführt. Diese Werte quan-
tifizieren die Unterschiede zwischen den durch die Registrierung geschätzten Landmar-
kenpositionen und den tatsächlich durch die medizinischen Experten im Einatmungs-
scan annotierten Positionen.
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3.4 Ergebnisse

Im Rahmen des 640-mrf Experiments werden die besten Registrierungswerte er-
reicht. Den geringsten TRE erzielt dabei die SSC9 -Architektur mit geringfügig besse-
ren Werten als die Combi-Feature. Allerdings erreichen letztere den besten Wert be-
züglich des maximalen TREs. Die ebenfalls unter Regularisierung ausgeführten SSC -
Experimente führen zu vergleichbaren Fehlergrößen. Die lediglich um den zentralen
Voxel basierte CNN -Repräsentation weist dahingegen schon etwas größere Genauig-
keitsabweichungen auf.

Betrachtet man die Experimente 640-no_reg unter Ausschluss der Regularisierung,
so stellt man fest, dass nun die Kombination aus gelernten und klassischen Featu-
ren dem manuell entworfenen SSC9 -Deskriptor überlegen ist. Schließlich nähert sich
der CNN-basierte CNN9 -Deskriptor unter Einbezug einer größeren Nachbarschaftsbe-
trachtung den mittleren TRE-Werten der Verfahren mit Regularisierung an.

Insgesamt legen die Ergebnisse nahe, dass die SSC-Feature im Vergleich lokal ro-
bustere Beschreibungen von Lungenscans liefern können. Insbesondere das 640-mrf
Experiment lässt aber den Rückschluss zu, dass die Anreicherung der SSC-Feature um
CNN-basierte Repräsentationen zu einem stärkeren Einfluss auch regionaler Informa-
tion führt. Dies begünstigt die Vorhersage auch größerer, atmungsbedingter Bewegun-
gen. Diesen Eindruck verstärken auch die ermutigenden Ergebnisse der CNN9 -Feature
ohne Einsatz von Regularisierung. Sie erreichen TRE-Werte von 4.7mm und demons-
trieren damit ihre Fähigkeit robust Korrespondenzen zwischen beiden Atemphasen zu
erkennen. Abb. 3.6 untermauert dies weiterhin, indem sich in der linken Grafik unter
Einbezug des Regularisierers kaum Genauigkeitsunterschiede zwischen den manuell de-
finierten und den erlernten Deskriptoren ergeben. Im Gegensatz dazu zeigt sich ohne
Regularisierung auf der rechten Seite, dass die Berücksichtigung regionaler Informati-
on durch die CNN-Verfahren im Vergleich deutliche Genauigkeitszuwächse ermöglicht.
Beispielhaft vergleicht Abb. 3.7 visuell die transformierten Ausatmungsbilder des Pati-
enten 2 auf den zugehörigen Einatmungsscan. Das Berücksichtigen regionaler Informa-
tion durch den CNN-basierten Combi-Deskriptor verbessert die Übereinstimmung im
Vergleich des rechten Bildes zum mittleren (SSC9 ) an der durch den Pfeil markierten
Stelle.

3.4.3 Vergleich mit einem Ende-zu-Ende-trainierten
Registrierungsverfahren

Für den Vergleich mit einem aktuellen Ende-zu-Ende-trainierten Registrierungsnetz-
werk wird das Label Reg-Verfahren aus Hu u. a., 2018 herangezogen. Nach Abschluss
des Trainings generiert das Verfahren für ungesehene Testpaare dichte Verschiebungs-
felder. Da auf den Lungenlappensegmentierungen trainiert wurde, die eine Anpassung
großflächiger Bereiche verursacht, wird diese Aufgabe auch für einen fairen Vergleich
herangezogen - d.h. anstatt die TRE-Werte als stark lokales Maß zu betrachten, wird
die Gesamtüberlappung der anatomischen Struktur betrachtet. Gegenüber den initia-
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Abb. 3.6: Prozentuale, kummulative Darstellung der TRE-Werte. Links: Unter Einbezug des
Regularisierers fällt lediglich der reine CNN -Deskriptor leicht zurück. Rechts: Ohne
Regularisierung trägt die erlernte Beachtung regionaler Information maßgeblich zur
Robustheit der faltungsnetzbasierten Deskriptoren bei.

Abb. 3.7: Visuelle Registrierungssergebnisse anhand eines Sagittalschnittes durch den Ein-
atmungsscan von Patient 2. Links: Überlagerung des nicht-registrierten, zugehöri-
gen Ausatmungsscan. Mitte & Rechts: Die transformierten Ausatmungsscans un-
ter Anwendung der Verschiebungsfelder basierend auf SSC9 - (m) und Combi-
Deskriptoren (r). Die roten Pfeile heben die verbesserte Übereinstimmung an ei-
ner anatomischen Unregelmäßigkeit durch die Verwendung regionaler Information
durch den CNN-Ansatz hervor.
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3.5 Diskussion & Zusammenfassung

len, durchschnittlichen Dice-Werten von 76.0% über 4 annotierte Lungenlappen verbes-
sern sich diese Werte auf 81.7%. Wendet man nun die Verschiebungsfelder, die mittels
der Combi-Deskriptoren und des deeds-Verfahrens im 640-mrf-Experiment berechnet
werden auf die gleichen Segmentierungen an, so wird ein deutlich besseres Ergebnis von
89.4% erzielt. Letzteres, obwohl diese Segmentierungsmasken im Gegensatz zu Label
Reg bei der hybriden Methodik nicht zu Trainingszwecken genutzt wurden.

Laut Hansen u. a., 2020 erreicht das VoxelMorph-Verfahren hinsichtlich des Target-
Registration-Errors Werte von 9.18 mm. Diese liegen im Bereich der Combi-Deskriptoren
ohne die Verwendung einer Regularisierung. Der nur halb so große TRE-Wert der
SSC9x4 -Deskriptoren unterstreicht hingegen, dass voll umfassend CNN-basierte, Ende-
zu-Ende-trainierte Registrierungsmethoden gerade auf kleinen Datensätzen noch nicht
die Genauigkeiten klassischer, diskreter Methoden erreichen.

3.5 Diskussion & Zusammenfassung

Dieses Kapitel zeigt, dass das stark-überwachte Training von monomodalen De-
skriptoren im Rahmen einer Landmarken-Korrespondenzfindungsaufgabe möglich ist
und dass diese in einem diskreten Registrierungsframework gewinnbringend eingesetzt
werden können. Die mittels der CNN9 -Feature erreichten Registrierungsgenauigkeiten
ohne jegliche komplexe, graphenbasierte Regularisierungsstrategie zeigen Wege für wei-
tere Forschungsarbeiten auf diesem Gebiet auf. Sei es in Form schneller, interaktiver
Korrespondenzfindung oder sogar globaler, nicht-rigider Registrierung, die dank ihrer
gelernten Deskriptoren nicht auf affine Vorregistrierung oder manuelles Zurechtschnei-
den auf sog. regions of interest angewiesen ist. Darüberhinaus müssen alle Ergebnisse
vor dem Hintergrund des Trainingsprozesses der Deskriptoren betrachtet werden. Im
Gegensatz zu im Allgemeinen sehr robusten, manuell entworfenen Deskriptoren, wel-
che sogar fast strukturlose Bildbereiche durch hohe Selbstähnlichkeitswerte sinnvoll
codieren, ist das Verhalten der CNN-basierten Repräsentationen in diesen Situationen
bislang nicht eindeutig vorherzusehen. Dies rührt daher, dass aufgrund der starken
Überwachung im Training nur anatomisch markante Positionen beim Anpassen der
lernbaren Netzparameter eine Rolle spielen. Dennoch erleichtert diese Art von Sur-
rogataufgabe gerade das Auffinden von Korrespondenzen mit größerem räumlichen
Abstand, da der Fokus wirklich auf genaue Korrespondenzen und nicht nur bloße Ähn-
lichkeit potentiell verschiedener Landmarken gelegt wird. Dementsprechen können sich
zukünftige Arbeiten auch mit aufwendigeren Trainingsstrategien befassen, die der ei-
gentlichen Ähnlichkeitssuche während der Registrierungsaufgabe noch näher kommen.
Im Vergleich zu Stand-der-Technik Ende-zu-Ende-trainierten Registrierungsverfah-

ren von Hu u. a., 2018 und Balakrishnan u. a., 2019 zeigt sich allerdings gerade hinsicht-
lich großer atembedingter Verschiebungen der Vorteil diskreter Optimierungsansätze,
wie sie in der entwickelten Hybridmethodik zum Einsatz kommt.
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Insgesamt betrachtet wird ein CNN-basiertes Verfahren entwickelt um aussagekräf-
tige 3D-Binärdeskriptoren zu lernen. Diese zeigen im Vergleich zu manuell entworfe-
nen Deskriptoren eine überlegene Wiedererkennungsrate bezüglich der direkten Korre-
spondenzsuche. Da sich in den eigentlichen Registrierungsexperimenten das Verhältnis
umgekehrt darstellt, zeigt sich die Notwendigkeit einer weiteren Verbesserung des Trai-
ningsprozesses. Die Kombination beider Repräsentationsarten aber, welche die Vorteile
der lokalen Robustheit manueller Deskriptoren mit der regionalen Informationsextrak-
tion des CNN-Part verbindet, ermöglicht die insgesamt beste Registrierungsgenauig-
keit. Die Synergie datengetriebener Lernverfahren kombiniert mit Domänenwissen über
die Wichtigkeit von beispielsweise Kanten- und Orientierungsinformation der manuell
definierten Deskriptoren weist deshalb ebenfalls auf Möglichkeiten für weitere Arbeiten
hin.
Im nächsten Kapitel wird ebenfalls ein zweistufiges Verfahren zur Registrierung me-

dizinischer Volumenbilddaten entwickelt, allerdings dann unter schwach-überwach-
tem Training und für ein multimodales Problem - also hinsichtlich dieser Punkte
unter noch größeren Herausforderungen.
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Kapitel 4

Schwach-überwachtes Deskriptorlernen
in multimodalen 3D Herz-Bilddaten

Das nachfolgende, zweite methodische Kapitel dieser Arbeit untersucht ein
multimodales CT-MRT-Registrierungsproblem auf ungepaarten Herzdaten.
Dazu werden mit Hilfe eines speziellen Auto-Enkoders schwach-überwacht
gelernte Deskriptoren zum iterativen Führen des segmentierungsbasierten Re-
gistrierungsprozess eingesetzt. Die entwickelte Methodik ist im Beitrag Blen-
dowski u. a., 2020a im International Journal for Computer Assisted Radiology
and Surgery veröffentlicht worden.

4.1 Einleitung & Motivation

Zu diagnostischen Zwecken eingesetzte Bildgebungsverfahren wie CT und MRT haben
unterschiedliche Stärken beispielsweise in Bezug auf ihre zeitliche Auflösung oder die
Darstellung verschiedener Gewebearten. Insbesondere die nicht-rigide Registrierung
beider Modalitäten ist aber klinisch höchst relevant beispielsweise bei Bild-gestützten
Eingriffen oder der Strahlentherapie. Kapitel 3 illustriert mit dem Problem der Kom-
pensation atembedingter Bewegungen bereits bei Registrierungen auftretende Schwie-
rigkeiten - neben anderen Faktoren wie fortschreitenden, morphologischen Verände-
rungen durch Krankheiten. Im multimodalen Kontext kommen darüber hinaus z.B.
noch hochgradig nicht-lineare Intensitätsbeziehungen für korrespondierende Gewebe-
arten erschwerend hinzu.
In diesem Kapitel wird daher eine Methodik vorgeschlagen, die auf einem speziell

anhand von Segmentierungen gelernten, zwischen beiden Modalitäten geteilten, ab-
strakten Formraum basiert. Das Ziel dieser gemeinsamen Abstrahierung ist es, das
multimodale Registrierungsproblem der gleichzeitigen räumlichen Anpassung und
des Abstimmens der Intensitäten zu vereinfachen. Diese schwach-überwacht ge-
lernten Transformationen ermöglichen eine Rekonstruktion der anatomischen Formen
unabhängig von ihren Modalitäten, so dass eine schrittweise geleitete Registrierung
zwischen CT- und MRT-Herzbildern durchgeführt werden kann.
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In Anbetracht der bisherigen Arbeit ergeben sich sowohl durch die Art der zu re-
gistrierenden Bilddaten samt zu lernenden Deskriptoren im multimodalen Umfeld
als auch in der Form der Überwachung Veränderungen zu Kapitel 3. Letztere ist im
Gegensatz zu den manuellen, exakten Landmarken nun nur noch schwach in Form
von Segmentierungen gegeben.
Inhaltlich wird nachstehend zunächst in Abschnitt 4.1.1 ein kurzer Überblick an

relevanter Literatur gegeben. Abschnitt 4.2 greift einerseits den zugrunde liegenden
Auto-Enkoder-Ansatz aus Abschnitt 2.3.2 auf und führt andererseits die daraufbasie-
rende Registrierungsmethode ein. Anschließend werden in Abschnitt 4.3 die deskriptive
Qualität der Transformation in den nicht-linearen Formraum sowie die Robustheit der
schrittweise geleiteten Registrierung untersucht. Schließlich folgen in Abschnitt 4.4
noch eine Diskussion der Ergebnisse und ein Ausblick auf weitere, sich daraus erge-
bende Fragestellungen.

4.1.1 Literatur

Zur Beurteilung, wie gut ein Bildpaar korrespondierende Strukturen örtlich überein-
stimmend abbildet, benötigt man Ähnlichkeitsmaße Hajnal u. a., 2001. Handelt es sich
dabei um Bilder der gleichen Modalität, kann die Summe der quadratischen Grauwert-
differenzen bereits dieser Aufgabe genügen. Aufgrund der hochgradig nicht-linearen
Beziehung zwischen Intensitätswerten gleicher Gewebearten im Falle der Registrierung
von Bildern verschiedener Modalitäten, sind dabei methodisch komplexere Strategien
notwendig.
Dazu zählt klassischerweise die Ähnlichkeitsberechnung mittels mutual information,

einer Methode der Informationstheorie, die von Maes u. a., 1997 erstmals auf Probleme
der medizinischen Bildregistrierung angewendet und die in Abschnitt 2.1.2 vorgestellt
wurde. In Zöllei u. a., 2003 weisen die Autoren allerdings nach, dass irreführende statis-
tische Korrelationen für bestimmte Bildmuster entstehen können, die keine real vorlie-
gende, anatomische Entsprechung haben. Daraus resultierende, unplausible räumliche
Transformationen können vermieden werden, wenn als alternative Strategie die Über-
führung der Bilddaten verschiedener Modalitäten in einen gemeinsamen Raum verfolgt
wird.
Die aus Kapitel 3 bereits bekannten und in Heinrich u. a., 2012 vorgeschlagenen SSC-

bzw. MIND-Deskriptoren stellen ein solches Verfahren dar. Trotz der überzeugenden
Ergebnisse dieser manuell entworfenen Deskriptoren beschäftigen sich viele Arbeiten
aufgrund der Erfolge von CNNs mit lernbaren Repräsentationen, allerdings zumeist
nur für Bilder gleicher Ursprungsmodalitäten. Da dieses Kapitel ein multimodales
Registrierungsproblem zum Gegenstand hat, ist auf den in Abschnitt 2.4.2 vorgestell-
ten Ansatz aus Hu u. a., 2018 zu verweisen. Dieser benötigt zum Training allerdings
eine in diesem Umfang für medizinische Bilddaten häufig nicht vorhandene Datenbasis
von mehr als 100 gepaarten MRT- und Ultraschall-Patientenscans samt Annotationen.
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4.2 Methoden

Ein unter Ausnutzung von Forminformation als a-priori-Wissen lernbares Verfahren für
eine neue Modalität ohne Verfügbarkeit gepaarter Daten wird in Joyce u. a., 2018 vor-
gestellt. Diese Methode hat aber die Bildsegmentierung und nicht die Bildregistrierung
zum Ziel.
Der in Abschnitt 4.2 beschriebene Ansatz verfolgt eine segmentierungsbasierte Re-

gistrierungsstrategie. Für eine umfassende Übersicht und Einführung in die Thematik
sei der geneigte Leser auf Maintz u. a., 1998 und Sotiras u. a., 2013 verwiesen. Ei-
ne obere Schranke für die abschließend zu erzielende Registrierungsgenauigkeit stellt
im Fall der angewandten Methodik die Qualität der zugrundeliegenden Segmentie-
rung der Zielstruktur dar. Statistische Formmodelle bieten einen klassischen Ansatz
zur Generierung von Segmentierungen. Gerade in diesem Bereich sind mithilfe von Fal-
tungsnetzwerken aber große Genauigkeitszuwächse erzielt worden, so dass in Bouteldja
u. a., 2019 eine Faltungsnetz-basierte Auto-Enkoder-Methode entwickelt wurde, die in
Abschnitt 2.3.2 erläutert wird und im Folgenden als Grundlage dient.
Darauf aufbauend adressiert die in diesem Kapitel präsentierte Methode einige Pro-

bleme Deep Learning-basierter Registrierungsansätze. Im Gegensatz zu den Arbeiten
von Rohé u. a., 2017 oder Dosovitskiy u. a., 2015 werden weder gepaarte, bereits regis-
trierte Bilddaten noch Landmarken oder auch die korrekten (synthetischen) Deforma-
tionsfelder zum Training benötigt. Durch die lediglich schwache Überwachung in
Form von Segmentierungen, auf die auch Hu u. a., 2018 oder Joyce u. a., 2018 in ihren
Arbeiten zurückgreifen, entfällt das aufwendige Generieren dieser Art von Grundwahr-
heiten.
Der im vorliegenden Kapitel entwickelte Ansatz stellt in dieser Form zwei Neuerun-

gen bereit. Einerseits wird ähnlich wie in Kapitel 3 ein klassisches optimierungsbasiertes
Registrierungsframework genutzt, hier aber in Kombination mit schwach-überwacht
gelerntem Form-Vorwissen, an Stelle der zuvor herangezogenen stark-überwacht ge-
nerierten Binär-Deskriptoren. Dadurch lässt sich die Abhängigkeit des Lernens eines
modalitätsunabhängigen Ähnlichkeitsmaßes von paarweise zum Trainieren benötigten
Korrespondenzen aufbrechen. Andererseits ermöglicht die spezielle Art des Trainings
der Formen das schrittweise Führen des Registrierungsprozesses durch Interpolationen
von Zwischenrepräsentationen der betrachteten anatomischen Strukturen.

4.2 Methoden

Die detaillierte Einführung des entwickelten multimodalen Registierungsansatzes
setzt zunächst das Verständnis des gewählten Form-Generators voraus. Denn die Me-
thode stützt sich auf die Annahme, dass plausible Korrespondenzen beim Bildan-
passungsprozess zwischen zwei grundlegend verschiedenen Bilddomänen wie CT- und
MRT-Daten einfacher anhand von zugehörigen Segmentierungen identischer Struk-
turen durchzuführen sind. Aus diesem Grund wird die verwendete CAE-Architektur
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bereits im Grundlagenabschnitt 2.3.2 beschrieben und an dieser Stelle wird nur auf
problemspezifische Änderungen, die die Trainingsprozedur betreffen, eingangen. Durch
interpolierte Formen zwischen den anzugleichenden Bildern wird der eigentliche Regis-
trierungsalgorithmus in die Lage versetzt, potentiell starke nicht-lineare Deformation
iterativ geführt in mehreren kleinen, statt in einem großen Schritt zu ermitteln. Die
Details dieses Vorgehens werden dann in Abschnitt 4.2.2 erläutert.

4.2.1 CAE zur Form-restringierten Segmentierung

Die grundlegende Funktionsweise des CNN-Auto-Enkoders wird aus der Veröffentli-
chung von Bouteldja u. a., 2019, wie in Abschnitt 2.3.2 beschrieben und in Abb. 2.8
dargestellt, übernommen. Im Detail ist dabei anzumerken, dass abhängig von der je-
weiligen Trainingseingabe die erste Faltungsschicht des Netzwerkes ausgetauscht wird,
da die Multi-Organ-Segmentierungen in Form von One-Hot-kodierten Mehrkanalbil-
dern und im Gegensatz dazu die CT- und MRT-Daten als Ein-Kanal-Grauwertbilder
vorliegen. Dem Netzwerk werden dann beim Training jeweils ausschließlich aus Grau-
wertbildern oder Segmentierungen bestehende Mini-Batches präsentiert.
Im Falle der Segmentierungen verarbeitet die gesamte Auto-Enkoder-Architektur

die Eingabe, so dass die Parameter der beiden Bestandteile E und D mit Hilfe des
Cross Entropy-Loss (kurz: CE) basierend auf dem Rekonstruktionsfehler angepasst
werden. Bei der Eingabe von CT- und MRT-Bilddaten sollen durch das Faltungsnetz
ebenfalls die zugehörigen Segmentierungen generiert werden. Nach Berechnung des
CE-Losses CE{D(E(Ii)), Si} - zwischen den zur schwachen Überwachung vorlie-
genden Segmentierungsgrundwahrheiten Si und den vom Faltungsnetz rekonstruierten
Formen D(E(Ii)) - werden während der Fehlerrückführung hingegen nun die Parame-
ter des Dekoders D fixiert und nur die des Enkoders E angepasst. Außerdem folgt
die Umsetzung dieses Kapitels einer leichten Abänderung in Bouteldja u. a., 2019 ge-
genüber der Pionierarbeit Jetley2016. Die Verwendung eines CE-Loss auf den rekon-
struierten Formen im Bildraum anstelle einer direkten Minimierung der `1-Distanzen
||E(Ii) − E(Si)||1 im Formraum liefert – der potentiell größeren Anfälligkeit für va-
nishing gradients unter Verwendung des Dekoders zum Trotz – den Autoren zufolge
qualitativ bessere Ergebnisse.

4.2.2 Iterativ geführte Registrierung

Angenommen es liegt ein erfolgreich trainierter, wie in Abschnitt 2.3.2 beschriebener
CAE zur Form-restringierten Segmentierung vor, dann lässt sich dieser zum Zweck
einer multimodalen Bildregistrierung heranziehen. Der schematische Ablauf der in
diesem Kapitel entwickelten Methode ist in Abbildung 4.1 illustriert.
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4.2 Methoden

Für ein zu registrierendes Bildpaar (F ,M), bei dem das moving BildM dem fixed
Bild F anzugleichen ist, lässt sich dieses – im Gegensatz zu Kapitel 3 – kontinuierlich
formulierte Problem durch

arg min
ϕ

D(SF , ϕ ◦ SM) + αR(ϕ) (4.1)

formalisieren. Es wird diejenige Transformation ϕ gesucht, die ein Distanzmaß D zwi-
schen den CAE-generierten Segmentierungen und einen additiven, für plausible De-
formationen zuständigen Regularisierungsterm R minimiert. Demzufolge besteht der
erste Schritt der entwickelten Methode darin, die jeweiligen Formkodierungen E(F)
bzw. E(M) im gemeinsamen Formraum zu erstellen.
Die grundlegende Annahme des Verfahrens besteht darin, dass eine lineare Interpola-

tion zwischen beiden Kodierungen im Formraum n− 1 glatt ineinander überführbare,
CAE-generierte Segmentierungen SF/M = D(E(F/M)) generiert, in dem der Aus-
druck

Sλ = D

(
E(M)− λ

n
· (E(M)− E(F))

)
(4.2)

ausgewertet wird. Dabei wird λ ∈ {0, ..., n} so gewählt, das S0 = SM entspricht und
Sn = SF . Diese im Bildraum nicht-linear transformierten, zwischen den Formen von F
undM liegenden Segmentierungen sollen den Registrierungsprozess iterativ führen, um
abschließend das moving BildM anhand des resultierenden Feldes zu transformieren.
Insbesondere bei großen Deformationen kann es zu fehlerhaften Transformationen von
M kommen, wenn lokale Minima der Kostenfunktion beim Optimieren erreicht werden.
Aus diesem Grund wird das komplexe Suchen einer direkten, optimalen Transformation
ϕdirect zerlegt in eine Vielzahl kleinerer und daher einfacherer Deformationen

ϕdirect ≈ ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 (4.3)

Dabei lässt sich mittels der Anzahl n die Stärke der Deformationen zwischen zwei In-
terpolationsschritten kontrollieren. Nutzt man die One-Hot-Darstellung der Segmen-
tierungen, so lässt sich wiederum der CE-Loss nutzen, um als Distanzmaß im Schritt k
die Anpassungsgüte der transformierten Segmentierung ϕ ◦Sk−1 und Sk zu beurteilen
und somit die aktuelle Transformation ϕk zu bestimmen.
Damit das Verfahren anatomisch plausible Transformationen bevorzugt, bestraft

der Regularisierungsterm einerseits abrupte lokale Änderungen im Deformationsfeld,
indem die Summe der quadratischen Differenzen zwischen dem Feld und einer geglätte-
ten Version seiner Selbst einfließt. Andererseits werden auch zu große Deformationen
direkt durch die Summe der quadrierten Längen von Verschiebungsfeldvektoren be-
rücksichtigt, so dass sich folgender Ausdruck ergibt:

R =
∑
x∈Ω
‖ϕx − ϕx

smooth‖22 + ‖ϕx‖22. (4.4)
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Abb. 4.1: Iterativ geführte Registrierung: Zunächst werden die Formkodierungen E(M) und
E(F) des moving BildesM und des fixed Bildes F bestimmt. Anschließend werden
mittels linearer Interpolation im Formraum Zwischenkodierungen bestimmt und
durch den Dekoder D zu Segmentierungen S0, ...,Sn rekonstruiert. Dies ermöglicht
die schrittweise Berechnung kleinerer Transformationen ϕi zwischen Si und Si−1
anstelle einer potentiell sehr großen Deformation ϕdirect um S0 an Sn nicht mehr
nur in lediglich einem Schritt anzugleichen.

Da die Kostenfunktion ausschließlich aus ableitbaren Termen besteht, nutzt die Um-
setzung im Rahmen dieser Arbeit die im PyTorch-Framework implementierte autograd
engine. Mit Hilfe des Adam-Optimierers lassen sich die Parameter des Transforma-
tionsmodells und damit die Verschiebungsfeldvektoren durch das Gradientenabstiegs-
verfahren anpassen. Um die Anzahl der Parameter des Transformationsmodells zu
beschränken, nutzt die hier vorgestellte Methode ein im Vergleich zu den Bilddaten
grobmaschigeres Netz an Kontrollpunkten. An jedem dieser Punkte wird ein dreidi-
mensionaler Verschiebungsvektor dg geschätzt, der in Kombination mit seiner räumli-
chen Identität idg dann die Transformation ϕgk = idg + dg an dieser Stelle beschreibt.
Abschließend wird das dichte Verschiebungsfeld für jeden Bildpunkt durch trilineare
Interpolation bestimmt.

4.3 Experimente & Ergebnisse

Die vorgeschlagene, schwach-überwacht trainierte, multimodale Registrierungs-
methodik dieses Kapitels basiert auf der Angleichung von Organsegmentierungen. Die
Umwandlung der jeweiligen CT- und MRT-Grauwertbilder in Segmentierungen stellt
somit die Transformation in einen gemeinsamen Raum dar. Dabei ist zu beachten,
dass die Güte dieser Segmentierungen bereits eine obere Genauigkeitsschranke für die
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anschließende Registrierung bildet, da letztere idealisiert von absolut korrekten For-
men ausgeht und die tatsächlichen Eingangsinformationen der Bilder nicht beachtet.
Um die Effekte dieser Limitierung abzuschätzen, wird vor dem eigentlichen, multi-
modalen Registrierungenexperiment noch eine weitere, dahingehende Untersuchung
durchgeführt.
Zunächst soll die Funktionalität der vorgeschlagenen Enkoder-Dekoder-Architektur

zur Generierung Form-restringierter Segmentierungen untersucht werden. Im zweiten
Experiment wird mit einer variierenden Anzahl an Zwischenschritten die vorgeschla-
gene, iterativ geführte Registrierung beleuchtet. Um letztere in den Kontext anderer
Verfahren einordnen zu können, werden sie wiederum mit aus Kapitel 3 bekannten
Verfahren verglichen. Das in Abschnitt 2.4.2 eingeführte LabelReg aus Hu u. a., 2018
ist dabei ein Vertreter Ende-zu-Ende-trainierter, rein CNN-basierter Verfahren, wäh-
rend das in Abschnitt 2.2.1 vorgestellte SSC-deeds-Framework aus Heinrich u. a., 2013b
einen Vergleich im Hinblick auf klassische Registrierungsansätze erlauben soll.
Alle Experimente werden auf dem Trainingsdatensatz der Multi-Modality Whole He-

art Segmentation Challenge durchgeführt. Dieser enthält je 20 ungepaarte Herzscans
der Modalitäten CT und MRT samt Annotationen verschiedener Herzstrukturen durch
medizinische Experten. Genaue Informationen finden sich in Zhuang u. a., 2019. Die
Datenvorverarbeitung umfasst ein Resampling auf isotropische Voxelgrößen von 1.5×
1.5×1.5mm3 und ein einheitliches Zurechtschneiden der Volumina auf 144×122×168
Voxel, so dass die Strukturen von Interesse vollständig enthalten sind. Außerdem wer-
den die Grauwertbilder im Anschluss mittelwertbefreit sowie standardisiert. Um aussa-
gekräftige Resultate zu gewährleisten, werden alle Experimente in Form einer 4-fachen
Kreuzvalidierung durchgeführt. Das heißt pro Durchlauf werden jeweils unterschied-
liche Mengen von 15 CT-MRT-Bildpaaren zum Training und die je verbleibenden 5
Bildvolumina als Testdaten genutzt, so dass jedes Bildpaar nur genau einmal in den
Testdaten vorkommt.

4.3.1 CAE-basierte Segmentierung

Da die vorgeschlagene Registrierungsmethode plausibler Herzsegmentierungen bedarf,
wird zuerst die Robustheit des gewählten Segmentierungsverfahrens untersucht. Po-
tentiell lässt das Entfernen der skip connections schlechtere Ergebnisse im Vergleich
zum Stand der Technik in Form von UNet-Architekturen erwarten. Es sei noch ein-
mal darauf hingewiesen, dass sich aber nur so die zusätzlichen, über die Kodierungen
im Formraum hinausreichenden Abhängigkeiten vermeiden lassen. Letztlich ermög-
licht erst dies die Interpolation verschiedener Formkodierungen zur Rekonstruktion
der Zwischensegmentierungen für die geführte Registrierung.
Dem experimentellen Prozedere aus Bouteldja u. a., 2019 folgend, wird das Faltungs-

netz über 1000 Epochen hinweg mit einer Mini-Batch-Größe von 3 trainiert. Letztere
enthalten abwechselnd entweder CT- und/oder MRT-Grauwertbilder oder ausschließ-
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(a) (b) (c) (d) (e)

Abb. 4.2: Beispielhafte Darstellung einer CAE-basierten Segmentierung: (a) Überlagerung
einer Expertensegmentierung auf die axiale CT-Aufnahme aus (b); (c) CAE-
generierte Segmentierung; 3D-Renderings der gegebenen Grundwahrheit (d) und
des korrespondierenden CAE-Ergebnisses (e).

lich Herzsegmentierungen. Die Parameter des Modells werden während des Trainings
mit Hilfe des Adam-Optimierers angepasst, dessen initiale Lernrate empirisch auf 0.002
festgelegt wird und nach jeweils 30 Epochen um den Faktor 0.9 reduziert wird. Die in
Abbildung 2.8 mit detaillierter Parameterangabe illustrierte Architektur beeinhaltet
für jede Faltungsschicht eine anschließende Sequenz aus Batch-Normalisierungs- und
LeakyReLU -Aktivierungsschichten. Eine Ausnahme bildet die finale Ausgabeschicht,
deren Faltungen sich nur eine softmax-Funktion anfügt. Diese ergibt während des Trai-
nings in Kombination mit einem log-likelihood-Loss den CE-Loss auf den rekonstruier-
ten Formen. Darüber hinaus werden affine Transformationen zur Datenaugmentierung
genutzt und ein weight decay von 10−5 zur Vermeidung einer Überanpassung einge-
setzt.
Um den Einfluss des Entfernens der skip connections beurteilen zu können, wird

darüberhinaus eine ansonsten identische UNet-Architektur unter Einbezug dieser Ver-
bindungen dem gleichen Protokoll folgend trainiert.
Als Genauigkeitsmaß wird der Dice-Koeffizient gemittelt über alle Strukturen wäh-

rend der 4-fachen Kreuzvalidierung herangezogen.
Die Stand-der-Technik UNet-Faltungsnetze erzielen sowohl bei den CT-Daten mit

einem durchschnittlichem Dice-Wert von 0.87 als auch im Fall der MRT-Daten mit
0.84 bessere Ergebnisse als die zum Einsatz für die iterativ geführte Registrierung
abgewandelte CAE-Architektur mit Werten von 0.84 respektive 0.79. Rein qualita-
tiv lässt sich aber z.B. anhand von Abbildung 4.2 belegen, dass die CAE-generierten
Segmentierungen dennoch starke, lediglich glattere Übereinstimmung mit den Exper-
tensegmentierungen aufweisen. Abbildung 4.3 gibt darüberhinaus ebenfalls qualitativ
Aufschluss über die Struktur des Formkodierungsraumes. Auf der linken Seite (a) ist
mittels einer tSNE-Darstellung eine zweidimensionale Projektion der kodierten CT-
bzw. MRT-Daten samt Kodierung der zugehörigen Segmentierungen durch den CAE
abgebildet. Daraus lässt sich entnehmen, dass die Kodierung der Grauwertbilder wie
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Abb. 4.3: tSNE-Plots des gelernten Formraumes: In (a) zeigt sich die gewünschte Nähe der
transformierten Kodierungen von Grauwertbildern zu ihren zugehörigen Segmen-
tierungskodierungen. (b) Die lineare Interpolation von Kodierungen entlang der
grün-gestrichelten Linie erzeugt glatt ineinander zu überführende Rekonstruktio-
nen.

gewünscht nahe bei ihren Segmentierungen liegen. Dies erlaubt den Rückschluss, dass
beide Eingabemodalitäten sinnvoll in einen gemeinsamen Raum transformiert werden.
Auf der rechten Seite in (b) sind dann beispielhaft einige Kodierungen aus dem Form-
raum mittels des Dekoders zu Segmentierungen rekonstruiert. Insbesondere die lineare
Interpolation von Zwischenformen entlang der grün-gestrichelten Linie demonstriert
den beabsichtigen glatten Übergang der Anfangs- in die Endform.

4.3.2 Iterativ geführte Registrierung

Unter Verwendung der vorangehend trainierten Faltungsnetzwerke zur Generierung
von Segmentierungen soll nun das entwickelte iterative Registrierungsverfahren un-
tersucht werden - insbesondere, ob plausiblere Verschiebungsfelder berechnet werden,
wenn der Prozess durch intermediäre, generierte Segmentierungen geführt wird.
In den Experimenten wurde dies mit einer zur Führung des Angleichungsprozes-

ses steigenden Anzahl n interpolierter Formrekonstruktionen Si zwischen der für das
moving Bild generierten Segmentierung SM = S0 und der ebenfalls durch den CAE
generierten Zielsegmentierung SF = Sn untersucht.

Dazu werden die selben Gruppen bezüglich der 4-fachen kreuzvalidierten Experimen-
te des vorangehenden Abschnittes genutzt, so dass sich pro Gruppe durch die Regis-

57



Kapitel 4 Schwach-überwachtes Deskriptorlernen in multimodalen 3D Herz-Bilddaten

Abb. 4.4: Registrierungsergebnisse für 20 MRT-CT-Paare: Gemittelte Dice-Werte zwischen
transformierten MRT-Segmentierungen medizinischer Experten sowie jener für die
CT-Bilddaten, unter steigender Zahl n hintereinander ausgeführter Zwischenschrit-
te ϕn ◦ · · · ◦ ϕ1. n = 15 (rot) erziel dabei die besten Ergebnisse und übertrifft ein-
deutig die direkte Registrierung(n = 1, hellblau) mit einem Genauigkeitszuwachs
von 0.117 im Bezug auf die Dice-Werte. Die gestrichelten Balken illustrieren das
Ergebnis der SSC-deeds-Vergleichsmethode aus Heinrich u. a., 2013b.

trierung von jeweils 5 MRT-moving-Bilddatensätzen auf 5 CT-fixed-Scans eine Anzahl
von 25 Paaren ergibt. Dabei wird die Anzahl der aufeinanderfolgenden Transformatio-
nen von n = 1 - was einer direkten Registrierung von SM und SF entspricht - über
n = {3, 5, 8} schließlich auf n = 15 erhöht. Die Registrierungsaufgabe ist aufgrund
der genutzten Daten als herausfordernd zu beurteilen, da neben den unterschiedli-
chen Bildmodalitäten zusätzlich ungepaarte Daten verschiedener Patienten mit großer
anatomischer Variabilität verarbeitet werden. Zur Berechnung der einzelnen Verschie-
bungsfelder ϕi kommt wiederum jeweils ein Adam-Optimierer mit Lernrate von 0.01
für 50 Epochen zum Einsatz. Diese Anzahl an Iterationen hat sich während der Ex-
perimente empirisch als ausreichend erwiesen, um eine Konvergenz von ϕ ◦ Sk−1 in
Richtung Sk zu gewährleisten. Das zugrundeliegende Gitter an Kontrollpunkten, de-
ren Verschiebungsvektoren optimiert werden, hat eine Schrittweite von 8 Voxeln und
der zusätzliche Regularisierer R soll mit einer Gewichtung von α = 0.01 die Glattheit
von ϕ sicherstellen.

Abbildung 4.4 enthält die erreichten Dice-Werte für jede segmentierte Herzstruktur
unter Verwendung verschiedener Schrittzahlen zur Führung des Registrierungsprozes-
ses durch intermediäre Segmentierungen. Diese Werte berechnen sich in Gestalt eines
indirekten Qualitätsmaßes mittels der jeweils vorliegenden Expertensegmentierungen

58



4.3 Experimente & Ergebnisse

Tabelle 4.1: Ergebnisse der evaluierten Ansätze. Das Label Reg-Verfahren aus Hu u. a., 2018
verbessert die bereits initiale Übereinstimmung von no_reg nur geringfü-
gig, wohingegen die hier entwickelte Methodik der iterativ geführten Registrie-
rung (IGR) mit n = 15 eine höhere Genauigkeit als das klassische SSC-deeds-
Verfahren aus [Heinrich u. a., 2013b] erreicht.

Methode no reg Label Reg IGR n = 1 SSC-deeds IGR n = 15
Dice 0.331 0.352 0.536 0.608 0.653

für die CT-Scans und deren transformierter Gegenstücke für die MRT-Scans, da bei-
spielsweise direktere, Grauwert-basierte Ähnlichkeitsmetriken im multimodalen Fall
schwerlich anwendbar sind. Die betrachteten Strukturen setzen sich zusammen aus der
Pulmonararterie (PA), der Aorta, dem rechten & linken Atrium (RA/LA), dem rechten
& linken Ventrikel (RV/LV) und dem Myokard (MYO).
Zur besseren Einordnung wird der initiale Dice-Wert ohne jegliche Transformationen

durch alleinige Überlagerung der Grundwahrheiten in dunkelblau angegeben. Ebenso
visualisieren die gestreiften Balken die Ergebnisse eines klassischen Registrierungsf-
rameworks - des speziell für multimodale Probleme entworfenen und in Kapitel 3
besprochenen SSC-deeds-Verfahrens aus Heinrich u. a., 2015b. Als ein weiteres Ver-
gleichsverfahren wird der Ende-zu-Ende-trainierbare, CNN-basierte Label Reg-Ansatz
aus Hu u. a., 2018 in Form seiner frei zugänglichen Implementierung herangezogen. Die
lediglich geringe Verbesserung des durchschnittlichen, initialen Dice-Wertes von 33%
auf 35% lässt wie schon in den Experimenten des vorangehenden Kapitels den Schluss
zu, dass dieses Verfahren eine weitaus größere Trainingsdatenmenge zum Erzielen bes-
serer Resultate benötigt.
Die in diesem Kapitel entwickelte Methodik der iterativ geführten Registrierung er-

reicht bei Komposition n = 15 (rot in Abb. 4.4) Transformationen ϕi im Mittel eine
Verbesserung von 11.65% gegenüber der direkten Registrierung bezüglich der mittle-
ren Dice-Werte (53.62% zu 65.27%). Die Anwendung eines Wilcoxon-Rangsummen-
Tests belegt die statistische Signifikanz dieses Anstieges (p = 7.98 × 10−4). Während
beide Methoden nahezu faltungsfreie, plausible Verschiebungsfelder generieren (% an
Einträgen der Jakobideterminante < 0: 0.001), so demonstriert die größere Standard-
abweichung der Jakobideterminante als Maß für Volumenänderungen bei der iterativ
geführten Methodik (0.2210 zu 0.3994), die erhöhte Flexibilität beim Ausgleichen der
anatomischen Variabilität. Auch wenn der Anstieg der Dice-Werte mit wachsenser Zahl
an Iterationen immer geringer wird, so belegen die gestapelten, horizontalen Balken-
diagramme dennoch eine kontinuierliche Verbesserung. Zum Abschluss der rein quan-
titativen Resultate gibt Tabelle 4.1 noch einmal zusammenfassend den Überblick der
verglichenen Methoden.
Abbildung 4.5 illustriert exemplarisch das Registrierungsresultat eines Patientenpaa-

res qualitativ vor und nach der Registrierung. Die untere Reihe verdeutlicht die räum-
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Abb. 4.5: Beispielhafte Registrierung eines MRT-CT-Bildpaares. Oben v.l.n.r.: initialer MRT-
AxialschnittM; gleiche Schicht nach Registrierung ϕ15 ◦ · · · ◦ ϕ1 ◦M; zugehörige
CT-Schicht F . Die gelben Pfeile weisen auf schlecht angeglichene Körperoberflä-
chen im Gegensatz zu den besser angepassten Vordergrundstrukturen hin. Unten
v.l.n.r.: F &M Schachbrettdarstellungen vor / nach Registrierung mit überlager-
ten Vordergrundsegmentierungen.

liche Angleichung der Vordergrundstrukturen in Form von Schachbrett-Darstellungen
mittels überblendeter Vordergrundsegmentierungen der Herzstrukturen ebenfalls vor
und nach dem Prozess. Hinsichtlich der Herzstrukturen weisen deren Übergänge an
den Schachfeldgrenzen lediglich kleine Unstetigkeiten auf, da diese Anatomien die CE-
Loss-Minimierung unter Verwendung des Adam-Optimierers führen. Im Gegensatz zu
diesen, größeren Deformationen unterworfenen Bildbereichen bleiben die Hintergrund-
strukturen nahezu unberührt (siehe gelbe Pfeile an den Körperoberflächen).

4.4 Diskussion & Zusammenfassung

Der in diesem Kapitel entwickelte Ansatz liefert zufriedenstellende Ergebnisse hin-
sichtlich der Vergleichsverfahren sowie in Anbetracht der Herausforderungen multi-
modaler Bildregistrierung. Die durchgeführten Experimente liefern Einblicke sowohl
in Schwächen, aber auch Stärken der zweistufigen Methodik.
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Das zur Formkodierung genutzte Faltungsnetzwerk ist in der Lage, Eingabedaten
verschiedener Modalitäten zu verarbeiten und dennoch einen kompakten sowie glatten
Formraum zu lernen. Dahingehend ermöglicht es die Rekonstruktion realistischer, in-
termediärer Formen ziwschen den MRT- und CT-Daten für die anschließende Aufgabe
der iterativ geführten Registierung. Dennoch führt das Entfernen der skip connections
aus der Architektur zum erwarteten Genauigkeitsrückgang bei den Segmentierungen.
Da diese allerdings zur Führung Registrierung genutzt werden, ergibt sich dadurch eine
obere Grenze für deren maximale, zu erreichende Genauigkeit, da z.B. dünne Struktu-
ren wie das Myokardium einen Verlust bezüglich ihres Grades an dargestellten Details
verzeichnen. Zukünftige Experimente könnten also nach Wegen suchen, diesen Verlust
an räumlicher Information durch Alternativen zu skip connections auszugleichen.
Die weiterführenden Experimente zur Registrierungsgenauigkeit der gesamten Me-

thode bestätigen die eingangs formulierte Hypothese, dass eine Hintereinanderaus-
führung mehrerer kleiner Transformationen zu besseren Resultaten führt, als das di-
rekte Bestimmen einer möglicherweise sehr großen Deformation. Dieser Effekt zeigt
sich am prominentesten beim Übergang von einem auf 5 Schritte und beginnt dann
zunehmend in eine Sättigung überzugehen. Dennoch unterstreichen die weiteren Zu-
gewinne bei weiter vergrößerter Anzahl an intermediären Repräsentationen, dass die
Zwischenschritte entlang des Interpolationspfades den Registrierungsprozess nicht zu
unplausiblen Transformationen verleiten und dass der Formraum selbst daher als aus-
reichend glatt angenommen werden kann. Die vorgestellte Methode zur iterativen Füh-
rung des Registrierungsprozesses mit n = 15 Schritten erzielt zwar höhere Dice-Werte
hinsichtlich der räumlichen Angleichung betrachteter Vordergrundstrukturen als das
klassische SSC-deeds-Verfahren aus Heinrich u. a., 2013b, vernachlässigt im Gegensatz
aber jegliche Strukturinformation im Objekthintergrund. Dies zeigt sich deutlich in
den Schachbrett-Darstellung der Abbildung 4.5 bei Betrachtung der Körpergrenzen.
Weitere Ansätze könnten sich daher mit räumlich aussagekräftigeren Distanzkarten
anstelle von rein diskretisierten Segmentierungen befassen oder eine leicht verstärk-
te Überwachung unter Einbezug von größeren Klassenanzahlen oder von Landmarken
zulassen.
Neben der eigentlich entwickelten Methode wurde in diesem Kapitel zusätzlich eine

Möglichkeit realisiert, CAE-generierte Formräume auf ihre Plausibilität hin zu prü-
fen. Indem die Idee der geführten Registrierung basierend auf Rekonstruktionen der
interpolierten Formkodierungen genutzt wird, könnte eine erhöhte Anzahl an Zwi-
schenschritten bei gleichzeitiger Abnahme der Registrierungsgenauigkeit z.B. auf einen
nicht-glatten Formraum hindeuten.
Zusammengefasst stellt dieses Kapitel ein iterativ geführtes, multimodales Bild-

registrierungsverfahren für medizinische Volumendaten vor. Die Idee des Deskriptor-
lernens im Kontext dieser Arbeit setzt dabei das gemeinsame Erlernen eines geteilten
Formraumes mittels eines CNN-basierten Enkoder-Dekoder-Models um. Dabei erzielt
die zweistufige Methode mit nur schwach-überwachtem Training durch Segmentie-

61



Kapitel 4 Schwach-überwachtes Deskriptorlernen in multimodalen 3D Herz-Bilddaten

rungen ungepaarter Daten die besten Resultate der betrachteten Registrierungsverfah-
ren. Im Vergleich zum vorangehenden Kapitel 3 hat dabei die Stärke der Überwachung
abgenommen. Dennoch liegt weiterhin ein Zwei-Schritt-Verfahren vor, bei dem die
Deskriptoren zur Repräsentation der medizinischen Volumendaten noch nicht mit Hil-
fe des eigentlichen, als Anwendung herangezogenen Registrierungsproblems trainiert
werden. Dieser Schritt hin zu Ende-zu-Ende-trainierten Verfahren wird im nächsten
Kapitel vollzogen.
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Kapitel 5

Schwach-überwachtes Deskriptorlernen
in multimodalen thorakoabdominalen
Bilddaten

Das dritte methodische Kapitel stellt zwei Umsetzungen einer Idee für schwach-
überwacht gelernte Deskriptoren auf multimodalen, thorakoabdominalen
CT- & MRT-Schichtaufnahmen vor. Im Gegensatz zu den vorangehenden Kapi-
teln handelt es sich dabei um Ende-zu-Ende-trainierbare Ansätze, die die Ein-
bindung von Faltungsnetzwerken in iterativ optimierte Registrierungsschemata
erlauben. Beide Implementierungen eignen sich zur Schätzung von im thorako-
abdominalen Bereich typischen großen Deformationen. Das erste Verfahren
nutzt eine geschlossen darstellbare Lösung für deren Bestimmung. Das zwei-
te Verfahren greift dagegen auf eine spezielle, differenzierbare Methode zum
Lösen von Gleichungssystemen zurück.
Inhaltlich stützt sich dieses Kapitels auf den Beitrag Blendowski u. a., 2019a zur
International Conference on Medical Imaging with Deep Learning sowie auf die
Publikation Blendowski u. a., 2020b im Special Issue zur International Confe-
rence on Medical Imaging with Deep Learning im Journal Medical Image Ana-
lysis.

5.1 Einleitung & Motivation

Die beiden vorangehenden Kapitel 3 & 4 haben beleuchtet, inwiefern mithilfe von Fal-
tungsnetzwerken erlernte Deskriptoren in Kombination mit klassischen Registrierungs-
ansätzen gewinnbringend genutzt werden können. Im Gegensatz zu diesen klassischen
Methoden, die seit Jahrzehnten Gegenstand aktiver Forschung sind, nähern sich die
Resultate von Ansätzen zur Registrierung, die vollumfänglich auf Faltungsnetzwerkar-
chitekturen setzen, vergleichsweise langsam dem bisherigen Stand-der-Technik - in An-
betracht der bahnbrechenden Erfolge auf den Gebieten der Klassifizierung und Seg-
mentierung. Dies lässt sich einerseits durch die zusätzliche Anzahl an zu trainierenden
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Parametern sowohl zur Extraktion von Featuren als auch zur Vorhersage des Verschie-
bungsfeldes erklären, andererseits aber auch durch die zum Training großer Netze zu
geringe Verfügbarkeit annotierter Daten, beispielsweise in Form von Landmarkenkorre-
spondenzen durch medizinische Experten. Darüberhinaus befasst sich ein Großteil der
Forschungsarbeit mit Bildern gleicher Modalitäten, so dass Registrierungsalgorithmen
nur kleinere Veränderungen z.B. bezüglich der Helligkeit ausgleichen müssen. Da eine
korrekte Diagnostik häufig aber vom Vergleich zusammengehöriger Strukturen unter
Aufnahmen durch verschiedene Modalitäten abhängt, ist es notwendig auch für diesen
noch stärker herausfordernden Anwendungsfall Registrierungslösungen zu entwickeln.
Die Notwendigkeit aussagekräftige, gemeinsame Repräsentationen verschiedener Mo-
dalitäten zu generieren ergibt sich auch bei bildgestützten Eingriffen, die beispielsweise
auf Risikostrukturabgrenzung einer vorangehenden Dosisplanung basierend auf CT-
und MRT-Daten während Strahlentherapien Anwendung finden. In Kapitel 4 wird da-
zu ein Verfahren entwickelt, dass zunächst die Strukturen von Interesse identifiziert,
durch entsprechende Segmentierungen kennzeichnet und anschließend ausschließlich
diese einander angleicht. Weitere, bereits bestehende und relevante Ansätze werden im
nächsten Abschnitt aufgeführt und ebenfalls kurz vorgestellt.

5.1.1 Literatur

Generell lassen sich klassische Verfahren zur multimodalen Registrierung grob in
zwei Klassen einordnen. Entweder wird eine Metrik genutzt, die die Ähnlichkeit der
anzugleichenden Eingabebilder trotz unterschiedlichem Geräteursprungs messen kann
- z.B. mittels der in Maes u. a., 1997 vorgestellten mutual information als Distanzmaß.
Oder eine Transformation der Eingabebilder in einen gemeinsamen Raum ermöglicht
die Anwendung eines etablierten monomodalen Ähnlichkeitsmaßes. Die in Heinrich
u. a., 2012 vorgestellten, modalitätsunabhängigen und auf Selbstähnlichkeitsdarstel-
lungen beruhenden MIND-Deskriptoren seien dabei als beispielhafter Vertreter der
zweiten Kategorie genannt. Der Schritt vom manuellen Entwurf der Feature hin zu
einer Ende-zu-Ende-trainierbaren Umsetzung der Idee der Selbstähnlichkeit wird von
den Autoren in Kim u. a., 2017 vollzogen, wenn auch nur im monomodalen Anwen-
dungsfall auf nicht-medizinischen Daten.
Die Untersuchung einer künstlichen Konvertierung vorliegender Daten zur jeweils

anderen Modalität und zurück wird in Tanner u. a., 2018 mittels ungepaarter, sog.
cycle-GANs (engl.: generative adversarial networks) vorgenommen. In Mahapatra u. a.,
2018 werden GANs dann zur multimodalen Bildregistrierung von Retinascans heran-
gezogen. Beiden Verfahren ist gemein, dass aufgrund ihrer generativen Natur nicht
ausgeschlossen werden kann, dass in Wirklichkeit nicht vorliegende Strukturen als für
das Netzwerk plausibler Bildinhalt einbezogen werden.

Abgesehen vonGAN -basierten Methoden und im Gegensatz zu klassischen Bildregis-
trierungsansätzen ist eine Vielzahl an Verfahren entstanden, die den gesamten Prozess
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der Berechnung von Verschiebungsfeldern, direkt ausgehend von den Eingabebildern, in
einem einzigen Vorwärtsdurchlauf durch die jeweilige Netzarchitektur bewerkstelligen.
Dieses Vorgehen verhindert allerdings klar abgrenzbare Teile der Netzwerkstrukturen
zu identifizieren, die z.B. alleine für die Feature-Extraktion oder die Registrierung ver-
antwortlich zeichnen. Als Beispiele lassen sich hier die Enkoder-Dekoder-Architekturen
des SVF-Net aus Rohé u. a., 2017 oder VoxelMorph aus Balakrishnan u. a., 2019 an-
führen. In der Arbeit von Lee u. a., 2019 wird zwar bereits die Idee einer Trennung des
Feature-Lernens und des Registrierens erwähnt, allerdings gelingt es den Autoren eben
nicht, die Zuständigkeiten der einzelnen Module klar zu definieren, da sie schließlich
doch alle Netzwerkteile miteinander verbinden. Insbesondere im Hinblick auf größere,
initiale Verschiebungen, wie sie bei der Registrierung von Lungen-CT-Bildern der Ein-
und Ausatmungsphase auftreten, offenbaren beispielsweise in Eppenhof u. a., 2019,
Hering u. a., 2019 oder Vos u. a., 2019 vorgestellte, nicht-iterative Enkoder-Dekoder-
Verfahren mit Fehlern in Größenordnungen von 2-3mm Schwächen im Vergleich zu
konventionellen Methoden - wie z.B. aus Rühaak u. a., 2017b -, mit Fehlern von unter
einem Millimeter auf schwierigen COPD-Daten.
Ebenso benötigen Umsetzungen wie das FlowNet aus Dosovitskiy u. a., 2015 oder

auch die bereits aus den vorangehenden Kapiteln bekannte Label Reg-Methode aus Hu
u. a., 2018 sehr große Datensätze mitsamt korrespondierenden Grundwahrheiten zum
Training.
In Anbetracht dessen bezieht die im Fortlauf des Kapitels vorgestellte Methodik

Inspiration aus dem DSAC -Ansatz aus Brachmann u. a., 2017 (engl.: differentiable
RANSAC - differenzierbarer RANSAC) - einer ableitbaren Umsetzung des klassischen
RANSAC -Algorithmus (engl.: random sample consensus - etwa: Übereinstimmung mit
einer zufälligen Stichprobe). Diese modulare, aber dennoch Ende-zu-Ende-trainierbare
Methode wird dort lediglich zur Schätzung einiger weniger Homographie-Parameter
eingesetzt, entwickelt aber die Idee das Regressionsproblem klar von den Deskriptor-
modulen des Netzwerkes zu trennen.
Die Arbeiten aus Xiong u. a., 2013 oder Gutierrez-Becker u. a., 2017, zielen auf das

überwachte Lernen einer Abstiegsrichtung während eines Optimierungsprozesses. Al-
lerdings verarbeiten sie lediglich monomodale Eingaben und sind außerdem nicht Ende-
zu-Ende-trainierbar. Im Gegensatz dazu nutzt der Ansatz dieses Kapitels Abstiegs-
richtungen verschiedenster Angleichungsstadien, die während des iterativen Optimie-
rungsprozess als eine Form der kontinuierlichen Überwachung dienen, zum Erlernen
der Deskriptoren. Dazu werden hier anstelle von ganzen Verschiebungsfeldern nur Or-
gansegmentierungen als Form des schwacher Überwachung benötigt.

Zielsetzung: In den nachfolgenden Abschnitten werden dazu zwei Umsetzungen
des SUITS-Algorithmus (überwachter, iterativer Abstieg, engl.: SUpervised ITerative
deScent) präsentiert. Dieser soll das Training von Faltungsnetzwerken zur Extrak-
tion vergleichbarer Repräsentationen trotz unterschiedlicher Eingabemodalitäten im
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Hinblick auf Registrierungen ermöglichen. Dazu muss sichergestellt werden, dass sinn-
volle Gradienten durch Fehlerrückführung als eine Form schwacher Überwachung
nutzbar werden. Im Unterschied zu Methoden der erlernten Imitation des Optischen
Flusses, soll hier die Verflechtung von Erscheinung und Deformation der betrachteten
Strukturen gelöst werden. Diese Idee entspringt einer Arbeit zur Gesichtsanalyse aus
Shu u. a., 2018. Dies erlaubt die Einbindung von Faltungsnetzwerken in einen konven-
tionellen, iterativen Registrierungsansatz zur regularisierten, B-Spline-basierten Opti-
mierung. Speziell letzteres führt dazu, dass bereits Architekturen mit vergleichsweise
wenigen Parametern aussagekräftige, multimodale Feature erlernen können, da die
Schätzung des Verschiebungsfeldes explizit nicht Aufgabe des Netzes ist, sondern durch
klassische, aber differenzierbare Verfahren bewerkstelligt wird.

Beide SUITS-Verfahren nutzen zum Erlernen aussagekräftiger, multimodaler Re-
präsentationen rückgeführte Gradienten, die auf der schrittweisen Anpassung im Trai-
ning vorhandener Organsegmentierungen basieren. Die erste Umsetzung des SUITS-
Algorithmus in Abschnitt 5.2 setzt im Hinblick auf die Implementierung innerhalb
eines autograd frameworks eine Methode um, die eine geschlossene Lösungsform zur
Berechnung der iterativen Verschiebungsparameteranpassungen bereitstellt. Im An-
schluss wird mit SUITS 2.0 in Abschnitt 5.3 ein in mehrfacher Hinsicht überarbeitetes
Verfahren beleuchtet, das über die ursprüngliche Machbarkeitsstudie hinaus für die
Anwendung auf dreidimensionalen Daten geeignet ist. Dazu wird ein zunächst komple-
xeres, differenzierbares Verfahren zum Lösen spärlich besetzter Gleichungssysteme ent-
wickelt, dessen Einsatz aber im Gegenzug strukturelle Vereinfachungen des Trainings-
und Testprozesses der multimodalen Registrierungen ermöglicht.

5.2 SUITS

5.2.1 Methoden

Dieser Abschnitt führt in die Grundlagen der entwickelten Methodik zur ersten Um-
setzung des SUITS-Algorithmus ein. Der generelle Ablauf innerhalb der ersten Mach-
barkeitsstudie auf zweidimensionalen, multimodalen Bilddaten sowohl während der
Training- als auch zur Inferenzphase ist in Abb. 5.1 dargestellt. Daraus lässt sich die
modulare Interaktion ablesen, die einerseits die Extraktion aussagekräftiger, daten-
getrieben gelernter Feature und andererseits die iterativ ablaufende Schätzung des
Verschiebungsfeldes ermöglicht. Im Folgenden wird der methodische Inhalt des für den
entwickelten Ansatz essentiellen B-Spline Descent-Moduls erläutert, bevor das gesamte
Zusammenspiel der einzelne Teile betrachtet wird.

66



5.2 SUITS

Supervision Loss
Feature Optimizer

CNN Feat
MR

CNN Feat
CT

Mov Feat Fix Feat

B-Spline Descent

gridParam

Mov (CT) Fix (MR)

Grid Optimizer

In
feren

ce

Δ(𝒖, 𝒗)𝐹𝑒𝑎𝑡

(𝒖, 𝒗) Mov SDM Fix SDM

B-Spline Descent

Δ(𝒖, 𝒗)𝑆𝐷𝑀

Mov Label

SDMSDM

Fix Label

𝐴 𝐴

𝐴 𝐴

𝐴 𝐴

𝐵 𝐵

𝐵 𝐵

𝐶 𝐶

𝐶

𝐶 𝐶

𝐶
𝐶

𝐷𝐷

𝐷

𝐷

𝐷𝐷

𝐷 𝐷

Abb. 5.1: Schematischer Überblick: Während des Trainings kommen zwei Adam-Optimierer
zum Einsatz; der Grid Optimierer (grün) passt die Verschiebungsfeldparameter
auf Grundlage der inkrementellen Änderungen ∆(u,v)F eat pro B-Spline-Descent-
Moduliteration an (C ). Der Feature Optimierer (orange) aktualisiert die lernbaren
Gewichte der Faltungsnetze (Operationstracking eines Durchlaufes von B-D) ba-
sierend auf der Überwachung des Differenzensignals im Vergleich zu den SDMs (A
- einmalig vorberechnet). Zur eigentlichen Laufzeit ist ausschließlich der Grid Opti-
mierer zum Anpassen des Verschiebungsfeldes unter Berücksichtigung der fixierten
Features (MIND/CNNFeat) aktiv.

5.2.1.1 B-Spline Descent Modul

Das Vorgehen des SUITS-Ansatzes ist motiviert durch den klassischen Ablauf einer
Feature-basierten, iterativen Bildregistrierung und unterscheidet sich somit von aktu-
ellen CNN-basierten voll-integrierten Ein-Schritt-Verfahren. Unter der Voraussetzung,
dass sowohl das fixed Bild f als auch das moving Bild m durch Auswahl geeigneter
Charakteristika in einem gemeinsamen Featureraum vorliegen, können beispielsweise
Methoden des Optischen Flusses genutzt werden. Die Annahme konsistenter Grauwer-
tebereiche als notwendige Bedingung zur Verwendungmonomodaler Ähnlichkeitsme-
triken ist in diesem Fall berechtigt. Darauf fußend wird das B-Spline Descent-Modul
eingeführt (graue Blöcke in Abb. 5.1). Als Eingabe erwartet das Modul mehrkanalige
Feature-RepräsentationenM und F der Bilder m respektive f sowie die aktuellen Ver-
schiebungsfeldparameter (u,v) der letzten Iteration. Aus diesen Informationen wird
dann die inkrementelle Änderung ∆(u,v) der Parameter als Ausgabe berechnet. An
jeder Pixelposition des Bildes gibt (u,v) mittels eines zweidimensionalen Vektors die
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Verschiebungen für m zur Angleichungen an f an und ∆(u,v) beinhaltet die zugehö-
rigen, nach jeder Iteration vorzunehmenden Anpassungen.
An dieser Stelle ist zu betonen, dass zum beabsichtigten Erlernen aussagekräftiger

Feature durch vorgeschaltete CNNs ein Gradientenfluss durch den Berechnungsprozess
der ∆(u,v)-Anpassung gewährleistet werden muss.

Um ∆(u,v) im Hinblick auf das genutzte autograd-Framework als Ausgabe des B-
Spline Descent-Moduls zu berechnen, wird ein weit verbreiteter Energieterm genutzt
und zur vereinfachten Auswertung mittels einer Taylor-Approximation erster Ordnung
linearisiert. In Papenberg u. a., 2006 wird nachgewiesen, dass dieses Vorgehen im Fal-
le kleiner Verschiebungsfeldanpassungen beim iterativen Transformieren des moving
Bildes legitim ist. Pro Pixelposition und Bildkanal nimmt der Energieterm die Form

Ec(uc(x),vc(x)) = 1
2 (Mc(x) +Mc,∂x · uc(x) +Mc,∂y · vc(x)− Fc(x))2 (5.1)

+ λ

2 (uc(x) + vc(x))2

an, wobei Mc,∂x/y die partiellen Ableitungen des moving Bildes für Kanal c bezeichnet
und der Term λ

2 (uc(x)+vc(x))2 regularisierend durch die Betrafung zu großer Verschie-
bungsfeldveränderungen wirkt. Das Berechnen der partiellen Ableitungen ∂Ec(uc,vc)

∂uc(x)/vc(x)
zur Minimierung dieses Ausdruckes bezüglich der Verschiebungsfeldparameter sowie
geeignetes Sortieren der resultierenden Terme führt auf ein lineares Gleichungssystem
mit der Form [

M2
c,∂x + λ Mc,∂xMc,∂y

Mc,∂xMc,∂y M2
c,∂y + λ

] [
uc(x)
vc(x)

]
=
[
(Fc −Mc)Mc,∂x

(Fc −Mc)Mc,∂y

]
(5.2)

Durch seine spezielle Form erlaubt das Gleichungssystem den Einsatz der Sherman-
Morrison-Woodbury-Formel. Mit deren Anwendung ergibt sich ein matrixinversions-
freier Ausdruck zur Berechnung der Verschiebungsfeldanpassungen durch[

uc(x)
vc(x)

]
= 1
λ+M2

c,∂x +M2
c,∂y

·
[
(Fc −Mc)Mc,∂x

(Fc −Mc)Mc,∂y

]
(5.3)

Da diese Lösungen pro Kanal unabhängig voneinander bestimmt werden, stützt sich
dieser Ansatz auf das Vorgehen der Autoren in Guimond u. a., 2002 und mittelt die
einzelnen Lösungen über die Kanäle, um eine gemeinsame Verschiebungsparameteran-
passung ∆(u,v) auszugeben. Das inversionsfreie, direkte Lösen des Gleichungssys-
tems bildet den eigentlichen Kern des entwickelten Verfahrens. Es ermöglicht durch
die Komposition aus ausschließlich ableitbaren Operationen einen ungehinderten Gra-
dientenfluss bei der Verwendung innerhalb eines autograd-Frameworks wie dem hier
eingesetzten und in Paszke u. a., 2017 vorgestellten PyTorch.
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Da es sich an den klassischen Ansätzen zur Bildregistrierung orientiert, erlaubt auch
die in diesem Kapitel entwickelte Methode die Anwendung im Vergleich zum tatsächli-
chen Pixelgitter niedriger aufgelöster Verschiebungsfelder zur effizienteren algorithmi-
schen Umsetzung. Um die notwendigen, dichten Felder zur Transformation des moving
Bildes daraus zu rekonstruieren, wird wie in Tustison u. a., 2013 ein kardinaler B-
Spline dritter Ordnung zur Interpolation an den Zwischenstellen genutzt. Aufgrund
ihrer rekursiven Natur und der Definition auf einem uniformen Pixelgitter entspricht
die Interpolation zwischen den Knotenvektoren dem mehrfachen Anwenden eines Glät-
tungsfilters und kann in Form einer Faltung durchgeführt werden. Zur konkreten und
effizienten Umsetzung wird eine ebenfalls ableitbare upsampling-Schicht gefolgt von
zwei average pooling-Schichten genutzt.
In frühen Experimenten zeigt sich, dass trotz λ = (M − F )2 als lokal adaptiver

Wahl, wie sie in Vercauteren u. a., 2009 vorgeschlagen wird, häufig aufgrund starker
lokaler Änderungen unplausible Verschiebungsfeldanpassungen generiert werden. Wie
schon in Kapitel 4 wird daher ein zusätzlicher Glättungsregularisierer genutzt, der
Abweichungen zwischen ∆(u,v) und einer geglättenen Version ihrer selbst bestraft.
Insgesamt liefert das B-Spline Descent-Modul also bereits eine Verschiebungsparame-

teranpassung ∆(u,v) zurück, die mit Standardoptimierern zur Registrierung genutzt
werden kann. Der nächste Abschnitt behandelt, wie das Modul im größeren Kontext
zur schwach-überwachten, multimodalen Registrierung herangezogen wird.

5.2.1.2 SUITS-Algorithmus

Aus dem letzten Abschnitt geht hervor, dass Bildpaare, die der Voraussetzung konsis-
tenter Grauwertbereiche genügen, mithilfe des B-Spline Descent-Moduls iterativ durch
entsprechendes Bestimmen der Verschiebungsfeldparameter zueinander registriert wer-
den können. Ziel der Verfahren dieses Kapitels ist allerdings die Registrierung multi-
modaler Bildpaare, die diese Annahme gerade nicht erfüllen. Aus diesem Grund wird
unter Verwendung des B-Spline Descent Moduls eine erste SUITS-Version als algorith-
misches Schema entwickelt. Der Einsatz von Faltungsnetzen soll darin das Erlernen
von Transformationen der Eingabedaten in einen gemeinsamen Bildraum erlauben, so
dass die Voraussetzung konsistenter Grauwertbereiche wieder gegeben ist.
Da das Verfahren während des Trainings vom Einsatz zweier Optimierer abhängt,

orientiert sich die methodische Einführung anhand deren jeweilger Zuständigkeiten.
Im nächsten Abschnitt wird zuerst erklärt, wie innerhalb einer Iteration die Gewichte
der Faltungsnetzwerke zur Abbildung der Bilddaten in den gemeinsamen Featureraum
trainiert werden. Daran anschließend wird erläutert, wie sich der gesamte iterativ op-
timierte Registrierungsprozess gestaltet und sichergestellt wird, dass aussagekräftige
Feature für alle Zeitpunkte der Angleichung generiert werden.
Training der Feature CNNs: Das Training der Faltungsnetzwerke zur Extrakti-

on vergleichbarer Repräsentationen trotz unterschiedlicher Eingabemodalitäten basiert
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auf der Idee, sinnvolle Gradienten durch Fehlerrückführung als eine Form schwacher
Überwachung zu nutzen.

Dazu umfasst der dargestellte Ablauf aus Abb. 5.1 auf der rechten Seite während des
Trainings eine Hilfsrepräsentation der Eingabebilder. Während die Faltungsnetze die
Transformation der jeweiligen ungepaarten Eingabebilder bewerkstelligen sollen, lie-
gen für jedes Bild Organsegmentierungen medizinischer Experten vor. Diese Segmen-
tierungen werden in ihre korrespondierenden Distanzkartendarstellungen (engl. signed
distance map, kurz: SDM) umgewandelt (Abb. 5.1 A), d.h. in den entsprechenden Bild-
kanälen werden pro Label die euklidischen Distanzen zur Organgrenze mit positiven
bzw. negativen Werten im Hinter- bzw. Vordergrund codiert. Auf diese Art bilden
sie eine simple Form eines gemeinsamen Featureraumes, die beispielhaft in Abb. 5.2
illustriert ist.

An dieser Stelle greift nun die Idee der schwachen Überwachung durch sinnvol-
le Gradientenrückführung. Dem entwickelten Verfahren liegt die Annahme zugrunde,
dass die korrespondierenden SDMs eingegeben in das rechte B-Spline Descent-Modul
aus Abb. 5.1 eine Verschiebungsfeldanpassung ∆(u,v)SDM generieren, die eine ver-
nünftige Schätzung für die anhand der Bilddaten durch die Faltungsnetzwerke und das
linke B-Spline Descent-Modul berechneten ∆(u,v)Feat sind. Auf diese Art ist es mög-
lich, dass anhand der mittleren, quadratischen Abweichung (engl. mean squared error,
kurz: MSE) beider Anpassungsschritte MSE(∆(u,v)Feat,∆(u,v)SDM ) ein Fehlersi-
gnal zu den Gewichten der Faltungsnetzwerke geleitet wird. Diese werden durch einen
als Feature Optimierer bezeichneten Adam Optimierer aktualisiert. Dessen Anpassun-
gen wirken sich ausschließlich auf die Gewichte der CNNs aus (D) und berechnen sich
anhand durch das autograd-Framework verfolgter Operationen bis einschließlich zur
Bestimmung von ∆(u,v)Feat.

Iterative Bildregistrierung: Die eigentliche, iterativ optimierte Registrierung des
Eingabebildpaares wird durch den Einsatz des als Grid Optimierer benannten Adam
Optimierers durchgeführt. Das grün-gepunktete Rechteck in Abb. 5.1 umfasst den
Operationsbereich, der seitens der autograd-Routinen durch den Grid Optimierer ver-
folgt wird. Anhand der Ausrichtung der aktuell gelernten Featurerepräsentationen des
Bildpaares basierend auf den Verschiebungsfeldparametern (u,v) (B) wird durch das
B-Spline Descent-Modul ein Anpassungsschritt ∆(u,v)Feat (C ) generiert. Dieser wird
dann zur Aktualisierung des Verschiebungsfeldes (u,v) durch den Grid Optimierer
umgesetzt. Dabei ist zu beachten, dass das (u,v)-Feld sowohl bei der Transformati-
on der Faltungsnetz-basierten Darstellung des Bildpaares als auch bei derjenigen der
SDM-Repräsentation zur Anwendung kommt. Von daher korrigiert der SDM-Teil des
Schemas unplausible Aktualisierungsschritte durch die Featurerepräsentationen ledig-
lich indirekt - durch die Überwachung während des Faltungsnetztrainings (D) wie
im vorangehenden Abschnitt beschrieben-, anstatt selbst die Registrierungsrichtung
aktiv vorzugeben.

70



5.2 SUITS

Da die entwickelte Methodik zur Testzeit auf Feature zurückgreift, die von zu diesem
Zeitpunkt fixierten Faltungsnetzen generiert werden, ist es notwendig, dass diese Re-
präsentationen während des gesamten Registrierungsprozesses hilfreich sind - also von
initial großen bis hin zu final geringen Unterschieden aussagekräftig sind. Die Definition
eines speziellen Trainingsschemas soll dies ermöglichen. Ausgehend von einer gegebe-
nen, maximalen Anzahl an Optimierungsiterationen wird vor jeder Zusammenstellung
eines Mini-Batches für den aktuellen Trainingsschritt eine zufällige Anzahl pro Bildpaar
an vorher durchzuführenden Registrierungsschritten gezogen. Dadurch beinhaltet ein
Mini-Batch Bilderpaare verschiedenster Angleichungsphasen. Das entwickelte Verfah-
ren unterscheidet sich dabei beispielsweise von einem Multiphasen-Regressions-Ansatz
aus Xiong u. a., 2013, da die Feature mithilfe fixierte Netzwerke extrahiert werden und
somit während des gesamten iterativen Registrierungsprozess anwendbar sein müssen.
Wie ein Großteil der klassischen Registrierungsverfahren ermöglicht auch die hier

eingeführte Methode die Anwendung einer Multiskalenstrategie. Dazu wird schrittwei-
se ein initial sehr grobes Verschiebungsfeldparametergitter für eine bestimme Anzahl
an inkrementellen Aktualisierungen verwendet. Anschließend wird das Kontrollpunkt-
gitter verfeinert, in dem die (u,v)-Parameter für die nächste Stufe durch Interpolation
hochskaliert werden.
Nach Abschluss des Trainings werden zur Inferenzzeit die CNN-basierten Repräsen-

tationen der bislang ungesehen Bilder - ohne die Notwendigkeit zusätzlicher Annota-
tionen - für die festgelegte Anzahl an Optimierungsschritten registriert (blaue Box in
Abb. 5.1). Das schließlich resultierende Verschiebungsfeld (u,v) (grüne Box) lässt sich
dann auf das moving Bild anwenden, um es dem fixed Bild strukturell anzugleichen.
Die algorithmischen Details sowohl der Trainings- als auch der Inferenzphase sind in
Form von Pseudocode in Alg. 1 & 2 noch einmal zur weiteren Verdeutlichung des
Ablaufes dargestellt.

5.2.2 Experimente & Ergebnisse

Um im Rahmen der Machbarkeitsanalyse die generelle Anwendbarkeit der vorgeschla-
genen Methode zu prüfen, werden multimodale Registrierungen auf ungepaarten 2D-
Coronalschnitten durchgeführt. Die Bilddaten dazu stammen aus dem thorakoabdo-
minalen Bereich der CT- und MRT-Aufnahmen des in Jimenez-del-Toro u. a., 2016
vorgestellten VISCERAL Datensatzes. Zusätzlich werden die ebenfalls vorliegenden
Expertensegmentierungen der Leber, der Milz, der Nieren sowie der Psoas Major Mus-
keln während des Trainings genutzt, um als eine Form der schwachen Überwachung
zu dienen. Um die Güte der Registrierung zur Testzeit mithilfe der CNN-basierten Re-
präsentationen beurteilen zu können, wird wie im vorangehenden Kapitel 4 der Dice-
Wert herangezogen.
Als Vorverarbeitung werden alle Bilddaten auf eine isotrope Pixelgröße von 1.5mm2

standardisiert. Um zu große inhaltliche Unterschiede zwischen den betrachteten 2D-
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Algorithm 1: Schematischer Überblick der Trainingsprozedur
Input: CT- & MRT-Bilder + Organsegmentierungen
Output: Trainierte CNNs zur Feature-Extraktion
Initialisiere Feature CNNs;
Initialisiere Feature Optimierer & binde CNN-Parameter an;
Initialisiere Grid Optimierer & binde die Verschiebungsparameter (u,v) an;
Generiere ein Paar-Präsentationsschema; // verschiedene Angleichungsphasen
Berechne fixe Distanzkarten MSDM & FSDM ; // vgl. A s in 5.1
for #Auflösungsskalen do

while batch_pairs in Paar-Präsentationsschema do
// Aufgezeichnet durch Feature Optimierer
Berechne Mfeat = CNNCT (m) & Ffeat = CNNMRI(f); // vgl. B s
// NICHT aufgezeichnet durch Feature Optimierer
for #Iterationen per Skala do

// Führe mehrere Verschiebungsfeldparameteradaptionen durch
Berechne GridUpdate ∆(u, v)F eat = BSDModul(MF eat, FF eat, (u,v));
// vgl. C s

Nutze Grid Optimierer um (u,v) durch ∆(u, v)F eat anzupassen;
end
// Aufgezeichnet durch Feature Optimierer
Berechne ∆(u, v)F eat = BSDModul(MF eat, FF eat, (u,v));
Berechne ∆(u, v)SDM = BSDModul(MSDM , FSDM , (u,v));
Berechne MSE(∆(u, v)F eat,∆(u, v)SDM ) als Loss; // vgl. D s
Nutze Feature Optimierer um die CNN-Parameter anzupassen

end
end

Algorithm 2: Schematischer Überblick der paarweisen Registrierung zur Infe-
renzzeit
Input: CT- & MRT-Bildpaare; durch Algorithmus 1 trainierte CNNs
Output: transformiertes moving Bild, Verschiebungsfeldparameter (u, v)
Initialisiere Grid Optimierer & binde die Parameter (u,v) an;
for #Auflösungsskalen do

Berechne Mfeat = CNNCT (m) & Ffeat = CNNMRI(f); // vgl. B s
for #Iterationen per Skala do

Berechne GridUpdate ∆(u, v)F eat = BSDModul(MF eat, FF eat, (u,v)); // vgl.
C s

Nutze Grid Optimierer um (u,v) durch ∆(u, v)F eat anzupassen;
end

end
Transformiere m entsprechend (u, v);
return transformiertes moving Bild, (u, v)
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Abb. 5.2: Beispielhafte thorakoabdominal Schnitte: (von links nach rechts) CT-Schnitt samt
Expertensegmentierung; Distanzkarte (SDM) der Leber (CT); MRT-Schnitt samt
Expertensegmentierung; Distanzkarte des Hintergrundes (MRT).

Schnitten auszugleichen, die aus patientenindividuellen anatomischen Gegebenheiten
resultieren, werden die dreidimensionalen Daten zunächst mit dem deeds-SSC -Ansatz
aus Heinrich u. a., 2013a vorregistriert und anschließend auf eine Größe von 320x312
Pixeln zugeschnitten. Dieser Schritt resultiert im Mittel über das Patientenkollektiv
immer noch in große, initiale Nicht-Übereinstimmungen von lediglich 44% Dice. Der in
dieser ersten Version entwickelte SUITS-Algorithmus hat dann als Ziel die nicht-rigiden
Deformationen innerhalb der nun in etwa korrespondierenden Schichten auszugleichen.
Neben den bereits erwähnten Distanzkarten enthält Abb. 5.2 beispielhafte Schichtbil-
der samt unterlegter Organsegmentierungen einiger Patienten.
Um die Anwendbarkeit des B-Spline Descent-Moduls zu prüfen, wird zunächst auf

jeglichen Einsatz trainierbarer Faltungsnetzwerke verzichtet und eine monomodale
CT-Registrierung direkt auf den Grauwertintensitäten durchgeführt. Bei diesen nicht-
überwachten Registrierungen erhöht sich der initiale Dice-Wert von 0.44 auf 0.69
und bestätigt die Funktionalität der implementierten Methode zur Aktualisierung der
Verschiebungsfeldparameter.

Damit eine Einordnung der entwickelten Methode im Vergleich zu aktuellen, nicht-
trainierbaren Verfahren stattfinden kann, wird der zur Anwendung im multimoda-
len Kontext entwickelte, manuell entworfene MIND-Deskriptor aus Heinrich u. a., 2012
genutzt, der sich zur Extraktion robuster und aussagekräftiger Repräsentationen eig-
net. Dazu muss lediglich der Schritt der Featureextraktion im vorgeschlagenen Fra-
mework adaptiert werden, d.h. die Faltungsnetzmodule werden durch die Generie-
rung der MIND-Deskriptoren ersetzt. Darüberhinaus wird in Form des SimpleElastix-
Frameworks aus Marstal u. a., 2016 ein weiteres - im Grundlagen-Kapitel in Abschnitt
2.2.2 beschriebenes - Stand-der-Technik-Verfahren zur Registrierung von Bildpaaren
verschiedener Modalitäten als weiterer Vergleich eingesetzt. Diese Methode nutzt eine
mutual information-Metrik zur Bestimmung der Ähnlichkeit und greift auf ein vier-
stufiges Multiresolutionsverfahren nach vorangehender affiner Vorregistrierung zurück.

Trainings- und Netzarchitekturdetails: Alle Verfahren werden auf den glei-
chen 10 Schnittbildern pro Modalität evaluiert, was bei den vorliegenden, ungepaarten
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Tabelle 5.1: Strukturelle Details der im SUITS-Algorithmus genutzten FeatCNNs.

Faltungsschicht 1 2 3 4 5 6 7

Kanäleein 1 4 6 6 8 8 8
Kanäleaus 4 6 6 8 8 8 8
Padding 3 3 2 2 2 1 1

Filtergröße 7 7 5 5 5 3 3
Group-Normalisierung ja ja ja ja ja ja nein

Aktivierung tanh tanh tanh tanh tanh tanh —

Daten 100 mögliche Registrierungspaare ergibt. Da das hier entwickelte Verfahren al-
lerdings auf eine Trainingsphase angewiesen ist, wird das Patientenkollektiv jeweils
zufällig in 7 Trainingsbilder - also 49 Trainingspaare - und 9 verbleibende Paare zur
Auswertung der Registrierungsgenauigkeit aufgeteilt. Dieses Vorgehen wird insgesamt
10 Mal wiederholt und für alle drei Methoden werden zum Vergleich anschließend die
mittleren Dice-Werte über die betrachteten Organstrukturen erhoben.
Im Falle der lernbaren Faltungsnetze als Featureextraktoren wird für beide Modali-

täten die gleiche feedforward-Architektur aus jeweils sieben Faltungsblöcken genutzt,
die in Tabelle 5.1 durch Angabe der gewählten Blöcke samt Hyperparameterwahl pro
Schicht beschrieben ist. Während der Trainingsprozedur werden die Distanzkarten ge-
neriert, um mittels des B-Spline Descent-Moduls das notwendige Gradientensignal zur
Überwachung der Verschiebungsfeldaktualisierungen zu berechnen. Die SDMs werden
sowohl für den Objekthintergrund als auch für jedes Organ der manuellen Experten-
segmentierungen erstellt und in eigenen Bildkanälen hinterlegt. Da die Rohdaten der
SDMs initial große Unterschiede aufgrund der Variabilität hinsichtlich Organgrößen
und -positionen aufweisen, wird deren Wertebereich auf [−1, 1] - wie in Abb. 5.2 ersicht-
lich - durch Anwendung der Funktion tanh(0.01·x) normalisiert. Dieses Vorgehen sorgt
weiterhin für einen vergleichbaren Wertebereich zwischen den SDM-Repräsentationen
und den Faltungsnetzausgaben, so dass das Training der CNN-Parameter erleichtert
wird.
Unter Beachtung des oben beschriebenen Trainingsprozedere, das die Verarbeitung

von Bildpaaren unterschiedlicher Angleichungsphasen sichert, werden die Gewichte der
Faltungsnetze mittels des Feature Optimierers nach jeder fünften Iteration des Grid
Optimierers angepasst. Dies soll gewährleisten, dass genügend große und somit im Sin-
ne der Gradientenüberwachung ausreichend informative, räumliche Anpassungsschritte
vollzogen werden, um anschließend sinnvolle Adaptionen der Faltungsnetze zur Trans-
formation in den gemeinsamen Bildraum durchzuführen. Bezüglich der Hyperparame-
terwahl nutzen der Feature Optimierer und der Grid Optimierers initiale Lernraten
von 0.001 bzw. 0.005. Im Sinne der Multiskalenstrategie werden 3 unterschiedlich feine
Kontrollpunktgitter genutzt, beginnend mit anfänglichen Schrittweiten von Kontroll-
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punkten an jedem 20., über jeden 10. bis zu jedem 7. Pixel. Auf jeder Stufe werden
sowohl während des Trainings als auch später zur Inferenz 300 Verschiebungsfeldanpas-
sungen ∆(u,v) berechnet - also insgesamt pro Bildpaar 900 Optimierungsiterationen.
Mit einer Gewichtung von 0.025 wird dem Regularisierungsterm, der Abweichungen
zwischen ∆(u,v) und ihrer geglätteten Version betrachtet, auf der letzten Stufe mehr
Einfluss beigemessen als auf den beiden vorangehenden mit 0.0125. Als Batchgrö-
ße werden aufgrund hardwareseitiger Speicherbeschränkungen jeweils zwei Bildpaare
gleichzeitig während des Trainings verarbeitet. Außerdem werden nur Gradienten aus
Regionen zurückgeführt, die aufgrund ihrer Nähe zu Organgrenzen als relevant für
das Erlernen aussagekräftiger, modalitätsinvarianter Repräsentationen erachtet wer-
den. Diese Regionen werden aus den Distanzkarten durch Maskierung von Bereichen,
in denen abs(SDMf/m(x)) < 0.1 gilt, bestimmt.

Nach Beendigung des Trainings werden zur Inferenz alle Parameter wie oben be-
schrieben beibehalten. Unter Fixierung der Faltungsnetzwerke werden dann ausschließ-
lich unter Einsatz des Grid Optimierers die Verschiebungsfeldanpassungen zur Regis-
trierung durchgeführt. Aus diesem Grund entfällt die Notwendigkeit zur Inferenz auf
die zusätzlichen Informationen zur Überwachung mittels Segmentierungen zuzugrei-
fen. Auch im Falle des Experimentes, bei dem die Faltungsnetze durch die MIND-
Deskriptoren ersetzt werden, ist lediglich der blau unterlegte Bereich in Abb. 5.1 von
Nöten.

Ergebnisse: Beginnend mit einer qualitativen Darstellung zeigt Abb. 5.3 das Re-
sultat einer CT-zu-MRT-Registrierung. In der oberen Reihe sind zunächst jeweils die
ursprünglichen CT- und MRT-Schnittbilder samt überlagerter Expertensegmentierun-
gen zu sehen. Anschließend sind sowohl für den Einsatz der MIND-Deskriptoren im
entwickelten Framework, als auch für die trainierten Faltungsnetzwerke als Feature-
extraktoren die CT-Segmentierungen basierend auf den jeweilig generierten Verschie-
bungsfeldern verformt und zum Vergleich über das MRT-Zielschnittbild überlagert
illustriert. Dabei erreicht der Einsatz von MIND-Deskriptoren einen Dice-Wert von
0.63 und das in diesem Kapitel entwickelte CNN-basierte Verfahren verbessert den ur-
sprünglichen Wert von 0.40 weiter auf 0.71. Die untere Reihe zeigt ganz links mithilfe
der Verformung eines Gitters die Auswirkungen des CNN-basierten Verschiebungsfel-
des nach Abschluss der 900 Iterationen unter Einsatz des B-Spline Descent-Moduls. Die
daran anschließenden Schachbrett-Darstellung vermittelt einen Eindruck der anfäng-
lich vorliegenden, räumlichen Organrelationen. Darüberhinaus zeigen die Schachbrett-
darsellungen der beiden Verfahren die nach der Registrierung verbesserte räumliche
Korrespondenz und insbesondere im Fall des Faltungsnetz-gestützten Vorgehens gute
Ergebnisse für die Organgrenzen der Leber - trotz großer initialer Distanz bei diesem
Beispielpaar.
Tabelle 5.2 enthält hingegen die Dice-Werte als quantitative Kennzahlen der Expe-

rimente. Für 10 Durchläufe mit zufälligen Aufteilungen in Trainings- und Testmen-
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Mov CT init Fix MR init
Warped CT Seg 
MIND-Feats: 0.63

Warped CT Seg 
CNN-Feats: 0.71

Warped Grid
CNN-Feats

CT init: 0.40 
CT warped based 
on MIND-Feats

CT warped based 
on CNN-Feats

Abb. 5.3: Beispielhafte Ergebnisse: (oben) CT- & MRT-Schnittbilder unterlegt mit ihren zu-
gehörigen Segmentierungen sowie Darstellung des MRT-Zielbildes überlagert mit
transformierten CT-Segmentierungen unter Einsatz der MIND-Deskriptoren bzw.
der trainierten Faltungsnetzwerke. (unten) Ein entsprechend dem CNN-basiert ge-
neriertem Verschiebungsfeld transformiertes Gitter; Schachbrettdarstellungen der
anfänglichen, räumlichen Organrelationen sowie nach Transformation mittels der
jeweiligen Verschiebungsfelder.

gen der ungepaarten Bilddaten werden insgesamt 90 Registrierungen durchgeführt.
Im Mittel schneidet dabei das entwickelte Verfahren unter Anwendung trainierter Fal-
tungsnetze zur Transformation in einen gemeinsamen Bildraum mit durchschnittlichen
Dice-Werten von 0.72 am besten ab. Das etablierte SimpleElastix-Framework als Ver-
treter klassischer Registrierungsverfahren überzeugt ebenfalls mit leicht niedrigeren,
finalen Dice-Werten von 0.70. Die manuell entworfenen MIND-Deskriptoren folgen in
geringem Abstand und verbessern den initialen Wert von 0.53 auf 0.66. Während das
MIND-Verfahren gute Ergebnisse auf den Psoas Major Muskeln liefert, überzeugt das
vorgestellte Verfahren insbesondere durch seine Robustheit hinsichtlich großer Organ-
strukturen wie der Leber und der Milz.

5.2.3 Diskussion

Die als Machbarkeitsstudie entworfene, erste Version des SUITS-Algorithmus erfüllt ih-
ren Zweck und erlaubt eine neuartige Integration von Ende-zu-Ende-trainierten, CNN-
basierten und multimodalen Repräsentationen in ein klassisches Registrierungspro-
zedere.
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Tabelle 5.2: Dice-Werte der betrachteten Verfahren: Verglichen mit den initialen Überlage-
rungen erreichen alle Methoden Verbesserungen durch sinnvolle, räumliche An-
passungen. Während die MIND-basierten Registrierungen speziell auf feineren
Strukturen wie den Psoas Major Muskeln überzeugen, zeigen die CNN-basierten
Repräsentationen Stärken bei großen Organen wie Leber und Milz.

Organ
Experiment Leber Milz l.Niere r.Niere l.PsoasM r.PsoasM ∅

Initial 0.56 0.37 0.52 0.55 0.53 0.65 0.53
SimpleElastix 0.75 0.68 0.58 0.72 0.68 0.76 0.70

MIND Deskriptor 0.67 0.45 0.70 0.69 0.72 0.75 0.66
Feature CNNs 0.83 0.64 0.74 0.68 0.72 0.73 0.72

Die im Experiment erzielten Ergebnisse weisen nach, dass Faltungsnetzwerke für den
herausfordernden Fall ungepaarter Bilddaten mit lediglich schwacher Überwachung
durch Organsegmentierungen aussagekräftige Transformationen in einen gemeinsamen
Bildraum erlernen können. Diese trainierten Repräsentationen sind anschließend direkt
innerhalb des iterativen Multiskalen-Registrierungsverfahrens einsetzbar. Während die
manuell entworfenen MIND-Deskriptoren speziell kleinere Stukturen überzeugend an-
gleichen, profitert die iterative Registrierung vom vergleichsweise großen rezeptiven
Feld der mehrschichtigen Faltungsnetze, so dass insbesondere große Organe einfacher
zueinander ausgerichtet werden können. Es ist dabei noch einmal hervorzuheben, dass
die entwickelte Methode es ermöglicht, sich der Notwendigkeit dichter, punktweiser
Korrespondenzen zu entledigen, da zusätzlich nur Organsegmentierungen während des
Trainings benötigt werden.
Zusammenfassend unterstützen die durchgeführten Experimente die Annahme, dass

die klare Separierung der Architektur in Teile, welche einerseits zum Erlernen des
gemeinsamen Bildraumes dienen und andererseits im klassischen Sinne für die iterativ
optimierte Registrierung verantwortlich zeichnen, vorteilhaft ist. Dadurch bietet sich
eine Alternative zu den üblichen Parameter-intensiven, vollintegrierten und Ende-zu-
Ende-trainierten Registrierungsnetzwerken.
Im nächsten Abschnitt wird dieser Pfad weiter verfolgt und unter Einsatz eines wei-

teren Verformungsmodells auf ein dreidimensionales, multimodales Registrierungs-
problem erweitert.

5.3 SUITS 2.0

Im vorangehenden Abschnitt 5.2, dessen inhaltliche Grundlage die Veröffentlichung
Blendowski u. a., 2019a bildet, wird eine Ende-zu-Ende-trainierbare, multimodale
Registrierungsstrategie eingeführt. Es wird ein Weg aufgezeigt, wie die Integration
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von Faltungsnetzwerken zur Erhebung modalitätsinvarianter Repräsentationen in einer
klassischen Registrierungspipeline gelingen kann.
Weiterhin soll der Lernprozess zur Extraktion aussagekräftiger Feature basierend auf

schwacher Überwachung durch Organsegmentierungen geleitet werden, wie z.B. in
Hu u. a., 2018 vorgeschlagen. Im Gegensatz zu einer Vielzahl anderer Arbeiten, die
sich mit dem Erlernen und Vorhersagen des Optischen Flusses befassen, bleibt der
Fokus auch bei dieser Umsetzung auf der Trennung von struktureller Bildinformation
und Anpassung der Deformationsparameter. Es handelt sich daher um eine weitere
Ausprägung des SUITS-Algorithmus - publiziert in Blendowski u. a., 2020b -, allerdings
mit mehreren grundlegenden Änderungen.
1) Im Gegensatz zur Verwendung von lediglich zweidimensionalen Bilddaten im

Sinne einer Machbarkeitsanalyse, wird im Folgenden der Schritt zur herausfordern-
den, dreidimensionalen Registrierung von ungepaarten, thorakoabdominalen CT- und
MRT-Aufnahmen vollzogen.
2) Die ursprüngliche Beschränkung auf ein Verfahren zum Bestimmen der Trans-

formationsparameteranpassung, das auf die Existenz einer geschlossenen Lösung hin-
sichtlich des resultierenden Gleichungssystems angewiesen ist, um die Ende-zu-Ende-
Trainierbarkeit sicherzustellen, wird in diesem Kapitel überwunden. Dazu wird eine
Gradientenrückführung durch Lösungsverfahren für lineare Gleichungssysteme imple-
mentiert, so dass die Kombination mit einem in Brox u. a., 2004 eingeführten, etablier-
ten und iterativen Gauß-Newton-Anpassungsschema möglich ist. Trotz des Mehrauf-
wandes an theoretischer Vorarbeit ergeben sich dadurch strukturelle Vereinfachungen
hinsichtlich des Ablaufschemas im Vergleich zur ersten SUITS-Version.
3) Im Vergleich zur vorangehenden Version wird eine Y-förmige Netzwerkstruktur

genutzt, um durch die geteilten Gewichte in den tieferen Schichten die Transformation
der multimodalen Eingabedaten in vergleichbare Repräsentationen zu erleichtern.
4) Schließlich wird die Art der Loss-Berechnung von einer direkten Bestrafung abwei-

chender Parameteranpassungen umgestellt auf das Betrachten der Übereinstimmungs-
güte von im Trainingsfall vorliegenden Expertensegmentierungen.

5.3.1 Methoden

Dieser Abschnitt dient der detaillierten und umfassenden Einführung der abgeänder-
ten, zweiten Version des SUITS-Algorithmus zur multimodalen Bildregistierung. In
Abb. 5.4 ist der schematische Ablauf der Methodik illustiert und umfasst sowohl die
Trainings- als auch die Inferenzphase. Die modularen Bestandteile sind mit ihren je-
weiligen Beziehungen zueinander dargestellt, die das Loslösen des iterativen Registrie-
rungsprozess vom Lernen aussagekräftiger Repräsentationen zum Ziel haben. Zunächst
wird das Zusammenspiel der Module innerhalb des gesamten Verfahrens erläutert, be-
vor eingehend die Implementierung der ableitbaren, iterativen Berechnung der Trans-
formationsparameteranpassung dargelegt wird.
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Abb. 5.4: Schematischer Aufbau der Methode. Auf der linken Seite (hellblaue Box) ist der
iterative Prozess zur Inferenzzeit abgebildet. Pro Durchlauf wird das moving Bild
entsprechend den aktuellen Verschiebungsparametern uk transformiert und die Fea-
turerepräsentationen Rmov/fix der beiden Eingabebilder mittels der Y-förmigen
Faltungsnetzarchitektur (gelb) generiert. Basierend auf diesen Darstellungen be-
rechnet anschließend das Transformationsparameteranpassungsmodul das Upda-
te ∆uk für die nächste Iteration. Die zufällige Auswahl einer Iteration kback−1

zur Anpassung der Faltungsnetzgewichte, ermöglicht unter Ausnutzung verfügbarer
Organsegmentierungen während des Trainings das Erlernen robuster Feature, die
während des gesamten iterativen Registrierungsprozesses eingesetzt werden können.
Beim Durchlauf der Iteration kback werden alle Operationen mittels einer autograd
engine aufgezeichnet (grün gestrichelte Pfeile) und ∆uk wird in diesem Schritt mit-
hilfe der FeatCNN-basierten Repräsentationen berechnet. Anhand des schwach-
überwachten, Segmentierungs-basierten Losses, der auf der rechten Seite darge-
stellt ist, ergibt sich ein Gradientenrückfluss hin zu den lernbaren Gewichten des
FeatCNNs (gepunktete, rote Pfeile).
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5.3.1.1 SUITS 2.0-Algorithmus

Wie in der vorangehenden Version besteht die Zielstellung des SUITS 2.0-Algorithmus
im Angleichen multimodaler Bilddaten. Daher bleibt das Einbringen von Vorwissen
notwendig, um dem Problem der zunächst nicht-vergleichbaren Bildintensitätsvertei-
lungen zu begegnen. Anstatt deshalb auf eine passende Ähnlichkeitsmetrik zurückzu-
greifen, wird auch hier weiterhin die Strategie verfolgt, mittels schwacher Überwa-
chung durch Organsegmentierungen die Gewichte von Faltungsnetzwerken zur Featu-
reextraktion datengetrieben zu lernen.
Bisher stellen die in Heinrich u. a., 2012 vorgestellten MIND-Deskriptoren eine Stand-

der-Technik-Referenz insbesondere zur CT-MRT-Registrierung dar, indem sie das Kon-
zept der Selbstähnlichkeit zur Transformation der Bilddaten in einen vergleichba-
ren Stukturraum nutzen. Bereits im vorangehenden Abschnitt zur ersten Version des
SUITS-Algorithmus haben sie innerhalb eines iterativen Optimierungsverfahrens und
ohne spezielle Metriken unter Beweis gestellt, dass sich auf ihrer Grundlage multimo-
dale Registrierungen durchführen lassen. Im Fortgang soll nun beleuchtet werden, ob
sich in einer vergleichbaren Registrierungspipeline Faltungsnetzwerke einsetzen lassen,
deren Gewichte initial auf die Replikation von MIND-Deskriptoren trainiert sind, um
anschließend datengetrieben noch verfeinert zu werden.
Auch dabei stellt sich wieder die Frage nach der konkreten algorithmischen Ausge-

staltung der Gradientenrückführung zur Anpassung der Netzwerkparameter.
Diese soll wieder im Zuge des paarweisen Bildregistrierungsproblems untersucht wer-

den, d.h. während der Suche einer geeigneten Transformation u (in Gleichung 2.4
ursprünglich ϕ benannt, hier aber der intuitiveren Lesbarkeit als Vektorfeld mit u
bezeichnet), die das Minimierungsproblem

min
u
D (Rfix(x),Rmov(x + u)) + C(u) (5.4)

betrachtet. Die gefundende Lösung sollte an jeder Position x der moving-Bildrepräsen-
tation Rmov möglichst gut mit derjenigen des fixed Bildes Rfix übereinstimmen - im
Sinne eines Distanzmaßes D und zusätzlicher Nebenbedingungen C (engl.: constraints,
um Konflikte mit den Repräsentationen R zu vermeiden), wie beispielsweise der gefor-
derten Glattheit des Verschiebungsfeldes.
Der nachstehende Abschnitt soll Aufschluss darüber gewähren, wie diese aussage-

kräftigen, gemeinsamen Bildrepräsentationen gelernt werden können.
Training der Feature CNNs: Grundsätzlich wird wie in der ersten SUITS-Version

auf eine Form von schwacher Überwachung zurückgegriffen, um eine Adaption
der MIND-vortrainierten Faltungsnetze durch Rückführung sinnvoller Gradienten zu
erreichen. Abb. 5.4 deutet bereits im Prozessfluss der rechten Seite an, dass die während
des Trainings zur Verfügung stehenden Organsegmentierungen in der Funktion eines
vergleichbaren Bildraumes genutzt werden.
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Zur Inferenzzeit verfolgt der Ansatz die Strategie klassischer, iterativer Registrierun-
gen (vgl. schwarze Pfeile), so dass innerhalb des modularen Aufbaus mehrere Durch-
läufe zur Berechnung der schrittweisen Verschiebungsfeldparameteranpassungen vor-
genommen werden. Eine Iteration geht von den Verschiebungen uk (orange) aus und
endet auch nach deren Anpassung dort. uk sind dabei dichte Verschiebungsfelder zur
Beschreibung nicht-rigider, lokaler Deformationen.
Bei jedem Durchlauf k wird zunächst das moving Bild entsprechend der aktuellen

Parameter uk transformiert. Anschließend werden sowohl das fixed als auch das trans-
formierte moving Bild mittels des Y-förmigen Faltungsnetzes in ihre Featurereprä-
sentationen überführt. Diese dienen dem Transformationsparameteranpassungsmodul
als Eingabe, um die Verschiebungsfeldparameteranpassungen ∆uk−1 zu berechnen. In
frühen Experimenten hat sich herausgestellt, dass diese Y-Struktur sich insbesondere
durch das Teilen der Gewichte in den tieferen Schichten dazu eignet, eine Transforma-
tion der Eingabedaten verschiedener Modalitäten in vergleichbare Repräsentationen zu
erreichen. Mit Rücksicht auf Nachvollziehbarkeit des Verfahrens kapselt dieses Modul
die mathematische Methodik und wird im Fortlauf noch eigens erläutert. Während der
Registrierung werden die Ausgaben dieses Modules schließlich unter Berücksichtigung
eines Schrittweitenparameters γ zu den Verschiebungsfeldparametern für die nächste
Iteration addiert:

uk = uk−1 + γ ·∆uk−1,mit u0 = 0 (5.5)

An dieser Stelle muss wiederum auf eine Besonderheit das Training betreffend hin-
gewiesen werden, bevor auf den eigentlichen Gradientenfluss hin zu den Gewichten
des FeatCNNs eingegangen wird. Aufgrund der Orientierung an klassischen, itera-
tiven Verfahren, bei denen manuell entworfene Bilddeskriptoren auf gleichbleibende
Weise während des ganzen Prozesses berechnet werden, bleiben auch die FeatCNNs
beim Einsatz innerhalb des SUITS 2.0-Algorithmus wie schon in der ersten Version fix.
Daher bleibt die Notwendigkeit bestehen, dass die erlernten Feature robust und aus-
sagekräftig zu jeder Phase des Angleichungsprozesses von Bildpaaren genutzt werden
können. Im Training kommen dabei erneut die Organsegmentierungen zum Einsatz, um
den Registrierungsprozess zu führen. Dazu wird das Tranformationsparameteranpas-
sungsmodul für eine zufällige Iterationsanzahl kback−1 direkt auf die Segmentierungen
angewandt, da sie eine monomodale und somit valide Eingabe darstellen. Nach Ab-
schluss dieser Iterationen wird das ursprüngliche moving Grauwertbild entsprechend
ukback−1 transformiert.
Für alle weiteren Schritte während der nächsten, anstehenden Iteration zeichnet eine

autograd engine jegliche Operationen auf und erlaubt dadurch einen Gradientenrück-
fluss (grün gestrichelte Pfeile). Zuerst extrahiert das FeatCNN die entsprechenden
Repräsentationen Rkback−1

mov des moving Bildes bzw. Rfix des fixed Bildes. Danach wird
das Update ∆ukback−1 vom Transformationsparameteranpassungsmodul auf Grundla-
ge der FeatCNN-Repräsentationen berechnet - und nicht basierend auf den Segmen-
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tierungen wie in den vorangehenden Iterationen. Gleichung (5.5) folgend ergibt sich
daraus direkt ukback .

Um nun die Gewichte des FeatCNN dermaßen zu adaptieren, dass eine Transfor-
mation dermultimodalen Eingabebilder in einen gemeinsamen Raum vollzogen wird,
kommt die schwache Überwachung in Form der vorliegenden, kanalweise kodierten
Organsegmentierungen zum Einsatz. Wie im rechten Teil der Abb. 5.4 zu sehen, be-
nötigt man die transformierte moving Segmentierung Skback

mov . Mithilfe dieser ist man in
der Lage einen Fehlerterm zu berechnen, der den Gradientenfluss zur Adaptierung der
Faltungsnetzgewichte auslöst (rot gepunktete Pfeile). Zur Verwendung kommt hier ein
cross entropy loss zwischen der transformierten Segmentierung und der mittels einer
arg max-Operation entlang der Kanaldimension umgewandelten Zielsegmentierung.

Lguide = LCE(Skback
mov , arg max Sfix) (5.6)

Man beachte, dass Skback
mov aufgrund der trilinearen Interpolation während der Tranfor-

mation nicht mehr ausschließlich Werte aus {0, 1} enthält und dementsprechend einen
sinnvollen Gradientenfluss ermöglicht.
In zusammengefasster Form findet sich das oben beschriebene Vorgehen auch als

Pseudocode in Algorithmus 3.

5.3.1.2 Transformationsparameteranpassung

Die Erläuterungen des vorangehenden Abschnittes dienen dazu den schematischen Ab-
lauf zur Rückführung informativer Gradienten hin zu den Faltungsnetzwerkgewich-
ten durch eine schwache Überwachung herauszuarbeiten. Die eigentlichen Erwei-
terungen im Vergleich zum ursprünglichen, in Abschnitt 5.2 vorgestellten SUITS 2.0-
Algorithmus sind bisher im Transformationsparameteranpassungsmodul gekapselt.
Das zuerst entwickelte SUITS-Verfahren nutzt einen Demons-basierten, iterativen

Registrierungsansatz aufgrund der geschlossenen Lösung zur Adaption der Transfor-
mationsparameter, welche innerhalb der autograd engine eine verhältnismäßig sim-
ple Gradientenrückführung erlaubt. In der weiterentwickelten, zweiten Version wird
ein Parameteranpassungsverfahren in Anlehnung an die iterative Methode aus Brox
u. a., 2004 mit Diffusionsregularisierung umgesetzt. Diese Formulierng der Glattheits-
bedingung erweist sich in frühen Experimenten zur Ermittlung dreidimensionaler Ver-
schiebungsfelder gegenüber der Demons-basierte Variante des ursprünglichen SUITS-
Algorithmus als robuster. Da die Variante jedoch auf einer Gauß-Newton-Optimierung
basiert, wird das Lösen eines großen, wenn auch spärlich-besetzten linearen Gleichungs-
systems (LGS) erforderlich. Letzteres lässt sich beispielsweise mittels eines algebrai-
schen Multigrid-Verfahrens (AMG) lösen, wie es in Ruge u. a., 1987 entwickelt wird.
An dieser Stelle sei noch einmal ausdrücklich darauf hingewiesen, dass alle Ausprä-

gungen des SUITS-Algorithmus der vollständigen Differenzierbarkeit jeglicher im Ver-
lauf durchgeführten Operationen bedürfen. Vor diesem Hintergrund ist es dementspre-
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Algorithm 3: Schematischer Ablauf des SUITS 2.0-Algorithmus aus Abb.5.4
als Pseudocode.
Input: Thoracoabdominale CT- & MRT-Bilddaten + Organsegmentierungen
Output: Trainierte CNNs zur Feature-Extraktion

Initialisiere FeatCNN;
Initialisiere Feature Optimierer & binde die FeatCNN-Parameter an;
for epx← 0 to #epochs do

Setze u0 = 0;
Ziehe ein zufälliges Batch an Patientenpaaren;
Wähle kback zufällig aus [0,#iterations];
for k ← 1 to kback − 1 do

// NICHT aufgezeichnet durch Feature Optimierer
Setze die fixed Organsegmentierung Sfix als fixed Repräsentation Rfix;
Setze die moving Organsegmentierung Smov als moving Repräsentation Rmov;
Berechne Rk−1

mov durch Transformation der moving Organsegmentierung Rmov

entsprechend uk−1;
Generiere ∆uk−1 mittels des Transformationsparameteranpassungsmoduls;
Setze uk = uk−1 + γ ·∆uk−1

end
// Zur Iteration kback aufgezeichnet durch Feature Optimierer
Berechne Rfix mittels FeatCNN als fixed Repräsentation;
Berechne Rkback−1

mov als moving Repräsentation durch Transformation des moving
Grauwertbildes entsprechend ukback−1 unter Anwendung von FeatCNN;

Generiere ∆ukback−1 mittels des Transformationsparameteranpassungsmoduls;
Setze ukback = ukback−1 + γ ·∆ukback−1;
Berechne Skback

mov durch Transformation der moving Organsegmentierung entsprechend
uback;

Berechne den cross entropy -Loss Lguide = LCE(Skback
mov ,Sfix) zur Rückführung des

Gradienten und adaptiere die FeatCNN-Gewichte;
end
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chend notwendig auch das Lösen des LGS ableitbar zu gestalten, damit der Gradienten-
fluss durch diesen Schritt korrekt zur schlussendlichen Anpassung der Faltungsnetz-
parameter weitergeleitet wird. Dieser Mehraufwand an theoretischer Vorarbeit wird
aber durch strukturelle Vereinfachungen wie dem Entfallen des Grid Optimierers auf-
gewogen, da das mächtigere Parameteranpassungsmodell beispielsweise bereits ohne
Berücksichtigung des Momentum zur sinnvollen Adaption der Verschiebungsvektoren
führt.
Nachfolgend wird nun das methodische Fundament dieser diffusionsregularisierten

Registrierungsmethode gelegt. Danach wird detailliert die Berechnung der lokalen
Gradienten zur Implementierung des AMG-Lösungsverfahrens innerhalb der PyTorch-
autograd engine besprochen.
AMG-Diffusion: Für den SUITS 2.0-Algorithmus wird ein iterativer Ansatz unter

Verwendung von Diffusionsregularisierung eingesetzt, der durch das in Brox u. a., 2004
vorgestellte Verfahren inspiriert ist. Die Autoren erweitern die bahnbrechende Arbeit
von Horn u. a., 1981 darin um einen zusätzlichen Strafterm.

Als Ausgangspunkt zur Anpassung der Transformationsparameter u soll die Ener-
giegleichung

1
2

∥∥∥∥ ∂∂xRmov(x) · ux + ∂

∂y
Rmov(x) · uy + ∂

∂z
Rmov(x) · uz

+Rmov(x)−Rfix(x)
∥∥∥∥2

2
+ λ

2 ‖∇u‖22 = min
u
E(u) (5.7)

optimiert werden. Wie schon in der Ursprungsversion des SUITS-Algorithmus lässt
sich auch hier wieder unter der Annahme kleiner, iterativer Anpassungsschritte die
Linearisierung des Terms Rmov(x + ux/y/z) durch eine Taylor-Approximation erster
Ordnung rechtfertigen. Dabei kommen die jeweiligen Ableitungen ∂

∂x/y/zRmov nach
den Dimensionen x/y/z zum Einsatz. Das Ableiten nach den entsprechenden Dimen-
sionsbestandteilen von u führt bei der Minimierung auf die Ausdrücke

∂E(ux/y/z)
∂ux/y/z

=
(
∂

∂x
Rmov(x) · ux + ∂

∂y
Rmov(x) · uy + ∂

∂z
Rmov(x) · uz

+Rmov(x)−Rfix(x)
)
· ∂

∂x/y/z
Rmov(x)− λ∆ux/y/z

!= 0 (5.8)

wobei −∆ux/y/z = Lux/y/z gilt und L den Laplace-Operator auf dem Voxelgitter
darstellt. In einer lokalen 6er-Nachbarschaft N 6

x um die Position x gilt für ∆ux/y/z(x)
die Annäherung

∑
l∈N 6

x

ux/y/z(l)− 6 · ux/y/z(x).

Auch der erneuerte Ansatz verfolgt eine iterative Strategie zur Anpassung der Ver-
schiebungsfeldparameter und beginnt mit u0 = 0. Während jeder Iteration ergibt sich
die Repräsentation Rkmov des moving Bildes durch die Transformation entsprechend
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der aktuellen Verschiebung uk = uk−1 + ∆uk−1. Dies setzt die Kenntnis von ∆uk−1

voraus und bedarf daher der Lösung von folgendem, spärlich-besetztem LGS nach z

A · z =


−
(
Rk−1
mov −Rfix

)
� ∂

∂xR
k−1
mov − λLuk−1

x

−
(
Rk−1
mov −Rfix

)
� ∂

∂yR
k−1
mov − λLuk−1

y

−
(
Rk−1
mov −Rfix

)
� ∂

∂zR
k−1
mov − λLuk−1

z

 (5.9)

Dabei stellt � eine elementweise Multiplikation dar, Rmov/fix sind Diagonalmatrizen
und A besitzt die Blockmatrixgestalt

(
∂
∂xR

k−1
mov

)2
+ λ · L ∂

∂xR
k−1
mov

∂
∂yR

k−1
mov

∂
∂xR

k−1
mov

∂
∂zR

k−1
mov

∂
∂yR

k−1
mov

∂
∂xR

k−1
mov

(
∂
∂yR

k−1
mov

)2
+ λ · L ∂

∂yR
k−1
mov

∂
∂zR

k−1
mov

∂
∂zR

k−1
mov

∂
∂xR

k−1
mov

∂
∂zR

k−1
mov

∂
∂yR

k−1
mov

(
∂
∂zR

k−1
mov

)2
+ λ · L


Um Verwechslungen hinsichtlich der Variablenbenennung vorzubeugen, bezeichnet z =
∆uk−1 = [ux,uy,uz]T die aktuellen Transformationsparameteranpassungen und bein-
haltet nicht den Laplace-Operator. Der Herleitung in Brox u. a., 2004 folgend ergeben
sich die Terme −λLuk−1

x/y/z auf der rechten Seite der Gleichung durch das Regularisieren
der Summe aus aktueller Updaterichtung und den Verschiebungsparametern zum vor-
herigen Durchlauf λ‖∇(uk−1

x/y/z + ∆uk−1
x/y/z)‖

2
2. Unter Beachtung dieser Zusammenhänge

ergibt sich (5.9) unmittelbar aus (5.8) durch Separation und Umarrangement der zu
∆uk−1

x/y/z gehörenden Terme aus den drei resultierenden Minimierungsgleichungen.
Da für Gleichung (5.9) - im Gegensatz zum Demons-Ansatz aus Abschnitt 5.2 der

ersten SUITS-Version - keine geschlossene Lösungsform existiert, wird zur effizienten
Bestimmung der Transformationsparameteranpassung von einem algebraischen Mul-
tigrid-Lösungsverfahren Gebrauch gemacht. Insbesondere in Bezug auf die inhärente
Verfolgung einer Multiskalenstrategie bietet sich dieses Verfahren zusätzlich zu seiner
schnellen Konvergenz in diesem Zusammenhang an.
Insgesamt ergibt sich das gesuchte Update ∆uk−1 der Transformationsparameter im

gekapselten Modul also durch die AMG-basierte Lösung von Gleichung (5.9).
Lokale Gradienten von LGS-Lösungsverfahren: Nach der Erläuterung des

schematisschen Aufbaus sowie der mathematischen Grundlagen der iterativen Regis-
trierungsmethode bleibt die Frage zu klären, wie eine Gradientenrückführung durch
anzuwendende Lösungsverfahren für lineare Gleichungssysteme gelingt.
Da der SUITS 2.0-Algorithmus im Rahmen der PyTorch-autograd engine umge-

setzt wird, benötigt man - wie bei vielen anderen Frameworks auch - die korrekte
Bestimmung lokaler Gradienten hinsichtlich aller Eingaben der aktuell betrachteten
Schicht. Diese sind in Bezug auf die an ihren Ausgängen anliegenden Gradienten, die
von tieferen Netzwerkschichten ausgehend vom momentanen Loss generiert werden, zu
berechnen.
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Grundsätzlich wäre die Lösung von Gleichung (5.9) in ihrer Form A · z = [...] = b
durch den Ausdruck z = A−1 · b gegeben. Allerdings verbietet sich die Bestimmung
der Inversen einer spärlich-besetzten Matrix aufgrund des zu erwartenden Speicher-
und Rechenaufwandes. Dies hat aber zur Folge, dass die folgenden, standardmäßigen
Ausdrücke zur Bestimmung der lokalen Gradienten zunächst nicht ohne Weiteres An-
wendung finden können:

Matrix-Vektor-Multiplication

vorwärts: M · v = w, M ∈ Rnxn,v,w ∈ Rn

rückwärts: grad@v = MT · grad@w (5.10)

grad@M =


grad@w1 · [v1, ..., vn]

...
grad@wn · [v1, ..., vn]


Um zu verdeutlichen, welche Gradienten während des Rückwärtsflusses an den jeweili-
gen Variablen y anliegen, wird hier die Notation grad@y eingeführt. Diese ist Synonym
zu den Kettenregeltermen der in Hecht-Nielsen, 1992 beschriebenen backpropagation-
Bestandteile zum Einsatz in autograd engines und soll helfen den Blick durch Ersetzen
partieller Ableitungssymbole auf das Wesentliche zu lenken.
Betrachtet man Gleichung (5.9), so gilt es den Gradienten für den Term b auf der

rechten Seite zu bestimmen. In frühen Experimenten hat sich gezeigt, dass die Gra-
dientenberechnung der Differenzbilder

(
Rk−1
mov −Rfix

)
den weitaus größten Einfluss

auf die Anpassung der zu lernenden Faltungsnetzparameter hat. Im Gegensatz dazu
hat sich die Speicher-intensive Bestimmung der Matrixgradienten als vernachlässigbar
herausgestellt.
Zur tatsächlichen Bestimmung von grad@b lässt sich ausgehend von einem Aus-

druck, der anfänglich die inverse Systemmatrix enthält, ein Weg verfolgen, der deren
explizite Berechnung umgeht. Beginnend mit z = A−1 · b nutzt man unter Beachtung
von Gleichung (5.10), dass grad@b =

(
A−1)T ·grad@z gilt. Die Multiplikation beider

Seiten mit
((

A−1)T)−1
= AT führt dann zu

AT · grad@b = grad@z

Diese Gleichung ist aber wiederum unter Anwendung des AMG-Verfahrens während
der Gradientenrückführung lösbar

grad@b = amg_solve
(
grad@z,AT

)
(5.11)

und die gesuchte Größe grad@b ergibt sich somit ohne explizite Berechnung von A−1.
Vor der abschließenden Zusammenfassung aller zur Gradientenrückführung durch ein
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LGS-Lösungsverfahren notwendigen Schritte zur Verwendung innerhalb einer auto-
grad engine in Algorithmus 4, sei der Vollständigkeit halber noch die Berechnung von
grad@A durch

grad@A = −1 ·


grad@b1 · [z1, ..., zn]

...
grad@bn · [z1, ..., zn]

 (5.12)

aufgeführt.

Algorithm 4: Pseudocode zur schichtweisen Einbindung von LGS-
Lösungsverfahren in autograd engines.
LSESolverForward(A,b):
Berechne x = amg_solve(b,A);
Speichere die Tensoren A, b & x für den backward-Schritt;
return x ;

LSESolverBackward(grad@x):
Lade die gespeicherten Tensoren A, b & x;
Berechne grad@b = amg_solve(grad@x,AT );

Berechne grad@A = −1 ·


grad@b1 · [x1, ..., xn]

...
grad@bn · [x1, ..., xn]

 return grad@A, grad@b

5.3.2 Experimente

Um die Erweiterung des entwickelten Registrierungsverfahrens zu untersuchen, werden
wie im vorangehenden Abschnitt 5.2 ungepaarte, multimodale CT-MRT-Bilddaten
verwendet. Nach Abschluss der vorherigen Machbarkeitsstudie, wird der Schritt weg
von der Anpassung zweidimensionaler Schichtbilder hin zu dreidimensionalen Trans-
formationen vollzogen. Auch die Experimente zur zweiten SUITS-Version fußen auf
den Thorakoabdominalaufnahmen des in Jimenez-del-Toro u. a., 2016 vorgestellten
VISCERAL-Datensatzes.
Aus den vorliegenden gold corpus-Trainingsdaten wird pro Modalität jeweils eine

Untermenge von 20 Patienten ausgewählt. Sie enthalten für jeden Patienten die be-
reits aus den vorangehenden Experimenten bekannten, von medizinischen Experten
erstellten Organsegmentierungen - namentlich der Leber, der Milz, der linken & rech-
ten Nieren sowie der linken & rechten Psoas Major Muskeln. Diese Annotationen dienen
dann während des Trainings der vorgeschlagenen Methode als Überwachung. Als ein-
heitliche Vorverarbeitungsschritte werden die Bilder für alle Experimente zuerst auf
ein isotropes Voxelspacing von 2.0 mm3 (coronal: 138, sagittal: 187, axial: 192 Voxels)
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umgerechnet und einer z-Tranformation zur Normalisierung der Eingaben unterzogen.
Mittels dem in Heinrich, 2018 beschriebenen, multiskalen Blockmatching-Ansatz - der
beispielsweise in einer MRT-zu-Ultraschall-Gehirn-Registrierungschallenge [Xiao u. a.,
2019] den Stand-der-Technik darstellt - werden alle Aufnahmen affin vorregistriert.
Dabei kommen paarweise Transformationen unter Beachtung eines Bias-korrigierten
Mittelwertes durch Matrix-Logarithmen (detailliert dargelegt in Modat u. a., 2014)
zum Einsatz. In Summe führen diese Schritte zu einer robusten, initialen Ausrichtung
der Daten.
Aufgrund der Aufteilung der überwachten Methoden in Trainings- und Testpha-

sen, werden die Datensätze jeweils in 15 Trainings- und 5 Testpatienten pro Modalität
gruppiert. Da die Daten wie bereits erwähnt ungepaart vorliegen, ergeben sich dar-
aus 225 mögliche Interpatientenregistrierungen während des Trainings und 25 Paare
per Durchlauf im Test. Bei allen Registrierungen werden die CT-Bilder als moving
Bilder den fixed MRT-Scans angeglichen. Als Hardware steht dabei eine Nvidia RTX
2070 GPU zur Verfügung und softwareseitig stützt sich die Implementierung auf das
PyTorch-Framework.
Der besseren Übersicht halber werden bei den Experimenten zwei Kategorien unter-

schieden. Zum Einen werden baseline-Experimente mit vergleichbaren Methoden aus
verwandten Arbeiten durchgeführt. Zum Anderen soll die Registrierungsgenauigkeit
der neu-entwickelten Methode sowohl mit als auch ohne datengetriebene Adaption der
FeatCNN-Gewichte beleuchtet werden.

5.3.2.1 Baseline-Experimente

SimpleElastix-MI: Um die Ergebnisse der weiterentwickelten Methode später bes-
ser einordnen zu können, wird wieder das in Marstal u. a., 2016 beschriebene und in
Abschnitt 2.2.2 erläuterte SimpleElastix-Verfahren als robuste und in vielfachen Ar-
beiten genutzte Vergleichsmethode herangezogen. In Gegenüberstellung zum SUITS
2.0-Algorithmus dient sie als Repräsentat klassischer, multimodaler Registrierungs-
methoden und setzt dabei die mutual information als informationstheoretisch moti-
viertes Distanzmaß ein.
Da die Daten bereits affin vorregistriert sind, kommt das von den Autoren des Ver-

fahrens vorgeschlagene Standardprotokoll zur nicht-rigiden Registrierung zur Anwen-
dung. Dieses umfasst eine 4-skalige Auflösungshierarchie mittels nicht-linearer, quadra-
tischer B-Spline-Transformationen zur mutual information-basierten Angleichung der
Bildpaare. Unter Vorgriff auf die FeatCNN-Experimente und durch empirische Wahl
nach initialen Testläufen werden die Kontrollpunkte zum Zwecke der Vergleichbarkeit
an jedem 4. Voxel platziert.
Voxelmorph: Erstmals in Balakrishnan u. a., 2019 beschrieben und im Grundlagen-

abschnitt 2.4.1 eingehender erläutert, stellt der VoxelMorph-Ansatz ein unüberwach-
tes, vollständig CNN-basiertes Registrierungsverfahren dar. Einserseits hat dies den
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Vorteil, dass zur Testzeit lediglich ein Vorwärtsdurchlauf genügt, um somit in kurzer
Zeit eine paarweise Registrierung zu bestimmen. Andererseits sind sowohl Featureex-
traktion als auch Generierung der Transformationsparameter in einem Faltungsnetz
integriert und im Gegensatz zur SUITS-Methode nicht klar voneinander abzugrenzen.
VoxelMorph optimiert zur Vorhersage seines dichten Verschiebungsfeldes eine UNet-

ähnliche Architektur und erwartet als Eingabe ein kanalweise konkateniertes Bildpaar
aus fixed undmoving Daten. Als Trainingsloss wird wie bei vergleichbaren Verfahren ei-
ne Kombination aus einem Ähnlichkeitsmaß und einem Regularisierungsterm benötigt.
Diese setzt sich daher nicht grundlegend von konventionellen, iterativen Verfahren ab,
so dass es die resultierenden Registrierungsgenauigkeiten der verschiedenen Methoden
zu untersuchen gilt.
Basierend auf einer öffentlich zugänglichen Referenzimplementierung sollen die je-

weiligen Testpaare zueinander registriert werden. Um VoxelMorph in die Lage zu ver-
setzen auch im multimodalen Kontext sinnvoll zu trainieren, werden differenzierbar
implementierte MIND-Feature aus dem transformierten moving und dem fixed Bild
extrahiert, damit der von den Autoren vorgesehene MSE-Loss eingesetzt werden kann.
Dies markiert einen entscheidenden Unterschied zum SUITS 2.0-Algorithmus. Dort
werden die MIND-vortrainierten Faltungsnetze hinsichtlich des daran anschließenden
Registrierungsverfahrens datengetrieben adaptiert und nicht die räumliche Transfor-
mation der Bilddaten erlernt. Der bereits implementierte Diffusionsregularisierer bleibt
mit einer Gewichtung von 0.1 am Lossterm unangetastet und das Faltungsnetz wird
für 15000 Batches mittels des Adam-Optimierers (initiale Lernrate: 0.0001) trainiert.

5.3.2.2 FeatCNN-Experimente

FeatCNN-Struktur: Nach der Beschreibung der Vergleichsmethoden steht nun die
entwickelte, zweite SUITS-Version im Vordergrund. Die grundlegende Netzarchitektur
des FeatCNN folgt der Form eines Y. Dies soll der multimodalen Natur der Ein-
gabedaten Rechnung tragen und ermöglicht zunächst entlang der oberen, getrennten
Äste zwei Schichten zur Verarbeitung jeweils einer Modalität. Anschließend werden
die endgültigen Featurerepräsentationen aus beiden Eingabeströme von drei gemein-
sam genutzten Faltungsschichten generiert.
Das insgesamt pro Verarbeitungsstrom fünf Schichten tiefe Faltungsnetz besitzt
≈ 155.000 trainierbare Parameter und Tabelle 5.3 umfasst eine detaillierte Aufschlüs-
selung im Hinblick auf die konkrete Wahl der Hyperparameter aller Schichten. Die
SUITS 2.0-Methodik soll in den Experimenten darauf untersucht werden, ob Vorwis-
sen in Form MIND-Deskriptoren durch die Faltungsnetze in die iterative Registrierung
miteingebracht werden kann sowie ob sich diese initialen Repräsentationen über ihre
ursprüngliche, manuell definierte Form hinaus datengetrieben verfeinern lassen. Dazu
werden die FeatCNNs zuerst als MIND-Replikatoren trainiert. Für 5000 Iteratio-
nen werden die Patientenbilder aus dem gold corpus der VISCERAL-Daten genutzt,
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Tabelle 5.3: Strukturelle Details des Y-förmigen FeatCNNs.

Faltungsschicht 1 2 3 4 5

Kanäleein 1 16 32 32 32
Kanäleaus 16 32 32 32 12
Dilatation 2 1 1 1 1
Schrittweite 1 1 2 1 1
Padding 4 1 1 1 1

Filtergröße 5 3 3 3 3
Instance-Normalisierung ja ja ja ja nein

Aktivierung ReLU ReLU ReLU ReLU Sigmoid
geteilte Gewichte nein nein ja ja ja

damit nach Abschluss des Trainings das Y-förmigen Faltungsnetz möglichst ähnliche
12-Kanal-Repräsentationen wie die ursprüngliche MIND-Implementierung sowohl für
CT- als auch für MRT-Eingaben liefert. Dabei kommt ein Adam-Optimierer mit in-
itialer Lernrate von 0.001 in Kombination mit einem L1−Loss zum Einsatz. Dieses so
erlernte pre-trained MIND FeatCNN findet in beiden, nachfolgenden Experimenten
Anwendung.

An dieser Stelle sei erwähnt, dass die Verarbeitung von Eingabebilddaten durch
das FeatCNN insgesamt ein Heruntersamplen der Auflösung um den Faktor 4 nach
sich zieht. Aus diesem Grund muss im Anschluss an die Berechnung des Transforma-
tionsparameteranpassungsschrittes ∆uk eine entsprechende Hochinterpolation des Ver-
schiebungsvektorfeldes durchgeführt werden, um die ursprüngliche Bilddimensionalität
zur Anwendung innerhalb des iterativen Registrierungsframeworks wiederherzustellen.
Das Zusammenspiel dieses trilinearen Upsamlings und eines Mittelwertoperators mit
Filtergröße 5 zur Erstellung des dichten Verschiebungsfeldes entspricht einem quadra-
tischen B-Spline-Transformationsmodell mit Kontrollpunkten an jedem vierten Voxel.
Die Wahl des Schrittweitenparameters γ = 1 während der Verschiebungsvektorfeldan-
passung erfolgt empirisch.

Pre-trained MIND & iterative Diffusionregularisierung: Neben den Ver-
gleichsmethoden aus der verwandten Literatur ist bereits dargelegt worden, dass die
FeatCNNs, deren Gewichte mittels des SUITS 2.0-Algorithmus datengetrieben ad-
aptiert werden sollen, zunächst im Sinne der Generierung von MIND-Featuren vortrai-
niert werden, um die multimodalen Eingaben zu verarbeiten. Aus diesem Grund soll
zur besseren Einordnung des SUITS 2.0-Algorithmus auch die Registrierungsgenauig-
keit des erarbeiteten iterativen Verfahrens unter Ausnutzen dieser Form des Vorwissen
untersucht werden. Dazu bleiben die Gewichte der vortrainierten Faltungsnetzwerke
fixiert und werden ohne weitere Adaption zur Registrierung aller 25 Testbildpaare ein-
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gesetzt. Anschließend werden jeweils 15 Iterationen des AMG-Lösungsverfahrens unter
Gewichtung der Regularisierung mit λ = 10 durchgeführt.
SUITS 2.0 mit pre-trained MIND-Featuren: Mithilfe dieses abschließenden

Experiments soll auf die Frage eingegangen werden, ob die Einbindung datengetrie-
bener, Ende-zu-Ende-trainierbarer Faltungsnetze als Feature-Extraktoren in den ite-
rativen Registrierungsprozess Vorteile gegenüber manuell definierten Deskriptoren wie
MIND bietet. Wie auch beim pre-trained MIND-Experiment handelt es sich hierbei um
ein Verfahren, dass Vorwissen bereits bei der Erhebung geeigneter Bildrepräsentationen
nutzt - im Gegensatz zu VoxelMorph oder dem angewandten SimpleElastix-Protokoll,
die es in die Wahl der Distanzmetrik einbeziehen. Zur Testzeit unterscheidet sich dieses
SUITS 2.0-Verfahren nicht vom Experiment des vorangehenden Abschnittes.
Um die Gewichte des Faltungsnetzes nun aber anzupassen, wird die im Folgenden

dargelegte Strategie genutzt. Ein Adam-Optimierer mit initialer Lernrate von 10−5

passt für Eingabebatches aus immer 3 zufälligen Trainingspaaren für 250 Durchläufe
die Parameter des FeatCNNs an. Wie in Abschnitt 5.3.1.1 bereits eingeführt, wird im
Sinne des Erlernens von Repräsentationen, die für jede Phase der Registrierung aussa-
gekräftig sein sollen, die Anzahl vorheriger, basierend auf Segmentierungen geführter
Iterationen kback ∈ [0, 15] dabei wiederum zufällig gezogen. Eine weitere Besonderheit
im Training stellt die Relaxierung des Regularisierungsparameters auf λ = 5 dar. Dies
liegt in den resultierenden, vergleichsweise größeren Deformationen während der Ite-
ration kback begründet und zieht im Sinne des Informationsgehaltes einen stärkeren
Gradientenrückfluss basierend auf den cross entropy-Differenzen der Segmentierungs-
bilder nach sich.

5.3.3 Ergebnisse & Diskussion

Die Ergebnisse der im Rahmen dieses Kapitels durchgeführten Experimente werden in
Abb. 5.6 und Abb. 5.7 zunächst übersichtshalber dargestellt. Dazu werden die Dice-
Werte für alle sechs betrachteten Organstrukturen aller Testregistrierungspaare ange-
geben, ebenso wie die zugehörigen 95%-Hausdorff-Distanzen. Tabelle 5.4 enthält die
gleiche Information noch einmal in numerischer Form.
Es ist ersichtlich, dass das etablierte SimpleElastix-Verfahren die erwartet robusten

Registrierungsergebnisse für alle 25 ungepaarten Eingabekombinationen liefert und
somit eine solide Messlatte für alle weiteren Methoden bildet. Die initialen Dice-Werte
von 41.3% vor der räumlichen Angleichung steigen nach Anwendung des Verfahrens auf
45.9%. Dahingegen bleibt die anfängliche mittlere 95%-Hausdorff-Distanz von 36.4mm
unverändert.
Die Anwendung von VoxelMorph als Vertreter der nicht-iterativen, CNN-basierten

Ansätze liefert einen überzeugenden Zuwachs auf 47.4% hinsichtlich der Dice-Werte.
Ebenso sinkt die mittlere 95%-Hausdorff-Distanz auf 35.1mm trotz der herausfordern-
den, multimodalen Natur des betrachteten Problems.
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Abb. 5.5: Exemplarisches Ergebnis einer Interpatientenregistrierung. Mittels des SUITS 2.0-
Algorithmus wird das moving CT-Bild (rechts) an das fixed MRT-Bild (links) an-
geglichen. Das resultierende, transformierte Bild wird in der Mitte gezeigt und die
vorliegende MRT-Expertensegmentierung wird als Überlagerung über alle Bilder
gelegt, um die erreichte räumliche Angleichung vor und nach dem Prozess zu illus-
trieren.

Abb. 5.6: Boxplot-Darstellung der Dice-Werte aller 25 multimodalen, ungepaarten Interpa-
tientregistrierungen und Mittelwerte per Organ für Leber, Milz, linken & rechten
Psoas Major Muskel (l & r pmm) und linke & rechte Niere. Folgendes Farbsche-
ma wird zur Unterscheidung der Experimente angewandt: initiale Dice Werte ,
SimpleElastix , VoxelMorph , pre-trained MIND & iterative Diffusionsregula-
risierung und SUITS 2.0 .
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Tabelle 5.4: Ergebnisse (∅ Dice-Werte und 95%-Haussdorf-Distanz (in mm)) aller 25 multi-
modaler, ungepaarter Interpatientregistrierungen. Die p-Werte ergeben sich mit-
tels eines Wilcoxon-Vorzeichen-Rang-Tests und beschreiben die statistische Si-
gnifikanz der SUITS 2.0-Methode.

HD95 Leber Milz l pmm r pmm l Niere r Niere mean std p-val

Initial 60.9 49.1 46.5 23.9 19.9 18.1 36.4 27.1 1.7·10−5

SimpleElastix 60.0 46.4 47.2 25.2 21.1 18.8 36.5 26.6 3.6·10−4

Voxelmorph 58.8 43.6 46.7 22.9 21.1 17.7 35.1 25.8 0.03

pre-trained MIND 59.0 48.7 43.7 20.9 20.8 16.5 34.9 27.4 9.0·10−5

SUITS 2.0 57.8 46.5 42.4 20.6 19.7 16.0 33.9 26.7 -

Dice Leber Milz l pmm r pmm l Niere r Niere mean std p-val

Initial 47.1 35.0 30.2 43.4 48.6 45.2 41.3 0.19 1.3·10−5

SimpleElastix 57.3 45.2 35.6 50.4 45.0 43.6 46.4 0.20 2.9·10−5

Voxelmorph 59.1 46.3 35.0 49.2 46.0 50.2 48.4 0.17 2.7·10−3

pre-trained MIND 51.2 39.3 39.5 58.2 52.3 52.7 48.2 0.22 4.6·10−5

SUITS 2.0 55.4 44.3 41.8 59.2 55.3 54.3 51.1 0.21 -

Verglichen mit beiden bisher getesteten Methoden aus verwandten Arbeiten über-
trifft die SUITS 2.0-Variante der iterativen Registrierung unter Einsatz der pre-trained
MIND-Feature in Kombination mit Diffusionsregularisierung deren Ergebnisse. Mit fi-
xierten Faltungsnetzparametern werden ein durchschnittlicher Dice-Wert von 48.4%
und eine mittlere 95%-Hausdorff-Distanz von 34.9mm erzielt. Diese Ergebnisse be-
legen die Funktionalität der eingesetzten Berechnung zur iterativen Anpassung der
Transformationsparameter in Verbindung mit dem Vorwissen in Form der erlernten
MIND-Replikationen durch die Faltungsnetze.
Der SUITS 2.0-Algorithmus in seiner Ausprägung als Ende-zu-Ende-trainierbarer

und daher datengetriebener Ansatz erreicht zusammen mit einer Diffusionsregularisie-
rung schließlich sowohl mit 51.3% den höchsten durchschnittlichen Dice-Wert als auch
mit 33.8mm die niedrigste mittlere 95%-Hausdorff-Distanz. Abb. 5.5 zeigt mittels coro-
naler Schnitte durch ein exemplarisches Patientenpaar die CT-Bilddaten vor und nach
der Registrierung. Zur Unterstützung sind alle Bilder mit den Organsegmentierungen
des fixed MRT-Scans unterlegt, so dass die verbesserte räumliche Übereinstimmung im
mittleren Bild nach der Transformation entsprechend des Verschiebungsfeldes deutlich
sichtbar ist.
Unterzieht man die mittleren Dice-Werte und 95%-Hausdorff-Distanzen pro Testre-

gistrierungspaar einem Wilcoxon-Vorzeichen-Rang-Tests, so demonstriert Tabelle 5.4,
dass die Genauigkeitszuwächse unter Anwendung der SUITS 2.0-Methode im Vergleich
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Abb. 5.7: Boxplot-Darstellung 95%-Hausdorff-Distanzen aller 25 multimodalen, ungepaarten
Interpatientregistrierungen und Mittelwerte per Organ für Leber, Milz, linken &
rechten Psoas Major Muskel (l & r pmm) und linke & rechte Niere. Das Farbschema
folgt Abb. 5.6.

Tabelle 5.5: Quantitative Ergebnisse verschiedener Registrierungsverfahren auf dem
MMWHS-Datensatz aus Kapitel 4 in Form ihrer Dice-Werte.

Methode init Label Reg guided-1 MIND-pre SUITS 2.0 guided-15
Dice 0.331 0.352 0.476 0.418 0.536 0.653

zu allen anderen Verfahren auch statistisch signifikant sind. Insgesamt lässt sich aus
diesen Experimenten also die Schlussfolgerung ziehen, dass die Umsetzung der Ende-
zu-Ende-trainierbaren SUITS-Methodik nicht nur in Kombination mit einer weiteren
Variante zur Berechnung der Transformationsparameteranpassung sinnvolle Ergebnis-
se liefert, sondern dass die datengetriebene Anpassung der Faltungsnetzgewichte dar-
überhinaus wiederum zu einer erhöhten Registrierungsgenauigkeit beiträgt.

MMWHS-Vergleichsexperimente

Da ein Vergleich mit der in Kapitel 4 entwickeltenmultimodalen, iterativ mittels Seg-
mentierungen geführten Registrierung nahe liegt, wird der im Vorangehenden beschrie-
bene SUITS 2.0-Algorithmus ebenfalls auf den Datensatz der Multi-Modality Whole
Heart Segmentation Challenge angewandt. Das Training folgt dabei dem in Abschnitt
5.3 beschriebenen Ablauf mit Ausnahme einer Anpassung an die unterschiedliche Grö-
ße des Datensatzes. Da pro Modalität jeweils nur 10 statt 20 Patientendatensätze
vorliegen, werden jeweils 8 CT- und MRT-Volumenscans pro Durchlauf zur 5-fachen
Kreuzvalidierung genutzt und die verbleibenden 4 Paare im Testfall als CT-zu-MRT-
Registrierung evaluiert.
Tabelle 5.5 enthält die erreichten Dice-Werte verschiedener Verfahren. Im Vergleich

zu den vortrainierten, MIND-basierten Feature-CNNs innerhalb des iterativ optimier-
ten Frameworks ergibt sich durch die datengetriebene Adaption unter Anwendung des
SUITS 2.0-Algorithmus ein Genauigkeitszuwachs von 0.418 auf 0.536. Der Einsatz des
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(a) (b) (c)

Abb. 5.8: Qualitatives Registrierungsergebnis des SUITS 2.0-Verfahren auf den MMWHS-
Daten mit überlagerten Organlabeln. a) moving CT-Bild, b) transformiertes CT-
Bild, c) fixed MRT-Bild.
Im Vergleich zu Abb. 4.5 erreicht der SUITS 2.0-Algorithmus auch im Labelhinter-
grund plausible Angleichungen der Körperstrukturen.

Verfahrens führt also auch auf diesem Datensatz zu quantitativ messbaren Ergebnisver-
besserungen unter Ausnutzung erlernter Featurerepräsentationen in einem iterativen,
diffusionsregularisierten Registrierungsansatz.

Die Genauigkeit des iterativ, basierend auf Segmentierungen geführten Verfahrens
aus Kapitel 4 mit einem Wert von 0.653 bei 15 Iterationen wird zwar nicht erreicht,
Abb. 5.8 zeigt aber im Vergleich zu den qualitativen Ergebnissen in Abb. 4.5 gerade im
Hintergrund deutlich plausiblere Transformationen - also in Regionen die nicht durch
Organlabel im Training abgedeckt werden. Beispielsweise folgt die Lunge in cranialer
sowie in ventraler Richtung deutlich dem Verlauf im fixed-MRT-Bild. Im Vergleich zu
Verfahren wie Label Reg aus Hu u. a., 2018, die sich fast ausschließlich auf die Anpas-
sung der Vordergrundstrukturen fokussieren, lässt sich dies durch die geringere Anzahl
trainierbarer Parameter erklären, die eine zu große Überanpassung vermeidet. Letzte-
re könnte im Fall zu tiefer UNet-Architekturen aus der inhärenten Modellierung der
im Training präsentierten Organlabel resultieren, deren Transformation dann im An-
schluss durch die Netzwerke umgesetzt wird. Im Gegensatz zu den SUITS-Algorithmen
gibt es aber keine Möglichkeit diese Überlegungen zu prüfen, da unklar ist, welche
Netzwerkteile für die Extraktion geeigneter Repräsentationen oder die Vorhersage der
Transformationen verantwortlich zeichnen.
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5.4 Zusammenfassung

In diesem Kapitel sind zwei Varianten des SUITS-Frameworks entwickelt und vorge-
stellt worden. Im Sinne einer Machbarkeitsstudie beleuchtet die erste Umsetzung in
Abschnitt 5.2 - basierend auf einer geschlossenen Lösungsform der Parameteranpas-
sung leicht in einer autograd engine umsetzbar - die Anpassungsgüte zweidimensionaler,
multimodaler Thorakoabdominalschichtbilder.
Dabei lässt sich experimentell nachweisen, dass die schwache Überwachung durch

Organsegmentierungen ohne punktweise definierte Korrespondenzen die zur Transfor-
mation genutzten Faltungsnetzwerke in die Lage versetzt, aussagekräftige Repräsenta-
tionen zu erlernen. Diese erste Version stützt bereits die Annahme, dass klar zuweisbare
Teilaufgaben in der Architektur, welche das Erlernen der Transformation in einen ge-
meinsamen Bildraum von der iterativ optimierten Registrierung separieren, vorteilhaft
sind und eine Alternative zu den üblichen Parameter-intensiven, vollintegrierten und
Ende-zu-Ende-trainierten Registrierungsnetzwerken bieten.
Mit der Umsetzung des SUITS 2.0-Algorithmus in Abschnitt 5.3 als ein zusätz-

liches Vorgehen zur Berechnung der iterativen Transformationsparameteranpassung
wird der Schritt zur Registrierung dreidimensionaler Thorakoabdominaldaten vollzo-
gen. Die durchgeführten Experimente zu dieser Methode zeigen, dass sich die explizite
Auftrennung des Erlernens aussagekräftiger Repräsentationen und der räumlichen An-
passung auch hier gewinnbringend auf das betrachtete, herausfordernde multimoda-
le Registrierungsproblem auswirken. Im Gegensatz zur Methode aus Lee u. a., 2019,
die keine klare Trennung der Feature- und Transformationsschichten erreicht, erfül-
len beide Ausprägungen des SUITS-Algorithmus dieses definierte Ziel. Das entwickelte
SUITS 2.0-Verfahren übertrifft dahingehend sowohl mit SimpleElastix einen Stand-
der-Technik-Vertreter klassischer Ansätze [Marstal u. a., 2016], der sich auf ein mutual
information-Distanzmaß in Kombination mit nicht-rigiden Deformationsschritten ei-
ner multiskalen Hierarchie stützt, als auch mit VoxelMorph ein neueres, vollumfänglich
CNN-basiertes Ein-Schritt-Verfahren [Balakrishnan u. a., 2019].
Auch auf den Vergleichsexperimenten bezüglich des MMWHS-Datensatz aus Kapitel

4 liefert das SUITS 2.0-Verfahren robuste Registrierungsergebnisse und zeigt gerade
auch in der Anpassung von Regionen, die während des Trainings nicht mit Annotatio-
nen versehen sind, dass aussagekräftige Repräsentationen gelernt werden.
Da beide Varianten - insbesondere aber die zweite Version des vorgeschlagenen Al-

gorithmus für den Einsatz auf dreidimensionalen Daten - auch in Anbetracht einer
vergleichsweise geringen Menge an Trainingsdaten in der Lage sind sinnvolle Registrie-
rungen zu erstellen, zeigen sie eine Alternative auf für weitere multimodale Problem-
stellungen. Ein Grund dafür besteht in der übertragbaren Anwendbarkeit der regula-
risierten, iterativen Bildangleichung, die zu einer um den Faktor 10 kleineren Anzahl
an Parametern (≈ 105) im Vergleich zu ausschließlich CNN-basierten Verfahren mit
integriertem multimodalen Featurelernen (typischerweise ≥ 106). Dieses Vorgehen
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5.4 Zusammenfassung

beschränkt schon durch die Kapazitätsbeschränkung der Faltungsnetze das Problem
der Überanpassung.
Verglichen mit der monomodalen COPD-Lungenregistrierung aus Kapitel 3, bei

der Deskriptoren unter Ausnutzung einer Hilfsaufgabe vortrainiert wurden, oder der
Arbeit in Simonovsky u. a., 2016, die für T1-T2-Hirnbildpaare mittels einer Klassifi-
kationsaufgabe ein geeignetes Distanzmaß lernen soll, haben die SUITS-Algorithmen
den Nachweis erbracht, dass das Einbringen von Vorwissen in die Netzwerkparameter
mit deren anschließender Ende-zu-Ende-Adaption in einem iterativen Verfahren nicht
nur möglich ist, sondern auch deutliche Verbesserungen hinsichtlich der zu lösenden
Registrierungsaufgabe bewirkt.
Darüberhinaus zeigt dieses Kapitel, dass diese datengetriebene Adaption zur Gewin-

nung aussagekräftiger Repräsentationen durch eine Form schwacher Überwachung
in einer multimodalen Registrierungsproblemstellung auch angesichts sehr knapper
Trainingsdaten möglich ist.
Das nachfolgende und abschließende Methodenkapitel befasst sich schließlich mit

der Frage, wie das Lernen von Deskriptoren in medizinischen Bilddaten auch gänz-
lich unüberwacht vonstattengehen kann, falls nur vereinzelte oder auch gar keine
Expertenannotationen zur Verfügung stehen.
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Kapitel 6

Unüberwachtes Deskriptorlernen in
3D-CT-Thoraxdaten

Das vierte und abschließende methodische Kapitel befasst sich mit der Fragestel-
lung, ob und inwiefern sich aussagekräftige Deskriptoren rein durch Bilddaten
getrieben und ohne jegliche Form der Überwachung von außen erlernen und
nutzen lassen. Die zu diesem Zweck entwickelte Methode erfasst mittels räumli-
cher Relationen auf den Patientendaten die intrinsisch vorliegenden Anatomie-
Informationen und ist im Beitrag Blendowski u. a., 2019b in den Proceedings der
Fachtagung International Conference on Medical Image Computing and Com-
puter Assisted Intervention publiziert und liegt diesem Kapitel zugrunde.

6.1 Einleitung & Motivation

Alle in den vorangehenden Kapiteln dieser Arbeit entwickelten Verfahren nutzen Fal-
tungsnetze als zentralen Baustein bei der Generierung robuster Repräsentationen für
die jeweilige Bearbeitung einer daran anschließenden Registrierungsaufgabenstellung.
Es ist bereits wiederholt angeklungen, dass DCNNs ihre dominierende Stellung auf-
grund der Fähigkeit erlangt haben, aussagekräftige Feature nicht wie bisherige Stand-
der-Technik-Methoden durch manuelles Design unter expliziter Berücksichtigung von
Domänenwissen zu Erlernen, sondern dabei datengetrieben unter abgestuften Formen
von Überwachung zu stehen. Begünstigt durch die stetig anwachsende Flut an Bild-
daten im Internet in Kombination mit Informationen zum Bildinhalt oder auch durch
von Laien zu bewerkstelligenden Annotationsaufgaben sind im Bereich der Computer
Vision in jüngster Zeit beeindruckende Erfolge z.B. bei autonomen Fahrzeugen erzielt
worden.

Im Gebiet der medizinischen Bildverarbeitung fallen zwar ebenfalls durch die immer
breitere Verfügbarkeit bildgebender Systeme wie Ultraschall-, CT- oder MRT-Scanner
in großen Ausmaßen Bilddaten an. Allerdings gibt es abgesehen von globalen Klas-
sifikationen in Form von Befundungen durch medizinisches Personal erst anfängliche
Schritte wie z.B. in Maier-Hein u. a., 2016 pixelweise Operationsinstrumente in Videos

99



Kapitel 6 Unüberwachtes Deskriptorlernen in 3D-CT-Thoraxdaten

durch Laien lokalisieren und annotieren zu lassen. Insbesondere hinsichtlich dreidimen-
sionaler Volumenbilder ist die Datenlage an hochqualitativen Trainingscorpi äußerst
spärlich, da der Zeitaufwand durch zusätzliche Raumdimensionen enorm steigt und
gerade aber Radiologen als benötigte Experten zu Spitzenverdienern zählen.
Wiederum in der Computer Vision behilft man sich bei spärlichen Mengen an Trai-

ningsdaten mit dem sog. transfer learning. Dabei werden zunächst Faltungsnetze auf
großen, öffentlich zugänglichen Daten trainiert. Unter der Annahme, dass die ersten
Schichten der Netze der Detektion struktureller Informationen wie Kanten dienen und
erst die hinteren Schichten beispielsweise mit einer Klassifikation befasst sind, lässt
sich ein bereits trainiertes Netz auf einen neuen Datensatz transferieren und mittels
geringerer Lernrate auf das eigentliche Problem adaptieren.
Als Zielstellung dieses Kapitels ergibt sich daraus im Hinblick auf medizinische Da-

ten, ein Verfahren zu entwickeln, das völlig unabhängig von Annotationen einzig auf
Zusammenhänge innerhalb der Bilddaten zurückgreift, um die Gewichte von Faltungs-
netzen zu trainieren. Dabei sollen aussagekräftige Repräsentationen entstehen, die
dann im Sinne des transfer learning gewinnbringend auf ein Problem mit zu gerin-
ger Datenlage angewandt werden können.

6.1.1 Literatur

Im medizinischen Kontext gibt es eine Vielzahl an Verwendungszwecken für Faltungs-
netze, die unterschiedlich starke Formen der Überwachung nutzen. Über die bisheri-
gen, im Rahmen dieser Arbeit entwickelten Methoden und deren verwandter Literatur
hinaus, beschäftigen sich z.B. die Autoren in Ferrante u. a., 2018 mit einem Registrie-
rungsansatz beruhend auf schwachen Annotationen. Teilweise künstlich verrauschte
Label werden in Reed u. a., 2015 zum Klassifizieren eingesetzt und in Roy u. a., 2019
wird ein Ansatz demonstriert, der Segmentierungen mithilfe einer nur kleinen Anzahl
an Trainingsdaten ermöglicht. Das bereits erwähnte transfer learning kommt in Shin
u. a., 2016 zum Einsatz. Dort werden jeweils drei axiale 2D-Schnitte zur Detektion
von Lungenknötchen genutzt, die vorher auf den natürlichen Bilddaten des ImageNet-
Datensatzes aus Russakovsky u. a., 2015 trainiert wurden.
Da in diesem Kapitel aber an die zu entwickelnde Methode der Anspruch gestellt

wird ohne jede Form von Überwachung durch Expertenwissen einsetzbar zu sein,
sind wiederum verschiedene Verfahren aus der Computer Vision von Interesse. Dort
haben sich in der näheren Vergangenheit mehrere Methoden als erfolgreich erwiesen,
die die Idee einer Selbstüberwachung umsetzen. Dabei werden in den unannotiert
vorliegenden Bilddaten Hilfsproblemstellungen definiert, deren Bewältigung Faltungs-
netze in die Lage versetzen soll, sinnvolle Strukturrepräsentationen zu extrahieren.
Um letzteres sicherzustellen, müssen diese Hilfsaufgaben zumindest zwei Kriterien ge-
nügen. Einerseits sollten sich eine von den Faltungsnetzen gefundene Lösung leicht
anhand der vorliegenden Daten überprüfen lassen. Andererseits sollte ein angemesse-
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Abb. 6.1: 3D-Erweiterung der Hilfsaufgabe aus Doersch u. a., 2015: Ziel des Doersch-
Ansatzes � ist die korrekte Einordnung der räumlichen Anordnung zweier wür-
felförmiger Bildsubvolumen in eine von sechs möglichen Klassen, um die ersten
Schichten der Architektur, die im Sinne ihrer Primärfunktion zur Featureextrakti-
on als Descriptor 3D CNN aufgefasst werden, zu trainieren.

ner Schwierigkeitsgrad auch für die Notwendigkeit zum Erlernen eines gewissen Maßes
an inhaltlichem Bildverständnis sorgen.
Zu diesen Verfahren lassen sich wie in Zhang u. a., 2016 vorgestellt das Befüllen

künstlich ausgeblendeter Bildinhalte (inpainting) und die Kolorisation von Graustu-
fenbildern zählen - ebenso wie die Vorhersage von Nachbarschaftsbeziehungen zwischen
Bildpatches, welche in erstmals in Doersch u. a., 2015 beschrieben wird. Darüberhin-
aus werden in Doersch u. a., 2017 auch verschiedene Kombinationen dieser Methoden
untersucht.
In der medizinischen Bildverarbeitung reichen die Anwendungen selbst-überwach-

ter Verfahren vom Ausnutzen zeitlich aufeinanderfolgender MRT-Scans zur Wirbel-
säulenbeurteilung in Jamaludin u. a., 2017, über behelfsmäßige Überwachung zur
Segmentierung basierend auf einer Untermenge der Annotationen in Tajbakhsh u. a.,
2019, bis hin zu unüberwachtem Lernen monomodaler Bildregistrierung in Vos u. a.,
2019.
Da der im Nachfolgenden entwickelte Ansatz eng mit dem Verfahren von Doersch

et al. aus ihrer Publikation Doersch u. a., 2015 verbunden ist, wird an dieser Stelle
dessen grundlegende Funktionsweise näher erläutert. Die Methode zieht als Hilfsauf-
gabe während des Trainings die Vorhersage der Nachbarschaftsbeziehung zweier, dem
Faltungsnetz präsentierter Bildausschnitte heran. Dabei hat das Netz die Klassifikati-
onsaufgabe zu bearbeiten, ob sich Patch 2 im Vergleich zu Patch 1 oberhalb, rechts,
unterhalb oder links befindet. Dem Verfahren ist es aufgrund des Detailreichtums und
der Vielzahl zueinander in räumlicher Abhängigkeit stehender Objekte in natürlichen
zweidimensionalen Bildern möglich, ein inhärentes Modell in den Gewichten derart
zu trainieren, dass semantisch aussagekräftige Repräsentationen anhand der Faltungs-
schichten generiert werden.
In Abb. 6.1 ist die direkte Erweiterung um eine Dimension des Doersch-Ansatzes

dargestellt. Das Verhältnis zweier zufällig gezogener Volumina muss dabei mit Hilfe
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eines siamesischen Faltungsnetzwerkes bestimmt werden. Zunächst werden beide durch
das gleiche CNN – Descriptor 3D CNN genannt – in Featurevektoren umgewandelt.
Die Zuweisung in eine der sechs räumlichen Beziehungen wird anschließend auf Basis
der Featurevektoren durch das 6 Neighbour CNN vorgenommen.

6.2 Methoden

Die Autoren des eingangs beschriebenen Doersch-Ansatz weisen in ihrer Veröffentli-
chung explizit auf Probleme bezüglich der Definition von Hilfsaufgaben hin. Sie stellen
fest, dass diese zum Erlernen aussagekräftiger, nicht-trivialer Deskriptoren einen ange-
messenen Schwierigkeitsgrad erreich müssen. Um dies sicherzustellen, sollten während
des Trainings die präsentierten Bildausschnitte nicht überlappen oder einfach zu iden-
tifizierende Strukturen, wie fortlaufende Linien enthalten.

In Anbetracht für diese Arbeit relevanter, dreidimensionaler CT- oder MRT-Volu-
menscans kommt erschwerend hinzu, dass ein Konflikt zwischen dem rezeptiven Feld
der Faltungsnetze und der Aufgabenschwierigkeit besteht. Wählt man den Bildaus-
schnitt zur Eingabe zu klein, wird unter Anderem in homogenen Bereichen (z.B. in
der Leber) zu wenig Kontext erfasst und die Aufgabe dadurch zu schwierig, um das
CNN sinnvoll zu trainieren. Wählt man im Gegensatz das Volumen zu groß, enthält
es schnell leicht zu identifizierende Übergänge vom Körper zu Umgebungsluft. In die-
sem Fall wird die Hilfsaufgabe zu leicht. Im Nachfoldenden wird dieser Konflikt als
Körpergrenzenproblem bezeichnet.

Trotz der speziellen Beschränkungen durch das Körpergrenzenproblem bzw. des ab-
zuwägenden Kompromisses zwischen der größe des rezeptiven Feldes und einem ange-
messenen Schwierigkeitsgrad der Hilfsaufgabe, ist die Idee der Selbst-Überwachung
von höchster Relevanz in Anbetracht der geringen Verfügbarkeit annotierter medizini-
scher Volumenbilddaten. Aus diesem Grund dient die Hilfsaufgabe aus Doersch u. a.,
2015 als Ausgangspunkt zur Entwicklung einer Adaption für dieses spezielle Problem.

Das angepasste Verfahren zeichnet sich durch zwei Charakteristika aus. Zum Einen
ermöglicht ein neuartiges Schema durch die Extraktion zweier großer, planarer und
in ausreichendem Abstand zueinander befindlicher Bildauschnitte, dass die Prädiktion
fein abgestufter orthogonaler Versätze als flexiblere Hilfsaufgabe in Form einer Re-
gression und nicht mehr in Form einer Klassifikation herangezogen werden kann. Zum
Anderen erhöht der Einsatz eines zusätzlichen Decoder-Faltungsnetzes zur Vorhersage
zweidimensionaler heatmaps die Robustheit der Bestimmung der orthogonalen Versät-
ze im Vergleich zu deren direkten Schätzung. Im folgenden Abschnitt werden diese
Neuerungen im Detail erläutert.
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Abb. 6.2: Übersicht der entwickelten Methodik:
Links: pro Bildachse müssen orthogonale Versätze (∆1,∆2) zwischen den Zentren
zweier nicht-überlappender - da um ∆0 in axialer Richtung auseinander liegender-,
fast-planarer Volumen geschätzt werden, um das jeweilige Descriptor 2D CNN zu
trainieren.
Rechts: zwei Möglichkeiten zur Umsetzung der Versatz-Vorhersage-Hilfsaufgabe. 1)
Reg2D �: Direkte Regression der beiden Werte durch fully connected-Schichten im
2 Param CNN. 2) Heatmap �: Regression von (∆1,∆2)-heatmaps unter Einbezug
von transposed convolutions im Heatmap CNN.

6.2.1 Selbst-überwachtes Feature-Lernen

Abb. 6.2 illustriert die bereits erwähnten, grundlegenden Charakteristika der in diesem
Kapitel entwickelten Methode. Im Gegensatz zum Ausgangsverfahren aus Doersch u. a.,
2015 beruht dieses Verfahren nicht mehr auf würfelförmigen Subvolumen, sondern setzt
zur Implementierung eines neuartigen, selbst-überwachten Pre-Training-Schemas
zur Nutzung kontinuierlicher statt diskreter räumlicher Beziehungen fast-planare Sub-
volumen ein.
Das eigentliche Pre-Training durch die neu definierte Hilfsaufgabe wird in Abb.

6.2 durch zwei coronale Schichten demonstriert. Zunächst wird ein Anker-Patch (hell-
grünes Rechteck) zufällig innerhalb einer ebenfalls zufälligen Schicht des Bildvolumens
gezogen. Anschließend wird in einem wiederum zufälligen Abstand ∆0, der die Überlap-
pungsfreiheit der fast-planaren Bildvolumen sicherstellt, eine zweite Schicht ermittelt.
Während das Anker-Patch um einen durch ein oranges Viereck markierten Voxel zen-
triert ist, wird der zweite Bildausschnitt (gelbes Rechteck) um die zufällig gezogenen
Versätze (∆1,∆2) (lila und blau) innerhalb dieser Bildschicht verschoben.
Dieses Vorgehen stellt sicher, dass beide Ausschnitte keine trivial zu identifizieren-

den Strukturen (wie sich fortsetzende Linien) enthalten. Dadurch ist die Hilfsaufgabe
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nicht mehr auf die Vorhersage diskreter Nachbarschaftsrelationen beschränkt. Im Ver-
gleich dazu ermöglichen die kontinuierlich gewählten Bildversätze nun ein ungemein
höheres Maß an Variabilität. Die Transformation der würfelförmigen Volumen einer
naiven Erweiterung des Verfahrens aus Doersch u. a., 2015 hin zu fast-planaren Aus-
schnitten erlaubt also im Wesentlichen die Vermeidung des Körpergrenzenproblems.
Aufgrund des den Faltungsnetzen gänzlich vorenthaltenen axialen Versatzes ∆0 führt
die definierte Hilfsaufgabe zum inhärenten Erlernen anatomischer Information in den
adaptierbaren Gewichten. Die Ausmaße der nahezu zweidimensionalen Bildausschnit-
ten ermöglicht den CNNs durch entsprechende, rezeptive Felder genug Kontext zu
erfassen. Die Zielvorgabe, die feingranular abgestuften räumlichen Beziehungen der
Trainingsbildpaare korrekt zu erkennen, leitet die Faltungsnetze an, die intrinsischen,
anatomischen Zusammenhänge selbstständig zu erlernen.
Analog zum bereits beschriebenen Doersch-Ansatz wird hier ebenfalls eine siame-

sische Netzwerkarchitektur pro Achse zur Deskriptorextraktion (Descriptor 2D CNN -
kurz: D2D-CNN) trainiert, die vektorwertige Repräsentationen für beide Bildausschnit-
te generiert. Allerdings werden statt des cross entropy-Loss für die 6-Nachbarschafts-
klassen-Problematik nun kontinuierliche Regressionsansätze als Hilfsaufgabe genutzt.
Zum Einen lassen sich die beiden Versatzparameter (∆1,∆2) direkt als Ausgabe voll-
verbundener Schichten schätzen (engl.: fully connected). Zum Anderen lässt sich diesel-
be Information auch mittels aus dem Zentrum verschobener 2D-Gaußkurven codieren.
Unter Einbezug von transposed convolutions im Heatmap CNN -Part der Architektur
soll diese Darstellung aus den Vektorrepräsentationen rekonstruiert werden, um einen
in Payer u. a., 2016 erörterten, verbesserten Gradientenfluss auszunutzen.
Das beschriebene Pre-Training-Schema wird entlang jeder Bildachse durchgeführt.

Mittels der trainierten drei Descriptor 2D CNNs entsteht aus Konkatenation ihrer
jeweiligen Vektorrepräsentationen schließlich ein 2.5-dimensionaler Deskriptor wie in
Abb. 6.3 dargestellt.

6.3 Experimente & Ergebnisse

Um die vorgeschlagenen Neuerungen zum selbst-überwachten Training obektiv be-
urteilen zu können, werden die Verfahren mittels einer anschließend unabhängig durch-
geführten CT-Segmentierungsaufgabe gemäß ihrer erreichten Dice-Werte verglichen.
Für die Experimente wird der bereits aus den vorangehenden Kapiteln bekann-

te VISCERAL Anatomy3 Datensatz (siehe Jimenez-del-Toro u. a., 2016 für Details)
genutzt - im Speziellen die kontrastverstärkten thorakoabdominalen CT-Aufnahmen.
Während des Trainings stehen 63 nicht-annotierte Bildvolumina des silver corpus zur
Verfügung und zur Testzeit wird auf 19, mit medizinischen Expertenannotationen ver-
sehene CT-Scans zurückgegriffen. Alle Bilddaten werden in Vorverarbeitungsschritten
zunächst auf ein isotropisches Voxelvolumen von 1.5mm3 gebracht und zusätzlich grob
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Abb. 6.3: Deskriptorextraktion: Nach pro Bildachse abgeschlossenem Training der Descrip-
tor 2D CNNs, lassen sich um die jeweiligen Positionen zentrierte, senkrecht zu-
einanderstehende Ausschnitte mittels der Faltungnetze in Vektorrepräsentationen
umwandeln und zu einem Gesamtfeature konkatenieren.

auf eine Region zugeschnitten, die alle sechs Zielstrukturen der Segmentierungsaufga-
be (Leber, Milz, linke & rechte Niere, linker & rechter Psoas Major Muskel) umfasst.
Schließlich ergibt sich für alle Patienten eine Bildgröße von 243x176x293 (LR-AP-SI).
Davon unabhängig wird im Folgenden zum Zweck einer klaren Notation jede Bildachse
auf den Bereich [−1, 1] normalisiert angenommen (d.h. jeweils mit Seitenlänge 2), um
die Beschreibung der einzelnen Experimente zu erleichtern.

Heatmap (�)-basiertes Netzwerktraining

An dieser Stelle sei zunächst noch einmal erwähnt, dass im Sinne der 2.5D-Featureex-
traktion die im Fortlauf beschriebene Trainingsprozedur jeweils pro Bildachse gepaart
mit einem eigenen Heatmap CNN ein Mal durchgeführt wird (axial, coronal und sag-
gital). Jeweils drei benachbarte Schichten bilden in Form kanalweiser Eingaben eines
zweidimensionalen Bildes die fast-planaren Subvolumen. In Voxeldimensionen haben
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sie die Ausmaße 3× 422 mit Seitenlängen von 0.8 und 0.05 in Normalenrichtung, was
117x97x9mm in Patientendimensionen entspricht.

Entsprechend der visuellen Beschreibung in Abb. 6.2, wird zunächst ein Anker-Patch
mit zufälligem, aus einer Gleichverteilung über [−0.5, 0.5]3 gezogenem Zentrum ge-
wählt. Der zweite Bildausschnitt wird so ermittelt, dass er aus einer Schicht gezogen
wird, die mindestens ∆0 = 0.125 und höchstens ∆0 = 0.25 in Normalenrichtung ent-
fernt liegt. Dieser senkrechte Versatz wird während der Parameteranpassung der Fal-
tungsnetze nicht verwendet. Die innerhalb der Bildebene liegenden Versatzparameter
(∆1,∆2) als eigentliches Vorhersageziel der Hilfsaufgaben werden zu Beginn des Trai-
nings gleichverteilt aus den Intervallen ±[0.25, 0.3]2 und aus Bereichen bis zu ±[0, 0.7]2
gegen Ende des Trainingsprozesses randomisiert gewählt. Die anfängliche Wahl einer
unteren Versatzschranke von mindestens ±0.25 erleichtert den Trainingsprozess, durch
einen größeren Gradientenfluss basierend auf zu diesem Stadium stärker zueinander
verschobenen Bildausschnitten.
Dieser Gradient wird anhand der Unterschiede zwischen der Vorhersage des Fal-

tungsnetzwerkes und der als Grundwahrheit aus (∆1,∆2) generierten Heatmap in Form
eines MSE-Losses bestimmt. Die genaue Bestimmung der Grundwahrheit ist durch

heatgt(i, j,∆1,∆2) = 10 · e−15·[(i/9−∆1)2+(j/9−∆2)2] (6.1)

mit (i, j) ∈ {−9,−8, ...,+8,+9}2 gegeben und hat schließlich die Form von zweidimen-
sionalen 19×19-Bildern.

3D Doersch (�)-basiertes Netzwerktraining

Im Gegensatz zum vorherigen 2.5D-Ansatz wird zur Erweiterung des ursprünglich
zweidimensionalen Verfahrens aus Doersch u. a., 2015 ein dreidimensionales Faltungs-
netzwerk (D3D-CNN) zur Featureextraktion genutzt. In Kombination mit dem dar-
an anschließenden 6 Neighbor CNN lassen sich die 6 möglichen, räumlichen Relatio-
nen zweier würfelförmiger Bildausschnitte zueinander als Hilfsaufgabe mittels eines
cross entropy-Loss trainieren. Das Anker-Volumen hat in diesem Fall die Ausmaße von
253 Voxeln mit einer normalisierten Seitenlänge von 0.4 und wird aus dem Intervall
[−0.5, 0.5]3 des Bildvolumens gezogen, um sich sicher innerhalb des Körpers zu be-
finden. Das zweite Volumen wird zufällig aus einem der sechs in Frage kommenden
Nachbarn bestimmt und leicht um zufällige Werte verschoben, damit die bereits an-
gesprochenen Effekte durch leicht identifizierbare, fortlaufende Strukturen vermieden
werden.

Hyperparameterwahl zur Trainingszeit

Sowohl die neu entwickelte Methode des selbst-überwachten Lernens als auch der
Doersch-Ansatz werden auf vergleichbare Art und Weise trainiert. Beide Male wird
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CNN D2D 2 Param Heatmap D3D 6 Neighbor
Input Bilddaten D2D Feature D2D Feature Bilddaten D3D Feature

Schicht 1 Conv(3,32,3,1) Conv(128,128,1,1) Conv(128,64,1,1) Conv(1,16,5,1) Conv(384,64,1,1)
MP(2,2),GN,LR GN,LR GN,LR GN,LR GN,LR

Schicht 2 Conv(32,32,3,1) Conv(128,64,1,1) Conv(64,32,1,1) Conv(16,32,3,2) Conv(64,64,1,1)
MP(2,2),GN,LR GN,LR GN,LR GN,LR GN,LR

Schicht 3 Conv(32,32,3,1) Conv(64,32,1,1) Conv(32,16,1,1) Conv(32,32,3,2) Conv(64,32,1,1)
GN,LR GN,LR GN,LR GN,LR GN,LR

Schicht 4 Conv(32,64,3,1) Conv(32,2,1,1) ConvTP(16,16,5,1) Conv(32,32,3,2) Conv(32,6,1,1)
GN,LR — GN,LR GN,LR —

Conv(16,16,3,1)
GN,LR

interp(11x11)
Schicht 5 Conv(64,64,3,1) ConvTP(16,16,5,1) Conv(32,32,3,1)

GN,LR GN,LR GN,LR
Conv(16,8,3,1)

GN,LR
Schicht 6 Conv(64,64,3,1) ConvTP(8,4,5,1) Conv(32,32,5,1)

GN,LR GN,LR GN,LR
interp(19x19)

Schicht 7 Conv(64,64,3,1) Conv(4,1,1,1) Conv(32,192,3,1)
GN,LR — GN,LR

(x,y,z,c)-in (42,42,1,3) (1,1,1,128) (1,1,1,128) (25,25,25,1) (1,1,1,192)
(x,y,z,c)-out (1,1,1,64) (1,1,1,2) (19,19,1,1) (1,1,1,192) (1,1,1,6)
# Parameter 139.744 27.138 28.189 393.392 31.238

Tabelle 6.1: Netzwerkarchitekturen. Folgende Abkürzungen werden für die Bestandtei-
le genutzt: 1.) Conv〈TP〉(cin, cout, kernel, dilation) =̂ 〈Transposed〉Convolution,
2.) MP(kernel, stride) =̂ MaxPooling, 3.) GN =̂ GroupNorm, 4.) LR =̂ Leaky-
ReLU, 5.) interp(Breite,Höhe) =̂ Hochskalieren auf die spezifizierte Dimensio-
nalität

ein Adam-Optimierer mit initialer Lernrate von 5 · 10−5 eingesetzt und mit einer
Batchgröße von 8 wird jedes Verfahren für 800.000 Iterationen auf zufälligen Bild-
ausschnittpaaren trainiert. Als Ausgabe entstehen pro betrachteter Bildposition nach
Verarbeitung durch die entsprechenden, für die Deskriptorextraktion zuständigen Fal-
tungsnetzwerke Featurevektoren der Länge 192. Tabelle 6.1 enthält dabei die Details
zum Aufbau der Faltungsnetze samt Informationen zu allen Hyperparametern einge-
setzter Schichten.
An dieser Stelle sei angemerkt, dass alle CNNs zur Featureextraktion 1.) mit ≈ 400k

adaptierbaren Parametern vergleichbare Modellkapazitäten besitzen, 2.) in Form sia-
mesischer Netzwerke trainiert werden und 3.) ihre Ausgaben an ebenfalls vergleichbar
mächtige Netzwerke weiterleiten, die sich hauptsächlich auf die Lösung der Hilfsaufga-
be fokussieren.

Vergleichsexperimente & Ablationsstudie

Um die beiden bisher vorgestellten, selbst-überwachten Lernansätze nicht nur un-
tereinander, sondern auch im Vergleich zu weiteren Deskriptoren beurteilen zu können,
werden darüberhinaus noch zwei weitere Verfahren beschrieben und genutzt, sowie im
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Sinne einer Ablationsstudie zusätzlich zur entwickelten Heatmap �-Methode ein wei-
teres Experiment durchgeführt.
Xavier2D: Auch ohne Training der D2D-CNNs und allein mit anhand der Xavier-

Methode aus Glorot u. a., 2010 initialisierten Netzwerkgewichten lassen sich häufig
bereits robuste Repräsentationen aus Bilddaten gewinnen. Die Verwendung dieser Art
von Deskriptoren soll im Experiment daher Rückschlüsse auf eine untere zu erwartene
Qualität erlauben, um somit im Falle starker Genauigkeitszuwächse den Trainingsauf-
wand der vorgeschlagenen Heatmap-Methode zu rechtfertigen, da zur Testzeit beide
Verfahren identisch sind und die gleiche Architektur verwenden.
GVDiff �: Um die bislang vorgestellten, durchgehend CNN-basierten Verfahren ge-

genüber klassischen Deskriptoren einzuordnen, werden die BRIEF -Deskriptoren (engl.:
binary robust independent eficcient feature) aus Calonder u. a., 2010 genutzt. Diese be-
schreiben einen Voxel durch eine Vielzahl an paarweisen Intensitätsvergleichen (engl.:
grey value differences - kurz: GVDiff) mittels eines einmalig zu Beginn zufällig festzule-
genden Umgebungsmusters. Um eine Vergleichbarkeit der Ergebnisse zu gewährleisten,
stammt dieses Muster aus einer dreidimensionalen Gaußverteilung mit einer Standard-
abweichung von 0.4 und entspricht daher dem rezeptiven Feld der CNN-basierten Me-
thoden. Mit einer Anzahl an 192 Vergleichen entstehen dann ebenfalls Featurevektoren
der gleichen Dimensionalität.
Reg2D (�)-basiertes Netzwerktraining: Im Sinne einer Ablationsstudie soll mit die-

sem Experiment der Einfluss der Verwendung von Heatmaps beleuchtet werden. Dazu
wird die vorgeschlagene Hilfsaufgabe im Vergleich zum ersten Experiment dahingehend
abgeändert, dass eine direkte Regression der Versatzparameter (∆1,∆2) durchgeführt
wird. Es findet also keine Rekonstruktion räumlicher Informationen mehr statt wie bei
der Kombination von D2D-CNNs mit den Heatmap CNNs. Stattdessen operieren die
eingesetzten voll-verbundenen Schichten und der Gradientenfluss auf Grundlage des
L1-Losses im Anschluss an die D2D-CNNs einzig auf eindimensionalen Featurevekto-
ren. Auch für dieses Experiment finden sich die Netzwerkdetails in Tabelle 6.1.

Art der Evaluation

An dieser Stelle muss die Art der Evaluation hinsichtlich der Aussagekraft der betrach-
teten Deskriptoren erläutert werden. Dabei ist zu betonen, dass während des Trainings
der selbst-überwacht lernenden Verfahren Heatmap�, Doersch� und Reg2D�
keine Organannotationen, sondern ausschließlich die 63 Grauwertbilddatensätze des
silver corpus zum Einsatz kommen. Im Anschluss daran wird auf eine Feinabstim-
mung durch weiteres Training mittels des Zieldatensatzes verzichtet, um die Aussa-
gekraft der zu vergleichenden Deskriptoren alleine den verschiedenen Trainings- oder
Designmethoden zuschreiben zu können.
Bildlich gesprochen stellt sich die Evaluation folgendermaßen dar. Zu Trainingszei-

ten stehen den Verfahren ausschließlich Bilddaten eines bestimmten Volumenscanners
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6.4 Ergebnisse & Diskussion
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Abb. 6.4: Links: Durchschnittliche Dice-Werte für verschiedene Methoden bei ansteigender
Anzahl an verfügbaren Atlasdaten. Rechts: t-SNE-Darstellungen belegen die deutli-
chere Separierung hochdimensionaler Deskriptorcluster der vorgeschlagenen Heat-
map �-Methode im Vergleich zum Doersch �-Verfahren.

zur Verfügung. Nach Abschluss des Trainings wird nun eine Teilmenge der mit Ex-
pertenannotationen versehenen Datensätze des gold corpus in Form von Atlanten zu-
gänglich. Nun sollen für weitere ungesehen Testbilddaten mittels einer approximativen
k-Nächste-Nachbarn-Suche (kNN) die Organlabel aus den Atlanten übertragen wer-
den. Dazu wird die Suche mit Hilfe der effizienten Vantage Point Forest-Methode aus
Heinrich u. a., 2016 (Hyperparameterwahl: k = 21 mit 15 Bäumen) basierend auf den
Featurevektordarstellungen der ungesehen Testdaten und der Atlasbilddaten umge-
setzt.
Die beiden Vergleichsverfahren Xavier und GVDiff� folgen abgesehen vom Aus-

lassen eines vorangehenden Trainings dem gleichen Evaluationsschema.
Die Experimente werden schließlich jeweils in Form einer zweifachen Kreuzvalidie-

rung auf den 19 gold corpus-Daten (Aufteilung: 1-10, 11-19) ausgeführt. Dabei wird
weiterhin der Einfluss einer wachsenden Anzahl zur Verfügung stehender Atlasdaten
beim Labeltransfer untersucht, in dem schrittweise zuerst ein Datensatz (one-shot) bis
hin zu einer Menge 9 Atlanten bei Suche der kNN zur Verfügung stehen. Diese Label-
transferaufgabe wird an jedem vierten Voxel - dies entspricht 192.720 Positionen pro
Testbild - durchgeführt.

6.4 Ergebnisse & Diskussion

Tabelle 6.2 enthält die mittleren Dice-Werte aller 6 betrachteten Organstrukturen für
den Fall, dass die größtmögliche Menge von neun Atlanten zur kNN-Suche während der
Testzeit zur Verfügung steht. Ein qualitatives Beispielergebnis für die Labeltransferauf-

109



Kapitel 6 Unüberwachtes Deskriptorlernen in 3D-CT-Thoraxdaten

(a) Experte (b) Heatmap (c) Reg2D (d) Doersch (e) GVDiff

Abb. 6.5: Visualisierung des Segmentierungsergebnis der verschiedenen Ansätze innerhalb der
Coronalschicht eines Beispielpatienten.

gabe unter eben diesen Bedingungen wird in Abb. 6.5 innerhalb einer Coronalschicht
für einen Patienten gezeigt.

Der Genauigkeitsverlauf bezüglich einer ansteigenden Anzahl an zur Verfügung ste-
henden Atlanten für die kNN-basierten Organsegmentierungen ist mithilfe der mittle-
ren Dice-Werte im linken Teil von Abb. 6.4 aufgeführt. Daraus ist abzulesen, dass das
in diesem Kapitel neu entwickelte Pre-Training-Verfahren unter Einsatz der Heatmaps
durchgehend die besten Ergebnisse erzielt und schon für eine One-Shot-Segmentierung
- also mit nur einem verfügbaren Atlanten - eine Dice-Genauigkeit von ≈ 55% erreicht.
Der in der Ablationsstudie betrachtete Reg2D-Alternativansatz liefert die nächst-
besten Werte und ist ebenfalls durchgängig genauer als die direkte, dreidimensionale
Erweiterung des Doersch-Ansatzes. Auch im Vergleich zu den weiteren Deskriptoren
sind beide auf dem hier neu entwickelten Schema zum selbst-überwachten Lernen
eindeutig vorzuziehen und demonstrieren auf diese Art die Überlegenheit der vorge-
stellten Methode. An dieser Stelle sei außerdem erwähnt, dass der vollständig selbst-
überwachte Heatmap-Ansatz auch einem elaboriertem Trainingsverfahren aus Roy
u. a., 2020 für One-Shot-Segmentierungen unter Einbezug von Labeldaten überlegen
ist, dass auf dem gleichen Datensatz geringere Dice-Werte von 52.6% liefert.

Die zusätzliche Visualisierung der hochdimensionalen Organdeskriptorcluster mittels
t-SNE-Darstellungen im rechten Teil von Abb. 6.4 unterstreicht durch die deutliche-
re Abgrenzung der verschiedenen Klassen bei Anwendung des Heatmap-Verfahrens im
Vergleich zum Doersch-Ansatz die gesteigerte Aussagekraft zur räumlich-anatomischen
Beschreibung der so erhobenen Deskriptoren. Beispielsweise hinsichtlich der Leber
(blau) und der Milz (orange) unterstützt die Betrachtung eines größeren räumlichen
Kontext beim Lernen sichtlich die Separierung der Cluster und demzufolge auch das
beispielhafte Segmentierungsergebnis der beiden Strukturen in Abb. 6.5.
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6.5 Zusammenfassung

Experiment Leber Milz l Niere r Niere l Psoas r Psoas ∅
Heatmap (neu) 85.3 65.7 66.3 53.5 50.4 65.6 64.2 ± 2.9
Reg2D (neu) 81.4 54.0 63.4 51.0 49.0 60.9 60.0± 2.9

Doersch 76.9 43.0 59.0 51.2 49.1 52.3 55.2± 3.1
GVDiff 80.7 58.2 54.5 43.0 29.0 37.1 50.4± 5.0
Xavier 70.1 28.3 17.2 3.3 24.5 27.1 28.4± 1.0

Tabelle 6.2: Mittlere Dice-Werte in % über Aufteilungen der Kreuzvalidierung.

6.5 Zusammenfassung

Im zurückliegenden Kapitel wird eine neuartige Strategie des selbst-überwachten
Lernens von Deskriptoren vorgestellt, die es ermöglicht ausschließlich anhand von in
großen Mengen vorliegenden Volumenbilddaten von Patienten inhärente Informatio-
nen zu extrahieren. Sie setzt sich somit von allen Methoden in anderen Kapiteln die-
ser Arbeit ab, welche in unterschiedlicher Form auf Überwachung angewiesen sind.
Dazu wird ausgehend von einer in Doersch u. a., 2015 vorgeschlagenen Methode für
zweidimensionale, natürliche Bilder ein neues Hilfsproblem formuliert. Dieses nutzt
die zusätzliche Raumdimension der Volumendaten zu seinem Vorteil, indem mittels
fast-planarer Subvolumen kleine, kontinuierliche Versätze entlang der Bildebene zur
Definition der räumlichen Relation dienen und dadurch der Übergang von einer Pro-
blemformulierung als Klassifikation hin zur Formulierung in Form Regression gelingt.
Dieser in allen drei Raumorientierungen wiederholte Prozess ermöglicht die instrinsi-
sche Kodierung anatomischer Zusammenhänge innerhalb der Faltungsnetzwerke und
somit die Extraktion aussagekräftiger, vortrainierter Deskriptoren - ohne Vorwissen
beispielsweise durch die Vorgabe einer einzusetzenden Metrik einzubringen.
Die Evaluation des Verfahrens zeigt, dass die auf diese Weise trainierten Deskrip-

toren in einer kNN-basierten Labeltransferaufgabe ohne problemspezifische Parame-
teranpassung einen großen Anstieg von 55.2% auf 65.6% hinsichtlich der Dice-Werte
im Vergleich zur Erweiterung des Verfahrens aus Doersch u. a., 2015 zur Folge ha-
ben. Dabei übertrifft das entwickelte Verfahren vollständig unüberwacht sogar einen
Stand-der-Technik-Ansatz zur One-Shot-Segmentierung auf den öffentlichen thorako-
abdominalen VISCERAL-CT-Daten.
Zukünftige Arbeiten können den Einfluss verschiedener Architekturentscheidungen

bei der Definition der eingesetzten Faltungsnetze beleuchten. Verschiedene Einsatzsze-
narien mit oder ohne Feinabstimmung der Parameter sollten die Einsatzberechtigung
der Methodik weiter untersuchen. Insgesamt betrachtet eröffnet der vorgestellte, neuar-
tige Ansatz aber einen Weg die große und noch weiter anwachsende Zahl medizinischer
Volumenbilddaten auch ohne zeitaufwendiges, manuelles Annotieren sinnvoll einzuset-
zen.
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Kapitel 7

Zusammenfassung und Ausblick

In dieser Arbeit wurden verschiedene Methoden entwickelt, um datengetrieben un-
ter Anwendung von Faltungsnetzwerken Deskriptoren für die medizinische Bildanalyse
zu erlernen. Allen Ansätzen ist dabei gemein, dass sie auf einer klaren Separierung
der Extraktion von Deskriptoren und den darauf folgenden Anwendungen beruhen.
Unter Beachtung dieses Separierungsparadigmas konzentrierten sich die Experimtente
anschließend auf die wissenschaftliche Fragestellung, welche der neuentwickelten Me-
thoden den größten Anwendungsnutzen ermöglichen.
Innerhalb der Bildregistrierung wird dieses algorithmische Vorgehen beispielsweise

durch Vergleiche mit klassischen Methoden, aber auch mit vollständig integrierten
Faltungsnetzansätzen zur Bestimmung der Transformationsparameter untersucht.
Die Hauptbeiträge der Arbeit ergeben sich dabei wie folgt:

• in Kapitel 3 durch das Formulieren eines geeigneten Hilfsproblems in Form der
Zielstellung einer Korrespondenzsuche zum Training der Deskriptornetzwerke. Diese
steht in nahem Bezug zur eigentlichen Registrierung eines Bildpaares, da auch diese
Aufgabe unter Vorgabe von Metriken oder manuell definierten Deskriptoren gelöst
wird. Weiterhin bewirkt die Verwendung eines zusätzlich eingeführten Strafterms ei-
ne nahezu verlustfreie Binarisierung der Deskriptoren. Dadurch wird das Ausnutzen
spezieller Befehlsätze für effiziente Ähnlichkeitsberechnungen ermöglicht.

• in Kapitel 4 durch das schrittweise Optimieren einer multimodalen Bildregistrie-
rung mit Hilfe von semantischer Forminterpolation. Dieses Vorgehen erlaubt auch
sich stark voneinander unterscheidende Herzanatomien sinnvoll ineinander überzu-
führen. Zu diesem Zweck wird linear zwischen Deskriptoren der automatisch ge-
schätzten Segmentierungen interpoliert, die als Formkodierungen vorliegen. Durch
den Einsatz der Faltungsnetz-Auto-Enkoder ist die Transformation zwischen Form-
und Bildraum hochgradig nichtlinear und dadurch in der Lage auch komplexe ana-
tomische Variationen zu erfassen und abzubilden.

• in Kapitel 5 durch die Ende-zu-Ende-trainierbare Kombination aus Faltungsnetzen
zum datengetriebenen Lernen von Deskriptoren und klassischen Registrierungsver-
fahren zur iterativen Bestimmung von Transformationsparametern. Dadurch redu-
ziert sich im Vergleich zu voll-integrierten Faltungsnetzansätzen die Anzahl der zu
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trainierenden Parameter deutlich und dadurch ebenso die notwendige Menge an
Trainingsdaten.

• in Kapitel 6 durch eine neue Strategie vollständig unüberwacht Deskriptoren in Vo-
lumendaten zu lernen. Diese ermöglicht Faltungsnetzwerken anhand räumlicher Re-
lationen instrinsische anatomische Zusammenhänge zu erfassen - ganz ohne weiteres
Vorwissen, beispielsweise bezüglich einzusetzender Metriken, zu benötigen.

An dieser Stelle sei noch einmal auf den Umfang der Herausforderungen verwiesen, de-
nen im Rahmen der Arbeit zum datengetriebenen Deskriptorlernen begegnet wurde.
Bedingt durch 1) unterschiedliche Datengrundlagen wurden sowohl Untersuchungen
zu Ende-zu-Ende-trainierten Deskriptoren als auch zu hybriden Zweischrittverfahren
angestellt. Darüberhinaus wurde 2) die Eignung der indirekten Überwachung bei der
Anwendung eines Hybridverfahrens und zum Atlastransfer geprüft, wobei letzterer auf
Deskriptoren basiert, die ohne jegliches, zusätzliches Trainingswissen erlernt wurden.
Außerdem beschränkt sich die Arbeit nicht auf monomodale Bildpaare, sondern zeigt
auch Wege zur Bewältigung 3) herausfordernder, multimodaler Registrierungsprobleme
mit ihren nicht-funktional abbildbaren Grauwertbeziehungen zwischen korrespondie-
renden Gewebetypen auf. Schließlich wurden auch 4) spezielle Lösungen durch proble-
mangepasste Gradientenrückführungen abseits der Standardvorgehensweisen bei Fal-
tungsnetzwerken entwickelt. Diese erlauben zusätzliche Effizienzsteigerungen einerseits
durch das Generieren von Binärdeskriptoren und andererseits durch die Anwendung
etablierter, fortgeschrittener Lösungsverfahren für spärlich besetzte Gleichungssyste-
me.
Trotz der Erfolge, die die neu entwickelten Methoden jeweils in den Experimenten im

Hinblick auf ihre Anwendungen erzielen, ergeben sich für alle Verfahren Limitierungen
und weitere, in zukünftigen Untersuchungen zu beantwortende Forschungsfragen.

• Bezüglich der Methodik aus Kapitel 3 lässt sich feststellen, dass die Hilfsaufgabe der
Korrespondenzfindung das Faltungsnetz prinzipiell in die Lage versetzt expressive
Deskriptoren für die vorliegenden Landmarken zu lernen. Die Diskrepanz zwischen
dieser Aufgabe und der tatsächlichen Anwendung in der Registrierung erweist sich
aber stärker als erwartet. Dies macht sich besonders in Bereichen bemerkbar, welche
spärlich durch Landmarken besiedelt sind. Dort sind die generierte Repräsentationen
weniger ausssagekräftig.

Ein denkbarer Lösungsansatz bestünde in der Umsetzung eines Ende-zu-Ende-trai-
nierbaren Trainingsschemas wie in Kapitel 5. In Heinrich, 2019 wurde in der Zwi-
schenzeit ein faltungsnetzbasierter und daher differenzierbarer Registrierungsansatz
entwickelt, der sich stark an diskreten Vorgehensweisen zur Abtastung des Verschie-
bungsvektorsuchraumes orientiert. Auf diese Weise könnte das ursprünglich einge-
setzte Verfahren adäquat erweitert werden.
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• Hinsichtlich der Neuentwicklung in Kapitel 4 ist der niedrigere Grad der Überwa-
chung in Form von Organsegmentierungen statt manuell exakt annotierter Punkt-
korrespondenzen positiv zu vermerken. Dennoch ergeben sich auch während des Re-
gistierungsvorgangs hier abseits der annotierten Strukturen Probleme: dieser wird
nur durch die Glattheitsanforderungen der Verschiebungsfelder mitangepasst, da das
angewandte Verfahren nur die annotierten Vordergrundorganstrukturen in Betracht
zieht.
Mögliche Ansatzpunkte für Verbesserungen wären einerseits die Berücksichtigung
weiterer Segmentierungen. Andererseits könnte das implementierte, iterativ geführ-
te Registrierungsverfahren beispielsweise in alternierender Schrittfolge auf bereits
bekannte, multimodale Methoden wie MIND-Repräsentationen zurückgreifen oder
die mutual information als Distanzmaß einsetzen.

• Mit Blick auf Kapitel 5 erweist sich das Erstellen des linearen Gleichungssystems im
abschließenden SUITS 2.0-Framework als aufwendig.
Diesbezüglich könnte untersucht werden, ob im Sinne des genutzten, algebraischen
Multigridlösungsverfahrens direkt eine kleinere Version der Systemmatrix basierend
auf den Eingabebildern ebenfalls durch den Einsatz von Faltungsnetzen vorhergesagt
werden kann. Dieser Schritt zur Dimensionsreduktion wird ohnehin im Lösungspro-
zess vollzogen und ließe sich dabei durch zusätzliche Bedingungen weiter optimieren.
So könnten Bereiche, die besonders informative Strukturen beinhalten, verstärkt Be-
achtung finden, so dass die Systemmatrix nicht mehr alle Nachbarschaftsbeziehungen
des Bildgitters gleichrangig betrachtet, sondern durch Spärlichkeitsnebenbedingun-
gen die Matrixeinträge dahingehend gewichtet oder erlernt.

• Im Kontext der in Kapitel 6 vorgeschlagenen, unüberwachten Lernmethodik stellt
sich die Frage, ob ein Faltungsnetz größerer Kapazität anatomische Zusammenhänge
noch besser erfassen kann, wenn es auf multimodalen Eingaben gleicher Körperre-
gionen trainiert wird. Potentiell ließen sich damit wiederum modalitätsunabhängige
Deskriptoren für die naheliegende Anwendung in der Bildregistrierung generieren.
Dazu Bedarf es allerdings der Entwicklung geeigneter Trainingsstrategien, die die
zu erwartende, anfänglich große Diskrepanz zwischen den Eingaben verschiedenen
Ursprungs überbrücken.

Generell gilt, dass die im Rahmen der Arbeit genutzten Methoden des maschinellen
Lernens immer von der Güte der zum Training zur Verfügung stehenden Daten ab-
hängig sind. Aus diesem Grund wäre der Zugang zu weiteren, qualitativ hochwertigen
und mit Annotationen versehenen Bilddaten wünschenswert. Einerseits um die entwi-
ckelten Verfahren in weiteren Testläufen auf ihre Robustheit und Generalisierbarkeit
zu prüfen, andererseits aber auch um noch mächtigere Modelle zu trainieren.
Für das ultimative Fernziel eines Transfers der entwickelten Verfahren in die klini-

sche Praxis sind im Hinblick auf die Anwender Forschungsanstrengungen zu intensi-
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vieren, die Akzeptanz dieser Systeme steigern. Dazu zählen zum einen Methoden der
Konfidenzabschätzungen, also wie sicher sich das System seiner Vorhersage ist. Eben-
so wichtig ist zum anderen die Nachvollziehbarkeit einer Entscheidungsfindung, um
Einblick in die sonst als Blackbox aufgefassten Verfahren zu gewinnen.
Insgesamt bleibt als Fazit dieser Arbeit - trotz der sich hieraus neu ergebenden

Fragestellungen - festzuhalten, dass das datengetriebene Deskriptorlernen in der me-
dizinischen Bildverarbeitung unter verschiedensten Voraussetzungen möglich ist und
gewinnbringend für vielfältige Anwendungen, insbesondere die Bildregistrierung, ein-
gesetzt werden kann.
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