
Parallel Parameterized Algorithms

Max Bannach

From the Institute of Theoretical Computer Science

of the Universität zu Lübeck

Director: Prof. Dr.math. Rüdiger Reischuk

Parallel Parameterized Algorithms

Dissertation

for Fulfillment of

Requirements

for the Doctoral Degree

of the Universität zu Lübeck

from the Department of Computer Sciences

Submitted by

Max Bannach

fromHalle (Saale)

Lübeck, 2019

First referee Prof. Dr. Till Tantau

Second referee Prof. Dr. Heribert Vollmer

Date of oral examination 18. 12. 2019

Approved for printing 06. 01. 2020

v

Abstract

Fixed-parameter tractability is one of the key methodologies of modern algorithm

design and complexity theory. As of today, the most studied resource in this field is

sequential time. In contrast, in classical complexity theory there is a rich literature

concerning parallel processing. Identifying suitable parameters as well as acceler-

ating computations through parallelization both have the same goal: Increase the

solvable fraction of an otherwise intractable problem. It is therefore natural to bring

both fields together by studying parallel parameterized algorithms. In this thesis I

present a rich framework of parallel parameterized complexity classes and develop

a toolbox of basic parallel parameterized algorithms. It will be shown how the core

techniques of parameterized complexity theory can be implemented in parallel – in-

cluding color coding, bounded search trees, kernelization, structural decomposition

of graphs, and algorithmic meta-theorems. Especially the latter two methods lead

to deep insights into the complexity of well-known problems – but I also illustrate

how they can be utilized in practice by presenting two corresponding software li-

braries: One for computing optimal tree compositions and one for model checking

a fragment of monadic second-order logic.

vii

Zusammenfassung

Die parametrisierte Algorithmik ist ein Schlüsselbereich des modernen Algorith-

menentwurfes sowie der Komplexitätstheorie. Die fast ausschließlich untersuchte

Ressource in diesemBereich ist dabei die sequentielle Zeit, obwohl die Parallelverar-

beitung ein zentrales und vielfach untersuchtes Teilgebiet der klassischen Algorith-

mik ist. Sowohl das Identifizieren eines geeigneten Parameters als auch die direkte

Beschleunigung durch Parallelisierung verfolgen das gleiche Ziel: möglichst viele

Instanzen eines an sich nicht effizient lösbaren Problems dennoch zu lösen. Es ist

dahernaheliegend, beideForschungsgebietemiteinander zuverbinden–undgenau

diese Art von Integration ist das Ziel dieser Arbeit. Ich präsentiere eine Vielzahl von

parametrisierten Komplexitätsklassen und entwickle eine Sammlung von paralle-

len parametrisierten Basisalgorithmen. Dabei werden nahezu alle Techniken, die

die parametrisierteKomplextheorie zu bietenhat, von einemparallelen Standpunkt

ausuntersucht – unter anderemColorCoding, beschränkteSuchbäume, Kernelisie-

rung, strukturelle Zerlegungen von Graphen sowie algorithmische Metatheoreme.

Außerdem illustriere ich, wie die letzten zwei Techniken in der Praxis genutzt wer-

den können, indem ich zwei Software-Bibliotheken vorstelle: eine zum Berechnen

optimaler Baumzerlegungen und eine für die Modellprüfung eines Fragmentes der

monadischen Prädikatenlogik zweiter Stufe.

ix

Contents

Abstract vii

Zusammenfassung ix

1 Introduction 1

1.1 Why Parallel Parameterized Algorithms 1

1.2 Results of This Dissertation . 2

1.3 RelatedWork and History . 7

1.4 Organization of This Thesis . 9

1.5 Acknowledgement . 10

2 Structures, Graphs, and Logic 11

2.1 Relational Structures . 11

2.2 Graphs and Decompositions . 13

2.3 First- and Second-Order Logic . 16

3 Background in Complexity 21

3.1 Classic Complexity Theory . 22

3.2 Parameterized Complexity Theory 26

3.3 Differentiation of Parameterized Complexity 30

I Theory of

Parallel Parameterized Algorithms

4 A Toolbox of Basic Parallel Parameterized Algorithms 35

4.1 Finding Maximal Independent Set in Graphs of Bounded Degree . . 36

4.2 Graph Traversal . 39

4.3 Color Coding . 44

5 Parallel Bounded Search Trees 49

5.1 A Short Review of Bounded Search Trees 50

5.2 Modulators and Editing . 51

5.3 Feedback-Vertex Set . 57

x

6 Parallel Kernelization 63

6.1 A Short Review of Kernelizations 64

6.2 Parallel Parameterized Algorithms Equal Parallel Preprocessing . . 67

6.3 Kernelizations for Vertex Cover andMatching 72

6.4 Parallel Kernelizations for Problems Parameterized by Vertex Cover 77

6.5 Computing Hitting Set Kernels in Parallel 81

7 Parallel Decomposition of Graphs 91

7.1 Crown Decompositions . 92

7.2 Treedepth Decompositions . 94

7.3 Tree Decompositions . 95

8 Parallel Parameterized AlgorithmicMeta-Theorems 101

8.1 First-Order Model Checking . 102

8.2 Second-Order Model Checking . 104

9 Outlook and Further Directions 111

II Towards Practice and Back

10 Jdrasil: AModular Library for Computing Tree Decompositions 117

10.1 The Design Philosophy of Jdrasil 118

10.2 A High-Level View on the Library 119

10.3 A SAT-Based Exact-Solver . 123

10.4 Exact Solving via Positive Instance Driven Dynamic Programming . 126

10.5 Parallelization Through Splitting 139

10.6 Experiments and Analysis . 143

11 Jatatosk: A LightweightModel Checker for a Fragment ofMSO 155

11.1 The Aim of Jatatosk . 156

11.2 A High-Level View on the Tool . 156

11.3 Description of the Fragment . 157

11.4 Extensions of the Fragment . 159

11.5 Predicting the Run Time and Experiments 161

12 Outlook and Further Directions 171

13 Conclusion 173

Compendiumof Classes and Problems 177

Experiment Setup 183

Bibliography 183

CurriculumVitae 201

xi

1 Introduction

Computer science is faced with a huge portfolio of interesting problems, most of

which are considered intractable. It lies at the heart of complexity theory to study the

computations involved in solving such problems in order to provide a fine-grained

classificationof problems into those that canbe solved efficiently and those that can-

not. Using such a classification as guideline, it is the task of algorithm design to de-

velop algorithms that solve the problems as quickly as possible, and it is the burden

of algorithm engineering to make these algorithms work in practice. In the following

thesis, I try to develop a new subfield of complexity theory, try to demonstrate how it

applies to the design of algorithms, and try to present its interactionwith algorithm

engineering: the field of parallel parameterized algorithms.

1.1 Why Parallel Parameterized Algorithms

What shall we do if we encounter an intractable problem? We could relax our re-

quirements and use heuristics or approximation algorithms. However, this is not

feasible whenever a non-optimal solution produces unacceptable costs. Many prob-

lems that are intractable from a complexity theoretic point of view can still be solved

efficiently in practice via algorithm engineering. A well-known example is the satis-

fiability problem for propositional logic, for whichmodern tools can solve instances

with millions of variables. How can this be, when the problem in its entirety is so

difficult? The reason is that instances that are solved by the practitioners, and thus

the instances that arise in “real world” applications, are very structured. This insight

is taken back frompractice to complexity theory by the field of parameterized complex-

ity theory. The central idea is to develop parameterized algorithms that try to explicitly

utilize such structures in order to be more efficient.

Parameterized complexity theory provides new research directions, but unfortu-

nately loses a bit of the purity of classical complexity theory, as “the landscape of

complexity classes becomesmuchmoreunwieldy. Thismeans that thenatural prob-

lems tend to fall into a largenumber of apparently different classes.” [85] To counter-

act this effect, Flum andGrohe [85] suggest to use logic, “which can serve as a tool to

get amore systematic understanding of such classes.” Large parts of parameterized

complexity theory can nowadays be stated completely in logical terms. This is yet

another example for “the unusual effectiveness of logic in computer science.” [103]

1

This characterization of complexity theory in terms of logic, a field called descrip-

tive complexity, has another major advantage: “Descriptive complexity is inherently

parallel in nature.” [111] Studying parameterized complexity theory from a logician’s

point of view is, therefore, nothing else than studying parallel parameterized complex-

ity theory. A subject that is very natural to study on its own – just recall that we ar-

rived in the parameterized setting because the problems that we are trying to solve

are difficult, and observe that almost all computational devices available today have

a parallel architecture that may allow for a parallel speedup.

Having anunderstanding of parallel parameterized complexity theory, the next step

is to turn the gained knowledge into parallel parameterized algorithms that we can ac-

tually implement. It will be convenient to describe such algorithms in the language

of Boolean circuits, as on one hand this is the most natural parallel computational

model, and on the other hand such circuits are deeply linked to logic and descriptive

complexity. Once we have specified the computational model and have designed

parallel parameterized algorithms, we can turn back to algorithm engineering and

implement the resulting procedures.

1.2 Results of This Dissertation

In this dissertation, I present a rigorous overview of parameterized parallel com-

plexity theory and develop a rich toolbox of parameterized parallel algorithms. In

both aspects, I will focus primarily on positive results, that is, we will study param-

eterized problems that can be solved efficiently in parallel. In contrast, many previ-

ous works have studied parameterized circuit complexity of intractable problems to

obtain a fine-grained classification of them.

The results split, as this thesis, into two parts. First we concentrate on the design

of parameterized algorithms. Besides a collection of basic parallel parameterized

algorithms that can be used as subroutines in the design of further algorithms, we

study almost all the standard techniques that parameterized complexity theory has

in its quiver from a parallel point of view. It will come to light that the technique of

color coding is a central concept to execute parameterized algorithms in parallel.

Color coding is a randomized technique used to identify small objects in a larger

graph by assigning random colors to the vertices of that graph. The probability that

the objectswe are searching for get a certain coloring depends only on the size of the

objects and the number of used colors and, therefore, color coding naturally leads to

randomized parameterized algorithms. In fact, we can check many random color-

ings in parallel and, thus, color coding also naturally leads to randomized parallel

parameterized algorithms. As first addition to our toolbox we will show that we can

derandomize color coding in parallel constant time:

2

B Informal Version of Theorem 42.

Color coding can be derandomized in para-AC0. C

Equipped with this powerful subroutine we will develop parameterized counter-

parts of many basic techniques from parallel processing. Most importantly, we will

deal with symmetry breaking by solving multiple versions of the parameterized in-

dependent set problem in parallel. In the following table, k refers to the size of the

sought independent set, while ∆ is the maximum degree of the input graph. The

results are proven in Theorem 33, Lemma 46, and Theorem 47.

Problem Complexity

p∆-maximal-independent-set para-AC0+ε

pk,∆-independent-set para-AC0

pk-planar-independent-set para-AC1

(para-AC0 if planarity is promised)

We will study parameterized reachability and distance problems – establishing a

parallel parameterized version of the depth-first, the breadth-first search, and a link

between alternating distance and parallel parameterized complexity theory:

B Informal Version of Theorem 39.

The parameterized alternating distance problem is complete for para-AC0. C

Once we have established the toolbox, we will systematically adapt many standard

strategies from fixed-parameter tractability theory to a parallel setting – starting

with bounded search trees. Algorithms based on this paradigm cannaturally be par-

allelized, as we can handle multiple branches of the search tree in parallel. We for-

malize this intuitionbydesigningaparallel algorithmfora large family ofmodulator

and editing problems, leading to multiple versions of the following result:

B Informal Version of Corollary 57 and Corollary 63.

LetH be a family of graphs with constant treewidth. There is a family of para-FAC0 -

circuits that decides, given graphsH ∈ H andG, whether we can delete k vertices

fromG such that there is no homomorphism (embedding) fromH toG. C

An interesting problem that will not fit into this framework is the feedback-vertex

set problem, and we will craft a dedicated algorithm for it in order to show:

pk-feedback-vertex-set ∈ para-AC1.

To achieve the algorithmwewill be forced to develop parallel versions ofmany well-

known preprocessing rules for the feedback-vertex set problem. As it will turn out,

this is only possible if we interleave the application of these rules with the paral-

lel search tree – applying them individually is P-complete! Since almost all kernel-

izations for the feedback-vertex set problem that are discussed in the literature are

3

build on top of these preprocessing rules, a natural next question is whether there

is any hope for a parallel kernelization. Computing kernels in parallel seems, at the

first sight, like a tough task: All textbooks present kernelizations as a list of reduc-

tion rules that are applied sequentially as long as possible. However, wewill show that

parallel parameterized algorithms are deeply linked to the parallel computation of

kernels – similar to the fact that a problem is fixed-parameter tractable if, and only

if, it admits a polynomial time computable kernelization (and is decidable):

B Informal Version of Theorem 77.

Parallel parameterized algorithms are equivalent to parallel preprocessing, that is,

a problem lies in para-ACi if, and only if, a kernel of it can be computed in FACi. C

Given the knowledge that many natural problems have a parallel computable ker-

nelization, we will start a journey on which we establish a number of upper and

lower bounds. For instance, we show that we can compute an exponential kernel

for pk-vertex-cover in FAC
0, a quadratic kernel in FTC

0, and we show that the cur-

rently best sequential kernel for the problem cannot be computed in parallel unless

we can compute large matchings in parallel – and whether this is possible is a long-

standing open problem in the field.

The technical most challenging – and inmy opinion also themost interesting – par-

allel kernelization that I will present is for the hitting set problem parameterized by

the solution size k and the maximum size d of the hyperedges. It was conjectured

by Chen, Flum, andHuang that a parallel kernelization for this problemwill require

time Ω(d) [53], however, with the massive use of color coding we can achieve the

kernel in constant parallel time:

B Informal Version of Corollary 111.

A kernel for pk,d-hitting-set can be computed in FAC0. C

The technique thatwewill use to obtain this kernelization (the “massive” use of color

coding) is interesting on its own, as it shows that iterated applications of the color

coding technique can sometimes be collapsed into a single application. I believe that

this trick could be useful for many other parallel parameterized algorithms.

The next and final technique that wewill take fromfixed-parameter tractability the-

ory and apply it in parallel is the use of algorithmic meta-theorems. To that end, we

will develop parallel parameterized algorithms to compute various graph decom-

positions, including algorithms to compute tree decompositions. Based on these

decompositions, I will provide parallel versions of many famous algorithmic meta-

theorems. These meta-theorems boil down to efficient algorithms for the model

checking problem for various logics. In the following table, each row refers to the

model checking problem of a certain logic parameterized by both, the size of the

input formula and some structural parameter of the Gaifman graph of the input

structure (from top to bottom: its maximum degree, its vertex cover number, its

treedepth, and its treewidth).

4

Logic Parameter Complexity Reference

First-Order |ϕ|+ ∆ para-AC0 Theorem 130

Monadic Second-Order |ϕ|+ vc para-AC0 Theorem 132

Monadic Second-Order |ϕ|+ td para-AC0 Theorem 133

Monadic Second-Order |ϕ|+ tw para-AC2 Theorem 134

In the second part of this thesis wewill take the theoretical results from the first part

and combine them with algorithmic engineering in order to obtain a tool, which is

fast in practice, for the problem in the last row. For this, we will first need a tool that

can quickly compute tree decompositions in practice. I will present the Java library

Jdrasil, which was developed by Sebastian Berndt, Thorsten Ehlers, and myself in

the light of the first Parameterized Algorithms and Computational Experiments Challenge

(PACE 2016). I will, however, only present the parts of the library thatwere primarily

developed bymyself – including the architecture, the exact algorithms, as well as the

parallel capabilities of the library. In detail, we will first have a look at an improved

sat-encoding for treewidth that is based on an encoding by Berg and Järvisalo [26].

Then we will consider a game theoretic version of a novel positive instance driven dy-

namic program due to Hisao Tamaki [156–158]. This is the currently fasted paradigm

for computing optimal tree decompositions in practice, and I will describe in de-

tail how it works. Wewill compare this algorithmwith the sat-based algorithm and

withmultiple algorithms thatwere considered state-of-the-art before thefirstPACE.

Finally, I will describe and experimentally analyze how Jdrasil parallelizes the com-

putation of tree decompositions in general (independently of the used algorithm).

This is done by computing safe separators, a concept introduced by Bodlaender and

Koster [41], with a collection of novel heuristics.

Formula Run Time

ϕ3col O∗(3k)

ϕvc(S) O∗(2k)

ϕds(S) O∗(8k)

ϕtriangle-minor O∗(k6k)

ϕfvs(S) O∗(2kk2k)

Jdrasil is equipped with an interface that makes

it easy to specify and execute dynamic programs

over the computed tree decomposition. Jatatosk is

amodel checker for a fragment ofmonadic second-

order logic that is based on this interface. The tool

approaches the last result from the previous table

from an algorithm engineering point of view by

choosing a fragment with an efficient implemen-

tation in mind. The result is a tool that is faster than similar tools on many in-

stances – which will be illustrated with various experiments. Additionally, the ar-

chitecture of Jatatosk will allow us to determine its worst-case run time just from

the syntax of the input formula. The table at the right shows the worst-case behav-

ior of Jatatosk for some natural formulas for standard problems.

5

Taking all these results together, I hope that I can convince you with this thesis that

studying fixed-parameter tractability in parallel is interesting and fruitful – both, in

theory and practice. Preliminary versions of many of the results that I will present

within this thesiswerepreviously presented at the following conferences (in chrono-

logical order):

[19] Max Bannach, Christoph Stockhusen, and Till Tantau: Fast Parallel Fixed-Para-

meter Algorithms viaColorCoding. InProceedings of the 10th International Sym-

posium on Parameterized and Exact Computation (IPEC 2015).

[20] Max Bannach and Till Tantau: Parallel Multivariate Meta-Theorems. In Proceed-

ings of the 11th International Symposium on Parameterized and Exact Com-

putation (IPEC 2016).

[16] Max Bannach, Sebastian Berndt, and Thorsten Ehlers: Jdrasil: A Modular Li-

brary forComputingTreeDecompositions. InProceedingsof the 16th International

Symposium on Experimental Algorithms (SEA 2017).

[21] Max Bannach and Till Tantau: Computing Hitting Set Kernels By AC0-Circuits. In

Proceedings of the 35th Symposium on Theoretical Aspects of Computer Sci-

ence (STACS 2018).

[22] Max Bannach and Till Tantau: Computing Kernels in Parallel: Lower and Upper

Bounds. In Proceedings of the 13th International Symposium on Parameter-

ized and Exact Computation (IPEC 2018).

[13] MaxBannach andSebastianBerndt:Practical Access toDynamic Programming on

Tree Decompositions. In Proceedings of the 26th Annual European Symposium

on Algorithms (ESA 2018).

[14] Max Bannach and Sebastian Berndt: Positive-Instance DrivenDynamic Program-

ming for Graph Searching. In Proceedings of 16th Algorithms and Data Struc-

tures Symposium (WADS 2019).

The second last paperwas awardedBest StudentPaperat theEuropeanSymposiumon

Algorithms 2018. A complete list of my publications can be found in the Curriculum

Vitae on page 201. In particular [17], [18], and [23] are built on top of results of this

thesis and provide interesting further directions.

6

1.3 RelatedWork andHistory

Parameterized complexity theory is a very active field of research. It was first in-

troduced in a series of papers by Downey and Fellows [1, 66–68]. This interesting

field is growing so rapidly that alone in the last decade seven (!) textbooks have been

published to cover all its different aspects. Downey and Fellows have published two

introductory books [69, 70]. FlumandGrohe focus on the complexity theoretic point

of viewanddescribe logical characterizationsofparameterized classes [85]. Ahigher

focus on algorithmic techniques can be found in the books byNiedermeier [137] and

Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, and Saurabh [59].

A collection of surveys that covermany areas onwhich the “multivariate algorithmic

revolution” has an impact is presented in [34]. Fomin, Lokshtanov, Saurabh, and Ze-

havi have dedicated a book to parameterized preprocessing and kernelization [90].

Although the field is not old, it contains many ideas that were studied long before.

For instance, preprocessing was always a heuristic tool frequently used by practi-

tioners, it just did not have a clean mathematical characterization.

The idea of parallelization is almost as old as the dream of automatic computation.

The first note is attributed to Luigi FedericoMenabrea and his “Sketch of the Analyt-

ical Engine Invented by Charles Babbage” back in 1842. Today, almost every compu-

tational device containsmultiple cores, andhighly parallel systemswithhundreds of

processors are available. With cheap parallel hardware such as field-programmable

gate arrays (FPGAs), andmassive improvements in parallel computations with gen-

eral purposegraphical units (GPGPUs), the theory of parallel algorithms isnowmore

important than ever. The theory behind parallel processing is deeply linked to the

circuit complexity classNC (for “Nick’s Class”) that was introduced by Nicholas Pip-

penger [141]. An overview over many classical results in this field was assembled

by Cook [55]. Alternatively, one can study parallel algorithms with parallel random

access machines – a detailed comparison can be found in [155]. An introduction

to many basic parallel algorithms can be found in the textbook of JáJá [114]. Par-

ticularly important are results concerning symmetry breaking, such as the paral-

lel algorithm for computing maximal independent sets in general graphs due to

Michael Luby [130], or the algorithm due to Goldberg, Serge, Plotkin, and Shannon

that works faster on graphs of bounded degree [100]. One of the independent set

algorithms that we will study is directly based on the later. That parallel algorithms

for symmetry breaking can be accelerated via randomization was observed by Alon,

Babai, and Itai [5]. Alon, Yuster, and Zwick later studied randomization in the form

of color coding [6], a technique that we will apply in the parameterized parallel set-

ting as well.

7

Combining both, parameterized complexity theory and parallel computation, was

first done by Cai, Chen, Downey, and Fellows with an investigation of parameter-

ized logspace [46]. Later, Flum and Grohe defined the “parameterized counterpart”

for any classical complexity class and, thus, a parameterized analogue of the NC-

hierarchy [84]. The machine model used within this thesis was derived from this

general formulation andwas – in this form –first described in [19]. The first to study

parallel parameterizedalgorithmswereCesati and Ianni [47]. Elberfeld, Stockhusen,

and Tantau provide a rich framework of parameterized space and circuit classes;

and they identify many natural problems for these classes [76]. They focused to a

large degree on classes with bounded nondeterminism, and studied in this context

also pk-feedback-vertex-setwith an algorithm similar to the one I will present.

Concerning parallel kernelization, Cai, Chen, Downey, and Fellows did implement

thewell-knownBuss kernelization for pk-vertex-cover in logspace [46], whichwas

later improved by Elberfeld, Stockhusen, and Tantau to an FTC
0-kernelization [76].

For the later result the authors already sketched the idea that a decidable problem

has a kernel computable in FTC
0 if, and only if, it can be solved in para-TC0. Chen,

Flum, andHuangstudied theparallel complexity ofpk-hitting-set forhypergraphs

with hyperedges of constant size and provided a parallel kernel that requires time

Ω(d) while producing polynomial work [53]. A result, on which the constant time

kernelization for pk,d-hitting-set that is presented within this thesis is build.

Parameterized circuit complexity was also used to introduce parameterized lower

bounds: ChenandFlum introduced apara-AC0-versionof the famousCliqueSwitch-

ing Lemma, which shows that any fpt-approximation of pk-clique is uncondition-

ally not in para-AC0 [52]. Besides parameterized circuit complexity, there is also a

growing body of literature that considers parameterized parallel randomaccessma-

chines and practical implementations of the resulting algorithms [3, 49].

Logic is far older than computer science. The idea of moving from infinite-model

theory to finite-model theory in order to link logic to complexity theory has its roots

in Fagin’s famous theorem – the class NP is precisely captured by all properties ex-

pressible in existential second-order logic [78]. Descriptive complexity is the origi-

nating field that did get its momentum by the subsequent work of Immerman [111].

The connection to parameterized complexity is highlighted by Flum andGrohe [85].

Algorithmicmeta-theoremsfindapplication inmany areas of complexity theory and

modern algorithmdesign. An overview can be found in the survey paper by Stephan

Kreutzer [123]. The meta-theorem presented in this thesis that works on graphs of

bounded degree is based on a result of Flum and Grohe, who have proven the the-

orem for parameterized logspace [84]. The other meta-theorems that I will present

are variations of Courcelle’s famous theorem that states that every property express-

ible inmonadic second-order logic canbe tested in linear timeongraphs of bounded

treewidth [57]. This algorithm was also studied intensively from a parallel point of

view for the case that the treewidth is bounded by a constant – in contrast, we will

8

study such algorithms while considering the treewidth as parameter. Bodlaender

partly parallelized the result by providing individual NC-algorithms for many prob-

lems on graphs of constant treewidth [32]; subsequently Elberfeld, Jakoby, and Tan-

tau implementedCourcelle’s theorem completely in logspace (and, thus, inAC1) [74],

as well as inNC1 when the tree decomposition is part of the input [75]. From a prac-

tical point of view, themost promising efforts to implement Courcelle’s theorem are

based on a game theoretic characterization [117, 118, 126], or by implementing it in a

declarative framework for dynamic programming on tree decompositions [31].

1.4 Organization of This Thesis

Following this introduction, there are two chapters on preliminaries. In Chapter 2

I introduce the primary objects that we will study: relational structures and graphs.

The following chapter provides the necessary background in circuit and complexity

theory. Here, we define the complexity classes that we use throughout this thesis.

After the preliminaries, the thesis is partitioned into two parts. Part I is the primary

part and deals with the design of parallel parameterized algorithms. The first chap-

ter there, Chapter 4, introduces a toolbox of basic parallel parameterized algorithms

and should be read before the others. The remaining chapters are largely indepen-

dent and can be read in any order. They deal with parallelization of bounded search

trees (Chapter 5), parallel preprocessing in the form of parallel kernelization (Chap-

ter 6), the parallel decomposition of structures (Chapter 7), and the implementation

of meta-theorems on top of such decompositions (Chapter 8).

The second part combines the theory from Part I with algorithm engineering in or-

der to develop algorithms that are fast in practice. It contains two chapters corre-

sponding to two software libraries: Chapter 10 introduces the library Jdrasil for com-

puting tree decompositions; Chapter 11 introduces Jatatosk, a lightweight model

checker for a fragment of monadic second-order logic. Jatatosk performs dynamic

programming over tree decompositions and uses Jdrasil internally to find a suitable

tree decomposition. However, besides this dependency the two chapters are inde-

pendent and can be read in any order.

Each part ends in a chapter discussing the results, open problems, and further re-

search directions. After Part II, both parts are set in relation and all results of this

thesis are summarized in the conclusion in Chapter 13. At the end of this thesis on

page 177, you will find a complete compendium of all complexity classes and prob-

lems that we discuss in this thesis. A description of the hardware and the test sets

used in the various experiments can be found on page 183.

9

1.5 Acknowledgement

I like to thank all the wonderful people that supported me during my time as a doc-

toral student. Without them, this thesis would not have been possible!

First of all, I like to thankmyadvisor Till Tantauwhomade an awesome job of always

pointingme right to the next gripping puzzle. He was not just a good advisor, but a

great teacher and an inspiration alike. Thank you!

Secondly, I would like to thank Rüdiger Reischukwho has placed his trust inme and

has given me the opportunity to prepare this dissertation at his institute. He had

always the right advice for a young researcher who is trying to make his first steps

in the academic world. Thank you, too!

Next I would like to thank my colleagues and coauthors for countless fruitful dis-

cussions. In alphabetical order they are: Katharina Dannenberg, Thorsten Ehlers,

Tom Hartmann, Tim Kunold, Alexandra Lassota, Maciej Liśkiewicz, Matthias Lut-

ter, Martin Middendorf, Martin Schuster, Malte Skambath, Florian Thaeter, and

Oliver Witt. A special thanks goes to Christoph Stockhusen who has aroused my

interest in theoretical computer science; and Sebastian Berndt who has introduced

me to the PACE challenge and has explored all the treewidth topics with me.

Finally, I would like to thank my friends and family for all their love and support.

In particular, I would like to thankmy former fellow students Tobias Mende, Albert

Piek, and FolkeWill for many various conversations about (not necessarily theoret-

ical) computer science. My friend Pascal Geerdsen for cheering me up whenever it

was necessary. My parentsMark andAnke for paving theway to study computer sci-

ence after all. And, of course, my belovedwife Jacqueline, who has shieldedme from

all the difficulties of the “real world,” allowing me to fully focus on this dissertation.

10

2 Structures, Graphs, and Logic

Beforewe startwith the designof parallel algorithms,we shall define the objects that

the algorithms will handle. In this thesis, these objects are mainly graphs and the

more general relational structures. In this chapter we gather the essential definitions

of relational structures and I provide a brief introduction to graph theory. Further-

more, I introduce the language that we will use to describe properties of structures

and graphs: first- and second-order logic. For a more comprehensive introduction to

structures and logic I refer the reader to the textbook of Immerman [111]. The nota-

tion concerning graph theory follows the standard textbook of Diestel [65].

2.1 Relational Structures

A relational structure is a set together with a collection of relations defined on it. In

order to grasp these relations and to talk about the structure, we use a vocabulary

that defines the relations that are available. A structure gives meaning to such a

vocabulary by interpreting the defined relations.

I Definition 1 (Vocabulary)

A (relational) vocabulary is a finite set τ = {Ra1
1 ,Ra2

2 , . . . ,Rak

k } consisting of relational

symbols Ri of arity ar(Ri) = ai. C

I Definition 2 (Structure)

A (finite, relational) structure over some vocabulary τ = {Ra1
1 ,Ra2

2 , . . . ,Rak

k }, also

called a τ-structure, is a tuple S = (V(S),RS1 ,R
S
2 , . . . ,R

S
k) consisting of a non-empty

finite set V(S), called the universe, and an interpretation RSi ⊆ V(S)ai of every rela-

tional symbol Ri. C

For a fixed vocabulary τ, we denote with struc[τ] the set of all τ-structures. If it

is clear from the context, we will refer to V(S) by V and we drop the superscript in

the relations of a structure, that is, we will identify relations with their relational

symbols. We call the elements of the universe vertices and refer to unary relations as

colors. Furthermore, we call tuples contained in binary relations (directed) edges and

tuples contained in relations of higher arity (directed) hyperedges. In both cases, we

drop the term “directed” if the interpretation of the relation is symmetric. Accord-

ingly, we call the relation itself edge-relation or hyperedge-relation. This terminology is

motivated from graph theory, as our primary objects will be graphs. Precise defini-

tions for graphs and graph theory are provided in Section 2.2.

11

I Example 3 (Strings)

LetΣbe afixedalphabet. Wemodel stringsw ∈ Σ? as structures over the vocabulary

τΣ-string that contains thebinary relation62 andaunary relationPσ for every symbol

σ ∈ Σ. A relational structureS representingw contains theuniverseV = {1, . . . , |w|}

and interprets6S as the natural order onV . The relationsPSσ indicatewhich symbol

is at a given index. For instance, let Σ = {0, 1} and let w = 0110, a corresponding

structurewould be S =
(
{1, 2, 3, 4},6S,PS0 ,P

S
1

)
withPS0 = {1, 4} andPS1 = {2, 3}. The

set of all strings over Σ? is naturally represented by struc[τΣ-string]. C

We will often deal with general structures that serve as hosts for many other struc-

tures. Let S = (V ,RS1 ,R
S
2 , . . . ,R

S
k) be a structure and X ⊆ V . We denote with

S\X = (V \X,RS1 ∩ (V \X)ar(R1), . . . ,RSk∩ (V \X)ar(Rk)) the structure obtained by

deleting the elements ofX, and with S[X] = S \ (V \X) the substructure of S induced

byX. With other words, a structure B is an induced substructure of a structureA if

there is a sequence of element deletions that transformsA into B. If this sequence

additionally contains the deletion of single tuples we say B is a substructure ofA, or

that A contains B. Finally, if the sequence also contains the contraction of tuples we

say B is a minor of A. The contraction of a tuple (x1, . . . , xr) deletes the tuple and

replaces every occurrence of x1, . . . , xr with a single new element x.

Let A and B be two τ-structures, we call a function ϕ : V(A) → V(B) a homomor-

phism if for all relational symbolsR in τ and all (x1, . . . , xar(R)) ∈ V(A)ar(R) we have:

(x1, . . . , xar(R)) ∈ RA =⇒ (ϕ(x1), . . . ,ϕ(xar(R))) ∈ RB.

We writeA B if there is at least one homomorphism fromA toB. For an exam-

ple, observe that there is a homomorphism fromevery bipartite graph to graphs that

contain at least one edge, see the figure at the margin. An injective homomorphism

is called an embedding from A into B. We denote the fact that there is any embed-

ding fromA to B withA B. We callϕ a strong homomorphism (embedding) if

it satisfies the following stronger condition:

(x1, . . . , xar(R)) ∈ RA ⇐⇒ (ϕ(x1), . . . ,ϕ(xar(R))) ∈ RB.

Finally, an isomorphism is a bijective strong embedding, and two structuresA andB

are called isomorphic, denoted byA ' B, if there is an isomorphism fromA to B.

With relational structures we have a notation to describe the objects we are inter-

ested in. Now we need a way to present a structure to a computational model, that

is, we need a suitable encoding for them. This is often a matter of taste, as many

encodings can be translated into each other quite easily. We present a standard en-

coding that we will always use, unless explicitly stated otherwise. Note that in the

moment in which we define an encoding of a structure, we indirectly define an or-

der of the elements of the universe, even if the structure itself is unordered. We call

this order the lexicographical order and some algorithms presented within this thesis

will explicitly use it.

12

I Definition 4 (Encoding of a Structure)

Let S = (V ,RS1 ,R
S
2 , . . . ,R

S
k) be a structure and let lex : V → {0, 1, . . . , |V | − 1} be an

arbitrarybutfixedbijection. The encodingofS (with respect to lex) is thebinary string

code(S) ⊆ {0, 1}? that contains a binary vector of length |V | for every unary relation

of S, a |V |× |V | adjacencymatrix for every binary relation, and a |V |× |RSi | incidence

matrix for every relation RSi of higher arity. In each vector and each matrix, the

elements are sorted by lex. C

2.2 Graphs and Decompositions

As mentioned in the previous section, we are primarily interested in graphs, which

are simple relational structureswith a single binary relation. Graphs inherit the con-

cepts of induced subgraph, subgraph, andminor directly from relational structures.

I Definition 5 (Digraphs and Graphs)

A digraph is a relational structure over the vocabulary τgraph = {E2}, a (undirected)

graph is a digraph with a symmetric interpretation of E. We say a digraph or graph

is simple if its interpretation of E is irreflexive. C

We will, in slight abuse of notation, sometimes denote the edges of a graph as sets

e = {x,y} ∈ E, meaning an object e that represents both tuples (x,y), (y, x) in

the symmetric relation. For a graph G = (V ,E) we denote with |V | = n the num-

ber of vertices and with |E|/2 = m the number of undirected edges. For a vertex

v ∈ V we let N(v) = {w | {v,w} ∈ E } be the neighborhood of v and define the

closed neighborhood as N[v] = N(v) ∪ {v}. For a vertex set C ⊆ V we abbreviate

N(C) =
(⋃

v∈CN(v)
)
\C. The degree of v is defined as δ(v) = |N(v)|, and themax-

imum degree ofG is∆(G) = maxv∈V δ(v). We say two vertices v andw are connected

if there is a sequence (v = p1,p2, . . . ,pq = w) of vertices with {pi,pi+1} ∈ E for all

1 6 i < q. A setC ⊆ V is connected if all pairs of vertices inC are connected. A (con-

nected) component ofG is a subset ofV that is inclusion-wisemaximal with respect to

this property. A set S ⊆ V is called separator ifG[V \ S] contains more components

than G. The components C1, . . . ,Ck of G[V \ S] are associated with S, and we say

Ci is a full component associated with S ifN(Ci) = S. A minimal separator is a sepa-

rator with at least two full components associated with it, and an inclusion minimal

separator is a separator for which all associated components are full.

The Gaifman graph of a structure is a graph that represents its relations. Structures

inherit graph theoretic terminology, such as separators, via the Gaifman graph.

I Definition 6 (Gaifman Graph)

The Gaifman graph of a structure S, denoted by Gaif(S), is the (undirected) graph

G = (V ,E) inwhichV is the universe ofS, and inwhichE contains an edge {v,w} if,

and only if, v 6= w and there is a relationRS inS that contains a tuple (x1, . . . , xar(R))

such that v,w ∈ {x1, . . . , xar(R)}. C

13

I Example 7

Consider the vocabulary τ = {R2,G1,B3} and a corresponding relational τ-structure

S =
(
{1, 2, . . . , 10},RH,GH,BH

)
with:

RH = { (1, 2), (2, 3), (3, 4), (4, 7), (7, 8), (8, 7) },

GH = { 1, 3, 7, 8 },

BH = { (1, 2, 10), (1, 10, 2), (2, 1, 10), (2, 10, 1), (10, 2, 1), (10, 1, 2)

(8, 9, 10), (8, 10, 9), (9, 8, 10), (9, 10, 8), (10, 8, 9), (10, 9, 8)

(4, 5, 6), (4, 6, 5), (5, 4, 6), (5, 6, 4), (6, 4, 5), (6, 5, 4) }.

The Gaifman graph of S is the graph Gaif(S) = ({1, . . . , 10},E) with the following

edge relation:

E = { {1, 2}, {1, 10}, {2, 3}, {2, 10}, {3, 4}, {4, 5}, {4, 6}, {4, 7},

{5, 6}, {7, 8}, {8, 9}, {8, 10}, {9, 10} }.

The following figure illustrates the structure S on the left, and the corresponding

Gaifman graph Gaif(S) on the right.

C

A fundamental technique of modern algorithm design, especially in the field of pa-

rameterized algorithms, is dynamic programming on certain structural decompo-

sitions of graphs. As we will apply similar techniques in this thesis, we need these

graph theoretic terminology as well.

I Definition 8 (Tree Decomposition)

A tree decomposition of a graphG = (V ,E) is a pair (T , ι) in which T is a rooted tree

and ι a mapping from the nodes of T to subsets of V (which we call bags) such that:

1. for every u ∈ V the set { x | u ∈ ι(x) } is non-empty and connected in T ;

2. for every {v,w} ∈ E there is a node y in T with {v,w} ∈ ι(y).

Thewidth of a tree decomposition is themaximum size of one of its bagsminus one;

its depth is the maximum of its width and the length of the longest root-leaf-path.

C

14

I Definition 9 (Treewidth, Pathwidth, and Treedepth)

LetG = (V ,E) be a graph. The treewidth tw(G) ofG is the minimum possible width

of a tree decomposition ofG. The pathwidth pw(G) ofG is theminimumwidth over

all tree decompositions (T , ι) for G in which T is a path. Finally, the treedepth, de-

noted by td(G), ofG is theminimumdepth over all tree decompositions (T , ι) forG

in which for all nodes x,y of T we have ι(x) (ι(y) if y is a descendant of x. C

Intuitively, the treewidth of a graph measures how similar the graph is “to being a

tree,” therefore the name. For instance, a tree has treewidth 1 (tw() = 1); but

cliques have treewidth n− 1 (tw() = 4). Other graphs that are very unlike a tree

are for instance n× n grids, which contain many cycles and have a treewidth of n,

that is, tw() = 3. Likewise, the pathwidth measures how similar a graph is “to

being a path,” for instance we have pw() = 1, but already for simple trees the

pathwidth increases (pw() = 2). Finally, the treedepth measures the similarity

of a graph to “being a star,” for instance td() = 2, but even simple paths are very

unlike a star and have a treedepth of logn, that is, td() = 3. It is well known

that we have tw(G) 6 pw(G) 6 td(G) 6 tw(G) · log2 n for every undirected graph

G = (V ,E) on n vertices [135].

For many algorithms it is useful to have a certain form of a tree decomposition: A

nice tree decomposition is a tuple (T , ι,η) such that (T , ι) is a tree decomposition,

and η : V(T) → {leaf, introduce, join, forget} is a labeling function of the nodes.

The nodes that are labeled as leaf are exactly the leaves of T , and the bags of these

nodes are empty. Furthermore, the bag associated with the root of T is empty as

well. Introduce- and forget-nodesn have one child x such that there is one v ∈ V with

v 6∈ ι(x) and ι(n) = ι(x) ∪ {v}, or v ∈ ι(x) and ι(n) = ι(x) \ {v}, respectively.

Join-nodes n have two children x and ywith ι(n) = ι(x) = ι(y).

If a nice tree decomposition does not provide enough structure, we may also work

on very nice tree decompositions, which are nice tree decompositions that addition-

ally have exactly one edge-bag for every edge e ∈ E. These bags “virtually” introduce
the corresponding edge. In particular, we assume that introduce-bags present “iso-

lated” vertices that are later connected to other vertices by edge-bags.

We say a tree decomposition (T , ι) is balanced if T is a balanced tree, that is, if for

every node n of T the heights of the subtrees rooted at the children of n differ by at

most one. A nice tree decomposition (T , ι,η) is balanced if the tree obtained from T

by contracting introduce and forget nodes is balanced. It is well known that every

tree decomposition can be transformed into a (very) nice tree decomposition with-

out increasing the width [59]. Furthermore, any tree decomposition of widthw can

be transformed into a balanced one of width at most 4w+ 3 [75].

15

I Example 10

Various tree decompositions of an undirected graph G = (V ,E) shown at (i). The

decompositions justify (ii) tw(G) 6 1, (iii) pw(G) 6 2, and (iv) td(G) 6 4.

(i) 1

2

3

4

5

6

7

8 9

10

11 12

(ii) {1, 2}

{2, 3}

{3, 4}

{4, 5}

{5, 6}

{6, 7}

{7, 8} {7, 9}

{6, 10}

{10, 11} {10, 12}

(iii) {1, 2}

{2, 3}

{3, 4}

{4, 5}

{5, 6}

{6, 7}

{6, 7, 8}

{6, 7, 9}

{6, 10}

{6, 10, 11}

{6, 10, 12}

(iv) {4}

{2, 4}

{1, 2, 4} {2, 3, 4}

{4, 6}

{4, 5, 6} {4, 6, 7}

{4, 6, 7, 8} {4, 6, 7, 9}

{4, 6, 0}

{4, 6, 10, 11} {4, 6, 10, 12}

C

2.3 First- and Second-Order Logic

With relational structures we have a formal tool to describe all kinds of objects, but

we cannot talk about these objects yet. We require a formalway to describe and eval-

uate properties of a structure. Take thegraphs fromtheprevious section as example:

Both, digraphs and graphs, are defined over the vocabulary {E2}, but the later are a

subset of the former. To describe properties such as “is undirected” precisely, wewill

use mathematical logic.

I Definition 11 (Syntax of First-Order Logic)

Let τ = {Ra1
1 , . . . ,Rak

k } be a vocabulary. Strings of the form x0, x1, x2, x3, and so forth

are called variables. The first-order language L(τ) is inductively defined: It contains

the atomic formulas, which are the strings xi = xj for i, j ∈ N and, for a relational

symbol R` of τ and variables x1, . . . , xa`
, the string R`(x1, . . . , xa`

). Inductively, the

language L(τ) contains for all strings α,β ∈ L(τ) and all i ∈ N the strings ¬(α),

(α∧ β), and ∃xi(α). The elements ofL(τ) are called first-order formulas. C

16

Let us denote the set of all first-order formulas by FO. Froma computer science point

of view, it will often be natural to consider arithmetic structures, that is, structures

defined over a vocabulary that contains 62, +3, and ×3, which have to be interpreted

as a total order of the universe, addition, andmultiplication, respectively. The set of

first-order formulas over arithmetic structures is denoted by FO[+,×]. We extend

first-order formulas by the usual abbreviations:

x 6= y ≡ ¬(x = y)

α∨ β ≡ ¬(¬α∧ ¬β),

α→ β ≡ ¬α∨ β,

α↔ β ≡ (α→ β)∧ (β→ α),

∀xi(α) ≡ ¬∃xi(¬α).

To increase readability, we use all lowercase Latin letters with or without subscript

to refer to variables (such as x1, x2, y, z) and we drop unnecessary braces by using

the standard operator precedence instead, which is in decreasing order: ¬, ∨, ∧, →,

↔, ∃, ∀. Furthermore, we use the dot notation: we denote a dot instead of an open-

ing brace. This virtual brace is closed after the longest formal correct formula. For

instance, we may write ∃x � α instead of ∃x(α). We say a variable x is free in ϕ if

it is not in the scope of a quantifier, and we denote the set of free variables ofϕ by

free(ϕ). Formulas without free variables are also called sentences, and formulas with

free(ϕ) = {x1, . . . , xk} are denoted byϕ(x1, . . . , xk). Variables that are not free are

bounded (by a quantifier), andwe denote the set of bounded variables by bound(ϕ).

The set of variables ofϕ is the set var(ϕ) = free(ϕ)∪ bound(ϕ). Finally, we define

the quantifier rank of a formulaϕ, denoted by qr(ϕ), as themaximumnesting depth

of quantifiers inϕ:

qr(ϕ) =


0 ifϕ is atomic,

max(qr(α), qr(β)) ifϕ = (α∧ β),

qr(α) ifϕ = ¬(α),

qr(α) + 1 ifϕ = ∃x(α).

I Definition 12 (Semantic of First-Order Logic)

Let τ = {Ra1
1 , . . . ,Rak

k } be a vocabulary, ϕ(x1, . . . , x`) be a first-order formula with

free-variables x1, . . . , x`, and let S = (V ,RS1 , . . . ,R
S
k) be a τ-structure. We induc-

tively define the relation (S,α) |= ϕ, which states that S is a model for ϕ under an

assignment α : free(ϕ) → V : We have (S,α) |= ϕ if . . .

1. ϕ is an atomic formula x = y and α(x) = α(y);

2. ϕ(x1, . . . , x`) = Ri(x1, . . . , x`) and (α(x1), . . . ,α(x`)) ∈ RSi ;

3. ϕ(x1, . . . , x`) =
(
ψ(x1, . . . , x`)∧ χ(x1, . . . , x`)

)
and (S,α) |= ψ(x1, . . . , x`) as

well as (S,α) |= χ(x1, . . . , x`) holds;

17

4. ϕ(x1, . . . , x`) = ¬(ψ(x1, . . . , x`)) and (S,α) 6|= ψ(x1, . . . , x`) holds;

5. ϕ(x1, . . . , x`) = ∃y(ψ(x1, . . . , x`,y)) and there is an elementu ∈ V such that

(S,α ′) |= ψ(x1, . . . , x`,y) for

α ′(x) =

{
α(x) if x ∈ free(ϕ),

u x = y.

If S is a model for ϕ under all assignments we abbreviate S |= ϕ. In this case, we

also say that “ϕ is true in S,” or that “S satisfiesϕ.” C

I Example 13

An {E2}-structure is a simple graph if it is a model for the following sentence:

ϕsimple = ∀x∀yE(x,y) → (x 6= y∧ E(y, x)).

A digraph is called a tournament if between every pair of vertices exactly one of the

directed edges exists. With other words, a digraph is a tournament if it is a model

for the following sentence:

ϕtournament = ∀x∀y
(
x = y∧ ¬E(x,y)

)
∨
(
x 6= y∧ (E(x,y) ↔ ¬E(y, x))

)
.

Finally, let us consider for a graphG = (V ,E) the following formula:

ϕvc(x1, . . . , xk) = ∀x∀yE(x,y) →
k∨

i=1

(x = xi ∨ y = xi).

Observe that for every possible assignment αwith (G,α) |= ϕvc wemay define the

set X = {α(x) | x ∈ free(ϕ) } with |X| 6 k such that G[V \ X] contains no edges.

We call such a set X a vertex cover ofG, a structure that we will encounter frequently

in the rest of this thesis. C

If we extent first-order logic by relational variables of arbitrary arity, and if we also

allow quantifying over such relational variables, we obtain second-order formulas. We

stipulate that relational variables are denoted by uppercase Latin letters, and we

denote the set of all second-order formulas by SO. We say a relational variable is

monadic if its arity is one. Accordingly, a second-order formula is monadic if all its

relational variables are monadic – we denote the set of these formulas byMSO. The

remaining definitions for second-order formulas are similar to the definitions of

first-order formulas. Instead of going into the details here, I will refer the interested

reader to standard textbooks [71, 72].

18

I Example 14

A natural property that can be expressed in second-order logic is that a setX ⊆ V is

connected in a given graphG = (V ,E). To write down a formula for this statement,

we require a characterization of “being connected” that we can graspwith logic. Ob-

serve that for a connected set X the following holds: there is an edge between every

non-empty proper subsetY ofX andX\Y. Also observe that this property is not true

in unconnected sets. We start with the simple formula that states that a given set is

non-empty: ϕnon-empty(A) = ∃x �A(x).

The next ingredient we need is a way of describing that a setA is a proper subset of

another set B:

ϕproper-subset(A,B) =
(
∀x �A(x) → B(x)

)
∧
(
∃x � ¬A(x)∧ B(x)

)
.

Summarizing, we canwrite down the following formula, which precisely states that

X is connected inG:

ϕconnected(X) = ∀Y
(
ϕnon-empty(Y)∧ϕsubset(Y,X)

)
→

(
∃x∃yX(x)∧ ¬Y(x)∧ Y(y)∧ E(x,y)

)
.

The cautious readermay observe that this formula is, of course, a bit wordy in order

to illustrate the concept. We can condense it to the following equivalent formula:

ϕconnected(X) = ∀Y (∃x∃yX(x)∧ X(y)∧ Y(x)∧ ¬Y(y))

→ (∃x∃yX(x)∧ X(y)∧ Y(x)∧ ¬Y(y)∧ E(x,y)). C

I Example 15

We say a graphG = (V ,E) is 3-colorable if there is a mapping λ : V → {1, 2, 3} such

that λ(u) 6= λ(v) for every edge {u, v} ∈ E. This property can be expressed by the

following existential second-order formula:

ϕ3col = ∃R∃G∃B
(
∀xR(x)∨G(x)∨B(x)

)
∧
(
∀x∀yE(x,y) →

∧
C ∈ {R,G,B}

¬C(x)∨¬C(y)
)
.

For instance, we have |= ϕ3col, as this graph is clearly 3-colorable. But the clique

on 4 vertices in not 3-colorable, that is, 6|= ϕ3col. C

19

3 Background in Complexity

Complexity theory is an area of theoretical computer science that studies the algorith-

mic complexity of preserving functions ρ : struc[τ] → struc[σ]. In simple words

that means we wish to state whether it is easy or hard to compute ρ. Formally, we

measure the resources that a computational model requires for the evaluation of ρ(A)

for a structureA ∈ struc[τ]. A preserving function here is defined as follows:

I Definition 16 (Preserving Functions)

A function ρ : struc[τ] → struc[σ] is called preserving if it satisfies the following

conditions for allA,B ∈ struc[τ]:

1. A ' B =⇒ ρ(A) ' ρ(B),
2. |code(A)| = |code(B)| =⇒ |code(ρ(A))| = |code(ρ(B))| . C

The standard computationalmodel for parallel algorithms are uniform circuit families,

in which ρ is evaluated by Boolean circuits. The resources used by thismodel are the

depth and the size of these circuits. Loosely speaking this corresponds to the parallel

time and work we need on a real parallel machine. We will formally introduce this

computational model in Section 3.1.

In many scenarios it is too general to study the complexity of an arbitrary preserv-

ing function ρ : struc[τ] → struc[σ] and, instead, we will often restrict ourselves

to the characteristic function of a set Q ⊆ struc[τ]. Here we will consider only

such sets Q with the property that all isomorphic structures are either simultane-

ously contained inQ or not. In other words, the characteristic function ofQmust

be preserving as well. In complexity theory we callQ a decision problem as we have to

decide, given a structureA ∈ struc[τ], whetherwe haveA ∈ Q. Recall for instance

Example 13 where we have defined the formulaϕvc, and where we have considered

the setQ = {G ∈ struc[τgraph] | G |= ϕvc }. ThenQ is exactly the well-known ver-

tex cover problem. We refer to decision problems by small-caps words, for instance,

we would identifyQwith vertex-cover. Instead of stating the exact set represen-

tation, we define problems in the following more convenient way, omitting details

about the precise definition of the input structure:

I Problem 17 (vertex-cover)

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a setX ⊆ V with |X| 6 k such thatG[V\X] containsnoedge? C

21

In parameterized complexity theorywe try to tighten the analysis of a preserving func-

tion ρ by taking a parameterization κ : struc[τ] → I into account, which itself is a

preserving function that assigns to every structure a parameter value from some or-

dered and countable index set I. The intuition is that κ(A) describes structural prop-

erties ofA, which wemay explicitly use in a refined complexity analysis. We call the

tuple (ρ, κ) a parameterized function and, similar to decision problems, we call (ρ, κ)

or (Q, κ) a parameterized problem if ρ is the characteristic function ofQ ⊆ struc[τ].

We denote such problems by strings with a leading “p-” with an index that indicates

the parameterization. For instance, pk-vertex-cover is the vertex cover problem

parameterized by the number k. Formal definitions are provided in Section 3.2. It

should be noted, however, that these definitions are far less standardized in the lit-

erature than they are for classic complexity – we discuss differences between these

definitions in Section 3.3.

3.1 Classic Complexity Theory

Asmentioned in the introduction of this chapter, our primary computationalmodel

is theBooleanCircuit. Wedefine this computationalmodel ingraph theoretical terms.

I Definition 18 (AC-Circuit)

AnAC-circuit is a relational structureC = (V(C),EC,6C, andC,orC) over the sig-

nature τcirc = (E2,62, and1,or1) in which G = (V(C),EC) is an acyclic digraph

and6c is a total order ofV(C). The elements ofV(C) are called gates. The relations

and
C and orC constitute a partition of the gates that have at least two incoming

edges into and-gates and or-gates. Gates with exactly one incoming edge are called

not-gates, gates without any incoming edge are called input-gates, and the gates with-

out any outgoing edges are called output-gates. C

The size of a circuit is the number of gates, that is, size(C) = |V(C)|. The depth of a

circuit, denoted by depth(C), is themaximum length of a path froman input-gate to

an output-gate. AnAC-circuit withn input- andm output-gates naturally computes

a Boolean functionC : {0, 1}n → {0, 1}m.

I Definition 19 (Computation of an AC-Circuit)

For an inputw = b1b2 . . .bn, we inductively define aBoolean labelingλ : V → {0, 1}

as λ(xi) = bi for the input-gates x1, x2, . . . , xn (recall that the vertices are ordered).

Define λ(u) = (λ(v) + 1) mod 2 ifu is a not-gate (that is,u has in-degree one); and

for vertices uwith in-degree at least two define

λ(u) =

{
min { λ(v) | (v,u) ∈ EC } if u ∈ and

C,

max { λ(v) | (v,u) ∈ EC } if u ∈ or
C.

The output of the computation is the bitstring w ′ = λ(y1)λ(y2) . . . λ(ym) for the

output-gates y1, . . . ,ym. C

22

If we restrict the in-degree of C to be at most two, then we call C an NC-circuit. A

TC-circuit is an AC-circuit extended byΘc-gates, which evaluate to 1 if at least c pre-

decessors of the gate evaluate to 1. The abbreviationNC stands for “Nick’s Class,” as

the corresponding complexity class (a precise definition follows) was named after

NicholasPippenger [141]. Thenamesof theother classes arebasedon this choice – the

“A” in AC stands for “alternating,” referring to the connection of these circuits to al-

ternating Turing machines; the “T” in TC stands for “threshold,” which is exactly the

functionality of the addedΘc-gates. Different circuits are illustrated in the follow-

ing graphic: It shows from left to right an NC-, an AC-, and a TC-circuit. For read-

ability, the output-gates are highlighted with an outgoing-edge.

x1 x2 x3 x4

∧ ∧ ∧

∧ ∧ ∧ ∧

∨ ∨

∨

x1 x2 x3 x4

∧ ∧ ∧ ∧

∨

x1 x2 x3 x4

Θ3

Since circuits can only compute functions for a fixed input length, we need a cir-

cuit family (Cn)n∈N if we wish to compute functions with a variable input length.

We will use such families to study the complexity of preserving functions. This will,

however, be difficult if the circuits of the family are pairwise very different. In fact,

we wish that all circuits of a family “look the same.” To formalize this property, we

consider uniform families.

I Definition 20 (ACi and FACi)

A preserving function ρ : struc[τ] → struc[σ] is in uniform FAC
i if there is a con-

stant c ∈ N and a family (Cn)n∈N of AC-circuits such that:

1. C|code(A)|(code(A)) = code(ρ(A)) for allA ∈ struc[τ];

2. depth(Cn) 6 c · logi n;

3. size(Cn) 6 nc;

23

4. There is a Turingmachine that on input of bin(i)# bin(n), where bin(·) is the
binary encodingofnaturalnumbers, outputs the ithbit of code(Cn) in atmost

O(logn) steps.

The class ACi contains all decision problems whose characteristic functions are pre-

serving and contained in FACi. C

We further define AC =
⋃∞

i=0 AC
i, and we define NCi and NC as well as TCi and

TC analogously. There are other definitions of uniformity that can be derived if the

power of the Turing machine is altered. The uniformity definition we use here, in

the literature known as DLOGTIME-uniformity, is the strongest form of uniformity

commonly considered [24]. It has the following well-known property:

I Fact 21 ([111, 164])

The set of decision problems in uniform AC
0 is exactly the set of decision problems

that can be defined in FO[+,×]. C

A direct consequence of this fact is the following useful lemma:

I Lemma 22

There are uniform families (C+
n)n∈N, (C

×
n)n∈N, (C

mod
n)n∈N of FAC0-circuits that

have 2n inputs x1, . . . , xn,y1, . . . ,yn and n2 outputs z1, . . . , zn2 such that:

1. each circuit expects that exactly one input xi and one inputyj is set to 1, while

the others are set to 0;

2. all outputs ofC+
n are 0, with the sole exception of zi+j;

3. all outputs ofC×n are 0, with the sole exception of zi·j;

4. all outputs ofCmod
n are 0, with the sole exception of zimod j.

Proof. Since the given numbers are encoded in unary (and in particular bounded by

the size of theuniverse), the existence of (C+
n)n∈N and (C×n)n∈N follows inprinciple

directly by the equivalence of uniform AC
0 and FO[+,×]. However, we have to take

a little care about the encoding of the structure, and we require a way to parse the

first and second input bit – but both can easily be achieved with first-order formu-

las equipped with the relations +3, ×3, and 62. To obtain the family (Cmod
n)n∈N, we

have to describe the unary modulo operation within FO[+,×], which is a standard

exercise solved by the following formula:

mod(x,y, z) = ∃a∃b
(
×(a,y,b) ∧ +(b, z, x) ∧ 6(z,y) ∧ z 6= y

)
.

Observe that a problem that lies in AC can efficiently be implemented on a paral-

lel machine, because a circuit Cn can be evaluated in parallel. In order to do so, we

24

layer the circuit and evaluate all gates of one layer in parallel. The parallel time of the

algorithm is then bounded byO(logi n), as each layer can be evaluated in constant

parallel time and since there are atmostO(logi n) layers. Thework of the algorithm,

that is, the total number of computational steps, is bounded by the number of gates,

and therefore byO(nc).

Based on this observationwe say a decision problem is parallel tractable if it lies inAC,

and we say it is parallel intractable otherwise. Parallel intractable problemsmay lie in

the class P, which contains problems decidable by a uniform family of AC-circuits of

polynomial size (butwithout a further depth restriction). Such circuits can probably

not be simulated in parallel, but they can be simulated in polynomial time – prob-

lems in P are therefore called (sequentially) tractable. Unfortunately, many interest-

ing problems donot lie in P and are therefore considered intractable. There is a broad

range of further complexity classes to study such problems. An important one isNP,

the set of problems decidable by a uniform family of AC-circuits of polynomial size

that has access to nondeterministic input bits. Based on these definitions, we obtain

the following well-known hierarchy:

NC
0 (AC

0 (TC
0 ⊆ NC

1 ⊆ AC
1 ⊆ TC

1 ⊆ · · · ⊆ NC = AC = TC ⊆ P ⊆ NP.

Observe that it is unknown for almost all inclusions in this hierarchy, whether they

are proper or not. Furthermore, almost all of these results are trivial – the sole ex-

ception being AC0 (TC
0, which was shown by Furst, Saxe, and Sipser [93].

We can formulate statements about the complexity of a problem by “sorting” it into

the hierarchy: If we show a problem lies in a complexity class, we essentially provide

an upper bound on the complexity of the problem. To provide a lower bound, we need

the concept of reduction and hardness.

I Definition 23 (ACi-Reduction)

An AC
i-reduction from a decision problem Q1 ⊆ struc[τ] to Q2 ⊆ struc[σ] is a

mapping R : struc[τ] → struc[σ] with R ∈ FAC
i and A ∈ Q1 ⇐⇒ R(A) ∈ Q2

for all structuresA ∈ struc[τ]. C

I Definition 24 (C-Hardness)

Let C be a complexity class. A decision problemQ ⊆ struc[τ] is said to be C-hard if

all problems in C reduce toQ via AC0-reduction. C

A problem that is hard for some complexity class can be seen as the most “difficult”

one of this class, as we can solve all other problems of the class if we can solve this

single problem. Hardness can therefore be seen as a lower bound – at least if we as-

sume that the hierarchy does not collapse. Finally, we say that a problem is complete

for a complexity class if the lower and upper boundmatch.

I Fact 25

Let C1 and C2 be two complexity classes with AC0 ⊆ C1 ⊆ C2 and letQ ⊆ struc[τ]

be C2-hard. We haveQ ∈ C1 if, and only if, C1 = C2. C

25

I Definition 26 (C-Completeness)

A decision problem Q ⊆ struc[τ] is complete for C (or C-complete) if Q is C-hard

andQ ∈ C. C

3.2 Parameterized Complexity Theory

Similar to circuits that are a computationalmodel for parallel algorithms,wewill use

parameterized circuits that serve as a computational model for the computation of

parameterized functions. Recall that a parameterized function is a tuple (ρ, κ) con-

sisting of two preserving functions ρ : struc[τ] → struc[σ] and κ : struc[τ] → I.
The idea is to analyze the complexity of computing ρ(A) by considering |code(A)|

and κ(A), instead of measuring the consumed resources only with respect to the

encoding length. Intuitively, smaller parameters (recall that I is ordered) represent
“easier” instances, and we will develop algorithms that exploit this circumstance.

Note that parameterized functions are a generalization of functions, as every func-

tion is a parameterized function with the trivial parameterization. This trivial param-

eterization simply maps to a set I0 that contains only a single element. In general,

there is nothing special about I and we will often simply have I = N.

When we study the complexity of ρ from a parameterized point of view, we have to

be careful not to “hide” the complexity of computing ρ in the second function κ. In

simplewords, the computation ofκ should be “easier” than the computation of ρ. As

we study small parallel circuit classes, we stipulate this condition for this thesis as

follows. We will discuss the issue of computing κ in a bit more detail in Section 3.3.

I Proviso 27

We request for all parameterizationsκ : struc[τ] → I consideredwithin this thesis

that (i) the set I is a set of ι-structures for some arbitrary but fixed vocabulary ι, in

symbols: I ⊆ struc[ι]; and that (ii)we have κ ∈ FAC
0. C

The following definition provides our basic parameterized computational model. It

also reveals the reason behind the choice of the term “index set” for the set I. Recall
that this index set is ordered and countable, a fact that we use in the definition.

I Definition 28 (para-ACi and para-FACi)

A parameterized function (ρ : struc[τ] → struc[σ], κ : struc[τ] → I) is said to

be in uniform para-FACi for some i > 0 if there is a constant c ∈ N, a computable

function f : I → N, and a family (Cn,k)n∈N,k∈I of AC-circuits such that:

1. C|code(A)|,κ(A)(code(A)) = code(ρ(A)) for allA ∈ struc[τ];

2. depth(Cn,k) 6 f(k) + c log
i n;

3. size(Cn,k) 6 f(k) · nc;

26

4. There is a Turing machine that on input bin(i)# code(k)# bin(n) outputs the

ith bit of code(Cn,k) in atmost f(k)+c log(n) steps. Here, bin(·) is the binary
encoding of natural numbers.

The class para-ACi contains all parameterized problems that have a characteristic

function that lies in para-FACi. C

Additionally, wedefinepara-AC0 as above, but require thedepth tobe constant (inde-

pendentofnandk). The classespara-NCi,para-NC,para-TCi, andpara-TCaredefined

analogously to the previous section. These classes inherit their inclusion structure

from the classical classes, so we have

para-NC0 (para-AC0 (para-TC0

⊆ para-NC1 ⊆ para-AC1 ⊆ para-TC1

⊆ para-NCi ⊆ para-ACi ⊆ para-TCi

⊆ para-NC = para-AC = para-TC

⊆ FPT.

Here FPT (for fixed-parameter tractable) is the parameterized analogue of P, that is, the

class of problems decidable by a uniform family of AC-circuits of size f(k) · nc, but

without any further depth restriction. As in the previous section, we can grasp prob-

lems inpara-AC as parallel fixed-parameter tractable. Alternatively, we coulddefine that

a problem is parallel fixed-parameter tractable if there is a parallel algorithm that

solves the problem and that is allowed to invest f(k) time at each parallel step. This

results in a class of functions that is slightly more powerful than para-ACi (here, the

f(k) term is just additive), but which we can embed into the previous hierarchy.

I Definition 29 (para-ACi and para-FACi)

A parameterized function (ρ, κ) lies in uniform para-FACi (pronounced “para-f-a-c-

i-up”) for any i > 0 if there is a family (Cn,k)n∈N,k∈I of AC-circuits defined as for

para-FACi, butwith depth(Cn,k) 6 f(k)·c logi n. In particular, circuits ofpara-FAC0
have a depth of f(k). The class para-ACi contains all parameterized problems that

have a characteristic function that lies in para-FACi. C

The same definition can be used for NC- and TC-circuits. Note that by definition

we have para-ACi ⊆ para-ACi ⊆ para-ACi+ε for all i > 0. We will further see in

Chapter 4.2 (Corollary 37) that we have the proper inclusion para-AC0 (para-AC0.

In order to compare parameterized problems we require a new (parameterized) re-

duction. In comparison to an AC0-reduction, such a reduction has to fulfill an addi-

tional property: As we measure the complexity with respect to the input length and

the parameter, we should not let the parameter grow arbitrarily during the reduc-

tion process. The following definition fulfills this property. Definitions for hardness

and completeness can be derived analogously.

27

I Definition 30 (para-ACi-reduction)

A para-ACi reduction from a parameterized problem (Q, κ) to a problem (Q ′, κ ′)

with Q ⊆ struc[τ], κ : struc[τ] → I, Q ′ ⊆ struc[σ], κ ′ : struc[σ] → I, is a
mapping R : struc[τ] → struc[σ] such that for allA ∈ struc[τ]we have:

1. A ∈ Q⇐⇒ R(A) ∈ Q ′;

2. κ ′(R(A)) 6 f(κ(A)) for a computable function f : I → I.

Additionally, it is required that (R, κ) ∈ para-FACi. C

We will require only very little of the machinery of parameterized intractability, as we

are primarily interested in subclasses of FPT and, thus, in problems that are highly

tractable from a parameterized perspective. There are actuallymany classes “above”

FPT that can all be considered as intractable. However, one hierarchy, called theweft-

hierarchy, is usually sufficient to express intractability. Fortunately, the definitions

of the classes within this hierarchy are in terms of circuit complexity and, thus, fit

nicely into our framework. The weft-hierarchy is defined in terms of the following

restricted version of the weighted circuit satisfiability problem:

I Problem 31 (weighted-circuit-satisfiability)

Instance: An AC-circuitC and a number k ∈ N,
Question: Is there a stringw ∈ {0, 1}? with

∑|w|
i=1w[i] = k andC(w) = 1? C

This problem is quite powerful, as we can easily encode problems such as the satis-

fiability problem of propositional logic into it. To describe the hierarchy, we restrict

the problem to a smaller family of circuits. Let Ct,d be the family of AC-circuits in

which every circuit has depth d and contains on any path from an input-gate to an

output-gate at most t vertices with more than two incoming edges. The value t is

called the weft of the circuits. For every t > 1, the tth-level of the weft-hierarchy,

denoted byW[t], is the class of problems that can be reduced via an FPT-reduction

to pk-weighted-circuit-satisfiability restricted to circuits from Ct,d for some

arbitraryd > 1. An FPT-reduction is defined as inDefinition 30, but without a depth

restriction for the circuits. It follows from the definition that the classes form the

following inclusion structure:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t],

and the conjecture used to express intractability is FPT (W[1]. This definition is

best understood with an example.

I Example 32

Assumewe are given a graphG = (V ,E) onn vertices andwewish to checkwhether

G contains a clique of size k (that is, a set S ⊆ V with |S| = k such that all vertices

in S are pairwise adjacent). We can reduce this problem to weighted-circuit-

satisfiability with circuits of depth three and weft one, which implies that the

28

problem lies in W[1]. In order to do so, we construct a circuit with n input-gates

x1, . . . , xn and the obvious meaning that setting xi to 1 corresponds to taking ver-

tices vi into the clique. The circuit has to verify that for every non-edge {vi, vj} 6∈ E
at least one element of {vi, vj} is not contained in the clique, that is, either xi or xj
(or both) is set to 0. This test can easily be implemented by negating every input

and using or-gates with two incoming edges for every non-edge. That all these tests

are affirmative can be tested with a single and-gate of high fan-in (this is the gate

that increases theweft of the circuit). To illustrate the reduction, consider the graph

at the margin. The circuit that we have just sketched is illustrated in the following

figure, where the gate that is relevant for the weft is highlighted.

v1

v3

v4

v5

v2

x1 x2 x3 x4 x5

¬ ¬ ¬ ¬ ¬

∨ ∨ ∨

∧

Now assume we are given another graph G = (V ,E) on n vertices, but this time

we seek a dominating set of size k (a set S ⊆ V with |S| = k such that for all

v ∈ V we haveN[v] ∩ S 6= ∅). We can reduce this problem toweighted-circuit-

satisfiability with circuits of depth and weft two. The reduction is quite similar

to the previous one: The circuit again hasn input-gates x1, . . . , xn indicating which

vertices are part of the solution S. For dominating set, the circuit has to test for ev-

ery vertex if either itself or one of its neighbors is contained in S (meaning that the

corresponding input-gate is set to one). These tests can be realized by n or-gates of

high fan-in – since they can be used in parallel, they increase the depth and the weft

of the circuit by one. Finally, the circuit has to check whether all these tests are affir-

mativewith an additional high degree and-gate, which increased the depth andweft

to two. The reduction shows that the problem lies inW[2]. For the previous example

graph, the resulting circuit is the following:

x1 x2 x3 x4 x5

∨ ∨ ∨ ∨ ∨

∧

C

29

3.3 Differentiation of Parameterized Complexity

We note that there are different definitions of parameterized problems, and espe-

cially of the class FPT, in the literature. Considering FPT, these differences seem

small and the choice of definition is mainly a matter of taste. However, consider-

ing smaller classes like para-AC0, as we do, reveals more technical differences, which

are, as I believe, worth discussing.

The classical definition is due to Downey and Fellows [70], who define a parameter-

ized problem to be a language L ⊆ Σ? × N. Downey and Fellows distinguish three

definitions of FPT: a problem is said to be (i) in strongly uniform FPT if an instance

(w,k) can be solved in time f(k) · |w|c for a computable function f : N → N and

a constant c ∈ N; (ii) in uniform FPT if we drop the restriction that fmust be com-

putable; and (iii) in nonuniform FPT if for every parameter value k there is an extra

algorithm solving just the instances with this value. It is known that these three def-

initions lead to distinct classes [69], fromwhich the first is themost commonly used

definition in the literature [59].

Another definition that is commonly used was given by Flum and Grohe [85], who

defined a parameterized problem to be a tuple (Q, κ)withQ ⊆ Σ? and κ : Σ? → N.
This definition is abitmorenatural, aswe canuse a classical languageQ and just add

a parameterization to it. For instance ifQ is vertex-cover, wemay considermany

parameterizations without changing the language. This was also the main reason

why I chose to use this definition in this thesis. However, the definition comes with

a drawback: κ has to be computed. This is crucial, as we study the complexity ofQ

and may not want to “hide” some of this complexity in the evaluation of κ. There-

fore, Flum and Grohe required the parameterization to be computable in polyno-

mial time [85]. This seems generally reasonable for the study of FPT, but already has

some issues there. In particular, some standard parameters, such as the treewidth

of the input structure, do not seem to be polynomial-time computable. This phe-

nomenon gets worse if we study subclasses of FPT, for instance para-AC0, as a poly-

nomial time computable parameterization could implement functions that are not

in para-FAC0. The result is, essentially, that such small classes are not closed under

natural reduction (what they are in the Downey and Fellows definition). This was

first observed by Chen and Flum with the example of p-parity [52]. It should be

noted that the closeness property is especially important in the context of kernel-

ization, which in essence is a self-reduction that is fundamentally entangled with

parameterized complexity – we will study it in Chapter 6.

There are two possible ways out of this misery: One could adapt the definition of

parameterized reductions, which was suggested by Chen and Flum [52]. However,

the result is an unnatural reduction, which additionally is not well suited for ker-

nelizations. Alternatively, one could require that κ is easier to compute, say in log-

arithmic space as suggested by Elberfeld, Stockhusen, and Tantau [76]. Since we

30

wish to study para-AC0, we have to require that κ ∈ FAC
0 holds, as my coauthors

and myself required [19–22]. However, we should note that we have not much free-

dom if the parameter must be FAC0-computable, as this class is very restrictive. For

instance, consider any graph problem and use as parameterization the maximum

degree. This parameter is not computable in FAC
0. To fix this new misery, Tantau

andmyself have suggested to “patch” the language by adding an upper boundd ∈ N
to the problem instance [20]. The new problem is then the original one together with

the question whether the maximum degree is smaller than d, which we use as pa-

rameter (and which then is easily computable in FAC
0). With this fix, the definition

is actually quite close to the original definition by Downey and Fellows – however,

there is still an advantage if the parameter is in fact FAC0-computable.

Concerning subclasses of FPT, it should be noted that the first complete definition

was given by Flum and Grohe [85], who have generally defined para-C for any com-

plexity class C. This definition is related to a similar definition by Cai et al. , who

have defined subclasses of FPT in terms of classical complexity classes extended by

an advice function [46]. In contrast, the definition by Flum and Grohe states that a

parameterized problem is in para-C if an instance can be solved in C after an arbi-

trary precomputation on the parameter. This definition has primarily model check-

ing in mind: Given a structure S and a formulaϕ, which is the parameter, we wish

to know whether we have S |= ϕ. Such problems can be solved for various types

of structures by translating ϕ into an automaton that can be simulated on input

S (compare Chapter 8). Unfortunately, in most scenarios other than model check-

ing this definition is not so natural and leads often to a simple padding argument.

Therefore, Elberfeld, Stockhusen, and Tantau provided equivalent definitions with

concrete computational models for parameterized logarithmic space and some pa-

rameterized circuit classes [76]. Based on this work, Stockhusen, Tantau andmyself

provided a rigorous definition of parameterized circuit classes [19]. These defini-

tions obtained some refinements in follow-up works by various authors, and the re-

sulting definitions are used in this thesis [20, 52, 140]. The only difference is that

we use relational structures instead of strings, but this is a matter of taste as both

representations are equivalent by Example 3 and Definition 4.

31

Part I

Theory of

Parallel Parameterized Algorithms

In this first and primary part of the thesis, we will study parallel parameterized algorithms and

parameterized circuit complexity. Most of the results are formulated from an algorithm design

point of view and constitute a rich toolbox that can be used to explore this area further. I hope

the reader will find it both, useful and enjoyable.

Preliminary versions of many results of this part were previously presented at the following con-

ferences:

[19] Max Bannach, Christoph Stockhusen, and Till Tantau: Fast Parallel Fixed-Parameter Algo-

rithms via Color Coding. In Proceedings of the 10th International Symposium on Parameter-

ized and Exact Computation (IPEC 2015).

[20] MaxBannach andTill Tantau:ParallelMultivariateMeta-Theorems. In Proceedings of the 11th

International Symposium on Parameterized and Exact Computation (IPEC 2016).

[21] Max Bannach and Till Tantau: ComputingHitting Set Kernels By AC0-Circuits. In Proceedings

of the 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).

[22] Max Bannach and Till Tantau: Computing Kernels in Parallel: Lower and Upper Bounds. In Pro-

ceedings of the 13th International Symposium on Parameterized and Exact Computation

(IPEC 2018).

4 A Toolbox of Basic Parallel

Parameterized Algorithms

Wewill develop a broad range of parallel parameterized algorithms within this the-

sis. The design of parallel algorithms is usually more challenging than the develop-

ment of the corresponding sequential counterpart, aswe have to discover structures

in the problem that we can handle in parallel. This does not change in a parameter-

ized point of view. In fact, things even become a bit more challenging in this young

field, as we do not have a collection of standard algorithms on which we can rely

on. We will therefore start by assembling a toolbox of basic parallel parameterized

algorithms in this chapter. The first ingredient in our toolbox is a way to break sym-

metries. We achieve this with parallel algorithms for the independent set problem

in graphs of bounded degree.

B Informal Version of Theorem 33 and Lemma 46.

Parameterized by themaximumdegree of the graph, amaximal independent set can

be computed in para-FAC0+ε. Parameterized by both, themaximum degree and the

size of the solution, amaximum independent set can be computed in para-AC0. C

The second ingredient that we will add to our toolbox is a collection of algorithms

that can answer reachability and distance queries on graphs.

B Informal Version of Lemma 34, Lemma 35, Theorem 36, and Theorem 39.

Given a graphG = (V ,E) and a parameter k ∈ N, a para-FAC0 -circuit can simulate

a depth-first (breadth-first) search starting at some vertex s ∈ V up to distance k.

In fact, the parameterized alternating distance problem is complete for para-AC0. C

By combining the theoremwith a result by Beame, Impagliazzo, and Pitassi [25] we

will unconditionally deduce para-AC0 (para-AC0.

The last ingredient that we will add to the toolbox may not appear too sparkling at

the first sight. However, as it will turn out, it is the most fundamental result I will

present in this chapter, whichwill serve as engine formany algorithms thatwe study

in the rest of this thesis – I would even go as far as to say that it is a cornerstone of

parallel parameterized constant-time computation. We will derandomize the color

coding technique due to Alon, Yuster, and Zwick [6]:

B Informal Version of Theorem 42.

Color coding can be derandomized in para-AC0. C

35

4.1 FindingMaximal Independent Sets in Graphs

of Bounded Degree

The most elemental step in many parallel algorithms is symmetry breaking, that is,

the detection of parts of the input that can be handled in parallel. Formally, we may

model this task as finding a maximum independent set in the conflict graph: Every

task is represented by a vertex and there is an edge between two vertices if, and only

if, the corresponding tasks cannot be executed at the same time. Unfortunately, the

independent-setproblem isNP-hard in general [115] and solving such a problemas

preprocessing seems a bit exaggerated. Furthermore, the problem is alsoW[1]-hard

parameterized by the solution size [59] and, thus, even FPT-power will not allow an

“efficient” preprocessing. To circumnavigate this difficulty, the parallel community

is usually contended with the maximal version of the problem. This version admits

a simple O(n +m) sequential algorithm. The first parallel algorithm due to Karp

and Wigderson runs in O(log4 n) parallel time [116]. This bound was improved to

O(log2 n) parallel time independently by Luby [130], and by Alon, Babai, and Itai [5].

To this day, it is still an open problemwhether one can find amaximal independent

set in parallel logarithmic time.

From a parameterized point of view, we hope to improve this bounds with respect

to n in exchange for a higher time bound with respect to the parameter. In the set-

ting ofmaximal independent sets, the parameter solution size does notmake sense,

so we have to consider other natural parameters. If we expect that the task that we

want to solve is well suited for parallelization, we may hope that the degree of the

conflict graph is small. Fortunately, this actually will be the case whenever we wish

to find maximal independent sets in the rest of this thesis. Thus, we use the max-

imum degree of the input graph as parameter and formulate the following result,

where log∗(·) is the iterated logarithm defined as:

log∗(x) =

{
1+ log∗(log(x)) for x > 1,

0 for x 6 1.

I Theorem 33

There is a uniform family of FAC-circuits of depth f(k) + log∗ |V | and size f(k) · |V |c
that, on input of an undirected graph G = (V ,E) and an integer k, outputs either

that the maximum degree ofG exceeds k or a maximal independent set I ofG.

Proof. Let us for simplicity assume that AC-circuits of size f(k) · nc may count up

to f(k) and that, thus, the circuit can check the degree of every vertex and can im-

mediately reject if any degree exceeds k. That this is indeed possible will follow by

another basic algorithm that we present in Section 4.3.

The circuit we present here implements the algorithm from Goldberg, Plotkin, and

Shannon to computemaximal independent sets in graphs of bounded degree [100].

36

The circuit interpretsG as directed graph ~G by considering each edge {u, v} as two

directed edges (u, v) and (v,u). The edge set of this graph is partitioned into k sets

E1, . . . ,Ek such that each of the graphs ~Gi = (V ,Ei) has only vertices of out-degree

at most 1. This partition can be computed in depth f(k) as the circuit has essentially

to count up to k. The following figure illustrates an exemplary run of the procedure.

The circuit nowperforms the following operations on all ~Gi in parallel: First, in con-

stant depth, an initial coloring of every ~Gi is computed by assigning to each vertex

vi the color i ∈ N, which needs at most log |V | bits. This coloring can be improved

to a coloring with log |V | colors in constant depth: Replace the color c of each vertex

v by 2k+b, where k is the position of the lowest bit onwhich c differs from the color

of the unique successor of v, andwhereb is the value of this bit. Computing this im-

provement consecutively log∗ |V | times yields a coloring with 6 colors [100]. Given

the colorings of the k graphs ~Gi, we can compute a 6k coloring ofG by assigning to

each vertex the k-tuple of colors that this vertex has in the different ~Gi.

1 2

1 3

3 1

2 2

3 2

1 2

(1, 3, 3) (2, 1, 2)

(1, 2, 1) (3, 2, 2)

37

Finally, the circuit initializes a set I = ∅, iterates over the colors and, in parallel, adds
all vertices of the current color, which do not have a neighbor in I, to I. As each step

can be performed in a constant number of AC-layers, the set I can be computed in

f(k) AC-layers. The circuit outputs I, which is a maximal independent set. The total

depth of the circuit is f(k) + log∗ |V |.

From the point of view of parameterized complexity classes, the aforementioned

lemma yields a para-FAC0+ε-circuit for the computation of maximal independent

sets on graphs of bounded degree. The result raises the question whether we can

improve it to para-FAC0. Unfortunately, this seems unlikely – at least with an algo-

rithm that is similar to the algorithm by Goldberg, Plotkin, and Shannon, since the

color trick used by the algorithm requires log∗ |V | iterations to converge. However,

ifweuse the size of the sought independent set as additional parameter, we can even

solve themaximum version of the problem in para-AC0. We require more machinery

to prove this fact – it will be presented at the end of this chapter in Theorem 46.

38

4.2 Graph Traversal

As mentioned earlier, most of the problems we study in this thesis are graph prob-

lems. It will therefore be convenient to have algorithms at hand that can answer ba-

sic questions on graphs. The primitive operations on graphs are reachability queries

(“is there a path from s to t?”) and distance queries (“is there a path from s to t of

length atmostd?”). The former is a classical L-complete problem [143], while the later

is known to be NL-complete [160]. Therefore, we can solve both problems in AC
1. In

fact, we can even compute the full distance matrix in FAC1.

In the parameterized settingwemay hope to improve these results for a suitable pa-

rameter. Natural candidates are the actual distance between s and t, or the length

of the longest path inG. Instead of just providing a decision procedure for the pa-

rameterized distance problem, we will actually implement parameterized parallel

versions of the depth-first search and the breadth-first search algorithms. This in

return will additionally allow us to use properties of these algorithms throughout

the rest of this thesis. To formalize this idea, we need a suitable representation of a

depth-first search (breadth-first search) run. LetG = (V ,E) be a graph with s ∈ V ,
and let T be a depth-first search tree ofG starting at s, a depth-first search labeling is a

mapping λs : V → N such that λs(v) is the distance from s to v in T . The figure in

v1

v2

v3

v4

v5

v1

v2

v3

v5 v4

0

1

2

3

3

the margin shows from top to bottom: an example graph, a depth-first search tree

starting at v1, and a corresponding depth-first search labeling. Similarly, we can de-

fine a breadth-first search labeling with respect to a breadth-first search tree. Notice

that in this case the labeling is actually the (path) distance from s to the other ver-

tices. We first handle the computation of breadth-first search labelings, which will

yield a natural parallel algorithm.

I Lemma 34

There is a uniform family of FAC-circuits of depthO(k) and size f(k) · |G|c that, on

input of a graphG = (V ,E), a vertex s ∈ V , and an integerk, outputs a breadth-first
search labeling for the vertices inG that are at a distance of at most k to s.

Proof. Our circuit starts by assigning color 0 to s. The circuit is build up of layers,

where layer i + 1 assigns color i + 1 to each vertex that is not colored yet and that

has at least one vertex of color i as neighbor. The algorithm stops if all vertices are

colored, or at the latest after k layers. After a run of the algorithm, each vertex that

has obtained a color is in the same connected component as s and, furthermore, the

colors constitute a breadth-first search labeling starting at s.

Computing a depth-first search labeling turns out to be more complicated, since an

AC-circuit of the desired depth cannot simply follow a path of the search tree and

“backtrack” once it reaches a leaf, as in this case the depth of the circuit would not

be bounded by the longest path of the input graph.

39

I Lemma 35

There is a uniform family of FAC-circuits of depth f(k) and size f(k) · |G|c that, on

input of a graph G = (V ,E), a vertex s ∈ V , and k ∈ N, either detects that the
longest path inG exceeds 2k, or outputs a depth-first search labeling starting at s.

Proof. In order to achieve a depth-first search labeling in parallel, wewill start a clas-

sical depth-first search at s. However, we have not enough time to “backtrack” and,

instead, we have to identify all branches of the depth-first search starting at some

vertex v in the moment in which we explore v for the first time. These branches can

be found by computing the connected components of the unexplored graph via a

breadth-first search and Lemma 34.

In detail, we test whether the longest path in G is bounded by 2k using Lemma 34.

If this is not the case, we immediately reject. Secondly, we check whetherG is con-

nected (again, using Lemma 34) and, if not, reduce G to the connected component

that contains s. Afterwards, the following algorithm, which we call a phase, is ex-

ecuted with color c = 0 as argument. Each phase does nothing if all vertices are

colored, and this is the end of the recursion. If c = 0, vertex s is colored with c,

otherwise an arbitrary vertex v that is not colored, but that has a neighborw of color

c−1, is selected and coloredwith c. We set λ(v) = c andmarkw as the predecessor of

v. At the end of a phase the vertices ofG are partitioned into the colored verticesC

and the uncolored vertices V \ C. The circuit computes the connected components

ofG[V \C] (using Lemma 34), which we denote by V1, . . . ,V` ⊆ V \C. Afterwards,

new phases are started recursively and in parallel on each graphG[Vi ∪ C]with ar-

gument c+ 1. When all phases have been terminated, the labeling λ is a depth-first

search labeling starting at s. This fact is witnessed by the depth-first search tree

T = (V , { (v,w) | v is a predecessor ofw }). The following figure illustrates a run of

the algorithm.

0 0
1

0

2
1

0

3
2
1

0

2
1

3

0

3
2
1

3

Since this algorithmneverperformsbacktracking, thenumberof consecutivephases

is bounded by the length of the longest path, which is bounded by 2k. For each phase,

a circuit of depth f(k) is sufficient, since the most expensive part is clearly the com-

putation of the connected components. Thus, a depth-first search labeling can be

computed by an AC-circuit of depth f(k).

40

A direct consequence of Lemma 34 is the following theorem, where distance asks

whether there is a path of length at most d between two given vertices s and t:

I Theorem 36

pd-distance ∈ para-AC0

Proof. Compute all vertices of distance at most d from s using Lemma 34 and check

whether t is one of them.

This theorem will serve as a crucial building block in the design of many para-AC0 -

algorithms. It also reveals the fact that para-AC0 is unconditionally a proper superset

ofpara-AC0, since it is known that ford 6 logn there is a constantc such that anyAC-

circuit of depthδ that decideswhether a givengraph contains an s-t-path of lengthd

requires size at least nc·kε
for ε = φ−2δ/3, whereφ is the golden ratio [25].

I Corollary 37

para-AC0 (para-AC0 C

Wemay also note that para-AC0 can solve a notably more general version of the dis-

tance problem: Given a directed graphG = (V ,E) and a partition V = V∃ ∪ V∀, an
alternating path from s to t is a set S of paths inG, all of which end at t, such that (i)

exactly one of them starts at s; (ii) when a path in S starts at some v ∈ V∃ \ {t}, then
for somew with (v,w) ∈ E there is a path in S starting atw; and (iii) when a path

in S starts at some v ∈ V∀ \ {t}, then for allw with (v,w) ∈ E there is a path in S

starting atw (and there is at least one suchw). The length of an alternating path is

the maximum length of any path in the set S. The alternating distance between two

vertices is the minimum distance of any alternating path between them.

I Problem 38 (adistance)

Instance: A directed graph G = (V ,E), a partition V = V∃ ∪ V∀, two vertices

s, t ∈ V, a distance d.
Question: Is the alternating distance from s to t inG at most d? C

Two example instances of the problem are illustrated in the following figure. In the

left graph there is an alternating path from s to t of length 5, while in the right graph

there is no such path. This problem is a classical P-complete problem [110] and, thus,

there is no parallel algorithm that solves it unlessNC = P. Parameterized by the dis-

tance d, however, the problem lies in para-AC0. In fact, it is a natural representative

for this class in the sense that it is also hard for it.

∃

∃

∃

∀s

∀

∀

∀ ∀ t

∀s

∀

∀

∀

∀ ∀ t

∃

∃

41

I Theorem 39

pd-adistance is complete for para-AC0 under para-AC0-reductions.

Proof. For containment consider a circuit that performs a backward breadth-first

search starting at t, similar to Lemma 34. The circuit processes the graph in d lay-

ers, computing in layer i the vertices that have alternating distance i to t. In the

first layer, vertex t is colored. In layer i, all vertices x ∈ V∃ that have one colored

neighbor, and all y ∈ V∀ that have only colored neighbors (and at least one) are col-

ored. There is an alternating path of distance at most d from s to t if, and only if, s

is colored afterd layers. The correctness of the circuit follows by a simple induction:

in layer 1 we color exactly the vertices with alternating distance 1, and it can easily

be seen that coloring a vertex in layer i is only possible if it has a neighbor (or all its

neighbors) with alternating distance i− 1.

For completeness let us reduce any problem (L, κ) ∈ para-AC0 to pd-adistance.

As (L, κ) is in para-AC0, there is a fixed family of circuits deciding L. Let C be such

a circuit. We may assume that C is monotone since we can always replace a non-

monotone circuit by a monotone one (using the standard argument used for show-

ing that the circuit value problem reduces to its monotone version [101]): The idea

is to use “double-railed” logic that computes the negation of any gate “on the fly.”

This technique is illustrated in the following graphic, where the circuit on the left

is the non-monotone input circuit. The circuit on the right uses double-railed logic

to simulate negation without using negation gates – here the blue wires and gates

are the original ones (or the “positive” ones), while the orange wires and gates are

the “negated” ones. Note that the monotone circuit has twice as many inputs, as it

expects the negation of the original input bits as additional input.

x0 x1 x2 x3 x4

¬ ¬

∧ ∨ ¬

∧

∧

¬

x0 x0 x1 x1 x2 x2 x3 x3 x4 x4

∧ ∨ ∨ ∧

∧ ∨

∧ ∨

42

We translate the monotone circuit C into an alternating graph as follows: The ver-

tices of thegraphare thegates, and thewires are edgesdirected fromtheuniqueout-

put gate towards the input bits. For each input bit there is a vertex as well. We label

the output gate as s, add a new vertex t, andwe add edges from all input bits that are

set to 1 towards t. We then partition the vertices such that V∃ is the set of or-gates

joined by s and t, and the input bits; and such thatV∀ is the set of and-gates. In the

following figure the construction for the aforementioned circuit is illustrated. The

vertices of V∃ are uncolored while the vertices in V∀ are colored orange. The dotted

edges only exist if the corresponding input-gate is set to 1.

t

s

The constructed graph with s and t, and with d as distance, constitutes an instance

of pd-adistance. An alternating path from s to t corresponds to wires that are set

to true during the evaluation of the circuit and, hence, such a path can only exist if

the circuit evaluates to true. Since, furthermore, the depth of the circuit is bounded

by d, such a path has length at most d as well.

We are left with the task of arguing that the described reduction can be performed

by a uniform family of para-AC0-circuits. Keep in mind that we reduce from a prob-

lem (L, κ) ∈ para-AC0 with, say, L ⊆ struc[τ] and κ : struc[τ] → I. The circuit-
family (Rn,k)n∈N,k∈I that we construct obtains some structure S ∈ struc[τ] as

input and shall output an instance for pd-distance, that is, (S, κ) ∈ L if, and only

if, R|code(S)|,κ(S)(S) = code(A) with (A, κ ′) ∈ pd-distance, where κ
′ maps to

the value d. Further recall that (L, κ) ∈ para-AC0 is witnessed by a uniform family

(Cn,k)n∈N,k∈I. Observe that it is easy to construct a uniform family of para-AC0-

circuits that, given the structure S and code(C|code(S)|,κ(S)), outputs the result of

the reduction, since the transformations used by the reduction can be expressed by

simple first-order interpretations. However, the circuit R|code(S)|,κ(S) does not ob-

tain code(C|code(S)|,κ(S)) as input. Instead, we hard-wire code(C|code(S)|,κ(S)) into

a single AC-layer of R|code(S)|,κ(S). This can be done by the Turing machineM that

constructsR|code(S)|,κ(S), sinceC|code(S)|,κ(S) is itself uniformand, thus,M can sim-

ulate the Turing machine that is used to constructC|code(S)|,κ(S).

43

4.3 Color Coding

The color coding techniquedue toAlon, Yuster, andZwick [6] is actually an advanced

strategy and not necessarily “basic.” However, it is surprisingly well suited for param-

eterizedparallel constant time computations. In fact, it is the heart of almost all con-

stant time algorithms presented in this thesis and, thus, I believe it is fair to classify

it as a basic parameterized parallel algorithm. The technique is best understood by

applying it to a concrete problem:

I Problem 40 (rainbow-matching)

Instance: An edge-colored graphG = (V ,E,χ)with χ : E→ {1, . . . , k}.

Question: Is there a matchingM ⊆ E with |M| = k that contains an edge of every

color, that is, all edges inM have distinct colors? C

An example instance is shown in the margin, the reader is asked to find a solution

for it. This problem is a generalization of the classical matching problem and has

interesting applications, for instance in the theory of Latin squares [129]. It is known

that rainbow-matching is NP-complete even restricted to bipartite graphs [112],

and it is APX-complete even on properly edge-colored paths [129].

To understand the idea of the color coding technique let us assume that we have a

coin, and let us further assume we flip that coin for every vertex in the graph. The

crucial observation that Alon, Yuster, and Zwick had is that whenever we search for

a small structure in the graph (here the rainbowmatching of size k), the probability

that all vertices that participate in this structure obtain “head” is bounded by some

function in k (and, especially, is independent of the size of the graph). In fact, if we

replace the coin by a die, or for thatmatter by a randomcoloring of the vertices of the

graph, the probability that the vertices participating in the structure we seek obtain

a certain coloring is still bounded solely by a function in k.

This observation can easily be turned into an efficient randomized FPT-algorithm

for pk-rainbow-matching: On input of G = (V ,E,χ) with χ : E → {1, . . . , k} we

“roll” a random coloring λ : V → {1, . . . , k}. We say an edge e = {v,w} ∈ E is

compatiblewithχ ifλ(v) = λ(w) = χ(e). Observe thatwe can test inpolynomial time

if there is a rainbow matching that contains only compatible edges – for each color

we simply search for a compatible edge, the matching property then is guaranteed

by the coloring. Furthermore, if G actually contains a real rainbow matching, the

probability that all edges in it become compatible with λ is bounded by a function

in k and, thus, can be arbitrarily increased by repeating the algorithm f(k) times

for some computable function f : N → N. The following graphic on the next page

shows three “random” colorings of the instance from above, the readermay identify

the one with a compatible solution:

44

The final ingredient we need to turn the above algorithm into an FPT-algorithm, or

actually into a parameterized parallel constant time algorithm, is a way to deran-

domize color coding. This can be done with universal coloring families:

I Definition 41 (Universal Coloring Families)

For natural numbers n, k, and c, an (n,k, c)-universal coloring family is a set Λ of

functions λ : {1, . . . ,n} → {1, . . . , c} such that for every subset S ⊆ {1, . . . ,n} of size

|S| = k and for every mapping µ : S→ {1, . . . , c} there is at least one function λ ∈ Λ
with ∀s ∈ S : µ(s) = λ(s). C

It is well known that such families (of a suitable size) can be generated efficiently

using hash functions [85]. This in turn allows the use of color coding to design de-

terministic FPT-algorithms. The following theoremshows thatwe can compute such

families in para-FAC0:

I Theorem 42

There is a computable function fandauniformfamily (Cn,k,c)n,k,c∈N of FAC-circuits

without inputs such that eachCn,k,c

1. outputs an (n,k, c)-universal coloring family (coded as a sequence of function

tables),

2. has constant depth (independent of n, k, or c), and

3. has size at most f(k, c) · poly(n).

Proof. Let us first assume that n is sufficiently larger than k, in particular such that

f(k) < n, and define

λp,a(x) = (a · x mod p) mod k2,

Λ ′n,k =
{
λp,a | p < k2 logn and a ∈ {0, . . . ,p− 1}

}
,

Λn,k,c =
{
ω ◦ λ | ω : {0, . . . , k2 − 1} → {1, . . . , c} and λ ∈ Λ ′n,k

}
.

It is well known that Λ ′n,k is a family of k-perfect hash functions, that is, for ev-

ery subset S ⊆ {1, . . . ,n} with |S| = k it contains a function that is injective on S,

see [85]. Therefore, givena subsetS anda functionµ : S→ {1, . . . , c}, somemembers

of λp,a ∈ Λ ′n,k will map themembers of S injectively to a subset S ′ of {0, . . . , k2− 1}

45

and, then, some functionω : {0, . . . , k2 − 1} → {1, . . . , c} will map S ′ in such a way

thatω ◦ λp,a equals µ on S. Consequently, the set Λn,k,c is an (n,k, c)-universal

coloring family. The sizes of the two sets can be bounded by |Λ ′n,k| 6 (k2 · logn)2
and |Λn,k,c| 6 ck

2 · (k2 · logn)2 = ck2
k4 log2 n. Each function inΛn,k,c can clearly

be encoded in n log2 c bits.

For the construction of the circuitCn,k,c observe that the input length isn and that

all numbers of the above definitions are smaller than n. Therefore, we essentially

work with unarily encoded numbers. For them, addition, multiplication, as well as

the modulo operation are in uniform FAC
0 by Lemma 22. In conclusion, there is a

uniform family of FAC0-circuits (Hn)n∈N that obtains as input three unarynumbers

p, a, x, and outputs λp,a(x). The circuit Cn,k,c consists of n ·
(
k2 logn

)2
copies of

Hn, where all combinations of 0 6 x 6 n and0 6 a < p 6 k2 logn are hard-wired

to the different copies ofHn. The concatenated output of these subcircuits almost

equals the function table ofΛn,k,c. The only part missing is the mappingω, which

is applied byCn,k,c in a constant number of additional AC-layers.

Observe that (i) the depth of the circuitCn,k,c is constant as the depth ofHn is con-

stant, and (ii) the size of Cn,k,c is bounded byO(n ·
(
k2 logn

)2 · |Hn| · ck
2
log c).

To see that the family is uniform, just observe that (Hn)n∈N is uniform and that a

Turing machine on input bin(i)# code(k, c)# bin(n) can compute k2 logn in time

f(k)+ logn as logn is a log logn-bit number: Either k2 < logn and themultiplica-

tion can be performed “in the logn part,” or k2 > logn and the multiplication can

be performed in time f(k).

For the remaining case that k is too large, we have f(k) > n. Therefore, we may

hard-wire any family ofk-perfect hash functions (whose sizemay arbitrarily depend

on n and k) directly into the circuit. Since the uniformity Turing machine is al-

lowed to run for f(k) steps for some computable function f, this hard-wired version

is clearly uniform as well.

The theorem has interesting consequences. For instance, it should be immediately

clear thatpk-rainbow-matching lies inpara-AC
0 and, thus, also the classicalmatch-

ing problem lies in this class. Note that, in contrast, the parallel complexity of the

matching problem is still not fully resolved. It is only known that thematching prob-

lem can be solved in randomized NC [132] and quasi NC [79] (which is defined as

NC, but the circuits are allowed to have size O(nlogi n)). Only very recently, these

results were improved by Anari and Vazirani to an algorithm that runs in pseudo-

deterministic randomizedNC [8].

I Corollary 43

pk-rainbow-matching ∈ para-AC0 C

46

Another consequence that we will heavily use, and in fact already have used in the

proof of Theorem 33, is the observation that we can “count” with the help of color

coding. More precisely we can solve the following problem:

I Problem 44 (threshold)

Instance: A bitstring b ∈ {0, 1}n and a number t ∈ N.
Question: Are there at least tmany 1’s in b? C

Clearly, the unparameterized version is complete for TC0, but parameterized by twe

obtain the following result.

I Lemma 45

pt-threshold ∈ para-AC0

Proof. On input of a bitstringbof lengthn and t ∈ N, weuseTheorem42 to compute

an (n, t, t)-universal coloring family. If b contains at least tmany 1’s, then there is a

coloring of the positions of b such that each color class contains at least one 1. Thus,

it is sufficient to test in parallel for all colorings whether this is the case.

It should be noticed that this was already known by a result from circuit complex-

ity [136], as AC0 can solve the problem for polylogarithmic values of t. In fact, the

techniques used to prove this result are similar to the techniques we have used to

prove Theorem 42: The input is hashed to a small domain using suitable hash func-

tions and, then, the problem is solved via “brute-force.” Therefore, Theorem 42 can

be seen as a generalization of the results from [136] by an extension of color coding.

In return, this allows to prove Lemma 45 in just a few lines.

Another useful application of color coding is an extension of our result for indepen-

dent sets in graphs of bounded degree. If the problem is additionally parameterized

by the solution size k, we can actually find an optimal solution in parallel constant

time. The attentive reader may observe in the following proof that a similar “stamp

argument” will work for many other graph problems on graphs of bounded degree.

We will formalize this idea in Chapter 8 by adapting a result of Flum and Grohe [84]

to the parallel parameterized setting: All problems definable in first-order logic can

be solved in para-AC0 on structures of bounded degree.

I Lemma 46

pk,∆-independent-set ∈ para-AC0

Proof. We will directly “stamp” the independent set into the graph. To make this

ideawork, we need the property that the size of the border of the structurewe search

(which is bounded in size by the parameter) is bounded by the parameter as well. In

a graph of bounded degree this is obviously the case, as any of the k vertices in the

structure adds at most∆ vertices to the border.

47

Since both, the structurewe search and its border, are small, wemayuse color coding

to color them both in any way we want. In the “stamp technique” we use two colors

(say blue and orange) and we hope for a coloring in which the structure we search

(here the independent set) becomes colored orange, while its border becomes col-

ored blue. We now just have to search for k orange vertices that have a blue neigh-

borhood and induce the structure we are looking for. In the case of the independent

set problem, we search for k orange vertices that all have only blue neighbors.

Testing if a given vertex is colored orange and has only blue neighbors can easily

be implemented in a constant number of AC-layers. The coloring can be obtained

in constant depth by Theorem 42 and the correctness follows by the properties of a

universal coloring family.

The following figure illustrates the stamp technique used in the proof of Lemma 46.

The vertices are colored with blue and orange, and an independent set of size 6 was

successfully stamped such that it is orange and its neighborhood is blue – can the

reader spot it?

48

5 Parallel Bounded Search Trees

In this chapter we study parallel parameterized algorithms based on the bounded

search tree technique. I start by presenting a short review of the basic terminology

of bounded search trees in Section 5.1. Afterwards, we will study a generic problem:

The modulator problem for graphs (given a graphG = (V ,E) and a number k ∈ N,
can we delete k vertices such thatG belongs to some family F of graphs). This will

allowus to solvemanynatural problemswithparallel bounded search trees. Thefirst

result, presented in Section 5.2, handles this problem for the case thatF is the family

ofH-free graphs.

B Informal Version of Theorem 51.

For every fixed graphH, there is a family of para-FAC0 -circuits that decides, given a

graphG and a number k, whether we can delete k vertices such thatG isH-free. C

In the remainder of Section 5.2 we will devote ourselves to generalize this result to

more complex familiesF. Wewill study the family that forbids a homomorphic copy

ofH (there is no homomorphism fromH to amember ofF) and the family of graphs

that does not contain a copy ofH as embedding. Our goal is to develop an algorithm

that can handle both cases, even if the graphH is not fixed (but a parameter).

B Informal Version of Corollary 57 and Corollary 63.

LetH be a family of graphs with constant treewidth. There is a family of para-FAC0 -

circuits that decides, given graphsH ∈ H andG, whether we can delete k vertices

fromG such that there is no homomorphism (embedding) fromH toG. C

Finally, we close the chapter by studying the feedback-vertex set problem in Sec-

tion 5.3. This problem does not fit into the framework that we develop in Section 5.2

and, thus, we have to design a new parallel algorithm. We will adapt a classical se-

quential search tree in order to obtain such a parallel algorithm. However, we will

see that this is not trivial, since the sequential search tree applies inherently sequen-

tial reduction rules repeatedly.

B Informal Version of Theorem 68.

There is a family of para-FAC1 -circuits that, given a graphG and a numberk, outputs

a feedback-vertex set of size k ofG – if such a set exists. C

49

5.1 A Short Review of Bounded Search Trees

The bounded search treemethodwas one of the first tools to obtain fixed-parameter

algorithms [69]. Fortunately, it is conceptually one of the easiest methods, and it is

well suited for parallelization in a natural way. Intuitively, we will build a search

tree with a depth that is bounded (usually linearly) by the parameter. If the branch-

number of the tree is also bounded, the size of the whole tree is bounded by a func-

tion in the parameter. A parallel algorithm can handle a whole level in a single step

and, thus, requiresonly timedependingon thedepthof this treeand the timeneeded

to identify the children of a node within the tree. This concept is best understood

with a concrete example – for our purposes wewill use the independent set problem

on planar graphs, that is, wewish to know if a given planar graph containsk vertices

that are pairwise not adjacent.

I Theorem 47

There is a uniform family of FAC-circuits of depth f(k) and size f(k) · |V |c that, on

input of a graph G = (V ,E) and a number k ∈ N, either outputs an independent

set of size k, or correctly detects that such a set does not exist, or correctly detects

thatG is not planar.

Proof. The proof is based on the proof in [85] for showing that the problem is in FPT.

We first observe that for a vertex v ∈ V at least one vertex ofN[v]will be part of any

maximal independent set (if no vertex of N(v) can be added, we can add v). Next

we use the fact that a planar graph contains a vertex v of degree at most 5, that is, a

vertexwith |N[v]| 6 6. This follows directly from the fact that planar graphs contain

at most 3|V |− 6 edges.

The circuit works as follows: First it computes the degree of every vertex using the

circuit from Lemma 45. If all vertices have degree greater than 5 the circuit safely

reports the input graph is not planar. Otherwise, the circuit uses the lexicographical

smallest vertex of degree at most 5 and branches overN[v], that is, for every vertex

w ∈ N[v] a subcircuit is used to check ifG[V \N[w]] contains an independent set

of size at most k− 1.

If any of these branches reaches the value k = 0, the circuit has found the desired

independent set and presents it as output. If a branch creates the empty graphwhile

k is still greater than 0, this branch rejects. If all branches reject, the circuit safely

reports that the graph does not contain an independent set of size k.

The claimed depth of the circuit follows directly from the fact that each branch has

length atmostk. The size of the circuit is bounded by the size of the traversed search

tree, that is, by 6k · poly(n).

50

This result implies that pk-planar-independent-set lies in para-AC
0 if we promise

that the input graph is planar. If this promise is not given, then the circuit needs

to check if the graph is actually planar (in the decision version the circuit may only

accept if the input contains a size-k independent set and is planar). The smallest

circuit class for which it is known that it can perform a planarity test is AC1 [4] and,

hence, we have pk-planar-independent-set ∈ para-AC1.

5.2 Modulators and Editing

In this section we seek to establish a general result about the parallel evaluation of

search trees. For that matter, we will study modulator and editing problems. Infor-

mally, we are given a host graphG and are asked if we can transform it into a graph

of some familyF of graphs by just a fewmodifications. We eitherwant amodulator,

that is, a set of vertices whose removal will transform G into a graph contained in

F, or wemay editG by adding or removing edges from it. Formally, we consider the

following problems for a fixed family F of graphs:

I Problem 48 (modulator(F))

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| 6 k such thatG[V \ X] ∈ F? C

I Problem 49 (editing(F))

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Are there sets R ⊆ E and A ⊆ E with |R ∪ A| 6 k such that we have

G ′ = (V , (E \ R) ∪A) ∈ F? C

The simplest, but still quite powerful, version of this problem is the one for F being

the family of H-free graphs for some fixed graph H. In detail, we define for some

fixed graph H the family F = {G | G does not containH as induced subgraph }.

Natural use-cases are for instance the vertex cover problem (H =); cluster editing

(H =); and distance to a co-graph (H =).

I Example 50

In the left figure, there is amodulator of size 2 to -free graphs, while in the right

graph we can edit 5 adjacencies to obtain a -free graph.

C

51

I Theorem 51

For every fixed graphH and the family F ofH-free graphs we have:

1. pk-modulator(F) ∈ para-AC0 ;

2. pk-editing(F) ∈ para-AC0.

Proof. We prove the first item. SinceH is fixed, an AC-circuit of constant depth and

size roughly |V(G)||V(H)| can check, given the input graph G = (V ,E), whether

there is a setO ⊆ V such thatG[O] is isomorphic toH. If no suchO exists, we have

G ∈ F and are done. Otherwise, O is an obstruction to be H-free and at least one

vertex ofOmust be added to the solution. The circuit in construction branches over

all possibilities (this is just a constant number) and repeats the whole procedure.

Afterk layers of suchAC-circuits, wemay either have found the soughtmodulator, or

mayhave correctly decided that there is no suchmodulator of sizek. Hence, the total

depth of the circuit is f(k) and its size is f(k) · |V |c for some computable function f

and constant c.

The editing caseworks equivalently, the only difference is thatwedonot branchover

vertices ofO, but over edges and non-edges inG[O].

An alternative approach to Theorem 51 is a reduction to the hitting set problemwith

small hyperedges. We will see in Section 6.5 that we can flatten the search tree to

constant depth (using a lotmoremachinery), implyingpk-modulator(F) ∈ para-AC0.

This reduction, however, does notwork for pk-editing(F). Themain obstacle here is

that in the editing problem it is not sufficient to “hit” all obstructions, since adding

or deleting an edge can create new obstructions. It remains open whether or not

pk-editing(F) can be placed in para-AC0, however, Stockhusen, Tantau, and myself

showed that somespecial cases (suchas editing to clustergraphs) are inpara-AC0 [19].

We can naturally extend the result by studying more complex families F. For in-

stance, we may study F = {G | H G } for some fixed graphH, whereH G

denotes the fact that there is no homomorphism fromH toG. Actually, we can even

handle the more general case thatH is not fixed, but part of the input. This leads to

the following problem:

I Problem 52 (hom-modulator(H))

Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG), and a number

k ∈ N.
Question: Is there a set X ⊆ V(G)with |X| 6 k such thatH G[V \ X]? C

It should be clear that this problem is, for arbitrary familiesH, more complex than

the previous problems, as we have to find a homomorphism fromH toG before we

can think about themodulator. In other words, we now have to deal with the follow-

ing problem:

52

I Problem 53 (homomorphism(H))

Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG).

Question: H G? C

Naturally, the parameter here is H. If H is the complete graph on k vertices and

G has no self-loop, this task is exactly the parameterized clique problem and, thus,

W[1]-complete [59]. As a consequence, we have to prohibit complete graphs in the

familyH if we wish to obtain efficient parallel algorithms. In particular,Hmay not

be the set of all graphs and it will not be sufficient to bound the cliquewidth of the

graphs in it. Instead, we will focus on families H that contain graphs of bounded

treewidth or treedepth. It is known by results of Chen andMüller [50] that the prob-

lem (i) lies in para-LwhenH has bounded treedepth; (ii) lies in the para-L-reduction

closure of the distance problem (parameterized by the distance) ifH has bounded

pathwidth; and (iii) lies in para-L-reduction closure of the embedding of trees ifH

has bounded treewidth. The problem has also been studied with respect to classi-

cal circuit complexity – here Amano showed that the unparameterized problem, in

which the graphs inH are of constant size, lies in AC
0 [7]. We extend these results

with parameterized parallel algorithms and in particular we improve the first result

of Chen and Müller considerably by showing that pH-homomorphism(H) actually

lies in para-AC0 ifH has bounded treedepth.

I Theorem 54

Fix two numbersw,d ∈ N withw < ∞ (but with d = ∞ being explicitly allowed)

and consider I = {H = (V(H),EH) | there is a tree decomposition (T , ι) of H

that has width at mostw and that can be rooted such that T has depth at most d }.

Furthermore, define d(H) = min(d, |V(H)|) and let c ∈ N be a fixed constant.

There is a uniform family (Cn,H)n∈N,H∈I of para-FAC-circuits such that for all pairs(
G = (V(G),EG),H = (V(H),EH)

)
of graphs withH ∈ Iwe have:

1. C|code(G,H)|,H(code(G,H)) outputs a homomorphism from H to G encoded

as function table, if such a homomorphism exists;

2. depth(Cn,H) 6 c · d(H);

3. size(Cn,H) 6 d(H) · |V(H)|c · nc·w.

Proof. First observe that the parameter is easily computable in FAC
0, as we just have

to extract H from a given pair (G,H). The circuit Cn,H will apply dynamic pro-

gramming over a tree decomposition (T , ι) of H (of width at most w and depth at

most d(H)). This tree decomposition is hard-wired into the circuit. In order to see

that this does not conflict the uniformity, recall that we require a Turing machine

that, on input of bin(i)# code(H)# bin(n) outputs the ith bit of code(Cn,H) in at

most f(H) + log(n) steps. Since f is an arbitrary computable function, this ma-

chine has enough time to find a suitable tree decomposition and hard-wire it into

the circuit – note that the existence of such a tree decomposition is guaranteed by

the choice of I.

53

Let us now describe the dynamic programming procedure on (T , ι). Initially, we

consider for every leaf l of T all assignments ϕ ′ : ι(l) → V(G). We can think of

these assignments as colorings of H, where the “colors” are the vertices of G. We

call such an assignment good if ϕ ′ is locally a homomorphism. Observe that there

are at most |V(G)|w+1 potentially good assignments per leaf and, thus, a circuit of

the claimed size and constant depth can check whether they are good.

For the inductive step let us consider a node n of T . We consider again all possible

assignmentsϕ ′ : ι(n) → V(G) and, this time, we callϕ ′ good if:

1. ϕ ′ : ι(n) → V(G) is locally a valid homomorphism;

2. for every childm ofn in T there is a good assignmentψ ′ : ι(m) → V(G) such

that for every vertex v ∈ ι(n) ∩ ι(m)we haveϕ ′(v) = ψ ′(v).

Clearly, this test can also be implemented by a constant number of AC-layers of size

O
(
|V(G)|w+1

)
. Therefore, the overall depth of the circuit will be c · d(H), and its

size is bounded by d(H) · |V(H)|c · |V(G)|c·w.

We are left with the task of showing that there is a homomorphismϕ fromH toG if,

and only if, there is a good assignmentϕ ′ for the root r of T . To see this, first observe

that, if we have found a good assignment ϕ ′ for r, then there is a local homomor-

phism for the vertices in the root bag. Furthermore, by the secondproperty of “being

good,”wehave foundgoodassignments for every child, and these assignments coin-

cide withϕ ′ in the intersection of the bags. Since, in a tree decomposition, all bags

that contain the same vertex form a connected subtree, we can extendϕ ′ along the

children of r while ensuring that a fixed vertex x ∈ V(H) gets mapped to the same

vertex ϕ(x) ∈ V(G) by good assignments in all branches. In other words, we can

extend the partial homomorphism ϕ ′ to a homomorphism by recursively unite it

with good assignments of its children. For the other direction assume that there is

a homomorphismψ : V(H) → V(G). Then it is easy to see that for every node n of

T the assignment ϕ ′ : ι(n) → V(G) with ϕ ′(v) = ψ(v) for all v ∈ ι(n) is good.

Therefore, if there is a homomorphism, the algorithm will actually find it.

I Corollary 55

Let H be the class of all graphs of treewidth at most t for some constant t. Then

pH-homomorphism(H) ∈ para-AC0. C

Proof. Setw = t and d = ∞ in Theorem 54.

I Corollary 56

Let H be the class of all graphs of treedepth at most t for some constant t. Then

pH-homomorphism(H) ∈ para-AC0. C

Proof. Setw = t and d = t in Theorem 54.

54

The reader may observe that the algorithm of Theorem 54 will also work for general

relational structures if they have bounded treewidth (treedepth). The result can,

of course, directly be applied to pH-hom-modulator(H). We proceed as in The-

orem 51, but instead of finding the obstruction via “brute-force,” we simply apply

Theorem 54 to find it.

I Corollary 57

Let H be the class of all graphs of treewidth at most t for some constant t. Then

pH-hom-modulator(H) ∈ para-AC0. C

The last version of themodulator problem that wewill study in this section is for the

family F = {G | H G }. In words, the family of graphs that does not contain

some graphH as embedding.

I Problem 58 (emb-modulator(H))

Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG), and a number

k ∈ N.
Question: Is there a set X ⊆ V(G)with |X| 6 k such thatH G[V \ X]? C

Wewill consider it again in the version in whichH is part of the input and, thus, we

will have to solve the following problem:

I Problem 59 (embedding(H))

Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG).

Question: H G? C

Wewill adapt the algorithm from Theorem 54 to find embeddings instead of homo-

morphisms (recall that an embedding is an injective homomorphism). The idea is

to assign to every vertex ofH a unique color and to apply color coding with exactly

these colors toG.

I Theorem 60

Fix two numbersw,d ∈ N withw < ∞ (but with d = ∞ being explicitly allowed)

and consider I = {H = (V(H),EH) | there is a tree decomposition (T , ι) of H

that has width at mostw and that can be rooted such that T has depth at most d }.

Furthermore, define d(H) = min(d, |V(H)|) and let f : I → N be a computable

function and c ∈ N be a fixed constant. There is a uniform family (Cn,H)n∈N,H∈I
of para-FAC-circuits such that for all pairs

(
G = (V(G),EG),H = (V(H),EH)

)
of

graphs withH ∈ Iwe have:

1. C|code(G,H)|,H(code(G,H)) outputs an embedding fromH intoG encoded as

function table, if such an embedding exists;

2. depth(Cn,H) 6 c · d(H);

3. size(Cn,H) 6 f(H) · nc·w.

55

Proof. We interpret the verticesV(H) ofH as colors, or equivalently assign a unique

color to every vertex ofH. Thenwe colorGwith a (|V(G)|, |V(H)|, |V(H)|)-universal

coloring family using Theorem 42. Finally, for every coloring λ of the universal col-

oring familywe run the algorithmof Theorem54, with the onlymodification that the

partial assignments may only map vertices v ofH to verticesw inGwith λ(w) = v.

Observe that a solution must be injective, as every vertex in H has its own color.

Furthermore, if there exists an embeddingϕ fromH toG, therewill be amember in

the universal coloring family that colors the image ofϕwith the correct colors.

I Corollary 61

Let H be the class of all graphs of treewidth at most t for some constant t. Then

pH-embedding(H) ∈ para-AC0. C

I Corollary 62

Let H be the class of all graphs of treedepth at most t for some constant t. Then

pH-embedding(H) ∈ para-AC0. C

I Corollary 63

Let H be the class of all graphs of treewidth at most t for some constant t. Then

pH-emb-modulator(H) ∈ para-AC0. C

Note that for a graph both, the treewidth and the treedepth, equal the maximum

treewidth (treedepth) of its connected components. Therefore, building the dis-

joint union of graphs of bounded treewidth (treedepth) will in turn create a graph of

bounded treewidth (treedepth). In this sense, Theorem 60 and its corollaries gener-

alize to the packing version, in which we try to find k disjoint copies ofH.

An application for Corollary 63 is the following generalization of vertex-cover: In-

stead of seeking a small set of vertices that “hits” every edge (that is, every path of

length 2), we now seek a set that hits every path of length c (for some c > 2).

I Problem 64 (path-vertex-cover)

Instance: A graphG = (V ,E) and two numbers k, c ∈ N.
Question: Is there a set S ⊆ V with |S| 6 k such that each path P of length c inG

contains at least one vertex of S? C
This problem was first introduced by Bresar, Kardos, Katrenic, and Semanisin [45],

and is applied in wireless sensor networks [138] and traffic control [162]. It is not

surprising that it is NP-complete for every fixed c > 2, as the case c = 2 is obvi-

ously exactly vertex-cover [45]. We will see in Section 6.5 that the problem lies in

para-AC0 for constant c by a simple reduction to pk,d-hitting-set.This reduction

does, unfortunately, not work if c is a parameter. However, we can still use Corol-

lary 63 by settingH = {Pc }:

I Corollary 65

pk,c-path-vertex-cover ∈ para-AC0 C

Proof. Follows by the fact that paths have constant treewidth.

56

5.3 Feedback-Vertex Set

In the previous two sections the computation of the branches in the search tree

was possible in constant parallel time, or at least in parallel time that is bounded

only by the parameter. This is not necessarily always the case. In such scenarios

we would like to find parallel algorithms that run in polylogarithmic time with re-

spect to the instance size and detect the possible branches. If we are able to find

a bounded search tree with this property, we can at least place the corresponding

problem in para-ACi for some i > 1. A problem with this property is for instance

pk-feedback-vertex-set:

I Problem 66 (feedback-vertex-set)

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| 6 k such thatG[V \ X] is a forest? C

An example instance with an optimal solution of k = 6 is shown in the margin. I

will present an algorithm that runs in parallel time O(k · log |V |), that is, we show
pk-feedback-vertex-set ∈ para-AC1. The algorithm is based on the following pre-

processing rules that are applied in all k layers (each of which will consist of logn

sublayers) of the circuit.

Leaf Rule Delete a vertex v of degree 1.

Chain Rule Contract a vertex v of degree 2 to one of its neighbors.

LoopRule Delete a vertex vwith v ∈ N(v), reduce k by 1.

We first show that we can apply each of the above rules individually exhaustively in

FAC
1, that is, in parallel timeO(logn).

I Lemma 67

There is a uniform family of FAC1-circuits that, on input of a tuple (G,k), outputs a

tuple (G ′,k ′) that results from repeatedly applying (only) the Leaf Rule as long as

possible. The same holds for the Chain Rule and for the Loop Rule.

Proof. The claim follows immediately for the LoopRule aswemay delete all such ver-

tices in parallel and since the deletion of a vertex cannot create new vertices with a

self-loop. For the other two rules observe that an “exhaustive application” equals ei-

ther the deletion of attached trees (for the Leaf Rule), or the contraction of induced

paths (for theChainRule). For thefirst case, the circuitmust be able todetect if a ver-

tex v becomes a leaf at some point of the computation (of course, the circuit cannot

sequentially delete degree-1 vertices). The following observation provides a locally

testable property that allows precisely such a detection: A vertex v is contained in an

attached tree if, andonly if, it is possible to delete a single edge such that (i) the graph

57

decomposes into two components and such that (ii) the component of v is a tree [76].

Both properties can be tested in logspace (and hence in AC1), and an AC1-circuit can

test them for all vertices and all edges in parallel. Finally, for the Chain Rule, observe

that an AC
1-circuit can mark all degree-2 vertices in parallel and that such a circuit,

afterwards, only has to connect the two endpoints of highlighted paths – which is

again a logspace task.

Using this circuit as blackbox, we will design a parallel bounded search tree algo-

rithm that uses the preprocessed graph to quickly find branch-points.

I Theorem 68

pk-feedback-vertex-set ∈ para-AC1

Proof. We have to construct a family of AC-circuits of depth f(k) · logn and size

f(k) · nc. The circuits will consist of k layers such that every layer finds a set of at

most 3k vertices to branch on (whichwill be done for the next layer). Note that layer i

contains at most 3k as many subcircuits as layer i− 1.

Each layer consists ofmultipleAC1-circuits thatwork independently of each other on

different possible graphs (depending on the branches of the previous layer). Each of

these circuits first checks if the input is a yes-instance (input is a tree and k > 0),

or a no-instance (k < 0) – in the first case it just globally signals this circumstance.

In the second case it truncates this path of the computation. If the subcircuit has

not decided yet, it applies first the Leaf Rule exhaustively, and then the Chain Rule

exhaustively – both are possible due to Lemma 67. The circuit now applies the Loop

Rule (again, using Lemma 67). If the rule has an effect (that is, k was reduced by

at least one) the circuit is done and pipes the result to the next layer. Otherwise,

the circuit tests in parallel if there are two vertices v and u that are connected by a

multi-edge (that is, by at least two edges). If this is the case, any feedback vertex set

must contain either v oru and, hence, the circuit branches on these two vertices and

pipes the two resulting graphs to the next layer. Otherwise, we know thatwehaveno

vertex with a self-loop, no vertices with multi-edges, and aminimum vertex-degree

of at least three. The circuit then uses the simple fact that any size k feedback vertex

set in such graphmust contain at least one vertex of the 3k vertices with the highest

degree and, hence, may simply branch over these [59].

Since each layer reduces k in each branch by at least one, after at most k layers ev-

ery branch has decided if it deals with a yes- or a no-instance. Since each layer is

implemented by an AC1-circuit, the claim follows.

58

I Example 69

An exemplary run of the algorithm is illustrated in the following figure:

C

The example run shows that we can eventually only apply one of the reduction rules

after we have applied another: We can not directly apply the Chain Rule to the third

graph, but only afterwehave applied the LoopRule to it. Since the LoopRule reduced

k by one, we may hope to identify many such configurations in advance in order to

speedup the algorithm. Thiswould be interestingwith respect to preprocessing and

kernelization – a topic that we cover in the next chapter – as many standard prepro-

cessing algorithms for feedback-vertex-set apply all three rules exhaustively in

advance [59]. Unfortunately, this seems not to be possible in parallel as the follow-

ing theorem shows.

I Theorem 70

Decidingwhether a specific vertex of a given graphwill be removed by an exhaustive

application of the Leaf Rule, the Chain Rule, and the Loop Rule (jointly in arbitrary

order and not separately as in Lemma 67) is P-hard underNC1-reductions.

For clarity, let us stipulate that a self-loop contributes two to the degree of a vertex,

similarlymulti-edges increase the degree by theirmultiplicity. Therefore, the Chain

Rulemaynot be applied to a leafwith a self-loop. We further stipulate that theChain

Rule may not be applied to a self-loop, that is, it has to contract two distinct vertices

(and hence, self-loops may only be handled by the Loop Rule).

Before we work out the details, let me briefly sketch the proof idea: We will reduce

from themonotone circuit value problem (MCVP), which is known to be P-complete

underNC1-reductions [101]. The input to this problem is a monotone circuit (it con-

sists only of and-gates andor-gates of indegree 2, and it has a single gatemarked as

output) and an assignment of the input gates, the question iswhether or not the out-

put gate evaluates to true. We will transform the input circuit into amulti-graph by

replacing each gate with a small gadget. Every gadget will have two verticesmarked

as “input” and one marked as “output.” The “input” vertices are incident to exactly

one edge outside of the gadget (which connects them to the “output” vertex of an-

other gadget), the “output” vertex of the gadgetmay have edges to an arbitrary num-

ber of other “input” vertices. The semantic then is as follows: The edge of an “input”

59

vertex that leaves the gadget will be removed by the reduction rules when the cor-

responding wire of the circuit would have the value true for the given assignment;

similarly the “output” vertex of the gadget will be removed if the corresponding gate

would evaluate to true under the given assignment (this in turn removes the edges

to other “input” vertices and propagates the computation of the circuit).

Proof. Westartwith a formal description of the transformation. For the input gates,

we use and to describe assignments 1 and 0, respectively. Observe that the

former can be removed by the Loop Rule, while the later is immune to all rules.

For and-gates, we use the gadget ,and for or-gates . In these figures, the two

highlighted vertices at the top are the ones we call “input,” while the bottom vertex

is the “output” vertex. The dotted lines indicate edges that leave the gadget. For

every “input” vertex there will be exactly one outgoing edge, as any gate has exactly

two incoming wires. The “output” vertex may have edges to an arbitrary number

of successor gates; to ensure that there is at least some edge, we fully connect such

vertices to cliques of size three (that is, the “output” vertex is part of a clique of size

four) – this ensures that the degree of “output” vertices is always greater than two.

Assignment Behaviour of the

and-gadget or-gadget

(1, 0) 7→ 7→

(0, 1) 7→ 7→

(1, 1) 7→ 7→

We first prove that these gadgets

work locally as intended. Ob-

serve that all vertices have a de-

gree of at least three and no self-

loop, that is, no rule can be ap-

plied unless one “incoming” edge

gets removed. Since the “output”

vertex of the gadget is fully con-

nected to a clique of size three,

this can only happen if an edge connected to one of the “input” vertices gets re-

moved. Therefore, we see directly that the gadget works as indented for the assign-

ment (0, 0), as no edge connected to the “input” vertices gets removed and no rule

can be applied to the “output” vertex. The case distinction illustrated in the table

shows that the gadgets also work for the other assignments.

We now show the correctness of the construction by an induction over the gates of

the circuit in topological order. The induction hypothesis is that the gadget corre-

sponding to the current gate gets modified by the Leaf Rule, the Loop Rule and the

Chain Rule in the same way as the gate gets evaluated. The base case is given as this

is true for the input gates by construction. For the inductive step consider the gad-

get corresponding to any gate g, and let it have the vertices x, y, and z, where z is

the “output” vertex. By the induction hypothesis the verticesx andy lose an incident

edge for input wires that evaluate to 1 (as the gates corresponding to these gadgets

precedeg in the topological order), the above table then states that the gadget works

correctly. The only pitfall we need to address is that the simulation does not “work

backwards,” that is, that a reduction rule in g triggers a reduction rule for the “out-

60

put” vertex v of a gadget that corresponds to a gate that precedesg in the topological

order. This is, however, not possible due to the clique attached to v – even if all edges

that are incident to v get removed, v has still a degree of at least three.

I Example 71

The followingfigure illustrates the construction used in the proof. The circuit on the

left evaluates to 1 if, and only if, the vertex labeled v in the right graph gets removed

by a repeated application of all three reduction rules. Since the circuit clearly com-

putes the value 1, the vertex v gets removed. However, if we replace the second input

bit by0, the circuit evaluates to0, andwecan see in thegraph that the reduction rules

do not propagate up to v.

0 1 1

∧ ∧

∨

v

C

61

6 Parallel Kernelization

Preprocessing is a fundamental technique used by practical tools that solve compu-

tational hard problems on large real world instances. It has a variety of applications

in different domains such as (i) in modern sat-solvers, which try to eliminate vari-

ables and clauses before the actual solving begins [73, 133]; (ii) as a tool to simplify

ILP-instances [48]; and (iii) in the design of csp-solvers, which try to optimize the

instance for certain strategies like local search [62, 148]. Despite its impact in prac-

tice, preprocessing is rather hard to grasp from a theoretical point of view – at least

in the sense of classical complexity. The reason is that even a polynomial time algo-

rithm that just guarantees to reduce the input instance of an NP-hard problem by a

single bit already implies P = NP – as we can repeat the algorithm a linear number

of times to obtain a trivially small instance that can be solved via exhaustive search.

With respect to preprocessing, the parameterized complexity theory shines, as we

can use structural information about the instance to provide a reduction guarantee.

In this chapter we will develop a variety of parallel algorithms which provide such

guarantees. After a short review of kernelizations in Section 6.1, where I provide the

basic definitions and some simple examples, we formulate the first main result of

the current chapter in Section 6.2:

B Informal Version of Theorem 77.

Parallel parameterized algorithms are equivalent to parallel preprocessing, that is,

a problem lies in para-ACi if, and only if, a kernel of it can be computed in FACi. C

After proving this interesting equivalence, we concentrate on concrete kerneliza-

tions in Section 6.3 and 6.4. We will present multiple results, which are similar in

spirit – as representative example:

B Informal Version of Theorem 80.

The problem pk-vertex-cover admits a kernel of polynomial size computable in

FTC
0, and it admits an exponential kernel computable in FAC0. C

I present similar results for the matching problem parameterized by the solution

size, as well as for the problems of computing a tree, path, or a treedepth decompo-

sitionparameterized by the vertex cover number of the input graph. On thenegative

side, we establish lower bounds for kernel sizes that are achievable in parallel: We

prove that computing certain kernels of linear size for pk-vertex-cover is equiva-

lent to computing largematchings – and it is a long-standing open problemwhether

this is possible in parallel.

63

B Informal Version of Fact 82 and Theorem 83.

Computing a “Nemhauser–Trotter fashioned” kernel is as hard as computingmaxi-

mal matchings in bipartite graphs. C

At the end of the chapter I present what I call “a little gem of parameterized kernel-

ization”: under the massive use of color coding, we will turn a very sequential kernel-

ization into a constant-time computable one. This demonstrates, on one hand, the

power of color coding in parallel parameterized computations and kernelizations,

and will on the other hand place pk,d-hitting-set in para-AC0. This in turn equips

us with a powerful tool that will serve as a working-horse in the design of many fur-

ther parallel parameterized algorithms.

B Informal Version of Corollary 111.

A kernel for pk,d-hitting-set can be computed in FAC0. C

6.1 A Short Review of Kernelizations

As mentioned in the introduction to this chapter, for most problems there is prob-

ably no algorithm that can reduce any instance arbitrarily. However, there might

be an algorithm that guarantees to reduce any instance to a smaller instance of size

bounded by some function in the parameter. This idea is formalized through kernel-

ization and is one of the cornerstones of parameterized complexity theory.

I Definition 72 (Kernelization and Kernel)

Let (Q, κ) be a parameterized problem withQ ⊆ struc[τ] and κ : struc[τ] → I.
A kernelization is a function K : struc[τ] → struc[τ] such that for all S ∈ struc[τ]

and some computable function f : I → Nwe have:

1. S ∈ Q⇐⇒ K(S) ∈ Q;

2. | code(K(S))| 6 f(κ(S)).

The image K(S) of S under K is called the kernel of S. We say a kernelization is a C

kernelization for some functional complexity class C if K ∈ C. Finally, we say K is a

linear, polynomial, or exponential kernelization if the function f in the definition above

is linear, polynomial, or exponential, respectively. C

Note that in the above definition K is not a parameterized function, that is, K has to

evaluate κ by itself if it wants to use the value κ(S). Further observe that a kernel-

ization can be seen as a self-reduction ofQwith the additional requirement that the

size of the produced instance is bounded by the parameter. As a note of caution it

should be pointed out that the term “reduction” is to be understood in the “classi-

cal” computer sciencemanner – besides the fact that almost all kernelizations use so

called “reduction rules” to directly reduce the size of an instance, the image K(S) in

principle has nothing to do with S except for membership-equivalence.

64

For our running example of pk-planar-independent-set, we make the following

observation to obtain a kernel with 4k vertices [90]: On input of G = (V ,E) and

k ∈ N, we first check whetherG is actually planar. If not, we simply output a trivial

no instance (for instance (, 2)). Using the famous Four Color Theorem [144], we

observe that, asG is planar, it can be coloredwith four colors such that the vertices of

every color class constitute an independent set. Therefore, if |V | > 4kwe know that

G contains an independent set of size at least k and output a trivial yes-instance (for

instance (, 1)). Otherwise, we know |V | < 4k and G itself is our desired kernel.

Observe that all operations can be performed by a uniform family of FAC1-circuits

(the only non-trivial operation is the planarity test, which is possible in AC1 [4]) and,

thus, pk-planar-independent-set admits an FAC
1-kernelization with 4k vertices.

The above example is simple, as the problem itself states that it makes no sense to

study large instances. Usually,wewill needmuchmoremachinery inorder to reduce

huge problem instances to small kernels. In order to get used to the notation of

kernelization, let us study the following problem fromcomputational geometry. We

would like to know, given a huge set of points, whether we can cover them all with

just a few straight lines. The followingdefinitionprecisely describes the input for this

NP-complete problem [122]. An example instancewithk = 3 is shown in themargin,

where the dashed lines depict a solution that is of course not part of the input.

I Problem 73 (point-line-cover)

Instance: A set of points p1, . . . ,pn ∈ Zd for a fixed d > 2 and a number k ∈ N.
Both, the points and k, are encoded as binary numbers.

Question: Can we cover all points by at most k straight lines? C

With the concept of kernelization inmind, wewould like to get rid of asmany points

as possible beforewe start to actually solve the problem. The following simple obser-

vation due to Kratsch, Philip, and Ray leads to a kernel with at most k2 elements,

which turns out to be optimal (unless coNP ⊆ NP/poly) [122]: Consider any line

that covers more than k points, then this line must be in any solution. Assume for a

contradiction that we would not take the line, then we would need a unique line for

each of the points (since we have to cover them all) – however, since the line we try

to replace did covermore than k points, we would requiremore than k replacement

lines – a contradiction. We call the process of taking such lines into the solution and,

thus, reducing the size of the instance, a reduction rule; and we have just argued that

the presented rule is safe, meaning that it produces an equivalent instance. A typical

pattern in the design of kernelizations is to apply such a safe reduction rule exhaus-

tively and, afterwards, to count the remaining elements of the instance. Assume the

aforementioned rule cannot be applied anymore, then every possible line covers at

most k points. Furthermore, we are allowed to use at most k lines and, hence, if the

instance has still more than k2 points we can safely “reject,” which means “map to a

trivial no-instance” in the language of kernelization. The following theorem shows

that we can compute this simple kernelization quickly in parallel:

65

I Theorem 74

There is a uniform family of FTC0-circuits that, on input of a set of distinct points

p1, . . . ,pn ∈ Zd and a number k, outputs a pk-point-line-cover kernel with at

most k2 points.

Proof. First observe that the reduction rule “for a line covering at least k + 1 points,

remove all points on this line and reduce k by 1” can be applied in parallel, as remov-

ing all points froma line removes atmost one point fromany other line. To complete

the proof, note that it is sufficient to check all n2 line segments defined by pairs of

points in parallel; and that a TC0-circuit can check if another point lies on such a line

segment as it can multiply and divide binary numbers [106].

From a circuit complexity point of view we may ask to improve the result of Theo-

rem 74 in terms of circuit classes. Precisely, we would like to know if it is possible to

compute the same kernel in FAC0. The following lemma answers this in the negative.

In fact, since it is known that AC0 (TC
0 [93], the lemma shows unconditionally that

no kernel of any size can be computed for pk-point-line-cover in FAC
0. Note that

the result only holds under constant-depth reductions: We say a preserving function

f : struc[τ] → struc[σ] constant-depth reduces to another preserving function

g : struc[ρ] → struc[π] if there is a uniform family (Cn)n∈N of FAC0[g]-circuits

such thatC|code(A)|(code(A)) = code(f(A)) for allA ∈ struc[τ]. Here, an FAC0[g]-

circuit is an FAC0-circuit that is equipped with additional “g-gates,” which naturally

compute the function g.

I Lemma 75

For every fixed k, the kth slice of the problem pk-point-line-cover is TC
0-complete

under constant-depth reductions.

Proof. We start with the case k = 1 and d = 2, which is clearly in TC
0, as in this

case an instance is a yes-instance if, and only if, the input points are colinear. To

see that the problem is TC0-hard we reduce from division defined as: Given three

numbers x, y, and z, is it true that x/y = z? This is a classical TC0-complete prob-

lem (under constant-depth reductions) [106]. For the reduction let x, y, z be the

division-instance, we construct the instance a = (0, 0), b = (x, z), c = (y, 1) of

1–point-line-cover. This is a yes-instance if the points are colinear, that is, if we

have (b − a) · (c − a) = 0 or, equivalently: x−0
y−0 = z−0

1−0 ⇐⇒ x/y = z. Since the

cases k > 1 and / or d > 2 are generalizations, they remain TC
0-hard. To see that

these cases are also in TC0, observe that we have to consider atmostn2 line segments

from which we have to pick k, that is, there are at most
(
n2

k

)
6 n2k solution candi-

dates. For fixed k, these candidates can be checked in parallel by a TC0-circuit and

can be evaluated as in the case of k = 1.

66

Intuitively, Lemma75 states that pk-point-line-cover is complete forpara-TC0. And

indeed, this intuition can be formalized by a result of Flum and Grohe that states

that a problem is complete for a parameterized class if finitely many slices of the

problem are complete for the corresponding classical complexity class [84, 85] (see

also Section 3.3 in [154] for further discussions). However, applying the result to

our problem would require us to restate all the technical definitions in the light of

constant-depth reductions. We will save ourselves the trouble at this point as the

gain is relatively small compared to the required effort – Lemma 75 is already strong

enough to serve as the sought lower bound.

6.2 Parallel Parameterized Algorithms Equal

Parallel Preprocessing

Kernelization is not just a useful tool for preprocessing, it is also a natural alterna-

tive definition for the whole parameterized complexity theory. In particular, it is

known that a decidable problem is in FPT if, and only if, it admits a polynomial time

computable kernelization.

I Fact 76 (for instance [85])

A decidable parameterized problem (Q, κ) is in FPT if, and only if, there is a kernel-

ization K of (Q, κ)with K ∈ FP. C

We will show in the rest of this section that the same relation holds in the parallel

setting, that is, a decidable parameterized problem admits a fast parallel parameter-

ized algorithm if, and only if, it admits a fast parallel kernelization. More precisely,

a problem is in a parallel subclass of FPT if, and only if, it has a kernelization in some

parallel subclass of FP, that is, somewhere within the FNC-hierarchy. I think this

claim is, prior to the results of this thesis, somehow surprising as almost all kernel-

izations – at least in theway they are stated in the literature – have a very “sequential

touch.” However, the previous chapters have already provided parallel parameter-

ized algorithms for a variety of problems and, thus, by the following theorem they

all obtain a parallel kernelization. We will study more natural examples for parallel

kernelizations in the following sections.

Before we state the main theorem of this section, let us be more specific about what

we mean by an FAC
i-kernelization. It is, of course, a circuit-family (Cn)n∈N that

computes the kernelization functionK such as in Definition 72. More precisely,Cn

hasn input-gates and2noutput-gates. The input-gates expect a structureA in form

of code(A), and thefirstnoutput-gateswill output code(K(A))paddedwith0s. The

second block ofn output-gates will output a bitmask that indicates which of the first

n output-gates are relevant for the kernel – there will be at most f(κ(A)) such bits.

Westipulate that these output-bitsmust be sorted in the followingway: Thekernel is

presented in a continuous block at the beginning of the firstn output-gates, that is,

67

the bitmask presented at the secondn output-gates consists of a block of 1s followed

by a block of 0s. Note that this is a small restriction of Definition 72 as, in principle,

a kernelization could output a kernel that in fact is larger than the input. However,

in such scenarios we can always use the non-modified input as alternative kernel.

I Theorem 77

A decidable parameterized problem (Q, κ) is in para-ACi if, and only if, it admits a

kernelization computable in uniform FAC
i.

x1 x2 x3 x4 . . . xn

Cn

y1 y2 . . . yf(k)

∨
t∈codek(Q) t = ~y

code(A)

code(A ′)

Proof. For the first direction let (Q, κ)

be decidable and let (Cn)n∈N be a family

of uniform FAC
i-circuits that computes a

kernelization of (Q, κ). Recall that for any

structureAwith | code(A)| = n the circuit

Cn will output the code of a structure A ′

such that (i) A ∈ Q ⇔ A ′ ∈ Q and

(ii) |code(A ′)| 6 f(κ(A)) for some com-

putable function f : I → N. Note that the
output of Cn is a padded string together

with a bitmask. Let us define the code

words of Q as codek(Q) = { code(A) |

A ∈ Q∧ | code(A)| 6 f(k) }.

We construct a family (Cn,k)n,k∈N of para-ACi-circuits that decide (Q, κ). The cir-

cuitCn,k is sketched in the figure andworks as follows: First, it usesCn as a subcir-

cuit in order to reduce A to an equivalent instance A ′ of size at most f(k). Sec-

ond, the circuit extracts code(A ′) using the bitmask. Afterwards, it tests for all

t ∈ codek(Q) in parallel if any of them equals code(A ′). If this is the case, the

circuit accepts, otherwise it rejects. The correctness of the circuit is immediate. For

the size and depth observe thatCn itself is an FACi-circuit and, thus, fulfills the size

anddepth requirements. The attached test is performedby anAC-circuit of constant

depth and size g(k) = 2f(k). Observe that (Cn,k)n,k∈N is uniform as (Cn)n∈N is

uniform and since Q is decidable. The decidability is required by the uniformity

Turingmachine, which computes codek(Q) and hard-wires its elements intoCn,k.

For the other direction let us assume (Q, κ) ∈ para-ACi witnessed by a uniform

family (Cn,k)n,k∈N of para-ACi-circuits, and let us first assume i > 0.

Weconstruct a family (Cn)n∈N of FACi-circuits that compute the kernelization. The

circuit Cn consists of multiple subcircuits Cj
n, which are sketched in the figure on

the next page and work as follows: On input of code(A) they test whether we have

κ(A) = j (which is possible since κ can be evaluated in FAC0 by Proviso 27) and set a

flag that indicates whether this is the case or not.

68

x1 x2 x3 x4 . . . xn code(A)

Cn,j

trivial kernel

κ(A) = j?

y1 y2 . . . yf(k) r code(A ′)

responsible flag

If the flag is set, Cj
n is responsible for A,

otherwise it is not. Parallel to this oper-

ation, Cj
n uses Cn,j to test A ∈ Q and

produces, using this information, a triv-

ial kernel as output – that is, a fixed yes-

or no-instance. Note that the computa-

tion ofCn,j and, thus, the produced ker-

nel ofCj
n is not sensibly defined ifCj

n is

not responsible.

We now describe the circuit Cn, which

is sketched in thefigure on the next page

(the bitmask-gates are omitted). Define

` ∈ N to be the maximum k with f(k) 6 c logi n, that is, f(`) 6 c logi n and

f(` + 1) > c logi n. The circuit contains C0
n,. . . ,C

`
n as subcircuits and evaluates

them all in parallel. If any Cj
n is responsible, Cn presents the kernel produced by

C
j
n as output. If all Cj

n signal that they are not responsible, Cn can conclude that

f(k) > c logi n and, thus, the whole instance is already a kernel. Therefore,Cn may

in this case simply pipe the input to the output.

To see that the resulting circuit is an FAC
i-circuit, just observe that there is a con-

stant c ′ such thatCn,j has, by definition, depth at most

f(j) + c logi n 6 (c+ 1) logi n 6 c ′ logi n

and size at most f(j) · nc 6 c logi n · nc 6 nc ′. Again, we are left with the task of

arguing that (Cn)n∈N is uniform. The Cj
n are uniform since Cn,j is uniform and

since we consider them only for j with f(j) 6 c logi n. The tricky part is the com-

putation of `, which is required to provide a description ofCn. This means we have

to construct a Turing machine that, in time O(logn), finds the maximum ` with

f(`) 6 c logi n. First observe that such a machine can compute the value c logi n,

because logn is a log logn-bit number, and because c and i are constants – in par-

ticular, c logi n is a 2i log logn ∈ O(log logn)-bit number. The challenging part is

the search for ` and the evaluation of f(`).

By replacing the family of para-ACi-circuits by an equivalent family, wemay assume

that f is monotonically increasing with f(x) > x for all x ∈ N. By another replace-
ment of this family, we may further assume that a Turing machine can compute

f(x) on input bin(x) in time O(log f(x)): To see this, observe that f is computable

and, thus, there is some Turing machine that computes f(x) in time T(x) such that

T(x) is monotonically increasing with T(x) > x for all x ∈ N. We replace f(x) by

the function g(x) = 2T(x). Note that a Turing machine can now compute T(x) in

time logg(x). Since computing a power of two is a simple bit operation, the Turing

machine can also compute g(x)within the same time bound.

69

Given the modified family of circuits, the uniformity Turing machine can find ` via

binary search: Since f(x) > x we know ` 6 c logi n and since f is monotonically

increasing, a binary search can be applied. Therefore, the Turing machine has to

test only log
(
c logi n

)
∈ O(log logn) possible values for `.

x1 x2 x3 x4 . . . xn code(A)

y1 y2 y3 y4 . . . yn padded code(A ′)

C0
n C1

n
. . . C`

n

pipe result ofCj
n or input

For the remaining case of i = 0, we perform the same construction, but choose `

such that f(`) 6 nc, that is, we bound the subcircuits by size and not by depth.

Note that the “replace the circuit family with an equivalent family” operation used

in the theorem is a formal way of stating “use the same family of circuits, but replace

the function f in thedefinitionwith one that iswell behaved.” As long as the function

g used to replace f is computable and fulfills g(x) > f(x) for all x ∈ N, the resulting
family still satisfies all properties of para-ACi and is clearly equivalent to the original

family.

Observe that the above theorem also holds if we replace AC-circuits with either NC-

or TC-circuits. The sole exception isNC0, as this classmay not be powerful enough to

compute κ. A nice consequence of this theorem is that “parallel parameterized pre-

processing” equals “parallel preprocessing,”meaning that a para-FACi-kernelization

can be turned into a “real” FACi-kernelization:

I Corollary 78

LetQbedecidable and let (Q, κ)haveakernelization that is computable inpara-FACi.

Then (Q, κ) has a kernelization that can be computed in FACi. C

Proof. By the assumption of the statement, it follows that (Q, κ) lies in para-ACi, as

such a family of circuits can compute the kernelization and then, in a second step,

solve the problem via “brute-force.” Given (Q, κ) ∈ para-ACi, Theorem 77 directly

implies the FACi-kernelization.

70

Similar to the fact thatwemay always obtain an FPT-algorithmwith a run time of the

form f(k)+nc, wemay also adapt the definition para-ACi to have size bounds of this

form, while at the same time removing the parameter dependency from the depth.

It should be noted, however, that this is a purely theoretical result as the produced

function g may grow exponentially faster than the original function f. It shows,

however, thatwe canalways search for parameterizedparallel algorithms that run in

polylogarithmic time andwhosework is polynomial plus an additive termdepending

only on the parameter.

I Lemma 79

Let (Q, κ)be aparameterizedproblemwith (Q, κ) ∈ para-ACi. Then there are a com-

putable function g : I → N and a constant c ′ such that there is a uniform family

(C ′n,k)n,k∈N of para-ACi-circuits that decides (Q, κ) and in which every C ′n,k has

depth at most c ′ logi n and size at most g(k) + nc ′.

Proof. Since (Q, κ) ∈ para-ACi, there is a uniform family (Cn,k)n,k∈N of para-ACi-

circuits that decides (Q, κ). By Theorem 77 there is a constant c ′ and a uniform

family (Cn)n∈N of FACi-circuits such that everyCn has depth at most c ′ logi n and

size at most nc ′ and produces a kernel of size at most f(κ(x)). We construct the

desired family (C ′n,k)n,k∈N as follows: The circuit C ′n,k first applies the circuit Cn

to an input x and obtains an instance x ′ of size atmost f(κ(x)), then the circuit uses

a constant number of AC layers to check x ′ ∈ Q by testing in parallel for allw ∈ Q
with |w| 6 f(κ(x))whetherw = x ′ holds.

The depth of C ′n,k equals (up to a constant) the depth of Cn, and the size of C ′n,k

is the sum of the size of Cn and the size of the “brute force” circuit applied at the

end, that is, there is a computable function g : N → N such that size ofC ′n,k can be

bounded by g(κ(x)) + nc ′.

71

6.3 Kernelizations for Vertex Cover andMatching

In this section we study parallel kernelizations for pk-vertex-cover. Recall that in

this problemwe are given a graph, and we try to identify a small set of vertices such

that every edge is incident to at least one vertex in this set. The vertex cover prob-

lem is a prime example of parameterized complexity theory in both, the design of

fast parameterized algorithms and the design of kernelizations that produce small

kernels. In fact, the problem is a prime example in the development of parallel ker-

nelizations. The first parallel kernelization (actually, it is a logspace kernelization)

is due to Cai et al. [46]. Later on, this kernelization was implemented in FTC
0 by El-

berfeld, Stockhusen, and Tantau [76].

Both algorithms are based on the following two simple reduction rules, known as

the Buss kernelization in the literature: (i) any vertex of degree at least k + 1 must

be in any size-k vertex cover, and (ii) any isolated vertex is not needed for a vertex

cover. The first rulemay appear familiar, as it is quite similar to the rule we used for

pk-point-line-cover. The argument that the rule is correct is similar: just assume

we would not take the vertex, then we would have to take all k + 1 neighbors into

the solution – and this is obviously too much for a size-k solution. The correctness

of the second rule is even more obvious, there is no need to select an element in

a minimization problem that does not give any benefit. To see that an exhaustive

application of these rules result in a kernel of sizeO(k2)we have to count again. In

the resulting graph every vertex has degree at most k and, hence, any vertex that we

add to the solution may cover at most k edges. In conclusion, a size-k vertex cover

may cover at most k2 edges and, thus, if the resulting graph hasmore than k2 edges

we may reject it. Finally, since the graph has no isolated vertices, it may have at

most 2k2 vertices (in fact, we can count more carefully to obtain a bound of k2 + k),

which provides the claimed kernel size. The following theorem shows that we can

“push” the kernelization by Elberfeld et al. from FTC
0 to FAC0 if we are willing to pay

an exponential increase in the kernel size. Note that such an improvement was not

possible for pk-point-line-cover, even for larger increases of the kernel size.

I Theorem 80

There is a uniform family of FAC0-circuits that, on input of a tuple (G,k), outputs a

pk-vertex-cover kernel.

In order to prove the theorem, we will first prove the following more general state-

ment: We can simulate para-TC0-circuits with para-AC0-circuit if the threshold of all

threshold-gates is bounded by a function in the parameter.

I Lemma 81

Let f : I → N be a computable function and (Cn,k)n∈N,k∈I be a uniform family

of para-FTC0-circuits such that in every Cn,k the maximum threshold used by any

threshold-gate is boundedby thevalue f(k). There is anequivalent family ofuniform

para-FAC0-circuits that compute exactly the same function.

72

Proof. LetCn,k be a para-FTC0-circuit as in the statement, and let its size be bounded

by f(k) · nc. Replace all occurrences of threshold-gates by para-FAC0-circuits that

implement the circuit of Lemma 45. Since they all have constant depth, the over-

all depth of the circuit increases only by a constant factor. Furthermore, the size of

the resulting circuit is boundedbyg(f(k))·nc ′, whereg : I → N is the size bounding

function used in Lemma 45 and c ′ ∈ N a constant. Observe that the resulting family

is uniform as both, (Cn,k)n∈N,k∈I and the family from Lemma 45, are uniform.

Proof of Theorem 80. We start with the FTC0-kernelization from Elberfeld et al. [76].

There is obviously a para-FTC0-circuit family that implements the same function.

These circuits require their threshold-gates only “to count up to k,” as the difficult

part is to identify high-degree vertices. By Lemma 81 we have an equivalent family

of uniform para-FAC0-circuits that compute the desired kernel. By Corollary 78 this

implies that we can compute a kernel within uniform FAC
0.

We shall remark that the lemma that we used to transform an FTC
0-kernelizations

into an FAC0- kernelizationwill work inmany other cases. Wewill see further exam-

ples in Section 6.4.

For now, we will stick to kernelizations for pk-vertex-cover a little longer. The

situation looks pretty good: we have a quadratic kernel in FTC
0 and an exponential

kernel in FAC
0 – what more could we hope for? The best sequential kernelization due

to Chen et al. [51] achieves a linear kernel of size 2k; and since the kernel will usually

be fed into circuits of exponential size, in all practical situations we would prefer a

linear kernel computed even somewhere in FNC over a quadratic kernel computed

in FTC0. Anatural next step is, thus, anattempt toparallelize this linearkernelization.

Unfortunately, we can link the complexity of computing the kernelization by Chen

et al. rather tightly to the computation of large matchings – and whether we can

find suchmatchings in parallel is a long-standing open problem [79, 132]. The linear

kernel is based on the following fact, known as the Nemhauser–Trotter Theorem.

I Fact 82 (The Nemhauser–Trotter Theorem [134])

LetG = (V ,E) be a graph and I = { xv | v ∈ V } be a set of variables. Consider any

optimal solution β : I→ R for the following linear program (LPVC):

min
∑

v∈V xv

xu + xv > 1 for all {u, v} ∈ E
xv > 0 for all v ∈ V

LetV0 = { v | β(xv) < 1/2 },V1/2 = { v | β(xv) = 1/2 },V1 = { v | β(xv) > 1/2 } be a

partition ofV . There is aminimumvertex cover S of the input graphG that satisfies

V1 ⊆ S ⊆ V1 ∪ V1/2. C

73

Chen et al. have observed that there are at most 2k vertices in the set V1/2, and that

this set directly yields the desired kernel [51]. Hence, to compute the kernel we have

to compute a solution to the linear program used in the Nemhauser–Trotter Theo-

rem, and we will see that this is a difficult task.

I Theorem 83

Computing a solution for LPVC is NC-equivalent to computing a maximummatch-

ing in bipartite graphs.

Proof. The first direction is essentially the standard way of efficiently solving LPVC:

Given an instance of LPVC we construct a bipartite graph H =
(
{ v1, v2 | v ∈ V },{

{u1, v2}, {u2, v1} | {u, v} ∈ E
})

and compute a minimum vertex cover S of it. It is

known that the following assignment is an optimal solution for LPVC [59]:

β(xv) =


0 for |{v1, v2} ∩ S| = 0,

1/2 for |{v1, v2} ∩ S| = 1, and

1 for |{v1, v2} ∩ S| = 2.

Since H is bipartite, computing a minimum vertex cover is equivalent to comput-

ing a maximummatching due to König’s Theorem [120]. More precisely: To obtain

the vertex cover S, we compute a maximummatching inH and this matching con-

stitutes an optimal solution to the dual program of LPVC. Due to the Complemen-

tary Slackness Theorem, we can derive an optimal solution for the primal program

from an optimal solution of the dual program by solving a linear system of equa-

tions, which is possible inNC [114]. Note that thematrices of both LPVC and its dual

program are totally unimodular, as the incidence matrix of a bipartite graph is to-

tally unimodular, and since the transpose of a totally unimodularmatrix is so aswell.

Therefore, Cramer’sRule states that the solution thatweobtain for thedual program

with the algorithm from above is integral as well [58, 121]. This completes this part

of the proof.

For the other direction, the input is a bipartite graphG = (V ,E) in which we search

for a maximummatching. Let β be an optimal real solution of LPVC forG. We can

transform β into a (still optimal) half-integral solution β ′ by simple rounding:

β ′(xv) =


0 if β(xv) < 1/2,

1/2 if β(xv) = 1/2, and

1 if β(xv) > 1/2.

This well-known fact is based on [134], and can be shown by the following procedure

that successively transforms the assignmentβ into a refined optimal solution, end-

ing at β ′. To refine β we define the two sets V+ = { xv | 0 < β(xv) < 1/2 } and

V− = { xv | 1/2 < β(xv) < 1 }.

74

We now define for a suitable small ε > 0 the two assignments

β+(xv) =


β(xv) if xv 6∈ V+ ∪ V−,

β(xv) + ε if xv ∈ V+, and

β(xv) − ε if xv ∈ V−,

and

β−(xv) =


β(xv) if xv 6∈ V+ ∪ V−,

β(xv) − ε if xv ∈ V+, and

β(xv) + ε if xv ∈ V−.

Observe that both, β+ and β−, are still feasible solutions, as for any edge {u, v} the

constraint xu + xv > 1 is satisfied (either one of the variables is already 1, or they

are both 1/2, or we add ε to at least one of them). Compared to β, the value of the

target function changes by ε|V+|−ε|V−| and ε|V−|−ε|V+|, respectively. Sinceβ is

optimal, neither β+ nor β− may reduce the value of the target function compared

toβ; consequently we have |V+| = |V−|, andβ+ andβ− are both optimal solutions.

Conclusively, by repeating this process successively, we will end up at β ′.

To conclude this part of the proof, we will now turn β ′ into an integral solution. To

achieve this, we construct an auxiliary graphG ′ by deleting all vertices with value 1

in G (as these must be in the vertex cover). Since all vertices with value 0 are now

isolated, we may remove them too. We end up with a bipartite graph G ′ with n ′

vertices, which are all assigned with the value 1/2 by β ′. We claim β ′ is an optimal

solution for LPVC onG ′. For a contradiction assume otherwise, that is, assume there

is an assignmentγwith
∑

v∈V(G ′) γ(xv) <
∑

v∈V(G ′) β
′(xv). We can infer a new

assignment β ′′ forG by “plugging” γ into β ′:

β ′′(xv) =

{
β ′(xv) if xv 6∈ V(G ′);
γ (xv) if xv ∈ V(G ′).

This is a feasible solution for LPVC onG, since for all edges {u, v}we have:

β ′′(xu) + β
′′(xv) =


γ (xu) + γ (xv) > 1 if u, v ∈ V(G ′);
β ′(xu) + β

′(xv) > 1 if u, v 6∈ V(G ′);
β ′(xu) + γ (xv) > 1 if u 6∈ V(G ′) and v ∈ V(G ′).

The first two lines follow by the fact that γ and β ′ are feasible; the last line follows

by the construction of G ′, as an edge {u, v} with u 6∈ V(G ′) and v ∈ V(G ′) only

appears if we have β ′(xu) = 1 (we have deleted isolated vertices and vertices with

value 1, and here u was deleted and is not isolated). By the construction of β ′′, we

end up with
∑

v∈V(G) β
′′(xv) <

∑
v∈V(G) β

′(xv), which is a contradiction as β ′

is an optimal solution for LPVC onG. Consequently,β ′must be an optimal solution

for LPVC onG ′ as well.

75

Since β ′ assigns 1/2 to all vertices in G ′, a minimal vertex cover of G ′ has size at

least n ′/2. Therefore, G ′ has to consist of two shores of equal size, as otherwise

the smaller one would be a vertex cover of size smaller than n ′/2. We can, thus,

greedily select one shore into the vertex cover, that is, we set β ′ for one shore to 1

and for the other shore to 0. The obtained optimal integral solution of LPVC can be

turned, as in the first direction, into a solution for the dual program in NC, that is,

into a maximummatching ofG.

Note that other kernels that are based on the Nemhauser–Trotter Theorem, such

as the one by Soleimanfallah and Yeo [153], or the one by Lampis [125], do also not

bypass Theorem 83. Finally, a known 3k-kernel, which is based on crown decompo-

sitions (we will define them in Section 7.1), also requires the computation of large

matchings [59]. Since the computation ofmatchings turns out to be themain obsta-

cle in the computation of small vertex cover kernels, and since it is unknown how

to compute such matchings in parallel, it is a natural first step in the context of this

thesis to study if we can compute kernels for pk-matching in parallel.

Of course, we have pk-matching ∈ para-AC0 byCorollary 43 and, thus, can compute

an exponential kernel in FAC
0. Our aim therefore is a polynomial kernel somewhere

within FNC.

I Theorem 84

There is a uniform family of FTC0-circuits that, on input of a tuple (G,k), outputs a

pk-matching kernel with at mostO(k2) vertices.

Proof. The circuit first computes a set S = { v ∈ V | |N(v)| > 2k } of “high-degree”

vertices. If we have |S| > k, the circuit can output a trivial yes-instance since for

such a set S we can greedily match any vertex v ∈ S with a vertex u ∈ N(v) \ S,

reducing the availablematchingmates of all other vertices in S by atmost two – and

since they have degree at least 2k, there are still enough mates left to match every

vertex of S.

If the circuit has not finished yet, we compute a set S ′ consisting of S and the 2k lex-

icographically smallest neighbors of every vertex in S. Note that we have |S ′| 6 2k2.

Consider the graph G ′ = G[V \ S ′]. Since S was the set of high-degree vertices,

G ′ has maximum-degree d 6 2k. Our circuit now removes all isolated vertices

from G ′, resulting in G ′′, and then checks if we have |V(G ′′)| > k · 2d. If so, we

can output a trivial yes-instance since a graph with maximum degree d and mini-

mum degree 1 always contains a matching of size |V(G ′′)|/2d > k. If, on the other

hand, we have |V(G ′′)| 6 k · 2d 6 4k2, the circuit outputsG[S ′ ∪ V(G ′′)] together
with the unchanged number k.

The output clearly has size at most O(k2). To see that G[S ′ ∪ V(G ′′)] is a kernel,

we only have to show that ifG has a size-kmatchingM, so doesG[S ′ ∪V(G ′′)] (the

76

other direction is trivial). To see this, first note that any edge inM that does not have

an endpoint in Smust lie inG ′′ and, hence, is also present inG[S ′ ∪ V(G ′′)]. Next,
all other edges inMmust have an endpoint in S and, thus, there can be at most |S|

such edges. We can greedily construct a matching of size |S| in G[S ′] (by the same

argument as the one from the beginning of this proof for |S| > k). This means that

we find a matching of size |M| inG[S ′ ∪ V(G ′′)].

A neat corollary of Theorem 84 is the following, and I could imagine that it will ac-

tually find application in practice. Since the result does not really fit into the hierar-

chies that we study within this thesis, we formulate the result in terms of a parallel

algorithm running on a pram, without going further into the details.

I Corollary 85

The problem pk-matching can be solved in parallel time polylog(n) + poly(k) and

poly(n)work on a PRAM. C

6.4 Parallel Kernelizations for Problems

Parameterized by Vertex Cover

Not all decidable problems have polynomial-size kernels, even if we allow sequen-

tial polynomial-time to compute them. This is usually the case for graph problems

inwhich the parameter is not the sumbut rather themaximumover the parameters

of all connected components of the input. In order to develop some intuition, let

us assume we have such a problem that is NP-hard – which essentially means that

we can reduce sat to it. Now assume we reducemany instances of sat to our prob-

lem, obtaining graphsG1, . . . ,G`. We can create a new instanceG of our problemby

building the disjoint union of allGi. Observe that the size ofG depends on ` and the

maximum size of someGi, while the parameter κ(G) is bounded by max`i=1 κ(Gi).

If we choose ` much larger than the size of the individual Gi, the resulting graph

G will be much larger than κ(G). Thus, a potential kernelization for the problem

would be forced to reduce G. In fact, if ` is large enough, the kernelization has to

remove large parts of G. However, again intuitively, to achieve this, the kerneliza-

tion algorithmhas to reason about the individualGi and, in fact, it will eventually be

forced to discard someGi entirely. This seems to be a tough task for a polynomial-

time algorithm, as the problem is NP-hard after all. Accordingly, it seems unlikely

that such a kernelization can exist. The technical details to prove such a statement

are, of course, more complicated and the resulting theorems are of the form “prob-

lem (Q, κ)has no polynomial kernel unlessNP ⊆ coNP/poly” [35]. Typical problems

that suffer from this property are the decision versions of the graph parameters that

we have encountered in Section 2.2, such as pk-treewidth, pk-pathwidth, and

pk-treedepth.

77

If a problem suffers from the above result, one usually tries to achieve polynomial

kernels with respect tomore structural parameters. In particular, of course, param-

eters that will grow by taking the disjoint union of multiple instances. A common

parameter in this line of research is the vertex cover number of the graph [38, 39, 119],

that is, we wish to solve problems (such as treewidth) on graphs that have small

vertex covers (we denote the resulting problem by pvc-treewidth).

In order to be helpful, the kernelization algorithms require access to an actual vertex

cover S of the input graph. Of course, wemay not want to solve anNP-hard problem

exactly as a preprocessing step for another computational hard problem. Instead,

we will rely on an approximation algorithm. Fortunately, this turns out to be quite

easy by using the already presented kernelization for vertex cover:

I Lemma 86

There is a uniform family of FTC0-circuits that, on input of a graphG = (V ,E) and a

numberk ∈ N, outputs a setS ⊆ V with |S| 6 k2+2k such thatG[V \S] is edgeless,

or correctly reports that no such set of size at most k exists.

Proof. The circuit uses the FTC0-implementation of the Buss kernel from Elberfeld,

Stockhusen, and Tantau [76] in a slightly modified manner. Instead of outputting

the k2 + k kernel, it outputs these vertices together with all vertices selected to the

vertex cover (the high-degree ones), which are at most k. The result is a set S of

size k2 + 2k that clearly is a vertex cover of G, which is presented as approximate

solution by the circuit. Of course, if the Buss kernelization “rejects” by outputting a

trivial no-instance, the circuit reports that the graph has no solution of size k.

We will consider the input to pvc-treewidth (and the other problems) as triples

(G = (V ,E),k,S)where S ⊆ V is a vertex cover ofG, as shown in the margin. Our

goal will be to measure the kernel size with respect to S. This definition is justified

by Lemma86 and allows us to concentrate on the concrete kernelization techniques.

S

We will describe FTC0-kernelizations for pvc-treewidth, pvc-pathwidth, as well

as pvc-treedepth based on known kernelization algorithms for these problems. In

all cases the result requires the threshold gates “only for counting up to the parame-

ter,” as itwas the case in Theorem80 and, therefore, they can be adapted to FAC0 ker-

nelizations that produce exponential-size kernels by Lemma 81. Wewill start with a

kernel for pvc-treewidth, which is based on [39] and the following two facts.

I Fact 87 ([38, 39, 119])

Let G = (V ,E) be a graph with treewidth, pathwidth, or treedepth at most k and

with u, v ∈ V , {u, v} 6∈ E, and |N(u) ∩N(v)| > k. Then adding the edge {u, v} toG

will not increase the treewidth, pathwidth, or treedepth ofG, respectively. C

78

I Fact 88 ([33])

Let G = (V ,E) be a graph and v ∈ V be a simplicial vertex, then tw(G) > |N(v)|.

A vertex v is said to be simplicial ifN(v) is a clique. C

I Theorem 89

There is a uniform family of FTC0-circuits that, on input of a triple (G,k,S), outputs

a pvc-treewidth kernel with at mostO(|S|3) vertices.

Proof. On input (G,k,S) the circuit can check if S is a vertex cover and if we have

k < |S|. If not, it outputs a trivial no-instance in the first case and a yes-instance in

the second case (a tree decomposition of width |S| can be obtained from S).

The circuit now checks in parallel for every pair u, v ∈ S with {u, v} 6∈ E if we have

|N(u) ∩N(v) ∩ (V \ S)| > k, that is, if the two vertices have more than k common

neighbors inV \S. If this is the case, the circuit adds the edge {u, v}, as shown in the

firstfigure. Note that this operation is safe byFact 87 and canbe applied inparallel as

we consider only neighbors inV \Swhile adding only edges in S. Finally, the circuit

considers all simplicial vertices v ∈ V \S (they are highlighted in the second figure)

in parallel: if we have |N(v)| > k, the circuit safely outputs a trivial no-instance by

Fact 88, otherwise the circuit can safely remove v from the input graph by standard

arguments [38].

We now argue that, if the circuit has not decided yet, the remaining graph has at

mostO(|S|3) vertices: it consists of the vertices in S, and the nonsimplicial vertices

I ⊆ (V \ S). We have |I| 6 |S|3 as any vertex u ∈ Imust have at least two neighbors

v,w in Swith {v,w} 6∈ E (as otherwiseuwould be simplicial), however, every pair of

nonadjacent vertices in S can have at most k common neighbors (as otherwise the

circuit would have added the edge). Since we have at most |S|2 such pairs, the claim

follows by k 6 |S|.

I Corollary 90

There is a uniform family of FAC0-circuits that, on input of a triple (G,k,S), outputs

a pvc-treewidth kernel. C

I Corollary 91

pvc-treewidth ∈ para-AC0. C

A similar proof works for pvc-pathwidth and pvc-treedepth, however, we cannot

useFact 88 for thoseproblemsandhave to rely onadifferentway tohandle simplicial

vertices:

I Fact 92 ([38])

Let G = (V ,E) be a graph, k ∈ N be a number, and v ∈ V be a simplicial vertex.

If the degree |N(v)| of v is 1 and the neighbor of v has another degree-1 neighbor,

or if we have 2 6 |N(v)| 6 k and for each pair x,y ∈ N(v) there is a simplicial

vertexw ∈ N(x) ∩ N(y) withw 6∈ N[v], then we have pw(G) 6 k if, and only if,

pw(G[V \ {v}]) 6 k. C

79

I Fact 93 ([119])

LetG = (V ,E) be a graph, k ∈ N be a number, and let v ∈ V be a simplicial vertex

with 1 6 |N(v)| 6 k. If every neighbor of v has degree at least k + 1, then we have

td(G) 6 k if, and only if, td(G[V \ {v}]) 6 k. C

With Fact 92 and Fact 93 we can obtain cubic kernels similar to the one of Theo-

rem 89. The following parallel kernelizations are based on the sequential kerneliza-

tion byBodlaender, Jansen, andKratsch [38] and the kernelization byKobayashi and

Tamaki [119]. However, the more involved rules to handle simplicial vertices cannot

be parallelized as easily as the rule from Fact 88. Instead, we will use a two-phase

marking scheme that makes sure that all decisions are globally conflict-free.

I Theorem 94

There is a uniform family of FTC0-circuits that, on input of a triple (G,k,S), outputs

a pvc-pathwidth kernel with at mostO(|S|3) vertices.

Proof. The circuit works as in Theorem89 and differs only in the last step, that is, the

handling of simplicial vertices. We have to identify the vertices for which Fact 92

applies in constant parallel time, which is not trivial since we have dependencies

between these vertices. The circuit marks simplicial vertices to which Fact 92 does

not apply or which wewill use as conditions when applying the fact to other vertices

as follows: The circuit first marks for every v ∈ S the lexicographically smallest

degree-1 neighbor of v. Then for every simplicial vertex v ∈ V \S of degree at least 2,

the circuit marks for every pair of neighbors x,y of v the lexicographically smallest

simplicial vertexw ∈ (N(x) ∩N(y)) \N[v]. If for any pair such a vertex does not

exist, vmarks itself. Note that all simplicial vertices that are not marked can safely

be removed by Fact 92, and since the safeness is witnessed by marked vertices, the

circuit can remove them all in parallel.

We are left with the task to show that there are at mostO(|S|3)marked vertices left

(the other vertices can be counted as in Theorem 89). We have at most |S| marked

vertices of degree 1 (one for each vertex in S), and at most |S|2 marked vertices of

degree greater than 1: each such vertex v has a pair of neighbors in S that has v as

sole simplicial neighbor.

I Theorem 95

There is a uniform family of FTC0-circuits that, on input of a triple (G,k,S), outputs

a pvc-treedepth kernel with at mostO(|S|3) vertices.

Proof. Weproceed again as in Theorem 89 and only differ in the way we handle sim-

plicial vertices. In particular, we argue howwe can apply Fact 93 in parallel constant

time. The circuit starts by marking for every vertex v ∈ Swith |N(v)| > k the k+ 1

lexicographically smallest neighbors of v, then the circuitmarks every simplicial ver-

tex v ∈ V \ S that has at least one neighbor of degree less than k. Note that every

80

simplicial vertex that is not marked can safely be removed by Fact 93 and, since this

safeness is witnessed by marked vertices, these vertices can be removed in parallel.

The amountof remainingvertices canbe computedas inTheorem89,wewill end the

proof by counting thenumber ofmarked vertices. There are atmost |S|2+|S| vertices

that were marked in the first step, as every vertex in Smarks only k + 1 neighbors.

Additionally, we may have some simplicial vertices that are marked because they

have a neighbor of degree atmost k. Since every degree k vertex in S can produce at

mostk such vertices, thenumber of these vertices canbe boundedby |S|2 aswell.

I Corollary 96

There are uniform families of FAC0-circuits that, on input of a triple (G,k,S), output

a pvc-pathwidth or pvc-treedepth kernels. C

I Corollary 97

pvc-pathwidth ∈ para-AC0 and pvc-treedepth ∈ para-AC0. C

6.5 Computing Hitting Set Kernels in Parallel

I want to close this chapter with a little gem of parallel kernelization, which demon-

strates that a classical and very sequential kernelization can be turned into a constant

time parallel one. A second property that makes the presented result a real gem is

its generality: we will provide an FAC
0-kernelization for the hitting set problem – a

well-known generalization of the vertex cover problem to hypergraphs.

I Problem 98 (hitting-set)

Instance: A hypergraphH = (V ,E)with maxe∈E |e| = d and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| 6 k and e ∩ X 6= ∅ for all e ∈ E? C

An example instance with k = 3 and d = 4 is visualized in the margin. It is well

known that this problem is W[2]-complete for parameter k and, thus, we may not

hope for a kernelization in this setting [85]. Instead, we will focus on the combined

parameterk+d and show that, in this setting, the problem lies inpara-AC0. Note that

such a result is not even obvious if d is a constant, as already for d = 3 the problem

is a generalization of the vertex cover problem.

We will present the kernelization in three steps: first we discuss the underlying se-

quential kernelization as described in [85]; second we will introduce a parallel ver-

sion that requiresO(d) time following the ideas of Chen, Flum, andHuang [53]; and

third we reduce the parallel time toO(1) by an intensive use of color coding.

81

petals

core

The sequential kernelization is based on a famous result by Erdős and Rado (the

Sunflower Lemma), which states that hypergraphs of a certain size have to contain

certain structures (namely, sunflowers) [77]. A sunflower is pictorially a collection

of hyperedges that all intersect at the same position and, thus, can be drawn like a

sunflower (see the graphic at the margin).

Formally the definition and the lemma is as follows:

I Definition 99 (Sunflower)

Let H = (V ,E) be a hypergraph. A sunflower (s1, . . . , sk) of size k is a k-tuple of

hyperedges si ∈ E such that there is a set C ⊆ V (called the core of the sunflower)

with si ∩ sj = C for all 1 6 i 6= j 6 k. C

I Fact 100 (Sunflower Lemma [77])

Every hypergraph H = (V ,E) with more than kd · d! hyperedges contains a sun-
flower of size k+ 1. C

The lemma itself directly infers a blueprint for a kernelization: as long as there are

large sunflowers, remove themwithout changing optimality. As long as we can find

the sunflowers and as long aswe can safely remove them, the Sunflower Lemmawill

provide uswith a bound on the size of the kernel. In order to turn this blueprint into

an actual kernelization for pk,d-hitting-set, let us define a fold of a hypergraph

H = (V ,E) into a family F of sets C ⊆ V as the operation that deletes every edge

e from H for which there is a C ∈ F with C ⊆ e and which, afterwards, adds all

elements of F as additional edges toH.

fold on

F =
{
{ }, { }

}

I Lemma 101

There is a family of FAC0-circuits that, on input of a hypergraph H = (V ,E) and a

family F ⊆ 2V , outputs the result of the fold operation onH and F.

Proof. The circuit checks in parallel for every edge whether there is a set in F that is

a subset of this particular edge and, if this is the case, marks the edge. Afterwards it

presents all unmarked edges together with F as the new hypergraph.

82

F← harvest(H,k)

while F 6= ∅ do

H← fold(H,F)

F← harvest(H,k)

end

return H

In order to utilize the fold operation, we require another operation, called harvest,

which obtains as input a hypergraphH and a number k, and which outputs a “suit-

able” family of setsC ⊆ V for the fold operation – suitable will refer to the fact that

a fold ofH into the produced family will be safe with respect to hitting set. Given an

implementation of the fold and the harvest operation, the procedure in the margin

will be our working horse for a hitting set kernelization. It obtains a hypergraphH

and anumberk as input and, as long as harvest(H,k) outputs anon-empty familyF,

it will simply foldH into F.

Of course, we cannot expect the algorithm to do anything useful if we fold H into

arbitrary sets. However, if the harvest operation selects the sets cautiously, the fold

operation will be safe with respect to hitting set, and if we care evenmore about the

selection of such sets, the fold operationwill produce the desired kernel. In the light

of the Sunflower Lemma we wish, of course, to fold sunflowers withinH.

I Lemma 102

LetH = (V ,E) be a hypergraph and F be a set of setsC ⊆ V such that eachC is the

core of a sunflower of size k + 1 inH. ThenH and fold(H,F) have the same size-k

hitting sets.

Proof. For the first direction let X be a size-k hitting set of H. We argue that X is a

hitting set of fold(H,F). Note that every hyperedgeof fold(H,F) that is contained in

H is hit by definition of a hitting set. Furthermore, for eachC ∈ FwehaveX∩C 6= ∅
as C is the core of a sunflower (s1, . . . , sk+1): If X would not hit C, it would need to

hit every si and, since the si intersect only inC, would require size at least k+ 1.

For the other direction let X be a size-k hitting set of fold(H,F). Then X is a hitting

set for H as every hyperedge of H is either contained in fold(H,F), or contains a

subsetC ∈ F. In both cases, X hits the hyperedge inH.

If the operation harvest(H,k) outputs a set that contains exactly one core of an ar-

bitrary sunflower of size k+ 1 (if such a core exists, and an empty set otherwise), the

presented algorithm will replace sunflowers by their cores until no sunflowers re-

main. The original proof of the Sunflower Lemma is constructive and provides such

an implementation of harvest(H,k) in polynomial time and, together with Fact 100

and Lemma 102, this yields the sequential kernelization for pk,d-hitting-set we

mentioned earlier. This implementation of the kernelization is very sequential and in

order to parallelize it, we have to adapt the harvest operation to collect more than

one core. Obviously, the more cores we find per round, the faster is the algorithm.

Ultimately, we would like to fold on all possible cores at the same time – which is,

surprisingly, possible due to the following lemma:

I Lemma 103

There is a family of para-FAC0-circuits that, on input of a hypergraphH = (V ,E) and

a number k ∈ N, outputs the set of all cores of sunflowers of size k+ 1.

83

Proof. Let us first observe that any core of a sunflower is a subset of some edge and,

thus, there are atmost 2d · |E| “possible cores.” The circuit in constructionmay check

all these cores in parallel and, thus, our task reduces to check whether there is a sun-

flower (s1, . . . , sk) inH that contains a given setC ⊆ V as core.

To perform this test, the circuit constructs an auxiliary graphA = (V(A),EA)with

the following vertex and edge set:

V(A) = { e \ C | e ∈ E∧ C ⊆ e },
EA = { {ei, ej} | ei ∩ ej 6= ∅ }.

Observe that an independent set of size k + 1 in this graph is a sunflower of size

k + 1 that contains C as core, and vice versa that any such sunflower corresponds

to an independent set of size k + 1. Unfortunately, this graph has neither bounded

degree nor is planar and, hence, we cannot apply the independent set algorithms

that we have previously developed. Fortunately, the graph is still structured enough

to find the independent set in parallel constant time. To achieve this, we use color

coding and color the vertices ofH (not ofA!) withk+1 colors using Theorem 42. Let

λ : V(H) → {0, . . . , k} be the current coloring. We introduce an additional coloring

χ : V(A) → {0, . . . , k+ 1} forAwith one fresh color by setting for all e ∈ V(A)

χ(e) =

{
c if λ(v) = c for all v ∈ e;
k+ 1 otherwise.

In words, we color a vertex ofA with a fresh color if the vertices in the correspond-

ing edge are not colored in a monochromatic way by λ, otherwise we color it with

the same color that the vertices of the edge have obtained by λ. We claim that a set

x0, x1, . . . , xk with χ(xi) = i constitutes an independent set of size k + 1. For a

contradiction assume otherwise, that is, assume there are two xi, xj with i 6= j and
xi ∩ xj 6= ∅. Then consider v ∈ xi ∩ xj and let λ(v) = c. Observe that we have

either c 6= i or c 6= j and, thus, either the vertices in xi or in xj are not colored in a

monochromatic way, implying χ(xi) = k + 1 or χ(xj) = k + 1 – the contradiction

we have sought. Now for the other direction that a size k + 1 independent set will

be colored in this way by some coloring, observe that there are at most d · (k + 1)

vertices in H that are involved in the coloring for the independent set. Hence, a

(|V(H)|,d · (k+ 1),k+ 1)-universal coloring family guarantees to find it.

We can now run all parts of our kernelization in parallel constant time, the fold op-

eration in FAC
0 and the harvest operation in para-FAC0. But for how many rounds

will the whole kernelization algorithm run? Unfortunately, more than one! As the

following example illustrates, replacing all sunflowers by their coresmay create new

sunflowers thatwerenot present in the original graph. Toget rid of these, wehave to

run another round and, since thismay again create new sunflowers, eventually even

84

a third and a fourth. On the positive side,d roundswill be sufficient, as the edgeswe

add (the cores) are always real subsets of some edges and, thus, the maximum size

of an edge that participates in a sunflower will decrease in every round.

I Example 104

Consider the following hypergraph, which we illustrate for this example in metro-

representation rather than set-representation. In this representation, every hyper-

edge has its own color and is represented by a line that “touches” every vertex con-

tained in the hyperedge. In the hypergraph on the left, there are three sunflowers

of size 3, indicated by hyperedges with the same color shade (that is, we have an

orange-, a blue-, and a green-sunflower). Observe that all three sunflowers have a

core of size two (they are labeled in the figure) and that all these cores share the gray

vertex. However, the gray vertex alone is not a core of any sunflower of size 3.

In the right figure we see the hypergraph obtained by folding on all cores of sun-

flowers of size 3. Here, the gray vertex now is a core of a sunflower of size 3. Conse-

quently, if wewish to bound the size of the hypergraph using the Sunflower Lemma,

we have to apply the fold operation to all cores again.

core core

core now a core

fold on cores

C

The key idea of improving the parallel time of the kernelization fromO(d) toO(1) is

the observation that we are not limited to fold on cores of sunflowers. We may fold

on other structures, as long as the fold is safe and as long as we can guarantee to

remove sunflowers, the result will still be a kernel. To utilize this idea, we would like

to identify sets that are not just “cores of sunflowers,” but also sets that are “cores of

cores,” that is, sets that would become a core after one round of the algorithm. Sim-

ilarly, we would like to identify “cores of cores of cores” and “cores of cores of cores

of cores,” and so on. The crucial observation for the following definition is that the

informationwhether a set is a “core of cores” is already encoded in the hypergraph, it

is just hard “to see” this fact by searching for normal sunflowers. Instead, wewill di-

rectly search for a structure that is a “sunflower at the border” and a “core of cores” in

the center. More precisely and more formally, we introduce the notation of pseudo-

sunflowers and pseudo-cores.

85

I Definition 105 (Pseudo-Sunflowers and Pseudo-Cores)

Let H = (V ,E) be a hypergraph with maxe∈E |e| = d and let and k ∈ N be fixed.

A k-pseudo-sunflower with pseudo-core C ⊆ V in H is a triple (T , r,S) in which T is a

k-nary tree rooted at r ∈ V(T) and S is a mapping S : leaves(T) × {0, . . . ,d} → 2V

such that for all leaves l,m ∈ leaves(T) at depth(l) and depth(m)we have:

1. S(l, 0) = C.

2. S(l, 0) ∪ S(l, 1) ∪ · · · ∪ S(l, depth(l)) ∈ E.

3. S(l, i) ∩ S(l, j) = ∅ for all 0 6 i < j 6 depth(l), but S(l, i) 6= ∅ for all

i ∈ {1, . . . , depth(l)} and S(l, i) = ∅ for i > depth(l).

4. Let z ∈ {1, . . . , min(depth(l), depth(m))} be the depth where the path from r

to l and the path from r tom diverge for the first time. Then S(l, z)∩ S(m, z)

must be empty, that is, S(l, z) ∩ S(m, z) = ∅must hold. C

Let us develop some intuition about this technical definition. As the name suggests,

the k-nary tree is something like a sunflower. Instead of petals, however, we have

paths in the treeT . Condition2and3ensure that there are edges in thegraph thatget

mapped to these paths (such that they arepartitionedalong thepath). In a sunflower

the petals are not allowed to intersect outside the core. A pseudo-sunflowerweakens

this requirement: By Condition 4 hyperedges may not intersect at the node where

the twocorrespondingpathsdiverge for thefirst time–but theymay intersect before

and after this point.

As the following lemmaswill show, this requirement is strong enough for the kernel-

ization and works similar to the cores of sunflowers: We will argue that any hitting

set of size k − 1 has to hit the pseudo-sunflower at such diverging points, as other-

wise there will always be at least k disjoint sets after that point, which the hitting set

would need to hit. By an induction, we will see that this will force any hitting set of

size k− 1 to hit the pseudo-core.

Before we start to prove many useful properties of pseudo-sunflowers, let us first

strengthen our intuition about these structure further with the following example:

I Example 106

We consider the same hypergraph as in Example 104, but this time with named ver-

tices. The hypergraph is shown in the very left in the figure on the next page. To

the right, a 3-pseudo-sunflower (T , r,S) is illustrated. We have the tree T with root

r in the center, and at the very right the mapping S from leaves l of T to subsets of

the vertices. As these subsets have to form a hyperedge along a path in the tree, the

mapping is colored with the color of the corresponding hyperedge.

86

a

b

e
f

g

c

j
i

h

d

mlk

n o p

q r s

t u v

{a} {b, e, t} {u, v}

{a} {b, f} {q, r, s}

{a} {b} {g,n,o,p}

{a} {c,h} {n,q, t}

{a} {c} {i,o, r,u}

{a} {c, j} {p, s, v}

{a} {d} {k}

{a} {d} {l}

{a} {d} {m}

S(l, 0) S(l, 1) S(l, 2)

root r

a leaf l

Verifying that (T , r,S) satisfies all properties of a 3-pseudo-sunflower for pseudo-

coreC = {a}, is a good exercise left for the reader. C

To obtain the claimed constant-time kernelization, we will require three results: (i)

we have to prove that it is safe to fold on pseudo-cores; (ii) we have to argue how

to find all pseudo-cores at once; and (iii) we have to show that folding on all these

pseudo-cores will not generate new pseudo-sunflowers.

I Lemma 107

LetH = (V ,E) be a hypergraph and F be a set of sets C ⊆ V such that each C is a

pseudo-core of a (k + 1)-pseudo-sunflower. Then H and fold(H,F) have the same

size-k hitting sets.

Proof. We argue as in the proof of Lemma 102, the only difference is that we have to

prove that every size k hitting set X has to hit every pseudo-core in F. Let us fix a

(k+ 1)-pseudo-sunflower with pseudo-coreC ∈ F. We argue that X ∩ C 6= ∅.

We say that X hits a node v of T if there is a leaf l of T such that v is at depth β on a

path from r to l andX∩
(
S(l, 0)∪S(l, 1)∪ · · · ∪S(l,β)

)
6= ∅. We prove by a reverse

induction on the depthβ that all nodes of T get hit, which implies that the root gets

hit as well and, hence, X ∩ C 6= ∅. For the base case we consider the leaves of T .
Since S(l, 1)∪ · · · ∪ S(l, depth(l)) = e is an edge ofH, the leaves get hit byX asX is

a hitting set ofH.

For the inductive step consider a node v at depth β− 1 with childrenw1, . . . ,wk+1.

By the induction hypothesis w1, . . . ,wk+1 get hit by X, which means that for each

of them there is a leaf li such thatwi is at depth β on the unique path from r to li
and X ∩

(
S(li, 0) ∪ S(li, 1) ∪ · · · ∪ S(li,β)

)
6= ∅. Since thewi are children of v, it

follows by the forth property of a pseudo-sunflower that S(li,β) ∩ S(lj,β) = ∅ for
all 1 6 i 6= j 6 k+ 1. Therefore, a hitting set of size k cannot hit them all at depthβ,

but must hit at least one of them at depth β− 1, implying that X hits v.

87

I Lemma 108

There is a family of para-FAC0-circuits that, on input of a hypergraphH = (V ,E) and

a number k ∈ N, outputs the set F of all pseudo-cores of k-pseudo-sunflowers.

Proof. Every pseudo-core is contained in some hyperedge and, thus, there are only

2d·|E| candidates for suchpseudo-cores. Furthermore, in everyk-pseudo-sunflower

the tree T has depth at most d by property two and three of pseudo-sunflowers. The

circuit in construction may test all possible pseudo-cores and all possible trees T in

parallel. Effectively, this reduced the lemma to the claim that there is a circuit as in

the lemma that, on input of a set C ⊆ V , a number k ∈ N, and a tree T with root r,

decides whether there is a k-pseudo-sunflower (T , r,S)with pseudo-coreC.

The mapping S of the pseudo-sunflower essentially maps hyperedges to paths from

the root r of T to its leaves. We say a vertex v ∈ V(H) participates in the pseudo-

sunflower if there is a leaf l at depth q and a value β ∈ {0, . . . ,q} such that we have

v ∈ S(l,β). The tuple (l,β) is awitness for the fact that v participates in the pseudo-

sunflower. Observe that a vertexmay havemultiple witnesses as it can be contained

in multiple hyperedges that are mapped to T . LetW = leaves(T) × {0, . . . ,d} be

the set of all possible witnesses. It is easy to check for a given set c ⊆ W whether

these witnesses respect the third and fourth property of a pseudo-sunflower. Let

C ⊆ 2W be the set of such sets of witnesses. We will apply color coding to identify

the way hyperedges (and thus vertices) get assigned to T by S. For this task we will

color V(H)with C and the following interpretation: if some vertex v obtains a color

c = {(l1,β1), . . . , (lα,βα)}, then it may only participate in the pseudo-sunflower in

the formof v ∈ S(li,βi)with (li,βi) ∈ c. Observe that |C| is bounded by a function
in k and d as T is k-nary and of depth at most d and, thus, |W| 6 kd · d. Finally, let
us fixate the colors for the elements of the given pseudo-coreC such that thesemust

be assigned for every leaf to level 0.

We argue that, if all colors are correct, we can find a pseudo-sunflower in this col-

orful version. Since the number of all colors is bounded by k and d, we can use a

universal coloring family and Theorem 42 to find a pseudo-sunflower in the uncol-

ored hypergraph. Fix a coloring λ as above. For every leaf l of T we consider all

edges e, and we say e is compatible with l if for each v ∈ e there is some β such that

(l,β) ∈ λ(v) – in other words, an edge is compatible with a leaf if every vertex of the

edge is assigned to the path from the root of T to this leaf by the coloring.

To conclude the proof, we claim that we have found the sought pseudo-sunflower if

we find a compatible hyperedge el for every leaf l. We define the mapping S for the

pseudo-sunflower as S(l,β) = { v | v ∈ el ∧ (l,β) ∈ λ(v) } for all l ∈ leaves(T)

and β ∈ {0, . . . , depth(l)}. The first property of pseudo-sunflowers is guaranteed

as we have fixed the color for the pseudo-core; the second property holds as el is

compatible with l; and the third and fourth properties are implied by the choice of λ

(or rather the choice of the colors C).

88

I Lemma 109

LetH = (V ,E) be a hypergraph, k ∈ N a number, andF ⊆ 2V the set of all pseudo-

cores of (k+ 1)-pseudo-sunflowers inH. Then fold(H,F) does not contain a (k+ 1)-

pseudo-sunflower.

Proof. For a contradiction let us assumeotherwise, that is, let us assume that there is

some (k + 1)-pseudo-sunflower (T , r,S) with pseudo-coreC in fold(H,F). We will

explicitly construct a (k + 1)-pseudo-sunflower (B,w, F) with pseudo-core C inH.

This implies that the fold operation would have removed (T , r,S) and, thus, this is

the contraction we have sought.

Initially, we start by settingB = T ,w = r, and F = S. Notice that the triple (B,w, F)

is not necessarily a valid pseudo-sunflower inH, as the second property of pseudo-

sunflowersmay be invalidated in the form of some leaves l ∈ V(B) at some depth q

with
⋃q

i=0 S(l, i) 6∈ EH. We call such leaves withered, and we will show by an in-

duction over the number p of such leaves that we can modify (B,w, F) to be a valid

(k + 1)-pseudo-sunflower with pseudo-core C inH. This is trivial for p = 0, as we

already have a valid pseudo-sunflower in this case. So assume the claim holds for p

and let us consider (B,w, F)with p+ 1 withered leaves.

Fix any of the withered leaves l at depth q and let
⋃q

i=0 S(l, i) = C
′. SinceC ′ 6∈ EH

(as l is withered), theremust be a (k+ 1)-pseudo-sunflower (T ′, r ′,S ′)with pseudo-

core C ′ inH. In order to remove the withered leaf l from B, we will identify l with

r ′, that is, we “glue” the tree T ′ to B at the withered leaf. Since B and T ′ are both

(k+1)-nary trees, this operationwill result in a (k+1)-nary tree again. The following

figure illustrates this operation:

withered leafC ′ ≈

pseudo-coreC ′

(T , r,S) (T ′, r ′,S ′) (B,w, F)

89

We now redefine the mapping F for every leaf li ofB, where l is the withered leaf of

T at depth q:

F(li,β) =


S (li,β) if li ∈ leaves(T);

S (l,β) if li ∈ leaves(T ′) and β 6 q;

S ′ (li,β) if li ∈ leaves(T ′) and β > q.

Observe that the first property of pseudo-sunflowers holds inherited from (T , r,S)

aswe have not changed the assignment at level 0; the third property holds as it holds

for all remaining leaves of (T , r,S), and for the new leaves it holds inherited from the

fact that it is true in (T ′, r ′,S ′) and by
⋃q

j=0 F(l,β) = C ′ = S ′(l, 0); finally for the

forth property observe that all branch points at which we enforce disjointness are

witnessed by the corresponding disjointness in either (T , r,S) or (T ′, r ′,S ′).

On the other hand, the triple (B,w, F) may still invalidate the second property of

pseudo-sunflowers andmay still have withered leaves. However, we have decreased

the number of these leaves by one, and therefore the induction hypothesis tells us

that we can find a (k+ 1)-pseudo-sunflower with the same pseudo-coreC inH.

I Corollary 110

A kernel for pk,d-hitting-set can be computed in para-FAC0. C

Proof. The circuit can implement the harvest operation for pseudo-cores and can

also fold on them. By the results of this section, the general kernelization algorithm

will only run for one round and the circuit can therefore simulate it in constant time.

Finally, since every sunflower of size k+ 1 is a (k+ 1)-pseudo-sunflower, the result

does not contain any sunflower and, thus, is a kernel by Fact 100.

I Corollary 111

A kernel for pk,d-hitting-set can be computed in FAC0. C

Proof. Combine Corollary 78 with Corollary 110.

Many problems have para-AC0-reductions to the hitting set problem and, thus, lie

in para-AC0. Natural examples are the dominating set problem in graphs of bounded

degree, as well as the modulator problem toH-free graphs:

I Corollary 112

pk,∆-dominating-set ∈ para-AC0 C

Proof. Build a hypergraph that contains for every vertex v the hyperedgeN[v].

I Corollary 113

Let F be the family ofH-free graphs, then pk-modulator(F) ∈ para-AC0. C

Proof. Construct a hyperedge for every induced copy ofH inG.

90

7 Parallel Decomposition of Graphs

Graph decomposition techniques lie at the heart of modern algorithmic graph the-

ory. Suchdecompositions reveal structural informationof the inputgraph. Apromi-

nent example is the concept of tree decompositions, which we have encountered in

Section 2.2. Usually, such structures can be used to guide an algorithm that solves

an otherwise computational hard problem. Sometimes we can even solve a problem

by “just looking” at the structural information. For instance, a graph that is simi-

lar to a tree may not have a large feedback vertex set and, thus, if we wish to solve

pk-feedback-vertex-set and figure out that the input graph has large treewidth,

we may directly reject the given instance.

Of course, in order to make the structure of a graph algorithmically usable, we have

to discover it first – that is, we have to compute a suitable decomposition. We did

this already in Section 5.2 for the embedding problem. However, in this case the

graph was very small and we did “not really care” how exactly we can find a suitable

decomposition. In this chapter we will change this situation and study the precise

complexity of computing various decompositions in parallel. We start by introduc-

ing crowndecompositions inSection 7.1. These are comparably simpledecompositions,

which we can compute them in parallel constant time:

B Informal Version of Theorem 114.

Crown decompositions can be computed in para-FAC0. The parameter is the size of

the used matching. C

After this introduction to the parallel computation of graph decompositions, wewill

consider more complex decompositions. Namely, tree and treedepth decomposi-

tions. For the later, wemodify a folklore approximation algorithm to run in parallel.

The main observation is that all we have to do is to compute a certain depth-first

search tree – and we can do so via Theorem 35.

B Informal Version of Theorem 119.

A treedepth decomposition of widthO
(
2td(G)

)
can be computed in para-FAC0. C

Finally, in Section 7.3, we precisely analyze each subroutine of an algorithm by Bod-

laender andHagerup for computing optimal tree decompositions. This analysis will

reveal that all steps of the algorithm can be executed within para-FAC:

B Informal Version of Theorem 120.

An optimal tree decomposition can be computed in para-FAC2. C

91

7.1 CrownDecompositions

the crownC

the headH

the rest R

We start with a rather simple decomposition that de-

fines the structure of a graph quite tightly. This tech-

nique is linked to large matchings in the graph and

can, for instance, be used to sequentially compute a

3k-kernel of pk-vertex-cover [59].

A crown decomposition of a graphG = (V ,E) is a parti-

tion (C,H,R) ofV such thatC is an independent set,

H separates C from R, and there is a matching fromH into C. We call C the crown

that is attached toG (and separated from the rest denoted by R) via the setH, which

is called the head. The figure illustrates the decomposition and justifies the naming

convention. The matching fromH intoC is highlighted.

It is well understood how such a decomposition can be computed sequentially [59].

However, from a parallel point of view the situation is far less clear. In particular, it

is not known how amatching (that connects the head and the crown) could be com-

puted efficiently in parallel. However, if we assume that the head is not too big (that

is, we use |H| as parameter), the matching will not be too big either. This allows us

to develop a parameterized parallel algorithm for computing crowndecompositions

without resolving the parallel complexity of the matching problem.

I Theorem 114

There is a uniform family of FAC-circuits of constant depth and size f(k) · |G|c that,
on input of an integer k and a graphG = (V ,E), either detects thatG has less than

3k+1 non-isolated vertices, outputs amatchingM ⊆ Ewith |M| = k+1, or outputs

a crown decomposition (C,H,R)with |H| 6 k and |R| 6 3k ofG.

Proof. The circuit first checkswhether the number of non-isolated vertices is at least

3k+ 1. This is possible by simulating threshold-gates using Lemma 45. If this is not

the case, the circuit is done. Otherwise, the circuit tests for all values k ′ 6 k + 1 in

parallelwhether there is amatchingof sizek ′ inG. This canbedoneusing the circuit

of Corollary 43. We either find a matching of size k+ 1 or a maximummatchingM

ofG. In the first case the circuit outputs the matching and is done.

Let P = { v | there is a u ∈ V with {u, v} ∈M } and Q = V \ P, note that Q is an

independent set asM is the largest matching in the graph. Consider the bipartite

graphG ′ = (V ,E ′ = { {u, v} ∈ E | u ∈ P and v ∈ Q }). By König’s Theorem [120],

the vertex cover number ofG ′ is at most k, asG ′ contains no largermatching. Con-

sequently, the circuit can use another para-FAC0-circuit to compute aminimum ver-

tex cover S ofG ′ using Theorem 80. We have S∩P 6= ∅, as otherwise wewould have
S ⊆ Q andQ would contain at most k non-isolated vertices, which implies thatG

has atmost 3knon-isolated vertices. Let Ibe the set of isolated vertices ofG. It is easy

92

to verify thatH = S ∩ P,C = { v | v 6∈ S and there is a u ∈ Hwith {u, v} ∈ E ′ } ∪ I,
and R = V \ (H ∪ C) constitute a crown decomposition of G. Note that we have

|C| > |V | − 3k, since we have |P| 6 2k, |Q| > |V | − 2k and |S| 6 k – therefore, we

also have |R| 6 3k.

An example application for crown decompositions is a kernelization for the graph

coloring problem parameterized by the number of colors that “have to be saved.”

I Problem 115 (dual-coloring)

Instance: A graphG = (V ,E) and a number q ∈ N.
Question: Is there a proper coloring ofGwith at most |V |− q colors? C

In this problem a graph G = (V ,E) and a parameter k ∈ N are given, and the

question is whether or not we can “save” k colors when coloringG, that is, if we can

colorGwith at most |V |− k colors.

The following parallel kernelization is based on a sequential kernel due to Chor, Fel-

lows, and Juedes that runs in quadratic time [54].

I Lemma 116

There is a uniform family of FAC-circuits of constant depth and size f(k) · |G|c that,
on input of a graphG = (V ,E) and an integer q ∈ N, outputs pq-dual-coloring
kernel with at most 3q vertices.

Proof. LetG be the edge-complement graph ofG, which can be computed by an FAC-

circuit of constant depth. The circuit applies Theorem 114 and either gets informed

that the graph has less than 3k + 1 non-isolated vertices, obtains a matchingM of

size q + 1, or obtains a crown decomposition (C,H,R) with |R| 6 3q. In the first

case the circuit outputs the set of non-isolated vertices, as isolated vertices ofG are

connected to all vertices inG and, hence, need a unique color. In the second case the

circuit can output a trivial yes-instance, as we can save q+ 1 colors. For the last case

we observe that, sinceC is an independent set inG, it is a clique connected toR inG

and, thus, every vertex inCneeds a unique color. However, because of thematching

fromH toC, the vertices ofH canbe coloredwith the samecolors as the vertices inC.

Therefore, the circuit can reduce the instance toG ′ = G[V \ (C ∪H)] = G[R] and
q ′ = q− |H|. Since |R| 6 3q, this is the desired kernel.

I Corollary 117

p-dual-coloring ∈ para-AC0 C

93

7.2 Treedepth Decompositions

In this section we study the graph invariant treedepth. The corresponding decom-

position is a tree decomposition of bounded width and depth. However, graphs

of low treedepth actually have many different decompositions that witness the low

treedepth and that are useful in different algorithmic scenarios. Besides the char-

acterization via tree decompositions, the most common one reads as follows [135]:

“the treedepth of a graphG is the minimum height of a rooted forest F such thatG

is contained in the closure of F.” For instance, consider the graph G = and

the rooted forest F (which is just a tree) shown at themargin. The closure of the for-

est is indicated by dotted lines and the embedding ofG is highlighted. The forest F

witnesses that the treedepth ofG is at most 4.

Since any graph is contained in the closure of a depth-first search tree of it, we can

deduce that the treedepth of a graph is bounded by theminimum depth of any such

tree. Note that this observation implies that the treedepth of a graph is bounded by

the longest path in the graph.

I Fact 118 ([135])

The length of the longest path in a graphG = (V ,E) is bounded by 2td(G). C

This leads to the convenient property that the treedepth of a graph can be approx-

imated “just by a depth-first search.” In conjunction with Lemma 35 we can thus

formulate the following theorem:

I Theorem 119

There is a uniform family of FAC-circuits of depth f(k) and size f(k) · |G|c that, on

input of a graph G = (V ,E) and an integer k, either determines td(G) > k or

outputs a rooted tree decomposition (T , ι) of G of width O
(
2td(G)

)
and such that

for all nodes x,y of T we have ι(x) (ι(y) if y is a descendant of x.

Proof. Let us assume G is connected and let T be a depth-first search tree rooted

at an arbitrary start vertex r ∈ V . For all vertices v ∈ V we define the vertex set

ι(v) = {w | w lies on the unique path from v to r in T }. Due to Fact 118, the depth

of T is bounded by 2td(G). Therefore, we also have |ι(v)| 6 2td(G) for each v ∈ V .
Since bags extend along the paths from the root to the leaves of T , all conditions of

a tree decomposition are satisfied by (T , ι).

A circuit with the desired size and depth can compute a depth-first search labeling

using Lemma 35, and either conclude that the length of the longest path exceeds 2k

(and therefore td(G) > k), or obtain the depth-first search labeling λ : V → N. In
the later case, the circuit can compute the bags of the decomposition in parallel: For

each v ∈ V it initializes the bag ι(v) = {v} and, as long as r 6∈ ι(v), repeats the

following procedure sequentially: let w ∈ ι(v) the vertex that minimizes λ(w) in

ι(v), add the uniquew ′ ∈ N(w) that satisfies λ(w ′) = λ(w) − 1 to ι(v).

94

To complete the proof, we have to handle the case thatG is not connected. The cir-

cuit can compute all connected components ofG using a breadth-first search label-

ing (Lemma 34). Afterwards, the circuit can apply the aformentioned algorithm to

each connected component. Finally, the circuit adds a new empty root bag that is

connected to the roots of all constructed tree decompositions. This operation does

not increase the width and increases the depth only by one.

7.3 Tree Decompositions

In contrast to treedepth, the initial situation for treewidth looks a little better, as

there are already parallel algorithms known in the literature. The first attempt was

done byBodlaender [32]. However, the resulting algorithmproduces toomuchwork

and is only suitable for graphs of constant treewidth. The result was improved by

Lagergren with a CRCW-algorithm that runs in O(log3 n) parallel time using only

O(n) processors [124]. An algorithm with this time and work can be translated (or

“seen as”) a para-AC-algorithm and, hence, implies pk-treewidth ∈ para-AC. Two

years after the discovery of the algorithm by Lagergren, the result was again im-

proved by Bodlaender and Hagerup to an EREW-algorithm with optimal speedup

that runs in timeO(log2 n) usingO(n) operations [37]. This algorithm was trans-

lated to different parallelmodels, for instance to the parallel externalmemorymodel

in a work by Jacob, Lieber, and Mnich [113]. In the remainder of this section we will

do the same and translate the algorithm by Bodlaender and Hagerup to our circuit

model. The term “translate” stands for a careful analysis of each subroutine of the

algorithm, revealing that it can be implemented in para-AC2. We should note that,

in contrast to the previous section, the presented algorithm is an exact algorithm

rather than an approximation. Therefore, we may hope to obtain better results by

implementing one of the many approximation algorithms for treewidth in paral-

lel – such as the one by Robertson and Seymour [146]. However, none of these algo-

rithms achieves a better parallel run time than the algorithm we present here.

I Theorem 120

There is a uniform family of FAC-circuits of depth f(k) · log2 |G| andwidth f(k) · |G|c
that, on input of a graphG = (V ,E) and an integer k, either determines tw(G) > k

or outputs a tree decomposition ofG of width at most k.

We first provide a high-level sketch of the algorithm of Bodlaender and Hagerup,

which runs inO(logn) rounds. Afterwards, we provide a series of lemmas that state

that we can implement all operations performed in one round in para-AC1. Putting

all the pieces together, we will obtain the algorithm claimed in the theorem.

The idea of the algorithm is as follows: IfG = (V ,E) is small enough, we can com-

pute an optimal tree decomposition via “brute-force,” otherwisewe try to reduce the

graph until it has a suitable size. We call two vertices u, v ∈ V reduction partners if

95

they are adjacent or twins (). We can reduce the size ofG by 1 if we contract the

two vertices, that is, if we remove v fromG after connecting all neighbors of v to u

(without creating multi-edges:). Let G ′ be the resulting graph, and let (T ′, ι ′)

be a recursively computed tree decomposition ofG ′ of width atmost k ().

We compute a tree decomposition (T , ι) of G of width at most k + 1 by injecting v

into (T ′, ι ′), that is, by adding v to all bags that containu (). The resulting

tree decomposition ismost likely not optimal, but its width is bounded by a function

in k. This decomposition can be used to compute an implicit representation of an

optimal tree decomposition ofG. This implicit representation is a binary tree T to-

gether with a collection Pv of simple paths for every v ∈ V(G) – that is, the vertices
of V correspond to paths in T (). The paths are encoded as triples (x,y, v) with

x,y ∈ V(T), v ∈ V(G), and with the natural meaning that there is a path in Pv

from x to y. Note that there can bemultiple triples that start or end at some node x,

but of course never more than k+ 1. Given such an implicit representation, we can

compute a tree decomposition of width k ().

Our plan for proving Theorem 120 is to implement the above sketched algorithm

such that (i) we execute roughly logn rounds of it, and such that (ii) each round can

be implemented by para-FAC-circuits of depth roughly logn. The first item consists

of reducing the instance to a smaller one by contracting reduction partners, which are

pairs of vertices that are adjacent or twins. And, as usual in the design of parallel

algorithms, we require many reduction partners that we can contract at once. The

following fact due to Bodlaender and Hagerup guarantees that, in principle, there

are always enough reduction partners. For that matter, let us call a vertex v d-small

if we have |N(v)| 6 d.

I Fact 121 ([37])

Let G = (V ,E) be a graph with tw(G) 6 k, and let d = 2k+4(54k + 54) and

c = 1/
(
8(27k + 27)2

)
. Then there are at least c|V |/2 distinct pairs {u, v} of d-small

vertices that are reduction partners, that is, {u, v} ∈ E orN(u) = N(v). C

Unfortunately, the reduction partners provided by Fact 121 can still be in conflict.

However, since all involved vertices ared-small, eachpair canonly be in conflictwith

a few other pairs. Amaximal independent set in a corresponding conflict graphwill,

thus, equip us with enough conflict free reduction partners.

I Lemma 122

There is a computable and monotonically increasing function g : N → N such that

there is a uniform family of FAC-circuits of depth f(k) · log |V | and size f(k) · |V |c
that, on input of a graphG = (V ,E) and k ∈ N, outputs a set I of 1/g(k) · |V | pairs
of vertices that can be contracted in parallel, or that concludes tw(G) > k.

96

Proof. Letd = 2k+4(54k+54)andc = 1/
(
8(27k+27)2

)
. If tw(G) 6 k, then there are

at least c|V |/2 distinct pairs {u, v} of d-small reduction partners by Fact 121. Since a

circuit of the desired size can check all pairs of vertices in parallel, it can compute a

set S of reduction partners. Furthermore, since the circuit has logarithmic depth, it

can check whether |S| > c|V |/2 holds – and it can report tw(G) > k otherwise.

We cannot contract all pairs in S simultaneously, as pairs may share a vertex, may

be adjacent, or may have a common neighbor. Since all these properties can easily

be checked by an AC
0-circuit, the circuit in construction can check for each pair of

reduction partners if they are in conflict. By doing so, the circuit computes a conflict

graph C whose vertex set is S and whose edges indicate conflicts. As the degree of

each vertex appearing in a pair in S is bounded by d, the degree ofC is bounded by

a function in k, that is, by g(k). Since eachmaximal independent set I in a graph of

maximum degree∆ has size at least |V |/(∆+ 1), it is sufficient to use the reduction

partners that constitute a maximal independent set in C. The circuit can compute

such a set using Theorem 33.

Once we have a set of conflict free reduction partners, we can contract them to ob-

tain a smaller graph. Via recursion,wewill obtain anoptimal tree decomposition for

this reduced graph and, thus, our next task is to undo the contractions. We will do

this in three steps: Firstwe undo the contraction to obtain a tree decomposition that

is not optimal (but which has a width that is still bounded by k). Then, secondly, we

increase the width of this decomposition a little more, which in return allows us to

make the tree decomposition balanced (and in particular such that the correspond-

ing tree has depth logn). Finally, wewill compute a new and optimal tree decompo-

sition. In order to execute the second step, we use the following fact from Elberfeld,

Jacoby, and Tantau – but we have to be careful about the used encoding, as it differs

from our standard encoding (Definition 4):

I Fact 123 ([75])

There are uniform families (C1
n)n∈N, (C

2
n)n∈N, (C

3
n)n∈N of FTC0-circuits that per-

form the following tasks:

• (C1
n)n∈N expects a graphG and a width-w tree decomposition (T , ι) in term

representationas input, andoutputs awidth-(4w+3)treedecomposition (T ′, ι ′)

in term representation such that T ′ is a balanced binary tree;

• (C2
n)n∈N expects a tree T in term representation as input, and outputs it in an-

cestor representation;

• (C3
n)n∈N expects a tree T in ancestor representation as input, and outputs it in

term representation. C

The term representation of a tree is a string of brackets that encodes the ancestor re-

lation of the tree. For instance, the term representation of is the string [[[][]][]].

97

In contrast, the ancestor representation is a string consisting of a sequence of tuples

(v#w) for all v,w ∈ V(T) with v being an ancestor ofw. Note that both encodings

contain more information about reachability relations of vertices in the tree than

the encoding of Definition 4. Therefore, it is not surprisingly that many problems

on trees and forests that are L-complete when the input is given with the standard

encoding [56], become solvable in TC
0 or NC1 if the input is given in term or ances-

tor representation [75]. On the other hand, it is also easy to see that we can switch

between the encoding of Definition 4 and the ancestor representation whenever we

can answer reachability queries – which we can in AC1.

I Corollary 124

There is a uniform family of FAC1-circuits that, on input of a graphG = (V ,E) and

a width-w tree decomposition (T , ι) of G, outputs a tree decomposition (T ′, ι ′) of

width 4w+ 3 such that T ′ is a balanced binary tree. C

I Lemma 125

There is a uniform family of FAC-circuits of depth f(k) · log |V | and size f(k) · |V |c
that, on input of a graphG = (V ,E), a set of conflict free pairs of vertices I, a graph

G ′ = (V ′,E ′) that is obtained from G by contracting the pairs in I, and a tree de-

composition (T ′, ι ′) ofG ′ of width k, outputs a balanced and nice tree decomposi-

tion (T , ι,η) ofG of width at most 8k+ 3 and depth (16k+ 6) · log |V |+ 1.

Proof. Let (T ′, ι ′) be the given tree decomposition. An FAC
0-circuit can compute

(T , ι) by adding for each pair {u, v} ∈ I the vertex v to every bag that contains u.

This can be done in parallel for all vertices and all bags. Since the number of vertices

in each bag is at most doubled, (T , ι) has width at most 2k. This decomposition can

be transformed into a balanced one of width at most 8k+ 3 by Corollary 124.

The last thing we have to do is to transform this decomposition into a nice decom-

position (T , ι,η). In order to do so, the circuit first adds an empty bag to each leaf,

which is labeled as leaf node. Then, each nodenwith two children x andy is replaced

by nodesn,nl, andnr such thatnl,nr are the children ofn, x is a child ofnl, andy

a child of nr. The node n is labeled as join node. This operation doubles the depth of

the decomposition. Finally, for every node xwith childy, the circuit in construction

computes a chain of forget nodes from x to a newnode zwith ι(x)∩ ι(y) = ι(z), and a
chain of introduce nodes from z toy. Thiswill increase the depth of the decomposition

at most by a factor of 8k+ 3.

Sincemaking a balanced tree decomposition nicewill result in a balanced decompo-

sition again, the above algorithm produces a nice and balanced tree decomposition

of width at most 2k and depth at most (16k+ 6) log |V |+ 1.

By putting all the previous results together we can compute a suboptimal tree de-

composition of width, say, `. Our task is to compute an optimal tree decomposition

98

ofwidthk. The algorithmbyBodlaender andHagerup [37] thatwe try to implement,

as well as the famous linear time algorithm by Bodlaender [33], use the following al-

gorithm due to Bodlaender and Kloks [40] as subroutine – and we will do the same.

I Fact 126 (The Bodlaender–Kloks Algorithm. Implicit in [40], see also [37] for details.)

There is a computable function f : N → N and an algorithm that, on input of a graph

G = (V ,E), a width-` nice tree decomposition (T , ι) of G, and an integer k ∈ N,
either detects tw(G) > k or outputs a binary tree T ′ and a set { Pv | v ∈ V(G) } of
collections of simple paths such that:

1. |Pv| > 0 for all v ∈ V(G);
2. |{ v | there is a p ∈ Pv with n ∈ p }| 6 k+ 1 for all n ∈ V(T);

3. {n | there is a p ∈ Pv with n ∈ p } is connected in T for all v ∈ V(G);
4. the set { Pv | v ∈ V(G) } is encoded as set of triples (x,y, v)with x,y ∈ V(T)

and v ∈ V(G);
5. the algorithm requires time f(`) per node of T , and a node can be processed

when his children have already been processed. C

I Lemma 127

There is a uniform family of FAC-circuits of depth f(k) · log |V | and size f(k) · |V |c
that, on input of a graph G = (V ,E), an integer k, and of a balanced and nice tree

decomposition (T , ι,η) ofG of width at most ` 6 f(k), outputs either tw(G) > k or
a width-k tree decomposition ofG.

Proof. The circuit starts by either detecting tw(G) > k or by computing a binary tree

T ′ and a set { Pv | v ∈ V(G) } of collections of simple paths, encoded as set of triples

(x,y, v) with x,y ∈ V(T ′) and v ∈ V(G). In order to do so, the circuit “bubbles

up” the nice tree decomposition and spends f(k) time on every node to simulate the

algorithm from Fact 126. Since the depth of T is f(k) · log |V |, the desired circuit can

implement this algorithm without modification.

If the algorithms has not reported tw(G) > k, the circuit has access to an optimal

tree decomposition in the implicit form of a binary tree T ′ and a set of triples. Since

the “real” tree decompositionwe try to extract from this implicit representation uses

the same tree T ′, the rest of the lemma boils down to the following algorithmic task:

Given a tree T ′ = (V ,E) and three nodes s, x, t ∈ V , decide whether x lies on the

unique path between s and t. This property can be expressed in monadic second-

order logic with following formula, whereϕconnected(X) is a formula that expresses

that the subgraph induced on X is connected (recall Example 14).

ϕ(s, x, t) =
[
∃P � P(s)∧ P(x)∧ P(t)∧ϕconnected(P)

]
∧

[
∀P �

(
P(s)∧ ¬P(x)∧ P(t)

)
→ ¬ϕconnected(P)

]
Since T ′ is a tree (of treewidth 1), we can check the formula and, thus, decide the

problem, in AC1 [74].

99

Proof of Theorem 120. The circuit first checkswhether the size of thegraph is bounded

by k. If this is the case, an optimal tree decomposition can be computed via “brute-

force.” Otherwise, the circuit computes a set of 1/f(k) · |V | reduction pairs using

Lemma 122, or concludes that the treewidth of G exceeds k. The circuit reduces G

toG ′ by contracting the reduction pairs (the lemma guarantees that this is possible

in parallel) and recursively computes a tree decomposition of G ′. This tree decom-

position can be transformed to a nice and balanced decomposition of G of width

bounded by a function in k using Lemma 125. Finally, the circuit can reduce the

width of the decomposition to k or conclude tw(G) > k using Lemma 127.

Since Lemma 122 provides us with 1/f(k) · |V | reduction pairs, f(k) · log |V | rounds
of the algorithm are sufficient to reduce the graph to a size depending only on the

parameter. Considering each round as a subcircuit, each subcircuit has to execute

the algorithms from the lemmas 122, 125, and 127. Since each lemma can be imple-

mented in depth f(k) · log |V |, the complete circuit has a total depth of f(k) · log2 |V |
and is, hence, a para-FAC2 -circuit. Finally, the correctness follows from the correct-

ness of the original algorithm [37].

Note that this algorithm is, unfortunately, of pure theoretical interest – as are the

algorithms of Bodlaender [33] and Bodlaender and Hagerup [37]. The reason is that

the function fusedby theBodlaender–KloksAlgorithm (Fact 126) growshighly expo-

nentially [40]. And indeed, attempts to turn Bodlaender’s algorithm into a practical

implementationhave revealed that this is rather hopeless [147]. However, by circum-

navigating the Bodlaender–Kloks Algorithm by either skipping it, or by replacing it

with heuristics, one obtains a general framework for treewidth heuristics [95]. Prac-

tical algorithms that compute optimal tree decompositions, however, require a fun-

damental different algorithmic strategy. Wewill discuss andanalyze such strategies

theoretically and practically in the second part of this thesis in Chapter 10.

100

8 Parallel Parameterized

AlgorithmicMeta-Theorems

In the previous sections we developed many parallel parameterized algorithms for

various problems. We did this on a case-by-case basis, that is, for every problem

we carefully crafted a parallel algorithm for that particular problem and analyzed

the correctness and the resource consumption of that particular algorithm. This

has led to results such as pk-vertex-cover ∈ para-AC0 (via the kernelization of

Theorem 80). While this approach has the advantage that it gives us an algorith-

mic insight into the way parameterized problems can be solved in parallel, it has

the drawback that we have to repeat the whole procedure for every “new” problem.

For instance, if we just change the definition of vertex-cover slightly such that we

now ask to cover at least a given amount of edges (rather than all), the kernelization

techniques used for vertex-cover do not apply anymore.

I Problem 128 (partial-vertex-cover)

Instance: A graphG = (V ,E) and two numbers k, t ∈ N.
Question: Is therea setS⊆V with |S| 6 kand

∣∣{ {u, v} | u ∈ S∨ v ∈ S
}∣∣ > t? C

For the sole parameter k, this problem is known to beW[1]-hard [102]. But this does,

of course, not rule out an efficient parallel algorithm for the combined parameter

k + t. However, instead of crafting yet another vertex cover algorithm, it would be

preferable to derive such an algorithm from a general result that “just tells us” what

the parallel complexity of pk,t-partial-vertex-cover is.

To free us from the burden of crafting new algorithms on a case-by-case basis, we

will use algorithmic meta-theorems. Such meta-theorems generally state that all prob-

lems that can be described in a certain logic can be solved in some complexity class for all

instances with a certain structure. The most prominent example is Courcelle’s Theo-

rem,which states that all problems expressible inmonadic second-order logic canbe

solved in polynomial time on structures of bounded treewidth [57]. A bit more for-

mally, we are interested in the parameterized complexity of the following decision

problem for which we fix a logicL:

I Problem 129 (model-checking(L))

Instance: A relational structure S and anL-formulaϕ.

Question: S |= ϕ? C

101

In all its generality, this problem is, of course, very difficult. Recall for instance the

sentenceϕ3col from Section 2.3:

ϕ3col = ∃R∃G∃B
(
∀xR(x)∨G(x)∨B(x)

)
∧
(
∀x∀yE(x,y) →

∧
C ∈ {R,G,B}

¬C(x)∨¬C(y)
)
.

It describes that a given graph has a proper coloring with three colors. Therefore,

even if the size of ϕ is bounded by a constant and if we consider only monadic

second-order logic, the model checking problem is already NP-hard. For a weaker

logic – such as first-order logic – a natural parameter is the formula ϕ. However,

the following sentenceϕds for pk-dominating-set already shows that the problem

pϕ-model-checking(FO) isW[1]-hard:

ϕds = ∃x1 . . . ∃xk ∀y ∃z
k∨

i=1

(
xi = y∨ (E(y, z)∧ z = xi)

)
.

In order to obtain useful results, we will add a structural parameterization on the

given relational structure S in addition to the formula ϕ. First, in Section 8.1, we

use the maximum degree ∆ of the Gaifman graph of S as a parameter. Later on, in

Section 8.2, we use more restrictive parameterizations such as the treedepth or the

treewidth of the Gaifman graph.

8.1 First-OrderModel Checking

Our first result considers the case thatL is the class of first-order formulas and that

the maximum degree∆ of the Gaifman graph of the input structure is a parameter.

Our main result is that this model checking problem lies in para-AC0 :

I Theorem 130

pϕ,∆-model-checking(FO) ∈ para-AC0

We rely strongly on a previous result by Flum and Grohe [84], who showed that this

model checking problem lies in para-L (that is, it can be decided by a Turingmachine

that uses atmost f(k)+O(logn) space), butwe differ in three regards: First, we use

color coding inourproof, which simplifies the argument somehow, second,we iden-

tify the parameterized distance problem on bounded degree graphs as the only part

of the computation that is presumably not in para-AC0, and, third, we observe that

the degree of these graphs can be made a parameter and needs not be considered

constant. Note that the result of Flum and Grohe, and the claim of Theorem 130

are incomparable in the sense that the relation of para-AC0 and para-L is unclear.

While para-AC0 contains the parameterized distance problem (Theorem 39), it does

certainly not contain undirected s-t-reachability. In contrast, para-L contains the

undirected s-t-reachability problem due to Reingold’s algorithm [143], but it does

not contain the parameterized distance problem unless paraβ-L ⊆ para-L [154].

102

Proof of Theorem 130. Let ϕ be a formula given as input. For simplicity of presenta-

tion, we assume that the structure S is actually an undirected graphG = (V ,E) of

maximum degree ∆. Let d(a,b) denote the distance of two vertices in G and let

Nr(a) = {b ∈ V | d(a,b) 6 r } be the ball around a of radius r in G. By Gaif-

man’s Theorem [94] we can rewrite ϕ as a Boolean combination of formulas of the

following form:

∃x1 · · · ∃xk
(∧k

i=1

∧
j6=iψdist>2r(xi, xj)∧

∧k
i=1ψ(xi)

)
where ψdist>2r(xi, xj) is a standard formula expressing that d(xi, xj) > 2r and ψ

is r-local,meaning that for all a ∈ V we haveG |= ψ(a) ⇐⇒ G[Nr(a)] |= ψ(a).

What remains is to determine whether there are k vertices a1 to ak in G such that

the ballsNr(ai) do not intersect andG[Nr(ai)] |= ψ(ai) holds for them.

We use color coding to determine the existence of such ai. Let us introduce colors

1 to k. Since the maximum degree ∆ is a parameter and r depends only on |ϕ|, the

maximum sizeM of anyNr(a) is bounded by the parameter. Thismeans that there

is a (|V |,M · k,k + 1)-universal coloring family that contains a coloring that colors

all vertices ofNr(ai)with color i. In other words, there will be a coloring such that

the balls are contained in monochromatic connected components of color i.

It remains to test whether for each color i there is a vertex ai such thatNr(ai) has

color i andG[Nr(ai)] |= ψ(ai) holds. For this, let some candidate ai be given. We

need to determine for a given vertex b whether d(ai,b) 6 r, where the distance

is computed in the subgraph of G induced by the vertices of color i. Meaning, we

need to solve parameterized distance problems parameterized by d (and ∆), which

is possible in para-AC0 due to Theorem 39. Once the setNr(a) of vertices reachable

from a vertexa in atmost r steps has been determined, we can create an isomorphic

copyofG[Nr(a)] consisting just of a |Nr(a)|×|Nr(a)| adjacencymatrix inpara-AC0:

Number the vertices of G in lexicographical order, which also induces an ordering

on the vertices ofNr(a). The entry in row i and column j of the matrix is a 1 if the

ith and the jth vertex inNr(a) are connected by an edge in E. Determining which

vertex is the ith vertex ofNr(a) can be done by a para-AC0-circuit by Lemma 45.

Given the adjacencymatrix ofG[Nr(a)], we can decide in para-AC0whetherwe have

G[Nr(a)] |= ϕ, since the size of G[Nr(a)] depends only on the input parameters.

103

Equipped with Theorem 130 we can now provide an upper bound on the complexity

of pk,t-partial-vertex-cover:

I Lemma 131

pk,t-partial-vertex-cover ∈ para-AC0

Proof. On input of a graph G, we first test whether there is a vertex of degree at

least t. If so, we can accept since this vertex alone already constitutes the desired

cover. Otherwise, we know that the graph has a maximum degree bounded by the pa-

rameter, and we can apply Theorem 130 to the following first-order formula, which

depends only on k and t:

the size-k cover︷ ︸︸ ︷
∃x1 · · · ∃xk

the t covered edges︷ ︸︸ ︷
∃a1∃b1 · · · ∃at∃bt

(
ϕdist(a1,b1, . . . ,at,bt)∧

∧t
i=1

(
E(ai,bi)∧

∨k
j=1 ai = xj

))
.

Here,ϕdist is a standard formula expressing that {a1,b1}, …, {at,bt} are distinct sets.

8.2 Second-OrderModel Checking

In the second part of this chapter, we switch from first-order logic to second-order

logic. This will, of course, increase the complexity of the model checking problem,

as this logic is more powerful. To compensate this circumstance, we have to use

structural parameters that are stronger than themaximumdegree. The vertex cover

number, the treedepth, and the treewidth of the Gaifman graph of the input struc-

ture will fill this role. In detail, we will prove the following three theorems in the

course of this section:

I Theorem 132

pϕ,vc-model-checking(MSO) ∈ para-AC0

I Theorem 133

pϕ,td-model-checking(MSO) ∈ para-AC0

I Theorem 134

pϕ,tw-model-checking(MSO) ∈ para-AC2

These results are a parallel version of the theorem of Courcelle. Similar work was

donebyElberfeld, Jakoby, andTantau,whoshowed these result for constant treedepth

or treewidth and a constant sized formula [74, 75]. An interesting observation is

that in the constant case, the parameters vertex cover number and treedepth co-

incide – in both cases the corresponding model checking problem is in AC
0. In the

parameterized setting, however, a difference in their complexity is revealed.

104

The standard approach to solve problems on structures of small treewidth is to ap-

ply dynamic programming on a tree decomposition of the structure (or rather of its

Gaifman graph) while using the fact that graphs of small treewidth have small bal-

anced separators [59]. We applied such a technique in Section 5.2, where we showed

that we can find a homomorphism from a graphH to another graphG efficiently if

H is small and has constant treewidth. Themain ingredient to prove the aforemen-

tioned theorems is to show that such a strategy works whenever the problem can

be defined inMSO-logic. Before we jump directly into the proof, it will be helpful to

develop some intuition about dynamic programming on tree decompositions.

We will, for now, assume that we are already given a tree decomposition (T , ι), and

we assume that this decomposition is very nice. Recall that this means that T is a

rooted binary tree, and that we are additionally given some labeling function of its

nodes η : V(T) → {leaf, introduce, join, forget, edge}. We also consider the children

of a node to be ordered, for instance by the lexicographical order of V(T). A dy-

namic program on (T , ι) is just a run of a (nondeterministic) tree automaton: The

mapping ι can be seen as a function that maps the nodes of T to symbols from some

alphabet Σ. A naive approach to manage ι would yield a huge alphabet (depending

on the size of the graph). We thus define the so called tree-index, which is a map

idx : V(G) → {0, . . . , tw(G)} such that no two vertices that appear in the same bag

share a common tree-index. The existence of such an index follows from the prop-

erty that every vertex is forgottenexactly once: Wecan traverseT fromthe root to the

leaves and assign a free index to a vertex vwhen it is forgotten; we release the used

index once we reach an introduce bag for v. The symbols of Σ then only contain the

information for which tree-index there is a vertex in the bag. From a theoretician’s

perspective thismeans that |Σ| depends only on the treewidth; froma programmer’s

perspective the tree-indexmakes it easier tomanagedata structures for thedynamic

program (this will be discussed further in the second part of this thesis).

I Definition 135 (Tree Automaton)

A nondeterministic bottom-up tree automaton is a tuple A = (Q,Σ,∆, F) where Q

is a set of states with a subset F ⊆ Q of accepting states, Σ is a non-empty alphabet,

and ∆ ⊆ (Q ∪ {⊥}) × (Q ∪ {⊥}) × Σ × Q is a transition relation in which ⊥ 6∈ Q
is a special symbol to treat nodes with less than two children. The automaton is

deterministic if for every x,y ∈ Q ∪ {⊥} and every σ ∈ Σ there is exactly one q ∈ Q
with (x,y,σ,q) ∈ ∆. C

I Definition 136 (Computation of a Tree Automaton)

The computation of a tree automaton A = (Q,Σ,∆, F) on a labeled tree (T , ι) with

ι : V(T) → Σ and root r ∈ V(T) is an assignment q : V(T) → Q such that for

all n ∈ V(T) we have (i) (q(x),q(y), ι(n),q(n)) ∈ ∆ if n has two children x, y;

(ii) (q(x),⊥, ι(n),q(n)) ∈ ∆ or (⊥,q(x), ι(n),q(n)) ∈ ∆ if n has one child x; and

(iii) (⊥,⊥, ι(n),q(n))∈∆ ifn is a leaf. The computation is accepting ifq(r) ∈ F. C

105

I Example 137 (A Dynamic Program for Graph Coloring)

We want to decide whether a given graphG = (V ,E) can be colored with three col-

ors. Given a very nice tree decomposition (T , ι,η), a nondeterministic tree automa-

ton can process T as follows: On introduce-bags, the automaton guesses a color for

the introduced vertex; on forget-bags the automaton clears the information for the

removed vertex from its current state; at edge-bags the automaton rejects in case the

two endpoints of that edge have the same color in the current state of the automa-

ton; and, finally, in join-bags the automaton rejectswhen it was in different states for

the two children. In case the automaton reaches the root of T without rejecting, it

will accept T . Using the properties of a tree decomposition, it is easy to check thatG

is indeed colorable with three colors in this case.

The following figure illustrate a run of the automaton. The left figure shows a part

of a tree decomposition of the grid graph with vertices {0, . . . , 8}. The index of

a bag shows the type of the bag: a positive sign means “introduce,” a negative one

“forget,” a pair represents an “edge’’-bag, and text is self-explanatory. Solid lines

represent real edges of the decomposition, while dashed lines illustrate a path (that

is, there are some bags skipped). On the left branch of the decomposition a run of a

nondeterministic tree automaton for 3-coloring is illustrated for the tree-index:(
0 1 2 3 4 5 6 7 8

2 3 0 1 2 3 0 1 0

)
.

To increase readability, states of the automaton are connected to the corresponding

bags with gray lines, and for some nodes the states are omitted. In the right figure,

the same automaton is simulated deterministically.

∅−2

{2}−3

{2, 3, 5}join

{2, 3, 5}+5

{0, 1, 3}+0

{1, 3}+1

{3}+3

∅leaf

{2, 3, 5}+3

{5, 7, 8}{7,8}

{5, 7, 8}{5,8}

{5, 7, 8}+5

∅leaf

∅−2

{2}−3

{2, 3, 5}join

{2, 3, 5}+5

{0, 1, 3}+0

{1, 3}+1

{3}+3

∅leaf

{2, 3, 5}+3

{5, 7, 8}{7,8}

{5, 7, 8}{5,8}

{5, 7, 8}+5

∅leaf

C

106

Given some intuition about dynamic programmingon tree decompositions and tree

automata, we can now turn to prove Theorem 132, 133, and 134. The classical way of

proving variants of Courcelle’s Theorem is as follows: On input of a structure S and

anMSO-formula ϕ, we compute a tree decomposition (T , ι) of S. This tree decom-

position is then translated into an s-tree-structure T and ϕ is translated to a new

MSO-formulaψ such that S |= ϕ ⇔ T |= ψ. To decide T |= ψ, the s-tree-structure

T is transformed into a labeled tree (T, λ) and ψ is turned into a tree automata A

such that we have T |= ψ ⇔ (T, λ) ∈ L(A). An s-tree-structure is a structure

T = (V ,ET ,P11 , . . . ,P
T
s) over the signature τs-tree = (E2,PT1 , . . . ,P

1
s)where (V ,E

T)

is a directed tree.

If we would aim for a class like FPT, we could directly implement the sketched strat-

egy. But since we aim for parallel classes, things are a bit more tricky. The con-

structed tree decomposition could be degenerated (for instance, T could actually be

a path), which makes it difficult to simulate a tree automaton in parallel. In order

to keep the tree flat, we will have to drop our assumption that our decomposition is

nice, in fact, we will need nodes in T that have high degree. This, unfortunately, re-

quires us to step away from classical tree automata and to step towards the (slightly

more technical)multiset automata introduced by Elberfeld, Jakoby, and Tantau [75].

A multisetM is a set S together with a multiplicity function #M : S → N. The mul-

tiplicity ofM is the value maxe∈S #M(e). We denote by Pω(S) the class of all mul-

tisets of S, and by Pm(S) the class of all multisets of multiplicity at mostm ∈ N
of S. Notice that P1(S) is just the standard power set of S. We define for a multi-

setM ∈ Pω(S) and a numberm ∈ N the capped versionM|m ofM by setting the

multiplicity to #M(e) = min(#M(e),m) for all e ∈ S.

I Definition 138 (Multiset Automaton)

A nondeterministic bottom-up multiset automaton is a tuple A = (Σ,Q,Qa,∆,m)

consisting of an alphabetΣ, a state setQwith accepting statesQa ⊆ Q, a state transition

relation ∆ ⊆ Σ × Pm(Q) × Q, and a multiplicity boundm ∈ N. The automaton is

deterministic if for every σ ∈ Σ and everyM ∈ Pm(Q) there is exactly one q ∈ Q
with (σ,M,q) ∈ ∆. C

I Definition 139 (Computation of a Multiset Automaton)

Let (T, λ) be a labeled tree, where λ : V(T) → Σ is the labeling function, and let

A = (Σ,Q,Qa,∆,m) be a multiset automaton. A computation of A on (T, λ) is a

partial assignment q : V(T) → Q such that for every node n ∈ V(T) for which

q(n) is defined,wehave that (i) the valueq(c) is defined for each childcofn inTand

(ii) for the multisetM = {q(c) | c is a child of n }we have (λ(n),M|m,q(n)) ∈ ∆.
A computation is accepting if q(r) ∈ Qa holds for the root node r of T. The tree

language L(A) contains all labeled trees accepted byA. C

107

I Fact 140 ([75])

The following statements hold and are constructive:

1. For allmultiset automataA andB there is anothermultiset automatonCwith

L(C) = L(A) ∩ L(B);

2. For everynondeterministicmultiset automatonA there is adeterministicmul-

tiset automatonBwith L(A) = L(B);

3. For every multiset automaton A there is a multiset automaton B accepting

the complement of L(A). C

Fortunately for us, many steps of the translation of the model checking problem

to the evaluation of a multiset automaton work in the same way for structures of

bounded treewidth as for such with constant treewidth. This is reflected by the fol-

lowing fact that we can use:

I Fact 141 (Implicit in [75])

There are functions h1, h2, h3, and h4 performing the following mappings:

1. The input forh1 are a structure S together with awidth-w tree decomposition

(T , ι) of S and anMSO-formulaϕ. The output is an s-tree-structure T.

2. The input for h2 are anMSO-formulaϕ and a tree widthw. The output is an

MSO-formula formulaψ.

3. The input forh3 are an s-tree-structure T and anMSO-formulaψ. The output

is a labeled tree (T, λ) of the same depth.

4. The input for h4 is anMSO-formulaψ. The output is a multiset automatonA.

The following holds for the values computed by these functions:

S |= ϕ ⇐⇒ T |= ψ ⇐⇒ (T, λ) ∈ L(A).

Allhi are computable andh1 andh3 are even computable by uniform FAC-circuits of

depthO(1) and size f(ϕ,w) · |S| · |T |. C

To prove Theorem 132, 133, and 134, we are essentially left with the task of simulating

a multiset automaton (whose size is bounded by a function in the parameter). The

following lemma will serve as workhorse in all three cases:

I Lemma 142

Let Sd be the set of labeled trees (T, λ) of maximum depth d. There is a uniform

family of FAC-circuits of depthO(d) and size f(|A|) · |T|c that, on input of a labeled

tree (T, λ) ∈ Sd and a multiset automata A = (Σ,Q,Qa,∆,m), decides whether

or not (T, λ) ∈ L(A) holds.

108

Proof. Since the size of the circuit depends on the size of A by an arbitrary com-

putable function f, we can assume thatA is deterministic, as otherwise we can com-

pute an equivalent deterministic automaton in a constant number of AC-layers us-

ing Fact 140. The circuit has d “main’’-layers, each of which consists of circuits of

constant depth. The ith layer will assign states to the nodes of the (d − i)th layer of

T. The first layer simply assigns states to the leaves of T. Layer i then has access to

the assigned states of layer i − 1. In order to compute the state q(n) for a node n,

the circuit computes the multisetM = {q(c) | c is a child of n } using the result

of the last layer. Now the circuit has to capM to computeM|m. In order to do so,

the circuit has to count up tom. Since we havem 6 |A|, the valuem is bounded by

the parameter and, therefore, we can use the para-AC0-circuit fromLemma 45. Once

M|m is computed, the circuit can compute q(n) by a lookup of (λ(n),M|m) in the

description of ∆. The circuit outputs 1 if, and only if, after the evaluation of the d

layers the root r of T is assigned with q(r) ∈ Qa.

There are three special cases of Lemma 142 for the simulation of multiset automata,

which can be performed (i) in para-FAC0 for trees of constant depth, (ii) in para-FAC0

for trees of depth bounded by the parameter, and (iii) in para-AC1 for balanced trees

of logarithmic depth. In all cases, the size of the automaton is the parameter.

Proof of Theorem 132. On input of a structure S and an MSO-formula ϕ, a para-AC0

can approximate a vertex cover X of the Gaifman graph of S of size at most k2 + 2k

using Lemma 86 in combination with Lemma 81. From a given vertex cover X, it

is easy to construct a tree decomposition (T , ι) of width at most |X| and depth 2:

The root bag r contains the set X, and for every v ∈ V \ X there is one child of r

containing X ∪ {v}. For instance, consider the graph at the margin and the vertex

cover X. A corresponding tree decomposition is illustrated below:

1

2 3

6
15 7

8

9 10

11

1213

14 4

5

{1, 2, 3}

{4, 1, 2, 3} {5, 1, 2, 3} {6, 1, 2, 3}

{7, 1, 2, 3} {8, 1, 2, 3} {9, 1, 2, 3} {10, 1, 2, 3} {11, 1, 2, 3} {12, 1, 2, 3}

{13, 1, 2, 3} {14, 1, 2, 3} {15, 1, 2, 3}

Given the tuple (S, (T , ι),ϕ), the circuit in constructioncomputes a labeled tree (T, λ)

and a multiset automaton A using Fact 141. The depth of the tree T is bounded by

the depth of (T , ι) and, hence, is bounded by a constant. Furthermore, we have

|A| 6 f(|ψ| + |X|) for some computable function f. Hence, a para-AC0-circuit can

invoke Lemma 142 and output the result.

109

Proof of Theorem 133. As Theorem 132, but (T , ι) is computed using Theorem 119.

Proof of Theorem 134. The proof is almost identical to the proof of Theorem 132. On

input of a structure S and an MSO-formula ϕ, a para-AC2 -circuit computes a tree

decomposition (T , ι) of the Gaifman graph of S using Theorem 120. However, the

circuit can not directly invoke Lemma 142 as the depth of T is not bounded. This can

beovercomeas follows: Let thewidthof (T , ι)bew, thenan FAC1-circuit cancompute

a balanced tree decomposition of logarithmic depth andwidth atmost 4w+ 3 using

Corollary 124. Given this decomposition, we proceed as in Theorem 132.

110

9 Outlook and Further Directions

In the first part of this thesis we studied parallel parameterized algorithms and have

explored parameterized circuit complexity. We started by providing a general tool-

box of basic algorithms, which I hope will prove useful in the design of further par-

allel parameterized algorithms. It has turned out that the fascinating technique of

color coding is perfectly suited todevelopparameterizedparallel constant timealgo-

rithms and it lies at the heart of many of our results.

` Open Problem: Since we used the technique so heavily, it would be interesting for

practical purposes to studywhether it canbe implementedbycircuits that are asymp-

totically smaller (but perhaps a little deeper) than the current ones. a

` Open Problem: It should be explored in which particular cases we can use color cod-

ing to parallelize algorithms – Till Tantau and myself have made first steps in this

direction by investigating the descriptive complexity of color coding [23]. a

` Open Problem: In contrast, it would be interesting to have other techniques for par-

allel parameterized constant time algorithms. In particular: Are there natural prob-

lems in para-AC0 that do not require color coding for solving them? a

After the warm-up, we dealt with parallel bounded search trees and parallel kernel-

izations in Chapter 5 and 6. For the bounded search trees we provided a general

framework in the form of parallel algorithms for certain modulator problems. It

should be easy to extend this approach in further directions, as almost any search

tree can (theoretically) be evaluated in parallel.

` Open Problem: The parallelization of search trees differs a lot in theory and practice.

Algorithm engineering is therefore a promising direction to study the paralleliza-

tion of such search trees. In this setting, the notation of work optimal algorithms

(roughly: parallel algorithms that do not perform more computational steps than

their sequential counterpart) becomes relevant. Skambath, Tantau, andmyself have

made first steps in this direction – primarily with vertex cover in mind [18]. a

Wetranslated the famousallegory that “kernelization is the sameasfixed-parameter

tractability” to the parallel setting: “parallel preprocessing equals fast parallel pa-

rameterized algorithms.” In this regard, we observed complex trade-offs between

kernel size and the depth of the circuits needed to compute them. On the negative

side, we proved that the problem of finding a maximummatching in a graph turns

out to be an obstacle in the parallel computation of kernels, for instance for a linear

kernel for pk-vertex-cover.

111

` Open Problem: It is desirable to find alternative kernelizations for these problems.

Evenwithout improving the best knownkernel bounds, we could improve the kernel

size reachable in parallel by circumnavigate the matching problem. a

We concluded the chapter about parallel kernelization with a constant-time kernel-

ization for pk,d-hitting-set. This was a rather surprising result, as the problem is

very general and its standard kernelization is very sequential. In fact, we did require

heavymachinery and a lot of color coding to solve it in constant-time. The reward is

a powerful tool that can be used to place many natural problems in para-AC0.

` Open Problem: Are there further applications that obtain fast parallel parameterized

algorithms by using pk,d-hitting-set as a subroutine? A good starting point in

this direction is a result by Chen, Flum, and Huang, who have shown that certain

weighted Fagin definable problems can be reduced to it [53]. a

We ended the first part by investigating the parallel decomposition of graphs and

logical structures in Chapter 7, and by afterwards implementingmeta-theorems on

top of these decompositions inChapter 8. In particular, we studied the parallel com-

plexity of computing crown- and treedepth decompositions, and we analyzed the

precise circuit-complexity of a parallel algorithm by Bodlaender and Hagerup [37]

to compute exact tree decompositions: it was para-FAC2.

` Open Problem: Is it possible to compute the treewidth of a graph in para-FAC2? The

best lower bound that is currently known is only para-L, the parameterized version

of logspace. a

` OpenProblem: Is there aparallel parameterizedapproximation for the treewidthprob-

lem in para-FAC2 or below? In the light of a recent result by Fomin, Lokshtanov,

Pilipczuk, Saurabh, and Wrochna [89], who have established a polynomial time k2-

approximation for treewidth, it is interesting to ask whether it is possible to obtain

a kc-approximation withinNC. a

In terms of meta-theorems, we examined parallel model checking algorithms for

first-order logic on structures of bounded degree, and for monadic second-order

logic on structures of bounded treedepth or treewidth. These results quite natu-

ral match their non-parameterized counter parts due to Seese [151] and Elberfeld,

Jakoby, and Tantau [74, 75]. It is interesting that the bottleneck for the monadic

second-order model checker is the algorithm to compute the tree decomposition,

which is currently more expensive than the evaluation of the tree automaton.

` OpenProblem:Apromising further task is to extent these results toother logical struc-

tures. A first attempt was provided by Pilipczuk, Siebertz, and Toruńczyk, who have

shown that model checking for first-order logic on sparse structures can be per-

formed within para-AC1 [140]. a

112

Besides the fundamental directions in which we have explored the topic in this part

of the thesis, there are many further paths that can be investigated in the light of

parameterized circuit complexity. For instance, the textbook application for circuit

complexity are lower bounds, and it is thus natural to ask whether we can establish

parameterized circuit lower bounds. First progress in this direction was made by

Chen and Flum [52].

An interesting further application of parameterized complexity is to tackle prob-

lems whose classical complexity is still not fully resolved. In this matter, we have

shown that the problem of finding amatching parameterized by the solution size is

in para-AC0 (while the classical problem is not known to be inNC). Das, Enduri, and

Reddyhave studied theparameterizedparallel complexity of thegraph isomorphism

problem [61] (for which the exact complexity is not resolved either) by different pa-

rameterizations like the vertex cover number or the size of a feedback-vertex set. It

would be gripping to further investigate parallel algorithms in this direction with

weaker parameterizations.

113

Part II

Towards Practice and Back

In this second part of the thesis, we will turn from complexity theory and algorithm design to

algorithm engineering. We will explore two libraries, called Jdrasil and Jatatosk, that I have de-

veloped during my time as a doctoral student. The former is a tool to compute optimal tree de-

compositions, while the later is a model checker for a fragment of monadic second-order logic.

Both tools are publicly available [12, 15].

Preliminary versions of many results of this part were previously presented at the following con-

ferences:

[16] Max Bannach, Sebastian Berndt, and Thorsten Ehlers: Jdrasil: A Modular Library for Com-

puting Tree Decompositions. In Proceedings of the 16th International Symposium on Experi-

mental Algorithms (SEA 2017).

[13] Max Bannach and Sebastian Berndt: Practical Access to Dynamic Programming on Tree De-

compositions. In Proceedings of the 26th Annual European Symposium on Algorithms (ESA

2018).

[14] MaxBannach andSebastianBerndt:Positive-InstanceDrivenDynamic Programming forGraph

Searching. InProceedingsof 16thAlgorithmsandDataStructuresSymposium(WADS2019).

The secondpaperwasawardedBest StudentPaperat theEuropeanSymposiumonAlgorithms2018.

10 Jdrasil: A Modular Library for

Computing Tree Decompositions

In this chapterwewill tackle the problemof computingoptimal tree decompositions

in practice, that is, for realworld graphs on a realmachine. For that end, Iwill present

the library Jdrasil and, in the light of this thesis, will highlight its parallel capabilities.

Jdrasil – the name is a portmanteau of “Java” and “Yggdrasil,” a gigantic tree inNorse

mythology – is a Java library that is capable of computing tree decompositions both,

exactly and heuristically. The goal of Jdrasil is to allow other projects to add tree

decompositions to their applications as easily as possible. In order to achieve this,

Jdrasil is designed inamodularway: Every algorithmis implementedas interchange-

ably as possible. At the same time, algorithms are implemented in a clean object ori-

entedmanner, hopefully making it easy to understand and extend the implementa-

tion.

Due to its modularity, Jdrasil has many facets, some of which require new theory

while others are direct implementations of facts that are already known in the liter-

ature. This chapter is neither a complete scan through all the features of the library,

nor a tutorial for it. Both can be found in Jdrasil’s manual in its publicly available

GitHub repository [15]. Instead, I will present the design philosophy behind the li-

brary in Section 10.1 and provide a high-level view on the library in Section 10.2.

After this insight into the library, wewill study some concrete subroutines of Jdrasil.

I have decided to present two exact algorithms that are implemented in the library.

Both perform very well and both require novel ideas from theory. We will start in

Section 10.3 with a sat-encoding of treewidth, which is based on an encoding by

Berg and Järvisalo [26], but adds new ideas to it. As we will see, these ideas improve

the performance of the encoding noticeably. Afterwards, in Section 10.4, I present

a novel algorithm for computing tree decompositions that was developed by Hisao

Tamaki [156, 158] in a game theoretic characterization due to Sebastian Berndt and

myself [14]. This algorithm is the currently fastest algorithm in practice [63, 64].

Wewill study the parallel capabilities of Jdrasil in Section 10.5. Due to itsmodularity,

the parallelization in Jdrasil is implemented in a coarse and general way: Indepen-

dently of the used subroutine, Jdrasil will automatically identify parts of the graph

that can be decomposed in parallel and apply the subroutine to it.

We close the chapter in Section 10.6 with a series of experiments to compare and

analyze the algorithms presented within this chapter.

117

10.1 The Design Philosophy of Jdrasil

When one starts the development of a library that solves a combinatorial problem,

one is confronted with general design decisions that one has to make beforehand.

Of course, developing a library like Jdrasil for computing tree decompositions is no

exception. The two most important decisions for Jdrasil, which to some extent de-

fine the “spirit” of Jdrasil, concern the level of optimization and the level of parallelization

we aim for.

With the level of optimizationwemean to which extent we optimize the implementa-

tion of subroutines. One plausible route for a library that computes exact tree de-

compositions would be the development of a “simple” program that just expects a

graph as input and outputs a tree decomposition. Such a programwould essentially

implement one algorithm and optimize it “to the bone,” for instance by optimizing

the implementation for specific architectures. However, when I started the devel-

opment of Jdrasil I noticed that, at this time, it was pretty unclear which algorithm

for treewidth would work best in practice. Therefore, I decided against this route.

Instead, Jdrasil is designed as amodular library –meaning that in Jdrasilmany algo-

rithms are implemented and exchangeable. The library was developed in a way that

makes it easy to extend it by further algorithms, without caring about representa-

tion of data, preprocessing, or output. Furthermore, the design of Jdrasil as library

allowedme to addmanymore features – such as an easy interface for dynamic pro-

grams over tree decompositions.

When thinking about parallelization in practice, there are multiple levels of paral-

lelization thatwe could apply. For instance, we could aim for a very fine level of paral-

lelization by designing an algorithm directly for, say, FPGAs. However, considering

thementioned initial situation, this seemsa little premature. Alternatively, we could

aim for a medium level of parallelization by designing algorithms that are capable

of using many CPU-cores or that work directly on the GPU. The first iteration of

the Parameterized Algorithms and Computational Experiments Challenge (PACE)

originally contained a parallel track to feature such algorithms. This track was dis-

carded as the best sequential implementation was significantly faster than the best

parallel one [63]. This sequential implementation is based on a novel algorithm due

to Hiso Tamaki [156]. Recently, there were attempts of computing tree decomposi-

tions on the GPU, but the resulting implementation was outperformed by Tamaki’s

algorithm aswell [163]. Instead of aiming for a fine ormiddle level of parallelization,

wewill therefore be content with a course level of parallelization. Thismeans that in

Jdrasil we do not directly parallelize any subroutine, but instead identify parts of the

graph that can be decomposed in parallel. This favors the modular architecture of

Jdrasil: Independently of the subroutine used to decompose the graph (it may even

be a subroutine implemented by the user), Jdrasil will automatically utilize parallel

architectures by applying the subroutine to many parts of the input graph.

118

10.2 A High-Level View on the Library

On themost abstract layer, the user can use Jdrasil to compute a tree decomposition

without knowing anything about the used algorithms and the process as a whole.

The following code snippet is the easiest way to compute and output a tree decom-

position for the input graph using Jdrasil. Here, the SmartDecomposer is a class

that encapsulates thewholemodularity of Jdrasil tomake it easy to gather somefirst

results. However, the real strength of the library lies in itsmodularity, whichwewill

discuss afterwards.

import jdrasil.graph.*;
import jdrasil.algorithms.*;

public class Main {

public static void main(String[] args) {

// create a new empty graph with integer vertices

Graph<Integer> G = GraphFactory.emptyGraph();

// make it a triangle

for (int v = 1; v <= 3; v++) { G.addVertex(v); }

G.addEdge(1, 2);

G.addEdge(2, 3);

G.addEdge(3, 1);

// output graph in PACE format

System.out.println(G);

// compute tree decomposition

TreeDecomposition<Integer> td = null;

try {

td = new SmartDecomposer<Integer>(G).call();

} catch (Exception e) {

// something went wrong

}

// ouput tree decomposition in PACE format

System.out.println(td);

}

}

Let us discuss what the SmartDecomposer tries to hide from us, and why we refer

to Jdrasil as a “modular library” – and what this term actually means. In the design

process of the library, I have tried to abstract the workflow of computing a tree de-

composition (and working with it) from a software engineering point of view. That

is, given a graphG and the description of some problemwewant to solve on it, what

are the steps a program has to run through in order to compute a tree decomposi-

tion and solve the problemwith it? As usual in software design, I wanted these steps

to be defined fine enough to have small and self-contained tasks, but coarse enough

to make a useful abstraction and to make them interchangeable.

119

The result is the following abstract pipeline that is used by Jdrasil to process an input

graphG and to output either a tree decomposition (T , ι) ofG or the imageϕ(G) of

some user specified functionϕ. The black boxes are the different interfaces that are

involved in the computation of a tree decomposition; the orange part describes the

input and output; the blue part highlights the information flowwithin the program.

Preprocessor Splitter Solver Postprocessor DPG ϕ(G)

(T , ι)

G′ G′′
1 , . . . ,G′′

q (T , ι) (
∼
T ,

∼
ι)

The Preprocessor is the first instance that obtains the input graph G. Its task is to

identify “easy” parts of the input, which we may safely remove to obtain an equiva-

lent instanceG ′. Later on, a preprocessor may construct a tree decomposition forG

from a tree decomposition ofG ′. A typical example is the removal of attached trees

or the contraction of degree-2 vertices. The standard implementation in Jdrasil fol-

lows the description by Bodlaender, Koster, and Eijkhof [43] and we will, thus, not

discuss it further within this thesis. The following code illustrates the usage of a

preprocessor within Jdrasil:

// generate instance of the preprocessing algorithm

GraphReducer<T> reducer = new GraphReducer<>(G);

// get the preprocessed graph

Graph<T> H = reducer.getProcessedGraph();

// add the decomposition of H

TreeDecomposition<T> td = ...

reducer.addbackTreeDecomposition(td);

// we can now access the final decomposition of the original graph

reducer.getTreeDecomposition();

The Splitter interface is modeled after the concept of so called safe separators by Bod-

laender and Koster [41]. In essence, a safe separator allows to split a graph G into

multiple graphsG1, . . . ,Gq such that one can obtain an optimal tree decomposition

forG by gluing tree decompositions of these graphs. The simplest safe separator is

the empty set, which splits the graph into its connected components. It is notable

that this concept was underestimated (and thus not used) by almost all participants

for PACE 2016, and that it therefore boosted the performance of many submissions

for the PACE 2017. In the light of this thesis the splitter interface is especially inter-

esting, as it is an access point for parallelization in practice: Jdrasil uses the parallel

capabilities of Java to automatically parallelize the computation of a tree decomposi-

tion if possible. We will give precise definitions in Section 10.5. The following code

on the next page shows how to invoke a splitter:

120

// create a splitter for the graph G

GraphSplitter<T> splitter = new GraphSplitter<T>(G, H −> {

// create a tree decomposition of the atom H

TreeDecomposition<T> td = ...

return td;

},lb); // lb is a lower bound on the treewidth of G

// obtain a tree decomposition of G

// this will invoke the splitting process

TreeDecomposition<T> result = splitter.call();

The Solver interface is at the very heart of the pipeline. Its purpose is quite obvious:

Given a graphG, output a tree decomposition (T , ι) of it. Since all other parts of the

pipeline are safe with respect to treewidth, the solver determines the quality of the

tree decomposition. For an exact algorithm, the whole pipeline will produce an op-

timal decomposition. However, the solver may also be a heuristic or an approxima-

tion algorithm. In its current state, Jdrasil contains many standard algorithms, for

instance theheuristics proposedbyBodlaender andKoster [42], the classical approx-

imation algorithm due to Robertson and Seymour [59, 85], the branch-and-bound

algorithm by Gogate and Dechter [99], and many more. Particularly successful was

a sat-based approach, which we will discuss in detail in Section 10.3. It should be

noted that, within Jdrasil, a solver will usually expect the “hard” core of the problem

and, thus, does not invoke any checks for simple solutions – for instance, a solver

usually handles a huge tree in the same way as a small structured graph. Therefore,

it is essential to apply a preprocessor beforehand. The following code illustrates the

usage of a (here sat-based) solver:

// create a SAT−based decomposer for the graph G

TreeDecomposer<T> decomposer = new SATDecomposer<>(G, Encoding.IMPROVED);

// invoke the computation and obtain the tree decomposition

TreeDecomposition<T> td = decomposer.call();

A postprocessor obtains a tree decomposition (T , ι) and prepares it for a subsequent

task. A prominent example is the transformation of (T , ι) into a nice tree decompo-

sition. However, a postprocessor may also improve a non-optimal tree decomposi-

tion, for instance with the refinement technique [42] or via local improvements [83].

Another typical task is to optimize (T , ι) for the following dynamic program, for in-

stance by minimizing the number of join-bags. The implementations are standard

and are therefore not further discussed within this thesis. The following code illus-

trates the use of a postprocessor that computes a nice tree decomposition:

// create nice tree decomposition for the given decomposition td

// the boolean indicates whether the result should be very nice

NiceTreeDecomposition<T> ntd = new NiceTreeDecomposition<>(td, true);

// obtain the nice tree decomposition as tree decomposition

td = ntd.getProcessedTreeDecomposition()

121

The Dynamic Programming interface is the last part of the pipeline. It allows the spec-

ification of tree automata that are executed on a computed tree decomposition. For

instance, the user may define a program that checks whetherG can be properly col-

ored with three colors. This is the most involved abstraction, as it has to, on the one

hand, guarantee that Jdrasil can efficiently run the defined dynamic program, but

should on the other hand neither be difficult to program nor restrictive to the user.

The interface is closely linked to our point of view of tree automata, as explained in

Section 8.2. Themanual of Jdrasil contains a detailed example of how to implement

a graph coloring solver using the interface [15], which is essentially the tree automa-

ton that we have encountered in Example 137. A corresponding implementation is

publicly available [11] and was experimentally evaluated in [13].

The attentive reader may have observed that the previous graphic of the pipeline

must have simplified the information flow within the library. In reality, it is not

quite as simple as in the graphic, since information has to flow backwards. For in-

stance, after the solver has computed tree decompositions for the atoms, the split-

ter has to glue them all together to obtain an actual tree decomposition for the input

graph. Similarly, the preprocessor has to enrich a tree decomposition of G ′ to one

ofG. Therefore, the “real” information flow looks as follows:

Preprocessor Splitter Solver Postprocessor DPG ϕ(G)

(T , ι)

G′ G′′
1 , . . . ,G′′

q (
∼
T ,

∼
ι)

(T ′′
i , ι′′i)(T ′ , ι′)

(T , ι)

Jdrasil is modular in the sense that there are multiple implementations for every

step of the pipeline. These implementations can be swapped arbitrarily due to the

strict interfaces described above. This allows rapid development and testing of new

algorithms. For instance, a user can implement a new solver using the interface of

Jdrasil and plug it directly into the pipeline, without caring about pre- or postpro-

cessing at all. This architecture has allowed me to add new algorithms quickly to

the library. A notable example is the algorithm by Tamaki that he has developed for

PACE 2016 [156] and improved for PACE 2017 [158]. Wewill discuss a game theoretic

characterization of the algorithm, due to Berndt andmyself [14], in Section 10.4.

122

10.3 A SAT-Based Exact-Solver

A common (theoretical and practical) approach to solve intractable problems is to

reduce them to the Boolean satisfiability problem. The formulation we will use is

based on the work of Berg and Järvisalo [26], which in turn is an improved version

of a formulation of Samer and Veith [149].

The Concept of Elimination Orders. Encoding treewidth directly into a propositional

formula is a rather tough task. Fortunately, there is an alternative representation

for treewidth that is ideally suited for a sat-encoding. An elimination order π of a

graphG = (V ,E) is a bijection π : V → {1, 2, . . . , |V |}. The filled graphGπ = (V ,Eπ)

of the elimination orderπ is a directed graphwith edgesEπ that are constructed via

the following process:

• The first edge set E0π simply equals E, where the edges are directed from the

“lower” vertex (according to π) to the “higher” vertex:

E0π = { (u, v) | π(u) < π(v)∧ {u, v} ∈ E }.

• The next edge set Ei+1
π is generated by connecting all vertices u and v with

π(u) > i and π(v) > i if both, u and v, are connected with the vertex π−1(i),

that is, Eiπ results from Ei−1
π by adding the following edges to it:

{ (u, v) | π(v) > π(u) > i∧ (π−1(i),u) ∈ Ei−1
π ∧ (π−1(i), v) ∈ Ei−1

π }.

Finally, Eπ is equal to E
|V |
π . The following figure shows an example of a graph G

and the corresponding filled graph Gπ for π = (2, 3, 1, 4, 5, 6, 7, 8). Here, the solid

edges represent the edges of the original graph,while the dashed edges are the edges

created by eliminating vertex 2.

1

2

3

4 5 6

7 8 2 3 1 4 5 6 7 8

The width of an elimination order π is the largest number of direct successors of a

vertex inGπ, that is, width(π) = maxi{ |{(ui, v) ∈ Eπ}| }. The width of the example

is 3, as there exist three outgoing arcs from vertex 2 and 5. The following fact allows

us to characterize the treewidth of a graph via an elimination order.

I Fact 143 (for instance [42])

tw(G) = minπ{width(π)}. C

123

The Encoding of Berg and Järvisalo. If G = (V ,E) is a graph on n vertices, our sat-

formula contains n(n − 1)/2 variables ordi,j for each i ∈ {1, . . . ,n} and each j > i,

indicating that the vertex vi appears before vj in the elimination order. To simplify

notation, let us define ord∗i,j to be either ordi,j if i < j or ¬ordj,i if j < i. To ensure

that these variables encode a linear order of the vertices, it is sufficient to enforce

the transitivity: For all distinct i, j,k ∈ {1, . . . ,n}, we need to ensure that if ord∗i,j
and ord∗j,k are true, then ord∗i,k is also true.

To encode the directed edges of the filled graphGπ, another n
2 variables arci,j are

introduced. As all original edges ofG are present inGπ, for each {vi, vj} ∈ E, either
arci,j or arcj,i has to be set. To be consistent with the ordering implied by ordi,j, we

need to enforce that ord∗i,j implies that arcj,i is not set.

Finally, let us describe the elimination process and consider i, j,k with π(i) < π(j)

and π(i) < π(k). Assume that vi and vk as well as vi and vj are adjacent, respec-

tively. Then the filled graph Gπ contains either the arc (vj, vk) or the arc (vk, vj).

Hence, if arci,j and arci,k are set and ord∗j,k is also set, then we need to set arcj,k as

well. The following table summarizes all parts of the formula:

∀i, j,k ∈ {1, . . . ,n} sat-formulation

i 6= j, i 6= k, j 6= k ord∗i,j ∧ ord∗j,k → ord∗i,k
{vi, vj} ∈ E arci,j ∨ arcj,i

i 6= j ord∗i,j → ¬arcj,i
i 6= j, i 6= k, j 6= k ord∗j,k ∧ arci,j ∧ arci,k → arcj,k

Parameterized Cardinality Constraints. To ensure that the width of the produced elim-

ination does not exceed a value t ∈ N, we also need tomake sure that for each vi, at

most t edges (vi, vj) exist inGπ. For afixed twedefine the formulaϕ(G, t) as above

and add the constraints
∑n

j=1 arci,j 6 t for every i. Such constraints are called

cardinality constraints and are usually implemented using a sorting network. Stan-

dard implementations, for instance using Batcher’s odd-evenmergesort, introduce

O(n log2 n) auxiliary variables. In Jdrasil we use parameterized cardinality constraints

of size O(t · n) whenever t is small enough. They are based on classical sequen-

tial counters. An overview of different encodings for cardinality constraints can be

found in the following survey papers [10, 92].

In order to determine tw(G), the above encoding would be used for t = n,n− 1, . . .

until the system does not have any solution. We make use of the iterative abilities

of modern sat-solvers that allows to add clauses to an already solved formula. This

technique was also recommended by Berg and Järvisalo [26]. The solver starts by

solving the formula ϕ(G,n). After the sat-solver has solved a formula ϕ(G, t) for

some 1 6 t 6 n, it adds the constraints
∑n

j=1 arci,j 6 t−1 for every i, obtaining the

formula ϕ(G, t − 1). The solver then tries to solve this new formula and it repeats

the whole procedure until it reaches a t for whichϕ(G, t) is not satisfiable.

124

∀i, j ∈ {1, . . . ,n} sat-formulation

vi ∈ V \ C, vj ∈ C ord∗i,j
vi, vj ∈ C, i < j ord∗i,j

Adding the Clique Trick. We extend the en-

coding of Berg and Järvisalo by a trick that

was observed in the context of exact algo-

rithms for treewidth [36]: From the defi-

nition of partial k-trees (an equivalent formalism for treewidth), it follows that if

C ⊆ V is a clique inG, then there is an optimal elimination order forG that elimi-

natesC at the very end. Therefore, if we know some cliqueC inGwe can hard-wire

the ord∗j,k for it. The new parts that we add to the formula are shown in the table.

This technique is the better the larger the clique is. Of course, in general it is in-

tractable to find a large clique. In our implementation we use the sat-solver for this

task aswell, but give it only a limited amount of time. In case the solver does not find

a clique, we run a simple heuristic to find at least some clique. I noticed, however,

that this event happens rarely as the sat-solver works well to find cliques on graphs

of small treewidth – which is not surprising, as themaximum size of a clique inG is

bounded by the treewidth ofG.

Adding the clique trick can be seen as adding domain specific knowledge to the for-

mula. I suspect that it implies a strong form of symmetry breaking, as the perfor-

mance boost obtained by the trick is astonishing. For instance, theMcGee graph (the

smallest cubic graph of girth 7) is the highly symmetric graph visualized in themar-

gin. It has only 24 vertices and 36 edges, but a corresponding sat-formula without

the clique trick could not be solved in over 5 hours. In contrast, the formulawith the

clique trick can be solved in less than 5 minutes – and that despite the fact that the

largest clique has just size 2 (it is highlighted in the figure). A similar positive effect

was later observed when an updated version of the clique trick was used for a novel

sat-encoding for fractional hypertreewidth [81].

Adding the Twin Trick. Another trick that wemay add is the twin trick, which is based

on the following observation: Assume v,w ∈ V are twins (that is, N(v) = N(w))

and assume π is an optimal elimination order in which v is eliminated before w;

then the permutation π ′ that is created from π by swapping v andw is optimal as

well. This claim is implied by the following observation: Whenever one of the twins

will be eliminated, the other one becomes simplicial (its neighborhood is a clique),

and it is well known that such a vertex can safely be eliminated at any time [99].

∀i, j ∈ {1, . . . ,n}, ∀` ∈ {1, . . . ,q} sat-formulation

vi, vj ∈ P` \ C, i < j ord∗i,j

The twin-relation is in fact

an equivalence relation on V ,

and we may safely fix any or-

der on the vertices in every equivalence class. We only have to be cautious whenever

we use this trick in combination with the clique trick: If a twin is part of the clique,

it must be ordered behind the other twins within the same equivalence class – oth-

erwise we would encode a contradiction. Formally, we add the parts shown in the

table to our encoding, where P1, . . . ,Pq are the non-trivial twin-classes of G (that

means |Pi| > 1) andC ⊆ V is the clique used for the clique trick.

125

The combination of preprocessing and splitting followed by a sat-based approach

works surprisingly well in practice. Sebastian Berndt, Thorsten Ehlers, and myself

participated with it in the PACE 2016 challenge, the results can be found in [63] and

a follow-up analysis was done in [16]. The implementation was also used in a lo-

cal improvement solver by Fichte, Lodha, and Szeider, where it outperformed other

approaches [83]. The same group later extended the approach to other parameters

such as treedepth and fractional hypertreewidth [81, 96].

10.4 Exact Solving via Positive Instance Driven

Dynamic Programming

In this section we will study an exact algorithm for treewidth based on a novel al-

gorithmic technique called positive instance driven dynamic programming. This tech-

nique was invented by Hisao Tamaki for his submission to the first Parameterized

Algorithms and Computational Experiments Challenge (PACE 2016) [156]. In the second

iteration of the challenge (PACE 2017) all submissions – including another one by

Tamaki [157, 158], the winning submission by Larisch and Salfelder [128], as well as

my own submission [14, 15] – were based on positive instance driven dynamic pro-

gramming. In fact, the currently best way of computing optimal tree decomposi-

tions in practice is using this technique, and it seems that it is inherently better than

other classical dynamic programs for treewidth [158, 159].

In this section I will present an algorithm due to Sebastian Berndt and myself that

is directly based on Tamaki’s first algorithm [156] and that applies positive instance

driven dynamic programming to solve a general version of graph searching [14, 86].

Since graph searching is deeply linked to various graph decompositions, we will not

only obtain an algorithm for treewidth, but also for other graph parameters such as

pathwidth and treedepth.

What is positive instance driven dynamic programming? This technique describes an ex-

ecution mode for a classical dynamic program. Before we go into the details of the

definition, let us stipulate what wemean by a “classical dynamic program.” Assume

we wish to solve some decision problem, a classical dynamic program is a recursive

procedure that solves the problem (it returns either true or false) together with a

memoization table. Such a program explores its configuration graph (also called the

memoization graph), which is the acyclic graph that contains all possible configura-

tions as vertex set and which has directed edges according to the recursive calls of

the procedure. This graph has a unique start configuration and its sinks correspond to

the configurations atwhich the recursion stops. These sinks are partitioned intowin

configurations and lose configurations (depending on whether the recursive procedure

returns true or false, respectively). The dynamic program labels each non-sink

vertex v of the configuration graphwith either true or false using a Boolean com-

bination of the truth values of the children of v. All vertices that are labeled with

126

true constitute the winning region (the positive instances), and the decision problem

reduces to the question whether or not the start configuration is part of this region.

It is a bit tricky to work directly with the configuration graph, as it does not encode

any information about the Boolean combination used to label its vertices. There-

fore, we will only consider dynamic programs that use Boolean combinations of the

following form: LetH = (V ,E) be the configuration graph of the program and let

λ : V → {true, false} be the labeling computed by it, then for all non-sink vertices

v there is a (potentially empty) set I ⊆ N(v) such that:

λ(v) =
∧
w∈I

λ(w) ∨
∨

w∈N(v)\I

λ(w).

If we consider dynamic programs with this property, then we can encode the way

λ is computed by coloring the edges of the configuration graph. An edge-alternating

graph is a tripleH = (V ,E,A) consisting of a vertex set V , an existential edge rela-

tion E ⊆ V ×V , and a universal edge relationA ⊆ V ×V . We define the neighbor-

hood of a vertex v as N∃(v) = {w | (v,w) ∈ E }, N∀(v) = {w | (v,w) ∈ A },

and N(v) = N∃(v) ∪ N∀(v). An edge-alternating s-t-path is a set P ⊆ V such

that (i) s, t ∈ P and (ii) for all v ∈ P with v 6= t we have either N∃(v) ∩ P 6= ∅
or ∅ 6= N∀(v) ⊆ P or both. We write s ≺ t if such a path exists and define

B(Q) = { v | v ∈ Q or there is aw ∈ Qwith v ≺ w } for Q ⊆ V as the set of

vertices on edge-alternating paths leading to Q. Observe that the winning region

is exactly B(Q) if Q is the set of win configurations. Further, observe that edge-

alternating graphs are a generalization of alternating graphs (we studied them in

Section 4.2), in which we have for all vertices v either N∃(v) = ∅ or N∀(v) = ∅.
Example 144 on the next page illustrates the concept with a simple two-player game.

As the name suggests, a positive instance driven dynamic program is a procedure that

mimics a classical dynamic program, but that computes only the winning region

(the positive instances) without ever “touching” the rest of the configuration graph.

. . .

. .
.

..
.

..
.

...

...

s
t

n2n

B({t})

It is not clear at all whether such

a procedure exists for a given clas-

sical dynamic program. If it ex-

ists, however, it will usually require

much more time to explore a new

configuration than the classical dy-

namic program would require (be-

cause it has to explore the configura-

tion graph in a reversed direction).

The hope is, of course, that the win-

ning region ismuch smaller than the

whole configuration graph. It is easy to see that, in principle, the winning region

can be exponentially smaller than the configuration graph – consider for instance

127

a configuration graph that is a spider with 2n legs of size n, in which only one win

configuration exists at the end of a leg (as shown in the figure). How big the differ-

ence between the size of the winning region and the size of the configuration graph

is in reality, depends highly on the dynamic program and the given input.

I Example 144

Consider the following 2-color-construction game played by Alice and Bob: The in-

put is a two-colorable graphG = (V ,E), andAlice begins. In each turn, a playermay

color an uncolored vertex with one of two colors, as long as the induced coloring is

still proper (that is, adjacent vertices have different colors). Alice wins if all vertices

of the graph are colored (which implies a proper coloring), otherwise Bob wins. The

configuration graph of a simple algorithm, which tries all possible moves, is shown

below for the input graphG = . Existential edges are black and universal edges

are blue. Thewinning region (the positive instances) is highlighted, and the twowin

configurations are the configurations in the dashed box.

s

C

Computing Tree Decompositions via Graph Searching. If wewish to use positive instance

driven dynamic programming to compute optimal tree decompositions, we first re-

quire a classical dynamic program for that task. In order to formulate such a dy-

namic program, we use an equivalent characterization of treewidth in the form of a

vertexpursuit-evasiongame. We study classical graph searching in ageneral setting

proposed by Fomin, Fraigniaud, and Nisse [86]. The input is an undirected graph

G = (V ,E) and a number k ∈ N, and the question is whether a team of k searchers

can catch an invisible fugitive on G by the following set of rules: At the beginning,

the fugitive is placed at a vertex of her choice and at any time, she knows the posi-

tion of the searchers. In every turn she may move with unlimited speed along edges

of the graph, but may never cross a vertex occupied by a searcher. This implies that

128

the fugitive does not occupy a single vertex but rather a subgraph, which is sepa-

rated from the rest of the graph by the searchers. The vertices of this subgraph are

called contaminated, and at the start of the game all vertices are contaminated. The

searchers, trying to catch the fugitive, can perform one of the following operations

during their turn:

1. place a searcher on a contaminated vertex;

2. remove a searcher from a vertex;

3. reveal the current position of the fugitive.

Whena searcher is placedona contaminated vertex, the vertexbecomes clean. When

a searcher is removed from a vertex v, the vertexmay become recontaminated if there

is a contaminated vertex adjacent to v. The searchers win the game if they man-

age to clean all vertices, that is, if they catch the fugitive; the fugitive wins if, at any

point, a recontamination occurs, or if she can escape infinitely long. Note that this

implies that the searchers have to catch the fugitive in a monotone way. A priori one

could assume that the later condition gives the fugitive an advantage (recontamina-

tion could be necessary for the cleaning strategy), however, a crucial result in graph

searching is that “recontamination does not help” in all variants of the game that we

consider [28, 98, 127, 131, 152].

The search number s(G) of a graphG = (V ,E) is the minimum number of searchers

required to ensure that the searchers can catch the fugitive. It is well known that

this number is directly linked to the treewidth ofG, and that this connection is con-

structive in the sense that a winning strategy of the searchers can be turned into a

tree decomposition and vice versa.

I Fact 145 (Originally [152], for the version presented here see also [86] and [14].)

For every graphG = (V ,E) it holds that s(G) = tw(G) + 1. C

Equipped with the link between treewidth and graph searching, our task of provid-

ing a dynamic program for treewidth has reduced to the task of providing a dynamic

program that determines whether k searchers have a winning strategy.

We simplify the game tomake it more accessible for an algorithmic approach. First

of all, we restrict the fugitive in the following sense: Since she is invisible to the

searchers and travels with unlimited speed, there is no need for her to take regular

actions. Instead, the only moment when she is actually active is when the searchers

perform a reveal. IfC is the set of contaminated vertices, consisting of the induced

components C1, . . . ,C`, a reveal will uncover the component in which the fugitive

hides and, as a result, reduceC toCi for some 1 6 i 6 `. The only task of the fugitive
is, thus, to answer a reveal with such a number i. We call the whole process of the

searchers performing a reveal, the fugitive answering it, and finally of reducing C

toCi a reveal-move.

129

We will also restrict the possible moves of the searchers by the concept of implicit

searcher removal. Let S ⊆ V(G) be the vertices currently occupied by the searchers,

and letC ⊆ V(G) be the set of contaminated vertices. We call a vertex v ∈ S covered
if every path between v andC contains a vertexw ∈ Swithw 6= v.

I Lemma 146

A covered searcher can be removed safely.

Proof. Aswe haveN(v)∩C = ∅, the removal of vwill not increase the contaminated

area. Furthermore, at no later point of the game v can be recontaminated, unless a

neighbor of v gets recontaminated as well (in which case the gamewould already be

lost for the searchers).

I Lemma 147

Only covered searchers can be removed safely.

Proof. Since for any other vertexw ∈ S we haveN(w) ∩ C 6= ∅, the removal ofw

would recontaminatew and, hence, would result in a defeat of the searchers.

Both lemmas together imply that the searchers never have to decide to remove a

searcher, but rather can do it implicitly. We thus restrict the possible moves of the

searchers to a combined move of placing a searcher and immediately removing all

searchers on covered vertices. We call this a fly-move. Observe that the sequence of

original moves mimicked by a fly-move does not contain a reveal and, thus, may be

performed independently of any action of the fugitive. We are now ready to describe

the configurations of the game, which we do in the form of k-blocks:

I Definition 148

A k-block, or simply a block, of a graph G = (V ,E) is a tuple (S,C) with S,C ⊆ V

such that:

1. S ∩ C = ∅;

2. N(C) ⊆ S;

3. |S| 6 k. C

130

Ablock (S,C) encodes the position of the searchers (the setS) and the contaminated

area (the set C). Observe that in any block (S,C) the set S separates C from the

rest of G. We can explore all blocks, and thus all configurations of the game, with

the following “Robertson–Seymour fashioned” dynamic program1 in order to deter-

minewhether k searcher have awinning strategy. It is assumed that an input graph

G = (V ,E) and a target number k ∈ N is globally available inmemory, and that the

procedure is started with the block (∅,V) and executed using memoization.

procedure divideAndCatch(S,C)

// recursion stops

if |S| > k then // we need too many searchers −> lose configuration

return false

end

if C = ∅ then // the searchers cleaned the graph −> win configuration

return true

end

// implicit searcher removal

for v ∈ S do

if NG(v)∩C = ∅ then

return divideAndCatch(S \ {v},C)
end

end

// reveal−move
C1, . . . ,C`← connectedComponents(G[C])
if ` > 1 then

return
∧`

i=1 divideAndCatch(S,Ci)
end

// fly−move
return

∨
v∈C divideAndCatch(S∪ {v},C \ {v})

end

Note that, in the case of the procedure returning true, it is easy to obtain a winning

strategyusingbacktracking. In fact, this strategy is awidthk−1 treedecomposition.

Looking at the program a little closer, it is obvious that the only interesting config-

urations of the program are the blocks with S = N(C). We call such objects full

blocks. We can rewrite the algorithm such that it works only with full blocks, which

will make it easier to analyze its configuration graph.

1Robertson and Seymour have established an fpt-approximation algorithm for treewidth that es-

sentially is the presented algorithm, but that adds balanced separators to S instead of “brute-forcing”

a fly-move [145]. The algorithm as presented here is leaned to the description of Reed [142], details can

be found in the standard textbooks [59, 85].

131

procedure divideAndCatchFull(C)

// recursion stops

if C = ∅ then // the searchers cleaned the graph −> win configuration

return true

end

// reveal−move
C1, . . . ,C`← connectedComponents(G[C])
if ` > 1 then

return
∧`

i=1 divideAndCatchFull(Ci)
end

// not enough searcher to perform a fly−move
if |NG(C)| = k then

return false

end

// fly−move
return

∨
v∈C divideAndCatchFull(C \ {v})

end

This is exactly the dynamic program to which we will apply the positive instance

driven dynamic programming technique. To that end, let us define the configura-

tion graph of the algorithm: For an input graphG = (V ,E) and a number k ∈ N, it
is the edge-alternating graphH = (V(H),EH,AH)with:

V(H) = {C | C ⊆ V(G) and |NG(C)| 6 k },

EH = { (C,C ′) | C \ {v} = C ′ for some v ∈ C and |NG(C)| < k },

AH = { (C,C ′) | C ′ is a connected component ofG[C] }.

Observe that the set Q of win configurations of the graph is exactly the set { {v} |

v ∈ V(G) and |NG({v})| < k }, as these are the positions in which the searchers can

catch the fugitive after they have cleaned everything else. The winning region is,

thus, B(Q) and our aim is to develop an algorithm that computes this region. Our

algorithm traverses H “backwards” by starting at the set Q of winning configura-

tions and by uncovering B(Q) layer by layer. In order to achieve this, we need to

compute the predecessors of a configuration C. This is easy if C was reached by a

fly-move, as we can simply enumerate the at most k possible predecessors (the last

searcher that was placed is inN(C), therefore the predecessors ofC are exactly the

configurationsC ′ = C ∪ {v}with v ∈ N(C) and |N(C ′)| < k)2. Reversing a reveal-

move, that is, finding the universal predecessors, is significantly more involved. A

simple approach is to test for every subset of already explored configurations if we

can “glue” them together – but this would result in a run time of the form 2|V(H)|.

2Actually, there is a special case ifC contains a vertex that is isolated inG[C]. Fortunately, this case

is covered by the reverse reveal-moves that we describe next.

132

Fortunately, we can avoid this exponential blow-up as H has the following useful

property:

I Definition 149 (Universal Consistent)

We say that an edge-alternating graphH = (V ,E,A) is universal consistent with re-

spect to a setQ ⊆ V if for all v ∈ V \Q with v ∈ B(Q) andN∀(v) = {w1, . . . ,wr}

we have (i)N∀(v) ⊆ B(Q) and (ii) for every I ⊆ {w1, . . . ,wr}with |I| > 2 there is a

vertex v ′ ∈ V withN∀(v
′) = I and v ′ ∈ B(Q). C

Intuitively, this definition implies that for every vertex with high universal-degree

there is a set of vertices that we can arrange in a tree-like fashion to realize the same

adjacency relation. This allowsus to glue only two configurations at a timeand, thus,

removes the exponential dependency.

I Example 150

Consider the following three edge-alternating graphs, where black edges are exis-

tential and the blue edges are universal. The set Q contains a single vertex that is

highlighted. From left to right: the first graph is universal consistent; the second

and third one are not. The second graph conflicts the condition that v ∈ B(Q) im-

pliesN∀(v) ⊆ B(Q), as the vertex on the very left is contained inB(Q) by the top

path, while its universal neighbor on the bottom path is not contained inB(Q). The

third graph conflicts the condition that N∀(v) = {w1, . . . ,wr} implies that for ev-

ery I ⊆ {w1, . . . ,wr} with |I| > 2 there is a vertex v ′ ∈ V with N∀(v
′) = I and

v ′ ∈ B(Q) as witnessed by the vertex with three outgoing universal edges.

C

I Lemma 151

For every graphG = (V ,E) and number k ∈ N, the edge-alternating configuration
graphH of the algorithm divideAndCatchFull(V) is universal consistent.

Proof. For the first property observe that “reveals do not harm”: Searchers that can

catch the fugitivewithout knowingwhere she hides, certainly cando so if they know.

For the second property consider any configuration C ∈ V(H) that has universal

edges to C1, . . . ,C`. By definition we have |NG(C)| 6 k and NG(Ci) ⊆ NG(C)

for all 1 6 i 6 `. Therefore we have for every I ⊆ {1, . . . , `} and C ′ = ∪i∈ICi that

NG(C ′) ⊆ NG(C) and |NG(C ′)| 6 k and, thus,C ′ ∈ V(H).

133

We are now ready to formulate the algorithm for computing the winning region.

In essence, the algorithm runs in two phases: First it computes the set Q of win-

ning configurations; second the winning regionB(Q) is computed by the sketched

reversed moves.

1 procedure catchAndGlue(G,k)

2 K← ∅
3 initialize empty queue

4

5 // Phase I: compute Q

6 for v ∈ V(G) do

7 offer({v},k− 1)
8 end

9

10 // Phase II: compute B(Q)
11 while queue not empty do

12 extract C from queue

13

14 // reverse fly−moves
15 for v ∈NG(C) do

16 offer(C∪ {v},k− 1)
17 end

18

19 // reverse reveal−moves
20 for C ′ ∈ K do

21 if not intersect(C,C ′) then

22 offer(C∪C ′,k)
23 end

24 end

25

26 end

27

28 // done, we now have K = B(Q)
29 return K

30

31 end

procedure offer(C, t)

if C 6∈ K and |NG(C)| 6 t then

add C to K

insert C into queue

end

end

procedure intersect(C,C ′)
if C∩C ′ 6= ∅ then

return false

end

if NG(C)∩C ′ 6= ∅ then

return false

end

if C∩NG(C ′) 6= ∅ then

return false

end

return true

end

I Theorem 152

The algorithm catchAndGlue(G,k) finishes in at most O
(
|B(Q)|2 · |V |2

)
steps and

correctly outputsB(Q).

Proof. The algorithm is supposed to computeQ in phase I and the rest of B(Q) in

phase II. Observe thatQ is correctly computed in phase I by the definition ofQ.

To show the correctness of the secondphaseweargue that the computed setK equals

B(Q). Observe that K is exactly the set of vertices inserted into the queue. We first

show K ⊆ B(Q) by induction over the ith inserted vertex. The first vertex C1 is

in B(Q) as C1 ∈ Q. Now consider Ci. As Ci ∈ K, it was either added in Line 16

or Line 22. In the first case there was a vertex C ′i ∈ K such that Ci = C ′i ∪ {v}

for some v ∈ NG(C ′i). By the induction hypothesis we have C ′i ∈ B(Q) and by

the definition of the configuration graph we have (Ci,C
′
i) ∈ EH and, therefore,

we also have that Ci ∈ B(Q). In the second case there were vertices C ′i and C
′′
i

134

with C ′i,C
′′
i ∈ K and Ci = C ′i ∪ C ′′i . By the induction hypothesis we have again

C ′i,C
′′
i ∈ B(Q). Let t1, . . . , t` be the connected components ofC ′i andC

′′
i . SinceH

is universal consistent with respect toQ by Lemma 151, we have t1, . . . , t` ∈ B(Q).

By the definition ofHwe haveN∀(Ci) = t1, . . . , t` and, thus,Ci ∈ B(Q).

To see B(Q) ⊆ K consider for a contradiction the vertices of B(Q) in reversed

topological order (recall that H is acyclic) and let C be the first vertex in this or-

der with C ∈ B(Q) and C 6∈ K. If C ∈ Q we have C ∈ K by phase I and are

done, so assume otherwise. Since C ∈ B(Q) we have either N∃(C) ∩ B(Q) 6= ∅
or ∅ 6= N∀(C) ⊆ B(Q). In the first case there is a C ′ ∈ B(Q) with (C,C ′) ∈ EH.
Therefore, C ′ precedes C in the reversed topological order and, by the choice of C,

we have C ′ ∈ K. Therefore, at some point of the algorithm C ′ gets extracted from

the queue and, in Line 16, would addC to K, a contradiction.

In the second case, the configuration graph contains vertices t1, . . . , t` such that

N∀(C) = {t1, . . . , t`} and t1, . . . , t` ∈ B(Q). By the choice of C, we have again

t1, . . . , t` ∈ K. SinceH is universal consistent with respect toQ, we have for every

I ⊆ {1, . . . , `} that
⋃

i∈I ti is contained in B(Q). In particular, the vertices t1 ∪ t2,
t3 ∪ t4, . . . , t`−1 ∪ t` are contained in B(Q), and these elements are added to K

whenever the ti are processed (for simplicity assume here that ` is a power of 2).

Once these elements are processed, Line 22will also add their union, that is, vertices

of the form (t1 ∪ t2)∪ (t3 ∪ t4). In this way, the process will add vertices that corre-

spond to increasing subgraphs ofG toK, resultingultimately in adding
⋃`

i=1 ti = C

to K, which is the contradiction we have been looking for.

Theorem 152 provides us with an efficient algorithm for computing the winning re-

gion of the search game. Since the question whether the input graph has treewidth

at most k− 1 can be answered by a simple lookup that checks whether the start con-

figurationV(G) is contained in this region, we can answer this question in the same

time. In fact, we can compute a corresponding winning strategy – and thus a tree

decomposition – on the fly, by trackingwhich operation offerswhich configurations

toK. Another strength of Theorem 152 is that it can easily be adapted to other graph

parameters as graph searching is very general: If we forbid reveals, the search num-

ber equals pw(G) + 1; if we forbid to remove placed searchers, the search number

equals td(G). In fact, it can be shown that we can compute the corresponding de-

compositions within the same time bound by a small modification of the algorithm

used for Theorem 152 [14]. However, for this section we are content with the com-

putation of optimal tree decompositions.

In the rest of this section, we will apply algorithmic engineering in order to speed

up the algorithm in practice (without improving its theoretical run time). Themain

idea of all of the following improvements is that we do not need to knowB(Q) com-

pletely, as we only want to know whether the start configuration is contained in it.

135

The Priority Heuristic. The first observation we use is that the start configuration

V(G) is the largest block. Thus, we wish to generate large configurations quickly.

We can prioritize such configurations by changing the queue to a priority queue in

which the priority of a block (N(C),C) is the cardinality of C. In this way, the al-

gorithmwill extend larger blocks first and, thus, hopefully finds the start configura-

tion faster. Despite its simplicity, this heuristic has an enormous effect in practice.

For instance, theMcGee Graphmentioned in the previous section is a hard instance

for the algorithm presented in this section as well (there are many configurations

to glue, as the graph is very symmetric) – the plain algorithm is not able to solve it

within 10minutes, while using the priority heuristic it is solved in less than a second.

The Fast-Contamination Heuristic. Another trick that we can apply is to contaminate

vertices instantaneously whenever this is safe. Contaminating a vertex means in-

creasing a currently handled full block (N(C),C) by taking a vertex v ∈ N(C) and

moving it toC. This operation is performed by the reverse fly-move, wherewe try all

possible choices of v. However, this operation is safe ifN(C ∪ {v}) ⊆ N(C), that is,

if we do not require any additional searchers for the new block. Therefore, if we find

such a vertex we can directly contaminate it, and the fast-contamination heuristic

does exactly this: Whenever we explore a new full block, we greedily contaminate all

vertices that can be contaminated safely.

Additionally, wemay always contaminate the remaining graph if it is smaller thank,

that is, if we handle a full block (N(C),C)with |V \C| < k, thenwe can contaminate

the whole graph at once. In this scenario, the start configuration of the searchers

would be V \ C, from where they then would move toN(C).

0

1

2 3

4

5

6 7

8

9

The Fast-Glue Heuristic. Star-like graphs are worst-case instances for the presented

algorithm. Consider for instance the star shown in the margin and observe that for

the optimal search number k = 2, the set Q of win configurations is exactly the

set of leaves, that is,Q = { {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9} }. Observe that for none

of these configurations a reverse fly-move is possible, as the neighborhood of any

set containing the vertex 0 is too large. Therefore, the algorithm can only generate

larger configurations by gluing the small configurations together, and it will there-

fore first generate all pairs, then all 3-tuples, then all 4-tuples, and so on. With other

words, for such instances B(Q) is of exponential size and the algorithm will fully

listB(Q) before it finds the start configuration.

Toovercome this issue, the fast-glueheuristic keepsgluinga full block as longaspos-

sible, before it handles the next block. This can be achieved by replacing Lines 20–24

in the main algorithm with the code snippet on the next page.

136

init empty stack

puch C

while stack is not empty do

pop C ′ from stack

for C ′′ ∈ K do

if not intersect(C ′, C ′′) then

offer(C ′ ∪C ′′, k)

push C ′ ∪C ′′ to stack

end

end

end

Considering the star example again, the heuristicwill glue thefirst handledwin con-

figuration, say {1}, together to {1, 2, 3, 4, 5, 6, 7, 8, 9} before extracting any other block

from the queue. If we use the heuristic in combination with the fast-contamination

heuristic, this blockwill be extended to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}and thealgorithmfinds

a solution without extracting any other block from the queue.

Discarding Configurations via Pruning. While we are exploring the winning region

B(Q) we may encounter configurations that are not necessary for an optimal tree

decomposition, aswemayalreadyhave encountereda “better” configuration. In this

scenario, we can safely discard this configuration by not adding it to B(Q) and by

not offering it to the queue –which in returnwill increase the speedof the algorithm.

Assume we encounter a block (N(C),C) for the first time, and assume that we have

already found a block (N(C ′),C ′)withC ⊆ C ′ andN(C ′) ⊆ N(C). We can safely

discard (N(C),C), as any strategy of the searchers that use this block (the searcher

visitN(C) to cleanC) can instead use (N(C ′),C ′), as this requires fewer searchers

at the same spot while cleaning a larger part of the graph (C ′ rather thanC).

The Potential-Maximal-Clique-Heuristic. The last heuristic is based on more involved

graph theoretic concepts concerning tree decompositions. A potential maximal clique

of a graphG = (V ,E) is a set of verticesΩ ⊆ V that is a clique in someminimal tri-

angulation ofG. Bouchitté and Todinca have proven the following more accessible

local characterizationof potentialmaximal cliques [44], which allowsus to efficiently

test whether a given set of vertices is a potential maximal clique:

I Fact 153 ([44])

LetG = (V ,E) be a graph andΩ ⊆ V , thenΩ is a potential maximal clique if and

only if:

1. G[V \Ω] has no full component associated withΩ;

2. for allu, v ∈ Ωwe have either {u, v} ∈ E or there is at least one componentC

associated withΩ such that u, v ∈ N(C). C

137

One can show that, if k searchers have a winning strategy onG, then they have also

a winning strategy with the following more restricted set of rules: Whenever the

searchers place new searchers onG, the set S of searchers has to be a potential max-

imal clique; andwhenever the searchers remove some searchers from the graph, the

setSmust be aminimal separator [88] (see also Section 5.4 in [87]). Of course, in this

variant the searchers have to place and remove several searchers at once.

Observe that for a set Ω that has no associated full component and that is no po-

tential maximal clique, no supersetΩ ′ ⊇ Ω can be a potential maximal clique. Fur-

thermore, observe that the lastmove of the searchers (themove inwhich the fugitive

is caught) is a place move on a vertex v and, thus,N[v]must be a potential maximal

clique. Therefore, we may discard blocks (N({v}, {v}) in Line 7 wheneverN[v] is not

a potential maximal clique.

We can naturally follow this path further and try to reconstruct only such winning

strategies in which the searchers always stand on minimal separators or on poten-

tial maximal cliques. However, this is highly non-trivial from a positive instance

driven point of view, as it is only easy to find minimal separators given a potential

maximal clique that contain them; but it is hard to find a potential maximal clique

that contains a given minimal separator. Tamaki has proven new structural prop-

erties of potential maximal cliques in order to present a positive instance driven al-

gorithm based on such a strategy [158]. He participated with this algorithm at the

PACE 17 [64, 157]. An optimized implementation of this algorithm can be found in

Jdrasil as well, but for this section we leave it at the heuristic that prunes win con-

figurations that are no potential maximal cliques.

138

10.5 Parallelization Through Splitting

In our architecture for computing a tree decomposition, the splitter is the second el-

ement in the pipeline. Its task is to split an input graph G into many small graphs

G1, . . . ,Gq, to which we refer to as atoms. While doing so, the splitter must guar-

antee that it can glue tree decompositions of theGi into a tree decomposition ofG.

Furthermore, itmust ensure that this tree decomposition is optimal in the event that

the tree decompositions for theGi are optimal.

G

S

G1 G2
. . . Gq

S ′ S ′′

A1 A2 A3 A4 A5 A`

The cornerstone to the concept of the splitter is the notation of safe separators due

to Bodlaender and Koster [41]. For a graph G = (V ,E), a set S ⊆ V is called a safe

separator if (i) S is a separator (that is, G[V \ S] has more components than G[V])

and (ii) completing S into a clique does not increase the treewidth of G. Such safe

separators are useful by the simple observation that any tree decomposition (T , ι)

of G must contain for every clique C ⊆ V a bag b with C ⊆ ι(b), which leads to

the following recursive scheme illustrated at themargin: On input of a graphG, the

splitter finds a safe separator S; separatesG on it; adds S as clique to each resulting

component and obtains new graphs G1, . . . ,Gq; it then recurses on these graphs

to obtain tree decompositions for all of them. These decompositions can be glued

together to a tree decomposition ofG by adding a new bag b with ι(b) = S, which

is linked to one bag containing S in each of the obtained tree decompositions. The

recursion stops when the splitter reaches a graph in which it cannot find any safe

separator – this graph is an atom and a tree decomposition for it is obtained with a

solver. It should be clear that this approach is highly desirable from a parallel point

of view, as we can handle all the atoms independently of each other in parallel.

Clique and Almost Clique Separators. A clique separator is a separator S such that S is

a clique. Obviously, such separators are safe by the above definition. Given a graph

G = (V ,E), we can find a clique separator, if one exists, in time O(n · m) using

the algorithm by Gavril [97]. In fact, in the same time we can actually compute a

whole decomposition ofG along such clique separators using an improved version

of the algorithm due to Tarjan [161]. In the light of parallelization, there is also an

O(log3 n) time and O(n · m) work algorithm to find clique separators [60]. The

implementation in Jdrasil is oriented on the description by Berry, Pogorelcnik, and

Simonet to findminimal clique separators [27].

Bodlaender and Koster [41] have observed that a separator S is also safe if it is an in-

clusionminimal almost clique. An almost clique is simply a clique plus one additional

vertex. We can find almost clique separators by guessing a vertex v and looking for

a clique separator inG[V \ {v}]. This operation requires timeO(n2 ·m). If we have

found an almost clique separatorS, we can check if it is inclusionminimal by testing

if its associated components are full.

139

It is worth to mention that there are interesting special cases of clique and almost

clique separators: The separators of size zero, one, and two. A single vertex is a

clique, two vertices are either an edge (and thus a clique) or a clique and vertex (and

thus an almost clique). These separators correspond to connected components, bi-

connected components, and triconnected components, which we can identifymore

efficiently with standard graph theoretic techniques [108, 109]. Jdrasil applies these

techniques before it starts to search general clique and almost clique separators.

Minor-Safe Separators. Bodlaender and Koster have identified a large class of safe

separators based on a minor characterization [41]. Recall that a graphH is a minor

of a graphG if we can create a graph isomorphic toH by applying a sequence of the

following operations toG: delete a vertex v; delete an edge {v,w}; contract an edge

{v,w}, that is, delete the edge and replace all occurrences of v orw by a single new

element x. We say H is a labeled minor of G if the vertices have unique labels and,

when performing a contraction, we use the label of either v orw for x.

I Fact 154 ([41])

LetG = (V ,E) be a graph and S ⊆ V a separator ofGwith associated components

C1, . . . ,Cq, then S is safe if allG[V \Ci] contain a clique on S as labeledminor. C

Let us call a separatorminor-safe if it is safe with respect to Fact 154. On the positive

side, the set of minor-safe separators eventually contains more elements than just

the clique and almost clique separators, whichmeansmore splitting and thus more

parallelization. On the negative side, Fact 154 does not provide us with any hint of

how to find a minor-safe separator.

As a rule of thumb, everything that involves minors is computationally hard. Since

wewish to use the safe separators as preprocessing, we have to rely on heuristics. In

Jdrasil, we use the following simpleMonte-Carlo algorithm tofind aminor-safe sep-

arator in a given graphG. The algorithm is based on a similar algorithm presented

by Tamaki for his PACE 2017 submission [158].

while attempts < threshold do

attempts ← attempts + 1

S ← sampleSeparator(G)

if not isEventuallyUnsafe(G,S) then

return S

end

end

The algorithm sampleSeparator provides a candidate S for a minor-safe separator,

and shall guarantee that S is indeed a (not necessarily safe) separator. Multiple calls

of the algorithm provide multiple candidates. The algorithm isEventuallyUnsafe is a

Monte-Carlo algorithm with a one-sided error: If S is not safe by Fact 154, then the

algorithm will detect this circumstance with certainty; if S is minor-safe, then the

algorithm will eventually identify S as safe separator.

140

The implementation of sampleSeparator in Jdrasil follows the approach used in [158].

We manage a pool of separators. If the pool is empty, the algorithm computes a

tree decomposition of G using a randomized heuristic and adds all bags that are a

separator ofG to the pool; if the pool is not empty, sampleSeparator just returns and

removes an element from the pool.

The implementation of isEventuallyUnsafe is more involved. On input of a separa-

tor S, the algorithm computes all associated components C1, . . . ,Cq of S and will

check whether there is a clique on S in all G[V \ Ci] as a labeled minor. To per-

form the minor test, Tamaki suggests the following approach [158]: Define the set

R = V \ (S ∪ C) and contract the edges in G[R] randomly to obtain a graph B

on vertex set S ∪ R ′, where R ′ contains the vertices that remain after the contrac-

tions onR. In a second phase, for each edge {u, v}missing in S, a common neighbor

w ∈ N(u)∩N(v)∩R ′ is chosen and contracted either tou or v. Themissing edges

are processed in order of common neighbors in R ′ (the less common neighbors, the

earlier a missing edge is processed). The choice to which vertex we contract w is

done in such a way that the minimal number of common neighbors any remaining

edge has is maximized.

In Jdrasil we differ from this approach by trying to find paths that can be contracted.

This can be seen as a more greedy and a less random implementation of the above

sketched algorithm. The result is a simpler algorithm that performs a little better on

the test sets used in Section 10.6: Instead of contracting R, we directly iterate over

the missing edges in S in random order. Fixing a missing edge {u, v}, we compute

the set P = N(u) ∩ N(v) ∩ C of common neighbors of u and v in C. If P is not

empty, we choose a random element x of P and contract it at random to either u or

v. On the other hand, if P is empty, we compute the shortest path from u to v via

breadth-first search and contract it to u. Due to its randomized nature, we repeat

the test multiple times for every set S.

141

I Example 155

The left side of the following graphic shows ex045.gr, an instance from PACE 2017

(Testset II) with 600 vertices and 865 edges. On the right, the same graph is shown

after the preprocessing routine of Jdrasil was applied to it. The reduced graph has

still 185 vertices and 342 edges.

Applying the splitter to the reducedgraphresults in the following sevenatoms,which

we can handle completely independent of each other. Themaximumnumber of ver-

tices in one of the atoms is 55 and the maximum number of edges 103.

C

142

10.6 Experiments and Analysis

In this section we will analyze the performance of Jdrasil, and especially of the tech-

niques presented within this chapter, with a series of experiments. We start by

studying the performance of the sat-approach from Section 10.3 with respect to

multiple state-of-the-art sat-solvers on page 144. Once we have decided for a sat-

solver, we will analyze the speedup that we obtain by improving the encoding with

the clique and the twin trick on page 145.

Afterwards, we will examine an implementation of the positive instance driven dy-

namic program catchAndGlue from Section 10.4. We first study the performance of

the algorithm if we equip it with the various heuristics presented in Section 10.4 on

page 146. Subsequently, we will compare the performance of the sat-approach and

catchAndGluewith each other, and with other treewidth algorithms on page 147.

The last two experiments of this section will deal with the parallel capabilities of

Jdrasil. Wewill first explore the impact of splitting, both sequentially and in parallel,

for various algorithms starting at page 149. Finally, wewillmeasure the speedup and

efficiency of the parallel version of Jdrasil experimentallywith respect to the number

of atoms of the input instance on page 152.

Important to note is that for all experiments and all mentioned algorithms (also the

ones not discussed within this thesis) we always use the corresponding implemen-

tation of that algorithm in Jdrasil – no other implementation was used for any ex-

periment. In particular, all algorithms are executed with the exact same set of pre-

processing rules: We use the preprocessor of Jdrasil in all experiments, but we use

splitting only if it is explicitly mentioned. Details about the data sets and the used

hardware can be found on page 183, details about other algorithms implemented in

Jdrasil can be found in [16] and in the manual of Jdrasil [15].

143

Selecting a sat-Solver

The pleasant thing about encoding our problem into a formula of propositional logic

is that, oncewe have settled the encoding, we can kindly ask a sat-solver to solve the

problem for us. In fact, we can even rely on the expertise of the sat-community to

handle suchproblems inparallel. The followingplot compares the run timeof Jdrasil

using the sequential sat-solvers lingeling and Glucose, their parallel versions plin-

geling and Syrup, as well as the parallel cube-and-conquer solver treengeling, which

is based on lingeling as well [9, 29, 107]. In all cases, the rest of Jdrasil was executed

sequentially. The experimentwas performed onMachine Iwith Testset I and II. The

following cactus plot shows the allowed time t on the x-axis, and the number of in-

stances that the solver was able to solve within tminutes on the y-axis. The number

in parentheses is the percentage of solved instances of the test set. All solvers were

executed with a timeout of 30 minutes per instance.

lingeling (57%)

plingeling (59%)

treengeling (54%)

Glucose (60%)

Syrup (62%)

1 5 10 15 20 25 30

Time in Minutes

200

225

250

Number of
Instances Solved

The experiment reveals that the selection of the sat-solver has quite an effect on

the overall run time of Jdrasil. We can observe that the cube-and-conquer approach

of treengeling seems not to be feasible for our encoding. On the other hand, the

parallel versions plingeling and Syrup perform notably better than their sequential

counter parts lingeling andGlucose. Butmore crucially, we canobserve thatGlucose

performs better than lingeling for our encoding. In fact, the sequential version of it

is even better than the parallel solver plingeling.

144

The Gain of Adding the Clique and the Twin Trick

The following cactus plot illustrates the impact of the clique and the twin trick in

Jdrasil using the sat-approach with Glucose as underling sat-solver (due to the last

experiment, this is the best sequential solver for this task). It was obtained from an

experiment that was performed on Machine I and Testset I, and with a timeout of

30minutes per instance. The four curves show the performance of a plain encoding

without the tricks, using the clique trick, using the twin trick, and using both tricks.

plain (79%)

clique (89%)

twin (81%)

both (89%)

1 5 10 15 20 25 30

Time in Minutes

150

160

170

180

Number of
Instances Solved

The experiment reveals that adding the twin trick provides only a slight advantage

(but it does overall improve the encoding). In contrast, adding the clique trick boosts

the performance of the encoding such that it is able to solve 10% more instances of

the test setwithin the 30minutes timeout. Interestingly, combiningboth tricks does

not provide any further advantage and, in fact, results in an encoding that performs

slightly worse than the encoding that uses just the clique trick. I assume this is be-

cause both tricks improve the performance by adding some sort of symmetry break-

ing to the formula. Since in most instances there are only very few twins, adding

these to the encoding does not provide more symmetry breaking than what we al-

ready get from the added clique and, thus, by using both tricks we increase the for-

mula without any gain onmany instances.

145

Selecting a Heuristic to Speed Up

Positive Instance Driven Dynamic Programming

In this experiment we study the performance of the catchAndGlue algorithm from

Section 10.4 when it is equipped with various heuristics. The experiment was per-

formed on Machine I using Testset I with a timeout of 30 minutes per instance. In

the following, we compare the performance of the plain algorithm, the algorithm

using the priority heuristic, and the algorithm using the fast-glue heuristic. Adding

the fast-contamination heuristic, pruning, or the potential-maximal-clique heuris-

tic alone, increases the performance only sightly – the effect is too small to be visible

in the cactus plot and, thus, the corresponding curves are omitted. However, adding

all three heuristics to either the priority or the fast-glue heuristic provides an addi-

tional acceleration. The corresponding curves are marked with an asterisk.

priority∗ (95%)

priority (92%)

fast-glue (87%)

fast-glue∗ (90%)

plain (77%)

1 5 10 15 20 25 30

Time in Minutes

140

150

160

170

180

190

Number of
Instances Solved

As we can see, the plain algorithm already performs decently. However, adding ei-

ther the priority or the fast-glue heuristic improves the performance a lot. In fact,

by using these heuristics the algorithm from Section 10.4 is able to solve 87% of the

instances of the test set within the given timeout of 30 minutes. Since the prior-

ity heuristic is simpler to implement and performs slightly better than the fast-glue

heuristic, I would recommend to always use it. Combining both heuristics does

not improve the performance further and results in an algorithm that is actually

slightly worse than using just the priority heuristic (not shown in the plot). This is

not surprising, as both heuristics have the same goal: Generate large configurations

quickly. Since, furthermore, both heuristics achieve this in a similar way, we would

add unnecessary overhead by using both heuristics.

146

Comparison of the Different Algorithms

In this experiment we compare the best configuration (with respect to the previous

experiments) of the sat-approach and the positive instance driven dynamic pro-

gram catchAndGlue against each other. The plot contains in gray the algorithms

whichwere considered state-of-the-artbefore thefirstParameterizedAlgorithmsand

Computational Experiments Challenge: a branch-and-bound algorithm (BAB) [99],

the divideAndCatch algorithm on which we based our positive instance driven dy-

namic program in Section 10.4, as well as a “Held-Karp-like” dynamic program (DP)

due to Bodlaender, Fomin, Koster, Kratsch, and Thilikos [36]. The diagram also con-

tains Tamaki’s positive instance driven dynamic program that is based on minimal

separators and potential maximal cliques [158].

I used for all algorithms the corresponding implementation of Jdrasil, which were

all highly optimized. However, catchAndGlue is not optimized and refers to a direct

implementation of the code presented within this thesis. The performance can be

improved by carefully choosing data structures – for instance, the set B(Q) can be

managed in a set-trie [150]. The optimized version of catchAndGlue, which is actually

used by Jdrasil, is denoted by catchAndGlue_opt in the following plot.

The experimentwas performed onMachine I andTestset Iwith a timeout of 30min-

utes per instance. As mentioned above, all tests were performed with Jdrasil’s im-

plementation of the corresponding algorithms. For each of them, the preprocessing

of Jdrasil was applied, but splitting was deactivated.

SAT (89%)

Tamaki (98%)

BAB (86%)

DP (72%)

divideAndCatch (79%)

catchAndGlue_opt (97%)
catchAndGlue (95%)

1 5 10 15 20 25 30

Time in Minutes

150

160

170

180

190

200

Number of
Instances Solved

147

The experiment reveals that both, our algorithm using the improved sat-encoding

and our positive instance driven dynamic program catchAndGlue, outperformall the

algorithms thatwere considered state-of-the-art before thefirst PACE.However, the

experiment shows that the positive instance driven dynamic program by Tamaki

solves 4 instances more than the optimized version of catchAndGlue. I assume that

these instances contain just a fewminimal separators or potential maximal cliques,

as Tamaki’s algorithm works directly with these objects.

The following figure illustrates the same experiment for the three fastest algorithms

repeated on Testset II, which contains the instances of the second iteration of the

PACE. The instances in this data set are larger andmore difficult than the instances

in Testset I. However, they contain fewer symmetries as they are generated from

real world graphs, which makes themmore vulnerable to preprocessing.

SAT (31%)

catchAndGlue_opt (79%)
Tamaki (82%)

1 5 10 15 20 25 30

Time in Minutes

50

100

150

200

Number of
Instances Solved

The plot shows that this test set is indeedmore challenging, as all solvers only solve a

smaller percentage of the instances within the time bound. We can observe that the

advantage of the positive instance driven algorithms over the sat-approach become

more apparent compared to the first experiment.

50

25

0

25

50

Advantage in
Seconds

Treewidth

5

30

55

80

An interesting finding is that there are a couple of in-

stances that are still solved faster by the sat-approach than

by catchAndGlue. In particular, the instances of higher

treewidth seem to be good candidates for this effect. The

advantage plot on the right shows the advantage of the sat-

approach over catchAndGlue. To produce it, I took all in-

stances that were solved by both solvers, ordered them by

their treewidth, and used the instances as x-coordinate.

For each instance, there is a bar that indicates the advan-

tage: A positive bar means that the sat-approach is faster

by the length of the bar, while a negative bar means that

catchAndGlue is faster. All bars are capped at 50 seconds,

and the curve visualizes the treewidth of the instances.

148

Parallelization via Splitting

In this experiment we examine the power of splitting when computing optimal tree

decompositions using the optimized catchAndGlue algorithm. In particular, we will

study how well these techniques can be used for parallelization. The following ex-

perimentswere again executed onMachine I, which is equippedwith 8 cores. I com-

pared catchAndGluewith sequential splitting (atoms are handled sequentially), with

parallel splitting (all atoms are handled in parallel, but everything else is still sequen-

tial), andwithout splitting (sequential algorithm that does not compute atoms at all)

on Testset II. As before, I used a 30minutes timeout per instance. The results are vi-

sualized in the following cactus plot:

sequential (92%)

wo splitting (79%)

parallel (91%)

1 5 10 15 20 25 30

Time in Minutes

100

120

140

160

180

200

Number of
Instances Solved

We can see that splitting allows the solver to solve about 20 instances more com-

pared to the solver that does not use splitting. Concerning parallelization, the posi-

tive message of the plot is that, even though the parallel version solves one instance

less than the sequential version, it is generally equal or faster than the sequential

one. That the solver does not become worse when using parallelization is due to the

fact that the splitting is implemented in a work optimal way, that is, the sequen-

tial solver performs the same amount of operations to apply splitting as the parallel

solver. However, the resolution of the cactus plot is not high enough to see whether

or not we obtain a speedup using parallelization.

The advantage plot on the next page shows the advantage of the parallel version over

the sequential version. As in the experiment in which we compared various solvers,

I took only the instances that were solved by both solvers, ordered them by their

treewidth, and used them as x-coordinates. For each instance, there is a bar that

indicates whether the parallel solver is better (by the amount of a positive bar), or

whether the sequential solver is better (by the amount of a negative bar). The curve

illustrates the treewidth of the instances.

149

50

25

0

25

50

Advantage in
Seconds

Treewidth

0

14

30

45

60

75

This plot shows that the difference of the sequential and the parallel version is negli-

gible onmost of the instances. However, if there is ameaningful difference for some

instance then it is in most cases in favor of the parallel algorithm. Interestingly, es-

pecially the graphs with higher treewidth seem to be well suited for parallelization.

The following domination plot visualizes the total time used by the parallel solver and

used by the sequential solver. To generate the plot, I used only the instances that

were solved by both solvers. The length (total time) is the sum of the run times of

both solvers (that is, the time thewhole experiment took), while the individual times

are the times of the corresponding solvers.

47 % 53 %

526 min

249 min 277 min
parallel solver sequential solver

As expected from the previous plot, the figure underpins that the parallel version is

overall faster than the sequential version. In detail, the parallel version of the pro-

gram is able to solve the whole test set 25 minutes faster than the sequential solver.

150

Due to Jdrasil’s architecture, we can not only execute catchAndGlue in parallel, but

also any other algorithm. For the following plot I used Tamaki’s algorithm with se-

quential splitting, with parallel splitting, andwithout splitting. The experimentwas

performed onMachine I and Testset II, with a timeout of 30 minutes per instance.

sequential (99%)
parallel (99%)

wo splitting (82%)

1 5 10 15 20 25 30

Time in Minutes

100

120

140

160

180

200

Number of
Instances Solved

We can observe that, using splitting, Tamaki’s algorithm is able to solve almost the

whole testset within the given time; and that the parallel version is again a bit faster.

The following advantage plot and domination plot highlight the speedup obtained

in parallel: The parallel version is able to solve the whole test set 30 minutes faster

than the sequential one.

100
75
50
25
0
25
50
75

100

Advantage in
Seconds

Treewidth

5
30
55
80

46 % 54 %

433 min

201 min 232 min
parallel solver sequential solver

151

Speedup and Efficiency

In this last experiment we will study experimentally the speedup and efficiency we

gain by the parallel versionof Jdrasil. Froma theoretical point of view, the speedupwe

obtain using p processors is usually defined as Sp(n) = T1(n)/Tp(n), where Ti(n)

is the (theoretical worst case) time the algorithm requires to solve an instance of size

nwhen it uses i processors. Accordingly, the efficiency of the parallel algorithm is de-

fined as Ep(n) = T1(n)/(p · Tp(n)). However, these definitions are not well suited

for our type of parallelization, as the splitting strategy uses a structural property

(the number of atoms) in order to apply parallelization. Therefore, for any n there

will be instances were we have no speedup up at all (they have just one atom), or a

high speedup (they have many atoms). To circumnavigate this problem, we study

the speedup and the efficiency with respect to the number of atoms a, rather than

with respect to n: Sp(a) = T1(a)/Tp(a) and Ep(a) = T1(a)/(p · Tp(a)), where
Ti(a) is the (experimental) time to solve all instances with a atoms of a given test

set. Note that it does not make sense for the splitting approach to consider p > a

(we cannot parallelizemore than handle each atomon an individual processor) and,

thus, the best speedup we can hope for is a.

The following table shows the distribution of instances with a certain number of

atoms3 in Testset II. It contains, however, only instances with at least two atoms,

and only atom classes that contain at least 2% of the instances of the test set. For

every atom class, the table shows the time Jdrasil requires to solve all instances of

this class given a certain number of processors onMachine I.

Number of Atoms Instances Time using p Processors

1 2 3 4 5 6 7

2 19% 4967s 3534s – – – – –

3 13,5% 627s 502s 471s – – – –

4 3% 85s 81s 81s 79s – – –

5 2% 43s 37s 50s 36s 37s – –

7 2% 41s 28s 32s 30s 31s 19s 17s

3The number of atoms refers to the number of atoms generated by Jdrasil’s heuristics, and not to

the (unknown) optimal number of such objects.

152

The times collected in the previous table result in the experimental speedups and

efficiencies that are illustrated in the following table:

Atoms Speedup / Efficiency using p Processors

2 3 4 5 6 7

2 1,40 / 0,70 – – – – –

3 1,24 / 0,62 1,50 / 0,44 – – – –

4 1,04 / 0,52 1,04 / 0,34 1,07 / 0,26 – – –

5 1,16 / 0,58 0,86 / 0,28 1,19 / 0,29 1,16 / 0,23 – –

7 1,46 / 0,73 1,28 / 0,42 1,36 / 0,34 1,32 / 0,26 2,15 / 0,35 2,41 / 0,34

The data shows that we obtain a speedup in general, although it is comparable small

to the one we might expect from theory – the sole exception is the set of instances

with 5 atoms solved using 3 processors, where the parallel version is slower than the

sequential one. The reason for the comparatively low speedup is that for an optimal

speedup all atoms of an instance would have to have the same size. However, many

instances contain a single large atom together with a collection of smaller atoms.

Thisphenomenonalso explains theaboveaverage efficiencyofusing twoprocessors:

One processor can handle the big atom, while the other one can handle all the small

atoms within the same time.

153

11 Jatatosk: A LightweightModel

Checker for a Fragment ofMSO

In this chapter wewill explore a possible path to handlemonadic second-order logic

model checking in practice. A model checker is a tool that, given a logical struc-

ture S and a formula ϕ, tests whether or not S |= ϕ holds – we have studied such

algorithms in Chapter 8. In practice, we usually require that, in the case of S |= ϕ,

the model checker also outputs an assignment of the free variables ofϕ. For conve-

nience, we further require an assignment to existentially bounded variables that are

not in the scope of a universal quantifier.

Amodel checker can be seen as convenient interface to dynamic programming over

tree decompositions. Such an interface is highly desirable fromaparallel point view,

as dynamic programs over tree decompositions offer a way to solve combinatorial

problems in parallel (which is otherwise often a difficult task). This is particularly

true inpractice, as suchdynamicprogramshavemanypoints that canbeparallelized

ondifferent architectures [139]. For instance, ifwehavemultipleCPUcores or evena

cluster, we can split the tree decomposition and handlemultiple subtrees in parallel.

Ifwehave anarchitecture that allowsmassive parallelization (such as aGPU),we can

parallelize a single step of the dynamic program (transforming the table of one bag

to the table of the next bag). The later approach was successfully applied to sat, a

problem that otherwise is hard to parallelize as well [82].

Unfortunately, using the techniques developed in Chapter 8 directly in practice is

difficult, as the generated tree automata are huge. Instead, in this chapter I intro-

duce a fragment of MSO that can be checked more directly. In particular, we can

model check formulas of this fragment in an “event-driven” way, in which the dy-

namic program has to performmost of its computations only on edge-bags.

For this fragment I present the model checker Jatatosk, which is implemented on

top of the dynamic programming interface of Jdrasil – therefore the name, which

is a portmanteau of “Java” and “Ratatosk,” the squirrel that runs up and down on

Yggdrasil to transmit messages from the animals at the crown of the tree to those

sitting at its roots. The current implementation of Jatatosk is sequential, as it aims

to explore the power of the fragment and the viability of the approach. However, it

is implementedwith an architecture that has parallelization inmind such that it can

be parallelized in the future. Jatatosk is publicly available at GitHub [12], where the

reader will find a manual that guides through the first steps of using this tool.

155

11.1 The Aim of Jatatosk

The primary goal of Jatatosk is, of course, a happy marriage of theoretical powerful

tools – such asCourcelle’s Theorem–with practice. Similar attempts canbe found in

the literature. For instance, Sequoia is a fullMSO-model checker based on a game

theoretic characterization of Courcelle’s Theorem [117, 126]. Another contender is

D-Flat, which is an Answer Set Programming (ASP) solver for problems of small

treewidth [30], which allows an implementation of Courcelle’s Theorem as well [31].

So why do we need another tool for that task? Both tools, Sequoia and D-Flat, solve

the general problem of MSO-model checking, which is arguably a very hard task.

While bothof themperformdecently on realworld instances – inparticular for prob-

lems that require a connected solution – they are not yet fully competitive against

modern sat- or ILP-solvers [118]. In fact, anMSO-model checker can probably not

run in time f(|ϕ|+ tw) ·poly(n) for any elementary function f [91]. Evenworse, it is

usually unclear what the concrete run time of such a tool is for a specific formulaϕ.

To that end, the authors of Sequoia have performed a sophisticated analysis of their

tool to obtain worst-case bounds for standard formulas [118].

To tackle all these problems, the design principle of Jatatosk is the focus on a frag-

ment ofMSO. The result is a streamlined solver that is comparatively faster and eas-

ier to analyze. In particular, the run time of Jatatosk can directly be derived from the

syntax of the input formula.

11.2 A High-Level View on the Tool

The main idea of the architecture of Jatatosk is an event-driven evaluation of the for-

mula. This event-driven approach is inspired by the classical guess-and-verify ap-

proach used in nondeterministic computations. For instance, consider the problem

of testing whether a graph can be properly colored with three colors: A nondeter-

ministic computationwould first guess the coloring, whichmeans assigning a color

to each vertex; and would secondly verify it, which means checking for every edge

whether the endpoints have different colors. This strategy can be implemented as a

dynamic program over tree decompositions (compare with Example 137): At every

introduce-bag we guess a color for the introduced vertex, and on every edge-bag we

verify that the two endpoints have obtained different colors. In this particular case,

forget- and join-bags actually do nothing more than a little bookkeeping, and the

run time and correctness of the algorithm is almost immediate. Jatatosk is event-

driven in the sense that it will evaluate the formula only on edge-bags (so these bags

trigger an event), while all other bags are handled in a very uniform way.

156

In order to make the event-driven approach work in general, we will restrict the al-

lowed input structures slightly. In general, Jatatosk expects as input a relational

vocabulary τ = (R1,R2, . . . ,Rr) as well as a τ-structure S. We require, however, that

τ contains a binary relation E, and that S interprets E in a symmetric way. That is,

S has to contain an undirected graph as substructure. Jatatosk will compute a tree

decomposition of this graph, and the edges of this graph will trigger events in edge-

bags. Note in particular that this stands in contrast to the other standard approach

of using the Gaifman Graph (see Definition 6).

Internally, Jatatosk computes a tree decomposition using Jdrasil, and implements a

tree automaton that evaluates the formula using the dynamic programming inter-

face of Jdrasil. Every state of the automaton is represented as bit vector (sometimes

also called bit set). The bits of these vectors essentially describe for every vertex in

the current bag, to which variables of the formula it is assigned (the details will be

explained in the following sections). We will choose the fragment ofMSO in a way

that allows us to deduce from the syntax of the formula the required size s of the

bit vectors as well as the way in which we have to modify the bits on different bag-

types – without explicitly constructing the automaton. In this way, we can directly

deduce the run time of the algorithm from the syntax of the formula as well: It will

be of magnitude 2s.

11.3 Description of the Fragment

We seek a fragment of monadic second-order logic that can be checked with the

sketched event-driven approach. First observe that existential second-order quanti-

fiers are “easy,” as we have already seen in the example of graph coloring. Therefore,

our fragment contains only formulas of the following form, whereΨ is a first-order

formula defined later:

∃X1 ∃X2 . . . ∃Xq Ψ.

There is an easy implementation for such quantifiers. Assume we work on a tree

decomposition of bag-size k, then a state can be represented by k · q bits that sim-

ply indicate which vertex in the current bag is in which sets. On introduce-bags we

guess the sets Xi to which the introduced vertex shall be assigned, and we set the

corresponding bits; in forget-bags we just have to clear the bits of the forgotten ver-

tex; on edge-bagswe do not have to do anything; and on join-bagswe have to ensure

that the bit vectors are the same for both children.

Observe that, from an event-driven perspective, the representationwith k ·q bit can
be very lavish. For instance, consider the following formula:

ϕexample = ∃R ∃B∀x
(
R(x) ↔ ¬B(x)

)
.

157

In this example R and B constitute a partition of the vertices and, thus, one bit per

vertex would be sufficient. An event-driven approach will notice this too late, as it

will evaluate the formula after it has assigned vertices to R and B. Since Jatatosk

has an exponential run timewith respect to the number of bits in the states, this is a

rather big deal. Therefore, the fragment also contains partition quantifier, which have

the following semantic and can be implemented by using only k · logq bits:

∃partitionX1, . . . ,Xq ≡ ∃X1∃X2 . . . ∃Xq

(
∀x

q∨
i=1

Xi(x)
)
∧
(
∀x

q∧
i=1

∧
j6=i

¬Xi(x)∧ ¬Xj(x)
)
.

A second observation about event-driven evaluation is that we can check multiple

formulas at every event independently. Therefore, Ψ has the form Ψ =
∧`

i=1ψi.

The interesting part of the description are the formulasψi. The natural formula for

the event-driven approach is:

ψi = ∀x∀yE(x,y) → χi,

where χi is some quantifier-free first-order formula. Observe that these are exactly

the formulas we need to express graph coloring; and observe that we can check such

formulas directly on edge-bags without storing any further information in the state

of the automaton. Apart from optimization (which we handle later), this fragment

can already express graph coloring, vertex cover, and independent set:

φ3col = ∃partitionR,G,B ∀x∀yE(x,y) →
∧

C ∈ {R,G,B}

¬C(x)∨ ¬C(y);

ϕvc = ∃S∀x∀y E(x,y) →
(
S(x)∨ S(y)

)
;

ϕis = ∃S∀x∀y E(x,y) →
(
¬S(x)∨ ¬S(y)

)
.

There are many problems for which it is not sufficient to check whether a property

holds on every edge. Instead, such problems often require that some edges satisfy

the property. Consider for instance the dominating set problem in reflexive graphs,

which we can express with the following formula (again omitting optimization):

ϕds = ∃S∀x∃y E(x,y)∧ S(y).

We can still check such formulas in an event-drivenway, butwe cannot simply reject

if some edge does not satisfy the formula. Therefore, we now have to reserve some

bits in the state of the automaton to describe whether we have already seen the cor-

rect y for a vertex x. In particular, we store k bits and, whenever a vertex is intro-

duced, we set the corresponding bit to 0. For each edge {x,y} we check whether or

not the formula is true and, if so, set the bit for x. Furthermore, whenever we forget

a vertex xwe have to check if its corresponding bit was already set to 1, otherwise we

have to reject the current state. Finally, observe that in join-bags we cannot simply

reject anymore if the bit vectors are different. For the bits reserve for this formula,

we have to propagate the logical-or of both bit vectors, as wemay have seen the edge

in one of the two subtrees.

158

In a very similar way, we can also check formulas of the form ∃x∃y E(x,y) ∧ χi,
∃x∀y E(x,y) → χi, ∀x∃y E(x,y) ∧ χi, ∃x χi, and ∀x χi. This finalizes the de-
scription of the fragment, which contains formulas of the form∃X1 . . . ∃Xq

∧`
i=1ψi

where theψi are formulas of the following form:

ψi ∈ {∀x∀y E(x,y) → χi, ∀x∃y E(x,y)∧ χi, ∃x∀y E(x,y) → χi,

∃x∃y E(x,y)∧ χi, ∀x χi, ∃x χi }.

Here, all χi are quantifier-free first-order formulas. For convenience, we require

that theyare in conjunctivenormal form. Note that in the literature, theatomE(x,y)

used in the above formulas is sometimes called a guard.

11.4 Extensions of the Fragment

As the formulas fromtheprevious sectionalready indicate, performingmodel check-

ing alone will not be sufficient to express many natural problems. In fact, every

graph is a model of the formula ϕvc if the vertex cover simply contains all vertices.

On the other hand,many interesting problems can be expressed inmonadic second-

order logic, but not within our fragment. The solution to both problems is an exten-

sion of the fragment by operations that behave “nicely” during the model checking

process.

An Extension to Optimization. The optimization version of the model checking prob-

lem is usually formulated as follows [59, 85]: Given a logical structure S, a formula

ϕ(X1, . . . ,Xp)of theMSO-fragmentdefined in theprevious sectionwith free second-

order variables X1, . . . ,Xp, and weight functionsω1, . . . ,ωp withωi : V → Z; the
task is to find sets S1, . . . , Sp with Si ⊆ V such that

∑p
i=1

∑
s∈Si

ωi(s) isminimized

underS |= ϕ(S1, . . . , Sp), or conclude thatS is not amodel forϕ for any assignment

of the free variables. We can express the (actually weighted) optimization version of

vertex cover as follows: ϕvc(S) = ∀x∀y E(x,y) →
(
S(x)∨ S(y)

)
.

We can, of course, maximize the term
∑p

i=1

∑
s∈Si

ωi(s) by simply multiplying all

weights with −1. In that way, we can turn the formula to find an independent set

into a correct one.

The implementation of such an optimization is straightforward: There is an exis-

tential quantifier for every free variableXi of the formula, andwe assign the current

value of
∑p

i=1

∑
s∈Si

ωi(s) to every state of the automaton. This value is adapted if

elements are “added” to some free variables at introduce nodes. Note that, since we

optimize an affine function, this does not increase the state space: Even if multiple

computational paths lead to the same state with different values at some node of the

tree, it will be well defined which of these values is the optimal one. Therefore, we

have to reserve only k bits in the description of the states of the automaton per free

variable – independently of the weights.

159

Quantifier Extensions. Many interesting properties, such as graph connectivity, can

be expressed in monadic second-order logic. For instance, that a set X is connected

in graph theoretic terms can be expressed by the following formula (compare with

Example 14 in Section 2):

ϕconnected(X) = ∀Y (∃x∃yX(x)∧ X(y)∧ Y(x)∧ ¬Y(y))

→ (∃x∃yX(x)∧ X(y)∧ Y(x)∧ ¬Y(y)∧ E(x,y)).

There are two flaws with this formula. First of all, it is rather long for a “simple”

statement, and it is (probably) only for logicians a natural way to express connectiv-

ity. In the light of Jatatosk, the even bigger problem is that the formula is not part of

the fragment we work on. On the other hand, “guessing a connected set” is actually

a well understood topic on tree decompositions [59]. In order to make this power

available to the user, we introduce a quantifier extension to our fragment. We add

the connected quantifier, which guesses a set X that is connected in graph theoretic

terms with respect to the relation E and, thus, which has the following semantic:

∃connectedXψ(X) ≡ ∃X
(
ϕconnected(X)∧ψ(X)

)
.

Implementing the connected quantifier is considerably harder than implementing

a classical existential quantifier. The automaton has to overcome the difficulty that

an introduced vertex may not be connected to the rest of the bag in the moment it

got introduced, but may be connected to it when further vertices “arrive.” The so-

lution to this dilemma is to manage a partition of the bag into k ′ 6 k connected

components P1, . . . ,Pk ′ , for which we reserve k · log2 k bit in the state description.

Whenever a vertex v is introduced, the automaton either guesses that it is not con-

tained in X and clears the corresponding bits, or it guesses that v ∈ X and assigns

some Pi to v. Since v is isolated in the bag in the moment of its introduction (re-

call that we work on a very nice tree decomposition), it requires its own component

and is therefore assigned to the smallest empty partition Pi. When a vertex v is for-

gotten, there are four possible scenarios: (i) v 6∈ X, then the corresponding bits are

already cleared and nothing happens; (ii) v ∈ X and v ∈ Pi with |Pi| > 1, then

v is removed and the corresponding bits are cleared; (iii) v ∈ X and v ∈ Pi with

|Pi| = 1 and there are other verticesw in the bag withw ∈ X, then the automaton

rejects the configuration, as v is the last vertex of Pi and may not be connected to

any other partition anymore; (iv) v ∈ X is the last vertex of the bag that is contained

in X, then the connected component is “done,” the corresponding bits are cleared

and one additional bit is set to indicate that the connected component cannot be ex-

tended anymore. When an edge {u, v} is introduced, components might need to be

merged. Assume u, v ∈ X, u ∈ Pi, and v ∈ Pj with i < j (otherwise, an edge-bag

does not change the state), then we essentially perform a classical union-operation

from the well-known union-find data structure. Hence, we assign all vertices that

are assigned to Pj to Pi. Finally, at a join-bag we may join two states that agree lo-

cally on the vertices that are in X (they have assigned the same vertices to some Pi),

160

however, they do not have to agree in the way the different vertices are assigned to

Pi (in fact, there does not have to be an isomorphism between these assignments).

Therefore, the transitionat a join-baghas to connect the corresponding components

analogously to the edge-bags.

Adding the connected quantifier to the fragment allows us to describe many prob-

lems, which otherwise require sophisticated formulas, in a natural way. Besides the

obvious fact that we can now express problems such as connected vertex cover, we

can also describe more involved problems. For instance, the following sentence is

true whenever the graph contains a triangle as minor (and thus contains a cycle),

and it is easy to see that the sentence can be extended to describe that any fixed

graphH is a minor of the input graph:

ϕtriangle-minor =∃connectedR ∃connectedG∃connectedB �(
∀x (¬R(x)∨ ¬G(x))∧ (¬G(x)∨ ¬B(x))∧ (¬B(x)∨ ¬R(x))

)
∧
(
∃x∃y E(x,y)∧ R(x)∧G(y)

)
∧
(
∃x∃y E(x,y)∧G(x)∧ B(y)

)
∧
(
∃x∃y E(x,y)∧ B(x)∧ R(y)

)
.

With similar tools as for the connected quantifier, we introduce the forest quantifier

that guesses a cycle free set X (in graph theoretic terms with respect to the relation

E). Its implementation is almost identical to the oneof the connectedquantifier: We

manage a partition of the bag intoP1, . . . ,Pk ′ and, at introduce-bags, guess whether

the introduced vertex is part of the forest or not (giving it its singleton partition

eventually). On edge-bags and join-bags, we perform the same union-find opera-

tion, butwe additionally reject the state if this operation creates a cycle. Forget-bags

can even be handledmore easily: Here we just have to clear the bits, as the forgotten

vertex may not be part of any cycle in the future.

The main and natural application of the forest quantifier is the problem of finding

a feedback-vertex set in the input graph. This task can now be naturally expressed

with the following formula:

ϕfvs(S) = ∃forestF∀x
(
S(x)∨ F(x)

)
.

11.5 Predicting the Run Time and Experiments

We have defined the fragment and have discussed how to handle optimization and

powerful quantifier extensions. For each formula and quantifier that we have intro-

duced, we have reserved some bits in the state description of the automaton. In this

section we analyze the exact performance of Jatatosk with respect to the number of

reserved bits. For that end, let bit(ϕ,k) be the number of bits we reserve for the

input formulaϕ on a tree decomposition of bag-size k.

161

A nondeterministic tree automaton will process a labeled tree with n nodes in time

O(n). If the automaton has state setQ, one might think that a running time of the

formO(|Q| ·n) is sufficient to simulate the automaton deterministically, as the au-

tomaton could be in any potential subset of the states at somenode of the tree. How-

ever, there is a pitfall: For every node we have to compute the set of potential states

of the automaton depending on the sets of potential states of its children, leading

to a quadratic dependency on |Q|. In detail, let x be a node with children y and z

and letQy andQz be the set of potential states in which the automaton is at these

nodes. To determineQx, we have to check for every qi ∈ Qy and every qj ∈ Qz if

there is a p ∈ Q such that (qi,qj, ι(x),p) ∈ ∆. Note that the number of states |Q|

can be quite large even for moderately sized parameters k, as |Q| is typically of size

2Ω(k). Therefore, we will try to avoid this quadratic blow-up.

The crucial observation is that, often, a tree automaton will only continue if both

children are in the same state. For instance, this is the case for the automaton that

checks whether a graph can be coloredwith three colors. We call automata with this

property symmetric:

I Definition 156 (Symmetric Tree Automaton)

A symmetric nondeterministic bottom-up tree automaton is a nondeterministic bot-

tom-up tree automaton A = (Q,Σ,∆, F) in which all transitions (l, r,σ,q) ∈ ∆

satisfy either l = ⊥, r = ⊥, or l = r. C

Assume as before that we wish to compute the set of potential states for a node x

with children y and z. Observe that in a symmetric tree automaton it is sufficient to

consider the setQy ∩Qz and that the intersection of two sets can be computed in

linear time if we choose the underlying data structures carefully.

I Observation 157

A symmetric tree automaton can be simulated in timeO(|Q| · n).

By the above observations it follows that, if the automaton that we construct is sym-

metric, then Jatatosk will run in timeO∗
(
2bit(ϕ,k) · n

)
, but it will only run in time

O∗
(
(2bit(ϕ,k))2 ·n

)
otherwise. Unfortunately, not all formulas will yield a symmet-

ric automaton. To overcome this issue, we partition the bits of the state description

into “symmetric bits” and “asymmetric bits.” The idea is that, if we would only have

symmetric bits, then the automatonwould be symmetric aswell. In particular, inde-

pendently of the asymmetric bits, the symmetric bits must be identical in the states

of all children. Let symmetric(ϕ,k) and asymmetric(ϕ,k) be defined analogously

to bit(ϕ,k). We implement the join of states as in the following lemma, allowing us

to deduce the running time of the model checker for concrete formulas.

I Lemma 158

LetxbeanodeofT with childrenyandz, and letQy andQz be sets of states inwhich

the automatonmay be at y and z. Then the setQx of states in which the automaton

may be at node x can be computed in timeO∗
(
2symmetric(ϕ,k)+2·asymmetric(ϕ,k)

)
.

162

Proof. To computeQx, we first splitQy intoB1, . . . ,Bq such that all elements in one

Bi share the same “symmetric bits”. This can be done in time |Qy| using bucket-

sort. Note that we have q 6 2symmetric(ϕ,k) and |Bi| 6 2asymmetric(ϕ,k). With the

same techniquewe identify for every elementv inQz its correspondingpartitionBi.

Finally, we compare v with the elements in Bi to identify those for which there is a

transition in the automaton. This strategy yields a total running time of the form

|Qz|·maxqi=1 |Bi| 6 2bit(ϕ,k)·2asymmetric(ϕ,k) = 2symmetric(ϕ,k)+2·asymmetric(ϕ,k).

Quantifier / Formula Bits Sym.

free var. X1, . . . ,Xq q · k 3

∃partitionX1, . . . ,Xq k · log2 q 3

∃connectedX k · log2 k+ 1 7

∃forestX k · log2 k 7

∀x∀y E(x,y) → χi 0 3

∀x∃y E(x,y)∧ χi k 7

∃x∀y E(x,y) → χi k+ 1 7

∃x∃y E(x,y)∧ χi 1 7

∀x χi 0 3

∃x χi 1 7

The table at the right shows all

formulas and quantifiers that an

input formula may use. For each

quantifier and formula the table

states the amount of bits that we

will reserve in the state descrip-

tion of the tree automaton, as

well as the fact if they are sym-

metric or not.

Given the table at the right, we

can, simply by looking at the syn-

tax of the input formula, deter-

mine the number of symmetric and asymmetric bits that Jatatosk will reserve in the

state space of the tree automaton – and thus we can directly determine the worst-

case run time of Jatatosk for that formula. The following table illustrates this for all

formulas used within this chapter.

Input Formulaϕ symmetric(ϕ,k)

asymmetric(ϕ,k)

Worst Case Run Time

ϕ3col k · log2(3)
0

O∗(3k)

ϕvc(S) k

0

O∗(2k)

ϕds(S) k

k

O∗(8k)

ϕtriangle-minor 0

3k · log2(k) + 3

O∗(k6k)

ϕfvs(S) k

k · log2(k)
O∗(2kk2k)

163

ExperimentswithNatural Problems. To study the performance of Jatatosk, we compare

it to Sequoia andD-Flat for various natural problems. All experiments in this section

were performed onMachine II with a timeout of 10minutes per instance. All solvers

were tested on the graphs of Testset III and IV, as well as the graphs of Testset II

with treewidth at most 11. Overall, this results in a test set of 61 instances. Jatatosk

(and underlying Jdrasil) were usedwith Java 1.8, while Sequoia andD-Flat were both

compiled with gcc 7.2.

For every experiment I provide three color coded figures that visualize the results.

The first graphic is always a classical cactus plot that visualizes how many instances

can be solved by each of the tools in xminutes. Therefore, a faster growing function

is better. On the right side of the diagram the name of the corresponding solver and

its total amount of solved instances (in percent) is shown.

The second graphic is always an advantage plot of Jatatosk against D-Flat and Se-

quoia. For these I have taken all instances of the test set and ordered them by their

treewidth. An x-coordinate corresponds to one test instance (with respect to the or-

dering) and for each instance there is an advantage bar: A positive bar means that

Jatatosk is faster than the best of D-Flat and Sequoia on this instance; a negative bar

means that the fastest of D-Flat and Sequoia is faster than Jatatosk by length of the

bar. The bars are capped at 100 seconds.

The third and last diagram for each experiment is a domination plot, which contains

the time Jatatosk needed to solve all instances, aswell as the timeD-Flat andSequoia

needed to solve them, where for each individual instance the fastest of the two was

used. Then the diagram contains the sum of these two values (the complete time

required for the experiment) and the percent of this time used for either Jatatosk

or its competitors. Therefore, if both have 50% the solvers used exactly the same

amount of time, while otherwise the solver with the smaller percentage is faster.

164

Results for 3-Coloring

Jatatosk (98%)

D-Flat (66%)

Sequoia (58%)

1 2.5 5 7.5 10

Time in Minutes

30

40

50

60

Number of
Instances Solved

100

75

50

25

0

25

50

75

100

Advantage in
Seconds

Treewidth

0

5

10

9 % 91 %

515 min

44 min 471 min
Jatatosk D-Flat and Sequoia

165

Results for Vertex Cover

Jatatosk (95%)

D-Flat (50%)

Sequoia (98%)

1 2.5 5 7.5 10

Time in Minutes

10

20

30

40

50

60

Number of
Instances Solved

100

75

50

25

0

25

50

75

100

Advantage in
Seconds

Treewidth

0

5

10

63 % 37 %

95 min

60 min 35 min
Jatatosk D-Flat and Sequoia

166

Results for Independent Set

Jatatosk (100%)

D-Flat (98%)
Sequoia (100%)

1 2.5 5 7.5 10

Time in Minutes

30

40

50

60

Number of
Instances Solved

100

75

50

25

0

25

50

75

100

Advantage in
Seconds

Treewidth

0

5

10

53 % 47 %

34 min

18 min 16 min
Jatatosk D-Flat and Sequoia

167

Results for Dominating Set

Jatatosk (96%)

D-Flat (33%)

Sequoia (86%)

1 2.5 5 7.5 10

Time in Minutes

20

30

40

50

60

Number of
Instances Solved

100

75

50

25

0

25

50

75

100

Advantage in
Seconds

Treewidth

0

5

10

43 % 57 %

207 min

88 min 119 min
Jatatosk D-Flat and Sequoia

168

Results for Feedback-Vertex Set

Jatatosk (53%)

D-Flat (1%)

Sequoia (38%)

1 2.5 5 7.5 10

Time in Minutes

5

15

25

Number of
Instances Solved

100

75

50

25

0

25

50

75

100

Advantage in
Seconds

Treewidth

0

5

10

45 % 55 %

698 min

314 min 384 min
Jatatosk D-Flat and Sequoia

169

Evaluation of the Experiments. It can be seen that Jatatosk is competitive (though not

always superior) against its competitors, as it is faster than the faster of the two on

many instances. Jatatosk outperforms the others for the task of coloring a graph

with three colors, but gets outperformed by Sequoia for finding a minimum vertex

cover. The same holds for the problem of finding an independent set, although the

difference ismuch smaller in this case. For the task of computing a dominating-set,

we have a more complicated situation: Jatatosk outperforms the others on about

half of the instances, and gets outperformed on the other half. Interestingly, the

difference is quite high in both halves in both directions.

Solving feedback-vertex set seems to be the hardest task for all tested solvers. In case

of Jatatosk, this is also reflected by the formula and the expected run time. Jatatosk

manages to solve only about 50% of the test set for this problem. However, Sequoia

falls behind a little more, and D-Flat does not seem to work for this problem at all.

The superiority of Jatatosk in solving feedback-vertex set is also reflected by the dif-

ference plot, in which almost all non-zero bars are in favor of Jatatosk.

All the cactus plots reveal that Jatatosk is able to solve more instances in a smaller

amount of time in almost all cases. The exception are vertex cover and independent

set, where the cactus plot of Sequoia looks slightly better. However, the difference

in this two cases is very small, while the advantage of Jatatosk on the other problems

is comparatively large. I assume the similarity for vertex cover and independent set

is owed to the circumstance that all solvers compile internally a similar algorithm.

The slight advantage of Sequoia might be due to a performance difference of Java

and C++. That Jatatosk outperforms the other solves for coloring is not surprising,

as the mso-fragment used by Jatatosk is tailored around the corresponding graph

coloring formula. That Jatatosk is better at solving feedback-vertex set is probably

due to the fact that we have implemented and optimized the forest quantifier di-

rectly, while the other solvers have to extract this from the formula as well. I was

surprised, however, that Jatatosk did well for the dominating set problem, as the

promised run time by the fragment is much worse than the best known run time.

However, it seems that the other solvers do not reach a better run time neither.

170

12 Outlook and Further Directions

In the second part of this thesis, we have moved from parameterized algorithm de-

sign to parameterized algorithm engineering – an intermediate discipline between

theory and practice that explores implementations of theoretical concepts. While

we studiedparallel parameterizedalgorithms that guarantee certainworst-caseper-

formances in the first part of this thesis, in this part we developed parallel strategies

that work well in practice.

Therewere twomain problems thatwe tackled: The computation of optimal tree de-

compositions inChapter 10, and the implementationof amodel checker formonadic

second-order logic on top of it in Chapter 11. In case of treewidth computations, we

examined in detail the library Jdrasil. Here, I have decided to use a coarse paral-

lelization strategy, that parallelizes the computation of a tree decomposition inde-

pendently of the used (exact or heuristic) subroutines. This strategy fits well into

the modular architecture of Jdrasil and provides at least a small speedup. We have

first explored the modular architecture of Jdrasil and have then glanced at some of

its subroutines. In particular, we have evaluated the sat-based approach by Berg

and Järvisalo and extended it by tricks known from the parameterized complexity

community. Afterwards, we screened the concept of splitting and safe separators,

which has turned out to be a key technology for computing tree decompositions in

practice – and especially for turning these algorithms into parallel ones. This ap-

proach leads to interesting further research directions. Since the size of a kernel

for the treewidth problem cannot be bounded by a function in the treewidth (un-

less NP ⊆ coNP/poly), splitting could provide an alternative to kernelization. Ulti-

mately, a Turing-kernel for the problem is not excluded, but achieving any guaran-

tees for the splitting process would be a welcome first step.

` Open Problem: Improving the procedure for finding safe separators to provide any

guarantee. Either in terms of a probability to find safe separators if they exist; or in

terms of a bound for the size of the atoms. a

An important tool to test whether a separator S is safe for treewidth was to check

whether a clique on S is contained as labeled minor in the components associated

withS. Theheuristics that are currentlyused toperformthis checkare rather simple.

Improving themcould lead to faster algorithms for computing tree decompositions.

` OpenProblem:Findingalternativeheuristics for the followingproblem: Givenagraph

G = (V ,E) and a set S ⊆ V , is a clique on S contained as labeled minor inG? a

171

` Open Problem: Is there an exponential time or FPT-algorithm for the above problem

that works fast in practice? a

In the second chapter of this part, we studied a fragment ofMSO that was crafted

with the aim of being easy tomodel check in practice – both, sequentially and in par-

allel. Itwas especially selected to overcome thehuge automata constructions thatwe

encountered in Chapter 8. To see if the approach is viable, I introduced the model

checker Jatatosk. While it is implemented sequentially in its current form, the ar-

chitecture of Jatatosk (and of course of the whole fragment) has parallelization in

mind. Therefore, it is a natural next step to parallelize Jatatosk.

` Open Problem: Extending Jatatosk with parallel capabilities. In particular, multiple

subtrees of the tree decomposition can be handled in parallel on multiple CPUs,

while single steps of the dynamic program can be outsourced to a GPU. a

Note, however, that although the architecture has parallelization in mind, imple-

menting it in a way that results in an actual speedup will be non-trivial. This is be-

cause there are many details that have to be overcome and that will slow down the

implementation. For instance, for such dynamic programs both, load balancing and

GPU balancing are very difficult tasks.

Since Jatatosk was fully development from an algorithm engineering point of view,

rather than a pure algorithm design point of view, it lacks some features that could,

in theory, be easily added to it. Most importantly: It does not handle whole MSO,

but only a fragment of it. Given the success of Jatatosk, it is a natural next step to

explore implementations of model checkers for further fragments. For instance, it

should be possible to push the event-driven evaluation of Jatatosk (which uses the

binary relation E as guard) to guarded first-order logic (by working on the Gaifman

graph).

` Open Problem: Exploring other fragments of monadic second-order logic for their

capability of being model checked quickly in practice. a

Since the initial fragment was quite limited, we extended it with special quantifiers

for some problems that can be solved efficiently on graphs of small treewidth. How-

ever, the list of problems that can be solved efficiently on graphs of small treewidth

is virtually endless and, therefore, there aremany further quantifier extensions that

are possible. One could, for instance, existentially bind a long path, a long cycle, a

vertex cover, or a dominating set.

` OpenProblem:What areuseful quantifier extensions that increase the expressiveness

of the fragment and that can be implemented fast in practice? a

172

13 Conclusion

In this thesis we have explored the fascinating field of fixed-parameter tractability

from a parallel point of view – both, in theory and practice. To that end, we started

by establishing a collection of parallel subclasses of FPT. The resulting framework is

build on top of earlier work due to Flum and Grohe [84], and Elberfeld, Stockhusen,

and Tantau [76]. It is based on parameterized circuit classes that inherit some of

their features from classical circuit complexity, but which also confronted us with

new technical challenges – we discussed and resolved them in Chapter 3.

Once we had the definitions settled, we were ready to design parallel parameterized

algorithms. The first objective, whichwe engaged in Chapter 4, was the compilation

of a toolbox of basic parallel parameterized algorithms. A cornerstone for many al-

gorithms within this box, but also for many other algorithms across this thesis, was

the technique of color coding. In fact, one could say that what prefix sum or pointer

jumping are for classical parallel algorithms, is color coding for parameterized con-

stant time algorithms – almost all algorithms use it, and it seems unavoidable most

of the time.

An elementary technique in the design of parallel algorithms is symmetry breaking

in the form of computing independent sets. We encountered this problemmultiple

times with various parameters throughout this thesis. In particular, we proved the

following three results – however, we did only focus onminimizing the parallel time,

while it is often also important to implement symmetry breaking in a work optimal

way, which is, thus, an interesting further research direction.

• p∆-maximal-independent-set ∈ para-AC0+ε,

• pk,∆-independent-set ∈ para-AC0,

• pk-planar-independent-set ∈ para-AC1.

We continued by adapting many techniques that parameterized complexity has in

its quiver to work in parallel. It is not surprising that this works well for bounded

search trees, as such trees can naturally be evaluated in parallel. We explored the

techniquewith thehelp of various interestingproblems, includingmultiplemodula-

tor problems aswell as the feedback-vertex set problem. In contrast, I was surprised

that kernelization is well suited for parallelization as well – after all, the technique is

presented in a very sequential way in any textbook. However, we were even able to

173

prove that the relation “FPT equals kernelization” holds in the parallel setting: “par-

allel parameterized algorithms equal parallel kernelization.” The by far strongest

result that we obtained in this area is a constant-time kernelization for hitting set

parameterized by the solution size k and the maximum size d of any hyperedge. By

doing so, we have refuted a conjecture by Chen, Flum, and Huang [53], which states

that such a kernelization requires parallel timeΩ(d). The following table illustrates

the kernel sizes that we achieved for various problems in different circuit classes

(the function f is some highly exponential function that results from Theorem 77

and Corollary 78):

Problem Kernel size achievable in

AC
0

TC
0

NC RNC P

p-point-line-cover – k2 k2 k2 k2

pk-vertex-cover 2k k2 + 2k k2 + 2k 2k 2k− c logk

pk-matching 2k 6k2 6k2 1 1

pvc-treewidth 2|S| |S|3 |S|3 |S|3 |S|3

pvc-pathwidth 2|S| |S|3 |S|3 |S|3 |S|3

pvc-treedepth 2|S| |S|3 |S|3 |S|3 |S|3

pk,d-hitting-set f(k,d) f(k,d) f(k,d) f(k,d) kd · k!

The results of the table are all positive in the sense that they try to minimize the

size of the corresponding circuits. However, circuit complexity is also famous for

its power in providing lower bounds. Although we showed that a certain kernel for

pk-vertex-cover cannot be parallelized unless we can compute largematchings in

parallel, we did not discuss “real” circuit lower bounds in this thesis. A natural next

step is, thus, to rule out that certain kernel sizes canbe achieved by circuits of certain

size or depth.

In order to develop parallel parameterized algorithms for a broad range of problems

at once, I ended the first part of this thesis by presenting parallel versions of famous

algorithmic meta-theorems. To that end, we needed a parallel way of decomposing

a graph with respect to various graph parameters. The following table summarizes

the corresponding results from Chapter 7:

Decomposition Complexity Note

Crown Decomposition para-AC0 optimal

Treedepth Decomposition para-AC0 approximation

Tree Decomposition para-AC2 optimal

Equippedwith these algorithms,wewere able to establish parallel algorithmicmeta-

theorems in Chapter 8. I presented such theorems for first- and monadic second-

order logic with respect to various graph parameters. The results are summarized

in the table on the next page.

174

Logic Parameter Complexity

First-Order |ϕ|+ ∆ para-AC0

Monadic Second-Order |ϕ|+ vc para-AC0

Monadic Second-Order |ϕ|+ td para-AC0

Monadic Second-Order |ϕ|+ tw para-AC2

The objective of the second part of this thesis was the development of a practical tool

for the result in the last line. The foundation for such a tool is a library that is able to

compute tree decompositions quickly in practice. Chapter 10 showcases the Java li-

brary Jdrasil, whichwas developed for this purpose. I presented some of its features,

in particular an improved sat-encoding aswell as a game theoretic characterization

of positive instancedrivendynamicprogramming. Furthermore, I highlightedways

to parallelize the computation of tree decompositions through safe separators.

With all the results concerning the computationof treedecompositions and the solv-

ing of model checking problems that were discussed in the course of this thesis, it

was possible to present amodel checker that performswell in practice: Jatatosk. The

main achievement of Chapter 11 is the elaboration of a fragment ofmonadic second-

order logic that is both, general enough to express many natural problems, but re-

stricted enough tobemodel checkedefficiently inpractice. Jatatosk is tailored to this

fragment, which makes it more efficient than many of its competitors. Addition-

ally, its architecture allows to deduce the precise run time of Jatatosk directly from

the syntax of an input formula. The following figure illustrates the performance of

Jatatosk against its competitors over all formulas: It is the sum of the cactus plots

discussed in Chapter 11. Although the plot looks positive for Jatatosk, I should point

out once more that the other two tools can solve a more general problem – in par-

ticular, both can be used tomodel checkmonadic second-order logic, while Jatatosk

can only handle a fragment of it.

Jatatosk (88%)

D-Flat (50%)

Sequoia (76%)

1 5 10

Time in Minutes

100

150

200

250

Number of
Instances Solved

175

At the endof eachpart, I already sketchedmanypossible paths for further research. I

would like to close this thesis by repeating the three paths that I personally think are

themost interesting ones. The first path is the application of parallel color coding in

practice. We have seen that many parallel parameterized algorithms are based on

color coding, but the algorithms presentedwithin this thesis use the technique quite

heavily – probably too heavily for an efficient implementation. It is therefore a de-

sirable path to balance the “amount of used color coding” in order to obtain parallel

algorithms that are fast in practice.

The second path I would like to highlight is the exploration of polynomial kernels

that are computable within FAC
0. Within this thesis, all kernels that we were able to

compute in FAC
0 have exponential size. However, we do not have any lower bound

that forbids kernels of polynomial size. Itwould therefore be interesting to close this

gap, either with positive results (natural problems that have kernels of polynomial

size that can be computed in FAC
0), or with negative results (a technique to prove

that such kernels cannot exist for certain problems).

Finally, the third path that should – in my opinion – obtain further attention in the

future is the computation of optimal tree decompositions in practice. During the

past years – in the light of the Parameterized Algorithms and Computational Exper-

iments Challenge – the available tools already became much better, and the under-

standing of the community of how to solve this problem did increase a lot as well.

However, techniques like positive instance driven dynamic programming are still

not fully understood, and we do not have the tools yet to grasp when and why this

technique works well. Here, the practice is currently one step ahead of the theory,

and it is of course important to catch up. Beyond that, themost challenging task for

the future will be to understand whether and how positive instance driven dynamic

programming can be parallelized.

176

Compendium of Classes and Problems

Thefigure illustrates the complexity classes thatwe studied. An arrowA Bmeans

thatA is a subclass of B. Gray classes are known in the literature, but were not fur-

ther discussed within this thesis. In the center of the figure a collection of “typical”

problems that we have encountered for some of the classes is presented. A complete

list of all problems and results can be found on the next page.

k2

2k

AC
0

TC
0

NC
1

L

NL

AC
1

AC
i

P

NP

para-AC0

para-TC0

para-NC1

para-L

para-NL

para-AC0

para-AC0+ε

para-AC1

para-AC1

para-ACi

FPT

W[1]

AC
0: Problems decidable by

uniform families of circuits of size

nc and constant depth.

AC
i: Problems decidable by

uniform families of circuits of size

nc and depth c logi n.

NC
i / TCi: As ACi, but with

bounded fan-in circuits / circuits

with threshold gates.

para-ACi for i > 0: Problems

decidable by uniform families of

circuits of size f(k) ·nc and

depth f(k) + c logi n.

para-AC0: Problems decidable by

uniform families of circuits of size

f(k) ·nc and constant depth.

para-ACi : Problems decidable by

uniform families of circuits of size

f(k)·nc and depth f(k)·login.

Color Coding

pk,d-hitting-set

Kernel for

pk-vertex-cover

pk-point-line-cover

pϕ,td-model-checking(MSO)

pd-adistance

pk-editing(H-free)

p∆-maximal-independent-set

pk-planar-independent-set

pk-feedback-vertex-set

pϕ,tw-model-checking(MSO)

177

adistance

Instance: A directed graphG = (V ,E), a partition V = V∃ ∪ V∀, two vertices s, t ∈ V, a
distance d.

Question: Is the alternating distance from s to t inG at most d?

Result:

• in para-AC0 for parameter d . 41

Referenced on pages: 41–43, 177

clique

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| > k such thatG[X] is a complete graph?

Referenced on page: 8

cluster-editing

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: CanG be transformed into a graph in which every component is a clique by just k

edge-modifications?

Result:

• in para-AC0 for parameter k . 51

Referenced on page: 51

distance

Instance: A graphG = (V ,E), two vertices s, t ∈ V , and a number d ∈ N.
Question: Is there a path of length at most d from s to t inG?

Result:

• in para-AC0 for parameter d . 41

Referenced on pages: 41, 43

dominating-set

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set S ⊆ V with |S| 6 k and { v ∈ V | |N[v] ∩ X| > 1 } = V?

Result:

• in para-AC0 for parameter k+ ∆ . 90

Referenced on pages: 90, 102

dual-coloring

Instance: A graphG = (V ,E) and a number q ∈ N.
Question: Is there a proper coloring ofGwith at most |V |− q colors?

Result:

• in para-AC0 for parameter q . 93

Referenced on page: 93

178

editing(F)
Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Are there sets R ⊆ E andA ⊆ Ewith |R ∪A| 6 k such that we have

G ′ = (V , (E \ R) ∪A) ∈ F?

Result:

• in para-AC0 for parameter k if F is the class ofH-free graphs . 52

Referenced on pages: 51–52

emb-modulator(H)
Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG), and a number k ∈ N.
Question: Is there a set X ⊆ V(G)with |X| 6 k such thatH G[V \ X]?

Result:

• in para-AC0 parameterized byH forH of constant treewidth . 56

Referenced on pages: 55–56

embedding(H)
Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG).

Question: H G?

Results:

• in para-AC0 parameterized byH forH of constant treewidth . 56

• in para-AC0 parameterized byH forH of constant treedepth . 56

Referenced on pages: 55–56

feedback-vertex-set

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| 6 k such thatG[V \ X] is a forest?

Result:

• pk-feedback-vertex-set ∈ para-AC1 . 58

Referenced on pages: 3, 8, 57–59, 91, 177

hitting-set

Instance: A hypergraphH = (V ,E)with maxe∈E |e| = d and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| 6 k and e ∩ X 6= ∅ for all e ∈ E?
Results:

• in para-AC0 for parameter k+ d . 90

• kernel in FAC0 for parameter k+ d . 90

Referenced on pages: 4, 8, 56, 64, 81–83, 90, 112, 174, 177

hom-modulator(H)
Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG), and a number k ∈ N.
Question: Is there a set X ⊆ V(G)with |X| 6 k such thatH G[V \ X]?

Result:

• in para-AC0 parameterized byH forH of constant treewidth . 55

Referenced on pages: 52, 55

179

homomorphism(H)
Instance: Two graphsH = (V(H),EH) ∈ H andG = (V(G),EG).

Question: H G?

Results:

• in para-AC0 parameterized byH forH of constant treewidth . 54

• in para-AC0 parameterized byH forH of constant treedepth . 55

Referenced on pages: 53–55

independent-set

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| > k such thatG[X] is edgeless?

Results:

• maximal solution can be found in para-FAC0+ε on graphs of bounded degree 38

• in para-AC0 for parameter k+ ∆ . 47

Referenced on pages: 3, 36, 38, 47, 173

matching

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a setM ⊆ Ewith |M| = k such that no vertex is incident to more than

one element ofM?

Results:

• in para-AC0 for parameter k . 76

• k2-kernel in FTC0 . 76

Referenced on pages: 76–77, 174

model-checking(L)
Instance: A relational structure S and anL-formulaϕ.

Question: S |= ϕ?

Results:

• in para-AC0 forL = FO and parameter |ϕ|+ ∆(S) . 102

• in para-AC0 forL = MSO and parameter |ϕ|+ vc(S) . 104

• in para-AC0 forL = MSO and parameter |ϕ|+ td(S) . 104

• in para-AC2 forL = MSO and parameter |ϕ|+ tw(S) . 104

Referenced on pages: 101–102, 104, 177

modulator(F)
Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| 6 k such thatG[V \ X] ∈ F?

Results:

• in para-AC0 for parameter k if F is the class ofH-free graphs . 52

• in para-AC0 for parameter k if F is the class ofH-free graphs . 90

Referenced on pages: 51–52, 90

parity

Instance: A binary stringw ∈ {0, 1}?.

Question:
∑|w|

i=1w[i] mod 2 = 0?

Referenced on page: 30

180

partial-vertex-cover

Instance: A graphG = (V ,E) and two numbers k, t ∈ N.
Question: Is there a set S⊆V with |S| 6 k and

∣∣{ {u, v} | u ∈ S∨ v ∈ S
}∣∣ > t?

Result:

• in para-AC0 for parameter k+ t . 104

Referenced on pages: 101, 104

path-vertex-cover

Instance: A graphG = (V ,E) and two numbers k, c ∈ N.
Question: Is there a set S ⊆ V with |S| 6 k and S ∩ P 6= ∅ for each length-c path P inG?

Results:

• in para-AC0 for parameter k if c is constant . 56

• in para-AC0 for parameter k and c . 56

Referenced on page: 56

pathwidth

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: pw(G) 6 k?
Results:

• |S|3-kernel in FTC0 . 80

• in para-AC0 parameterized by vc . 81

Referenced on pages: 77–81, 174

planar-independent-set

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: IsG planar and is there a set X ⊆ V with |X| > k such thatG[X] is edgeless?

Results:

• in para-AC1 for parameter k . 50

• in para-AC0 if planarity is promised for parameter k . 50

• 4k-kernel in FAC1 . 65

Referenced on pages: 50–51, 65

point-line-cover

Instance: A set of points p1, . . . ,pn ∈ Zd for a fixed d > 2 and a number k ∈ N. Both, the
points and k, are encoded as binary numbers.

Question: Can we cover all points by at most k straight lines?

Results:

• k2-kernel in FTC0 . 65

• every slice is TC0-complete . 66

Referenced on pages: 65–67, 72, 174, 177

rainbow-matching

Instance: An edge-colored graphG = (V ,E,χ)with χ : E→ {1, . . . , k}.

Question: Is there a matchingM ⊆ Ewith |M| = k that contains an edge of every color,

that is, all edges inM have distinct colors?

Result:

• in para-AC0 for parameter k . 46

Referenced on pages: 44, 46

181

sat

Instance: A propositional formulaϕ.

Question: Is there a satisfying assignment β ofϕ, that is, one with β |= ϕ?

Referenced on pages: 5, 77, 117, 121, 123–126, 143–145, 147–148, 171, 175

threshold

Instance: A bitstring b ∈ {0, 1}n and a number t ∈ N.
Question: Are there at least tmany 1’s in b?

Result:

• in para-AC0 for parameter t . 47

Referenced on page: 47

treedepth

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: td(G) 6 k?
Results:

• |S|3-kernel in FTC0 . 80

• in para-AC0 parameterized by vc . 81

• in para-AC0 for parameter k . 94

Referenced on pages: 77–81, 94, 174

treewidth

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: tw(G) 6 k?
Results:

• |S|3-kernel in FTC0 . 79

• in para-AC0 parameterized by vc . 79

• in para-AC2 for parameter k . 95

Referenced on pages: 77–79, 95, 174

vertex-cover

Instance: A graphG = (V ,E) and a number k ∈ N.
Question: Is there a set X ⊆ V with |X| 6 k such thatG[V \ X] contains no edge?

Result:

• in para-AC0 for parameter k . 72

Referenced on pages: 4, 8, 21–22, 30, 56, 63, 72–73, 92, 101, 111, 174, 177

weighted-circuit-satisfiability

Instance: An AC-circuitC and a number k ∈ N,
Question: Is there a stringw ∈ {0, 1}? with

∑|w|

i=1w[i] = k andC(w) = 1?

Referenced on pages: 28–29

182

Experiment Setup

Machine I A MacBook Pro (Retina, 2012) with a 2, 7 GHz Intel Core i7 and 16 GB

1600MHz DDR3. The machine runs macOSMojave in version 10.14.2.

Machine II A desktop computer equipped with 8 GB RAM and an Intel Core pro-

cessor that contains four cores of 3.2 GHz each. The machine runs Ubuntu in ver-

sion 17.10.

Testset I Contains all thegraphs thatwereused for the treewidth track in thePACE

2016 and which were labeled as “solvable in 100s” [63]. This test set shares most of

the graphs with the standard test set for graph coloring from the DIMACS graph

coloring challenge.

Testset II Contains all graphs of the second iteration of the PACE challenge [64].

It contains both, the public and the hidden graphs (which were released after the

challenge). The graphs were handcrafted by the authors of the challenge to gen-

erate instances that are difficult, but manageable for the current technology. The

approach was to start with an instance from the Probabilistic Inference Challenge

(which is reasonable, since many probabilistic inference algorithms first compute

a tree-decomposition of the input), then a random center vertex v was chosen, and

the graph was reduced to the vertices of distance at most r to v (that is, to the ball of

radius r around v).

Testset III A collection of publicly available transit graphs that were generated

from GTFS-transit feeds [80]. This test set was also used for experiments in [83].

Testset IV A collection of real-world instances collected in [2].

183

Bibliography

[1] Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-

Parameter Tractability and Completeness IV: On Completeness forW[P] and

PSPACE Analogues. Annals of Pure and Applied Logic, 73(3):235–276, 1995. doi:
10.1016/0168-0072(94)00034-Z.

[2] Michael Abseher, Nysret Musliu, and Stefan Woltran. Improving the Effi-

ciency ofDynamicProgrammingonTreeDecompositions viaMachineLearn-

ing. Journal of Artificial Intelligence Research, 58:829–858, 2017. doi:10.1613/
jair.5312.

[3] Faisal N. Abu-Khzam, Michael A. Langston, Pushkar Shanbhag, and Christo-

pher T. Symons. Scalable Parallel Algorithms for FPT Problems. Algorithmica,

45(3):269–284, 2006. doi:10.1007/s00453-006-1214-1.

[4] Eric Allender and Meena Mahajan. The Complexity of Planarity Testing. In

Proceedings of the 17thAnnual SymposiumonTheoretical Aspects ofComputer Science,

STACS 2000, February 2000, Lille, France, Lecture Notes in Computer Science,

pages 87–98. Springer, 2000. doi:10.1007/3-540-46541-3_7.

[5] Noga Alon, László Babai, and Alon Itai. A Fast and Simple Randomized Paral-

lel Algorithm for theMaximal Independent Set Problem. Journal of Algorithms,

7(4):567–583, 1986. doi:10.1016/0196-6774(86)90019-2.

[6] Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. Journal of the ACM,

42(4):844–856, 1995. doi:10.1145/210332.210337.

[7] Kazuyuki Amano. k-Subgraph Isomorphism on AC0 Circuits. Computational

Complexity, 19(2):1016–3328, 2010. doi:10.1007/s00037-010-0288-y.

[8] Nima Anari and Vijay V. Vazirani. A Pseudo-Deterministic RNC Algorithm

for General Graph Perfect Matching. CoRR, abs/1901.10387, 2019. URL: http:
//arxiv.org/abs/1901.10387.

[9] Gilles Audemard and Laurent Simon. Predicting Learnt Clauses Quality in

ModernSATSolvers. InProceedings of the 21st International JointConference onAr-

tificial Intelligence, IJCAI 2009, July 11–17, 2009, Pasadena, California, USA, pages

399–404, 2009.

185

http://dx.doi.org/10.1016/0168-0072(94)00034-Z
http://dx.doi.org/10.1016/0168-0072(94)00034-Z
http://dx.doi.org/10.1613/jair.5312
http://dx.doi.org/10.1613/jair.5312
http://dx.doi.org/10.1007/s00453-006-1214-1
http://dx.doi.org/10.1007/3-540-46541-3_7
http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.1007/s00037-010-0288-y
http://arxiv.org/abs/1901.10387
http://arxiv.org/abs/1901.10387

[10] Olivier Bailleux and Yacine Boufkhad. Efficient CNF Encoding of Boolean

CardinalityConstraints. InProceedings of the 9th InternationalConference onPrin-

ciples and Practice of Constraint Programming, CP 2003, September 29 -– October 3,

Kinsale, Ireland, Lecture Notes in Computer Science, pages 108–122. Springer,

2003. doi:10.1007/978-3-540-45193-8_8.

[11] Max Bannach. Jdrasil for graph coloring.

https://github.com/maxbannach/Jdrasil-for-GraphColoring.
Accessed: 23.01.2019; Commit: a5e52a8.

[12] Max Bannach and Sebastian Berndt. Jatatosk.

http://www.github.com/maxbannach/jatatosk.
Accessed: 08.04.2019; Commit: 45e306c.

[13] Max Bannach and Sebastian Berndt. Practical Access to Dynamic Program-

ming on Tree Decompositions. In Proceedings of the 26th Annual European Sym-

posium on Algorithms, ESA 2018, August 20–22, 2018, Helsinki, Finland, LIPIcs,

pages 6:1–6:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

doi:10.4230/LIPIcs.ESA.2018.6.

[14] Max Bannach and Sebastian Berndt. Positive-Instance Driven Dynamic Pro-

gramming for Graph Searching. In Proceedings of the 16th Algorithms and Data

Structures Symposium, WADS 2019, August 5–7, 2019, Edmonton, Canada, Lecture

Notes in Computer Science. Springer, 2019.

[15] Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil.

http://www.github.com/maxbannach/jdrasil.
Accessed: 05.06.2019; Commit: dfa1eee.

[16] Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A Modular Li-

brary for Computing Tree Decompositions. In Proceedings of the 16th Interna-

tional Symposium on Experimental Algorithms, SEA 2017, June 21–23, 2017, London,

UK, LIPIcs, pages 28:1–28:21. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2017. doi:10.4230/LIPIcs.SEA.2017.28.

[17] Max Bannach, Sebastian Berndt, Thorsten Ehlers, and Dirk Nowotka. SAT-

Encodings of Tree Decompositions. In SAT Competition 2018: Solver and Bench-

mark Descriptions, 2018.

[18] MaxBannach,Malte Skambath, andTill Tantau. TowardsWork-Efficient Par-

allel Parameterized Algorithms. In Proceedings of the 13th International Confer-

ence on Algorithms and Computation, WALCOM 2019, February 27 – March 2, 2019,

Guwahati, India, Lecture Notes in Computer Science, pages 341–353. Springer,

2019. doi:10.1007/978-3-030-10564-8_27.

186

http://dx.doi.org/10.1007/978-3-540-45193-8_8
https://github.com/maxbannach/Jdrasil-for-GraphColoring
https://github.com/maxbannach/Jdrasil-for-GraphColoring/commit/a5e52a849f50f2bdebebb6d736958d30e90e1282
http://www.github.com/maxbannach/jatatosk
https://github.com/maxbannach/Jatatosk/commit/45e306cfac5a273416870ec0bd9cd2c7f39a6932
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.6
http://www.github.com/maxbannach/jdrasil
https://github.com/maxbannach/Jdrasil/commit/dfa1eee830796425a24b2385e982b050c2d475b2
http://dx.doi.org/10.4230/LIPIcs.SEA.2017.28
http://dx.doi.org/10.1007/978-3-030-10564-8_27

[19] Max Bannach, Christoph Stockhusen, and Till Tantau. Fast Parallel Fixed-

parameter Algorithms via Color Coding. In Proceedings of the 10th International

Symposium on Parameterized and Exact Computation, IPEC 2015, September 16–18,

2015, Patras, Greece, volume 43 of LIPIcs, pages 224–235. Schloss Dagstuhl –

Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.IPEC.2015.
224.

[20] Max Bannach and Till Tantau. Parallel Multivariate Meta-Theorems. In Pro-

ceedings of the 11th International Symposium on Parameterized and Exact Compu-

tation, IPEC 2016, August 24–26, 2016, Aarhus, Denmark, volume 63 of LIPIcs,

pages 4:1–4:17. SchlossDagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.IPEC.2016.4.

[21] Max Bannach and Till Tantau. Computing Hitting Set Kernels By AC0-

Circuits. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer

Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96 of

LIPIcs, pages 9:1–9:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2018. doi:10.4230/LIPIcs.STACS.2018.9.

[22] Max Bannach and Till Tantau. Computing Kernels in Parallel: Lower and Up-

per Bounds. In Proceedigns of the 13th International Symposium on Parameterized

and Exact Computation, IPEC 2018, August 22–24, 2018, Helsinki, Finland, LIPIcs.

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

[23] Max Bannach and Till Tantau. On the Descriptive Complexity of Color Cod-

ing. In Proceedings of the 36th International Symposium on Theoretical Aspects of

Computer Science, STACS 2019, March 13–16, 2019, Berlin, Germany, LIPIcs, pages

11:1–11:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.STACS.2019.11.

[24] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uni-

formity within NC1. In Proceedings of the 3th Annual Structure in Complexity The-

ory Conference, CoCo 1988, June 14-17, 1988, Washington, D. C., USA, pages 47–59.

IEEE, 1988. doi:10.1109/SCT.1988.5262.

[25] Paul Beame, Russell Impagliazzo, and Toniann Pitassi. Improved Depth

Lower Bounds for Small Distance Connectivity. Computational Complexity,

7(4):325–345, 1998. doi:10.1007/s000370050014.

[26] Jeremias Berg andMatti Järvisalo. SAT-Based Approaches to Treewidth Com-

putation: An Evaluation. In Proceedings of the 26th IEEE International Confer-

ence onToolswithArtificial Intelligence, ICTAI2014,November 10–12, 2014, Limassol,

Cyprus, pages 328–335. IEEE Computer Society, 2014. doi:10.1109/ICTAI.
2014.57.

187

http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.4
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.4
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.9
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.11
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.11
http://dx.doi.org/10.1109/SCT.1988.5262
http://dx.doi.org/10.1007/s000370050014
http://dx.doi.org/10.1109/ICTAI.2014.57
http://dx.doi.org/10.1109/ICTAI.2014.57

[27] Anne Berry, Romain Pogorelcnik, and Geneviève Simonet. An Introduction

to Clique Minimal Separator Decomposition. Algorithms, 3(2):197–215, 2010.

doi:10.3390/a3020197.

[28] Daniel Bienstock and Paul D. Seymour. Monotonicity in Graph Searching.

Journal of Algorithms, 12(2):239–245, 1991.

[29] Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering

the SAT Competition 2017. In Proceedings of SAT Competition 2017 – Solver and

BenchmarkDescriptions, volumeB-2017-1 ofDepartment ofComputer Science Series

of Publications B, pages 14–15. University of Helsinki, 2017.

[30] Bernhard Bliem, Günther Charwat, Frederico Dusberger, Markus Hecher,

andStefanWoltran. D-flat: Progress report, 2014. URL:https://www.dbai.
tuwien.ac.at/research/report/dbai-tr-2014-86.pdf.

[31] Bernhard Bliem, Reinhard Pichler, and StefanWoltran. Implementing Cour-

celle’s Theorem in aDeclarative Framework for Dynamic Programming. Jour-

nal of Logic and Computation, 27(4):1067–1094, 2017. doi:10.1093/logcom/
exv089.

[32] Hans L. Bodlaender. NC-Algorithms for Graphs With Small Treewidth. In

Proceedings of the 15th InternationalWorkshop on Graph-Theoretic Concepts in Com-

puter Science,WG 1989, June 14-16, 1989, Castle Rolduc, TheNetherlands, pages 1–10.

Springer, 1989. doi:10.1007/3-540-50728-0_32.

[33] Hans L. Bodlaender. A Linear-Time Algorithm for Finding Tree-

Decompositions of Small Treewidth. SIAM Journal on Computing,

25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

[34] Hans L. Bodlaender, Rod Downey, Fedor V. Fomin, and Dániel Marx, editors.

The Multivariate Algorithmic Revolution and Beyond - Essays Dedicated to Michael

R. Fellows on the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in

Computer Science. Springer, 2012. doi:10.1007/978-3-642-30891-8.

[35] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Her-

melin. On Problems Without Polynomial Kernels. Journal of Computer and

System Sciences, 75(8):423–434, 2009. doi:10.1016/j.jcss.2009.04.001.

[36] Hans L. Bodlaender, Fedor V. Fomin, Arie M.C.A. Koster, Dieter Kratsch, and

Dimitrios M. Thilikos. On Exact Algorithms for Treewidth. ACM Transactions

on Algorithms, 9(1):12:1–12:23, 2012. doi:10.1145/2390176.2390188.

[37] Hans L. Bodlaender and Torben Hagerup. Parallel Algorithms with Optimal

Speedup for Bounded Treewidth. SIAM Journal on Computing, 27(6):1725–1746,

1998. doi:10.1137/S0097539795289859.

188

http://dx.doi.org/10.3390/a3020197
https://www.dbai.tuwien.ac.at/research/report/dbai-tr-2014-86.pdf
https://www.dbai.tuwien.ac.at/research/report/dbai-tr-2014-86.pdf
http://dx.doi.org/10.1093/logcom/exv089
http://dx.doi.org/10.1093/logcom/exv089
http://dx.doi.org/10.1007/3-540-50728-0_32
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1007/978-3-642-30891-8
http://dx.doi.org/10.1016/j.jcss.2009.04.001
http://dx.doi.org/10.1145/2390176.2390188
http://dx.doi.org/10.1137/S0097539795289859

[38] Hans L. Bodlaender, BartM. P. Jansen, and StefanKratsch. Kernel Bounds for

Structural Parameterizations of Pathwidth. In Proceedings of the 13th Scandina-

vian Symposium and Workshops on Algorithm Theory, SWAT 2012, July 4–6, 2012,

Helsinki, Finland, LectureNotes inComputer Science, pages 352–363. Springer,

2012. doi:10.1007/978-3-642-31155-0_31.

[39] Hans L. Bodlaender, BartM. P. Jansen, and Stefan Kratsch. Preprocessing for

Treewidth: A Combinatorial Analysis through Kernelization. SIAM Journal on

Discrete Mathematics, 27(4):2108–2142, 2013. doi:10.1137/120903518.

[40] Hans L. Bodlaender and TonKloks. Efficient andConstructive Algorithms for

the Pathwidth and Treewidth of Graphs. Journal of Algorithms, 21(2):358 – 402,

1996. doi:10.1006/jagm.1996.0049.

[41] Hans L. Bodlaender and Arie M. C. A. Koster. Safe Separators for Treewidth.

DiscreteMathematics, 306(3):337–350, 2006. doi:10.1016/j.disc.2005.12.
017.

[42] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth Computations I.

Upper bounds. Information and Computation, 208(3):259–275, 2010. doi:
10.1016/j.ic.2009.03.008.

[43] Hans L. Bodlaender, ArieM. C. A. Koster, Frank van den Eijkhof, and Linda C.

van der Gaag. Pre-Processing for Triangulation of Probabilistic Networks. In

Proceedings of the 17thConference inUncertainty inArtificial Intelligence, UAI ’01, Au-

gust 2–5, 2001, Seattle, Washington, USA, pages 32–39. Morgan Kaufmann, 2001.

[44] Vincent Bouchitté and Ioan Todinca. Treewidth and Minimum Fill-in of

Weakly Triangulated Graphs. In Proceedings of the 16th Annual Symposium on

Theoretical Aspects of Computer Science, STACS 99, March 4–6, 1999, Trier, Ger-

many, Lecture Notes in Computer Science, pages 197–206. Springer, 1999.

doi:10.1007/3-540-49116-3_18.

[45] Bostjan Bresar, Frantisek Kardos, Ján Katrenic, and Gabriel Semanisin. Min-

imum k-Path Vertex Cover. CoRR, abs/1012.2088, 2010.

[46] Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Ad-

vice Classes of Parameterized Tractability. Annals of Pure and Applied Logic,

84(1):119–138, 1997. doi:10.1016/S0168-0072(95)00020-8.

[47] Marco Cesati and Miriam Di Ianni. Parameterized Parallel Complexity. In

Proceedings of the 4th International Conference on Parallel Processing, Euro-Par 1998,

September 1–4, 1998, Southampton, UK, volume 1470 of Lecture Notes in Computer

Science, pages 892–896. Springer, 1998. doi:10.1007/BFb0057945.

189

http://dx.doi.org/10.1007/978-3-642-31155-0_31
http://dx.doi.org/10.1137/120903518
http://dx.doi.org/10.1006/jagm.1996.0049
http://dx.doi.org/10.1016/j.disc.2005.12.017
http://dx.doi.org/10.1016/j.disc.2005.12.017
http://dx.doi.org/10.1016/j.ic.2009.03.008
http://dx.doi.org/10.1016/j.ic.2009.03.008
http://dx.doi.org/10.1007/3-540-49116-3_18
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://dx.doi.org/10.1007/BFb0057945

[48] Donald Chai and Andreas Kuehlmann. Circuit-Based Preprocessing of ILP

and Its Applications in Leakage Minimization and Power Estimation. In

Proceedings of the 22nd IEEE International Conference on Computer Design: VLSI

in Computers & Processors (ICCD 2004), 11–13 October 2004, San Jose, CA, USA,

pages 387–392. IEEE Computer Society, 2004. doi:10.1109/ICCD.2004.
1347951.

[49] James Cheetham, Frank K. H. A. Dehne, Andrew Rau-Chaplin, Ulrike Stege,

and Peter J. Taillon. Solving Large FPT Problems on Coarse-Grained Parallel

Machines. Journal of Computer and System Sciences, 67(4):691–706, 2003. doi:
10.1016/S0022-0000(03)00075-8.

[50] Hubie Chen and Moritz Müller. The Fine Classification of Conjunctive

Queries and Parameterized Logarithmic Space. ACM Transactions on Compu-

tation Theory, 7(2):7:1–7:27, 2015. doi:10.1145/2751316.

[51] Jianer Chen, Iyad A. Kanj, andWeijia Jia. Vertex Cover: Further Observations

and Further Improvements. Journal of Algorithms, 41(2):280–301, 2001. doi:
10.1006/jagm.2001.1186.

[52] Yijia Chen and Jörg Flum. Some Lower Bounds in Parameterized AC0. In

Proceedings of the 41st International Symposium on Mathematical Foundations of

Computer Science, MFCS 2016, August 22–26, 2016, Kraków, Poland, volume 58 of

LIPIcs, pages 27:1–27:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2016. doi:10.4230/LIPIcs.MFCS.2016.27.

[53] Yijia Chen, Jörg Flum, and Xuangui Huang. Slicewise Definability in First-

Order Logic with Bounded Quantifier Rank. In Proceedings of the 26th Annual

Conference on Computer Science Logic, CSL 2017, August 20–24, 2017, Stockholm,

Sweden, LIPIcs, pages 19:1–19:16. Schloss Dagstuhl – Leibniz-Zentrum für In-

formatik, 2017. doi:10.4230/LIPIcs.CSL.2017.19.

[54] Benny Chor, Mike Fellows, and David W. Juedes:. Linear Kernels in Linear

Time, or How to Save k Colors inO(n2) Steps. In Proceedings of the 30th Inter-

nationalWorkshop onGraph-TheoreticConcepts inComputer Science,WG2004, June

21-23, 2004, Bad Honnef, Germany, Lecture Notes in Computer Science, pages

257–269. Springer, 2004. doi:10.1007/978-3-540-30559-0_22.

[55] Stephen A. Cook. A Taxonomy of Problems With Fast Parallel Algorithms.

Information and Control, 64(1):2 – 22, 1985. doi:10.1016/S0019-9958(85)
80041-3.

[56] Stephen A. Cook and PierreMcKenzie. Problems Complete for Deterministic

Logarithmic Space. Journal of Algorithms, 8(3):385–394, 1987. doi:10.1016/
0196-6774(87)90018-6.

190

http://dx.doi.org/10.1109/ICCD.2004.1347951
http://dx.doi.org/10.1109/ICCD.2004.1347951
http://dx.doi.org/10.1016/S0022-0000(03)00075-8
http://dx.doi.org/10.1016/S0022-0000(03)00075-8
http://dx.doi.org/10.1145/2751316
http://dx.doi.org/10.1006/jagm.2001.1186
http://dx.doi.org/10.1006/jagm.2001.1186
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.27
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.19
http://dx.doi.org/10.1007/978-3-540-30559-0_22
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1016/0196-6774(87)90018-6
http://dx.doi.org/10.1016/0196-6774(87)90018-6

[57] Bruno Courcelle. Graph Rewriting: An Algebraic and Logic Approach. In For-

mal Models and Semantics, volume B ofHandbook of Theoretical Computer Science,

pages 193–242. Elsevier, Amsterdam, Netherlands andMIT Press, Cambridge,

Massachusetts, 1990. doi:10.1016/B978-0-444-88074-1.50010-X.

[58] Gabriel Cramer. Introduction à l’analyse des lignes courbes algébriques. Chez les

Frères Cramer et Cl. Philibert, 1750.

[59] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel

Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized

Algorithms. Springer, 2015. doi:10.1007/978-3-319-21275-3.

[60] Elias Dahlhaus, Marek Karpinski, and Mark B. Novick. Fast Parallel Algo-

rithms for theClique SeparatorDecomposition. In Proceedings of the 1th Annual

ACM-SIAM Symposium on Discrete Algorithms, 22–24 January 1990, San Francisco,

California, USA, pages 244–251. SIAM, 1990.

[61] Bireswar Das, Murali Krishna Enduri, and I. Vinod Reddy. On the Parallel Pa-

rameterized Complexity of the Graph IsomorphismProblem. In Proceedings of

the 12th International Conference on Algorithms and Computation, WALCOM 2018,

March 3–5, 2018, Dhaka, Bangladesh, Lecture Notes in Computer Science, pages

252–264. Springer, 2018. doi:10.1007/978-3-319-75172-6_22.

[62] RinaDechter and ItayMeiri. Experimental Evaluation of Preprocessing Tech-

niques in Constraint Satisfaction Problems. In Proceedings of the 11th Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 1989, August 1989, Detroit, MI,

USA, pages 271–277. Morgan Kaufmann, 1989.

[63] Holger Dell, Thore Husfeldt, Bart M. P. Jansen, Petteri Kaski, Christian Ko-

musiewicz, and Frances A. Rosamond. The First Parameterized Algorithms

and Computational Experiments Challenge. In Proceedings of the 11th Inter-

national Symposium on Parameterized and Exact Computation, IPEC 2016, Au-

gust 24–26, 2016, Aarhus, Denmark, LIPIcs, pages 30:1–30:9. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.IPEC.2016.
30.

[64] Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller.

The PACE 2017 Parameterized Algorithms and Computational Experiments

Challenge: The Second Iteration. In Proceedings of the 12th International Sym-

posium on Parameterized and Exact Computation, IPEC 2017, September 6–8, 2017,

Vienna, Austria, LIPIcs, pages 30:1–30:12. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2017. doi:10.4230/LIPIcs.IPEC.2017.30.

[65] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in

mathematics. Springer, 2012.

191

http://dx.doi.org/10.1016/B978-0-444-88074-1.50010-X
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-75172-6_22
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.30
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.30
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.30

[66] Rod Downey and Michael Fellows. Fixed-parameter Tractability and Com-

pleteness III: Some Structural Aspects of theWHierarchy. In Complexity The-

ory, pages 191–225. Cambridge University Press, New York, NY, USA, 1993.

[67] Rodney G. Downey andMichael R. Fellows. Fixed-Parameter Tractability and

Completeness I: Basic Results. SIAM Journal on Computing, 24(4):873–921, 1995.

doi:10.1137/S0097539792228228.

[68] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability

and completeness II: on completeness for W[1]. Theoretical Computer Science,

141(1&2):109–131, 1995. doi:10.1016/0304-3975(94)00097-3.

[69] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.

Springer, 1999. doi:10.978.14612/67980.

[70] RodneyG.Downey andMichael R. Fellows. Fundamentals of ParameterizedCom-

plexity. Springer, 2013. doi:10.978.14471/55584.

[71] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 1995.

doi:10.1007/3-540-28788-4.

[72] Heinz-Dieter Ebbinghaus, Jörg Flum, and Wolfgang Thomas. Mathematical

Logic. Springer, 1994. doi:10.1007/978-1-4757-2355-7.

[73] Niklas Eén and Armin Biere. Effective Preprocessing in SAT Through Vari-

able and Clause Elimination. In Proceedings of the 8th International Conference

on Theory and Applications of Satisfiability Testing, SAT 2005, June 19–23, 2005, St.

Andrews, UK, LectureNotes in Computer Science, pages 61–75. Springer, 2005.

doi:10.1007/11499107_5.

[74] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace Versions of the

Theorems of Bodlaender and Courcelle. In Proceedings of the 51th Annual IEEE

Symposium on Foundations of Computer Science, FOCS 2012, October 23–26, 2010,

Las Vegas, USA, pages 143–152. IEEE Computer Society, Los Alamitos, Califor-

nia, 2010. doi:10.1109/FOCS.2010.21.

[75] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Algorithmic Meta The-

orems for Circuit Classes of Constant and Logarithmic Depth. In Proceed-

ings of the 29th International Symposium on Theoretical Aspects of Computer Science,

STACS 2012, February 29th – March 3rd, 2012, Paris, France, pages 66–77. Schloss

Dagstuhl-Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.
STACS.2012.66.

[76] Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the Space and

Circuit Complexity of Parameterized Problems: Classes and Completeness.

Algorithmica, 71(3):661–701, 2015. doi:10.1007/s00453-014-9944-y.

192

http://dx.doi.org/10.1137/S0097539792228228
http://dx.doi.org/10.1016/0304-3975(94)00097-3
http://dx.doi.org/10.978.14612/67980
http://dx.doi.org/10.978.14471/55584
http://dx.doi.org/10.1007/3-540-28788-4
http://dx.doi.org/10.1007/978-1-4757-2355-7
http://dx.doi.org/10.1007/11499107_5
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66
http://dx.doi.org/10.1007/s00453-014-9944-y

[77] Paul Erdős and Richard Rado. Intersection Theorems for Systems of Sets.

Journal of the LondonMathematical Society, 1(1):85–90, 1960.

[78] Ronald Fagin. Generalized First-Order Spectra and Polynomial-Time Recog-

nizable Sets. Complexity of Computation, 7:27–41, 1974.

[79] Stephen A. Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite Perfect

Matching is in quasi-NC. In Proceedings of the 48th Annual ACMSIGACT Sympo-

sium on Theory of Computing, STOC 2016, June 18–21, 2016, Cambridge, MA, USA,

pages 754–763. ACM, 2016. doi:10.1145/2897518.2897564.

[80] Johannes Klaus Fichte. gtfs2graphs – a transit feed to graph format converter.

http://www.github.com/daajoe/gtfs2graphs.
Accessed: 20.04.2018; Commit: 2199448.

[81] Johannes Klaus Fichte, Markus Hecher, Neha Lodha, and Stefan Szeider. An

SMT Approach to Fractional Hypertree Width. In Proceedings of the 24th In-

ternational Conference on Principles and Practice of Constraint Programming, CP

2018, August 27-31, 2018, Lille, France, LectureNotes inComputer Science, pages

109–127. Springer, 2018. doi:10.1007/978-3-319-98334-9_8.

[82] Johannes Klaus Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser.

Weighted Model Counting on the GPU by Exploiting Small Treewidth. In

Proceedings of the 26th Annual European Symposium on Algorithms, ESA 2018, Au-

gust 20–22, 2018, Helsinki, Finland, LIPIcs, pages 28:1–28:16. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.
28.

[83] Johannes Klaus Fichte, Neha Lodha, and Stefan Szeider. SAT-Based Local Im-

provement for Finding Tree Decompositions of SmallWidth. In Proceedings of

the 20th International Conference on Theory andApplications of Satisfiability Testing,

SAT 2017, August 28 – September 1, 2017, Melbourne, VIC, Australia, pages 401–411,

2017. doi:10.1007/978-3-319-66263-3_25.

[84] Jörg Flum and Martin Grohe. Describing Parameterized Complexity

Classes. Information and Computation, 187(2):291–319, 2003. doi:10.1016/
S0890-5401(03)00161-5.

[85] Jörg Flum andMartin Grohe. Parameterized Complexity Theory. Springer, 2006.

doi:10.978.36420/67570.

[86] Fedor V. Fomin, Pierre Fraigniaud, and Nicolas Nisse. Nondeterministic

Graph Searching: From Pathwidth to Treewidth. Algorithmica, 53(3):358–373,

2009. doi:10.1007/s00453-007-9041-6.

193

http://dx.doi.org/10.1145/2897518.2897564
http://www.github.com/daajoe/gtfs2graphs
https://github.com/daajoe/gtfs2graphs/commit/219944893f874b365de1ed87fc265fd5d19d5972
http://dx.doi.org/10.1007/978-3-319-98334-9_8
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.28
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.28
http://dx.doi.org/10.1007/978-3-319-66263-3_25
http://dx.doi.org/10.1016/S0890-5401(03)00161-5
http://dx.doi.org/10.1016/S0890-5401(03)00161-5
http://dx.doi.org/10.978.36420/67570
http://dx.doi.org/10.1007/s00453-007-9041-6

[87] Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in

Theoretical Computer Science. An EATCS Series. Springer, 2010. doi:10.
1007/978-3-642-16533-7.

[88] Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. Exact

Algorithms for Treewidth and Minimum Fill-In. SIAM Journal on Computing,

38(3):1058–1079, 2008. doi:10.1137/050643350.

[89] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and

Marcin Wrochna. Fully Polynomial-Time Parameterized Computations for

Graphs and Matrices of Low Treewidth. ACM Transactions on Algorithms,

14(3):34:1–34:45, 2018. doi:10.1145/3186898.

[90] Fedor. V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Ker-

nelization: Theory of Parameterized Preprocessing. Cambridge University Press,

2018.

[91] Markus Frick andMartin Grohe. The Complexity of First-Order andMonadic

Second-Order Logic Revisited. Annals of Pure and Applied Logic, 130(1-3):3–31,

2004. doi:10.1016/j.apal.2004.01.007.

[92] Alan M. Frisch and Paul A. Giannaros. SAT Encodings of the At-Most-k Con-

straint SomeOld , SomeNew , SomeFast , SomeSlow. InProceedings of the 10th

InternationalWorkshop onConstraintModelling andReformulation,ModRef 2011, 12

September, 2011, Perugia, Italy. EASST, 2011.

[93] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, Circuits, and

the Polynomial-TimeHierarchy.Mathematical Systems Theory, 17(1):13–27, 1984.

doi:10.1007/BF01744431.

[94] Haim Gaifman. On Local and Non-Local Properties. In Proceedings of the Her-

brand Symposium, volume 107 of Studies in Logic and the Foundations ofMathemat-

ics, pages 105 – 135. Elsevier, 1982. doi:10.1016/S0049-237X(08)71879-2.

[95] Moses Ganardi. Matching-Based Algorithms for Computing Treewidth.

Bachelor thesis, Rheinisch-Westfälische Technische Hochschule Aachen,

2012.

[96] Robert Ganian, Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. SAT-

Encodings for Treecut Width and Treedepth. In Proceedings of the Proceed-

ings of the 21th Workshop on Algorithm Engineering and Experiments, ALENEX

2019, January 7–8, 2019, San Diego, CA, USA, pages 117–129. SIAM, 2019. doi:
10.1137/1.9781611975499.10.

[97] Fanica Gavril. Algorithms on Clique Separable Graphs. Discrete Mathematics,

19(2):159–165, 1977. doi:10.1016/0012-365X(77)90030-9.

194

http://dx.doi.org/10.1007/978-3-642-16533-7
http://dx.doi.org/10.1007/978-3-642-16533-7
http://dx.doi.org/10.1137/050643350
http://dx.doi.org/10.1145/3186898
http://dx.doi.org/10.1016/j.apal.2004.01.007
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1016/S0049-237X(08)71879-2
http://dx.doi.org/10.1137/1.9781611975499.10
http://dx.doi.org/10.1137/1.9781611975499.10
http://dx.doi.org/10.1016/0012-365X(77)90030-9

[98] Archontia C. Giannopoulou, Paul Hunter, and Dimitrios M. Thilikos. LIFO-

Search: AMin-Max Theorem and a Searching Game for Cycle-Rank and Tree-

Depth. Discrete Applied Mathematics, 160(15):2089–2097, 2012. doi:10.1016/
j.dam.2012.03.015.

[99] Vibhav Gogate and Rina Dechter. A Complete Anytime Algorithm for

Treewidth. In Proceedings of the 20th Conference in Uncertainty in Artificial Intelli-

gence, UAI ’04, July 7-11, 2004, Banff, Canada, pages 201–208. AUAI Press, 2004.

[100] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Parallel

Symmetry-Breaking in Sparse Graphs. SIAM Journal on Discrete Mathematics,

1(4):434–446, 1988. doi:10.1137/0401044.

[101] Raymond Greenlaw, H. James Hoover, andWalter L. Ruzzo. Limits to Parallel

Computations. Oxford University Press, 1995.

[102] Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke. Parameterized Com-

plexity of Generalized Vertex Cover Problems. In Proceedings of the 9th Interna-

tionalWorkshop onAlgorithmsandDataStructures,WADS2005, August 15-17, 2005,

Waterloo, Canada, Lecture Notes in Computer Science, pages 36–48. Springer,

2005. doi:10.1007/11534273_5.

[103] Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis,

Moshe Y. Vardi, and Victor Vianu. On the Unusual Effectiveness of Logic in

Computer Science. Bulletin of Symbolic Logic, 7(2):213–236, 2001.

[104] TomHartmann, Max Bannach, andMartinMiddendorf. Sorting Signed Per-

mutations by Inverse Tandem Duplication Random Losses. In Proceedings

of the 17th Asia Pacific Bioinformatics Conference, APBC 2019, January 14–16, 2019,

Wuhan, China, 2019.

[105] Tom Hartmann, Max Bannach, and Martin Middendorf. Sorting Signed

Permutations by Inverse Tandem Duplication Random Losses. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, pages 1–1, 2019. doi:
10.1109/TCBB.2019.2917198.

[106] William Hesse. Division Is in Uniform TC0. In Proceedings of the 28th In-

ternational Colloquium on Automata, Languages, and Programming, ICALP 2001,

July 2001, Creta, Greece, Lecture Notes in Computer Science, pages 104–114.

Springer, 2001. doi:10.1007/3-540-48224-5_9.

[107] Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube

and Conquer: Guiding CDCL SAT Solvers by Lookaheads. In Hardware and

Software: Verification and Testing - Revised Selected Papers of the 7th International

Haifa Verification Conference, HVC 2011, December 6–8, 2011, Haifa, Israel, Lec-

ture Notes in Computer Science, pages 50–65. Springer, 2011. doi:10.1007/
978-3-642-34188-5_8.

195

http://dx.doi.org/10.1016/j.dam.2012.03.015
http://dx.doi.org/10.1016/j.dam.2012.03.015
http://dx.doi.org/10.1137/0401044
http://dx.doi.org/10.1007/11534273_5
http://dx.doi.org/10.1109/TCBB.2019.2917198
http://dx.doi.org/10.1109/TCBB.2019.2917198
http://dx.doi.org/10.1007/3-540-48224-5_9
http://dx.doi.org/10.1007/978-3-642-34188-5_8
http://dx.doi.org/10.1007/978-3-642-34188-5_8

[108] John E. Hopcroft and Robert Endre Tarjan. Algorithm 447: Efficient Algo-

rithms forGraphManipulation. Communiaction of the ACM, 16(6):372–378, 1973.

doi:10.1145/362248.362272.

[109] John E. Hopcroft and Robert Endre Tarjan. Dividing a Graph into Tricon-

nected Components. SIAM Journal on Computing, 2(3):135–158, 1973. doi:
10.1137/0202012.

[110] Neil Immerman. LanguageswhichCaptureComplexityClasses. InProceedings

of the 15thAnnual ACMSymposiumonTheory ofComputing, STOC1983, 25–27April,

1983, Boston,Massachusetts, USA, pages 347–354. ACMNewYork, NY, 1983. doi:
10.1145/800061.808765.

[111] Neil Immerman. Descriptive Complexity. Graduate texts in computer science.

Springer, 1999. doi:10.1007/978-1-4612-0539-5.

[112] Alon Itai, Michael Rodeh, and Steven L. Tanimoto. SomeMatching Problems

for Bipartite Graphs. Journal of the ACM, 25(4):517–525, 1978. doi:10.1145/
322092.322093.

[113] Riko Jacob, Tobias Lieber, and Matthias Mnich. Treewidth Computation and

Kernelization in the Parallel External Memory Model. In Proceedings of the 8th

International Conference on Theoretical Computer Science, TCS 2014, September 1–3,

2014, Rome, Italy, Lecture Notes in Computer Science, pages 78–89. Springer,

2014. doi:10.1007/978-3-662-44602-7_7.

[114] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[115] RichardM.Karp. Reducibility AmongCombinatorial Problems. In Proceedings

of a symposium on the Complexity of Computer Computations, held March 20–22,

1972, Yorktown Heights, New York, USA, The IBM Research Symposia Series,

pages 85–103. Plenum Press, New York, 1972.

[116] Richard M. Karp and Avi Wigderson. A Fast Parallel Algorithm for the Max-

imal Independent Set Problem. Journal of the ACM, 32(4):762–773, 1985. doi:
10.1145/4221.4226.

[117] JoachimKneis andAlexander Langer. APractical Approach toCourcelle’s The-

orem. Electronic Notes in Theoretical Computer Science, 251:65 – 81, 2009.

[118] Joachim Kneis, Alexander Langer, and Peter Rossmanith. Courcelle’s Theo-

rem - A Game-Theoretic Approach. Discrete Optimization, 8:568–594, 2011.

[119] Yasuaki Kobayashi and Hisao Tamaki. Treedepth Parameterized by Vertex

Cover Number. In Proceedings of the 11th International Symposium on Parame-

terized and Exact Computation, IPEC 2016, August 24–26, 2016, Aarhus, Denmark,

LIPIcs, pages 18:1–18:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2016. doi:10.4230/LIPIcs.IPEC.2016.18.

196

http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1137/0202012
http://dx.doi.org/10.1137/0202012
http://dx.doi.org/10.1145/800061.808765
http://dx.doi.org/10.1145/800061.808765
http://dx.doi.org/10.1007/978-1-4612-0539-5
http://dx.doi.org/10.1145/322092.322093
http://dx.doi.org/10.1145/322092.322093
http://dx.doi.org/10.1007/978-3-662-44602-7_7
http://dx.doi.org/10.1145/4221.4226
http://dx.doi.org/10.1145/4221.4226
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.18

[120] Denes König. Über Graphen und ihre Anwendung auf Determinantentheorie

undMengenlehre. Mathematische Annalen, 77(4):453–465, 1916. doi:10.1007/
BF01456961.

[121] Antoni A. Kosinski. Cramer’s Rule Is Due to Cramer. Mathematics Magazine,

74, 10 2001. doi:10.2307/2691101.

[122] Stefan Kratsch, Geevarghese Philip, and Saurabh Ray. Point Line Cover:

The Easy Kernel is Essentially Tight. ACM Transactions on Algorithms,

12(3):40:1–40:16, 2016. doi:10.1145/2832912.

[123] Stephan Kreutzer. AlgorithmicMeta-Theorems. Electronic Colloquium on Com-

putational Complexity (ECCC), 16:147, 2009.

[124] Jens Lagergren. Efficient Parallel Algorithms for Graphs of Bounded Tree-

Width. Journal of Algorithms, 20:20–44, 1996. doi:10.1006/jagm.1996.0002.

[125] Michael Lampis. A Kernel of Order 2k− c logk for Vertex Cover. Information

Processing Letters, 111(23–24):1089–1091, 2011. doi:10.1016/j.ipl.2011.09.
003.

[126] Alexander Langer. Fast Algorithms for Decomposable Graphs. PhD thesis, RWTH

Aachen University, 2013.

[127] Andrea S. LaPaugh. Recontamination Does Not Help to Search a Graph. Jour-

nal of the ACM, 40:224–245, 1993. doi:10.1145/151261.151263.

[128] Lukas Larisch and Felix Salfelder. p17.

https://github.com/freetdi/p17.
Accessed: 02.08.2017; Commit: 552341d.

[129] VanBangLeandFlorianPfender. ComplexityResults forRainbowMatchings.

Theoretical Computer Science, 524:27–33, 2014. doi:10.1016/j.tcs.2013.12.
013.

[130] Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set

Problem. SIAM Journal on Compututing, 15(4):1036–1053, 1986. doi:10.1137/
0215074.

[131] Frédéric Mazoit and Nicolas Nisse. Monotonicity of Non-Deterministic

Graph Searching. Theoretical Computer Science, 399(3):169–178, 2008. doi:
10.1016/j.tcs.2008.02.036.

[132] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as

Easy as Matrix Inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/
BF02579206.

197

http://dx.doi.org/10.1007/BF01456961
http://dx.doi.org/10.1007/BF01456961
http://dx.doi.org/10.2307/2691101
http://dx.doi.org/10.1145/2832912
http://dx.doi.org/10.1006/jagm.1996.0002
http://dx.doi.org/10.1016/j.ipl.2011.09.003
http://dx.doi.org/10.1016/j.ipl.2011.09.003
http://dx.doi.org/10.1145/151261.151263
https://github.com/freetdi/p17
https://github.com/freetdi/p17/commit/552341da2ae36cb2e64ef9e39add2fab27c6d879
http://dx.doi.org/10.1016/j.tcs.2013.12.013
http://dx.doi.org/10.1016/j.tcs.2013.12.013
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1016/j.tcs.2008.02.036
http://dx.doi.org/10.1016/j.tcs.2008.02.036
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/BF02579206

[133] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Preprocessing in

Incremental SAT. In Proceedings of the 15th International Conference on Theory

and Applications of Satisfiability Testing, SAT 2012, June 17–20, 2012, Trento, Italy,

Lecture Notes in Computer Science, pages 256–269. Springer, 2012. doi:
10.1007/978-3-642-31612-8_20.

[134] George L. Nemhauser and Leslie E. Trotter Jr. Properties of Vertex Packing

and Independence System Polyhedra. Mathematical Programming, 6(1):48–61,

1974. doi:10.1007/BF01580222.

[135] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity. Springer, 2012.

doi:10.1007/978-3-642-27875-4.

[136] IlanNewman, Prabhakar Ragde, and AviWigderson. Perfect Hashing, Graph

Entropy, and Circuit Complexity. In Proceedings of the 5th Annual Structure in

Complexity Theory Conference, CoCo 1990, July 8–11, 1990, Barcelona, Spain, pages

91–99. IEEEComputer Society, Los Alamitos, California, 1990. doi:10.1109/
SCT.1990.113958.

[137] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006. doi:10.1093/acprof:oso/9780198566076.001.0001.

[138] Marián Novotný. Design and Analysis of a Generalized Canvas Protocol. In

Proceedings of the 4th International Workshop on Information Security Theory and

Practices. Security and Privacy of Pervasive Systems and Smart Devices,WISTP 2010,

April 12–14, 2010, Passau, Germany, Lecture Notes in Computer Science, pages

106–121. Springer, 2010. doi:10.1007/978-3-642-12368-9_8.

[139] Participants of ShonanMeeting 144. personal communication.

[140] Michal Pilipczuk, Sebastian Siebertz, and Szymon Toru’nczyk. Parameter-

ized Circuit Complexity of Model-Checking on Sparse Structures. In Proceed-

ings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

2018, July 09–12, 2018, Oxford, UK, pages 789–798. ACM, 2018. doi:10.1145/
3209108.3209136.

[141] Nicholas Pippenger. On Simultaneous Resource Bounds (Preliminary Ver-

sion). In Proceedings of the 20th Annual Symposium on Foundations of Computer

Science, FOCS 1979, 29–31 October 1979, San Juan, Puerto Rico, pages 307–311. IEEE

Computer Society, 1979. doi:10.1109/SFCS.1979.29.

[142] Bruce A. Reed. Algorithmic Aspects of Tree Width, pages 85–107. Springer, New

York, NY, 2003. doi:10.1007/0-387-22444-0_4.

198

http://dx.doi.org/10.1007/978-3-642-31612-8_20
http://dx.doi.org/10.1007/978-3-642-31612-8_20
http://dx.doi.org/10.1007/BF01580222
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1109/SCT.1990.113958
http://dx.doi.org/10.1109/SCT.1990.113958
http://dx.doi.org/10.1093/acprof:oso/9780198566076.001.0001
http://dx.doi.org/10.1007/978-3-642-12368-9_8
http://dx.doi.org/10.1145/3209108.3209136
http://dx.doi.org/10.1145/3209108.3209136
http://dx.doi.org/10.1109/SFCS.1979.29
http://dx.doi.org/10.1007/0-387-22444-0_4

[143] Omer Reingold. Undirected ST-Connectivity in Log-Space. In Proceedings

of the 37th Annual ACM Symposium on Theory of Computing, STOC 2005, May

22–24, 2005, Baltimore, MD, USA, pages 376–385. ACM, 2005. doi:10.1145/
1060590.1060647.

[144] Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. Ef-

ficiently Four-Coloring Planar Graphs. In Proceedings of the 28th Annual ACM

Symposium on the Theory of Computing, STOC ’96, May 22-24, 1996, Philadelphia,

Pennsylvania,USA, pages 571–575. ACM, 1996. doi:10.1145/237814.238005.

[145] Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic As-

pects of Tree-Width. Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/
0196-6774(86)90023-4.

[146] Neil Robertson and Paul D. Seymour. GraphMinors. XIII. The Disjoint Paths

Problem. Journal of Combinatorial Theory, 63(1):65–110, 1995. doi:10.1007/
978-3-540-24605-3_37.

[147] Hein Röhrig. Tree Decomposition: A Feasibility Study. Diploma thesis, Max-

Planck-Institut für Informatik in Saarbrücken, 1998.

[148] SivanSabato andYehudaNaveh. PreprocessingExpression-BasedConstraint

Satisfaction Problems for Stochastic Local Search. In Proceedings of the 4th In-

ternational Conference on Integration of AI and OR Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems, CPAIOR 2007, May 23–26,

2007, Brussels, Belgium, Lecture Notes in Computer Science, pages 244–259.

Springer, 2007. doi:10.1007/978-3-540-72397-4_18.

[149] Marko Samer and Helmut Veith. Encoding Treewidth into SAT. In Proceed-

ings of the 12th International Conference on Theory and Applications of Satisfiabil-

ity Testing, SAT 2009, June 30 – July 3, 2009, Swansea, UK, pages 45–50, 2009.

doi:10.1007/978-3-642-02777-2_6.

[150] Iztok Savnik. Index Data Structure for Fast Subset and Superset Queries.

In Proceedings of the 5th International Cross-Domain Conference on Vailabil-

ity, Reliability, and Security in Information Systems and HCI, IFIP WG 2013,

September 2–6, Regensburg, Germany, pages 134–148, 2013. doi:10.1007/
978-3-642-40511-2_10.

[151] Detlef Seese. Linear Time Computable Problems and Logical Descriptions.

Electronic Notes in Theoretical Computer Science, 2:246–259, 1995. doi:10.1016/
S1571-0661(05)80203-8.

[152] Paul D. Seymour and Robin Thomas. Graph Searching and a Min-Max The-

orem for Tree-Width. Journal of Combinatorial Theory, 58:22–33, 1993. doi:
10.1006/jctb.1993.1027.

199

http://dx.doi.org/10.1145/1060590.1060647
http://dx.doi.org/10.1145/1060590.1060647
http://dx.doi.org/10.1145/237814.238005
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-540-72397-4_18
http://dx.doi.org/10.1007/978-3-642-02777-2_6
http://dx.doi.org/10.1007/978-3-642-40511-2_10
http://dx.doi.org/10.1007/978-3-642-40511-2_10
http://dx.doi.org/10.1016/S1571-0661(05)80203-8
http://dx.doi.org/10.1016/S1571-0661(05)80203-8
http://dx.doi.org/10.1006/jctb.1993.1027
http://dx.doi.org/10.1006/jctb.1993.1027

[153] Arezou Soleimanfallah and Anders Yeo. A Kernel of Order 2k − c for Vertex

Cover. Discrete Mathematics, 311(10–11):892–895, 2011. doi:10.1016/j.disc.
2011.02.014.

[154] Christoph Stockhusen. On the Space and Circuit Complexity of Parameterized

Problems. PhD thesis, University of Lübeck, Germany, 2017.

[155] Larry J. Stockmeyer and Uzi Vishkin. Simulation of Parallel Random Access

Machines by Circuits. SIAM Journal on Computing, 13(2):409–422, 1984. doi:
10.1137/0213027.

[156] Hisao Tamaki. treewidth-exact.

https://github.com/TCS-Meiji/treewidth-exact.
Accessed: 02.08.2017; Commit: d5ba92a.

[157] Hisao Tamaki. treewidth-exact.

https://github.com/TCS-Meiji/PACE2017-TrackA.
Accessed: 30.05.2019; Commit: 7278390.

[158] Hisao Tamaki. Positive-Instance Driven Dynamic Programming for

Treewidth. In Proceedings of the 25th Annual European Symposium on Algorithms,

ESA 2017, September 4–6, 2017, Vienna, Austria, LIPIcs, pages 68:1–68:13. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ESA.2017.68.

[159] Hisao Tamaki and Hans L. Bodlaender. personal communication.

[160] Till Tantau. Logspace Optimisation Problems and their Approximation Prop-

erties. Theory of Computing Systems, 41(2):327–350, 2007. doi:10.1007/
s00224-007-2011-1.

[161] Robert Endre Tarjan. Decomposition by Clique Separators. Discrete Mathe-

matics, 55(2):221–232, 1985. doi:10.1016/0012-365X(85)90051-2.

[162] Jianhua Tu and Wenli Zhou. A factor 2 Approximation Algorithm for the

Vertex Cover P3 Problem. Information Processing Letters, 111(14):683–686, 2011.

doi:10.1016/j.ipl.2011.04.009.

[163] Tom C. van der Zanden and Hans L. Bodlaender. Computing Treewidth on

the GPU. In Proceedings of the 12th International Symposium on Parameterized and

Exact Computation, IPEC2017, September 6–8, 2017, Vienna, Austria, LIPIcs, pages

29:1–29:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.IPEC.2017.29.

[164] Heribert Vollmer. Introduction to Circuit Complexity. Springer, 1999. doi:10.
978.36420/83983.

200

http://dx.doi.org/10.1016/j.disc.2011.02.014
http://dx.doi.org/10.1016/j.disc.2011.02.014
http://dx.doi.org/10.1137/0213027
http://dx.doi.org/10.1137/0213027
https://github.com/TCS-Meiji/treewidth-exact
https://github.com/TCS-Meiji/treewidth-exact/commit/d5ba92a2600b96a2b5de0816f550d06befcdb570
https://github.com/TCS-Meiji/PACE2017-TrackA
https://github.com/TCS-Meiji/PACE2017-TrackA/commit/7278390fe81191f238206b822fa2941d068a1214
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.68
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.68
http://dx.doi.org/10.1007/s00224-007-2011-1
http://dx.doi.org/10.1007/s00224-007-2011-1
http://dx.doi.org/10.1016/0012-365X(85)90051-2
http://dx.doi.org/10.1016/j.ipl.2011.04.009
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.29
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.29
http://dx.doi.org/10.978.36420/83983
http://dx.doi.org/10.978.36420/83983

Curriculum Vitae

Date of Birth 26.12.1990

Place of Birth Halle (Saale), Germany

Nationality German

Marital Status Married

Education

M.Sc. Universität zu Lübeck, December 2014

Title: On the Space and Circuit Complexity of
Certain Parameterized Problems

Advisor: Prof. Dr. Till Tantau

B.Sc. Universität zu Lübeck, November 2012

Title: Berechnungskomplexitäten von Varianten
des Subset-Sum-Problems

Advisor: Prof. Dr. Till Tantau

Abitur Bismarck Gymnasium Genthin, June 2009

Focus Subjects: Mathematics, Biology

Fellowships and Awards

2018 ESA Track B Best Student Paper Award

2017 Third Place at the PACE Challenge Track A (exact)

2017 Fourd Place at the PACE Challenge Track A (heuristic)

2016 Third Place at the PACE Challenge Track A (exact)

2016 Fifth Place at the PACE Challenge Track A (heuristic)

2015 Stipend for the Graduate School for Computing in Medicine and Life

Science at the Universität zu Lübeck

2013 Place 54 at theNorthwesternEuropeRegional Contest (NWERC)

in Delft (ACM International Collegiate Programming Contest)

201

Publications

[19] MaxBannach,ChristophStockhusen, andTill Tantau:FastParallel Fixed-Parameter

Algorithms via Color Coding. In Proceedings of the 10th International Sympo-

sium on Parameterized and Exact Computation (IPEC 2015).

[20] Max Bannach and Till Tantau: Parallel Multivariate Meta-Theorems. In Proceed-

ings of the 11th International Symposium on Parameterized and Exact Com-

putation (IPEC 2016).

[16] Max Bannach, Sebastian Berndt, and Thorsten Ehlers: Jdrasil: A Modular Li-

brary forComputingTreeDecompositions. InProceedingsof the 16th International

Symposium on Experimental Algorithms (SEA 2017).

[21] Max Bannach and Till Tantau: Computing Hitting Set Kernels By AC0-Circuits. In

Proceedings of the 35th Symposium on Theoretical Aspects of Computer Sci-

ence (STACS 2018).

[22] Max Bannach and Till Tantau: Computing Kernels in Parallel: Lower and Upper

Bounds. In Proceedings of the 13th International Symposium on Parameter-

ized and Exact Computation (IPEC 2018).

[17] Max Bannach, Sebastian Berndt, Thorsten Ehlers, and Dirk Nowotka: SAT-

Encodings of Tree Decompositions. In Proceedings of SAT Competition 2018: Sol-

ver and Benchmark Descriptions.

[13] MaxBannach andSebastianBerndt:Practical Access toDynamic Programming on

Tree Decompositions. In Proceedings of the 26th Annual European Symposium

on Algorithms (ESA 2018).

[18] Max Bannach,Malte Skambath and Till Tantau: TowardsWork-Efficient Parallel

Parameterized Algorithms. In Proceedings of the 13th International Conference

andWorkshops on Algorithms and Computation (WALCOM 2018).

[23] Max Bannach and Till Tantau: On the Descriptive Complexity of Color Coding. In

Proceedings of the 36th Symposium on Theoretical Aspects of Computer Sci-

ence (STACS 2019).

[14] Max Bannach and Sebastian Berndt: Positive-Instance DrivenDynamic Program-

ming for Graph Searching. In Proceedings of 16th Algorithms and Data Struc-

tures Symposium (WADS 2019).

[104] TomHartmann,MaxBannach, andMartinMiddendorf: Sorting Signed Permu-

tations by Inverse Tandem Duplication Random Losses. In Proceedings of the 17th

Asia Pacific Bioinformatics Conference (APBC 2019).

202

[105] TomHartmann,MaxBannach, andMartinMiddendorf: Sorting Signed Permu-

tations by Inverse TandemDuplicationRandomLosses. In IEEE/ACMTransactions

on Computational Biology and Bioinformatics.

Teaching and Scientific Duties

From 2014 to 2019 I worked as scientific staff at the Institute for Theoretical Com-

puter Science of the Universität zu Lübeck. During this time I was repeatedly a

teaching assistant for the following courses:

• Theoretical Computer Science

• Computational Complexity

• Algorithmic, Logic, and Complexity

• Algorithm Design

I wrote reviews for STACS, MFCS, FCT, ESA, IPEC, and JAIR, and I assisted in the

supervision of the following bachelor andmaster theses:

Bachelor Theses

• Alexander Droigk: Design and

Implementation of Edge Routing

Algorithms in TikZ

• Gilian Henke: Algorithmic Drawing of

Automata

• Keanu Soegiharto: Semantic Web

Technology in the Study of Proteins

• Thorsten Peinemann: Efficient Parallel

Kernel Algorithms for the Vertex Cover

Problem

Master Theses

• Ruben Beyer: Algorithmic Drawing of

Planar Graphs with TikZ

• Alexandra Lassota: Possibilities and

Limitations of Parallel Kernel

Computation

• Friederike Bartels: Constructing

Solutions For Unary Subset Sum and

Similar Problems in TC0

• Zacharias Heinrich: Dynamic

Kernelisations for Vertex Cover and

Hitting Set

Professional Affiliations

2014–present Association for Computing Machinery (ACM)

2015–present European Association for Theoretical Computer Science (EATCS)

2016–present Gesellschaft für Informatik (GI)

203

	Introduction
	Why Parallel Parameterized Algorithms
	Results of This Dissertation
	Related Work and History
	Organization of This Thesis
	Acknowledgement

	Structures, Graphs, and Logic
	Relational Structures
	Graphs and Decompositions
	First- and Second-Order Logic

	Background in Complexity
	Classic Complexity Theory
	Parameterized Complexity Theory
	Differentiation of Parameterized Complexity

	I Theory of Parallel Parameterized Algorithms
	A Toolbox of Basic Parallel Parameterized Algorithms
	Finding Maximal Independent Set in Graphs of Bounded Degree
	Graph Traversal
	Color Coding

	Parallel Bounded Search Trees
	A Short Review of Bounded Search Trees
	Modulators and Editing
	Feedback-Vertex Set

	Parallel Kernelization
	A Short Review of Kernelizations
	Parallel Parameterized Algorithms Equal Parallel Preprocessing
	Kernelizations for Vertex Cover and Matching
	Parallel Kernelizations for Problems Parameterized by Vertex Cover
	Computing Hitting Set Kernels in Parallel

	Parallel Decomposition of Graphs
	Crown Decompositions
	Treedepth Decompositions
	Tree Decompositions

	Parallel Parameterized Algorithmic Meta-Theorems
	First-Order Model Checking
	Second-Order Model Checking

	Outlook and Further Directions

	II Towards Practice and Back
	Jdrasil: A Modular Library for Computing Tree Decompositions
	The Design Philosophy of Jdrasil
	A High-Level View on the Library
	A SAT-Based Exact-Solver
	Exact Solving via Positive Instance Driven Dynamic Programming
	Parallelization Through Splitting
	Experiments and Analysis

	Jatatosk: A Lightweight Model Checker for a Fragment of MSO
	The Aim of Jatatosk
	A High-Level View on the Tool
	Description of the Fragment
	Extensions of the Fragment
	Predicting the Run Time and Experiments

	Outlook and Further Directions
	Conclusion
	Compendium of Classes and Problems
	Experiment Setup
	Bibliography
	Curriculum Vitae

