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Abstract

Temporal logic is a well-established specification framework for correctness properties of
computational systems. While the traditional variants LTL, CTL, and CTL* entail important
property types such as safety and liveness, they lack the ability to count. Since counting
is a fundamental and ubiquitous concept in computing, this dissertation studies counting
extensions of temporal logic and their verification problems on counter systems. To this
end, it joins different lines of research on counting temporal logics and model-checking
flat counter systems. Counting temporal logics allow for the specification of complex,
quantitative patterns by counting specific positions on an execution and formulating
arithmetic constraints over the corresponding quantities. Further, the variants considered
here are interpreted over counter systems and can impose arithmetic constraints on the
valuation of their counters.

Previous work has shown that even limited means of counting in temporal logic lead
to undecidability of essential problems such as satisfiability and model checking. This
applies also to most of the logics considered here but two exceptions are identified where
decidability is recovered by distinct kinds of restrictions. For the remaining family of
logics, it is shown that decidability of the model-checking problem can be recovered by
a sensible restriction on the model side, called flatness. Flatness demands, essentially,
that each control state of the system belongs to at most one simple loop. While even
basic reachability properties are undecidable for systems with just two counters, it is
shown that flatness makes verifying powerful classes of counting properties decidable. To
this end, the problem is shown to be interreducible with the satisfiability problem of a
decidable extension of Presburger arithmetic.

The best-known decision procedure for the latter problem, however, is of non-elementary
computational complexity. Therefore, an alternative method is developed for a temporal
logic that features a restricted variant of the counting mechanism. The notion of
augmented path schemas is introduced and serves as symbolic representation for a set
of system executions exhibiting a similar shape. Path schemas are employed as witness
structures for the satisfaction of a given formula and by proving a small-model property,
an exponential bound on the complexity of the model-checking problem is established.
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Further, augmented path schemas serve as underlying structures of an SMT-based
approximation approach to the (undecidable) model-checking problem over arbitrary
counter systems. Similar to bounded model checking, the presented method allows for
verifying temporal and counting properties by finding satisfying witnesses while a depth
parameter flexibly determines the trade-off between exhaustiveness and computational
effort. Essential advantages of augmented path schemas are that they represent potentially
infinite subsets of runs and can be more concise than a representation in terms of finite
prefixes.
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Zusammenfassung

Temporallogik als formale Grundlage für Spezifikationssprachen ist ein etabliertes Kon-
zept, um Korrektheitseigenschaften von operativen Systemen, insbesondere Computerpro-
grammen, zu formulieren. Die traditionellen Varianten LTL, CTL und CTL* sind geeignet,
wichtige Klassen wie z. B. Sicherheits- und Lebendigkeitseigenschaften auszudrücken.
Jedoch fehlt ihnen im Allgemeinen die Möglichkeit des Zählens.

Da Zählen an sich ein fundamentaler und allgegenwärtiger Aspekt des Berechnens und
der Datenverarbeitung ist, werden in der vorliegenden Dissertation Zähl-Erweiterungen
von Temporallogiken und ihre Verifikationsprobleme untersucht. Dazu werden verschie-
dene existierende Forschungsergebnisse kombiniert und weiterentwickelt, die zum einen
um Zählmechanismen erweiterte Temporallogiken betreffen und zum anderen Model-
Checking-Verfahren für sogenannte flache Zählersysteme beschreiben.

Zählende Temporallogiken erlauben es, komplexe, quantitative Muster zu beschreiben,
indem bestimmte Positionen entlang des Laufes eines Systems gezählt werden. Über die
Anzahl solcher Positionen können dann Nebenbedingungen in Form arithmetischer Glei-
chungen formuliert werden. Darüber hinaus werden die hier betrachteten Logikvarianten
über Zählersystemen interpretiert und erlauben es, arithmetische Bedingungen auch über
die Belegung der Zähler auszudrücken.
Vorausgegangene Arbeiten zeigen, dass selbst eingeschränkte Zählmechanismen in

Temporallogik die Unentscheidbarkeit wesentlicher Fragestellungen wie Erfüllbarkeit und
Model-Checking zur Folge haben. Dies trifft ebenso auf die meisten der hier betrachteten
Formalismen zu. Jedoch werden zwei Ausnahmen identifiziert, für welche Entscheidbarkeit
durch verschiedenartige syntaktische Einschränkungen wiederhergestellt werden kann.
Für die verbleibende Familie von Logiken wird gezeigt, dass das Model-Checking-

Problem unter der Einschränkung auf sogenannte flache Modelle entscheidbar wird.
Flache Systeme zeichnen sich im Wesentlichen dadurch aus, dass jeder Kontrollzustand
zu höchstens einem einfachen Kreis im Kontrollgraphen gehört. Während grundlegende
Probleme, wie z. B. Erreichbarkeit, im Allgemeinen schon für Systeme mit nur zwei
Zählern unentscheidbar ist, ermöglicht Flachheit das Verifizieren selbst mächtiger Klassen
von durch Zählmechanismen ausdrückbarer Eigenschaften. Es wird gezeigt, dass die
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entsprechenden Probleme auf das entscheidbare Erfüllbarkeitsproblem einer Erweiterung
der Presburger’schen Arithmetik reduziert werden kann.
Die Komplexität der besten bekannten Entscheidungsprozedur für dieses Erfüllbar-

keitsproblem ist jedoch nicht elementar. Daher wird eine alternative Methode entwickelt,
die auf eine Temporallogik mit eingeschränktem Zählmechanismus anwendbar ist. Das
Konzept der ergänzten Pfadschemata wird eingeführt und dient als symbolische Reprä-
sentation für eine Menge von Systemläufen ähnlicher Form. Pfadschemata werden als
Beweisobjekte verwendet, welche die Erfüllbarkeit einer gegebenen Formel bezeugen. Es
wird nachgewiesen, dass, wenn überhaupt, immer auch kleine Modelle existieren. Dar-
aus lässt sich folgern, dass die Komplexität des Model-Checking-Problems exponentiell
beschränkt ist.
Darüber hinaus liefern ergänzte Pfadschemata die Grundlage für ein SMT-basiertes

Approximationsverfahren für das (unentscheidbare) Model-Checking-Problem über belie-
bigen Zählersystemen. Ähnlich zu Bounded-Model-Checking erlaubt es die vorgestellte
Methode, Läufe zu identifizieren, die eine gegebene temporale Eigenschaft erfüllen. Dabei
bestimmt ein Parameter die Größe der in Betracht zu ziehenden Schemata und damit
flexibel die Balance zwischen Umfänglichkeit der Approximation und Berechnungsauf-
wand. Im Gegensatz zur Verwendung von endlichen Präfixen beschränkt eine festgelegte
Maximalgröße für Pfadschemata die Analyse nicht grundsätzlich auf eine endliche Menge
von Läufen. Zudem können Pfadschemata Läufe deutlich kompakter repräsentieren.
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� Chapter 1

Introduction

1.1 Background

1.1.1 Program Verification and Temporal Logic

In 1977, Amir Pnueli published an article [Pnu77] on the use of the rather philosophical
concept of tense logic, later called temporal logic, in the engineering task of program
verification. He had observed that many approaches to the latter aspect of computer
programming shared conceptual similarities and suggested to use a unified framework to
formulate and prove the various correctness properties that developers were interested in
to verify. At the time, reoccurring patterns were discovered in specifications that could
be solved by specific proof techniques. An important and widely accepted classification
is due to Lamport [Lam77] who distinguishes safety and liveness properties (stating that
nothing bad will ever happen and something good will happen continuously, respectively)
and devises appropriate proof techniques. Drawing from the developments on formalised
temporal logic initiated by Prior [Pri57], Pnueli was able to capture this intuition by a
simple extension of classical propositional logic that provides a mechanism to formulate
temporal succession. Choosing the temporal operators F (eventually in the future) and G
(globally, always in the future), he provided a simple, yet sufficiently expressive system to
reason conveniently about many of the properties that one may wish to verify, especially
for concurrent and interactive programs. For example, a simple formula G p would express
the safety guarantee that an execution will never violate the proposition p, identifying,
for example, all but the failure states of a program. In this linear-time temporal logic
(LTL), the behaviour of a program, or more generally a system model, is represented as a
sequence

s0s1s2 . . .

of computation steps or system states. In terms of the structural operational semantics of
a program, as defined later by Plotkin [Plo04], such a sequence is a single path through
its configuration graph, starting at the initial configuration. This view matches well
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Chapter 1 Introduction

the semantics of temporal logic given in terms of a Kripke structure: such a structure
was proposed by Kripke [Kri59] and represents a graph of which each node assigns a
truth value to a number of atomic propositions. In this formal model, the “future” is
determined by what is reachable from a given node.1 Gabbay et al. [Gab+80] rounded
up LTL to its form used today including the next-time operator X for referring to a
successive computation step and the binary temporal until operator U. They showed LTL

to be equally expressive as first-order logic over linear structures, sharpening the result
by Kamp [Kam68] who came to that conclusion in the presence of additional past-time
operators.

Soon after the introduction of LTL to the field of program verification, computation-tree
logic (CTL) was considered as an alternative by Clarke and Emerson [CE81]. In contrast
to the individual, linear execution traces described by LTL, the branching-time logic CTL

reasons over the structure of the whole configuration graph, i.e., all potential executions,
in terms of the unfolded computation tree

s0

s1

s2

s3

s4

s5

s6

· · ·

of a program. The logic features, in addition to the (linear) temporal operators, the path
quantifiers A (universal) and E (existential) expressing, intuitively, the possibilities a
program has to proceed at some specific state. For example, the formula E F(A G p)
states that there is some execution (E) on which eventually (F) all possible continuations
(A) satisfy p globally at every position (G). Clearly, the use of quantifiers ranging
over possible continuations makes only a difference in the presence of non-determinism
as exhibited, e.g., by concurrent programs, because otherwise the computation tree
degenerates to a single path. Finally, Emerson and Halpern [EH83] suggested the
temporal logic CTL*. Entailing both LTL and CTL by unifying the branching- and linear-
time view the authors aimed to overcome the “controversy” that “has arisen in the
computer science community regarding the differences between and the appropriateness
of branching versus linear time temporal logic” [EH83]. Thereby, they improved upon an
earlier suggestion by Lamport [Lam80].

1Kripke [Kri59] provided structural semantics for modal logic (cf. [BBW06]) in terms of a countable set
of interpretations of propositions and predicates (“worlds”). He assumed in [Kri63] a binary relation
over this set to determine what is possible and hence to interpret modal operators.
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Chapter 1 Introduction

Since then, the trio of CTL*, LTL, and CTL has enjoyed ongoing active research as basis
for specification languages. The formalisms have been extended in numerous ways in
order to address specific aspects of computing systems. Two dimensions concerned by
such extensions are of particular interest:

Extended model features may be exposed to the logic in terms of specific access
and constraint mechanisms. In the propositional setting, every state of the system
is characterised by finitely many fixed propositions that may hold or not. However,
program models may provide further information such as physical execution time or
program data stored in variables that is to be taken into account in a specification.
For example, timed temporal logics (cf. [Bou+17]) deal with additional (real-valued)
time stamps, allowing a formula to state, e.g., that some observation is made within
arbitrarily many sequential steps but within a given time frame. Other variants
recognise the recursive structure of a program flow (cf. [Alu+08]) or a spatial
dimension within the system model (cf. [Kon+07]).

Temporal patterns may be specified by additional constructs that increase the
expressiveness beyond that of the standard temporal operators. For example,
Wolper [Wol81] suggested an extension of LTL by regular grammars to increase
expressiveness to the full class of regular languages. The same was achieved by
integrating regular expressions [HT99; DKL10; LS10; DV13]. Explicit fixed point
operators may be integrated to generalise the temporal modalities [BKP86; Var88].
Another option are mechanisms to reason on the number of occurrences of specific
events (or patterns), globally or within a given scope [BER94; BEH95; LMP12;
LMP10; BDL12].

The latter aspect of counting as extension to temporal logics in both of these dimensions
is the central subject of study in this dissertation.

1.1.2 Counting in Temporal Logic

Counting is a fundamental principle in the theory of computation and well-established in
the study and verification of finite and infinite-state systems. The concept is ubiquitous in
programming and counting mechanisms are a natural notion of quantitative measurement
in specification formalisms. For example, they are useful for expressing properties such as
“the number of acknowledgements never exceeds the number of requests” or “the relative
error frequency stays below some threshold”.
It is well-known that LTL, CTL, and also CTL* provide only very limited means for

counting. Even specific, finite distances can be characterised only in terms of nesting

3



Chapter 1 Introduction

the corresponding number of next-time (X) operators, effectively encoding them in a
unary fashion. Beyond that, properties expressed in the temporal logics are invariant to
what is commonly called stuttering, i.e., they cannot discriminate different numbers of
repetitions. For example, the words anbω and an+1bω cannot be distinguished by any LTL

formula with less than n ≥ 1 next-time operators. Further, quantitative aspects cannot
be described, for example that some property holds twice as often during a computation
as another one.

Specification of counting patterns. An approach to solve this issue is to extend tem-
poral logic with some ability to count positions of an execution that satisfy some property
and to impose constraints over these numbers. Bouajjani, Echahed and Robbana [BER94]
and Bouajjani, Echahed and Habermehl [BEH95] investigated extensions of CTL and
LTL, respectively, that allow for binding the number of positions where some particular
event occurs to a variable and impose (Presburger) arithmetic constraints on them. For
example, with variables x, y and propositions p, q, r a formula F[x : p∧ q][y : r]¬F(x -> 2y)
reads: from some point in the future on, the number of positions satisfying both pro-
positions p and q must never be twice as large as the number of positions satisfying the
proposition r. Both branching- and linear-time variants are shown to be undecidable,
but the authors identify decidable fragments (with restricted negation) and verification
problems for different system models.
Similar extensions were considered by Laroussinie, Meyer and Petonnet [LMP12;

LMP10] where decidability is obtained by restricting the type of arithmetic constraints
(e.g., with only positive coefficients) and a notation tying the scope of counting constraints
to that of an individual temporal operator. In their notation, the property above can
be formulated as F¬F[1·#(p∧ q)+(−2)·#(r) -> 0] true. Thus, the property gives an example
relying on negative coefficients in constraints if formulae (or corresponding variables)
occur only on one side of equations. Introducing counting mechanisms leads quickly
to undecidable satisfiability and verification problems and significant restrictions are
necessary to recover decidability.

Reasoning on counter systems. Although counting logics were also considered for the
verification of non-regular processes, they pertain clearly to the second dimension of
extensions identified above as they only provide access to the underlying model in terms
of a finite set of atomic propositions. However, as fundamental computing concept,
counting is also an important aspect in system models. Therefore, temporal logics were
also studied in combination with various notions of counter systems. They extend finite
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Chapter 1 Introduction

state systems by so called counters, being integer variables that can be updated and
constraint by transitions. The configuration sequence of a counter system provides a state
and a counter valuation for every execution step. A natural way of expressing properties
of such valuations of integer variables is to use arithmetic constraints, i.e., (in)equations
over variables. To this end, temporal logic can be combined with (some fragment of)
Presburger arithmetic—first-order logic over integers in which addition appears as only
operation, named after Presburger [Pre29] who showed decidability of the corresponding
theory. The constraints over counter values can be used instead of (or in addition to)
atomic propositions in temporal formulae. For example, G(c1 -< c2) would then specify
that the value of a counter c1 never exceeds the value of a counter c2 during an execution
of some counter system.

Such extensions were used by Čerāns [Čer94] and Comon and Cortier [CC00]. A general
framework of constraint temporal logics was studied by Demri and D’Souza [DD07] where
the type of constraints and the domain of variables is a parameter of the logic and not
restricted to, e.g., integers. The survey by Demri [Dem06] provides a comprehensive
overview of the results and developments for temporal logic over arithmetic constraints.

1.1.3 Model Checking

Besides the better understanding of the proof techniques, the construction of a unified,
powerful and convenient specification and reasoning framework brought a crucial milestone
into reach: proof automation. In their seminal contributions Clarke and Emerson [CE81],
Queille and Sifakis [QS82] and Lichtenstein and Pnueli [LP85] proposed algorithmic
approaches to efficiently verify programs (modelled as Kripke structures) with respect to
properties expressed in CTL and LTL, respectively.

Manually repeating similar proof arguments on individual programs is not only incon-
venient and inefficient but also prone to reasoning mistakes, incomplete case analysis and,
as programs and system descriptions grow larger, becomes infeasible with reasonable
effort. With the number of programmers increasing, it becomes worthwhile to put sub-
stantial effort into sophisticated tool support, in terms of compilers, editors, management
tools, and, not to the least, error detection.

Clarke and Emerson [CE81] used the term model checking for their algorithmic method.
It refers, technically, to the decision problem of a formal logic answering the question
whether a formula is valid in (i.e., satisfied by or part of the theory of) a given formal
structure. For application of this concept in program verification, the implementation or a
sufficiently simplified version thereof is represented as logical structure and, therefore, the
verification task is phrased as model-checking problem in that framework. The intention
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Chapter 1 Introduction

to generalise and unify the steps required to prove properties and the mechanical nature
of formal proof systems (where truth arises from syntactic form rather than semantic
interpretation) matched perfectly the concept of automation in terms of an algorithm
executed by a computing machine. Algorithms solving the model-checking problem of a
logical system (in particular temporal logic), applied to solve verification tasks represented
such an advancement over the individual and manual approach that the term model
checking is now effectively used synonymously to automatic system verification.
Nevertheless, it should be noted that automation of other techniques related to logic

made also large advances: automated proof assistants, SAT-, constraint-, and SMT
solvers proliferated in the past decades and in fact heavily influence also the techniques
used to solve model-checking problems today.
For an in-depth treatment of the topic, the reader is referred to the very influential

textbooks by Clarke, Grumberg and Peled [CGP01] and Baier and Katoen [BK08].
Further, the recently published handbook edited by Clarke et al. [Cla+18] provides an
impressive compilation of the most important aspects of verification techniques based on
model checking.

Approximation

An inherent boundary and the reason for the plethora of different model-checking
techniques targeting specific types of specifications and system models is that there
cannot be a single method to analyse all relevant aspects of computation. Such a method
would itself have to exceed what is considered computable, in the sense of Church and
Turing, witnessed by undecidable problems, foremost the halting problem of Turing
machines. Even for decidable combinations of a computation model and a specification
formalism, the complexity of the model-checking problem can be quite high. It is
therefore necessary to find a balance between leaving out complicating details of the
program and the requirements on one side and faithfulness of the result on the other.
An approximation should be chosen that appropriately reflects the relevant facets of a
system and the correctness properties to be verified. Approximations can thus be made
with respect to three aspects: the system model, the property specification, and the
verification result.

Reduced system model. In many cases the concrete implementation is given in terms
of a too powerful or ambiguous representation, for example, as source code in some
general-purpose programming language. The challenge is hence to faithfully model the
relevant aspect of a system using the capabilities of the chosen formalism while leaving
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Chapter 1 Introduction

out irrelevant details. For example, using Kripke structures to model concurrent or
interactive programs can capture their non-deterministic nature, avoiding any assumption
on synchronising effects or input, respectively. Within the finite state space of a Kripke
structure, on the other hand, essentially the program flow can be modelled while the
state space of actual data structures must usually be ignored for scalability reasons.

Simplified specification. The correctness properties must be formulated using the means
provided by the specification languages. As for the system model, it requires a balance
between precisely representing the (possibly informally given) system requirements and
the computational effort to treat more general specification mechanisms algorithmically.
Formulating a correctness property, e.g., in terms of the simple (non-)reachability of a
specific program state often allows for a very efficient analysis. This may, however, require
ignoring some rare but possible cases such as program interrupts with uncontrollable
handlers that would, technically, make any program state reachable from everywhere.
Including this possibility in the formal specification by stating that a state is not reachable
via only non-interrupt states, is not a plain reachability question any more but requires
more powerful specification constructs (such as in LTL) and thus a possibly more expensive
verification technique.

Approximated verification result. If the combination of specification language and
system model appears infeasible to be checked accurately in general, the results of the
formal problem itself can be approximated while still being useful. Accepting one-sided
errors can significantly reduce the needed computational effort and thereby provide
pragmatic solutions for verification tasks. Under-approximations of the actual model
may reveal witnesses for satisfaction or violation of a property and their absence may be
proven in an over-approximation. Such techniques have proven to be extremely efficient
and hence useful, even for problems where computing an always accurate and conclusive
result is theoretically and practically no option.
A popular over-approximating method is counter example guided abstraction refine-

ment [Cla+03] where the program is first radically simplified, e.g., to the program-flow
graph without any conditions. If the given property can be proven to hold in this
over-approximation of the behaviour, the verification process can be terminated immedi-
ately and conclusively. Otherwise, a potentially spurious counter example is obtained
that either witnesses the actual violation of the property or can be used to refine the
abstraction and start the verification on a slightly more complex but more accurate
abstraction.
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(not flat) (not flat) (flat)

(flat) (flat)

Figure 1.1: Examples of control graphs illustrating flatness.

A very effective method based on under-approximations is bounded model check-
ing [Bie09] where the considered computations of a program are represented by a trun-
cated prefix of specific length. This provides a bounded, finite view even into possibly
infinite state spaces and the method can find witnesses (for errors or property fulfilment)
as early as they actually occur, without having to analyse the entire state space.

1.1.4 Flatness

The notion of flat systems (sometimes also called weak) was investigated as a sensible
restriction to reduce the computational complexity of various verification problems. It
is a structural property of transition systems such those underlying Kripke structures
or counter systems and demands that no control state is part of more than one simple
cycle. This means, essentially, that cycles in the control graph of the system cannot be
alternated during any execution. Figure 1.1 shows some examples.
While model-checking LTL properties on arbitrary Kripke structures is well-known

to be PSpace-complete [SC85], it was shown by Kuhtz and Finkbeiner [KF11] to
become NP-complete2 under the flatness condition. A similar impact is observable for
(infinite state) counter systems. While reachability is already undecidable for two-counter
systems [Min67], results by Comon and Jurski [CJ98] provide that flatness recovers

2The authors consider the universal formulation of the model-checking problem for LTL and show
completeness for coNP, implying NP-completeness for the existential variant.
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decidability with an arbitrary number of counters (see also the follow-up work by Comon
and Cortier [CC00]). Later, it was shown by Demri, Dhar and Sangnier [DDS12; DDS15]
that LTL properties (including past-time operators) can generally be evaluated in NP.
A comprehensive exposition on these results can be found in the dissertation by Dhar
[Dha14]. Bardin et al. [Bar+05] argue that flatness is also a desired property in symbolic
verification that allows for effectively computing a symbolic representation of the effect
of program cycles.
Even though flatness seems to impose a quite strong restriction, Leroux and Sutre

[LS05; LS06] have shown that many classes of counter systems are at least virtually3

flat, i.e., their actual behaviour can be represented using a flat system even if the given
representation is not flat syntactically. This particularly supports using flat systems as
approximations since in these cases the exact behaviour can actually be represented. We
will come back to this in Chapter 5.

1.2 Contributions

The primary subject of this dissertation are powerful counting extensions of the temporal
logics LTL, CTL, and CTL* and their model-checking problems. The counting temporal
logic CTL*

# is introduced along with a number of natural syntactical fragments that feature
both aspects of counting discussed above: On one hand, they allow for the specification
of complex, quantitative patterns by counting specific positions of a run and imposing
arithmetic constraints on the corresponding quantities. On the other hand, the logics are
interpreted over counter systems and arithmetic constraints can also be imposed on the
valuation of their counters.

The logic CTL*
# features a bookmarking mechanism to define the scope of counting:

as shown in Figure 1.2, positional variables called bookmarks can be introduced at any
time to store the current position. Within their scope, the number of positions satisfying
some property can be used in linear arithmetic constraints. The logics LTL# and CTL#

are defined by restricting the use of path quantifiers analogous to LTL and CTL. While
bookmarks define counting scopes that can potentially span arbitrarily many nested
temporal operators, the logics cLTL, cCTL, and cCTL* are defined to restrict the mechanism
in a natural way. They tie counting constraints to the scope of a single temporal operator.
Figure 1.3 shows an overview of the studied fragments. This family is based on the

logics defined by Bouajjani, Echahed and Robbana [BER94], Bouajjani, Echahed and

3Bardin et al. [Bar+05] use the term flatable for systems for which an equivalent flat system exists while
Leroux and Sutre [LS05; LS06] simply use the term flat in this more general sense.
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G
(
p → x. F q ∧ #x(ϕ1) + #x(ϕ2) ≥ 2 ·#x(ψ)

)

. . .
x

p ϕ1 ϕ2 ϕ1 ψ ψ ϕ1

3

q
. . .

Figure 1.2: Example of explicit position counting within a scope defined by a bookmark x.
Within the scope of x the term #x(ϕ1) denotes the number of positions that
satisfy ϕ1 since the placement of the bookmark. Hence, the formula states
that whenever proposition p is satisfied, the position is to be bookmarked and
eventually at some position satisfying q, the number of positions passed that
satisfy ϕ1 or ϕ2 must be twice as large as the number of positions satisfying
the formula ψ.

CTL*
#

LTL# CTL#

wLTL#
cCTL*

cLTL cCTL

Figure 1.3: Overview of the counting temporal logics studied in this dissertation. Arrows
point towards entailing fragments.
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Habermehl [BEH95] and Laroussinie, Meyer and Petonnet [LMP10; LMP12]. Their
investigations have shown that even limited means of counting in temporal logic lead to
undecidability of essential problems such as satisfiability and (Kripke-structure) model
checking. Only essential restrictions to the counting mechanisms achieved to recover
decidability. On the other hand, Kuhtz and Finkbeiner [KF11] and Demri et al. [DDS15;
Dem+10; DDS18] investigated the effect of flatness on model-checking LTL, CTL, and
CTL* over Kripke structures and counter systems. They observed a significant impact on
the computational complexity of the respective problems.

The present work joins these lines of research on counting temporal logics and model-
checking flat systems. It extends the techniques and results in order to better understand
counting mechanisms in temporal specification and provide solutions to the corresponding
verification problems. The major technical contributions of this dissertation are the
following.

1. The powerful counting temporal logic CTL*
# is defined to subsume many similar

logics proposed earlier. Its model-checking problem, and hence that of its fragments,
is shown to be decidable over flat counter systems. This is achieved by a reduction
to the satisfiability problem of a decidable extension of Presburger arithmetic. In
addition, also the reverse direction is provided by an encoding of the satisfiability
into the model-checking problem. This correspondence is of conceptual interest: On
one hand this establishes an 2NExp lower bound for the model-checking problem.
On the other hand, only non-elementary decision procedures are known. The result
therefore relates a not yet entirely understood arithmetic theory to a concrete
temporal-logic verification problem.

2. A weak variant of LTL# called wLTL# is introduced. It is shown that both the satis-
fiability problem over counter systems and the model-checking problem over Kripke
structures is decidable and in NExp. Although wLTL# is not closed under negation,
the logic provides a type of restriction that recovers decidability without limiting
the powerful bookmark-based counting mechanism. The presented construction
reduces satisfiability to reachability in integer vector addition systems. It revises
and extends a previous result [Dec11; BDL12] on LTL with only frequency counting
constraints where no complexity upper bound was given.

3. The technically most involved result concerns the fragment cLTL of LTL#. The
restriction to operator-bound counting scopes does not recover decidability of the
model-checking problem in general but a procedure is developed to show that flat
counter systems can be verified against a cLTL property non-deterministically in

11



Chapter 1 Introduction

exponential time. To this end, the notion of augmented path schemas is introduced
along with the syntactic property of consistency. It is shown that consistent
augmented path schemas are suitable symbolic witnesses for satisfaction of a
formula and exhibit a small-model property.

4. Based on the theoretical developments for model-checking cLTL on flat counter
systems, an approximation technique is presented that is applicable also to non-flat
systems. The approach verifies flat under-approximations of a specific depth given
as parameter. Similarly to bounded model checking, the parameter allows the user
to flexibly adjust the trade-off between exhaustiveness and computational effort.
However, using a symbolic representation based on augmented path schemas instead
of bounded prefixes allows for representing infinite subsets of runs instead of a
only a finitely many. The technique is exhaustive for flat systems but (necessarily)
incomplete in the general case. Nevertheless, it is directly applicable and may well
provide conclusive results within the given depth. In any way, the incremental
procedure identifies “simple” witnesses early whenever they exist. For the (ap-
proximated) model-checking problem, an explicit formulation in the quantifier-free
fragment of Presburger arithmetic is developed. This allows the approach to be
implemented using competitive SMT solvers since this theory is well supported.
The construction is parametrised by the depth of the flat approximation that is
to be verified, and the resulting arithmetic formula is linear in the problem size
and the chosen depth. Using a prototype implementation by Pirogov [Pir17], the
effectiveness of the approach was demonstrated on verification tasks of the RERS
Challenge [How+14] and quantified variations.

5. The model-checking problem of the branching-time fragment cCTL is proven to be
decidable in polynomial time for arbitrary Kripke structures. To this end, specific
variants of one-counter systems are employed for which (repeated) control-state
reachability is shown to be decidable in polynomial time. In combination with
the results on cLTL, this provides an exponential-space decision procedure for
model-checking cCTL* over flat Kripke structures.

Table 1.1 provides an overview of the results on the model-checking problem for the
fragments of CTL*

# hat are considered. As mentioned above, the undecidability results
follow mostly from previous work. Multiple references in the table indicate independent
reasons for undecidability. For example, model-checking LTL# over counter systems (CS) is
found to be undecidable because the problem entails the undecidable reachability problem
in counter systems [Min67] and, independently, because the undecidable satisfiability
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FKS KS FCS CS

cCTL P (Thm. 6.5) P (Thm. 6.5) dec. (Thm. 7.1) undec. [Min67]

cLTL NP-h. [KF11] undec. (Thm. 4.1) NP-h. [KF11] undec.
NExp (Thm. 4.2) NExp (Thm. 4.2) [Min67],(Thm. 4.1)

cCTL* ExpSpace (Thm. 6.7) undec. (Thm. 4.1) dec. (Thm. 7.1) undec.
[Min67],(Thm. 4.1)

wLTL# NExp (Cor. 3.7) NExp (Cor. 3.7) dec. (Thm. 7.1) undec. [Min67]

LTL# 2NExp-h. (Thm. 7.5) undec. (Thm. 4.1) 2NExp-h. (Thm. 7.5) undec.
dec. (Thm. 7.1) dec. (Thm. 7.1) [Min67],(Thm. 4.1)

CTL# 2NExp-h. (Thm. 7.5) undec. [LMP12] 2NExp-h. (Thm. 7.5) undec.
dec. (Thm. 7.1) dec. (Thm. 7.1) [Min67],[LMP12]

CTL*
# 2NExp-h. (Thm. 7.5) undec. 2NExp-h. (Thm. 7.5) undec.

dec. (Thm. 7.1) [LMP12],(Thm. 4.1) dec. (Thm. 7.1) [LMP12],(Thm. 4.1)

Table 1.1: Overview of the results on the model-checking problems—(F)KS and (F)CS
denote (flat) Kripke structures and (flat) counter systems, respectively.

problem of cLTL reduces to it (Theorem 4.1).

1.3 Overview

Chapter 2

We start the technical developments by providing the basic definitions in Chapter 2.
Presburger arithmetic and counter systems are introduced formally. Syntax and semantics
of CTL*

# are defined and the various restrictions are formalised in terms of syntactical
fragments. The central decision problems of satisfiability and model checking are stated
formally.

Chapter 3

Chapter 3 is concerned with the satisfiability problem that is found to be undecidable
for most of the considered fragments. To understand and characterise the influence of
the features of the logics on this (negative) result, wLTL# is defined as a weak fragment

13



Chapter 1 Introduction

of LTL#. To show that the satisfiability problem of wLTL# is decidable in exponential
time, a reduction to the reachability problem in a subclass of counter systems (Z-VASS)
is presented.

Chapter 4

Chapter 4 is dedicated to one of the main results: it is shown that verifying cLTL formulae
on flat counter systems is decidable. The chapter presents the technically most involved
part of this dissertation. The developed decision procedure follows a guess-and-check
scheme based on a specific variant of flat counter systems, called augmented path schemas
that can certify the satisfaction of a property. Following a general overview of the
chapter, path schemas and the important syntactic property of consistency are defined
in Section 4.2. Subsequently, the connection of syntax and semantics is established,
proving soundness of the procedure: Section 4.3 shows that a syntactically consistent
schema reliably certifies that a property holds. Crucially for the decision procedure to be
complete, Section 4.5 establishes that if a given property is satisfied by some flat counter
system, then a witnessing consistent schema always exists of (exponentially) bounded
size. The proof relies on technical constructions on augmented path schemas that are
discussed in Section 4.4.

Chapter 5

Chapter 5 presents an approximation approach to verifying arbitrary counter systems
with respect to properties formulated in cLTL. Since the model-checking problem is
undecidable in general, flat counter systems are used as under-approximations. This
provides a flexibly adjustable trade-off between exhaustiveness and computational effort,
similar to bounded model checking. The techniques and results, especially augmented
path schemas as symbolic witnesses are employed to construct a parametrised encoding
of the (approximated) problem in quantifier-free Presburger arithmetic.

Chapter 6

Chapter 6 is concerned with the branching-time fragment cCTL. In contrast to the
linear-time fragments for which the model-checking problem is of high complexity or
even undecidable in many cases, it is shown that cCTL properties can be verified over
Kripke structures in polynomial time. The problem is reduced to reachability questions
in specific subclasses of counter systems with only one active counter. They are shown
to be decidable in polynomial time.

14
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Chapter 7

Finally, the model-checking problem of CTL*
# is shown to be decidable over flat counter

systems. An extension of Presburger arithmetic is presented that features a quantifier for
counting the solutions of a formula, called Härtig quantifier, and is known to be decidable.
We show that its satisfiability problem can be reduced to the model-checking problems
of LTL# and CTL# over flat Kripke structures in linear time. For the reverse direction, the
model-checking problem of CTL*

# is encoded into the satisfiability problem, producing an
arithmetic formula of exponential size.

Publications

Parts of this dissertation have been published in the proceedings of conferences. The
content of Chapter 3 revises and extends part of [BDL12]. The content of Chapters 4, 6
and 7 is based on and extends the results of [Dec+17]. Further, Chapter 5 develops the
results presented in [DP19].

15



� Chapter 2

Counting in Temporal Logic

2.1 Preliminaries

2.1.1 Basic Notation

The set of all integers is denoted by Z and N := {0, 1, . . .} ⊂ Z denotes the set of
all non-negative integers, that is, all natural numbers and zero. Further, let Z∞ :=
Z ∪ {∞,−∞} and N∞ := N ∪ {∞} be their respective extensions by the symbols ∞
and −∞. Arithmetically, the latter are treated as absorbing, extremal elements, i.e.,
−∞ = −∞+ x < x < x+∞ = ∞ is assumed to hold for every x ∈ Z while −∞+∞
remains undefined. Intervals of integers are denoted by [n,m] := {n, n+ 1, . . . ,m} ⊂ Z
for n,m ∈ Z. Notice that [n,m] = ∅ if n > m. We consider numbers n ∈ Z to be
represented binary and define their representation size to be size(n) := dlog2(|n|+ 1)e.

The set of all functions f : A→ B from a domain A to a co-domain B is denoted BA

and 2A is the powerset of A being comprised of all subsets of A. The domain of a function
f : A → B is denoted by dom(f) = A. For elements a ∈ A and b ∈ B, let f [a 7→ b]
denote the function that maps a to f [a 7→ b](a) = b and every other other element
a′ ∈ A \ {a} to the original value f [a 7→ b](a′) = f(a′). For functions f, g, we write f v g
if dom(f) ⊆ dom(g) and f(x) = g(x) for all x ∈ dom(f). Arithmetic operations are lifted
point-wise to integer-valued functions f, g : A→ Z, i.e, (f + g)(a) := f(a) + g(a) for all
a ∈ A. The symbols 0 and 1 may be used to refer to constant functions assigning 0 and
1, respectively, to every element, if the domain is understood. The entirely undefined
function is called ε : ∅ → ∅.
The sets of finite and infinite sequences of elements from a set A are denoted byA∗

and Aω, respectively, and we may write A∞ := A∗ ∪ Aω for their union. The length
|w| of a sequence w is the cardinality of its position set. That is, if w = ε is the
empty sequence, |w| := 0; if w = a0 . . . an is finite, |w| := |[0, n]| = n + 1; and if w is
infinite, then |w| := |N| = ω. Whenever convenient, a sequence w = a0 . . . an ∈ A∗ may
be considered as function w : [0, n] → A where w(i) := ai is the (i + 1)th element if
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i ∈ [0, n] is a position (index) on the sequence. This applies equally to infinite sequences
w ∈ Aω interpreted as function w : N → A. Further, let the inverse-like function
posw : A+ → 2N provide for an element or a sequence of elements a1, . . . , an ∈ A the
set posw(a1 . . . an) := {i ∈ N | i < |w|, w(i) ∈ {a1, . . . , an}} of positions carrying any of
them. We extend the element-of relation (∈) from sets to sequences and write a ∈ w if
posw(a) 6= ∅. A sequence w is called simple if no element occurs at more than one position.
Finite powers wn of finite sequences w denote their (n times) iterated concatenation and
wω denotes the sequence of w repeated infinitely.
Landau notation is used to denote for a function f : Nn → N the set O(f) := {g :

Nn → N | ∃a,b∈N∀x1,...,xn∈N : x1, . . . , xn ≥ a → b · g(x1, . . . , xn) ≥ f(x1, . . . , xn)} of
dominating functions. It is extended to application of functions h : N → N such that
h(O(f)) := {h(g) | g ∈ O(f)} denotes the class of functions dominating h(g) for some
function g dominating f ; specifically, we use 2O(f) = {2g | g ∈ O(f)}.
The standard computational complexity classes (see, e.g., the handbook article by

Johnson [Joh90]) are denoted by P and NP (deterministic and non-deterministic polyno-
mial time), PSpace and ExpSpace (polynomial and exponential space), Exp and NExp
(deterministic and non-deterministic exponential time), and 2NExp (non-deterministic
doubly-exponential time). A problem is considered of elementary complexity if it can be
solved (by a Turing machine) in time bounded by a k-exponential function f1 ◦ · · · ◦ fk,
for some k ∈ N and f1, . . . , fk ∈ 2O(n).

2.1.2 Presburger Arithmetic

A linear arithmetic term τ over a set X of indeterminate placeholders (typically variable
symbols) is a finite expression produced by the grammar

τ ::= a · x | τ + τ

for arbitrary integer coefficients a ∈ Z and placeholders x ∈ X. Where convenient, the
multiplication symbol (·) and factors a = 1 may be omitted, as well as the addition
symbol (+) before a negative number sign (−). For example, 1 · x + (−2) · y may be
written as x− 2y for x, y ∈ X.

The set PA(X) of Presburger arithmetic formulae ϕ over X is defined by the grammar

ϕ ::= τ -> b | ¬ϕ | ϕ∧ϕ | ∃x.ϕ

for linear arithmetic terms τ over X and x ∈ X. The quantifier-free fragment qfPA(X) ⊆
PA(X) consists of those formulae not using the quantifier ∃. Further, a simple inequation
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of the form τ -> b is called guard and we denote the set of all guards over X by Grd(X) ⊆
qfPA(X). The parameter X may be omitted for convenience if determined by the context.
The semantics of terms and PA formulae is defined in terms of valuations assigning

integer values to the respective placeholders or variables. The arithmetic evaluation
JτK(θ) ∈ Z of a constraint term τ over X with respect to a valuation θ : X → Z is defined
inductively by

Ja · xK(θ) := a · θ(x)

Jτ1 + τ2K(θ) := Jτ1K(θ) + Jτ2K(θ)

for a ∈ Z, x ∈ X, and terms τ1, τ2. The satisfaction relation |=PA is defined for PA(X)
formulae ϕ,ψ, τ -> b, placeholders x ∈ X, and valuations θ : X → Z by

θ |=PA τ -> b :⇔ JτK(θ) ≥ b
θ |=PA ¬ϕ :⇔ θ 6|= ϕ

θ |=PA ϕ∧ψ :⇔ θ |=PA ϕ and θ |=PA ψ

θ |=PA ∃x.ϕ :⇔ ∃z∈Z : θ[x 7→ z] |=PA ϕ.

The relation be extended to finite sets M ⊆ PA(X) of formulae by interpreting M as
conjunctive clause, that is, θ |=PA M if and only if θ |=PA

∧
ϕ∈M ϕ. For easier reading, we

may omit the subscript and simply write |= instead of |=PA if no ambiguity arises. A
formula ϕ ∈ PA(X) is satisfiable if there is some valuation θ : X → Z such that θ |=PA ϕ

and the set of all satisfiable PA(X) formulae, for arbitrary X, is denoted by SAT(PA).
The satisfiability problem of PA is the question whether a given formula is satisfiable
or, equivalently, a member of the set SAT(PA) and therefore identified with the latter.
Notice that SAT(PA) is well defined because satisfiability of any formula ϕ ∈ PA(X) is
independent of the choice of X (being necessarily a superset of the placeholders used in
ϕ).
For convenience, the relation symbols -<, <, and > may be used to denote equivalent

constraints by their standard arithmetic interpretation. For example, 2x1 +x2 < 3 denotes
−2x1 − x2 ->−2. The dual of a constraint τ -> b is denoted by τ -> b and defined as the
equivalent of τ < b. Notice that neither conjunction nor negation is necessary to express
these relations since Z contains inverses with respect to addition. However, in the actual
presence of conjunction, also equality (=) may be used to abbreviate formulae of the form
τ -> b∧ τ -< b by τ = b.
The representation size of placeholders x ∈ X is assumed to be size(x) = 1, unless

noted otherwise. The size of arithmetic terms and PA(X) formulae is defined inductively
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by

|a · x| := size(a) + size(x)

|τ1 + τ2| := |τ1|+ |τ2|

|τ -> b| := |τ |+ size(b) + 1

|¬ϕ| := |ϕ|+ 1

|ϕ∧ψ| := |ϕ|+ |ψ|+ 1

|∃x.ϕ| := size(x) + |ϕ|+ 1.

2.1.3 Counter Systems

Counter systems are comprised of a finite control that manipulates a fixed set of integer
variables, called counters. Every transition updates each counter by adding a fixed integer
value that may by zero. In addition, each transition carries a set of linear arithmetic
constraints (guards) over these variables that needs to be satisfied after the updates are
applied. Various notions of counter systems exist with the most important distinction
being whether they subsume Minsky machines [Min67] or not because this determines
decidability of essential problems such as reachability.

Let Λ be a set of labels and CS a finite set of system counters. A counter system (CS)
over Λ and CS is a tuple S = (S,∆, sI , λ) where

S is a finite set of control states, sI ∈ S is the initial state,

λ : S → Λ is a labelling function and

∆ ⊆ S×ZCS×2Grd(CS)×S is a finite set of transitions carrying an update µ : CS → Z
to the system counters and a finite set of guards Γ ⊆ Grd(CS) over them.

A configuration of S is a pair (s, θ) comprised of a state s ∈ S and a valuation θ : CS → Z.
A run of S is an infinite sequence ρ = (s0, θ0)(s1, θ1) . . . ∈ (S × ZCS )ω such that
(s0, θ0) = (sI ,0) and for all positions i ∈ N there is a transition (si, µi,Γi, si+1) ∈ ∆ such
that θi+1 = θi + µi and θi+1 |= Γi. The set of all runs of S is denoted runs(S).
Let counters(S) = CS denote the set of counters used by S. For a configuration

(s, θ), let st((s, θ)) := s and val((s, θ)) := θ denote the projections to its state- and
valuation component, respectively. This notation is extended point-wise to sequences
of configurations, especially runs. Correspondingly, let us denote by posρ(s) := {i ∈ N |
st(ρ(i)) = s} the set of positions on ρ carrying a state s ∈ S. By means of the labelling
function, a run ρ of S defines an abstraction subject to a set of relevant labels Σ in terms
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of a word JρKΣ
S = (a0, θ0)(a1, θ1) . . . ∈ (Σ× ZCS )ω over the alphabet Σ× ZCS defined by

JρKΣ
S (i) := (λ(st(ρ(i) ∩ Σ), val(ρ(i)). That is, states are substituted point-wise by their

labelling restricted to Σ. The sub- and superscripts may be omitted if no ambiguity
arises. Then, a counter system S defines a language JSKΣ := {JρKΣ

S | ρ ∈ S} over the
potentially infinite alphabet Σ×ZCS . In case of Kripke structures, no counters are being
used and, for convenience, in this case we identify the corresponding alphabet Σ× Z∅

with Σ and consider languages over Σω.
Let succS(s) := {s′ ∈ S | ∃µ,Γ : (s, µ,Γ, s′) ∈ ∆} denote the set of direct successors of

some state s ∈ S. Its transitive closure is denoted succ+
S (s) while succ∗S(s) refers to the

transitive and reflexive closure. A finite or infinite path in S is a finite or infinite state
sequence w ∈ S∗ or w ∈ Sω, respectively, with w(i+ 1) ∈ succS(w(i)) for all positions
0 ≤ i < |w| if w is finite and all position i ∈ N if w is infinite. A finite path w = s0 . . . sn

is a loop in S if s0 ∈ succS(sn), i.e., if there is a transition from sn to s0. The path w
is a row if no state s ∈ w is part of any loop in S. The counter system S is flat if for
every state s ∈ S there is at most one simple loop s0 . . . sn (a loop with no repeating
states) with s0 = s. Recall Figure 1.1 showing examples of flat and non-flat control
graphs. Let CS denote the set of all counter systems and FCS the set of all flat counters
systems. A counter system S is called a Kripke structure if counters(S) = ∅. The sets
KS and FKS ⊆ KS are comprised of all Kripke structures and all flat Kripke structures,
respectively.
The representation size of a set ∆ of transitions is defined as

size(∆) :=
∑

(s,µ,Γ,s′)∈∆
1 +

(∑
γ∈Γ
|γ|
)

+
∑

c∈dom(µ)
size(µ(c)).

Notice that size(∆) = |∆| if the transitions carry neither updates nor guards and that, in
general, size(∆) ≥ |∆|. The size of a counter system S = (S,∆S , sI , λS) is now defined
in terms of the representation of its transition relation denoted by |S| := size(∆S).

Reachability

An important problem for counter systems is the question whether a particular control
state is visited (once or infinitely often) by any execution. Formally, the control-state
reachability problem of a class K ⊆ CS of counter systems is to decide for an instance
S = (S,∆, sI , λ) ∈ K and a state s ∈ S whether there is a run ρ ∈ runs(S) and a position
i ∈ N such that st(ρ(i)) = s. The repeated control-state reachability problem is to decide
whether there is a run ρ ∈ runs(S) and an infinite subset I ⊆ N of positions such that
st(ρ(i)) = s for all i ∈ I.
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At their core, many verification algorithms build on solving these questions and this is
also the case for most procedures developed here. Therefore, it is important to realise
that counter systems in their general form represent an extremely powerful model of
computation. This is foremost witnessed by the well-known result by Minsky [Min67]
providing the equivalence of counter systems (even with only two counters and zero-testing
guards) and Turing machines. It is hence undecidable whether a particular configuration
or a particular control state is (repeatedly) reachable.

I Theorem 2.1 ([Min67]). The (repeated) control-state reachability problem for counter
systems is undecidable.

Flatness, on the other hand, recovers decidability of these fundamental problems. In
fact, control-state reachability becomes NP-complete: Encoding the NP-complete subset-
sum problem, e.g., as described by Haase et al. [Haa+09], requires only a flat system
with one counter and hence witnesses NP-hardness. Further, (repeated) control-state
reachability can be expressed in LTL and Demri et al. [DDS12; DDS15] have shown that
evaluating LTL properties on flat counter systems is in NP.

I Theorem 2.2 ([DDS15]). The (repeated) control-state reachability problem for flat
counter systems is NP-complete.

2.2 Temporal Logic with Counting

In the following, we define the temporal logics that are the central object of study in
this dissertation. Recall the diagram shown in Figure 1.3. Syntax and semantics are
first defined for CTL*

#, the richest variant of the logic family. Subsequently, the other
fragments are obtained by specific restrictions.
The logics CTL*

#, CTL# and CTL feature a bookmarking mechanism based on position
variables that store positions in a register-like fashion for later reference, similarly to the
freeze quantifier used by Alur and Henzinger [AH94] for storing time stamps. Henzinger
[Hen90] refers to it as “half-order” quantification (as opposed to first- or second order)
because it binds a variable to a specific value exhibited by the part (state) of the model
it is to be evaluated at. In cCTL*, cCTL and cLTL, access to the quantified variable is,
essentially, restricted to the first temporal level. An alternative notation scheme based
on annotating temporal operators is used to naturally impose this restriction.
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Syntax

Let AP be a fixed, finite set of atomic propositions and C be a fixed, infinite set of
counter names. Although any formula can only use a finite number of counters, assuming
C to be infinite provides the choice of an unused (fresh) counter name when required.
Similarly, let B be a set of position variables, called bookmarks. The syntax of CTL*

#

formulae ϕ and counting constraint terms τ is given by the grammar rules

ϕ ::= true | p | γ | ϕ∧ϕ | ¬ϕ | Xϕ | ϕUϕ | Eϕ | x.ϕ | τ -> a

τ ::= a ·#x(ϕ) | τ + τ

for atomic propositions p ∈ AP , counter guards γ ∈ Grd(C), bookmarks x ∈ B, and
integer constants a ∈ Z. The set of all CTL*

# formulae over AP and C is also denoted by
CTL*

#. Analogously to counter systems, let counters(ϕ) ⊆ C denote the set of counter
names actually occurring in a formula ϕ. We write CTL*

#(C ′) for the set of those CTL*
#

formulae ϕ with counters(ϕ) ⊆ C ′.
Notice that CTL*

# counting constraints, i.e. formulae of the form τ -> b for some constraint
term τ and b ∈ Z, are in fact PA formulae (more precisely, guards) over the set {#x(ϕ) |
x ∈ B,ϕ ∈ CTL*

#} used as placeholders. Thus, the corresponding abbreviations defined
above may also be used where convenient. As for PA, the multiplication symbol may be
omitted in terms to improve readability if no ambiguity arises. Observe, moreover, that
constraints over system counters are syntactically distinct from constraints over counted
quantities, e.g., a formula 2#x(ϕ) + c -> 0, for c ∈ C, is not valid because it contains
both a system counter (c) and a counting expression (#x(ϕ)). Although both types of
inequations are technically guards (over different placeholder sets), to avoid confusion
we mostly refer to the first type (from Grd(C)) as counter guards and to the other as
counting constraints.

Derived operators. Let us extend the core syntax by additional operators derived by
using the equivalences

false :≡ ¬true Fϕ :≡ true Uϕ ϕEUψ :≡ E(ϕUψ)

ϕ∨ψ :≡ ¬((¬ϕ)∧(¬ψ)) Gϕ :≡ ¬F¬ϕ ϕAUψ :≡ ¬E¬(ϕUψ)

ϕ→ ψ :≡ (¬ϕ)∨ψ ϕRψ :≡ ¬(¬ϕU¬ψ)

for all ϕ,ψ ∈ CTL*
#. We will use them as convenient abbreviations and also to define

syntactic fragments of the logic. By substituting derived operators as determined by
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their defined equation, any formula can be reduced to the core syntax defined above.
Therefore, it is no restriction to limit structural arguments to the core syntax. Derived
operators will only be considered explicitly in the context of fragments that exclude core
constructs necessary for expressing them.

Subformulae. The set of all subformulae of a formula ϕ ∈ CTL*
# is defined to be the

smallest set sub(ϕ) ⊆ CTL*
# such that ϕ ∈ sub(ϕ) and further

if ¬ψ ∈ sub(ϕ), Xψ ∈ sub(ϕ), Eψ ∈ sub(ϕ), or x.ψ ∈ sub(ϕ), then ψ ∈ sub(ϕ),

if χ∧ψ ∈ sub(ϕ) or χUψ ∈ sub(ϕ), then χ, ψ ∈ sub(ϕ), and

if a0 ·#x0(χ0) + · · ·+ an ·#xn(χn) -> b ∈ sub(ϕ), then χ0, . . . , χn ⊆ sub(ϕ)

for all n ∈ N, b, a0, . . . , an ∈ Z, and ψ, χ, χ0, . . . , χn ∈ CTL*
#. Although counting terms

are not considered as (sub)formulae, let us extend the notation and also define

sub(a0 ·#x0(χ0) + · · ·+ an ·#xn(χn)) := sub(χ0) ∪ · · · ∪ sub(χn).

Let the size |ϕ| of a formula be the sum of the sizes of the atomic elements (propositions,
atomic constraints) it contains and the number of operators connecting them. Formally,
let it be defined recursively over the structure of ϕ by |p| := 1 for p ∈ AP and

|χ∧ψ| := |χUψ| := |χ|+ 1 + |ψ|,

|¬ψ| := |Xψ| := |Eψ| := |x.ψ| := 1 + |ψ|,

|a0 ·#x0(χ0)+· · ·+an ·#xn(χn) -> b| := size(a0)+|χ0|+· · ·+size(an)+|χn|+1+size(b)

for all n ∈ N, a0, . . . , an, b ∈ Z, and ψ, χ, χ0, . . . , χn ∈ CTL*
#. Let the size of atomic guards

γ ∈ Grd(C) be defined as above (Section 2.1.2), where size(c) := 1 for each counter c ∈ C.

Brackets and Operator Precedence. In formulae, brackets are used to disambiguate
the syntactic scope of a logical connective. However, since exhaustive use clutters notation
let us assume precedence according to the levels assigned in Table 2.1. Quantification of
a bookmark hides each bookmark with the same name outside of its scope. For example,

Gx. p1 ∧¬p2 ∨ p3 U x. p2 → F #x(p4) -> 5∧ p5

≡ G y.
( (

(p1 ∧¬p2)∨ p3
)

U
(
x.
(
p2 →F(#x(p4) -> 5∧ p5)

) ) )
.
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Level 6 5 4 3 2 1
Connectives ¬ ∧ ∨ → U, U[.] X, G, F, F[.], E, A, .

Table 2.1: Precedence levels of logical connectives. A connective with higher level is to
be evaluated before those of lower levels. Within each level, all connectives
are right-associative.

Semantics

Intuitively, a bookmark x ∈ B is used to mark some position on the concerned run. It
can be considered as a variable holding a position. In the formula within the scope of its
quantification, a term #x(ϕ) refers to the number of times the formula ϕ holds between
the current position and that marked by x. The semantics of a CTL*

# formula is hence
defined with respect to a counter system S = (S,∆, sI , λ) over counters CS = counters(S),
a run ρ ∈ runs(S), a position i ∈ N on ρ and a bookmark valuation function β : B → N
assigning a position (index) on ρ to each bookmark. For p ∈ AP , γ ∈ Grd(CS), x ∈ B,
and τ -> b, ϕ, ψ ∈ CTL*

#(CS) the satisfaction relation |= is defined inductively by

(S, ρ, i, β) |= true
(S, ρ, i, β) |= p :⇔ p ∈ λ(ρ(i))
(S, ρ, i, β) |= γ :⇔ val(ρ(i)) |=PA γ

(S, ρ, i, β) |= ¬ϕ :⇔ (S, ρ, i, β) 6|= ϕ

(S, ρ, i, β) |= ϕ∧ψ :⇔ (S, ρ, i, β) |= ϕ and (S, ρ, i, β) |= ψ

(S, ρ, i, β) |= Xϕ :⇔ (S, ρ, i+ 1, β) |= ϕ

(S, ρ, i, β) |= ϕUψ :⇔ ∃j≥i : (S, ρ, j, β) |= ψ and ∀k∈[i,j−1] : (S, ρ, i, β) |= ϕ

(S, ρ, i, β) |= Eϕ :⇔ ∃ρ′∈runs(S)∀j∈[0,i] : ρ′(j) = ρ(j) and (S, ρ′, i, β) |= ϕ

(S, ρ, i, β) |= x.ϕ :⇔ (S, ρ, i, β[x 7→ i]) |= ϕ

(S, ρ, i, β) |= τ -> b :⇔ JτK(S, ρ, i, β) ≥ b

where the semantics of counting constraint terms τ is given for a ∈ Z, by

Jτ1 + τ2K(S, ρ, i, β) := Jτ1K(S, ρ, i, β) + Jτ2K(S, ρ, i, β)
Ja ·#x(ϕ)K(S, ρ, i, β) := a · |{j ∈ [β(x), i] | (S, ρ, j, β) |= ϕ}|.

For improved readability, the bookmark valuation β and the position i may be omitted
if they are equal to 0 and 0, respectively, i.e., (S, ρ) |= ϕ abbreviates (S, ρ, 0,0) |= ϕ.
The run ρ of S is said to satisfy the formula ϕ if (S, ρ) |= ϕ. The counter system S
satisfies the formula ϕ, if there exists some run ρ ∈ runs(S) such that (S, ρ) |= ϕ and in
this case let us write S |= ϕ.
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s0

p

s1 s2

s3

r

s4

r

s5

q

Figure 2.1: A flat Kripke structure labelled by propositions p, q, and r. [Dec+17]

I Remark 2.3. Notice that the model relation is defined existentially, although it is mostly
found to be defined universally in the model-checking literature. The methods and results
developed here are mainly concerned with the existence of a run satisfying a formula,
therefore the existential definition seems more natural in this context. Nevertheless, the
considered logical formalisms are closed under negation and therefore the choice does not
have consequences on the results apart from switching to complement-complexity classes,
e.g., from NP and coNP.

I Example 2.4 ([Dec+17]). Consider the Kripke structure shown in Figure 2.1 and
the CTL*

# formula ϕ1 = z.AG q → (#z(p) ≤ #z(EX r)). The latter basically states
that on every path reaching the state s5 there must be a position where the states s2

and s4 together have been visited at least as often as the state s0. The formula is
violated as witnessed by the path s3

0s1s2s4sω5 . The Kripke structure, however, satisfies
ϕ2 = z.AG¬q → EF #z(p) < #z(r) because from every state except s5 the number of
positions that satisfy r can be increased arbitrarily without increasing the number of those
satisfying p. Notice that this would not be the case if, e.g., s4 were labelled by p.

Decision Problems: Satisfiability and Model Checking

Henceforth, we define the decision problems to be studied. They are formalised in terms
of sets and thus deciding them refers to algorithmically determine membership of a
given object. Satisfiability and validity are fundamental aspects of a formal logic. They
represent classical problems to be studied and semantic questions can often be reduced
to them. Therefore, finding and understanding procedures to determine whether a given
formula admits some model, or is a tautology satisfied by all models, provides valuable
conceptual insights for understanding the nature of a formalism. We use a formulation
that is parametrised by a specific fragment of CTL*

# and a class of models.

I Definition 2.5 (Satisfiability). Let L ⊆ CTL*
# be a fragment of CTL*

# and M ⊆ CS a class
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of counter systems. The satisfiability problem of L over M is the set

SAT(L,M) := {ϕ ∈ L | ∃S∈M : S |= ϕ}

of formulae satisfied by some system of the class M .

The initial configurations of counter systems are deliberately defined to assigns zero to
all counters. Consequently, the definition above considers a formula only satisfiable if
there is a system and satisfying run that starts at such a configuration. Notice, however,
that this is not essential: the questions whether there is such an zero-initialised run
satisfying a formula and whether there is a run starting with any configuration are easily
reduced to each other in the relevant classes1 of counter systems. For example, a formula
ϕ ∈ CTL*

# is satisfiable by a flat counter system with arbitrary initial valuation if and
only if Fϕ is satisfiable by a flat counter system starting with all counters being zero.
The model-checking problem is essentially the model relation defined above to give

semantics to logic formulae. As for satisfiability the problem is parametrised by a concrete
logic and a class of models.

I Definition 2.6 (Model checking). Let L ⊆ CTL*
# be a fragment of CTL*

# and M ⊆ CS a
class of counter systems. The model-checking problem of L over M is the set

MC(L,M) := {(ϕ,S) ∈ L ×M | S |= ϕ}

relating each formula ϕ ∈ L to those systems S ∈M that contain a run satisfying it.

2.3 Fragments

In the following, let us define formally the fragments of CTL*
# to be studied. The restrictions

consider essentially two dimensions: temporal navigation and the counting mechanism.

Linear- and Branching-time Fragments

The first dimension to be restricted concerns the distinction between linear-time and
branching-time properties characterised by the admitted combination of path- and
temporal quantification. Historically, the temporal logic CTL* was designed to subsume
the linear-time temporal logic LTL and the branching-time temporal logic CTL that are
both well-known to be incomparable in terms of expressiveness, that is, which classes

1Clearly, classes can be constructed where the initial condition matters, e.g., a class containing only a
single counter system.
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of structures they can distinguish or not. Both LTL and CTL build on the temporal
modalities X and U but while the path quantifier E is absent in LTL, the branching-time
logic CTL imposes that every temporal operator be preceded by either E or its dual A.
Consequently, let the linear-time fragment LTL# ⊆ CTL*

# consist of those formulae
that do not use the explicit path quantifier E (nor any operator derived from it). The
branching-time fragment CTL# ⊆ CTL*

# consist of the formulae using only AX, EX, AU,
and EU as temporal operators. Also, the stand-alone use of E (and A) is discarded in this
fragment since it has no semantic effect. Notice that the formulae used in Example 2.4
above are contained in this fragment.

Operator-bound Restriction of the Counting Mechanism

Since the object of study here is the extension of temporal logic by the ability to count,
this latter mechanism constitutes the second dimension of restrictions. The ability of
bookmarking and counting positions in CTL*

# is very general and restrictions can be
imposed. One aspect that can be restricted is the means to specify the scope that is
subject to counting constraints. The bookmarking mechanism allows for specifying the
scope along an arbitrary number of temporal operators where different constraints can
be imposed at any intermediate step. For example, consider the formula

x.
(
#x(p1)−#x(p2) -> 0 U X X G #x(p3)−#x(p1)−#x(p2) -> 0

)
,

stating that there are at least as many positions with p1 as with p2, until p3 outnumbers
both forever. The constraint #x(p1) − #x(p2) -> 0 is imposed on a number of scopes,
namely every prefix of a run up to some position satisfying the right-hand side of the
U operator. Moreover, the second constraint is imposed on scopes that are determined
by the U operator, extended by two steps forward and then the further G operator.
In contrast, the fragment cCTL* restricts the evaluation of counting constraints to only
scopes determined by a specific (extended) U operator. In a cCTL* formula ϕU[τ -> b] ψ,
for example, the subformulae ϕ and ψ may use counting operators but cannot refer to
the scope of the connecting U[.] determining the scope in which the constraint τ -> b is
evaluated.
The results presented in this work show that this restriction may have a significant

effect on the complexity of the model-checking problem (cf. Table 1.1). A second aspect is
the specific type of constraints that can be formulated. Laroussinie, Meyer and Petonnet
[LMP12] have identified and examined various types of constraints, e.g., admitting only
positive coefficients or so-called diagonal constraints. The forthcoming investigations
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concentrate on conjunction-free constraints with arbitrary integer coefficients.
Let the set of cCTL* formulae ϕ be denoted just by cCTL* and defined by the grammar

ϕ ::= true | p | γ | ϕ∧ϕ | ¬ϕ | Xϕ | ϕU[τ -> b] ϕ | Eϕ

τ ::= a · ϕ | τ + τ

for atomic propositions p ∈ AP , guards on system counters γ ∈ Grd(C) and integer
constants a ∈ Z. That is, compared to CTL*

#, the bookmarking mechanism is dismissed in
favour of the extended temporal until modality U[.] that is parametrised by a counting
constraint τ -> b ∈ Grd(cCTL*).
Let S = (S,∆, sI , λ) be a counter system as before, ρ ∈ runs(S) a run, and i ∈ N

a position on ρ. For p ∈ AP , τ -> b ∈ Grd(cCTL*), γ ∈ Grd(C), and ϕ,ψ ∈ cCTL* the
satisfaction relation |= is defined inductively by

(S, ρ, i) |= true
(S, ρ, i) |= p :⇔ p ∈ λ(ρ(i))
(S, ρ, i) |= γ :⇔ val(ρ(i)) |=PA γ

(S, ρ, i) |= ¬ϕ :⇔ (S, ρ, i) 6|= ϕ

(S, ρ, i) |= ϕ∧ψ :⇔ (S, ρ, i) |= ϕ and (S, ρ, i) |= ψ

(S, ρ, i) |= Xϕ :⇔ (S, ρ, i+ 1) |= ϕ

(S, ρ, i) |= ϕU[τ -> b] ψ :⇔ ∃j≥i : (S, ρ, j) |= ψ and JτK(S, ρ, i, j − 1) ≥ b

and ∀k∈[i,j−1] : (S, ρ, k) |= ϕ.

(S, ρ, i) |= Eϕ :⇔ ∃ρ′∈runs(S)∀j∈[0,i] : ρ′(j) = ρ(j) and (S, ρ′, i) |= ϕ

where the semantics of counting constraint terms τ is given for a ∈ Z, by

Jτ1 + τ2K(S, ρ, i, j) := Jτ1K(S, ρ, i, j) + Jτ2K(S, ρ, i, j)
Ja · ϕK(S, ρ, i, j) := a · |{k ∈ [i, j] | (S, ρ, k) |= ϕ}|.

As for CTL*
#, (S, ρ) |= ϕ abbreviates (S, ρ, 0) |= ϕ.

Now, it follows from the definition that the counting until operator can be expressed
in CTL*

#. A formula ϕU[a0χ0+···+anχn -> b] ψ holds on some run ρ at position i if ψ holds
at i and 0 ≥ b—i.e., precisely if (S, ρ, i) |= x.(#x(false) -> b∧ψ)—or ϕ holds up to and
including some position j ≥ i where the counting constraint is satisfied and that is
followed by a position j + 1 satisfying ψ. The latter can be stated as

x.(ϕU(ϕ∧ a0 ·#x(χ0) + · · ·+ an ·#x(χn) -> b∧Xψ))
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und thus the equivalence

ϕU[a0χ0+···+anχn -> b] ψ ≡

x.(#x(false) -> b∧ψ)∨(ϕUϕ∧ a0 ·#x(χ0) + · · ·+ an ·#x(χn) -> b∧Xψ)

holds for some fixed bookmark symbol x. Therefore, the U[.] operator can be considered
as derived and cCTL* as fragment of CTL*

#.
The linear-time and branching-time fragments cLTL and cCTL are defined by restricting

the combinations of temporal operators and path quantifiers as above for LTL# and
CTL#. For cLTL, path quantifiers are entirely discarded while in cCTL the path temporal
operators X and U[.] are replaced by AX, EX, AU[.], and EU[.]. In addition to the
abbreviations introduced above we define F[τ -> b] ϕ :≡ true U[τ -> b] ϕ.
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� Chapter 3

Satisfiability of LTL with Counting

Satisfiability is a classical problem in formal logic and to study often provides valuable
insights and helps to characterise and relate such formalisms. Therefore, we investigate
the satisfiability problem of LTL with counting in this chapter. First, we observe that
interpreting LTL over counter systems does not affect the complexity of the model checking
problem, determined to be PSpace-complete by Halpern and Reif [HR81] and Sistla and
Clarke [SC82]. The reason is, essentially, that the only additional computation that may
be necessary is solving linear equation systems of linear size and this does not involve
significantly more resources than the rest of the procedure requires anyway.
The counting mechanism is therefore the more interesting1 dimension: even very

restricted forms of counting lead to an undecidable satisfiability problem and this carries
over to all of the fragments defined so far. In contrast to the model-checking problems
that are investigated in the later chapters, restricting to flat models does not recover
decidability. However, we identify a decidable fragment of LTL# that does not directly
restrict the counting mechanism.

3.1 Satisfiability of LTL over Counter Systems

Traditionally, LTL is defined primarily over words with a finite alphabet Σ = 2AP but we
can easily translate the results to the present setting.

I Theorem 3.1. The problem SAT(LTL, CS) is PSpace-complete.

Proof. We can essentially adopt the result by Sistla and Clarke [SC85]. To this end, we
will first show how to apply one of the well-known algorithms for LTL satisfiability with
minor modification. Subsequently, it will be demonstrated that SAT(LTL, CS) entails the
traditional problem and is thus equally hard.

1Especially undecidable logics are considered to be interesting, e.g., by Bollig [Bol11].
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SAT(LTL, CS) is in PSpace. Let ϕ ∈ LTL be an LTL formula, Γϕ := sub(ϕ) ∩ Grd(C)
the guards used in ϕ and Cϕ := counters(ϕ) ⊆ C the counters mentioned in ϕ. The
semantics, as defined above, admits only runs starting with all counters being set to zero,
i.e., an initial configuration of the form (q,0). Therefore, ϕ is semantically equivalent
to ϕ∧

∧
c∈Cϕ c = 0, and let us henceforth assume that ϕ explicitly specifies the initial

configuration this way.
A well-known decision procedure for LTL satisfiability (described, e.g., in the textbook

by Baier and Katoen [BK08]) translates a formula over propositions AP to an equivalent
Büchi automaton over the alphabet Σ = 2AP . A nested depth-first search is then used to
examine the control graph and to determine whether an accepting run exist. Although
the procedure assumes a finite set of propositions, it can equally be applied to ϕ by
interpreting each guard in ϕ as atomic proposition from the set ÂP := AP ∪ Γϕ. This
may introduce spurious solutions because some letters over the corresponding extended
alphabet Σ̂ := 2AP∪Γϕ are invalid: the procedure has to be modified such that it ignores
those letters a ∈ Σ̂ that contain contradictory constraints, i.e., where the conjunction∧
γ∈a∩Γϕ γ is not satisfiable. This simply requires restricting the depth-first search to

take only those transitions into account that carry valid letters. Checking the additional
condition whenever a transition is about to be selected can be done (non-deterministically)
in polynomial time [BT76], hence staying within a polynomial space bound.
The modified procedure is complete: If ϕ is in fact satisfiable by some run ρ in some

counter system S, then there is a corresponding word JρKΣ
S over the alphabet Σ × ZC .

We can derive a symbolic word ŵ ∈ Σ̂ω abstracting the actual valuation val(ρ(i)) in
terms of the maximal set Γi := {γ ∈ Γϕ | val(ρ(i)) |=PA γ} of satisfied guards, i.e., with
ŵ(i) := (λ(st(ρ(i))) ∩ AP ) ∪ Γi. This word ŵ then satisfies the formula ϕ interpreted
over Σ̂ and therefore the algorithm will determine that ϕ is satisfiable (by a word model
over Σ̂).

Concerning soundness of the procedure, assume that it terminates successfully. Then,
there is a symbolic solution of the form ŵ = uvω ∈ Σ̂ω (with u, v ∈ Σ̂∗) satisfying
the formula interpreted over the extended proposition set. This solution defines a
counter system with a corresponding run that, by construction, satisfies the formula
ϕ. Let k := |u| and n := |uv| − 1 be the first and last position, respectively, of
the segment v on uv. Further, let ai := ŵ(i) ∩ AP be the actual letter at position
i and θi : Cϕ → Z be some solution of the conjunction of the guards at position i.
That is, θi |=PA

∧
γ∈ŵ(i)∩Γϕ γ and such solutions θi exists due to the modification of

the standard procedure. Let us, without loss of generality, choose the same solutions
θi = θi′ if the corresponding letters ŵ(i) = ŵ(i′) are identical. Then, the sequence
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0 1
· · ·

k − 1 k

· · ·
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θ1 − θ0 θ2 − θ1 θk−1 − θk−2 θk − θk−1 θk+1 − θk θn − θn−1

θn − θk

u v

Figure 3.1: The counter system Sŵ built from a symbolic word model ŵ = uvω over the
extended set of propositions AP ∪ Γϕ.

of valuations is periodic in the same way as the letters in the word uvω. Now, let
Sŵ := ([0, n],∆ŵ, 0, λŵ) be the counter system depicted in Figure 3.1 with the positions
of the word uv used as states and labelled by λŵ(i) := ai. The updates on the transitions
between states i and j are defined by µi,j := θj − θi. The system precisely admits the
run ρ = (0, θ0) . . . (k− 1, θk−1)

(
(k, θk) . . . (n, θn)

)ω and thus satisfies ϕ. Recall that ϕ was
assumed to specify that the initial counter valuation is θ0 = 0.

SAT(LTL, CS) is PSpace-hard. For LTL over finite alphabets, corresponding here
to the case of LTL(∅) where no counter name occurs syntactically, the satisfiability
problem was shown to be PSpace-complete by Sistla and Clarke [SC85]. From the
corresponding decision procedure it follows that if such a formula ϕ ∈ LTL(∅) without
counter constraints is satisfiable by some word w′ ∈ Σω, then it is satisfiable by a periodic
word of the form w = uvω ∈ Σω and thus by a corresponding Kripke structure with
that shape (cf. Figure 3.1). On the other hand, if (S, ρ) |= ϕ for any counter system S,
the counters cannot matter and the labelling along the corresponding path ρ ∈ runs(S)
provides a word over Σ. This reduces the traditional PSpace-hard satisfiability problem
to SAT(LTL,CS). �

Notice, that the system Sŵ constructed in the proof above is in fact flat. Thus, a
formula is satisfiable if and only if it is satisfiable over flat structures. Further, checking
whether a formula ϕ uses any counter is trivial.

I Corollary 3.2. The satisfiability problems of LTL over KS, FKS, and FCS are PSpace-
complete.

3.2 Undecidability Results

An inherent source of undecidability lies in the concept of counting itself, as witnessed
most prominently by the well-known correspondence between Turing machines and
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counter systems established by Minsky [Min67]. Very little is necessary to leave the
realm of automatic analysis in this context and restrictions must be chosen carefully. In
LTL, even frequency constraints allow for describing computations of a class of counter
systems denying semantic analyses.
A Minsky machine is a configuration-deterministic counter system that is essentially

limited to using only two counters, updates that either increment or decrement one of
the counters by one, and zero tests. The problem of determining whether the unique
computation reaches a given control state was shown to be undecidable by Minsky
[Min67]. It was shown in [BDL12] that the computation of a given Minsky machine can
be encoded as word over a finite alphabet and specified to reach a given control state by
a formula in the logic fLTL. The latter is an extension of LTL proposed in [BDL12] that
allows for expressing relative frequencies and can be considered as a fragment of cLTL

with a very specific type of counting constraints.
If the Minsky machine traverses the target state, a corresponding word encoding the

run exists and thus a counter system—more precisely, a Kripke structure—exists and
satisfies the formula. In case the run does not exist, the formula is not satisfiable. In
fact, the relevant part of an encoded run is finite. The specified words have the form waω

for a finite word w and a distinct letter a. It follows that if such a word encoding a run
exists, it is admitted by some flat Kripke structure with |w|+ 1 states having precisely
the shape of the word. Since fLTL, as fragment of cLTL, and FKS reside on the lower end
of the hierarchy of logics and structure classes to be investigated, the negative result on
satisfiability has a significant impact to the scene: The decision problem reduces trivially
to the satisfiability problems of the logics cLTL, cCTL*, LTL#, and CTL*

# over FKS and
hence KS, FCS and CS. The situation is similar for the branching-time logics.
As was observed also by Laroussinie, Meyer, and Petonnet [LMP12], the transition

relation of a given Minsky machine can easily be described in CTL with dedicated
propositions indicating incrementation (inc1, inc2), decrementation (dec1, dec2), and
zero-testing (eqz1, eqz2) of the first or second counter, respectively. The semantics of
zero tests and thereby the validity of a run can then be expressed by a formula such as

(¬EF[inc1−dec1 > 0] eqz1)∧¬EF[inc2−dec2 > 0] eqz2

and further
(¬EF[inc1−dec1 < 0] true)∧¬EF[inc2−dec2 < 0] true

expresses that the counters never become negative. This way, a formula can be constructed
that is satisfied precisely by those counter systems that exhibit a proper representation of
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the computation of the Minsky machine on every run, up to reaching a designated target
state. As above, if this computation exists, it can be represented as the unique run of a
flat Kripke structure of corresponding shape. Otherwise, the formula is not satisfiable.

I Theorem 3.3 ([BDL12; LMP12]). The satisfiability problems of cCTL, cLTL and all
their supersets are undecidable over FKS, KS, FCS, and CS.

As will be discussed later in Chapters 4 and 6, also the model-checking problem for cLTL

is undecidable, even over Kripke structures, as an immediate consequence of Theorem 3.3.
On the contrary, the model-checking problem for cCTL is decidable in polynomial time.
To understand what may be necessary to recover decidability in linear-time fragments, a
weak fragment of LTL# is investigated next.

3.3 A Decidable Fragment of LTL#

Consider the fragment of LTL# formulae ϕ defined by the grammar

ϕ ::= ψ | Fϕ | Xϕ | ϕ∧ϕ | ϕ∨ϕ | z.ϕ | τ -> a τ ::= a ·#x(ψ) | τ + τ

where ψ ∈ LTL can be any plain LTL formula, z ∈ B is any bookmark and a ∈ Z is an
arbitrary integer value. Let us call this fragment weak LTL# and denote it wLTL#.

Although the wLTL# fragment is substantially restricted, it can still express frequency
constraints such as that ψ must hold at least two thirds of the time before ϕ by

z.Fϕ∧ 3#z(ψ)− 2#z(true) -> 0

for ψ ∈ LTL and ϕ ∈ wLTL#. This is equal to true U[3·ψ−2·true -> 0] ϕ. More generally, the
logic can express any formula ψU[a1·χ1+···+an·χn -> b] ϕ by

z. F ϕ ∧ a1·#z(χ1) + · · ·+ an·#z(χn) -> b ∧ #z(ψ)−#z(true) -> 0,

as long as ψ, χ1, . . . , χn do not contain counting constraints. The concern of this section is
to show why a restriction of this form is of interest: it constitutes a linear-time fragment
for which satisfiability is decidable.

I Theorem 3.4. The problems SAT(wLTL#,CS) and SAT(wLTL#,FCS) are in NExp.

The idea to prove Theorem 3.4 is to construct from a wLTL# formula an integer vector
addition system with states (Z-VASS) such that the formula is satisfiable if and only
if a specific target state q is reachable with all counters being non-negative, i.e., the
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configuration (q,0) is coverable. In terms of the definition in Section 2.1.3, a Z-VASS

is an entirely unlabelled and unguarded counter system. The coverability problem in
Z-VASS is well-known to be decidable in non-deterministic polynomial time by reduction
to qfPA satisfiability (for example, see [Rei16]).
The construction is presented in Section 3.3.2 and assumes the formula to have a

specific normal form that we discuss first. Finally, we observe that only little must be
changed to obtain a model-checking procedure for Kripke structures.

3.3.1 A Normal Form for wLTL# Formulae

Let Φ be a wLTL# formula and assume without loss of generality explicit quantification
of all used bookmarks. For technical reasons, assume further that Φ has the form
Φ = ϕ∧

∧
c∈Cϕ c = 0. That is, it explicitly specifies that each used system counter is zero

initially. Since this is assumed in the semantics anyway, such constraints can be added if
necessary without affecting the statement of the formula.
The first step is to normalise the bookmarks occurring in the formula such that each

corresponds uniquely to some scope and condition to be counted. For example, the
formula

x.F y.X F 2#y(p)−#x(p) + #x(q) -> 0

is equivalently reformulated as

ẑ.z.F y.X F(2 ·#y(p)−#ẑ(p) + #z(q) -> 0)

where the variable z is only referenced by the term #z(q) and a fresh variable ẑ corresponds
to #ẑ(p). Technically, shadowed bookmarks are renamed to be unique or removed if
unused and every subformula of the form z.ϕ that contains two terms τ1 = #z(ψ1) and
τ2 = #z(ψ2) (not necessarily different) is replaced by ẑ.z.ϕ̂ for a fresh bookmark ẑ that
is not yet in use. In ϕ̂, (one occurrence of) the term τ1 is replaced by #ẑ(ψ1) and this
substitution is repeated until there is a unique bookmark for every summand of every
term.

Second, every plain LTL subformula ϕ ∈ sub(Φ) ∩ LTL is translated to negation normal
form where negation only occurs in front of atomic propositions and counter guards. To
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this end, let the dual ϕ of a formula ϕ ∈ LTL be defined recursively by

ϕ∧ψ := ϕ∨ψ p := ¬p

ϕ∨ψ := ϕ∧ψ ¬ϕ := ϕ

ϕUψ := ϕRψ Xϕ := Xϕ

ϕRψ := ϕUψ γ := ¬γ

for propositions p ∈ AP , guards γ ∈ Grd(C) over system counters, and formulae ϕ,ψ ∈
LTL. The LTL subformulae of the form ¬ϕ, where ϕ 6∈ AP ∪ Grd(C) is not atomic, are
replaced by the equivalent formula ϕ. The procedure is applied recursively as long as
necessary to establish negation normal form. Notice that wLTL# admits negation inside
plain LTL formulae and therefore the resulting formulae are still in the fragment. However,
to maintain negation normal form, the derived operators R and ∨ must be treated as
core operators and not be replaced by their definition.

Let us assume henceforth, that the formula Φ is given in such a normal form. Let Bγ
denote for each counting constraint γ = (τ -> b) ∈ sub(Φ) \ Grd(C) the set of bookmarks
that occur in γ. Note that these sets are disjoint due to the normal form. Further, let
bγ := b denote the absolute part of the inequation, ψx the formula corresponding to
x ∈ Bγ and ax the corresponding coefficient. That is, every counting constraint has the
form

γ =

 ∑
x∈Bγ

ax ·#x(ψx)

 -> bγ .

I Remark 3.5. Laroussinie, Meyer and Petonnet [LMP12] define a logic they call CCTLV

where bookmarks (positional variables) are used similarly as in CTL#. An example for
a CCTLV formula is x[p∧X q].y[r].F #x + #y > 5 for propositions p, q and r as well
as variables x and y. A similar notation is used by Bouajjani, Echahed and Robbana
[BER94] and Bouajjani, Echahed and Habermehl [BEH95]. The formulae to be evaluated
are associated explicitly to one specific variable at the point of quantification. This ensures
syntactically the uniqueness of scope and condition that the above translation achieves.

3.3.2 Constructing Z-VASS from wLTL# Formulae

For a formula Φ in this normal form we construct a Z-VASS N = (S,∆, {Φ}, λ∅) where a
state from S is a set s ⊆ subunf(Φ) ∪ subLTL(Φ) ∪B ∪BX. It is comprised of obligations
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in terms of subformulae

subunf(Φ) := sub(Φ) ∪ {ϕ∨X Fϕ | Fϕ ∈ sub(Φ)}

∪ {ϕ∨(ψ ∧X(ϕUψ)), ψ ∧X(ϕUψ),X(ϕUψ) | ϕUψ ∈ sub(Φ)}

∪ {ϕ∧(ψ ∨X(ϕRψ)), ψ ∨X(ϕRψ),X(ϕRψ) | ϕRψ ∈ sub(Φ)}

including their temporal unfoldings, duals of LTL subformulae subLTL(Φ) := {ϕ | ϕ ∈
subunf(Φ) ∩ LTL}, as well as bookmarks that have been placed already. The set BX :=
{Xx | x ∈ B} consists essentially of a copy of the bookmarks from B marked as deferred.
The system counters CN of N should not be confused with those being potentially

used in Φ. Rather, for the construction only unrelated counters c 6∈ C will be used that
cannot occur in any formula. The system features exactly one counter cγ ∈ CN for
each counting constraint γ = τ -> b ∈ sub(Φ) \ Grd(C) in Φ. Note that the normal form
guarantees that no such subformula occurs twice in Φ.
Before formally defining the transition relation, let us illustrate how the constructed

system is supposed to operate by means of an example.

I Example 3.6. Consider the wLTL# formula

Φ = x.y.Fϕ = x.y.F
(
#x(q) -> 5∨ z.F 3#z(p)− 2#y(p) -> 0

)
in normal form. The system we construct can choose to decompose a formula present in
a state, splitting conjunctions into the two parts, selecting non-deterministically one part
of a disjunction or stripping off bookmarks. Starting from the initial state {Φ} the system
can only perform the latter action resulting in the state {x, y.Fϕ} and subsequently
in {x, y,Fϕ}. The temporal operators other than X are replaced by their fixed-point
unfolding. Here we use Fϕ ≡ ϕ∨X Fϕ. The system may choose the left part (ϕ) of the
conjunction but we assume the right-hand part (X Fϕ) to be selected here, leading to the
state {x, y,X Fϕ}.

The formula Φ contains two counting constraints γ1 = (#x(q) -> 5) and γ2 = (3#z(p)−
2#y(p) -> 0) and therefore N uses two counters c1 and c2 corresponding to γ1 and γ2,
respectively. They serve for tracking the value of the corresponding terms #x(q) and
3#z(p)− 2#y(p), respectively. In the current state {x, y,X Fϕ} the bookmark y ∈ Bγ2

has been placed. If ψy = p holds, we want to update the corresponding counter c2 by the
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factor ay = −2. Let thus µy denote the update function with

µy(c) =

−2 if c = c2

0 otherwise.

As soon as a bookmark occurs in a state, the system has a non-deterministic choice of
whether the associated formula is supposed to hold or not. The consequences of the choice,
e.g. for y, is implemented by the two applicable transitions

{x, y,X Fϕ} µy→ {x,X y, p,X Fϕ} and {x, y,X Fϕ} → {x,X y,¬p,X Fϕ}

that defer y and record the choice in terms of the obligation p or its dual ¬p. In the
former (positive) case, the update µy is applied effectively adding µy(c2) = ay = −2 to
the counter c2 tracking the value of γ2.

If all elements of a state are either atomic (propositions or counter guards), a negated
proposition, or starting with X (formulae or deferred bookmarks), a transition can be
applied that simulates an actual temporal step by stripping all X prefixes and removing
the propositions and counter guards. The only condition is that the removed obligations
are not contradictory, that is, no proposition is contained in both positive and negative
form and the conjunction of the counter guards is satisfiable. The latter consists only
of guards that occur in Φ and thus the conjunction is a qfPA formula not larger than Φ.
Checking it can be done non-deterministically in polynomial time.

The successor of the state {Xx,X y, p,X Fϕ} is {x, y,Fϕ}, thus closing a cycle in
the system.

Finally, bookmarks may be removed from a state along with their corresponding term.
Once the system arrives at, e.g., the state {x,X y,X z, 3#z(p)−2#y(p) -> 0}, the counting
constraint γ2 can be removed if all associated bookmarks from Bγ2 = {y, z} are deferred
and removed at the same time. This results here in the state {x} containing no obligation
anymore. Notice that counter c2 holds at this point precisely the value of term 3#z(p)−
2#y(p) evaluated from the placement of the bookmarks y and z until the point the system
chooses to select ϕ instead of X Fϕ and thus to evaluate the constraint γ2 referring to
x and y. Therefore, if the state is reachable with counter c2 being larger or equal to 0,
then the counting constraint was actually satisfied at the time it was removed. Once
the bookmarks y and z are removed from the state, the corresponding counters are not
modified anymore by the system.
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The complete set of transitions of the Z-VASS N is given by the rules

M ∪ {ϕ∧ψ} →M ∪ {ϕ,ψ} M ∪ {Fϕ} →M ∪ {ϕ∨X Fϕ}

M ∪ {ϕ∨ψ} →M ∪ {ϕ} M ∪ {ϕUψ} →M ∪ {ψ ∨(ϕ∧XϕUψ)}

M ∪ {ϕ∨ψ} →M ∪ {ψ} M ∪ {ψRϕ} →M ∪ {ϕ∧(ψ ∨XψRϕ)}

M ∪ {x.ϕ} →M ∪ {x, ϕ} M ∪ {x} µx→ (M \ {x}) ∪ {Xx, ψx}

M ∪ {x} →M M ∪ {x} →M ∪ {Xx, ψx}

M ∪ B̂γ ∪ {γ}
αγ→M \ B̂γ

for (subsets of) states M , formulae ϕ and ψ, counting constraints of the form

γ =
∑
x∈Bγ

ax#x(ψx)) -> bγ

and sets B̂γ = {Xx | x ∈ Bγ} consisting of precisely the variables (in deferred form) that
are used in the constraint γ. The update functions µx and αγ are defined for bookmarks
x ∈ B as

µx(c) =

ax if c = cγ and x ∈ Bγ
0 otherwise

and αγ(c) =

bγ if c = cγ

0 otherwise.

Further, the system N admits transitions according to the ruleXϕ1, . . . ,Xϕn, X z1, . . . ,X zm,

χ1, . . . , χk, γ1, . . . , γ`

→ {ϕ1, . . . , ϕn, z1, . . . , zm} (3.1)

for any n,m, k ≥ 0, z1, . . . , zm ∈ B, χ1, . . . , χk ∈ {p,¬p | p ∈ AP}, γ1, . . . , γ` ∈ {γ,¬γ |
γ ∈ Grd(C)} under the condition that the non-temporal part is satisfiable: the transition
rule applies only if χi 6= χj for any i, j ∈ [1, k], i.e., no proposition occurs in both positive
and negative form, and the conjunction

∧k
i=1 γi of all counter guards admits a satisfying

solution.
Notice that the construction is similar to the tableaux approach to LTL satisfiability

used by Lichtenstein and Pnueli [LP85], although the formula sets are not required to be
maximal or even consistent here. Intuitively, the transition relation is more fine-grained
and performs the decomposition of each formula individually, allowing also for treating
their potential effect on the counters separately. Only rule (3.1) corresponds to advancing
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one temporal step, and the necessary sanity checks are associated to it.
To complete the construction, it remains to identify the target configurations that are

supposed to be coverable in the thus obtained system N . A target state is a state s of N
where ŝ = s \ (B ∪ BX) ⊆ LTL contains only plain LTL formulae and their conjunction∧
ϕ∈ŝ ϕ is satisfiable. Notice that this is again an LTL formula (and at most polynomially

larger than Φ) for which satisfiability is decidable in PSpace. Now, there is a target state
s such that the configuration (s,0) is coverable from the initial configuration ({Φ},0), if
and only if Φ is satisfiable. As mentioned before, this problem is decidable in NP.
In summary, the construction can be understood as a non-deterministic algorithm

that first constructs the (reachable part of) the transition graph of N , starting at state
{Φ}. Concerning rule (3.1), it guesses a (polynomial) solution for the conjunction of
constraints and selects the transition if that succeeds. Finally, it guesses a target state
and checks whether s represents a satisfiable LTL formula and whether (s,0) is coverable.
Both is possible using space bounded polynomially in the size of the constructed system,
which is potentially exponential in the size of Φ. The whole non-deterministic procedure
can thus be performed in exponential time with respect to the formula size. If successful,
it provides a finite path from the initial to the target state that can be projected to a
sequence u over 2AP × ZC by selecting only the states on the path where each position
corresponds to an application of rule (3.1). At each position i on u, let u(i) = (a, θ) consist
of the letter a containing precisely the positive propositions when applying rule (3.1) and
θ some solution to the (satisfiable) conjunction of the counter guards.
Upon reaching the target state, all obligations that involve position counting and

bookmarks have been satisfied and all remaining obligations form a satisfiable LTL

formula. Hence, for the letter, there is a flat counter system W satisfying it. The
sequence u defines a counter system U containing one state si for each position of u
labelled by the letter ai and counter updates between si and si+1 defined by θi+1 − θi
(cf. Figure 3.1). The last state of U is then linked to the initial state of W setting all
counters to zero by means of the update −θ|u|−1. The combined structure has a run
of the form uw that traverses U and then W and satisfies Φ. This construction proves
Theorem 3.4.

3.3.3 Application to Model Checking

Moreover, the construction can be used to solve the model-checking problem of wLTL#

for a Kripke structure K = (Q,∆K, qI , λK) by means of a product construction that
synchronises the transitions of the model K with the transitions given by rule (3.1)
corresponding to temporal steps. Technically, assuming that N = (S,∆, {Φ}, λ) is the
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constructed Z-VASS and ∆X ⊆ ∆ consists of the transitions defined by rule (3.1), the
transition relation of the product is comprised of transitions

((s, q), µ, ∅, (s′, q)) (not advancing K) where (s, µ, ∅, s′) ∈ ∆ \∆X and

((s, q), µ, ∅, (s′, q′)) where (q,0, ∅, q′) ∈ ∆K, (s, µ, ∅, s′) ∈ ∆X and where the states
s are compatible with the labelling of q, i.e., for all propositions p ∈ AP we have
p ∈ s⇒ p ∈ λK(q) and ¬p ∈ s⇒ p 6∈ λ(q).

Then, a target state is identified as a tuple state (s, q) ∈ S ×Q where s = {ϕ1, . . . , ϕn}
consists only of LTL formulae ϕ1, . . . ϕn and, instead of being just satisfiable, they have to
hold upon reaching q in K. Since K is a Kripke structure, the satisfaction of the formula
ϕs := ϕ1 ∧ . . .∧ϕn is independent of the history, i.e., the sequence of states traversed
before and thus the run can be extended to satisfy ϕs if and only if K′ |= ϕs where K′ is
K with initial state q. As discussed above (Corollary 3.2), this check can be performed
in polynomial space and therefore we conclude that MC(wLTL#, KS) ∈ NExp.

I Corollary 3.7. The problem MC(wLTL#,KS) is in NExp.
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� Chapter 4

Model-checking cLTL over Flat Counter
Systems

The presence of counting operators and constraints, even those that are essentially
restricted such as the relative frequencies expressible in fLTL and consequently cLTL,
confront us immediately with undecidable decision problems. We have seen this for
the satisfiability problems (Theorem 3.3) which leads us straight-forward to the same
conclusion for the model-checking problems, even over the finite state spaces of Kripke
structures.

I Theorem 4.1. The model-checking problem of all supersets of cLTL is undecidable over
Kripke structures and counter systems.

Proof. Consider the universal Kripke structure K over Σ = 2AP , i.e., representing the
language Σω (cf. Figure 4.1). For any Kripke structure K′ we have JK′KΣ ⊆ JKKΣ and
thus K′ |= ϕ implies K |= ϕ for any cLTL formula ϕ (recall that the model relation
is defined existentially). Thus, ϕ ∈ SAT(cLTL, KS) if and only if K |= ϕ. The problem
trivially reduces to model-checking any superset of cLTL both over KS and CS. �

This reveals that there are two independent sources of undecidability in the family
of logics we investigate. On one hand, the counting mechanisms of the logics are
generally powerful enough to encode undecidable problems. On the other hand, even
without any counting constraints, temporal logic intentionally subsumes (control-state)
reachability [Pnu77; EC80] which is itself undecidable in counter systems [Min67].

a b

Figure 4.1: A Kripke structure K labelled by Σ = {a, b} with JKKΣ = Σω.
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In that light the question arises whether counting extensions are worthwhile to be
considered in the context of automatic verification or whether such mechanisms are
simply too powerful and the goal therefore too ambitious. A common approach to
recover decidability of verification problems is to restrict the specification language just
as far as is necessary. This has the potential of providing insights on which aspects
particularly harden the problem in question and whether it can be avoided. In the family
of formalisms that we aim to investigate, the combination of cLTL and finite-state systems
represents already one of the most restricted cases. Recall that the positive result for
wLTL# (Theorem 3.4) was obtained by sacrificing symmetric duality of temporal logic and
greatest fixed points.
To avoid such restrictions, let us investigate an alternative compromise pertaining to

the model side: the special case of structures that are flat. Recall that flatness demands,
essentially, that cycles of the system cannot be alternated during an execution. It is thus
a strong restriction that can, however, be used to under-approximate arbitrary systems
and thereby provide a realistic application domain. We will come back to this application
later in Chapter 5. The most general members of the counting logic family, LTL#, CTL#

and CTL*
#, will be approached by means of a different technique in Chapter 7. The aim

of this chapter is to develop a model-checking procedure specifically for the logic cLTL

and thereby prove the following result. It is based on and extends the developments
presented in [Dec+17].

I Theorem 4.2. The problem MC(cLTL, FCS) is in NExp.

4.1 Towards A Guess-and-Check Procedure

The decision procedure follows a guess-and-check scheme: To solve the decision problem,
a non-deterministic algorithm selects a witness object supposed to demonstrate a positive
result and subsequently checks the credibility of that witness. In order to be feasible,
this scheme relies on the following aspects to be established.

Representation. The potentially witnessing objects need to have a finite, syntactic-
ally enumerable representation, in order to be selected (or searched for).

Analysis. Given such an object, it must be decidable whether it actually certifies
the positive result.

Soundness. The existence of any object (representation) that passes the check
must imply a positive result.
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Completeness. There can only be a finite number of candidates and if the result
is positive, then at least one of them must pass the check.

The necessary and sufficient condition for a given flat counter system S to satisfy a
cLTL formula Φ is that S admits a satisfying run. However, the object that will be used
to certify that such a run exists, is a (non-empty) set of runs that satisfy Φ. Clearly, this
is not a restriction since such a set may have a single element. As representation for
such sets, Section 4.2 will introduce augmented path schemas that extend the concept
of path schemas [LS04; DDS15]. Augmented path schemas are, essentially, a class of
degenerated flat counter systems that provide for each of its runs a labelling to indicate
which formulae are satisfied. We are going to define a notion of consistency as a syntactic
property vouching for the correctness of the labelling and thus the credibility of the
structure as witness. This gives rise to the following non-deterministic procedure to
decide the problem MC(cLTL, FCS).

1. Read as input a counter system S and a cLTL formula Φ.

2. Guess an augmented path schema P in S of at most exponential size.

3. Terminate if P is consistent, labels its runs initially by Φ, and is non-empty.

It is shown in Section 4.3 that if an augmented path schema is consistent, then the
associated runs satisfy precisely the formulae they are labelled with. This provides the
essential soundness argument. Finally, a construction is developed in Sections 4.4 and 4.5
that starts on an arbitrary run satisfying Φ and yields a consistent schema of at most
exponential size containing it. Thereby, completeness of the procedure is established.
For the remainder of this chapter let us fix the counter system S = (SS ,∆S , sI , λS)

as well as the formula Φ ∈ cLTL in order to avoid additional explicit parameters in the
notation.

4.2 Augmented Path Schemas

In the following we introduce a representation of (subsets of) paths in S called augmented
path schemas (APS). They serve as finitely representable symbolic witnesses for proving
that the counter system S satisfies the formula Φ. Therefore, they are essential for the
decision procedure and provide also the basis for the encoding of the model-checking
problem into quantifier-free Presburger arithmetic and henceforth the verification schema
based on flat under-approximations presented in Chapter 5.
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Figure 4.2: A flat counter system S (top) using propositions p, r ∈ AP and counters
c, d ∈ C, and (a sketch of) an augmented path schema P (bottom) with
states Q = {q0, . . . q17} representing runs of S that traverse the loops L1 = s0,
L2 = s2s3s1, and finally L3 = s5s6. The numbers above the loops of P
uniquely determine one specific run of S.

Path schemas [LS04] represent a subset of valid runs of a counter system with a common
shape. More precisely, they represent a (connected) sequence u0v0u1v1 . . . unvn of (not
necessarily simple) paths ui and loops vi of a system and thereby all the runs ρ of S that
traverse a state sequence of the form st(ρ) = u0v

`1
0 . . . un−1v

`n−1
n−1 unv

ω
n . The augmented

variant of path schemas essentially allows for attaching an additional labelling that
provides information not directly accessible in the original system. Moreover, additional
counters and constraints can be added to precisely refine the set of runs represented by
an APS.

I Example 4.3. Figure 4.2 depicts an example of the flat counter system S and an
augmented path schema P with states Q = {q0, . . . , q17}. The latter is itself a flat
counter system (of a specific degenerated shape) of which each state q ∈ Q corresponds
to some origin state org(q) in S, e.g., the three first (leftmost) states of P correspond
to org(q0) = org(q1) = org(q3) = s0. The same applies to the transitions in a consistent
fashion, e.g., the transitions from q0 to q1 and from q1 to q1 correspond to the transition
between their origins, that is from s0 to s0. Thus, every run ρ ∈ runs(P) represents a
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run org(ρ) in S by projecting the states to their origins. In fact, P represents a subset
of runs of S that only use the highlighted transitions. Notice, however, that the schema
P features unfoldings of each loop, i.e., states that explicitly represent the first or last
iterations. The shape of P thus imposes that only those runs of S are represented that
traverse the loops L1 and L2 at least three times. To represent a run with less iterations,
e.g., of L2, a different schema would have to be chosen, such as P with the second loop
cut out. Finally, observe that the shape of P admits also a concise representation of one
specific run by providing a concrete number of iterations for each (but the last) loop.

I Definition 4.4 (Augmented Path Schema). An augmented path schema (APS) in S is
a structure P = (Q,∆P , λP , org) where

(Q,∆P , q0, λP) is a flat counter system over Q = {q0, . . . , qn}, for some n ∈ N,
with labelling λP : Q→ 2sub(Φ)∪AP and simple path q0 . . . qn;

org : Q→ SS maps every state to an origin such that λP(q)∩AP = λS(org(q))∩AP
and org(q0) = sI ;

for each transition (q, µ,Γ, q′) ∈ ∆P there is (org(q), µ̂, Γ̂, org(q′)) ∈ ∆S with Γ̂ ⊆ Γ
and µ̂ v µ;

∆P = ∆fwd ∪̇∆bwd is comprised of forward- and backward transitions where

– ∆fwd = {(q0, µ0,Γ0, q1), . . . , (qn−1, µn−1,Γn−1, qn)},

– there is (qn, µn,Γn, qn′) ∈ ∆bwd for some n′ ≤ n closing the last loop, and

– for all (qj , µ,Γ, qi), (qk, µ′,Γ′, qh) ∈ ∆bwd we have i ≤ j, h ≤ k, and the
corresponding loops qhqh+1 . . . qk and qiqi+1 . . . qj are disjoint; and

for each loop L = qiqi+1 . . . qi+` there is a front row F = qi−`−1 . . . qi−1 and, if
i+ ` < n, a rear row R = qi+`+1 . . . qi+2`+1 with λP(F ) = λP(R) = λP(L).

For an APS P = (Q,∆P , λP , qI , org), the paths of the underlying counter system
Q = (Q,∆P , qI , λP) are considered also as the paths of P. Let lastl(P) denote the
last loop of P (containing the last state qn). The simple path q0 . . . qn is the only one
that spans the entire control graph of P and thereby defines an ordering �P on Q with
qi �P qj if and only if i ≤ j.
Observe that the definition requires loops to be preceded and (except for lastl(P))

succeeded by one unfolding. This is due to technical reasons that are discussed later in
the course of this chapter. Since each loop can be unfolded this is no restriction and
increases the necessary schema size at most by factor three. By loops(P) we denote
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the set of all simple loops of the form L = qiqi+1 . . . qi+` ∈ Q+, i.e. up to rotation. For
each such loop, let frontP(L) = qi−`−1 . . . qi−1 denote the front row of L and, unless
L = lastl(P), let rearP(L) = qi+1 . . . qi+1+` be the rear row of L. We mostly omit the
subscript for easier reading if no ambiguity arises.
The runs of P are those runs of the underlying counter system Q that visit the last

state of P , that is runs(P) := {ρ ∈ runs(Q) | qn ∈ st(ρ)}. Nevertheless, we use P instead
of Q when using the model relation and write (P, ρ, i) |= ϕ instead of (Q, ρ, i) |= ϕ for
ρ ∈ runs(P). The origin mapping is lifted to configurations by org((q, θ)) := (org(q), θ̂)
where θ̂ is the restriction of θ to the domain counters(S). Further, it applies point-wise
to paths and runs of P.
Reachability of the last state of an APS is decidable in NP (Theorem 2.2) and this

implies the same for non-emptiness.

I Lemma 4.5 ([DDS15]). The non-emptiness problem of augmented path schemas is in
NP.

4.2.1 Correct Labelling

The semantics of cLTL formulae is based only on the labelling of a counter system by
propositions from AP while the rest of the labels is not taken into account. The definition
of APS demands them only to be faithful with respect to S concerning the structure of
runs as state sequences. We are, however, interested in APS where the labelling by cLTL

formulae coincides with their semantics on the runs of P as well as their corresponding
runs in S.

I Definition 4.6 (Correct labelling). Let P be an APS in S and ϕ ∈ sub(Φ) a cLTL

formula. A state q of P is correctly labelled with respect to ϕ if and only if for all runs
ρ ∈ runs(P) and all positions i ∈ posρ(q) of q on ρ,

ϕ ∈ λP(q) ⇔ (P, ρ, i) |= ϕ

A state q is correctly labelled with respect to a set M ⊆ sub(Φ) if that is the case for each
of its elements. The APS P is correctly labelled with respect to ϕ or M , respectively, if
that is the case for all states of P.

Notice that a state q can only be labelled correctly with respect to some formula ϕ if
it holds, semantically, at all positions on a run where q occurs or at none of them. With
this strict notion of correctness, deciding whether a correctly labelled APS in S witnesses
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the existence of a run satisfying Φ amounts to checking it to be non-empty and verifying
that the initial state is labelled by Φ.

4.2.2 Consistency

While correctness is a semantic property, in the following the syntactic notion called
consistency is introduced. The intention is to provide a criterion that can be evaluated
algorithmically and is strong enough to guarantee semantic properties, more precisely, to
imply the correctness of the labelling. On the other hand, it should admit a sufficiently
large class of structures to include a representative witness for each satisfied formula.

Consider an APS P = (Q,∆P , λP , org) in S. The essential idea is to identify a syntactic
reason for some formula ϕ ∈ sub(Φ) to either hold or not hold, whenever some state q ∈ Q
is visited on a valid run of P. The simplest case is that of propositions: the labelling
by a proposition is always correct because the labelling itself defines the semantics of
propositions. The important aspect concerning the labelling by propositions is that it
coincides with that in S. This is required by Definition 4.4 and since the semantics of any
cLTL formula depends only on propositions and the updates of the counters CS occurring
already in S, we can record the following straight-forward, yet crucial observation.

I Proposition 4.7. For every APS P in S, run ρ ∈ runs(P), position i ∈ N, and formula
ϕ ∈ sub(Φ)

(P, ρ, i) |= ϕ ⇔ (S, org(ρ), i) |= ϕ.

Correctness of Boolean combinations can be verified locally for any state q ∈ Q when
inductively assuring that q is labelled correctly by all strict subformulae. For example, a
negation ¬ϕ holds on all runs at all positions of q if and only if on all runs ϕ does never
hold at q. The problem of expressing the semantics of constraints on counters of the
system can be shifted to the system itself. If all incoming transitions of a state carry a
specific guard, it necessarily holds on any valid run when visiting the state and therefore
a corresponding formula label can be considered to be correct. Vice versa, if all incoming
transitions are guarded by the dual of the constraint, it can by definition not hold at this
state on any valid run. Notice that guards may lead to such a semantic conclusion but also
to an empty set of runs, in which case the statement would nevertheless hold (although
vacuously). Therefore, the emptiness-check in the decision procedure is necessary.

Consider a counted until formula ϕ = χU[τ -> b] ψ and let q, q′ be row states with
q′ ∈ succP(q) where q′ is (correctly) labelled by ψ and the states in-between are correctly
labelled by χ. Assume that P features a counter cτ,q that tracks the value of the term
τ as a balance that starts with zero at q and is updated according to the local effect a
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visited state has on the value of τ . If the incoming (forward) transition of q′ is labelled
by the guard cτ,q -> b, then ϕ can be assumed to hold when a valid run visits q. Dually, if
all such states q′ are guarded instead by the dual constraint cτ,q < b, then there is no way
a valid run could satisfy ϕ when visiting q.
Let λ#

P : Q∗ → Nsub(Φ) denote the label accumulation in a multi-set fashion counting
the number of occurrences of each label by

λ#
P (w) : ϕ 7→ |{i ∈ [0, |w| − 1] | ϕ ∈ λP(w(i))}|

for all w ∈ Q∗ and ϕ ∈ sub(Φ).

I Definition 4.8 (Balance counter). Let P = (Q,∆P , λP , org) be an APS in S, τ a
constraint term over sub(Φ), and q ∈ Q a row state in P. A balance counter for τ and q
in P is a counter cτ,q ∈ counters(P) that is updated, on all transition (q1, µ,Γ, q2) ∈ ∆P ,
by

µ(cτ,q) =

0 if q1 ≺P q

JτK(λ#
P (q1)) if q1 �P q.

Notice that JτK(λ#
P (q)) denotes the evaluation of τ with respect to the labelling set

of q (cf. Section 2.1.2), i.e., a formula in τ is substituted by 1 if q is labelled by it and
otherwise by 0. Let us record the formal correspondence of the value of a balance counter
and the semantic evaluation of counting constraints in terms of the following lemma. Let
#P,ρi,j : sub(Φ)→ N denote the semantic counting function mapping any formula to the
number

#P,ρi,j (ϕ) := |{k ∈ [i, j] | (P, ρ, k) |= ϕ}|

of positions it is satisfied on a run ρ ∈ runs(P) in the interval [i, j].

I Lemma 4.9. Let τ be a constraint term over sub(Φ), P = (Q,∆P , λP , org) be an APS
correctly labelled with respect to sub(τ), and ρ ∈ runs(P). Let cτ,q be a balance counter
in P for τ and a row state q ∈ Q occurring at i ∈ posρ(q). Then, for all positions j ≥ i,

val(ρ(j + 1))(cτ,q) = JτK(λ#
P (ρ(i) . . . ρ(j))) = JτK(#P,ρi,j ).

Proof. Due to correctness, counting the presence of formula ϕ ∈ sub(τ) as label at some
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position k on ρ is equivalent to evaluating it, hence #P,ρk,k (ϕ) = λ#
P (ρ(k)). Thus,

#P,ρi,j (ϕ) = #P,ρi,i (ϕ) + #P,ρi+1,i+1(ϕ) + · · ·+ #P,ρj,j (ϕ)

= λ#
P (ρ(i))(ϕ) + λ#

P (ρ(i+ 1))(ϕ) + · · ·+ λ#
P (ρ(j))(ϕ)

= λ#
P (ρ(i) . . . ρ(j))(ϕ).

Since JτK(#P,ρi,j ) only depends on the values #P,ρi,j assigns to formulae from sub(ϕ) it
follows that JτK(#P,ρi,j ) = JτK(λ#

P (ρ(i) . . . ρ(j))).
By the definition of balance counters, all updates of cτ,q before the first and only

occurrence of q at position i are zero and thus val(ρ(i))(cτ,q) = 0. Further, for all
positions k ≥ i, the updates of cτ,q are defined in terms of the local labelling and therefore

val(ρ(j + 1))(cτ,q) = val(ρ(i))(cτ,q) + JτK(λ#
P (ρ(i))) + · · · JτK(λ#

P (ρ(j))) = JτK(#P,ρi,j ).

�

In combination with appropriately guarded states, balance counters allow us to reason
syntactically about the satisfaction of ϕ, as long as the labelling is correct with respect
to its strict subformulae. Such counters are particularly useful to track the value of a
term across an entire loop, even if some runs of P iterate it more often than others. For
states that are not separated by entire loops such a counter is not necessary, because the
effect of simple paths on a term τ can be evaluated statically.

I Example 4.10. Consider again the counter system S and the schema P of Example 4.3
and Figure 4.2 as well as a cLTL formula ϕ = ¬(p∧ r) U[5p−3¬p -> 0] r employing a counting
constraint 5p − 3¬p -> 0. The formula states that r must be reached while observing p
sufficiently often. Notice that the loop L2 is bad with respect to this constraint since
traversing it has a negative effect (−1) on the value of the constraint term τ = 5p− 3¬p.

Figure 4.3 shows the path schema P with updates and guards of a balance counter cτ,5
for τ and its 6th state q5. The first (left-most) guard enforces that the second loop must
be iterated at least seven times. The updates and guards for counters c and d originating
from the system S impose further implications on how often the first loop has to be taken.
The states q14 and q16 are the only states potentially witnessing the satisfaction of ϕ

at state q5 since no other is labelled by r. Since both are guarded by cτ,5 < 0, no valid run
can possibly satisfy ϕ when visiting state q5. It is thus correct to not label the state by ϕ
and, consequently, to label it by ¬ϕ. Notice that the guards in fact exclude some runs
that would otherwise violate the correctness of this labelling.
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Figure 4.3: Sketch of the APS P from Figure 4.2 and a balance counter (cf. Example 4.10).

Concerning the satisfaction of ϕ on loops, an alternative reasoning can be applied: If
ϕ holds at the first occurrence of a state q on a run and at the last, the formula holds at
all occurrences of q in-between. The reason is, essentially, that the effect of one iteration
of a loop on the value of the term τ is always the same and thus the worst (i.e., smallest)
value of τ is encountered either in the first or the last iteration. In APS, each loop is
preceded and succeeded by exact copies (unfoldings) and hence, if these are correctly
labelled with respect to ϕ, then the loop labelling inherits their correctness. We will
come back to this in Section 4.3. The following definition provides a formalisation of the
reasoning sketched above, including further edge cases.

I Definition 4.11 (Consistency). Let P = (Q,∆P , λP , org) be an APS in S with |Q| = n,
simple path q0 . . . qn−1, and ϕ a cLTL formula. A state qi ∈ Q is ϕ-consistent if ϕ ∈ AP
is a proposition or

(A) ϕ = (τ -> b) ∈ Grd(C), all incoming transitions (q, µ,Γ, qi) ∈ ∆P are guarded by ϕ ∈ Γ
if ϕ ∈ λP(qi) and by ϕ ∈ Γ otherwise, and if i = 0, then ϕ ∈ λP(qi)⇔ JτK(0) ≥ b.

For non-atomic formulae ϕ, the state qi is ϕ-consistent if for all ψ ∈ sub(ϕ) \ {ϕ} all
states q ∈ Q are ψ-consistent and one of the following conditions B to D applies.

(B) ϕ = χ∧ψ and ϕ ∈ λP(qi) ⇔ χ, ψ ∈ λP(qi); or ϕ = ¬ψ and ¬ψ ∈ λP(qi) ⇔ ψ 6∈
λP(qi).

(C) ϕ = Xψ and Xψ ∈ λP(qi)⇔ ψ ∈ λP(q), for all q ∈ succP(qi).

(D) ϕ = χU[τ -> b] ψ and one of the following holds:

1. ϕ ∈ λP(qi), JτK(λ#
P (lastl(P)) > 0, ψ ∈ λP(q) for some q ∈ lastl(P), and

χ ∈ λP(q′) for all q′ ∈ succ∗P(qi).

2. The state qi is not part of a loop. If ϕ 6∈ λP(qi), then ψ 6∈ λP(qi) or 0 < b, and
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i) there is k ≥ i such that χ 6∈ λP(qk) and, for all j ∈ [i, k], |succP(qj)| = 1
and ψ ∈ λP(qj)⇒ JτK(λ#

P (qi . . . qj−1)) < b or

ii) P contains a balance counter cτ,i ∈ CP for τ and qi, and (cτ,i < b) ∈ Γ for all
(q, µ,Γ, qj) ∈ ∆P where j > i, ψ ∈ λP(qj), and ∀k∈[i,j−1] : χ ∈ λP(qk).

If ϕ ∈ λP(qi), then there is k ≥ i with ψ ∈ λP(qk), ∀j∈[i,k−1] : χ ∈ λP(qj), and

iii) JτK(λ#
P (qi . . . qk−1)) ≥ b and ∀j∈[i,k−1] : |succP(qj) = 1|, or

iv) k > i and P contains a balance counter cτ,i ∈ CP for τ and qi, and some
transition (qk−1, µ,Γ ∪ {cτ,i -> b}, qk) ∈ ∆P .

3. qi is on some loop L of P, and qi−|L| and qi+|L| (if L 6= lastl(P)) are ϕ-consistent.

The APS P, a loop, or a row in P are ϕ-consistent if all their states are ϕ-consistent,
respectively.

Observe that the consistency for a formula ϕ of a given APS P can easily be checked
recursively over the structure of ϕ and the states of P in polynomial time in size(P) · |ϕ|.

4.3 Consistent APS are Correct

With the introduction of consistent APS as the formal witness object and the description
of the necessary checks to be performed, the decision procedure for the model-checking
problem is, technically, detailed out exhaustively. However, the crucial part of explaining
why and proving that this procedure delivers the intended result is the subject of the
remainder of the present chapter.
This section is dedicated to the soundness argument. That is, we prove that if the

procedure succeeds to provide a non-empty and Φ-consistent APS that labels the initial
state by Φ, then the formula is in fact satisfied. The argument is formulated based on
the definition of correctness and the following correspondence to consistency.

I Theorem 4.12 (Correctness). Let Φ be a cLTL formula and P an APS in a counter
system S. If P is Φ-consistent, then it is labelled correctly with respect to Φ.

Consequently, if S contains a non-empty APS P that is Φ-consistent and where the
initial state is labelled by Φ, then all the runs σ ∈ runs(P) satisfy Φ and so does
the corresponding run org(σ) ∈ runs(S). Therefore, Theorem 4.12 implies that the
guess-and-check procedure above is sound. The remainder of this section is dedicated to
proving Theorem 4.12. Thus, let in the following P = (Q,∆P , λP ,�, org) be a fixed and

52



Chapter 4 Model-checking cLTL over Flat Counter Systems

Φ-consistent APS. The presented proof is a structural induction on Φ and is organised as
follows. The central proof goal is stated as

∀q∈Q∀σ∈runs(P)∀i∈posσ(q) : ϕ ∈ λP(q) ⇔ (P, σ, i) |= ϕ (4.1)

and to be shown for ϕ = Φ.
First, the base cases are established in Section 4.3.1 by showing that the hypothesis

holds if Φ is either an atomic proposition or a guard. For the induction step, the cases of
Boolean combinations and next formulae are covered subsequently in Section 4.3.2 and
Section 4.3.3 is dedicated to until formulae.

4.3.1 Atomic Propositions and Guards

Let q ∈ Q be an arbitrary state of P, σ ∈ runs(P) a run of P and i ∈ N a position on σ
such that σ(i) = (q, θ) for some valuation θ ∈ ZC . Consider the following cases for the
structure of Φ.

Propositions (Φ = p ∈ AP ). Correctness with respect to propositions is provided
unconditionally by definition.

Guards over system counters (Φ = (τ -> b) ∈ Grd(C)). From the definition of consist-
ency (Definition 4.11), only condition A applies for guards. By the definition of runs,
if i = 0 then (q, θ) = σ(0) = (qI ,0). Consistency demands in this case that Φ ∈ λP(q)
if and only if JτK(0) ≥ b which is the case if and only if (P, σ, 0) |= Φ. For i > 0 there
is a transition (q′, µ,Γ, q) ∈ ∆P such that val(σ(i)) |=PA Γ. If Φ ∈ λP(q) consistency
requires that Φ ∈ Γ and thus (P, σ, i) |= Φ. Otherwise if Φ 6∈ λP(q), then Φ ∈ Γ and thus
(P, σ, i) 6|= Φ.

Induction. This settles the base case for the structure of Φ. Henceforth, assume
as induction hypothesis (IH) that the statement of Equation (4.1) holds for all ϕ ∈
sub(Φ) \ {Φ}.

4.3.2 Boolean Combinations and Temporal Next

For the induction step assume q ∈ Q, σ ∈ runs(P) and i ∈ N with σ(i) = (q, θ) as
above. Consider the following cases for Φ and the corresponding conditions B and C of
Definition 4.11.

53



Chapter 4 Model-checking cLTL over Flat Counter Systems

Negation (Φ = ¬ϕ). Considering negation, Equation (4.1) follows by

¬ϕ ∈ λP(q) (B)⇔ ϕ 6∈ λP(q) (IH)⇔ (P, σ, i) 6|= ϕ ⇔ (P, σ, i) |= ¬ϕ

Conjunction (Φ = ϕ∧ψ). Analogously to the case of negation observe that

ϕ∧ψ ∈ λP(q) (B)⇔ ϕ,ψ ∈ λP(q) (IH)⇔ (P, σ, i) |= ϕ and (P, σ, i) |= ψ

⇔ (P, σ, i) |= ϕ∧ψ

Temporal next (Φ = Xϕ). The successor q′ := st(σ(i+ 1)) of q at position i+ 1 on σ
is necessarily also a successor in the graph of P, i.e. q′ ∈ succP(q), and therefore

Xϕ ∈ λP(q) (C)⇔ ϕ ∈ λP(q′) (IH)⇔ (P, σ, i+ 1) |= ϕ ⇔ (P, σ, i) |= Xϕ.

4.3.3 Temporal Until

The remaining case of the formula having the form Φ = ϕU[τ -> b] ψ is more involved
because this is where the powerful counting mechanism finally comes into play. As above
let q ∈ Q be some state occurring at a position i ∈ N of some valid run σ ∈ runs(P). The
correctness arguments are given next depending on which sub-case of the consistency
criterion applies to q. Conditions D1 and D2 of Definition 4.11 are exhaustive if q is not
part of a loop and lets us already conclude Equation (4.1) for all such states. Building
on this intermediate result, correctness is shown for the remaining case of condition D3.

Condition D1: A dominating last loop

If q is consistent because of the first condition, there is a state q′ ∈ Q on the last loop
that is labelled by ψ ∈ λP(q′) reachable from q in P. Thus, there is a position j ≥ i on
σ with st(σ(j)) = q′. In fact, since the last loop is repeated infinitely on σ, the state q′

reoccurs at all positions j′ = j + n · |lastl(P)| for n ≥ 0. The value of the constraint term
τ on the run segment from i to such a position j′ is

JτK(#P,σi,j′−1) = JτK(λ#
P (σ(i)σ(i+ 1) . . . σ(j′)) (IH)

= JτK(λ#
P (σ(i) . . . σ(j − 1))) + n · JτK(λ#

P (lastl(P))).

Since JτK(λ#
P (lastl(P))) > 0, the value JτK(#P,σi,j′−1) satisfies the counting constraint (is

larger or equal to b) for sufficiently large n. Moreover, all states reachable from q

are labelled by ϕ and hence, by (IH), it holds at all position between i and j′ on σ.
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Consequently, (P, σ, i) |= Φ, which is in line with Φ ∈ λP(q) provided by the consistency
criterion.

Condition D2: Explicit Evaluation of Counting Constraints

For condition D2 to apply, q must not be on a loop and thus i is the only position on σ
where the state occurs.

Case Φ ∈ λP(q). If q is labelled by Φ ∈ λP(q), consistency provides that there is a state
q′ �P q that is labelled by ψ ∈ λP(q′) and reached (at least for the first time) by a sequence
of states labelled by ϕ. Hence, by induction, for the first position j = min posσ(q′) ≥ i of
q′ on σ, we have (P, σ, j) |= ψ and (P, σ, j′) |= ϕ for all positions j′ ∈ [i, j− 1] in between.
In case none of the states in between has more than one successor in P (condition D(2)iii),
the state sequence st(σ(i) . . . σ(j)) is simple and

JτK(#P,σi,j−1) = JτK(λ#
P (st(σ(i) . . . σ(j − 1)))) ≥ b.

Otherwise (condition D(2)iv), the transition taken by σ between position j − 1 and j
is guarded by cτ,q -> b for some balance counter cτ,q ∈ counters(P) for τ and q. Thus, by
correctness for labels from sub(τ) (IH) and Lemma 4.9,

JτK(#P,σi,j−1) = val(σ(j))(cτ,q) ≥ b

and therefore (P, σ, i) |= Φ.

Case Φ 6∈ λP(q). If Φ 6∈ λP(q) is not a label of q, condition D2 provides two alternatives.
The first possibility for q being Φ-consistent if Φ 6∈ λP(q) (condition D(2)i) provides that
at some point j ≥ i the formula ϕ is violated so that all later positions cannot contribute
to the satisfaction of Φ. It requires moreover, that up to that position all states q′ have
only one successor and thus occur only once before position j. They may be repeated
after j but that does not matter for the satisfaction of Φ. For each of these states q′ that
do qualify as potential witness by satisfying ψ, the condition imposes that the simple
path in P from q to q′ violates the counting constraint. Since all segments of σ between
i and j are simple, no position in between can witness satisfaction of Φ.
The alternative condition D(2)ii imposes that whenever σ reaches a position j with

(P, σ, j) |= ψ (identified correctly by ψ ∈ λP(σ(j)) due to IH) the run either already
passed a position in between violating ϕ or the state is guarded by cτ,q < b for some balance
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counter cτ,q for τ and q. Thus, the valuation val(σ(j)) satisfies the guard meaning that

b > val(σ(j))(cτ,q) = JτK(#P,σi,j−1)

by Lemma 4.9. Consequently, there is no suitable witness position and therefore (P, σ, i) 6|=
Φ.

I Lemma 4.13. Let q ∈ Q be row state in P, σ ∈ runs(P) and {i} = posσ(q). If P is
correctly labelled with respect to all strict subformulae sub(Φ)\{Φ} of Φ, then (P, σ, i) |= Φ
if and only if Φ ∈ λP(q).

Together, conditions D1 and D2 are exhaustive concerning the consistency of row states.
We can thus already conclude, given the induction hypothesis, that all Φ-consistent row
states of P are correctly labelled with respect to Φ.

Condition D3: Representative Unfoldings

The remaining alternative of Definition 4.11 (D) concerns only loop states and therefore
assume that q = st(σ(i)) ∈ L for some loop L ∈ loops(P).

Last loop. First consider the case that q occurs on the last loop L = lastl(P) of P and
recall that L is preceded by an identically labelled front row F ∈ Q+. Let ` := |L| = |F |
be the length of L and h ∈ N be the position where σ enters F , i.e., where st(σ(h)) = F (0).
Since L is repeated infinitely, the sequence of labels of σ starting at position h has the
form

λP(σ(h)σ(h+ 1) . . .) = λP(FLω) = λP(F )ω = λP(L)ω

and is invariant under shifting h by multiples of `. Concerning the satisfaction of Φ, this
implies for any two positions x and y on σ with h ≤ x ≤ y and n ∈ N

ψ ∈ λP(σ(y))⇔ ψ ∈ λP(σ(y + n`)),(
∀z∈[x,y−1] : ϕ ∈ λP(σ(z))

)
⇔
(
∀z∈[x+n`,y−1+n`] : ϕ ∈ λP(σ(z))

)
, and

λ#
P (σ(x) . . . σ(y − 1)) = λ#

P (σ(x+ n`) . . . σ(y − 1 + n`)).

By induction, the labelling of P is correct for all strict subformulae of Φ and thus

(P, σ, y) |= ψ ⇔ (P, σ, y + n`) |= ψ,(
∀z∈[x,y−1] : (P, σ, z) |= ϕ

)
⇔
(
∀z∈[x+n`,y−1+n`] : (P, σ, z) |= ϕ

)
, and
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#P,σx,y−1(χ) = #P,σx+n`,y−1+n`(χ) for all subformulae χ ∈ sub(τ) of the constraint term
τ .

Therefore,
(P, σ, x) |= Φ ⇔ (P, σ, x+ n`) |= Φ. (4.2)

Let j ∈ [0, `− 1] be the position of q = L(j) on L. Recall that λP(L(j)) = λP(F (j))
and consistency of q provides that the row state q′ := F (j) = st(σ(h+ j)) is Φ-consistent.
Since i = h+ j + n` for some n ∈ N it follows that

Φ ∈ λP(q) ⇔ Φ ∈ λP(σ(q′)) (Lem. 4.13)⇔ (P, σ, h+ j) |= Φ Eq. (4.2)⇔ (P, σ, i) |= Φ.

Intermediate loop. If q is not the last loop lastl(P) 6= L of P , Φ-consistency of q provides
corresponding Φ-consistent states on the rows immediately preceding and succeeding L
in P . The following lemma formulates the main argument for deriving correctness of the
labelling of q from the correct labelling of the corresponding states of the rows enclosing
L.

I Lemma 4.14. Let L be a loop in P, ` := |L| and τL := JτK(λ#
P (L)). Let σ ∈ runs(P)

and n, h, h′ ∈ N such that λP(σ(h)σ(h+ 1) . . . σ(h′)) = λP(L)n.

i) If some state of L is not labelled by ϕ, then for all x ∈ [h, h′ − 2`]

(P, σ, x) |= Φ ⇔ (P, σ, x+ `) |= Φ.

ii) If τL ≤ 0, then for all x ∈ [h, h′ − 2`]

(P, σ, x) |= Φ ⇒ (P, σ, x+ `) |= Φ.

iii) If all states of L are labelled by ϕ and τL ≥ 0, then for all x ∈ [h+ `, h′]

(P, σ, x) |= Φ ⇒ (P, σ, x− `) |= Φ.

Proof. Recall that P is consistently labelled with respect to all strict subformulae of
Φ = ϕU[τ -> b] ψ and by IH these formulae hold at some position on σ if and only the
corresponding state is labelled by it.

i) Assume that ϕ 6∈ λP(q′) for some state q′ ∈ L and let x ∈ [h, h′ − 2`] be some
position on σ within the periodically labelled part. Due to correctness, the formula Φ
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holds at position x if and only if all positions y ∈ [x, z − 1] are labelled by ϕ up to some
position z ≥ x that is itself labelled by ψ and where JτK(λ#

P (σ(x) . . . σ(z− 1))) ≥ b. Since
L is not entirely labelled by ϕ, the position z must occur before a whole iteration of
L is completed, i.e., z < x + `. Otherwise, some state not labelled by ϕ occurred in
between. Thus, (P, σ, x) |= Φ if and only if there is such z ∈ [x, x + ` − 1]. The same
argument applies to position x′ = x + ` since x′ + ` − 1 = x + 2` − 1 ≤ h′ is still on
the periodically labelled part of σ. Therefore, (P, σ, x + `) |= Φ if and only if there is
z′ ∈ [x′, x′ + `− 1] such that ψ ∈ λP(σ(z′)), all positions y′ ∈ [x′, z′ − 1] are labelled by
ϕ, and JτK(λ#

P (σ(x′) . . . σ(z′ − 1))) ≥ b.
Further, we have λP(σ(x) . . . σ(z)) = λP(σ(x + `) . . . σ(z + `)) and thus for all z ∈

[x, x + ` − 1] it follows that ψ ∈ λP(z) ⇔ ψ ∈ λP(z + `), all states y ∈ [x, z − 1] are
labelled by ϕ if and only if this is the case for all y′ ∈ [x+ `, z + `− 1], and

JτK(λ#
P (σ(x+ `) . . . σ(z + `− 1))) = JτK(λ#

P (σ(x) . . . σ(z − 1))).

Consequently, there is a witness position z for the satisfaction of Φ at x if and only if
there is such a position z′ for x′ = x+ `.

ii) Assume that L is entirely labelled by ϕ, τL ≤ 0, and (P, σ, x) |= Φ for x ∈
[h, h′ − 2`]. As above, let z ≥ x be some position witnessing the satisfaction of Φ
at position x, i.e., ψ ∈ λP(σ(z)), all positions y ∈ [x, z − 1] are labelled by ϕ, and
JτK(λ#

P (σ(x) . . . σ(z−1))) ≥ b. If z < x+ ` let z′ := z+ ` and observe that, as above, z′ is
a witness position for the satisfaction of Φ at position x+` because x+` ≤ z′ < x+2` ≤ h′

and thus λP(σ(x) . . . σ(z)) = λP(σ(x+ `) . . . σ(z′)). If otherwise, z ≥ x+ `, then z itself
witness the satisfaction of Φ at x+ ` because

JτK(λ#
P (σ(x+ `) . . . σ(z − 1))) ≥ τL + JτK(λ#

P (σ(x+ `) . . . σ(z − 1)))

= JτK(λ#
P (σ(x) . . . σ(z − 1)))

≥ b.

iii) Assume finally that L is entirely labelled by ϕ, τL ≥ 0, and (P, σ, x) |= Φ for
x ∈ [h+ `, h′]. Let z ≥ x be a witness position for Φ at x. Since x− ` ≥ h is still on the
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h x h+` i h′−` x′ h′

F0 Fk F`−1L0 L0 Lk L`−1 L`−1R0 Rk R`−1
= q

position

state

segment

iteration
F L RL. . . L. . .

(0) (1) (m) (n− 2) (n− 1)

Figure 4.4: Sketch of the run σ and the location of the relevant parts and indices.

periodically labelled part of σ we have

JτK(λ#
P (σ(x− `) . . . σ(z − 1))) = τL + JτK(λ#

P (σ(x) . . . σ(z − 1)))

≥ JτK(λ#
P (σ(x) . . . σ(z − 1)))

≥ b.

Moreover, the positions x − `, . . . , x − 1 are labelled by ϕ and thus all positions from
x− ` to z − 1. Therefore, z also witnesses the satisfaction of Φ at position x− ` on σ.

�

Using the lemma above, the cases for the state q being part of an intermediate loop
can be analysed individually as follows. Let F = F0 . . . F`−1 and R = R0 . . . R`−1 be
the front and rear row, respectively, surrounding L in P and let k ∈ [0, ` − 1] be the
index of q = Lk on L. Further, let h, h′, x, x′ ∈ N be the (unique) positions on σ of
F0, R`−1, Fk, Rk, respectively. Then, the labelling sequence of σ from h to h′ has the
form

λP(σ(h) . . . σ(h′)) = λP(FLn−2R) = λP(L)n

where n − 2 = |posσ(L0)|, is the number of iterations of L on σ. Figure 4.4 shows a
sketch of the run σ and the location of the relevant parts and indices. We can now choose
m ≥ 1 and m′ ≥ 2 such that

h+ ` ≤ i = h+ k +m` = h′ + k −m′` ≤ h′ − `

and use Lemma 4.14 as follows in order to show that Φ ∈ λP(σ(i)) if and only if
(P, σ, i) |= Φ.

If Φ ∈ λP(σ(i)), then (P, σ, x) |= Φ and (P, σ, x′) |= Φ because λP(Lk) = λP(Fk) =
λP(Rk) and the labellings of F and R are correct with respect to Φ by Lemma 4.13. In case
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L is not entirely labelled by ϕ or its effect τL = JτK(λ#
P (L)) is negative, Lemma 4.14 (i)

and (ii), respectively, provides (by recursive application) that (P, σ, x) |= Φ implies
(P, σ, i) |= Φ since i = x + m` ≤ h′ − `. Otherwise, all states of L are labelled by ϕ
and τL ≥ 0 and thus (P, σ, x′) |= Φ implies (P, σ, i) |= Φ by (recursive application of)
Lemma 4.14 (iii), since i = h′ −m′`.

Similarly if Φ 6∈ λP(σ(i)), Lemma 4.14 (i) applies in case some state of L is not labelled
by ϕ. Alternatively, if all states of L are labelled by ϕ and τL ≥ 0, Lemma 4.14 (iii) can be
applied in its dual formulation, i.e., providing that (P, σ, x) 6|= Φ implies (P, σ, x+ `) 6|= Φ
for x ∈ [h, h′ − `]. For the remaining case where τL < 0 and all states of L are labelled
(correctly) by ϕ we employ the dual formulation of Lemma 4.14 (ii) providing that

(P, σ, y) 6|= Φ implies (P, σ, y − `) 6|= Φ (4.3)

for all y ∈ [h + `, h′ − `]. Notice that this implication cannot be applied directly to
the position x′ of Rk since x′ > h′ − `. However, we can show that (P, σ, x′ − `) 6|= Φ.
Towards contradiction assume that (P, σ, x′ − `) |= Φ and let z ≥ x′ − ` be some position
witnessing that on σ. If z ≥ x′, then z would also witness that Φ is satisfied at position
x′ because

JτK(#σ
x′,z−1) = JτK(#σ

x′−`,z−1)− τL ≥ JτK(#σ
x′−`,z−1) ≥ b.

On the other hand, x′ − ` ≤ z < x′ would imply that z = x′ − `+ j for some distance
j < `. Thus, the label sequence

λP(σ(x′ − `) . . . σ(x′ − `+ j)) = λP(σ(x) . . . σ(x+ j))

from x′ − ` up to z occurs also at position x, making x + j a witness that Φ holds at
position x, which is not the case. Consequently, (P, σ, x′ − `) 6|= Φ and by recursive
application of Equation (4.3) we obtain that (P, σ, i) 6|= Φ since i = h′ −m′`.

This completes the case that state q is on an intermediate loop to which condition D3
of Definition 4.11 applies and thereby the induction step of the proof of Theorem 4.12
showing that q is correctly labelled if it is Φ-consistent. The consequence is, that the
theoretical non-deterministic procedure outlined in Section 4.1 is correct in the sense
that if it yields a result, then the formula Φ is in fact satisfied by the counter system S.
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4.4 Consistency-preserving Operations

We have seen that consistency is a useful criterion because it implies that an APS is labelled
correctly. The next Section 4.5 will be concerned with showing that particular consistent
APS exist. The corresponding constructions rely on manipulating these structures while
maintaining consistency. Specifically, given an APS P with loop L ∈ loops(P) and a run
σ ∈ runs(P), the following operations are of interest.

Unfolding. Assuming σ traverses L at least twice, the first or last iteration is to be
represented explicitly by a copy of L inserted as row right before or after the loop.

Cut. Assuming σ traverses L exactly once, the backward transition of L can be
removed from P.

Duplication. Assuming σ traverses L at least three times, L is replaced by two
copies of it connected by one unfolding.

Figure 4.5 presents a sketch of the modifications. Apart from staying consistent, the
second crucial invariant is that the run σ remains in the system, more precisely, the
original run org(σ) of S represented by σ is still represented by some run σ̂ after the
modification.
The constructions and arguments used for all operations are very similar. Therefore,

only the duplication construction is presented in full detail while the properties of
unfolding and cut operations are recorded as corollaries.

I Lemma 4.15 (Duplication). Let M ⊆ cLTL and P = (Q,∆, λ, org) be an M -consistent
APS in S with L ∈ loops(P) and σ ∈ runs(P) such that st(σ) = uLnw for some u ∈
(Q \ L)∗, w ∈ Qω, and n ≥ 3. There is an M -consistent APS P̂ = (Q ∪̇U ∪̇K, ∆̂, λ̂, ôrg)
with additional loop K and row U of length |K| = |U | = |L| and run σ̂ such that

loops(P̂) = loops(P) ∪ {K},

st(σ̂) = uKn−2ULw,

ôrg(σ̂) = org(σ), and

|P̂| ≤ |P|+ 3 · size(∆L) + |L| · (|∆|+ 2|L|+ 1) · (
∑
ϕ′∈M |ϕ′|).

The construction essentially inserts, right before L one copy of L as row U and another
copy as loop K, as depicted in Figure 4.5. The labelling of the copies is inherited from
L and thus also equal to the former front row of L, now being the front row of K.
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(original)
F L (R)

(unfolding left)
F U L (R)

(unfolding right)
F L U R

(cut)
F L R

(duplication)
F K U L (R)

Figure 4.5: Consistency-preserving operations on augmented path schemas. Notice that
the row R may not always exists and then cut and unfolding right cannot be
performed.

Consistency for most formulae relies only on local conditions and we will show that these
remain satisfied on the copies of L. Only, for until formulae, it may be necessary to
add additional counters and guards in order to establish consistency of the new row U .
Once that is accomplished, K becomes consistent automatically and consistency of L is
recovered.

4.4.1 Basic Structure and Induction Scheme

Basic structure. As basis for the following developments, let D = (QD,∆D, λD, orgD)
be the APS in S derived from P by inserting U and K into the structure as depicted
in Figure 4.5. Technically, let U and K be simple (i.e., repetition-free) sequences of
length |L|, comprised of fresh states, pairwise disjoint with Q and each other, and let
QD := Q ∪ U ∪ K. Let ` := |L| − 1 be the maximal index on L (and also U and K)
and, for easier reading, let Li, Ui, and Ki denote L(i), U(i), and K(i), respectively, for
0 ≤ i ≤ `. Further, let F = frontP(L) = F0 . . . F` denote the row immediately preceding
L in P and if L 6= lastl(P), let R = rearP(L) = R0 . . . R` be the rear row of L. Recall
that λ(F ) = λ(R) = λ(L).
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The transition set ∆D is now defined by

∆D := (∆ \ {(F`, µ,Γ, L0) ∈ ∆})

∪ {(K`, µ,Γ, U0), (U`, µ,Γ, L0), (K`, µ,Γ,K0) | (L`, µ,Γ, L0) ∈ ∆}

∪ {(F`, µ,Γ,K0) | (F`, µ,Γ, L0) ∈ ∆}

∪ {(Ui, µ,Γ, Ui+1), (Ki, µ,Γ,Ki+1) | 0 ≤ i < `, (Li, µ,Γ, Li+1) ∈ ∆}.

Clearly, its cardinality is precisely |∆D| = |∆|+ 2|L|+ 1. The labelling λD and the origin
function orgD are the extensions of λ and org, respectively, to the extended set of states
QD ⊃ Q such that λD(U) = λD(K) = λ(L) and orgD(U) = orgD(K) = org(L). Since P
admits the run σ ∈ runs(P) that traverses L at least three times, it is also straightforward
to construct a run σD ∈ runs(D) by replacing the first n− 2 iterations of L by traversals
of K and the subsequent traversal of L by U . The run has thus the state sequence
st(σD) = uKn−2ULw and exactly the same sequence of valuations val(σD) = val(σ).
The origin states of K and U are those of L and thus orgD(σD) = org(σ). The size of D
can be estimated based on the additional transitions as

|D| ≤ |P|+ 3 · size(∆L)

where ∆L = {(q, µ,Γ, q′) ∈ ∆ | q, q′ ∈ L} is the set of transitions on L. Notice that the
backward transition (L`, µ,Γ, L0) ∈ ∆ of L is copied three times, hence the factor.

Induction. Based on this construction we can prove Lemma 4.15 using well-founded
induction on the subsets of N = sub(N) ⊆M that are closed under taking subformulae.
Observe that if P is M -consistent, then P is by definition sub(M)-consistent and we can
assume without loss of generality that M = sub(M). Further notice that the class of
such closed subsets is well-founded with respect to the subset ordering ⊆ and has the
unique minimal element ∅.
Assume ∆D = {δ0, . . . , δk}. Formally we use induction to show that there is an

M -consistent APS DM = (QD,∆M , λD, orgD) such that

∆M = {δ′0, . . . , δ′k} where δ′i = (s, µ′,Γ′, t) for δi = (s, µ,Γ, t), some µ v µ′, Γ ⊆ Γ′,
and all i ∈ [0, k];

there is σM ∈ runs(DM ) with st(σM ) = st(σD); and

|DM | ≤ |D|+ |L| · |∆D| ·
∑
ϕ∈M |ϕ|.

This implies the lemma statement, as is discussed later.
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The base case for M = ∅ is trivially provided by D∅ = D. Assume henceforth as
induction hypothesis that for every strict subset N = sub(N) ⊂M there is an N -consistent
APS DN satisfying the conditions above for the set N . The induction step is now to
provide the APS DM . To this end, let ϕ ∈M be a maximal element in M with respect to
the structural subformula ordering and N := M \ {ϕ}. Choosing ϕ maximal guarantees
that N = sub(N) is closed and let thus DN = (QD,∆N , λD, orgD) be the APS provided
by the induction hypothesis with run σN . By means of an exhaustive case analysis it is
shown in the following that DN is ϕ-consistent already or (in case of until formulae) can
be modified to be, only by adding fresh counters, updates, and guards to the transitions
of ∆N . In the latter case it will be argued that σN constitutes a run σM ∈ runs(DM ) as
required.

4.4.2 Non-Until Formulae

In the case that ϕ is not an until formula, we show that DN qualifies immediately as
DM because ϕ-consistency is inherited from P without need for modification.

Atomic propositions and Boolean combinations. If ϕ ∈ AP is an atomic proposition,
then DN is ϕ-consistent by definition. In the case that ϕ has the form ¬ψ or χ∧ψ,
consistency depends solely on the labelling of each state q ∈ QD individually. For all
states q ∈ QP the labellings λD(q) = λP(q) of P and D are equal, P is ϕ-consistent and
by induction DN is consistent with respect to the subformulae χ, ψ ∈ sub(ϕ) \ {ϕ} ⊆ N .
Therefore, these states are also ϕ-consistent in DN . The states Ui and Ki for i ∈ [0, `]
do not occur in P but since λD(Ui) = λD(Ki) = λD(Li) = λP(Li) they also satisfy the
consistency condition for ϕ. Thus, DM = DN being M -consistent with run σM = σN .

Guard formulae. If ϕ = (τ -> b) ∈ Grd(C) is a guard formula, we also observe that
DM = DN is already ϕ-consistent. Recall that consistency requires that ϕ or ϕ are
guards on every incoming edge of a state q ∈ QD with ϕ ∈ λD(q) or ϕ 6∈ λD(q),
respectively. All states q ∈ QP \ {L0} that are already present in P , except for first state
L0 of L, are ϕ-consistent because each incoming transition (q′, µ,Γ, q) ∈ ∆N corresponds
to an incoming transition (q′, µ′,Γ′, q)∆P in P with Γ′ ⊆ Γ that is guarded appropriately
due to consistency of P.
All incoming transitions (q′, µ′,Γ′, q) ∈ ∆N of a state q ∈ {U0, L0} are ϕ-consistent

because each corresponds to a copy of the backward transition (L`, µ,Γ, L0) ∈ ∆P of L
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and thus

ϕ ∈ λD(q)⇒ ϕ ∈ λP(L0)⇒ ϕ ∈ Γ⇒ ϕ ∈ Γ′ and

ϕ 6∈ λD(q)⇒ ϕ 6∈ λP(L0)⇒ ϕ ∈ Γ⇒ ϕ ∈ Γ′.

The state K0 also has one incoming (backward) transition that corresponds to the
backward transition (L`, µ,Γ, L0) ∈ ∆P of L and obeys the criterion. Further, the state
has an incoming forward transition (F`, µ,Γ,K0) ∈ ∆D corresponding to (F`, µ,Γ, L0) ∈
∆P to which the same reasoning applies. Similarly, for all i ∈ [1, `], the (single) incoming
transitions (Ki−1, µ

′
i,Γ′i,Ki) ∈ ∆N and (Ui−1, µ

′′
i ,Γ′′i , Ui) ∈ ∆N of the states Ki and Ui,

respectively, originate from the incoming transition (Li−1, µi,Γi, Li) ∈ ∆P of Li and
hence

ϕ ∈ λD(Ki) = λD(Ui)⇒ ϕ ∈ λP(Li)⇒ ϕ ∈ Γi ⇒ ϕ ∈ Γ′i ∩ Γ′′i and

ϕ 6∈ λD(Ki) = λD(Ui)⇒ ϕ 6∈ λP(Li)⇒ ϕ ∈ Γi ⇒ ϕ ∈ Γ′i ∩ Γ′′i .

In summary, this shows that DM = DN is in fact ϕ-consistent.

Temporal next. For formulae ϕ = Xψ the APS DN is also ϕ-consistent without
any modification. The states q ∈ QP \ {F`} are ϕ-consistent because their successors
succDN (q) = succP(q) ⊆ QP are the same in DN and P. They are ϕ-consistent in P
and that involves only the labelling of their immediate successors. The successors of
the states F` and K` are succDN (F`) = {K0} and succDN (K`) = {K0, U0}, respectively.
These are all labelled by λD(K0) = λD(U0) = λD(L0) = λP(L0). Thus,

Xψ ∈ λD(F`) = λD(K`)⇔ Xψ ∈ λP(L`)⇔ ψ ∈ λP(L0) = λD(K0) = λD(U0).

The successors of U` is L0. Since L` is ϕ-consistent in P we have

Xψ ∈ λD(U`)⇔ Xψ ∈ λP(L`)⇔ ψ ∈ λP(L0)⇔ ψ ∈ λD(L0).

The remaining states Ki and Ui for i ∈ [0, `− 1] inherit ϕ-consistency from Li since they
have only one successor Ki+1 and Ui+1, respectively, with

Xψ ∈ λD(Ki) = λD(Ui) = λD(Li)⇔ ψ ∈ λD(Li+1) = λD(Ki+1) = λD(Ui+1).
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4.4.3 Until Formulae

For the formulae covered so far, the APS DN is shown to be M -consistent without
any modification, based on how D was constructed and N -consistency. For the case
that ϕ = χU[τ -> b] ψ is an until formula, however, consistency does not only depend on
the local labelling that is inherited from P but may demand for balance counters that
meet global requirements. Nevertheless, for states that are not directly affected by the
duplication of L, ϕ-consistency is preserved as will be shown first. Subsequently, the
transitions ∆N of DN are extended by additional balance counters and transition guards
such that all states of the new row U become ϕ-consistent as well while, at the same
time, a run corresponding to σD exists. Then, ϕ-consistency of the states of L and K
follows by consistency of their surrounding rows.

States in QP \ L are ϕ-consistent in DN

For a row state to be ϕ-consistent in DN it may be necessary that the APS includes a
balance counter and specific guards. Therefore, an important observation is that the
duplication of the loop L preserves all balance counters of P.

I Lemma 4.16. If a counter c ∈ counters(P) is a balance counter for the constraint
term τ and a state q ∈ QP in P, then it is a balance counter for τ and q in DN .

Proof. Let (q1, µ,Γ, q2) ∈ ∆N be a transition in DN . If q1 6∈ {F`} ∪ K ∪ U , then
q1, q2 ∈ QP and there is a corresponding transition (q1, µ

′,Γ′, q2) ∈ ∆P in P with µ′ v µ.
Thus, µ(c) = µ′(c) = 0 if q1 ≺D q and µ(c) = µ′(c) = JτK(λP(q1)) = JτK(λD(q1)) if
q1 �D q.

Otherwise, if q1 ∈ {F`}∪K ∪U , there is some corresponding transition (q′1, µ′,Γ′, q′2) ∈
∆P with µ′ v µ starting at a state q′1 ∈ L. Since balance counters are only defined
for row states, we have q ∈ Q \ L, so either q ≺P L0 or q �P L`. Thus, q �P q1

implies q �P L` and in that case all transitions starting in states of L update c by
0, in particular 0 = µ′(c) = µ(c). Similarly, if q �P q1, we have even q ≺P L1 and
thus all transitions starting at some state s ∈ L update c by JτK(λP(s)), in particular
JτK(λP(q′1)) = µ′(c) = µ(c).
Thus, in any case the transition (q1, µ,Γ, q2) ∈ ∆N satisfies the requirements for c

being a balance counter for q and τ . �

The existence of the balance counters of P in DN , allows us now to prove that
the conditions for consistency are preserved for the states not directly affected by the
duplication of L. Let q ∈ QP \ L be a state of DN . Since it is contained in P, it is
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ϕ-consistent there, meaning one of the conditions of Definition 4.11 (D) applies. Let us
consider the individual cases and show that they still apply in DN .

Condition D1. If condition D1 applies to q in P, this is also the case in DN because
λP(q) = λD(q) and λP(lastl(P)) = λD(lastl(DN )). Moreover, for all q′ ∈ succ∗DN (q) we
find that χ ∈ λD(q′) since either q′ ∈ QP and

q′ ∈ QP ⇒ q′ ∈ succ∗P(q)⇒ χ ∈ λP(q′)⇒ χ ∈ λD(q′),

or q′ ∈ {Ki, Ui} for some i ∈ [0, `] meaning that q ≺P Li ≺P q′ and then

Li ∈ succ∗P(q)⇒ χ ∈ λP(Li)⇒ χ ∈ λD(q′).

Conditions D(2)i and D(2)ii. Alternatively, condition D2 may apply to q in P . In case
ϕ 6∈ λD(q), we have 0 < b or ψ 6∈ λP(q) = λD(q). Condition D(2)i carries over from P to
DN because either the simple sequence of states from q up to the required defect state
(i.e., a state not labelled by χ) does not intersect with L at all, or it ends before the last
state of L. In any case, the sequence persists identically in DN .
If condition D(2)ii applies to q in P, let cτ,q ∈ counters(P) be the required balance

counter for τ and q in P. By Lemma 4.16 it is also a balance counter in DN so let us
show that it qualifies to establish condition D(2)ii for q in DN . Consider any transition
(q1, µ,Γ, q2) ∈ ∆N to a state q2 �D q with ψ ∈ λD(q2) where χ ∈ λD(q′) for all q′ ∈ QN
with q �D q′ ≺D q2. These are precisely the transitions that need to be guarded by
cτ,g < b.
If q2 6∈ K ∪ U ∪ {L0}, then q1, q2 ∈ QP and there is a corresponding transition

(q1, µ
′,Γ′, q2) ∈ ∆P in P with Γ′ ⊆ Γ and condition D(2)ii applying to q provides that

(cτ,q < b) ∈ Γ′. If otherwise q2 ∈ K ∪ U ∪ {L0}, then q1 ∈ {F`, L`} ∪K ∪ U and there
is a transition (q′1, µ′,Γ′, q′2) ∈ ∆P with Γ′ ⊆ Γ, λP(q′1) = λD(q1), λP(q′2) = λD(q2),
q′1 ∈ {F`} ∪ L, and q′2 ∈ L. Observe that

ψ ∈ λP(q′2) because λP(q′2) = λD(q2),

q ≺P L0 �P q′2 because q ≺D q2 �D q′2 and q 6∈ L, and

all q′ ∈ QP with q �P q′ ≺P q′2 are labelled by χ because there is a corresponding
state q′′ with q �D q′′ ≺D q2 and λD(q′′) = λP(q′) and these are all labelled by χ.

From the assumption that condition D(2)ii applies to q in P we conclude that (cτ,q < b) ∈ Γ′

and the condition hence applies in DN .
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Conditions D(2)iii and D(2)iv. In case ϕ ∈ λN (q), condition D2 demands the existence
of a witness state q′ � q from QP . Inserting K and U preserves the conditions applying
to it.
If q′ ≺P L0 or q �P L`, the condition is not affected by the insertion at all. All

intermediate states remain in place and a potentially required balance counter persists
(Lemma 4.16) with the updates and guards unchanged in between q and q′. The same
holds if q′ ∈ L because then there is a corresponding witness state q′′ ∈ K in DN that
shares precisely the same properties as q′ in P.
Consider thus the remaining case that q ≺P L0 (thus q ≺D K0) and q′ �P L`. Then,

the loop L is necessarily entirely labelled by χ and this is hence also the case for K and
U in DN . Further, only condition D(2)iv can apply to q in P and the required balance
counter is still present in DN .

Condition D3. The remaining option is that q is on some loop L′ ∈ Q+
P in P (and DN )

and condition D3 applies to q in P. Then, also the identically labelled rows preceding
and (unless L′ = lastl(P)) succeeding L′ in P are present in DN because, being rows,
they cannot intersect with L and are not affected by the insertion of K and U . Following
the previous arguments, the states on these rows are ϕ-consistent in DN and hence q is
ϕ-consistent in DN .

States of the Row U

So far, we have considered states not directly affected by the duplication modification
and observed that these remain to satisfy the consistency conditions. In the following,
let us thus turn to the remaining states, namely those that have been inserted into the
structure of P. Specifically, the states of the fresh row U may require us to introduce
corresponding balance counters. To this end, we analyse the possible situations of a state
of U and show that in all cases consistency can be established while maintaining a run
corresponding to σ.

First of all, recall that st(σN ) = st(σD) and org(σ) = orgD(σD) = orgD(σN ). Therefore,
the runs σN and σ are equivalent with respect to the satisfaction of any formula ϕ ∈ sub(Φ)
in the sense that for all positions i ∈ N

(P, σ, i) |= ϕ ⇔ (DN , σN , i) |= ϕ.

From the definition of λD and σD and the fact that P is M -consistent it follows that for
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every formula ϕ ∈M

ϕ ∈ λD(st(σD(i))) ⇔ ϕ ∈ λ(st(σ(i))) ⇔ (P, σ, i) |= ϕ.

The induction provides the invariant that the state sequence st(σN ) = st(σD) does not
change, so neither does the labelling sequence and we conclude that the labelling of σN
corresponds to the semantics of formulae from ϕ ∈M , i.e., for all i ∈ N

ϕ ∈ λD(st(σN (i))) ⇔ (DN , σN , i) |= ϕ.

Given this latter precondition, we can show that any row state of DN can be made
consistent by only adding a counter and guards for specific transitions.

I Lemma 4.17. Let ϕ = χU[τ -> b] ψ ∈ cLTL, N ⊇ sub(ϕ) \ {ϕ}, P = (Q,∆, λ, org) an
N-consistent APS in S, r ∈ Q a row state, and σ ∈ runs(P) such that, for all i ∈ N,
ϕ ∈ λ(st(σ(i))) if and only if (P, σ, i) |= ϕ. Then there is an APS P̂ = (Q, ∆̂, λ, org) and
σ̂ ∈ runs(P̂) such that

∆̂ = {δ′0, . . . , δ′k} where ∆ = {δ0, . . . , δk} and δ′i = (s, µ′,Γ′, t) for δi = (s, µ,Γ, t),
some µ v µ′, Γ ⊆ Γ′, and all i ∈ [0, k],

r is ϕ-consistent in P̂,

st(σ̂) = st(σ), and

|P̂| ≤ |P|+ |∆| · |ϕ|.

Proof. Let ir ∈ posσ(r) be the unique position of the row state r on σ. Recall that
(P, σ, ir) |= ϕ if and only if there is a witness position i ≥ ir such that (P, σ, i) |= ψ,
JτK(#P,σir,i−1) ≥ b, and (P, σ, j) |= χ for all j ∈ [ir, i − 1]. Given N -consistency and
N ⊇ sub(ϕ) \ {ϕ}, Theorem 4.12 provides that

(P, σ, i) |= ψ ⇔ ψ ∈ λ(σ(i))
JτK(#P,σir,i−1) = JτK(λ#(σ(ir)σ(ir + 1) . . . σ(i− 1)))

(P, σ, j) |= χ ⇔ χ ∈ λ(σ(j))

for j ∈ [ir, i− 1].

Case 1: (P, σ, ir) |= ϕ. Assume first that (P, σ, ir) |= ϕ and consider a corresponding
witness position iq ≥ ir carrying some state q = st(σ(iq)). If iq = ir, then

b ≤ JτK(#P,σir,ir−1) = 0 = JτK(λ#(ε))
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and thus, condition D(2)iii of Definition 4.11 applies to r without any necessary modific-
ation. Assume therefore that iq > ir in the following.

1a) Witness state not on loop. Consider the case that q is not on a loop. To obtain
∆̂, we extend P by a fresh balance counter cτ,r for τ and r and add the guard cτ,r -> b

to the guard set Γ of the (unique) incoming transition (q′, µ,Γ, q) ∈ ∆ of q. This does
not affect consistency for any other formula or state. Moreover, r is now ϕ-consistent
in P̂ = (Q, ∆̂, λ, org) by condition D(2)iv of Definition 4.11 since q �P r, ψ ∈ λ(q), and
χ ∈ λ(q′) for all q′ with r �P q′ ≺P q since posσ(q′) ⊆ [ir, iq − 1]. Let σ̂ be the run that
is identical to σ but assigns the appropriate value to cτ,r at every position, as uniquely
determined by the updates of cτ,r on each transition. It satisfies the additional constraint
at the (only) necessary position iq because

JτK(#P̂,σ̂ir,iq−1) = JτK(λ#
σ (σ̂(ir)σ̂(ir + 1) . . . σ̂(iq − 1)))

= JτK(λ#(σ̂(ir)σ̂(ir + 1) . . . σ̂(iq − 1)))

= JτK(#P,σir,iq−1) ≥ b

by the semantic accuracy of the labelling λ and Lemma 4.9.

1b) Witness on non-positive loop. Assume now that q ∈ L is part of some loop L of
P (and P̂) and let τL := JτK(λ#(L)) be the effect of L on the value of the constraint
term τ . If τL ≤ 0, consider the first position i′q := min posσ(q) > ir of q on σ. Then,
iq = i′q +n|L| for some n ≥ 0 and i′q witnesses the satisfaction of ϕ at ir just as iq because

JτK(λ#(σ(ir) . . . σ(i′q − 1)) = JτK(λ#(σ(ir) . . . σ(iq − 1))

− JτK(λ#(σ(i′q) . . . σ(i′q + n|L| − 1))

= JτK(λ#(σ(ir) . . . σ(iq − 1))− n · τL
≥ JτK(λ#(σ(ir) . . . σ(iq − 1))

≥ b.

Assume therefore without loss of generality that iq = i′q = min posσ(q).
If none of the states at the positions ir, ir+1, . . . , iq is the end of a loop, condition D(2)iii

applies to r because these states are all labelled by χ and the state sequence

st(σ(ir)σ(ir + 1) . . . σ(iq − 1))
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r q′ q

L′ front(L) L

Figure 4.6: Sketch of an augmented path schema with witness state q situated on a loop
L. If L has a non-positive effect on the constraint term τ , there is also an
alternative witness q′ on the front row of L. Any loop L′ ending between r
and q must begin and end after r and before q′.

(¬ψ)

r q

(¬ψ)

front(L) L

Figure 4.7: Sketch of an augmented path schema with a defect state ( ) on a loop L and
a copy of the state occurring on the preceding row. If the defect cannot occur
in-between the row state r and the loop state q, then it must precede r.

is precisely the simple path from r to q in the graph of P . Otherwise, if one of the states
has two successors and is thus the end of some loop L′, then iq − |L| ≥ ir because L′

necessarily starts and ends between the positions ir and iq − |L|, the latter being situated
on the front row of L (cf. Figure 4.6). Therefore, q′ := st(σ(iq − |L|)) is identically
labelled as q by λ(q′) = λ(q). Hence, the case for row states discussed above applies to q′.

1c) Witness on positive loop. Assume τL > 0 and some state of L is not labelled by
χ. Then, iq = min posσ(q), i.e., iq is necessarily on the first iteration of L and thus the
first occurrence of q on σ. Further, ir > iq − |L| since otherwise a state not labelled
by χ would occur in between as depicted in Figure 4.7. Hence, the state sequence
st(σ(ir)σ(ir + 1) . . . σ(iq − 1)) is again precisely the simple path between r and q in the
graph of P and condition D(2)iii applies to r.

In case all states of L are labelled by χ and L is the last loop of P , condition D1 applies.
Otherwise, L is traversed finitely often and there exists an identically labelled position
i′q := max posσ(q) + |L| on σ with i′q = iq + n|L| for some n ≥ 1. The state q′ = st(σ(i′q))
is the copy of q on the rear row R = rearP(L) following L in P with λ(R) = λ(L). All
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the states between q and q′ are then labelled by χ, ψ ∈ λ(q′) and

JτK(λ#(σ)(ir) . . . σ(i′q − 1)) = JτK(λ#(σ)(ir) . . . σ(iq − 1))

+ JτK(λ#(σ)(iq) . . . σ(iq + n|L| − 1))

= JτK(λ#(σ)(ir) . . . σ(iq − 1)) + n · τL
> JτK(λ#(σ)(ir) . . . σ(iq − 1))

≥ b.

The row position i′q and the corresponding row state q′ thus serve as an alternative witness
for the satisfaction of ϕ at position ir and state r, respectively, and the construction for
witnessing row states can be applied to establish ϕ-consistency of r.

Case 2: (P, σ, ir) 6|= ϕ. Assume now that (P, σ, ir) 6|= ϕ (and thus ϕ 6∈ λ(r)). Clearly,
ψ 6∈ λ(r) or 0 < b as required by conditions D(2)i and D(2)ii. If condition D(2)i applies,
no further action is required so assume henceforth this is not the case. As above, let
us extend P by a fresh balance counter cτ,r for τ and r. Further, every transition
(q′, µ,Γ, q) ∈ ∆ pointing to any state q �P r labelled by ψ ∈ λ(q) is modified by adding
the constraint (cτ,r < b) to Γ, unless there is some state q′′ with r �P q′′ ≺P q and
χ 6∈ λ(q′). This defines the transitions ∆̂ and implements condition D(2)ii for r in the
obtained APS P̂ = (Q, ∆̂, λ, org).

Let again σ̂ be identical to σ except for assigning the proper value to cτ,r as determined
by the updates at every position. That is, st(σ̂) = st(σ) and val(σ(i)) v val(σ̂(i)) for all
i ∈ N. It remains to show that σ̂ is still valid in P̂, i.e., at every position, all relevant
guards are satisfied. While this is the case for guards already present in P because these
are satisfied by σ, we have to show that for every position i ≥ 1 where the corresponding
transition (st(σ̂(i− 1)), µ,Γ, st(σ̂(i))) ∈ ∆′ contains the new constraint (cτ,r < b) ∈ Γ, the
valuation val(σ̂(i)) satisfies the constraint. Since only states occurring after r are guarded
that way, only the positions i > ir are relevant and for those we have by Lemma 4.9 that

val(σ̂(i))(cτ,r) = JτK(#P̂,σ̂ir,i−1) = JτK(λ#(σ̂(ir) . . . σ̂(i− 1))).

Notice further that JτK(#P̂,σ̂ir,i−1) = JτK(#P,σir,i−1) since τ refers only to strict subformulae
of ϕ.

Only states labelled by ψ have been guarded and thus (P, σ, i) |= ψ. If now (P, σ, j) |= χ

for all j ∈ [ir, i−1], then JτK(#P,σir,i−1) < b as otherwise (P, σ, ir) |= ϕ and this was assumed
is not to be the case. The only remaining alternative to be considered is that there
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is some defect position j ∈ [ir, i − 1] where (P, σ, j) 6|= χ and hence χ 6∈ λ(σ(j)). It
leads, however, to the following contradiction. Assume there is such a position and
let q := st(σ(i)) and q′ := st(σ(j)). Although i > j, the state q must come first in P
and P̂ (q �P q′) since otherwise q would not have been guarded in the first place. The
only possibility for that to happen is that both states are part of the same loop L, in a
situation as depicted in Figure 4.7. Notice that there cannot be a defect state (one that is
not labelled by χ) between r and q, so r must be part of the row immediately preceding
L and q′ cannot be the last state of L. Consider, thus, the position i′ := min posσ(q),
being the first occurrence of q after r. In between those positions, no defect occurs and
therefore JτK(#P,σir,i′−1) < b as otherwise ϕ would hold at ir. This implies that r in fact
obeys condition D(2)i, but we have excluded this case above because, then, adding the
balance counter and the guards would not have been necessary.

Size of the modification. Modifying the augmented path schema P for one such state
r means adding at most one fresh balance counter cτ,r that is to be updated on each
transition (q, µ,Γ, q′) ∈ ∆ succeeding r by the value (0 or) JτK(λ#(q)). At the same time,
the guard set of each such transition is potentially extended by one constraint γτ,r of
either the form cτ,r -> b or cτ,r < b. Recall that cτ,r < b abbreviates −cτ,r ->−b+ 1 and thus
|γτ,r| ≤ |cτ,r -> b|+ 1. Further, for any transition (q, µ,Γ, q′) ∈ ∆̂, the size of the update
size(µ(cτ,r)) is bounded by the size of τ because for τ = a0ϕ0 + · · ·+ akϕk

size(µ(cτ,r)) ≤ size(|a0|+ · · ·+ |ak|)

≤ size(|a0|) + · · ·+ size(|ak|)

≤ |τ |.

Hence, the size of P increases to at most

|P̂| ≤ |P|+
∑

(q,µ,Γ,q′)∈∆̂

|γτ,r|+ size(µ(cτ,r))

≤ |P|+ |∆| · (|γτ,r|+ |τ |)

≤ |P|+ |∆| · (|cτ,r -> b|+ 1 + |τ |)

≤ |P|+ |∆| · (|τ -> b|+ 1)

≤ |P|+ |∆| · |ϕ|.

�
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The ϕ-consistent APS DM

Returning now to the APS DN , observe that Lemma 4.17 above can be applied con-
secutively to each of the states of U effectively providing the APS DM . We have seen
that all states that do neither belong to K, nor U , nor L are in fact ϕ-consistent in DN
and thus in DM because only counters and guards are added. From the consistency of
all row states in DM , also the consistency of all loop states follows by condition D3 of
Definition 4.11. The run σN ∈ runs(DN ) is preserved in terms of an almost identical run
σM ∈ runs(DM ) that additionally evaluates the balance counters that have potentially
been added. Applying Lemma 4.17 increases the size of the obtained APS by at most
|∆N | · |ϕ| = |∆D| · |ϕ| and thus, by using the induction hypothesis we obtain

|DM | ≤ |DN |+ |U | · |∆N | · |ϕ|

≤ |D|+ |L| · |∆D| · (
∑
ϕ′∈N

|ϕ′|) + |L| · |∆D| · |ϕ|

≤ |D|+ |L| · |∆D| · (
∑
ϕ′∈M

|ϕ′|)

and thereby finish the induction.

4.4.4 Conclusion and Corollaries

The induction has shown that for any closed set M = sub(M) we can construct an
M -consistent APS DM that only adds additional counters and guards to D. Further it
preserves a run σM that has the same shape as σD. Therefore, DM satisfies all claims
stated in Lemma 4.15 and constitutes P̂. We confirm that its size is bounded by

|P̂| = |DM | ≤ |D|+ |L| · |∆D| · (
∑
ϕ′∈M

|ϕ′|)

≤ |P|+ 3 · size(∆L) + |L| · (|∆P |+ 2|L|+ 1) · (
∑
ϕ′∈M

|ϕ′|).

Observe that the fact, that the duplication introduced an additional loop K has not
been used for showing that some state is consistent or can be made so. Leaving out the
loop K still allows for using the very same arguments and therefore we can conclude
that only unfolding a loop L is possible in the same way. The base schema D would only
introduce a single row U as copy of L and then be precisely of size |D| = |P|+ size(∆)
with |∆D| = |∆|+ |L| transitions.

I Corollary 4.18. Let M ⊆ cLTL and P = (Q,∆, λ, org) be an M-consistent APS in S
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with L ∈ loops(P) and σ ∈ runs(P) such that st(σ) = uL2w for some u ∈ (Q \ L)∗ and
w ∈ Qω. There is an M -consistent APS P̂ = (Q ∪̇U, ∆̂, λ̂, ôrg) with additional row U of
length |U | = |L| and run σ̂ such that

loops(P̂) = loops(P),

st(σ̂) = uULw,

ôrg(σ̂) = org(σ), and

|P̂| ≤ |P|+ size(∆L) + |L| · (|∆|+ |L|) · (
∑
ϕ′∈M |ϕ′|).

The construction would not change much either if the additional copy were introduced
after the original loop L. Notice in particular, that Lemma 4.17 does not take the actual
location of U into account. Given that L is not the last loop of P we can therefore
conclude that L can also be unfolded towards the end of the schema.

I Corollary 4.19. Let M ⊆ cLTL and P = (Q,∆, λ, org) be an M-consistent APS in
S with L ∈ loops(P) and σ ∈ runs(P) such that st(σ) = uL2w for some u ∈ Q∗, and
w ∈ (Q \ L)ω. There is an M -consistent APS P̂ = (Q ∪̇U, ∆̂, λ̂, ôrg) with additional row
U of length |U | = |L| and run σ̂ such that

loops(P̂) = loops(P),

st(σ̂) = uLUw,

ôrg(σ̂) = org(σ), and

|P̂| ≤ |P|+ size(∆L) + |L| · (|∆|+ |L|) · (
∑
ϕ′∈M |ϕ′|).

Finally, replacing L by U would also only require establishing consistency for U , which
is possible using the same arguments as before. Removing L does not affect consistency
of other states because, as was discussed in the proof of Lemma 4.17, if some state of
L witnesses the satisfaction of some formula at some earlier state, then there is also an
alternative witness on either its front or rear row. These remain untouched when L is
cut.

I Corollary 4.20. Let M ⊆ cLTL and P = (Q,∆, λ, org) be an M-consistent APS in S
with L ∈ loops(P) and σ ∈ runs(P) such that st(σ) = uLw for some u ∈ (Q \ L)∗, and
w ∈ (Q \ L)ω. There is an M -consistent APS P̂ = (Q, ∆̂, λ̂, ôrg) run σ̂ such that

loops(P̂) = loops(P) \ {L},
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st(σ̂) = uLw,

ôrg(σ̂) = org(σ), and

|P̂| ≤ |P|+ |L| · |∆| · (
∑
ϕ′∈M |ϕ′|).

4.5 Existence of Consistent APS

Although consistency may appear to impose quite strong restrictions on the shape of
witnesses that can be identified, they exist for a significant class of systems. Kuhtz and
Finkbeiner [KF11] showed that witnesses in terms of path schemas always exist for runs
of Kripke structures that satisfy some LTL formula. Demri, Dhar and Sangnier [DDS12;
DDS15] extended this result to LTL with past-time operators and flat counter systems.
This section is concerned with extending these results to cLTL and augmented path
schemas by proving the following result.

I Theorem 4.21 (Existence). If a flat counter system S satisfies a cLTL formula Φ, then
there is a Φ-consistent APS PΦ in S with PΦ |= Φ and |PΦ| ∈ 2O(|Φ|2·|S|).

The theorem settles the last remaining aspect of the decision procedure defined at
the beginning of this chapter in Section 4.1, namely its completeness. Assuming that
S |= Φ there is a run ρ ∈ runs(S) satisfying Φ and that run induces a path schema
Pρ = (Qρ,∆ρ, λρ, orgρ) in S representing it.
It is known that each path in a flat structure can be represented by some path

schema of linear size [Bar+05; DDS15]. Since S is flat, ρ traverses a series of disjoint
loops v0, . . . , vm ∈ S+ of S, connected by disjoint (and possibly empty) simple paths
u1, . . . , um ∈ S∗. Thus, the traversed state sequence has the form

st(ρ) = u0v
n0
0 u1v

n1
1 . . . um−1v

nm−1
m−1 umv

ω
m

where u0 ∈ S∗ is the simple path connecting the initial state to the first state that is
repeated. Technically, let s0 be the first state repeated on ρ and v0 be the unique simple
loop starting in s0. Then, let s1 be the first repeated state on ρ that does not also belong
to v0 but to a disjoint loop v1 and so forth. As the path segments are disjoint, their
combined lengths |u0 . . . um| and |v0 . . . vm| are both bounded by the number of states
|S| and thus the sequence w := u0v0 . . . umvm is of length |w| ≤ 2|S|.
This sequence defines a counter system consisting of one state qi for each of the

positions i ∈ [0, |w| − 1] and where each segment loop ui constitutes again a simple loop.
As depicted in Figure 4.8, an APS Pρ in S can then be constructed that represents the
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st(ρ) =

Pρ =

u0 v0 vn0−2
0 v0 . . . um vm vωm

Figure 4.8: An augmented path schema constructed from a run ρ. The first and last
iterations of each loop is represented explicitly. For loops vi that are traversed
only ni < 3 times, the corresponding loop in Pρ is left out entirely. If further
ni < 2, also one of the corresponding rows is skipped. The origin org(qi) of
each state qi is defined to be the state of S at the corresponding position
on st(ρ) and the labelling of qi is inherited from org(qi). The transitions
(q, µ,Γ, q′) ∈ ∆P are copies of the transitions (org(q), µ,Γ, org(q′)) ∈ ∆S
taken by ρ.

run ρ. The path schema is essentially the subgraph of S traversed by ρ where loops may
be unfolded partially to obtain the required, degenerated shape of the graph (see also
Figure 4.2). The number of counters and guards as well as the size of guards and updates
are directly inherited from S. The APS is comprised of at most 4|S| states and 4|∆S |
transitions: Up to two copies of any state and transition from S occur on the counter
system defined by w and two further copies may be introduced while unfolding a loop to
provide the front and rear row required by the definition of APS. Guards and updates of
transitions in S remain untouched and thus the size of Pρ, that is, the representation
size of its transition set, is bounded by |Pρ| ≤ 4|S|.
In the following we show, that the labelling of Pρ can be extended incrementally by

subformulae of Φ until obtaining an APS PΦ that is Φ-consistent. In every step the
invariant is maintained that the APS remains consistent with respect to all previously
considered formulae and still satisfies Φ.

4.5.1 Induction Scheme

The existence of PΦ is shown using well-founded induction over the downward-closed
subsets of sub(Φ), that is, the sets M = sub(M) ⊆ sub(Φ). Recall that such a class of
sets was used for the induction in Section 4.4 and that it is well-founded with respect to
the subset ordering ⊆ and has the unique minimal element ∅. An APS is Φ-consistent if
and only if it is consistent with respect to all subformulae sub(Φ) and thus the following
technical proof goal will be used for the induction and implies the existence of PΦ: For
every set M = sub(M) ⊆ sub(Φ) there exists an APS PM = (QM ,∆M , λM , orgM ) in S
with the following properties.
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1. PM is M -consistent.

2. PM |= Φ contains a run satisfying Φ.

3. The set of states QM of PM is of bounded cardinality

|QM | ≤ (n̂+ 4)|M | · |Qρ|.

4. The set of transitions ∆M of PM is of bounded cardinality

|∆M | ≤ (n̂+ 4)|M | · |∆ρ|.

5. The size of PM is bounded by

|PM | ≤ (n̂+ 7)M · |Pρ|+ 3 · |Φ| · |M | · (n̂+ 7)3|M | · |∆ρ|2.

The stated bounds employ as parameter the number of (sub-)formulae |M |, the size
of Φ and S, the number |S| of states of S and the value n̂ := âΦ · |sub(Φ)| · ûS · |S|
combining the maximal absolute values âΦ and ûS of integer constants occurring in Φ
and S, respectively. Notice further, that the measure refers to the size of the APS Pρ
representing the assumed satisfying run ρ ∈ runs(S) and the number |Qρ| of its states.
As discussed above, the latter two correlate linearly with the size of S.

Base case and induction hypothesis. Since the induction and the proof goal are tailored
towards an extension of Pρ, it trivially constitutes the base caseM = ∅. For the induction
step, we have now to derive that PM exists for an arbitrary M ⊆ sub(Φ) assuming as
induction hypothesis (IH) that Items 1 to 5 of the proof goal hold for all closed strict
subsets N = sub(N) ⊂ M of M . Let ϕ ∈ M be any maximal element of M , that is, a
formula that is not a strict subformula of any other element of M . If M is not empty,
such a formula exists always and the set N := M \ {ϕ} ⊂ M is closed under taking
subformulae because M is downward-closed and removing a maximal element does not
change this property. Therefore, the induction hypothesis provides an APS PN satisfying
the conditions above. The remainder of this section is dedicated to constructing PM . To
this end, the structural cases of ϕ (cf. Section 2.2) are analysed individually.

4.5.2 Atomic Propositions and Boolean Combinations

Assume PN = (QN ,∆N , λN , org). If ϕ ∈ AP is an atomic proposition, PN is ϕ-consistent
by definition and thus we can choose PM := PN , satisfying the claims. For Boolean
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combinations, the labelling of PN is easily adjusted to conform to condition B of Defini-
tion 4.11. For each state q ∈ QN , if ϕ = ¬ψ, let

λM (q) :=

λN (q) \ {ϕ} if ψ ∈ λN (q)

λN (q) ∪ {ϕ} otherwise

and for the case ϕ = χ∧ψ, let

λM (q) :=

λN (q) ∪ {ϕ} if χ, ψ ∈ λN (q)

λN (q) \ {ϕ} otherwise.

These changes do not modify the set of runs of PN , nor the sets of states and transitions
and thus the obtained M -consistent APS PM = (QN ,∆N , λM , org) satisfies Φ, and is of
the same size.

4.5.3 Guard Formulae

A more involved case is that of ϕ being a guard of the form (τ -> b) ∈ Grd(C). Consistency
demands to add the guard or its dual to every transition, depending on whether the target
state is labelled by ϕ or not. Any given labelling thus unambiguously defines the necessary
transition guards to be imposed in order to make all states consistent. The difficulty is
to find such a labelling that is actually compatible with a run of PN satisfying Φ. If the
labelling is chosen arbitrarily, the guards can be chosen to formally settle ϕ-consistency
but there would be no guarantee that any run remains. In particular, two contradicting
guards at one edge is technically permitted but simply renders the APS empty and thus
not satisfying any formula anymore. Assume henceforth PN = (QN ,∆N , λN , org) and
let σ ∈ runs(PN ) be a run with (P, σ) |= Φ.

Rows and Stable Loops

Every row state q ∈ QN only occurs at a single position i on σ and this position can be
used to uniquely determine how to label the state: let q be labelled by ϕ if and only
if (P, σ, i) |= ϕ. This guarantees that adding ϕ or ϕ, respectively, as a guard to the
incoming transition of q preserves σ as valid run. At the same time, it makes q satisfy
the consistency criterion. The labelling of a loop is uniquely determined, if it is stable
with respect the satisfaction of ϕ, meaning that for each loop state the formula ϕ is
satisfied at all or none of its occurrences. Recall, moreover, that APS are defined to
assure that every loop is labelled identically to its front and its rear row, if any. Thus,
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the positions before and after a loop, that correspond to some specific state on it, must
also be compatible in the sense that either both satisfy or both violate the formula ϕ, in
accordance to the determined labelling of the respective loop state. If these conditions
apply for a loop and its enclosing rows, it is called stable.

I Definition 4.22 (Stability). Let P be an APS, σ ∈ runs(P) and ϕ a cLTL formula. A
loop L ∈ loops(P) with front F = frontP(L) is stable on σ with respect to ϕ if for all
i ∈ posσ(FL)

(P, σ, i) |= ϕ ⇔ (P, σ, i+ |L|) |= ϕ.

For a stable loop, the run again uniquely determines for each of the states whether
it is to be labelled by ϕ or not and obeying this indication guarantees that adding the
corresponding guards does not invalidate σ. In general, however, σ does not uniquely
determine whether some state q ∈ QN is supposed to be labelled by ϕ or not if q is
part of some loop L in PN that is not stable on σ. Then, there may be two positions
i 6= j on σ both carrying the state st(σ(i)) = st(σ(j)) = q but where (P, σ, i) |= ϕ while
(P, σ, j) 6|= ϕ, or vice versa. For example, a counter referenced in the constraint ϕ may
be decremented during the loop execution and so the constraint may be satisfied first
but violated later on along the run. In this case it is not possible to provide a correct
labelling of PN for ϕ, let alone a consistent one, forcing us to carefully transform the
structure of the APS in order to establish consistency while maintaining the desired
properties of being N -consistent and satisfying Φ.

Loop Elimination

Every non-last loop L is traversed a specific number n = |posσ(L(0))| ∈ N of times by
σ, i.e., the state sequence of σ has the form st(σ) = uLnw for some u ∈ (Q \ L)∗ and
w ∈ (Q \ L)ω. One approach to provide a consistent labelling for such a loop L is to
represent each of the traversals explicitly in the APS by unfolding the loop exactly n
times.
By repeated (n − 1 times) application of Corollary 4.18 and a final application of

Corollary 4.20 we obtain from PN an N -consistent APS P̂N that contains a run σ̂ ∈
runs(P̂N ) resembling σ but where each iteration of L is represented by an individual
set of row states. The states of these rows R0, . . . , Rn can now be made consistent as
described above while preserving the run σ̂. Assuming n ≥ 2, then n − 1 consecutive
applications of Corollary 4.18 provide a sequence of schemas P0, . . . ,Pn−1 with P0 = P.
Observe that introducing the rows R1, . . . , Ri increases the number of transitions to
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|∆i| = |∆0|+ i|L| and for each i ∈ [0, n− 2]

|Pi+1| ≤ |Pi|+ size(∆L) + |L| · (|∆i|+ |L|) · (
∑
ϕ′∈N

|ϕ′|).

Therefore,

|Pn−1| ≤ |P0|+
n−2∑
i=0

size(∆L) + |L| · (|∆i|+ |L|) · (
∑
ϕ′∈N

|ϕ′|)

= |P0|+ (n− 1) · size(∆L) + |L| · |Φ| · (
n−2∑
i=0
|∆0|+ i|L|+ |L|)

= |P0|+ (n− 1) · size(∆L) + |L| · |Φ| · ((n− 1) · |∆0|+ |L|
(n− 1)n

2 )

≤ |P0|+ (n− 1) · size(∆L) + |L| · |Φ| · (n− 1)2(|∆0|+ |L|).

(4.4)

Finally, applying Corollary 4.20 to Pn−1 in order to remove the loop provides an APS P̂
of size

|P̂| ≤ |Pn−1|+ |L| · |∆n−1| · (
∑
ϕ′∈M

|ϕ′|)

≤ |P0|+ (n− 1) · size(∆L) + |L| · |Φ| · (n− 1)2(|∆0|+ |L|)

+ |L| · (|∆0|+ (n− 1)|L|) · |Φ|

≤ |P0|+ (n− 1) · size(∆L) + 2|L| · |Φ| · (n− 1)2 · (∆0 + |L|).

(4.5)

To keep the constructed APS small, loop elimination will only be applied if n is below
some fixed bound. In particular, the last loop of PN needs to be handled differently since
it is traversed infinitely often.

Stabilising Loops through Duplication

A second option to transform the APS in order to implement a consistent labelling is
based on the following observation. The satisfaction of ϕ at some state changes at most
once during the traversal of a loop L. For example, let i, i′, i′′ ∈ posσ(q) for some state
q ∈ L with i < i′ < i′′. If (P, σ, i) |= ϕ and (P, σ, i′) 6|= ϕ then the satisfaction of ϕ
cannot switch after position i′ again and thus (P, σ, i′′) 6|= ϕ. Concerning different states
q 6= q′ of L, the validity of ϕ may change in different iterations of L along σ. However,
all such changes for all the states of L can be shown to happen within a bounded number
n̂ of iterations. The iterations of L along σ can thus be separated into three consecutive
parts, such that in the first and last part, no change in the satisfaction of ϕ occurs, i.e.,
these parts are entirely stable. Changes only occur in the middle part, but this will be
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ϕ ϕ ϕ ϕ ϕ ϕ

K1 K2 K3

Figure 4.9: Example for stabilising the loop K2 in P (from Figure 4.2) with respect to a
formula ϕ = c -> 10 and a run σ by duplicating and unfolding it. Only updates
of the counter c are shown.

shown to be sufficiently short.

I Example 4.23. Consider the APS P in Figure 4.2, a run σ ∈ runs(P), the state q9,
and a guard formula ϕ := c -> 10. Let K1 = q1, K2 = q7q8q9 and K3 = q16q17 be the loops
of P corresponding to the loops L1, L2, and L3 of S, respectively. Whether or not ϕ holds
at some position i with st(σ(i)) = q9 depends on how often σ traverses the good loop K1

(the more the better) and how often it repeats K2 before reaching position i (the more the
worse). Assume σ traverses K1 exactly 25 times and thus enters K2 with c = 25 (the
effect of the front and rear rows of K1 is cancelled out by the front row of K2).

Let µK2 denote the accumulated updates of K2. Each iteration of K2 decreases the
value of c since µK2(c) = −2 and therefore ϕ holds at q9 during the first 7 iterations while
it is violated in iteration 8 where the value of c first drops below to 25 + 8 · µK2(c) = 9.
At state q8, the effect is delayed because it occurs before the negatively weighted transition.
However, in iteration 10, the local difference within the loop is outnumbered by the global
effect and thus ϕ does not hold at any state any more.

While any labelling of K2 would necessarily be incompatible with σ, there are three
phases: the first phase (iteration 1 to 7) where ϕ always holds, the last phase (iterations 10
and later) where ϕ never holds, and an unstable transition phase. When K2 is replaced by
two copies of it connected by two unfoldings for the unstable transition phase as indicated
in Figure 4.9, a labelling compatible with σ can be provided.

The length of the intermediate unstable phase of the iteration of L on σ can be bounded
by âτ · |τ | · ûL · |L| where âτ is the maximal absolute value of the coefficients in the term τ ,
and ûL denotes the maximal absolute value of counter updates on the transitions of the
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loop L. For convenience, let us over-approximate this bound using parameters depending
only on S and Φ in order to work with only one value n̂ for all loops and terms that occur
in the construction. This allows also for a general size estimation of the constructed
APS, depending on S and Φ. Let, hence, for the rest of this section n̂ := âΦ · |Φ| · ûS · |S|
where âΦ ≥ âτ is the maximal absolute value of all constraint coefficients occurring in
(any subformula of) Φ and ûS ≥ ûL is the maximal absolute value of all updates in S.
In the following this claim is formalised and proved. Subsequently, duplicating L as
sketched in Figure 4.9 is discussed and used to provide a labelling that is compatible
with σ regarding the satisfaction of ϕ.

I Definition 4.24 (Pivot). Let P be an APS, σ ∈ runs(P), L ∈ loops(P), F = frontP(L),
and ϕ ∈ sub(Φ). A pivot for ϕ and L on σ is a position h ∈ N such that for all
i ∈ posσ(L) \ [h, h+ n̂|L| − 1] where position i+ |L| ∈ posσ(L) is still on L we have

(P, σ, i) |= ϕ ⇔ (P, σ, i+ |L|) |= ϕ.

Intuitively, when σ traverses a loop L, the pivot describes the starting position of the
unstable phase. In Example 4.23 above, the first position of iteration 8 of K2 would be
such a tipping point because all preceding positions (on L) satisfy ϕ and all positions at
least n̂ ≥ 2 iterations later are either not on L any more or violate ϕ. Importantly, a
given pivot position not only determines the start of an unstable phase but also sets its
limit based on n̂ that only depends on S and Φ. The following observation establishes
that the stabilisation procedure based on duplicating a loop can always be applied at a
bounded cost in terms of the blow-up.

I Lemma 4.25. Let ϕ ∈ sub(Φ) ∩ Grd(C) be a guard, and P an APS in S. For all
σ ∈ runs(P) and L ∈ loops(P) there is a pivot for ϕ and L on σ.

Proof. Assume P = (QP ,∆P , λP , org), ϕ = (τ -> b), L = L0 . . . L` for ` = |L| − 1, and
F = frontP(L). Let δ0, . . . , δ` be the transitions on L with δi = (Li, µi,Γi, Li+1) for
i ∈ [0, `− 1] and δ` = (L`, µ`,Γ`, L0). The accumulated update function µL :=

∑
i∈[0,`] µ`

determines the effect of L on the value of the term τ , denoted by τL := JτK(µL) in the
following.

Case τL = 0. If τL = 0, then L is stable in the relevant range and the pivot h can be
chosen arbitrarily since for all i ∈ N with i, i+ |L| ∈ posσ(L) we have

JτK(val(σ(i))) = JτK(val(σ(i))) + τL = JτK(val(σ(i+ |L|))).
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Case τL < 0. Assume now that τL < 0 and let h0 ≥ min posσ(L) be the first (smallest)
position of L such that (P, σ, h0) 6|= (τ -> b). If such a position h0 does not exist, h can
again be chosen arbitrarily, otherwise let h = h0 − |L|. By this choice of h, for all
i ∈ posσ(L) with 0 ≤ i < h, if any, i + |L| < h + |L| = h0 and thus (P, σ, i) |= ϕ and
(P, σ, i+ |L|) |= ϕ.

For the remaining positions beyond h+ n̂|L|, first observe the following for any two
positions i1, i2 ∈ posσ(L) having a difference r := |i1− i2| < |L| of less than one length of
L. In between, exactly r updates ν1, . . . , νr are applied and thus the difference between
the corresponding values of τ can be estimated by

|JτK(val(σ(i1)))− JτK(val(σ(i2)))| ≤ |JτK(ν1)|+ . . .+ |JτK(νr)|

≤ r ·max{|JτK(ν1)|, . . . , JτK(νm)}

≤ (L− 1) ·max{|JτK(ν1)|, . . . , JτK(νm)}.

Since ϕ ∈ sub(Φ) is a subformula of Φ, the length of τ (the number of its monomials) is
bounded by the size |Φ| of Φ and the value of its coefficients is bounded by âΦ.
Moreover, ϕ uses only counters from CS and those are updated by at most the value

ûS . Therefore |JτK(µ)| ≤ |Φ| · âΦ · d̂S for every µ ∈ {ν1, . . . , νr} and

|JτK(val(σ(i1)))− JτK(val(σ(i2)))| ≤ (|L| − 1) · |Φ| · âΦ · d̂S < n̂. (4.6)

Now, for each position i ∈ N with i, i+ |L| ∈ posσ(L) and i ≥ h+ n̂|L| ≥ h0 +(n̂−1)|L|,
there is k ≥ n̂ and r ∈ [0, |L| − 1] such that i = h0 + k|L| − r. By the definition of n̂, the
position i is distant enough from h0 such that the maximal possible update effect of the
r < |L| transitions applied between i and i + r = h0 + k|L| < i + |L|, as estimated in
Equation (4.6), becomes marginal compared to the (negative) net effect of the k ≥ n̂

loop iterations. Specifically, we have

JτK(val(σ(i))) ≤ JτK(val(σ(i+ r)))

+ |JτK(val(σ(i+ r)))− JτK(val(σ(i)))|

≤ JτK(val(σ(i+ r))) + n̂ (Equation (4.6))

= JτK(val(σ(h0))) + k · τL + n̂

≤ JτK(val(σ(h0))) (τL < 0, k ≥ n̂)

< b

and thus (P, σ, i) 6|= ϕ for all positions i ≥ h+ n̂|L| on L.
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Case τL > 0. In case τL > 0, an analogous reasoning can be applied when h0 is chosen
to be the first position h0 ≥ min posσ(L) on σ where (P, σ, h0) |= (τ -> b). Again, if h0 does
not exist, h is arbitrary. Otherwise h = h0 − |L| is defined as above providing that the
lemma statement holds for all i < h. For the remaining positions i with i, i+|L| ∈ posσ(L)
and i ≥ h+ n̂|L|, we are this time interested in a lower bound for the value of τ that is
greater or equal to b in order to show that (P, σ, i) |= ϕ. For r and k as defined above
we verify that

JτK(val(σ(i))) ≥ JτK(val(σ(i+ r)))− n̂ (r < |L|, Equation (4.6))

= JτK(val(σ(h0))) + k · τL − n̂

≥ JτK(val(σ(h0))) (τL > 0, k ≥ n̂)

≥ b.

�

Towards making the APS PN ϕ-consistent, the existence of a pivot position for ϕ
on σ that we have just established can now be used to stabilise the loops in PN . This
is a precondition for providing any correct labelling and thus for implementing the
consistency criterion. Notice that the following construction is not specific for guards
but only depends on the existence of pivot positions. A pivot lemma as above will also
be proven for counting until formulae later in order to reuse the result.

I Lemma 4.26 (Stabilisation). Let P = (Q,∆, λ, org) be an N-consistent APS, σ ∈
runs(P), and ϕ ∈ sub(Φ) such that for all L ∈ loops(P) there is a pivot for ϕ and L on
σ. There is an N -consistent APS P̂ = (Q̂, ∆̂, λ̂, ôrg) and σ̂ ∈ runs(P̂) such that

ôrg(σ̂) = org(σ),

all loops L ∈ loops(P̂) are stable on σ̂ with respect to ϕ,

|Q̂| ≤ (n̂+ 4) · |Q|

|∆̂| ≤ (n̂+ 4) · |∆|

|P̂| ≤ (n̂+ 7) · |P|+ 2 · |Φ| · (n̂+ 4)3 · |∆|2

Proof. Let L be a loop of P that is not already stable for ϕ on σ.
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Elimination. If σ iterates L not too often, more precisely n = |posσ(L(0))| < n̂+ 6
times, it can be entirely unfolded within the size constraint. As described above, an
APS can be obtained by applying Corollary 4.18 to L for n− 1 times and subsequently
Corollary 4.20. That is, L is replaced by n rows R1, . . . , Rn. By Equation (4.5), the
resulting APS P ′ is of size at most

|P ′| ≤ |P|+ (n− 1) · size(∆L) + 2|L| · |Φ| · (n− 1)2 · (|∆|+ |L|)

≤ |P|+ (n̂+ 4) · size(∆L) + 2|L| · |Φ| · (n̂+ 4)2 · (|∆|+ |L|).

Assume henceforth that L is traversed at least n̂ + 6 times and let h ∈ N be the
corresponding pivot position on σ.

Unfolding initial iterations. First, assume that h < min posσ(L)+2|L| occurs at latest
in the second iteration of L on σ. The state sequence of σ then has the form st(σ) =
uLn̂+5w for some u ∈ (Q \ L)∗, w ∈ Qω. Thus, repeated application of Corollary 4.18
(precisely n̂+3 times) yields an APS P ′ featuring n̂+3 rows F1, . . . , Fn̂+3 and a run σ′ with
state sequence st(σ′) = uF1 . . . Fn̂+3L

2w. The additional rows accommodate the unstable
iterations of L on σ entirely since there are at most n̂. We have frontP ′(L) = Fn̂+3 and
for all i with i, i+ |L| ∈ posσ′(Fn̂+3L) that

i ≥ min posσ(L) + (n̂+ 2)|L| > h+ n̂|L|.

Thus, (P ′, σ′, i) |= ϕ if and only if (P ′, σ′, i+ |L|) |= ϕ and L is stable if L is the last loop
of P ′ (and P). Otherwise, satisfaction of ϕ on the positions of the rear row rearP ′(L)
may not coincide with those on L because the pivot guaranties this only for states on
the loop. However, since L is still traversed at least twice by σ′, Corollary 4.19 provides
an APS P ′′ where L is unfolded providing a new rear row and a corresponding run σ′′

on which L is now certainly stable with respect to ϕ. The at most n̂ + 4 unfolding
constructions increase the size of P to at most

|P ′′| ≤ |P|+ (n̂+ 4) · size(∆L) + |L| · |Φ| · (n̂+ 4)2(|∆|+ |L|)

by application of Equation (4.4).

Duplication. Assume now that h ≥ min posσ(L) + 2|L| and let

n1 :=
⌊
h−min posσ(L)

|L|

⌋
+ 1 ≥ 3
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denote, intuitively, the iteration of L on σ in which position h occurs. Notice, however,
that there may not actually exist n1 iterations of L on σ, namely if h exceeds the
positions of L on σ. Yet, assume for now that the number of iterations is large enough
such that st(σ) = uLn1+n̂+3w for some u ∈ (Q \ L)∗ and w ∈ Qω. Lemma 4.15 provides
an N -consistent APS A derived from P containing a loop K and an intermediate row U0

that are both copies of L. Further, A admits a run σA ∈ runs(A) with state sequence
st(σA) = uKn1−1U0L

n̂+3w and identical labelling λA(σA) = λ(σ). Repeated application
of Corollary 4.18 (once to K, n̂+ 1 times to L) yields an APS B of the desired shape
(cf. Figure 4.9) featuring n̂+ 3 rows F,U0, . . . , Un̂+1 and a run σB with state sequence
st(σB) = uFKn1−2U0 . . . Un̂+1L

2w and λB(σB) = λ(σ). The loop K is stable for ϕ on σB
since for each i ∈ posσB(F ∪K) we have that i < h and therefore

(B, σB, i) |= ϕ ⇔ (P, σ, i) |= ϕ ⇔ (P, σ, i+ |L|) |= ϕ ⇔ (B, σB, i+ |L|) |= ϕ.

Similarly, for each position i ∈ posσB(Un̂+1 ∪ L) we have h + n̂|L| < i and, thus,
(B, σB, i) |= ϕ if and only if (B, σB, i+ |L|) |= ϕ as long as i+ |L| ∈ posσB(L). If L is the
last loop of P (and B), the latter holds for all positions of L. Otherwise, the satisfaction
of ϕ on the positions of the rear row rearB(L) may not coincide with those on L because
the pivot guaranties this only for states on the loop. As above, Corollary 4.19 can be
applied to obtain the modified APS B′ containing an unfolding of L as new rear row.
This provides stability also of L with respect to ϕ. With, in sum, n̂+ 3 unfoldings and
one duplication the size of the constructed APS can be bounded by

|B′| ≤ |A|+ (n̂+ 3) · size(∆L) + |L| · |Φ| · (n̂+ 3)2(|∆A|+ |L|) (Equation (4.4))

≤ |P|+ 3 · size(∆L) + |L| · (|∆|+ 2|L|+ 1) · |Φ|

+ (n̂+ 3) · size(∆L) + |L| · |Φ| · (n̂+ 3)2(|∆|+ 2|L|+ 1 + |L|)

≤ |P|+ (n̂+ 6) · size(∆L) + 2|L| · |Φ| · (n̂+ 3)2(|∆|+ 3|L|+ 1).

Unfolding ending iterations. It remains to consider the case that the pivot position h
is close to or beyond the end of the traversal of L by σ, more precisely, that n1 + n̂+3 > n.
Notice, this case cannot apply if L is the last loop of P. Nevertheless, recall that we
still assume n ≥ n̂ + 6, hence n − n̂ − 4 ≥ 2. Therefore, we can apply Corollary 4.18
once and Corollary 4.19 for n̂+ 2 times and obtain an APS P ′ with a run σ′ of the form
st(σ′) = uFLn−n̂−3R0 . . . Rn̂+1w. On this run, L is stable because for each i ∈ posσ′(FL)

87



Chapter 4 Model-checking cLTL over Flat Counter Systems

we have that i < h and i+ |L| ∈ posσ(L). Hence,

(P ′, σ′, i) |= ϕ ⇔ (P, σ, i) |= ϕ ⇔ (P, σ, i+|L|) |= ϕ ⇔ (P ′, σ′, i+|L|) |= ϕ.

Application to all loops. Each of the described constructions does not interfere with
the stability of any other loop in P . Therefore, they can be applied consecutively to each
of the loops loops(P) = {L1, . . . , Lk} of P such that all of them become stable. This
provides a series of APS P = P0,P1, . . . ,Pk of which Pk finally constitutes the APS P̂
proposed by the lemma statement. The potentially largest number of new states and
transitions is added during the duplication construction adding potentially (n̂+ 5) · |L|
new states and (n̂+ 5) · |L|+ 1 new transitions. Therefore, we can estimate the number
of states Qi and transitions ∆i of Pi by

|Qi+1| ≤ |Qi|+ (n̂+ 5) · |Li+1|

and
|∆i+1| ≤ |∆i|+ (n̂+ 5) · |Li+1|+ 1.

Hence,

|Q̂| = |Qk| ≤ |Q0|+ (n̂+ 5) ·
k∑
i=1
|Li|

≤ |Q0|+ (n̂+ 5) · 1
2 |Q0|

≤ |Q0| · (n̂+ 4)

and

|∆̂| = |∆k| ≤ |∆0|+ (n̂+ 5) · (
k∑
i=1
|Li|) + k

≤ |∆0|+ (n̂+ 5) · 1
2 |∆0|+

1
2 |∆0|

≤ |∆0| · (n̂+ 4)

as claimed. Considering all the cases that may apply, the increase of the schema size can
be bounded by

|Pi+1| ≤ |Pi|+ (n̂+ 6) · size(∆Li+1) + 2|Li+1| · |Φ| · (n̂+ 4)2(|∆i|+ 3|Li+1|+ 1)
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and therefore

|P̂| = |Pk| ≤ |P0|+ (n̂+ 6) ·
(

k∑
i=1

size(∆Li)
)

+ 2 · |Φ| · (n̂+ 4)2 ·
k−1∑
i=0
|Li+1| · (|∆i|+ 3|Li+1|+ 1)

≤ (n̂+ 7) · |P0|+ 2 · |Φ| · (n̂+ 4)2 ·
k−1∑
i=0
|Li+1| · (|∆k|+ 4|Li+1|)

≤ (n̂+ 7) · |P0|+ 2 · |Φ| · (n̂+ 4)2 ·
k−1∑
i=0
|Li+1| · (|∆0|(n̂+ 4) + 2|∆0|)

≤ (n̂+ 7) · |P0|+ 2 · |Φ| · (n̂+ 4)2 ·∆0(n̂+ 6) · 1
2 |∆0|

≤ (n̂+ 7) · |P0|+ 2 · |Φ| · (n̂+ 4)3 · |∆0|2.

�

Establishing Consistency

The previous developments now provide all necessary means to show the existence of
the APS PM as desired. Lemma 4.25 provides that there is a pivot for each loop on σN .
This allows us to apply Lemma 4.26 providing an APS P̂N with run σ̂N ∈ runs(P̂N ) such
that (P̂N , σ̂N ) |= Φ because it represents the same original run as σN . Moreover, P̂N is
N -consistent, and all loops are stable with respect to the guard formula ϕ ∈ M . This
means that for each state q ∈ Q̂N of P̂N , ϕ holds at all or none of its occurrences on σ̂N .
We can thus define the labelling based on an arbitrary position iq ∈ posσ̂N (q) as

λM (q) :=

λ̂N (q) ∪ {ϕ} if (P̂N , σ̂N , iq) |= ϕ

λ̂N (q) \ {ϕ} otherwise.

It only remains to extend the set of guards Γ on each transition (q, µ,Γ, q′) ∈ ∆̂N to
contain ϕ or ϕ (as transition guard) if ϕ ∈ λM (q′) or ϕ 6∈ λM (q′), respectively. This
preserves σ̂N as valid run and renders the resulting APS consistent, constituting PM .
The size of PM = (QM ,∆M , λM , orgM ) can be estimated by the size of P̂N and the

increase imposed by the additional guards. Neither additional states nor transitions are
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added to P̂N and thus

|QM | = |Q̂N | ≤ (n̂+ 4) · |QN | (by Lemma 4.26)

≤ (n̂+ 4) · (n̂+ 4)|N | · |Qρ| (by IH, Item 3)

= (n̂+ 4)|M | · |Qρ|

and

|∆M | = |∆̂N | ≤ |∆N | · (n̂+ 4) (by Lemma 4.26)

≤ (n̂+ 4)|N | · |∆ρ| · (n̂+ 4) (by IH, Item 4)

= (n̂+ 4)|M | · |∆ρ|.

In PM , every transition is potentially extended by the guard ϕ = τ -> b or ϕ = τ ->−b+ 1.
Since |ϕ| ≤ |Φ| and |ϕ| ≤ |Φ| this increases the size of P̂N such that

|PM | ≤ |P̂N |+ |∆̂N | · |Φ| ≤ |P̂N |+ (n̂+ 4)|M ||∆ρ| · |Φ|.

With Lemma 4.26 we obtain

|PM | ≤ (n̂+ 7) · |PN |+ 2 · |Φ| · (n̂+ 4)3 · |∆N |2 + (n̂+ 4)|M ||∆ρ| · |Φ|

≤ (n̂+ 7) · |PN |+ 2 · |Φ| · (n̂+ 4)3 · (|∆ρ| · (n̂+ 4)|N |)2

+ (n̂+ 4)|N |+1|∆ρ| · |Φ|

≤ (n̂+ 7) · |PN |+ 3 · |Φ| · (n̂+ 4)2|N |+3 · |∆ρ|2

and finally, by application of the induction hypothesis,

|PM | ≤ (n̂+ 7) · ((n̂+ 7)N · |Pρ|+ 3 · |Φ| · |N | · (n̂+ 7)3|N | · |∆ρ|2)

+ 3 · |Φ| · (n̂+ 4)2|N |+3 · |∆ρ|2

≤ (n̂+ 7)N+1 · |Pρ|+ 3 · |Φ| · |N | · (n̂+ 7)3|N |+1 · |∆ρ|2

+ 3 · |Φ| · (n̂+ 4)2|N |+3 · |∆ρ|2

≤ (n̂+ 7)N+1 · |Pρ|+ 3 · |Φ| · (n̂+ 7)3|N |+3 · |∆ρ|2 · (|N |+ 1)

≤ (n̂+ 7)M · |Pρ|+ 3 · |Φ| · |M | · (n̂+ 7)3|M | · |∆ρ|2.

(4.7)

This completes the induction step for the case that ϕ is a guard formula.
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4.5.4 Next

Considering temporal next formulae ϕ = Xψ, consistency is equally easy to establish as
for Boolean combinations. The only states q that have more than one direct successor are
those that terminate some non-last loop L. Recall that each such loop in an augmented
path schema is immediately followed by a rear row R with λP(L) = λP(R). Therefore,
the successors of q are the identically labelled states L(0) and R(0). In particular, either
each or none of them is labelled by ψ. Consequently, we let all states of PN be labelled
by Xψ if and only if all successors are labelled by ψ and this establishes ϕ-consistency
since this modification does not affect the consistency criterion for any other formula,
especially not for any ψ ∈ N . Modifying only the labelling also preserves σ as a run as
well as the size of the thus obtained APS PM .

4.5.5 Until

The case for counted until formulae ϕ = χU[τ -> b] ψ is related to that of guard formulae
discussed before in Section 4.5.3. To construct a suitable labelling, loops may have to
be stabilised and to this end we will build directly on the construction presented above.
Specifically, a pivot lemma is shown for until formulae, complementing Lemma 4.25.
This allows us to apply Lemma 4.26 and subsequently ϕ-consistency is established on
the stabilised intermediate APS. This shows that the APS PM exists and provides the
induction step for until formulae.

Stabilisation

The notion of stability provided by Definition 4.22 and discussed in the context of guard
formulae plays a similar role for until formulae. As for constraints, deriving a labelling
for an APS from a given run crucially relies on all states to be stable on that run for
a formula. The proof of Lemma 4.26 has already provided a construction to stabilise
loops. Recall that it builds on the argument that loops have a constant effect on a
constraint term, formulated in terms of a pivot position after which a loop stabilises
within a bounded number of steps.

Since the constraint terms of until formulae employ again other subformulae, the effect
depends on whether they hold or not in some specific iteration and is therefore not
constant in general. However, assuming as additional precondition that a loop is labelled
correctly by all strict subformulae guarantees a constant loop effect and allows us to
prove the existence of pivot positions also for until formulae.
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I Remark 4.27. Recall that pivots were defined with respect to the number n̂ := âΦ · |Φ| ·
ûS · |S| characterising the potential length of an unstable phase of loop iterations. For
until formulae the counter updates of the system have no direct influence on that length
and ûS could be omitted. However, for ease of presentation this unified value is also used
here.

I Lemma 4.28 (Until pivot). Let ϕ = χU[τ -> b] ψ ∈ sub(Φ) be a counting until formula
and P an APS in S that is consistent for all strict subformulae of ϕ. For all σ ∈ runs(P)
and L ∈ loops(P) there is a pivot for ϕ and L on σ.

Proof. Assume P = (Q,∆, λ, org) and L = L0 . . . L` ∈ loops(P) be a loop in P with
` = |L| − 1. Let FL := frontP(L) and τL := JτK(λ#(L)) denote the effect of the loop on
the constraint term τ . The latter is well-defined because the labelling provided by λ is
correct due to consistency.

Defect on L or τL = 0. Assume first that not all states of L are labelled by the
formula χ. In this case, we show that L is in fact stable and the pivot h can be chosen
arbitrarily.
Let i ∈ posσ(L) be some position visiting L such that i + |L| ∈ posσ(L), i.e., i is

not in the last iteration of L on σ. We have (P, σ, i) |= ϕ if and only if there is
some position j ≥ i with ψ ∈ λ(σ(j)), JτK(λ#(σ(i)σ(i + 1) . . . σ(j − 1))) ≥ b, and
χ ∈ λ(σ(i)) ∩ λ(σ(i+ 1)) ∩ . . . ∩ λ(σ(j − 1)). Because of the latter, this can only hold
for j < i + |L|. Otherwise, the state of L not labelled by χ would necessarily appear
between i and j. Recall that L is either repeated infinitely or succeeded by a rear row
RL = rearP(L) being labelled identically. We have

λ(σ(i) . . . σ(i+ |L| − 1)) = λ(σ(i+ |L|) . . . σ(i+ 2|L| − 1)).

Consequently,
λ(σ(i) . . . σ(j)) = λ(σ(i+ |L|) . . . σ(j + |L|))

and, thus, (P, σ, i) |= ϕ if and only if (P, σ, i+ |L|) |= ϕ.
The situation is similar if L is entirely labelled by χ but has a zero effect τL = 0 on

the constraint. For any position i with i, i + |L| ∈ posσ(L) we have that (P, σ, i) |= ϕ

implies that there is a witness position j ≥ i with either j ∈ [i, i+ |L| − 1] or j ≥ i+ |L|.
In the former case, the position j + |L| witnesses that (P, σ, i + |L|) |= ϕ as discussed
before. In the latter case, the position j itself is a witness since L has no effect and thus

JτK(#P,σi+|L|,j−1) = JτK(#P,σi,j−1) ≥ b. (4.8)
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Conversely, if (P, σ, i + |L|) |= ϕ, any corresponding witness position j > i succeeds i.
Equation (4.8) still applies and thus j witnesses also that (P, σ, i) |= ϕ.

No defect on L and τL > 0. Assume now that all states on L are labelled by χ and
τL > 0. Let h0 ∈ posσ(L) be the first (smallest) position such that (P, σ, h0) 6|= ϕ. If it
does not exist, h can be chosen arbitrarily. Otherwise, let h := h0 − |L|.
For those positions i ∈ posσ(L) with i < h we have i < i+ |L| < h0 and (P, σ, i) |= ϕ

by definition. For all positions i ∈ posσ(L) with i ≥ h+ n̂|L| we show that (P, σ, i) 6|= ϕ.
Towards contradiction assume that (P, σ, i) |= ϕ on account of some witness position
j ≥ i. First, this means ψ ∈ λ(σ(j)). Second, χ holds at all positions from i to j − 1 and
since L is entirely labelled by χ, the formula holds also at all positions from h0 to i− 1.
Thus, χ holds at each position from h0 to j − 1.

Third, let h′0 ∈ [h, h0− 1] be the position between h and h0 such that i = h′0 + n|L| for
some n ≥ n̂. The effect of a single step along σ on the value of the term τ is bounded by
aτ · `τ ≤ aΦ · |Φ| where aτ is the maximal absolute value of the coefficients in τ and `τ is
the number of monomial terms in τ . Since there are at most |L| − 1 positions between
h′0 and h0, the effect of the path between h′0 and h0 is bounded by

|JτK(#P,σh′0,h0−1)| ≤ aτ · `τ · (|L| − 1) ≤ aΦ · |Φ| · |QS | ≤ n̂. (4.9)

Hence, we have

JτK(#P,σh0,j−1) = JτK(#P,σh′0,i−1) + JτK(#P,σi,j−1)− JτK(#P,σh′0,h0−1)

≥ JτK(#P,σh′0,i−1) + JτK(#P,σi,j−1)− n̂ (Equation (4.9))

≥ n · τL + JτK(#P,σi,j−1)− n̂ (h′0 ≥ min posσ(L)− |L|)

≥ JτK(#P,σi,j−1) (n ≥ n̂, τL > 0)

≥ b.

In summary this would mean that (P, σ, h0) |= ϕ contradicting the choice of h0.

No defect on L and τL < 0. Assume finally that all states of L are labelled by χ and
τL < 0. Observe that for all positions i with i, i+ |L| ∈ posσ(L) we have that (P, σ, i) |= ϕ

implies (P, σ, i+ |L|) |= ϕ. If ϕ holds at i on account of a witness position j ≥ i+ |L|,
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then

JτK(#P,σi+|L|,j−1) = JτK(#P,σi,j−1)− JτK(#P,σi,i+|L|−1)

= JτK(#P,σi,j−1)− τL
≥ JτK(#P,σi,j−1)

≥ b

and j thus witnesses also that ϕ holds at position i+ |L|. Otherwise, j + |L| < i+ 2|L|
is either still a position with a state from L or a position on the succeeding equally
labelled row. In both cases λ(σ(i) . . . σ(j)) = λ(σ(i + |L|) . . . σ(j + |L|) and therefore
ψ ∈ λ(σ(j + |L|)), χ ∈ λ(σ(i+ |L|) ∩ . . . ∩ λ(σ(j + |L|)), and

JτK(#P,σi+|L|,j+|L|−1) = JτK(λ#(σ(i+ |L|) . . . σ(j + |L| − 1))

= JτK(λ#(σ(i) . . . σ(j − 1))

≥ b.

Consequently, if the satisfaction at some state of L changes from one iteration to the next
at all, there is a first such position h ∈ posσ(L) with (P, σ, h) 6|= ϕ, h + |L| ∈ posσ(L),
and (P, σ, h+ |L|) |= ϕ. With h being chosen minimal, the lemma statement holds for
all i ∈ posσ(L) with i < h. For all other such positions i ≥ h + n̂|L|, we show that
(P, σ, i) |= ϕ in the following.

Let j ≥ h+ |L| be a position on σ witnessing that ϕ holds at h+ |L|. This position
must be beyond the last position of L because otherwise it would imply that the
position j − |L| witnesses the satisfaction of ϕ at h. More precisely, assume towards
contradiction that j ∈ posσ(L). Since j ≥ h + |L| and thus h ≤ j − |L| ∈ posσ(L), we
have ψ ∈ λ(σ(j − |L|)) = λ(σ(j)). Each position of L is labelled by χ, in particular those
from h to j − |L|, and, as above,

JτK(#P,σh,j−|L|−1) = JτK(#P,σh+|L|,j−1) ≥ b.

Now, knowing j 6∈ posσ(L) we conclude that h < h + n̂|L| ≤ i < j and hence all
positions from i to j − 1 are labelled by χ. Also, there is i′ ∈ [i + 1, i + |L|] such that
i′ = h+ |L|+ n|L| for some n ≥ n̂ and by the same reasoning as for Equation (4.9) we
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have |JτK(#P,σi,i′−1)| ≤ n̂ and thus JτK(#P,σi,i′−1) ≥ −n̂. Hence,

JτK(#P,σi,j−1) = JτK(#P,σh+|L|,j−1)− JτK(#P,σh+|L|,i′−1) + JτK(#P,σi,i′−1)

≥ JτK(#P,σh+|L|,j−1)− n · τL − n̂

≥ JτK(#P,σh+|L|,j−1) (by −τL > 0, n ≥ n̂)

≥ b

providing that (P, σ, i) |= ϕ. This shows that h is a valid pivot. �

Imposing Consistency

Having established that there is a pivot position h for each loop in PN , we can stabilise all
of them with respect to the formula ϕ reusing the construction developed in the context
of guard formulae. Applying Lemma 4.26 to PN provides a derived APS P̂N and a run
σ̂N ∈ runs(P̂N ) still satisfying Φ but on which all loops are stable with respect to ϕ.
In combination with the inherited N -consistency of P̂N this implies that for every

formula ψ ∈ M = N ∪ {ϕ} and every state q ∈ Q either (P̂N , σ̂N , iq) |= ψ holds for all
states iq ∈ posσ̂N (q) or none of them. Therefore, the labelling function λM : Q→ 2cLTL

given by

λM (q) :=

λ̂N (q) ∪ {ϕ} if ∀iq∈posσ̂N (q) : (P̂N , σ̂N , iq) |= ϕ

λ̂N (q) \ {ϕ} otherwise

induced by σ̂N is not only well-defined but faithfully represents the semantics of all
formulae from M . Exchanging the labelling function of P̂N by λM now allows us to
apply Lemma 4.17 consecutively to all row states r ∈ Q̂N of the APS. Since making r
consistent by applying the lemma involves only adding an additional, fresh counter and
dedicated guards, there is no interference between the application for different row states.
Having made all row states consistent provides that the loop states are also consistent by
condition D3 of Definition 4.11. Thus, after at most |Q̂N | applications of the lemma the
final APS PM = (Q̂N ,∆M , λM , ôrgN ) is obtained with size bounded by

|PM | ≤ |P̂N |+ |QN | · |∆̂N | · |ϕ|.

The Size of PM

Let us sum up the construction of PM for ϕ = χU[τ -> b] ψ:

1. Lemma 4.28 provides the existence of pivots for the loops in PN and allows for
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applying Lemma 4.26 to obtain an all-stable version P̂N of PN with

|P̂N | ≤ (n̂+ 7) · |PN |+ 2 · |Φ| · (n̂+ 4)3 · |∆N |2,

|Q̂N | ≤ (n̂+ 4) · |QN |, and

|∆̂N | ≤ (n̂+ 4) · |∆N |.

2. The run σ̂N determines a labelling of P̂N . Lemma 4.17, applied to all its row states,
then provides the M -consistent APS PM of size

|PM | ≤ |P̂N |+ |Q̂N | · |∆̂N | · |ϕ|.

To confirm the induction step let us estimate the size of |PM | by

|PM | ≤ |P̂N |+ |∆̂N |2 · |Φ|

≤ (n̂+ 7) · |PN |+ 2 · |Φ| · (n̂+ 4)3 · |∆N |2

+ (n̂+ 4)2 · |QN |2 · |Φ|

≤ (n̂+ 7) · |PN |+ 3 · |Φ| · (n̂+ 4)3 · |∆N |2

≤ (n̂+ 7) · |PN |+ 3 · |Φ| · (n̂+ 4)2|N |+3 · |∆ρ|2

using the induction hypothesis. Finally, we confirm the proof goal of the induction in
analogy to the estimation for guard formulae in Equation (4.7).

4.5.6 Summary

The base case and the exhaustive analysis of all structural cases of the formula ϕ

have shown that the induction hypothesis holds for all downward-closed subsets of
sub(Φ) and therefore especially for sub(Φ). We conclude that the APS PΦ proposed by
Theorem 4.21 exists, witnessed by Psub(Φ). Recall that the base case used the APS Pρ
constructed directly from the run ρ in S with |P∅| = |Pρ| ≤ 4|S| and |∆∅| = |∆ρ| ≤ 4|∆S |.
Further, notice that log2(âΦ · |sub(Φ)|) ≤ size(âΦ) + |sub(Φ)| ≤ |Φ| and log2(ûS · |QS |) ≤
size(ûS) + |QS | ≤ |S|. The size of PΦ can hence be bounded exponentially in |Φ|2 and
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|S| by

|PΦ| ≤ (n̂+ 7)|sub(Φ)| · |Pρ|+ 3 · |Φ| · |sub(Φ)| · (n̂+ 7)3|sub(Φ)| · |∆ρ|2

≤ (n̂+ 7)|sub(Φ)| · 4|S|+ 3 · |Φ| · |sub(Φ)| · (n̂+ 7)3|sub(Φ)| · 42 · |S|2

≤ 2|Φ|·(|Φ|·|S|+3) · 4|S|+ 48 · |Φ|2 · |S|2 · 23|Φ|·(|Φ|·|S|+3)

≤ 2k·|Φ|2·|S|

for some constant k ∈ N. This concludes the proof of Theorem 4.21.

4.6 Discussion

The present chapter has demonstrated that the model-checking problem of cLTL is
decidable over flat counter systems. To this end, augmented path schemas were introduced
as a compact symbolic representation of runs of counter systems along with additional
semantic information. They serve to witness that a cLTL formula Φ is satisfied. In fact,
obeying the consistency criterion, the labelling by subformulae of Φ can be understood as a
representation of a proof that the contained runs satisfy the formula. The construction of
such a schema from only a satisfying run provides the completeness of the guess-and-check
procedure and an upper bound on their size establishes a complexity bound.
The potential estimate appears high in comparison to the PSpace-bound for LTL

over Kripke structures and the NP-bound over flat counter systems. Although counting
is an extremely powerful mechanism and it is not uncommon to arrive at such high
complexities, unfortunately it remains open whether the blow-up is unavoidable and
thereby the apparent question for a precise lower bound of the problem.
One source of exponential growth in the construction is that constants used in con-

straints can potentially lead to unstable parts on a run of linear size in their value. As
demonstrated in Figure 4.10, representing an unstable phase of loop iterations explicitly
in a path schema by unfolding the loop may result in a structure of exponential size.
Reducing the complexity of the procedure would hence require representing such unstable
parts much more concisely.
Even if we consider unary encoding of constants, another source of the exponential

growth would have to be considered. The construction handles nested counting operators
by potentially duplicating each loop for every additional nesting level. Further investiga-
tion would therefore be necessary to understand the effect of nested counting operators
on the structure of a run and whether exponentially many copies of a single loop are
actually required to represent it.
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p1 p2 ψ

+11

−10

−10

Figure 4.10: Sketch of a loop that can result in a large number of unstable iterations. For
example, a formula ϕ = true U[11p1−10p2 -> 10] ψ would be violated at both
loop states during the last 10 iterations. Before, it holds at the first state
but not when visiting the second. Only before the last 20 iterations would
ϕ hold at both states and the unstable part of a corresponding run would
thus be of length 10; in general, it is linear in the absolute values used
in the constraint and exponential in their representation size. The edge
labels indicate the effect of visiting the states on the value of the counting
constraints.

Nevertheless, the developed technique provides effective means to reason on counter
systems with respect to properties expressed in cLTL. In the next chapter, we will see
how this can be used as the basis of a concrete verification approach.
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� Chapter 5

SMT-based Flat Model Checking

Both counter systems as system model and counting temporal logic as specification
language are very powerful means to state verification tasks. As was observed above
(Theorem 4.1), the corresponding decision problems are undecidable in general and the
decision procedure developed in the previous chapter relies on flatness of the system
model. The aim of this chapter is to advance from the theoretical developments towards
a more concrete approach to program verification. It follows closely the presentation
of [DP19].
To maximise the utility of the verification approach, the general restriction to flat

systems shall not be imposed on the programs to be verified. Instead, augmented path
schemas will be used as flat under-approximations in order to employ the power of
the unrestricted formalisms while benefiting from the improved complexity. Using flat
systems as under-approximation in verification tasks was suggested by Demri, Dhar and
Sangnier [DDS15]. In general, using approximations to approach otherwise unsolvable
problems has proven to be a successful strategy in software verification. Both under-
and over-approximation techniques are described in the literature and implemented in
powerful tools. The latter refers to considering a superset of the system’s behaviour, i.e.,
of its runs. The method can be used to show the absence of a particular run in the original
system by showing its absence in an even larger superset. The intention is to obtain a
more concise representation and thereby a verification speed-up. A prominent technique
to obtain an over-approximation is to consider abstract states representing sets of original
states or configurations, e.g. characterised by particular logical predicates [GS97; CU98]
(see also [Cla+18, Chapters 13 and 15]). It can be combined with iterated refinement of
the abstraction, as used in counterexample-guided abstraction refinement [Cla+03].
The complementary approach is to under-approximate the behaviour of a system in

terms of a subset of its runs. While the absence of a particular run does not provide
a conclusive result in this case, it allows for proving the existence of a witness—and
thus to confirm an existential property or refute a universal property. A well-known
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method of under-approximation is bounded model checking [Bie+99; Bie09] where a given
property is evaluated on finite prefixes of system runs. A prefix of length k provides
all necessary information to evaluate lasso-shaped runs of the form s0s1 . . . (s` . . . sk−1)ω

visiting up to k different states. The transition relation and the semantics of an LTL

property is formulated in propositional logic and unfolded k times. A solution to the
resulting formula then represents a satisfying run. An advantage of the method is that
improving the under-approximation amounts to simply increasing the parameter k (as
opposed to, e.g., computing suitable predicates for a more precise abstraction). Beginning
with small values for k and dynamically increasing the verification depth provides the
potential of finding witnesses early without evaluating the system exhaustively. In result,
bounded-model checkers are very competitive when it comes to quickly finding witnesses,
as suggested by the results of the Software Verification Competition [Bey17].
Similarly to bounded model checking, the approach proposed here employs a depth

parameter to control the size of the flat under-approximation and allows the user to
flexibly adjust the trade-off between exhaustiveness and computational effort. Essential
advantages of APS, however, are that they are more concise and that they can represent
infinite subsets of runs instead of the finite number of lassos represented by one or finitely
many prefixes. Limiting the size of APS can be understood as bounding the number of
loop alternations in the original system, while still admitting any number of iterations.

Figure 5.1 shows an example of a counter system S and the sketch of a path schema—
a special case of flat systems—representing an infinite subset of the runs of S. It
demonstrates how a flat system of sufficient depth can accommodate a bounded number
of loop alternations. A run through S may alternate, e.g., the loops L1 and L2 arbitrarily
and this is not possible in a single flat system, by the very nature of the concept. However,
increasing the number of available states allows for representing an increased number of
alternations and, hence, a more complicated shape. Further, more complex but periodic
looping patterns can be represented by combining several iterations of different loops in
S into one larger loop of the approximation.

Notice that, when increasing the approximation depth to include one more alternation,
an infinite number of additional runs is represented—and verified—at once. In contrast,
the finite prefixes considered in bounded model checking would always limit not only the
structure of the represented runs but also the number of times any loop can be iterated.
Even for a given number of loop iterations to be represented, the required depth is much
larger because they have to be unfolded entirely. For example, the run specified by the
APS and the numbers of loop iterations in Figure 5.1 would require an unfolded prefix of
length 50 while the APS requires only 24 states.
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s0

p

s4

q

s1

s3

p

s2

(1
0
)

(−2
1
)
c -> 0

d -> 5

(13)
(4)

(6)
(ω)

L1 L2 L1 L3

Figure 5.1: A diagram showing a counter system S (top) over propositions AP = {p, q}
and counters {c, d} as well as a sketch of an APS P (bottom) that alternates
loops L1 = {s0} and L2 = {s1, s2, s3} of S unfolded as required by Defini-
tion 4.4. The numbers above loops specify one of the runs represented by
P. Notice that the original loops in S are iterated two times more than the
corresponding loops in P due to the additional unfoldings, e.g., L1 is iterated
15 times consecutively on the represented original run before visiting L2.

Considering first a small depth and increasing it only if no witness was found allows
for finding “simple” witnesses quickly where they exist, even for complex path properties.
Recall that the underlying theory provides a bound on the maximal depth that needs to
be considered in the case of a flat system. The method is (necessarily) incomplete in the
general case but can nevertheless be directly applied.

Increasing the depth of a flat under-approximation is similar to so-called loop accelera-
tion in symbolic verification. It aims at stepping over an arbitrary number of consecutive
iterations of a loop during state space exploration by symbolically representing its effect.
Since this is particularly effective for simple loops, flatness is a desired property [Bar+05]
also in this setting. Unfortunately, acceleration typically concerns the computation of
reachability sets [Bar+05; Bey+07; Can+08; KW10; Hoj+12] and is thus insufficient
when analysing path properties as expressible in (extensions of) LTL. For accelerating the
latter, flat systems and path schemas in particular provide a suitable symbolic model
since they represent entire runs.

Based on the theory developed in Chapter 4, an explicit formulation of the (approxim-
ated) model-checking problem in quantifier-free Presburger arithmetic (qfPA) is described
in the subsequent chapter. Recall that Presburger arithmetic is first-order logic over the
natural numbers with addition. The satisfiability problem is decidable [Pre29] and in the
case of the quantifier-free fragment in NP [BT76]. Importantly, the theory of qfPA is
well-supported by a number of competitive SMT solvers (cf. [CSW15]). The construction
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is parametrised by the depth of the flat approximation that is to be verified, and the
resulting qfPA formula is linear in the problem size and the chosen depth.

Flat Model Checking

Recall that, given a counter system S and a cLTL formula Φ the existential model-
checking problem for cLTL is to decide whether S |= Φ, i.e., to compute if S contains a run
satisfying Φ. Recall also that the problem is undecidable for two reasons: First, counter
systems extend Minsky machines [Min67] and even LTL can express their undecidable
(control-state) reachability problem. Second, cLTL extends fLTL and checking a universal
Kripke structure encodes its undecidable satisfiability problem (cf. Chapter 3).

Let us therefore approach a parametrised approximation of the problem that we call flat
model checking. It considers only runs with a specific shape, namely those represented by
path schemas. Recall that a path schema [LS04; DDS15] is characterised by a (connected)
sequence u0v0u1v1 . . . umvm of paths ui and loops vi of S. It represents all those runs
ρ of S that traverse a state sequence of the form u0v

k0
0 . . . um−1v

km−1
m−1 umv

ω
m for some

k0, . . . , km−1 ∈ N. Restricting the length of such a schema effectively controls how
complicated the shape of the considered runs can be. In particular, it bounds the cycle
alternation performed by a run.

I Definition 5.1 (Flat model checking). Let S = (S,∆, sI , λ) be a counter system and
n ∈ N. The flat approximation of depth n of S is the set

FA(S, n) := {ρ ∈ runs(S) | ∃u0,v0,...,um,vm∈S∗∃k0,...,km−1∈N : |u0v0u1v1 . . . umvm| ≤ n

∧ st(ρ) = u0v
k0
0 . . . um−1v

km−1
m−1 umv

ω
m }.

The flat model-checking problem is to decide for S, n, and a cLTL formula ϕ, whether
there is a run ρ ∈ FA(S, n) with (S, ρ) |= ϕ, denoted FA(S, n) |= ϕ.

A flat approximation FA(S, n) induces a flat counter system F with FA(S, n) = runs(F)
and thus a series (Fn)n∈N of flat counter systems representing an increasing number of
runs of S. Flat model checking can hence be understood as verifying the nth system
in this series providing the computational benefits of flatness in the concrete case. As
mentioned earlier, this is similar to bounded model checking, where the approximation is
prefix-based and represents only a finite number of runs.

Notice that, even if S is not flat, each run contained in the flat approximation FA(S, n)
of S can by definition be represented by an APS in S of size n. Therefore, FA(S, n) also
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yields an exponential witness for non-emptiness on account of the construction proving
Theorem 4.21.

I Corollary 5.2. If FA(S, n) |= Φ then there is a non-empty and Φ-consistent APS in S
with initial state labelled by Φ and of at most exponential size in n and Φ.

5.1 From Flat Model Checking to Presburger Arithmetic

For solving the flat model-checking problem of a counter system S = (S,∆, sI , λ) and
a formula Φ ∈ cLTL(CS), for CS := counters(S), the previous developments devise the
search for an augmented path schema P in S that is Φ-consistent, labelled initially by
Φ and non-empty. This section presents a formulation of this search in quantifier-free
Presburger arithmetic, aiming for an SMT-based implementation. The idea is to encode
an APS of size n ∈ N and a run of it as valuation of a set of first-order variables. A formula
fmc(S,Φ, n) is constructed to be satisfiable if there is a run ρ ∈ FA(S, n) satisfying Φ
and such that any solution represents a valid witness that S |= Φ.

We only encode such augmented path schemas P = (Q,∆P , λP , org) where the states
are natural numbers Q = {0, . . . , n− 1}, ordered according to the natural ordering. That
is, the forward transitions from ∆P point forward along this relation (cf. Definition 4.4).
This is not an essential restriction as the assumption can be imposed on an arbitrary
APS by an isomorphic renaming of the states. Also, it is assumed that the labelling
λP : Q→ 2sub(Φ) consists only of subformulae of Φ since other formulae are irrelevant.
Under these assumptions, it suffices to encode explicitly only the beginning and end of
loops, the origin and labelling of each state, as well as a run in terms of the number of
iterations for each loop. Further, the formula expresses the satisfaction of all encountered
guards to ensure the validity of the run as well as the consistency criterion.

The presented formula does not only contain first-order variables for integer numbers
but also of natural, Boolean, and enumeration types (sorts). They can, theoretically, be
encoded into integers but are more readable and directly supported by, e.g., the z3 SMT
solver [MB08]. The notation var : X is used to denote that some variable symbol var
is of some sort X. A mapping f : Y → X with some finite domain Y = {y1, . . . , y|Y |}
can be represented by (a valuation of) variable symbols fy1 , . . . , fy|Y | : X that will mostly
be denoted concisely by a single variable f : XY . For y ∈ Y let f(y) denote fy. Subsets
of a finite domain Y , are represented in terms of mappings holding their characteristic
function. That is, variable symbols set : 2Y are represented as those of type {0, 1}Y .
For y ∈ Y let y ∈ set and y 6∈ set abbreviate the equality terms set(y) = 1 and set(y) = 0,
respectively. The shorthand ite(cond, prop, alt) represents the if-then-else construct
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equivalent to (cond → prop)∧(¬cond → alt).
Figure 5.2 depicts an example of an APS P and its representation in terms of first-order

variables and their valuation. For every state i ∈ Q, we encode the positions of loops in
terms of a variable typi : {�, .,�, /} that indicates whether it is outside (�), inside (�), the
beginning (.), or the end (/) of a loop. For easier reading, expressions of the form typi = �
may be abbreviated by �i for � ∈ {�, .,�, /}. The origin is represented by a variable
orgi : S and the labelling by lbli : {0, 1}sub(Φ), describing the set λP(i) ⊆ sub(Φ). In the
following, the formula fmc(S,Φ, n) is constructed to formulate the flat model-checking
problem in qfPA. It is parametrised by the counter system S, the cLTL formula Φ to be
checked, and the approximation depth n. The formula

fmc(S,Φ, n) := aps(S, n)∧ run(S, n)∧ consistency(n,Φ)∧Φ ∈ lbl0

is comprised of different components that are dedicated to specific aspects of the encoding.
Further, it expresses that the first state of the encoded APS is labelled by Φ.

To allow for a simplified presentation, let us assume that there is at most one transition
between every two states of S, thus being uniquely identified by orgi and orgi+1. The
assumption could be eliminated by adding 2n additional variables determining explicitly
which transition is selected for the represented APS.

5.1.1 Basic Structure

The basic structure of APS is specified as qfPA formula

aps(S, n) := org0 = sI ∧ typ(n)∧ labels(S, n)∧ transitions(S, n).

It states that sI is the origin of the first state and that loops are delimited by . and / in
terms of the formula

typ(n) :=
∧

i∈[1,n−1]
ite(/i−1 ∨�i−1, �i ∨ .i, �i ∨ /i).

To express that the labelling of states by propositions coincides with that of S, the
formula

labels(S, n) :=
∧

p∈AP,
i∈[0,n−1]

p ∈ lbli ↔
∨

s∈λ−1(p)
orgi = s

is used.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

typi � . / � . � / � . / � � � . /

orgi s0 s0 s0 s1 s2 s3 s1 s4 s0 s0 s1 s4 s0 s1 s4

itri 7 7 6 6 6 4 4 0 0

valFsti 0 1 2 14 14 14 4 5 17 17
0 0 0 0 0 0 5 5 5 5

lUpdi 12 6 −10 0 0 12 6
0 0 5 0 0 0 0

valLsti 13 14 14 4 4 4 4 16 17 17 17 17 17 17
0 0 0 5 5 5 5 5 5 5 5 5 5 5

lbli p,ϕ p,ϕ p,ϕ ∅ ϕ p,ϕ ϕ q,ϕ p,ϕ p,ϕ ∅ q,ϕ p,ϕ ∅ q,ϕ

maxFstϕi 14 13 12 −1 0 1 0 6 7 6 −1 0 0 −1 0

updFstϕi 14 13 12 −1 0 1 0 6 7 6 −1 −1 0 −1

sumEffti 2·6 −1·5 2·3

maxLstϕi 14 1 0 −1 5 6 5 6 1 0 −1 0 0

updLstϕi 14 1 0 −1 5 6 5 6 1 0 −1 −1 0

(1
0

) (1
0

)
c≥0 d≥5

(1
0

)
d≥5 d≥5

(1
0

)
c≥0

(−2
1

) (1
0

)

Figure 5.2: Example of the encoding of the run and path schema shown in Figure 5.1 with
consistent labelling by ϕ = true U[p−¬p -> 0] q. It demonstrates propagation
of counter values and the best witness position for ϕ. Some variables are
omitted for readability. Notice how the single-state loops are represented by
half as many iterations of two-state loops. In case the number of iterations is
odd, such as for the first loop representing iterations of L1 in Figure 5.1, an
equivalent APS can be assumed where the first iteration is unfolded.

Transitions. One way to express that each backward transition from the last to the first
state of a loop has a correspondence in S is to build a constraint over all pairs of states
from Q. This is, however, quadratic in n and we therefore use a propagation scheme
introducing n additional variables orgAtEndi : S. We let them equal orgi where typi = /
and otherwise be copied from orgAtEndi+1, thus propagating backward the origin of the
last state of every loop. The corresponding formula is

orgAtEnd(n) := orgAtEndn−1 = orgn−1

∧
∧

i∈[0,n−2]
ite(/i, orgAtEndi = orgi, orgAtEndi = orgAtEndi+1).
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The formula

transitionsBwd(S, n) :=
∧

i∈[0,n−1]
.i →

∨
(s,µ,Γ,s′)∈∆

orgAtEndi = s∧ orgi = s′

then guarantees that all backward transitions exist in S. Similar propagation chains
will be used at other occasions to avoid a quadratic blow-up of the formula size due to
information non-locality. Forward transitions are specified similarly, but without the
need for propagation, by

transitionsFwd(S, n) :=
∧

i∈[1,n−1]

∨
(s,µ,Γ,s′)∈∆

orgi−1 = s∧ orgi = s′.

The combination of the formulae now defines the formula

transitions(S, n) := orgAtEnd(n)∧ transitionsBwd(S, n)∧ transitionsFwd(S, n)

used as part of aps(S, n) above. Notice that this encoding assumes a minimal loop
length of 2 due to distinct positions for the first (.) and the last (/) state of each loop.
Single-state loops can still be represented as longer (e.g. two-state) loops by combining
multiple iterations as one loop that is iterated less often (cf. Figure 5.2). Excluding
single-state loops increases the upper bound for the size of path schemas only by one
state per loop.

Front and Rear Rows. The definition of augmented path schemas demands that loops
be surrounded by identical rows. Being identical, these rows are not represented explicitly
in the encoding. Instead, runs will be assumed to traverse each representation of a loop
at least three times, the first representing the front, the last representing the rear and
the remaining representing the actual loop traversals. The construction will distinguish
between the first, second and last iteration, where necessary. This is equivalent to
representing the states of the front and rear rows individually but allows for a more
compact encoding and also provides an efficient way to correlate every loop state to its
correspondents on the front and rear.
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5.1.2 Runs

The formula run(S, n) specifies the shape and constraints of a run in the encoded schema.
It has the form

run(S, n) := itr(n)∧ valuations(S, n)∧ guards(S, n).

Variables itri : N are used to indicate how often state i ∈ Q is visited and are thus
constraint to equal 1 outside loops and to stay constant inside each loop. Since every
loop state is used to also represent its counterpart on the front and rear, they are to
be repeated at least three times. Infinite iteration of the last loop is represented by the
otherwise unused value 0. This is formulated by

itr(n) := itrn−1 = 0∧
∧

i∈[0,n−2]
(�i ∧ itri = 1)∨(/i ∧ itri > 2)∨ itri = itri+1.

The other components of the formula concern the valuation of counters and evaluation of
transition guards. They are described in the following.

Counter Valuations

The valuation of any counter at any position on a run ρ of an encoded APS P is
determined unambiguously by the shape of P (in terms of the sequence of states and
their origins) and the number of repetitions of every loop. Yet, in order to formulate
that guards need to be satisfied, the counter values will be made explicit in terms of
variables valFsti, valSeci : ZCS and valLsti : ZCS∞ for every state i ∈ Q. They are supposed
to hold the counter valuations at the first, second, and last occurrence, respectively, of
state i on the represented run. Naturally, outside loops the first and last valuations are
equal and the second does technically not exist, so valSeci does not have a semantically
meaningful value. Nevertheless, all variables are introduced for each state as loops may
occur anywhere. Recall that the states of a loop also represent those of its front and rear
rows, so the first and last iteration corresponds to those. The formula

valuations(S, n) := valFst0 = 0
∧ valRow(S, n)∧ valLoop(S, n)
∧ valFstSecItr(S, n)∧ valLastItr(S, n)
∧ valPropagation(n)∧ loopUpdate(S, n)
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encodes the semantics of counter updates in terms of the valuations in the represented
run. By definition, runs start with the valuation 0, assigning 0 to the whole domain. For
row states i (of type �) the valuation at its (first and only) occurrence is computed from
the valuation at the last occurrence of the previous state i− 1 by adding (elementwise)
the update function µ of the transition (org(i− 1), µ,Γ, org(i)) ∈ ∆ from i− 1 to i. As
mentioned earlier, the first and last occurrence are the same and the variable valSeci is
deliberately set to equal them as well but could as well be left unconstrained. Hence, let

valRow(S, n) :=
∧

i∈[1,n−1]
�i →

∧
(s,µ,Γ,s′)∈∆

orgi−1 = s∧ orgi = s′ →

valFsti = valSeci = valLsti = valLsti−1 + µ.

Recall that we assume that there is at most one transition between every two states in S.
Inside (�) and at the end of loops (/), the counter values are propagated individually for
the first, second, and last iteration, expressed by

valLoop(S, n) :=
∧

i∈[1,n−1]
�i ∨ /i →

∧
(s,µ,Γ,s′)∈∆

orgi−1 = s∧ orgi = s′ →


valFsti = valFsti−1 + µ

∧ valSeci = valSeci−1 + µ

∧ valLsti = valLsti−1 + µ

 .

At the beginning (.) of a loop the value in the first iteration is computed from the
preceding position. The first value in the second iteration is to be computed from the
last value of the first iteration. However, given a state i, it cannot be determined a priori
which state exactly constitutes the end of the loop. To obtain the value of the state that
happens to be the last on the loop, variables valFstAtEndi are introduced to hold the
valuation at the last state during the first iteration throughout the loop and make it
thus directly accessible at the beginning. They are defined using a propagation scheme
as above expressed by

valPropagation(n) := valFstAtEndn−1 = valFstn−1 ∧∧
i∈[0,n−2]

ite(/i, valFstAtEndi = valFsti, valFstAtEndi = valFstAtEndi+1).
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Then, valSeci can be set to valFstAtEndi + µ where µ comes from the incoming backward
transition of state i. This is specified by

valFstSecItr(S, n) :=

∧
i∈[1,n−1]

(s,µ,Γ,s′)∈∆

.i →

 (orgi−1 = s∧ orgi = s′ → valFsti = valLsti−1 + µ)

∧(orgAtEndi = s∧ orgi = s′ → valSeci = valFstAtEndi + µ)

 .
Having a direct handle on the valuations in the first and second iteration (in terms of

the variables valFsti and valSeci) as well as the total number of loop iterations (itri), it is
tempting to specify the valuations in the last iteration simply by

valLsti = valFsti + (valSeci − valFsti) · (itri − 1).

Unfortunately, this formula uses multiplication of variables and hence exceeds Presburger
arithmetic. Therefore, we need to specify the value of (valSeci − valFsti) · (itri − 1)
differently. Instead, the updates over the second to last loop iteration are accumulated in
an explicit variable lUpdi such that valLsti can be set to valFsti + lUpdi. We express this
accumulation by the formula

loopUpdate(S, n) :=
∧

i∈[1,n−2]

∧
(s,µ,Γ,s′)∈∆

(/i ∧ orgi−1 = s∧ orgi = s′ → lUpdi =µ · itri − µ)
∧ (�i ∧ orgi−1 = s∧ orgi = s′ → lUpdi =µ · itri − µ+ lUpdi+1)
∧ (.i ∧ orgAtEndi = s∧ orgi = s′ → lUpdi =µ · itri − µ+ lUpdi+1).

Essentially, the multiplication by itri is distributed over the individual transition updates
along the loop. This is admissible because the individual updates µ appear in the formula
not as variables but as constants. Notice that this formulation deliberately multiplies
functions with integers, which is to be understood as point-wise application. Further,
the choice of using 0 to mark the infinite iteration of the last loop (as opposed to, e.g.,
∞) is useful here because otherwise the equation would not be well defined, a negative
and a positive update could result in having to add −∞ and ∞. In the formulation
above, lUpdi is always zero for states i on the last loop but this is no problem because
this particular situation can be handled using valFsti and valSeci. Observe also that
the variable lUpdi holds only intermediate results inside and at the end of loops and is
undefined outside. Only for states i that are the beginning of a loop, it holds the precise

109



Chapter 5 SMT-based Flat Model Checking

accumulated loop effect but this suffices since this value is propagated as specified by the
formula valLoop(S, n) above.
Using lUpdi, the calculation of the valuations in the last iteration of a loop is now

formulated as

valLastItr(S, n) :=∧
i∈[1,n−1]

.i →
∧

(s,µ,Γ,s′)∈∆
orgAtEndi = s∧ orgi = s′ →

ite
(

itri > 0, valLsti = valFsti + lUpdi,
∧
c∈CS

(valFsti(c) = valSeci(c) = valLsti(c))

∨ (valFsti(c) > valSeci(c)∧ valLsti(c) =−∞)

∨ (valFsti(c) < valSeci(c)∧ valLsti(c) =∞)
)
.

Transition Guards

To ensure that the represented run is valid it must satisfy all the transition guards at any
time. The formula valuations(S, n) developed above ensures that the variables valFsti,
valSeci, and valLsti faithfully provide the counter valuations when reaching the state
i ∈ Q for the first, the second and the last time, respectively. Recall that, due to flatness,
each loop is entered and left only once. Since every guard of the counter system is a
linear inequality and the effect of the updates of any specific loop is constant, it suffices
to check the guard in the first and last traversal in order to guarantee that it is satisfied
throughout all repetitions of a particular loop state.
For a constraint term over CS of the form τ =

∑`
j=0 ajcj and a variable symbol

var : ZCS , let τ [var] :=
∑`
j=0 aj · var(cj) denote the syntactic substitution of the counter

names by the variable symbol (representing the value of) var(cj), in analogy to the
evaluation of constraint terms using valuations (cf. Section 2.1.2). The formula

guardsFwd(S, n) :=
∧

i∈[1,n−1],
(s,µ,Γ,s′)∈∆

orgi−1 = s∧ orgi = s′ →

∧
(τ -> b)∈Γ

τ [valFsti] -> b∧(¬.i → τ [valLsti] -> b)

then specifies that the encoded run satisfies the guards whenever taking a forward
transition. Recall that for some counter c ∈ CS the variable valLsti(c) may be assigned
a symbolic value. Thus, a proper interpretation (or expansion) of -> is assumed such
that ∞ -> b holds for every b ∈ Z while −∞ -> b holds for none. Notice that the (forward)
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transition from state i− 1 to state i is not taken at the beginning of the last iteration of
a loop and thus, its guard must not be checked for the corresponding valuation. Instead,
the guard of the backward transition pointing to i must be verified. This transition is
taken by the encoded run for the first time when entering the second loop iteration. The
guards of backward transitions are thus reflected exhaustively by

guardsBwd :=
∧

i∈[1,n−1],
(s,µ,Γ,s′)∈∆

.i ∧ orgAtEndi = s∧ orgi = s′ →

∧
(τ -> b)∈Γ

τ [valSeci] -> b∧ τ [valLsti] -> b.

Thereby we complete the definition of the formula

guards(S, n) := guardsFwd(S, n)∧ guardsBwd(S, n)

and the specification of proper runs in terms of the formula run(S, n).

5.1.3 Consistency

The formulae constructed above describe the fact that there is some non-empty augmented
path schema in the counter system S of which the first state is labelled by Φ. In the
following, we develop the components of the formula

consistency(n,Φ) :=
∧

(¬ϕ)∈sub(Φ) consistencyNeg(n, ϕ)

∧
∧
ϕ∧ψ∈sub(Φ) consistencyAnd(n, ϕ, ψ)

∧
∧

(τ -> b)∈sub(Φ) consistencyGrd(n, τ, b)

∧
∧

Xϕ∈sub(Φ) consistencyX(ϕ)

∧
∧
χU[τ -> b] ψ∈sub(Φ) consistencyU(n, χ, ψ, τ, b)

stating that this APS is consistent. Recall that Φ-consistency requires all states of an APS
to be consistent with respect to all subformulae of Φ. Definition 4.11 discriminates the
structural cases of a cLTL formula and therefore the components of the qfPA formulation
cover one case each and impose consistency of all states for one subformula of Φ at a
time.
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Propositions and Boolean Combinations

Condition B of Definition 4.11 can almost literally be translated to qfPA formulae

consistencyNeg(n, ϕ) :=
∧

i∈[0,n−1]
(¬ϕ) ∈ lbli ↔ ϕ 6∈ lbli

and

consistencyAnd(n, ϕ, ψ) :=
∧

i∈[0,n−1]
(ϕ∧ψ) ∈ lbli ↔ ϕ ∈ lbli ∧ψ ∈ lbli.

Guard Formulae

Concerning condition A, counter guard formulae of the form τ -> b are not modelled
explicitly. Rather, the formula

consistencyGrd(n, τ, b) :=
∧

i∈[0,n−1]
(τ -> b) ∈ lbli ↔ τ [valFsti] -> b∧ τ [valLsti] -> b.

imposes that the represented run satisfies the constraints as if they were transition guards
on all incoming transitions on any state labelled by a guard formula. Recall that it
suffices to assert that the guard is satisfied at the first and last occurrence of a state.

Temporal Next

To express condition C of the consistency definition, concerning temporal next formulae,
variables lblAtBegi : 2sub(Φ) are used to propagate labelling information from the first
state of a loop forward towards its end. Similar to the backward propagation of the
origin, let

propagateX(n, ϕ) :=
∧

i∈[1,n−1]
ite
(
.i, ϕ ∈ lblAtBegi ↔ ϕ ∈ lbli,

ϕ ∈ lblAtBegi ↔ ϕ ∈ lblAtBegi−1
)
.

Notice that it is not necessary to determine the propagation value at the first (i = 0)
state because it is never part of a loop. The condition is now specified by

consistencyX(n, ϕ) := propagateX(n, ϕ)∧(Xϕ ∈ lbln−1 ↔ ϕ ∈ lblAtBegn−1)

∧
∧

i∈[0,n−2]
ite
(
Xϕ ∈ lbli, ϕ ∈ lbli+1 ∧(/i → ϕ ∈ lblAtBegi),

ϕ 6∈ lbli+1 ∧(/i → ϕ 6∈ lblAtBegi)
)
.
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Temporal Until: Condition D1

Consider a formula ϕ = χU[τ -> b] ψ ∈ sub(Φ). The consistency criterion considers three
conditions for until formulae of that form. Towards defining the corresponding qfPA

formula consistencyU(n, χ, ψ, τ, b) consider first condition D1 stating, essentially, that
the last loop exhibits a positive effect that eventually proves the formula to hold. To
express the requirements of that condition, the following information is required. Given a
state i ∈ [0, n− 1], first of all, it must be labelled by ϕ and that information is available
in terms of the value of the variable lbli. Second, assume a variable accτ0 : Z holding the
accumulated effect of the last loop on the value of τ . Third, let onLastψ : B be set to
true if and only if ψ occurs as label on some state of the last loop and globχi : B hold if
and only if χ holds globally from state i on. Then, condition D1 is expressed by

conD1(ϕ, i) := ϕ ∈ lbli ∧ accτ0 > 0∧ onLastψ ∧ globχi .

It remains to formulate the side conditions guaranteeing that the variables actually hold
the assumes value.

Accumulated effect of the last loop. To describe the accumulated value of τ on a single
iteration of the last loop we introduce accτi not only for i = 0 but for each i ∈ [0, n− 1].
The idea is now to accumulate backwards from accτn−1 to accτ0 the effects τ [lbli] as long
as i is part of the last loop (identified by itri being equal 0). Let

accu(n, τ) :=

accτn−1 = τ [lbln−1]∧
∧

i∈[0,n−2]
ite(itri = 0, accτi = accτi+1 + τ [lbli], accτi = accτi+1).

It implies, as intended, that accτ0 holds the effect of the last loop on the value of τ .

Reachability of defect- and witness states. Consider the evaluation of whether χ
holds globally at all reachable states. For loop states i ∈ Q, this means that not only
the successors j ≥ i must be labelled by χ but the whole loop. Therefore, we employ
a propagation scheme with two passes. First, a backward propagation imposes that
variables prpgχi hold if and only if all states j ≥ i are labelled by χ. Based on this
information, the intended valuation for globχi is enforced by a forward propagation. The
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formula

glob(n, χ) := (prpgχn−1 ↔ χ ∈ lbln−1)∧

 ∧
i∈[0,n−2]

prpgχi ↔ prpgχi+1 ∧χ ∈ lbli


∧(globχ0 ↔ prpgχ0 )∧

∧
i∈[1,n−1]

globχi ↔ ite(�i ∨ .i, prpgχi , globχi−1)

implies that each variable globχi is true if and only if χ is labelled at all states reachable
from i. The information whether ψ holds somewhere on the last loop is made available
in terms of the variable onLastψ by

fin(n, ψ) := onLastψ ↔
∨

i∈[0,n−1]
itri = 0∧ψ ∈ lbli.

Temporal Until: Condition D2

Condition D2 demands the existence or absence of a witness state proving that a formula
ϕ = χU[τ -> b] ψ ∈ sub(Φ) holds. As before, it would be inefficient to model balance
counters and the guards required by the criterion explicitly. Instead, a formulation is
developed that assures that the encoded APS can be assumed to have the necessary
counters and guards.

For example, assume some state i is to be labelled by ϕ and consider the best (maximal)
value of the term τ on a path starting at state i and leading to some state satisfying
ψ, without violating χ in between. If that value is at least b, then there is a state at
which a balance counter cτ,i for τ and i would have precisely this value and checking the
constraint cτ,i -> b would succeed. On the other hand, if the best value is below b, then
there is no such state. Even, the dual constraint could be added to any potential witness
state and the encoded run would still be valid.
Consider an APS P in S with states Q = [0, n− 1] and assume it is consistent with

respect to all strict subformulae of ϕ and admits a run σ ∈ runs(P). Let xlast :=
min posσ(n− 1) be the first position of state n− 1 on σ and let maxWitP,σϕ : N → Z∞
denote the discussed function defined for x ∈ N by

maxWitP,σϕ (x) :=

max({JτK(#P,σx,y−1) | x ≤ y ≤ xlast, (P, σ, y) |= ψ, ∀y′∈[x,y−1] : (P, σ, y′) |= χ}∪{−∞}).

We make three essential observations regarding maxWitP,σϕ .
First, consider the positions x ≤ xlast − |lastl(P)| preceding the last loop. For those,
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maxWitP,σϕ (x) accurately determines the maximal value for τ (the symbolic value −∞
expressing non-existence of a witness position) unless condition D1 applies to st(σ(x)).
Assuming that there is a witness position z ≥ xlast, the last loop must be entirely labelled
by χ and if JτK(#P,σx,z−1) > maxWitP,σϕ (x), the effect of the final loop on τ must be positive.
Second, if one of conditions D(2)i and D(2)ii applies to a (row) state i ∈ Q, then

there cannot be a witness position for ϕ holding at i, especially not before xlast, and
thus maxWitP,σϕ (xi) < b for posσ(i) = {xi} (cf. Section 4.3.3). On the other hand, if
maxWitP,σϕ (xi) < b, then one of conditions D1 and D(2)i applies or any balance counter
cτ,i for i and τ would satisfy the guard cτ,i < b at any witness position j ≥ i for ϕ. In
the latter case it can thus be assumed that state i obeys condition D(2)ii in P—recall
the construction in the proof of Lemma 4.17, Case 2, that adds a balance counter and
corresponding constraints under these conditions without relevant side effects.
Third, a similar point can be made for conditions D(2)iii and D(2)iv given that

maxWitP,σϕ (xi) ≥ b. These conditions imply that there, in fact, is a witness position for
ϕ before the end of the second iteration of the last loop. Vice versa, the definition of
maxWitP,σϕ (xi) demands for some witness position y ≥ xi. Again, the construction of
a consistent APS in the proof of Lemma 4.17, Case 1, has shown that if this witness
exists, then one of conditions D1 and D(2)iii holds or condition D(2)iv can be established
without adding extra states. Hence, i can be assumed to obey one of the conditions in P .

Based on these considerations, we introduce variables maxFstϕi and maxLstϕi for each
state i ∈ [0, n − 1] and until formula ϕ = χU[τ -> b] ψ ∈ sub(Φ) that are supposed to
represent the value maxWitP,σϕ (min posσ(i)) at the first occurrence of i and the value
maxWitP,σϕ (max posσ(i)) at the last position of i, respectively. Recall that these positions
cover only rows as the first and last iteration of loops represent their front and rear,
respectively. Notice also that the latter value is not defined for positions belonging to
the last loop. Then, condition D2 is formulated for a state i as

conD2(ϕ, i) := (ϕ ∈ lbli ↔ maxFstϕi -> b)

∧ ((ϕ ∈ lbli ↔ maxLstϕi -> b)∨ itri = 0).

Temporal Until: Maximal Value to Witness

The intended value for these variables is specified using a suffix-optimum backward
propagation scheme initiated at the end of the represented schema. We can characterise
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the values maxWitP,σϕ (x) by

maxWitP,σϕ (xlast) =

0 if ψ ∈ λ(σ(xlast))

−∞ otherwise

and for x ∈ [0, xlast − 1] by

maxWitP,σϕ (x) =



−∞ if χ, ψ 6∈ λ(σ(x))

0 if χ 6∈ λ(σ(x)) and

ψ ∈ λ(σ(x))

maxWitP,σϕ (x+ 1) + JτK(λ(σ(x))) if χ ∈ λ(σ(x)) and

ψ 6∈ λ(σ(x))

max{maxWitP,σϕ (x+ 1) + JτK(λ(σ(x))), 0} if χ, ψ ∈ λ(σ(x)).

As long as χ holds, the maximal value is propagated backwards. When the chain breaks at
some defect state, no witness position is properly reachable, and the maximal value is set
to −∞. Each state of the schema where ψ holds is a potential witness for preceding states.
Thus, if the propagated value at this point is less than 0, this state will generally provide a
better value for τ than any of its successors. In the qfPA formulation, the above definition
is split into the computation of the updated value maxWitP,σϕ (x + 1) + JτK(λ(σ(x)))
potentially propagated to its predecessor and the actual selection of the appropriate
value depending on the case. To express the update across a loop, it is further necessary
to express its effect. These aspects are reflected in the components of the formula

witnessMax(n, ϕ) := selectMax(n, ϕ)∧ calcUpdated(n, ϕ)∧ loopEffect(n, τ).

Selection and auxiliary iteration. Recall that the encoding does not represent every
position of the run and not even every state of the path schema explicitly, namely those
situated on loops. However, the values at the front and rear row of a loop are represented
and the propagation scheme hence needs to “jump” from the rear to the front, that is,
extrapolate the calculated value over the iterations of the loop. For that purpose, an
additional set of auxiliary variables maxAuxϕi are introduced representing, intuitively,
the first actual iteration of a loop—similarly to the variables valSeci above. Thus, the
axillary variables complement the variables maxFstϕi and maxLstϕi representing the front
and rear rows, respectively.
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The case selection is expressed for all three variants by the formula

selectMax(n, ϕ) :=

∧
i∈[0,n−1]



(χ 6∈ lbli ∧ψ 6∈ lbli → maxFsti = maxAuxi = maxLsti =−∞)

∧(χ 6∈ lbli ∧ψ ∈ lbli → maxFstϕi = maxAuxi = maxLstϕi = 0)

∧(χ ∈ lbli ∧ψ 6∈ lbli →


maxFstϕi = updFstϕi
∧ maxAuxϕi = updAuxϕi
∧ maxLstϕi = updLstϕi

)

∧(χ ∈ lbli ∧ψ ∈ lbli →


maxLstϕi = max(updLstϕi , 0)

∧ maxAuxϕi = max(updAuxϕi , 0)

∧ maxFstϕi = max(updFstϕi , 0)

)


where the variables updFstϕi , updLstϕi , and updAuxϕi are assumed to hold the value from
the state i + 1 updated according to the labelling (or the respective initialisation).
For easier reading, expressions of the form var1 = max(var2, a) are used to abbreviate
ite(var2 > a, var1 = var2, var1 = a).

Modelling loop effects. The overall effect of (all iterations of) a loop on the value of
τ is made accessible in terms of variables sumEffτi where i is the first state of a loop.
It is obtained by summing up the individual contribution τ [lbli] · (itri − 3) of each loop
state i bound to variables effτi . The effect is multiplied only by itri − 3 since the first
(front), second (auxiliary), and last (rear) iteration is already accounted for explicitly. To
circumvent multiplication of variables in the formula, the variables effτi are themselves
defined by distributing the factor (itri − 3) over the sum of monomials of the term τ , as
was necessary also for the accumulation of counter updates. The term is assumed to have
the form τ =

∑m
k=0 akχk and the effect is hence specified by

loopEffect(n, τ) := ∧
i∈[1,n−2]

(.i → sumEffτi = effτi )∧(�i ∨ /i → sumEffτi = sumEffi−1 + effτi )



∧
∧

i∈[0,n−1]

ite(χ0 ∈ lbli, effτ,0i = a0 · itri − 3a0, effτ,0i = 0)

∧
∧

k∈[1,m]
ite(χk ∈ lbli, effτ,ki = effτ,k−1

i + ak · itri − 3ak, effτ,ki = effτ,k−1
i )


where the variables effτi = effτ,mi are to be considered identical.
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Calculating values to propagate. Using the summed-up loop effect, we can now for-
mulate the actual computation of the (potentially) propagated optimum by

calcUpdated(n, ϕ) :=

∧
i∈[0,n−2]



(�i → updFstϕi = updLstϕi = maxFstϕi+1 + τ [lbli])

∧
(
/i → updLstϕi = maxFstϕi+1 + τ [lbli]

∧ updFstϕi = maxAuxAtBegϕi + τ [lbli]

∧ updAuxϕi = maxLstϕi + sumEffτi
)

∧
(
.i ∨�i → updLstϕi = maxLstϕi+1 + τ [lbli]

∧ updFstϕi = maxFstϕi+1 + τ [lbli]

∧ updAuxϕi = maxAuxϕi+1 + τ [lbli]
)


∧ ite(ψ ∈ lbln−1, updAuxϕn−1 = 0, updAuxϕn−1 =−∞)

∧ updFstϕn−1 = maxAuxAtBegϕn−1 + τ [lbln−1]

∧maxAuxAtBegϕ0 = maxAuxϕ0
∧

∧
i∈[1,n−1]

ite(.i,maxAuxAtBegϕi = maxAuxϕi ,maxAuxAtBegϕi = maxAuxAtBegϕi−1)

where ϕ = χU[τ -> b] ψ is assumed.
The formula calcUpdated(n, ϕ) consists of three parts: the first specifies the updated

value, depending on the type of state, the second sets the starting value for the propagation
at state n− 1 for the auxiliary track on which all others depend, and the third makes the
value of the auxiliary variables at the begin of each loop available at the corresponding
end.
Consider the first part. Outside of loops (type �), the first and last encounter of

any state fall together, and the updated value is simply calculated from the succeeding
position, being the first occurrence of the succeeding state. A state of type / marks the
end of a loop where the variable maxLstϕi represent the very last state of its rear row and
is hence treated just as other row states. As mentioned earlier, the auxiliary track can
be considered as the first actual iteration of the loop, thus immediately following the
front row. The value of its last state is determined by extrapolating the value at the
start of the rear over all iterations by adding the effect of all loop iterations in between.
This may in fact be the correct value of maxWitP,σϕ at this point. However, in case there
is a defect on the loop or the effect of the loop is negative, the witness assumed by the
extrapolation is not reachable without violating χ in between or may not provide the
maximal value for τ , respectively. Nevertheless, as the value is passed along it traverses
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all positions of the loop. Then, if the loop does have a defect, the selection determined by
the formula selectMax would necessarily reset that value to either 0 or −∞ and provide
a correct value from that point on. Similarly, if the overall effect of the loop is negative
and there is a witness providing a higher value of τ , this witness would be found on the
first iteration and the selection would again promote this one as soon as it is encountered.
Hence, upon reaching the first state of the loop, the propagated value on the auxiliary
track is in fact correct. It is transferred back to the end of the loop by the last part of
the formula (by variables maxAuxAtBegϕi ) and then used to correctly determine the value
of maxFstϕi .
Therefore, assessing consistency condition D2 as stated by the formula conD2 is

appropriate, at least for those states to which condition D1 does not apply. Note that, if
the latter does apply to some state, the evaluation of the other criterion is irrelevant.

Temporal Until: Consistency

Based on the developments above, the cases for the consistency criterion are combined
to express consistency for temporal until formulae χU[τ -> b] ψ by

consistencyU(n, χ, ψ, τ, b) := glob(n, χ)∧ accu(n, τ)∧fin(n, ψ)

∧ witnessMax(n, χU[τ -> b] ψ)

∧
∧

i∈[0,n−1]
conD1(χU[τ -> b] ψ, i)∨ conD2(χU[τ -> b] ψ, i).

The structure of the encoding assures that the actual loops are always identically labelled
to their front and rear rows. Thus, assuring those are consistent, all loops automatically
satisfy condition D3.
This completes the construction of the formula consistency(S, n,Φ) and thereby that

of fmc(S, n,Φ).

5.2 Properties of the Encoding

A solution to fmc(S,Φ, n) yields a Φ-consistent APS in S and a run. By Theorem 4.12
this implies that S satisfies Φ. On the other hand, Corollary 5.2 provides that if the flat
approximation FA(S, n) contains a run satisfying Φ, then fmc(S,Φ, 2p(n)) is satisfiable
(for a fixed polynomial p), and a smaller depth may suffice.

I Theorem 5.3. (i) If fmc(S,Φ, n) is satisfiable, then S |= Φ. (ii) If FA(S, n) |= Φ, then
fmc(S,Φ, 2p(n)) is satisfiable.
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The encoding hence provides effective means to solve the flat model-checking problem
based on qfPA satisfiability checking.

Variables. A major concern of the construction is to keep the formula as small as
possible. Examining the indexing scheme of variables, observe that their number is linear
in |Φ| + |CS | and n. Notice in particular that the number of variables effτ,ki is linear
because 0 ≤ i < n and each pair (τ, k) corresponds to one specific monomial of some
constraint in Φ. The number of variables required to represent a mapping (e.g., lbli,
valFsti) is linear in their domain (sub(Φ) and CS , respectively). The finite domain of
variables orgi : S can be represented using naturals or explicit enumeration. The latter
case would require n · dlog2(|S|)e Boolean variables.

Formula length. Recall that the size of S is considered to be

|S| = size(∆) =
∑

(s,µ,Γ,s′)∈∆
1 +

(∑
γ∈Γ
|γ|
)

+
∑

c∈dom(µ)
size(µ(c)).

The length of most parts of the formula fmc(S,Φ, n) only depend linearly on n or n · |∆| ≤
n · |S|. The parts encoding the guards in S (guardsFwd(S, n) and guardsBwd(S, n))
further depend (linearly) on the size of the guard sets associated to the transitions, more
precisely, linearly on the total number

∑
(s,µ,Γ,s′)∈∆ |Γ| of constraints present in S. The

constraint terms τ are instantiated in substitution terms, such as τ [valFsti], a bounded
number of times per variable. Therefore, the formula size is linear in

∑
(s,µ,Γ,s′)∈∆,

τ -> b∈Γ

|τ | ≤ |S|.

The components of consistency(n,Φ) cover the different types of cLTL formulae and
express the corresponding consistency condition. The number of Boolean combinations
and temporal-next formulae can be estimated by |sub(Φ)| and the corresponding formulae
are thus of linear size in n · |sub(Φ)|. The remaining part of consistency(n,Φ) concerns
guard- and until formulae and its size depends on the size of the constraint terms present
in Φ. More precisely, the size is linear in

 ∑
τ -> b∈sub(Φ)

|τ |

+

 ∑
χU[τ -> b] ψ∈sub(Φ)

|τ |

 ≤ |Φ|.
This sums up to a characterisation of the length of the formula |fmc(S, n,Φ)| to be
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dominated by a function that is linear in n · |S| + n · |Φ| and thus |fmc(S, n,Φ)| ∈
O(n · (|S|+ |Φ|)).

I Theorem 5.4 (Formula size). The length of fmc(S,Φ, n) is in O(n(|S|+ |Φ|)).

5.3 Evaluation

To evaluate whether flat model checking and the qfPA-based encoding can be used
to perform verification tasks, the procedure was implemented and applied to a set of
problems provided by the RERS Challenge [How+14].

The tool flat-checker1, developed by Pirogov [Pir17] for this purpose, takes a cLTL

specification, a counter system to be verified in DOT format [GN00] and the approximation
depth (schema size) and performs the translation of the verification problem to a linear
arithmetic formula. The SMT solver z3 is used to compute a solution of the formula, if
possible, that is subsequently interpreted as satisfying run and presented adequately to
the user. The tool is developed in Haskell and provides a search mode that automatically
increases the depth up to a given bound, in order to potentially find a small witness
quickly, before investing computation time in large depths. A successful search can be
continued to find a witness of smallest depth.
The RERS Challenge 20172 poses problems as C99 and Java programs that provide

output depending on read input symbols and internal state. The programs have a regular
structure but are inconceivable with reasonable effort. It features a track comprising
100 LTL formulae to be checked on a program (Problem 1) that is representable as
a counter system by treating integer variables as counters. The counting mechanism
of cLTL admits a more specific formulation of a correctness property, making it more
restrictive or permissive than a plain LTL formula. For example, a typical pattern in
the RERS problem set has the form ¬pU q, stating q occurs before p. It can be relaxed
to state, e.g., p occurs at most 5 times (F[p -< 5] q) or less often than r (F[p−r<0] q). A
stronger formulation would be that q must occur more often before p (¬pU[q -> 5] q or
¬pU[r−q -> 5] q). To evaluate the procedure on counting properties, variations of formulae
from the LTL track were constructed to express relaxed or strengthened versions of the
properties.
By checking negated properties, counterexamples were found at an approximation

depth of at most 128 for all violated formulae, while most formulae could be falsified
quickly. From the original 52 falsifiable LTL formulae, 43 were falsified after less than

1https://github.com/apirogov/flat-checker
2http://www.rers-challenge.org/2017/
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200 seconds per formula at depth at most 64, the remaining 9 took at most 32 minutes
per formula and depth 128. A batch analysis of the whole set of 100 formulae at depth
200 took a total of four days running time (Desktop PC, Intel i5-750 CPU, 4GB RAM).
Some derived cLTL formulae took significantly longer to be evaluated than the original
LTL formulation. However, in most cases, the introduction of counting constraints did
not increase the evaluation effort significantly.

5.4 Conclusion

Characterising cLTL model checking over flat systems in Presburger arithmetic fills a gap
between corresponding results for temporal logics with and without counting [DDS15;
DDS14]. It can also be used as (semi-algorithmic) approach to the satisfiability and
synthesis problems of cLTL.

SMT-based model checking. The model-checking procedure in Chapter 4 was de-
veloped in order to study the model-checking problem of cLTL and to prove that it can,
in principle, be solved over flat systems. It is non-deterministic in nature and therefore
hardly suitable for a literal implementation. At this point, logic programming serves
well as prototyping methodology conveniently bridging the gap between the existential
arguments in proof constructions and an executable implementation. The theory provides
a framework including systematic vocabulary, mathematical objects as well as essential
properties and guarantees that allow for reasoning about the problem. Specifically the
notion of augmented path schemas and properties like consistency, as well as the construc-
tions provide a basis for an implementation in general and for an alternative formulation
of the non-deterministic procedure in terms of an arithmetic formula in particular.

Formulating a problem in terms of a general logical formalism and applying a generic
solving procedure seems, at first, unlikely to provide performance comparable to a
domain-specific algorithm. However, modern implementation frameworks, specifically
constraint- and satisfiability solvers supporting additional first-order theories such as
z3 [MB08], CVC4 [Bar+11], or MathSAT5 [Cim+13] are well-engineered and optimised
over years. The formalisms are well studied, and SMT-based verification tools are very
effective (see [BDW18] for a unified survey).

Depth-bounded approximation. As for bounded model checking, the developed flat
model-checking procedure encodes the verification of an under-approximation into the
satisfiability problem of a classical logic. Instead of propositional logic, however, linear
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arithmetic is used to encode the counting aspect of the system model and the specification
language. Further, augmented path schemas as underlying structure provide a more
general representation of runs than finite prefixes. The latter incorporate only one
terminating loop while APS admit an arbitrary number of loops. Thereby, they represent
a potentially infinite class of similarly-shaped runs and can be significantly more succinct.
Nevertheless, the iterated refinement process is equally simple as it consists merely of
increasing the depth parameter.

Outlook. It is clearly only the first, but a necessary step to investigate how to formulate
the problem and also to study the relation of the model-checking and the decision problem.
A concrete implementation provides first experience of how the method performs and can
show promising advantages as well as bottle necks and engineering challenges. Although
it may eventually hinder problem-specific optimisations, the SMT-based implementation
benefits from the engineering effort put into solvers. The configurability of, e.g., z3 using
specific tactics, provides potential for future improvements. It remains to develop and
compare different encoding variants. Especially, formulations that admit incremental
solving could speed up the verification process.
The RERS Challenge strives to compare verification techniques and as such uses

common standards such as LTL for specification. Although the primary ambition of the
approach is to verify the more general class of cLTL properties, the first evaluation suggests
that flat model checking is well applicable in a general verification context. Towards
developing improved and alternative implementations, a specific and comprehensive suite
of cLTL formulae remains to be defined in order to obtain comparable and reproducible
performance measures.
The concise representation of runs allows for an accelerated evaluation of complex

path properties and therefore flat approximation appears as a promising technique that
deserves further investigation. The underlying theory provides that the procedure is
complete on flat systems and, practically, an existing witness will be found eventually
unless all of them have an infinitely aperiodic shape.

123



� Chapter 6

Model-checking cCTL over Kripke
Structures

As observed earlier in Chapter 3, satisfiability of cLTL formulae is undecidable. This
implies the same for model-checking cLTL over Kripke structures and consequently LTL#,
as well as cCTL* and CTL*

# (Theorem 4.1). Moreover, the problems are also undecidable
for CTL#, as shown by Laroussinie, Meyer and Petonnet [LMP12] for a very similar logic.
In contrast, we prove in this chapter that MC(cCTL, KS) is decidable in polynomial time.
This developments are partly based upon [Dec+17, Section 3]. The published results are
henceforth extended from fCTL to cCTL and improved from an exponential-time bound
to an (optimal) polynomial bound.
To decide MC(cCTL,KS), we adapt the well-known labelling algorithm for CTL, first

proposed by Clarke and Emerson [CE81] (see also the later article by Clarke, Emerson
and Sistla [CES86] or the more recent textbook by Baier and Katoen [BK08]). Recall
that it computes for each state of a Kripke structure inductively the set of satisfied
subformulae. To compute if a state satisfies a counting formula of the form ϕEU[τ -> b] ψ,
we are going to translate the Kripke structure into a one-counter system (1-CS) in which
a specific control state is reachable if and only if the formula holds. For formulae of the
form ϕAU[τ -> b] ψ, a similar system is constructed that is empty if and only if the formula
holds.

The constructed system resembles the Kripke structure and uses the integer counter to
track the value of the constraint term τ along a run. Similar to the balance counters used
in Chapter 4 (Definition 4.8), it is updated on every transition by the effect of the target
state on the value of the term. For example, at some state labelled by the proposition p1

but not by p2, a term τ = p1 − 2p2 evaluates to −2. If τ contains non-atomic formulae
instead of only propositions, it can still be evaluated, assuming that their satisfaction
at the state has been computed before. The sum of such updates along a path in the
structure provides the evaluation of the counting term on it. Now, a cCTL formula, e.g.,
ϕEU[τ -> b] ψ holds at some state if and only if a state satisfying ψ is reachable by a path
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using only states satisfying ϕ and with a net effect on the counter of at least b.
Before assembling these steps formally to a model-checking procedure, let us settle

the complexity of the reachability questions that need to be solved. The important
observation is that if a 1-CS S contains only guards of the form c -> b for the unique
counter c ∈ counters(S), it can be computed in polynomial time whether a specific
control state is (repeatedly) reachable from a given configuration. Let us call such counter
systems 1-CS-> in the following.

6.1 Reachability and Emptiness in a Subclass of One-counter
Systems

The (control-state) reachability problem for counter systems with one counter is already
NP-hard, as observed by Haase et al. [Haa+09]. Hardness relies, however, on using
equality in constraints. For solving our model-checking problem it suffices to restrict the
use of guards to the specific form c -> b and in that subclass, control-state reachability
and emptiness can be decided deterministically in polynomial time.

In the remainder of this chapter, let us identify valuations θ : {c} → Z with the value
θ(c). Thus, we conveniently denote configurations of 1-CS by tuples from S×Z and trans-
ition updates by integer values. Let a computation in a 1-CS S = (S,∆, sI , λ) be a finite or
infinite sequence δ0δ1 . . . ∈ ∆∞ of transitions with δi = (si, ui,Γi, si+1) for all its positions
i ∈ N. It is executable from a configuration (s, z) of S if s0 = s, and z +

∑i
j=0 uj |=PA Γi

for each position i. Let a target configuration (s′, z′) be called reachable from a source con-
figuration (s, z) if there is a finite computation (s0, u0,Γ0, s1) . . . (sn, un,Γn, sn+1) ∈ ∆∗

executable from (s, z) such that sn+1 = s′ and z′ = z +
∑n
i=0 ui. Let the (least upper)

reachable-value bound for a configuration (s, z) and a state s′ ∈ S be the supremum

rvbS(s, z, s′) := sup({z′ | (s′, z′) is reachable from (s, z) in S} ∪ {−∞}) ∈ Z∞.

It indicates the maximal counter value a state can be reached with or whether there is no
such value because the state is not reachable at all (−∞) or reachable with an arbitrarily
large counter value (∞).

The essential observation is that the function rvbS(s, z, s′) can be computed in polyno-
mial time if S is a 1-CS->. It can be used to decide (repeated) control-state reachability
and thus emptiness.

I Lemma 6.1. The reachable-value bound can be computed for 1-CS-> in polynomial time.
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Proof. Let S = (S,∆, sI , λ) be a 1-CS-> and (s0, z0) be the source configuration. To
compute the reachable-value bound for all states s ∈ S we use an accelerated Bellman-
Ford-like forward-propagation algorithm. Initially, every state is assigned the value
−∞ (indicating non-reachability), except for the source state s0 that is assigned the
starting value z0. The algorithm first performs |S| − 1 propagation rounds that, for
each transition (s, u,Γ, s′) ∈ ∆, propagates the value assigned to s along the transition
to s′ while applying the update u. If this value satisfies the guards Γ and is greater
than the value already assigned to s′, it replaces the previously assigned value. After
|S| − 1 rounds, like for the classic Bellman-Ford algorithm (but using greatest instead
of smallest values), every state has been assigned a value that is (at least) as large as
the greatest value with which it can be reached by a simple computation. Consequently,
any value that still changes in a subsequent round is obtained by a computation path
that contains a loop with positive net effect on the counter value. The values of all these
states are thus accelerated, i.e., assigned the symbolic value ∞ because, by iterating
the positive loop, an arbitrarily large counter value can be realised. This acceleration
may now “unlock” transitions that were previously unused because the corresponding
thresholds required more iterations of positive loops. Therefore, another |S|− 1 rounds of
the forward propagation is performed subsequently. From any accelerated configuration,
every reachable state can be reached by a direct, i.e. simple, computation. Therefore,
this number of rounds suffices to reach a fixed point of the propagation procedure. Hence,
the algorithm performs in summary 2|S| − 1 rounds to compute rvbS(s0, z0, s) (for each
s ∈ S). With each round touching each transition exactly once the algorithm uses only
(2|S| − 1) · |∆| steps. The procedure is summarised as pseudo code in Algorithm 1. �

Using the computation of reachable-value bounds, we can now decide whether a given
state is repeatedly reachable.

I Theorem 6.2. The repeated control-state reachability problem for 1-CS-> is in P.

Proof. Let S = (S,∆, sI , λ) be a 1-CS-> and s ∈ S. To decide whether there is some run
ρ ∈ runs(S) such that posρ(s) is infinite, we first check if and with what counter value s
is reachable from the initial configuration (sI , 0) and, subsequently, if s is reachable from
itself. Depending on the counter values realisable on a path from s to s we can determine
whether any such path is repeatable arbitrarily often. Specifically, we proceed as follows.

Initially, compute m := rvbS(sI , 0, s). If m = −∞, then s is not reachable and in
particularly not repeatedly. Otherwise, if m > −∞, we check whether s is reachable from
itself without taking any guarded transition. This requires a standard polynomial-time
search on the control graph of S ignoring the counter and all guarded transitions. Any
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Algorithm 1 Compute the reachable-value bound for a 1-CS-> S = (S,∆, sI , λ).

1 function rvbS(s0: S, z0: Z): S → Z∞ := {
2 // initialise reachable values
3 var rv: S → Z∞ := {s 7→ if (s == s0) z0 else −∞}

5 // Propagation phase 1
6 loop (|S|-1) {
7 foreach ((s,u,Γ,s’) in ∆ if rv(s)+u|=PA Γ) {
8 rv(s’) := if (rv(s)+u > rv(s’)) rv(s)+u else rv(s’)
9 }

10 }

12 // Acceleration
13 foreach ((s,u,Γ,s’) in ∆ if rv(s)+u|=PA Γ) {
14 rv(s’) := if (rv(s)+u > rv(s’)) ∞ else rv(s’)
15 }

17 // Propagation phase 2
18 loop (|S|-1) {
19 foreach ((s,u,Γ,s’) in ∆ if rv(s)+u|=PA Γ) {
20 rv(s’) := if (rv(s)+u > rv(s’)) rv(s)+u else rv(s’)
21 }
22 }

24 rv
25 }

non-empty, guard-free path from s to s can be repeated, independently of the value with
that s is reached for the first time and how the counter value evolves. To this end, let
Ŝ be an exact copy of S but with an additional fresh copy ŝ of s that has no incoming
transitions but the same outgoing transitions as s. That is, Ŝ contains for each transition
(s, u,Γ, s′) ∈ ∆ additionally the transition (ŝ, u,Γ, s′). In Ŝ each path from s to s still
exists, except for the trivial, empty path.
If the guard-free reachability check fails, we can conclude that all (non-empty) paths

from s to s use at least one guarded transition and we henceforth distinguish the
cases of m being finitely bounded and being unbounded. If m ∈ Z is finite, compute
m̂ := rvbŜ(ŝ,m, s) in order to determine how s is reachable from itself. Again, if m̂ = −∞,
then s is not reachable from (s,m) and thus not reachable even twice from (sI , 0). On
the other hand, if s is repeatedly reached from (sI , 0) by some run, then this run reaches
s for the first time with a value at most m and from there again with some value. Hence,
m̂ > −∞ in that case. Then, m̂ < m means that even the “best” path from s to s has
a negative net effect on the counter value. Thus, the value will decrease strictly with
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each repetition and must eventually fall below the thresholds imposed by the guards. On
the other hand, if m̂ ≥ m, then there is some computation from configuration (q,m) to
the configuration (q, m̂) that can be repeated infinitely because every guard will still be
satisfied as long as the counter value did not strictly decrease.

The remaining case is that m =∞, i.e., that s can be reached with an arbitrarily large
counter value. Therefore, we can assume that it is large enough to satisfy every guard,
for an arbitrarily long subsequent computation. Again, we determine the net effect of the
best path from s to s in this situation by computing the reachable-value bound. To this
end, we use Ŝ>, being Ŝ with all transition guards removed. Then, m̂′ := rvbŜ>(ŝ, 0, s)
precisely determines whether there is a run repeating s infinitely, namely if and only if
m̂′ ≥ 0. Given a computation from s to s with non-negative net effect, it can be repeated
over and over again. In case each such computation has a negative effect, the value will
again fall below even the lowest threshold. Notice that m =∞ does not indicate that an
infinite value can be reached but merely an arbitrarily large, finite value. Any such value
will be depleted after sufficiently many cycles with negative effect on the counter. The
procedure is summarised as pseudo code1 in Algorithm 2. �

Algorithm 2 Decide repeated control-state reachability for a state s in 1-CS-> S =
(S,∆, sI , λ) from an initial configuration (s0, z0).
1 function repeatedReach(s0: S, z0: Z, s: S): B := {
2 val m := rvbS(s0, z0, s)
3 if (m == −∞) {
4 false
5 }
6 else if (reach⊥Ŝ (ŝ, s)) { // ŝ is reachable from s in Ŝ with all guarded transitions removed
7 true
8 }
9 else if (m < ∞) {

10 rvbŜ(ŝ,m,s) >= m
11 }
12 else {
13 rvbŜ>(ŝ,0,s) >= 0
14 }
15 }

With Theorem 6.2 we obtain immediately a procedure to check whether a given 1-CS->

is empty because this is the case if and only if at least one of its states is repeatedly
reachable from the initial configuration.

1Notice that in Algorithm 2, Ŝ depends implicitly on the variable s.
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I Theorem 6.3. Emptiness of 1-CS-> is in P.

It remains to decide (one-time) reachability in 1-CS->. Notice that the definition we
use here requires that there be a proper, infinite run passing through a state in order to
consider it reachable. Therefore, the decision procedure presented in the following also
relies on Theorem 6.2.

I Theorem 6.4. Control-state reachability in 1-CS-> is in P.

Proof. Let S = (Q,∆, sI , λ) be a 1-CS-> and s ∈ S be a target state. Observe that s
is reachable by a run of S if and only if there is a counter value m ∈ Z such that the
configuration (s,m) is reachable from the configuration (sI , 0) and there is some state
s′ ∈ S that is repeatedly reachable from (s,m). This is precisely the case if either

i) m := rvb(sI , 0, s) ∈ Z is finite and some state s′ ∈ S is repeatedly reachable from
the maximal configuration (s,m) or

ii) rvb(sI , 0, s) =∞ is unbounded and some state s′ ∈ S is repeatedly reachable from
(s,m) for some m ∈ Z.

Observe that the latter case implies that

iii) rvb(sI , 0, s) = ∞ and there is a simple path from s to some state s′ ∈ S that is
repeatedly reachable from the initial configuration (sI , 0).

In fact, the second case (ii ) above is also implied by statement (iii ): If s′ is repeatedly
reachable from (sI , 0), then it must, in particular, be repeatedly reachable from some
configuration (s′,m). Since rvb(sI , 0, s) = ∞ is unbounded, there is a large enough
counter value m′ such that (s,m′) can be reached from (sI , 0) and all guards on the
simple path from s to s′ are satisfied when traversing it to reach a configuration (s′,m′′)
where m′′ ≥ m. Then, the computation repeating s′ infinitely can be executed also
starting from the configuration (s,m′′), completing the run reaching s and continuing
infinitely. The characterisation of reachability in terms of the cases (i ) and (iii ) gives
rise to the polynomial-time procedure presented in Algorithm 3. �

6.2 Deciding MC(cCTL,KS) in Polynomial Time

With the auxiliary results above, we can now show that model-checking of cCTL formulae
over Kripke structures can be done in polynomial time.

129



Chapter 6 Model-checking cCTL over Kripke Structures

Algorithm 3 Decide control-state reachability for a state s in 1-CS-> S = (S,∆, sI , λ)
from an initial configuration (s0, z0).
1 function reach(s0: S, z0: Z, s: S): B := {
2 val m := rvbS(s0, z0, s)

4 // Case (i )
5 if (m ∈ Z) {
6 foreach (s’ in S if repeatedReach(s, m, s’)) {
7 return true
8 }
9 }

11 // Case (iii )
12 if (m == ∞) {
13 foreach (s’ in S if reach>S (s, s’) // there is a path from s to s’ in S
14 and repeatedReach(s0, z0, s’)) {
15 return true
16 }
17 }

19 false
20 }

I Theorem 6.5. The problem MC(cCTL,KS) is in P.

Proof. Let K = (S,∆, sI , λ) be a Kripke structure and Φ a cCTL formula. Similar to the
standard model-checking algorithm for CTL, we compute subsets Sϕ ⊆ S of the states
of K for every subformula ϕ ∈ sub(Φ) of Φ such that for all s ∈ S we have s ∈ Sϕ if
and only if Ks |= ϕ, where Ks := (S,∆, s, λ) equals K with initial state s instead of sI .
Checking whether the initial state sI is contained in SΦ then solves the problem.
The set SΦ is computed recursively over the structure of Φ as follows. Propositions

(p ∈ AP ), negation (¬ϕ), conjunction (ϕ∧ψ) and temporal next (EXϕ, AXϕ) are
handled as usual, that is

Sp := {q ∈ S | p ∈ λ(q)},

S¬ϕ := S \ Sϕ,

Sϕ∧ψ := Sϕ ∩ Sψ,

SEXϕ := {q ∈ S | succK(q) ∩ Sϕ 6= ∅} and

SAXϕ := {q ∈ S | succK(q) ⊆ Sϕ}.

For the cases Φ = ϕEU[τ -> b] ψ and Φ = ϕAU[τ -> b] ψ assume τ has the form a0χ0 +
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. . .+ anχn for n ∈ N, a0, . . . , an ∈ Z, and subformulae χ0, . . . , χn. Further, let the sets
Sϕ, Sψ, Sχ0 , . . . , Sχn be given inductively.
While the algorithm for CTL would construct the state sets for temporal operators,

such as SϕUψ, by a global fixed point computation, we deal with each state from S

individually here (at the cost of the linear factor |S| for the running time). To decide
for any state s ∈ S whether it is supposed to be included in SϕEU[τ -> b] ψ

we construct a
one-counter system K′ as follows from K.

1. Remove all outgoing transitions from states violating ϕ and thus precisely the paths
exhibiting a defect position with respect to ϕ before the last one.

2. Introduce the counter c and define its update on any outgoing transition of any
state q ∈ S to be its effect

µτ,q : c 7→
∑

i∈[0,n] | q∈Sχi

ai

on the value of the constraint term τ = a0χ0 + . . .+ anχn.

3. Introduce a fresh sink state qt 6∈ S reachable from any state q ∈ Sψ if the value
accumulated in c is at least b.

Formally, let us thus define K′ := (S ∪ {qt},∆′, s, λ) with

∆′ := {(q, µτ,q, ∅, q′) | (q, ε, ∅, q′) ∈ ∆, q ∈ Sϕ}

∪ {(q, 0, {c -> b}, qt) | q ∈ Sψ}

∪ {(qt, 0, ∅, qt)}.

Then, the state qt is reachable in K′ from a configuration (s, 0) if and only if Ks |=
ϕEU[τ -> b] ψ. It is thus decidable in polynomial time by Theorem 6.4.
A state s ∈ S satisfies the formula Φ having the form ϕAU[τ -> b] ψ if there is no run

starting in state s and violating the formula ϕU[τ -> b] ψ. This is the case on some path
if at every position where ψ holds the accumulated effect on the value of τ up to this
position is less than b or a state violating ϕ occurred before. Thus, we construct a
one-counter system K′ updating a fresh counter c to hold the value of τ as above. In
addition, all states satisfying ψ are now guarded by the constraint c < b and for every state
violating ϕ we also include a transition leading to a fresh sink state qt 6∈ S (featuring a
loop).
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Technically, for Φ = ϕAU[τ -> b] ψ let K′ := (S ∪ {qt},∆′, s, λ) with

∆′ := {(q,0, ∅, qt) | q 6∈ Sϕ} ∪ {(qt,0, ∅, qt)}

∪ {(q, µτ,q, ∅, q′) | (q,⊥, ∅, q′) ∈ ∆, q′ 6∈ Sψ}

∪ {(q, µτ,q, {c < b}, q′) | (q,⊥, ∅, q′) ∈ ∆, q′ ∈ Sψ}.

Then, all runs of K′ correspond to a run of K violating ϕU[τ -> b] ψ. On the other hand, if
there is such a run in K it can be followed in K′ entirely, because the obligation ψ is never
reached while satisfying the constraint τ -> b or ϕ is violated at some point at which the
state qt can be entered in K′. Consequently, runs(K′) 6= ∅ if and only if Ks |= ϕAU[τ -> b] ψ.
This is decidable in polynomial time by Theorem 6.3 since K′ uses only constraints of
the form c < b. They can be equivalently replaced by c ->−b+ 1 after negating all counter
updates in K′. �

I Remark 6.6. Laroussinie, Meyer and Petonnet [LMP12] describe how to evaluate a
similar type of EU formulae on so called durational Kripke structures (DKS). Con-
ceptually, this problem corresponds to checking an EU[.] formula where all constraint
coefficients are either 1 or −1. The use a method procedure where no guards need to
be considered and that is based on a Floyd-Warshall algorithm. The approach could be
applied to DKS with arbitrary weights and then used alternatively to check EU[.] formulae.
However, their procedure for universal-type operators, such as AU, relies on the fact that
the weights are only 1, −1, or 0 and does therefore not apply here without exponential
blow-up in complexity.

Finally, let us record that, for flat Kripke structures, the labelling algorithm above
can be extended to handle also any cLTL formula using the decision procedure for
MC(cLTL, FCS) presented in Chapter 4. Invoking the NExp procedure is necessary at
most for each subformula and each state and can therefore be performed in exponential
space. Thereby we obtain a model-checking procedure for cCTL*.

I Theorem 6.7. The problem MC(cCTL*, FKS) is in ExpSpace.

Notice that this argument cannot be applied for flat counter systems because the
decision procedure for cLTL checks whether a formula holds for a specific initial configur-
ation. The latter is determined not only be a state but, in presence of counters, also by a
counter valuation. Validity of a formula therefore not only depends on the state but also
on the (effect of) the path used to reach it while the labelling algorithm assumes that a
property can be evaluated equivalently with all counters set to zero.
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The problems MC(CTL#, KS) as well as MC(CTL*
#, KS) are undecidable because CTL# admits

Boolean combinations of counting constraints and therefore in particular equalities of
the form τ = b. Given this capability, the undecidability results by Laroussinie, Meyer
and Petonnet [LMP12] apply to CTL#.
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� Chapter 7

CTL*
# and Presburger Arithmetic with

Counting

The present chapter is dedicated to characterising the model-checking problem of CTL*
#

over flat counter systems. The logic subsumes all fragments studied in the previous
chapters and represents undoubtedly the most flexible specification formalism as it admits
linear- and branching-time modalities as well as the powerful bookmark-based counting
mechanism. As observed earlier in Theorem 3.3, its satisfiability problem is undecidable
over all the considered classes of counter system. Undecidability is also established for the
general model-checking problems MC(CTL*

#, CS) and MC(CTL*
#, KS) as stated by Theorem 4.1.

In the following, let us therefore focus on model-checking flat structures. For those, the
problem will be shown to be decidable.

I Theorem 7.1. The problem MC(CTL*
#, FCS) is decidable.

To show decidability, a polynomial encoding into the satisfiability problem of a decidable
extension of Presburger arithmetic, called PH, is provided. To this end, the construction
described in Chapter 5 will be reused. The extension PH of PA features a first-order
quantifier ∃=x

y for counting the solutions of a formula that is based on an equicardinality
quantifier suggested by Härtig [Här62]. Subsequently, for the reverse direction an
exponential reduction provides a corresponding hardness result for the model checking
problems of LTL#, CTL#, and thus CTL*

#.
An earlier, condensed version of this chapter restricted to flat Kripke structures was

published in [Dec+17, Section 5].

7.1 Presburger Arithmetic with Counting Quantifier

Recall that Presburger arithmetic (PA) consists of linear constraints over integer variables
and admits Boolean combinations and existential quantification. Let us consider its
extension by the counting quantifier ∃=x

y stating that the variable x holds precisely the
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number of distinct values for y making the formula within its scope hold. For example, the
formula ϕ(x) = ∃=x

y .5 -< y ∧ y -< 10 states that the (natural) interval from 5 to 10 contains
x elements and is hence satisfied by precisely those valuations that assign the number 6
to x. That is, the quantifier binds the variable y and expresses a property of the value
of x, the latter being free in that formula. Since x ranges over integers, the formulae
∃=x
y .y -< 5 as well as ∃=x

y .true are not satisfiable because the number of admissible values
for y is not finite.
Formally, for a set of first-order variables X, the set PH(X) of Presburger-Härtig

arithmetic formulae ϕ is defined by the grammar

ϕ ::= ψ | ∃=x
y .ϕ

for variables x, y ∈ X and Presburger arithmetic formulae ψ ∈ PA(X). The semantics is
defined as an extension |=PH of the satisfaction relation |=PA of PA by

θ |=PH ψ :⇔ θ |=PA ψ

θ |=PH ∃=x
y .ϕ :⇔ |{b ∈ Z | θ[y 7→ b] |=PH ϕ}| = θ(x)

for valuations θ : X → Z, variables x, y ∈ X, and formulae ψ ∈ PA(X) and ϕ ∈ PH(X).
The satisfiability problem is defined in terms of the set SAT(PH) of satisfiable formulae in
analogy to—and in fact extending—SAT(PA) (cf. Section 2.1.2).
The counting quantifier originates in the binary equicardinality quantifier I for first-

order logic suggested by Härtig [Här62] (see also the comprehensive survey by Herre et
al. [Her+91]). For two first-order formulae ϕ and ψ with free variable x the quantifier
expresses by Ix(ϕ,ψ) that the two sets of valuations of x satisfying ϕ and ψ, respectively,
are of the same cardinality. Apelt [Ape66] studied the addition of this quantifier to
Presburger arithmetic and showed that it can be eliminated. The satisfiability problem
is thus reducible to that of PA and therefore decidable.

Notice that the notation ∃=x
y explicitly binding the number of solutions of a formula to

a variable x defined above is expressible by the original quantifier as used by Apelt since
∃=x
y ϕ is equivalent to Iy(ϕ, 1 -< y ∧ y -<x). In fact, also Iy(ϕ,ψ) can be expressed by

(∃x.(∃=x
y .ϕ)∧(∃=x

y .ψ)) ∨ ((¬∃ymax .∀y.y > ymax → ¬ϕ)∧(¬∃ymax .∀y.y > ymax → ¬ψ)

stating that either both formulae ϕ and ψ have the same finite number of solutions or
both have an infinite number of solutions. The result of Apelt was later shown again by
Schweikardt [Sch05] explicitly for the unary counting quantifier ∃=x

y .
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The elimination procedures by Apelt and Schweikardt both introduce a non-elementary
blow-up of the formula and it is not known whether this can be avoided. In this regard,
the reduction of the satisfiability problem of PH to the model-checking problem of CTL*

#

provides an alternative view on the arithmetic theory.

7.2 A Reduction from SAT(PH) to MC(LTL#, FKS)

Satisfiability of an arithmetic formula Φ ∈ PH(X) is encoded by constructing an LTL#

formula. To this end, let us assume that Φ is satisfiable if and only if it is satisfiable
by a valuation θ : X → N assigning only natural solutions. This is not an essential
restriction because natural-sorted variables can represent integer-sorted variables with
linear overhead.

Let z1, z2, . . . 6∈ X be bookmarks distinct from the variables used in Φ. In the following,
let us construct an LTL# formula enc(Φ, η, i) depending on the PH formula Φ, a mapping
η : X → N+ assigning an index to each arithmetic variable in Φ, and a current index i.
It encodes the arithmetic constraints imposed by Φ on variables x ∈ X into constraints
on the distance between two specific positions on a run marked by two bookmarks zj and
zj−1 where j = η(x) > 0. The formula is defined recursively over the structure of Φ by

enc(a, η, i) = a

enc(a · x, η, i) = a ·#zη(x)−1(true)− a ·#zη(x)(true)

enc(τ1 + τ2, η, i) = enc(τ1, η, i) + enc(τ2, η, i)

enc(τ1 -> b, η, i) = enc(τ1, η, i) -> b

enc(¬ϕ, η, i) = ¬enc(ϕ, η, i)

enc(ϕ1 ∧ϕ2, η, i) = enc(ϕ1, η, i)∧ enc(ϕ2, η, i)

enc(∃x.ϕ, η, i) = F zi.enc(ϕ, η[x 7→ i], i+ 1)

enc(∃=x
y .ϕ, η, i) = F

enc(x, η, i) = #zi−1(zi.enc(ϕ, η[y 7→ i], i+ 1))

∧ X G zi.¬enc(ϕ, η[y 7→ i], i+ 1)


for terms τ1, τ2, formulae ϕ1, ϕ2, x ∈ X, i ∈ N and a, b ∈ Z. For the flat Kripke structure
K = ({q}, {(q, ε, ∅, q)}, q, λ : q 7→ ∅), that consist of a single loop of length one, Φ is
satisfiable if and only if K |= z0.enc(Φ,1, 1).

The last parameter i of the transformation is used to enumerate the variables of Φ in
order of appearance. It holds the largest index number that has not been assigned to
a first-order variable yet, so zi is assumed to be unused so far. The quantification of a
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first-order variable x in a formula ∃x.ϕ thus leads the transformation to introduce a fresh
bookmark zi and increment i.
The existence of a value for x satisfying ϕ, as expressed by ∃x.ϕ, is formulated in

LTL# as the existence of a position zi such that the distance between zi−1 and zi satisfies
ϕ. This is precisely expressed by F zi.ϕ̂, assuming a formula ϕ̂ properly encodes the
constraint ϕ on x in terms of a constraint on zi − zi+1. Thus, the set of solutions for x is
encoded in the set of positions that can be assigned to zi in terms of their distance to
zi−1.

The temporal logic LTL# does not provide explicit access to the position β(z) assigned
to a bookmark z ∈ B by a valuation β : B → N but counting the number of positions
satisfying true can be used instead. For any position k ≥ β(zi) ≥ β(zi−1) on the run
ρ ∈ runs(K), the positional distance between the bookmarks zi−1 and zi is precisely

β(zi)− β(zi−1) = (k − β(zi−1))− (k − β(zi))

= #K,ρβ(zi−1),k(true)−#K,ρβ((zi),k(true).

Therefore, arithmetical first-order constraints over x can be translated literally to con-
straints on the LTL# term #zi−1(true)−#zi(true) since

J#z(true)K(K, ρ, k, β) = #K,ρβ(z),k(true)

for any bookmark z and valuation β.
A PH formula ∃=x

y .ϕ determines that there is a finite number n of solutions y to the
formula ϕ and that x holds that value. The idea of the translation is to formulate that
there be a future position such that its distance represents the largest of these solutions.
At that position, the translation imposes that no future position also encodes a solution
and that the number of solutions up this point is precisely the value assigned to x (i.e.,
encoded into the distance between zη(x)−1 and zη(x)).

I Example 7.2. Consider the PH formula ∃x1 .∃x2 . x1 = 2x2 ∧∃=x1
x3 . x3 -< 3. The variables

x1, x2, and x3 are represented using bookmarks z0, . . . , z3. The first bookmark z0 serves
as anchor placed at the beginning of the run and the modality F expresses the existence
of values for x1 and x2 in terms of the positions of z1 and z2 in the formula

z0.F z1.F z2.enc(x1 = 2x2, η, 3)∧ enc(∃=x1
x3 . x3 -< 3, η, 3)

where, thus, η(x1) = 1, η(x2) = 2, and the next index to be used is 3. Figure 7.1 sketches
a word model and the placement of bookmarks as expressed by the formula. At the first
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z0 z1 z2
(z3)

(z3) (z3) (z3)

x (= 2y) y z (= 0)

z (= 1)

z (= 2)

z (= 3)

Figure 7.1: Sketch of the bookmark placement on a run as expressed by the encoding of
the PH formula ∃x1 .∃x2 . x1 = 2x2 ∧∃=x1

x3 . x3 -< 3 discussed in Example 7.2.

position, the anchor bookmark z0 is placed and the distance to the position where z1 is
placed represents the value of x1. The two F operators impose that two distances need
to be chosen to place z1 and z2, thereby encoding the choice of the values for x1 and x2,
respectively.

Where z2 is placed, the formula

enc(x1 = 2x2, η, 3) = #z0(true)−#z1(true) = 2 ·#z1(true)− 2 ·#z2(true)

is supposed to hold. It expresses the constraint that x1 = 2x2 in terms of the respective
distances. Finally,

enc(∃=x1
x3 . x3 -< 3, η, 3) = F #z0(true)−#z1(true) = #z2

(
z3.#z2(true)−#z3(true) -< 3

)
∧X G z3.¬

(
#z2(true)−#z3(true) -< 3

)
.

imposes that there are precisely as many possibilities to place bookmark z3 (i.e., to choose
a value for the variable x3) as the value of x1. The first part of the formula counts the
number of positions after z2 where z3 can be placed such that the difference between z2

and z3 is at most 3. This number is bounded by the distance chosen to “jump” to by the
F modality. The second part imposes that this distance is in fact maximal by stating
that there is no future position where z3 can possibly be placed while still satisfying the
constraint. Hence, the positions counted in the first part are exhaustive for the whole run.

The only valid solution in this example is to place z1 at distance 4 to z0 (encoding
x1 = 4) and consequently placing z2 at distance 2 to z1 (encoding x2 = 2). That provides
exactly 4 positions to place z3 at, corresponding to the values 0, . . . , 3 for x3.

Observe that K exhibits precisely one run and this run is identical to any of its suffixes.

138



Chapter 7 CTL*
# and Presburger Arithmetic with Counting

Therefore, path quantification does not have an effect on the semantics of any formula
and may deliberately be added. In particular, the LTL operators F, X, and G can be
exchanged for their CTL variants EF, EX, and EG, yielding a CTL# formula instead.
The translation duplicates each formula that is prefixed by the counting quantifier.

In the worst case, this can lead to an exponentially increased formula size, if measured
as defined before, although the number of subformulae remains linear. Representing
formulae as directed acyclic graph instead of linear strings, would avoid the exponential
blow-up and only require linear time and space to perform the reduction. However,
this seems less significant in the light that the best-known decision procedure for PH is
non-elementary.

I Theorem 7.3. There are exponential-time reductions from SAT(PH) to MC(LTL#, FKS)
and MC(CTL#, FKS).

Notice that the encoding is linear for formulae that do not use the counting quantifier,
providing in fact a reduction from SAT(PA).

I Corollary 7.4. There are linear-time reductions from SAT(PA) to MC(LTL#, FKS) and
MC(CTL#, FKS).

Consequently, 2NExp-hardness1 established by Berman [Ber80] for SAT(PA) carries
over to the model-checking problem.

I Theorem 7.5. The problems MC(LTL#, FKS) and MC(CTL#, FKS) are 2NExp-hard.

7.3 A Reduction from MC(CTL*
#, FCS) to SAT(PH)

This section develops a polynomial reduction of the CTL*
# model-checking problem over

flat counter systems to the satisfiability problem of PH. Thereby the following result is
established.

I Theorem 7.6. There is a polynomial-time reduction from MC(CTL*
#, FCS) to SAT(PH).

Essentially, the reduction consists of formulating the CTL*
# semantics in PH. To this

end, the necessary objects and functions need to be defined in terms of valuations of
arithmetic variables. Recalling the definition in Section 2.2, the primary objects are
the runs of a given system together with functions for accessing the state and valuation

1The precise complexity of SAT(PA) is characterised by Berman in terms of alternating Turing machines
restricted by a double-exponential time bound. Thus, 2NExp-hardness is an underestimation used
here to ease comparison.
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at any given position. Constructions for representing runs of flat counter systems were
provided earlier by Demri et al. [Dem+10; DDS14; DDS18]. In fact, the present chapter
lifts the inter-reducibility result of [DDS14; DDS18] from CTL* and PA to CTL*

# and PH.
For the sake of completeness, let us briefly describe the representation of runs and how
their positions can be accessed based on the construction developed in Chapter 5.

7.3.1 Representing Runs

Recall that the set of runs of a flat counter system S is equal to the set of flat approx-
imations FA(S, n) = runs(S) for a sufficiently large approximation depth n. Thus, let
us use the encoding from Chapter 5 developed to represent sets of runs as augmented
path schemas. Choosing n ≥ 4|S| guarantees that the encoding represents all runs of
S. The components of the formula fmc(S, n,Φ) for representing an APS and thus used
to represent runs in the following are aps(S, n) and run(S, n) defined in Sections 5.1.1
and 5.1.2. They expose a number of free variables and a valuation of them satisfying the
two formulae represents a run ρ ∈ runs(S). Therefore, they can serve as representation
for a sort of variables rho : runs(S) ∪ {⊥} holding a run of S as values. Technically,
not every valuation properly encodes a run and let us therefore consider all such unapt
valuations to represent an additional value ⊥.

I Corollary 7.7. Variables of sort runs(S)∪{⊥} are effectively representable by a number
of integer sorted variables linear in |S|.

To account for the void value ⊥, let Run(rho) be a predicate (of corresponding sort)
that identifies the valuations representing a proper run. Importantly, it is definable by
the formula

aps(S, n)∧ run(S, n)

where it is assumed that the variable rho is represented literally by the free variables
in aps(S, n) and run(S, n). If rho is represented by other arithmetic variables, the free
variables in the formulae can be substituted accordingly.

The definition of the predicate Run depends on S and n. To avoid unnecessarily
complicated notation, the flat counter system and the depth are fixed for the remainder
of this section.

7.3.2 Accessing Positions

To express the semantics of a CTL*
# formula, we need not only to represent arbitrary

runs but also to access the configuration at any arbitrary position. For this purpose, let
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Conf(rho, pos, st, val) be a predicate over variables rho : runs(S) ∪ {⊥}, pos : N, st : S,
and val : ZCS . Assuming that the variables are assigned a valid run ρ ∈ runs(S), a
position x ∈ N, a state s ∈ S, and a valuation θ : CS → Z, the predicate is supposed to
hold if and only if ρ(x) = (s, θ).
In the following, a PA formula is constructed to express such a predicate. Again, the

variable rho is assumed to be represented by a set of variables corresponding to those
that occur free in the formulae aps(S, n) and run(S, n), as discussed above. Recall that
this includes for each state i ∈ [0, n− 1] of the represented path schema especially the
variables

typi : {�, .,�, /} for the loop type,

orgi : S for the origin, and

itri : N for the number of occurrences along the run.

Intuitively, to access the configuration at some position x on the run assigned to rho,
the corresponding prefix is modelled. For every state i ∈ [0, n− 1], a variable endi : B is
supposed to indicate whether it occurs on the prefix or not. Further, variables itrPfxi : N
hold the number of repetitions on the prefix. Let the predicate

PfxEnd(end0, . . . , endn−1) :⇔ ¬end0 ∧
∧

i∈[1,n−1]
endi → endi+1

expresses that there is precisely one last state on the prefix, identified as the largest
position i such that ¬endi holds. The iterations on the prefix must coincide with those
on the run up to the point where the prefix ends. If the prefix ends at some state on a
loop, the state and its predecessors are taken once more than its successors. After the
loop, the iteration count is zero until the end of the schema. This is expressed by the
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formula defining the predicate

PfxItr(itr0, . . . , itrn−1, end0, . . . , endn−1, itrPfx0, . . . , itrPfxn−1) :⇔

itrPfx0 = 1

∧ ite(endn−1 ∧¬endn−2, itrPfxn−1 = itrPfxn−2 − 1, itrPfxn−1 = itrPfxn−2)

∧
∧

i∈[1,n−2]



(�i → ite(endi, itrPfxi = 0, itrPfxi = itri) )
∧ ( .i → ite(endi, itrPfxi = 0, itrPfxi > 0) )

∧ (�i → ite(endi ∧¬endi−1,
itrPfxi = itrPfxi−1 − 1,
itrPfxi = itrPfxi−1 )

)

∧ ( /i ∧¬endi → itrPfxi = itrPfxi−1 ∧(¬endi+1 → itrPfxi = itri) )
∧ ( /i ∧ endi → ite(endi−1, itrPfxi = itrPfxi−1, itrPfxi = itrPfxi−1 − 1))


.

In combination, the predicates allow for expressing that a variable pfx holds the prefix of
the run assigned to rho at the position st by

PrefixOf(pfx, rho, pos) :⇔ PfxEnd(end0, . . . , endn−1)∧

 ∑
i∈[0,n−1]

itrPfxi

 = pos + 1

∧PfxItr(itr0, . . . , itrn−1, end0, . . . , endn−1, itrPfx0, . . . , itrPfxn−1).

For improved readability, the formulation assumes a sort of prefixes of runs represented
by variables end0, . . . , endn−1 and itrPfx0, . . . , itrPfxn−1. The variable pfx is of that sort
and assumed to be represented literally by these variables. The state at the end of the
represented prefix is identified by

FinalState(pfx, rho, st) :⇔ (¬endn−1 ∧ orgn−1 = st)∨
∨

i∈[0,n−2]
¬endi ∧ endi+1 ∧ orgi = st,

under the same assumption on the names of variables representing pfx.

Counter valuation. The counter valuation at the end of the modelled prefix can be
computed in the same way as the valuations along the whole run, as expressed by
the formula valuations(S, n) defined in Section 5.1.2. However, since the intermediate
valuations on the prefix are not of interest, the propagation schema is simpler. Effectively,
the updates can be summed up along the whole schema weighted by the iteration count
on the prefix. Then, the result at position n− 1 is precisely the valuation at the end of
the prefix since the iteration counts after the prefix ended are all zero. Therefore, let the
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predicate

FinalValuation(pfx, rho, val) :⇔

∃val0,...,valn−1,valAux0,...,valAuxn−1 . val0 = 0∧ valn−1 = val

∧
∧

i∈[1,n−1]


(.i ∧ itrPfxi = 0→ vali = vali−1)

∧(.i ∧ itrPfxi > 0→ accumulateVal(S, n, i))

∧(¬.i →
∧

(s,µ,Γ,s′)∈∆
orgi−1 = s∧ orgi = s′ → vali = vali−1 + itrPfxi · µ)


associate the representations of a run and a prefix with the valuation at the end of the
prefix. The valuations on prefix parts that are repeated multiple times are accumulated
as expressed by the formula

accumulateVal(S, n, i) :=∧
(s,µ,Γ,s′)∈∆

( orgi−1 = s∧ orgi = s′ → valAuxi = vali−1 + µ )
∧(orgAtEndi = s∧ orgi = s′ → vali = valAuxi + itrPfxi · µ− µ).

Based on the predicates defined above, the predicate to access the configuration of a run
at some specific position can be defined as

Conf(rho, pos, st, val) :⇔

∃pfx .PrefixOf(pfx, rho, pos)∧FinalValuation(pfx, rho, val)∧FinalState(pfx, rho, st).

I Lemma 7.8. The predicates Run(rho) and Conf(rho, pos, st, val) over variables rho :
runs(S) ∪ {⊥}, pos : N, st : S, and val : ZCS are effectively definable by PA formulae of
polynomial size in |S| such that for every valuation θ

θ |=PA Run(rho) ⇔ θ(rho) ∈ runs(S)

and if θ(rho) ∈ runs(S),

θ |=PA Conf(rho, pos, st, val) ⇔ θ(rho)(θ(pos)) = (θ(st), θ(val)).

7.3.3 Formulating CTL*
# Semantics in PH

Finally, using the predicates Conf and Run, we construct for a formula ϕ ∈ CTL*
#(CS) a

PH formula that is satisfiable if and only if S |= ϕ. Given the representation of runs of S

143



Chapter 7 CTL*
# and Presburger Arithmetic with Counting

in terms of a fixed number of first-order variables, path quantifiers can be expressed with
first-order quantification. Recall that variables for representing a run are summarised by
one sorted variable for ease of presentation.

The semantics of temporal operators can be expressed almost literally by using Conf to
access specific positions. Storing the current position in a bookmark x is done explicitly
by assigning the current position to a corresponding first-order variable posx. For a
counting constraint of the form a1 ·#x1(χ1) + . . .+ am ·#xm(χm) -> b variables z1, . . . , zm
are introduced to hold the value of the counting terms #x1(χ1), . . . ,#xm(χm). For
example, the intended value for z1 can be specified by

∃=z1
pos′ . posx1 -< pos′ -< pos ∧ χ̂1

where pos holds the position the constraint is to be evaluated at and χ̂1 is the translation
expressing that χ1 holds at position pos′ of the current run. The actual constraint such
as, e.g., #x(χ1)−#x(χ2) ->−1 can now directly be translated to z1 − z2 ->−1.
The syntactic translation is now specified by the following recursive definition of the

PH formula chk(ϕ, rho, pos) depending on a CTL*
# formula and (the names of) first-order

variables representing a run and a position on it. Let

chk(p, rho, pos) := ∃st.∃val.Conf(rho, pos, st, val)∧
∨

s|p∈λ(s)
st = s

chk(τ1 -> b, rho, pos) := ∃st.∃val.Conf(rho, pos, st, val)∧ τ [val] -> b

chk(Xψ, , rho, pos) := ∃pos′ .pos′ = pos + 1∧ chk(ψ, rho, pos′)

chk(χUψ, rho, pos) := ∃pos′′ .pos -< pos′′ ∧ chk(ψ, rho, pos′′) ∧

∀pos′ .(pos -< pos′ ∧ pos′ < pos′′)→ chk(ψ, rho, pos′)

chk(Eϕ, rho, pos) := ∃rho′ .Run(rho′)∧ chk(ϕ, rho′, pos)

∧∀pos′ .
(
pos′ -< pos→ ∃st.∃val. Conf(rho, pos′, st, val)

∧Conf(rho′, pos′, st, val)
)

chk(x.ψ, rho, pos) := ∃posx .posx = pos∧ chk(ψ, rho, pos)

chk(τ2 -> b, rho, pos) := ∃z1 . . . ∃zm .

(
m∧
`=1
∃=z`

pos′ . posx` -< pos′ -< pos∧ chk(χ`, rho, pos′)
)

∧ a1 · z1 + . . .+ am · zm -> b

for any p ∈ AP , τ1 -> b ∈ Grd(CS), and τ2 = a1 ·#x1(χ1) + . . . + am ·#xm(χm) where
m ∈ N, a1, . . . , am, b ∈ Z, and χ1, . . . , χm ∈ CTL*

#(CS). Primed variables denote fresh
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copies of the corresponding input variables, e.g. pos′ becomes (pos′)′ = pos′′ and pos′′

becomes pos′′′. Now, ϕ |= S if and only if the formula

∃rho.∃pos. Run(rho)∧ pos = 0∧ chk(ϕ, rho, pos)

is satisfiable. This concludes the reduction showing that MC(CTL*
#, FCS) is reducible in

polynomial time to SAT(PH). By the decidability of the latter problem it completes the
proof of Theorem 7.1.
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Conclusion

Stepping back from the detailed technical discussions carried out in the previous chapters,
let us finally review the bigger picture. The present chapter briefly recalls the results
and used techniques as well as questions left open to future investigations.

8.1 Summary

To study the concept of counting in the context of temporal logic specifications we have
started by defining an extension of temporal logic. Linear inequations allow the user
to formulate constraints on the number of positions along a program execution where
given formulae hold. They are evaluated subject to temporal scopes specified using a
bookmarking mechanism in the style of the freeze quantifier. Various fragments were
studied, restricting the temporal navigation to that available in LTL or CTL. Concerning
the counting capabilities, we have mainly considered the restrictions of the scoping
mechanism to that of a single temporal operator.

The main focus of the investigations lay on the model-checking problem of the resulting
fragments with respect to counter systems. We have argued that the problem is undecid-
able in this combination for different reasons, namely the computational power of counter
systems themselves and the inherent hardness to analyse combinations of temporal and
arithmetic constraints. By means of the different logic fragments we examined the latter
aspect and realised that decidability is only recovered in cCTL and wLTL# under absence
of counters in the system model. Apart from omitting counters entirely, the former
dimension was studied by means of flatness which proved to have significant impact as it
recovers decidability even for the most general combination of system and logic features.
We have shown correspondences between model-checking flat counter systems with

respect to counting temporal logic on one hand and the satisfiability problem of variants
of Presburger arithmetic on the other. Model-checking CTL*

#, CTL#, and LTL# over flat
counter systems was found to be closely related to Presburger arithmetic with the Härtig
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counting quantifier. For the fragment cLTL, we developed a formulation in qfPA that
provides also an approximation approach for the (undecidable) problem of verifying
arbitrary counter systems. Also notice that reachability problems in Z-VASS—employed
for solving the satisfiability problem of wLTL#—can be reduced to qfPA satisfiability.
The decision procedure for model-checking cLTL builds on and extends techniques

based on path schemas. The augmented variant developed here serves not only as a
finite representation of a set of runs but also of a labelling. Together with the notion
of correctness and consistency, they can be considered as a proof that the labelling
corresponds to the semantics and hence APS can be used as certificate for the existence of a
satisfying run. Their bounded size provides a significantly improved complexity estimation
in comparison to the more generic method based on PH. Further, APS serve as a backbone
for the flat model-checking approach proposed as approximating verification technique
for counter systems and cLTL. Their structure guides the flexible qfPA formulation and
thereby the SMT-based implementation that was used to demonstrate the effectiveness
of the procedure.

The results provide a systematic overview of a powerful family of temporal logics with
counting and their verification problems on counter systems. The developed techniques
draw from and combine different lines of research, most importantly those of counting
temporal logics, model-checking flat systems, and Presburger arithmetic with counting.

8.2 Outlook

While we were able to provide a characterisation for each combination in Table 1.1, there
is clearly much more to investigate. Many results constitute a first step but leave room
for more precision. Further, many more aspects demand for investigation, as even subtle
differences can impact the results. Some prominent directions are the following.

As discussed earlier in Section 4.6, the precise complexity of cLTL model-checking
remains open because the lower bound (NP) originates already from LTL over flat
Kripke structures and leaves a wide gap to the upper bound (NExp). The same
applies to cCTL*.

Similarly, the lower bound for PH and thus for model-checking LTL#, CTL#, and
CTL*

# are those of standard Presburger arithmetic. Yet, decidability relies on a
non-elementary elimination procedure that is not known to be optimal. Further,
an exponential blow-up is observed in the encoding of MC(CTL*

#, FCS) into PH, while
encoding SAT(PH) into the corresponding problems of LTL# and CTL# is linear. The
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specific choice of the counting quantifier shifts this gap: a quantifier studied by
Rescher [Res62] formulates an inequality relation between the number of solutions
of two given formulae, as opposed to the equality of the Härtig quantifier. While
this would eliminate the exponential blow up in the reduction from CTL*

# to first-
order arithmetic, it would reoccur in the reverse direction. It would therefore be
interesting to study the precise relation between the LTL#, CTL# and CTL*

#.

Verifying cCTL over Kripke structures in polynomial time is optimal, since the lower
bound holds already for CTL. However, the result relies on the choice of inequality
constraints. Including equality raises the complexity [LMP12]. However, the best
known upper bound in this case is exponential. Further results on suitable classes
of one-counter systems may allow improving this bound.

We have only briefly touched upon satisfiability. There may be further interesting
fragments that admit a decidable satisfiability problem. Further, other problems
such as realisability and synthesis are of general interest. The formulation in
first-order arithmetic could be the starting point for developing corresponding
methods.

The developments focused on the computational complexity in various fragments.
However, their distinction is, a priori, merely syntactical. It remains to study
the semantic relation between the logic fragments in terms of expressiveness and
conciseness.

A crucial step is turning from theory to application. The developed approximation
scheme has shown potential for practical use, but it remains to optimise the
SMT encoding. To obtain a competitive tool, much more engineering effort is
necessary. Comparison of different formulations would be valuable and the use of
dedicated features of the solvers, such as solving tactics or incremental solving could
significantly increase performance. The construction used in the completeness proof
(Section 4.5) provide more domain knowledge than what is used in the encoding so
far. It may therefore be possible to develop a more specific procedure to construct
witnesses following these constructions more closely.

While each of the points raises new questions and issues of technical or theoretical
nature it may be worth pursuing them towards the common goal: to better understand
the fundamental concept of counting and specifically its interplay with temporal behaviour
and application in specification and verification.
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