
Expressiveness and Complexity of
Stream-based Specification Languages

Torben Scheffel

From the

Institute for Software Engineering and Programming Languages
of the University of Lübeck

Director: Prof. Dr. Martin Leucker

Expressiveness and Complexity of
Stream-based Specification Languages

Dissertation
for Fulfillment of

Requirements
for the Doctoral Degree

of the University of Lübeck

from the Department of Computer Sciences

Submitted by

Torben Scheffel
from Eutin

Lübeck, 2020

First referee: Prof. Dr. Martin Leucker
Second referee: Prof. Dr. Ezio Bartocci

Date of oral examination: 21st of May, 2021

Approved for printing: 25th of May, 2021

Acknowledgements

I got support from many people while writing this thesis, which helped me a lot and there are many
ideas, talks and results from colleagues which influenced and advanced this thesis.

To begin with, I want to thank Martin Leucker, my supervisor, who gave me the possibility to
write this thesis in the first place. He has helped me to get into research and get connected to many
collaborators as well as giving me the freedom and environment to develop ideas and results, while
still helping me with guidance over the course of this huge project. Additionally, I want to thank
Ezio Bartocci for reviewing this thesis and Till Tantau for leading the examination board.

Furthermore, I am very grateful that I had my fellow colleagues around me, who always inspired
me with ideas and with whom I was able to work on a variety of research questions and projects.
First, I want to thank Malte Schmitz, with whom I studied and who always was on my side when
academic questions or problems had to be discussed. Second, I want to thank Normann Decker
and Daniel Thoma, who guided me with their experience in research and who were always open
to fruitful discussions. Finally, I want to thank César Sánchez for his inspiration and thoughts
regarding research this thesis is based upon.

I am also thankful to the ISP team in general, providing a supportive, helpful and guiding as well
as fun and inspiring environment for research. Additionally, I want to thank Fernando Macías to
be able to work with him on his PhD topic as well as a publication and the teams of CONIRAS and
COEMS as well as the TeSSLa team in general, and all the people who contributed to the TeSSLa
project.

Finally, I want to express my love to my parents and all my great friends, who supported me over
all these years and without whom I would not have been able to write this thesis.

Thank you!

vi

Abstract

This thesis is about results considering stream-based specification languages in terms of the Tem-
poral Stream-based Specification Language (TeSSLa) regarding expressiveness, fragments, de-
cision problems, and the comparison to other languages. At first, the standard definition of TeSSLa
is extended by an operator for specifying future references, as it is also common in other stream
languages. Then, TeSSLa as well as this extension by future references are syntactically restricted
to obtain a subset of the language such that each formula always only has a unique fixed-point. Ad-
ditionally, the expressiveness of the full language is considered as well as how the expressiveness
changes if one or more operators are missing in the language.

Besides considering the expressiveness of the full language, the thesis also looks at various frag-
ments which only consider input streams over bounded data domains and show their relation to
different transducer types and complexity results for different decision problems for those frag-
ments. We do not only consider standard decision problems, but also some regarding the memory
usage during evaluation, which may be of interest for practical application. Among the fragments
considered are some which allow some kind of unbounded data structures like a stack and some
which consider real-time constraints as well as non-deterministic ones.

Lastly, TeSSLa is compared to other stream languages, in terms of expressiveness as well as also on
a conceptual level. Besides the general stream model, we also consider a stream model restricted
to discrete time steps of a given distance. To the languages compared with TeSSLa belong Esterel,
Lustre, Striver, and LOLA and its extensions.

vii

Zusammenfassung

Diese Arbeit befasst sich mit Ergebnissen bezüglich strombasierter Spezifikationssprachen im
Bezug auf die Temporal Stream-based Specification Language (TeSSLa). Dabei werden Aus-
drucksstärke, Fragmente, Entscheidungsprobleme sowie der Vergleich zu anderen Sprachen be-
trachtet. Zuerst wird die Standarddefinition von TeSSLa um einen Operator für Zukunftsreferen-
zen erweitert, wie es üblich ist für andere strombasierte Sprachen. Danach wird TeSSLa sowie
diese Erweiterung um Zukunftsreferenzen syntaktisch so eingeschränkt, dass eine Teilmenge der
Sprache entsteht, so dass jede Formel dieser Teilmenge nur genau einen Fixpunkt hat. Zusätzlich
wird die Ausdrucksstärke der kompletten Sprache betrachtet sowie die Änderung an der Aus-
drucksstärke, wenn man einen oder mehrere Operatoren der Sprache als nicht in der Sprache
vorhanden betrachtet.

Außer der Betrachtung der Ausdrucksstärke der vollen Sprache, werden in dieser Arbeit ver-
schiedenste Fragmente betrachtet, die nur Eingabeströme über endlichen Datendomänen anneh-
men. Es wird gezeigt, wie sich diese zu verschiedenen Arten von Transducern verhalten und
es werden Ergebnisse bezüglich der Komplexität von verschiedenen Entscheidungsproblemen er-
langt. In diesem Rahmen werden nicht nur in der Literatur typische Entscheidungsprobleme be-
trachtet, sondern auch Entscheidungsprobleme bezüglich dem Speicherverbrauch bei der Auswer-
tung einer Formel, welche insbesondere für praktische Anwendungen interessant sein könnten.
Unter den betrachteten Fragmenten sind auch welche, die eine bestimmte Art von unbeschränkten
Datendomänen, wie Stacks oder Echtzeitbedingungen, erlauben, sowie nicht-deterministische.

Zuletzt wird TeSSLa noch mit anderen strombasierten Sprachen verglichen, sowohl bezüglich Aus-
drucksstärke, aber auch auf einer konzeptionellen Ebene. Neben dem allgemeinen Strommodell
wird auch ein Strommodell über diskrete Zeitschritte einer festen Distanz betrachtet. Zu den Sprac-
hen, mit denen TeSSLa verglichen wird, gehören Esterel, Lustre, Striver und LOLA sowie dessen
Erweiterungen.

viii

Contents

1 Introduction 1
1.1 Contribution . 8

1.2 Related Work . 10

1.3 Overview . 14

2 Preliminaries 15
2.1 Basic Notation . 16

2.2 Functions and Fixed Points . 18

2.3 Logics . 19

2.3.1 Linear-Time Temporal Logic . 20

2.3.2 Metric Temporal Logic . 21

2.3.3 Metric Interval Temporal Logic . 22

2.3.4 Signal Temporal Logic . 23

2.4 Automata . 25

2.4.1 Automata on finite Words . 25

2.4.2 Automata on infinite Words . 26

2.5 Turing Machines . 31

2.6 Streaming Semantics and Transducers . 32

2.6.1 Streams and Stream Transformations . 33

2.6.2 LOLA . 42

2.6.3 Types of Transducers . 45

2.6.4 Stream Turing Machines . 51

2.7 Properties of Formalisms . 53

2.7.1 General Properties . 53

2.7.2 Properties of Stream Transformations . 54

2.8 Decision Problems . 56

2.8.1 The Equivalence Problem . 57

2.8.2 Decision Problems for Memory Usage . 57

ix

Contents

3 Temporal Stream-Based Specification Language 63
3.1 Syntax of TeSSLa . 64

3.1.1 Flat Specifications . 64

3.2 Semantics . 65

3.2.1 Semantics over Completed Streams . 65

3.2.2 Prefix Semantics . 77

3.3 Adding a Future Operator to TeSSLa . 90

4 Language Theoretic Results 101
4.1 General Properties and Computability . 101

4.2 Well-formedness . 104

4.3 Expressiveness of TeSSLa and the delay Operator 108

4.3.1 TeSSLa without delay . 108

4.3.2 TeSSLa with delay . 114

4.4 Expressiveness of TeSSLa with next . 119

4.4.1 TeSSLa f without delay . 123

4.4.2 TeSSLa f with delay . 125

4.5 Conclusion . 127

5 TeSSLa Fragments and Relation to Transducers 131
5.1 An Evaluation Strategy for TeSSLa . 134

5.2 Boolean Fragment . 137

5.2.1 Translating DFST to TeSSLabool . 140

5.2.2 Translating TeSSLabool to DFST . 141

5.2.3 Results for TeSSLabool . 150

5.3 Pushdown Fragment . 151

5.4 Functional Non-deterministic Fragment . 157

5.4.1 Transforming functional NFST to TeSSLa f
bool 159

5.4.2 Transforming TeSSLa f
bool to NFST . 161

5.4.3 Results on TeSSLa f
bool . 165

5.5 Timed Fragment . 167

5.5.1 Translating DTFST to TeSSLabool+c . 169

5.5.2 Translating TeSSLabool+c to DTFST . 170

5.5.3 Results for TeSSLabool+c . 173

5.5.4 Adding Non-determinism to the Timed Fragment 176

5.6 Conclusion . 178

x

Contents

6 Relation of TeSSLa to Other Stream Languages 181
6.1 Discussion on Expressiveness of Stream Languages 183
6.2 TeSSLa and LOLA . 184

6.2.1 TeSSLa and LOLA on Discrete Streams 185
6.2.2 TeSSLa and LOLA on Continuous Streams 190
6.2.3 TeSSLa and LOLA2 . 193
6.2.4 TeSSLa and RTLola . 193

6.3 Striver . 194
6.4 Lustre . 200

6.4.1 Comparing Lustre to TeSSLa . 202
6.5 Esterel . 203

6.5.1 Comparing Esterel to TeSSLa . 203
6.6 Conclusion . 204

7 Conclusion and Future Work 209
7.1 Summary . 209
7.2 Future Work . 210

xi

1 Introduction

The correctness of software and hardware systems is a problem that always exists when building
such systems. Failures occur all the time and some are worse than others. Some are related to
hardware errors by construction, others to the programming of the hardware or to simple errors
in the software and some may be delivered to the system under observation by external hardware,
like a broken sensor.

In the past years various techniques evolved which go far beyond simple testing of the systems.
The idea is to verify the correctness of the system under test. Testing can only show the absence of
errors for the tested cases, but can neither show the absence of errors for the whole program, nor
is it reliable to find at least the most crucial errors in a program with testing only.

One of the techniques that have been developed for this purpose during the past decades is model
checking. In model checking, an abstraction of the full system is build to reflect every possible
trace an execution can produce. Afterwards, this abstraction is checked against a specification of
a correctness property given by an automaton or a temporal logic. If every possible execution
of the system fulfils the specified property, the system fulfils this property. Otherwise an error
in the system is found. The general problem of model checking is, that the whole system is
looked at at once. This leads to the state space explosion problem when the system under test gets
more complex. Of course various variations of classical model checking have been developed to
overcome this problem, such that more complex systems can be verified using model checking.
But especially for systems with inherent non-determinism like distributed or multi-core systems,
the problem still persists.

Another growing technique for verifying the correctness of systems is runtime verification [HG05,
LS09]. This approach checks the correctness of the system under test during the execution and
detects if the system runs in a state that eventually leads to an error. For this purpose, the systems
needs some sort of trace interface to get the data of the run out of the system. This data is then
checked against a specification, generally given in the form of a temporal logic formula in the
classical setting. There are two types of runtime verification: first, online runtime verification,

1

1 Introduction

where the fulfilment of the correctness property is checked while the system is running to detect
errors during the execution. And second, there is offline runtime verification, which means that the
run of a system is stored in a file or database and later analyzed by checking it against a correctness
property.

Two advantages of runtime verification are that first, it does not have the problem with the state
space explosion because only the current execution is observed independently of the complexity
of the system, and second, a real run of the system is considered, possibly also with environmental
effects, while model checking only considered an abstraction of the systems behaviour and its
environment. A disadvantage is that runtime verification is just less powerful: it can only observe
if a system does violate a property during execution, it can not prove that a system fulfils a certain
property.

While these advanced verification techniques have been a research topic of simple systems for
quite some time and are slowly finding their way into practical usage and into research about more
complex systems like multi-core ones, especially the power of what properties can be checked
heavily depends on the language used to specify properties. In classical runtime verification ap-
proaches, temporal logics have been used and possibly multi-values monitors are created from the
specification using different automata theoretic approaches [HR02, BLS11]. Therefore, because
the monitor essentially only states fulfilment, violation or some uncertainty in between, only cor-
rectness properties are able to be checked with such approaches. But there would also be a benefit
in being able to do arbitrary calculations on data values or measuring timing behaviours of the
system during the execution, which desires for a more powerful specification language.

The first language for specifying system behaviour was the Linear Temporal Logic (LTL, [Pnu77])
which is able to specify temporal behaviour of a system. Later, is was extended in different ways,
for example by real-time constraints with the Timed Linear Temporal Logic (TLTL, [Ras99]) and
the Metric Temporal Logic (MTL, [Koy90]). But both were only able to handle boolean pro-
positions as input and lack the ability to handle richer data values and more advanced timing
behaviour, even though the idea of handling richer data has been introduced in the Signal Tem-
poral Logic (STL, [MN04]). Additionally, temporal logics are build to make one final statement
about fulfilment or violation of the property, but lack the ability to make more distinct state-
ments regarding values or timing behaviour of the input. Languages which are able to handle
such things are stream languages. Typical stream languages are Lustre [CPHP87, HCRP91] and
Esterel [Ber92, Ber99, Ber00, Ber04], but those are programming languages and not specifically
tailored to the specification of properties of a system. Compared to programming languages, spe-
cification languages often do not care if they can be evaluated easily, but instead aim to deliver

2

a way to easily specify the property someone wants to check. Therefore, specification languages
may be able to make statements about future behaviour and consider future events for the current
evaluation or are able to specify behaviour which leads to an infinite amount of events in a finite
timespan. Additionally, specification languages are created in a way such that they give an output
for every input and, compared to temporal logics, do not have semantics which can possibly only
make a statement in infinity. Such statements as there has always to occur another a in the future,
which are called liveness properties, can not be specified with such specification languages, be-
cause they practically make no sense, as they can never be checked completely in a running system.
Nevertheless are such specification languages, as programming languages, often Turing complete
in general, because they get their expressive power from their more powerful operators and are
able to make every calculation a Turing machine is able to do over a finite amount of time.

In the last years, the first stream specification languages have been developed, pioneered by LOLA
[DSS+05]. As LOLA only has a restricted view on possible system behaviour, like that it has no
explicit notion of time and that all inputs have to be synchronized, we developed a new language
called TeSSLa [CHL+18] to extend the view on the system by an explicit notion of time and a
more flexible, non-synchronized view on the systems behaviour.

Before we go more into detail, we present a taxonomy for specification languages and fix the
wording. Different taxonomies in the field of runtime verification have already been developed in
[FKRT18]. The paper presents six taxonomies, all for different areas in this field. While one covers
runtime verification in general, the others cover most of the subfields in more depth, as four others
are taking a closer look at monitors, traces the monitors get as input, the deployment of monitors
and possible reactions when a violation is found, while the last one is considering specifications
from which the monitors are build. While we also take a look at specifications, their taxonomy
is tailored to the generic model of what and how a specification can be, while our taxonomy in
this thesis focusses on the aspects of the languages and not the general area of specifications itself.
Even though there is some overlap, we also added the focus on streaming behaviour.

Our taxonomy for specification languages is depicted in Figure 1.1, which shows the four dimen-
sions of such languages. The green part is the dimension about time. Time in a specification
language can either be implicit, which means the language has no specific notion of time and can
not handle the timestamps of incoming data, or explicit, which means that the language has a view
and can do calculations on the timestamps of the input values. An explicit notion of time can either
be discrete, therefore, the time domain has a certain distance between each element, for example N,
or continuous, which means that the time domain has no gaps between its elements, for example R.
In the continuous case, one can also differentiate if Zeno behaviour is allowed in the timestamps of

3

1 Introduction

Specification
Language

Time

ExplicitContinuousZeno

Non-
Zeno Discrete

Implicit

Model

Words

Piece-
wise

Streams

Synchro-
nized

Asynch-
ronous

Dense
Streams
(Signals)

Temporality

Past Ref-
erences

Future
Refer-
ences

Create
Events

Data
Domain

Bounded

Un-
bounded

Figure 1.1: A taxonomy for specification languages. It shows the four dimensions, Time (green),
Model (blue), Temporality (red) and Data Domain (orange), in which specification
languages may differ.

4

incoming events. If Zeno behaviour is allowed, an infinite number of timestamps of values can oc-
cur in a finite timespan and timestamps of values can, for example, converge to a certain timestamp
but never reach it, while otherwise, such behaviour would not be allowed. The second dimension
is the blue part about how the inputs are modelled. These can either be words, which are sequences
of values like it is in LTL, dense streams, which means that the input is a function, mapping a time
domain to a value from a data domain such that, at every timestamp, there can be a different value
as it is in a sinus curve. The third option are piece-wise streams, which are also a function mapping
timestamps to values from a data domain, but guarantee that the values only change at concrete
timestamps, which means they can be represented as sequences of events. Such a stream model
can also be either synchronized which denotes that every stream has a value at some timestamp or
no stream has a value, or asynchronous, which means that values can occur at arbitrary timestamps
on a stream, independent from the other streams. The third dimension in red is the temporality.
A specification language can have past references and therefore reference events and their values
that occurred at past timestamps, future references and therefore reference events and their values
that will occur at future timestamps or being able to create events at timestamps where no events
occurred on the input streams, which means it can reference timestamps even though no incoming
event exists at this timestamp. The last dimension, the one in orange, is the data domain of the
values of the events. A data domain can be either bounded or unbounded. If it is unbounded, it
can be any data domain one can imagine, if it is bounded, it is only allowed to have a finite set of
finite values. For a specification language, this is equivalent to only allowing boolean values (even
though a richer domain may be easier for the user) for the purposes on this thesis, as every finite
data domain can be encoded in boolean and vice versa. Therefore, we use the terms bounded data

domain and boolean data domain interchangeably in this thesis.

While, as stated before, in the classical approaches mostly by that time well known logics have
been used and some logics are also able to handle data by some amount, a language which is able
to handle richer data domains naturally and can do arbitrary calculations on those data is required
to enhance these verification techniques. Therefore, recently the development of stream runtime
verification (SRV, [DSS+05, BS14, CHL+18]) has been pushed forward, using specification lan-
guages as mentioned before, especially made for specifying properties to analyse system beha-
viour, among which are the logic hybrid STL [MN04] and the two stream specification languages
LOLA [DSS+05] and TeSSLa [CHL+18]. In SRV and all such languages, the representation of
the execution of a system has been changed from words, which contain atomic propositions that
are either true or false, to streams, which are functions mapping timestamps to values or denote,
that no event occurred at a timestamp and contain values at arbitrary timestamps which are often
used or referenced over time by the specification language, where these values can be integers or

5

1 Introduction

from more complex data domains like sets, queues, or maps or anything else. SRV is the sub field
of research of runtime verification using a stream based model of computation for the specifica-
tion languages and the resulting monitors, for which the mentioned specification languages like
STL, LOLA and TeSSLa can be used. As an example for SRV, consider the following specifica-
tion over piece-wise constant streams which checks whether a measured temperature stays within
given boundaries [CHL+18]. For every new event (measurement) on the temperature stream, the
new events on the derived streams low, high and unsafe are computed:

low := temperature < 3

high := temperature > 8

unsafe := low∨high

temperature
1
6

2
2

3
1

4
5

5
9

low 1
ff

2
tt

3
tt

4
ff

5
ff

high
1
ff

2
ff

3
ff

4
ff

5
tt

unsa f e
1
ff

2
tt

3
tt

4
ff

5
tt

This example from [LSS+19] uses a synchronized stream model, all streams have events at the
same timestamps. Furthermore, the model is discrete time wise, because the timestamps are
placed on a predetermined grid. Languages like LOLA, or also the programming languages Lustre
[CPHP87] and Esterel [Ber92], are limited to such a stream model. TeSSLa requires the events of
all streams to be in a global order, but does not require all streams to have simultaneous events,
thus, it uses an asynchronous stream model. As a consequence, there does not need to be a cer-
tain distance between two events, but instead, streams with events at arbitrary timestamps can be
modelled, therefore, even if the frequency at which the events occur changes arbitrarily. As cyber-
physical systems often give rise to streams at unstable frequencies or in continuous fashion, this
asynchronous setting is especially suitable for such systems [CHL+18]. An example for SRV with
an asynchronous stream model can be seen in the following streams:

6

values 1
3

2.3
2

3.7
4

4.6
7

5.8
3

7.5
1

8.3
3

resets
1 7

cond 1
tt

2.3
ff

3.7
ff

4.6
ff

5.8
ff

7
tt

7.5
ff

8.3
ff

sum
1
0

2.3
2

3.7
6

4.6
13

5.8
16

7
0

7.5
1

8.3
4

This example has two input streams, values (with numeric values) and resets (with no internal
value). The intention of the specification is to accumulate in the output stream sum all values since
the last reset. The intermediate stream cond is derived from the input streams indicating if reset
has currently the most recent event, and thus the sum should be reset to 0.

In cyber-physical systems, there is often another view on such streams. In such systems, streams
are often called signals, which are dense streams, and are looked at as them having values con-
tinuously and not just events at certain timestamps. In general such signals are discretized for
calculations at least in the clock speed of the processor. We do not consider such a stream model
of continuous values directly in this thesis, but stream specification languages allow this view in
parts by using their operators for past references in an event-based stream model, being able to use
prior values as if they are still active on the stream. Still, there can be streams like a one repres-
enting a sinus curve which not only have values continuously, but also ever changing values in a
finite time span, hence, the values are not piece-wise constant. These are also streams which can
typically be emitted by a cyber-physical system. We do not consider such streams at all in this
thesis. Even though TeSSLa is able to handle such streams, this is a topic for another work and we
focus on TeSSLa over piece-wise constant streams.

TeSSLa has been developed exactly for this purpose, being able to handle arbitrary types of streams
and values, handle time explicitly, and even being able to do calculations on continuous valued
streams like a sinus curve. Even though, it is build to still delivering easy to check memory
guarantees when having bounded data structures as well as compositionality of its operators to
allow efficient hardware implementations [CHL+18].

A disadvantage of such rich languages is that they are harder to evaluate than a logic for which
one can build a monitor in form of an automaton and just execute this automaton, like for example
in LTL and its three-valued semantics. Executing an automaton during runtime is especially easy,
for the current state and the input, one has to just look up the following state in a table. Therefore,

7

1 Introduction

evaluating LOLA or TeSSLa is much more difficult, as no easy way for creating an automaton
for a formula exist. This is mostly because of the richer data domains, but also because the way
some operators work. This means it is important to find new ways to evaluate such formulas, like
using parallelized software implementations and leads to the question which types of solutions are
feasible for this problem.

While there has also been done some work on parallel software implementations for such lan-
guages as, for example, for TeSSLa in [LSS+18, LSS+20], recently more and more approaches
were brought up to create monitors on hardware, like on FPGAs [DGH+17, DDG+18, CHS+18,
RRS14, JBG+15, NBN+16, HR02]. These approaches on FPGAs were used to be able to plug
the FPGA containing the monitor directly into the system under observation. Even though FPGA
have a low frequency compared to conventional processors, they are made for parallelized evalu-
ations. As long as the single operators of the language are compositional, which holds for TeSSLa
and LOLA but not for classical temporal logics, one could implement the formula as a network of
single units, one type for each operators, and connect those as they are nested in the formula. It
remains to show if the evaluation of a stream languages specification on an FPGA may also lead to
performance increases or not. Also, an important question for FPGA implementations is the one
of memory guarantees a language can deliver, because FPGA do not have such a huge amount of
space.

While the practical problems with a language like TeSSLa explained before are an important point
of research, this thesis focusses on the theory behind TeSSLa and stream languages in general. It
is important to consider expressiveness, fragments and complexities for decision problems of such
languages to be able to classify them and to see how they relate to each other as well as to get a
deeper, theoretical understanding. This will be explained in the following section in more detail.

1.1 Contribution

The topic of research of this thesis is TeSSLa, a stream specification language build for specifying
properties to find errors in systems, track certain timing behaviour or simply do arbitrary calcula-
tions of values arising from the system. TeSSLa and preliminary versions of it have already been
studied in various papers [CHL+18, LSS+18, LSS+19, DGH+17, DDG+18, LSS+20]. While the
focus in [DGH+17, DDG+18] was more on the practical implementation of TeSSLa specifications
on FPGAs or similar hardware, [LSS+18, LSS+20] are focussed on parallel software implement-
ations. In all four papers, a static fragment of TeSSLa has been used with fixed data calculation

8

1.1 Contribution

functions and without allowing recursion to make first attempts in these directions better handable.
In [CHL+18], the full version of TeSSLa has been introduced as well as many results on the types
of properties TeSSLa can express, how the relation of certain fragments to transducers looks like,
and what the complexities for different decision problems of theses fragments are. On the other
hand, it has been shown in [LSS+19] how TeSSLa can be applied to traces with uncertainties,
where maybe values and events are unknown at certain timestamps. In this thesis, we focus on
the results from [CHL+18] and use those as a basis. From there on, we extend the results to more
fragments and statements about complexities, a more concrete comparison to other languages, and
look at a possible extension of TeSSLa.

Concretely, the contribution of this thesis is fourfold:

• First, we take a deep look into TeSSLa, consider various fragments, some already considered
in [CHL+18] and many new ones, and the complexities of different decision problems for
those as well as what kind of properties the full TeSSLa language can express.

• Second, we introduce a new operator compared to TeSSLa as defined in [CHL+18], which
allows future references and consider which new fragments and possibilities such an operator
adds to TeSSLa.

• Third, we define decision problems based on memory usage and consider the memory usage
as well as memory guarantees which TeSSLa and its fragments can deliver. We use the term
evaluation strategies to denote an algorithm to evaluate a TeSSLa formula and compare an
naive approach to evaluate a formula to the optimal one. Additionally, the memory properties
of both approaches are compared.

• Fourth, we consider a method for comparing TeSSLa and stream languages in general to
other stream languages, considering expressiveness of these languages and various frag-
ments as well as comparing them on a conceptual level. This method allows us to distin-
guish the languages and fragments by expressiveness, even though many of them are Turing
complete. While we take a look at less closely related languages in the following related
work section, we do a formal comparison to closely related languages later.

9

1 Introduction

1.2 Related Work

TeSSLa [CHL+18] is originally designed in the scope of runtime verification, but it also allows for
arbitrary evaluation of system properties or any calculation on data it gets as well as analyses, and
is not limited to the usage for verification purposes. Originally, logics have been used to specify
correctness properties in runtime verification. Because one wants to express properties that con-
sider the changes and actions over time propositional logic was not working in this case. Therefore,
regular expressions or temporal logics like the Linear Temporal Logic (LTL, [Pnu77]), the regu-
lar extension of LTL, the Regular Linear Temporal Logic (RLTL, [LS07]) or, when considering
real-time properties logics like the Timed Linear Temporal Logic (TLTL, [Ras99]), Event-Clock
Temporal Logic (ECTL, [RS97]), Timed Regular Expressions (TRE, [ACM02]) or the Metric
Temporal Logic (MTL, [Koy90]) and its fragments like Metric Interval Temporal Logic (MITL)
[AFH91, AH90], have been developed. Compared to languages used in stream runtime verifica-
tion, like TeSSLa, those temporal logics or regular expressions all lack important features: Their
data domains are limited to atomic propositions and their calculations are limited to output fulfil-
ment or violation of the formula, but nothing else. TeSSLa on the other hand is able to do arbitrary
calculations on arbitrary data domains and is even able to output values depending on parts of the
input.

Nevertheless, there are logics that can handle richer data domains, for example the Monitoring
Module Theories (MMT) approach defined in [DLT16], which extends temporal logics like LTL
by data values and allows more complex calculations on data values. The approach results in the
Temporal Data Logic (TDL), which replaces the atomic propositions from LTL with data calcu-
lations and comparisons. Still, TDL lacks the temporal and timing capabilities of stream runtime
verification as it is not able to handle time explicitly, as well as the correspondence between input
and output values at different timestamps.

Compared to the MMT approach, STL is a logic defined for handling streams and not just values.
While it can handle streams as input, the only way to use values from streams is to discretize
the streams by applying comparing functions to their values. These functions are then outputting
boolean values that are later used as propositions for the MITL formula inside an STL specification
and output a fulfilment or a violation of this MITL formula in the end, hence, STL can only map
streams to one final verdict. The same holds for Quantitative Regular Expressions (QRE, [AFR16])
and Time Frequency Logic (TFL, [DMB+12]), as both are only able to handle more complex
calculations on data values, but are still bound to the restrictions of temporal logic. Therefore,
no calculations on the timestamps are possible and the approaches can only output fulfilment or

10

1.2 Related Work

violation, but no values which, for example, depict the timing behaviour of the system or give
some more explicit hints at the behaviour of the system, which is possible in other stream runtime
verification languages like LOLA or TeSSLa.

TeSSLa itself is heavily based on and influenced by Functional Reactive Programming (FRP,
[EH97]). FRP is defined over sequences of events. It has an explicit notion of time, which re-
turns the current timestamp and allows the inclusion of timestamps into calculations. Furthermore,
it allows the lifting of arbitrary functions on values to functions on event sequences, therefore, it
has an operator lift which takes a function on values and returns a function on event sequences.
By its timeTransform operator it is also able to transform time and output values at timestamps
which did not occur in the input. TeSSLa also consists of those three concepts, extended them to
the more general model of streams, not only sequences of events, and adjusts them to the specific-
ation of properties. In the end, TeSSLa implements the ideas from FRP into a stream specification
framework. If one interprets an input sequence of events for a FRP formula as a piece-wise stream,
TeSSLa can do everything FRP could do.

Besides the logics already mentioned, there are some stream languages besides TeSSLa which
take a set of input streams and output a set of output streams and allow similar evaluations and
aggregations as TeSSLa to produce the output streams from the input streams. Besides the three
synchronous stream languages Esterel [Ber92, Ber99, Ber00, Ber04], Signal [LBBG86, GL87] and
Lustre [CPHP87, HCRP91], which are more language designed for typical programming tasks and
not tailored for the analysis of a system, there is also LOLA [DSS+05, FFST16], which is, like
TeSSLa, a stream language designed for analysing a systems behaviour. In contrast to TeSSLa,
all those languages are using a synchronized stream model as underlying basis, which means that
all input streams have events at the same timestamp and that there is a certain predetermined grid
on which the timestamps are placed, as well as an implicit notion of time. Therefore, they are
missing the capabilities and the flexibility to operate on the more complex asynchronous stream
model, meaning that events can occur at arbitrary timestamps and that events occur on an input
stream independently from the other input streams. For example, such languages are missing
the possibility of acting on timestamps where the input streams do not have events, or handle
arbitrary timestamps which are not on the grid. Additionally due to the implicit handling of time,
they are not able to do calculations or comparisons regarding timestamps, which takes away many
interesting properties on an asynchronous stream model. TeSSLa is able to do both, handle such an
asynchronous stream model as well as handling timestamps explicitly. For LOLA, a more complex
analysis of its properties and the properties of a fragment restricted to boolean values has been done
in [BS14]. Similar to the stream languages mentioned before, there is Copilot [PGMN10], which

11

1 Introduction

is a synchronous stream languages embedded as a DSL in the functional programming language
Haskell. Copilot is heavily influenced by Lustre and LOLA and faces the same drawbacks as those
languages. Another language in the field of synchronous stream languages is Focus [BS01]. While
Focus can distinguish between three types of streams, all of the types are synchronous over the
discrete time domain N and mainly differ in the addition of integer based timestamps to the events
or special symbols for having no event at some time instant on some stream. On its most powerful
stream model, it can access the timestamps explicitly, but because those are only integers, it does
not increase the capabilities of the language compared to, for example, LOLA, because one could
simply count the time by the number of events. Therefore, Focus also suffers the same drawbacks
as LOLA does, compared to TeSSLa.

Compared to those languages, there are also two that are naturally defined on an asynchronous
stream model, RTLola [FFST19, FFS+19] and Striver [GS18, GS20]. While RTLola only adds
a more flexible grid to the stream model as well as the ability of doing calculations in sliding
windows, it does not have the possibility of adding events where the chosen grid does not have a
timestamp. Striver on the other hand has all those capabilities, but permits streams with an infinite
number of events in a finite time span (called Zeno streams) in general, while TeSSLa is able to
handle such streams naturally. In the end, both languages are quite similar feature wise, but even
though we do not consider streams like a sinus in this thesis, TeSSLa would be able to handle such
streams that may occur in cyber-physical systems without a discretization, while Striver is not.

Besides the stream languages mentioned already, there is BeepBeep [HV09], currently available in
its third version BeepBeep 3 [HK17, HK18], which is a stream query language for complex event
stream processing, embedded as a DSL in Java. It does not contain one specific query language,
but instead lets you write Java code as a specification. BeepBeep uses a queue-based approach,
consuming events as soon as they arrive in an input queue without considering the timestamps
at which the events were emitted. Therefore, BeepBeep has a completely unsynchronized event
handling. If someone wants to extend BeepBeep by timestamps, there would be the problem that
it is not build to keep their order and one would have to solve this problem as well. TeSSLa on
the other hand, while operating on an asynchronous stream model, does retain a certain amount of
synchronization, processing events for a given timestamp only when it knows that on all streams,
either an event has arrived or it is known that no event will arrive and then process this timestamp
at all streams at once. This does allow for keeping the time-wise order on the events, which is lost
in BeepBeep and delivers the advantage for TeSSLa of being able to react to the full knowledge
one can get at a certain timestamp, which is not possible in BeepBeep, as it processes events before
all events at the given timestamp have arrived. Additionally, TeSSLa does handle time explicitly,

12

1.2 Related Work

while BeepBeep has no notion of time.

Another concept related to stream analysis are Time Series Databases (TSDB, [DMF12]) for which
different implementations exist, like influxDB1 using InfluxQL as query language or OpenTSDB2

using an unnamed query language. Additionally, there are the Continuous Query Language (CQL,
[ABW06]), a framework to extend relational query languages to streams, as well as PipelineDB3,
which is designed to run and evaluate SQL queries continuously on streams. While such time
series can also be seen as streams, the concept of TSDBs is quite different from TeSSLa’s. TSDBs
are build to store huge amounts of data incoming on the streams and then do calculations on those
specified in query language. Neither the database nor the query language is constructed in a way
such that data can be analysed on the fly, but instead it is assumed that one stores all the values
and afterwards has access to the needed information and queries what is needed. Therefore, all
those languages are designed to do and focus on calculations on sliding windows over the data.
Compared to TeSSLa, they are only able to use time to query values, not to do calculations on
the time itself or to modify it. Therefore, they can only act at statically given timestamps which
determine the size of the window, not on dynamically generated timestamps during evaluation
of the specification. Additionally, they are optimized for database queries and their approach to
specify is quite different to the one from TeSSLa, as they can only do calculations on values based
on sliding windows. While this is a well working approach for data base queries, it makes it
harder to specify certain properties as one could to with a more general specification language like
TeSSLa.

A more throughout discussion and comparison of the stream languages which are closely related
to TeSSLa is included later in this thesis, where we also present a method how stream languages
can be compared formally in terms of expressiveness, even though most of these languages are
Turing complete. While it relates to the problem of how Interactive (sometimes called Persistent)
Turing Machines relate to normal Turing machines [Weg98, GSW01, Gol00, GSAS04], besides
the categorization of certain types of properties in [CHL+18], to the best of our knowledge, no
work has been done on the question of how to adapt this discussion to the comparison of different
stream languages.

1https://www.influxdata.com/
2http://opentsdb.net/
3https://www.pipelinedb.com/

13

https://www.influxdata.com/
http://opentsdb.net/
https://www.pipelinedb.com/

1 Introduction

1.3 Overview

This thesis is structured in six chapters, which span over into introductory chapters, chapter two
and three, followed by three chapters containing the main results, as well as a conclusion. In more
detail, it is structured as follows:

• In Chapter 2, we present an introduction to all concepts and basic notation we use in this
thesis. This includes but is not limited to various types of logics and automata, streams and
stream languages, transducers, memory usage and different decision problems.

• In Chapter 3, we introduce the specification language TeSSLa which is the main focus of
research in this thesis. Besides the definition of syntax and semantics from [CHL+18],
we additionally present a semantics on total streams and an extension of TeSSLa by future
references.

• In Chapter 4, we present different language theoretic results on TeSSLa and various frag-
ments of it, mainly by leaving out operators or extending the language with operators. We
classify those variants of TeSSLa by the set of stream transformations they can express. Fur-
thermore, we give a notion of well-formed specifications by syntactically restricting TeSSLa,
which only has one fixed-point.

• In Chapter 5, we identify and define various interesting TeSSLa fragments and show their
relation to different types of transducers. Furthermore, we receive additional results on
complexities for decision problems like equivalence as well as memory related ones.

• In Chapter 6, we show how TeSSLa relates to stream languages on continuous streams as
well as how TeSSLa relates to stream languages naturally defined over discrete streams when
we restrict the stream model to discrete ones. Various variants of LOLA, Lustre, Esterel and
Striver are considered in this chapter.

• In Chapter 7, we conclude the results of this thesis and state possible extensions and future
works regarding TeSSLa.

14

2 Preliminaries

Contents

2.1 Basic Notation . 16

2.2 Functions and Fixed Points . 18

2.3 Logics . 19

2.3.1 Linear-Time Temporal Logic . 20

2.3.2 Metric Temporal Logic . 21

2.3.3 Metric Interval Temporal Logic . 22

2.3.4 Signal Temporal Logic . 23

2.4 Automata . 25

2.4.1 Automata on finite Words . 25

2.4.2 Automata on infinite Words . 26

2.5 Turing Machines . 31

2.6 Streaming Semantics and Transducers 32

2.6.1 Streams and Stream Transformations 33

2.6.2 LOLA . 42

2.6.3 Types of Transducers . 45

2.6.4 Stream Turing Machines . 51

2.7 Properties of Formalisms . 53

2.7.1 General Properties . 53

2.7.2 Properties of Stream Transformations 54

2.8 Decision Problems . 56

2.8.1 The Equivalence Problem . 57

2.8.2 Decision Problems for Memory Usage 57

15

2 Preliminaries

This chapter covers well-known formalisms as well as basic notation we will use in the rest on
the thesis. This includes logics like LTL, MTL, MITL or STL, the specification language LOLA,
various types of automata and transducers as well as complexity classes but also a classification
of certain properties for such formalisms or the formal definition of streams we use. We start by
giving some basic notation, followed by the definitions of the classical logics and types of automata
and after that, we proceed with streaming semantics, the specification language LOLA as well as
the different types of transducers.

2.1 Basic Notation

We give several basic notations and conventions in this section which we will use throughout this
work. This includes sets of numbers, intervals, (timed) words, and more.

We denote the set of natural numbers with N, the set of integers with Z and the set of real numbers
with R. We assume 0 is included in these sets.

We write T to denote an arbitrary time domain, which will be either N or R in this thesis and denote
with T∞ the inclusion of ∞ in the time domain, therefore T∞ = T∪{∞} with ∀t ∈ T : t < ∞. A
time domain only requires a total order and corresponding arithmetic operators. We call the time
domain discrete iff T= N and continuous iff T= R.

In general, a time domain only needs to be a totally ordered semi-ring (T,0,1,+, ·,≤) that is not
negative, i.e. ∀t ∈ T : 0 ≤ t, as defined in [CHL+18]. Compared to a ring, a semi-ring does not
need to have inverse values for the addition, which suits our purpose perfectly because we do not
want time domains to be negative. Additionally, our semi-ring needs to be totally ordered, because
we need a strict order and progress in time, which also fits to our purpose of using N or R as time
domains.

We need T∞, and therefore the addition of an infinity element, to later represent the case that
nothing happens any more after a certain timestamp. In this case, ∞ is an element which is not
already contained in the time domain and greater than every other element. Even though a time
domain can be a finite set, we only consider time domains with an infinite number of elements
which are strictly growing, like the two above mentioned sets of numbers N and R, in this thesis.

16

2.1 Basic Notation

We call a set of values, which we use to do calculations on that are not considering time, a data

domain, to clearly distinguish it from a time domain. We denote with U = {�} the data domain
only containing the unit type.

An interval is a subset of a certain set of numbers, which contains all elements of the original
set between two given boarders. We write IX = {[a,b] | n ∈ [a,b]⇔ n ∈ X ∧ a ≤ n ≤ b} where
X ∈ {N,R} for the sets of intervals over certain data domains. We call an interval [a,b] punctual

iff a = b.

We write B= {tt, ff} for the boolean domain, where the two values tt and ff indicate true and false,
respectively.

Let S be a set. We denote by S∗ the set of finite sequences of elements of S, and by Sω the set of
infinite sequences of elements of S and by S∞ = S∗ ∪ Sω the set of all sequences of elements of
S.

We call a finite, non-empty set an alphabet. A word is a sequence over an alphabet Σ. A finite

word w is a finite sequence w = w0w1 . . .wn ∈ Σ∗ and an infinite word is an infinite sequence w =

w0w1w2 · · · ∈ Σω . A timed word is a sequence of tuples w = (w0, t0)(w1, t1) . . .(wn, tn) ∈ (Σ×T)∗,
or w = (w0, t0)(w1, t1)(w2, t2) · · · ∈ (Σ×T)ω respectively, where ∀0 ≤ i < n : ti < ti+1. One could
define timed words with ti ≤ ti+1, but this would lead to more complicated semantics for some
formalisms which are based on those, because it can not be assumed any more that a timestamp
has really been surpassed when it occurs, because it can occur multiple times in a row. On the
other hand, this would not deliver any advantage, because the same information can be encoded on
a single position of the word.

Given a partial order (A,≤), a set D ⊆ A is called directed if ∀a,b ∈ D : a ≤ b∨ b ≤ a. A partial
order (A,≤) is called directed-complete partial order (dcpo) if a supremum

∨
D exists for every

directed subset D⊆ A.

We call a stream language, a logic, a class of automata, or a class of transducers a specification

formalism, or just formalism for short. A concrete formula, automaton or transducer of a certain
formalism F is called an instance of F .

We call a function or a set of words a language. For an instance ϕ of a specification formalism,
we write L(ϕ) to denote the language of the instance ϕ , thus the set of words the instance accepts,
if it has an acceptance condition (instances of logics or automata), or the set of input/output tuples
the function, which maps the input to an output, represents, in case of an input/output relation
(instances of transducers or stream languages).

17

2 Preliminaries

We denote complexity classes in the following way: We write LINTIME, PTIME and EXPTIME
for linear time, polynomial time or exponential time, respectively, as well as PSPACE and EX-
PSPACE for polynomial or exponential space.

Lastly in this section, we give the notion of expressiveness which we use for the rest of this thesis
to compare different formalisms.

Definition 2.1 (Expressiveness)

Let F and F ′ be two specification formalisms. We say F is at least as expressive as F ′, denoted
by F ′ ⊆ F iff for every instance i′ of F ′ an instance i of F exists, such that

L(i) = L(i′)

We say F and F ′ are equally expressive, denoted by F ′ = F , iff F ′ ⊆ F and F ⊆ F ′.

We say F is more expressive than F ′, denoted by F ′ ⊂ F , iff F ′ ⊆ F and not F ⊆ F ′.

We say F and F ′ are incomparable iff neither F ′ ⊆ F nor F ⊆ F ′.

Since formalisms represent a set of languages, we use the set inclusion symbols in this thesis to
denote relations regarding expressiveness.

2.2 Functions and Fixed Points

In this section we will start with defining two important properties of functions before we present
the fixed-point theorem from Kleene. Those properties are monotonicity and continuity of func-
tions, which is also called Scott-Continuous [Vic89]. It is also important to note that a continuous
function as defined here is always also monotonic.

Definition 2.2 (Monotonic Functions, [Vic89])

Let f ∈ A→ B be a function and (A,≤), (B,≤′) partial orders. f is called monotonic iff

∀a1,a2 ∈ A : a1 ≤ a2⇒ f (a1)≤′ f (a2)

Informally, a function is called monotonic if it preserves the order.

18

2.3 Logics

Definition 2.3 (Continuous Functions, [Vic89])

Let f ∈ A→ B be a function and (A,≤), (B,≤′) partial orders. f is called continuous iff

∨
f (D) = f

(∨′
D
)

for all directed subsets D⊆ A.

Informally, a function is called continuous if it preserves the supremum.

Next, we will state the Kleene fixed-point theorem which is used for proofs later in this thesis .

Theorem 2.4 (Kleene fixed-point theorem, [Tar55, SLG94])

Let (L,≤) be a dcpo with a least element ⊥ and let f : L→ L be a monotonic and continuous
function. The ascending Kleene chain of f is the chain

⊥≤ f (⊥)≤ ·· · ≤ f n(⊥)≤ . . .

Then f has a least fixed-point, which is the supremum of the ascending Kleene chain of f .

By the Kleene fixed-point theorem, every monotonic and continuous function f : A→ A has a least
fixed point µ(f) if (A,≤) is a dcpo with a least element ⊥. µ(f) is the least upper bound of the
chain iterating f , starting with the bottom element: µ(f) =

∨
{ f n(⊥) | n ∈ N}.

2.3 Logics

We define different well known logics in this section, namely the Linear-time Temporal Logic
(LTL), the Metric Temporal Logic (MTL), the Metric Interval Temporal Logic (MITL) and Signal
Temporal Logic (STL) in this section. LTL, MTL, and MITL are central to many verification
techniques and, even though we do not use them later formally, it is important to know how those
work in detail to understand the difference between classical temporal logics and our streaming
approach. Additionally, STL is a logic which is based on streams, which makes it an interesting
formalism to consider later in this thesis.

19

2 Preliminaries

2.3.1 Linear-Time Temporal Logic

The Linear-Time Temporal Logic (LTL, [Pnu77]) allows for specifying properties over the sequen-
tial order of system states. In the following, let Σ = 2AP be an alphabet and AP be the set of atomic
propositions.

Definition 2.5 (LTL syntax, [Pnu77])

Let p ∈ AP be an atomic proposition. The syntax of an LTL formula ϕ is given by the following
grammar:

ϕ := tt | p | ¬ϕ | ϕ ∨ϕ | ϕ | ϕ U ϕ

Given an infinite word in Σω , the semantics of an LTL formula determines if the word fulfils the
formula or not. The semantics is given in form of a relation |=, as described in the following
definition.

Definition 2.6 (LTL semantics, [Pnu77])

Let w = a0a1a2 · · · ∈ Σω be an infinite word, i ∈ N an index, and ϕ and ψ LTL-formulas. Then
the semantics for each LTL formula is defined inductively as follows:

w, i |= tt

w, i |= p ⇔ p ∈ ai

w, i |= ¬ϕ ⇔ w, i 6|= ϕ

w, i |= ϕ ∨ψ ⇔ w, i |= ϕ or w, i |= ψ

w, i |= ϕ ⇔ w, i+1 |= ϕ

w, i |= ϕ U ψ ⇔ ∃ j ≥ i : w, j |= ψ ∧∀i≤ k < j : w,k |= ϕ

We say that a word w is a model for an LTL-formula ϕ if w,0 |= ϕ . Each LTL formula ϕ defines
a language which we denote as L(ϕ) = {w ∈ Σω | w,0 |= ϕ}.

The LTL semantics relates formulas to words that fulfil the formula. All in all, an LTL formula
represents the language of words that fulfil the formula. As stated before, only properties over the
sequential order of events (propositions) can be specified with LTL, there is no explicit notion of
time or different data domains.

20

2.3 Logics

2.3.2 Metric Temporal Logic

The Metric Temporal Logic (MTL, [Koy90]) extends LTL by a notion of time such that also real-
time properties can be specified. Let again in the following Σ = 2AP be an alphabet, where AP is
again the set of atomic propositions, and let T be a time domain. Then the syntax of MTL is given
as follows:

Definition 2.7 (MTL syntax, [Koy90])

Let p ∈ AP be an atomic proposition, T be a time domain, and let I ∈ IT∞
be an interval. Then

the syntax of an MTL-formula ϕ is given by the following grammar:

ϕ := tt | p | ¬ϕ | ϕ ∨ϕ | ϕ | ϕ U I ϕ

In contrast to LTL, the semantics of MTL now determines for a given timed word if this timed
word fulfils the formula or not. By doing this, using the until operator (U) now parameterized with
an interval, one can specify properties with real-time constraints.

Definition 2.8 (MTL semantics, [Koy90])

Let T be a time domain, w = (a0, t0)(a1, t1)(a2, t2) · · · ∈ (Σ×T)ω be an infinite timed word,
I ∈ IT∞

be an interval, i ∈ N be an index, and ϕ and ψ MTL formulas. Then the semantics for
each MTL formula is defined inductively as follows:

w, i |= tt

w, i |= p ⇔ p ∈ ai

w, i |= ¬ϕ ⇔ w, i 6|= ϕ

w, i |= ϕ ∨ψ ⇔ w, i |= ϕ or w, i |= ψ

w, i |= ϕ U I ψ ⇔ ∃ j ≥ i : w, j |= ψ ∧ t j− ti ∈ I∧∀i≤ k < j : w,k |= ϕ

We say that a word w is a model for an MTL-formula ϕ if w,0 |= ϕ . Each MTL formula ϕ

defines a language which we denote as L(ϕ) = {w ∈ (Σ×T)ω | w,0 |= ϕ}.

Compared to LTL, because MTL is able to handle real-time constraints, it is a much more powerful
logic. If the time domain is for example R on infinite words it can even simulate faulty Turing
machines [OW06]. The drawback is, that many typical decision problems, like satisfiability of a
formula, are undecidable for MTL [OW06].

21

2 Preliminaries

2.3.3 Metric Interval Temporal Logic

The Metric Interval Temporal Logic (MITL, [AFH91]) is a fragment of MTL which still allows
the real-time specifications of MTL, but with one exception: The intervals can now no longer be
punctual ones, e.g. for [a,b] with a,b ∈ R it has to hold that a < b. Other than that, the syntax and
semantics of MITL and MTL coincide.

Definition 2.9 (MITL syntax, [AFH91])

Let p ∈ AP be an atomic proposition, T be a time domain, and let I ∈ IT∞
be an interval which

is not punctual. Then the syntax of an MITL formula ϕ is given by the following grammar:

ϕ := tt | p | ¬ϕ | ϕ ∨ϕ | ϕ | ϕ U I ϕ

Definition 2.10 (MITL semantics, [AFH91])

Let T be a time domain, w = (a0, t0)(a1, t1)(a2, t2) · · · ∈ (Σ×T)ω be an infinite timed word,
I ∈ IT∞

be a non punctual interval, i ∈ N be an index, and ϕ and ψ MITL formulas. Then the
semantics for each MITL formula is defined inductively as follows:

w, i |= tt

w, i |= p ⇔ p ∈ ai

w, i |= ¬ϕ ⇔ w, i 6|= ϕ

w, i |= ϕ ∨ψ ⇔ w, i |= ϕ or w, i |= ψ

w, i |= ϕ U I ψ ⇔ ∃ j ≥ i : w, j |= ψ ∧ t j− ti ∈ I∧∀i≤ k < j : w,k |= ϕ

We say that a word w is a model for an MITL-formula ϕ if w,0 |= ϕ . Each MITL formula ϕ

defines a language which we denote as L(ϕ) = {w ∈ (Σ×T)ω | w,0 |= ϕ}.

Due to the removal of punctual intervals, many decision problems for MITL are, in contrast to
MTL, decidable while most of the expressiveness, especially of practical properties, stays the
same.

22

2.3 Logics

2.3.4 Signal Temporal Logic

The last logic we consider is the Signal Temporal Logic (STL, [MN04]), which can be considered
as a special case of MITL by removing the next-operator () and having propositions which map
multiple real values to a single boolean value. This boolean value is then used like a normal
proposition’s value in the given MITL formula. Besides this new type of propositions, the syntax
and semantics of STL are the same as for MITL.

Definition 2.11 (STL syntax, [MN04])

Let U = {µ1, . . . ,µn} be a set of functions with µi : Rm→ B for all i ∈ {1, . . . ,n} and let I ∈ IT∞

be an interval that is not punctual. Then the syntax of an STL(U)-formula ϕ is given by the
following grammar:

ϕ := tt | µi | ¬ϕ | ϕ ∨ϕ | ϕ U I ϕ

The semantics of STL differs in the sense that the input for an STL-formula is not a word anymore,
but instead a so called signal s, which is a function s : T→ Rm, where T is a given time domain.
Compared to words, a signal has a value at every timestamp and not only certain timestamps with
the state of a system. Such a signal may even be a sinus curve, having values which continuous
rise and fall. Because those signals may have values at any point in time, the next-operator does
not make sense in this case. It is also important to note that STL is not really handling the signal
directly, but instead by using the new type of propositions. The input signals are discretized after
being processed by the µi at the points where the boolean values change into a word, which is than
forwarded to the MITL formula.

Definition 2.12 (STL semantics, [MN04])

Let T be a time domain, U = {µ1, . . . ,µn} be a set of functions, s with s : T→ Rm be a signal,
I ∈ IT∞

be a non punctual interval, t ∈ T for a given time domain T be a timestamp, and ϕ and
ψ STL formulas. Then the semantics for each STL formula is inductively defined as follows:

s, t |= tt

s, t |= µi ⇔ µi(s(t))

s, t |= ¬ϕ ⇔ s, t 6|= ϕ

s, t |= ϕ ∨ψ ⇔ s, t |= ϕ or s, t |= ψ

s, t |= ϕ U I ψ ⇔ ∃t ′ ≥ t : w, t ′ |= ψ ∧ t ′− t ∈ I∧∀t ≤ t ′′ < t ′ : s, t ′′ |= ϕ

23

2 Preliminaries

We say that a signal s is a model for an STL formula ϕ if s,0 |= ϕ . Each STL formula ϕ defines
a language which we denote as L(ϕ) = {s | s,0 |= ϕ}.

The following example shows some kind of formulas that are valid or invalid for the given logics
as well as some examples for fulfilment and violation of the property.

Example 2.13 (Temporal Logics)

The formula a∨bU c is a valid LTL formula over the set of atomic propositions AP = {a,b,c}
which states that either a has to hold at every position in the word or b has to hold until c held
once. A word {b}{b}{b,c} /0ω would fulfil the formula, while a word {b}ω would not.

Assume T = R. The formula a∨ bU [3,3] c is a valid MTL formula, but not a valid MITL
formula, and therefore also not a valid STL formula, because the interval is punctual. A word

({b},1.2)({b},1.8)({b,c},3)(/0,4)(/0,5) . . .

would fulfil the formula, while a word

({b},1.2)({b},1.8)({b,c},3.1)(/0,4)(/0,5) . . .

would not.

For STL, the propositions have to be functions, for example the formula s1 ≥ s2U [3,5] s2 = s3 is
a valid STL formula, where s1,s2 and s3 relate to the three values on the input signal s : T→R3

from left to right. s would fulfil the formula if it is defined as follows:

s(t) =

(3,2,1) if t < 4

(3,1,1) otherwise

It would not be fulfilled by the following signal:

s(t) =

(2,3,1) if t < 4

(3,1,1) otherwise

24

2.4 Automata

2.4 Automata

In this section we will define different kinds of automata which all have a notion of state and
acceptance in common, but differ in the exact acceptance condition, time handling, and memory
data structures like stacks. We later define transducers based on these types of automata.

2.4.1 Automata on finite Words

An automaton on finite words, or short, finite automaton in this work, takes a finite word as input
and either accepts or rejects it, which depends on whether the automaton is in an accepting state
after reading the word or not.

Definition 2.14 (Finite Automaton, [HMU06])

A Non-deterministic Finite Automaton (NFA) is a 5-tuple A= (Σ,Q,q0,F,δ) with

• a finite input alphabet Σ,

• a finite set of states Q,

• a set of initial states q0 ⊆ Q,

• a set of accepting states F ⊆ Q, and

• a transition function δ : Q×Σ→ 2Q.

For a finite input word w = w0w1w2 . . .wn ∈ Σ∗ with n ∈ N we call a sequence

ρ = s0
w0−→ s1

w1−→ s2
w2−→ ·· · wn−→ sn+1

a run of an NFAA iff s0 ∈ q0 and si+1 ∈ δ (si,wi) for all n≥ i≥ 0. The run ρ is called accepting
iff sn+1 ∈ F . An NFA is called deterministic, or DFA, iff ∀q ∈ Q : ∀σ ∈ Σ : |δ (q,σ)|= 1.

The language of an NFA A is the set of the words for which an accepting run on A exists, thus
L(A) = {w | There exists an accepting run for w on A.}.

A DFA takes finite input words and after reading a word, its run ends in a state. It accepts a word
if the state is an accepting state and rejects it otherwise. Note that in the case of an NFA, there

25

2 Preliminaries

exist multiple possible runs for a single word. In this case, the word is accepted if at least one of
the runs is accepting.

The NFA and DFA are the simplest automata, which the following extend by infinite words, explicit
time handling and stacks.

2.4.2 Automata on infinite Words

The next automaton is the natural extension of NFAs to infinite words, using the Büchi acceptance
condition [Büc90] which is needed because the automaton does not stop anymore at the end of the
word and thus can not use the acceptance criteria of an NFA. Formally, it is defined as follows:

Definition 2.15 (Büchi-Automaton, [Büc90])

A Büchi Automaton (BA) is a 5-tuple A= (Σ,Q,q0,F,δ) with

• a finite input alphabet Σ,

• a finite set of states Q,

• a set of initial states q0 ⊆ Q,

• a set of accepting states F ⊆ Q, and

• a transition function δ : Q×Σ→ 2Q.

For an infinite input word w = w0w1w2 · · · ∈ Σω we call a sequence

ρ = s0
w0−→ s1

w1−→ s2
w2−→ ·· ·

a run of a BA A iff s0 ∈ q0 and si+1 ∈ δ (si,wi) for all i≥ 0. Let inf(ρ) be the set of states that
are visited infinitely often during a run ρ . Then ρ is called accepting iff inf(ρ)∩F 6= /0. A BA
is called deterministic, or DBA, iff ∀q ∈ Q : ∀σ ∈ Σ : |δ (q,σ)|= 1.

The language an NBA A describes is the set of the words for which an accepting run on A
exists, thus L(A) = {w | There exists an accepting run for w on A.}.

A Büchi automaton takes an infinite word, hence its runs are also infinitely long. The acceptance
condition then checks if at least one of the infinitely often visited states is an accepting state. Unlike

26

2.4 Automata

NFAs and DFAs, NBAs and DBAs do not have the same expressive power because languages exist
that can be recognized by an NBA but not by a DBA [MH84].

Next, we define a type of automaton that adds stacks to Büchi automata, called a pushdown auto-
maton. The stack in such an automaton is used to store data when using a transition and to check
which data was stored when considering which transition can be taken next. Therefore, it is used
as a restricted type of memory.

Definition 2.16 (Pushdown Automaton, [HMU06])

A Pushdown Automaton (PA) is a 6-tuple A= (Σ,Q,q0,F,Λ,δ) with

• a finite input alphabet Σ,

• a stack alphabet Λ with # ∈ Λ,

• a finite set of states Q,

• a set of initial states q0 ⊆ Q,

• a set of accepting states F ⊆ Q, and

• a transition function δ : Q×Σ×Λ→ 2Q×Λ∗.

For an input word w = w0w1w2 · · · ∈ Σω we call a sequence

ρ = s0,σ0
w0,λ0,σ

′
0−−−−−→ s1,σ1

w1,λ1,σ
′
1−−−−−→ s2,σ2

w2,λ2,σ
′
2−−−−−→ ·· ·

a run of a PA A iff

• s0 ∈ q0 and σ0 = # (starting at one start state and with empty stack) and

• for all i≥ 0 the following holds: (Si+1,σ
′′
i) = δ (si,wi,λi) with

– si+1 ∈ Si+1 (follow-up state is in the set of possible next states),

– σi = λiσ
′
i (right symbol is on top of stack) and

– σi+1 = σ ′′i σ ′i (new stack is output of taken transition added on top of rest of old
stack).

27

2 Preliminaries

Let inf(ρ) be the set of states which are visited infinitely often during a run ρ . Then ρ is called
accepting iff inf(ρ)∩F 6= /0. A PA is called deterministic, or DPA, iff

∀q ∈ Q : ∀w ∈ Σ : ∀λ ∈ Λ : |δ (q,w,λ)|= 1

The language a PA A describes is the set of the words for which an accepting run on A exists,
thus L(A) = {w | There exists an accepting run for w on A.}.

The stack of a PA is a way to remember possibly infinite amounts of data. Elements can be pushed
to and read from the stack to take transitions or when taking a transition, a check on emptiness of
the stack can be done as condition. Each transition reads and deletes the top element of the stack
if it is the correct one for the transition and pushes a finite number of elements (or no elements at
all) to the rest of the stack.

As for Büchi automata, PAs are more expressive than DPAs [HMU06].

Last but not least, we define timed automata in this section. Instead of extending Büchi automata
with a stack, timed automata are an extension by a notion of time and timing constraints in the
transition function. This allows for checking constraints on the real-time distance between events
instead of just checking the order of the events.

Before we get to the definition of timed automata themselves, we define clock constraint first.
Clocks are used in timed automata to keep track of the time which can then be checked using clock
constraints. There are two ways to use clocks for timed automata in the literature. The first is to be
able to reset clocks to 0 on transitions and let them run implicitly in the background. The second
is to be able to set clocks to the current time and just check against that time at a later stage in the
run. While both variants do not make a difference for the properties of the timed automata, they
change how clock constraints and the definition of the automata look. We use the latter variant of
clocks in this thesis.

Definition 2.17 (Clock Constraints, [AH92])

Let C be a set of variables, called clocks, and T be a time domain. A clock constraint ϑ ∈Θ(C)

over the set of clock constraints Θ(C) is defined by the grammar

ϑ := true | T ≤ x+ c | T ≥ x+ c | ¬ϑ | ϑ ∧ϑ

where x ∈C, and c ∈ T is a constant and T refers to the current time.

28

2.4 Automata

With the definition of clock constraints, we can now define timed automata. In a timed automaton
the transition function additionally takes a timing constraint which must be fulfilled for being able
to take the transition. Also, every transition outputs the set of clocks that are to be reset to T , the
current time.

Definition 2.18 (Timed Automaton, [AH92])

A Timed Automaton (TA) is a 6-tuple A= (Σ,Q,q0,F,C,δ) with

• a finite input alphabet Σ,

• a finite set of states Q,

• a set of initial states q0 ⊆ Q,

• a set of accepting states F ⊆ Q,

• a set of clocks C, and

• a transition function δ : Q×Σ×Θ(C)→ 2Q×2C.

For an input word w = (w0, t0)(w1, t1)(w2, t2) . . . we call a sequence

ρ = s0,v0
(w0,t0),ϑ0,r0−−−−−−−→ s1,v1

(w1,t1),ϑ1,r1−−−−−−−→ s2,v2
(w2,t2),ϑ2,r2−−−−−−−→ ·· ·

a run of a TA A where vi : C→ R are functions mapping every clock to its current value iff

• s0 ∈ q0,

• ∀c ∈C : v0(c) = 0, and

• ∀i≥0 :

– δ (si,wi,ϑi) = (si+1,ri),

– ∀c∈rivi+1 = vi[c← ti] (reset clocks in ri), and

– ti,vi |= ϑi (which means ϑi resolved to true if T is replaced with ti and the corres-
ponding values from vi are used for the clocks).

29

2 Preliminaries

q0start

q1

q2

a[T ≥ ca +2],{ca} a[T < ca +2], /0

b[true], /0

Σ[true], /0

Σ[true], /0

Figure 2.1: A TA over the alphabet Σ = {a,b} with three states, out of which two are accepting,
and one clock ca. The Σ at the transitions is a short notion for both input symbols being
valid for these transitions.

Then ρ is called accepting iff inf(ρ)∩F 6= /0. A TA is called deterministic, or DTA, iff for every
two different transitions (q,σ ,ϑ1,q′1,R1),(q,σ ,ϑ2,q′2,R2) ∈ δ the conjunction of their clock
constraints ϑ1∧ϑ2 is unsatisfiable.

The language a TA A describes is the set of the words for which an accepting run on A exists,
thus L(A) = {w | There exists an accepting run for w on A.}.

The following example shows how timed automata work in general.

Example 2.19 (Timed Automaton)

Consider the timed automaton in Figure 2.1. It accepts all runs where either a b occurs some-
where, ignoring time, or where there is any symbol with an a which is less then two seconds
away from the previous one. That is because the loop at the start state resets the clock to the
current time, if the last event was two seconds or more ago and the transition from q0 to q1 can
only be taken if an a occurs and the last resets of the clock was less than two seconds away.

Compared to the deterministic versions of Büchi automata and pushdown automata, the definition
of determinism for timed automata is a bit different. As long as it is not possible to fulfil both
timing constraints on two transitions with the same input symbol starting from the same state, the
automaton is called deterministic, because there is always only a single path that can be chosen.
Hence, even in a DTA, multiple transitions can start from the same state with the same input
symbol, which is not possible in DBAs oder DPAs.

30

2.5 Turing Machines

As for the last two types of automata, TAs are strictly more expressive than DTAs [AD94]. MITL
is strictly less expressive than TAs, but not less expressive than DTAs [AFH91]. Also, MTL is
incomparable to TAs [OW05].

2.5 Turing Machines

Next we define the model of Turing machine [Tur36], which is a model representing all comput-
able functions. Because Turing machines are equally expressive in their non-deterministic and
deterministic versions, we will stick with deterministic ones which fit better to our use of them.
We will also directly give a definition of Turing machines with three tapes, which are used to re-
member data during calculations, which best fits to this thesis. Additionally, more tapes do not
change anything in terms of properties of the Turing machine.

Definition 2.20 (Turing Machine, [Tur36])

A Deterministic Turing Machine with 3 Tapes (3DTM) is a 5-tuple A= (Σ,Q,q0,F,δ) with

• an input alphabet Σ with � ∈ Σ (symbol for empty tape positions) and Σ∩{L,R}= /0,

• a finite set of states Q,

• an initial state q0 ∈ Q,

• a set of accepting states F ⊆ Q, and

• a transition function δ : Q×Σ×Σ×Σ→ Q×Σ×{L,R}×Σ×{L,R}×Σ×{L,R}.

A configuration of a Turing machine is a 7-tuple (q,w1,w2,w3,n1,n2,n3) where

• q ∈ Q is the current state of the machine,

• w1,w2,w3 ∈ N→ Σ are the contents of the three tapes, and

• n1,n2,n3 ∈ N are the current positions of the tapes.

We call a sequence
c0c1c1 . . .cn

with ci = (qi,wi
1,w

i
2,w

i
3,n

i
1,n

i
2,n

i
3),0≤ i≤ n a run of a 3DTM A iff

• q0 = q0,

31

2 Preliminaries

• ∀1≤ i≤ n : δ (qi−1,wi−1
1 (ni−1

1),wi−1
2 (ni−1

2),wi−1
3 (ni−1

3)) =

(qi,wi
1(n

i−1
1),xi

1,w
i
2(n

i−1
2),xi

2,w
i
3(n

i−1
3),xi

3),

• ∀1≤ i≤ n : ∀1≤ m≤ 3 : ni
m =


ni−1

m +1 if xi
m = R

ni−1
m −1 if xi

m = L∧ni−1
m ≥ 1

ni−1
m otherwise

• ∀1≤ i≤ n : ∀1≤ m≤ 3,∀x 6= ni−1
m : wi

m(x) = wi−1
m (x), and

• in cn, no transition can be taken.

A run is called accepting iff qn ∈ F .

The language a 3DTMA describes is the set of the initial contents for the tapes for which the run
onA is accepting, thusL(A)= {(w0

0,w
0
1,w

0
2) |The run for w0

0,w
0
1 and w0

2 on A is accepting.}.

Compared to a DFA, a Turing machine is also an automaton with states some of which are ac-
cepting. But it contains a special mechanism for memory, called tapes. Every transition it takes, a
Turing machine can read one symbol from each of its tapes, write one symbol to each of its tapes
and move the position pointer for each tape either one position to the right or one to the left. Being
in a state with certain symbols on each tape and a position for every tape is called a configuration.
Every time a Turing machine takes a transition it switches from one configuration to another by
changing the state, the values at the positions of the tapes, and the position pointers. It accepts a
tuple of initial contents of the tapes if the state of the last configuration (which is reached when
no transition is active anymore) the Turing machine is in when it stops is accepting. Note that not
every Turing machine stops on every input and it is undecidable whether a Turing machine stops
on an input in general. This problem is called the halting problem [Dav58].

2.6 Streaming Semantics and Transducers

In the previous three sections, we defined many well known logics and automata as well as Turing
machines. One of the main goals of this thesis is to show how TeSSLa and various fragments of
it relate to these formalisms as well as to get complexity results on different decision problems.
But, while TeSSLa works on streams which means the input / output relation works in a more
interactive way, the previously mentioned formalisms do not, which makes it hard to compare. A
solution would be to define a streaming semantics for these logics and automata. But there is no

32

2.6 Streaming Semantics and Transducers

single and direct way of defining this as a natural extension, because there are multiple possibilities
with different properties and such, many results shown in this thesis would depend on and change
with the definition of these streaming semantics for the well known formalisms.

In this section, we will overcome these issues by introducing well known formalisms which op-
erate directly on streams or are easily extendable to do so by always using finite prefixes of the
complete word as input word and generate an output symbol for all of these prefixes. The possibly
infinite sequence of these output symbols is then the output stream. We will call this input / output
behaviour a stream transformation, which will be the underlying model of the formalisms defined
in this section, as well as the one the semantics for TeSSLa, as defined in the next section, operate
on.

The specification language LOLA, for example, is a stream language to specify correctness prop-
erties or properties for doing analysis on system behaviour and it already operates naturally on
streams, so no additional semantics which is able to implement stream transformations is needed.
Compared to that, in case of the types of automata defined in the last section, these extensions lead
to the corresponding types of transducers, which are already well established in literature. Most of
the formalisms defined in the previous section serve as basic knowledge for the streaming form-
alisms defined in this section, which we will later compare to TeSSLa and different fragments of
it.

In general, it is important for functions on streams to be monotonic and continuous, because in-
formally, these properties allow a function on streams to work in a step-by-step (i.e., prefix by
prefix, sometimes also called interactive) evaluation of the input streams. Otherwise, an incre-
mental evaluation would not be possible and the streaming semantics would not be suitable for
runtime verification. As mentioned before, such a type of functions will be defined as stream
transformations in the following subsection.

Before giving the definition of the stream language LOLA and definitions of the stream semantics
for different formalisms, we will define a notion of streams and stream transformations first.

2.6.1 Streams and Stream Transformations

Compared to words, intuitively, a stream is a continuous flow of data over a certain data domain
and a certain time domain. In timed words, every input symbol has a timestamp and the timed word
only expresses which data we saw at those timestamps. In streams, at every timestamp available in

33

2 Preliminaries

a

b 2
w

3.7
x

6.2
y

c
2
w

3.7
x

6.2
y

d 2
w

3.7
x

6.2
y

7
z

e
2
w

3.7
x

6.2
y

Figure 2.2: Shows the different kinds of elements that can occur on a stream. A line indicates that
there is no event, a cross indicates an event with a value above and a timestamp, in
blue, below. A dotted line indicates that the knowledge about the stream ended. If the
line directly changes to a dotted line, it means that the knowledge ended inclusively,
while a circle at the end indicates that it ended exclusively. If an event is exactly at the
end of the stream, here at timestamp 7, we indicate this as usual.

the given time domain, we assume that some information exists, which either indicates that there
is no event at that timestamp or that there exists an event with a timestamp and a value.

Before we get to the formal definitions of a stream, let us first get some intuition. Consider the
streams depicted in Figure 2.2. On an intuitive level, a stream s is a function s : T→ D for a given
time domain T and a data domain D, even though our definitions later are a bit more complex.
Now, the stream a in the figure is the empty stream with complete knowledge. We know that on
this stream no event occurs. We denote the absence of an event with ⊥ in a stream, which means
that ∀t ∈ T : a(t) = ⊥. On stream b, we have three events at timestamps 2, 3.7, and 6.2 with
values w, x, and y, respectively. This means that b(2) = w, b(3.7) = x, and b(6.2) = y as well
as b(t) = ⊥ for all other timestamps. With the dotted part at the end of the arrow line, stream c

now indicates that after timestamp 7, the rest of the stream is currently unknown. We call this the
progress of a stream. In the case of c, this progress is inclusively. Additionally, we denote with
? that a timestamp is beyond the current progress of the stream, therefore ∀t > 7 ∈ T : c(t) =?
and for all other t the same holds as for b. Then, the streams d and e depict the different kinds of
knowledge endings a stream can have. Thus, in stream d, the progress ends on an event, which
compared to c means that d(7) = z instead of c(7) =⊥. The stream e indicates exclusive progress:
while for c it holds that ∀t > 7 ∈ T : c(t) = ?, for e it holds that ∀t ≥ 7 ∈ T : e(t) = ?, therefore the
> is changed to ≥.

We define streams in terms of a general notion for a time domain which only requires a total order

34

2.6 Streaming Semantics and Transducers

and corresponding arithmetic operators.

We consider two types of streams in this thesis: completed streams and event streams. Even though
intuitively, streams can be seen as functions, defining them just as functions mapping timestamps to
values would allow strange behaviour, like two areas with an infinite number of events converging
to two timestamps, which we want to get rid of. Therefore, we define them as a sequence to
forbid mentioned behaviour. Such a sequence is a finite or infinite timed word whose timestamps
are possibly converging to some timestamp. As introduced after the definitions, we still interpret
streams as a function, which helps us later to simplify definitions, theorems or examples later in
this thesis.

A completed stream is a completely known stream with a finite or infinite number of events. If it
has a finite number of events, it is still ⊥ until infinity, to indicate that we know that no further
events occur in the future.

Definition 2.21 (Completed Stream)

A completed stream over a time domain T and a data domain D is a finite or infinite sequence
s = a0a1 · · · ∈ S∞

D = (T ·D)ω ∪((T ·D)∗ ·{∞}) where a2i < a2(i+1) for all i with 0 < 2(i+1)< |s|
(|s| is ∞ for an infinite number of events).

Our notion of a completed stream works as follows: It is mostly an alternating sequence of
timestamps and data values where each following timestamp has to be strongly monotonically
increasing. The sequence is either an infinite sequence of those timestamp-data-pairs or a finite
sequence of such pairs followed by ∞ to denote that no further data will follow (therefore have
complete knowledge of the stream and no ? occurs). All timestamps which do not occur explicitly
in the stream notion are assumed to be ⊥, this means that there is no event at that timestamp.

Note that a completed stream can be a timestamp-wise converging sequence, which converges to
some timestamp but may never reach it. However it is not possible that one stream converges to
multiple timestamps due to its definition. Additionally, every such stream can be represented as
some kind of a timed word, even though timed words normally do not converge and ∞ has to be
encoded in a special way.

As a completed stream is only the first step to the stream model we use throughout this thesis, let
us first move on to the next definition and consider more examples afterwards.

Next, we give a definition of the stream model we use throughout this thesis. Completed streams
are also part of this stream model, but also uncompleted streams exist which neither are an infinite

35

2 Preliminaries

sequence of events nor end with an ∞, but instead are only known (have progress) up to some finite
timestamp.

Conceptually, event streams are still similar to timed words but are possibly only known inclusively
or exclusively up to a certain timestamp, the timestamp up to which we know the values of the
stream, that might be infinite (then called a completed stream as defined before). A stream might
contain an infinite number of events even if the stream is only known up to a finite timestamp.

Definition 2.22 (Event stream, [CHL+18])

An event stream over a time domain T and a data domain D is a finite or infinite sequence
s = a0a1 · · · ∈ SD = S∞

D ∪ (T ·D)+ ∪ (T ·D)∗ · (T∪T · {⊥}) where a2i < a2(i+1) for all i with
0 < 2(i+1)< |s| (|s| is ∞ for infinite number of events).

Informally, we say an event stream has an event with value d at time t if in its sequence d directly
follows t. We say an event stream is known at time t if it contains a strictly larger timestamp or
a non-strictly larger timestamp followed by a data value or ⊥. Where convenient, we also see
streams as functions.

Definition 2.23 (Streams as Functions, [CHL+18])

A completed stream s ∈ S∞
D can be seen as function s : T→ D∪{⊥} with

s(t) =

d if s contains td

⊥ otherwise

An event stream s ∈ SD can be seen as function s : T→ D∪{⊥,?} as follows:

s(t) =


d if s contains td

⊥ if s does not contain t ∧∃t ′ > t : s contains t ∨ s ends in t⊥

? otherwise

Intuitively, for a completed stream s, s(t) is a value d if s has an event with value d at the timestamp
t or ⊥ if there is no event at time t.

Intuitively, for an event stream s, s(t) is a value d if s has an event with value d at the timestamp t

or ⊥ if there is no event at time t. For timestamps after the known part of the stream s(t) is ?. We

36

2.6 Streaming Semantics and Transducers

call the timestamp at which the known part of the stream ends the progress of the stream.

Definition 2.24 (Progress of Streams)

For a stream s ∈ SD over a time domain T we call a timestamp t ∈ T∞ the exclusive progress of
s if it is the maximal timestamp such that

∀t ′ < t : s(t ′) 6=?

On the other hand, we call t the inclusive progress of s if it is the maximal timestamp such that

∀t ′ ≤ t : s(t ′) 6=?

If ? occurs the first time on the stream at a timestamp, we call it the exclusive progress (the stream
ends with a timestamp), if the first ? occurs directly after the timestamp at which the stream ends
we call it the inclusive progress (the stream ends with ⊥ or an event).

We use ticks(s) for the set {t ∈ T | s(t) ∈ D} of timestamps where a stream s has events. We use
the data domain U for stating that events of a stream carry only the single value �.

For the rest of the thesis, when we write stream we mean an event stream and we write completed

stream to specifically address completed streams. Furthermore, with uncompleted stream we de-
scribe the set of streams which are not completed streams, thus for the set of uncompleted streams
S∗D it holds that S∗D = SD \S∞

D .

Next, we define the notion of continuous and discrete streams.

Definition 2.25 (Continuous Streams)

We call a stream continuous iff its time domain is continuous, hence the time domain is the set
of real numbers, R.

While continuous streams are continuous in their time domain (events can be anywhere and at any
distance to each other), discrete streams are not only allowing events at certain points, but also
force events to be at those timestamps. We use N as the time domain for discrete streams, even
though it can be any time domain with only a finite number of elements between two elements.

Definition 2.26 (Discrete Streams)

We call a stream s over a data domain D discrete iff it is uncompleted, its time domain is discrete,

37

2 Preliminaries

hence the time domain is the set of natural numbers, and

∀t ∈ T : s(t) ∈ D∨ s(t) = ?

In our setting to stick close to the definition of streams for synchronous stream languages like
LOLA, Lustre, or Esterel for the comparison of those to TeSSLa in the setting of discrete streams,
a discrete stream must have an event at every timestamp before the progress ends. This is only a
technical detail, however, if there would be the possibility that there is no event at some timestamp,
we would need to add events there with a special symbol for some of the languages mentioned
before.

Before we get to the definition of prefixes for streams, we will show some examples for different
types of streams as well as how we depict them in the rest of this thesis.

Example 2.27 (Streams)

This example contains three different streams from different types to show the differences and
how they are depicted as a sequence and as a function.

The stream s = 2 a 3.7 b ∞ is a completed stream over time domain R (T= R). As a function,
it looks as follows for every timestamp t ∈ T:

s(t) =


a if t = 2

b if t = 3.7

⊥ otherwise

The stream s′ = 2 a 3.7 b 5 is an event stream but not an infinite stream, again over the time
domain R. As a function, it looks as follows for every timestamp t ∈ T:

s′(t) =



a if t = 2

b if t = 3.7

⊥ if 0≤ t < 5∧ t 6= 2∧ t 6= 3.7

? otherwise

Because their time domain is R, both streams are continuous. The stream s′′ = 0 a 1 a 2 a 3 b

over the time domain N is an event stream that is discrete. As a function, it looks as follows for

38

2.6 Streaming Semantics and Transducers

s
2
a

3.7
b

s′ 2
a

3.7
b

s′′ 0
a

1
a

2
a

3
b

Figure 2.3: Shows the three streams s, s′, and s′′. The drawn line indicates ⊥ at the position, so it
is known that no event exists at those timestamps. The crosses mark the positions of
events on the streams, with the value being denoted above and the timestamp below.
The arrow at the end of stream s shows that the stream would go on with ⊥ forever,
while on stream s′ the circle denotes that the progress of the stream ends there. Because
the stream s′′ has N as time domain, the stream contains only integer timestamps, hence
the drawn line is left out because nothing is in between the four events. The circles
after timestamp 3 indicate that the progress of this discrete stream has ended there after
timestamp 3.

every timestamp t ∈ T:

s′′(t) =


a if 0≤ t ≤ 2

b if t = 3

? otherwise

A drawing of the three streams can be seen in Figure 2.3.

Next in this section, we will define the notion of a prefix of a stream as well as the notion of a
maximum prefix and a supremum that come along with prefixes.

Definition 2.28 (Prefixes of Streams, [LSS+19])

The prefix relation over SD is the least relation that satisfies s v s, u v s if ∃v : uv v s and
ut ′⊥v s if ut v s, t ′ < t, t ∈ T∞ and t ′ ∈ T.

Intuitively, a stream s′ is a prefix of a stream s if s′ contains all the events of s up to a certain point in
time and the progress ends before the next event on s would happen. Note that regarding the prefix
relation, the stream s = 0 is the lowest element, as it is the stream without any progress and for all
s′ ∈ SD it holds that sv s′. Additionally, we abuse notation and write (s1, . . . ,sn)v (s′1, . . . ,s

′
n) to

denote that ∀1≤ i≤ n : si v s′i.

We refer to the supremum of all known timestamps of a stream as inclusive or exclusive progress,
as defined before, depending on whether it is itself a known timestamp. The prefix relation realises

39

2 Preliminaries

the intuition of cutting a stream at a certain point in time while keeping or removing the cutting
point and leading to inclusive or exclusive progress at that point.

In general, streams are a model which allows for the occurrence of some possibly unwanted beha-
viour, like under the time domain R it can happen that the data value changes an infinite number of
times in a finite time interval on a stream. Even though, as discussed before, we will not consider
streams like a sinus, we still allow such behaviour of streams consisting of events with timestamps
converging to a certain threshold timestamp. The notion of Zenoness describes this behaviour and
while a sinus is also Zeno, we will use the term in this thesis to refer to streams with events with
converging timestamps. Informally, a stream is called Zeno if there exist any two timestamps with
an infinite number of events between them. This can happen if the timestamps of an infinite num-
ber of events converge towards the timestamp 1 on a stream, but never reach 1. This results in an
infinite number of events between the timestamps 0 and 1.

Definition 2.29 (Zenoness of Streams)

Let D be a data domain. A stream s ∈ SD is called Zeno iff it holds that:

∃t1, t2 ∈ T : s(t1),s(t2) ∈ D∧|{t | t1 < t < t2∧ s(t) ∈ D}|= ∞

Note that discrete streams can not be Zeno, while continuous streams can be, because the time
domain needs to fulfil that there are infinitely many timestamps between two timestamps such that
streams over this domain can be Zeno.

Next in this section, we define a notion of functions on streams, called stream transformations,
representing the streaming behaviour as described before. Besides operating on streams, stream
transformations have to be monotonic and continuous, which means that these functions output
can be calculated by calculating an output for each finite prefix of the input streams and seeing
these outputs in order as the output of the function, without changing older parts of the output
later. Additionally, if the input streams are completely known, therefore do not contain a ?, then
the output streams should also be completely known. This fits to the definition of a function trans-
forming streams, because if we have complete knowledge, outputting only incomplete knowledge
makes no sense. The reason is that the input can not get any more information in this case and so
the output should also have full information.

Definition 2.30 (Stream Transformation)

We call a function f on streams with f : SD1×·· ·×SDn →SD′1×·· ·×SD′m a stream transform-

40

2.6 Streaming Semantics and Transducers

ation iff f is monotonic and continuous and

∀x1, . . . ,xn ∈ S∞
D1
×·· ·×S∞

Dn
: f (x1, . . . ,xn) ∈ S∞

D′1
×·· ·×S∞

D′m

The following example illustrates how the stream semantics of a stream transformation works
compared to any arbitrary function on streams.

Example 2.31 (Stream Transformations)

Consider a stream x over time domain N with

x(t) =


b if t = 1∨ t = 2∨ t > 6

a if t = 0∨ t = 4

⊥ otherwise

which looks like 0 a 1 b 2 b 4 a 7 b 8 b 9 b Further, consider a function f on streams with

f (s)(t) =


tt if s(t) = b∧ s(t +1) = b

ff if s(t) = a∨ s(t) = b∧ s(t +1) 6= b

⊥ otherwise

and a function f ′ on streams with

f ′(s)(t) =


tt if ∀t ′ ≥ t⇒ s(t ′) = b

ff if s(t) = a∨ s(t) = b∧∃t ′ > t ∧ s(t ′) 6= b

⊥ otherwise

as well as a function f ′′ on streams with

f ′′(s)(t) =

(0, |s|) if t = 0

⊥ otherwise

The outputs of the functions for the input stream x would be

41

2 Preliminaries

f (x) = 0 ff 1 tt 2 ff 4 ff 7 tt 8 tt 9 tt . . .

f ′(x) = 0 ff 1 ff 2 ff 4 ff 7 tt 8 tt 9 tt . . .

f ′′(x) = 0 ∞

As one can see, f ′ can make statements about behaviour regarding the infinite future. Therefore,
it is not continuous since on every finite prefix of the stream, f ′ would output ff from timestamp
7 on, it only outputs tt on the infinite stream. Thus, f ′ is not continuous. The function f ′′ changes
the output at the timestamp 0 depending on the length of the stream, thus, it is not monotonic.
As such, both functions are not stream transformations. f on the other hand does fulfil both
properties and is therefore a stream transformation.

Lastly, based on having defined stream transformations, we define the notion of a maximum prefix.
Compared to a prefix, a maximum prefix describes if the output of a stream transformation is
maximal in the sense that for all elongations of the input, the previous output is a prefix of the new
output.

Definition 2.32 (Maximum Prefix)

Let f be a stream transformation with f (s1, . . . ,sn) = s′1, . . . ,s
′
m. Then s′1, . . . ,s

′
m is called a

maximum prefix regarding f and s1, . . . ,sn iff ∀x1, . . . ,xn : (∀1≤ i≤ n : si v xi)→ (∀1≤ i≤m :
s′i v yi) where f (x1, . . . ,xn) = y1, . . . ,ym.

2.6.2 LOLA

LOLA [DSS+05] is a specification language which, compared to logics such as LTL, MTL, or
MITL, is build to reason over arbitrary data domains and to execute all kind of operations on
such data, instead of just reading a word and deciding the fulfilment or violation of a property.
Intuitively, a LOLA specification takes a set of input streams and uses stream transformations to
transform those into a set of output streams with the help of various intermediate streams.

In the following we will define syntax and semantics of LOLA and various fragments of it. The
basic version of LOLA is defined over discrete streams, while there has been an informal extension
of LOLA to continuous streams called Real-time LOLA (RTLola, [FFST19, FFS+19]). Thus, for
the definition of LOLA, we assume discrete streams.

42

2.6 Streaming Semantics and Transducers

A LOLA specification is syntactically a system of equations consisting of possibly mutually re-
cursive applications of functions as well as some special operators to streams.

Definition 2.33 (LOLA syntax, [DSS+05])

Let I be a set of input streams. Further, let c be a constant, f be a k-ary function, and i∈Z\{0}.
Then a LOLA specification ϕ is a system of equations with equations of the form x := e, where
the syntax of each e is given through the following grammar, with s ∈ I being an input stream
and y the left hand side of an equation of ϕ:

e ::= y | s | f (e, . . . ,e) | e[i,c]

Thereby, f is a function on streams implementing the behaviour of a function on values for the
values of the events happening at the same timestamp. The semantics are given by the individual
function definition. For e[i,c], the semantics are given in the following definition. Intuitively,
e[i,c] is the operator used to access older values or to relate to future values. i defines how many
timestamps forward (in the positive case) or backward (in the negative case) we have to look on e

for the value. c is the constant which is the result if i specifies a position outside of the beginning
or the end of a stream. Because our streams do not have distinct endings, we do not consider this
case in the following definition.

Definition 2.34 (LOLA semantics, [DSS+05])

Let ϕ be a LOLA specification. Then the semantics of the LOLA specification ϕ is a function
ϕ : SD1×·· ·×SDn→SD′1×·· ·×SD′m over finite, discrete streams and we write ϕ(I) =O, where
O is the set of output streams after the equations have been evaluated using the input streams
in I. The semantics for the system of equations that is ϕ is given as the least fixed-point of the
equations interpreted as a function of the stream variables and fixed input streams.

The semantics for each operator for a timestamp t ∈ T is given as follows:

f (s1, . . . ,sn)(t) = f (s1(t), . . . ,sn(t))

e[i,c](t) =

c if t + i < 0

s(t + i) otherwise

The language a LOLA specification ϕ represents is given as L(ϕ) = {(I,O) | ϕ(I) = O}.

43

2 Preliminaries

The LOLA semantics are monotonic and continuous in the input streams, which we state with
the following proposition. As such, a LOLA specification is a stream transformation on discrete
streams.

Proposition 2.35 (Properties of LOLA Semantics)

The semantics of a LOLA specification is monotonic and continuous in the input streams.

Next, we define the dependency graph of a LOLA specification which we use afterwards to define
the term of well-formedness for such specifications.

Definition 2.36 (Dependency Graph of LOLA Specifications, [DSS+05])

Let ϕ be a LOLA specification. The dependency graph for ϕ is a weighted and directed multi-
graph G = (V,E) where V = {s | s is an equation or an input stream.}. An edge (si,s j,w) is in
E iff si and s j are equations and si contains s j[w,c], for any c, as a subexpression. Additionally,
an edge (si,s j,0) is in E iff si and s j are equations and si does contain s j as a subexpression but
not s j[w,c], for any c and any w.

The definition of well-formed specifications is an important one, because it states which specific-
ations only have one possible output (i.e., fixed-point) for each set of input streams and thus allow
a deterministic evaluation of the input [DSS+05].

Definition 2.37 (Well-formed LOLA Specifications, [DSS+05])

A LOLA specification is called well-formed iff its dependency graph (V,E) has no cycles
(s1,s2,w1) . . .(sn,s1,wn) ∈ E∗ with

n

∑
i=1

wi = 0

For the rest of this thesis, we will only consider well-formed LOLA specifications unless explicitly
stated otherwise.

Lastly for LOLA, we define two fragments which restrict the use of future references in some way
or completely.

Definition 2.38 (LOLA Fragments, [DSS+05])

A LOLA specification is called a LOLAeff specification iff there exists a k such that only paths
(s1,s2,w1) . . .(sn,sn+1,wn)∈E∗ in the dependency graph (V,E) of the specification exist with

44

2.6 Streaming Semantics and Transducers

n

∑
i=1

wi < k

A LOLA specification is called a LOLApast specification iff for every subexpression of type
s[w,c] it holds that w≤ 0.

We define LOLAeff as the fragment of LOLA which is efficiently monitorable, thus future refer-
ences are only used in a bounded way. This means there is no recursion which always depends
on a future value within itself without a finite timestamps in the future where it is surely solved.
Because then a potentially unbounded number of references have to be remembered. A similar
fragment has already been defined in [DSS+05], but the constraint there is stronger than ours, be-
ing a syntactical property while ours is a semantic property. Thus, the fragment defined there is a
subset of ours, but for the rest of this thesis, considering the fragment as defined above is sufficient
for our purposes and makes comparison easier.

Furthermore, we define LOLApast as the fragment of LOLA which contains only past references,
completely removing future references. Obviously, it follows that LOLApast is a fragment of
LOLAeff.

For LOLA and the given fragments, we denote with LOLAb, LOLAb
eff and LOLAb

past, respectively,
the corresponding fragments where only bounded data structures are allowed. This is equival-
ent to using only boolean values, hence we will use bounded data structures and boolean values
interchangeably.

2.6.3 Types of Transducers

As mentioned before, we use transducer as the corresponding streaming formalism for automata.
Transducer take an input word and produce an output symbol for each input symbol. Well known
types are Moore- and Mealy-Machines. In the following we will define a type of transducers for
each type of automata we defined before, which includes finite state transducer, timed transducer,
and pushdown transducer. Compared to an automaton, a transducer does not depend on accepting
states in general, because the output stream consisting of the output symbols is the result of a
run.

45

2 Preliminaries

First, we will start with the simplest version of a transducer: the deterministic finite state trans-
ducer. Those are very similar to DFAs or deterministic Büchi automata without an accepting
condition but with output symbols on every transition.

Definition 2.39 (Deterministic Finite State Transducer, [BB79])

A deterministic finite state transducer (DFST) is a 5-tuple A= (Σ,Γ,Q,q0,δ) with

• an input alphabet Σ,

• an output alphabet Γ,

• a finite set of states Q,

• an initial state q0 ∈ Q, and

• a transition function δ : Q×Σ→ Q×Γ.

For an input word w = w0w1w2 . . . we call a sequence

s0
w0/o0−−−→ s1

w1/o1−−−→ s2
w2/o2−−−→ ·· ·

a run of a DFST A with output JAK(w) = o0o1o2 · · · ∈ Γ∞ iff s0 = q0 and δ (si,wi) = (si+1,oi)

for all i≥ 0.

The language a DFSTA describes is the set of tuples of the input word and the word outputted by
a run of the input word onA, thusL(A)= {(i,o) |There exists a run for i on A such that JAK(i)=
o.}.

Because an acceptance condition does not exist, a DFST can run on finite and infinite words.
Depending on the type of the input word, the output word is also finite or infinite, respectively.

One may question at this point why we talk of words again while the topic of these sections are
streaming semantics. Traditionally, transducers are, as logics and automata, defined on words.
But as said before, they are the way to go to achieve a type of streaming semantics for automata,
hence a semantics that processes a stream transformation for the input stream which results in the
output stream. The transducer would then react every time an event arrives on the stream, thus
when the events value (possibly) changes. We will use this type of streaming behaviour later, but
because transducer are already defined in a way such that they output a symbol for every input
symbol directly when the input symbol occurs, we do not need to define a special semantics to get
a streaming behaviour as long as we stick with finite streams, as explained in more detail later.

46

2.6 Streaming Semantics and Transducers

Next, we define a non-deterministic version of DFSTs. To represent non-determinism, we will add
back accepting states and an accepting condition into these transducers. The output is then the
output of an accepting run which is non-deterministically chosen.

Definition 2.40 (Non-deterministic Finite State Transducer, [BB79])

A non-deterministic finite state transducer (NFST) is a 6-tuple A= (Σ,Γ,Q,q0,F,δ) with

• an input alphabet Σ,

• an output alphabet Γ,

• a finite set of states Q,

• an initial state q0 ∈ Q,

• a set of accepting states F , and

• a transition function δ : Q×Σ→ 2Q×Γ.

For an input word w = w0w1w2 . . . we call a sequence

ρ = s0
w0/o0−−−→ s1

w1/o1−−−→ s2
w2/o2−−−→ ·· ·

a run of a NFST A with output JAK(w) = o0o1o2 · · · ∈ Γ∞ iff s0 = q0 and δ (si,wi) = (si+1,oi)

for all i≥ 0.

A run ρ is called accepting iff the last state is accepting (in case of a finite input word) or if
infinitely many accepting states are visited during the run (in case of an infinite input word).
Hence the acceptance condition of NFAs or NBAs is used, depending on the type of the input
word.

The language an NFSTA describes is the set of tuples of the input word and the word outputted
by a run of the input word on A, thus L(A) = {(i,o) | There exists an accepting run for i on
A such that JAK(i) = o.}.

NFST are a natural extension of DFSTs to non-determinism. Intuitively, NFSTs are NFAs or NBA
extended to transducers, hence producing an output word in addition to the acceptance criteria.
Note that NFSTs are strictly more powerful than DFSTs, as shown by the transducer in Figure
2.4.

Next, we extend DFSTs and NFSTs to be able to specify real-time properties as we did for NBAs.

47

2 Preliminaries

q0start

q1 q2

q3 q4

a/x

b/y

b/x

a/x

a/x,b/x

b/z

b/x

a/x

a/x,b/x

Figure 2.4: An NFSTA over Σ= {a,b} and Γ= {x,y,z}, for which no DFSTB exists withL(A)=
L(B). The NFSTA guesses when it reads the first b if only bs will occur afterwards or
if any more as will occur. Depending on the guess, A outputs y or z. The output has to
be generated directly when the b occurs, so there is no corresponding DFST because it
can not make the decision at a later state.

We again use clocks and clock constraints and the resulting timed transducers are very much like
TA. We will again define the deterministic version first, while the non-deterministic version is
defined by applying the same changes as we did to get to NFSTs from DFSTs, while additionally
lifting the constraint that the disjunction of two clock constraints on transitions with the same input
symbol has to be unsatisfiable.

Definition 2.41 (Timed Deterministic Finite State Transducer)

A timed deterministic finite state transducer (DTFST) is a 6-tupleA= (Σ,Γ,Q,q0,C,δ) with

• an input alphabet Σ,

• an output alphabet Γ,

• a finite set of states Q,

• an initial state q0 ∈ Q,

• a set of clocks C, and

• a transition function δ : Q×Σ×Θ(C)→Q×2C×Γ where for any two different transitions
(q1,σ1,ϑ1,q′1,R1,γ1),(q2,σ2,ϑ2,q′2,R2,γ2) ∈ δ the conjunction of their clock constraints
ϑ1∧ϑ2 is unsatisfiable.

48

2.6 Streaming Semantics and Transducers

For an input word w = (w0, t0)(w1, t1)(w2, t2) . . . we call a sequence

s0,v0
(w0,t0),ϑ0,r0−−−−−−−→

o0
s1,v1

(w1,t1),ϑ1,r1−−−−−−−→
o1

s2,v2
(w2,t2),ϑ2,r2−−−−−−−→

o2
· · ·

a run of a DTFST A where vi : C→ R are functions mapping every clock to its current value
iff

• s0 = q0,

• ∀c ∈C : v0(c) = 0, and

• ∀i≥0 :

– δ (si,wi,ϑi) = (si+1,ri,oi),

– ∀c∈rivi+1 = vi[c← ti], and

– ti,vi |= ϑi (which means ϑi resolved to true if T is replaced with ti and the corres-
ponding values from vi are used for the clocks).

The output of such a run is the sequence JAK(w) = (o0, t0)(o1, t1)(o2, t2) . . . ∈ (Γ×T)∞.

The language a DTFSTA describes is the set of tuples of the input word and the word outputted
by a run of the input word on A, thus L(A) = {(i,o) | There exists a run for i on A such that
JAK(i) = o.}.

The non-deterministic version of DTFSTs is called NTFSTs. Note again that, as for DFSTs and
NFSTs, NTFSTs are strictly more expressive than DTFSTs which can be shown with a similar
example as for DFSTs and NFSTs.

Lastly in this section, we define the transducer that resembles PAs. A pushdown transducer is a
DFST with a stack that can be used in the same way as in PAs.

Definition 2.42 (Deterministic Pushdown Transducer, [BB79])

A deterministic pushdown transducer (DPT) is a 6-tuple A= (Σ,Γ,Q,q0,Λ,δ) with

• an input alphabet Σ,

• an output alphabet Γ,

• a finite set of states Q,

49

2 Preliminaries

• an initial state q0 ∈ Q,

• a stack alphabet Λ with # ∈ Λ, and

• a transition function δ : Q×Σ×Λ→ Q×Λ∗×Γ.

For an input word w = w0w1w2 . . . we call a sequence

ρ = s0,σ0
w0,λ0,σ

′
0−−−−−→

o0
s1,σ1

w1,λ1,σ
′
1−−−−−→

o1
s2,σ2

w2,λ2,σ
′
2−−−−−→

o2
· · ·

a run of a DPT A with output JAK(w) = o0o1o2 · · · ∈ Γ∞ iff

• s0 = q0 and σ0 = # (starting at one start state and with empty stack) and

• for all i≥ 0 the following holds: (si+1,σ
′′
i ,oi) = δ (si,wi,λi) with

– σi = λiσ
′
i (right symbol is on top of stack) and

– σi+1 = σ ′′i σ ′i (new stack is output of taken transition added on top of rest of old
stack).

The language a DPTA describes is the set of tuples of the input word and the word outputted by
a run of the input word onA, thusL(A)= {(i,o) |There exists a run for i on A such that JAK(i)=
o.}.

Automata as Acceptors of Transducers As already mentioned before, transducers are an
extension of classical automata by adding output symbols which result in an output word for a run.
But other than that, automata can also be used to simulate transducers in the sense of acceptors.
This is quickly outlined in this section. We will use this technique later to conclude complexities
for decision problems for certain types of transducers.

An automaton can be used as an acceptor for a transducer in the sense that different types of
automata can be used to check whether an output word is the correct one for a given input word of
the corresponding transducer. This can be done by giving the input and output words as input of
the automaton and accepting it if it is a correct pair and otherwise rejecting it.

As a rough overview, the translation can in general be done as follows:

• Use the same states

50

2.6 Streaming Semantics and Transducers

• Merge the input and output alphabets of the transducer to a new input alphabet for the auto-
maton

• Change outputs on edges to be additional inputs on these edges

• Make all existing states accepting and add one rejecting sink for all other edges.

This relationship between automata and transducers is interesting because we can use it later to
transfer certain results for classical types of automata to transducers and thus to TeSSLa.

2.6.4 Stream Turing Machines

A Turing machine has already some parts which can be reused for defining a semantics on streams,
i.e. Turing machines have tapes which can be seen as input and output tapes. Hence for a streaming
semantics we remove the acceptance condition and see one of the tapes as input tape, one as work
tape, and one as output tape, which contains the output after every input symbol. It is well known
that having only one work tape is still enough to keep the expressive power of a Turing machine.

A similar type of Turing Machines has already been defined in [Gol00, GSAS04] as Persistent
Turing Machines (PTM), but our definition of stream Turing machines here is, while equivalent
in expressiveness, different, because it is more tailored to our specific definition of streams and is
also taking real time explicitly into consideration.

Definition 2.43 (Stream Turing Machines)

Let Σ = Γ×T be an alphabet (encoded in binary). A Stream Turing Machine (STM) is a 3DTM
A = (Σ,Q,q0,Q,δ) where the three tapes have distinct tasks: One is an input tape the machine
can only read from, one is a normal work tape, and one is the output tape, containing the output
word. A run on an STM

c0c1c2 . . .cn

has the following additional restrictions:

• ∀1≤ i≤ n : wi
1 = w0

1 (input tape can not be changed and may be left out when configura-
tions are used),

• the timestamps on the input and output tape are strongly monotonic from left to right,

• ∀n ∈ N : w0
3(n) =� (output tape is empty in the beginning),

51

2 Preliminaries

• n0
1 = n0

3 = 0 (input and output tape are starting left), and

• ∀1 ≤ i ≤ n : ∀x ∈ N : wi−1
3 (x) 6= �⇒ wi

3(x) = wi−1
3 (x) (output tape can not be changed

after a value is set).

The five restrictions on the tapes ensure an evaluation in a streaming-like manner. While the first,
third, fourth, and the last restriction ensure that am STM works similar to a transducer, because
neither the input nor the output tapes can be used for calculations, the second ensures the correct
handling of time, which we explicitly handle in an STM, because time has to move forward in
following parts of the calculation and it is necessary for certain results later in this thesis to handle
time explicitly.

It is also worth noting, that even though there are five restrictions and all states are accepting, an
STM can still calculate everything a normal Turing machine can. Consider a Turing machine M.
First, we transform it into an equivalent Turing machine with only one tape. We can now transform
this Turing machine into an STM S by doing the following:

• copy all the content on the one tape of M into the input tape of S and add arbitrary timestamps,

• copy the states and transitions of M to S, the transitions now work on the working tape of S,

• add states and transitions to S which copy the content of the input tape to the working tape,
and

• add additional transitions which output a corresponding symbol if M would not accept.

We can now run S to do the same calculation as we would do on M, indicating rejection of a run
by a certain output symbol. It is important to note, that while an STM is able to do the same
calculations, a Turing machine still represents more functions, because it can, if timestamps are
for example denoted explicitly, output timestamps in a non-monotonic order.

Finally, let us fix two properties of STMs. As noted before, these state that the semantics given for
STMs are working in a way streaming semantics should, as explained earlier in this section.

Proposition 2.44 (Basic Properties of STMs)

STMs are monotonic and continuous in the input streams.

This proposition means that the calculation an STM does is a stream transformation.

52

2.7 Properties of Formalisms

2.7 Properties of Formalisms

In this section, we define various properties some or all of the previously defined formalisms can
have. We will use or prove these later to categorize and compare different types of transducers or
fragments of TeSSLa.

2.7.1 General Properties

At first, we define the term of functionality in this section. Functionality does not relate to the
meaning that "it works" but instead that it represents a function, not a relation or something else.
Starting with defining the functionality of instances, we will proceed with defining the functionality
of formalisms.

Definition 2.45 (Functionality of Instances)

Let F be a formalism and f be an instance of F , which takes an input and delivers an output.
We call f functional iff for every two tuples (i,o),(i′,o′) ∈ L(f) it holds that i = i′⇒ o = o′.

Now, we extend the previous definition to whole formalisms, not just single instances of a formal-
ism.

Definition 2.46 (Functionality of Formalisms)

We call a formalism F functional iff every instance of F is functional.

For example, a transducer is called functional iff for every input word, there is only one possible
output word, which means that the transducer is representing a function. Deterministic transducers
are always functional, while non-deterministic transducers can be functional, but are not necessar-
ily.

Example 2.47 (Functionality of NFSTs)

Consider the two NFSTs A and B from Figure 2.5. Both transducers are non-deterministic,
because when reading an a in q0, there are two possible paths to take. But while B is functional,
A is not. This is because in A the output can either be xω or xyxω when reading an input word
abω . On B on the other hand, the output is always xyω no matter which way is taken. Because
every other input word only allows one possible way to be taken, B is a functional NFST.

53

2 Preliminaries

q0start

q1

q2

a/x

a/x

b/y

a/x

b/x

q0start

q1

q2

a/x

a/x

b/y

a/x

b/y

Figure 2.5: Two NFSTs: A on the left and B on the right. The only difference is that the loop on
q2 outputs an x in A and a y in B.

Furthermore, note that every well-formed LOLA specification, thus also well-formed LOLApast

and LOLAeff specifications, are functional, because only one fixed-point exists [DSS+05].

2.7.2 Properties of Stream Transformations

In this section we define several properties we use later to classify TeSSLa and different fragments
of it. Two properties we already defined to categorize functions in general are monotonic and con-
tinuous functions, which we defined in the beginning of this thesis and are called stream transform-
ations when they are defined on streams. In this section we will define the additional properties of
timestamp conservative and future independent stream transformations. Because these make only
sense when the input has some sort of meaning over time, like a stream, we define these properties
only for functions on streams.

The first property we define is timestamp conservatism. It states that every output stream of a
stream transformation can only have an event at timestamps, at which at least one of its input
streams had an event.

For a stream s ∈ SD over the time domain T we denote with

T (s) = {t > 0 ∈ T | s(t) ∈ D}

the set of timestamps present in the stream s, which means s has an event at some t > 0. Note that
we still allow events at timestamp 0, for example for the purpose of initializing the stream. This
is necessary for many calculations. For multiple streams s1, . . . ,sn we denote with T (s1, . . . ,sn) :=⋃

1≤i≤n T (si) the union of the timestamps of events present in any of those streams.

54

2.7 Properties of Formalisms

Definition 2.48 (Timestamp Conservatism, [CHL+18])

A stream transformation f ∈SD1× . . .×SDn→SD′1× . . .×SD′m is called timestamp conservative
iff it does not introduce new timestamps, i.e. for input streams S ∈ SD1 × . . .×SDn and output
streams S′ ∈ SD′1× . . .×SD′m it holds that

f (S) = S′⇒ T (S)⊇ T (S′)

The second property is future independence. The values at a timestamp t for each of the output
streams of a future independent stream transformation only depend on the values at timestamps t ′

on the input streams, which are equal or lower than the considered timestamp at the output streams,
thus t ′≤ t. The other way around this means, that new values on the input streams can not influence
older outputs.

For a stream s ∈ SD we denote with

s|t =

s if s(t) = ?

s′ otherwise, where ∀t ′ < t : s′(t ′) = s(t ′)∧∀t ′ ≥ t : s′(t ′) = ?

the prefix of s with exclusive progress t. If t is greater than the current progress of s, than s|t returns
s.

Definition 2.49 (Future Independence, [CHL+18])

A stream transformation f ∈ SD1 × . . .×SDn → SD′1 × . . .×SD′m is called future independent
iff output events only depend on current or previous events, i.e. for input streams s1, . . . ,sn ∈
SD1× . . .×SDn and output streams s′1, . . . ,s

′
m ∈ SD′1× . . .×SD′m it holds that

f (s1, . . . ,sn) = s′1, . . . ,s
′
m⇒∀t ∈ T : f (s1|t , . . . ,sn|t)w (s′1|t , . . . ,s′m|t)

Informally, it states that if we cut the progress of the input streams at a timestamp t we get at least
the original output until timestamp t.

The following example shows some stream transformations and their properties.

Example 2.50 (Timestamp Conservatism and Future Independence)

Recall the stream transformation f from Example 2.31, which was defined as follows for every

55

2 Preliminaries

t ∈ T:

f (s)(t) =


tt if s(t) = b∧ s(t +1) = b

ff if s(t) = a∨ s(t) = b∧ s(t +1) 6= b

⊥ otherwise

This stream transformation is timestamp conservative because it only outputs an event (with
value tt or ff) if there was either an event with a or a b at the current timestamp. But it is not
future independent because the output value at timestamp t depends on the timestamp t + 1 in
the future. However, it would be future independent if the +1 would be changed to −1. One
could break the timestamp conservatism by, for example, letting f always output tt at timestamp
1, independently from the input (even if the input is ⊥).

Lastly in this section, we give the notion of behavioural equivalence, which classifies stream trans-
formations into certain equivalence classes, depending on their behaviour on infinite streams.
This means, that the stream transformations which are in the same equivalence class output the
same streams when getting infinite streams as input, which means streams with complete progress
(hence, without ?).

Definition 2.51 (Behavioural Equivalence)

We say two stream transformations f : SD1 ×·· ·×SDn → SD′1 ×·· ·×SD′m and f ′ : SD1 ×·· ·×
SDn →SD′1×·· ·×SD′m are behavioural equivalent iff

∀S ∈ S∞
D1
×·· ·×S∞

Dn
: f (S) = f ′(S)

Note that if two stream transformations are behavioural equivalent and future independent, they
also produce the same events on the output streams for any input streams, even if they are not
infinite streams. The only thing which may differ is the progress, hence the point at which ? starts
after the last event.

2.8 Decision Problems

In this section we define all decision problems which we consider throughout this thesis. Decision
problems are questions about properties of an instance and how hard it is to decide if it has the
property or not. Among the considered decision problems are typical ones like equivalence but

56

2.8 Decision Problems

also others which are related to the finite memory property and can be of practical relevance for a
specification language.

2.8.1 The Equivalence Problem

We will start off with defining the equivalence problem. The equivalence problem is the question
whether or not two given languages are equal.

Definition 2.52 (Equivalence Problem, [HMU06])

The equivalence problem for a formalism F asks whether the languages L(i) and L(i′) of two
instances i and i′ of F are equal, hence L(i) = L(i′) holds.

In the case of DFAs, for example, the equivalence problem asks if two given DFAs A and A′ accept
the same language of words, which means whether L(A) = L(A′).

2.8.2 Decision Problems for Memory Usage

Questions regarding the memory usage for the evaluation of a formula is an interesting one for a
specification language. Even though on a first glance, memory usage might not be so important.
However, using recursive formulas can quickly consume a lot of memory, without having a chance
to understand why from a user perspective. This is even more important when the formula is
evaluated in an embedded system with limited memory or a specialized hardware like an FPGA.
Getting certain memory guarantees will allow you to see if a formula can be evaluated on such
a system and if the memory guarantees are easy to decide for a formula, it can be automatically
checked if the formula is appropriate for the use case. We will use the decision problems in this
section to categorize TeSSLa and different fragments by their memory guarantees later.

Before we get into the definitions of the decision problems, we will define the term of an evaluation
strategy and the notion of finite memory first. An evaluation strategy for a formalism represents
an algorithm which describes how to calculate the output from an input for any instance of the
formalism. An evaluation strategy is supposed to do this by reading the symbols of the input
incrementally (in a streaming fashion) which means that a possible output is created before the
next input symbol is read. For this purpose, we assume in this thesis that the values on input
streams arrive synchronously, hence every value with the same timestamp arrives at once and the

57

2 Preliminaries

events with the next timestamp arrive only after the ones with the previous timestamp have been
processed completely. Furthermore, we do not consider timing at all in the scope of evaluation
strategies. Both assumptions are sufficient for the purpose of evaluation strategies in this thesis,
because we only want to check if memory usage during evaluation is finite or not. For a more
general approach of calculating the outputs from the inputs at the example of TeSSLa without the
assumption of a synchronized arrival and processing of the values, see [LSS+18, LSS+20].

Definition 2.53 (Evaluation Strategy for Stream Transformations)

Let F be a formalism over stream transformations. Further, let M = {0,1}l with l ∈N∪∞ be a set
of binary strings of length l and let m : M×(T×D1×·· ·×Dn)→M and o : M×(T×D1×·· ·×
Dn)→ (T×D′1×·· ·×D′m)k with 0≤ k ∈N be two functions. We call E = (m,o) an evaluation
strategy for F iff for every instance i of F and every set of input streams S = s1, . . . ,sn with
i(s1, . . . ,sn) = (s′1, . . . ,s

′
m) and T = {t1, t2, . . .} and T ′ = {t ′1, t ′2, . . .} with ti < ti+1 and t ′i < t ′i+1

being the ordered sets of all timestamps in s1, . . . ,sn or s′1, . . . ,s
′
m, respectively, it holds that:

∀tx ∈ T : ex = o(m(. . .m(ε,S1) . . . ,Sx−1),Sx) = {(t ′,s′1(t ′), . . . ,s′m(t ′)) | t ′ ∈ T ∧T ⊆ T ′}

with
Sx = tx,s1(tx), . . . ,sn(tx)

and

∀t ′ ∈ T ′ : ∃x : (t ′,s′1(t
′), . . . ,s′m(t

′)) ∈ ex∧∀(t ′′,s′1(t ′′), . . . ,s′m(t ′′)) ∈ ex+1 : t ′ < t ′′

We call l the amount of memory an evaluation strategy needs.

Informally, an evaluation strategy simply describes how the semantics of a formalism for a given
instance and an input can be applied incrementally. Thereby, M is used as memory bits to save
information between different input symbols. Thus, older input symbols can only be accessed later
by storing them, as the function m is applied to all earlier inputs, delivering only the bits it produces
as memory to the function o, which calculates an output symbol for the given memory bits and an
input symbol. The last three formulas ensure that the evaluation strategy creates the correct output
for every timestamp when evaluating a formula for a given input. This is necessary due to the
synchronization of the input streams, which simulates, for example, additional ⊥ values when a
stream has no event, but another one does. Therefore, these do also exist in the generated output,
as well as additional ? values, which have to be mapped accordingly to ensure that the evaluation

58

2.8 Decision Problems

strategy generates the same output as the semantics. Informally, the first formula ensures that each
output generated by an evaluation strategy just contains timestamps which the semantics would
output and that the values match with the ones the output streams (in function representation) have
at this timestamp. The second formula ensures a correct synchronization of the inputs by having
an input for each timestamp, which existed in at least one of the input streams, adding additional
⊥ and ? values (via function representation) on streams which do not contain this timestamp. The
last formula ensures that every timestamp in the output streams the semantics deliver also occurs
in the output of an evaluation strategy and that the timestamps of the outputs are ordered.

Example 2.54 (Evaluation Strategy)

A possible evaluation strategy for LOLA would be to simply evaluate every operator on its
own, independently from the other operators it depends on, as soon as an input arrives from the
operators it depends on and output the results of the evaluation. By doing so, one would get the
output streams according to the semantics.

A possible evaluation strategy for LOLAb
past would be to transform a specification into an NFA

as described in [BS14] and then evaluate that NFA step-by-step after transforming the input
streams into an input word.

Another possibility would be to transform a LOLA specification into a semantically equivalent
STM, encoding the input streams accordingly and run the STM. By interpreting the output
accordingly, we would get the same result the LOLA semantics would output.

Based on the previous definition of evaluation strategies, we will define the term of finite memory.
With our notion of memory usage, we only take into account the working memory, hence neither
the size or length of the input or output word or stream is of importance. It is important to note that
our notion of memory usage is not only about how many values are stored (variables necessary
using the given evaluation strategy), but also includes whether a value can grow to a possibly
unlimited size or not.

First, we define finite memory on instances of formalisms to express that an instance only needs
finite memory to be evaluated. Our definitions are based on evaluation strategies and how much
memory is needed for the calculation of the output for a given input, as said before, ignoring the
input and output memory-wise.

Definition 2.55 (Finite Memory of Instances)

Let F be a formalism and i be an instance of F and let E be an evaluation strategy for F . We

59

2 Preliminaries

call i finite memory under E iff the evaluation of i with E only needs a finite amount of memory,
thus for E it holds that l < ∞.

Now, we extend the previous definition to formalisms.

Definition 2.56 (Finite Memory of Formalisms)

Let F be a formalism and E be an evaluation strategy for F . We call a formalism F finite
memory under E iff every instance of F is finite memory under E.

As stated at the beginning of this section, we also want to consider decision problems which are
related to finite memory as defined previously in this thesis. The first one is the question if, given
an evaluation strategy for a formalism F , an instance of F is finite memory under E or not.

Definition 2.57 (Finite Memory Problem)

Let F be a formalism and E be an evaluation strategy for F . The finite memory problem (FMP)
for F under E asks whether an instance i of F is finite memory when evaluated using E.

As we will see in the rest of the thesis, for some formalisms, all instances are finite memory under
a given evaluation strategy, but for most this is not the case. It is important to note that FMP
asks whether an instance i is finite memory given a certain evaluation strategy E. This does not
mean that, if i is not finite memory for E, there can not be another evaluation strategy E ′ under
which i is finite memory. We will use this to distinguish the memory usage of intuitive evaluation
strategies for TeSSLa formulas and the memory usage of an optimal one later in this thesis. In the
previously described case, the question can be raised if an instance i of such a formalism, which is
not finite memory under the given evaluation strategy E, and therefore l = ∞, can be transformed
into one which accepts the same language but is finite memory under E. This would result in a
new evaluation strategy E ′, which, for example, could rewrite the formula first and then evaluate
it using E. E ′ now only needs l < ∞ memory. The general problem whether an instance can be
evaluated using only finite memory is defined next.

Definition 2.58 (Rewrite to Finite Memory Problem)

The rewritable to finite memory problem (RFM) for a formalism F asks whether for an instance
i of F a semantically equivalent STM M and an n ∈ N exist, such that M needs only at most n

binary memory cells on the working tape at any point of the evaluation for any given input.

60

2.8 Decision Problems

Because the question of RFM is if there is any possibility to evaluate an instance i with only
finite memory, the problem if any such evaluation strategy exists corresponds to the question if a
semantically equivalent STM exists for the considered instance, which only needs a finite number
of cells on the working tape for calculating the output from the input. The definition of RFM also
indicates the relation of finite memory and Turing machines, which corresponds to its use of the
working tape. As said before, the previous definition is equivalent to asking whether there exists
an instance i′ of F , which is finite memory under E and for which L(i) = L(i′) holds.

61

3 Temporal Stream-Based Specification
Language

Contents

3.1 Syntax of TeSSLa . 64

3.1.1 Flat Specifications . 64

3.2 Semantics . 65

3.2.1 Semantics over Completed Streams 65

3.2.2 Prefix Semantics . 77

3.3 Adding a Future Operator to TeSSLa 90

In this section, we are introducing the Temporal Stream-based Specification Language (TeSSLa,
[CHL+18]), which is the main focus of this thesis. TeSSLa is, like LOLA, a stream transformation
language which transforms a set of input streams into a set of output streams, but while LOLA is
defined over discrete streams, TeSSLa is able to reason not only over discrete streams, but even
over continuous streams, which leads to events that arrive at arbitrary timestamps and not every
stream has events at the same timestamps.

Over the course of this section, we at first define the syntax of TeSSLa specifications and the
notion of flatness, which serves as an easier representation for the later comparison of TeSSLa
to transducers. After that, we give two semantics for TeSSLa formulas, one on only completed
streams, which is easier to understand but not considered any further in this thesis, and the original
one from [CHL+18] which is defined over prefixes and extends the semantics over completed
streams by a notion of streams which are only known until a certain timestamp. Lastly in this
section, we will add a completely new operator to the existing TeSSLa operators, which allows
specifications with future references.

63

3 Temporal Stream-Based Specification Language

3.1 Syntax of TeSSLa

A TeSSLa specification ϕ is a system of equations which consists of a set of possibly mutually
recursive stream definitions defined over a finite set of variables, which are either references to an
equations or an input stream. Each equation consists of combinations of the six basic operators
nil, unit, lift, time, last and delay, which are possibly nested.

Definition 3.1 (TeSSLa Syntax, [CHL+18])

Let I be a set of input streams. Then a TeSSLa specification ϕ is a system of equations with
equations of the form x := e, where the syntax of each e is given through the following grammar,
with sref being a constant reference to an input stream s ∈ I, which is interpreted as a stream:

e ::= nil | unit | sref | y | lift(f)(e, . . . ,e) | time(e) | last(e,e) | delay(e,e)

where f can be any k-ary function and y is the left hand side of an equation of ϕ .

All variables not occurring on the left-hand side of equations are called input variables and all
variables occurring on the left-hand side of an equation are called output variables.

In the following section, we will restrict the syntax of TeSSLa such that only one operator exists
per equation. We will call such a specification flat.

3.1.1 Flat Specifications

In this section, we define the notion of flatness for TeSSLa. While flat specifications do not differ
in expressiveness to general TeSSLa specifications, they lead to specifications where it is much
easier to handle each equation when transforming it to or comparing it with other formalisms.
For example, we will use flat TeSSLa specifications later, for example, to transform a TeSSLa
formula into a transducer by just transforming every single equation in the flat version of the given
specification into a transducer and then merging them using a composition algorithm.

In general, a specification is called flat if in each equation, only one TeSSLa operator occurs on
the right-hand side, therefore, there is no nesting of operators per equation.

In the following definition, we will show how the syntax of TeSSLa can be restricted such that we
get specifications which are flat.

64

3.2 Semantics

Definition 3.2 (Flat TeSSLa Specifications)

Let I be a set of input streams. Then a TeSSLa specification ϕ is called flat iff for every equation
x := e the right-hand side e is given through the following grammar, with sref being a constant
reference to an input stream s ∈ I, which is interpreted as a stream:

e ::= nil | unit | sref | y1 | lift(f)(y1, . . . ,yn) | time(y1) | last(y1,y2) | delay(y1,y2)

where f can be any k-ary function and y1, . . . ,yn are left hand sides of equations of ϕ .

It is also important to note that every specification can be transformed into a flat specification by
using additional variables and equations.

3.2 Semantics

A TeSSLa specification ϕ is a function which maps a number of input streams to a number of
output streams using the TeSSLa operators mentioned before as well as stream variables in possibly
recursive equations. This is quite similar to stream transformations and in fact, in the next chapter
we will show that a TeSSLa specification with the semantics given in the rest of this chapter is
nothing else than a stream transformation.

In the following two subsections, two different semantics will be presented. Compared to the
definition in [CHL+18], where TeSSLa was defined over a semantics based on prefixes, we also
give a semantics here which only works on total streams, because it is easier to define as a first step
and the semantics on prefixes is directly based on this semantics on total streams.

For the rest of the thesis after this section, we will only consider the second semantics, which is
defined over prefixes.

3.2.1 Semantics over Completed Streams

In this section we will define a semantics for TeSSLa which is only able to operate on completed
streams. In the next section we will then give the TeSSLa semantics defined over prefixes in the
way it is already defined in [CHL+18]. Compared to the prefix semantics, the one over completed
streams is easier for a first understanding of the operators because fewer cases exist, ignoring the

65

3 Temporal Stream-Based Specification Language

case that streams may only have a certain finite timestamp until which they progressed, therefore,
until which their values are known. The prefix semantics is then only different in that it can handle
input streams without infinite progress. If all input streams have progress at a given point in time,
both semantics are equivalent for that timestamp.

As mentioned before, a TeSSLa specification consists of a collection of stream variables and pos-
sibly recursive equations over these variables using the TeSSLa operators. We will give the general
semantics first and the semantics for each single operator afterwards.

Definition 3.3 (TeSSLa Semantics over Completed Streams)

Let ϕ be a TeSSLa specification. Then the semantics of the TeSSLa specification ϕ over com-
pleted streams is the semantic function JϕK∞ : S∞

D1
×·· ·×S∞

Dn
→S∞

D′1
×·· ·×S∞

D′m
and we write

JϕK∞(I) = O, where O is the set of output streams after the equations have been evaluated using
the input streams in I. The semantics for the system of equations that is ϕ is given as the fixed-
point of the equations interpreted as a function of the stream variables and fixed input streams.
The semantics for each single operator is given below.

The language a TeSSLa specification ϕ represents is given as L(ϕ) = {(I,O) | JϕK∞(I) = O}.

In the following, we abuse notation by interpreting a TeSSLa formula ϕ directly as a function and
write ϕ(I) =∞ O for JϕK∞(I) = O.

We will now define the semantics of the six TeSSLa operators over completed streams, from which
the equations can be build. For the rest of the thesis, we denote D⊥ := D∪{⊥}.

The first operator is nil, which is the stream without any events.

Definition 3.4 (nil Operator over Completed Streams)

The nil ∈ S∞
/0 operator over completed streams is defined as follows:

nil = ∞

Recall that the stream consisting of only the single letter ∞ represents the stream that has no events.
Thus, for every point in time, nil returns⊥ and as a function, it is defined as ∀t ∈ T : nil(t) =⊥.

Example 3.5 (nil Operator)

As a stream picture, the nil operator looks as follows:

66

3.2 Semantics

nil

The second operator is unit, which represents the stream with an unit event at timestamp 0 and no
other events.

Definition 3.6 (unit Operator over Completed Streams)

The unit ∈ S∞
U operator over completed streams is defined as follows:

unit = 0�∞

When unit is seen as a function, it holds that unit(0) =� and ∀0 < t ∈ T : unit(t) =⊥.

Example 3.7 (unit Operator)

As a stream picture, the unit operator looks as follows:

unit0
�

The third operator is time, which maps the value of each event on a stream to the event’s timestamps
and stays ⊥ if no event occurred at a timestamp.

Definition 3.8 (time Operator over Completed Streams)

The time : S∞
D → S∞

T operator over completed streams is defined as time(s) := z, where z is
defined at every timestamp t ∈ T as follows:

z(t) =

t if t ∈ ticks(s)

⊥ otherwise

Example 3.9 (time Operator over Completed Streams)

For a given input stream s ∈ S∞
N , the time operator looks as follows:

67

3 Temporal Stream-Based Specification Language

s
2
1

5
3

6
9

9
4

time(s)
2
2

5
5

6
6

9
9

While the first three operators we defined, nil, unit and time, more or less represent single streams
or just map the timestamps to their values, the following three operators are those that do calcula-
tions on streams, refer to older values or set timeouts for outputting events in the future. The first
of those is lift, which allows for lifting a function on values to a function on streams by applying
the function to all values of the events on the streams for every timestamp. Before we get to the
definition of lift, we define a certain type of functions.

Definition 3.10 (Non-creating Functions)

We call a function f : D⊥1 ×·· ·×D⊥n → D⊥ non-creating iff the following holds:

f (⊥, . . . ,⊥) =⊥

A non-creating function does not output a data values if neither of its input stream contains a data
value, therefore, it does not does create a new data value out of nowhere.

Definition 3.11 (lift Operator over Completed Streams)

Let f : D⊥1 ×·· ·×D⊥n → D⊥ be a non-creating function on n data values. Then the lift : (D⊥1 ×
·· · ×D⊥n → D⊥) → (S∞

D1
× ·· · × S∞

Dn
→ S∞

D) operator over completed streams is defined as
lift(f)(s1, . . . ,sn) := z, where z is defined at every timestamp t ∈ T as follows:

z(t) = f (s1(t), . . . ,sn(t))

This operator is used to do arbitrary calculations on streams by using functions which are defined
over values. This means that lift has no knowledge about values at previous timestamps, just taking
into account the current values on all streams.

The allowed functions for f are restricted to the ones that do not generate new events, because
otherwise one would be able to create arbitrary streams using the lift, which would concentrate
too much expressive power in the lift operator and eliminate the clear separation of the tasks each

68

3.2 Semantics

operator fulfils in TeSSLa. Other than that, TeSSLa is working with all kinds of functions, and
a TeSSLa specification is possibly not computable if a function used is not computable. But it
does not make much sense to allow such functions, thus for the rest of the paper, we assume that
functions used in any lift are computable unless explicitly noted otherwise, even though, in general,
TeSSLa would work even when using non-computable functions.

Example 3.12 (Incrementation over Completed Streams)

Let +1 : N⊥→ N⊥ be a function that increments its input as follows:

+1(n) =

n+1 if n 6=⊥

⊥ otherwise

Incrementation as a stream operation is then done as lift(+1)(s), where s ∈ S∞
N is an input

stream. For a given input stream s, this looks as follows:

s
2
1

5
3

6
9

9
4

lift(+1)(s)
2
2

5
4

6
10

9
5

The following operator is one called last. This operator takes two streams. One of those is a
stream v from which the values are taken, which we will call value stream and the other is a stream
r whose events mark the timestamps at which last(v,r) generates an output event with the previous
value on the value stream if one exists. We will call the stream r the trigger stream.

Definition 3.13 (last Operator over Completed Streams)

The last : S∞
D ×S∞

D′ →S
∞
D operator over completed streams is defined as last(v,r) := z, where z

is defined at every timestamp t ∈ T as follows:

z(t) =

d t ∈ ticks(r) and ∃t ′ < t : isLast(t, t ′,v,d)

⊥ otherwise

where
isLast(t, t ′,v,d)⇔ v(t ′) = d∧∀t ′ < t ′′ < t : v(t ′′) =⊥

69

3 Temporal Stream-Based Specification Language

The predicate isLast is used to check if the value to be outputted is really the last one that occurred
on v. It holds if t ′d is the last event on v until timestamp t. Informally, last allows us to access
previous data values, which works by always remembering the last value that occurred on v and
outputting the remembered value if an event on r occurs.

Example 3.14 (last Operator over Completed Streams)

For two given input streams v : S∞
N and r : S∞

U , the last operator looks as follows:

v
3
1

6
3

8
6

r
0
�

2
�

4
�

5
�

9
�

last(v,r)
4
1

5
1

9
6

The final operator defined for TeSSLa is delay, which takes two streams. One of those is a stream
d which represents the time in the future that the event to be outputted has to be delayed and the
other is a stream r whose events represent resets for the delay. Informally, delay emits a unit event
in the resulting stream after the delay passes when no reset occurs in between. Every event on the
reset stream resets any delay. New delays can only be set together with a reset event or an emitted
output event.

Definition 3.15 (delay Operator over Completed Streams)

The delay : S∞

T\{0}×S
∞
D →S∞

U operator over completed streams is defined as delay(d,r) := z,
where z is defined at every timestamp t ∈ T as follows:

z(t) =

� ∃t ′ < t : d(t ′) = t− t ′∧ setable(z,r, t ′)∧noreset(r, t ′, t)

⊥ otherwise

where

setable(z,r, t ′)⇔ z(t ′) =�∨ t ′ ∈ ticks(r)

noreset(r, t ′, t)⇔∀t ′ < t ′′ < t : r(t ′′) =⊥

70

3.2 Semantics

The predicate setable checks if for a given timestamp, either a reset or an output event occurred,
because only then a new delay should be able to be set. On the other hand, noreset checks if
between two given timestamps, no reset occurred, such that the delay times out without being
cancelled.

Example 3.16 (delay Operator over Completed Streams)

For two given input streams d ∈ S∞
N and r ∈ S∞

U , the delay operator looks as follows:

d 1
1

2
2

3
4

4
1

6
2

7
3

r
2
�

7
�

8
�

delay(d,r)
4
�

5
�

The orange arrows show how the output events are created. In case of the events at timestamps
1 and 3 and 6, setable is not fulfilled because neither an event on the reset stream not an event on
the output stream exists at these timestamps. For the event at 7, noreset is not fulfilled, because
a reset occurs before the event would be outputted.

As a conclusion for all the six defined operators, nil and unit refer to constant streams which are
used to initialize non-input streams in TeSSLa. Depending on what the stream should look like, one
or the other operator is necessary. The time operator makes time a first class citizen in TeSSLa. It
is the only way to access timestamps in TeSSLa and use them as data values. The timestamps itself
can not be modified, they have to be copied to the values of the events to do arbitrary calculations
with them. On the other hand, lift is the operator which is used to lift arbitrary functions on values
to streams, such that calculations on the data values of the streams can be done. Arbitrary functions
on arbitrary data domains can be lifted to functions on streams of these data domains using lift,
which can then be applied to corresponding streams. By doing so, the calculation represented by
the lifted function is applied to all events with the same timestamp on these streams and output
values with the corresponding timestamp are produced, which results in a new stream as a result.
Compared to the previous operators, last and delay are the temporal operators in TeSSLa. last is
used to access the last value of an event on a stream when an event on the trigger stream occurs.
This enables TeSSLa specifications to refer to older values on streams. On the other hand, delay
is used to set a delay in the future to a point where an event is outputted when the delay times

71

3 Temporal Stream-Based Specification Language

out, which can be used, for example, as a deadline to check if something happens in a real-time
constraint.

Having defined the six basic operators above we can now use them to derive the following utility
functions, which we use later in this thesis as a shorthand for the specification they represent. Of
course, we don’t need to define these functions, but the specifications later in this thesis are much
easier to read by using them, because they represent typical patterns and combinations of basic
TeSSLa operators. The following examples show how typical functions can be derived from the
six core operators and at the same time, define functions we will use later.

Example 3.17 (Constant Values in TeSSLa)

The first function we consider is const : D×S∞

D′ →S
∞
D which maps the values of all events on

a stream s to the constant c. This function is defined as follows:

const(c)(s) := lift(fc)(s)

with

fc(d) :=

c if d 6=⊥

⊥ otherwise

The function fc, which is parameterized by a constant, takes care of mapping every event’s value
to the given constant c.

The following stream picture shows the usage of const on a stream s and a constant 3:

s
1
3

2.3
2

3.7
4

4.6
7

5.8
3

7.5
1

8.3
3

const(3)(s)
1
3

2.3
3

3.7
3

4.6
3

5.8
3

7.5
3

8.3
3

The numbers of the events in red show which values have been changed. In the end, all values
are 3. Additionally, we can use this to create streams for arbitrary constants, like a true or zero
stream as

true := const(tt)(unit)

or
zero := const(0)(unit)

which look like

72

3.2 Semantics

const(tt)(unit)
0
tt

const(0)(unit)
0
0

Next we show how standard operations can be done using lift, like addition, subtraction, division
or boolean operations like and, or or.

Example 3.18 (Standard Operations in TeSSLa)

Let again ◦ : D⊥×D⊥ → D⊥ with ◦ ∈ {+,−,/,∧,∨} be a function that executes a standard
operation on its input as follows:

◦(n,m) =

n◦m if n 6=⊥∧m 6=⊥

⊥ otherwise

Addition as a stream operation is then done as lift(+)(s,s′), where s,s′ ∈ SN are input streams.
For given input streams s and s′, this looks as follows:

s
2
1

5
3

6
2

8
1

s′ 1
1

5
6

8
4

lift(+)(s,s′)
5
9

8
5

The following two examples show how one can combine two streams into one or how to filter
events out of a stream, depending on a given condition.

In the first example, again the lift operator is used with a corresponding function being lifted such
that the two input streams of the lift are merged into one by copying the events of the two input
streams to the single output stream.

Example 3.19 (Merging Streams in TeSSLa)

The next function we consider is merge :S∞
D×S∞

D→S∞
D which merges the events of two streams

over the same data domain into one stream of this data domain. If both streams have an event at

73

3 Temporal Stream-Based Specification Language

the same timestamp, the event on the first parameter stream is prioritized. This function is, for
example, often needed to start recursions. Formally, it is defined as

merge(x,y) := lift(f)(x,y)

with

f (a,b) =

a if a 6=⊥

b otherwise

The function f takes care of the merging for a given point in time by either taking the value of
a if there is one or b otherwise. For two given streams x and y, merge works as follows:

x
1
6

3
4

4
2

y
2
5

4
7

merge(x,y)
1
6

2
5

3
4

4
2

The second example also uses a lift to implement a filtering function, but this time also uses a last.
The idea of the filtering is that as long as the condition is or was true before, events on the stream
to be filtered are left through. To implement that the prior fulfilment of the condition is still used
at a current timestamp without having an event, the last is used.

Example 3.20 (Filtering Events in TeSSLa)

The next function we consider is filter : S∞
D ×S∞

B → S∞
D which filters the events of a stream

depending on the truth values on the second input stream. If the second stream is true, the event
is passed to the output stream, otherwise it is erased. Formally, it is defined as

filter(x,y) := lift(f)(x,merge(y, last(y,x)))

with

f (a,b) =

a if b

⊥ otherwise

The function f takes care of the filtering for a given point in time by either taking the value of a

if b is true or outputting ⊥ otherwise. For two given streams x and y, filter works as follows:

74

3.2 Semantics

x
1
6

3
4

4
2

y
1
ff

2
tt

4
tt

filter(x,y)
4
2

The last utility function can be used to allow TeSSLa to interpret streams in a slightly different
model. Even though the streams TeSSLa operates on are piecewise constant, therefore its events
can only occur at distinct timestamps, even if the time domain is R, it is able to resemble streams
having a values continuously, therefore no ⊥ between two events. These streams are piecewise
linear and are normally called signals. A typical example of a signal is a Sinus curve, which can
not be represented with a finite number of events.

Of course, because TeSSLa is only defined over piecewise constant streams in this thesis, it can
not express or handle a Sinus curse (this can be changed, but would go beyond the scope of this
thesis). But one could rebuild this signal view for piecewise constant streams in TeSSLa using lift
and last, such that it is assumed that a value is on a stream until a new one arrives, interpreting all
positions with ⊥ between two events as if they have the value of the previous event. This does still
not allow TeSSLa as defined in this thesis to work on a Sinus curve, but the idea that a values stays
on a stream until a newer value arrives can be represented like this.

While the defined lift operation alone only takes into account the events that happen at the same
timestamp, we can implement a signal semantics, called slift, in TeSSLa which means that if at
some timestamp there is an event on one stream but no event on another, the last events values are
used for those streams that have no event at the timestamp. This represents that events values stay
on a stream continuously until a new events arrives, overriding the previous events value. This
behaviour is explained in the following example.

Example 3.21 (Signal Semantics in TeSSLa)

Using last one can query the last known value of an event stream s and interpret the events on
s as points where a piece-wise constant signal changes its value. By combining the last and lift
operators, we can realize the mentioned slift as follows, where we require that f : D×D′→ D′′

is a total function (can not output ⊥):

slift(f)(x,y) := lift(g f)(x′,y′)

75

3 Temporal Stream-Based Specification Language

with
x′ :=merge(x, last(x,y))

and
y′ :=merge(y, last(y,x))

as well as

g f (a,b) =

 f (a,b) if a 6=⊥∧b 6=⊥

⊥ otherwise

The two streams x′ and y′ are used to always get the value of the previous event on x and y,
respectively, if one stream has an event, but the other has none, such that we always have two
values and implement the mentioned signal semantics. The function f is then calculating a new
value out of the given ones, while g f takes care of the case where one of the two streams did not
have any event at all, such that still ⊥ exists on either x′ or y′.

For two given streams x and y and the standard addition +, the slift works as follows:

x
1
1

3
5

4
3

5
1

y
2
2

5
4

x′ 1
1

2
1

3
5

4
3

5
1

y′
2
2

3
2

4
2

5
4

slift(+)(x,y)
2
3

3
7

4
5

5
5

The next example shows a more complex specification and what the results of the evaluation of
every single equation is. The idea is to sum up the values of the events occurring on an input
stream while a second input stream resets the sum to zero if an event occurs there, after which the
summing up starts again.

We will use the following example as a running example in different places in this thesis to show
the differences of the semantics and other approaches. While the example is not too complicated,
it shows the features and possibilities stream languages deliver very well.

76

3.2 Semantics

Example 3.22 (TeSSLa Specification)

We can now specify the stream transformation shown in Figure 3.1 in TeSSLa. Informally, the
specification shows how the values of a stream can be summed up while every event on a second
stream may reset the current sum to 0.

Let resets ∈ S∞
U and values ∈ S∞

Z be two input event streams. We then derive cond ∈ S∞
B and

lst,sum ∈ S∞
Z as follows:

cond= slift(≤)(time(resets), time(values))

lastsum=merge(last(sum,values),zero)

sum= slift(f)(cond, lastsum,values)

where

f : B×Z×Z→ Z with

f (c, l,v) =

0 if c = true

l + v otherwise

This specifies the summation of the stream of numbers values which is reset to 0 (because zero is
the macro zero= const(0,unit)) if an event on resets occurs. cond represents the reset condition
which is the question if the last event on resets occurred later than the one on values. The stream
lst is used to recursively sum up the values and to add a 0 as starting value. Because the lifted
function f resembles an if-then-else, sum is then the result stream, which resets to 0 if cond is
true and adds a new value to the current sum otherwise.

We added the semantics over completed streams in this thesis to show how such a semantics would
work for TeSSLa and to explain how the semantics from the original paper [CHL+18] relates
to such a semantics over completed streams. But as for this paper, we will mainly stick to the
semantics defined via prefixes, which is defined in the following section.

3.2.2 Prefix Semantics

In this section, we define the prefix semantics, which corresponds to the semantics as defined for
TeSSLa in [CHL+18, LSS+19]. These are the semantics we consider throughout the rest of this
thesis, unless indicated otherwise.

77

3 Temporal Stream-Based Specification Language

values 1
3

2.3
2

3.7
4

4.6
7

5.8
3

7.5
1

8.3
3

resets
1 7

cond 1
tt

2.3
ff

3.7
ff

4.6
ff

5.8
ff

7
tt

7.5
ff

8.3
ff

sum
1
0

2.3
2

3.7
6

4.6
13

5.8
16

7
0

7.5
1

8.3
4

Figure 3.1: Example trace for a TeSSLa specification with two input streams values (with numeric
values) and resets (with no internal value). The intention of the specification is to
accumulate all values since the last reset in the output stream sum. The intermediate
stream cond is derived from the input streams indicating if reset has currently the most
recent event, and thus the sum should be reset to 0.

Compared to the semantics over completed streams defined in the last section, the prefix semantics
takes an additional fact into account, namely that streams can have an ending. An ending in our
setting does not mean that no event is coming from there on, but instead that we do not know any
more what happens after the ending, whether events occur in the future and which values these
may have. So the input streams for a TeSSLa formula over these semantics are event streams
which are either completed streams as before, or streams with an unknown suffix, hence a prefix
of a completed stream.

As before, a TeSSLa specification still consists of a collection of stream variables and possibly
recursive equations over these variables using the TeSSLa operators but for the prefix semantics a
TeSSLa specification resembles a function ϕ : SD1×·· ·×SDn →SD′1×·· ·×SD′m .

Definition 3.23 (Prefix TeSSLa Semantics, [CHL+18])

Let ϕ be a TeSSLa specification. Then the semantics of the TeSSLa specification ϕ with equa-
tions y1 := e1, . . . ,yn := en and input streams I over event streams is the semantic function
JϕK : SD1×·· ·×SDn →SD′1×·· ·×SD′m and we write JϕK(I) = O, where O is the set of output
streams after the equations have been evaluated using the input streams in I. The semantics for
the system of equations that is ϕ is given as the least fixed-point of the equations interpreted as
a function of the stream variables and fixed input streams as follows:

JϕK(I) = µ(Je1K(I), . . . ,JenK(I))

The semantics for each single operator is given below.

78

3.2 Semantics

The language a TeSSLa specification ϕ represents is given as L(ϕ) = {(I,O) | JϕK(I) = O}.

The ? value available on event streams, which are the stream model in the prefix semantics, is used
to denote positions that are beyond the current ending of knowledge on the stream, which allows
these semantics to evaluate streams incrementally, hence while the data is coming, in practice. This
fact will be considered in more detail at the end of this section.

We again abuse notation and interpret a TeSSLa formula ϕ directly as a function and therefore
write ϕ(I) = O for JϕK(I) = O for the rest of this thesis.

We will now define the prefix semantics of the six TeSSLa operators from which the equations can
be build.

Definition 3.24 (nil Operator on Event Streams, [CHL+18])

The nil ∈ S /0 operator on event streams is defined as follows:

nil = ∞

As for the semantics over completed streams, it will return ⊥ for every point in time and as a
function, it is defined as ∀t ∈ T : nil(t) =⊥.

Definition 3.25 (unit Operator on Event Streams, [CHL+18])

The unit ∈ SU operator on event streams is defined as follows:

unit = 0�∞

As for nil, this operator also stays the same in both semantics, hence, when unit is seen as a
function is holds that unit(0) =� and ∀0 < t ∈ T : unit(t) =⊥.

Next, we define time on event streams, which maps the value of each event on a stream to the
event’s timestamps and stays ⊥ or ?, respectively, if no event occurred at a timestamp. Compared
to the semantics over completed streams, the only change is that now also the newly existing ?
values, therefore the point where the progress ends, are copied instead of only the ⊥ values.

Definition 3.26 (time Operator on Event Streams, [CHL+18])

The time : SD→ ST operator over event streams is defined as time(s) := z, where z is defined

79

3 Temporal Stream-Based Specification Language

at every timestamp t ∈ T as follows:

z(t) =

t if t ∈ ticks(s)

z(t) otherwise

Example 3.27 (time Operator over Event Streams)

For a given input stream s ∈ SN, the time operator looks as follows:

s
2
1

5
3

6
9

time(s)
2
2

5
5

6
6

Compared to time over completed streams from Example 3.9, we now have the case where the
progress ended, at timestamp 7 in this example. The time operator on event streams just copies
this behaviour.

Compared to the semantics over completed streams, a case for z is added for the lift operator when
one of the streams is ?. Because we can then not infer which value the stream will have in the
future, the whole lift returns ?. We use the version from [LSS+19] instead of the original one from
[CHL+18], because its definition is easier but semantically the same.

Definition 3.28 (lift Operator on Event Streams, [LSS+19])

Let f : D1⊥× ·· · ×Dn⊥ → D⊥ be a non-creating function on n data values. Then the lift :
(D1⊥×·· ·×Dn⊥→ D⊥)→ (SD1×·· ·×SDn →SD) operator over event streams is defined as
lift(f)(s1, . . . ,sn) := z, where z is defined at every timestamp t ∈ T as follows:

z(t) =

 f (s1(t), . . . ,sn(t)) if s1(t) 6= ?∧·· ·∧ sn(t) 6= ?

? otherwise

Note that, even though one can think of cases where lift could not output ? even if one of the
streams is ?, like for an if-then-else where the stream is ? which is currently not the stream used
for the output value because of the condition, lift would still output ?. This is because the lift can

80

3.2 Semantics

not look into the functions and because the functions have no state, the lift has to take care of the
? output to keep the premise that once a stream is ?, it is so forever. Therefore, because it is an
invariant on event streams that once ? occurred, it will not change in the future, the lift has to take
care of this case globally, instead of leaving it to the function which is lifted. Otherwise, using an
if-then-else as described before, it could output other values after a ? was outputted before.

Example 3.29 (Addition over Event Streams)

Let again + : N⊥×N⊥→ N⊥ be a function that adds the input as follows:

+(n,m) =

n+m if n 6=⊥∧m 6=⊥

⊥ otherwise

Addition as a stream operation is then done as lift(+)(s,s′), where s,s′ ∈ SN is an input stream.
For given input streams s and s′, this looks as follows:

s
2
1

5
3

6
2

s′ 1
1

5
6

8
4

lift(+)(s,s′)
5
9

Compared to Example 3.18, we also consider the end of progress this time to depict the interplay
between two input streams in the prefix semantics for lift. One can see that, if the progress on
one input stream ends, the progress on the output stream does also end, no matter what the other
stream does. The lifted function, + in this case, has no influence on that, because ? is handled
by the lift itself.

As for the other operators, for the last operator a ? case is added for the prefix semantics and an
additional assistance function defined which checks if a ? was outputted before. defined holds at a
timestamp t if z is defined (has no ?) until t (exclusive). Other than that, the definition of last stays
the same as before.

Definition 3.30 (last Operator on Event Streams, [CHL+18])

The last : SD×SD′ → SD operator over event streams is defined as last(v,r) := z, where z is

81

3 Temporal Stream-Based Specification Language

defined at every timestamp t ∈ T as follows:

z(t) =


d t ∈ ticks(r) and ∃t ′ < t : isLast(t, t ′,v,d)

⊥ r(t) =⊥ and defined(z, t), or ∀t ′ < t : v(t ′) =⊥

? otherwise

where
isLast(t, t ′,v,d)⇔ v(t ′) = d∧∀t ′ < t ′′ < t : v(t ′′) =⊥

and
defined(z, t)⇔∀t ′ < t : z(t ′) 6= ?

All in all, last outputs a ? when either a ? occurs on the second input stream or when an event
occurs on the second stream after a ? occurred on the first input stream.

Example 3.31 (last Operator over Event Streams)

For two given input streams v : SN and r : SU, the last operator over event streams looks as
follows:

v
3
1

6
3

r
0
�

2
�

4
�

5
�

8
�

last(v,r)
4
1

5
1

Compared to the streams in Example 3.14, in this example the stream v’s progress ends at
timestamp 7. Compared to the operators before, this does not lead directly to an end of the
progress on the output stream, because we know that it is still ⊥, due to r having no event.
Therefore, the progress of the output stream finally ends at timestamp 8, when r has an event,
since we do not know which value we would have to output there. On the other hand, if the
progress of r ends first, also the progress of the output stream ends directly, as long as v had at
least one event.

The final operator that has to be defined for the prefix semantics for TeSSLa is delay, which uses
two additional predicates for representing the ?. Compared to the delay in the semantics over

82

3.2 Semantics

completed streams, this delay has again an additional case for ?. Because ⊥ occurs exactly in
those cases, where � does not occur, minus the ending cases, we build the duals of setable and
noreset and call them unsetable and reset, respectively, which we use for the ⊥ case.

Definition 3.32 (delay Operator on Event Streams, [CHL+18])

The delay : ST\{0}×SD→SU operator over event streams is defined as delay(d,r) := z, where
z is defined at every timestamp t ∈ T as follows:

z(t) =


� ∃t ′<td(t ′) = t− t ′∧ setable(z,r, t ′)∧noreset(r, t ′, t)

⊥ defined(z, t)∧∀t ′<td(t ′) 6= t− t ′∧d(t ′) 6= ?∨unsetable(z,r, t ′)∨ reset(r, t ′, t)

? otherwise

where

setable(z,r, t ′)⇔ z(t ′) =�∨ t ′ ∈ ticks(r)

reset(r, t, t ′)⇔∃t ′′|t<t ′′<t ′t
′′ ∈ ticks(r)

unsetable(z,r, t ′)⇔ z(t ′) =⊥∧ r(t ′) =⊥

noreset(r, t, t ′)⇔∀t ′′|t<t ′′<t ′r(t
′′) =⊥

More precisely for the ⊥ case, it occurs at the current timestamp if for each previous timestamp
either

• the delay stream d does not have an event with a value pointing to the current timestamps
and is not ?,

• unsetable holds, therefore, the reset stream r and the output stream z where ⊥, or

• reset holds, therefore, in the future, there is an event on r before the current timestamp,
cancelling every previous delay.

Additionally, defined has to hold such that no ? has been outputted on a previous timestamp
already.

Example 3.33 (delay Operator over Event Streams)

For two given input streams d ∈ SN and r ∈ SU, the delay operator over event streams looks as

83

3 Temporal Stream-Based Specification Language

follows:

d 1
1

2
2

3
4

4
2

r
2
�

7
�

delay(d,r)
4
�

6
�

The change to the semantics over completed streams occurs at timestamp 6. Because there is
an output event and the progress of stream d has already ended, a new timeout could be set, but
we do not know if there will be an event on d. Therefore, there could be an output event at any
timestamp after timestamp 6, but we do not know yet. For this reason, the progress of the delay
ends after timestamp 6.

All the operations we derived from the six core TeSSLa operators for the semantics over completed
streams can be used in the same way for the prefix semantics, because the lift takes care of the
stream endings and thus the functions used in the lift can stay the same. An example for how
standard operations work in the prefix semantics is already given in Example 3.18 in the concrete
case of an addition. The other derived operations like const, merge, filter and slift work in the
same way as before, only potentially changing when one or more streams end. In the following
four examples, we will recap those derived operations.

The first operation we take a look at is const for defining constant value streams, this time using
the prefix semantics.

Example 3.34 (Constant Values in Prefix Semantics)

As in Example 3.17, a mapping to a constant value can be defined as:

const(c)(s) := lift(fc)(s)

with

fc(d) :=

c if c 6=⊥

⊥ otherwise

The fc does not need to be changed, because lift takes care of the ? values. The following stream
picture shows the usage of const on a event stream s and a constant 3:

84

3.2 Semantics

s
1
3

2.3
2

3.7
4

4.6
7

6
3

const(3)(s)
1
3

2.3
3

3.7
3

4.6
3

6
3

Because the lift only has one input stream, the progress ends on the output stream as soon as it
ends on the input stream.

The second operation we consider over the prefix semantics is merge for merging two streams.

Example 3.35 (Merging Streams in Prefix Semantics)

As in Example 3.19, a merging operation for event streams can also be defined in the same
way:

merge(x,y) := lift(f)(x,y)

with

f (a,b) =

a if a 6=⊥

b otherwise

With fixed input streams, the merge in the prefix semantics looks as follows:

x
1
6

3
4

4
2

y
2
5

4
7

merge(x,y)
1
6

2
5

3
4

4
2

The third operation we recall over the prefix semantics is filter for filtering a streams events de-
pending on the truth value of a condition.

Example 3.36 (Filtering in Prefix Semantics)

As in Example 3.20, a filtering operation for event streams can also be defined in the same
way:

filter(x,y) := lift(f)(x,merge(y, last(y,x)))

85

3 Temporal Stream-Based Specification Language

with

f (a,b) =

a if b

⊥ otherwise

With fixed input streams, the filter in the prefix semantics looks as follows:

x
1
6

3
4

4
2

y
1
ff

2
tt

4
tt

filter(x,y)
4
2

The last operation we already considered is slift for implementing the signal semantics.

Example 3.37 (Signal Semantics in Prefix Semantics)

As in Example 3.21, we can define the slift for the signal semantics as before:

slift(f)(x,y) := lift(g f)(x′,y′)

with x′ :=merge(x, last(x,y)) and y′ :=merge(y, last(y,x)) as well as

g f (a,b) =

 f (a,b) if a 6=⊥∧b 6=⊥

⊥ otherwise

For two given streams x and y and the standard addition +, the slift works as follows:

x
1
1

3
5

y
2
2

5
4

x′ 1
1

2
1

3
5

y′
2
2

3
2

slift(+)(x,y)
2
3

3
7

86

3.2 Semantics

We will now go on with another two examples, the first one being the running example from
Example 3.22, updated to the prefix semantics.

Example 3.38 (TeSSLa Specification with Prefix Semantics)

We can now specify the stream transformations shown in Figure 3.2 with input streams value
and resets and output streams cond and sum in TeSSLa with prefix semantics. Let resets ∈ SU
and values ∈ SZ be two input event streams. We then derive cond ∈ SB and lst,sum ∈ SZ as
follows:

cond= slift(≤)(time(resets), time(values))

lst=merge(last(sum,values),zero)

sum= slift(f)(cond, lst,values)

where

f : B×Z×Z→ Z with

f (c, l,v) =

0 if c = true

l + v otherwise

Compared to Example 3.22, the specification only differs in the fact that it can now handle
stream endings, and thus ? values. At the timestamp values ends, cond ends as well because,
informally speaking, the slift is on one stream ?, which means it does not know the value there,
and therefore also outputs ?. The same holds for sum. The stream lst also gets ?, because the
last is ? as soon as a ? occurs on the second input stream and there was at least one event on the
first input stream or ? before. The merge than merges the ? in.

The second example shows how the fixed-point calculation for a TeSSLa specification under the
prefix semantics works in detail.

Example 3.39 (Fixed-Point Calculation)

Consider the equation
y =merge

(
lift
(
+1
)(

last(y,x)
)
,0
)

where 0 = zero= const(0,unit) = const(0,�∞) = 0 0 ∞.

In this example, we use the representation of streams as sequences, therefore, every second

87

3 Temporal Stream-Based Specification Language

values 1
3

2.3
2

3.7
4

4.6
7

5.8
3

7.5
1

8.3
3

resets
1 7

cond 1
tt

2.3
ff

3.7
ff

4.6
ff

5.8
ff

7
tt

7.5
ff

8.3
ff

sum
1
0

2.3
2

3.7
6

4.6
13

5.8
16

7
0

7.5
1

8.3
4

Figure 3.2: Figure 3.1 adjusted to the prefix semantics. The dotted lines indicate that the streams
values, cond and sum end at the same time, hence are ?, while the progress of resets
ends a bit later. As can be seen, the prefix semantics produces the same output as the
semantics over completed streams as long as no stream ended.

symbol is a timestamp and the last timestamp of the stream indicates the end of its progress and
therefore the point from which on the stream is ?.

Let us examine the equation for a fixed input stream x = 2 � 4 � ∞. To compute the least
fixed-point of this function we start with the empty stream (the stream without any progress,
therefore, ? only) y0 = 0. We than have

last(y0,x) = 2

lift
(
+1
)(

last(y0,x)
)
= 2

merge
(
lift
(
+1
)(

last(y0,x)
)
,0
)
= 0 0 2

For the next iteration we start with y1 = 0 0 2:

last(y1,x) = 2 0

lift
(
+1
)(

last(y1,x)
)
= 2 1

merge
(
lift
(
+1
)(

last(y1,x)
)
,0
)
= 0 0 2 1

For the next iteration we start with y2 = 0 0 2 1:

last(y2,x) = 2 0 4

lift
(
+1
)(

last(y2,x)
)
= 2 1 4

merge
(
lift
(
+1
)(

last(y2,x)
)
,0
)
= 0 0 2 1 4

88

3.2 Semantics

For the next iteration we start with y3 = 0 0 2 1 4:

last(y3,x) = 2 0 4 1 ∞

lift
(
+1
)(

last(y3,x)
)
= 2 1 4 2 ∞

merge
(
lift
(
+1
)(

last(y3,x)
)
,0
)
= 0 0 2 1 4 2 ∞

For the next iteration we start with y4 = 0 0 2 1 4 2 ∞:

last(y4,x) = 2 0 4 1 ∞

lift
(
+1
)(

last(y4,x)
)
= 2 1 4 2 ∞

merge
(
lift
(
+1
)(

last(y4,x)
)
,0
)
= 0 0 2 1 4 2 ∞

So we have reached a fixed-point.

Note that y0 v y1 v y2 v y3 v y4 regarding the prefix relation.

The next statement is important, since it states that the prefix semantics always does as much pro-
gress as possible, hence, outputs as much information as it can certainly derive from the input.

Proposition 3.40 (Prefix Semantics Produces Maximum Prefixes)

Let x1, . . . ,xn ∈SD and let ϕ be a TeSSLa formula with ϕ(x1, . . . ,xn)= y1, . . . ,ym. Then y1, . . . ,ym

is a maximum prefix regarding ϕ and x1, . . . ,xn.

If you add additional knowledge to the end of the input streams when using the prefix semantics,
the output gets additional knowledge as well, as the previous proposition states. If you proceed
with this and the input converges into a completed stream, the output also does this and the com-
pleted streams the input and output streams converge to are also related in the semantics over
completed streams. This is stated by the following proposition:

Proposition 3.41 (Relation Between Semantics over Completed Streams and Prefix Semantics)

Let x1, . . . ,xn ∈ S∞
D with ϕ(x1, . . . ,xn) =∞ x′1, . . . ,x

′
m and s1, . . . ,sn ∈ SD with ϕ(s1, . . . ,sn) =

s′1, . . . ,s
′
m. Then the following holds

(∀1≤ i≤ n : si v xi)⇒∀1≤ i≤ m : s′i v x′i

89

3 Temporal Stream-Based Specification Language

Both propositions together state that the prefix semantics always outputs as much of the output
from the semantics over completed streams as possible, taking the ending of the progress of the
streams, marked by the ?, into account. In the end this also means that, if we consider a set of
completed streams, then both semantics will provide the same output.

An important aspect we will use later in this thesis is compositionality. It means that a formula
can be split arbitrarily into two syntactically correct formulas where the second formula takes the
output of the first formula as input and the output of the second formula is the same as the output
of the original formula. The other direction is supposed to hold as well, two formulas evaluated
after another where one uses the output of the other as input can be combined into one big formula,
while keeping the semantics. Therefore, in case of, for example, LOLA or TeSSLa, it means that
the operators can be composed in such a way, as well as the equations (which is important, because
for expressing certain stream transformations, multiple equations are needed).

We state in the following proposition that the operators and equations of TeSSLa and therefore
TeSSLa specifications are closed under composition.

Proposition 3.42 (Compositionality of TeSSLa Semantics)

TeSSLa specifications are closed under composition.

In the following, we will only consider the prefix semantics and, if not stated otherwise, will only
call it semantics.

3.3 Adding a Future Operator to TeSSLa

In the last section of this chapter, we add an operator for future references to TeSSLa. This exten-
sion, which we call TeSSLa f , has an additional operator which complements the last operator, but
instead of returning the previous value on the value parameter stream, it will return the following
value on the value parameter stream. This operator will be called next. This is an extension to the
version of TeSSLa known from [CHL+18].

Before we get to the definition of TeSSLa f , we extend our representation of streams. Until now, a
stream had events with values over a data domain at certain timestamps, ⊥ between those events
and at some point ?, which represents that the progress of the stream ended at this point. Thus there
was an invariant which stated that from the first point on where we had ?, there is ? forever on the
stream. While we could keep this notion of streams, every use of the next operator would possibly

90

3.3 Adding a Future Operator to TeSSLa

result in a very early start of ? on the output stream, if the input streams had any ?. Extending
the notion of streams by removing this invariant lets us represent and keep more information by
allowing point-wise ? values followed by other values or ⊥. Therefore, even though the next
operator could be added without lifting the invariant, it makes sense to combine the introduction
of next with lifting the invariant.

Thus, at first, we will lift this invariant from our stream model and allow ? values at arbitrary
places in the stream. We call this type of streams multi-progress streams. Multi-progress streams
are an extension of event streams, allowing the use of ? without any invariants. In these streams,
at each point where something happens on the stream, a triple (t,d,x) represents this, where t is
the timestamp, d the value (may be ⊥ or ?) and x states what follows after t, either ⊥ or ? until
the next triple occurs at a later timestamp. On each stream the first triple is forced at timestamp 0,
which even if there is no event there, either states that the stream starts with ⊥ or ?.

Definition 3.43 (Multi-Progress Streams)

A multi-progress stream over a time domain T and a data domain D is a finite or infinite se-
quence s = a0a1 · · · ∈MD = {0}×D∪{⊥,?}×{⊥,?} ·Xω ∪X∗ where X = T×D∪{⊥,?}×
{⊥,?} where a2i < a2(i+1) for all i with 0 < 2(i+ 1) < |s| (|s| is ∞ for an infinite number of
events).

Note that it is possible to add redundant triples in multi-progress streams, like a subsequence of
two triples (t,⊥,⊥)(t ′,⊥,⊥), where the first states that the current value is ⊥ and the values after
this triple as well, while the second triple is stating the same, which has no effect. But adding such
redundant triples does not add anything to the streams, and the second triple in this case can just be
ignored. But we do not forbid such sequences per definition because it would make the definition
much less readable.

We can again represent a multi-progress stream s as a function s : T→ D∪{⊥,?} as follows

s(t) =

d if s contains (t,d,x)

x, where s contains (t ′,d,x) with @t ′ < t ′′ < t : s contains (t,d′,x′) otherwise

which states that at any timestamp t, there is either a triple (t,d,x) which means the stream has
value d at timestamp t or, if there is no triple, the stream has still the value x of the previous triple,
so is either ⊥ or ? at timestamp t. We will use both representations of multi-progress streams, as a
function and as a sequence of tuples, for the rest of the thesis, depending on what is appropriate.

91

3 Temporal Stream-Based Specification Language

The prefix relation for multi-progress streams is defined similar to the one for event streams. The
difference is, that now at all positions a ? can occurs, independently of what happens afterwards.
As ? is the value with the least knowledge (it is unknown what value will be there), a multi-progress
stream is a prefix of another if it contains at least as many timestamps with ? and the values at all
other timestamps are equivalent.

Definition 3.44 (Prefixes of Multi-progress Streams)

We say a multi-progress stream u ∈MD is a prefix of another multi-progress stream s ∈MD,
uv s, iff the following holds:

∀t ∈ T : u(t) = s(t)∨u(t) = ?

Therefore, according to this prefix relation, the lowest element of multi-progress streams would
still be the stream with no progress, thus the stream s = (0,?,?) and a stream u = (0,⊥,⊥)(2,?,⊥)
would be a prefix of u′ = (0,⊥,⊥)(2,⊥,⊥) and u′′ = (0,⊥,⊥)(2,5,⊥).

Now, we define the syntax of this TeSSLa extension, which is the syntax of TeSSLa with the new
next operator being added.

Definition 3.45 (TeSSLa f Syntax)

Let I be a set of input streams and f be a k-ary function. Then a TeSSLa f specification ϕ is
a system of equations each of the form x := e, where the syntax of each e is given through
the following grammar, with sref being a constant reference to an input stream s ∈ I, which is
interpreted as a stream and y the left hand side of an equation of ϕ:

e ::= nil | unit | s | y | lift(f)(e, . . . ,e) | time(e) | last(e,e) | delay(e,e) | next(e,e).

The only addition is the new next operator as mentioned before. In the following, we define the
semantics of TeSSLa f over multi-progress streams. Therefore, we also update the semantics of
the TeSSLa operators, which updates the parts of the definitions that used the invariant of ? being
final on streams and allows the operators to handle ? at arbitrary positions. This does not effect the
semantics over completed streams, therefore streams without ?, at all, but does change different
parts of the definitions for the operators in the prefix semantics.

92

3.3 Adding a Future Operator to TeSSLa

Concretely for the definition of the general semantics, the only change is that the input and output
streams are now multi-progress streams.

Definition 3.46 (TeSSLa f Semantics)

Let ϕ be a TeSSLa f specification. Then the semantics of the TeSSLa f specification ϕ with
equations y1 := e1, . . . ,yn := en and input streams I over multi-progress streams is the semantic
function JϕKM :MD1×·· ·×MDn →MD′1×·· ·×MD′m and we write JϕKM(I) = O, where O

is the set of output streams after the equations have been evaluated using the input streams in
I. The semantics for the system of equations that is ϕ is given as the least fixed-point of the
equations interpreted as a function of the stream variables and fixed input streams as follows:

JϕKM(I) = µ(Je1KM(I), . . . ,JenKM(I))

The semantics for each single operator is given below.

The language a TeSSLa f specification ϕ represents is given as L(ϕ) = {(I,O) | JϕKM(I) =

O}.

Compared to the prefix semantics, we have to relieve the assumption for the streams that, once a
? occurs on a stream at timestamp t, at all timestamps after t, the stream is also ?. This is what
the multi-progress streams represent. The reason is that for the next operator, we also need to be
able to get unknown values in the beginning or in between because the stream may end before we
get the future values needed to evaluate the next, but values in between the positions where the
next may output something can possibly be calculated still, even though the next may add some ?
before. Without lifting the invariant, using the next would be quite useless, as the output streams
would be ? at most of the timestamps.

Again, we abuse notation and interpret a TeSSLa f formula ϕ directly as a function and write
ϕ(I) = O for JϕKM(I) = O, when it becomes clear from the context that the semantics over multi-
progress streams are used.

To adjust the core functions, we only need to remove the parts which rely on the invariant used in
the prefix semantics.

The only thing which changes for nil is the representation, because ∞ and (0,⊥,⊥) both represent
the stream which is always⊥, only in different types of stream models. As nil has no input stream,
nothing has to be changed regarding the handling of ?.

93

3 Temporal Stream-Based Specification Language

Definition 3.47 (nil Operator on Multi-Progress Streams)

The nil ∈M /0 operator on multi-progress streams is defined as follows:

nil = (0,⊥,⊥)

unit = (0,�,⊥) ∈ MU is the stream with a single unit event at timestamp zero and no other
events. As for nil, this operators also stays the same in all semantics, hence unit(0) = � and
∀0 < t ∈ T : unit(t) =⊥.

Definition 3.48 (unit Operator on Multi-Progress Streams)

The unit ∈MU operator on multi-progress streams is defined as follows:

unit = (0,�,⊥)

As for nil, the changes to the unit operator are only because of the new stream model, unit does
still represent the same stream as before.

Because time was just copying values if no event occurred, it can still do so and the definition does
not change at all. The possibly additional ? values in between on a stream do not interfere with the
way time worked before.

Definition 3.49 (time Operator on Multi-Progress Streams)

The time :MD→MT operator over multi-progress streams is defined as time(s) := z, where z

is defined at every timestamp t ∈ T as follows:

z(t) =

t if t ∈ ticks(s)

s(t) otherwise

lift changes quite a bit compared to the prefix semantics. In the prefix semantics, the premise has
to be kept that once a stream is ?, it stays ? forever. This is not necessary anymore. Thus it can
be decided by the function locally how it handles the ? because there is no premise that has to be
fulfilled over time, which means the function f needs the signature f : D1 ∪{⊥,?}× ·· ·×Dn ∪

94

3.3 Adding a Future Operator to TeSSLa

{⊥,?} → D∪{⊥,?} now. This removes one of the cases the lift had in the prefix semantics and
simplifies the definition of the output stream in the end.

As before, we need to restrict the functions f to those that do not create events, hence

f (⊥, . . . ,⊥) =⊥

but additionally, due to the new stream model, we need another criteria such that the function f is
consistent and does not output more knowledge than it can have due to the inputs, which is done
by the new constraint

∃i : di = ?∧ f (d1, . . . ,di, . . . ,dn) = x∧ x 6= ?⇒∀d′i ∈ Di∪{⊥} : f (d1, . . . ,d′i , . . . ,dn) = x

thus if one of the inputs of a function f is a ? and f outputs something else than a ?, is has to output
the same value independently of the value of the input parameter which was ?, as long as the other
parameters stay the same.

Definition 3.50 (lift Operator on Multi-Progress Streams)

Let f : D1∪{⊥,?}×· · ·×Dn∪{⊥,?}→D∪{⊥,?} be a non-creating function on n data values,
which fulfils

∃i : di = ?∧ f (d1, . . . ,di, . . . ,dn) = x∧ x 6= ?⇒∀d′i ∈ Di∪{⊥} : f (d1, . . . ,d′i , . . . ,dn) = x

The lift : (D1∪{⊥,?}×·· ·×Dn∪{⊥,?}→D∪{⊥,?})→ (MD1×·· ·×MDn→MD) operator
over multi-progress streams is defined as lift(f)(s1, . . . ,sn) := z, where z is defined at every
timestamp t ∈ T as follows:

z(t) = f (s1(t), . . . ,sn(t))

As for the lift, again the parts can be taken out that were necessary to secure the premise of the
prefix semantics in the definition of the last operator. Instead we have to check that no ? occurred
after the last value on v. This is already done implicitly by the isLast predicate. Thus the only
change to be made is in the ⊥ case by simply removing the defined predicate, which exactly took
care of the invariant.

Definition 3.51 (last Operator on Multi-Progress Streams)

The last :MD×MD′ → SD operator over multi-progress streams is defined as last(v,r) := z,

95

3 Temporal Stream-Based Specification Language

where z is defined at every timestamp t ∈ T as follows:

z(t) =


d t ∈ ticks(r) and ∃t ′<t isLast(t, t ′,v,d)

⊥ r(t) =⊥ or ∀t ′<tv(t ′) =⊥

? otherwise

where
isLast(t, t ′,v,d)⇔ v(t ′) = d∧∀t ′′|t ′<t ′′<tv(t

′′) =⊥

The definition of the delay operator has to be changed in the same way as for the last. When a
� is outputted, the definition already takes care that no ? occurs on r in between by the noreset

predicate. Only in the ⊥ case, we again have to remove the defined predicate and leave the rest of
the condition as it was.

Definition 3.52 (delay Operator on Multi-Progress Streams, [CHL+18])

The delay :MT\{0}×MD→MU operator over Multi-Progress streams is defined as delay(d,r) :=
z, where z is defined at every timestamp t ∈ T as follows:

z(t) =


� ∃t ′<td(t ′) = t− t ′∧ setable(z,r, t ′)∧noreset(r, t ′, t)

⊥ ∀t ′<td(t ′) 6= t− t ′∧d(t ′) 6= ?∨unsetable(z,r, t ′)∨ reset(r, t ′, t)

? otherwise

where

setable(z,r, t ′)⇔ z(t ′) =�∨ t ′ ∈ ticks(r)

reset(r, t, t ′)⇔∃t ′′|t<t ′′<t ′t
′′ ∈ ticks(r)

unsetable(z,r, t ′)⇔ z(t ′) =⊥∧ r(t ′) =⊥

noreset(r, t, t ′)⇔∀t ′′|t<t ′′<t ′r(t
′′) =⊥

By now, we updated all original TeSSLa operators semantics to the multi-progress streams. Lastly
in this section, after changing the TeSSLa operators accordingly, we now define the new operator
which allows us to specify future references in the same way as the last does for past references.
Every time an event occurs on its second input stream, it outputs the value of the following future
event on the first input stream.

96

3.3 Adding a Future Operator to TeSSLa

Definition 3.53 (next Operator)

next :MD×MD′ →MD with next(v,r) := z takes a value stream v and a trigger stream r.
Formally, z is defined for every t ∈ T as follows:

z(t) =


d t ∈ ticks(r) and ∃t ′ > t : isNext(t, t ′,v,d)

⊥ r(t) =⊥

? otherwise

where isNext(t, t ′,v,d)⇔ v(t ′) = d∧∀t ′ > t ′′ > t : v(t ′′) =⊥ holds if t ′d is the following event
on v after t.

As one can see, compared to the last operator, next is defined very similar, mostly the greater than
and less than signs at the timestamp quantifications have turned into the other one.

Before moving to an example for the fixed-point calculations for TeSSLa f , let us first give two
examples of lifted functions, which now has to take care of the ? as well. The first one is the merge
again, while the second one is an if-then-else.

Example 3.54 (merge in TeSSLa f)

In TeSSLa f , each lifted function has to consider the ? case as well. For the merge this is defined
formally as

merge(x,y) := lift(f)(x,y)

with

f (a,b) =

a if a 6=⊥

b otherwise

In the case of merge, we do not have to change anything, because the only constraint regarding
the ? is, that if one input stream is ? and the other is not ?, then the output should not change if
the input stream with the ? has a different value in the same situation. And this always holds for
the merge, if a is ?, the output is ? and if b is ? then it only changes something if a is ⊥ and then
the output is also ?.

Example 3.55 (ifThenElse in TeSSLa f)

In TeSSLa f we defined an if-then-else as

ifThenElse(b,x,y) := lift(f)(b,x,y)

97

3 Temporal Stream-Based Specification Language

with

f (b,x,y) =


x if b = tt

y if b = ff

b otherwise

If there is an event on b, either the value of x or y is outputted depending on the truth value on
b. If there is no event on b, its value is copied to the output stream, therefore either ⊥ or ?.

The following example shows how the next operators works and how least fixed-points are calcu-
lated using it.

Example 3.56 (Calculations with next)

Consider the equation
y =merge

(
lift
(
+
)(

next(y,x),x
)
,d
)

where d = (0,⊥,⊥)(42,0,⊥).

The equation can be seen as function of y with fixed input stream x = (0,⊥,⊥)(2,2,⊥)(4,4,⊥).
To compute the least fixed-point of this function we start with the empty stream y0 = (0,?,?).
We than have

next(y,x) = (0,⊥,⊥)(2,?,⊥)(4,?,⊥)

lift
(
+
)(

next(y,x),x
)
= (0,⊥,⊥)(2,?,⊥)(4,?,⊥)

merge
(
lift
(
+
)(

next(y,x),x
)
,d
)
= (0,⊥,⊥)(2,?,⊥)(4,?,⊥)(42,0,⊥)

For the next iteration we start with y1 = (0,⊥,⊥)(2,?,⊥)(4,?,⊥)(42,0,⊥):

next(y,x) = (0,⊥,⊥)(2,?,⊥)(4,0,⊥)

lift
(
+
)(

next(y,x),x
)
= (0,⊥,⊥)(2,?,⊥)(4,4,⊥)

merge
(
lift
(
+
)(

next(y,x),x
)
,d
)
= (0,⊥,⊥)(2,?,⊥)(4,4,⊥)(42,0,⊥)

For the next iteration we start with y2 = (0,⊥,⊥)(2,?,⊥)(4,4,⊥)(42,0,⊥):

next(y,x) = (0,⊥,⊥)(2,4,⊥)(4,0,⊥)

lift
(
+
)(

next(y,x),x
)
= (0,⊥,⊥)(2,6,⊥)(4,4,⊥)

merge
(
lift
(
+
)(

next(y,x),x
)
,d
)
= (0,⊥,⊥)(2,6,⊥)(4,4,⊥)(42,0,⊥)

98

3.3 Adding a Future Operator to TeSSLa

For the next iteration we start with y3 = (0,⊥,⊥)(2,6,⊥)(4,4,⊥)(42,0,⊥):

next(y,x) = (0,⊥,⊥)(2,4,⊥)(4,0,⊥)

lift
(
+
)(

next(y,x),x
)
= (0,⊥,⊥)(2,6,⊥)(4,4,⊥)

merge
(
lift
(
+
)(

next(y,x),x
)
,d
)
= (0,⊥,⊥)(2,6,⊥)(4,4,⊥)(42,0,⊥)

So we have reached a fixed-point.

Note that y0 v y1 v y2 v y3 regarding the prefix relation.

99

4 Language Theoretic Results

Contents

4.1 General Properties and Computability 101

4.2 Well-formedness . 104

4.3 Expressiveness of TeSSLa and the delay Operator 108

4.3.1 TeSSLa without delay . 108

4.3.2 TeSSLa with delay . 114

4.4 Expressiveness of TeSSLa with next . 119

4.4.1 TeSSLa f without delay . 123

4.4.2 TeSSLa f with delay . 125

4.5 Conclusion . 127

In this section we present results regarding the complete TeSSLa language, taking a look at the
structure of formulas and what kind of formulas we consider in this thesis, as well as making
statements about the expressiveness the different operators deliver, considering fragments with
and without the delay operator. These results have been published in [CHL+18]. Additionally, we
show which additional formulas we can express when adding the next operator, thus considering
TeSSLa f formulas, also with and without delay.

4.1 General Properties and Computability

We start off stating that the least fixed point of a TeSSLa specification always exists. This follows
from the fact that event and multi-progress streams form a dcpo (L,v) with L = SD1 ×·· ·×SDn

and a least element 0 or L =MD1 × ·· ·×MDn with a least element (0,?,?), for event or multi-
progress streams, respectively. By applying the Kleene fixed point theorem (Theorem 2.4), we
get:

101

4 Language Theoretic Results

Proposition 4.1 (Least Fixed Point in TeSSLa and TeSSLa f)

The least fixed point for a TeSSLa and TeSSLa f specification always exists.

We go on describing two properties of TeSSLa f , and therefore also TeSSLa, in general. We can
observe that all seven basic operators nil, unit, time, lift, last, delay and next are monotonic and
continuous. From the fact that both properties are closed under composition and that the smallest
fixed-point is determined by the Kleene chain, we can therefore conclude:

Lemma 4.2 (Basic Properties of TeSSLa f semantics, [CHL+18])

The semantics of TeSSLa f is monotonic and continuous in the input streams.

This means that a TeSSLa and TeSSLa f specification represents nothing else than a stream trans-
formation. In other words, the semantics will provide an extended result for an extended input and
is therefore suited, for example, for online analysis and monitoring.

Another important observation for TeSSLa is that the pre-fixed-points on the Kleene chain have
the property that the progress only increases a finite number of times until a further event has to
be appended. This means that after a finite computation time, a new event has to be outputted, the
stream ends (? for the rest of the stream) or the progress is infinite (⊥ for the rest of the stream).
This is due to the basic functions that do handle progress in this way.

We therefore obtain:

Theorem 4.3 (Computability and Computation Time of TeSSLa Semantics, [CHL+18])

For a specification ϕ the following two statements hold:

1. Every finite prefix of ϕ(s1, . . . ,sk) can be computed assuming all lifted functions are com-
putable.

2. Assuming the basic operators nil, unit, time, last and delay and all lifted functions are
computable in O(1) steps, a finite prefix can be computed in O(k|ϕ|) steps where k is the
number of events over all involved streams.

Proof. The TeSSLa operators nil, unit, time, last and delay are computable on their own. The
lift operator just applies a function on values to every value of some streams, which makes lift
computable as long as the function it lifts is computable. Because TeSSLa specifications are just

102

4.1 General Properties and Computability

a composition of TeSSLa operators and computability is compositional, TeSSLa specifications are
also computable as long as the lifted functions are. This proves statement 1.

For the second statement, let us first view the lift operator in more detail. As this operator does
nothing more than applying the lifted function to every event on the input streams and we assume
that all lifted functions only need O(1) steps to be computed, so does lift. For all other TeSSLa
operators nil, unit, time, last and delay, we already assume that they process an event in O(1)
steps (or do not process events at all in case of nil and unit). So if k is the overall number of
all events on all streams, it is the number of events which have to be processed by the TeSSLa
operators in a specification ϕ , which all need O(1) steps per event. Hence a finite prefix can be
computed in O(k|ϕ|).

Note that in case the specification contains no delay, output streams cannot contain any such
timestamps that did not occur already in the inputs. Further note, that fixed-points might contain
infinitely many positions with data values (in case of delay) and we can thus only compute prefixes.
A respective monitor would exhibit infinite outputs even for finite inputs. An example for this can
be seen in Example 4.4.

Example 4.4 (Creating events with delay)

Consider the following TeSSLa specification:

x := const(1,merge(delay(x,unit),unit))

This specification does not depend on any input stream and still x is a stream which contains
an event every 1 time unit beginning with timestamp 1. Thus x contains an infinite number of
events.

x
0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

10
1

Next, consider the following specification:

x :=merge
(

last(x,delay(x,unit))
2

,1
)

This specification always divides the last value on x by 2 when the delay emits an event, hence it
always halves the next delay value. This results in a stream whose events timestamps converge
to the timestamp 1 but never reach it.

103

4 Language Theoretic Results

x
0
1

1
2

1
2

3
4

3
4

7
8

7
8

15
16

15
16

31
32

31
32

63
64

63
64

delay(x,unit)
1
2

�
3
4

�
7
8

�
15
16

�
31
32

�
63
64

�

last(x,delay(x,unit))
1
2

1
3
4

1
2

7
8

3
4

15
16

7
8

31
32

15
16

63
64

31
32

Due to Lemma 4.2 we can reuse a previously computed fixed-point for a prefix if new input events
occur and hence also compute the outputs incrementally by extending this prefix.

4.2 Well-formedness

Until now, we allowed any possible equation which can be build through using the six basic op-
erators, constants and other equations names in a TeSSLa specification. But some and some com-
binations of these have multiple or even an infinite number of fixed-points. The simplest of those
is the equation

x := x

which can be solved by assigning any possible stream to x. Also in such cases, the least fixed-point
is often the stream without any progress or some other stream with too little progress and one would
be interested in greater, for example the maximal, fixed-point, because otherwise, information
may be ignored and, for the case of runtime verification, errors could not be detected as soon as
possible.

In general, the user is interested in getting as much information as possible out of a monitoring
system and therefore, about the software under scrutiny. Since maximal fixed-points would be
more difficult to compute, especially in the setting of online monitoring, having only a single
fixed point and being able to compute the least fixed point, may also be important for monitoring
systems with limited computational power, like an FPGA. For these reasons, we define a fragment
for which a unique fixed-point exists. At first, let us define what a dependency graph of a TeSSLa
specification is.

104

4.2 Well-formedness

Definition 4.5 (Dependency Graph of TeSSLa Specifications, [CHL+18])

The dependency graph of a flat TeSSLa specification ϕ of equations yi := ei is the directed edge-
labelled graph G = (V,E) of nodes V = {y1, . . . ,yn}. For every yi := ei the graph contains the
edge (yi,y j, l) ∈ E every time y j is used in ei and

l =

delayed if ∃k : ei = last(y j,yk)∨ ei = delay(y j,yk)

ε otherwise

such that edges are labelled corresponding to the first argument of last or delay with delayed.

The following example shows the dependency graph for a given TeSSLa specification. In case of
labelling an edge with the empty word ε , we will write no label on the corresponding edge.

Example 4.6 (Dependency Graph of a TeSSLa Specification)

Consider the specification

cond= slift(≤)(time(resets), time(values))

lst=merge(last(sum,values),zero)

sum= slift(f)(cond, lst,values)

from Examples 3.22 and 3.38 again. To build the dependency graph for this specification, we
have to flatten it first. The flattened specification is the following, where we assume that merge,
merge and zero are core operators, which means we will not split those into their definition using
only core operators as we would have to do normally, to keep the size reasonable.

a= time(resets)

b= time(values)

cond= slift(≤)(a,b)

c= last(sum,values)

lst=merge(c,zero)

sum= slift(f)(cond, lst,values)

The dependency graph for this specification can then be seen in Figure 4.1.

Using dependency graphs for TeSSLa specifications, we define now the property of well-formed

105

4 Language Theoretic Results

sum

cond lst

c zerob

values

a

resets

delayed

Figure 4.1: Shows the dependency graph for the TeSSLa specification given in Example 4.6. The
yellow boxes denote input streams, the blue ones constants and the red ones TeSSLa
operators. The red boxes with bold text in it are expressions with only core operators
while the other ones represent functions which are build from core operators but are
not considered into more detail in this graph.

TeSSLa specifications, which restricts TeSSLa specifications to those with unique fixed points.

Definition 4.7 (Well-formedness of TeSSLa specifications, [CHL+18])

We call a TeSSLa specification ϕ well-formed if every cycle (e1,e2, l1), . . . ,(en,e1, ln) of the
dependency graph G= (V,E) in the flattened specification contains at least one delayed-labelled
edge such that ∃1≤ i≤ n : li = delayed.

Well-formedness forbids two types of specifications. First, every specification needs to have a last
or delay in every cycle in the equations such that the cycle goes through the first parameter of those
operators, so only older values can be referenced in a cycle. While the last just takes the previous
value on the stream which is the first parameter, the delay works for such cycles because its first
parameter sets a timeout in the future, so it has no effect on the current fixed-point calculated for
the prefix. Second, it also forbids cycles which involve the second parameter of a last or delay in
the specification, besides if the second parameter is again one of these two operators with the cycle
going through its first parameter.

The following example shows four specifications and discussed the well-formedness of these
four.

106

4.2 Well-formedness

Example 4.8 (Well-formed Specifications)

Let a be an input stream. Consider the four TeSSLa specifications given next:

1.

x := y

y := x

2.

x := y

y := last(x,x)

3.

x := y

y := last(a,x)

4.

x := y

y := last(x,a)

Specifications 1. to 3. are not well-formed, while 4. is. For 1. and 2., the reason for not
being well-formed is that the value of x directly depends on itself for any given timestamp.
The same holds for 3., the last only outputs an event when an event occurs on the second input
stream, in this case, x. Therefore, x only has an event in this specification when it has an event,
which means, events can be placed arbitrarily on x, they just need the previous value of a to
fulfil the specification. Thus, more than one fixed point exists. In 4., a and x are swapped as
parameters of the last. This means, that the timestamps at which x has an event now depend
on the events on a and only the value of those depends on the previous value on x, not the current.

Additionally, the specification given in Example 4.6 is also well-formed, because it has a delayed

labelled edge in each circle in the dependency graph.

Next we show that the well-formed constraint for TeSSLa solves the fixed-point problems we
mentioned at the beginning of this section, as stated in the following theorem.

Theorem 4.9 (Well-formed Specifications and Fixed-Points, [CHL+18])

Given a well-formed TeSSLa specification ϕ of equations yi := ei and input streams s1, . . . ,sk,
then the fixed point of ϕ(s1, . . . ,sk) is unique.

Proof. Assume we have calculated the least fixed-point O and a second fixed-point P with O 6= P

for ϕ on input s1, . . . ,sk. Now P must be greater than O, because O is the least fixed-point. Addi-
tionally, assume ϕ is flat, because very TeSSLa specification can be transformed into a semantically
equivalent one.

107

4 Language Theoretic Results

Each cycle on the dependency graph now corresponds to a certain subset of the expressions in ϕ .
Because ϕ is well-formed, at least one of those entries must be either last or delay. We call this
entry yi. For both fixed-points, the value evaluated for yi has to stay the same once the fixed-point
is reached and in the case where yi is the only equation with a last or delay in that cycle, it has
to hold that the calculated fixed-point value for yi for O has to be smaller than the one for P. But
this is a contradiction to yi being either an expression with last or delay, because both operators
are defined such that they refine their input unless a fixed-point is reached: an output event at a
timestamp t is calculated for both operators independently of their input streams at t regarding the
input streams involved in the recursion, because the trigger streams can not be recursive (because ϕ

is well-formed). Therefore, both operators output more progress than the input has. As mentioned
before, both last and delay refine their outputs until the maximal progress is reached and also no
other operator can cut the progress earlier, because all TeSSLa operators are monotonic. Overall
this means that always the maximal progress of the whole recursion is calculated and therefore the
maximum fixed-point of the Kleene-chain is always reached.

4.3 Expressiveness of TeSSLa and the delay Operator

In this and the next section, we will take a look at the expressiveness of TeSSLa and state which
types of functions TeSSLa can express. In this section, we take a closer look at the delay oper-
ator, while the following section will take a closer look at the next operator in TeSSLa f . At the
end of this chapter, an overview graphic is given in Figure Figure 4.3, representing all fragments
considered and its relations to each other.

The delay operator is quite an interesting one in terms of TeSSLa because its only purpose is to
schedule timeouts for events being outputted in the future.

At first, we consider TeSSLa without the delay operator and after that, we take a look at what the
delay operators adds to TeSSLa.

4.3.1 TeSSLa without delay

TeSSLa without the delay operator, which we will call TeSSLa−d for short, can do everything
besides setting timeouts. The main ability this removes from TeSSLa is the one to output events
with timestamps that did not occur on events in any of the input streams. The following theorem

108

4.3 Expressiveness of TeSSLa and the delay Operator

states what kind of stream transformations can be expressed with TeSSLa that is missing the delay
operator.

Before getting to the theorem stating the expressiveness, let us first state that continuity contains
the fact that every prefix with a finite number of events of the result of a stream transformation
can be calculated stepwise with only seeing a prefix of the input streams containing only a finite
number of events. We call this property finitely progressive and then prove that it is included in
continuity, hence, every stream transformation has it.

Definition 4.10 (Finite Progressiveness)

We call a stream transformation f : SD1 × ·· ·×SDn → SD′1 × ·· ·×SD′m finitely progressive iff
for all s1, . . . ,sn with f (s1, . . . ,sn) = u1, . . . ,um and for all t1, . . . , tm ∈ T∞ with |ui|ti| ∈ N, there
exists t ′1, . . . , t

′
n ∈ T∞ with |si|t ′i | ∈ N such that

f (s1|t ′1, . . . ,sn|t ′n) = u′1, . . . ,u
′
m⇒∀1≤ i≤ m : ui|ti v u′i

To show the meaning of the previous definition, the following example explains how finite pro-
gressiveness works on a concrete set of input and output streams for the specification of the running
example.

Example 4.11 (Finite Progressiveness)

Consider the streams specified in Figure 4.2 which show the stream transformation from the
Examples 3.22 and 3.38 as well as the input and output streams cut at certain timestamps. In the
formal definition of finite progressiveness, this stream transformation can be written as

f (values, resets) = cond,sum

The stream transformation is finitely progressive. To show that, we would need to cut the output
at every possible pair of timestamps. As an example, we do it for one pair of timestamps here.
We cut the output streams at timestamps 8 and 6, respectively, and the results are cond|8 and
sum|6 as shown in the figure. The idea of finite progressiveness is now that all cuts of the
output which result in a finite number of events, as the given cut is, are outputted by the stream
transformation after seeing only a finite number of events on the input streams. Therefore, a cut
has to exists on the input streams, outputting a suffix of cond|8 and sum|6. Such a cut is found
when cutting the input streams at 9 and 10, respectively, therefore values|9 and resets|10, which

109

4 Language Theoretic Results

values 1
3

2.3
2

3.7
4

4.6
7

5.8
3

7.5
1

8.3
3

resets
1 7

cond 1
tt

2.3
ff

3.7
ff

4.6
ff

5.8
ff

7
tt

7.5
ff

8.3
ff

sum
1
0

2.3
2

3.7
6

4.6
13

5.8
16

7
0

7.5
1

8.3
4

cond|8 1
tt

2.3
ff

3.7
ff

4.6
ff

5.8
ff

7
tt

7.5
ff

sum|6 1
0

2.3
2

3.7
6

4.6
13

5.8
16

Figure 4.2: Figure 3.2 expanded by two cuts for cond and sum to show how finite progressiveness
works. It can be seen that cond|8 and sum|6 are prefixes of cond and sum.

results in the original input streams values and resets and output the original output streams cond
and sum, which are a suffix of cond|8 and sum|6.

The following lemma states that every stream transformation is finitely progressive.

Lemma 4.12 (Finite Progressiveness and Stream Transformations)

Every stream transformation is finitely progressive.

Proof. A function f is continuous iff
∨

f (D) = f (
∨′D), which means it is equivalent iff we take

the supremum after calculating every output of f for a set of inputs D or calculating the supremum
first and then apply f to it. Now consider streams s1, . . . ,sn and all the prefixes of them. The
supremum of the prefixes of one si is obviously si again. Because f is continuous, the outputs,
when inputting all the prefixes in f , have to be the way such that the supremum of the outputs is
the same as if we input s1, . . . ,sn in f . This means especially, that for all prefixes of the output
streams until a finite timestamp it has to hold that there have to be prefixes of the input streams until
a finite timestamp such that, when inputting those prefixes, a suffix of the given output-prefixes has
to be output. Otherwise, f would not be continuous, because

∨
f (D) = f (

∨′D) would not hold.
But this is also the criteria for being finitely progressive, which means therefore it follows that, if
f is continuous, it is also finitely progressive. Because every stream transformation is continuous,
it is also finitely progressive.

110

4.3 Expressiveness of TeSSLa and the delay Operator

Now using the previous lemma, we can prove the following theorem, which states that TeSSLa−d

allows us to exactly express all stream transformations that are timestamp conservative and future
independent.

To show that there is a behavioural equivalent stream transformation for all timestamp conservat-
ive and future independent stream transformations which can be expressed by TeSSLa, the proof
uses a representation of the stream transformation as an iterative function, which is similar to
how evaluation strategies work. Using this representation, the timestamp conservative and future
independent stream transformation can be translated into a TeSSLa specification which first syn-
chronizes the input events using a merge and applying the iterative function, while using a last to
simulate the memory.

The other direction in the proof follows directly from the definitions of the two properties and the
TeSSLa operators.

Theorem 4.13 (Expressiveness of TeSSLa−d , [CHL+18])

For every stream transformation f : SD1 × . . .×SDk → SD′1 × . . .×SD′n there is a behavioural
equivalent stream transformation f ′ that can be represented as a TeSSLa−d specification iff f

is

• timestamp conservative and

• future independent.

Proof. First, we show that for every stream transformation f , a behavioural equivalent stream
transformation f ′ exists, which can be represented as a TeSSLa specification, if f has the two
mentioned properties.

It follows from Lemma 4.12 that the stream transformation f can be represented as the iterative
function f̃ : M∪{⊥}× (D1∪{⊥}× . . .×Dk∪{⊥})n×T→M with f̃ (m,d, t) = m′, which takes
a parameter m, called the memory state, the current input values d, and the corresponding current
timestamp t and returns the new memory state m′. This holds because the lemma states that the
output for a given set of input streams can be calculated step-wise, therefore, for every prefix
created by cutting the output streams after a finite amount of time, there are also finite timestamps
to cut the input streams such that a suffix of this prefix is outputted. This means that we will either
reach the output for the set of input streams at some point or converge to it as being a supremum
of the prefixes we calculated and that values we calculate step-wise will not be changed later.

111

4 Language Theoretic Results

Based on this memory state the function õ : M→ D′1∪{⊥}× . . .×D′n∪{⊥} provides the output
events for all output streams.

Because f is monotonic it is sufficient to compute the output events step by step and because f is
future independent it is sufficient to allow f̃ to store arbitrary information about the past events.
Additionally, because f is timestamp conservative it is sufficient to execute f̃ for every timestamp
in the input events. Using this representation of f and the fact that we do not have to care about the
progress because f ′ is behavioural equivalent to f , we can translate f ′ into the following equivalent
TeSSLa specification with input variables x1, . . . ,xk and output variables y1, . . . ,yn:

t := time(merge(x1, . . . ,xk,unit))

m := lift(f̃)(last(m, t),x1, . . . ,xk, t)

∀i≤n yi := lift(õi)(m)

The unit is necessary to be able to have an event at timestamp 0. This shows the first direction.

Next, we show the other direction, therefore, that each TeSSLa−d specification can be represented
by a stream transformation f that is timestamp conservative and future independent.

This direction follows immediately from the fact that due to Lemma 4.2 TeSSLa is monotonic
and continuous and from the fact that every TeSSLa−d specification is timestamp conservative
and future independent. This is true because besides the delay, no operator can create events at
timestamps at which no input stream had an event, and thus timestamp conservatism follows, and
because no operator at all in TeSSLa can access future information, from which future independ-
ence follows.

In the following example we will consider a stream transformation which is timestamp conser-
vative and future independent, but can not be expressed using TeSSLa−d . This shows that the
behavioural equivalence is really needed in the statement the previous theorem makes.

Example 4.14 (Expressiveness of TeSSLa without delay)

Consider the stream transformation f : SD→SD′ with

f (s)(t) =

? if ∃t ′ < t : s(t ′) ∈ D∧ t ≥ t ′+ s(t ′)∧@t ′′ < t ′ : s(t ′′) ∈ D

⊥ otherwise

This stream transformation never outputs an event, but instead only generates exclusive progress

112

4.3 Expressiveness of TeSSLa and the delay Operator

until the timestamp which is the sum of the timestamp and the value of the first event. For a given
input stream s it would generate the following output stream:

s
2
5

5
4

8
2

f (s)

Because at timestamp 2 the first event occurs on s and its value is 5, the output stream has
progress until timestamp 7.

This stream transformation can not be expressed using TeSSLa−d , because there is no possibility
to reference the timestamp 7 without having an event there. Still, f is future independent and
timestamp conservative. But there is a behavioural equivalent stream transformation f ′ with

f ′(s) = nil

which can obviously be expressed by TeSSLa.

The statement of the previous theorem is quite weak in terms of what kind of progress can be
expressed using TeSSLa, because a behavioural equivalent function ignores every progress. But
we can make a stronger statement regarding the progress of the behavioural equivalent stream
transformations that TeSSLa can express, which is given in the following theorem.

Theorem 4.15 (Progress of TeSSLa Without Delay)

The progress of every output stream s for a stream transformation that can be expressed by
TeSSLa−d is at least the minimal progress of all input streams to which a path exist from s in
the dependency graph of the given specification.

Proof. Because TeSSLa operators are compositional, we only need to show that the statement
holds for every single operator, thus, every operator needs to output at least the minimal progress
of its input streams. For nil and unit this does hold trivially, because these operators do not have
input streams. For time it holds, because just the values of the events are changed, so the progress
is just copied by the operator. The lift operator directly outputs ? if at least one of its input streams
is ?, therefore it outputs exactly the minimum of the progress of its input streams. For the last,

113

4 Language Theoretic Results

according to the definition, the progress of the output stream can not end until the progress of at
least one of the input streams ended.

The previous theorem stated that every output stream of a TeSSLa−d specification has at least as
much progress as the minimum progress of the input streams it depends on is. The next example
shows a stream transformation that has more progress than the minimal progress of the input
streams without having complete progress like nil or unit.

Example 4.16 (Progress of TeSSLa−d)

Consider a TeSSLa specification
x := last(a,b)

where a and b are input streams. Depending on how the input streams behave, this specification
may output more progress than the minimal progress of the input streams:

a
2
5

b 3 6 8

x
3
5

Even though a has only progress up to timestamp 4, if no trigger and therefore an event on b

occurs, we know that we would not output anything. Thus, x stays ⊥ until an event occurs on b

at timestamp 6.

4.3.2 TeSSLa with delay

In the previous section we showed which kind of stream transformations TeSSLa without delay
operator can express and how much progress it outputs at least. As next step, we now take a
look at full TeSSLa (which is stated sometimes as TeSSLa with delay here to explicitly state that
delay is now included). As stated before, without the delay only stream transformations which
are timestamp conservative and future independent can be expressed by TeSSLa. The following
theorem states that exactly the restriction of timestamp conservatism is lifted when the delay is
included into TeSSLa.

114

4.3 Expressiveness of TeSSLa and the delay Operator

The proof uses the same technique as the proof for Theorem 4.13 and adds a new timeout function
inside the step function to allow for outputting new events at timestamps on the output streams
which have not already been in the input streams. Using this step function and a delay operator, we
can again represent a behavioural equivalent function f ′ for f as a generic TeSSLa specification.

Theorem 4.17 (Expressiveness of TeSSLa With Delay, [CHL+18])

For every stream transformation f : SD1 × . . .×SDk → SD′1 × . . .×SD′n there is a behavioural
equivalent stream transformation f ′ that can be represented as a TeSSLa specification iff f is

• future independent.

Proof. Again, because of Lemma 4.12, we can represent f as an iterative step-function. By
removing the timestamp conservatism requirement we need to accompany the step-function f̃

and the output function õ from Theorem 4.13 with a timeout function ũ which is evaluated on
every new memory state and can return the timestamp of the next evaluation of f̃ if no input
event happens before. One timeout function is sufficient because the step-function f̃ can perform
arbitrary computations and store an arbitrary state in order to simulate multiple timeouts.

Using this representation and the fact that we do not have to care about the progress because f ′ is
behavioural equivalent to f , we can translate f ′ into the following equivalent TeSSLa specification
with input variables x1, . . . ,xk and output variables y1, . . . ,yn:

t := time(merge(x1, . . . ,xk,unit,delay(d,merge(x1, . . . ,xk,unit))))

d := time(t)− lift(ũ)(m)

m := lift(f̃)(last(m, t),x1, . . . ,xk, t)

∀i≤n yi := lift(õi)(m)

The unit operators are again needed to be able to have an event at timestamp 0 and to possibly
start a timeout with the delay at timestamp 0.

The other direction follows again directly from Lemma 4.2 which states that TeSSLa is monotonic
and continuous and the fact that also the delay is future independent. As every other TeSSLa
operator, it is not able to access any future information.

Informally, TeSSLa with delay can now also express stream transformations which are not timestamp
conservative, but is still limited to stream transformations which are future independent, because

115

4 Language Theoretic Results

even the delay operator does not need any value from later inputs to output a value now and also
is not able to consider future values.

In the following example we again consider the stream transformation from Example 4.14.

Example 4.18 (Expressiveness of TeSSLa with delay)

As an intuitive example, reconsider the stream transformation f : SD→SD′ with

f (s)(t) =

? if ∃t ′ < t : s(t ′) ∈ D∧ t ≥ t ′+ s(t ′)∧@t ′′ < t ′ : s(t ′′) ∈ D

⊥ otherwise

from Example 4.14. Even TeSSLa including the delay operator can not express f . Even though
one could possibly try to set a timeout when the first event on s happens with the correct delay,
we have no reset stream for the delay operator to trigger the event without modifying the pro-
gress of the output stream.

Next, we again make a stronger statement about the progress TeSSLa specifications output at least,
this time including the delay.

Theorem 4.19 (Progress of TeSSLa With Delay)

The progress of every output stream s for a stream transformation that can be expressed by
TeSSLa with delay is at least the minimal progress of all input streams to which a path exist
from s in the dependency graph of the given specification.

Proof. As the delay is compositional as well, it remains to prove that it also outputs at least the
minimum of the progress from its input streams. This is the case because, like the last, the delay
is defined in a way such that it can not output a ? as long as no input stream had a ?.

The previous theorem stated that also every output stream of a TeSSLa specification has at least
as much progress as the minimum progress of the input streams it depends on is. The following
example shows a stream transformation that has more progress than any of its input streams without
having complete progress like nil or unit.

Example 4.20 (Progress of TeSSLa With Delay)

Consider a TeSSLa specification

x :=merge(delay(const(x,a),unit),unit)

116

4.3 Expressiveness of TeSSLa and the delay Operator

where a is an input stream. Now assume a to be the following stream:

a
0
2

x
0 2 4 6

Even though a has only progress up to timestamp 5, this specification creates progress up to
timestamp 6, because without a reset happening, it does not matter for the delay if the first input
stream still has progress or not if a timeout is already set.

Note that with the delay operator it is possible to construct Zeno streams because the timeout
function is not restricted in any way. An example for this was already given with the second stream
in Example 4.4. By Rice’s theorem it is impossible to check for an arbitrary timeout function
whether it only generates non-Zeno timestamp sequences, because this is a semantics property.
Hence, one would need to restrict allowed timeout functions more drastically, which would restrict
the possible event sequences generated by a TeSSLa specification further than necessary. For that
reason we decided to include the capability to generate zeno streams with TeSSLa.

Next we state that it does not matter if we are allowed to use only one delay in a property or
multiple. This follows as a consequence of Theorem 4.17 because the generic TeSSLa specification
given there only needs one delay to express any given function.

Corollary 4.21 (Specifications with Multiple delay Operators, [CHL+18])

A TeSSLa specification with multiple delay operators can be translated into an equivalent spe-
cification with only one delay operator.

TeSSLa with and without delay are closely related because TeSSLa without delay can verify the
relation of given input/output streams with respect to a TeSSLa specification that uses the delay
operator. Therefore, if we consider a TeSSLa specification ϕ , we can build a TeSSLa−d specifica-
tion ψ such that if we insert two sets of streams into ψ , it can output a boolean stream indicating if
the second set would be the correct set of output streams of ϕ when inputting the streams from the
first set. The delay is only needed to actively generate the events at specified times while TeSSLa
without it can still check if the timeouts happened at the correct timestamps. In the following we
want to state formally in a theorem that this can be done and show constructively in the proof how
such a TeSSLa−d specification ψ can be build for a given TeSSLa specification ϕ .

117

4 Language Theoretic Results

For this purpose, we denote with ϕ|y(x1, . . . ,xk) ∈ B the boolean function indicating whether the
boolean output stream y ∈ SB of the TeSSLa specification ϕ contains only events with value tt for
the input streams x1, . . . ,xk ∈ SD1× . . .×SDk .

Following Corollary 4.21, TeSSLa specifications with one or multiple delay operators are equally
expressive, which we use in the proof of the following theorem. Furthermore, the following the-
orem is closely related to Theorem 4.13, which already proves that a specification ϕ ′ has to exist,
but the following theorem also shows how such a specification can be build constructively.

Informally, the proof creates a specification which checks the correctness of the outputted events
by the delay operator by keeping an eye on the reset and delay streams and checks the behaviour
if the output stream of the delay has an event.

Theorem 4.22 (Delay Elimination, [CHL+18])

For every TeSSLa specification ϕ with ϕ ∈ SD1× . . .×SDk →SU×SD′1× . . .×SD′n with delay
operators, there exists a TeSSLa specification ϕ ′ without a delay operator, which derives a
boolean stream z∈ SB, such that for any given input streams x1, . . . ,xk ∈ SD1× . . .×SDk and any
given output streams y1, . . . ,yn ∈SD′1× . . .×SD′n and any stream d ∈SU we have ϕ(x1, . . . ,xk) =

d,y1, . . . ,yn iff ϕ ′|z(x1, . . . ,xk,d,y1, . . . ,yn) where d is the stream derived immediately through
the delay operator.

Proof. We know from Corollary 4.21 that TeSSLa specifications with multiple delay operators
can be translated into specifications with only one delay operator. Thus we assume that ϕ has only
one delay operator, otherwise we would transform it into one.

We construct the validating specification ϕ ′ from the generating specification ϕ . We show how
to convert the TeSSLa specification ϕ , which derives new output streams, into the TeSSLa spe-
cification ϕ ′, which validates that the output streams were derived according to the specification
ϕ . The specification ϕ ′ derives all the streams except d in the same way as ϕ does. The stream
d was derived in ϕ using the delay operator and is provided as input to ϕ ′. The specification ϕ ′

now validates if the derived streams are equivalent to the input streams y1, . . . ,yn. In order to check
two streams for equivalence one has to assert the equivalence of the timestamps and the values
separately, i.e. for every two streams y,y′ ∈ SD we assert time(y) = time(y′)∧ y = y′, where =

denotes the lifted equal function on D.

Next we have to assert the correct derivation of d. Assuming that ϕ contains d = delay(a,r) we
derive the effective delays in absolute time by distinguishing three cases:

118

4.4 Expressiveness of TeSSLa with next

• We accept the new delay on a when the old delay is due,

• we accept the new delay on a together with an event on r and

• events on r without a new delay on a can reset the effective delay to ∞.

These three cases are combined in the following TeSSLa specification a′:

a′ :=merge(filter(last(a′,a) = time(a), time(a)+a),

filter(time(r) = time(a), time(a)+a),

const(∞)(merge(r,unit)))

Now we assert at all events t := merge(a,r,d) that either the delay was fulfilled by an event on
d, i.e. merge(time(d),zero) = last(a′, t) or the delay is not due and there was no event on d,
i.e. time(t) > merge(time(d),zero)∧ last(a′, t) > time(t). The boolean stream z is derived as
conjunction of all these assertions.

4.4 Expressiveness of TeSSLa with next

Compared to how TeSSLa is defined in [CHL+18], we added an extension of TeSSLa, called
TeSSLa f , in Section 3.3, which has one additional operator, a future version of last, the next
operator. In this section, we will take a closer look at the power of this new operator which now
allows future references, give some examples and show that the next adds additional expressive
power, but does not replace the delay. Instead, it complements it, allowing to express even future
independent stream transformations.

Informally, the next operator is not really increasing the number of properties that can be spe-
cified which also practically make sense. In an evaluation strategy, using the next operator only
leads to the problem of waiting until the future event arrives and then print out the result with an
older timestamp. This was not possible without the next operator, but because we now output
old timestamps, we can instead just output the value at the timestamp it occurs by rewriting the
formula, getting mainly the same result for every practical application.

Because TeSSLa was originally created with operators to have good and easy to check memory
consumption, it does not naturally contain the next operator. Even though it increases expressive-
ness in general, it does break the property that every operator just needs to save at most one value

119

4 Language Theoretic Results

at any point in time, even if the data domain is bounded or the next operator is somehow restricted.
This can be seen in the following example:

Example 4.23 (Recursion with next Operator)

Assume a TeSSLa f formula

s := next(merge(const(delay(10,unit),0),s),a)+a

where a is an input stream. The delay takes care of setting a point up to which the next sums up
the values on a. Which means, informally, every time an event occurs on a, its value is summed
up until timestamp 10 is reached. At the first event on a, s will contain the sum of all the events
on a until timestamp 10. For a given input stream a, this looks as follows:

a
1
2

3
5

4
3

7
1

s
1

11
3
9

4
4

7
1

10
0

When we now try to evaluate this formula incrementally, we have to remember every value
arriving on a to compute the output after the stream has reached timestamp 10, because for
every timestamp, we do not know the current value of the next yet. Only if the stream reaches
the timestamp 10 we can infer the values for this subexpression. So the amount of values that
needed to be saved in between does not only depend on the formula but on the length of the
trace and the number of events arriving on the input streams.

Also, including the next operator into TeSSLa leads to other problems. While for TeSSLa well-
formed specifications only depend on the fact that every cycle in the specification needs at least one
last or delay operator included such that the cycle goes through their first parameter, this changes<
when we add the next. Let us first define the dependency graph for a TeSSLa f specification.
Compared to the one for TeSSLa, the dependency graph for TeSSLa f adds a labelling for edges
involving the next operator.

Definition 4.24 (Dependency Graph of TeSSLa f Specifications, [CHL+18])

The dependency graph of a flat TeSSLa f specification ϕ of equations yi := ei is the directed
edge-labelled graph G = (V,E) of nodes V = {y1, . . . ,yn}. For every yi := ei the graph contains

120

4.4 Expressiveness of TeSSLa with next

the edge (yi,y j, l) ∈ E every time y j is used in ei and

l =


delayed if ∃k : ei = last(y j,yk)∨ ei = delay(y j,yk)

next if ei = next(y j,yk)

ε otherwise

such that edges are labelled corresponding to the first argument of last or delay with delayed,
or with next in case a next is involved.

Using the dependency graph, we now define the notion of well-formedness for TeSSLa f specific-
ations.

Definition 4.25 (Well-formedness of TeSSLa f Specifications)

We call a TeSSLa f specification ϕ well-formed if every cycle of the dependency graph con-
tains

• at least one edge labelled with delayed and

• no edge labelled with next.

As one can see, we forbid any cyclic use of the first parameter of the next operator in well-formed
TeSSLa f specifications. This is because the next is not completely the future counterpart of last,
as we have no definitive ending in our streams. For the last, the point with timestamp 0 is the
definitive beginning of a stream and with this, gives us knowledge we do not have for the next.
Because of this missing definitive ending, nearly every cyclic use of the first parameter of a next
can have multiple fixed-points depending on the input streams as long as it does not have any
mechanism of breaking the recursion. Hence, the well-formed fragment can not be enforced with
a weaker syntactic restriction.

Note that, if we would add a definitive ending point in our streams like the timestamp 0 is for
the beginning, the next would be an exact counterpart of the last and cycles with next could
be allowed in well-formed specification for the most cases, in the same way a cyclic usage of
last is allowed. This is exactly why the well-formedness criteria for LOLA [DSS+05], which
also includes future references, is less restrictive, because there only streams with a finite ending
timestamp are considered.

We depict some cases for not well-formed TeSSLa f specifications in the following example.

121

4 Language Theoretic Results

Example 4.26 (Well-formedness of TeSSLa f)

Let us consider at first the following TeSSLa f specification with an input stream t:

x = last(y, t)

y = next(x, t)

This specification represents a cyclic usage of last and next, triggered by the input stream t

and is not well-formed. Additionally, it has possibly multiple fixed-points, for example is has
always the fixed-point where x and y are always ⊥ and it can have, for example, the following
fixed-points:

t
2 4

x
4
a

y
2
a

where a can now be any value which leads to a possibly infinite number of different fixed-points.
The same can happen to a specification

x = last(z, t)

y = next(x,s)

z = next(y,s)

with input streams s and t, where, even though the number of last and next operators is different,
multiple fixed-points can occur if the number of events on the two input streams matches a
certain pattern.

The following theorem states that well-formed TeSSLa f specifications only have one fixed-point.
It follows the same idea as the proof for Theorem 4.9, where it was already shown that well-formed
TeSSLa specifications only have one single fixed-point. Therefore, it remains to extend the proof to
include the newly in TeSSLa f introduced next operator. Because the next operator is not allowed
in any recursive usage in a well-formed specification, only non-cycles paths through nexts have to
be considered.

122

4.4 Expressiveness of TeSSLa with next

Theorem 4.27 (Well-formed Specifications and Fixed-Points, [CHL+18])

Given a well-formed TeSSLa f specification ϕ of equations yi := ei and input streams s1, . . . ,sk,
then the fixed point of ϕ(s1, . . . ,sk) is unique.

Proof. Assume we have calculated the least fixed-point O and a second fixed-point P with O 6=
P for ϕ on input s1, . . . ,sk. Now P must be greater than O, because O is the least fixed-point.
Additionally, assume ϕ is flat, because every TeSSLa f specification can be transformed into a
semantically equivalent one.

From Theorem 4.9 we know the fixed-point is unique for well-formed TeSSLa specifications. The
addition in TeSSLa f is the next, but in this case it is not allowed in any recursive way, because
ϕ is well-formed. As last and delay, next also calculates as much progress as possible. Because
it is not allowed to occur recursively, it always calculates the maximal fixed-point for any input.
Therefore, still the maximal progress of every recursion is calculated and the greatest fixed-point
of the Kleene-chain is always reached.

In the following sections, we will take a look at the expressiveness the next operator adds to
TeSSLa.

4.4.1 TeSSLa f without delay

In this section, we will consider the fragment of TeSSLa f without the delay operator, or TeSSLa f−d

for short. Removing the delay operator removes the property of expressing non-timestamp con-
servative stream transformations in TeSSLa. We now show how the addition of the next operator
in TeSSLa f impacts the resulting expressiveness.

We show that TeSSLa f−d is more expressive than TeSSLa−d first. Afterwards, we show that
TeSSLa f−d and TeSSLa are incomparable. The proof of the following theorem uses a concrete
stream transformation which can be expressed by TeSSLa f−d but not by TeSSLa−d to show that
TeSSLa f−d is more expressive. The other direction follows trivially, as TeSSLa f−d contains every
operator from TeSSLa−d plus the next.

Theorem 4.28 (Expressiveness of TeSSLa f Without delay)

It holds that TeSSLa f−d) TeSSLa−d .

123

4 Language Theoretic Results

Proof. Obviously, TeSSLa f−d ⊇ TeSSLa−d holds because TeSSLa f−d has all the operators from
TeSSLa−d . It remains to show that the next allows us the expression of additional stream trans-
formations.

Consider the stream transformation f : SD→SD with

f (s)(t) =


d′ if s(t) ∈ D∧∃t ′ > t : s(t ′) ∈ D∧ s(t ′) = d′∧@t < t ′′ < t ′ : s(t ′′) ∈ D∪{?}

? if s(t) ∈ D∧∃t ′ > t : s(t ′) =?∧@t < t ′′ < t ′ : s(t ′′) ∈ D

s(t) otherwise

while TeSSLa f−d can express this stream transformation with the following specification as stream
s′, where s is an input stream

s′ = next(s,s)

TeSSLa−d can not express this stream transformation, because it is not able to consider values from
future events for the calculation of the value for the current timestamp. Therefore, TeSSLa f−d)
TeSSLa−d holds.

The theorem shows that the next is adding the possibility to express more stream transformations
if we have no delay operator. As we have shown in Theorem 4.13 and Theorem 4.17, the delay
adds the possibility to express more stream transformations. In the following theorem, we show
that both operators add other stream transformations than the next to the ones already expressible
by TeSSLa−d and therefore, that TeSSLa f−d and TeSSLa are incomparable. Again, the proof uses
two concrete stream transformations both of which can only be express by one of the TeSSLa f

fragments to show that TeSSLa f−d and TeSSLa are incomparable. One of them is again the stream
transformation from the previous proof.

Theorem 4.29 (TeSSLa f Without delay versus TeSSLa)

It holds that TeSSLa f−d and TeSSLa are incomparable.

Proof. To show that TeSSLa f−d and TeSSLa are incomparable, we have to show that TeSSLa f−d

6⊇ TeSSLa and TeSSLa f−d 6⊆ TeSSLa hold.

To show that TeSSLa f−d 6⊆ TeSSLa holds, we can use the example stream transformation from
Theorem 4.28 again. Even with delay, TeSSLa can not express this stream transformation.

124

4.4 Expressiveness of TeSSLa with next

To show that TeSSLa f−d 6⊇ TeSSLa does hold on the other hand, consider the following stream
transformation f : SN→SN with

f (s)(t) =

3 if t = 5

⊥ otherwise

TeSSLa can express this stream transformation as stream s′, where s is an input stream, as follows:

s′ =merge(nil,delay(const5(unit),unit))

TeSSLa f−d can not express this stream transformation, as it is not able to set a timeout to timestamp
5 and therefore can not output an event there, if no input event exists at that timestamp.

Hence it holds that TeSSLa f−d and TeSSLa are incomparable.

Even though we were able to make statements about the expressiveness of TeSSLa f−d in the
previous two Theorems 4.28 and 4.29, it was also possible to extend the result of Theorem 4.13 for
the progress made by TeSSLa in Theorem 4.15. This statement does not hold anymore in TeSSLa f .
The next operator allows us to look in the future and if there is no further event, the progress of
the stream defined by the next ends earlier than the input stream. Thus, the progress of the output
streams does not depend anymore on the progress of the input streams.

4.4.2 TeSSLa f with delay

In the previous sections, we considered TeSSLa without delay, with next and without delay but
with next. In this section, we add back the delay operator and now consider full TeSSLa f and its
expressiveness. While it is obvious that the union of TeSSLa and TeSSLa f−d is more expressive
than any of its single parts due to the fact that both languages are incomparable as shown in
Theorem 4.29, we will show in the following theorem that having both operators in one language
adds even more to the expressiveness, therefore, that TeSSLa f is more expressive than TeSSLa and
TeSSLa f−d . This means that TeSSLa f can also express stream transformations which are neither
timestamp conservative nor future independent.

The proof for the following theorem again uses a concrete stream transformation to show the
results. This one is exactly build the way such that it creates events at timestamps where none have
been before are well as it is considering future values at a given timestamp.

125

4 Language Theoretic Results

Theorem 4.30 (Expressiveness of TeSSLa f)

The following two statements hold:

• TeSSLa f) TeSSLa and

• TeSSLa f) TeSSLa f−d .

Proof. First, stating that TeSSLa f ⊇ TeSSLa and TeSSLa f ⊇ TeSSLa f−d directly follows from
the fact that TeSSLa f contains both operators, delay and next. It remains to show that both inclu-
sions are strict.

Consider the stream transformation f : SD→SD over time domain R with

f (s)(t) =


d if t ∈ N∧∃t ′ > t : s(t ′) ∈ D∧ s(t ′) = d∧@t < t ′′ < t ′ : s(t ′′) ∈ D∪{?}

? if t ∈ N∧∃t ′ > t : s(t ′) = ?∧@t < t ′′ < t ′ : s(t ′′) ∈ D∨∀t ′ > t : s(t ′) =⊥

⊥ otherwise

TeSSLa f can express this stream transformation with the following specification as stream s′,
where s is an input stream:

x := delay(const1(merge(x,unit)),unit)

s′ := next(s,x)

Neither TeSSLa nor TeSSLa f−d is able to express f . First, a next is necessary to look for future
events on s and get the value of the next event, because otherwise, f would per definition not output
an event. Also, the delay is needed to create the periodic events at every integer timestamp, as no
other TeSSLa f operator is able to output events at timestamps that have not been in any of the input
streams. Therefore, an input stream for the next is needed which is coming from a delay, thus both
operators need to be nested to express f . And because TeSSLa and TeSSLa f−d only contain next
or delay, but not both, and can therefore not mix them in one specification, TeSSLa f) TeSSLa
and TeSSLa f) TeSSLa f−d holds.

The proof follows the same idea as the ones for Theorem 4.28 and Theorem 4.29, giving a stream
transformation that the one fragment can express, while the other can not. Because the given
stream transformation needs to create events at every integer timestamps, independently of the
events in the input streams, as well as outputting the next value on the input stream s on those

126

4.5 Conclusion

events, next and delay have to be combined to express the stream transformation and can not do
this independently. This means that a union of TeSSLa and TeSSLa f without delay would not be
enough to express it.

As for Theorem 4.28, we will not make any statement about the progress, because the addition of
next removes the property we had before for TeSSLa. Additionally, using the delay and next in
combination, some stream transformations with strange behaviour can be specified, for example
one with no progress only at some timestamps, as seen in the following example.

Example 4.31 (Progress in TeSSLa f)

Reconsider the specification from Example 4.4. We will extend this specification in this example
with another equation y using next as follows:

x :=merge
(

last(x,delay(x,unit))
2

,1
)

y := next(s,x)

where s is an input stream. x still always divides the last value on itself by 2 when the delay
emits an event, hence it always halves the next delay value. The new stream y now always
outputs the next value on s when an event occurs on x. If s has no events but ends at some point,
y is a stream which has exactly no progress where x has an event.

s

x
0
1

1
2

1
2

3
4

3
4

7
8

7
8

15
16

15
16

31
32

31
32

63
64

63
64

y
0 1

2
3
4

7
8

15
16

31
32

63
64

4.5 Conclusion

Besides the results on well-formedness and computability, we considered four fragments and ex-
tensions of TeSSLa and their expressiveness in this chapter. These were obtained by removing

127

4 Language Theoretic Results

the delay operator or adding the next operator for the extension TeSSLa f of TeSSLa. While the
removal of other operators is not delivering interesting results or does not remove core function-
ality from TeSSLa, like the lift operator, these two operators contain some special functionality
within TeSSLa which adds distinct features, as we saw in the previous two sections. This section
concludes the results on these versions of TeSSLa.

The graph given in Figure 4.3 shows an overview of the four versions of TeSSLa that have been
considered in this chapter. While adding either the delay or the next adds something to the ex-
pressiveness, either the ability to express non-timestamp conservative or non-future independent
stream transformations, the two resulting versions are incomparable. Adding both operators leads
to the highest expressiveness, even more expressiveness than the union of the fragments without
next or without delay. The diagram also states how we were able to make statements about the
amount of progress a specification outputs at least if it does not contain a next operator, as these
statements can not be made anymore if a next is present in the specification.

128

4.5 Conclusion

TeSSLa without delay
Future independent and timestamp conservative (Theorem 4.13)

Minimum progress of inputs (Theorem 4.15)

TeSSLa
Future independent (Theorem 4.17)

Minimum progress of inputs (Theorem 4.19)

TeSSLa f without delay
Timestamp conservative

No statement about progress

TeSSLa f

No statement about progress

Theorem 4.17 Theorem 4.28

Theorem 4.30 Theorem 4.30

Theorem 4.29

Figure 4.3: Shows the results of Chapter 4 regarding TeSSLa fragments and extensions. The arrows
indicate that the TeSSLa version where the arrow ends is more expressive than the
version where the arrow starts. The dashed line indicates that the two versions are
incomparable.

129

5 TeSSLa Fragments and Relation to
Transducers

Contents

5.1 An Evaluation Strategy for TeSSLa . 134

5.2 Boolean Fragment . 137

5.2.1 Translating DFST to TeSSLabool 140

5.2.2 Translating TeSSLabool to DFST 141

5.2.3 Results for TeSSLabool . 150

5.3 Pushdown Fragment . 151

5.4 Functional Non-deterministic Fragment 157

5.4.1 Transforming functional NFST to TeSSLa f
bool 159

5.4.2 Transforming TeSSLa f
bool to NFST 161

5.4.3 Results on TeSSLa f
bool . 165

5.5 Timed Fragment . 167

5.5.1 Translating DTFST to TeSSLabool+c 169

5.5.2 Translating TeSSLabool+c to DTFST 170

5.5.3 Results for TeSSLabool+c . 173

5.5.4 Adding Non-determinism to the Timed Fragment 176

5.6 Conclusion . 178

The comparison of formalisms to existing ones is important. Besides getting an overview of the
advantages and disadvantages of different languages, one gets complexity results on decision prob-
lems like equivalence as well as the memory related decision properties mentioned earlier in this
thesis. Another point of interest is to see what a formalism can express and how the previously
mentioned results are for different parts, or fragments, of a formalism.

131

5 TeSSLa Fragments and Relation to Transducers

In this chapter, we get results on the previously mentioned aspects regarding TeSSLa. We will take
a look at the relationship to different languages and automata, properties of different fragments
and an extension for future references within TeSSLa on continuous time domains.

In the following we will look at different results on streams with a continuous time domain. We
will compare TeSSLa and TeSSLa f and different fragments of it with various other formalisms,
mostly transducers which are related to different classes of well known automata or logics. Besides
results regarding expressiveness we will obtain results regarding the complexity and decidability
of different decision problems. Besides emptiness and equivalence, we also take a look at various
properties regarding memory requirements when evaluating a formula.

Before we get to the different sections about the different TeSSLa fragments and extensions, we
have to first make statements about transducers in general and the streams we consider in this
section. To compare the different types of transducers to TeSSLa, we will present transformations
of streams into finite or infinite (timed) words and vice versa by synchronizing the input streams
of the TeSSLa specification. While therefore it can be stated that transducers do represent stream
transformations, they can in general also express functions that are not stream transformations,
thus are not monotonic and or not continuous. This can only happen if we consider streams with
an possibly infinite number of events, as it is then possible that a non-deterministic transducer than
decides where a non-deterministic choice takes him depending on what happens in the infinity, for
example, it guesses that it will always see an a in the future.

In the following proposition, we will state this and show an example of such a transducer after-
wards.

Proposition 5.1 (Transducers over Infinite Words and Continuity)

(Functional) NFSTs and NTFSTs are not continuous over words with a possibly infinite number
of symbols.

A transducer that is not continuous over a word with an infinite number of symbols is depicted in
the following example.

Example 5.2 (Non-continuous Transducer)

Consider the NFST given in Figure 5.1. When reading an infinite word, in this NFST, the
decision if an x or a y is outputted on the first a depends on if all other symbols are either bs or
cs, respectively. This can only be decided by knowing the complete, infinite word, which means
that this NFST is not continuous.

132

s0start

s1 s2

s3

a/x a/y

b/x c/x

a/x
c/x

a/x
b/x

Figure 5.1: An NFST with four states. It accepts every word that contains an a first and forever b
or forever c afterwards. Depending if it reads forever b or forever c, it outputs an x or
a y when reading the first a.

The following proposition states that over finite words, all transducers considered in this thesis are
continuous.

Proposition 5.3 (Transducers over Finite Words, Monotonicity and Continuity)

DFSTs, DTFSTs, DPTs, NFTSs and NTFSTs are monotonic and continuous over finite input
words.

Because of Propositions 5.1 and 5.3, we will only consider streams with a finite number of events
but still arbitrary, possibly infinite, progress in this chapter, unless noted otherwise. Normally, the
question arises what we do with delay when we only consider streams with a finite number of
events, because delay can potentially still create streams with an infinite number. But because the
delay operator is not part of the fragments we consider in this chapter, this problem does not arise.
Additionally, we only consider well-formed specifications in this chapter. Even though most of the
transducer constructions also work with specifications that are not well-formed, it leads to some
edge cases where transducers would have no states or no transitions, even though it should be able
to output anything.

Before we get to the interesting fragments of TeSSLa and TeSSLa f , we define an evaluation
strategy for a specification first.

133

5 TeSSLa Fragments and Relation to Transducers

5.1 An Evaluation Strategy for TeSSLa

Besides equivalence, we want to consider three other properties of TeSSLa specifications in this
chapter, namely if every specification of a fragment is finite memory under a given evaluation
strategy and if not, how hard it is to decide for a given specification if it is finite memory under
a given evaluation strategy (finite memory problem, FMP) as well as if there exists an evaluation
strategy such that the given specification can evaluated using only finite memory (rewrite to finite
memory problem, RFM). For the question if a fragment is finite memory as a whole and for FMP,
a concrete evaluation strategy is necessary. In this thesis, we want to focus on an evaluation
strategy which reflects an intuitive and straight forward way to evaluate a TeSSLa specification.
This means an evaluation of a specification in a compositional way by evaluating every operator
by its semantics without considering the semantics of its surroundings and forwarding its output
events to the following operators according to the dependency graph.

We now define an evaluation strategy ETeSSLa for TeSSLa by using the prefix semantics. In short,
the evaluation strategy for TeSSLa works in a compositional way, thus it just evaluates every
TeSSLa operator locally for itself, without considering the semantics of the operators it depends
on or that are depending on the operator. Therefore, it directly applies the prefix semantics for
each operator when evaluating an operator for given input streams. When an operator produces
an output for an input, the output is forwarded to the following operators. Furthermore, ETeSSLa

synchronizes the input in the way already described before the definition of evaluation strategies:
All inputs with the same timestamp are forwarded to the specification at once and the inputs with
the following timestamp are not forwarded to the specification until the calculation for the given
inputs with the prior timestamp is completely done. Note that we do not consider the delay operator
for the evaluation strategy as the fragments considered in this chapter do not contain the delay.

Definition 5.4 (Compositional Evaluation Strategy for TeSSLa)

The evaluation strategy ETeSSLa = (m,o) with a memory function m and an output function
o evaluates a TeSSLa formula by flattening it and then evaluating every single equation, and
therefore every single operator, according to the prefix semantics as if the equation would be a
TeSSLa formula on its own, hence in a compositional way. After evaluating each equation for
arriving input events at a given timestamp, the outputted events are forwarded as events on the
input streams to the following equations corresponding to the dependencies in the dependency
graph of the formula.

This is done by the memory function m for each operator in the dependency graph according to

134

5.1 An Evaluation Strategy for TeSSLa

the prefix semantics by taking the current input values and the current memory state M. After
finishing the calculation for the input for an operator in the dependency graph the function m

outputs a new memory state M′ to store values for later inputs, which are the values that have to
be remembered for each last operator.

The function o generates the corresponding output of the specification based on the current input
values and the current memory state M.

Because no delay operators exist in a specification evaluated by ETeSSLa and the inputs come in
synchronized by their timestamps (the inputs for a given timestamp all are available at once), the
cyclic dependencies in the specification are resolved by writing the values remembered for a last to
the memory. No special handling of a cycle is necessary, as it is automatically evaluated correctly
because the necessary values are remembered and used again when the next input values arrive.
Therefore, ETeSSLa calculates the correct output for a given TeSSLa specification.

ETeSSLa is obviously not optimal in time as there are other, more time efficient evaluation strategies,
but because we only consider the memory usage in this thesis, it fits well for our purposes. Fur-
thermore, it describes the typical, intuitive and straight-forward way of evaluating a TeSSLa spe-
cification, by just evaluating the operators locally one by one, corresponding to their definition.

Further, note that ETeSSLa is also not optimal in its memory usage. As described at the end of
Chapter 2, we are considering two decision problems regarding memory usage: FMP and RFM.
While FMP asks whether the evaluation of a property is finite memory under a certain evaluation
strategy, we will use ETeSSLa to state whether the formula can be evaluated with only finite memory
in a compositional and somehow direct way, without any preprocessing or minimization. RFM on
the other hand asks, whether there is a possibility to evaluate it using only finite memory, which
corresponds to creating an memory-wise optimal, semantically equivalent, STM and ask whether
this STM only needs a finite number of memory cells. Thus this would be an optimal evaluation
strategy regarding memory usage.

Example 5.5 (Compositional Evaluation Strategy, FMP and RFM)

Consider the flat TeSSLa specification ϕ which is given as follows for an input stream s∈ SN:

a := last(s,s)

b := const(a,1)

c := lift(+)(b,b)

135

5 TeSSLa Fragments and Relation to Transducers

ETeSSLa would now evaluate the stream a first for every input occurring on s, because b and
c depend on a. Therefore, it evaluates last(s,s). This is done by writing the current value
on s into memory M and outputting the previous value saved. Then it forwards the output
generated into const(a,1), to evaluate b, mapping the value from a to 1 and forwarding it to c.
By then evaluating lift(+)(b,b), therefore adding 1 to 1, it would generate 2 as the output of
the specification for the current timestamp. Then, it repeats this evaluation mechanism for every
incoming event.

ETeSSLa would need an unbounded, therefore not finite amount of memory, because when eval-
uating a it would write the current value of s, which may be arbitrarily large, into its memory,
even though the value is never used, because it is mapped to 1 in b. Therefore, FMP would not
be fulfilled for this formula under ETeSSLa.

Still, RFM is fulfilled, because there exists an evaluation strategy which is finite memory. This
can be done by, for example, erasing the equation a and directly putting s into b in place of a,
ignoring its first event to keep the semantics of the last. Then, the value on s would be ignored,
while still outputting 2 every time an event arrives on s after the first.

As evaluation strategy, we also use ETeSSLa for TeSSLa f . We just extend it with the usage of next,
which is also evaluated locally like every other operator according to its semantics. Compared to
the other operators, next may remember timestamps and output multiple events later as soon as it
knows the value.

Definition 5.6 (Compositional Evaluation Strategy for TeSSLa f)

For TeSSLa f , we extend ETeSSLa by the next operator. An expression next(a,b) is evaluated as
follows: Every time an event occurs on b, the memory function m writes its timestamp to the
memory M. Every time an event occurs on a, the timestamps remembered in M are deleted from
M and output by the output function o in order with the value of the event on a.

Additionally, the operators lift and last obtain the possibility of writing events into the memory,
if an input depends on a next and the next writes the current timestamp into the memory, as well
as being able to output multiple events in the order of the memorized timestamps at once when
the next outputs an event.

In the following, we always write ETeSSLa, independently from the fact if we consider TeSSLa or
TeSSLa f , as the extension of ETeSSLa for TeSSLa f just adds a strategy for the next operator which
is simply ignored when evaluating a TeSSLa formula.

136

5.2 Boolean Fragment

5.2 Boolean Fragment

In this section we show a fragment of TeSSLa, called TeSSLabool, as defined in [CHL+18], which
fits to deterministic finite-state transducers. It is of interest because it resembles the regular lan-
guages and shows the expressive power of the TeSSLa operators when restricting the data domain.
While timestamps are technically still in the input streams, they can not be used by this fragment
and besides the order of arrival, time plays no role.

The fragment TeSSLabool restricts TeSSLa to boolean streams and the operators nil, unit, last and
lift with boolean functions and therefore removes time and delay.

Definition 5.7 (TeSSLabool, [CHL+18])

A TeSSLa formula ϕ is called a TeSSLabool formula if ϕ : SB× . . .×SB→ SB× . . .×SB and
the syntax of every equation e is restricted as follows, where f : Bn

⊥→ B⊥:

e := nil | unit | x | lift(f)(e, . . . ,e) | last(e,e)

The semantics for every single operator stays the same as in TeSSLa.

First, let us add an observation concerning the relation of input and output streams regarding the
order of their events. Since one can not access timestamps in this fragment, for a TeSSLabool-
formula ϕ and two tuples of input streams S,S′ ∈ SB× . . .×SB we have that ϕ(S) and ϕ(S′) have
events with the same values in the same global order iff all events in S′ carry the same values in
the same global order as those in S, independent from the exact timestamps of the events.

Note that in [CHL+18], this TeSSLa fragment was defined with an additional operator which
consists of an slift with ≥ on timestamps, which in the syntax was an expression of the following
form:

slift(≥)(time(e), time(e))

It was added to the fragment in [CHL+18] to show that even using time in this restricted way can
also be used in TeSSLabool. In this thesis, we will not add slift(≥)(time(e), time(e)), but instead
show that is does not change the expressiveness at all and that it can be expressed with the operators
already existing in TeSSLabool.

Lemma 5.8 (slift(≥)(time(e), time(e)) and TeSSLabool)

slift(≥)(time(e), time(e)) can be expressed with the TeSSLabool operators.

137

5 TeSSLa Fragments and Relation to Transducers

Proof. Consider a function f : B⊥×B⊥→ B⊥ with

f (a,b) =


tt if a ∈ B

ff if a =⊥∧b ∈ B

⊥ otherwise

Then it holds that
slift(f)(a,b) = slift(≥)(time(a), time(b))

Because slift can be expressed using merge, lift and last as defined in Chapter 3, subformulas of
the form slift(≥)(time(a), time(b)) can be replaced with operators from TeSSLabool such that the
formula stays semantically equivalent.

Note that even if slift(≥)(time(a), time(b)) would be added, for a TeSSLabool-formula ϕ and two
tuples of input streams S,S′ ∈ SB× . . .×SB we still have that ϕ(S) and ϕ(S′) have events with the
same values in the same global order iff all events in S′ carry the same values in the same global
order as those in S, independent from the exact timestamps of the events.

At first we want to show that TeSSLabool resembles a certain type of transducers, that it is finite
memory and what the complexity of the equivalence problem is. To show these properties, we
make a statement about the relationship of DFSTs and TeSSLabool.

To show that TeSSLabool and DFSTs have the same expressiveness, we encode DFST words as
TeSSLabool streams and vice versa. To do this, we are using a one-hot encoding such that for every
symbol of the alphabet, a stream exists and for every given position of the word, only the stream
representing the corresponding proposition is true and the others are false.

Formally, we use two functions αΣ and βΣ. The function αΣ(w) = S encodes a DFST word w =

w0w1 . . .wn ∈ Σ∗ as a corresponding set of TeSSLabool streams. For every p ∈ Σ a stream sp ∈ S

exists with
sp = 0d01d1 . . .n−1dn−1ndn∞⇔∀i : (di⇔ wi = p)

Thus for every proposition a stream exists in S and for every symbol wi of w an event exists on
every stream from S with the value true if wi = p and false otherwise.

The function βΣ(s1, . . . ,sk) = w = w0w1 . . .wn ∈ Σ∗ represents the other way round, it encodes
TeSSLabool streams as a synchronized DFST word w. Let Val = {⊥, tt, ff,<′,⊥′, tt′, ff′} be the
set of possible values a stream can have, where the primed values represent an ending of the

138

5.2 Boolean Fragment

stream after the current value. Then βΣ encodes a set of streams as a word over the alphabet
Σ = {z1, . . . ,zk} → Val, where z1, . . . ,zk are variables which relate to the corresponding streams
s1, . . . ,sk. Let T = {t0, t1, t2, . . . , tn} \ {∞} with t0 = 0 be the set of all timestamps present in the
streams including 0 excluding ∞ with ti < ti+1. Then wi is defined as follows:

wi(s) =



<′ if s = vti

s(ti)′ if s = vtid

s(ti) if ∃t ∈ T : t > ti∨ s = v∞

⊥ otherwise

Informally, wi(s) = <′ if s has finite, exclusive progress of ti, hence ends with a timestamp that
is not ∞. wi(s) = s(ti)′ if the progress ends with that timestamp inclusively. In this case, we will
add a prime symbol to the value to mark the streams end. Furthermore, wi(s) = s(ti) if s has not
ended already at ti, so is either a data value or ⊥ but the progress still goes on and wi = ⊥ if the
progress of the stream already ended (in this case, the exact symbol does not matter since the end
is already encoded in a primed symbol). This ⊥ after the end of the stream is necessary because
other streams could still have progress.

Hence βΣ encodes the streams as a word by creating symbols which are functions from stream
names to values. For every timestamp where at least one of the streams has an event, or where its
progress ends, a symbol exists in the resulting word.

Note that since the boolean transducers produce one output symbol per input symbol one could
reattach the timestamps of the input streams to the output streams to preserve the exact timestamps,
too.

The following Theorem states the relation between TeSSLabool and DFSTs.

Theorem 5.9 (Relation Between TeSSLabool and DFSTs)

For a DFST R = (Σ,Γ,Q,q0,δ) there is a TeSSLabool formula ϕR and for a TeSSLabool formula
ϕ there is a DFST Rϕ = (Σ,Γ,Q,q0,δ) s.t.

αΓ ◦ JRK= JϕRK◦αΣ and βΓ ◦ JϕK= JRϕK◦βΣ.

We will prove the previous theorem constructively for both directions in the next two subsec-
tions.

139

5 TeSSLa Fragments and Relation to Transducers

5.2.1 Translating DFST to TeSSLabool

Given a DFST R = (Σ,Γ,Q,q0,δ) we will now show how to create the corresponding TeSSLabool

formula ϕR from Theorem 5.9. The main part of this translation is a set of streams xq which
represent for each state q ∈ Q if the DFST is currently in q, then xq = tt, or if it is not in q, then
xq = ff. Each xq is a disjunction of streams representing when a transition is taken that ends in q.

xq′ :=
∨

(q,σ ,q′,γ)∈δ

dq,σ ,q′,γ .

Each of them is a disjunction of all transitions which have the state q′ as next state and if one of
these transitions is taken, the corresponding xq′ is true which means that the state q′ is now active.
Because a DFST is deterministic, only one of the streams dq,σ ,q′,γ representing transitions can be
true at any time.

Before we get to the formal representation of each transition, we add one layer to the streams
representing the states first, which is used to initialize them with their starting value. We represent
the states q ∈ Q\{q0} without the start state as streams which are true iff the transducer is in the
corresponding state and because these states are not starting states, xq is merged with false as initial
value.

aq :=merge(xq, ff)

On the other hand, the initial state is represented as

aq0 :=merge(xq0, tt)

which means that it is true in the beginning.

Every single transition (q,σ ,q′,γ) ∈ δ on the other hand is transformed by adding two streams,
one checking if this transition is active now, dq,σ ,q′,γ , and one logging the output of this transition
if it is active, oi, as follows:

dq,σ ,q′,γ := last(aq,sσ)∧ sσ

and
oq,σ ,q′,γ := filter(dq,σ ,q′,γ ,const(γ,dq,σ ,q′,γ)).

Each dq,σ ,q′,γ is a conjunction of the stream which represents if the input symbol for the transition
is in the current symbol of the word and a last which checks if the corresponding start state of

140

5.2 Boolean Fragment

the transition was active before. The oq,σ ,q′,γ represent a stream of each transitions outputs. Every
time the corresponding transition is taken a new event is emitted where the value is set to γ .

As mentioned before, because a DFST is deterministic, only one transition can be taken at any
point in time. Hence for every timestamp, only one output stream has an event and to get the
stream with all the outputs, we just need to merge the output streams for every single transition as
follows:

output :=merge{oq,σ ,q′,γ | (q,σ ,q′,γ) ∈ δ}

where this merge over all oq,σ ,q′,γ is just a shorthand for the multi application of the binary merge.
Because never two or more of the oq,σ ,q′,γ have an event at the same point in time, the order in
which these streams are merged does not matter.

Next, we give an example of how the transformation from a DFST into a TeSSLabool formula
works.

Example 5.10 (Transforming a DFST into TeSSLabool)

Consider the DFST R = ({p,r},{tt, ff},{q0,q1},q0,δ) where the transition function δ is given
by the following graph:

q0start q1

p/tt
r/ff

p/ff

r/ff

Using the input streams sp and sr for the two input symbols p and r, the corresponding TeSSLabool

formula is the one given in Figure 5.2.

In the following section we will show the other direction, therefore, how to transform a TeSSLabool

into a DFST.

5.2.2 Translating TeSSLabool to DFST

For the other direction, we translate every equation of the flattened specification of ϕ into indi-
vidual DFSTs, which are then composed into one DFST Rϕ . For every DFST the input symbols

141

5 TeSSLa Fragments and Relation to Transducers

aq0 :=merge(xq0, tt)
aq1 :=merge(xq1, ff)
xq0 := dq0,p,q0,tt∨dq1,r,q0,ff

xq1 := dq1,p,q1,ff∨dq0,r,q1,ff

dq0,p,q0,tt := last(aq0,sp)∧ sp

dq0,r,q1,ff := last(aq0,sr)∧ sr

dq1,p,q1,ff := last(aq1,sp)∧ sp

dq1,r,q0,ff := last(aq1,sr)∧ sr

oq0,p,q0,tt := filter(dq0,p,q0,tt,const(tt)(dq0,p,q0,tt))

oq0,r,q1,ff := filter(dq0,r,q1,ff,const(ff)(dq0,r,q1,ff))

oq1,p,q1,ff := filter(dq1,p,q1,ff,const(ff)(dq1,p,q1,ff))

oq1,r,q0,ff := filter(dq1,r,q0,ff,const(ff)(dq1,r,q0,ff))

output :=merge(oq0,p,q0,tt,oq0,r,q1,ff,oq1,p,q1,ff,oq1,r,q0,ff)

Figure 5.2: The TeSSLabool formula created from the DFST R given in Example 5.10. The streams
sp and sr are the input streams resulting from the input symbols of R.

are functions from the names of the input streams to Val and the output symbols are functions from
the name of the equation to Val. As discussed in the previous section, for this finite data domain
we only need to consider finitely many different internal states for every equation. The transition
function realizes the state changes and the current output based on the current state.

The function toDFST builds the transducers for a single equation of a flattened TeSSLabool formula
ϕ as explained next. The first types of equations we look at are equations of the form z := nil.

toDFST(z := nil) = (/0,{z}→ Val,{s},s,δ)

with δ (s, /0) = (s,{z 7→ ⊥}). Because nil is an operator without any parameters, the DFST has no
input symbols, only one state and can only output⊥ which represents the fact that nil produces the
stream without any events.

Compared to nil, the operator unit is quite similar with the difference that an event is output as
first action. So while the DFST for unit still has no input symbols, it has two states where the only
transition from the first one goes to the second one and outputs an event with value true. From the

142

5.2 Boolean Fragment

second state only a loop exists which always outputs ⊥. This results in the following DFST:

toDFST(z := unit) = (/0,{z}→ Val,{s0,s1},s0,δ)

with δ (s0, /0) = (s1,{z 7→ tt}) and δ (s1, /0) = (s1,{z 7→ ⊥}).

While nil and unit are operators without parameters, they result in constant streams. Compared to
them, lift is more complex because it has to react to the input of its parameters.

The DFST for lift consists of two states: s where the transducer loops for every input and applies f

to the inputs to compute the output and the sink se which is reached when one of the input streams
ends. Formally, an equation z := lift(f)(a0, . . . ,an) can be translated to the following DFST:

toDFST(z := lift(f)(a0, . . . ,an)) = ({ai≤n}→ Val,{z}→ Val,{s,se},s,δ)

with

δ (s,h) =


(s,{z 7→ g(b0, . . . ,bn)}) if ∀i : h(ai) ∈ {tt, ff,⊥}

(se,{z 7→<′}) if ∃i : h(ai) =<′

(se,{z 7→ g(b0, . . . ,bn)′}) otherwise,

where

bi =


tt if h(ai) ∈ {tt, tt′}

ff if h(ai) ∈ {ff, ff′}

⊥ otherwise

and

g(b0, . . . ,bn) =

⊥ if ∀i : bi =⊥

f (b0, . . . ,bn) otherwise

While looping in s it is the function f taking care of the output as g is essentially only applying f

and the bi are just for converting stream-ending input values into normal values.

The last type of equations is z := last(a,b). As last has to remember the last value and we have
only the boolean data domain, two states are needed to solve this problem. Furthermore there are
some special cases for initialization (state s0) and endings of streams (states sw,sv and se) in the
last operator. A DFST for an equation of the form z := last(a,b) can be build as follows:

toDFST(z := last(a,b)) = ({a,b}→ Val,{z}→ Val,{s0,stt,sff,sw,sv,se},s0,δ)

143

5 TeSSLa Fragments and Relation to Transducers

δ (s0,a⊥∪by) = (s0,z⊥)
δ (s0,ax∈tf∪by) = (sx,z⊥)

δ (s0,a′x∪b′y) = (se,z′⊥)

δ (s0,ax∪b′y) = (sw,z⊥)

δ (s0,a′x∪by) = (sv,z⊥)
δ (sd∈tf,a⊥∪b⊥) = (sd,z⊥)

δ (sd∈tf,ax∈tf∪b⊥) = (sx,z⊥)
δ (sd∈tf,a⊥∪by∈tf) = (sd,zd)

δ (sd∈tf,ax∈tf∪by∈tf) = (sx,zd)

δ (sd∈tf,a′x∪by) = (sv,z⊥)

δ (sd∈tf,a?
x∪b′y∈{<,⊥}) = (se,z′y)

δ (sd∈tf,a?
x∪b′y∈tf) = (se,z′d)

δ (sw,a⊥∪b?
y) = (sw,z⊥)

δ (sw,ax∈tf∪b?
y) = (se,z′⊥)

δ (sw,a′x∪b?
y) = (se,z′⊥)

δ (sv,a?
x∪b⊥) = (sv,z⊥)

δ (sv,a?
x∪b′⊥) = (se,z′⊥)

δ (sv,a?
x∪b?

y∈{<,tt,ff}) = (se,z′<)

δ (se,a?
x∪b?

y) = (se,z⊥)

Figure 5.3: The transition function of the DFST for a TeSSLabool formula z := last(a,b). It is
depicted here in two parts. The left hand side represents the transitions from the initial
state as well as the transitions from the two states which remember the last value. The
right hand side represents the handling at and after the ending of progress.

where we use the following abbreviations for the definition of δ :

• tf = {tt, ff},

• ax = {a 7→ x} for x ∈ {⊥, tt, ff},

• a′x = {a 7→ x′} for x ∈ {<,⊥, tt, ff} and

• a?
x = {a 7→ x} for x ∈ Val.

Then the definition of δ is given in Figure 5.3.

toDFST(z := last(a,b)) has essentially three states: s0 is taking care of the initialization and as
long as no event occurred on a the DFST stays in s0. After an event occurred on a the DFST moves
to stt or sff depending on the value on the event and after that the transducer always moves between
these two states when an event occurs on a depending on its value. If the transducer is in one of
the two last mentioned states it outputs the index of the state when an event occurs on b. The three
additional states are there to handle different cases when the stream ends because different amount
of progress can be output depending on the order in which the streams end.

144

5.2 Boolean Fragment

sstart

nil

s0start s1

unit

sstart

lift

s0start

last

stt

sff

/0/⊥
/0/tt

/0/⊥

x1, . . . ,xn ∈ {tt, ff,⊥}n/g(x1, . . . ,xn)

⊥,{⊥, tt, ff}/⊥

tt,{⊥, tt, ff}/⊥

{⊥, tt},⊥/⊥
{⊥, tt},{tt, ff}/tt

ff,⊥/⊥
ff,{tt, ff}/tt

ff,{⊥, tt, ff}/⊥
{⊥, ff},⊥/⊥
{⊥, ff},{tt, ff}/ff

tt,⊥/⊥
tt,{tt, ff}/ff

Figure 5.4: Shows the transducers for every TeSSLa operator in the TeSSLabool fragment, which
are nil, unit, lift and last.

145

5 TeSSLa Fragments and Relation to Transducers

A visual representation of the single DFSTs for every operator can be seen in Figure 5.4. The
special cases for the endings of the stream have been left out for giving a better overview on how the
operators and DFSTs work. The general structure of the transducers also shows the functionality
of the operators in TeSSLa.

Until now, we have a set of transducers for every equation in the flattened version of the given
TeSSLabool specification. To get the final transducer representing the whole formula, we have
to compose the individual DFSTs by combining them at the correspondingly named inputs and
outputs. How this works is explained in the following.

At first, we always compose two existing transducers into a new one until only one transducer is
left. This is done via a standard parallel composition algorithm that composes the transducers such
that they are executed in parallel by a new transducer. Therefore, a state in the new transducer is a
tuple of states from the original transducers, one from each, and the transition function has an entry
every time both transducers have an entry in the transition function with the same input symbol.
The output of each transition is the union of the outputs from the original transitions. Formally,
this is done in the following way:

Let R = (I→ Val,O→ Val,Q,q0,δ) and R′ = (I′→ Val,O′→ Val,Q′,q′0,δ
′) be two DFSTs. The

parallel composition of R and R′ is then R′′ = (I ∪ I′ → Val,O∪O′ → Val,Q×Q′,(q0,q′0),δ
′′)

with

δ
′′((s1,s2),g′′) = ((s′1,s

′
2),h

′′)⇐⇒δ (s1,g) = (s′1,h)∧δ
′(s2,g′) = (s′2,h

′)∧

g′′ = g∪g′∧∀σ ∈ I∩ I′ : g(σ) = g′(σ)∧h′′ = h∪h′

In the end, we have one transducer RA = (IA → Val,OA → Val,QA,q0A,δA) which represents all
equations.

In the resulting transducer RA, it is still possible that it contains transitions with the same in-
and output values for certain propositions which represents dependencies between the original
equations, like a cycle in the specification. To fix this problem, we now build the closure of this
transducer which roughly resembles substituting the variables and computing the fixed-point of the
equations, which results in Rϕ = (IA\OA→ Val,OA→ Val,QA,q0A,δϕ), where

δϕ(s,g) = (s′,h)⇐⇒ δA(s,g′) = (s′,h)∧g = g′|IA\OA ∧ (∀a ∈ IA∩OA : g′(a) = h(a))

for g|I := g∩ (I×Val).

146

5.2 Boolean Fragment

The following example shows how a given TeSSLabool specification is transformed into a DFST.

Example 5.11 (Transforming a TeSSLabool formula into a DFST)

Consider the following TeSSLabool specification:

x :=mergeAnd(last(x,b),b)

where mergeAnd(a,b) = lift(mergeAnd)(a,b) is a lifted function with mergeAnd : B×B→ B
defined as follows:

mergeAnd(⊥,b) = b

mergeAnd(a,⊥) = a

mergeAnd(a, ff) = ff

mergeAnd(ff,b) = ff

mergeAnd(tt, tt) = tt

At first, we create a flattened specification:

x :=mergeAnd(a,b)

a := last(x,b)

We can now create the two single transducers, one for lift which is Rx = ({a,b} → Val,{x} →
Val,{s},s,δx) and one for last which is Ra = ({x,b} → Val,{a} → Val,{s1,s2,s3},s1,δa). The
transition functions are as depicted in Figure 5.4. After doing so, we can build the parallel com-
position which results in R′ = ({a,b,x} → Val,{a,x} → Val,{(s,s1),(s,s2),(s,s3)},(s,s1),δ

′)

where δ ′ is given through the graph in Figure 5.5.

Because the specification was recursive, the DFST R′ contains transitions with the same in- and
output variables. We now have to remove all the transitions where these do not have the same
value and just leave those as output if they have the same value. This results in the transducer
Rϕ = ({b}→Val,{a,x}→Val,{(s,s1),(s,s2),(s,s3)},(s,s1),δϕ) where δϕ is given through the
graph in Figure 5.6. As one can see, the resulting DFST Rϕ is now working exactly how the
specification would.

In the next section, we will provide results on equivalence and finite memory for the boolean
TeSSLa fragment.

147

5 TeSSLa Fragments and Relation to Transducers

(s,s1)start

(s,s2)

(s,s3)

⊥,b,⊥/a =⊥,x = b
a,⊥,⊥/a =⊥,x = a
a, ff,⊥/a =⊥,x = ff
ff,b,⊥/a =⊥,x = ff
tt, tt,⊥/a =⊥,x = tt

⊥,b, tt/a =⊥,x = b
a,⊥, tt/a =⊥,x = a
a, ff, tt/a =⊥,x = ff
ff,b, tt/a =⊥,x = ff
tt, tt, tt/a =⊥,x = tt

a,⊥, 6= ff/a =⊥,x = a
⊥, 6=⊥, 6= ff/a = tt,x = b

a, ff, 6= ff/a = tt,x = ff
ff, 6=⊥, 6= ff/a = tt,x = ff

tt, tt, 6= ff/a = tt,x = tt

a,⊥, ff/a =⊥,x = a
⊥, 6=⊥, ff/a = tt,x = b

a, ff, ff/a = tt,x = ff
ff, 6=⊥, ff/a = tt,x = ff

tt, tt, ff/a = tt,x = tt

⊥,b, ff/a =⊥,x = b
a,⊥, ff/a =⊥,x = a
a, ff, ff/a =⊥,x = ff
ff,b, ff/a =⊥,x = ff
tt, tt, ff/a =⊥,x = tt

a,⊥, 6= tt/a =⊥,x = a
⊥, 6=⊥, 6= tt/a = ff,x = b

a, ff, 6= tt/a = ff,x = ff
ff, 6=⊥, 6= tt/a = ff,x = ff

tt, tt, 6= tt/a = ff,x = tt

a,⊥, tt/a =⊥,x = a
⊥, 6=⊥, tt/a = ff,x = b

a, ff, tt/a = ff,x = ff
ff, 6=⊥, tt/a = ff,x = ff

tt, tt, tt/a = ff,x = tt

Figure 5.5: The transducer resulting from the parallel composition of the transducers for the equa-
tions x := mergeAnd(a,b) and a := last(x,b). If an input is denoted as 6= x, then the
transition can be taken if the other inputs fit and this one has a value which is not x.

148

5.2 Boolean Fragment

(s,s1)start

(s,s2)

(s,s3)

⊥/x =⊥,a =⊥

tt/x = tt,a =⊥

⊥/x =⊥,a =⊥
tt/x = tt,a = tt

ff/x = ff,a = tt

ff/x = ff,a =⊥

⊥/x =⊥,a =⊥
ff/x = ff,a = ff

tt/x = tt,a = ff

Figure 5.6: The transducer resulting from the one in Figure 5.5 after building the closure of it.

149

5 TeSSLa Fragments and Relation to Transducers

5.2.3 Results for TeSSLabool

By using the previous result for the relation of TeSSLabool and DFSTs, we can now give results
on equivalence of TeSSLabool formulas. The proof is mainly based on the fact that equivalence for
deterministic automata is in PTIME and that the constructed DFSTs can be represented as those.
Note that we only show that equivalence of TeSSLabool is in EXPTIME, we make no statement
regarding completeness.

Theorem 5.12 (Equivalence for TeSSLabool)

Equivalence of TeSSLabool formulas is in EXPTIME.

Proof. Above, we have shown how TeSSLabool relates to DFSTs. To show the complexity of
the equivalence problem for TeSSLabool we use this relation, thus, we show the complexity of the
equivalence problem for DFSTs.

We do this by reducing the equivalence problem for DFSTs to the equivalence problem for determ-
inistic automata. We can encode a DFST R = (Σ,Γ,Q,q0,δ) as a DFA A = (Σ′,Q′,q′0,F

′,δ ′) as
follows:

• Σ′ = Σ×Γ,

• Q′ = Q∪{ f},

• q′0 = q0,

• F ′ = Q

• δ ′(q,(σ ,γ)) =

q′ if δ (q,σ) = (q′,γ)

f otherwise

By using this construction, we can now transform two DFSTs into the corresponding DFAs and
check equivalence there. And because equivalence of DFAs is in PTIME [HMU06], so it is of
DFSTs.

In the end we have to take a look at the transformation from TeSSLabool to DFSTs. This trans-
formation is exponential since in the worst case, the formula consists of nested last operators. As
shown before, the DFST for a last has always two states for remembering the last value of its
subexpressions which results in an exponential blow up when using the composition algorithm on
nested last operators. Therefore, it follows that equivalence of TeSSLabool is in EXPTIME.

150

5.3 Pushdown Fragment

Furthermore, we can make a statement about the memory usage for evaluating a TeSSLabool for-
mula. Recall that ETeSSLa is the evaluation strategy which evaluates a TeSSLa formula composi-
tionally by evaluating every operator on its own and forwarding the output to the operators follow-
ing according to the dependency graph.

Theorem 5.13 (Finite Memory and TeSSLabool)

TeSSLabool under ETeSSLa is finite memory.

Proof. The only operator that needs to store values in TeSSLabool under ETeSSLa is the last, which
stores exactly one value at any time. This is the value it has to output when a trigger event occurs.
Because only boolean values exist in this fragment, the size of each value is bounded. Hence, the
maximum number of data any TeSSLabool formula has to store is finite because there can be only
finitely many lasts.

Because TeSSLabool specifications are always finite memory, the two properties FMP (the question,
if a given formula is finite memory under a certain evaluation strategy) and RFM (the question,
if for a given formula an evaluation strategy exists under which the formula is finite memory) are
always fulfilled, therefore, it is not necessary to make further statements about those.

5.3 Pushdown Fragment

The pushdown fragment of TeSSLa, which adds stacks to TeSSLabool, is interesting because it
covers the context free languages and has interesting properties which are even relevant in practice,
because it adds a possibility to have an infinite data structure while preserving good complexity
results for important properties. It somehow represents the middle ground of fragments of TeSSLa
that are finite memory and those which are not finite memory and have undecidable properties.

The fragment TeSSLastack extends TeSSLabool with streams of stacks, where a stack can contain an
arbitrary amount of data, thus, can potentially grow unbounded. A stack is given over a certain data
domain, in this case the boolean data domain B. Informally, the way the stack works in TeSSLastack

resembles very much the way a stack is used in pushdown transducers, which we also compare
TeSSLastack later to. Such a transducer uses exactly one stack only for internal calculations and
the same does TeSSLastack. Therefore, stacks are used as data values of events, but only one single

151

5 TeSSLa Fragments and Relation to Transducers

equation is allowed to represent a stream with stacks as values, which also means no input stream
is allowed to have stacks.

A stack ζ ∈ B∗ of the boolean domain B is a sequence of data values. In TeSSLastack there are four
functions to operate on stacks. While isEmpty and top only return boolean values and can be used
in any equation, pop and push return stacks and are only allowed in one equation in the formula.
It is important to note that a TeSSLastack-formula does not take a stream of stacks as input, all
streams with stacks are only internal. Thus it can solely be used to store previous data values or
decisions. This restriction is later necessary to keep the power of this fragment down to the one
of a pushdown transducer with one stack. Otherwise, its expressiveness would get to the one of a
TM, because a pushdown automaton with two stacks is as expressive as a TM.

Formally, TeSSLastack restricts TeSSLa to boolean streams, streams of stacks over B and the oper-
ators last and lift.

Definition 5.14 (TeSSLastack)

A TeSSLa formula ϕ is called a TeSSLastack formula if ϕ : SB× . . .× SB→ SB× . . .×SB and
the syntax of every equation e is restricted as follows, where f is a function f : Bn

⊥ → B⊥ or
f ∈ {pop, push, isEmpty, top}:

e := nil | unit | x | lift(f)(e, . . . ,e) | last(e,e)

Additionally, there is only one equation allowed which contains pop and / or push. The se-
mantics for every single operator stays the same as in TeSSLa and the functions isEmpty : B∗→
B, top : B∗→ B,pop : B∗→ B∗ and push : B∗×B→ B∗ are defined as follows:

isEmpty(〈b〉&ζ) = ff

isEmpty(〈〉) = tt

pop(〈b〉&ζ) = ζ

pop(〈〉) = 〈〉

top(〈b〉&ζ) = b

push(ζ ,b) = 〈b〉&ζ

Note at this point, that because of the definition above, flattened TeSSLastack specifications may not
be TeSSLastack specifications anymore because they may contain multiple expressions containing

152

5.3 Pushdown Fragment

operations that return a stack. Nevertheless, we do not define a new notion of flatness, but still stay
with the one for TeSSLa and use it. For the transformations into pushdown transducers later, it has
no effect if the flattened specifications are not TeSSLastack specifications in general.

As one can easily see, because of the potentially infinitely growing stack, TeSSLastack is not finite
memory and the following Theorem states this.

Theorem 5.15 (Finite Memory and TeSSLastack)

TeSSLastack under ETeSSLa is not finite memory.

Proof. Since the push function can be used on the stack stream in a cyclic way, an arbitrary
amount of values can be pushed on the stack, as in the following formula, where s is an input
stream:

x := lift(push)(last(x,s),s)

This leads to an unbounded amount of data that has to be remembered, because for every event
on s, one element is pushed on the stack. Thus, TeSSLastack formulas exist which are not finite
memory.

Still, it can be possible, even if a TeSSLastack formula is not finite memory under ETeSSLa, that we
can rewrite it such that the new formula has the same semantics and is finite memory. The next
theorem tells us that it is at least decidable for a given TeSSLastack formula if it can be rewritten
such that it is finite memory. Additionally, this theorem also states a result on equivalence of
TeSSLastack formulas.

The proof shows how to convert a TeSSLastack formula into a DPT and vice versa. From this
translation, we can apply results for DPTs to TeSSLastack and by doing so, show the previous
statement. For the first direction, to transform a DPT into a TeSSLastack formula, we use the same
translation scheme as for TeSSLabool and DFSTs but need to change two parts: first, add a check
on the first element of the stack to every equation representing if a transition is active and second,
to add an equation representing the stack, which pops elements from the stack or pushes elements
onto the stack depending on which transition is active. As the transducer is deterministic, only one
transition can be active at any time. For the other direction, to build a DPT for a given TeSSLastack

formula, we add three types of transducers to the translation scheme for translating TeSSLabool

formulas into DFSTs: If we have to convert a lifted isEmpty or top, we create a transducer with a

153

5 TeSSLa Fragments and Relation to Transducers

corresponding check on emptiness or the top element of the stack and than add this element back,
as the transducer also automatically removes the top element, but the function top does not. If we
have to translate a lifted pop, we add a transducer always removing the top element of the stack
when a transition is taken. If we have to translate a lifted push, we add a transducer where every
transition adds the corresponding element to the stack. All those transducers only have two states,
as the general transducer for a lift has. The composition algorithm then works in the same way as
before, just additionally taking care of the stack.

Theorem 5.16 (Equivalence and RFM for TeSSLastack)

The following two statements about TeSSLastack hold:

1. Equivalence of TeSSLastack formulas is decidable.

2. RFM for TeSSLastack under ETeSSLa is decidable.

Proof. We will show both statements by transforming arbitrary TeSSLastack formulas into DPTs
and vice versa.

To transform a DPT into a TeSSLastack-formula, we use the same transformation as for the DFST
with the following adjustments:

For every transition δ (q,σ ,λ) = (q′,(λ1, . . . ,λn),γ) which maps a state, an input symbol and the
top element of the stack to a new state, a sequence of elements to be pushed on the stack and an
output symbol, we add a check to the equation used for DFSTs, if the top element of the stack fits,
therefore, is λ :

dq,σ ,λ ,q′,Λ,γ := last(aq,sσ)∧ sσ ∧ top(ζ) = λ

We replace top(ζ) = λ with isEmpty(ζ) if the check is on emptiness of the stack, hence λ = #.
Thereby, ζ is the stream of stacks, which is defined as a nested if-then-else clause. It checks for
every dq,σ ,λ ,q′,Λ,γ if it is true, thus, if the transition is active and then pops an element from the stack
with pop(last(ζ ,dq,σ ,λ ,q′,Λ,γ)) if Λ does not contain any elements or pops and pushes elements with
push(. . .push(pop(last(ζ ,dq,σ ,λ ,q′,Λ,γ)),λn) . . . ,λ1) if Λ= λ1, . . . ,λn, therefore depending on if the
transition pushes something or only pops (reads) an element, ζ is defined accordingly. Thereby,
pop,push, isEmpty and top are shortcuts for lift(x) with x ∈ {pop, push, isEmpty, top}.

The other direction, to transform a TeSSLastack formula into a DPT, is done using the same al-
gorithm as used before, but now DPTs are used instead of DFSTs. Correspondingly, the four
functions isEmpty, top, pop and push use a stack by checking for emptiness, looking at the top

154

5.3 Pushdown Fragment

element or changing the stack accordingly while every other function or operator just copies the
existing stack and does neither change nor access it. Accordingly, checks and additions to the
stack are added to the transitions. The composition then aligns the stack usage perfectly. Because
TeSSLastack is deterministic, this results in a DPT.

Then 1. follows from the fact that equivalence for DPTs is decidable, which has been shown in
[Sén99]. Because TeSSLastack can be transformed into a DPT, equivalence is also decidable for
this TeSSLa fragment.

For 2., [Ste67] showed that the question if the language accepted by a DPT is regular is decid-
able. Then [Ser99] showed that the question if a semantically equivalent TM which needs only a
bounded number of memory cells exists for a given DPT is equivalent to the question if the lan-
guage accepted by the DPT is regular. Therefore, RFM for TeSSLastack is decidable as well.

Lastly, we show that one can decide for a given TeSSLastack specification if it is finite memory
under ETeSSLa without rewriting it, even if the specification is using a stack. Consider the following
example.

Example 5.17 (Finite Memory TeSSLastack Formula)

Consider the following TeSSLastack formula:

one :=merge(const(s, tt), ff)

two :=merge(last(one,s), ff)

x := filter(not(two),push(last(x,s),s))

This formula counts the number of values on the stack with the streams one and two and stops
pushing values on the stack when two values are already stored there. Hence it never remembers
more than two values and is finite memory.

Therefore, even if TeSSLastack is not finite memory under ETeSSLa, some TeSSLastack formulas still
are, as shown above, and the fragment has the nice property that, for a given TeSSLastack formula,
it is efficiently decidable if the formula is finite memory under ETeSSLa or not. This is stated in the
following theorem.

The proof is based on the DPT created for a TeSSLastack specification as shown in Theorem 5.16.
The DPT resembles very much the control flow graph of how ETeSSLa would evaluate a specific-
ation, because it is also build compositionally from a single DPT for each operator in the given

155

5 TeSSLa Fragments and Relation to Transducers

specification. Thus, it also resembles the usage of the stack. Therefore, to check if a given specific-
ation is finite memory, we need to find out if the stack can reach an unbounded height for a given
DPT created from a TeSSLastack specification. This can be done by creating the non-deterministic
finite automaton (NFA) which accepts the language of the stack, therefore, it accepts an input word
if the stack can have the single symbols of the word as contents in the run of a given DPT. After-
wards, we only have to check if the language accepted by the NFA is of finite size, because then
the stack is bounded in height, otherwise it is not.

Theorem 5.18 (FMP for TeSSLastack)

FMP for TeSSLastack under ETeSSLa is decidable in EXPTIME.

Proof. For a TeSSLastack formula to be not finite memory, the expression which pushes elements
to the stack needs to be used in a cyclic way and push more elements on the stack than it pops from
it. Hence, it needs to follow the following recursive pattern:

x := . . .push(last(x,s), t) . . .

where s and t can be arbitrary other streams. But even if it follows this pattern, there can still be
conditions surrounding it which make the formula finite memory.

To solve this problem, we build the DPT from the given formula. Because it uses the stack in
the same way as the formula does, we can now according to [MMMP12] build the NFA which
accepts all words that can be on the stack of the DPT for any given input word in PTIME. If the
language accepted of the NFA is of finite size, then there is some finite maximal height of the stack
in the DPT which means that the given formula is finite memory. Otherwise, the stack can be of
unbounded height and the formula is not finite memory. This procedure exactly answers FMP for
TeSSLastack under ETeSSLa.

As the DPT is exponential in the size of the TeSSLastack formula and building the NFA is in PTIME,
FMP for TeSSLastack is in EXPTIME.

Also note that, with the technique used in the proof for the previous theorem, we can not only
decide if a given specification is finite memory, but also, how much memory it exactly needs on
the stack. This can be done by looking at the language of the constructed NFA which accepts all
words that can be on the stack and find the longest word in this language. The length of this word
is exactly how big the stack must be in the worst case, independent of the input.

156

5.4 Functional Non-deterministic Fragment

5.4 Functional Non-deterministic Fragment

We will now expand the boolean fragment from Section 5.2, TeSSLabool, and add non-determinism.
Classical non-determinism, as known from non-deterministic automata, is not something which is
present in TeSSLabool. For one there is no possibility to make choices but there is also no statement
on what is a good execution, i.e. no meaning of acceptance exists for TeSSLa in general. But
TeSSLa is able to mimic such non-deterministic behaviour, by for example remembering multiple
values in a set and choosing on of them in the end or by anticipating the future, which can be
done with the next operator introduced in TeSSLa f . In the end, for simulating non-determinism in
TeSSLabool, we need two additional mechanisms:

1. A possibility to represent acceptance and only output the correct output if the transducer
would accept the run for the given input and

2. a possibility to represent the non-deterministic choices made.

As we are operating on boolean values, using a set or similar data structure to remember an arbit-
rary amount of values is not feasible, as we would loose an easy way to get complexity results for
the different decision problems. But to be able to solve the two issues, we can add the next oper-
ator to TeSSLabool, which enables us to look for future choices of a non-deterministic transducer
and in the end know at the beginning of the run already, if there is an accepting run for the given
input on the transducer. We will call this new fragment TeSSLa f

bool, for being TeSSLabool with
next or TeSSLa f being restricted to boolean streams.

Definition 5.19 (TeSSLa f
bool)

A TeSSLa formula ϕ is called a TeSSLa f
bool formula if ϕ : SB× . . .×SB→ SB× . . .×SB and

the syntax of every equation e is restricted as follows, where f : (B∪{⊥,?})n� B∪{⊥,?}:

e := nil | unit | x | lift(f)(e, . . . ,e) | last(e,e) | next(e,e)

The semantics for every single operator stays the same as in TeSSLa f .

We again use similar functions αΣ and βΣ as before in Section 5.2, where we encoded TeSSLa
streams as words for DFSTs and vice versa using these functions. As we consider NFSTs, therefore
non-deterministic DFSTs, in this section, the input words are quite similar. The main difference
is the encoding, as TeSSLa f is able to produce ? values on streams anywhere, instead of just at

157

5 TeSSLa Fragments and Relation to Transducers

the end of the stream’s progress. While this changes the style of the output of αΣ and βΣ, the
functionality of the two functions is very similar to the one in Section 5.2.

We again use a one-hot encoding for the transformation of NFST words into TeSSLa f streams.
For αΣ, we also make a small, additional change compared to the one for DFSTs. We add ending
markers to the resulting streams at the last event, which are denoted by a prime added to the value.
This is necessary to find the ending when looking into the future to see how the non-determinism
plays out. Formally, the function αΣ(w) = S encodes a functional NFST word w=w0w1 . . .wn ∈Σ∗

as a corresponding set of TeSSLa f
bool streams for every p ∈ Σ as a stream sp ∈ S as follows:

sp = (0,d0,⊥)(1,d1,⊥) . . .(n−1,dn−1,⊥)(n,d′n,⊥)(∞,⊥,⊥)⇔∀i : (di⇔ wi = p)

Thus again for every proposition a stream exists in S and for every symbol wi of w an event exists
on every stream from S with the value true if wi = p and false otherwise.

The function βΣ(s1, . . . ,sk) = w = w0w1 . . .wn ∈ Σ∗ changes because it now encodes TeSSLa f
bool

streams as a synchronized NFST word w over the alphabet Σ = {z1, . . . ,zk}→Val, where z1, . . . ,zk

are variables which relate to the corresponding streams s1, . . . ,sk, with Val = {xy | x∈ {⊥,?, tt, ff}∧
y ∈ {⊥,?}} being now adjusted such that it contains ? and every value has either a ⊥ or a ? added
as index additionally. Compared to the βΣ for DFSTs, it now has to represent in the word that
between two events, there can either be ⊥ or ?. We do this by marking each symbol of the word
with the value the stream has after this symbol, such that the automaton gets both informations,
the current and the following value, at once. Additionally, we can now remove the primed ending
symbols, because it is enough for our purpose to add a ? as index to the last symbol of the word.

Let T = {t0, t1, t2, . . . , tn} \ {∞} with t0 = 0 be the set of all timestamps present in the streams
including 0 excluding ∞ with ti < ti+1. Then wi is build as follows:

wi(s) =

dx if s = u(ti,d,x)v

xx otherwise, where s = u(t,d,x)v∧ t < ti∧@t < t ′ < ti : s = u′(t ′,d′,x′)v′

Because we now encode the information about the values after an event directly at the data value
in the word, we only have to consider two cases for wi(s). First, the case where an event exists at
ti and second the case where no event exists at ti. Because everywhere can be ? now, the ending is
not as special anymore as it was before.

158

5.4 Functional Non-deterministic Fragment

The following theorem states the relationship between TeSSLa f
bool and functional NFSTs, i.e. that

both are equally expressive. TeSSLa f
bool only relates to functional NFSTs and not to full NFSTs,

therefore only to NFSTs which represent a function in regards to their input and output and not a
relation, which means that for a given input, the output for every accepting run is the same. With
the restriction to boolean streams only, it is not possible to represent multiple different outputs,
because the number of branches for the output depends on the length of the word and is thus
not representable with a finite number of boolean streams. Therefore, TeSSLa f

bool only relates to
functional NFSTs and not NFSTs in general.

Theorem 5.20 (Relation Between TeSSLa f
bool and NFSTs)

For a functional NFST R=(Σ,Γ,Q,q0,δ) there is a TeSSLa f
bool formula ϕR and for a TeSSLa f

bool

formula ϕ there is a functional NFST Rϕ = (Σ,Γ,Q,q0,δ) s.t.

αΓ ◦ JRK= JϕRK◦αΣ and βΓ ◦ JϕK= JRϕK◦βΣ.

The proof to this theorem is given in the following two sections.

5.4.1 Transforming functional NFST to TeSSLa f
bool

In this section we show how an arbitrary functional NFST can be transformed into a semantically
equivalent TeSSLa f

bool formula. We will use a similar scheme as for DFSTs, but we need some
adjustments for handling the non-determinism.

Generally, the next is used to handle the non-determinism. But because it can only simulate it by
allowing us to see into the future, we still need to remember in which states we are at any given
point in the transducer, which is done via having streams for combinations of states the transducer
can be in at any point in time instead of just one stream for every state. Informally, the idea for
translating functional NFSTs into TeSSLa f

bool is to use next recursively to simulate the run of the
transducer while ignoring the outputs. After doing so, we know if the word would be accepted or
not and can give either an output or a marker to indicate the rejection of the input.

Given an functional NFST R = (Σ,Γ,Q,q0,F,δ), we will now show how to create the corres-
ponding TeSSLa f

bool formula. Note that, different from the TeSSLa code for a DFST, in this

159

5 TeSSLa Fragments and Relation to Transducers

case multiple aq can be true at once, because there may be multiple states the transducer is (non-
deterministically) in. Other than that, in general, the specification is quite similar to the one for
DFSTs and TeSSLabool:

aq :=merge(xq∧ isAcceptingq, ff)

aq0 :=merge(xq0 ∧ isAcceptingq0
, tt)

xq′ :=

 ∨
(q,σ ,q′,γ)∈δ

dq,σ ,q′,γ


dq,σ ,q′,γ := last(aq,sσ)∧ sσ

oi := filter(dq,σ ,q′,γ ∧ isAcceptingq′,const(if isAccepting then γ
′ else γ)(dq,σ ,q′,γ))

output :=merge{oi | ηi ∈ δ}

Most of it we already know from Subsection 5.2.1. The only change is the addition of the streams
isAcceptingq for every state q and the isEnd stream. While the isEnd stream always checks if the
last event is reached (one stream is enough for this purpose, because the input streams all end at
the same timestamp), the isAcceptingq streams state at every point in time if, when we start at
state q with the remaining events on the streams, we will accept in the end. This reflects the use
of non-determinism by calculating the acceptance a priori, which we must do, to only follow the
paths that lead to acceptance and to know which symbol we have to output. Formally, it is defined
as follows:

isAcceptingq := if isAccepting then a f
q else ∃q′ : dq,σ ,q′,γ ∧next(aq′,xq)

a f
q := const(q ∈ F)(unit)

isAccepting := ∀p : sp ∈ {⊥′, tt′, ff′}∨ last(sp,sp) ∈ {⊥′, tt′, ff′}

More precisely, the next is used to recursively calculate the future and make the choice now de-
pending on what is the outcome of the next, hence, if we will accept in the future following the
path or not. The usage of acceptingq in aq allows us to only go into the states which lead to ac-
ceptance with the given input streams and the usage of acceptingq in the oi streams allows us to
decide on the correct output, hence the one which is outputted when accepting the input. This
works because the transducer is functional, which means that, given an input, it has to output the
same output word on every accepting path.

160

5.4 Functional Non-deterministic Fragment

5.4.2 Transforming TeSSLa f
bool to NFST

For the other direction, we again use mostly the construction given in Subsection 5.2.2 with some
minor changes. At first, we need an additional transducer for the next operator in TeSSLa f

bool.
Thus, we will extend the function toDFST from Subsection 5.2.2 to toNFST by the following
entry.

toNFST(z := next(a,b)) has essentially five states. It stays in its initial state s0, which is accepting,
until an event or a ? occurs on the trigger stream b. If that happens, the transducer makes a
non-deterministic choice and moves to stt while outputting tt, sff while outputting ff or s⊥ while
outputting⊥, which means that the transducer guesses if the next event on a will be one with value
tt, ff or there will be no event at all, respectively. Additionally, the transducer may go to s? if an
event occurs and output ?. Also, if it sees a ? on b, it may move to any state besides s⊥ and output
the same value, which means it guesses that there will be some value corresponding to the state it
went to justify the guess of output.

If it is in one of the three states stt, sff or s?, the transducer waits for the confirmation of the non-
deterministic choice it made earlier, it has an obligation to fulfil, which means that a needs as next
event either one with tt or ff in case of the two first mentioned states which matches the output it
chose, or a ? in case of s?. If it moves to s⊥, it guesses that neither than event nor a ? will occur any
more on a. Then, only s0 is accepting because if the transducer is there, any obligation is fulfilled
and s⊥ is accepting because it only stays there if there is neither an event nor a ? any more on a.

Formally, the transducer for an equation z := next(a,b) can be build as follows:

toNFST(z := next(a,b)) = ({a,b}→ Val,{z}→ Val,{s0,stt,sff,s⊥,s?},{s0},{s0,s⊥},δ)

For the definition of δ we use the abbreviations again, as follows:

• tf = {tt, ff} and

• ay
x = {a 7→ xy} for xy ∈ Val.

Then, the transition relation δ is given in Figure 5.7, where we assume that not specified inputs for
δ lead to rejection of the input.

A depiction of the transducer for next can be seen in Figure 5.8.

161

5 TeSSLa Fragments and Relation to Transducers

δ (s0,ay
x∪b⊥⊥) = (s0,z⊥⊥)

δ (s0,a?
x∪bw

v6=⊥) = (s0,zw
?)

δ (s0,a?
x∪b?

⊥) = (s0,z?
⊥)

δ (s0,a⊥x ∪bw
v∈tf) = (stt,zw

tt)

δ (s0,a⊥x ∪bw
?) = (stt,zw

?)

δ (s0,a⊥x ∪b?
⊥) = (stt,z?

⊥)

δ (s0,a⊥x ∪bw
v∈tf) = (sff,zw

ff)

δ (s0,a⊥x ∪bw
?) = (sff,zw

?)

δ (s0,a⊥x ∪b?
⊥) = (sff,z?

⊥)

δ (s0,a⊥x ∪bw
v6=⊥) = (s⊥,z⊥⊥)

δ (s0,a⊥x ∪b?
⊥) = (s⊥,z⊥⊥)

δ (s0,a⊥x ∪bw
v6=⊥) = (s?,zw

?)

δ (s0,a⊥x ∪b?
⊥) = (s?,z?

⊥)

δ (stt,a⊥⊥∪bw
⊥) = (stt,zw

⊥)

δ (stt,a⊥⊥∪bw
v∈tf) = (stt,zw

tt)

δ (stt,a⊥⊥∪bw
?) = (stt,zw

?)

δ (stt,a⊥tt ∪bw
v∈tf) = (stt,zw

tt)

δ (stt,a⊥tt ∪bw
?) = (stt,zw

?)

δ (stt,a⊥tt ∪b?
⊥) = (stt,z?

⊥)

δ (stt,a
y
tt∪b⊥⊥) = (s0,z⊥⊥)

δ (stt,a?
tt∪bw

v6=⊥) = (s0,zw
?)

δ (stt,a?
tt∪b?

⊥) = (s0,z?
⊥)

δ (stt,a⊥tt ∪bw
v∈tf) = (sff,zw

ff)

δ (stt,a⊥tt ∪bw
?) = (sff,zw

?)

δ (stt,a⊥tt ∪b?
⊥) = (sff,z?

⊥)

δ (stt,a⊥tt ∪bw
v6=⊥) = (s⊥,z⊥⊥)

δ (stt,a⊥tt ∪b?
⊥) = (s⊥,z⊥⊥)

δ (stt,a⊥tt ∪bw
v6=⊥) = (s?,zw

?)

δ (stt,a⊥tt ∪b?
⊥) = (s?,z?

⊥)

δ (sff,a⊥⊥∪bw
⊥) = (sff,zw

⊥)

δ (sff,a⊥⊥∪bw
v∈tf) = (sff,zw

ff)

δ (sff,a⊥⊥∪bw
?) = (sff,zw

?)

δ (sff,a⊥ff ∪bw
v∈tf) = (sff,zw

ff)

δ (sff,a⊥ff ∪bw
?) = (sff,zw

?)

δ (sff,a⊥ff ∪b?
⊥) = (sff,z?

⊥)

δ (sff,a
y
ff∪b⊥⊥) = (s0,z⊥⊥)

δ (sff,a?
ff∪bw

v6=⊥) = (s0,zw
?)

δ (sff,a?
ff∪b?

⊥) = (s0,z?
⊥)

δ (sff,a⊥ff ∪bw
v∈tf) = (stt,zw

tt)

δ (sff,a⊥ff ∪bw
?) = (stt,zw

?)

δ (sff,a⊥ff ∪b?
⊥) = (stt,z?

⊥)

δ (sff,a⊥ff ∪bw
v6=⊥) = (s⊥,z⊥⊥)

δ (sff,a⊥ff ∪b?
⊥) = (s⊥,z⊥⊥)

δ (sff,a⊥ff ∪bw
v6=⊥) = (s?,zw

?)

δ (sff,a⊥ff ∪b?
⊥) = (s?,z?

⊥)

δ (s⊥,a⊥⊥∪bw
v) = (s⊥,z⊥)

δ (s?,a⊥⊥∪bw
⊥) = (s?,zw

⊥)

δ (s?,a⊥⊥∪bw
v6=⊥) = (s?,zw

?)

δ (s?,a⊥? ∪bw
v6=⊥) = (s?,zw

?)

δ (s?,a⊥? ∪b?
⊥) = (s?,z?

⊥)

δ (s?,a
y
?∪b⊥⊥) = (s0,z⊥⊥)

δ (s?,a?
?∪bw

v6=⊥) = (s0,zw
?)

δ (s?,a?
⊥∪bw

⊥) = (s0,zw
⊥)

δ (s?,a?
⊥∪bw

v6=⊥) = (s0,zw
?)

δ (s?,a⊥? ∪bw
v∈tf) = (stt,zw

tt)

δ (s?,a⊥? ∪bw
?) = (stt,zw

?)

δ (s?,a⊥? ∪b?
⊥) = (stt,z?

⊥)

δ (s?,a⊥? ∪bw
v∈tf) = (sff,zw

ff)

δ (s?,a⊥? ∪bw
?) = (sff,zw

?)

δ (s?,a⊥? ∪b?
⊥) = (sff,z?

⊥)

δ (s?,a⊥? ∪bw
v6=⊥) = (s⊥,z⊥⊥)

δ (s?,a⊥? ∪b?
⊥) = (s⊥,z⊥⊥)

Figure 5.7: The transition relation of the NFST created for an equation z := next(a,b).

162

5.4 Functional Non-deterministic Fragment

s0start

sff

stt

s⊥

s?

ax,⊥⊥/⊥⊥
a?,⊥?/⊥?
a?, tfy/?y

a⊥, tfy/tty
a⊥,?y/?y

a⊥,⊥?/⊥?

a⊥, tfy/ffy
a⊥,?y/?y

a⊥,⊥?/⊥?

a⊥, 6=⊥⊥/⊥⊥

a⊥,{tt, ff,?}y/?y
a⊥,⊥?/⊥?

⊥⊥,⊥y/⊥y
{⊥, tt}⊥, tfy/tty
{⊥, tt}⊥,?y/?y

tt⊥,⊥?/⊥?

tt⊥,⊥⊥/⊥⊥
tt?,{tt, ff,?}y/?y

tt?,⊥?/⊥?

tt⊥, tfy/ffy
tt⊥,?y/?y

tt⊥,⊥?/⊥?

tt⊥, 6=⊥⊥/⊥⊥

tt⊥,{tt, ff,?}y/?y
tt⊥,⊥?/⊥?

⊥⊥,⊥y/⊥y
{⊥, ff}⊥, tfy/ffy
{⊥, ff}⊥,?y/?y

ff⊥,⊥?/⊥?

ff⊥,⊥⊥/⊥⊥
ff?,{tt, ff,?}y/?y

ff?,⊥?/⊥?

ff⊥, tfy/tty
ff⊥,?y/?y

ff⊥,⊥?/⊥?

ff⊥, 6=⊥⊥/⊥⊥

ff⊥,{tt, ff,?}y/?y
ff⊥,⊥?/⊥?

⊥⊥,by/⊥⊥

⊥⊥,⊥y/⊥y
⊥⊥,{tt, ff,?}y/?y
?⊥,{tt, ff,?}y/?y

?⊥,⊥?/⊥?

?y,⊥⊥/⊥⊥
??,{tt, ff,?}y/?y
⊥?,⊥y/⊥y

⊥?,{tt, ff,?}y/?y

?⊥, tfy/tty
?⊥,?y/?y

?⊥,⊥?/⊥?

?⊥, tfy/ffy
?⊥,?y/?y

?⊥,⊥?/⊥?

?⊥, 6=⊥⊥/⊥⊥

Figure 5.8: The transducer for the next operator in the TeSSLa f
bool fragment. For a next(a,b), the

first input of every transition represents the input on a while the second represents the
input on b.

163

5 TeSSLa Fragments and Relation to Transducers

Furthermore, for the other operators, the function toNFST is very similar as toDFST with slight
adjustments, because the underlying stream model differs a bit from the one which was used for
toDFST. Hence, we add additional transitions in the transducers for last and lift to handle ? which
arise possibly between other values. Additionally, all states of the transducers for nil, unit, lift and
last are now accepting.

Finally, we need to slightly adjust the composition algorithm for functional NFSTs, because of the
new, non-deterministic transducer for the next operator which also needs accepting states. In the
end, it does not differ much from the one for DFSTs.

Only minor changes were made for handling the non-determinism. First, we are also building the
accepting states as all those where both states in the original transducers were accepting. Further-
more, we handle the transition function slightly different, because there can now be more next
states than only one.

At first, we compose two existing transducers into a new one until only one transducer is left. This
is done in the following way: Let R = (I → Val,O→ Val,Q,q0,F,δ) and R′ = (I′ → Val,O′ →
Val,Q′,q′0,F

′,δ ′) be two NFSTs. The parallel composition of R and R′ is then R′′ = (I ∪ I′ →
Val,O∪O′→ Val,Q×Q′,(q0,q′0),F×F ′,δ ′′) with

((s′1,s
′
2),h

′′) ∈ δ
′′((s1,s2),g′′)⇐⇒(s′1,h) ∈ δ (s1,g)∧ (s′2,h′) ∈ δ

′(s2,g′)∧

g′′ = g∪g′∧∀σ ∈ I∩ I′ : g(σ) = g′(σ)∧h′′ = h∪h′

In the end, again, we have one transducer RA = (IA → Val,OA → Val,QA,q0A,FA,δA) which
represents all equations. As before, RA contains transitions with the same in- and output val-
ues for certain propositions. In the same way as for DFSTs, we build the final transducer as
Rϕ = (IA\OA→ Val,OA→ Val,QA,q0A,FA,δϕ), where

(s′,h) ∈ δϕ(s,g)⇐⇒ (s′,h) ∈ δA(s,g′)∧g = g′|IA\OA ∧ (∀a ∈ IA∩OA : g′(a) = h(a))

for g|I := g∩ (I×Val). In this, again, the only change is that we handle the fact of multiple follow
up states for an input in the transition function.

Note that the resulting transducer is indeed functional. This follows from the fact that the trans-
ducer for the additional next operator is functional (and the transducers for all other operators are
deterministic) and that functionality is compositional, which means that after the composition of
the transducers, because the transducers we start with are functional, the result is as well.

164

5.4 Functional Non-deterministic Fragment

5.4.3 Results on TeSSLa f
bool

By using the result on the relation between TeSSLa f
bool and functional NFSTs, we can now give

results on equivalence for TeSSLa f
bool. This follows directly from the fact that the functional NFST

for a TeSSLa f
bool formula is exponentially larger then the formula and therefore the result for equi-

valence on functional NFSTs is as well. Again, we only show the inclusion in EXPSPACE and
therefore, we do not give a completeness result.

Theorem 5.21 (Equivalence of TeSSLa f
bool)

Equivalence of TeSSLa f
bool-formulas is in EXPSPACE.

Proof. In Theorem 5.20 we have shown how TeSSLa f
bool and functional NFSTs relate. Addition-

ally, in Theorem 5.12 we have shown that the DFST build for a TeSSLabool formula is exponentially
larger due to possibly nested lasts. The only addition for functional NFSTs is the transducer for
the next operator. As for the last, this one is also growing exponentially for every next added.

As stated in [Ser99], equivalence for functional NFSTs is in PSPACE. Because the functional
NFST for a TeSSLa f

bool formula is exponentially larger in the worst case, equivalence for TeSSLa f
bool

is in EXPSPACE.

As next statement about TeSSLa f
bool we show that it is, compared to TeSSLabool, not finite memory

in general. This is due to the addition of the next operator, which, when used recursively, may
need to wait until it reaches a certain value in the stream and the recursion ends to be evaluated.
Until then, every event that happens needs to be remembered.

Theorem 5.22 (Finite Memory and TeSSLa f
bool)

TeSSLa f
bool under ETeSSLa is not finite memory.

Proof. Consider a TeSSLa f
bool formula like

s = if t then next(s, t)∧ x else x

where t and x are input streams. The stream s is at the current point in time only true if x is true
until t is false. The number of next-steps which have to be remembered depends on how many

165

5 TeSSLa Fragments and Relation to Transducers

events on t and x occur before t is false once, which means that a possibly unbounded amount of
memory if needed to evaluate this formula under ETeSSLa.

Even though not every TeSSLa f
bool specification is finite memory, we can, as for the stack fragment

of TeSSLa, decide if a given specification is finite memory. By adding the next operator, several
problems occur. When evaluating one timestamp after another, when the next is triggered, the
evaluation strategy has to wait for the following value on the other stream until it can output an
event and therefore memorize the current timestamp. Additionally, all other parts of the formula
which depend on a next and also get input from other parts of the formula have to buffer all those
input events, because a next may output older timestamps which must then be processed with
the other input events with the corresponding timestamp. A simple specification where this case
occurs is the following:

x := next(a,b)∧ c

with the boolean input streams a,b and c. Now, according to the description above and the defin-
ition of ETeSSLa, the next operator has to remember an arbitrarily large timestamp every time an
event on its second input stream occurs. The other input stream of the next does not matter for
this purpose. Therefore, to find out if a given TeSSLa f

bool formula is finite memory is the same
as finding out if there exist a combination of inputs such that the second input stream of a next
operator gets an event.

The proof for the following theorem is based on building the NFST for the given TeSSLa f
bool

formula and checking afterwards, if a non-deterministic decision is reachable from the starting
state. Because this means that a next gets an event on the second input stream as the transducer
then guesses which value has to be output.

Theorem 5.23 (FMP for TeSSLa f
bool Specifications)

FMP of TeSSLa f
bool under ETeSSLa is in EXPTIME.

Proof. To find out if a TeSSLa f
bool specification is finite memory, we have to check if a next can

get an event on its second input stream. For this purpose, consider the NFST created from the
given specification. Exactly when a next gets an event on its second input stream, the NFST has a
non-deterministic choice in a state. Therefore, we create an NFST and make a depth-first-search,
beginning in the starting state, to find a state with a non-deterministic choice.

166

5.5 Timed Fragment

As the NFST is exponentially larger than the TeSSLa f
bool specification it is created from and the

depth-first-search is linear in the size of the NFST, deciding FMP for TeSSLa f
bool is in EXPTIME.

Lastly, in the following theorem, we show that RFM for TeSSLa f
bool is in EXPTIME. The proof for

this statement again is based on the relation of TeSSLa f
bool to functional NFSTs and the fact that

for functional NFSTs it can be decided in PTIME if one can be transformed into a semantically
equivalent TM which only uses a bounded number of binary tape cells.

Theorem 5.24 (RFM for TeSSLa f
bool)

RFM of TeSSLa f
bool is in EXPTIME.

Proof. As shown before, the functional NFST for a TeSSLa f
bool formula is exponential in size of

the formula. As stated in [Ser99], the question if a given functional NFST can be transformed into
a semantically equivalent Turing machine that only needs a bounded number of binary cells on its
work tapes is the same as if the functional NFST is subsequentializable. Additionally, [WK95]
showed that the question if a functional NFST is subsequentializable is in PTIME. This means that
the same question for TeSSLa f

bool can be solved by transforming a formula into the corresponding
function NFST and then check if it is subsequentializable. Because the size of the functional NFST
is exponential, RFM for TeSSLa f

bool is in EXPTIME.

5.5 Timed Fragment

In this section, we consider a new fragment which extends TeSSLabool by the comparison of a
timestamp with a certain distance from a previous timestamp. We call this fragment TeSSLabool+c

for having boolean streams and comparison of timestamps with constants. It shows that by al-
lowing some more freedom within the functions allowed for lift, TeSSLa directly reaches the
expressive power of timed transducers.

As in TeSSLabool we are still restricted to the operators last and lift and have nearly only boolean
streams, but this time additionally allowing the restricted usage of the time operator within lift,
which allows us to get the timestamps of events on streams and compare them with constants.
Compared to TeSSLabool, a new type of expressions lift(gv)(time(e),merge(last(time(e),e),0))
is added, in which the first and the last e need to be the same expression and the merge is used

167

5 TeSSLa Fragments and Relation to Transducers

to ensure that the second input stream of the lift is initialized with zero when the expression is
triggered, if no event on the value stream of the last already occurred. Using gv, this type of
expressions exactly represent how clock constraints work in timed automata [AH92, AD94], and
thus timed transducers, as we will see later.

Definition 5.25 (TeSSLabool+c, [CHL+18])

A TeSSLa formula ϕ is called a TeSSLabool+c formula if ϕ : SB× . . .×SB→ SB× . . .×SB and
the syntax of every equation e is restricted as follows, where f : Bn

⊥� B⊥, v ∈ T is a constant
and gv is a function gv : T×T→ B of the form gv(t1, t2) = t1 ≶ t2 + v with ≶ ∈ {<,>}:

e := nil | unit | x | lift(f)(e, . . . ,e) | lift(gv)(time(e),merge(last(time(e),e),0)) | last(e,e)

where the newly added expressions of the form lift(gv)(time(e),merge(last(time(e),e),0)) are
restricted to lift(gv)(time(a),merge(last(time(b),a),0)), thus, the first and the last expression
need to be the same.

The semantics for every single operator stay the same as in TeSSLa.

Compared to the expression with slift, for which we showed for the boolean fragment that it
does not increase the expressiveness, the new type of expressions for this fragment of the form
lift(gv)(time(e),merge(last(time(e),e),0)) does increase the expressiveness.

We will now show that TeSSLabool+c and DTFSTs have the same expressiveness. As for TeSSLabool,
we again encode words as streams and vice versa using the same procedure, but this time αΣ and
βΣ preserve the timestamps. As before, we will then transform every type of TeSSLabool+c for-
mula into a DTFST and use a very similar composition algorithm afterwards and vice versa by
transforming the timing constraints of a DTFST into TeSSLa expressions using the new type of
expressions we added in the syntax. We will now define αΣ and βΣ and then prove the statement
later.

This time, the function αΣ(w) = S encodes a DTFST word w = (w0,τ0)(w1,τ1) . . .(wn,τn) ∈ (Σ×
T)∗ as corresponding set of TeSSLabool+c streams, where for every p ∈ Σ a stream sp ∈ S exists
with

sp = τ0d0τ1d1 . . .τn−1dn−1τndn∞⇔∀i : (di⇔ wi = p)

Therefore, this time we do not use artificial timestamps which resemble the position of the word,
but instead use the timestamps which exists in the time word now.

168

5.5 Timed Fragment

The function βΣ(s1, . . . ,sk) = w = (w0,τ0)(w1,τ1) . . .(wn,τn) ∈ (Σ×T)∗ encodes TeSSLabool+c

streams as a synchronized DTFST word w over the same alphabet we already used for TeSSLabool,
Σ= {z1, . . . ,zk}→Val with Val= {⊥, tt, ff,<′,⊥′, tt′, ff′}, where z1, . . . ,zk are variables which relate
to the corresponding streams s1, . . . ,sk again. Let again T = {t0, t1, t2, . . . , tn}\{∞} with t0 = 0 be
the set of all timestamps present in the streams including 0 and excluding ∞ with ti < ti+1. Then
τi = ti and each wi is build as follows:

wi(s) =



<′ if s = vti

s(ti)′ if s = vtid

s(ti) if ∃t ∈ T : t > ti∨ s = v∞

⊥ otherwise

Which is exactly how the symbols of the word have already been build for TeSSLabool.

Hence βΣ encodes the streams as a word with the real timestamps of the events in the stream now
instead of adding just indices as timestamps as for TeSSLabool, which allows us to later compare
those timestamps in the DTFST and vice versa using αΣ.

Because both functions preserve the timestamps, both representations are now isomorphic and we
can use the inverse encoding functions for decoding:

Theorem 5.26 (Relation between TeSSLabool+c and DTFSTs, [CHL+18])

For a DTFST R = (Σ,Γ,Q,q0,C,δ) a TeSSLabool+c formula ϕR exists and for a TeSSLabool+c

formula ϕ a DTFST Rϕ = (Σ,Γ,Q,q0,C,δ) exists:

JRK= α
−1
Γ
◦ JϕRK◦αΣ and JϕK= β

−1
Γ
◦Rϕ ◦βΣ.

In the next to sections, we will show the translations in both directions and prove the theorem by
doing this.

5.5.1 Translating DTFST to TeSSLabool+c

Given a DTFST R = (Σ,Γ,Q,q0,δ ,C) we will now show how to create the TeSSLbool+c formula
ϕR from the previous theorem. Therefore, we reuse the translation for DFSTs with the following
adjustments. Recall, that for every q, xq denoted if the transducer is in state q and a stream dq,σ ,q′,γ

169

5 TeSSLa Fragments and Relation to Transducers

indicated if the transition from state q with input symbol σ to state q′ with output symbol γ is
active.

For every single transition ηi = (q,σ ,ϑ ,q′,γ,r) of the DTFST we extend the stream dq,σ ,q′,γ to
dq,σ ,ϑ ,q′,γ,r (and use this instead in every xq) by adding the timing constraint ϑ :

dq,σ ,ϑ ,q′,γ,r = dq,σ ,q′,γ ∧ϑ

Where all possible timing constraints ϑ are a boolean combination of elements of the form T ≶

x+c in the DTFST and are translated by lifting the boolean combination to streams element-wise,
as follows for every T ≶ x+ c:

time(sσ)≶merge(last(time(merge(bx,unit)),sσ),0)+ c.

In this case bx is the stream representing the clock of the constraint as defined later. The part
time(sσ) always represents the current time because all streams always have an event when some-
thing happens on any stream because of how we encode the streams. We encode the clocks just
as boolean streams, thus time(merge(bx,unit)) is the current time remembered by the clock. The
last surrounding this part ensures that not the current value of the clock is taken if a new one is set,
but instead the previous one and the outer merge initialized the clocks with zero.

The streams bx for every clock x∈C are defined as follows, where the resetting of clocks is encoded
by r:

bx :=merge{filter(dq,σ ,ϑ ,q′,γ,r,dq,σ ,ϑ ,q′,γ,r) | (q,σ ,ϑ ,q′,γ,r) ∈ δ ∧ x ∈ r}

These newly defined streams allow us to add timing constraints to the transitions modelled in
TeSSLa as in timed automata. If we now add those new streams to the encoding of a DFST in
TeSSLabool, we are able to simulate a DTFST.

5.5.2 Translating TeSSLabool+c to DTFST

To show the other direction, the transducers from the equations in the flattened version of ϕ are
build as the DFSTs before for TeSSLabool. But additionally we now have to translate the new equa-
tions of the form lift(gv)(time(a),merge(last(time(b),a),0)). We will build one single transducer
for such equations instead of flattening them and build one transducer for every operator, because
a single transducer for, for example time, is not possible, as it would have to handle arbitrary val-
ues, not just boolean values. Hence we assume that even in a flattened TeSSLabool+c specification

170

5.5 Timed Fragment

used in this subsection, the equations of the form lift(gv)(time(a),merge(last(time(b),a),0)) are
considered as one operator.

The transducers created from a single equation in a TeSSLabool+c formula ϕ for the operators
nil, unit, lift over boolean streams and last are build as before with the following changes for
the translation function toDTFST: All resulting transducers now additionally have an empty set
of clocks, because they are not using any clocks, and an additional timing constraint on every
transition which is just true, because no timing constraints are needed for these operators. But for
the composition later these neutral values are necessary, as different transducers with and without
clocks and timing constraints need to be composed into one.

The transducer for an equation z := lift(gv)(time(e),merge(last(time(a),e),0)) stays in its initial
state s0 until one stream ends. For every event on a it resets the clock to save the timestamp
of the event in the clock ca. For every event on e it produces an output value on z according
to the fulfilment of the current clock constraint, hence, depending on the fulfilment of the clock
constraint, the transducer takes a different transition and produces a different output. The states sv

and se handle the stream endings similarly to the transducer for the last operator, which is a result
of a last being a subformula of the expression.

Note that, because we consider expressions of the form lift(gv)(time(e),merge(last(time(a),e),0))
as one operator for building transducers, it has a lot less states than it would normally have when
every operator would be translated on its own and the resulting transducers would be combined via
composition. Most of the functionality that would normally be encoded in states is now directly
combined in the timing constraints. This direct translation of that many TeSSLa operators into a
transducer is only directly possible because the timing constraints in DTFSTs directly resemble
the functionality.

Formally, the new type of equation z := lift(gv)(time(e),merge(last(time(a),e),0)) is translated
into an DTFST as follows:

toDTFST(z := lift(gv)(time(e),merge(last(time(a),e),0))) =
({a,e}→Val,{z}→Val,{s0,sv,se},s0,{ca},δ) where gv(t1, t2) = t1 ≶ t2+v and we use the same

171

5 TeSSLa Fragments and Relation to Transducers

s0start

⊥,⊥ [true] / /0,⊥
⊥,{tt, ff} [true] /{ca},⊥
{tt, ff},⊥ [T ≶ ca + v] / /0, tt
{tt, ff},⊥ [¬T ≶ ca + v] / /0, ff
{tt, ff},{tt, ff} [T ≶ ca + v] /{ca}, tt
{tt, ff},{tt, ff} [¬T ≶ ca + v] /{ca}, ff

Figure 5.9: The transducer for the in TeSSLabool+c newly added expressions of the form z :=
lift(gv)(time(e),merge(last(time(a),e),0)), where the first input is e and the second
is a. As before, the ending cases and states sv and se have been left out for a better
overview on the functionality of the expression.

abbreviations as for toDFST:

δ (s0,e⊥∪a⊥, true) = (s0, /0,z⊥)

δ (s0,e⊥∪ay∈tf, true) = (s0,{ca},z⊥)

δ (s0,e⊥∪a′y, true) = (sv, /0,z⊥)

δ (s0,ex∈tf∪a⊥,T ≶ ca + v) = (s0, /0,ztt)

δ (s0,ex∈tf∪a⊥,¬(T ≶ ca + v)) = (s0, /0,zff)

δ (s0,ex∈tf∪ay∈tf,T ≶ ca + v) = (s0,{ca},ztt)

δ (s0,e′x∈{<,⊥}∪a?
y, true) = (se, /0,z′x)

δ (s0,e′x∈tf∪a?
y,T ≶ ca + v) = (se, /0,z′tt)

δ (s0,e′x∈tf∪a?
y,¬(T ≶ ca + v)) = (se, /0,z′ff)

δ (sv,ey∈tf∪a?
x, true) = (se, /0,z′<)

δ (sv,e⊥∪a?
x, true) = (sv, /0,z⊥)

δ (sv,e′⊥∪a?
x, true) = (se, /0,z′⊥)

δ (sv,e′y∈{<,tt,ff}∪a?
x, true) = (se, /0,z′<)

The transducer without the ending edge cases is depicted in Figure 5.9.

The parallel composition algorithm for DFSTs is reused here and extended by clocks and conjunct-
ing the timing constraints of the composed transducers as follows: Assuming R and R′ have the
sets of clocks C and C′ respectively. Then the resulting transducer R′′ from a parallel composition

172

5.5 Timed Fragment

of R and R′ has the set of clocks C′′ =C∪C′. Furthermore, the definition of the transition function
δ ′′ of R′′ is updated as follows, where δ and δ ′ are the transition functions of R and R′, respectively.
The biggest change is the addition of the clock constraints and that they are combined to ϑ ′′ for
the resulting transducer as ϑ ′′ = ϑ ∧ϑ ′. Additionally, the set of clocks to reset for δ ′′ is the union
of the sets of the original transitions.

δ
′′((s1,s2),g′′,ϑ ′′) = ((s′1,s

′
2),h

′′,r′′)⇐⇒δ (s1,g,ϑ) = (s′1,h,r)∧δ
′(s2,g′,ϑ ′) = (s′2,h

′,r′)∧

g′′ = g∪g′∧∀σ ∈ I∩ I′ : g(σ) = g′(σ)∧h′′ = h∪h′

r′′ = r∪ r′∧ϑ
′′ = ϑ ∧ϑ

′

Because all transducers which do not need a timing constraint naturally have true on every trans-
ition as constraint, it works, because it is the neutral element for conjunction.

Afterwards the same closure algorithm is applied as for the DFSTs because nothing has to be
changed about the clocks or clock constraints.

5.5.3 Results for TeSSLabool+c

By using the previous result we can now make statements on equivalence of TeSSLabool+c formu-
las. The proof is mainly based on the fact that equivalence of deterministic timed automata is in
PSPACE [AD94] and that the constructed DTFSTs can be represented as those.

Theorem 5.27 (Equivalence for TeSSLabool+c, [CHL+18])

Equivalence of TeSSLabool+c formulas is in EXPSPACE.

Proof. Above, we have shown how TeSSLabool+c relates to DTFSTs. To show the complexity of
the equivalence problem for TeSSLabool+c we use the same approach as for TeSSLabool in Theorem
5.12 and show the complexity of DTFSTs by converting them to deterministic timed automata. To
do this, we just copy the clocks and clock constraints from the DTFSTs to the construction used
for DFSTs. Because equivalence for deterministic timed automata is in PSPACE [AD94] and
the constructed DTFST is exponential in the size of the TeSSLabool+c-formula, equivalence for
TeSSLabool+c is in EXPSPACE.

In the following theorem we state that TeSSLabool+c is not finite memory in general. This follows
from the fact that arbitrarily large timestamps have to be compared.

173

5 TeSSLa Fragments and Relation to Transducers

Theorem 5.28 (Finite Memory and TeSSLabool+c)

TeSSLabool+c under ETeSSLa is not finite memory.

Proof. When evaluating a TeSSLabool+c formula under ETeSSLa, there are especially those with
subexpressions like lift(gv)(time(e),merge(last(time(e),e),0)). When evaluating such a subex-
pression with the given evaluation strategy, the part with last(time(e),e) needs to remember an
arbitrary large timestamp, which means that the memory needs to be unbounded. Because this
means there are TeSSLabool+c formulas which are not finite memory under ETeSSLa, TeSSLabool+c

is not finite memory.

Next, we show that FMP for TeSSLabool+c under ETeSSLa is in EXPTIME. Because for TeSSLabool

FMP is always fulfilled as every TeSSLabool formula is finite memory, we only have to consider the
new type of expressions. As the new type of expressions does compare arbitrarily large timestamps,
a formula can directly not be evaluated with finite memory under ETeSSLa if such an expression
exists in the specification and is able to get an event. While the question if such an expression
exists is easy to solve by just checking every operator, the question if there exists an input such
that timestamps have to be compared or memorized is harder to check.

The proof is based on the DTFST created for a TeSSLabool+c specification as it resembles the
control flow graph of the evaluation strategy ETeSSLa. Even though the DTFST does not have a
notion of memory, is allows us to find out which parts of the given specification are used during
the evaluation of an input. It is created compositionally from single transducers for each operator
and by construction for each equation lift(gv)(time(e),merge(last(time(e),e),0)), a path from
the starting state to the resulting timing constraint can only exist if an input event can reach the
equation in the TeSSLabool+c specification.

Theorem 5.29 (FMP for TeSSLabool+c)

FMP for TeSSLabool+c under ETeSSLa is in EXPTIME.

Proof. When applying ETeSSLa to a TeSSLabool+c formula, subformulas using timestamps, i.e.
lift(gv)(time(e),merge(last(time(e),e),0)), are the reason why a TeSSLabool+c formula may not
be finite memory. If any of the input streams of such an expression gets an event, ETeSSLa needs to
memorize an arbitrarily large timestamp.

Consider the DTFST build for an expression lift(gv)(time(e),merge(last(time(e),e),0)). As one
can see, if any on the input streams has an event, either a timing constraint has to be evaluated or a

174

5.5 Timed Fragment

clock has to be set to a certain value. Those are exactly the two cases where a given formula using
such an expression is not finite memory. Therefore, we build the DTFST for a given TeSSLabool+c

formula and make a depth-first-search to find out if we can reach any transition either having a
timing constraint or resetting a clock.

As the DTFST is exponentially larger than the TeSSLabool+c formula and the depth-first-search can
be done in linear time regarding to the size of the automaton, FMP for TeSSLabool+c under ETeSSLa

is in EXPTIME.

The last question we answer for TeSSLabool+c is the one about the complexity of RFM. In this case,
this question is equivalent to the one if in the resulting DTFST for a given TeSSLabool+c formula,
the timing constraints are really needed.

Theorem 5.30 (RFM for TeSSLabool+c)

RFM for TeSSLabool+c is in EXPSPACE.

Proof. The given statement refers to the question if a given formula can be rewritten such that all
occurrences of subformulas of the form lift(gv)(time(e),merge(last(time(e),e),0)) can be elim-
inated while staying semantically equivalent.

We solve this question by reducing the problem to the question of equivalence for timed automata.
Let therefore the function untime for a set S be defined as follows:

untime(S) = {w0, . . . ,wn | (w0,τ0) . . .(wn,τn) ∈ S}

First, we build the DTFST A for the given TeSSLabool+c formula. By removing all timing con-
straints, we create a DFST B from A. Note that B could be non-deterministic in general if one
removes timing constraints from an arbitrary DTFST, but it is deterministic because of the struc-
ture of the DTFST which results when it is created with the previously described algorithm from
a TeSSLabool+c formula, as A does not contain any two different transitions with the same input
symbol.

Now, iff untime(L(A)) = L(B) holds, the timing constraints have no effect and can be removed.
Both transducers can be transformed into deterministic automata by adding their outputs to the
inputs as already used for Theorem 5.12. As [AD94] states that equivalence of deterministic timed
automata is in PSPACE, we can do the checking of untime(L(A)) =L(B) in PSPACE, while taking

175

5 TeSSLa Fragments and Relation to Transducers

care of using the untimed language. Therefore, the same holds in our case. Because the DTFST is
exponentially larger than the TeSSLabool+c formula, RFM for TeSSLabool+c is in EXPSPACE.

In the following section, we will not add non-determinism to the timed fragment.

5.5.4 Adding Non-determinism to the Timed Fragment

As we did for the boolean fragment, we will add non-determinism to the timed fragment. Because
many properties are already undecidable for non-deterministic timed automata, many properties
are also undecidable for this new fragment, as we will show in this section.

Analogously to the boolean fragment, we will call the functional non-deterministic version of the
timed fragment TeSSLa f

bool+c. It is created by adding the next operator already used for TeSSLa f
bool

to TeSSLabool+c. If we combine the translations for TeSSLabool+c to DTFSTs and for TeSSLa f
bool to

functional NFSTs, we can show that TeSSLa f
bool+c relates to functional NTFSTs in the same way.

We just need to consider both, the non-determinism available in TeSSLa f
bool as well as the clocks

and clock constraints from TeSSLabool+c.

For equivalence, we again refer to [AD94], which states that equivalence of NTAs is undecidable.
One can see that equivalence for functional NTFSTs can only be harder than for NTAs. But
because equivalence for NTAs is already undecidable, it has to be as well for functional NTFSTs.

Theorem 5.31 (Equivalence for TeSSLa f
bool+c)

Equivalence of TeSSLa f
bool+c is undecidable.

Proof. We prove the statement by again transforming TeSSLa into transducers, functional NT-
FSTs to be more precise, which is done with a combination of the translations for TeSSLa f

bool to
NFSTs and TeSSLabool+c to DTFSTs.

Complexity for equivalence can be obtained by referring to NTAs. According to [AD94], equi-
valence for NTAs is undecidable. Because NTFSTs are only an extension of NTAs by adding
an output, the complexity for equivalence can only be higher for NTFSTs than for NTAs. It fol-
lows from this that equivalence for functional NTFSTs is also undecidable and the same holds for
TeSSLa f

bool+c.

Obviously, TeSSLa f
bool+c is not finite memory.

176

5.5 Timed Fragment

Theorem 5.32 (Finite Memory and TeSSLa f
bool+c)

TeSSLa f
bool+c under ETeSSLa is not finite memory.

Proof. Because TeSSLa f
bool and TeSSLabool+c are not finite memory under ETeSSLa, TeSSLa f

bool+c

is also not finite memory under this evaluation strategy.

By the results for TeSSLabool+c and TeSSLa f
bool, we can also get a result on FMP for TeSSLa f

bool+c.
Because both results on FMP for both fragments can be checked on their own, FMP for TeSSLa f

bool+c

can be decided in the worst complexity of the two.

Theorem 5.33 (FMP for TeSSLa f
bool+c)

FMP of TeSSLa f
bool+c under ETeSSLa is in EXPTIME.

Proof. As stated by Theorem 5.23 and Theorem 5.29, FMP for the fragments TeSSLa f
bool and

TeSSLabool+c is in EXPTIME. We can now check those two properties independently from each
other, therefore making one depth-first-search on the NTFST and either find a non-deterministic
choice or a timing constraint. Because the NTFST is exponential in the size of the specification
and the depth-first-search is linear, this leads to FMP being also EXPTIME for TeSSLa f

bool+c.

Lastly, we will show that RFM for TeSSLa f
bool+c is undecidable. As we have seen before, a

TeSSLa f
bool+c formula is not finite memory under the same condition as TeSSLabool+c is not, there-

fore as soon as one subformula of the form lift(gv)(time(e), last(time(e),e)) exists, which results
in clock constraints in the functional NTFST. This means, to find an equivalent formula which is
finite memory, it needs to be able to remove all clocks from the NTFST. But it is undecidable for
NTAs if this can be done without changing the language accepted by the NTA [Fin06] and this
result carries over to NTFSTs.

Theorem 5.34 (RFM for TeSSLa f
bool+c)

RFM of TeSSLa f
bool+c is undecidable.

Proof. For TeSSLabool+c we have shown that a formula is not finite memory iff a timing constraint
exists of the form lift(gv)(time(e), last(time(e),e)). As all those subformulas end to be clock
constraints in the resulting NTFST for a TeSSLa f

bool+c formula, there has to be an semantically

177

5 TeSSLa Fragments and Relation to Transducers

equivalent NTFST without any timing constraints (or without any clocks, analogously). Otherwise
the given TeSSLa f

bool+c formula can not be transformed into a semantically equivalent one which
is finite memory. But [Fin06] states that it is only decidable iff an NTA with one clock can be
transformed into one without any clocks, but for n ≥ 2 clocks, it is undecidable. Because our
functional NTFSTs are only an extension of NTAs and have possibly an arbitrary number of clocks,
RFM is undecidable for TeSSLa f

bool+c.

5.6 Conclusion

In this section we conclude the results from this chapter. The Figure 5.10 shows the relationship
between the different TeSSLa fragments and well known formalisms we considered in this chapter.
The formalisms where the arrows start are strictly less expressive compared to the one where
the corresponding arrow ends. The formalisms without any path between them in this graph are
incomparable. On the top of the graph, also the fragments from the previous chapter, Chapter 4,
are depicted.

Additionally, the table in Figure 5.11 shows the complexity results on the various TeSSLa frag-
ments which we considered in this section.

178

5.6 Conclusion

TeSSLabool = DFST

TeSSLabool+c = DTFSTTeSSLa f
bool = NFST

TeSSLa f
bool+c = NTFST

TeSSLa without delay

TeSSLastack = DPT

TeSSLaTeSSLa f without delay

TeSSLa f

Figure 5.10: Shows the relation between various TeSSLa fragments and different types of trans-
ducers as well as the results from Chapter 4. The arrows indicate expressiveness
which follows from the associated transducers. The elements in a node at the start of
an arrow are strictly less expressive than the elements at its end. Elements between
whose nodes no path exist are incomparable.

179

5 TeSSLa Fragments and Relation to Transducers

Fragment Equiv. Formalism Equivalence FM FMP RFM

TeSSLabool

DFST EXPTIME yes yes yes
Theorem 5.9 Theorem 5.12 Theorem 5.13 Theorem 5.13 Theorem 5.13

TeSSLastack

DPT decidable no EXPTIME decidable
Theorem 5.16 Theorem 5.16 Theorem 5.15 Theorem 5.18 Theorem 5.16

TeSSLa f
bool

func. NFST EXPSPACE no EXPTIME EXPTIME
Theorem 5.20 Theorem 5.21 Theorem 5.22 Theorem 5.23 Theorem 5.24

TeSSLabool+c

DTFST EXPSPACE no EXPTIME EXPSPACE
Theorem 5.26 Theorem 5.27 Theorem 5.28 Theorem 5.29 Theorem 5.30

TeSSLa f
bool+c

func. NTFST undecidable no EXPTIME undecidable
Theorems 5.20, 5.26 Theorem 5.31 Theorem 5.32 Theorem 5.33 Theorem 5.34

Figure 5.11: Shows the results of Chapter 5, showing the equivalent formalism for every con-
sidered TeSSLa fragment as well as summing up the complexities for the decision
problems.

180

6 Relation of TeSSLa to Other Stream
Languages

Contents

6.1 Discussion on Expressiveness of Stream Languages 183

6.2 TeSSLa and LOLA . 184

6.2.1 TeSSLa and LOLA on Discrete Streams 185

6.2.2 TeSSLa and LOLA on Continuous Streams 190

6.2.3 TeSSLa and LOLA2 . 193

6.2.4 TeSSLa and RTLola . 193

6.3 Striver . 194

6.4 Lustre . 200

6.4.1 Comparing Lustre to TeSSLa . 202

6.5 Esterel . 203

6.5.1 Comparing Esterel to TeSSLa . 203

6.6 Conclusion . 204

In this chapter, we compare TeSSLa to other stream languages like LOLA, Striver, Lustre and
Esterel. For this purpose, we take a look at different types of streams as well as fragments of
TeSSLa (TeSSLa f) and see how they compare to the mentioned languages.

While LOLA and Striver are, like TeSSLa, build to be specification languages on streams, thus, the
idea is to specify correctness properties for a given system or statistical evaluations, to get certain
measurements for a running program, Lustre and Esterel are created to be programming languages
for programming on a stream based model. As such, they are not build up as an optimized formal
language with a minimal set of operators, but instead are build to be easily usable for programmers
of huge programs. Therefore, the comparison with TeSSLa is a bit different in their case.

181

6 Relation of TeSSLa to Other Stream Languages

In general, the comparison on expressiveness mainly takes a look at five typical features of stream
languages which differentiate the languages we consider. Some languages have some features of
those, some languages have others. We now briefly introduce those features now and at the end of
this section, we provide an overview stating which languages contains which feature.

1. Explicit Time Handling: The language is able to handle time explicitly and in a special
manner, get the timestamps of the incoming events and do calculations on them.

2. Non-synchronized Events: The language is able to handle streams without a common clock.
Events can occur at any timestamp without any minimal distance between the timestamps
proposed by the environment needed.

3. Create Events: The language is able to output events at timestamps at which no input events
occurred. These output timestamps are not defined by a given grid, but instead arbitrarily
calculated by the specification.

4. Future References: While all languages are able to reference past values, not all can ref-
erence future values. Future references have the advantage of making the specification for
certain properties easier, but when evaluated practically, many values may need to be re-
membered.

5. Zeno Streams: The language is able to handle and produce Zeno behaviour on streams.
While this allows the language to handle arbitrarily many events in a given time window,
Zeno behaviour in general is not helpful on piece-wise constant streams as considered in this
thesis. This is because in a practical evaluation, one would never reach a point beyond the
timestamp the events timestamps converge to.

It is important to note that those features are not positive in every aspect. Containing a features
may increase the expressiveness, but also makes the languages more complex (as, for example,
already seen in Chapter 5). Also, some behaviour like specifying properties about future values or
Zenoness may be hard to handle in practical applications.

Before we get to the comparison of different languages, the following section explains and dis-
cusses how our notion of expressiveness works and what is different to the standard notion of
expressiveness.

182

6.1 Discussion on Expressiveness of Stream Languages

6.1 Discussion on Expressiveness of Stream Languages

It is important to discuss the notion of expressiveness we use in this thesis regarding the comparison
of the stream languages. At first, it can be noted that all the languages considered in this section,
LOLA and its extensions, Lustre, Esterel, Striver and TeSSLa, are Turing complete. This means
we can do arbitrary calculations regarding a given input to get a certain final output or in other
words, all theses languages can easily simulate a Turing machine, using the right data structures for
simulating the tapes and the past reference operators to access older states of the tapes. Therefore,
in this thesis, we use a different approach in comparing the expressiveness by not only considering
the relation between the input and the final output, but instead the stream transformation functions
that can be expressed with each language, which relates more to the stream Turing machine we
defined in Definition 2.43 instead of conventional Turing machines. This means, the whole output
streams matter and thus even additionally created events and even the time wise order of the events,
also containing intermediate values that can only be calculated at some timestamp using future
references, are important for a higher expressiveness.

Note that our notion of expressiveness is just a natural extension of the standard notion. As com-
mon, we compare the languages that can be expressed with a given formalism as defined in Defin-
ition 2.1, but in this case, those languages are stream transformations instead of only relations
between input streams and single output values or acceptance criteria, as it is for conventional lan-
guages or Turing machines. Therefore, we do not change the definition of expressiveness itself,
but we change the types of languages we consider, which allows a more distinct view on stream
languages and their expressiveness.

Such a discussion about including the output over time and not just the final output into the no-
tion of expressiveness has already been raised in [Gol00, GSAS04, Weg98, GSW01] regarding the
question if interactive Turing machines are more powerful then conventional Turing machines. In
these papers, a version of a Turing machine has been developed which also considers an input-
output-relation like a stream transformation by outputting a value when a new input value occurs
interactively. Those have been called interactive Turing machine (iTM) [Weg98, GSW01] or per-
sistent Turing machine (pTM) [Gol00, GSAS04], respectively. Even though the discussion about
the question if an iTM or a pTM is more powerful than a TM is ongoing to the best of our know-
ledge, it is interesting to note it here, because the concept of interaction is quite similar to our
concept of considering the complete output stream regarding expressiveness and not only the final
value. We gave a notion of such a Turing machine, which we call a stream Turing machine, in
Definition 2.43.

183

6 Relation of TeSSLa to Other Stream Languages

Even though the previously mentioned discussion regarding interaction is ongoing, our notion of
expressiveness also makes sense in a practical application in monitoring. If we want to check a
correctness property during the execution of a system, it is important that we can notify about a
violation as soon as possible. In this manner, for example a language including an operator like
the delay is better or more expressive, because it can set a delay to a timestamp at which a certain
timeout runs out and the property would be violated. With a language without such an operator,
we would have to wait for the next input event to arrive to recognize that there is a violation of the
property and therefore it can not be expressed in a property, that the violation is definitely observed
when is occurs. This example shows us that we can even practically express tighter properties when
including such a delay operator and that our notion of expressiveness makes sense in this setting.

6.2 TeSSLa and LOLA

LOLA is able to specify past and future references using negative or positive numbers as off-
set. Whereas TeSSLa is only able to specify past references, because for practical applications in
runtime verification and log file analyses over a continuous time domain it generally makes sense
to restrict specifications to past references because otherwise future values need to be known at an
earlier timestamp which requires buffering values until the needed timestamp. Nevertheless, future
references may make a difference for engineer who want to specify properties, as they can lead to
simplified specifications, even if they are not necessary to express certain properties. This is why
we extended TeSSLa to TeSSLa f in the beginning of this thesis.

In the next section, we will compare TeSSLa and LOLA on discrete streams and show that they be-
have equally on those streams, under the assumption that LOLA can somehow access and process
timestamps. Recall that a discrete stream in this thesis is a stream where the time domain is N and
at every timestamp, there is either an event or no progress (therefore ?). Note that discrete streams
can be defined in a different way, for example the time domain can be a different set of values. Our
definition has the advantage that a language like LOLA, which has no notion of time normally, is
able to calculate the time by counting the events. But this behaviour can be restored if the time
domain is not N by, for example, adding an additional input stream for every LOLA specification,
containing the timestamps as values of the events. In the end, this approach is the same as the one
we use here, only the timestamps in LOLA are represented in a different way. The comparison
regarding expressiveness leads to the same results. Also, note that choosing a time domain where
two adjacent values can have different distances, results in strange behaviour. But this holds for

184

6.2 TeSSLa and LOLA

TeSSLa in general, as the delay operator would then be able to get input values which results in
events at timestamps that are not in the time domain any more. Therefore, we do not consider such
time domains.

As extension to TeSSLa, we will also take a look at the relation of TeSSLa f and LOLA, as it also
contains future references using the next. Furthermore, we will compare some of the fragments
introduced in the previous chapter to fragments of LOLA and see, that there exist quite similar
fragments for LOLA.

In the section after the next one, we will also compare LOLA and TeSSLa on arbitrary streams
over a continuous time domain and see that TeSSLa is more expressive on such streams.

6.2.1 TeSSLa and LOLA on Discrete Streams

At first, let us consider the past fragment of LOLA, LOLApast, which is restricted to negative
offsets only. The following theorem states that the past fragment of LOLA and TeSSLa are equally
expressive on discrete streams and the proof is done constructively.

Note that we assume for the direction where we show that LOLA can express the TeSSLa operators,
that a ⊥ value is included in the data domain of every stream to represent that there is no event in
the meaning of the streams used as stream model for TeSSLa. Otherwise, a lot of the functionality
of the TeSSLa operators could not be represented. For LOLA, we then handle this value as if
there is an event with ⊥ as value. This is only a technical adjustment for the proofs, which does
not change the functionality of any operator or influence the expressiveness, as this conversion
between the stream models can naturally be done and is quite similar to the synchronization of the
streams we already did in the previous chapter to encode the streams in transducer words.

Theorem 6.1 (LOLApast in the Discrete Setting)

On discrete streams it holds that LOLApast = TeSSLa.

Proof. We give a constructive proof by delivering a translation scheme from arbitrary LOLApast

formulas to TeSSLa formulas and vice versa.

At first we show how every LOLApast specification can be transformed into an equivalent TeSSLa
specification. Therefore, we show how a single line of LOLApast can be transformed into one or
more lines of TeSSLa.

185

6 Relation of TeSSLa to Other Stream Languages

LOLApast has two types of expressions, functions applied to streams as well as the operator for
accessing older values. For the function application, we just use a lift operator to represent it in
TeSSLa. For the offset operator, we mainly use a last to access to prior value and a merge for
adding the constant value at timestamp 0.

Note that for any n <−1,n ∈ Z, we can just reformulate a LOLApast formula [n,c] such that there
are only −1 offsets by building n lines of LOLA expressions, each of the form [−1,c], for a given
constant c. Therefore, we only consider expressions of type [−1,c] as offsets for the rest of the
proof.

For a LOLApast expression
s = f (s1, . . . ,sn)

we can express the same behaviour in TeSSLa with

s := lift(f)(s1, . . . ,sn)

and for an expression
s = s′[−1,c]

we can express the same behaviour in TeSSLa as

s :=merge(last(s′,clock),constc(unit))

where clock is either s′ if s 6= s′ or some other stream not involved in the recursion. This works
because all streams are discrete and thus have events at every timestamp.

By using the translation above, we can therefore transform any LOLApast formula by flattening it
first and then transforming the specification line by line into an equivalent TeSSLa formula.

It remains to show how every TeSSLa specification can be transformed into an equivalent LOLApast

specification. We use the same approach, flatten it first and transform it line by line. We assume
the data domain of each LOLA stream to contain ⊥ as value. Each TeSSLa operator can be
transformed as follows:

• s := nil

s = s[−1,⊥]

186

6.2 TeSSLa and LOLA

• s := unit

s′ = s′[−1,−1]+1

s = ite(s′ = 0,�,⊥)

• s := time(s′)

s = s[−1,−1]+1

• s := lift(f)(s1, . . . ,sn)

s = f (s1, . . . ,sn)

• s := last(val, trig)

s = ite(trig 6=⊥,v[−1,⊥],⊥)

v = ite(val 6=⊥,val,v[−1,⊥])

• s := delay(del,r)

count = count[−1,−1]+1

s = ite(count = timeout[−1,∞],�,⊥)

timeout = ite((r 6=⊥∨ s 6=⊥)∧del 6=⊥,count +del, timeout[−1,∞])

As one can see, the delay is simulated by counting the timestamps and remembering the last
timeout if no reset occurs. This is only possible because our time domain is discrete with the same
distance between every two adjacent values.

What we have not considered now are the future references in LOLA, because also TeSSLa has no
future references. But we defined an extension of TeSSLa, TeSSLa f , containing an operator for

187

6 Relation of TeSSLa to Other Stream Languages

future references called next, which makes it more expressive as shown in Theorem 4.28 and The-
orem 4.30. So we compare LOLA and TeSSLa f next, as both contain future references compared
to the languages considered in the previous theorem.

Because discrete streams are finite and have an ending after a finite amount of time the next can
be seen as a pendent to last and that it works in the same way as last in the discrete setting: Every
time an event arrives on the trigger stream, next returns the value of the next event on the value
stream until the ending is reached. Therefore, it directly matches to the future references of LOLA
as we see in the following theorem.

Theorem 6.2 (LOLA in the Discrete Setting)

On discrete streams it holds that LOLA = TeSSLa f .

Proof. We already showed LOLApast = TeSSLa. It remains to show that the next operator in
TeSSLa f is able to express LOLA specifications of the form s = s′[+1,c] and that LOLA is able
to express the next operator.

A LOLA specification of the form
s = s′[+1,c]

can be expressed in TeSSLa f as follows, where we assume the last timestamp of the stream is
known, in the same way it is in the beginning with 0, and call it t:

s := lift(ite)(time(clock) = t,c,next(s′,clock))

Furthermore, for the other direction, LOLA can express a TeSSLa f formula s := next(val, trig) as
follows:

s = ite(trig 6=⊥,v[+1,⊥],⊥)

v = ite(val 6=⊥,val,v[+1,⊥])

Also, with the same restriction to the usage of last and next as for -1 and +1 in LOLA, TeSSLa f

can be restricted to TeSSLa f
eff such that on each path in the dependency graph the difference of

delayed and next labelled edges is positively bounded. Then it holds that LOLAeff = TeSSLa f
eff.

188

6.2 TeSSLa and LOLA

Corollary 6.3 (Efficient Fragments on Discrete Streams)

On discrete streams it holds that LOLAeff = TeSSLa f
eff.

This follows directly from the fact that each operator can be translated one by one as shown in the
previous theorems, without creating paths with infinite future references in the dependency graph
if there where non before.

All the previous results apply independently of the allowed data domains, thus it does not matter
if arbitrary data domains are allowed or if we restrict the data domains to bounded ones (which
is the same as only using boolean valued streams). This follows because every operator can be
translated independently of the rest of the formulas and without using the data domain into the
other formalism.

Corollary 6.4 (Bounded Data Domains on Discrete Streams)

On discrete streams the following statements hold:

• LOLAb
past = TeSSLabool and

• LOLAb = TeSSLa f
bool.

Additionally, we can also show that LOLAbool is as expressive as TeSSLabool+c, which extends
TeSSLabool by expressions of the form lift(gv)(time(e),merge(last(time(e),e),0)) for the com-
parison of timestamps and a constant like the timing constraints in timed automata, on discrete
streams. The proof is based on showing that TeSSLabool+c and TeSSLabool as equally expressive
on discrete streams. The idea of the proof is that the discrete time domain allows us to count the
timestamps if necessary, because there can only be a finite number of events between every two
timestamps. This leads to the fact that a last on a time operator as value stream results always in
value t− 1 at a timestamp t, as it is always triggered and the prior timestamp is always one less
than the current timestamp.

Theorem 6.5 (LOLAb
past and TeSSLabool+c on Discrete Streams)

On discrete streams it holds that LOLAb
past = TeSSLabool+c.

Proof. From Corollary 6.4 we know that LOLAb
past = TeSSLabool. To now prove LOLAbool =

TeSSLabool+c, we show TeSSLabool = TeSSLabool+c in the discrete setting.

189

6 Relation of TeSSLa to Other Stream Languages

Because every TeSSLabool formula is also a TeSSLabool+c formula, it trivially holds that TeSSLabool

⊆ TeSSLabool+c.

To show the other direction, we have to show that the subexpressions added in TeSSLabool+c of
the form lift(gv)(time(e),merge(last(time(e),e),0)), which are the only addition in TeSSLabool+c

compared to TeSSLabool, can also be expressed by expressions of TeSSLabool, if the input streams
are discrete. In the discrete case, time does not really have any impact, since the timestamps
are natural numbers and on every such timestamp, an event exists. Because expressions of the
given form always have to look like lift(gv)(time(a),merge(last(time(b),a),0)), we know that
last(time(b),a) is always time(a)− 1. With v being a constant, the remaining expression is
lift(gv)(time(a),merge(time(a)− 1,0)) which is constant as well, for a given formula statically
being either true or false, depending on value chosen for v. Thus, for every v, expressions of the
form lift(gv)(time(e),merge(last(time(e),e),0)) can be replaced by either true or false on discrete
streams, which are values available in TeSSLabool.

Also, this shows not only that both TeSSLa fragments are equally expressive on discrete streams,
but also that they can be transformed into each other without increasing the size of the formula,
making the timing fragment TeSSLabool+c the same as TeSSLabool in the discrete setting regarding
expressiveness. Additionally, from the previous theorem with the same argumentation, the next
statement also follows.

Corollary 6.6 (LOLAb and Time on Discrete Streams)

On discrete streams it holds that LOLAb = TeSSLa f
bool+c.

6.2.2 TeSSLa and LOLA on Continuous Streams

While for TeSSLa and LOLA on discrete streams both have fitting fragments or extensions for
those from the other language which have the same expressiveness, this changes on a continuous
time domain.

While on a discrete streams as defined in this thesis, one can access the current timestamp by
counting the events, this is not possible any more in a non-discrete setting. Naturally, LOLA has
no possibility to access the timestamps of the events, while TeSSLa has one with the time operator.
But for LOLA, one could assume the time to be part of the input, therefore adding an input stream

190

6.2 TeSSLa and LOLA

with the timestamps at every event. This would allow LOLA the same functionality as time has in
TeSSLa. But naturally, LOLA does not contain such a time operation.

Furthermore, LOLA is only able to reference events that already exist and it has no possibility to
act on a timestamp at which no event exists on any input stream. TeSSLa can easily do this using
the delay operator, which allows TeSSLa to express stream transformations that LOLA can not
express in the continuous setting.

Let us first consider LOLApast and LOLA. We show in the following theorem that TeSSLa is more
expressive than LOLApast and that TeSSLa f is more expressive than LOLA. Even if we assume
an input stream with timestamps, as explained before, for LOLA, both still holds because of the
delay operator.

Theorem 6.7 (LOLA on Continuous Streams)

On continuous streams the following statements holds:

• LOLApast = TeSSLa without delay and

• LOLA = TeSSLa f without delay.

Proof. First, we can show that TeSSLa is able to express all LOLApast operators using exactly
the same transformation as for Theorem 6.1 and that TeSSLa f is able to express all LOLA oper-
ators using exactly the same transformation as for Theorem 6.2. We can also use the same trans-
formations for the other direction from both theorems for transforming LOLA and LOLApast into
TeSSLa f and TeSSLa, respectively, without considering the delay operator. For the time operator,
we assume that the LOLA specification has a special input stream, containing the timestamps for
each event.

Additionally, it is easy to see that LOLApast and LOLA can not express a stream transformation
which creates events on the output streams without any event on the input stream, which TeSSLa
and TeSSLa f can do in many ways using delay. Compared to the discrete setting, this holds
because the delay operator can not be implemented in LOLA, because the timeout can not be
calculated any more by counting the events.

Considering again the boolean versions of LOLA and TeSSLa, we can state again that both types
are equally expressive, even on continuous streams. This follows mainly from the fact that both
can only act if an event occurs on any stream, which means the streams are like discrete streams
for these fragments.

191

6 Relation of TeSSLa to Other Stream Languages

Theorem 6.8 (LOLA Fragments on Continuous Streams)

On continuous streams the following statements holds:

• LOLAb = TeSSLa f
bool and

• LOLAb
past = TeSSLabool.

Proof. The two main differences between LOLA and TeSSLa on continuous streams are, that
TeSSLa can naturally access the timestamps and that it can act at timestamps without any input
events being present. As already shown in the previous section, on discrete streams both statements
hold. But being restricted to boolean streams erases the possibility to access timestamps in TeSSLa
in both fragments and both also do not include the delay operator. Therefore, in this case the
continuous streams are also like discrete streams in both cases and therefore, as shown before,
both equalities hold.

Even though the boolean fragments are still equivalent on continuous streams in terms of express-
iveness, this does not hold for the timed fragments of TeSSLa and the boolean fragments of LOLA
any more. Both timed fragments of TeSSLa are allowed to access and compare timestamps and can
therefore make statements considering the distance of the events, which LOLA with only boolean
streams can not do. Therefore, the following statement holds.

Corollary 6.9 (Timed Fragments and LOLA on Continuous Streams)

On continuous streams it holds that LOLAb
past (TeSSLabool+c.

Lastly, we state that the efficient fragments are different regarding expressiveness on continuous
streams. This directly follows from the fact that the delay operator can now create new events
which LOLA is not capable of.

Corollary 6.10 (Efficient Fragments on Continuous Streams)

On discrete streams it holds that LOLAeff (TeSSLa f
eff.

192

6.2 TeSSLa and LOLA

6.2.3 TeSSLa and LOLA2

Besides the original version of LOLA from [DSS+05], there is a second version defined for net-
work monitoring in [FFST16] which is called LOLA 2.0, or LOLA2 for short. LOLA2 adds
parametrized stream templates to LOLA which can be instantiated such that, for example, streams
can be created for every id of some object. An instantiation is invoked by events on a certain stream
as well as the generation as outputs, which is invoked by events on a second stream, called the ex-
tension stream. Lastly, there is a termination stream in each stream template to kill an instance.

The ability to create streams is something which is neither present in LOLA nor in TeSSLa. Nev-
ertheless, even though the stream templates add simpler ways to express certain properties, they
do not add additional expressiveness to LOLA and therefore, LOLA2 is the same as LOLA in
this manner. This holds, because LOLA can handle arbitrary data types and therefore even maps.
Where an instance is created in LOLA2, one can put the parameter of the instance, for example the
id, into a map and take care of such created streams this way. The same can obviously also be done
in TeSSLa in the same way. Therefore, all results regarding LOLA and TeSSLa in the previous
section can also be applied to LOLA2.

Note that this result follows from how we defined expressiveness and therefore, how we compare
languages. If one would take the feature of being able to create streams into account, this would
be a different dimension. But as it does not change the input / output relation, it does not change
the expressiveness in the way we defined it.

6.2.4 TeSSLa and RTLola

Additional to LOLA2, another extension has been developed for LOLA, called RTLola [FFST19],
which is an extension of LOLA2. While LOLA2 was only able to work on discrete streams or
at least only able to act where events on the input streams existed, the purpose of RTLola is be-
ing naturally defined on continuous streams, and therefore even able to handle non-synchronized
events, like TeSSLa.

In RTLola, the handling of the continuous time domain and the non-synchronized events is done
by the possibility of choosing a frequency at which something is done, like every 0.1 seconds or
so. Then, the specification reacts at every such time instance as if there would be an event on the
input streams. Further more, RTLola contains two additional key features compared to LOLA:
The stream templates already known from LOLA2 and a possibility to define sliding windows. A

193

6 Relation of TeSSLa to Other Stream Languages

sliding window in RTLola is a stream s[r, f] where r is a real number defining the length of the
window and f is the aggregation function for the data of the events currently in the window.

Compared to TeSSLa, RTLola has still neither a possibility to access the timestamps of events
and thus can not execute calculations on those (which can of course be simulated again with an
additional input stream), nor is it able to create events at arbitrary positions which TeSSLa can do
with delay. It can create events in a restricted manner, by using a frequency and output events at
positions, where no input stream had an event. But this frequency is given in advance and therefore,
it can not create events between two time units, like TeSSLa is still able with the delay operator.
This leads to the fact that RTLola is, for example, not able to handle or create Zeno streams, but
TeSSLa is. In the end, this frequency addition in RTLola is also nothing more than an additional
input stream, which could also be done in standard LOLA. It would also be able to operate on each
of these frequency events if such an input stream exists, like the one containing the timestamps.

Additionally, even though it is claimed in [FFST19] that TeSSLa can neither handle parametriz-
ation, nor sliding windows, this is not true for the standard iteration of TeSSLa from [CHL+18].
Parametrization can be handled as explained in the previous section about LOLA2 using maps or
sets and an example for sliding windows in TeSSLa has been given in [LSS+19].

As TeSSLa f is able to express all types of stream transformations, it follows that RTLola is less
expressive than TeSSLa f and incomparable to TeSSLa, which follows from the future references
available in RTLola.

6.3 Striver

Striver [GS18, GS20] is a specification language over the same stream model TeSSLa is defined
over, therefore it can handle continuous time domains and an asynchronous arrival of events nat-
urally. Additionally, as TeSSLa, Striver has an explicit notion of time and is able to output events
at positions where no input events exist, which was not possible in LOLA and only possible in a
very restricted way in RTLola.

Striver was first introduced in [GS18], where the authors defined a version similar to TeSSLa, also
without future references, but forbid Zeno streams completely (and lost some additional express-
iveness with it). We will consider the version of Striver from the follow-up paper [GS20]. Com-
pared to the previous version, this version of Striver does contain future references over streams
with a finite number of events and the paper also contains an extension for its delay operator which

194

6.3 Striver

could, in general, allow Zeno streams. But still, while this delay would be able to express Zeno
streams, the semantics are defined in a way such that they can not handle Zeno streams and there-
fore, Striver can still not express them. This is done on purpose, because one of the design goals
of Striver was to get as much expressiveness as possible without being able to generate or handle
Zeno streams. But, compared to the version of Striver from [GS18], the one in [GS20] is able
to express all TeSSLa operators when Zeno streams are not considered. This addition makes the
language much more similar to TeSSLa, considering expressiveness.

Before we get to the comparison of TeSSLa and Striver, we give a formal introduction to Striver
as it is defined in [GS20]. There are two types of expressions, first, there are ticking expressions
α over a time domain T representing the sets of timestamps when a given specification may have
events, given over the following syntax, where c ∈ T and ε ∈ {t ∈ T | t > 0} are constants, v is a
stream variable and ∪ is used as union of two sets of timestamps:

α ::= {c} | v.ticks | delay(ε,v) | α ∪α

Second, there are offset expressions τ which allow accessing timestamps of older or newer events
on streams. The syntax of those is given as follows, where v is a stream variable and T is the
current timestamp:

τ ::= T | τv τv ::= v <= τ | v << τ | v >= τ | v >> τ

Lastly, there are value expressions E, where d is a constant value of an arbitrary data domain, v is
a stream variable and f a function mapping multiple input streams to an output stream:

E ::= d | v(τv) | f (E, . . . ,E) | τ

Next, we provide the semantics for the Striver operators by using the function J.Kσ for an expres-
sion σ . We begin with timing expressions, where dom(σv) returns the set of timestamps at which
v has an event in the expression σ , t is the current timestamp and sign(n) returns the sign of n:

J{c}Kσ = {c}

Jv.ticksKσ = dom(σv)

Jα1∪·· ·∪αnKσ = Jα1Kσ ∪ . . .JαnKσ

Jdelay(ε,v)Kσ = {t ′ | ∃t ∈ dom(σv) : t +σv(t) = t ′∧|σv(t)| ≥ |ε|∧

sign(σv(t)) = sign(ε)∧dom(σv)∩ (t, t ′) = dom(σv)(t ′, t) = /0}

195

6 Relation of TeSSLa to Other Stream Languages

It is important to note that the delay of Striver works differently than the one of TeSSLa. It has
no reset, but instead the only input stream resets and sets a new value. Additionally, it takes an
ε which sets the minimum value an incoming timeout value needs to have to be set as a timeout,
otherwise it is ignored. This stops Zeno behaviour from working.

At first, we present the semantics for the offset expressions in an informal way, to deliver more
intuition, because the formal definition is quite lengthy while the operations can be explained easily
in an informal way. The operations x << e and x <= e return for a given timestamp t the highest
timestamp of the events of x which occurred before the last event on e before t. Thereby, the
difference is that x <= e may return the timestamp of the event on e, while x << e must return a
timestamp smaller than the last one on e. The same holds for the future variants x >> e and x >= e

which return the lowest timestamp at which an event occurred on x after the next event on e after
timestamp t.

Formally, the offset expressions are defined as follows, where we write maxt for max{t ′ < t |
e(t ′) 6=⊥} and mint for min{t ′ > t | e(t ′) 6=⊥}:

Jx << eKσ (t) =

d if ∃t ′ < maxt : x(t ′) = d∧∀t ′ < t ′′ < maxt : x(t ′′) =⊥

⊥ otherwise

Jx <= eKσ (t) =

d if ∃t ′ < maxt : x(t ′) = d∧∀t ′ < t ′′ ≤< maxt : x(t ′′) =⊥

⊥ otherwise

Jx >> eKσ (t) =

d if ∃t ′ > mint : x(t ′) = d∧∀t ′ > t ′′ > mint : x(t ′′) =⊥

⊥ otherwise

Jx >= eKσ (t) =

d if ∃t ′ > mint : x(t ′) = d∧∀t ′ > t ′′ ≥mint : x(t ′′) =⊥

⊥ otherwise

Because they do not add something to the expressiveness, we left out the cases where the stream
ends.

Finally, the value expression f (E, . . . ,E) is defined as follows:

J f (E, . . . ,E)Kσ (t) = f ′(JE1Kσ (t), . . . ,JEnKσ (t))

where f ′ calculates the output value for the concrete input values at a timestamp t.

196

6.3 Striver

While Striver handles time in a more explicit manner than TeSSLa, its handling is also different,
but does not lead to more expressiveness. We will show in the following that both languages
are mostly equivalent in terms of expressiveness minus the handling of Zeno streams by giving a
construction method for transforming Striver specifications into TeSSLa.

We now give a translation from every operator of Striver into TeSSLa f , which we will use after-
wards to present expressiveness results of Striver regarding TeSSLa and its variants.

Striver has three types of expressions: ticking expressions, offset expressions and value expres-
sions. At first, we show how the ticking expressions can be expressed in TeSSLa f . A Striver
ticking expression s := {c} can be expressed in TeSSLa f as

s := time(delay(constc(unit),unit))

A ticking expression s := s′.ticks can be expressed in TeSSLa f as

s := time(s′)

A ticking expression s := s1∪·· ·∪ sn can be expressed in TeSSLa f as

s := time(merge(s1, . . . ,merge(sn−1,sn)))

A Striver ticking expression s := delay(ε,s′) with ε > 0 can be expressed in TeSSLa f as

s := delay(filter(s′,s′ ≥ ε),s′)

The last variant of Strivers delay with ε < 0 is special, as it sets events in the past. For TeSSLa f

to simulate this behaviour, we have to foresee when an event would be set by using the next and
output an event now. A Striver ticking expression s := delay(ε,s′) with ε < 0 can be expressed in
TeSSLa f as

trig :=merge(s,merge(s′,unit)

nextValue := next(s′, trig)

s := delay(filter(time(trig)+ time(nextValue)+nextValue,nextValue≤ ε), trig)

Next, we show how to convert Striver offset expressions into TeSSLa f . An expression s := x << e

197

6 Relation of TeSSLa to Other Stream Languages

can be expressed in TeSSLa f as

s := last(e,x)

An expression s := x <= e can be expressed in TeSSLa f as

s :=merge(e, last(e,x))

An expression s := x >> e can be expressed in TeSSLa f as

s := next(e,x)

An expression s := x >= e can be expressed in TeSSLa f as

s :=merge(e,next(e,x))

Finally, the function application to streams works in the same way as in TeSSLa f , just more impli-
citly, such that a Striver expression f (s1, . . . ,sn) can be expressed in TeSSLa f as

lift(f)(s1, . . . ,sn)

Using the translation given above, we can now make the following statements about the relation
between Striver and TeSSLa.

Theorem 6.11 (Expressiveness of Striver)

The following two statements hold:

• TeSSLa without delay ⊂ Striverpast ⊂ TeSSLa and

• TeSSLa and Striver are incomparable.

Proof. Using the previously given translation, we know that Striverpast ⊂ TeSSLa holds, because
every Striverpast operator can be expressed in TeSSLa and TeSSLa can also create Zeno streams
using delay, while Striverpast can not. For TeSSLa without delay ⊂ Striverpast, this follows from
the translation given in [GS20] from every TeSSLa operator into Striver code. Because Striverpast

has a delay operator, it is more powerful, because TeSSLa without delay can not create events at
positions where the input had non.

198

6.3 Striver

If we now add back future references to Striver, it can express properties TeSSLa can not express,
even though future references are only allowed on streams with a finite number of events [GS20].
But still, it can not handle Zeno streams, which TeSSLa can. Therefore, both languages are incom-
parable.

As stated in [GS20], the delay originally included in Striver can not only not express Zeno streams,
but is also less expressive than the delay operator of TeSSLa, even when not considering Zeno
streams. Because of this, a variant of its delay operator was added in [GS20] to allow to get
the expressiveness of the delay of TeSSLa when not considering Zeno streams and to be able to
convert all TeSSLa operators into Striver in this setting. This delay operator, which we call delay′

now takes three parameters instead of two, where the ε is split into two. One is the sign, and the
other is a function which takes the incoming delay and states if it is a legal delay value or if it is
ignored. This is an extension of simply using the ε , as it allows a broader variety in which delay
are allowed and which not instead of just setting a minimum size of the delay value.

This new delay operator can be expressed for an expression s := delay′(sgn, f ,s′) for sgn > 0 in
TeSSLa as follows:

s := delay(filter(s′, lift(f)(s′)),s′)

The other direction with sgn < 0 can be expressed in TeSSLa f as

trig :=merge(s,merge(s′,unit)

nextValue := next(s′, trig)

s := delay(filter(time(trig)+ time(nextValue)+nextValue, lift(f)(nextValue)), trig)

The major change in delay′ is that there is not an ε which only allows delays of a certain height,
but instead now has a generic function f which calculates if a delay to be set is viable or not. This
is represented in TeSSLa by just using a lift for the application of f and as a condition of a filter to
ignore events with a value which should not be allowed as a timeout value.

Considering this new version of delay in Striver and the translation into TeSSLa f as presented
before, we can now prove the following two statements. The prime added to the Striver fragments
indicates the inclusion of the delay′.

Theorem 6.12 (Expressiveness of Striver with delay′)

The following two statements hold:

199

6 Relation of TeSSLa to Other Stream Languages

• Striver′past ⊂ TeSSLa,

• Striver′ ⊂ TeSSLa f and

• TeSSLa and Striver′ are incomparable.

Proof. Using the translations presented before, we can transform every Striver′past specification
into TeSSLa, because Striver′past does not have any future operators. Even though, it is shown
in [GS20] how every TeSSLa operator can be encoded into Striver′past specifications if we do not
consider Zeno streams, using the delay′ to encode TeSSLa’s delay. TeSSLa is still able to handle
Zeno streams, which this Striver fragment can not. Therefore it follows that Striver′past ⊂ TeSSLa.

As Striver′ is an extension of Striver′past with future references, it can express properties TeSSLa
can not express. But still, it is not able to handle Zeno streams, therefore TeSSLa and Striver′ are
incomparable.

Because the future references in Striver′ are only allowed for a underlying stream model with
streams with a finite number of events and it can not handle Zeno streams as well as the new
delay′ operator can be expressed in TeSSLa f as shown in the translation above, TeSSLa f is more
powerful than Striver′.

6.4 Lustre

Lustre [CPHP87, HCRP91] is a programming language for reactive systems operating on a syn-
chronized stream model over a continuous time domain. All streams in a Lustre specification share
a common clock and at each tick, every stream has either an event with a value or no event.

Like a TeSSLa specification, a Lustre specification consists of multiple equations over variables
(other equations references), constants and functions which are automatically lifted to streams like
typical arithmetic functions or an if-then-else. Additionally, there are two sequence operators.
First, the operator pre(X) refers at position i of the streams to the value from position i−1 or nil
if i = 0, thus allows access to past values. The second operator is the X → Y , which takes two
streams X and Y and returns a stream with the first event on X and all other events on Y . More

200

6.4 Lustre

formally, the two sequence operators work as follows, where X = x0x1 . . . and Y = y0y1 . . . :

pre(X) = nilx0x1 . . .

X → Y = x0y1y2 . . .

Lustre normally also includes the when and the current operators. The when just represents a
filtering function and can easily be represented by such a function application. The current is
included to fill places in a stream where no events exist, for example, when events are filtered out.
Function applications to Nil are not allowed in Lustre and therefore, filling event gaps would be
hard without current. But other than that, it does not add to expressiveness as in general, it can
be expressed using pre, function application and recursion when function applications would be
allowed in this setting. Therefore, we do not consider it any further in this thesis.

The following example shows an easy Lustre specification.

Example 6.13 (Lustre Specification)

Consider the following equation X of the form

X = 0→ pre(X)+1

This specification creates a sequence of naturals, starting with 0.

Lustre does not have any notion of time, besides a common clock which synchronizes the events
of all streams. But time can not be accessed directly nor do the streams contain any explicit
notion of timestamps. Of course, to solve this issue, one could assume a stream containing the
timestamps for each synchronized event is always part of the input. Still, Lustre does not contain
operators to manipulate timestamps or add events in any way. This leads to the same restrictions
or workarounds needed as explained for LOLA and it leads to the problem that Lustre is not able
to output events at timestamps where no input events occurred. But if we use, as explained for
LOLA and as we do in this thesis, the natural numbers as time domain, Lustre can also calculate
the current timestamp by counting events.

Being designed as a language to program system behaviour, Lustre does contain various constructs
to write for example subprograms which can also be instantiated, called a node. We will not
consider those any further in this thesis, as they do not add to expressiveness, because those can
also be interpreted as a stream or be remembered by appropriate data structures like a set or a map.
We have already considered this behaviour for LOLA2.

201

6 Relation of TeSSLa to Other Stream Languages

6.4.1 Comparing Lustre to TeSSLa

In general, we can as for LOLA, consider a discrete stream model again. Because Lustre may work
over a continuous time domain, it does not have any way to really interact with those timestamps,
which makes the basic stream model equivalent to one over discrete streams. Therefore, we can
handle a discrete and a continuous stream model for Lustre in the same way as for LOLA.

In the following theorem, we will show that Lustre and Lustre over bounded data domains, which
we call Lustreb, are equal to TeSSLa fragments in the same way as LOLApast is, by showing that
each Lustre operator can be transformed into a LOLApast formula and vice versa.

Theorem 6.14 (Lustre and TeSSLa)

It holds that Lustre = TeSSLa without delay and Lustreb = TeSSLabool on discrete and continu-
ous streams.

Proof. We will show Lustre = TeSSLa without delay by showing Lustre = LOLApast. We will
do this by transforming each operator of the languages into a specification of the other language.

Let us first start by showing Lustre ⊆ LOLApast. We can transform a Lustre specification

s := pre(s′)

into a LOLA specification
s := s′[−1,nil]

and a Lustre specification
s := x→ y

into a LOLA specification

s′ := s′[−1,−1]+1

s := ifs′ = 0thenxelsey

Functions can be applied to streams in LOLA in the same manner as in Lustre. The other direction,
LOLApast ⊆ Lustre is shown accordingly. Because functions can be handled in both languages in
the same way, we only need to consider the offset operator of LOLA. We can transform a LOLApast

specification
s := s′[−1,c]

202

6.5 Esterel

into a Lustre specification
s := c→ pre(s′)

Because each operator can be transformed without using the data domains of the streams, also
Lustreb = TeSSLabool holds.

As the Lustre operators work exactly like the LOLApast ones, the above result holds on both types
of streams.

6.5 Esterel

Compared to Lustre, Esterel [Ber92, Ber99, Ber00, Ber04] works also on a synchronized stream
model with a common clock over all streams, which is explicitly an input stream called tick. This
stream has no values but events which tell us when every other stream has an event. As Lustre,
Esterel has no notion of time, but also, at least its implementation only allows integer streams
and neither more complex data types, nor even real numbers, which comes from the finite-state
approach of Esterel. Even though, in theory, the Esterel language is capable of handling real
numbers, therefore, we still assume that the time of the events could be inputted as a special
input stream with a continuous time domain, as described for Lustre. An operator for accessing
past values, also called pre has in Lustre, as only been added recently to Esterel in version 5.21
[Ber04].

Additionally, Esterel is an imperative programming language and is as such not programmed in an
equational way as Lustre is, which is quite similar to TeSSLas way of programming. Therefore,
comparing Esterel to TeSSLa can not so easily be done formally because Esterel has a lot of
primitive statements which are not at all directly connected to the primitive operators of TeSSLa.
Because of this, we will compare Esterel in a more feature-focussed way to TeSSLa and see, which
features both languages have and which not, such that we find out what can not be expressed by
each language in certain cases which the other language may be capable of.

6.5.1 Comparing Esterel to TeSSLa

In this section, we will take a closer look at the features of Esterel. As noted before, we will
compare Esterel with TeSSLa more in a concept focussed way and less in a mathematical way,

203

6 Relation of TeSSLa to Other Stream Languages

because Esterel does not really have a feasible set of core operators which we can compare the
ones of TeSSLa to. In [CPHP87] it is said that the difference between Lustre and Esterel is only
the programming style, which is declarative for Lustre and imperative for Esterel. By now, both
teams collaborate and both languages even share intermediate code and compilation tools [Ber04].
Therefore, both languages, Lustre and Esterel are very similar and share the same features, as we
see in the following paragraphs.

Time As mentioned before, Esterel is not capable of handling time explicitly. As Lustre, it
can only be considered by adding an additional input stream containing the timestamps of each
event.

While on discrete streams this is enough, but as soon as the time domain is continuous, Esterel
also lacks the ability of outputting events at timestamps, where no input events exist and there-
fore misses, for example, the possibility of calculating sliding windows or setting deadline for
computation.

Temporal References As Lustre, Esterel has also past references which it implements by using
variables (and pre since version 5.21), but no future references. While we extended TeSSLa to
TeSSLa f by adding the next operator for future references, such an extension has not yet been
done for Esterel.

In the end, Esterel is the same as Lustre and the results for Lustre also hold for Esterel. A major
difference lies in its implementation, which is focussed on keeping the program in a finite state
manner for better hardware implementations.

6.6 Conclusion

In this chapter, we compared various other stream languages to TeSSLa and its fragments by
expressiveness as well as general features of the languages.

Figure 6.1 gives an overview over the comparison of TeSSLa to stream languages which are nat-
urally defined over discrete streams, like LOLA, Lustre and Esterel, while the stream model is
restricted to discrete streams. We see that TeSSLa matches LOLA on this kind of streams and
Lustre and Esterel are as expressive as LOLA and TeSSLa without future references. This also

204

6.6 Conclusion

shows that the delay operator does not add any expressiveness to TeSSLa on this kind of streams,
contrary to what has been shown in Chapter 4 for arbitrary streams.

Figure 6.2 sums up the results on arbitrary (continuous) streams. In this case, we included all lan-
guages, those which are naturally defined on discrete streams and showed what those still can do
on continuous streams and those naturally defined on continuous streams like Striver and RTLola.
Additionally, we included the results from Chapter 4 and Chapter 5. It can be seen how the rela-
tions in regards to expressiveness change, because an operator like the delay now adds additional
expressiveness to a language and therefore, LOLA, Lustre and Esterel can not express such prop-
erties any more. As Striver has an operator similar to the delay (which is also called delay, but
works a bit different), it can still express such properties. It remains to show if RTLola is equals to
LOLA and therefore TeSSLa f without delay operator in terms of expressiveness if we assume the
given frequency as an input stream, which is indicated by the dashed line.

Lastly, the table in Figure 6.3 presents a more abstract overview over the features each language
has, that are interesting for a language operating on streams. All languages have past references
and can lift arbitrary functions for calculations at a given time instant, therefore those features
are not listed here, but instead the ones where the languages differ. The tilde indicates that the
language only has this feature in a restricted and less powerful way, but that it is still there in some
form.

205

6 Relation of TeSSLa to Other Stream Languages

TeSSLabool
6.5
= TeSSLabool+c

6.4
= LOLAb

past
6.14
= Lustreb 6.5.1

= Esterelb

LOLAb 6.4
= TeSSLa f

bool
6.6
= TeSSLa f

bool+cTeSSLa 6.1
= LOLApast

6.14
= Lustre 6.5.1

= Esterel

LOLAeff
6.3
= TeSSLa f

eff

LOLA 6.2
= TeSSLa f

Figure 6.1: Shows the relation of different stream languages in the case of discrete streams.
LOLA2 has been left out for clarity, but it and its fragments are equal to LOLA and
its corresponding fragments in terms of expressiveness and can be placed accordingly.
The arrows indicate expressiveness, the elements in a node at the start of an arrow are
strictly less expressive than the elements at its end. Elements between whose nodes no
path exist are incomparable.

206

6.6 Conclusion

TeSSLabool
6.4
= LOLAb

past
6.14
= Lustreb 6.5.1

= Esterelb

TeSSLabool+c

TeSSLa f
bool+c TeSSLa no delay 6.7

= LOLApast
6.14
= Lustre 6.5

= Esterel

TeSSLastackTeSSLa f
bool

6.4
= LOLAb

LOLAeff

TeSSLa f no delay 6.7
= LOLA TeSSLa f

eff

Striverpast

Striver

Striver′past

TeSSLa

RTLola Striver′

TeSSLa f

6.10

6.11

6.12

6.2.4
6.12

6.2.4

6.11

6.12

Figure 6.2: Shows the relation of different stream languages in the case of continuous streams.
LOLA2 has been left out for clarity, but it and its fragments are equal to LOLA and
its corresponding fragments in terms of expressiveness and can be placed accordingly.
The arrows indicate expressiveness, the elements in a node at the start of an arrow are
strictly less expressive than the elements at its end. If no path exists between two nodes,
they are incomparable. We added some dashed arrows indicating the same just to be
able to add the theorem or section stating this.

207

6 Relation of TeSSLa to Other Stream Languages

Language Explicit Time Non-synch. Events Create Events Future Ref. Zeno streams

LOLA × × × X ×

LOLA2 × × × X ×

RTLola × X ~ X ×

Striver X X X ~ ×

Lustre × × × × ×

Esterel × × × × ×

TeSSLa X X X × X

TeSSLa f X X X X X

Figure 6.3: Provides an overview over the different features of the various considered stream lan-
guages. While the cross indicates that a feature is absent, the checkmark marks that a
feature is present. The tilde indicates that the concept is there partially, it does miss
some features other languages have.

208

7 Conclusion and Future Work

This chapter summarizes the contents and results of this thesis and provides an overview over
possible extensions as well as open questions remaining.

7.1 Summary

In this thesis, we analyzed TeSSLa in various aspects. First, we introduced a new operator for
future references, called next and named TeSSLa with next TeSSLa f . After that, we considered
different versions of TeSSLa with or without delay as well as with or without next and found out
that both operators add something unique to the expressiveness of TeSSLa and that distinct types
of stream transformations can not be expressed without one of those operators. Additionally, we
defined the well-formed fragments (syntactic restrictions, whose formulas fixed-point is unique)
of TeSSLa and TeSSLa f . Thereby, we found out that the next has to be restricted heavily in
a syntactic way, because it is not completely dual to last, as there is no finite stream ending in
general.

In Chapter 5, we considered many fragments over finite data domains, their relation to each other
as well as the complexities for different decision problems for those fragments. Additionally, we
have shown how those fragments relate to transducers and gave a constructive translation from the
TeSSLa code of each fragment into the corresponding transducer and back. The results were that
most of these fragments have decidable decision problems, even if a possibly unbounded stack is
added or real-time constraints are considered. Besides the typical decision problems like emptiness
and equivalence, we also considered two memory related decision problems. One considering a
compositional evaluation strategy for a TeSSLa formula and if it can be evaluated with this strategy
using only a bounded amount of memory and one considering the optimal memory usage and the
question, if there exists are Turing machine semantically equivalent to the given formula, such that
only a bounded amount of memory is needed for the evaluation. While those decision problems are
trivial if there are only bounded data structures, we were able to show that even with an unbounded

209

7 Conclusion and Future Work

stack or real-time constraints, it is still decidable if a concrete formula would need only a bounded
amount of memory for every input under a given evaluation strategy, which could be of special
interest when considering hardware implementations with a small amount of available memory.
A graph has been created to give an overview over all fragments as well as the corresponding
transducers and a table that contains all complexity results regarding those fragments.

Lastly in Chapter 6, we compared various stream languages to TeSSLa and to each other to gain a
distinct separation of the languages and their fragments as well as the concepts used in each lan-
guage. Even though most of the languages and fragments considered there are Turing complete,
we developed a way to distinguish the expressiveness by considering the set of stream transform-
ations expressible by each languages. This also takes into account the development of the output
stream over time and not only the final results, which leads to a clear distinction of languages
like LOLA, Striver, Lustre, Esterel and TeSSLa. As such a way to compare those languages has
not been considered before and mostly stream languages have been compared informally, there
is still work to do in comparing other languages formally to each other. Again, this resulted in a
graph containing all the languages and the considered fragments as well as a table comparing the
languages conceptually regarding five key features of stream languages.

7.2 Future Work

There are different directions in which this thesis can be extended. First and foremost, TeSSLa is
designed to be able to handle also streams with continuously changing values, like a sinus curve.
But in this thesis, we only consider piece-wise constant streams. Therefore, allowing even streams
like a sinus curve would require one to also add liftable functions like an integral function and
so on. While many results regarding different variants of TeSSLa have been considered in this
thesis, it is unclear whether those results carry over to non piece-wise constant streams and what
results can be obtained considering such streams. This would be an interesting direction, because
TeSSLa on such streams would allow us to directly make calculations without having to discretize
the streams beforehand.

Even though in Chapter 5 many fragments have been considered, the list is definitely not exhaust-
ive. Therefore, looking for more interesting fragments of TeSSLa or even slight restrictions to
one of its operators, without completely removing it, is something which may lead to interesting
results. Additionally, one could look at other evaluation strategies than just a compositional and an

210

7.2 Future Work

optimal one, like a parallel evaluation strategy and also could consider the runtime of the evaluation
and not just the memory usage.

This also leads to the next field of possible future research regarding TeSSLa. This thesis does
answer various theoretical questions, but it does not offer a more practical view. While some work
has been done on software and hardware implementations for TeSSLa, there are many questions
unanswered. As TeSSLa specifications are often supposed to handle huge amounts of data per
second, one could ask if there are feasible, parallel evaluation methods for a TeSSLa specification,
to enhance the throughput of data evaluated. While one could consider hardware implementations
for this matter, like on an FPGA, also parallel software implementations are of interest.

As already mentioned briefly in the introduction, work has been done on how abstractions of
streams can be considered in TeSSLa in [LSS+19]. There, only the possibilities of having timestamps
with completely unknown behaviour or events with an unknown value are taken into account. A
possibility to extend this would be uncertainty regarding the timestamps, where, for example,
every event is only known to be occurred in a certain time frame, but the concrete timestamps is
unknown.

Lastly, following the method for comparing stream languages used in Chapter 6, it would be inter-
esting to compare more stream languages and their fragments to each other and categorize existing
and new stream languages by their features and expressiveness as well as their properties regard-
ing decision problems. This would lead to an overview to see which features do bring certain
advantages and what is the cost for those advantages.

211

List of Figures

1.1 A taxonomy for specification languages. It shows the four dimensions, Time
(green), Model (blue), Temporality (red) and Data Domain (orange), in which spe-
cification languages may differ. 4

2.1 A TA over the alphabet Σ= {a,b}with three states, out of which two are accepting,
and one clock ca. The Σ at the transitions is a short notion for both input symbols
being valid for these transitions. 30

2.2 Shows the different kinds of elements that can occur on a stream. A line indicates
that there is no event, a cross indicates an event with a value above and a timestamp,
in blue, below. A dotted line indicates that the knowledge about the stream ended.
If the line directly changes to a dotted line, it means that the knowledge ended
inclusively, while a circle at the end indicates that it ended exclusively. If an event
is exactly at the end of the stream, here at timestamp 7, we indicate this as usual. . 34

2.3 Shows the three streams s, s′, and s′′. The drawn line indicates⊥ at the position, so
it is known that no event exists at those timestamps. The crosses mark the positions
of events on the streams, with the value being denoted above and the timestamp
below. The arrow at the end of stream s shows that the stream would go on with
⊥ forever, while on stream s′ the circle denotes that the progress of the stream
ends there. Because the stream s′′ has N as time domain, the stream contains only
integer timestamps, hence the drawn line is left out because nothing is in between
the four events. The circles after timestamp 3 indicate that the progress of this
discrete stream has ended there after timestamp 3. 39

2.4 An NFST A over Σ = {a,b} and Γ = {x,y,z}, for which no DFST B exists with
L(A) = L(B). The NFST A guesses when it reads the first b if only bs will occur
afterwards or if any more as will occur. Depending on the guess, A outputs y

or z. The output has to be generated directly when the b occurs, so there is no
corresponding DFST because it can not make the decision at a later state. 48

2.5 Two NFSTs: A on the left and B on the right. The only difference is that the loop
on q2 outputs an x in A and a y in B. 54

213

List of Figures

3.1 Example trace for a TeSSLa specification with two input streams values (with nu-
meric values) and resets (with no internal value). The intention of the specification
is to accumulate all values since the last reset in the output stream sum. The in-
termediate stream cond is derived from the input streams indicating if reset has
currently the most recent event, and thus the sum should be reset to 0. 78

3.2 Figure 3.1 adjusted to the prefix semantics. The dotted lines indicate that the
streams values, cond and sum end at the same time, hence are ?, while the pro-
gress of resets ends a bit later. As can be seen, the prefix semantics produces the
same output as the semantics over completed streams as long as no stream ended. . 88

4.1 Shows the dependency graph for the TeSSLa specification given in Example 4.6.
The yellow boxes denote input streams, the blue ones constants and the red ones
TeSSLa operators. The red boxes with bold text in it are expressions with only
core operators while the other ones represent functions which are build from core
operators but are not considered into more detail in this graph. 106

4.2 Figure 3.2 expanded by two cuts for cond and sum to show how finite progressive-
ness works. It can be seen that cond|8 and sum|6 are prefixes of cond and sum. . . . 110

4.3 Shows the results of Chapter 4 regarding TeSSLa fragments and extensions. The
arrows indicate that the TeSSLa version where the arrow ends is more expressive
than the version where the arrow starts. The dashed line indicates that the two
versions are incomparable. 129

5.1 An NFST with four states. It accepts every word that contains an a first and forever
b or forever c afterwards. Depending if it reads forever b or forever c, it outputs an
x or a y when reading the first a. 133

5.2 The TeSSLabool formula created from the DFST R given in Example 5.10. The
streams sp and sr are the input streams resulting from the input symbols of R. . . . 142

5.3 The transition function of the DFST for a TeSSLabool formula z := last(a,b). It is
depicted here in two parts. The left hand side represents the transitions from the
initial state as well as the transitions from the two states which remember the last
value. The right hand side represents the handling at and after the ending of progress.144

5.4 Shows the transducers for every TeSSLa operator in the TeSSLabool fragment,
which are nil, unit, lift and last. 145

214

List of Figures

5.5 The transducer resulting from the parallel composition of the transducers for the
equations x := mergeAnd(a,b) and a := last(x,b). If an input is denoted as 6= x,
then the transition can be taken if the other inputs fit and this one has a value which
is not x. 148

5.6 The transducer resulting from the one in Figure 5.5 after building the closure of it. . 149

5.7 The transition relation of the NFST created for an equation z := next(a,b). 162

5.8 The transducer for the next operator in the TeSSLa f
bool fragment. For a next(a,b),

the first input of every transition represents the input on a while the second repres-
ents the input on b. 163

5.9 The transducer for the in TeSSLabool+c newly added expressions of the form z :=
lift(gv)(time(e),merge(last(time(a),e),0)), where the first input is e and the second
is a. As before, the ending cases and states sv and se have been left out for a better
overview on the functionality of the expression. 172

5.10 Shows the relation between various TeSSLa fragments and different types of trans-
ducers as well as the results from Chapter 4. The arrows indicate expressiveness
which follows from the associated transducers. The elements in a node at the
start of an arrow are strictly less expressive than the elements at its end. Elements
between whose nodes no path exist are incomparable. 179

5.11 Shows the results of Chapter 5, showing the equivalent formalism for every con-
sidered TeSSLa fragment as well as summing up the complexities for the decision
problems. 180

6.1 Shows the relation of different stream languages in the case of discrete streams.
LOLA2 has been left out for clarity, but it and its fragments are equal to LOLA
and its corresponding fragments in terms of expressiveness and can be placed ac-
cordingly. The arrows indicate expressiveness, the elements in a node at the start of
an arrow are strictly less expressive than the elements at its end. Elements between
whose nodes no path exist are incomparable. 206

6.2 Shows the relation of different stream languages in the case of continuous streams.
LOLA2 has been left out for clarity, but it and its fragments are equal to LOLA
and its corresponding fragments in terms of expressiveness and can be placed ac-
cordingly. The arrows indicate expressiveness, the elements in a node at the start
of an arrow are strictly less expressive than the elements at its end. If no path
exists between two nodes, they are incomparable. We added some dashed arrows
indicating the same just to be able to add the theorem or section stating this. 207

215

List of Figures

6.3 Provides an overview over the different features of the various considered stream
languages. While the cross indicates that a feature is absent, the checkmark marks
that a feature is present. The tilde indicates that the concept is there partially, it
does miss some features other languages have. 208

216

Bibliography

[ABW06] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query
language: semantic foundations and query execution. VLDB J., 15(2):121–142, 2006.

[ACM02] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions. J. ACM,
49(2):172–206, 2002.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. TCS, 126(2):183–235,
1994.

[AFH91] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punc-
tuality. In Proceedings of the Tenth Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 139–152, 1991.

[AFR16] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for
quantitative properties of data streams. In ESOP, pages 15–40. Springer, 2016.

[AH90] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and express-
iveness. In Proceedings of the Fifth Annual Symposium on Logic in Computer Science

(LICS ’90), pages 390–401. IEEE Computer Society, 1990.

[AH92] Rajeev Alur and Thomas A. Henzinger. Back to the future: Towards a theory of
timed regular languages. In IEEE FOCS, pages 177–186, 1992.

[BB79] Jean Berstel and Luc Boasson. Transductions and context-free languages. Ed. Teub-

ner, 1979.

[Ber92] Gérard Berry. The semantics of pure esterel. In Manfred Broy, editor, Program

Design Calculi, Proceedings of the NATO Advanced Study Institute on Program

Design Calculi, volume 118 of NATO ASI Series, pages 361–409. Springer, 1992.

[Ber99] Gérard Berry. The constructive semantics of pure esterel, draft version 3. 1999.

217

Bibliography

[Ber00] Gérard Berry. The foundations of esterel. In Gordon D. Plotkin, Colin Stirling, and
Mads Tofte, editors, Proof, Language, and Interaction, Essays in Honour of Robin

Milner, pages 425–454. The MIT Press, 2000.

[Ber04] Gérard Berry. The esterel v5 language primer version v5 91. 2004.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification for
LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, 2011.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive Sys-

tems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[BS14] Laura Bozelli and César Sánchez. Foundations of Boolean stream runtime verifica-
tion. In In Proc. RV’14, volume 8734 of LNCS, pages 64–79. Springer, 2014.

[Büc90] J. Richard Büchi. On a Decision Method in Restricted Second Order Arithmetic,
pages 425–435. Springer, 1990.

[CHL+18] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Scheffel, Malte
Schmitz, and Daniel Thoma. TeSSLa: Temporal stream-based specification lan-
guage. In Formal Methods: Foundations and Applications - 21th Brazilian Sym-

posium, SBMF. Springer, 2018.

[CHS+18] Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte Schmitz, Daniel
Thoma, and Alexander Weiss. Hardware-based runtime verification with embedded
tracing units and stream processing. In Runtime Verification. Springer, 2018.

[CPHP87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A declarative
language for programming synchronous systems. In Conference Record of the Four-

teenth Annual ACM Symposium on Principles of Programming Languages, 1987.

[Dav58] Martin D. Davis. Computability and Unsolvability. McGraw-Hill Series in Informa-
tion Processing and Computers. McGraw-Hill, 1958.

[DDG+18] Normann Decker, Boris Dreyer, Philip Gottschling, Christian Hochberger, Alexan-
der Lange, Martin Leucker, Torben Scheffel, Simon Wegener, and Alexander Weiss.
Online Analysis of Debug Trace Data for Embedded Systems. In DATE. IEEE, 2018.

[DGH+17] Normann Decker, Philip Gottschling, Christian Hochberger, Martin Leucker, Torben
Scheffel, Malte Schmitz, and Alexander Weiss. Rapidly Adjustable Non-Intrusive
Online Monitoring for Multi-core Systems. In SBMF. Springer, 2017.

218

Bibliography

[DLT16] Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring modulo theories.
International Journal on Software Tools for Technology Transfer, 18:205–225, 2016.

[DMB+12] Alexandre Donzé, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu Grosu, and
Scott A. Smolka. On temporal logic and signal processing. In ATVA, volume 7561,
pages 92–106, 2012.

[DMF12] Luca Deri, Simone Mainardi, and Francesco Fusco. tsdb: A compressed database for
time series. In Traffic Monitoring and Analysis (TMA), pages 143–156, 2012.

[DSS+05] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson, Bernd
Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna. LOLA: runtime
monitoring of synchronous systems. In TIME, pages 166–174. IEEE, 2005.

[EH97] Conal Eliot and Paul Hudak. Functional reactive animation. In ICFP, pages 163–173.
ACM, 1997.

[FFS+19] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger,
Marvin Stenger, Leander Tentrup, and Torfah Hazem. StreamLAB: Stream-based
monitoring of cyber-physical systems. In Proc. of the 31st Int’l Conf. on Computer-

Aided Verification (CAV’19), pages 421–431. Springer, 2019.

[FFST16] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem Torfah. A
stream-based specification language for network monitoring. In Runtime Verification

(RV), pages 152–168, 2016.

[FFST19] Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah.
Real-time Stream-based Monitoring. arXiv:1711.03829, 2019.

[Fin06] Olivier Finkel. Undecidable problems about timed automata. In Formal Model-

ing and Analysis of Timed Systems, 4th International Conference, FORMATS, pages
187–199, 2006.

[FKRT18] Yliès Falcone, Srdan Krstic, Giles Reger, and Dmitriy Traytel. A taxonomy for
classifying runtime verification tools. In Christian Colombo and Martin Leucker,
editors, Runtime Verification, pages 241–262. Springer, 2018.

[GL87] Thierry Gautier and Paul Le Guernic. SIGNAL: A declarative language for synchron-
ous programming of real-time systems. In Functional Programming Languages and

Computer Architecture, pages 257–277, 1987.

219

Bibliography

[Gol00] Dina Q. Goldin. Persistent turing machines as a model of interactive computation. In
Foundations of Information and Knowledge Systems, pages 116–135, 2000.

[GS18] Felipe Gorostiaga and César Sánchez. Striver: Stream runtime verification for real-
time event-streams. In Runtime Verification, pages 282–298, 2018.

[GS20] Felipe Gorostiaga and César Sánchez. Stream runtime verification of real-time event-
streams with the Striver language. International Journal on Software Tools for Tech-

nology Transfer, To appear, 2020.

[GSAS04] Dina Q. Goldin, Scott A. Smolka, Paul C. Attie, and Elaine L. Sonderegger. Turing
machines, transition systems, and interaction. Inf. Comput., pages 101–128, 2004.

[GSW01] Dina Q. Goldin, Scott A. Smolka, and Peter Wegner. Turing machines, transition
systems, and interaction. In 8th International Workshop on Expressiveness in Con-

currency, pages 120–136, 2001.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language lustre. Proceedings of the IEEE, 1991.

[HG05] Klaus Havelund and Allen Goldberg. Verify your runs. In Bertrand Meyer and Jim
Woodcock, editors, Verified Software: Theories, Tools, Experiments, pages 374–383.
Springer, 2005.

[HK17] Sylvain Hallé and Raphaël Khoury. Event stream processing with beepbeep 3. In
RV-CuBES, pages 81–88, 2017.

[HK18] Sylvain Hallé and Raphaël Khoury. Writing domain-specific languages for beepbeep.
In Runtime Verification (RV), pages 447–457, 2018.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., USA, 2006.

[HR02] Klaus Havelund and Grigore Roşu. Synthesizing monitors for safety properties. In
TACAS, pages 342–356. Springer, 2002.

[HV09] Sylvain Hallé and Roger Villemaire. Browser-based enforcement of interface con-
tracts in web applications with beepbeep. In Computer Aided Verification, pages
648–653, 2009.

220

Bibliography

[JBG+15] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang Nguyen, and
Dejan Nickovic. From signal temporal logic to FPGA monitors. In International

Conference on Formal Methods and Models for Codesign, pages 218–227. IEEE,
2015.

[Koy90] Ron Koymans. Specifying real-time properties with metric temporal logic. Real Time

Syst., pages 255–299, 1990.

[LBBG86] Paul Le Guernic, Albert Benveniste, Patricia Bournai, and Thierry Gautier. Signal-a
data flow-oriented language for signal processing. IEEE Trans. Acoustics, Speech,

and Signal Processing, 34:362–374, 1986.

[LS07] Martin Leucker and César Sánchez. Regular linear temporal logic. In Theoretical

Aspects of Computing, pages 291–305, 2007.

[LS09] Martin Leucker and Christian Schallhart. A brief account of runtime verification. J.

Logic Algebr. Progr., 78(5):293–303, 2009.

[LSS+18] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander
Schramm. TeSSLa: Runtime Verification of Non-synchronized Real-Time Streams.
In SAC. ACM, 2018.

[LSS+19] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Daniel Thoma.
Runtime verification for timed event streams with partial information. In Runtime

Verification, pages 273–291, 2019.

[LSS+20] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexander
Schramm. Runtime verification of real-time event streams under non-synchronized
arrival. Softw. Qual. J., pages 745–787, 2020.

[MH84] Satoru Miyano and Takeshi Hayashi. Alternating finite automata on omega-words.
Theor. Comput. Sci., 32:321–330, 1984.

[MMMP12] Andreas Malcher, Katja Meckel, Carlo Mereghetti, and Beatrice Palano. Descrip-
tional complexity of pushdown store languages. In Martin Kutrib, Nelma Moreira,
and Rogério Reis, editors, Descriptional Complexity of Formal Systems, pages 209–
221. Springer, 2012.

[MN04] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous sig-
nals. In FTRTFT, pages 152–166, 2004.

221

Bibliography

[NBN+16] Thang Nguyen, Ezio Bartocci, Dejan Nickovic, Radu Grosu, Stefan Jaksic, and Kon-
stantin Selyunin. The HARMONIA project: Hardware monitoring for automotive
systems-of-systems. In ISoLA, pages 371–379, 2016.

[OW05] Joël Ouaknine and James Worrell. On the decidability of metric temporal logic. In
Symposium on Logic in Computer Science, pages 188–197, 2005.

[OW06] Joël Ouaknine and James Worrell. On metric temporal logic and faulty turing ma-
chines. In Foundations of Software Science and Computation Structures (FOSSACS),
pages 217–230, 2006.

[PGMN10] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A hard
real-time runtime monitor. In Runtime Verification, pages 345–359. Springer, 2010.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Annual Symposium on Foundations

of Computer Science, pages 46–57. IEEE, 1977.

[Ras99] J.-F. Raskin. Logics, automata and classical theories for deciding real-time. PhD
thesis, Namur, Belgium, 1999.

[RRS14] Thomas Reinbacher, Kristin Yvonne Rozier, and Johann Schumann. Temporal-Logic
Based Runtime Observer Pairs for System Health Management of Real-Time Sys-
tems. In TACAS, pages 357–372. Springer, 2014.

[RS97] Jean-François Raskin and Pierre-Yves Schobbens. State clock logic: A decidable
real-time logic. In Hybrid and Real-Time Systems, International Workshop, pages
33–47, 1997.

[Sén99] Géraud Sénizergues. T(A) = T(B)? In Jirí Wiedermann, Peter van Emde Boas, and
Mogens Nielsen, editors, Automata, Languages and Programming, pages 665–675.
Springer, 1999.

[Ser99] Frédéric Servais. Visibly Pushdown Transducers. PhD thesis, Université Libre de
Bruxelles, 1999.

[SLG94] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R. Griffor. Mathematical

theory of domains. Cambridge University Press, 1994.

[Ste67] Richard Edwin Stearns. A regularity test for pushdown machines. Information and

Control, 1967.

222

Bibliography

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific

journal of Mathematics, 5(2):285–309, 1955.

[Tur36] Alan M. Turing. On computable numbers, with an application to the Entscheidungs-
problem. Proceedings of the London Mathematical Society, (42):230–265, 1936.

[Vic89] Steven Vickers. Topology via Logic. Cambridge University Press, USA, 1989.

[Weg98] Peter Wegner. Interactive foundations of computing. Theor. Comput. Sci.,
192(2):315–351, 1998.

[WK95] Andreas Weber and Reinhard Klemm. Economy of description for single-valued
transducers. Inf. Comput., 1995.

223

	Introduction
	Contribution
	Related Work
	Overview

	Preliminaries
	Basic Notation
	Functions and Fixed Points
	Logics
	Linear-Time Temporal Logic
	Metric Temporal Logic
	Metric Interval Temporal Logic
	Signal Temporal Logic

	Automata
	Automata on finite Words
	Automata on infinite Words

	Turing Machines
	Streaming Semantics and Transducers
	Streams and Stream Transformations
	LOLA
	Types of Transducers
	Stream Turing Machines

	Properties of Formalisms
	General Properties
	Properties of Stream Transformations

	Decision Problems
	The Equivalence Problem
	Decision Problems for Memory Usage

	Temporal Stream-Based Specification Language
	Syntax of TeSSLa
	Flat Specifications

	Semantics
	Semantics over Completed Streams
	Prefix Semantics

	Adding a Future Operator to TeSSLa

	Language Theoretic Results
	General Properties and Computability
	Well-formedness
	Expressiveness of TeSSLa and the delay Operator
	TeSSLa without delay
	TeSSLa with delay

	Expressiveness of TeSSLa with next
	TeSSLaf without delay
	TeSSLaf with delay

	Conclusion

	TeSSLa Fragments and Relation to Transducers
	An Evaluation Strategy for TeSSLa
	Boolean Fragment
	Translating DFST to TeSSLabool
	Translating TeSSLabool to DFST
	Results for TeSSLabool

	Pushdown Fragment
	Functional Non-deterministic Fragment
	Transforming functional NFST to TeSSLafbool
	Transforming TeSSLafbool to NFST
	Results on TeSSLafbool

	Timed Fragment
	Translating DTFST to TeSSLabool+c
	Translating TeSSLabool+c to DTFST
	Results for TeSSLabool+c
	Adding Non-determinism to the Timed Fragment

	Conclusion

	Relation of TeSSLa to Other Stream Languages
	Discussion on Expressiveness of Stream Languages
	TeSSLa and LOLA
	TeSSLa and LOLA on Discrete Streams
	TeSSLa and LOLA on Continuous Streams
	TeSSLa and LOLA2
	TeSSLa and RTLola

	Striver
	Lustre
	Comparing Lustre to TeSSLa

	Esterel
	Comparing Esterel to TeSSLa

	Conclusion

	Conclusion and Future Work
	Summary
	Future Work

