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Summary

Large-scale images that exceed a single computer’s random-access memory (RAM)
represent a great challenge for nonlinear image registration. One area where these
images occur is in digital pathology, where differently stained sections are superim-
posed to combine their information. Here, registration of large-scale images com-
pensates for the deformation that is caused by a cutting and staining procedure.

In the literature, the decomposition of large-scale, nonlinear problems aims at
increasing the available RAM by distributing the problem to multiple computing
nodes. Two critical building blocks common among many nonlinear decomposition
approaches are the formulation of local nonlinear subproblems and the coupling of
the local subproblems to the global problem.

In this thesis, we present the novel combined fine local and coarse global (CLG) regis-
trationmethod. Decomposing the large-scale problem into smaller subproblems, CLG
adapts the building blocks from domain decomposition for a single computing node.
Unlike previously proposed methods, CLG links independent fine local registration
problems to a coarse global representation of the global image, which improves the
compatibility of the local solutions. By solving local problems independently of each
other, only a fraction of the high-resolution image data needs to be loaded into RAM
at once. The proposed method can be expressed as a discretization of a global, vari-
ational formulation of the registration problem. The downside of the new approach
are potential inconsistencies between the solutions of the subproblems, which are
compensated by a blending strategy.

To combine the local solutions, we adapt and compare different blending approaches
from the literature. The proposed blending scheme computes a globally smooth de-
formation and preserves the homogeneity of neighboring solutions.

The accuracy and improved compatibility of local deformations are demonstrated
in academic examples. We compare the proposed method to a coarse global and to
a fine, purely local variant. In these experiments, the new CLG method is always
more accurate than a coarse global registration and at least as accurate as a purely
local registration in terms of image distance and deformation error. Registering the
images sequentially, the CLG method does not compute one but a combination of
multiple globally regularized deformations. The new method outperforms a purely
local registration in terms of deformation error and irregularity measure in cases
where the subdomain boundary region consists of low-contrast image information.

In addition to academic examples, we apply the new method to clinical whole-slide
image data—each of multiple gigapixels in size—that comprises four different stain-
ing combinations and originates from two independent laboratories. When evaluat-
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ing a total of 82 manually placed landmarks, the CLG and fine global registration are
of similar accuracy, while CLG uses only a fraction of the RAM.

An exemplary image pair of 24 000 × 54000 pixels is registered on a single work-
station using 6 GB of RAM where—otherwise—more than 32 GB would be needed.
Independently of the image size, only a fraction of the RAM is required to solve the
same registration problem. While a standard registrationmethodwould be faster for
small problems, the CLG method enables the registration of large-scale images that
could otherwise not be computed.

Brief thesis summary
A large-scale, nonlinear image registration problem can be partitioned into
smaller independent subproblems by adding a global, coarsely discretized
distance measure. The remaining inconsistencies between subdomains are
smaller than without the coarse distance term and can be incorporated into
the global solution by a blendingmethod. Reaching a similar accuracy, the new
method enables the registration of large-scale images that could otherwise not
be computed.
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Zusammenfassung

Große, hochaufgelöste Bilder, die den Arbeitsspeicher eines einzelnen Computers
übersteigen, stellen eine Herausforderung für die nichtlineare Bildregistrierung dar.
Ein Bereich, in dem diese Bilder auftreten, ist die digitale Pathologie. An Schnitten
von Gewebeproben treten durch Schneide- und Färbeverfahren verursachte Verfor-
mungen auf, die durch Bildregistrierung kompensiert werden. Dadurch können un-
terschiedlich gefärbte Gewebeschnitte überlagert und die darin enthaltenen Infor-
mationen kombiniert werden.

Die in der Literatur als nonlinear domain decomposition bezeichnete Zerlegung von
großen nichtlinearen Problemen zielt darauf ab, ein nichtlineares Problem auf meh-
rere Computer zu verteilen und dadurch den verfügbaren Arbeitsspeicher zu erhö-
hen. Zwei kritische Bausteine, die bei vielen nichtlinearen Ansätzen vorkommen,
sind die Formulierung lokaler nichtlinearer Teilprobleme und die Kopplung der lo-
kalen Teilprobleme an das globale Problem.

In dieser Arbeit stellen wir das neuartige kombiniert lokale und globale—combined
local and global (CLG)—Registrierungsverfahren vor. Das CLG-Verfahren zerlegt das
große Problem in kleinere Teilprobleme, indemdie Bausteine aus der domain decom-
position für einen einzelnen Rechenknoten adaptiert werden. Im Gegensatz zu bis-
her vorgeschlagenen Methoden verknüpft das CLG-Verfahren fein aufgelöste, von-
einander unabhängige, lokale Registrierungsprobleme mit einer groben Diskretisie-
rung des globalen Bildes, wodurch die Kompatibilität zwischen den lokalen Lösun-
gen verbessert wird. Durch die unabhängige Lösung lokaler Probleme muss nur ein
Bruchteil der hochauflösenden Bilddaten auf einmal in den Arbeitsspeicher geladen
werden, wodurch der Speicherbedarf reduziert wird. Die vorgeschlagene Methode
kann als Diskretisierung einer globalen, variationellen Formulierung des Registrie-
rungsproblems formuliert werden. Der Nachteil des neuen Ansatzes sind mögliche
Inkonsistenzen zwischen den Lösungen der Teilprobleme, die durch eineMischungs-
strategie kompensiert werden.

Um die lokalen Lösungen zu kombinieren, werden verschiedene Mischungsstrate-
gien aus der Literatur angepasst und verglichen. Das vorgeschlagene Mischungsver-
fahren berechnet eine global glatte Deformation und bewahrt die Homogenität be-
nachbarter Lösungen.

Die Genauigkeit und verbesserte Kompatibilität von lokalen Deformationen werden
an akademischen Beispielen demonstriert. Das vorgeschlagene Verfahren wird mit
einer grob-globalen und einer fein-lokalen Registrierung verglichen. In diesen Expe-
rimenten ist das neue CLG-Verfahren immer genauer als eine grob-globale Registrie-
rung und mindestens so genau wie eine rein fein-lokale Registrierung in Bezug auf
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Distanzmaß und Deformationsfehler. Durch die sequentielle Registrierung der Bil-
der berechnet die CLG-Methode nicht eine, sondern eine Kombination ausmehreren
global regularisierten Deformationen. Das neue Verfahren übertrifft eine rein lokale
Registrierung hinsichtlich Deformationsfehler und Regularisiererwert in den Fällen,
in denen die Grenze der Gebiete aus kontrastarmer Bildinformation besteht.

Zusätzlich zu den akademischen Beispielen wird das neue Verfahren auf klinische
Bilddaten—so gennante Whole Side Images—angewendet. Jedes dieser Bilder hat
eine Größe von mehreren Gigapixeln. Insgesamt werden vier verschiedene Färbe-
kombinationen aus zwei unabhängigen Laboren untersucht. Bei der Auswertung
von insgesamt 82 manuell gesetzten Landmarken sind das CLG-Verfahren und das
Referenzverfahren—eine feine, global regularisierte Registrierung—von ähnlicher
Genauigkeit, während das CLG-Verfahren nur einen Bruchteil des Arbeitsspeichers
benötigt.

Ein exemplarisches Bildpaar von 24 000 × 54 000 Pixeln kannmit demCLG-Verfahren
auf einem einzelnen Computer mit 6 GB RAM registriert werden, während ein Stan-
dardverfahren mehr als 32 GB benötigen würden. Unabhängig von der Bildgröße
wird nur ein Bruchteil des Arbeitsspeichers benötigt, um das gleiche Registrierungs-
problem zu lösen.Während ein Standardverfahren für kleine Probleme schneller ist,
ermöglicht das CLG-Verfahren die Registrierung von großen Bildern, die sonst nicht
berechnet werden könnten.

Kurzzusammenfassung
Ein großes, nichtlineares Bildregistrierungsproblem kann durch einen zusätz-
lichen globalen, grob diskretizierten Distanzterm in kleine, voneinander unab-
hängige Teilprobleme zerlegt werden. Die verbleibende Inkonsistenz zwischen
den Lösungen der Teilprobleme ist kleiner als bei der Berechnung ohne den zu-
sätzlichenDistanzterm. Die lokalen Lösungen könnendurch einMischungsver-
fahren zu einer globalen Lösung zusammengeführt werden. Das neue Verfah-
ren ermöglicht die Registrierung von großen Bilddaten, die mit dem Referenz-
verfahren nicht berechnet werden können und erreicht dabei eine ähnliche
Genauigkeit.
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Image Registration of two given images is the process of finding a reasonable trans-
formation that maps elements from the reference image to corresponding elements
in the template image [Mod09].

One application for image registration is in digital pathology. To characterize specific
cells and growth patterns, histological whole slide images are cut from a block of
tissue—similarly to slicing bread—stained to reveal tissue properties, and scanned
to obtain a digital image [Muk17]. Image registration is used to compensate for the
deformation that is caused by the cutting and staining procedure such that differently
stained sections can be superimposed [And17] and their information combined.

Today, the scanned images exceed the available random-access memory (RAM, also
referred to as themainmemory) of a single computer, which is a challenge for image
registration.

In most image processing algorithms, the image data is loaded into the computer’s
RAM due to its faster access times [Mey03, pp. 1–4]. If the image data exceeds the
available RAM, one can either reduce the image data [Car10; Sch13] or resort to par-
allel computation using domain decomposition [Ron17; Man16] which combines the
memory of multiple computing nodes in a supercomputing cluster.

However, in many situations, cluster computing systems are unavailable, and the
complete, unreduced registration problem is to be solved on one computer with in-
sufficient RAM. In this case, local solutions can be computed by processing smaller
parts of the image subsequently [And17; Mag15; Rob12]. These local solutions are
each independent of the rest of the image, and the local deformations are therefore
incompatible.

1



1 Introduction to Large-Scale Image Registration in Digital Pathology

This thesis addresses the large-scale image registration problem of registering im-
ages that are too large to be loaded into a computer's RAM. Based on concepts orig-
inating in domain decomposition, we propose a nonlinear registration scheme
that combines the image distance on a coarse global scale and a fine local scale
while maintaining a globally smooth deformation. The proposed algorithm uses
only a fraction of the RAM that is required to compute the same registration prob-
lem globally.

Unlike previously proposedmethods, our approach links a local registration problem
to a coarse representation of the global image, which improves the compatibility of
the local solutions. In addition, the proposedmethod canbe expressed as a discretiza-
tion of a global, variational formulation of the registration problem. We demonstrate
the superiority of the new method compared to a purely coarse and to a purely lo-
cal method in numerical examples with real and artificial images. We also apply the
new method to microscopic whole-slide image data.

The image data for these and many other experiments along with practical regis-
tration problems and insights into various applications have been kindly provided
by our cooperation partners without whom this work would not have been possi-
ble: Dr. Jeroen van der Laak and his team at the Radboud University Medical Centre
in Nijmegen, Dr. Kai Breuhahn from the University of Heidelberg, and Dr. Andreas
Turzynski from the pathology clinic in Lübeck.

The thesis is structured as follows. In Chapter 1, we define the central problem dis-
cussed in this thesis: The image registration of images that exceed the main mem-
ory capacity of the computer at hand. One application for this problem is in digital
pathology, and we briefly describe the steps from tissue block to digital image that
lead to the image registration problem.

In Chapter 2, we formulate registration in a general framework for variational im-
age registration following the book by Modersitzki [Mod09]. In Chapter 3 we give an
overview of the existing work in the area of registration of histological whole slide
images and compare domain decomposition methods that are used to distribute the
computation on multiple computing nodes. In Chapter 4, we propose the new regis-
tration method based on the variational framework and discuss its properties based
on a set of examples. We apply the new method to differently stained whole slide
images from two independent laboratories (Chapter 7) and evaluate the registration
accuracy based on landmarks. We conclude this thesis in Chapter 8.

Using only a fraction of the memory of a global registration, the new method solves
the large-scale registration problem in model problems and real data, resulting in
similar deformations to the ones computed by a global registration.

1.1 Virtual Multistaining in Digital Pathology

The first step in a registration pipeline in digital pathology is image acquisition. Fol-
lowing [Lan13; Mes16], we briefly describe the workflow in histo-pathology with a

2



1.1 Virtual Multistaining in Digital Pathology

Figure 1.1.1: The pathological workflow from tissue specimen to digital image. Top
row: Amicrotome is used to cut the tissuewhich is embedded in a paraf-
fin block. In the cutting process, the tissue is heavily deformed. After be-
ing cut, the sections are placed into a water bath to straighten the defor-
mation. Bottom row: The section is fixated on a glass slide and stained
to visualize structure and specific antibodies. The images are digitized
using a whole slide scanner. Images 1–3 are provided by Mark Schenk,
Fraunhofer MEVIS, Lübeck. The scanner image is provided by ZEISS.

focus on the acquisition and analysis of digitized, large-scale microscopic images.

In conventional pathology, a diagnosis is formed based on tissue properties that the
pathologist evaluates by examining a tissue specimenunder themicroscope. The pro-
cessing of tissue slides is standardized and depends on the diagnostic task. We will
only give a brief overview here. For more details see, e.g., [Lan13]. A tissue sample
is extracted from the body either by biopsy, where a needle is used to extract a small
amount of tissue or by surgery, where larger tissue samples are extracted. The ex-
tracted tissue is then chemically processed, water is removed, and the sample is em-
bedded into paraffin. The resulting block is cut into slices, which are usually between
two and five micrometers thick [Sla11]. During the cutting process, the samples are
nonlinearly deformed (Figure 1.1.1). The resulting section is placed in a water bath
where it regains most of its original shape, and it is then fixated on a glass slide. The
tissue is then stained to highlight specific cells or structures of interest and examined

3



1 Introduction to Large-Scale Image Registration in Digital Pathology

under a microscope.

In digital pathology, the sectioned tissue is scanned and stored digitally. Digitiza-
tion facilitates the exchange of tissue slides between doctors and enables the use of
algorithms to analyze the tissue image [Zar19]. First digital workstations were ap-
proved for clinical use in the United States in 2017 [Eva18]. In contrast to radiology,
where digitization meant to replace an x-ray-sensitive film by a digital sensor, digiti-
zation in pathology requires an additional scanning step in the clinical workflow. As
a consequence, a digital pathology workflow has an increased cost due to additional
required hardware and data storage. In the light of the shortage of pathologists in
most parts of Europe, North America and the African Continent [Pet18; Nel18; Pat18],
the additional flexibility for doctors and the possibilities for automation in a digital
workflow seems to outweigh these costs and an increased adoption of digital pathol-
ogy workflows can be observed [Wil18].

Staining is necessary to visualize the structure and specific properties of the tissue.
Specific immunohistochemical stains are used to identify certain cells based on anti-
gens or proteins that are expressed in the cell [Ova13, p. 479]. Often, multiple stain-
ings are needed to form a diagnosis. One example is the grading of breast carcinoma,
where two stains are used to determine the malignancy. Since both are expressed in
brown, using both markers on the same slide is difficult [Mas00; Sta14].

Histological image registration is used to superimpose differently stained adjacent
sections [And17; Koo18] in those cases, where the chemical combination of multiple
markers is impractical.

1.2 Image Registration for 3D Reconstruction of Tissue
Stacks

While this thesis is focused on the registration of two consecutive high-resolution
slides, a frequent application of registration in digital pathology is 3D reconstruction,
and we will give a brief overview here.

1.2.1 3D Reconstruction with a Reference Volume

Starting back in the 1990s, the first methods were established to reconstruct digitized
histological data to 3D volumes, mostly for a better anatomical understanding of spe-
cific organs. Many authors formulate the goal to reconstruct 2D histological images
to 3D volumes and fuse them to corresponding 3D volumes of another modality, e.g.,
MRI or PET scans [Meg97], block-face images [Cas17; Sch07; Dau07; Gef03; Bar02b;
Kim97] or both [Sch98; Bar02a]. For this aim, every 2D histological slide is aligned
with a corresponding slide of the reference volume. As the reference volumes are
of limited image resolution, the used resolutions of the histological slide images are
also low.

4



1.3 The Challenge of Large Images

An extensive medical dataset is the BigBrain atlas [Amu13], recently updated with
more data by [Moh16] consisting of 7600 slides of 7000 × 6000 pixels each that were
registered to an MRI and also aligned slide to slide.

1.2.2 3D Reconstruction without a Reference Volume

Three-dimensional reconstruction without a reference volume has the disadvantage
that some information of the original 3D shape of the object is missing from the data
[Sch07]. For low-resolution images, affine or rigid registration approaches of two or
more consecutive slides are proposed [Hib88; And92; Our01; Bar02b; Mal04; Xu15].
More complex deformation models allow a more accurate alignment. Examples in-
clude piecewise or weighted affine deformations [Ars05; Pit06; Hua06], B-spline de-
formations [Yun07; Feu11; Rob12], thin-plate splines [Cha06], a moving least squares
approach applied to SIFT points [Car10] and elastic registration [Sch07].

One application for 3D reconstruction in cancer research can be found in [Bro14].
The authors describe how the presence of small groups of tumor cells (tumor buds)
close to the tumor is related to a specific transformation of epithelial cells. Three-
dimensional reconstruction is necessary to determine whether the tumor bud is con-
nected to the main tumor. We contributed three-dimensional reconstructions to this
article using a methodology similar to the one in [Lot14] (see below). Reconstructed
tumor volumes are shown in Figure 1.2.1.

Figure 1.2.1: 3D reconstruction of tumor buds. Slides have been stained with pan-
cytokeratin (PCK), tumor cells are brown. Left: 3D reconstruction visu-
alization where a piece of the block is removed. Right: 3D reconstruc-
tionwith thresholding to only showpositively stained cells. Connections
between cell groups are visible.

1.3 The Challenge of Large Images

One challenge when dealing with digital histological images in image processing is
their size (Figure 1.3). Depending on the scanner’s resolution, images often surpass
the size of 116 659 × 188744 pixels of the image shown in Figure 1.3, which corre-
sponds to 66 GB of uncompressed image data. These images usually cannot be loaded
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1 Introduction to Large-Scale Image Registration in Digital Pathology

entirely into a computer’s RAM. In the context of this thesis, we call images “large” if
their uncompressed size exceeds the memory of the computer at hand. We will use
the computer that is used to write this thesis as a reference (MacBook Pro (2016), 16
GB RAM, 2.6 GHz quad-core CPU).

width: 1600 pixels (280 µm)

a) Whole Slide Image
116 659 × 188 744 pixels
20 mm × 32 mm, 66 GB

b) Subimage
1600 × 1400 pixels

0.28 mm × 0.24 mm, 6.7 MB

Figure 1.3.1: Whole slide image of human colon, Haematoxylin andEosin (H&E) stain,
full resolution: 116 659 × 188 744 pixels. The area marked by the small
black rectangle in the left image is shown in the right image. Note that
fine structures such as cell nuclei (stained in dark pink) have a diameter
of ca. 5 µm (30 pixels) such that they are invisible in the low-resolution
overview image on the left. Circa 66 GB of RAM are needed to load the
full-resolution image which exceeds the available memory of the com-
puter that this thesis is written on. Image provided by Dr. Andreas
Turzynski, Lübeck

The amount of memory that is required for the registration varies depending on the
way these images are stored. Usually, images are stored as color images with 3 bytes
per pixel. While the pathologist relies on the color of the different stains, most of
the structure is still visible in gray-scale images. The images are therefore converted

6



1.3 The Challenge of Large Images

Figure 1.3.2: The same image region in two consecutive slides of human oral tis-
sue, stained for CD8 and CD45, after registration. Left: Resolution
0.445 µm/px (20× magnification). Right: Resolution 7.12 µm/px (1x mag-
nification). Smaller structures such as small vessels or nuclei may not
be visible in the low resolution images. The images at 20×magnification
occupy 400 times the memory of the images with 1x magnification.
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1 Introduction to Large-Scale Image Registration in Digital Pathology

prior to registration, reducing the storage to 1 byte per pixel. During registration,
the deformed image is interpolated at sub-pixel positions, and an image derivative is
computed. In these cases, we use a data type with higher precision to reduce round-
ing errors. This increases the memory requirements to up to 8 bytes per pixel (data
type double) for the deformed image. Depending on the per-pixel memory require-
ment, the histological image in Figure 1.3 will need between 22 GB and 176 GB of
storage in RAM. On the reference computer, loading two of these images is infeasi-
ble, especially if additional memory is required to compute the image registration.

We aim to register these images at a high resolution since the objects—such as indi-
vidual cells—that need to be identified by a pathologist for a diagnosis measure 5 to
7 µm in diameter (red blood cells, [Ova13, p. 158]). These objects cannot be located
clearly in a low image resolution image, andwe expect the registration to bemost ac-
curate at a high image resolution. We demonstrate the effect of lowering the image
resolution in Figure 1.3.2 in an example.

Large Images in Image Registration

We formalize the problem of registering large images following [Mod09] in a varia-
tional framework (see Chapter 2 formore details) anddefine the registration problem
as the minimization of the objective function

J (u) = D(T,R, u) + S(u) u−→ min (1.1)

with respect to a displacement u : Ω 7→ R2 on the image domain Ω ⊂ R2 where D is
a distance measure, and S is a regularizer. The distance measure is small if the ref-
erence image R and the deformed template image T(u) are similar. The regularizer
is small if the deformation implied by u is smooth. The above formulation provides a
general description of the registration problem as a combination of the desired result
(low image distance) and the necessary restriction in degrees of freedom (regularity).

At this point, no assumptions are made on the relation between the image data as
it is measured in the scanner and the image functions R and T. In the following, we
discuss different choices for the image model.

Discussion of Different Image Models

Themost direct approach tomodel the image function is to use interpolation (see, e.g.,
[Thé00, pp. 393 ff.]) of the full pixel data at least in the final steps of the registration.
We will use this method as the gold standard as the data model is very close to the
acquisition of the image. In the whole slide scanner, image data is acquired by an
array of pixels which gather the incoming light from the object plate. As discussed in
this chapter, using this raw-data interpolation is not an option when processing the
full-sized image.

A straightforward way to reduce the number of interpolation coefficients is to use
downsampling, resulting in a coarse representation of the image, which can directly

8



1.3 The Challenge of Large Images

be used to compute an approximate registration. However, downsampling results in
a loss of high-frequency information and, therefore, in a loss of detail in the image
(cf. Figure 1.3.2). More sophisticatedmethods to reduce the size of the image data are
used in image compression.

Image compression aims to analyze the image for duplicate information and to
store these duplicates only once. For instance, JPEG compression [Wal92] com-
putes a discrete cosine transform for each image block and avoids storing similar
block-representations. Some work has been published on registration of Fourier- or
wavelet-transformed images, which are used in the JPEG2000 standard [Chr00]. An
approach for parametric registration in the wavelet-space is proposed by [Ayd17],
which would allow for a low-memory registration in combination with sparse
wavelet-coefficients. However, a deformation of the image in position space has to
be translated back into the compressed space of the respective basis functions. The
author is not aware of an extension of this or similar approaches to a non-parametric
deformation model.

Instead of compressing the entire image, surrogatemodels are used to reduce the im-
age to key features. In [Wei15], we propose a registration scheme where two density
functions are generated from the images based on the positions of the cell-nuclei.
These density functions are directly used as image functions R and T. Similar ap-
proaches like the Coherent Point Drift method [Myr10] or the purely point-based Iter-
ative Closest Points method [Zha94; Bes92] are used once corresponding feature-sets
are determined in both images. The difficulty in applying these methods to the regis-
tration problem in digital pathology is the construction of the surrogate representa-
tion. In histological images, the appearance of the tissue varies in each staining. The
automatic detection of corresponding features in different stains has not been solved
reliably and is still a subject of ongoing research, see for example [Sir16; Höf18].

When reducing the image information is impractical, domain decomposition can be
used to distribute the problem between multiple computers and solve it in parallel
(Chapter 3.2). However, cluster computing systems are mostly available at larger re-
search institutions and cloud computing providers and are not found inmany pathol-
ogy laboratories.

While we see much potential in the idea of using a compressed or surrogate im-
age representation in registration, there are still too many practical hurdles to ap-
ply these approaches universally to histological images. Therefore, we build upon
the standard interpolation approach and aim to find a solution to register memory-
exceeding images on a local computer with limited RAM.

In this work, we focus on off-the-shelf workstation computers with limited main
memory (also called random-access memory or RAM, see [Pat14, pp. 19 ff.]).

If the underlying image data RN ∈ RN and TN ∈ RN of the images RN and TN in the
registration problem (1.1) is so large, that it cannot be stored in the computer’s RAM,
we call

J (RN, TN, u)
u−→ min, with 2N > MEM (1.2)

9



1 Introduction to Large-Scale Image Registration in Digital Pathology

the large-scale image registrationproblem, where MEM is the number of pixels that
can be accommodated and processed in the computer’s available RAM. This number
may vary from system to system and also depends on other processes running at the
same time.

Before discussing image registration in more detail in Chapter 2, we will briefly
sketch the problem that occurs when the images exceed the available memory.

The distance measure D in the objective function (Equation 1.1) is composed of the
image functions R and T. As discussed above, we base these functions on the interpo-
lation of the image data. As the objects of interest in the image—such as individual
cells—are of few pixels in diameter, we want to interpolate the images using a fine
grid of data points, which is ultimately equal to the pixels in the image data. To eval-
uate the distance measure, all pixels have to be taken into account and, therefore,
loaded into the RAM. We note that evaluation of the distance measure alone can be
done on a subdomain basis, where each subdomain is loaded into memory and eval-
uated independently. The same does not hold in combination with the regularizer.

The regularizer S is needed to solve the otherwise ill-posed registration problem (see
Chapter 2.3). It is also used to make the registration adhere to a specific deformation
model byminimizing an energy term based on a differential operator [Mod04, pp. 84
ff.]. As we point out in Chapter 2.8, computing an update step—for example, in a
Gauß–Newton optimization—cannot be done independently on subdomains. Each
step of the optimization on a subdomain requires image data from all or at least
from neighboring subdomains. Therefore, the registration problem cannot be solved
by solving smaller independent subdomain problems, which is challenging if not all
data can be loaded at once.

A positive effect of global regularization is that smooth global deformations can be
computed evenwhen parts of the image aremissing. One example is shown in Figure
1.3.3, where part of the tissue is torn off during preparation. Here, the deformation
continues smoothly in the area of non-correspondence based on information from
the intact tissue neighborhood.

As themain contribution of this thesis, we solve the dilemma between a globally cou-
pled deformationmodel and large-scale image data by combining the image distance
on a coarse global scale and on a fine local scale while maintaining a globally regu-
larized deformation. This new approach is discussed in Chapters 4 and 5.

An Image Registration Algorithm for Large Images: Requirements

The criteria for a method to register large pathology images are

1. Nonlinear, global deformation.

The deformation of the tissue in the sectioning process is nonlinear. We there-
fore want to allow nonlinear deformations, which in turn require the regular-
ization of the registration problem.

10



1.3 The Challenge of Large Images

Reference Image Template Image

Checkerboard Overlay

Figure 1.3.3: Two images of mammary gland tissue stained with H&E (top-left) and
CK5/14 (top-right) after registration where part of the tissue is torn off
during preparation. Local changes in the deformation in the torn region
do not affect the distance measure. With regularization, the deforma-
tion is smoothly continued based on information from the intact tissue
neighborhood. The correct alignment can be verified in the checker-
board image (bottom-left). Images provided by Dr. Andreas Turzynski,
Lübeck.
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2. High image resolution.

The structures such as single cells or cell nuclei that need to be correlated by
the registration often correspond to only a few pixels in the image. To allow
these structures to contribute to the registration, we want to use the available
image resolution.

3. No cluster computer needed.

Supercomputing hardware is usually not available in a pathology lab, and
transferring the image data is impractical due to legal reasons and bandwidth
limitations.

1.4 Other Scientific Contributions Related to this Thesis

Preliminary results that are part of or linked to this thesis have already been pub-
lished in [Lot14; Lot16a; Wei15]. Our submission to the Automatic Non-rigid Histo-
logical Image Registration (ANHIR) challenge received the first prize for the most ac-
curate registration using the approach described in [Lot19]. We applied registration
of histological images tomedical and biological research problems and published the
results with partners from these fields in [Bro14; Lot16b; Yin16; Bul19].

In [Lot14; Lot16a], we describe methods to register large images at a high image res-
olution.

Thefirstmethod [Lot14] focuses on a small area of a specimen. A tissue block is recon-
structed from a series of consecutive sections around a user-defined point of interest.
At this selected point, a slide-pair is registeredwith increasingly fine resolutionwhile
reducing the size of the registered image area (zooming in). The process is repeated
for subsequent slide pairs until the selected area of the tissue block is reconstructed.

The second method [Lot16a] is a subdomain-based registration method that repeats
the zooming approach across the whole tissue section. We combine the resulting
deformations for each subdomain by interpolation to form one global deformation.

The basis for the subdomain-based methods presented in this thesis is a robust and
automatic coarse-resolution image registration. In [Lot19], we describe this method
andalso introduce a brute-force pre-alignment scheme that is used to obtain an initial
guess for subsequent gradient-based optimization steps. Our method won first place
in the challenge “Automatic Non-rigid Histological Image Registration” (ANHIR) that
was part of the ISBI conference in 2019. N. Weiss and the author of this thesis con-
tributed equally to the participation in this challenge.

Another strategy to register large images is to reduce the information by building a
surrogate image model. In [Wei15], cell nuclei were detected automatically, and the
registration problem is formulated by measuring the similarity of the density func-
tions of the nuclei. This article is the result of amaster’s thesis that was co-supervised
by the author of this thesis.
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In the following publications, we applied one of the above methods to a research
problem from another field.

In [Bro14], we performed a 3D-reconstruction to determine if a tumor island is con-
nected to the main tumor which cannot be told by observing single 2D slides.

Three-dimensional reconstruction is combinedwithmatrix-assisted laser desorption
ionization (MALDI) imaging in [Lot16b]. In order to build a combined model of
MALDI imaging data and immunohistochemistry, we performed a 3D reconstruction
of histological sections, which was also applied to MALDI imaging data. The result
is a 3D model of a head and neck cancer that allows evaluating the functional
heterogeneity of the tumor tissue.

Different histological stainings were combined in one 3D stack in [Yin16]. To analyze
tumor vasculature and nutrient supply, we performed 3D reconstructions to corre-
late vessel measurements in histological sections with measurements from diffusion
MRI.

In [Bul19], we contributed a preliminary subdomain-based version of the registration
method proposed in this thesis to register differently stained sections to generate
ground-truth for a machine-learning algorithm. A deep neural network is trained
with a pair of images stained with a standard Haematoxylin and Eosin (H&E) stain
and a and specific immunohistochemical stain that marks epithelium. The trained
network can be used to predict epithelial regions in the H&E-stained slides.

Publications of Methods

1. [Lot14] J. Lotz, J. Berger, B. Müller, K. Breuhahn, N. Grabe, S. Heldmann, A.
Homeyer, B. Lahrmann, H. Laue, J. Olesch, M. Schwier, O. Sedlaczek, and A.
Warth. “Zooming in: High Resolution 3D Reconstruction of Differently Stained
Histological Whole Slide Images”. In: Proc. SPIE 9041. Medical Imaging 2014:
Digital Pathology. Ed. by M. N. Gurcan and A. Madabhushi. San Diego, Califor-
nia, USA, 2014, p. 904104. DOI: 10.1117/12.2043381 (peer-reviewed conference
proceedings)

2. [Lot16a] J. Lotz, J. Olesch, B. Müller, T. Polzin, P. Galuschka, J. M. Lotz, S. Held-
mann, H. Laue, A. Warth, B. Lahrmann, N. Grabe, O. Sedlaczek, K. Breuhahn,
and J. Modersitzki. “Patch-Based Nonlinear Image Registration for Gigapixel
Whole Slide Images”. In: IEEE Transactions on Biomedical Engineering 63.9
(2016), pp. 1812–1819. DOI: 10.1109/TBME.2015.2503122 (peer-reviewed jour-
nal article)

3. [Lot19] J. Lotz, N. Weiss, and S. Heldmann. Robust, Fast and Accurate: A 3-Step
Method for Automatic Histological Image Registration. arXiv:1903.12063 [cs].
2019 (preprint, full article in preparation)

4. [Wei15] N. Weiss, J. Lotz, and J. Modersitzki. “Multimodal Image Registration
in Digital Pathology Using Cell Nuclei Densities”. In: Bildverarbeitung Für Die
Medizin 2015. Ed. by H. Handels, T. M. Deserno, H.-P. Meinzer, and T. Tolxdorff.
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Berlin, Heidelberg: Springer, 2015, pp. 245–250. DOI: 10.1007/978-3-662-46224-
9_43 (peer-reviewed conference proceedings)

Publications of Applications

5. [Bro14] P. Bronsert, K. Enderle-Ammour, M. Bader, S. Timme, M. Kuehs, A.
Csanadi, G. Kayser, I. Kohler, D. Bausch, J. Hoeppner, U. Hopt, T. Keck, E. Stick-
eler, B. Passlick, O. Schilling, C. Reiss, Y. Vashist, T. Brabletz, J. Berger, J. Lotz,
J. Olesch, M. Werner, and U. Wellner. “Cancer Cell Invasion and EMT Marker
Expression: A Three-Dimensional Study of the Human Cancer-Host Interface:
3D Cancer-Host Interface”. In: The Journal of Pathology 234.3 (2014), pp. 410–
422. DOI: 10.1002/path.4416 (peer-reviewed journal article)

6. [Lot16b] J. M. Lotz, F. Hoffmann, J. Lotz, S. Heldmann, D. Trede, J. Oetjen, M.
Becker, G. Ernst, P. Maas, T. Alexandrov, O. Guntinas-Lichius, H. Thiele, and F.
von Eggeling. “Integration of 3D Multimodal Imaging Data of a Head and Neck
Cancer and Advanced Feature Recognition”. In: Biochimica et Biophysica Acta
(BBA) - Proteins and Proteomics (2016). DOI: 10 .1016 / j .bbapap .2016 .08 .018
(peer-reviewed journal article)

7. [Yin16] Y. Yin, O. Sedlaczek, J. Lotz, J. Olesch, K. Breuhahn, D. Drasdo, and I. E.
Vignon-Clementel. “Tumor Microvasculature in Lung Cancer and Diffusion-
Weighted MRI: Preliminary Results”. In: 2016 IEEE Nuclear Science Sympo-
sium, Medical Imaging Conference and Room-Temperature Semiconductor De-
tector Workshop Proceedings (NSS/MIC/RTSD). Strasbourg: IEEE, 2016. DOI: 10.
1109/NSSMIC.2016.8069545 (peer-reviewed conference proceedings)

8. [Bul19] W. Bulten, P. Bándi, J. Hoven, R. van de Loo, J. Lotz, N. Weiss, J. van
der Laak, B. van Ginneken, C. Hulsbergen-van de Kaa, and G. Litjens. “Epithe-
lium Segmentation Using Deep Learning in H&E-Stained Prostate Specimens
with Immunohistochemistry as Reference Standard”. In: Scientific Reports 9.1
(2019). DOI: 10.1038/s41598-018-37257-4 (peer-reviewed journal article)
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Image registration is the process of bringing corresponding structures in two ormore
images into alignment [Fis08]. In digital pathology, image registration of large whole
slide images is used to combine information from different biomarkers [Mue11]. We
established criteria for the registration of these images in the previous chapter. The
core of this thesis is the discussion of a new subdomain-based image registration
method that combines global regularization with local image processing.

Following [Mod09], we formulate registration in a general framework for variational
image registration. In this framework, nonlinear registration of two images is an op-
timization problem based on an objective function consisting of a distance measure
and a regularizer. The distance measure will be small if the two images are similar.
However, as outlined in Chapter 2.3, an optimization problem that is purely based on
image distance is ill-posed, and regularization is needed to find a solution [Fis08]. Dif-
ferent choices are available for both of these components, and we will discuss some
of them in the following sections.
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2 A Variational Perspective on Nonlinear Image Registration

We formulate the registration problem in the variational framework because it pro-
vides a general description of the registration problem as a combination of the de-
sired result (image distance) and the necessary restriction in degrees of freedom (reg-
ularity). This formulation is well suited to describe the challenge in the registration
of large images—the combination of local data fit with a global deformation (see
Chapter 4.2). To compute a solution, we use the discretize-then-optimize approach
proposed by Haber and Modersitzki [Hab04] as a baseline method because it has
shown good results in other areas of medical imaging [Rüh17b; Kön18; Ole14; Pol14]
in terms of memory footprint, computation time and registration accuracy. Further-
more, standard optimizationmethods can be used by computing analytic derivatives
of the discretized objective function. We build upon this framework, discretize the
deformation, and compute a minimum using a Gauß–Newton or L-BFGS iteration
(see Chapter 2.5).

To compute a global deformation, an energy term is minimized across the entire im-
age domain. In this chapter, we show that regularization in the sense of the vari-
ational framework couples the registration problem such that a solution cannot be
computed independently on subdomains. Even if one is only interested in the solu-
tion in a subdomain of the image, global image data is needed to solve the registration
problem. However, high-resolution image data is not available globally for large-
scale images. To the knowledge of the author, all available methods to register large
images either loosen the requirement of global regularization [Son14; Yig17] or use
a cluster of multiple computing nodes to increase the available amount of memory
[Mod99; Amu13; Man16].

In this chapter, we will follow the book by Modersitzki [Mod09] and briefly summa-
rize the variational framework and a straightforward discretization. Extensions to
this work that addresses the problem of registering images exceeding the memory
capacity of the computer will be discussed in Chapter 4.

2.1 Structure of the Optimization Problem

We understand nonlinear registration of two images as an optimization problem
based on an objective function J with

J (R, T, u) = D(R, T(y)) + S(u) u−→ min (2.1)

whereD is a distancemeasure, and S is a regularizer. We define images as functions
R : Ω → R and T : ΩT → R, Ω ⊂ Rd, ΩT ⊂ Rd, that map a gray value to each point
of an image domain. In the context of histological images, we will only consider two-
dimensional images with d = 2 and one color channel. Color images are converted
to grayscale by computing a weighted sum of the color channels [Bur09, pp. 109 ff.].

In the following, we will denote y : Ω → R2, y(x) = u(x) + x, x ∈ Ω as the deforma-
tion and u(x) as the displacement. While the displacement u(x) describes how each
point x ∈ Ω is altered, the transformation y(x) is a direct mapping from a point x in
the reference image to its new location in the template image. To keep the notation
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2.1 Structure of the Optimization Problem

concise, we will sometimes drop the argument of the functions u and y throughout
this chapter.

In the present approach, one image is regarded as the reference image and remains
unchanged. In digital pathology, the H&E stained image is often chosen as the ref-
erence because it is often registered to multiple other images of different staining
[Mue11]. The reference image is often referred to as the fixed image, while the tem-
plate image can be deformed by evaluating it in concatenation with the transforma-
tion y(x). We refer to the deformed template image as T(y).

Next to the deformed image, the displacement is the main result of the registration,
and its plausibility is oftenmore important than a pleasingmatch of the images’ gray
values. One intuitive example can be found in lung registration, where the defor-
mation can be used to analyze the ventilation of the lung [Mur12]. Unfortunately,
there is no clear definition of a plausible deformation. One rule of thumb is the fol-
lowing: Given two registration results with the same image distance, the one with
the smoother deformation—in the sense of a regularity measure—is more plausible
[For10]. Especially in nonlinear registration, finding the balance between data fit and
smoothness of the deformation is part of the registration problem.

Deformations can be divided into two groups: parametric andnon-parametric. In the
first group, the degrees of freedom of the deformation y are limited by the number
of parameters. For a linear deformation, y is written as a linear function

y(x) = Ax+ b

with A ∈ R2×2 and b ∈ R2, which allows global translations and rotations but also
scaling and shearing. These deformations are intrinsically smooth and of a global
nature with limited degrees of freedom. The same deformation rule is applied to all
points in the image domain. In turn, local deformations cannot be compensated by
this model. Such rigid or affine registration schemes are often used to obtain an in-
termediate registration based on a low image resolution. The obtained deformation
is then used as an initial guess for a registration that uses a nonlinear deformation
model.

In non-parametric registration, no assumptions need to be made on the deformation
function such that each point x ∈ Ω in the image domain can be moved indepen-
dently. This means that for every point in the image, a deformation vector needs to
be found. With only the image distance as the optimality criterion, the registration
problem is ill-posed in the sense of Hadamard (see Chapter 2.3). Regularization is
required in order to find a solution.

A regularizer is added to the model to reduce the degrees of freedom in the objec-
tive function such that the solution is unique. By the choice of the regularizer, a bias
towards specific properties of the deformation is introduced. Popular choices like
elasticity [Bro81] or curvature [Fis03b] regularization are based on the norm of dif-
ferential operators that are applied to the displacement, see [Mod09, Chapter 8].

In the registration of histological images, we assume a nonlinear deformation of the
tissue that is caused by the cutting process. However, we do not have evidence that
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2 A Variational Perspective on Nonlinear Image Registration

the deformation follows any specific nonlinear deformation model. Therefore, we
focus on a regularized, non-parametric image registration approach, where nonlin-
ear deformations can be accommodated, no explicit selection of a basis function is
needed, and the deformation model is only influenced by the choice of the regular-
izer.

We briefly summarize distance measures and regularizers in the next two chapters.

2.2 Distance Measures

In this thesis, two measures of similarity are used. The sum of squared differences
(SSD) distance measure (see, e.g., [Mod04])

DSSD(R, T, u) =
∫
Ω
(R(x)− T(y(x)))2 dx

is based on intensity differences in the images and is used for mono-modal image
pairs. SSD is one of the simplest distance measures and has no additional parame-
ters to choose such that it is ideal for numerical experiments. We use SSD for the
experiments in Chapter 6.1, where both images are based on the same image data.

In digital pathology, images are a result of different staining, and therefore, corre-
sponding structures are often of a different color. Figure 2.2.1 shows an example
where the same tissue section has been stained, scanned, and in a second step re-
stained with another stain. This process has been repeated four times, resulting in
four images that represent the same object in different colors.

To cope with the multimodality of differently stained image sections, we use the Nor-
malized Gradient Field (NGF) distance measure [Hab07a]. The main idea in NGF is
that the changes in intensity in the registered images “occur at the same locations”
[Hab07a]. The intensity changes are modeled as normalized gradients to adjust for
the different intensity levels of the corresponding structures in different modalities.

The NGF distance measure can be written as

DNGF(T,R, u) =
∫
Ω
1−

(
∇T(y(x))T∇R(x) + ϵ2

‖∇T(y(x))‖ϵ ‖∇R(x)‖ϵ

)2

dx (2.2)

where ‖x‖2ϵ := ‖x‖22 + ϵ2.

The edge parameter ϵ in the NGF distance measure is used to differentiate noise and
edges in the images. It can be set depending on the overall noise level in the image.
We implement the automatic choice of the parameter

ϵ =
η
V

∫
Ω
|∇R(x)|dx (2.3)
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2.2 Distance Measures

H&E CD45

pH3 CD8

Figure 2.2.1: Restained section with four different stains. Although the staining dif-
ferences are substantial, common structures are visible throughout all
images. Images kindly provided by J. van der Laak and his team, Rad-
boud UMC, Nijmegen

19



2 A Variational Perspective on Nonlinear Image Registration

proposed by [Hab07a] where R is an image η is the noise level, which remains to be
estimated manually. The advantage of estimating η is that it is less dependent on the
image since the average image gradient captures the effect of global intensity change
or change in resolution.

Another popular multimodal distance measure that has been successfully applied in
the context of medical image registration [Bro17; Plu03] is mutual information (MI)
[Vio97]. MI is based on estimating the entropy of joint image histograms, and one of
the main advantages of MI is that the gray values in the images do not need to cor-
relate linearly [Plu03]. We choose NGF over MI because the NGF can be computed
locally, which is not possible for MI since all image values are required for the his-
togram calculation.

For other distance measures used in medical image registration, we refer the reader
to the survey by Keszei, Berkels, and Deserno [Kes17]. We will not discuss them here
because the new method proposed in this thesis is independent of the choice of the
distance measure as long as it can be formulated in the variational framework.

2.3 Regularization

An image registration problem that is purely based on image distance is an ill-posed
problem in the sense of Hadamard [Had02]. A practical example of a registration
problemwith multiple solutions can be found in the histological images discussed in
Chapter 1 (Figure 1.3.3), where parts of the image consist of background or homo-
geneous unstained area. A local disturbance in the deformation in these areas can
be found such that the distance measure remains unchanged. To find a consistent
deformation in these areas, one has to rely on information from their neighborhood.

Regularization is needed to define a unique, stable solution [Mod04, p. 3] of the reg-
istration problem. It is also used to introduce a bias towards desired properties such
as a low intrinsic energy of the deformation with respect to the respective regular-
ization operator [Mod09, Chapter 8].

While the distance measure can be understood as the external force that promotes
image similarity, the regularizer is the inner force that leads to smooth deformations
[Fis04]. When partitioning the image domain into subdomains, special care has to be
taken to preserve the smoothness across subdomain borders.

A frequently used [Oli14; Sot13] regularization approach is to minimize the norm of
a differentiable displacement function u subject to a differential operator B applied
to the displacement

S(u) =
∫
Ω
(Bu)2 dx =

∫
Ω
〈Bu,Bu〉2 dx

along with the distance measure. First-order methods include diffusive [Fis01] or
elastic [Bro81] regularization, a second-order operator is used in curvature [Fis03b]
regularization.
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2.4 Parameter Search Strategy

The new method presented in this thesis is independent of the choice of the regular-
izer, and we do not have enough insight into the physical deformation of the tissue
during sectioning to define an accurate model. To keep the registration model un-
complicated, we concentrate on curvature regularization as an elementary case of
second-order regularization.

We briefly summarize the regularizer following the book by Modersitzki [Mod09].
The curvature regularizer

Scurv(u) = α
∫
Ω
‖Bcurvu(x)‖22 dx

uses a second-order operator and yields smoother deformations. Here, the Laplace
operator Δ is applied to each component of u and the operator Bcurv : Cn(R2) →
Cn−2(R2) with

Bcurv =

(
Δ 0
0 Δ

)
acts on u such that Bcurvu =

(
Δu1, Δu2

)
.

A solution u to the registration problem in (2.1) has finite regularizer energy. In the
case of curvature regularization, it is therefore at least twice differentiable. The ker-
nel of the curvature regularizer includes affine-linear deformations such that these
deformations have zero regularizer energy. For the experiments in Chapters 6.1 and
7, we choose curvature regularization because of the higher smoothness of the so-
lution. As an additional advantage, the curvature energy can be used to directly
compare the inner energy of multiple deformations independently of an affine pre-
registration.

2.4 Parameter Search Strategy

To balance image similarity and inner energy of the deformation, a parameter α ∈ R
is included in the regularizer. The strategy to choose α is not obvious as it balances
two different quantities that are independently scaled [Cac01]. Some research has
been targeted at determining α in a multilevel context [Hab06], but to the author’s
knowledge, there is no established method that is robust and automatic. To deter-
mine the optimal parameter for a registration experiment, we resort to a parameter
search strategy.

To find the optimal parameter we first define a search range α ∈ [0.0001, 1000]. In
previous experiments, values outside of this range have not resulted in satisfactory
registration results. The range is sampled adaptively and a registration is performed
for each candidate parameter. The result is evaluated based on regularizer energy,
image distance and a quality measure (Figure 2.4.1). When a ground truth deforma-
tion is available, we compute the deformation error etrue = ‖y − ytrue‖2 to the true
deformation. In the absence of a ground truth, we use manually placed landmarks
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Figure 2.4.1: SSD image distance, irregularity, and deformation error relative to the
regularizer parameter α for an example registration. The optimal pa-
rameter (α = 2.7) is selected by the lowest displacement error (blue).

and compute the average landmark error norm eLM =
∑

i ‖lTi − y(lRi )‖2 of template
landmark lT and transformed reference landmark y(lRi ). The parameter resulting in
the lowest error is selected for the respective registration.

The author is unaware of a theoretically funded method to determine the opti-
mal weight for the regularizer. The main disadvantage of this strategy is that some
ground truth data is needed. However, if such data is available, the parameter search
enables the comparison of different registration methods without introducing a bias
caused by the choice of the parameter.

2.5 Discretization

Being acquired as pixel data T ∈ Rn1×n2 , a continuous representation of the image
is obtained by interpolation. We discuss other image models apart from pixel-based
interpolation in Chapter 1.3.

2.5.1 Image Interpolation

We denote the interpolation of the template image T : R2 → R at a point (x, y) ∈ R2

given image data T as
T((x, y)) = interpolate((x, y), T)

and will omit the explicit mention of the image data when possible.

Different interpolation functions are used in image registration, see [Thé00] for a
comparative overview. We use cubic B-Spline interpolation [dBoo01, pp. 87 ff.] in the
numerical experiments in Chapter 6.1 and resort to linear interpolation in Chapter 7
for the registration of large-scale images.
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2.5 Discretization

Cubic B-Splines are continuous and twice differentiable. Especially differentiability
is needed tomaintain the quadratic reduction of the quadrature errorwhen applying
the midpoint rule in (2.4).

Linear interpolation results in an interpolant that is continuous but not continuously
differentiable at the cell boundaries. This violates the requirement in (2.4) and there-
fore risks a slower convergence. Weuse it neverthelesswhendealingwith large-scale
image data for its more straightforward implementation and its faster evaluation,
which does not require pre-computation of coefficients. Comparing linear and cubic
B-spline evaluation, Thévenaz, Blu, and Unser [Thé00] and also Bankman [Ban00]
report a factor of two to four in execution time.

2.5.2 Multilevel Discretization

A solution to the objective function in (2.1) cannot be given in a closed form, and we
therefore solve the problem numerically. In the literature, this has been done in two
ways. First, by formulating the necessary condition for a minimum analytically and
constructing a fixed-point iteration based on this condition. This approach is called
optimize-then-discretize [Fis04].

As it allows the use of standard Newton-type optimization methods, we will follow
the other approach—the so-called discretize-then-optimize approach [Hab04]—
where the problem is first discretized and then solved numerically.

We assume that Ω is rectangular and that all grid cells are quadraticwith size h̄ = h·h.

Following [Mod09, pp. 20 ff.], we discretize the domain using a cell-centered grid. In
each dimension of the domain Ω = [ω1,1, ω1,2] × [ω2,1, ω2,2] ⊂ R2, ωi,j ∈ R, we
discretize the invervals [ω1,1, ω1,2] and [ω2,1, ω2,2] by vectors

(
ωd,1 + h ·

(
i+

1
2

))
i=1,...,md

∈ Rmd , d ∈ {1, 2}

where h is the length of one quadratic grid cell and md is the number of cells in the
respective dimension. A two-dimensional grid of size m1 × m2 is constructed based
on the one-dimensional vectors as shown in Figure 2.5.1.

The grid is a cell-centered grid, where each grid point is in the center of a cell. The
displacement evaluated at the grid points in x will be denoted by u ∈ R2·m1·m2 .
For convenience, we denote the pair of x- and y-coordinates of the grid by xi :=
(vi, vi+m1m2) ∈ R2. This notation is used for ui ∈ R2 accordingly.

The reference image can bewritten as a vector that is obtained by evaluating R(xi) at
the grid pointsxi, i = 1, ...,m1m2. SinceR is not evaluated at transformed grid points,
R(xi) is constant during the optimization. The template image T is an interpolation
function that can be evaluated at arbitrary grid points. We sometimes write Ti as a
short form for the template image evaluated at grid point i, T(ui + xi).
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2 A Variational Perspective on Nonlinear Image Registration
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Figure 2.5.1: Arrangement of discretized grid points in the grid vector x ∈ R2m1·m2

for m1 = 3 and m2 = 2. The grid coordinate (x1, y1) is stored in the
components x1 := (v1, v7).

Given the cell-centered grid, the integrals in D and S can be evaluated by the two-
dimensional midpoint rule

∫
Ω
f (x) dx =

N∑
i=1

f (xi) · h̄+O(h̄2) (2.4)

for any differentiable function f ∈ C1, f : Ω ⊂ R2 → R with xi and h̄ = h · h and
N = m1 ·m2.

The subsequent interpolation and discretization described above are used to obtain
a representation of the images on an arbitrary grid. Based on these representations,
we implement a coarse-to-fine multilevel-scheme following [Mod09, pp. 146 ff.].

A Multilevel Pyramid of Discretizations

A Newton-like method converges to a global optimum if the objective function J is
convex [Noc06, pp. 8 ff.]. If J is only locally convex, convergence to the global solution
can only be shown in its immediate proximity [Noc06, p. 52]. The objective function
is often non-convex, and the iteration is likely to converge in a local minimum. To
counteract these two issues, the registration problem is embedded in a multilevel-
pyramid.

To obtain representations at different scales, the objective function is discretized us-
ing different grid spacings. Constructing a pyramid of image interpolation functions,
the image data is smoothed and downsampled repeatedly. For each level of the pyra-
mid, corresponding interpolation functions are constructed based on the downsam-
pled image data to avoid data loss caused by under-sampling.
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2.5 Discretization

The registration is started at the coarsest resolution, and the result is used as an ini-
tial guess on the next finer level. Operations on smaller, low-resolution images re-
quire less memory and are faster to compute such that non-local deformations can
be computed efficiently on these low-resolution image representations. The image
resolution is increased subsequently to account for details in the images. For more
details, see, e.g., [Mod09, pp. 40-42].

The low-resolution layers of the image pyramid are represented by a smaller amount
of data such that coarse global image representations of large-scale images can be
loaded into theRAM.Wemakeuse of these representations by combining a local high-
resolution layer and a global low-resolution layer in the combined method proposed
in Chapter 4.2.

An alternative to the multilevel pyramid of image representations is the multi-scale
approach [Mod09, p. 145] where no downsampling but only smoothing is used to
convexify the objective function. However, themulti-scale approach does not reduce
the size of the input data, and its computation is, therefore, more expensive.

2.5.3 Distance Measures

Each component of the objective function is discretized on the grid shown in Fig-
ure 2.5.1. For the distance measures introduced in Section 2.2, discretized distances
can be derived based on the grid x using the mid-point rule. Instead of calligraphic
letters D and S , we will use upright letters for the discretized functions D and S. We
define the discrete SSD and NGF distance measures as

DSSD(R, T,u) = h2 ·
N∑
i=1

(T(xi + ui)− R(xi))2

and

DNGF(R, T,u) = h2 ·
N∑
i=1

1−
(
∇T(xi + ui)T∇R(xi) + ϵ2

‖∇T(xi + ui)‖ϵ ‖∇R(xi)‖ϵ

)2

,

where ‖x‖2ϵ = ‖x‖22+ ϵ2 [Mod09, p. 92; Rüh13]. In NGF, an image gradient is included
in the distance. To be able to capture oscillating image functions, we combine the
scalar products (and norms) of the short finite differences to both sides of the grid
point xi as proposed in [Rüh13].

At the image boundary, the prevailing choices are Dirichlet or Neumann boundary
conditions. A histological image usually consists of a tissue section on a bright back-
groundwhich is homogeneous to the human observer butwhich often contains noise
and sometimes artifacts. Inmost cases, the tissue of interest is not located close to the
boundary. One can either convert the image such that the background becomes black
(gray value = 0) or use the image as is. In the first case, Dirichlet boundary conditions
can be used. However, in order to do so, the background has to be modified using
some segmentation, which introduces an additional challenge for the registration
pipeline. We, therefore, leave the images unaltered and use Neumann conditions at
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2 A Variational Perspective on Nonlinear Image Registration

their boundaries. One drawback of this approach is that artifacts close to the image
boundary can distort the registration result at these positions.

The above discretizations can both be written in the form

D(R, T,u) =
N∑
i=1

ψ(ri(R, T,ui)),

where each value ψ(ri) corresponds to the local image distance at one grid point and
can—given its immediate neighborhood—be computed independently of the rest of
the image. Therefore, this formulation is easily computed in parallel and also well
suited for the localized approach presented in this thesis, where only parts of the
image are evaluated at its full resolution.

2.5.4 Regularizers

Following [Mod09], the discretized regularizer can be written in matrix notation. In
the two-dimensional case, Kronecker products are used to construct two-dimensional
operators from their one-dimensional counterparts.

While the Kronecker product allows a convenient notation that facilitates the for-
mulation of the operator structure, the operators are not actually constructed in this
way during the computation. Matrix-free algorithms can be built by analyzing the
matrix structure and converting the necessary operations into a cheaper algorithmic
description. See [Kön18] for more details on matrix-free implementations in image
registration.

We use the midpoint rule to discretize the regularizer from Section 2.3 by

S[u] ≈ S(u) = α uBTBu (2.5)

where B is a discretized differential operator, that is specific to the regularizer of
choice.

Diffusive Regularizer

For diffusive regularization, the nabla operator∇ can be discretized by finite differ-
ences in one dimension with

B∇
m =

1
h

−1 1
. . . . . .
−1 1

 ∈ R(m−1)×m

where m is the number of cells in the respective dimension. Multiplication with B∇
m

means that in each row, a short finite difference is computed as the difference be-
tween two neighboring grid points divided by h.
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2.5 Discretization

We note that in our formulation, the operator B∇
m is not quadratic and implicitly

changes the grid atwhich the derivative is approximated. The new grid points are be-
tween the original cell centers, producing a staggered grid. When multiplying with
the transpose

(
B∇
m
)T, the grid is mapped back to the original points. However, the

combined operator
(
B∇
m
)T B∇

m has only rankm−1. This canbe compensated by adding
a boundary condition, usually done by modifying the element (1, 1) and (m− 1,m).
We will keep constant deformations in the null-space of the operator and rely on the
distance measure to form a full-rank joint operator.

In two dimensions, the Kronecker product can be used to define the operator

B∇
m1×m2 =


Im2 ⊗ B∇

m1

B∇
m2 ⊗ Im1

Im2 ⊗ B∇
m1

B∇
m2 ⊗ Im1


for an equally spaced grid of sizem1 ×m2 which is organized as in Figure (2.5.1). In
the upper-left block, B∇

m1×m2 acts on the first component of u—the displacement in
the x-direction. In the two rows, the first two partial derivatives are computed. In
the lower-right block, the second component is computed likewise.

Curvature Regularizer

Curvature regularization is based on second-order derivatives. We again avoid ex-
plicitly setting boundary conditions by applying the one-dimensional operator B∇

twice. Starting with the one-dimensional case,

BΔ
m = B∇

m−1 B
∇
m ∈ R(m−2)×m

is a matrix with stencil 1
h2 (1, −2, 1) in each line. In contrast to the first-order opera-

tor B∇
m , the new grid points are again on the same cell-centered grid. However, at the

boundary of Ω, at grid points i = 1 and i = m, the second derivative cannot be com-
puted, since the outer neighbors aremissing. In [Mod09, pp. 130], Dirichlet boundary
conditions are proposed. In the numerical examples in this thesis, we will proceed in
analogy to the diffusive operator with an operator

(
BΔ
m
)T BΔ

m of rank (m− 2), where
both constant and linear functions are in the null-space. Therefore, an affine pre-
registration does not affect the value of the regularizer, and no explicit treatment of
the affine components of the deformations is necessary.

Again, we use a Kronecker block matrix to construct the two-dimensional operator

BΔ
m1×m2 =

(
Im2 ⊗ BΔ

m1

BΔ
m2 ⊗ Im1

)

where only the two diagonal blocks of the two-by-two block matrix are non-zero.
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2 A Variational Perspective on Nonlinear Image Registration

2.6 Optimization

We understand image registration as an optimization problem where the objective
function consists of the building blocks distance measure and regularizer that we dis-
cussed in this chapter. Since the solution to the optimization problem cannot be for-
mulated explicitly, a numerical optimization method is needed. We follow the book
by Nocedal and Wright [Noc06] where these and other methods for numerical opti-
mization are covered in greater detail.

We formulate a discretized version of the original image registration problem in
(2.1) as

J(R, T,u) = D(R, T,u) + S(u) u−→ min

and we will denote the objective function simply by J(u) = J(R, T,u) throughout this
section to simplify notation.

2.6.1 (Inexact) Gauß–Newton Method

In general terms, if u∗ is the minimizer of an objective function J(u) : R2m1·m2 → R,
the Jacobian ∇J(u∗) = 0 is zero and the Hessian ∇2J(u∗) is positive semi-definite
[Noc06, p. 14]. Iterative optimizationmethods aim tofind theminimumby computing
multiple updates s based o an initial guess u(0). A simple method to compute an
update s is gradient descent, where

s = −∇J(u),

is the negative gradient of J. While this update is easy to compute, the main disad-
vantage of the gradient descent method is its slow convergence even if the objective
function is well conditioned [Noc06, pp. 42-44]. An alternative that uses the informa-
tion from the Hessian and has better convergence properties is the Newton method
[Noc06, pp. 23].

The Newton method can be derived by a linearization through the Taylor expansion
of∇J(u)

∇J(u+ s) = ∇J(u) + H(u) s+O(‖s‖22) (2.6)

where H(u) = ∇2J(u) is the Hessian of J(u). With the necessary condition for the
minimizer at the updated displacement∇J(u+ s) !

= 0 we obtain a linear system

H(u) s = −∇J(u) (2.7)

whose solution is the update s. Since the linearization in (2.6) approximates J locally,
the updated candidate u + s will not be the minimizer and the computation of (2.7)
needs to be repeated with the update u← u+ s until convergence.

The above iteration has two drawbacks. First, the direct solution to the linear system
becomes expensive if the number of unknowns is large. The number of operations
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2.6 Optimization

required to solve the linear systemusing amatrix factorizationmethod is in the order
of O(N3) operations [Den96, p. 51] where N = 2m1m2 is the number of unknowns
in the system. The factorized system is equivalent to the original linear system, and
the error of the computed solution is entirely caused by the use of finite precision
arithmetic. Approximations to the solution can be computed at lower computational
cost by using iterative algorithms such as the multigrid [Tro01; Hen00] or conjugate
gradient (CG) [Noc06, pp. 102 ff.] methods.

The system in (2.7) is the result of approximations on the objective function such that
its solution can also be only an approximation. Instead of computing an expensive
accurate solution to the linear system based on a matrix factorization, the solution
to the linear system is approximated using the CG method as proposed in [Mod09,
p. 134] for curvature regularization. The resulting method is referred to as the inex-
act Newton method [Dem82].

The second drawback of the Newton method is its requirement for a convex objec-
tive function, which in turn requires a positive definite Hessian H(u) at each itera-
tion. Due to the arbitrary nature of the images, this cannot be guaranteed globally.
Different schemes have been proposed to modify the Hessian such that positive def-
initeness can be guaranteed, see, e.g., [Den96, p. 101] where a scaled identity matrix
I ∈ RN×N is added to the Hessian.

Another approach that guarantees positive semi-definiteness without introducing an
additional parameter is the Gauß–Newton approximation (see [Den96, pp. 221 ff.])
where the Hessian is approximated by a quadratic term H(u) = ∇J(u)T∇J(u) based
on the gradient of the objective function.

In the image registration framework described in this chapter, this approximation
does only apply to the distance measure, which can be highly nonlinear depending
on the nature of the image data. These strong nonlinearities are ignored in the Gauß–
Newton approximation, resulting in a positive semi-definite Hessian approximation
at the cost of possibly slower convergence [Den96, p. 224]. The regularizer is already
written in a quadratic form and is guaranteed to be positive semi-definite.

Following [Mod09], we combine the Gauß–Newton approximation with the inexact
solution to the linear system and refer to the resulting method as the inexact Gauß–
Newton method which is described in Algorithm 2.6.1.

Algorithm 2.6.1 Inexact Gauß–Newton Method

1 for j=1, 2, ...:
2 # solve for s up to a predefined accuracy using an

iterative linear solver
3 H(u(j))s = −∇J(u(j))
4 # update with step length β ∈ R computed by an Armijo line

search method [Noc06, pp. 31 ff.]
5 u(j+1) = u(j) + βs
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2 A Variational Perspective on Nonlinear Image Registration

Stopping criteria that determine if a local minimum has been reached can be found
in more detail in [Gil97, p. 306] and are based on

• change of the objective function: J(u)− J(u+ s) < θJ
• size of the norm of the update ‖s‖2 <

√
τ (1+ ‖u‖2)

• size of the norm of the gradient ‖∇J(u+ s)‖ < 3
√
τ (1+ |J(u+ s)|).

If all the above quantities are smaller than predefined thresholds, the iteration is
terminated.

In theGauß–Newton algorithm, an approximation of theHessian of the distancemea-
sure has to be implemented. An alternative that approximates the inverse of the Hes-
sian based on first-order derivatives, which are computed during the iteration, is the
L-BFGS method.

2.6.2 L-BFGS Method

The Gauß–Newton method requires solving a linear system in each update step. The
BFGS method (named after Broyden, Fletcher, Goldfarb, and Shanno) avoids solving
the linear system by directly approximating the inverse of the Hessian using first-
order derivatives only. In consequence, the computation of each update is compu-
tationally cheaper, but often more iterations are needed until convergence [Noc06,
p. 141, pp. 178–180].

The second-order derivative of the objective function is estimated using the differ-
ences in the gradients between consecutive iterations [Noc06, pp. 136–141]. Two
rank-one updates are computed in each iteration, accumulating to the inverse Hes-
sian approximation.

Instead of storing all these updates, the L-BFGS (limited memory BFGS) method only
stores a fixed number of previous updates to save memory. For the experiments
with real histological whole slide images in Chapter 7, we use the two-loop algorithm
described in [Noc06, p. 178] and use the exact Hessian of the regularizer as initial
guess for the approximation.

Both, the Gauß–Newton and the L-BFGS approximation of the Hessian, are imple-
mented as a combination of first-order terms from the image distance with the ana-
lytic second-order derivative of the regularizer. L-BFGS uses rank-1 updates to build
the approximation over multiple iterations. A benefit when using L-BFGS is that the
approximated Hessian does not need to be implemented. However, especially in the
first steps of the optimization, the Hessian approximation is of low rank, possibly
increasing the total number of iterations. We are not aware of a systematic compari-
son of bothmethods for image registration. We choose the Gauß–Newtonmethod for
experiments on small-scale images and resort to the L-BFGS method when register-
ing large-scale images to simplify the implementation. A further comparison of both
methods is left for future work.
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2.7 Derivatives of Distance Measures and Regularizer

We further follow the book by Modersitzki [Mod09] and compute the gradient and
the Hessian of the objective function as follows.

Derivative of the Discretized Regularizer

Starting with the regularizers, we can take advantage of the operator formulation
introduced earlier in (2.5). The derivatives of both regularizers—diffusive and
curvature— can be written in the form

S(u) =
α
2
‖Bu‖22 =

α
2
uTBTBu,

∇S(u) = α BTBu and

∇2S(u) = α BTB

where B is the discretized differential operator associated with the regularizer.

Derivative of the Discretized Distance Measures

By applying the chain rule, the first-order derivative of the SSD distance measures
can be written as

DSSD(R, T,u) =
h2

2
·

M∑
i=1

(T(xi + ui)− R(xi))2

∂DSSD(R, T,u)
∂ui

= h2(T(xi + ui)− R(xi)) ·
∂

∂ui
T(xi + ui)

whereM = m1 ·m2 and ∂DSSD
∂ui ∈ R2 has one component for each dimension. In order

tomatch the structure of the grid, the gradient∇DSSD with respect tou can bewritten
using two components: First, there is the template image derivative

∇T(x+ u) = dT(x+ u)

=

dxT1 dyT1
. . . . . .

dxTN dyTN

 ∈ RN×2N (2.8)

where (dxTi, dyTi) :=
∂T(xi+ui)

∂ui are the two components of the partial derivative with
respect toui. The second component is the vector of the values of T(xi+ui) evaluated
at the grid points. The product of these two components is the gradient of the distance
measure such that

∇DSSD(R, T,u) = h2 · dT(x+ u)T

 T(x1 + u1)− R(x1)
...

T(xN + uN)− R(xN)

 .
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For the Hessian, the Gauß–Newton approximation is used, where the second-order
derivatives ∇2T(x + u) are ignored and the Hessian is approximated by the outer
product

HSSD(R, T,u) = h2 · dT(x+ u)TdT(x+ u)

with dT(x+ u) as in (2.8) above.

For the NGF distance measure, the additional gradients of T and R have to be consid-
ered. We define

ng(ui) =
g(1)(ui)
g(2)(ui)

=
∇T(xi + ui)T∇R(xi) + ϵ2

‖∇T(xi + ui)‖ϵ ‖∇R(xi)‖ϵ

as the local normalized gradient at xi + ui, where ∇T and ∇R are approximated by
short finite differences. Based on the above notation, the discretized NGF at xi + ui
can be written as

DNGF(R, T,u) =
h2

2
·

M∑
j=1

1− ng(uj)2

∂DNGF(R, T,u)
∂ui

=
M∑
j=1

−h2ng(uj)

·

(
∂g(1)(uj)

∂ui
· 1
g(2)(uj)

+ g(1)(uj) ·
∂(g(2)(uj)−1)

∂ui

)
(2.9)

The derivatives of the numerator and the denominator of ng(ui) are

∂g(1)(ui)
∂ui

= (4ri −
∑

k∈{±1,±m}

R(xi+k))
∂Ti
∂ui

∂g(1)(uj)
∂ui

= −(R(xi)− R(xj))
∂Tj
∂ui

if |i− j| = 1
or |i− j| = m1

∂g(1)(uj)
∂ui

= 0 otherwise

and
∂g(2)(ui)

∂ui
= −

(4Ti −
∑

k∈{±1,±m} Ti+k)

2 ‖∇T(ui)‖3ϵ‖∇R(xi)‖ϵ
∂Ti
∂ui

∂g(2)(uj)
∂ui

= −
(Ti − Tj)

2 ‖∇T(uj)‖3ϵ‖∇R(xi)‖ϵ
∂Ti
∂ui

if |i− j| = 1
or |i− j| = m1

∂g(2)(uj)
∂ui

= 0 otherwise.

The Hessian approximation HNGF ∈ R2N×2N is constructed again using the Gauß–
Newton approximation and neglecting second-order terms.
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2.8 Properties of the Regularization Operator and its Inverse

The solution to the linear system in line 3 in the Gauß–Newton Algorithm 2.6.1 leads
to a coupling of the registration problem that we need to take into account when
decomposing the registration problem in local subproblems.

As discussed in Chapter 2.3, the regularizer is a measure for the smoothness of the
deformation. It consists of a differential operator that acts on the displacement, and
that is integrated over the image domain [Fis01; Fis03b; Bur13]. After discretization,
the linear system

−H(u) s = ∇J(u) (2.10)

is solved to compute an update step s where (in the case of SSD distance measure)

H(u) = αBTB+ h2 (dT(x+ u))T(dT(x+ u))

as discussed in Chapter 2.6.1 (Equation 2.7). The Hessian H is a band matrix.
In the case of the curvature regularizer, it has five non-zero diagonals in the
one-dimensional case, and we assume that the data term is made such that H is
symmetric and positive definite. Solving for the update step s in Equation 2.10
smoothes the information from the right-hand side ∇J(u) across the domain. The
smoothing kernel has global support, which can be verified by examining the
Cholesky factorization [Gol96, p. 144] of H and performing forward and backward
substitution. The inverse H−1 is visualized in Figure 2.8.1.

The smoothing is applied in each iteration of the Gauß–Newton method, and the in-
formation from the alignment of high-contrast regions is hence distributed into low-
contrast regions.

A drawback of this approach is that information from the entire image domain is
needed in each iteration. Depending on α, the bandwidth of the inverse of H(u)
varies, and further study of the operator could result in ways to benefit from the
distribution of information without requiring the solution to the global system. We
leave this thought for future work and will instead use a reduced representation of
the deformation when partitioning the registration into local subproblems in Chap-
ter 4.2.

2.9 Memory Requirements of an Implementation

When implementing a registration algorithm based on the framework described
above, some components have to be stored in memory. We give an estimate of
the storage requirements of the most essential of these components in Table 2.1,
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Figure 2.8.1: Left: Inverse H−1 of the Hessian in a one-dimensional example (m =
33) using an identity matrix as derivative of the data term h2 (dT(x +
u))T(dT(x+ u)) = I. Right: Center row of H−1 for different values of α.

Table 2.1: Memory requirements of the major components of a single level registra-
tionwithN = m1 ·m2 pixels per image. For the computation of the distance
measure, we store the derivative of the image ∇T in a vector of size 2N,
which contains the derivative in the first and second dimensions. We also
store the non-zero partial derivatives in the NGF computation (∇D, Equa-
tion 2.9) for faster computation. For each pixel in the reference image, five
values have to be stored to compute the short finite differences, resulting
in 5N values.

Component Memory required (variables)

Distance Measure R, T N each
∇T 2N
∇D 2N (SSD)

5N (NGF)
Regularizer BTBu 2N

Optimization u 2N
s 2N
CG method 4N [Saa03, p. 200]
L-BFGS buffer 5 · 2N (for buffer size = 5)

Total ≈ 18N (NGF)
≈ 15N (SSD)
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2.9 Memory Requirements of an Implementation

noting that the list is not minimal. Depending on the implementation, some of these
components can be re-computed at each occurrence to save memory. The only
exception is the image data, which would need to be re-loaded from disk, delaying
the algorithm substantially.

Table 2.1 shows the memory requirements for the essential components of a sin-
gle level registration implementing the discretize-then-optimize framework. In sum-
mary, the requiredmemory grows linearwith the number of pixels and quadratically
with the image resolution in terms of pixels per milimeter.

Embedding the registration in a multilevel scheme as in Chapter 2.5.2 does not in-
crease the memory requirements as each level can be computed separately. The im-
age pyramid itself can be computed before beginning the registration. The only re-
sult that needs to be stored after each level is the resulting transformation u, which
is used as the initial guess of the registration on the subsequent higher level.

The registration at each level of the pyramid needs a fourth of the memory of the
subsequent higher level. In each step, the number of pixels is divided by two in each
dimension. The upper bound for the memory that is needed to store the complete
image pyramid is N

1− 1
4
= 4

3N.

The absolute amount of memory depends on the data type of the stored values. As-
suming double precision (64 bits per value), a registration of two 10000 × 10000 pixel
images requires about 23 GB of memory. This number is a lower bound for an im-
plementation that stores the components listed in Table 2.1. For two images of size
100000 × 100000 pixels as they occur in practice, the required memory exceeds 2.3
TB.

The variational image registration framework presented above has a solid theoreti-
cal background, and the presented implementation is backed by state-of-the-art opti-
mization. It has shown good results in other areas of medical imaging. The memory
requirements in Table 2.1 show that the computation becomes infeasible for large
images from digital pathology on the reference computer that this thesis is written
on.

The main factor for the amount of required memory is the size of the image data
that needs to be stored independently of the registration algorithm. Therefore, the
problem of registering large images as it is addressed in this thesis goes beyond the
particular implementation of the registration but is inherent to the registration prob-
lem itself.
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In Chapter 1.3, we established criteria for a registration algorithm such that it can be
used to register large images on off-the-shelf workstations. The author is not aware
of an existing solution that fulfills all the criteria, but certain aspects are discussed in
the literature. We will discuss these approaches in this chapter.

First, we address work in the area of the registration of histological serial sections,
starting with early methods and focusing on the challenge posed by large images.
A few methods have been proposed to use image registration in high-performance
computing using domain decomposition.

Our new approach takes up some aspects from the area of domain decomposition.
To show these similarities, we discuss domain decomposition techniques for linear
problems and their adaptions to nonlinear problems in the second part of this chap-
ter. In particular, the coupling between subdomains is a fundamental idea that we
discuss.

We demonstrate the amount of communication needed by these methods in numer-
ical experiments based on a simple image registration problem.

A general overview of the field of image registration inmedical imaging can be found
in the general surveys in [Sot13; Oli14; Kes17]. An overview of image registration of
digital pathology images is given in [Pic18]with a focus on 3D reconstruction of tissue
stacks.
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3.1 Image Registration in Digital Pathology

A large part of thework in the field of digital pathology for image registration focuses
on 3D reconstruction. In most publications, reconstruction is performed by multiple
image registrations of consecutive histologic slides using low-resolution images. The
registration of slide pairs in order to combine their information [Coo07; Mue11] is
reported less often. However, this area gained popularity in the last years in combi-
nation with automatic image analysis of whole slide images [Mad16; Har18].

Advanced imaging technology results in higher amounts of data and in a shift of
reconstruction tasks. One example is the growing interest in the reconstruction of
global or functional entities such asmicro-vasculature [Yin16] or immunohistochem-
ical markers [Rob12]. This is likely a result of the emerging field of digital pathology
where computers are used to visualize, store, and analyze digitized whole slide im-
ages. In these applications, the challenge is to reconstruct and fuse the data on a
completely different level: smaller structures like individual cells and the compari-
son of different functional markers across slides are of increasing interest, resulting
in the need of reconstructions ideally on the scale of cell nuclei. Due to the local
deformations introduced in the tissue preparation, affine or rigid solutions are not
sufficient for this task. Nonlinear deformations that are introduced during the cut-
ting and staining process have to be corrected to achieve satisfying results.

Even though the technology to compute 3D reconstructions has advanced signifi-
cantly, the high amount of histological data cannot be handled with the established
methods on a single computer since these machines are limited in RAM. This even
holds true for the data needed to fulfill only a part of the 3D reconstruction task, the
registration of two successive slides. There are different approaches to address the
challenge of large image dimensions.

In the following, we distinguish between global methods that compute a solution
based on extracted features or subsets of the data on the one hand and thosemethods
that implement a divide and conquer approach on the other.

3.1.1 Feature Reduction

Schwier et al. [Sch13] reduce the image data by segmenting vessel structures and
use these structures to steer their two-step approach. First, a rigid, iterative best-
fit matching of the segmented vessel structures is calculated, which is refined by an
elastic registration step on a low-resolution image. The resulting deformation is then
applied to the original slide data. Workingwith low-resolution images while comput-
ing the 3D reconstruction reduces the problem size while the resulting deformation
can still be applied to high-resolution images. However, structures that are smaller
than the coarse image resolution cannot be aligned accurately by a low-resolution
approach such that its result is less accurate.

By matching features from the scale-invariant feature transform (SIFT), Cardona et
al. [Car10] register images from transmission electronmicroscopy (TEM). Sub-images
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captured from TEM are stitched in plane while they are reconstructed in 3D at the
same time. Using SIFT point correspondences as a distance measure, the authors
of [Sch06] combine rigid and nonlinear deformation components by a moving least
squares approach. While the size of the registration problem can be reduced effec-
tively by identifying relevant corresponding points in both images, the difficulty in
such an approach is the robust identification of those critical points.

Weiss, Lotz, and Modersitzki [Wei15] use a global detection of cell nuclei to reduce
the tissue data to a density map that can be stored efficiently due to the sparsity of
the nuclei. These densities are independent of a particular staining and are used to
compute a global deformation of whole slide images. The difficulty here is again in
the robust identification of the nuclei in different stainings.

In the following, we limit our focus on methods that are based on image intensity as
opposed to feature-based methods. In such methods, a large part of the registration
problem is in the identification and matching of corresponding features, which is
beyond the scope of this work. We refer the reader to [Pic18, Section 4.1], where
further feature-based methods are discussed.

3.1.2 Divide and Conquer Methods

Instead of reducing the image data to selected features and possibly losing infor-
mation in the process, local methods divide the image into smaller parts and pro-
cess these parts independently. One advantage of such an approach is that well-
established registrationmethods can be used locally. Themain concern is to combine
the individually computed results into one final deformation eventually.

Arsigny, Pennec, and Ayache [Ars05] follow the idea of affinely transforming selected
image subdomains. The authors compute a global, poly-affine registration by com-
bining multiple affine transformations while maintaining smoothness at the tile bor-
ders. Ehrhardt et al. [Ehr19] extend the method to compensate for motion artifacts
in the reconstruction of magnetic particle imaging. However, because of the simul-
taneous computation of multiple regions, the poly-affine method is not meant to
work with large images. Cooper et al. [Coo07] combine this approach with a local
subdomain-based refinement. Using non-rectangular regions, Pitiot et al. [Pit06] pro-
pose a registration framework, where automatically segmented partitions of the im-
ages are generated based on tissue structure such as the gyri of the brain. The regions
are transformed independently by an affine registration. A global transformation is
then found by interpolating the transformation between the registered partitions.

A recent approach using subdomain-based registration to cope with large datasets in
histology is the work of Song et al. [Son14] on three-dimensional tissue reconstruc-
tion of histological sections that are differently stained. The authors propose a tile-
based approach previously published by Roberts et al. [Rob12] that first computes a
rough globally rigid transformation, which is then refined by calculating rigid trans-
formations on smaller subdomains of the image with higher resolution. Multi-modal
registration between differently stained slides is achieved by an automated content

39



3 State of the Art in Large-Scale Image Registration with Focus on Pathology

classification. A global nonlinear deformation is computed by interpolating between
rigidly transformedpoints on individual subdomains using B-spline transformations.

In breast cancer research, image registration has been used to combine different im-
munohistochemical markers by registering adjacent slides. Andersen et al. [And17]
compared a registration-based approach to a traditional physical multistaining ap-
proach. To compute the H-Score [Ham10] that is used in grading, human breast can-
cer cells expressing an estrogen receptor (ER) have to be counted inside a tumor re-
gion. One of two slides was stained for ER-positive cells and was combined with the
adjacent slide that was stained with an epithelium marker (pan-cytokeratin, PCK).
The combined image is used to automatically count only those ER-positive cells that
were located in a tumor area. The procedure was repeated with a physically double-
stained slide with the same stains. A malignancy score was computed by a machine
learning algorithm on the registered slides and manually by visual inspection on the
physically double-stained slides. The authors report a perfect correlation based on
45 tissue cores. The analyzed tissue data consists of small circle-shaped tissue cores
that are assembled in one slide, a so-called tissue microarrays (TMAs). The registra-
tion was done on a per-core basis, such that the size of the registration problem is
only moderate, and no specific strategy for large-scale data is necessary.

A similar comparisonwith different stains has beenmade by Røge et al. [Røg16]. Both
works show the benefit of an accurate registration to automate histological analysis.

In pharmaceutical research, data mining is used to identify patterns that are corre-
lated to a clinical outcome. When using tissue images as a data source, the combina-
tion of different biomarkers increases the feature space in which correlations can be
discovered. Harder et al. [Har18] use registration of adjacent tissue slides in order
to investigate biomarker combinations together with additional data such as sex and
age. For the prediction of tumor progression for some prostate cancer patients, the
authors report that the discovered combination of features is superior to an estab-
lished scoring mechanism. The registration is performed on hierarchically defined
subdomains, where for each subdomain, a locally rigid transformation is computed
and assigned to its center. Transformation landmarks are interpolated between the
subdomain centers to obtain a global deformation.

In the studies described above [Pit06; Rob12; Son14; Mag15; Røg16; And17; Har18],
the authors employ a divide-and-conquer approach to handle large images. How-
ever, none of these methods uses a global, physically motivated deformation model.
Furthermore, inmany of themethods, the subdomains are computed independently,
such that the area surrounding the subdomain cannot contribute and stabilize the
registration process.

3.1.3 Locally Nonlinear Deformation Models

Opposed to the approachesmentioned above, nonlinear transformationmodels offer
a global, physically motivated transformation. We used a zooming strategy [Lot14;
Pap08] to compute a high-resolution registration of a successively decreasing image
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area. We were able to demonstrate a benefit of nonlinear registration over an affine
registration on a 2000 x 2000 pixel image region.

For a registration of the entire image domain, we propose a subdomain-based reg-
istration framework [Lot16a], which consists of two parts. First, a global, coarse,
nonlinear registration is computed on low-resolution data. In the second step, this
preliminary deformation is used as the kernel in another registration on overlapping
subdomains. On each subdomain, the registration problem is solved independently
with the coarse registration as an initial guess. The deformations on the subdomains
are combined into a global deformation field by interpolation. We note that, while
our method computes a local nonlinear registration on all subdomains, the resulting
deformation on the whole image is not global since the regularizer is not evaluated
globally.

3.1.4 Domain Decomposition on Multi-Node Clusters

Computers contain a memory hierarchy, where faster access speeds are limited to
relatively small amounts of memory [Mey03, pp. 1–4], since larger memory banks
need more space and hence the distance to the processor increases. Exploiting the
different layers of the memory hierarchy for faster algorithms is an active area of
research, especially in the light of distributed computer systems, see [Mar18; Tho18;
Mit15] and the references therein.

In the case of large-scale image registration, we are dealing with a situation where
images exceed locally available memory. We will thus focus on distributed memory
systems that gainedpopularity in recent years, partly drivenby increaseduse ofGPUs
[Sha10].

Distributedmemory (DM) domain decomposition is realized on clusters of computing
nodes where each node is equipped with its own processor and memory. The nodes
are connected such that information can be exchanged between them. The available
memory and the number of CPUs in those systems can be scaled by adding additional
nodes to the cluster. A large dataset can be partitioned between these nodes to avoid
the memory limitation of a single workstation. However, communication between
the nodes is expensive and has to be explicitly implemented on distributed memory
clusters [Sha10].

While this work focusses on off-the-shelf workstation computers with limited RAM,
we briefly discuss the general idea of domain decomposition and how it has been
applied to image registration. In addition, domain decomposition methods are de-
scribed in greater detail in Chapter 3.2 and highlight those aspects that are the basis
for the new method proposed in Chapter 4.

Schmitt et al. [Sch07] use pairwise elastic image registration for the 3D reconstruction
of a human brain and a rat brain based on serial sections and block-face images. The
registration is parallelized by using a parallel conjugate gradient (CG) solver on a
distributedmemory cluster system [Mod99] of 48 computing nodes where each node
stores a stripe of the image.
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Using a domain decomposition approach, [Amu13; Moh16] compute a 3D reconstruc-
tion of the human brain based on 7676 serial section, block-face images andMRI. The
computation of the 3D reconstruction is done on a high-performance computer con-
sisting of 1872 computing nodes. The nodes process the image data in parallel such
that each node only loads a small part of the whole image data set.

Another parallel approach with an emphasis on an efficient memory-parallel im-
plementation is proposed by Mang, Gholami, and Biros [Man16]. The authors aim
for a diffeomorphic deformation, which is computed by composing the deformation
of multiple time steps and enforcing a non-zero determinant across all grid cells in
each time step. The objective function is minimized using a Gauß–Newton approach
[Noc06]. The image data is partitioned spatially, and deformation data is communi-
cated across nodes at each Newton step. By implementing their approach on a DM
cluster consisting of 64 nodes, a registration problemwith an image size of 5123 vox-
els is solved in 33 seconds.

As the above publications show, parallel computing is well suited to process large,
prominent datasets as part of long-term research projects. The main downside of
these methods is that they require specialized and expensive hardware, which is un-
available in many situations.

Each of the above methods satisfies one or more of our requirements. However,
to our knowledge, no method can compute a global nonlinear registration on large
images without the need to access the entire image data multiple times.

3.2 Domain Decomposition of Large-Scale Image
Registration Problems

Domain decomposition describes a field of methods that aim to solve a large-scale
problem arising from linear algebra or partial differential equations by instead
solving smaller subproblems assigned to one of several nodes in a computer cluster
[Dol15]. By repetitively communicating boundary information between these nodes,
a global solution is computed in an iterative process.

An image registration method based on domain decomposition would satisfy all but
one item from the list on page 10: efficient computation on a regular workstation.
Despite being usually targeted on multi-node infrastructure, these concepts are dis-
cussed here since our new method takes up two ideas from domain decomposition:
coupling the local problems by global operations (3.2.2) and solving localized nonlin-
ear problems (3.2.3).

The problem of communication cost in the light of high single-core performance
is also a question of efficiency of the respective domain decomposition algorithms
[Lee17, p. xi]. The cost of communication is illustrated in the following calculation.
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Side note: communication vs. computation [Nat16]

In a wire of three meters that connects two computing nodes, a signal
needs 10−8 seconds to travel from one node to the other at the speed of
light. A modern off-the-shelf workstation processor can compute circa
100 GFlops = 1011 floating-point operations per second. This means that
in the time the signal travels from machine to machine

10−8s · 1011flop
s

= 1000 flop

1000 floating-point operations can be computed.

Communication between nodes—especially if synchronous where one process is
waiting for information from another one—can be more expensive than many
additional computations.

Since the growth of computation speed of processors in terms of the number of in-
structions per second is slowing down, the trend in hardware development is to-
wards parallel architectures [Dol15, pp. vii] and clusters of commodity computers
[Sha10]. Today, communication between computing nodes or processors is, there-
fore, one of the main concerns in parallel computing.

If one is limited to one compute node, only one subdomain can be loaded into mem-
ory at any time, and communication between domains requires re-loading the data
from slower memory. For comparison, loading an image region of 15 232 × 15378
pixels from SSD into memory requires around 9.3 seconds on the reference com-
puter. Thus, if re-loading the data from disk is necessary, domain-decomposition
approaches are much more expensive. However, some approaches aim at limiting
the communication. These strategies reduce the overall number of global iterations
and are the foundation for the new method that we propose in this thesis.

Due to the nonlinearity of the image data, image registration is an intrinsically non-
linear problem. In numerical algorithms, unconstrained nonlinear problems are of-
ten solved iteratively, linearizing the problem in each step [Noc06, pp. 18 ff.]. Domain
decomposition of nonlinear problems can be addressed in two ways:

• using linear domain decomposition on the linearized problem in each iteration
[Cai94; Cai09] or

• solving nonlinear, local sub-problems on each of the subdomains and us-
ing a “globalization” step to re-establish the connection between the local
sub-problems [Cai02; Kla17].

In this chapter, we address the decomposition based on the overlapping Schwarz
method [Sch70] for a finite difference discretization. Other strategies like the family
of finite element tearing and interconnect methods (FETI) [Far92; Far01] are used
with a finite element discretization and follow the same general ideas (see [Kla14]
and the references therein).

The remainder of this chapter is organized as follows. We start by describing linear
domain decomposition in Chapter 3.2.2. These methods establish the ground for the
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nonlinear approaches, which we discuss afterward in Chapter 3.2.3. We then com-
pare the linear and nonlinear approach based on a model problem (Chapter 3.2.4).
Our experiments show that thenonlinear decomposition approach requires less com-
munication than a decomposition of the linear problem. As a conclusion from this
chapter, we select the decomposition of the global problem into local nonlinear sub-
problems as a building block of the new method presented in Chapter 4.

3.2.1 Schwarz Domain Decomposition of Linear Problems

The common goal of linear Schwarz methods is to find a solution u ∈ C2(R2), u : Ω ⊂
R2 7→ R for an elliptic differential equation such as

Δu = f s.t.
u = 0 on ∂Ω

where Δ : C2(R2) 7→ C0(R2) is the Laplace operator and f : Ω 7→ R [Dol15, Chapter
1]. For a simpler presentation, we will only discuss the case of two subdomains.

Alternating Schwarz Methods

A domain decomposition method has been proposed even before the onset of com-
puters by Schwarz in 1870 [Sch70]. In the article “Ueber einen Grenzübergang durch
alternirendes Verfahren” Schwarz describes how a global solution to the Laplace
equation on an irregular domain can be constructed based on the local solutions in
two overlapping, regular subdomains Ω1 ⊂ Ω and Ω2 ⊂ Ω. With the increasing pop-
ularity of parallel computing, the method was re-discovered in the 1970s and 1980s,
see [Lio88] for a summary.

The core of the alternating Schwarz method is an alternation between two subdo-
mains in which the Laplace equation is solved locally. In each iteration k, a local
solution u(k)i , i = 1, 2 is computed on Ωi with a constraint on the boundary that is
in common with the other subdomain. This boundary constraint is set such that the
local function matches the previous iteration’s solution

u(k)i (x) = u(k−1)
3−i (x) for x ∈ ∂Ωi ∩ Ω3−i, i = 1, 2

on the other domain.

Schwarz showed that a) the series of solutions converges in each subdomain to a
solution u∗1 and u∗2 respectively and b) both u∗1 and u∗2 are equal inside the overlap
Ω1 ∩Ω2. Therefore the combination of both solutions solves the Laplace equation on
Ω.

The concept of the alternating Schwarz method has been applied to discretized lin-
ear and nonlinear problems in different ways. For linear problems, the “Restricted
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Additive Schwarz” or “Additive Schwarz Method” (ASM) are used as preconditioners
[Efs03]. To solve a linear system

H s = f

with s, f ∈ RN, H ∈ RN×N using Schwarz preconditioning, the operator

M−1 =

K∑
k=1

RTkH
−1
k Rk

is defined using the restriction operator Rk ∈ Rn×N, n� N and a local inverseH−1
k =

(RkHRTk)
−1 ∈ Rn×n . Note that multiplication with M−1 can be computed in parallel

for each k. The preconditioned system

M−1(H s− f) = 0

can then be solved using a linear solver such as a Krylov subspace method [Saa03,
pp. 157 ff]. In each iteration, one additional multiplication with the preconditioner
matrix M−1, which is composed of K local solves is required. This means that ASM
can be interpreted as a combination of first solving the problem on the restricted
subspaces and then computing a global correction.

ASM is applied to linear problems either directly or as a preconditioner. However,
the registration problem at hand is nonlinear due to the nonlinearity of the distance
measure. In later extensions of ASM to nonlinear problems, convergence could be
shown for several problem classes, see, e.g., [Lio88; Lui01].

In image registration, Newton-type iterations are often used as nonlinear solvers
[Mod09; Che18]. At each step of the Newton iteration, a linearized subproblem is
solved to obtain an updated approximation to the solution to the nonlinear problem.

A simple nonlinear domain decomposition method can be constructed, if the linear
subproblem in each Newton step is computed using a linear domain decomposition
method such as ASM. We discuss this and other strategies for domain decomposition
methods for nonlinear problems in the following section.

3.2.2 Domain Decomposition for Newton-Type Iterations

In the literature, two approaches to generalize the alternating Schwarz method for
Newton-type methods are pre-dominant: First, a Newton-like linearization scheme
can be combined with a linear domain decomposition method that solves the lin-
ear system at each iteration. Examples are the Newton–Schwarz or Newton–Krylov–
Schwarz methods [Cai94; Cai09].

In the second approach, a smaller nonlinear problem is solved separately on each
subdomain. A globalization strategy transfers the information across subdomains
after each round of nonlinear solves, as proposed in the ASPIN method [Cai02].

We will briefly discuss the first approach but eventually focus on the second: When
the decomposition is performed in the linear solver, communication between the
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subdomains is needed after each Newton step. If implemented on a single comput-
ing node, this would require re-loading the data from slower disk storage in each
iteration and would thus not be realistic.

All the three methods use an additive approach where the result of the previous
global step is used to couple the local subdomains across their interior boundaries.
Multiple variants of the three methods have been published (see [Dry94; Dol16;
Mot17] and the references therein), including multiplicative approaches [Liu15],
where the subdomain solutions take the result of previously computed subdomains
in the current global step into account. Similarly to the transition from a Jacobi to a
Gauß-Seidel scheme [Saa03, Chapter 4], multiplicative methods are reported to have
better convergence [Cai94]. Their disadvantage is the dependency of the solution
on the order in which the subdomains are computed. To avoid this problem and to
maintain a concise notation, we will only discuss the additive variants of the above
methods.

In all the following methods, we decompose the reference domain Ω into overlap-
ping subdomains Ωk ⊂ R2, k = 1, ...,K with a corresponding discretized restriction
operator Rk : R2N → R2n such that the number of pixels n � N in the subdomain is
much smaller than in the original image domain Ω.

Newton–Schwarz (or Schwarz–Alternating)

The simplest of the presented nonlinear domain decomposition methods is a non-
linear Schwarz method. Sometimes the term “Schwarz–Alternating” method is used
[Cai09]. For consistency, we call it the Newton–Schwarzmethod, because the outer it-
eration ismotivated by a Newton-type iteration, and the inner iteration is an additive
Schwarz domain decomposition. The method is described in Algorithm 3.2.1.

In the algorithm, each of the overlapping subdomains Ωk, k=1, …, K is assigned to one
computing node. A partition of the global initial guess u(0), is copied to each node k
as well as the corresponding data, such that u(0)

k = Rku(0).

All the discussed methods couple the subdomains either by an explicit interior
boundary condition or implicitly by the differential operator. We formalize the
boundary condition in all methods by adding the penalty function

bk(u
(j)
k ) = αb

∥∥∥R∂
kR

T
ku

(j)
k − R∂

ku
(j−1)

∥∥∥2
2

to the objective function where R∂
k ∈ RN×n̄ is the projection operator that selects the

nodes on the interior boundary ∂Ωk \ ∂Ω of Ωk.

The penalty approach does not guarantee that the boundary condition is fulfilled
exactly, and other methods such as the augmented Lagrangian framework [Noc06,
Chapter 17] are generally better suited [Noc06, p. 525] for a constraint optimization
problem. In our comparison of domain decomposition methods, the previous iter-
ations’ solution u(j−1) is an approximation, and we do not require an exact match.
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Furthermore, the penalty method allows us to loosen the boundary requirement to
observe the effect of the coupling of the subdomains.

The local gradients are computed as

∇Jk(u(j)
k ) = Rk∇J(RTku

(j)
k ) +∇bk(u(j)

k )

and the local Hessians are

Hk(u
(j)
k ) = RkH(RTku

(j)
k )RTk +∇2bk(u

(j)
k ) (3.1)

where H is the approximation of the Hessian of J. We note that RTku
(j)
k = RTkRku

(j) ∈
R2N has the same size as u(j) but that the elements outside Ωk are zero. When copying
the data to the nodes, it has to be assured that an additional margin around Ωk is
included such that the finite difference stencils in Rk∇J(RTku

(j)
k ) and RkH(RTku

(j)
k )RTk

can be computed.

The Newton–Schwarz iteration is computed as in Algorithm 3.2.1.

Algorithm 3.2.1 Newton–Schwarz Method, see [Dol15, p. 13]

1 for j=1, 2, ...:
2 for k=1, ..., K:
3 # solve the local problem in Ωk

4 Hksk = ∇Jk(u(j)
k )

5 u(j)
k = u(j)

k + sk
6 for k=1, ..., K:
7 for all neighboring subdomains Ωl:
8 # overwrite overlap from neighboring nodes

9 u(j+1)
k (x) = u(j)

l (x) for x ∈ (Ωk ∩ Ωl)

As a final step, the local solutions u(j)
k , k = 1, ...,N have to be collected and combined

to a global solution u.

This nonlinear analog to the linear additive Schwarz method may converge slowly
or not at all [Cai09]. It also does not involve any global step, which distinguishes it
from the following methods.

Newton–Krylov–Schwarz Method

The Newton–Krylov–Schwarz method is a preconditioning method tied to a global
linear Krylov solver [Cai94; Cai09]. The Schwarz method is used as a linear precon-
ditioner for a Newton–Krylov iteration. For a purely parallel implementation, the
global step has to be parallelized separately using a parallel Krylov solver, see [Bal18].

The Newton–Krylov–Schwarz method works by preconditioning the Newton–Krylov
iteration
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H(u(j))s = −∇J(u(j))

u(j+1) = u(j) + s

where H is the approximation of the Hessian of J, and the linear system is solved
using a Krylov method with a preconditioner

M−1 =
K∑

k=1

RTk
(
Hk(u(j))

)−1
Rk

that is composed of locally inverted Jacobians. The local inversion can be computed
on subdomains in parallel. The preconditioned system is then solved in each Newton
step such that

M−1H(u(j)) s = M−1∇J(u(j)) (3.2)

u(j+1) = u(j) + s (3.3)

resulting in Algorithm 3.2.2.

Algorithm 3.2.2 Newton–Krylov–Schwarz Method [Cai94]

1 for j=1, 2, ...:
2 for k=1, ..., K:
3      # solve the local problem in Ωk

4      Hksk = ∇Jk(u(j)
k )

5    # combine sk, k = 1, ...,K to s̄
6      s̄ =

∑K
k=1 R

T
ksk

7 # solve the global system
8 M−1H s = s̄
9 u(j+1) = u(j) + s

While the preconditioner can be applied completely in parallel, a global system has
to be solved in each step. Also, communication between subdomains is needed after
each round of local linear solves. The method is therefore not suited for the large-
scale registration problem at hand. A combination of the ideas of Newton–Krylov–
Schwarz and the solution to a local nonlinear problem is found in the ASPINmethod.

3.2.3 Additive Schwarz Preconditioned Inexact Newton

A method building on top of the idea of Newton–Krylov–Schwarz (NKS) is the so-
called “Additive Schwarz Preconditioned Inexact Newton” (ASPIN) [Cai02]. In con-
trast toNKS, the preconditioning is performedbynonlinearly solving a local subprob-
lem. This leads to a reduction of global iterations and thus reduces communication
between nodes.
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Themotivation of localized preconditioning is that the global (inexact) Newton step is
limited by local (unbalanced) nonlinearities, which can slow the convergence down.
Cai and Keyes [Cai02] propose to partition the problem into smaller nonlinear sub-
domains on which a separate, local, approximate solution is computed. This inter-
mediate solution is then used as a preconditioner of the full problem. We again start
with the original Newton–Krylov iteration to solve the optimization problem

J(u) −→ min

where a series of updates to u(j), j = 1, 2, ... is computed.

In ASPIN, the preconditioning is computed by first solving the local nonlinear prob-
lems

Jk(u
(j)
k + sk)

sk−→ min (3.4)

using an iterative method. The local solution u(j) + sk is only updated in the subdo-
main Ωk but ghost values of u(j) from the outside of the subdomain are needed to
compute (3.4). These ghost values are not updated in the iteration. The results are
combined to s̄ =

∑K
k=1 R

T
ksk and used as the new right-hand side in a global (inexact)

Newton step
M−1H(u(j) + s̄) s = s̄. (3.5)

The preconditioner

M−1 =

K∑
k=1

RTk
(
Hk(u

(j)
k + sk)

)−1
Rk ∈ R2N×2N

is based on the locally inverted Hessians. The above steps (3.4) and (3.5) are repeated
until convergence in Algorithm 3.2.3.

Algorithm 3.2.3 Extended ASPIN Method, based on [Cai02]

1 for i=1, 2, ...:
2 for k=1, ..., K:
3 sk,1 = 0
4 for j=1, ...: # inner local loop
5      # solve the local problem in Ωk

6      Hk(u(j) + sk,1) sk,2 = Rk∇J(u(j) + sk,1)
7 sk,1 = sk,1 + sk,2
8

9    # combine sk, k = 1, ...,K to s̄
10     s̄ =

∑K
k=1 R

T
ksk

11 for j=1, ..., Ng: # inner global loop
12 M−1H s = s̄ # solve for s
13 u(j+1) = u(j) + s

Generalizing the original ASPINmethod [Cai02], we allowmultiple inner global itera-
tionsNg > 1. In the originalmethod, this number is set toNg = 1. In our experiments,
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we observe faster convergence if multiple inner global iterations are computed in
each outer step.

In its extended form, the ASPIN method is a generalization of the Newton–Schwarz
and the Newton–Krylov–Schwarz methods. The Newton–Schwarz method is ob-
tained by stopping after one local iteration, setting Ng = 0, and moving the final
update step u(j+1) = u(j) + s̄ in the outer loop. The NKS method is obtained by
computing only one iteration in both the inner local and inner global loop (Ng = 1).

Structure of the Preconditioned Operator

In the initial publication, Cai and Keyes [Cai02] apply the ASPIN method to a cavity
flow problem and present numerical experiments. Especially in the case of high tur-
bulences, nonlinear preconditioning reduces the number of global iterations that are
needed to reach a comparable residual.

The authors show that if started in a neighborhood of the true solution, the
ASPIN method computes the same local minimum as the original inexact Newton
method. The authors also note, that in the non-overlapping case, the product (in a
two-subdomain example)

H =
2∑

k=1

(
Hk(u

(j)
k )
)−1

H(u(j)) with H =

[
H11 H12
H21 H22

]
has a block structure

H =

[
I H−1

11 H12
H−1
22 H21 I

]
where the main diagonal is one. The difference between a solution computed on
subdomains only and a solution computed on the whole domain is in the coupling of
these subdomains.

The main disadvantage of the ASPIN method for a large-scale image registration
problem is shared with the other domain decomposition methods that we discussed:
Multiple iterations, each including the complete image data, are required to find the
final solution.

In the CLG registration method proposed in this thesis, we avoid the preconditioned
global operator but maintain the two main ideas of ASPIN: the decomposition into
local nonlinear problems and the need for a coupling between the subdomains.

In the following chapter, we compare the amount of global communication in the
three presented approaches based on a model image registration problem.

3.2.4 Comparison Study

In the decomposition approaches discussed in Chapters 3.2.2 – 3.2.3, a global step re-
quires communication between subdomains to transfer boundary information and—
in the case of NKS and ASPIN—to solve a global registration problem. We want to
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3.2 Domain Decomposition of Large-Scale Image Registration Problems

avoid this kind of inter-subdomain communication to be able to decompose the im-
age registration problem into smaller, independent sub-problems.

In the following experiment, we show that the NKS and ASPIN methods lead to a re-
duction in global steps in amodel registration problem. Especially the decomposition
into nonlinear sub-problems in the ASPIN method is effective, lowering the number
of global Gauß-Newton iterations to 2 compared to 37 in a standard Gauß-Newton
method.

We base the comparison of the algorithms on the number of global and local iter-
ations. Our focus is on the cost of communication such that we pay less attention
to computation time and memory requirements. However, the iteration count can
give some insight into the computation time. The memory consumption of the three
methods is comparable because they are composed of the same building blocks. Only
the Newton–Schwarz iteration does not require a global operation and, therefore, re-
quires less memory.

For the different methods, a global iteration consists of

• global only: one global Gauß–Newton step
• Newton–Schwarz: one local Gauß–Newton step on each subdomain
• Newton–Krylov–Schwarz: one local Gauß–Newton step on each subdomain
and one global Gauß–Newton step

• ASPIN: multiple local Gauß–Newton steps on each subdomain and Ng global
Gauß–Newton steps

For ASPIN, we implement a modified algorithm that allows all components to be ex-
pressed as standard Gauß–Newton registrations: Instead of the global ASPIN step
from Equation 3.5

M−1H(u(j) + s̄) s = s̄ (3.6)

withM−1 =
K∑

k=1

RTkHk(u(j))−1, (3.7)

as the sum of the subspace inverse Hessians, we compute this step as

H(u(j) + s̄) s = ∇J(u(j) + s̄), (3.8)

which is only exact in the non-overlapping case. Without overlap of the subdomains,∑K
k=1 R

T
kHk(u(j)) is a block-diagonal matrix, such that the preconditioner can bemul-

tiplied with both sides and the right-hand side

M s̄ =

( K∑
k=1

RTkHk

)( K∑
k=1

RTksk

)
=

K∑
k=1

RTkHksk =
K∑

k=1

RTk∇Jk = ∇J

is the Jacobian of the objective function. This modification avoids constructing the
combined operator M−1H or solving a linear system in every multiplication with
M−1H if an iterative linear solver is used. Effectively, the combined local solutions
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Table 3.1: Parameters used in the computation of the model registration problem.

parameter value

image size 120 × 240 pixels
subdomain image size 120 × 124 pixels
overlap between subdomains 8 pixels
distance measure sum of squared differences (SSD)
regularizer curvature
regularization parameter α 1.0
boundary penalty weight αb 0, 0.01, 1, 1000

are used as an initial guess for the global iteration. It allows the ASPIN method to
be implemented as two interleaved Gauß–Newton iterations which only rely on the
Hessians of J and RkJ. In the overlapping case, the result may differ from the original
ASPIN iteration, which does not affect the comparison of the linear and nonlinear
solutions to the local subproblems.

We compare the methods using the model problem shown in Figure 3.2.1. In the ref-
erence image, the registration problem consists of a box and a stripe pattern on a
black background. In the template, the same structures have been deformed artifi-
cially. The objects are located such that each subdomain contains one object, and
their independent solution will differ in the overlap region. The parameters used
for this experiment are shown in Table 3.1. We arbitrarily choose α = 1. Different
boundary penalty weights are used to observe the effect of the coupling of the two
subdomains.

In all methods, we perform a global pre-registration on a coarse grid of 9 × 16 pixels
as an initial guess (Figure 3.2.1, top).

The fine global Gauß–Newton registration reaches the stopping criterium (see Chap-
ter 2.6.1) after 38 steps and the final objective function value will be referred to as
J(ufinal) = Jfinal. The result of this registration is shown in (Figure 3.2.1, bottom).
The other methods are stopped once the reference objective function value Jfinal is
reached in order to make the results independent of the stopping criteria.

Coupling of Subdomains by Penalty, Global Iterations, and Coarse Space

When altering αb from1 to 1000 or 0.1, the iteration numbers differ by one step or less
across all methods. Without the boundary conditions (αb = 0), none of the standard
methods reaches the target value Jfinal before the maximum number of 100 global or
200 local iterations is reached. However, the modified ASPIN variant with multiple
inner global iterations (Ng < 10) reaches the target function value after a comparable
number of local and global iterations—evenwithout the interior boundary condition.

We conclude that in our experiment, a coupling between the subdomains is required
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Pre-registration

Reference R (coarse) Template T (coarse) |R-T| (coarse)

deformed grid y

 

T(y) (interpolated) |R-T(y)| (interpolated)

Full-resolution Gauß–Newton registration

Reference R Template T |R-T|

deformed grid y

 

T(y) |R-T(y)|

Figure 3.2.1: Image registrationmodel problemafter coarse pre-registration and full-
resolution Gauß–Newton registration. For each registration, six images
are shown. First row: Reference image R, template image T, |R−T|. Sec-
ond row: Coarse-resolution Gauß–Newton result y visualized as a trans-
formed grid. Deformed template image T(y), |R−T(y)|. After coarse reg-
istration, an offset ist visible in the difference image, which mostly dis-
appears after full-resolution registration. The subdomains that are used
in the Newton–Schwarz, Newton–Krylov–Schwarz, and ASPIN methods
are marked in blue and orange.
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Table 3.2: Number of iterations needed to reach the target objective function value
Jfinal that has been determined based on the Gauß–Newton iteration. In all
methods, 18 global iterations on a coarse level are not included in the global
iteration count. The ASPIN method requires, by far, the lowest number of
global iterations.

Method local iterations global iterations

Gauß–Newton 0 38
Newton–Schwarz 144 72
Newton–Krylov–Schwarz 38 19
ASPIN Ng = 1 56 2
ASPIN Ng < 10 50 2

for the local methods to converge. Furthermore, additional inner global iterations in
the ASPIN method can have this coupling function.

Another way such a coupling is realized in the literature is by introducing an embed-
ded coarse space [Nic87; Dol15, pp. 102 ff; Mar05; Kei14]. In these methods, an ad-
ditional coarse global system is solved in each global iteration. Heinlein and Lanser
[Hei19] compare different alternatives to combine a nonlinear coarse problem with
different variants of the ASPIN method. The authors find a reduction in outer global
iterations and also in overall GMRES iterations when using a coarse space. The re-
duction is stronger for higher numbers (K ≥ 25) of subdomains.

In the nomenclature used in [Hei19], our coarse pre-registration can be interpreted
as an additive coarse space method. However, the coarse correction would need to
be computed in each global iteration and not only once at the beginning, which can
be relevant when computing three or more outer iterations.

Faster Convergence Due to Multiple Inner Iterations

The number of iterations for the decomposition methods are shown in Table 3.2.

Among the three methods, the ASPIN method requires the lowest number of global
iterations in our experiments (Table 3.2). The characteristic attribute of ASPIN among
the other methods is the solution to a nonlinear subproblem between global solves,
which reduces the number of global iterations. However, in each global iteration, at
least one global high-resolution linear system has to be solved, which will exceed the
available memory in the large-scale image registration problem.

In Chapter 4, we present a newmethod that uses these two strategies—locally nonlin-
ear subproblems and an additional coupling by a coarse global objective function—to
skip the communication and to compute an approximated solution in only one sweep
through the subdomains.
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The proposed absence of global iterations can lead to differences between the so-
lutions calculated on the subdomains. In the next chapter, we discuss methods for
combining subdomain solutions proposed in the literature.

3.3 Blending of Multiple Deformations

The proposed large-scale image registration method (Chapter 4) skips the commu-
nication step between subdomains, which potentially results in contradictory defor-
mations at their interface. In the literature, some concepts to blend differing defor-
mations are discussed. We summarize these concepts in this chapter.

In the following methods, in order to improve the result of a registration problem,
multiple solutions for the same objective functions are computed, and the resulting
deformations are combined locally to an improved solution.

In MetaReg, the method proposed by Muenzing, van Ginneken, and Pluim [Mue12],
multiple methods for lung registration are applied to the same image pair. The qual-
ity of the results is measured by automatically detected landmarks—mostly at lung
vessel branches. The image domain is decomposed into subdomains, in each ofwhich
the best registration result is determined. The different results are first linked with-
out modification at the subdomain borders, although this results in folding artifacts
at the interfaces. The following step is named UnfoldReg: Existing folding artifacts
are detected automatically, and the affected regions and their surroundings are re-
moved. B-Spline interpolation [Tus06] is used to fill the empty areas based on the
uncorrupted deformation in the vicinity.

TheMetaReg method provides an automatic approach to evaluate concurrent regis-
tration results and eliminates folding artifacts from the blended result. However, the
interpolated deformation does not adhere to the original registration problem such
that it is difficult to evaluate the quality of the composed deformation. Moreover,
all image information in the replaced area is discarded so that local nonlinearities
within the area can hardly be restored using this technique.

In the DIRBoost method [Mue14], the question of combining multiple global defor-
mations is addressed. First, a registration is computed by applying an established
registration method multiple times with different local weights. In each iteration,
the deformation is evaluated using a voxel-wise registration error detection method.
A DIRBoost update is computed by only admitting the trusted regions of the com-
puted deformation to the solution and filling the untrusted region using a smoothing
method. Next to the UnfoldReg approach, another mentioned smoothing approach
is to reposition B-Spline nodes in the corrupted region and to rely on the implicit
smoothness of the B-Splines instead [Mod10].

For multi-channel registration, Forsberg et al. [For11] propose a weighted averag-
ing of the displacements of the different channels in diffusion tensor imaging. As
weights, the authors propose the normalized norm of the target image’s gradient. To
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blend multiple rigid deformations on subdomains, Kajihara et al. [Kaj19] use a nor-
malized weight function based on the distance to a central point in the subdomain.
The authors apply their method to histological serial sections, where—if multiple ob-
jects are placed on one slide—these objects sometimes move independently.

Weighted averaging approaches have the advantage that no image information is re-
quired in the blending procedure and that local nonlinearities are preserved. It is
also computationally inexpensive. However, artifacts in one of the candidate defor-
mations are likely to affect the blended result as well.

Lempitsky, Roth, and Rother [Lem08] propose a combination of different flow fields
from an optical flow problem (see, e.g., [Ban00, pp. 382 ff.]). Different solutions for
the optical flow problem are computed using different parameterizations of two op-
tical flow methods. The combination of the solutions is formulated as a discrete op-
timization problem: For each node of the displacement, one of the pre-computed
solutions is selected using a graph cut method [Boy01]. The objective function in this
step consists of an image distance term local to each node and a regularization term
penalizing the difference between the displacement of neighboring nodes.

An extended method following a similar idea is proposed by [Hei16] for image reg-
istration. The authors combine multiple candidate displacements computed on dif-
ferent supervoxel segmentations of the image. The image is partitioned into several
layers of supervoxels, where each layer is a different supervoxel representation of
the same image. Regularity is obtained by penalizing the differences in the displace-
ment of neighboring supervoxels in a graph structure. For each supervoxel, a cost
consisting of image distance and regularity is assigned. The k displacements with the
lowest cost are computed for each supervoxel, defining local probability distribution
of displacements. The best displacement vector for each pixel is selected based on
the probabilities determined on all supervoxels overlapping at its position.

Both of the last two methods evaluate a set of possible deformations based on an
image distance and a regularity term, and their solution is therefore conceptually
close to the original registration problem. However, the authors solve the problem
of combining multiple global deformations, which is different from the problem of
blending neighboring deformations that result from a domain decomposition. Also,
the approach seems too computationally expensive in time andmemory to be applied
in the large-scale image registration problem.

We compare different blending approaches in Chapter 5. We include some of the
above ideas but exclude those approaches that require image information to avoid
reloading of the image data.
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In this chapter, we focus on the core of this thesis: the combined local and global
registration to solve the large-scale image registration problem (1.2). We aim to find
a registration method to register large images that is accurate in terms of remaining
image distance and spatially consistent in terms of a globally regular deformation.
In the variational formulation described in Chapter 2, the distance measure can be
evaluated using local data only. However, the regularizer couples the registration
problem such that information from the entire domain is needed to compute the
deformation (Chapter 2.8).

We propose a new registration method that combines a coarse global image registra-
tion problem with local, high-resolution image data on subdomains (Chapter 4.2).

The proposed method approximates a global solution by combining global solutions
computed on local subdomains. Each subdomain is computed independently of the
solutions computed on neighboring subdomains. The price for the independent com-
putation is paid in global regularity. A simultaneous coarse global optimization is
used to reduce the impact of the independent computation. This hybrid solution has
different properties than coarse global, fine global, and purely local solutions. Us-
ing artificial (Chapter 6.1) and realistic (Chapter 7) experiments, we evaluate these
solutions in terms of deformation error, image distance and regularity. We observe
that, qualitatively, the new method is superior to a coarse global and to a purely
subdomain-based registration while it does not reach the same result as a fine global
registration.
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The newmethod is based on the nonlinear registration method described in Chapter
2. The discretized image registration problem is written as a minimization of the
objective function (2.6)

J(R, T,u) = D(R, T, y) + S(u) u−→ min,

where aminimum is found by iteratively updating the candidate solutionu ∈ R2m1m2

using the gradient∇J and a Hessian approximation (see Chapter 2.6.1). The deforma-
tion y = u+x is computed by adding the identity deformation x to the displacement
u. For this computation, all inputs and intermediate variables are stored in the com-
puter’s main memory.

For images that surpass the available RAM, we first discuss two options (Chapter 4.1)
to reduce the size of the input data: a) converting the images to a lower image resolu-
tion which reduces accuracy and b) solving the problem only for a part of the image
domain which reduces global consistency.

Based on these options and given a limited amount of RAM,we propose the combined
local and global (CLG) subdomain registration method that combines the two reduc-
tion ideas to approximate a global solution to the image registration problem (1.2)
using local high-resolution image data.

Including the new CLG method, we compare four different approaches to compute
a solution for the large-scale image registration problem (1.2): coarse global regis-
tration, fine global registration, purely local subdomain registration, and the CLG
subdomain registration.

Fine global registration is a global registration with a fine image resolution. We
define this registration as a gold-standard using small image sizes as it cannot be
applied to a large-scale image without exceeding the computer’s memory.

Coarse registration is a global registrationwhere the images are interpolated based
on a downsampled version of the image data such that the registration problem can
be solved without exceeding the memory capacity of the computer.

The following two methods are proposed in this thesis and use a spatial partitioning.

Purely local subdomain registration is a registration that uses subdomains with
local image information at a high image resolution. The results are computed inde-
pendently, and the deformations computed on the subdomains are combined in a
subsequent blending step (see Chapter 5).

CLG: Combined local and global subdomain registration approximates a fine
global registration. The deformation is optimized globally, and the image distance
is optimized simultaneously on a coarse global resolution image and a local high-
resolution subdomain. The deformations are computed independently for all subdo-
mains, and they are combined in a subsequent blending step (see Chapter 5).

All four registration methods use the registration framework described in Chapter 2.
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4.1 Division of the Registration Problem into Smaller
Subproblems

The proposed global subdomain registration is a combination of two strategies to
address the large-scale registration problem (1.2): Reducing the problem size and
splitting the large-scale problem into multiple smaller ones. Both approaches can
also be used independently as described below.

4.1.1 Consequences of Low Image Resolution

A multilevel scheme is used in image registration (Chapter 2.5.2) for two reasons: a)
The local convexity of the objective function is increasedby smoothing the image data
andb) the computational cost is reduced byfirst solving less expensive problemswith
a lower number of pixels. A low-resolution registration can be obtained by omitting
a number of high-resolution layers at the bottom of the image pyramid and stopping
the multilevel scheme early.

The inevitable drawback of this strategy is that fine structures are not represented in
the smoothed low-resolution images. Therefore, the accuracy of the low-resolution
registration is reduced.

Both drawbacks could be avoided by switching to a multi-scale approach [Mod09,
p. 145] where no downsampling but only smoothing is used to convexify the objec-
tive function. However, without downsampling, the multi-scale approach does not
reduce the size of the input data and is therefore not suitable for the large registration
problem (1.2).

4.1.2 Preliminary Purely Local Subdomain Registration

To compute a registration on large high-resolution images, we propose a decomposi-
tion approach that solves the registration problem on smaller subproblems. We first
introduce a preliminary, purely local approach that is extended by a global compo-
nent at a later point in Chapter 4.2.

We divide the image domain Ω into K overlapping subdomains Ωk = [ωk
1,1, ωk

1,2] ×
[ωk

2,1, ωk
2,2], k = 1, ...,K, such that ∪kΩk = Ω. On each subdomain, overlapping

solutions are computed. The overlap is later used to blend the local solutions.

We have proposed a simple subdomain-based registration approach based on this
decomposition [Lot16a]. First, a coarse global pre-registration is computed, and the
result is used as an initial guess for the following subdomain registrations and to
determine the positions of the template subdomains. In a second step, independent
registration problems
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1 2 3

k k + 1 k + 2

Tk + 2

Figure 4.1.1: Decomposition of the domain into overlapping reference subdomains
Ωk (blue). The template image subdomains ΩTk are based on the refer-
ence image subdomains and extended by an additional safety margin
(shown in dashed red).

Jloc(uk) =
[
D(R, T, yk)

]
Ωk

+ S(uk) −→ min (4.1)

with yk = uk + x are solved for all subdomains Ωk, k = 1, ...,N. Here, [D(R, T, yk)]Ωk
denotes the evaluation of the distancemeasure in the local subdomain only. For each
subdomain, we compute a solution u on Ω. Since no image information is used out-
side of Ωk, the displacement is extended with minimal regularizer energy.

To compute a solution to Equation (4.1), only the image data inside Ωk is needed.
The subdomain can be chosen such that the required image data can be loaded com-
pletely into RAM. For the reference image, the required image data can be obtained
by projecting R onto Ωk. For the deformed template image, the deformation has to
be taken into account. We estimate an extension umax = ‖uhist‖max from previously
computed deformations uhist. The template image data is loaded on the extended do-
main ΩTk = [ωk

1,1 − umax, ωk
1,2 − umax] × [ωk

2,1 + umax, ωk
2,2 + umax] (Figure 4.1.1).

The resulting deformations may differ in the overlap Ωk∩Ωj of neighboring pairs k, j
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of subdomains. We compute a weighted sum

u =
N∑

k=1

wk · uk

where · is the element-wise multiplication with a weight vector wk ∈ R2m1m2 ,wk ≥
0,
∑

kwk = (1, ..., 1), to blend the deformations in the boundary regions. Blending
strategies are discussed in more detail in Chapter 5.

This simple subdomain-based registration can be computed entirely on local data,
which reduces the required memory. An estimate of the memory reduction can be
obtained by the following calculation, assuming that the required memory depends
linearly on the size of the image data. One whole slide image of 100 000 × 100000
pixels requires approximately 10 GB of memory to store the image only (see Chap-
ter 2.9). We use this number as a lower bound and neglect the additional storage for
themultilevel representations and the deformation. In comparison, an image subdo-
main of 10 000 × 10000 pixels needs 100MB ofmemory, which is only 1 percent of the
original memory requirement. Amore detailed analysis of thememory requirement
of the subdomain-based approach is made in Chapter 4.2.3.

The disadvantage of this approach is its locality: Since only local registration prob-
lems are solved, information outside of the subdomain is not considered. Most im-
portantly, subdomains with low contrast or consisting of image background cannot
rely on global regularization as they would in a global registration. At the interface
between the subdomains, the lack of global information can lead to a mismatch of
the deformation. We address these properties in experiments in Chapter 6.1.

4.1.3 Different Resolutions of Deformation and Images

Storing the discretization of the deformation at image resolution would require the
same number of variables as in a full-resolution image. Depending on the data type,
the required storage space in memory would even be higher. Aiming for a lowmem-
ory footprint, we choose to represent the deformation by an interpolation function
based on a coarse grid of coefficients. Low-resolution grids are used in some regis-
tration software packages such as NIFTYREG [Mod10], but some argue that a higher
number of coefficients leads to a more accurate registration [Man16].

Throughout the registration, we optimize the objective function with respect to this
fixed number of coarse grid coefficients. The disadvantage of such an interpolation
strategy is that this kind of deformation can not represent nonlinearities that are on
a smaller scale than the distance between two nodes of the coarse grid.

Having a coarse deformation grid combined with a fine image grid can be motivated
by an analogy to parametric registration. Here, even fewer transformation parame-
ters are optimized. As long as the deformation model has sufficient degrees of free-
dom, a higher image resolution leads to a better match in the registration [Zha16].
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A registration with respect to a fixed low-resolution deformation grid can be inter-
preted as a parametric registration, where interpolation is used to derive a global
deformation from a small number of parameters.

Another option would be to use an adaptive strategy, such as presented by Haber,
Heldmann, and Modersitzki [Hab07b]. The authors propose an adaptive approach
that discretizes the image and the deformation in a tree structure, which is refined
adaptively during the optimization. Such an adaptive strategy could be an extension
of the method that we propose in this thesis.

In the following, we denote the number of points of the deformation grid
xD ∈ R2·(m1·m2) bym1 ×m2 and the number of pixels in the image byM1 ×M2, with
M1 � m1 andM2 � m2, defined on the image grid xI ∈ R2·(M1·M2).

When evaluating the deformed template image, an interpolation of the deformation
grid onto the image grid is necessary. We implement this grid change using a linear
interpolation operator P ∈ R2·m1·m2×2·M1·M2 [Kön18], and write the objective function
as

J(R, T,u) = D(R, T,Pu) + S(u). (4.2)

While the image is discretized on a cell-centered grid, the coarser grid consists of
nodal grid points defined on the same domain such that there is always an outward
deformation node for each image node (Figure 4.1.2). To be able to decompose the
domain into subdomains later, we construct the grids such that each cell of the image
grid is contained in one cell of the deformation grid (Figure 4.1.2).

Formally, the deformation grid is defined as

xD =
(
1m2 ⊗ xnodal

1D,1 , xnodal
1D,2 ⊗ 1m2

)
∈ R2·(m1·m2) where (4.3)

xnodal
1D,d = (ωd,1 + hD · i)i=0,...,md−1 ∈ Rmd , d ∈ {1, 2}

where h is the width (and height) of a quadratic deformation grid cell and (ω1,1,ω2,1)
is the upper left corner of the reference image domain Ω (see also Chapter 2.5). A
matching image grid xI for the above deformation grid can be written as

xI =
(
1M2 ⊗ xcc

1D,1, x
cc
1D,2 ⊗ 1M2

)
∈ R2·(M1·M2) where (4.4)

xcc
1D,d =

(
ωd,1 + hI · (i+

1
2
))

)
i=1,...,md

∈ Rmd , d ∈ {1, 2}

and the operator Pmaps from xD to xI. To ensure that the cells of the image grid xI
do not intersect with the cells of the deformation grid, the image grid is defined on
the same domain and the width and height of the image grid cells
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4.1 Division of the Registration Problem into Smaller Subproblems

Figure 4.1.2: Coarse nodal grid (red) combined with a fine cell-centered image grid
(black). The size of the deformation grid cells is four times the size of
the image grid cells in each dimension. M = (16, 32),m = (5, 9).

hI =
hD
n
, n ∈ N

is set to an integer fraction of hD. This is important to be able to partition the domain
for subdomain-based processing.

When evaluating the template image with respect to a coarse deformation, we make
use of the continuous image model. The image T is a representation of the underly-
ing image data, and its values are obtained by interpolation at arbitrary points. In
addition, we use a multiresolution approach [Mod09, pp. 40-41], where the under-
lying pixel data is smoothed and downsampled to match the image grid resolution
approximately.

When computing the derivative of the objective function (Equation 4.2), the trans-
pose of the prolongation operator is needed such that

∇J(R, T,u) = ∇D(R, T,Pu) +∇S(u) (4.5)

= PT∇PuD(R, T,Pu) +∇S(u), (4.6)

where ∇PuD is the gradient of D evaluated on the image grid. PT is the innermost
derivative of∇D(R, T,Pu).
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4 A Novel Approach for Combined Local and Global Image Registration

Compared to a low-resolution registration with an equally spaced deformation grid
(hD = hI), higher image resolution is used to compute the gradient of the distance
measure. Therefore, finer image structures contribute to the computation without
the need to store a full-resolution deformation grid. The new subdomain registration
approach proposed in the next chapter uses this combination of low-resolution de-
formation and high-resolution images to compute a simultaneously local and global
image registration.

4.2 Combined Local and Global Registration (CLG)

Wehave established afirst purely subdomain-based registration approach in Chapter
4.1.2 and discussed the advantages of global regularization in Chapter 2.8. In this
chapter, we extend the purely local approach with a coarse global-resolution term.

When applying a domain decomposition approach to the registration problem, in-
formation needs to be distributed between subdomains after each optimization step
(see Chapters 3.2 and 3.1.4). For each step of the Newton (Chapter 2.6.1) or L-BFGS
method (Chapter 2.6.2), a linear system has to be solved that depends on the results
of the previous iteration. Thismeans that in each step of the iteration, updates are re-
quired from outside the current subdomain. In a domain decompositionmethod, the
values of the boundary region are communicated between nodes whenever needed.
While this is possible on a multi-node cluster system, it cannot be done on a single
machine, where not all subdomains can be processed simultaneously.

This constitutes the dilemma that we address in this thesis: A high-resolution reg-
istration is more accurate but not globally feasible on a single workstation. On the
other hand, global regularization improves the quality of the deformation, especially
in regions, where the image contrast is low. We propose a new method called com-
bined local and global registration (CLG). The new method seeks a compromise be-
tween local accuracy and global regularization by combining a coarse global and a
fine local registration problem in one objective function.

4.2.1 Extension of the Objective Function

The CLG methods computes a set of global deformations that are combined into one
final deformation in a second blending step (Chapter 5). Table 4.1 lists the method’s
in- and output.

The new method can be written formally as the repeated minimization of the local
objective function

JCLG(uk) =
[
D(Rk, Tk,uk)

]
Ωk

+

[
D(R0, T0,uk)

]
Ω\Ωk

+ S(uk) (4.7)
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4.2 Combined Local and Global Registration (CLG)

Table 4.1: In- and output of the CLG registration method.

Input
R0 : Ω 7→ R, T0 : R2 7→ R, T0,R0 ∈ I reference and template image, coarse

resolution
Rk : Ωk 7→ R, Tk : R2 7→ R,
Tk,Rk ∈ I, k = 1, . . . ,N

reference and template subdomain
images (N subdomains in total),
high-resolution

I ⊂ C0(R2) space of image interpolation functions
Ω, Ωk, k = 1, . . . ,N reference and subdomain domains
u0 ∈ R2m1m2 discrete initial displacement, acquired

using a conventional nonlinear
registration

D : I2 × R2m1m2 7→ R distance measure
S : R2m1m2 7→ R regularizer
Output
uk ∈ R2m1m2 , k = 1, . . . ,N global displacement computed using

high image resolution in subdomain k
uCLG ∈ R2m1m2 global displacement combined from all

uk, k = 1, . . . ,N

for each subdomain k = 1, . . . ,N where

Tk(xi) = interpolate(xi, Tk),
T0 ∈ Rm1×m2 is low-resolution image data on Ω, and
Tk ∈ Rn1×n2 is high-resolution image data

associated with the subdomain ΩTk .

The notation is used analogously for the reference images R0 and Rk, respectively.
The Problem 4.7 is solved independently for all subdomains Ωk, each computation is
embedded in a multilevel framework and uses the result of a coarse global registra-
tion as an initial guess (Algorithm 4.2.1).

The difference to a coarse global registration is the partition of the distance mea-
sure into two discretizations: a coarse global term and an additional local data term
[D(Rk, Tk,uk)]Ωk . The remainder of the multilevel registration framework remains
unchanged. Compared to the preliminary, purely local approach (Equation 4.1), the
additional global distance term [D(R0, T0,uk)]Ω\Ωk is added such that (coarse) image
information from the entire domain is included in the computation. In Chapter 3.2.4,
we found that a coupling between the subdomains is necessary for the convergence
of a domain decompositionmethod. The additional global data term in CLG achieves
such a coupling between the local subdomain and the global optimization problem.
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4 A Novel Approach for Combined Local and Global Image Registration

Algorithm 4.2.1 CLG

1 # solve a coarse registration, obtain u0

2 J0(u0) = D(R0, T0,u0) + S(u0)
u0−→ min

3 for k=1, ..., K:
4 # solve the nonlinear registration problem (4.7), using a

multilevel approach and uo as initial guess

5 JCLG(uk)
uk−→ min

6 # blend local results
7 uCLG = blend(uk, k = 1, ...,N) (Chapter 5)

Each local registration problem results in a globally smooth displacement where the
respective subdomain region has been registered using a fine image resolution. Since
the optimization problems in Step 2 can be solved independently, the for-loop could
be easily parallelized.

We note that in contrast to the preliminary subdomain-based approach, the CLG ob-
jective function can be interpreted as a different discretization of the original vari-
ational image registration problem 2.1. Each uk is a global solution to a different
discretization of the original large-scale image registration problem. The interpola-
tion error of the images at a point x ∈ R2 is lowest on the corresponding subdo-
main x ∈ Ωk and, therefore, the corresponding solution uk is selected for this point.
To form one global displacement, the individual solutions for each subdomain are
blended in a final step. We discuss different blending strategies in Chapter 5, the
simplest of which is to copy the local part of each subdomain’s displacement into
a global displacement without modification. This simple combination is also called
“gluing” [Dol15, p. 3] and is well suited to analyze the CLG registration (4.2.4) as it
does not alter the locally computed displacements.

4.2.2 Relation to Domain Decomposition Methods

The presented approach combines different ideas discussed in earlier chapters. In
domain decomposition, two-level approaches that reduce the necessary communica-
tion between nodes by solving an intermediate problem on a coarse space (Chapter
3.2.4). If we interpret the CLG method as a one-step ASPIN [Cai02] (Chapter 3.2.3)
variant, the coarse pre-registration is such a coarse-space step.

In the ASPINmethod, independent nonlinear problems are solved locally, and the so-
lution is applied as a preconditioner for the larger global problem. The CLG method
utilizes the idea of solving local nonlinear problems. Instead of solving the exces-
sively large global problem in a second step, we globalize the local problems by si-
multaneously optimizing a coarse global distance measure.

In the nonlinear Schwarz methods Newton–Schwarz and NKS (Chapters 3.2.2), in-
termediate results are communicated between subdomains by repetitively solving
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4.2 Combined Local and Global Registration (CLG)

local problems and transferring the information through boundary conditions. If
these methods were executed on a single computer, the image data would need to
be loaded from disk many times, which is time-consuming. In the CLG method, each
local nonlinear problem is only solved once. This shortcut leads to a solution that is
different from the original problem and whose properties are examined in Chapter
4.2.4. Most importantly, the local solutions differ at the subdomain boundaries. We
compensate for this difference by using a blending method described in Chapter 5.

4.2.3 Memory Requirements and Computation Time

By decomposing the large-scale registration problem into independent smaller sub-
problems, the required memory is reduced such that the problem can be solved on a
single computer. The CLGmethod has about twice thememory footprint of a conven-
tional low-resolution registration. Assuming an image size ofM ×M pixels for both
the subdomain images (Rk, Tk) and the coarse resolution global images (R0, T0) and
a deformation grid size of m × m, the occupied memory of each registration com-
ponent can be found in Table 4.2. The number of pixels in the subdomain images
corresponds to the coarse-resolution images plus an overlap. With this choice, the
two distance terms that contribute equally in (4.7), represent a similar number of
pixels. We assume an overlap of 25% of the subdomains and an additional overlap
of 10% of the template subdomain. These values are used in the implementation of
the experiments in Chapter 6.1.

Table 4.2: Memory requirements of the major components of a single level CLG reg-
istration. The memory growth rate of the algorithm isO(M2 +m2), where
coarse and subdomain images have a size ofM2 pixels andm2 is the num-
ber of nodes in the displacement.

Component Number of Variables Stored

Global Distance
Measure
[D(R0, T0,uk)]Ω\Ωk

R, T M2 each

∇T 2M2

∇D 2M2 (SSD)
5M2 (NGF)

Subdomain Distance
Measure
[D(Rk, Tk,uk)]Ωk

(same as global +
overlap)

11.0M2 (SSD) / 16.7M2 (NGF)

Regularizer BTBu 2m2

Optimization u 2m2

s 2m2

CG method 4m2[Saa03, p. 200]
Total ≈ 25.7M2 + 10m2 (NGF)

≈ 17.0M2 + 10m2 (SSD)
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4 A Novel Approach for Combined Local and Global Image Registration

Due to the two distance terms that evaluate similarly sized images, the memory re-
quired to store the images and associated variables doubles compared to a coarse-
resolution registration. The memory required to store the displacement and its as-
sociated variables remains unchanged. The memory growth rate of the algorithm
remains O(M2 + m2), where M2 and m2 are the number of elements of the images
and the displacement, respectively.

A single-level registration with NGF distance measure of two 10000 × 10000 pixel
images (coarse resolution) and two equally sized subdomain images with a displace-
ment size of 129 × 129 requires approximately 20.6 GB ofmemory for the components
in Table 4.2.

This required memory is independent of the number of subdomains that the image
domain is decomposed in. Therefore, the maximum size of the full image in the CLG
method is not restricted by the availablememory. However, a coarser representation
of the image in Ω\Ωk leads to a larger discretization error that will also influence the
registration result inside Ωk. One approach to minimize such an error is to construct
a pyramid of nested subdomains with increasingly fine discretizations.

Most of the memory is consumed by storing the images and image-based interme-
diate values: The image data for images R and T is stored in vectors T ∈ R100·106 ,
R ∈ R100·106 with 10 · 106 values each. For the computation of the distance measure,
we store the derivative of the image ∇T in a vector of size 200 · 106, which contains
the derivative in the first and second dimensions. We also store the non-zero partial
derivatives in the NGF computation (∇D, Equation 2.9) for faster computation. For
each pixel in the reference image, five values have to be stored to compute the short
finite differences, resulting in 5 · 100 · 106 values. In sum, 900 · 106 values are stored
in the computation of the NGF distance measure of the coarse images.

For the subdomain images, the same components are added, but the image size is
larger due to the overlap. The reference image is extended by 25%, the template im-
age by an additional 10% to account for possible deformations, resulting in a 37.5%
increase. In total, 1668.75 · 106 values are stored to compute the subdomain NGF dis-
tancemeasure. 0.5 ·106 values are used to store the low-resolution displacement grid
u, the update s, and intermediate values in the Conjugate Gradient method [Saa03,
p. 200]. Together, coarse image, subdomain image, and grid amount to 2569.27 · 106
values for an NGF registration. If we store all values in double precision, each value
consumes 8 bytes, resulting in a total memory consumption of 20.6 GB. Without ad-
ditional subdomains, only 7.2 GB of memory are required.

We note that the derivatives could also be computed on the fly, which would reduce
the memory consumption in exchange for additional computations, see [Kön18] for
an analysis. Furthermore, not all the values need to be stored in double precision
such that memory consumption could be reduced in exchange for numerical pre-
cision. Reduced precision could potentially result in slower convergence and in-
creased computation time. However, these measures require a re-implementation
of many of the computations and—more importantly—they do not scale if the image
size increases further. We therefore focus our attention on the CLG decomposition
approach.
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4.2 Combined Local and Global Registration (CLG)

The computation time of the algorithm depends on the number of iterations of the
optimizer and the duration of each step. Since computation time is not our primary
interest, we settle for a rough estimate of the computation time per iteration. To com-
pute a total computation time, we assume a fixed number of Gauß–Newton iterations
the coarse registration and for each subdomain. Under these assumptions, the aver-
age computation time only depends on the sizes of images and displacement. The
increase of the computation for the CLG registration compared to the coarse regis-
tration is composed of two parts: increased computation time per subdomain and
increased computation time due to the loop over all subdomains.

The computationally intensive steps in each subdomain’s registration are a) depend-
ing on the image size M for the computation of the derivatives of the distance mea-
sures, and b) depending on the displacement sizem to compute the derivative of the
regularizer and the Gauß–Newton or L-BFGS update step. In the CLG method, an ad-
ditional distance term is evaluated. In theworst case, the image sizeM ismuch larger
than the displacement sizem, and step b) can be neglected in favor of a). In this case
and assuming no additional overlap, the computation time per subdomain would be
a bit more than twice as long as in a purely coarse-resolution registration.

If the subdomains are computed sequentially on one computer, the duration will in-
crease linearly with the number of subdomains. A CLG registration with N subdo-
mains will take on average circa 2N times the time of a coarse registration that uses
the same image sizes.

We conclude with an example: Consider a coarse resolution image withM×M pixels
and a fixed-size grid with m × m nodes. If we increase the image resolution by a
factor of 4 in each direction such that the number of pixels of the fine image isM4 ×
M4, M4 = 4M, the required memory grows quadratically by a factor of 16. If instead
the CLG registration is used, the memory requirement is only doubled. The saved
memory is paid in computation time.

A precise estimate of the computation time is difficult to asses since it largely depends
on the convergence of the CLG objective function. The CLG iteration starts with an
initial guess froma coarse registration and only differs in the local subdomain region.
In the coarse region, we do not expect large changes in the initial guess.

As an approximation of the computation time, we compare the number of compu-
tations required in one iteration. In each iteration of each subdomain, ca. 2.7 times
the number of pixels have to be evaluated due to the additional overlap. Since the
evaluation of the distance measure is responsible for the largest part of the compu-
tation, we assume that one iteration takes 2.7 times longer than one iteration using
coarse images. Assuming an equal number of iterations for convergence for coarse
and CLG registration, the additional time by iteration has to be multiplied by the
number of subdomains. Under these assumptions, a CLG registration will take about
2.7 · 16 = 43.2 times longer than a coarse registration.

If we continue to assume that the computation time of the registration depends lin-
early on the number of pixels in the images, a fine global registration takes 16 times
the time than the coarse registration in the above setting. Therefore, a lower bound
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4 A Novel Approach for Combined Local and Global Image Registration

for the increase in computation time from global fine to CLG registration is 2.7.

Due to the many assumptions of which somewill certainly not hold in practice, these
numbers can only be a rough estimation of the computation time. In the analysis of
the ASPINmethod (Chapter 3.2.3), Cai and Keyes [Cai02] argue that subdomain-based
approaches can convergemore quickly as local nonlinearities can be computedmore
efficiently. While the CLG registration optimizes a global deformation, the objective
function is only aware of high-resolution information in the local subdomain. Similar
effects could occur here, possibly reducing the computation time for the CLGmethod.
Since computation time is not our primary interest, we refrain from a further anal-
ysis here and refer the reader to the practical results of the experiments in Chapter
7.5.3. However, these show an increase in computation time by a factor of 12 to 27
for CLG registration, which is higher than estimated above.

A possible cause for the slower computation could be in the coarse image distance
term, which is optimized along with each subdomain but which we expect to change
only little during the subdomain iterations. This could have the opposite effect of
the one observed in the isolated ASPIN iteration: small updates in the coarse image
regions could negatively impact the line search, and increase the number of Gauß–
Newton iterations.

We proposed a fixed overlap of 25% of the size of the subdomain in each dimension.
Dryja andWidlund [Dry94] have found that for Schwarz–Alternating algorithms and
similar, derived methods, a more extensive overlap leads to a better convergence
rate. However, they find that solving the resulting local problems is more expensive
if the overlap is larger, see [Dry94], and the references therein. From these results,
we expect that a more extensive overlap would lead to a smaller difference of the
deformation in the overlap region at the cost of a more expensive computation of
each subdomain.

4.2.4 Properties of the Registration Result

The CLGmethod has different properties than a coarse global, fine global, and purely
local subdomain-based method. Locally, the CLG method uses the same image res-
olution as the fine global registration. Therefore, we expect a similiar registration
accuracy. The higher discretization error outside of the local subdomain may lead to
an additional error. Furthermore, a mismatch of the deformations at the subdomain
borders is to be expected.

We confirm these properties in numerical experiments in academic (Chapter 6.1) and
realistic (Chapter 7) images.
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High Resolution Accuracy

The displacements uCLG that approximates a fine global registration (uFN) are ex-
pected to be superior to coarse registration (uCRS) in terms of displacement error

‖uCLG − uFN‖2 ≤ ‖uCRS − uFN‖2

and distance measure evaluated on the global, full-resolution images RF and TF

D(RF, TF,uFN) ≤ D(RF, TF,uCLG) ≤ D(RF, TF,uCRS).

Deformation Mismatch at Subdomain Boundaries

For each subdomain, the CLG registration computes a global solution that exploits
the local high-resolution image data to increase local accuracy. Since the displace-
ment for each subdomain is computed independently, a mismatch at the subdomain
boundaries can occur. This effect is especially prominent if the image contains low-
contrast areas without structuring image information. This kind of mismatch can be
observed in a purely local subdomain registration but also—less prominently—in the
new method.

Therefore, we expect a lower irregularity measure S

S(uCLG) ≤ S(uPTCH)

in the displacements after CLG registration than after a purely subdomain-based reg-
istration (uPTCH).

The mismatch can be reduced by letting subdomains overlap, as shown in Fig-
ure 4.1.1, such that a larger portion of the image data is shared between the
subdomains. The remaining mismatch is compensated by using a suitable blending
strategy, as described in Chapter 5.
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During CLG and purely local subdomain image registration, the local registration
problems are solved independently, such that the individual solutions may differ in
the overlap region. In this chapter, we propose to use a blending method that incor-
porates all local solutions into one global solution. To avoid re-accessing the image
data, we use blending as a pure post-processing step that acts on the deformation
only.

Based on the CLG registration scheme, we require a blending method to have the
following properties.

1. The blending should preserve the homogeneity of neighboring solutions that
occurs if high-contrast image information is available in the overlap.

2. If a mismatch between the deformations occurs at the subdomain boundaries,
the method should provide a smooth solution in terms of irregularity.

3. The overall goal for the deformation is to be close to the optimal (fine global)
solution.

Previously proposed methods to combine independently computed deformations ei-
ther rely solely on the pre-computed deformation or also use image data. In the first
case, the disagreeing deformations are replaced by smoothly filling the disagreeing
region based on values from its vicinity [Mod10; Mue12] or multiple global deforma-
tions are combined by averaging [For11]. In the second strategy, the authors com-
pute an optimal deformationwith respect to image distance and smoothness [Lem08;
Hei16]. We review these approaches in Chapter 3.3.

While the first strategy can be directly applied to the blending problem, the inclusion
of image distance requires the image data to be re-loaded from disk, which we want
to avoid given the size of the dataset.

We therefore compare two methods: The first approach uses a weighted sum of the
overlapping displacements where the weights depend on the distance to the subdo-
mainboundary and canbe interpreted as amodification of the averaging approach in
[For11] with different weights. The second approach, local regularization, is similar
to the UnfoldReg approach [Mue12], except that we use the curvature regularization
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as smoother instead of resorting to B-Splines. Our regularization approach reuses
the regularizer from the original registration problem and is implemented as a con-
straint optimization problem. The result, therefore, shares the physical smoothness
properties with the original registration result, which does not apply when using B-
Splines independently of the registration problem.

In addition, we combine the two approaches to balance irregularity and distance to
the local solutions. We also propose a new global blending approach that produces
results with very low irregularity.

We demonstrate the different blending methods with respect to the above goals us-
ing experiments based on a purely local subdomain registration result (Figure 5.1.1,
referred to as “Deformation 1”) as these show a relatively large mismatch in a low
contrast region from a realistic scenario. In Chapter 6.2, experiments with addi-
tional deformations (Deformation 2 and 3) that result from CLG registrations are
studied. We conclude in Chapter 6.2.4 and recommend the local regularization ap-
proach for blending with user input and the weighted sum approach as a fully auto-
matic method.

5.1 Combining Deformations without Blending

Without using a blending approach, a straightforward way of computing a global
solution from multiple local solutions is to restrict each local deformation to a non-
overlapping subdomain. The global deformation is then just the ensemble of the
partitions.

Formally, we write the global combined solution uglobal ∈ R2m1m2 based on the local
solutions uk ∈ R2m1m2 as

uglobal =
N∑

k=1

wk · uk, where wki =

{
1 if xi ∈ Ω<

k
0 otherwise

and wki is the i-th element of wk ∈ R2m1m2 . The vector wk is the discretized char-
acteristic function of the non-overlapping subdomain Ω<

k and “·” is the element-wise
multiplication of the twovectors. Thenon-overlapping subdomainΩ<

k canbederived
by shrinking Ωk = [ω1

k,ω
2
k]× [ω3

k,ω
4
k] to

Ω<
k = [ω1

k + ϵx,ω2
k − ϵx]× [ω3

k + ϵy,ω4
k − ϵy]

as shown in the bottom of Figure 5.2.1 in the one-dimensional case. The shrinkage
parameter ϵx, ϵy are chosen such that the subdomains Ω<

k , k = 1, ...,N with
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Reference R Template T

purely local subdomain registration result, combined without blending

Figure 5.1.1: Deformation 1. Image pair with a low-contrast region after purely local
subdomain registration. Top: Reference and template image. Bottom:
Combined solutionwithout blending (red) plotted over local subdomain
solutions from the left (L, blue) and right (R, orange) subdomain and the
optimal solution yfine (gray) from a fine global registration. The local
and optimal solutions are only shown where different from the com-
bined solution. The difference in the local results (L, R) leads to a folded
deformation in the overlap region in the center of the image. Also, a
difference between the combined deformation and the optimal regis-
tration result can be observed. The goal of the blending approach is to
forma smooth deformation by removing the artifactswhilemaintaining
the low displacement error inside the subdomains.
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Figure 5.2.1: Blending by weighted sum. One-dimensional projection of the overlap
of two subdomain domains Ωj = [−4, 1] and Ωk = [−1, 4]. The contri-
bution to the global solution to each subdomain is determined by the
respective weight vectors wj and wk.

∫
Ω<
j ∩Ω<

k

dA = 0 ∀j 6= k, 1 ≤ j, k ≤ N and

N⋃
k=1

Ω<
k = Ω

only overlap at the boundary but still cover the whole domain Ω. We use square
subdomains and choose the discretization such that subdomain boundaries of Ωk
and Ω<

K are always located in between two points of the deformation grid with equal
distance to the neighboring grid points.

The disadvantage of this method becomes apparent in the example in Figure 5.1.1,
where the results of the purely local subdomain registration are combined. If there
is a mismatch of the deformation at the subdomain boundary, the combined defor-
mation is no longer smooth. Letting the subdomains overlap during registration, as
in the experiments, can reduce the discrepancy of the deformation. However, the
reduction depends on the structural information in the overlapping area.

5.2 Blending by Weighted Sum

The first proposed blending approach computes aweighted sumof the displacements
in the overlapping region. The weights are based on the distance to the subdomain
border (Figure 5.2.1).
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5.2 Blending by Weighted Sum

We first consider the one-dimensional problem of fusing the subdomains in one row.
The joint deformation uρ of one row of subdomains is computed as theweighted sum

uρ =
∑
k∈ρ

wk · uk

of the deformations uk where k ∈ ϱ are the indices of the respective subdo-
mains. With the subdomains in Figure 4.1.1, the first row consists of subdomains
Ω1,Ω2,Ω3, ... and ρ = {1, 2, 3, ...} are this rows’ indices.

As introduced in Chapter 2.5.1 (Figure 2.5.1), we use the notation

(w)i = wi,wi+m1m2

to address the x- and y-coordinate of theweight stored in the entries i-th and i+m1m2
of the vector w ∈ R2m1m2 . The node i of the displacement corresponds to the grid
coordinate xi.

The weight vector wk ∈ R2m1m2 for subdomain k is defined as

(wk)i = 0 if xi /∈ Ωk (5.1)
(wk)i = 1 if xi ∈ Ωk \ Ωj for all j 6= k (5.2)

(wk)i =
dist(xi, ∂Ωk)

dk,j
if xi ∈ Ωk ∪ Ωj for any j (5.3)

where the distance dist(xi,∂Ωk)
dk,j with

dist(x,M) = inf{‖x− z‖22, z ∈ M} and (5.4)
dk,j = sup{dist(x, ∂Ωk), x ∈ Ωk ∩ Ωj}

is the relative distance to the non-overlapping part of Ωk inside the overlap. All
choices for the wk have to fulfill the partition of unity [Ban00, p. 401] condition

K∑
k=1

wk = 1,

where 1 ∈ R2m1m2 is the vector of ones.

While the above piecewise linear weight function is continuous, its derivative is dis-
continuous on the boundaries ∂Ωk, k = 1, ...,K. If smoothness of the blending func-
tion is required, the distance function (5.4) can be embedded into trigonometric or B-
Spline [dBoo01, pp. 87 ff.] basis functions as reported in [Rok99; Oht03] for blending
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5 Blending of Local Deformations

Combined without blending

weighted sum

Figure 5.2.2: Deformation 1 from Figure 5.1.1, combined without blending (top) and
blending by weighted mean (bottom). Blended solution (red) plotted
over local subdomain solutions (blue, orange) and optimal solution yfine
(gray).
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5.3 Blending by Regularization

local solutions of decomposed partial differential equations. We use the piecewise
linear basis function for its simplicity in our experiments.

The above computation is repeated for all rows of subdomains. To obtain a result
in two dimensions, the weighted sum of the overlap between the rows is computed
in the same way in a second step. The resulting deformation is visibly smoother
than the glued solution and no foldings are detected in the experiment (Figure 5.2.2).
However, a discrepancy to the optimal global solution is clearly visible.

We originally proposed this weighted averaging approach to be used with the purely
local subdomain registration [Lot16a].

5.3 Blending by Regularization

The goal of a blending strategy is to reduce the irregularity in the final solution. In
the computation of theweighted sumapproach, a smoother deformation can be com-
puted from two independent deformations, given that both of them are smooth. Ex-
tending the work in [Mod10; Mue12], we propose to increase regularity in the result-
ing global deformation by explicitly formulating the requirement for smoothness in
the computation of the final solution.

Global Regularization

As an intermediate step towards a locally regularizing blending method, we first es-
tablish a method to blend the deformation using global regularization. Similarly to
the variational image registration algorithm described in Chapter 2, the proposed
global blending balances irregularity and distance to the local subdomain displace-
ments.

To find the blended solution, we define an objective function Gglobal as

Gglobal(u) = uTBTBu+ β
N∑

k=1

(uk − u)TIwk(uk − u)→ min (5.5)

where Iwk ∈ R2m1m2×2m1m2 is a diagonalmatrix that restricts the influence of uk to the
domain Ωk. The diagonal of Iwk = diag(

√
wk) can be any of the previous choices for

wk. The parameter β is chosen manually, based on the appearance of the resulting
deformed grid and its irregularity. The parameter is used to determine the compro-
mise between regularization and goodness of fit to the local subdomain solutions.

In order to find the optimal global deformation, we compute the first derivative of
Gglobal with respect to u
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5 Blending of Local Deformations

solution to (5.5) for β = 35 · 10−5.

solution to (5.5) for β = 5 · 10−2.

Figure 5.3.1: Deformation 1 from Figure 5.1.1 after blending by global regularization
for parameters β = 35 · 10−5 and β = 5 · 10−2. Blended solution (red)
plotted over local subdomain solutions (blue, orange) and optimal solu-
tion yfine (gray). Global regularization modifies the deformation outside
of the overlap region. Depending on the parameter β, low irregularities
can be reached.
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5.3 Blending by Regularization

∇Gglobal(u) = 2BTBu+ β
N∑

k=1

Iwk(uk − u)

and solve the resulting linear system

(
2BTB+ β

N∑
k=1

Iwk

)
u = β

N∑
k=1

Iwkuk.

We note that minimizing G is computationally less expensive then solving the regis-
tration problem in (4.7) because no large-scale image data is involved in the compu-
tation.

For illustration, Figure 5.3.1 shows the blended solutions for two different values of
the parameter β. Both have been determined by a parameter search optimizing a)
the displacement error and b) balancing displacement error and SSD in the resulting
image pair.

The parameter β = 3.5 · 10−5 yields the smallest displacement error with respect to
the optimal solution calculated from a global registration. However, the regulariza-
tion affects the entire domain, which is undesirable as the confidence in the registra-
tion in the central subdomain area is high.

This problem is also manifested in a high SSD value for this case. The second param-
eter β = 0.2 results in a global solution that is closer to the subdomain solutions. It
was determined by starting with a large value for β and relaxing the weight on the
displacement data term until the overall SSD is increased by 10% over the solution
of the purely local subdomain registration with blending by weighted sum. We note
that these strategies can only be used when an optimal solution is known.

We have used this global regularization approach in combination with a purely local
subdomain registration of differently stained whole slide images [Bul19].

Local Regularization

Global regularization as a blending strategy has the drawback that the deformation
is also altered outside the overlapping region. Since no image data is used in the
blending step, we prefer to preserve the local registration result. When registering
subdomains, the confidence in the local solution is higher inside the subdomain since
the influence ofmissing remote subdomains decreaseswith spatial distance (Chapter
2.8).

The idea of local regularization is similar to earlier approaches [Mue12], where B-
Spline interpolation is used to fill regions in which foldings corrupt the deformation.
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5 Blending of Local Deformations

solution to (5.6) with β = 0.

solution to (5.6) with β = 0.01.

Figure 5.3.2: Deformation 1 from Figure 5.1.1 after blending by local regularization
with (top) and without (bottom) local data term. Blended solution (red)
plotted over local subdomain solutions (blue, orange) and optimal solu-
tion yfine (gray).
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5.3 Blending by Regularization

We extend their approach with the weighted sum from Chapter 5.2. The local objec-
tive function

Glocal(u) =uTBTBu

+ β
N∑

k=1

(u− uk)TIwk(u− uk)→ min

s.t. ui =(uk)i if xi ∈ Ωk \ Ωj,∀ k, j with k 6= j (5.6)

aims to compute a compromise between regularity and goodness of fit to the local
subdomain solutions in the overlap Ωk ∩ Ωj. The additional constraint fixates the
deformation in the inner subdomain region where the subdomains do not overlap.
In the overlap region, the parameter β can be adjusted to balance regularity and
goodness of fit to the weighted solution from the subdomains.

We compute the solution to (5.6) by re-formulating the equality constraints as La-
grangemultipliers [Noc06, pp. 304 ff.] and solving the resulting symmetric system us-
ing a Cholesky factorization [Gol96, p. 144] through Julia’s backslash polyalgorithm¹
[Bez17].

We re-write the system (5.6) as

Jlocal(u) = uTBTBu

+ β
N∑

k=1

(u− uk)TIwk(u− uk)

+ λT Iλ (u−
N∑

k=1

Iwkuk) (5.7)

where λ ∈ Rm̂ and Iλ ∈ Rm̂×2m1m2 is the projector onto the m̂
2 grid points associated

with the non-overlapping part of the grid. The matrix Iλ contains the rows i and
i+m1m2 of the identity I ∈ R2m1m2×2m1m2 , for which the corresponding grid point

xi ∈ Ωk \ Ωj,∀ k, j with k 6= j

is located in the non-overlapping part of a subdomain k = 1, ...,N. The solution to
(5.6) is computed by solving the resulting linear system[

A ITλ
Iλ 0

] [
u
λ

]
=

[
β
∑N

k=1 uk
Iλ
∑N

k=1 Iwkuk

]

where A = BTB+ β
∑N

k=1 Iwkfor u and λ.

The choice of the parameter β determines the regularity of the solution. Setting β = 0
ignores the displacement data term and applies a pure regularization in the overlap

¹Julia’s backslash polyalgorithm can be found in the official source code repository at
https://github.com/JuliaLang/julia/blob/v1.2.0/stdlib/SparseArrays/src/linalg.jl#L1358 (accessed
25.11.2019)
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5 Blending of Local Deformations

region. This approach resembles an earliermethod [Mue12] replacing B-Splineswith
a deformationmodelmatching the registration’s regularizer. In the absence of image
data, smoothly filling the overlapping area based on the values from its vicinity is
the best choice in the example shown in Figure 5.3.2, top. For higher values of β,
the solution gets closer to the one obtained by the arithmetic mean. In the second
example (Figure 5.3.2, bottom) the solution with an arbitrary β = 0.01 is shown to
illustrate the effect of the additional displacement term.

In the following Chapter 6.2, we compare the presented blending approaches quan-
titatively in three experiments.
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6.1 Numerical Experiments for CLG Registration

The combined local and global registration produces results that are different from
fine global, coarse global, and from a purely subdomain-based registration. In the
following chapter, we focus on these properties and perform experiments to illus-
trate these properties. We further apply the new method to large-scale whole slide
images as they occur in digital pathology in Chapter 7.

We construct different test images T based on histological whole slide images and
artificial image data (Table 6.1). The corresponding second image of an image pair is
computed based on a generated true displacement uT (Chapter 6.1.1) such that

R(x) = T(uT + x).

We then register these data sets using different algorithms and compare the resulting
registration results using three criteria: image distance, regularity of the deforma-
tion, and difference to the optimal deformation.
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6 Results of Numerical Experiments

Figure 6.1.1: True deformation applied to the test images in Figure 6.1.2 to form the
reference images. The artificial deformation (black) hasminimal energy
with respect to the regularizer given points with no deformation (cir-
cles) and pre-determined displacement (arrows). An undeformed grid
(light blue) is shown for comparison.

6.1.1 Mathematical Setup of the Deformation

The artificial true deformation is generated by specifying a desired movement for
some points of the displacement grid and computing a smooth interpolation between
these points with minimal curvature energy.

Generating images using an artificial displacement has the following advantages:
First, a true one-to-one correspondence between template and reference image can
be guaranteed, and the optimal image distance between reference and deformed
template image is zero. In real-world registration tasks, reference and template im-
ages are either made at different points in time or with different modalities such
that both images differ even under optimal transformation. Second, the artificial
displacement can be used to determine the parameters of the registration algorithm
such that its solution is as close as possible to the true displacement.

In the following experiments, we construct a displacement that enlarges the central
region in the template image. Therefore, we constrain four outer grid points to re-
main at their original positions and four inner grid points tomove towards the center
of the domain (Figure 6.1.1).

A smooth displacement uT ∈ R2m1m2 is then computed by formulating an optimiza-
tion problem with the curvature regularization energy as objective function and re-
quiring the displacement of the points above as constraints following the general
idea in [Fis03a; Hab09]. The resulting optimization problem can be written in a La-
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6.1 Numerical Experiments for CLG Registration

grangian formulation [Noc06, pp. 304 ff.]

L(uT, λ) =
1
2
uTTB

TBuT +

N∑
i=1

λi(lTi uT − di)

where the vector li ∈ R2m1m2 encodes the position of the i-th constraint coordinate in
linear coordinates in a vector

li = (0, ..., 0, 1 , 0, ..., 0)T
↑
ξ

that is one at exactly one position ξ and zero otherwise.

The displacement corresponding to the position determined in li is stored in di such
that the expression lTi uT − di is zero if and only if the displacement matches the i-
th constraint. The first-order optimality conditions of the constraint optimization
problem (6.1.1) (KKT conditions, see [Noc06, p. 321])

∇L(uT, λ) = 0

lTi uT − di = 0

result in the linear system

Lû = r, where

L =

(
BTB l1, ..., lN

(l1, ..., lN)T 0

)
û = (u, λ1, . . . , λN)
r = (0, ..., 0,d)T

and B is the regularizer matrix of the curvature regularizer (Section 2.5.4). The sys-
tem has a unique solution if the intersection

A ∩ B, with

A = {u | lTi u− di = 0, ∀i}
B = {u |uTBTBu = 0}

of the admissible solutionsA of the constraints and the null space of BTB, B, has one
or no element. The null-space of the curvature regularizer used in this experiment
contains the linear functions. In other words, a unique solution can be found, if a)
the constraints can be fulfilled by exactly one linear function or b) no linear function
fulfills the constraints. In the above example, no linear function matches the con-
straints, and the minimum energy solution with respect to the curvature regularizer
is unique.

The resulting deformation y = uT +x has minimal curvature energy with respect to
the constraints (Figure 6.1.1). This “true” deformation is used to compute the refer-
ence image R = T(y) based on a given template image T. Three different template
images are used to highlight the different properties of the respective registration
methods.
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6 Results of Numerical Experiments

6.1.2 Test Image Data

The test images are taken from a whole slide image of human colon tissue (Fig-
ure 6.1.2). An initial guess of the deformation is computed by a coarse pre-
registration. The image sizes are summarized in Table 6.1.

The image domain Ω of the reference image R is partitioned into two overlapping
subdomains, one on the left side of the image and one on the right side.

Table 6.1: Sizes of the image data and the deformation used in the experimental test
cases.

Object Size

reference image data R 120 × 240 pixels
template image data T 240 × 480 pixels (cropped to 120 × 240)
coarse (downsampled) image data 1

4 of the original resolution
discretized true deformation 31 × 61 grid points

Case 1: Realistic Image Snippet From a Stained Histology Image Containing a
Low-Contrast Region

The first test image pair (Figure 6.1.3) consists of a cutout of an H&E stained whole
slide image of the human colon. The original color image is converted to gray before
processing. The lumen in the center is surrounded by mucous tissue in the left and
right parts of the image.

The image is chosen to observe the effect of global regularization in a low-contrast
image region under realistic conditions.

Case 2: Realistic Image Snippet From a Stained Histology Image Without a
Low-Contrast Region

The second test image pair (Figure 6.1.4) shows an area close to the inside of the colon
wall from the same slide as the image in Case 1. In contrast to the first case, no low-
contrast regions are visible in the selected area.

The image is chosen to observe the dominating effect of the image distance if suffi-
cient contrast is present.

6.1.3 Evaluation Criteria

For each method we compute the deformation error

e(y) = ‖y− yfine‖2
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6.1 Numerical Experiments for CLG Registration

Full Whole Slide Image

Case 1

Case 2

Figure 6.1.2: The test images are taken from a whole slide image of human colon tis-
sue (top). The positions of the test images are highlighted. Case 1 (left
arrow): Part of an H&E stained whole slide image with a low-contrast
region. Case 2 (right arrow): Part of an H&E stained whole slide im-
age without low-contrast region. The whole slide image has been kindly
provided by Dr. Andreas Turzynski, Lübeck. 89



6 Results of Numerical Experiments

Reference R

|T(y0)− R|

Template T

y0 (red) and yfine (black)

Figure 6.1.3: Case 1: Initial deformation after coarse pre-registration. Top row: orig-
inal images be for registration. Bottom row: Difference image after
coarse registration (left), overlay of deformed grid after coarse and fine
registration.

Reference R

|T(y0)− R|

Template T

y0 (red) and yfine (black)

Figure 6.1.4: Case 2: Initial deformation after coarse pre-registration. Top row: orig-
inal images be for registration. Bottom row: Difference image after
coarse registration (left), overlay of deformed grid after coarse and fine
registration.
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6.1 Numerical Experiments for CLG Registration

with respect to the fine global registration. As error measure, we evaluate the over-
all distance to the true deformation in the Euclidean norm. Another choice with a
stronger emphasis on localized errors and outliers would be the uniform norm ‖·‖∞.
However, in ‖·‖∞, smaller global errors produce relatively smaller values. The com-
putation of a landmark error, as in Chapter 7, can be used to focus on specific loca-
tions or if no true deformation is available.

From Chapter 2.5, we compute the irregularity measure

s(u) = ‖Bu‖22
of the displacement to evaluate its smoothness and the remaining image distance

d(y) = DSSD(R, T,Py)

computed at the high-resolution images to evaluate the remaining image difference
available to drive the optimization.

The true deformation that has been used to construct the test images results in an
alignment with zero remaining image distance. However, the solution to the regis-
tration problem is not identical to the true deformation. While the second image is
generated by deforming the first one, not all information from the displacement is
stored in the deformed image. Due to the added regularization term, the true defor-
mation will not result in the minimal value of the objective function.

For the evaluation, it cannot be expected that the true deformation is reconstructed
exactly since the reconstruction is always based on incomplete information. Con-
sider the extreme case of two black images: Here, the identity-deformation would
be optimal with J(x) = 0, independent of the true deformation. The advantages of
the used evaluation outweigh its limitations: First, there is a true one-to-one corre-
spondence between template and reference image such that the image distance can
be compared to the possibility of a perfect match. Second, the resulting deformation
can be compared to the underlying true deformation, and it can be quantified how
well the missing information is compensated by the regularization model.

For an example of the disparity between true and optimal deformation, consider the
example of experiment Case 1 (Table 6.2). The true deformation results in zero dis-
tance D(ytrue) = 0 and an irregularity of S(utrue) = 0.26 (with y = u+ x). Due to the
regularizationweight of α = 2.7, the objective function value of the true deformation
is 0.70. The objective function value after fine global registration is

DSSD(yfine) + αScurv(ufine) =

= 0.003+ 2.7 · 0.256 = 0.69 < 0.70

and lower (98.6 %) then the true deformation. Visually, the differences in the two
deformations is unnoticeable in the experiments (Figures 6.1.5).

We replicate the true deformation as closely as possible by determining the regular-
ization parameter α accordingly for each method. Since all other methods are just
coarser discretizations of the fine global registration, we use the result of the fine
registration as the optimal deformation to which the other three methods are then
compared to.
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6 Results of Numerical Experiments

6.1.4 Evaluation

Compared Methods

For each of the test cases described, the four registrations methods

• coarse (pre-) registration
• fine global registration
• purely local subdomain registration
• combined local and global (CLG) registration

from Chapter 4 are applied.

In each of the registrationmethods, the regularization parameter α balances distance
measure (D) and regularizer (S). The distance measure is discretized with different
image resolutions in each method, potentially altering its value systematically. For
each of the examples below, the optimal parameter α is determined by the parameter
search described in Chapter 2.4. The parameter is determined independently for
each example and each method.

For the CLG and purely local subdomain registration results, the individual subdo-
main deformations are cut in themiddle of the overlap and combinedwithout blend-
ing. This simple method is chosen to demonstrate the differences between the meth-
ods. More sophisticated blending methods are discussed in Chapter 5.

Case 1: Realistic Image Snippet From a Stained Histology Image

Experiment Case 1 highlights the advantages of the new approach in low-contrast
image regions. Comparing the fine global registration to the true deformation (Table
6.2), we note that the fine global solution is close to the true deformation and that the
difference in terms of the error-norm is small compared to the other registrations.
The other methods are compared to the result of the fine global registration.

As expected, the coarse registration is less accurate than the fine registration in terms
of both deformation error and SSD. The coarse registration reaches an acceptable
result considering the low image resolution of only 30 × 60 pixels (Figure 6.1.3).

The results of the subdomain-based registrations can be examined on each subdo-
main separately. In the purely local subdomain approach (cf. Section 4.1.2) the de-
formation of the left subdomain is continued into the right subdomain with zero cur-
vature energy which leads to a strong compression of the deformation (Figure 6.1.5,
third row). In the CLG registration, this undesired compression is prevented by the
additional influence of the low registration image distance (Figure 6.1.5, third row,
right).

Both subdomain-based registrations lead to a similar image distance (Figure 6.1.5,
second row) but differ in terms of deformation error and irregularity: While the
purely local subdomain registration produces a large mismatch at the subdomain
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6.1 Numerical Experiments for CLG Registration

Table 6.2: Quantitative registration results. Case 1 (with low-contrast region): CLG is
closest to the fine global registration in terms of displacement error and
has a lower irregularity than the purely local registration. Case 2 (without
low-contrast region): Due to the presence of image structure in the overlap,
the results of fine global, purely local, and CLG registration show only little
difference. In both cases, all three high-resolutionmethods outperform the
coarse registration. The parameter α is chosen to minimize e(y).

registration α (opt) d(y) e(y) s(u)

Case 1
true deformation 0.000 2.992 0.260
fine global 2.7 0.003 0.000 0.256
coarse global 11.0 2.555 12.179 0.250
purely local 0.6 0.032 86.071 241.382
local & global (CLG) 11.0 0.017 5.462 1.034
Case 2
true deformation 0.000 0.447 0.260
fine global 7.9 0.005 0.000 0.256
coarse global 2.8 6.753 16.542 0.368
purely local 4.5 0.025 0.808 0.265
local & global (CLG) 6.2 0.022 0.693 0.262

boundary, where the deformation differs bymore then two cell lengths, themismatch
in the local & global deformation is only slightly noticeable, and the deformation only
differs by a fraction of a grid cell from the fine global registration result (Figure 6.1.5,
last row). Both subdomain-based methods lead to a similar final image distance that
does not exceed the final distance after fine global registration.

Themismatch at the subdomain boundaries leads to a large irregularity of the purely
local subdomain deformation, which exceeds the irregularity of the fine global reg-
istration by two orders of magnitude.

Case 2: Realistic Image Without a Low-Contrast Regions

In Case 1, a low contrast image region leads to a small gradient of the distance mea-
sure in the respective region. Therefore, regularization is important to obtain a
smooth global deformation. In Case 2 (Figure 6.1.4), there is no such low-contrast
region and therefore, global regularization is less important in this case.

Regarding the registration results, coarse registration is again less accurate than fine
registration. The fine registrationmethods yield similar results (Table 6.2). While the
combined deformations do not differ substantially, the individual subdomain results
of the purely local subdomain and CLG registration illustrate the difference between
the two subdomain-based methods. Beyond the overlap, the deformation of the in-
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6 Results of Numerical Experiments

dividual subdomains continues with minimal curvature energy in the purely local
subdomain registration, while it is close to the result from the coarse registration if
CLG is used (Figure 6.1.6). However, due to the presence of image structure in the
overlap, no visible mismatch occurs at the subdomain boundary.

We interpret the similarity of the fine registration methods as an effect of the large
image contrast in the entire image. The image does not exhibit un-structured re-
gions where the gradient of the image distance is small and where regularization
dominates the objective function. When the image distance drives the registration,
the coupling of the subdomains in the CLGmethod has only little effect, and its result
is similar to a purely local subdomain registration.

6.1.5 Discussion

We compared the new combined local and global (CLG) method to a coarse global
registration and a purely subdomain-based registration. The result of a fine global
registration was used as the gold standard. The coarse registration uses a low image
resolution, but it is capable of computing a natively global deformation. The sim-
pler, purely subdomain-based method is registering at the full image resolution but
lacks global regularization. The CLG registration combines the advantages of both
discretizations to compute a global registration with high-resolution image data for
each subdomain.

In terms of image distance and deformation error, the new CLG method was at least
as accurate as a purely local subdomain registration and always better than a coarse
global registration. While CLG combines its global deformation fromglobal, indepen-
dent subdomain solutions, the newmethod outperforms the purely local subdomain
registration in terms of deformation error and irregularity in cases where the sub-
domain boundary consists of low-contrast image information.

The mismatch of the deformation at the subdomain boundaries is less expressed in
the CLGmethod, but it can still be noticed in caseswhere image information is scarce.

In the absence of low-contrast regions, the CLG and the purely local subdomain regis-
tration lead to similar results in our experiments. Since the CLG registration is more
expensive to compute, a worthwhile extension of the method could be to selectively
use CLG or purely local registration based on an analysis of the subdomain image
data.

In the above experiments, the individual subdomain deformations were cut in the
middle of the overlap and combined without blending. This simple approach was
chosen to highlight the effect of mismatching deformations. In order to produce a
smooth deformation, a blending method from Chapter 5 should be used.
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6.2 Numerical Experiments Comparing Blending Approaches

Table 6.3: Blending results for Deformation 1 from an image pair with a low-contrast
region after purely local registration. All blending methods strongly re-
duce the irregularity. The overall best result is obtained by local regular-
ization with weight β = 0 on the distance to the local deformation.

Blending D(y) ‖y− yfine‖2 S(u)

true deformation 0.000 2.992 0.260
fine global 0.002 0.000 0.255
without blending (purely local
subdomain)

0.006 71.642 155.180

weighted sum 0.006 63.106 3.676
local regularization β = 0.01 0.005 60.889 1.304
local regularization β = 0 0.005 52.261 0.968
global regularization β = 0.2 0.006 62.970 1.736
global regularization β = 3.5 · 10−5 15.411 47.762 0.186

6.2 Numerical Experiments Comparing Blending Approaches

We evaluate the different blending methods based on their effect on the registration
results shown in Figures 5.1.1 (Deformation 1), 6.2.1 (Deformation 2), and 6.2.2 (De-
formation 3). To cover cases with a large and a small mismatch of the local displace-
ments, the blending methods are applied to the purely local subdomain registration
and the CLG registration results. To increase the variation in the example data, De-
formation 3 contains an artificially strong nonlinearity, and the blending methods
are applied to the modified data.

As evaluation criteria, we compare the deformation error with respect to the optimal
deformation computed globally on a fine image resolution but also evaluate SSD and
irregularity of the combined solutions. We further expect the blending to preserve
the deformation if the mismatch between the subdomain solutions is small.

6.2.1 Deformation 1: Low Contrast Images and Purely Local Subdomain
Registration

Using purely local subdomain registration on image subdomains with a large low-
contrast region shows the strongest blending effect in our experiments. Most of the
results on this example have already been discussed in Chapters 5.1–5.3 individually.

In summary, the results obtained from the weighted sum approach with and with-
out local regularization are in a similar range (Table 6.3) in terms of image distance,
deformation error, and irregularity. The use of linear weights without regulariza-
tion results in a slightly larger irregularity of 0.9 compared to 0.3. Among the local
methods, regularization with zero weight on displacement data fit (parameter β = 0)
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6 Results of Numerical Experiments

Table 6.4: Blending results for Deformation 2 from a CLG registered image pair with
a low-contrast region after CLG registration. Even without blending, the
irregularity after CLG registration is much lower than after purely local
registration. Except for global regularization with a small weight β = 3.5 ·
10−5 on the deformation distance, all methods perform similarly.

Blending D(y) ‖y− yfine‖2 S(u)

true deformation 0.000 2.992 0.260
fine global 0.002 0.000 0.255
without blending (CLG) 0.015 5.003 0.935
weighted sum 0.015 4.661 0.264
local regularization β = 0.01 0.015 4.577 0.256
local regularization β = 0 0.015 4.290 0.255
global regularization β = 0.2 0.016 4.656 0.257
global regularization β = 3.5 · 10−5 19.213 35.265 0.138

produces the best result. The small difference between themethods ismost likely due
to the fact that no image data is present in the overlap region. Therefore, the registra-
tion is entirely determined by the regularizer. Purely local regularization computes
the deformation in a similar way and therefore leads to a similar result.

Global regularization with the optimal smoothness parameter (in this case, β = 3.5 ·
10−5) results in the lowest deformation error among themethods examined but leads
to a larger overall image distance. This is likely due to the global effect of the regular-
ization outside of the overlap region, where a small displacement error accumulates
to a large image distance if compared to the local methods.

6.2.2 Deformation 2: Low Contrast Images and CLG Registration

In the second experiment, the same image pair is registered with CLG registration
reducing the mismatch at the subdomain boundaries compared to the purely local
subdomain registration. Even when combining the displacements without blending,
the result has a lower error then any blending of purely local registration result. The
irregularity drops from155 for purely local subdomain registration to 0.9 for CLG (Ta-
ble 6.3). This is also apparent when inspecting the deformed grid visually (compare
Figure 5.1.1 and 6.2.1). Due to the better initial deformation, the results differ less
between the blending methods than after the purely local subdomain registration.
The results of the weighted sum, local regularization, and global regularization with
β = 1 are similar due to the small mismatch between the subdomains’ deformations.
Only in global regularization, the global image distance worsens and displacement
errors deteriorate if the parameter β is set too low (Table 6.4).
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6.2 Numerical Experiments Comparing Blending Approaches

Reference R Template T

CLG registration result

Figure 6.2.1: Blending results for Deformation 2 from a CLG registered image pair
with a low-contrast region after CLG registration. Top: Reference and
template image. Bottom: Combined solution without blending (red)
plotted over local subdomain solutions from the left (blue) and right (or-
ange) subdomain and the optimal solution yfine (gray) from a fine global
registration. The local and optimal solutions are only shown where dif-
ferent from the combined solution. After CLG registration, only a small
artifact can be observed that is due to the combination of the deforma-
tions without blending. The goal of the blending approach is to remove
the artifacts while maintaining the low overall displacement error.
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6 Results of Numerical Experiments

Table 6.5: Blending results for Deformation 3 from a CLG registered image pair with-
out low-contrast region and additional strong nonlinearity in the overlap
region. An increased deformation error can be observed after themethods
with stronger regularization. The result of the weighted sum approach is
comparable to or better than all other methods in terms of error and irreg-
ularity.

Blending D(y) ‖y− yfine‖2 S(u)

true deformation 0.000 1.087 1.784
fine global 0.008 0.000 1.725
without blending (CLG) 0.007 0.141 1.728
weighted sum 0.007 0.177 1.729
local regularization β = 0.01 0.047 1.014 1.700
local regularization β = 0 0.566 4.988 1.660
global regularization β = 0.2 0.010 0.174 1.722
global regularization β = 3.5 · 10−5 118.364 98.899 0.464

6.2.3 Deformation 3: High Contrast Images with Strongly Nonlinear
Deformation

Deformation 3 shows good results in terms of image distance, deformation error and
irregularity. To show the drawbacks of additional local or global regularization in
the blending, an artificially strong nonlinearity was added to the deformation (Fig-
ure 6.2.2). Even with the large nonlinearity in the true deformation, no mismatch is
visible at the subdomain boundaries after registration.

Comparing the blending methods applied to Deformation 3, a larger deformation er-
ror can be observed after all methods that involve regularization (Table 6.5). This
effect is caused by a reduction of the strongly nonlinear components of the deforma-
tion, as shown in Figure 6.2.3.

6.2.4 Discussion

We compared local and global blending approaches based on a weighted sum of dis-
placements on overlapping subdomains. Experiments include cases of high and low
contrast in the overlap regions and different degrees of nonlinearity of the displace-
ments. Blending is used as a post-processing step to smooth the mismatch of the
deformation between neighboring subdomains.

In our experiments of CLG and a purely local subdomain registration, the mismatch
after CLG registration is always smaller, and CLG produces better overall results than
purely local subdomain registration, before and after blending.
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6.2 Numerical Experiments Comparing Blending Approaches

Reference R Template T

CLG registration result

Figure 6.2.2: Combination ofDeformation 3 fromaCLG registered image pairwithout
low-contrast region and additional strong nonlinearity in the overlap
region. The grid shows the combination of the local deformations with-
out blending. Top: Reference and Template image. Bottom: Solution
without blending (red) plotted over local subdomain solutions (blue, or-
ange) and optimal solution yfine (gray). The local and optimal solutions
are only shown where different from the combined solution. Due to
the high contrast in the overlap region, even the combination without
blending produces visually acceptable results.
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6 Results of Numerical Experiments

Figure 6.2.3: Blended grid after local regularization (red, β = 0) of Deformation 3.
The box (blue) marks the nodes of the grid that are re-computed by lo-
cal regularization. The fine global registration result is visible if differ-
ent (black). The strong nonlinear components in the center are not pre-
served after blending with regularization.

The disadvantage of the straightforward combination without blending approach is
in its high irregularity measure, which is also visible in the images. While this ap-
proach is minimally invasive in the sense that the originally computed deformation
is not changed, the other extreme is global regularization, where the entire displace-
ment is recomputed.

Regularization approaches are superior after a low-contrast purely local subdomain
registration, but only a small benefit can be observed on low-contrast CLG registra-
tion. Purely local regularization shows good results in the examples where regular-
ization is the main driver of the registration. If the overlap region consists of a high-
contrast part of an image, regularization can degrade an originally good registration.
Especially the global regularization approach bears the risk of over-smoothing the
deformation that contains a strong nonlinearity.

If the user is willing to manually chose a good parameter β, for example based on
the visual appearance of the registration result, blending by local regularization is a
good choice as it can compromise between smoothness in low contrast regions and
the preservation of deformations in high contrast subdomain overlaps.

For a purely automatic registration, we recommend using the weighted sum
approach in combination with CLG registration. The weighted sum approach
guarantees to preserve those parts of the deformation where both subdomains are
in agreement. Also, no parameter needs to be selected manually.

102



7 Results of the Application to
Large-Scale Images
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In this chapter, we apply the CLG registration to six pairs of serial sections. The
dataset comprises four different staining combinations from two different pathology
labs (Table 7.1, Figures 7.1.1 – 7.1.2).

We compare the proposed CLG method to a fine global registration with an identical
final resolution. In all the six image pairs, both methods result in a similar landmark
registration error while requiring less than a fourth of the memory. Compared to a
coarse global registration, the new method reaches lower landmark errors in all but
the highest image resolutions. The tradeoffs are a higher computation time and an
elevated irregularity. In our experiments, the new method is suitable for replacing
a fine global registration, especially if the image data would otherwise exceed the
available memory.

7.1 Histopathological Image Data

The first four cases are human oral tissue samples, cases five and six were taken
from the colon. A gallery of registered images can be found in Figures G.7–G.36, be-
ginning on page 125. All computations in this chapter are performed on a four-core
Intel® Core™ i7-7700 CPU with 32 GB of RAM.
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7 Results of the Application to Large-Scale Images

\

\

Figure 7.1.1: Image pairs 108, 29, and 361 before registration. Top: reference im-
age, bottom: template image. The size of these images is circa 23 mm
in width and up to 55 mm in height. High-resolution crops are shown in
the results in Figures G.23 ff.
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7.1 Histopathological Image Data

\

\

Figure 7.1.2: Image pairs 446, 9515_20, and 9515_21 before registration. Top: refer-
ence image, bottom: template image. High-resolution crops are shown
in the results in Figures G.23 ff.
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7 Results of the Application to Large-Scale Images

Table 7.1: Overview of the medical images used in this chapter. The images are pro-
videdbyDr. Jeroen vander Laak andhis teamat theDiagnostic ImageAnal-
ysis Group at the Radboud university medical center in Nijmegen (DIAG)
and by Dr. Andreas Turzynski at the clinic for pathology in Lübeck (AT).
The images show human oral and colon tissue samples. We use manually
placed landmarks for evaluation.

Case Staining-Pair
No. of

Landm.
No. of Pixels

equival. to <16k
Resol. at
<16k Origin

29 H&E , Ki67 13 pairs 6076 × 13784 px 3.9 µm/px DIAG
361 H&E , CD45 8 pairs 6084 × 13784 px 3.9 µm/px DIAG
108 H&E , CD8 19 pairs 6068 × 13660 px 3.9 µm/px DIAG
446 H&E , Ki67 9 pairs 6096 × 13660 px 3.9 µm/px DIAG
9515_20 H&E , Haem. 13 pairs 7292 × 11800 px 2.8 µm/px AT
9515_21 H&E , Haem. 20 pairs 7488 × 9296 px 2.8 µm/px AT

Figure 7.1.3: Example of a pair of colon images (image pair 9515_20) before regis-
tration with corresponding landmarks (black arrows). Left: H&E stain,
Right: Hematoxilin stain.
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7.2 Implementation Specifics

The registration of the two stains is needed to combine and predict biomarkers in
ongoing cancer research projects. We show an image of one of the slide pairs in
Figure 7.1.3.

The first slide in all datasets is stained with Haematoxylin (Haem.) and Eosin (H&E)
[Kie15, pp. 137 ff.], one of the principal stains used in most histological analyses. The
second image of each pair is stained either using a specific immuno-biomarker (Ki67,
CD45, CD8) or using Haematoxylin without the Eosin counterstain.

While Haematoxylin stains nuclei, the counterstain with Eosin also stains other ma-
terials such as cytoplasm and erythrocytes. The biomarker Ki67 is a risk factor in the
diagnosis of breast cancer [dAza07], and CD45 and CD8 mark specific T-lymphocytes
[War10, pp. 139 ff.] which are central to the human immune system.

7.2 Implementation Specifics

The CLG registration extends an existing library for nonlinear image registration
[Rüh17a; Kön18] developed by the Institute of Mathematics and Image Computing
(University of Lübeck) and Fraunhofer MEVIS with contributions by the author.

We use this implementation in all the following experiments. It is aimed at large
data sets and differs from the implementation used on artificial examples shown in
Chapter 6.1. First, instead of explicitly constructing matrix operators—such as the
matrix B in the regularizer—we use matrix-free operations. This lowers the memory
usage of the algorithms and also lowers the computation time because it requires
fewer read and write operations. The downside of these optimizations is a more
complex codebase, which makes modifications and additions more complicated and
time-consuming.

Further implementation differences are the use of linear image interpolation instead
of cubic B-Splines and L-BFGS [Noc06, pp. 224 ff.] instead of the Gauß–Newton opti-
mizer. See Chapters 2.5.1 and 2.6.2 for a discussion of the respective methods.

7.3 Data Organisation and Experiment Setup

Most formats for digital whole-slide images store the images along with an image
pyramid containing downsampled versions of the image [Sat13]. Depending on the
image’s size at its finest level, the image size of the low-resolution representations
varies. When selecting a level for registration, we define an upper bound for its ex-
tent. As an example, the smallest image size is denoted “<1k” which corresponds to
the largest image in the pyramid whose dimensions do not exceed 1000 × 1000 pix-
els. In the images in Table 7.1, <1k corresponds to a resolution of ca. 50–60 µm/pixel.
Other sizes used in this chapter are <2k, <4k, <8k, <16k, <32k, and <64k, where each
step doubles the number of pixels per dimension.
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7 Results of the Application to Large-Scale Images

Table 7.2: Parameters used in the CLG registration pipeline for the H&E-
Haematoxylin image pair. Regularizer weight α and NGF noise level
η are determined by a parameter search.

Component Parameter Value

Affine image sizes <1k, <2k, <4k, <8k, <16k
Registration number of levels 4, 5, 6, 7, 8

NGF edge parameter ϵ 0.5

Non-Parametric image sizes <1k, <2k, <4k, <8k, <16k
Registration number of levels 4, 5, 6, 7, 8

regularizer weight α 1
NGF noise level η 1
deformation size 129 × 129

CLG coarse image sizes (R) <1k, <2k, <4k, <8k, <16k
subdomain image size (R) 1.2 × coarse image size
resulting image sizes (R) <4k, <8k, <16k, <32k, <64k
number of subdomains 4 × 4
number of levels 3
regularizer weight α 1
NGF noise level η 1
deformation size 129 × 129

Blending weighted sum

The alternative of selecting a predefined image resolution in µm/pixel would allow
the user to select a desired level of detail. It could also handle situations where the
pixel size of both images is very different. However, in the present application, both
images are typically acquired using the same scanner such that the image resolu-
tion in both images is identical. The selection of the level based on the image size
allows for a rough estimation of computation time and memory requirement, which
is preferable for our experiments.

Operations on smaller images are computationally less expensive. Besides the mul-
tilevel scheme described in Chapter 2.5.2, we compute an initial guess for the CLG
registration by the following two steps.

First, we compute an affine registration using a coarse image resolution to obtain a
rough initial alignment of the two slides. The second step is a coarse global nonlinear
registration that uses the affine registration result as an initial guess. While both
steps operate with the same image size, the affine registration has a lower number
of degrees of freedom and is, therefore, faster to compute. The result of the coarse
nonlinear registration is, in turn, used as an initial guess for thefinal CLG registration.

To compute the CLG registration, we decompose the image domain into four by four
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7.3 Data Organisation and Experiment Setup

Figure 7.3.1: Three corresponding landmark pairs in the H&E (left) and Hematoxilin
(right) image.

subdomains. In each subdomain, we use images with a four times higher resolution
than in the low-resolution base images. The four by four subdomain decomposition
is selected as a proof of concept as it has proven sufficient for the application to the
present whole slide images. A larger number of subdomains could further reduce
the memory requirements of the registration but would also increase the overhead
caused by the additional overlap. The analysis of larger numbers of subdomains is
left for future work.

For each of the following experiments, we set a base image size between <1k and
<16k. This image size is thenused in the affine, coarse global, and the CLG registration
for both theunderlying coarse resolution image and thehigher resolution subdomain
image. The subdomains are extended by a 25% overlap. A base image size of “<nk”
results in a final image size of “<4nk” when decomposing the image domain in four
by four subdomains.

In the following, we compare a) an affine global registration, b) a nonlinear, high-
resolution, global registration, and c) the proposed CLG method. The methods are
compared such that their final image size is identical, which means that the CLG reg-
istration requires only a fourth of the memory of a corresponding fine global regis-
tration (Table 7.3).

In contrast to the experiments in Chapter 6.1, no true deformation is available. There-
fore, we use sets of manually placed landmark pairs to measure the registration ac-
curacy (Figure 7.3.1).

Landmarks are placed on corresponding structures in both sections using the max-
imal magnification. When the sections are not adjacent, some structures are not
present in both images. Especially cell nuclei and other small-scale structures are
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7 Results of the Application to Large-Scale Images

difficult to correlate on neighboring slides, which makes the placement of accurate
landmarks challenging and time-consuming. For this reason, we only provide a small
number of landmarks that were created by the author using unregistered images.

The choice of its parameters influences the accuracy of the registration. To determine
optimal values, we run a two-dimensional parameter search for η and α as described
in Chapter 2.4. As a result of the parameter search we select α = 1 and η = 1 for
the registrations in this chapter. An illustration can be found in Figure 7.3.2, where
we compare various regularization and noise parameters concerning landmark er-
ror. Among the parameters with low landmark error, we prefer larger values for α
as the corresponding deformations have a lower irregularity. We note that a mod-
erate change in these parameters does not affect the overall result of the following
comparisons. One example can be found in Figure 7.4.1.

An overview of the parameters used in the registration pipeline is listed in Table 7.2.

7.4 Influence of the Deformation Grid Resolution

As described in Chapter 4.1.3, we discretize the deformation with a lower number of
grid points than in the images. The advantages of this coarse discretization are a) the
reduction of required memory for storing the deformation during registration and
b) the reduced problem size in the optimization.

Low-resolution grids are used in some registration software packages such as
NIFTYREG [Mod10], and some authors report that a higher number of coefficients
leads to a more accurate registration [Man16]. In our experiments (Figure 7.4.1), we
see a reduction of the landmark registration error for finer discretizations up to a a
grid size of ca. m×m = 65× 65. The reduction is independent of the regularization
parameter α. We assume that finer discretizations have only little effect because
the proportion of the nonlinearity in the deformation is small. We choose the next
finer discretization of m ×m = 129 × 129 in our experiments to have some margin
for stronger nonlinearities in other images while keeping computation time and
memory requirements low.

7.5 Comparison of Coarse, CLG, and Fine Registration

We compare the result of the three registrations based on landmark error, irregular-
ity, and memory requirements.

7.5.1 Landmark Error and Image Size

The landmark error is computed as the mean Euclidean distance

e(y) =
1
N

N∑
k=1

‖y(lRk)− lTk‖22
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Figure 7.3.2: Example of a parameter search for parameters η and α with respect to
landmark error (image pair: 9515_20, s. Table 7.1). In this case, the pa-
rameters α ∈ {0.1, 1} result in the lowest error in both cases. The noise
level η = 1 results in the lowest error after CLG registration, after fine
global registration 10−4 ≤ η ≤ 1 leads to minimal landmark error.
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Figure 7.4.1: Influence of the discretization of the displacement u on the landmark
error for the image pair 180. Different values of α are shown to account
for the influence of the regularization parameter on the landmark error.
The solid line shows the error for α = 1, the dotted plots show errors for
α ∈ {0.01, 0.1, 10, 100} (η = 1 in all cases). No substantial improve-
ment can be observed for grid sizes above m ×m = 65 × 65 due to the
low amount of nonlinearities in the deformation.

of all landmark pairs (lRk , l
T
k) in reference and template image.

In our experiments (Figure 7.5.1), CLG registration reaches approximately the same
accuracy as non-parametric registration without loading the global high-resolution
image into memory. When using a similar amount of memory such as in

• CLG with image size <16k which requires 448 MB of memory and
• fine global with image size <8k which requires 656 MB of memory,

CLG ismore accurate than fine global registration in four out of six of the image pairs.

From these experiments, we see that the final image size (and, therefore, image res-
olution) has the strongest influence on the landmark error. The CLG registration can
be used to compute an image registration based on larger images, which can lead to
a more accurate registration result.

Overall, the landmark error decreases with increasing image resolution. A limit can
be observed in large image sizes over <32k, where the landmark error does decrease
little or not at all. We assume that the lack of small-scale correspondences is the
determining factor for this effect. If the two sections are too different on a small scale,
an image registrationmethod cannot establish correspondences between structures.
As a secondary effect, the lack of correspondence also reduces the reliability of the
landmark pairs.

These experiments show that in the present dataset, a registration using the highest
possible image resolution is not needed since the accuracy does not improve for res-
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7 Results of the Application to Large-Scale Images

olutions over <32k. In general, the required image resolution seems to depend on the
similarity of the two sections.

7.5.2 Irregularity

While the landmark error measures the alignment of selected corresponding struc-
tures, the regularity is a global indicator for the reliability of the deformation. When
comparing CLG and fine global registration (Figure 7.5.2), we observe a higher irreg-
ularity after CLG registration, which is caused by a lower irregularity in higher image
sizes.

This observation is unexpected at first because higher resolution images contain
smaller-scale information, which should lead to more local deformations. However,
the projection scheme (Chapter 4.1.3) restricts the gradient of the distance measure
to the low-resolution deformation grid. Therefore, the amount of nonlinearity
that can be represented is independent of the image resolution. Furthermore, we
expect a lower discretization error and less noise from the higher-resolution image
gradient, which leads to a higher regularity.

In our experiments, CLG registration results in the same or higher irregularity as
after fine global registration. The higher irregularity is an effect of the additional
low-resolution image data in the objective function.

In the computation of each subdomain, only the local image distance term uses high-
resolution image data. For this reason, in low-contrast image regions, the CLG reg-
istration is globally closer to a coarse registration. We compare registration results
with low and high irregularity (Figures 7.5.3, 7.5.4) where the similarity of CLG and
coarse registration is reflected. The difference to the fine registration occurs mainly
in image regions with low contrast. These regions contain no tissue, which is why
the deviation from the fine registration does not affect the registration’s accuracy.

We observe no artifacts at the subdomain borders, which supports the choice of the
weighted sum (Chapter 5.2) to combine the subdomain deformations.

7.5.3 Computation Time

The CLG method reduces the required memory by decomposing the registration
problem in multiple smaller sub-problems, which are addressed independently. The
objective function in each of these sub-problems includes a second data term, which
makes its evaluation more expensive. Furthermore, the fine global registration
library is optimized for performance, which does not apply to the same extent for
our CLG implementation. Both factors lead to a longer computation time in our
experiments.

Comparing fine global and CLG registration with the same final resolution exper-
imentally, CLG is slower by a factor between 27 (image size: <4k) and 12 (image
size: <16k) (Figure 7.5.5). The difference in computation time seems to decrease with
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7.5 Comparison of Coarse, CLG, and Fine Registration
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7 Results of the Application to Large-Scale Images
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7 Results of the Application to Large-Scale Images
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Figure 7.5.5: Mean computation time for all image pairs with respect to registration
method and image resolution. Compared to a fine global registration
with the same final image size, CLG registration is slower by a factor
between 27 (<4k image size) and 12 (<16k image size).

higher image sizes. Still, these factors are considerably higher than the estimated
factor of 2.7 in Chapter 4.2.3. Compared to a coarse registration, we observe a larger
number of L-BFGS iterations when optimizing the CLG objective function.

As discussed in Chapter 4.2.3, the use of a global step size can slow down the opti-
mization, resulting in a higher number of iterations. A modification of the objective
function to include an additional weight of the inner subdomain or an adaptive step
size computation could help to improve the convergence speed.

The displacements of the respective subdomains are discretized on a coarse grid. In
the case of the weighted sum, we do not require expensive computations for their
combination. The time to compute the combination is, therefore, negligible com-
pared to the computation of the registration.

A factor of twelve in computation time is substantialwhendealingwith large datasets
or in time-critical applications. However, in situations where the random access
memory is limited, the proposed CLG method enables the user to obtain a more ac-
curate registration, which would not be possible otherwise. Furthermore, the factor
could be reduced by the indicated options for optimization.

7.5.4 Memory Usage

We measure the required memory during the execution using the Massif heap pro-
filer. A heap profiler measures the allocated memory of a process along with ad-
ditional memory that is required for book-keeping by the operating system [Sew08,
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7.6 Summary

Table 7.3: Used memory by the registration of Case 29 measured during execution
using the Massif heap profiler. Images of size >64k could not be registered
using fine global registration on a computer with 32 GB of RAM. The fine
global registration needs 3–5.9 times the memory of the CLG registration.

Size Non-Parametric CLG 4 × 4

<1k 51 MB -
<2k 80 MB -
<4k 195 MB 65 MB
<8k 656 MB 144 MB

<16k 1856 MB 448 MB
<32k 9868 MB 1669 MB
<64k - 5567 MB

pp. 89 ff.]. The measured values include memory required by the image loading rou-
tines and un-freed memory of pre-alignment, parametric, and non-parametric regis-
tration and are therefore higher than the estimations made based on Table 4.2.

Comparing a fine global registration and the CLG registration with the same final
image size, the fine global registration is 3 to 5.9 times more expensive in memory
than the CLG registration (Table 7.3). We also find that the CLGapproach can compute
a registration with twice the image size while still using less memory compared to a
fine global registration.

7.6 Summary

We compare the CLG registration to a coarse global and a fine global registration
using six large-scale image pairs from two independent laboratories. The images
show four different stain combinations.

Concerning the landmark error, the difference between CLG and fine global registra-
tion is negligible for practical purposes. Both methods outperform a coarse global
registration. In some cases, the CLG registration shows an elevated irregularity mea-
sure.

Its low memory footprint is the main advantage of the CLG registration. The reduc-
tion in memory is made possible by sequentially solving small parts of the regis-
tration problem. Processing the images sequentially results in twelve times longer
computing time compared to fine global registration. Using the CLGmethod, the reg-
istration of images of 24 000 × 54 000 pixels (<64k) can be solved using less than 6
GB of memory while the fine global reference method exceeds 32 GB of RAM. Using
the reference method, the registration of these images was not possible on the given
hardware.
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8 Discussion, Conclusion, and Outlook

Discussion

In this thesis, we propose a method to solve the large-scale image registration prob-
lem using a fraction of the memory that is required by a comparable global registra-
tion and apply the new method to images from digital pathology.

The large-scale image registration problem is to superimpose two images that are too
large to be stored in random access memory (RAM). In digital pathology, the objects
that are visible in the images—like nuclei of cells—are in the range of micrometers
such that a stepwise increase in image resolution from ca. 60 µm/pixel to up to 1.4
µm/pixel leads to a successive increase in registration accuracy in the experiments.

The experiments suggest using a resolution of 1.4 to 1.9 µm/pixel, which corresponds
to an image size below 32000 × 32000 pixels (denoted as “<32k”) in our data. Higher
image resolutions do not showa reduction in landmark error. However, the required
detail depends on the similarity of the two sections, andwe recommend adjusting the
resolution to new image data.

A standard approach to solve large-scale problems is to resort to parallel domain de-
composition methods, where the computational load is distributed to multiple com-
puters and solved in parallel. We discuss concepts from parallel domain decompo-
sition that aim to reduce the communication between computing nodes and apply
them to the registration problem at hand. A downside of these methods is the neces-
sity of multiple computing nodes that run in parallel.

The new combined local and global (CLG) method refrains from inter-subdomain
communication and decomposes the large-scale problem into independent subprob-
lems. Hence, a large-scale problem such as the registration of images of 24 000 ×
54000 pixels can be solved on one computer with 6 GB of memory while the fine
global reference method exceeds the capacity of a computer with 32 GB of RAM. CLG
registration leads to results that are comparable with a fine global registration while
using less than 20% of the RAM.

While the CLG and fine global registration are not mathematically equivalent, ex-
periments show that their results are comparable in landmark error, which is much
lower than after coarse global registration. The newmethod outperforms a purely lo-
cal subdomain-based method experimentally in terms of the deformation regularity
measure.

We compare different blending approaches to combine the subproblem solutions.
Theweighted sum approach combines two desirable properties. It guarantees to pre-
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8 Discussion, Conclusion, and Outlook

serve those parts of the solutions that are in agreement in the overlap between the
subproblems, and it does not require a manual parameter selection.

The reduction in memory is paid by a higher computation time: CLG registration
takes 12 times longer than a corresponding global registration. However, our focus
is not on computation time, and only little effort has been made in its optimization.

In the CLG registration, each subdomain is computed independently, which is an op-
portunity to save computation time by parallelization. In this work, we focus on the
computation on limited hardware. Many methods have been proposed to facilitate
the parallel computation of nonlinear problems [Koh07; Dol16; Kla17]. In thesemeth-
ods, communication between computing nodes is a common bottleneck. Due to its
independent computation on subdomains, the CLG method avoids communication.
If multiple computing nodes are available, the computation can be distributed with
little effort because only the initial distribution of the image data and the final combi-
nation step requires communication. Parallel computation on 16 nodes would likely
reduce the computation time below the time needed for a single node fine global reg-
istration. The computation effort of the small-scale blending problem is negligible
compared to the image registration problems.

The low memory requirement enables the registration of large-scale images on
computers with limited memory, leading to superior accuracy compared to a coarse
global registration.

We conduct the experiments by decomposing the image domain into two (Chap-
ter 6.1) and four by four (Chapter 7) overlapping subdomains. A promising next step
is the evaluation of a higher number of subdomains. The proportion of the overlap
area is independent of the number of subdomains, such that no additional overhead
is created. However, the ratio of high-resolution to low-resolution area decreases
when the number of subdomains increases, which could affect the optimization. A
pyramid scheme of nested subdomains of increasing resolutions could be added to
reduce the resolution difference between the local image and its neighborhood.

We successfully apply the new method to practical large-scale image registration
problems. Our example data includes six slide pairs from the pathological routine
that were acquired in two different laboratories using four different stain combina-
tions. Here, the CLG method outperforms a low-resolution approach and reaches
comparable results to a fine global registration. A preliminary version of the method
has been applied to a machine learning problem and this work is published together
with Bulten et al. [Bul19].

Conclusion and Outlook

The presented CLG method solves the large-scale image registration problem that
would otherwise exceed the available memory of the computer.

The CLG method decomposes the problem into multiple local, nonlinear subprob-
lems on subdomains that are solved sequentially. Due to the global component in
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the CLG registration, the mismatch between the local solutions is small and can be
blended by an inexpensive weighted sum of the deformations. The small mismatch
between the subdomains is the main advantage of the CLG method compared to a
purely local subdomain registration, where the mismatch is much larger and cannot
be compensated by blending the deformations.

The ability to break down the large-scale problem into smaller subproblems enables
the parallelization of the registration on the GPU [Owe08]. The GPU architecture is
distinguished from the CPU by its limited memory but high data-parallelism, which
results in fast computation times and canmake it an affordable alternative to a paral-
lel cluster computer [Smi15]. Budelmann et al. [Bud19] report an implementation of
a registration on the GPU that reduces the computation time to only 3% of the time of
a comparable CPU implementation. First experiments suggest that a similar speedup
can be reached for the CLG registration such that it outperforms a CPU-based fine
global registration in computation time.

Large-scale image registration in digital pathology is already used to accelerate the
development of machine learning in the field by supplying a reliable ground truth
that is otherwise difficult to obtain [Jan16]. Combining multiple stainings, registra-
tion has been applied successfully in pharmaceutical research to discover prognostic
biomarker combinations [Har18]. The presented method has the potential to enable
the analysis of high-resolution data on less performant devices.

While this thesis focuses on images from digital pathology, the methods are directly
applicable to other 2D datasets and can be extended to higher-dimensional data. Out-
side of image registration, related large-scale inverse problems occur, for example, in
the reconstruction of astronomy images or environmental forecasting and modeling
[Sla19; Chu19; Law13].

Massively large datasets of multiple terabytes or even petabytes occur, e.g., in the 3D
reconstruction of detailed image stacks in electron microscopy [Saa12] and whole-
brain sections in light-microscopy [Moh16]. In these applications, processing the full-
resolution data is challenging, even on a cluster computer. An extension of the CLG
method that is adapted to these particular problems could increase the accuracy in
3D reconstruction and lead to new insights in medical and non-medical research.

In summary, the presented CLG method solves the large-scale image registration
problem that would otherwise exceed the available memory of the computer. In
the application to large-scale histopathological research data, it leads to comparable
results with the state of the art. With its modest hardware requirements, CLG re-
duces the need for high-performance hardware. It thus takes a step towards more
sustainable computing.
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Gallery of Image Registration Results

The following figures show registered image pairs in a diagonal overlay. The lower-
left half of the image shows the reference image while the registered template image
is shown in the upper-right. At the border of the two images, the quality of the align-
ment of corresponding structures can be observed.

For each slide, multiple images are shown at increasingly fine resolutions. Each im-
age is a 25% crop of its predecessor, zooming in at a constant position of the slide. A
black scale bar of 500 µm width is shown for scale in all images.

The position is chosen such that it contains the intersection of 4 subdomains at its
center. As a default, we show the center of the slide. If the center of the slide contains
no tissue or is of bad contrast, one of the surrounding subdomain intersections is
used.

At the border of the two registered images, it can be observed that corresponding
structures are well aligned inmost of the examples. In some areas, no corresponding
structure exists in the registered image. In these cases, a higher image resolution
cannot lead to a better image alignment.

125



Gallery of Image Registration Results

Figure G.1: Overlay of image pair 9515_21 after registration with CLG (registration
image size <16k). Zoom level: 5. The black frame marks the image re-
gion of the following 25% crop in Figure G.2. The arrows indicate a well-
aligned structure (left) and a visible difference at the inner boundary
(right). Scale bar: 500µm.
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Figure G.2: Overlay of image pair 9515_21 after registration with CLG (registration
image size <16k). Zoom level: 4. The arrows indicate a well-aligned struc-
ture (left) and a visible difference at the inner boundary (right). Scale bar:
500µm.

127



Gallery of Image Registration Results

Figure G.3: Overlay of image pair 9515_21 after registration with CLG (registration
image size <16k). Zoom level: 3. The arrows indicate a well-aligned struc-
ture (left) and a visible difference at the inner boundary (right). Scale bar:
500µm.
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Figure G.4: Overlay of image pair 9515_21 after registration with CLG (registration
image size <16k). Zoom level: 2. The arrows indicate a well-aligned struc-
ture (left) and a visible difference at the inner boundary (right). Scale bar:
500µm.
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Gallery of Image Registration Results

Figure G.5: Overlay of image pair 9515_21 after registration with CLG (registration
image size <16k). Zoom level: 1. The arrows indicate a well-aligned struc-
ture (left) and a visible difference at the inner boundary (right). Scale bar:
500µm.
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Figure G.6: Overlay of image pair 9515_21 after registration with CLG (registration
image size <16k). Zoom level: 0. The large arrows indicate a well-aligned
structure (left) and a visible difference at the inner boundary (right). The
difference is due to a structural difference in the two sections. The two
boxes in the lower left show R and T(x) (undeformed). Small arrows indi-
cate where the images show different cells and structures, which should
be preserved by registration. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.7: Overlay of image pair 9515_20 after registration with CLG (registration
image size <16k). Zoom level: 5. Scale bar: 500µm.
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Figure G.8: Overlay of image pair 9515_20 after registration with CLG (registration
image size <16k). Zoom level: 4. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.9: Overlay of image pair 9515_20 after registration with CLG (registration
image size <16k). Zoom level: 3. Scale bar: 500µm.

134



Figure G.10: Overlay of image pair 9515_20 after registration with CLG (registration
image size <16k). Zoom level: 2. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.11: Overlay of image pair 9515_20 after registration with CLG (registration
image size <16k). Zoom level: 1. Scale bar: 500µm.
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Figure G.12: Overlay of image pair 9515_20 after registration with CLG (registration
image size <16k). Zoom level: 0. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.13: Overlay of image pair 29 after registration with CLG (registration image
size <16k). Zoom level: 5. Scale bar: 500µm.
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Figure G.14: Overlay of image pair 29 after registration with CLG (registration image
size <16k). Zoom level: 4. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.15: Overlay of image pair 29 after registration with CLG (registration image
size <16k). Zoom level: 3. Scale bar: 500µm.
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Figure G.16: Overlay of image pair 29 after registration with CLG (registration image
size <16k). Zoom level: 2. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.17: Overlay of image pair 29 after registration with CLG (registration image
size <16k). Zoom level: 1. Scale bar: 500µm.
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Figure G.18: Overlay of image pair 29 after registration with CLG (registration image
size <16k). Zoom level: 0. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.19: Overlay of image pair 108 after registrationwith CLG (registration image
size <16k). Zoom level: 5. Scale bar: 500µm.
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Figure G.20: Overlay of image pair 108 after registrationwith CLG (registration image
size <16k). Zoom level: 4. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.21: Overlay of image pair 108 after registrationwith CLG (registration image
size <16k). Zoom level: 3. Scale bar: 500µm.
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Figure G.22: Overlay of image pair 108 after registrationwith CLG (registration image
size <16k). Zoom level: 2. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.23: Overlay of image pair 108 after registrationwith CLG (registration image
size <16k). Zoom level: 1. Scale bar: 500µm.
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Figure G.24: Overlay of image pair 108 after registrationwith CLG (registration image
size <16k). Zoom level: 0. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.25: Overlay of image pair 361 after registrationwith CLG (registration image
size <16k). Zoom level: 5. Scale bar: 500µm.
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Figure G.26: Overlay of image pair 361 after registrationwith CLG (registration image
size <16k). Zoom level: 4. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.27: Overlay of image pair 361 after registrationwith CLG (registration image
size <16k). Zoom level: 3. Scale bar: 500µm.
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Figure G.28: Overlay of image pair 361 after registrationwith CLG (registration image
size <16k). Zoom level: 2. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.29: Overlay of image pair 361 after registrationwith CLG (registration image
size <16k). Zoom level: 1. Scale bar: 500µm.
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Figure G.30: Overlay of image pair 361 after registrationwith CLG (registration image
size <16k). Zoom level: 0. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.31: Overlay of image pair 446 after registrationwith CLG (registration image
size <16k). Zoom level: 5. Scale bar: 500µm.
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Figure G.32: Overlay of image pair 446 after registrationwith CLG (registration image
size <16k). Zoom level: 4. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.33: Overlay of image pair 446 after registrationwith CLG (registration image
size <16k). Zoom level: 3. Scale bar: 500µm.
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Figure G.34: Overlay of image pair 446 after registrationwith CLG (registration image
size <16k). Zoom level: 2. Scale bar: 500µm.
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Gallery of Image Registration Results

Figure G.35: Overlay of image pair 446 after registrationwith CLG (registration image
size <16k). Zoom level: 1. Scale bar: 500µm.
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Figure G.36: Overlay of image pair 446 after registrationwith CLG (registration image
size <16k). Zoom level: 0. Scale bar: 500µm.
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