
Aus dem Institut für Mathematik
der Universität zu Lübeck

Direktor: Prof. Dr. rer. nat. Jürgen Prestin

Lp and Pathwise Convergence of the Milstein Scheme
for Stochastic Delay Differential Equations

Inauguraldissertation
zur

Erlangung der Doktorwürde
der Universität zu Lübeck

aus der Sektion Informatik/Technik

vorgelegt von

Jan Pleis, M. Sc.

aus Oldenburg (Oldb)

Lübeck, August 2019



1. Berichterstatter: Prof. Dr. rer. nat. Andreas Rößler

2. Berichterstatter: Prof. Dr. rer. nat. Andreas Neuenkirch

Tag der mündlichen Prüfung: 3. März 2020

Zum Druck genehmigt. Lübeck, den 4. März 2020



Danksagung

Ich danke allen, die mich auf dem Weg zur Promotion unterstützt haben – insbesondere meiner
Schwester Wiebke und meiner Freundin Julia. Genauso danke ich den lieben Kolleginnen und
Kollegen am Institut für Mathematik; vielen Dank für die schöne Zeit mit Euch!

Ich möchte an dieser Stelle auch Andreas Neuenkirch für die Begutachtung meiner – um es mit
Andreas Worten zu sagen – enzyklopädischen Arbeit danken. Vielen Dank!

Ein ganz besonders großer Dank gilt Andreas Rößler.
Lieber Andreas, ich danke Dir herzlich für Dein Vertrauen und die Möglichkeit, selbstständig
und frei forschen zu können. Du hattest immer Zeit, meine Ideen zu diskutieren und hast,
gerade auch durch Deine kritischen und interessierten Rückfragen, maßgeblich zum Gelingen
dieser Arbeit beigetragen. Ich danke Dir für die guten und lustigen Gespräche, auch abseits
der Mathematik, sowie die vielen gemeinsam genossenen Kaffees.
Herzlichen Dank für die wunderbare Betreuung und die schöne Zeit!

i





Zusammenfassung

Die Entwicklung des Milstein Verfahrens war ein großer Fortschritt in der Approximation von
Lösungen stochastischer (gewöhnlicher) Differentialgleichungen. Dessen Konvergenz wurde um-
fassend untersucht und ist von starker Ordnung eins. Kaum analysiert wurde im Gegensatz
dazu die Konvergenz des Milstein Verfahrens für stochastische retardierte Differentialgleichun-
gen. Dessen numerische Analyse ist wesentlich schwieriger als im Falle von stochastischen
gewöhnlichen Differentialgleichungen und ist der Schwerpunkt dieser Arbeit.

Bislang wurde die Konvergenz lediglich im quadratischen Mittel unter starken Voraussetzungen
an die Differentialgleichungen betrachtet. In der vorliegenden Arbeit wird gezeigt, dass das Mil-
stein Verfahren mit Ordnung eins in Lp für beliebige p ∈ [1,∞[ sowie pfadweise mit Ordnung
1−ε für beliebige ε > 0 konvergiert. Die Voraussetzungen an die Koeffizienten der Differential-
gleichungen konnten dabei abgeschwächt und stochastische Prozesse als Anfangsbedingungen
berücksichtigt werden.

Darüber hinaus liegt ein besonderer Fokus auf der effizienten Approximation iterierter sto-
chastischer Integrale, die im Milstein Verfahren im Falle von nichtkommutativem Rauschen
auftreten. In dieser Arbeit werden verschiedene Algorithmen vorgestellt und ihre Konvergenz
in Lp für beliebige p ∈ [2,∞[ analysiert. Bislang wurde in der Literatur lediglich die Konver-
genz in L2 betrachtet. Mit den hier präsentierten stärkeren Konvergenzaussagen ergibt sich
die Konvergenz des Milstein Verfahrens, das auf Approximationen der iterierten stochastischen
Integralen basiert, in Lp für beliebige p ∈ [2,∞[ sowie pfadweise. Die Rechenkomplexität wird
dabei im Vergleich zu dem Ergebnis von Hu, Mohammed und Yan (Ann. Probab., 32(1A):265–
314, 2004. DOI: 10.1214/aop/1078415836) deutlich verbessert. Zwei der hier vorgestellten Al-
gorithmen zur Approximation von iterierten stochastischen Integralen reduzieren außerdem den
Rechenaufwand gegenüber dem von Wiktorsson vorgestellten Algorithmus (Ann. Appl. Probab.,
11(2):470–487, 2001. DOI: 10.1214/aoap/1015345301) erheblich.

Abschließend werden einige numerische Simulationen präsentiert, um die zuvor beschriebenen
theoretischen Ergebnisse zur Konvergenz des Milstein Verfahrens zu veranschaulichen. Dabei
werden insbesondere nichtlineare stochastische retardierte Differentialgleichungen mit mehrdi-
mensionalem und kommutativem Rauschen betrachtet. Deren analytischen Lösungen werden
in dieser Arbeit erstmals exakt und fehlerfrei simuliert.
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Abstract

The development of the Milstein scheme was a great advance in the approximation of solutions
of stochastic (ordinary) differential equations. Its convergence has been extensively studied and
is of strong order one. In contrast, the convergence of the Milstein scheme for stochastic delay
differential equations has hardly been analyzed. Its numerical analysis is much more difficult
than in the case of stochastic ordinary differential equations and is the focus of this thesis.

So far, the convergence has only been considered in the quadratic mean under strong assump-
tions regarding the differential equations. In this thesis, we prove that the Milstein scheme
converges with order one in Lp for arbitrary p ∈ [1,∞[ and with order 1 − ε in the pathwise
sense for arbitrary ε > 0. Here, the assumptions on the coefficients of the differential equations
are weakened and stochastic processes are considered as initial conditions.

Furthermore, a special focus is on the efficient approximation of iterated stochastic integrals
that occur in the Milstein scheme in case of noncommutative noise. In this thesis, we present
various algorithms and analyze their convergence in Lp for arbitrary p ∈ [2,∞[. So far, in
the literature, the convergence has been considered in L2 only. The stronger findings on the
convergence presented here result in the convergence of the Milstein scheme, which is based
on approximations of the iterated stochastic integrals, in Lp for arbitrary p ∈ [2,∞[ as well
as in the pathwise sense. The computational complexity of the Milstein scheme with approxi-
mated iterated stochastic integrals is significantly improved in comparison to the result by Hu,
Mohammed, and Yan (Ann. Probab., 32(1A):265–314, 2004. DOI: 10.1214/aop/1078415836).
Moreover, two of the algorithms for the approximation of iterated stochastic integrals pre-
sented here reduce the computational effort substantially compared to the algorithm derived
by Wiktorsson (Ann. Appl. Probab., 11(2):470–487, 2001. DOI: 10.1214/aoap/1015345301).

Finally, numerical simulations are presented in order to illustrate and confirm the theoretical
results on the convergence of the Milstein scheme. Here, we especially consider nonlinear
stochastic delay differential equations with multidimensional and commutative noise. In this
thesis, their analytical solutions are simulated exactly and error-free for the first time.
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I
Introduction

The Milstein scheme was a major advancement in the approximation of solutions of stochastic
ordinary differential equations (SODEs). This method was introduced by Milstein in [106], and
it was the first that converges with order O(h) in L2 to the SODEs’ solutions as maximum step
size h→ 0.

Priorly, Maruyama showed that an Euler-type scheme converges to the solution of SODEs
in L2, see [101, Theorem 1]. According to [105, p. 4], Gihman and Skorohod were the first
who proved that the convergence of the so-called Euler-Maruyama method is of order O(

√
h)

in L2, see [46, pp. 237–241]. Thus, this order of convergence is lower than the one of the
Euler method, introduced by Euler [39, pp. 424–425], in the case of deterministic ordinary
differential equations. There, the Euler method converges with order O(h) as h → 0, cf. [54,
Section I.7]. This already indicates that randomness in stochastic differential equations (SDEs)
has a large influence on the order of convergence and makes the analysis of numerical methods
more difficult.

Since Milstein’s article [106] in 1975, approximations of solutions of SODEs are extensively
studied. Their convergence is analyzed, among others, in Lp for p ∈ [1,∞[, and pathwise.
We refer to [41, 77, 78, 105, 125] to name only a selection of references. Recently, numerical
solutions of stochastic partial differential equations (SPDEs) have also been studied relative
comprehensively, see, among others, [11, 13, 25, 69, 71, 89].

In contrast to this, numerical solutions, especially those that converge with a higher order
than O(

√
h), of stochastic delay differential equations (SDDEs) have not been analyzed to

the same extent. SDDEs are SDEs whose evolution in time depends on its past history, that
is, coefficients of an SDDE incorporate, in addition to the current state, discrete information
about prior states of the equation’s solution, cf. [65, 98, 107]. Whereas the convergence of the
Euler-Maruyama scheme for SDDEs is broadly studied, see e. g. [2, 52, 77, 83, 99, 100], there
are only few results on the Milstein scheme or other methods of higher order. Contrary to
what one would expect, the convergence analysis of numerical solutions, that converge with a
higher order than O(

√
h), turned out to be substantially more difficult in case of SDDEs in

comparison to SODEs. In this regard, we refer to [60, 80, 137], where the convergence in L2 of
the Milstein scheme to the SDDE’s solution is shown. In order to prove the convergence of order
O(h) as h → 0, their numerical analyses are on the one hand based on the Malliavin calculus,
see [60, 137], and on the other, on the differentiation of the SDDE’s solution with respect to
its initial condition, see [80]. Thus, their proofs involve more sophisticated techniques from
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I. Introduction

stochastic analysis in comparison to convergence analyses of the Euler-Maruyama scheme for
SDDEs, approximations of SODEs’ solutions, or numerical solutions of SPDEs. In the latter
cases, the proofs of convergence are mainly based on Itô’s calculus, cf. [11, 71, 77, 78, 105].
We see in [60, 80, 137] that the difficulties occurring in the convergence analyses are caused
by the delay in the drift coefficient of the SDDE. In [104, 124], higher order approximations of
solutions of SDDEs are considered. However, the presented numerical schemes are not optimal
in the sense that a scheme of order O(h) contains itself terms of order O(h), for example.

In this thesis, the focus is on the Milstein scheme for SDDEs. As a main result, we prove
in Chapter IV that the Milstein scheme converges to the SDDE’s solution with order O(h)
in Lp for p ∈ [1,∞[ as its maximum step size h → 0. Here, we allow the SDDE to have a
stochastic process as initial condition, consider the supremum over time inside the expectation
of the Lp-norm, and postulate less restrictive assumptions on the SDDE’s coefficients than in
[60, 80, 137]. The pathwise convergence subsequently follows as a corollary from the main
result, cf. [2, 41, 77]. Thus, we improve the results obtained in [60, 80, 137] eminently as they
only considered the convergence in L2 for SDDEs with deterministic initial conditions.

The Milstein scheme contains iterated stochastic integrals in order to achieve the higher order
of convergence O(h). These stochastic integrals can be simulated by normally distributed incre-
ments of the Wiener process only if the diffusion coefficients do not depend on the prior devel-
opment of the SDDE’s solution and satisfy a so-called commutativity condition, cf. [23]. Thus,
in order to make the Milstein scheme applicable in general, the iterated stochastic integrals in
the Milstein scheme have to be substituted by appropriate approximations. In Chapter V, we
consider various approximations. At first, we prove the convergence in Lp of a so-called Fourier
method for nondelayed- and delayed-iterated stochastic integrals. This method was first devel-
oped by Milstein in case of nondelayed-iterated stochastic integrals occurring in the Milstein
scheme for SODEs, see [105], and afterwards extended by Yan to the case of delayed-iterated
stochastic integrals, see [60, 137]. Both only proved the convergence in L2. Moreover, we
improve the computational complexity of the Milstein method for SDDEs with approximated
iterated stochastic integrals compared to the result in [60]. In Chapter V, we further focus
on nondelayed-iterated stochastic integrals in particular. Here, we improve the algorithm that
Wiktorsson developed in [136] and significantly reduce the computational effort. Moreover,
we prove the convergence of our algorithm in Lp for arbitrary p ∈ [2,∞[, and not just that
it is convergent in L2. Thus, we obtain that the Milstein scheme with approximated iterated
stochastic integrals converges in Lp for arbitrary p ∈ [1,∞[ and pathwise as well.

In Chapter VI, we present some numerical simulations in order to illustrate and confirm our
theoretical results. In order to compare the approximations obtained by the Euler-Maruyama
scheme and the Milstein scheme, we first derive analytical solutions of SDDEs that can be
simulated error-free. Here, we consider linear SDDEs with additive noise on the one hand, but
also more general SDDEs with multidimensional and commutative noise on the other. These
results make the difficulty and complexity in the exact simulation of analytical solutions clear
and emphasize the demand for efficient numerical methods. To the best of our knowledge, the
presented numerical simulations are the first that compare the Milstein approximations with
the correctly simulated analytical solutions of SDDEs.

Chapter II and Chapter III provide fundamentals for the numerical analysis of SDDEs. We
present the existence and uniqueness of strong solutions for SDDEs and state important prop-
erties of their strong solutions in Chapter II. Further, we derive inequalities for time-discrete
and time-continuous martingales that are similar to the well-known Burkholder inequalities.
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However, the here presented inequalities have smaller constants and are therefore highly valu-
able in the analysis of numerical methods for SDEs. Chapter III serves as an introduction to
the Malliavin calculus. Here, we prove a more general chain rule for the Malliavin derivative
and show that solutions of SDDEs with deterministic initial conditions are differentiable in the
sense of Malliavin. These results are used in the numerical analysis of the Milstein scheme in
Chapter IV.

Finally, we conclude this thesis with Chapter VII, where we summarize our several new results
and mention some open problems.

Throughout this thesis, we consider SDEs whose stochastic integrals are defined in the sense of
Itô, cf. [63]. We refer to [29] for a result by which SDEs with Stratonovich-stochastic integrals,
cf. [129], can be converted to Itô-SDEs.

3





II
Stochastic Delay Differential Equations

The SDDEs considered in this thesis as well as the involved spaces and stochastic processes
are introduced in this chapter. Further, in Section II.2, we depict the well-known Burkholder
inequalities and derive more accurate inequalities of a similar type that are highly valuable for
the analysis of solutions of SDEs and their numerical approximations. The concept of strong
solutions of SDDEs is introduced below. In Section II.3, the existence and uniqueness of such
solutions are shown.

Throughout this thesis, the points in time t0, T ∈ R with t0 < T denote the starting point and
the finite time horizon of the evolution of the SDDEs under consideration. Let (Ω,F,P) be
a complete probability space with a filtration (Ft)t∈[t0−τ,T ] that satisfies the usual condition,
see [75, Definition 1.2.25], and where τ ≥ 0 is a constant, which is specified later. Further, we
consider an m-dimensional Wiener process W on (Ω,F,P) with respect to filtration (Ft)t∈[t0,T ]

that is defined similarly to [12, Definition 40.1] and [75, Definition 2.5.1].

Definition II.1 (Wiener Process)
Let m ∈ N and Q be a probability measure on (Rm,B(Rm)). A measurable stochastic process
W : [t0, T ] × Ω → Rm on (Ω,F,P) that is adapted to (Ft)t∈[t0,T ] is called (m-dimensional)
Wiener process with respect to filtration (Ft)t∈[t0,T ] and with initial distribution Q if

i) P[Wt0 ∈ B] = Q[B] for all B ∈ B(Rm),

ii) the realizations t 7→Wt are P-almost surely continuous,

iii) for all s, t ∈ [t0, T ] with s < t, the increments Wt −Ws are independent of Fs, and

iv) for all s, t ∈ [t0, T ] with s < t, the increments Wt −Ws are N(0, (t − s)Im)-distributed,
that is, they are normally distributed with expectation 0 ∈ Rm and covariance (t− s)Im,
where Im is the identity matrix in Rm×m.

Evidently, the Wiener process W is adapted to its augmented natural filtration (FW
t )t∈[t0,T ],

which is defined by FW
t := σ({Ws : s ∈ [t0, t]} ∪ N ), where N = {A ∈ F : P[A] = 0}

is the collection of all P-null sets, see [75, Section 2.7]. Moreover, the process (Bt)t∈[0,T−t0]

with Bt = Wt0+t − Wt0 is clearly the standard Wiener process or Brownian motion with
B0 = 0 P-almost surely. The advantage of the generality of the Wiener process W with initial
distribution Q from Definition II.1 is described later.

5



II. Stochastic Delay Differential Equations

As the coefficients of SDDEs incorporate discrete information about the prior development
of their solutions, we have to introduce the time lags that specify these retardations. Define
τ0 := 0, and let τl ∈ ]0,∞[ be constants for l ∈ {1, . . . , D}, where D ∈ N0 is the number of
different positive delays of the SDDE under consideration.

Now, we describe the d-dimensional SDDEs considered in this thesis, where d ∈ N. Let
a, bj : R1×(D+1)×Rd×(D+1) be Borel-measurable functions for j ∈ {1, . . . ,m}. Further, con-
sider a measurable stochastic process ξ : [t0 − τ, t0] × Ω → Rd that is adapted to the filtration
(Ft)t∈[t0−τ,t0] and serves as the initial condition, where τ ≥ maxl∈{0,1,...,D} τk is arbitrary but
fixed. Then, the d-dimensional SDDE with D delays and initial condition ξ is given by

Xt =



ξt if t ∈ [t0 − τ, t0],

ξt0 +

∫ t

t0

a(s, s− τ1, . . . , s− τD, Xs, Xs−τ1 , . . . , Xs−τD)ds

+
m∑
j=1

∫ t

t0

bj(s, s− τ1, . . . , s− τD, Xs, Xs−τ1 , . . . , Xs−τD)dW j
s if t ∈ ]t0, T ],

(II.1)

where the stochastic integral is defined in the sense of Itô. We refer to e. g. [21], [75], and [84]
for monographs addressing the stochastic integration. Note that the SDDE (II.1) above simply
reduces to an SODE in case of D = 0. Further, the generality of the Wiener process with
initial distribution Q allows us to consider a Wiener process W̃ that actually starts in t0 − τ

by choosing Q[B] = PW̃t0 [B] = P[W̃t0 ∈ B] for all B ∈ B(Rm) in Definition II.1. Then, the
initial condition ξ can also depend on the Wiener process W̃ and can thus be semimartingale
for example.

Throughout this thesis, we consider strong solutions of the SDDEs (II.1) that are defined as
follows, cf. [75, Definition 5.2.1] in case of SODEs and [98, Definition 5.2.1].

Definition II.2
A measurable stochastic process X : [t0−τ, T ]×Ω → Rd is called strong solution of SDDE (II.1)
with respect to the fixed Wiener process W and to initial condition ξ if

i) (Xt)t∈[t0−τ,T ] is adapted to (Ft)t∈[t0−τ,T ],

ii) (Xt)t∈[t0,T ] has P-almost surely continuous realizations,

iii)
∫ t

t0

‖a(s, s− τ1, . . . , s− τD, Xs, Xs−τ1 , . . . , Xs−τD)‖

+

m∑
j=1

‖bj(s, s− τ1, . . . , s− τD, Xs, Xs−τ1 , . . . , Xs−τD)‖
2 ds <∞

holds P-almost surely for all t ∈ [t0, T ],

iv) and if equation (II.1) holds for all t ∈ [t0 − τ, T ] P-almost surely.

Note that in contrast to definitions of strong solutions in [98, Definition 5.2.1], [107, page 35],
and [109, page 10], our definition does not impose the continuity of the solution on [t0 − τ, t0].
This will be important later on in Chapter III. As we only consider strong solutions in this
thesis, we may omit the adjective strong from time to time, and a solution of SDDE (II.1)

6



II.1. On Measurability of Stochastic Processes, Notations, and Spaces

always refers to a strong solution. If we want to emphasize the initial condition ξ of a solution
X, we use the notation Xξ.

In the following, we give some remarks on the filtration (Ft)t∈[t0−τ,T ]. Instead of considering
filtration (Ft)t∈[t0−τ,T ], one can also use the augmented natural filtration (Ht)t∈[t0−τ,T ] defined
by

Ht :=

{
σ
(
{ξs : s ∈ [t0 − τ, t]} ∪ N

)
if t ∈ [t0 − τ, t0[ and

σ
(
FW

t ∪ {ξs : s ∈ [t0 − τ, t0]}
)

if t ∈ [t0, T ],

where N = {A ∈ F : P[A] = 0}. Initial condition ξ is clearly adapted to (Ht)t∈[t0−τ,t0],
therefore, this does not have to be imposed a priori. However, we then have to suppose that ξt
is independent of σ-algebra G := GT for all t ∈ [t0 − τ, t0], where

Gt := σ
(
{Ws −Wt0 : s ∈ [t0, t]} ∪ N

)
(II.2)

for t ∈ [t0, T ]. As filtration (Ht)t∈[t0−τ,T ] is more restrictive, we stick to filtration (Ft)t∈[t0−τ,T ].
The assumption of the independence of σ-algebra G does not have to be imposed because we
presume the existence of the Wiener process, and thus it is fulfilled anyway. Nevertheless,
σ-algebra G generated by the normally distributed random variables Ws − Wt0 , s ∈ [t0, T ],
plays an important rule in Malliavin’s calculus, see Chapter III.

II.1. On Measurability of Stochastic Processes, Notations, and
Spaces

In order to keep formulas and terms concise, we introduce the following abbreviations. Con-
sidering SDDE (II.1), we define

T (t,Xt) := (t, t− τ1, . . . , t− τD, Xt, Xt−τ1 , . . . , Xt−τD) (II.3)

for t ∈ [t0, T ]. Then, SDDE (II.1) can be rewritten to

Xt =


ξt if t ∈ [t0 − τ, t0],

ξt0 +

∫ t

t0

a(T (s,Xs))ds+
m∑
j=1

∫ t

t0

bj(T (s,Xs))dW j
s if t ∈ ]t0, T ]

in short notation. Further, for the sake of brevity, we write x ∨ y := max{x, y} and x ∧ y :=
min{x, y} for x, y ∈ R throughout this thesis.

In the following, consider a real separable Hilbert space E with inner product 〈·, ·〉E and
norm ‖·‖E . If E = Rd for some d ∈ N with d > 1, we neglect the subscript on the norm
and simply write ‖·‖ := ‖·‖Rd for the Euclidean norm in Rd. In the case of E = R, the notation
|·| := ‖·‖R is used for the absolute value.

The Banach space of all (equivalence classes of) E-valued random variables on (Ω,F,P) with
finite p-mean, p ∈ [1,∞[, is denoted by Lp(Ω;E) := Lp((Ω,F,P); (E,B(E))) and endowed
with the norm

‖·‖Lp(Ω;E) =
(
E[‖·‖p]

) 1
p ,

7



II. Stochastic Delay Differential Equations

where random variables that equal P-almost surely are identified, and E[·] denotes the expec-
tation on (Ω,F,P). In this thesis, equivalence classes and their representatives are however
not distinguished. Thus, Z ∈ Lp(Ω;E) is referred to as a fixed F/B(E)-measurable function
instead of an equivalence class.

Let λ denote the Lebesgue-measure on R, and consider an interval A ⊆ [t0 − τ, T ]. The space
Hp(A × Ω;E) := Hp((A × Ω,B(A) ⊗ F, λ|A ⊗ P); (E,B(E))) with p ∈ [1,∞[ denotes the
space of all (equivalence classes of) E-valued and (Ft)t∈A-progressively measurable processes
Z : A× Ω → E with the finite norm

‖Z‖Hp(A×Ω;E) :=

(
E
[(∫

A
‖Zt‖2E dt

) p
2
]) 1

p

where indistinguishable processes are identified, cf. [45], [44], [103], [33, p. 274], and [119,
p. 195]. Further, the space Sp(A × Ω;E) := Sp((A × Ω,B(A) ⊗ F, λ|A ⊗ P); (E,B(E))) with
p ∈ [1,∞[ denotes the space of all (equivalence classes of) E-valued and (Ft)t∈A-progressively
measurable processes Z : A × Ω → E whose realizations are P-almost surely càdlàg and the
norm

‖Z‖Sp(A×Ω;E) :=

(
E
[

sup
t∈A

‖Zt‖pE

]) 1
p

is finite, where indistinguishable processes are identified again, cf. [103], [33, p. 253], [118,
p. 339], and [119, p. 250]. A realization is called càdlàg – continue à droite limites à gauche –
if it is right continuous with left-hand limits [32, p. 90]. The letter S of the space Sp(A×Ω;E)
stands for supremum.

In Section II.3, we show that under certain conditions there exists a strong solution X of
SDDE (II.1) that belongs to Sp([t0 − τ, T ]× Ω;Rd), where p ∈ [2,∞[.

For Z ∈ Hp(A × Ω;E) or Z ∈ Sp(A × Ω;E), the process Z again is a fixed representa-
tive. Moreover, the term ‖Z‖E is referred to as the (Ft)t∈A-progressively measurable process
‖Z‖E : A × Ω → R with (t, ω) 7→ ‖Zt(ω)‖E , where ‖Z‖ ∈ Hp(A × Ω;R) and Sp(A × Ω;R),
respectively.

Consider an integrable and (Ft)t∈[t0,T ]-progressively measurable process Z, e. g. Z ∈ S2([t0, T ]×
Ω;R). Then, Fubini’s theorem implies that the process t 7→

∫ t
t0
Zs ds, t ∈ [t0, T ], is adapted

to the filtration (Ft)t∈[t0,T ]. In general this is not the case, when we only assume the process
Z to be measurable and adapted, cf. [21, Section 3.2 and Section 3.4] and [72]. Especially in
[21, Example, p. 62], an example of a measurable and adapted process that is not progressively
measurable is provided.

Although not every measurable and (Ft)t∈A-adapted stochastic process is (Ft)t∈A-progressively
measurable, any processes of this kind have an (Ft)t∈A-progressively measurable modification
[32, Theorem IV.30 on p. 99], see also [72, Theorem 1]. However, a modification does not
preserve continuity properties of that process in general. But we have the following. If every
realization of an (Ft)t∈A-adapted and measurable process is right continuous, the process is
(Ft)t∈A-progressively measurable, see [32, Theorem IV.15 on p. 89] or [75, Proposition 1.1.13].
However, this is not the case, when only P-almost all realizations are right continuous. Consider
a measurable and (Ft)t∈[t0,T ]-adapted stochastic process Z : [t0, T ]×Ω → E that has P-almost
surely right continuous realizations. The process Z is (Ft)t∈[t0,T ]-progressively measurable if

8
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and only if Z|[t0,t] := (Zs)s∈[t0,t] is B([t0, t]) ⊗ Ft/B(E)-measurable for all t ∈ [t0, T ]. That
is, for all B ∈ B(E) the preimage Z|−1

[t0,t]
(B) belongs to B([t0, t]) ⊗ Ft for all t ∈ [t0, T ]. Let

N ∈ F be a P-null set such that Z(ω) is right continuous for all ω ∈ Ω \ N . Recall that
probability space (Ω,F,P) is complete and P-null set N ∈ Ft for all t ∈ [t0, T ]. Thus, we
have [t0, t] × N ∈ B([t0, t]) ⊗ Ft, and it holds (λ ⊗ P)

[
[t0, t] × N

]
= λ

[
[t0, t]

]
P[N ] = 0 for all

t ∈ [t0, T ]. Consider the preimage Z|−1
[t0,t]

(B) ∈ B([t0, t])⊗Ft for arbitrary B ∈ B(E), where

Z|−1
[t0,t]

(B) =
(
Z|−1

[t0,t]
(B) ∩ ([t0, t]× Ω \N)

)
∪
(
Z|−1

[t0,t]
(B) ∩ ([t0, t]×N)

)
for all t ∈ [t0, T ]. The set Z|−1

[t0,t]
(B) ∩ ([t0, t]×N) can be a subset of a null set in general. But

product-σ-algebra B([t0, t])⊗Ft is not complete, thus, this set may not belong to B([t0, t])⊗
Ft. In general, Z|[t0,t] is not B([t0, t]) ⊗ Ft/B(E)-measurable, and thus, process Z is not
(Ft)t∈[t0,T ]-progressively measurable.

A measurable and (Ft)t∈A-adapted stochastic process Z : Ω×A→ E with P-almost surely right
continuous realizations is however indistinguishable from an (Ft)t∈A-progressively measurable
process Z̃ : Ω × A → E. Here, A ⊆ [t0 − τ, T ] is still an interval, and E is a real separable
Hilbert space. In order to verify that assertion, let N ∈ F with P[N ] = 0 be the null set so that
Z(ω) is right continuous for all ω ∈ Ω \N . Then, let Z̃(ω) = Z(ω) for all ω ∈ Ω \N , and set
Z̃t(ω) = 0 for all (t, ω) ∈ A×N for example. Such a process Z̃ is clearly indistinguishable from
Z. Since all realizations of Z̃ are right continuous, the process is further (Ft)t∈A-progressively
measurable, see [32, Theorem IV.15 on p. 89] or [75, Proposition 1.1.13]. The same holds true
when the process Z has P-almost surely left continuous, continuous, or càdlàg realizations.

Due to this, (Ft)t∈A-adapted measurable stochastic processes that have P-almost surely right
continuous realizations, e. g. càdlàg processes, can be modified on a P-null set, by preserving
the regularity property of P-almost all realizations, such that they are (Ft)t∈A-progressively
measurable and indistinguishable from the originated processes. Throughout this thesis, the
(Ft)t∈A-adapted measurable processes and its indistinguishable, (Ft)t∈A-progressively mea-
surable variant are not distinguished because the processes below will only be unique up to
indistinguishability. Hence, without the loss of generality, the (Ft)t∈A-progressive measurabil-
ity property of such processes can be assumed.

We continue introducing some further notations and spaces. Let C(A;Rd) denote the space of
continuous functions f : A→ Rd where e. g. A ⊂ R or A = Rd×(D+1). The latter case is impor-
tant in consideration of the coefficients of SDDE (II.1). Having drift coefficient a = (a1, . . . , ad)T

and diffusion coefficient bj = (b1,j , . . . , bd,j)T for j ∈ {1, . . . ,m} in mind, we consider functions
f = (f1, . . . , fd)T : Rd×(D+1) → Rd in the following. We denote the partial derivatives of f by
∂xi

l
f = (∂xi

l
f1, . . . , ∂xi

l
fd)T for i ∈ {1, . . . , d} and l ∈ {0, 1, . . . , D} where xl = (x1l , . . . , x

d
l )

T ∈
Rd. If the function f and all these partial derivatives exist and are continuous, we write
f ∈ C1(Rd×(D+1);Rd). If, in addition, the partial derivatives of second order ∂

xj
k
∂xi

l
f exist and

are continuous for all i, j ∈ {1, . . . , d} and k, l ∈ {0, 1, . . . , D}, we write f ∈ C2(Rd×(D+1);Rd).
In the assumptions regarding the Milstein scheme, see Section IV.2, we suppose for example
that the spatial partial derivatives up the second order of the coefficients of the SDDE (II.1)
exist and are continuous. That is a(t, t−τ1, . . . , t−τD, ·, . . . , ·), bj(t, t−τ1, . . . , t−τD, ·, . . . , ·) ∈
C2(Rd×(D+1);Rd) for all t ∈ [t0, T ] and j ∈ {1, . . . ,m}. We emphasize that the term ∂xi

l
f

denotes the partial derivative of f , and the symbol ∂xi
l

should not be understood as the deriva-
tive operator. That is ∂xi

l
f(x0, x1, . . . , xD)g(x) refers to as

(
∂xi

l
f(x0, x1, . . . , xD)

)
g(x), where

g : A→ R and x ∈ A.
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II.2. On Inequalities for Martingales

In order to estimate martingales in Lp(Ω;Rd) or Sp([t0, T ] × Ω;Rd) for p ∈ [2,∞[, the time-
discrete and time-continuous Burkholder inequalities provide powerful estimates.

Theorem II.3 (Discrete Burkholder Inequalities, [19])
Let p ∈ [2,∞[ and N ∈ N. Consider a discrete martingale (Mn)n∈{0,1,...,N} in Lp(Ω;Rd)
with respect to the filtration (Ftn)n∈{0,1,...,N}, where Mn =

∑n
k=0 dk with d0 = M0 and dk =

Mk −Mk−1 for k ∈ {1, . . . , N}. Then, it holds

‖Mn‖2Lp(Ω;Rd)
≤ (p− 1)2

∥∥∥∥ n∑
k=0

‖dk‖2
∥∥∥∥
L

p
2 (Ω;R)

and ∥∥∥∥ sup
ν∈{0,1,...,n}

‖Mν‖
∥∥∥∥2
Lp(Ω;R)

≤ p2
∥∥∥∥ n∑

k=0

‖dk‖2
∥∥∥∥
L

p
2 (Ω;R)

for all n ∈ {0, 1, . . . , N}. The constants are best possible.

Proof. The first inequality is stated in [19, Theorem 3.1]. The second follows from Doob’s
maximal inequality [35, Theorem 3.4 on p. 317] and is stated in [19, Inequality (3.4)], cf.
[20].

The inequalities in Theorem II.3 carry over to time-continuous martingales [19, 34].

Theorem II.4 (Burkholder Inequalities, [19])
Let p ∈ [2,∞[, and let f j ∈ Hp([t0, T ]× Ω;Rd) for j ∈ {1, . . . ,m}. Then, it holds∥∥∥∥ m∑

j=1

∫ t

t0

f ju dW j
u

∥∥∥∥2
Lp(Ω;Rd)

≤ (p− 1)2
∥∥∥∥∫ t

t0

m∑
j=1

∥∥f ju∥∥2 du
∥∥∥∥
L

p
2 (Ω;R)

and ∥∥∥∥ m∑
j=1

∫ ·

t0

f ju dW j
u

∥∥∥∥2
Sp([t0,t]×Ω;Rd)

≤ p2
∥∥∥∥∫ t

t0

m∑
j=1

∥∥f ju∥∥2 du
∥∥∥∥
L

p
2 (Ω;R)

for all t ∈ [t0, T ]. The constants are best possible.

Proof. See [19, Inequality (4.1)] for the first inequality. The second inequality then follows from
Doob’s maximal inequality, see e. g. [122, Theorem II.1.7].

Usually, the expressions on the right-hand sides of the inequalities in Theorem II.3 and Theo-
rem II.4 are not needed explicitly. The triangle inequality is often applied to the L

p
2 (Ω;R)-norms

in order to obtain suitable upper bounds. In the following, we show that for such inequalities
the constants can be reduced in case of p > 2 compared to the constants in Theorem II.3 and
Theorem II.4.
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Theorem II.5 (Discrete Burkholder-type Inequalities)
Let p ∈ [2,∞[ and N ∈ N. Consider a discrete martingale (Mn)n∈{0,1,...,N} in Lp(Ω;Rd)
with respect to the filtration (Ftn)n∈{0,1,...,N}, where Mn =

∑n
k=0 dk with d0 = M0 and dk =

Mk −Mk−1 for k ∈ {1, . . . , N}. Then, it holds

‖Mn‖2Lp(Ω;Rd)
≤ (p− 1)

n∑
k=0

‖dk‖2Lp(Ω;Rd)
(II.4)

and ∥∥∥∥ sup
ν∈{0,1,...,n}

‖Mν‖
∥∥∥∥2
Lp(Ω;R)

≤ p2

p− 1

n∑
k=0

‖dk‖2Lp(Ω;Rd)

for all n ∈ {0, 1, . . . , N}. The constants are best possible.

Proof. The proof is stated in Section II.4, see p. 16.

In 1967, Zakai proved inequality (II.5) of the following theorem in the case of d = m = 1, see
[139, Theorem 1]. Since his paper is older than Burkholder’s, we call, in honor of Zakai, the
inequalities of the following theorem Zakai inequalities.

Theorem II.6 (Zakai Inequalities)
Let p ∈ [2,∞[, and let f j ∈ Hp([t0, T ]× Ω;Rd) for j ∈ {1, . . . ,m}. Then, it holds∥∥∥∥ m∑

j=1

∫ t

t0

f ju dW j
u

∥∥∥∥2
Lp(Ω;Rd)

≤ (p− 1)

∫ t

t0

∥∥∥∥ m∑
j=1

∥∥f ju∥∥2∥∥∥∥
L

p
2 (Ω;R)

du (II.5)

and ∥∥∥∥ m∑
j=1

∫ ·

t0

f ju dW j
u

∥∥∥∥2
Sp([t0,t]×Ω;Rd)

≤ p2

p− 1

∫ t

t0

∥∥∥∥ m∑
j=1

∥∥f ju∥∥2∥∥∥∥
L

p
2 (Ω;R)

du

for all t ∈ [t0, T ].

Proof. The proof is stated in Section II.4, see p. 17.

The smaller constants in the inequalities of Theorem II.5 and Theorem II.6 make the estimates
highly valuable in stochastic analysis and stochastic numerics for example.

II.3. Strong Solutions

In this section, the existence and uniqueness of a strong solution X of SDDE (II.1) is shown.
We further show that the solution is bounded in Sp([t0 − τ, T ] × Ω;Rd), Hölder continuous in
time with order 1

2 in Lp(Ω;Rd), and Lipschitz continuous with respect to its initial condition
in Sp([t0 − τ, T ] × Ω;Rd). But first, we state some inequalities that are used throughout this
theses.

11



II. Stochastic Delay Differential Equations

Hölder’s inequality implies for p ∈ [1,∞[ that∣∣∣∣ N∑
i=1

ci

∣∣∣∣p ≤ Np−1
N∑
i=1

|ci|p, (II.6)

where ci ∈ R and N ∈ N. Moreover, using (c1−c2)2 = c21−2c1c2+c
2
2, we obtain the inequality

c1c2 ≤
1

2
c21 +

1

2
c22 (II.7)

for all c1, c2 ∈ R. Further, the following lemma of Gronwall is frequently used.

Lemma II.7 (Gronwall’s Lemma, [46, Lemma 2.6.1])
Let f : [t0, T ] → R be Borel-measurable bounded function. Then, given a Borel-measurable
bounded function g : [t0, T ] → R and a constant C > 0 satisfying

f(t) ≤ g(t) + C

∫ t

t0

f(s)ds,

it holds

f(t) ≤ g(t) + C

∫ t

t0

eC(t−s)g(s)ds

for all t ∈ [t0, T ].

Throughout this thesis, we impose a global Lipschitz and a linear growth condition on the Borel-
measurable drift coefficient a = (a1, . . . , ad)T and diffusion coefficients bj = (b1,j , . . . , bd,j)T, j ∈
{1, . . . ,m}, of SDDE (II.1). The SDDE’s coefficients are said to satisfy the global Lipschitz
condition if there exist constants La, Lb > 0 such that

sup
t∈[t0,T ]

‖a(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)− a(t, t− τ1, . . . , t− τD, y0, y1, . . . , yD)‖

≤ La max
l∈{0,1,...,D}

‖xl − yl‖

(II.8)

and

sup
t∈[t0,T ]

max
j∈{1,...,m}

‖bj(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)

− bj(t, t− τ1, . . . , t− τD, y0, y1, . . . , yD)‖
≤ Lb max

l∈{0,1,...,D}
‖xl − yl‖

(II.9)

for all xl, yl ∈ Rd, l ∈ {0, 1, . . . , D}, as well as the linear growth condition if there exist constants
Ka,Kb > 0 such that

sup
t∈[t0,T ]

‖a(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)‖ ≤ Ka max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2 (II.10)
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and

sup
t∈[t0,T ]

max
j∈{1,...,m}

‖bj(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)‖ ≤ Kb max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2

(II.11)

for all xl ∈ Rd, l ∈ {0, 1, . . . , D}.

In [98, Theorem 5.2.2] and [107, Theorem II.2.1] for example, the existence and uniqueness
of strong solutions of stochastic functional differential equations (SFDEs) are proven, also cf.
[65], [119, Theorem V.3.7], and [122, Theorem IX.2.1]. Since SDDEs are a subclass of SFDEs,
the existence and uniqueness of a strong solution of SDDEs follows immediately, see e. g. [98,
Section 5.3]. Thus, the result of Theorem II.8 below is not entirely new, cf. [98, Theorem 5.2.2,
p. 156 and Theorem 5.4.1] and [119, Theorem V.3.7].

Nevertheless, we present a proof of Theorem II.8 that is similar to the one of [98, Theorem 5.2.2]
but takes the specific SDDE (II.1) as well as the global Lipschitz and linear growth conditions
from above into account. Moreover, the realizations of the initial condition ξ ∈ Sp([t0− τ, t0]×
Ω;Rd) may only be P-almost surely càdlàg and not continuous as in [98, Theorem 5.2.2] and
[107, Theorem II.2.1], also cf. [107, Section VII.3]. In addition, stochastic processes are defined
on a product space whereas the processes in [98, 107] are considered to be random variables
with values in the space of continuous functions.

Theorem II.8 (Existence and Uniqueness of Strong Solutions)
Let the Borel-measurable drift a and diffusion bj, j ∈ {1, . . . ,m}, of SDDE (II.1) satisfy the
global Lipschitz and linear growth conditions (II.8), (II.9), (II.10), and (II.11). Moreover, let
ξ ∈ Sp([t0 − τ, t0]× Ω;Rd) for some p ∈ [2,∞[.

Then, there exists a unique (up to indistinguishability) stochastic process X ∈ Sp([t0 − τ, T ]×
Ω;Rd), which is the strong solution of Itô SDDE (II.1) with respect to the Wiener process W
and initial condition ξ.

Moreover, it holds

1 + ‖X‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(
Ka

√
T−t0+

pKb
√
m√

p−1

)2
(T−t0). (II.12)

Proof. The proof is stated in Section II.4, see p. 18.

Similarly to the result in [98, Theorem 5.4.3], we obtain the Hölder continuity with exponent 1
2

of the solution in Lp(Ω;Rd).

Lemma II.9
Let X be the strong solution of SDDE (II.1) with initial condition ξ, and let the Borel-measurable
coefficients a, bj, j ∈ {1, . . . ,m}, satisfy the linear growth conditions (II.10) and (II.11). Fur-
ther, let ξ ∈ Sp([t0 − τ, t0]× Ω;Rd) for some p ∈ [2,∞[. Then, it holds

‖Xt −Xs‖Lp(Ω;Rd) ≤
(
Ka

√
T − t0 +

√
p− 1Kb

√
m
)(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
√
|t− s|

for all s, t ∈ [t0, T ].
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Proof. The proof is stated in Section II.4, see p. 24.

Moreover, the solution X is, with respect to its initial condition, Lipschitz continuous in Sp([t0−
τ, T ]× Ω;Rd), cf. [107, Theorem II.3.1].

Lemma II.10
Let the Borel-measurable drift a and diffusion bj, j ∈ {1, . . . ,m}, of SDDE (II.1) satisfy the
global Lipschitz and linear growth conditions (II.8), (II.9), (II.10), and (II.11). Moreover, let
ξ, ζ ∈ Sp([t0 − τ, t0]× Ω;Rd) for some p ∈ [2,∞[, and let Xξ and Xζ ∈ Sp([t0 − τ, T ]× Ω;Rd)
be strong solutions of SDDE (II.1) with respect to the initial conditions ξ and ζ, respectively.
Then, it holds

‖Xξ −Xζ‖Sp([t0−τ,T ]×Ω;Rd) ≤
√
2‖ξ − ζ‖Sp([t0−τ,t0]×Ω;Rd)e

(√
T−t0La+

pLb
√
m√

p−1

)2
(T−t0).

Proof. The proof is stated in Section II.4, see p. 25.

Now, we extend Theorem II.8 to slightly more general SDDEs. This result will be needed in
Chapter III for Theorem III.26. Let Z : [t0 − τ, T ]× Ω → Rd̃ be an (Ft)t∈[t0−τ,T ]-progressively
measurable process that realizations are P-almost surely càdlàg, where d̃ ∈ N. Further, let
A,Bj : R1×(D+1)×Rd̃×(D+1)×Rd×(D+1) be Borel-measurable functions for j ∈ {1, . . . ,m} and
the initial condition ξ as in SDDE (II.1). Consider the SDDE

Xt =


ξt if t ∈ [t0 − τ, t0],

ξt0 +

∫ t

t0

A(T (s, Zs, Xs))ds+
m∑
j=1

∫ t

t0

Bj(T (s, Zs, Xs))dW j
s if t ∈ ]t0, T ]

(II.13)

where

T (t, Zt, Xt) := (t, t− τ1, . . . , t− τD, Zt, Zt−τ1 , . . . , Zt−τD , Xt, Xt−τ1 , . . . , Xt−τD)

for all t ∈ [t0, T ], cf. formula (II.3). Note that we recover SDDE (II.1) if the coefficients A and
Bj , j ∈ {1, . . . , d} do not depend on the process Z. We consider the following definition of a
strong solution for SDDE (II.13), which is a generalization of Definition II.2.

Definition II.11
A measurable stochastic process X : [t0−τ, T ]×Ω → Rd is called strong solution of SDDE (II.13)
with respect to the fixed Wiener process W , initial condition ξ, and process Z if

i) (Xt)t∈[t0−τ,T ] is adapted to (Ft)t∈[t0−τ,T ],

ii) (Xt)t∈[t0,T ] has P-almost surely continuous realizations,

iii)
∫ t

t0

‖A(T (s, Zs, Xs))‖+
m∑
j=1

‖Bj(T (s, Zs, Xs))‖2 ds <∞

holds P-almost surely for all t ∈ [t0, T ],

iv) and if the equation (II.13) holds P-almost surely for all t ∈ [t0 − τ, T ].
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Similarly to the global Lipschitz and linear growth conditions (II.8), (II.9), (II.10), and (II.11),
the following conditions on the coefficients of SDDE (II.13) are considered. The coefficients of
SDDE (II.13) are said to satisfy the global Lipschitz condition if there exist constants LA, LB >
0 such that

sup
t∈[t0,T ]

zl∈Rd: l∈{0,1,...,D}

‖A(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, x0, x1, . . . , xD)

−A(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, y0, y1, . . . , yD)‖
≤ LA max

l∈{0,1,...,D}
‖xl − yl‖

(II.14)

and
sup

t∈[t0,T ]

zl∈Rd: l∈{0,1,...,D}

max
j∈{1,...,m}

‖Bj(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, x0, x1, . . . , xD)

−Bj(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, y0, y1, . . . , yD)‖
≤ LB max

l∈{0,1,...,D}
‖xl − yl‖

(II.15)

for all xl, yl ∈ Rd, l ∈ {0, 1, . . . , D}, as well as the linear growth condition if there exist constants
KA,KB > 0 such that

sup
t∈[t0,T ]

zl∈Rd: l∈{0,1,...,D}

‖A(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, x0, x1, . . . , xD)‖

≤ KA max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2

(II.16)

and
sup

t∈[t0,T ]

zl∈Rd: l∈{0,1,...,D}

max
j∈{1,...,m}

‖Bj(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, x0, x1, . . . , xD)‖

≤ KB max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2

(II.17)

for all xl ∈ Rd, l ∈ {0, 1, . . . , D}. We obtain the following existence and uniqueness theorem
for SDDE (II.13).

Theorem II.12 (Existence and Uniqueness of Strong Solutions)
Let the Borel-measurable drift A and diffusion Bj, j ∈ {1, . . . ,m}, of SDDE (II.13) satisfy the
global Lipschitz and linear growth conditions (II.14), (II.15), (II.16), and (II.17). Moreover, let
Z : [t0 − τ, T ] × Ω → Rd̃ be an (Ft)t∈[t0−τ,T ]-progressively measurable process that realizations
are P-almost surely càdlàg, where d̃ ∈ N, and let ξ ∈ Sp([t0−τ, t0]×Ω;Rd) for some p ∈ [2,∞[.

Then, there exists a unique (up to indistinguishability) stochastic process X ∈ Sp([t0 − τ, T ]×
Ω;Rd), which is the strong solution of Itô SDDE (II.13) with respect to the Wiener process W ,
initial condition ξ, and process Z.

Moreover, it holds

1 + ‖X‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(
KA

√
T−t0+

pKB
√
m√

p−1

)2
(T−t0). (II.18)
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Proof. Due to the linear growth conditions (II.16) and (II.17), no assumptions on the bound-
edness of process Z have to be made, and the proof is completely analogous to the proof of
Theorem II.8.

In case of SODEs, a similar theorem is stated in [113, Lemma 2.2.1]. There, the SODEs’
coefficients are allowed to have a polynomial growth regarding the argument of the process Z.
In return, some boundedness assumption on the process Z is supposed. Mohammed considered
in [107, Theorem V.4.3] the existence and uniqueness of SFDEs whose coefficients are allowed
to be random. However, he supposed that the coefficients are Ft0-measurable, and our theorem
above is thus more general in case of SDDEs.

II.4. Proofs

Proof of Theorem II.5

Proof of Theorem II.5. In the case of p = 2, the statement follows from the discrete Burkholder
inequalities in Theorem II.3, and therefore we assume p ∈ ]2,∞[ in the following. Inequal-
ity (II.4) and its sharpness are proven in [123, Section 2] by Rio in the case of d = n = 1.

We amend his proof to general d ∈ N and n ∈ {1, . . . , N} with N ∈ N. For this, we generalize
[123, Proposition 2.1]. Let X,Y ∈ Lp(Ω;Rd), and let F ∈ F be some sub-σ-algebra such that
X is F/B(Rd)-measurable and E[Y |F ] = 0 P-almost surely. Then, we first prove that

‖X + Y ‖2
Lp(Ω;Rd)

≤ ‖X‖2
Lp(Ω;Rd)

+ (p− 1)‖Y ‖2
Lp(Ω;Rd)

. (II.19)

If X = 0 or Y = 0, this inequality is clearly true, so we assume ‖X‖Lp(Ω;Rd) > 0 and
‖Y ‖Lp(Ω;Rd) > 0. Define the function ϕ : [0, 1] → R by ϕ(t) = ‖x + ty‖p, where x, y ∈ Rd.
Using Taylor’s formula [57, p. 284], it holds

ϕ(1) = ϕ(0) + ϕ′(0) +

∫ 1

0
ϕ′′(t)(1− t)dt

and thus

‖X + Y ‖p = ‖X‖p + p‖X‖p−2
d∑

i=1

XiY i + p

∫ 1

0
‖X + tY ‖p−2‖Y ‖2(1− t)dt

+ p(p− 2)

∫ 1

0
‖X + tY ‖p−4

( d∑
i=1

(Xi + tY i)Y i

)2

(1− t)dt.

Considering the integrand of the last integral in the Taylor formula above, it holds

‖X + tY ‖p−4

( d∑
i=1

(Xi + tY i)Y i

)2

≤ ‖X + tY ‖p−2‖Y ‖2

by Cauchy-Schwarz inequality, and due to this, it follows

‖X + Y ‖p ≤ ‖X‖p + p‖X‖p−2
d∑

i=1

XiY i + p(p− 1)

∫ 1

0
‖X + tY ‖p−2‖Y ‖2(1− t)dt. (II.20)
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According to the assumptions, it holds

E
[
E[‖X‖p−2XiY i|F ]

]
= E

[
‖X‖p−2XiE[Y i|F ]

]
= 0.

Then, since

E
[
‖X + tY ‖p−2‖Y ‖2

]
≤
(
E[‖X + tY ‖p]

) p−2
p
(
E[‖Y ‖p]

) 2
p

by Hölder’s inequality with p−2
p + 2

p = 1, we obtain by taking the expectation on both sides of
inequality (II.20) and using Fubini’s theorem that

E[‖X + Y ‖p] ≤ E[‖X‖p] + p(p− 1)

∫ 1

0

(
E[‖X + tY ‖p]

) p−2
p
(
E[‖Y ‖p]

) 2
p (1− t)dt.

This is a multidimensional version of [123, Inequality (2.1)]. Next, we use a Gronwall-type
inequality, that is, we apply [139, Lemma on p. 171] with α = 2

p . It follows

E[‖X + Y ‖p] ≤
(

E[‖X‖p]
2
p +

2

p
p(p− 1)

∫ 1

0
(1− t)dt

(
E[‖Y ‖p]

) 2
p

) p
2

,

and since
∫ 1
0 (1− t)dt = 1

2 , inequality (II.19) holds by raising both sides of the inequality above
to the power of 2

p . Due to [123, Remark 2.1], the constant p − 1 in inequality (II.19) is best
possible.

We remark that the considerations after [123, Inequality (2.1)] on [123, p. 150] prove essentially
Zakai’s Gronwall-type inequality in [139, Lemma on p. 171].

Now, we consider inequality (II.4). Since (Mn)n∈{0,1,...,N} is a martingale, it holds
E[Mn|Ftn−1 ] = Mn−1 P-almost surely for n ∈ {1, . . . , N}, that is, E[dn|Ftn−1 ] = 0 P-almost
surely. Thus, inequality (II.4) follows from applying inequality (II.19) to Mn =Mn−1+ dn and
by induction over n ∈ {1, . . . , N}, cf. [123, Theorem 2.1].

Finally, Doob’s maximal inequality [35, Theorem 3.4 on p. 317] implies the second inequality
of this theorem. Since Doob’s inequality is sharp, the constant is best possible, cf. [19, p. 87]
and [36, Theorem 2].

Proof of Theorem II.6

Proof of Theorem II.6. The first inequality is proven by Zakai [139, Theorem 1] in case of d =
m = 1. We extend his proof to the case of m-dimensional Wiener processes and Rd-valued inte-
grands. Due to Burkholder’s inequality in Theorem II.4 and the assumption f j ∈ Hp([t0, T ]×
Ω;Rd) for j ∈ {1, . . . ,m}, we have∥∥∥∥ m∑

j=1

∫ t

t0

f ju dW j
u

∥∥∥∥
Lp(Ω;Rd)

<∞.
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Let δ > 0 and ϕ ∈ C2(Rd;R) with ϕ(x) = (δ+ ‖x‖2)
p
2 for x ∈ Rd. Using Itô’s formula, see e. g.

[64] or [75, p. 153], with function ϕ, [139, Equation (6)] reads in the multidimensional case as(
δ +

∥∥∥∥ m∑
j=1

∫ t

t0

f ju dW j
u

∥∥∥∥2) p
2

− δ
p
2

=
p

2

∫ t

t0

(
δ +

∥∥∥∥ m∑
j=1

∫ s

t0

f ju dW j
u

∥∥∥∥2) p
2
−1 m∑

j=1

d∑
i=1

(f i,js )2 ds

+
p(p− 2)

2

∫ t

t0

(
δ +

∥∥∥∥ m∑
j=1

∫ s

t0

f ju dW j
u

∥∥∥∥2) p
2
−2

×
m∑
l=1

d∑
i,k=1

( m∑
j=1

∫ s

t0

f i,ju dW j
u

)( m∑
j=1

∫ s

t0

fk,ju dW j
u

)
f i,ls f

k,l
s ds

+ p
m∑
l=1

∫ t

t0

(
δ +

∥∥∥∥ m∑
j=1

∫ s

t0

f ju dW j
u

∥∥∥∥2)p
2
−1 d∑

i=1

( m∑
j=1

∫ s

t0

f i,ju dW j
u

)
f i,ls dW l

s

P-almost surely. Taking the expectation and using the Cauchy-Schwarz inequality, we obtain

E
[(
δ +

∥∥∥∥ m∑
j=1

∫ t

t0

f ju dW j
u

∥∥∥∥2) p
2
]
− δ

p
2

=
p

2

∫ t

t0

E
[(
δ +

∥∥∥∥ m∑
j=1

∫ s

t0

f ju dW j
u

∥∥∥∥2) p
2
−1 m∑

j=1

‖f js ‖2
]

ds

+
p(p− 2)

2

∫ t

t0

E
[(
δ +

∥∥∥∥ m∑
j=1

∫ s

t0

f ju dW j
u

∥∥∥∥2) p
2
−2 m∑

l=1

d∑
i=1

( m∑
j=1

∫ s

t0

f i,ju dW j
u f

i,l
s

)2]
ds

≤ p(p− 1)

2

∫ t

t0

E
[(
δ +

∥∥∥∥ m∑
j=1

∫ s

t0

f ju dW j
u

∥∥∥∥2) p
2
−1 m∑

j=1

‖f js ‖2
]

ds,

which corresponds to the multidimensional variant of [139, Inequality (8)]. Then, the inequal-
ity (II.5) follows from the same arguments as in [139, pp. 171–172] by applying a Gronwall-type
inequality [139, Lemma on p. 171] and letting δ → 0.

Applying Doob’s submartingale inequality, see e. g. [122, Theorem II.1.7], then yields the second
inequality of this theorem.

Proof of Theorem II.8

The proof of Theorem II.8 is similar to the proof of [98, Theorem 5.2.2].

Proof of Theorem II.8. We start with the proof of uniqueness. Assume that X and X̂ are two
strong solutions of SDDE (II.1) with respect to the same Wiener process W and the same
initial condition ξ ∈ Sp([t0 − τ, t0]× Ω;Rd).
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Let n ∈ N, and define the (Ft)t∈[t0,T ]-stopping time σn : Ω → [t0, T ] by

σn := inf{t ∈ [t0, T ] : ‖Xt‖ ≥ n} ∧ inf{t ∈ [t0, T ] : ‖X̂t‖ ≥ n}

where inf{∅} := T . The stopped processes (Xt∧σn)t∈[t0−τ,T ] and (X̂t∧σn)t∈[t0−τ,T ] are bounded,
and thus they belong to Sp([t0 − τ, T ]×Ω;Rd), cf. Section II.1. As P-almost all realizations of
(Xt)t∈[t0,T ] and (X̂t)t∈[t0,T ] are continuous, it holds limn→∞ σn = T P-almost surely.

At first, we show that the stopped processes X·∧σn and X̂·∧σn are modifications of each other
for all n ∈ N. Since Xt = X̂t for all t ∈ [t0 − τ, t0] P-almost surely, it holds

‖X·∧σn − X̂·∧σn‖Sp([t0−τ,T ]×Ω;Rd) = ‖X·∧σn − X̂·∧σn‖Sp([t0,T ]×Ω;Rd).

Using that the solutionsX and X̂ satisfy the equation (II.1) and applying the triangle inequality,
we obtain by rewriting

‖X·∧σn − X̂·∧σn‖Sp([t0−τ,T ]×Ω;Rd)

≤
∥∥∥∥∫ ·∧σn

t0

a(T (s,Xs))− a(T (s, X̂s))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·∧σn

t0

bj(T (s,Xs))− bj(T (s, X̂s))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

=

∥∥∥∥∫ ·

t0

1[t0,σn](s)
(
a(T (s,Xs∧σn))− a(T (s, X̂s∧σn))

)
ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

1[t0,σn](s)
(
bj(T (s,Xs∧σn))− bj(T (s, X̂s∧σn))

)
dW j

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

.

(II.21)

Considering the first term on the right-hand side of inequality (II.21) above, the triangle in-
equality and Lipschitz condition (II.8) imply∥∥∥∥∫ ·

t0

1[t0,σn](s)
(
a(T (s,Xs∧σn))− a(T (s, X̂s∧σn))

)
ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤
∥∥∥∥ sup
t∈[t0,T ]

∫ t

t0

∥∥1[t0,σn](s)
(
a(T (s,Xs∧σn))− a(T (s, X̂s∧σn))

)∥∥ds
∥∥∥∥
Lp(Ω;R)

≤
∫ T

t0

‖a(T (s,Xs∧σn))− a(T (s, X̂s∧σn))‖Lp(Ω;Rd) ds

≤ La

∫ T

t0

∥∥∥∥ sup
l∈{0,1,...,D}

‖Xs∧σn−τl − X̂s∧σn−τl‖
∥∥∥∥
Lp(Ω;R)

ds

≤ La

∫ T

t0

‖X·∧σn − X̂·∧σn‖Sp([t0−τ,s]×Ω;Rd) ds

≤ La

√
T − t0

(∫ T

t0

‖X·∧σn − X̂·∧σn‖2Sp([t0−τ,s]×Ω;Rd)
ds
) 1

2

, (II.22)

where the Cauchy-Schwarz inequality is used in the last step. Similar considerations for the
second term on the right-hand side of inequality (II.21) yield with the Zakai inequality from
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Theorem II.6 and Lipschitz condition (II.9) that∥∥∥∥ m∑
j=1

∫ ·

t0

1[t0,σn](s)
(
bj(T (s,Xs∧σn))− bj(T (s, X̂s∧σn))

)
dW j

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ p√
p− 1

(∫ T

t0

∥∥∥∥ m∑
j=1

∥∥1[t0,σn](s)
(
bj(T (s,Xs∧σn))− bj(T (s, X̂s∧σn))

)∥∥2∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤ p√
p− 1

(∫ T

t0

m∑
j=1

‖bj(T (s,Xs∧σn))− bj(T (s, X̂s∧σn))‖2Lp(Ω;Rd)
ds
) 1

2

≤ pLb
√
m√

p− 1

(∫ T

t0

‖X·∧σn − X̂·∧σn‖2Sp([t0−τ,s]×Ω;Rd)
ds
) 1

2

. (II.23)

Inserting estimates (II.22) and (II.23) into inequality (II.21) and squaring the result, we obtain

‖X·∧σn − X̂·∧σn‖2Sp([t0−τ,T ]×Ω;Rd)

≤
(
La

√
T − t0 +

pLb
√
m√

p− 1

)2 ∫ T

t0

‖X·∧σn − X̂·∧σn‖2Sp([t0−τ,s]×Ω;Rd)
ds.

(II.24)

Then, Gronwall’s Lemma II.7 implies ‖X·∧σn −X̂·∧σn‖Sp([t0−τ,T ]×Ω;Rd) = 0. Hence, for all n ∈ N
the stopped processes X·∧σn and X̂·∧σn are particularly modifications of each other. That is

P[Xt∧σn = X̂t∧σn ] = 1

for all t ∈ [t0 − τ, T ] and n ∈ N. Due to this, it holds for all t ∈ [t0 − τ, T ] and n ∈ N that

P[Xt 6= X̂t] = P
[{

sup
t∈[t0,T ]

‖Xt‖ > n

}
∪
{

sup
t∈[t0,T ]

‖X̂t‖ > n

}]
≤ P

[
sup

t∈[t0,T ]
‖Xt‖ > n

]
+ P

[
sup

t∈[t0,T ]
‖X̂t‖ > n

]
.

Since the solutions (Xt)t∈[t0,T ] and (X̂)t∈[t0,T ] have P-almost surely continuous realizations,
supt∈[t0,T ]‖Xt‖ and supt∈[t0,T ]‖X̂t‖ are P-almost surely bounded. Hence, for all ε > 0, an
N ∈ N exists such that for all n ≥ N we have

P[Xt 6= X̂t] ≤ P
[

sup
t∈[t0,T ]

‖Xt‖ > n

]
+ P

[
sup

t∈[t0,T ]
‖X̂t‖ > n

]
< ε

for all t ∈ [t0−τ, T ], that is, the solutions X and X̂ are modification of each others, cf. [7, p. 107]
and [47, p. 394]. Using that P-almost all realizations of X and X̂ are càdlàg, both solutions X
and X̂ are indistinguishable [119, Corollary of Theorem I.2]. That is, if there exists a solution
of the SDDE (II.1), the solution is unique up to indistinguishability.

In the following, the existence of the strong solution X of SDDE (II.1) is proven using the
Picard’s iterations. Let

X
(0)
t :=

{
ξt if t ∈ [t0 − τ, t0] and
ξt0 if t ∈ ]t0, T ]
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as well as

X
(`+1)
t :=


ξt if t ∈ [t0 − τ, t0] and

ξt0 +

∫ t

t0

a(T (s,X(`)
s ))ds+

m∑
j=1

∫ t

t0

bj(T (s,X(`)
s ))dW j

s if t ∈ ]t0, T ]

for ` ∈ N0. Since ξ ∈ Sp([t0 − τ, t0] × Ω;Rd), and since coefficients a and bj , j ∈ {1, . . . ,m},
satisfy the linear growth conditions (II.10) and (II.11), also cf. Section II.1, it is evident by
induction over ` ∈ N0 that X` ∈ Sp([t0 − τ, T ] × Ω;Rd) for every ` ∈ N0. In order to be more
precise regarding the upper bound of X(`) in Sp([t0 − τ, T ] × Ω;Rd), we make the following
considerations.

Using inequality (II.6), we have

1 + ‖X(`+1)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 1 + 2‖ξ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2

(∥∥∥∥∫ ·

t0

a(T (s,X(`)
s ))ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (s,X(`)
s ))dW j

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

)2

for all ` ∈ N0, where∥∥∥∥∫ ·

t0

a(T (s,X(`)
s ))ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤
∥∥∥∥ sup
t∈[t0,T ]

∫ t

t0

‖a(T (s,X(`)
s ))‖ds

∥∥∥∥
Lp(Ω;R)

≤ Ka

∫ T

t0

∥∥∥∥ sup
l∈{0,1,...,D}

(
1 +

∥∥X(`)
s−τl

∥∥2) 1
2

∥∥∥∥
Lp(Ω;R)

ds

≤ Ka

∫ T

t0

(
1 +

∥∥X(`)
∥∥2
Sp([t0−τ,s]×Ω;Rd)

) 1
2 ds

≤ Ka

√
T − t0

(∫ T

t0

1 +
∥∥X(`)

∥∥2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

(II.25)

by triangle inequality, linear growth condition (II.10), and Cauchy-Schwarz inequality, as well
as ∥∥∥∥ m∑

j=1

∫ ·

t0

bj(T (s,X(`)
s ))dW j

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ p√
p− 1

(∫ T

t0

∥∥∥∥ m∑
j=1

‖bj(T (s,X(`)
s ))‖2

∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤ pKb
√
m√

p− 1

∫ T

t0

∥∥∥∥ sup
l∈{0,1,...,D}

(
1 +

∥∥X(`)
s−τl

∥∥2)∥∥∥∥
L

p
2 (Ω;R)

ds

≤ pKb
√
m√

p− 1

(∫ T

t0

1 +
∥∥X(`)

∥∥2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

(II.26)

21



II. Stochastic Delay Differential Equations

by Zakai’s inequality from Theorem II.6 and linear growth condition (II.11). Thus, we have

1 + ‖X(`+1)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 1 + 2‖ξ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2

(
Ka

√
T − t0 +

pKb
√
m√

p− 1

)2 ∫ T

t0

1 +
∥∥X(`)

∥∥2
Sp([t0−τ,s]×Ω;Rd)

ds

that inductively ensures ‖X(`+1)‖Sp([t0−τ,T ]×Ω;Rd) < ∞. Now let n ∈ N0 be arbitrary fixed.
Since

1 + max
`∈{0,1,...,n}

‖X(`+1)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 1 + 2‖ξ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2

(√
T − t0Ka +

pKb
√
m√

p− 1

)2 ∫ T

t0

1 + max
`∈{0,1,...,n}

‖X(`)‖2
Sp([t0−τ,s]×Ω;Rd)

ds,

it also holds

1 + max
`∈{0,1,...,n}

‖X(`)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 1 + 2‖ξ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2

(√
T − t0Ka +

pKb
√
m√

p− 1

)2 ∫ T

t0

1 + max
`∈{0,1,...,n}

‖X(`)‖2
Sp([t0−τ,s]×Ω;Rd)

ds,

and Gronwall’s Lemma II.7 implies

1 + max
`∈{0,1,...,n}

‖X(`)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(√

T−t0Ka+
pKb

√
m√

p−1

)2
(T−t0).

As the right-hand side of the inequality above does not depend on n ∈ N0, we obtain

1 + ‖X(`)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(√

T−t0Ka+
pKb

√
m√

p−1

)2
(T−t0) (II.27)

for all ` ∈ N0. Using the triangle inequality, Zakai’s inequality from Theorem II.6, linear
growth conditions (II.10) and (II.11) as well as the Cauchy-Schwarz inequality, it then follows
by inequalities (II.25) and (II.26) that

‖X(1) −X(0)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(∥∥∥∥∫ ·

t0

a(T (s,X(0)
s ))ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (s,X(0)
s ))dW j

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

)2
≤
(
Ka

√
T − t0 +

pKb
√
m√

p− 1

)2(
1 + ‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
(T − t0).

Similarly to inequality (II.24), the triangle inequality, Zakai’s inequality from Theorem II.6,
Lipschitz conditions (II.8) and (II.9) as well as the Cauchy-Schwarz inequality yield

‖X(`+1) −X(`)‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
La

√
T − t0 +

pLb
√
m√

p− 1

)2 ∫ T

t0

‖X(`) −X(`−1)‖2
Sp([t0−τ,s]×Ω;Rd)

ds (II.28)
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for ` ∈ N. Raising inequality (II.28) to the p
2th power and using Hölder’s inequality, it induc-

tively holds

‖X(`+1) −X(`)‖p
Sp([t0−τ,T ]×Ω;Rd)

≤ ‖X(1) −X(0)‖p
Sp([t0−τ,T ]×Ω;Rd)

(
C(T − t0)

)`
`!

for all ` ∈ N0 where

C :=

(
La

√
T − t0 +

pLb
√
m√

p− 1

)p

(T − t0)
p−2
2 .

Then, Markov’s inequality yields

P
[

sup
t∈[t0−τ,T ]

‖X(`+1)
t −X

(`)
t ‖ ≥ 2−(`+1)

]

≤ 2p‖X(1) −X(0)‖p
Sp([t0−τ,T ]×Ω;Rd)

(
2pC(T − t0)

)`
`!

.

Using Borel-Cantelli lemma, there exists an Ω1 ⊂ Ω with P[Ω1] = 1 and Nω ∈ N0, ω ∈ Ω1, such
that for every ω ∈ Ω1 and ` ≥ Nω, it holds

sup
t∈[t0−τ,T ]

‖X(`+1)
t (ω)−X

(`)
t (ω)‖ < 2−(`+1).

Due to Weierstraß’s convergence criterion [126, Theorem 7.10], the sequence (X(`)(ω))`∈N0 of
realizations X(`)(ω) = X(0)(ω) +

∑`−1
l=0 X

(l+1)(ω) −X(l)(ω) converges uniformly on [t0 − τ, T ]
for all ω ∈ Ω1. Hence, there exists an (Ft)t∈[t0−τ,T ]-adapted process X with P-almost surely
continuous realizations on [t0, T ] such that

Xt = lim
`→∞

X
(`)
t

uniformly for all t ∈ [t0 − τ, T ] holds P-almost surely. Moreover, the process X can be chosen
to be (Ft)t∈[t0−τ,T ]-progressively measurable, see Section II.1. Applying Fatou’s Lemma to
inequality (II.27), it holds that X ∈ Sp([t0 − τ, T ]× Ω;Rd), and inequality (II.12) follows.

Now, it is left to show that X is indeed a solution of SDDE (II.1). By inequality (II.28), we
have

‖X(`+1) −X(`)‖Sp([t0−τ,T ]×Ω;Rd) ≤ ‖X(1) −X(0)‖Sp([t0−τ,T ]×Ω;Rd)

(
Ĉ
√
T − t0

)`
√
`!

for all ` ∈ N0 where

Ĉ := La

√
T − t0 +

pLb
√
m√

p− 1
.

Due to this, the series
∑

l∈N0
X(l+1) −X(l) converges in Sp([t0 − τ, T ]× Ω;Rd) because∥∥∥∥∑

l∈N0

X(l+1) −X(l)

∥∥∥∥
Sp([t0−τ,T ]×Ω;Rd)

≤
∑
l∈N0

‖X(l+1) −X(l)‖Sp([t0−τ,T ]×Ω;Rd)

= ‖X(1) −X(0)‖Sp([t0−τ,T ]×Ω;Rd)

∑
l∈N0

(
Ĉ
√
T − t0

)l
√
l!

<∞
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by the root test and e. g. Stirling’s approximation. Hence, it holds

lim
`→∞

‖X(`) −X‖Sp([t0−τ,T ]×Ω;Rd) = 0. (II.29)

Then, similarly to the inequalities (II.22) and (II.23), we obtain by triangle inequality, Theo-
rem II.6 and Lipschitz conditions (II.8) and (II.9) that

lim
`→∞

∥∥∥∥∫ ·

t0

a(T (s,X(`)
s ))ds−

∫ ·

t0

a(T (s,Xs))ds
∥∥∥∥
Sp([t0−τ,T ]×Ω;Rd)

≤ La(T − t0) lim
`→∞

‖X(`) −X‖Sp([t0−τ,T ]×Ω;Rd)

= 0

and

lim
`→∞

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (s,X(`)
s ))dW j

s −
m∑
j=1

∫ ·

t0

bj(T (s,Xs))dW j
s

∥∥∥∥
Sp([t0−τ,T ]×Ω;Rd)

≤ pLb
√
m
√
T − t0√

p− 1
lim
`→∞

‖X(`) −X‖Sp([t0−τ,T ]×Ω;Rd)

= 0.

Due to this and since Xt = ξt for all t ∈ [t0 − τ, t0] P-almost surely, the stochastic process X
must thus be the unique strong solution of SDDE (II.1).

Proof of Lemma II.9

Proof of Lemma II.9. Since X is the strong solution of SDDE (II.1), and the SDDE’s coeffi-
cients satisfy the linear growth conditions (II.10) and (II.11), it holds X ∈ Sp([t0−τ, T ]×Ω;Rd)
by the proof of Theorem II.8.

Similarly to the inequalities (II.25) and (II.26), the triangle inequality, Zakai’s inequality from
Theorem II.6, and linear growth conditions (II.10) and (II.11) then imply for s, t ∈ [t0, T ] with
s < t that

‖Xt −Xs‖Lp(Ω;Rd)

≤
∥∥∥∥∫ t

s
a(T (s,Xs))ds

∥∥∥∥
Lp(Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ t

s
bj(T (s,Xs))dW j

s

∥∥∥∥
Lp(Ω;Rd)

≤
∫ t

s
‖a(T (s,Xs))‖Lp(Ω;Rd) ds+

√
p− 1

(∫ t

s

∥∥∥∥ m∑
j=1

‖bj(T (s,Xs))‖2
∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤
(
Ka

√
T − t0 +

√
p− 1Kb

√
m
)(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
√
t− s.

The case t < s is completely analogous to the one above, and the case s = t is trivial.
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Proof of Lemma II.10

Proof of Lemma II.10. At first, inequality (II.6) implies

‖Xξ −Xζ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 2‖Xξ −Xζ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2‖Xξ −Xζ‖2
Sp([t0,T ]×Ω;Rd)

,

where

‖Xξ −Xζ‖Sp([t0−τ,t0]×Ω;Rd) = ‖ξ − ζ‖Sp([t0−τ,t0]×Ω;Rd).

Consider the term ‖Xξ−Xζ‖Sp([t0,T ]×Ω;Rd) on the right-hand side of the inequality above. Simi-
larly to inequalities (II.22) and (II.23), we obtain by triangle inequality, Zakai’s inequality from
Theorem II.6, Lipschitz conditions (II.8) and (II.9) as well as the Cauchy-Schwarz inequality
that

‖Xξ −Xζ‖Sp([t0,T ]×Ω;Rd)

≤
∥∥∥∥∫ ·

t0

a(T (s,Xξ
u))− a(T (s,Xζ

u))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (s,Xξ
s ))− bj(T (s,Xζ

s ))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤
(
La

√
T − t0 +

pLb
√
m√

p− 1

)(∫ T

t0

‖Xξ −Xζ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

.

Thus, we have

‖Xξ −Xζ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 2‖ξ − ζ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2

(
La

√
T − t0 +

pLb
√
m√

p− 1

)2 ∫ T

t0

‖Xξ −Xζ‖2
Sp([t0−τ,s]×Ω;Rd)

ds,

and Gronwall’s Lemma II.7 implies

‖Xξ −Xζ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 2‖ξ − ζ‖2
Sp([t0−τ,t0]×Ω;Rd)

e2
(
La

√
T−t0+

pLb
√
m√

p−1

)2
(T−t0)

Then, the assertion follows by taking the square root.
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III
Some Results on the Malliavin Calculus

Our numerical analysis of the Milstein scheme in Chapter IV involves techniques from the
Malliavin calculus although all occurring stochastic integrals are well-defined in the sense of
Itô. We need, among others, a chain rule for the Malliavin derivative, the Malliavin derivative
of the solution of SDDE (II.1), and the Skorohod integral in order to prove that the error of the
Milstein scheme in Sp([t0 − τ, T ]× Ω;Rd) is of order O(h) as h→ 0, where h is the maximum
step size of the scheme. For more details on the estimates involving the Malliavin calculus, we
refer to the analysis of term R5 in the proof of Theorem IV.9. See inequality (IV.146) for the
final estimate.

The Malliavin derivative as well as its adjoint operator, namely the Skorohod integral, are
introduced in Section III.1, and some important properties of them are stated. Here, we also
develop a chain rule for the Malliavin derivative that applies to functions whose derivatives are
not imposed to be bounded. In Section III.2, we focus on the Malliavin derivative of solutions
of SDDE (II.1) and give details on the upper bound in the Sp([t0 − τ, T ]× Ω;Rd)-norm.

We refer to [97, 113, 114] for monographs on the Malliavin calculus. The contents of this
chapter are mainly based on Nualart’s books [112, 113].

III.1. Malliavin Derivative and Skorohod Integral

First, we introduce the Malliavin derivative for R-valued random variables and state some
important properties of it. Especially, a more general chain rule is presented. Thereafter, the
Skorohod integral is defined as the adjoint operator of the Malliavin derivative. We then extend
the definition of the Malliavin derivative to Hilbert space valued random variables in order to
study some valuable properties of the Skorohod integral.

This section follows sections 1.2 and 1.3 in Nualart’s books [112, 113] to a large extent. However,
we choose a slightly different representation that is more suitable for our considerations on the
Wiener process W in case of SDDE (II.1).

To begin with, we introduce some notations. Let C∞
p (RK ;R), K ∈ N, be the space of continuous

functions f : RK → R that are infinitely often continuously differentiable, and such that f and
all of its partial derivatives have polynomial growth. Here, a function g : RK → R is said to be
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of polynomial growth if there exist a constant C ∈ R with C > 0 and an exponent q ∈ [0,∞[

so that |g(x)| ≤ C
(
1 + ‖x‖2

) q
2 holds for all x ∈ RK , where q is the order of the growth.

Consider two real separable Hilbert spaces E1 and E2 with inner products 〈·, ·〉E1 and 〈·, ·〉E2 .
The norms ‖·‖E1 and ‖·‖E2 are assumed to be induced by the inner products 〈·, ·〉E1 and
〈·, ·〉E2 . Let LHS(E1;E2) denote the space of Hilbert-Schmidt operators from E1 to E2 with
inner product

〈·, ·〉LHS(E1;E2) :=
∑
k∈N

〈· e1k, · e1k〉E2

and norm

‖·‖LHS(E1;E2) :=

(∑
k∈N

‖· e1k‖2E2

) 1
2

,

where the definitions are independent of the particular orthonormal basis (e1k)k∈N in E1, see
e. g. [10, Lemma 3.4.2]. For x, y ∈ E1 and z ∈ E2, define the linear operator x ⊗ z : E1 → E2

by (x⊗ z) y := 〈x, y〉E1z, cf. [55, p. 44]. It holds x⊗ z ∈ LHS(E1;E2) and

‖x⊗ z‖2LHS(E1;E2)
=
∑
k∈N

‖(x⊗ z) e1k‖2E2
=
∑
k∈N

‖〈x, e1k〉E1z‖2E2
=
∑
k∈N

|〈x, e1k〉E1 |2‖z‖2E2

= ‖x‖2E1
‖z‖2E2

(III.1)

by Parseval’s identity [138, Theorem III.4.2]. Moreover, the space LHS(E1;E2) is again a
real separable Hilbert space with the orthonormal basis (e1k ⊗ e2l )k,l∈N, where (e2l )l∈N is an
orthonormal basis of E2, see e. g. [116, Proposition B.0.7].

We define the real separable Hilbert space

HE := L2([t0, T ];LHS(Rm;E)) (III.2)
:= L2(([t0, T ],B([t0, T ]), λ|[t0,T ]); (LHS(Rm;E),B(LHS(Rm;E)))),

where E is a real separable Hilbert space. As in Chapter II, an element Z ∈ HE is referred to
as a B([t0, T ])/B(LHS(Rm;E))-measurable function instead of an equivalence class throughout
this thesis. In case of E = R, we write H := HR for sake of simplicity, which is used frequently
especially at the beginning of this section.

In order to see the advantage of this notation, we need the following considerations. In view of
equation (III.1), it holds

‖x‖Rm =

( m∑
j=1

|〈x, ej〉Rm |2
) 1

2

=

( m∑
j=1

|〈x, ej〉Rm 1|2
) 1

2

=

( m∑
j=1

|(x⊗ 1) ej |2
) 1

2

= ‖x⊗ 1‖LHS(Rm;R)

for all x ∈ Rm, where (ej)j∈{1,...,m} is the canonical orthonormal basis of Rm, that is, ej denotes
the jth unit vector in Rm. Thus, the map ι : x 7→ x ⊗ 1 is an isometric isomorphism between
the spaces Rm and LHS(Rm;R). We define

xj := (x⊗ 1) ej = 〈x, ej〉Rm (III.3)

28



III.1. Malliavin Derivative and Skorohod Integral

for all x ∈ Rm and j ∈ {1, . . . ,m}. Then, the inner product of g, h ∈ H can be represented as

〈g, h〉H :=

∫ T

t0

〈g(t), h(t)〉LHS(Rm;R) dt =
m∑
j=1

∫ T

t0

gj(t)hj(t)dt. (III.4)

Using these definitions, we can consistently write∫ T

t0

h(s)dWs :=

m∑
j=1

∫ T

t0

hj(s)dW j
s (III.5)

for all h ∈ H, where Ws = (W 1
s , . . . ,W

m
s )T. This notation is also used in a more general context

of Hilbert space valued Wiener processes, see e. g. [28, Section I.4]. Thus, space H introduced
above is more usual in the context of SDEs than the space in [112, 113], see especially [113,
Example 1.1.2]. The Itô isometry for a deterministic function h ∈ H reads as∥∥∥∥∫ T

t0

h(s)dWs

∥∥∥∥2
L2(Ω;R)

=

∫ T

t0

m∑
j=1

(hj(s))2 ds =
∫ T

t0

‖h(s)‖2LHS(Rm;R) ds = ‖h‖2H

for example, cf. [28, Equation (I.4.30)]. In particular, the Wiener integral in equation (III.5) is
N(0, ‖h‖2H)-distributed.

We continue with the following definition.

Definition III.1 ([113, p. 25])
The set of R-valued smooth random variables is denoted by

S (Ω;R) :=

{
F : Ω → R : F = f

(∫ T

t0

h1(s)dWs, . . . ,

∫ T

t0

hK(s)dWs

)

where f ∈ C∞
p (RK ;R), hk ∈ H for k ∈ {1, . . . ,K}, and K ∈ N

}
.

Because f ∈ C∞
p (RK ;R) is of polynomial growth and because the Wiener integral in equa-

tion (III.5) is N(0, ‖h‖2H)-distributed, it holds S (Ω;R) ⊂ Lp(Ω;R) for all p ∈ [1,∞[. However,
not every random variable in Lp(Ω;R) can be approximated by a sequence (Fn)n∈N of smooth
random variables Fn ∈ S (Ω;R), n ∈ N.

Indeed, recall the P-completed σ-algebra G := GT from Chapter II, cf. formula (II.2). The
smooth random variables Fn ∈ S (Ω;R) are G/B(R)-measurable, and hence, the limit
limn→∞ Fn in Lp(Ω;R), as it exists, is G/B(R)-measurable, too, see e. g. [24, Corollary 2.2.3].
But as G ⊂ F in general, not every random variable in Lp(Ω;R) = Lp((Ω,F,P); (R,B(R))) is
G/B(R)-measurable.

Due to this, we introduce the Banach space

Lp
G(Ω;E) := Lp((Ω,G,P|G); (E,B(E))) = {E[Z|G ] : Z ∈ Lp(Ω;E)}

with norm ‖·‖Lp
G (Ω;E) := ‖·‖Lp(Ω;E), P|G-almost surely equal random variables are identified, for

p ∈ [1,∞[, where E is a real separable Hilbert space, cf. [121, Chapter II].
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Using this notation, it can more precisely be said that

S (Ω;R) = S ((Ω,G,P|G); (R,B(R))) ⊂ Lp
G(Ω;R)

for every p ∈ [1,∞[. Even more, the following lemma holds.

Lemma III.2 ([111, Lemma 2.3.1])
The space S (Ω;R) is dense in Lp

G(Ω;R) for every p ∈ [1,∞[.

We now define the Malliavin derivative for an arbitrary random variable F ∈ S (Ω;R).

Definition III.3 ([113, Definition 1.2.1])
Let F ∈ S (Ω;R) with the representation

F = f

(∫ T

t0

h1(s)dWs, . . . ,

∫ T

t0

hK(s)dWs

)
.

The Malliavin derivative D : S (Ω;R) → Lp
G(Ω;H), p ∈ [1,∞[, of F is defined by

DF :=
K∑
k=1

∂xk
f

(∫ T

t0

h1(s)dWs, . . . ,

∫ T

t0

hK(s)dWs

)
hk.

In particular, it thus holds

D
∫ T

t0

h(s)dWs = h (III.6)

for all h ∈ H. Considering F,G ∈ S (Ω;R), we clearly have FG ∈ S (Ω;R), and the product
rule

D(FG) = (DF )G+ F (DG). (III.7)

directly follows from the definition of the Malliavin derivative. The Malliavin derivative further
satisfies the following lemma.

Lemma III.4 ([113, Lemma 1.2.1])
Let F ∈ S (Ω;R) and h ∈ H. Then, it holds

E[〈DF, h〉H ] = E
[
F

∫ T

t0

h(t)dWt

]
.

The equation in the lemma above can be seen as an integration by parts formula and is useful
to prove that the Malliavin derivative D is a closable operator, cf. [111, Lemma 1.1.1 and
Proposition 2.3.4]. The Malliavin derivative D is closable if and only if for all sequences
(Fn)n∈N ⊂ S (Ω;R) with limn→∞ Fn = 0 and limn→∞ DFn = G ∈ Lp

G(Ω;H) it follows
G = 0 P|G-almost surely, see e. g. [138, Definition II.6.2 and Proposition II.6.2] or [14, Subsec-
tion 12.2.2].

Proposition III.5 ([113, Proposition 1.2.1])
Let p ∈ [1,∞[. The operator D : Lp

G(Ω;R) ⊃ S (Ω;R) → Lp
G(Ω;H) is closable.
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Definition III.6 ([113, p. 27])
Let p ∈ [1,∞[. The closure of the set S (Ω;R) with respect to the graph norm

‖·‖Dp(Ω;R) :=
(
‖·‖p

Lp
G (Ω;R) + ‖D·‖p

Lp
G (Ω;H)

) 1
p

is denoted by Dp(Ω;R) ⊂ Lp
G(Ω;R).

According to Proposition III.5, the operator D : S (Ω;R) → Lp
G(Ω;H) can be extended to

Dp(Ω;R). This closure D of the operator D will, by a slight abuse of notation, again be
denoted by D : Dp(Ω;R) → Lp

G(Ω;H) in the following, cf. [111, 113].

Let q, r ∈]1,∞[, and consider F ∈ Dq(Ω;R) and G ∈ Dr(Ω;R). Using Hölder’s inequality and
the product rule (III.7), we obtain FG ∈ Dp(Ω;R) where 1

p = 1
q +

1
r and

D(FG) = (DF )G+ F (DG) (III.8)

cf. [68, Corollary 15.80]. Before we continue with further valuable properties of the Malliavin
derivative, we make a remark on the measurability of the Malliavin derivative DF for F ∈
Dp(Ω;R) and introduce some notations.

Remark III.7
Considering F ∈ Dp(Ω;R), a representative DF ∈ Lp

G(Ω;H) is a random variable with values
in Hilbert space H, that is, DF (ω) is actually an equivalence class. Of course, for all ω ∈
Ω one can also pick a representative in this equivalence class. These representatives t 7→
DF (ω, t), t ∈ [t0, T ], are B([t0, T ])/B(LHS(Rm;R))-measurable. But for fixed t ∈ [t0, T ], the
map ω 7→ DF (ω, t) is not necessarily G/B(LHS(Rm;R))-measurable, that is, DF (t) is not a
random variable.

However, according to [37, Theorem III.11.17] and [61, Proposition 1.2.25], respectively, there
exists a B([t0, T ])⊗ G/B(LHS(Rm;R))-measurable function Z : [t0, T ]×Ω → LHS(Rm;R) such
that Z(ω) = DF (ω) ∈ H for P|G-almost all ω ∈ Ω. Moreover, Z is uniquely determined except
for a set A ∈ B([t0, T ])⊗G with (λ|[t0,T ]⊗P|G)[A] = 0. That is, Z is uniquely determined up to
indistinguishability. In the following, a representative DF ∈ Lp

G(Ω;H) is always assumed to be
this B([t0, T ])⊗ G/B(LHS(Rm;R))-measurable stochastic process Z : [t0, T ]×Ω → LHS(Rm;R)
and

DtF (ω) := Z(t, ω)

for all (t, ω) ∈ [t0, T ]×Ω. Moreover, let DjF : [t0, T ]×Ω → R denote the R-valued measurable
process defined by

Dj
tF (ω) := Zj(t, ω) := Z(t, ω)ej (III.9)

for j ∈ {1, . . . ,m}, cf. formula (III.3). In particular, it holds for F ∈ S (Ω;R) that

Dj
tF (ω) =

K∑
k=1

∂xk
f

(∫ T

t0

h1(s)dWs, . . . ,

∫ T

t0

hK(s)dWs

)
(ω)hjk(t)

for λ|[t0,T ] ⊗ P|G-almost all (t, ω) ∈ [t0, T ] × Ω and all j ∈ {1, . . . ,m}. Note that DF for
F ∈ S (Ω;R) is a priori B([t0, T ]) ⊗ G/B(LHS(Rm;R))-measurable. The measurability of
representatives DF ∈ Lp

G(Ω;H) with F ∈ Dp(Ω;R) gets lost by passing to the equivalence
classes.
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Having adapted stochastic processes in mind, the following corollary will be important later
on. Recall filtration (Gt)t∈[t0,T ], see equation (II.2).

Corollary III.8 ([113, Corollary 1.2.1])
Let p ∈ [1,∞[ and F ∈ Dp(Ω;R) be Gt/B(R)-measurable for some t ∈ [t0, T ]. Then, it holds
Dj

sF (ω) = 0 for λ|[t0,T ] ⊗ P|G-almost all (s, ω) ∈ ]t, T ]× Ω and all j ∈ {1, . . . ,m}.

The next proposition states the chain rule for the Malliavin derivative, cf. [68, Theorem 15.78],
[97, p. 36], and [113, Proposition 1.2.3 and Proposition 1.5.1]. The extended version in the
theorem below is very useful in order to calculate the Malliavin derivative explicitly.

Theorem III.9
Let F = (F1, . . . , FL) with Fl ∈ Dp(Ω;R) for l ∈ {1, . . . , L} and some p ∈ [1,∞[. Further, let
ϕ ∈ C1(RL;R) with |∂xl

ϕ(x)| ≤ C
(
1 + ‖x‖2

)χ
2 for all x ∈ RL and some χ ∈ [0, p − 1], where

C > 0 is a constant. Then ϕ(F ) ∈ D
p

χ+1 (Ω;R), and it P|G-almost surely holds

Dϕ(F ) =
L∑
l=1

∂xl
ϕ(F )DFl.

Proof. The proof is stated in Section III.3, see p. 41.

In the case of ϕ ∈ C(RL;R) having bounded partial derivatives ∂xl
ϕ, l ∈ {1, . . . , L}, the

proposition holds with χ = 0, and thus, the statement is more general than the result in [113,
Proposition 1.2.3].

In the following, the adjoint operator of the Malliavin derivative D : Lp
G(Ω;R) ⊃ Dp(Ω;R) →

Lp
G(Ω;H) is considered for p ∈]1,∞[, cf. [97, Definition II.6.1] or [68, Definition 15.130 and

Theorem 15.132], and in the case of p = 2, cf. [113, Definition 1.3.1]. We refer to e. g. [62,
pp. 521–522] for the definition of the adjoint operator.

Definition III.10
Let p ∈ ]1,∞[. The subspace dom δ ⊂ Lp

G(Ω;H), p ∈]1,∞[, denotes the set of random variables
G ∈ Lp

G(Ω;H) such that F 7→ E[〈DF,G〉H ] is continuous for all F ∈ Dq(Ω;R) with 1
p + 1

q = 1.
That is G ∈ dom δ if and only if there exists a constant CG > 0 such that

|E[〈DF,G〉H ]| ≤ CG‖F‖Lq
G (Ω;R)

for all F ∈ Dq(Ω;R).

If G ∈ dom δ, then δ(G) ∈ Lp
G(Ω;R) is characterized by the duality formula

E[Fδ(G)] = E[〈DF,G〉H ] (III.10)

for any F ∈ Dq(Ω;R) with 1
p +

1
q = 1. The operator δ : Lp

G(Ω;H) ⊃ dom δ → Lp
G(Ω;R) is called

divergence operator.
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The random variable δ(G) ∈ Lp
G(Ω;R) is unique in the sense that if G, Ĝ ∈ dom δ ⊂ Lp

G(Ω;H)

with G = Ĝ λ|[t0,T ] ⊗ P|G-almost surely, then it P|G-almost surely holds δ(G) = δ(Ĝ).

Since S (Ω;R) is a dense subset of Lp
G(Ω;R) for every p ∈ ]1,∞[, see Lemma III.2, it is enough

to verify the continuity of F 7→ E[〈DF,G〉H ] and the duality formula only for all F ∈ S (Ω;R)
in the previous definition, cf. [62, p. 522]. The divergence operator δ : dom δ → Lp

G(Ω;R) is
closed as it is the adjoint of the densely defined operator D : Dp(Ω;R) → Lp

G(Ω;H), cf. [113,
p. 37] and [14, Theorem 12.3.1]. Equation (III.10) is also called integration by parts formula,
cf. Lemma III.4. It follows immediately from equation (III.10) that the divergence operator δ
is linear. Choosing further F = c ∈ R in equation (III.10), it holds E[δ(G)] = 0 if G ∈ dom δ.
According to Lemma III.4 and equation (III.6), we have δ(h) =

∫ T
t0
h(s)dWs and Dδ(h) = h for

h ∈ H. Similar relations of the divergence operator are derived in a more general setting in the
following. In order to do this, the definition of the Malliavin derivative needs to be extended
to stochastic processes.

In Nualart’s book [113], the Malliavin derivative is extended to random variables that take
values in an arbitrary separable Hilbert space. It should be mentioned that this can also be done
for separable Banach spaces or even Banach spaces satisfying only a UMD property. The theory
about stochastic integration and the Malliavin calculus in UMD-Banach spaces is developed by,
among others, Maas, Pronk, van Nerven, Veraar and Weis, see e. g. [61, 93, 94, 117, 132, 133].

Using Definition III.1, we first define smooth random variables that take values in a real sep-
arable Hilbert space. Considering F ∈ Lp(Ω;R) and x ∈ E, let F ·x ∈ Lp(Ω;E) be defined by
(F ·x)(ω) := F (ω)x for all ω ∈ Ω.

Definition III.11 ([113, p. 31])
Let E be real separable Hilbert space. The set of E-valued smooth random variables is denoted
by

S (Ω;E) :=

{
F : Ω → E : F =

n∑
k=1

Fk ·xk

where Fk ∈ S (Ω;R) and xk ∈ E for k ∈ {1, . . . , n} and n ∈ N
}
.

Similar to Lemma III.2, the space S (Ω;E) is dense in Lp
G(Ω;E), cf. [94, Lemma 3.1].

Lemma III.12
Let E be real separable Hilbert space. The space of smooth E-valued random variables S (Ω;E)
is dense in Lp

G(Ω;E) for every p ∈ [1,∞[.

Proof. Since S (Ω;R) is dense in Lp
G(Ω;R) for every p ∈ [1,∞[, see Lemma III.2, it follows that

S (Ω;E) is dense in Lp
G(Ω;E) for every p ∈ [1,∞[, see e. g. [31, Subsection I.7.2 on p. 78].

In order to define the Malliavin derivative for E-valued smooth random variables, cf. [94,
p. 154] and [113, p. 31], recall the space HE = L2([t0, T ];LHS(Rm;E)), where H = HR, see
formula (III.2).
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Definition III.13
Let G ∈ S (Ω;R) and x ∈ E, and let p ∈ [1,∞[. The Malliavin derivative D : S (Ω;E) →
Lp

G(Ω;HE) of G·x ∈ S (Ω;E) is defined by

Dj
t (G·x)(ω) := Dj

tG(ω)x,

for all (t, ω) ∈ [t0, T ] × Ω and all j ∈ {1, . . . ,m}. This definition extends to general F =∑n
k=1 Fk ·xk ∈ S (Ω;E) with Fk ∈ S (Ω;R), xk ∈ E, k ∈ {1, . . . , n}, and n ∈ N by linearity,

that is(
Dj

t

n∑
k=1

Fk ·xk
)
(ω) :=

n∑
k=1

Dj
t (Fk ·xk)(ω) =

n∑
k=1

Dj
tFk(ω)xk

for all (t, ω) ∈ [t0, T ]× Ω and all j ∈ {1, . . . ,m}.

Similar to Proposition III.5, the Malliavin derivative operator for E-valued smooth random
variables is closable, too.

Proposition III.14 ([94, p. 155])
Let E be a real separable Hilbert space and p ∈ [1,∞[. The operator D : Lp

G(Ω;E) ⊃ S (Ω;E) →
Lp

G(Ω;HE) is closable.

The space Dp(Ω;R) from Definition III.6 extends to E-valued random variables as follows.

Definition III.15 ([113, p.31])
Let E be a separable Hilbert space and p ∈ [1,∞[. The closure of S (Ω;E) with respect to the
graph norm

‖·‖Dp(Ω;E) :=
(
‖·‖p

Lp
G (Ω;E)

+ ‖D·‖p
Lp

G (Ω;HE)

) 1
p (III.11)

is denoted by Dp(Ω;E) ⊂ Lp
G(Ω;E).

The closed extension D of operator D : Lp
G(Ω;E) ⊃ S (Ω;E) → Lp

G(Ω;HE) to the set Dp(Ω;E)
will again be denoted by D. Considering p, q ∈ [1,∞[ with p ≤ q, Hölder’s inequality and
inequality (II.6) imply

(
‖·‖p

Lp
G (Ω;E)

+ ‖D·‖p
Lp

G (Ω;HE)

) 1
p ≤

(
‖·‖p

Lq
G (Ω;E)

+ ‖D·‖p
Lq

G (Ω;HE)

) q
p

1
q

≤ 2
q−p
p

(
‖·‖q

Lq
G (Ω;E)

+ ‖D·‖q
Lq

G (Ω;HE)

) 1
q
,

and thus ‖·‖Dp(Ω;E) ≤ 2
q−p
p ‖·‖Dq(Ω;E). This yields the inclusion Dq(Ω;E) ⊂ Dp(Ω;E), cf. [113,

p. 27].

Similarly to Remark III.7 in case of E = R, we make some remarks on the measurability of the
Malliavin derivative, cf. [113, p. 42].
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Remark III.16
Let p ∈ [1,∞[ and F ∈ Dp(Ω;E). A representative DF ∈ Lp

G(Ω;HE) is always assumed to be a
B([t0, T ])⊗ G/B(HE)-measurable process, cf. Remark III.7.

In the following, consider the case of E = L2(A;E2), where A ⊆ [t0 − τ, T ] is an interval,
and E2 is a real separable Hilbert space. Thus, we consider F ∈ Dp(Ω;L2(A;E2)), and hence
DF ∈ Lp

G(Ω;HL2(A;E2)), where HL2(A;E2) = L2([t0, T ];LHS(Rm;L2(A;E2))).

Let ι : LHS(Rm;L2(A;E2)) → L2(A;LHS(Rm;E2)) be the isometric isomorphism defined by
(ι(F )(t))(x) := (F x)(t), t ∈ A and x ∈ Rm, see [132, Proposition 2.6] or [131, Proposi-
tion 13.5 and Theorem 13.6]. According to isomorphism ι as well as [37, Theorem III.11.17]
or [61, Proposition 1.2.25], there exists a B(A) ⊗ B([t0, T ]) ⊗ G/B(LHS(Rm;E2))-measurable
function Z : A×[t0, T ]×Ω → LHS(Rm;E2) such that Z(·, t, ω) = DtF (ω) for λ|[t0,T ]⊗P|G-almost
all (t, ω) ∈ [t0, T ]× Ω.

This two-parameter process Z is unique in the sense that if there exists another B(A) ⊗
B([t0, T ]) ⊗ G/B(LHS(Rm;E2))-measurable function Ẑ with Ẑ(·, t, ω) = DtF (ω) for λ|[t0,T ] ⊗
P|G-almost all (t, ω) ∈ [t0, T ]× Ω, it holds Z = Ẑ λ|A ⊗ λ|[t0,T ] ⊗ P|G-almost everywhere.

Therefore, a representative DF ∈ Lp
G(Ω;HL2(A;E2)) is always assumed to be this B(A) ⊗

B([t0, T ])⊗ G/B(LHS(Rm;E2))-measurable function Z and

DtFs(ω) := Z(s, t, ω)

for all (s, t, ω) ∈ A× [t0, T ]×Ω. Moreover, let DjF : A× [t0, T ]×Ω → E2 denote the E2-valued
measurable two-parameter process defined by

Dj
tFs(ω) := Zj(s, t, ω) := Z(s, t, ω)ej

for all (s, t, ω) ∈ A × [t0, T ] × Ω and all j ∈ {1, . . . ,m}, where (ej)j∈{1,...,m} is the canonical
orthonormal basis of Rm, cf. formula (III.9). If furthermore E2 = LHS(Rm;E3), where E3 is a
real separable Hilbert space, define

Dj
tF

l
s(ω) := Dj

tFs(ω)el

for all (s, t, ω) ∈ A× [t0, T ]× Ω and all j, l ∈ {1, . . . ,m}.

The spaces considered in Remark III.16 occur for example when we apply the Malliavin deriva-
tive to integrands F : [t0, T ]× Ω → LHS(Rm;R) of Itô integrals with F ∈ Dp(Ω;H).

Example III.17
Let F ∈ Dp(Ω;H), and recall that

HH = L2([t0, T ];LHS(Rm;L2([t0, T ];LHS(Rm;R)))),

see formula (III.2), where H = HR. Then, the representative DF ∈ Lp
G(Ω;HH) is a B([t0, T ])⊗

B([t0, T ]) ⊗ G/B(LHS(Rm;LHS(Rm;R)))-measurable two-parameter process. Further, for
λ|[t0,T ]-almost all t ∈ [t0, T ] and all j ∈ {1, . . . ,m} the representative Dj

tF ∈ Lp
G(Ω;H) is a

B([t0, T ])⊗G/B(LHS(Rm;R))-measurable process, and Dj
tF

l
s is a G/B(R)-measurable random

variable for λ|[t0,T ] ⊗ λ|[t0,T ]-almost all (t, s) ∈ [t0, T ]× [t0, T ] and all j, l ∈ {1, . . . ,m}.
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Due to the following remark, the random variable Dj
tF

l
s defined in Remark III.16 is well-defined

since it does not depend on the order of taking the Malliavin derivative and evaluating the
stochastic process in time.

Remark III.18
Let F ∈ Dp(Ω;L2([t0, T ];E)), where E is a real separable Hilbert space. It holds

Dj
tFs(ω) = Dj

t (Fs)(ω)

for λ|[t0,T ] ⊗ λ|[t0,T ] ⊗ P|G-almost all (s, t, ω) ∈ [t0, T ] × [t0, T ] × Ω. Hence, the order of
the evaluation in time and the differentiation of F does not matter. Indeed, since F be-
longs to Dp(Ω;L2([t0, T ];E)), it can be approximated by a sequence (Fn)n∈N where Fn ∈
S (Ω;L2([t0, T ];E)) with

Fn =

Kn∑
k=1

Gn,k ·hn,k,

Gn,k ∈ S (Ω;R) and hn,k ∈ L2([t0, T ];E). By definition, we have

Dj
tFn(ω) =

Kn∑
k=1

Dj
tGn,k(ω)hn,k

for λ|[t0,T ] ⊗ P|G-almost all (t, ω) ∈ [t0, T ] × Ω and all j ∈ {1, . . . ,m}. Hence, evaluating
Dj

tFn(ω) ∈ L2([t0, T ];E) yields

Dj
tFn(s)(ω) =

Kn∑
k=1

Dj
tGn,k(ω)hn,k(s)

for λ|[t0,T ] ⊗ λ|[t0,T ] ⊗ P|G-almost all (s, t, ω) ∈ [t0, T ] × [t0, T ] × Ω and all j ∈ {1, . . . ,m}, cf.
Remark III.16. On the other hand, the evaluation of Fn yields

Fn(s) =

Kn∑
k=1

Gn,k ·hn,k(s) ∈ S (Ω;E)

for λ|[t0,T ]-almost all s ∈ [t0, T ], and hence,

Dj
t (Fn(s))(ω) =

Kn∑
k=1

Dj
tGn,k(ω)hn,k(s)

for λ|[t0,T ] ⊗ λ|[t0,T ] ⊗P|G-almost all (s, t, ω) ∈ [t0, T ]× [t0, T ]×Ω and all j ∈ {1, . . . ,m}. That
is, for all n ∈ N, we have

Dj
tFn(s)(ω) = Dj

t (Fn(s))(ω)

for λ|[t0,T ]⊗λ|[t0,T ]⊗P|G-almost all (s, t, ω) ∈ [t0, T ]× [t0, T ]×Ω and all j ∈ {1, . . . ,m}. Since
Fn → F in Dp(Ω;L2([t0, T ];E)) as n→ ∞, it also holds that

Dj
tF (s)(ω) = Dj

t (F (s))(ω)

for λ|[t0,T ] ⊗ λ|[t0,T ] ⊗ P|G-almost all (s, t, ω) ∈ [t0, T ]× [t0, T ]× Ω and all j ∈ {1, . . . ,m}.
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The spaces Dp(Ω;Rd) and Dp(Ω;R) are connected in the following sense.

Remark III.19
Considering x = (x1, . . . , xd)T ∈ Rd, it holds for the Euclidean norm of x that

max
i∈{1,...,d}

|xi| ≤ ‖x‖ ≤
√
d max
i∈{1,...,d}

|xi| (III.12)

for x = (x1, . . . , xd)T ∈ Rd. Let p ∈ [1,∞[. According to inequality (III.12), we obtain

max
i∈{1,...,d}

‖F i‖Dp(Ω;R) ≤ ‖F‖Dp(Ω;Rd) ≤
√
d max
i∈{1,...,d}

‖F i‖Dp(Ω;R) (III.13)

for all F ∈ Dp(Ω;Rd). That is, F ∈ Dp(Ω;Rd) if and only if F i ∈ Dp(Ω;R) for all i ∈
{1, . . . , d}. Due to this, the chain rule from Theorem III.9, for example, does also apply to
Rd-valued random variables in Dp(Ω;Rd).

By using the Malliavin derivative for H-valued random variables, some properties of the diver-
gence operator δ are presented.

Lemma III.20 ([113, Proposition 1.3.1])
It holds D2(Ω;H) ⊂ dom δ and

E[δ(F )δ(G)] = E
[ m∑

j=1

∫ T

t0

F j
t G

j
t dt
]
+ E

[ m∑
j,l=1

∫ T

t0

∫ T

t0

(Dj
sF

l
t ) (Dl

tG
j
s)dsdt

]
(III.14)

for all F,G ∈ D2(Ω;H).

For the representation of equation (III.14), we also refer to [112, Equation (1.54)]. Considering
the second term on the right-hand side of equation (III.14) with G = F ∈ D2(Ω;H), we
P-almost surely have∣∣∣∣ m∑

j,l=1

∫ T

t0

∫ T

t0

(Dj
sF

l
t )(Dl

tF
j
s )dsdt

∣∣∣∣ ≤ m∑
j,l=1

∫ T

t0

∫ T

t0

(Dj
sF

l
t )

2 dsdt = ‖DF‖2HH .

Thus, we obtain

‖δ(F )‖L2
G (Ω;R) ≤

(
‖F‖2L2

G (Ω;H) + ‖DF‖2L2
G (Ω;HH )

) 1
2 = ‖F‖D2(Ω;H), (III.15)

cf. [113, Equation (1.47)]. Next, we state a highly valuable property of the divergence opera-
tor.

Proposition III.21 ([113, Proposition 1.3.3])
Let F ∈ D2(Ω;R) and G ∈ dom δ such that FG ∈ L2(Ω;H). If Fδ(G), 〈DF,G〉H ∈ L2(Ω;R),
then FG ∈ dom δ, and it holds

Fδ(G) = δ(FG) + 〈DF,G〉H

P-almost surely.
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The divergence operator δ and the Itô integral are related as follows.

Proposition III.22 ([113, Proposition 1.3.11])
Let F ∈ L2

G(Ω;H) be adapted to filtration (Gt)t∈[t0,T ]. Then, F ∈ dom δ, and it P-almost surely
holds

δ(F ) =

m∑
j=1

∫ T

t0

F j
t dW j

t ,

that is, the divergence of F coincides with the Itô integral of F .

Due to this, the divergence operator δ can be understand as an extension of the Itô integral to
anticipative stochastic processes and is also called Skorohod integral, cf. [128]. For F ∈ dom δ,
define

m∑
j=1

∫ T

t0

F j
t δW

j
t :=

∫ T

t0

Ft δWt := δ(F ).

Thus, equation (III.14) can be seen as an extension of the Itô isometry, cf. [113, p. 42], and is
referred to as covariance between Skorohod integrals, cf. [112, p. 39]. As in the case of the Itô
stochastic integral, the notation∫ T

t0

Gt δWt := (δ(G1), . . . , δ(Gd))T =: δ(G) (III.16)

for G = (G1, . . . , Gd)T is used, where Gi ∈ dom δ for i ∈ {1, . . . , d}.

The following proposition and lemma focus on the Malliavin derivative of an Itô integral and
an integral over time, respectively. These properties are needed in order to derive the Malliavin
differentiability of the solution of SDDE (II.1).

Proposition III.23 ([113, Lemma 1.3.4])
Let F ∈ L2

G(Ω;H) be adapted to filtration (Gt)t∈[t0,T ], and consider the stochastic process
(Gt)t∈[t0,T ] given by Gt =

∑m
j=1

∫ t
t0
F j
s dW j

s . Then, it holds GT ∈ D2(Ω;R) if and only if
F ∈ D2(Ω;H). In this case, (Gt)t∈[t0,T ] ∈ D2(Ω;L2([t0, T ];R)), and it holds for all t ∈ [t0, T ]
and j ∈ {1, . . . ,m} that

Dl
s

( m∑
j=1

∫ t

t0

F j
r dW j

r

)
(ω) = F l

s(ω) +
m∑
j=1

∫ t

s
Dl

sF
j
r dW j

r (ω)

for λ|[t0,T ]⊗P|G-almost all (s, ω) ∈ [t0, t]×Ω and all l ∈ {1, . . . ,m} as well as that Dl
sGt(ω) = 0

for λ|[t0,T ] ⊗ P|G-almost all (s, ω) ∈ ]t, T ]× Ω.

The following lemma is for example used in [113, Equation (2.49)] without proof.

Lemma III.24
Let F ∈ Dp(Ω;L2([t0, T ];Rd)) for some p ∈ [1,∞[ and G =

∫ T
t0
Fs ds. Then, it holds G ∈

Dp(Ω;Rd) and

Dj
t

∫ T

t0

Fs ds(ω) =
∫ T

t0

Dj
tFs(ω)ds
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for λ|[t0,T ] ⊗P|G-almost all (t, ω) ∈ [t0, T ]×Ω and all j ∈ {1, . . . ,m}. If in addition (Ft)t∈[t0,T ]

is (Gt)t∈[t0,T ]-progressively measurable, it further holds

Dj
t

∫ T

t0

Fs ds(ω) =
∫ T

t
Dj

tFs(ω)ds (III.17)

for λ|[t0,T ] ⊗ P|G-almost all (t, ω) ∈ [t0, T ]× Ω and all j ∈ {1, . . . ,m}.

Proof. The proof is stated in Section III.3, see p. 47.

In order to show that term R5 in the proof of Theorem IV.9 is of order O(h) as h → 0, we
further need the boundedness of the Skorohod integral in Lp

G(Ω;R).

Proposition III.25 ([113, Proposition 1.5.4])
Let p ∈ ]1,∞[. The divergence operator δ is continuous from Dp(Ω;H) to Lp

G(Ω;R), and hence,
there exists a constant cδ,p > 0 so that

‖δ(F )‖Lp
G (Ω;R) ≤ cδ,p‖F‖Dp(Ω;H) (III.18)

for all F ∈ Dp(Ω;H).

In view of Lemma III.20 and inequality (III.15), we have cδ,2 = 1 in inequality (III.18). Con-
sidering the Skorohod integral as an extension of the Itô integral, inequality (III.18) can be
regarded as the counterpart to Burkholder’s inequality from Theorem II.4.

Proposition III.25 is only stated for Skorohod integrals that take values in R. Using defini-
tion (III.16) and the triangle inequality, we can easily extend inequality (III.18) to Skorohod
integrals that take values in Rd. These considerations are detailed in the following because
the resulting inequality is used the proof of Theorem IV.9, see term R′

5 in formula (IV.116) in
particular.

Let F = (F 1, . . . , F d)T with F ι ∈ Dp(Ω;H) for ι ∈ {1, . . . , d}. The triangle inequality implies

‖δ(F )‖Lp
G (Ω;Rd) =

∥∥∥∥ d∑
ι=1

|δ(F ι)|2
∥∥∥∥ 1

2

L
p
2
G (Ω;R)

≤
( d∑

ι=1

‖δ(F ι)‖2Lp
G (Ω;R)

) 1
2

,

and then, Proposition III.25 yields

‖δ(F )‖Lp
G (Ω;Rd) ≤ cδ,p

( d∑
ι=1

‖F ι‖2Dp(Ω;H)

) 1
2

. (III.19)

Next, we insert the definition of the norm ‖·‖Dp(Ω;H), see equation (III.11), and further estimate
inequality (III.19). Using the inequality (cq1 + cq2)

1
q ≤ c1 + c2 for c1, c2 ∈ [0,∞[ and q ∈ [1,∞[
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additionally, we obtain

‖δ(F )‖Lp
G (Ω;Rd)

≤ cδ,p

( d∑
ι=1

(
‖F ι‖p

Lp
G (Ω;H)

+ ‖DF ι‖p
Lp

G (Ω;HH )

) 2
p

) 1
2

= cδ,p

(
d∑

ι=1

(
E

[( m∑
j=1

∫ T

t0

|F ι,j
u |2 du

)2
p

]
+ E

[( m∑
j1,j2=1

∫ T

t0

∫ T

t0

|Dj2
v F

ι,j1
u |2 dv du

) 2
p

])2
p
)1

2

= cδ,p

(
d∑

ι=1

(∥∥∥∥ m∑
j=1

∫ T

t0

|F ι,j
u |2 du

∥∥∥∥ p
2

L
p
2
G (Ω;R)

+

∥∥∥∥ m∑
j1,j2=1

∫ T

t0

∫ T

t0

|Dj2
v F

ι,j1
u |2 dv du

∥∥∥∥ p
2

L
p
2
G (Ω;R)

)2
p
)1

2

≤ cδ,p

( d∑
ι=1

∥∥∥∥ m∑
j=1

∫ T

t0

|F ι,j
u |2 du

∥∥∥∥
L

p
2
G (Ω;R)

+

∥∥∥∥ m∑
j1,j2=1

∫ T

t0

∫ T

t0

|Dj2
v F

ι,j1
u |2 dv du

∥∥∥∥
L

p
2
G (Ω;R)

)1
2

.

(III.20)

III.2. Malliavin Derivative of Stochastic Delay Differential
Equations

The Malliavin derivative of the solution of SDDE (II.1) is studied in this section, see Theo-
rem III.26 below. Similar results have been obtained by Yan, see [137, Proposition 7.4] and
[60, Proposition 3.1], and earlier by Hirsch [58, Theorem 3.1].

The statements in [60, 137] are however not entirely true. The initial condition of the considered
SDDE is assumed to be random and stochastically independent of the Wiener process, see [137,
Equation (7.1)] and [60, Equation (1.6)]. But the solution of the SDDE is not differentiable then,
in the sense of Malliavin, as it is not G-measurable, cf. definitions III.1, III.6, III.11, and III.15.
Thus, the initial condition considered in [137, Proposition 7.4] and [60, Proposition 3.1] should
be deterministic.

We refer to [113, Theorem 2.2.1] for the Malliavin derivative of solutions of SODEs. The proofs
of [137, Proposition 7.4] and [60, Proposition 3.1] are based on the proof of [113, Theorem 2.2.1].
We present a similar but different proof, which is based on more elementary techniques, namely
we do not use [112, Proposition 1.5.5 and Lemma 1.5.4]. Moreover, we state the upper bound
in the Sp([t0− τ, T ]×Ω;Rd)-norm of the Malliavin derivative of the solution of SDDE (II.1) by
greater detail on the constants than in [137, Proposition 7.4] and [60, Proposition 3.1] or [113,
Theorem 2.2.1] in case of SODEs.

In the theorem below, the initial condition is assumed to be deterministic. In the analysis of
term R5 in proof of Theorem IV.9, we transfer SDDE (II.1) with stochastic initial condition to
an SDDE with deterministic initial condition in order to apply Theorem III.26 below. For more
details on that, we refer to the proof of Theorem IV.9 and in particular to Lemma IV.19.

Theorem III.26
Consider SDDE (II.1) with initial condition ξ = x : [t0−τ, t0] → Rd being a deterministic càdlàg
function. Let the Borel-measurable drift a and diffusion bj, j ∈ {1, . . . ,m}, of SDDE (II.1)
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satisfy the global Lipschitz and linear growth conditions (II.8), (II.9), (II.10), and (II.11). Fur-
ther, let a(t, t− τ1, . . . , t− τD, ·, . . . , ·), bj(t, t− τ1, . . . , t− τD, ·, . . . , ·) ∈ C1(Rd×(D+1);Rd) for
all j ∈ {1, . . . ,m} and t ∈ [t0, T ].

Then, it holds for the solution X of SDDE (II.1) with initial condition x that Xt ∈ Dp(Ω;Rd)
for all t ∈ [t0 − τ, T ] and all p ∈ [2,∞[. For all s ∈ [t0, T ] and j ∈ {1, . . . ,m}, the Malliavin
derivative Dj

sX = (Dj
sX1, . . . ,Dj

sXd)T is the unique strong solution of the d-dimensional linear
SDDE

Dj
sXt =



0, t ∈ [t0 − τ, s[,

bj(T (s,Xs)) +

∫ t

s

D∑
l=0

d∑
i=1

∂xi
l
a(T (u,Xu))Dj

sX
i
u−τl

du

+
m∑
k=1

∫ t

s

D∑
l=0

d∑
i=1

∂xi
l
bk(T (u,Xu))Dj

sX
i
u−τl

dW k
u , t ∈ [s, T ],

(III.21)

and it holds

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX‖Sp([t0−τ,T ]×Ω;Rd) ≤ CD,p

(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2 (III.22)

for all p ∈ [2,∞[, where

CD,p :=
√
2Kbe

d(D+1)2
(√

T−t0La+
pLb

√
m√

p−1

)2
(T−t0).

Proof. The proof is stated in Section III.3, see p. 49.

III.3. Proofs

Proof of Theorem III.9

Proof of Theorem III.9. The Malliavin derivative can only be calculated for smooth random
variables explicitly yet, cf. Definition III.3. Other Malliavin derivatives of random variables in
the closure Dp(Ω;R) are then obtained as the limit of smooth random variables. Thus, the
random variable ϕ(F ) has to be approximated by smooth random variables in order to show
the assertion of Theorem III.9.

In the following, we approximate random variable Fl ∈ Dp(Ω;R) by a sequence (Fl,n)n∈N with
Fl,n ∈ S (Ω;R) for all l ∈ {1, . . . , L} and function ϕ by a sequence of functions in C∞

p (RL;R)
as indicated in [113, p. 28]. The latter can be done by mollification, see e. g. [40, Section C.5].

Let ψ ∈ C∞(RL;R) be compactly supported with∫
RL
ψ(x)dx = 1.
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For example, one can choose

ψ(x) =

{
c e

1
‖x‖2−1 , ‖x‖ < 1,

0 ‖x‖ ≥ 1,

where c > 0 is a constant such that
∫
RL ψ(x)dx = 1. Further, for ε > 0 and x ∈ RL, we define

ψε(x) := ε−Lψ
(1
ε
x
)
,

where
∫
RL ψε(x)dx = 1 and ψε ∈ C∞(RL;R), cf. [40, p. 713]. Following [40, p. 714], we consider

the convolution ϕε := ϕ ∗ ψε : RL → R defined by

(ϕ ∗ ψε)(x) :=

∫
RL
ϕ(y)ψε(x− y)dy =

∫
RL
ϕ(x− y)ψε(y)dy = (ψε ∗ ϕ)(x).

Since ψε belongs to C∞(RL;R), we have ϕε ∈ C∞(RL;R). Because ψ is compactly supported,
the continuity of ϕ, and because of

ϕε(x)− ϕ(x) =

∫
RL
ψε(y)

(
ϕ(x− y)− ϕ(x)

)
dy =

∫
RL
ψ(y)

(
ϕ(x− εy)− ϕ(x)

)
dy,

where the first equality follows from∫
RL
ψ(x)dx =

∫
RL
ψε(x)dx = 1

and the second equality from a substitution, it follows by the dominated convergence theorem
that limε→0 ϕε(x) = ϕ(x) for all x ∈ RL. Hence, ψ is a mollifier. Similarly, since

∂xl
ϕε = ∂xl

(ϕ ∗ ψε) = (∂xl
ϕ) ∗ ψε

and ∂xl
ϕ is continuous, it also holds for all l ∈ {1, . . . , L} and x ∈ RL that

lim
ε→0

∂xl
ϕε(x) = ∂xl

ϕ(x).

In the following, we show that ϕε is of polynomial growth in order to obtain ϕε ∈ C∞
p (RL;R).

According to the assumption |∂xl
ϕ(x)| ≤ C

(
1 + ‖x‖2)

χ
2 for all x ∈ RL, we claim that |ϕ(x)| ≤

C̃
(
1+‖x‖2)

χ+1
2 for all x ∈ RL, where C̃ > 0 is a constant. In fact, using the triangle inequality,

the mean value theorem [57, p. 278], and using the Cauchy-Schwarz inequality, we have

|ϕ(x)| − |ϕ(0)| ≤ |ϕ(x)− ϕ(0)|

=

∣∣∣∣ L∑
l=1

∫ 1

0
∂xl
ϕ(θx)dθ xl

∣∣∣∣
≤

L∑
l=1

∫ 1

0

∣∣∂xl
ϕ(θx)

∣∣dθ |xl|
≤ C

(
1 + ‖x‖2

)χ
2

L∑
l=1

|xl|

≤ C
(
1 + ‖x‖2

)χ
2L

1
2 ‖x‖

≤ C
(
1 + ‖x‖2

)χ
2L

1
2
(
1 + ‖x‖2

) 1
2

≤ CL
1
2
(
1 + ‖x‖2

)χ+1
2 ,
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and it follows

|ϕ(x)| ≤
(
|ϕ(0)|+ CL

1
2
)(
1 + ‖x‖2

)χ+1
2 (III.23)

for all x ∈ RL. Let ψ(k)
ε be the kth derivative, k ∈ N0, of ψε. For a function g ∈ C(RL;R) with

|g(x)| ≤ Ĉ
(
1 + ‖x‖2

) ν
2 for all x ∈ RL and an exponent ν ∈ [0,∞[, it holds

|(ψ(k)
ε ∗ g)(x)| ≤

∫
RL

∣∣ψ(k)
ε (y)

∣∣|g(x− y)|dy

≤ Ĉ

∫
RL

∣∣ψ(k)
ε (y)

∣∣(1 + ‖x− y‖2
) ν

2 dy

≤ Ĉ

∫
RL

∣∣ψ(k)
ε (y)

∣∣(1 + 2‖x‖2 + 2‖y‖2
) ν

2 dy

= Ĉ

∫
[−ε,ε]L

∣∣ψ(k)
ε (y)

∣∣(1 + 2‖x‖2 + 2‖y‖2
) ν

2 dy

≤ Ĉ

∫
[−ε,ε]L

∣∣ψ(k)
ε (y)

∣∣(1 + 2‖x‖2 + 2Lε2
) ν

2 dy

≤ Ĉ
(
2(1 + Lε2)

) ν
2

∫
[−ε,ε]L

∣∣ψ(k)
ε (y)

∣∣dy(1 + ‖x‖2
) ν

2

= Ĉ
(
2(1 + Lε2)

) ν
2

∫
[−ε,ε]L

ε−(L+k)
∣∣∣ψ(k)

(y
ε

)∣∣∣dy(1 + ‖x‖2
) ν

2

= Ĉ
(
2(1 + Lε2)

) ν
2

∫
[−1,1]L

ε−k
∣∣ψ(k)(z)

∣∣dz(1 + ‖x‖2
) ν

2

= Ĉ
(
2(1 + Lε2)

) ν
2

∫
[−1,1]L

∣∣ψ(k)(z)
∣∣dz ε−k

(
1 + ‖x‖2

) ν
2 ,

that is, for every fixed ε > 0, the mollification ψ(k)
ε ∗ g has polynomial growth of order ν. Thus,

we have ϕε ∈ C∞
p (RL;R), and in particular, we obtain, using the considerations above with

k = 0, that

|ϕε(x)| ≤ C̃
(
2(1 + Lε2)

)χ+1
2
(
1 + ‖x‖2

)χ+1
2 (III.24)

and

|∂xl
ϕε(x)| ≤ C

(
2(1 + Lε2)

)χ
2
(
1 + ‖x‖2

)χ
2

for all x ∈ RL.

We continue with the approximation of ϕ(F ) with smooth random variables. Since Fl ∈
Dp(Ω;R), there exist sequences (Fl,n)n∈N with Fl,n ∈ S (Ω;R) and limn→ Fl,n = Fl in Dp(Ω;R)
for all l ∈ {1, . . . , L}. Moreover, Fl,n ∈ S (Ω;R) has a representation

Fl,n = fl,n

(∫ T

t0

h1,l,n(s)dWs, . . . ,

∫ T

t0

hKl,n,l,n(s)dWs

)
,

where fl,n ∈ C∞
p (RKl,n ;R) and hk,l,n ∈ H for all k ∈ {1, . . . ,Kl,n}, l ∈ {1, . . . , L}, and n ∈ N.

Because of ϕε ∈ C∞
p (RL;R), the function

(y1,1,n, . . . , yK1,n,1,n, . . . , y1,L,n, . . . , yKL,n,L,n)

7→ ϕε ◦
(
f1,n(y1,1,n, . . . , yK1,n,1,n), . . . , fL,n(y1,L,n, . . . , yKL,n,L,n)

)
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belongs to C∞
p (R

∑L
l=1 Kl,n ;R), and thus, we have ϕε(Fn) = ϕε(F1,n, . . . , FL,n) ∈ S (Ω;R). Due

to this, we can calculate the Malliavin derivative of ϕε(Fn) using Definition III.3 and obtain

Dϕε(Fn) =
L∑
l=1

Kl,n∑
kl=1

∂xl
ϕε(Fn)∂yklfl,n

(∫ T

t0

h1,l,n(s)dWs, . . . ,

∫ T

t0

hKl,n,l,n(s)dWs

)
hkl,l,n

=
L∑
l=1

∂xl
ϕε(Fn)

Kl,n∑
kl=1

∂yklfl,n

(∫ T

t0

h1,l,n(s)dWs, . . . ,

∫ T

t0

hKl,n,l,n(s)dWs

)
hkl,l,n

=

L∑
l=1

∂xl
ϕε(Fn)DFl,n.

Now, it is left to prove that

lim
n→∞

lim
ε→0

‖ϕε(Fn)− ϕ(F )‖
D

p
χ+1 (Ω;R)

= 0. (III.25)

Without loss of generality, let 0 < ε ≤ 1. Then, using the polynomial growth of order χ+ 1 of
ϕ and ϕε, see inequalities (III.23) and (III.24), we have

|ϕ(F )| ≤ C̃
(
1 + ‖F‖2

)χ+1
2 ∈ L

p
χ+1

G (Ω;R),

|ϕε(F )| ≤ C̃(2 + 2L)
χ+1
2
(
1 + ‖F‖2

)χ+1
2 ∈ L

p
χ+1

G (Ω;R),

and

|ϕε(Fn)| ≤ C̃(2 + 2L)
χ+1
2
(
1 + ‖Fn‖2

)χ+1
2 ∈ L

p
χ+1

G (Ω;R)

because Fl, Fl,n ∈ Lp
G(Ω;R). The triangle inequality and the dominated convergence theorem

imply

lim
n→∞

lim
ε→0

‖ϕε(Fn)− ϕ(F )‖
L

p
χ+1
G (Ω;R)

≤ lim
n→∞

lim
ε→0

‖ϕε(Fn)− ϕε(F )‖
L

p
χ+1
G (Ω;R)

+ lim
ε→0

‖ϕε(F )− ϕ(F )‖
L

p
χ+1
G (Ω;R)

= lim
n→∞

∥∥ lim
ε→0

ϕε(Fn)− ϕε(F )
∥∥
L

p
χ+1
G (Ω;R)

+
∥∥ lim
ε→0

ϕε(F )− ϕ(F )
∥∥
L

p
χ+1
G (Ω;R)

= lim
n→∞

‖ϕ(Fn)− ϕ(F )‖
L

p
χ+1
G (Ω;R)

+ 0.

Due to Vitali’s convergence theorem, see e. g. [38, p. 262] or [74, Proposition 4.12], limn→∞ Fn =
F in Lp

G(Ω;R
L) is equivalent to limn→∞ Fn = F in probability and (‖Fn‖p)n∈N is uniformly

integrable. Since ϕ is continuous, it also holds limn→∞ ϕ(Fn) = ϕ(F ) in probability [67,
Theorem 17.5]. According to the growth condition of ϕ, we P-almost surely have

|ϕ(Fn)|
p

χ+1 ≤ C̃
(
1 + ‖Fn‖2

) p
2 ,

and the uniformly integrability of family (‖Fn‖p)n∈N implies that (|ϕ(Fn)|
p

χ+1 )n∈N is uniformly
integrable as well [76, Theorem 6.18]. Using again Vitali’s convergence theorem, it follows

lim
n→∞

‖ϕ(Fn)− ϕ(F )‖
L

p
χ+1
G (Ω;R)

= 0,
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and thus

lim
n→∞

lim
ε→0

‖ϕε(Fn)− ϕ(F )‖
L

p
χ+1
G (Ω;R)

= 0. (III.26)

In the following, we show that limn→∞ limε→0
∑L

l=1 ∂xl
ϕε(Fn)DFl,n =

∑L
l=1 ∂xl

ϕ(F )DFl in
L

p
χ+1

G (Ω;H). Let L
p
χ

G (Ω;R) = L∞
G (Ω;R) in case of χ = 0, where L∞

G (Ω;R) is the Banach space
of all essentially bounded and G/B(R)-measurable random variables Z : Ω → R. That is

‖Z‖L∞
G (Ω;R) := ‖Z‖L∞(Ω;R) = ess sup

ω∈Ω
|Z(ω)| = inf

N⊂Ω:P|G [N ]=0
sup

ω∈Ω\N
|Z(ω)| <∞.

Using the growth condition on ∂xl
ϕ and since Fl ∈ Dp(Ω;R) for l ∈ {1, . . . , L}, we obtain

‖∂xl
ϕ(F )‖

L
p
χ
G (Ω;R)

≤
∥∥C(1 + ‖F‖2

)χ
2
∥∥
L

p
χ
G (Ω;R)

<∞,

and thus, we have, using the triangle and Hölder’s inequality with χ+1
p = χ

p + 1
p , that∥∥∥∥ L∑

l=1

∂xl
ϕ(F )DFl

∥∥∥∥
L

p
χ+1
G (Ω;H)

≤
L∑
l=1

‖∂xl
ϕ(F )DFl‖

L
p

χ+1
G (Ω;H)

=

L∑
l=1

∥∥‖∂xl
ϕ(F )DFl‖H

∥∥
L

p
χ+1
G (Ω;R)

=
L∑
l=1

∥∥|∂xl
ϕ(F )|‖DFl‖H

∥∥
L

p
χ+1
G (Ω;R)

≤
L∑
l=1

∥∥|∂xl
ϕ(F )|

∥∥
L

p
χ
G (Ω;R)

∥∥‖DFl‖H
∥∥
Lp

G (Ω;R)

=

L∑
l=1

‖∂xl
ϕ(F )‖

L
p
χ
G (Ω;R)

‖DFl‖Lp
G (Ω;H) <∞.

Similar considerations as the ones above provide ∂xl
ϕ(Fn), ∂xl

ϕε(F ), ∂xl
ϕε(Fn) ∈ L

p
χ

G (Ω;R) as

well as
∑L

l=1 ∂xl
ϕε(Fn)DFl,n ∈ L

p
χ+1

G (Ω;H).

In order to show the convergence in formula (III.25), we now consider the L
p

χ+1

G (Ω;H)-norm

within the graph norm ‖·‖
D

p
χ+1 (Ω;R)

. The convergence in L
p

χ+1

G (Ω;R) is already stated in equa-
tion (III.26). Using the triangle inequality, it holds∥∥∥∥ L∑

l=1

∂xl
ϕε(Fn)DFl,n −

L∑
l=1

∂xl
ϕ(F )DFl

∥∥∥∥
L

p
χ+1
G (Ω;H)

≤
L∑
l=1

‖∂xl
ϕε(Fn)(DFl,n − DFl)‖

L
p

χ+1
G (Ω;H)

+ ‖(∂xl
ϕε(Fn)− ∂xl

ϕ(Fn))DFl‖
L

p
χ+1
G (Ω;H)

+ ‖(∂xl
ϕ(Fn)− ∂xl

ϕ(F ))DFl‖
L

p
χ+1
G (Ω;H)

.

(III.27)
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At first, consider the case of χ = 0 in the following. Then, we have |∂xl
ϕ(x)| ≤ C and

|∂xl
ϕε(x)| ≤ C for all x ∈ RL . Hence, it follows

lim
n→∞

lim
ε→0

‖∂xl
ϕε(Fn)(DFl,n − DFl)‖Lp

G (Ω;H) ≤ lim
n→∞

C‖DFl,n − DFl‖Lp
G (Ω;H) = 0.

Using ‖(∂xl
ϕε(Fn) − ∂xl

ϕ(Fn))DFl‖Lp
G (Ω;H) ≤ 2C‖DFl‖Lp

G (Ω;H), the dominated convergence
theorem implies

lim
n→∞

lim
ε→0

‖(∂xl
ϕε(Fn)− ∂xl

ϕ(Fn))DFl‖Lp
G (Ω;H)

= lim
n→∞

∥∥∥ lim
ε→0

(∂xl
ϕε(Fn)− ∂xl

ϕ(Fn))DFl

∥∥∥
Lp

G (Ω;H)

= 0.

Since limn→∞ Fn = F in Lp
G(Ω;R

L), it also holds limn→∞ Fn = F in probability, and this
implies, together with the continuity of ∂xl

ϕ, that limn→∞ ∂xl
ϕ(Fn) = ∂xl

ϕ(F ) in probability
[67, Theorem 17.5]. Using that ‖(∂xl

ϕ(Fn) − ∂xl
ϕ(F ))DFl‖Lp

G (Ω;H) ≤ 2C‖DFl‖Lp
G (Ω;H) for all

n ∈ N, [67, Theorem 17.4] yields

lim
n→∞

‖(∂xl
ϕ(Fn)− ∂xl

ϕ(F ))DFl‖Lp
G (Ω;H) = 0.

In the case of χ = 0, we thus have

lim
n→∞

lim
ε→0

∥∥∥∥ L∑
l=1

∂xl
ϕε(Fn)DFl,n −

L∑
l=1

∂xl
ϕ(F )DFl

∥∥∥∥
L

p
χ+1
G (Ω;H)

= 0. (III.28)

In the following, let χ ∈ ]0, p− 1]. Using inequality (III.27) and Hölder’s inequality, it holds∥∥∥∥ L∑
l=1

∂xl
ϕε(Fn)DFl,n −

L∑
l=1

∂xl
ϕ(F )DFl

∥∥∥∥
L

p
χ+1
G (Ω;H)

≤
L∑
l=1

‖∂xl
ϕε(Fn)‖

L
p
χ
G (Ω;R)

‖DFl,n − DFl‖Lp
G (Ω;H)

+ ‖∂xl
ϕε(Fn)− ∂xl

ϕ(Fn)‖
L

p
χ
G (Ω;R)

‖DFl‖Lp
G (Ω;H)

+ ‖∂xl
ϕ(Fn)− ∂xl

ϕ(F )‖
L

p
χ
G (Ω;R)

‖DFl‖Lp
G (Ω;H).

(III.29)

Without loss of generality, let 0 < ε ≤ 1 again. Since we have

|∂xl
ϕε(Fn)| ≤ C

(
2(1 + Lε2)

)χ
2
(
1 + ‖Fn‖2

)χ
2

≤ C(2 + 2L)
χ
2
(
1 + ‖Fn‖2

)χ
2 ∈ L

p
χ

G (Ω;R),

we obtain by the dominated convergence theorem that

lim
ε→0

‖∂xl
ϕε(Fn)‖

L
p
χ
G (Ω;R)

= ‖lim
ε→0

∂xl
ϕε(Fn)‖

L
p
χ
G (Ω;R)

= ‖∂xl
ϕ(Fn)‖

L
p
χ
G (Ω;R)

.

According to Vitali’s convergence theorem, due to the continuity of ∂xl
ϕ, and because

|∂xl
ϕ(Fn)|

p
χ ≤ C

p
χ
(
1 + ‖Fn‖2

) p
2
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P-almost surely, it follows limn→∞ ∂xl
ϕ(Fn) = ∂xl

ϕ(F ) in probability and (|∂xl
ϕε(Fn)|

p
χ )n∈N is

uniformly integrable. Thus, we obtain

lim
n→∞

‖∂xl
ϕ(Fn)− ∂xl

ϕ(F )‖
L

p
χ
G (Ω;R)

= 0, (III.30)

and therewith

lim
n→∞

‖∂xl
ϕ(Fn)‖

L
p
χ
G (Ω;R)

‖DFl,n − DFl‖Lp
G (Ω;H)

= lim
n→∞

‖∂xl
ϕ(Fn)‖

L
p
χ
G (Ω;R)

lim
n→∞

‖DFl,n − DFl‖Lp
G (Ω;H)

= ‖∂xl
ϕ(F )‖

L
p
χ
G (Ω;R)

· 0

= 0.

Since 0 < ε ≤ 1, we have

|∂xl
ϕε(Fn)− ∂xl

ϕ(Fn)| ≤ C
((

2(1 + Lε2)
)χ

2 + 1
)(

1 + ‖Fn‖2
)χ

2

≤ C
(
(2 + 2L)

χ
2 + 1

)(
1 + ‖Fn‖2

)χ
2 ∈ L

p
χ

G (Ω;R),

and the dominated convergence theorem implies

lim
ε→0

‖∂xl
ϕε(Fn)− ∂xl

ϕ(Fn)‖
L

p
χ
G (Ω;R)

= ‖lim
ε→0

∂xl
ϕε(Fn)− ∂xl

ϕ(Fn)‖
L

p
χ
G (Ω;R)

= 0.

Further, we obtain, using equation (III.30), that

lim
n→∞

‖∂xl
ϕ(Fn)− ∂xl

ϕ(F )‖
L

p
χ
G (Ω;R)

‖DFl‖Lp
G (Ω;H) = 0,

and thus, the right-hand side of inequality (III.29) converges to zero as ε → 0 and n → ∞.
With equation (III.28), we have

lim
n→∞

lim
ε→0

∥∥∥∥ L∑
l=1

∂xl
ϕε(Fn)DFl,n −

L∑
l=1

∂xl
ϕ(F )DFl

∥∥∥∥
L

p
χ+1
G (Ω;H)

= 0

for all χ ∈ [0, p− 1] in conclusion, that is,
(
(ϕε(Fn))ε>0)n∈N converges in D

p
χ+1 (Ω;R) as ε→ 0

and n → ∞. Thus, it holds ϕ(F ) ∈ D
p

χ+1 (Ω;R) and Dϕ(F ) =
∑L

l=1 ∂xl
ϕ(F )DFl P-almost

surely according to the closeness of operator D.

Proof of Lemma III.24

Proof of Lemma III.24. According to the assumption F ∈ Dp(Ω;L2([t0, T ];Rd)), there exists
a sequence of L2([t0, T ];Rd)-valued smooth random variables (Fk)k∈N such that Fk → F in
Dp(Ω;L2([t0, T ];Rd)) as k → ∞. Since Fk ∈ S (Ω;L2([t0, T ];Rd)), we can assume that Fk =∑nk

l=1 F̃k,l ·hk,l where F̃k,l ∈ S (Ω;R) and hk,l ∈ L2([t0, T ];Rd).
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Defining Gk :=
∫ T
t0
Fk(s)ds, we have

Gk =

nk∑
l=1

F̃k,l ·
∫ T

t0

hk,l(s)ds ∈ S (Ω;Rd). (III.31)

Since Fk → F in Dp(Ω;L2([t0, T ];Rd)) ⊂ Lp
G(Ω;L

2([t0, T ];Rd)) as k → ∞, the Cauchy-Schwarz
inequality implies Gk → G in Lp

G(Ω;R
d) as k → ∞.

According to equation (III.31) and Definition III.13, we obtain by linearity

Dj
tGk(ω) = Dj

t

( nk∑
l=1

F̃k,l ·
∫ T

t0

hk,l(s)ds
)
(ω) =

nk∑
l=1

Dj
t F̃k,l(ω)

∫ T

t0

hk,l(s)ds

=

∫ T

t0

nk∑
l=1

Dj
t F̃k,l(ω)hk,l(s)ds =

∫ T

t0

Dj
tFk(s)(ω)ds

for λ|[t0,T ] ⊗ P|G-almost all (t, ω) ∈ [t0, T ] × Ω and all j ∈ {1, . . . ,m}. Now, we use the
convergence DFk → DF in Lp

G(Ω;HL2([t0,T ];Rd)) as k → ∞ in order to show DGk →
∫ T
t0

DF (s)ds
in Lp

G(Ω;HRd) as k → ∞. By rewriting the norms as well as applying the triangle inequality
and the Cauchy-Schwarz inequality, it holds∥∥∥∫ T

t0

DFk(s)ds−
∫ T

t0

DF (s)ds
∥∥∥
Lp

G (Ω;HRd )

=
∥∥∥∫ T

t0

DFk(s)ds−
∫ T

t0

DF (s)ds
∥∥∥
Lp

G (Ω;L2([t0,T ];LHS(Rm;Rd)))

=
∥∥∥∫ T

t0

DFk(s)− DF (s)ds
∥∥∥
Lp

G (Ω;L2([t0,T ];LHS(Rm;Rd)))

=

(
E

[∣∣∣∣∣
∫ T

t0

m∑
j=1

∥∥∥∥∫ T

t0

DtFk(s)− DtF (s)ds ej
∥∥∥∥2 dt

∣∣∣∣∣
p
2
]) 1

p

=

(
E

[∣∣∣∣∣
∫ T

t0

m∑
j=1

∥∥∥∥∫ T

t0

(
DtFk(s)− DtF (s)

)
ej ds

∥∥∥∥2 dt

∣∣∣∣∣
p
2
]) 1

p

≤
√
T − t0

(
E
[∣∣∣∣ ∫ T

t0

m∑
j=1

∫ T

t0

∥∥(DtFk(s)− DtF (s)
)
ej
∥∥2 dsdt

∣∣∣∣ p2 ]) 1
p

=
√
T − t0

(
E
[∣∣∣∣ ∫ T

t0

m∑
j=1

∥∥(DtFk − DtF
)
ej
∥∥2
L2([t0,T ];Rd)

dt
∣∣∣∣ p2 ]) 1

p

=
√
T − t0

(
E
[∣∣∣∣ ∫ T

t0

‖DtFk − DtF‖2LHS(Rm;L2([t0,T ];Rd))
dt
∣∣∣∣ p2 ]) 1

p

=
√
T − t0‖DFk − DF‖Lp

G (Ω;L2([t0,T ];LHS(Rm;L2([t0,T ];Rd))))

=
√
T − t0‖DFk − DF‖Lp

G (Ω;H
L2([t0,T ];Rd))

,

where (ej)j∈{1,...,m} is the canonical orthonormal basis of Rm. Letting k → ∞, the right-
hand side of the inequality above converges to zero. Thus, we have Gk → G in Dp(Ω;Rd) as
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k → ∞ and Dj
tG(ω) =

∫ T
t0

Dj
tF (s)(ω)ds for λ|[t0,T ] ⊗ P|G-almost all (t, ω) ∈ [t0, T ]× Ω and all

j ∈ {1, . . . ,m}. Equation (III.17) finally follows from Corollary III.8.

Proof of Theorem III.26

The proof is similar to the proofs of [137, Proposition 7.4] and [60, Proposition 3.1] as well as
[113, Theorem 2.2.1] in case of SODEs. However, we waive the use of [112, Proposition 1.5.5
and Lemma 1.5.4] and utilize simpler facts instead.

Proof of Theorem III.26. At first, we show the existence and uniqueness of the solution of
SDDE (III.21) for arbitrary fixed s ∈ [t0, T ] and j ∈ {1, . . . ,m} using Theorem II.12.

Choosing

ξt =

{
0, t ∈ [t0 − τ, s[,

bj(T (s,Xs)), t = s,

A(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, x0, x1, . . . , xD)

=
D∑
l=0

d∑
i=1

∂xi
l
a(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD)x

i
l,

and

Bk(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD, x0, x1, . . . , xD)

=

D∑
l=0

d∑
i=1

∂xi
l
bk(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD)x

i
l

for all t ∈ [s, T ], k ∈ {1, . . . ,m}, and xl, zl ∈ Rd, we recover SDDE (II.13). Using the Lipschitz
conditions (II.8) and (II.9) as well as the Cauchy-Schwarz inequality, it holds

sup
t∈[s,T ]

zl∈Rd: l∈{0,1,...,D}

∥∥∥∥ D∑
l=0

d∑
i=1

∂xi
l
a(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD)(x

i
l − yil)

∥∥∥∥
≤ La

D∑
l=0

d∑
i=1

|xil − yil |

≤ La

√
d

D∑
l=0

‖xl − yl‖

≤ La

√
d(D + 1) sup

l∈{0,1,...,D}
‖xl − yl‖ (III.32)
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for all xl, yl ∈ Rd, l ∈ {0, 1, . . . , D}. Choosing yl = 0 for all l ∈ {0, 1, . . . , D} in inequal-
ity (III.32) above, we obtain

sup
t∈[s,T ]

zl∈Rd: l∈{0,1,...,D}

∥∥∥∥ D∑
l=0

d∑
i=1

∂xi
l
a(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD)x

i
l

∥∥∥∥
≤ La

√
d(D + 1) sup

l∈{0,1,...,D}
‖xl‖ (III.33)

≤ La

√
d(D + 1) sup

l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2

for all xl ∈ Rd, l ∈ {0, 1, . . . , D}. Similarly, we have

sup
t∈[s,T ]

zl∈Rd: l∈{0,1,...,D}

max
k∈{1,...,m}

∥∥∥∥ D∑
l=0

d∑
i=1

∂xi
l
bk(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD)(x

i
l − yil)

∥∥∥∥
≤ Lb

√
d(D + 1) sup

l∈{0,1,...,D}
‖xl − yl‖

(III.34)

and

sup
t∈[s,T ]

zl∈Rd: l∈{0,1,...,D}

max
k∈{1,...,m}

∥∥∥∥ D∑
l=0

d∑
i=1

∂xi
l
bk(t, t− τ1, . . . , t− τD, z0, z1, . . . , zD)x

i
l

∥∥∥∥
≤ Lb

√
d(D + 1) sup

l∈{0,1,...,D}
‖xl‖ (III.35)

≤ Lb

√
d(D + 1) sup

l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2

for all xl, yl ∈ Rd, l ∈ {0, 1, . . . , D}. Thus, the global Lipschitz and linear growth con-
ditions (II.14), (II.15), (II.16), and (II.17) of SDDE (II.13) are fulfilled with LA = KA =
La

√
d(D+ 1) and LB = KB = Lb

√
d(D+ 1). Using further the linear growth condition (II.11)

and that the initial condition x is deterministic, we obtain

‖ξ‖Sp([t0−τ,s]×Ω;Rd) = ‖bj(T (s,Xs))‖Lp
G (Ω;Rd) ≤ Kb

(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2 . (III.36)

Then, Theorem II.12 provides the existence and uniqueness of a solution of SDDE (III.21) for
arbitrary fixed s ∈ [t0, T ] and j ∈ {1, . . . ,m}. This solution further belongs to Sp([t0 − τ, T ]×
Ω;Rd), cf. inequality (II.18).

In the following, we derive a sharper estimate of the solution of SDDE (III.21) than in inequal-
ity (II.18) from inequalities (III.33) and (III.35). Similarly to the estimates (II.25), (II.26),
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and (II.27), it holds

‖Dj
sX‖2

Sp([t0−τ,T ]×Ω;Rd)

≤ 2‖bj(T (s,Xs))‖2Lp
G (Ω;Rd)

+ 2

(∥∥∥∥∫ ·

s

D∑
l=0

d∑
i=1

∂xi
l
a(T (u,Xu))Dj

sX
i
u−τl

du
∥∥∥∥
Sp([s,T ]×Ω;Rd)

+

∥∥∥∥ m∑
k=1

∫ ·

s

D∑
l=0

d∑
i=1

∂xi
l
bk(T (u,Xu))Dj

sX
i
u−τl

dW k
u

∥∥∥∥
Sp([s,T ]×Ω;Rd)

)2

≤ 2‖bj(T (s,Xs))‖2Lp
G (Ω;Rd)

+ 2d(D + 1)2
(√

T − t0La +
pLb

√
m√

p− 1

)2 ∫ T

s
‖Dj

sX‖2
Sp([t0−τ,u]×Ω;Rd)

du,

and Gronwall’s Lemma II.7 implies

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX‖2

Sp([t0−τ,T ]×Ω;Rd)

≤ 2 max
j∈{1,...,m}

sup
s∈[t0,T ]

‖bj(T (s,Xs))‖2Lp
G (Ω;Rd)

e2d(D+1)2
(√

T−t0La+
pLb

√
m√

p−1

)2
(T−t0).

(III.37)

Since the initial condition of SDDE (II.1) is assumed to be deterministic in this theorem,
inequality (III.37) above holds true for all p ∈ [2,∞[, cf. Theorem II.8. Then, inequality (III.22)
follows by taking the square root of inequality (III.37) and using inequality (III.36).

In the following, we show that solution X of SDDE (II.1) with the deterministic initial condition
x is differentiable in the sense of Malliavin and its Malliavin derivative is in fact the solution
of SDDE (III.21). So far and for the time being, Dj

sX is only the name for the unique strong
solution of SDDE (III.21), where s ∈ [t0, T ] and j ∈ {1, . . . ,m} are arbitrary fixed and has
nothing to do with the Malliavin derivative yet.

As in the proof of Theorem II.8, we consider the Picard’s iterations

X
(0)
t :=

{
xt, t ∈ [t0 − τ, t0],

xt0 , t ∈ ]t0, T ],

and

X
(`+1)
t :=


xt, t ∈ [t0 − τ, t0],

xt0 +

∫ t

t0

a(T (u,X(`)
u ))du+

m∑
k=1

∫ t

t0

bk(T (u,X(`)
u ))dW k

u , t ∈ ]t0, T ]

for ` ∈ N0. According to equation (II.29), we have

lim
`→∞

‖X(`)
t −Xt‖Lp

G (Ω;Rd) = 0 (III.38)

for all t ∈ [t0 − τ, T ] and p ∈ [2,∞[.

In the following, we show that X(`)
t ∈ Dp(Ω;Rd) is the Malliavin differentiability for all t ∈

[t0, T ], ` ∈ N0, and p ∈ [2,∞[.
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Let p ∈ [2,∞[ be arbitrary fixed in the sequel.

Since xt ∈ Rd for all t ∈ [t0 − τ, t0], xt is an Rd-valued smooth random variable, and we have
DX(0)

t = 0 by Definition III.13 for all t ∈ [t0 − τ, T ]. Thus, it holds X(0) ∈ Dp(Ω;Rd) for all
t ∈ [t0 − τ, T ].

According to Remark III.19, we also have X
(0),i
t ∈ Dp(Ω;R) for all t ∈ [t0 − τ, T ] and i ∈

{1, . . . , d}. Due to the assumptions on coefficients a and bk, k ∈ {1, . . . ,m}, the assumptions
of Theorem III.9 are fulfilled with χ = 0. Using Lemma III.24, Proposition III.23 in addition,
we obtain X

(1)
t ∈ Dp(Ω;Rd) for all t ∈ [t0 − τ, T ], and it holds

Dj
sX

(1)
t =



0, t ∈ [t0 − τ, s[,

bj(T (s,X(0)
s )) +

∫ t

s

D∑
l=0

d∑
i=1

∂xi
l
a
(
T (u,X(0)

u )
)

Dj
sX

(0),i
u−τl

du

+

m∑
k=1

∫ t

s

D∑
l=0

d∑
i=1

∂xi
l
bk
(
T (u,X(0)

u )
)

Dj
sX

(0),i
u−τl

dW k
u , t ∈ [s, T ],

(III.39)

=

{
0, t ∈ [t0 − τ, s[,

bj(T (s,X(0)
s )), t ∈ [s, T ],

for all (s, ω) ∈ [t0, T ] × Ω and all j ∈ {1, . . . ,m}. Because of linear growth condition (II.11)
and X(0) being a càdlàg function, same result could be obtained by considering X

(1)
t as an

Rd-valued smooth random variable and applying Definition III.13.

Using the same arguments in the derivation of equation (III.39), it follows inductively over
` ∈ N that X(`)

t ∈ Dp(Ω;Rd) for all t ∈ [t0 − τ, T ], where

Dj
sX

(`+1)
t (ω) =



0, t ∈ [t0 − τ, s[,

bj(T (s,X(`)
s (ω))) +

∫ t

s

D∑
l=0

d∑
i=1

∂xi
l
a
(
T (u,X(`)

u (ω))
)

Dj
sX

(`),i
u−τl

(ω)du

+

( m∑
k=1

∫ t

s

D∑
l=0

d∑
i=1

∂xi
l
bk
(
T (u,X(`)

u )
)

Dj
sX

(`),i
u−τl

dW k
u

)
(ω), t ∈ [s, T ],

(III.40)

for λ|[t0,T ] × P|G-almost all (s, ω) ∈ [t0, T ]× Ω and all j ∈ {1, . . . ,m}.

In the following, we show

lim
`→∞

‖DX(`)
t − DXt‖Lp

G (Ω;HRd )
= 0 (III.41)

for all t ∈ [t0 − τ, T ] so that with equation (III.38), we obtain

lim
`→∞

‖X(`)
t −Xt‖Dp(Ω;Rd) = 0 (III.42)

for all t ∈ [t0 − τ, T ]. It is only when the convergence in equation (III.41) holds true that Dj
sXt

really is the Malliavin derivative of Xt and its name meaningful. So far, we only know that
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the solution at point in time t ∈ [t0 − τ, T ] of SDDE (III.21) denoted by Dj
sXt exists, where

s ∈ [t0, T ] and j ∈ {1, . . . ,m}.

In order to show the convergence in equation (III.41), we first make the following considerations.
By rewriting the norms, using triangle inequality and taking the supremum over time, we have

‖DX(`)
t − DXt‖Lp(Ω;HRd )

= ‖DX(`)
t − DXt‖Lp(Ω;L2([t0,T ];LHS(Rm;Rd)))

=

(
E
[( m∑

j=1

∫ T

t0

‖Dj
sX

(`)
t − Dj

sXt‖2 ds
) p

2
]) 1

p

=

∥∥∥∥ m∑
j=1

∫ T

t0

‖Dj
sX

(`)
t − Dj

sXt‖2 ds
∥∥∥∥ 1

2

L
p
2 (Ω;R)

≤
( m∑

j=1

∫ T

t0

‖Dj
sX

(`)
t − Dj

sXt‖2Lp(Ω;Rd)
ds
) 1

2

≤
√
T − t0

√
m max

j∈{1,...,m}
sup

s∈[t0,T ]
‖Dj

sX
(`)
t − Dj

sXt‖Lp(Ω;Rd)

≤
√
T − t0

√
m max

j∈{1,...,m}
sup

s∈[t0,T ]
‖Dj

sX
(`) − Dj

sX‖Sp([t0−τ,T ]×Ω;Rd). (III.43)

If the right-hand side of inequality (III.43) above converges to zero as ` → ∞, the left-hand
side thus converges to zero as well. Subsequently, we show

lim
`→∞

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX

(`+1) − Dj
sX‖Sp([t0−τ,T ]×Ω;Rd) = 0 (III.44)

in order to prove equation (III.41). The same considerations used in the derivation of inequal-
ity (III.22), also cf. inequality (II.27), yield

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX

(`+1)‖Sp([t0−τ,T ]×Ω;Rd)

≤
√
2Kb

(
1 + ‖X(`)‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2 ed(D+1)2

(√
T−t0La+

pLb
√
m√

p−1

)2
(T−t0)

(III.45)

for all ` ∈ N0 and maxj∈{1,...,m} sups∈[t0,T ]‖Dj
sX(0)‖Sp([t0−τ,T ]×Ω;Rd) = 0. Inserting inequal-

ity (II.27) into inequality (III.45), we obtain

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX

(`)‖Sp([t0−τ,T ]×Ω;Rd)

≤
√
2Kb

(
1 + 2 sup

t∈[t0−τ,t0]
‖xt‖2

) 1
2 e
((√

T−t0Ka+
pKb

√
m√

p−1

)2
+d(D+1)2

(√
T−t0La+

pLb
√
m√

p−1

)2)
(T−t0)

(III.46)

for all ` ∈ N0. Thus, the right-hand side of inequality (III.43) is finite for all ` ∈ N0. Considering
the norm on the right-hand side of inequality (III.43) and inserting the representations (III.40)
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and (III.21), we obtain by rewriting and applying the triangle inequality

‖Dj
sX

(`+1) − Dj
sX‖Sp([t0−τ,T ]×Ω;Rd)

≤ ‖bj(T (s,X(`)
s ))− bj(T (s,Xs))‖Lp
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+

∥∥∥∥∫ ·
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(III.47)

for all s ∈ [t0, T ], j ∈ {1, . . . ,m}, and ` ∈ N0. Using the Lipschitz conditions (II.9), (III.32),
and (III.34), it follows, similarly to estimates (II.22) and (II.23), by triangle inequality, Hölder’s
inequality, and Zakai’s inequality from Theorem II.6 for the first, second, and fourth term on
the right-hand side of inequality (III.47) that

‖bj(T (s,X(`)
s ))− bj(T (s,Xs))‖Lp

G (Ω;Rd) ≤ Lb‖X(`) −X‖Sp([t0−τ,T ]×Ω;Rd),
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‖Dj
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sX‖2
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) 1

2

.

Using the triangle inequality and Zakai’s inequality from Theorem II.6, we estimate the third
and fifth term on the right-hand side of inequality (III.47) and obtain∥∥∥∥∫ ·

s
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as well as∥∥∥∥ m∑
k=1
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.

Inserting the previous five estimates into inequality (III.47) and square both sides of the in-
equality, we have, using inequality (II.6) for all ` ∈ N0, that
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where

C(`) := 2
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and

C := 2d(D + 1)2
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La
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T − t0 +

pLb
√
m√
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.

In the following, we show lim`→∞C(`) = 0. Equation (II.29) states

lim
`→∞

‖X(`) −X‖Sp([t0−τ,T ]×Ω;Rd) = 0, (III.49)

so we only need to consider the other two terms of C(`). We consider the second term first and
show its convergence to zero as `→ ∞. The convergence in equation (III.49) implies

sup
t∈[t0−τ,T ]

‖X(`)
t −Xt‖ → 0
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in probability as `→ ∞, that is

lim
`→∞

P|G
[
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for all ε > 0, [67, Theorem 17.2]. According to the assumptions on the continuity of the
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as well for all ε > 0 and u ∈ [t0, T ]. Due to the Lipschitz continuity of the drift coefficient
a, its partial derivatives are bounded by La in the Euclidean norm. With the boundedness of
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.

Then, Vitali’s convergence theorem, see e. g. [38, p. 262] or [74, Proposition 4.12], implies
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for all u ∈ [t0, T ]. Finally, using the dominated convergence theorem, it holds
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Following the same arguments for the third term of C(`), we obtain

lim
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as well, and thus, we have

lim
`→∞

C(`) = 0 (III.50)
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in total. We are using this in order to show the convergence in equation (III.44) in the following.
According to equation (III.50), for all ε̃ > 0 there exist an N(ε̃) ∈ N0 such that C(`) < ε̃ for all
` ≥ N(ε̃). Due to inequality (III.48) and since Dj

sX(0) = 0 for all s ∈ [t0, T ] and j ∈ {1, . . . ,m},
we inductively obtain
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for all ` ≥ N(ε̃). If

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX‖Sp([t0−τ,T ]×Ω;Rd) = 0,

the convergence in equation (III.44) is evident, and we assume

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX‖Sp([t0−τ,T ]×Ω;Rd) > 0

in the following. Choosing

ε̃ = ε

(
max

j∈{1,...,m}
sup

s∈[t0,T ]
‖Dj

sX‖2
Sp([t0−τ,T ]×Ω;Rd)

)−1

e−C(T−t0)

for all ε > 0, it holds

max
j∈{1,...,m}

sup
s∈[t0,T ]

‖Dj
sX

(`+1) − Dj
sX‖2

Sp([t0−τ,T ]×Ω;Rd)
< ε

for all ` ≥ N(ε̃) according to inequality (III.51). That is, the convergence holds true in equa-
tion (III.44) and hence also in equations (III.41) and (III.42). Since p ∈ [2,∞[ is arbitrary fixed
in the considerations above, we have Xt ∈ Dp(Ω;Rd) for all t ∈ [t0 − τ, T ] and all p ∈ [2,∞[
according to the closeness of operator D. Moreover, DXt is in fact the Malliavin derivative
of Xt, where the stochastic process Dj

sX satisfies the SDDE (III.21) for all s ∈ [t0, T ] and all
j ∈ {1, . . . ,m}.
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IV
Numerical Approximation of

Stochastic Delay Differential Equations

Only since 1999 numerical solutions of SDDEs have been investigated. Yan considered the
Euler-Maruyama and the Milstein scheme for SDDEs in his dissertation [137]. A little later,
in 2000, further works were published [9, 17, 82].

In [9, 17], explicit one-step methods and their strong convergence are considered for SD-
DEs, where the Wiener process is one-dimensional. Since the increment functions of that
explicit one-step methods only depend on increments of the Wiener process, see [17, Sec-
tion 3], and on nondelayed-iterated stochastic integrals, see [9, Equation (21)], their results
are not suitable for general approximations of higher order such like the Milstein scheme in
[137]. Higher order methods are proposed in [82]. However, their convergence analysis has
not been done thoroughly, cf. [137, pp. 40–41]. Some stochastic integrals appearing in [82,
Equations (10.2) and (10.5)] are not well-defined in the sense of the Itô calculus, because their
integrands are not adapted to the filtration generated by the integrator, the shifted Wiener
process (Wt−τ )t∈[t0+τ,T ].

In [137], Yan circumvents this problem using a tamed Itô formula for anticipating functionals
and proved the convergence in L2(Ω;Rd) of the Milstein scheme. His result is also published in
[60] together with Hu and Mohammed, where the SDDE’s coefficients are allowed to be depen-
dent on time additionally. Kloeden and Shardlow present a different proof in [80], compared
to [60, 137], without using an anticipating calculus. Their proof exploits the differentiability of
the SDDE’s solution with respect to its initial condition. However, this is closely related to the
Malliavin derivative of the solution, cf. [58] and [113, p. 126].

In this chapter, we prove in particular the convergence of the Milstein approximation for SDDEs
in a stronger sense, namely in Sp([t0 − τ, T ] × Ω;Rd) for all p ∈ [1,∞[, and under milder
conditions than in [60, 80, 137]. In addition, we show the pathwise convergence of the Milstein
scheme for SDDEs. The types of convergences are defined below.

We remark that higher order schemes for SDDEs are also considered in [104, 124]. But these
schemes are not optimal in the following the sense. The first-order scheme, for example, contains
a term that is globally of order one as well. To show that the term is of order one, however, is
more difficult as we will see in proof of Theorem IV.9 below.
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In the following, we state some definitions on types of convergences and present results on the
pathwise convergence.

Let Y h = Y denote the approximation based on a discretization {t0, t1, . . . , tN} of the interval
[t0, T ] with maximum step size

h := max
n∈{0,1,...,N−1}

(tn+1 − tn), (IV.1)

where t0 < t1 < . . . < tN := T .

Definition IV.1 (Strong Convergence)
A family of approximation processes Y h = (Y h

t )t∈[t0−τ,T ] ∈ Sp([t0 − τ, T ] × Ω;Rd) for h ∈
]0, T − t0] converges in Sp([t0− τ, T ]×Ω;Rd) to solution X of SDDE (II.1) for some p ∈ [1,∞[
if

lim
h→0

‖X − Y h‖Sp([t0−τ,T ]×Ω;Rd) = 0.

The family (Y h)h∈]0,T−t0] is further said to converge in Sp([t0 − τ, T ]× Ω;Rd) with order α ∈
]0,∞[ to solution X if there exists a constant C > 0, independent of h, and an h? ∈ ]0, T − t0]
such that

‖X − Y h‖Sp([t0−τ,T ]×Ω;Rd) ≤ Chα (IV.2)

for all h ∈ I with h < h?.

Often, the convergence is considered in L2(Ω;Rd) only, cf. [60, 137]. Analogously to the previous
definition, the family of approximation processes converges in Lp(Ω;Rd) if

lim
h→0

sup
t∈[t0−τ,T ]

‖Xt − Y h
t ‖Lp(Ω;Rd) = 0,

and the convergence is of order α ∈ ]0,∞[ if

sup
t∈[t0−τ,T ]

‖Xt − Y h
t ‖Lp(Ω;Rd) ≤ Chα.

Note that the convergence in Sp([t0 − τ, T ] × Ω;Rd) implies the convergence in Lq(Ω;Rd) ⊆
Lp(Ω;Rd) for every p, q ∈ [1,∞[ with q ≤ p.

If a family of approximation processes converges in Lp(Ω;Rd) or in Sp([t0 − τ, T ] × Ω;Rd) for
all p ∈ [1,∞[, we can even draw conclusions about its almost sure convergence as we will see
below. The almost sure convergence of numerical solutions of SDEs is also called pathwise
convergence in the literature, cf. [2, 41, 51, 77, 130].

Definition IV.2 (Pathwise Convergence)
A family of approximation processes Y h = (Y h

t )t∈[t0−τ,T ] ∈ Sp([t0 − τ, T ] × Ω;Rd) for h ∈ I ⊆
]0, T − t0] converges pathwise to solution X of SDDE (II.1) if

sup
t∈[t0−τ,T ]

‖Xt − Y h
t ‖ → 0
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converges P-almost surely as h → 0. The family (Y h)h∈]0,T−t0] is further said to converge
pathwise with order α ∈ ]0,∞[ to solution X if there exists a positive random variable Z : Ω →
R, independent of h, and an h? ∈ I such that

sup
t∈[t0−τ,T ]

‖Xt − Y h
t ‖ ≤ Zhα

P-almost surely for all h ∈ I with h < h?.

Faure stated in [41, Proposition 23] that if

sup
n∈{0,1,...,N}

‖Xtn − Y hN
tn ‖Lp(Ω;Rd) ≤ Cph

α
N (IV.3)

for all p ∈ [1,∞[ and N ∈ N where hN = T−t0
N , then we also have that

Nα−ε sup
n∈{0,1,...,N}

‖Xtn − Y hN
tn ‖ → 0 (IV.4)

converges P-almost surely as N → ∞ for all ε > 0. He used this result in order to show
that the Euler-Maruyama scheme and the Milstein scheme for SODEs satisfy the convergence
in equation (IV.4) with α = 1

2 and α = 1, respectively, see [41, Proposition 14] and [41,
Proposition 21 and 25].

Later, Gyöngy proved the pathwise convergence of order α = 1
2 − ε for the Euler-Maruyama

scheme of SODEs whose coefficients satisfy a local Lipschitz condition [51, Theorem 2.4].
Kloeden and Neuenkirch used an idea of Gyöngy’s proof in order to show for a sequence
(ΥN )N∈N of random variables ΥN : Ω → R with

‖ΥN‖Lp(Ω;R) ≤ CpN
−α

for all p ∈ [1,∞[ and N ∈ N that, for all ε > 0, there exists a positive random variable Zε with
‖Zε‖Lp(Ω;R) <∞ for all p ∈ [1,∞[ such that

‖ΥN‖ ≤ ZεN
−(α−ε)

P-almost surely for all N ∈ N, see [77, Lemma 2.1]. Thus, [77, Lemma 2.1] especially implies
that if

‖X − Y hN ‖Sp([t0−τ,T ]×Ω;Rd) ≤ Cph
α
N

for all p ∈ [1,∞[ and N ∈ N where hN = T−t0
N , then

sup
t∈[t0−τ,T ]

‖Xt − Y hN
t ‖ ≤ Zεh

α−ε
N (IV.5)

P-almost surely for all N ∈ N, and

Nα−ε sup
t∈[t0−τ,T ]

‖Xt − Y hN
t ‖ → 0

converges P-almost surely as N → ∞ for all ε > 0. However, if condition (IV.3) only holds
true instead of condition (IV.5), we merely obtain by [77, Lemma 2.1] that

Nα−ε‖Xtn − Y hN
tn ‖ → 0
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converges P-almost surely as N → ∞ for all ε > 0 and n ∈ {0, 1, . . . , N}, which is weaker
than the convergence in formula (IV.4). Thus, the result on the convergence of Faure is a little
bit stronger than the one of Kloeden and Neuenkirch. However, the result of Kloeden and
Neuenkirch provides the existence of a positive random variable Zε with ‖Zε‖Lp(Ω;R) < ∞ for
all p ∈ [1,∞[. Our lemma below combines these both results from [41, Proposition 23] and [77,
Lemma 2.1].

Lemma IV.3
Let α ∈ ]0,∞[ and X be the solution of SDDE (II.1). Consider a family of approximation
processes Y hN = (Y hN

t )t∈[t0−τ,T ] ∈ Sp([t0−τ, T ]×Ω;Rd) for (hN )N∈N ⊂ ]0, T − t0]. For N ∈ N,
let
{
tNn : n ∈ {0, 1, . . . , N}

}
be the discretization of [t0, T ] with t0 =: tN0 < tN1 < · · · < tNN := T

that corresponds to the maximum step size hN . Let qε ∈ [1,∞[ for all ε > 0 be independent of
N and such that

∞∑
N=1

hεqεN <∞. (IV.6)

Further, let

sup
n∈{0,1,...,N−1}

‖X − Y hN ‖Sp(([t0−τ,t0]∪]tNn ,tNn+1])×Ω;Rd) ≤ Cph
α
N (IV.7)

for all p ∈ [1,∞[ and all N ∈ N, where Cp > 0 is a constant independent of hN .

Then,

h
−(α−ε)
N sup

t∈[t0−τ,T ]
‖Xt − Y hN

t ‖ → 0 (IV.8)

converges P-almost surely as N → ∞ for all ε > 0, and for all ε > 0, there exists a positive
random variable Zε with ‖Zε‖Lp(Ω;R) <∞ for all p ∈ [1,∞[ such that

sup
t∈[t0−τ,T ]

‖Xt − Y hN
t ‖ ≤ Zεh

α−ε
N (IV.9)

P-almost surely for all N ∈ N.

Proof. The proof is stated in Section IV.3, see p. 79.

The proof of Lemma IV.3 is based on the Borel-Cantelli Lemma. In order to apply the Borel-
Cantelli Lemma, the condition (IV.6) is needed, cf. also [2, Lemma 3.2]. In [41] and [77], the
results are only presented for equidistant discretization, that is in case of hN = T−t0

N . Our
lemma, however, also holds true for more general discretizations, for example when hN = T−t0√

N

for N ∈ N. Then, the condition (IV.6) holds true for all qε > 2
ε . However, we do not obtain the

pathwise convergence for all sequences (hN )N∈N that converge to zero. Consider for example
the sequence with hN = T−t0

log(N+1) . Then, there exists no qε ∈ [1,∞[ that is independent of N and
such that the condition (IV.6) holds true. Hence, the pathwise convergence cannot be obtained
for all sequences (hN )N∈N that converge to zero as N → ∞ by applying Lemma IV.3. In
contrast to this, the strong convergence directly follows from inequality (IV.2) for all sequences
(hN )N∈N that converge to zero as N → ∞.

Condition (IV.7) in Lemma IV.3 above seems to be quite technical at first. Let us give two
remarks on this condition.
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IV.1. The Euler-Maruyama Approximation

Remark IV.4
The condition

‖X − Y hN ‖Sp([t0−τ,T ]×Ω;Rd) ≤ Cph
α
N (IV.10)

for all p ∈ [1,∞[ and all N ∈ N, where Cp > 0 is a constant independent of hN , clearly implies
condition (IV.7).

Remark IV.5
For all t ∈ [t0 − τ, t0] and N ∈ N, let Y hN

t = Xt P-almost surely for simplicity. Further, let

sup
n∈{1,...,N}

‖XtNn
− Y hN

tNn
‖Lp(Ω;Rd) ≤ Cph

α
N (IV.11)

for all p ∈ [1,∞[ and all N ∈ N, where Cp > 0 is a constant independent of hN . Then, in
order to show that condition (IV.7) is fulfilled, we only need to show additionally that the local
errors satisfy∥∥∥∥ sup

t∈ ]tNn ,tNn+1[

‖Xt − Y hN
t ‖

∥∥∥∥
Lp(Ω;R)

≤ Cph
α
N (IV.12)

for all p ∈ [1,∞[, n ∈ {1, . . . , N}, and N ∈ N.

This is especially an advantage for the proof of the pathwise convergence of higher order nu-
merical methods for SDDEs. Here, it is much more complicated to show condition (IV.10) than
conditions (IV.11) and (IV.12) to be fulfilled. For details on this in the case of the Milstein
scheme, we refer to the estimate of the term R5 in the proof of Theorem IV.9, and here, see
inequality (IV.146) and Lemma IV.22 in particular.

Before we begin with the analysis of the convergence of the Milstein scheme, we recall the
convergence of the Euler-Maruyama scheme in the next section. Then, we can account for
problems in proving the convergence of the Milstein scheme in Section IV.2.

IV.1. The Euler-Maruyama Approximation

Let {t0, t1, . . . , tN}, N ∈ N, be a discretization of [t0, T ] where t0 < t1 < . . . < tN :=
T . The Euler-Maruyama approximation Y with respect to discretization {t0, t1, . . . , tN} and
SDDE (II.1) is defined by

Yt =



ξt if t ∈ [t0 − τ, t0] and

Ytn + a(tn, tn − τ1, . . . , tn − τD, Ytn , Ytn−τ1 , . . . , Ytn−τD)(t− tn)

+

m∑
j=1

bj(tn, tn − τ1, . . . , tn − τD, Ytn , Ytn−τ1 , . . . , Ytn−τD)(W
j
t −W j

tn)

if t ∈ ]tn, tn+1] where n = 0, 1, . . . , N − 1.

(IV.13)

Its convergence is analyzed in, among others, [2, 9, 17, 77, 82, 98, 104, 124, 137]. In this
regard, the results presented in this section are not new and only serve as an introduction to
the approximation of solutions of SDDEs.
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IV. Numerical Approximation of Stochastic Delay Differential Equations

In order to keep the formulas clear, we introduce some notations. At first, recall the shift
operator

T (t, Yt) = (t, t− τ1, . . . , t− τD, Yt, Yt−τ1 , . . . , Yt−τD)

defined in formula (II.3). Then, the Euler-Maruyama scheme (IV.13) can be represented as

Yt =


ξt if t ∈ [t0 − τ, t0] and

Ytn + a(T (tn, Ytn))(t− tn) +

m∑
j=1

bj(T (tn, Ytn))(W
j
t −W j

tn)

if t ∈ ]tn, tn+1] where n = 0, 1, . . . , N − 1.

Further, define the projections b·c, d·e : [t0, T ] → {t0, t1, . . . , tN} by

bsc :=

N−1∑
n=0

tn1[tn,tn+1[(s) + tN1tN (s) (IV.14)

and

dse := t01t0(s) +
N−1∑
n=0

tn+11]tn,tn+1](s), (IV.15)

respectively, for all s ∈ [t0, T ]. Thus, we have bsc = tn for s ∈ [tn, tn+1[ and dse = tn+1 for
s ∈ ]tn, tn+1], where n ∈ {0, 1, . . . , N − 1}.

Taking advantage of these notations and of the measurability of the coefficients in the Euler-
Maruyama approximation, we can rewrite scheme (IV.13) to

Yt =


ξt if t ∈ [t0 − τ, t0] and

ξt0 +

∫ t

t0

a(T (bsc, Ybsc))ds+
m∑
j=1

∫ t

t0

bj(T (bsc, Ybsc))dW j
s if t ∈ ]t0, T ].

Using this notations, we now state and prove the theorem on the convergence of the Euler-
Maruyama scheme. Let us note that the convergence analysis can also be done under weaker
assumptions regarding the coefficients of the SDDE than presented below, cf. [52, 83, 99, 100].

Theorem IV.6 (Strong Convergence of the Euler-Maruyama Approximation)
Let the Borel-measurable drift a and diffusion bj, j ∈ {1, . . . ,m}, of SDDE (II.1) satisfy the
global Lipschitz and linear growth conditions (II.8), (II.9), (II.10), and (II.11) as well as, for
some growth exponents γa, γb ∈ [0,∞[ and some constants Lt,a, Lt,b > 0, the conditions

‖a(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)

− a(s, s− τ1, . . . , s− τD, x0, x1, . . . , xD)‖

≤ Lt,a max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) γa
2 ·
√

|t− s|
(IV.16)
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IV.1. The Euler-Maruyama Approximation

and

max
j∈{1,...,m}

‖bj(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)

− bj(s, s− τ1, . . . , s− τD, x0, x1, . . . , xD)‖

≤ Lt,b max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) γb
2 ·
√
|t− s|

(IV.17)

for all s, t ∈ [t0, T ] and xl ∈ Rd, l ∈ {0, 1, . . . , D}. Consider Euler-Maruyama approxima-
tion (IV.13) regarding SDDE (II.1) with initial condition ξ ∈ S(γa∨γb∨1)p([t0 − τ, t0] × Ω;Rd)
for some p ∈ [2,∞[. Let ξ fulfill for some constant Lξ > 0 the condition

‖ξt − ξs‖Lp(Ω;Rd) ≤ Lξ

√
|t− s| (IV.18)

for all s, t ∈ [t0 − τ, t0].

Then, the family of Euler-Maruyama approximations (Y h)h∈]0,T−t0] converges in Sp([t0−τ, T ]×
Ω;Rd) with the order α = 1

2 to solution X of SDDE (II.1) as h → 0. That is, there exists a
constant CEuler > 0, independent of h, such that

‖X − Y h‖Sp([t0−τ,T ]×Ω;Rd) ≤ CEuler
√
h

for all h ∈ ]0, T − t0].

Proof. For sake of simplicity, we fix an h ∈ ]0, T − t0] and set Y = Y h. We P-almost surely
have

Xt − Yt =



0 if t ∈ [t0 − τ, t0] and∫ t

t0

a(T (s,Xs))− a(T (bsc, Ybsc))ds

+

m∑
j=1

∫ t

t0

bj(T (s,Xs))− bj(T (bsc, Ybsc))dW j
s if t ∈ ]t0, T ],

(IV.19)

for all t ∈ [t0 − τ, T ] and use the expansions

a(T (s,Xs))− a(T (bsc, Ybsc))

= a(T (s,Xs))− a(T (bsc, Xs)) + a(T (bsc, Xs))− a(T (bsc, Xbsc))

+ a(T (bsc, Xbsc))− a(T (bsc, Ybsc))

(IV.20)

and

bj(T (s,Xs))− bj(T (bsc, Ybsc))

= bj(T (s,Xs))− bj(T (bsc, Xs)) + bj(T (bsc, Xs))− bj(T (bsc, Xbsc))

+ bj(T (bsc, Xbsc))− bj(T (bsc, Ybsc))

(IV.21)

for all s ∈ [t0, T ]. Then, we prove the convergence of order α = 1
2 using the triangle inequality,

Zakai’s inequality from Theorem II.6, and the Gronwall’s Lemma II.7.
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The order α = 1
2 results from the following estimates. Using the triangle inequality and the

Lipschitz continuity (II.8) of the drift coefficient, it holds∥∥∥∥∫ ·

t0

a(T (bsc, Xs))− a(T (bsc, Xbsc))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤
∥∥∥∥ sup
t∈[t0,T ]

∫ t

t0

‖a(T (bsc, Xs))− a(T (bsc, Xbsc))‖ds
∥∥∥∥
Lp(Ω;R)

≤
∫ T

t0

‖a(T (bsc, Xs))− a(T (bsc, Xbsc))‖Lp(Ω;Rd) ds (IV.22)

≤ La

∫ T

t0

∥∥∥∥ sup
l∈{0,1,...,D}

‖Xs−τl −Xbsc−τl‖
∥∥∥∥
Lp(Ω;R)

ds (IV.23)

≤ La

∫ T

t0

D∑
l=0

‖Xs−τl −Xbsc−τl‖Lp(Ω;Rd) ds. (IV.24)

To take initial condition ξ on the interval [t0 − τ, t0] into account, we write

Xs−τl −Xbsc−τl = ξ(s−τl)∧t0 − ξ(bsc−τl)∧t0 +X(s−τl)∨t0 −X(bsc−τl)∨t0 (IV.25)

for all s ∈ [t0, T ] and l ∈ {0, 1, . . . , D}. Further, for all s ∈ [t0, T ], we estimate

D∑
l=0

‖Xs−τl −Xbsc−τl‖Lp(Ω;Rd)

≤
D∑
l=1

‖ξ(s−τl)∧t0 − ξ(bsc−τl)∧t0‖Lp(Ω;Rd) +

D∑
l=0

‖X(s−τl)∨t0 −X(bsc−τl)∨t0‖Lp(Ω;Rd),

(IV.26)

where

ξ(s−τ0)∧t0 − ξ(bsc−τ0)∧t0 = ξs∧t0 − ξbsc∧t0 = ξt0 − ξt0 = 0

for all s ∈ [t0, T ] is used. According to condition (IV.18) and Lemma II.9, we have

D∑
l=1

‖ξ(s−τl)∧t0 − ξ(bsc−τl)∧t0‖Lp(Ω;Rd)

≤ Lξ

D∑
l=1

√
((s− τl) ∧ t0)− (bsc − τl) ∧ t0)

≤ LξD
√
s− bsc (IV.27)

and
D∑
l=0

‖X(s−τl)∨t0 −X(bsc−τl)∨t0‖Lp(Ω;Rd)

≤ C1

D∑
l=0

√
((s− τl) ∧ t0)− (bsc − τl) ∧ t0)

≤ C1(D + 1)
√
s− bsc (IV.28)
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for all s ∈ [t0, T ], where C1 > 0 is a constant, cf. Lemma II.9. It thus follows
D∑
l=0

‖Xs−τl −Xbsc−τl‖Lp(Ω;Rd) ≤
(
LξD + C1(D + 1)

)√
s− bsc (IV.29)

for all s ∈ [t0, T ]. Inserting this into inequality (IV.24) results in∥∥∥∥∫ ·

t0

a(T (bsc, Xs))− a(T (bsc, Xbsc))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ La

(
LξD + C1(D + 1)

) ∫ T

t0

√
s− bsc ds.

(IV.30)

Consider the integral over time in the inequality above. It holds in view of equations (IV.14)
and (IV.1) that∫ T

t0

√
s− bsc ds =

N−1∑
n=0

∫ tn+1

tn

√
s− tn ds =

N−1∑
n=0

2

3
(tn+1 − tn)

3
2

≤ 2

3

√
h

N−1∑
n=0

(tn+1 − tn) =
2

3
(T − t0)

√
h.

(IV.31)

Thus, with inequality (IV.30), we obtain the estimate∥∥∥∥∫ ·

t0

a(T (bsc, Xs))− a(T (bsc, Xbsc))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ La

(
LξD + C1(D + 1)

)2
3
(T − t0)

√
h.

(IV.32)

A similar estimate holds for the stochastic integrals. For more details on the proof and the
constants appearing in the estimates, we refer to Section IV.3, see p. 81.

Based on [77, Lemma 2.1], Kloeden and Neuenkirch showed that the Euler-Maruyama scheme
for SDDEs converges pathwise with order α = 1

2 − ε, see [77, Theorem 2.5]. In [2] and [52],
the pathwise convergence is also proved under weaker assumptions. Nevertheless, we state the
pathwise convergence of the Euler-Maruyama scheme as a corollary of our theorem above and
Lemma IV.3.

Corollary IV.7 (Pathwise Convergence of the Euler-Maruyama Approximation)
Let ξ ∈ Sp([t0 − τ, t0] × Ω;Rd) and the additional assumptions in Theorem IV.6 regarding
SDDE (II.1) be fulfilled for all p ∈ [1,∞[. Consider the family of Euler-Maruyama approxima-
tions (Y hN )N∈N, where (hN )N∈N ⊂ ]0, T − t0]. Let qε ∈ [1,∞[ for all ε > 0 be independent of
N and such that

∑∞
N=1 h

εqε
N <∞.

Then, the family of Euler-Maruyama approximations (Y hN )N∈N converges pathwise with order
α = 1

2 − ε to solution X of SDDE (II.1) for arbitrary ε > 0 as N → ∞. That is, for all ε > 0,
there exists a positive random variable Zε, which belongs to Lp(Ω;R) for all p ∈ [1,∞[, such
that

sup
t∈[t0−τ,T ]

‖Xt − Y hN
t ‖ ≤ Zε h

1
2
−ε

N

P-almost surely for all N ∈ N.
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IV.2. The Milstein Approximation

As we showed in the previous section, the Euler-Maruyama scheme for SDDE (II.1) converges
with order α = 1

2 in Sp([t0−τ, T ]×Ω;Rd). However, it is well-known that the Euler approxima-
tion converges with order α = 1 in case of deterministic delay differential equations. In order
to increase the order of convergence, the approximation needs to incorporate more information
about the diffusion in general, cf. [78, 105], where SODEs are considered. The simplest first
order scheme for SODEs originates from Milstein [106] and is called Milstein scheme to his
honor. We introduce and study the strong convergence of the Milstein scheme for SDDE (II.1),
cf. [60, 80, 137].

Whereas the Euler-Maruyama scheme for SDDEs is consistent with Euler-Maruyama scheme
for SODEs in the number of incorporated terms, the Milstein scheme for SDDEs differs from
its variant for SODEs if a diffusion coefficient bj of SDDE (II.1) depends on the past history of
the solution, that is in the presence of delay.

Using the notations introduced in the previous section, the Milstein approximation Y for strong
solution X of SDDE (II.1) is defined by

Yt =



ξt if t ∈ [t0 − τ, t0] and

ξt0 +

∫ t

t0

a(T (bsc, Ybsc))ds+
m∑
j=1

∫ t

t0

bj(T (bsc, Ybsc))dW j
s

+
D∑
l=0

m∑
j1=1

∫ t

t0

( d∑
i=1

∂xi
l
bj1(T (bsc, Ybsc))

×
m∑

j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T ((bsc − τl) ∨ t0, Y(bsc−τl)∨t0))dW j2

u

)
dW j1

s

if t ∈ ]t0, T ].

(IV.33)

The derivatives of the diffusion coefficients with respect to delay arguments, that are the sum-
mands for l ∈ {1, . . . , D}, vanish if the diffusion does not depend on the past history of the
solution. In this case, the scheme simplifies and is consistent with the Milstein scheme for
SODEs, cf. [78, 105].

Its mean-square convergence (p = 2) of Milstein scheme (IV.33) has been analyzed in [60, 80,
137] under rather strong assumptions. Namely, in [137, Theorem 9.2] and [60, Theorem 5.2], the
authors assume that the SDDEs’ coefficients have bounded first and second spatial derivatives
whereas in [80] the coefficients are not time-dependent, and the third derivatives are even
assumed to be bounded in addition, cf. [80, Assumptions 3.1 and 7.1]. In this thesis, we
show the strong convergence of the Milstein under weaker assumptions and make the following
assumption on SDDE (II.1) for our analysis.

Assumption IV.8
Let the coefficients a, bj : R1×(D+1)×Rd×(D+1) → Rd, j ∈ {1, . . . ,m}, and initial condition
ξ : [t0 − τ, t0]× Ω → Rd of SDDE (II.1) fulfill the following.

i) Drift coefficient a and diffusion coefficient bj, j ∈ {1, . . . ,m}, are Borel-measurable, and
for all t ∈ [t0, T ], a(t, t−τ1, . . . , t−τD, ·, . . . , ·) and bj(t, t−τ1, . . . , t−τD, ·, . . . , ·) : Rd×(D+1)
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→ Rd, j ∈ {1, . . . ,m}, belong to C2(Rd×(D+1);Rd), that is, they are continuous and have
continuous first and second partial derivatives.

ii) The global Lipschitz conditions (II.8) and (II.9) hold. That is, there exist constants
La, Lb > 0 such that

sup
t∈[t0,T ]

‖a(t, t−τ1, . . . , t−τD, x0, x1, . . . , xD)− a(t, t−τ1, . . . , t−τD, y0, y1, . . . , yD)‖

≤ La max
l∈{0,1,...,D}

‖xl − yl‖

and

sup
t∈[t0,T ]

max
j∈{1,...,m}

‖bj(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)

− bj(t, t− τ1, . . . , t− τD, y0, y1, . . . , yD)‖
≤ Lb max

l∈{0,1,...,D}
‖xl − yl‖

for all xl, yl ∈ Rd, where l ∈ {0, 1, . . . , D}.

iii) There exist a constant L∂b > 0 and a growth exponent β ∈ [0,∞[ such that the Lipschitz
condition

sup
t∈[t0,T ]

max
j1,j2∈{1,...,m}
l∈{0,1,...,D}

∥∥∥∥ d∑
i=1

∂xi
l
bj1(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)

× bi,j2((t− τ0) ∨ t0 − τl, . . . , (t− τD) ∨ t0 − τl, x̃0, x̃1, . . . , x̃D)

−
d∑

i=1

∂xi
l
bj1(t, t− τ1, . . . , t− τD, y0, y1, . . . , yD)

× bi,j2((t− τ0) ∨ t0 − τl, . . . , (t− τD) ∨ t0 − τl, ỹ0, ỹ1, . . . , ỹD)

∥∥∥∥
≤ L∂b max

l∈{0,1,...,D}

(
1 + (‖xl‖ ∨ ‖x̃l‖)2 + (‖yl‖ ∨ ‖ỹl‖)2

)β
2

× max
l∈{0,1,...,D}

(
‖xl − yl‖ ∨ ‖x̃l − ỹl‖

)
holds for all xl, x̃l, yl, ỹl ∈ Rd, where l ∈ {0, 1, . . . , D}.

iv) The linear growth conditions (II.10) and (II.11) hold. That is, there exist constants
Ka,Kb > 0 such that

sup
t∈[t0,T ]

‖a(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)‖ ≤ Ka max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2

and

sup
t∈[t0,T ]

max
j∈{1,...,m}

‖bj(t, t−τ1, . . . , t−τD, x0, x1, . . . , xD)‖ ≤Kb max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) 1
2

for all xl ∈ Rd, where l ∈ {0, 1, . . . , D}.
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v) There exist constants K∂2a,K∂2b > 0 and growth exponents %a, %b ∈ [0,∞[ such that the
growth conditions

sup
t∈[t0,T ]

max
i1,i2∈{1,...,d}

l1,l2∈{0,1,...,D}

‖∂
x
i1
l1

∂
x
i2
l2

a(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)‖

≤ K∂2a max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) %a
2

and

sup
t∈[t0,T ]

max
j∈{1,...,m}

i1,i2∈{1,...,d}
l1,l2∈{0,1,...,D}

‖∂
x
i1
l1

∂
x
i2
l2

bj(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)‖

≤ K∂2b max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) %b
2

hold for all xl ∈ Rd, where l ∈ {0, 1, . . . , D}.

vi) There exist constants Lt,a, Lt,b > 0 and growth exponents γa, γb ∈ [0,∞[ such that the
Lipschitz conditions in time

‖a(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)− a(s, s− τ1, . . . , s− τD, x0, x1, . . . , xD)‖

≤ Lt,a max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) γa
2 |t− s|

and

max
j∈{1,...,m}

‖bj(t, t− τ1, . . . , t− τD, x0, x1, . . . , xD)

− bj(s, s− τ1, . . . , s− τD, x0, x1, . . . , xD)‖

≤ Lt,b max
l∈{0,1,...,D}

(
1 + ‖xl‖2

) γb
2 |t− s|

hold for all s, t ∈ [t0, T ] and xl ∈ Rd, where l ∈ {0, 1, . . . , D}.

vii) Let the growth exponents β, %a, %b, γa, γb ∈ [0,∞[ be specified by assumptions iii), v),
and vi). The initial condition ξ belongs to Sp̃([t0 − τ, t0]× Ω;Rd) where

p̃ = p · max{γa, γb, 2β + 2, %a + 2, %b + 2},

and its realizations are P-almost surely continuous. In addition, there exists a constant
Lξ > 0 such that

‖ξt − ξs‖L((%a∨%b)+2)p(Ω;Rd) ≤ Lξ|t− s|

holds for all s, t ∈ [t0 − τ, t0].

Before we state our results on the Milstein scheme’s convergence, we elucidate problems that
arise in comparison to SODEs, and we elaborate on those results in [60, 80, 137].

In case of SODEs, the convergence analysis of numerical schemes of higher order is usually done
by applying Itô’s formula to the SODEs’ coefficients, cf. [78, 105]. This standard technique does
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however not apply to coefficients that also depend on the past history of the SDDE’s solution
because the Rd×(D+1)-valued and (Ft)t∈[t0,T ]-adapted process(

(Xt, Xt−τ1 , . . . , Xt−τD)
)
t∈[t0,T ]

(IV.34)

is not a semimartingale with respect to filtration (Ft)t∈[t0,T ] or any natural filtration, cf. [60,
pp. 269–270].

In [60, 137], the authors develop an Itô formula for functionals on processes of the form (IV.34)
using the Malliavin calculus. The integrals occurring there are however not defined in the sense
of Itô anymore but are Skorohod integrals, see [137, Theorem 4.7 on p. 57, p. 110 and term Rp

3

on p. 116] and [60, Theorem 2.1 on p. 271, p. 294 and term Rπ
3 on p. 303].

Although Hu, Mohammed, and Yan claim to prove the convergence of the Milstein approxima-
tion in Lp(Ω;Rd) for all p ∈ [1,∞[, where the initial condition of the SDDE under consideration
is random, see [60, p. 269], they only prove convergence in L2(Ω;Rd) with order α = 1 for de-
terministic initial conditions, see [60, Theorem 5.2].

In [137, Theorem 9.2], Yan also states the convergence in L2(Ω;Rd) of the Milstein approxima-
tion for random initial conditions. However, his proof of [137, Theorem 9.2] only holds true for
deterministic initial conditions as well. As already mentioned in Section III.2, if the initial con-
dition is random and Ft0-measurable, the solution X of the SDDE is not G-measurable. Thus,
Xt cannot belong to the space D2(Ω;Rd) for any t ∈ [t0 − τ, T ]. Then, [137, Proposition 7.4]
does not hold true, and also [137, Theorem 4.7] cannot be applied, where the initial condition
is assumed to be a deterministic and continuous function.

In summary, [60, Theorem 5.2] and [137, Theorem 9.2] state the convergence in L2(Ω;Rd) with
order α = 1 of the Milstein scheme for SDDEs with initial conditions in C([t0 − τ, t0];Rd).

Just in case of linear drift and diffusion coefficients, Yan provide the convergence of the Milstein
approximation regarding linear SDDEs with random initial conditions in Sp([t0− τ, T ]×Ω;Rd)
for arbitrary p ∈ [1,∞[, see [137, pp. 119–120]. However, he only obtains the order of conver-
gence α = 1

2 + 1
p , and not α = 1, as we would expect, see [137, Theorem 9.3].

Instead of using a generalized Itô formula like in [60, 137], Kloeden and Shardlow applied the
deterministic Taylor’s formula to the SDDE’s coefficients in [80]. The occurring stochastic
integrals are then all well-defined in the sense of Itô. In [80, Theorem 7.4], they claim the
convergence in S2([t0 − τ, T ]× Ω;Rd) of the Milstein approximation. However, there is gap in
the proof of [80, Lemma 5.1] on which [80, Theorem 7.4] is based. We discuss this gap in the
following.

Kloeden and Shardlow claim in [80, Proof of Lemma 5.1 on p. 190]: “If Sk =
∑k−1

j=0 rj+1, where
rk are Rd valued Ftk measurable random variables, then Sk − ESk is a discrete martingale,
and Doob’s maximal inequality gives E supk≤n‖Sk − ESk‖2Rd ≤ 2E‖Sk − ESk‖2Rd ≤ . . . ”.
Here, the symbol E = E[·] denotes the expectation on (Ω,F,P), and we have k ∈ {1, . . . , N}.
Apart from the fact that Doob’s maximal inequality only holds true with a factor 4 instead
of factor 2, cf. [35, Theorem 3.4 on p. 317] or [67, Theorem 26.3], the time-discrete process
(Sk − E[Sk])k∈{1,...,N} is in general not a discrete martingale nor a submartingale with respect
to filtration (Ftk)k∈{1,...,N}. Thus, Doob’s maximal inequality cannot even be applied. We
provide an example where the discrete martingale property does not hold. Let d = m, and set
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rk =Wtk for k ∈ {1, . . . , N}. Then, it holds E[Sk] = 0 for all k ∈ {1, . . . , N}, and we P-almost
surely have

E
[
Sk − E[Sk]

∣∣Ftk−1

]
=

k−1∑
j=1

E[Wtj+1 |Ftk−1
] = Sk−1 + E[Wtk |Ftk−1

]

= Sk−1 − E[Sk−1] +Wtk−1

for all k ∈ {2, . . . , N}. That is, (Sk − E[Sk])k∈{1,...,N} is not a discrete martingale. Fur-
ther, the time-discrete process

(∑k−1
j=0 R(tj+1; tj , xtj )

)
k∈{1,...,N} from [80, Equation (5.1) from

Lemma 5.1] seems not be a discrete martingale as well if the drift coefficient depends on the past
history of the solution, cf. inequality (IV.43) below. In addition, if the time-discrete process(∑k−1

j=0 R(tj+1; tj , xtj )
)
k∈{1,...,N} from [80, Equation (5.1) from Lemma 5.1] would be a discrete

martingale, then, we cannot just apply Doob’s maximal inequality as stated in [80, Proof of
Lemma 5.1 on p. 190] but also the discrete Burkholder inequality, see Theorem II.3, and the
technical considerations in [80, Lemma 7.3] as well as in the proof of [80, Theorem 7.4] would
not be needed, and the standard Itô calculus would be sufficient.

Thus, considering the proof of [80, Lemma 5.1], there is a gap in estimating the supremum
over time inside the expectation, and we only obtain the convergence in L2(Ω;Rd) with order
α = 1 of the Milstein scheme in [80, Theorem 7.4] like in [60, 137]. However, according to the
title of article [80] of Kloeden and Shardlow , the main contribution of their work is not the
proof of convergence of the Milstein scheme for SDDE in S2([t0 − τ, T ] × Ω;Rd), it is rather
providing a proof that does not involve Skorohod integrals and techniques from the Malliavin
calculus, also see [80, p. 182]. After applying deterministic Taylor expansions to the SDDE’s
coefficients, their analysis is decisively based on the inner product of L2(Ω;Rd) and on the
differentiability of the SDDE’s solution with respect to its initial condition, see [80, Lemma 7.3
and Theorem 7.4].

As already mentioned in the introduction of this chapter, the latter is closely related to the
Malliavin derivative of the SDDE’s solution, see [58] and [113, p. 126]. Thus, in the use of the
Malliavin derivative of the SDDE’s solution, see [60, Proposition 3.1] and [137, Proposition 7.4],
and in the use of the derivative of the SDDE’s solution with respect to its initial condition, see
[80, Theorem 3.5], the proofs in [60, 137] and [80] are based on similar results.

Similarly to Kloeden and Shardlow in [80], we apply deterministic Taylor expansions to the
coefficients of SDDE (II.1) in order to analyze the order of convergence of the Milstein scheme in
Sp([t0−τ, T ]×Ω;Rd) for p ∈ [1,∞[. In the following, we develop these expansions. Afterwards,
the difficulty encountered in proving the order of convergence α = 1 in case of SDDEs compared
to SODEs is elucidated on the basis of these expansions.

As a starting point, we consider formulas (IV.20) and (IV.21) from the previous section. Let
either f = a or f = bj in the sequel. Using Taylor’s formula [57, p. 284] on term f(T (bsc, Xs))−
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f(T (bsc, Xbsc)) in expansions (IV.20) and (IV.21), we obtain

f(T (bsc, Xs))− f(T (bsc, Xbsc))

=

D∑
l=0

d∑
i=1

∂xi
l
f(T (bsc, Xbsc))(X

i
s−τl

−Xi
bsc−τl

)

+

D∑
l1,l2=0

d∑
i1,i2=1

∫ 1

0
∂
x
i1
l1

∂
x
i2
l2

f(T (bsc, Xbsc + θ(Xs −Xbsc)))(1− θ)dθ

× (Xi1
s−τl1

−Xi1
bsc−τl1

)(Xi2
s−τl2

−Xi2
bsc−τl2

)

(IV.35)

for all s ∈ [t0, T ] where

T (bsc, Xbsc + θ(Xs −Xbsc))

:=
(
bsc, bsc − τ1, . . . , bsc − τD, Xbsc + θ(Xs −Xbsc),

Xbsc−τ1 + θ(Xs−τ1 −Xbsc−τ1), . . . , Xbsc−τD + θ(Xs−τD −Xbsc−τD)
)
.

Using equation (IV.25) and that X is the strong solution of SDDE (II.1), it holds

Xs−τl −Xbsc−τl

= ξ(s−τl)∧t0 − ξ(bsc−τl)∧t0

+

∫ (s−τl)∨t0

(bsc−τl)∨t0
a(T (u,Xu))du+

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bj(T (u,Xu))dW j

u

(IV.36)

for all s ∈ [t0, T ] P-almost surely. Inserting this into expansion (IV.35), we obtain, similarly to
formula (IV.20), the expansion

a(T (s,Xs))

= a(T (bsc, Xbsc)) + a(T (s,Xs))− a(T (bsc, Xs))

+
D∑
l=1

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))(ξ

i
(s−τl)∧t0 − ξi(bsc−τl)∧t0)

+

D∑
l=0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))

∫ (s−τl)∨t0

(bsc−τl)∨t0
ai(T (u,Xu))du

+

D∑
l=0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u

+

D∑
l1,l2=0

d∑
i1,i2=1

∫ 1

0
∂
x
i1
l1

∂
x
i2
l2

a(T (bsc, Xbsc + θ(Xs −Xbsc)))(1− θ)dθ

× (Xi1
s−τl1

−Xi1
bsc−τl1

)(Xi2
s−τl2

−Xi2
bsc−τl2

)

(IV.37)

for all s ∈ [t0, T ] P-almost surely.

The same expansion holds for the diffusion coefficients, too. However, we further expand the
integrand u 7→ bi,j(T (u,Xu)) of the stochastic integral in equation (IV.36). By substituting bsc
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with (bsc − τl) ∨ t0 in the expansion (IV.21), we have

bj(T (u,Xu)) = bj(T (u,Xu))− bj(T ((bsc − τl) ∨ t0, Xu))

+ bj(T ((bsc − τl) ∨ t0, Xu))− bj(T ((bsc − τl) ∨ t0, X(bsc−τl)∨t0))

+ bj(T ((bsc − τl) ∨ t0, X(bsc−τl)∨t0))

(IV.38)

for all u, s ∈ [t0, T ] and j ∈ {1, . . . ,m}. Inserting above expansion (IV.38) into equation (IV.36)
and this, in turn, into equation (IV.35), the expansion of the diffusion coefficients results in

bj1(T (s,Xs))

= bj1(T (bsc, Xbsc)) + bj1(T (s,Xs))− bj1(T (bsc, Xs))

+

D∑
l=1

d∑
i=1

∂xi
l
bj1(T (bsc, Xbsc))(ξ

i
(s−τl)∧t0 − ξi(bsc−τl)∧t0)

+

D∑
l=0

d∑
i=1

∂xi
l
bj1(T (bsc, Xbsc))

∫ (s−τl)∨t0

(bsc−τl)∨t0
ai(T (u,Xu))du

+

D∑
l=0

d∑
i=1

∂xi
l
bj1(T (bsc, Xbsc))

m∑
j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T ((bsc − τl) ∨ t0, X(bsc−τl)∨t0))dW j2

u

+

D∑
l=0

d∑
i=1

∂xi
l
bj1(T (bsc, Xbsc))

m∑
j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T (u,Xu))

− bi,j2(T ((bsc − τl) ∨ t0, Xu))dW j2
u

+

D∑
l=0

d∑
i=1

∂xi
l
bj1(T (bsc, Xbsc))

m∑
j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T ((bsc − τl) ∨ t0, Xu))

− bi,j2(T ((bsc − τl) ∨ t0, X(bsc−τl)∨t0))dW j2
u

+

D∑
l1,l2=0

d∑
i1,i2=1

∫ 1

0
∂
x
i1
l1

∂
x
i2
l2

bj1(T (bsc, Xbsc + θ(Xs −Xbsc)))(1− θ)dθ

× (Xi1
s−τl1

−Xi1
bsc−τl1

)(Xi2
s−τl2

−Xi2
bsc−τl2

)

(IV.39)

for all s ∈ [t0, T ] and all j1 ∈ {1, . . . ,m} P-almost surely.

In expansions (IV.37) and (IV.39), all occurring stochastic integrals are well-defined in the
sense of Itô as in [80] and in contrast to [60, 137].

However, the analysis of the Milstein scheme still needs more sophisticated techniques in order
to obtain convergence of order α = 1. To see this, we first consider the Euler-Maruyama scheme
again. Its convergence results from, among others, inequality (IV.24) and Lemma (II.9). Using
the triangle inequality first as in inequality (IV.22) and applying expansion (IV.37) on the
right-hand side of inequality (IV.22) does however not improve the order of convergence due to
the irregularity of the Wiener process as we will see in the sequel. Proceeding in this way, we
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would obtain the term∫ T

t0

∥∥∥∥ D∑
l=0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u

∥∥∥∥
Lp(Ω;Rd)

ds, (IV.40)

and we have to show that its integrand is of order O(h) to obtain the order of convergence α = 1.
But in this regard, we get the following. Using the triangle inequality, Assumption IV.8 ii),
and Assumption IV.8 iv) as well as the Cauchy-Schwarz inequality and Theorem II.6, it holds,
similarly to inequality (II.26), that∥∥∥∥ D∑

l=0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u

∥∥∥∥
Lp(Ω;Rd)

≤
∥∥∥∥ D∑

l=0

d∑
i=1

‖∂xi
l
a(T (bsc, Xbsc))‖

∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u

∣∣∣∣∥∥∥∥
Lp(Ω;R)

≤ La

∥∥∥∥ D∑
l=0

d∑
i=1

∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u

∣∣∣∣∥∥∥∥
Lp(Ω;R)

≤ La

√
d

D∑
l=0

∥∥∥∥ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bj(T (u,Xu))dW j

u

∥∥∥∥
Lp(Ω;Rd)

≤ La

√
d
√
p− 1

D∑
l=0

(∫ (s−τl)∨t0

(bsc−τl)∨t0

∥∥∥∥ m∑
j=1

‖bj(T (u,Xu))‖2
∥∥∥∥
L

p
2 (Ω;R)

du
) 1

2

≤ La

√
d
√
p− 1Kb

√
m(D + 1)

(
1 + ‖X‖2

Sp([t0−τ,s]×Ω;Rd)

) 1
2
√
h. (IV.41)

Thus, proceeding like this, we only obtain an order of convergence α = 1
2 . This means, we have

to analyze the process (Zt)t∈[t0,T ] defined by

Zt :=

∫ t

t0

D∑
l=0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u ds (IV.42)

as a whole in the Sp([t0, T ]×Ω;Rd)-norm. In doing so, we can take into account the dependencies
between the intervals [tn, tn+1], n ∈ {0, 1, . . . , N − 1}, of the discretization. So far, the same
problem occurs in the analysis of the Milstein scheme for SODEs, see [78, Section 10.8] or [105,
p. 17]. In case of SODEs – consider formula (IV.42) with l = 0 – and the analysis in L2(Ω;Rd),
the higher order of convergence is obtained by utilizing the inner product of L2(Ω;Rd) and

E
[ d∑

i=1

∂xi
0
a(T (bsc, Xbsc))

m∑
j=1

∫ s

bsc
bi,j(T (u,Xu))dW j

u

∣∣∣∣Fbsc

]

=

d∑
i=1

∂xi
0
a(T (bsc, Xbsc))E

[ m∑
j=1

∫ s

bsc
bi,j(T (u,Xu))dW j

u

∣∣∣∣Fbsc

]
= 0

P-almost surely, see [78, Section 10.8]. That is, we employ the discrete martingale prop-
erty of the time-discrete process (Ztn)n∈{0,1,...,N} in case of l = 0. This idea on the Hilbert
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space L2(Ω;Rd) can be transferred to Lp(Ω;Rd) and Sp([t0, T ] × Ω;Rd), p ∈ [2,∞[, using the
Burkholder inequality.

However, if the drift coefficient depends on the past history of the solution in case of SDDEs,
this technique cannot be used, because for l ∈ {1, . . . , D}, we P-almost surely have

E
[ d∑

i=1

∂xi
l
a(T (bsc, Xbsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u

∣∣∣∣Fbsc

]

=
d∑

i=1

∂xi
l
a(T (bsc, Xbsc))E

[ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u

∣∣∣∣Fbsc

]
6= 0 (IV.43)

in general. Moreover, one cannot simply move the random variable ∂xi
l
a(T (bsc, Xbsc)) into the Itô

integral because it is Fbsc/B(Rd)-measurable, but in general not F(bsc−τl)∨t0/B(Rd)-measurable.
Thus, the time-discrete process (Ztn)n∈{0,1,...,N} is lacking the martingale property in general
when l ∈ {1, . . . , D}.

In [60, 137], the authors solve this problem using the Skorohod integral and applying [113,
Proposition 1.3.1], see [60, p. 303] and [137, pp. 118–119]. However, they do not consider the
supremum over time to be inside the L2(Ω;Rd)-norm. Recall that Doob’s maximal inequality
cannot be applied because process Z defined in equation (IV.42) is in general not a martin-
gale nor a submartingale with respect to (Ft)t∈[t0,T ] in continuous time nor with respect to
(Ftn)n∈{0,1,...,N} in discrete time. One may generalize the considerations in [60, p. 303] and
[137, pp. 118–119] to the convergence in Sp([t0, T ] × Ω;Rd) for p ∈ ]2,∞[ using a maximal
inequality for Skorohod integrals developed by Alòs and Nualart, see [3, Theorem 3.1]. But in
order to directly apply [3, Theorem 3.1], stronger assumptions than in Assumption IV.8 must
be made.

Inspired by the proofs of [3, Theorem 3.1], [60, Theorem 5.2], and [137, Theorem 9.2], we
prove convergence of order α = 1 for Milstein approximation regarding SDDE (II.1) using the
Malliavin calculus as well.

According to Assumption IV.8 vii), let us emphasize that initial condition ξ of SDDE (II.1) is
considered to be a random process in contrast to the results in [60, 80, 137]. In the first instance,
the Malliavin calculus can just deal with random variables and processes that are measurable
with respect to σ-algebra G, see Chapter III. Since initial condition ξ is adapted to filtration
(Ft)t∈[t0−τ,t0], for all t ∈ [t0 − τ, t0], random variable ξt is in particular Ft0/B(Rd)-measurable
and independent of the Wiener process (Wt)t∈[t0,T ]. Thus, the Malliavin calculus cannot be
applied to functionals of solution X of SDDE (II.1) when ξ is not deterministic.

One way to deal with random variables that are independent of σ-algebra G in the Malliavin
calculus is the following. Let E be a real separable Hilbert space. Consider an E-valued random
variable in Lp(Ω;E), p ∈ [2,∞[, where (Ω,F,P) = (Ω1 × Ω2,G ⊗ Ft0 ,P1 ⊗ P2) is a product
probability space for a moment. Then, this random variable can be understood as a random
variable in

Lp((Ω1,G,P1);L
p(Ω2,Ft0 ,P2); (E,B(E))),
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that is, as a random variable that takes values in the Banach space Lp((Ω2,Ft0 ,P2); (E,B(E))).
But proceeding in this way and doing the analysis of convergence thoroughly, we must presup-
pose this product structure of the underlying probability space. This is related to the partial
Malliavin calculus, see e. g. [85]. Moreover, we have to deal with random variables that take val-
ues in Banach spaces. This further leads to stochastic integration and Malliavin calculus of Ba-
nach space valued random variables and stochastic processes. We refer to [93, 94, 117, 132, 133]
for literature on these topics.

Our analysis of the convergence of the Milstein scheme regarding SDDE (II.1) with a random
initial condition is not restricted to product probability spaces and uses simpler arguments. For
more details on that, we refer to the proof of Theorem IV.9 and in particular to Lemma IV.19.

Let us now state the main result on the strong convergence of the Milstein approximation.

Theorem IV.9 (Strong Convergence of the Milstein Approximation)
Let SDDE (II.1) fulfill Assumption IV.8 for some p ∈ ]2,∞[, and consider Milstein approxi-
mation (IV.33) regarding SDDE (II.1).

Then, the family of Milstein approximations (Y h)h∈]0,T−t0] converges in Sp([t0 − τ, T ]×Ω;Rd)
with order α = 1 to solution X of SDDE (II.1) as h → 0. That is, there exists a constant
CMilstein > 0, independent of h, such that

‖X − Y h‖Sp([t0−τ,T ]×Ω;Rd) ≤ CMilstein h

for all h ∈ ]0, T − t0].

Proof. For the proof of this theorem and details on the constant CMilstein, we refer to Sec-
tion IV.3, see p. 85.

Remark IV.10
The Lipschitz continuity in Assumption IV.8 iii) can be seen as an extension of the third as-
sumption in [78, Formula (10.3.21)] in case of SODEs. Using Taylor’s formula, this Assump-
tion IV.8 iii) can be neglected in view of Assumption IV.8 v). But then we have to assume
that

p̃ = p · max{γa, γb, 2β + 3, %a + 2, %b + 2}

in Assumption IV.8 vii). Even in case of γa = γb = β = %a = %b = 0, we consequently require
ξ ∈ S3p([t0 − τ, t0]× Ω;Rd) instead of ξ ∈ S2p([t0 − τ, t0]× Ω;Rd).

Using Hölder’s inequality, we also obtain convergence of order α = 1 in Sq([t0 − τ, T ]× Ω;Rd)
of the Milstein scheme for all q ∈ [1, p] where p ∈ ]2,∞[.

Corollary IV.11
Let SDDE (II.1) fulfill Assumption IV.8 for some p ∈ ]2,∞[, and consider Milstein approxi-
mation (IV.33) regarding SDDE (II.1).

Then, for all q ∈ [1, p], the family of Milstein approximations (Y h)h∈]0,T−t0] converges in
Sq([t0 − τ, T ] × Ω;Rd) with order α = 1 to solution X of SDDE (II.1) as h → 0. That is,
there exists a constant CMilstein > 0, independent of h, such that

‖X − Y h‖Sq([t0−τ,T ]×Ω;Rd) ≤ CMilstein h
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for all h ∈ ]0, T − t0] and all q ∈ [1, p].

According to this corollary, if SDDE (II.1) fulfills Assumption IV.8 for all p ∈ ]2,∞[, the
Milstein approximation converges in Sp([t0−τ, T ]×Ω;Rd) for all p ∈ [1,∞[. Using Lemma IV.3,
we obtain the following result on the pathwise convergence.

Corollary IV.12 (Pathwise Convergence of the Milstein Approximation)
Let SDDE (II.1) fulfill Assumption IV.8 for all p ∈ ]2,∞[. Consider the family of Milstein
approximations (Y hN )N∈N regarding SDDE (II.1) from equation (IV.33), where (hN )N∈N ⊂
]0, T − t0]. Let qε ∈ [1,∞[ for all ε > 0 be independent of N and such that

∑∞
N=1 h

εqε
N <∞.

Then, the family of Milstein approximations (Y hN )N∈N converges pathwise with order α = 1−ε
to solution X of SDDE (II.1) for arbitrary ε > 0 as N → ∞. That is, for all ε > 0, there
exists a positive random variable Zε, which belongs to Lp(Ω;R) for all p ∈ [1,∞[, such that

sup
t∈[t0−τ,T ]

‖Xt − Y hN
t ‖ ≤ Zε h

1−ε
N

P-almost surely for all N ∈ N.

Using the results from Theorem IV.9 and Corollary IV.12, we can improve the results on the
convergence of the Euler-Maruyama scheme (IV.13) under certain conditions. If the diffusion
coefficient bj at most depends on time t and not on the solution X for all j ∈ {1, . . . ,m},
Milstein scheme (IV.33) simplifies to Euler-Maruyama scheme (IV.13). In this case, the noise
of the SDDE is additive, and we have

bj(t, t− τ1, . . . , t− τD, Xt, Xt−τ1 , . . . , Xt−τD) = bj(t, t− τ1, . . . , t− τD)

for all t ∈ [t0, T ] and j ∈ {1, . . . ,m}. According to Theorem IV.9, the Euler-Maruyama scheme
then converges strongly with order α = 1 , cf. [78, p. 341] in case of SODEs.

Corollary IV.13
Let SDDE (II.1) have additive noise and fulfill Assumption IV.8 for some p ∈ ]2,∞[, where
Lb = L∂b = β = Kb = K∂2b = %b = 0 consequently. Consider Euler-Maruyama approxima-
tion (IV.13) regarding SDDE (II.1).

Then, the family Euler-Maruyama approximations (Y h)h∈]0,T−t0] converges in Sp([t0 − τ, T ]×
Ω;Rd) with order 1 to solution X of SDDE (II.1) as h → 0. That is, there exists a constant
CEuler > 0, independent of h, such that

‖X − Y h‖Sp([t0−τ,T ]×Ω;Rd) ≤ CEuler h

for all h ∈ ]0, T − t0].

Further, we obtain a similar result for the pathwise convergence by Corollary IV.12.

Corollary IV.14
Let SDDE (II.1) have additive noise and fulfill Assumption IV.8 for all p ∈ ]2,∞[, where
Lb = L∂b = β = Kb = K∂2b = %b = 0 consequently. Consider the family of Euler-Maruyama
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approximations (Y hN )N∈N regarding SDDE (II.1) from equation (IV.13), where (hN )N∈N ⊂
]0, T − t0]. Let qε ∈ [1,∞[ for all ε > 0 be independent of N and such that

∑∞
N=1 h

εqε
N <∞.

Then, the family of Euler-Maruyama approximations (Y hN )N∈N converges pathwise with order
1− ε to solution X of SDDE (II.1) for arbitrary ε > 0 as N → ∞. That is, for all ε > 0, there
exists a positive random variable Zε, which belongs to Lp(Ω;R) for all p ∈ [1,∞[, such that

sup
t∈[t0−τ,T ]

‖Xt − Y hN
t ‖ ≤ Zε h

1−ε
N

P-almost surely for all N ∈ N.

IV.3. Proofs

Proof of Lemma IV.3

Proof of Lemma IV.3. We follow the proofs of [41, Proposition 23] and [77, Lemma 2.1], and
we generalize their concepts to nonequidistant discretizations, cf. [2, Theorem 3.2].

Let us fix an ε > 0 and a

p > 2qε +
1

ε
(IV.44)

with qε from assumption (IV.6). At first, it holds

(
h
−(α−ε)
N sup

t∈[t0−τ,T ]
‖Xt − Y hN

t ‖
)p

≤ h
−p(α−ε)
N

N−1∑
n=0

sup
t∈[t0−τ,t0]∪]tNn ,tNn+1]

‖Xt − Y hN
t ‖p, (IV.45)

and further, condition (IV.6) implies hN → 0 as N → ∞. In the following, we use the Borel-
Cantelli Lemma in order to show the P-almost surely convergence in (IV.8), cf. [43, Satz 1.11.8].
Using inequality (IV.45) and Markov’s inequality, we obtain

∞∑
N=1

P
[
h
−(α−ε)
N sup

t∈[t0−τ,T ]
‖Xt − Y hN

t ‖ > h
1
p

N

]

≤
∞∑

N=1

h−1
N h

−p(α−ε)
N E

[N−1∑
n=0

sup
t∈[t0−τ,t0]∪]tNn ,tNn+1]

‖Xt − Y hN
t ‖p

]

=
∞∑

N=1

h−1
N h

−p(α−ε)
N

N−1∑
n=0

‖X − Y hN ‖p
Sp(([t0−τ,t0]∪]tNn ,tNn+1])×Ω;Rd)

≤
∞∑

N=1

h−1
N h

−p(α−ε)
N

N−1∑
n=0

Cp
ph

αp
N

= Cp
p

∞∑
N=1

Nhpε−1
N . (IV.46)
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According to assumption (IV.6), it holds hεqεN = O(N−1) as N → ∞. This implies NhεqεN = O(1),
and for all ε > 0, there exists a constant Kε > 0 such that NhεqεN ≤ Kε for all N ∈ N. In view
of condition (IV.44), we then obtain by inequality (IV.46) that

∞∑
N=1

P
[
h
−(α−ε)
N sup

t∈[t0−τ,T ]
‖Xt − Y hN

t ‖ > h
1
p

N

]

≤ Cp
pKε

∞∑
N=1

hpε−1−εqε
N

≤ Cp
pKε(T − t0)

pε−1−2εqε

∞∑
N=1

hεqεN

<∞, (IV.47)

and hence,

h
−(α−ε)
N sup

t∈[t0−τ,T ]
‖Xt − Y hN

t ‖ → 0

converges P-almost surely as N → ∞ for all ε > 0.

Next, we show the existence of random variable Zε in inequality (IV.9). We set

Zε := sup
N∈N

h
−(α−ε)
N sup

t∈[t0−τ,T ]
‖Xt − Y hN

t ‖.

If supN∈N‖Xt−Y hN
t ‖ = 0 P-almost surely, inequality (IV.9) is clearly true, so let supN∈N‖Xt−

Y hN
t ‖ > 0 P-almost surely in the following.

Note that Zε : Ω → R is positive and F/B(R)-measurable. Moreover, using inequality (IV.45)
and the monotone convergence theorem, we obtain

E
[
|Zε|p

]
≤ E

[
sup
N∈N

h
−p(α−ε)
N

N−1∑
n=0

sup
t∈[t0−τ,t0]∪]tNn ,tNn+1]

‖Xt − Y hN
t ‖p

]

≤ E
[ ∞∑
N=1

h
−p(α−ε)
N

N−1∑
n=0

sup
t∈[t0−τ,t0]∪]tNn ,tNn+1]

‖Xt − Y hN
t ‖p

]

=
∞∑

N=1

h
−p(α−ε)
N

N−1∑
n=0

‖X − Y hN ‖p
Sp(([t0−τ,t0]∪]tNn ,tNn+1])×Ω;Rd)

.

Then, similarly to the considerations in inequalities (IV.46) and (IV.47), it follows E[|Zε|p] <∞.
Since ‖Zε‖Lp(Ω;R) <∞ for all p ∈ ]2qε+

1
ε ,∞[, cf. condition (IV.44), Hölder’s inequality implies

‖Zε‖Lq(Ω;R) <∞ for all q ∈ [1,∞[. Finally, inequality (IV.9) follows by

sup
t∈[t0−τ,T ]

‖Xt − Y hN
t ‖ ≤

(
sup
N∈N

h
−(α−ε)
N sup

t∈[t0−τ,T ]
‖Xt − Y hN

t ‖
)
hα−ε
N = Zεh

α−ε
N

P-almost surely for all ε > 0, and the proof is complete.
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Proof of Theorem IV.6

In order to show the strong convergence of the Euler-Maruyama scheme, we first have to ensure
the boundedness of its moments.

Lemma IV.15
Let the Borel-measurable drift a and diffusion bj, j ∈ {1, . . . ,m}, of SDDE (II.1) satisfy the
global Lipschitz and linear growth conditions (II.8), (II.9), (II.10), and (II.11). Further, let
initial condition ξ belong to Sp([t0 − τ, t0]× Ω;Rd) for some p ∈ [2,∞[.

Considering Euler-Maruyama approximation Y from formula (IV.13) regarding SDDE (II.1),
it holds

1 + ‖Y ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(
Ka

√
T−t0+

p√
p−1

Kb
√
m
)2

(T−t0).

Proof. Since ξ ∈ Sp([t0 − τ, t0]× Ω;Rd), we have ‖Y ‖Sp([t0−τ,t0]×Ω;Rd) <∞. We assume that

‖Y ‖Sp([t0−τ,tν ]×Ω;Rd) <∞

has been proven for all ν ∈ {0, 1, . . . , n − 1} where n ∈ {1, . . . , N}. For all n ∈ {1, . . . , N},
inequality (II.6) and the triangle inequality imply

1 + ‖Y ‖2
Sp([t0−τ,tn]×Ω;Rd)

≤ 1 + 2‖ξ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2

(∥∥∥∥∫ ·

t0

a(T (bsc, Ybsc))ds
∥∥∥∥
Sp([t0−τ,tn]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (bsc, Ybsc))dW j
s

∥∥∥∥
Sp([t0−τ,tn]×Ω;Rd)

)2

.

(IV.48)

In the following, we estimate the two last Sp([t0, T ] × Ω;Rd)-norms on the right-hand side of
inequality (IV.48) above. Using the triangle inequality and linear growth condition (II.10), we
obtain∥∥∥∥∫ ·

t0

a(T (bsc, Ybsc))ds
∥∥∥∥
Sp([t0−τ,tn]×Ω;Rd)

≤
∫ tn

t0

‖a(T (bsc, Ybsc))‖Lp(Ω;Rd) ds

≤ Ka

∫ tn

t0

∥∥∥∥ sup
l∈{0,1,...,D}

(
1 + ‖Ybsc−τl‖

2
) 1

2

∥∥∥∥
Lp(Ω;R)

ds

≤ Ka

∫ tn

t0

(
1 + ‖Y ‖2

Sp([t0−τ,s]×Ω;Rd)

) 1
2 ds

≤ Ka

√
tn − t0

(∫ tn

t0

1 + ‖Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

, (IV.49)

81



IV. Numerical Approximation of Stochastic Delay Differential Equations

where the Cauchy-Schwarz inequality is used in the last step. Similarly to this estimate, the
Zakai’s inequality from Theorem II.6 and linear growth condition (II.11) lead to∥∥∥∥ m∑

j=1

∫ ·

t0

bj(T (bsc, Ybsc))dW j
s

∥∥∥∥
Sp([t0−τ,tn]×Ω;Rd)

≤ p√
p− 1

(∫ tn

t0

∥∥∥∥ m∑
j=1

‖bj(T (bsc, Ybsc))‖2
∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤ p√
p− 1

Kb

√
m

(∫ tn

t0

1 + ‖Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

. (IV.50)

Inserting the results from inequalities (IV.49) and (IV.50) into inequality (IV.48), we obtain

1 + ‖Y ‖2
Sp([t0−τ,tn]×Ω;Rd)

≤ 1 + 2‖ξ‖2
Sp([t0−τ,t0]×Ω;Rd)

+ 2
(
Ka

√
tn − t0 +

p√
p− 1

Kb

√
m
)2 ∫ tn

t0

1 + ‖Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds.

Then, Gronwall’s Lemma II.7 implies

1 + ‖Y ‖2
Sp([t0−τ,tn]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(
Ka

√
tn−t0+

p√
p−1

Kb
√
m
)2

(tn−t0)

for all n ∈ {1, . . . , N}, and, by taking the maximum over n ∈ {1, . . . , N} on both sides of the
inequality above, we finally have

1 + ‖Y ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(
Ka

√
T−t0+

p√
p−1

Kb
√
m
)2

(T−t0).

Proof of Theorem IV.6. Consider the difference of the solution X and approximation Y in
formula (IV.19). Substituting the integrands in formula (IV.19) by their expansions (IV.20)
and (IV.21), we have, after the application of the triangle inequality, that

‖X − Y ‖Sp([t0−τ,T ]×Ω;Rd)

≤
∥∥∥∥∫ ·

t0

a(T (s,Xs))− a(T (bsc, Xs))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥∫ ·

t0

a(T (bsc, Xs))− a(T (bsc, Xbsc))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥∫ ·

t0

a(T (bsc, Xbsc))− a(T (bsc, Ybsc))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (s,Xs))− bj(T (bsc, Xs))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (bsc, Xs))− bj(T (bsc, Xbsc))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

+

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (bsc, Xbsc))− bj(T (bsc, Ybsc))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

.

(IV.51)
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We estimate the terms on the right-hand side of the inequality (IV.51) above term by term in
the following. We start with the first term. Using the triangle inequality and the assumption
from inequality (IV.16), it holds∥∥∥∥∫ ·

t0

a(T (s,Xs))− a(T (bsc, Xs))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤
∫ T

t0

‖a(T (s,Xs))− a(T (bsc, Xs))‖Lp(Ω;Rd) ds

≤ Lt,a

∫ T

t0

∥∥∥∥ sup
l∈{0,1,...,D}

(
1 + ‖Xs−τl‖

2
) γa

2

∥∥∥∥
Lp(Ω;R)

√
s− bsc ds

≤ Lt,a

∥∥∥(1 + ‖X‖2
) γa

2

∥∥∥
Sp([t0−τ,T ]×Ω;R)

∫ T

t0

√
s− bsc ds

≤ Lt,a
(
1 + ‖X‖2

S(γa∨1)p([t0−τ,T ]×Ω;R)
) γa

2

∫ T

t0

√
s− bsc ds

≤ Lt,a
(
1 + ‖X‖2

S(γa∨1)p([t0−τ,T ]×Ω;Rd)

) γa
2
2

3
(T − t0)

√
h, (IV.52)

where inequality (IV.31) is used in the last step. Here, we take the maximum γa∨ 1 in order to
ensure that (γa ∨ 1)p ≥ 1, and hence, ‖·‖S(γa∨1)p([t0−τ,T ]×Ω;Rd) is actually a norm. We already
estimated the second term of the right-hand side of inequality (IV.51) in inequality (IV.32),
where

C1 =
(
Ka

√
T − t0 +

√
p− 1Kb

√
m
)(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2

by Lemma II.9. Continuing with the third term, the triangle inequality and the Lipschitz
condition (II.8), cf. inequality (IV.23), imply∥∥∥∥∫ ·

t0

a(T (bsc, Xbsc))− a(T (bsc, Ybsc))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ La

∫ T

t0

‖X − Y ‖Sp([t0−τ,s]×Ω;Rd) ds

≤ La

√
T − t0

(∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

, (IV.53)

where we used the Cauchy-Schwarz inequality in the last step. The stochastic integrals in in-
equality (IV.51) can be estimated using similar arguments as above after applying Theorem II.6.
We obtain∥∥∥∥ m∑

j=1

∫ ·

t0

bj(T (s,Xs))− bj(T (bsc, Xs))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ p√
p− 1

(∫ T

t0

∥∥∥∥ m∑
j=1

‖bj(T (s,Xs))− bj(T (bsc, Xs))‖2
∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤ p√
p− 1

Lt,b
√
m

(∫ T

t0

∥∥∥∥ sup
l∈{0,1,...,D}

(
1 + ‖Xs−τl‖

2
) γb

2

∥∥∥∥2
Lp(Ω;R)

(s− bsc)ds
) 1

2

≤ p√
p− 1

Lt,b
√
m
(
1 + ‖X‖2

S(γb∨1)p([t0−τ,T ]×Ω;Rd)

) γb
2

1√
2

√
T − t0

√
h, (IV.54)
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∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (bsc, Xs))− bj(T (bsc, Xbsc))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ p√
p− 1

(∫ T

t0

∥∥∥∥ m∑
j=1

‖bj(T (bsc, Xs))− bj(T (bsc, Xbsc))‖2
∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤ p√
p− 1

Lb

√
m

(∫ T

t0

( D∑
l=0

‖Xs−τl −Xbsc−τl‖Lp(Ω;R)

)2

ds
) 1

2

≤ p√
p− 1

Lb

√
m
(
LξD + C1(D + 1)

)(∫ T

t0

(s− bsc)ds
) 1

2

≤ p√
p− 1

Lb

√
m
(
LξD + C1(D + 1)

) 1√
2

√
T − t0

√
h, (IV.55)

and

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (bsc, Xbsc))− bj(T (bsc, Ybsc))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ p√
p− 1

(∫ T

t0

∥∥∥∥ m∑
j=1

‖bj(T (bsc, Xbsc))− bj(T (bsc, Ybsc))‖2
∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤ p√
p− 1

Lb

√
m

(∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

. (IV.56)

We insert inequalities (IV.52), (IV.32), (IV.53), (IV.54), (IV.55), and (IV.56) into inequal-
ity (IV.51), and thus, we have in total

‖X − Y ‖Sp([t0−τ,T ]×Ω;Rd)

≤
(
2Lt,a
3

(
1 + ‖X‖2

S(γa∨1)p([t0−τ,T ]×Ω;Rd)

) γa
2
√
T − t0

+
pLt,b

√
m√

2
√
p− 1

(
1 + ‖X‖2

S(γb∨1)p([t0−τ,T ]×Ω;Rd)

) γb
2

+

(
2La

3

√
T − t0 +

pLb
√
m√

2
√
p− 1

)(
LξD + C1(D + 1)

))√
T − t0

√
h

+

(
La

√
T − t0 +

pLb
√
m√

p− 1

)(∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

.

(IV.57)
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It follows by inequality (II.6) that

‖X − Y ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 2

(
2Lt,a
3

(
1 + ‖X‖2

S(γa∨1)p([t0−τ,T ]×Ω;Rd)

) γa
2
√
T − t0

+
pLt,b

√
m√

2
√
p− 1

(
1 + ‖X‖2

S(γb∨1)p([t0−τ,T ]×Ω;Rd)

) γb
2

+

(
2La

3

√
T − t0 +

pLb
√
m√

2
√
p− 1

)(
LξD + C1(D + 1)

))2

(T − t0)h

+ 2

(
La

√
T − t0 +

pLb
√
m√

p− 1

)2 ∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds,

and Gronwall’s Lemma II.7 yields

‖X − Y ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 2

(
2Lt,a
3

(
1 + ‖X‖2

S(γa∨1)p([t0−τ,T ]×Ω;Rd)

) γa
2
√
T − t0

+
pLt,b

√
m√

2
√
p− 1

(
1 + ‖X‖2

S(γb∨1)p([t0−τ,T ]×Ω;Rd)

) γb
2

+

(
2La

3

√
T − t0 +

pLb
√
m√

2
√
p− 1

)(
LξD + C1(D + 1)

))2

(T − t0)h

× e2
(
La

√
T−t0+

pLb
√
m√

p−1

)2
(T−t0).

(IV.58)

Hence, there exists a constant CEuler > 0 such that

‖X − Y h‖Sp([t0−τ,T ]×Ω;Rd) ≤ CEuler
√
h

for all h ∈ ]0, T−t0], and the family of Euler-Maruyama approximation (Y h)h∈]0,T−t0] converges
in Sp([t0 − τ, T ]× Ω;Rd) to solution X of SDDE (II.1) as h→ 0.

Proof of Theorem IV.9

In order to show the convergence of the Milstein scheme, we have to ensure the boundedness
of its moments first.

Lemma IV.16
Let the Borel-measurable coefficients of SDDE (II.1) fulfill Assumption IV.8 iv), where bj(t, t−
τ1, . . . , t − τD, ·, . . . , ·) ∈ C1(Rd×(D+1);Rd) and its spatial partial derivatives are bounded by
a constant Lb > 0 for all t ∈ [t0, T ] and j ∈ {1, . . . ,m}. That is

∥∥∂xi
l
bj(t, t − τ1, . . . , t −

τD, x0, x1, . . . , xD)
∥∥ ≤ Lb for all t ∈ [t0, T ], i, j ∈ {1, . . . , d}, and xl ∈ Rd, where l ∈

{0, 1, . . . , D}. Further, let initial condition ξ belong to Sp([t0−τ, t0]×Ω;Rd) for some p ∈ [2,∞[.

Considering Milstein approximation Y from formula (IV.33) regarding SDDE (II.1), it holds

1 + ‖Y ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤
(
1 + 2‖ξ‖2

Sp([t0−τ,t0]×Ω;Rd)

)
e2
(
Ka

√
T−t0+

p√
p−1

Kb
√
m+pLbm

√
dKb(D+1)

√
T−t0

)2
(T−t0).
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Proof. The proof is similar to proof of Lemma IV.15. Therefore, we only consider the part that
changes here. Inside the brackets of the right-hand side of inequality (IV.48), the term

D∑
l=0

∥∥∥∥ m∑
j1=1

∫ ·

t0

d∑
i=1

∂xi
l
bj1(T (bsc, Ybsc))

×
m∑

j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T ((bsc − τl) ∨ t0, Y(bsc−τl)∨t0))dW j2

u dW j1
s

∥∥∥∥
Sp([t0−τ,tn]×Ω;Rd)

has to be added. Using Theorem II.6 twice, the boundedness of the derivatives ∂xi
l
bj1 , Assump-

tion IV.8 iv), and the Cauchy-Schwarz inequality, we obtain, similarly to inequalities (II.26)
and (IV.50), the estimate

D∑
l=0

∥∥∥∥ m∑
j1=1

∫ ·

t0

d∑
i=1

∂xi
l
bj1(T (bsc, Ybsc))

×
m∑

j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T ((bsc − τl) ∨ t0, Y(bsc−τl)∨t0))dW j2

u dW j1
s

∥∥∥∥
Sp([t0−τ,tn]×Ω;Rd)

≤ p√
p− 1

D∑
l=0

(∫ tn

t0

∥∥∥∥ m∑
j1=1

∥∥∥∥ d∑
i=1

∂xi
l
bj1(T (bsc, Ybsc))

×
m∑

j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T ((bsc − τl) ∨ t0, Y(bsc−τl)∨t0))dW j2

u

∥∥∥∥2∥∥∥∥
L

p
2 (Ω;R)

ds
) 1

2

≤ pLb
√
m
√
d√

p− 1

D∑
l=0

(∫ tn

t0

∥∥∥∥ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bj(T ((bsc−τl)∨t0, Y(bsc−τl)∨t0))dW j

u

∥∥∥∥2
Lp(Ω;Rd)

ds
)1

2

≤ pLbm
√
dKb(D + 1)

√
T − t0

(∫ tn

t0

1 + ‖Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

.

We add this additional term to the right-hand side of inequality (IV.57), and then, similarly to
inequality (IV.58), Gronwall’s inequality yields the assertion.

Proof of Theorem IV.9. Consider the difference of the SDDE’s solution X and the correspond-
ing Milstein approximation Y , that is

Xt − Yt =



0 if t ∈ [t0 − τ, t0] and∫ t

t0

a(T (s,Xs))− a(T (bsc, Ybsc))ds

+
m∑
j=1

∫ t

t0

bj(T (s,Xs))− bj(T (bsc, Ybsc))dW j
s

−
D∑
l=0

m∑
j1=1

∫ t

t0

d∑
i=1

∂xi
l
bj1(T (bsc, Ybsc))

×
m∑

j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j2(T ((bsc − τl) ∨ t0, Y(bsc−τl)∨t0))dW j2

u dW j1
s

if t ∈ ]t0, T ]

(IV.59)
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for all t ∈ [t0 − τ, T ] P-almost surely. Inserting expansions (IV.37) and (IV.39) into for-
mula (IV.59) and applying the triangle inequality, we have

‖X − Y ‖Sp([t0−τ,T ]×Ω;Rd) ≤
14∑
r=1

Rr (IV.60)

where

R1 :=

∥∥∥∥∫ ·

t0

a(T (bsc, Xbsc))− a(T (bsc, Ybsc))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R2 :=

∥∥∥∥∫ ·

t0

a(T (s,Xs))− a(T (bsc, Xs))ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R3 :=
D∑
l=1

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))(ξ

i
(s−τl)∧t0 − ξi(bsc−τl)∧t0)ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R4 :=
D∑
l=0

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))

∫ (s−τl)∨t0

(bsc−τl)∨t0
ai(T (u,Xu))duds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R5 :=
D∑
l=0

Rl
5

:=

D∑
l=0

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, Xbsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xu))dW j

u ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

(IV.61)

R6 :=
D∑

l1,l2=0

∥∥∥∥∫ ·

t0

d∑
i1,i2=1

∫ 1

0
∂
x
i1
l1

∂
x
i2
l2

a(T (bsc, Xbsc + θ(Xs −Xbsc)))(1− θ)dθ

× (Xi1
s−τl1

−Xi1
bsc−τl1

)(Xi2
s−τl2

−Xi2
bsc−τl2

)ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R7 :=

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (bsc, Xbsc))− bj(T (bsc, Ybsc))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R8 :=

∥∥∥∥ m∑
j=1

∫ ·

t0

bj(T (s,Xs))− bj(T (bsc, Xs))dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R9 :=

D∑
l=1

∥∥∥∥ m∑
j=1

∫ ·

t0

d∑
i=1

∂xi
l
bj(T (bsc, Xbsc))(ξ

i
(s−τl)∧t0 − ξi(bsc−τl)∧t0)dW j

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,
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R10 :=

D∑
l=0

∥∥∥∥ m∑
j=1

∫ ·

t0

d∑
i=1

∂xi
l
bj(T (bsc, Xbsc))

∫ (s−τl)∨t0

(bsc−τl)∨t0
ai(T (u,Xu))dudW j

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R11 :=
D∑
l=0

∥∥∥∥ m∑
j1=1

∫ ·

t0

m∑
j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
dW j2

u

×
d∑

i=1

(
∂xi

l
bj1(T (bsc, Xbsc))b

i,j2(T ((bsc − τl) ∨ t0, X(bsc−τl)∨t0))

− ∂xi
l
bj1(T (bsc, Ybsc))b

i,j2(T ((bsc − τl) ∨ t0, Y(bsc−τl)∨t0))
)

dW j1
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R12 :=

D∑
l=0

∥∥∥∥ m∑
j1=1

∫ ·

t0

d∑
i=1

∂xi
l
bj1(T (bsc, Xbsc))

m∑
j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0

(
bi,j2(T (u,Xu))

− bi,j2(T ((bsc − τl) ∨ t0, Xu))
)

dW j2
u dW j1

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

R13 :=

D∑
l=0

∥∥∥∥ m∑
j1=1

∫ ·

t0

d∑
i=1

∂xi
l
bj1(T (bsc, Xbsc))

m∑
j2=1

∫ (s−τl)∨t0

(bsc−τl)∨t0

(
bi,j2(T ((bsc − τl) ∨ t0, Xu))

− bi,j2(T ((bsc − τl) ∨ t0, X(bsc−τl)∨t0))
)

dW j2
u dW j1

s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

and

R14 :=

∥∥∥∥ m∑
j=1

∫ ·

t0

D∑
l1,l2=0

d∑
i1,i2=1

∫ 1

0
∂
x
i1
l1

∂
x
i2
l2

bj(T (bsc, Xbsc + θ(Xs −Xbsc)))(1− θ)dθ

× (Xi1
s−τl1

−Xi1
bsc−τl1

)(Xi2
s−τl2

−Xi2
bsc−τl2

)dW j
s

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

.

In this proof, we estimate the terms Rr, r ∈ {1, . . . , 14}, separately and show that there exist
constants C1, C2 > 0 such that

‖X − Y ‖Sp([t0−τ,T ]×Ω;Rd) ≤ C1h+ C2

(∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

. (IV.62)

Considering inequality (IV.62) as being satisfied and using inequality (II.6), we would obtain

‖X − Y ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 2C2
1h

2 + 2C2
2

∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds, (IV.63)

and the assertion of Theorem IV.9 follows by Gronwall’s Lemma II.7.

In the following, we estimate the terms Rr, r ∈ {1, . . . , 14}, from inequality (IV.60), where we
proceed in lexicographical order.
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In order to keep the overview, we provide the following Table IV.17. It contains the number and
the page number of the inequality where the estimate of term Rr, r ∈ {1, . . . , 14}, is stated as
well as the information whether the term is bounded by a constant times h or a constant times( ∫ T

t0
‖X − Y ‖2

Sp([t0−τ,s]×Ω;Rd)

) 1
2 . The latter information indicates whether term Rr contributes

to constant C1 or constant C2 in inequality (IV.62).

The first term R1 is already estimated in inequality (IV.53), which is utilized the proof of
convergence of the Euler-Maruyama scheme. It equally holds

R1 ≤ La

√
T − t0

(∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

. (IV.64)

Similarly to inequality (IV.52), we obtain, using Assumption IV.8 vi) and

∫ T

t0

(s− bsc)ds =
N−1∑
n=0

∫ tn+1

tn

(s− tn)ds =
N−1∑
n=0

1

2
(tn+1 − tn)

2

≤ 1

2
h

N−1∑
n=0

(tn+1 − tn) =
1

2
(T − t0)h,

(IV.65)

Table IV.17. Consider the terms Rr, r ∈ {1, . . . , 14}, of the right-hand side of inequality (IV.60). The number
and the page number of the inequality stating the estimate of term Rr are presented. The last two columns
represent whether term Rr is estimated by a constant times h or a constant times

( ∫ T

t0
‖X−Y ‖2Sp([t0−τ,s]×Ω;Rd)

) 1
2 .

The latter indicates whether term Rr contributes to constant C1 or C2 in inequality (IV.62).

Inequality Page h
( ∫ T

t0
‖X − Y ‖2

Sp([t0−τ,s]×Ω;Rd)

) 1
2

R1 (IV.64) 89 X

R2 (IV.66) 90 X

R3 (IV.68) 90 X

R4 (IV.69) 90 X

R0
5 (IV.79) 93 X

Rl
5 (IV.145) 118 X

R5 (IV.146) 118 X

R6 (IV.153) 121 X

R7 (IV.154) 121 X

R8 (IV.155) 122 X

R9 (IV.157) 122 X

R10 (IV.158) 122 X

R11 (IV.166) 125 X X

R12 (IV.169) 126 X

R13 (IV.170) 127 X

R14 (IV.171) 127 X
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that

R2 ≤ Lt,a
(
1 + ‖X‖2

S(γa∨1)p([t0−τ,T ]×Ω;Rd)

) γa
2
1

2
(T − t0)h. (IV.66)

The estimate of term R3 makes use of the Lipschitz continuity of the drift coefficient a, see
Assumption IV.8 ii). Due to the Lipschitz continuity, we have ‖∂xi

l
a(T (bsc, Xbsc(ω)))‖ ≤ La for

all (s, ω) ∈ [t0, T ] × Ω. This inequality will be frequently used in the following, only with the
reference to the Lipschitz condition in Assumption IV.8 ii). Moreover, the Cauchy-Schwarz
inequality implies the inequality

d∑
i=1

|xi| ≤
√
d‖x‖ (IV.67)

for x ∈ Rd that is also often used below. Using the triangle inequality, Assumption IV.8 ii),
inequality (IV.67), Assumption IV.8 vii), and inequality (IV.65), we obtain

R3 ≤
D∑
l=1

∫ T

t0

∥∥∥∥ d∑
i=1

‖∂xi
l
a(T (bsc, Xbsc))‖|ξi(s−τl)∧t0 − ξi(bsc−τl)∧t0 |

∥∥∥∥
Lp(Ω;R)

ds

≤ La

√
d

D∑
l=1

∫ T

t0

‖ξ(s−τl)∧t0 − ξ(bsc−τl)∧t0‖Lp(Ω;Rd) ds

≤ La

√
dLξD

1

2
(T − t0)h. (IV.68)

Similarly to previous inequality (IV.68) and inequality (II.25), it holds

R4 ≤ La

√
d

D∑
l=0

∫ T

t0

∥∥∥∥∫ (s−τl)∨t0

(bsc−τl)∨t0
a(T (u,Xu))du

∥∥∥∥
Lp(Ω;Rd)

ds

≤ La

√
dKa(D + 1)

(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
1

2
(T − t0)h, (IV.69)

where the linear growth condition in Assumption IV.8 iv) is used.

Now, we consider with term R5. As indicated in Section IV.2, a greater effort needs to be
spend on the term R5 in order to estimate it properly. In the following, we consider term R0

5

and the terms Rl
5 for l ∈ {1, . . . , D} separately. Starting with term R0

5, the triangle inequality
initially implies

R0
5 ≤

∥∥∥∥ sup
t∈[t0,T ]

∥∥∥∥ N−1∑
n=0

tn+1≤t

∫ tn+1

tn

d∑
i=1

∂xi
0
a(T (tn, Xtn))

m∑
j=1

∫ s

tn

bi,j(T (u,Xu))dW j
u ds

∥∥∥∥∥∥∥∥
Lp(Ω;R)

+

∥∥∥∥ sup
t∈[t0,T ]

∥∥∥∥∫ t

btc

d∑
i=1

∂xi
0
a(T (btc, Xbtc))

m∑
j=1

∫ s

bsc
bi,j(T (u,Xu))dW j

u ds
∥∥∥∥∥∥∥∥

Lp(Ω;R)
,

(IV.70)

cf. [78, Inequality (10.8.4)]. Consider the second term first. Using the triangle inequality, As-
sumption IV.8 ii), inequality (IV.67), and the Cauchy-Schwarz inequality, we obtain, similarly
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to [78, Inequality (10.8.6)], that

∥∥∥∥ sup
t∈[t0,T ]

∥∥∥∥∫ t

btc

d∑
i=1

∂xi
0
a(T (btc, Xbtc))

m∑
j=1

∫ s

bsc
bi,j(T (u,Xu))dW j

u ds
∥∥∥∥∥∥∥∥

Lp(Ω;R)

≤ La

√
d

∥∥∥∥ sup
t∈[t0,T ]

∫ t

btc

∥∥∥∥ m∑
j=1

∫ s

bsc
bj(T (u,Xu))dW j

u

∥∥∥∥ds
∥∥∥∥
Lp(Ω;R)

≤ La

√
d

∥∥∥∥ sup
t∈[t0,T ]

(∫ t

btc

∥∥∥∥ m∑
j=1

∫ s

bsc
bj(T (u,Xu))dW j

u

∥∥∥∥2 ds
) 1

2√
t− btc

∥∥∥∥
Lp(Ω;R)

≤ La

√
d

∥∥∥∥(∫ T

t0

∥∥∥∥ m∑
j=1

∫ s

bsc
bj(T (u,Xu))dW j

u

∥∥∥∥2 ds
) 1

2
∥∥∥∥
Lp(Ω;R)

√
h

= La

√
d

∥∥∥∥∫ T

t0

∥∥∥∥ m∑
j=1

∫ s

bsc
bj(T (u,Xu))dW j

u

∥∥∥∥2 ds
∥∥∥∥ 1

2

L
p
2 (Ω;R)

√
h

≤ La

√
d

(∫ T

t0

∥∥∥∥ m∑
j=1

∫ s

bsc
bj(T (u,Xu))dW j

u

∥∥∥∥2
Lp(Ω;Rd)

ds
) 1

2√
h. (IV.71)

We consider the integrand of the integral over time, which is further estimated in the following.
At first, Zakai’s inequality from Theorem II.6 implies

∥∥∥∥ m∑
j=1

∫ s

bsc
bj(T (u,Xu))dW j

u

∥∥∥∥2
Lp(Ω;Rd)

≤ (p− 1)

∫ s

bsc

∥∥∥∥ m∑
j=1

‖bj(T (u,Xu))‖2
∥∥∥∥
L

p
2 (Ω;R)

du

(IV.72)

for all s ∈ [t0, T ]. Taking the linear growth condition of diffusion coefficient bj from Assump-
tion IV.8 iv) into account, it holds

∥∥∥∥ m∑
j=1

‖bj(T (u,Xu))‖2
∥∥∥∥
L

p
2 (Ω;R)

≤ K2
bm

∥∥∥∥ sup
l∈{0,1,...,D}

(
1 + ‖Xu−τl‖

2
)∥∥∥∥

L
p
2 (Ω;R)

≤ K2
bm

∥∥∥∥1 + sup
t∈[t0−τ,T ]

‖Xt‖2
∥∥∥∥
L

p
2 (Ω;R)

≤ K2
bm

(
1 +

∥∥∥∥ sup
t∈[t0−τ,T ]

‖Xt‖2
∥∥∥∥
L

p
2 (Ω;R)

)
= K2

bm
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

)
for all u ∈ [t0, T ]. Inserting this into inequality (IV.72), we obtain

∥∥∥∥ m∑
j=1

∫ s

bsc
bj(T (u,Xu))dW j

u

∥∥∥∥2
Lp(Ω;Rd)

≤ (p− 1)K2
bm
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

)
(s− bsc)

(IV.73)
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for all s ∈ [t0, T ]. Together with the inequalities (IV.71) and (IV.65), we get∥∥∥∥ sup
t∈[t0,T ]

∥∥∥∥∫ t

btc

d∑
i=1

∂xi
0
a(T (bsc, Xbsc))

m∑
j=1

∫ s

bsc
bi,j(T (u,Xu))dW j

u ds
∥∥∥∥∥∥∥∥

Lp(Ω;R)

≤ La

√
d
√
p− 1Kb

√
m
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2

(∫ T

t0

s− bsc ds
) 1

2√
h

≤ La

√
d
√
p− 1Kb

√
m
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2

1√
2

√
T − t0 h, (IV.74)

and thus, we found a desired estimate of order O(h) for the second term in inequality (IV.70).

Now, we continue with the first term in inequality (IV.70). At first, we have∥∥∥∥ sup
t∈[t0,T ]

∥∥∥∥ N−1∑
n=0

tn+1≤t

∫ tn+1

tn

d∑
i=1

∂xi
0
a(T (tn, Xtn))

m∑
j=1

∫ s

tn

bi,j(T (u,Xu))dW j
u ds

∥∥∥∥∥∥∥∥
Lp(Ω;R)

=

∥∥∥∥ sup
n∈{1,...,N}

∥∥∥∥ n−1∑
ν=0

∫ tν+1

tν

d∑
i=1

∂xi
0
a(T (tν , Xtν ))

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

∥∥∥∥∥∥∥∥
Lp(Ω;R)

.

(IV.75)

The time-discrete process( n−1∑
ν=0

∫ tν+1

tν

d∑
i=1

∂xi
0
a(T (tν , Xtν ))

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

)
n∈{1,...,N}

is discrete martingale in Lp(Ω;Rd) with respect to filtration (Ftn)n∈{1,...,N} as each summand
is Ftν+1/B(Rd)-measurable and as

E
[ ∫ tν+1

tν

d∑
i=1

∂xi
0
a(T (tν , Xtν ))

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

∣∣∣∣Ftν

]

=

d∑
i=1

∂xi
0
a(T (tν , Xtν ))E

[ ∫ tν+1

tν

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

∣∣∣∣Ftν

]
= 0

P-almost surely for all ν ∈ {0, 1, . . . , N − 1} by the stochastic integration by parts formula
based on Itô’s formula, cf. [64, Equation (3.13)], and properties of the stochastic integral.
Thus, the discrete Burkholder-type inequality in Theorem II.5 applies to the right-hand side of
equation (IV.75), and together with the triangle inequality, we obtain∥∥∥∥ sup

n∈{1,...,N}

∥∥∥∥ n−1∑
ν=0

∫ tν+1

tν

d∑
i=1

∂xi
0
a(T (tν , Xtν ))

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

∥∥∥∥∥∥∥∥
Lp(Ω;R)

≤ p√
p− 1

(N−1∑
ν=0

∥∥∥∥∫ tν+1

tν

d∑
i=1

∂xi
0
a(T (tν , Xtν ))

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

∥∥∥∥2
Lp(Ω;Rd)

)1
2

.

(IV.76)
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Next, we consider the Lp(Ω;Rd)-norms of the summands from the last inequality (IV.76) only.
Using the triangle inequality, the Lipschitz continuity of the drift coefficient from Assump-
tion IV.8 ii), inequality (IV.67), and the square root of inequality (IV.73), we obtain∥∥∥∥∫ tν+1

tν

d∑
i=1

∂xi
0
a(T (tν , Xtν ))

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

∥∥∥∥
Lp(Ω;Rd)

≤ La

√
d

∫ tν+1

tν

∥∥∥∥ m∑
j=1

∫ s

tν

bj(T (u,Xu))dW j
u

∥∥∥∥
Lp(Ω;Rd)

ds

≤ La

√
d
√
p− 1Kb

√
m
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2

∫ tν+1

tν

√
s− tν ds

= La

√
d
√
p− 1Kb

√
m
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
2

3
(tν+1 − tν)

3
2 . (IV.77)

Inserting this into inequality (IV.76) yields∥∥∥∥ sup
n∈{1,...,N}

∥∥∥∥ n−1∑
ν=0

∫ tν+1

tν

d∑
i=1

∂xi
0
a(T (tν , Xtν ))

m∑
j=1

∫ s

tν

bi,j(T (u,Xu))dW j
u ds

∥∥∥∥∥∥∥∥
Lp(Ω;R)

≤ p√
p− 1

La

√
d
√
p− 1Kb

√
m
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
2

3

(N−1∑
ν=0

(tν+1 − tν)
3

) 1
2

≤ p√
p− 1

La

√
d
√
p− 1Kb

√
m
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
2

3

√
T − t0 h, (IV.78)

and together with inequality (IV.74), it follows that

R0
5 ≤ La

√
d
√
p− 1Kb

√
m
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2

(2
3

p√
p− 1

+
1√
2

)√
T − t0 h.

(IV.79)

Now, let us consider term Rl
5 for l ∈ {1, . . . , D}. In order to overcome the problem of the

missing discrete martingale property, the Malliavin calculus is used.

Recall that initial condition ξ : [t0 − τ, t0] × Ω → Rd is a stochastic process, where ξt is
Ft0/B(Rd)-measurable for all t ∈ [t0 − τ, t0] in particular. Since the increments Wt −Wt0 , t ∈
[t0, T ], of the Wiener process are independent of Ft0 , process ξ is independent of sub-σ-algebra
G ⊆ F, see equation (II.2) where G := GT and cf. Chapter III. But this just means that ξt
is not G/B(Rd)-measurable for any t ∈ [t0 − τ, t0] in general. Indeed, consider the preimage
A = ξ−1

t (B) for any B ∈ B(Rd) and t ∈ [t0 − τ, t0]. Since ξt in independent of G, it holds

P[A ∩ C] = P[A]P[C] (IV.80)

for all C ∈ G. Assume for a moment that ξt is G/B(Rd)-measurable. Then, we would have
A ∈ G and equation (IV.80) would imply

P[A] =
(
P[A]

)2 (IV.81)

for all preimages A = ξ−1
t (B), where B ∈ B(Rd) and t ∈ [t0− τ, t0]. However, equation (IV.81)

only holds true if P[A] = 0 or P[A] = 1. But this would mean that ξ is just a modification of
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a deterministic process, which is a contradiction to our assumption on initial condition ξ, see
Assumption IV.8 vii).

Due to these considerations, solutionX of SDDE (II.1) with initial condition ξ is also not B([t0−
τ, T ])⊗ G/B(Rd)-measurable in general. Thus, Xt does not belong to the space Dp(Ω;Rd) for
any t ∈ [t0, T ], and the Malliavin calculus cannot be used directly.

In order to make techniques from the Malliavin calculus applicable, we use [107, Lemma III.1.3],
which we here represent in case of SDDEs.

Lemma IV.18 (Cf. [107, Lemma III.1.3])
Let the Borel-measurable coefficients a and bj, j ∈ {1, . . . ,m}, of SDDE (II.1) fulfill Assump-
tion IV.8 ii) and Assumption IV.8 iv). Consider the solution Xζ of SDDE (II.1) with respect
to initial condition ζ that belongs to Sp([t0 − τ, t0] × Ω;Rd) for some p ∈ [2,∞[. Further, let
initial condition ζ be a simple random variable of the form

ζ =

K∑
k=1

zk1Ak
,

where zk ∈ C([t0 − τ, t0];Rd), Ak ∈ Ft0 with Ak ∩Al = ∅ for k 6= l,
⋃K

k=1Ak = Ω, and K ∈ N.

Then, there exists an N ∈ Ft0 with P[N ] = 0 such that

Xζ
t (ω) =

K∑
k=1

Xzk
t (ω)1Ak

(ω)

for all (t, ω) ∈ [t0 − τ, T ] × (Ω \ N ), where Xzk is the unique strong solution of SDDE (II.1)
regarding initial condition zk.

We remark at this point that the solution of SDDE (II.1) is in general, opposed to SODEs, not
linear with respect to its initial condition, cf. [108].

To be able to use Lemma IV.18, the initial condition has to be a simple random variable
that takes values in the space of continuous functions. In the following, we describe how to
approximate initial condition ξ by a sequence of such random variables on whose corresponding
solutions we then can apply Lemma IV.18.

Consider initial condition ξ from Assumption IV.8 vii). As P-almost all realizations of ξ are
continuous, there exists an N ∈ Ft0 with P[N ] = 0 such that ξ(ω) is continuous for all
ω ∈ Ω \ N . Let us define a process ξ̃ ∈ Sp([t0 − τ, t0]× Ω;Rd) by

ξ̃t(ω) :=

{
ξt(ω) if (t, ω) ∈ [t0 − τ, t0]× (Ω \ N ) and
0 if (t, ω) ∈ [t0 − τ, t0]×N .

(IV.82)

Then, the processes ξ and ξ̃ are indistinguishable, and it holds ξ̃(ω) ∈ C([t0 − τ, t0];Rd) for all
ω ∈ Ω. Moreover, the solutionsXξ andX ξ̃ of SDDE (II.1) with respect to their initial conditions
ξ and ξ̃, respectively, are also indistinguishable. This follows from Markov’s inequality and
Lemma II.10.
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Since all realizations of ξ̃ are continuous, there exists a sequence (ζr)r∈N of simple random
variables ζr =

∑Kr
k=1 z

r
k1A

r
k

where zrk ∈ C([t0 − τ, t0];Rd), Ar
k ∈ Ft0 with Ar

k ∩Ar
l = ∅ for k 6= l,⋃K

k=1A
r
k = Ω, and Kr ∈ N such that

sup
t∈[t0−τ,t0]

‖ζrt (ω)‖ ≤ sup
t∈[t0−τ,t0]

‖ξ̃t(ω)‖ (IV.83)

and

lim
r→∞

sup
t∈[t0−τ,t0]

‖ζrt (ω)− ξ̃t(ω)‖ = 0 (IV.84)

for all ω ∈ Ω. This can be seen as follows.

For t ∈ [t0 − τ, t0], define the projections πt : (Rd)[t0−τ,t0] → Rd by πt(x) = x(t) for all maps
x : [t0 − τ, t0] → Rd. Since ξ̃ is B([t0 − τ, t0]) ⊗ Ft0/B(Rd)-measurable in particular, random
variable πt(ξ̃) = ξ̃t is Ft0/B(Rd)-measurable for all t ∈ [t0−τ, t0]. Then, [43, Satz 1.3.4] implies
that ξ̃ can be viewed as an Ft0/σ({πt : t ∈ [t0 − τ, t0]})-measurable random variable. Further,
it holds for the Borel-σ-algebra of C([t0 − τ, t0];Rd) that

B(C([t0 − τ, t0];Rd)) = C([t0 − τ, t0];Rd) ∩ σ({πt : t ∈ [t0 − τ, t0]}), (IV.85)

see e. g. [43, Bemerkung 7.2.8 (e)] or [53, Beispiel 1.24]. As ξ̃(ω) ∈ C([t0 − τ, t0];Rd) for all
ω ∈ Ω, the stochastic process ξ̃ can be viewed as an Ft0/B(C([t0 − τ, t0];Rd))-measurable
variable by equation (IV.85).

Then, the existence of such sequence (ζr)r∈N follows from [61, Corollary 1.1.7]. Since all
realizations of ζr are continuous, ζr is B([t0 − τ, t0]) ⊗ Ft0/B(Rd)-measurable for all r ∈ N,
see [75, Proposition 1.1.13]. Using these considerations and Lemma IV.18, we can show the
following lemma.

Lemma IV.19
Let the Borel-measurable coefficients a and bj, j ∈ {1, . . . ,m}, of SDDE (II.1) fulfill Assump-
tion IV.8 ii) and Assumption IV.8 iv), where a(t, t− τ1, . . . , t− τD, ·, . . . , ·) ∈ C1(Rd×(D+1);Rd)
for all t ∈ [t0, T ]. Further, let initial condition ξ belong to Sp([t0 − τ, t0] × Ω;Rd) for some
p ∈ [2,∞[ and P-almost surely have continuous realizations.

Then, there exists a sequence (ζr)r∈N of simple random variables ζr =
∑Kr

k=1 z
r
k1A

r
k
, where

zrk ∈ C([t0 − τ, t0];Rd), Ar
k ∈ Ft0 with Ar

k ∩ Ar
l = ∅ for k 6= l,

⋃Kr
k=1A

r
k = Ω, and Kr ∈ N such

that formulas (IV.83) and (IV.84) are fulfilled. Further, it holds

Rl
5 = lim

r→∞

∥∥∥∥∥
Kr∑
k=1

1Ar
k

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

×
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

∥∥∥∥∥
Lp(Ω;R)

(IV.86)

for l ∈ {1, . . . , D}.
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Proof. Consider initial condition ξ̃ defined in equation (IV.82). Since the stochastic processes
ξ and ξ̃ are indistinguishable, the solutions Xξ and X ξ̃ are also indistinguishable as mentioned
above. Thus, we can write

Rl
5 =

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, X ξ̃

bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

(IV.87)

where we switched Xξ and X ξ̃ compared to formula (IV.61). In the following, we show

Rl
5 = lim

r→∞

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, Xζr

bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xζr

u ))dW j
u ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

(IV.88)

where sequence (ζr)r∈N is specified in the statement of this lemma. The existence of such a
sequence (ζr)r∈N has already been discussed prior to this lemma. Considering the difference of
the arguments in the Sp([t0, T ]× Ω;Rd)-norms in equation (IV.87) and (IV.88), it holds

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, Xζr

bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xζr

u ))dW j
u

− ∂xi
l
a(T (bsc, X ξ̃

bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

=

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, Xζr

bsc))

×
( m∑

j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xζr

u ))dW j
u −

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

)

+

d∑
i=1

(
∂xi

l
a(T (bsc, Xζr

bsc))− ∂xi
l
a(T (bsc, X ξ̃

bsc))
)

×
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

,

(IV.89)

where we subtracted and added the term

d∑
i=1

∂xi
l
a(T (tn, X

ζr

tn ))

m∑
j=1

∫ (s−τl)∨t0

(tn−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u .

Thence, equation (IV.88) follows if the left-hand side of equation (IV.89) converges to zero as
r → ∞.

Applying the triangle inequality to the right-hand side of equation (IV.89), using the global
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Lipschitz continuity of the drift coefficient and using inequality (IV.67), we have∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, Xζr

bsc))
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xζr

u ))dW j
u

− ∂xi
l
a(T (bsc, X ξ̃

bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u ds

∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ La

√
d
N−1∑
n=0

∫ tn+1

tn

∥∥∥∥ m∑
j=1

∫ (s−τl)∨t0

(tn−τl)∨t0
bj(T (u,Xζr

u ))− bj(T (u,X ξ̃
u))dW j

u

∥∥∥∥
Lp(Ω;Rd)

ds

+
N−1∑
n=0

∫ tn+1

tn

∥∥∥∥ d∑
i=1

‖∂xi
l
a(T (tn, X

ζr

tn ))− ∂xi
l
a(T (tn, X

ξ̃
tn))‖

×
∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(tn−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

∣∣∣∣∥∥∥∥
Lp(Ω;R)

ds.

(IV.90)

In order to show convergence to zero of the right-hand side of inequality (IV.90) above as
r → ∞, we need the following considerations.

According to inequality (IV.83) and the convergence in formula (IV.84), the dominated con-
vergence theorem implies

lim
r→∞

‖ζr − ξ̃‖Sp([t0−τ,t0]×Ω;Rd) = 0.

Then, using Lemma II.10, we obtain

lim
r→∞

‖Xζr −X ξ̃‖Sp([t0−τ,T ]×Ω;Rd) = 0. (IV.91)

Due to the convergence in equation (IV.91) and the Lipschitz continuity of bj from Assump-
tion IV.8 ii), it follows

lim
r→∞

max
j∈{1,...,m}

‖bj(T (·, Xζr

· ))− bj(T (·, X ξ̃
· ))‖Sp([t0,T ]×Ω;Rd) = 0. (IV.92)

Further, we show

lim
r→∞

∥∥∥∥ d∑
i=1

‖∂xi
l
a(T (t,Xζr

t ))− ∂xi
l
a(T (t,X ξ̃

t ))‖
∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

∣∣∣∣∥∥∥∥
Lp(Ω;R)

= 0

(IV.93)

for all s ∈ [t0, T ] in the sequel. The convergence in equation (IV.91) implies

sup
t∈[t0−τ,T ]

‖Xζr

t −X ξ̃
t ‖ → 0

in probability as r → ∞, that is

lim
r→∞

P
[{
ω ∈ Ω : sup

t∈[t0−τ,T ]
‖Xζr

t (ω)−X ξ̃
t (ω)‖ > ε

}]
= 0
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for all ε > 0, [67, Theorem 17.2]. By the continuity of partial derivative ∂xi
l
a, we obtain

lim
r→∞

P
[{
ω ∈ Ω : ‖∂xi

l
a(T (t,Xζr

t (ω)))− ∂xi
l
a(T (t,X ξ̃

t (ω)))‖ > ε

}]
= 0

for all ε > 0 and all t ∈ [t0, T ], see [67, Theorem 17.5]. Further, it even holds

lim
r→∞

P
[{
ω ∈ Ω :

d∑
i=1

‖∂xi
l
a(T (bsc, Xζr

bsc(ω)))− ∂xi
l
a(T (bsc, X ξ̃

bsc(ω)))‖

×
∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

∣∣∣∣(ω) > ε

}]
= 0

for all ε > 0 and all s ∈ [t0, T ]. If we have, in addition, the uniformly integrability to the power
of p of this sequence that converges to zero in probability, we obtain by Vitali’s convergence
theorem, see e. g. [38, p. 262] or [74, Proposition 4.12], the convergence in equation (IV.93).
Thus, we show the uniformly integrability in the following. The Lipschitz continuity of drift
coefficient a yields

‖∂xi
l
a(T (t,Xζr

t (ω)))− ∂xi
l
a(T (t,X ξ̃

t (ω)))‖ ≤ 2La (IV.94)

for all (t, ω) ∈ [t0, T ]×Ω. Moreover, analogously to inequality (IV.73), Theorem II.6, the linear
growth of the diffusion coefficients, see Assumption IV.8 iv), and Theorem II.8 imply∥∥∥∥ m∑

j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

∥∥∥∥
Lp(Ω;R)

≤
√
p− 1Kb

√
m
(
1 + ‖X ξ̃‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2 (T − t0)

<∞

for all s ∈ [t0, T ]. According to this and inequality (IV.94), we obtain the uniform boundedness

sup
r∈N

sup
s∈[t0,T ]

∥∥∥∥ d∑
i=1

‖∂xi
l
a(T (bsc, Xζr

bsc))− ∂xi
l
a(T (bsc, X ξ̃

bsc))‖

×
∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

∣∣∣∣∥∥∥∥
Lp(Ω;R)

<∞,

(IV.95)

and hence, we have the uniform integrability of(( d∑
i=1

‖∂xi
l
a(T (bsc, Xζr

bsc))− ∂xi
l
a(T (bsc, X ξ̃

bsc))‖

×
∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

∣∣∣∣)p)
r∈N

for all s ∈ [t0, T ]. Then, the convergence in equation (IV.93) follows by Vitali’s convergence
theorem.
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Next, we consider the limit of the right-hand side in inequality (IV.90). Using Theorem II.6
and equation (IV.92), we infer for the limit of the first term on the right-hand side of inequal-
ity (IV.90) that

lim
r→∞

La

√
d
N−1∑
n=0

∫ tn+1

tn

∥∥∥∥ m∑
j=1

∫ (s−τl)∨t0

(tn−τl)∨t0
bj(T (u,Xζr

u ))− bj(T (u,X ξ̃
u))dW j

u

∥∥∥∥
Lp(Ω;Rd)

ds

≤ La

√
d
√
p− 1

N−1∑
n=0

lim
r→∞

∫ tn+1

tn

(∫ (s−τl)∨t0

(tn−τl)∨t0

m∑
j=1

‖bj(T (u,Xζr

u ))− bj(T (u,X ξ̃
u))‖2Lp(Ω;Rd)

du
) 1

2

ds

≤ La

√
d
√
p− 1

√
m(T − t0)

3
2 lim
r→∞

max
j∈{1,...,m}

‖bj(T (·, Xζr

· ))− bj(T (·, X ξ̃
· ))‖Sp([t0,T ]×Ω;Rd)

= 0. (IV.96)

Further, using the uniform boundedness in formula (IV.95), the dominated convergence theorem
and equation (IV.93) imply for the limit of the second term in inequality (IV.90) that

lim
r→∞

N−1∑
n=0

∫ tn+1

tn

∥∥∥∥ d∑
i=1

∥∥∥∂xi
l
a(T (tn, X

ζr

tn ))− ∂xi
l
a(T (tn, X

ξ̃
tn))
∥∥∥

×
∣∣∣∣ m∑
j=1

∫ (s−τl)∨t0

(tn−τl)∨t0
bi,j(T (u,X ξ̃

u))dW j
u

∣∣∣∣∥∥∥∥
Lp(Ω;R)

ds

= 0.

(IV.97)

According to the convergence in formulas (IV.96) and (IV.97), the right-hand side of inequal-
ity (IV.90) converges to zero as r → ∞, and hence, equation (IV.88) holds true.

We now show the equivalence of formulas (IV.86) and (IV.88) by applying Lemma IV.18 to
solution Xζr in formula (IV.88). In the following, we frequently use that

f

( Kr∑
k=1

1Ar
k
xrk

)
=

Kr∑
k=1

1Ar
k
f(xrk) (IV.98)

for functions f , where xrk is in the domain of f , cf. [107, p. 50]. Using formula (IV.98),
Lemma IV.18 implies

∂xi
l
a(T (tn, X

ζr

tn )) =

Kr∑
k=1

∂xi
l
a(T (tn, X

zrk
tn ))1Ar

k
(IV.99)

for n ∈ {0, 1, . . . , N} P-almost surely and

m∑
j=1

∫ (s−τl)∨t0

(tn−τl)∨t0
bi,j(T (u,Xζr

u ))dW j
u =

Kr∑
k=1

m∑
j=1

∫ (s−τl)∨t0

(tn−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u 1Ar
k

(IV.100)

for all s ∈ [tn, T ] with n ∈ {0, 1, . . . , N} P-almost surely. Inserting equations (IV.99) and
(IV.100) into formula (IV.88) and using that 1Ar

k
· 1Ar

l
= 0 if k 6= l, we further obtain for
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the Euclidean norm of the argument of the Sp([t0, T ] × Ω;Rd)-norm in formula (IV.88) by
formula (IV.98) with f(·) = ‖·‖ that

∥∥∥∥∫ t

t0

d∑
i=1

∂xi
l
a(T (bsc, Xζr

bsc))
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xζr

u ))dW j
u ds

∥∥∥∥
=

Kr∑
k=1

1Ar
k

∥∥∥∥∫ t

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u ds
∥∥∥∥

(IV.101)

for all t ∈ [t0, T ] P-almost surely. Since zrk ∈ C([t0 − τ, t0];Rd) is deterministic, the solution
Xzrk and thus also the Euclidean norm on the right-hand side of equation (IV.101) above are
independent of Ft0 . Moreover, random variable 1Ar

k
is an Ft0-measurable as Ar

k ∈ Ft0 . We now
insert equation (IV.101) into formula (IV.88). Using formula (IV.98), we infer by properties of
the conditional expectation that

Rl
5 = lim

r→∞

(
E
[
E
[

sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

d∑
i=1

∂xi
l
a(T (bsc, Xζr

bsc))

×
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,Xζr

u ))dW j
u ds

∥∥∥∥p∣∣∣∣Ft0

]]) 1
p

= lim
r→∞

(
E
[
E
[

sup
t∈[t0,T ]

( Kr∑
k=1

1Ar
k

∥∥∥∥∫ t

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

×
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u ds
∥∥∥∥)p∣∣∣∣Ft0

]]) 1
p

= lim
r→∞

(
E
[ Kr∑
k=1

1Ar
k
E
[

sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

×
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u ds
∥∥∥∥p∣∣∣∣Ft0

]]) 1
p

= lim
r→∞

(
E
[ Kr∑
k=1

1Ar
k
E
[

sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

×
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u ds
∥∥∥∥p]]) 1

p

.

(IV.102)

The inner expectation on the right-hand side of equation (IV.102) above is just the Sp([t0, T ]×
Ω;Rd)-norm to the power of p, and thus, we have

Rl
5 = lim

r→∞

(
E
[ Kr∑
k=1

1Ar
k

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

×
m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u ds
∥∥∥∥p
Sp([t0,T ]×Ω;Rd)

]) 1
p

.

(IV.103)
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Using further that(
E
[ Kr∑
k=1

1Ar
k
cpk

]) 1
p

=

(
E
[( Kr∑

k=1

1Ar
k
ck

)p]) 1
p

=

∥∥∥∥ Kr∑
k=1

1Ar
k
ck

∥∥∥∥
Lp(Ω;R)

for any ck ∈ R with ck ≥ 0 by formula (IV.98), equation (IV.86) finally follows from equa-
tion (IV.103).

Considering equation (IV.86) in Lemma IV.19, we separated the terms that are Ft0-measurable
from those that are independent of σ-algebra Ft0 . To be more precise, the stochastic pro-
cess inside the Sp([t0, T ] × Ω;Rd)-norm is not only independent of σ-algebra Ft0 , it is rather
B([t0, T ])⊗G/B(Rd)-measurable. Thus, we have the necessary G-measurability, which is needed
in order to apply techniques from the Malliavin calculus, cf. Chapter III.

In order to prove that term Rl
5 is of order O(h) for l ∈ {1, . . . , D} as h → 0, we consider the

term ∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

(IV.104)

from equation (IV.86) in Lemma IV.19 and prove that it converges for all zrk ∈ C([t0−τ, t0];Rd)
to zero with order O(h) as h→ 0.

As we mentioned in Section IV.2, cf. inequality (IV.43), the stochastic process inside the norm
of term (IV.104) is not a time-continuous nor, restricted to the points in time {t0, t1, . . . , tN}, a
time-discrete martingale or submartingale in general. Thus, neither the Burkholder inequality
nor Doob’s maximal inequality is applicable. In order to handle the supremum over time
without Doob’s martingale inequality, the so-called factorization method is used, cf. [3, p. 246]
and [4, p. 142] as well as [26] and [27, p. 128]. The method is based on the following lemma,
cf. [3, p. 246].

Lemma IV.20
For all ϑ ∈ ]0, 1[ and s, t ∈ R with s < t, it holds∫ t

s
(r − s)−ϑ(t− r)ϑ−1 dr = π

sin(πϑ)
.

Proof. According to [5, Theorem 1.1.4 and Theorem 1.2.1], Euler’s reflection formula states∫ 1

0
v−ϑ(1− v)ϑ−1 dv =

π

sin(πϑ)

for ϑ ∈ ]0, 1[. Then, for s, t ∈ R with s < t, the substitution v = r−s
t−s yields∫ 1

0
v−ϑ(1− v)ϑ−1 dv =

1

t− s

∫ t

s

(r − s

t− s

)−ϑ(
1− r − s

t− s

)ϑ−1
dr

=

∫ t

s
(r − s)−ϑ(t− r)ϑ−1 dr,

which completes the proof.

101



IV. Numerical Approximation of Stochastic Delay Differential Equations

Using this lemma, Fubini’s theorem leads to the following result.

Lemma IV.21
Let f ∈ L1([t0, T ];Rd) and p ∈ ]1,∞[. For all ϑ ∈ ]1p , 1[, it holds

sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

f(s)ds
∥∥∥∥p≤(sin(πϑ)

π

)p( p− 1

pϑ− 1

)p−1
(T − t0)

pϑ−1

∫ T

t0

∥∥∥∥∫ r

t0

(r − s)−ϑf(s)ds
∥∥∥∥pdr.

(IV.105)

Proof. The proof is inspired by [3, p. 246]. There, the Skorohod integral is considered instead
of the integral over time. Using Lemma IV.20 and Fubini’s theorem, we obtain

sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

f(s)ds
∥∥∥∥p = sup

t∈[t0,T ]

∥∥∥∥∫ t

t0

(∫ t

s
(r − s)−ϑ(t− r)ϑ−1 dr

)(
π

sin(πϑ)

)−1

f(s)ds
∥∥∥∥p

=
(sin(πϑ)

π

)p
sup

t∈[t0,T ]

∥∥∥∥∫ t

t0

∫ r

t0

(r − s)−ϑ(t− r)ϑ−1f(s)dsdr
∥∥∥∥p

=
(sin(πϑ)

π

)p
sup

t∈[t0,T ]

∥∥∥∥∫ t

t0

∫ r

t0

(r − s)−ϑf(s)ds(t− r)ϑ−1 dr
∥∥∥∥p.

Applying the triangle inequality and Hölder’s inequality, it follows

sup
t∈[t0,T ]

∥∥∥∥∫ t

t0

f(s)ds
∥∥∥∥p

≤
(sin(πϑ)

π

)p
sup

t∈[t0,T ]

(∫ t

t0

∥∥∥∥∫ r

t0

(r − s)−ϑf(s)ds
∥∥∥∥(t− r)ϑ−1 dr

)p

≤
(sin(πϑ)

π

)p
sup

t∈[t0,T ]

∫ t

t0

∥∥∥∥∫ r

t0

(r − s)−ϑf(s)ds
∥∥∥∥p dr

(∫ t

t0

(t− r)
p

p−1
(ϑ−1) dr

)p−1

=
(sin(πϑ)

π

)p( p− 1

pϑ− 1

)p−1
sup

t∈[t0,T ]

∫ t

t0

∥∥∥∥∫ r

t0

(r − s)−ϑf(s)ds
∥∥∥∥p dr (t− t0)

pϑ−1 (IV.106)

≤
(sin(πϑ)

π

)p( p− 1

pϑ− 1

)p−1
(T − t0)

pϑ−1

∫ T

t0

∥∥∥∥∫ r

t0

(r − s)−ϑf(s)ds
∥∥∥∥p dr,

where p
p−1(ϑ− 1) > −1 because of ϑ > 1

p .

Lemma IV.21 states, roughly speaking, that the supremum over time can be estimated by
changing it to an integral over time and multiply the integrand by a factor. The remarkable
property of estimate (IV.105) is that it does not consider the Euclidean norm of the integrand
f . This is important later on in order to obtain the desired order of convergence α = 1 of the
Milstein scheme. Using the triangle inequality instead of Lemma IV.20 and Fubini’s theorem
in the proof of Lemma IV.21, the resulting estimate would be too rough, cf. term (IV.40) and
inequality (IV.41) in Section IV.2.

The next lemma transfers the statement of Lemma IV.21 to integrands f that are stochastic
processes.
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Lemma IV.22
Let f : [t0, T ]× Ω → Rd be a measurable stochastic process such that

E
[(∫ T

t0

‖f(s)‖2 ds
) p

2
]
<∞ (IV.107)

for some p ∈ ]2,∞[. Then, for all ϑ ∈ ]1p ,
1
2 [, it holds∥∥∥∥∫ ·

t0

f(s)ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ sin(πϑ)
π

( p− 1

pϑ− 1

)1− 1
p
(T − t0)

ϑ− 1
p

(∫ T

t0

∥∥∥∥∫ t

t0

(t− s)−ϑf(s)ds
∥∥∥∥p
Lp(Ω;Rd)

dt
) 1

p

.

Proof. According to assumption (IV.107) and due to the Cauchy-Schwarz inequality, P-almost
all realizations of stochastic process f lie in L1([t0, T ];Rd). Then, we obtain by Lemma IV.21
that ∥∥∥∥∫ ·

t0

f(s)ds
∥∥∥∥
Sp([t0,T ]×Ω;Rd)

≤ sin(πϑ)
π

( p− 1

pϑ− 1

)1− 1
p
(T − t0)

ϑ− 1
p E
[ ∫ T

t0

∥∥∥∥∫ t

t0

(t− s)−ϑf(s)ds
∥∥∥∥p dt

] 1
p

for all ϑ ∈]1p , 1[ at first. Considering the expectation on the right-hand side of the inequality
above and using assumption (IV.107) on the measurable stochastic process f as well as that
−2ϑ > −1 if ϑ ∈]1p ,

1
2 [, the Cauchy-Schwarz inequality implies∫ T

t0

E
[∥∥∥∥ ∫ t

t0

(t− s)−ϑf(s)ds
∥∥∥∥p]dt

≤
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t0

(∫ t

t0

(t− s)−2ϑ ds
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2

E
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t0

‖f(s)‖2 ds
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2
]

dt

≤
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t0

(∫ t
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(t− s)−2ϑ ds
) p

2

dtE
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t0

‖f(s)‖2 ds
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]

= (1− 2ϑ)−
p
2

(
1 + (1− 2ϑ)

p

2

)−1
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1+(1−2ϑ) p
2 E
[(∫ T

t0

‖f(s)‖2 ds
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2
]

<∞. (IV.108)

Due to this, the assertion of this lemma follows by Fubini’s theorem for all ϑ ∈ ]1p ,
1
2 [.

Next, we apply Lemma IV.22, where integrand f is chosen to be the integrand of the integral
over time in term (IV.104), that is

f(s) =
d∑

i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

m∑
j=1

∫ (s−τl)∨t0

(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u

for s ∈ [t0, T ], where l ∈ {1, . . . , D}, k ∈ {1, . . . ,Kr}, and r ∈ N.
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In the following, let l ∈ {1, . . . , D} and zrk ∈ C([t0 − τ, t0];Rd) with k ∈ {1, . . . ,Kr} and r ∈ N
be arbitrarily fixed.

Using Assumption IV.8 ii) and Assumption IV.8 iv), it holds f ∈ Hp([t0, T ]×Ω;Rd), that is the
assumptions regarding integrand f in Lemma IV.22 are fulfilled. Then, Lemma IV.22 yields

∥∥∥∥∫ ·

t0

d∑
i=1

∂xi
l
a(T (bsc, X

zrk
bsc))

m∑
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(bsc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j
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∥∥∥∥
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≤ sin(πϑ)
π
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)1− 1
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×
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(
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5

) 1
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(IV.109)

for all ϑ ∈]1p ,
1
2 [, where p ∈ ]2,∞[ is specified by the assumptions in Theorem IV.9. Because of

the deterministic initial condition zrk ∈ C([t0 − τ, t0];Rd), solution Xzrk is in particular B([t0 −
τ, T ])⊗G/B(Rd)-measurable. Thus, the argument of the Lp(Ω;Rd)-norm in inequality (IV.109)
is G/B(Rd)-measurable and belongs actually to subspace Lp

G(Ω;R
d) ⊂ Lp(Ω;Rd).

Let ϑ ∈ ]1p ,
1
2 [ be arbitrarily fixed in the following. Here, condition ϑ < 1

2 is first of all needed
in order to ensure the boundedness in inequality (IV.108) and later on to obtain the desired
order of convergence α = 1. Thus, together with condition ϑ > 1

p , which is needed in order to
derive equation (IV.106), we have to assume in fact that p > 2.

Next, we look more closely at term Rl,zrk
5 .

The stochastic integral in inequality (IV.109) above equals zero as long as s − τl ≤ t0. So,
without loss of generality, we can assume

T ≥ t0 + τl (IV.110)

in the following, because we otherwise have Rl,zrk
5 = 0.

Still considering the stochastic integral in inequality (IV.109), the following holds. If the point
in time t0 + τl is not a point of the discretization, then bt0+τlc − τl < t0, and we have

m∑
j=1

∫ (s−τl)∨t0

(bt0+τlc−τl)∨t0
bi,j(T (u,X

zrk
u ))dW j

u =
m∑
j=1

∫ (s−τl)∨t0

t0

bi,j(T (u,X
zrk
u ))dW j

u . (IV.111)

In consideration of equation (IV.111) and assumption (IV.110), we rewrite term Rl,zrk
5 in in-
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equality (IV.109) to

Rl,zrk
5 =

∫ T

t0+τl

∥∥∥∥∫ t

t0+τl
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∥∥∥∥p
Lp

G (Ω;Rd)

dt

=

∫ T

t0+τl

∥∥∥∥ d∑
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tn∧t
(t− s)−ϑ

m∑
j=1

∫ s−τl

(tn∧t)−τl

bi,j(T (u,X
zrk
u ))dW j

u ds
∥∥∥∥p
Lp

G (Ω;Rd)

dt

=

∫ T

t0+τl

∥∥∥∥ d∑
i=1

∂xi
l
a(T (bt0+τlc, X

zrk
bt0+τlc))

×
∫ (dt0+τle∧t)−τl
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−ϑ
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bi,j(T (u,X
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u dv
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l
a(T (tn, X

zrk
tn ))
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(tn∧t)−τl

(t− v − τl)
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bi,j(T (u,X
zrk
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∥∥∥∥p
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G (Ω;Rd)

dt,

(IV.112)

where we used the substitution s = v + τl in the last step.

Recall the stochastic integration by parts formula based on Itô’s formula, see e. g. [64] or [75,
p. 155], for a martingale (Mu)u∈[s,t] and a continuous function of bounded variation (Cu)u∈[s,t],
where t ∈ R with t ≥ s. The covariation process vanishes, and it holds

∫ t

s
Mu dCu = CtMt − CsMs −

∫ t

s
Cu dMu
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for all t ≥ s P-almost surely. Applying this to the integrals in formula (IV.112), we obtain

∫ (dt0+τle∧t)−τl

t0

(t− v − τl)
−ϑ

m∑
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∫ v

t0

bi,j(T (u,X
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t0

(t− v − τl)
−ϑ dv

m∑
j=1

∫ (dt0+τle∧t)−τl
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u
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−ϑ dv bi,j(T (u,X
zrk
u ))dW j

u (IV.113)

for all t ∈ [t0 + τl, T ] P-almost surely and

∫ (tn+1∧t)−τl

(tn∧t)−τl

(t− v − τl)
−ϑ

m∑
j=1

∫ v
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bi,j(T (u,X
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u dv
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−ϑ dv
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bi,j(T (u,X
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u ))dW j

u

−
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j=1

∫ (tn+1∧t)−τl

(tn∧t)−τl

∫ u

(tn∧t)−τl

(t− v − τl)
−ϑ dv bi,j(T (u,X

zrk
u ))dW j

u

=
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∫ (tn+1∧t)−τl
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u
(t− v − τl)

−ϑ dv bi,j(T (u,X
zrk
u ))dW j

u (IV.114)

for all t ∈ [t0 + τl, T ] and tn ≥ dt0 + τle, where n ∈ {1, . . . , N}, P-almost surely. Both
equations (IV.113) and (IV.114) can also be understood as the application of a stochastic version
of Fubini’s theorem, see e. g. [15, 27, 120, 134]. Inserting equations (IV.113) and (IV.114) into
formula (IV.112) and using the substitution v = s− τl, we obtain

Rl,zrk
5 =

∫ T

t0+τl

∥∥∥∥ d∑
i=1

∂xi
l
a(T (bt0+τlc, X

zrk
bt0+τlc))

×
m∑
j=1

∫ (dt0+τle∧t)−τl

t0

∫ dt0+τle∧t

u+τl

(t− s)−ϑ ds bi,j(T (u,X
zrk
u ))dW j

u

+
N−1∑
n=1

tn≥dt0+τle

d∑
i=1

∂xi
l
a(T (tn, X

zrk
tn ))

×
m∑
j=1

∫ (tn+1∧t)−τl

(tn∧t)−τl

∫ tn+1∧t
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(t− s)−ϑ ds bi,j(T (u,X
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u

∥∥∥∥p
Lp

G (Ω;Rd)
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We rewrite this to

Rl,zrk
5 =

∫ T

t0+τl

∥∥∥∥ N−1∑
n=0

tn≥bt0+τlc

d∑
i=1

∂xi
l
a(T (tn, X

zrk
tn ))

×
m∑
j=1

∫ (tn+1∧t)−τl

((tn∧t)−τl)∨t0

∫ tn+1∧t

u+τl

(t− s)−ϑ ds bi,j(T (u,X
zrk
u ))dW j

u

∥∥∥∥p
Lp

G (Ω;Rd)

dt.

In the following, we use techniques from the Malliavin calculus in order to estimate term Rl,zrk
5 .

Because of the deterministic initial condition zrk ∈ C([t0 − τ, t0];Rd), solution (X
zrk
u )u∈[t0−τ,T ]

is (Gu∨t0)u∈[t0−τ,T ]-progressively measurable, and thus, the integrand of the Itô integral in the
equation above is adapted to filtration (Gu)u∈[((tn∧t)−τl)∨t0,(tn+1∧t)−τl]. Then, using the property
of Skorohod integrals in Proposition III.22, we obtain

Rl,zrk
5 =

∫ T

t0+τl

∥∥∥∥ N−1∑
n=0

tn≥bt0+τlc

d∑
i=1

∂xi
l
a(T (tn, X

zrk
tn ))

m∑
j=1

∫ T

t0

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

×
∫ tn+1∧t

u+τl

(t− s)−ϑ ds bi,j(T (u,X
zrk
u )) δW j

u

∥∥∥∥p
Lp

G (Ω;Rd)

dt.

According to Theorem III.26, it holds Xzrk
t ∈ Dq(Ω;Rd) for all t ∈ [t0 − τ, T ] and q ∈ [2,∞[.

Then, we have by Theorem III.9 and Assumption IV.8 v) that ∂xi
l
a(T (tn, X

zrk
tn )) ∈ Dq(Ω;Rd)

for all q ∈ [2,∞[. Further, since ‖∂xi
l
a(T (tn, X

zrk
tn ))‖ ≤ La by Assumption IV.8 ii), Proposi-

tion III.21 applies, and by linearity of the integrals, we obtain

Rl,zrk
5 =

∫ T

t0+τl

∥∥∥∥ m∑
j=1

∫ T

t0

N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

×
∫ tn+1∧t

u+τl

(t− s)−ϑ ds
d∑

i=1

∂xi
l
a(T (tn, X

zrk
tn ))b

i,j(T (u,X
zrk
u )) δW j

u

+

∫ T

t0

N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

∫ tn+1∧t

u+τl

(t− s)−ϑ ds

×
m∑
j=1

d∑
i=1

(
Dj

u∂xi
l
a(T (tn, X

zrk
tn ))

)
bi,j(T (u,X

zrk
u ))du

∥∥∥∥p
Lp

G (Ω;Rd)

dt.

Applying the triangle inequality twice yields

(
Rl,zrk

5

) 1
p ≤ R′

5 +R′′
5, (IV.115)
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where

R′
5 :=

(∫ T

t0+τl

∥∥∥∥ m∑
j=1

∫ T

t0

N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

∫ tn+1∧t

u+τl

(t− s)−ϑ ds

×
d∑

i=1

∂xi
l
a(T (tn, X

zrk
tn ))b

i,j(T (u,X
zrk
u )) δW j

u

∥∥∥∥p
Lp

G (Ω;Rd)

dt
) 1

p

(IV.116)

and

R′′
5 :=

(∫ T

t0+τl

∥∥∥∥∫ T

t0

N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

∫ tn+1∧t

u+τl

(t− s)−ϑ ds

×
m∑
j=1

d∑
i=1

(
Dj

u∂xi
l
a(T (tn, X

zrk
tn ))

)
bi,j(T (u,X

zrk
u ))du

∥∥∥∥p
Lp

G (Ω;Rd)

dt
) 1

p

.

(IV.117)

The terms R′
5 and R′′

5 are separately estimated in the following. In order to show that term
R′

5 is of order O(h) as h → 0, the continuity of Skorohod integral operator δ is used, cf.
Proposition III.25.

Using inequality (III.20), for term R′
5 defined in formula (IV.116), we obtain

R′
5 ≤ cδ,p

(∫ T

t0+τl

(
d∑

ι=1

∥∥∥∥ m∑
j=1

∫ T

t0

∣∣∣∣ N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

×
∫ tn+1∧t

u+τl

(t− s)−ϑ ds
d∑

i=1

∂xi
l
aι(T (tn, X

zrk
tn ))b

i,j(T (u,X
zrk
u ))

∣∣∣∣2 du
∥∥∥∥
L

p
2
G (Ω;R)

+

∥∥∥∥ m∑
j1,j2=1

∫ T

t0

∫ T

t0

∣∣∣∣ N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

∫ tn+1∧t

u+τl

(t− s)−ϑ ds

×
d∑

i=1

Dj2
v

(
∂xi

l
aι(T (tn, X

zrk
tn ))b

i,j1(T (u,X
zrk
u ))

)∣∣∣∣2 dv du
∥∥∥∥
L

p
2
G (Ω;R)

) p
2

dt

) 1
p

.

(IV.118)

Similarly to identity (IV.98), it holds∣∣∣∣ N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u) fn(u, ω)

∣∣∣∣2

=
N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u) |fn(u, ω)|
2
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for all (u, ω) ∈ [t0, T ]×Ω and processes fn : [t0, T ]×Ω → R, where n ∈ {0, 1, . . . , N −1}. Using
this, we rewrite the right-hand side of inequality (IV.118) and have

R′
5 ≤ cδ,p

(∫ T

t0+τl

(
d∑

ι=1

∥∥∥∥∫ T

t0

N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

(∫ tn+1∧t

u+τl

(t− s)−ϑ ds
)2

×
m∑
j=1

∣∣∣∣ d∑
i=1

∂xi
l
aι(T (tn, X

zrk
tn ))b

i,j(T (u,X
zrk
u ))

∣∣∣∣2 du
∥∥∥∥
L

p
2
G (Ω;R)

+

∥∥∥∥∫ T

t0

N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

(∫ tn+1∧t

u+τl

(t− s)−ϑ ds
)2

×
m∑

j1,j2=1

∫ T

t0

∣∣∣∣ d∑
i=1

Dj2
v

(
∂xi

l
aι(T (tn, X

zrk
tn ))b

i,j1(T (u,X
zrk
u ))

)∣∣∣∣2 dv du
∥∥∥∥
L

p
2
G (Ω;R)

)p
2

dt

)1
p

.

Further, the triangle inequality implies

R′
5 ≤ cδ,p

(∫ T

t0+τl

(∫ T

t0

N−1∑
n=0

tn≥bt0+τlc

1]((tn∧t)−τl)∨t0,(tn+1∧t)−τl](u)

(∫ tn+1∧t

u+τl

(t− s)−ϑ ds
)2

×

(
d∑

ι=1

m∑
j=1

∥∥∥∥ d∑
i=1

∂xi
l
aι(T (tn, X

zrk
tn ))b

i,j(T (u,X
zrk
u ))

∥∥∥∥2
Lp

G (Ω;R)

+

d∑
ι=1

m∑
j1,j2=1

∫ T

t0

∥∥∥∥ d∑
i=1

Dj2
v

(
∂xi

l
aι(T (tn, X

zrk
tn ))b

i,j1(T (u,X
zrk
u ))

)∥∥∥∥2
Lp

G (Ω;R)
dv

)

× du

) p
2

dt

) 1
p

.

(IV.119)

Next, we consider the Lp
G(Ω;R)-norms inside the integrals of inequality (IV.119). We start with

the first one. Using Assumption IV.8 ii) and Assumption IV.8 iv), the triangle inequality and
inequality (IV.67) imply

d∑
ι=1

m∑
j=1

∥∥∥∥ d∑
i=1

∂xi
l
aι(T (tn, X

zrk
tn ))b

i,j(T (u,X
zrk
u ))

∥∥∥∥2
Lp

G (Ω;R)

≤ L2
ad

2
m∑
j=1

∥∥bj(T (u,X
zrk
u ))

∥∥2
Lp

G (Ω;R)

≤ L2
ad

2K2
bm
(
1 + ‖Xzrk‖2

Sp([t0−τ,T ]×Ω;Rd)

)
. (IV.120)

The second Lp
G(Ω;R)-norm in inequality (IV.119) involves the Malliavin derivative. As men-

tioned above, we have Xzrk
t ∈ Dq(Ω;Rd) for all t ∈ [t0 − τ, T ] and q ∈ [2,∞[ by Theorem III.26.

Then, according to Assumption IV.8 v) and Assumption IV.8 iv), we have by Theorem III.9
and Remark III.19 that ∂xi

l
aι(T (tn, X

zrk
tn )) ∈ Dq(Ω;R) and bi,j(T (u,X

zrk
u )) ∈ Dq(Ω;R) for all
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q ∈ [2,∞[ as well. Using the product rule of the Malliavin derivative, cf. equation (III.8), and
the chain rule from Theorem III.9, it P|G-almost surely holds
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tn ))b
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(IV.121)

for λ|[t0,T ]-almost all v ∈ [t0, T ]. Under Assumption IV.8 v), Assumption IV.8 iv), and Assump-
tion IV.8 ii), the triangle inequality and inequality (IV.67) imply for the argument of the second
Lp

G(Ω;R)-norm in inequality (IV.119) that
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(IV.122)

for λ|[t0,T ]-almost all v ∈ [t0, T ] holds P|G-almost surely. Hence, by triangle inequality and
Hölder’s inequality with %a+1

%a+2 +
1

%a+2 = 1 for the second Lp
G(Ω;R)-norm in inequality (IV.119),

we obtain
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(IV.123)
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Using further inequality (III.22) from Theorem III.26, we have

d∑
ι=1

m∑
j1,j2=1
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(IV.124)

Inserting the results from inequalities (IV.120) and (IV.124) into inequality (IV.119), it follows
for term R′

5, using that the right-hand sides of the inequalities (IV.120) and (IV.124) are
independent of n ∈ {0, 1, . . . , N − 1}, u ∈ [t0, T ], and t ∈ [t0 + τl, T ], that
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(IV.125)

Next, we estimate the integrals over time

I :=
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(IV.126)

from inequality (IV.125) above. We make use of the following lemma.

Lemma IV.23
Let a, b, c ∈ R such that a < b ≤ c, and let ϑ ∈ ]0, 1[. It holds∫ b

a
(c− s)−ϑ ds ≤ 1

1− ϑ
(c− a)−ϑ(b− a).

Proof. At first, we have∫ b

a
(c− s)−ϑ ds = 1

1− ϑ

(
(c− a)1−ϑ − (c− b)1−ϑ

)
. (IV.127)
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In the case of b = c, we obtain

(c− a)1−ϑ − (c− b)1−ϑ = (c− a)−ϑ(c− a) = (c− a)−ϑ(b− a). (IV.128)

Now, let b < c. Since c− a > c− b implies (c− a)−ϑ < (c− b)−ϑ, it follows

(c− a)1−ϑ − (c− b)1−ϑ = (c− a)−ϑ(c− a)− (c− b)−ϑ(c− b)

≤ (c− a)−ϑ
(
(c− a)− (c− b)

)
= (c− a)−ϑ(b− a). (IV.129)

Inserting the results from formulas (IV.128) and (IV.129) into equation (IV.127) proves the
assertion.

According to Lemma IV.23, for the inner integral in formula (IV.126), we have∫ tn+1∧t
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(t− s)−ϑ ds ≤ 1
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h, (IV.130)

where we simplified the term in the second step by summing up the inner integrals. Taking
further into account that ϑ ∈]1p ,

1
2 [, where p ∈ ]2,∞[, it holds −2ϑ > −1, and by simple

integration of the right-hand side of formula (IV.130), we obtain
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it holds in summary that
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ph. (IV.131)
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Inserting above inequality (IV.131) regarding term I defined in equation (IV.126) into inequal-
ity (IV.125), we obtain
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Further, applying inequality
√
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(IV.132)

That is, term R′
5 is of order O(h) as h→ 0.

In the following, we consider term R′′
5 of inequality (IV.115). First, we move the Lp(Ω;Rd)-norm

into the integral and estimate
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(IV.133)

where we used the linearity of the integral over time as in equation (IV.126).

According to equation (IV.121) and inequality (IV.122), it holds, using Assumption IV.8 v) and
Assumption IV.8 iv) as well as Theorem III.26 and Theorem III.9, for the Lp

G(Ω;R
d)-norm in

inequality (IV.133) above that
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Further, similarly to inequalities (IV.123) and (IV.124), Hölder’s inequality with %a+1
%a+2+

1
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and inequality (III.22) from Theorem III.26 imply
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Thus, by inserting this into inequality (IV.133), we obtain
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Similarly to inequality (IV.131), it holds by Lemma IV.23 and integration that
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Then, inserting this into inequality (IV.134) results in
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, (IV.135)

and term R′′
5 is of order O(h) as h→ 0, too.
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Now, we combine inequalities (IV.109), (IV.115), (IV.132), and (IV.135), and for term (IV.104)
from equation (IV.86) in Lemma IV.19, we obtain
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By rearranging the right-hand side of the above inequality, we finally have
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(IV.136)

for l ∈ {1, . . . , D} and zrk ∈ C([t0 − τ, T ];Rd), where ϑ ∈ ]1p ,
1
2 [.

Next, we insert estimate (IV.136), which is of order O(h) as h→ 0, into equation (IV.86) from
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Lemma IV.19. Using the triangle inequality, we obtain
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(IV.137)

In the following, we calculate and estimate the limits in inequality (IV.137) above. We only show
the calculations for the second limit because the first one follows from the same considerations
with exponent one instead of %a + 2.

To begin with, we only consider the Lp
G(Ω;R)-norm for arbitrary r ∈ N. Using property (IV.98)

of step functions, rewriting the norm and applying the triangle, we obtain∥∥∥∥ Kr∑
k=1

1Ar
k

(
1 + ‖Xzrk‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

) %a+2
2

∥∥∥∥
Lp(Ω;R)

=

∥∥∥∥(1 + Kr∑
k=1

1Ar
k
‖Xzrk‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

) %a+2
2
∥∥∥∥
Lp(Ω;R)

=

∥∥∥∥∥1 +
Kr∑
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1Ar
k
‖Xzrk‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

∥∥∥∥∥
%a+2

2

L
%a+2

2 p(Ω;R)

≤
(
1 +

∥∥∥∥ Kr∑
k=1

1Ar
k
‖Xzrk‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

∥∥∥∥
L

%a+2
2 p(Ω;R)

) %a+2
2

. (IV.138)

Next, we consider the L
%a+2

2
p(Ω;R) from the last line of previous calculations only. By rewriting

the S(%a+2)p([t0 − τ, T ]× Ω;Rd)-norm, it holds∥∥∥∥ Kr∑
k=1

1Ar
k
‖Xzrk‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

∥∥∥∥
L

%a+2
2 p(Ω;R)

=

∥∥∥∥ Kr∑
k=1

1Ar
k

(
E
[

sup
t∈[t0−τ,T ]

‖Xzrk
t ‖(%a+2)p

]) 2
(%a+2)p

∥∥∥∥
L

%a+2
2 p(Ω;R)

.

(IV.139)

Recall that, for arbitrary k ∈ {1, . . . ,Kr} and r ∈ N, the random variable 1Ar
k

is Ft0-measurable,
and solution Xzrk is (Gt∨t0)t∈[t0−τ,T ]-progressively measurable. Thus, the random variable in the
expectation on the right-hand side of equation (IV.139) is G/B(R)-measurable and independent
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of σ-algebra Ft0 . We infer from the properties of conditional expectations and property (IV.98)
of step functions that∥∥∥∥ Kr∑

k=1

1Ar
k

(
E
[

sup
t∈[t0−τ,T ]

‖Xzrk
t ‖(%a+2)p

]) 2
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%a+2
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, (IV.140)

also cf. the proof of Lemma IV.19, where the previous calculations are used vice-versa. Then,
using Lemma IV.18 with ζr =

∑Kr
k=1 z

r
k1A

r
k
, we obtain∥∥∥∥(E

[
sup

t∈[t0−τ,T ]

∥∥∥∥ Kr∑
k=1

1Ar
k
X
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t
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(
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S(%a+2)p([t0−τ,T ]×Ω;Rd)

. (IV.141)

Summarizing the results from formulas (IV.138), (IV.139), (IV.140), and (IV.141) gives∥∥∥∥ Kr∑
k=1

1Ar
k

(
1 + ‖Xzrk‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

) %a+2
2
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Lp(Ω;R)

≤
(
1 + ‖Xζr‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

) %a+2
2 .

(IV.142)

Taking Lemma II.10 and equation (IV.84) into account, the dominated convergence theorem,
according to inequality (IV.83), implies

lim
r→∞

‖Xζr‖S(%a+2)p([t0−τ,T ]×Ω;Rd) = ‖X ξ̃‖S(%a+2)p([t0−τ,T ]×Ω;Rd) = ‖Xξ‖S(%a+2)p([t0−τ,T ]×Ω;Rd)

as solutions X ξ̃ and Xξ are indistinguishable, cf. equation (IV.82). Thus, taking the limit
r → ∞ in inequality (IV.142), we obtain

lim
r→∞

∥∥∥∥ Kr∑
k=1

1Ar
k

(
1 + ‖Xzrk‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)
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Lp(Ω;R)

≤
(
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S(%a+2)p([t0−τ,T ]×Ω;Rd)

) %a+2
2

(IV.143)
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with the notation X = Xξ. Completely analogous to this, it also holds

lim
r→∞

∥∥∥∥ Kr∑
k=1

1Ar
k

(
1 + ‖Xzrk‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
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Lp(Ω;R)

≤
(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2 .

(IV.144)

Inserting inequalities (IV.143) and (IV.144) into inequality (IV.137), we finally obtain with

Rl
5 ≤

sin(πϑ)
π

( p− 1

pϑ− 1

)1− 1
p 1

1− ϑ

1√
1− 2ϑ

(
1 + (1− 2ϑ)

p

2
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p
cδ,pLad

√
m

×
(
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√
dm(T − t0)(D + 1)LbCD,p

)(
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) 1
2
√
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p
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)
×
(
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) %a+2
2 (T − t0)h

(IV.145)

the desired estimate of order O(h) as h → 0 for term Rl
5, where l ∈ {1, . . . , D} and ϑ ∈ ]1p ,

1
2 [

arbitrarily.

Thus, in view of inequality (IV.79), we in total have
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D∑
l=0

Rl
5

≤
(
La

√
d
√
p− 1Kb

√
m
(2
3

p√
p− 1

+
1√
2

)
+D

sin(πϑ)
π

( p− 1

pϑ− 1

)1− 1
p 1

1− ϑ

1√
1− 2ϑ

(
1 + (1− 2ϑ)

p

2

)− 1
p
cδ,pLad

√
m

×
(
Kb +

√
dm(T − t0)(D + 1)LbCD,p

))(
1 + ‖X‖2

Sp([t0−τ,T ]×Ω;Rd)

) 1
2
√
T − t0 h

+D
sin(πϑ)
π

( p− 1

pϑ− 1

)1− 1
p 1

1− ϑ
K∂2adKb(D + 1)CD,(%a+2)pm

×
(
cδ,p

√
d√

1− 2ϑ

(
1 + (1− 2ϑ)

p

2

)− 1
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×
(
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(IV.146)

where ϑ ∈ ]1p ,
1
2 [ can be chosen arbitrarily. That is, term R5 is of order O(h) as h→ 0.

In the following, we give two remarks on the terms that depend on ϑ ∈ ]1p ,
1
2 [ in the upper

bound of term R5 in estimate (IV.146).
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Remark IV.24
Numerical simulations on the ϑ-depending terms in inequality (IV.146) indicate that

lim
p→∞

min
ϑ∈ ] 1

p
, 1
2
[

sin(πϑ)
π

( p− 1

pϑ− 1

)1− 1
p 1
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1− 2ϑ

(
1 + (1− 2ϑ)

p

2

)− 1
p
= 1

and
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ϑ∈ ] 1

p
, 1
2
[

sin(πϑ)
π

( p− 1

pϑ− 1

)1− 1
p 1

(1− ϑ)2
(
1 + (1− ϑ)p

)− 1
p = 1.

These terms occur through application of Lemma IV.22. Lemma IV.22 is used in order to
estimate the supremum over time in term Rl

5, where l ∈ {1, . . . , D}. As previously mentioned
in Section IV.2, Doob’s maximal inequality cannot be applied because the processes under con-
sideration are no martingales nor submartingales. Doob’s maximal inequality holds true with
constant p

p−1 , see e. g. [35, Theorem 3.4 on p. 317] or [67, Theorem 26.3]. Thus, our constants
are consistent in the sense that also

lim
p→∞

p

p− 1
= 1.

Remark IV.25
The ϑ-depending terms in inequality (IV.146) can be bounded from above as follows. Taking
the monotonicity of the single factors with respect to ϑ ∈ ]1p ,

1
2 [ into account, it holds
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2
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2
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(IV.147)

for all p ∈ ]2,∞[. Simple calculations show that the minimum occurs at ϑ = p
3p−2 ∈ ]1p ,

1
2 [ for

all p ∈ ]2,∞[. Inserting this position, we obtain
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for all p ∈ ]2,∞[. Similarly to inequality (IV.147), it holds by monotonicity that
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for all p ∈ ]2,∞[. However, these upper bounds are not optimal in view of Remark IV.24 because
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and

lim
p→∞

8

π

(p− 1

p− 2

)1− 1
p
(p+ 2)

− 1
p =

8

π
> 1.

Now, we continue with the next term R6. Applying the triangle inequality and using the growth
condition from Assumption IV.8 v), we obtain at first that

R6 ≤
D∑

l1,l2=0

∫ T

t0

∥∥∥∥ d∑
i1,i2=1

∫ 1

0

∥∥∂
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∂
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(IV.148)

≤ K∂2a

D∑
l1,l2=0

∫ T
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∥∥∥∥∫ 1

0
sup

l∈{0,1,...,D}

(
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Since

‖Xbsc−τl + θ(Xs−τl −Xbsc−τl)‖ = ‖(1− θ)Xbsc−τl + θXs−τl‖
≤ (1− θ)‖Xbsc−τl‖+ θ‖Xs−τl‖
≤ sup

t∈[t0−τ,T ]
‖Xt‖

for all θ ∈ [0, 1] and all s ∈ [t0, T ], and since
∫ 1
0 (1− θ)dθ = 1

2 , we further have
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and inequality (IV.67) yields
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2
K∂2ad

D∑
l1,l2=0

∫ T

t0

∥∥∥∥(1 + sup
t∈[t0−τ,T ]

‖Xt‖2
) %a

2

× ‖Xs−τl1
−Xbsc−τl1

‖‖Xs−τl2
−Xbsc−τl2

‖
∥∥∥∥
Lp(Ω;R)

ds.

Next, using first Hölder’s inequality with %a
%a+2 +

2
%a+2 = 1 and afterwards the Cauchy-Schwarz
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inequality, it holds
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1

2
K∂2ad
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Note that the inequalities above are satisfied in case of %a = 0 as well. We now estimate the term∑D
l=0‖Xs−τl −Xbsc−τl‖L(%a+2)p(Ω;Rd) of the previous inequality. Similarly to inequality (IV.26),

it holds
D∑
l=0

‖Xs−τl −Xbsc−τl‖L(%a+2)p(Ω;Rd)

≤
D∑
l=1
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(IV.150)

for all s ∈ [t0, T ] in view of equation (IV.25). Further, analogously to inequalities (IV.27) and
(IV.28), Assumption IV.8 vii) and Lemma II.9 imply

D∑
l=1
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and
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for all s ∈ [t0, T ]. Due to this and inequality (IV.65), we obtain
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(IV.153)

That is, term R6 is of order O(h) as h→ 0.

We continue with the next terms R7 and R8. In inequality (IV.56), we already proved

R7 ≤
p√
p− 1

Lb

√
m

(∫ T
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‖X − Y ‖2
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, (IV.154)
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and further, similarly to inequality (IV.54), we have

R8 ≤
p√
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by taking Assumption IV.8 vi) and(∫ T
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into account.

Terms R9 and R10 are estimated similarly to terms R3 and R4 in inequalities (IV.68) and
(IV.69). We infer by Theorem II.6 and inequality (IV.156) that
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and
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p√
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Let us continue with term R11. At first, Zakai’s inequality from Theorem II.6 and the triangle
inequality imply

R11 ≤
p√
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According to the global Lipschitz condition in Assumption IV.8 iii), it holds for the inner
Euclidean norm on the right-hand side of inequality (IV.159) above that

max
j1,j2∈{1,...,m}
l∈{0,1,...,D}

∥∥∥∥ d∑
i=1

(
∂xi

l
bj1(T (bsc, Xbsc))b

i,j2(T ((bsc − τl) ∨ t0, X(bsc−τl)∨t0))

− ∂xi
l
bj1(T (bsc, Ybsc))b

i,j2(T ((bsc − τl) ∨ t0, Y(bsc−τl)∨t0))
)∥∥∥∥

≤ L∂b

(
sup

t∈[t0−τ,T ]

(
1 + ‖Xt‖2 + ‖Yt‖2

)β
2

)(
sup

t∈[t0−τ,s]
‖Xt − Yt‖

)
(IV.160)
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for all s ∈ [t0, T ]. Considering the last factor on the right-hand side of inequality (IV.160)
above and using inequality (II.7), it holds

‖Xt − Yt‖ ≤
(
‖Xt‖+ ‖Yt‖

)2· 1
2 ≤

√
2
(
‖Xt‖2 + ‖Yt‖2

) 1
2 ≤

√
2
(
1 + ‖Xt‖2 + ‖Yt‖2

) 1
2

for all t ∈ [t0 − τ, T ], and thus, we obtain

sup
t∈[t0−τ,s]

‖Xt − Yt‖ ≤ 2
1
4

(
sup

t∈[t0−τ,T ]

(
1 + ‖Xt‖2 + ‖Yt‖2

)1
4

)(
sup

t∈[t0−τ,s]
‖Xt − Yt‖

)1
2

(IV.161)

for all s ∈ [t0, T ]. Inserting inequalities (IV.160) and (IV.161) into inequality (IV.159), we
obtain

R11 ≤
p√
p− 1

2
1
4L∂b

√
m

D∑
l=0

(∫ T

t0

∥∥∥∥ m∑
j2=1

∣∣∣∣ ∫ (s−τl)∨t0

(bsc−τl)∨t0
dW j2

u

∣∣∣∣
×
(

sup
t∈[t0−τ,T ]

(
1 + ‖Xt‖2 + ‖Yt‖2

) 2β+1
4

)(
sup

t∈[t0−τ,s]
‖Xt − Yt‖

) 1
2
∥∥∥∥2
Lp(Ω;R)

ds
) 1

2

.

(IV.162)

In the following, we apply inequality (II.7) again in order to separate the term

(∫ T

t0

‖X − Y ‖2
Sp([t0−τ,s]×Ω;Rd)

ds
) 1

2

that contributes to constant C2 in inequality (IV.62). According to Gronwall’s Lemma II.7,
constant C2 has an exponential influence on the estimate. Due to this, we apply the inequality

c1c2 = c1γγ
−1c2 ≤

1

2
γ2c21 +

1

2
γ−2c22 (IV.163)

with γ =
( p√

p−1
2

1
4L∂b

√
m(D + 1)

) 1
2 instead of inequality (II.7). Applying inequality (IV.163)

to the argument of the Lp(Ω;R)-norm in inequality (IV.162), where

c2 =

(
sup

t∈[t0−τ,s]
‖Xt − Yt‖

) 1
2

,

we obtain

R11 ≤
p√
p− 1

2
1
4L∂b

√
m

D∑
l=0

(∫ T

t0

∥∥∥∥12γ2
( m∑

j2=1

∣∣∣∣ ∫ (s−τl)∨t0

(bsc−τl)∨t0
dW j2

u

∣∣∣∣
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(

sup
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(
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)2β+1
4

))2
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1

2
γ−2

(
sup
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‖Xt − Yt‖

)∥∥∥∥2
Lp(Ω;R)

ds
)1

2

.
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Using the triangle inequality and rearranging the terms, it further follows

R11 ≤
p√
p− 1

2
1
4L∂b

√
m

D∑
l=0

(∫ T

t0

∥∥∥∥12γ2
( m∑
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u

∣∣∣∣
×
(
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(
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))2∥∥∥∥2
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) 1

2

+
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2
1
4L∂b

√
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D∑
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∥∥∥∥12γ−2

(
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t∈[t0−τ,s]
‖Xt − Yt‖

)∥∥∥∥2
Lp(Ω;R)

ds
) 1

2

=
1

2
γ2

p√
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2
1
4L∂b

√
m

D∑
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(∫ T
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∥∥∥∥ m∑
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∣∣∣∣ ∫ (s−τl)∨t0

(bsc−τl)∨t0
dW j2
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L2p(Ω;R)

ds
) 1

2

+
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√
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+
1
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(∫ T
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)1

2

.
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Next, we only consider the integrand of the first term on the right-hand side of inequal-
ity (IV.164) above and show that it is of order O(h) as h → 0. Using Hölder’s inequality
with 1

2(β+1) +
2β+1
2(β+1) = 1 and the triangle inequality, we have∥∥∥∥ m∑

j2=1

∣∣∣∣ ∫ (s−τl)∨t0

(bsc−τl)∨t0
dW j2

u

∣∣∣∣( sup
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4
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≤
∥∥∥∥ m∑
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≤
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)4

×
(
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)2β+1
.

(IV.165)

Since ( m∑
j2=1

∥∥∥∥∫ (s−τl)∨t0

(bsc−τl)∨t0
dW j2

u

∥∥∥∥
L4(β+1)p(Ω;R)

)4

≤ m4
(
4(β + 1)p− 1

)2
(s− bsc)2

124



IV.3. Proofs

for all s ∈ [t0, T ] by Theorem II.6, inserting inequality (IV.165) into inequality (IV.164) and
using inequality (IV.156) finally yield

R11 ≤
p2√

2(p− 1)
L2
∂bm

3(D + 1)2
(
4(β + 1)p− 1

)(∫ T
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2

×
(
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) 1
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That is, term R11 contributes to both constants C1 and C2 in inequality (IV.62).

We now consider term R12. Similarly to estimates (IV.157) and (IV.158) of terms R9 and
R10, Zakai’s inequality from Theorem II.6, the triangle inequality, Assumption IV.8 ii), and
inequality (IV.67) imply

R12 ≤
p√
p− 1

Lb

√
m
√
d

D∑
l=0

×
(∫ T

t0

∥∥∥∥ m∑
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.

Using again Theorem II.6 and the triangle inequality, we obtain by Assumption IV.8 vi) that

R12 ≤ pLb

√
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Considering the Lp(Ω;R)-norm on the right-hand side of inequality (IV.167) above, it analo-
gously to inequality (IV.52) holds∥∥∥∥ sup

k∈{0,1,...,D}

(
1 + ‖Xu−τk‖

2
) γb

2

∥∥∥∥
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) γb
2 .
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Inserting this into inequality (IV.167) and using(∫ T

t0

∫ (s−τl)∨t0
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we finally obtain

R12 ≤ pLbm
√
dLt,b(D + 1)

(
1 + ‖X‖2

S(γb∨1)p([t0−τ,T ]×Ω;Rd)

) γb
2

1√
12

(T − t0)h. (IV.169)

Similarly to the considerations on previous term R12, it holds, using Theorem II.6, the triangle
inequality, Assumption IV.8 ii), and inequality (IV.67), that
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Using Theorem II.6 and Assumption IV.8 ii) again, similarly to inequalities (IV.24) and (IV.167),
we have

R13 ≤ pL2
bm
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Then, similar considerations to inequalities (IV.29), (IV.150), (IV.151), and (IV.152) imply
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Finally, since(∫ T
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cf. inequality (IV.168), we obtain

R13 ≤ pL2
bm
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(IV.170)

Now, we consider the last term R14 and show that it is of order O(h) as h → 0, too. First,
Zakai’s inequality from Theorem II.6 and the triangle inequality imply

R14 ≤
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The Lp(Ω;R)-norm on the right-hand side of the inequality above can be treated analogously
to the Lp(Ω;R)-norm in inequality (IV.148), which occurs in the estimates of term R6. Then,
similarly to inequality (IV.149), we have
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Using further inequalities (IV.150), (IV.151), (IV.152), and (IV.156), we obtain

R14 ≤
1

2

p√
p− 1

K∂2b

√
md
(
1 + ‖X‖2

S(%b+2)p([t0−τ,T ]×Ω;Rd)

) %b
2

×
(
DLξ

√
T − t0 + (D + 1)

(
Ka

√
T − t0 +

√
(%a + 2)p− 1Kb

√
m
)

×
(
1 + ‖X‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

) 1
2

)2(∫ T

t0

(s− bsc)2 ds
)1

2

≤ 1

2

p√
p− 1

K∂2b

√
md
(
1 + ‖X‖2

S(%b+2)p([t0−τ,T ]×Ω;Rd)

) %b
2

×
(
DLξ

√
T − t0 + (D + 1)

(
Ka

√
T − t0 +

√
(%a + 2)p− 1Kb

√
m
)

×
(
1 + ‖X‖2

S(%a+2)p([t0−τ,T ]×Ω;Rd)

) 1
2

)2 1√
3

√
T − t0h,

(IV.171)

cf. inequality (IV.153).

Now, we have estimated all terms Rr, r ∈ {1, . . . , 14}. We refer to Table IV.17 for an overview.
According to these estimates, there exist constants C1, C2 > 0, independent of h, such that
inequality (IV.62) holds true. Using inequality (IV.63), Gronwall’s Lemma II.7 implies

‖X − Y ‖2
Sp([t0−τ,T ]×Ω;Rd)

≤ 2C2
1h

2e2C2
2 (T−t0).
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Thus, it holds

‖X − Y ‖Sp([t0−τ,T ]×Ω;Rd) ≤
√
2C1eC

2
2 (T−t0)h

for all h ∈ ]0, T − t0], which proves the assertion of Theorem IV.9.
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V
Efficient Approximation of

Iterated Stochastic Integrals

Higher order approximations of solutions of SDEs, as the Milstein scheme, involve iterated
stochastic integrals [23, 78, 105]. However, these approximations can only be simulated directly
in special cases [78, 105].

Let us consider Milstein scheme (IV.33) regarding SDDE (II.1). In the case of additive noise,
that is, the diffusion coefficients do not depend on solution X, the derivatives of the diffusion
coefficients vanish, and the Milstein scheme equals the Euler-Maruyama scheme, cf. Corol-
lary IV.13 and Corollary IV.14. Thus, the iterated stochastic integrals do not appear in the
scheme.

SDEs with commutative noise are another important class of SDEs, where the Milstein scheme
can be simulated directly. If the diffusion coefficients do not depend on the past history of
solution X, and SDDE (II.1) satisfies the commutativity condition

∂xi
0
bj1(t, t− τ1, . . . , t− τD, Xt) b

i,j2(t, t− τ1, . . . , t− τD, Xt)

= ∂xi
0
bj2(t, t− τ1, . . . , t− τD, Xt) b

i,j1(t, t− τ1, . . . , t− τD, Xt)
(V.1)

for j1, j2 ∈ {1, . . . ,m}, i ∈ {1, . . . , d}, and t ∈ [t0, T ], the iterated stochastic integrals in the
Milstein scheme simplify to∫ tn+1

tn

∫ s

tn

dW j
u dW j

s =
1

2

((∫ tn+1

tn

dW j
u

)2

− (tn+1 − tn)

)
(V.2)

P-almost surely for j ∈ {1, . . . ,m} and∫ tn+1

tn

∫ s

tn

dW j2
u dW j1

s +

∫ tn+1

tn

∫ s

tn

dW j1
u dW j2

s =

∫ tn+1

tn

dW j1
s

∫ tn+1

tn

dW j2
u (V.3)

P-almost surely for j1, j2 ∈ {1, . . . ,m} with j1 6= j2. These equations (V.2) and (V.3) follow
from the stochastic integration by parts formula resulting from Itô’s Lemma, cf. [78]. Thus, the
Milstein scheme can be implemented by only simulating the normally distributed increments
of the underlying Wiener process. Similar conditions to commutativity condition (V.1), in the
case of present delay in the diffusion coefficients, do not simplify the delayed-iterated stochastic
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integrals because the stochastic integration by parts formula is not applicable, and because
the delayed-iterated stochastic integrals do not commute. This even holds in case of one-
dimensional noise (m = 1). As a consequence, modeling (delayed-)iterated stochastic integrals
is an important task in order to make numerical schemes of higher order applicable.

The modeling of iterated stochastic integrals is closely related to the approximation of Lévy’s
area [91]. This problem has been studied by different authors, see, e. g., [42, 60, 78, 79, 96,
105, 127, 136, 137]. Since we are interested in modeling iterated stochastic integrals in case
of multidimensional noise in general, that is, m ∈ N is arbitrary, the results in [42, 96, 127]
are not further discussed below, because the Wiener process is only considered to be two-
dimensional (m = 2) there. Considering iterated stochastic integrals where the Wiener process
is multidimensional, approximation schemes are developed based on a series expansion of the
Brownian bridge process for SODEs in [78, 79, 105] and for SDDEs in [60, 137]. The results
in [78, 79, 105] were improved by Wiktorsson in [136] and generalized by Leonhard and Rößler
in [90] to Q-Wiener processes driving SPDEs. In all these papers, the approximation of Levy’s
area is considered in the L2(Ω;R)-norm.

In Section V.1, the results from [60, 78, 79, 105] are extended to convergence in Lp(Ω;R)
for arbitrary p ∈ [2,∞[. Further, we show in case of SDDEs that the computational cost of
the Milstein scheme is significantly reduced compared to [60, p. 311], see Theorem V.18 in
Section V.4.

In Section V.2, a new algorithm is proposed that significantly reduces the number of normally
distributed random variables, that need to be generated, compared to Wiktorsson’s algorithm in
[136]. Whereas Wiktorsson only analyzed the convergence of his algorithm in L2(Ω;R), we show
that our new algorithm is convergent in Lp(Ω;R) for all p ∈ [2,∞[. The computational costs of
this algorithm are compared to the algorithm from Section V.1 and to the one of Wiktorsson
[136] in Section V.3. The convergence of the Milstein scheme based on these iterated stochastic
integral approximations is stated in Theorem V.19 in Section V.4.

The convergence in Lp(Ω;R) for all p ∈ [2,∞[ is especially relevant for pathwise approximations
of SDEs that are of higher order, cf. Corollary IV.12 and [77], and may also be of interest for
multilevel Monte-Carlo approximations with irregular functionals, cf. [8].

In the following, we first consider some problems of dependencies occurring in the simulation
of delayed-iterated stochastic integrals when the discretization is arbitrary. Afterwards, the
Fourier series expansion of the Brownian bridge is used to derive expansions of the iterated
stochastic integrals.

Let {t̃0, t̃1, . . . , t̃Ñ−1, t̃Ñ} be an arbitrary discretization of the interval [t0, T ] where t0 =: t̃0 <

t̃1 < . . . < t̃Ñ−1 < t̃Ñ := T . Consider points in time t̃n, t̃n+1, and let t̃n − τl < t̃k < t̃n+1 − τl

where t̃n−τl ≥ t0. We are interested in simulating the stochastic integral
∫ t̃n+1

t̃n

∫ s−τl
t̃n−τl

dW i
u dW j

s .
Considering point in time t̃k, we can rewrite the delayed-iterated stochastic integral to∫ t̃n+1

t̃n

∫ s−τl

t̃n−τl

dW i
u dW j

s

=

∫ t̃k+τl

t̃n

∫ s−τl

t̃n−τl

dW i
u dW j

s +

∫ t̃n+1

t̃k+τl

dW j
s

∫ t̃k

t̃n−τl

dW i
u +

∫ t̃n+1

t̃k+τl

∫ s−τl

t̃k

dW i
u dW j

s

(V.4)
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P-almost surely. Thus, the problem of simulating the delayed-iterated stochastic integral splits
up to simulating the increments

∫ t̃k
t̃n−τl

dW i
u and

∫ t̃n+1

t̃k+τl
dW j

s as well as the delayed-iterated

stochastic integrals
∫ t̃k+τl
t̃n

∫ s−τl
t̃n−τl

dW i
u dW j

s and
∫ t̃n+1

t̃k+τl

∫ s−τl
t̃k

dW i
u dW j

s . These random variables
are taken into account automatically by adding point in time t̃k + τl ∈ ]t̃n, t̃n+1[ to the dis-
cretization.

Hu, Mohammed, and Yan hide this problem of the dependencies in equation (V.4), cf. [60,
Appendix B]. Thus, their algorithm in [60, (B.7) and (B.8)] is not applicable and implementable
straightforwardly.

A similar problem of dependencies occurs if we already have simulated the iterated stochastic
integral

∫ t̃n+1

t̃n

∫ s−τl
t̃n−τl

dW i
u dW j

s , and we like to add a point in time tn+1 ∈ ]t̃n, t̃n+1[ to the
discretization a posteriori. Then, similarly to equation (V.4), it P-almost surely holds∫ t̃n+1

t̃n

∫ s−τl

t̃n−τl

dW i
u dW j

s

=

∫ tn+1

t̃n

∫ s−τl

t̃n−τl

dW i
u dW j

s +

∫ t̃n+1

tn+1

dW j
s

∫ tn+1−τl

t̃n−τl

dW i
u +

∫ t̃n+1

tn+1

∫ s−τl

tn+1−τl

dW i
u dW j

s .

(V.5)

By adding the point in time tn+1−τl to the discretization a priori, the problem of dependencies
of the random variables can be circumvented again. Note that, in case of SDDEs, explicit
schemes, like the Milstein method, need to compute the approximation at the point in time
tn+1 − τl, and thus, the random variables on the right-hand side of equations (V.4) and (V.5)
are needed anyhow.

Taking this into account, we refine the given discretization {t̃0, t̃1, . . . , t̃Ñ−1, t̃Ñ} to

{t0, t1, . . . , tN} :=

Ñ⋃
n=0

⋃
z∈ZD

{
t̃n +

D∑
l=1

zlτl

}
∩ [t0, T ] (V.6)

whenever D > 0. If D = 0, we emphasize that

{t0, t1, . . . , tN} := {t̃0, t̃1, . . . , t̃Ñ−1, t̃Ñ},

and the discretization is still arbitrary.

Using discretization (V.6), we have, on the one hand, the opportunity to compute the Milstein
scheme directly on this discretization. On the other hand, we can calculate the Milstein scheme
on the prior discretization {t̃0, t̃1, . . . , t̃Ñ−1, t̃Ñ}. Afterwards, we use the random variables on the
right-hand side of equations (V.4) and (V.5), that are simulated using the discretization (V.6),
in order to compute for example Yt̃n−τl

via the continuity – interpolation – of the Milstein
scheme (IV.33), where the point in time t̃n − τl does belong to that discretization (V.6).

The dependencies occurring in equations (V.4) and (V.5) make it much more complicated to
add a point to the discretization a posteriori than it is in the case of the Euler-Maruyama
scheme, cf. [2, p. 24].

Therefore, throughout this chapter, it is assumed that the discretization is of form (V.6) when-
ever D > 0.
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V. Efficient Approximation of Iterated Stochastic Integrals

An example of a discretization that satisfies equation (V.6) in case of D = 1 is as follows. Set
h = τ1/M for some M ∈ N, and if T = Nh, let tn = t0+nh for n ∈ {0, 1, . . . , N} be the points
of that equidistant discretization.

A discretization of the form (V.6) does not have to be equidistant necessarily. In case of D = 1
with τ1 = 3, a discretization with h2n = 1 and h2n+1 = 2 for n ∈ {0, 1, . . . , N} provides an
example that satisfies (V.6) and is not equidistant.

For the sake of simplicity, let us introduce the notations

∆W j
n,τl

:=


∫ tn+1−τl

tn−τl

dW j
s if tn − τl ≥ t0 and

0 if tn − τl < t0

as well as

I(i,j),n,τl :=


∫ tn+1

tn

∫ s−τl

tn−τl

dW i
u dW j

s if tn − τl ≥ t0 and

0 if tn − τl < t0

for i, j ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈ {0, 1, . . . , N − 1}. Further, in case of l = 0, we
write

∆W j
n := ∆W j

n,τ0 =

∫ tn+1

tn

dW j
s

and

I(i,j),n := I(i,j),n,τ0 =

∫ tn+1

tn

∫ s

tn

dW i
u dW j

s .

Moreover, we define hn := tn+1 − tn.

Since the discretization {t0, t1, . . . , tN} is of form (V.6), there exists a unique point in time tq
in this discretization with tq = tn − τl whenever tn − τl ≥ t0. Moreover, it holds

hn = tn+1 − tn = tn+1 − τl − (tn − τl) = tq+1 − tq = hq. (V.7)

The algorithms, that approximate the iterated stochastic integrals and are presented below, are
based on the Fourier series expansion of the Brownian bridge process, cf. [60, 78, 79, 105, 137].
Consider the Brownian bridge process(∫ s−τl

tn−τl

dW j
u − s− tn

hn

∫ tn+1−τl

tn−τl

dW j
u

)
s∈[tn,tn+1]

for j ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈ {0, 1, . . . , N − 1} whenever tn − τl ≥ t0. In the
following, let n ∈ {0, 1, . . . , N − 1} be arbitrarily fixed if not stated otherwise. Since P-almost
all realizations of the Wiener process are continuous, the Brownian bridge process P-almost
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surely belongs to L2([tn, tn+1];R). Hence, its Fourier series expansion with respect to the
trigonometric, complete orthonormal basis(√

1

hn

)
s∈[tn,tn+1]

∪
{(√

2

hn
cos
(
2π

hn
k(s− tn)

))
s∈[tn,tn+1]

, k ∈ N
}

∪
{(√

2

hn
sin
(
2π

hn
k(s− tn)

))
s∈[tn,tn+1]

, k ∈ N
}

of L2([tn, tn+1];R) is given by∫ s−τl

tn−τl

dW j
u − s− tn

hn
∆W j

n,τl

=
aj0,n,τl

2
+

∞∑
k=1

ajk,n,τl cos
(
2π

hn
k(s− tn)

)
+ bjk,n,τl sin

(
2π

hn
k(s− tn)

)
,

(V.8)

where the series is P-almost surely convergent in L2([tn, tn+1];R) at first. The Fourier coeffi-
cients are defined as

ajk,n,τl :=
2

hn

∫ tn+1

tn

(∫ s−τl

tn−τl

dW j
u − s− tn

hn
∆W j

n,τl

)
cos
(
2π

hn
k(s− tn)

)
ds

for k ∈ N0 and

bjk,n,τl :=
2

hn

∫ tn+1

tn

(∫ s−τl

tn−τl

dW j
u − s− tn

hn
∆W j

n,τl

)
sin
(
2π

hn
k(s− tn)

)
ds

for k ∈ N. In case of l = 0, we just write ajk,n := ajk,n,τ0 and bjk,n := bjk,n,τ0 .

The random Fourier coefficients ajk,n,τl and bjk,n,τl , k ∈ N and j ∈ {1, . . . ,m}, are independent
and N(0, hn

2π2k2
)-distributed, cf. [105]. Since covariance

E
[
∆W i

n,τl

(∫ s−τl

tn−τl

dW j
u − s− tn

hn
∆W j

n,τl

)]
= 0

for all s ∈ [tn, tn+1], the increment ∆W i
n,τl

is further on independent of ajk,n,τl and bjk,n,τl for all
k ∈ N, i, j ∈ {1, . . . ,m}.

According to [66] and [135], the series in equation (V.8) also converges, uniformly for all s ∈
[tn, tn+1], P-almost surely and in Lp(Ω;R) for all p ∈ [1,∞[. Thus, the evaluation of that series
at a point in time s ∈ [tn, tn+1] is well-defined. Setting s = tn or s = tn+1 in equation (V.8),
we obtain the relation

aj0,n,τl
2

= −
∞∑
k=1

ajk,n,τl (V.9)

P-almost surely, where the series converges in Lp(Ω;R) for all p ∈ [1,∞[.

Let us give a remark on the convergence of random series.
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V. Efficient Approximation of Iterated Stochastic Integrals

Remark V.1
Let E be a separable Banach space. Series that converge in Lp(Ω;E) for some p ∈ [1,∞[ are
convergent in probability, too. If the summands are further independent, the series also converge
P-almost surely by Lévy’s theorem, see [66, Theorem 3.1] and, e. g., [12, Satz 14.2] in case of
E = R.

According to Remark V.1, series may converge P-almost surely as well, but this will not always
be mentioned below. If not stated otherwise, let p ∈ [2,∞[ be arbitrarily fixed in this chapter.

In the following, we present the series expansions of iterated stochastic integrals, cf. [60, Sec-
tion 4] and [137, Subsection 3.7.2]. For this, we consider some stochastic integrals first. Using
Itô’s formula, cf. [84, Theorem 8.1.1], it P-almost surely holds∫ tn+1

tn

s− tn
hn

dW j
s =

1

2
∆W j

n −
aj0,n
2
, (V.10)

∫ tn+1

tn

cos
(
2π

hn
k(s− tn)

)
dW j

s = πkbjk,n, (V.11)

and ∫ tn+1

tn

sin
(
2π

hn
k(s− tn)

)
dW j

s = −πkajk,n, (V.12)

cf. [105, Lemma 7.4]. Further, for i ∈ {1, . . . ,m}, the increment ∆W i
n,τl

is Ftn+1−τl/B(R)-mea-
surable and independent of the Wiener processes W j for j ∈ {1, . . . ,m} \ i. In case of l ∈
{1, . . . , D}, it holds tn+1 − τl ≤ tn since the discretization is assumed to be of form (V.6).

Due to these measurability and independence properties, we can substitute the inner integral
of
∫ tn+1

tn

∫ s−τl
tn−τl

dW i
u dW j

s , if i 6= j in case of l = 0, by expansion∫ s−τl

tn−τl

dW i
u

=
s− tn
hn

∆W i
n,τl

+
ai0,n,τl

2
+

∞∑
k=1

aik,n,τl cos
(
2π

hn
k(s− tn)

)
+ bik,n,τl sin

(
2π

hn
k(s− tn)

)
that converges uniformly for all s ∈ [t0, T ] P-almost surely, see equation (V.8). In the excluded
case, however, we directly have I(j,j),n = 1

2((∆W
j
n)2 − hn) P-almost surely, see equation (V.2).

Using formulas (V.10), (V.11), and (V.12), we obtain

I(i,j),n =
1

2
∆W i

n∆W
j
n +

ai0,n
2

∆W j
n −

aj0,n
2

∆W i
n + π

∞∑
k=1

k(aik,nb
j
k,n − bik,na

j
k,n) (V.13)

for i, j ∈ {1, . . . ,m} with i 6= j, where the series converges in Lp(Ω;R), cf. [78]. Similarly, we
have

I(i,j),n,τl =
1

2
∆W i

n,τl
∆W j

n +
ai0,n,τl

2
∆W j

n −
aj0,n
2

∆W i
n,τl

+ π
∞∑
k=1

k(aik,n,τlb
j
k,n − bik,n,τla

j
k,n)

(V.14)
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for all l ∈ {1, . . . , D} and i, j ∈ {1, . . . ,m}, where the series converges in Lp(Ω;R), cf. [60,
Lemma 4.1] and [137, Lemma 7.2]. We refer to the proof of Theorem V.2 below for further
details on the convergence.

Thus, in case of l = 0, we P-almost surely have

I(i,j),n =
∆W i

n∆W
j
n − hn1{i=j}

2
+A(i,j),n

for i, j ∈ {1, . . . ,m} where

A(i,j),n := A(i,j),n,τ0 :=
I(i,j),n − I(j,i),n

2

=
ai0,n
2

∆W j
n −

aj0,n
2

∆W i
n + π

∞∑
k=1

k(aik,nb
j
k,n − bik,na

j
k,n) (V.15)

is the Lévy stochastic area. Here, it holds

A(i,j),n = −A(j,i),n (V.16)

for i, j ∈ {1, . . . ,m} with i 6= j and A(j,j),n = 0 for j ∈ {1, . . . ,m}, cf. [136]. Due to this
relation, we only need to simulate the Lévy areas A(i,j),n for i, j ∈ {1, . . . ,m} with i < j.

Similarly, we P-almost surely have

I(i,j),n,τl =
1

2
∆W i

n,τl
∆W j

n +A(i,j),n,τl

for all i, j ∈ {1, . . . ,m} and l ∈ {1, . . . , D} where

A(i,j),n,τl
:=

ai0,n,τl
2

∆W j
n −

aj0,n
2

∆W i
n,τl

+ π
∞∑
k=1

k(aik,n,τlb
j
k,n − bik,n,τla

j
k,n), (V.17)

whenever tn−τl ≥ t0. Here, random variable A(i,j),n,τl can be seen as a delayed Lévy stochastic
area. If tn−τl < t0, we set A(i,j),n,τl

:= 0. Note that expansion (V.17) above does not commute
in contrast to the expansion in equation (V.15). Therefore, the delayed-iterated stochastic
integrals I(i,j),n,τl have to be simulated for each pair (i, j), i, j ∈ {1, . . . ,m}, even if m = 1.

Approximations of expansions (V.15) and (V.17) are considered and analyzed in the following
sections. There, we need the notation of Gamma function Γ, defined by

Γ(z) :=

∫ ∞

0
xz−1e−x dx

for z ∈ R with z > 0, cf. [5, pp. 35–36]. The Gamma function Γ generalizes the factorial in the
sense that Γ(n+ 1) = n! for n ∈ N0, see [5, Theorem 1.9.4] for example.
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V. Efficient Approximation of Iterated Stochastic Integrals

V.1. Algorithm I: The General Case

According to the introduction of this chapter, the random variables A(i,j),n,τl have to be sim-
ulated in order to model the iterated stochastic integrals I(i,j),n,τl for i, j ∈ {1, . . . ,m} and
l ∈ {0, 1, . . . , D}, where n ∈ {0, 1, . . . , N − 1}. Only with the exception of A(j,j),n = 0 for
j ∈ {1, . . . ,m} in case of l = 0, there are so far no methods available that generate these Lévy
areas exactly.

In this section, we present a simple method for the approximation of iterated stochastic integral
I(i,j),n,τl , which was first introduced by Milstein in case of l = 0, cf. [105, pp. 94–100], and was
then extended to iterated stochastic integrals with delay by Yan in [137, Subsection 3.7.2].
Both show that this so-called Fourier method is convergent in L2(Ω;R), also see [60, 78, 79].
In this chapter, we prove the convergence in a stronger sense, namely in Lp(Ω;R) for arbitrary
p ∈ [2,∞[.

This simple approximation of Lévy areas is obtained by truncating series A(i,j),n and A(i,j),n,τl ,
see equations (V.15) and (V.17), after K terms, that is

AK
(i,j),n := AK

(i,j),n,τ0
:=

ai0,n
2

∆W j
n −

aj0,n
2

∆W i
n + π

K∑
k=1

k(aik,nb
j
k,n − bik,na

j
k,n) (V.18)

and

AK
(i,j),n,τl

:=


ai0,n,τl

2
∆W j

n −
aj0,n
2

∆W i
n,τl

+ π

K∑
k=1

k(aik,n,τlb
j
k,n− bik,n,τla

j
k,n) if tn − τl ≥ t0,

0 if tn − τl < t0

(V.19)

for some K ∈ N. Note that AK
(j,j),n = 0 for all j ∈ {1, . . . ,m}. Then, the iterated stochas-

tic integrals I(i,j),n,τl for i, j ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈ {0, 1, . . . , N − 1} are
approximated by

IK(i,j),n := IK(i,j),n,τ0 :=
1

2

(
∆W i

n∆W
j
n − hn1{i=j}

)
+AK

(i,j),n (V.20)

and

IK(i,j),n,τl :=


1

2
∆W i

n,τl
∆W j

n +AK
(i,j),n,τl

if tn − τl ≥ t0,

0 if tn − τl < t0

(V.21)

where K ∈ N. These approximations converge with order O(K− 1
2 ) in Lp(Ω;R) to I(i,j),n and

I(i,j),n,τl , respectively, as K → ∞. The precise error estimates are stated in the next theorem.
This theorem extends the results from [60, 78, 79, 105, 137], where the convergence in L2(Ω;R)
is considered.

Theorem V.2
Let p ∈ [2,∞[ and n ∈ {0, 1, . . . , N − 1}. Consider approximation IK(i,j),n,τl defined by equa-
tions (V.20) and (V.21), where K ∈ N, i, j ∈ {1, . . . ,m}, and l ∈ {0, 1, . . . , D}. It holds

max
i,j∈{1,...,m}
l∈{0,1,...,D}

‖I(i,j),n,τl − IK(i,j),n,τl‖Lp(Ω;R) ≤
(p− 1)

(
Γ(p+1

2 )
) 1

phn

π
2p+1
2p

√
K

,
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V.1. Algorithm I: The General Case

where in particular ‖I(j,j),n − IK(j,j),n‖Lp(Ω;R) = 0.

Proof. The proof is stated in Section V.5, see p. 160.

Especially for p = 2, the inequality simplifies to

max
i,j∈{1,...,m}
l∈{0,1,...,D}

‖I(i,j),n,τl − IK(i,j),n,τl‖L2(Ω;R) ≤
hn√
2π

√
K

(V.22)

since Γ(32) =
√
π
2 . Moreover, if p = 2, the error can be precisely stated, cf. [105, Lemma 7.3] for

the case of l = 0.

Corollary V.3
Let n ∈ {0, 1, . . . , N − 1}, and consider approximation IK(i,j),n,τl defined by equations (V.20)
and (V.21), where K∈N, i, j∈{1, . . . ,m}, and l∈{1, . . . , D}. It holds ‖I(j,j),n−IK(j,j),n‖L2(Ω;R) =

0 for all j ∈ {1, . . . ,m} and

‖I(i,j),n,τl − IK(i,j),n,τl‖L2(Ω;R) =
h√
2π

(
π2

6
−

K∑
k=1

1

k2

) 1
2

for all i, j ∈ {1, . . . ,m} and l ∈ {0, 1, . . . , D}, where i 6= j if l = 0.

Proof. The proof is stated in Section V.5, see p. 162.

In the following, we provide an algorithm for the simulation of ∆W j
n, IK(i,j),n, and IK(i,j),n,τl , if

tn − τl ≥ t0, for all i, j ∈ {1, . . . ,m}, l ∈ {1, . . . , D}, and n ∈ {0, 1, . . . , N − 1}.

Define the matrix AK
n,τl

:= (AK
(i,j),n,τl

)1≤i,j≤m ∈ Rm×m, where AK
n := AK

n,τ0 , and define the
vector operator

vec
[
(AK

n,τl
)T] := (AK

(1,1),n,τl
, . . . , AK

(1,m),n,τl
, . . . , AK

(m,1),n,τl
, . . . , AK

(m,m),n,τl

)T∈ Rm2
. (V.23)

Using the Kronecker product ⊗, we P-almost surely have

vec
[
(AK

n )T] = a0,n
2

⊗∆Wn −∆Wn ⊗
a0,n
2

+ π
K∑
k=1

k(ak,n ⊗ bk,n − bk,n ⊗ ak,n) (V.24)

and

vec
[
(AK

n,τl
)T] = a0,n,τl

2
⊗∆Wn −∆Wn,τl ⊗

a0,n
2

+ π

K∑
k=1

k(ak,n,τl ⊗ bk,n − bk,n,τl ⊗ ak,n),

where ∆Wn,τl := (∆W 1
n,τl

, . . . ,∆Wm
n,τl

)T as well as ak,n,τl := (a1k,n,τl , . . . , a
m
k,n,τl

)T for k ∈ N0

and bk,n,τl := (b1k,n,τl , . . . , b
m
k,n,τl

)T for k ∈ N.

So far, we only considered the approximations IK(i,j),n and AK
(i,j),n as well as IK(i,j),n,τl and AK

(i,j),n,τl
for fixed i, j ∈ {1, . . . ,m}, n ∈ {0, 1, . . . , N−1}, l ∈ {1, . . . , D}, and K ∈ N. In order to simulate
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these approximations correctly, we have to take their dependencies into account by generating
the random variables. Therefore, we make the following considerations.

For some point in time tq = tn − τl ≥ t0 of the discretization under consideration, we have the
identities ajk,n,τl = ajk,q for k ∈ N0 and bjk,n,τl = bjk,q for k ∈ N. In fact, considering Fourier
coefficient ajk,n,τl exemplarily and using the substitution s = r + τl, it holds

ajk,n,τl =
2

hn

∫ tn+1

tn

(∫ s−τl

tn−τl

dW j
u − s− tn

hn

∫ tn+1−τl

tn−τl

dW j
u

)
cos
(
2π

hn
k(s− tn)

)
ds

=
2

hn

∫ tn+1−τl

tn−τl

(∫ r

tn−τl

dW j
u − r + τl − tn

hn

∫ tn+1−τl

tn−τl

dW j
u

)
cos
(
2π

hn
k(r + τl − tn)

)
dr

=
2

hq

∫ tq+1

tq

(∫ r

tq

dW j
u − r − tq

hq

∫ tq+1

tq

dW j
u

)
cos
(
2π

hq
k(r − tq)

)
dr

= ajk,q,

where tq+1 = tn+1 − τl, equation (V.7), and ∆W j
q = ∆W j

n,τl are used.

If we want to ensure, cf. Theorem V.2, that

‖I(i,j),n,τl − IKn

(i,j),n,τl
‖Lp(Ω;R) ≤

(p− 1)
(
Γ(p+1

2 )
) 1

phn

π
2p+1
2p

√
Kn

≤ ε

and

‖I(i,j),q − I
Kq

(i,j),q‖Lp(Ω;R) ≤
(p− 1)

(
Γ(p+1

2 )
) 1

phq

π
2p+1
2p
√
Kq

≤ ε

for some error ε > 0, we can choose K = Kn = Kq since hn = hq, see equation (V.7). Then,
the sums in approximations (V.18) and (V.19) have the same number of random variables,
where ∆Wn,τl = ∆Wq, a0,n,τl = a0,q, ak,n,τl = ak,q, and bk,n,τl = bk,q for k ∈ {1, . . . ,K}. These
and only these random variables were already generated in the step where iterated stochastic
integrals IK(i,j),q for i, j ∈ {1, . . . ,m} have been simulated. Thus, in order to simulate IK(i,j),n,τl ,
we only have to generate the random variables ∆Wn, a0,n, ak,n, and bk,n for k ∈ {1, . . . ,K} in
addition.

In simulating random variable a0,n, we further have to take into account that a0,n is not inde-
pendent of the random variables ak,n for k ∈ {1, . . . ,K}. Since, for k ∈ N, Fourier coefficients
ajk,n, j ∈ {1, . . . ,m}, are independent and N

(
0, hn

2π2k2

)
-distributed, we obtain for j ∈ {1, . . . ,m}

by identity (V.9) that

−
aj0,n
2

=
∞∑
k=1

ajk,n =
K∑
k=1

ajk,n +
∞∑

k=K+1

ajk,n

P-almost surely, where random variable
∞∑

k=K+1

ajk,n ∼ N
(
0,

∞∑
k=K+1

hn
2π2k2

)
(V.25)
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is independent of ajk,n for all k ∈ {1, . . . ,K}.

Let us introduce some additional notations. We denote by 0i×j the matrix of zeros of size i× j
and by Im the identity matrix of size m×m. For emphasis, we also write 0m×1 for 0 ∈ Rm.

According to [74, Corollary 6.11], for n ∈ {0, 1, . . . , N − 1} and k ∈ {1, . . . ,K}, there exist
N(0m×1, Im)-distributed random variables Bn, G0,n, Uk,n, and Vk,n such that

∆Wn =
√
hnBn,

∞∑
k=K+1

ak,n =

√
hn√
2π

(
π2

6
−

K∑
k=1

1

k2

) 1
2

G0,n,

ak,n =

√
hn√
2πk

Uk,n,

and

bk,n =

√
hn√
2πk

Vk,n

P-almost surely. Then, we can rewrite equation (V.24) to

vec
[
(AK

n )T] = hn√
2π

√√√√π2

6
−

K∑
k=1

1

k2
(
Bn ⊗G0,n −G0,n ⊗Bn

)
+
hn
2π

K∑
k=1

1

k

(
Uk,n ⊗ (Vk,n −

√
2Bn)− (Vk,n −

√
2Bn)⊗ Uk,n

)
P-almost surely and approximate In = (I(i,j),n)1≤i,j≤m by

vec
[
(IKn )T] = 1

2

(
∆Wn ⊗∆Wn − vec[hnIm]

)
+ vec

[
(AK

n )T]
P-almost surely. Similarly, we P-almost surely have

vec
[
(IKn,τl)

T] = 1

2

(
∆Wq ⊗∆Wn

)
+ vec

[
(AK

n,τl
)T],

where tq = tn − τl ≥ t0 and

vec
[
(AK

n,τl
)T] = hn√

2π

√√√√π2

6
−

K∑
k=1

1

k2
(
Bq ⊗G0,n −G0,q ⊗Bn

)
+
hn
2π

K∑
k=1

1

k

(
Uk,q ⊗ (Vk,n −

√
2Bn)− (Vk,q −

√
2Bq)⊗ Uk,n

)
P-almost surely. Using this, we provide the following algorithm for the approximation of iterated
stochastic integrals.
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Algorithm V.4
Let discretization {t0, t1, . . . , tN} of [t0, T ] be of form (V.6), and let p ∈ [2,∞[. In order to
simulate ∆W j

n and I(i,j),n,τl for i, j ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈ {0, 1, . . . , N − 1}
such that

max
i,j∈{1,...,m}
l∈{0,1,...,D}

‖I(i,j),n,τl − IKn

(i,j),n,τl
‖Lp(Ω;R) ≤ ε

for some error bound ε > 0, proceed as follows. For n = 0, 1, . . . , N − 1,

i) set

Kn =

⌈
(p− 1)2

(
Γ(p+1

2 )
) 2

ph2n

π
2p+1

p ε2

⌉
,

where d·e is the ceiling function. In case of p = 2, this especially means that Kn =
⌈ h2

n
2π2ε2

⌉
.

ii) Generate and store independently N(0m×1, Im)-distributed random variables Bn, G0,n,
Uk,n, and Vk,n for k ∈ {1, . . . ,Kn}.

iii) Set ∆Wn =
√
hnBn, and approximate random variable vec

[
(An)

T] by

vec
[
(AKn

n )T] = hn√
2π

√√√√π2

6
−

Kn∑
k=1

1

k2
(
Bn ⊗G0,n −G0,n ⊗Bn

)
+
hn
2π

Kn∑
k=1

1

k

(
Uk,n ⊗ (Vk,n −

√
2Bn)− (Vk,n −

√
2Bn)⊗ Uk,n

)
.

iv) Then, the approximation of vec
[
(In)

T] is computed as

vec
[
(IKn

n )T] = hn
2

(
Bn ⊗Bn − vec[Im]

)
+ vec

[
(AKn

n )T].
v) For l = 1, . . . , D, if tn − τl ≥ t0, determine q ∈ {0, 1, . . . , n − 1} such that tq = tn − τl,

and the approximation of vec
[
(In,τl)

T] is computed as

vec
[
(IKn

n,τl
)T] = hn

2

(
Bq ⊗Bn

)
+ vec

[
(AKn

n,τl
)T]

where

vec
[
(AKn

n,τl
)T] = hn√

2π

√√√√π2

6
−

Kn∑
k=1

1

k2
(
Bq ⊗G0,n −G0,q ⊗Bn

)
+
hn
2π

Kn∑
k=1

1

k

(
Uk,q ⊗ (Vk,n −

√
2Bn)− (Vk,q −

√
2Bq)⊗ Uk,n

)
.
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V.2. Algorithm II: Nondelayed-Iterated Stochastic Integrals

A new algorithm for the approximation nondelayed-iterated stochastic integrals I(j,j),n is devel-
oped in this section. As announced in the introduction of this chapter, this algorithm lowers the
computational cost significantly compared to the one of Wiktorsson in [136], see in this regard
Section V.3 in particular. While Wiktorsson only considered the convergence in L2(Ω;R), see
[136, p. 481], we show the convergence of our method in Lp(Ω;R) for arbitrary p ∈ [2,∞[.

Similarly to the algorithm of Wiktorsson in [136], we truncate series expansion (V.15) and
approximate its remainder such that the order of convergence will be improved. The algorithm
provided in the previous section serves as a basis at this point. Wiktorsson neglects in his
algorithm known information about the distribution of the coefficient a0,n, cf. formula (V.25).
Incorporating this information is the main idea of our new algorithm and results in savings in
computational costs.

In the following, let n ∈ {0, 1, . . . , N−1} and p ∈ [2,∞[ be arbitrary fixed first. The remainder,
neglected in approximation (V.18) of series expansion (V.15), is given by

A(i,j),n −AK
(i,j),n = π

∞∑
k=K+1

k(aik,nb
j
k,n − bik,na

j
k,n) (V.26)

P-almost surely for i, j ∈ {1, . . . ,m}, where the series converges in Lp(Ω;R), cf. Theorem V.2.
As mentioned before, it holds A(j,j),n −AK

(j,j),n = 0, and thus, let i 6= j unless otherwise stated.
According to relation (V.16), we only have to approximate the Lévy areas A(i,j),n for i < j, cf.
[136]. Therefore and for technical reasons, we introduce the matrix

Hm :=



0m−1×1 Im−1 0m−1×m(m−1)

0m−2×m+2 Im−2 0m−2×m(m−2)
...

...
...

0m−j×(j−1)m+j Im−j 0m−j×m(m−j)
...

...
...

01×(m−2)m+m−1 1 01×m


∈ RM×m2

, (V.27)

where M := 1
2m(m−1) and Ij is the identity matrix of size j×j, cf. [136, pp. 477, 478, and 486].

Considering equations (V.23) and (V.24), selection matrix Hm implies(
AK

(1,2),n, . . . , A
K
(1,m),n, A

K
(2,3),n, . . . , A

K
(2,m),n, . . . , A

K
(j,j+1),n, . . . , A

K
(j,m),n, . . . , A

K
(m−1,m),n

)T

= Hmvec
[
(AK

n )T]
(V.28)

P-almost surely. Let (ej)j∈{1,...,m} be the canonical orthonormal basis of Rm. That is, ej denotes
the jth unit vector in Rm. We define permutation matrix Pm ∈ Rm2×m2 by

Pm :=

m∑
i,j=1

eie
T
j ⊗ eje

T
i , (V.29)

cf. [136, p. 478]. Then, it holds

Pm(x⊗ y) = y ⊗ x
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for all x, y ∈ Rm, and further, we have

Pm =

m∑
j=1

ej ⊗ (Im ⊗ eT
j ) =

m∑
j=1

eT
j ⊗ (Im ⊗ ej), (V.30)

see [95]. The latter representation is used in [90] for example. Using selection matrix Hm and
permutation matrix Pm, we have with relation (V.16) that

vec
[
(AK

n )T] = (Im2 − Pm)HT
m

(
Hmvec

[
(AK

n )T]), (V.31)

see [136, p. 479]. In view of equations (V.23) and (V.28), the remainder in equation (V.26) can
be represented in vectorial form, and it holds

Hm

(
vec
[
(An)

T]− vec
[
(AK

n )T]) = π
∞∑

k=K+1

kHm(Pm − Im2)(bk,n ⊗ ak,n) (V.32)

P-almost surely, where the series converges in Lp(Ω;RM ) as the series in equation (V.26) is
convergent in Lp(Ω;R).

In the following, we approximate the remainder in equation (V.32) by a suitable random vari-
able and add that approximation to the truncated series (V.31), cf. [136]. Here, Algorithm V.4
already incorporates the normally distributed random variable

∑∞
k=K+1 ak,n. Thus, our approx-

imation, obtained by Algorithm V.4, is not independent of the remainder in equation (V.26)
anymore. This is the main difference and difficulty compared to [136]. In order to provide
a reasonable approximation, we have to take this dependence into account in our derivation.
Wiktorsson states that the conditional distribution of the remainder, which he considers in
his approximation, is normal, see [136, pp. 479–480]. In our approach, the joint conditional
distribution of the remainder in equation (V.32) and random variable

∑∞
k=K+1 ak,n is normal,

too.

Lemma V.5
Let K ∈ N. Given {bk,n : k ∈ N with k > K}, the conditional distribution of the random
variable

∞∑
k=K+1

ak,n

π

∞∑
k=K+1

kHm(Pm − Im2)(bk,n ⊗ ak,n)

 : Ω → Rm+M (V.33)

is normal with conditional expectation 0(m+M)×1 P-almost surely and conditional covariance(
ΣK

1,n (ΣK
2,n)

T

ΣK
2,n ΣK

3,n

)
: Ω → R(m+M)×(m+M),

where

ΣK
1,n =

( ∞∑
k=K+1

hn
2π2k2

)
Im, (V.34)
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ΣK
2,n =

hn
2π
Hm(Pm − Im2)

( ∞∑
k=K+1

bk,n
k

⊗ Im

)
, (V.35)

and

ΣK
3,n =

hn
2
Hm(Pm − Im2)

( ∞∑
k=K+1

bk,nb
T
k,n ⊗ Im

)
(Pm − Im2)HT

m (V.36)

P-almost surely. Here, we have ΣK
1,n ∈ Rm×m, ΣK

2,n : Ω → RM×m, and ΣK
3,n : Ω → RM×M . The

series
∑∞

k=K+1
1
k b

j
k,n and

∑∞
k=K+1 b

i
k,nb

j
k,n converge absolutely in the Lp(Ω;R)-norm for every

p ∈ [1,∞[ as well as P-almost surely for all i, j ∈ {1, . . . ,m}.

Proof. The proof is stated in Section V.5, see p. 162.

In the following, we consider the conditional covariance matrix in Lemma V.5 more closely.
Introducing the Schur complement

SK
n := ΣK

3,n −ΣK
2,n(Σ

K
1,n)

−1(ΣK
2,n)

T, (V.37)

we P-almost surely have

SK
n =

hn
2
Hm(Pm − Im2)

×

(( ∞∑
k=K+1

bk,nb
T
k,n −

( ∞∑
k=K+1

1

k2

)−1( ∞∑
k=K+1

bk,n
k

)( ∞∑
k=K+1

bT
k,n

k

))
⊗ Im

)
× (Pm − Im2)HT

m,

(V.38)

and (
ΣK

1,n (ΣK
2,n)

T

ΣK
2,n ΣK

3,n

)
=

(
Im 0m×M

ΣK
2,n(Σ

K
1,n)

−1 IM

)(
ΣK

1,n (ΣK
2,n)

T

0M×m SK
n

)
. (V.39)

Further, let the matrix square roots of ΣK
1,n and SK

n be denoted by
√
ΣK

1,n and
√
SK
n so that

we have ΣK
1,n =

√
ΣK

1,n

√
ΣK

1,n and SK
n =

√
SK
n

√
SK
n . Using equation (V.39) and the previous

introduced matrix square roots, we can calculate a covariance decomposition(
ΣK

1,n (ΣK
2,n)

T

ΣK
2,n ΣK

3,n

)
=

(
Im 0m×M

ΣK
2,n(Σ

K
1,n)

−1 IM

)(
ΣK

1,n 0m×M

0M×m SK
n

)(
Im (ΣK

1,n)
−1(ΣK

2,n)
T

0M×m IM

)
=

( √
ΣK

1,n 0m×M

ΣK
2,n(Σ

K
1,n)

−1
√
ΣK

1,n

√
SK
n

)(√
ΣK

1,n

√
ΣK

1,n(Σ
K
1,n)

−1(ΣK
2,n)

T

0M×m

√
SK
n

)
.

According to this decomposition of the conditional covariance matrix and to [74, Corollary 6.11],
there exists a N(0(m+M)×1, Im+M )-distributed random variable Gn such that

∞∑
k=K+1

ak,n

π
∞∑

k=K+1

kHm(Pm − Im2)(bk,n ⊗ ak,n)

 =

( √
ΣK

1,n 0m×M

ΣK
2,n(Σ

K
1,n)

−1
√
ΣK

1,n

√
SK
n

)
Gn
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P-almost surely. Here, random variable Gn is stochastically independent of Fourier coefficients
bk,n, k ∈ N, or is, more precisely, only depending on Fourier coefficients ak,n, k ∈ N where
k > K. Further, it P-almost surely holds E[Gn|Ftn+1 ] = Gn and E[Gn|Ftn ] = 0(m+M)×1.

Writing Gn = (GT
0,n, G

T
1,n)

T where G0,n ∼ N(0m×1, Im) and G1,n ∼ N(0M×1, IM ), the remainder
in equation (V.32) can be represented as

π

∞∑
k=K+1

kHm(Pm − Im2)(bk,n ⊗ ak,n) = ΣK
2,n(Σ

K
1,n)

−1
√
ΣK

1,nG0,n +
√
SK
n G1,n (V.40)

P-almost surely, where
√
ΣK

1,nG0,n =
∑∞

k=K+1 ak,n P-almost surely.

Similarly to the approach of Wiktorsson in [136], we replace
√
SK
n with

√
E[SK

n ]. The next
lemma provides an explicit expression of matrix square root

√
E[SK

n ].

Lemma V.6
Let K ∈ N and n ∈ {0, 1, . . . , N − 1}. Consider Schur complement SK

n , see equations (V.37)
and (V.38). Matrix square root

√
E[SK

n ] of matrix E[SK
n ] ∈ RM×M satisfies

√
E[SK

n ] =
hn√
2π

(( ∞∑
k=K+1

1

k2

)
−
( ∞∑

k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

)) 1
2

IM .

Proof. The proof is stated in Section V.5, see p. 165.

We emphasize that square root matrix
√

E[SK
n ] is diagonal. Hence, less computational effort is

needed to compute
√

E[SK
n ] than for the computation of random matrix

√
Σ∞ in Wiktorsson’s

article, cf. [136, Equations (4.5) and (4.7)].

By replacing the random square root matrix
√
SK
n with the deterministic and diagonal square

root matrix
√

E[SK
n ] in equation (V.40), the remainder is only simulated approximately. The

following theorem provides an estimate of the error that results from this procedure.

Theorem V.7
Let n ∈ {0, 1, . . . , N − 1}. It holds

max
i∈{1,...,M}

∥∥eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∥∥
L2(Ω;R) ≤

√
mhn√
12πK

for all K ∈ N, where ei is the ith unit vector of RM .

Proof. The proof is stated in Section V.5, see p. 166.

We improve Algorithm V.4 by adding the approximation of the remainder (V.26), also see
equation (V.40). Similarly to approximation

vec
[
(IKn )T] = 1

2

(
∆Wn ⊗∆Wn − vec[hnIm]

)
+ vec

[
(AK

n )T]
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of the iterated stochastic integrals from the previous section, we define the approximation

vec
[
(IK+

n )T] := vec
[
(IKn )T]+ (Im2 − Pm)HT

m

(
ΣK

2,n(Σ
K
1,n)

−1
√
ΣK

1,nG0,n +
√

E[SK
n ]G1,n

)
.

(V.41)

This additional term increases the order of convergence in K as K → ∞ compared to approxi-
mation IK(i,j),n, which is of order O(K− 1

2 ) as K → ∞, see inequality (V.22) in Theorem V.2.

Theorem V.8
Let n ∈ {0, 1, . . . , N − 1}. Consider approximation IK+

(i,j),n defined by equation (V.41), where
K ∈ N and i, j ∈ {1, . . . ,m}. It holds

max
i,j∈{1,...,m}

‖I(i,j),n − IK+
(i,j),n‖L2(Ω;R) ≤

√
mhn√
12πK

,

where in particular

max
j∈{1,...,m}

‖I(j,j),n − IK+
(j,j),n‖L2(Ω;R) = 0.

Proof. The result directly follows from Theorem V.7 because

max
i,j∈{1,...,m}

‖I(i,j),n − IK+
(i,j),n‖L2(Ω;R)

= max
i∈{1,...,M}

∥∥eT
i

(
Hmvec

[
(In)

T]−Hmvec
[
(IK+

n )T])∥∥
L2(Ω;R)

= max
i∈{1,...,M}

∥∥eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∥∥
L2(Ω;R) (V.42)

where I(j,j),n = IK+
(j,j),n for j ∈ {1, . . . ,m}.

Let us already remark here that the error bound
√
mhn√
12πK

in the theorem above is smaller than
the one of Wiktorsson’s algorithm, cf. [136, Theorem 4.1]. Wiktorsson proved that his approx-
imation I

(K)′

(i,j),n satisfies

max
i,j∈{1,...,m}

‖I(i,j),n − I
(K)′

(i,j),n‖L2(Ω;R) ≤
√
5m2(m− 1)hn√

24πK
. (V.43)

Thus, our algorithm improves that error bound by a factor of
√

5m(m−1)√
2

. This lowers the costs
significantly. For more details on this, we refer to Section V.3.

The following theorem generalizes the results from Theorem V.8 to arbitrary p ∈ ]2,∞[.

Theorem V.9
Let p ∈ ]2,∞[ and n ∈ {0, 1, . . . , N − 1}. Consider approximation IK+

(i,j),n defined by equa-
tion (V.41), where K ∈ N and i, j ∈ {1, . . . ,m}. It holds

max
i,j∈{1,...,m}

‖I(i,j),n − IK+
(i,j),n‖Lp(Ω;R)

≤
(
Γ(p+1

2 )
) 1

p

π
1
2p

((
2
(
Γ(2p+1

2 )
) 1

p

π
1
2p

+ 1

)2

+ 2(m− 2)

(
Γ(p+1

2 )
) 4

p

π
2
p

) 1
2
(√

3
√
p− 1 + 1

)
hn

3πK
,
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where in particular

max
j∈{1,...,m}

‖I(j,j),n − IK+
(j,j),n‖Lp(Ω;R) = 0.

Proof. The proof is stated in Section V.5, see p. 174.

This theorem of course holds true for p = 2 as well. However, the constant is greater than
the one in Theorem V.8 because the estimates with respect to Lp(Ω;R)-norms neglect that
covariances may vanish or cancel out each other as in case of p = 2, cf. formulas (V.81), (V.82),
(V.83), and (V.86) in the proof of Theorem V.7.

Using the notations from the previous Section V.1, we provide an algorithm for simulating
the nondelayed-iterated stochastic integrals I(i,j),n, i, j ∈ {1, . . . ,m} and n ∈ {0, 1, . . . , N − 1},
approximately. Covariance ΣK

2,n contains random variable
∞∑

k=K+1

bk,n
k

∼ N
(
0m×1,

( ∞∑
k=K+1

hn
2π2k4

)
Im

)
.

According to [74, Corollary 6.11], there exists a N(0m×1, Im)-distributed random variable G2,n

such that
∞∑

k=K+1

bk,n
k

=

(
hn
2π2

∞∑
k=K+1

1

k4

) 1
2

G2,n

and

ΣK
2,n =

hn
2π

(
hn
2π2

∞∑
k=K+1

1

k4

) 1
2

Hm(Pm − Im2)(G2,n ⊗ Im)

P-almost surely.

Algorithm V.10
Let {t0, t1, . . . , tN} be a discretization of [t0, T ] and p ∈ [2,∞[. In order to simulate ∆W j

n and
I(i,j),n for i, j ∈ {1, . . . ,m} and n ∈ {0, 1, . . . , N − 1} such that

max
i,j∈{1,...,m}

‖I(i,j),n − IKn+
(i,j),n‖Lp(Ω;R) ≤ ε

for some error bound ε > 0, proceed as follows. For n = 0, 1, . . . , N − 1,

i) set

Kn =



⌈√
mhn√
12πε

⌉
if p = 2 and⌈(

Γ(p+1
2 )
) 1

p

π
1
2p

((
2
(
Γ(2p+1

2 )
) 1

p

π
1
2p

+ 1

)2
+ 2(m− 2)

(
Γ(p+1

2 )
) 4

p

π
2
p

)1
2

×
(√

3
√
p− 1 + 1

)
hn

3πε

⌉
if p ∈ ]2,∞[,
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where d·e is the ceiling function, and compute

σKn
2 =

∞∑
k=Kn+1

1

k2
=
π2

6
−

Kn∑
k=1

1

k2
= ψ(1)(Kn + 1)

and

σKn
4 =

∞∑
k=Kn+1

1

k4
=
π4

90
−

Kn∑
k=1

1

k4
=

1

6
ψ(3)(Kn + 1),

where ψ(i) is the polygamma function of order i, see e. g. [1, p. 260].

ii) Generate the independently N(0m×1, Im)-distributed random variables Bn, G0,n, Uk,n, and
Vk,n for k ∈ {1, . . . ,Kn}.

iii) Set ∆Wn =
√
hnBn, and compute

vec
[
(AKn

n )T] = hn√
2π

√
σKn
2

(
Bn ⊗G0,n −G0,n ⊗Bn

)
+
hn
2π

Kn∑
k=1

1

k

(
Uk,n ⊗ (Vk,n −

√
2Bn)− (Vk,n −

√
2Bn)⊗ Uk,n

)
.

iv) Independently generate G1,n∼ N(0M×1, IM ) where M= 1
2m(m−1) and G2,n∼ N(0m×1, Im),

and approximate vec
[
(An)

T] by

vec
[
(AKn+

n )T] = vec
[
(AKn

n )T]+ hn
2π

√
σKn
4

σKn
2

(Pm − Im2)(G2,n ⊗ Im)G0,n

− hn√
2π

√
σKn
2 − σKn

4

σKn
2

(Pm − Im2)HT
mG1,n,

where Hm and Pm are defined in formulas (V.27) and (V.29).

v) Then, the approximation of vec
[
(In)

T] is computed as

vec
[
(IKn

n )T] = hn
2

(
Bn ⊗Bn − vec[Im]

)
+ vec

[
(AKn+

n )T].
At this point, we remark that term

ΣK
2,n(Σ

K
1,n)

−1
√
ΣK

1,nG0,n =
hn
2π

√
σK4
σK2

Hm(Pm − Im2)(G2,n ⊗ Im)G0,n

P-almost surely is also of order O(K−1) in Lp(Ω;RM ) as K → ∞. However, neglecting this
term results in a larger error. Define that approximation by

vec
[
(ĨK+

n )T] := vec
[
(IKn )T]+ (Im2 − Pm)HT

m

√
E[SK

n ]G1,n. (V.44)
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Theorem V.11
Let n ∈ {0, 1, . . . , N − 1}. Consider approximation IK+

(i,j),n defined by equation (V.44), where
K ∈ N and i, j ∈ {1, . . . ,m}. It holds

max
i∈{1,...,M}

∥∥eT
i Σ

K
2,n(Σ

K
1,n)

−1
√
ΣK

1,nG0,n

∥∥
L2(Ω;R) ≤

hn√
6πK

,

and thus

max
i,j∈{1,...,m}

‖I(i,j),n − ĨK+
(i,j),n‖L2(Ω;R) ≤

(√
m+

√
2
)
hn√

12πK
,

where in particular

max
j∈{1,...,m}

‖I(j,j),n − ĨK+
(j,j),n‖L2(Ω;R) = 0.

Proof. The proof is stated in Section V.5, see p. 179.

Similarly to Theorem V.9, we can also extend the result of the previous theorem to general
p ∈ ]2,∞[.

Theorem V.12
Let p ∈ ]2,∞[ and n ∈ {0, 1, . . . , N − 1}. Consider approximation IK+

(i,j),n defined by equa-
tion (V.44), where K ∈ N and i, j ∈ {1, . . . ,m}. It holds

max
i∈{1,...,M}

∥∥eT
i Σ

K
2,n(Σ

K
1,n)

−1
√
ΣK

1,nG0,n

∥∥
Lp(Ω;R) ≤

(
Γ(p+1

2 )
) 2

p

π
1
p

2hn√
3πK

,

and thus

max
i,j∈{1,...,m}

‖I(i,j),n − ĨK+
(i,j),n‖Lp(Ω;R)

≤
(
Γ(p+1

2 )
) 1

p

π
1
2p

(((
2
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Γ(2p+1
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π
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) 1
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p− 1 + 1
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+

(
Γ(p+1
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) 1
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π
1
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√
12

)
hn
3πK

,

where in particular

max
j∈{1,...,m}

‖I(j,j),n − ĨK+
(j,j),n‖Lp(Ω;R) = 0.

Proof. The proof is stated in Section V.5, see p. 181.

Approximating I(i,j),n by ĨK+
(i,j),n instead of IK+

(i,j),n, we do not need to generate N(0m×1, Im)-dis-
tributed random variable G2,n. However, as we see in Section V.3, the savings in computational
costs are not large enough to compensate for the larger error as K → ∞ unless dimension m
of Wiener process W is high.
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V.3. Analysis of the Computational Costs

The algorithms introduced in the previous sections are analyzed below with respect to their com-
putational costs. By computational costs, we mean the number of independently N(0, 1)-dis-
tributed random variables that need to be generated. The cost for one standard-normally
distributed random variable is set to one.

The first cost analysis of different algorithms approximating nondelayed-iterated stochastic in-
tegrals was done by Milstein [105]. He compared a rectangle method, a trapezium method,
and the Fourier method, cf. Algorithm V.4. As a result of this, it turned out that the Fourier
method has the least computing effort, see [105, p. 100]. This is the reason why we only consid-
ered the Fourier method and not a rectangle method or a trapezium method as well. Moreover,
the computational effort of Algorithm V.4 does not increase by modeling the delayed-iterated
stochastic integrals since the random variables that were already generated are reused.

In the following, we compare the costs caused by the computation of approximations IK(i,j),n,
IK+
(i,j),n, and ĨK+

(i,j),n as well as approximation I
(K)′

(i,j),n of Wiktorsson [136] for i, j ∈ {1, . . . ,m},
K ∈ N, and an arbitrary n ∈ {0, 1, . . . , N − 1}. The approximations IK(i,j),n, IK+

(i,j),n, and ĨK+
(i,j),n

are defined in formulas (V.20), (V.41), and (V.44), respectively.

Given some K ∈ N, the Fourier method IK(i,j),n involves 2(K + 1)m independent, N(0, 1)-dis-
tributed random variables in order to approximate the iterated stochastic integrals I(i,j),n for
i, j ∈ {1, . . . ,m}, cf. Algorithm V.4. We write

cost[IKn ] = (2K + 2)m. (V.45)

Furthermore, we have

cost[IK+
n ] = (2K + 3)m+

m(m− 1)

2
, (V.46)

cf. Algorithm V.10, and

cost[ĨK+
n ] = (2K + 2)m+

m(m− 1)

2
. (V.47)

For approximation I
(K)′

(i,j),n proposed by Wiktorsson in [136], it holds

cost[I(K)′
n ] = (2K + 1)m+

m(m− 1)

2
. (V.48)

In Figure V.13, we present the error bounds E·,2(hn,K) ≥ maxi,j∈{1,...,m}‖I(i,j),n − · ‖L2(Ω;R) of
Theorem V.2, Theorem V.8, Theorem V.11, and inequality (V.43) versus these computational
costs for K ∈ {1, . . . , 1000} where hn = 2−10. The Wiener process is m = 2 dimensional in
Figure V.13 i) on the left and m = 10 dimensional in Figure V.13 ii) on the right. At first, we
see that approximations IK+

n , ĨK+
n , and I

(K)′
n reduce the root mean square error in the same

and higher order compared to the simple approximation IKn from Algorithm V.4 (blue-solid
line) without the approximation of the remainder of the Fourier series. Although we have

cost[IK+
n ] > cost[ĨK+

n ] > cost[I(K)′
n ]
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i) The dimension of Wiener process W is m = 2.
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ĨK+
n

I
(K)′
n

ii) The dimension of Wiener process W is m = 10.

Figure V.13. Consider the approximations IK(i,j),n, IK+
(i,j),n, ĨK+

(i,j),n, and I
(K)′

(i,j),n of the iterated stochas-
tic integral I(i,j),n for i, j ∈ {1, . . . ,m} and an arbitrary fixed n ∈ {0, 1, . . . , N − 1}. The error bounds
E·,2(hn,K) ≥ maxi,j∈{1,...,m}‖I(i,j),n− · ‖L2(Ω;R) of these approximations versus their computational costs cost[·]
are presented for parameter K ∈ {1, . . . , 1000} and step size hn = 2−10. We refer to Theorem V.2, Theorem V.8,
Theorem V.11, and inequality (V.43) for the error bounds and to equations (V.45), (V.46), (V.47), and (V.48)
for the computational costs. In Figure i) and Figure ii), the scales of both axes are logarithmic.

for all K ∈ N, the inverse ordering of the error bounds

√
mhn√
12πK

<
(
√
m+

√
2)hn√

12πK
<

√
5m2(m− 1)hn√

24πK

of the algorithms IK+
n , ĨK+

n , and I(K)′
n yields that our algorithm IK+

n (red-dashed line) is
(asymptotically) the most efficient one. Only for larger error bounds and higher dimensions
m of the Wiener process, the simple approximation IKn from Algorithm V.4 (blue-solid line) is
preferable, see Figure V.13 ii). However, both our algorithms IK+

n and ĨK+
n are more efficient

than algorithm I
(K)′
n (green-dotted line) proposed by Wiktorsson in [136].

In the following, we analyze the computational cost under the change of step size hn and
dimension m of the Wiener process. However, the computational costs introduced above are
not really meaningful in this regard. The different algorithms have different error bounds,
and the costs in equations (V.45), (V.46), (V.47), and (V.48) do only depend on K and m.
Therefore, we compare the computational effort that is required in order to ensure a mean
square error C · h3n, where C > 0 is a constant. This mean square error is motivated by the
convergence analysis of the Milstein scheme. A mean square error of C · h3n in the modeling of
the iterated stochastic integrals ensures the convergence of order O(h) of the Milstein scheme
as maximum step size h → 0, cf. [105, Theorem 7.1] in case of SODEs as well as Lemma V.16
of the following section in case of SDDEs.
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i) The dimension of Wiener process W is m = 2. The
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iii) The step size is hn = 2−5.
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are logarithmic.

Figure V.14. Consider the approximations IK(i,j),n, IK+
(i,j),n, ĨK+

(i,j),n, and I
(K)′

(i,j),n of the iterated stochastic
integral I(i,j),n for i, j ∈ {1, . . . ,m} and an arbitrary fixed n ∈ {0, 1, . . . , N − 1}. Given a mean square error of
C · h3

n where C = 1
100

, the conditional computational costs, see equations (V.49), (V.50), (V.51), and (V.52),
versus step size hn and dimension m of the Wiener process, respectively, are presented.
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In order to ensure a mean square error C · h3n of the algorithm IKn , that is

max
i,j∈{1,...,m}

‖I(i,j),n − IK(i,j),n‖
2
L2(Ω;R) ≤ C · h3n,

we have to choose K = d(2π2Chn)−1e according to inequality (V.22). We write

cost[IKn |MSE = Ch3n] =

(
2 ·
⌈

1

2π2Chn

⌉
+ 2

)
m (V.49)

for the computational costs that are needed to ensure the mean square error C · h3n. Similarly,
we have by Theorem V.8, Theorem V.11, and [136, Inequality (4.9)] that

cost[IK+
n |MSE = Ch3n] =

(
2 ·
⌈ √

m√
12π

√
Chn

⌉
+ 3

)
m+

m(m− 1)

2
, (V.50)

cost[ĨK+
n |MSE = Ch3n] =

(
2 ·
⌈ √

m+
√
2√

12π
√
Chn

⌉
+ 2

)
m+

m(m− 1)

2
, (V.51)

and

cost[I(K)′
n |MSE = Ch3n] =

(
2 ·
⌈√

5m2(m− 1)√
24π

√
Chn

⌉
+ 1

)
m+

m(m− 1)

2
, (V.52)

respectively.

Here, we see for simple Fourier method IKn that cost[IKn |MSE = Ch3n] = O(h−1
n ) as hn → 0

whereas the other algorithms are of order O(h
− 1

2
n ) as hn → 0. Moreover, we have for the lower

bounds of the cut off parameter K ∈ N of algorithms IK+
n , ĨK+

n , and I
(K)′
n that

√
m√

12π
√
Chn

<

√
m+

√
2√

12π
√
Chn

<

√
5m2(m− 1)√
24π

√
Chn

for all m ∈ N \ {1}, C > 0, and hn > 0.

These properties are illustrated in Figure V.14 i) and Figure V.14 ii), where m = 2 and m = 100,
respectively. The stair steps in the presented figures result from the ceil function. Figure V.14 i)
and Figure V.14 ii) clarify that our algorithm IK+

n (red-dashed line) asymptotically has the
lowest computational costs and is therefore preferable to the others. In particular for larger
dimensions m of the Wiener process, we see in Figure V.14 ii) that Wiktorsson’s algorithm I

(K)′
n

(green-dotted line) only has lower computational costs compared to simple approximation IKn
(blue-solid line) for very small step sizes hn.

Considering the growth of the computational cost given a mean square error as m → ∞, we
see from the conditional costs above that cost[IKn |MSE = Ch3n] = O(m) as m → ∞. Further,
our algorithms IK+

n and ĨK+
n are of order O(m2) whereas the algorithm I

(K)′
n derived by

Wiktorsson is of order O(m
5
2 ) as m → ∞. See Figure V.14 iii) and Figure V.14 iv). Here, we

especially see the advantage of our algorithms IK+
n (red-dashed line) and ĨK+

n (yellow-dash-
dotted line) derived in the previous sections in comparison to algorithm I

(K)′
n (green-dotted line)

of Wiktorsson. Only in case of a fixed moderate mean square error the simple algorithm IKn
(blue-solid line) may be preferable for very high dimension m whereas Wiktorsson’s algorithm
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Figure V.15. Consider the approximations IK+
(i,j),n and I

(K)′

(i,j),n of the iterated stochastic integral I(i,j),n for
i, j ∈ {1, . . . ,m} and an arbitrary fixed n ∈ {0, 1, . . . , N−1}. Given a mean square error of C ·h3

n where C = 1
100

,
the ratio of the conditional computational costs of Wiktorsson’s algorithm I

(K)′

(i,j),n in [136] to Algorithm V.10
versus the step size hn is shown. The abscissa is logarithmically scaled in both Figure i) and Figure ii).

is more and more inefficient, see Figure V.14 iv). Moreover, Figure V.14 iv) illustrates that for
higher dimensions m of the Wiener process, the computational costs of our algorithms IK+

n

and ĨK+
n are of similar size. Hence, for higher dimensions m, it might be reasonable to use

algorithm ĨK+
n because we do not need to generate random variable G2,n ∼ N(0m×1, Im), and

thus, we have not to calculate the term

hn
2π

√
σKn
4

σKn
2

(Pm − Im2)(G2,n ⊗ Im)G0,n

in Algorithm V.10 step iv). Moreover, in case of an equidistant discretization, we can choose
Kn = K for all n ∈ {0, 1, . . . , N − 1}, and thus, the matrix

hn√
2π

√
σKn
2 − σKn

4

σKn
2

(Pm − Im2)HT
m

in Algorithm V.10 step iv) only needs to be computed once. In contrast to this, the random
matrix

√
Σ∞ in Wiktorsson’s algorithm I

(K)′
n , cf. [136, Equation (4.5) and (4.7)], needs to be

computed in every time step, even in case of an equidistant discretization. Thus, algorithm
ĨK+
n is easier to implement and requires fewer arithmetic operations.

As already mentioned in the previous section, our method IK+
n improves, compared to Wiktors-

son’s algorithm I
(K)′
n , the error bound by a factor of

√
5m(m−1)√

2
. This asymptotically reduces
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the computational cost by the factor
√

5m(m−1)√
2

as hn → 0. This is illustrated in Figure V.15.
Figure V.15 i) and Figure V.15 ii) show that we need

√
5-times and 15-times fewer standard-

normally distributed random variables in case of m = 2 and m = 10, respectively. These
savings in computational costs result in a much more efficient simulation of iterated stochastic
integrals and reduces the computing time significantly.

Even if we consider the error criteria
m∑

i,j=1
i<j

‖I(i,j),n − IK+
(i,j),n‖

2
L2(Ω;R) ≤

m2(m− 1)h2n
24π2K2

(V.53)

and
m∑

i,j=1
i<j

‖I(i,j),n − I
(K)′

(i,j),n‖
2
L2(Ω;R) ≤

5m2(m− 1)h2n
24π2K2

,

cf. Theorem V.8 and [136, Theorem 4.1], our algorithm IK+
n improves the error bound by a

constant factor of 5 for all m ∈ N with m ≥ 2. Thus, the computational cost of Wiktorsson’s
algorithm is asymptotically

√
5 times larger as hn → 0. Hence, for smaller step sizes hn

our method IK+
n approximately halves the number of standard-normally distributed random

variables that need to be generated compared to Wiktorsson’s algorithm I
(K)′
n .

If we however consider the stronger error estimates presented in Theorem V.8 and Theo-
rem V.11, the savings in computational costs of our method IK+

n are even greater for m ∈ N
with m > 2, cf. Figure V.15 ii). These stronger estimates in Theorem V.8 and Theorem V.11
are in particular valuable if not all iterated stochastic integrals I(i,j),n, i, j ∈ {1, . . . ,m} where
i 6= j, have to be simulated.

Consider for example the following SODE where d = 1 and m = 3. Let a(x) = 0, b1(x) = 2x,
b2(x) = x, and b3(x) = 1 for all x ∈ R, that is

Xt =


1 if t = 0 and

1 +

∫ t

0
2Xs dW 1

s +

∫ t

0
Xs dW 2

s +

∫ t

0
1dW 3

s if t ∈ [t0, T ].

Since

db1(x)
dx

b2(x) = 2 · x = 1 · 2x =
db2(x)

dx
b1(x),

cf. commutativity condition (V.1), and since

db3(x)
dx

= 0

for all x ∈ R, we only need to simulate the iterated stochastic integrals I(1,3),n and I(2,3),n. The
cut off parameter K ∈ N, determined by the estimates in Theorem V.8 and Theorem V.11, is
much smaller than the one resulting from estimate (V.53) for algorithm IK+

n or a similar one for
method ĨK+

n . This additionally emphasizes the value of our results in the previous section.
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V.4. Milstein Scheme with Approximated Iterated Stochastic
Integrals

We now consider the Milstein scheme from Chapter IV, see equation (IV.33). If the underlying
SDDE does not have additive noise nor satisfies commutative condition (V.1), the iterated
stochastic integrals in Milstein scheme (IV.33) have to be substituted by approximations. We
provide conditions so that the Milstein scheme still converges strongly with order α = 1.

Let IKn

(i,j),n,τl
∈ Lp(Ω;R) be an approximation of iterated stochastic integral I(i,j),n,τl such that

max
i,j∈{1,...,m}
l∈{0,1,...,D}

∥∥IKn

(i,j),n,τl

∥∥
Lp(Ω;R) ≤ CI,phn (V.54)

and

max
i,j∈{1,...,m}
l∈{0,1,...,D}

∥∥I(i,j),n,τl − IKn

(i,j),n,τl

∥∥
Lp(Ω;R) ≤ EI,p(hn,Kn) (V.55)

for all n ∈ {0, 1, . . . , N − 1}, where Kn ∈ N, CI,p > 0 is a constant, and EI,p : R+×N → R+ is
a function. We still assume that discretization {t0, t1, . . . , tM} ⊂ [t0, T ] of form (V.6) whenever
D > 0 as stated in the introduction of this chapter. The Milstein scheme with approximated
iterated stochastic integrals is defined by

Y t = ξt for t ∈ [t0 − τ, t0] and

Y tn+1 = Y tn + a(T (tn, Y tn))hn +

m∑
j=1

bj(T (tn, Y tn))∆W
j
n

+

D∑
l=0

m∑
j1,j2=1

d∑
i=1

∂xi
l
bj1(T (tn, Y tn))b

i,j2(T ((tn − τl) ∨ t0, Y (tn−τl)∨t0))I
Kn

(j2,j1),n,τl

for n = 0, 1, . . . , N − 1.
(V.56)

The properties on the convergence of this approximation of SDDE (II.1) are stated in the
following lemma.

Lemma V.16
Let the Borel-measurable coefficients of SDDE (II.1) fulfill Assumption IV.8 ii), iii), and iv),
where bj(t, t− τ1, . . . , t− τD, ·, . . . , ·) ∈ C1(Rd×(D+1);Rd) for all t ∈ [t0, T ] and j ∈ {1, . . . ,m}.
Further, let initial condition ξ belong to S2(β+1)p([t0− τ, t0]×Ω;Rd) for some p ∈ [2,∞[, where
β ∈ [0,∞[ is determined by Assumption IV.8 iii).

For i, j ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈ {0, 1, . . . , N − 1}, let approximation IKn

(i,j),n,τl
fulfill assumptions (V.54) and (V.55), be Ftn+1/B(R)-measurable, be independent of σ-algebra
F(tn−τl)∨t0 and satisfy E

[
IKn

(i,j),n,τl

∣∣Ftn

]
= 0 P-almost surely.

Consider the families of Milstein approximations (Y h)h∈]0,T−t0] and (Y
h
)h∈]0,T−t0] regarding

SDDE (II.1) from equations (IV.33) and (V.56), where both schemes Y h and Y h have maximum
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step size h. Let there exists a constant CMilstein > 0, independent of h and N , such that∥∥∥∥ sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Xt − Y h
t ‖
∥∥∥∥
Lp(Ω;R)

≤ CMilsteinh (V.57)

for all h ∈ ]0, T − t0], where X is the solution of SDDE (II.1).

Then, it holds∥∥∥∥ sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Xt − Y
h
t ‖
∥∥∥∥
Lp(Ω;R)

≤ C1h+ C2

(N−1∑
n=0

(
EI,p(hn,Kn)

)2)1
2

for all h ∈ ]0, T − t0], where C1, C2 > 0 are constants that are independent of h and N .

If
∑N−1

n=0

(
EI,p(hn,Kn)

)2 ∈ O(h2) as h → 0, the family of Milstein schemes (Y
h
)h∈]0,T−t0] is

strongly convergent with order α = 1 to solution X of SDDE (II.1) as h → 0. That is, there
exists a constant CMilstein > 0, independent of h and N , such that∥∥∥∥ sup

t∈[t0−τ,t0]∪{t1,...,tN}
‖Xt − Y

h
t ‖
∥∥∥∥
Lp(Ω;R)

≤ CMilsteinh

for all h ∈ ]0, T − t0].

Proof. We refer to Section V.5, see p. 182, for the proof of this lemma and details on the
constants.

We remark that assumption (V.57) in Lemma V.16 holds true when the conditions supposed
in Theorem IV.9 on the convergence of Milstein approximation (IV.33) are fulfilled.

If the assumptions of the previous lemma are fulfilled for all p ∈ [2,∞[, we also obtain
by Lemma IV.3 the pathwise convergence of Milstein scheme Y with approximated iterated
stochastic integrals.

Corollary V.17
Let the assumptions of Lemma V.16 be fulfilled for all p ∈ [2,∞[. Consider the family
of Milstein approximations (Y

hN )N∈N regarding SDDE (II.1) from equation (V.56), where
(hN )N∈N ⊂ ]0, T − t0]. Let qε ∈ [1,∞[ for all ε > 0 be independent of N and such that∑∞

N=1 h
εqε
N <∞. Moreover, let

N−1∑
n=0

(
EI,p(hn,Kn)

)2 ∈ O(h2N ),

where hN = maxn∈{0,1,...,N−1} hn is the maximum step size of discretization {t0, t1, . . . , tN}.

Then, the family of Milstein approximations (Y
hN )N∈N converges pathwise with order α = 1−ε

to solution X of SDDE (II.1) for arbitrary ε > 0 as N → ∞. That is, for all ε > 0, there
exists a positive random variable Zε, which belongs to Lp(Ω;R) for all p ∈ [1,∞[, such that

sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Xt − Y hN
t ‖ ≤ Zε h

1−ε
N

P-almost surely for all N ∈ N.
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Using Lemma V.16 and Corollary V.17, we obtain the strong and pathwise convergence of Mil-
stein scheme (V.56) where the iterated stochastic integrals are approximated by Algorithm V.4
and Algorithm V.10, respectively.

Considering Milstein scheme (V.56) where IKn

(j2,j1),n,τl
= IKn

(j2,j1),n,τl
, see Algorithm V.4, the

following holds.

Theorem V.18
Let the Borel-measurable coefficients of SDDE (II.1) fulfill Assumption IV.8 ii), iii), and iv),
where bj(t, t− τ1, . . . , t− τD, ·, . . . , ·) ∈ C1(Rd×(D+1);Rd) for all t ∈ [t0, T ] and j ∈ {1, . . . ,m}.
Further, let initial condition ξ belong to S2(β+1)p([t0− τ, t0]×Ω;Rd) for some p ∈ [2,∞[, where
β ∈ [0,∞[ is determined by Assumption IV.8 iii).

Consider the family of Milstein approximations (Y h)h∈]0,T−t0] regarding SDDE (II.1) from equa-
tions (IV.33). Let there exist a constant CMilstein > 0, independent of h and N , such that∥∥∥∥ sup

t∈[t0−τ,t0]∪{t1,...,tN}
‖Xt − Y h

t ‖
∥∥∥∥
Lp(Ω;R)

≤ CMilsteinh

for all h ∈ ]0, T − t0], where X is the solution of SDDE (II.1).

Consider the family of Milstein approximations (Y
h
)h∈]0,T−t0] defined in equation (V.56) with

approximated iterated stochastic integrals IKn

(j2,j1),n,τl
= IKn

(j2,j1),n,τl
from Algorithm V.4, where

Y
h has the maximum step size h. Let there exist a constant C > 0, independent of h, hn, n,

and N , such that parameter Kn ≥ Ch−1 for all n ∈ {0, 1, . . . , N − 1}.

Then, the family of Milstein approximations (Y
h
)h∈]0,T−t0] is strongly convergent with order

α = 1 to solution X of SDDE (II.1) as h → 0. That is, there exists a constant CMilstein > 0,
independent of h and N , such that∥∥∥∥ sup

t∈[t0−τ,t0]∪{t1,...,tN}
‖Xt − Y

h
t ‖
∥∥∥∥
Lp(Ω;R)

≤ CMilsteinh

for all h ∈ ]0, T − t0].

Furthermore, consider the subfamily of Milstein approximations (Y
hN )N∈N, where (hN )N∈N ⊂

]0, T − t0]. Let qε ∈ [1,∞[ for all ε > 0 be independent of N and such that
∑∞

N=1 h
εqε
N <∞.

If the assumptions above are fulfilled for all p ∈ [2,∞[, the subfamily of Milstein approximations
(Y

hN )N∈N converges pathwise with order α = 1− ε to solution X of SDDE (II.1) for arbitrary
ε > 0 as N → ∞. That is, for all ε > 0, there exists a positive random variable Zε, which
belongs to Lp(Ω;R) for all p ∈ [1,∞[, such that

sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Xt − Y hN
t ‖ ≤ Zε h

1−ε
N

P-almost surely for all N ∈ N.

Proof. The proof is stated in Section V.5, see p. 194.
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In [60], only the convergence in L2(Ω;R) of the Milstein scheme with approximated iterated
stochastic integrals is considered. Our Theorem V.18 extends the results in [60] not only to
the convergence in Lp(Ω;R) for arbitrary p ∈ [2,∞[ but also to the pathwise convergence.
Moreover, we improve the results from [60, Appendix B] even in case of p = 2. The authors
in [60] assume that Kn = O(h−2) as h → 0 whereas we can only suppose Kn = O(h−1). This
reduces the computational cost significantly, cf. Algorithm V.4 and Section V.3.

If the diffusion coefficients of SDDE (II.1) do not depend on the past history of the solution, that
is, they are of the form t 7→ bj(t, t−τ1, . . . , t−τD, Xt) for all t ∈ [t0, T ] and j ∈ {1, . . . ,m}, only
the nondelayed-iterated stochastic integrals I(i,j),n for i, j ∈ {1, . . . ,m} appear in the Milstein
scheme and have to be modeled. Then, the computational cost can be further reduced by using
Algorithm V.10. In this case, the Milstein scheme (V.56) reads as

Y t = ξt for t ∈ [t0 − τ, t0] and

Y tn+1 = Y tn + a(T (tn, Y tn)))hn +
m∑
j=1

bj(tn, tn − τ1, . . . , tn − τD, Y tn))∆W
j
n

+
m∑

j1,j2=1

d∑
i=1

∂xi
0
bj1(tn, tn − τ1, . . . , tn − τD, Y tn))

× bi,j2(tn, tn − τ1, . . . , tn − τD, Y tn))I
Kn+
(j2,j1),n

for n = 0, 1, . . . , N − 1.

(V.58)

Here, we can even suppose that Kn = O(h−
1
2 ) as h → 0, only, in order to achieve a strong

convergence of order O(h) for the Milstein scheme. Consult the following theorem for more
details.

Theorem V.19
Let the Borel-measurable coefficients of SDDE (II.1) fulfill Assumption IV.8 ii), iii), and iv),
where the diffusion coefficients are of the form t 7→ bj(t, t − τ1, . . . , t − τD, Xt) and bj(t, t −
τ1, . . . , t − τD, ·) ∈ C1(Rd;Rd) for all t ∈ [t0, T ] and j ∈ {1, . . . ,m}. Further, let initial
condition ξ belong to S2(β+1)p([t0 − τ, t0] × Ω;Rd) for some p ∈ [2,∞[, where β ∈ [0,∞[ is
determined by Assumption IV.8 iii).

Consider the family of Milstein approximations (Y h)h∈]0,T−t0] regarding SDDE (II.1) from equa-
tions (IV.33). Let there exist a constant CMilstein > 0, independent of h and N , such that∥∥∥∥ sup

t∈[t0−τ,t0]∪{t1,...,tN}
‖Xt − Y h

t ‖
∥∥∥∥
Lp(Ω;R)

≤ CMilsteinh

for all h ∈ ]0, T − t0], where X is the solution of SDDE (II.1).

Consider the family of Milstein approximations (Y
h
)h∈]0,T−t0] defined in equation (V.58) with

approximated iterated stochastic integrals IKn+
(j2,j1),n

from Algorithm V.10, where Y h has the max-
imum step size h. Let there exist a constant C > 0, independent of h, hn, n, and N , such that
parameter Kn ≥ Ch−

1
2 for all n ∈ {0, 1, . . . , N − 1}.

Then, the family of Milstein approximations (Y
h
)h∈]0,T−t0] is strongly convergent with order

α = 1 to solution X of SDDE (II.1) as h → 0. That is, there exists a constant CMilstein > 0,
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independent of h and N , such that∥∥∥∥ sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Xt − Y
h
t ‖
∥∥∥∥
Lp(Ω;R)

≤ CMilsteinh

for all h ∈ ]0, T − t0].

Furthermore, consider the subfamily of Milstein approximations (Y
hN )N∈N, where (hN )N∈N ⊂

]0, T − t0]. Let qε ∈ [1,∞[ for all ε > 0 be independent of N and such that
∑∞

N=1 h
εqε
N <∞.

If the assumptions above are fulfilled for all p ∈ [2,∞[, the subfamily of Milstein approximations
(Y

hN )N∈N converges pathwise with order α = 1− ε to solution X of SDDE (II.1) for arbitrary
ε > 0 as N → ∞. That is, for all ε > 0, there exists a positive random variable Zε, which
belongs to Lp(Ω;R) for all p ∈ [1,∞[, such that

sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Xt − Y hN
t ‖ ≤ Zε h

1−ε
N

P-almost surely for all N ∈ N.

Proof. The proof is stated in Section V.5, see p. 195.

From the proof of Theorem V.19, it is evident that the statement of Theorem V.19 also holds
true for the iterated stochastic integral approximations ĨKn+

(j2,j1),n
, j1, j2 ∈ {1, . . . ,m}, from The-

orem V.11 and Theorem V.12.

In the following, we compare the computational costs of the Euler-Maruyama scheme as well as
the Milstein schemes in Theorem V.18 and Theorem V.19. The computational cost of a scheme,
as in Section V.3, is measured by the number of standard-normally distributed random variables
that need to be generated.

In order to achieve an error of order O(h) as h → 0, Euler-Maruyama scheme (IV.13) with
a maximum step size h2 has to be applied. This results in a computational cost of O(h−2).
Using the Milstein scheme in Theorem V.18 with maximum step size h, where the iterated
stochastic integrals are approximated by Algorithm V.4, the computational effort is likewise
O(h−2) due to the computational cost of the integral approximations, see equation (V.45). If
the diffusion coefficients do not depend on the past history of the solution, the Milstein scheme
in Theorem V.19, where we used Algorithm V.10, can be applied. Its computational cost is
of order O(h−

3
2 ) only. Thus, if the assumptions of Theorem V.19 are fulfilled, the Milstein

scheme in Theorem V.19, where the iterated stochastic integrals approximations are obtained
by Algorithm V.10, is the method of choice. See also [136, p. 472] for the discussion on the
computational effort in case of SODEs.

In [136, p. 472], Wiktorsson argues that there is no gain using a Milstein scheme like in Theo-
rem V.18 instead of the Euler-Maruyama scheme because they have the same order of compu-
tational complexity O(h−2), and because the Euler-Maruyama scheme is easier to implement.
Wiktorsson further argues that the Euler-Maruyama scheme needs less computational effort in
practice if the evaluation of the SDDEs’ coefficients is not too time-consuming compared to the
generation of normally distributed random variables.
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However, the Milstein scheme needs only O(h−1) steps in time whereas the Euler-Maruyama
scheme needs O(h−2) steps, which can only be computed sequentially. Thus, on parallel com-
puters, the Milstein scheme can reduce the computing time as the normally distributed random
variables in each step in time can be generated in parallel. Thus, the Milstein scheme in The-
orem V.18 is preferable to the Euler-Maruyama scheme in certain situations.

V.5. Proofs

Proof of Theorem V.2

The proof needs the following result on absolute moments of normally distributed random
variables. This result is of course not new, however, we did not find any paper or book to
cite.

Lemma V.20
Let p ∈ [1,∞[, and let G be a N(0, σ2)-distributed random variable, where σ ∈ R with σ > 0. It
holds

‖G‖Lp(Ω;R) =

√
2σ
(
Γ(p+1

2 )
) 1

p

π
1
2p

.

Proof. Using the symmetry of the normal distribution and the substitution y = x2

2σ2 , we have

E[|G|p] = 1√
2πσ2

∫ ∞

−∞
|x|pe−

x2

2σ2 dx =
2√
2πσ2

∫ ∞

0
xpe−

x2

2σ2 dx =
(2σ2)

p
2

√
π

∫ ∞

0
y

p−1
2 e−y dy.

Since
∫∞
0 y

p−1
2 e−y dy = Γ(p+1

2 ), the assertion follows by taking the pth root.

Proof of Theorem V.2. It is evident that ‖I(j,j),n−IK(j,j),n‖Lp(Ω;R) = 0 for j ∈ {1, . . . ,m}. In the
following, we therefore assume that i 6= j in case of l = 0. By rewriting, cf. equations (V.13)
and (V.14) as well as equations (V.20) and (V.21), we obtain at first that

‖I(i,j),n,τl − IK(i,j),n,τl‖
2
Lp(Ω;R)

=

∥∥∥∥∫ tn+1

tn

∫ s−τl

tn−τl

dW i
u dW j

s −
(
1

2
∆W i

n,τl
∆W j

n+
ai0,n,τl

2
∆W j

n −
aj0,n
2

∆W i
n,τl

+ π

K∑
k=1

k(aik,n,τlb
j
k,n − bik,n,τla

j
k,n)

)∥∥∥∥2
Lp(Ω;R)

=

∥∥∥∥∫ tn+1

tn

∫ s−τl

tn−τl

dW i
u −

(
s− tn
hn

∆W i
n,τl

+
ai0,n,τl

2

+
K∑
k=1

aik,n,τl cos
(
2π

hn
k(s− tn)

)
+ bik,n,τl sin

(
2π

hn
k(s− tn)

))
dW j

s

∥∥∥∥2
Lp(Ω;R)

.

Next, we apply Burkholder’s inequality, see Theorem II.4. Here, we can use our usual filtration
(Ft)t∈[tn,tn+1] in case of l ∈ {1, . . . , D}. In case of l = 0, the stochastic integral inside the
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Lp(Ω;R)-norm on the right-hand side of the above equation is Ftn+1/B(R)-measurable but as
process not adapted with respect to (Ft)t∈[tn,tn+1] anymore. However, it is still martingale with
respect to a filtration (F i,j

t )t∈[tn,tn+1] defined by

F i,j
t = σ

(
{W j

s −W j
t0
: s ∈ [tn, t]} ∪ {W i

s −W i
t0 : s ∈ [tn, tn+1]} ∪ N

)
,

where N = {A ∈ F : P[A] = 0}. Thus, Burkholder’s inequality is applicable, and we obtain

‖I(i,j),n,τl − IK(i,j),n,τl‖
2
Lp(Ω;R)

≤ (p− 1)2
∥∥∥∥∫ tn+1

tn

∣∣∣∣ ∫ s−τl

tn−τl

dW i
u −

(
s− tn
hn

∆W i
n,τl

+
ai0,n,τl

2

+

K∑
k=1

aik,n,τl cos
(
2π

hn
k(s− tn)

)
+ bik,n,τl sin

(
2π

hn
k(s− tn)

))∣∣∣∣2 ds
∥∥∥∥
L

p
2 (Ω;R)

(V.59)

= (p− 1)2
∥∥∥∥∫ tn+1

tn

∣∣∣∣ ∞∑
k=K+1

aik,n,τlcos
(
2π

hn
k(s−tn)

)
+ bik,n,τlsin

(
2π

hn
k(s−tn)

)∣∣∣∣2ds∥∥∥∥
L

p
2 (Ω;R)

.

The equality in the last formula holds according to expansion (V.8). Using Parseval’s formula,
that is

2

hn

∫ tn+1

tn

∣∣∣∣ ∞∑
k=K+1

aik,n,τl cos
(
2π

hn
k(s− tn)

)
+ bik,n,τl sin

(
2π

hn
k(s− tn)

)∣∣∣∣2 ds

=
∞∑

k=K+1

|aik,n,τl |
2 + |bik,n,τl |

2

P-almost surely, cf. [141, p. 37 in Volume I], and using the triangle inequality, it follows

‖I(i,j),n,τl − IK(i,j),n,τl‖
2
Lp(Ω;R) ≤ (p− 1)2

hn
2

∥∥∥∥ ∞∑
k=K+1

|aik,n,τl |
2 + |bik,n,τl |

2

∥∥∥∥
L

p
2 (Ω;R)

≤ (p− 1)2
hn
2

∞∑
k=K+1

‖aik,n,τl‖
2
Lp(Ω;R) + ‖bik,n,τl‖

2
Lp(Ω;R). (V.60)

Since, for k ∈ N, Fourier coefficients aik,n,τl and bik,n,τl are N
(
0, hn

2π2k2

)
-distributed random

variables, Lemma V.20 implies

‖aik,n,τl‖
2
Lp(Ω;R) = ‖bik,n,τl‖

2
Lp(Ω;R) =

(
Γ(p+1

2 )
) 2

phn

π
2p+1

p k2
.

Inserting this into inequality (V.60) and estimating the series, we have

‖I(i,j),n,τl − IK(i,j),n,τl‖
2
Lp(Ω;R) ≤ (p− 1)2

(
Γ(p+1

2 )
) 2

ph2n

π
2p+1

p

∞∑
k=K+1

1

k2
(V.61)

≤ (p− 1)2
(
Γ(p+1

2 )
) 2

ph2n

π
2p+1

p

∫ ∞

K

1

x2
dx

= (p− 1)2
(
Γ(p+1

2 )
) 2

ph2n

π
2p+1

p K
.
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Since the right-hand side of the above inequality is independent of i, j, and l, we obtain

max
i,j∈{1,...,m}
l∈{0,1,...,D}

‖I(i,j),n,τl − IK(i,j),n,τl‖
2
Lp(Ω;R) ≤ (p− 1)2

(
Γ(p+1

2 )
) 2

ph2n

π
2p+1

p K
,

and the assertion of Theorem V.2 follows by taking the square root.

Proof of Corollary V.3. In case of p = 2, inequality (V.59) becomes an identity by Itô’s isome-
try. The triangle inequality in formula (V.60) needs not to be applied since the norm simplifies
to the expected value. There, we use the monotone convergence theorem and obtain

‖I(i,j),n,τl − IK(i,j),n,τl‖
2
L2(Ω;R) =

hn
2

∞∑
k=K+1

‖aik,n,τl‖
2
L2(Ω;R)+ ‖bik,n,τl‖

2
L2(Ω;R) =

h2n
2π2

∞∑
k=K+1

1

k2
.

Then, the corollary follows from

∞∑
k=K+1

1

k2
=

∞∑
k=1

1

k2
−

K∑
k=1

1

k2
=
π2

6
−

K∑
k=1

1

k2

and taking the square root.

Proof of Lemma V.5

Proof of Lemma V.5. At first, let

Bk :=

(
Im

πkHm(Pm − Im2)(bk,n ⊗ Im)

)
,

and for k ∈ N, consider the random variable

Bkak,n =

(
ak,n

πkHm(Pm − Im2)(bk,n ⊗ ak,n)

)
, (V.62)

cf. formula (V.33). As Fourier coefficient ak,n is N
(
0m×1,

hn
2π2k2

Im
)
-distributed for all k ∈ N, its

characteristic function ϕak,n
: Rm → C is given by

ϕak,n
(v) = E

[
eivTak,n

]
= e−

1
2
vT hn

2π2k2
Imv = e−

hn
4π2k2

vTv

for v ∈ Rm, where i is the imaginary unit, see [67, Theorem 16.1]. Let C ∈ R(m+M)×m be an
arbitrary matrix. Then, according to [67, Theorem 13.3], for all k ∈ N, we have

ϕCak,n
(u) = ϕak,n

(CTu) = e−
hn

4π2k2
(CTu)T(CTu) = e−

hn
4π2k2

uTCCTu (V.63)

for all u ∈ Rm+M , and the random variable Cak,n is N
(
0(m+M)×1,

hn
2π2k2

CCT)-distributed by
[67, Theorem 16.1]. Here, CCT ∈ R(m+M)×(m+M) is a positive semidefinite matrix because

xTCCTx = (CTx)T(CTx) = ‖CTx‖2 ≥ 0
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for all x ∈ Rm+M . Now, we calculate, given Fourier coefficient bk,n, the conditional character-
istic function of random variable Bkak,n from formula (V.62). For the definition of conditional
characteristic functions, we refer to [92, p. 26]. Taking into account that Fourier coefficients
ak,n and bk,n are independent and using [16, Corollary 4.38] or [43, Satz 5.3.22], it holds by
equation (V.63) that

E
[
eiuTBkak,n

∣∣∣bk,n] = E
[
ϕak,n

(BT
k u)

∣∣∣bk,n] = e−
hn

4π2k2
uTBkB

T
k u (V.64)

P-almost surely for all u ∈ Rm+M . That is, given Fourier coefficient bk,n, the conditional
distribution of random variable Bkak,n is normal with conditional expectation

E[Bkak,n|bk,n] = 0(m+M)×1

P-almost surely and conditional covariance

E
[
Bkak,n(Bkak,n)

T∣∣bk,n] = hn
2π2k2

BkB
T
k

P-almost surely. In the following, we consider the random variable

∞∑
k=K+1

Bkak,n =


∞∑

k=K+1

ak,n

π

∞∑
k=K+1

kHm(Pm − Im2)(bk,n ⊗ ak,n)

 ,

see formula (V.33). Recall that the series converges in Lp(Ω;Rm+M ) for every p ∈ [2,∞[, cf.
Theorem V.2. Since ak,n and bk,n, k ∈ N, are independent, the series also converge P-almost
surely by [66, Theorem 3.1]. Next, we use the independence of Fourier coefficients ak,n and
bk,n for all k ∈ N in order to show that, given {bk,n : k ∈ N with k > K}, the conditional
distribution of

∑∞
k=K+1Bkak,n is normal. More precisely, we show that

E
[
eiuT ∑∞

k=K+1 Bkak,n

∣∣∣{bk,n : k ∈ N with k > K}
]
= e−

1
2
uT
(∑∞

k=K+1
hn

2π2k2
BkB

T
k

)
u (V.65)

P-almost surely for all u ∈ Rm+M . By the definition of the conditional expectation, we have
for all B ∈ σ({bk,n : k ∈ N with k > K}) that

E
[
1BE

[
eiuT ∑∞

k=K+1Bkak,n

∣∣∣{bk,n : k ∈ N with k > K}
]]

= E
[
1BeiuT ∑∞

k=K+1Bkak,n
]
. (V.66)

Consider the ∩-stable generator

E :=

{ ∞⋂
k=K+1

Ak : Ak ∈ σ(bk,n)

}
of σ-algebra σ({bk,n : k ∈ N with k > K}). By linearity of the expectation and the dominated
convergence theorem, it is enough to consider B ∈ E in equation (V.66) only, since for all
B ∈ σ({bk,n : k ∈ N with k > K}), there exist Bl ∈ E , l ∈ N, with Bl ∩ Bk = ∅ for l 6= k and
B = ∪∞

l=1Bl such that 1B =
∑∞

l=1 1Bl
holds P-almost surely, cf. the monotone class theorem

[67, Theorem 6.2].
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Consider an arbitrary set B ∈ E with B = ∩∞
k=K+1Bk where Bk ∈ σ(bk,n). Since 1B =∏∞

k=K+1 1Bk
, it holds

E
[
1BeiuT ∑∞

k=K+1 Bkak,n
]
= E

[ ∞∏
k=K+1

1Bk
eiuTBkak,n

]
.

Using, for all k ∈ N, the independence of Fourier coefficients ak,n and bk,n, and that set Bk is
σ(bk,n)-measurable, we obtain

E
[
1BeiuT ∑∞

k=K+1 Bkak,n
]
=

∞∏
k=K+1

E
[
1Bk

eiuTBkak,n

]
=

∞∏
k=K+1

E
[
1Bk

E
[
eiuTBkak,n

∣∣∣bk,n]]
Then, equation (V.64) implies

E
[
1BeiuT ∑∞

k=K+1 Bkak,n
]
=

∞∏
k=K+1

E
[
1Bk

e−
hn

4π2k2
uTBkB

T
k u

]
.

Using again the independence of Fourier coefficients bk,n, k ∈ N, it follows

E
[
1BeiuT ∑∞

k=K+1 Bkak,n
]
= E

[ ∞∏
k=K+1

1Bk

∞∏
k=K+1

e−
hn

4π2k2
uTBkB

T
k u

]
= E

[
1Be−

1
2
uT
(∑∞

k=K+1
hn

2π2k2
BkB

T
k

)
u

]
,

and formula (V.65) holds true by equation (V.66). Here, the series
∞∑

k=K+1

hn
2π2k2

BkB
T
k

converges absolutely in the L
p
2 (Ω;LHS(Rm+M ;Rm+M ))-norm for every p ∈ [1,∞[ and also

P-almost surely due to the independence of the summands, see [66, Theorem 3.1]. The Hilbert-
Schmidt norm ‖·‖LHS(Rm+M ;Rm+M ) coincides with the Frobenius norm ‖·‖F for matrices of size
(m+M)× (m+M).

According to the conditional characteristic function of
∑∞

k=K+1Bkak,n in formula (V.65), given
{bk,n : k ∈ N with k > K}, the conditional distribution of series

∑∞
k=K+1Bkak,n is normal with

conditional expectation

E
[ ∞∑
k=K+1

Bkak,n

∣∣∣∣{bk,n : k ∈ N with k > K}
]
= 0(m+M)×1

P-almost surely and conditional covariance

E
[( ∞∑

k=K+1

Bkak,n

)( ∞∑
k=K+1

Bkak,n

)T∣∣∣∣{bk,n : k ∈ N with k > K}
]
=

∞∑
k=K+1

hn
2π2k2

BkB
T
k

P-almost surely. Then, defining(
ΣK

1,n (ΣK
2,n)

T

ΣK
2,n ΣK

3,n

)
:=

∞∑
k=K+1

hn
2π2k2

BkB
T
k ,

the assertion of this lemma follows.
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Proof of Lemma V.6

Proof of Lemma V.6. At first, it holds by equation (V.37) that

E
[
SK
n

]
= E

[
ΣK

3,n −ΣK
2,n(Σ

K
1,n)

−1(ΣK
2,n)

T]. (V.67)

Using equations (V.34), (V.35), and (V.36), we have according to the distribution of the Fourier
coefficients that

E
[
ΣK

3,n

]
=
hn
2
Hm(Pm − Im2)

(
E
[ ∞∑
k=K+1

bk,nb
T
k,n

]
⊗ Im

)
(Pm − Im2)HT

m

=

(
hn
2π

)2( ∞∑
k=K+1

1

k2

)
Hm(Pm − Im2)(Im ⊗ Im)(Pm − Im2)HT

m (V.68)

and

E
[
ΣK

2,n(Σ
K
1,n)

−1(ΣK
2,n)

T]
=
hn
2

( ∞∑
k=K+1

1

k2

)−1

× E
[
Hm(Pm − Im2)

( ∞∑
k=K+1

bk,n
k

⊗ Im

)( ∞∑
k=K+1

bT
k,n

k
⊗ Im

)
(Pm − Im2)HT

m

]

=
hn
2

( ∞∑
k=K+1

1

k2

)−1

Hm(Pm − Im2)

(
E
[ ∞∑
k=K+1

bk,n
k

∞∑
k=K+1

bT
k,n

k

]
⊗ Im

)
(Pm − Im2)HT

m

=

(
hn
2π

)2( ∞∑
k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

)
Hm(Pm − Im2)(Im ⊗ Im)(Pm − Im2)HT

m.

(V.69)

Here, we can interchange taking the limit and the expectation because the series converge
componentwise in Lp(Ω;R) for every p ∈ [1,∞[, cf. [43, Satz 5.4.11]. Since (Im ⊗ Im) = Im2

and (Pm − Im2)(Pm − Im2) = −2(Pm − Im2), it follows

Hm(Pm − Im2)(Im ⊗ Im)(Pm − Im2)HT
m = −2Hm(Pm − Im2)HT

m

= −2HmPmH
T
m + 2HmH

T
m

= 2IM ,

where HmPmH
T
m = 0M×M and HmH

T
m = IM , see [136, p. 479]. Inserting this into equa-

tions (V.68) and (V.69), we obtain

E
[
SK
n

]
= 2

(
hn
2π

)2
(( ∞∑

k=K+1

1

k2

)
−
( ∞∑

k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

))
IM

by equation (V.67). Hence, matrix E
[
SK
n

]
is diagonal, and the assertion of this lemma simply

follows by taking the square root.
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Proof of Theorem V.7

We denote by ‖·‖F the Frobenius norm in the following. The proof is based on the subsequent
lemma on square root matrices. This lemma is similar to [136, Lemma 4.1]. However, our
lemma allows to estimate single rows of a matrix.

Lemma V.21
Let A ∈ RM×M be symmetric positive semidefinite matrix and B ∈ RM×M be symmetric
positive definite matrix. Assume that their matrix square roots

√
A and

√
B commute, that is√

A
√
B −

√
B
√
A = 0M×M . Further, denote the smallest eigenvalue of B by λmin. Then, it

holds ∥∥eT
i

(√
A−

√
B
)∥∥

F ≤ 1√
λmin

‖eT
i (A−B)‖F

for all i ∈ {1, . . . ,M}, where ei is the ith unit vector of RM .

Proof. As matrices
√
A and

√
B commute, they are both simultaneously diagonalizable [59,

Theorem 4.5.15]. Thus, the smallest eigenvalue
√
λ of the matrix

√
A +

√
B fulfills

√
λ ≥√

λmin > 0, and
√
A+

√
B is symmetric positive definite.

Since
√
A+

√
B is regular and since

√
A
√
B −

√
B
√
A = 0n×n, we have

√
A−

√
B = (

√
A−

√
B)(

√
A+

√
B)(

√
A+

√
B)−1 = (A−B)(

√
A+

√
B)−1.

Due to this, it holds by submultiplicativity of the norms, cf. [73, p. 141], that∥∥eT
i

(√
A−

√
B
)∥∥

F ≤ ‖eT
i (A−B)‖F

∥∥(√A+
√
B)−1

∥∥
2
,

where ‖·‖2 denotes the spectral norm. Since∥∥(√A+
√
B)−1

∥∥
2
=

1√
λ
≤ 1√

λmin
,

the assertion is proved.

In addition to the lemma above, we need sophisticated lower and upper bounds of the series∑∞
k=K+1

1
kp .

Lemma V.22
Let p ∈ {2, 6}. It holds

∞∑
k=K+1

1

kp
≥ 1

(p− 1)
(
K + 3

4

)p−1

for all K ∈ N.

Proof. At first, we prove for all k ∈ N and p ∈ {2, 6} that

1

kp
=

∫ k+ 3
4

k− 1
4

1

kp
dx ≥

∫ k+ 3
4

k− 1
4

1

xp
dx. (V.70)
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It holds∫ k+ 3
4

k− 1
4

1

x2
dx =

1

k2 + k
2 − 3

16

≤ 1

k2

and ∫ k+ 3
4

k− 1
4

1

x6
dx =

(
1 +

1

k
+

7

8k2
+

5

16k3
+

61

1280k4

)
×
(
1 +

5

2k
+

25

16k2
− 5

8k3
− 95

128k4
+

23

256k5
+

285

2048k6

− 45

2048k7
− 675

65536k8
+

405

131072k9
− 243

1048576k10

)−1

· 1

k6

≤
1 + 1

k + 1581
1280k2

1 + 1
k + 25

16k2
+ 3

2k − 1467683
1048576k

· 1

k6

≤
1 + 1

k + 1581
1280k2

1 + 1
k + 25

16k2

· 1

k6

=
1 + 1

k + 1581
1280k2

1 + 1
k + 2000

1280k2

· 1

k6

≤ 1

k6
.

Using inequality (V.70) in order to approximate the summands of series
∑∞

k=K+1
1
kp from below,

we obtain
∞∑

k=K+1

1

kp
≥

∞∑
k=K+1

∫ k+ 3
4

k− 1
4

1

xp
dx =

∫ ∞

K+ 3
4

1

xp
dx =

1

(p− 1)
(
K + 3

4

)p−1 .

Lemma V.23
Let p ∈]1,∞[. It holds

∞∑
k=K+1

1

kp
≤ 1

(p− 1)
(
K + 1

2

)p−1

for all K ∈ N.

Proof. To begin with, we prove for all k ∈ N and p ∈]1,∞[ that

1

kp
=

∫ k+ 1
2

k− 1
2

1

kp
dx ≤

∫ k+ 1
2

k− 1
2

1

xp
dx. (V.71)

In order to show inequality (V.71), the convex function x 7→ 1
xp , x ∈ [k − 1

2 , k +
1
2 ], is bounded

from below by its tangent in x = k, that is by x 7→ f(x) := − p
kp+1x+ p+1

kp . Thus, we have∫ k+ 1
2

k− 1
2

1

xp
dx ≥

∫ k+ 1
2

k− 1
2

f(x)dx = − p

kp+1

∫ k+ 1
2

k− 1
2

xdx+
p+ 1

kp
=

1

kp
,
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which proves inequality (V.71). Approximating series
∑∞

k=K+1
1
kp from above by integrals, see

inequality (V.71), yields
∞∑

k=K+1

1

kp
≤

∞∑
k=K+1

∫ k+ 1
2

k− 1
2

1

xp
dx =

∫ ∞

K+ 1
2

1

xp
dx =

1

(p− 1)
(
K + 1

2

)p−1 .

Proof of Theorem V.7. The proof follows similar considerations as in [136, Proof of Theo-
rem 4.3]. At first, we have

max
i∈{1,...,M}

∥∥eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∥∥2
L2(Ω;R)

= max
i∈{1,...,M}

E
[
E
[∣∣eT

i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∣∣2∣∣∣bk,n, k ∈ N
]]

= max
i∈{1,...,M}

E
[∥∥eT

i

(√
SK
n −

√
E[SK

n ]
)∥∥2

F
]
. (V.72)

Using that
√

E[SK
n ] is diagonal matrix by Lemma V.6,

√
E[SK

n ] commutes with square root
matrix

√
SK
n . Hence, it follows by Lemma V.21 that

max
i∈{1,...,M}

E
[∥∥eT

i

(√
SK
n −

√
E[SK

n ]
)∥∥2

F
]

≤ 1

2

(
hn
2π

)−2
(( ∞∑

k=K+1

1

k2

)
−
( ∞∑

k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

))−1

× max
i∈{1,...,M}

E
[∥∥eT

i

(
SK
n − E[SK

n ]
)∥∥2

F
]
.

(V.73)

Further, we have

E
[∥∥eT

i

(
SK
n − E[SK

n ]
)∥∥2

F
]
=

M∑
j=1

E
[∣∣(SK

n )i,j − (E[SK
n ])i,j

∣∣2]= M∑
j=1

Var
[
(SK

n )i,j
]
, (V.74)

where (SK
n )i,j denotes the entry in the ith row and jth column, i, j ∈ {1, . . . ,M}, of Schur

complement SK
n . We now take a closer look at the Schur complement and its entries. For sake

of simplicity, define

C :=
hn
2

( ∞∑
k=K+1

bk,nb
T
k,n −

( ∞∑
k=K+1

1

k2

)−1( ∞∑
k=K+1

bk,n
k

)( ∞∑
k=K+1

bT
k,n

k

))
. (V.75)

Then, equations (V.38) reads as

SK
n = Hm(Pm − Im2)(C ⊗ Im)(Pm − Im2)HT

m (V.76)

P-almost surely. Using the definition of the permutation matrix Pm in (V.29) and that Im2 =
Im ⊗ Im =

∑m
i,j=1 eie

T
i ⊗ eje

T
j , it holds

Pm − Im2 =

m∑
i,j=1

(eie
T
j ⊗ eje

T
i )− (eie

T
i ⊗ eje

T
j )

=

m∑
i,j=1

(ei ⊗ ej)
(
(eT

j ⊗ eT
i )− (eT

i ⊗ eT
j )
)
. (V.77)
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Here,
{
ei ⊗ ej : i, j ∈ {1, . . . ,m}

}
is the canonical basis of Rm2 . Next, we apply selection

matrix Hm, defined in formula (V.27), from the left to equation (V.77). Using that

Hm(ei ⊗ ej) =

{
Hm(ei ⊗ ej) if i < j and
0M×1 if j ≥ i,

we obtain

Hm(Pm − Im2) =
m∑

i,j=1
i<j

Hm(ei ⊗ ej)
(
(eT

j ⊗ eT
i )− (eT

i ⊗ eT
j )
)
. (V.78)

Inserting equation (V.78) into formula (V.76), it holds for the Schur complement

SK
n =

m∑
i,j=1
i<j

Hm(ei ⊗ ej)
(
(eT

j ⊗ eT
i )− (eT

i ⊗ eT
j )
)
(C ⊗ Im)

×
m∑

k,l=1
k<l

(
(el ⊗ ek)− (ek ⊗ el)

)
(eT

k ⊗ eT
l )H

T
m

P-almost surely. Since

(eT
i ⊗ eT

j )(C ⊗ Im)(ek ⊗ el) = eT
i Cek ⊗ eT

j Imel = Ci,k · eT
j el,

it follows

SK
n =

m∑
i,j=1
i<j

m∑
k,l=1
k<l

Hm(ei ⊗ ej)

×
(
Cj,l · eT

i ek − Cj,k · eT
i el − Ci,l · eT

j ek + Ci,k · eT
j el
)
(eT

k ⊗ eT
l )H

T
m

P-almost surely. Taking into account that
{
Hm(ei ⊗ ej) : i, j ∈ {1, . . . ,m} with i < j

}
is the

canonical basis of RM , we can write

max
i∈{1,...,M}

M∑
j=1

Var
[
(SK

n )i,j
]

= max
i,j∈{1,...,m}

i<j

m∑
k,l=1
k<l

Var
[
Cj,l · eT

i ek − Cj,k · eT
i el − Ci,l · eT

j ek + Ci,k · eT
j el
]
,

(V.79)

where

Cj,l · eT
i ek − Cj,k · eT

i el − Ci,l · eT
j ek + Ci,k · eT

j el

=



Cj,j + Ci,i if k = i and l = j,

Cj,l if k = i and l 6= j,

Ci,k if l = j and k 6= i,

−Ci,l if k = j,

−Cj,k if l = i,

0 else
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under the constraint of i < j and k < l. Since Fourier coefficients bik,n and bjk,n with i, j ∈
{1, . . . ,m} and i 6= j are independent and identically distributed, we further have

Var
[
Cj,l · eT

i ek − Cj,k · eT
i el − Ci,l · eT

j ek + Ci,k · eT
j el
]

=



2Var[C1,1] if k = i and l = j,

Var[C1,2] if k = i and l 6= j,

Var[C1,2] if l = j and k 6= i,

Var[C1,2] if k = j,

Var[C1,2] if l = i,

0 else.

In order to calculate expression (V.79), we have to count how often the variance takes the value
Var[C1,2]. Counting the number of tuples (k, l) with k < l in each case given a tuple (i, j) with
i < j, we obtain

#
{
(k, l) : k, l ∈ {1, . . . ,m} with k < l

}

=



1 if k = i and l = j,

m− i− 1 if k = i and l 6= j,

j − 2 if l = j and k 6= i,

m− j if k = j,

i− 1 if l = i,
1
2(m− 2)(m− 3) else.

(V.80)

The number from the last case results from the fact that we have 1
2m(m− 1) tuples (k, l) with

k < l in total. The variance Var[C1,2] occurs

(m− i− 1) + (j − 2) + (m− j) + (i− 1) = 2(m− 2)

times, and thus, it holds 1
2m(m − 1) − 1 − 2(m − 2) = 1

2(m − 2)(m − 3) in equation (V.80).
These considerations finally lead to

max
i∈{1,...,M}

M∑
j=1

Var
[
(SK

n )i,j
]
= 2Var[C1,1] + 2(m− 2)Var[C1,2]. (V.81)

Next, we calculate both variances occurring on the right-hand side above equation (V.81).
Before we start, let us note that we can interchange taking the limit and the expectation as
well as the order of summation because the occurring series converge absolutely with respect
to the Lp(Ω;R)-norm for every p ∈ [1,∞[. For the first variance on the right-hand side of
equation (V.81), we have

Var[C1,1] =
h2n
4

Var
[ ∞∑
k=K+1

(b1k,n)
2 −

( ∞∑
k=K+1

1

k2

)−1( ∞∑
k=K+1

b1k,n
k

)2]

=
h2n
4

(
Var

[ ∞∑
k=K+1

(b1k,n)
2

]
+

( ∞∑
k=K+1

1

k2

)−2

Var
[( ∞∑

k=K+1

b1k,n
k

)2]

− 2

( ∞∑
k=K+1

1

k2

)−1

Cov
[ ∞∑
k=K+1

(b1k,n)
2,

( ∞∑
k=K+1

b1k,n
k

)2])
,
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where

Var
[ ∞∑
k=K+1

(b1k,n)
2

]
=

∞∑
k=K+1

Var
[
(b1k,n)

2
]
= 2

∞∑
k=K+1

h2n
4π4k4

=
h2n
2π4

∞∑
k=K+1

1

k4

and

Var
[( ∞∑

k=K+1

b1k,n
k

)2]
= 2

( ∞∑
k=K+1

hn
2π2k4

)2

=
h2n
2π4

( ∞∑
k=K+1

1

k4

)2

.

Further, considering the covariance and using that

E
[ ∞∑
k,l,r=K+1

(b1k,n)
2
b1l,n
l

b1r,n
r

]
= E

[ ∞∑
k,l=K+1

(b1k,n)
2
(b1l,n)

2

l2

]

= E
[ ∞∑
k=K+1

(b1l,n)
4

k2
+

∞∑
k,l=K+1

k 6=l

(b1k,n)
2
(b1l,n)

2

l2

]

= 3

∞∑
k=K+1

h2n
4π4k6

+

∞∑
k,l=K+1

k 6=l

h2n
4π4k2l4

= 2
∞∑

k=K+1

h2n
4π4k6

+
∞∑

k,l=K+1

h2n
4π4k2l4

=
h2n
2π4

∞∑
k=K+1

1

k6
+

h2n
2π4

( ∞∑
k=K+1

1

k2

)( ∞∑
k=K+1

1

k4

)
,

it holds

Cov
[ ∞∑
k=K+1

(b1k,n)
2,

( ∞∑
k=K+1

b1k,n
k

)2]

= E
[( ∞∑

k=K+1

(b1k,n)
2 −

∞∑
k=K+1

hn
2π2k2

)(( ∞∑
k=K+1

b1k,n
k

)2

−
∞∑

k=K+1

hn
2π2k4

)]

= E
[( ∞∑

k=K+1

(b1k,n)
2

)( ∞∑
k=K+1

b1k,n
k

)2]
−
( ∞∑

k=K+1

hn
2π2k2

)( ∞∑
k=K+1

hn
2π2k4

)

= E
[ ∞∑
k,l,r=K+1

(b1k,n)
2
b1l,n
l

b1r,n
r

]
− h2n

2π4

( ∞∑
k=K+1

1

k2

)( ∞∑
k=K+1

1

k4

)

=
h2n
2π4

∞∑
k=K+1

1

k6
.

In summary, we thus have

Var[C1,1]

=
h4n
8π4

( ∞∑
k=K+1

1

k4
+

( ∞∑
k=K+1

1

k2

)−2( ∞∑
k=K+1

1

k4

)2

− 2

( ∞∑
k=K+1

1

k2

)−1 ∞∑
k=K+1

1

k6

)
.

(V.82)
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It analogously holds for the second variance on the right-hand side of equation (V.81) that

Var[C1,2] =
h2n
4

Var
[ ∞∑
k=K+1

b1k,nb
2
k,n −

( ∞∑
k=K+1

1

k2

)−1( ∞∑
k=K+1

b1k,n
k

)( ∞∑
k=K+1

b2k,n
k

)]

=
h2n
4

(
Var

[ ∞∑
k=K+1

b1k,nb
2
k,n

]

+

( ∞∑
k=K+1

1

k2

)−2

Var
[( ∞∑

k=K+1

b1k,n
k

)( ∞∑
k=K+1

b2k,n
k

)]

− 2

( ∞∑
k=K+1

1

k2

)−1

Cov
[ ∞∑
k=K+1

b1k,nb
2
k,n,

( ∞∑
k=K+1

b1k,n
k

)( ∞∑
k=K+1

b2k,n
k

)])

=
h2n
4

( ∞∑
k=K+1

h2n
4π4k4

+

( ∞∑
k=K+1

1

k2

)−2( ∞∑
k=K+1

hn
2π2k4

)2

− 2

( ∞∑
k=K+1

1

k2

)−1

E
[( ∞∑

k=K+1

b1k,nb
2
k,n

)( ∞∑
k=K+1

b1k,n
k

)( ∞∑
k=K+1

b2k,n
k

)])
.

Since

E
[( ∞∑

k=K+1

b1k,nb
2
k,n

)( ∞∑
k=K+1

b1k,n
k

)( ∞∑
k=K+1

b2k,n
k

)]
= E

[ ∞∑
k,l,r=K+1

b1k,nb
2
k,n

b1l,n
l

b2r,n
r

]

= E
[ ∞∑
k=K+1

1

k2
(b1k,n)

2(b2k,n)
2

]

=

∞∑
k=K+1

h2n
4π4k6

,

we obtain

Var[C1,2]

=
h4n
16π4

( ∞∑
k=K+1

1

k4
+

( ∞∑
k=K+1

1

k2

)−2( ∞∑
k=K+1

1

k4

)2

− 2

( ∞∑
k=K+1

1

k2

)−1 ∞∑
k=K+1

1

k6

)
.

(V.83)

Comparing the equations (V.82) and (V.83), we have Var[C1,1] = 2Var[C1,2]. Thus, inserting
the results from equations (V.82) and (V.83) into equation (V.81) yields

max
i∈{1,...,M}

M∑
j=1

Var
[
(SK

n )i,j
]

= 2mVar[C1,2]

= 2m

(
hn
2π

)4( ∞∑
k=K+1

1

k4
+

( ∞∑
k=K+1

1

k2

)−2( ∞∑
k=K+1

1

k4

)2
− 2

( ∞∑
k=K+1

1

k2

)−1 ∞∑
k=K+1

1

k6

)
.

(V.84)
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Now, we take a closer look at the series in the formula above. Using Lemma V.22 and
Lemma V.23, it follows for K ∈ N that( ∞∑

k=K+1

1

k2

)−2( ∞∑
k=K+1

1

k4

)2

≤
(
K + 3

4

)2
9
(
K + 1

2

)6
and ( ∞∑

k=K+1

1

k2

)−1 ∞∑
k=K+1

1

k6
≥

K + 1
2

5
(
K + 3

4

)5 .
Considering the difference on the right-hand side in equation (V.84), we have with both previous
inequalities that( ∞∑

k=K+1

1

k2

)−2( ∞∑
k=K+1

1

k4

)2

− 2

( ∞∑
k=K+1

1

k2

)−1 ∞∑
k=K+1

1

k6

≤
5
(
K + 3

4

)7 − 18
(
K + 1

2

)7
45
(
K + 1

2

)6(
K + 3

4

)5 .

(V.85)

We continue showing that the right-hand side of inequality (V.85) above is less than zero. For
this, we consider the numerator only. The Taylor expansion implies

5
(
K +

3

4

)7
− 18

(
K +

1

2

)7
= 5

7∑
i=1

7!

(7− i)!i!4i

(
K +

1

2

)7−i
− 13

(
K +

1

2

)7
for all K ∈ N. Since

(
K + 1

2

)−i is monotonically decreasing in K for i ∈ {1, . . . , 7} and

5

7∑
i=1

7!

(7− i)!i!4i

(
1 +

1

2

)−i
− 13 = −921133

279936
≤ 0,

we obtain

5
(
K + 3

4

)7 − 18
(
K + 1

2

)7(
K + 1

2

)7 = 5

7∑
i=1

7!

(7− i)!i!4i

(
K +

1

2

)−i
− 13 ≤ 0

for all K ∈ N. Thus, we infer from inequality (V.85) that( ∞∑
k=K+1

1

k2

)−2( ∞∑
k=K+1

1

k4

)2

− 2

( ∞∑
k=K+1

1

k2

)−1 ∞∑
k=K+1

1

k6
≤ 0,

and we estimate equation (V.84) to

max
i∈{1,...,M}

M∑
j=1

Var
[
(SK

n )i,j
]
≤ 2m

(
hn
2π

)4 ∞∑
k=K+1

1

k4
. (V.86)
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Combining equation (V.72), inequality (V.73), equation (V.74), and above inequality (V.86),
we obtain

max
i∈{1,...,M}

∥∥∥eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∥∥∥2
L2(Ω;R)

≤ m

(
hn
2π

)2
(( ∞∑

k=K+1

1

k2

)
−
( ∞∑

k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

))−1 ∞∑
k=K+1

1

k4
.

Using Lemma V.22 and Lemma V.23, it holds(( ∞∑
k=K+1

1

k2

)
−
( ∞∑

k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

))−1 ∞∑
k=K+1

1

k4

≤
(

1

K + 3
4

−
K + 3

4

3
(
K + 1

2

)3)−1 1

3
(
K + 1

2

)3
=

3K + 9
4

3K + 7
2 + 3

4K − 3
16K2

· 1

3K2

≤ 1

3K2
(V.87)

for K ∈ N, and finally, we obtain

max
i∈{1,...,M}

∥∥eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∥∥2
L2(Ω;R) ≤

(
hn
2π

)2 m

3K2
,

which completes the proof.

Proof of Theorem V.9

Proof of Theorem V.9. Since I(j,j),n = IK+
(j,j),n for j ∈ {1, . . . ,m}, we have

max
j∈{1,...,m}

‖I(j,j),n − IK+
(j,j),n‖Lp(Ω;R) = 0,

and it holds

max
i,j∈{1,...,m}

‖I(i,j),n − IK+
(i,j),n‖Lp(Ω;R) = max

i∈{1,...,M}

∥∥eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∥∥
Lp(Ω;R), (V.88)

cf. equation (V.42). Similar considerations as in the proof of Lemma V.5 show that, given
{bk,n : k ∈ N with k > K}, the conditional distribution of

eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n =

M∑
j=1

(√
SK
n −

√
E[SK

n ]
)
i,j
Gj

1,n

is normal with conditional expectation zero P-almost surely and conditional variance

M∑
j=1

((√
SK
n −

√
E[SK

n ]
)
i,j

)2
=
∥∥eT

i

(√
SK
n −

√
E[SK

n ]
)∥∥2

F
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P-almost surely. Since N(0M×1, IM )-distributed random variable G1,n is independent of Fourier
coefficients bk,n, k ∈ N, we obtain by using [16, Corollary 4.38] or [43, Satz 5.3.22], and by using
Lemma V.20 that

max
i∈{1,...,M}

∥∥eT
i

(√
SK
n −

√
E[SK

n ]
)
G1,n

∥∥2
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i∈{1,...,M}

(
E
[
E
[∣∣eT

i

(√
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√
E[SK

n ]
)
G1,n
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]]) 2

p

=
2
(
Γ(p+1

2 )
) 2

p

π
1
p
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i∈{1,...,M}
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E
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i

(√
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√
E[SK

n ]
)∥∥p

F
]) 2

p (V.89)

cf. equation (V.72). Then, similarly to inequality (V.73), it follows by Lemma V.21 that
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i∈{1,...,M}

∥∥eT
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√
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n ]
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1
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1
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i∈{1,...,M}

(
E
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i

(
SK
n − E[SK
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F
]) 2

p .

(V.90)

Considering the last factor on the right-hand side of above inequality (V.90) and applying the
triangle inequality, it holds

max
i∈{1,...,M}

(
E
[∥∥eT

i

(
SK
n − E[SK

n ]
)∥∥p

F
]) 2

p

= max
i∈{1,...,M}

∥∥∥∥ M∑
j=1
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(SK

n )i,j − (E[SK
n ])i,j

)2∥∥∥∥
L

p
2 (Ω;R)

≤ max
i∈{1,...,M}

M∑
j=1

∥∥(SK
n )i,j − (E[SK

n ])i,j
∥∥2
Lp(Ω;R). (V.91)

Since E[SK
n ] is a diagonal matrix by Lemma V.6, we further have

max
i∈{1,...,M}

M∑
j=1

∥∥(SK
n )i,j − (E[SK

n ])i,j
∥∥2
Lp(Ω;R)

= max
i∈{1,...,M}

(∥∥(SK
n )i,i − (E[SK

n ])i,i
∥∥2
Lp(Ω;R) +

M∑
j=1
j 6=i

∥∥(SK
n )i,j

∥∥2
Lp(Ω;R)

)
.

(V.92)

In the following, we use the same notations as in the proof of Theorem V.7. Similar consider-
ations that lead to inequality (V.81), imply together with equation (V.92) that

max
i∈{1,...,M}

M∑
j=1

∥∥(SK
n )i,j − (E[SK

n ])i,j
∥∥2
Lp(Ω;R)

= max
i,j∈{1,...,m}

i<j

‖Ci,i − E[Ci,i] + Cj,j − E[Cj,j ]‖2Lp(Ω;R) + 2(m− 2)‖Ci,j‖2Lp(Ω;R)

≤ 4‖C1,1 − E[C1,1]‖2Lp(Ω;R) + 2(m− 2)‖C1,2‖2Lp(Ω;R) (V.93)
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because

‖Ci,i − E[Ci,i] + Cj,j − E[Cj,j ]‖2Lp(Ω;R)

≤
(
‖Ci,i − E[Ci,i]‖Lp(Ω;R) + ‖Cj,j − E[Cj,j ]‖Lp(Ω;R)

)2
=
(
2‖C1,1 − E[C1,1]‖Lp(Ω;R)

)2
.

Now, we proceed with the estimation of the Lp(Ω;R)-norms in inequality (V.93). Considering
the first Lp(Ω;R)-norm on the right-hand side of inequality (V.93), we obtain by equation (V.75)
and by the proof of Lemma V.6 that
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=
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Further, using the triangle inequality and Lemma V.20, we have
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(V.94)

Consider the Lp(Ω;R)-norm on the right-hand side of inequality (V.94) above. Since the series
is convergent in Lp(Ω;R) and a discrete martingale due to the independence of b1k,n, k ∈ N,
Theorem II.5 implies
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Then, the application of the triangle inequality and Lemma V.20 leads to∥∥∥∥ ∞∑
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Inserting this into inequality (V.94), we obtain
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We use similar considerations in order to estimate the second Lp(Ω;R)-norm on the right-hand
side of inequality (V.93). Using the triangle inequality, it first holds
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Then, the independence of b1k,n and b2k,n for k ∈ N, Theorem II.5, and Lemma V.20 imply
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Inserting inequalities (V.95) and (V.96) into inequality (V.93), we finally obtain
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and together with the inequalities (V.91) and (V.90), we in total have
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Next, we estimate the series on the right-hand side of above inequality (V.97) using Lemma V.22
and Lemma V.23. It holds for K ∈ N that(( ∞∑
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for all K ∈ N, we obtain by inequality (V.87) that(( ∞∑
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Inserting this into inequality (V.97), it holds together with equation (V.88) that
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which completes the proof.

Proof of Theorem V.11

The proof follows the same ideas that are used in the proof of Theorem V.7.

Proof of Theorem V.11. At first, we have
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where
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Taking into account that
{
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}
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Inserting this into equation (V.98), it holds
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by Lemma V.22 and Lemma V.23. Thus, we have
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Now, we consider the error of approximation ĨK+
(i,j),n. According to equations (V.41) and (V.44),

it holds
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Then, Theorem V.8 and inequality (V.101) imply
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Proof of Theorem V.12

The proof follows the same ideas that are used in the proofs of Theorem V.11 and Theo-
rem V.9.

Proof of Theorem V.12. Similarly to equations (V.89) and (V.98), it holds
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Considering the last factor on the right-hand side of equation (V.103) above, it follows, analo-
gously to equations (V.99) and (V.91), that
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Then, Lemma V.20 implies
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Inserting this into equation (V.103), we obtain
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Further, using inequality (V.100), it holds
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and similarly to inequality (V.102), we have
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Then, Theorem V.9 and inequality (V.104) imply
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Proof of Lemma V.16

The proof is divided into three parts. At first, we show that the absolute moments of the Mil-
stein with approximated iterated stochastic integrals, defined in formula (V.56), are bounded.
After that, we show the strong convergence of Milstein scheme (V.56) to Milstein approxima-
tion Y defined in formula (IV.33). From this, we conclude the assertion of Lemma V.16. The
proofs below involve the discrete version of Gronwall’s Lemma II.7.

Lemma V.24 (Discrete Gronwall, cf. [22])
Let N ∈ N, and for all n ∈ {0, 1, . . . , N}, let xn ≤ c +

∑n
k=0 ykxk, where c, xn, yn > 0. Then,

it holds xn ≤ c e
∑n

k=0 yk for all n ∈ {0, 1, . . . , N}.
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Proof. Cf. [22], and use that 1 + yn ≤ eyn , which implies Πn
k=0(1 + yn) ≤ e

∑n
k=0 yn .

Lemma V.25
Let the Borel-measurable coefficients of SDDE (II.1) fulfill Assumption IV.8 ii) and Assump-
tion IV.8 iv), where bj(t, t − τ1, . . . , t − τD, ·, . . . , ·) ∈ C1(Rd×(D+1);Rd) for all t ∈ [t0, T ] and
j ∈ {1, . . . ,m}. Further, let initial condition ξ belong to Sp([t0 − τ, t0] × Ω;Rd) for some
p ∈ [2,∞[.

For i, j ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈ {0, 1, . . . , N − 1}, let approximation IKn

(i,j),n,τl
fulfill assumption (V.54), be Ftn+1/B(R)-measurable, and be independent of F(tn−τl)∨t0.

Then, it holds for Milstein scheme Y with approximated iterated stochastic integrals, defined
in (V.56), that

1 +

∥∥∥∥ sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Y t‖
∥∥∥∥2
Lp(Ω;R)

≤
(
1 + 2‖ξ‖2Sp([t0−τ,t0]×Ω;Rd)

)
× e

2

(
Ka

√
T−t0+

p√
p−1

Kbm
√
2
(
Γ( p+1

2
)
) 1

p
π
− 1

2p+Lb

√
dKbCI,p(D+1)m2

√
T−t0

)2

(T−t0)
.

Proof. Since ξ ∈ Sp([t0 − τ, t0]× Ω;Rd), it holds∥∥∥∥ sup
t∈[t0−τ,t0]

‖Y t‖
∥∥∥∥
Lp(Ω;R)

= ‖ξ‖Sp([t0−τ,t0]×Ω;Rd) <∞.

We assume that∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tν}

‖Y t‖
∥∥∥∥
Lp(Ω;R)

<∞

has been proven for all ν ∈ {0, 1, . . . , n − 1}, where n ∈ {1, . . . , N}. For all n ∈ {1, . . . , N},
inequality (II.6) and the triangle inequality imply

1 +

∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tn}

‖Y t‖
∥∥∥∥2
Lp(Ω;R)

≤ 1 + 2‖ξ‖2Sp([t0−τ,t0]×Ω;Rd) + 2

(∥∥∥∥ sup
ν∈{1,...,n}

∥∥∥∥ ν−1∑
µ=0

a(T (tµ, Y tµ))hµ

∥∥∥∥∥∥∥∥
Lp(Ω;R)

+

∥∥∥∥ sup
ν∈{1,...,n}

∥∥∥∥ ν−1∑
µ=0

m∑
j=1

bj(T (tµ, Y tµ))∆W
j
µ

∥∥∥∥∥∥∥∥
Lp(Ω;R)

+

∥∥∥∥ sup
ν∈{1,...,n}

∥∥∥∥ ν−1∑
µ=0

D∑
l=0

m∑
j1,j2=1

d∑
i=1

∂xi
l
bj1(T (tµ, Y tµ))

× bi,j2(T ((tµ − τl) ∨ t0, Y (tµ−τl)∨t0))I
Kµ

(j2,j1),µ,τl

∥∥∥∥∥∥∥∥
Lp(Ω;R)

)2

.

(V.105)
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In the following, we estimate the three Lp(Ω;R)-norms on the right-hand side of previous
inequality (V.105) separately. Using the triangle inequality and Assumption IV.8 iv), we have∥∥∥∥ sup

ν∈{1,...,n}

∥∥∥∥ ν−1∑
µ=0

a(T (tµ, Y tµ))hµ

∥∥∥∥∥∥∥∥
Lp(Ω;R)

≤
∥∥∥∥ sup
ν∈{1,...,n}

ν−1∑
µ=0

‖a(T (tµ, Y tµ))‖hµ
∥∥∥∥
Lp(Ω;R)

=

∥∥∥∥ n−1∑
µ=0

‖a(T (tµ, Y tµ))‖hµ
∥∥∥∥
Lp(Ω;R)

≤
∥∥∥∥ n−1∑
µ=0

Ka sup
l∈{0,1,...,D}

(
1 + ‖Y tµ−τl‖

2
) 1

2hµ

∥∥∥∥
Lp(Ω;R)

≤ Ka

n−1∑
µ=0

(
1 +

∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tµ}

‖Y t‖
∥∥∥∥2
Lp(Ω;R)

) 1
2

hµ

≤ Ka

√
tn − t0

( n−1∑
µ=0

(
1 +

∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tµ}

‖Y t‖
∥∥∥∥2
Lp(Ω;R)

)
hµ

) 1
2

, (V.106)

where the Cauchy-Schwarz inequality is used in the last step. Next, we consider the second
Lp(Ω;R)-norm on the right-hand side of inequality (V.105). Here, the time-discrete process( n−1∑

µ=0

m∑
j=1

bj(T (tµ, Y tµ))∆W
j
µ

)
n∈{1,...,N}

is a discrete martingales in Lp(Ω;Rd) with respect to the filtration (Ftn)n∈{1,...,N}. Using the
discrete Burkholder-type inequality from Theorem II.5, the triangle inequality as well as the
independence of bj(T (tµ, Y tµ)) and ∆W j

µ, we obtain∥∥∥∥ sup
ν∈{1,...,n}

∥∥∥∥ ν−1∑
µ=0

m∑
j=1

bj(T (tµ, Y tµ))∆W
j
µ

∥∥∥∥∥∥∥∥
Lp(Ω;R)

≤ p√
p− 1

( n−1∑
µ=0

∥∥∥∥ m∑
j=1

bj(T (tµ, Y tµ))∆W
j
µ

∥∥∥∥2
Lp(Ω;Rd)

) 1
2

≤ p√
p− 1

( n−1∑
µ=0

( m∑
j=1

‖bj(T (tµ, Y tµ))∆W
j
µ‖Lp(Ω;Rd)

)2) 1
2

=
p√
p− 1

( n−1∑
µ=0

( m∑
j=1

‖bj(T (tµ, Y tµ))‖Lp(Ω;Rd)‖∆W
j
µ‖Lp(Ω;R)

)2) 1
2

. (V.107)

Considering the two norms in term (V.107), Lemma V.20 and the linear growth condition from
Assumption IV.8 iv) imply

‖∆W j
µ‖Lp(Ω;R) =

√
2
(
Γ(p+1

2 )
) 1

p

π
1
2p

√
hµ
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and

‖bj(T (tµ, Y tµ))‖Lp(Ω;Rd) ≤ Kb

(
1 +

∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tµ}

‖Y t‖
∥∥∥∥2
Lp(Ω;R)

) 1
2

. (V.108)

Substituting this into inequality (V.107) leads to∥∥∥∥ sup
ν∈{1,...,n}

∥∥∥∥ ν−1∑
µ=0

m∑
j=1

bj(T (tµ, Y tµ))∆W
j
µ

∥∥∥∥∥∥∥∥
Lp(Ω;R)

≤ p√
p− 1

√
2
(
Γ(p+1

2 )
) 1

p

π
1
2p

( n−1∑
µ=0

( m∑
j=1

‖bj(T (tµ, Y tµ))‖Lp(Ω;Rd)

)2

hµ

) 1
2

≤
p
√
2
(
Γ(p+1

2 )
) 1

p

√
p− 1π

1
2p

Kbm

( n−1∑
µ=0

(
1 +

∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tµ}

‖Y t‖
∥∥∥∥2
Lp(Ω;R)

)
hµ

) 1
2

. (V.109)

We continue with the third Lp(Ω;R)-norm on the right-hand side of inequality (V.105). Simi-
larly to inequality (V.106), it holds by Assumption IV.8 ii) and inequality (IV.67) that∥∥∥∥ sup

ν∈{1,...,n}

∥∥∥∥ ν−1∑
µ=0

D∑
l=0

m∑
j1,j2=1

d∑
i=1

∂xi
l
bj1(T (tµ, Y tµ))

× bi,j2(T ((tµ − τl) ∨ t0, Y (tµ−τl)∨t0))I
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∥∥∥∥∥∥∥∥
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Lp(Ω;R)
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(V.110)

Using further that I
Kµ

(j2,j1),µ,τl
is independent of F(tµ−τl)∨t0 and that, similarly to inequal-

ity (V.108),

‖bj2(T ((tµ − τl) ∨ t0, Y (tµ−τl)∨t0))‖Lp(Ω;Rd)

≤ Kb

(
1 +

∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tµ}

‖Y t‖
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Lp(Ω;R)

) 1
2

,
(V.111)
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we obtain by assumption (V.54) from inequality (V.110) that∥∥∥∥ sup
ν∈{1,...,n}
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,

(V.112)
where again the Cauchy-Schwarz inequality was used in the last step. Inserting inequali-
ties (V.106), (V.109), and (V.112) into inequality (V.105) yields
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Then, by discrete Gronwall’s Lemma V.24, we have
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Moreover, taking the maximum over n ∈ {1, . . . , N} on both sides of the inequality above
implies that
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which proves the assertion.

186



V.5. Proofs

Lemma V.26
Let the assumptions from Lemma V.16 be fulfilled for some p ∈ [2,∞[. Consider Milstein
approximation Y and Milstein scheme Y with approximated iterated stochastic integrals defined
in formulas (IV.33) and (V.56), where both have maximum step size h. It holds

∥∥∥∥ sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Yt − Y t‖
∥∥∥∥
Lp(Ω;R)

≤
√
2p(D + 1)m2

√
p− 1

(
pL2

∂b(D + 1)m2(4(β + 1)p− 1)
(
Γ(4(β+1)p+1

2 )
) 1

2(β+1)p

√
2
√
p− 1π

1
4(β+1)p

×
∥∥∥∥ sup
t∈[t0−τ,t0[∪{t0,t1,...,tν}

(
1 + ‖Yt‖2 + ‖Y t‖2

)∥∥∥∥ 2β+1
2

L(β+1)p(Ω;R)

√
T − t0h

+ Lb

√
dKb

(
1 +

∥∥∥∥ sup
t∈[t0−τ,t0]∪{t1,...,tN}

‖Y t‖
∥∥∥∥2
Lp(Ω;R)

)1
2
(N−1∑

ν=0

(
EI,p(hν ,Kν)

)2)1
2

)

× e
(
La

√
T−t0+

p
√
2(Γ(

p+1
2 ))

1
p

√
p−1

π
− 1

2pLbm+ 1
2

)2
(T−t0).

Proof. We introduce the auxiliary scheme Y Y defined by

Y Y
t = ξt for t ∈ [t0 − τ, t0] and

Y Y
tn+1

= Y Y
tn + a(T (tn, Y tn))hn +

m∑
j=1

bj(T (tn, Y tn))∆W
j
n

+
D∑
l=0

m∑
j1,j2=1

d∑
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l
bj1(T (tn, Y tn))b

i,j2(T ((tn − τl) ∨ t0, Y (tn−τl)∨t0))I(j2,j1),n,τl

for n = 0, 1, . . . , N − 1

(V.113)

and estimate
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(V.114)

Considering the first term on the right-hand side of inequality (V.114) above, the triangle
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inequality implies for schemes (IV.33) and (V.113) that∥∥∥∥ sup
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In the following, we estimate the three terms on the right-hand side of inequality (V.115)
above separately. Similarly to inequality (V.106), it holds, using the Lipschitz condition from
Assumption IV.8 ii) and the Cauchy-Schwarz inequality, that∥∥∥∥ sup
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Analogously to estimates (V.107), (V.109), and (V.116), we have∥∥∥∥ sup
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We proceed with the third term on the right-hand side of inequality (V.115) and introduce the
notation

III :=

∥∥∥∥ sup
n∈{1,...,N}

∥∥∥∥ n−1∑
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)
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.

Since approximation IKν

(j2,j1),ν,τl
is Ftν+1/B(R)-measurable and satisfies

E
[
IKν

(j2,j1),ν,τl

∣∣Ftν

]
= 0

P-almost surely for all j1, j2 ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and ν ∈ {0, 1, . . . , N − 1}, the
time-discrete process inside the Euclidean norm is a martingale in Lp(Ω;Rd). The discrete
Burkholder-type inequality from Theorem II.5, the triangle inequality, and Assumption IV.8 iii)
imply that

III ≤ p√
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.

The following estimates are similar to those appearing in the considerations of term R11 in
the proof of Theorem IV.9. Inequality (IV.161), where X and Y are replaced by Y and Y ,
respectively, implies

III ≤ pL∂b2
1
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Using inequality (IV.163) with γ =
(
pL∂b(D+1)m22

1
4√
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√
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) 1
2 and the triangle inequality, we obtain
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.

Considering the term
(∑N−1

ν=0 x
2
i

) 1
2 on the right-hand side of the inequality above as the Eu-

clidean norm and replacing γ by its definition, the triangle inequality leads to
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√
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(V.118)

Hölder’s inequality with 1 = 2β+1
2(β+1) +

1
2(β+1) provides

∥∥∥∥( sup
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for the first Lp(Ω;R)-norm in inequality (V.118) above. Further, Theorem II.6 and Lemma V.20
yield
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Thus, by inserting these estimates into inequality (V.118) and using
∑N−1

ν=0 h
3
ν ≤ (T − t0)h

2,
we have
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(V.119)

Combining inequalities (V.115), (V.116), (V.117), and (V.119) results in∥∥∥∥ sup
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(V.120)

In the following, the second term of the right-hand side of the inequality (V.114) is considered.
By rewriting and inserting schemes (V.56) and (V.113), we obtain∥∥∥∥ sup
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The time-discrete process inside the Euclidean norm is a discrete martingale in Lp(Ω;Rd)
because iterated stochastic integral I(j2,j1),ν,τl and its approximation IKν

(j2,j1),ν,τl
are Ftν+1/B(R)-

measurable and satisfy

E
[
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∣∣Ftν

]
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∣∣Ftν

]
= 0

P-almost surely for all j1, j2 ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and ν ∈ {0, 1, . . . , N − 1}. The
discrete Burkholder-type inequality from Theorem II.5 implies
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Then, using the triangle inequality, Assumption IV.8 iii), and inequality (IV.67), we obtain
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where the equality holds by independence of I(j2,j1),ν,τl and IKν

(j2,j1),ν,τl
from F(tν−τl)∨t0 . Further,

using inequality (V.111) and assumption (V.55), it follows
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(V.121)

Inserting inequalities (V.120) and (V.121) into inequality (V.114), we have by inequality (II.6)
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that ∥∥∥∥ sup
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Then, the discrete Gronwall Lemma V.24 implies∥∥∥∥ sup
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Finally, the assertion of Lemma V.26 follows by taking the square root.

Proof of Lemma V.16. The triangle inequality implies∥∥∥∥ sup
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Then, due to Lemma V.26 and assumption (V.57), there exist constants C1, C2 > 0, indepen-
dent of h and N , such that∥∥∥∥ sup
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Proof of Theorem V.18

At first, we show that the approximations obtained by Algorithm V.4 satisfy assumption (V.55).

Lemma V.27
Let p ∈ [2,∞[ and n ∈ {0, 1, . . . , N − 1}. Consider approximation IK(i,j),n,τl defined by equa-
tions (V.20) and (V.21), where K ∈ N, i, j ∈ {1, . . . ,m}, and l ∈ {0, 1, . . . , D}. It holds
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Proof. Similarly to inequalities (V.60) and (V.61), it holds
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Since the upper bound is independent of i, j ∈ {1, . . . ,m} and l ∈ {0, 1, . . . , D}, the assertion
follows by taking the maximum and the square root.

Proof of Theorem V.18. From the construction of approximation IKn

(i,j),n,τl
, see Section V.1, it

is evident that IKn

(i,j),n,τl
is Ftn+1/B(R)-measurable, independent of σ-algebra F(tn−τl)∨t0 and

satisfies E
[
IKn

(i,j),n,τl

∣∣Ftn

]
= 0 P-almost surely for all i, j ∈ {1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈

{0, 1, . . . , N−1}. Further, assumption (V.54) is fulfilled by Lemma V.27, and assumption (V.55)
holds by Theorem V.2 with

EI,p(hn,Kn) =
(p− 1)

(
Γ(p+1

2 )
) 1

phn

π
2p+1
2p

√
Kn

.
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Since Kn ≥ Ch−1 for all n ∈ {0, 1, . . . , N − 1}, we obtain

N−1∑
n=0

(
EI,p(hn,Kn)

)2 ≤ (p− 1)2
(
Γ(p+1

2 )
) 2

p

π
2p+1

p

N−1∑
n=0

h2n
Kn

≤
(p− 1)2

(
Γ(p+1

2 )
) 2

p

π
2p+1

p

T − t0
C

h2,

and the assertion of Theorem V.18 follows from Lemma V.16 and Corollary V.17.

Proof of Theorem V.19

The proof is similar to the one of Theorem V.18. At first, we show that the approximations
from Algorithm V.10 satisfy assumption (V.55).

Lemma V.28
Let p ∈ [2,∞[ and n ∈ {0, 1, . . . , N − 1}. Consider approximation IK(i,j),n,τl defined by equa-
tion (V.41), where K ∈ N and i, j ∈ {1, . . . ,m}. It holds

max
i,j∈{1,...,m}

‖IK+
(i,j),n‖Lp(Ω;R) ≤

(
p− 1√

6
+

2
(
Γ(p+1

2 )
) 1

p

√
3π

2p+1
2p

+
1

π

)(
Γ(p+1

2 )
) 1

phn

π
1
2p

.

Proof. At first, it holds by the triangle inequality that

max
i,j∈{1,...,m}

‖IK+
(i,j),n‖Lp(Ω;R)

≤ max
i,j∈{1,...,m}

‖IK(i,j),n‖Lp(Ω;R) + max
i∈{1,...,M}

∥∥eT
i Σ

K
2,n(Σ

K
1,n)

−1
√
ΣK

1,nG0,n

∥∥
Lp(Ω;R)

+ max
i∈{1,...,M}

∥∥eT
i

√
E[SK

n ]G1,n

∥∥
Lp(Ω;R),

where

max
i,j∈{1,...,m}

‖IK(i,j),n‖Lp(Ω;R) ≤
(p− 1)

(
Γ(p+1

2 )
) 1

phn
√
6π

1
2p

by Lemma V.27 and

max
i∈{1,...,M}

∥∥eT
i Σ

K
2,n(Σ

K
1,n)

−1
√
ΣK

1,nG0,n

∥∥
Lp(Ω;R) ≤

2
(
Γ(p+1

2 )
) 2

phn
√
3π

p+1
p K

by inequality (V.104). Further, Lemma V.6 implies

max
i∈{1,...,M}

∥∥eT
i

√
E[SK

n ]G1,n

∥∥
Lp(Ω;R)

≤ hn√
2π

(( ∞∑
k=K+1

1

k2

)
−
( ∞∑

k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

)) 1
2

max
i∈{1,...,M}

‖Gi
1,n‖Lp(Ω;R),
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and using Lemma V.22 and Lemma V.23, we obtain(( ∞∑
k=K+1

1

k2

)
−
( ∞∑

k=K+1

1

k2

)−1( ∞∑
k=K+1

1

k4

)) 1
2

≤
(

1

K + 1
2

−
K + 1

2

3
(
K + 3

4

)3) 1
2

=

(
1

K
·

3 + 23
4K + 65

16K2 + 65
64K3

3 + 33
4K + 135

16K2 + 243
64K3 + 81

128K4

) 1
2

≤ 1√
K
.

Thus, we have by Lemma V.20 that

max
i∈{1,...,M}

∥∥eT
i

√
E[SK

n ]G1,n

∥∥
Lp(Ω;R) ≤

(
Γ(p+1

2 )
) 1

phn

π
2p+1
2p

√
K

,

and finally, we obtain

max
i,j∈{1,...,m}

‖IK+
(i,j),n‖Lp(Ω;R) ≤

(p− 1)
(
Γ(p+1

2 )
) 1

phn
√
6π

1
2p

+
2
(
Γ(p+1

2 )
) 2

phn
√
3π

p+1
p K

+

(
Γ(p+1

2 )
) 1

phn

π
2p+1
2p

√
K

=

(
p− 1√

6
+

2
(
Γ(p+1

2 )
) 1

p

√
3π

2p+1
2p K

+
1

π
√
K

)(
Γ(p+1

2 )
) 1

phn

π
1
2p

.

Since K ∈ N, we can neglect K and
√
K in the denominator and obtain the proposed upper

bound.

Proof of Theorem V.19. From the construction of approximations IKn+
(i,j),n,τl

, see Section V.2, it
is evident that IKn+

(i,j),n,τl
is Ftn+1/B(R)-measurable, independent of σ-algebra F(tn−τl)∨t0 and

satisfies E
[
IKn+
(i,j),n,τl

∣∣Ftn

]
= 0 P-almost surely for all i, j ∈ {1, . . . ,m} and n ∈ {0, 1, . . . , N −

1}. Further, assumption (V.54) is fulfilled by Lemma V.28, and assumption (V.55) holds by
Theorem V.8 and Theorem V.9 with

EI,p(hn,Kn) =



√
mhn√

12πKn

if p = 2,(
Γ(p+1

2 )
) 1

p

π
1
2p

((
2
(
Γ(2p+1

2 )
) 1

p

π
1
2p

+ 1

)2

+ 2(m− 2)

(
Γ(p+1

2 )
) 4

p

π
2
p

) 1
2

×
(√

3
√
p− 1 + 1

)
hn

3πKn
if p ∈ ]2,∞[.

Since Kn ≥ Ch−
1
2 for all n ∈ {0, 1, . . . , N − 1}, we obtain

N−1∑
n=0

(
EI,p(hn,Kn)

)2 ∈ O(h2),

and the assertion of Theorem V.19 follows from Lemma V.16 and Corollary V.17.
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VI
Numerical Simulations

In this chapter, we illustrate our theoretical results from Chapter IV on the strong and pathwise
convergence of the Euler-Maruyama and the Milstein scheme for SDDEs. In order to confirm
the order of convergence of the approximations numerically, there is a great interest in analytical
solutions of SDDEs.

In Section VI.1, we develop analytical solutions of linear as well as nonlinear SDDEs that
can be simulated exactly. Here, we consider SDDEs with multidimensional noise that satisfy
commutativity condition (V.1). These solutions are then used in Section VI.2 in order to
provide meaningful simulation studies on the convergence of the Euler-Maruyama and the
Milstein scheme. To the best of our knowledge, the presented numerical examples are the
first that compare the Milstein approximations to analytical solutions of SDDEs, which are
simulated error-free.

VI.1. Exact Simulation of Analytical Solutions of Stochastic
Delay Differential Equations

Küchler and Platen derived analytical solutions of linear SDDEs in case of d = m = D = 1 in
[82, Section 8]. In this section, we first recall their results and then address the problem of the
exact simulation of this analytical solutions in case of multidimensional additive noise. Finally,
we derive some analytical solutions of (nonlinear) SDDEs with more general noises that can
be simulated correctly without approximations. For sake of simplicity, let d = D = 1 in the
following. Moreover, let m ∈ N and τ = τ1 > 0.

Consider the linear SDDE

Xt =



ξt if t ∈ [t0 − τ, t0],

ξt0 +

∫ t

t0

a1(s)Xs + a2(s)Xs−τ + a3(s)ds

+

m∑
j=1

∫ t

t0

bj1(s)Xs + bj2(s)Xs−τ + bj3(s)dW j
s if t ∈ ]t0, T ],

(VI.1)
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where initial condition ξ belongs to Sp([t0 − τ, t0]×Ω;R) for some p ∈ [2,∞[ and has P-almost
surely continuous realizations, and where coefficients ai, bji : R → R, i ∈ {1, 2, 3} and j ∈
{1, . . . ,m}, are Borel-measurable and bounded functions. Linear SDDE (VI.1) can be trans-
formed in a system of linear SODEs with random coefficients, see [82, Section 7]. The resulting
linear SODEs can be analytically solved, see e. g. [7, Section 8.4], [46, Example 2.5.3] or [75,
Section 5.6]. Let s ∈ [t0, T [, and consider the fundamental solution (Φs,t)t∈[s,T ] with

Φs,t = exp
(∫ t

s
a1(u)−

1

2

m∑
j=1

(bj1(u))
2 du+

m∑
j=1

∫ t

s
bj1(u)dW j

u

)

for t ∈ [s, T ] P-almost surely, which is the unique strong solution of the linear and homogeneous
SODE

Φs,t = 1 +

∫ t

s
a1(u)Φs,u du+

m∑
j=1

∫ t

s
bj1(u)Φs,u dW j

u ,

where t ∈ [s, T ]. According to [82, Equations (8.3) and (8.4)], linear SDDE (VI.1) can be solved
sequentially. First, we have

Xt = ξt

for t ∈ [t0−τ, t0] P-almost surely. Then, we sequentially obtain for l ∈ N0, as long as t0+lτ < T ,
that

Xt = Φt0+lτ,t

(
Xt0+lτ +

∫ t

t0+lτ
Φ−1
t0+lτ,s

(
a2(s)Xs−τ + a3(s)

−
m∑
j=1

bj1(s)
(
bj2(s)Xs−τ + bj3(s)

))
ds

+
m∑
j=1

∫ t

t0+lτ
Φ−1
t0+lτ,s

(
bj2(s)Xs−τ + bj3(s)

)
dW j

s

) (VI.2)

for t ∈ ]t0 + lτ, (t0 + (l + 1)τ) ∧ T ] P-almost surely. Especially for l = 0, we have

Xt = Φt0,t

(
ξt0 +

∫ t

t0

Φ−1
t0,s

(
a2(s)ξs−τ + a3(s)−

m∑
j=1

bj1(s)
(
bj2(s)ξs−τ + bj3(s)

))
ds

+

m∑
j=1

∫ t

t0

Φ−1
t0,s

(
bj2(s)ξs−τ + bj3(s)

)
dW j

s

) (VI.3)

for all t ∈ [t0, (t0+τ)∧T ] P-almost surely. We remark that [82, Equations (8.3) and (8.4)] contain
a typo because term Φ−1

t0+lτ,s is missing inside the Itô integral. We see from equation (VI.3)
that it might be hard to simulate the solution on the interval [t0, t0 + τ ] already when not
bj2(s) = bj3(s) = 0 for all s ∈ [t0, T ] and j ∈ {1, . . . ,m}. However, using Itô’s formula, it might
be possible to solve the Itô integral for more general functions bj2 and bj3 and to simulate the
resulting random variables exactly, cf. [84, Example 8.1.5].

Next, we consider the following linear SDDE with multiplicative noise from [82, Equation (9.1)]
and address some problems on its simulation, which is claimed to be done in [82, Section 9].
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Let a1, a2, b11 ∈ R be constants and

Xt =


1 if t ∈ [−1, 0] and

ξt0 +

∫ t

t0

a1Xs + a2Xs−1 ds+
∫ t

t0

b11Xs dW 1
s if t ∈ ]0, 2],

(VI.4)

where W 1 is a one-dimensional Wiener process with W 1
0 = 0 P-almost surely. Using equa-

tion (VI.2), we can state the analytical solution of linear SDDE with multiplicative noise (VI.4),
see also [82, Equation (9.2)]. It holds

Xt =



1 if t ∈ [−1, 0],

e(a1−
1
2
(b11)

2)t+b11W
1
t

(
1 + a2

∫ t

0
e−(a1− 1

2
(b11)

2)s−b11W
1
s ds

)
if t ∈ ]0, 1],

e(a1−
1
2
(b11)

2)(t−1)+b11(W
1
t −W 1

1 )

×
(
X1 + a2

∫ t

1
Xs−1e−(a1− 1

2
(b11)

2)(s−1)−b11(W
1
s −W 1

1 ) ds
)

if t ∈ ]1, 2]

(VI.5)

for all t ∈ [−1, 2] P-almost surely. Considering the integral over time in case of t ∈ [1, 2] and
inserting the solution (Xs−1)s∈[1,t], we obtain∫ t

1
Xs−1e−(a1− 1

2
(b11)

2)(s−1)−b11(W
1
s −W 1

1 ) ds

= eb11W 1
1

∫ t

1
e−b11(W

1
s −W 1

s−1)

(
1 + a2

∫ s−1

0
e−(a1− 1

2
(b11)

2)u−b11W
1
u du

)
ds

(VI.6)

for all t ∈ [1, 2] P-almost surely. Küchler and Platen claim that they plot one realization of
analytic solution (VI.5), see [82, Fig. 1 and Fig. 2]. Unfortunately, they do not provide any
information how they simulate analytic solution (VI.5) with random variable∫ t

0
e−(a1− 1

2
(b11)

2)s−b11W
1
s ds

for some t ∈ [0, 1] and random variable in equation (VI.6) for some t ∈ [1, 2] exactly and
error-free. In [82, Fig. 1 and Fig. 2], Küchler and Platen also plot a realization of the Euler-
Maruyama and the Milstein scheme, respectively. Hence, they even have to generate these
random variables conditionally given the increments of the Wiener process, which are involved
in the numerical schemes. We remark that these random variables do not appear in analytical
solutions of linear SODEs because there we have a2 = 0.

In the following, we focus on linear SDDEs with additive noise, whose analytical solutions can
be simulated exactly. More specifically, we consider the SDDEs

Xt =


ξt if t ∈ [t0 − τ, t0],

ξt0 +

∫ t

t0

a1(s)Xs + a2(s)Xs−τ + a3(s)ds+
m∑
j=1

∫ t

t0

bj3(s)dW j
s if t ∈ ]t0, T ],

(VI.7)
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where ξ ∈ C([t0− τ, t0];R) and a1, a2, a3, bj3 : R → R, j ∈ {1, . . . ,m}, are Borel-measurable and
bounded functions. By equation (VI.2), we sequentially obtain for l ∈ N0, as long as t0+lτ < T ,
the analytical solution

Xt = e
∫ t
t0+lτ a1(u) du

(
Xt0+lτ +

∫ t

t0+lτ
e−

∫ s
t0+lτ a1(u) du(

a2(s)Xs−τ + a3(s)
)

ds

+
m∑
j=1

∫ t

t0+lτ
e−

∫ s
t0+lτ a1(u) du

bj3(s)dW j
s

) (VI.8)

for all t ∈ ]t0+lτ, (t0+(l+1)τ)∧T ] P-almost surely. Here, the Itô integral in formula (VI.8) above
is a Wiener integral, and hence, it is normally distributed with expectation 0 and variance

∫ t

t0+lτ

m∑
j=1

(
e−

∫ s
t0+lτ a1(u) du

bj3(s)
)2

ds.

Thus, we can exactly simulate formula (VI.8) in case of l = 0 and have

Xt = e
∫ t
t0

a1(u) du
(
ξt0 +

∫ t

t0

e−
∫ s
t0

a1(u) du(
a2(s)ξs−τ + a3(s)

)
ds

+

m∑
j=1

∫ t

t0

e−
∫ s
t0

a1(u) du
bj3(s)dW j

s

) (VI.9)

for t ∈ ]t0, t0 + τ ] P-almost surely, where the integral over time is deterministic. However, for
l ∈ N, the integral over time is not deterministic anymore. Considering the case l = 1, it
P-almost surely holds

Xt = e
∫ t
t0+τ a1(u) du

(
Xt0+τ +

∫ t

t0+τ
e−

∫ s
t0+τ a1(u) du(

a2(s)Xs−τ + a3(s)
)

ds

+

m∑
j=1

∫ t

t0+τ
e−

∫ s
t0+τ a1(u) du

bj3(s)dW j
s

)

t ∈ ]t0 + τ, t0 + 2τ ]. Using equation (VI.9) with regard to term Xs−τ , we obtain the random
variable

m∑
j=1

∫ t

t0+τ
e−

∫ s
t0+τ a1(u) du

a2(s) e
∫ s−τ
t0

a1(u) du
∫ s−τ

t0

e−
∫ u
t0

a1(r) dr
bj3(u)dW j

u ds, (VI.10)

which needs to be simulated. Using the substitution s = v + τ and stochastic integration by
parts formula based on Itô’s formula, see e. g. [64] or [75, p. 155], it P-almost surely holds for
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all t ∈ ]t0, t0 + τ ] and j ∈ {1, . . . ,m} that

m∑
j=1

∫ t

t0+τ
e−

∫ s
t0+τ a1(u) du

a2(s) e
∫ s−τ
t0

a1(u) du
∫ s−τ

t0

e−
∫ u
t0

a1(r) dr
bj3(u)dW j

u ds

=

m∑
j=1

∫ t−τ

t0

e−
∫ v+τ
t0+τ a1(u) du

a2(s) e
∫ v
t0

a1(u) du
∫ v

t0

e−
∫ u
t0

a1(r) dr
bj3(u)dW j

u dv

=

m∑
j=1

∫ t−τ

t0

e−
∫ v+τ
t0+τ a1(u) du

a2(s) e
∫ v
t0

a1(u) du dv
∫ t−τ

t0

e−
∫ u
t0

a1(r) dr
bj3(u)dW j

u

−
m∑
j=1

∫ t−τ

t0

∫ u

t0

e−
∫ v+τ
t0+τ a1(r) dr

a2(s) e
∫ v
t0

a1(u) du dv e−
∫ u
t0

a1(r) dr
bj3(u)dW j

u ,

(VI.11)

which is again normally distributed. According to equation (VI.11), the normally distributed
random variables in (VI.9) and (VI.10) are not independent. Using similar considerations as in
equation (VI.11), we obtain for all l ∈ N0 that all random variables occurring in equation (VI.8)
are normally distributed. Thus, all these random variables can be generated exactly by taking
their covariances into account.

Next, we go more into detail how to simulate the analytical solution of the linear SDDE with
additive noise (VI.8). For sake of simplicity, let coefficients a1, a2, a3, bj3 ∈ R, j ∈ {1, . . . ,m},
be constant in the following.

Consider the points in time tn, tn+1 ∈ [t0+lτ, t0+(l+1)τ ] with tn < tn+1, where l ∈ N0. Assume
that we have simulated Xtn already and that we are now interested in simulating Xtn+1 . At
first, using equation (VI.2), we have for the analytical solution X of linear SDDE (VI.8) at the
point in time tn+1 that

Xtn+1 = ea1(tn+1−(t0+lτ))

(
Xt0+lτ +

∫ tn+1

t0+lτ
e−a1(s−(t0+lτ))(a2Xs−τ + a3)ds

+

m∑
j=1

∫ tn+1

t0+lτ
e−a1(s−(t0+lτ))bj3 dW j

s

) (VI.12)

P-almost surely. Using a similar expression for Xtn as in previous equation (VI.12) for Xtn+1 ,
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we rewrite equation (VI.12) to

Xtn+1 = ea1(tn+1−tn)ea1(tn−(t0+lτ))

(
Xt0+lτ +

∫ tn

t0+lτ
e−a1(s−(t0+lτ))(a2Xs−τ + a3)ds

+

m∑
j=1

∫ tn

t0+lτ
e−a1(s−(t0+lτ))bj3 dW j

s

+

∫ tn+1

tn

e−a1(s−(t0+lτ))(a2Xs−τ + a3)ds+
m∑
j=1

∫ tn+1

tn

e−a1(s−(t0+lτ))bj3 dW j
s

)

= ea1(tn+1−tn)

(
Xtn + ea1(tn−(t0+lτ))

(∫ tn+1

tn

e−a1(s−(t0+lτ))(a2Xs−τ + a3)ds

+

m∑
j=1

∫ tn+1

tn

e−a1(s−(t0+lτ))bj3 dW j
s

))

= ea1(tn+1−tn)

(
Xtn +

∫ tn+1

tn

e−a1(s−tn)(a2Xs−τ + a3)ds

+
m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

) (VI.13)

for all tn, tn+1 ∈ [t0+ lτ, t0+(l+1)τ ] with tn < tn+1 P-almost surely, where l ∈ N0. Similarly to
equations (VI.12) and (VI.13), it P-almost surely holds for Xs−τ in previous equation (VI.13),
whenever tn, s ∈ [t0 + lτ, t0 + (l + 1)τ ] with tn ≤ s, where l ∈ N, that

Xs−τ = ea1(s−τ−(t0+(l−1)τ))

(
Xt0+(l−1)τ +

∫ s−τ

t0+(l−1)τ
e−a1(u−(t0+(l−1)τ))(a2Xu−τ + a3)du

+

m∑
j=1

∫ s−τ

t0+(l−1)τ
e−a1(u−(t0+(l−1)τ))bj3 dW j

u

)

= ea1(s−τ−(tn−τ))ea1(tn−τ−(t0+(l−1)τ))

(
Xt0+(l−1)τ

+

∫ tn−τ

t0+(l−1)τ
e−a1(u−(t0+(l−1)τ))(a2Xu−τ + a3)du

+
m∑
j=1

∫ tn−τ

t0+(l−1)τ
e−a1(u−(t0+(l−1)τ))bj3 dW j

u

+

∫ s−τ

tn−τ
e−a1(u−(t0+(l−1)τ))(a2Xu−τ + a3)du

+

m∑
j=1

∫ s−τ

tn−τ
e−a1(u−(t0+(l−1)τ))bj3 dW j

u

)

= ea1(s−tn)

(
Xtn−τ +

∫ s−τ

tn−τ
e−a1(u−(tn−τ))(a2Xu−τ + a3)du

+
m∑
j=1

bj3

∫ s−τ

tn−τ
e−a1(u−(tn−τ)) dW j

u

)
.

(VI.14)

Inserting this into equation (VI.13), we obtain P-almost surely for all tn, tn+1 ∈ [t0 + lτ, t0 +
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(l + 1)τ ] with tn < tn+1, where l ∈ N, that

Xtn+1 = ea1(tn+1−tn)

(
Xtn + a2(tn+1 − tn)Xtn−τ + a3

∫ tn+1

tn

e−a1(s−tn) ds

+ a2

∫ tn+1

tn

∫ s−τ

tn−τ
e−a1(u−(tn−τ))(a2Xu−τ + a3)duds

+ a2

m∑
j=1

bj3

∫ tn+1

tn

∫ s−τ

tn−τ
e−a1(u−(tn−τ)) dW j

u ds

+

m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

)
.

(VI.15)

Using the substitution s = v + τ and stochastic integration by parts formula based on Itô’s
formula, see e. g. [64] or [75, p. 155], it P-almost surely holds∫ tn+1

tn

∫ s−τ

tn−τ
e−a1(u−(tn−τ)) dW j

u ds

=

∫ tn+1−τ

tn−τ

∫ v

tn−τ
e−a1(u−(tn−τ)) dW j

u dv

= (tn+1 − tn)

∫ tn+1−τ

tn−τ
e−a1(s−(tn−τ)) dW j

s −
∫ tn+1−τ

tn−τ
(s− (tn − τ)) e−a1(s−(tn−τ)) dW j

s

(VI.16)

for the iterated integral in equation (VI.15), and thus, we have

Xtn+1 = ea1(tn+1−tn)

(
Xtn + a2(tn+1 − tn)Xtn−τ + a3

∫ tn+1

tn

e−a1(s−tn) ds

+ a2

∫ tn+1

tn

∫ s−τ

tn−τ
e−a1(u−(tn−τ))(a2Xu−τ + a3)duds

+ a2(tn+1 − tn)

m∑
j=1

bj3

∫ tn+1−τ

tn−τ
e−a1(s−(tn−τ)) dW j

s

− a2

m∑
j=1

bj3

∫ tn+1−τ

tn−τ
(s− (tn − τ)) e−a1(s−(tn−τ)) dW j

s

+

m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

)

(VI.17)

for all tn, tn+1 ∈ [t0 + lτ, t0 + (l + 1)τ ] with tn < tn+1 P-almost surely, where l ∈ N. Further,
similarly to equation (VI.14), we have

Xu−τ = ea1(u−(tn−τ))

(
Xtn−2τ +

∫ u−τ

tn−2τ
e−a1(r−(tn−2τ))(a2Xr−τ + a3)dr

+

m∑
j=1

bj3

∫ u−τ

tn−2τ
e−a1(r−(tn−2τ)) dW j

r

)
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for all u ∈ [t0 +(l− 1)τ, t0 + lτ ] and tn ∈ [t0 + lτ, t0 +(l+1)τ ] with tn − τ ≤ u P-almost surely,
where l ∈ N\{1}. Inserting this into equation (VI.17) implies, analogously to equation (VI.15),
that

Xtn+1 = ea1(tn+1−tn)

(
Xtn + a2(tn+1 − tn)Xtn−τ +

1

2
a22(tn+1 − tn)

2Xtn−2τ

+ a3

∫ tn+1

tn

e−a1(s−tn) ds+ a2a3

∫ tn+1

tn

∫ s−τ

tn−τ
e−a1(u−(tn−τ)) duds

+ a22

∫ tn+1

tn

∫ s−τ

tn−τ

∫ u−τ

tn−2τ
e−a1(r−(tn−2τ))(a2Xr−τ + a3)dr duds

+ a22

m∑
j=1

bj3

∫ tn+1

tn

∫ s−τ

tn−τ

∫ u−τ

tn−2τ
e−a1(r−(tn−2τ)) dW j

r duds

+ a2(tn+1 − tn)

m∑
j=1

bj3

∫ tn+1−τ

tn−τ
e−a1(s−(tn−τ)) dW j

s

− a2

m∑
j=1

bj3

∫ tn+1−τ

tn−τ
(s− (tn − τ)) e−a1(s−(tn−τ)) dW j

s

+
m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

)
.

(VI.18)

for all tn, tn+1 ∈ [t0 + lτ, t0 + (l + 1)τ ] with tn < tn+1 P-almost surely, where l ∈ N \ {1}. We
now consider the iterated integral, which has the Wiener integral as the integrand. Similarly
to equation (VI.16), it holds by applying a substitution and the stochastic integration by parts
formula twice that

∫ tn+1

tn

∫ s−τ

tn−τ

∫ u−τ

tn−2τ
e−a1(r−(tn−2τ)) dW j

r duds

=

∫ tn+1−2τ

tn−2τ
(s− (tn − 2τ))

∫ s

tn−2τ
e−a1(r−(tn−2τ)) dW j

r ds

−
∫ tn+1−2τ

tn−2τ

∫ s

tn−2τ
(r − (tn − 2τ))e−a1(r−(tn−2τ)) dW j

r ds

=
1

2
(tn+1 − tn)

2

∫ tn+1−2τ

tn−2τ
e−a1(s−(tn−2τ)) dW j

s

− (tn+1 − tn)

∫ tn+1−2τ

tn−2τ
(s− (tn − 2τ)) e−a1(s−(tn−2τ)) dW j

s

+
1

2

∫ tn+1−2τ

tn−2τ
(s− (tn − 2τ))2 e−a1(s−(tn−2τ)) dW j

s
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P-almost surely. Finally, inserting this into equation (VI.18), we obtain

Xtn+1 = ea1(tn+1−tn)

(
Xtn + a2(tn+1 − tn)Xtn−τ +

1

2
a22(tn+1 − tn)

2Xtn−2τ

+ a3

∫ tn+1

tn

e−a1(s−tn) ds+ a2a3

∫ tn+1

tn

∫ s−τ

tn−τ
e−a1(u−(tn−τ)) duds

+ a22

∫ tn+1

tn

∫ s−τ

tn−τ

∫ u−τ

tn−2τ
e−a1(r−(tn−2τ))(a2Xr−τ + a3)dr duds

+
1

2
a22(tn+1 − tn)

2
m∑
j=1

bj3

∫ tn+1−2τ

tn−2τ
e−a1(s−(tn−2τ)) dW j

s

− a22(tn+1 − tn)
m∑
j=1

bj3

∫ tn+1−2τ

tn−2τ
(s− (tn − 2τ)) e−a1(s−(tn−2τ)) dW j

s

+
1

2
a22

m∑
j=1

bj3

∫ tn+1−2τ

tn−2τ
(s− (tn − 2τ))2 e−a1(s−(tn−2τ)) dW j

s

+ a2(tn+1 − tn)

m∑
j=1

bj3

∫ tn+1−τ

tn−τ
e−a1(s−(tn−τ)) dW j

s

− a2

m∑
j=1

bj3

∫ tn+1−τ

tn−τ
(s− (tn − τ)) e−a1(s−(tn−τ)) dW j

s

+
m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

)
.

(VI.19)

for all tn, tn+1 ∈ [t0 + lτ, t0 + (l + 1)τ ] with tn < tn+1 P-almost surely, where l ∈ N \ {1}. One
can of course proceed similarly and replace Xr−τ in equation (VI.19). However, the formulas
become rather long and lose their clarity more and more.

In the following, we go into detail how to generate the occurring random variables correctly.
For sake of simplicity, we set T = 3τ and consider the points in time{

tn = t0 + n~M : n ∈ {0, 1, . . . , 3M}, ~M :=
τ

M

}
⊂ [t0, t0 + 3τ ] (VI.20)

for some M ∈ N. In the following, we use that

tn − τ = t0 + n
τ

M
− τ = t0 + (n−M)

τ

M
= tn−M .

and tn+1 − tn = ~M . We take the equations (VI.13), (VI.17), and (VI.19) into account. It
P-almost surely holds for the analytical solution of linear SDDE (VI.7) with additive noise and
constant coefficients a1, a2, a3, bj3 ∈ R, j ∈ {1, . . . ,m}, that

Xtn+1 = ea1~M
(
Xtn + a2

∫ tn+1

tn

e−a1(s−tn)ξs−τ ds

+ a3

∫ tn+1

tn

e−a1(s−tn) ds+
m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

) (VI.21)
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for n ∈ {0, 1, . . . ,M − 1},

Xtn+1 = ea1~M
(
Xtn + a2~MXtn−M + a22

∫ tn−M+1

tn−M

∫ s

tn−M

e−a1(u−tn−M )ξu−τ duds

+ a3

∫ tn+1

tn

e−a1(s−tn) ds+ a2a3

∫ tn−M+1

tn−M

∫ s

tn−M

e−a1(u−tn−M ) duds

+ a2~M
m∑
j=1

bj3

∫ tn−M+1

tn−M

e−a1(s−tn−M ) dW j
s

− a2

m∑
j=1

bj3

∫ tn−M+1

tn−M

(s− tn−M ) e−a1(s−tn−M ) dW j
s

+
m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

)

(VI.22)

for n ∈ {M,M + 1, . . . , 2M − 1}, and

Xtn+1 = ea1~M
(
Xtn + a2~MXtn−M +

1

2
a22~2MXtn−2M

+ a32

∫ tn−2M+1

tn−2M

∫ s

tn−2M

∫ u

tn−2M

e−a1(r−tn−2M )ξr−τ dr duds

+ a3

∫ tn+1

tn

e−a1(s−tn) ds+ a2a3

∫ tn−M+1

tn−M

∫ s

tn−M

e−a1(u−tn−M ) duds

+ a22a3

∫ tn−2M+1

tn−2M

∫ s

tn−2M

∫ u

tn−2M

e−a1(r−tn−2M ) dr duds

+
1

2
a22~2M

m∑
j=1

bj3

∫ tn−2M+1

tn−2M

e−a1(s−tn−2M ) dW j
s

− a22~M
m∑
j=1

bj3

∫ tn−2M+1

tn−2M

(s− tn−2M ) e−a1(s−tn−2M ) dW j
s

+
1

2
a22

m∑
j=1

bj3

∫ tn−2M+1

tn−2M

(s− tn−2M )2 e−a1(s−tn−2M ) dW j
s

+ a2~M
m∑
j=1

bj3

∫ tn−M+1

tn−M

e−a1(s−tn−M ) dW j
s

− a2

m∑
j=1

bj3

∫ tn−M+1

tn−M

(s− tn−M ) e−a1(s−tn−M ) dW j
s

+
m∑
j=1

bj3

∫ tn+1

tn

e−a1(s−tn) dW j
s

)
.

(VI.23)

for n ∈ {2M, 2M + 1, . . . , 3M − 1}. Here, we see for example that the random variable
m∑
j=1

bj3

∫ tn−M+1

tn−M

e−a1(s−tn−M ) dW j
s (VI.24)
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from equation (VI.21) is reused in equation (VI.22) and that the random variable

m∑
j=1

bj3

∫ tn−M+1

tn−M

(s− tn−M ) e−a1(s−tn−M ) dW j
s

in equation (VI.22) is not independent of the one in (VI.24).

Next, we focus on the distributional properties of the random variables, which are needed in or-
der to simulate the formulas (VI.21), (VI.22), and (VI.23). Since we are interested in comparing
the analytical solutions with some numerical approximations, we generate the corresponding
random variables and the increments of the Wiener process simultaneously. If one is only inter-
ested in the simulation of the analytical solution, the random variable in (VI.24), for example,
can be generated using one normally distributed random variable only instead of m, if a1 = 0,
or 2m, if a1 6= 0, standard-normally distributed random variables.

In the following, we distinguish the cases a1 = 0 and a1 ∈ R \{0}. We start with the case of
a1 = 0. The random vectors(∫ tn+1

tn

dW j
s ,

∫ tn+1

tn

(s− tn)dW j
s ,

∫ tn+1

tn

(s− tn)
2 dW j

s

)T
,

j ∈ {1, . . . ,m}, are independent and normally distributed with expectation 03×1 and covari-
ance


~M 1

2~
2
M

1
3~

3
M

1
2~

2
M

1
3~

3
M

1
4~

4
M

1
3~

3
M

1
4~

4
M

1
5~

5
M

 =


~

1
2
M 0 0

1
2~

3
2
M

1√
12
~

3
2
M 0

1
3~

5
2
M

1√
12
~

5
2
M

1√
180

~
5
2
M



~

1
2
M

1
2~

3
2
M

1
3~

5
2
M

0 1√
12
~

3
2
M

1√
12
~

5
2
M

0 0 1√
180

~
5
2
M

 ,

where the factorization follows from the Cholesky decomposition. According to [74, Corol-
lary 6.11], there exist independently N(0m×1, Im)-distributed random variables Bn, G1,n, and
G2,n such that∫ tn+1

tn

dW j
s = ~

1
2
MB

j
n,

∫ tn+1

tn

(s− tn)dW j
s =

1

2
~

3
2
MB

j
n +

1√
12

~
3
2
MG

j
1,n,

and ∫ tn+1

tn

(s− tn)
2 dW j

s =
1

3
~

5
2
MB

j
n +

1√
12

~
5
2
MG

j
1,n +

1√
180

~
5
2
MG

j
2,n

P-almost surely for j ∈ {1, . . . ,m}. Inserting these three equations into equations (VI.21),
(VI.22), and (VI.23), we obtain formulas that can be simulated directly. We summarize this in
the following example in case of a1 = 0.
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Example VI.1
Consider the linear SDDE with additive noise

Xt =


ξt if t ∈ [t0 − τ, t0] and

ξt0 +

∫ t

t0

a2Xs−τ + a3 ds+
m∑
j=1

∫ t

t0

bj3 dW j
s if t ∈ ]t0, t0 + 3τ ],

(VI.25)

where ξ ∈ C([t0−τ, t0];R) and a2, a3, bj3 ∈ R, j ∈ {1, . . . ,m} are constants. Then, the analytical
solution of SDDE (VI.25) is exactly simulated on the points in time given in formula (VI.20)
for M ∈ N as follows.

i) For n = 0, 1, . . . ,M − 1, generate N(0m×1, Im)-distributed random variable Bn, and cal-
culate

Xtn+1 = Xtn + a2

∫ tn+1

tn

ξs−τ ds+ a3~M + ~
1
2
M

m∑
j=1

bj3B
j
n.

ii) For n = M,M + 1, . . . , 2M − 1, generate independently N(0m×1, Im)-distributed random
variables Bn and G1,n−M , and calculate

Xtn+1 = Xtn + a2~MXtn−M + a22

∫ tn−M+1

tn−M

∫ s

tn−M

ξu−τ duds+ a3~M +
1

2
a2a3~2M

+
1

2
a2~

3
2
M

m∑
j=1

bj3

(
Bj

n−M −
Gj

1,n−M√
3

)
+ ~

1
2
M

m∑
j=1

bj3B
j
n.

iii) For n = 2M, 2M+1, . . . , 3M−1, generate independently N(0m×1, Im)-distributed random
variables Bn, G1,n−M , and G2,n−2M , and calculate

Xtn+1 = Xtn + a2~MXtn−M +
1

2
a22~2MXtn−2M

+ a32

∫ tn−2M+1

tn−2M

∫ s

tn−2M

∫ u

tn−2M

ξr−τ dr duds

+ a3~M +
1

2
a2a3~2M +

1

6
a22a3~3M

+
1

2
a22~

5
2
M

m∑
j=1

bj3

(
Bj

n−2M

3
−
Gj

1,n−2M√
12

+
Gj

2,n−2M√
180

)

+
1

2
a2~

3
2
M

m∑
j=1

bj3

(
Bj

n−M −
Gj

1,n−M√
3

)
+ ~

1
2
M

m∑
j=1

bj3B
j
n.

Now, we proceed with the case a1 ∈ R \{0}. The random vectors(∫ tn+1

tn

dW j
s ,

∫ tn+1

tn

e−a1(s−tn) dW j
s ,

∫ tn+1

tn

(s− tn) e−a1(s−tn) dW j
s , . . .∫ tn+1

tn

(s− tn)
2 e−a1(s−tn) dW j

s

)T
,
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j ∈ {1, . . . ,m}, are independent and normally distributed with expectation 04×1 and covariance
Σ ∈ R4×4 where Σ1,1 = ~M ,

Σ2,1 = Σ1,2 =

∫ tn+1

tn

e−a1(s−tn) ds = 1

a1

(
1− e−a1~M

)
,

Σ2,2 =

∫ tn+1

tn

e−2a1(s−tn) ds = 1

2a1

(
1− e−2a1~M

)
,

Σ3,1 = Σ1,3 =

∫ tn+1

tn

(s− tn) e−a1(s−tn) ds = 1

a21

(
1− e−a1~M (1 + a1~M )

)
,

Σ3,2 = Σ2,3 =

∫ tn+1

tn

(s− tn) e−2a1(s−tn) ds = 1

4a21

(
1− e−2a1~M (1 + 2a1~M )

)
,

Σ3,3 = Σ4,2 = Σ2,4 =

∫ tn+1

tn

(s− tn)
2 e−2a1(s−tn) ds

=
1

4a31

(
1− e−2a1~M (1 + 2a1~M + 2a21~2M )

)
,

Σ4,1 = Σ1,4 =

∫ tn+1

tn

(s− tn)
2 e−a1(s−tn) ds = 1

a31

(
2− e−a1~M (2 + 2a1~M + a21~2M )

)
,

Σ4,3 = Σ3,4 =

∫ tn+1

tn

(s− tn)
3 e−2a1(s−tn) ds

=
1

8a41

(
3− e−2a1~M (3 + 6a1~M + 6a21~2M + 4a31~3M )

)
,

and

Σ4,4 =

∫ tn+1

tn

(s− tn)
4 e−2a1(s−tn) ds

=
1

4a51

(
3− e−2a1~M (3 + 6a1~M + 6a21~2M + 4a31~3M + 2a41~4M )

)
.

Consider the Cholesky decomposition Σ = LΣL
T
Σ, where

LΣ =


`1,1 0 0 0
`2,1 `2,2 0 0
`3,1 `3,2 `3,3 0
`4,1 `4,2 `4,3 `4,4

 (VI.26)

is given in the example below. Then, according to [74, Corollary 6.11], there exist independent
and N(0m×1, Im)-distributed random variables Bn, G0,n, G1,n, and G2,n such that∫ tn+1

tn

dW j
s = `1,1B

j
n = ~

1
2
MB

j
n, (VI.27)
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∫ tn+1

tn

e−a1(s−tn) dW j
s = `2,1B

j
n + `2,2G

j
0,n, (VI.28)

∫ tn+1

tn

(s− tn) e−a1(s−tn) dW j
s = `3,1B

j
n + `3,2G

j
0,n + `3,3G

j
1,n, (VI.29)

and ∫ tn+1

tn

(s− tn)
2 e−a1(s−tn) dW j

s = `4,1B
j
n + `4,2G

j
0,n + `4,3G

j
2,n + `4,4G

j
3,n (VI.30)

P-almost surely, where j ∈ {1, . . . ,m}. Inserting these equations (VI.27), (VI.27), (VI.27),
and (VI.30) into equations (VI.21), (VI.22), and (VI.23), we can simulate the analytical solution.
We summarize this in the following example.

Example VI.2
Consider the linear SDDE with additive noise

Xt =


ξt if t ∈ [t0 − τ, t0] and

ξt0 +

∫ t

t0

a1Xs + a2Xs−τ + a3 ds+
m∑
j=1

∫ t

t0

bj3 dW j
s if t ∈ ]t0, t0 + 3τ ],

(VI.31)

where ξ ∈ C([t0 − τ, t0];R) and a1, a2, a3, b
j
3 ∈ R, j ∈ {1, . . . ,m}, are constants. In case of

a1 = 0, we refer to Example VI.1. So let a1 6= 0 in the following. Further, define ~M := τ
M for

some M ∈ N.

At first, compute the Cholesky decomposition of the covariance matrix Σ = LΣL
T
Σ. That is, the

entries of the matrix LΣ, see formula (VI.26), are given by `1,1 =
√
~M ,

`2,1 =
Σ2,1

`1,1
, `3,1 =

Σ3,1

`1,1
, `4,1 =

Σ4,1

`1,1
, `2,2 =

(
Σ2,2 − `22,1

) 1
2 ,

`3,2 =
Σ3,2 − `2,1`3,1

`2,2
, `4,2 =

Σ4,2 − `2,1`4,1
`2,2

, `3,3 =
(
Σ3,3 − `23,1 − `23,2

) 1
2 ,

`4,3 =
Σ4,3 − `3,1`4,1 − `3,2`4,2

`3,3
, and `4,4 =

(
Σ4,4 − `24,1 − `24,2 − `24,3

) 1
2 .

Then, the analytical solution of the SDDE (VI.31) is exactly simulated on the points in time
given in (VI.20) for M ∈ N as follows.

i) For n = 0, 1, . . . ,M−1, generate independently N(0m×1, Im)-distributed random variables
Bn and G0,n, and calculate

Xtn+1 = ea1~M
(
Xtn + a2

∫ tn+1

tn

e−a1(s−tn)ξs−τ ds+ a3
a1

(
1− e−a1~M

)
+

m∑
j=1

bj3
(
`2,1B

j
n + `2,2G

j
0,n

))
.
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ii) For n = M,M + 1, . . . , 2M − 1, generate independently N(0m×1, Im)-distributed random
variables Bn, G0,n, and G1,n−M , and calculate

Xtn+1 = ea1~M
(
Xtn + a2~MXtn−M + a22

∫ tn−M+1

tn−M

∫ s

tn−M

e−a1(u−tn−M )ξu−τ duds

+
a3
a1

(
1− e−a1~M

)
+
a2a3
a21

(
e−a1~M − 1 + a1~M

)
+ a2

m∑
j=1

bj3

(
(~M`2,1 − `3,1)B

j
n−M + (~M`2,2 − `3,2)G

j
0,n−M − `3,3G

j
1,n−M

)
+

m∑
j=1

bj3
(
`2,1B

j
n + `2,2G

j
0,n

))
.

iii) For n = 2M, 2M+1, . . . , 3M−1, generate independently N(0m×1, Im)-distributed random
variables Bn, G0,n, G1,n−M , and G2,n−2M , and calculate

Xtn+1 = ea1~M
(
Xtn + a2~MXtn−M +

1

2
a22~2MXtn−2M

+ a32

∫ tn−2M+1

tn−2M

∫ s

tn−2M

∫ u

tn−2M

e−a1(r−tn−2M )ξr−τ dr duds

+
a3
a1

(
1− e−a1~M

)
+
a2a3
a21

(
e−a1~M − 1 + a1~M

)
+
a22a3
2a31

(
2− 2e−a1~M − 2a1~M + a21~2M

)
+

1

2
a22

m∑
j=1

bj3

(
(~2M`2,1 − 2~M`3,1 + `4,1)B

j
n−2M

+ (~2M`2,2 − 2~M`3,2 + `4,2)G
j
0,n−2M

− (2~M`3,3 − `4,3)G
j
1,n−2M + `4,4G

j
2,n−2M

)
+ a2

m∑
j=1

bj3

(
(~M`2,1 − `3,1)B

j
n−M + (~M`2,2 − `3,2)G

j
0,n−M − `3,3G

j
1,n−M

)
+

m∑
j=1

bj3
(
`2,1B

j
n + `2,2G

j
0,n

))
.

In Figure VI.3, we present simulations of Example VI.1 and Example VI.2 that are produced
using software The MathWorks, Inc., MATLAB Release 2018b, [102].

In both Figure VI.3 i) and Figure VI.3 ii), we show four realizations of the analytical solution
of SDDEs (VI.25) and (VI.31), respectively. For more details on the parameters of the SDDEs,
we refer to the captions of the figures.

The larger M is in Example VI.2, the smaller are the entries of the matrix Σ. Due to this,
we use the command vpa in MATLAB, which uses at least 32 significant digits to evaluate the
calculations. Then, we compute matrix LΣ using command L = chol(vpa(sigma),’lower’);,
where sigma = Σ and L = LΣ. In Figure VI.3 ii), we use M = 210 and τ = 1. Hence, we have
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i) Realizations of analytical solution X of
SDDE (VI.25) with coefficients a1 = 0, a2 = −2,
a3 = 1, and b13 = 2, and initial condition
ξt = 1 + cos (πt) for t ∈ [−1, 0].
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ii) Realizations of analytical solution X of
SDDE (VI.31) with coefficients a1 = −2, a2 = 4,
a3 = 1, and b13 =

√
2, and initial condition ξt = 1 for

t ∈ [−1, 0].

Figure VI.3. Four realizations of the analytical solution of linear SDDEs with additive noise (VI.25)
and (VI.31) are presented. We set t0 = 0, τ = 1, T = 3, and m = 1, and using Example VI.1 and Exam-
ple VI.2 with M = 210, we simulate the analytical solutions error-free.

~M = 2−10 and for example obtain `4,4 ≈ L(4,4) = 3.67032 . . . · 10−13 numerically. Without
using the command vpa, we received an error from the Cholesky decomposition chol that
matrix sigma must be positive definite. Thus, simulating Example VI.2, one should take these
numerical issues into account if M is large.

In order to compare the Milstein scheme with the Euler-Maruyama scheme in numerical sim-
ulations, we need analytical solutions of SDDEs that do not just have additive noise. Recall
that the Milstein scheme coincides with the Euler-Maruyama scheme if an SDDE has additive
noise. So far, to our knowledge, there are no error-free simulations of analytical solutions of
SDDEs with more general than additive noise published. Using Itô’s formula, we deduce and
correctly simulate analytical solutions of more general SDDEs in the following.

Our goal is to find SDDEs

Zt =


ζt if t ∈ [t0 − τ, t0] and

ζt0 +

∫ t

t0

a(Zs, Zs−τ )ds+
m∑
j=1

∫ t

t0

bj(Zs)dW j
s if t ∈ ]t0, T ]

such that (f(Zt))t∈[t0,T ] is the unique solution of a linear SDDE with additive noise as in
Example VI.1 or Example VI.2.

To begin with, we follow a similar approach as in [46, Section 2.5] for SODEs. Let f ∈ C2(R;R)
be a strictly monotone function. We denote by f ′ and f ′′ the first and second derivative of f ,

212



VI.1. Exact Simulation of Analytical Solutions of Stochastic Delay Differential Equations

respectively. Using Itô’s formula, see e. g. [64] or [75, p. 153], we obtain

f(Zt) =



f(ζt) if t ∈ [t0 − τ, t0],

f(ζt0) +

∫ t

t0

f ′(Zs)a(Zs, Zs−τ ) +
1

2
f ′′(Zs)

m∑
j=1

(bj(Zs))
2 ds

+
m∑
j=1

∫ t

t0

f ′(Zs)b
j(Zs)dW j

s if t ∈ ]t0, T ]

for all t ∈ [t0 − τ, T ] P-almost surely. Since f is strictly monotone, it has an inverse function g
such that f(g(y)) = y for all y ∈ im f and g(f(x)) = x for all x ∈ dom f . Moreover, it holds
g ∈ C2(im f ;dom f), where

g′(x) =
1

f ′(g(x))

and

g′′(x) =
−f ′′(g(x))
(f ′(g(x)))3

for all x ∈ im f , see e. g. [57, p. 300]. We set Xt = f(Zt) for all t ∈ [t0−τ, T ], where in particular
ξt = f(ζt) for all t ∈ [t0 − τ, t0]. Using that g is the inverse function of f , it holds Zt = g(Xt),
and the SDDE above can be rewritten to

Xt =



ξt if t ∈ [t0 − τ, t0],

ξt0 +

∫ t

t0

f ′(g(Xs))a(g(Xs), g(Xs−τ )) +
1

2
f ′′(g(Xs))

m∑
j=1

(
bj(g(Xs))

)2 ds

+
m∑
j=1

∫ t

t0

f ′(g(Xs))b
j(g(Xs))dW j

s if t ∈ ]t0, T ].

This SDDE equals the SDDEs in Example VI.1 and Example VI.2 if and only if

a1x+ a2y + a3 = f ′(g(x))a(g(x), g(y)) +
1

2
f ′′(g(x))

m∑
j=1

(
bj(g(x))

)2 (VI.32)

and

bj3 = f ′(g(x))bj(g(x)) (VI.33)

for all x, y ∈ im f and j ∈ {1, . . . ,m}, where a1, a2, a3, bj3 ∈ R. Since function f is strictly
monotone, it holds f ′(x) 6= 0 for all x ∈ dom f , and thus, we obtain from conditions (VI.32)
and (VI.33) that

bj(x) =
bj3

f ′(x)

and

a(x, y) =
a1f(x) + a2f(y) + a3 − 1

2f
′′(x)

∑m
j=1

(
bj3

f ′(x)

)2
f ′(x)

for all x, y ∈ dom f . We summarize these considerations in the following example.
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Example VI.4
Let X be the solution of the linear SDDE with additive noise

Xt =


ξt if t ∈ [t0 − τ, t0],

ξt0 +

∫ t

t0

a1Xs + a2Xs−τ + a3 ds+
m∑
j=1

∫ t

t0

bj3 dW j
s if t ∈ ]t0, T ],

(VI.34)

where ξ ∈ C([t0 − τ, t0];R) and a1, a2, a3, bj3 ∈ R, j ∈ {1, . . . ,m}. In addition, let f ∈ C2(R;R)
be a strictly monotone function and g ∈ C2(R;R) its inverse function. Then, (Zt)t∈[t0−τ,T ] =
(g(Xt))t∈[t0−τ,T ] is a unique strong solution of the SDDE

Zt =



g(ξt) if t ∈ [t0 − τ, t0] and

g(ξt0) +

∫ t

t0

a1f(Zs) + a2f(Zs−τ ) + a3 − 1
2f

′′(Zs)
∑m

j=1

(
bj3

f ′(Zs)

)2
f ′(Zs)

ds

+
m∑
j=1

∫ t

t0

bj3
f ′(Zs)

dW j
s if t ∈ ]t0, T ].

(VI.35)

Example VI.4 allows us to simulate the analytical solution of the SDDE with more general
noise, see equation (VI.35), error-free as follows. First, we simulate the analytical solution of
linear SDDE with additive noise (VI.34), see Example VI.1 and Example VI.2. Then, we set
Z = g(X) to obtain the solution of SDDE (VI.35).

Let us provide an example. Set f(x) = ln(x2) for x ∈ R. Then, Z = g(X) with g(x) =
√

ex,
x ∈ R, is the unique strong solution of SDDE

Zt =



√
eξt if t ∈ [t0 − τ, t0] and√
eξt0 +

∫ t

t0

1

2

(
a1 ln(Z2

s ) + a2 ln(Z2
s−τ ) + a3

)
Zs +

1

8

m∑
j=1

(bj3)
2Zs ds

+
m∑
j=1

∫ t

t0

1

2
bj3Zs dW j

s if t ∈ ]t0, T ],

(VI.36)

which has multiplicative noise.

In Figure VI.5, we present some simulations of the analytical solution Z.

In order to find more strictly monotone functions f ∈ C2(R;R), we can use the Lamperti
transformation, see [86, Theorem 2] and [46, p. 34].

Example VI.6
Let ρ ∈ C1(R;R) such that |ρ(x)| > 0 for all x ∈ R. We set

f(x) =

∫ x

0

1

ρ(y)
dy

for all x ∈ R. Then, f ∈ C2(R,R) is a strictly monotone function, and we have f ′(x) = 1
ρ(x)

and f ′′(x) = − ρ′(x)
ρ2(x)

for all x ∈ R.
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Figure VI.5. Four realizations of the analytical solution Z of SDDE with multiplicative noise (VI.36) are
presented. We set t0 = 0, τ = 1, T = 3, and m = 1, and using Example VI.1 and Example VI.2 with M = 210, we
simulate analytical solution X of linear SDDE with additive noise (VI.34) error-free. Then, using Example VI.4,
we obtain with Z = g(X), where g(x) =

√
ex for x ∈ R, the analytical solution Z.

Setting e. g. ρ(x) =
√
x2 + 1, x ∈ R, in Example VI.6, we obtain f = arcsinh and g = sinh.

Then, SDDE (VI.35) reads as

Zt =



sinh(ξt) if t ∈ [t0 − τ, t0] and

sinh(ξt0) +
∫ t

t0

(
a1 arcsinh(Zs) + a2 arcsinh(Zs−τ ) + a3

)√
Z2
s + 1 +

1

2

m∑
j=1

(bj3)
2Zs ds

+
m∑
j=1

∫ t

t0

bj3
√
Z2
s + 1 dW j

s if t ∈ ]t0, T ].

(VI.37)

Simulations of analytical solution Z are presented in Figure VI.7.

We remark that the drift coefficients of SDDEs (VI.36) and (VI.37) are not Lipschitz continuous.
In order to conserve Lipschitz continuous coefficients, we can choose function ρ in Example VI.6
to be bounded and assume that its first derivative ρ′ is Lipschitz continuous. Of course constant
functions fulfill these conditions for example. But then, SDDE (VI.35) is still linear and has
additive noise. Function ρ with ρ(x) = 2 + arctan(x) for x ∈ R provides another example
of a bounded and continuous function with Lipschitz continuous derivative. Then, we have
f(x) = 2x + x arctan(x) − 1

2 ln(1 + x2) for x ∈ R. However, the inverse function g of f is
not known to us so that the analytical solution Z = g(X) cannot be calculated. Nevertheless,
Example VI.6 provides analytical solutions of SDDEs with more general than additive noise like
SDDEs (VI.36) and (VI.37), which can be used for numerical tests of the Milstein scheme.
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Figure VI.7. Four realizations of the analytical solution Z of SDDE with commutative noise (VI.37) are
presented. We set t0 = 0, τ = 1, and T = 3, and using Example VI.1 and Example VI.2 with M = 210, we
simulate analytical solution X of linear SDDE with additive noise (VI.34) error-free. Then, using Example VI.4,
we obtain with Z = g(X), where g(x) = sinh(x) for x ∈ R, the analytical solution Z.

VI.2. Numerical Examples

In order to illustrate and confirm our theoretical results on the strong and pathwise convergence
of Euler-Maruyama and the Milstein scheme from Chapter IV, we provide some numerical
examples in this section. Using the analytical solutions of SDDEs derived in the previous
section, we are able to calculate and compare the errors made by the Euler-Maruyama and
Milstein approximation. For the sake of clarity and better comparability, the illustrations of
the simulation studies are postponed to the end of this section.

To begin with, we consider the linear SDDE with additive noise from equation (VI.34). As
the derivatives of the diffusion coefficients vanish, the Milstein scheme coincides with Euler-
Maruyama scheme.

In Figure VI.8 and Figure VI.9, we present simulation studies of the Euler-Maruyama approx-
imations of the linear SDDEs with multidimensional additive noise from Example VI.1 and
Example VI.2 where a1 = 0 and a1 = 1, respectively. For more details on the parameters of the
SDDEs and the simulation studies, we refer to the captions of Figure VI.8 and Figure VI.9.

Figure VI.8 i) and Figure VI.9 i) show the empirical error of the Euler-Maruyama scheme Y h

versus step size h in the strong sense for p ∈ {2, 7, 50}. As both axes are scaled logarithmically
in the figures, the slopes of the graphs equal the empirical strong orders of convergence. We
see that the slopes of the graphs are approximately α ≈ 1 as expected. This confirms our
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theoretical result from Corollary IV.13. Further, we obtain for larger p a larger empirical error
in the strong sense. This is consistent with our theoretical error estimates, cf. the proof of
Theorem IV.9.

Considering the empirical pathwise error in Figure VI.8 iii) and Figure VI.9 iii), we see that
the empirical order of convergence is approximately α ≈ 1, too. This confirms our theoretical
result as well. In Corollary IV.14, we proved that the Euler-Maruyama scheme is pathwise
convergent with order α = 1 − ε for arbitrary ε > 0 in case of additive noise. Whereas Fig-
ure VI.8 iii) and Figure VI.9 iii) display only four realizations, the histograms in Figure VI.8 iv)
and Figure VI.9 iv) present the relative frequency of the pathwise error of the Euler-Maruyama
approximation with step size h = 2−16 and h = 2−12, respectively, over 103 realizations.

Further, Figure VI.8 ii) and Figure VI.9 ii) indicate the convergence of the Euler-Maruyama
scheme for step sizes h = 2−i where i ∈ {0, 1, . . . , 5}. According to the continuous formulation
of the scheme and due to the evaluation of the analytical solution and Euler-Maruyama approx-
imations on the fine grid I = {−1+n ·2−16 : n ∈ {0, 1, . . . , 4 ·216}} and I = {−1+n ·2−12 : n ∈
{0, 1, . . . , 4 · 212}}, respectively, we see that the approximations approach the movement of the
trajectory of the solution between the grid points obtained by step size h of the Euler-Maruyama
method.

In the following, we consider SDDEs with commutative noise where the Euler-Maruyama
scheme and the Milstein scheme do not coincide. To the best of our knowledge, the numer-
ical examples below are the first that compare the numerical approximations to the exactly
simulated analytical solutions of SDDEs.

If the diffusion coefficients of an SDDE do not depend on the past history of the solution
and satisfy the commutativity condition (V.1), the Milstein scheme (IV.33) simplifies by equa-
tions (V.2) and (V.3) to

Yt =



ξt for t ∈ [t0 − τ, t0] and

Ytn +

(
a(tn, tn − τ1, . . . , tn − τD, Ytn , Ytn−τ1 , . . . , Ytn−τD)

− 1

2

m∑
j=1

d∑
i=1

∂xi
0
bj(tn, tn − τ1, . . . , tn − τD, Ytn)

× bi,j(tn, tn − τ1, . . . , tn − τD, Ytn)

)
(t− tn)

+

m∑
j=1

bj(tn, tn − τ1, . . . , tn − τD, Ytn)
(
W j

t −W j
tn

)
+

1

2

m∑
j1,j2=1

d∑
i=1

∂xi
0
bj1(tn, tn − τ1, . . . , tn − τD, Ytn)

× bi,j2(tn, tn − τ1, . . . , tn − τD, Ytn)
(
W j1

t −W j
tn

)(
W j2

t −W j
tn

)
for t ∈ ]tn, tn+1] where n = 0, 1, . . . , N.

(VI.38)

Thus, we only have to generate the increments of the Wiener process like with the Euler-
Maruyama scheme in order to simulate the Milstein approximations.
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In figures VI.10, VI.11, VI.12, and VI.13 below, we present simulation studies of the Euler-
Maruyama scheme and the Milstein scheme of SDDEs (VI.36) and (VI.37) in case of m = 1.
In the simulation study in Figure VI.14, we consider the SDDE

Zt =



arctan(ξt) if t ∈ [t0 − τ, t0] and

arctan(ξt0) +
∫ t

t0

((
a1 tan(Zs) + a2 tan(Zs−τ ) + a3

)
cos2(Zs)

−
m∑
j=1

(bj3)
2 sin(Zs) cos3(Zs)

)
ds

+

m∑
j=1

∫ t

t0

bj3 cos2(Zs)dW j
s if t ∈ ]t0, T ],

(VI.39)

where the dimension of the Wiener process is m = 10.

The analytical solutions of underlying SDDEs are simulated using Example VI.4 as well as
Example VI.1 in figures VI.10, VI.12, and VI.14 where a1 = 0, and Example VI.2 in Figure VI.11
and Figure VI.13 where a1 = −2. We generated 103 realizations where h = 2−i with i ∈
{0, 1, . . . , 16} in case of a1 = 0 and 104 realizations where h = 2−i with i ∈ {0, 1, . . . , 12} in
case of a1 = −2. For more details on the parameters of the SDDEs and the simulation studies,
we refer to the captions of the figures.

We remark that SDDEs (VI.36), (VI.37), and (VI.39) do not fulfill the assumptions of The-
orem IV.6 and Theorem IV.9, nor of their corollaries on the convergence of the numerical
schemes. However, we are able to simulate the analytical solution exactly. This makes these
SDDEs valuable. As we will see below, they nevertheless confirm and illustrate our theoretical
results, although, we supposed stronger conditions on the underlying SDDEs in the theorems
and corollaries.

In figures VI.10 i), VI.11 i), VI.12 i), VI.13 i), and VI.14 i) with logarithmically scaled axes, the
empirical error in the strong sense for p ∈ {2, 7} of the Euler-Maruyama and the Milstein scheme
versus step size h is presented. Here, we see that the empirical strong order of convergence of
the Euler-Maruyama scheme is approximately α ≈ 1

2 whereas the Milstein scheme converges
approximately with order α ≈ 1 in the strong sense. Moreover, for larger p, a larger empirical
error in the strong sense is obtained. This confirms our theoretical results in Theorem IV.6 and
Theorem IV.9, and this is consistent with our theoretical error estimates, cf. inequality (IV.58)
and the proof of Theorem IV.9.

The four realizations of the empirical pathwise error of the Euler-Maruyama and the Milstein
scheme in each of the figures VI.10 iii), VI.11 iii), VI.12 iii), VI.13 iii), and VI.14 iii) confirm our
theoretical results in Corollary IV.7 and Corollary IV.12 as well. The empirical pathwise order
of convergence is approximately α ≈ 1

2 for the Euler-Maruyama scheme and approximately
α ≈ 1 for the Milstein scheme.

The histograms show the relative frequency of the pathwise error of the Euler-Maruyama
scheme (blue) and the Milstein scheme (red) with step size h = 2−16 over 103 realizations,
see figures VI.10 iv), VI.12 iv), and VI.14 iv), and with step size h = 2−12 over 104 realiza-
tions, see Figure VI.11 iv) and Figure VI.13 iv). The abscissa is logarithmically scaled and
thus corresponds to the ordinate of the empirical pathwise error plots in figures VI.10 iii),
VI.11 iii), VI.12 iii), VI.13 iii), and VI.14 iii). Since larger values have a higher contribution
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to the Lp(Ω;R)-norm, we see from the histograms in figures VI.10 iv), VI.11 iv), VI.12 iv),
VI.13 iv), and VI.14 iv) that there are many realizations, which have a pathwise error that is
much smaller than the empirical error in the Sp([−1, 3]×Ω;R)-norm, cf. the sub-figures i) and
iii) in figures VI.10, VI.11, VI.12, VI.13, and VI.14. In this context, also note the skewness of
the distribution of the relative frequency of the pathwise error, in particular for the Milstein
scheme. In Figure VI.11 iii) and Figure VI.13 iii), we especially see that the pathwise error of
some realizations of the Milstein approximation can be approximately as large as or even larger
than the pathwise error of realizations of the Euler-Maruyama approximation. However, if we
only consider single realizations and compare the pathwise error of the Euler-Maruyama with
corresponding pathwise error of the Milstein scheme on the same realization, the empirical
pathwise error of the Milstein scheme is asymptotically smaller than the one of the Euler-
Maruyama scheme. See the yellow lines in Figure VI.11 iii) as well as the blue and green lines
in Figure VI.13 iii).

In figures VI.10 ii), VI.11 ii), VI.12 ii), VI.13 ii), and VI.14 ii), the Euler-Maruyama approxima-
tion (blue) and the Milstein approximation (red) with step size h = 2−4 of a single trajectory
are presented together with the exactly simulated analytical solution (black). Here, we see that
the Milstein approximation is most of the time closer to the exact solution than the Euler-
Maruyama approximation. Especially, the Milstein scheme performs better when the solution
quickly changes over time.

In these simulation studies, our theoretical results are confirmed, and we see that the Milstein
scheme outperforms the Euler-Maruyama scheme. Especially, the strong and pathwise orders
of convergence can excellently be seen. We remark that the derivative of the drift coefficient
with respect to the delay argument does not vanish and is not constant in the examples above.
Hence, remainder term Rl

5 in the proof of Theorem IV.9, see inequality (IV.145), does not
vanish and converges to zero in Sp([t0 − τ, T ] × Ω;Rd) with order α = 1 as h → 0. Thus,
the derivative of the drift coefficient does not have to be incorporated in the numerical scheme
in order to obtain a strong convergence of order α = 1 as proven, and the Taylor expansions
presented in [104, 124] are not optimal.
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Figure VI.8. Simulation study of the Euler-Maruyama scheme and linear SDDE (VI.25) with additive noise.
We set t0 = 0, τ = 1, T = 3, a1 = 0, a2 = −2, a3 = 1, m = 5, b13 = − 1

2
, b23 = 1, b33 = 2, b43 = −2, b53 = 1,

and ξt = 1 + cos(πt) for t ∈ [−1, 0]. We simulated analytical solution X of SDDE (VI.25) error-free using
Example VI.1 where M = 216 and thus ~M = 2−16. The analytical solution and the numerical approximations
are evaluated at the points in time I =

{
− 1 + n ~M : n ∈ {0, 1, . . . , 4M}

}
.
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Figure VI.9. Simulation study of the Euler-Maruyama scheme and linear SDDE (VI.31) with additive noise.
We set t0 = 0, τ = 1, T = 3, a1 = 1, a2 = −2, a3 = − 1

2
, m = 2, b13 = 2

3
, b23 = 1, and ξt = 2 − 2et+1 for

t ∈ [−1, 0]. We simulated analytical solution X of SDDE (VI.31) error-free using Example VI.2 where M = 212

and thus ~M = 2−12. The analytical solution and the numerical approximations are evaluated at the points in
time I =

{
− 1 + n ~M : n ∈ {0, 1, . . . , 4M}

}
.
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Figure VI.10. Simulation study of the Euler-Maruyama and Milstein scheme regarding SDDE (VI.36) with
commutative noise. We set t0 = 0, τ = 1, T = 3, a1 = 0, a2 = −2, a3 = 1, m = 1, b13 = 2, and ξt = 1 + cos(πt)
for t ∈ [−1, 0]. Let X be the analytical solution of linear SDDE (VI.25) with additive noise and g(x) =

√
ex

for x ∈ R. We simulated the analytical solution Z = g(X) of SDDE (VI.36) error-free using Example VI.1 and
Example VI.4 where M = 216 and thus ~M = 2−16. The analytical solution and the numerical approximations
are evaluated at the points in time I =

{
− 1 + n ~M : n ∈ {0, 1, . . . , 4M}

}
.
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Figure VI.11. Simulation study of the Euler-Maruyama and Milstein scheme regarding SDDE (VI.36) with
commutative noise. We set t0 = 0, τ = 1, T = 3, a1 = −2, a2 = 4, a3 = 1, m = 1, b13 = 2, and ξt = 1 for
t ∈ [−1, 0]. Let X be the analytical solution of linear SDDE (VI.31) with additive noise and g(x) =

√
ex for

x ∈ R. We simulated the analytical solution Z = g(X) of SDDE (VI.36) error-free using Example VI.2 and
Example VI.4 where M = 212 and thus ~M = 2−12. The analytical solution and the numerical approximations
are evaluated at the points in time I =

{
− 1 + n ~M : n ∈ {0, 1, . . . , 4M}

}
.
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Figure VI.12. Simulation study of the Euler-Maruyama and Milstein scheme regarding SDDE (VI.37) with
commutative noise. We set t0 = 0, τ = 1, T = 3, a1 = 0, a2 = −1, a3 = 1, m = 1, b13 = −1, and ξt = 1+ cos(πt)
for t ∈ [−1, 0]. Let X be the analytical solution of linear SDDE (VI.25) with additive noise and g(x) = sinh(x)
for x ∈ R. We simulated the analytical solution Z = g(X) of SDDE (VI.37) error-free using Example VI.1 and
Example VI.4 where M = 216 and thus ~M = 2−16. The analytical solution and the numerical approximations
are evaluated at the points in time I =

{
− 1 + n ~M : n ∈ {0, 1, . . . , 4M}

}
.
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Figure VI.13. Simulation study of the Euler-Maruyama and Milstein scheme regarding SDDE (VI.37) with
commutative noise. We set t0 = 0, τ = 1, T = 3, a1 = −2, a2 = 3, a3 = 1, m = 1, b13 = 2, and ξt = 1 for
t ∈ [−1, 0]. Let X be the analytical solution of linear SDDE (VI.31) with additive noise and g(x) = sinh(x)
for x ∈ R. We simulated the analytical solution Z = g(X) of SDDE (VI.37) error-free using Example VI.2 and
Example VI.4 where M = 212 and thus ~M = 2−12. The analytical solution and the numerical approximations
are evaluated at the points in time I =

{
− 1 + n ~M : n ∈ {0, 1, . . . , 4M}

}
.
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Figure VI.14. Simulation study of the Euler-Maruyama and Milstein scheme regarding SDDE (VI.39) with
commutative noise. We set t0 = 0, τ = 1, T = 3, a1 = 0, a2 = 4, a3 = − 1

2
, m = 10, b13 = − 1

2
, b23 = 1, b33 = 1

4
,

b43 = 1
10

, b53 = − 1
8
, b63 = − 1

4
, b73 = − 1

10
, b83 = 1

2
, b93 = − 1

8
, b103 = − 1

8
, and ξt = 1

4
for t ∈ [−1, 0]. Let X be the

analytical solution of linear SDDE (VI.25) with additive noise and g(x) = arctan(x) for x ∈ R. We simulated the
analytical solution Z = g(X) of SDDE (VI.39) error-free using Example VI.1 and Example VI.4 where M = 216

and thus ~M = 2−16. The analytical solution and the numerical approximations are evaluated at the points in
time I =

{
− 1 + n ~M : n ∈ {0, 1, . . . , 4M}

}
.
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VII
Conclusion and Some Open Problems

Several new results on the convergence of the Milstein scheme are presented in this thesis. In
the following, we highlight the most important results and depict some open problems.

In Chapter IV, we proved that the Milstein scheme for SDDEs converges in Sp([t0−τ, T ]×Ω;Rd)
for arbitrary p ∈ [1,∞[ with order α = 1, see Theorem IV.9 and Corollary IV.11. The considered
SDDEs are allowed to have random initial conditions that we thoroughly took into account in
our analysis of the convergence. Most terms of the expansion of the global error are estimated by
standard Itô calculus, whereas one term lacks the martingale property. Here, it is more difficult
to handle the supremum over time inside the expectation, and more sophisticated techniques are
needed in order to obtain the desired order of convergence α = 1. The supremum over time was
estimated by means of Lemma IV.22. Further, we used techniques from the Malliavin calculus.
In this regard, we emphasize Lemma IV.19, which makes the Malliavin calculus applicable. The
result of Lemma IV.19 and the techniques used in its proof might be useful in other contexts as
well. They separate the SDDE’s initial condition, which is independent of the Wiener process,
from those random variables that are generated by the Wiener process. The latter were analyzed
with the Malliavin calculus. Here, we looked at arbitrary complete probability spaces and did
not limit ourselves to product probability spaces. As we assume a polynomial growth condition
on the second partial derivatives of the drift coefficient, we needed a more general chain rule,
which we stated in Theorem III.9. In the proof of Theorem IV.9, we further used that the
solution of SDDE (II.1) with a deterministic initial condition is differentiable in the sense of
Malliavin, see Theorem III.26.

Having proved that the Milstein scheme for SDDEs is convergent in Sp([t0 − τ, T ] × Ω;Rd)
for arbitrary p ∈ [1,∞[, we obtained various corollaries. Using Lemma IV.3, the Milstein
scheme converges pathwise with order α = 1 − ε for arbitrary ε > 0, see Corollary IV.12.
Moreover, if the SDDE under consideration has additive noise, the Milstein scheme coincides
with the Euler-Maruyama scheme, and thus, the Euler-Maruyama scheme converges in this
case in Sp([t0− τ, T ]×Ω;Rd) for arbitrary p ∈ [1,∞[ with order α = 1 and pathwise with order
α = 1− ε for arbitrary ε > 0 as well, see Corollary IV.13 and Corollary IV.14.

If the SDDE under consideration does not satisfy commutativity condition (V.1), the Milstein
scheme involves iterated stochastic integrals that need to be approximated. Various approxi-
mation were analyzed in Chapter V. We proved that the simple Fourier method converges in
Lp(Ω;R) for arbitrary p ∈ [2,∞[, see Theorem V.2, and provided an algorithm for the approx-
imation of the delayed- and nondelayed-iterated stochastic integrals occurring in the Milstein
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scheme, see Algorithm V.4. If the diffusion coefficients do not depend on the past history of the
SDDE’s solution, only non-delayed iterated stochastic integrals occur in the Milstein scheme
as in the case of SODEs. In this case, we further improved the approximation algorithm. We
proved the convergence of this new method in Lp(Ω;R) for arbitrary p ∈ [2,∞[ as well, see The-
orem V.8, Theorem V.9, and Algorithm V.10. In Theorem V.11 and Theorem V.12, we further
presented a variant of Algorithm V.10, which might be valuable in case of high-dimensional
Wiener processes. The computational costs of these approximations were compared in Sec-
tion V.3. Especially here, it turned out that the methods derived in Section V.2 are much more
efficient than the approximation introduced by Wiktorsson in [136].

As we proved that our approximations of the iterated stochastic integrals are convergent in
Lp(Ω;R) for arbitrary p ∈ [2,∞[, we obtained, using Lemma V.16 and Corollary V.17, the
convergence of the Milstein scheme based on these approximations in Lp(Ω;Rd) for arbitrary
p ∈ [2,∞[ with order α = 1 and pathwise convergence with order α = 1− ε for arbitrary ε > 0
as well, see Theorem V.18 and Theorem V.19.

Most stochastic integrals that occur in the proofs of the results mentioned above can be esti-
mated using the Burkholder inequality. However, in Section II.2, we derived more sophisticated
inequalities for time-discrete and time-continuous martingales whose constants are smaller than
those of the Burkholder inequalities, see Theorem II.5 and Theorem II.6. Due to the smaller
constants, these inequalities are highly valuable in stochastic analysis for accurate estimates,
as for example in the numerical analysis of approximations of SDEs. As in the case of the
time-discrete and time-continuous Burkholder inequalities, the constants in Theorem II.5 for
the discrete Burkholder-type inequalities are best possible. However, it is an open problem
whether the constants are best possible in case of the time-continuous martingale inequalities
in Theorem II.6 as well.

In Chapter VI, we finally provided some simulations that illustrate and confirm our theoretical
results on the convergence of the Milstein scheme. At first, we focused on analytical solutions
of SDDEs that can be simulated error-free, see Section VI.1. We derived solutions for various
SDDEs driven by multidimensional Wiener processes. Here, not only SDDEs with additive
noise are considered but also more general SDDEs that satisfy commutativity condition (V.1),
see Example VI.1, Example VI.2, and Example VI.4. Using these analytical solutions, we
provided some numerical simulation studies in Section VI.2. These are the first examples that
compare the Milstein approximation with the exactly simulated analytical solution.

In the following, we address some open problems that arose in the focus of this thesis and
provide motivations for further and future research.

Concerning the Malliavin calculus and the continuity of the Skorohod integral operator, the
precise constant in inequality (III.18) from Proposition III.25 seems to be unknown so far. As
the inequality is used in the numerical analysis, it is natural to ask for the best possible constant
of this inequality. We refer to [6, 88, 115] for some result on this constant.

For the convergence of the Milstein scheme, we supposed, among others, classical global Lip-
schitz conditions on the SDDE’s coefficients in Assumption IV.8. In further research, the
convergence under local Lipschitz conditions can be analyzed. The results in [2, 70] give in-
spirations on how to prove the pathwise convergence. In addition to [2], the convergence of
the Euler-Maruyama scheme for SDDEs under local Lipschitz conditions is also analyzed in
[83, 100].
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In order to reduce the number of function evaluations of the Milstein scheme and to make the
scheme easier applicable in numerical toolboxes, there is a high demand for efficient Runge-
Kutta scheme for SDDEs, cf. [125] in case of SODEs and [89] in case of SPDEs. Further, we
refer to [110] for a first approach in case of SDDEs, where d = D = m = 1.

Another type of Milstein scheme is the drift-randomized Milstein scheme that is proposed by
Kruse and Wu, see [81]. They considered SODEs with nondifferentiable drift coefficients and
prove the convergence by randomizing the drift coefficients. This introduced randomization
causes a martingale property concerning the drift coefficients. A similar approach might be
promising for SDDEs as well. Introducing this additional randomness in the Milstein scheme,
the order of convergence α = 1 could be proven without the Malliavin calculus. However, we
emphasize that this approach results in a different type of scheme than the Milstein scheme
considered in this thesis.

A further open problem is the efficient approximation of delayed-iterated stochastic integrals.
The difficulty compared to Algorithm V.10 in Section V.2 is that the dependencies of the
remainders of expansions (V.18) and (V.19) as well as random variables (V.25) on all intervals
between the discretization points must be taken into account in order to approximate the
remainders properly. Thus, for a fixed K ∈ N, the remainders of the iterated stochastic integral
approximations IK(i,j),n,τl introduced in Section V.1 have to be analyzed at once for all i, j ∈
{1, . . . ,m}, l ∈ {0, 1, . . . , D}, and n ∈ {0, 1, . . . , N − 1}. Although the distributional properties
of the remainders must be analyzed all at once, it seems that an algorithm generating these
iterated stochastic integral approximations can be formulated sequentially like Algorithm V.4
if a Cholesky-type decomposition of the resulting conditional covariance matrix is used.

Furthermore, the savings of computational effort by Algorithm V.10 and its variant analyzed
in Theorem V.11 and Theorem V.12 are especially of interest if the underlying Wiener process
is high-dimensional, see Section V.3. Thus, it is promising to extend the approximations in-
troduced in Section V.2 to iterated stochastic integrals driven by Q-Wiener processes, cf. [90],
where an extension of Wiktorsson’s method is presented. The dimension of the Wiener process
approximating the Q-Wiener process driving SPDEs has to increase in order to obtain a higher
accuracy of the Milstein approximation of the SPDE’s solution. Hence, an extension of our
methods in Section V.2 to the case of iterated stochastic integrals driven by a Q-Wiener process
could supplant the algorithm proposed by Leonhard and Rößler in [90].

In this thesis, we focused on the strong and pathwise convergence of the Milstein scheme for
SDDEs. We did not consider weak approximations of solution X of SDDE (II.1). The weak
convergence of the Euler-Maruyama scheme for SDDEs is analyzed in [18, 140] for example.
However, efficient weak approximations like multilevel Monte-Carlo methods for SDDEs have
not been developed yet in contrast to SODEs, see e. g. [49, 56]. Our results on the convergence
of the Milstein scheme for SDDEs could be valuable developing efficient weak approximations.
In case of SODEs, we refer to [8, 30, 48, 50] for efficient algorithms involving the Milstein
scheme.
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Notations

0i×j matrix of zeros of size i× j

λ⊗ P product measure

B([t0, T ])⊗ F product-σ-algebra

x⊗ z linear operator in Chapter III, see p. 28

x⊗ y Kronecker product in Chapter V, see p. 137

1A indicator function of set A

|·| absolute value

a drift coefficient of SDDE (II.1)

ai ith component of a, see p. 9

ajk,n := ajk,n,τ0 see p. 133

ak,n (a1k,n, . . . , a
m
k,n)

T, cf. p. 137

ajk,n,τl see p. 133

ak,n,τl (a1k,n,τl , . . . , a
m
k,n,τl

)T, see p. 137

A(i,j),n := A(i,j),n,τ0 see equation (V.15)

A(i,j),n,τl see equation (V.17)

AK
(i,j),n

:= AK
(i,j),n,τ0

see equation (V.18)

AK
(i,j),n,τl

see equation (V.19)

AK
n := AK

n,τ0 see p. 137

AK
n,τl

see equation (V.19)

α order of convergence, see Definition (IV.1) and Definition (IV.2)

additive noise see p. 78

B(E) Borel-σ-algebra on separable Banach space E

bj diffusion coefficient of SDDE (II.1), where j ∈ {1, . . . ,m}

bi,j ith component of bj , see p. 9

bjk,n := bjk,n,τ0 see p. 133

bk,n (b1k,n, . . . , b
m
k,n)

T, cf. p. 137

bjk,n,τl see p. 133
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bk,n,τl (b1k,n,τl , . . . , b
m
k,n,τl

)T, see p. 137

β see Assumption IV.8 iii)

commutative noise see condition (V.1) on p. 129

C(A;Rd) see p. 9

C1(Rd×(D+1);Rd) see p. 9

C2(Rd×(D+1);Rd) see p. 9

C∞
p (RK ;R) see p. 27

cδ,p constant in inequality (III.18)

CD,p constant in inequality (III.22)

CI,p constant in inequality (V.54)

cf. abbreviation of the Latin word confer – compare (to/with)

cost[·] see equations (V.45), (V.46), (V.47), and (V.48)

cost[·|MSE = Ch3n] see equations (V.49), (V.50), (V.51), and (V.52)

Cov[·, ·] covariance

d dimension of SDDE (II.1)

D number of different positive delays in SDDE (II.1)

D Malliavin derivative, see Definition III.3, p. 31, Definition III.13,
and p. 34

δ divergence operator, see Definition III.10 and equation (III.16)

Dp(Ω;R) see Definition III.6

Dp(Ω;E) see Definition III.15

Dj
tF see p. 31

Dj
tFs see p. 35

Dj
tF

l
s see p. 35

Dj
tXt see Theorem III.26

dom f domain of function or operator f

E[·] expectation on (Ω,F,P)

E[·|G] conditional expectation

ei ith unit vector if not otherwise stated

e. g. abbreviation of Latin exempli gratia – for example

EI,p(hn,Kn) bound in inequality (V.55), also see p. 149

F σ-algebra of (Ω,F,P)

(Ft)t∈[t0−τ,T ] filtration that satisfies the usual conditions, see p. 5

G := GT σ-algebra, see p. 7
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(Gt)t∈[t0,T ] filtration, see p. 7

Γ(·) Gamma function, see p. 135 and cf. Lemma V.20

γa see inequality (IV.16) and Assumption IV.8 vi)

γb see inequality (IV.17) and Assumption IV.8 vi)

h maximum step size of discretization {t0, t1, . . . , tN},
see equation (IV.1)

~M equidistant step size in Chapter VI, see formula (VI.20)

H := HR abbreviation for L2([t0, T ];LHS(Rm;R))

HE abbreviation for L2([t0, T ];LHS(Rm;E)), see equation (III.2)

Hm selection matrix, see equation (V.27)

Hp(A× Ω;E) see p. 8

〈·, ·〉E inner product of real separable Hilbert space E

〈·, ·〉H see equation (III.4)

〈·, ·〉LHS(E1;E2) see p. 28

Im identity matrix in Rm×m

im f image of function or operator f

I(i,j),n := I(i,j),n,τ0 see p. 132

In see p. 139

I(i,j),n,τl see p. 132

In,τl cf. pp. 139 and 140

IK(i,j),n := IK(i,j),n,τ0 see equation (V.20)

I(K)′

(i,j),n cf. [136, Theorem 4.1] and p. 145

IKn cf. p. 139 and Algorithm V.4

IK+
n cf. equation (V.41) and Algorithm V.10

ĨK+
n cf. equation (V.44)

I(K)′
n cf. [136, Theorem 4.1] and p. 145

IKn

(i,j),n,τl
see p. 155

IK(i,j),n,τl see equation (V.21)

IKn,τl cf. p. 139 and Algorithm V.4∫ T
t0
h(s)dWs short notation of

∑m
j=1

∫ T
t0
hj(s)dW j

s , see equation (III.5)∑m
j=1

∫ T
t0
F j
t δW

j
t notation for

∫ T
t0
Ft δWt := δ(F ), see p. 38

Ka constant of linear growth condition (II.10)

Kb constant of linear growth condition (II.11)

K∂2a see Assumption IV.8 v)
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K∂2b see Assumption IV.8 v)

λ Lebesgue-measure on R

`i,j see equation (VI.26) and Example VI.2

La global Lipschitz constant of drift coefficient a, see inequality (II.8)

Lb global Lipschitz constant of drift coefficient bj , see inequality (II.9)

L∂b see Assumption IV.8 iii)

LΣ see equation (VI.26) and Example VI.2

Lt,a see inequality (IV.16) and Assumption IV.8 vi)

Lt,b see inequality (IV.17) and Assumption IV.8 vi)

Lξ see inequality (IV.18) and Assumption IV.8 vii)

Lp(Ω;E) see p. 7

Lp
G(Ω;E) G-measurable random variables in Lp(Ω;E), see p. 29

LHS(E1;E2) space of Hilbert-Schmidt operators from E1 to E2, see p. 28

L2([tn, tn+1];R) see p. 133

m dimension of Wiener process W

x ∨ y maximum of x and y

x ∧ y minimum of x and y

N set of natural numbers

N0 set of natural numbers with zero, that is, N ∪ {0}

‖·‖ Euclidean norm

‖·‖Dp(Ω;R) see Definition III.6

‖·‖Dp(Ω;E) see Definition III.15

‖·‖E norm on vector space E

‖·‖F Frobenius norm

‖·‖Hp(A×Ω;E) see p. 8

‖·‖Lp(Ω;E) see p. 7

‖·‖Lp
G (Ω;E) see p. 29

‖·‖LHS(E1;E2) see p. 28

‖·‖Sp(A×Ω;E) see p. 8

N(µ,Σ) normal distribution with expectation µ and covariance Σ

Ω sample space of (Ω,F,P)

O Landau symbol, cf. [87, pp. 31, 59]

O Landau symbol, cf. [87, p. 61]

∂xi
l
f partial derivative, see p. 9
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P probability measure of (Ω,F,P)

P|G probability measure P restricted to σ-algebra G

Pm permutation matrix, see equation (V.29)

(Ω,F,P) complete probability space

Φs,t fundamental solution, see p. 198

R = R1 real line

Rd d-dimensional Euclidean space

Ri×j space of real matrices of size i× j

R+ set of all nonnegative real numbers

Rr see pp. 87–88

Rl
5 see equation (IV.61)

Rl,zrk
5 see inequality (IV.109)

R′
5 see equation (IV.116)

R′′
5 see equation (IV.117)

%a see Assumption IV.8 v)

%b see Assumption IV.8 v)

SDE Stochastic Differential Equation

SDDE Stochastic Delay Differential Equation

SFDE Stochastic Functional Differential Equation

SODE Stochastic Ordinary Differential Equation

SPDE Stochastic Partial Differential Equation

∼ with distribution

bsc see equation (IV.14)

dse see equation (IV.15)

σ(E) σ-algebra generated by set E

σKn
2 see p. 147

σKn
4 see p. 147

Σi,j covariance entries, see p. 209

ΣK
1,n covariance matrix, see equation (V.34)√
ΣK

1,n square root matrix of ΣK
1,n so that ΣK

1,n =
√
ΣK

1,n

√
ΣK

1,n, see p. 143

ΣK
2,n covariance matrix, see equation (V.35)

ΣK
3,n covariance matrix, see equation (V.36)

SK
n Schur complement, see equation (V.37)√
SK
n square root matrix of SK

n so that SK
n =

√
SK
n

√
SK
n , see p. 143
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√
E[SK

n ] see Lemma V.6
√
Σ∞ see [136, Equations (4.5) and (4.7)] and cf. p. 144

Sp(A× Ω;E) see p. 8

S (Ω;R) set of R-valued smooth random variables, see Definition III.1

S (Ω;E) set of E-valued smooth random variables, see Definition III.11

T finite time horizon of SDDE (II.1)

t0 starting point of SDDE (II.1)

tn point of discretization {t0, t1, . . . , tN}, where tN = T

τ see p. 6

τ0 := 0 see p. 6

τl positive time lag in SDDE (II.1), see p. 6

AT transpose of matrix or vector A

T (t,Xt) short notation of (t, t− τ1, . . . , t− τD, Xt, Xt−τ1 , . . . , Xt−τD), see p. 7

T (t, Yt) short notation of (t, t− τ1, . . . , t− τD, Yt, Yt−τ1 , . . . , Yt−τD), see p. 64

T (bsc,Xbsc+ θ(Xs−Xbsc)) short notation, see p. 73

ϑ cf. Lemma IV.22

Var[·] variance

vec[·] cf. equation (V.23)

W m-dimensional Wiener process, see Definition II.1

W j jth component of Wiener process W , where j ∈ {1, . . . ,m}

dW j
s stochastic integration with respect to W j in the sense of Itô

δW j
s stochastic integration with respect to W j in the sense of Skorohod,

see p. 38

∆W j
n := ∆W j

n,τ0 see p. 132

∆Wn (∆W 1
n , . . . ,∆W

m
n )T, see p. 137

∆W j
n,τl see p. 132

∆Wn,τl (∆W 1
n,τl

, . . . ,∆Wm
n,τl

)T, see p. 137

X solution of SDDE (II.1)

Xξ for emphasis of initial condition ξ of solution X of SDDE (II.1)

ξ initial condition of SDDE (II.1)

ξ̃ initial condition, see equation (IV.82)

Y approximation of solution X of SDDE (II.1), for example
Euler-Maruyama scheme (IV.13),
Milstein scheme (IV.33),
Milstein scheme (VI.38) for SDDEs with commutative noise
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Y h for emphasis of maximum step size h of Y

Y Milstein scheme based on approximated iterated stochastic integrals,
see equations (V.56) and (V.58)

Y
h for emphasis of maximum step size h of Y

Z set of all integers

zrk deterministic initial condition, see p. 95

ζr initial condition, see p. 95
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