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DNMT DNA methyltransferase, enzyme adding methyl-groups to the 5’-position of cytosine
dNTP Deoxynucleotide triphosphate
DTT Dithiothreitol
DUSP6 Dual specificity phosphatase 6
EDTA Ethylene-diamine-tetraacetic acid, a chelating molecule
ELISA Enzyme-linked immunosorbent assay
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ABBREVIATIONS Abbreviations

ERK Extracellular signal-regulated kinase, also called MAPK
FAS Fatty acid synthase
Fasn Gene encoding fatty acid synthase
FC Fold change
FDR False discovery rate
FGF Fibroblast growth factor
FGFR Fibroblast growth factor receptor
Fig. Figure
FRS2α Fibroblast growth factor receptor substrate 2α
frw Forward primer
G6PC Glucose-6-phosphatase
G6PT Glucose-6-phosphate transporter
Galnt2 Gene encoding polypeptide N-acetylgalactosaminyltransferase 2
GDP Guanosine diphosphate
GLUT4 Glucose transporter 4
GTP Guanosine triphosphate
GWAS Genome-wide association study
HFD High fat diet
HFHS High fat-high sucrose diet
HK Housekeeper
Hprt Gene encoding hypoxanthine phosphoribosyltransferase 1
Ile Isoleucin
InsRec Insulin receptor
kcal Kilocalories
KEGG Kyoto Encyclopedia of Genes and Genomes
Klb Gene encoding β-Klotho
LDH Lactate dehydrogenase
Leu Leucin
logFC Logarithmic fold change
M.SssI CpG Methyltransferase from Spiroplasma sp. strain MQ1
m/s Meter per second
MAPK Mitogen-activated protein kinase, also called ERK
McrBC Restriction enzyme specifically cleaving DNA containing methylated cytosine
MELUR Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume
mg Milligram
mg/kg Milligram per kilogram
MgCl2 Magnesium chloride
min. Minutes
miRNA MicroRNA
mM Millimolar, millimol per liter
mm Millimeter
mRNA Messenger RNA
mTORC Mammalian target of rapamycin complex
NAD+ Nicotinamide adenine dinucleotide, oxidized form of NADH
NADH Nicotinamide adenine dinucleotide, reduced form of NAD+

NAFLD Non-alcoholic fatty liver disease
NEFA Non-esterified fatty acids
ng Nanogram
ng/µl Nanogram per microliter
nm Nanometer
NP-40 Nonidet P-40, Octoxinol 9
pAkt Phosphorylated Akt
PCA Principal component analysis
Pck1 Gene encoding phosphoenolpyruvate carboxykinase 1
PCR Polymerase chain reaction
PEPCK Phosphoenolpyruvate carboxykinase
Pi Phosphate
PI3K Phosphoinositid-3-kinase
PK Pyruvate kinase
Pklr Gene encoding liver-type pyruvate kinase
PLCγ Phospholipase C γ
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ABBREVIATIONS Abbreviations

PMSF Phenylmethylsulfonyl fluoride
PPAR Peroxisome proliferator-activated receptors
Ppara Gene encoding PPARα
Pparg Gene encoding PPARγ
PPi Diphosphate/pyrophosphate
Ppia Gene encoding peptidylprolyl isomerase A (cyclophilin A)
PPRE PPAR responsive element
PVDF Polyvinylidene difluoride
qRT-PCR Quantitative real-time polymerase chain reaction
ref-sample Reference sample
rev Reverse primer
RIPA Radioimmunoprecipitation assay buffer
RNA Ribonucleic acid
ROX Carboxy-X-rhodamine, passive reference dye
Rpl37 Gene encoding ribosomal protein L37
rpm Revolutions per minute
RXR Retinoid receptor X
s Seconds
SAH S-adenosylhomocysteine
SAM S-adenosylmethionine
SCD1 Stearoyl-CoA desaturase 1
SD Standard deviation
SDS Sodium dodecyl sulfate
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM Standard error of the mean
seq Sequencing primer
Sgms2 Gene encoding sphingomyelin Synthase 2
SIK3 Salt-Inducible Kinase 3
SIRT1 Sirtuin 1
SMS2 Sphingomyelin Synthase 2
SNP Single-nucleotide polymorphism
SPRY Sprouty
SREBP Sterol regulatory element-binding proteins
STAT Signal transducers and activators of transcription
Suppl. Supplement
Tab. Table
TAE Tris-Acetat-EDTA
TBS Tris-buffered saline
TCA Tricarboxylic acid or citric acid cycle
TE Tris-EDTA
TEMED N,N,N’,N’-tetramethylethane-1,2-diamine
TET Ten-eleven translocation, enzyme removing DNA methylation
Tris Tris(hydroxymethyl)aminomethane
UTR Untranslated region
V Volt
Val Valin
WGA Whole genome amplification
WGBS Whole-genome bisulfite sequencing
wk Week
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Abstract

The increasing prevalence of obesity and type 2 diabetes represents a major global chal-

lenge. One reason for this is the lack of long-acting, efficient anti-diabetic therapies

which is also the result of our incomplete understanding of the disease causes. Type

2 diabetes is associated with epigenetic changes and it was shown that diabetic sub-

jects and insulin resistant mice have altered DNA methylation. However, it is unclear if

changes of DNA methylation are causal or consecutive for insulin resistance. Therefore,

in the scope of this thesis a longitudinal study with diet-induced obese mice fed with

high fat diet (HFD) was performed to investigate the development of insulin resistance

and the associated DNA methylation changes in a time-resolved manner.

The phenotypical characterization of the diet-induced obese mice revealed impaired

whole-body glucose tolerance as well as development of fatty liver after five weeks of

feeding. Already one week of HFD feeding led to transcriptional changes as measured by

gene expression microarrays and alterations of metabolic pathways. This is even more

pronounced after 12 weeks of HFD feeding, the HFD week 12 group is clearly distinguish-

able from the other groups solely by the transcriptomic changes. Furthermore, feeding

HFD for 12 weeks leads to alterations of the fatty acid metabolism and the peroxisome

proliferator-activated receptor (PPAR) signaling pathway. Whole genome bisulfite se-

quencing revealed that this is associated with extensive changes of DNA methylation in

the HFD group. Here, it was shown for the first time that the vast increase of hepatic

Fgf21 gene expression in insulin resistance is associated with significant hypomethyla-

tion at two CpG sites within exon 1. The alterations of DNA methylation precede the

development of whole-body glucose intolerance and likely occur before manifestation of

hepatic insulin resistance.

Taken together, the study presented here could show that insulin resistance is associ-

ated with extensive metabolic changes and this is presumably induced by alterations of

DNA methylation. This provides new, valuable insights in the development of insulin

resistance which could be used for the design of novel anti-diabetic drugs.
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Zusammenfassung

Die zunehmende Prävalenz von Adipositas und Typ 2 Diabetes stellt eine große globale

Herausforderung dar. Es fehlen noch immer langfristig wirksame Therapien gegen Typ

2 Diabetes, weil die Ursachen der Erkrankung bisher nur unvollständig aufgeklärt sind.

Typ 2 Diabetes ist mit Veränderungen der DNA-Methylierung assoziiert, es ist allerdings

unklar, ob DNA-Methylierung kausal oder konsekutiv für die Erkrankung ist. Um die

Entstehung der Insulinresistenz und die damit assoziierten DNA-Methylierungsmuster

zu untersuchen wurde im Rahmen dieser Doktorarbeit eine longitudinale Studie mit

Diät-induzierten adipösen Mäusen durchgeführt.

Die phänotypische Charakterisierung des Mausmodells zeigte, dass nach fünf Wochen

Hochfettdiät (HFD)-Fütterung die systemische Glucosetoleranz vermindert ist und die

Tiere eine Fettleber entwickelt haben. Bereits eine Woche HFD-Fütterung führte zu größ-

tenteils verminderter Transkription metabolischer Gene. Nach zwölf Wochen hochkalo-

rischer Diät waren diese Veränderung noch stärker ausgeprägt und die Diät-induzierten

adipösen Mäuse konnten allein anhand der Genexpression von den anderen experi-

mentellen Gruppen unterschieden werden. Darüber hinaus waren Gene des Fettstof-

fwechsels und des Peroxisom-Proliferator-aktivierte Rezeptoren (PPAR)-Signalwegs verän-

dert. Mittels ’whole-genome bisulfite sequencing’ konnte gezeigt werden, dass die verän-

derte Genexpression von Veränderungen der DNA-Methylierung begleitet wird. So ist

zum Beispiel der Anstieg der Fgf21-Transkription bei Insulinresistenz mit einer signifikan-

ten Hypomethylierung an zwei CpG-Dinucleotiden innerhalb von Exon 1 assoziiert. Diese

epigenetischen Modifikationen gehen der Entstehung der systemischen Glucoseintoler-

anz voraus und werden wahrscheinlich bereits vor Manifestation der hepatischen In-

sulinresistenz etabliert.

Zusammenfassend konnte gezeigt werden, dass HFD-induzierte Insulinresistenz mit Ver-

änderungen des Fettstoffwechsels einhergeht und vermutlich durch DNA-Methylierung

reguliert wird. Die hier präsentierte Studie ermöglicht neue Einblicke in die Entstehung

von Insulinresistenz und eröffnet damit neue Mechanismen, die für die Entwicklung von

anti-diabetischen Medikamenten genutzt werden könnten.
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Introduction

1.1 Epigenetics

"Change is the essential process of all existence."

Epigenetics describe inheritable, reversible modifications of DNA and histones to differentially

modulate gene expression without changing the underlying DNA sequence [125, 144]. Epigenetics

include histone modifications, DNA methylation at CpG dinucleotides, and also post-transcriptional

regulation of gene expression by non-coding RNAs, such as microRNAs (Fig. 1.1) [138, 171].

Histone modifications regulate accessibility of DNA for the RNA polymerase II and transcription

factors by modulating chromatin packaging [138, 144]. The four histones are organized as octameric

core wrapped by 147 bp of DNA to form a nucleosome [144]. The histone tails are exposed and can

be modified, among others, by phosphorylation, methylation, and acetylation [144]. The cumula-

tive effect of many different modifications at a nucleosome determines if transcription is favored or

inhibited [144]. This so-called histone code is very dynamic [144].

DNA methylation describes the addition of a methyl group to the 5’-position of a cytosine in the

sequence context of CpG dinucleotides (a cytosine followed by a guanine) [101]. DNA methylation

in mammals was also identified in other sequence contexts, but the functions of these modifications

are not well understood yet [101]. DNA methylation is associated with silencing of genes and retro-

transposons, genomic imprinting and X-chromosome inactivation as well as chromosomal stability

by DNA methylation of repeat regions, such as centromeres [55, 101, 138].

During development, extensive epigenetic reprogramming occurs which is associated with two

genome-wide demethylation events [55]. The first epigenetic reprogramming takes place in pri-

mordial germ cells, the second during early embryonic development [44, 55]. Furthermore, cell

type-specific DNA methylation patterns are established during differentiation [44]. The time frame

of remethylation is a crucial period, because environmental factors could potentially influence DNA

methylation [44, 138]. DNA methylation depends on one-carbon metabolism which in turn depends
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1. INTRODUCTION 1.1. Epigenetics

Figure 1.1: Overview of epigenetic mechanisms. Epigenetics comprise of histone modifications, mi-
croRNAs, and DNA methylation at cytosines in CpG dinucleotides. Modifications at histone tails regu-
late the accessibility of DNA for the transcriptional machinery, whereas microRNAs suppress translation
or induce degradation of mRNAs. DNA methylation regulates gene transcription, silences transposable
elements, and is associated with genomic imprinting. DNA methylation is established by DNA methyl-
transferases (DNMT) by transferring the methyl group of S-adenosylmethionine (SAM) to the 5’-position
of cytosine. DNA methylation was extensively studied at CpG islands, regions of approximately 200 bp
containing a high CpG density, which are commonly unmethylated. They are surrounded by an approx-
imately 2 kb long CpG shore with decreasing CpG density. Within gene bodies, DNA methylation levels
are higher compared to promoter regions.

on dietary micronutrients, especially folate [125, 157]. Folate is important for methionine produc-

tion which is converted to S-adenosylmethionine (SAM), the universal methyl donor [125, 157]. The

methyl group of SAM is covalently added to the 5’-position of cytosine by DNA methyltransferases,

the enzymes establishing DNA methylation of CpG dinucleotides, resulting in the conversion of SAM

to S-adenosylhomocysteine (SAH) [125]. SAH inhibits SAM-dependent methyltransferases and a

continuous hydrolysis of SAH is important to maintain DNA methylation [44].

There are three isoforms of DNA methyltransferases (DNMTs): DNMT1, DNMT3A, and DNMT3B

[44]. DNA methyltransferase 1 transfers the DNA methylation pattern to newly synthesized DNA

strands during DNA replication, hence, it is called maintenance methyltransferase [55, 144]. It pref-

erentially methylates hemimethylated DNA and possesses an auto-inhibitory mechanism preventing

de novo methylation [55, 144]. DNMT1 plays a crucial role in embryonic development and knockout

of DNMT1 in differentiated cells is lethal [102]. DNMT3A and DNMT3B are de novo methyltrans-

ferases methylating fully unmethylated or hemimethylated CpG sites [44, 102]. They are mainly

active during development to establish methylation patterns in the course of epigenetic reprogram-

ming and lack of these enzymes is lethal [44, 102].

DNA methylation can be removed passively by DNA replication or actively by ten-eleven translo-

cation (TET) methylcytosine dioxygenases [101, 216]. Humans possess three TET enzymes with

different tissue-specific gene expression: TET1-3 [216]. Active DNA demethylation is independent

of DNA replication and includes the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-

formylcytosine, and/or 5-carboxylcytosine [216]. This is caused by different activities of the TET
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1. INTRODUCTION 1.1. Epigenetics

isoforms, at least in humans TET1 and TET2 show higher activity for 5-methylcytosine [216]. Sub-

sequently, the oxidized cytosines are removed by DNA base-excision repair [216].

It is suggested that over 80% of the CpG sites in the human genome are methylated, except for

those in CpG islands and regulatory sequences [55, 142]. CpG islands are approximately 200 bp

long regions found mainly within promoters with 10-fold higher CpG density compared to the rest

of the genome (Fig. 1.1) [44, 55, 101]. CpG islands are surrounded by an approximately 2 kb long

CpG shore which contains lower CpG density [44]. CpG islands in somatic cells often show less

than 10% DNA methylation and this is associated with nucleosome-depleted regions [101, 142].

Methylated CpG islands in promoter regions are associated with silenced genes, however, it is not

fully understood if DNA methylation initiates silencing or represents a mechanism to reinforce the

silenced state [98, 101].

Recently, also DNA methylation outside of CpG islands, within the gene body, got more and

more attention [98, 142]. Compared to promoter regions, gene bodies are in general CpG poor but

extensively methylated [98, 101]. It was suggested that gene body DNA methylation functions in

suppression of intragenic transcription start sites for more efficient transcriptional elongation [98].

However, this does not sufficiently explain the abundance of gene body DNA methylation [98]. Gene

body DNA methylation is associated with open chromatin and transcription, therefore, DNA acces-

sibility seems to determine gene body DNA methylation by influencing the binding of methyltrans-

ferases to DNA [98, 101]. Silenced genes are characterized by compact chromatin which allows no

binding of methyltransferases to DNA leading to low DNA methylation levels [98]. Gene expression

needs opening of the chromatin for transition of the RNA polymerase making DNA accessible for

methyltransferases [98]. Highly expressed genes exhibit a high density of RNA polymerases which

interferes with the binding of methyltransferases and thus, decreases DNA methylation [98]. In

conclusion, low and high expressed genes show lowest DNA methylation, whereas moderately ex-

pressed genes show highest DNA methylation levels [98]. But DNA methylation also varies within

gene bodies dependent on CpG site location, for example exons show higher DNA methylation than

introns and first exon DNA methylation differs from the more downstream exons [21, 101, 251].

DNA methylation at enhancers could have regulatory functions, for example DNA methylation

at transcription factor binding sites modifies binding of methylation-sensitive transcription factors

[101]. Furthermore, methylated CpG sites at specific motifs can favor the binding of methyl-CpG-

binding domain proteins which prevent the binding of transcription factors [86]. Thereby, DNA

methylation influences gene expression [86].

1.1.1 Measurement of DNA methylation

The measurement of DNA methylation gets more and more attention in the clinics for biomarker

identification to refine diagnostics of various diseases, such as cancer or type 2 diabetes [113, 174].
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Several methods for DNA methylation quantification were developed, but they differ in the amount

and quality of required input DNA, sensitivity, specificity, robustness, and costs [119]. Furthermore,

bioinformatic data analysis and interpretation becomes increasingly important and can represent the

bottleneck [174]. Whole-genome approaches are used for high-throughput analysis of a large num-

ber of loci and provide quantitative DNA methylation information [174]. However, measurement of

genome-wide DNA methylation is not free of disadvantages: The methods are often cost-intensive,

suffer from library bias, and special equipment is needed [174]. Therefore, DNA methylation mea-

surement in specific genes or regions of interest are also popular. Many of these methods are based

on bisulfite-converted DNA, because during PCR amplification DNA methylation information is lost

[115]. Bisulfite treatment is the gold standard for measurement of DNA methylation, because it is

qualitative, quantitative, efficient, and achieves single-base resolution [130]. To distinguish between

methylated cytosines and unmethylated cytosines DNA is treated with bisulfite salt and a buffer

leading to a low pH [130]. After thermal denaturation, unmethylated cytosines are sulfonated and

deaminated converting them to uracil sulfonate (Fig. 1.2 (a)) [115]. The last step of the bisulfite

conversion is a desulfonation reaction leading to uracil (Fig. 1.2 (b)) [115]. Methylated cytosines

are not affected by this treatment (Fig. 1.2 (c)) [115]. By performing a bisulfite PCR previously

unmethylated cytosines appear as thymine, whereas methylated cytosines stay cytosine [115]. This

leads to a reduction of the number of bases in the DNA from four to three and the sense and antisense

DNA strands are no longer complementary to each other [115]. The bisulfite-converted DNA is then

analyzed. Disadvantages of bisulfite treatment are the harsh conditions leading to fragmentation of

DNA and the risk of incomplete conversion [130]. This section gives a short overview of methods

for genome-wide and gene-specific DNA methylation measurement methods.

Whole-genome bisulfite sequencing (WGBS). WGBS couples bisulfite conversion of DNA with

next-generation sequencing and thereby, achieves single-base resolution [166, 245]. Next-generation

sequencing is a sequence-by-synthesis method starting with the preparation of a library of adapter-

ligated DNA fragments [90]. Bisulfite treatment can precede or succeed fragmentation, however,

bisulfite conversion prior adapter ligation reduces bias [90, 176]. The adapter-ligated DNA fragments

are loaded into a flow cell which contains oligonucleotides complementary to the adapters [90].

Subsequently, each immobilized fragment is amplified and sequenced [90]. For data analysis the

reads are mapped to a reference genome and DNA methylation is determined by the ratio of cytosines

and thymines at a specific CpG site [245].

BeadChip arrays. The probably best-known array-based method is the Infinium Human Methy-

lation 450K BeadChip array which allows the measurement of over 450 000 CpG sites in 99% of

all known genes [119]. However, the array contains mainly probes for promoter and other regula-

tory regions [119]. Initially, DNA is bisulfite-converted followed by whole-genome amplification for
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Figure 1.2: Schematic illustration of the bisulfite reaction. (a) Unmethylated cytosine is sulfonated
by treatment with bisulfite salt, high temperatures, and a low pH leading to cytosine sulfonate. The
subsequent deamination converts cytosine sulfonate to uracil sulfonate. (b) The final step of the bisulfite
conversion is the desulfonation which produces uracil. (c) Methylated cytosine is not converted and
remains cytosine in the final bisulfite-converted DNA. Schematic illustration modified from Kristensen
and Hansen (2009) [115].

subsequent fragmentation and hybridization with oligonucleotides [174]. The oligonucleotides are

designed as pairs, one complementary to unmethylated DNA (thymine) and the other to methylated

DNA (cytosine) [119, 174]. This is followed by labeling of the hybridized DNA fragments to generate

a detectable product [119]. To determine DNA methylation, the ratio of the signals for the probe

pairs is calculated [119]. The array has single-base resolution, is less time-consuming compared to

sequencing-approaches, and only small DNA amounts are necessary [174, 252]. Disadvantages are

the limitation of probe design, because they can generate artifacts [47, 174]. Since bisulfite treat-

ment results in DNA with only three bases instead of four, this can introduce cross-reactivity of the

probes, it is estimated that 10-25% of all probes are unspecific [47]. Moreover, the Infinium Human

Methylation 450K BeadChip is only available for humans but not for other species and only high

DNA methylation changes can be detected [47, 119].

Comprehensive high-throughput arrays for relative methylation (CHARM).

CHARM is a genome-wide and array-based approach which, in contrary to many other array-based

DNA methylation measurement methods, is not restricted to CpG islands and promoter regions but

can also assess regions with low CpG density [122, 173]. CHARM uses McrBC, a restriction enzyme

cleaving methylated DNA, to fractionate the DNA and enrich unmethylated sequences [173, 252].

Besides McrBC digestion, mock digestion is performed which represents the input fraction of DNA

[122]. Both digested and undigested DNA is labeled differently and co-hybridized to a microarray

[122]. Methylated sequences will be found in the undigested input fraction and are reduced in the

digested fraction [122].
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Bisulfite pyrosequencing. The gold standard for measuring DNA methylation is bisulfite pyrose-

quencing, a sequence-by-synthesis method using a coupled enzyme reaction to detect the incorpo-

ration of a nucleotide [5, 166, 174]. DNA is bisulfite-converted and after PCR amplification with a

biotinylated primer the PCR product is pyrosequenced [174]. After hybridization of the sequencing

primer to the PCR product an enzyme mixture as well as a substrate mixture is added followed by

the first nucleotide [191]. The enzyme mixture contains DNA polymerase, ATP sulfurylase, apyrase,

and luciferase [191]. The substrate reagent consists of adenosine-5’-phosphosulfate and luciferin

[5]. Only one nucleotide at a time is dispensed [5]. If the nucleotide is complementary to the tem-

plate sequence it is incorporated by the DNA polymerase which generates a diphosphate (also called

pyrophosphate, PPi) [5]. Each individual incorporation generates one diphosphate. Therefore, the

amount of PPi is equimolar to the number of complementary nucleotides [5]. The PPi is used by

the ATP sulfurylase to produce ATP from adenosine-5’-phosphosulfate [5]. The ATP is utilized by the

luciferase to convert luciferin to oxyluciferin which is accompanied by the release of light [5]. The

light is proportional to the amount of ATP and therefore, to the number of incorporated nucleotides

[5]. The light signal is detected and used for the calculation of DNA methylation level [191]. The

apyrase degrades the unincorporated nucleotides [5]. To discriminate between ATP generated by

the ATP sulfurylase and ATP which is normally used as nucleotide for incorporation in the new DNA

strand, Qiagen provides deoxyadenosine α-thio triphosphate (dATPαS) for sequencing [191]. DNA

methylation at a CpG site is determined by the ratio of incorporated thymine to cytosine [119]. Bisul-

fite pyrosequencing is an easy and fast method with high reproducibility [174]. Furthermore, with

bisulfite pyrosequencing a single-base resolution is achieved, but only about 100 bp can be maxi-

mally sequenced at a time [119]. Therefore, only a region of interest can be studied and it is not

suited for high-throughput approaches [174].

Figure 1.3: Overview of the coupled enzyme reaction of bisulfite pyrosequencing. The incorporation
of a nucleotide (dNTP) by the DNA polymerase produces a diphosphate (PPi) which is used by the ATP
sulfurylase for the generation of ATP. ATP is a substrate of the luciferase which produces light in equimolar
amounts to the number of incorporated nucleotides. Nucleotides which were not incorporated and ATP
are degraded by the apyrase. Modified according to the ’PyroMark Q48 Autoprep User Manual’ [191].

14
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1.1.2 DNA methylation and disease

The reversibility of epigenetic modifications provides genomic flexibility to respond to changing en-

vironments, however, epigenetic changes can also induce pathological alterations [157, 215]. Can-

cer might be the best-known example for a disease associated with changes of DNA methylation

[101, 157]. Cancer is associated with a genome-wide DNA hypomethylation and de novo hyperme-

thylation in promoter regions of tumor suppressor genes [75, 101]. This leads to silencing of these

genes favoring the development of tumors [101].

However, environmental induced alterations of DNA methylation can also induce other noncom-

municable diseases, such as asthma, obesity, neurodegenerative disorder, psychological disorder,

nonalcoholic hepatosteatosis, and type 2 diabetes [75, 157, 215]. For instance, it was shown that

obese non-diabetic and type 2 diabetic individuals show DNA hypomethylation in genes regulating

glucose metabolism resulting in a potential shift of the hepatic metabolism to increased glycolysis

and de novo lipogenesis [110]. Important milestones of epigenetic studies of the development of type

2 diabetes were transgenerational studies. It was observed that maternal undernutrition during early

pregnancy leads to uterine growth retardation, low birth weight, and long-term alterations of the

metabolism with higher risk for type 2 diabetes and obesity in the offspring [125]. However, hepatic

epigenetic alterations associated with type 2 diabetes can also be acquired later in life without any

metabolic deteriorations of the parents [163, 256].

1.2 Whole-body energy homeostasis

The whole-body energy metabolism is regulated by balancing energy intake with energy expenditure

to maintain body weight [63]. During fasting conditions, the pancreas secretes glucagon which stim-

ulates hepatic glycogen degradation and gluconeogenesis to prevent a drop of blood glucose levels

[198]. Furthermore, adipose tissue lipolysis rate is increased and non-esterified fatty acids (NEFA)

are supplied as substrate for fatty acid β-oxidation and energy production [58, 100]. Postprandially,

the digestion of food provides a plethora of nutrients and circulating blood glucose levels increase

[58, 100]. This induces insulin secretion by pancreatic β-cells stimulating insulin-dependent glu-

cose uptake in adipose tissue and skeletal muscle by insulin-responsive glucose transporter type 4

(GLUT4) [198]. However, only 5-10% of circulating glucose is taken up by adipose tissue, most of

the glucose is transported into skeletal muscles and insulin-independently into liver [3, 58, 218].

Moreover, insulin induces glycogen synthesis and de novo lipogenesis by simultaneously inhibiting

fatty acid β-oxidation and glucose production [100, 117, 198]. In adipose tissue, insulin inhibits

lipolysis and circulating free fatty acid levels are reduced [58]. The pancreatic insulin secretion is

further promoted by gut-derived peptide hormones called incretins which are secreted upon a meal

[198]. Also other metabolic tissues secrete signaling molecules which are important for inter-organ
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communication and influence metabolism [93]. Several peripheral endocrine and metabolic signals

can be integrated by the hypothalamus to regulate food intake and energy expenditure centrally

[109]. This indicates an extensive crosstalk between different tissues to regulate metabolism.

1.3 The liver as metabolic tissue

The liver is a central organ for metabolic coordination due to its functions in synthesis, breakdown,

storage, and redistribution of nutrients [178]. The liver is able to recognize the availability of nu-

trients to regulate and maintain systemic requirements, for example it plays a role in biotransfor-

mation of xenobiotics and bile acid synthesis [108, 178]. Furthermore, it is the major tissue for

carbohydrate and lipid metabolism and regulates systemic glucose levels under different nutritional

conditions [100]. Since all these processes take place in parallel, the liver parenchyma is function-

ally divided into different metabolic zones which also contain various cell types [108]. The smallest

structural unit is called lobule, a hexagonal structure with a central vein [108]. Each corner of the

lobule consists of a branch from the portal vein, hepatic artery, and bile duct and is called portal

triad [108]. The hepatocytes within a lobule radiate out from the central vein to the portal triad and

have contact to blood vessels at each side [108]. In the blood vessels, liver-residing macrophages,

so-called Kupffer cells, are found and in the space between endothelial cells and hepatocytes hepatic

stellate cells, which store fat and vitamin A, are located [108]. In terms of function, the acinus is the

important hepatic unit which is obtained by connecting two portal triads with two adjacent central

veins [108]. Within these units, the hepatocytes substantially differ in their subcellular, biochemical,

and physiological function leading to a metabolic zonation [108]. Thereby, opposing pathways are

separated and substrate competition is minimized [108]. For example gluconeogenesis and fatty

acid β-oxidation take place in the periportal zone where hepatocyte receive blood rich in nutrients,

oxygen, and hormones, whereas de novo lipogenesis and glycolysis take place in the perivenous

zone near the central vein [81, 108, 117]. This also means that metabolic enzymes show a zonated

location, although zonation is quiet dynamic and can switch depending on physiological and patho-

physiological conditions [81].

1.3.1 Hepatic fatty acid metabolism

Fatty acids are the most frequent storage form of energy containing approximately twice as much

energy than carbohydrates and proteins [152, 169]. Furthermore, they represent important com-

ponents of membranes, act as signaling molecules, serve as post-translational modifications, and

regulate the activity of transcription factors [8, 169]. Hepatic fatty acid content is determined by

fatty acid uptake, synthesis, degradation, and export [184]. Intracellular fatty acid concentration
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and localization is tightly regulated and in healthy subjects the liver stores only a small amount of

fat [8]. Due to the lipotoxic potential of fatty acids they are stored as neutral triglycerides [8].

Fatty acids and triglycerides can be synthesized in hepatocytes de novo from acetyl-CoA in a

process called de novo lipogenesis [9, 184, 206]. A diet rich in carbohydrates activates de novo

lipogenesis, whereas fasting and a high fat supply inhibits de novo lipogenesis [169, 206]. Increased

rates of de novo lipogenesis are associated with metabolic diseases [206]. The first step to synthesize

fatty acids is the conversion of citrate to acetyl-CoA by ATP-citrate lyase (ACLY) [8]. Acetyl-CoA is

converted to malonyl-CoA by acetyl-CoA carboxylase (ACC) [206]. There are two isoforms of ACC:

ACC1 and ACC2 [206]. Malonyl-CoA derived from ACC1 is used by the multifunctional enzyme fatty

acid synthase (FAS) to catalyze the whole reaction of palmitic acid/stearic acid synthesis [8, 169,

206]. Since FAS is the rate-limiting enzyme of de novo lipogenesis it is extensively regulated, for

instance insulin and substrate availability activate FAS, whereas glucagon inhibits FAS [169]. The

nutritional state also impacts FAS activity, a high amount of intracellular fatty acids decreases FAS

activity [169]. Fatty acids synthesized by FAS can be converted to unsaturated fatty acids by SCD1

which inserts a double bond resulting in mono-unsaturated fatty acids, such as palmitoleate and

oleate [151].

De novo lipogenesis is regulated on the transcriptional level by sterol regulatory element bind-

ing protein 1c (SREBP-1c) and carbohydrate response element binding protein (ChREBP) [206].

SREBP-1c is an important regulator of lipid and cholesterol metabolism and itself is regulated by

insulin on the transcriptional level and by post-translational processing [73, 206, 207]. ChREBP is

activated by glucose-6-phosphate and binds to the carbohydrate response element (ChoRE) of target

genes, for example Fasn, Acaca, and Pklr [206, 207]. Both ChREBP and SREBP-1c ensure that de

novo lipogenesis is only active when glucose and insulin are present [207].

The uptake of non-esterified fatty acids derived from adipose tissue lipolysis is mediated by for

example fatty acid translocase (FAT)/CD36 [8, 169]. To metabolize fatty acids after entry into the

cell they have to be activated by thioesterification resulting in fatty acyl-CoA which can be oxidized

for energy generation [8, 169]. During mitochondrial β-oxidation, fatty acids are oxidized to acetyl-

CoA which can be completely oxidized in the TCA cycle or incompletely by ketogenesis [8]. Fatty

acids longer than 14 carbons enter the mitochondria with the aid of carnitine palmitoyltransferase 1

(CPT1) [169]. The mitochondrial β-oxidation is coupled with de novo lipogenesis by malonyl-CoA

synthesized by ACC2 which inhibits CPT1 and therefore, prevents the simultaneous activity of β-

oxidation and de novo lipogenesis [169, 206].

The mitochondrial β-oxidation oxidizes short-chain, medium-chain, and long-chain fatty acids,

but very long-chain fatty acids are degraded by peroxisomal β-oxidation [169]. The processes dif-

fer in the first step, in peroxisomes the initial dehydrogenation is replaced by an oxidation reaction

which produces H2O2 [169]. Peroxisomal β-oxidation results in shortened fatty acids which can be
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fully oxidized by mitochondria [169]. Furthermore, peroxisomes do not possess an electron trans-

port chain resulting in the production of less ATP compared to mitochondrial β-oxidation, but this

pathway is helpful for the cell to handle a high availability of fatty acids [169]. Long-chain fatty acids

can also be oxidized by CYP4A ω-oxidation to dicarboxylic acid [169]. All these oxidative pathways

are co-operatively regulated and important for hepatic lipid homeostasis [169].

Feeding a diet very rich in fat will activate ketogenesis producing ketone bodies [169]. However,

this results in less ATP compared to β-oxidation, but the conversion into water-soluble molecules is

also a strategy for redistribution of energy [169].

Lipids represent not only an energy source, they are also important for membrane biogenesis

[27]. Membranes consist of a variety of lipid species, for instance sphingolipids, of which sphin-

gomyelin is the most abundant complex sphingolipid in mammals [27, 64]. The last step of sph-

ingomyelin synthesis is catalyzed by sphingomyelin synthase 2 (SMS2), encoded by Sgms2 [155].

SMS2 is also involved in the regulation of lipid drafts which are crucial for the correct compartmen-

talization of signaling pathways [136].

Also cholesterol is an essential component of membranes and the substrate for bile acid synthesis

[27, 37]. It was suggested that SIK family kinase 3 (encoded by Sik3), a member of the AMPK-related

kinase family, regulates cholesterol and bile acid metabolism but also functions in suppressing hepatic

gluconeogenesis [94, 232].

1.3.2 Hepatic glucose metabolism

One important function of the liver is to maintain blood glucose levels in a physiological range

despite changing energy demands of the body [178]. In the postprandial state, blood glucose levels

rise and the liver shifts its metabolic pathways to glucose consumption and storage [178]. About

10-25% of the glucose is taken up by hepatocytes, mainly by GLUT2 [178]. In hepatocytes, glucose

is phosphorylated to glucose-6-phosphate by glucokinase [178].

Increased glucose-6-phosphate levels stimulate glycogen synthesis by allosteric activation of gly-

cogen synthase and simultaneously inhibit glycogenolysis by inhibiting glycogen phosphorylase [178].

Glycogen is the storage form of glucose and can be used for rapid release of glucose into the blood

stream [73]. Glucose-6-phosphate can also enter glycolysis and the pentose phosphate pathway

[178]. Glycolysis represents the critical pathway for glucose catabolism in most tissues to generate

energy [73]. During glycolysis, glucose is metabolized to pyruvate which can be completely oxidized

in mitochondria to generate ATP or used for de novo lipogenesis [201]. Glycolysis is predominantly

active in the fed state when glucose levels are high [201]. The important, rate-limiting enzymes of

glycolysis are glucokinase, phosphofructokinase-1, and liver-type pyruvate kinase (PK) [73]. These

enzymes are regulated allosterically to couple their activity to the energy demands [73]. Glycolysis

is also regulated on the transcriptional level during fed conditions by SREBP-1c and ChREBP [73].
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In the post-absorptive phase, when glucose absorption in the intestine is completed, hepatic glu-

cose production represents the major source of blood glucose [178]. This is especially important

for tissues which solely rely on glucose as energy source, such as the brain [178]. Initially, hep-

atic glucose production is mainly determined by glycogenolysis, with prolonged fasting (more than

30 hours), gluconeogenesis becomes more and more predominant, because glycogen stores are de-

pleted [73, 178]. During gluconeogenesis glucose is synthesized from fructose, lactate, alanine, or

glycerol [3, 73]. Initially, the precursor molecules are converted to pyruvate which is carboxylated to

oxaloacetate by pyruvate carboxylase [3]. This is followed by the synthesis of phosphoenolpyruvate

by phosphoenolpyruvate carboxykinase (PEPCK) [3]. PEPCK catalyzes a rate-limiting step of glu-

coneogenesis [201]. In a series of reactions, which are the reversion of glycolysis, glyceraldehyde-

3-phosphate is synthesized and reacts further to fructose-1,6-bisphosphate [3, 76]. Fructose-1,6-

bisphosphate is converted to glucose-6-phosphate [3]. Glucose-6-phosphate from both gluconeoge-

nesis and glycogenolysis is transported into the endoplasmic reticulum by the glucose-6-phosphate

transporter (G6PT) and dephosphorylated by the glucose-6-phosphatase (G6PC) [178]. The result-

ing glucose is released into the bloodstream by GLUT2 [178].

1.4 Type 2 diabetes

Type 2 diabetes developed to a global health problem and the prevalence is steadily increasing [259].

The International Diabetes Federation estimated that 425 million adults aged 20-79 years suffered

from diabetes in 2017 and this number will further increase to estimated 629 million cases in 2045

[38]. Due to diabetes-associated co-morbidities, type 2 diabetes often leads to premature death

[175]. It is estimated that type 2 diabetes accounts for 9.9% of the global all-cause mortality among

people aged 20-99 years in 2017 [38].

Diabetes mellitus encompasses a group of metabolic disorders with the key symptom chronic

hyperglycemia which can be caused by reduced production of insulin by pancreatic β-cells or the

inability of insulin to induce signaling in its target tissues, called insulin resistance [87].

Type 2 diabetes is caused by interactions of environmental, genetic, and behavioral factors mak-

ing the disease multi-factorial [87, 175]. Often, type 2 diabetes is part of the metabolic syndrome,

alongside with obesity, hyperlipidemia, and hypertension [175]. In the last decades, obesity devel-

oped to a primary risk factor for type 2 diabetes, it was estimated that obesity is involved in about

55% of all type 2 diabetes cases [87, 175].

1.4.1 Type 2 diabetes pathogenesis and therapy

Increased calorie intake and little physical activity leads to a positive energy balance resulting in

obesity and associated development of insulin resistance [202]. Insulin resistance develops in adi-
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pose tissue, skeletal muscle, liver, brain, and vasculature [58]. In adipose tissue and skeletal muscle,

insulin resistance leads to impaired glucose uptake [205]. In liver, insulin resistance is characterized

by the inability of insulin to inhibit hepatic glucose production [117]. The resulting hyperglycemia

is compensated by increased pancreatic insulin secretion leading to hyperinsulinemia accompanied

by elevated β-cell mass and β-cell function [16, 190]. However, in the long term this leads to β-cell

dysfunction, β-cell failure, and apoptosis resulting in type 2 diabetes [190]. Additionally, without

any therapeutic actions chronic hyperglycemia leads to long-term micro- and macrovascular dam-

age as well as damage of several organs resulting in for example atherosclerosis, renal failure, and

neuropathy [87].

Excess calorie intake also leads to accumulation of lipids not only in adipose tissues, but also

for instance in skeletal muscle and liver [205]. Non-alcoholic fatty liver disease (NAFLD) is the

most common chronic liver disease in western countries with a global prevalence in adults of 25%

[96, 145]. NAFLD often precedes insulin resistance and hepatic lipid accumulation impairs insulin

sensitivity, but insulin resistance also favors hepatic lipid accumulation [89, 145]. Intriguingly, hep-

atic insulin resistance is associated with increased gluconeogenesis and simultaneously increased

de novo lipogenesis, termed selective insulin resistance [117]. For development of selective insulin

resistance liver zonation could play a role [118]. It is suggested that hepatocytes in the periportal

zone develop insulin resistance, whereas cells in the perivenous zone show enhanced insulin signal-

ing [117]. The periportal zone is the main site of gluconeogenesis and the perivenous zone is the

main location of de novo lipogenesis [118].

Different insulin-sensitive tissues vary in their insulin sensitivity and therefore, insulin resistance

does not develop uniformly throughout the body [16]. For humans, it was reported that skeletal

muscle shows early disturbances, but the liver seems to be more severely affected [45]. In high fat

diet-fed rodents, insulin resistance develops rapidly in liver and adipose tissue, but in skeletal muscle

much more slowly [16, 58].

There are several pharmacological therapies available to reduce hyperglycemia, but all anti-

diabetic drugs show only a short effectiveness of some years [226]. When monotherapy is no longer

sufficient to achieve an HbA1c lowering effect, different anti-diabetic drugs can be combined [226].

However, about 50% of the patients need insulin therapy within 10 years of disease progression

which can be combined with oral anti-diabetic drugs [28, 226]. This demonstrates that more effi-

cient diabetic drugs are needed for an effective disease control. Consequently, prevention strategies

are of utmost importance [87, 226]. Lifestyle modifications towards healthier eating behavior and

more exercise would be of primary interest, especially for patients with prediabetes, to delay pro-

gression and complications [226].
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Figure 1.4: Insulin resistance involves multiple tissues. Insulin resistance is characterized by a re-
duced response of target tissues to insulin leading on the whole-body level to impaired glucose lowering
effects and hyperglycemia [87]. Affected are tissues such as adipose tissue, skeletal muscle, liver, and
brain [58]. In adipose tissue and skeletal muscles insulin resistance leads to impaired glucose uptake
which is further exacerbated by elevated hepatic glucose production due to hepatic insulin resistance
[117, 205]. The hyperglycemia is compensated by increased pancreatic insulin secretion leading to hy-
perinsulinemia and in the long term to β-cell dysfunction, β-cell failure, and apoptosis [16, 190]. Insulin
resistance is commonly associated with excess calorie intake resulting in lipid accumulation in adipose
and non-adipose tissues [205]. The lipid accumulation is further facilitated by the inability of insulin to
suppress adipose tissue lipolysis leading to increased fatty acid release into the blood stream [205].

1.5 PPARα-FGF21 pathway

1.5.1 Peroxisome proliferator-activated receptors

Peroxisome proliferator-activated receptors (PPAR) are nuclear receptors which regulate nutrient-

dependent gene expression upon activation by specific ligands [72, 123]. The receptors were first

described as molecules inducing proliferation of peroxisomes in rodents which can induce liver can-

cer, however, this was not observed in humans [53, 72].

PPARs are fatty acid sensors controlling cellular proliferation, differentiation, and several meta-

bolic pathways to maintain metabolic flexibility [53, 72, 123]. Furthermore, PPARα and PPARγ, two

isoforms of the PPARs, were shown to possess anti-inflammatory effects [53].

The structure of PPARs is similar to other nuclear receptors, but they have an unusually large

ligand binding pocket for different fatty acid species and derivatives [123]. The endogenous ligands

are derived from diet, de novo lipogenesis, and lipolysis. Therefore, PPAR activation is coupled to the

nutritional status [53]. For instance, it was shown that high fat diet feeding induces gene expression

of target genes of PPARα and PPARβ/δ [53]. Tissue-dependent target gene specificity is achieved by

epigenetic mechanisms, for example macrophage-specific binding regions of PPARγ are inaccessible

in white adipocytes due to repressive histone modifications [53].

Upon ligand binding, PPARs get activated which induces a conformational change enabling the
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heterodimerization with retinoid receptor X (RXR), followed by binding to the PPAR responsive el-

ement (PPRE) of target genes [72, 123]. To activate gene expression, the PPAR-RXR complex asso-

ciates with co-activators [74]. In general, PPARs activate gene expression, however, gene expression

of proinflammatory genes is inhibited by PPARs [20]. The consensus PPRE consists of two hexanu-

cleotides separated by a variable base: AGGTCA-N-AGGTCA [74].

1.5.2 The three PPAR isoforms PPARα, PPARβ/δ, and PPARγ

Three isoforms of PPAR exist, PPARα, PPARβ/δ, and PPARγ, which bind to the same DNA binding

motif but regulate different genes [53, 72]. The discrimination between different target genes is

achieved by different tissue expression which is associated with different chromatin modifications

and transcription factor sets [53]. Additionally, the PPAR isoforms have different ligand specificity

[123, 127]. Also their functions differ, PPARα and PPARβ/δ activate catabolic processes, whereas

PPARγ promotes energy storage [123]. PPARβ/δ and PPARγ have insulin sensitizing effects but

PPARα not [123].

PPARα

PPARα is expressed in hepatocytes, enterocytes, endothelial cells, smooth muscle cells, and immune

cells [123]. It is a key regulator of hepatic mitochondrial and peroxisomal fatty acid oxidation and

binds long-chain unsaturated fatty acids, eicosanoids, and hypolipidemic drugs [74, 123]. PPARα

is the main PPAR isoform in the liver regulating fatty acid metabolism during nutritional transition

phases [53]. Under fasting conditions, PPARα induces fatty acid uptake, fatty acid β-oxidation, and

ketogenesis [18, 123]. In the fed state, it activates de novo lipogenesis to provide energy during

starvation [53, 123]. Besides fatty acid metabolism, it is thought that PPARα also regulates glucose

metabolism, for example by increasing gluconeogenesis rate in mice [53, 69, 123, 189]. Therefore,

PPARα plays a role in metabolic flexibility by coupling nutrient utilization to nutrient availability

[53]. Ppara gene expression is decreased in NAFLD, a state of metabolic inflexibility, whereas feeding

mice a high fat diet increases Ppara gene expression and PPARα signaling [53, 180].

PPARα activators, such as fibrates, are used in the clinics as therapy for dyslipidemia [53]. Fi-

brates have no effect on glucose homeostasis in type 2 diabetic subjects, but prediabetic patients

benefit from fibrate therapy indicating that an activation of PPARα prevents the progression from

prediabetes to type 2 diabetes [53].

PPARβ/δ

PPARβ/δ is found in skeletal muscle, adipocytes, macrophages, lung, brain, skin, and hepatocytes

and also regulates fatty acid metabolism, enhances insulin sensitivity, increases energy expendi-

ture, and acts anti-inflammatory [53, 123]. Thereby, PPARβ/δ activation combines the beneficial
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metabolic effects of PPARα and PPARγ on lipid and glucose homeostasis and improves hepatic insulin

sensitivity [53].

PPARγ

For PPARγ three splice variants were identified, PPARγ1, -2, and -3, which exhibit a tissue-specific

gene expression [123]. PPARγ1 is found in many tissues, whereas PPARγ2 is exclusively expressed

in adipose tissue [123]. PPARγ3 is found in macrophages, intestine, and white adipose tissue [123].

PPARγ is especially important for adipose tissue function, where it regulates fatty acid uptake and

storage, adipogenesis, adipokine production, and has insulin sensitizing effects [123]. Increased

PPARγ gene expression in the liver of rodents can be induced by high fat diet feeding and is associated

with hepatic steatosis [6, 123]. Synthetic PPARγ ligands are used as anti-diabetic drugs, but due to

side effects their usage is limited [53].

1.5.3 Fibroblast growth factors

Fibroblast growth factors (FGF) represent a large family with a variety of functions [60]. In mice and

humans 22 FGF genes were identified which can be divided into eight subfamilies [222]. Normally,

FGFs bind to heparin/heparan sulfate proteoglycans which impairs the diffusion of FGFs and acts as

cofactor to regulate FGF receptor (FGFR) signaling [179]. However, the endocrine FGFs show low

affinity to heparin/heparan sulfate and are secreted [179]. To induce signaling, these FGFs need to

bind to a receptor and co-receptor in their target tissues [60, 179].

Fibroblast growth factor 21 (FGF21) belongs to the endocrine FGFs and represents an important

metabolic regulator controlling hepatic and adipocyte metabolism, for example bile acid, carbohy-

drate, and lipid metabolism [60, 161, 179]. It is suggested that plasma FGF21 in mice is almost

exclusively derived from the liver, although also other metabolic tissues express Fgf21 [222]. How-

ever, FGF21 plasma level in mice and humans substantially differ, already between different subjects

plasma FGF21 shows a great variance [222].

FGF21 has multiple beneficial effects on energy homeostasis and insulin sensitivity [65]. The

main function is to induce metabolic adaptations in response to fasting, including ketogenesis, glu-

coneogenesis, and fatty acid oxidation [65, 222]. Administration of recombinant FGF21 to HFD-fed

mice or genetic obesity and diabetes models results in metabolically beneficial effects, such as in-

creased fat utilization and energy expenditure, decreased body weight, whole-body fat mass, and

liver triglycerides [57, 222]. FGF21 improves glucose tolerance, insulin sensitivity, and hepatic

steatosis as well as normalizes hyperinsulinemia and glycemia [219, 222]. In adipose tissues, the

main site of FGF21 action, FGF21 stimulates glucose and fatty acid uptake, potentiates PPARγ activ-

ity, and increases mitochondrial activity [65, 222]. FGF21 has also central effects, it increases energy

expenditure, reduces food intake as well as sugar consumption [222]. It is currently controversial if
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FGF21 has direct effects on the liver, although it was observed that FGF21 seems to stimulate hepatic

fatty acid oxidation, ketogenesis, and hepatic insulin sensitivity as well as suppresses hepatic de novo

lipogenesis [222]. However, to induce these metabolically beneficial effects very high therapeutic

doses need to be administered which exceed the physiological concentrations [65].

FGF21 is also elevated by overnutrition and in pathological states, such as NAFLD and type 2

diabetes, and correlates with hepatic fat content as well as steatosis [57, 65, 222].

Regulation of Fgf21 gene expression

Gene expression of Fgf21 is under control of several nutritional and endocrine signals and many

transcription factors are involved in the transcriptional regulation [222].

Fgf21 gene expression is tissue-specific regulated by PPARα and PPARγ [222]. An activation of

PPARγ induces higher Fgf21 gene expression in white adipose tissue, mainly under fed conditions

[53, 222]. In the liver, Fgf21 gene expression is stimulated by PPARα, especially during fasting,

leading to activation of fatty acid oxidation and ketogenesis [53, 57, 222].

At least in humans, overnutrition and refeeding induces FGF21 gene expression, possibly due to

increased dietary carbohydrates which upregulate FGF21 mRNA level by activating ChREBP [57]. In

mice, hepatic Fgf21 gene expression can be induced by a high fat-low carbohydrate or ketogenic diet

[57, 222].

Fgf21 gene expression is also regulated by different hormones, such as glucagon which increases

Fgf21 mRNA and FGF21 blood level, and insulin which also slightly increases FGF21 blood level

[222]. However, regarding the regulation by insulin, differences between mice and humans seem

to exist [222]. There are also studies hinting to an autoregulation of the Fgf21 gene expression by

plasma FGF21 [57]. The administration of FGF21 induced a decrease in Fgf21 gene expression [57].

FGF21 signaling

FGF21 binds to and activates the FGF receptor tyrosine kinases FGFR1c and FGFR3c, but to in-

duce signaling also the co-receptor β-Klotho is necessary [222]. It is thought that the differential

expression of β-Klotho determines the FGF21 tissue specificity [222]. In mice, β-Klotho is found

in liver, pancreas, and adipose tissue [222]. Upon binding, the FGF receptor dimerizes and gets

transautophosphorylated [179]. FGFR substrate 2α (FRS2α), constitutively bound to its binding

site in the juxtamembrane region of FGFR, gets phosphorylated which induces the activation of

RAS-MAPK and PI3K-Akt pathways [179]. The activation of the PI3K-Akt pathway leads for exam-

ple to inhibition of FoxO1 and activation of mTORC1 [179]. Besides RAS-MAPK and PI3K-Akt, the

activation of FGFR also results in the phosphorylation of PLCγ and STAT [179].
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The FGF signaling is regulated by receptor internalization and degradation but also by inhibition

of the signaling itself [179]. For example, Sprouty (SPRY) inhibits RAS-MAPK and regulates the PI3K-

Akt pathway [179]. Dual specificity phosphatase 6 (DUSP6), an ERK-specific MAPK phosphatase, is

a negative feedback regulator of FGFR signaling by dephosphorylation of ERK1/2 [179].

Figure 1.5: Schematic illustration of the FGF21 signaling pathway. Hepatic Fgf21 gene expression is
stimulated by for example fasting, glucagon, a high carbohydrate diet, and in mice by fatty acids. These
stimuli act via various transcription factors, such as PPARα-RXR complex, ChREBP, and SREBP-1c. Hepatic
FGF21 is secreted into the blood stream. At target tissues, FGF21 binds to the FGF receptor 1c (FGFR1c)
as well as β-Klotho and induces phosphorylation of FGFR substrate 2α (FRS2α) which further activates
for instance PI3K-Akt signaling and the RAS-MAPK pathway. In adipose tissue, FGF21 signaling stimulates
browning, mitochondrial activity, fatty acid uptake as well as adiponectin release. In brown adipose tissue
FGF21 induces glucose uptake. Central effects of FGF21 include reduced sugar consumption, reduced
food intake, and increased energy expenditure. On the whole-body level, FGF21 activity is apparent
as reduced body weight, increased fat utilization, energy expenditure, and insulin sensitivity. FGF21
signaling can be inhibited by Sprouty (SPRY) and Dual specificity phosphatase 6 (DUSP6). FGF21 effects
which are similar in humans and mice are shown in black, FGF21 effects shown in mice but without
human data are shown in blue. Modified according to Staiger et al. (2017) [222] and Ornitz and Itoh
(2015) [179].
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Objectives of this study

The prevalence of obesity is steadily increasing in our modern society and since it is a primary risk

factor for type 2 diabetes also the number of patients suffering from insulin resistance and type 2

diabetes increases vastly [87, 259]. Type 2 diabetes has a strong genetic component, but the so

far identified diabetes-associated genetic factors cannot explain sufficiently the development of the

disease [7, 46]. Environmental factors play a crucial role in the disease pathogenesis, for instance

eating behavior and physical activity [87], but the detailed causes of obesity and type 2 diabetes are

not elucidated yet. This contributes to the lack of long-acting, efficient diabetes therapies.

Epigenetics represent the link between environment and genetics and it was reported multiple

times that diabetic subjects show altered DNA methylation compared to healthy controls [13, 110,

163, 224]. Therefore, the aim of this thesis was to study if DNA methylation is causal or consecutive

for the development of obesity and insulin resistance. The knowledge about the epigenetic compo-

nent of the disease would contribute to a deeper understanding of the type 2 diabetes pathogenesis

which in turn is crucial for the design of efficient new therapies and prevention strategies.

The specific objectives of this thesis were to

• Investigate the development of insulin resistance in a longitudinal study with diet-induced

obese mice.

• Identify differentially expressed genes in liver which are regulated by DNA methylation and

putting them into context with the phenotype.

In contrary to endpoint studies, this allows the time-resolved tracking of the development of

insulin resistance and the study is unique regarding the epigenetic research question.
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Materials

3.1 Manufacturers

A Acculab (Sartorius group, Göttingen, Germany); Affymetrix (Thermo Fisher Scientific, Santa Clara,

CA, USA); Altromin (Lage, Germany); AppliChem Panreac (Illinois Tool Works Inc., Chicago, Il,

USA); Applied Biosystems (Thermo Fisher Scientific, Waltham, MA, USA); B Bayer (Leverkusen, Ger-

many); Becton Dickinson (Franklin Lakes, NJ, USA); Berlin-Chemie (Berlin, Germany); Biochrom

(Merck, Darmstadt, Germany); Bio-Rad (Hercules, CA, USA); BioTEK (Winooski, VT, USA); BMG

Labtech (Ortenberg, Germany); C Calbiochem (Merck, San Diego, CA, USA); Carl Roth (Karlsruhe,

Germany); Cayman Chemicals (Ann Arbor, MI, USA); Cell Signaling Technology (Danvers, MA,

USA); Charles River (Wilmington, MA, USA); cti (Idstein, Germany); D Dako Denmark A/S (Glostrup,

Denmark); E Edmund Bühler (Bodelshausen, Germany); Eppendorf (Hamburg, Germany); F Feather

(Osaka, Japan); Fisher Scientific (Thermo Fisher Scientific, Schwerte, Germany); Fluka Biochemika

(Honeywell, Buchs, Switzerland); F.S.T. (Fine Science Tools, Vancouver, BC, Canada); G Gilson

(Middleton, WI, USA); GraphPad Software (San Diego, CA, USA); Greiner Bio-One (Kremsmün-

ster, Austria); H Hartmann (Heidenheim, Germany); Heidolph (Schwabach, Germany); Heraeus

(Hanau, Germany); Hirschmann (Eberstadt, Germany); Honeywell (Morristown, NJ, USA); Hy-

baid (Thermo Fisher Scientific, Waltham, MA, USA); I IDT (Coralville, IA, USA); IKA (Staufen im

Breisgau, Germany); Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA); Isolab Laborgeräte

(Wertheim, Germany); K Kern (Balingen-Frommern, Germany); Knittel Gläser (Braunschweig, Ger-

many); Korff (Oberbipp, Switzerland); L Labinco (Breda, The Netherlands); Leica Biosystems (Nuss-

loch, Germany); Liebherr (Biberach an der Riß, Germany); Life Technologies (Thermo Fisher Scien-

tific, Carlsbad, CA, USA); M MathWorks (Natick, MA, USA); Medistar (Koblenz, Germany); Medite

(Burgdorf, Germany); Meditrade (Kiefersfelden, Germany); Merck Millipore (Darmstadt, Germany);

Microsoft (Redmond, WA, USA); Morphisto (Frankfurt am Main, Germany); N neoLab (Heidelberg,

Germany); Nerbe Plus (Winsen/Luhe, Germany); New England Biolabs (Ipswich, MA, USA); Nikon

(Tokio, Japan); Novex (Thermo Fisher Scientific, Waltham, Massachusetts, USA); P Peqlab (VWR,
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Radnor, PA, USA); Phoenix Instrument (Garbsen, Germany); Promega (Fitchburg, WI, USA); Q Qia-

gen (Hilden, Germany); R Ratiopharm (Ulm, Germany); Research Diets (New Brunswick, NJ, USA);

Roche (Basel, Switzerland); RStudio (Boston, MA, USA); S Sarstedt (Nümbrecht, Germany); Sar-

torius (Göttingen, Germany); Siemens (Munich, Germany); Sigma Aldrich (St. Louis, MO, USA);

Simport Scientific (Beloeil, QC, Canada); Systec (Linden, Germany); T Thermo Fisher Scientific

(Waltham, MA, USA); Th. Geyer (Renningen, Germany); U Unipro (Novosibirsk, Russia); V VWR

(Radnor, PA, USA); Z Ziegra Eismaschinen (Isernhagen, Germany)

3.2 Devices

Device Manufacturer

Autoclave CX-65 Systec
Centrifuge 5430 R Eppendorf
Centrifuge MC 6 (mini), stripes Sarstedt
Centrifuge MC 6 (mini), tubes Sarstedt
ChemiDocTM Touch Bio-Rad
Comb, 12-well, 1.0 mm Novex
Dual short period timer TR 118 OS Carl Roth
Fisherbrand Bead Mill 24 Homogenizer Fisher Scientific
Fixed-angled rotor F-35-6-30 (for 15 ml and 50 ml tubes) Eppendorf
Flake ice maker Ziegra Eismaschinen
Freezer Hera Freeze HFU T Series (-80◦C) Thermo Fisher Scientific
Freezer Comfort GP 3513 Index 20F/001 (-20◦C) Liebherr
GeneChipR Fluidics Station 450 Affymetrix
GeneChipR Scanner 3000 Affymetrix
Glucometer ACCU-CHECKR Roche
Hybridization oven H-9360 Hybaid
Hybridization oven Shake’n’Stack Hybaid
Ice pan, 4 l and 9 l Fisher Scientific
Incubator Hood TH 30 Edmund Bühler
Instrument trays Th. Geyer
Magnetic stirrer VWR
Magnetic stirrer Combimag RCT IKA
Microscope Eclipse Ci-L Nikon
Microwave Siemens
Mini Blot Module Invitrogen
Mini centrifuge Galaxy MiniStar VWR
Mini Gel Tank Invitrogen
Multichannel pipette for 10 µl and 300 µl Eppendorf
Multifuge 3 SA Heraeus
Multistep pipette MultipetteR E3 Eppendorf
Multistep pipette Pipetman P20M, 2-20 µl Gilson
PerfectBlueTM gel system, Mini L (12 x 14 cm) Peqlab
PerfectBlueTM gel system, Mini S (7 x 8 cm) Peqlab
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pH meter PB-11 Sartorius
Pipettes for 10 µl, 20 µl, 100 µl, 200 µl, 1000µl Eppendorf
PipetusR Hirschmann
Plate shaker Titramax 100 Heidoplh
Power supply PowerPacTM Basic Bio-Rad
Precision scale, Atilon Acculab
Precision scale, 440-47N Kern
Precision scale, PCB 1000-1 Kern
Precision scale, PT 1200 Sartorius
Precision scale, SE 203 LR VWR
Preparation tray with PVC mat Carl Roth
PyroMark Q48 Autoprep Qiagen
Rack, 18 apertures, 17.2 mm Sarstedt
Rack, falcons Sarstedt
Rack IsoFreezeR for PCR set-up Sarstedt
Rack, microcentrifuge tube VWR
Rack, PCR tubes, 96-well TH. Geyer
Refrigerator Mediline LKexv 3910 Index 24E/001 Liebherr
Refrigerator Mediline LKUexv 1610 Index 23A/001 Liebherr
Rotor FA-45-48-11 for 1.5 ml and 2.0 ml tubes Eppendorf
Semi-automated rotary microtome RM2245 Leica Biosystems
Spectrophotometer for microplate ’Epoch’ BioTEK
SPECTROstar Nano BMG Labtech
Staining jar macro Isolab Laborgeräte
SureCastTM Gel Handcast Station Invitrogen
SureCastTM glass plates Invitrogen
Surgical instruments F.S.T.
Swing-bucket Rotor A-2-MTP Eppendorf
Swivel roller mixer RS-TR 5 Phoenix Instrument
Thermo cycler MastercyclerR nexus gradient Eppendorf
Thermo cycler MastercyclerR nexus X2e Eppendorf
Thermometer Th. Geyer
Thermomixer 5437 Eppendorf
Thermomixer C Eppendorf
Tilt shaker Silent rocker cti
QuantStudio 5 Thermo Fisher Scientific
QuantusTM Fluorometer Promega
Vortex mixer 7-2020 neoLab
Vortex mixer L46 Labinco
Vortex mixer, mini Fisher Scientific
WellwashTM Versa Microplate Washer Thermo Fisher Scientific

3.3 Consumables

Consumable Manufacturer

ACCU-CHECKR Aviva blood glucose test stripes Roche
Adhesive PCR seal Sarstedt
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Aluminium foil (0.03 mm x 300 mm x 100 m) Korff
Control diet #1310 (chow diet) Altromin
Cellulose swab Meditrade
ClariomTM D Assay, mouse Affymetrix
Collection tubes, 2 ml Qiagen
Combitips advancedR FOR 0.1, 0.2, 0.5, 2.5, 5.0, and 10 ml Eppendorf
EclipseTM needle, 27Gx3/4 Becton Dickinson
Extension set for syringes Becton Dickinson
Falcon, 15 ml and 50 ml Sarstedt
High fat diet D12492 Research Diets
HistosetteR I Tissue Processing/Embedding cassettes Simport Scientific
Marking tape, 19 mm x 55 m Th. Geyer
MicroAmpR clear adhesive film Life Technologies
MicroAmpR EnduaPlateTM optical 96-well Life Technologies
Microplate, 96-well, PS, F bottom, transparent Greiner Bio-One
Microplate, 96-well, F, transparent Sarstedt
Microscope slides Star Frost, 76x26 mm Knittel Gläser
Microtome blades, type 819, low profile Leica Biosystems
MicrovetteR CB 300 K2E Sarstedt
Membrane filter Millipore, 0.1 µm Merck Millpore
MoliNeaR absorbing underlay Hartmann
Parafree Disposable Base Mold Leica Biosystems
PCR plates, 0.2 ml Sarstedt
PCR stripes ’Multiply-µStrip’, 0.2 ml Sarstedt
PCR stripe lid chain Sarstedt
PCR tubes, 0.5 ml Promega
Pipette tips with filter for 10 µl, 100 µl, 200 µl, 1000 µl Nerbe Plus
Pipette tips with filter for 10 µl and 20 µl Sarstedt
Pipette tips without filter for 10 µl Nerbe Plus
PrecellysR ceramic beads VWR
PyroMark Q48 Absorber Strips Qiagen
PyroMark Q48 Discs Qiagen
Reaction tubes low binding, 1.5 ml Sarstedt
Reaction tubes, 2 ml and 5 ml Eppendorf
RotilaboR-Blotting papers, 1.5 mm thickness Carl Roth
SafeSeal reaction tube, 1.5 ml Sarstedt
Safety-MultiflyR 21G with tube, 200 mm Sarstedt
Scalpel Feather
Screw cap micro tubes Sarstedt
Serological pipette for 5 ml, 10 ml, and 25 ml Sarstedt
Syringes for 1 ml and 20 ml Becton Dickinson
Syringes, insulin 0.5 ml Becton Dickinson
Transfer membrane Immobilon-P Merck Millipore
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3.4 Chemicals

Chemical Manufacturer

Acetic acid Merck Millipore
Adenosine diphosphate (ADP) Sigma Aldrich
Adenosine triphosphate (ATP) Sigma Aldrich
Agarose broad range Carl Roth
Ammonium persulfate (APS) Carl Roth
Bovine serum albumin (BSA) Sigma Aldrich
cOmpleteTM, EDTA-free Protease Inhibitor Cocktail tablet Roche
Dipotassium hydrogen phosphate (K2HPO4) Carl Roth
Disodium hydrogen phosphate (Na2HPO4) Merck Millipore
Dithiothreitol (DTT) Sigma Aldrich
DEPC-treated water Life Technologies
DNA Away Fisher Scientific
D(+) Glucose, 99.5%, water free Carl Roth
Ethanol absolute Th. Geyer
Ethanol, 70%, denatured Th. Geyer
Ethylene glycol-bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic
acid (EGTA)

Sigma Aldrich

Glycine (for electrophoresis) Sigma Aldrich
Histoplast Paraffin Thermo Fisher Scientific
Hydrochloric acid (HCl) Merck Millipore
Isopropanol for molecular biology Fisher Scientific
Ketamine, 10% Medistar
Magnesium chloride (MgCl2) Sigma Aldrich
Manganese (II) chloride (MnCl2) Sigma Aldrich
Methanol Honeywell
Milk powder Carl Roth
Nicotinamide adenine dinucleotide (NADH) Sigma Aldrich
N,N,N’,N’-tetramethylethane-1,2-diamine (TEMED) Sigma Aldrich
Oxaloacetic acid Sigma Aldrich
Phenylmethylsulfonyl fluoride (PMSF) Sigma Aldrich
S-Adenosyl methionine (SAM) New England Biolabs
Sodium chloride (NaCl), pure, solid AppliChem Panreac
Sodium deoxycholate Sigma Aldrich
Sodium dodecyl sulfate (SDS) Carl Roth
Sodium fluoride Sigma Aldrich
Sodium orthovanadate Sigma Aldrich
TrizmaR Base Sigma Aldrich
Octoxinol 9 (Nonidet P-40, NP-40) Fluka Biochemika
Phosphoenol pyruvic acid Sigma Aldrich
Potassium chloride (KCl) Merck Millipore
Potassium dihydrogen phosphate (KH2PO4) Merck Millipore
Protease inhibitor cocktail set V, EDTA-free Calbiochem
RNase ZAP Th. Geyer
Rompun, 2% (Xylazin) Bayer
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Trichloroacetic acid Sigma Aldrich
Trichloromethane (Chloroform) Carl Roth
Tris-HCl Carl Roth
TweenR 20 for molecular biology AppliChem Panreac
Ultra-pure water Biochrom
Xylol

3.5 Enzymes and size markers

Enzymes/size marker Manufacturer

GeneRuler 100 bp DNA Ladder Life Technologies
L-Lactic dehydrogenase (LDH) Sigma Aldrich
M. SssI (CpG) Methyltransferase New England Biolabs
PageRulerTM Prestained Protein Ladder 10-170 kDa Thermo Fisher Scientific
Pyrophosphatase Thermo Fisher Scientific
Pyruvate kinase (PK) Sigma Aldrich
RNase A Qiagen

3.6 Antibodies

Antibody Source Dilution Manufacturer

Akt #9272 Rabbit 1:1000 Cell Signaling Technology
Phospho-Akt (Ser473) #4060 Rabbit 1:1000 Cell Signaling Technology
Anti-Rabbit Immunoglobulins/HRI Goat 1:5000 Dako Denmark A/S

3.7 Commercial kits

Kit Manufacturer

Clarity MaxTM Western ECL Substrate Bio-Rad
EpiTectR Fast DNA Bisulfite Kit Qiagen
Fast Start Universal SYBR Green Master Roche
GeneChipTM WT PLUS Reagent Kit Thermo Fisher Scientific
GeneChipTM Hybridization, Wash and Stain Kit Thermo Fisher Scientific
High-Capacity cDNA Reverse Transcription Kit Applied Biosystems
miRNeasy Mini Kit Qiagen
ONE dsDNA kit Promega
PierceTM BCA Protein Assay Kit Thermo Fisher Scientific
PyroMark PCR Kit Qiagen
PyroMark Q48 Advanced CpG Reagents Qiagen
QIAampR Fast DNA Tissue Kit Qiagen
QuantiFluorR ONE dsDNA System Promega
QuantiNovaTM Probe PCR Kit Qiagen
Rat/Mouse Insulin ELISA (EZRMI-13K) Merck Millipore
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REPLI-gR Mini Kit Qiagen
RNase-Free DNase Set Qiagen
TGX Stain-FreeTM FastCastTM Acrylamide Starter Kit, 10% Bio-Rad
Triglyceride Colorimetric Assay Kit Cayman

3.8 Commercial buffers and solutions

Buffer/solution Manufacturer
Dulbecco’s phosphate-buffered saline (DPBS) Life Technologies
EDTA solution, pH 8.0 AppliChem Panreac
Eosin G solution, 0.5% for microscopy Carl Roth
Hemalum solution acid acc. to Mayer Carl Roth
Heparin-sodium 25 000, 5 ml Ratiopharm
3x SDS Blue Loading Dye New England Biolabs
Lugol solution Sigma Aldrich
NEBuffer 2, 10x New England Biolabs
Paraformaldehyde, 4% in PBS, pH 7.4 Morphisto
PertexR mounting medium Medite
PyroMark Q48 Magnetic Beads Qiagen
RestoreR PLUS Western Blot Stripping Buffer Thermo Fisher Scientific
Krebs-Ringer bicarbonate buffer Sigma Aldrich
SDS blue loading buffer, 3x New England Biolabs
SYBR Safe DNA gel stain Life Technologies
Sodium chloride (NaCl) solution, 0.9%, sterile Berlin-Chemie
TE buffer, 1x and 20x Promega

3.9 Self-made buffers and solutions

Enzyme activity homogenization buffer, pH 7.0

9 mM KH2PO4; 85 mM K2HPO4; 1 mM DTT

Glucose solution, 20%

2 g glucose in 10 ml saline

Glucose solution, 25%

2.5 g glucose in 10 ml saline

Krebs-Ringer bicarbonate buffer with 1U/ml heparin

Lugol reaction mix

30 ml KCl (25% w/v); 500 µl Lugol solution; 200 µl 5 M HCl

Milk-TBS

5% milk powder in TBS

PBS

137 mM NaCl; 2.7 mM KCl; 2 mM KH2PO4; 10 mM Na2HPO4
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3. MATERIALS 3.10. Oligonucleotides

PEPCK sample buffer

65 mM Tris-HCl (pH 8.0); 6 mM MgCl2; 15 µM MnCl2; 0.875 mg/ml BSA; 4.65 mM ADP;

4.65 mM ATP; 0.575 mM NADH; 5.4 U/ml L-Lactic dehydrogenase (LDH);

5.4 U/ml Pyruvate kinase (PK)

PK sample buffer

65 mM Tris-HCl (pH 8.0); 11.5 mM MgCl2; 0.875 mg/ml BSA; 4.65 mM ADP;

0.575 mM NADH; 5.4 U/ml L-Lactic dehydrogenase (LDH)

RIPA buffer

150 mM NaCl; 50 mM Tris (pH 7.4); 0.25% Sodium deoxycholate; 1% NP-40;

1mM EDTA (pH 8.0)

RIPA-based lysis buffer

To 10 ml RIPA buffer add 1 cOmpleteTM EDTA-free Protease Inhibitor Cocktail tablet;

10 mM sodium fluoride; 1 mM sodium orthovanadate;

add 1 mM PMSF immediately before use

Running buffer (10x)

0.25 M Tris; 1.92 M Glycine; 1% SDS

TAE buffer (50x)

2 M Tris; 0.05 M EDTA (pH 8.0); 5.71% glacial acetic acid

TBST buffer (10x), pH 7.4

100 mM Tris; 1.5 M NaCl

TBS buffer (1x), pH 7.4

10x TBS; 0.1% TweenR 20

Transfer buffer (1x)

0.025 M Tris; 0.192 M Glycine; 20% Methanol

3.10 Oligonucleotides

All primers listed below (tab. 3.8, 3.9) were synthesized by IDT as 25 nmole DNA Oligo. The

lyophilized and desalted primers were dissolved in TE buffer to obtain a concentration of 100 µM.

An exception are the sequencing primers which were dissolved in ’Annealing Buffer’ of the PyroMark

Q48 Adavanced CpG Reagent Kit to a concentration of 4 µM.

Bisulfite PCR primer

To perform a PCR with bisulfite-converted DNA bisulfite-primer must be used. For subsequent py-

rosequencing one primer has to be biotinylated (indicated as ’/5BiosG/’) for purification of the PCR

product.
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Gene Sequence Amplicon

Acacb frw AGTTTTTGTTGGTATTAAGGTATTAGTTAA 135 bp
(NM_133904) rev /5BiosG/CCAAACACAAAATCATTTTTACC
(intron 5) seq GGTATTAAGGTATTAGTTAAGTT

Acacb frw GGTGGGGGTTGGGAAGAT 244 bp
(NM_133904) rev /5BiosG/CACCCCTTCCCCTCCCAAA
(exon 5-intron 5) seq TTAGAGTTGTTGTGTAAATA

Cd36 frw AGGATTGGAATGTTTAGGATGTTA 204 bp
(NM_001159558) rev /5BiosG/TCTAAAACAACTTACTTACCCAATCACA
(exon 1) seq AATGTTTAGGATGTTAATG

Fgf21 frw /5BiosG/GGGGATTTAATATAGGAGAAATAGTTAT 191 bp
(NM_020013) rev AAAATCCCAACTCTAAATCTCATC
(exon 1) seq CTCATCCATTCCATCA

Fgf21 frw TGAATTTTTAGTTGAGAAGATATTAAGGTTGTTT 183 bp
(NM_020013) rev /5BiosG/AACCCCCCCATTACATCATC
(promoter) seq1 TAGAAATATTAGAATTTATATTTAGA

seq2 AGATATTAAGGTTGTTTGGTG

G6pc frw TGGTTTTATTTTAAAGAGATTGTGGGTAT 123 bp
(NM_008061) rev /5BiosG/AACCATTTCTCTACCCATCAC
(exon 1-intron 1) seq TAAAGAGATTGTGGGTAT

Galnt2 frw TTTTTGGTTTTGTAGTGTGGAT 145 bp
(NM_139272) rev /5BiosG/CCTATCACAAACCAAAACTATACAAT
(intron 7) seq TTTGAGTTTGAGTTATG

Pck1 frw AGTTTGTTTTAGGTAGTGAGGAAGT 134 bp
(NM_011044) rev /5BiosG/ATAACACCCTCCTCCTACATA
(exon 2) seq GTGGAAGGTAATGTTTAGT

Pklr frw /5BiosG/TTGGGGGTTAGAGTTTAGGAATT 93 bp
(NM_013631) rev ACCTTTAATCCAAACTCTACAAAC
(intron 1) seq ACAAACAAACCAAAAAAAAT

Ppara frw GTAGTAAAGAAAGGGTTTTGAGGG 182 bp
(NM_011144) rev /5BiosG/CCCAAACTATTAAAAAACTTACAACAATCC
(intron 2) seq1 AGGTTTATGTGTGGG

seq2 AGTAAAGAAAGGGTTTTG

Scd1 frw GTTAGTTAAGTGGTGGGTAATAGG 155 bp
(NM_009127) rev /5Biosg/TCAAACTAACCTCTACCTTCACA
(intron 3) seq GTTGGGATTAAAGGTATG

Sgms2 frw /5BiosG/AGATATATGTGTTTGTTTTATAGAATTAG 122 bp
(NM_028943) rev CCACAATCACTCCTAACAACC
(intron 3) seq CACAATCACTCCTAACA

Sik3 frw /5Biosg/GGATTATTTGTTAATAGTTAAGTATAGAG 150 bp
(NM_027498) rev CACCAAACAACTTTATAACTATCTCAA
(intron 1) seq ATAACTATCTCAAATAACCATAC
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Primer for SYBR green-based qRT-PCR

Gene Sequence Amplicon

Cd36 frw ATGGGCTGTGATCGGAACTG 110 bp
(NM_001159558) rev GTCTTCCCAATAAGCATGTCTCC

Fgf21 frw GCTCTCTATGGATCGCCTCA 74 bp
(NM_020013) rev TTGTAACCGTCCTCCAGCAG

Hprt frw GCAGTACAGCCCCAAAATGG 85 bp
(NM_013556) rev AACAAAGTCTGGCCTGTATCCAA

Ppid frw TCACAACAGTTCCGACTCCTC 100 bp
(NM_026352) rev ACCTCTACATTTTCAAGCGTCC

Ppara frw AGAGCCCCATCTGTCCTCTC 153 bp
(NM_011144) rev ACTGGTAGTCTGCAAAACCAAA

Pparg frw GAGAGGTCCACAGAGCTGATT 103 bp
(NM_011146) rev TCGCTGATGCACTGCCTATG

Pklr frw TCAAGGCAGGGATGAACATTG 131 bp
(NM_013631) rev CACGGGTCTGTAGCTCAGTG

Scd1 frw TTCTTGCGATACACTCTGGTGC 98 bp
(NM_009127) rev CGGGATTGAATGTTCTTGTCGT

TaqMan assays

TaqMan assays were ordered from Thermo Fisher Scientific.

Gene Assay Amplicon

Acacb (NM_133904) Mm01204671_m1 (FAM) 98 bp

Fasn (NM_007988) Mm00662319_m1 (FAM) 67 bp

G6pc (NM_008061) Mm00839363_m1 (FAM) 116 bp

Hprt (NM_013556) Mm03024075_m1 (VIC) 131 bp

Pck1 (NM_011044) Mm00440637_g1 (FAM) 117 bp

Rpl37a (NM_026069) Mm01253851_g1 (VIC) 77 bp
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3.11 Software

Software Version Manufacturer

Affymetrix Launcher Affymetrix
Gen5TM 2.00.17 BioTek
GraphPad PrismR 7 version 7.01 GraphPad Software
Image J version 1.51h NIH
Image LabTM version 5.2.1 build 11 Bio-Rad
MATLAB version R2018b MathWorks
Microsoft Office Microsoft
NIS-Elements Analysis 4.30.00 Nikon
NIS-Elements D 4.30.00 Nikon
PyroMarkR Assay Design version 2.0.1.15 Qiagen
PyroMarkR Q48 Autoprep Software version 2.4.2 build 3 Qiagen
QuantStudioTM Design & Analysis Software version 1.3.1 Applied Biosystems
R version 3.5.3 The R Foundation
RStudioR version 1.1.414 RStudio
SPECTROstar Nano version 2.10 BMG Labtech
SPECTROstar Nano - Data Analysis version 3.01 R2 build 41 BMG Labtech
Transcriptome Analysis Console version 4.0.0.25 Thermo Fisher Scientific
Unipro UGENE version v1.25.3 Unipro
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4

Methods

4.1 Animal experiments

4.1.1 Longitudinal methylation study

Male wildtype C57BL/6N mice were obtained from Charles River at 3-4 weeks of age. Mice were

housed in groups of four under constant temperature and 12h/12h light/dark cycle. Mice had ad

libitum access to water and food. After one week of acclimation mice were randomized into two

groups and fed ad libitum with either chow diet (Breeding diet #1314, obtained from Altromin)

or high fat diet (HFD D12492 with 60 kcal% fat mainly from lard, obtained from Research Diets)

for 1, 2, 4, 5, 6, 7, 8, or 12 weeks (eight mice per group and time point, for overview of study

see fig. 4.1). The diet composition is provided in section 7 A. Body weight was measured twice a

week. At the indicated time points mice underwent an intraperitoneal glucose tolerance test. The

day after, mice were anaesthetized with a mixture of ketamin and xylazin (120mg/kg body weight

ketamin and 16mg/kg body weight Rompun 2% (xylazin)) and sacrificed by cervical dislocation.

Blood was collected by cardiac puncture and mice were perfused with Krebs-Ringer bicarbonate

buffer with a final concentration of heparin of 1U/ml. The liver was removed, snap frozen, and

stored at -80◦C. All procedures were conform with local ethical guidelines, considered the three R’s,

and were approved under the reference number V242-59721/2016 4(111-9/16)_Kirchner by the

MELUR Schleswig–Holstein, Germany.
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4. METHODS 4.1. Animal experiments

Figure 4.1: Study design of the longitudinal experiment. Mice were divided into two groups and fed
for up to 12 weeks with either chow diet or high fat diet with 60 kcal% fat mainly from lard. After 1,
2, 4, 5, 6, 7, 8, and 12 weeks of feeding eight mice of each group underwent an intraperitoneal glucose
tolerance test and the day after were sacrificed.

4.1.2 Plasma preparation

Whole blood was obtained by cardiac puncture during sacrifice and transferred into microvettes with

EDTA. After a short mixing the blood was immediately stored on ice for maximal 30 to 60 minutes.

The microvettes were centrifuged for 15 minutes at 2000xg and the plasma was transferred into a

new tube and stored at -80◦C.

4.1.3 Intraperitoneal glucose tolerance test

A glucose tolerance test is performed to examine how fast an individual can clear a glucose bolus

which is determined by pancreatic insulin secretion and re-synthesis as well as insulin sensitivity of

peripheral tissues. The intraperitoneal glucose administration was chosen to prevent the release of

incretins which would stimulate insulin secretion.

Prior performing the intraperitoneal glucose tolerance test mice were weighted and transferred

into a new cage without food but ad libitum access to water. The mice were fasted for six hours

and fasting glucose levels were determined by obtaining blood from the tail vein and measuring

with a glucometer. Afterwards, glucose was injected intraperitoneally (chow group: 2 g glucose/kg

body weight of a 20% glucose solution, HFD group: 1.5 g glucose/kg body weight of a 25% glucose

solution) and glucose levels were measured after 15, 30, 60, and 120 minutes. The glucose tolerance

test was performed in the light phase. After the last measurement at 120 minutes the mice were

provided with food again. For statistical analysis glucose concentration was plotted over the time

and the area under the curve was calculated.
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4.1.4 Liver samples of mice fed with high fat-high sucrose diet

Liver samples of mice fed with high fat-high sucrose diet (HFHS) (D12331 with 58 kcal% fat mainly

from coconut oil, obtained from Research Diets) or chow diet (standard diet LM-485, obtained from

Harlan Teklad) were generously provided by Dr. Paul Pfluger from the Institute for Diabetes and

Obesity, Helmholtz Zentrum München. The diet composition is provided in section 7 A. The mice

were fed for 20 weeks. After sacrifice, liver was collected and homogenized with liquid nitrogen.

4.2 Molecular biological methods

4.2.1 DNA isolation

Genomic DNA was isolated from liver with the QIAampR Fast DNA Tissue Kit. Maximal 25 mg snap-

frozen liver tissue was homogenized in buffer and enzyme mix with ceramic beads in the Fisherbrand

Bead Mill 24 Homogenizer using following settings: Speed: 5 m/s, time: 20 s, cycle: 2, delay: 15 s.

For processing of several samples, a mastermix of the homogenization buffer was prepared. The

DNA isolation was performed according manufacturer’s instructions. The DNA was eluted in 100 µl

’ATE’ buffer. After concentration measurement genomic DNA was stored for long-term at -20◦C.

4.2.2 Quantification of DNA

DNA was quantified using the QuantusTM Fluorometer with the QuantiFluorR ONE dsDNA System kit.

The quantification is based on a fluorescent dye intercalating in double-stranded DNA. Shortly, 200 µl

’QuantiFluor ONE dsDNA Dye’ was dispensed into 0.5 ml PCR tubes and 1 µl of TE buffer (blank),

’QuantiFluor ONE Lambda DNA standard’ (corresponds to 400 ng), or sample was added. The re-

action mix was vortexed, spun down, and incubated for five minutes in the dark. The concentration

was measured with the ’ONE DNA’ protocol.

4.2.3 RNA isolation

Total hepatic RNA was isolated using the miRNeasy Mini Kit. Approximately 25 mg of snap-frozen

liver was homogenized in ’QIAzol Lysis Reagent’ with following settings: Speed: 5 m/s, time: 20

s, cycle: 2, delay: 15 s. The homogenate was incubated for five minutes at room temperature.

Subsequently, it could be frozen at -80◦C for storage or directly used for RNA isolation. If the ho-

mogenate was frozen it was thawed in the heating block at 37◦C. The RNA was isolated according

manufacturer’s instructions. After the first wash step with ’RWT’ buffer a DNase I digestion was per-

formed. Afterwards, wash steps were carried out according protocol. Prior elution, the spin column

was placed into a new collection tube and centrifuged an additional time. RNA was eluted in 50 µl

pre-warmed (56◦C) RNase-free water and stored for long-term at -80◦C.
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4.2.4 Quantification of RNA

RNA was quantified spectrophotometrically with the EpochTM microplate spectrophotometer. The

measurement was performed with 2 µl RNA in duplicates. As blank, RNase-free water was used.

The sample concentration and quality were analyzed with the Gen5TM software and Excel. Samples

with a concentration exceeding 1000 ng/µl were diluted with RNase-free water and measured again.

4.2.5 Bisulfite conversion of genomic DNA

Theoretical background

To differentiate between methylated and unmethylated CpG sites DNA is bisulfite converted by treat-

ment with bisulfite salt. The bisulfite-converted DNA is amplified and subsequently sequenced by

bisulfite pyrosequencing (Fig. 4.2).

Figure 4.2: Schematic illustration of the bisulfite conversion and subsequent workflow. Genomic
DNA is denatured and subsequently bisulfite converted. This leads to a conversion of unmethylated cyto-
sine to uracil, whereas methylated cytosine is not affected and remains cytosine. The bisulfite conversion
is followed by a bisulfite PCR to amplify the desired gene product for bisulfite pyrosequencing to deter-
mine the percentage of DNA methylation.

Bisulfite conversion

Genomic DNA was bisulfite converted with the EpiTectR Fast Bisulfite Conversion kit according to

manufacturer’s instructions. Initially, DNA was diluted to 2 µg in 20 µl with DEPC-treated water.

The protocol for high-concentration samples was used. After adding bisulfite solution and DNA

protect buffer the reaction mix was mixed thoroughly until the buffer turned blue indicating the

correct pH for conversion. The bisulfite reaction was carried out in a thermo cycler with following

program:
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Table 4.1: Program for bisulfite conversion

Step Time Temperature

Denaturation 5 min. 95◦C

Incubation 30 min. 60◦C

Denaturation 5 min. 95◦C

Incubation 20 min. 60◦C

Hold forever 4◦C

After the incubation the samples can be stored overnight at 4◦C. The conversion and clean-up were

continued according instructions of the kit manual. To avoid contamination of the spin column with

flow-through last drops in the collection tubes were removed by tapping the tubes on tissue. To dry

the spin columns after the last wash step an additional centrifugation with new collection tubes was

performed to remove residual liquid. Afterwards, the spin columns were dried by incubation at 60◦C

for five minutes in a heating block. The bisulfite converted DNA was eluted from the spin column

by adding 40 µl of elution buffer and incubation for one minute at room temperature. Bisulfite

converted DNA was stored at -20◦C.

4.2.6 Bisulfite polymerase chain reaction

A polymerase chain reaction (PCR) amplifies in vitro a desired DNA sequence located between two

short oligonucleotides with known sequence (primer) by repeated denaturation, hybridization, and

elongation [162]. The amplification of bisulfite-converted DNA is challenging, because the DNA

contains only three bases instead of four and therefore, is less complex [115]. Thus, bisulfite PCRs

were performed using the PyroMark PCR Kit which is optimized for bisulfite DNA. For subsequent

bisulfite pyrosequencing analysis one primer needs to be biotinylated. The mastermix contains the

HotStartTaq DNA polymerase and an optimized PCR buffer with 1.5 mM MgCl2. The PCR mix was

pipetted as followed:

Table 4.2: Reaction mix for bisulfite PCR

Component Final concentration Volume/reaction

PyroMark PCR MasterMix (2x) 1x 12.5 µl

CoralLoad Concentrate (10x) 1x 2.5 µl

Forward primer (10 µM) 0.2 µM 0.5 µl

Reverse primer (10 µM) 0,2 µM 0.5 µl

RNase-free water 8.0 µl

Bisulfite-DNA 10-20 ng 1.0 µl

Total volume 25 µl

The PCR reaction was performed with the program in table 4.3, the primer annealing temperatures

as well as the cycle numbers are shown in table 4.4.
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Table 4.3: Program for bisulfite PCR

Step Temperature Time Cycles

Activation 95◦C 15 min. 1

Denaturation 94◦C 30 s

Annealing primer-dependent 30 s 35-45

Extension 72◦C 30 s

Final extension 72◦C 10 min. 1

Hold 4◦C forever

Table 4.4: Annealing temperature, cycle number, amplicon size, and template strand of primer used in
this study

Gene Annealing Temp. Cycles Amplicon Template strand

Acacb, NM_133904 51.5◦C 42 135 bp upper strand, forward

(intron 5)

Acacb, NM_133904 59.5◦C 42 244 bp upper strand, forward

(exon 5-intron 5)

Cd36, NM_001159558 56◦C 46 204 bp lower strand, forward

(exon 1)

Fgf21, NM_020013 56◦C 42 191 bp lower strand, reverse

(exon 1)

Fgf21, NM_020013 56◦C 45 183 bp upper strand, forward

(promoter)

G6pc, NM_008061 56◦C 42 123 bp upper strand, forward

(exon 1-intron 1)

Galnt2, NM_139272 56◦C 43 145 bp upper strand, forward

(intron 7)

Pck1, NM_011044 56◦C 42 134 bp upper strand, forward

(exon 2)

Pklr, NM_013631 52◦C 48 93 bp lower strand, reverse

(intron 1) 52◦C 49 (Nested PCR)

Ppara, NM_011144 56◦C 42 182 bp upper strand, forward

(intron 2)

Scd1, NM_009127 56◦C 47 155 bp upper strand, forward

(intron 3)

Sgms2, NM_028943 56◦C 42 122 bp upper strand, reverse

(intron 3)

Sik3, NM_027498 56◦C 42 150 bp upper strand, reverse

(intron 1)

4.2.7 Agarose gel electrophoresis

After PCR, the biotinylated product was verified on 1% agarose gel regarding quantity and correct

size. The agarose was dissolved in 1x TAE buffer by boiling in a microwave. Afterwards, the agarose
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was cooled down slightly and ’SYBR Safe DNA gel stain’ was added (1 µl per 10 ml gel). ’SYBR Safe’

stains DNA by intercalating but is less hazardous than ethidium bromide. Agarose gels with a size of

120 x 140 mm or 70 x 80 mm were cast and after polymerization 4 µl of the samples and ’GeneRuler

100 bp DNA Ladder’ were loaded. The loading dye (’CoralLoad’) was included in the PCR mastermix.

The DNA was separated in a horizontal gel chamber with 1x TAE buffer for 20 minutes at 150 V. The

gel was visualized with the ChemiDocTM Touch Imaging System and the gel pictures were analyzed

with Image J.

4.2.8 Bisulfite pyrosequencing

The pyrosequencing was performed using the PyroMark Q48 Autoprep. Prior pyrosequencing, a

bisulfite PCR for the region of interest was performed as described in section 4.2.6. The sequencing

primer was designed together with the PCR primer (section 4.6.2). For programming of the sequenc-

ing assay the PyroMark Q48 Autoprep software was used with the ’CpG Assay’ mode. To generate the

dispensation order of the nucleotides, the sequence of the region of interest before bisulfite treatment

was pasted into the assay. After setting up the sequencing assay a ’New Run’ was programmed in the

PyroMark Q48 Autoprep software. For several samples automatic sequencing primer dispensation

was chosen.

After every third to fourth run a pyrophosphate clean was performed. A pyrophosphate contam-

ination appears as high background and peaks in control dispensations. Only nucleotide cartridges

are affected. The pyrophosphate clean was conducted according to the PyroMark Q48 Autoprep

instruction manual.

The sequencing reagents were equilibrated to room temperature prior sequencing. The sequenc-

ing primer was used in a concentration of 4 µM, diluted in ’Annealing Buffer’. The PyroMark Q48

Autoprep was prepared according device instructions. The disc was loaded with 3 µl ’PyroMark Q48

Magnetic Beads’ and 10 µl biotinylated PCR product. After inserting the disc into the pyrosequencer

the run was started. If manual primer loading was chosen 2 µl of sequencing primer were added

after PCR product clean up. The final concentration of the sequencing primer was 800 nM in 10 µl

reaction mix. After finishing the run, the cartridges were cleaned with ultra-pure water according

to the cleaning program. Afterwards, the cartridges were left unlocked to prevent condensation and

the absorber strip was carefully removed.

The percentage of DNA methylation was determined by measuring the amount of thymine and

cytosine at the position with possible DNA methylation and calculating the ratio of both signals. The

data were analyzed with the PyroMark Q48 Autoprep software and Excel.
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Bisulfite pyrosequencing controls

To measure DNA methylation by pyrosequencing a preceding amplification step is necessary, oth-

erwise, the sensitivity of the pyrosequencer would be insufficient to detect the region of interest.

However, amplification of bisulfite DNA is challenging, because unmethylated alleles are preferen-

tially amplified (although preferential amplification of the methylated allele was rarely observed,

too) [159]. To test if PCR primer display a PCR bias DNA methylation controls were generated. The

controls consist of completely unmethylated genomic DNA and completely methylated genomic DNA

which are bisulfite converted and mixed to obtain bisulfite DNA with 0%, 50%, and 100% methy-

lation. The methylation controls were sequenced once for each assay. Furthermore, the primer and

the PCR product were tested for unspecific binding.

Preparation of the unmethylated DNA. For generation of unmethylated DNA a whole-genome

amplification (WGA) of genomic DNA was performed with the REPLI-gR Mini Kit which is based on

isothermal multiple displacement amplification. Multiple displacement amplification uses random,

hexameric primer which anneal to denatured DNA [221]. The DNA polymerase amplifies the DNA

by strand-displacement synthesis at a constant temperature generating DNA structures with multiple

branches [221]. The whole-genome amplification was performed according manufacturer’s instruc-

tions. Shortly, DNA was denatured by adding buffer D1 and incubation for three minutes at room

temperature. Afterwards, the stop solution as well as the ’REPLI-g Mini DNA Polymerase’ and the

’REPLI-g Mini Reaction Buffer’ was added. The reaction mix was incubated for 16 h at 30◦C. After-

wards, the ’REPLI-g Mini DNA Polymerase’ was inactivated for three minutes at 65◦C. The WGA was

stored at -20◦C.

Preparation of the 100% methylated DNA. To generate 100% methylated genomic DNA, it was

in vitro methylated by the CpG methyltransferase M. SssI. This methyltransferase is expressed in

E. coli from a gene originating from the Spiroplasma sp. strain MQ1 [150]. Firstly, the S-adenosyl

methionine (SAM) stock with 32 mM was diluted to 1600 µM with nuclease-free water. The reaction

mix was prepared as described below and mixed by pipetting.
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Table 4.5: Reaction mix for in vitro DNA methylation

Component Volume/reaction

10x NEBuffer 2 2 µl

SAM (1600 µM) 1 µl

DNA up to 4 µg

M. SssI 1 µl

Nuclease-free water variable

Total volume 20 µl

The reaction mix was incubated at 37◦C for four hours. Afterwards, the methyltransferase was

inactivated by heating the samples to 65◦C for 20 minutes and the reaction mix was purified by drop

dialysis using 0.1 µm membrane filter.

Primer controls. The primer quality is a crucial factor for reliable sequencing results. Unspe-

cific primer binding or self-priming by looping of the PCR product would lead to unspecific signals.

Therefore, each sequencing assay and the self-designed primer were validated by primer controls.

To exclude the formation of primer dimer the sequencing primer, the biotinylated primer, and the

sequencing and biotinylated primer together were sequenced without PCR product. Furthermore,

also the PCR product alone, without sequencing primer, was sequenced to exclude self-priming by

looping. Only if every single control was negative the assay was used for sequencing of the samples.

4.2.9 cDNA synthesis

RNA was diluted to 2 µg in 10 µl with DEPC-treated water in PCR stripes and reverse transcribed into

cDNA using the High-Capacity cDNA Reverse Transcription kit according manufacturer’s instructions.

Shortly, a mastermix according table 4.6 was prepared and 10 µl mastermix were added to the RNA

dilution. After mixing and short centrifugation, RNA was reverse transcribed in a thermo cycler with

the program in table 4.7. For measuring of mRNA levels by qRT-PCR cDNA was diluted to 5 ng/µl

with DEPC-treated water and stored at -20◦C.
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Table 4.6: Reaction mix for cDNA synthesis

Component Volume/reaction

10x RT buffer 2.0 µl

25x dNTP Mix (100 mM) 0.8 µl

10x RT Random Primers 2.0 µl

MultiScribeTM Reverse Transcriptase 1.0 µl

RNase Inhibitor 1.0 µl

Nuclease-free H2O 3.2 µl

RNA (2 µg) 10 µl

Total volume 20.0 µl

Table 4.7: Program for cDNA synthesis

Step Temperature Time

1 25◦C 10 min.

2 37◦C 120 min.

3 85◦C 5 min.

4 4◦C forever

4.2.10 Quantitative real time PCR

A quantitative real time PCR (qRT-PCR) is based on the principle of a conventional PCR but allows

the quantification of the input material after each amplification step. Therefore, qRT-PCR is used

to determine expression of genes of interest. There are different chemistries available to detect

the amount of DNA during PCR [11]. Here, intercalating fluorescent dyes and fluorescent probes

were used. The common feature of both chemistries is the proportionally increasing fluorescence

with increasing number of amplification product [11]. Thus, the fluorescent signal can be used

for quantification of the number of amplicons after each cycle. In the course of this thesis, SYBR

green and TaqMan probes were used. SYBR green is an intercalating fluorescent dye which binds

double-stranded DNA non-sequence specifically [11]. In solution and bound to single-stranded DNA

it emits almost no fluorescence [11, 116]. With amplification of DNA the amount of double-stranded

DNA increases and therefore, also the SYBR green fluorescence. After each elongation cycle the

fluorescence is measured. qRT-PCR with SYBR green is inexpensive, but SYBR green will also bind

to unspecific amplification products. To check the specificity, a melt curve analysis is performed after

each qRT-PCR [116, 197]. The melting temperature of DNA depends on the GC content, the length of

the product and the sequence, thus, unspecific PCR products and primer dimer can be distinguished

from the desired PCR product [116]. For generation of a melt curve the temperature is increased

gradually to 95◦C which leads to denaturation of the double-stranded PCR products and release of

the dye [116]. The decreasing fluorescence is continuously recorded. If the primers are specific and

only one product is amplified the melting curve shows only one peak. Additionally, a standard curve

is measured to determine the efficiency of the primer.

TaqMan assays consist of unlabeled primer and a TaqMan probe. The probe is labeled with

a fluorescent dye at the 5’-end and a quencher at the 3’-end and binds specifically to the target

downstream of the forward primer [116]. The probe itself cannot be extended [11]. The intact

probe does not emit any fluorescence due to quenching of the dye. After annealing of primer and

probe to the DNA the Taq DNA polymerase synthesizes the new DNA strand. When encountering the
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probe the 5’-3’ exonuclease activity of the DNA polymerase degrades the probe and thereby releases

the fluorescent dye from the quencher resulting in emission of fluorescence proportionally to the

amount of PCR product [11]. The TaqMan chemistry is very sensitive and allows multiplexing of

several assays when fluorescent dyes with different emission wavelength are used. However, TaqMan

assays are also more cost-intensive, but each commercial assay is validated.

To control for possible variances of the optical system of the thermo cycler a passive reference

dye is included in each qRT-PCR (for both SYBR green and TaqMan). This dye emits a fluorescence

which is independent of the PCR reaction and it does not influence the amplification. Here, ROX

(carboxy-X-rhodamine) was used as reference dye.

SYBR green-based qRT-PCR

For SYBR green-based qRT-PCR the Fast Start Universal SYBR Green Master, which already contains

ROX, was used. The primer were designed as described in section 4.6.2. For validation and obtaining

the amplification efficiency a standard curve was performed. The standard was generated by mixing

undiluted cDNA of all samples and diluting this mixture 1:10. This first dilution represents the

first standard sample with the highest concentration. Starting from this sample a 1:4 serial dilution

was performed to generate a standard curve with six decreasing concentrations. The efficiency is

calculated with the slope of the standard curve, obtained by plotting the logarithmic concentrations

against the Ct values.

The primer stocks were diluted to a 5 µM working solution. The mastermix for the desired sample

number in duplicates was prepared as indicated in table 4.8 without cDNA and mixed. 4 µl cDNA and

6 µl mastermix were pipetted in each well of a MicroAmpR EnduaPlateTM optical 96-well plate and

the plate was sealed. To remove bubbles and collect the reaction mix at the bottom of the wells the

plate was centrifuged for two minutes at 450xg. If the plate was prepared for a later run it was stored

in the dark. The qRT-PCR was performed with the QuantStudio 5 and the program described in table

4.9 was used. The qRT-PCR results were analyzed with the cloud version of the QuantStudioTM Design

& Analysis Software and Excel. Potential housekeeping genes were analyzed with the NormFinder

algorithm [10]. Ppia was identified as best suited and thus, was used for normalization. Relative gene

expression was calculated with the comparative quantification method, considering the efficiency of

the PCR reaction which was determined by measuring a standard curve. As reference sample a chow

mouse with a Ct value similar to the mean value of the chow group of each time point was chosen.

For each week a separate reference sample was used of the corresponding chow group. The reference

sample for the target gene and the housekeeping gene (HK) was the same. Following formulas were

used for the calculation of the fold change with Ct - Ct value, ref-sample - reference sample, HK -

housekeeping gene:

Efficiency = 10
( −1

slope )
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Fold change=
Efficiencytarget

(Ct(ref-sample Target)-Ct(sample target))

EfficiencyHK
(Ct(ref-sample HK)-Ct(sample HK))

The statistics was performed on the ∆Ct values calculated by ∆Ct = C tTarget − C tHK.

Table 4.8: Reaction mix for SYBR green-based qRT-PCR

Component Final Concentration Volume/reaction

FastStart Universal SYBR Green Master (2x) 1x 5.0 µl

Forward Primer (5 µM) 250 nM 0.5 µl

Reverse Primer (5 µM) 250 nM 0.5 µl

cDNA 20 ng 4.0 µl

Total volume 10.0 µl

Table 4.9: Program for SYBR green-based qRT-PCR

Step Temperature Time Cycle

Activation 95◦C 10 min.

Denaturation 95◦C 15 s 40

Annealing/Extension 60◦C 1 min.

Melt curve analysis

Denaturation 95◦C 15 s

Extension 60◦C 1 min.

Melting analysis 95◦C 0.15◦C/s, 1 s

TaqMan-based qRT-PCR

To measure gene expression by TaqMan assays the QuantiNovaTM Probe PCR Kit was used. The

components of the kit, the TaqMan assay, and cDNA was thawed and subsequently mixed. The

mastermix was prepared as indicated in table 4.10 for the desired sample number in duplicates

without cDNA and mixed. 6 µl of mastermix and 4 µl of cDNA were dispensed into a MicroAmpR

EnduaPlateTM optical 96-well plate. The plate was centrifuged for two minutes at 450xg and the

PCR was carried out in the QuantStudio 5 with the program described in table 4.11. The PCR results

were analyzed with the cloud version of the QuantStudioTM Design & Analysis Software and Excel.

The housekeeping genes were identified with the NormFinder algorithm [10]. The best results were

achieved with the geometric mean of Rpl37 and Hprt. Relative gene expression was calculated with

following formula with Ct - Ct value, ref-sample - reference sample, HK - housekeeping gene:

Fold change=
2(Ct(ref-sample Target)-Ct(sample target))

2(Ct(ref-sample HK)-Ct(sample HK))

The amplification efficiency of TaqMan assays is presumed to be 100% which means in each cycle

the amount of DNA doubles. Therefore, the base of the exponent was 2. This formula corresponds
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to the ∆∆Ct method. As reference sample for each time point a chow mouse of the corresponding

chow group was used with a Ct value which corresponds approximately to the mean value of this

chow group. The statistics was performed on the ∆Ct values calculated by ∆Ct = C tTarget−C tHK.

Table 4.10: Reaction mix for Taqman-based qRT-PCR

Component Final Concentration Volume/reaction

QuantiNova Probe PCR Master Mix (2x) 1x 5.0 µl

QN ROX Reference Dye 1x 0.05 µl

TaqMan assay 0.4 µM primer, 0.2 µM probe 0.5 µl

DEPC-treated H2O 4.5 µl

cDNA 20 ng 4.0 µl

Total volume 10µl

Table 4.11: Program for Taqman-based qRT-PCR

Step Temperature Time Cycle

Activation 95◦C 2 min.

Denaturation 95◦C 5 s 40

Annealing/Extension 60◦C 30 s.

4.2.11 Transcriptome profiling with gene expression microarrays

For genome-wide gene expression measurement RNA was applied to ClariomTM D microarrays for

mouse. The ClariomTM D measures coding and non-coding genes, exons, and alternative splice vari-

ants. The Affymetrix microarrays are based on perfect match-mismatch probe pairs [92]. For each

target sequence a probe perfectly complementary to the sequence and a probe with one mismatch

in the middle is present on the array [92]. This allows to control for unspecific binding [92].

For the transcriptome profiling seven metabolic normal chow mice of week 1 and week 12 as

well as eight HFD mice of week 1 and week 12 with the severest phenotype were chosen. RNA was

isolated from liver tissue as described in section 4.2.3. The preparation of the samples was performed

with the GeneChipTM WT PLUS Reagent Kit according to manufacturer’s instructions. As input 250 ng

RNA of each sample was used as well as 250 ng of the Poly-A RNA controls. After hybridization, the

microarrays were washed and stained with the GeneChipR Fluidics Station 450 and measured with

the GeneChipR Scanner 3000.

The microarrays were analyzed with the Transcriptome Analysis Console software with the analysis

type ’Expression (Gene + Exon)’. As summarization method ’Gene + Exon - SST-RMA’ and as ANOVA

method ’ebayes’ was used. A probe set was considered expressed if at least 50% of the detection above

background (DABG) values were below the DABG threshold. A gene was considered differentially

expressed with a linear fold change ≥1.5 or ≤-1.5 and a FDR p value <0.05.
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4.2.12 Whole-genome bisulfite sequencing

The whole-genome bisulfite sequencing (WGBS) was performed by the sequencing core facility of

the Max Planck Institute for Molecular Genetics in collaboration with Professor Alexander Meissner.

The sequencing was performed with two metabolic normal chow mice of week 12 and the two

HFD mice with the severest phenotype of week 12. The whole-genome bisulfite sequencing was

performed as described in Kretzmer et al. [114]. Briefly, strand-specific methylC-seq libraries of

genomic DNA were prepared using the TruSeq DNA Methylation Kit by Illumina (San Diego, CA, USA).

The adapter-ligated fragments with 200 bp insert length were bisulfite converted with the EZ DNA

Methylation Kit by Zymo Research ( Irvine, CA, USA). The adapters contained methylated cytosines,

which remained unchanged by bisulfite treatment, to achieve a balanced base distribution within

the fragments. This is important to pass the sequencing quality checks. After bisulfite conversion a

PCR with eight cycles was performed and the libraries were paired-end sequenced with the NovaSeq

6000 sequencing system (Illumina).

After sequencing, the sequences were trimmed by 13.5% and the reads were mapped to the

mouse reference genome mm9 using ’segemehl’ in its bisulfite methylC-seq mode. At least 185

million reads could be aligned, corresponding to approximately 93%. The methylation calling was

performed with ’BSMAP’. The minimal coverage was set to 10x of each CpG site. The differentially

methylated regions (DMRs) were identified using ’metilene’. A DMR was defined as a genomic

region with maximal 2000 bp containing at least 10 CpG sites with an average difference of DNA

methylation between the groups of 10%.

The annotation was performed with the ’annotatr’-package in R [29]. As input, a BED-file contain-

ing the genomic location (assembly: mm9) of the DMR was used. DMRs with higher DNA methyla-

tion in HFD mice and DMRs with lower DNA methylation in HFD mice were imported separately. The

bar graph was generated by specifying the results as ’annotated_regions’ and ’annotated_random’,

respectively. It is possible that one DMR is annotated with multiple annotations, for example when

a long differentially methylated region spans an exon-intron boundary it is annotated with exons,

introns, and exon-intron boundary. Then, this DMR counts for all these annotations in the bar graph.

4.3 Measurement of hepatic macromolecules

4.3.1 Triglyceride assay

Triglycerides are lipids consisting of three fatty acids bound to a glycerol backbone. The Triglyc-

eride Colorimetric Assay Kit used here is based on the enzymatic hydrolysis of triglycerides into

fatty acids and glycerol by lipoprotein lipase. The glycerol is phosphorylated by glycerol kinase

to glycerol-3-phosphate which is subsequently oxidized by glycerol phosphate oxidase resulting in

dihydroxyacetone phosphate and hydrogen peroxide. The peroxidase converts hydrogen peroxide
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with 4-aminoantipyrine and N-Ethyl-N-(3-sulfopropyl)-m-anisidine to the purple Quinoneimine dye

which is measured spectroscopically at 530-550 nm.

Hepatic triglycerides were determined according to the instruction manual with minor changes of

the preparation of the homogenate. Initially, 50-60 mg snap-frozen liver was homogenized in 250 µl

diluted ’NP40 Substitute Assay Reagent’ containing protease inhibitor cocktail (1:100 diluted EDTA-

Free Protease Inhibitor Cocktail Set V) at following settings: Speed: 5 m/s, time: 20 s, cycle: 1.

The homogenate was heated two times to 90◦C for three minutes. Between the heating steps the

samples were cooled down to room temperature. Afterwards, the samples were centrifuged at 4◦C

and 10 000xg for 10 minutes. The further sample preparation was performed as described in the

kit manual. When transferring the supernatant, the fat layer on top was thoroughly included. The

supernatant was diluted as follows with NP40 buffer provided by the kit:

week 1 week 2 week 4 week 5 week 8 week 12

chow 1:5 1:5 1:5 1:5 1:5 1:5

HFD 1:5 1:5 1:5 1:6 1:10 1:15

The assay was conducted according manufacturer’s instructions in duplicates including the standard.

The assay was measured with the SPECTROstar Nano and the data were analyzed with the SPEC-

TROstar Nano - Data Analysis software and Excel. The absorbance was blank-corrected and by taking

into account the standard curve the triglyceride content was calculated:

Triglycerides [mg/dl] = (corrected absorbance)−(y-intercept)
slope

The calculated triglyceride concentration was corrected by the dilution factor and normalized to the

amount of input tissue.

4.3.2 Glycogen assay

Glycogen is a polysaccharide consisting of glucose monomers and can be detected by iodine which

forms a colored complex with glycogen [233]. For determination of hepatic glycogen, 20-30 mg snap-

frozen liver tissue was homogenized in 1 ml 5% trichloroacetic acid and incubated for 30 minutes

at room temperature. Afterwards, the samples were centrifuged at room temperature for 10 min-

utes at >16 000xg to remove tissue debris and 150 µl of the supernatant were mixed with 300 µl

>95% ethanol. Each sample was measured as triplicate, therefore, from each homogenate three

times 150 µl supernatant was dispensed into a new tube and incubated for 20-24 hours at 4◦C to

precipitate the glycogen. After incubation the samples were centrifuged for 30 minutes at>16 000xg

and the supernatant was discarded. The pellet was air-dried to remove remaining ethanol and solved

in 75 µl Lugol reaction mix by vortexing. The Lugol reaction mix contains Lugol solution, a 1:2 io-

dine:potassium iodide solution. The samples should turn orange-red. To assure a stable color sam-

ples were incubated for 10 minutes at room temperature. The samples were pipetted into a 96-well
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microplate and the absorbance was measured with the SPECTROstar Nano at 600 nm. As blank Lu-

gol solution was used. The data were analyzed with the SPECTROstar Nano - Data Analysis software

and Excel. The absorbance was background-corrected and normalized to input tissue weight.

4.4 Histology

Hematoxylin eosin staining is used for microscopic evaluation of tissues [33]. Hematoxylin stains

DNA, therefore, the nucleus appears blue, whereas eosin stains cytoplasm and extracellular matrix

reddish-pink [33]. Fat deposits are not directly visible, because lipophilic substances are washed out

during the deparaffining process and appear as round whitish spaces [33].

4.4.1 Paraffin embedding of paraformaldehyde-fixed liver

Directly after sacrifice livers were fixed in 4% paraformaldehyde solution for 24 hours at 4◦C. The liv-

ers were transferred into Tissue Processing/Embedding cassettes for subsequent dehydration. Since

paraffin is a lipophilic substance water needs to be removed from the tissue:

1. 2x 2 min. with 1x PBS

2. 3x 20 min. with 50% ethanol

3. 3x 20 min. with 70% ethanol

After the last wash step the livers were stored in 70% ethanol for up to 14 days at 4◦C. For further

dehydration the 70% ethanol was removed and the tissue was washed at room temperature on a

magnetic stirrer:

1. 3x 20 min. with 95% ethanol

2. 3x 20 min. with 100% ethanol

3. 3x 10 min. with xylol

After the last xylol step the cassettes were transferred into a paraffin bath at 60◦C for one hour.

The paraffin bath was changed twice and the livers remained in the third paraffin bath overnight.

Subsequently, the tissue was embedded with paraffin.

4.4.2 Preparation of paraffin slices

To prepare paraffin slices the paraffin blocks were frozen at -20◦C overnight. The liver was cut in

5 µm slices and placed on a microscopic slide. To smooth the tissue slice, the slide was carefully

dipped in water maintained at 45-50◦C. Afterwards, the slides were dried for one hour at 65◦C in an

incubator and stored at room temperature.
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4.4.3 Hematoxylin eosin staining

The hematoxylin eosin staining was performed for four HFD-fed mice and four chow-fed mice of

week 1, 8, and 12. Hematoxylin and eosin are aqueous solutions, therefore, the liver slices need to

be deparaffinated and rehydrated prior staining. Initially, eosin and hematoxylin were filtered and

eosin was acidified with 100-120 µl acidic acid. The slices were deparaffinated by subsequent wash

steps with decreasing ethanol concentration:

1. 2x 20 min. xylol

2. 2x 5 min. 100% ethanol

3. 1x 5 min. 96% ethanol

4. 1x 5 min. 80% ethanol

5. 1x 10 min. 70% ethanol

6. Short dipping in dH2O

After deparaffination the slices were incubated for 10 minutes in hematoxylin, shortly dipped in

dH2O, and rinsed with tap water for 15 minutes. After washing for one to two minutes in fresh

dH2O the slices were stained for three minutes with eosin. Afterwards, the slices were dehydrated

by subsequent wash steps with increasing ethanol concentration:

1. Short dipping in dH2O

2. 30 s in fresh 70% ethanol

3. 30 s in fresh 80% ethanol

4. 30 s in fresh 96% ethanol

5. 30 s in fresh 100% ethanol

6. 2x 10-15 min. xylol

Two drops of PertexR mounting medium were applied to the slides and they were covered with the

coverslips. The slides were dried overnight. The analysis of the tissue slices was performed with the

Nikon Eclipse Ci-L microscope with 10x magnification.

4.5 Protein biochemical methods

4.5.1 Western blot analysis

Western blots for Akt and Akt with phosphorylated Ser473 (pAkt) were performed for unstimulated

mice fed for 1, 2, 4, 8, and 12 weeks with chow or HFD.

4.5.1.1 Isolation of hepatic proteins

Hepatic proteins were isolated from 20-30 mg snap-frozen liver with RIPA-based lysis buffer. The tis-

sue was homogenized with 250 µl buffer in the Fisherbrand Bead Mill 24 Homogenizer with following

settings: Speed: 5 m/s, time: 20 s, cycle: 1.
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The homogenate was centrifuged at maximum speed and 4◦C for 20 minutes. Afterwards, the

supernatant was transferred into a new tube and centrifuged a second time at maximum speed and

4◦C for 20 minutes. The supernatant was transferred in a new tube and stored on ice for subsequent

protein quantification.

4.5.1.2 Quantification of proteins

Protein concentrations were measured with the PierceTM BCA Protein Assay Kit which is based on

the reduction of Cu2+/Cu1+ by proteins in alkaline solution. The chelation of Cu1+ by bicinchoninic

acid (BCA) results in a colored complex which can be detected spectroscopically. Before starting the

measurement of the samples, the protein standard was thawed on ice, the protein lysate was diluted

1:20, and the working reagent was prepared according manufacturer’s manual. The measurement

was performed in duplicates in a 96-well plate suited for absorbance detection. 10 µl of samples

and standards were pipetted into the plate and 200 µl of the working reagent was added. The plate

was sealed with an adhesive PCR seal, mixed for 30 seconds on a plate shaker, and incubated for 30

minutes at 37◦C. Afterwards, the reaction mix had to cool down for 20 minutes to room temperature

before measuring the protein concentration spectroscopically with the SPECTROstar Nano at 562 nm.

The protein concentration was analyzed using the SPECTROstar Nano - Data Analysis software and

Excel.

4.5.1.3 SDS polyacrylamide gel electrophoresis

The gels for the SDS polyacrylamide gel electrophoresis (SDS-PAGE) were prepared with the TGX

Stain-FreeTM FastCastTM Acrylamide Starter Kit which represents a modified Laemmli system. This

kit provides premixed ’Tris-Glycine eXtended (TGX) acrylamide/bis-acrylamide’ solutions contain-

ing trihalo compounds which react with proteins upon UV light activation and produce fluorescent

light. This stain-free technology allows the visualization of the total protein amount on a western

blot membrane without additional staining and replaces the use of a housekeeper protein. For nor-

malization of the western blot bands the total protein per lane was used [42].

The gels were cast with the SureCastTM Gel Handcast Station with 1.0 mm thickness. For the 10%

SDS polyacrylamide resolver gel ’Resolver A’, ’Resolver B’, 10% APS, and TEMED were mixed. After

polymerization, the stacking gel was cast by mixing ’Stacker A’, ’Stacker B’, 10% APS, and TEMED

and the comb was inserted.

For SDS-PAGE the protein lysates were diluted to 30 µg/8 µl with RIPA buffer. To apply the

samples to the gel 4 µl ’SDS Blue Loading Dye’ were added and the samples were denatured for

10 minutes at 98◦C in a heating block. In addition to the samples, also 8 µl of the ’PageRulerTM

Prestained Protein Ladder 10-170 kDa’ were subjected to the SDS polyacrylamide gel. The gel elec-

trophoresis was conducted in the vertical Mini Gel Tank with ’running buffer’ for 1 to 1.5 h at 100 V.
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After electrophoresis the stain-free dye in the gel was immediately activated by radiating with UV

light for one minute.

4.5.1.4 Electro-transfer of proteins

Subsequently, the proteins were transferred to a polyvinylidene difluoride membrane (PVDF) by

a semi-wet transfer. Prior transfer, the membrane was activated by shortly washing in methanol,

followed by washing in deionized water and equilibration in transfer buffer. The electro-transfer

was performed with the Mini Blot Module for one hour at 20 V.

4.5.1.5 Immunological detection of Akt and phosphorylated Akt

The detection of Akt and phosphorylated Akt was performed with antigen-specific primary antibodies

and a horseradish peroxidase-coupled secondary antibody. The primary antibodies were diluted

1:1000 in 5% milk powder dissolved in TBS and the secondary antibody was diluted 1:5000 in 5%

TBS-milk.

Following electro-transfer, the membrane was incubated for one hour in 5% TBS-milk to block

unspecific binding sites. Afterwards, the membrane was transferred into the primary antibody di-

lution and incubated overnight at 4◦C on a tube roller. After washing the membrane three to four

times in TBST for about five minutes, the membrane was incubated with the secondary antibody

dilution for 1 h at room temperature. Subsequently, the membrane was washed again three to four

times with TBST for about five minutes. The detection of the antibody was performed by enhanced

chemiluminescence with the Clarity MaxTM Western ECL Substrate. The method is based on the ox-

idation of luminol in the presence of peroxide by the horseradish peroxidase, which is coupled to

the secondary antibody, generating light. Directly prior detection, 0.5 ml ’Clarity MaxTM Western

Peroxide Reagent’ and 0.5 ml ’Clarity MaxTM Western Luminol/Enhancer Reagent’ was mixed and

applied to the membrane. After detection with the ChemiDocTM Touch Imaging System, the membrane

was stripped by incubation in 10 ml ’RestoreR PLUS Western Blot Stripping Buffer’ for 20 minutes.

The membrane was shortly washed in TBST and blocked for 1 h in 5% TBS-milk. Afterwards, the

membrane was incubated overnight at 4◦C with the primary anti-phosphorylated Akt antibody. The

detection took place as described for Akt.

The western blots were quantified with the Image Lab software. The band intensity of total pro-

tein, Akt, and phosphorylated Akt was determined densitometrically. Both Akt and phosphorylated

Akt were normalized to total protein and the pAkt/Akt ratio was calculated. One animal of each

group and time point was present on each western blot. To reduce interblot variance the ratios of

each blot were normalized to chow week 1 present on the same blot.
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4.5.2 Enzyme activity assay

For determination of the activity of different enzymes a coupled enzyme reaction was used which

oxidizes nicotinamide adenine dinucleotide from NADH to NAD+. NAD+ has an absorption max-

imum at 260 nm and NADH has an additional maximum at 340 nm, therefore, the oxidation is

spectroscopically traceable by measuring the absorption at 340 nm.

For phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) activity assays

30-50 mg snap-frozen liver were homogenized in 500 µl ’Enzyme activity homogenizing buffer’. Fol-

lowing settings were used for homogenization: Speed: 5 m/s, time: 20 s, cycle: 1. The homogenate

was centrifuged at full speed and 4◦C for 20 minutes. The fat on top was discarded and the in-

franatant was transferred into a new tube and subsequently centrifuged for one hour at full speed

and 4◦C. The infranatant was transferred into a new tube for subsequent measurement. Due to

temperature differences the PEPCK assay was measured first and the PK assay afterwards.

4.5.2.1 Phosphoenolpyruvate carboxykinase activity assay

To measure phosphoenolpyruvate carboxykinase (PEPCK) activity, liver homogenate was incubated

with oxaloacetate, the substrate of PEPCK, leading to the production of phosphoenolpyruvate. This

was converted to pyruvate by pyruvate kinase (PK), forming ATP from ADP. The final reaction was

the synthesis of lactate from pyruvate by lactate dehydrogenase (LDH) which was accompanied by

the oxidation of NADH to NAD+. The reaction is illustrated in figure 4.3. The oxidation of NADH is

measured spectroscopically. The samples were measured in duplicates.

Figure 4.3: Reaction of the phosphoenolpyruvate carboxykinase activity assay.

Before starting with the assay the temperature of the SPECTROstar Nano plate reader was set to 25◦C.

A 5 mM oxaloacetate solution (final concentration: 0.5 mM) and the ’PEPCK sample buffer’ were

freshly prepared and the buffer was incubated for 15 minutes at room temperature. The infranatant

was diluted 1:500 in ’Enzyme activity homogenizing buffer’. For baseline measurement 150 µl sam-

ple buffer were pipetted into a 96-well plate and measured spectroscopically at 340 nm until the slope

was constant. Subsequently, 25 µl oxaloacetate was added and shortly mixed on an orbital shaker.

After measuring about five cycles, 75 µl homogenate was added. As control for the non-enzymatic

decay of oxaloacetate 75 µl ’Enzyme activity homogenizing buffer’ instead of homogenate was used.

The absorbance was measured at 340 nm every 30 seconds for about 15 minutes until the slope was

constant.
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4.5.2.2 Pyruvate kinase activity assay

To measure the activity of pyruvate kinase (PK) liver homogenate was incubated with phospho-

enolpyruvate which was converted to pyruvate by the PK. Pyruvate in turn was converted to lactate

by lactate dehydrogenase using NADH as cosubstrate. The reaction is illustrated in figure 4.4. The

oxidation of NADH to NAD+ is measured spectroscopically at 340 nm. The samples were measured

in duplicates.

Figure 4.4: Reaction of the pyruvate kinase activity assay.

To measure PK activity the temperature of the SPECTROstar Nano plate reader was set to 30◦C.

A 5 mM phosphoenolpyruvate solution (final concentration: 0.5 mM) as well as the ’PK Sample

Buffer’ were freshly prepared. The buffer was incubated for 15 minutes at room temperature. The

infranatant was diluted 1:30 with ’Enzyme activity homogenizing buffer’. For baseline measurement

150 µl ’PK sample buffer’ were measured spectroscopically at 340 nm in a 96-well plate until the slope

was constant. Afterwards, 25 µl phosphoenolpyruvate was added and shortly mixed on an orbital

shaker. After about five cycles of measuring 75 µl homogenate or ’Enzyme activity homogenizing

buffer’ as blank was added. The reaction was tracked spectroscopically every 30 seconds at 340 nm

for about 15 minutes until the slope was constant.

4.5.2.3 Analysis of enzyme activity data

After measuring the enzyme activity, the protein concentration of the liver homogenate was deter-

mined as described in section 4.5.1.2 for normalization of the data.

The data analysis was carried out with the SPECTROstar Nano - Data Analysis software and Excel.

The enzyme activity assay generated a signal curve with linear decrease of the absorption at 340 nm.

Within the linear range, eight measurement points were used to determine the slope. The specific

enzyme activity was calculated with

Activity=
|slope/min| · pathlength correction factor for 96-well plate · end volume

extinction coefficient of NADH · sample volume
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Pathlength correction factor for 96-well plate: 3.045 cm-1

End volume: 250 µl
Extinction coefficient of NADH: 6178 l/(mol · cm)

Sample volume: 75 µl

The specific enzyme activity in M/min was converted to nmol/(ml · min) by multiplication with

1 · 106. The values were normalized to protein concentration and the dilution factor was considered.

Finally, the specific enzyme activity was expressed as nmol/(mg · min).

4.5.3 Insulin enzyme-linked immunosorbent assay

For insulin measurement the enzyme-linked immunosorbent assay (ELISA) Rat/Mouse Insulin ELISA

was used. The assay is a Sandwich ELISA consisting of a monoclonal mouse anti-rat insulin antibody

coated to the microtiter plate and a biotinylated polyclonal antibody against the antibody-bound in-

sulin. The ELISA was performed according manufacturer’s instructions. Shortly, 10 µl of rat insulin

standard, quality controls, and plasma samples were dispensed into the provided microplate in du-

plicates to immobilize the insulin to the antibody. The biotinylated anti-insulin detection antibody

was added and the plasma-antibody mixture was incubated for two hours at room temperature with

moderate shaking. After washing the plate with the WellwashTM Versa Microplate Washer to remove

unbound material, the enzyme solution was added and incubated for 30 minutes at room temper-

ature and moderate shaking. After removing free enzyme conjugates the substrate solution was

added and the color was developed for 20 minutes. After adding the stop solution, the absorbance

was measured at 450 nm and 590 nm with the spectrophotometric microplate reader Epoch within

five minutes after adding the stop solution. The absorbance at 450 nm was corrected by subtracting

the absorbance at 590 nm. The data were analyzed with GraphPad Prism 7. The unknown sample

concentrations were computed by 4-parameter logistic fitting of the standard.

4.6 Bioinformatics and in silico methods

4.6.1 Identification of potential candidate genes

First candidate genes were identified by analyzing preliminary human DNA methylation data of seven

non-obese, seven obese non-diabetic, and eight obese type 2 diabetic subjects [110]. Furthermore,

literature (tab. 4.12) and different databases were used, such as the ’DisGeNET’ database containing

numerous genes associated with diseases identified by for example GWAS, animal models, and publi-

cations [15]. To check if the identified genes are differentially expressed in obese mice the ’Attie Lab

Diabetes Database’ was used [105]. CpG sites identified in human data were searched in the ’UCSC
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Genome Browser’ (http://genome.ucsc.edu/, [106]) and converted into the mouse genome assem-

bly mm9. The gene structure was investigated and regulatory sequences were studied using the

ORegAnno Track in the ’UCSC Genome Browser’ as well as the Unipro UGENE software [131, 172].

Table 4.12: Publications used for identification of candidate genes

Publication Data Method Subjects

Kirchner et al. 2016

[110]
DNA methylation Illumina 450 K array 7 non-obese, 7 obese non-diabetic,

and 8 obese type 2 diabetic humans

Keller et al. 2008 [105] gene expression custom ink-jet

microarrays by Agilent

Technologies

lean and obese C57BL/6 and BTBR

mice

Kwon et al. 2012 [121] gene expression Illumina MouseWG-6 v2.0

expression beadchip

C57BL/6 fed with HFD or normal diet

for up to 24 weeks

Multhaup et al. [163] DNA methylation CHARM C57BL/6 mice fed with high fat or

low fat diet for 12 weeks

Zhang et al. 2017 [256] RNA-seq and

bisulfite DNA

sequencing

Illumina HiSeq 2000 C57Bl/6J fed high fat-high sucrose or

low fat-low sucrose diet

4.6.2 Primer design

Design of bisulfite primer

The bisulfite primer were designed with the PyroMark Assay Design 2.0 software. The sequence of

interest was exported from the ’UCSC Genome Browser’ ( http://genome.ucsc.edu/, [106]). Addi-

tional 1000 bp downstream and upstream were added to the sequence of interest. The sequence was

copied in the ’Original Sequence Editor’ of the PyroMark Assay Design 2.0 software which automat-

ically performs a bisulfite conversion. After choosing the target sequence for which primers should

be designed, the assay design was started with standard settings. The resulting primer sets were

evaluated regarding mispriming sites, annealing temperatures, position of the sequencing primer

regarding the first CpG site, possible primer dimers, and the computed score for primer set quality.

Goal of the primer design was to maximize the score. The primer could be designed as a forward

assay with the biotinylation at the reverse primer, or as a reverse assay with the biotinylation at the

forward primer. Moreover, the upper or the lower strand could be used.

Design of SYBR green primer

Primer for SYBR green-based qRT-PCR were designed with the NCBI tool ’Primer-BLAST’ [250].

’Primer-BLAST’ uses Primer3 for the primer design and BLAST to align the primer to the mouse

genome for detection of unspecific binding. For the primer design the reference sequence of the

gene of interest was used. The desired product should be larger than 70 bp, the primer should have
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an annealing temperature of 60◦C ± 3◦C, and span an exon-intron junction. Only primer without

any unspecific binding sites as well as primer dimer were chosen.

4.6.3 Analysis of differentially expressed genes

Venn diagram

The venn diagram of differentially expressed, coding genes for the comparisons ’chow: week 12 vs.

week 1’, ’HFD: week 12 vs. week 1’, ’week 1: HFD vs. chow’, and ’week 12: HFD vs. chow’ was

created with the ’VennDiagram’ package implemented in R [36].

Pathway analysis

For differentially expressed genes identified by gene expression microarrays as well as genes which

possess one or more differentially methylated regions measured by WGBS a pathway analysis with

’DAVID Functional Annotation Tool’ (version 6.8) was performed [84, 85]. A pathway analysis is

used to study if altered genes are associated with specific biological processes or are related in their

function. For the pathway analysis a list with gene symbols was used, but with ’DAVID Functional

Annotation Tool’ only gene symbol lists with maximal 3000 entries can be processed. Therefore,

multiple entries for the same gene as well as predicted genes were removed.

For differentially expressed genes only KEGG pathways with Bonferroni p value <0.05 were con-

sidered for subsequent plotting of the fold enrichment. The top 10 significantly enriched pathways

were illustrated as circle plot with the ’GOplot’ package in R [238]. The results of the pathway

analysis for the WGBS data were plotted as bar graph using GraphPad PrismR 7.

Principal component analysis

To get an overview of the transcriptome data a principal component analysis (PCA) was performed.

This statistical technique reduces the dimensionality of large data sets and simultaneously retains

most of the variation of the data [195, 196]. The PCA performs geometric projections of the data

onto lower dimensions, so-called principal components, which are linear combinations of the original

variables [132, 195]. In the context of PCA, variables are experimental conditions and observations

correspond to the measured gene expression [195]. The principal components represent new vari-

ables which describe as much of the variance as possible from the original data [195]. The maximal

number of principal components corresponds to the number of samples or observations, depending

on which is smaller [132].

The principal component analysis was performed in MATLAB with the function ’pca’. As input,

all genes including predicted genes and those which have no gene symbol yet were used as long as

they were expressed in at least one condition (a gene could be turned on or off in obesity and insulin
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resistance). This yields 64 524 genes. For calling the ’pca’ function, the data needed to be a matrix

with rows representing the animals and columns representing the genes. The PCA was calculated

with the command

[ score , l a t en t , expla ined ] = pca ( Data ) ;

The principal component scores, saved in ’score’, represented the data set in the principal com-

ponent space, ’latent’ contained the variance of each principal component (’eigenvalues’), and ’ex-

plained’ described the percentage of total variance of each component. The data saved in ’score’

were used to draw the three-dimensional scatter plot in MATLAB with the function ’scatter3’.

Clustering

Large and complex data sets, such as gene expression microarray data, are elusive for humans.

Clustering algorithms sort objects based on their similarity in groups, so called clusters, and therefore,

can be used to identify structures in these data [209]. Clustering is an unsupervised method, the

algorithm does not know the group membership of the data points [199]. There are different kinds

of cluster algorithms, here, clustering algorithms based on hierarchy and partition were considered

[247]. Hierarchical clustering groups objects which have a small distance to each other together

[209]. Usually, it is visualized as a tree, called dendrogram, with the root representing one big

cluster containing all objects and the leaves representing the individual objects [209]. A strength of

hierarchical clustering is its suitability for data with arbitrary shape, but it has a high time complexity

[247]. Partitioning algorithms have no hierarchical structure and need a specification of the cluster

number by the user beforehand [211]. According to the desired number of clusters the algorithm

assigns cluster centers randomly in the data space [209]. The distance of each object to the cluster

center is calculated and the objects are grouped in the cluster to which the distance is smallest

[209]. The centers of the newly formed clusters are recalculated and the process is iterated for a

given number. To cluster the gene expression microarray data the probably most famous partitioning

cluster algorithm ’kmeans’ was used. ’Kmeans’ has a high computing efficiency but does only cluster

effectively spherical data sets [247]. Furthermore, it is sensitive to outliers, the results depend on

the predefined cluster number, and the algorithm can get stuck in a local optimum [247].

Gene expression microarrays generate a large amount of data and although cluster algorithms

are well suited to handle big data a reduction of the complexity by PCA can improve the run time,

clustering efficiency, and accuracy of the clustering algorithm [225]. The principal component anal-

ysis was performed as described in section 4.6.3. It is assumed that principal components whose

contribution to the total variance is small contain irrelevant information and noise, thus, only a sub-

set of principal components was used for cluster analysis [23, 129]. When choosing the number of

principal components, the total variance explained by these should be at least 70% [23]. A scree
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plot, showing the variance each individual principal component is accounting for as well as the cu-

mulative variance, can be helpful to choose the right number of principal components [23]. The

scree plot was created in MATLAB with the function shown in section C. As input, ’latent’, containing

the principal component variances, was used as computed in section 4.6.3.

Hierarchical clustering by Ward was performed on the first 15 principal components. The method

by Ward is an agglomerative or bottom-up approach, it starts with each object as an individual cluster

and subsequently merges similar clusters together into successively larger cluster [209]. As distance

measure the euclidean distance was used. The distances were calculated using the function ’dist’ of

the package ’stats’ in R with ’score’ as input (generated as described in section 4.6.3). The distance

matrix was used to create the dendrogram in R with ’hclust’ and the ’ward.D2’-method. The resulting

’hclust’-object was plotted.

To perform ’kmeans’ clustering the optimal cluster number was determined by the silhouette

width, the gap statistic, and the within-sum-of-squares approach. For each method the desired clus-

tering algorithm must be specified, in this case ’kmeans’. The silhouette width is a measure for the

quality of clustering for different cluster numbers [23, 200]. For visualization the average silhouette

width was plotted against the cluster number. The method is implemented in the R-package ’factoex-

tra’ with the ’fviz_nbclust’ function for ’silhouette’. The gap statistic compares the total intra-cluster

variation for different numbers of cluster with their expected values from a reference distribution

without any clustering [229]. The gap statistic was performed using the ’fviz_nbclust’ function for

’gap_stat’ in R. A third method to estimate the optimal cluster number is the within-sum-of-squares

approach which was calculated using the ’fviz_nbclust’ function for ’wss’ in R. After identification

of the optimal cluster number ’kmeans’ clustering was performed using the ’kmeans’ function of the

’stats’ package in R with 15 principal components and following parameters:

kmeans(15PC , 3 , i t e r .max = 1000 , a lgor i thm = " Hartigan−Wong" ,
trace=TRUE, n s t a r t=100)

4.7 Statistics

Phenotyping data of the longitudinal methylation study were analyzed by 2-way ANOVA with com-

parison of the mean of the groups for every time point without matching followed by Holm-Sidak

correction for multiple testing using GraphPad PrismR 7. A p value smaller 0.05 was treated as

statistically significant: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

For statistical analysis of DNA methylation data CpG sites were considered independent of each

other. For longitudinal data on DNA methylation CpG sites were analyzed separately by 2-way

ANOVA as described before. Data of the HFHS-fed mice were analyzed by multiple t-tests assuming

same standard deviations and using statistical significance with Holm-Sidak correction for multiple

testing.
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Line graphs represent the mean ± standard deviation (SD). Box plots illustrate the 25th to the

75th percentile and the whiskers are ranging from the minimal to maximal value. The line within

the box represents the median and the ’+’ the mean.

Quantitative RT-PCR data are shown as mean log fold change ± standard error of the mean

(SEM). The fold change of the HFD group at a particular time point was normalized to the corre-

sponding chow group. Two-way ANOVA was performed on ∆Ct values using GraphPad PrismR 7 as

described before.

Western blot analysis was performed for eight mice per group and time point. The blot pictures

were analyzed with the Image LabTM software, the normalization was carried out in Excel, and the

statistical analysis by 2-way ANOVA as described before was performed in GraphPad PrismR 7.

Gene expression microarrays were analyzed with the Transcriptome Analysis Console. Genes were

considered as differentially expressed with a linear fold change ≥1.5 or ≤-1.5 and a false discovery

rate (FDR) p value <0.05.
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Results

5.1 Metabolic phenotype of mice of the longitudinal

methylation study

5.1.1 Glucose tolerance and insulin sensitivity

In order to investigate the epigenetic changes during the development of insulin resistance mice fed

with either high fat diet (HFD) or chow diet were metabolically characterized. After 1, 2, 4, 5, 6, 7,

8, and 12 weeks of feeding eight mice of each group underwent an intraperitoneal glucose tolerance

test to assess insulin secretion from the pancreas as well as insulin sensitivity of peripheral tissues.

Already after one week of feeding HFD mice had significantly higher body weight compared

to chow-fed controls (Fig. 5.1 (a), pweek 1=0.0042, pweek 2-12<0.0001) and developed obesity with

further HFD feeding. The glucose tolerance of HFD mice was significantly impaired after one week

(Fig. 5.1 (b), pweek 1=0.0463). At week 5, HFD mice developed significant glucose intolerance

which deteriorated with further HFD feeding (Fig. 5.1 (b), pweek 5=0.0003). Plasma insulin levels

were determined after 1, 2, 4, 8, and 12 weeks of feeding. At week 1, both groups showed a high

variance, therefore, conclusions had to be drawn carefully. At week 2 and 4, HFD-fed mice showed

slightly, non-significantly increased insulin levels. After eight and 12 weeks of HFD feeding, insulin

levels were significantly increased compared to chow-fed controls of the same week (Fig. 5.1 (c),

pweek 8-12<0.001). Despite increased insulin levels HFD mice were not able to effectively clear the

glucose bolus in the glucose tolerance test suggesting that mice became insulin resistant at the latest

of eight weeks of feeding.
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Figure 5.1: High fat diet-fed mice became obese and developed insulin resistance after five weeks
of feeding. (a) Body weight of mice was determined at the day of the glucose tolerance test. HFD mice
were compared to chow mice of the same week. Already after one week of feeding HFD mice weighted
significantly more than chow mice. Two-way ANOVA followed by Holm-Sidak correction; pweek<0.0001;
pdiet<0.0001; pinteraction<0.0001; n=7-16/group. (b) The intraperitoneal glucose tolerance test revealed
that HFD-fed mice showed significantly impaired glucose tolerance at week 1 and as of week 5. Two-
way ANOVA followed by Holm-Sidak correction; pweek<0.0001; pdiet<0.0001; pinteraction<0.0001; n=7-
16/group. (c) Insulin levels were determined in plasma of non-fasted animals. HFD mice showed sig-
nificantly increased insulin levels as of week 8. Two-way ANOVA followed by Holm-Sidak correction;
pweek=0.0181; pdiet<0.0001; pinteraction=0.0022; n=5-8/group.

The plasma non-esterified fatty acids were slightly increased in the HFD group after four weeks

of HFD feeding (Suppl. fig. 7.1, pweek 8=0.0214).

With an intraperitoneal glucose tolerance test the whole-body glucose tolerance and insulin

sensitivity is assessed. However, a discrimination between different peripheral tissues is not pos-

sible, but liver, adipose tissue, and skeletal muscles develop insulin resistance at different time

points [111, 230, 242]. To study hepatic insulin resistance, phosphorylation status of Akt at Ser473

was determined by immunoblotting (Fig. 5.2). In an insulin sensitive state, binding of insulin to its

receptor induces phosphorylation of Akt by for example mTORC2, whereas insulin resistance leads

to decreased Akt phosphorylation [184, 207].

There were no significant differences between chow and HFD mice (Fig. 5.2 (b)), although

there was a trend towards higher Akt phosphorylation at Ser463 at week 1 in the HFD group. After

week 2, HFD mice showed slightly lower Akt phosphorylation compared to chow-fed controls. This

could indicate the development of hepatic insulin resistance in HFD mice after week 2, preceding

whole-body insulin resistance.
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Figure 5.2: Hepatic Akt phosphorylation was slightly decreased in HFD-fed mice after two weeks
of feeding. Hepatic Akt phosphorylation was analyzed by immunoblotting. (a) Representative western
blot of pAkt, Akt, and total protein. (b) Phosphorylated Akt/total Akt ratio, normalized to chow week 1
on each western blot. HFD-fed mice possessed slightly lower pAkt levels as of week 4. Two-way ANOVA
followed by Holm-Sidak correction; n=7/group.

5.1.2 Hepatic triglyceride and glycogen content

High fat diet feeding leads to severe alterations of the liver phenotype (reviewed in [80] and [104])

with extensive changes of macromolecules and cellular processes [50, 192, 230].

Already at week 1, HFD-fed mice showed significantly increased triglyceride levels (Fig. 5.3 (a),

pweek 1=0.0365). Between week 4 and week 5, the triglyceride content strongly increased and

reached a plateau after five weeks of HFD feeding (Fig. 5.3 (a), pweek 4-12<0.0001). Thus, man-

ifestation of insulin resistance was accompanied by development of a fatty liver.

Figure 5.3: Hepatic triglycerides were elevated in diet-induced obese mice, whereas glycogen con-
tent was not altered. (a) Hepatic triglyceride levels are significantly increased in HFD mice at all time
points. pweek<0.0001; pdiet<0.0001; pinteraction<0.0001; n=7-16/group. (b) Hepatic glycogen content
showed no significant differences between the groups. pdiet=0.0003; n=8/group. Two-way ANOVA fol-
lowed by Holm-Sidak correction.

The glycogen amount was not significantly altered in HFD-fed mice (Fig. 5.3 (b)), although

glycogen levels appeared slightly lower in the HFD group. This indicates that glycogen metabolism
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was not affected by impaired insulin signaling.

To evaluate the liver phenotype microscopically a hematoxylin eosin staining was performed

(Fig. 5.4). There were no microscopical differences between the chow animals. In the HFD group,

increasing fat accumulation with progressing development of obesity was observed (Fig. 5.4). At

week 1, no differences between chow and HFD mice were visible. After eight weeks of feeding, HFD

mice began to accumulate lipid droplets. The number of fat vacuoles were drastically increased in

the HFD group at week 12. This fits with the results from the triglyceride assay which revealed a

significant elevation of hepatic triglycerides at week 8 and 12 (Fig. 5.3). Taken together, mice fed a

diet rich in fat for at least eight weeks developed a fatty liver.

Figure 5.4: HFD-fed mice showed fat accumulation in hepatocytes. Evaluation of the liver morphol-
ogy of chow and HFD mice by hematoxylin and eosin staining. After 12 weeks of feeding, the number
and size of lipid droplets increased drastically in the HFD group. Representative pictures for week 1, 8,
and 12 of four animals per group and time point in total. Pictures were taken with a 10x magnification,
the scale bar represents 100 µm.
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5.2 Gene expression microarrays

The underlying hypothesis of this thesis is that DNA methylation is involved in diabetes pathogenesis

by altering hepatic gene expression. For mice no sensitive high-throughput techniques for identifica-

tion of differentially methylated genes exist, therefore, gene expression microarrays were measured

to identify differentially expressed genes at first. Subsequently, the transcriptome data set was used

to search for genes which could be potentially regulated by DNA methylation. The transcriptome

profiling was performed for mice fed for one and 12 weeks with either chow diet or HFD. When fo-

cusing at one time point, HFD mice were compared to chow mice of the same week. When comparing

mice within one diet group, week 12 was compared to week 1.

5.2.1 Descriptive analysis of transcriptome data

Number of altered genes

The total number of differentially expressed genes is given in table 5.1. The comparison ’chow:

week 12 vs. week 1’ included genes affected by an age effect (Tab. 5.1, fig. 5.5). Ageing leads to

epigenetic changes which can result in changes of gene expression [141]. Moreover, ageing is a risk

factor for type 2 diabetes [154]. Therefore, the chow group served as a control for the confounding

factor age.

When comparing HFD-fed mice of week 12 with HFD mice fed for one week, effects due to the

different nutrient composition of the diets were excluded. In total, 1597 genes were altered (Tab.

5.1) of which 865 were unique for this comparison and 122 genes were affected by the different

age of the animals (Fig. 5.5). 227 genes were already altered after one week of HFD feeding and

were not affected by age (Fig. 5.5). 434 genes were also altered after 12 weeks of feeding and

age-independent (Fig. 5.5).

Comparing the HFD group of one time point to the corresponding chow group eliminated the

age effect. The comparison ’week 1: HFD vs. chow’ included genes which were acutely altered by

HFD feeding (Tab. 5.1). Of these 443 genes in total, 124 were unique for this comparison and 22

genes were also found in the comparison of both chow-groups (Fig. 5.5). 70 genes were also altered

after 12 weeks of feeding but were not included in the comparison of both HFD groups. These genes

changed after one week of HFD feeding and maintained their expression level for the whole period

of the study. The 227 age-independent genes, which were also present in the ’HFD: week 12 vs.

week 1’ comparison, changed their gene expression due to the prolonged HFD feeding (Fig. 5.5).

At week 12, 793 genes were altered between HFD- and chow-fed mice (Tab. 5.1). Of these, 231

genes were unique for this comparison, 58 genes showed an age-effect, and 383 genes were also

present in the comparison of both HFD groups (Fig. 5.5). HFD feeding led to extensive transcriptomic

alterations which changed with continuing HFD feeding to adapt to the increased caloric intake.
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Table 5.1: Total number of differentially expressed genes (DEGs). HFD mice at week 1 and week 12
were compared to chow mice at week 1 and week 12, respectively. Moreover, for each diet group week 12
was compared to week 1. Furthermore, the number of up- and downregulated genes is shown.

Comparison Total DEGs Upregulated Downregulated

week 1: HFD vs. chow 443 114 329

week 12: HFD vs. chow 793 436 357

HFD: week 12 vs. week 1 1597 1082 515

chow: week 12 vs. week 1 263 180 83

Figure 5.5: Venn diagram of differentially expressed genes. The total number of DEGs for each
comparison (’week1: HFD vs. chow’, ’week12: HFD vs. chow’, ’chow: week12 vs. week1’, ’HFD: week12
vs. week1’) is shown in the colored bubbles. The overlap of the bubbles indicates genes which were
differentially expressed in several comparisons. ’week 1: HFD vs. chow’ and ’week12: HFD vs. chow’
describes the comparison of the HFD group to the chow group at week 1 and week 12, respectively. ’chow:
week12 vs. week1’ and ’HFD: week12 vs. week1’ depicts the comparison of mice fed for 12 weeks to
mice fed for one week with the indicated diet.

Principal component analysis

Genome-wide approaches become more and more popular in research, because a large number of

data can be acquired at once. To make the large amount of data graspable for humans statistical and

visualization tools need to be applied. Usually, the first step of the analysis is performing a principal

component analysis (PCA). This statistical technique is used to reduce the dimensions of complex

data sets with simultaneously maintaining most of the variation and thereby facilitating further anal-

ysis [195, 196]. The principal components represent new variables which describe as much of the

variance of the original data as possible [195]. The function yielded 29 principal components, be-

cause the variance of the thirtieth principal component was zero. To illustrate how much variance is

explained by each principal component as well as the cumulative variance explained by combining

several principal components a scree plot was created (Fig. 5.6). In a scree plot, the percentage of

explained variance is plotted against the number of principal components. The scree plot visualized
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that the first two principal components explain the greatest proportion of variance, about 26.00%.

By adding the third principal component 32.78% can be explained.

Figure 5.6: Scree plot of the principal components. The x-axis represents the individual principal
components and the y-axis shows the percentage of explained variance. The variance explained by each
individual principal component is shown as blue bars and the global variance, which is explained by
combining the principal components, as red line.

For visualization, the first three principle components were plotted (Fig. 5.7). Principal com-

ponent 1 explained 14.68% of the variance and therefore, indicates the direction in which the data

showed the largest variation. Along this axis both HFD groups were distinguishable from each other

(Fig. 5.7). Both chow groups were overlapping and could not be clearly discriminated (Fig. 5.7).

The HFD week 12 group could also be differentiated from both chow groups indicating wide-ranging

transcriptomic alterations (Fig. 5.7). Both chow groups and the HFD week 1 group were flanking

each other with a minor overlap, suggesting that already one week of HFD feeding led to distinct

changes of the transcriptome (Fig. 5.7).
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Figure 5.7: Principal component analysis of the transcriptome data. The first three principal compo-
nents, which explained in total 32.78% of the variance, were plotted. The individual animals are shown
as colored dots, the color states the group membership.

Cluster analysis

The aim of this thesis was to investigate if DNA methylation changes are causal or consecutive for the

development of obesity and insulin resistance. Since DNA methylation changes lead to altered gene

expression it was initially examined if the groups show transcriptomic differences. This would be the

prerequisite for the search of differentially methylated genes. To analyze the transcriptomic differ-

ences between the groups cluster algorithms were applied. There are two main types of clustering

algorithms, hierarchical and partitioning clustering, which have different advantages and disadvan-

tages (see section 4.6.3) [211, 247]. To achieve reliable results hierarchical clustering as well as the

partitioning cluster algorithm ’kmeans’ was performed.

The clustering was performed on the first 15 principal components which explained in total 75%

of the variance (Fig. 5.6, suppl. data in section 7 C).

The hierarchical clustering revealed that HFD week 12 was clearly distinguishable from the other

groups, because it separated directly after the root of the clustering tree (Fig. 5.8 (a)). The other

groups, HFD week 1 and both chow groups, could not be discriminated from each other as clearly

(Fig. 5.8 (a)). The mice of the HFD week 1 group showed similar gene expression, because they were

in the same region of the dendrogram (Fig. 5.8 (a)). The chow groups could not be distinguished

from each other, they were mixed up in the dendrogram (Fig. 5.8 (a)). One chow week 1 mouse even

clustered with the HFD week 1 group, other chow mice formed their own small cluster on the right

side of the dendrogram, and the remaining mice formed a mixed chow week 1 and chow week 12

cluster (Fig. 5.8 (a)). The hierarchical clustering could not reliable determine the total number of

clusters. Since all animals of the HFD week 1 group seemed to cluster together, but the chow groups

were mixed up three clusters could be hidden in the data.
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Figure 5.8: Hierarchical clustering and ’kmeans’ clustering of the first 15 principal components
of the transcriptome data. (a) Hierarchical clustering. Individual animals are indicated as dots, group
membership is indicated by color. The height indicates the distance between individual animals. (b) The
results of the clustering analysis by ’kmeans’ are shown by plotting the first and second principal compo-
nent. Cluster are indicated with different colors and group membership of the animals is represented by
different symbols.

To confirm this clustering also the partitioning cluster algorithm ’kmeans’ was applied. For

’kmeans’, the cluster number needs to be specified beforehand. Therefore, the optimal cluster num-

ber was determined by computing the silhouette width, the gap statistic, and the within-sum-of-

squares. However, these methods are approximative approaches. The silhouette width shows the

quality of clustering for different cluster numbers, the higher the silhouette width, the better the

cluster discrimination [23]. The silhouette plot indicated three cluster as the best cluster number

(Suppl. fig. 7.2).

The gap statistic compares the total intra-cluster variation for different cluster numbers to a

reference distribution [229]. The optimal number of clusters will maximize the gap statistic and this

was true for three cluster (Suppl. fig. 7.3) [229].

The within-sum-of-squares method determines the compactness of cluster. When the total within

sum of squares was plotted against the number of clusters, the optimal cluster number could not be

clearly determined, however, the slope seems to flatten at five clusters (Suppl. fig. 7.4).

’Kmeans’ was performed with three clusters and revealed that the HFD group at week 12 formed

its own cluster (Fig. 5.8 (b) cluster 3), as already shown by the hierarchical clustering (Fig. 5.8

(a)). HFD mice fed for one week formed another individual cluster, but also one chow mouse fed
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for one week was grouped into this cluster (Fig. 5.8 (b) cluster 1) which was also predicted by the

hierarchical clustering (Fig. 5.8 (a)). The remaining chow week 1 mice clustered together with

chow mice fed for 12 weeks (Fig. 5.8 (b) cluster 2). Diet-induced obese and insulin resistant mice

showed distinct transcriptomic alterations discriminating them from mice fed high fat diet for only

a short period and mice fed a standard diet. But also short-term HFD feeding led to gene expression

changes which distinguished these mice from control animals.

Identification of altered pathways

After descriptive analysis of differentially expressed genes the pathways, in which these genes are in-

volved, were examined. After one week of feeding, ’Metabolic pathways’ and ’Fatty acid metabolism’

pathways were already altered in HFD mice (Fig. 5.9 (a)). After 12 weeks of feeding, ’Metabolic

pathways’ attained higher relevance, pathways of the ’Fatty acid metabolism’ (for instance ’Fatty

acid degradation’) were still significantly enriched, and the ’Peroxisome proliferator-activated recep-

tor (PPAR) signaling pathway’ was altered (Fig. 5.9 (b)). After one week of feeding the top 10

significantly enriched pathways were all in all downregulated, whereas after 12 weeks of feeding

some pathways, such as ’Fatty acid degradation’ or ’Peroxisomes’, were upregulated. When focus-

ing only on HFD mice fed for 12 weeks compared to HFD mice fed for one week, it emerged that

genes of the ’Metabolic pathways’, pathways of the fatty acid metabolism, and the ’PPAR signaling’

got upregulated due to the prolonged HFD feeding (Fig. 5.9 (c)). Peroxisome proliferator-activated

receptors are transcription factors regulating the fatty acid metabolism. This suggests a deregulation

of the hepatic fatty acid metabolism.

74



5. RESULTS 5.2. Gene expression microarrays

Figure 5.9: ’PPAR signaling’ and pathways of the fatty acid metabolism were enriched after 12
weeks of HFD feeding. The top 10 significantly enriched pathways are shown. The dots represent the
number of differentially expressed genes belonging to the pathway. Blue dots indicate downregulated
genes in the HFD group and the HFD week 12 group, respectively. Red dots indicate upregulated genes in
the HFD group and HFD week 12 group, respectively. The size of the rectangles under the dots visualizes
the number of genes in one pathway, the color estimates if the whole pathway is more upregulated (red) or
downregulated (blue). (a) Pathway analysis for differentially expressed genes in HFD animals compared
to chow-fed controls after one week. (b) Pathway analysis for differentially expressed genes in HFD
animals compared to chow-fed controls after 12 weeks. (c) Pathway analysis for differentially expressed
genes in HFD animals fed for 12 weeks compared to HFD mice fed for one week. Bonferroni-corrected p
values are shown in section 7 E. z-score: Number of upregulated genes minus number of downregulated
genes divided by the square root of the count.

5.2.2 Validation of differentially expressed genes

The pathway analysis revealed a deregulation of the peroxisome proliferator-activated receptor

(PPAR) signaling pathway after 12 weeks of feeding. Because PPARs regulate the fatty acid metab-

olism, the validation of gene expression data was focused on PPARs and some of their target genes.

There are three isoforms of the PPARs: PPARα, PPARβ/δ, and PPARγ with specific, but also overlap-

ping functions [18]. The gene expression microarrays revealed that after 12 weeks of HFD feeding

Ppara and Pparg were significantly differentially expressed (Fig. 5.10), but not PPARβ/δ (data for
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PPARβ/δ not shown), thus, the focus was on PPARα and PPARγ. The linear fold change measured

by gene expression microarrays of Ppara and Pparg and their target genes are shown in figure 5.10.

Ppara gene expression was slightly increased at week 1 in HFD mice and the mRNA level further in-

creased with prolonged HFD feeding until week 12. At week 12, HFD mice had significantly elevated

Ppara mRNA level (Fig. 5.10, FDR pweek 12=0.0063). Pparg was initially significantly decreased in

the HFD group, but after 12 weeks of feeding HFD mice showed a significant increase of Pparg mRNA

levels (Fig. 5.10, FDR pweek 1=0.0272, FDR pweek 12=0.0004). Both Ppar isoforms were deregulated

on the gene expression microarray, indicating that also their target genes could be altered.

The fatty acid translocase Cd36 is a transmembrane protein transporting fatty acids into the

cell [8]. Its gene expression was not altered after one week of feeding but increased vastly after 12

weeks of HFD (Fig. 5.10, FDR pweek 12=1.10E-14). Stearoyl-CoA desaturase (SCD1) inserts the first

cis-double bond in saturated fatty acids resulting in mono-unsaturated fatty acids [151, 203]. At the

beginning of the study Scd1 was significantly downregulated in HFD mice, but mRNA level increased

with further HFD feeding to approximately chow levels (Fig. 5.10, FDR pweek 1=2.08E-06). The

fatty acid synthase (FAS, Fasn) is the rate-limiting enzyme of de novo lipogenesis synthesizing mainly

palmitate from malonyl-CoA [8, 9]. The gene expression of Fasn was similar to Scd1, at the beginning

mRNA level were significantly downregulated in HFD mice, but with further feeding gene expression

increased (Fig. 5.10, FDR pweek 1=0.0012). Acacb encodes the acetyl-CoA carboxylase 2 (ACC2)

which catalyzes the conversion of acetyl-CoA to malonyl-CoA [206]. Malonyl-CoA synthesized by

ACC2 negatively regulates fatty acid β-oxidation [8]. Acacb was significantly downregulated for

the whole period of feeding (Fig. 5.10, FDR pweek 1=0.0004, FDR pweek 12=0.0165). FGF21 is a

prominent PPARα target gene and functions as metabolic regulator [65]. Fgf21 was not altered

after one week of HFD feeding, but gene expression increased with further feeding and reached

significance after 12 weeks (Fig. 5.10, FDR pweek 12=1.60E-06).

p value
Gene Week 1 Week 12
Fgf21 0.827 1.60E-06
Acacb 0.0004 0.0165
Fasn 0.0012 0.4982
Scd1 2.08E-06 0.1465
Cd36 0.7735 1.10E-14
Pparg 0.0272 0.0004
Ppara 0.1808 0.0063

Figure 5.10: Gene expression of PPARα target genes was altered. The linear fold change at week 1
and week 12 of PPARα, PPARγ, and selected target genes is shown as heatmap. A positive fold change is
indicated by a red color and corresponds to higher gene expression in HFD mice compared to chow mice.
The FDR p values are shown in the table on the right side.
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As already indicated by the pathway analysis, PPARs and genes of the fatty acid metabolism

were deregulated after 12 weeks of HFD feeding. However, gene expression microarrays need to be

validated, because the quality of the data depends strongly on the platform and procedure [158].

For the mere validation only mice of week 1, 2, 4, 8, and 12 were used. To get a better time res-

olution of alterations of selective targets also week 5, 6, and 7 was added. Ppara was significantly

higher expressed in HFD mice after one week of feeding (Fig. 5.11 (a), pweek 1=0.0224). At week 2,

gene expression of both groups did not differ, but after week 2 mRNA level were significantly in-

creased again in HFD-fed mice and remained elevated for the whole feeding period (Fig. 5.11 (a),

pweek 4=0.0003, pweek 5-12<0.0001). Pparg gene expression was significantly decreased in HFD mice

at week 2 and 4 (Fig. 5.11 (b), pweek 2=0.0129, pweek 4=0.0015). Afterwards, gene expression rose

above chow levels and reached significance at week 12 (Fig. 5.11 (b), pweek 12=0.0004). The gene

expression microarray data for Ppara and Pparg were confirmed by qRT-PCR indicating the induction

of the PPAR signaling due to HFD feeding.

Figure 5.11: Ppara and Pparg were upregulated in hepatic insulin resistance. (a) Gene expression
of Ppara. n=7-16/group; pweek<0.0001; pdiet<0.0001; pinteraction=0.0004. (b) Gene expression of Pparg.
n=7-8/group; pweek<0.0001; pinteraction<0.0001. Two-way ANOVA followed by Holm-Sidak correction.

Cd36 gene expression was significantly upregulated as from week 8 (Fig. 5.12 (a),

pweek 8-12<0.0001). Fasn was significantly downregulated at week 1 and week 2

(pweek 1<0.0001, pweek 2=0.0282), but afterwards, gene expression increased and at week 8 and 12

mRNA level were comparable to the chow group (Fig. 5.12 (b)). Scd1 was significantly downreg-

ulated for the whole feeding period, although mRNA level increased slightly between week 4 and 8

(Fig. 5.12 (c), pweek 1-4<0.0001, pweek 8=0.0002, pweek 12=0.0006). Also Acacb was significantly

downregulated for the whole study period (Fig. 5.12 (d), pweek 1-12<0.0001).

Fgf21 was significantly upregulated in HFD mice after one week of feeding, but mRNA level

decreased to chow levels at week 2 (Fig. 5.12 (e), pweek 1=0.0131). After week 2, gene expression

of Fgf21 was elevating constantly until week 7. At week 8, mRNA level were decreased slightly, but

between week 8 and 12 gene expression increased vastly (Fig. 5.12 (e), pweek 4-12<0.0001).
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Figure 5.12: Validation of gene expression microarray results. (a) Gene expression of Cd36
(pweek<0.0001; pdiet<0.0001; pinteraction<0.0001). (b) Gene expression of Fasn (pweek<0.0001;
pdiet<0.0001; pinteraction=0.0002). (c) Gene expression of Scd1 (pweek<0.0001; pdiet<0.0001;
pinteraction<0.0001). (d) Gene expression of Acacb (pdiet<0.0001). (e) Gene expression of Fgf21
(pweek<0.0001; pdiet<0.0001; pinteraction<0.0001). Two-way ANOVA followed by Holm-Sidak correction
(a)-(d) n=7-8/group; (e) n=7-16/group.

5.3 DNA methylation of validated, differentially expressed genes

After identification of differentially expressed genes, Cd36, Scd1, and Fgf21 were selected for mea-

suring DNA methylation. Cd36 showed a vast increase in mRNA levels between week 4 and week 12

(Fig. 5.12 (a)), leading to the hypothesis that this increase was due to changes of DNA methylation.

Since Cd36 can be expressed from three different promoters several protein coding transcripts ex-

ist (see ensembl entry for ENSMUSG00000002944 ([254]), [210]) and the SYBR green primer set

measured all of them. The most upstream and the most downstream promoter can be activated by

PPARs [210]. The most upstream promoter is also the one predominantly used in liver [210]. There-

fore, the measured CpG sites were located within the most upstream first exon, but no differences

between chow and HFD mice at any time point were identified (Fig. 5.13).
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Figure 5.13: DNA methylation of Cd36 at three CpG sites within exon 1 was not altered. DNA
methylation in liver of mice of the longitudinal methylation study at (a) chr5:17,394,700 (pweek=0.0012);
(b) chr5:17,394,660; and (c) chr5:17,394,630 (Cd36 transcript: 203). Two-way ANOVA followed by
Holm-Sidak correction; n=7-8/group; assembly: mm9.

DNA methylation of Scd1 was measured at four CpG sites within intron 3. Gene expression of

Scd1 was already altered after one week of HFD feeding and between week 4 and week 8 mRNA

levels were slightly increased (Fig. 5.12 (c)). Therefore, changes of DNA methylation were expected

at week 1 or between week 4 and 8. At CpG 1 (Fig. 5.14 (a), pweek 2=0.0241), CpG 2 (Fig. 5.14 (b),

pweek 4=0.0079, pweek 8=0.0003), and CpG 4 (Fig. 5.14 (c), pweek 4=0.0024, pweek 8=0.0284) small

differences in DNA methylation were identified at some time points, but these marginal differences

had most likely no physiological relevance. The pyrosequencer has an inaccuracy of 1%, leaving

less than 1% difference, and after establishment the alterations did not persist with further feeding.

At CpG 3, DNA methylation between HFD and chow mice significantly differed by 4% at week 4

and 5% at week 12. (Fig. 5.14 (c), pweek 4=0.0008, pweek 12<0.0001). Since the difference in DNA

methylation was abolished at week 8 the regulatory function is unclear.
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Figure 5.14: DNA methylation of Scd1 at four CpG sites within intron 3 showed no physiological
relevant alterations. Hepatic DNA methylation of mice of the longitudinal methylation study at (a)
chr19:44,477,123 (pweek=0.0061; pdiet=0.0231); (b) chr19:44,477,131 (pweek<0.0001; pdiet<0.0001;
pinteraction=0.0328); (c) chr19:44,477,135 (pweek<0.0001; pdiet<0.0001; pinteraction0=0.0030), and (d)
chr19:44,477,144 (pweek<0.0001; pdiet<0.0001). Two-way ANOVA followed by Holm-Sidak correction;
n=6-8/group; assembly: mm9.

For Fgf21, two CpG sites within exon 1 were measured (Fig. 5.15 (c)). DNA methylation at CpG 1

was significantly reduced as from week 5 with a difference of about 10% between HFD and chow mice

(Fig. 5.15 (a), pweek 5=0.0019, pweek 6=0.0019, pweek 7=0.0038, pweek 8<0.0001, pweek 12=0.0014).

At CpG 2, DNA methylation between HFD-fed mice and chow-fed mice was significantly reduced

at week 8 (Fig. 5.15 (b), pweek 8=0.0004), but as from week 4, HFD mice showed decreased DNA

methylation of at least 5% (Fig. 5.15 (b)). DNA methylation at each CpG site correlated with Fgf21

gene expression (Suppl. fig. 7.5 (a) CpG site 1: r=0.5457, p<0.0001, suppl. fig. 7.5 (b) CpG site

2: r=0.4231, p<0.0001). Therefore, Fgf21 is likely regulated by DNA methylation.
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Figure 5.15: DNA methylation of Fgf21 at two CpG sites within exon 1 shows significant alter-
ations. Hepatic DNA methylation of mice of the longitudinal methylation study at (a) chr7:52,870,685
(pweek<0.0001; pdiet<0.0001; pinteraction=0.01) and (b) chr7:52,870,690 (pweek<0.0001; pdiet<0.0001).
(a) The CpG sites were located in exon 1, in close proximity to predicted HNF3/HNF4 binding motifs
as well as two PPAR responsive elements. Two-way ANOVA followed by Holm-Sidak correction; n=6-
8/group; assembly: mm9.

5.4 Whole-genome bisulfite sequencing

Of the three measured genes, Fgf21 was the only one which was likely regulated by DNA methylation

at the here investigated loci (Fig. 5.15). The gene expression microarrays allowed the identification

of differentially expressed genes, but the search for differentially methylated CpG sites or regions

was nonetheless challenging. Measuring every single CpG site in a gene by bisulfite pyrosequencing

is not possible, because depending on the sequence context assay design can be difficult and it is too

cost and time intensive. Consequently, whole-genome bisulfite sequencing (WGBS) was performed

for easier identification of differentially methylated genes. This method is based on next-generation

sequencing and can measure in principle every single CpG site within the genome [166]. Initially, a

pilot study with two HFD and two chow mice fed for 12 weeks was performed. The two HFD mice

with the most extreme phenotype and two chow mice with a metabolic normal phenotype were

chosen for whole-genome bisulfite sequencing.

5.4.1 Descriptive analysis of the whole-genome bisulfite sequencing data

As a first step the data were analyzed regarding differentially methylated regions (DMRs). These

regions contain several CpG sites which are differentially methylated between the groups in the same

direction [194]. Differentially methylated regions were defined as a region with maximal 2000 bp

containing at least 10 CpG sites with a mean difference in DNA methylation between the groups of
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10%. In total, 6016 DMRs were identified of which 1778 (29.6%) were hypomethylated and 4238

(70.4%) were hypermethylated in HFD mice (Fig. 5.16, Tab. 5.2). Thus, HFD feeding led mainly to

an increase of DNA methylation.

Annotation of differentially methylated regions

The identified DMRs were annotated with genomic features such as exons or introns, because the

effect of altered DNA methylation depends on the genomic position [21, 101]. With only few excep-

tions the proportion of hyper- and hypomethylated differentially methylated regions in individual

annotations mirrored the distribution of total DMRs, with 70% to 75% hypermethylated DMRs and

25% to 30% hypomethylated DMRs (Tab. 5.2). The majority of DMRs was located in introns, fol-

lowed by intergenic regions, exons, and exon-intron/intron-exon boundaries (Fig. 5.16, tab. 5.2).

This could indicate that most of the exonic DMRs were located around these boundaries (Fig. 5.16,

tab. 5.2). Only a small number of DMRs was found in promoter regions. However, this was not as-

tonishing, because a fine regulation of gene expression by DNA methylation was expected and not an

on or off switching. The smallest number of DMRs was found in 5’- and 3’-untranslated regions (5’-

/3’-UTR) (Fig. 5.16, tab. 5.2). In UTRs, slightly more DMRs were hypomethylated compared to the

overall distribution of hyper- and hypomethylated DMRs (Tab. 5.2). When focusing on CpG islands,

only few DMRs were located directly within an island, most of the hypermethylated DMRs were

located in shores (Fig. 5.16, tab. 5.2). This was expected, because CpG islands are in general not

methylated [142]. In enhancer regions about half of the DMRs were hyper- and hypomethylated,

unlike the DMRs in other genomic regions (Fig. 5.16, tab. 5.2). This could suggest a functional

importance of DNA methylation in enhancers.
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Table 5.2: Annotation and numbers of differentially methylated regions. Annotations with total
number of differentially methylated regions (DMRs) as well as the number and percentage of DMRs
which are hyper- and hypomethylated in HFD mice.

Annotation Number Hypermethylated DMRs Hypomethylated DMRs

Total DMRs 6016 4238 (70.4%) 1778 (29.6%)

Introns 3047 2158 (70.8%) 889 (29.2%)

Intergenic 1948 1346 (69.1%) 602 (30.9%)

Exons 1250 889 (71.1%) 361 (28.9%)

Coding sequences (cds) 976 709 (72.6%) 267 (27.4%)

Exon-intron boundaries 922 670 (72.7%) 252 (27.3%)

Intron-exon boundaries 903 645 (71.4%) 258 (28.6%)

CpG shores 589 451 (76.6%) 138 (23.4%)

1 to 5 kb 549 420 (76.5%) 129 (23.5%)

Enhancers 422 247 (58.5%) 175 (41.5%)

First exons 348 247 (71.0%) 101 (29.0%)

CpG shelves 331 239 (72.2%) 92 (27.8%)

Promoters 317 230 (72.6%) 87 (27.4%)

CpG islands 297 216 (72.7%) 81(27.3%)

5’-UTR 214 146 (68.2%) 68 (31.8%)

3’-UTR 207 138 (66.7%) 69 (33.3%)

Figure 5.16: Annotation of the differentially methylated regions. If multiple annotations were as-
signed to one DMR, the DMR counts for all these annotations in the graph. The y-axis depicts the number
of DMRs for the different annotation, the x-axis represents the annotation name. Black bars show DMRs
which are hypomethylated in HFD, gray bars show hypermethylated DMRs.
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Pathway analysis of genes with differentially methylated regions

To get an overview of the functions of genes possessing at least one differentially methylated region, a

pathway analysis was performed yielding 111 enriched KEGG pathways of which 13 were significant

(Fig. 5.17, Bonferroni-corrected p value <0.05). Interestingly, ’Insulin resistance’ and ’Metabolic

pathways’ were among these pathways, but also pathways without any relevance for the liver were

significantly enriched, such as ’Insulin secretion’ and ’Axon guidance’ (Fig. 5.17).

Figure 5.17: Pathway analysis of genes with at least one differentially methylated region. Only
significantly enriched pathways are shown (Bonferroni-corrected p value < 0.05). Interestingly, genes of
’Metabolic pathways’ and ’Insulin resistance’ contain differentially methylated regions. The x-axis shows
the fold enrichment, the y-axis depicts the significantly enriched KEGG pathway.

However, only changes of DNA methylation which have an impact on gene expression are of

interest, because only these alterations will possibly lead to changes of the phenotype. To refine the

pathway analysis only genes which were differentially expressed at week 12 on the gene expression

microarrays and which show at least one differentially methylated region were analyzed. The join

between both data sets yielded 159 genes and the pathway analysis revealed 18 enriched KEGG

pathways of which only ’Metabolic pathways’ were significant (Fig. 5.17, Bonferroni-corrected p

value= 0.00028). Similar to the pathway analysis of the gene expression microarrays, also the ’PPAR

signaling pathway’ as well as pathways of the fatty acid metabolism (’Fatty acid degradation’, ’Fatty

acid metabolism’) were enriched (Fig. 5.17). This demonstrates that HFD feeding not only led to

alterations of PPARs and fatty acid metabolism on transcriptome level, but also on DNA methylation

level.
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Figure 5.18: Pathway analysis of differentially expressed genes with at least one differentially
methylated region. Pathway analysis was performed for genes which were differentially expressed at
week 12 on the gene expression microarrays and possessed at least one differentially methylated re-
gion. Shown are all hits of the pathway analysis, only ’Metabolic pathways’ were significantly enriched
(Bonferroni-corrected p value=0.00028). As already shown for the gene expression microarrays, the
’PPAR signaling pathways’ as well as the ’Fatty acid metabolism’ was altered. The x-axis shows the fold
enrichment, the y-axis depicts the significantly enriched KEGG pathway.

5.4.2 Analysis of differentially methylated regions in the entire cohort

With the WGBS data, differentially methylated regions and CpG sites can be identified easily. How-

ever, DNA methylation should always be analyzed in connection with gene expression data. There-

fore, DMRs of genes, whose gene expression was already measured, were examined in more detail

(Fig. 5.25, 5.29 (b), 5.11, 5.12). Acacb, G6pc, Ppara, Pklr, and Scd1 possessed at least one differ-

entially methylated region (Tab. 5.3) with a difference in DNA methylation between HFD and chow

mice ranging from 10.00% to 21.40%.
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Table 5.3: Differentially methylated regions of differentially expressed genes. The differentially
methylated regions of Acacb, G6pc, Galnt2, Ppara, Pklr, Scd1, and Sik3 are listed in the table. Next to
genomic position, mean DNA methylation for each group as well as the difference and p value is shown.
Assembly: mm9; Diff. - difference between HFD and chow.

Gene Chr Start End Mean chow Mean HFD Diff. p value

Acacb 5 114,649,174 114,649,948 65.57% 53.81% 11.76% 0.0097

Acacb 5 114,629,255 114,629,625 17.33% 38.73% -21.40% 0.00021

G6pc 11 101,233,598 101,234,042 78.54% 68.45% 10.09% 0.025

G6pc 11 101,231,528 101,232,409 26.89% 37.54% -10.65% 0.034

Galnt2 8 126,838,337 126,838,796 34.73% 53.31% -18.58% 0.0029

Galnt2 8 126,788,563 126,788,896 38.89% 51.87% -12.98% 0.015

Ppara 15 85,573,813 85,574,068 60.66% 46.75% 13.91% 0.033

Ppara 15 85,599,196 85,599,653 26.28% 36.35% -10.06% 0.03

Ppara 15 85,572,582 85,573,103 20.12% 31.93% -11.81% 0.00014

Ppara 15 85,601,768 85,602,233 20.31% 39.18% -18.87% 0.000013

Pklr 3 88,946,204 88,946,921 83.14% 73.14% 10.00% 0.015

Scd1 19 44,480,231 44,481,433 32.48% 46.96% -14.48% 0.0078

Scd1 19 44,472,946 44,473,854 60.45% 79.89% -19.44% 0.003

Sik3 9 46,022,187 46,023,229 21.13% 35.78% -14.64% 0.0012

Sik3 9 45,992,386 45,993,199 81.08% 66.17% 14.91% 0.00028

Sik3 9 46,007,435 46,008,046 17.59% 31.13% -13.55% 0.0011

Especially interesting was the discovery of differentially methylated regions in Ppara (Tab. 5.3,

fig. 5.19). PPARα is strongly regulated by posttranslational modifications and cofactors [20] and a

regulation by DNA methylation was unexpected. For this reason, the DMRs of Ppara were analyzed

in more detail. Ppara had four DMRs located within intron 2 of which three were higher methylated

in HFD mice and one was lower methylated in HFD mice (Fig. 5.19). DMR 2 seemed particularly

interesting, because it behaved differently from the other three DMRs (Fig. 5.19 (b)). This could

indicate that the DMRs were located in different regulatory regions.
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Figure 5.19: Ppara possessed four differentially methylated regions. The whole-genome bisulfite se-
quencing identified four differentially methylated regions within intron 2 of Ppara ((a)-(d)). No statistical
test was performed, because only two animals per group were measured. Assembly: mm9.

The whole-genome bisulfite sequencing was performed for only two HFD and two chow mice of

week 12. To test if the difference in DNA methylation was statistically significant this region was mea-

sured in the entire week 12 group by bisulfite pyrosequencing. The bisulfite pyrosequencing showed

only a significant difference in DNA methylation for one CpG site (Fig. 5.20, pchr15:85,573,914=0.0109).

In contrast to the results of the WGBS, the bisulfite pyrosequencing revealed slightly lower DNA

methylation for HFD-fed mice compared to chow mice. When looking at individual DNA methyla-

tion percentage values of the four animals subjected to WGBS, five of the eight data points could

be reproduced well in the HFD group (Tab. 5.4). At position chr15:85,573,957; chr15:85,573,965;

and chr15:85,573,990 DNA methylation measured by bisulfite pyrosequencing was higher than the

values determined by WGBS (Tab. 5.4). In the chow group, only two data points matched the

WGBS data (Tab. 5.4), the others showed lower DNA methylation compared to WGBS (Tab. 5.4).

Consequently, DMR 2 in Ppara was not confirmed by bisulfite pyrosequencing in the entire week 12

group. Even the direct comparison of the individual values of mice measured by WGBS and bisulfite

pyrosequencing showed considerable differences, especially in the chow group.
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Figure 5.20: The second differentially methylated region of Ppara could not be confirmed by bisul-
fite pyrosequencing. DNA methylation at the second DMR of Ppara in the entire week 12 group.
The x-axis depicts the genomic location of the CpG sites, the y-axis shows DNA methylation in per-
centage. Multiple t-tests assuming consistent standard deviation followed by Holm-Sidak correction;
pchr15:85,573,914=0.0109 n=7-8/group; assembly: mm9.

Table 5.4: Comparison of DNA methylation measured by bisulfite pyrosequencing and whole-
genome bisulfite sequencing at individual CpG sites of DMR 2 of Ppara. Genomic position and DNA
methylation percentage of each individual CpG site. Mean±SD, n=2/group.

chow HFD

CpG site WGBS Pyrosequencing WGBS Pyrosequencing

chr15:85,573,896 91.20%±12.44% 67.15%±2.50% 69.05%±3.32% 64.84%±1.86%

chr15:85,573,899 76.50%±8.34% 73.04%±1.50% 71.25%±9.26% 70.57%±0.86%

chr15:85,573,914 80.05%±1.63% 69.30%±4.38% 66.30%±19.37% 67.71%±0.83%

chr15:85,573,950 72.55%±14.21% 64.18%±1.25% 59.65%±6.58% 59.83%±0.81%

chr15:85,573,957 69.05%±3.32% 57.27%±1.37% 43.65%±1.06% 52.86%±1.22%

chr15:85,573,965 59.80%±9.76% 42.11%±3.85% 28.95%±9.55% 40.52%±0.07%

chr15:85,573,979 66.25%±7.28% 54.89%±3.92% 55.60%±0.85% 50.02%±3.75%

chr15:85,573,990 47.50%±3.54% 47.69%±0.87% 35.35%±10.68% 44.49%±1.32%

In contrast to Ppara, Fgf21 showed a significant difference in DNA methylation at two CpG sites

already before performing WGBS (Fig. 5.15). These two CpG sites of Fgf21 were surrounded by

other CpG sites which could not be measured with the bisulfite pyrosequencing assay (Fig. 5.21,

previously sequenced CpG sites are labeled with *). Thus, DNA methylation of Fgf21 measured by

WGBS was analyzed (Fig. 5.21). For Fgf21, no differentially methylated region was found, therefore,

all CpG sites within Fgf21 were examined.

In total, 15 CpG sites within the gene body and 1000 bp upstream of the transcriptional start site

could be analyzed by WGBS after quality control. Fgf21 contains about 35 CpG sites, thus, about

one half was measurable in all four animals. The WGBS revealed that DNA methylation in Fgf21 was

decreased in HFD mice in the gene body, whereas CpG sites 1000 bp upstream of the transcriptional

start site were hypermethylated in HFD-fed mice. The two CpG sites previously measured could not
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Figure 5.21: The whole-genome bisulfite sequencing identified 15 CpG sites within Fgf21. The
CpG sites were located within the gene body and 1000 bp upstream of the transcriptional start site. The
schematic illustration of the genomic region shows CpG sites in red with numbers corresponding to the
graph below which also depicts the genomic location. The blue region represents the Fgf21 gene with
introns as blue lines, exons as blue rectangle, and untranslated regions as thick blue lines. Previously
measured CpG sites are shown in the schematic illustration in blue and labelled with an asterisk (*). No
statistical test was performed, because only two animals per group were measured. Assembly: mm9.

be analyzed by WGBS, because they were filtered due to the stringent quality control. However, the

adjacent CpG sites 5, 6, and 7 showed similar differences in DNA methylation between HFD and

chow mice and also absolute DNA methylation percentages were similar (Fig. 5.15 and 5.21).

The WGBS data indicated that DNA methylation in the promoter region was increased in HFD

mice (Fig. 5.21). DNA hypermethylation in promoter regions is in general associated with repression

of gene expression [101], but HFD-fed mice showed a large upregulation of Fgf21 mRNA level at

week 12. Therefore, the CpG sites 2, 3, and 4 were measured by bisulfite pyrosequencing for vali-

dation. Furthermore, whole-genome bisulfite sequencing was performed for only two HFD and two

chow mice of week 12. To investigate the longitudinal development of DNA methylation differences

also the animals of week 4, 5, 6, 7, 8, and 12 were measured. Week 1 and 2 was omitted, because

the significant difference in DNA methylation at previously measured CpG sites developed between

week 4 and 5. Besides the CpG sites measured by WGBS, four additional CpG sites located in prox-

imity were sequenced. But for none of these CpG sites DNA methylation determined by WGBS could

be reproduced by bisulfite pyrosequencing (Fig. 5.22).

The direct comparison of DNA methylation percentages of the mice measured by both methods

revealed that DNA methylation of chow mice was approximately twice as high when measured by

bisulfite pyrosequencing compared to WGBS (Tab. 5.5). The two HFD mice showed a 5% to 10%

lower DNA methylation when measured by bisulfite pyrosequencing (Tab. 5.5). Thus, also for Fgf21

the WGBS data could not be confirmed by bisulfite pyrosequencing.
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Figure 5.22: Hepatic DNA methylation of Fgf21 at seven CpG sites in the promoter re-
gion was not altered. Hepatic DNA methylation of mice of the longitudinal methylation
study. (a) chr7:52,870,867 (pweek<0.0001), (b) chr7:52,870,901 (pweek=0.0013; pdiet<0.0001),
(c) chr7:52,870,907 (pweek=0.0149), (d) chr7:52,870,927 (pweek=0.0073; pinteraction=0.0389),
(e) chr7:52,870,929, (f) chr7:52,870,968 (pweek=0.0111), (g) chr7:52,870,979 (pweek=0.0122;
pinteraction=0.0345). Two-way ANOVA followed by Holm-Sidak correction; n=7-16/group; assembly:
mm9.

Table 5.5: Comparison of the DNA methylation measured by bisulfite pyrosequencing and whole-
genome bisulfite sequencing. Genomic position and DNA methylation percentage of the CpG sites
sequenced by both methods. Mean±SD; n=2/group.

chow HFD

CpG site WGBS Pyrosequencing WGBS Pyrosequencing

chr7:52,870,867 14.35%±5.44% 21.65%±5.12% 35.60 %±6.22% 24.79%±1.67%

chr7:52,870,901 14.65%±5.02% 31.61%±3.95% 36.40%±12.87% 31.60%±0.99%

chr7:52,870,907 12.46%±4.16% 23.85%±4.59% 36.25%±7.71% 25.54%±0.06%

90



5. RESULTS 5.5. Identification of potential candidate genes

5.5 Identification of potential candidate genes

5.5.1 Pilot experiments in mice fed with high fat-high sucrose diet

Additionally to the fishing approach for identification of potential candidate genes, also a targeted

approach using previously published data and databases were used as described in section 4.6.1. At

the beginning, DNA methylation of potential candidate genes was measured in mice fed high fat-high

sucrose (HFHS) diet or chow diet for 20 weeks. Though, no RNA was available from these animals.

Acacb was studied due to differences of DNA methylation between low fat diet-fed and high fat

diet-fed mice identified by CHARM microarrays in Multhaup et al. [163]. Furthermore, the ’Attie

Lab Diabetes Database’ showed gene expression differences between lean and ob/ob mice [105].

DNA methylation of Acacb was determined in two different regions in HFHS-fed and chow-fed mice.

Within intron 5, two CpG sites with a significant difference between HFHS and chow mice were found

(Fig. 5.23 (a), pchr5:114,640,673=0.03, pchr5:114,640,688=0.037). However, the measured difference in

DNA methylation did not exceed the limits of measurement accuracy of the PyroMark Q48 Autoprep

and therefore, was possibly not physiologically relevant. Within the exon 5-intron 5 boundary one

CpG site was significantly altered in HFD mice, but also here the difference of DNA methylation was

small (Fig. 5.23 (b), pchr5:114,640,404=0.006).

Also Sgms2, Galnt2, and Sik3 were identified as potential candidate genes due to differences in

DNA methylation measured by CHARM microarrays [163]. Moreover, all three genes are associated

with either diabetes, obesity and fatty acid/lipid metabolism, or glucose homeostasis as indicated by

DisGeNET database [15]. For Sgms2, the enzyme catalyzing the last step of sphingomyelin synthesis

[155], three of the five CpG sites showed a significant but small difference in DNA methylation of

2.7% (Fig. 5.23 (c), pchr3:131,037,738=0.022, pchr3:131,037,715=0.022, pchr3:131,037,756=0.022). Consid-

ering the inaccuracy of the PyroMark Q48 Autoprep the measured difference was most probably due

to biological variance. Polypeptide N-acetylgalactosaminyltransferase 2 (Galnt2) belongs to a large

family of glycosyltransferases transferring N-acetylgalactosamine to serine or threonine residues

[227]. Three CpG sites were measured within intron 7, but no differences between the groups

were detected (Fig. 5.23 (d)). Also for Sik3, a member of the AMPK-related kinase family [94], no

differences between the groups at three CpG sites within intron 1 were identified (Fig. 5.23 (e)).

The approach to identify potential candidate genes by in silico research yielded only small differ-

ences in DNA methylation. Thus, the strategy to identify candidate genes was changed by focusing

on targets which are suggested to be altered in type 2 diabetes: Phosphoenolpyruvate carboxykinase

(Pepck/Pck1) and glucose-6-phosphatase (G6pc). Both enzymes are key enzymes of gluconeogenesis

and an increase in hepatic gluconeogenesis is reported for type 2 diabetes due to insulin resistance,

contributing to hyperglycemia [14, 143, 201]. Therefore, it was assumed that both enzymes are
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Figure 5.23: DNA methylation of potential candidate genes identified by a targeted approach. (a)
DNA methylation at two CpG sites within intron 5 of Acacb showed only minor differences between the
groups (pchr5:114,640,673; chr5:114,640,688<0.05). (b) DNA methylation at one CpG sites within the exon 5-
intron 5-boundary of Acacb was significantly altered (pchr5:114,640,404=0.006). (c) DNA methylation of
three CpG sites within intron 3 of Sgms2 was altered (pchr3:131,037,715 - 131,037,756<0.05). (d) No alterations
of DNA methylation at three CpG sites within intron 7 of Galnt2 were detected. (e) DNA methylation at
three CpG sites within intron 1 of Sik3 showed no differences. The CpG site are considered independent
of each other. Multiple t-tests assuming consistent variance followed by Holm-Sidak correction were
performed for each data set.

altered in type 2 diabetes. For G6pc three CpG sites within the exon 1-intron 1 boundary were mea-

sured and a significant hypermethylation in the HFHS group was found for all CpG sites (Fig. 5.24

(a), pchr11:101,229,311=0.000255, pchr11:101,229,329=0.000687, pchr11:101,229,354=0.000687). For Pck1,

DNA methylation at four CpG sites within exon 2 was analyzed (Fig. 5.24 (b), pchr2:172,979,008=0.002,

pchr2:172,979,027=0.003, pchr2:172,979,036=0.000723, pchr2:172,979,048=0.008). At all CpG sites, HFHS

mice showed a higher DNA methylation compared to chow mice. For both genes a similar DNA

methylation difference was measured for all investigated CpG sites, indicating a differentially methy-

lated region.

5.5.2 Longitudinal investigation of Pck1 and G6pc

Both Pck1 and G6pc seemed to possess a small differentially methylated region which made them

promising candidate genes. Therefore, the results were replicated in the longitudinal methylation
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Figure 5.24: DNA methylation of Pck1 and G6pc indicated a differentially methylated region. (a)
DNA methylation of G6pc was measured at three CpG sites at the exon 1-intron 1-boundary. All CpG
sites showed a significant higher DNA methylation in HFHS-fed mice (pchr11:101,229,311 - 101,229,354<0.001).
(b) DNA methylation at four CpG sites within exon 2 of Pck1 was measured. At all CpG
sites HFHS mice showed a significant hypermethylation (pchr2:172,979,008; chr2:172,979,027; 172,979,048<0.01;
pchr2:172,979,036<0.001). Multiple t-tests assuming consistent variance followed by Holm-Sidak correction
were performed for each data set.

study. It was shown that feeding a lard-based HFD induces robustly insulin resistance but feeding

a high fat-high sucrose diet leads to a more moderate phenotype [177]. The hypothesis was that a

more pronounced insulin resistance could lead to larger differences of DNA methylation. Further-

more, the longitudinal study allowed to investigate if differences in DNA methylation were causal or

consecutive for insulin resistance.

Since no RNA was available for the HFHS study, gene expression of Pck1 and G6pc was measured

in mice of the longitudinal methylation study. Pck1 showed no significant alterations in mRNA level

at any time point between chow and HFD mice (Fig. 5.25 (a)). G6pc was significantly downregulated

after one week of HFD feeding, but with further feeding mRNA level were comparable to chow mice

(Fig. 5.25 (b), pweek 1=0.0005). These data suggest that Pck1 expression was not altered at all in the

diet-induced obese mouse model, whereas G6pc was only altered as acute response to HFD feeding.
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Figure 5.25: Gene expression of Pck1 and G6pc was not altered in diet-induced obese mice.
Hepatic gene expression of (a) Pck1 (pweek=0.0079; pinteraction=0.0254) and (b) G6pc (pweek=0.0021;
pinteraction=0.0003). Pck1 showed no differences in mRNA level between the groups at any time point.
G6pc mRNA level were decreased at week 1 in HFD mice, but afterwards gene expression fluctuated
around chow levels. Two-way ANOVA of the∆Ct values followed by Holm-Sidak correction; n=8/group.

The increase in Pck1 and G6pc gene expression described in the literature was not observed here

and also the differences in DNA methylation measured for HFHS-fed mice was not reproducible (Fig.

5.26 and 5.27). The three measured CpG sites in G6pc were not differentially methylated between

the groups at any time point (Fig. 5.26).

Figure 5.26: DNA methylation of G6pc at three CpG sites at the exon 1-intron 1-boundary
showed no alterations. Hepatic DNA methylation of mice of the longitudinal methylation study at
(a) chr11:101,229,311 (pdiet=0.0094), (b) chr11:101,229,329 (pweek=0.0285; pdiet=0.0094), and (c)
chr11:101,229,354 (pweek=0.0102; pdiet=0.0136). G6pc showed no differences in DNA methylation at
any CpG site. Two-way ANOVA followed by Holm-Sidak correction; n=7-8/group; assembly: mm9.

In Pck1, three CpG sites showed significantly but only slightly increased DNA methylation in HFD

mice at week 1 (Fig. 5.27, pchr2:172,979,027=0.0492, pchr2:172,979,036=0.0099,

pchr2:172,979,048=0.0151), but the changes did not persist throughout the whole feeding period. Only

CpG 4 showed a marginal difference in DNA methylation at week 12 (Fig. 5.27,

pchr2:172,979,048=0.0204). At least the direction of DNA methylation matched the previous results.

However, Pck1 seemed not to be epigenetically regulated.
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Figure 5.27: DNA methylation of Pck1 at four CpG sites within exon 2 showed no alter-
ations. DNA methylation was measured in liver of mice of the longitudinal methylation study
at (a) chr2:172,979,008 (pdiet=0.0023), (b) chr2:172,979,027 (pdiet<0.0001), (c) chr2:172,979,036
(pweek=0.0257; pdiet=0.0432; pinteraction=0.0082), and (d) chr2:172,979,048 (pdiet<0.0001). Only
marginal differences between the groups were identified. Two-way ANOVA followed by Holm-Sidak
correction for each CpG site; n=7-8/group; assembly: mm9.

5.5.3 Phosphoenolpyruvate carboxykinase and pyruvate kinase activity in diet-induced
obese mice

Often quantification of mRNA is an unsuitable measure for enzyme activity due to posttranslational

modifications of proteins. Therefore, an activity assay for PEPCK was performed. PEPCK showed

no significant differences at any time point between the groups, although it seemed slightly lower

active in HFD mice (Fig. 5.28). In contrary to the previous assumption [76, 164, 213], PEPCK was

not hyperactive in insulin resistant mice indicating that gluconeogenesis was not altered.
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Figure 5.28: Enzyme activity of PEPCK was unaltered. Enzyme activity of PEPCK was slightly, but not
significantly decreased in HFD mice. Two-way ANOVA followed by Holm-Sidak correction; pweek=0.0110;
pdiet=0.0005; n=8/group.

Since glucose anabolism seemed not be altered, glucose catabolism by glycolysis was studied.

Firstly, activity of pyruvate kinase (PK), the enzyme catalyzing the rate-limiting step in glycolysis

[73], was measured.

PK activity was significantly decreased after two and four weeks of HFD feeding (Fig. 5.29 (a),

pweek 2=0.0086, pweek 4=0.0315). After week 4, the activity increased and was slightly higher in HFD

mice at week 12 (Fig. 5.29 (a)). To check if this was due to altered gene expression, mRNA level

were measured (Fig. 5.29 (b)). Pklr gene expression increased between week 4 and week 8 and

reached significance at week 12 (Fig. 5.29 (b), pweek 12=0.0008). To investigate if the increase was

caused by altered DNA methylation, three CpG sites within intron 1 were measured in mice fed HFD

or chow diet for 12 weeks, but no differences were detected (Fig. 5.29 (c)). However, by WGBS a

differentially methylated region spanning exon 6, intron 6, exon 7, and intron 7 was identified (Tab.

5.3). The data suggested a lower glycolysis rate until four weeks of HFD feeding. With manifestation

of whole-body glucose intolerance glycolysis rate increased.
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Figure 5.29: Enzyme activity of pyruvate kinase was significantly decreased after two and four
weeks of HFD feeding, with developing glucose intolerance mRNA level and enzyme activity were
increased. (a) Activity of PK. Two-way ANOVA followed by Holm-Sidak correction; pweek=0.0159;
pinteraction=0.0014. (b) mRNA level of Pklr were significantly elevated at week 12 in the HFD group. Two-
way ANOVA of the∆Ct values followed by Holm-Sidak correction; pweek=0.0009; pinteraction=0.0001. (c)
Hepatic DNA methylation of Pklr was measured at three CpG sites within intron 1. No differences be-
tween the groups at any CpG site were detected. Multiple t-tests assuming consistent variance followed
by Holm-Sidak correction were applied. All experiments performed with n=8/group.
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6

Discussion

6.1 Longitudinal analysis of the development of

insulin resistance

In the scope of this thesis a longitudinal study in mice was performed to investigate if changes of

DNA methylation are causal or consecutive for the development of insulin resistance. The mice were

fed a high fat diet (HFD) with 60 kcal% fat from lard and 6.7 kcal% from sucrose (HFD D12492)

or chow diet for up to 12 weeks (Suppl. tab. 7 A). The longitudinal study allows a time-resolved

tracking of changes of hepatic gene expression and DNA methylation as well as the development of

insulin resistance.

6.1.1 Week 1: Adaptational mechanisms

First alterations of the phenotype were already evident after one week of HFD feeding. The rapid

impairment of glucose tolerance was also reported by others, even after three days [230, 242]. It

was suggested that this could be partly due to HFD overconsumption [137]. HFD is very palatable

for mice and it was observed that they tend to overeat HFD when it is available ad libitum, probably

due to hedonic hunger [137].

Although the whole-body glucose tolerance was significantly impaired after one week of HFD

feeding, the hepatic insulin signaling, measured by insulin-stimulated Akt phosphorylation, seemed

to be preserved. This was also reported by others which observed insulin resistance without changes

of the insulin-stimulated Akt phosphorylation [58, 83, 230].

At week 1, plasma insulin levels in both groups showed a high variation which may be due to

different reasons. For example the mice were not fasted at the time of sacrifice. The last meal of

mice sacrificed early in the morning was not as long ago as for mice sacrificed four hours later.

Furthermore, at the first day of sacrifice the handling and time management was not as experienced

as for later time points.
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Figure 6.1: Acute high fat diet feeding induces adaptational mechanisms in the liver. Mice fed high
fat diet for one week show impaired whole-body glucose tolerance despite slightly increased hepatic Akt
phosphorylation. The metabolic alterations are accompanied by transcriptional changes. The downregu-
lation of genes of de novo lipogenesis suggests a decreased de novo lipogenesis rate. Nevertheless, HFD-fed
mice show increased hepatic triglyceride content. Ppara gene expression is upregulated after one week
of HFD feeding, whereas Pparg is unaltered. DNA methylation was not altered in selected target genes.

The phenotypic alterations were accompanied by transcriptional changes, almost 450 genes were

differentially expressed and the HFD mice are already distinguishable from the other groups solely

by cluster analysis of the transcriptome. One week of HFD feeding induced changes of ’Metabolic

pathways’ as well as the ’Fatty acid metabolism’, all in all, the pathways were mostly downregu-

lated. However, no physiological significant alterations of DNA methylation were identified after

one week in selected genes. This suggests that acute alterations are mainly induced by mecha-

nisms which allow a fast response to changing environmental stimuli, such as mRNA degradation,

post-translational modifications of transcription factors leading to inactivity, or favored formation of

transcription factor-co-repressor-complexes. And from the energy supply point of view it is not nec-

essary to upregulate pathways which produce energy providing molecules since they are abundant

in the diet. Therefore, it is not surprising that Acaca, Fasn, and Scd1 mRNA level were downreg-

ulated at week 1. It was shown for example that poly-unsaturated fatty acids negatively influence

gene expression of Scd1 by several different mechanisms independent of PPARs [151]. Since poly-

unsaturated fatty acids are abundant in the HFD used here, this could be the reason for reduced Scd1

transcription, however, the exact mechanism remains elusive.

Taken together, the results suggest that short-term HFD feeding for one week leads to reduced

de novo lipogenesis rate. It was reported that a lard-based HFD can suppress de novo lipogenesis by

simultaneously increasing triglyceride synthesis [9, 52, 95, 103]. One possible mechanism for this
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observation could be the heterodimerization of PPARα with SIRT1 which makes PPARα a negative

regulator of transcription [20]. The formation of the SIRT1-PPARα complex is favored by HFD feed-

ing [20]. However, if a SIRT1-PPARα complex is formed, it seems to not persist throughout the study,

because at week 8 and week 12 Cyp4a10 and Cyp4a14 as well as other genes strongly regulated by

PPARα are upregulated (Suppl. fig. 7.8) [99, 156, 180]. It is also conceivable that other negative

feedback mechanism induced by the high intake of fatty acids leads to downregulation of lipogenic

genes.

Since de novo lipogenesis and fatty acid oxidation cannot be active simultaneously, a decrease

of de novo lipogenesis rate could implicate a higher fatty acid oxidation rate [169, 206]. Fatty acid

synthesis and degradation is coupled by ACC2-derived malonyl-CoA which inhibits CPT1 [169, 206].

CPT1 imports fatty acids into mitochondria for subsequent fatty acid β-oxidation [39]. Acacb, the

gene encoding ACC2, was downregulated and Cpt1a was upregulated in HFD mice since week 1

(Suppl. fig. 7.9) [39]. However, the gene expression microarray data for genes involved in fatty acid

oxidation, such as Acadl, Hadha, and Acaa2, showed no significant differences (Suppl. fig. 7.9) [193,

239]. Gene expression data alone are not enough to estimate the activity of a pathway due to for

example post-translational modifications or allosteric inhibition/activation [51]. Furthermore, Acacb

knockout mice show an increased fatty oxidation rate, leading to reduced fatty acid accumulation

with positive effects on insulin sensitivity [1, 2]. The downregulation of Acacb could represent a

mechanism to handle the elevated fatty acid load.

In conclusion, the metabolic alterations at week 1 are most likely compensatory mechanisms

leading to short-term improvements of the glucose tolerance and the metabolism by inducing adap-

tational processes to cope with the high nutritional intake. Acute HFD feeding does not induce

changes of DNA methylation, the alterations of gene expression could be caused by altered activ-

ity of transcription factors which in turn are controlled by the nutritional supply and needs of the

organism.

6.1.2 Week 2 to week 5: Metabolic switch

After the initial impairments, whole-body glucose tolerance returned almost to control levels between

week 1 and week 4. Insulin level at week 2 and 4 were slightly, but not significantly increased

in the HFD groups. This could indicate a compensatory elevation of insulin secretion, possibly by

increased β-cell mass, contributing to the improvement of whole-body glucose tolerance [177]. Mice

have a great capacity to enlarge their β-cell mass and volume when fed a HFD without developing

a progressive β-cell failure as observed in humans [177]. This is also the reason why mice do not

develop a full type 2 diabetic phenotype.

Pyruvate kinase, the enzyme catalyzing the final and rate-limiting step of glycolysis [214], showed

significantly decreased activity at week 2 and week 4, indicating reduced glycolysis rate. Glycolysis
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breaks down glucose to pyruvate and thereby, generates ATP and intermediates for other pathways,

such as glycogenesis and de novo lipogenesis [134, 243]. The decrease in pyruvate kinase activity is

not accompanied by diminished mRNA levels, thus, post-transcriptional or post-translational mecha-

nisms have to be responsible for the altered activity. The pyruvate kinase is for example allosterically

inhibited by ATP, acetyl-CoA, and long-chain fatty acids which represent signals for sufficient energy

supply and are most probably abundant in hepatocytes of HFD-fed mice [73]. Therefore, the de-

crease in PK activity could be a result of the nutritional overload due to HFD feeding. This could

also be the reason for the downregulation of Pparg at week 2 and 4, because PPARγ stimulates fatty

acid uptake and storage [123].

All these processes could represent compensatory mechanisms to manage the increased caloric

intake, however, they are insufficient to rescue the phenotype. It appears that the liver already starts

to develop hepatic insulin resistance after week 2, indicated by a decrease in hepatic pAkt/Akt ratio.

Consequently, the mice developed whole-body glucose intolerance after five weeks of feeding. The

starting increase in Cd36 and Fasn gene expression suggests an elevation of fatty acid uptake and

increased de novo lipogenesis which could contribute to the accumulation of hepatic triglycerides.

Also gene expression of Scd1 is slightly increased after week 4, but it is unlikely that this was induced

by altered DNA methylation, because the differences were only minimal and did not persist over

the whole feeding period. Two studies already indicated that HFD feeding induces increased DNA

methylation of Scd1 in the promoter region, though, the differences were also small and could be

due to biological variance [34, 212]. Additionally, there is a discrepancy between humans and mice.

Apart from the different number of functional SCD genes between the species (Scd1-4 in mouse,

SCD and SCD5 in humans), mouse Scd1 and human SCD share a high degree of homology and have

the same function [255]. However, a study with subjects which lost weight identified increased

DNA methylation in the SCD promoter region, but also here the changes of DNA methylation are

only small [149]. This leads to the assumption that DNA methylation plays no central role in the

regulation of Scd1 gene expression.

These results could indicate a metabolic switch between week 2 and week 4 leading to the devel-

opment of whole-body glucose intolerance at week 5. Also for ApoE*3-Leiden mice (mice expressing

the ApoE*3Leiden and apoC1 gene cluster leading to a humanized lipoprotein profile [192]) fed with

HFD with 45 kcal% fat it was observed that hepatic insulin resistance develops after 6 weeks [111].

This study reported hepatic triglyceride accumulation after development of insulin resistance, how-

ever, here hepatic triglycerides showed a vast increase at week 5, suggesting that hepatic insulin

resistance and fatty liver develop simultaneously [111]. Similar to the pathway analysis results for

week 12 reported here, Radonjic et al. observed in HFD-fed ApoE*3-Leiden mice that PPAR signaling

as well as nearly all lipid metabolic pathways are altered [192]. Therefore, it was suggested that
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PPARs could play a role in the metabolic switch from adaptational metabolic processes to insulin re-

sistance [192]. Here, Ppara and Pparg gene expression started to increase after week 4 which could

hint at a role of the PPARs in the metabolic switch in C57BL/6 mice as well.

6.1.3 Week 6 to week 12: Late phase

Figure 6.2: Chronic high fat diet feeding leads to development of insulin resistance. High fat diet
feeding for 12 weeks induces whole-body as well as hepatic insulin resistance. This is accompanied
by extensive alterations of the transcriptome and genome-wide DNA hypermethylation at differentially
methylated regions. Gene expression of Acaca, Fasn, and Scd1 could indicate that de novo lipogenesis rate
is no longer suppressed HFD-fed mice. Pparg and Cd36 are significantly increased after 12 weeks of HFD
feeding, which likely contributes to extensive hepatic triglyceride storage.

After eight and 12 weeks of HFD feeding insulin level were significantly increased and whole-

body glucose intolerance as well as hepatic insulin resistance was further deteriorated. At week 12,

almost 800 genes were differentially regulated and about half of the differentially expressed genes

were downregulated. Thus, the number of differentially expressed genes as well as the ratio of

up- and downregulated genes changed from week 1 to week 12. The HFD mice fed for 12 weeks

were clearly distinguishable from the other groups solely by the transcriptional changes, indicated

by cluster analysis.

After 12 weeks of HFD feeding, both Ppara and Pparg show significantly increased gene expres-

sion in HFD mice which is accompanied by upregulation of their target genes, such as Cd36, Fasn, and

Fgf21. It was shown that PPARγ induces lipid accumulation and storage, therefore, the upregulation

of Pparg could favor development of hepatic steatosis [53, 123]. The increase in lipid accumulation

could be mediated by the vast increase of Cd36 gene expression [67]. Higher Cd36 mRNA level are
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associated with elevated protein level and translocation to the plasma membrane which results in

higher fatty acid uptake into hepatocytes [78, 112, 182]. Increased hepatic triglyceride content is

a marker for disordered fatty acid metabolism and associated with insulin resistance as well as the

beginning of hepatic steatosis and NAFLD [78, 201, 230]. Taken together, this further worsens the

liver phenotype towards steatosis.

At week 8, when the mice started to develop whole-body glucose intolerance and hyperinsuline-

mia, Fasn mRNA returned to chow level. High rates of de novo lipogenesis are associated with insulin

resistance and chronically elevated insulin level and it was shown that ob/ob mice have increased

Fasn mRNA level and FAS activity [9, 95, 206]. The upregulation of Fasn to chow levels could in-

dicate an elevated accumulation of palmitate, which could have further deleterious effects on the

liver phenotype [135, 167]. It was shown that products of de novo lipogenesis, especially of FAS, can

activate PPARα [31, 32, 95, 193].

Besides the alterations of genes of the fatty acid metabolism, also Pklr was significantly upregu-

lated at week 12 in the HFD group, however, not due to differences of DNA methylation. Pyruvate

kinase activity is similar to chow level. Glycolysis metabolizes glucose to pyruvate which can be

used for fatty acid synthesis during de novo lipogenesis [201]. Thus, glycolysis could fuel hepatic

lipid accumulation.

The whole-genome bisulfite sequencing revealed that HFD feeding led to an extensive hyperme-

thylation of differentially methylated regions. The pathway analysis identified ’PPAR signaling’ and

fatty acid metabolic pathways as altered indicating that DNA methylation changes contribute to the

transcriptional alterations at week 12. Consequently, the development of insulin resistance is ac-

companied by extensive changes of DNA methylation. The majority of DMRs was located in introns,

whereas promoter regions show much less DMRs. Epigenetic research focused for a long time pri-

marily on DNA methylation at CpG islands in promoter regions, disregarding CpG methylation within

gene bodies [101]. But in fact, CpG islands in promoter regions are usually unmethylated, whereas

gene bodies, mostly being CpG-poor, are extensively methylated [101]. In gene bodies, DNA methy-

lation is associated with transcribed genes, although the relationship between DNA methylation and

gene expression is complex and dependent on genomic and cellular context [98, 101]. It was sug-

gested, that DNA methylation in first exons is decisive for gene expression, because it was observed

that lowly expressed genes have higher methylation within the first exon, whereas transcription of

a gene requires hypomethylation of the first exon [21]. The two CpG sites with altered DNA methy-

lation in Fgf21 were located within exon 1 indicating that DNA methylation in exon 1 has indeed a

regulatory role. However, also the CpG sites measured in Cd36 were located within exon 1, but no

differences were identified between the groups, although Cd36 showed enormous upregulation of its

gene expression. When looking at the whole-genome DNA methylation data, only 348 DMRs were

located in the first exon and the majority of DMRs were found in introns and other exons. Taken
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together, these results demonstrate that DNA methylation is strongly location-dependent. This could

also explain why Fgf21 was the only gene found to be regulated by DNA methylation by bisulfite

pyrosequencing, because DMRs and CpG sites measured by bisulfite pyrosequencing were located

in different exons or introns. Moreover, the whole-genome DNA methylation data show that also

regions downstream of the first exon could be important for the regulation of gene expression.

6.1.4 Summary

Figure 6.3: Summary of the significant alterations induced by HFD feeding. HFD feeding induces
continuous body weight gain leading to obesity. Already one week of feeding a HFD induces significantly
impaired whole-body glucose tolerance which improves during week 2 and 4. However, after five weeks
of HFD feeding whole-body glucose tolerance cannot be maintained any longer. This is accompanied
by significant increased insulin level after eight weeks. Hepatic triglyceride levels are already elevated
after one week of HFD feeding, however, between week 4 and week 5 triglycerides show a further in-
crease and reach a plateau afterwards. Also transcriptomic changes are evident after one week of HFD
feeding and the number of differentially expressed genes further rises after 12 weeks. The differentially
expressed genes include Fgf21, which is 24-fold upregulated at week 12. This increase in gene expression
is accompanied by DNA hypomethylation at two CpG sites within exon 1.

Insulin resistance did not develop gradually but in distinct phases starting with an adaptational

period characterized by impaired whole-body glucose tolerance without adversely affecting the insu-

lin-stimulated Akt phosphorylation. Although no histological alterations of the liver were apparent

yet, hepatic triglyceride content was already significantly increased which was accompanied by tran-

scriptional changes of metabolic, especially lipogenic genes. The glucose tolerance was maintained

in the following weeks probably due to compensatory mechanisms of other organs, such as small

elevation of insulin level. However, these mechanisms failed during chronic HFD feeding and after
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five weeks the mice developed whole-body glucose intolerance. This could represent a metabolic

switch from compensatory processes to pathological alterations.

The development of insulin resistance in ApoE*3-Leiden mice fed with HFD with 45 kcal% fat

for 30 weeks was also characterized by three phases, an early phase between one day and one week,

a mid phase between two weeks and four weeks and a late phase between eight and 16 weeks

[192]. This study showed that the most prominent transcriptomic alterations occur in the early and

late phase and many genes change direction of expression during the time course of the study [192].

This was also observed for many genes in the study presented here. For example Pparg and Fasn were

initially significantly downregulated, but gene expression increased with the development of glucose

intolerance. This switch in gene expression is likely responsible for the deregulation of metabolic

pathways contributing to the manifestation of insulin resistance. The hypothesis of this study was

that altered gene expression is induced by changes of DNA methylation. This is supported by the

observation that mice fed for 12 weeks with HFD are characterized by extensive DNA methylation

alterations. Furthermore, DNA hypomethylation at two CpG sites within Fgf21 developed during the

time frame of the metabolic switch. Consequently, DNA methylation plays most probably a central

role in the development of insulin resistance.

It was shown for C57BL/6 mice fed a HFD with 42 kcal% fat for 16 weeks that glucose intolerance

develops after three days without any further deteriorations during the following feeding period

[230]. Once insulin resistance was established, it did not worsen any further with longer HFD feeding

[230]. This is in contrast to the results shown here, where glucose intolerance is initially significantly

impaired but improved short-termly until final establishment. The discrepancies could be caused by

feeding different fat amounts and different feeding periods [80].

Hepatic insulin resistance is strongly associated with hepatic triglyceride accumulation and many

obese and type 2 diabetic patients have also non-alcoholic fatty liver disease (NAFLD) [124, 165,

184]. Here, HFD mice showed extensive triglyceride accumulation in the liver indicating develop-

ment of hepatic steatosis which is strongly associated with insulin resistance [89].

Insulin stimulates hepatic glycogen synthesis [201]. Therefore, one would suggest higher glyco-

gen level in HFD mice at week 1, when the liver shows high insulin sensitivity, and a decrease in

glycogen level at later time points. The glycogen assay revealed that HFD mice showed a slight,

but not significant decrease in hepatic glycogen amount during the whole feeding period. In the

literature varying results for hepatic glycogen content in HFD-fed animals compared to controls are

reported, ranging from reduced [120, 148] to increased glycogen levels [50, 170]. This could be for

instance due to different fasting states of the animals, different animal models, diets, or handling of

the liver after sacrifice.
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6.2 Tools for targeted and fishing identification of possible candidate

genes

For humans the Infinium Human Methylation 450K BeadChip array is available, a microarray format

to measure genome-wide DNA methylation [174], but for mice no sensitive high-throughput tech-

niques with single-base resolution exist. The available methods for mice, such as methylated DNA

immunoprecipitation (MeDIP)-sequencing, have poor resolution and are still not considered reliable

[41, 174]. Therefore, we exploited two different approaches for candidate gene identification: A

targeted search by data mining and candidate fishing by transcriptomics and methylomics.

6.2.1 Omics-approaches for candidate fishing

DNA methylation contributes to the development of insulin resistance by altering gene expression. To

identify differentially expressed genes, gene expression microarrays were performed. Subsequently,

DNA methylation of differentially expressed genes was measured. Since it was shown that tran-

scription factor binding sites play an important role in determining epigenetic conservation between

species, the search for regions with altered DNA methylation was refined by analyzing predicted tran-

scription factor binding sites using Unipro UGENE [22, 257]. Bisulfite pyrosequencing only assesses

about 100 bp at once, consequently, regions with altered DNA methylation can easily be missed.

Therefore, whole-genome bisulfite sequencing (WGBS) of two HFD and two chow mice of the lon-

gitudinal study was performed. However, the WGBS results could not always be reproduced by

bisulfite pyrosequencing.

WGBS gets more and more attention, because it theoretically allows the measurement of every

single CpG site within the genome, but it has still some difficulties to overcome [4]. As a result,

bisulfite pyrosequencing still represents the gold standard to measure DNA methylation [228]. Both

methods are based on bisulfite conversion of DNA and are sequence-by-synthesis approaches [90,

174]. WGBS needs the preparation of a library as well as extensive bioinformatic data analysis [166].

Bisulfite pyrosequencing has a much shorter analysis time but is limited by the requirement of primer

design which can be challenging for very CpG-rich or CpG-poor regions [4, 43].

The most crucial step in both methods is the bisulfite conversion of DNA. A complete conver-

sion of all unmethylated cytosines is essential for correct measurement of DNA methylation [115].

Furthermore, bisulfite treatment leads to fragmentation of DNA which could result in a distorted

representation of genomic sequences by depletion of cytosine-rich and unmethylated DNA from the

sequence pool leading to an overestimation of DNA methylation [176].

One reason for discrepancies between WGBS and pyrosequencing data for Fgf21 and Ppara could

be that the bisulfite DNA used for sequencing stems from different bisulfite treatments. The bisulfite-

treated DNA for bisulfite pyrosequencing is also older than the bisulfite DNA which was freshly
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prepared for WGBS. Repeated freeze-thaw cycles can lead to further degradation of the already very

sensitive DNA resulting in the above-mentioned skewed representation of genomic sequences. When

comparing WGBS and bisulfite pyrosequencing results, it is notable that for the promoter region in

Fgf21 bisulfite pyrosequencing overestimated DNA methylation for the chow group relative to WGBS,

but underestimated DNA methylation for the HFD group. If the bisulfite DNA was degraded due to

freeze-thaw cycles, one would expect a uniform difference between both methods. Moreover, it

was reported that bisulfite pyrosequencing tends to underestimate DNA methylation which was not

observed here [228].

An important determinant for the accuracy of the sequencing is the cycle number of the preced-

ing PCR amplification. The bisulfite conversion is the main source for bias, but the PCR builds up on

this and further amplifies these errors which may result in an enlargement of the bias [176]. Since

the analysis is performed on the PCR product the accuracy of the PCR amplification is crucial for the

sequencing result [159]. Bisulfite-converted DNA contains about 80% AT and 20% G which can lead

to long regions consisting only of thymine [176]. This represents a challenge for polymerases and

often leads to uneven amplification of methylated and unmethylated sequences, with unmethylated

DNA preferentially amplified [115, 159, 176]. Since the bias is to some extent sequence-specific,

some regions are more susceptible for a bias than others [176]. Also the slightly different denatura-

tion temperatures of unmethylated and methylated sequences can contribute to the bias, for example

sequences rich in GC could stay annealed during amplification [115, 217]. This results in most cases

in an enrichment of unmethylated sequences in the PCR amplification [159]. A PCR amplification

with as little cycles as possible is desired. For WGBS much less PCR cycles are used as for bisulfite

pyrosequencing, thus, reducing the PCR bias [43]. However, to control for the PCR bias in bisulfite

pyrosequencing quality controls were included in our study.

When analyzing whole-genome bisulfite data an important information is the coverage which

describes the number of sequenced fragments (so-called reads) containing a given CpG site [241].

The NIH Roadmap Epigenomics Projects recommends a total coverage of 30x [258]. However, it

was suggested that a coverage of 5x to 15x is enough for identification of differentially methylated

regions, whereby the coverage for closely related samples needs to be higher as for more diverse

samples [258]. For the three CpG sites measured by both methods in Fgf21 the average coverage

is between 13x and 14.75x, for the DMR in Ppara even between 13.75x and 18.75x. Therefore,

the coverage fits the recommendation of 5x to 15x, but HFD feeding could represents a too weak

intervention to induce large changes of DNA methylation and a higher coverage would be necessary.

It needs to be considered that a coverage of 15x means that 15 reads, which is synonymous for 15

cells, were sequenced for one CpG site, but due to the heterogeneity of liver tissue the reads could

origin from Kupffer cells or endothelial cells and not represent hepatocyte DNA methylation. Even

if the reads stem from hepatocytes, DNA methylation could differ depending on the liver zonation.
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In contrast to WGBS, DNA methylation of millions of cells is measured by bisulfite pyrosequencing,

thus, the results represent an average of hepatic DNA methylation in a specific region. For future

WGBS experiments a higher coverage would be necessary to compensate for this.

In conclusion, bisulfite pyrosequencing still represents the gold standard for measurement of

DNA methylation and to ensure reliable results primer and methylation controls, additional to the

ones provided by the analysis software, were included for the study presented here.

6.2.2 Targeted candidate gene identification by data mining

To identify potential candidate genes literature research, different databases, and preliminary human

and mouse genome-wide DNA methylation data were utilized.

Although the mouse genome is about 14% smaller than the human genome, about 90% of the

human and mouse genomes can be partitioned into conserved synteny regions [22, 160]. For 80%

of human and 72% of mouse protein-coding genes a one-to-one orthologous gene exists [22, 160].

When focusing on functional regions in genes, it is notably that promoter regions show greater dif-

ferences between mice and humans compared to gene body sequences [22]. For transcription factor

binding motifs it was shown that primary consensus motifs for orthologous transcription factors are

the same between the species, but secondary motifs can differ [22]. Therefore, the pool of target

genes of a specific transcription factor seems to be conserved between mouse and humans [22].

A large proportion of DNA methylation is conserved in a tissue-specific manner between humans,

mice, and rats [257]. This is associated with conservation of other epigenetic marks, such as his-

tone modifications [163, 257]. The epigenetic conservation is determined by the conservation of the

underlying DNA sequence and conserved regions often represent transcription factor binding motifs

[257].

With this in mind, the data generated by Kirchner et al. [110]were initially used for identification

of possible candidate genes. This data set consisted only of seven non-obese, seven obese non-

diabetic, and eight obese type 2 diabetic subjects and therefore, is under-powered and shows a large

intra-group variance [110]. The obstacle with the human data was the transfer of differentially

methylated CpG sites into the mouse genome. If the CpG sites were present at all, they were mostly

located in a different genomic context, for example in a different exon, and the changes of DNA

methylation could not be reproduced in mice. The 450K array measures 485 000 CpG sites, but

the majority is located in promoter regions and CpG islands [119, 186]. Since promoter regions

vary widely between mice and humans compared to gene body sequences, the 450 K chip design

could be responsible for the observed discrepancies [22]. Binding motifs of transcription factors and

enhancers show higher conservation between mice and humans, therefore, subsequent approaches

focused on these binding motifs and adjacent regions [22].
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Despite the difficulties to reproduce the human data it was demonstrated in the past that mice

are very well suited to increase the understanding of human diseases [12]. Human studies suffer

from many confounding factors which could influence DNA methylation, it is difficult to control for

environmental factors and results from different ethnic groups are not comparable [79]. The tissue

availability is limited and human studies are most often based on easily accessible tissue, such as

blood, which is well suited to study genetics, but epigenetic patterns are tissue specific [82, 168]. The

limited tissue availability also impedes with mechanistic experiments. On the contrary, C57BL/6 are

inbred mice which are genetically identical and do not possess any genetic variations influencing the

phenotype within one strain [231]. Therefore, DNA methylation differences are solely the result of

environmental factors and the environment in animal facilities is tightly controlled [163]. Moreover,

mice of the same experimental group do not differ regarding their food composition. In conclusion,

epigenetic studies in mice are much better controlled and therefore, very well suited for epigenetic

basic research to understand disease mechanisms. This was the reason why previous studies in mice

were used for identification of possible candidate genes, especially data from the CHARM microarray

performed by Multhaup et al. [163]. The data set consisted of DNA methylation data from livers of

C57BL/6 mice fed a high fat or low fat diet for 12 weeks [163]. Sik3, Sgms2, and Galnt2 were chosen

from this data for analysis in mice fed high fat-high sucrose diet or high fat diet. Although Sik3 and

Galnt2 possess differentially methylated regions after 12 weeks of HFD feeding no differences in

gene expression were identified, indicating that DNA methylation in these regions does not affect

transcription. This demonstrates the importance of analyzing DNA methylation and gene expression

simultaneously. Moreover, the DNA methylation data of Multhaup et al. could not be reproduced

in the study presented here. The discrepancies could be due to different high fat and control diets,

which induce a slightly different phenotype [80]. Multhaup et al. used as control diet a purified

low fat diet with 10 kcal% from fat and 70 kcal% from carbohydrates, whereas here a chow diet

was used [163]. Although the purified low fat diet is considered a very good control diet for high

fat diet studies, the high carbohydrate content itself could have adversely effects on the metabolism.

Furthermore, different feeding length were used (here, mice were fed with HFHS diet for 20 weeks),

therefore, the mice are in different disease states. Multhaup et al. used isolated hepatocytes for

DNA methylation analysis [163], whereas the results presented here were obtained from whole-liver

homogenate, which contains also other cell types, such as Kupffer cells or endothelial cells. The

isolation of hepatocytes involves the risk that RNA is degraded or the RNA composition is altered.

Since DNA methylation needs to have an impact on gene expression to contribute to the pathogenesis

of insulin resistance, it is important to analyze simultaneously hepatic mRNA. Liver tissue needs to

be snap-frozen as rapid as possible to ensure the preservation of RNA levels in a state as native as

possible. In contrast to the Multhaup study, the study presented here allows a more detailed picture
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of the cellular alterations in insulin resistance and makes the first move to a more mechanistically

oriented approach.

An additional confounding factor could be the pronounced zonation of the liver in periportal,

intermediate, and pericentral zone [81, 108]. For example triglyceride accumulation occurs in a

zonation-dependent manner [81]. Taking this into consideration, variations between different stud-

ies could occur because of using not the same liver lobe. Therefore, it would be best to homogenize

the complete liver with liquid nitrogen. However, the homogenization is very time-consuming and

was not possible in the longitudinal study due to the high sample size. The time between sacrifice of

the first and last mouse was kept as minimal as possible to avoid different fasting states of the mice,

because they were sacrificed during their resting phase.

6.3 PPAR-FGF21-Pathway

6.3.1 DNA methylation of Fibroblast Growth Factor 21

Fibroblast growth factor 21 (FGF21) has several positive metabolic effects and therefore, represents

a promising target for the development of new drugs for type 2 diabetes, obesity, and nonalcoholic

steatohepatitis (NASH). For example pegbelfermin, a FGF21 analogue, is currently in a phase 2a

trial [35, 60, 208]. Because it was shown that plasma FGF21 is almost exclusively determined by

hepatic Fgf21 gene expression, studying regulation of hepatic Fgf21 transcription would be valuable

for novel intervention strategies [219, 222]. Nevertheless, the regulation of Fgf21 gene expression is

only scarcely studied [57]. Here, it is shown for the first time that Fgf21 is likely epigenetically reg-

ulated in adult mice within exon 1, but not in the promoter region. DNA methylation in gene bodies

is more prevalent than in promoters and especially at enhancers or transcription factor binding sites

DNA methylation could be important for a fine-regulation of transcription [98, 101]. Since the tran-

scription of Fgf21 is not turned on or off in HFD mice but increased gradually, it seems reasonable that

the difference in DNA methylation is found within the gene body. This is supported by the location of

the altered CpG sites in Fgf21, they are in close proximity to a predicted HNF3/HNF4 binding motif

and two PPAR response elements (PPRE). Intriguingly, there is a study on Fgf21 DNA methylation in

mice during the postnatal period showing that an activation of PPARα induced a demethylation of

Fgf21 [253]. These alterations, once established, remained stable throughout the later life [253]. In

contrast to these findings, the diet-induced obese mice described here develop DNA hypomethylation

of Fgf21 in adulthood due to the development of insulin resistance, demonstrating that the epige-

netic regulation of Fgf21 is dynamic. The above-mentioned study also suggests a role of PPARα in

inducing these epigenetic changes by recruitment of TET2 [253]. Additionally, it was demonstrated

that also other PPARα target genes encoding enzymes of the β-oxidation show a ligand-activated

PPARα-dependent DNA demethylation [56]. This is not observed in PPARα-knockout mice [56].
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Similar results were described for long-term administration of the PPARα agonist WY-14643 which

induces loss of DNA methylation in mouse liver [188]. Also PPARγ was reported to induce local

DNA demethylation by recruiting TET enzymes [61, 253]. The two CpG sites of Fgf21 studied here

are located adjacent to two predicted PPREs, indicating that the observed DNA hypomethylation in

HFD mice could be caused by a PPAR-dependent mechanism, leading to the tremendous upregula-

tion of Fgf21 gene expression. All three PPAR isoforms bind to PPAR responsive elements and the

5’-flanking region seems to play a role in the determination of the isoform-specific binding [235].

However, only very few genes are regulated by only one PPAR isoform [235]. In contrast to Pparg,

Ppara was upregulated in HFD mice after week 2, suggesting that the Fgf21 demethylation could

be PPARα-dependent. Therefore, PPARα does not only activate Fgf21 transcription, but likely also

regulates Fgf21 epigenetically.

It was reported that FGF21 administration leads to a decrease of its own gene expression indicat-

ing a negative feedback mechanism [70, 240]. This would implicate that high endogenous FGF21

levels could negatively feedback to regulate Fgf21 gene expression. A negative feedback mechanism

could contribute to the fluctuating Fgf21 mRNA level in the HFD group, especially at week 7, 8, and

12. However, the effects of FGF21 on the liver itself are only scarcely studied. The ability of FGF21

to induce signaling in a tissue is determined by the presence of its co-receptor β-Klotho as well as

FGF21’s preferential receptor FGFR1, both are expressed in hepatocytes [60]. In the liver, FGF21

competes with FGF19 for β-Klotho, but in principle FGF21 should be able to induce signaling [60].

The negative feedback mechanism could be due to direct signaling, but also indirect effects are con-

ceivable, for example secretion of factors by other tissues upon FGF21 signaling. In the end, gene

expression of Fgf21 was further increased in our study. The negative feedback mechanism could be

overwritten by alterations of DNA methylation, allowing further elevation of gene expression. The

upregulation could be an adaptational response to cope with nutritional overload. Although FGF21

has clear protective effects against insulin resistance, the elevated endogenous FGF21 level cannot

rescue the phenotype which was also observed by others [17, 26, 60]. Processes supporting the

development of insulin resistance seem to outweigh the positive effects of FGF21, so that the ele-

vated Fgf21 gene expression is insufficient. It is also possible that HFD-fed mice develop a resistance

against FGF21, similar to insulin or leptin resistance [57, 222]. The existence of FGF21 resistance

is controversially discussed. Resistances are most commonly mediated by a defect at the receptor

level and for FGF21 it was shown that FGFR1, FGFR2, FGFR3 as well as its co-receptor β-Klotho

are decreased in white adipose tissue in obesity, but FGF21 signaling, assessed by ERK phosphory-

lation, was not altered [49, 59, 62, 70]. On the other hand, others could show an impairment of

the FGF21 signaling by reduced ERK phosphorylation [147]. These discrepancies could be due to

the use of different animal models [70]. It was suggested that FGF21 resistance could be mediated

by mechanisms downstream of the receptors, for example by an increased activation of dual-specific
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phosphatase 6 (DUSP6) which dephosphorylates and turns off ERK1/2 [147]. DUSP6 was described

to be increased in diet-induced obese mice [185, 244]. In the study presented here, HFD mice fed

for 12 weeks showed a significant downregulation of hepatic Fgfr1 and Fgfr2 with a fold change of -

1.41 and -1.46, respectively (Suppl. fig. 7.7, differentially expressed genes are defined by significant

fold change of <-1.5/>1.5). The gene expression of β-Klotho was unaltered, but Dusp6 showed a

significant upregulation (fold change of 2.81, suppl. fig. 7.7). These results indicate that insulin

resistance is associated with changes of the FGF21 signaling pathway, but for a definite conclusion

protein level of the receptors and DUSP6 as well as ERK1/2 phosphorylation needs to be studied in

FGF21 target tissues. However, ERK1/2 might not be the best readout for an activation of FGF21

signaling, because ERK1/2 is downstream of multiple signaling cascades [66]. Although the devel-

opment of FGF21 resistance in obesity and type 2 diabetes is still under debate, the gene expression

data could suggest a downregulation of hepatic FGF21 signaling.

6.3.2 Peroxisome proliferator-activated receptor α and γ

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors activated by fatty acids,

eicosanoids, and oxidized fatty acids originating from diet, de novo lipogenesis, and lipolysis [18,

53, 123]. The PPARs are implicated in the pathophysiology of metabolic diseases and for PPARγ and

PPARα agonistic drugs are already in clinical use for treatment of insulin resistance and dyslipidemia,

respectively [48, 68, 74].

PPARα is predominantly expressed in liver and regulates for instance fatty acid oxidation under

fasting conditions but can also coordinate de novo lipogenesis under fed conditions [53]. Ppara gene

expression is extensively regulated by many different factors, such as leptin and glucocorticoids,

therefore, the upregulation in the HFD group since week 4 can have multiple reasons [20]. It was

reported that Ppara gene expression is activated by HFD feeding in liver of mice and rats [20, 128,

180]. Furthermore, Ppara is regulated by insulin [20]. Treatment of primary hepatocytes with

insulin for three days reduced Ppara levels, whereas treatment of the cells with fatty acids, especially

saturated fatty acids, positively regulated Ppara transcription [223]. A strong induction of Ppara gene

expression is achieved by feeding a diet low in sucrose and with a high amount of poly-unsaturated

fatty acids [107]. The HFD D12942 contains about one third poly-unsaturated fatty acids, suggesting

that the diet composition used here favored the induction of Ppara gene expression and activation

[177, 180]. For instance, PPARα is activated by palmitic acid, oleic acid, linoleic acid, and stearic acid

which are all contained in the HFD [74, 107, 177]. Therefore, the increase in Ppara gene expression

at week 1 could be due to the high dietary fatty acid amount and could represent a compensatory

mechanism to manage the increased fatty acid load. The compensatory upregulation at week 1

could lead to a short-term improvement of the metabolism, indicated by normalization of Ppara
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mRNA level at week 2. However, long-term HFD feeding inevitable leads to insulin resistance and

chronic upregulation of Ppara, likely due to increased fatty acid uptake into the liver.

In addition to the regulation by hormones and metabolites, it was shown in cell culture experi-

ments that human PPARA is able to positively regulate its own gene expression [187]. The human

and mouse Ppara gene shares 91% homology, therefore, the autoregulation might also exist in mice

explaining the fluctuating mRNA level during the feeding period [20, 181].

The PPARα activity can be assessed by measuring expression of genes which are strongly reg-

ulated by PPARα, prominent targets are Cyp4a10 and Cyp4a14 [99, 156, 180]. Both genes were

upregulated at week 12 in HFD mice, as shown by the gene expression microarrays (Suppl. fig. 7.8),

indicating that PPARα is indeed more active in HFD mice.

Moreover, it was reported that in humans PPARA mRNA level show high variability among in-

dividuals, which could indicate a strong regulation on the genetic and epigenetic level [20]. The

whole-genome bisulfite sequencing revealed four differentially methylated regions within intron 2.

This suggests that PPARα could be epigenetically regulated. Therefore, DMR 2 was measured in the

whole group of week 12 by bisulfite pyrosequencing, but only one CpG site showed a significant dif-

ference in DNA methylation of 5%. These discrepancies between WGBS and bisulfite pyrosequencing

are not only due to higher group size, but already obvious by comparing mean DNA methylation val-

ues of the two mice per group sequenced by WGBS as well as bisulfite pyrosequencing. Bisulfite

pyrosequencing is the gold standard for measuring DNA methylation, therefore, regulation of Ppara

by DNA methylation could not be confirmed [228]. An epigenetic regulation of Ppara was already

suggested before, however, these studies focused on transgenerational experiments and DNA methy-

lation was measured in the promoter region. For example it was shown that feeding pregnant rats a

protein-restricted diet resulted in decreased DNA methylation in the promoter region of Ppara in the

offspring [139]. In another study the offspring of male rats treated with streptozotocin and healthy

females showed altered DNA methylation in the Ppara promoter [133]. In both studies the changes

persisted into adulthood and the altered CpG sites were located within transcription factor binding

motifs, thus, it was suggested that this has an impact on Ppara gene expression [133, 139]. How-

ever, absolute DNA methylation of the studied regions was very low, with maximal 10% of promoter

methylation and also the differences between the groups were maximal 5%. Taken together, all these

results are questioning the regulation of Ppara by DNA methylation.

PPARα is thought to be protective against hepatic steatosis and insulin resistance by activating

fatty acid oxidation and therefore, reducing the lipid load within the liver [30, 53]. However, Ppara

knockout mice are protected from developing insulin resistance under HFD feeding [69]. This sug-

gests that PPARα plays a supportive role for development of insulin resistance under HFD-conditions.

PPARγ has important functions in adipogenesis, induces fatty acid uptake, and upregulates de

novo lipogenesis and thereby promotes fatty acid storage in adipose tissue and liver [18, 53]. It was
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already reported that HFD feeding activates Pparg gene expression and ob/ob as well as db/db mice

show increased hepatic Pparg gene expression [54, 91, 127, 146, 153, 180].

Initially, Pparg was significantly downregulated in HFD mice, but gene expression increased con-

tinuously between week 4 and week 12. There are three isoforms of PPARγ and the SYBR green

qRT-PCR primer measured all of them [123, 126]. PPARγ1 is expressed in several tissues, such as

liver, whereas expression of PPARγ2 is mostly restricted to adipose tissue [123, 126]. It was reported

that Pparg2 is induced in primary mouse hepatocytes by oleic acid and insulin as well as in liver of

diet-induced obese mice and its gene expression positively correlates with hepatic fat accumulation

[54, 127, 236]. In contrast to Pparg2, Pparg1 is not altered due to obesity and insulin resistance

[127]. This could indicate that the increase in Pparg gene expression is due to higher transcription

of Pparg2. However, this cannot explain the significant downregulation in the first four weeks of the

study. Though, the downregulation of Pparg in the early stages of HFD feeding was also observed by

others in ApoE*3 Leiden mice fed a HFD with 45 kcal% fat [192].

It was shown that a knockout of Ppara induces higher gene expression of Pparg as a compensatory

mechanism [180]. It might be possible that this functions also the other way around: The elevated

expression of Ppara could represent an inhibitory signal for the Pparg gene expression. After week 4,

serious metabolic alterations could be the reason for the increase in Pparg gene expression.

6.4 High fat diet-induced alterations of genes of the glucose metabolism

Gluconeogenesis serves as energy supply in times of prolonged fasting when glycogen stores are de-

pleted [201]. A key enzyme of the gluconeogenesis is phosphoenolpyruvate carboxykinase (PEPCK)

which catalyzes the conversion of oxaloacetate to phosphoenolpyruvate [201]. The common last

step of gluconeogenesis and glycogenolysis, the conversion of glucose-6-phosphate to glucose, is

catalyzed by glucose-6-phosphatase (G6PC) [201]. The rate of gluconeogenesis is determined by

the activity of the rate-limiting enzymes, but also the substrate availability plays a role [201]. In-

sulin negatively regulates gluconeogenesis by inhibiting gene expression of Pck1 and G6pc [201].

In insulin resistance, insulin fails to inhibit gluconeogenesis resulting in increased hepatic glucose

output [24].

PEPCK and G6PC level are strongly regulated on the level of transcription, for PEPCK no allosteric

modifications were known for a long time [71, 248]. Conversely, the transcriptional regulation of

G6pc is more complex compared to Pck1, although the promoter of both enzymes has some elements

in common [204]. This led to the hypothesis that Pck1 and G6pc could be epigenetically regulated.

Initially, DNA methylation of Pck1 and G6pc was measured in mice fed a high fat-high sucrose diet

for 20 weeks and a differentially methylated regions was identified for each gene. Though, this was

not replicated in mice fed a high fat diet for 12 weeks.
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The high fat-high sucrose diet D12331 has a nearly identical fat content as the high fat diet

D12492, but the fatty acid composition differs due to different fat sources (Suppl. tab. 7.1 and 7.2).

The D12331 diet consists of over 90% saturated fatty acids (percentage of the total dry weight)

making it more obesogenic than the HFD D12492 which contains only 32% saturated fatty acids

(Suppl. tab. 7.1 and 7.2). On the other hand, the D12492 diet contains almost exclusively long-chain

fatty acids, unlike the D12331 diet, which induces more effectively obesity than short- and medium

chain fatty acids [80]. The diets also differ regarding their sucrose content, the D12331 diet contains

about twice as much sucrose as the high fat diet D12492 (Suppl. tab. 7.1 and 7.2). The different

diet compositions cause slightly different phenotypes, for example it was shown for a feeding period

of eight weeks that HFD based on lard induces robustly insulin resistance, whereas the high fat-high

sucrose diet leads to a moderate phenotype [177]. However, the mice presented here were fed for 20

weeks which probably elicited pronounced insulin resistance, but unfortunately no glucose tolerance

data were available. In contrast, the mice of the longitudinal study were only fed for 12 weeks. This

difference in feeding period can have marked impact on the phenotype and likely leads to different

epigenetics. All these factors could have contributed to the different results of DNA methylation in

Pck1 and G6pc. This also demonstrates that diet-induced obesity caused by different high fat diets and

feeding periods could lead to varying phenotypes and comparisons between different studies should

be made carefully. Otherwise, also human diseases may vary between individuals and the analysis of

different diet-induced obesity mouse models might reflect a good cross section of metabolic diseases.

It is thought that hyperglycemia in type 2 diabetes is induced by increased hepatic gluconeo-

genesis, because gene expression of Pck1 and G6pc is no longer inhibited due to insulin resistance

[76, 143, 213, 237]. Here, gene expression of Pck1 and G6pc was not altered in glucose intoler-

ant HFD-fed mice. Similar results were described in the literature. HFD-fed Sprague Dawley rats

with or without nicotinamide and streptozotocin treatment and type 2 diabetic humans showed no

differences in gene expression of Pck1 and G6pc [183, 204]. Regarding G6pc, the studies are more in-

consistent, because it was also reported that G6pc gene expression is increased in type 2 diabetes and

corresponding animal models [88, 234]. In contrary to the prevailing opinion the results presented

here, but also the literature, indicate that Pck1 and G6pc gene expression is not altered in insulin re-

sistance and might be of no significance for regulating the gluconeogenesis rate. And indeed, it was

shown that gene expression of Pck1 and G6pc is no adequate measure to estimate gluconeogenesis,

Pck1 transcription does not correlate with gluconeogenic flux [40]. Post-translational modifications

of PEPCK and G6PC could be responsible for this observation, for instance PEPCK is a substrate for

acetylation resulting in its degradation by the proteasome [97, 220, 246].

Hence, an enzyme activity assay for PEPCK was performed, but insulin resistance did not lead to

alterations of PEPCK activity in our model. If gluconeogenesis is upregulated in insulin resistance,

this is most probably not due to PEPCK. It was even suggested that PEPCK is not the essential enzyme
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of gluconeogenesis as previously assumed [204]. In humans, it was shown that elevated gluconeo-

genesis rate is probably a symptom of advanced type 2 diabetes, because patients with moderate

hyperglycemia displayed no alterations [19]. Mice do not develop a full type 2 diabetes phenotype

which could explain the results [177]. Moreover, it is very unlikely that such an important pathway

as gluconeogenesis is only regulated on the transcriptional level or by a few enzymes, for instance

it was observed that allosteric regulation of pyruvate carboxylase as well as substrate availability

plays a role [25, 204]. Additionally, many rodent models for type 2 diabetes also display increased

plasma glucocorticoid levels which are known to upregulate gluconeogenesis and could represent

a confounding factor [204]. Further insides into the metabolic role of PEPCK was gained by char-

acterizing mice with impaired Pck1 gene expression in liver. These mice showed no alterations of

glycemia and it was suggested that PEPCK is not solely involved in gluconeogenesis but plays a more

complex role in metabolism [25].

In conclusion, at least in the mouse model described here gluconeogenesis is only weakly regu-

lated by Pck1 and G6pc transcription or PEPCK activity. HFD feeding for 12 weeks might be too short

to evoke differences in PEPCK and feeding a diet with high fat content seems to primarily alter fatty

acid metabolism instead of glucose metabolism.
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6.5 Conclusion

In the scope of this thesis it was investigated in diet-induced obese mice if changes of DNA methyla-

tion are cause or consequence of insulin resistance. It was shown that insulin resistance developed

in distinct phases, with an early adaptational phase after one week of HFD feeding, followed by a

metabolic switch resulting in the development of whole-body insulin resistance and fatty liver af-

ter five weeks. This is accompanied by extensive transcriptomic changes of metabolic pathways,

especially the fatty acid metabolism. After 12 weeks of feeding, insulin resistance is associated

with extensive epigenetic remodeling. Impairment of hepatic insulin sensitivity is accompanied by

alterations of DNA methylation at two CpG sites within Fgf21 which could be caused by PPARα-

dependent DNA hypomethylation. Thus, alterations of hepatic DNA methylation likely precede the

development of whole-body glucose intolerance and could be causal for the development of insulin

resistance. Furthermore, the results presented here demonstrate that DNA methylation is strongly

location-dependent and DNA methylation within gene bodies is important for the regulation of gene

expression.

The altered DNA methylation patterns are acquired during adulthood, demonstrating that DNA

methylation is dynamic in differentiated cells and not only during fetal development. Therefore,

the here observed changes of DNA methylation are independent of epigenetic inheritance. This

suggests that individuals can influence their own DNA methylation. For the human type 2 diabetes

pathogenesis our data implicate that detrimental DNA methylation changes could be prevented by

a healthy diet, emphasizing that lifestyle modifications are of special importance to slow down the

type 2 diabetes pandemic.

In the future, mechanistic experiments will be necessary to examine the functional implications

of altered DNA methylation. Whole-genome bisulfite sequencing and gene expression microarrays

represent a great resource for future projects. For instance genes in particular overlaps of the venn di-

agram could be interesting targets to investigate and identify novel diabetes candidate genes. These

genes can be further analyzed for example in knockout mice. This would help to narrow down

disease-causing genes for the development of new drugs for diabetes therapy. Demethylating agents,

such as the DNMT inhibitors 5-azacytidine and 5-aza-2’-deoxycytidine, are already used in the clinics

for treatment of hematological tumors [77]. With the advances in CRISPR technology, for example

the fusion of TET1 or DNMT3 to an inactive Cas9, a targeted DNA methylation editing is within reach

and could be used not only for cancer but also metabolic diseases [140].

"You will adapt."
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Supplement

A Diet composition

The mice of the longitudinal study were fed with the high fat diet D12492 (Research Diets) or the

control diet #1310 (Altromin). The targeted approach was performed in mice fed for 20 weeks with

the high fat-high sucrose diet D12331 (Research Diets) or the chow control diet LM-485 (Harlan

Teklad).

Table 7.1: Nutrient composition of the diets. Diet composition according to manufacturer’s information
as well as Omar et al. [177] and Yang et al. [249].

Component chow #1310 HFD D12492 chow LM-485 HFHS D12331

Total carbohydrates 59.0 kcal% 20 kcal% 58 kcal% 25 kcal%

- Sucrose 6.7 kcal% 12.6 kcal%

Total fat 14.0 kcal% 60 kcal% 17 kcal% 58 kcal%

- Saturated 19.2 kcal% 0.8 gram% 54.1 kcal%

- Monounsaturated 21.5 kcal% 1.3 gram% 1.4 kcal%

- Polyunsaturated 19.2 kcal% 2.9 gram% 2.5 kcal%

- Short-chain 0.0 kcal% 0.0 kcal%

- Medium-chain 0.1 kcal% 57.5 kcal%

- Long-chain 100.0 kcal% 42 kcal%

Protein 27.0 kcal% 20 kcal% 25 kcal% 17 kcal%
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Table 7.2: Carbohydrate and fatty acid composition of the experimental diets. Carbohydrate and fatty
acid composition according to manufacturer’s information as well as Omar et al. [177] and Yang et al.
[249].

Component chow #1310 HFD D12492 chow LM-485 HFHS D12331

Sucrose Disaccarides: 28 gram% 51 gram%

Corn Starch 5.4 gram% 0.0 gram% 0.0 gram%

Maltodextrin 10 Polysaccharides: 51 gram% 16.2 gram% 49 gram%

Cellulose 35.0 gram% 21 gram% 0.0 gram%

Caproic acid (C6) 0.6 gram%

Cyprylic acid (C8) 7.2 gram%

Capric acid (C10) 5.5 gram%

Lauric acid (C12) 0.1 gram% 44.3 gram%

Myristic acid (C14) 1.1 gram% 16.8 gram%

C15 0.1 gram% 0.0 gram%

Palmitic acid (C16) 0.5 gram% 19.6 gram% 0.6 gram% 8.8 gram%

Palmitoleic acid (C16:1) 1.3 gram% 0.0 gram%

C17 0.4 gram% 0.0 gram%

Stearic acid (C18) 0.2 gram% 10.6 gram% 0.2 gram% 10.1 gram%

Oleic acid (C18:1) 0.9 gram% 34.1 gram% 1.3 gram% 2.4 gram%

Linoleic ω-6 acid (C18:2) 2.2 gram% 28.8 gram% 2.6 gram% 3.8 gram%

Linolenic ω-3 acid (C18:3) 0.3 gram% 2.0 gram% 0.3 gram% 0.6 gram%

Arachidic acid (C20) 14.8 gram% 0.2 gram% 0.0 gram%

C20:1, C20:2, C20:3 18.5 gram% 1.5 gram% 0.0 gram%

Arachidonic acid (C20:4) 0.3 gram% 0.0 gram%

B Plasma non-esterified fatty acids

Plasma non-esterified fatty acids (NEFA) were determined with the NEFA-HR(2) assay and the NEFA

Standard Solution by Fujifilm Wako Diagnostics (Mountain View, CA, USA). ’Reagent A’ and ’Reagent

B’ were reconstituted according manufacturer’s instructions. The standard was prepared by 1:2 se-

rial dilution of the 1 mM standard solution with ultra-pure water to obtain a standard series with

1 mM, 0.5 mM, 0.25 mM, 0.125 mM, and 0.0625 mM. The assay was performed in a 96 well plate

in duplicates and 4 µl of each sample, the standard, and ultra-pure water was used. The assay was

started by adding 170 µl ’Reagent A’ and incubating the reaction mix for 3 minutes at 37◦C. ’Reagent

A’ contained acyl-CoA synthetase, CoA, ATP, 4-aminoantipyrine, and ascorbate oxidase. The acyl-

CoA synthetase converts the non-esterified fatty acids by using ATP and CoA to acyl-COA, generating

AMP and PPi as side products. After incubation, the plate was measured at 546 nm, with 660 nm as

sub-wavelength. This measurement served as blank for the analysis. Subsequently, 85 µl ’Reagent B’

were added and the plate was incubated for 5 minutes at 37◦C. ’Reagent B’ contained acyl-CoA ox-

idase, peroxidase, and 3-Methyl-N-Ethyl-N-(β-Hydroxyethyl)-Anilin (MEHA). The acyl-CoA oxidase
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oxidizes the acyl-CoA to 2,3-trans-enoyl-CoA and H2O2. The hydrogen peroxide enables the oxida-

tive condensation of MEHA with 4-aminoantipyrine by the peroxidase to a purple-colored product

which is measured at 546 nm. To perform the background correction of the absorbance, the first

measurement was corrected for the volume difference by multiplication with factor F: F=(Sample

volume + ’Reagent A’)/(sample volume + ’Reagent A’ + ’Reagent B’). This corrected background-

absorbance was subtracted from the absorbance of the second measurement. To calculate the NEFA

concentration a linear regression of the standard was performed.

Figure 7.1: Plasma non-esterified fatty acids were slightly increased in diet-induced obese mice af-
ter week 4. The NEFA concentration in the HFD groups tend to be slightly higher compared to the controls
after week 4. pweek<0.0001; pdiet=0.0428; pinteraction=0.0055; pweek 1=0.0424; pweek 8=0.0214Two-way
ANOVA followed by Holm-Sidak correction; n=4-15/group.
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C Principle component analysis

Principal component Individual variance [%] Total variance [%]
1 14.6766 14.6766
2 11.3188 25.9954
3 6.7859 32.7813
4 5.6514 38.4327
5 4.9359 43.3686
6 4.6616 48.0302
7 4.2873 52.3175
8 4.1304 56.4479
9 3.4753 59.9232
10 3.1463 63.0695
11 2.8608 65.9303
12 2.5773 68.5076
13 2.5084 71.016
14 2.3132 73.3292
15 2.2017 75.5309
16 2.1214 77.6523
17 2.0965 79.7488
18 1.9926 81.7414
19 1.8957 83.6371
20 1.8043 85.4414
21 1.7882 87.2296
22 1.753 88.9826
23 1.7013 90.6839
24 1.6954 92.3793
25 1.6142 93.9935
26 1.5518 95.5453
27 1.5389 97.0842
28 1.4752 98.5594
29 1.4405 99.9999

Code to generate the scree plot

Copyright of the function by Mike Boedigheimer (Amgen Inc., Department of Computational Biology,

Id: scree.m,v 1.7 2006/12/26 22:53:29 Mike Exp)

function [ ] = Sc reep lo t ( l a t en t , alpha )
newplot
p = 100∗ l a t e n t /sum( l a t e n t ) ;
pe = cumsum(p ) ;
i f ( nargin < 2 )
alpha = 0.05;
end
i = f ind ( pe > 100∗(1 − alpha ) , 1 ) ;
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i f ( isempty ( i ) ) , i = length ( l a t e n t ) ; end
i f nargout > 0
y = [pe (1 : i ) p (1 : i ) ] ;
end
bar (1 : i , p (1 : i ) , ’ FaceColor ’ , [0.3010 0.7450 0.9330]) ;
hold on
l ine (1 : i , pe (1 : i ) , ’ marker ’ , ’ o ’ , ’ c o lo r ’ , [0.6350 0.0780 0.1840] , ’ marker faceco lor ’ , [0.6350 0.0780 0.1840] ) ;
hold on
h = r e f l i n e ( 0 , 100∗alpha ) ;
hold on
set (h , ’ l i n e s t y l e ’ , ’ −. ’ , ’ c o l o r ’ , ’ k ’ ) ;
ax . YGrid = ’ on ’ ;
x t i c k s (0 :2 :29)
y t i c k s (0:5:100)
xlabel ( ’ number of p r i n c i p a l components ’ ) ;
ylabel ( ’ percent of expla ined var iance ’ ) ;
legend ( { ’ cumulat ive ’ , ’ i n d i v i d u a l ’ } , ’ l o c a t i o n ’ , ’ northwest ’ ) ;
end

D Determination of optimal cluster number

Figure 7.2: Silhouette plot to determine optimal cluster number.

Figure 7.3: Plot of the gap statistic to determine optimal cluster number.
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Figure 7.4: Plot of within sum of squares to determine optimal cluster number.

E p values of top ten significantly enriched pathways

Week 1: HFD vs. chow

Pathway Fold enrichment Bonferroni p value
Chemical carcinogenesis 18.32 1.65E-41
Retinol metabolism 14.53 4.75E-27
Drug metabolism - cytochrome P450 16.03 6.67E-23
Steroid hormone biosynthesis 12.61 1.33E-20
Metabolism of xenobiotics by cytochrome P450 15.31 2.01E-20
Metabolic pathways 2.79 2.33E-20
Glutathione metabolism 12.83 1.80E-12
Linoleic acid metabolism 12.54 1.15E-10
Arachidonic acid metabolism 7.49 9.08E-08
Fatty acid metabolism 9.99 5.54E-07

Week 12: HFD vs. chow

Pathway Fold enrichment Bonferroni p value
Retinol metabolism 9.52 2.26E-16
Metabolic pathways 2.41 2.86E-16
Fatty acid degradation 12.17 6.52E-13
PPAR signaling pathway 8.63 6.50E-12
Chemical carcinogenesis 7.85 1.28E-11
Steroid hormone biosynthesis 7.57 4.17E-10
Peroxisome 6.05 9.06E-06
Linoleic acid metabolism 7.53 7.72E-05
Arachidonic acid metabolism 5.29 1.56E-04
Valine, leucine, and isoleucine degradation 6.28 0.0016846
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HFD: week12 vs. week 1

Pathway Fold enrichment Bonferroni p value
Metabolic pathways 2.30 3.18E-27
Fatty acid metabolism 8.43 2.78E-14
PPAR signaling pathway 6.45 5.55E-14
Fatty acid degradation 8.42 8.33E-14
Chemical carcinogenesis 5.79 4.16E-13
Biosynthesis of antibiotics 3.78 7.22E-13
Peroxisome 5.80 1.19E-11
Drug metabolism - cytochrome P450 6.51 1.87E-11
Retinol metabolism 5.22 6.00E-10
Metabolism of xenobiotics by cytochrome P450 5.91 6.89E-09

F Correlation of Fgf21 gene expression with DNA methylation

Figure 7.5: Fgf21 gene expression correlates strongly with DNA methylation. ∆Ct values of Fgf21
were correlated with the DNA methylation at (a) CpG site 1 (r=0.5457, p<0.0001) and (b) CpG site 2
(r=0.4231, p<0.0001) by Pearson correlation. For visualization the ∆Ct values were normalized to a
0-1 scale by applying the formula 1 − ((x i − min(x))/(max(x) − min(x))), therefore, ∆Ct values near
0 correspond to low gene expression and ∆Ct values near 1 correspond to high gene expression. Chow
mice are shown as black dots, HFD mice as gray dots.
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G Gene expression microarray results for Sik3, Sgms2, and Galnt2

Figure 7.6: Gene expression microarray results for Sik3, Sgms2, and Galnt2 at (a) week 1 and (b)
week 12. The results are depicted as average log2 value±SD. The FDR p value (pFDR) as well as the fold
change (FC) is shown for each gene. nchow=7, nHFD=8.

H Gene expression microarray results for FGF receptors and Dusp6

Figure 7.7: Gene expression microarray results for the FGF receptors and Dusp6 at (a) week 1
and (b) week 12. The results are depicted as average log2 value±SD. The fold change (FC) and the
significance (according to FDR p value) is shown for genes, which have an FDR p value smaller than
0.05. (However, differentially expressed genes are defined as having a fold change greater 1.5 or smaller
-1.5 and a significant FDR p value.) nchow=7, nHFD=8.
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I Gene expression microarray results for Ppara, Cyp4a10, and Cyp4a14

Figure 7.8: Gene expression microarray results for Ppara, Cyp4a10, and Cyp4a14 at (a) week 1 and
(b) week 12. The results are depicted as average log2 value±SD. The FDR p value (pFDR) as well as the
fold change (FC) is shown for each gene. nchow=7, nHFD=8.

J Gene expression microarray results for genes of β-oxidation and de

novo lipogenesis

Figure 7.9: Gene expression microarray results for genes of β-oxidation and de novo lipogenesis.
The gene expression is shown as average log2 value±SD. Differentially expressed genes are labeled with
asterisks according to their FDR p value and the corresponding fold change (FC). nchow=7, nHFD=8.
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K Top 50 differentially expressed, coding genes

To rank the top 50 differentially expressed genes the results of the Transcriptome Analysis Console

were used and the genes were sorted according FDR p-value (FDR p-val).

HFD: week 12 vs. week 1

Top 50 differentially expressed genes according FDR p value

wk12 log2 wk1 log2 FC FDR p-val Gene symbol Public gene ID
9.19 5.90 9.79 5.23E-17 Ar NM_013476
11.57 7.43 17.69 4.38E-13 Acss3 NM_001142804;

NM_198636
5.00 6.39 -2.63 4.43E-13 Igf2bp3 NM_023670
13.66 10.89 6.82 6.73E-13 Pctp NM_008796
9.89 7.20 6.47 1.39E-11 Fitm1 NM_026808
15.71 12.61 8.55 1.39E-11 Aldh3a2 NM_007437
15.35 5.54 898.56 2.88E-11 Cyp2b9 NM_010000
8.08 6.58 2.81 3.11E-11 Gpc1 NM_016696
7.58 5.17 5.31 3.11E-11 Themis NM_178666
10.67 7.86 7.02 3.85E-11 Pparg NM_001127330;

NM_011146
8.30 6.53 3.40 4.44E-11 Stap1 NM_019992
13.92 10.57 10.18 4.44E-11 Cd36 NM_001159555;

NM_001159556;
NM_001159557;
NM_001159558;
NM_007643

6.38 5.01 2.57 4.72E-11 Cdh18 NM_001081299
7.78 5.23 5.88 5.41E-11 C730002L08Rik NR_045778
5.67 10.43 -27.18 7.32E-11 Adgrf1 NM_133776
12.32 11.08 2.37 8.50E-11 4931406C07Rik NM_001199484;

NM_001199485;
NM_133732

13.39 11.73 3.16 8.50E-11 Entpd5 NM_001026214;
NM_001286049;
NM_001286058;
NM_007647

15.03 8.21 113.31 8.50E-11 Mfsd2a NM_029662
7.12 5.97 2.21 1.49E-10 Agpat9 NM_172715
10.53 7.64 7.44 1.66E-10 Lgals1 NM_008495

X



7. SUPPLEMENT K. Top 50 differentially expressed, coding genes

chow: week 12 vs. week 1

Top 50 differentially expressed genes according FDR p value

wk12 log2 wk1 log2 FC FDR p-val Gene symbol Public gene ID
8.43 6.11 5.01 6.11E-12 Ar NM_013476
4.97 6.25 -2.43 1.61E-11 Igf2bp3 NM_023670
5.85 4.81 2.06 1.57E-07 Grm8; Mir592 NM_008174
7.91 6.53 2.60 2.96E-07 Unc13b NM_001081413;

NM_021468
7.49 8.56 -2.10 1.78E-06 Lpl NM_008509
7.04 9.38 -5.08 4.43E-06 Ndrg1 NM_008681
8.43 7.08 2.56 1.13E-05 Gm15433 XM_003084455.1
6.84 5.96 1.84 1.13E-05 Jph1 NM_020604
5.12 5.85 -1.67 2.66E-05 4930452B06Rik NM_028934
6.74 5.98 1.70 2.69E-05 Snhg11 NM_175692
11.09 12.12 -2.04 4.94E-05 Sparc NM_009242
8.11 7.28 1.79 4.94E-05 Acpp NM_019807;

NM_207668
8.21 6.48 3.31 5.16E-05 Ncam2 NM_001113208;

NM_010954
7.88 7.15 1.65 5.35E-05 Gm7592; Csprs ENSMUST00000159601
7.56 6.28 2.42 5.35E-05 Gm21760 ENSMUST00000179811
7.20 6.31 1.85 5.35E-05 Tiam2 NM_001122998;

NM_001286757;
NM_001286758;
NM_011878

16.36 17.19 -1.78 5.35E-05 Cyp2c68 NM_001039555
7.79 6.61 2.27 5.83E-05 Gm29073 ENSMUST00000177713
14.97 15.86 -1.86 6.03E-05 Cyp2c69 NM_001104525
8.16 7.43 1.67 6.05E-05 Gm7609 NM_001081746

Week 1: chow vs. HFD

Top 50 differentially expressed genes according FDR p value

HFD log2 chow log2 FC FDR p-val Gene symbol Public gene ID
7.92 10.12 -4.59 3.18E-10 Cyp3a16 NM_007820
10.75 13.47 -6.60 3.04E-09 Cyp3a41b;

Cyp3a41a
NM_001105159;
NM_017396_2

10.88 13.56 -6.43 3.37E-09 Cyp3a41a;
Cyp3a41b

NM_017396

10.02 12.76 -6.69 4.88E-09 Cyp3a44 NM_177380
15.08 18.15 -8.40 4.88E-09 Cyp3a11 NM_007818
6.98 10.20 -9.34 8.26E-09 Cyp2c55 NM_028089
13.17 15.23 -4.17 1.04E-08 Ces2a NM_001190330;

NM_133960

XI



7. SUPPLEMENT K. Top 50 differentially expressed, coding genes

7.43 10.20 -6.84 1.15E-08 Acss3 NM_001142804;
NM_198636

11.55 14.38 -7.11 5.05E-08 Me1 NM_001198933;
NM_008615

15.40 17.04 -3.12 7.63E-08 Gstm1 NM_010358
10.41 12.21 -3.47 9.99E-08 Gstm4 NM_001160411;

NM_026764
8.66 10.27 -3.06 1.01E-07 Gstm6 NM_008184
7.39 9.23 -3.58 1.03E-07 Pik3c2g NM_011084;

NM_207683
6.44 8.75 -4.96 1.03E-07 Gstt3 NM_133994
10.64 12.25 -3.05 2.07E-07 Ethe1 NM_023154
6.97 10.22 -9.48 3.69E-07 9130409I23Rik NM_001033819
10.97 13.06 -4.25 4.37E-07 Abcc3 NM_029600
5.13 6.40 -2.40 6.66E-07 Gm12499 ENSMUST00000121961
13.98 16.34 -5.11 9.56E-07 Cyp3a59 NM_001105160
10.72 12.95 -4.69 9.77E-07 Gstm2 NM_008183

Week 12: chow vs. HFD

Top 50 differentially expressed genes according FDR p value

HFD log2 chow log2 FC FDR p-val Gene symbol Public gene ID
8.30 5.82 5.59 6.85E-14 Stap1 NM_019992
12.65 15.19 -5.81 8.47E-11 Ces2a NM_001190330;

NM_133960
15.35 5.34 1033.7 8.47E-11 Cyp2b9 NM_010000
14.87 12.8 4.17 8.47E-11 Fabp2 NM_007980
8.08 6.59 2.81 9.78E-11 Gpc1 NM_016696
7.12 5.97 2.21 1.03E-10 Agpat9 NM_172715
13.92 10.74 9.04 1.03E-10 Cd36 NM_001159555;

NM_001159556;
NM_001159557;
NM_001159558;
NM_007643

5.35 6.95 -3.03 1.92E-10 Slc13a2 NM_022411
13.45 8.92 23.04 5.49E-10 Vnn1 NM_011704
7.58 5.35 4.68 6.64E-10 Themis NM_178666
5.67 10.24 -23.77 6.79E-10 Adgrf1 NM_133776
15.70 17.60 -3.71 6.79E-10 Gstp1 NM_013541
14.30 16.20 -3.75 6.79E-10 Gstp2 NM_181796
7.12 8.54 -2.69 8.51E-10 Itih5 NM_172471
10.28 11.99 -3.26 2.60E-09 Ccl9 NM_011338
11.74 10.52 2.34 3.80E-09 Lect2 NM_010702
8.40 9.95 -2.92 5.00E-09 Cyp3a16 NM_007820
5.91 5.02 1.85 5.00E-09 Mogat1 NM_026713
11.29 10.50 1.73 7.86E-09 Ech1 NM_016772
9.64 11.41 -3.41 1.04E-08 Slco2a1 NM_033314
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