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Abstract

Self-assembly is a natural process of autonomously forming structures from a collection
of simple components. In swarm robotics, it is an open challenge to self-assemble
scalable and robust structures that can adapt to dynamic features of the environment.
We take a photomorphogenetic approach—a method directed by light-stimuli for
multi-robot self-assembly inspired by the tissue growth of trees—and a honeybee-
inspired model. Existing research on multi-robot self-assembly is mostly limited to
predefined shapes that reconfigure only on long time-scales. Here the state-of-the-art
is extended, as the swarm autonomously rearranges the assembled structure to react
to dynamic environments and repair damage. The high turnover rate of adding robots
to the structure and allowing them to leave again creates novel challenges of how to
ensure minimal stability as well as how to balance exploration and exploitation of
the assembly. An adaptive resource distribution method similar to a plant’s vascular
system steers the assembly process. Robots aggregate into a tree structure and receive
virtual resource according to local environmental features—here, specifically light.
The effectiveness of our approach is validated through several real and simulated
robot experiments consisting of five components. (1) Leader selection: during the
first set of experiments the robot swarm collectively selects a leader and a place to
initiate self-assembly. The robots are exposed to a gradient of light that is bright on
one side and gradually dimming to the other. The task is to initiate a tree structure in
the darkest area that is implemented by a honeybee-inspired approach. (2) Directed
aggregation: a directed aggregation in the form of a tree structure grows towards
the light source. (3) Adaptation to dynamic environment: an improvement is then
to create structures that adapt to the environment not only during the formation
process but also continuously throughout the experiments. Robots in the dark areas
fail to absorb enough resource to keep them in the structure, while the aggregation
grows in areas of higher quality. The swarm adapts to the dynamic light setup by
continuously allocating the resource to the part of the structure in the brighter area.
(4) Site selection: we take one step further to test the robots’ ability to adapt to changes
and to collectively select the most advantageous growth site in the arena based on
the brightness and the proximity of the sites. The swarm succeeds in finding and
selecting the more advantageous site and succeeds in adapting its choice after changes
in the environment. (5) Self-repair: we evaluate the robustness of our method by
testing the swarm’s ability to regrow damaged areas. Soon after the damage, the tree
structure grows back, repairing the structure. Simulation of a swarm of 1024 robots
demonstrates the scalability of our adaptive self-assembly method. The thesis therefore



vi

contributes to a broadened foundation for stimuli-driven self-assembly that is adaptive
and robust. As in many works on robot self-assembly, we also face the problem of
finding and defining the appropriate hardware approach and future work has to prove
that we can govern the hardware challenges.
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[Abstract in German]

Zusammenfassung

Selbst-Assemblierung ist ein natürlicher Prozess in dem sich Strukturen autonom
aus einer Menge einfacher Komponenten formen. Eine offene Herausforderung der
Schwarmrobotik ist es skalierbare und robuste Strukturen durch Selbst-Assemblierung
zu bilden, die sich dynamischen Eigenschaften der Umgebung anpassen können.
Wir wählen einen photomorphogenetischem Ansatz - eine vom Gewebewachstum
der Bäume inspirierte Methode, die die Selbst-Assemblierung von Multi-Roboter-
Systemen mit Lichtstimuli steuert - und ein von Honigbienen inspiriertes Modell.
Bestehende Forschung zur Selbst-Assemblierung von Multi-Roboter-Systemen ist
meist auf vordefinierte Formen, die sich in grossen Zeitabständen rekonfigurieren,
beschränkt. Wir erweitern den Stand der Technik, da unser Schwarm die gebildete
Struktur autonom umstrukturiert, um auf dynamische Umgebungen zu reagieren und
Schäden zu reparieren. Durch das Hinzufügen von Robotern zur Struktur und deren
Möglichkeit diese wieder zu verlassen entsteht eine hohe Fluktuationsrate. Dadurch
entstehen neue Herausforderungen: die Sicherstellung von minimaler Stabilität sowie
die Ausbalancierung vom Exploration und Exploitation der Struktur. Ein Verfahren
zur adaptiven Ressourcenverteilung, ähnlich dem vaskulären System einer Pflanze,
steuert den Assemblierungsprozess. Roboter aggregieren in einer Baumstruktur und
bekommen virtuelle Ressourcen entsprechend der lokalen Eigenschaften der Umwelt
zugeteilt - in diesem Fall Licht. Die Effektivität unseres Ansatzes wird durch mehrere
Experimente mit echten und simulierten Robotern validiert. (1) Wahl eines Anführers:
in der ersten Versuchsreihe wählt der Roboterschwarm kollektiv einen Anführer und
einen Ort, um die Selbst-Assemblierung zu initiieren. Die Roboter werden einem
Lichtgradienten ausgesetzt, der auf einer Seite hell ist und zur anderen Seite hin
allmählich abdunkelt. Durch die Aufgabe ist definiert, dass die Baumstruktur im
dunkelsten Bereich initiiert wird. Der durch Honigbienen inspirierte Ansatz setzt
dies zuverlässig um. (2) Gezielte Aggregation: gerichtete Aggregation in Form einer
Baumstruktur. Diese wächst dann zur Lichtquelle hin. (3) Anpassung an dynamische
Umgebungen: eine Verbesserung besteht darin Strukturen zu schaffen, die sich der
Umgebung nicht nur während des Entstehungsprozesses, sondern auch kontinuierlich
während der Experimente anpassen. Schlecht positionierte Roboter können nicht
genügend Ressourcen aufnehmen, um sich in der Struktur zu halten, während die
Aggregation in Bereichen mit höherer Qualität wächst. Durch das kontinuierliche
Zuteilen der Ressourcen an den Teil der Struktur im helleren Bereich passt sich der
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Schwarm dynamischen Lichtverhältnissen an. (4) Standortwahl: Wir gehen einen
Schritt weiter, um die Anpassungsfähigkeit der Roboter zu testen sowie um kollektiv
den vorteilhaftesten Wachstumsstandort in der Arena zu wählen. Dies geschieht auf
Basis der Helligkeit und der Nähe der Standorte. Der Schwarm findet und wählt die
beste Stelle erfolgreich aus und passt die Wahl an Änderungen in der Umwelt an.
(5) Selbst-Reparatur: wir evaluieren die Robustheit unserer Methode indem wir die
Fähigkeit des Schwarms zum Nachwachsen von beschädigten Bereich testen, insbeson-
dere wenn ein Großteil der geformten Baumstruktur betroffen ist. Bereits kurz nach der
Beschädigung wächst die Baumstruktur nach und die Struktur wird repariert. Die Sim-
ulation eines Schwarms mit 1024 Robotern zeigt die Skalierbarkeit unserer Methode
zur adaptiven Selbst-Assemblierung. Somit trägt die Dissertation zu einer erweiterten
Basis für stimuli-getriebene Selbst-Assemblierung bei, die adaptiv und robust ist. Wie
in vielen Arbeiten zur Selbst-Assemblierung von Robotern stehen auch wir vor dem
Problem einen geeigneten Hardware-Ansatz zu finden und zu definieren. In weit-
eren Arbeiten muss gezeigt werden, dass wir diese Herausforderungen überwinden
können.
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Chapter 1

Introduction

Robots fascinated people around the world for decades [14]. Researchers and
engineers try to enhance the capabilities of robots and increase their applications since
their invention [93]. Early robots were Humanoid—robots with bodies that resembled
human beings. In 1495 Leornardo da Vinci built a robot that looked like a human in
an armor. One of the most advanced humanoid robots that can walk and carry loads
of weights is Atlas robot [106]. There are also robots that look like plant roots [90]
or animals such as dogs [102] or social insects [77]. Engineers continue to develop
robots with closest properties to living organisms. Another approach to robot design
is not to build robots that look like organisms but to make robots that can be deployed
next to the organisms. The idea is to let the robots and natural systems support each
other and live next to each other. These systems are known as bio-hybrid systems and
the goal is to keep both artificial agents—robots—and organisms in an environment.
Recently some of bio-hybrid systems were built with robots and animals [52, 134].
Researchers tried to find a way to understand the behavior of animals and even create
a communication channel to bees and fish by deploying robots that can lead these
organisms [52, 134]. Besides animals and insects, an EU-funded research project, flora
robotica focused on creating bio-hybrid systems with natural plants. Their goal was to
create a symbiotic relationship between a robotic component and natural plants (see
Fig. 1.1). They proposed a bio-hybrid system that contains natural plants, robots, and
human beings. The idea was to create an inhabitable living space for human beings.
The result is a living architecture that serves as a structure with functionalities. Human
users are able to define the growth of natural plants into different patterns. The artefact
of the bio-hybrid system can be urban furniture or public spaces, buildings, or even
entire cities. The bio-hybrid also adapts based on the environmental conditions. These
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Figure 1.1: Schematic overview of agents and feedbacks in the bio-hybrid system.
Agents are natural plants, distributed robots, and human beings (users). Natural
stimuli imposed by the environment (e.g., light, gravity, humidity) form the system
but also artificial stimuli imposed by robots and users form the system. The plants
provide the system with inexpensive production of material (growth). The environ-
ment provides the required resources. The bio-hybrid system provides users with a
desired structure that has a desired function (architectural artifacts). Figure originally
published in [4].

the main idea of automation. Instead, our motivation here is not to automate garden-
ing but to develop a bio-hybrid system that assigns equal roles to plants and robots
and creates synergies between them; see the circle of feedbacks on the left-hand side
of Figure 1.1. Natural plants provide growth of structures, sensing capabilities, and
beauty, while robots impose artificial stimuli in addition to natural stimuli of the en-
vironment, extend the plants’ sensing and decision-making capabilities. Hence, the
robots can influence the natural growth process to trigger artificial growth. On the
one hand, we want to leverage natural adaptive behavior in plants [18] in a way that
extends the capabilities of robots through closely linked interactions. On the other
hand, we want to leverage the free programmability of robots such that we can in-
fluence the plants in desired ways and create artificial growth processes. One of our
key ideas is to extend the already rich and manifold variety of natural growth pro-
cesses [19] with additional, artificial growth processes of bio-hybrid systems. Such
an approach has many potential applications, for example, the artificial growth of
architectural artifacts. The bio-hybrid system is therefore supposed to have an ad-
ditional function besides supporting homeostasis (i.e., keep plant features close to
desired levels). For example, the system could serve as a green wall that also adapts
to the needs of humans who interact with it (see lower right-hand side of Figure 1.1).

Fig. 1.1 A schematic of the aim of flora robotica project.

conditions can be imposed to the system by offering or limiting resources such as light,
CO2, etc.

Our research was done in the context of this project. The robotic part of the bio-
hybrid system is a swarm of robots that self-assemble and grow a structure alongside
the natural plants. The structure is a robot-controlled scaffolding that grows in sync
with plants. Wahby et al. studied the methods of forming the plants with robots using
phototropism, growth of plants in response to light and thigmotropism, that is growth
of plants in response to touch stimuli [150, 152]. We focus on the other aspects of the
project that is growing a robotic structure and incorporating the environmental condi-
tions in the growth process. We aim at proposing a self-assembly process inspired by
organisms, including natural plants, that fully adapt to dynamic environments.

Self-assembly is observed frequently in nature on all scales, be it on the level of
molecules, cells, or organisms [156]. Trying to create similar capabilities in engineered
systems is challenging. Promising are observations of simple self-organized pattern
formation. One example is the Brazil nut effect. Shaking a can with a mixture of
small and large nuts causes the larger nuts to rise to the top and the smaller nuts
go to the bottom [121]. This segregation is known as Brazil nut effect and it has
inspired approaches in robotics to emulate this pattern formation with a large group
of robots [50]. Researchers in several fields of research tried to explore the options of
having self-organized pattern formation in a system with multiple robots [47, 144, 138,
140]. Despite the progress over the last decade, these technological systems are still
quite limited—in terms of dynamics, adaptivity, and complexity—when compared to
natural systems. Millions of years of evolution resulted in organisms that demonstrate
a high level of adaptivity in self-assembly. Some of these natural systems are coral
reefs [69], social insects [3, 36, 155, 111, 112], and natural plants [84, 139].
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A self-organized formation of shapes with several robots is shown to be feasible
even with large robot groups (103 robots). Other approaches that operate on smaller
robot groups have shown that self-assembled robots can adapt to challenging envi-
ronments and perform better than single robots [49, 33, 108, 86]. A related approach is
forming structures with several components as developed in modular robotics. These
modules can reconfigure themselves and form dynamic shapes [101, 154, 82, 57, 143].
Similar ideas are investigated with nano- or micro-scale assembly of units in the
field of programmable matter [144, 47, 92] where large numbers of robot modules as-
semble and interact with each other to form desired shapes and to react to external
conditions.

There are also approaches to self-assembly that focus on the design of passive
elements. These elements are driven by an external force (e.g., vibrations) to passively
self-assemble [73]. Approaches to self-assembly in robotics can be separated into
works that focus on self-assembly of predetermined or anticipated structures [125, 33]
and works that focus on adaptive growth processes where only certain qualities
of the resulting structure are specified [100, 55]. A third dimension is added by
categorizing whether aspects of self-repair are considered [123]. An often overlooked
requirement of autonomous self-assembly is adaptivity. The complete self-assembly
process starts by collectively deciding where and triggered by whom they want to start
building a structure and how they can keep the structure adaptive to changes in the
environment.

1.1 Research Goals

Robots can be programmed to form predefined shapes, but self-assembly gets more
challenging if the shapes need to be dynamic. If the assembled swarm adapts its
shape for instance to dynamic features of the environment or to failures in individual
robots at runtime, then the assembly’s structure also needs to be dynamic. In an
adaptive case, the shape is not simply assembled once and then kept there indefinitely;
rather, the shape is assembled and then continuously reconfigured on short time-
scales (of minutes, or even seconds). The required speed of reconfiguration may be
determined by the time-scale of changes in the dynamic environment. A study in
simulation has investigated how self-assembly with a multi-agent system can adapt to
changing system size—i.e., agents are removed or added, and the predefined shape
scales accordingly [123, 122]. The removal of agents can also be seen as damage to the
shape, which then needs to reassemble, meaning the swarm has some capability of
self-repair. In adaptive self-assembly, a key challenge is that damage to the assembled
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structure needs to be repaired autonomously. Damages can occur during the process or
even after the shape has been fully formed. Repair may be executed by regrowing the
damaged parts or by appropriately reconfiguring the shape. In a dynamic environment
it may be advantageous to regrow the missing parts in an adapted, updated form.
Robustness to errors is a general challenge in robot self-assembly. A notable aspect
of the self-assembly with 1024 Kilobots by Rubenstein et al. [125] is its low degree
of scalability. All robots essentially line up consecutively and need to be positioned
one after the other. This causes a time complexity that is linear in the number of
robots. That needs to be considered a limitation, compared to the high standards for
scalability that are generally set in swarm robotics [54]. The feasible shapes are also
limited, as excess robots need to have a free path in order to leave. Scalability with
system size is a challenge in robot self-assembly. In a realistic application of the full
self-assembly process, there are sub-tasks that are rarely considered in existing research.
For instance, the robot swarm may need to first detect that self-assembly is required,
before the process is initialized. As the next sub-task, the swarm needs to collectively
agree on which robot starts the self-assembly (i.e., selecting a seed or leader), and
where. The question of which robot, is the well-known leader selection problem. The
question of where relates to aggregation processes in reaction to an environmental
feature. A biological example of such behavior is seen in the aggregation of young
honeybees [131], where they form a cluster in response to a specific temperature. In an
application of robot self-assembly we may have similar requirements, if for example
the assembly should be positioned in certain areas preferentially. Existing research
on self-assembly with a swarm of robots is mostly limited to predefined shapes that
reconfigure on long time-scales. Therefore, our research goal is to propose a method
for self-assembly that operates on all scales and is capable of adapting dynamically to
sudden changes in the environment.

Here are our main research questions:

1. Leader selection: How can a robot swarm explore the environment and collec-
tively select a robot as a leader? It is relevant to also consider the location of the
leader as it can be a starting point for self-assembly.

2. Directed aggregation: How can a robot swarm collectively grow a structure
towards a better quality area? We have learned about many approaches where
the robots know in advance their exact desired positions in a bitmap [126]. Here
we are interested to know more about probabilistic approaches in self-assembly
without specifying exact behavior or location for the robots.
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3. Adaptation to dynamic environments: How can a robot swarm detect changes,
and then adapt its shape and structure appropriately? This question adds more
complexity to the previous one. To answer this research question, the swarm
needs to stay adaptive to any changes in the environment in addition to collec-
tively deciding on building a structure.

4. Site selection: How can a robot swarm explore the environment and compare
different sites and select the optimum area to grow into? In the previous question
we were interested to know if the swarm can continuously build a structure
towards the better area. In this scenario the swarm needs to compare two areas
that both have the same quality. Here we want to investigate how the swarm can
collectively and continuously compare different options and select the best one.

5. Self-repair: How can a robot swarm self-repair a damage of a structure they
built before? We look for an approach to enable the swarm to react to damages
and self-repair the structure.

6. Concept of electronics-embedded soft-body robots. How to tackle hardware
design challenges for self-assembly in a bio-hybrid context? The previous ques-
tions focus on bio-inspired controllers while in this question we are interested to
know more about a dedicated hardware design for self-assembly in bio-hybrids
of robots and plants.

1.2 Research Contributions

We develop a photomorphogenetic method for adaptive robot self-assembly, in-
spired by light-driven clustering among young honeybees, diffusion processes in coral
reefs, and growth processes in plants. To address the context of self-assembly, we
study the sub-tasks of leader selection and selection of an appropriate area to begin
growth. In a distributed way, we run our self-organized virtual growth process to
aggregate structures that adapt to different light conditions. We propose algorithms
for a swarm of Kilobots to collectively select a leader, aggregate according to environ-
mental features, forage for light as a resource, reconfigure and adapt to a dynamic
environment, and self-repair when damage occurs. Therefore, the contributions of this
thesis are:
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1. Leader selection: There are many species
that are able to solve complex tasks when work-
ing as a group. Among many examples, we
took our inspiration from young honeybees that
are able to collectively find a location with an
ideal temperature in a hive and cluster around
that area. Inspired by that, we design an exper-
iment with light gradient instead of tempera-
ture. We then design a controller that runs on
all robots and allows the robot swarm to collec-
tively find the darkest area in the arena. The
robot that stays longer at the darkest point is
selected as leader. The leader then initiates the
self-assembly.

2. Directed aggregation: We aim for building
a structure that is not predefined. The swarm
needs to collectively decide how the structure
needs to be built. For inspiration, we took the
growth process in coral reefs. Coral reefs grow
with diffusion limited aggregation under wa-
ter. We design a controller for the swarm that
can grow tree structures towards a light source.
The experiment offers a gradient of light, and
the robots diffuse, aggregate, and eventually
build a tree structure towards the brighter side
of the arena. We take a probabilistic approach
in building the tree structure.
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3. Adaptation to dynamic environments: The
structure built in the previous scenario is not
predefined but it is fixed once built. In order
to take a step further, we look into the pos-
sibility of building structures that are adap-
tive. This time we take our inspiration from
natural plants. The vascular system of natu-
ral plants regulates the resource distribution
from the soil to all branches based on the light
level that shines through the branches. Plants
grow branches that receive more light. Inspired
by that, we design a controller that allows the
swarm to quickly adapt to dynamic environ-
ments. Parts of the tree structure that are ex-
posed to better light conditions tend to stay
longer in the tree than those that are in the
darker areas. We then change the light con-
dition and observe the behavior of the swarm.

4. Site selection: We design another experi-
ment to investigate the performance of swarms
using our controller that is inspired by natural
plants. The robots need to collectively build
a structure that is not predefined for this ex-
periment. They have to adapt similarly to the
previous experiment. Besides these behaviors,
the swarm needs to collectively select the most
advantageous growth site in the arena. The se-
lection is based on the brightness and the prox-
imity of the sites. Between two bright sites, the
swarm adaptively selects the area closer to the
seed. If the two sites are equidistant, the struc-
ture is built towards the area that is brighter.
We present the swarm with two different light
conditions and we examine the behavior of the
swarm to see whether it is able to successfully
select the better quality or closer sites.
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5. Self-repair: We perform another set of ex-
periments to evaluate the performance of the
swarm in case of a damage. The experiment
is designed to project a dark bar on the struc-
ture to cause a damage. We investigate whether
the swarm is able to adaptively repair the struc-
ture. Our method aims at enabling the swarm
to recover from damage by first allowing the af-
fected robots to leave the structure. The robots
in the structure then continue to attract more
robots to recover from the damage.

6. Concept of electronics-embedded soft-
body robots: After looking into the possibil-
ities in bio-inspired control approaches, here
we investigate the robotic part in the context of
bio-hybrid systems. In order to overcome the
hardware design challenge for self-assembly,
we propose an electronics-embedded soft-body
structure in bio-hybrid systems. We present
flexible filaments with a design that enables a
decentralized control approach. We show the
potential extensions and applications of this ap-
proach in bio-hybrid systems.
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10.1098/rsif.2019.0238.

3. Mary Katherine Heinrich, Mohammad Divband Soorati, Tanja Katharina Kaiser,
Mostafa Wahby, and Heiko Hamann, “Swarm Robotics: Robustness, Scalability,
and Self-X Features in Applications”, De Gruyter Online Journal, 2019, (accepted).

4. Heiko Hamann, Yara Khaluf, Jean Botev, Mohammad Divband Soorati, Eliseo
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Ghofrani, and Heiko Hamann, “Plasticity in Collective Decision-Making for
Robots: Creating Global Reference Frames, Detecting Dynamic Environments,
and Preventing Lock-ins”, IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019, China.
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1.3 Ph.D. Publications 10

2. Mohammad Divband Soorati, Javad Ghofrani, Payam Zahadat, and Heiko
Hamann, “Adaptive Path Formation in Self-Assembling Robot Swarms by Tree-
like Vascular Morphogenesis”, International Symposium on Distributed Autonomous
Robotic Systems (DARS), Pages 299–311, 2018, USA, DOI: 10.1007/978-3-030-05816-
6_21.

3. Mohammad Divband Soorati, Javad Ghofrani, Payam Zahadat, and Heiko
Hamann, “Robust and Adaptive Robot Self-Assembly Based on Vascular Mor-
phogenesis”, IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Pages 4282–4287, 2018, Spain, DOI: 10.1109/IROS.2018.8594093.
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5. Mary Katherine Heinrich, Mostafa Wahby, Mohammad Divband Soorati, Daniel
Nicolas Hofstadler, Payam Zahadat, Phil Ayres, Kasper Støy, and Heiko Hamann,
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The conference papers 1, 3, and 4 were presented by the author at IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) held in 2016, 2018, and
2019. A summary of this thesis was published in journal article 1. The contents of
Chapter 2 partially correspond to journal article 4. Conference papers 4, 3, and 2 were
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2. Javad Ghofrani, Ehsan Kouzegar, Anna Lena Fehlhaber, and Mohammad Di-
vband Soorati, “Applying Product Line Engineering Concepts to Deep Neural
Networks”, Systems and Software Product Line Conference (SPLC), Pages 13:1–13:6,
2019, France, DOI: 10.1145/3336294.3336321.

1.4 Outline

This thesis contains six chapters. In this chapter we motivated our work and de-
scribed our research questions and how we approach the challenge of solving them. In
the next chapter, we provide a background to the field of swarm robotics and introduce
the main concept and challenges that we are facing in this field. State-of-the-art is fully
described to clarify our contribution in Chapter 2. We then provide a detailed explana-
tion of our methods and experiments with real and simulated robots in Chapter 3. The
results of these experiments are explained and analyzed in Chapter 4. In Chapter 5 we
explain our hardware approach to self-assembly in bio-hybrid systems. We describe
the prototypes that we made and how sensing and actuation can be integrated. We
also present how our work can be a foundation for further research on soft robotics
in bio-hybrid systems. Finally, we conclude the thesis and propose future work in
Chapter 6.

https://doi.org/10.1145/3336294.3336321


Chapter 2

Background

We define the terminology and elaborate the concept of swarm robotics in this
chapter. We also describe the bio-inspired control and bio-hybrid systems of our
research.

2.1 Introduction to Swarm Robotics

In this section we explain the main concepts of swarm robotics and specify design
challenges.

2.1.1 What Is a Robot?

The origin of the word robot is the term ‘robota’ which means ‘forced labour’ in
Slavic language [120]. Decades after the first known use of the term robot in liter-
ature and with the development of advanced computers, robots started to find a
place in the industry for their outstanding precision and capabilities [93]. Nowadays
robots help us in industry [107, 37, 27], medical applications [65, 78, 87, 10, 31], space
exploration [103–105], etc. We recognize robots not for their limited application in
resembling or replacing humans but we recognize them as “machines that sense, think,
and act” [15]. Thinking or intelligence of robots is what distinguishes robots from other
machines [117]. In other words, intelligent connection between the perception and the
actuation makes a machine a robot. Robots should not follow a set of hard-coded rules
defined by human beings. Without a direct control over the robotic operations, how
do we eliminate or limit the potentially devastating costs of failure? Significant costs
of robot operation failures range from putting human health in danger (e.g., robotic
surgeries) to loss of time we may need to measure in generations to compensate for
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low performing robotic missions (e.g., Mars rovers). In robotics, we try to predict
possible scenarios and design robots in ways that decrease likelihood of failure to
large extents. However, in unknown contexts, where predicting all events becomes
nearly impossible, failures may only lead to minor anomalies, or they may stop the
whole system. Any part that plays such a critical role in a system is a single point of
failure.

2.1.2 What Is Swarm Robotics?

One of the benefits of decentralized systems is that there is no single module capable
of affecting or controlling the whole system. In the context of robotics, avoiding single
points of failure is the main motivation to study robots that operate in a group with
decentralized control.

Definition of Swarm Robotics

“A group of non-intelligent robots forming, as a group, an intelligent robot” is called
intelligent swarm [16]. Throughout this manuscript the term robot swarm refers to the
concept defined above as intelligent swarm. As the definition implies each agent in
the swarm is not an intelligent robot but the collective of all agents is intelligent in
a way that its behavior is neither predictable nor random [17]. It is not predictable
because intelligent robots should have the freedom to choose for any decision and it is
not fully random as we assume that its intelligence is not the result of pure random
selection. “The study of how large numbers of relatively simple physically embodied
agents can be designed such that a desired collective behavior emerges from the local
interactions among agents and between the agents and the environment” is called
Swarm Robotics [129].

Advantages of Swarm Robotics

Robustness is the first advantage of swarm robotics to avoid single points of failure,
assuring that the swarm continues to operate even when failures occur in some of the
robots. Robustness is the result of:

• Redundancy; if a robot fails, there are other functioning robots that compensate
the error.

• Decentralized control; one of the main characteristics of a swarm robotics system
is that the robots do not have access to centralized control [22]. Robots interact
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with each other and with the environment and decide their behavior individually
without having a central control unit.

• Simplicity; in swarm robotics, the robots are simple in comparison to single
complex robots. The simplicity in the design of the robots helps the designer to
easily detect anomalies of robots. Simplicity also helps in decreasing the costs
and allows mass production of robots.

• Distributed sensing; the likelihood that the majority of the robots in a swarm
have faulty sensor values is quite low making the swarm a robust sensing system
as a whole.

Adaptivity is the second advantage of swarm robotics. The swarm is flexible and
adapts to changes in the environment or the tasks. It is easier to reconfigure a system
that consists of multiple separate modules compared to a large system with tightly
coupled components. Scalability, as the third advantage, means that scaling the swarm
size up or down should not largely interfere in the operation of the system. If the
swarm density—the area divided by the swarm size—changes, then a direct impact
may be expected on the efficiency of the system [54].

Local Information: Communication and Sensing

Robots interact with each other and with the environment. Interaction between
the robots can be implicit or explicit. Explicit communication is a direct transfer of
information between robots via a specific channel such as infra-red or Bluetooth. In
implicit communication the information is inferred without an explicit engagement
in interaction [46]. Robots also get an understanding about their environment using
simple sensors (e.g., ambient light sensor) that provide the information needed for map-
ping robot states to suitable actions. An important characteristic of a swarm robotics
system is that robots receive information from a limited range in their neighborhood.
Swarm Robots can only communicate and sense locally which is a precondition for
scalability [22].

Collective Decision-making

With no agent in charge of decision-making, how does a swarm overcome the chaos
and reach a consensus? Collective decisions are the outcome of competition among
individuals for different types of information [41]. The probability of selecting an
option raises non-linearly with the number of the individuals that selected the same
option [25]. Starting from a random set of options, the positive feedback gradually
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leads the swarm to a consensus on a decision. There are many collective decision-
making strategies including the local majority rule where every individual obeys
the dominant decision in its neighborhood [75]. Different varieties of majority-based
decisions are introduced and tested on various robot platforms [148, 146, 147, 35].

Design Challenges

There are two levels in a swarm robotic system: micro- and macro-level. The micro-
level is the level of individual robots and what they perceive, how they act based on
their rules, etc. The macro-level is the level of the whole swarm as a group. Reaching
from one level to the other might not be trivial. For example, on the macro-level we
can define a task for the swarm to move an object in an arena. The design decisions on
the level of individual robots (micro-level) may be to let the robots follow a moving
light source to accomplish the goal defined on the macro-level [12]. Tasks are defined
on macro-level and it is the duty of a designer to find the local control algorithm for
individual robots so that the swarm successfully performs an intended task. There
are studies that investigate the micro-macro link but a general approach for relating
the features of the two levels stays as a challenge [58, 118, 53]. Another challenge is to
understand the sources of a behavior in a swarm. It may often be unclear whether a
behavior is caused by an individual robot, several robots independently, or interactions
of multiple robots over time.

Swarm Robotics vs Multi-robot Systems

We should clarify the boundaries of swarm robotics with multi-robot systems. It is
not easy to distinguish the two fields by looking at the size of the system. A multi-robot
system is a collection of two or more autonomous mobile robots [44] (e.g., soccer play-
ing robots [34]); whereas for the swarm there is no consensus for a certain size among
researchers [54], even though the term ‘swarm’ implies a large number. The difference
is in the communication range and relying on local or global information. While in a
multi-robot system there can be global information, in swarm robotics the information
has to be communicated only in local neighborhoods. Global communication with
non-scalable technologies, such as wireless local area networks, is not allowed in
swarm robotics. Any global consensus needs to be the result of local interactions. For
instance, there is no access to a global clock for synchronicity in swarm robotics. The
swarm has to reach synchronicity through local interactions and information rather
than an easy access to a central clock.
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Fig. 2.1 Sample research studies in swarm robotics: (left) Replicator and Symbrion
project robots crossing a barrier to the charging station [71]; (center) Swarm-bot passing
a gap [99]; (right) CoCoRo underwater robot swarm [133]. Images from [71, 99, 133].

Examples of Swarm Robotics Systems

Fig. 2.1 shows three real robot experiments in the context of swarm robotics. The
left figure shows a mock-up for the robots in the projects Replicator and Symbrion in
which the robots cross a barrier to the charging station [71]. The figure at the center
shows the Swarm-bot passing a gap [99]. CoCoRo underwater robots are shown in the
right figure [133].

The rich and diverse sources of inspiration from biology motivate us to learn from
nature. In the next section we explain the concept of self-assembly and introduce our
sources of inspirations.

2.2 Bio-inspiration in Swarm Robotics

Complex behaviors and shapes of organisms went through an evolutionary process
that lasted billions of years. The cost of reaching this level of complexity with our
robots by a comparable evolutionary process is prohibitively high [157]. An easier
solution is to mimic the behavior of evolved organisms or to design robots that have
similar morphology [19, 91, 30, 128, 79]. Among a vast variety of behaviors and
morphologies in nature, here we investigate a few processes that form shapes and stay
adaptive to changes in the environment.

2.2.1 Self-assembly and Aggregation

Self-assembly is “the autonomous organization of components into patterns or
structures without human intervention” [156] and it can be passive (i.e., components
interact according to their geometry or surface chemistry), active (i.e., components
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Fig. 2.2 Structure of a ribosome in a cell as an example for self-assembly on the cellular
level [11]. Image from Science magazine with permission.

can accept some interactions while rejecting others), static (i.e., stable once formed),
or dynamic (i.e., the formation is prone or likely to change) [73]. Many examples of
self-assembly are observed in nature across various scales [156]. The crystal structure
of a ribosome in a cell is an example for static self-assembly, see Fig. 2.2.

Aggregation is a common variation of self-assembly where the structure is a cluster
of components that may not have a mechanical link between them. Aggregation is
often observed in social insects such as honeybees in a shape of a chain, mesh, or
cluster structures to solve immediate tasks [3]. Fig. 2.3 shows a swarm of honeybees
collaborating and coordinating to form a mesh that facilitates the construction process
of a new comb [39]. Honeybees control their aggregation densities to regulate their
swarm temperature [62], augmented by thermogenesis for heat production [142].
To achieve collective thermoregulations, Apis mellifera L. have been shown to prefer
different thermal conditions when they form aggregates than when they are isolated,
allowing them to act as a homeothermic superorganism [48]. In a thermal gradient
environment, young honeybees have been shown to favor areas with a temperature of
approximately 36° C [28]. A single honeybee moves to a location with a nearly ideal
temperature but will frequently leave it to explore further. By contrast, honeybees in a
group are able to maintain the best thermal location once it is found, through a process
of aggregation [48, 132]. This has inspired a simple algorithm in the literature that
mimics honeybees’ behavior in finding the best location for aggregation. The algorithm
is known as ‘BEECLUST’ and is used in collective decision-making processes where

https://science.sciencemag.org/content/289/5481/905.long
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agent’s memory is limited and where reliably locating the optimum with a single
agent is not feasible [131, 72, 56]. Bee-inspired agents walk randomly and when they
encounter an obstacle such as a wall. When two agents meet, they will probabilistically
pause their movement, for a time period proportionate to the temperature sensed
at that location. The closer the temperature is to 36° C, the longer the movement
is paused. Once the waiting period has elapsed, the agents turn and resume their
previous movement pattern.

Fig. 2.3 Comb construction is an example of social behavior among honeybees. Only
few behavioral routines are completely hardwired and skills such as comb construction
is the result of learning and social interactions [39]. Image from Frontiers in Psychology,
licensed under CC-BY 2.0.

2.2.2 Growth

We consider two types of growth processes including coral reefs and natural plants.
Coral reefs are particularly interesting because diffusion forms their morphology.
Another biological process, that we consider in this section, is adaptive growth among
natural plants. We are interested in natural plants due to their capability to survive
difficult conditions and their adaptive behavior in dynamic environments [24].

https://www.frontiersin.org/files/Articles/368232/fpsyg-09-00900-HTML/image_m/fpsyg-09-00900-g001.jpg
https://creativecommons.org/licenses/by/2.0/


2.2 Bio-inspiration in Swarm Robotics 19

Fig. 2.4 Some coral reef structures can be formed directly by diffusion-limited growth
processes [69]. (Left) live coral table; (center) Enallohelia stony coral; (right) Goniocora
stony coral. Images from Wikimedia Commons (users: Rachmat04, Wolfbenni, and
Wolfbenni), licensed under CC-BY 2.0 and CC-BY-SA 4.0.

Coral Reefs

Coral reefs are an example of organisms that live under water with a morphology
close to tree structures. Coral morphogenesis (see Fig. 2.4) shows a form of distri-
bution from a higher concentration of coral skeleton (root of the coral reefs) to the
upper area with lower concentration. The substances diffuse randomly and attach
to each other with the first contact [141]. The original diffusion-limited aggregation
model was introduced in 1981 and has been extended and studied in the context of
coral morphology [158, 68, 94, 95]. Advection and diffusion have been used more
broadly in models of growth and branching in stony corals [94]. Real morphologies of
the Madracis mirablis coral reefs can be generated exclusively via a diffusion-limited
process [69].

Natural Plants

Vascular patterning is a central part of plant morphogenesis. The development
of vascular patterning (see Fig. 2.5) is impacted in part by auxin transport [2, 89]
and subsequently affects resource distribution to organs [127]. As can be seen in
photomorphogenesis [70], a key resource in this process is light.

In positive phototropism, when phototropins in stem tissue cells are sufficiently
exposed to certain wavelengths, water is first moved to those tissues to swell them,
after which auxin concentrations can affix the shape of the swelled tissues during
stiffening [26, 85]. In the context of bio-inspired engineering, plant auxin transport
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Fig. 2.5 Plant morphogenesis and vascular patterning is in part driven indirectly
by distribution of resources in the environment, such as light. (Left) Quercus (oak)
vessel network; (center) longitudinal section of Alliaria petiolata (garlic mustard plant)
vascular bundles; (right) cross section of Alliaria petiolata vascular bundles. Images
from Wikimedia Commons (users: Vojtĕch Dostál, Micropix, and Micropix), licensed
under CC-BY 2.5 and CC-BY-SA 3.0.

and resource transport through the vascular system can be seen as a feedback system
for distributed control. We apply a model that drives the growth of dynamic acyclic
trees that continuously form and abandon connections to construct favorable paths
according to resource distribution in the environment (described in Chapter 3) [159,
160]. Similar morphogenetic processes are seen in slime-mold, that can distributedly
compute shortest paths in an environment [1, 20]. Slime-mold has inspired approaches
to path formation in robot swarms, where simulated robots contract from dispersal,
aggregating between targeted locations [130]. The exploration aspect of distributed
decision-making in morphogenetic processes is also applied in robotics via ‘rapidly
exploring random trees’—tree structures that start by growing randomly and then bias
the growth towards unexplored areas [81].

Instead of exploring the area randomly, in this work, we focus on the distribution of
resources to a natural plant’s organs that helps to grow only to the areas of interest.
The vascular system in a plant actively directs shared resources from the root towards
the branches through the flow of auxin, a growth and patterning hormone. Among the
processes impacting morphology, higher light exposure near tips triggers greater auxin
volume, increasing vessel thickness when flowing toward the roots. The resources of
water and minerals travel better through thicker vessels, on the way to branch tips.
The Vascular morphogenesis controller (VMC) for directed acyclic graphs (i.e., trees)
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(a) Modular braiding machine (b) Examples of braided structure

Fig. 2.6 The modular and re-configurable braiding machine built during the flora
robotica project (a) and few examples of hand-braided structures (b) are shown [63].

is inspired by this growth mechanism in plants, bringing their natural capacity for
adaptation to artificial systems [159].

2.2.3 Bio-hybrid of Robot Swarms and Natural Plants

Besides mimicking organisms, we can take one step further and form a bio-hybrid
system—a system with biological and non-biological components. Our project, flora
robotica investigates the bio-hybrid societies and aims at developing a methodology
to shape natural plants in desired patterns directed by a robot swarm [38, 60, 59, 64].
The objective is to grow architectural structures as a bio-hybrid system of plants and
robots. In a bio-hybrid system the material properties of robots affect the behavior of
the system because the interaction of a modular unit with a rigid body may damage
organisms. We also explored the possibility of having the construction with a continu-
ous and soft building material. Braiding technology was applied during the project as a
technique for scaffolding and a solution to prevent plants’ exposure to damage caused
by robots with rigid bodies. Interlacing filaments and forming a braided structure
has many applications in architecture and in industry [97, 23, 136, 115]. During the
project, a modular and re-configurable braiding machine was developed that is able to
interlace filaments in different patterns (see Fig. 2.6).

We propose the concept of electronics-embedded filaments that creates an active
braid as a result. In the context of soft-body robots we aim at achieving collective
decision-making by including active braid filaments with embedded sensors. Fig. 2.7
shows the concept of a plant-robot bio-hybrid with early prototypes of electronics-
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Fig. 2.7 A braided structure with a prototype of electronics-embedded filaments.

embedded filaments. Our contribution is fully described with the design details and
test cases in Chapter 5.

2.2.4 Related Work

In this section we present a literature review on published works similar or related
to our contribution and we highlight the differences.

Bio-inspired Self-assembly

First we describe the researches in swarm robotics that focused on the same sources
of bio-inspiration.

• Bee-inspired self-assembly: aggregation with the BEECLUST algorithm was im-
plemented on multiple robotic platforms including Jasmine-III [132, 74], AmiR [5–
7], Colias [9, 8], Thymios [119, 151], and even underwater robots [18]. Here we
use a robotic platform called ‘Kilobots’ [124] to implement an aggregation based
on a light stimulus, see Chapter 3.

• Diffusion-limited aggregation: inspired by the diffusion-limited process among
coral reefs, we implement an assembly process that helps the robots to aggregate
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towards an area of interest. A similar study was recently reported for trail
formation using diffusion-limited aggregation with 100 Kilobot robots [98]. The
study shows that the robots can form a structure from the position of the source to
the area of interest. The swarm was able to avoid obstacles and to build structures
to area of interest. In comparison to this study, we follow a probabilistic method
that continuously directs the growth process towards areas of interest whereas
their method builds structures randomly.

• VMC: the vascular morphogenesis control was tested with simulated robots [160],
immobile Thymios [159], and a serially connected network of ‘Raspberry Pi’
computer boards with light sensors [116, 66]. In comparison to these studies, we
apply VMC on real mobile robots with less computational power and a more
dynamic network between the agents.

Self-assembly with Kilobot Robots

In the work by Rubenstein et al. [125] a self-organizing approach is shown at large
scales of 103 Kilobot robots. They focus exclusively on predetermined simple structures.
All robots have a binary bitmap of the desired shape that needs to be formed by self-
assembly. The process starts with four fixed robots as seeds that create a coordinate
system. The seed robots generate a gradient value message that increments as it
propagates through the swarm. This message assigns every robot a gradient value
and allows them to have a way to localize themselves. The farthest robots to the seeds
start to follow the edge of the grid until they reach a designated empty bit in the map
where they can stay for the rest of the experiment. The process continues until the
given bitmap is complete. Another interesting study focuses on ‘self-disassembly’ [43].
Similar to the previous study, a precise map is given to all robots and robots use a
gradient to localize themselves. The swarm is arranged in a grid and then robots
decide based on their calculated location and the given map whether they are part of
the desired shape. The robots farthest from the center start to disperse from the grid
until when the remaining robots form the desired structure. Both studies, despite their
contribution from an engineering perspective, lack in adaptivity. In both cases, the
swarm relies on a set of pre-located robots and the self-assembly or self-disassembly
process is predetermined by following a given map. Our focus is on adaptivity and no
map is provided to the robots. The swarm collectively decides where and how to build
a structure and stays adaptive till the end of the experiments, see Chapter 4.

Slavkov et al. [140] show robot self-assembly with 300 Kilobots. Their main con-
tribution is that the desired shapes are not explicitly predefined but emerge based
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on a reaction–diffusion system and Turing patterns [145]. The need for pre-located
robots is eliminated and the method is proven to be robust using self-repair of damage.
However, their approach leaves out the environmental conditions. The morphogenesis
process is controlled by interactions of robots, but the environment is neglected. In our
approach robots interact while incorporating the effect of the environment continu-
ously during the self-assembly process. Compared to the previous studies [125, 43, 140],
we go a step further by letting the robots start from a semi-random distribution and
move around randomly without an initial grid formation. Errors cascade through the
swarm of Kilobots and can severely affect the functionality [42]. Arranging the robots
next to each other (e.g., in a grid) utilizes redundancy of sources and improves the
calculation process of gradient values. In a grid formation, for example, robots have
access to multiple neighbors and the probability of receiving wrong gradient values
from all neighbors is low. Therefore, having such formations increases the precision of
gradient values. However, we found that our self-assembly process works for random
distributions and with unreliable communication.

Active braided structures

Active braided structures are used to build soft robots [135, 80]. Examples are Mesh-
worm, Softworm, and Octopus robots that are inspired by organisms like earthworms
and octopuses [137, 88, 21, 79]. These robots have a soft body made of braided struc-
tures that produce smooth waves of motion along the body. However, these robots
actuate the whole braid by several motors, while we propose a decentralized actuation
by individual active filaments of the braid. We also embed sensors, communication,
and computation units to the filaments, see Chapter 5.



Chapter 3

Approach

In this chapter we describe how our experiments with real and simulated robots are
designed. Our bio-inspired control approaches and image processing techniques for
analyzing results of our experiments are also explained.

3.1 Experiment Setup

This section details the robot hardware utilized, as well as the arena and overall
setup for the experiments.

3.1.1 Kilobots

Kilobot robots are simple in design, available in large quantities, easy to use, and
inexpensive [124]. These parameters made Kilobots a common platform for swarm
robotics studies [109, 13, 76, 32]. We also use Kilobot robots in our experiments (see
Fig. 3.1). A Kilobot executes a stick-slip motion via two vibration motors at the robot’s
sides. The robots communicate via infrared messages of up to 12 bytes at a time. 9
bytes are available for message payload. Robots turn at speeds of up to π/4 rad/s.
Kilobots have mechanical differences such as the angle of their metal legs, battery
level, functionality of the vibration motors, etc. In order to achieve a desirable forward
or turning motion, we need to calibrate the power of vibration motors for turning
left, right, and moving straight individually. Therefore, the speed of each robot is set
manually during a calibration phase.

Due to manufacturing differences the power required to achieve good forward
and turning motion varies from robot to robot, and generally varies from surface to
surface. We have to manually calibrate the values required for turning left, turning
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Fig. 3.1 A Kilobot is shown with its heading direction indicated by an arrow and its
light sensor by a red circle.

right, and going straight. In the process one can also assign a unique identifier (“UID”)
to the Kilobot, if desired. The only sensors mounted on-board of these robots are
ambient light sensors (see red circle in Fig. 3.1) that have certain limitations discussed
in Section 3.2.1.

3.1.2 Experiment Types

We aim for designing a complete approach that allows the swarm to collectively de-
cide on where to start the self-assembly (i.e., leader selection), that adapts at runtime to
environmental conditions (i.e., adaptivity), and that guarantees the structural stability
(i.e., self-repair). The goal here is to design experiments such that the performance of
collective decision-making and adaptivity of swarms controlled by our method can
be examined. We investigate whether our methods generate an adaptive structure
reacting to environmental conditions in an artificial growth process. Light is used as
the environmental condition to stimulate self-assembly processes in our experiments
as Kilobots have only a sensor for ambient light. During a preparatory stage the robots
collectively decide where to start the self-assembly, again depending on environmental
conditions and we call the task collective leader selection. In this experiment a gradient of
light is projected to investigate whether the swarm can collectively decide on a leader
in a dark area. In the actual self-assembly stage, the robots create tree-like structures
that grow towards light (directed aggregation). We also designed experiments to
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allow the swarm to self-assemble into tree-like shapes and to efficiently adapt to the
environment. Despite the earlier scenarios with a fixed light setup (collective leader
selection and directed aggregation), here we modify the environmental condition by
light distributions that change over time. We propose adaptation to a dynamic environ-
ment as a task to examine whether the swarm adapts to the change in light condition
by changing and adapting its aggregated structure continuously. The next experiment,
collective site selection, is focused on observing the behavior of the swarm in a dy-
namic environment to check if it can collectively discriminate between light sources at
different distances and of different qualities. Finally, we damage the tree structures
by projecting a dark bar on the bright side of the arena to see if the swarm is able to
regrow the structure once the light barrier is removed (self-repair of damage).

Collective Leader Selection

We designed an experiment where the swarm had to col-
lectively find the darkest area in the arena. We created
a gradient of light with the darkest points in the right
top and bottom corners, see Fig. 3.2(b). We conduct
eight repetitions of this experiment where the robots
should collectively locate the darkest area in the arena
and select a leader to seed tree growth at that location.
The robots are approximately uniformly distributed in

the arena at initialization. They are exposed to a gradient of light that is bright on one
side, gradually dimming to the other, see Fig. 3.2(b). The rightward area holds the
ideal location for initiating a tree structure, which the robots should reliably find.

Directed Aggregation

Here the goal is to design an experiment with a light
condition that allows the robots to form a struc-
ture towards the light source (i.e., phototropism)
and also move towards the light source (i.e., pho-
totaxis), regardless of their positions in the arena.
The details for the movement towards the light are
in Section 3.2.3. Eight repetitions of this experiment
are conducted testing the robot swarm’s ability to
aggregate into static, permanent trees that grow
toward the available light source. The arena setup

here is the same as above, see Fig. 3.2(b). After the above leader selection, the directed
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Fig. 3.2 The setup in (a), with the projected gradient in (b), is used for the leader
selection and directed aggregation.

aggregation experiment begins. The trees growing by directed aggregation should
therefore grow leftward—directed towards the bright light source—starting from a
seed position in a dark, rightward location. These experiments are continuations of
the leader selection experiments. At each repetition, the two experiment types run for
60 minutes cumulatively.

Adaptation to a Dynamic Environment

In order to evaluate the adaptivity of our approach,
we need to incorporate three design parameters: 1) we
had to use light as the dynamic environmental condi-
tion, 2) a collective decision in directed growth had to
be observable for evaluations, and 3) we need to be
able to measure the effect, before and after the change.
Figs. 3.3(b) and 3.3(b) show our final design for this
experiment. The arena lighting is divided into three
discrete zones: bright on the right, dark on the left,
and a thin gray bar in the center that serves as a buffer,

see Fig. 3.3(b). Here eight runs of a 600 s experiment are conducted. In each, the
robots should grow a dynamic tree structure that finds the brightest location available
in the arena and adapts if the light conditions change. At initialization, the robots are
distributed roughly evenly, with a predetermined seed location at the center. After a
duration of 200 s, the light conditions in the setup begin to change, with the bright
and dark areas replacing one another over a transition period of 200 s, ending with
the lighting shown in Fig. 3.3(c), that is also maintained for 200 s. In a successful
experiment, the robots’ dynamic tree structure should first find the brightest area on
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Fig. 3.3 The setup in (a) is used for: the adaptation task with projection (b) in phase I
and projection (c) in phase II; site selection with projections (d-e) for the two phases;
and self-repair with projections (f-h) for the three phases.

the right, then, after the change in light conditions, should adapt its structure to favor
the opposite side.
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Collective Site Selection
We had two parameters for designing an experiment for
the collective site-selection task: 1) the robots had to form a
path towards the closer light source and 2) the robot had to
be examined for comparing the light quality of two equidis-
tant sites. In our early design prototypes we considered the
bright areas to be presented as circular areas in different
sizes and brightness. We soon found out that the proba-
bility of reaching those circular areas was low. Figs. 3.3(d)
and 3.3(e) show the final design for this experiment. We see

in Section 4.2.3 that having rectangular large areas as growth sites allows the robots to
easily reach both sites. We conduct six repetitions of an experiment testing the robots’
ability to collectively select the most advantageous growth site in the arena—valuing
both brightness and proximity—and to adapt to any changes. At the start of the
experiment, one robot is set at a predetermined seed location at the arena’s center and
the rest of the robots is distributed randomly. In the first experiment phase, the light
distribution is organized into two growth sites of equal brightness, with the rightward
being nearly adjacent to the seed and the leftward being separated from the seed by a
wide gap of full darkness, see Fig. 3.3(d). In the second phase, the two bright growth
sites are moved to be equidistant from the seed (separated on each side by a fully dark
gap), and the brightness level of the rightward site is reduced, see Fig. 3.3(e). In the
first phase, both sites have the same brightness, but the rightward is preferable because
the bright area at the right side is close. In the second phase, the leftward is preferable
because it is brighter while both sites are at the same distance now. Each experiment
has a 20 min duration, with the transition between phases occurring gradually from
minute 8 to 12. If an experiment is successful, the swarm in the first phase should
discover the rightward site quickly and grow a tree into it. In the second phase the
swarm should become dissatisfied with the rightward site. To adapt, it should first
grow further into and explore the dark zone around the seed, finally discovering and
preferring the leftward site.
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Self-repair of Damage

We used a dark area to emulate a damage to the structure.
One side of the arena is dark to see if the swarm is able to
self-repair and re-build the structures only at the bright
side. Six repetitions of an experiment are conducted to
test the swarm’s ability to regrow damaged areas, specifi-
cally when a majority of its self-assembled tree structure
is severed. The experiments have three phases, each last-
ing 200 s. At initialization, one robot is designated the
seed and is placed at the arena center, while the rest are
distributed randomly. In the first phase, the setup matches

the start of the adaptation to a dynamic environment experiment—the rightward area
is bright, the leftward area is dark, and they are separated by a thin gray gap, see
Fig. 3.3(f). In the second phase, a narrow bar of full darkness is added, separating the
bright rightward area into two parts, see Fig. 3.3(g). This simulates damage, as all
robots exposed to it are not able to detect the previous brightness and therefore leave
the tree connections they had established. In the third phase, the trigger of damage
is removed and the light distribution returns to its initial first phase conditions, see
Fig. 3.3(h). In a successful experiment, the swarm should first grow a tree structure into
the rightward zone. The majority of this initial structure is then damaged when branch
connections break. A successful swarm should then regrow the removed portions
of the tree (into the rightward zone), once it is re-exposed to the initial environment
conditions.

3.1.3 Swarm Size

For experimenting with real robots, we use 50 Kilobots (Section 3.1.1) for leader selec-
tion and directed aggregation, and we use 70 Kilobots for the remaining experiments.
For the experiments in simulation we scale the swarm size up to 1024 simulated robots.
Despite preliminary experiments to find useful swarm densities in our setup, we did
not perform an exhaustive study to find an optimum swarm density. Based on our
limited observations low swarm densities are expected to slow down the aggregation
process due to low incidence of robot encounters, and high densities are expected to
limit robot movement due to physical interference.
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3.1.4 Robot Arena

A glass surface is the basis of our robot arena, with two different sizes—84×84 cm2

and 84×135 cm2—used in different experiments. For the first two tasks, Fig. 3.2(a)
shows the rectangular arena used, paired with the gradient light projection seen in
Fig. 3.2(b), designed for collective leader selection and directed aggregation.

The swarm seeks to find one of the darkest locations in the arena and seed a structure
that grows towards the light. For the next three tasks, a video projector (max. 1200 lu-
men) is used as the light source and is positioned above the glass surface to minimize
the robots’ self-cast shadows. The limitations of this projection setup are discussed
in Section 3.2.1. The advantage is that the video projector is flexible, allowing us to
project any pattern of light, see Fig. 3.3(b-h). The experiments are executed in a dark
room to ensure controlled conditions for the light distribution. The experimental setup
would favor a large difference in measured light, between the dark and the bright areas,
to ideally cover the robot’s full light sensing range (i.e., I ∈ [0,1023]). However, the
camera is our limiting factor, as even in the darker areas it requires a certain minimal
level of light to detect robots by image processing. Our setup therefore projects light to
the entire arena, providing to the robots a reduced light range of I ∈ [280,1016].

3.1.5 Simulation Setup

To test the scalability of our approach, we simulate a swarm of 1024 Kilobots us-
ing Kilombo, a C-based simulator specialized on Kilobots [67]. We run simulation
experiments with a duration of 48 minutes, matching the setups of the following types
described above: adaptation to a dynamic environment, collective site selection, and
self-repair of damage. The simulation differs to the robot experiments in a few aspects:
robots bounce off walls to avoid clustering at the arena boundaries, the overall robot
density is sparser, and robots cannot displace each other. We run 20 repetitions of each
of the three experiment types.

3.2 Control Approaches

The primary growth and motion control investigated here is inspired by plant pho-
tomorphogenesis (Section 2.2.2), the light-driven progression of plants’ developmental
phases [70]. While this plant-inspired approach provides several advantages for self-
assembly in an engineered system, supplemental light-driven bio-inspired approaches
are appropriate for certain sub-tasks and applications. We therefore look to honeybee
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Fig. 3.4 (a) The light sensor values (averaged with window size of 300 cycles) of a
Kilobot moved straight manually across the middle of the arena from brightness to
darkness. The four colors indicate whether the Kilobot was facing east (E), south
(S), west (W), or north (N) when manually moved. Self-shading causes considerable
variation in the Kilobot’s light perception, especially when oriented north. (b) The
arena the Kilobots are deployed in, with light conditions matching those in (a).

aggregation for the sub-task of leader selection, to diffusion-limited growth in corals
for the application of assembling static structures, and to plant photomorphogenesis
for dynamic self-assembly inclusive of adaptivity and self-repair.

3.2.1 Light Sensing Method

The Kilobot light sensor—marked with a red circle in Fig. 3.1—is positioned such
that self-shading may occur, making the robots’ light perception one of our key im-
plementation challenges. Depending on the projection angle and illumination degree,
the sensor can be self-shaded or shaded by neighboring robots, interfering in pre-
cise perception of the projected light and therefore adversely affecting the robot’s
performance. Fig. 3.4(a) details the significance of this challenge. Under a top-down
projection with three brightness levels, we move a Kilobot by hand in a straight line
crossing the arena from left to right. The most drastic impact of self-shading is seen
when the robot is oriented north, but also in, for instance, the westward orientation,
we see a drop of the sensor value at the right side of the arena due to shading from the
robot’s left vibration motor. Considering additional potential shading from neighbors,
having a denser cluster of robots increases the interference. To combat the shading
challenge, in a probabilistic approach we consider the robot’s own sensor history, as
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well as the history-based values communicated by neighboring robots. Each robot
averages over the light values perceived in its neighborhood by keeping ten neighbors’
communicated light intensity values in a ring data structure. Each robot i calculates a
weighted sum to obtain the actual light intensity li(t) of the current time step t by

li(t) =
0.7
20

19

∑
t′=0

Ilocal(t− t′) +
0.3
10

10

∑
n=1

Ineighbors(n), (3.1)

where each Ilocal itself is an average over 300 correct measurements of the sensor.
In case of malfunctioning, the sensor returns −1 which is excluded from the mean.
The time series Ilocal(t) represents the robot’s own measurement history of the 20
most recent readings. The Ineighbors(n) are measurements recently received from
neighbor communication. After executing Eq. 3.1, a step function then maps the light
value to a number between 0 and 9. Using this approach, the robots achieve high
accuracy light perceptions of their local neighborhood. An exception occurs if their
neighborhood is situated on two discrete brightness zones, but this has low impact on
overall performance of the controllers.

3.2.2 Honeybee-inspired Leader Selection

Our control approach for leader selection via aggregation is inspired by honeybee
behavior and is based on the BEECLUST algorithm (Section 2.2.1) [131, 72, 56], modi-
fied to assess the environment according to light instead of temperature. The robots
follow a random walk, with 75% probability to move straight, 12.5% to turn left, and
12.5% to turn right. The random motion continues until they meet another robot. They
then stop and remain in place for a time period dependent on the sensed light value
L ∈ [280,1016]. In dark areas robots wait longer than in bright areas following the step
function

n(a) =

7 s for a ⩽ 300

1 s else
. (3.2)

For a low sensed light value a ⩽ 300, the waiting time n(a) is 7 s. Otherwise, if the
robot is located in a brighter area, the waiting time is n(a) = 1 s. When the waiting
period elapses, the robots turn at full speed for three seconds—either to the left or right
at random—and then resume their original random walk. When a robot is in close
proximity to other robots, the robot changes its speed to a low value for a short period
of time (4 s). Slowing down minimizes the displacement effect among the clusters of
robots—robots do not push each other. As the robot tries to leave the cluster during
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this period, it ignores all incoming messages to avoid getting locked in place before
getting the chance to leave the cluster. Darker spots attract many robots and therefore
form bigger clusters which are more likely to persist. The robots also cast shadows
on their neighbors, with increasing probability in denser environments. Hence, they
remain in bigger clusters for even longer. The swarm thereby searches collectively for
the darkest spot in the area. The first robot that permanently decides to stay due to
exceeding the waiting threshold serves as a seed (cf. leader selection [40]) and triggers
the initialization of tree structure growth.

3.2.3 Coral-inspired Directed Aggregation

Similar to diffusion-limited growth processes used to model coral morphology [69],
here we use a diffusion-limited aggregation process to grow a static directed structure.
Because the Kilobots do not have access to directional information and localization
requires a complex positioning and guiding method, we steer growth towards light
in a way that requires only uninformed motion. The robots move randomly and
approach the tree structure from any direction. Robots approaching from the area
between the structure and the light source have a higher probability to join, compared
to those approaching from other directions. Robots keep and share the highest light
value perceived so far by the swarm, lmax. Each robot continuously updates this value
by checking the incoming messages and looking for a higher lmax. The probability to
join the tree Pl is calculated according to lmax, such that

Pl = Pr
[

X <
l

lmax

]
, (3.3)

where X is a random variable with uniform distribution over the interval [0,1), and l
is the current light intensity value of the robot. If the measured light intensity is close
to the maximum the swarm has observed, the robot gets a high Pl to join the tree. The
robots’ aggregation is additionally influenced by tree depth, where robots approaching
deeper leaves of the tree have a higher probability to join. This second probability Pd

is defined as

Pd = Pr
[

X <
d

dmax

]
, (3.4)

where dmax is the greatest depth observed in the swarm so far, and d is the current
depth the robot observes. The values lmax and dmax are broadcast with messages to
the full swarm for the experiment duration. The product of the two probabilities
(Pl × Pd) defines a robot’s probability to join the tree, instead of ignoring it and turning
away. Fig. 3.5 shows an example of a growth in directed aggregation. Values above
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Fig. 3.5 A schematic of a coral-inspired directed aggregation. Examples of light values
perceived by robots (l) and the whole swarm lmax, depth of the robot in the tree (d) and
depth of the deepest robot in the tree (dmax) are shown above each node in the tree
structure. The probability of joining the tree is calculated next to the newly established
or rejected connections as a product of the probabilities of having a high light intensity
and depth (Pl × Pd).

each node in the tree help in calculating the probability (Pl × Pd) for each of them.
The probabilities are shown next the two connection requests (green and red dotted
lines). Probability of acceptance for the request to connect via the deepest node of
the tree (green dotted line) is 1. The request shown with the red dotted line has only
1

16 probability of acceptance. In our example the latter connection request is denied
and the robot turns away from the structure. The combination of random motion and
probabilistic joining results in an emergent structure that aggregates towards a light
source. After deciding to join the tree, each robot performs a phototactic behavior for
a short time. Here this is a zigzag movement pattern towards the light, as the light
perception issue (described in Section 3.2.1) prevents a reliable sensor reading when
the Kilobots are moving straight.

When robots join the tree structure, they start to perform a phototactic behavior,
see Fig. 3.6. Given light intensity thresholds θlow and θhigh, the robots turn right if
they sense a light value less than θlow. Otherwise, they turn left until the light value
is greater than θhigh, when the direction switches back to right. This simple motion
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Fig. 3.6 A schematic of a zigzag motion. Red circles show the light sensor and black
arrow is the direction of the robot. Robot turns left when light value is below θlow and
turns right when light value is greater than θhigh. Dotted arrows show the direction of
motion.

results in a zigzag pattern towards the light source. The lower θd = θhigh − θlow is, the
faster the frequency of the turns.

3.2.4 Plant-inspired Directed Growth

Here we explain Vascular Morphogenesis Control (VMC) in more details and de-
scribe how it is implemented.

Details of VMC

The resource distribution in vascular systems of natural plants can be modeled with
VMC. The root (i.e., seed) of a VMC tree has by definition the highest resource and
distributes the resource among its children. Each node of the tree receives a portion
of its parent’s resource (i.e., R) dependent on the vessel thickness V between them,
see Fig. 3.7. Nodes with greater V are more likely to receive higher portion of the
incoming R. Successin S is produced at each leaf of the tree, according to its perceived
light values. Leaves in bright areas have greater S values. As it is sent root-wards,



3.2 Control Approaches 38

seed

S,V

R

bright

dark

moving 

Fig. 3.7 A schematic of a vascular morphogenesis model, which we run on Kilobots.
Positive and negative feedback travel the tree connections between robots, using local
communication to make collective decisions about where to grow.

S levels change V in the connections traversed. Successin S is calculated by

Sleaf← ω0 + ωs Is, and Snon-leaf← ρ ∑
c ∈ Children

Sc , (3.5)

where ω0 and ωs are the constant and sensor-dependent production rates of S re-
spectively, Is is the value of a sensor, ρ is the constant transfer factor, Children is a set
of all children of the considered node, and Sc is the S received from a child node c.
The value of ω0 determines the amount of successin S produced at a leaf regardless
of the environmental conditions, while ωs is a factor for the contribution of sensor
inputs at each leaf to the production of S. To achieve a high sensitivity of leaves,
and subsequently of the full structure, to the sensory input (e.g., light) we set ω0 = 0
and ωs = 1. The value of ρ limits the length of branches, such that higher ρ will lead
to exploitative structures with less adaptivity to changes. Lower ρ results in bushy
structures with more branches, which are more explorative and possibly grow into less
favorable regions. The value of ρ = 0.75 is chosen here for a less exploitative behavior,
modulating the effects of erroneous positive feedback from noisy sensor information.
Successin S tunes vessel thickness V such that

V← V + α(Sβ −V), (3.6)

where α is the update rate of vessels and β is the competition rate. α influences
the speed of adaptation—a high α leads to quick update of the vessel system and
faster reaction to changes in the environment. The downside of high α is sensitivity
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to noise in the environment and sensors. The range is 0 < α < 1. For α = 1 the
vessels are instantly updated according to the successin S passing them. This leads
to instability due to noise and variations in the environment, as well as the intrinsic
delay of information flow in the structure. For α set close to zero, the vessel system is
expected to converge in a constant environment but with slow speed. Here we choose
a moderate α = 0.5, to keep the system comparatively stable while still adapting to
environmental changes with reasonable speed. By setting β = 1, vessels are updated
towards the amount of S that passes them. Thus, the difference in the vessel quality
of sibling branches is directly proportional to the difference between their produced
successin S. The difference in the amount of S, in turn, reflects differences in each
branch’s environment, and in its structural properties such as size (e.g., more leaves
may produce more overall S). β < 0 relaxes competition between siblings by lowering
the differences between their successin S, resulting in reduced sensitivity to differences
in the environment. Values of β > 1 amplify the differences between S values and
encourage competition between siblings. However, if β is too high, a branch with
slightly better environmental conditions attracts problematically many robots, thereby
lowering capacity for exploration of the environment and reducing adaptivity to
change. Here we choose β = 2 to have high competition while avoiding a decrease
in adaptivity. A parent node distributes resource R to its children proportionately to
vessel thickness V, such that

R← Rp(V/Vsum,p), (3.7)

where Vsum,p is the sum of the vessel quality of all children of parent p, and Rp is the
resource reaching the parent. The influence of the above parameters is discussed in
further detail by Zahadat et al. [161].

Implementation of VMC

Inspired by plant photomorphogenesis, here we use the vascular morphogenesis
model to grow adaptive and self-repairing tree structures according to light conditions
in the environment. The seed robot has a fixed ID of 0 and every other robot uses a
one-byte random ID and keeps it throughout the experiment. The birthday paradox
among 70 real and 1024 simulated robots may seem inevitable (i.e., at least two robots
sharing the same ID). We did not perform an exhaustive investigation to evaluate the
drawbacks due to ID conflicts, however our tests with unique IDs for each robot (not
reported here) show a negligible difference in swarm performance. The joining process
used here is of higher complexity than that described above, as the tree structure does
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Table 3.1 Robot’s message protocol
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not necessarily accept a moving robot’s request to join. All robots follow a standard
messaging protocol and ‘narrowcast’ to their neighborhood. As shown in Table 3.1,
the message includes: the light level; whether the robot is looking for a child; a one
bit confirmation message for the listener to join as a child (which is dependent on
several factors, explicitly, whether the listener is a moving robot and is a relevant
candidate to join as a child, its current state, and a notification of completed joining
with confirmation); whether the robot is looking for a parent; a message announcing
intention to leave the tree; the control parameters (S, V, and R); the sum of the
children’s V; the ID; and finally the listener’s ID in the case of a direct communication
channel.

Similar to the directed aggregation procedure, a joining robot has probability Pi to
join the tree, in this case depending on the resource Ri available at the point of entry i,
given by

Pi = Pr
[

X <
Ri

Rroot

]
, (3.8)

where Rroot is the seed resource. If the robot is not saturated and X < Ri
Rroot

, then the
robot is able to get one more child. Accordingly, the seed robot is always able to get
saturated, while another robot with low R might get any children.

A moving robot considers the content of the incoming message only if it comes
from a robot in the tree. Our implementation allows the robots to join and leave the
tree structure at any time during the experiments. The possibility of Kilobots pushing
each other is reduced by triggering low speeds in the case of close proximity to the
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tree. When a robot gains a new child, a direct communication channel is established
by incorporating the listener’s ID in the message. After receiving the confirmation
message from a potential parent robot in the tree, the respective joining robot finalizes
the process and joins the tree. The parent and child continually update their parameters
as long as the connection is available. If this communication line breaks and either
of them is not able to hear from the other one, the child robot will trigger the leaving
process. The parent robot removes the child from its list and attracts moving robots
again. The leaving robot ignores incoming messages for a given time period in order
to leave the area. While updating the VMC parameters, resource R is also compared
with the threshold. Leaving can also be triggered by a lack of resource R, when R is
below the threshold for five iterations in a row. The simplified algorithm used for our
plant-inspired self-assembly is explained in Alg. 1.

ALGORITHM 1: Pseudocode for self-assembly using VMC
while true do

measure light
send message
if in walking state then

move randomly
if message received then

if from tree and confirmed then
stop
join tree

else if from walking or saturated agent then
turn;

else
// in tree
calculate VMC parameters
if R < threshold then

leave tree
reset

if message received then
if from potential child and not saturated then

add child to children list
else if from child or parent then

update VMC parameters
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(a) original image (b) gray scale image from a* channel

(c) threshold on gray image (d) merged 3 frames

(e) threshold on merged frames (f) blobs detected

Fig. 3.8 Image from an experiment (a), after converting to CIELAB color space and
then to gray scale, before (b) and after thresholding (c). By merging three consecutive
images from a video (d) and applying another threshold LEDs of robots in the tree are
visible (e). A blob detection method then helps to count robots in tree (f).
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Asynchronous communication disrupts information flow through the branches
of the tree, that is crucial in VMC for self-organized control of the growth process.
Parameters need time to traverse the tree structure and sudden changes demand
further verifications to ensure that the tree does not collapse. For instance, while adding
a new child the vessel thickness Vi of a robot i may lead to Vi > Vall, which means that
the resource R received by the children should exceed that of the parent—however,
this is impossible. In our implementation, we prevent these unstable conditions
by giving a time buffer and applying some constraints when assigning resource R.
Another example of our VMC modifications is specifically relevant for the site selection
experiments (Section 3.1.2), where the tree should be able to spread and explore, despite
a lack of sucessin S in the environment. For this case, we allow an even distribution
of R when none of the children can supply successin S to the tree. This allows the
tree to expand in a dark environment, so that it can explore until it finds an S-rich
environment somewhere else. Similar to natural plants, the tree structure continuously
grows regardless of its state and size. Therefore, the tree regrows damaged portions,
adapting to any environment changes in the meantime.

3.3 Analysis by Image Processing

An overhead camera records the experiments. We extract frames from recorded
videos and monitor robot movements over time using OpenCV library [110] in Python.
The goal is to detect the robots that are part of the tree structures at any given time.
We need a set of image processing techniques to detect the robots in videos. The
most challenging experiments to process the images from directed aggregation due to
gradient light distribution which makes it hard to distinguish robots’ LEDs in various
light conditions. Fig. 3.8 shows the steps of processing images of a directed aggregation
experiment. First we convert the original BGR color space to CIELAB to better isolate
the color of LEDs from the background. CIELAB is a color space that is defined by
three values: L* for the lightness from black to white, a* from green to red, and b*
from blue to yellow. We only use the red channel—a*—and convert the resulting
image to gray scale. A Gaussian filter then helps to eliminate the noise, see Fig. 3.8(b).
Afterwards, we apply a threshold to certain regions of the image depending on the
brightness, to extract foreground areas—that show the LEDs of the robots—from the
darker background. By inverting the colors (black to white and white to black) we
get the brighter LED colors as black points in the image, see Fig. 3.8(c). We merge
three consecutive images of the video, see Fig. 3.8(d). Afterwards, a global threshold
is applied to exclude moving robots, see Fig. 3.8(e). Only the LEDs that belong to



3.3 Analysis by Image Processing 44

stationary robots remain in the image. A blob detection algorithm then counts blobs
that represent LEDs of stationary robots, see Fig. 3.8(f). As only robots that are part
of a tree maintain their position (excluding any stuck at arena corners), stationary
robots provide a metric to measure the number of robots in the tree structure. We also
generate heatmaps from the footprints of the robots over time to track densities of
aggregated robots. Areas with denser footprints indicate longer maintained positions,
while sparser regions indicate that the robots left more quickly.



Chapter 4

Results and Analysis

4.1 Metrics and Evaluation Methods

In the collective leader selection experiment the seeds should ideally emerge at the
darkest points of the arena. According to the light distribution in this experiment
(Section 3.1.2) the far top right or bottom right corners are the darkest points of the
arena. As a metric to evaluate leader selection, we calculate the distance between the
emerged seeds and the ideal darkest points (shown as D1 and D2 in Fig. 4.1(a)), and
take the lower of the two values. The theoretical best for this distance is zero.

We use the growth direction as a metric for directed aggregation, adaptation, and
site selection experiments. The direction from the seed towards the desired area can
serve as the best theoretical growth direction (shown as θbest in Fig. 4.1(b)). We find a
vector with θr from the x-axis that passes through the aggregated tree from the seed,
such that the sum over the distances of the robots in the tree from the vector is the
minimum, compared to any other vector passing the seed in any direction. We use
least squares polynomial fitting to find the angle θr

θr = argmin
θ

N

∑
i=1

(yi − xi tanθ)2 , (4.1)

where N is the number of robots in the tree, (xi,yi) are the x and y coordinates of the
robots, and θ is a growth direction. Potential fitting lines, with θ angle from x-axis,
can be presented as y = x tanθ as the intercept for the lines that cross through the seed
at (0,0) is zero. Squares of the vertical offsets between fitting lines (xi tanθ) and yi are
summed over all robots and the θ value that minimizes the sum is used as the growth
direction θr. After calculating θr from Eq. 4.1, we can measure the angle α between θr
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Fig. 4.1 A schematic of metrics for evaluating collective seed selection (a) and directed
aggregation (b) experiments. (a) shows D1 and D2 to measure the distances between
the selected seeds and the darkest points in the arena. In (b) θr shows the direction
of the growth and θbest is the ideal growth direction towards the light source. The
difference between θr and θbest is shown as α.

and θbest, see Fig. 4.1. The deviation (α) is ideally minimized during the aggregation
process, with a theoretical best equal to zero.

In order to quantify the performance of the robots in recovering from damage in the
self-repair experiment, we compare the maximum tree size before and after damage.
An equal or even increased tree size after damage indicates a high quality of self-repair.
Therefore, the theoretical best is any value equal or greater than one. At the end of this
chapter, table 4.1 shows the results evaluated with the metrics mentioned above.

Besides the formal methods introduced for evaluating the performance, we also
observe the frames taken from the videos to better understand the behavior of the
swarm. Another method to measure the performance of the self-assembly is to analyze
the formed tree structure. We use the tree size over time as a metric to evaluate the
aggregation process. We also generate heatmaps from robots’ footprints to learn about
the motion pattern of the robots throughout the experiments.

4.2 Results

For the leader selection and directed aggregation experiments, we present the results
from eight repetitions on real robots. We performed eight repetitions for the adaptation
experiment, six repetitions for the site selection, and six repetitions for the self-repair
experiment, all with real robots. The results of these real robot experiments and 20
simulation runs for each experiment are reported in this section.
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(a) 2 min (b) 18 min

(c) 27 min (d) 34 min

(e) 38 min (f) 40 min

(g) 45 min (h) 54 min

(i) 60 min

Fig. 4.2 The seed selection and directed aggregation over time, in one experiment.
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4.2.1 Collective Leader Selection and Directed Aggregation
For leader selection, the robots should collectively find the
darkest area in the arena and select a leader as a seed of the
tree structure. In all eight repetitions the swarm succeeds
in collectively deciding on a seed robot and location. The
results show that, in our arena of size 84×135 cm2, the average
distance between the emerged seeds and the ideal points was
41.2 cm.

In the next phase, the robots have to build a structure towards
the light source. The results show that the swarm succeeds
in all eight repetitions of the experiment to aggregate a static
tree structure that is correctly directed toward the light source.
Nine frames of a selected experiment show the process of the
seed emerging and initializing the tree structure in Fig. 4.2;
from randomly moving robots in Fig. 4.2(a) to the emergence

of a tree structure in Fig. 4.2(i). The RGB LEDs of the robots signal their depth in the
tree. In Fig. 4.5 the final tree structures of all eight repetitions of directed aggregation
experiment are highlighted, with the seeds from the collective seed selection task
marked with thicker green circles. The lines drawn between the robots help to see
the formed tree structure. In one of the repetitions (shown in Fig. 4.5(d)), two seeds
emerge in the same arena. One seed emerges earlier, allowing the majority of the
moving robots to join its tree before the second seed emerges.

Sparse

Dense
Fig. 4.3 A cumulative heatmap of all eight repetitions of seed selection and directed
aggregation experiment showing the density of robots’ footprints over time.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.4 Heatmaps of each seed selection and directed aggregation experiment, indi-
vidually.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4.5 The final frames from all seed selection and directed aggregation experiments,
showing the end positions of the robots.

One of the seeds is farther away from the dark arena corners, and we consider
this seed in the calculation of average distance to ideal points. In some cases, the
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connection lengths are longer than the communication range of Kilobots. For example,
in Fig. 4.5(h) one edge length exceeds 15 cm which is longer than the communication
range among Kilobots. This is because of other moving robots that pushed a robot
away from its parent. Since the trees in this experiment are static, a continuous
communication among the nodes of the tree is not necessary and once a robot joins
the structure, it does not need to communicate with its parent anymore—messages
coming from the parent are ignored. However, for adaptation, site selection and
self-repair experiments the tree structures are dynamic and maintaining a reliable
connection is critical. As seen in Fig. 4.5, the structures formed by directed aggregation
demonstrate a phototropic behavior, growing trees leftwards towards the light source.
The collectively selected seeds are capable of attracting the majority of moving robots
to join their subsequent tree. The footprints of the robots in all eight repetitions are
shown as heatmaps, individually (see Fig. 4.4) and cumulatively (see Fig. 4.3). Robots
that do not join or join at later stages leave shading from their movements, mostly
concentrated at the left side. Robots that get stuck while trying to move against a wall
or corner leave darker shading at most spots on the arena boundary, except for the
right-hand wall. Robot presence is sparser at the right side because the seeds emerge
there, and robots close to a seed join the tree early in the experiment. As the trees
grow towards the light source, progressively more robots aggregate and join the tree
structure. Fig. 4.6 shows that the tree size during all repetitions of the experiment
increases over time. The blue area indicates the range between the upper and lower
quartiles of the tree sizes and the median is shown with a blue line. Based on the
deviation metric α (explained in Section 4.1) our results give an average of 18.15° for
eight repetitions of the directed aggregation experiment.
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Fig. 4.6 The number of robots in the tree from all seed selection and directed aggre-
gation experiments. The median tree size—blue line—increases with time while the
swarm is electing the seed and growing a structure towards the light source. The
shaded area indicates the lower and upper quartiles.
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4.2.2 Adaptation to a Dynamic Environment
In this experiment, the robots have to grow a dynamic tree
structure that builds a structure in the brightest location avail-
able in the arena and adapts if the light conditions change. In
each of the eight repetitions of experiment with real robots,
the swarm succeeds in growing a tree in the correct direction,
and then succeeds in adapting to the environment reversal
by dissolving its now obsolete tree and growing a new one
in the opposite direction. Figs. 4.7(a, b, e, and f) and 4.8(a, b,
and e) demonstrate how the swarm reacts to changes in the

light conditions in a selected experiment. The graph representations plotted in
Figs. 4.7(c, d, g, and h) and 4.8(c, d, and f) illustrate the logical tree of the grown
structure, at the corresponding time step. Initially the swarm contains only a seed
robot, forming the root of the tree structure (Fig. 4.7(a)). For 200 seconds the tree grows
rightward toward the bright zone (Figs. 4.7(b and e)). During 200 s < t≤ 400 s the light
conditions transition gradually, to the opposite configuration which is maintained for
the experiment remainder (t ≤ 600 s). As a result of the light transition the swarm
adapts itself, adding and removing robots to the tree, keeping the majority of nodes
exposed to brightness. The effect can be observed in Figs. 4.7(a, b, e, and f) and 4.8(a, b,
and e), as the structure follows the brighter zone. In the graph representation plots
of the trees, the white nodes indicate robots in the structure that are concurrently in
the bright area, while the gray and dark nodes represent those in the gray and dark
areas. The majority of the tree comprises white nodes at every time step, indicating
the effectiveness of our approach in achieving adaptive self-assembly.
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(a) t = 0 s (b) t = 100 s

(c) (d)

(e) t = 200 s (f) t = 300 s

(g) (h)

Fig. 4.7 Frames (a, b, e, and f) from one adaptation experiment, demonstrating the
swarm’s adaptation to dynamic light conditions in the environment. Graph represen-
tation plots (c, d, g, and h) of the assembled trees are shown under the corresponding
frames. The brown node in the graph is the seed (root) and the nodes shown in gray,
black, and white refer to the robots in the gray, dark, and bright areas respectively.
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(a) t = 400 s (b) t = 500 s

(c) (d)

(e) t = 600 s

(f)

Fig. 4.8 Frames (a, b, and e) show the rest of the adaptation experiment partially
reported in Fig. 4.7. Graph representation plots (c, d, and f) of the assembled trees are
shown under the corresponding frames.
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Using image processing (as explained in Section 3.3), we count and plot the number
of robots in the tree structure during the experiments, see a selected experiment in
Fig. 4.9 and all eight repetitions of the experiment in Fig. 4.10. We use a sliding average
to smooth the curve but Fig. 4.9 shows also the raw data as scattered points (every fifth
value). The median sizes of the right (red) and left (blue) tree from all eight repetitions
of the experiment are shown in Fig. 4.10 as well as shaded areas indicating the upper
and lower quartiles. For the first 200 seconds, the tree size is substantially bigger in
the bright right-hand zone as expected. For the next 200 seconds (200 s < t ≤ 400 s),
the tree gradually disassembles, as robots leave the tree, causing a noticeable drop
in the tree size. During the final 200 seconds (400 s < t ≤ 600 s), the now bright
left-hand zone contains the majority of the tree structure. The robot footprints from all
eight repetitions of the experiment are additionally plotted in a heatmap to show the
occupancy of the robots in the arena over time, see Fig. 4.11. Here, we examine the
cumulative distribution of the robots by superimposing all frames of all repetitions,
excluding the gray buffer that divides the right and left zones. The dense spots around
the boundary show a few robots that get stuck at the corners or walls. The trees in the
right zone leave denser footprints than those in the left, because the first trees grown
in the experiments get bigger than those grown after adaptation. The two halves of
each experiment have the same duration, but in the first half the robots travel freely in
the arena from randomly distributed starting positions, giving them a higher chance
to find the growing tree structure.
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Fig. 4.9 The number of robots in the tree during ‘adaptation to a dynamic environment’
experiment on N = 70 real robots. A single experiment with blue for the left and red
for the right side. The green area shows the transition phase. The shaded areas indicate
the lower and upper quartiles.
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Fig. 4.10 All eight repetitions of ‘adaptation to a dynamic environment’ experiment on
N = 70 real robots.

In the second half—in addition to many robots starting on the unfavorable side
instead of being distributed evenly—some robots have already become stuck at the
arena boundary during the first half, giving them a lower chance to find the new tree.
This explanation is supported by the tree size observed in Fig. 4.10, where the gap
between the size of the tree on the left and right sides is much larger during the first
half than during the second. For a performance metric, we define the ideal growth
direction for the first phase to be straight towards the right of the arena, and for the
second phase to be straight towards the left. Similar to the previous task, deviation
from the theoretical best is calculated for all repetitions. The results show the average
deviation α to be 14.21° in the robot experiments. In simulated experiments of the
same setup, a swarm of 1024 robots demonstrates the scalability of our adaptive self-
assembly method. Fig. 4.12 shows that in the beginning the number of robots in the tree
structure—located at the bright side, right-hand—is rising over time (t < 1440 s). After
the environment change, the tree dissolves from the right side and moves to the newly
bright left-hand side. The average α for the simulation runs was 15.12°. The results
obtained from the real and simulated robots are consistent and verify the capability of
the swarm to adapt its self-assembled structure to changes in the environment.
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Fig. 4.11 Heatmap of all eight repetitions of ‘adaptation to a dynamic environment’
experiment on real robots.
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Fig. 4.12 Median number of robots in the tree structure over time using 1024 simulated
robots during adaptation experiment. The median values of twenty runs are plotted.
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4.2.3 Collective Site Selection
For accomplishing the task for this experiment, the robots
have to collectively select a site in the arena that is both
brightness and close and they have to adapt to any changes.
In all six repetitions of real robot experiment and all 20
simulated experiments, the swarm succeeds in finding and
selecting the more advantageous site and succeeds in adapt-
ing its choice after changes in the environment. Fig. 4.13
shows the process of site selection. During the first phase
the rightward zone is closer to the seed than the leftward,

making the left area harder to reach even though they are equally bright. Therefore, as
seen in Fig. 4.13(b), the swarm collectively decides to build a tree structure rightward.
In the second phase, the gap on each side of the seed is equal, but the rightward zone
becomes less bright. As a result, the tree disassembles and rebuilds itself leftward.
This shows that our control method not only succeeds in choosing the closest of two
bright sites and in distinguishing between the quality of two equally near sites, but
also is sensitive enough to balance the factors of quality and proximity and adapt
its structure appropriately. Fig. 4.14 shows the number of robots that reach each lit
zone, for a single experiment in Fig. 4.14(a) and all six repetitions of experiment in
Fig. 4.14(b). These further support the swarm’s change of preferred site due to changes
in the environment. Similar to the experiments above, we also provide heatmaps
of the results, in Fig. 4.16, with one repetition in (a) and (b) and all repetitions of
the experiment in (c) and (d). Fig. 4.15 gives the results of the simulated collective
site selection experiment, which match our results with real robots, demonstrating
scalability of our collective site selection to 1024 robots. The ideal growth directions are
similar to the previous task, and the results show the average deviation α to be 9.64° for
the real robots, and α = 10.37° for the simulated robots. Low deviation angle α for both
real and simulated robots show that the swarm was able successfully grow structures
towards the ideal growth directions despite the change in the light setup.
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(a) t = 0 min (b) t = 1.7 min

(c) t = 10.7 min (d) t = 12.7 min

(e) t = 19.7 min

Fig. 4.13 Frames of one experiment of collective site selection. The tree explores past
the dark area to find the closest (b) or brightest (e) of the available sites with 70 robots.
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(a) one experiment; tree nodes in brightness
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Fig. 4.14 In the collective site selection experiment, the number of robots in the tree
structure that are positioned within one of the bright areas—right area (red line) and
left area (blue line), for one repetition (a) and for all six repetitions of the experiment
(b) with 70 robots.
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Fig. 4.15 Median number of robots in the tree structure during site selection simulation
experiment (20 runs) with 1024 robots.
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Fig. 4.16 Heatmaps of the tree structures from the collective site selection experiment.
Denser areas belong to the robots that stayed longer in the tree.
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4.2.4 Self-repair of Damage

In this experiment, the swarm is expected to repair the
structure after a damage. The damage can be so severe
that most parts of the self-assembled tree structure is af-
fected. Here we evaluated the results to see if the swarm
was able to recover and rebuild the tree structure. In
all six repetitions of the self-repair experiment on real
robots, and in all 20 on simulated robots, the swarm suc-
cessfully regrows its tree structure after the majority of it
is damaged. A dark bar is projected in the bright area of

the arena, to simulate damage by ‘cutting’ the structure self-assembled by the swarm.
Fig. 4.17 shows the heatmaps of these same experiment stages.

0 42 84

(a) before ‘cut’

0 42 84

(b) ‘cutting’

0 42 84

Sparse

Dense

(c) self-repair

Fig. 4.17 Heatmaps of six repetitions of self-repair experiment cumulatively. The tree
structures’ footprints before (a), with (b), and after (c) the ‘cutting’ bar.
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(a) before ‘cut’ (b) ‘cutting’

(c) (d)

(e) self-repair

(f)

Fig. 4.18 Frames (a, b, and e) of the self-repair experiment with 70 real robots. Regular
directed growth before the cut, t ≤ 200 s (a); damage occurs with a projected ‘cutting’
bar, 200 s < t≤ 400 s (b); the swarm self-repairs by regrowing the cut structure, t = 600 s
(e). Corresponding graph representation plots of the three frames (c, d, and f).
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Fig. 4.19 The median number of robots in the tree structure during six repetitions of
self-repair experiment on real robots.
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Fig. 4.20 Median number of robots in the tree structure over time using 1024 simulated
robots during self-repair experiment. The median values of twenty runs are plotted.

Fig. 4.18 shows a formed structure before projecting the dark bar (t = 200 s), then at
the presence of the dark bar (200 s < t ≤ 400 s), and then at the end of the experiment
(t = 600 s). The tree successfully adapts itself to the bright area between the seed and
the ‘cutting’ bar and repairs itself after the barrier is lifted. The decreased tree size
after projecting the ‘cutting’ bar in Fig. 4.19 shows the damage and recovery processes,
until the tree grows again. The results obtained from simulation further support the
self-repair capability of the swarm, see Fig. 4.20. The blue area demonstrates the
median number of the robots in the tree structure in twenty simulation runs. The tree
size suddenly drops around t = 1440 s when it is exposed to the ‘cutting’ bar. Soon
after lifting the bar, the damaged area of the tree structure grows back, repairing the
self-assemblage. The ratio of the median tree size after damage to the median tree size
before damage is 1.07 for the results of the real robot experiment. This demonstrates
the success of the self-repair process in growing these trees back to sizes comparable
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to their pre-damage condition and beyond (ratio of ≥ 1). For the simulated robots,
the tree sizes after damage and before damage are also comparable but slightly below
an expected fully regrown tree, with an average ratio of 0.86. The high values of
the ratio show that the swarm was capable to successfully recover most parts of the
tree structure in simulation and grow even a bigger structure after the damage in
reality.

4.3 Summary

Table 4.1 summarizes the results of our different experiment scenarios with real and
simulated robots. The table shows that on average the seeds emerged close (41.2 cm)
to the darkest spots, for the seed selection task. For the tasks of directed aggregation,
adaptation, and site selection, we evaluated the deviation of the overall direction
of the tree growth from the optimal direction. The average angles of deviation for
these scenarios do not exceed 18.15°, indicating reasonably successful and consistent
adaptation of growth to environmental conditions. In the self-repair task, we measured
how much of the tree was regrown by looking at the ratio of size (after damage to
before damage) and find that our system recovers well.

Table 4.1 Used metrics to evaluate the performance of the swarm in each task.

Experiments Metrics
Scenario Type Value Desired Type

Seed selection Reality 41.2 cm 0 cm Distance (smaller better)
Directed aggregation Reality 18.15° 0°

Adaptation
Reality 14.21° 0°

Simulation 15.12° 0°

Site selection
Reality 9.64° 0°

Simulation 10.37° 0°

Angle α (smaller better)

Self-repair
Reality 1.07 ≥ 1

Recovery (bigger better)
Simulation 0.86 ≥ 1
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(a) t = 0 min (b) t = 9.5 min

(c) t = 19 min (d) t = 28.5 min

Fig. 4.21 The initial four frames (see Fig. 4.22 for later frames), when shown every
9.5 minutes, of a tree structure formed by 1024 simulated robots during a self-repair
experiment. These initial four frames show the initialization (a), early growth (b), later
growth (c), and finally damage (d). Resource levels from high to low are green, red,
cyan, purple, yellow, and white. Robots in black are not part of the tree structure (LED
off).
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(a) t = 38 min (b) t = 47.5 min

Fig. 4.22 The ending two frames (see Fig. 4.21 for earlier frames) show the repair (a,b)
that occurs after the earlier damage.

4.4 Future Work

We have seen in Section 4.2.1 that our honeybee-inspired approach to leader selection
may in some cases result in selecting multiple seeds in one setup. Although the growth
of multiple trees is not problematic in our current experiments, future work might
investigate how multiple tree structure can interact with each other. There can be
competitions between tree structures until a few or only one structure remains. The
tree structures can also cooperate and increase the performance of the self-assembled
structure. Another aspect that needs to be considered is that our leader selection
experiments have been calibrated to certain light conditions. Robot swarms can adapt
themselves to different light thresholds according to the swarm’s collective sensor
inputs [151]. Similarly, future work can add more adaptivity to the system by adjusting
light thresholds dynamically.

In our coral-inspired approach to growth of static DLA trees, the rate at which indi-
vidual robots join the tree decreases as the experiment progresses. Higher performance
in later growth stages could be investigated in future work on self-reconfigurability,
robot adapting to the density sensed in the swarm [153].

Robustness is a challenging feature in robot self-assembly. Our proposed approach
assembles the robots into branches of a tree (or directed acyclic graph), which are then
used as lines of communication, organizing message passing from robot to robot. Part
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of our robustness challenge is that our relatively involved communication protocol
includes a number of robot states (e.g., request to join, confirmed to join). Due to
asynchronous communication, pairs of robots can be in any combination of these
states at a given time. An explicit consideration of all possible faulty combinations
is not feasible. Instead we require robots to conclude their communications within
given time windows. If no message is received within the time window, the respective
branch of the tree may break and all robots of that branch leave.

With increasing tree size—that is number N of aggregated robots—the depth of
the tree increases with O(log N) and the lines of communication increase accordingly.
In this regard our approach is certainly limited in its robustness. Future work may
investigate whether the weights of graph edges between robots can adjust not only
according to resource distribution and vascular patterning, but also according to
the density and proximity of neighboring robots. If several robots aggregate closely
next to each other, they might reasonably be considered equal and redundant in
terms of the logical tree structure, providing increased robustness via multiple lines
of communication per branch. This would even resemble the biological system of
vascular patterning and photomorphogenesis more closely.

We have shown in simulation that our approach to adaptive self-assembly scales to a
magnitude of 103 robots. Similar to the above consideration, the round-trip delay time
between a leaf robot and the root robot increases with O(log N). These longer point-to-
point communication times reduce the rate at which the tree structure can respond to
changes in the environment. This speed of communication can be incorporated as a
requirement, instead of being accepted as a limitation on scalability. Typically, the rate
of communication will be within one second, while changes in the environment would
typically occur over at least several minutes. Still, there seems to be no easy fix and
only a more decentralized organization of the tree could help to introduce maximal
scalability.

A common issue encountered with Kilobots is the challenging avoidance of corners
and walls, as they have a tendency to form clusters there. There are several methods in
the literature to deal with this tendency, such as the use of beacons [146], a specialized
arena [149], or a sophisticated distribution of light that reflects wall placement in
the environment—although our setup already includes the full light spectrum the
Kilobot can utilize. We follow a simpler approach of a random walk. This reduces the
tendency to cluster at walls as well as the duration of time spent there, but does not
entirely eliminate the occurrence of these clusters. In our experiments, the Kilobot light
sensor places some limitations on our implementation (see Section 3.2.1). The Kilobot
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hardware could be modified in future work to improve light perception, by attaching a
light-sensitive diode with through-hole mounting to the board (similar to the original
design) and covering up the current light sensor—as suggested in [45]. A new plugin
for the ARGoS simulation software with Kilobots has been introduced [114], which
improves interchangeability between implementations on real and simulated Kilobots,
as compared to Kilombo. Therefore, future work may proceed using ARGoS.



Chapter 5

Towards Embedded Systems for
Self-Assembly

After investigating adaptive bio-inspired self-
assembly, in this chapter we discuss our prelim-
inary steps towards self-assembly of robots in a
bio-hybrid system. As discussed in Section 2.2.3,
designing hardware that is capable of forming a bio-
hybrid system with natural plants is challenging.
We propose our solutions using robots with flexible
electronics-embedded boards that react to the envi-
ronment. We propose several hardware solutions
using multiple prototypes. However, reaching the

full potentials of our hardware approach requires further designs and experiments
that go beyond the scope of this thesis. We point out further improvements of the
hardware for future refinements. A robot that can form a bio-hybrid with natural
plants has to be able to act as a scaffold and support the plant in its growth process.
One way to avoid harming the plants and supporting them is to design the body of
the robot to be soft and flexible. Sensing the environment and ideally, preserving the
plant, can be additional features of such a robot. We propose braided structures with
electronics-embedded filaments to form a bio-hybrid with plants. Braided structures
can be made partially or entirely from flexible electronics-embedded filaments that
can be switched on (active) and off (passive) to act as scaffolds.
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5.1 Active Filament in a Braided Structure

Fig. 5.1(b) shows a schematic of braiding a set of filaments into a structure. The
green filament shows an active filament—electronics-embedded—in the structure.
Our first physical prototype of an active filament in a braided structure is shown in
Fig. 5.1(a). It is a simple filament that is later interwoven into a braided structure
(see Fig. 5.1(b)). The filament has eight analog light sensors that are connected to
a RaspberryPi-3 (model B) at one end. The light values are continuously logged.
The experiment designed for this filament is to provide a feedback on the process
of braiding. Fig. 5.1(b) shows a braiding process. Interweaving filaments stiffens
them as the braid starts to form. A complete braided structure is static (upper part in
Fig. 5.1(b)). Fig. 5.1(b) also shows the part that is not yet braided (dynamic section). As
the braiding proceeds, the braided structure (static part) gets bigger while the dynamic
part becomes smaller. We try to monitor the progress of braiding by using the ambient
light sensors on the active filament. We assume that moving a filament causes a change
in the light values of its sensors. As the braiding proceeds, part of the filament that is
fixed into a braided structure (static part) perceives fixed light values. Therefore, the
progress of braiding can be measured by counting the number of sensors that show
constant light values.

We refined this prototype and provided an event-based synchronization among
a set of braided structures with active filaments. The aim was to allow humans to
walk in a space with plants and large-scale braided structures with the height of
approximately 2 m (see Fig. 5.2). The idea was to synchronize the braided structures
that detected the human presence in the environment and signal that with the LEDs
mounted on the filament. Each filament had four ultrasonic proximity sensors and
four RGB LEDs connected to a RaspberryPi with a ribbon cable. We created sixteen
active filaments, two for each braided structure. The filaments were then manually
interwoven to large scale braided pillars. Each proximity sensor stored the distance
of the object in front of it. Whenever the proximity sensors detected a change, it
meant that a moving object—in our system, a human—was approaching a braided
structure. RaspberryPis attached to the filaments were registered in a local wireless
network using global communication. An event was triggered when a RaspberryPis
on the filaments detected a proximity. The RaspberryPi would then check its network
and look for a similar event from other filaments. The filaments with similar events
then synchronized their LED blinking to indicate that all of them were triggered by a
moving object at the same time. After a predetermined interval, the LEDs went back
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to random blinking mode and the synchronization between the two RaspberryPis was
stopped.

(a) an active filament

Braiding 

Active 
filament 

Passive 
filament 

Static

Dynamic

(b) schematic of braiding with an active filament (c) braided structure
with an active filament

Fig. 5.1 A simple embedded-sensor filament braided into a structure.
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(a) (b)

Fig. 5.2 Active filaments deployed in large scale braided structures

5.2 Modular Soft-body Filaments

In the next step we investigate the flexibility of filaments as a primary design
requirement. We look into designing modular flexible filaments with printed circuit
boards that can process data, sense the environment, and communicate with each
other.

5.2.1 Material

In our search for a suitable material for filaments, we started by considering woods.
We cut the 3 mm thick Plywood strips with a laser cutting machine to create a hinge
in different patterns. Fig. 5.3 shows six different patterns together with a mock-up
of a braided structure with interwoven wooden filaments. An advantage of using
wood instead of other substrates (e.g., plastic) is that it comes from natural plants and
it can be a suitable material for the robotic component of a bio-hybrid system with
robots and plants. However, there are challenges ahead of designing fully flexible
electronic components [83] and printing electronics on any substrate [113], such as
wood. Therefore, we did not use wood but took an alternative approach by embedding
small sized electronic components. This is a feasible approach because the components
are easy to integrate on the board and they are available on the market. Small sized
electronics on a flexible surface do not impose many mechanical constraints. We
printed on circuit boards that are thin and flexible. The material we used is Polyamide
film substrate with 0.2 mm thickness. We used Polyamide films because of their
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flexibility and durability as well as their availability on the market and their low
production cost.

(a) Cutting patterns (b) A braid mock-up

Fig. 5.3 Plywood filaments with different hinge cutting techniques, before (a) and after
braiding (b)

We did not continue to optimize the material selection any further with an exhaustive
study as the requirement was already met with Polyamide films. The boards with the
mounted electronics are flexible enough to be bent without damage. Fig. 5.4 shows
our board bent around a plastic tube with 2.4 cm radius without causing any damage
to the board.

5.2.2 Hardware Design

Fig. 5.5 shows a schematic of filaments forming a tree structure. We propose a
modular design of a filament that can individually process the values of its own
sensors and has connectors at both ends. The filament consists of a processing unit,
a communication protocol and interface, sensors, and actuators. We also added
interfaces for being able to program the processing unit on-board as well as debugging
the running controllers.
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Fig. 5.4 A filament bent around a tube with 2.4 cm radius

Microcontrollers are self-contained systems with at least one central processing unit,
memory, and I/O pins that allow us to easily add a software and use them [61]. We
started with ATmega328p—seen at the center of the board shown in Fig. 5.6(c)—that
is a small microncontroller with 32KB of flash memory and 23 general purpose I/O
lines. ATmega328p microcontrollers have high-performance, they are available on
the market with low price, and they are easy to use [96]. Using ATmega328p also
allowed us to build our prototypes with Arduino UNO—an open-source microcon-
troller board. Arduino UNO can be connected to a personal computer via USB and
can be programmed with a cross-platform and open-source integrated development
environment provided by the manufacturer [4].

Fig. 5.5 A schematic of a tree structure with soft-body filaments. The structure could,
for example, be actuated using embedded artificial muscles.
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(a) PCB design top side

(b) PCB design bottom side

(c) Fabricated flexible board

Fig. 5.6 PCB design of the third prototype showing the top side (a), bottom side (b),
and a picture of a fabricated flexible board with 0.2 mm thickness.

For this prototype, four ambient light sensors were mounted on-board with equal
distance to each other. We used light sensors because: 1) this was consistent to our
experiments with Kilobots where we used light as the environmental condition; and
2) they need only two pins—one for data and one for ground—that helped to create
simple boards with less pins and wires. We have four sensors for redundancy and for
decreasing the noise in sensor values. We used low-voltage digital ambient light photo
sensors that convert light intensity to digital signals that can be directly connected
to our microcontroller. By avoiding any additional analog to digital converters, we
were able to save space on the board and simplify circuit design. We use six In-system
Programming (ISP) pins to upload our program to the microcontroller. Each sensor
requires a unique data line to communicate its values to the microcontroller. The system
is not scalable as the communication is based on a dedicated direct communication
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line. The number of data lines would increase with each sensor. Our sensors allow for
a bus communication system that connects multiple sensors without additional wires
for data lines.

(a) PCB design top side

(b) PCB design bottom side

(c) Fabricated flexible board

Fig. 5.7 PCB design of the fourth prototype showing the top side (a), bottom side (b),
and a picture of a fabricated flexible board.

We use an Inter-Integrated Circuit (I2C) bus communication with two lines that
go through the entire board. Together with the power input (VCC) and the ground
(GND), there are four lines on each board. At each end, an interface with four pins are
available to communicate with other filaments. Fig. 5.6 shows the first version of the
board with four pins available as interface at each side. In Fig. 5.7 the next version of
the interface is shown with Molex connectors at each end instead of the pin headers,
shown in Fig. 5.6.
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(a) PCB design top side (b) PCB design bottom side

(c) PCB top side (d) PCB bottom side

Fig. 5.8 PCB design of the hexagonal power supply. Designs from the top side (a) and
bottom side (b) with the pictures from fabricated PCBs (c and d).

Flat Molex connectors are compatible with a four-pin ribbon jumper cable, that
slides into the connector. With a sliding lock mechanism, the cable is held in place. In
the first version, shown in Fig. 5.6, we have one LED for each color red, green, and
blue. In the second version, we save space and decrease the complexity using one RGB
LED instead.
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(a) Design of a debugging board (b) A debugging board

Fig. 5.9 PCB design (a) and a fabricated debugging board (b).

The next challenge is the power supply. We can provide the required 5 V power
through one end of the filament. However, disconnecting a board connected to the
power supply would turn off all the other boards as well. Therefore, we proposed
hexagonal port boards with a battery connected to one side (see Fig. 5.8) to connect
filaments together and supply power as well. A paper clip is cut and soldered to
the board to hold the battery. This way we avoid a big battery casing that would
have limited the flexibility. We failed to find a supplier for flexible batteries as several
companies refused to offer these products to research groups for academic purposes.
Therefore, we kept the rigid structure for hexagonal ports in this work. The hexagonal
shape of these boards with four Molex connectors can be used to form tree structures
using one connector for input and three others for further interfaces.

Fig. 5.9 shows a debugging interface that can connect two filaments and allows to
debug the data of the connection. A tree structure formed by a set of filaments as well
as the power supply and debugging boards are shown in Fig. 5.10. To have an easy
access to the boards via a PC, we placed an Arduino UNO next to the tree. In our
prototype, four control pins of the microcontroller are still available. We put a line
from these four pins to the corners of the board to make them accessible (see Fig. 5.7)
for interfacing further electronics without redesigning the board.
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Fig. 5.10 A tree structure formed by rigid electronics-embedded filaments.

5.3 Artificial Muscles

In this section we report our investigation of actuation in the form of contraction and
expansion of filaments. Servo motors are a common form of actuation used in robotics
but not suitable for our application due to their size and rigid bodies. Instead, we
selected artificial muscles to provide actuation to our filaments as they are inexpensive,
flexible, and easy to fabricate [51]. We coiled a Nichrome wire around a fishing line
made of Polyamide 6 (aka Nylon 6) and then twisted the line to form a fiber (see
Fig. 5.11). According to Joule’s first law running a current though an electric conductor
produces heat [29]. Polyamide 6 contracts when heated. This effect can be increased
by twisting the fiber that then coils. Running a current through Nichrome wires
produces heat that contracts Polyamide 6 [51]. The result is a fiber that contracts when
heated and expands while cooling down. This provides the actuation we need on the
filaments. We call the fibers artificial muscles and refer to them also as muscles. The
idea is to use muscles as inexpensive and light-weight actuators of the filaments. We
tested several muscles from 0.12 mm Nichrome and Polyamide 6 of diameters 0.3 mm,
0.5 mm, and 0.8 mm.

During the process of twisting, a load is attached to the fiber (250g for 0.5 mm
fiber). This results in a substantially shorter muscle in comparison to the uncoiled
fiber. Coiled fibers achieve lifting of high loads though their stroke—maximum spring
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Fig. 5.11 Coiled muscle with 1.6 mm diameter and 20 cm length

Fig. 5.12 Large diameter coil muscle with 18 mm diameter and 20 cm length

compression distance—which is limited by the distance between adjacent coils. To
insert twist, the fiber is fixed to a motor on one end and to the load on the other end.
The load is fixed in a way that prevents it from spinning while vertical movement is
still possible.

Large diameter coils allow greater stroke distance at cost of a reduced lift weight.
The setup is similar to the coiled muscles. However, to ease the production of non-
coiled muscle fibers the fiber was fixed at both ends. To allow the shortening of the
fiber during twist-insertion (no-coiling), the fiber was installed with about 12.5 cm
overlap. During the twist insertion it was held tight by hand to prevent formation
of coil. The twisted fiber is then wrapped around a metal rod and fixated. Then the
muscle was heated to stabilize the current form. This allows us to produce muscles
with greater distances between adjacent coils and a larger coil diameter. The annealing
process is performed in an oven at 149°C, which is the annealing temperature for
Polyamide 6. Temperature is ramped up by 50°C. The annealing temperature should
be held for about an hour before the cooling ramp down of 25°C. Fig. 5.13 shows a
schematic of the muscle fabrication process. A servo motor at the top spins the fiber
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Servo Motor

Weight

Wire
Fiber

Wrapping

Coiling

Fig. 5.13 A schematic of the muscle fabrication process. A servo motor wraps the wire
around the fiber and after a while the coiling starts to form from the bottom

Fig. 5.14 Muscle prepared for annealing
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Fig. 5.15 Closeup heating wire

and wraps the Nichrome wire around it. A weight at the bottom stabilizes the thread
until the coiling starts to form from the bottom. The coiling progresses towards the top
of the fiber.

Several types of muscles can be created. Homochiral muscle fibers are muscles,
that have matching twist and wrap direction. These muscles do contract when stimu-
lated. Heterochiral muscles, that is, opposing twist and wrap direction, expand when
stimulated. The contraction or expansion of the artificial muscle fibers is achieved by
homogeneously wrapping the muscle precursor with Nichrome heating wire (96.4
Ohm/m) to allow direct electronic control with 2.92 to 7.13 Watt, depending on the
raw fiber diameter and therefore the length of the used heating wire. We set a voltage
of 12 V and let the Nichrome draw 0.2 A current.

During the first minute of running the current through the wire, the length of the
fiber decreases. The length of the muscle does not change afterwards. The current
should not exceed 0.2 A as higher current can damage the wire. Another point to
consider is the wrapping pattern of Nichrome around the polymer. A homogeneous
wrapping improves the actuation performance. We also found out that small diameter
muscles react faster than those with higher diameter.

We did not integrate the muscles with filaments, but we find the use of muscle fibers
made from Polyamide 6 a future direction for actuation of light-weight and soft-body
robots.
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5.4 Summary and Future work

In this section, we summarize our progress in hardware design and discuss several
aspects of the design that can be improved and refined.

5.4.1 Summary

We have designed and created several prototypes of hardware that are relevant for
robot-plant bio-hybrid systems. We have built electronics-embedded boards that are
flexible and called them active filaments. We have shown that these filaments can sense
the environment and use their own computational units to analyze the sensory inputs.
We have shown that our design was able to supply the power distributedly between
different filaments. In order to provide an actuation for the filaments, we created
and tested artificial muscles and investigated various types of muscles. In summary,
we took preliminary steps towards a hardware design for self-assembly with a set of
flexible active filaments.

5.4.2 Future Work

Future work is required in order to integrate the hardware approach. An artificial
muscle needs to be stretched from both ends to maximize the compression in one
direction and to act similarly to a pulled spring. Current versions of our filaments do
not offer enough force if we put muscles along them. Therefore, future design of the
filaments needs to be able to provide the required stretch force. Our hardware design
can also be improved with a low-resolution camera and an orientation sensor.

Using this refinement we can have a model of distributed perception where filaments:
1) use their orientation sensor to localize themselves; 2) receive light-weight 3D models
of the plant inside the braid from their neighbors; 3) rotate the 3D model to their
point of view; and 4) refine the incoming 3D model with the 2D image taken from
their cameras; and 5) propagate refined 3D models to their neighbors using direct
communication via messages. Fig. 5.16(a) shows a schematic of a plant inside a braided
structure with a set of filaments. Fig. 5.16(c) shows our proposed approach on how
a single filament refines incoming models. In this model of image processing, each
filament shares its 3D model with other filaments in its local neighborhood. 2D images
taken from the filament’s internal camera are fed to an image processing algorithm.
Together with the models that come via the messages, the filaments can construct a
3D model. The incoming model is refined with the images taken from the filament
and the internal model is updated. The computed model is again propagated to the
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neighborhood. This approach will allow a swarm of filaments to collectively construct
a model of their environment or the object that they are perceiving.

(a) Side view (b) Top view

Image from 
On-board Camera

Incoming Model

Refined Model

Image 
Processing

(c) Image processing concept

Fig. 5.16 A schematic of cameras on filaments capturing a plant inside a braided
structure from (a) a side and (b) top view. (c) shows our proposed image processing
approach that runs on single filaments. Each filament receives images from its on-board
camera and uses them it to refine incoming models.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

We raised six research questions in Section 1.1 and outlined our contribution for ad-
dressing those questions in Section 1.2. Here we list our contributions and summarize
our work.

1. Leader selection: We described our dis-
tributed bee-inspired approach for leader selec-
tion in Section 3.2.2. We then designed an exper-
iment in Section 3.1.2 and introduced a metric
for evaluating the performance of the swarm in
selecting a leader in Section 4.1. A light distribu-
tion was projected on the arena and the goal was
to find a location near the darkest point of the
surface. Section 4.2.1 shows that the swarm of
50 robots was able to collectively find a location
for a leader in the dark area of the arena. The
average distance of selected leaders from the the-
oretical best position in the arena of size 84 ×
135 cm2 was only 41.2 cm.
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2. Directed aggregation: The next scenario was
to collectively build a structure towards the
light source. We explained our controller in-
spired by the growth process in coral reefs in
Section 3.2.3. Our measure of success is the
closest direction to the theoretical best growth
direction in Section 4.1. Section 4.2.1 shows that
the swarm of 50 robots were able to aggregate
and build structures towards the bright area.
The swarm successfully built the structures and
the average deviation from the theoretical best
direction was only 18.15°.

3. Adaptation to dynamic environments: We
applied a plant-inspired method for control-
ling the swarm and explained the details of
our model in Section 3.2.4. An experiment with
two different light conditions was designed and
tested with 70 real and 1024 simulated robots.
The robots had to grow structures towards the
bright side of the arena, even after changing
the light condition. Section 4.2.2 shows that
the swarm was successful in keeping the struc-
ture adaptive to a dynamic environment, both
in simulation and reality. The average devia-
tion from the optimum direction in reality and
simulation was 14.21° and 15.12°, respectively.
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4. Site selection: In Section 3.1.2 we consid-
ered a more complex scenario where the swarm
needed to adapt and also compare two areas of
interest and select the best site based on qual-
ity and proximity. During the first phase the
swarm grew towards the site that was closer to
the seed. Afterwards, the environment changed
and we offered two equidistant areas where one
of the areas was slightly brighter. As shown
in Section 4.2.3 our approach successfully en-
abled the swarm to select the best sites. The
growth directions were close to the theoretical
best with an average deviation of 9.64° in reality
and 10.37° in simulation.

5. Self-repair: We also tested the robustness of
the self-assembly process. In Section 3.1.2 we
explained the details of our experiment where
a dark bar was projected on the arena to emu-
late a damage of the structure. Section 4.2.4
shows that the swarm successfully recovers
from the damage. In simulation, on average,
86% of the structure was rebuilt. In reality, the
swarm was able to fully recover from damage
and even grow structures that were, on average,
1.07 times the size of the structure before the
damage.



6.2 Future Work 89

6. Concept of electronics-embedded soft-
body robots: Chapter 5 shows the details of
our hardware prototypes and the challenges
that we were able to overcome. We designed
flexible filaments that could monitor the envi-
ronment. We fabricated several hardware pro-
totypes and discussed the features as well as
the limitations of these designs. We showed
the potential of our approach that can create
opportunities for building soft-body robots for
bio-hybrid systems with natural plants.

6.2 Future Work

Here we discuss the limitations of our control methods and point out the oppor-
tunities for further research in several aspects of our self-assembly approach. Our
bio-inspired methods facilitate the formation of tree structures that are adaptive to
dynamic environments. However, there is evidently a limitation on the complexity
of self-assembly possible with the algorithm in its current form. Future work can
improve our methods to cover a broader set of shapes and structures. As discussed
in Section 4.4, self-assembly with a plant-inspired method, VMC, has a limited scal-
ability as the performance of the swarm decreases with larger swarm sizes. There is
a potential for improvements either by modifying the current version of the VMC or
designing new controllers that let the swarm stay adaptive to dynamic environments
and still allow the robots to build structures on short time-scales regardless of the
swarm size. Limitations with the robotic platform that we used—Kilobots—restricted
the possibilities of studying the full potentials of our controller. In future work one
could use other robotic platforms to uncover the capabilities as well as the limitations
of our control methods.

As in many works on robot self-assembly, we also face the problem of how to
implement the next iteration in terms of finding and defining the appropriate hardware
approach. In Chapter 5 we proposed a flexible electronics-embedded approach for
self-assembly in a bio-hybrid system that could operate next to natural plants. Our
proposal offers many directions for future work. A logical next step would be to
integrate actuation to the current hardware prototype. Even though our artificial
muscles are ready to be integrated, the current board design does not provide enough
force to pull the artificial muscles. The pull force is necessary for the artificial muscles
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to operate effectively and actuate the filament. Another direction to improve our
design is to incorporate a camera that would allow us to implement a decentralized
perception explained in Section 5.4. Last but not least, after integrating the actuation
and vision, an inclusive and exhaustive experiment needs to be designed to evaluate
the performance of the active filaments. Future work has to prove that we can govern
the hardware challenges but we also require more advanced studies of self-organizing
control for multi-robot self-assembly.

6.3 Summary

The state of the art in multi-robot self-assembly was mostly limited to form static
shapes (long time-scales of (re)configuration). We have shown a first step into the
domain of short time-scale, highly adaptive self-assembly with more dynamic struc-
tures. We developed control methods for a swarm of robots to adapt to dynamic
environments. The controllers were inspired by organisms that can adapt to changes
in natural environments. Our bio-inspired control approaches were able to guide the
swarm towards a collective decision which was ideal for self-assembling structure in
our designed experiments. The swarm was able to adapt to dynamic environments
and self-repair of damage on a short time-scale.
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