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ABSTRACT

Fixed-parameter tractability is one of the key methodologies of modern algorithm
design and complexity theory. As of today, the most studied resource in this field is
sequential time. In contrast, in classical complexity theory there is a rich literature
concerning parallel processing. Identifying suitable parameters as well as acceler-
ating computations through parallelization both have the same goal: Increase the
solvable fraction of an otherwise intractable problem. It is therefore natural to bring
both fields together by studying parallel parameterized algorithms. In this thesis I
present a rich framework of parallel parameterized complexity classes and develop
a toolbox of basic parallel parameterized algorithms. It will be shown how the core
techniques of parameterized complexity theory can be implemented in parallel - in-
cluding color coding, bounded search trees, kernelization, structural decomposition
of graphs, and algorithmic meta-theorems. Especially the latter two methods lead
to deep insights into the complexity of well-known problems — but I also illustrate
how they can be utilized in practice by presenting two corresponding software li-
braries: One for computing optimal tree compositions and one for model checking
a fragment of monadic second-order logic.
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ZUSAMMENFASSUNG

Die parametrisierte Algorithmik ist ein Schliisselbereich des modernen Algorith-
menentwurfes sowie der Komplexititstheorie. Die fast ausschliefdlich untersuchte
Ressource in diesem Bereich ist dabei die sequentielle Zeit, obwohl die Parallelverar-
beitung ein zentrales und vielfach untersuchtes Teilgebiet der klassischen Algorith-
mik ist. Sowohl das Identifizieren eines geeigneten Parameters als auch die direkte
Beschleunigung durch Parallelisierung verfolgen das gleiche Ziel: moglichst viele
Instanzen eines an sich nicht effizient lésbaren Problems dennoch zu 16sen. Es ist
dahernaheliegend, beide Forschungsgebiete miteinander zu verbinden — und genau
diese Art von Integration ist das Ziel dieser Arbeit. Ich prisentiere eine Vielzahl von
parametrisierten Komplexititsklassen und entwickle eine Sammlung von paralle-
len parametrisierten Basisalgorithmen. Dabei werden nahezu alle Techniken, die
die parametrisierte Komplextheorie zu bieten hat, von einem parallelen Standpunkt
aus untersucht— unter anderem Color Coding, beschrinkte Suchbiaume, Kernelisie-
rung, strukturelle Zerlegungen von Graphen sowie algorithmische Metatheoreme.
Auflerdem illustriere ich, wie die letzten zwei Techniken in der Praxis genutzt wer-
den konnen, indem ich zwei Software-Bibliotheken vorstelle: eine zum Berechnen
optimaler Baumzerlegungen und eine fiir die Modellpriifung eines Fragmentes der
monadischen Pradikatenlogik zweiter Stufe.
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1 INTRODUCTION

Computer science is faced with a huge portfolio of interesting problems, most of
which are considered intractable. It lies at the heart of complexity theory to study the
computations involved in solving such problems in order to provide a fine-grained
classification of problems into those that can be solved efficiently and those that can-
not. Using such a classification as guideline, it is the task of algorithm design to de-
velop algorithms that solve the problems as quickly as possible, and it is the burden
of algorithm engineering to make these algorithms work in practice. In the following
thesis, I try to develop a new subfield of complexity theory, try to demonstrate how it
applies to the design of algorithms, and try to present its interaction with algorithm
engineering: the field of parallel parameterized algorithms.

1.1 WHY PARALLEL PARAMETERIZED ALGORITHMS

What shall we do if we encounter an intractable problem? We could relax our re-
quirements and use heuristics or approximation algorithms. However, this is not
feasible whenever a non-optimal solution produces unacceptable costs. Many prob-
lems that are intractable from a complexity theoretic point of view can still be solved
efficiently in practice via algorithm engineering. A well-known example is the satis-
fiability problem for propositional logic, for which modern tools can solve instances
with millions of variables. How can this be, when the problem in its entirety is so
difficult? The reason is that instances that are solved by the practitioners, and thus
the instances that arise in “real world” applications, are very structured. This insight
is taken back from practice to complexity theory by the field of parameterized complex-
ity theory. The central idea is to develop parameterized algorithms that try to explicitly
utilize such structures in order to be more efficient.

Parameterized complexity theory provides new research directions, but unfortu-
nately loses a bit of the purity of classical complexity theory, as “the landscape of
complexity classes becomes much more unwieldy. This means that the natural prob-
lems tend to fall into a large number of apparently different classes.” [85] To counter-
act this effect, Flum and Grohe [85] suggest to use logic, “which can serve as a tool to
get a more systematic understanding of such classes.” Large parts of parameterized
complexity theory can nowadays be stated completely in logical terms. This is yet
another example for “the unusual effectiveness of logic in computer science.” [103]



This characterization of complexity theory in terms of logic, a field called descrip-
tive complexity, has another major advantage: “Descriptive complexity is inherently
parallel in nature.” [111] Studying parameterized complexity theory from a logician’s
point of view is, therefore, nothing else than studying parallel parameterized complex-
ity theory. A subject that is very natural to study on its own — just recall that we ar-
rived in the parameterized setting because the problems that we are trying to solve
are difficult, and observe that almost all computational devices available today have
a parallel architecture that may allow for a parallel speedup.

Having an understanding of parallel parameterized complexity theory, the next step
is to turn the gained knowledge into parallel parameterized algorithms that we can ac-
tually implement. It will be convenient to describe such algorithms in the language
of Boolean circuits, as on one hand this is the most natural parallel computational
model, and on the other hand such circuits are deeply linked to logic and descriptive
complexity. Once we have specified the computational model and have designed
parallel parameterized algorithms, we can turn back to algorithm engineering and
implement the resulting procedures.

1.2 RESULTS OF THIS DISSERTATION

In this dissertation, I present a rigorous overview of parameterized parallel com-
plexity theory and develop a rich toolbox of parameterized parallel algorithms. In
both aspects, I will focus primarily on positive results, that is, we will study param-
eterized problems that can be solved efficiently in parallel. In contrast, many previ-
ous works have studied parameterized circuit complexity of intractable problems to
obtain a fine-grained classification of them.

The results split, as this thesis, into two parts. First we concentrate on the design
of parameterized algorithms. Besides a collection of basic parallel parameterized
algorithms that can be used as subroutines in the design of further algorithms, we
study almost all the standard techniques that parameterized complexity theory has
in its quiver from a parallel point of view. It will come to light that the technique of
color coding is a central concept to execute parameterized algorithms in parallel.

Color coding is a randomized technique used to identify small objects in a larger
graph by assigning random colors to the vertices of that graph. The probability that
the objects we are searching for get a certain coloring depends only on the size of the
objects and the number of used colors and, therefore, color coding naturally leads to
randomized parameterized algorithms. In fact, we can check many random color-
ings in parallel and, thus, color coding also naturally leads to randomized parallel
parameterized algorithms. As first addition to our toolbox we will show that we can
derandomize color coding in parallel constant time:



> Informal Version of Theorem 42.
Color coding can be derandomized in para-AC® <

Equipped with this powerful subroutine we will develop parameterized counter-
parts of many basic techniques from parallel processing. Most importantly, we will
deal with symmetry breaking by solving multiple versions of the parameterized in-
dependent set problem in parallel. In the following table, k refers to the size of the
sought independent set, while A is the maximum degree of the input graph. The
results are proven in Theorem 33, Lemma 46, and Theorem 47.

Problem Complexity

PA-MAXIMAL-INDEPENDENT-SET ~ para-AC°™ ¢
Pk, A-INDEPENDENT-SET ~ para-AC°®
Pk-PLANAR-INDEPENDENT-SET  para-AC!
(para-AC® if planarity is promised)

We will study parameterized reachability and distance problems — establishing a
parallel parameterized version of the depth-first, the breadth-first search, and a link
between alternating distance and parallel parameterized complexity theory:

> Informal Version of Theorem 39.
The parameterized alternating distance problem is complete for para-AC®™ <

Once we have established the toolbox, we will systematically adapt many standard
strategies from fixed-parameter tractability theory to a parallel setting - starting
with bounded search trees. Algorithms based on this paradigm can naturally be par-
allelized, as we can handle multiple branches of the search tree in parallel. We for-
malize this intuition by designing a parallel algorithm for alarge family of modulator
and editing problems, leading to multiple versions of the following result:

> Informal Version of Corollary 57 and Corollary 63.
Let H be a family of graphs with constant treewidth. There is a family of para-FAC®'-
circuits that decides, given graphs H € H and G, whether we can delete k vertices
from G such that there is no homomorphism (embedding) from H to G. <

An interesting problem that will not fit into this framework is the feedback-vertex
set problem, and we will craft a dedicated algorithm for it in order to show:

Pk -FEEDBACK-VERTEX-SET € para-AC"'

To achieve the algorithm we will be forced to develop parallel versions of many well-
known preprocessing rules for the feedback-vertex set problem. As it will turn out,
this is only possible if we interleave the application of these rules with the paral-
lel search tree — applying them individually is P-complete! Since almost all kernel-
izations for the feedback-vertex set problem that are discussed in the literature are



build on top of these preprocessing rules, a natural next question is whether there
is any hope for a parallel kernelization. Computing kernels in parallel seems, at the
first sight, like a tough task: All textbooks present kernelizations as a list of reduc-
tion rules that are applied sequentially as long as possible. However, we will show that
parallel parameterized algorithms are deeply linked to the parallel computation of
kernels — similar to the fact that a problem is fixed-parameter tractable if, and only
if, it admits a polynomial time computable kernelization (and is decidable):

Informal Version of Theorem 77.
Parallel parameterized algorithms are equivalent to parallel preprocessing, that is,
a problem lies in para-AC! if, and only if, a kernel of it can be computed in FAC! <

Given the knowledge that many natural problems have a parallel computable ker-
nelization, we will start a journey on which we establish a number of upper and
lower bounds. For instance, we show that we can compute an exponential kernel
for px-VERTEX-COVER in FAC? a quadratic kernel in FTC? and we show that the cur-
rently best sequential kernel for the problem cannot be computed in parallel unless
we can compute large matchings in parallel — and whether this is possible is a long-
standing open problem in the field.

The technical most challenging — and in my opinion also the most interesting — par-
allel kernelization that I will present is for the hitting set problem parameterized by
the solution size k and the maximum size d of the hyperedges. It was conjectured
by Chen, Flum, and Huang that a parallel kernelization for this problem will require
time Q(d) [53], however, with the massive use of color coding we can achieve the
kernel in constant parallel time:

Informal Version of Corollary 111.
A kernel for py 4-HITTING-SET can be computed in FAC? <

The technique that we will use to obtain this kernelization (the “massive” use of color
coding) is interesting on its own, as it shows that iterated applications of the color
coding technique can sometimes be collapsed into a single application. I believe that
this trick could be useful for many other parallel parameterized algorithms.

The next and final technique that we will take from fixed-parameter tractability the-
ory and apply it in parallel is the use of algorithmic meta-theorems. To that end, we
will develop parallel parameterized algorithms to compute various graph decom-
positions, including algorithms to compute tree decompositions. Based on these
decompositions, I will provide parallel versions of many famous algorithmic meta-
theorems. These meta-theorems boil down to efficient algorithms for the model
checking problem for various logics. In the following table, each row refers to the
model checking problem of a certain logic parameterized by both, the size of the
input formula and some structural parameter of the Gaifman graph of the input
structure (from top to bottom: its maximum degree, its vertex cover number, its
treedepth, and its treewidth).



Logic Parameter Complexity Reference

First-Order |@|+ A para-AC® Theorem 130
Monadic Second-Order || + vc para-AC° Theorem 132
Monadic Second-Order ||+ td para-AC® Theorem 133
Monadic Second-Order |@| + tw para-AC* Theorem 134

In the second part of this thesis we will take the theoretical results from the first part
and combine them with algorithmic engineering in order to obtain a tool, which is
fastin practice, for the problem in the last row. For this, we will first need a tool that
can quickly compute tree decompositions in practice. I will present the Java library
Jdrasil, which was developed by Sebastian Berndt, Thorsten Ehlers, and myself in
the light of the first Parameterized Algorithms and Computational Experiments Challenge
(PACE 2016). I will, however, only present the parts of the library that were primarily
developed by myself - including the architecture, the exact algorithms, as well as the
parallel capabilities of the library. In detail, we will first have a look at an improved
saT-encoding for treewidth that is based on an encoding by Berg and Jarvisalo [26].
Then we will consider a game theoretic version of a novel positive instance driven dy-
namic program due to Hisao Tamaki [156-158]. This is the currently fasted paradigm
for computing optimal tree decompositions in practice, and I will describe in de-
tail how it works. We will compare this algorithm with the sat-based algorithm and
with multiple algorithms that were considered state-of-the-art before the first PACE.
Finally, I will describe and experimentally analyze how Jdrasil parallelizes the com-
putation of tree decompositions in general (independently of the used algorithm).
This is done by computing safe separators, a concept introduced by Bodlaender and
Koster [41], with a collection of novel heuristics.

Jdrasil is equipped with an interface that makes
it easy to specify and execute dynamic programs Formula RunTime

over the computed tree decomposition. Jatatosk is Psl 0*(35)
amodel checker for a fragment of monadic second- 0w(S)  O*(2¥)
order logic that is based on this interface. The tool ©4(S)  O*(8%)
approaches the last result from the previous table @ eriangle-minor O* (k%)
from an algorithm engineering point of view by 0ss(S)  O*(25K2K)

choosing a fragment with an efficient implemen-
tation in mind. The result is a tool that is faster than similar tools on many in-
stances — which will be illustrated with various experiments. Additionally, the ar-
chitecture of Jatatosk will allow us to determine its worst-case run time just from
the syntax of the input formula. The table at the right shows the worst-case behav-
ior of Jatatosk for some natural formulas for standard problems.



Taking all these results together, I hope that I can convince you with this thesis that
studying fixed-parameter tractability in parallel is interesting and fruitful - both, in
theory and practice. Preliminary versions of many of the results that I will present
within this thesis were previously presented at the following conferences (in chrono-
logical order):

(19]

[20]

(16]

[21]

[22]

[14]

Max Bannach, Christoph Stockhusen, and Till Tantau: Fast Parallel Fixed-Para-
meter Algorithms via Color Coding. In Proceedings of the 10th International Sym-
posium on Parameterized and Exact Computation (IPEC 2015).

Max Bannach and Till Tantau: Parallel Multivariate Meta-Theorems. In Proceed-
ings of the 11th International Symposium on Parameterized and Exact Com-
putation (IPEC 2016).

Max Bannach, Sebastian Berndt, and Thorsten Ehlers: Jdrasil: A Modular Li-
brary for Computing Tree Decompositions. In Proceedings of the 16th International
Symposium on Experimental Algorithms (SEA 2017).

Max Bannach and Till Tantau: Computing Hitting Set Kernels By AC°-Circuits. In
Proceedings of the 35th Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2018).

Max Bannach and Till Tantau: Computing Kernels in Parallel: Lower and Upper
Bounds. In Proceedings of the 13th International Symposium on Parameter-
ized and Exact Computation (IPEC 2018).

Max Bannach and Sebastian Berndt: Practical Access to Dynamic Programming on
Tree Decompositions. In Proceedings of the 26th Annual European Symposium
on Algorithms (ESA 2018).

Max Bannach and Sebastian Berndt: Positive-Instance Driven Dynamic Program-
ming for Graph Searching. In Proceedings of 16th Algorithms and Data Struc-
tures Symposium (WADS 2019).

The second last paper was awarded Best Student Paper at the European Symposium on
Algorithms 2018. A complete list of my publications can be found in the Curriculum
Vitae on page 201. In particular [17], [18], and [23] are built on top of results of this
thesis and provide interesting further directions.



1.3 RELATED WORK AND HISTORY

Parameterized complexity theory is a very active field of research. It was first in-
troduced in a series of papers by Downey and Fellows [1, 66-68]. This interesting
field is growing so rapidly that alone in the last decade seven (!) textbooks have been
published to cover all its different aspects. Downey and Fellows have published two
introductory books [69, 70]. Flum and Grohe focus on the complexity theoretic point
ofview and describe logical characterizations of parameterized classes [85]. Ahigher
focus on algorithmic techniques can be found in the books by Niedermeier [137] and
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, and Saurabh [59].
A collection of surveys that cover many areas on which the “multivariate algorithmic
revolution” has an impact is presented in [34]. Fomin, Lokshtanov, Saurabh, and Ze-
havi have dedicated a book to parameterized preprocessing and kernelization [90].
Although the field is not old, it contains many ideas that were studied long before.
For instance, preprocessing was always a heuristic tool frequently used by practi-
tioners, it just did not have a clean mathematical characterization.

The idea of parallelization is almost as old as the dream of automatic computation.
The first note is attributed to Luigi Federico Menabrea and his “Sketch of the Analyt-
ical Engine Invented by Charles Babbage” back in 1842. Today, almost every compu-
tational device contains multiple cores, and highly parallel systems with hundreds of
processors are available. With cheap parallel hardware such as field-programmable
gate arrays (FPGAs), and massive improvements in parallel computations with gen-
eral purpose graphical units (GPGPUs), the theory of parallel algorithms is now more
important than ever. The theory behind parallel processing is deeply linked to the
circuit complexity class NC (for “Nick’s Class”) that was introduced by Nicholas Pip-
penger [141]. An overview over many classical results in this field was assembled
by Cook [55]. Alternatively, one can study parallel algorithms with parallel random
access machines — a detailed comparison can be found in [155]. An introduction
to many basic parallel algorithms can be found in the textbook of JaJa [114]. Par-
ticularly important are results concerning symmetry breaking, such as the paral-
lel algorithm for computing maximal independent sets in general graphs due to
Michael Luby [130], or the algorithm due to Goldberg, Serge, Plotkin, and Shannon
that works faster on graphs of bounded degree [100]. One of the independent set
algorithms that we will study is directly based on the later. That parallel algorithms
for symmetry breaking can be accelerated via randomization was observed by Alon,
Babai, and Itai [5]. Alon, Yuster, and Zwick later studied randomization in the form
of color coding [6], a technique that we will apply in the parameterized parallel set-
ting as well.



Combining both, parameterized complexity theory and parallel computation, was
first done by Cai, Chen, Downey, and Fellows with an investigation of parameter-
ized logspace [46]. Later, Flum and Grohe defined the “parameterized counterpart”
for any classical complexity class and, thus, a parameterized analogue of the NC-
hierarchy [84]. The machine model used within this thesis was derived from this
general formulation and was —in this form - first described in [19]. The first to study
parallel parameterized algorithms were Cesati and Ianni [47]. Elberfeld, Stockhusen,
and Tantau provide a rich framework of parameterized space and circuit classes;
and they identify many natural problems for these classes [76]. They focused to a
large degree on classes with bounded nondeterminism, and studied in this context
also py-FEEDBACK-VERTEX-SET with an algorithm similar to the one I will present.

Concerning parallel kernelization, Cai, Chen, Downey, and Fellows did implement
the well-known Buss kernelization for py-VERTEX-COVER in logspace [46], which was
later improved by Elberfeld, Stockhusen, and Tantau to an FTC®-kernelization [76].
For the later result the authors already sketched the idea that a decidable problem
has a kernel computable in FTC® if, and only if, it can be solved in para-TC® Chen,
Flum, and Huang studied the parallel complexity of py -HITTING-SET for hypergraphs
with hyperedges of constant size and provided a parallel kernel that requires time
Q(d) while producing polynomial work [53]. A result, on which the constant time
kernelization for py q-HITTING-SET that is presented within this thesis is build.

Parameterized circuit complexity was also used to introduce parameterized lower
bounds: Chen and Flum introduced a para-AC°®-version of the famous Clique Switch-
ing Lemma, which shows that any fpt-approximation of py-CLIQUE is uncondition-
ally not in para-AC® [52]. Besides parameterized circuit complexity, there is also a
growing body of literature that considers parameterized parallel random access ma-
chines and practical implementations of the resulting algorithms [3, 49].

Logic is far older than computer science. The idea of moving from infinite-model
theory to finite-model theory in order to link logic to complexity theory has its roots
in Fagin’s famous theorem - the class NP is precisely captured by all properties ex-
pressible in existential second-order logic [78]. Descriptive complexity is the origi-
nating field that did get its momentum by the subsequent work of Immerman [111].
The connection to parameterized complexity is highlighted by Flum and Grohe [85].

Algorithmic meta-theorems find application in many areas of complexity theory and
modern algorithm design. An overview can be found in the survey paper by Stephan
Kreutzer [123]. The meta-theorem presented in this thesis that works on graphs of
bounded degree is based on a result of Flum and Grohe, who have proven the the-
orem for parameterized logspace [84]. The other meta-theorems that I will present
are variations of Courcelle’s famous theorem that states that every property express-
ible in monadic second-orderlogic can be tested in linear time on graphs of bounded
treewidth [57]. This algorithm was also studied intensively from a parallel point of
view for the case that the treewidth is bounded by a constant — in contrast, we will



study such algorithms while considering the treewidth as parameter. Bodlaender
partly parallelized the result by providing individual NC-algorithms for many prob-
lems on graphs of constant treewidth [32]; subsequently Elberfeld, Jakoby, and Tan-
tauimplemented Courcelle’s theorem completely in logspace (and, thus, in AC) [74],
as well as in NC' when the tree decomposition is part of the input [75]. From a prac-
tical point of view, the most promising efforts to implement Courcelle’s theorem are
based on a game theoretic characterization [117, 118, 126], or by implementing it in a
declarative framework for dynamic programming on tree decompositions [31].

1.4 ORGANIZATION OF THIS THESIS

Following this introduction, there are two chapters on preliminaries. In Chapter 2
I introduce the primary objects that we will study: relational structures and graphs.
The following chapter provides the necessary background in circuit and complexity
theory. Here, we define the complexity classes that we use throughout this thesis.

After the preliminaries, the thesis is partitioned into two parts. Part I is the primary
part and deals with the design of parallel parameterized algorithms. The first chap-
ter there, Chapter 4, introduces a toolbox of basic parallel parameterized algorithms
and should be read before the others. The remaining chapters are largely indepen-
dent and can be read in any order. They deal with parallelization of bounded search
trees (Chapter 5), parallel preprocessing in the form of parallel kernelization (Chap-
ter 6), the parallel decomposition of structures (Chapter 7), and the implementation
of meta-theorems on top of such decompositions (Chapter 8).

The second part combines the theory from Part I with algorithm engineering in or-
der to develop algorithms that are fast in practice. It contains two chapters corre-
sponding to two software libraries: Chapter10introduces the library Jdrasil for com-
puting tree decompositions; Chapter 11 introduces Jatatosk, a lightweight model
checker for a fragment of monadic second-order logic. Jatatosk performs dynamic
programming over tree decompositions and uses Jdrasil internally to find a suitable
tree decomposition. However, besides this dependency the two chapters are inde-
pendent and can be read in any order.

Each part ends in a chapter discussing the results, open problems, and further re-
search directions. After Part II, both parts are set in relation and all results of this
thesis are summarized in the conclusion in Chapter 13. At the end of this thesis on
page 177, you will find a complete compendium of all complexity classes and prob-
lems that we discuss in this thesis. A description of the hardware and the test sets
used in the various experiments can be found on page 183.
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2. STRUCTURES, GRAPHS, AND LOGIC

Before we start with the design of parallel algorithms, we shall define the objects that
the algorithms will handle. In this thesis, these objects are mainly graphs and the
more general relational structures. In this chapter we gather the essential definitions
of relational structures and I provide a brief introduction to graph theory. Further-
more, I introduce the language that we will use to describe properties of structures
and graphs: first- and second-order logic. For a more comprehensive introduction to
structures and logic I refer the reader to the textbook of Immerman [111]. The nota-
tion concerning graph theory follows the standard textbook of Diestel [65].

2.1 RELATIONAL STRUCTURES

A relational structure is a set together with a collection of relations defined on it. In
order to grasp these relations and to talk about the structure, we use a vocabulary
that defines the relations that are available. A structure gives meaning to such a
vocabulary by interpreting the defined relations.

Definition 1 (Vocabulary)
A (relational) vocabulary is a finite set T = {R{", R}, .. ., ng} consisting of relational
symbols R; of arity ar(Ry) = aj. <

Definition 2 (Structure)

A (finite, relational) structure over some vocabulary T = {R/",R3?,...,Ry*}, also
called a T-structure, is a tuple S = (V(S), RIS, Rf, e, R]S;) consisting of a non-empty
finite set V(S), called the universe, and an interpretation Ris C V(S)% of every rela-
tional symbol R;. <

For a fixed vocabulary T, we denote with sTRuUC|T] the set of all T-structures. If it
is clear from the context, we will refer to V(S) by V and we drop the superscript in
the relations of a structure, that is, we will identify relations with their relational
symbols. We call the elements of the universe vertices and refer to unary relations as
colors. Furthermore, we call tuples contained in binary relations (directed) edges and
tuples contained in relations of higher arity (directed) hyperedges. In both cases, we
drop the term “directed” if the interpretation of the relation is symmetric. Accord-
ingly, we call the relation itself edge-relation or hyperedge-relation. This terminology is
motivated from graph theory, as our primary objects will be graphs. Precise defini-
tions for graphs and graph theory are provided in Section 2.2.
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» Example 3 (Strings)
Let X be a fixed alphabet. We model stringsw € L* as structures over the vocabulary
Tx -suring that contains the binary relation <* and a unary relation P, for every symbol
0 € X. Arelational structure S representing w contains the universe V ={i, ..., [w|}
and interprets <5 as the natural order on V. The relations P$ indicate which symbol
is at a given index. For instance, let £ = {0,1} and let w = 0110, a corresponding
structure would be S = ({1, 2,3,4}, <5, P3, Pls) with PS = {1,4}and P = {2, 3}. The
set of all strings over I* is naturally represented by STRUC[Tx _ring]- <

We will often deal with general structures that serve as hosts for many other struc-
tures. Let S = (V,R>,RS,..., Ri) be a structure and X C V. We denote with
S\X = (VAX, RPN (V\X)x(RJ Ri N (V\ X)*(Rx)) the structure obtained by
deleting the elements of X, and with S[X] = S\ (V \ X) the substructure of S induced
by X. With other words, a structure B is an induced substructure of a structure A if
there is a sequence of element deletions that transforms A into B. If this sequence
additionally contains the deletion of single tuples we say B is a substructure of A, or
that A contains B. Finally, if the sequence also contains the contraction of tuples we
say B is a minor of A. The contraction of a tuple (x,, ..., x,) deletes the tuple and
replaces every occurrence of xy, . .., X, with a single new element x.

Let A and B be two t-structures, we call a function ¢: V(A) — V/(B) a homomor-
phism if for all relational symbols Rin Tand all (xy, ..., X, (r)) € V(A)*(R) we have:

(Xl;---:xar(R)) € RA = ((P(XJ,---»(P(Xar(R))) € RB

We write A — B if there is at least one homomorphism from A to B. For an exam-
ple, observe that there is a homomorphism from every bipartite graph to graphs that
contain at least one edge, see the figure at the margin. An injective homomorphism
is called an embedding from A into B. We denote the fact that there is any embed-
ding from A to B with A -> B. We call ¢ a strong homomorphism (embedding) if
it satisfies the following stronger condition:

(XI;---:Xar(R)) € RA — ((p(xl);---;(p(xar(R))) € RB

Finally, an isomorphism is a bijective strong embedding, and two structures A and B
are called isomorphic, denoted by A ~ B, if there is an isomorphism from A to B.

With relational structures we have a notation to describe the objects we are inter-
ested in. Now we need a way to present a structure to a computational model, that
is, we need a suitable encoding for them. This is often a matter of taste, as many
encodings can be translated into each other quite easily. We present a standard en-
coding that we will always use, unless explicitly stated otherwise. Note that in the
moment in which we define an encoding of a structure, we indirectly define an or-
der of the elements of the universe, even if the structure itself is unordered. We call
this order the lexicographical order and some algorithms presented within this thesis
will explicitly use it.
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» Definition 4 (Encoding of a Structure)
LetS = (V, RIS, RZS, e, Ri) be a structure and letlex: V — {o,1,...,|V| — 1} be an
arbitrary but fixed bijection. The encoding of S (with respect tolex) is the binary string
code(S) C {o,1}* that contains a binary vector of length |V| for every unary relation
of S, a|V| x [V] adjacency matrix for every binary relation, and a |V| x IRiS |incidence
matrix for every relation R} of higher arity. In each vector and each matrix, the
elements are sorted by lex. <4

2.2 GRAPHS AND DECOMPOSITIONS

As mentioned in the previous section, we are primarily interested in graphs, which
are simple relational structures with a single binary relation. Graphs inherit the con-
cepts of induced subgraph, subgraph, and minor directly from relational structures.

» Definition 5 (Digraphs and Graphs)
A digraph is a relational structure over the vocabulary g, = {E*}, a (undirected)
graph is a digraph with a symmetric interpretation of E. We say a digraph or graph
is simple if its interpretation of E is irreflexive. <

We will, in slight abuse of notation, sometimes denote the edges of a graph as sets
e = {x,y} € E, meaning an object e that represents both tuples (x,y), (y,x) in
the symmetric relation. For a graph G = (V, E) we denote with [V| = n the num-
ber of vertices and with |E|/2 = m the number of undirected edges. For a vertex
v € Vwelet N(v) = {w | {v,w} € E} be the neighborhood of v and define the
closed neighborhood as N[v] = N(v) U {v}. For a vertex set C C V we abbreviate
N(C) = (Uyec N(v)) \ C. The degree of vis defined as 8(v) = [N(v)|, and the max-
imum degree of G is A(G) = max, ¢y 8(v). We say two vertices v and w are connected
if there is a sequence (v = py, p,, ..., pq = W) of vertices with {p;, pi1.} € E forall
1< i< q.Aset C C Visconnected if all pairs of vertices in C are connected. A (con-
nected) component of G is a subset of V that is inclusion-wise maximal with respect to
this property. Aset S C V is called separator if G[V \ S] contains more components
than G. The components Cy, ..., Cy of G[V \ S] are associated with S, and we say
C; is a full component associated with S if N(C;) = S. A minimal separator is a sepa-
rator with at least two full components associated with it, and an inclusion minimal
separator is a separator for which all associated components are full.

The Gaifman graph of a structure is a graph that represents its relations. Structures
inherit graph theoretic terminology, such as separators, via the Gaifman graph.

» Definition 6 (Gaifman Graph)
The Gaifman graph of a structure S, denoted by Gaif(S), is the (undirected) graph
G = (V, E) inwhich Vis the universe of S, and in which E contains an edge {v, w}if,
and onlyif, v # wand there is a relation RS in S that contains a tuple (x, ..., Xar(R))
such thatv,w € {xy,..., x4 (r) <
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» Example 7
Consider the vocabulary T = {R?, G', B*} and a corresponding relational t-structure
S=({12,...,10, R, G", BH) with:
RM =1{(1,2),(2,3),(3,4), (4,7),(7,8),(8,7) },
GH={13,7,8},
B" ={(1,2,10), (1,10,2), (2,1,10), (2,10,1), (10,2,1), (10,1, 2)
(8,9,10),(8,10,9), (9,8,10), (9,10, 8), (10, 8,9), (10,9, 8)
(4,5,6),(4,6,5),(5,4,6),(5,6,4),(6,4,5),(6,5,4) }.

The Gaifman graph of S is the graph Gaif(S) = ({1,..., 10}, E) with the following
edge relation:

E = {{1,2},{1,10},{2,3},{2,10},{3, 4}, {4, 5}, {4, 6}, {4, 7},
{5,6},{7,8},{8,9},{8,10},{9,10} }.

The following figure illustrates the structure S on the left, and the corresponding
Gaifman graph Gaif(S) on the right.

o
O +—0—+

)
L
o

<

A fundamental technique of modern algorithm design, especially in the field of pa-
rameterized algorithms, is dynamic programming on certain structural decompo-
sitions of graphs. As we will apply similar techniques in this thesis, we need these
graph theoretic terminology as well.

» Definition 8 (Tree Decomposition)
A tree decomposition of a graph G = (V, E) is a pair (T, 1) in which T is a rooted tree
and ta mapping from the nodes of T to subsets of V (which we call bags) such that:
1. foreveryu € Vtheset{x | u € ((x) } is non-empty and connected in T;
2. forevery {v,w} € E thereis anodey in T with {v, w} € t(y).
The width of a tree decomposition is the maximum size of one of its bags minus one;

its depth is the maximum of its width and the length of the longest root-leaf-path.
<
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» Definition 9 (Treewidth, Pathwidth, and Treedepth)
Let G = (V, E) be a graph. The treewidth tw(G) of G is the minimum possible width
of a tree decomposition of G. The pathwidth pw(G) of G is the minimum width over
all tree decompositions (T, t) for G in which T is a path. Finally, the treedepth, de-
noted by td(G), of G is the minimum depth over all tree decompositions (T, t) for G
in which for all nodes x, y of T we have ((x) C (y) ify is a descendant of x. <

Intuitively, the treewidth of a graph measures how similar the graph is “to being a
tree,” therefore the name. For instance, a tree has treewidth 1 (tw (<€) = 1); but
cliques have treewidthn —1 (tw(‘@) = 4). Other graphs that are very unlike a tree
are for instance n x n grids, which contain many cycles and have a treewidth of n,
that is, tw(g) = 3. Likewise, the pathwidth measures how similar a graph is “to
being a path,” for instance we have pw(oooo) = 1, but already for simple trees the
pathwidth increases (pw(%'go) = 2). Finally, the treedepth measures the similarity
of a graph to “being a star,” for instance td(g>§<§) = 2, but even simple paths are very
unlike a star and have a treedepth of logn, that is, td(cooo00) = 3. It is well known
that we have tw(G) < pw(G) < td(G) < tw(G) - log, n for every undirected graph
G = (V, E) on n vertices [135].

For many algorithms it is useful to have a certain form of a tree decomposition: A
nice tree decomposition is a tuple (T, 1, 1) such that (T, () is a tree decomposition,
and n: V(T) — {leaf, introduce, join, forget} is a labeling function of the nodes.
The nodes that are labeled as leaf are exactly the leaves of T, and the bags of these
nodes are empty. Furthermore, the bag associated with the root of T is empty as
well. Introduce- and forget-nodes n have one child x such that there is one v € V with
v & (x)and t(n) = (x) U{v}, orv € t(x) and t((n) = u(x) \ {v}, respectively.
Join-nodes n have two children x and y with ((n) = ((x) = (y).

If a nice tree decomposition does not provide enough structure, we may also work
on very nice tree decompositions, which are nice tree decompositions that addition-
ally have exactly one edge-bag for every edge e € E. These bags “virtually” introduce
the corresponding edge. In particular, we assume that introduce-bags present “iso-
lated” vertices that are later connected to other vertices by edge-bags.

We say a tree decomposition (T, () is balanced if T is a balanced tree, that is, if for
every node n of T the heights of the subtrees rooted at the children of n differ by at
most one. A nice tree decomposition (T, ,1) is balanced if the tree obtained from T
by contracting introduce and forget nodes is balanced. It is well known that every
tree decomposition can be transformed into a (very) nice tree decomposition with-
out increasing the width [59]. Furthermore, any tree decomposition of width w can
be transformed into a balanced one of width at most 4w -+ 3 [75].
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» Example 10
Various tree decompositions of an undirected graph G = (V, E) shown at (i). The
decompositions justify (ii) tw(G) < 1, (iii) pw(G) < 2, and (iv) td(G) < 4.

6] 1 () {12} () {12}
I | |
% {2,3} {2,3}
3 | |
| {3,4} (3,4}
T | |
? {4,I 5} {4,I 5}
6 {5,6} {5,6}
PN e ~ |
7 10 (6,7} (6,10} {6,7}
/ \ . / \ /\ / N\ l
8 1 12 {7,8} {7,9} {10,11} {10,12} {6,7,8}
|
{6,7,9}
|
(iv) {4} {6,10}
|
{2,4} {4,6} {6,10,11}
7\ e |
{1) 2‘) 4} {2'1 3’ 4} {4, 57 6} {41 6’ 7} {4’ 6’ O} {6, 10, 12}
/ AN / AN

{4,6,7,8} {4,6,7,9} {4,6,10,11} {4,6,10,12}

2.3 FIRST- AND SECOND-ORDER LOGIC

With relational structures we have a formal tool to describe all kinds of objects, but
we cannot talk about these objects yet. We require a formal way to describe and eval-
uate properties of a structure. Take the graphs from the previous section as example:
Both, digraphs and graphs, are defined over the vocabulary {E*}, but the later are a
subset of the former. To describe properties such as “is undirected” precisely, we will
use mathematical logic.

» Definition 11 (Syntax of First-Order Logic)
Lett = {R™, ..., R,(ik} be avocabulary. Strings of the form x,, X;, X5, X5, and so forth
are called variables. The first-order language £ () is inductively defined: It contains
the atomic formulas, which are the strings x; = x; for i,j € Nand, for a relational
symbol R¢ of T and variables x,, ..., xq,, the string R¢(xy, ..., Xq,). Inductively, the
language £(7) contains for all strings «, 3 € £(1) and all i € N the strings —(«),
(A B), and Ixi (). The elements of £ () are called first-order formulas. <
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Let us denote the set of all first-order formulas by FO. From a computer science point
of view, it will often be natural to consider arithmetic structures, that is, structures
defined over a vocabulary that contains <? +7 and x; which have to be interpreted
as a total order of the universe, addition, and multiplication, respectively. The set of
first-order formulas over arithmetic structures is denoted by FO[+, x]. We extend
first-order formulas by the usual abbreviations:

x#yYy=—(x=y)

aV PR =—(—a/N—pB),
x—pR=—aV}p,
xrB=(c—=B)NAB—

Vxi(o) = —3xi (—o).

To increase readability, we use all lowercase Latin letters with or without subscript
to refer to variables (such as x;, X,, y, z) and we drop unnecessary braces by using
the standard operator precedence instead, which is in decreasing order: —, V, /\, —,
<+, 3, V. Furthermore, we use the dot notation: we denote a dot instead of an open-
ing brace. This virtual brace is closed after the longest formal correct formula. For
instance, we may write 3x . « instead of Ix(«). We say a variable x is free in @ if
it is not in the scope of a quantifier, and we denote the set of free variables of ¢ by
free( ). Formulas without free variables are also called sentences, and formulas with
free(¢@) = {xy,..., XK} are denoted by @ (x4, ..., xx). Variables that are not free are
bounded (by a quantifier), and we denote the set of bounded variables by bound ().
The set of variables of ¢ is the set var(¢@) = free(¢) U bound(¢). Finally, we define
the quantifier rank of a formula ¢, denoted by qr( ), as the maximum nesting depth
of quantifiers in @:

o if ¢ is atomic,
_ | max(ar(a),qr(B)) if@ = (aAB),
qr(e) = .
qr() if o =—(a),
qr(a) +1 if @ = Ix(x).

Definition 12 (Semantic of First-Order Logic)

Lett = {R™, ..., Rﬁk} be a vocabulary, @(x;,...,x¢) be a first-order formula with
free-variables x,,...,x¢, and let S = (V,R>,..., Rﬁ) be a T-structure. We induc-
tively define the relation (S, &) = ¢, which states that S is a model for ¢ under an
assignment o: free(@) — V: We have (S, x) = @if...

1. @ isan atomic formula x =y and x(x) = «(y);
2. (p(xli"')xe) = Ri(xh---;xﬂ) and(o((xl),...,o(,(xe)) € RIS;

3. @(Xg,...,%x¢) = (IJ,)(XI,...,Xe)/\X(XI,...,Xe)) and (S, o) EP(xy,...,%x¢) as
wellas (S, ) E Xx(x4,...,x¢) holds;
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4. ©(Xg, ..., x¢) = ~(W(xg,...,%x¢)) and (S, &) £ V(x4 ..., x¢) holds;

5. @(Xq,...,%x¢) = Fy(W(xy,...,%¢,y)) and there is an element u € V such that
(S, (X/) IZ 1-l)(xl; . ‘)Xe)y) for

, {oc(x) if x € free(o),
o' (x) =

u X =Y.

If S is a model for ¢ under all assignments we abbreviate S |= ¢. In this case, we
also say that “@ is true in S,” or that “S satisfies ¢.” <

Example 13
An {E?}-structure is a simple graph if it is a model for the following sentence:

Psimple = VXVY E(x,y) — (x Zy A E(y, x)).

A digraph is called a tournament if between every pair of vertices exactly one of the
directed edges exists. With other words, a digraph is a tournament if it is a model
for the following sentence:

Ptournament = VXVy (X =y N *E(X,U)) V (X 7é Yy A (E(X:U) & _'E(U: X)))
Finally, let us consider for a graph G = (V, E) the following formula:

k
Puc(Xy, ..., XK) = XVY E(x,y) — \/(x =xi VY =x4).

i=1

Observe that for every possible assignment « with (G, &) |= @y we may define the
set X = {a(x) | x € free(¢) } with |X| < k such that G[V \ X] contains no edges.
We call such a set X a vertex cover of G, a structure that we will encounter frequently
in the rest of this thesis. <

If we extent first-order logic by relational variables of arbitrary arity, and if we also
allow quantifying over such relational variables, we obtain second-order formulas. We
stipulate that relational variables are denoted by uppercase Latin letters, and we
denote the set of all second-order formulas by SO. We say a relational variable is
monadic if its arity is one. Accordingly, a second-order formula is monadic if all its
relational variables are monadic — we denote the set of these formulas by MSO. The
remaining definitions for second-order formulas are similar to the definitions of
first-order formulas. Instead of going into the details here, I will refer the interested
reader to standard textbooks [71, 72].
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» Example 14

A natural property that can be expressed in second-order logic is thataset X C V'is
connected in a given graph G = (V, E). To write down a formula for this statement,
we require a characterization of “being connected” that we can grasp with logic. Ob-
serve that for a connected set X the following holds: there is an edge between every
non-empty proper subset Y of X and X\ Y. Also observe that this property is not true
in unconnected sets. We start with the simple formula that states that a given set is
non-empty: @non-empty(A) = Ix « A(x).

The next ingredient we need is a way of describing that a set A is a proper subset of
another set B:

(Pproper-subset(A: B) = (VX CA(x) = B(X)) A (EX A A B(X))

Summarizing, we can write down the following formula, which precisely states that
Xis connected in G:

(Pconnected(x) =VY ((Pnon-empty(Y) A (psubset(Y: X))
— (IxFy X(x) A=Y(x) AY(y) AE(x,y)).

The cautious reader may observe that this formula is, of course, a bit wordy in order
to illustrate the concept. We can condense it to the following equivalent formula:

(Pconnected(X) =VY (Elxay X(x)A X(y) AY() A _'Y(y))
— (IxFy X(x) A X(y) AY(x) A=Y(y) AE(x,y)). <
» Example 15
We say a graph G = (V, E) is 3-colorable if there is a mapping A: V — {1, 2,3} such

that A(u) # A(v) for every edge {u, v} € E. This property can be expressed by the
following existential second-order formula:

@300 = IRIGIB (Vx R(x)\/G(x)\/B(x))/\(VxVy E(x,y) — /\ﬁC(x)\/ﬁC(y)).
C e{R,G,B}

For instance, we have [ = @5, as this graph is clearly 3-colorable. But the clique
on 4 vertices in not 3-colorable, that is, I ¥ @0l <
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3 BACKGROUND IN COMPLEXITY

Complexity theory is an area of theoretical computer science that studies the algorith-
mic complexity of preserving functions p: sTRUC[T] — STRUC[0]. In simple words
that means we wish to state whether it is easy or hard to compute p. Formally, we
measure the resources that a computational model requires for the evaluation of p(A)
for a structure A € STRUC[T]. A preserving function here is defined as follows:

Definition 16 (Preserving Functions)
A function p: sTRUc[T] — sTRuUC|0] is called preserving if it satisfies the following
conditions for all A, B € sTRUC[T]:

1. A ~B = p(A) ~p(B),
2. |code(A)| = |code(B)] = |code(p(A))| = |code(p(B))]. <

The standard computational model for parallel algorithms are uniform circuit families,
in which p is evaluated by Boolean circuits. The resources used by this model are the
depth and the size of these circuits. Loosely speaking this corresponds to the parallel
time and work we need on a real parallel machine. We will formally introduce this
computational model in Section 3.1.

In many scenarios it is too general to study the complexity of an arbitrary preserv-
ing function p: STRUC[t] — STRUC[0] and, instead, we will often restrict ourselves
to the characteristic function of a set Q C sTrRuUc[t]. Here we will consider only
such sets Q with the property that all isomorphic structures are either simultane-
ously contained in Q or not. In other words, the characteristic function of Q must
be preserving as well. In complexity theory we call Q a decision problem as we have to
decide, given a structure A € sTRUC[T], whether we have A € Q. Recall for instance
Example 13 where we have defined the formula ¢, and where we have considered
theset Q ={ G € STRUC[Tgraph] | G = @yc ). Then Q is exactly the well-known ver-
tex cover problem. We refer to decision problems by small-caps words, for instance,
we would identify Q with VERTEX-COVER. Instead of stating the exact set represen-
tation, we define problems in the following more convenient way, omitting details
about the precise definition of the input structure:

Problem 17 (VERTEX-COVER)
Instance: A graph G = (V,E) and anumber k € N.
Question: IsthereasetX C Vwith|X| < ksuchthat G[V\X] containsnoedge? <
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In parameterized complexity theory we try to tighten the analysis of a preserving func-
tion p by taking a parameterization k: sSTRUc[T] — I into account, which itself is a
preserving function that assigns to every structure a parameter value from some or-
dered and countable index set I. The intuition is that k(A) describes structural prop-
erties of A, which we may explicitly use in a refined complexity analysis. We call the
tuple (p, k) a parameterized function and, similar to decision problems, we call (p, k)
or (Q, k) a parameterized problem if p is the characteristic function of Q C sTRuUCIT].
We denote such problems by strings with a leading “p-” with an index that indicates
the parameterization. For instance, px-VERTEX-COVER is the vertex cover problem
parameterized by the number k. Formal definitions are provided in Section 3.2. It
should be noted, however, that these definitions are far less standardized in the lit-
erature than they are for classic complexity — we discuss differences between these
definitions in Section 3.3.

3.1 CLASSIC COMPLEXITY THEORY

As mentioned in the introduction of this chapter, our primary computational model
is the Boolean Circuit. We define this computational modelin graph theoretical terms.

Definition 18 (AC-Circuit)

An AC-circuit is a relational structure C = (V(C), ES, <€, aND¢, 0rC) over the sig-
nature Tere = (E?, <2 AND',0R') in which G = (V(C), E€) is an acyclic digraph
and <€ is atotal order of V(C). The elements of V(C) are called gates. The relations
AND® and oR® constitute a partition of the gates that have at least two incoming
edges into and-gates and or-gates. Gates with exactly one incoming edge are called
not-gates, gates without any incoming edge are called input-gates, and the gates with-
out any outgoing edges are called output-gates. <

The size of a circuit is the number of gates, that is, size(C) = [V(C)|. The depth of a
circuit, denoted by depth(C), is the maximum length of a path from an input-gate to
an output-gate. An AC-circuit with n input- and m output-gates naturally computes
a Boolean function C: {o,1}™ — {0, 1}'™

Definition 19 (Computation of an AC-Circuit)

Foraninputw = b;b, ... by, we inductively define a Boolean labelingA: V — {0, 1}
as A(xi) = by for the input-gates x;, X,, . .., X, (recall that the vertices are ordered).
Define A(u) = (A(v) +1) mod 2 if uis a not-gate (that is, u has in-degree one); and
for vertices u with in-degree at least two define

min{A(v) | (v,u) € E€} ifu € aNDE
Alu) =
max{A(v) | (v,u) € E€} ifu € or®

The output of the computation is the bitstring w’ = A(y;)A(y,) ... A(ym) for the
output-gates ys, ..., Ym. <
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If we restrict the in-degree of C to be at most two, then we call C an NC-circuit. A
TC-circuit is an AC-circuit extended by O -gates, which evaluate to1if at least c pre-
decessors of the gate evaluate to 1. The abbreviation NC stands for “Nick’s Class,” as
the corresponding complexity class (a precise definition follows) was named after
Nicholas Pippenger [141]. The names of the other classes are based on this choice-the
“A” in AC stands for “alternating,” referring to the connection of these circuits to al-
ternating Turing machines; the “T” in TC stands for “threshold,” which is exactly the
functionality of the added ©-gates. Different circuits are illustrated in the follow-
ing graphic: It shows from left to right an NC-, an AC-, and a TC-circuit. For read-
ability, the output-gates are highlighted with an outgoing-edge.
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Since circuits can only compute functions for a fixed input length, we need a cir-
cuit family (Cy,)nen if we wish to compute functions with a variable input length.
We will use such families to study the complexity of preserving functions. This will,
however, be difficult if the circuits of the family are pairwise very different. In fact,
we wish that all circuits of a family “look the same.” To formalize this property, we
consider uniform families.

X x3 X4

Definition 20 (AC' and FACY)
A preserving function p: sTRuc[t] — sTRUC[0] is in uniform FAC! if there is a con-
stant ¢ € Nand a family (Cy, ) e of AC-circuits such that:

1. Cieode(Aa)|(code(A)) = code(p(A)) forall A € sTRUCIT];
2. depth(Cy,) <c- logi n;

3. size(Cn) < S
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4. There is a Turing machine that on input of bin(i)# bin(n), where bin(-) is the
binary encoding of natural numbers, outputs the ith bit of code(C,, ) in at most
O(logn) steps.

The class AC* contains all decision problems whose characteristic functions are pre-
serving and contained in FAC! <

We further define AC = {2, AC! and we define NC' and NC as well as TC' and
TC analogously. There are other definitions of uniformity that can be derived if the
power of the Turing machine is altered. The uniformity definition we use here, in
the literature known as DLOGTIME-uniformity, is the strongest form of uniformity
commonly considered [24]. It has the following well-known property:

Fact 21 ([111, 164])
The set of decision problems in uniform AC® is exactly the set of decision problems
that can be defined in FO[+, x]. <

A direct consequence of this fact is the following useful lemma:

Lemma 22
There are uniform families (C)nen, (CX)nen, (CrT‘f"d)neN of FAC®-circuits that
have 2n inputs x;, ..., Xn, Yy, - - -, Yyn and n? outputs zy, . .., znz such that:

1. each circuit expects that exactly one input x; and one input y; is set to 1, while
the others are set to 0;

2. all outputs of C;; are o, with the sole exception of z;, j;
3. all outputs of C}} are o, with the sole exception of z;.j;

4. all outputs of C°? are o, with the sole exception of z; modj-

Proof. Since the given numbers are encoded in unary (and in particular bounded by
the size of the universe), the existence of (C; ) neny and (C;X ) en follows in principle
directly by the equivalence of uniform AC® and FO[+, x]. However, we have to take
a little care about the encoding of the structure, and we require a way to parse the
first and second input bit - but both can easily be achieved with first-order formu-
las equipped with the relations 43 x3 and <? To obtain the family (C2°), <, we
have to describe the unary modulo operation within FO[+, x], which is a standard
exercise solved by the following formula:

mod(x,y,z) = Jadb (x(a,y,b) A +(b,z,x) A <(z,y) Nz#y). O

Observe that a problem that lies in AC can efficiently be implemented on a paral-
lel machine, because a circuit C,, can be evaluated in parallel. In order to do so, we
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layer the circuit and evaluate all gates of one layer in parallel. The parallel time of the
algorithm is then bounded by O(log" n), as each layer can be evaluated in constant
parallel time and since there are at most O (log* n) layers. The work of the algorithm,
that is, the total number of computational steps, is bounded by the number of gates,
and therefore by O(nc).

Based on this observation we say a decision problem is parallel tractable if it lies in AC,
and we say it is parallel intractable otherwise. Parallel intractable problems may lie in
the class P, which contains problems decidable by a uniform family of AC-circuits of
polynomial size (but without a further depth restriction). Such circuits can probably
not be simulated in parallel, but they can be simulated in polynomial time — prob-
lems in P are therefore called (sequentially) tractable. Unfortunately, many interest-
ing problems do notlie in P and are therefore considered intractable. There is a broad
range of further complexity classes to study such problems. An important one is NP,
the set of problems decidable by a uniform family of AC-circuits of polynomial size
that has access to nondeterministic input bits. Based on these definitions, we obtain
the following well-known hierarchy:

NC° C ACC CTC°CNC'CAC'CTC'C---CNC=AC=TCCPCNP

Observe that it is unknown for almost all inclusions in this hierarchy, whether they
are proper or not. Furthermore, almost all of these results are trivial — the sole ex-
ception being AC® C TC®, which was shown by Furst, Saxe, and Sipser [93].

We can formulate statements about the complexity of a problem by “sorting” it into
the hierarchy: If we show a problem lies in a complexity class, we essentially provide
an upper bound on the complexity of the problem. To provide a lower bound, we need
the concept of reduction and hardness.

Definition 23 (AC*-Reduction)

An AC-reduction from a decision problem Q, C struc[t] to Q, C sTruc[o] is a
mapping R: sTrUC[t] — sTRUC[0] with R € FAC'and A € Q, «= R(A) € Q,
for all structures A € sTRUC[T]. <

Definition 24 (G-Hardness)
Let C be a complexity class. A decision problem Q C sTruUC[T] is said to be C-hard if
all problems in € reduce to Q via AC°-reduction. <

A problem that is hard for some complexity class can be seen as the most “difficult”
one of this class, as we can solve all other problems of the class if we can solve this
single problem. Hardness can therefore be seen as a lower bound — at least if we as-
sume that the hierarchy does not collapse. Finally, we say that a problem is complete
for a complexity class if the lower and upper bound match.

Fact 25
Let C; and €, be two complexity classes with AC° C €; C €, and let Q C sTrUC[T]
be C,-hard. We have Q € C; if, and only if, C; = C,. <
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» Definition 26 (C-Completeness)
A decision problem Q C sTruc|T] is complete for C (or C-complete) if Q is C-hard
and Q € C. <

3.2 PARAMETERIZED COMPLEXITY THEORY

Similar to circuits that are a computational model for parallel algorithms, we will use
parameterized circuits that serve as a computational model for the computation of
parameterized functions. Recall that a parameterized function is a tuple (p, k) con-
sisting of two preserving functions p: STRUC[T] — sTRUC[0] and k: STRUC[T] — L.
The idea is to analyze the complexity of computing p(A) by considering |code(A)|
and k(A), instead of measuring the consumed resources only with respect to the
encoding length. Intuitively, smaller parameters (recall that I is ordered) represent
“easier” instances, and we will develop algorithms that exploit this circumstance.
Note that parameterized functions are a generalization of functions, as every func-
tion is a parameterized function with the trivial parameterization. This trivial param-
eterization simply maps to a set [, that contains only a single element. In general,
there is nothing special about I and we will often simply have I = N.

When we study the complexity of p from a parameterized point of view, we have to
be careful not to “hide” the complexity of computing p in the second function k. In
simple words, the computation of k should be “easier” than the computation of p. As
we study small parallel circuit classes, we stipulate this condition for this thesis as
follows. We will discuss the issue of computing k in a bit more detail in Section 3.3.

» Proviso 27
We request for all parameterizations k: STRUC[t] — I considered within this thesis
that (i) the set I is a set of t-structures for some arbitrary but fixed vocabulary t, in
symbols: I C sTRUC[t]; and that (ii) we have k € FAC? <

The following definition provides our basic parameterized computational model. It
also reveals the reason behind the choice of the term “index set” for the set II. Recall
that this index set is ordered and countable, a fact that we use in the definition.

» Definition 28 (para-AC' and para-FACY)
A parameterized function ( p: STRUC[T] — STRUC[0], k: sTRUC[T] — I) is said to
be in uniform para-FAC! for some i > o if there is a constant ¢ € N, a computable
function f: I — N, and a family (Cy x )nen ker of AC-circuits such that:

L Cieode(A)|,x(A)(code(A)) = code(p(A)) forall A € sTrRUC[T];
2. depth(Cy i) < f(k) +clog'n;

3. size(Cp ) < f(k) - nS;
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4. There is a Turing machine that on input bin(i)# code(k)# bin(n) outputs the
ithbitof code(Cy, k) in at most f(k)+c log(n) steps. Here, bin(-) is the binary
encoding of natural numbers.

The class para-AC' contains all parameterized problems that have a characteristic
function that lies in para-FAC! <

Additionally, we define para-AC® as above, but require the depth to be constant (inde-
pendent of nand k). The classes para-NCt, para-NC, para-TC', and para-TC are defined
analogously to the previous section. These classes inherit their inclusion structure
from the classical classes, so we have

para-NC® C para-AC® C para-TC°®
C para-NC' C para-AC' C para-TC!
- para—NCi - para—ACi - para—TCi
C para-NC = para-AC = para-TC
C FPT.

Here FPT (for fixed-parameter tractable) is the parameterized analogue of P, that is, the
class of problems decidable by a uniform family of AC-circuits of size f(k) - n but
without any further depth restriction. As in the previous section, we can grasp prob-
lems in para-AC as parallel fixed-parameter tractable. Alternatively, we could define that
a problem is parallel fixed-parameter tractable if there is a parallel algorithm that
solves the problem and that is allowed to invest f(k) time at each parallel step. This
results in a class of functions that is slightly more powerful than para-AC! (here, the
f(k) term is just additive), but which we can embed into the previous hierarchy.

Definition 29 (para-AC* and para-FACH)

A parameterized function (p, k) lies in uniform para-FAC! (pronounced “para-f-a-c-
i-up”) for any i > o if there is a family (Cn i) nen ker of AC-circuits defined as for
para-FAC! but with depth(C,, 1) < f(k)-c logi 1. In particular, circuits of para-FAC®
have a depth of f(k). The class para-AC" contains all parameterized problems that
have a characteristic function that lies in para-FACY <

The same definition can be used for NC- and TC-circuits. Note that by definition
we have para-AC' C para-AC" C para-AC't€ for alli > o. We will further see in
Chapter 4.2 (Corollary 37) that we have the proper inclusion para-AC® C para-AC®!

In order to compare parameterized problems we require a new (parameterized) re-
duction. In comparison to an AC°-reduction, such a reduction has to fulfill an addi-
tional property: As we measure the complexity with respect to the input length and
the parameter, we should not let the parameter grow arbitrarily during the reduc-
tion process. The following definition fulfills this property. Definitions for hardness
and completeness can be derived analogously.
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» Definition 30 (para-AC‘-reduction)
A para-AC! reduction from a parameterized problem (Q, k) to a problem (Q’, /)
with Q C struclt], k: sTRUC[T] — [, Q" C sTrUC|0], k': sTRUC[O] — T, isa

mapping R: sTRUC[T] — sTRUC]0] such that for all A € sTRuC|[T] we have:

. Ac Q<<= R(A)eQ/

2. k'(R(A)) < f(k(A)) for a computable function f: T — 1.

Additionally, it is required that (R, k) € para-FAC! <

We will require only very little of the machinery of parameterized intractability, as we
are primarily interested in subclasses of FPT and, thus, in problems that are highly
tractable from a parameterized perspective. There are actually many classes “above”
FPT that can all be considered as intractable. However, one hierarchy, called the weft-
hierarchy, is usually sufficient to express intractability. Fortunately, the definitions
of the classes within this hierarchy are in terms of circuit complexity and, thus, fit
nicely into our framework. The weft-hierarchy is defined in terms of the following
restricted version of the weighted circuit satisfiability problem:

» Problem 31 (WEIGHTED-CIRCUIT-SATISFIABILITY)
Instance:  An AC-circuit C and a numberk € N,

Question: s there a string w € {o, 1}* with Z‘.Vfl wli] =kand C(w) =12 <

1=1

This problem is quite powerful, as we can easily encode problems such as the satis-
fiability problem of propositional logic into it. To describe the hierarchy, we restrict
the problem to a smaller family of circuits. Let C 4 be the family of AC-circuits in
which every circuit has depth d and contains on any path from an input-gate to an
output-gate at most t vertices with more than two incoming edges. The value t is
called the weft of the circuits. For every t > 1, the tth-level of the weft-hierarchy,
denoted by W[t], is the class of problems that can be reduced via an FPT-reduction
to px-WEIGHTED-CIRCUIT-SATISFIABILITY restricted to circuits from Cy q for some
arbitrary d > 1. An FPT-reduction is defined as in Definition 30, but without a depth
restriction for the circuits. It follows from the definition that the classes form the
following inclusion structure:

FPT C W[l CW[2] C --- C WIt],

and the conjecture used to express intractability is FPT C WI[1]. This definition is
best understood with an example.

» Example 32
Assume we are given a graph G = (V, E) on nvertices and we wish to check whether
G contains a clique of size k (that is, a set S C V with |S| = k such that all vertices
in S are pairwise adjacent). We can reduce this problem to WEIGHTED-CIRCUIT-
SATISFIABILITY with circuits of depth three and weft one, which implies that the
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problem lies in W[1]. In order to do so, we construct a circuit with n input-gates
X1, ..., Xn and the obvious meaning that setting x; to 1 corresponds to taking ver-
tices vy into the clique. The circuit has to verify that for every non-edge {vi, v;} € E
at least one element of {v;, v;} is not contained in the clique, that is, either x; or x;
(or both) is set to 0. This test can easily be implemented by negating every input
and using or-gates with two incoming edges for every non-edge. That all these tests
are affirmative can be tested with a single and-gate of high fan-in (this is the gate
that increases the weft of the circuit). To illustrate the reduction, consider the graph
at the margin. The circuit that we have just sketched is illustrated in the following
figure, where the gate that is relevant for the weft is highlighted.

X1 Xa X3 X4 Xs

bbb

mela

Now assume we are given another graph G = (V, E) on n vertices, but this time
we seek a dominating set of size k (aset S C V with |S| = k such that for all
v € Vwe have N[v] N S # (). We can reduce this problem to WEIGHTED-CIRCUIT-
SATISFIABILITY with circuits of depth and weft two. The reduction is quite similar
to the previous one: The circuit again has n input-gates x,, .. ., X, indicating which
vertices are part of the solution S. For dominating set, the circuit has to test for ev-
ery vertex if either itself or one of its neighbors is contained in S (meaning that the
corresponding input-gate is set to one). These tests can be realized by n or-gates of
high fan-in - since they can be used in parallel, they increase the depth and the weft
of the circuit by one. Finally, the circuit has to check whether all these tests are affir-
mative with an additional high degree and-gate, which increased the depth and weft
to two. The reduction shows that the problem lies in W[2]. For the previous example
graph, the resulting circuit is the following:

]
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3.3 DIFFERENTIATION OF PARAMETERIZED COMPLEXITY

We note that there are different definitions of parameterized problems, and espe-
cially of the class FPT, in the literature. Considering FPT, these differences seem
small and the choice of definition is mainly a matter of taste. However, consider-
ing smaller classes like para-AC? as we do, reveals more technical differences, which
are, as I believe, worth discussing.

The classical definition is due to Downey and Fellows [70], who define a parameter-
ized problem to be a language L C X* x N. Downey and Fellows distinguish three
definitions of FPT: a problem is said to be (i) in strongly uniform FPT if an instance
(w, k) can be solved in time f(k) - [w|¢ for a computable function f: N — N and
a constant ¢ € N; (ii) in uniform FPT if we drop the restriction that f must be com-
putable; and (iii) in nonuniform FPT if for every parameter value k there is an extra
algorithm solving just the instances with this value. It is known that these three def-
initions lead to distinct classes [69], from which the first is the most commonly used
definition in the literature [59].

Another definition that is commonly used was given by Flum and Grohe [85], who
defined a parameterized problem to be a tuple (Q, k) with Q C X* and k: £* — N.
This definition is a bit more natural, as we can use a classical language Q and justadd
a parameterization to it. For instance if Q is VERTEX-COVER, we may consider many
parameterizations without changing the language. This was also the main reason
why I chose to use this definition in this thesis. However, the definition comes with
a drawback: « has to be computed. This is crucial, as we study the complexity of Q
and may not want to “hide” some of this complexity in the evaluation of k. There-
fore, Flum and Grohe required the parameterization to be computable in polyno-
mial time [85]. This seems generally reasonable for the study of FPT, but already has
some issues there. In particular, some standard parameters, such as the treewidth
of the input structure, do not seem to be polynomial-time computable. This phe-
nomenon gets worse if we study subclasses of FPT, for instance para-AC? as a poly-
nomial time computable parameterization could implement functions that are not
in para-FAC® The result is, essentially, that such small classes are not closed under
natural reduction (what they are in the Downey and Fellows definition). This was
first observed by Chen and Flum with the example of p-pPARITY [52]. It should be
noted that the closeness property is especially important in the context of kernel-
ization, which in essence is a self-reduction that is fundamentally entangled with
parameterized complexity — we will study it in Chapter 6.

There are two possible ways out of this misery: One could adapt the definition of
parameterized reductions, which was suggested by Chen and Flum [52]. However,
the result is an unnatural reduction, which additionally is not well suited for ker-
nelizations. Alternatively, one could require that k is easier to compute, say in log-
arithmic space as suggested by Elberfeld, Stockhusen, and Tantau [76]. Since we
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wish to study para-ACY we have to require that k € FAC® holds, as my coauthors
and myself required [19-22]. However, we should note that we have not much free-
dom if the parameter must be FAC°-computable, as this class is very restrictive. For
instance, consider any graph problem and use as parameterization the maximum
degree. This parameter is not computable in FAC? To fix this new misery, Tantau
and myself have suggested to “patch” the language by adding an upper bound d € N
to the problem instance [20]. The new problem is then the original one together with
the question whether the maximum degree is smaller than d, which we use as pa-
rameter (and which then is easily computable in FAC®). With this fix, the definition
is actually quite close to the original definition by Downey and Fellows — however,
there is still an advantage if the parameter is in fact FAC°-computable.

Concerning subclasses of FPT, it should be noted that the first complete definition
was given by Flum and Grohe [85], who have generally defined para-C for any com-
plexity class C. This definition is related to a similar definition by Cai et al., who
have defined subclasses of FPT in terms of classical complexity classes extended by
an advice function [46]. In contrast, the definition by Flum and Grohe states that a
parameterized problem is in para-C if an instance can be solved in € after an arbi-
trary precomputation on the parameter. This definition has primarily model check-
ing in mind: Given a structure S and a formula ¢, which is the parameter, we wish
to know whether we have S = ¢. Such problems can be solved for various types
of structures by translating ¢ into an automaton that can be simulated on input
S (compare Chapter 8). Unfortunately, in most scenarios other than model check-
ing this definition is not so natural and leads often to a simple padding argument.
Therefore, Elberfeld, Stockhusen, and Tantau provided equivalent definitions with
concrete computational models for parameterized logarithmic space and some pa-
rameterized circuit classes [76]. Based on this work, Stockhusen, Tantau and myself
provided a rigorous definition of parameterized circuit classes [19]. These defini-
tions obtained some refinements in follow-up works by various authors, and the re-
sulting definitions are used in this thesis [20, 52, 140]. The only difference is that
we use relational structures instead of strings, but this is a matter of taste as both
representations are equivalent by Example 3 and Definition 4.
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PartI

Theory of
Parallel Parameterized Algorithms

In this first and primary part of the thesis, we will study parallel parameterized algorithms and
parameterized circuit complexity. Most of the results are formulated from an algorithm design
point of view and constitute a rich toolbox that can be used to explore this area further. I hope
the reader will find it both, useful and enjoyable.

Preliminary versions of many results of this part were previously presented at the following con-
ferences:

[19] Max Bannach, Christoph Stockhusen, and Till Tantau: Fast Parallel Fixed-Parameter Algo-
rithms via Color Coding. In Proceedings of the 10th International Symposium on Parameter-
ized and Exact Computation (IPEC 2015).

[20] Max Bannach and Till Tantau: Parallel Multivariate Meta-Theorems. In Proceedings of the 11th
International Symposium on Parameterized and Exact Computation (IPEC 2016).

[21] Max Bannach and Till Tantau: Computing Hitting Set Kernels By AC°-Circuits. In Proceedings
of the 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).

[22] Max Bannach and Till Tantau: Computing Kernels in Parallel: Lower and Upper Bounds. In Pro-
ceedings of the 13th International Symposium on Parameterized and Exact Computation
(IPEC 2018).






4 A TOOLBOX OF BASIC PARALLEL
PARAMETERIZED ALGORITHMS

We will develop a broad range of parallel parameterized algorithms within this the-
sis. The design of parallel algorithms is usually more challenging than the develop-
ment of the corresponding sequential counterpart, as we have to discover structures
in the problem that we can handle in parallel. This does not change in a parameter-
ized point of view. In fact, things even become a bit more challenging in this young
field, as we do not have a collection of standard algorithms on which we can rely
on. We will therefore start by assembling a toolbox of basic parallel parameterized
algorithms in this chapter. The first ingredient in our toolbox is a way to break sym-
metries. We achieve this with parallel algorithms for the independent set problem
in graphs of bounded degree.

Informal Version of Theorem 33 and Lemma 46.

Parameterized by the maximum degree of the graph, a maximal independent set can
be computed in para-FAC®* €. Parameterized by both, the maximum degree and the
size of the solution, a maximum independent set can be computed in para-AC° <

The second ingredient that we will add to our toolbox is a collection of algorithms
that can answer reachability and distance queries on graphs.

Informal Version of Lemma 34, Lemma 35, Theorem 36, and Theorem 39.

Given a graph G = (V, E) and a parameter k € N, a para-FAC®'-circuit can simulate
a depth-first (breadth-first) search starting at some vertex s € V up to distance k.
In fact, the parameterized alternating distance problem is complete for para-AC®" <

By combining the theorem with a result by Beame, Impagliazzo, and Pitassi [25] we
will unconditionally deduce para-AC® C para-AC®

The last ingredient that we will add to the toolbox may not appear too sparkling at
the first sight. However, as it will turn out, it is the most fundamental result I will
presentin this chapter, which will serve as engine for many algorithms that we study
in the rest of this thesis — I would even go as far as to say that it is a cornerstone of
parallel parameterized constant-time computation. We will derandomize the color
coding technique due to Alon, Yuster, and Zwick [6]:

Informal Version of Theorem 42.
Color coding can be derandomized in para-AC® <
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4.1 FINDING MAXIMAL INDEPENDENT SETS IN GRAPHS
OF BOUNDED DEGREE

The most elemental step in many parallel algorithms is symmetry breaking, that is,
the detection of parts of the input that can be handled in parallel. Formally, we may
model this task as finding a maximum independent set in the conflict graph: Every
task is represented by a vertex and there is an edge between two vertices if, and only
if, the corresponding tasks cannot be executed at the same time. Unfortunately, the
INDEPENDENT-SET problem is NP-hard in general [115] and solving such a problem as
preprocessing seems a bit exaggerated. Furthermore, the problem is also W/[1]-hard
parameterized by the solution size [59] and, thus, even FPT-power will not allow an
“efficient” preprocessing. To circumnavigate this difficulty, the parallel community
is usually contended with the maximal version of the problem. This version admits
a simple O(n + m) sequential algorithm. The first parallel algorithm due to Karp
and Wigderson runs in O(log* n) parallel time [116]. This bound was improved to
O(log® n) parallel time independently by Luby [130], and by Alon, Babai, and Itai [5].
To this day, it is still an open problem whether one can find a maximal independent
set in parallel logarithmic time.

From a parameterized point of view, we hope to improve this bounds with respect
to n in exchange for a higher time bound with respect to the parameter. In the set-
ting of maximal independent sets, the parameter solution size does not make sense,
so we have to consider other natural parameters. If we expect that the task that we
want to solve is well suited for parallelization, we may hope that the degree of the
conflict graph is small. Fortunately, this actually will be the case whenever we wish
to find maximal independent sets in the rest of this thesis. Thus, we use the max-
imum degree of the input graph as parameter and formulate the following result,
where log™ () is the iterated logarithm defined as:

. 1+ log*(log(x)) forx >1,
log™(x) =
o forx < 1.

Theorem 33

There is a uniform family of FAC-circuits of depth f(k) +log™ [V| and size f(k) - |V/|°
that, on input of an undirected graph G = (V, E) and an integer k, outputs either
that the maximum degree of G exceeds k or a maximal independent set I of G.

Proof. Let us for simplicity assume that AC-circuits of size f(k) - n€ may count up
to f(k) and that, thus, the circuit can check the degree of every vertex and can im-
mediately reject if any degree exceeds k. That this is indeed possible will follow by
another basic algorithm that we present in Section 4.3.

The circuit we present here implements the algorithm from Goldberg, Plotkin, and
Shannon to compute maximal independent sets in graphs of bounded degree [100].
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The circuit interprets G as directed graph G by considering each edge {u, v} as two
directed edges (u,v) and (v, u). The edge set of this graph is partitioned into k sets
E,, ..., Ex such that each of the graphs Gi = (V, E{) has only vertices of out-degree
at most 1. This partition can be computed in depth f(k) as the circuit has essentially
to count up to k. The following figure illustrates an exemplary run of the procedure.

/]

/!

The circuit now performs the following operations on all G; in parallel: First, in con-
stant depth, an initial coloring of every G; is computed by assigning to each vertex
v; the color 1 € N, which needs at most log [V| bits. This coloring can be improved
to a coloring with log [V/| colors in constant depth: Replace the color ¢ of each vertex
v by 2k + b, where k is the position of the lowest bit on which c differs from the color
of the unique successor of v, and where b is the value of this bit. Computing this im-
provement consecutively log™ | V| times yields a coloring with 6 colors [100]. Given
the colorings of the k graphs G;, we can compute a 6% coloring of G by assigning to
each vertex the k-tuple of colors that this vertex has in the different G;.

1 2
0 o
1 3 \
3 1 (1,3,3) (2,1,2)
O<«—O O<«—0O
[— 11— [
z 2 (1,2,1) (3,2,2)
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Finally, the circuit initializes a set I = (), iterates over the colors and, in parallel, adds
all vertices of the current color, which do not have a neighbor in I, to I. As each step
can be performed in a constant number of AC-layers, the set I can be computed in
f(k) AC-layers. The circuit outputs I, which is a maximal independent set. The total
depth of the circuit is f(k) + log™ |V]. O

From the point of view of parameterized complexity classes, the aforementioned
lemma yields a para-FAC®*€-circuit for the computation of maximal independent
sets on graphs of bounded degree. The result raises the question whether we can
improve it to para-FAC®' Unfortunately, this seems unlikely — at least with an algo-
rithm that is similar to the algorithm by Goldberg, Plotkin, and Shannon, since the
color trick used by the algorithm requires log” |V/| iterations to converge. However,
if we use the size of the sought independent set as additional parameter, we can even
solve the maximum version of the problem in para-AC® We require more machinery
to prove this fact — it will be presented at the end of this chapter in Theorem 46.
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4.2 GRAPH TRAVERSAL

As mentioned earlier, most of the problems we study in this thesis are graph prob-
lems. It will therefore be convenient to have algorithms at hand that can answer ba-
sic questions on graphs. The primitive operations on graphs are reachability queries
(“is there a path from s to t2”) and distance queries (“is there a path from s to t of
length at most d?”). The former is a classical L-complete problem [143], while the later
is known to be NL-complete [160]. Therefore, we can solve both problems in AC' In
fact, we can even compute the full distance matrix in FAC!

In the parameterized setting we may hope to improve these results for a suitable pa-
rameter. Natural candidates are the actual distance between s and t, or the length
of the longest path in G. Instead of just providing a decision procedure for the pa-
rameterized distance problem, we will actually implement parameterized parallel
versions of the depth-first search and the breadth-first search algorithms. This in
return will additionally allow us to use properties of these algorithms throughout
the rest of this thesis. To formalize this idea, we need a suitable representation of a
depth-first search (breadth-first search) run. Let G = (V, E) be a graph withs € V,
and let T be a depth-first search tree of G starting at s, a depth-first search labeling is a
mapping Ag: V — N such that A¢(v) is the distance from s to v in T. The figure in
the margin shows from top to bottom: an example graph, a depth-first search tree
starting at v, and a corresponding depth-first search labeling. Similarly, we can de-
fine a breadth-first search labeling with respect to a breadth-first search tree. Notice
that in this case the labeling is actually the (path) distance from s to the other ver-
tices. We first handle the computation of breadth-first search labelings, which will
yield a natural parallel algorithm.

Lemma 34

There is a uniform family of FAC-circuits of depth O(k) and size f(k) - |G|€ that, on
inputofagraph G = (V, E),avertex s € V,and aninteger k, outputs a breadth-first
search labeling for the vertices in G that are at a distance of at most k to s.

Proof. Our circuit starts by assigning color o to s. The circuit is build up of layers,
where layer i 4 1 assigns color i + 1 to each vertex that is not colored yet and that
has at least one vertex of color i as neighbor. The algorithm stops if all vertices are
colored, or at the latest after k layers. After a run of the algorithm, each vertex that
has obtained a color is in the same connected component as s and, furthermore, the
colors constitute a breadth-first search labeling starting at s. O

Computing a depth-first search labeling turns out to be more complicated, since an
AC-circuit of the desired depth cannot simply follow a path of the search tree and
“backtrack” once it reaches a leaf, as in this case the depth of the circuit would not
be bounded by the longest path of the input graph.
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» Lemma 35
There is a uniform family of FAC-circuits of depth f(k) and size f(k) - |G|¢ that, on
input of a graph G = (V,E), avertexs € V,and k € N, either detects that the
longest path in G exceeds 2 or outputs a depth-first search labeling starting at s.

Proof. In order to achieve a depth-first search labeling in parallel, we will start a clas-
sical depth-first search at s. However, we have not enough time to “backtrack” and,
instead, we have to identify all branches of the depth-first search starting at some
vertex v in the moment in which we explore v for the first time. These branches can
be found by computing the connected components of the unexplored graph via a
breadth-first search and Lemma 34.

In detail, we test whether the longest path in G is bounded by 2* using Lemma 34.
If this is not the case, we immediately reject. Secondly, we check whether G is con-
nected (again, using Lemma 34) and, if not, reduce G to the connected component
that contains s. Afterwards, the following algorithm, which we call a phase, is ex-
ecuted with color ¢ = 0 as argument. Each phase does nothing if all vertices are
colored, and this is the end of the recursion. If ¢ = o, vertex s is colored with c,
otherwise an arbitrary vertex v that is not colored, but that has a neighbor w of color
c—1, is selected and colored with c. We set A(v) = ¢ and mark w as the predecessor of
v. At the end of a phase the vertices of G are partitioned into the colored vertices C
and the uncolored vertices V' \ C. The circuit computes the connected components
of G[V '\ C] (using Lemma 34), which we denote by V,, ..., Vy C V'\ C. Afterwards,
new phases are started recursively and in parallel on each graph G[V; U C] with ar-
gument ¢ + 1. When all phases have been terminated, the labeling A is a depth-first
search labeling starting at s. This fact is witnessed by the depth-first search tree
T = (V,{(v,w) | visapredecessor of w }). The following figure illustrates a run of
the algorithm.
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Since this algorithm never performs backtracking, the number of consecutive phases
is bounded by the length of the longest path, which is bounded by 2% For each phase,
a circuit of depth f(k) is sufficient, since the most expensive part is clearly the com-
putation of the connected components. Thus, a depth-first search labeling can be
computed by an AC-circuit of depth f(k). O
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A direct consequence of Lemma 34 is the following theorem, where DISTANCE asks
whether there is a path of length at most d between two given vertices s and t:

Theorem 36
pa-DISTANCE € para-AC®

Proof. Compute all vertices of distance at most d from s using Lemma 34 and check
whether t is one of them. O

This theorem will serve as a crucial building block in the design of many para-AC®'-
algorithms. It also reveals the fact that para-AC®' is unconditionally a proper superset
of para-AC? sinceitis known that for d < log nthereisaconstantc such thatany AC-
circuit of depth & that decides whether a given graph contains an s-t-path of length d
requires size at least nck for e = ¢2%/3, where ¢ is the golden ratio [25].

Corollary 37
para-AC° C para-AC®' <

We may also note that para-AC® can solve a notably more general version of the dis-
tance problem: Given a directed graph G = (V, E) and a partition V = V3 U Vi, an
alternating path from s to t is a set S of paths in G, all of which end at t, such that (i)
exactly one of them starts at s; (ii) when a path in S starts at some v € V3 \ {t}, then
for some w with (v, w) € E there is a path in S starting at w; and (iii) when a path
in S starts at some v € Vi \ {t}, then for all w with (v, w) € E thereisapathin§
starting at w (and there is at least one such w). The length of an alternating path is
the maximum length of any path in the set S. The alternating distance between two
vertices is the minimum distance of any alternating path between them.

Problem 38 (ADISTANCE)
Instance: A directed graph G = (V, E), a partition V = V3 U V4, two vertices
s,t € V,adistance d.

Question: Is the alternating distance from s to t in G at most d? <
Two example instances of the problem are illustrated in the following figure. In the
left graph there is an alternating path from s to t of length 5, while in the right graph
there is no such path. This problem is a classical P-complete problem [110] and, thus,
there is no parallel algorithm that solves it unless NC = P. Parameterized by the dis-
tance d, however, the problem lies in para-AC®' In fact, it is a natural representative
for this class in the sense that it is also hard for it.

@}3* o @}@* od
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» Theorem 39
Pa-ADISTANCE is complete for para-AC®' under para-AC°-reductions.

Proof. For containment consider a circuit that performs a backward breadth-first
search starting at t, similar to Lemma 34. The circuit processes the graph in d lay-
ers, computing in layer i the vertices that have alternating distance i to t. In the
first layer, vertex t is colored. In layer 1, all vertices x € V3 that have one colored
neighbor, and ally € Vi that have only colored neighbors (and at least one) are col-
ored. There is an alternating path of distance at most d from s to t if, and only if, s
is colored after d layers. The correctness of the circuit follows by a simple induction:
in layer 1 we color exactly the vertices with alternating distance 1, and it can easily
be seen that coloring a vertex in layer 1 is only possible if it has a neighbor (or all its
neighbors) with alternating distance i — 1.

For completeness let us reduce any problem (L, k) € para-AC® to pq-ADISTANCE.
As (L, k) is in para-AC' there is a fixed family of circuits deciding L. Let C be such
a circuit. We may assume that C is monotone since we can always replace a non-
monotone circuit by a monotone one (using the standard argument used for show-
ing that the circuit value problem reduces to its monotone version [101]): The idea
is to use “double-railed” logic that computes the negation of any gate “on the fly.”
This technique is illustrated in the following graphic, where the circuit on the left
is the non-monotone input circuit. The circuit on the right uses double-railed logic
to simulate negation without using negation gates — here the blue wires and gates
are the original ones (or the “positive” ones), while the orange wires and gates are
the “negated” ones. Note that the monotone circuit has twice as many inputs, as it
expects the negation of the original input bits as additional input.
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We translate the monotone circuit C into an alternating graph as follows: The ver-
tices of the graph are the gates, and the wires are edges directed from the unique out-
put gate towards the input bits. For each input bit there is a vertex as well. We label
the output gate as s, add a new vertex t, and we add edges from all input bits that are
set to 1 towards t. We then partition the vertices such that V3 is the set of Or-gates
joined by s and t, and the input bits; and such that Vi is the set of AND-gates. In the
following figure the construction for the aforementioned circuit is illustrated. The
vertices of V3 are uncolored while the vertices in Vi are colored orange. The dotted
edges only exist if the corresponding input-gate is set to 1.

The constructed graph with s and t, and with d as distance, constitutes an instance
of pq-ADISTANCE. An alternating path from s to t corresponds to wires that are set
to true during the evaluation of the circuit and, hence, such a path can only exist if
the circuit evaluates to true. Since, furthermore, the depth of the circuit is bounded
by d, such a path has length at most d as well.

We are left with the task of arguing that the described reduction can be performed
by a uniform family of para-AC®-circuits. Keep in mind that we reduce from a prob-
lem (L, k) € para-AC® with, say, L C sTrUC[T] and k: sTRuc[t] — L. The circuit-
family (R x)nenker that we construct obtains some structure S € STRUC[T] as
input and shall output an instance for p4-DISTANCE, that is, (S, k) € Lif, and only
if, Ricode(s),x(s)(S) = code(A) with (A, k') € pq-DISTANCE, where k' maps to
the value d. Further recall that (L, k) € para-AC® is witnessed by a uniform family
(Cnk)nenker. Observe that it is easy to construct a uniform family of para-AC®-
circuits that, given the structure S and code(C|co4e(s)|, < (s)), outputs the result of
the reduction, since the transformations used by the reduction can be expressed by
simple first-order interpretations. However, the circuit Ri.,de(s)),«(s) does not ob-
tain code(Cjeode(s)|,k(s)) as input. Instead, we hard-wire code(C|coge(s)|,(s)) into
a single AC-layer of R¢ode(s)| «(s)- This can be done by the Turing machine M that
constructs Rjcode(s)|, k(s )> SinCe Ceode(s)|, (s) 18 itself uniform and, thus, M can sim-
ulate the Turing machine that is used to construct Cjcode(s)|,x(S)- O
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4.3 COLOR CODING

The color coding technique due to Alon, Yuster, and Zwick [6] is actually an advanced
strategy and not necessarily “basic.” However, it is surprisingly well suited for param-
eterized parallel constant time computations. In fact, itis the heart of almost all con-
stant time algorithms presented in this thesis and, thus, I believe it is fair to classify
it as a basic parameterized parallel algorithm. The technique is best understood by
applying it to a concrete problem:

Problem 40 (RAINBOW-MATCHING)

Instance: ~ An edge-colored graph G = (V, E,x) withx: E — {1,...,k}.

Question: s there a matching M C E with |[M| = k that contains an edge of every
color, that s, all edges in M have distinct colors? <

An example instance is shown in the margin, the reader is asked to find a solution
for it. This problem is a generalization of the classical matching problem and has
interesting applications, for instance in the theory of Latin squares [129]. Itis known
that RAINBOW-MATCHING is NP-complete even restricted to bipartite graphs [112],
and it is APX-complete even on properly edge-colored paths [129].

To understand the idea of the color coding technique let us assume that we have a
coin, and let us further assume we flip that coin for every vertex in the graph. The
crucial observation that Alon, Yuster, and Zwick had is that whenever we search for
a small structure in the graph (here the rainbow matching of size k), the probability
that all vertices that participate in this structure obtain “head” is bounded by some
function in k (and, especially, is independent of the size of the graph). In fact, if we
replace the coin by a die, or for that matter by a random coloring of the vertices of the
graph, the probability that the vertices participating in the structure we seek obtain
a certain coloring is still bounded solely by a function in k.

This observation can easily be turned into an efficient randomized FPT-algorithm
for px-RAINBOW-MATCHING: On input of G = (V,E,x) withx: E — {1,..., k} we
“roll” a random coloring A: V. — {1,...,k}. Wesayan edgee = {v,w} € Eis
compatiblewithx if A(v) = A(w) = x(e). Observe that we can test in polynomial time
if there is a rainbow matching that contains only compatible edges — for each color
we simply search for a compatible edge, the matching property then is guaranteed
by the coloring. Furthermore, if G actually contains a real rainbow matching, the
probability that all edges in it become compatible with A is bounded by a function
in k and, thus, can be arbitrarily increased by repeating the algorithm f(k) times
for some computable function f: N — N. The following graphic on the next page
shows three “random” colorings of the instance from above, the reader may identify
the one with a compatible solution:
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The final ingredient we need to turn the above algorithm into an FPT-algorithm, or
actually into a parameterized parallel constant time algorithm, is a way to deran-
domize color coding. This can be done with universal coloring families:

Definition 41 (Universal Coloring Families)

For natural numbers n, k, and ¢, an (n, k, c)-universal coloring family is a set A of
functions A: {1,...,n} — {1,..., c} such that for every subset S C {1,...,n} of size
IS| = k and for every mapping p: S — {1,..., c} there is at least one function A € A
withVs € S: u(s) = A(s). <

It is well known that such families (of a suitable size) can be generated efficiently
using hash functions [85]. This in turn allows the use of color coding to design de-
terministic FPT-algorithms. The following theorem shows that we can compute such
families in para-FAC®:

Theorem 42
There is a computable function f and a uniform family (Cy ¢ )n k,cen of FAC-circuits
without inputs such that each Cy i ¢

1. outputsan (1, k, ¢)-universal coloring family (coded as a sequence of function
tables),

2. has constant depth (independent of n, k, or ¢), and

3. hassize at most f(k, ¢) - poly(n).

Proof. Let us first assume that n is sufficiently larger than k, in particular such that
f(k) < n, and define

Ap,a(x) = (a-x mod p) mod k*
'k ={Apalp<k’lognandace{o,...,p—1}},
Anke = {wo7\ |lw:{o,..., k*—1} = {1,...,cland A € /\T’l,k }
It is well known that /\ﬁ,k is a family of k-perfect hash functions, that is, for ev-
ery subset S C {1,...,n} with |S| = k it contains a function that is injective on S,

see [85]. Therefore, given asubset S and a function u: S — {1, ..., ¢}, some members
of Ap,a € A, willmap the members of S injectively to a subset S’ of {0, ..., k* —1}
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and, then, some function w: {o,...,k* — 1} — {1,...,c} willmap S’ in such a way
that w o Ap o equals pon S. Consequently, the set Ay, 1 ¢ is an (n, k, c)-universal
coloring family. The sizes of the two sets can be bounded by |A] | | < (k* - logn)?
and [Aqn kel < ¢k . (k2 -logn)? = ck"k*log® n. Each function in An k. c can clearly
be encoded in n log, c bits.

For the construction of the circuit C, i . observe that the input length is n and that
all numbers of the above definitions are smaller than n. Therefore, we essentially
work with unarily encoded numbers. For them, addition, multiplication, as well as
the modulo operation are in uniform FAC® by Lemma 22. In conclusion, there is a
uniform family of FAC®-circuits (Hy, )n e that obtains as input three unary numbers
P, @, x, and outputs Ap o (x). The circuit Cy, i  consists of n - (kZ log n)Z copies of
H,,, where all combinationsof o < x < nando < a < p < k*logn are hard-wired
to the different copies of H,,. The concatenated output of these subcircuits almost
equals the function table of Ay, x . The only part missing is the mapping w, which
is applied by Cy, k ¢ in a constant number of additional AC-layers.

Observe that (i) the depth of the circuit Cy, i  is constant as the depth of H,, is con-
stant, and (ii) the size of Cy, i . is bounded by O(n - (kZ log n)Z “[Hpl - c¥ logc).
To see that the family is uniform, just observe that (Hy, ) en is uniform and that a
Turing machine on input bin(i)# code(k, ¢)#bin(n) can compute k*logn in time
f(k) +lognaslognisaloglog n-bit number: Either k* < log n and the multiplica-
tion can be performed “in the logn part,” or k* > logn and the multiplication can
be performed in time (k).

For the remaining case that k is too large, we have f(k) > n. Therefore, we may
hard-wire any family of k-perfect hash functions (whose size may arbitrarily depend
on n and k) directly into the circuit. Since the uniformity Turing machine is al-
lowed to run for f(k) steps for some computable function f, this hard-wired version
is clearly uniform as well. O

The theorem has interesting consequences. For instance, it should be immediately
clear that py,-RAINBOW-MATCHING lies in para-AC® and, thus, also the classical match-
ing problem lies in this class. Note that, in contrast, the parallel complexity of the
matching problem is still not fully resolved. Itis only known that the matching prob-
lem can be solved in randomized NC [132] and quasi NC [79] (which is defined as
NC, but the circuits are allowed to have size O(nk’gl“)). Only very recently, these
results were improved by Anari and Vazirani to an algorithm that runs in pseudo-
deterministic randomized NC [8].

Corollary 43
Pk-RAINBOW-MATCHING € para-AC°® <

46



Another consequence that we will heavily use, and in fact already have used in the
proof of Theorem 33, is the observation that we can “count” with the help of color
coding. More precisely we can solve the following problem:

Problem 44 (THRESHOLD)
Instance: A bitstring b € {0,1}" and a numbert € N.

Question: Are there at least t many 1’s in b? <

Clearly, the unparameterized version is complete for TC? but parameterized by t we
obtain the following result.

Lemma 45
p+-THRESHOLD € para-AC°®

Proof. Oninputofabitstringboflengthnandt € N, we use Theorem 42 to compute
an (n, t, t)-universal coloring family. If b contains at least t many 1’s, then there is a
coloring of the positions of b such that each color class contains at least one 1. Thus,
it is sufficient to test in parallel for all colorings whether this is the case. O

It should be noticed that this was already known by a result from circuit complex-
ity [136], as AC® can solve the problem for polylogarithmic values of t. In fact, the
techniques used to prove this result are similar to the techniques we have used to
prove Theorem 42: The input is hashed to a small domain using suitable hash func-
tions and, then, the problem is solved via “brute-force.” Therefore, Theorem 42 can
be seen as a generalization of the results from [136] by an extension of color coding.
In return, this allows to prove Lemma 45 in just a few lines.

Another useful application of color coding is an extension of our result for indepen-
dent sets in graphs of bounded degree. If the problem is additionally parameterized
by the solution size k, we can actually find an optimal solution in parallel constant
time. The attentive reader may observe in the following proof that a similar “stamp
argument” will work for many other graph problems on graphs of bounded degree.
We will formalize this idea in Chapter 8 by adapting a result of Flum and Grohe [84]
to the parallel parameterized setting: All problems definable in first-order logic can
be solved in para-AC® on structures of bounded degree.

Lemma 46
Pk,A-INDEPENDENT-SET € para-AC°®

Proof. We will directly “stamp” the independent set into the graph. To make this
idea work, we need the property that the size of the border of the structure we search
(which is bounded in size by the parameter) is bounded by the parameter as well. In
a graph of bounded degree this is obviously the case, as any of the k vertices in the
structure adds at most A vertices to the border.
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Since both, the structure we search and its border, are small, we may use color coding
to color them both in any way we want. In the “stamp technique” we use two colors
(say blue and orange) and we hope for a coloring in which the structure we search
(here the independent set) becomes colored orange, while its border becomes col-
ored blue. We now just have to search for k orange vertices that have a blue neigh-
borhood and induce the structure we are looking for. In the case of the independent
set problem, we search for k orange vertices that all have only blue neighbors.

Testing if a given vertex is colored orange and has only blue neighbors can easily
be implemented in a constant number of AC-layers. The coloring can be obtained
in constant depth by Theorem 42 and the correctness follows by the properties of a
universal coloring family. O

The following figure illustrates the stamp technique used in the proof of Lemma 46.
The vertices are colored with blue and orange, and an independent set of size 6 was
successfully stamped such that it is orange and its neighborhood is blue — can the
reader spot it?
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5 PARALLEL BOUNDED SEARCH TREES

In this chapter we study parallel parameterized algorithms based on the bounded
search tree technique. I start by presenting a short review of the basic terminology
of bounded search trees in Section 5.1. Afterwards, we will study a generic problem:
The modulator problem for graphs (given a graph G = (V, E) and a number k € N,
can we delete k vertices such that G belongs to some family J of graphs). This will
allow us to solve many natural problems with parallel bounded search trees. The first
result, presented in Section 5.2, handles this problem for the case that F is the family
of H-free graphs.

Informal Version of Theorem 51.
For every fixed graph H, there is a family of para-FAC®'-circuits that decides, given a
graph G and a number k, whether we can delete k vertices such that G is H-free. <

In the remainder of Section 5.2 we will devote ourselves to generalize this result to
more complex families F. We will study the family that forbids a homomorphic copy
of H (there is no homomorphism from H to a member of §) and the family of graphs
that does not contain a copy of H as embedding. Our goal is to develop an algorithm
that can handle both cases, even if the graph H is not fixed (but a parameter).

Informal Version of Corollary 57 and Corollary 63.

Let H be a family of graphs with constant treewidth. There is a family of para-FAC®'-
circuits that decides, given graphs H € H and G, whether we can delete k vertices
from G such that there is no homomorphism (embedding) from H to G. <

Finally, we close the chapter by studying the feedback-vertex set problem in Sec-
tion 5.3. This problem does not fit into the framework that we develop in Section 5.2
and, thus, we have to design a new parallel algorithm. We will adapt a classical se-
quential search tree in order to obtain such a parallel algorithm. However, we will
see that this is not trivial, since the sequential search tree applies inherently sequen-
tial reduction rules repeatedly.

Informal Version of Theorem 68.
There is a family of para-FAC!-circuits that, given a graph G and a number k, outputs
a feedback-vertex set of size k of G —if such a set exists. <
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5.1 A SHORT REVIEW OF BOUNDED SEARCH TREES

The bounded search tree method was one of the first tools to obtain fixed-parameter
algorithms [69]. Fortunately, it is conceptually one of the easiest methods, and it is
well suited for parallelization in a natural way. Intuitively, we will build a search
tree with a depth that is bounded (usually linearly) by the parameter. If the branch-
number of the tree is also bounded, the size of the whole tree is bounded by a func-
tion in the parameter. A parallel algorithm can handle a whole level in a single step
and, thus, requires only time depending on the depth of this tree and the time needed
to identify the children of a node within the tree. This concept is best understood
with a concrete example — for our purposes we will use the independent set problem
on planar graphs, that is, we wish to know if a given planar graph contains k vertices
that are pairwise not adjacent.

Theorem 47

There is a uniform family of FAC-circuits of depth f(k) and size f(k) - [V|€ that, on
input of a graph G = (V, E) and a number k € N, either outputs an independent
set of size k, or correctly detects that such a set does not exist, or correctly detects
that G is not planar.

Proof. The proofis based on the proofin [85] for showing that the problem is in FPT.
We first observe that for a vertex v € V at least one vertex of N[v] will be part of any
maximal independent set (if no vertex of N(v) can be added, we can add v). Next
we use the fact that a planar graph contains a vertex v of degree at most 5, that is, a
vertex with [N[v]| < 6. This follows directly from the fact that planar graphs contain
at most 3|V| — 6 edges.

The circuit works as follows: First it computes the degree of every vertex using the
circuit from Lemma 45. If all vertices have degree greater than s the circuit safely
reports the input graph is not planar. Otherwise, the circuit uses the lexicographical
smallest vertex of degree at most 5 and branches over N[v], that is, for every vertex
w € N[v] a subcircuit is used to check if G[V \ N[w]] contains an independent set
of size at most k — 1.

If any of these branches reaches the value k = o, the circuit has found the desired
independent set and presents it as output. If a branch creates the empty graph while
k is still greater than o, this branch rejects. If all branches reject, the circuit safely
reports that the graph does not contain an independent set of size k.

The claimed depth of the circuit follows directly from the fact that each branch has
length at most k. The size of the circuit is bounded by the size of the traversed search
tree, that is, by 6% - poly(n). O
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This result implies that py,-PLANAR-INDEPENDENT-SET lies in para-AC® if we promise
that the input graph is planar. If this promise is not given, then the circuit needs
to check if the graph is actually planar (in the decision version the circuit may only
accept if the input contains a size-k independent set and is planar). The smallest
circuit class for which it is known that it can perform a planarity test is AC' [4] and,
hence, we have py-PLANAR-INDEPENDENT-SET € para-AC!

5.2 MODULATORS AND EDITING

In this section we seek to establish a general result about the parallel evaluation of
search trees. For that matter, we will study modulator and editing problems. Infor-
mally, we are given a host graph G and are asked if we can transform it into a graph
of some family & of graphs by just a few modifications. We either want a modulator,
that is, a set of vertices whose removal will transform G into a graph contained in
J, or we may edit G by adding or removing edges from it. Formally, we consider the
following problems for a fixed family F of graphs:

Problem 48 (MODULATOR(F))
Instance: A graph G = (V,E) and anumber k € N.
Question: Isthere aset X C V with |X| < ksuch that G[V \ X] € F? <

Problem 49 (EDITING(F))

Instance: A graph G = (V, E) and anumber k € N.

Question: Are there sets R C Eand A C E with |R U A| < k such that we have
G'=(V,(E\R)UA) e 2 <

The simplest, but still quite powerful, version of this problem is the one for F being

the family of H-free graphs for some fixed graph H. In detail, we define for some

fixed graph H the family ¥ = {G | G does not contain H as induced subgraph }.

Natural use-cases are for instance the vertex cover problem (H = o—o); cluster editing

(H = oo0); and distance to a co-graph (H = oooo0).

Example 50
In the left figure, there is a modulator of size 2 to cooo-free graphs, while in the right
graph we can edit 5 adjacencies to obtain a ooo-free graph.
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» Theorem 51
For every fixed graph H and the family F of H-free graphs we have:

1. px-MODULATOR(Y) € para-AC®;

2. pk-EDITING(¥) € para-AC®!

Proof. We prove the first item. Since H is fixed, an AC-circuit of constant depth and
size roughly V(G)VMI can check, given the input graph G = (V, E), whether
thereisaset O C V such that G[O] is isomorphic to H. If no such O exists, we have
G € JF and are done. Otherwise, O is an obstruction to be H-free and at least one
vertex of O must be added to the solution. The circuit in construction branches over
all possibilities (this is just a constant number) and repeats the whole procedure.
After k layers of such AC-circuits, we may either have found the sought modulator, or
may have correctly decided that there is no such modulator of size k. Hence, the total
depth of the circuit is f(k) and its size is f(k) - |V|€ for some computable function f
and constant c.

The editing case works equivalently, the only difference is that we do not branch over
vertices of O, but over edges and non-edges in G[O]. O

An alternative approach to Theorem 51 is a reduction to the hitting set problem with
small hyperedges. We will see in Section 6.5 that we can flatten the search tree to
constant depth (using a lot more machinery), implying py.-MODULATOR(F) € para-AC°®
This reduction, however, does not work for py -EDITING(F). The main obstacle hereis
that in the editing problem it is not sufficient to “hit” all obstructions, since adding
or deleting an edge can create new obstructions. It remains open whether or not
pk-EDITING(F) can be placed in para-AC? however, Stockhusen, Tantau, and myself
showed that some special cases (such as editing to cluster graphs) are in para-AC® [19].

We can naturally extend the result by studying more complex families F. For in-
stance, we may study ¥ = { G | H -» G} for some fixed graph H, where H -» G
denotes the fact that there is no homomorphism from H to G. Actually, we can even
handle the more general case that H is not fixed, but part of the input. This leads to
the following problem:

» Problem 52 (HOM-MODULATOR(H))
Instance: Two graphs H = (V(H),EN) € Hand G = (V(G), E®), and a number
k € N.
Question: Isthereaset X C V(G) with |X| < ksuch thatH -» G[V\ X]? <
It should be clear that this problem is, for arbitrary families H, more complex than
the previous problems, as we have to find a homomorphism from H to G before we
can think about the modulator. In other words, we now have to deal with the follow-
ing problem:
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» Problem 53 (HOMOMORPHISM(H))

Instance: Two graphs H = (V(H),EM) € 3and G = (V(G), E®).

Question: H — G? <
Naturally, the parameter here is H. If H is the complete graph on k vertices and
G has no self-loop, this task is exactly the parameterized clique problem and, thus,
W(1]-complete [59]. As a consequence, we have to prohibit complete graphs in the
family K if we wish to obtain efficient parallel algorithms. In particular, H may not
be the set of all graphs and it will not be sufficient to bound the cliquewidth of the
graphs in it. Instead, we will focus on families I that contain graphs of bounded
treewidth or treedepth. It is known by results of Chen and Miiller [50] that the prob-
lem (i) lies in para-L when H has bounded treedepth; (ii) lies in the para-L-reduction
closure of the distance problem (parameterized by the distance) if H has bounded
pathwidth; and (iii) lies in para-L-reduction closure of the embedding of trees if H
has bounded treewidth. The problem has also been studied with respect to classi-
cal circuit complexity — here Amano showed that the unparameterized problem, in
which the graphs in H are of constant size, lies in AC® [7]. We extend these results
with parameterized parallel algorithms and in particular we improve the first result
of Chen and Miiller considerably by showing that p;;-HOMOMORPHISM(H) actually
lies in para-AC® if H has bounded treedepth.

» Theorem 54
Fix two numbers w, d € Nwithw < oo (but with d = oo being explicitly allowed)
and consider I = {H = (V(H),E™) | there is a tree decomposition (T, 1) of H
that has width at most w and that can be rooted such that T has depth at most d }.
Furthermore, define d(H) = min(d, [V(H)|) and let ¢ € N be a fixed constant.
There is a uniform family (Cn 1 )nen Her of para-FAC-circuits such that for all pairs
(G =(V(G),E®),H = (V(H), E")) of graphs with H € [ we have:

1. Cieode(G,H)|, 1 (code(G, H)) outputs a homomorphism from H to G encoded
as function table, if such a homomorphism exists;

2. depth(Cyy 1) < c-d(H);
3. size(Crn) < d(H) - [V(H)[E - e,

Proof. First observe that the parameter is easily computable in FAC? as we just have
to extract H from a given pair (G, H). The circuit Cy, iy will apply dynamic pro-
gramming over a tree decomposition (T, t) of H (of width at most w and depth at
most d(H)). This tree decomposition is hard-wired into the circuit. In order to see
that this does not conflict the uniformity, recall that we require a Turing machine
that, on input of bin(i)# code(H)# bin(n) outputs the ith bit of code(Cy 1) in at
most f(H) + log(n) steps. Since f is an arbitrary computable function, this ma-
chine has enough time to find a suitable tree decomposition and hard-wire it into
the circuit — note that the existence of such a tree decomposition is guaranteed by
the choice of I.
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Let us now describe the dynamic programming procedure on (T, (). Initially, we
consider for every leaf 1 of T all assignments @’: (1) — V(G). We can think of
these assignments as colorings of H, where the “colors” are the vertices of G. We
call such an assignment good if @’ is locally a homomorphism. Observe that there
are at most |V(G)[" ™! potentially good assignments per leaf and, thus, a circuit of
the claimed size and constant depth can check whether they are good.

For the inductive step let us consider a node n of T. We consider again all possible
assignments @’: ((n) — V(G) and, this time, we call ¢’ good if:

1. @':(n) — V(G)islocally a valid homomorphism;

2. forevery child mofnin T thereis a good assignment’: ((m) — V(G) such
that for every vertex v € (1) N t(m) we have @’(v) =’ (v).

Clearly, this test can also be implemented by a constant number of AC-layers of size
O(IV(G)IW+1). Therefore, the overall depth of the circuit will be ¢ - d(H), and its
size is bounded by d(H) - [V(H)[€ - [V(G)[¢™.

We are left with the task of showing that there is a homomorphism ¢ from H to G if,
and only if, there is a good assignment ¢ for the root r of T. To see this, first observe
that, if we have found a good assignment ¢’ for r, then there is a local homomor-
phism for the vertices in the root bag. Furthermore, by the second property of “being
good,” we have found good assignments for every child, and these assignments coin-
cide with ¢’ in the intersection of the bags. Since, in a tree decomposition, all bags
that contain the same vertex form a connected subtree, we can extend ¢’ along the
children of r while ensuring that a fixed vertex x € V(H) gets mapped to the same
vertex @(x) € V(G) by good assignments in all branches. In other words, we can
extend the partial homomorphism ¢’ to a homomorphism by recursively unite it
with good assignments of its children. For the other direction assume that there is
a homomorphism {: V(H) — V(G). Then it is easy to see that for every node n of
T the assignment ¢’: ((n) — V(G) with ¢’(v) = P(v) forallv € t(n) is good.

Therefore, if there is a homomorphism, the algorithm will actually find it. O
Corollary 55

Let 3 be the class of all graphs of treewidth at most t for some constant t. Then
pr-HOMOMORPHISM(H) € para-AC® <
Proof. Setw = tand d = oo in Theorem 54. O
Corollary 56

Let K be the class of all graphs of treedepth at most t for some constant t. Then
PH-HOMOMORPHISM(H) € para-AC® <
Proof. Setw = tand d = tin Theorem 54. O
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The reader may observe that the algorithm of Theorem 54 will also work for general
relational structures if they have bounded treewidth (treedepth). The result can,
of course, directly be applied to py{-HOM-MODULATOR(H). We proceed as in The-
orem 51, but instead of finding the obstruction via “brute-force,” we simply apply
Theorem 54 to find it.

Corollary 57
Let H be the class of all graphs of treewidth at most t for some constant t. Then
pr1-HOM-MODULATOR(H) € para-AC® <

The last version of the modulator problem that we will study in this section is for the
family ¥ = {G | H > G}. In words, the family of graphs that does not contain
some graph H as embedding.

Problem 58 (EMB-MODULATOR(H))

Instance: Two graphs H = (V(H),EM) € Hand G = (V(G), E®), and a number
k e N.

Question: Isthere aset X C V(G) with [X| < k such that H > G[V \ X]? <

We will consider it again in the version in which H is part of the input and, thus, we
will have to solve the following problem:

Problem 59 (EMBEDDING(H))

Instance: Two graphs H = (V(H),EM) € 5 and G = (V(G), EC).

Question: H - G? <
We will adapt the algorithm from Theorem 54 to find embeddings instead of homo-
morphisms (recall that an embedding is an injective homomorphism). The idea is
to assign to every vertex of H a unique color and to apply color coding with exactly
these colors to G.

Theorem 60

Fix two numbers w, d € Nwithw < oo (but with d = oo being explicitly allowed)
and consider I = {H = (V(H),E") | there is a tree decomposition (T, 1) of H
that has width at most w and that can be rooted such that T has depth at most d }.
Furthermore, define d(H) = min(d,|V(H)|) and let f: I — N be a computable
function and ¢ € N be a fixed constant. There is a uniform family (Cy, 1) nen Her
of para-FAC-circuits such that for all pairs (G = (V(G),EC),H = (V(H), EH)) of
graphs with H € I we have:

L. Cicode(G,H)|, 1 (code(G, H)) outputs an embedding from H into G encoded as
function table, if such an embedding exists;

2. depth(Cp 1) < c-d(H);

3. size(Cp,n) < f(H) -ne™
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Proof. We interpret the vertices V(H) of H as colors, or equivalently assign a unique
color to every vertex of H. Then we color G with a (|[V(G)|,|V(H), [V(H)|)-universal
coloring family using Theorem 42. Finally, for every coloring A of the universal col-
oring family we run the algorithm of Theorem 54, with the only modification that the
partial assignments may only map vertices v of H to vertices w in G with A(w) = v.

Observe that a solution must be injective, as every vertex in H has its own color.
Furthermore, if there exists an embedding ¢ from H to G, there will be a member in
the universal coloring family that colors the image of ¢ with the correct colors. [

Corollary 61
Let H be the class of all graphs of treewidth at most t for some constant t. Then
pH-EMBEDDING(H) € para-AC® <
Corollary 62
Let H be the class of all graphs of treedepth at most t for some constant t. Then
pPH-EMBEDDING(H) € para-AC® <
Corollary 63
Let H be the class of all graphs of treewidth at most t for some constant t. Then
PH-EMB-MODULATOR(H) € para-AC®! <

Note that for a graph both, the treewidth and the treedepth, equal the maximum
treewidth (treedepth) of its connected components. Therefore, building the dis-
joint union of graphs of bounded treewidth (treedepth) will in turn create a graph of
bounded treewidth (treedepth). In this sense, Theorem 60 and its corollaries gener-
alize to the packing version, in which we try to find k disjoint copies of H.

An application for Corollary 63 is the following generalization of VERTEX-COVER: In-
stead of seeking a small set of vertices that “hits” every edge (that is, every path of
length 2), we now seek a set that hits every path of length c (for some ¢ > 2).

Problem 64 (PATH-VERTEX-COVER)
Instance: A graph G = (V, E) and two numbers k,c € N.
Question: Isthereaset S C V with [S| < k such that each path P of length ¢ in G
contains at least one vertex of S? <
This problem was first introduced by Bresar, Kardos, Katrenic, and Semanisin [45],
and is applied in wireless sensor networks [138] and traffic control [162]. It is not
surprising that it is NP-complete for every fixed ¢ > 2, as the case ¢ = 2 is obvi-
ously exactly VERTEX-COVER [45]. We will see in Section 6.5 that the problem lies in
para-AC® for constant c by a simple reduction to py q-HITTING-SET.This reduction
does, unfortunately, not work if ¢ is a parameter. However, we can still use Corol-
lary 63 by setting H = { P }:

Corollary 65
Pk,c-PATH-VERTEX-COVER € para-AC®' <
Proof. Follows by the fact that paths have constant treewidth. O
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5.3 FEEDBACK-VERTEX SET

In the previous two sections the computation of the branches in the search tree
was possible in constant parallel time, or at least in parallel time that is bounded
only by the parameter. This is not necessarily always the case. In such scenarios
we would like to find parallel algorithms that run in polylogarithmic time with re-
spect to the instance size and detect the possible branches. If we are able to find
a bounded search tree with this property, we can at least place the corresponding
problem in para-AC" for some i > 1. A problem with this property is for instance
Pk-FEEDBACK-VERTEX-SET:

Problem 66 (FEEDBACK-VERTEX-SET)
Instance: A graph G = (V, E) and anumber k € N.

Question: Isthere a set X C V with |X| < k such that G[V \ X] is a forest? <

An example instance with an optimal solution of k = 6 is shown in the margin. I
will present an algorithm that runs in parallel time O(k - log|V/]), that is, we show
Pk-FEEDBACK-VERTEX-SET € para-AC!" The algorithm is based on the following pre-
processing rules that are applied in all k layers (each of which will consist of logn
sublayers) of the circuit.

LeafRule  Delete a vertex v of degree 1.
Chain Rule Contract a vertex v of degree 2 to one of its neighbors.

Loop Rule Delete a vertex vwithv € N(v), reduce k by 1.

We first show that we can apply each of the above rules individually exhaustively in
FAC; that s, in parallel time O(logn).

Lemma 67

There is a uniform family of FAC'-circuits that, on input of a tuple (G, k), outputs a
tuple (G’, k’) that results from repeatedly applying (only) the Leaf Rule as long as
possible. The same holds for the Chain Rule and for the Loop Rule.

Proof. The claim follows immediately for the Loop Rule as we may delete all such ver-
tices in parallel and since the deletion of a vertex cannot create new vertices with a
self-loop. For the other two rules observe that an “exhaustive application” equals ei-
ther the deletion of attached trees (for the Leaf Rule), or the contraction of induced
paths (for the Chain Rule). For the first case, the circuit must be able to detectif a ver-
tex v becomes a leaf at some point of the computation (of course, the circuit cannot
sequentially delete degree-1 vertices). The following observation provides a locally
testable property that allows precisely such a detection: A vertex v is contained in an
attached tree if, and only if, it is possible to delete a single edge such that (i) the graph
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decomposes into two components and such that (ii) the component of vis a tree [76].
Both properties can be tested in logspace (and hence in AC'), and an AC'-circuit can
test them for all vertices and all edges in parallel. Finally, for the Chain Rule, observe
that an AC'-circuit can mark all degree-2 vertices in parallel and that such a circuit,
afterwards, only has to connect the two endpoints of highlighted paths — which is
again a logspace task. O

Using this circuit as blackbox, we will design a parallel bounded search tree algo-
rithm that uses the preprocessed graph to quickly find branch-points.

Theorem 68
Pk-FEEDBACK-VERTEX-SET € para-AC"

Proof. We have to construct a family of AC-circuits of depth f(k) - logn and size
f(k) - n¢ The circuits will consist of k layers such that every layer finds a set of at
most 3k vertices to branch on (which will be done for the next layer). Note thatlayer i
contains at most 3k as many subcircuits as layer i — 1.

Each layer consists of multiple AC'-circuits that work independently of each other on
different possible graphs (depending on the branches of the previous layer). Each of
these circuits first checks if the input is a yes-instance (input is a tree and k > 0),
or a no-instance (k < o) —in the first case it just globally signals this circumstance.
In the second case it truncates this path of the computation. If the subcircuit has
not decided yet, it applies first the Leaf Rule exhaustively, and then the Chain Rule
exhaustively — both are possible due to Lemma 67. The circuit now applies the Loop
Rule (again, using Lemma 67). If the rule has an effect (that is, k was reduced by
at least one) the circuit is done and pipes the result to the next layer. Otherwise,
the circuit tests in parallel if there are two vertices v and u that are connected by a
multi-edge (that is, by at least two edges). If this is the case, any feedback vertex set
must contain either v or uwand, hence, the circuit branches on these two vertices and
pipes the two resulting graphs to the next layer. Otherwise, we know that we have no
vertex with a self-loop, no vertices with multi-edges, and a minimum vertex-degree
of atleast three. The circuit then uses the simple fact that any size k feedback vertex
set in such graph must contain at least one vertex of the 3k vertices with the highest
degree and, hence, may simply branch over these [59].

Since each layer reduces k in each branch by at least one, after at most k layers ev-
ery branch has decided if it deals with a yes- or a no-instance. Since each layer is
implemented by an AC'-circuit, the claim follows. O
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» Example 69
An exemplary run of the algorithm is illustrated in the following figure:

SN

<

The example run shows that we can eventually only apply one of the reduction rules
after we have applied another: We can not directly apply the Chain Rule to the third
graph, but only after we have applied the Loop Rule to it. Since the Loop Rule reduced
k by one, we may hope to identify many such configurations in advance in order to
speed up the algorithm. This would be interesting with respect to preprocessing and
kernelization —a topic that we cover in the next chapter — as many standard prepro-
cessing algorithms for FEEDBACK-VERTEX-SET apply all three rules exhaustively in
advance [59]. Unfortunately, this seems not to be possible in parallel as the follow-
ing theorem shows.

» Theorem 70
Deciding whether a specific vertex of a given graph will be removed by an exhaustive
application of the Leaf Rule, the Chain Rule, and the Loop Rule (jointly in arbitrary
order and not separately as in Lemma 67) is P-hard under NC'-reductions.

For clarity, let us stipulate that a self-loop contributes two to the degree of a vertex,
similarly multi-edges increase the degree by their multiplicity. Therefore, the Chain
Rule may not be applied to a leaf with a self-loop. We further stipulate that the Chain
Rule may not be applied to a self-loop, that is, it has to contract two distinct vertices
(and hence, self-loops may only be handled by the Loop Rule).

Before we work out the details, let me briefly sketch the proof idea: We will reduce
from the monotone circuit value problem (MCVP), which is known to be P-complete
under NC'-reductions [101]. The input to this problem is a monotone circuit (it con-
sists only of AND-gates and Or-gates of indegree 2, and it has a single gate marked as
output) and an assignment of the input gates, the question is whether or not the out-
put gate evaluates to true. We will transform the input circuit into a multi-graph by
replacing each gate with a small gadget. Every gadget will have two vertices marked
as “input” and one marked as “output.” The “input” vertices are incident to exactly
one edge outside of the gadget (which connects them to the “output” vertex of an-
other gadget), the “output” vertex of the gadget may have edges to an arbitrary num-
ber of other “input” vertices. The semantic then is as follows: The edge of an “input”
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vertex that leaves the gadget will be removed by the reduction rules when the cor-
responding wire of the circuit would have the value true for the given assignment;
similarly the “output” vertex of the gadget will be removed if the corresponding gate
would evaluate to true under the given assignment (this in turn removes the edges
to other “input” vertices and propagates the computation of the circuit).

Proof. We start with a formal description of the transformation. For the input gates,
we use 8 and ‘%‘ to describe assignments 1 and o, respectively. Observe that the
former can be removed by the Loop Rule, while the later is immune to all rules.

For AND-gates, we use the gadgetﬁl?c’,‘ and for or-gates W In these figures, the two
highlighted vertices at the top are the ones we call “input,” while the bottom vertex
is the “output” vertex. The dotted lines indicate edges that leave the gadget. For
every “input” vertex there will be exactly one outgoing edge, as any gate has exactly
two incoming wires. The “output” vertex may have edges to an arbitrary number
of successor gates; to ensure that there is at least some edge, we fully connect such
vertices to cliques of size three (that is, the “output” vertex is part of a clique of size
four) — this ensures that the degree of “output” vertices is always greater than two.

We first prove that these gadgets
work locally as intended. Ob-
serve that all vertices have a de-
gree of at least three and no self-

Assignment Behaviour of the
AND-gadget  OR-gadget

loop, that is, no rule can be ap- (1,0) T e b S
plied unless one 1ncom11;1g edgi (0,1) SN G N
gets removed. Since the “output - - - :

vertex of the gadget is fully con- (1,1) Y — 8 Y = e

nected to a clique of size three,
this can only happen if an edge connected to one of the “input” vertices gets re-
moved. Therefore, we see directly that the gadget works as indented for the assign-
ment (0, 0), as no edge connected to the “input” vertices gets removed and no rule
can be applied to the “output” vertex. The case distinction illustrated in the table
shows that the gadgets also work for the other assignments.

We now show the correctness of the construction by an induction over the gates of
the circuit in topological order. The induction hypothesis is that the gadget corre-
sponding to the current gate gets modified by the Leaf Rule, the Loop Rule and the
Chain Rule in the same way as the gate gets evaluated. The base case is given as this
is true for the input gates by construction. For the inductive step consider the gad-
get corresponding to any gate g, and let it have the vertices x, y, and z, where z is
the “output” vertex. By the induction hypothesis the vertices x and y lose an incident
edge for input wires that evaluate to 1 (as the gates corresponding to these gadgets
precede g in the topological order), the above table then states that the gadget works
correctly. The only pitfall we need to address is that the simulation does not “work
backwards,” that is, that a reduction rule in g triggers a reduction rule for the “out-
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put” vertex v of a gadget that corresponds to a gate that precedes g in the topological
order. This is, however, not possible due to the clique attached tov-even if all edges
that are incident to v get removed, v has still a degree of at least three. O

Example 71

The following figure illustrates the construction used in the proof. The circuit on the
left evaluates to 1if, and only if, the vertex labeled v in the right graph gets removed
by a repeated application of all three reduction rules. Since the circuit clearly com-
putes the value 1, the vertex v gets removed. However, if we replace the second input
bit by o, the circuit evaluates to 0, and we can see in the graph that the reduction rules
do not propagate up to v.
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6 PARALLEL KERNELIZATION

Preprocessing is a fundamental technique used by practical tools that solve compu-
tational hard problems on large real world instances. It has a variety of applications
in different domains such as (i) in modern saT-solvers, which try to eliminate vari-
ables and clauses before the actual solving begins [73, 133]; (ii) as a tool to simplify
ILP-instances [48]; and (iii) in the design of csp-solvers, which try to optimize the
instance for certain strategies like local search [62, 148]. Despite its impact in prac-
tice, preprocessing is rather hard to grasp from a theoretical point of view — at least
in the sense of classical complexity. The reason is that even a polynomial time algo-
rithm that just guarantees to reduce the input instance of an NP-hard problem by a
single bit already implies P = NP — as we can repeat the algorithm a linear number
of times to obtain a trivially small instance that can be solved via exhaustive search.

With respect to preprocessing, the parameterized complexity theory shines, as we
can use structural information about the instance to provide a reduction guarantee.
In this chapter we will develop a variety of parallel algorithms which provide such
guarantees. After a short review of kernelizations in Section 6.1, where I provide the
basic definitions and some simple examples, we formulate the first main result of
the current chapter in Section 6.2:

Informal Version of Theorem 77.
Parallel parameterized algorithms are equivalent to parallel preprocessing, that is,
a problem lies in para-AC! if, and only if, a kernel of it can be computed in FAC! <

After proving this interesting equivalence, we concentrate on concrete kerneliza-
tions in Section 6.3 and 6.4. We will present multiple results, which are similar in
spirit — as representative example:

Informal Version of Theorem 80.
The problem py-VERTEX-COVER admits a kernel of polynomial size computable in
FTC? and it admits an exponential kernel computable in FAC® <

I present similar results for the matching problem parameterized by the solution
size, as well as for the problems of computing a tree, path, or a treedepth decompo-
sition parameterized by the vertex cover number of the input graph. On the negative
side, we establish lower bounds for kernel sizes that are achievable in parallel: We
prove that computing certain kernels of linear size for py-VERTEX-COVER is equiva-
lent to computing large matchings—and itis along-standing open problem whether
this is possible in parallel.

63



> Informal Version of Fact 82 and Theorem 83.
Computing a “Nemhauser-Trotter fashioned” kernel is as hard as computing maxi-
mal matchings in bipartite graphs. <

At the end of the chapter I present what I call “a little gem of parameterized kernel-
ization”: under the massive use of color coding, we will turn a very sequential kernel-
ization into a constant-time computable one. This demonstrates, on one hand, the
power of color coding in parallel parameterized computations and kernelizations,
and will on the other hand place py 4-HITTING-SET in para-AC® This in turn equips
us with a powerful tool that will serve as a working-horse in the design of many fur-
ther parallel parameterized algorithms.

> Informal Version of Corollary 111.
A kernel for py 4-HITTING-SET can be computed in FAC® <

6.1 A SHORT REVIEW OF KERNELIZATIONS

As mentioned in the introduction to this chapter, for most problems there is prob-
ably no algorithm that can reduce any instance arbitrarily. However, there might
be an algorithm that guarantees to reduce any instance to a smaller instance of size
bounded by some function in the parameter. This idea is formalized through kernel-
ization and is one of the cornerstones of parameterized complexity theory.

» Definition 72 (Kernelization and Kernel)
Let (Q, k) be a parameterized problem with Q C sTRruclt] and k: sTRUC[T] — L.
A kernelization is a function K: sTrRUC[T] — sTRUC[T] such that for all S € sTRUC[T]
and some computable function f: T — N we have:

L. SeEQ«<=K(S)eQ;
2. |code(K(S))] < f(x(S)).

The image K(S) of S under K is called the kernel of S. We say a kernelization is a C
kernelization for some functional complexity class C if K € C. Finally, we say K is a
linear, polynomial, or exponential kernelization if the function f in the definition above
is linear, polynomial, or exponential, respectively. <

Note that in the above definition K is not a parameterized function, that is, K has to
evaluate k by itself if it wants to use the value «(S). Further observe that a kernel-
ization can be seen as a self-reduction of Q with the additional requirement that the
size of the produced instance is bounded by the parameter. As a note of caution it
should be pointed out that the term “reduction” is to be understood in the “classi-
cal” computer science manner — besides the fact that almost all kernelizations use so
called “reduction rules” to directly reduce the size of an instance, the image K(S) in
principle has nothing to do with S except for membership-equivalence.
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For our running example of py-PLANAR-INDEPENDENT-SET, we make the following
observation to obtain a kernel with 4k vertices [90]: On input of G = (V,E) and
k € N, we first check whether G is actually planar. If not, we simply output a trivial
no instance (for instance (o—o, 2)). Using the famous Four Color Theorem [144], we
observe that, as G is planar, it can be colored with four colors such that the vertices of
every color class constitute an independent set. Therefore, if |[V| > 4k we know that
G contains an independent set of size at least k and output a trivial yes-instance (for
instance (o—o,1)). Otherwise, we know |V| < 4k and G itself is our desired kernel.
Observe that all operations can be performed by a uniform family of FAC'-circuits
(the only non-trivial operation is the planarity test, which is possible in AC' [4]) and,
thus, px-PLANAR-INDEPENDENT-SET admits an FAC'-kernelization with 4k vertices.

The above example is simple, as the problem itself states that it makes no sense to
study large instances. Usually, we will need much more machinery in order to reduce
huge problem instances to small kernels. In order to get used to the notation of
kernelization, let us study the following problem from computational geometry. We
would like to know, given a huge set of points, whether we can cover them all with
just a few straight lines. The following definition precisely describes the input for this
NP-complete problem [122]. An example instance with k = 3is shown in the margin,
where the dashed lines depict a solution that is of course not part of the input.

Problem 73 (POINT-LINE-COVER)
Instance: A set of points py, ..., pn € Z< forafixed d > 2 and a number k € N.
Both, the points and k, are encoded as binary numbers.

Question: Can we cover all points by at most k straight lines? <
With the concept of kernelization in mind, we would like to get rid of as many points
as possible before we start to actually solve the problem. The following simple obser-
vation due to Kratsch, Philip, and Ray leads to a kernel with at most k* elements,
which turns out to be optimal (unless coNP C NP/poly) [122]: Consider any line
that covers more than k points, then this line must be in any solution. Assume for a
contradiction that we would not take the line, then we would need a unique line for
each of the points (since we have to cover them all) — however, since the line we try
to replace did cover more than k points, we would require more than k replacement
lines —a contradiction. We call the process of taking such lines into the solution and,
thus, reducing the size of the instance, a reduction rule; and we have just argued that
the presented rule is safe, meaning that it produces an equivalent instance. A typical
pattern in the design of kernelizations is to apply such a safe reduction rule exhaus-
tively and, afterwards, to count the remaining elements of the instance. Assume the
aforementioned rule cannot be applied anymore, then every possible line covers at
most k points. Furthermore, we are allowed to use at most k lines and, hence, if the
instance has still more than k* points we can safely “reject,” which means “map to a
trivial no-instance” in the language of kernelization. The following theorem shows
that we can compute this simple kernelization quickly in parallel:
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» Theorem 74
There is a uniform family of FTC®-circuits that, on input of a set of distinct points
Pu.-,Pn € Z% and a number k, outputs a pi-POINT-LINE-COVER kernel with at
most k* points.

Proof. First observe that the reduction rule “for a line covering at least k + 1 points,
remove all points on this line and reduce k by 1” can be applied in parallel, as remov-
ing all points from a line removes at most one point from any other line. To complete
the proof, note that it is sufficient to check all n* line segments defined by pairs of
points in parallel; and that a TC®-circuit can check if another point lies on such a line
segment as it can multiply and divide binary numbers [106]. O

From a circuit complexity point of view we may ask to improve the result of Theo-
rem 74 in terms of circuit classes. Precisely, we would like to know if it is possible to
compute the same kernel in FAC® The following lemma answers this in the negative.
In fact, since it is known that AC° C TC° [93], the lemma shows unconditionally that
no kernel of any size can be computed for py-POINT-LINE-COVER in FAC® Note that
the result only holds under constant-depth reductions: We say a preserving function
f: sTRUC[T] — sTRUC[O] constant-depth reduces to another preserving function
g: STRUC[p] — sTRUC[7] if there is a uniform family (C, )n,en of FAC®[g]-circuits
such that Cj¢oge(a ) (code(A)) = code(f(A)) forall A € sTruc[t]. Here, an FAC®[g]-
circuit is an FAC®-circuit that is equipped with additional “g-gates,” which naturally
compute the function g.

» Lemma 75
For every fixed k, the kth slice of the problem py -POINT-LINE-COVER is TC°-complete
under constant-depth reductions.

Proof. We start with the case k = 1and d = 2, which is clearly in TC? as in this
case an instance is a yes-instance if, and only if, the input points are colinear. To
see that the problem is TC°-hard we reduce from DIvISION defined as: Given three
numbers x, y, and z, is it true that x/y = z? This is a classical TC°-complete prob-
lem (under constant-depth reductions) [106]. For the reduction let x, y, z be the
DIVISION-instance, we construct the instance a = (0,0), b = (x,z), ¢ = (y,1) of
1-POINT-LINE-COVER. This is a yes-instance if the points are colinear, that is, if we
have (b — a) - (¢ — a) = o or, equivalently: ’y‘:g = 22 <= x/y = z. Since the
cases k > 1and/or d > 2 are generalizations, they remain TC°-hard. To see that
these cases are also in TC? observe that we have to consider at most n* line segments
from which we have to pick k, that is, there are at most (T]L:) < n2¥ solution candi-
dates. For fixed k, these candidates can be checked in parallel by a TC°-circuit and
can be evaluated as in the case of k = 1. O
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Intuitively, Lemma 75 states that py-POINT-LINE-COVER is complete for para-TC® And
indeed, this intuition can be formalized by a result of Flum and Grohe that states
that a problem is complete for a parameterized class if finitely many slices of the
problem are complete for the corresponding classical complexity class [84, 85] (see
also Section 3.3 in [154] for further discussions). However, applying the result to
our problem would require us to restate all the technical definitions in the light of
constant-depth reductions. We will save ourselves the trouble at this point as the
gain is relatively small compared to the required effort - Lemma 75 is already strong
enough to serve as the sought lower bound.

6.2 PARALLEL PARAMETERIZED ALGORITHMS EQUAL
PARALLEL PREPROCESSING

Kernelization is not just a useful tool for preprocessing, it is also a natural alterna-
tive definition for the whole parameterized complexity theory. In particular, it is
known that a decidable problem is in FPT if, and only if, it admits a polynomial time
computable kernelization.

Fact 76 (for instance [85])
A decidable parameterized problem (Q, «) is in FPT if, and only if, there is a kernel-
ization K of (Q, k) with K € FP. <

We will show in the rest of this section that the same relation holds in the parallel
setting, that s, a decidable parameterized problem admits a fast parallel parameter-
ized algorithm if, and only if, it admits a fast parallel kernelization. More precisely,
aproblemisin a parallel subclass of FPTif, and only if, it has a kernelization in some
parallel subclass of FP, that is, somewhere within the FNC-hierarchy. I think this
claim is, prior to the results of this thesis, somehow surprising as almost all kernel-
izations —at least in the way they are stated in the literature — have a very “sequential
touch.” However, the previous chapters have already provided parallel parameter-
ized algorithms for a variety of problems and, thus, by the following theorem they
all obtain a parallel kernelization. We will study more natural examples for parallel
kernelizations in the following sections.

Before we state the main theorem of this section, let us be more specific about what
we mean by an FAC'-kernelization. It is, of course, a circuit-family (Cy, )nen that
computes the kernelization function K such as in Definition 72. More precisely, Cy,
hasninput-gates and 2n output-gates. The input-gates expect a structure A in form
of code(A), and the first n output-gates will output code(K(A)) padded with os. The
second block of n output-gates will output a bitmask that indicates which of the first
n output-gates are relevant for the kernel — there will be at most f(k(A)) such bits.
We stipulate that these output-bits must be sorted in the following way: The kernelis
presented in a continuous block at the beginning of the first n output-gates, that is,
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the bitmask presented at the second n output-gates consists of a block of 1s followed
by a block of 0s. Note that this is a small restriction of Definition 72 as, in principle,
a kernelization could output a kernel that in fact is larger than the input. However,
in such scenarios we can always use the non-modified input as alternative kernel.

Theorem 77
A decidable parameterized problem (Q, k) is in para-AC! if, and only if, it admits a
kernelization computable in uniform FAC

Proof. For the first direction let (Q, k) /----c-=-T---7---=-------------- =

rX X X X Xn !
be decidable and let (Cyy)n ey be a family - T Ny
of uniform FAC!-circuits that computes a [ 1 l
kernelization of (Q, ). Recall that for any C
structure A with | code(A)| = n the circuit

Cn will output the code of a structure A’
suchthat ) A € Q & A’ € Qand Y-V~ P
(i) [code(A’)| < f(k(A)) for some com- -y
putable function f: I — N. Note that the
output of Cy, is a padded string together
with a bitmask. Let us define the code
words of Q as codex(Q) = {code(A) | l
A € Q Alcode(A)| < f(k) L

—

\/tecodek(Q) t= Yy

We construct a family (Cp, k) n ken of para-ACt-circuits that decide (Q, k). The cir-
cuit Cyy i is sketched in the figure and works as follows: First, it uses Cy, as a subcir-
cuit in order to reduce A to an equivalent instance A’ of size at most f(k). Sec-
ond, the circuit extracts code(A’) using the bitmask. Afterwards, it tests for all
t € codey(Q) in parallel if any of them equals code(A’). If this is the case, the
circuit accepts, otherwise it rejects. The correctness of the circuit is immediate. For
the size and depth observe that C,, itselfis an FAC!-circuit and, thus, fulfills the size
and depth requirements. The attached test is performed by an AC-circuit of constant
depth and size g(k) = 2f(%). Observe that (Crik)n ken is uniform as (Cp)nen is
uniform and since Q is decidable. The decidability is required by the uniformity
Turing machine, which computes codey (Q) and hard-wires its elements into Cy, k.

For the other direction let us assume (Q, k) € para-AC' witnessed by a uniform
family (Cy, 1 )n ken of para-ACt-circuits, and let us first assume i > o.

We construct a family (Cr, ) n ey of FAC!-circuits that compute the kernelization. The
circuit C,, consists of multiple subcircuits Cit, which are sketched in the figure on
the next page and work as follows: On input of code(A) they test whether we have
K(A) = j (which is possible since k can be evaluated in FAC® by Proviso 27) and set a
flag that indicates whether this is the case or not.
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If the flag is set, Cil is responsible for A,
otherwise it is not. Parallel to this oper-
ation, Cil uses Cppjtotest A € Qand
produces, using this information, a triv-
ial kernel as output — that is, a fixed yes-
or no-instance. Note that the computa-
tion of C,, j and, thus, the produced ker-
nel of CL is not sensibly defined if Cil is trivial kernel

not responsible. l l l

We now describe the circuit C,,, which )
is sketched in the figure on the nextpage ~----—--—---—----—--—--
(the bitmask-gates are omitted). Define

¢ € N to be the maximum k with f(k) < clogi n, thatis, f(£) < clogin and
fl+1) > clogi n. The circuit contains C9,. ..,Cfl as subcircuits and evaluates
them all in parallel. If any CJ, is responsible, Cy, presents the kernel produced by
Cil as output. If all Cil signal that they are not responsible, C;, can conclude that
f(k) > clog' n and, thus, the whole instance is already a kernel. Therefore, C, may
in this case simply pipe the input to the output.

To see that the resulting circuit is an FAC*-circuit, just observe that there is a con-
stant ¢’ such that Cy, j has, by definition, depth at most

f(j) +clog'n < (c+1)log'n < ¢’log'n

and size at most f(j) - n¢ < clog'n - n¢ < n¢ Again, we are left with the task of
arguing that (Cy, )nen is uniform. The C];L are uniform since C,, j is uniform and
since we consider them only for j with f(j) < clog' n. The tricky part is the com-
putation of {, which is required to provide a description of Cy,. This means we have
to construct a Turing machine that, in time O(logn), finds the maximum ¢ with
fl) <c logi 1. First observe that such a machine can compute the value ¢ Iogi n,
because log nn is a loglog n-bit number, and because ¢ and i are constants — in par-
ticular, c log' n is a 2t loglogn € O(loglogn)-bit number. The challenging part is
the search for £ and the evaluation of f({).

By replacing the family of para-AC'-circuits by an equivalent family, we may assume
that f is monotonically increasing with f(x) > x for all x € N. By another replace-
ment of this family, we may further assume that a Turing machine can compute
f(x) on input bin(x) in time O(log f(x)): To see this, observe that f is computable
and, thus, there is some Turing machine that computes f(x) in time T(x) such that
T(x) is monotonically increasing with T(x) > x for all x € N. We replace f(x) by
the function g(x) = 27*). Note that a Turing machine can now compute T(x) in
time log g(x). Since computing a power of two is a simple bit operation, the Turing
machine can also compute g(x) within the same time bound.
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Given the modified family of circuits, the uniformity Turing machine can find { via
binary search: Since f(x) > x we know { < clog' n and since f is monotonically
increasing, a binary search can be applied. Therefore, the Turing machine has to
test only log (¢ log* n) € O(loglogn) possible values for {.

padded code(A’)

For the remaining case of i = o, we perform the same construction, but choose {
such that f(€) < n$ thatis, we bound the subcircuits by size and not by depth. [

Note that the “replace the circuit family with an equivalent family” operation used
in the theorem is a formal way of stating “use the same family of circuits, but replace
the function f in the definition with one that is well behaved.” Aslong as the function
g used to replace f is computable and fulfills g(x) > f(x) forall x € N, the resulting
family still satisfies all properties of para-ACt and is clearly equivalent to the original
family.

Observe that the above theorem also holds if we replace AC-circuits with either NC-
or TC-circuits. The sole exception is NC? as this class may not be powerful enough to
compute k. A nice consequence of this theorem is that “parallel parameterized pre-
processing” equals “parallel preprocessing,” meaning that a para-FAC'-kernelization
can be turned into a “real” FAC!-kernelization:

Corollary 78
Let Q be decidable and let (Q, k) have akernelization that is computable in para-FAC!
Then (Q, k) has a kernelization that can be computed in FAC! <

Proof. By the assumption of the statement, it follows that (Q, ) lies in para-AC} as
such a family of circuits can compute the kernelization and then, in a second step,
solve the problem via “brute-force.” Given (Q, k) € para-AC! Theorem 77 directly
implies the FAC'-kernelization. O]
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Similar to the fact that we may always obtain an FPT-algorithm with a run time of the
form f(k) +n¢ we may also adapt the definition para-AC* to have size bounds of this
form, while at the same time removing the parameter dependency from the depth.
It should be noted, however, that this is a purely theoretical result as the produced
function g may grow exponentially faster than the original function f. It shows,
however, that we can always search for parameterized parallel algorithms that run in
polylogarithmic time and whose work is polynomial plus an additive term depending
only on the parameter.

Lemma 79

Let (Q, k) be a parameterized problem with (Q, k) € para-AC! Then there are a com-
putable function g: T — N and a constant ¢’ such that there is a uniform family
(Crix)nxen of para-AC!-circuits that decides (Q, k) and in which every C/ i has
depth at most ¢’ log' n and size at most g(k) + n¢!

Proof. Since (Q, k) € para-AC} there is a uniform family (Cy, 1 )n xen of para-ACt-
circuits that decides (Q, k). By Theorem 77 there is a constant ¢’ and a uniform
family (Cy, )nen of FACt-circuits such that every C,, has depth at most ¢’ logi nand
size at most n¢ and produces a kernel of size at most f(k(x)). We construct the
desired family (C; | )n xen as follows: The circuit C;, | first applies the circuit Cy,
to an input x and obtains an instance x’ of size at most f(k(x)), then the circuit uses
a constant number of AC layers to check x” € Q by testing in parallel forallw € Q
with [w| < f(k(x)) whether w = x’ holds.

The depth of C{l’k equals (up to a constant) the depth of C,,, and the size of Cﬁ,k
is the sum of the size of C,, and the size of the “brute force” circuit applied at the
end, that is, there is a computable function g: N — N such that size of C| , canbe

bounded by g(k(x)) + ne O
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6.3 KERNELIZATIONS FOR VERTEX COVER AND MATCHING

In this section we study parallel kernelizations for py-VERTEX-COVER. Recall that in
this problem we are given a graph, and we try to identify a small set of vertices such
that every edge is incident to at least one vertex in this set. The vertex cover prob-
lem is a prime example of parameterized complexity theory in both, the design of
fast parameterized algorithms and the design of kernelizations that produce small
kernels. In fact, the problem is a prime example in the development of parallel ker-
nelizations. The first parallel kernelization (actually, it is a logspace kernelization)
is due to Cai et al. [46]. Later on, this kernelization was implemented in FTC® by El-
berfeld, Stockhusen, and Tantau [76].

Both algorithms are based on the following two simple reduction rules, known as
the Buss kernelization in the literature: (i) any vertex of degree at least k + 1 must
be in any size-k vertex cover, and (ii) any isolated vertex is not needed for a vertex
cover. The first rule may appear familiar, as it is quite similar to the rule we used for
Pk-POINT-LINE-COVER. The argument that the rule is correct is similar: just assume
we would not take the vertex, then we would have to take all k + 1 neighbors into
the solution — and this is obviously too much for a size-k solution. The correctness
of the second rule is even more obvious, there is no need to select an element in
a minimization problem that does not give any benefit. To see that an exhaustive
application of these rules result in a kernel of size O(k?*) we have to count again. In
the resulting graph every vertex has degree at most k and, hence, any vertex that we
add to the solution may cover at most k edges. In conclusion, a size-k vertex cover
may cover at most k* edges and, thus, if the resulting graph has more than k* edges
we may reject it. Finally, since the graph has no isolated vertices, it may have at
most 2k? vertices (in fact, we can count more carefully to obtain a bound of k* + k),
which provides the claimed kernel size. The following theorem shows that we can
“push” the kernelization by Elberfeld et al. from FTC® to FAC® if we are willing to pay
an exponential increase in the kernel size. Note that such an improvement was not
possible for py-POINT-LINE-COVER, even for larger increases of the kernel size.

Theorem 80
There is a uniform family of FAC®-circuits that, on input of a tuple (G, k), outputs a
Pk-VERTEX-COVER kernel.

In order to prove the theorem, we will first prove the following more general state-
ment: We can simulate para-TC®-circuits with para-AC®-circuit if the threshold of all
threshold-gates is bounded by a function in the parameter.

Lemma 81

Let f: I — N be a computable function and (Cy, x)nenker be a uniform family
of para-FTC®-circuits such that in every C;, i the maximum threshold used by any
threshold-gate is bounded by the value f(k). There is an equivalent family of uniform
para-FAC®-circuits that compute exactly the same function.
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Proof. Let Cyy i be a para-FTC®-circuit as in the statement, and let its size be bounded
by f(k) - n¢ Replace all occurrences of threshold-gates by para-FAC®-circuits that
implement the circuit of Lemma 45. Since they all have constant depth, the over-
all depth of the circuit increases only by a constant factor. Furthermore, the size of
the resulting circuit is bounded by g(f(k))-n¢, where g: I — Nis the size bounding
function used in Lemma 45 and ¢’ € Na constant. Observe that the resulting family
is uniform as both, (Cp k) nen ker and the family from Lemma 45, are uniform. [

Proof of Theorem 80. We start with the FTC®-kernelization from Elberfeld et al. [76].
There is obviously a para-FTC®-circuit family that implements the same function.
These circuits require their threshold-gates only “to count up to k,” as the difficult
part is to identify high-degree vertices. By Lemma 81 we have an equivalent family
of uniform para-FAC®-circuits that compute the desired kernel. By Corollary 78 this
implies that we can compute a kernel within uniform FAC? O

We shall remark that the lemma that we used to transform an FTC®-kernelizations
into an FAC®- kernelization will work in many other cases. We will see further exam-
ples in Section 6.4.

For now, we will stick to kernelizations for py-VERTEX-COVER a little longer. The
situation looks pretty good: we have a quadratic kernel in FTC° and an exponential
kernel in FAC® — what more could we hope for? The best sequential kernelization due
to Chen et al. [51] achieves a linear kernel of size 2k; and since the kernel will usually
be fed into circuits of exponential size, in all practical situations we would prefer a
linear kernel computed even somewhere in FNC over a quadratic kernel computed
in FTC® Anatural next step is, thus, an attempt to parallelize this linear kernelization.
Unfortunately, we can link the complexity of computing the kernelization by Chen
et al. rather tightly to the computation of large matchings — and whether we can
find such matchings in parallel is a long-standing open problem [79, 132]. The linear
kernel is based on the following fact, known as the Nemhauser-Trotter Theorem.

Fact 82 (The Nemhauser-Trotter Theorem [134])
Let G = (V,E) beagraphand I = {x, | v € V}be a set of variables. Consider any
optimal solution (3: I — R for the following linear program (LPVC):

min ) ,cy Xy
Xu+xy =1 forall{uvliekE
xy =0 forallveV

Let Vo ={v | B(xv) <1/2}, Vi), ={v|B(xv) =1/2}, Vi ={v [ B(xy) > 1/2}bea
partition of V. There is a minimum vertex cover S of the input graph G that satisfies
VIQSQVIUVI/Z' <]
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Chen et al. have observed that there are at most 2k vertices in the set V, /,, and that
this set directly yields the desired kernel [51]. Hence, to compute the kernel we have
to compute a solution to the linear program used in the Nemhauser-Trotter Theo-
rem, and we will see that this is a difficult task.

Theorem 83
Computing a solution for LPVC is NC-equivalent to computing a maximum match-
ing in bipartite graphs.

Proof. The first direction is essentially the standard way of efficiently solving LPVC:
Given an instance of LPVC we construct a bipartite graph H = ({ v, Vv, | v e V]
{{ul,vz}, {u,, vi} | {u, v} € E}) and compute a minimum vertex cover S of it. It is
known that the following assignment is an optimal solution for LPVC [59]:

o for {vi,v,} N'S| = o,
B(xy) =<1/2 for[{v,v,}NS| =1, and
1 for {v,,v,} N S| = 2.

Since H is bipartite, computing a minimum vertex cover is equivalent to comput-
ing a maximum matching due to Kénig’s Theorem [120]. More precisely: To obtain
the vertex cover S, we compute a maximum matching in H and this matching con-
stitutes an optimal solution to the dual program of LPVC. Due to the Complemen-
tary Slackness Theorem, we can derive an optimal solution for the primal program
from an optimal solution of the dual program by solving a linear system of equa-
tions, which is possible in NC [114]. Note that the matrices of both LPVC and its dual
program are totally unimodular, as the incidence matrix of a bipartite graph is to-
tally unimodular, and since the transpose of a totally unimodular matrix is so as well.
Therefore, Cramer’s Rule states that the solution that we obtain for the dual program
with the algorithm from above is integral as well [58, 121]. This completes this part
of the proof.

For the other direction, the input is a bipartite graph G = (V, E) in which we search
for a maximum matching. Let 3 be an optimal real solution of LPVC for G. We can
transform 3 into a (still optimal) half-integral solution (3’ by simple rounding:

o ifB(xy) <1/2,
B'(xy) =< 1/2 ifPB(xy) =1/2,and
1 if B(xy) >1/2.

This well-known fact is based on [134], and can be shown by the following procedure
that successively transforms the assignment {3 into a refined optimal solution, end-
ing at B/ To refine 3 we define the two sets V. = {x, | 0 < B(xy) < 1/2}and
Vo ={x[1/2 < B(xy) <1}

74



We now define for a suitable small € > o the two assignments

B(xv) ifxy ¢ VL UV,
Bi(xy) =< B(xy) +€ ifx, € Vy, and
B(xy)—e€ ifx, € V_,

and
B(xv) ifxy ¢ V4, UV,
B_(xy) =< B(xy) — € ifx, € V,,and
B(xy)+e ifx, € V_.

Observe that both, 3.+ and 3, are still feasible solutions, as for any edge {u, v} the
constraint x,, + X, > 11is satisfied (either one of the variables is already 1, or they
are both 1/2, or we add € to at least one of them). Compared to 3, the value of the
target function changes by €|V | —€e|V_|and €|V_| — €| V|, respectively. Since f3 is
optimal, neither . nor 3_ may reduce the value of the target function compared
to 3; consequently we have [V | = [V_|, and 34 and 3_ are both optimal solutions.
Conclusively, by repeating this process successively, we will end up at 3/

To conclude this part of the proof, we will now turn 3’ into an integral solution. To
achieve this, we construct an auxiliary graph G’ by deleting all vertices with value 1
in G (as these must be in the vertex cover). Since all vertices with value o are now
isolated, we may remove them too. We end up with a bipartite graph G’ with n’
vertices, which are all assigned with the value 1/2 by 3/ We claim B’ is an optimal
solution for LPVC on G! For a contradiction assume otherwise, that is, assume there
is an assignmenty with ZVEV(G’) Yixy) < ZVEV(G’) B’(xy). We can infer a new
assignment 3" for G by “plugging” y into 3

124 B/(XV) ifXV ¢V(G/),
B (xv) = . ,
v (xy) ifx, € V(G').

This is a feasible solution for LPVC on G, since for all edges {u, v} we have:

Y (i) +v (%) =21 ifu,ve V(G');
B (xu) +B"(xv) = { B'(xu) + B'(xv) =1 ifu,v¢ V(G
B'(xw)+7v (xv) =1 ifuegV(G)andv e V(G’).

The first two lines follow by the fact that y and B’ are feasible; the last line follows
by the construction of G, as an edge {u, v} withu ¢ V(G’) andv € V(G’) only
appears if we have 3’ (xy,) = 1 (we have deleted isolated vertices and vertices with
value 1, and here u was deleted and is not isolated). By the construction of 3, we
end up with ZVEV(G) B (xy) < ZVEV(G) B’(xy), which is a contradiction as B’
is an optimal solution for LPVC on G. Consequently, #’ must be an optimal solution
for LPVC on G’ as well.
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Since 3/ assigns 1/2 to all vertices in G’, a minimal vertex cover of G’ has size at
least n’/2. Therefore, G’ has to consist of two shores of equal size, as otherwise
the smaller one would be a vertex cover of size smaller than n’/2. We can, thus,
greedily select one shore into the vertex cover, that is, we set 3’ for one shore to 1
and for the other shore to o. The obtained optimal integral solution of LPVC can be
turned, as in the first direction, into a solution for the dual program in NC, that is,
into a maximum matching of G. O

Note that other kernels that are based on the Nemhauser-Trotter Theorem, such
as the one by Soleimanfallah and Yeo [153], or the one by Lampis [125], do also not
bypass Theorem 83. Finally, a known 3k-kernel, which is based on crown decompo-
sitions (we will define them in Section 7.1), also requires the computation of large
matchings [59]. Since the computation of matchings turns out to be the main obsta-
cle in the computation of small vertex cover kernels, and since it is unknown how
to compute such matchings in parallel, it is a natural first step in the context of this
thesis to study if we can compute kernels for pi-MATCHING in parallel.

Of course, we have px-MATCHING € para-AC® by Corollary 43 and, thus, can compute
an exponential kernel in FAC® Our aim therefore is a polynomial kernel somewhere
within FNC.

Theorem 84
There is a uniform family of FTC®-circuits that, on input of a tuple (G, k), outputs a
px-MATCHING kernel with at most O(k?) vertices.

Proof. The circuit first computesaset S = {v € V | [N(v)| > 2k } of “high-degree”
vertices. If we have [S| > Kk, the circuit can output a trivial yes-instance since for
such a set S we can greedily match any vertex v € S with a vertex u € N(v) \ S,
reducing the available matching mates of all other vertices in S by at most two —and
since they have degree at least 2k, there are still enough mates left to match every
vertex of S.

If the circuit has not finished yet, we compute a set S’ consisting of S and the 2k lex-
icographically smallest neighbors of every vertex in S. Note that we have |S’] < 2k?
Consider the graph G’ = G[V \ S’]. Since S was the set of high-degree vertices,
G’ has maximum-degree d < 2k. Our circuit now removes all isolated vertices
from G, resulting in G) and then checks if we have |[V(G")| > k - 2d. If so, we
can output a trivial yes-instance since a graph with maximum degree d and mini-
mum degree 1 always contains a matching of size [V(G”)|/2d > k. If, on the other
hand, we have [V(G")| < k - 2d < 4k? the circuit outputs G[S” U V(G")] together
with the unchanged number k.

The output clearly has size at most O(k?). To see that G[S’ U V(G")] is a kernel,
we only have to show that if G has a size-k matching M, so does G[S’ UV/(G")] (the
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other direction is trivial). To see this, first note that any edge in M that does not have
an endpoint in S must lie in G” and, hence, is also present in G[S’ U V(G”)]. Next,
all other edges in M must have an endpoint in S and, thus, there can be at most |S|
such edges. We can greedily construct a matching of size |S| in G[S’] (by the same
argument as the one from the beginning of this proof for S| > k). This means that
we find a matching of size [M|in G[S’ U V(G")]. O

A neat corollary of Theorem 84 is the following, and I could imagine that it will ac-
tually find application in practice. Since the result does not really fit into the hierar-
chies that we study within this thesis, we formulate the result in terms of a parallel
algorithm running on a PrAM, without going further into the details.

Corollary 85
The problem py-MATCHING can be solved in parallel time polylog(n) + poly(k) and
poly(n) work on a PRAM. <

6.4 PARALLEL KERNELIZATIONS FOR PROBLEMS
PARAMETERIZED BY VERTEX COVER

Not all decidable problems have polynomial-size kernels, even if we allow sequen-
tial polynomial-time to compute them. This is usually the case for graph problems
in which the parameter is not the sum but rather the maximum over the parameters
of all connected components of the input. In order to develop some intuition, let
us assume we have such a problem that is NP-hard — which essentially means that
we can reduce SAT to it. Now assume we reduce many instances of SAT to our prob-
lem, obtaining graphs G,, ..., G¢. We can create a new instance G of our problem by
building the disjoint union of all G;. Observe that the size of G depends on £ and the
maximum size of some G, while the parameter (G) is bounded by maxfi:1 K(Gi).
If we choose £ much larger than the size of the individual Gj, the resulting graph
G will be much larger than k(G). Thus, a potential kernelization for the problem
would be forced to reduce G. In fact, if £ is large enough, the kernelization has to
remove large parts of G. However, again intuitively, to achieve this, the kerneliza-
tion algorithm has to reason about the individual G; and, in fact, it will eventually be
forced to discard some Gj entirely. This seems to be a tough task for a polynomial-
time algorithm, as the problem is NP-hard after all. Accordingly, it seems unlikely
that such a kernelization can exist. The technical details to prove such a statement
are, of course, more complicated and the resulting theorems are of the form “prob-
lem (Q, k) has no polynomial kernel unless NP C coNP/poly” [35]. Typical problems
that suffer from this property are the decision versions of the graph parameters that
we have encountered in Section 2.2, such as px-TREEWIDTH, py-PATHWIDTH, and
Pk-TREEDEPTH.
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If a problem suffers from the above result, one usually tries to achieve polynomial
kernels with respect to more structural parameters. In particular, of course, param-
eters that will grow by taking the disjoint union of multiple instances. A common
parameter in this line of research is the vertex cover number of the graph [38, 39, 119],
that is, we wish to solve problems (such as TREEWIDTH) on graphs that have small
vertex covers (we denote the resulting problem by p,,.-TREEWIDTH).

In order to be helpful, the kernelization algorithms require access to an actual vertex
cover S of the input graph. Of course, we may not want to solve an NP-hard problem
exactly as a preprocessing step for another computational hard problem. Instead,
we will rely on an approximation algorithm. Fortunately, this turns out to be quite
easy by using the already presented kernelization for vertex cover:

Lemma 86

There is a uniform family of FTC®-circuits that, on input of a graph G = (V, E) and a
number k € N, outputsaset S C Vwith |S| < k*+2k such that G[V'\ S] is edgeless,
or correctly reports that no such set of size at most k exists.

Proof. The circuit uses the FTC°-implementation of the Buss kernel from Elberfeld,
Stockhusen, and Tantau [76] in a slightly modified manner. Instead of outputting
the k* + k kernel, it outputs these vertices together with all vertices selected to the
vertex cover (the high-degree ones), which are at most k. The result is a set S of
size k* 4 2k that clearly is a vertex cover of G, which is presented as approximate
solution by the circuit. Of course, if the Buss kernelization “rejects” by outputting a
trivial no-instance, the circuit reports that the graph has no solution of size k. [

We will consider the input to p,.-TREEWIDTH (and the other problems) as triples
(G =(V,E),k,S) where S C Vis avertex cover of G, as shown in the margin. Our
goal will be to measure the kernel size with respect to S. This definition is justified
by Lemma 86 and allows us to concentrate on the concrete kernelization techniques.

We will describe FTC°-kernelizations for py.-TREEWIDTH, pyc-PATHWIDTH, as well
as pyvc-TREEDEPTH based on known kernelization algorithms for these problems. In
all cases the result requires the threshold gates “only for counting up to the parame-
ter,” as it was the case in Theorem 80 and, therefore, they can be adapted to FAC® ker-
nelizations that produce exponential-size kernels by Lemma 81. We will start with a
kernel for p,.-TREEWIDTH, which is based on [39] and the following two facts.

Fact 87 ([38, 39, 119])

Let G = (V, E) be a graph with treewidth, pathwidth, or treedepth at most k and
withu,v € V,{u,v} € E, and [N(u) N N(v)| > k. Then adding the edge {u, v} to G
will not increase the treewidth, pathwidth, or treedepth of G, respectively. <
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» Fact 88 ([33])
Let G = (V,E) beagraph and v € V be a simplicial vertex, then tw(G) > [N(v)|.
Avertex v is said to be simplicial if N(v) is a clique. <

» Theorem 89
There is a uniform family of FTC®-circuits that, on input of a triple (G, k, S), outputs
a pvc-TREEWIDTH kernel with at most O(|S|?) vertices.

Proof. On input (G, k, S) the circuit can check if S is a vertex cover and if we have
k < [S|. If not, it outputs a trivial no-instance in the first case and a yes-instance in
the second case (a tree decomposition of width |S| can be obtained from S).

The circuit now checks in parallel for every pair u,v € S with {u, v} ¢ E if we have
IN(w) N N(v) N (V\S)| > k, that is, if the two vertices have more than k common
neighborsin V'\ S. If this is the case, the circuit adds the edge {u, v}, as shown in the
first figure. Note that this operation is safe by Fact 87 and can be applied in parallel as
we consider only neighbors in V'\ S while adding only edges in S. Finally, the circuit
considers all simplicial verticesv € V'\ S (they are highlighted in the second figure)
in parallel: if we have [N(v)| > k, the circuit safely outputs a trivial no-instance by
Fact 88, otherwise the circuit can safely remove v from the input graph by standard
arguments [38].

We now argue that, if the circuit has not decided yet, the remaining graph has at
most O(|S) vertices: it consists of the vertices in S, and the nonsimplicial vertices
[ C (V\S). Wehave [I| < |S]? asanyvertex u € I must have at least two neighbors
v, win S with {v, w} ¢ E (as otherwise uwould be simplicial), however, every pair of
nonadjacent vertices in S can have at most k common neighbors (as otherwise the
circuit would have added the edge). Since we have at most |S|* such pairs, the claim
follows by k < [S|. O

» Corollary 90
There is a uniform family of FAC®-circuits that, on input of a triple (G, k, S), outputs
a pvc-TREEWIDTH kernel. <

» Corollary 91
Pvc-TREEWIDTH € para-AC? <

A similar proof works for p,,.-PATHWIDTH and p,,.-TREEDEPTH, however, we cannot
use Fact 88 for those problems and have to rely on a different way to handle simplicial
vertices:

» Fact 92 ([38])
Let G = (V, E) be a graph, k € N be a number, and v € V be a simplicial vertex.
If the degree [N(v)| of v is 1 and the neighbor of v has another degree-1 neighbor,
or if we have 2 < [N(v)| < k and for each pair x,y € N(v) there is a simplicial
vertex w € N(x) N N(y) withw ¢ N[v], then we have pw(G) < kif, and only if,
pw(GIV\ (v}]) < k. <
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» Fact 93 ([119])
Let G = (V, E) be a graph, k € N be a number, and letv € V be a simplicial vertex
with1 < IN(v)| < k. If every neighbor of v has degree at least k + 1, then we have
td(G) < kif, and only if, td(G[V \ {V}]) < k. <

With Fact 92 and Fact 93 we can obtain cubic kernels similar to the one of Theo-
rem 89. The following parallel kernelizations are based on the sequential kerneliza-
tion by Bodlaender, Jansen, and Kratsch [38] and the kernelization by Kobayashi and
Tamaki [119]. However, the more involved rules to handle simplicial vertices cannot
be parallelized as easily as the rule from Fact 88. Instead, we will use a two-phase
marking scheme that makes sure that all decisions are globally conflict-free.

» Theorem 94
There is a uniform family of FTC®-circuits that, on input of a triple (G, k, S), outputs
a pyc-PATHWIDTH kernel with at most O(|SP) vertices.

Proof. The circuit works as in Theorem 89 and differs only in the last step, that s, the
handling of simplicial vertices. We have to identify the vertices for which Fact 92
applies in constant parallel time, which is not trivial since we have dependencies
between these vertices. The circuit marks simplicial vertices to which Fact 92 does
not apply or which we will use as conditions when applying the fact to other vertices
as follows: The circuit first marks for every v € S the lexicographically smallest
degree-1neighbor of v. Then for every simplicial vertex v € V'\ S of degree atleast 2,
the circuit marks for every pair of neighbors x, y of v the lexicographically smallest
simplicial vertex w € (N(x) N N(y)) \ N[v]. If for any pair such a vertex does not
exist, v marks itself. Note that all simplicial vertices that are not marked can safely
be removed by Fact 92, and since the safeness is witnessed by marked vertices, the
circuit can remove them all in parallel.

We are left with the task to show that there are at most O(|S]?) marked vertices left
(the other vertices can be counted as in Theorem 89). We have at most |S| marked
vertices of degree 1 (one for each vertex in S), and at most |S|* marked vertices of
degree greater than 1: each such vertex v has a pair of neighbors in S that has v as
sole simplicial neighbor. O

» Theorem 95
There is a uniform family of FTC®-circuits that, on input of a triple (G, k, S), outputs
a pvc-TREEDEPTH kernel with at most O(|S[?) vertices.

Proof. We proceed again as in Theorem 89 and only differ in the way we handle sim-
plicial vertices. In particular, we argue how we can apply Fact 93 in parallel constant
time. The circuit starts by marking for every vertex v € S with IN(v)| > kthek +1
lexicographically smallest neighbors of v, then the circuit marks every simplicial ver-
texv € V' \ S that has at least one neighbor of degree less than k. Note that every
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simplicial vertex that is not marked can safely be removed by Fact 93 and, since this
safeness is witnessed by marked vertices, these vertices can be removed in parallel.

The amount of remaining vertices can be computed as in Theorem 89, we will end the
proof by counting the number of marked vertices. There are at most [S|*+|S| vertices
that were marked in the first step, as every vertex in S marks only k + 1 neighbors.
Additionally, we may have some simplicial vertices that are marked because they
have a neighbor of degree at most k. Since every degree k vertex in S can produce at
most k such vertices, the number of these vertices can be bounded by |S|* aswell. [J

Corollary 96
There are uniform families of FAC®-circuits that, on input of a triple (G, k, S), output
a Pvc-PATHWIDTH Or Py, .-TREEDEPTH kernels. <
Corollary 97
Pvc-PATHWIDTH € para-AC® and p,,c-TREEDEPTH € para-AC°® <

6.5 COMPUTING HITTING SET KERNELS IN PARALLEL

I want to close this chapter with a little gem of parallel kernelization, which demon-
strates that a classical and very sequential kernelization can be turned into a constant
time parallel one. A second property that makes the presented result a real gem is
its generality: we will provide an FAC®-kernelization for the hitting set problem — a
well-known generalization of the vertex cover problem to hypergraphs.

Problem 98 (HITTING-SET)
Instance: A hypergraph H = (V, E) with max.c |e| = d and a number k € N.
Question: Isthereaset X C Vwith [X| < kanden X # () foralle € E? <

An example instance with k = 3 and d = 4 is visualized in the margin. It is well
known that this problem is W/[2]-complete for parameter k and, thus, we may not
hope for a kernelization in this setting [85]. Instead, we will focus on the combined
parameter k+d and show that, in this setting, the problem lies in para-AC® Note that
such a result is not even obvious if d is a constant, as already for d = 3 the problem
is a generalization of the vertex cover problem.

We will present the kernelization in three steps: first we discuss the underlying se-
quential kernelization as described in [85]; second we will introduce a parallel ver-
sion that requires O(d) time following the ideas of Chen, Flum, and Huang [53]; and
third we reduce the parallel time to O(1) by an intensive use of color coding.
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The sequential kernelization is based on a famous result by Erdds and Rado (the
Sunflower Lemma), which states that hypergraphs of a certain size have to contain
certain structures (namely, sunflowers) [77]. A sunflower is pictorially a collection
of hyperedges that all intersect at the same position and, thus, can be drawn like a
sunflower (see the graphic at the margin).

Formally the definition and the lemma is as follows:

Definition 99 (Sunflower)

Let H = (V,E) be a hypergraph. A sunflower (s,, ..., sk) of size k is a k-tuple of
hyperedges s; € E such that there isa set C C V (called the core of the sunflower)
withs; Ns; = Cforalli<i#j <k <

Fact 100 (Sunflower Lemma [77])
Every hypergraph H = (V, E) with more than k¢ - d! hyperedges contains a sun-
flower of size k + 1. <

The lemma itself directly infers a blueprint for a kernelization: as long as there are
large sunflowers, remove them without changing optimality. As long as we can find
the sunflowers and as long as we can safely remove them, the Sunflower Lemma will
provide us with a bound on the size of the kernel. In order to turn this blueprint into
an actual kernelization for py 4-HITTING-SET, let us define a fold of a hypergraph
H = (V, E) into a family F of sets C C V as the operation that deletes every edge
e from H for which there isa C € F with C C e and which, afterwards, adds all
elements of F as additional edges to H.

(@) . Q
e @ ®
é’ "F={f}{e0}} (o 5

Lemma 101
There is a family of FAC®-circuits that, on input of a hypergraph H = (V,E) and a
family F C 2V, outputs the result of the fold operation on H and 7.

Proof. The circuit checks in parallel for every edge whether there is a set in J that is
a subset of this particular edge and, if this is the case, marks the edge. Afterwards it
presents all unmarked edges together with F as the new hypergraph. O
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In order to utilize the fold operation, we require another operation, called harvest,
which obtains as input a hypergraph H and a number k, and which outputs a “suit-
able” family of sets C C V for the fold operation — suitable will refer to the fact that
afold of H into the produced family will be safe with respect to hitting set. Given an
implementation of the fold and the harvest operation, the procedure in the margin
will be our working horse for a hitting set kernelization. It obtains a hypergraph H
and anumber k as input and, aslong as harvest(H, k) outputs a non-empty family F,
it will simply fold H into &F.

Of course, we cannot expect the algorithm to do anything useful if we fold H into
arbitrary sets. However, if the harvest operation selects the sets cautiously, the fold
operation will be safe with respect to hitting set, and if we care even more about the
selection of such sets, the fold operation will produce the desired kernel. In the light
of the Sunflower Lemma we wish, of course, to fold sunflowers within H.

Lemma 102
Let H = (V, E) be a hypergraph and F be a set of sets C C V such that each C is the
core of a sunflower of size k + 1in H. Then H and fold(H, F) have the same size-k
hitting sets.

Proof. For the first direction let X be a size-k hitting set of H. We argue that X is a
hitting set of fold(H, &). Note that every hyperedge of fold(H, F) thatis contained in
His hit by definition of a hitting set. Furthermore, for each C € Fwe have XNC # ()
as C is the core of a sunflower (s, ..., Sx11): If X would not hit C, it would need to
hit every s; and, since the s; intersect only in C, would require size at least k + 1.

For the other direction let X be a size-k hitting set of fold(H, ). Then X is a hitting
set for H as every hyperedge of H is either contained in fold(H, F), or contains a
subset C € F. In both cases, X hits the hyperedge in H. O

If the operation harvest(H, k) outputs a set that contains exactly one core of an ar-
bitrary sunflower of size k + 1 (if such a core exists, and an empty set otherwise), the
presented algorithm will replace sunflowers by their cores until no sunflowers re-
main. The original proof of the Sunflower Lemma is constructive and provides such
an implementation of harvest(H, k) in polynomial time and, together with Fact 100
and Lemma 102, this yields the sequential kernelization for py 4-HITTING-SET we
mentioned earlier. This implementation of the kernelization is very sequential and in
order to parallelize it, we have to adapt the harvest operation to collect more than
one core. Obviously, the more cores we find per round, the faster is the algorithm.
Ultimately, we would like to fold on all possible cores at the same time — which is,
surprisingly, possible due to the following lemma:

Lemma 103
There is a family of para-FAC®-circuits that, on input of a hypergraph H = (V, E) and
anumber k € N, outputs the set of all cores of sunflowers of size k + 1.
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F < harvest(H,k)
end
return H



Proof. Let us first observe that any core of a sunflower is a subset of some edge and,
thus, there are at most 29 - |E| “possible cores.” The circuit in construction may check
all these cores in parallel and, thus, our task reduces to check whether there is a sun-
flower (s, ..., sx) in H that contains a given set C C V as core.

To perform this test, the circuit constructs an auxiliary graph A = (V(A), EA) with
the following vertex and edge set:

V(A)={e\Clee EACCel,
EA ={{e, 5} [ ei Ney #0).

Observe that an independent set of size k + 1 in this graph is a sunflower of size
k + 1 that contains C as core, and vice versa that any such sunflower corresponds
to an independent set of size k + 1. Unfortunately, this graph has neither bounded
degree nor is planar and, hence, we cannot apply the independent set algorithms
that we have previously developed. Fortunately, the graph is still structured enough
to find the independent set in parallel constant time. To achieve this, we use color
coding and color the vertices of H (not of A!) with k+1 colors using Theorem 42.. Let
A: V(H) — {o,..., k} be the current coloring. We introduce an additional coloring
x: V(A) = {o,...,k + 1} for A with one fresh color by setting foralle € V(A)

c ifA(v) =cforallv € ¢
x(e) = .
k +1 otherwise.

In words, we color a vertex of A with a fresh color if the vertices in the correspond-
ing edge are not colored in a monochromatic way by A, otherwise we color it with
the same color that the vertices of the edge have obtained by A. We claim that a set
Xo, X1, - - -, Xk With X(xi) = 1 constitutes an independent set of size k + 1. For a
contradiction assume otherwise, that is, assume there are two x;, x; withi # j and
xi Nxj # 0. Then consider v € x; N xj and let A(v) = c. Observe that we have
either ¢ # iorc # j and, thus, either the vertices in x; or in x; are not colored in a
monochromatic way, implying x(xi) = k + 1 orx(x;) = k + 1—the contradiction
we have sought. Now for the other direction that a size k + 1 independent set will
be colored in this way by some coloring, observe that there are at most d - (k + 1)
vertices in H that are involved in the coloring for the independent set. Hence, a
(IV(H)],d - (k + 1), k + 1)-universal coloring family guarantees to find it. O

We can now run all parts of our kernelization in parallel constant time, the fold op-
eration in FAC® and the harvest operation in para-FAC® But for how many rounds
will the whole kernelization algorithm run? Unfortunately, more than one! As the
following example illustrates, replacing all sunflowers by their cores may create new
sunflowers that were not present in the original graph. To get rid of these, we have to
run another round and, since this may again create new sunflowers, eventually even
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athird and a fourth. On the positive side, d rounds will be sufficient, as the edges we
add (the cores) are always real subsets of some edges and, thus, the maximum size
of an edge that participates in a sunflower will decrease in every round.

Example 104

Consider the following hypergraph, which we illustrate for this example in metro-
representation rather than set-representation. In this representation, every hyper-
edge has its own color and is represented by a line that “touches” every vertex con-
tained in the hyperedge. In the hypergraph on the left, there are three sunflowers
of size 3, indicated by hyperedges with the same color shade (that is, we have an
orange-, a blue-, and a green-sunflower). Observe that all three sunflowers have a
core of size two (they are labeled in the figure) and that all these cores share the gray
vertex. However, the gray vertex alone is not a core of any sunflower of size 3.

In the right figure we see the hypergraph obtained by folding on all cores of sun-
flowers of size 3. Here, the gray vertex now is a core of a sunflower of size 3. Conse-
quently, if we wish to bound the size of the hypergraph using the Sunflower Lemma,
we have to apply the fold operation to all cores again.

000 00O
_ fold on cores

7o \

>

_—

-

now a core
O O

doo 000 4

The key idea of improving the parallel time of the kernelization from O(d) to O(1) is
the observation that we are not limited to fold on cores of sunflowers. We may fold
on other structures, as long as the fold is safe and as long as we can guarantee to
remove sunflowers, the result will still be a kernel. To utilize this idea, we would like
to identify sets that are not just “cores of sunflowers,” but also sets that are “cores of
cores,” that is, sets that would become a core after one round of the algorithm. Sim-
ilarly, we would like to identify “cores of cores of cores” and “cores of cores of cores
of cores,” and so on. The crucial observation for the following definition is that the
information whether a setis a “core of cores” is already encoded in the hypergraph, it
is just hard “to see” this fact by searching for normal sunflowers. Instead, we will di-
rectly search for a structure thatis a “sunflower at the border” and a “core of cores” in
the center. More precisely and more formally, we introduce the notation of pseudo-
sunflowers and pseudo-cores.
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» Definition 105 (Pseudo-Sunflowers and Pseudo-Cores)
Let H = (V, E) be a hypergraph with max.cg |e| = d and let and k € N be fixed.
A k-pseudo-sunflower with pseudo-core C C V in His a triple (T, r,S) in which T is a
k-nary tree rooted at v € V(T) and S is a mapping S: leaves(T) x {o,...,d} — 2V
such that for all leaves 1, m € leaves(T) at depth(1l) and depth(m) we have:

1. S(1,0) =C.
2. S(Lo)uS(L,1)U---US(L,depth(l)) € E.

3. S(LYNS(Lj) = Dforallo < 1 < j < depth(l), but S(1,i) # 0 for all
ie{y,...,depth(l)}and S(1,1) = @ for i > depth(1).

4. Letz € {1,..., min(depth(1l), depth(m))} be the depth where the path from r
to L and the path from r to m diverge for the first time. Then S(1,z) N S(m, z)
must be empty, thatis, S(1,z) N S(m, z) = () must hold. <

Let us develop some intuition about this technical definition. As the name suggests,
the k-nary tree is something like a sunflower. Instead of petals, however, we have
pathsinthetree T. Condition 2 and 3 ensure that there are edges in the graph that get
mapped to these paths (such that they are partitioned along the path). In a sunflower
the petals are not allowed to intersect outside the core. A pseudo-sunflower weakens
this requirement: By Condition 4 hyperedges may not intersect at the node where
the two corresponding paths diverge for the first time - but they may intersect before
and after this point.

As the following lemmas will show, this requirement is strong enough for the kernel-
ization and works similar to the cores of sunflowers: We will argue that any hitting
set of size k — 1 has to hit the pseudo-sunflower at such diverging points, as other-
wise there will always be at least k disjoint sets after that point, which the hitting set
would need to hit. By an induction, we will see that this will force any hitting set of
size k — 1 to hit the pseudo-core.

Before we start to prove many useful properties of pseudo-sunflowers, let us first
strengthen our intuition about these structure further with the following example:

» Example 106
We consider the same hypergraph as in Example 104, but this time with named ver-
tices. The hypergraph is shown in the very left in the figure on the next page. To
the right, a 3-pseudo-sunflower (T, r, S) is illustrated. We have the tree T with root
1 in the center, and at the very right the mapping S from leaves 1 of T to subsets of
the vertices. As these subsets have to form a hyperedge along a path in the tree, the
mapping is colored with the color of the corresponding hyperedge.

86



S(Lo) S(L1) S(1,2)

{a} (b,e, t} {u,v)

{a} {c,ht  {nqt}

rs
/V la} IC} 1 O,T,LL}

root T
Ood
[oXeNe]
" L aleaf 1

-~

Verifying that (T, r, S) satisfies all properties of a 3-pseudo-sunflower for pseudo-
core C = {a}, is a good exercise left for the reader. <

To obtain the claimed constant-time kernelization, we will require three results: (i)
we have to prove that it is safe to fold on pseudo-cores; (ii) we have to argue how
to find all pseudo-cores at once; and (iii) we have to show that folding on all these
pseudo-cores will not generate new pseudo-sunflowers.

Lemma 107

Let H = (V, E) be a hypergraph and F be a set of sets C C V such thateach Cisa
pseudo-core of a (k + 1)-pseudo-sunflower. Then H and fold(H, &) have the same
size-k hitting sets.

Proof. We argue as in the proof of Lemma 102, the only difference is that we have to
prove that every size k hitting set X has to hit every pseudo-core in F. Let us fix a
(k + 1)-pseudo-sunflower with pseudo-core C € F. We argue that X N C # ().

We say that X hits a node v of T if there is a leaf 1 of T such that vis at depth f on a
path fromrtoland XN (S(l, oJuS(L,1)uU---US(L, [5)) # (). We prove by a reverse
induction on the depth 3 that all nodes of T get hit, which implies that the root gets
hit as well and, hence, X N C # (). For the base case we consider the leaves of T.
Since S(1,1) U---US(1,depth(l)) = eisan edge of H, the leaves get hit by X as X is
a hitting set of H.

For the inductive step consider a node v at depth 3 — 1 with children wy, ..., Wy ;.
By the induction hypothesis wy, ..., Wy, get hit by X, which means that for each
of them there is a leaf 1; such that w; is at depth 3 on the unique path from r to 1;
and X N (S(li, o)US(l, 1) U---US(l, [3)) # (). Since the wjy are children of v, it
follows by the forth property of a pseudo-sunflower that S(1;, 3) N S(1;, B) = 0 for
all1 <11 #j < k+1. Therefore, a hitting set of size k cannot hit them all at depth f3,
but must hit at least one of them at depth 3 — 1, implying that X hits v. O
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» Lemma 108
There is a family of para-FAC®-circuits that, on input of a hypergraph H = (V, E) and
anumber k € N, outputs the set F of all pseudo-cores of k-pseudo-sunflowers.

Proof. Every pseudo-core is contained in some hyperedge and, thus, there are only
2.9.|E| candidates for such pseudo-cores. Furthermore, in every k-pseudo-sunflower
the tree T has depth at most d by property two and three of pseudo-sunflowers. The
circuit in construction may test all possible pseudo-cores and all possible trees T in
parallel. Effectively, this reduced the lemma to the claim that there is a circuit as in
the lemma that, on input of a set C C V, anumber k € N, and a tree T with root r,
decides whether there is a k-pseudo-sunflower (T, r, S) with pseudo-core C.

The mapping S of the pseudo-sunflower essentially maps hyperedges to paths from
the root r of T to its leaves. We say a vertex v € V/(H) participates in the pseudo-
sunflower if there is aleaf L at depth q and a value 3 € {o, ..., q} such that we have
v € S(1, B). The tuple (1, B) is a witness for the fact that v participates in the pseudo-
sunflower. Observe that a vertex may have multiple witnesses as it can be contained
in multiple hyperedges that are mapped to T. Let W = leaves(T) x {o,...,d} be
the set of all possible witnesses. It is easy to check for a given set ¢ C W whether
these witnesses respect the third and fourth property of a pseudo-sunflower. Let
@ C 2 be the set of such sets of witnesses. We will apply color coding to identify
the way hyperedges (and thus vertices) get assigned to T by S. For this task we will
color V(H) with € and the following interpretation: if some vertex v obtains a color
¢ ={(l, B1),..., (la, Ba)}, then it may only participate in the pseudo-sunflower in
the formofv € S(1y, B1) with (1, i) € c. Observe that|C|is bounded by a function
in k and d as T is k-nary and of depth at most d and, thus, [W| < k¢ - d. Finally, let
us fixate the colors for the elements of the given pseudo-core C such that these must
be assigned for every leaf to level o.

We argue that, if all colors are correct, we can find a pseudo-sunflower in this col-
orful version. Since the number of all colors is bounded by k and d, we can use a
universal coloring family and Theorem 42 to find a pseudo-sunflower in the uncol-
ored hypergraph. Fix a coloring A as above. For every leaf 1 of T we consider all
edges e, and we say e is compatible with lif for each v € e there is some 3 such that
(L, B) € A(v) —in other words, an edge is compatible with a leaf if every vertex of the
edge is assigned to the path from the root of T to this leaf by the coloring.

To conclude the proof, we claim that we have found the sought pseudo-sunflower if
we find a compatible hyperedge e; for every leaf 1. We define the mapping S for the
pseudo-sunflower as S(1, ) = {v|v € eg A (LLB) € A(v) } foralll € leaves(T)
and § € {o,...,depth(1)}. The first property of pseudo-sunflowers is guaranteed
as we have fixed the color for the pseudo-core; the second property holds as ey is
compatible with 1; and the third and fourth properties are implied by the choice of A
(or rather the choice of the colors ©). O
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» Lemma 109
Let H = (V, E) be a hypergraph, k € Nanumber, and F C 2" the set of all pseudo-
cores of (k+1)-pseudo-sunflowers in H. Then fold(H, &) does not contain a (k+1)-
pseudo-sunflower.

Proof. Foracontradiction let us assume otherwise, thatis, let us assume that there is
some (k + 1)-pseudo-sunflower (T, r, S) with pseudo-core C in fold(H, F). We will
explicitly construct a (k + 1)-pseudo-sunflower (B, w, F) with pseudo-core C in H.
This implies that the fold operation would have removed (T, 1, S) and, thus, this is
the contraction we have sought.

Initially, we start by setting B = T, w = r,and F = S. Notice that the triple (B, w, F)
is not necessarily a valid pseudo-sunflower in H, as the second property of pseudo-
sunflowers may be invalidated in the form of some leaves 1 € V(B) at some depth g
with J{_, S(1,1) ¢ EM. We call such leaves withered, and we will show by an in-
duction over the number p of such leaves that we can modify (B, w, F) to be a valid
(k + 1)-pseudo-sunflower with pseudo-core C in H. This is trivial for p = o, as we
already have a valid pseudo-sunflower in this case. So assume the claim holds for p
and let us consider (B, w, F) with p + 1 withered leaves.

Fix any of the withered leaves L at depth g and let [ J{__ S(1,1) = C’. Since C’ ¢ EM
(as Lis withered), there must be a (k+1)-pseudo-sunflower (T’, v/, S”) with pseudo-
core C’ in H. In order to remove the withered leaf 1 from B, we will identify 1 with
1/ that is, we “glue” the tree T’ to B at the withered leaf. Since B and T’ are both
(k+1)-nary trees, this operation will resultin a (k+1)-nary tree again. The following
figure illustrates this operation:

(T,7,$) (T',7,8") (B,w,F)

AW/l




We now redefine the mapping F for every leaf 1; of B, where 1 is the withered leaf of
T atdepth q:

S (L, B) if 1 € leaves(T);
F(li, B) =<S (L,B) if ; € leaves(T’)and B < g;
S" (1, B) if l; € leaves(T') and f > q.

Observe that the first property of pseudo-sunflowers holds inherited from (T, r, S)
as we have not changed the assignment at level o; the third property holds as it holds
for all remainingleaves of (T, 1, S), and for the new leaves it holds inherited from the
fact thatitis truein (T/,7/,S’) and by U)q:o F(1,3) = C’ = S'(1, 0); finally for the
forth property observe that all branch points at which we enforce disjointness are
witnessed by the corresponding disjointness in either (T,r,S) or (T',r/,S’).

On the other hand, the triple (B, w, F) may still invalidate the second property of
pseudo-sunflowers and may still have withered leaves. However, we have decreased
the number of these leaves by one, and therefore the induction hypothesis tells us
that we can find a (k + 1)-pseudo-sunflower with the same pseudo-core Cin H. [

Corollary 110
A kernel for py 4-HITTING-SET can be computed in para-FAC® <

Proof. The circuit can implement the harvest operation for pseudo-cores and can
also fold on them. By the results of this section, the general kernelization algorithm
will only run for one round and the circuit can therefore simulate it in constant time.
Finally, since every sunflower of size k 4 1is a (k + 1)-pseudo-sunflower, the result

does not contain any sunflower and, thus, is a kernel by Fact 100. O
Corollary 111

A kernel for py 4-HITTING-SET can be computed in FAC® <
Proof. Combine Corollary 78 with Corollary 110. O

Many problems have para-AC°-reductions to the hitting set problem and, thus, lie
in para-AC® Natural examples are the dominating set problem in graphs of bounded
degree, as well as the modulator problem to H-free graphs:

Corollary 112
Pk,A-DOMINATING-SET € para-AC° <

Proof. Build a hypergraph that contains for every vertex v the hyperedge N[v]. [J

Corollary 113
Let F be the family of H-free graphs, then px-MoDULATOR(F) € para-AC°® <
Proof. Construct a hyperedge for every induced copy of H in G. O
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7 PARALLEL DECOMPOSITION OF GRAPHS

Graph decomposition techniques lie at the heart of modern algorithmic graph the-
ory. Such decompositions reveal structural information of the input graph. A promi-
nent example is the concept of tree decompositions, which we have encountered in
Section 2.2. Usually, such structures can be used to guide an algorithm that solves
an otherwise computational hard problem. Sometimes we can even solve a problem
by “just looking” at the structural information. For instance, a graph that is simi-
lar to a tree may not have a large feedback vertex set and, thus, if we wish to solve
px-FEEDBACK-VERTEX-SET and figure out that the input graph has large treewidth,
we may directly reject the given instance.

Of course, in order to make the structure of a graph algorithmically usable, we have
to discover it first — that is, we have to compute a suitable decomposition. We did
this already in Section 5.2 for the embedding problem. However, in this case the
graph was very small and we did “not really care” how exactly we can find a suitable
decomposition. In this chapter we will change this situation and study the precise
complexity of computing various decompositions in parallel. We start by introduc-
ing crown decompositions in Section 7.1. These are comparably simple decompositions,
which we can compute them in parallel constant time:

Informal Version of Theorem 114.
Crown decompositions can be computed in para-FAC® The parameter is the size of
the used matching. <

After this introduction to the parallel computation of graph decompositions, we will
consider more complex decompositions. Namely, tree and treedepth decomposi-
tions. For the later, we modify a folklore approximation algorithm to run in parallel.
The main observation is that all we have to do is to compute a certain depth-first
search tree — and we can do so via Theorem 35.

Informal Version of Theorem 119.
A treedepth decomposition of width O (2%4(S)) can be computed in para-FACY' <

Finally, in Section 7.3, we precisely analyze each subroutine of an algorithm by Bod-
laender and Hagerup for computing optimal tree decompositions. This analysis will
reveal that all steps of the algorithm can be executed within para-FAC:

Informal Version of Theorem 120.
An optimal tree decomposition can be computed in para-FAC <
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the crown C

the head H

7.1 CROWN DECOMPOSITIONS

7 We start with a rather simple decomposition that de-
0O

""\‘ 7, nique is linked to large matchings in the graph and
A ; can, for instance, be used to sequentially compute a
3k-kernel of px-VERTEX-COVER [59].

A crown decomposition of a graph G = (V, E) is a parti-
tion (C, H, R) of V such that C is an independent set,
H separates C from R, and there is a matching from H into C. We call C the crown
that is attached to G (and separated from the rest denoted by R) via the set H, which
is called the iead. The figure illustrates the decomposition and justifies the naming
convention. The matching from H into C is highlighted.

It is well understood how such a decomposition can be computed sequentially [59].
However, from a parallel point of view the situation is far less clear. In particular, it
is not known how a matching (that connects the head and the crown) could be com-
puted efficiently in parallel. However, if we assume that the head is not too big (that
is, we use [H| as parameter), the matching will not be too big either. This allows us
to develop a parameterized parallel algorithm for computing crown decompositions
without resolving the parallel complexity of the matching problem.

Theorem 114

There is a uniform family of FAC-circuits of constant depth and size f(k) - |G|€ that,
on input of an integer k and a graph G = (V, E), either detects that G has less than
3k+1non-isolated vertices, outputs a matching M C E with M| = k-1, or outputs
a crown decomposition (C, H, R) with [H| < k and |R| < 3k of G.

Proof. The circuit first checks whether the number of non-isolated vertices is at least
3k + 1. This is possible by simulating threshold-gates using Lemma 45. If this is not
the case, the circuit is done. Otherwise, the circuit tests for all values k’ < k + 1in
parallel whether there is a matching of size k’ in G. This can be done using the circuit
of Corollary 43. We either find a matching of size k + 1 or a maximum matching M
of G. In the first case the circuit outputs the matching and is done.

Let P = {v | thereisau € Vwith{u,v} € M}and Q = V \ P, note that Q is an
independent set as M is the largest matching in the graph. Consider the bipartite
graph G’ = (V,E/ = {{u,v} € E|u € Pandv € Q}). By Kénig’s Theorem [120],
the vertex cover number of G’ is at most k, as G’ contains no larger matching. Con-
sequently, the circuit can use another para-FAC®-circuit to compute a minimum ver-
tex cover S of G’ using Theorem 80. We have SN P # (), as otherwise we would have
S € Q and Q would contain at most k non-isolated vertices, which implies that G
hasat most3k non-isolated vertices. Let I be the set of isolated vertices of G. Itis easy
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toverifythat H=SNP,C={v|v & Sandthereisau € Hwith{u,v} € E'}U]T,
and R = V'\ (H U C) constitute a crown decomposition of G. Note that we have
|C| > |V| — 3k, since we have [P| < 2k, |Q| > |V| — 2k and |S| < k - therefore, we
also have [R| < 3k. O

An example application for crown decompositions is a kernelization for the graph
coloring problem parameterized by the number of colors that “have to be saved.”

Problem 115 (DUAL-COLORING)
Instance: A graph G = (V, E) and anumber q € N.

Question: Is there a proper coloring of G with at most |V| — q colors? <

In this problem a graph G = (V,E) and a parameter k € N are given, and the
question is whether or not we can “save” k colors when coloring G, that is, if we can
color G with at most |V| — k colors.

The following parallel kernelization is based on a sequential kernel due to Chor, Fel-
lows, and Juedes that runs in quadratic time [54].

Lemma 116

There is a uniform family of FAC-circuits of constant depth and size f(k) - |G|€ that,
on input of a graph G = (V, E) and an integer q € N, outputs py-DUAL-COLORING
kernel with at most 3q vertices.

Proof. Let G be the edge-complement graph of G, which can be computed by an FAC-
circuit of constant depth. The circuit applies Theorem 114 and either gets informed
that the graph has less than 3k + 1 non-isolated vertices, obtains a matching M of
size q + 1, or obtains a crown decomposition (C, H, R) with |[R| < 3q. In the first
case the circuit outputs the set of non-isolated vertices, as isolated vertices of G are
connected to all vertices in G and, hence, need a unique color. In the second case the
circuit can output a trivial yes-instance, as we can save g + 1 colors. For the last case
we observe that, since C is an independent set in G, it is a clique connected to Rin G
and, thus, every vertex in C needs a unique color. However, because of the matching
from Hto C, the vertices of H can be colored with the same colors as the vertices in C.
Therefore, the circuit can reduce the instance to G’ = G[V \ (C U H)] = G[R] and

q’ = q — |HJ. Since |R| < 3q, this is the desired kernel. O
Corollary 117
p-DUAL-COLORING € para-AC°® <
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7.2 TREEDEPTH DECOMPOSITIONS

In this section we study the graph invariant treedepth. The corresponding decom-
position is a tree decomposition of bounded width and depth. However, graphs
of low treedepth actually have many different decompositions that witness the low
treedepth and that are useful in different algorithmic scenarios. Besides the char-
acterization via tree decompositions, the most common one reads as follows [135]:
“the treedepth of a graph G is the minimum height of a rooted forest F such that G
is contained in the closure of F.” For instance, consider the graph G = and
the rooted forest F (which is just a tree) shown at the margin. The closure of the for-
est is indicated by dotted lines and the embedding of G is highlighted. The forest F
witnesses that the treedepth of G is at most 4.

Since any graph is contained in the closure of a depth-first search tree of it, we can
deduce that the treedepth of a graph is bounded by the minimum depth of any such
tree. Note that this observation implies that the treedepth of a graph is bounded by
the longest path in the graph.

Fact 118 ([135])
The length of the longest path in a graph G = (V, E) is bounded by 214(G), <

This leads to the convenient property that the treedepth of a graph can be approx-
imated “just by a depth-first search.” In conjunction with Lemma 35 we can thus
formulate the following theorem:

Theorem 119

There is a uniform family of FAC-circuits of depth f(k) and size f(k) - |G|¢ that, on
input of a graph G = (V, E) and an integer k, either determines td(G) > k or
outputs a rooted tree decomposition (T, ) of G of width O(2%4(¢)) and such that
for all nodes x,y of T we have t(x) C t(y) if'y is a descendant of x.

Proof. Let us assume G is connected and let T be a depth-first search tree rooted
at an arbitrary start vertex r € V. For all vertices v € V we define the vertex set
t(v) = {w | wlies on the unique path fromvtorin T }. Due to Fact 118, the depth
of T is bounded by 2'4(G) Therefore, we also have |1(v)| < 2'4(6) foreachv € V.
Since bags extend along the paths from the root to the leaves of T, all conditions of
a tree decomposition are satisfied by (T, v).

A circuit with the desired size and depth can compute a depth-first search labeling
using Lemma 35, and either conclude that the length of the longest path exceeds 2*
(and therefore td(G) > k), or obtain the depth-first search labelingA: V — N. In
the later case, the circuit can compute the bags of the decomposition in parallel: For
eachv € Vitinitializes the bag ((v) = {v}and, aslong as r ¢ ((v), repeats the
following procedure sequentially: let w € ((v) the vertex that minimizes A(w) in
t(v), add the unique w’ € N(w) that satisfies A(w’) = A(w) —1t0 (V).
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To complete the proof, we have to handle the case that G is not connected. The cir-
cuit can compute all connected components of G using a breadth-first search label-
ing (Lemma 34). Afterwards, the circuit can apply the aformentioned algorithm to
each connected component. Finally, the circuit adds a new empty root bag that is
connected to the roots of all constructed tree decompositions. This operation does
not increase the width and increases the depth only by one. O

7.3 TREE DECOMPOSITIONS

In contrast to treedepth, the initial situation for treewidth looks a little better, as
there are already parallel algorithms known in the literature. The first attempt was
done by Bodlaender [32]. However, the resulting algorithm produces too much work
and is only suitable for graphs of constant treewidth. The result was improved by
Lagergren with a CRCW-algorithm that runs in O(log® n) parallel time using only
O(n) processors [124]. An algorithm with this time and work can be translated (or
“seen as”) a para-AC-algorithm and, hence, implies py-TREEWIDTH € para-AC. Two
years after the discovery of the algorithm by Lagergren, the result was again im-
proved by Bodlaender and Hagerup to an EREW-algorithm with optimal speedup
that runs in time O(log” n) using O(n) operations [37]. This algorithm was trans-
lated to different parallel models, for instance to the parallel external memory model
in a work by Jacob, Lieber, and Mnich [113]. In the remainder of this section we will
do the same and translate the algorithm by Bodlaender and Hagerup to our circuit
model. The term “translate” stands for a careful analysis of each subroutine of the
algorithm, revealing that it can be implemented in para-AC* We should note that,
in contrast to the previous section, the presented algorithm is an exact algorithm
rather than an approximation. Therefore, we may hope to obtain better results by
implementing one of the many approximation algorithms for treewidth in paral-
lel — such as the one by Robertson and Seymour [146]. However, none of these algo-
rithms achieves a better parallel run time than the algorithm we present here.

Theorem 120

There is a uniform family of FAC-circuits of depth f(k) - log” |G| and width (k) - |G|
that, on input of a graph G = (V, E) and an integer k, either determines tw(G) > k
or outputs a tree decomposition of G of width at most k.

We first provide a high-level sketch of the algorithm of Bodlaender and Hagerup,
which runs in O(log n) rounds. Afterwards, we provide a series of lemmas that state
that we can implement all operations performed in one round in para-AC Putting
all the pieces together, we will obtain the algorithm claimed in the theorem.

The idea of the algorithm is as follows: If G = (V, E) is small enough, we can com-
pute an optimal tree decomposition via “brute-force,” otherwise we try to reduce the
graph until it has a suitable size. We call two vertices u,v € V reduction partners if
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they are adjacent or twins ( j:@::). We can reduce the size of G by 1 if we contract the
two vertices, that is, if we remove v from G after connecting all neighbors of v to u
(without creating multi-edges: o). Let G’ be the resulting graph, and let (T’, /)
be a recursively computed tree decomposition of G’ of width at most k ( ).
We compute a tree decomposition (T, 1) of G of width at most k + 1 by injecting v
into (T’, /), thatis, by adding v to all bags that contain u (— ). The resulting
tree decomposition is most likely not optimal, but its width is bounded by a function
in k. This decomposition can be used to compute an implicit representation of an
optimal tree decomposition of G. This implicit representation is a binary tree T to-
gether with a collection P,, of simple paths for every v € V(G) —that is, the vertices
of V correspond to paths in T (500). The paths are encoded as triples (x,y, v) with
x,y € V(T),v € V(G), and with the natural meaning that there is a path in P,,
from x to y. Note that there can be multiple triples that start or end at some node x,
but of course never more than k + 1. Given such an implicit representation, we can

compute a tree decomposition of width k (—— ).

Our plan for proving Theorem 120 is to implement the above sketched algorithm
such that (i) we execute roughly log n rounds of it, and such that (ii) each round can
be implemented by para-FAC-circuits of depth roughly log n. The first item consists
of reducing the instance to a smaller one by contracting reduction partners, which are
pairs of vertices that are adjacent or twins. And, as usual in the design of parallel
algorithms, we require many reduction partners that we can contract at once. The
following fact due to Bodlaender and Hagerup guarantees that, in principle, there
are always enough reduction partners. For that matter, let us call a vertex v d-small
if we have IN(v)| < d.

Fact 121 ([37])

Let G = (V,E) be a graph with tw(G) < k, and let d = 28"4(s4k + 54) and
¢ = 1/(8(27k + 27)?). Then there are at least c|V|/2 distinct pairs {u, v} of d-small
vertices that are reduction partners, thatis, {u, v} € Eor N(u) = N(v). <

Unfortunately, the reduction partners provided by Fact 121 can still be in conflict.
However, since all involved vertices are d-small, each pair can only be in conflict with
a few other pairs. A maximal independent setin a corresponding conflict graph will,
thus, equip us with enough conflict free reduction partners.

Lemma 122

There is a computable and monotonically increasing function g: N — N such that
there is a uniform family of FAC-circuits of depth f(k) - log|V| and size f(k) - [V|©
that, on input of a graph G = (V, E) and k € N, outputs a set [ of 1/g(k) - |V| pairs
of vertices that can be contracted in parallel, or that concludes tw(G) > k.
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Proof. Letd = 2¢*4(54k+54)andc = 1/(8(27k+27)2). Iftw(G) < k, thenthereare
at least c|V|/2 distinct pairs {u, v} of d-small reduction partners by Fact 121. Since a
circuit of the desired size can check all pairs of vertices in parallel, it can compute a
set S of reduction partners. Furthermore, since the circuit has logarithmic depth, it
can check whether |S| > c|V|/2 holds — and it can report tw(G) > k otherwise.

We cannot contract all pairs in S simultaneously, as pairs may share a vertex, may
be adjacent, or may have a common neighbor. Since all these properties can easily
be checked by an AC®-circuit, the circuit in construction can check for each pair of
reduction partners if they are in conflict. By doing so, the circuit computes a conflict
graph C whose vertex set is S and whose edges indicate conflicts. As the degree of
each vertex appearing in a pair in S is bounded by d, the degree of C is bounded by
a function in k, that is, by g(k). Since each maximal independent set  in a graph of
maximum degree A has size at least |V|/(A + 1), it is sufficient to use the reduction
partners that constitute a maximal independent set in C. The circuit can compute
such a set using Theorem 33. O

Once we have a set of conflict free reduction partners, we can contract them to ob-
tain a smaller graph. Via recursion, we will obtain an optimal tree decomposition for
this reduced graph and, thus, our next task is to undo the contractions. We will do
this in three steps: First we undo the contraction to obtain a tree decomposition that
is not optimal (but which has a width that is still bounded by k). Then, secondly, we
increase the width of this decomposition a little more, which in return allows us to
make the tree decomposition balanced (and in particular such that the correspond-
ing tree has depth log n). Finally, we will compute a new and optimal tree decompo-
sition. In order to execute the second step, we use the following fact from Elberfeld,
Jacoby, and Tantau — but we have to be careful about the used encoding, as it differs
from our standard encoding (Definition 4):

» Fact123 ([75])
There are uniform families (C}, )nen, (C% )nen, (C3,)nen of FTCO-circuits that per-
form the following tasks:

« (Ci)nen expects a graph G and a width-w tree decomposition (T, t) in term
representation as input, and outputs a width-(4w+3)tree decomposition (T’, /)
in term representation such that T’ is a balanced binary tree;

« (C% )nen expects a tree T in term representation as input, and outputs it in an-
cestor representation;

« (C3)nen expects a tree T in ancestor representation as input, and outputs it in
term representation. <

The term representation of a tree is a string of brackets that encodes the ancestor re-
lation of the tree. For instance, the term representation of o;f)b is the string [[[1[]1[1].
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In contrast, the ancestor representation is a string consisting of a sequence of tuples
(v#w) for all v, w € V(T) with v being an ancestor of w. Note that both encodings
contain more information about reachability relations of vertices in the tree than
the encoding of Definition 4. Therefore, it is not surprisingly that many problems
on trees and forests that are L-complete when the input is given with the standard
encoding [56], become solvable in TC® or NC! if the input is given in term or ances-
tor representation [75]. On the other hand, it is also easy to see that we can switch
between the encoding of Definition 4 and the ancestor representation whenever we
can answer reachability queries — which we can in AC!

Corollary 124

There is a uniform family of FAC'-circuits that, on input of a graph G = (V, E) and
a width-w tree decomposition (T, t) of G, outputs a tree decomposition (T’,1") of
width 4w + 3 such that T’ is a balanced binary tree. <

Lemma 125

There is a uniform family of FAC-circuits of depth f(k) - log|V| and size f(k) - |[V|¢
that, on input of a graph G = (V, E), a set of conflict free pairs of vertices I, a graph
G’ = (V/,E’) that is obtained from G by contracting the pairs in I, and a tree de-
composition (T’,1’) of G’ of width k, outputs a balanced and nice tree decomposi-
tion (T, 1,n) of G of width at most 8k + 3 and depth (16k + 6) - log [V| + 1.

Proof. Let (T’,1) be the given tree decomposition. An FAC®-circuit can compute
(T, 1) by adding for each pair {u, v} € I the vertex v to every bag that contains u.
This can be done in parallel for all vertices and all bags. Since the number of vertices
in each bag is at most doubled, (T, t) has width at most 2k. This decomposition can
be transformed into a balanced one of width at most 8k + 3 by Corollary 124.

The last thing we have to do is to transform this decomposition into a nice decom-
position (T, ,1). In order to do so, the circuit first adds an empty bag to each leaf,
which is labeled as leaf node. Then, each node n with two children x and y is replaced
by nodes n, ny, and n, such that n, n, are the children of n, x is a child of ny, and y
a child of n,.. The node n is labeled as join node. This operation doubles the depth of
the decomposition. Finally, for every node x with child y, the circuit in construction
computes a chain of forget nodes from x to a new node zwith ¢(x) Nt(y) = 1(z), and a
chain of introduce nodes from z toy. This will increase the depth of the decomposition
at most by a factor of 8k + 3.

Since making a balanced tree decomposition nice will result in a balanced decompo-
sition again, the above algorithm produces a nice and balanced tree decomposition
of width at most 2k and depth at most (16k + 6) log|V| + 1. O

By putting all the previous results together we can compute a suboptimal tree de-
composition of width, say, £. Our task is to compute an optimal tree decomposition
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of width k. The algorithm by Bodlaender and Hagerup [37] that we try to implement,
as well as the famous linear time algorithm by Bodlaender [33], use the following al-
gorithm due to Bodlaender and Kloks [40] as subroutine — and we will do the same.

Fact 126 (The Bodlaender—Kloks Algorithm. Implicit in [40], see also [37] for details.)
There is a computable function f: N — Nand an algorithm that, on input of a graph
G = (V,E), a width-{ nice tree decomposition (T, 1) of G, and an integer k € N,
either detects tw(G) > k or outputs a binary tree T' and aset{P,, | v € V(G) } of
collections of simple paths such that:

1. |Py| >oforallv e V(G);
2. {v|thereisap € Py withn e p}l < k+1foralln € V(T);

3. {n|thereisap € P, withn € p }isconnectedin T forallv € V(G);

4. theset{P, | v € V(G) }is encoded as set of triples (x,y,v) with x,y € V(T)
andv € V(G);

5. the algorithm requires time f({) per node of T, and a node can be processed
when his children have already been processed. <

Lemma 127

There is a uniform family of FAC-circuits of depth f(k) - log|V| and size f(k) - [V|¢
that, on input of a graph G = (V, E), an integer k, and of a balanced and nice tree
decomposition (T, ,1) of G of width at most £ < f(k), outputs either tw(G) > kor
a width-k tree decomposition of G.

Proof. The circuit starts by either detecting tw(G) > k or by computing a binary tree
T’andaset{P, | v € V(G) } of collections of simple paths, encoded as set of triples
(x,y,v) withx,y € V(T’)andv € V(G). In order to do so, the circuit “bubbles
up” the nice tree decomposition and spends f(k) time on every node to simulate the
algorithm from Fact 126. Since the depth of T is f(k) - log V|, the desired circuit can
implement this algorithm without modification.

If the algorithms has not reported tw(G) > k, the circuit has access to an optimal
tree decomposition in the implicit form of a binary tree T” and a set of triples. Since
the “real” tree decomposition we try to extract from this implicit representation uses
the same tree T, the rest of the lemma boils down to the following algorithmic task:
Given atree T’ = (V, E) and three nodes s,x,t € V, decide whether x lies on the
unique path between s and t. This property can be expressed in monadic second-
order logic with following formula, where @ onnected (X) 18 @ formula that expresses
that the subgraph induced on X is connected (recall Example 14).

(p(s, X, t) :[HP . P(S) N P(X) N P(t) A (pconnected(P) }
N [VP . (P(S) 74\ _'P(X) AN P(t)) — _'(pconnected(P) ]

Since T’ is a tree (of treewidth 1), we can check the formula and, thus, decide the
problem, in AC' [74]. O
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Proof of Theorem 120. The circuit first checks whether the size of the graph is bounded
by k. If this is the case, an optimal tree decomposition can be computed via “brute-
force.” Otherwise, the circuit computes a set of 1/f(k) - |V| reduction pairs using
Lemma 122, or concludes that the treewidth of G exceeds k. The circuit reduces G
to G’ by contracting the reduction pairs (the lemma guarantees that this is possible
in parallel) and recursively computes a tree decomposition of G’. This tree decom-
position can be transformed to a nice and balanced decomposition of G of width
bounded by a function in k using Lemma 125. Finally, the circuit can reduce the
width of the decomposition to k or conclude tw(G) > k using Lemma 127.

Since Lemma 122 provides us with 1/f(k) - [V| reduction pairs, f(k) - log|V| rounds
of the algorithm are sufficient to reduce the graph to a size depending only on the
parameter. Considering each round as a subcircuit, each subcircuit has to execute
the algorithms from the lemmas 122, 125, and 127. Since each lemma can be imple-
mented in depth f(k) - log |V/, the complete circuit has a total depth of f(k) - log” |V
and is, hence, a para-FAC*-circuit. Finally, the correctness follows from the correct-
ness of the original algorithm [37]. O

Note that this algorithm is, unfortunately, of pure theoretical interest — as are the
algorithms of Bodlaender [33] and Bodlaender and Hagerup [37]. The reason is that
the function f used by the Bodlaender—Kloks Algorithm (Fact 126) grows highly expo-
nentially [40]. And indeed, attempts to turn Bodlaender’s algorithm into a practical
implementation have revealed that this is rather hopeless [147]. However, by circum-
navigating the Bodlaender-Kloks Algorithm by either skipping it, or by replacing it
with heuristics, one obtains a general framework for treewidth heuristics [95]. Prac-
tical algorithms that compute optimal tree decompositions, however, require a fun-
damental different algorithmic strategy. We will discuss and analyze such strategies
theoretically and practically in the second part of this thesis in Chapter 10.
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8 PARALLEL PARAMETERIZED
ALGORITHMIC META-THEOREMS

In the previous sections we developed many parallel parameterized algorithms for
various problems. We did this on a case-by-case basis, that is, for every problem
we carefully crafted a parallel algorithm for that particular problem and analyzed
the correctness and the resource consumption of that particular algorithm. This
has led to results such as px-VERTEX-COVER € para-AC® (via the kernelization of
Theorem 80). While this approach has the advantage that it gives us an algorith-
mic insight into the way parameterized problems can be solved in parallel, it has
the drawback that we have to repeat the whole procedure for every “new” problem.
For instance, if we just change the definition of VERTEX-COVER slightly such that we
now ask to cover at least a given amount of edges (rather than all), the kernelization
techniques used for VERTEX-COVER do not apply anymore.

Problem 128 (PARTIAL-VERTEX-COVER)
Instance: A graph G = (V, E) and two numbers k, t € N.
Question: IsthereasetS C Vwith|S| < kand‘{{u,v} lueSVveSs }| >

For the sole parameter k, this problem is known to be W([1]-hard [102]. But this does,
of course, not rule out an efficient parallel algorithm for the combined parameter
k + t. However, instead of crafting yet another vertex cover algorithm, it would be
preferable to derive such an algorithm from a general result that “just tells us” what
the parallel complexity of py {-PARTIAL-VERTEX-COVER is.

To free us from the burden of crafting new algorithms on a case-by-case basis, we
will use algorithmic meta-theorems. Such meta-theorems generally state that all prob-
lems that can be described in a certain logic can be solved in some complexity class for all
instances with a certain structure. The most prominent example is Courcelle’s Theo-
rem, which states that all problems expressible in monadic second-order logic can be
solved in polynomial time on structures of bounded treewidth [57]. A bit more for-
mally, we are interested in the parameterized complexity of the following decision
problem for which we fix a logic £:

Problem 129 (MODEL-CHECKING(L))
Instance: A relational structure S and an £-formula .

Question: S = @? <
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In all its generality, this problem is, of course, very difficult. Recall for instance the
sentence ;.| from Section 2.3:

@300l = IRIGIB (Vx R(x)\/G(x)\/B(x))/\(VxVy E(x,y) — /\ﬂC(x)\/ﬁC(y)).
C e{R,G,B}

It describes that a given graph has a proper coloring with three colors. Therefore,
even if the size of ¢ is bounded by a constant and if we consider only monadic
second-order logic, the model checking problem is already NP-hard. For a weaker
logic — such as first-order logic — a natural parameter is the formula ¢. However,
the following sentence @4, for pi.-DOMINATING-SET already shows that the problem
P -MODEL-CHECKING(FO) is W([1]-hard:

k
Qgs = ;... Ixx Yy Iz \/ (xi =yV (E(y,z) /\z:xi)).

i=1

In order to obtain useful results, we will add a structural parameterization on the
given relational structure S in addition to the formula . First, in Section 8.1, we
use the maximum degree A of the Gaifman graph of S as a parameter. Later on, in
Section 8.2, we use more restrictive parameterizations such as the treedepth or the
treewidth of the Gaifman graph.

8.1 FIRST-ORDER MODEL CHECKING

Our first result considers the case that £ is the class of first-order formulas and that
the maximum degree A of the Gaifman graph of the input structure is a parameter.
Our main result is that this model checking problem lies in para-AC®":

Theorem 130
P, A-MODEL-CHECKING(FO) € para-AC”"

We rely strongly on a previous result by Flum and Grohe [84], who showed that this
model checking problem lies in para-L (that s, it can be decided by a Turing machine
that uses at most f(k) + O(log n) space), but we differ in three regards: First, we use
color coding in our proof, which simplifies the argument somehow, second, we iden-
tify the parameterized distance problem on bounded degree graphs as the only part
of the computation that is presumably not in para-AC? and, third, we observe that
the degree of these graphs can be made a parameter and needs not be considered
constant. Note that the result of Flum and Grohe, and the claim of Theorem 130
are incomparable in the sense that the relation of para-AC® and para-L is unclear.
While para-AC®' contains the parameterized distance problem (Theorem 39), it does
certainly not contain undirected s-t-reachability. In contrast, para-L contains the
undirected s-t-reachability problem due to Reingold’s algorithm [143], but it does
not contain the parameterized distance problem unless parag-L C para-L [154].
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Proof of Theorem 130. Let ¢ be a formula given as input. For simplicity of presenta-
tion, we assume that the structure S is actually an undirected graph G = (V, E) of
maximum degree A. Let d(a, b) denote the distance of two vertices in G and let
N.(a) = {b € V | d(a,b) < r}be the ball around a of radius r in G. By Gaif-
man’s Theorem [94] we can rewrite ¢ as a Boolean combination of formulas of the
following form:

Ixp - Ixxe (/\1?:1 /\j7gi Wdise>2r (X1, %5) A /\1;:1 1|)(X1)>

where gise~,r (Xi,X;) is a standard formula expressing that d(x;,x;) > 2rand {
is r-local, meaning that for all a € Vwe have G = VP (a) <= G[N,(a)] E ¥P(a).
What remains is to determine whether there are k vertices a; to ay in G such that
the balls N, (a;) do not intersect and G[N(a;)] = P (ai) holds for them.

We use color coding to determine the existence of such a;. Let us introduce colors
1to k. Since the maximum degree A is a parameter and r depends only on ||, the
maximum size M of any N (a) is bounded by the parameter. This means that there
isa (|V[, M - k, k + 1)-universal coloring family that contains a coloring that colors
all vertices of N (a;) with color 1. In other words, there will be a coloring such that
the balls are contained in monochromatic connected components of color i.

It remains to test whether for each color i there is a vertex a; such that N, (a;) has
color iand G[N+y(ai)] = W(a;i) holds. For this, let some candidate a; be given. We
need to determine for a given vertex b whether d(a;, b) < r, where the distance
is computed in the subgraph of G induced by the vertices of color i. Meaning, we
need to solve parameterized distance problems parameterized by d (and A), which
is possible in para-AC®' due to Theorem 39. Once the set N.(a) of vertices reachable
from avertex a in at most r steps has been determined, we can create an isomorphic
copy of G[Ny(a)] consistingjustofa|Ny(a)|x|N(a)|adjacency matrix in para-AC®:
Number the vertices of G in lexicographical order, which also induces an ordering
on the vertices of N..(a). The entry in row i and column j of the matrix is a 1 if the
ith and the jth vertex in N;.(a) are connected by an edge in E. Determining which
vertex is the ith vertex of N, (a) can be done by a para-AC°-circuit by Lemma 4s.

Given the adjacency matrix of G[N,(a)], we can decide in para-AC® whether we have
GINy(a)] E ¢, since the size of G[N;(a)] depends only on the input parameters.
O
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Equipped with Theorem 130 we can now provide an upper bound on the complexity
of px t-PARTIAL-VERTEX-COVER:

Lemma 131
Pk t-PARTIAL-VERTEX-COVER € para-AC'

Proof. On input of a graph G, we first test whether there is a vertex of degree at
least t. If so, we can accept since this vertex alone already constitutes the desired
cover. Otherwise, we know that the graph has a maximum degree bounded by the pa-
rameter, and we can apply Theorem 130 to the following first-order formula, which
depends only on k and t:

the size-k cover  the t covered edges

3x, - - - Ixp Ja, T, - - - Hatﬂbt(

Qa1 by, a6, be) A AL (Elag, bi) AV 0 = x3) ).

Here, @i 1s a standard formula expressing that{a,, b}, ..., {at, bt} are distinct sets.
d

8.2 SECOND-ORDER MODEL CHECKING

In the second part of this chapter, we switch from first-order logic to second-order
logic. This will, of course, increase the complexity of the model checking problem,
as this logic is more powerful. To compensate this circumstance, we have to use
structural parameters that are stronger than the maximum degree. The vertex cover
number, the treedepth, and the treewidth of the Gaifman graph of the input struc-
ture will fill this role. In detail, we will prove the following three theorems in the
course of this section:

Theorem 132
P,ve-MODEL-CHECKING(MSO) € para-AC°®

Theorem 133
P,:d-MODEL-CHECKING(MSO) € para-AC”'

Theorem 134
P,tw-MODEL-CHECKING(MSO) € para-AC*

These results are a parallel version of the theorem of Courcelle. Similar work was
done by Elberfeld, Jakoby, and Tantau, who showed these result for constant treedepth
or treewidth and a constant sized formula [74, 75]. An interesting observation is
that in the constant case, the parameters vertex cover number and treedepth co-
incide — in both cases the corresponding model checking problem is in AC® In the
parameterized setting, however, a difference in their complexity is revealed.
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The standard approach to solve problems on structures of small treewidth is to ap-
ply dynamic programming on a tree decomposition of the structure (or rather of its
Gaifman graph) while using the fact that graphs of small treewidth have small bal-
anced separators [59]. We applied such a technique in Section 5.2, where we showed
that we can find a homomorphism from a graph H to another graph G efficiently if
H is small and has constant treewidth. The main ingredient to prove the aforemen-
tioned theorems is to show that such a strategy works whenever the problem can
be defined in MSO-logic. Before we jump directly into the proof, it will be helpful to
develop some intuition about dynamic programming on tree decompositions.

We will, for now, assume that we are already given a tree decomposition (T, t), and
we assume that this decomposition is very nice. Recall that this means that T is a
rooted binary tree, and that we are additionally given some labeling function of its
nodesn: V(T) — {leaf, introduce, join, forget, edge}. We also consider the children
of a node to be ordered, for instance by the lexicographical order of V(T). A dy-
namic program on (T, () is just a run of a (nondeterministic) tree automaton: The
mapping t can be seen as a function that maps the nodes of T to symbols from some
alphabet X. A naive approach to manage t would yield a huge alphabet (depending
on the size of the graph). We thus define the so called tree-index, which is a map
idx: V(G) — {o,...,tw(G)} such that no two vertices that appear in the same bag
share a common tree-index. The existence of such an index follows from the prop-
erty that every vertex is forgotten exactly once: We can traverse T from the root to the
leaves and assign a free index to a vertex v when it is forgotten; we release the used
index once we reach an introduce bag for v. The symbols of £ then only contain the
information for which tree-index there is a vertex in the bag. From a theoretician’s
perspective this means that |X| depends only on the treewidth; from a programmer’s
perspective the tree-index makes it easier to manage data structures for the dynamic
program (this will be discussed further in the second part of this thesis).

Definition 135 (Tree Automaton)

A nondeterministic bottom-up tree automaton is a tuple A = (Q, X, A, F) where Q
is a set of states with a subset F C Q of accepting states, L is a non-empty alphabet,
and A C (QU{L}) x (QU{L}) x X x Q is a transition relation in which 1. ¢ Q
is a special symbol to treat nodes with less than two children. The automaton is
deterministic if for every x,y € Q U{L}and every o € I there is exactlyone q € Q
with (x,y,0,q) € A. <

Definition 136 (Computation of a Tree Automaton)

The computation of a tree automaton A = (Q, X, A, F) on a labeled tree (T, ) with
t: V(T) — Zandrootr € V(T)is an assignment q: V(T) — Q such that for
alln € V(T) we have (i) (q(x), q(y), t(n),q(n)) € A if n has two children x, y;
@i1) (q(x), L, un), q(n)) € Aor (L, q(x),t(n), q(n)) € Aifn has one child x; and
(iii) (L, L, «(n), q(n)) € Aifnisaleaf. The computation is acceptingif q(r) € F. <
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» Example 137 (A Dynamic Program for Graph Coloring)

We want to decide whether a given graph G = (V, E) can be colored with three col-
ors. Given a very nice tree decomposition (T, ,11), a nondeterministic tree automa-
ton can process T as follows: On introduce-bags, the automaton guesses a color for
the introduced vertex; on forget-bags the automaton clears the information for the
removed vertex from its current state; at edge-bags the automaton rejects in case the
two endpoints of that edge have the same color in the current state of the automa-
ton; and, finally, in join-bags the automaton rejects when it was in different states for
the two children. In case the automaton reaches the root of T without rejecting, it
will accept T. Using the properties of a tree decomposition, it is easy to check that G
is indeed colorable with three colors in this case.

The following figure illustrate a run of the automaton. The left figure shows a part
of a tree decomposition of the grid graph % with vertices {o, ..., 8}. The index of
a bag shows the type of the bag: a positive sign means “introduce,” a negative one
“forget,” a pair represents an “edge”-bag, and text is self-explanatory. Solid lines
represent real edges of the decomposition, while dashed lines illustrate a path (that
is, there are some bags skipped). On the left branch of the decomposition a run of a
nondeterministic tree automaton for 3-COLORING is illustrated for the tree-index:

01 2 3 45 6 7 8
230123010/
To increase readability, states of the automaton are connected to the corresponding

bags with gray lines, and for some nodes the states are omitted. In the right figure,
the same automaton is simulated deterministically.
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Given some intuition about dynamic programming on tree decompositions and tree
automata, we can now turn to prove Theorem 132, 133, and 134. The classical way of
proving variants of Courcelle’s Theorem is as follows: On input of a structure S and
an MSO-formula ¢, we compute a tree decomposition (T, t) of S. This tree decom-
position is then translated into an s-tree-structure J and ¢ is translated to a new
MSO-formula1p such that S = @ < T |= . To decide T |= 1, the s-tree-structure
T is transformed into a labeled tree (T, A) and 1) is turned into a tree automata 2l
such that we have T = { < (%,A) € L(2). An s-tree-structure is a structure
T=(V,EY, PL,..., Pg) over the signature Ts_gree = (E?, P;I, ..., Py) where (V, EY)
is a directed tree.

If we would aim for a class like FPT, we could directly implement the sketched strat-
egy. But since we aim for parallel classes, things are a bit more tricky. The con-
structed tree decomposition could be degenerated (for instance, T could actually be
a path), which makes it difficult to simulate a tree automaton in parallel. In order
to keep the tree flat, we will have to drop our assumption that our decomposition is
nice, in fact, we will need nodes in T that have high degree. This, unfortunately, re-
quires us to step away from classical tree automata and to step towards the (slightly
more technical) multiset automata introduced by Elberfeld, Jakoby, and Tantau [75].

A multiset M is a set S together with a multiplicity function #p1: S — N. The mul-
tiplicity of M is the value max.cs #pn(e). We denote by P, (S) the class of all mul-
tisets of S, and by P, (S) the class of all multisets of multiplicity at most m € N
of S. Notice that P, (S) is just the standard power set of S. We define for a multi-
set M € P (S) and a number m € N the capped version M|y, of M by setting the
multiplicity to #p (e) = min(#p(e), m) foralle € S.

Definition 138 (Multiset Automaton)

A nondeterministic bottom-up multiset automaton is a tuple A = (X, Q, Qq, A, m)
consisting of an alphabet L, a state set Q with accepting states Qo C Q, a state transition
relation A C L x Py (Q) x Q, and a multiplicity bound m € N. The automaton is
deterministic if for every o € X and every M € P,,,(Q) there is exactlyone q € Q
with (o0, M, q) € A. <

Definition 139 (Computation of a Multiset Automaton)

Let (T, ) be a labeled tree, where A: V(T) — X is the labeling function, and let
A = (L£,Q,Qq, A m) be a multiset automaton. A computation of A on (T, A) is a
partial assignment q: V(T) — Q such that for every node n € V(%) for which
q(n)is defined, we have that (i) the value q(c) is defined for each child c of nin T and
(ii) for the multiset M = { q(c) | c is a child of n } we have (A(n), M|, g(n)) € A.
A computation is accepting if q(r) € Qg holds for the root node r of T. The tree
language L(2() contains all labeled trees accepted by 2. <
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» Fact 140 ([75])
The following statements hold and are constructive:

1. Forall multiset automata 2 and B there is another multiset automaton ¢ with
L(¢) = L(2A) N L(B);

2. Foreverynondeterministic multiset automaton 2l there is a deterministic mul-
tiset automaton B with L(R() = L(B);

3. For every multiset automaton 2 there is a multiset automaton 8 accepting
the complement of L(A). N

Fortunately for us, many steps of the translation of the model checking problem
to the evaluation of a multiset automaton work in the same way for structures of
bounded treewidth as for such with constant treewidth. This is reflected by the fol-
lowing fact that we can use:

» Fact 141 (Implicit in [75])

There are functions h;, h,, h;, and h, performing the following mappings:

1. Theinput for h, are a structure S together with a width-w tree decomposition
(T, v) of S and an MSO-formula ¢. The output is an s-tree-structure J.

2. The input for h, are an MSO-formula ¢ and a tree width w. The output is an
MSO-formula formula 1.

3. The input for h; are an s-tree-structure 7 and an MSO-formula . The output
is a labeled tree (T, A) of the same depth.

4. The input for h, is an MSO-formula . The output is a multiset automaton .

The following holds for the values computed by these functions:
SEe < TEV < (T,A) €LR).

All h; are computable and h, and h; are even computable by uniform FAC-circuits of
depth O(1) and size f(¢@,w) - S| - [T|. <

To prove Theorem 132, 133, and 134, we are essentially left with the task of simulating
a multiset automaton (whose size is bounded by a function in the parameter). The
following lemma will serve as workhorse in all three cases:

» Lemma 142
Let Sq4 be the set of labeled trees (¥, A) of maximum depth d. There is a uniform
family of FAC-circuits of depth O(d) and size f(|2]) - |Z|€ that, on input of a labeled
tree (%,A) € Sq and a multiset automata A = (X, Q, Qq, A, m), decides whether
ornot (€,A) € L(2() holds.
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Proof. Since the size of the circuit depends on the size of 2 by an arbitrary com-
putable function f, we can assume that 2( is deterministic, as otherwise we can com-
pute an equivalent deterministic automaton in a constant number of AC-layers us-
ing Fact 140. The circuit has d “main”-layers, each of which consists of circuits of
constant depth. The ith layer will assign states to the nodes of the (d — 1i)th layer of
¥. The first layer simply assigns states to the leaves of T. Layer i then has access to
the assigned states of layer 1 — 1. In order to compute the state q(n) for a node n,
the circuit computes the multiset M = {q(c) | cisachild of n} using the result
of the last layer. Now the circuit has to cap M to compute M|,. In order to do so,
the circuit has to count up to m. Since we have m < |2/, the value m is bounded by
the parameter and, therefore, we can use the para-AC°-circuit from Lemma 45. Once
M|y is computed, the circuit can compute q(n) by a lookup of (A(n), M|, ) in the
description of A. The circuit outputs 1 if, and only if, after the evaluation of the d
layers the root r of ¥ is assigned with q(r) € Qq. O

There are three special cases of Lemma 142 for the simulation of multiset automata,
which can be performed (i) in para-FAC® for trees of constant depth, (ii) in para-FAC®'
for trees of depth bounded by the parameter, and (iii) in para-AC' for balanced trees
of logarithmic depth. In all cases, the size of the automaton is the parameter.

Proof of Theorem 132. On input of a structure S and an MSO-formula ¢, a para-AC°
can approximate a vertex cover X of the Gaifman graph of S of size at most k* + 2k
using Lemma 86 in combination with Lemma 81. From a given vertex cover X, it
is easy to construct a tree decomposition (T, t) of width at most |X| and depth 2:
The root bag r contains the set X, and for every v € V \ X there is one child of r
containing X U {v}. For instance, consider the graph at the margin and the vertex
cover X. A corresponding tree decomposition is illustrated below:

[ {1) 2’) 3} ]
4 | A 4 | A
{4,1,2,3} {5,1,2,3} {6,1,2,3} {13,1,2,3} {14,1,2,3} {15,1,2,3}

[ )

4 | B 4 | B
{71,2,3} {8,123} {9,1,2,3} {10,1,2,3} {11,1,2,3} {12,1,2,3}

Giventhetuple (S, (T, 1), @), the circuitin construction computes a labeled tree (T, A)
and a multiset automaton 2 using Fact 141. The depth of the tree ¥ is bounded by
the depth of (T, ) and, hence, is bounded by a constant. Furthermore, we have
121 < f([W| + [X]) for some computable function f. Hence, a para-AC°-circuit can
invoke Lemma 142 and output the result. O
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Proof of Theorem 133. As Theorem 132, but (T, () is computed using Theorem 119. [

Proof of Theorem 134. The proof is almost identical to the proof of Theorem 132. On
input of a structure S and an MSO-formula ¢, a para-AC*-circuit computes a tree
decomposition (T, t) of the Gaifman graph of S using Theorem 120. However, the
circuit can not directly invoke Lemma 142 as the depth of T is not bounded. This can
be overcome as follows: Let the width of (T, t) be w, then an FAC'-circuit can compute
abalanced tree decomposition of logarithmic depth and width at most 4w + 3 using
Corollary 124. Given this decomposition, we proceed as in Theorem 132. O
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9 OUTLOOK AND FURTHER DIRECTIONS

In the first part of this thesis we studied parallel parameterized algorithms and have
explored parameterized circuit complexity. We started by providing a general tool-
box of basic algorithms, which I hope will prove useful in the design of further par-
allel parameterized algorithms. It has turned out that the fascinating technique of
color coding is perfectly suited to develop parameterized parallel constant time algo-
rithms and it lies at the heart of many of our results.

Open Problem: Since we used the technique so heavily, it would be interesting for
practical purposes to study whether it can be implemented by circuits that are asymp-
totically smaller (but perhaps a little deeper) than the current ones. =

Open Problem: It should be explored in which particular cases we can use color cod-
ing to parallelize algorithms — Till Tantau and myself have made first steps in this
direction by investigating the descriptive complexity of color coding [23]. -

Open Problem: In contrast, it would be interesting to have other techniques for par-
allel parameterized constant time algorithms. In particular: Are there natural prob-
lems in para-AC° that do not require color coding for solving them? -

After the warm-up, we dealt with parallel bounded search trees and parallel kernel-
izations in Chapter 5 and 6. For the bounded search trees we provided a general
framework in the form of parallel algorithms for certain modulator problems. It
should be easy to extend this approach in further directions, as almost any search
tree can (theoretically) be evaluated in parallel.

Open Problem: The parallelization of search trees differs a lot in theory and practice.
Algorithm engineering is therefore a promising direction to study the paralleliza-
tion of such search trees. In this setting, the notation of work optimal algorithms
(roughly: parallel algorithms that do not perform more computational steps than
their sequential counter part) becomes relevant. Skambath, Tantau, and myself have
made first steps in this direction — primarily with vertex cover in mind [18]. —|

We translated the famous allegory that “kernelization is the same as fixed-parameter
tractability” to the parallel setting: “parallel preprocessing equals fast parallel pa-
rameterized algorithms.” In this regard, we observed complex trade-offs between
kernel size and the depth of the circuits needed to compute them. On the negative
side, we proved that the problem of finding a maximum matching in a graph turns
out to be an obstacle in the parallel computation of kernels, for instance for a linear
kernel for py-VERTEX-COVER.
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I Open Problem: It is desirable to find alternative kernelizations for these problems.
Even without improving the best known kernel bounds, we could improve the kernel
size reachable in parallel by circumnavigate the matching problem. -

We concluded the chapter about parallel kernelization with a constant-time kernel-
ization for py q-HITTING-SET. This was a rather surprising result, as the problem is
very general and its standard kernelization is very sequential. In fact, we did require
heavy machinery and a lot of color coding to solve it in constant-time. The reward is
a powerful tool that can be used to place many natural problems in para-AC®

I Open Problem: Are there further applications that obtain fast parallel parameterized
algorithms by using py q-HITTING-SET as a subroutine? A good starting point in
this direction is a result by Chen, Flum, and Huang, who have shown that certain
weighted Fagin definable problems can be reduced to it [53]. .

We ended the first part by investigating the parallel decomposition of graphs and
logical structures in Chapter 7, and by afterwards implementing meta-theorems on
top of these decompositions in Chapter 8. In particular, we studied the parallel com-
plexity of computing crown- and treedepth decompositions, and we analyzed the
precise circuit-complexity of a parallel algorithm by Bodlaender and Hagerup [37]
to compute exact tree decompositions: it was para-FAC*

= Open Problem: Is it possible to compute the treewidth of a graph in para-FAC*? The
best lower bound that is currently known is only para-L, the parameterized version
of logspace. -

= Open Problem: Is there a parallel parameterized approximation for the treewidth prob-
lem in para-FAC? or below? In the light of a recent result by Fomin, Lokshtanov,
Pilipczuk, Saurabh, and Wrochna [89], who have established a polynomial time k-
approximation for treewidth, it is interesting to ask whether it is possible to obtain
a k€-approximation within NC. =

In terms of meta-theorems, we examined parallel model checking algorithms for
first-order logic on structures of bounded degree, and for monadic second-order
logic on structures of bounded treedepth or treewidth. These results quite natu-
ral match their non-parameterized counter parts due to Seese [151] and Elberfeld,
Jakoby, and Tantau [74, 75]. It is interesting that the bottleneck for the monadic
second-order model checker is the algorithm to compute the tree decomposition,
which is currently more expensive than the evaluation of the tree automaton.

= Open Problem: A promising further task is to extent these results to other logical struc-
tures. A first attempt was provided by Pilipczuk, Siebertz, and Toruniczyk, who have
shown that model checking for first-order logic on sparse structures can be per-
formed within para-AC' [140]. =
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Besides the fundamental directions in which we have explored the topic in this part
of the thesis, there are many further paths that can be investigated in the light of
parameterized circuit complexity. For instance, the textbook application for circuit
complexity are lower bounds, and it is thus natural to ask whether we can establish
parameterized circuit lower bounds. First progress in this direction was made by
Chen and Flum [52].

An interesting further application of parameterized complexity is to tackle prob-
lems whose classical complexity is still not fully resolved. In this matter, we have
shown that the problem of finding a matching parameterized by the solution size is
in para-AC® (while the classical problem is not known to be in NC). Das, Enduri, and
Reddy have studied the parameterized parallel complexity of the graph isomorphism
problem [61] (for which the exact complexity is not resolved either) by different pa-
rameterizations like the vertex cover number or the size of a feedback-vertex set. It
would be gripping to further investigate parallel algorithms in this direction with
weaker parameterizations.
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Part II

Towards Practice and Back

In this second part of the thesis, we will turn from complexity theory and algorithm design to
algorithm engineering. We will explore two libraries, called Jdrasil and Jatatosk, that I have de-
veloped during my time as a doctoral student. The former is a tool to compute optimal tree de-
compositions, while the later is a model checker for a fragment of monadic second-order logic.
Both tools are publicly available [12, 15].

Preliminary versions of many results of this part were previously presented at the following con-
ferences:

[16] Max Bannach, Sebastian Berndt, and Thorsten Ehlers: Jdrasil: A Modular Library for Com-
puting Tree Decompositions. In Proceedings of the 16th International Symposium on Experi-
mental Algorithms (SEA 2017).

[13] Max Bannach and Sebastian Berndt: Practical Access to Dynamic Programming on Tree De-
compositions. In Proceedings of the 26th Annual European Symposium on Algorithms (ESA
2018).

[14] Max Bannach and Sebastian Berndt: Positive-Instance Driven Dynamic Programming for Graph
Searching. In Proceedings of 16th Algorithms and Data Structures Symposium (WADS 2019).

The second paper was awarded Best Student Paper at the European Symposium on Algorithms 2018.






10 JDRASIL: A MODULAR LIBRARY FOR
COMPUTING TREE DECOMPOSITIONS

In this chapter we will tackle the problem of computing optimal tree decompositions
in practice, that s, for real world graphs on a real machine. For thatend, I will present
thelibrary Jdrasil and, in the light of this thesis, will highlight its parallel capabilities.

Jdrasil—the name is a portmanteau of “Java” and “Yggdrasil,” a gigantic tree in Norse
mythology —is a Java library that is capable of computing tree decompositions both,
exactly and heuristically. The goal of Jdrasil is to allow other projects to add tree
decompositions to their applications as easily as possible. In order to achieve this,
Jdrasilis designed in a modular way: Everyalgorithmisimplemented as interchange-
ably as possible. At the same time, algorithms are implemented in a clean object ori-
ented manner, hopefully making it easy to understand and extend the implementa-
tion.

Due to its modularity, /drasil has many facets, some of which require new theory
while others are direct implementations of facts that are already known in the liter-
ature. This chapter is neither a complete scan through all the features of the library,
nor a tutorial for it. Both can be found in Jdrasil’s manual in its publicly available
GitHub repository [15]. Instead, I will present the design philosophy behind the li-
brary in Section 10.1 and provide a high-level view on the library in Section 10.2.

After this insight into the library, we will study some concrete subroutines of Jdrasil.
I have decided to present two exact algorithms that are implemented in the library.
Both perform very well and both require novel ideas from theory. We will start in
Section 10.3 with a saT-encoding of treewidth, which is based on an encoding by
Berg and Jarvisalo [26], but adds new ideas to it. As we will see, these ideas improve
the performance of the encoding noticeably. Afterwards, in Section 10.4, I present
a novel algorithm for computing tree decompositions that was developed by Hisao
Tamaki [156, 158] in a game theoretic characterization due to Sebastian Berndt and
myself [14]. This algorithm is the currently fastest algorithm in practice [63, 64].

We will study the parallel capabilities of Jdrasilin Section 10.5. Due to its modularity,
the parallelization in Jdrasil is implemented in a coarse and general way: Indepen-
dently of the used subroutine, Jdrasil will automatically identify parts of the graph
that can be decomposed in parallel and apply the subroutine to it.

We close the chapter in Section 10.6 with a series of experiments to compare and
analyze the algorithms presented within this chapter.
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10.1 THE DESIGN PHILOSOPHY OF JDRASIL

When one starts the development of a library that solves a combinatorial problem,
one is confronted with general design decisions that one has to make beforehand.
Of course, developing a library like Jdrasil for computing tree decompositions is no
exception. The two most important decisions for Jdrasil, which to some extent de-
fine the “spirit” of Jdrasil, concern the level of optimization and the level of parallelization
we aim for.

With the level of optimization we mean to which extent we optimize the implementa-
tion of subroutines. One plausible route for a library that computes exact tree de-
compositions would be the development of a “simple” program that just expects a
graph as input and outputs a tree decomposition. Such a program would essentially
implement one algorithm and optimize it “to the bone,” for instance by optimizing
the implementation for specific architectures. However, when I started the devel-
opment of drasil I noticed that, at this time, it was pretty unclear which algorithm
for treewidth would work best in practice. Therefore, I decided against this route.
Instead, /drasil is designed as a modular library — meaning that in Jdrasil many algo-
rithms are implemented and exchangeable. The library was developed in a way that
makes it easy to extend it by further algorithms, without caring about representa-
tion of data, preprocessing, or output. Furthermore, the design of drasil as library
allowed me to add many more features — such as an easy interface for dynamic pro-
grams over tree decompositions.

When thinking about parallelization in practice, there are multiple levels of paral-
lelization that we could apply. For instance, we could aim for a very fine level of paral-
lelization by designing an algorithm directly for, say, FPGAs. However, considering
the mentioned initial situation, this seems a little premature. Alternatively, we could
aim for a medium level of parallelization by designing algorithms that are capable
of using many CPU-cores or that work directly on the GPU. The first iteration of
the Parameterized Algorithms and Computational Experiments Challenge (PACE)
originally contained a parallel track to feature such algorithms. This track was dis-
carded as the best sequential implementation was significantly faster than the best
parallel one [63]. This sequential implementation is based on a novel algorithm due
to Hiso Tamaki [156]. Recently, there were attempts of computing tree decomposi-
tions on the GPU, but the resulting implementation was outperformed by Tamaki’s
algorithm as well [163]. Instead of aiming for a fine or middle level of parallelization,
we will therefore be content with a course level of parallelization. This means that in
Jdrasil we do not directly parallelize any subroutine, but instead identify parts of the
graph that can be decomposed in parallel. This favors the modular architecture of
Jdrasil: Independently of the subroutine used to decompose the graph (it may even
be a subroutine implemented by the user), /drasil will automatically utilize parallel
architectures by applying the subroutine to many parts of the input graph.
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10.2 A HIGH-LEVEL VIEW ON THE LIBRARY

On the most abstract layer, the user can use /drasil to compute a tree decomposition
without knowing anything about the used algorithms and the process as a whole.
The following code snippet is the easiest way to compute and output a tree decom-
position for the input graph & using Jdrasil. Here, the SmartDecomposer is a class
that encapsulates the whole modularity of /drasil to make it easy to gather some first
results. However, the real strength of the library lies in its modularity, which we will
discuss afterwards.

import jdrasil.graph.x;
import jdrasil.algorithms.x;

public class Main {
public static void main(String[] args) {

// create a new empty graph with integer vertices
Graph<Integer> G = GraphFactory.emptyGraph();

// make it a triangle

for (int v = 1; v <= 3; v++) { G.addVertex(v); }
G.addEdge (1, 2);

G.addEdge (2, 3);

G.addEdge (3, 1);

// output graph in PACE format
System.out.println(G);

// compute tree decomposition
TreeDecomposition<Integer> td = null;

try {

td = new SmartDecomposer<Integer>(G).call();
} catch (Exception e) {

// something went wrong

}

// ouput tree decomposition in PACE format
System.out.println(td);

Let us discuss what the SmartDecomposer tries to hide from us, and why we refer
to /drasil as a “modular library” — and what this term actually means. In the design
process of the library, I have tried to abstract the workflow of computing a tree de-
composition (and working with it) from a software engineering point of view. That
is, given a graph G and the description of some problem we want to solve on it, what
are the steps a program has to run through in order to compute a tree decomposi-
tion and solve the problem with it? As usual in software design, I wanted these steps
to be defined fine enough to have small and self-contained tasks, but coarse enough
to make a useful abstraction and to make them interchangeable.
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The result is the following abstract pipeline that is used by Jdrasil to process an input
graph G and to output either a tree decomposition (T, t) of G or the image ¢ (G) of
some user specified function . The black boxes are the different interfaces that are
involved in the computation of a tree decomposition; the orange part describes the
input and output; the blue part highlights the information flow within the program.

” - G/,...,Gl (T,0) (T, 1)
G »{Preprocessor]i{Sphtter]—{r[solver]—{Postprocessorj—r» ®(G)

T,1)

The Preprocessor is the first instance that obtains the input graph G. Its task is to
identify “easy” parts of the input, which we may safely remove to obtain an equiva-
lent instance G/ Later on, a preprocessor may construct a tree decomposition for G
from a tree decomposition of G A typical example is the removal of attached trees
or the contraction of degree-2 vertices. The standard implementation in Jdrasil fol-
lows the description by Bodlaender, Koster, and Eijkhof [43] and we will, thus, not
discuss it further within this thesis. The following code illustrates the usage of a
preprocessor within Jdrasil:

// generate instance of the preprocessing algorithm
GraphReducer<T> reducer = new GraphReducer<>(G);

// get the preprocessed graph
Graph<T> H = reducer.getProcessedGraph();

// add the decomposition of H
TreeDecomposition<T> td = ...
reducer.addbackTreeDecomposition(td);

// we can now access the final decomposition of the original graph
reducer.getTreeDecomposition();

The Splitter interface is modeled after the concept of so called safe separators by Bod-
laender and Koster [41]. In essence, a safe separator allows to split a graph G into
multiple graphs G, ..., G4 such that one can obtain an optimal tree decomposition
for G by gluing tree decompositions of these graphs. The simplest safe separator is
the empty set, which splits the graph into its connected components. It is notable
that this concept was underestimated (and thus not used) by almost all participants
for PACE 2016, and that it therefore boosted the performance of many submissions
for the PACE 2017. In the light of this thesis the splitter interface is especially inter-
esting, as it is an access point for parallelization in practice: Jdrasil uses the parallel
capabilities of Java to automatically parallelize the computation of a tree decomposi-
tion if possible. We will give precise definitions in Section 10.5. The following code
on the next page shows how to invoke a splitter:
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// create a splitter for the graph G
GraphSplitter<T> splitter = new GraphSplitter<T>(G, H —> {

// create a tree decomposition of the atom H
TreeDecomposition<T> td = ...
return td;

},Wb); // b is a lower bound on the treewidth of G

// obtain a tree decomposition of G
// this will invoke the splitting process
TreeDecomposition<T> result = splitter.call();

The Solver interface is at the very heart of the pipeline. Its purpose is quite obvious:
Given a graph G, output a tree decomposition (T, t) of it. Since all other parts of the
pipeline are safe with respect to treewidth, the solver determines the quality of the
tree decomposition. For an exact algorithm, the whole pipeline will produce an op-
timal decomposition. However, the solver may also be a heuristic or an approxima-
tion algorithm. In its current state, /drasil contains many standard algorithms, for
instance the heuristics proposed by Bodlaender and Koster [42], the classical approx-
imation algorithm due to Robertson and Seymour [59, 85], the branch-and-bound
algorithm by Gogate and Dechter [99], and many more. Particularly successful was
a saT-based approach, which we will discuss in detail in Section 10.3. It should be
noted that, within Jdrasil, a solver will usually expect the “hard” core of the problem
and, thus, does not invoke any checks for simple solutions — for instance, a solver
usually handles a huge tree in the same way as a small structured graph. Therefore,
it is essential to apply a preprocessor beforehand. The following code illustrates the
usage of a (here saT-based) solver:

// create a SAT—based decomposer for the graph G
TreeDecomposer<T> decomposer = new SATDecomposer<>(G, Encoding.IMPROVED) ;

// invoke the computation and obtain the tree decomposition
TreeDecomposition<T> td = decomposer.call();

A postprocessor obtains a tree decomposition (T, t) and prepares it for a subsequent
task. A prominent example is the transformation of (T, t) into a nice tree decompo-
sition. However, a postprocessor may also improve a non-optimal tree decomposi-
tion, for instance with the refinement technique [42] or via local improvements [83].
Another typical task is to optimize (T, () for the following dynamic program, for in-
stance by minimizing the number of join-bags. The implementations are standard
and are therefore not further discussed within this thesis. The following code illus-
trates the use of a postprocessor that computes a nice tree decomposition:

// create nice tree decomposition for the given decomposition td
// the boolean indicates whether the result should be very nice
NiceTreeDecomposition<T> ntd = new NiceTreeDecomposition<>(td, true);

// obtain the nice tree decomposition as tree decomposition
td = ntd.getProcessedTreeDecomposition()
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The Dynamic Programming interface is the last part of the pipeline. It allows the spec-
ification of tree automata that are executed on a computed tree decomposition. For
instance, the user may define a program that checks whether G can be properly col-
ored with three colors. This is the most involved abstraction, as it has to, on the one
hand, guarantee that Jdrasil can efficiently run the defined dynamic program, but
should on the other hand neither be difficult to program nor restrictive to the user.
The interface is closely linked to our point of view of tree automata, as explained in
Section 8.2. The manual of Jdrasil contains a detailed example of how to implement
a graph coloring solver using the interface [15], which is essentially the tree automa-
ton that we have encountered in Example 137. A corresponding implementation is
publicly available [11] and was experimentally evaluated in [13].

The attentive reader may have observed that the previous graphic of the pipeline
must have simplified the information flow within the library. In reality, it is not
quite as simple as in the graphic, since information has to flow backwards. For in-
stance, after the solver has computed tree decompositions for the atoms, the split-
ter has to glue them all together to obtain an actual tree decomposition for the input
graph. Similarly, the preprocessor has to enrich a tree decomposition of G’ to one
of G. Therefore, the “real” information flow looks as follows:

(T, )

G 1% S, S ]. G]N’M‘GQI\PA t o ¢(G)
»[ reproces@ p1tter]\jso Ver] [ 0s processor]—>» c

T/
(T, 1) (T,

Jdrasil is modular in the sense that there are multiple implementations for every
step of the pipeline. These implementations can be swapped arbitrarily due to the
strict interfaces described above. This allows rapid development and testing of new
algorithms. For instance, a user can implement a new solver using the interface of
Jdrasil and plug it directly into the pipeline, without caring about pre- or postpro-
cessing at all. This architecture has allowed me to add new algorithms quickly to
the library. A notable example is the algorithm by Tamaki that he has developed for
PACE 2016 [156] and improved for PACE 2017 [158]. We will discuss a game theoretic
characterization of the algorithm, due to Berndt and myself [14], in Section 10.4.
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10.3 A SAT-BASED EXACT-SOLVER

A common (theoretical and practical) approach to solve intractable problems is to
reduce them to the Boolean satisfiability problem. The formulation we will use is
based on the work of Berg and Jarvisalo [26], which in turn is an improved version
of a formulation of Samer and Veith [149].

The Concept of Elimination Orders. Encoding treewidth directly into a propositional
formula is a rather tough task. Fortunately, there is an alternative representation
for treewidth that is ideally suited for a saT-encoding. An elimination order 7 of a
graph G = (V, E) isabijection 7t: V — {3, 2, ..., |V|}. The filled graph G = (V, Ex)
of the elimination order 7tis a directed graph with edges E; that are constructed via
the following process:

« The first edge set E, simply equals E, where the edges are directed from the
“lower” vertex (according to 7) to the “higher” vertex:

ES ={(w,v) | m(u) < t(v) A{u,v} € E}.

- The next edge set EL™" is generated by connecting all vertices u and v with
mt(u) > iand t(v) > 1if both, uand v, are connected with the vertex 7t (i),
that is, EL results from Ei~ by adding the following edges to it:

{(w,v) | (v) > m(uw) > iA (i), u) € ELTA (Y (i),v) € EE 1

Finally, E is equal to ENY. The following figure shows an example of a graph G
and the corresponding filled graph G, for m = (2,3,1,4,5,6,7,8). Here, the solid
edges represent the edges of the original graph, while the dashed edges are the edges
created by eliminating vertex 2.
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The width of an elimination order 7t is the largest number of direct successors of a
vertex in G, thatis, width(7t) = max;i{ {(ui,v) € Ex}|}. The width of the example
is 3, as there exist three outgoing arcs from vertex 2 and 5. The following fact allows
us to characterize the treewidth of a graph via an elimination order.

Fact 143 (for instance [42])
tw(G) = min,{width(7)}. <
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The Encoding of Berg and Jirvisalo. If G = (V, E) is a graph on n vertices, our SAT-
formula contains n(n — 1)/2 variables ord; j for each i € {1,...,n}and eachj > i,
indicating that the vertex v; appears before vj in the elimination order. To simplify
notation, let us define ord’{,j to be either ord; ; if i < j or —ord; ; if j < i. To ensure
that these variables encode a linear order of the vertices, it is sufficient to enforce
the transitivity: For all distinct i,j,k € {1,...,n}, we need to ensure that if ordij
and ord;y, are true, then ord; ;. is also true.

To encode the directed edges of the filled graph G, another n* variables arc; j are
introduced. As all original edges of G are present in G, for each {v;, v;} € E, either
arcy j or arcj ; has to be set. To be consistent with the ordering implied by ord; ;, we
need to enforce that ordy ; implies that arc; ; is not set.

Finally, let us describe the elimination process and consider i, j, k with 7t(i) < 7t(j)
and 7(i) < m(k). Assume that vi and vy as well as v; and vj are adjacent, respec-
tively. Then the filled graph G contains either the arc (vj, v ) or the arc (vi, vj).
Hence, if arci j and arcy . are set and ord;k is also set, then we need to set arc; i as
well. The following table summarizes all parts of the formula:

Vvi,j,k €{1,...,n} saT-formulation

i#j,i#kj#k ord; Aordfy — ord,
{vi,v;} € B arcy; Vare;;
i#j ord{; — —arcj;
i#£§,i#4kj#k ord;k /\arcj /\arcyx — arcj

Parameterized Cardinality Constraints. To ensure that the width of the produced elim-
ination does not exceed a value t € N, we also need to make sure that for each v, at
most t edges (vi, v;) existin G. Fora fixed t we define the formula ¢ (G, t) as above
and add the constraints } ;' arcij < t for every i. Such constraints are called
cardinality constraints and are usually implemented using a sorting network. Stan-
dard implementations, for instance using Batcher’s odd-even mergesort, introduce
O(nlog®n) auxiliary variables. In Jdrasil we use parameterized cardinality constraints
of size O(t - n) whenever t is small enough. They are based on classical sequen-
tial counters. An overview of different encodings for cardinality constraints can be

found in the following survey papers [10, 92].

In order to determine tw(G), the above encoding would be used fort =n,n—1u,...
until the system does not have any solution. We make use of the iterative abilities
of modern sat-solvers that allows to add clauses to an already solved formula. This
technique was also recommended by Berg and Jarvisalo [26]. The solver starts by
solving the formula @(G, n). After the sat-solver has solved a formula ¢ (G, t) for
some1 < t < n,itaddsthe constraints Z]Tl:l arcyj; < t—1foreveryi, obtaining the
formula @ (G, t — 1). The solver then tries to solve this new formula and it repeats
the whole procedure until it reaches a t for which ¢ (G, t) is not satisfiable.
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Adding the Clique Trick. We extend the en-
coding of Berg and Jarvisalo by a trick that
was observed in the context of exact algo-
rithms for treewidth [36]: From the defi-
nition of partial k-trees (an equivalent formalism for treewidth), it follows that if
C C Visaclique in G, then there is an optimal elimination order for G that elimi-
nates C at the very end. Therefore, if we know some clique C in G we can hard-wire
the ordjy for it. The new parts that we add to the formula are shown in the table.

Vi,j €{1,...,n} saT-formulation

vie VACvjeC  ord];
vi,v; € i< ordi*]j

This technique is the better the larger the clique is. Of course, in general it is in-
tractable to find a large clique. In our implementation we use the sAT-solver for this
task as well, but give it only a limited amount of time. In case the solver does not find
a clique, we run a simple heuristic to find at least some clique. I noticed, however,
that this event happens rarely as the saT-solver works well to find cliques on graphs
of small treewidth — which is not surprising, as the maximum size of a clique in G is
bounded by the treewidth of G.

Adding the clique trick can be seen as adding domain specific knowledge to the for-
mula. I suspect that it implies a strong form of symmetry breaking, as the perfor-
mance boost obtained by the trick is astonishing. For instance, the McGee graph (the
smallest cubic graph of girth 7) is the highly symmetric graph visualized in the mar-
gin. It has only 24 vertices and 36 edges, but a corresponding sar-formula without
the clique trick could not be solved in over 5 hours. In contrast, the formula with the
clique trick can be solved in less than 5 minutes — and that despite the fact that the
largest clique has just size 2 (it is highlighted in the figure). A similar positive effect
was later observed when an updated version of the clique trick was used for a novel
saT-encoding for fractional hypertreewidth [81].

Adding the Twin Trick. Another trick that we may add is the twin trick, which is based
on the following observation: Assume v, w € V are twins (that is, N(v) = N(w))
and assume 7t is an optimal elimination order in which v is eliminated before w;
then the permutation 7t that is created from 7t by swapping v and w is optimal as
well. This claim is implied by the following observation: Whenever one of the twins
will be eliminated, the other one becomes simplicial (its neighborhood is a clique),
and it is well known that such a vertex can safely be eliminated at any time [99].

The twin-relation is in fact
an equivalence relation on V,
and we may safely fix any or- vi,vj €P\Ci<j ordy;

der on the vertices in every equivalence class. We only have to be cautious whenever
we use this trick in combination with the clique trick: If a twin is part of the clique,
it must be ordered behind the other twins within the same equivalence class — oth-
erwise we would encode a contradiction. Formally, we add the parts shown in the
table to our encoding, where Py, ..., P4 are the non-trivial twin-classes of G (that
means [P;| > 1) and C C V is the clique used for the clique trick.

Vi,j €{1,...,n},Vle{y,...,q} sar-formulation
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The combination of preprocessing and splitting followed by a saT-based approach
works surprisingly well in practice. Sebastian Berndt, Thorsten Ehlers, and myself
participated with it in the PACE 2016 challenge, the results can be found in [63] and
a follow-up analysis was done in [16]. The implementation was also used in a lo-
cal improvement solver by Fichte, Lodha, and Szeider, where it outperformed other
approaches [83]. The same group later extended the approach to other parameters
such as treedepth and fractional hypertreewidth [81, 96].

10.4 EXACT SOLVING VIA POSITIVE INSTANCE DRIVEN
DYNAMIC PROGRAMMING

In this section we will study an exact algorithm for treewidth based on a novel al-
gorithmic technique called positive instance driven dynamic programming. This tech-
nique was invented by Hisao Tamaki for his submission to the first Parameterized
Algorithms and Computational Experiments Challenge (PACE 2016) [156]. In the second
iteration of the challenge (PACE 2017) all submissions - including another one by
Tamaki [157, 158], the winning submission by Larisch and Salfelder [128], as well as
my own submission [14, 15] — were based on positive instance driven dynamic pro-
gramming. In fact, the currently best way of computing optimal tree decomposi-
tions in practice is using this technique, and it seems that it is inherently better than
other classical dynamic programs for treewidth [158, 159].

In this section I will present an algorithm due to Sebastian Berndt and myself that
is directly based on Tamaki’s first algorithm [156] and that applies positive instance
driven dynamic programming to solve a general version of graph searching [14, 86].
Since graph searching is deeply linked to various graph decompositions, we will not
only obtain an algorithm for treewidth, but also for other graph parameters such as
pathwidth and treedepth.

What is positive instance driven dynamic programming? This technique describes an ex-
ecution mode for a classical dynamic program. Before we go into the details of the
definition, let us stipulate what we mean by a “classical dynamic program.” Assume
we wish to solve some decision problem, a classical dynamic program is a recursive
procedure that solves the problem (it returns either true or false) together with a
memoization table. Such a program explores its configuration graph (also called the
memoization graph), which is the acyclic graph that contains all possible configura-
tions as vertex set and which has directed edges according to the recursive calls of
the procedure. This graph has a unique start configuration and its sinks correspond to
the configurations at which the recursion stops. These sinks are partitioned into win
configurations and lose configurations (depending on whether the recursive procedure
returns true or false, respectively). The dynamic program labels each non-sink
vertex v of the configuration graph with either true or false using a Boolean com-
bination of the truth values of the children of v. All vertices that are labeled with
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true constitute the winning region (the positive instances), and the decision problem
reduces to the question whether or not the start configuration is part of this region.

It is a bit tricky to work directly with the configuration graph, as it does not encode
any information about the Boolean combination used to label its vertices. There-
fore, we will only consider dynamic programs that use Boolean combinations of the
following form: Let H = (V, E) be the configuration graph of the program and let
A:V — {true, false} be the labeling computed by it, then for all non-sink vertices
v there is a (potentially empty) set I C N(v) such that:

?\(V)z/\?\(w) V \/ Aw).

wel weN (v)\I

If we consider dynamic programs with this property, then we can encode the way
A is computed by coloring the edges of the configuration graph. An edge-alternating
graphisatriple H = (V, E, A) consisting of a vertex set V, an existential edge rela-
tion E C V x V, and a universal edge relation A C V x V. We define the neighbor-
hood of a vertex vas N3(v) = {w | (v,vw) € E}, Ny(v) = {w | (v,vw) € A},
and N(v) = N3(v) U Ny(v). An edge-alternating s-t-path is a set P C V such
that (i) s,t € Pand (ii) forallv € P with v # t we have either N5(v) N P # ()
or ) # Ny(v) C P orboth. We write s < t if such a path exists and define
B(Q) = {v | ve Qorthereisaw € Qwithv <w} for Q C V as the set of
vertices on edge-alternating paths leading to Q. Observe that the winning region
is exactly B(Q) if Q is the set of win configurations. Further, observe that edge-
alternating graphs are a generalization of alternating graphs (we studied them in
Section 4.2), in which we have for all vertices v either N5(v) = 0 or Ny(v) = 0.
Example 144 on the next page illustrates the concept with a simple two-player game.

As the name suggests, a positive instance driven dynamic program is a procedure that
mimics a classical dynamic program, but that computes only the winning region
(the positive instances) without ever “touching” the rest of the configuration graph.
It is not clear at all whether such
a procedure exists for a given clas-
sical dynamic program. If it ex-
ists, however, it will usually require
much more time to explore a new
configuration than the classical dy-
namic program would require (be-
cause it has to explore the configura-
tion graph in a reversed direction).
The hope is, of course, that the win-
ning region is much smaller than the
whole configuration graph. It is easy to see that, in principle, the winning region
can be exponentially smaller than the configuration graph — consider for instance
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a configuration graph that is a spider with 2™ legs of size n, in which only one win
configuration exists at the end of a leg (as shown in the figure). How big the differ-
ence between the size of the winning region and the size of the configuration graph
is in reality, depends highly on the dynamic program and the given input.

Example 144

Consider the following 2-color-construction game played by Alice and Bob: The in-
putis atwo-colorable graph G = (V, E), and Alice begins. In each turn, a player may
color an uncolored vertex with one of two colors, as long as the induced coloring is
still proper (that is, adjacent vertices have different colors). Alice wins if all vertices
of the graph are colored (which implies a proper coloring), otherwise Bob wins. The
configuration graph of a simple algorithm, which tries all possible moves, is shown
below for the input graph G = ooo. Existential edges are black and universal edges
are blue. The winning region (the positive instances) is highlighted, and the two win
configurations are the configurations in the dashed box.

Computing Tree Decompositions via Graph Searching. 1f we wish to use positive instance
driven dynamic programming to compute optimal tree decompositions, we first re-
quire a classical dynamic program for that task. In order to formulate such a dy-
namic program, we use an equivalent characterization of treewidth in the form of a
vertex pursuit-evasion game. We study classical graph searching in a general setting
proposed by Fomin, Fraigniaud, and Nisse [86]. The input is an undirected graph
G = (V,E) and anumber k € N, and the question is whether a team of k searchers
can catch an invisible fugitive on G by the following set of rules: At the beginning,
the fugitive is placed at a vertex of her choice and at any time, she knows the posi-
tion of the searchers. In every turn she may move with unlimited speed along edges
of the graph, but may never cross a vertex occupied by a searcher. This implies that
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the fugitive does not occupy a single vertex but rather a subgraph, which is sepa-
rated from the rest of the graph by the searchers. The vertices of this subgraph are
called contaminated, and at the start of the game all vertices are contaminated. The
searchers, trying to catch the fugitive, can perform one of the following operations
during their turn:

1. place a searcher on a contaminated vertex;
2. remove a searcher from a vertex;

3. reveal the current position of the fugitive.

When a searcher is placed on a contaminated vertex, the vertex becomes clean. When
a searcher is removed from a vertex v, the vertex may become recontaminated if there
is a contaminated vertex adjacent to v. The searchers win the game if they man-
age to clean all vertices, that is, if they catch the fugitive; the fugitive wins if, at any
point, a recontamination occurs, or if she can escape infinitely long. Note that this
implies that the searchers have to catch the fugitive in a monotone way. A priori one
could assume that the later condition gives the fugitive an advantage (recontamina-
tion could be necessary for the cleaning strategy), however, a crucial result in graph
searching is that “recontamination does not help” in all variants of the game that we
consider [28, 98, 127, 131, 152].

The search number s(G) of a graph G = (V, E) is the minimum number of searchers
required to ensure that the searchers can catch the fugitive. It is well known that
this number is directly linked to the treewidth of G, and that this connection is con-
structive in the sense that a winning strategy of the searchers can be turned into a
tree decomposition and vice versa.

Fact 145 (Originally [152], for the version presented here see also [86] and [14].)
For every graph G = (V, E) itholds that s(G) = tw(G) + 1. <

Equipped with the link between treewidth and graph searching, our task of provid-
ing a dynamic program for treewidth has reduced to the task of providing a dynamic
program that determines whether k searchers have a winning strategy.

We simplify the game to make it more accessible for an algorithmic approach. First
of all, we restrict the fugitive in the following sense: Since she is invisible to the
searchers and travels with unlimited speed, there is no need for her to take regular
actions. Instead, the only moment when she is actually active is when the searchers
perform a reveal. If C is the set of contaminated vertices, consisting of the induced
components Cy,..., Cy, a reveal will uncover the component in which the fugitive
hides and, as a result, reduce C to C; forsome1 < i < {. The only task of the fugitive
is, thus, to answer a reveal with such a number i. We call the whole process of the
searchers performing a reveal, the fugitive answering it, and finally of reducing C
to C; a reveal-move.
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We will also restrict the possible moves of the searchers by the concept of implicit
searcher removal. Let S C V(G) be the vertices currently occupied by the searchers,
andlet C C V(G) be the set of contaminated vertices. We call avertexv € S covered
if every path between v and C contains a vertex w € S with w # v.

» Lemma 146
A covered searcher can be removed safely.

Proof. Aswehave N(v)NC = (), the removal of v will not increase the contaminated
area. Furthermore, at no later point of the game v can be recontaminated, unless a
neighbor of v gets recontaminated as well (in which case the game would already be
lost for the searchers). O

» Lemma 147
Only covered searchers can be removed safely.

Proof. Since for any other vertex w € S we have N(w) N C # (), the removal of w
would recontaminate w and, hence, would result in a defeat of the searchers. O

Both lemmas together imply that the searchers never have to decide to remove a
searcher, but rather can do it implicitly. We thus restrict the possible moves of the
searchers to a combined move of placing a searcher and immediately removing all
searchers on covered vertices. We call this a fly-move. Observe that the sequence of
original moves mimicked by a fly-move does not contain a reveal and, thus, may be
performed independently of any action of the fugitive. We are now ready to describe
the configurations of the game, which we do in the form of k-blocks:

» Definition 148
A k-block, or simply a block, of a graph G = (V, E) is a tuple (S,C) with S,C C V
such that:

. SNC =0
2. N(C) C S;

3. S| < k. <4
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Ablock (S, C) encodes the position of the searchers (the set S) and the contaminated
area (the set C). Observe that in any block (S, C) the set S separates C from the
rest of G. We can explore all blocks, and thus all configurations of the game, with
the following “Robertson-Seymour fashioned” dynamic program’ in order to deter-
mine whether k searcher have a winning strategy. It is assumed that an input graph
G = (V, E) and a target number k € N is globally available in memory, and that the
procedure is started with the block (), V) and executed using memoization.

procedure divideAndCatch(S,C)

// recursion stops

if |S| > k then // we need too many searchers —> lose configuration
return false

end

if C=0 then // the searchers cleaned the graph —> win configuration
return true

end

// implicit searcher removal
for ve S do
if Ng(v)NC =0 then
return divideAndCatch(S \ {v},C)
end
end

// reveal—move
Cy,...,C¢ « connectedComponents(GI[C])
if € >1 then

return A!_, divideAndCatch(S, C;)
end

// fly—move
return \/,cc divideAndCatch(SuU{v},C\ {v})

end

Note that, in the case of the procedure returning true, it is easy to obtain a winning
strategy using backtracking. In fact, this strategy is a width k—1 tree decomposition.
Looking at the program a little closer, it is obvious that the only interesting config-
urations of the program are the blocks with S = N(C). We call such objects full
blocks. We can rewrite the algorithm such that it works only with full blocks, which
will make it easier to analyze its configuration graph.

'Robertson and Seymour have established an fpt-approximation algorithm for treewidth that es-
sentially is the presented algorithm, but that adds balanced separators to S instead of “brute-forcing”
a fly-move [145]. The algorithm as presented here is leaned to the description of Reed [142], details can
be found in the standard textbooks [59, 85].
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procedure divideAndCatchFull(C)

// recursion stops

if C=0 then // the searchers cleaned the graph —> win configuration
return true

end

// reveal-move
Cy,...,C¢ + connectedComponents(G[C])
if £ >1 then

return A{_, divideAndCatchFull(C;)
end

// not enough searcher to perform a fly—move
if INg(C)| =k then

return false
end

// fly—move
return \,cc divideAndCatchFull(C\ {v})

end

This is exactly the dynamic program to which we will apply the positive instance
driven dynamic programming technique. To that end, let us define the configura-
tion graph of the algorithm: For an input graph G = (V, E) and anumber k € N, it
is the edge-alternating graph H = (V(H), E", A™) with:

V(H) ={C|CCV(G)and [Ng(C)| <k},
EM ={(C,C") | C\{v}=C’forsomev € Cand|Ng(C)| < k},
AN =1{(C,C’) | C’is a connected component of G[C] }.

Observe that the set Q of win configurations of the graph is exactly the set {{v} |
v € V(G) and [INg ({v})| < k}, as these are the positions in which the searchers can
catch the fugitive after they have cleaned everything else. The winning region is,
thus, B(Q) and our aim is to develop an algorithm that computes this region. Our
algorithm traverses H “backwards” by starting at the set Q of winning configura-
tions and by uncovering B(Q) layer by layer. In order to achieve this, we need to
compute the predecessors of a configuration C. This is easy if C was reached by a
fly-move, as we can simply enumerate the at most k possible predecessors (the last
searcher that was placed is in N(C), therefore the predecessors of C are exactly the
configurations C’ = C U {v}withv € N(C) and [N(C’)| < k)?. Reversing a reveal-
move, that is, finding the universal predecessors, is significantly more involved. A
simple approach is to test for every subset of already explored configurations if we
can “glue” them together — but this would result in a run time of the form 2/V(H)I,

2Actually, there is a special case if C contains a vertex that is isolated in G[C]. Fortunately, this case
is covered by the reverse reveal-moves that we describe next.
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Fortunately, we can avoid this exponential blow-up as H has the following useful
property:

Definition 149 (Universal Consistent)

We say that an edge-alternating graph H = (V, E, A) is universal consistent with re-
specttoaset Q C Vifforallve V\ Qwithv € B(Q) and Ny(v) ={wy,...,w;}
we have (i) Ny(v) € B(Q) and (ii) forevery I C {wy,..., wy}with|I| > 2 thereisa
vertex v/ € Vwith Ny(v’) = Tand v’ € B(Q). N

Intuitively, this definition implies that for every vertex with high universal-degree
there is a set of vertices that we can arrange in a tree-like fashion to realize the same
adjacency relation. This allows us to glue only two configurations at a time and, thus,
removes the exponential dependency.

Example 150

Consider the following three edge-alternating graphs, where black edges are exis-
tential and the blue edges are universal. The set Q contains a single vertex that is
highlighted. From left to right: the first graph is universal consistent; the second
and third one are not. The second graph conflicts the condition thatv € B(Q) im-
plies Ny (v) C B(Q), as the vertex on the very left is contained in B(Q) by the top
path, while its universal neighbor on the bottom path is not contained in B(Q). The
third graph conflicts the condition that Ny (v) = {wy, ..., w,} implies that for ev-
ery I C {wy,...,w;}with |[I| > 2 thereis avertex v’ € V with Ny(v’) = I and
v’ € B(Q) as witnessed by the vertex with three outgoing universal edges.

A

Lemma 151
For every graph G = (V, E) and number k € N, the edge-alternating configuration
graph H of the algorithm divideAndCatchFull(V) is universal consistent.

<

Proof. For the first property observe that “reveals do not harm”: Searchers that can
catch the fugitive without knowing where she hides, certainly can do so if they know.

For the second property consider any configuration C € V(H) that has universal
edges to Cy, ..., C¢. By definition we have [INg(C)| < kand Ng(C;i) € Ng(C)
forall1 < i < L. Therefore we have forevery I C {1,...,{} and C’ = U;¢C; that
Ng(C’) € Ng(C)and |[Ng(C’)| < kand, thus, C’' € V(H). O
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We are now ready to formulate the algorithm for computing the winning region.
In essence, the algorithm runs in two phases: First it computes the set Q of win-
ning configurations; second the winning region B(Q) is computed by the sketched
reversed moves.

procedure catchAndGlue(G,k) procedure offer(C,t)
K+ 0 if C¢Z K and [Ng(C)| <t then
initialize empty queue add C to K
insert C into queue
// Phase I: compute Q end
for ve V(G) do end
offer({v} k—1)
end procedure +intersect(C,C’)
if CNC’'#0 then
// Phase II: compute B(Q) return false
while queue not empty do end
extract C from queue if Ng(C)NC'#0® then
return false
// reverse fly—moves end
for v € Ng(C) do if CNNg(C')#® then
offer(Cu{v}lk—1) return false
end end
return true
// reverse reveal-moves end

for C'€ K do
if not dintersect(C,C’) then
offer(CuUC/, k)
end
end

end

// done, we now have K=3(Q)
return K

end

Theorem 152
The algorithm catchAndGlue(G k) finishes in at most O(IB(Q)IZ . IVIZ) steps and
correctly outputs B(Q).

Proof. The algorithm is supposed to compute Q in phase I and the rest of B(Q) in
phase II. Observe that Q is correctly computed in phase I by the definition of Q.

To show the correctness of the second phase we argue that the computed set K equals
B(Q). Observe that K is exactly the set of vertices inserted into the queue. We first
show K C B(Q) by induction over the ith inserted vertex. The first vertex C, is
in B(Q) as C; € Q. Now consider C;. As C; € K, it was either added in Line 16
or Line 22. In the first case there was a vertex C] € Ksuch that C; = C{ U {v}
for some v € Ng(C{). By the induction hypothesis we have C{ € B(Q) and by
the definition of the configuration graph we have (Ci, C{) € EM and, therefore,
we also have that C; € B(Q). In the second case there were vertices C{ and C/’
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with C{, C{’ € Kand C; = C] U C{". By the induction hypothesis we have again
C{,C!' € B(Q). Lett,, ..., t¢ be the connected components of C/ and C{’. Since H
is universal consistent with respect to Q by Lemma 151, we have t,,..., t € B(Q).
By the definition of H we have Ny(Ci) = t,,..., tg and, thus, C; € B(Q).

To see B(Q) C K consider for a contradiction the vertices of B(Q) in reversed
topological order (recall that H is acyclic) and let C be the first vertex in this or-
der with C € B(Q)and C ¢ K. If C € Q we have C € K by phase I and are
done, so assume otherwise. Since C € B(Q) we have either N3(C) N B(Q) # 0
or ) # Ny(C) € B(Q). In the first case thereisa C’ € B(Q) with (C,C’) € EH
Therefore, C’ precedes C in the reversed topological order and, by the choice of C,
we have C’ € K. Therefore, at some point of the algorithm C’ gets extracted from
the queue and, in Line 16, would add C to K, a contradiction.

In the second case, the configuration graph contains vertices t,, ..., ty such that
Ny(C) = {t;,..., te}and t;,...,ty € B(Q). By the choice of C, we have again
ty,...,te € K. Since H is universal consistent with respect to Q, we have for every
I C{1,..., ¢ that J;; ti is contained in B(Q). In particular, the vertices t; U t,,
t; Uty ..., tg_; Ut are contained in B(Q), and these elements are added to K
whenever the t; are processed (for simplicity assume here that { is a power of 2).
Once these elements are processed, Line 22 will also add their union, that s, vertices
of the form (t, Ut,) U (t; Ut,). In this way, the process will add vertices that corre-
spond to increasing subgraphs of G to K, resulting ultimately in adding UE:I i =C
to K, which is the contradiction we have been looking for. O

Theorem 152 provides us with an efficient algorithm for computing the winning re-
gion of the search game. Since the question whether the input graph has treewidth
at most k — 1 can be answered by a simple lookup that checks whether the start con-
figuration V(G) is contained in this region, we can answer this question in the same
time. In fact, we can compute a corresponding winning strategy — and thus a tree
decomposition - on the fly, by tracking which operation offers which configurations
to K. Another strength of Theorem 152 is that it can easily be adapted to other graph
parameters as graph searching is very general: If we forbid reveals, the search num-
ber equals pw(G) + 1; if we forbid to remove placed searchers, the search number
equals td(G). In fact, it can be shown that we can compute the corresponding de-
compositions within the same time bound by a small modification of the algorithm
used for Theorem 152 [14]. However, for this section we are content with the com-
putation of optimal tree decompositions.

In the rest of this section, we will apply algorithmic engineering in order to speed
up the algorithm in practice (without improving its theoretical run time). The main
idea of all of the following improvements is that we do not need to know B(Q) com-
pletely, as we only want to know whether the start configuration is contained in it.
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The Priority Heuristic. The first observation we use is that the start configuration
V(G) is the largest block. Thus, we wish to generate large configurations quickly.
We can prioritize such configurations by changing the queue to a priority queue in
which the priority of a block (N(C), C) is the cardinality of C. In this way, the al-
gorithm will extend larger blocks first and, thus, hopefully finds the start configura-
tion faster. Despite its simplicity, this heuristic has an enormous effect in practice.
For instance, the McGee Graph mentioned in the previous section is a hard instance
for the algorithm presented in this section as well (there are many configurations
to glue, as the graph is very symmetric) — the plain algorithm is not able to solve it
within 10 minutes, while using the priority heuristic it is solved in less than a second.

The Fast-Contamination Heuristic. Another trick that we can apply is to contaminate
vertices instantaneously whenever this is safe. Contaminating a vertex means in-
creasing a currently handled full block (N(C), C) by taking a vertex v € N(C) and
moving it to C. This operation is performed by the reverse fly-move, where we try all
possible choices of v. However, this operation is safe if N(C U {v}) C N(C), thatis,
if we do not require any additional searchers for the new block. Therefore, if we find
such a vertex we can directly contaminate it, and the fast-contamination heuristic
does exactly this: Whenever we explore a new full block, we greedily contaminate all
vertices that can be contaminated safely.

Additionally, we may always contaminate the remaining graph ifitis smaller than k,
thatis, if we handle a full block (N(C), C) with |[V\ C| < k, then we can contaminate
the whole graph at once. In this scenario, the start configuration of the searchers
would be V'\ C, from where they then would move to N(C).

The Fast-Glue Heuristic. Star-like graphs are worst-case instances for the presented
algorithm. Consider for instance the star shown in the margin and observe that for
the optimal search number k = 2, the set Q of win configurations is exactly the
set of leaves, that is, Q = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9} }. Observe that for none
of these configurations a reverse fly-move is possible, as the neighborhood of any
set containing the vertex o is too large. Therefore, the algorithm can only generate
larger configurations by gluing the small configurations together, and it will there-
fore first generate all pairs, then all 3-tuples, then all 4-tuples, and so on. With other
words, for such instances B(Q) is of exponential size and the algorithm will fully
list B(Q) before it finds the start configuration.

To overcome this issue, the fast-glue heuristic keeps gluing a full block as long as pos-
sible, before it handles the next block. This can be achieved by replacing Lines 20-24
in the main algorithm with the code snippet on the next page.
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init empty stack
puch C
while stack 1is not empty do
pop C’ from stack
for C” € K do
if not intersect(C’, C”) then
offer(C’'ucC”, k)
push C'UC” to stack
end
end
end

Considering the star example again, the heuristic will glue the first handled win con-
figuration, say {1}, together to {1, 2, 3,4, 5, 6, 7, 8, 9} before extracting any other block
from the queue. If we use the heuristic in combination with the fast-contamination
heuristic, this block will be extended to{o, 1, 2, 3, 4, 5, 6, 7, 8, 9} and the algorithm finds
a solution without extracting any other block from the queue.

Discarding Configurations via Pruning. While we are exploring the winning region
B(Q) we may encounter configurations that are not necessary for an optimal tree
decomposition, as we may already have encountered a “better” configuration. In this
scenario, we can safely discard this configuration by not adding it to B(Q) and by
not offering it to the queue — which in return will increase the speed of the algorithm.

Assume we encounter a block (N(C), C) for the first time, and assume that we have
already found a block (N(C’), C’) with C C C’and N(C’) C N(C). We can safely
discard (N(C), C), as any strategy of the searchers that use this block (the searcher
visit N(C) to clean C) can instead use (N(C’), C’), as this requires fewer searchers
at the same spot while cleaning a larger part of the graph (C’ rather than C).

The Potential-Maximal-Clique-Heuristic. The last heuristic is based on more involved
graph theoretic concepts concerning tree decompositions. A potential maximal clique
ofagraph G = (V, E) isaset of vertices Q C V thatis a clique in some minimal tri-
angulation of G. Bouchitté and Todinca have proven the following more accessible
local characterization of potential maximal cliques [44], which allows us to efficiently
test whether a given set of vertices is a potential maximal clique:

Fact 153 ([44])
Let G = (V,E) beagraphand Q C V, then Q is a potential maximal clique if and
only if:

1. G[V'\ Q] has no full component associated with Q;

2. forallu,v € Q we have either {u, v} € E or there is at least one component C
associated with Q such thatu,v € N(C). <
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One can show that, if k searchers have a winning strategy on G, then they have also
a winning strategy with the following more restricted set of rules: Whenever the
searchers place new searchers on G, the set S of searchers has to be a potential max-
imal clique; and whenever the searchers remove some searchers from the graph, the
set S must be a minimal separator [88] (see also Section 5.4 in [87]). Of course, in this
variant the searchers have to place and remove several searchers at once.

Observe that for a set Q) that has no associated full component and that is no po-
tential maximal clique, no superset Q' O Q) can be a potential maximal clique. Fur-
thermore, observe that the last move of the searchers (the move in which the fugitive
is caught) is a place move on a vertex v and, thus, N [v] must be a potential maximal
clique. Therefore, we may discard blocks (N ({v},{v}) in Line 7 whenever N[v] is not
a potential maximal clique.

We can naturally follow this path further and try to reconstruct only such winning
strategies in which the searchers always stand on minimal separators or on poten-
tial maximal cliques. However, this is highly non-trivial from a positive instance
driven point of view, as it is only easy to find minimal separators given a potential
maximal clique that contain them; but it is hard to find a potential maximal clique
that contains a given minimal separator. Tamaki has proven new structural prop-
erties of potential maximal cliques in order to present a positive instance driven al-
gorithm based on such a strategy [158]. He participated with this algorithm at the
PACE 17 [64, 157]. An optimized implementation of this algorithm can be found in
Jdrasil as well, but for this section we leave it at the heuristic that prunes win con-
figurations that are no potential maximal cliques.
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10.5 PARALLELIZATION THROUGH SPLITTING

In our architecture for computing a tree decomposition, the splitter is the second el-
ement in the pipeline. Its task is to split an input graph G into many small graphs
Gy, ..., Gg, to which we refer to as atoms. While doing so, the splitter must guar-
antee that it can glue tree decompositions of the G; into a tree decomposition of G.
Furthermore, it must ensure that this tree decomposition is optimal in the event that
the tree decompositions for the G; are optimal.

The cornerstone to the concept of the splitter is the notation of safe separators due
to Bodlaender and Koster [41]. For a graph G = (V,E),aset S C Vis called a safe
separator if (i) S is a separator (that is, G[V \ S] has more components than G[V])
and (ii) completing S into a clique does not increase the treewidth of G. Such safe
separators are useful by the simple observation that any tree decomposition (T, t)
of G must contain for every clique C C V a bag b with C C 1(b), which leads to
the following recursive scheme illustrated at the margin: On input of a graph G, the
splitter finds a safe separator S; separates G on it; adds S as clique to each resulting
component and obtains new graphs Gy, ..., Gg; it then recurses on these graphs
to obtain tree decompositions for all of them. These decompositions can be glued
together to a tree decomposition of G by adding a new bag b with 1(b) = S, which
is linked to one bag containing S in each of the obtained tree decompositions. The
recursion stops when the splitter reaches a graph in which it cannot find any safe
separator — this graph is an atom and a tree decomposition for it is obtained with a
solver. It should be clear that this approach is highly desirable from a parallel point
of view, as we can handle all the atoms independently of each other in parallel.

Clique and Almost Clique Separators. A clique separator is a separator S such that S is
a clique. Obviously, such separators are safe by the above definition. Given a graph
G = (V,E), we can find a clique separator, if one exists, in time O(n - m) using
the algorithm by Gavril [97]. In fact, in the same time we can actually compute a
whole decomposition of G along such clique separators using an improved version
of the algorithm due to Tarjan [161]. In the light of parallelization, there is also an
O(log’n) time and O(n - m) work algorithm to find clique separators [60]. The
implementation in /drasil is oriented on the description by Berry, Pogorelcnik, and
Simonet to find minimal clique separators [27].

Bodlaender and Koster [41] have observed that a separator S is also safe if it is an in-
clusion minimal almost clique. An almost clique is simply a clique plus one additional
vertex. We can find almost clique separators by guessing a vertex v and looking for
a clique separator in G[V \ {v}]. This operation requires time O(n* - m). If we have
found an almost clique separator S, we can check if it is inclusion minimal by testing
if its associated components are full.
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It is worth to mention that there are interesting special cases of clique and almost
clique separators: The separators of size zero, one, and two. A single vertex is a
clique, two vertices are either an edge (and thus a clique) or a clique and vertex (and
thus an almost clique). These separators correspond to connected components, bi-
connected components, and triconnected components, which we can identify more
efficiently with standard graph theoretic techniques [108, 109]. /drasil applies these
techniques before it starts to search general clique and almost clique separators.

Minor-Safe Separators. Bodlaender and Koster have identified a large class of safe
separators based on a minor characterization [41]. Recall that a graph H is a minor
of a graph G if we can create a graph isomorphic to H by applying a sequence of the
following operations to G: delete a vertex v; delete an edge {v, w}; contract an edge
{v, w}, that is, delete the edge and replace all occurrences of v or w by a single new
element x. We say H is a labeled minor of G if the vertices have unique labels and,
when performing a contraction, we use the label of either v or w for x.

Fact 154 ([41])
Let G = (V,E) beagraphand S C V a separator of G with associated components
Cy,...,Cq, then Sissafeifall G[V'\ Ci] contain a clique on S as labeled minor. <

Let us call a separator minor-safe if it is safe with respect to Fact 154. On the positive
side, the set of minor-safe separators eventually contains more elements than just
the clique and almost clique separators, which means more splitting and thus more
parallelization. On the negative side, Fact 154 does not provide us with any hint of
how to find a minor-safe separator.

As a rule of thumb, everything that involves minors is computationally hard. Since
we wish to use the safe separators as preprocessing, we have to rely on heuristics. In
Jdrasil, we use the following simple Monte-Carlo algorithm to find a minor-safe sep-
arator in a given graph G. The algorithm is based on a similar algorithm presented
by Tamaki for his PACE 2017 submission [158].

while attempts < threshold do
attempts <« attempts + 1
S < sampleSeparator(G)
if not isEventuallyUnsafe(G,S) then
return S
end
end

The algorithm sampleSeparator provides a candidate S for a minor-safe separator,
and shall guarantee that S is indeed a (not necessarily safe) separator. Multiple calls
of the algorithm provide multiple candidates. The algorithm isEventuallyUnsafe is a
Monte-Carlo algorithm with a one-sided error: If S is not safe by Fact 154, then the
algorithm will detect this circumstance with certainty; if S is minor-safe, then the
algorithm will eventually identify S as safe separator.
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The implementation of sampleSeparator in Jdrasil follows the approach used in [158].
We manage a pool of separators. If the pool is empty, the algorithm computes a
tree decomposition of G using a randomized heuristic and adds all bags that are a
separator of G to the pool; if the pool is not empty, sampleSeparator just returns and
removes an element from the pool.

The implementation of isEventuallyUnsafe is more involved. On input of a separa-
tor S, the algorithm computes all associated components C,, ..., Cq of S and will
check whether there is a clique on S in all G[V \ C;] as a labeled minor. To per-
form the minor test, Tamaki suggests the following approach [158]: Define the set
R = V\ (S U C) and contract the edges in G[R] randomly to obtain a graph B
on vertex set S U R/ where R’ contains the vertices that remain after the contrac-
tions on R. In a second phase, for each edge {u, v} missing in S, a common neighbor
w € N(u)NN(v) NR’is chosen and contracted either to u or v. The missing edges
are processed in order of common neighbors in R’ (the less common neighbors, the
earlier a missing edge is processed). The choice to which vertex we contract w is
done in such a way that the minimal number of common neighbors any remaining
edge has is maximized.

In Jdrasil we differ from this approach by trying to find paths that can be contracted.
This can be seen as a more greedy and a less random implementation of the above
sketched algorithm. The result is a simpler algorithm that performs a little better on
the test sets used in Section 10.6: Instead of contracting R, we directly iterate over
the missing edges in S in random order. Fixing a missing edge {u, v}, we compute
the set P = N(u) N N(v) N C of common neighbors of wand v in C. If P is not
empty, we choose a random element x of P and contract it at random to either u or
v. On the other hand, if P is empty, we compute the shortest path from u to v via
breadth-first search and contract it to u. Due to its randomized nature, we repeat
the test multiple times for every set S.
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» Example 155
The left side of the following graphic shows ex045. gr, an instance from PACE 2017
(Testset II) with 600 vertices and 865 edges. On the right, the same graph is shown
after the preprocessing routine of Jdrasil was applied to it. The reduced graph has
still 185 vertices and 342 edges.

Applying the splitter to the reduced graph results in the following seven atoms, which
we can handle completely independent of each other. The maximum number of ver-
tices in one of the atoms is 55 and the maximum number of edges 103.
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10.6 EXPERIMENTS AND ANALYSIS

In this section we will analyze the performance of drasil, and especially of the tech-
niques presented within this chapter, with a series of experiments. We start by
studying the performance of the saT-approach from Section 10.3 with respect to
multiple state-of-the-art saT-solvers on page 144. Once we have decided for a sat-
solver, we will analyze the speedup that we obtain by improving the encoding with
the clique and the twin trick on page 145.

Afterwards, we will examine an implementation of the positive instance driven dy-
namic program catchAndClue from Section 10.4. We first study the performance of
the algorithm if we equip it with the various heuristics presented in Section 10.4 on
page 146. Subsequently, we will compare the performance of the saT-approach and
catchAndGlue with each other, and with other treewidth algorithms on page 147.

The last two experiments of this section will deal with the parallel capabilities of
Jdrasil. We will first explore the impact of splitting, both sequentially and in parallel,
forvarious algorithms starting at page 149. Finally, we will measure the speedup and
efficiency of the parallel version of /drasil experimentally with respect to the number
of atoms of the input instance on page 152.

Important to note is that for all experiments and all mentioned algorithms (also the
ones not discussed within this thesis) we always use the corresponding implemen-
tation of that algorithm in Jdrasil — no other implementation was used for any ex-
periment. In particular, all algorithms are executed with the exact same set of pre-
processing rules: We use the preprocessor of Jdrasil in all experiments, but we use
splitting only if it is explicitly mentioned. Details about the data sets and the used
hardware can be found on page 183, details about other algorithms implemented in
Jdrasil can be found in [16] and in the manual of Jdrasil [15].
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SELECTING A SAT-SOLVER

The pleasant thing about encoding our problem into a formula of propositional logic
is that, once we have settled the encoding, we can kindly ask a saT-solver to solve the
problem for us. In fact, we can even rely on the expertise of the SAT-community to
handle such problems in parallel. The following plot compares the run time of Jdrasil
using the sequential saT-solvers lingeling and , their parallel versions plin-
gelingand , as well as the parallel cube-and-conquer solver treengeling, which
is based on lingeling as well [9, 29, 107]. In all cases, the rest of /drasil was executed
sequentially. The experiment was performed on Machine I with Testset I and II. The
following cactus plot shows the allowed time t on the x-axis, and the number of in-
stances that the solver was able to solve within t minutes on the y-axis. The number
in parentheses is the percentage of solved instances of the test set. All solvers were
executed with a timeout of 30 minutes per instance.

Number of
Instances Solved
250
plingeling (59%)
lingeling (57%)
225 — .
» treengeling (54%)
roo | ¥

T T T T T T T
1 5 10 15 20 25 30

Time in Minutes

The experiment reveals that the selection of the saT-solver has quite an effect on
the overall run time of drasil. We can observe that the cube-and-conquer approach
of treengeling seems not to be feasible for our encoding. On the other hand, the
parallel versions plingeling and Syrup perform notably better than their sequential
counter parts lingeling and Glucose. But more crucially, we can observe that Glucose
performs better than lingeling for our encoding. In fact, the sequential version of it
is even better than the parallel solver plingeling.
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THE GAIN OF ADDING THE CLIQUE AND THE TWIN TRICK

The following cactus plot illustrates the impact of the clique and the twin trick in
Jdrasil using the saT-approach with Glucose as underling saT-solver (due to the last
experiment, this is the best sequential solver for this task). It was obtained from an
experiment that was performed on Machine I and Testset I, and with a timeout of
30 minutes per instance. The four curves show the performance of a plain encoding
without the tricks, using the , using the twin trick, and using both tricks.
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The experiment reveals that adding the twin trick provides only a slight advantage
(butitdoes overall improve the encoding). In contrast, adding the clique trick boosts
the performance of the encoding such that it is able to solve 10% more instances of
the test set within the 30 minutes timeout. Interestingly, combining both tricks does
not provide any further advantage and, in fact, results in an encoding that performs
slightly worse than the encoding that uses just the clique trick. I assume this is be-
cause both tricks improve the performance by adding some sort of symmetry break-
ing to the formula. Since in most instances there are only very few twins, adding
these to the encoding does not provide more symmetry breaking than what we al-
ready get from the added clique and, thus, by using both tricks we increase the for-
mula without any gain on many instances.
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SELECTING A HEURISTIC TO SPEED UP
POSITIVE INSTANCE DRIVEN DYNAMIC PROGRAMMING

In this experiment we study the performance of the catchAndClue algorithm from
Section 10.4 when it is equipped with various heuristics. The experiment was per-
formed on Machine I using Testset I with a timeout of 30 minutes per instance. In
the following, we compare the performance of the , the algorithm
using the priority heuristic, and the algorithm using the fast-glue heuristic. Adding
the fast-contamination heuristic, pruning, or the potential-maximal-clique heuris-
tic alone, increases the performance only sightly — the effect is too small to be visible
in the cactus plot and, thus, the corresponding curves are omitted. However, adding
all three heuristics to either the priority or the fast-glue heuristic provides an addi-
tional acceleration. The corresponding curves are marked with an asterisk.
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As we can see, the plain algorithm already performs decently. However, adding ei-
ther the priority or the fast-glue heuristic improves the performance a lot. In fact,
by using these heuristics the algorithm from Section 10.4 is able to solve 87% of the
instances of the test set within the given timeout of 30 minutes. Since the prior-
ity heuristic is simpler to implement and performs slightly better than the fast-glue
heuristic, I would recommend to always use it. Combining both heuristics does
not improve the performance further and results in an algorithm that is actually
slightly worse than using just the priority heuristic (not shown in the plot). This is
not surprising, as both heuristics have the same goal: Generate large configurations
quickly. Since, furthermore, both heuristics achieve this in a similar way, we would
add unnecessary overhead by using both heuristics.
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COMPARISON OF THE DIFFERENT ALGORITHMS

In this experiment we compare the best configuration (with respect to the previous
experiments) of the and the positive instance driven dynamic pro-
gram catchAndClue against each other. The plot contains in gray the algorithms
which were considered state-of-the-art before the first Parameterized Algorithms and
Computational Experiments Challenge: a branch-and-bound algorithm (BAB) [99],
the divideAndCatch algorithm on which we based our positive instance driven dy-
namic program in Section 10.4, as well as a “Held-Karp-like” dynamic program (DP)
due to Bodlaender, Fomin, Koster, Kratsch, and Thilikos [36]. The diagram also con-
tains Tamaki’s positive instance driven dynamic program that is based on minimal
separators and potential maximal cliques [158].

I used for all algorithms the corresponding implementation of Jdrasil, which were
all highly optimized. However, catchAndClue is not optimized and refers to a direct
implementation of the code presented within this thesis. The performance can be
improved by carefully choosing data structures — for instance, the set B(Q) can be
managed in a set-trie [150]. The optimized version of catchAndClue, which is actually
used by Jdrasil, is denoted by catchAndClue_opt in the following plot.

The experiment was performed on Machine I and Testset I with a timeout of 30 min-
utes per instance. As mentioned above, all tests were performed with Jdrasil’s im-
plementation of the corresponding algorithms. For each of them, the preprocessing
of Jdrasil was applied, but splitting was deactivated.
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The experiment reveals that both, our algorithm using the improved saT-encoding
and our positive instance driven dynamic program catchAndGlue, outperform all the
algorithms that were considered state-of-the-art before the first PACE. However, the
experiment shows that the positive instance driven dynamic program by Tamaki
solves 4 instances more than the optimized version of catchAndClue. I assume that
these instances contain just a few minimal separators or potential maximal cliques,
as Tamaki’s algorithm works directly with these objects.

The following figure illustrates the same experiment for the three fastest algorithms
repeated on Testset II, which contains the instances of the second iteration of the
PACE. The instances in this data set are larger and more difficult than the instances
in Testset I. However, they contain fewer symmetries as they are generated from
real world graphs, which makes them more vulnerable to preprocessing.
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The plot shows that this test set is indeed more challenging, as all solvers only solve a
smaller percentage of the instances within the time bound. We can observe that the
advantage of the positive instance driven algorithms over the saT-approach become
more apparent compared to the first experiment.

An interesting finding is that there are a couple of in-

stances that are still solved faster by the sat-approachthan  sdvantage in
by catchAndClue. In particular, the instances of higher Seconds
treewidth seem to be good candidates for this effect. The
advantage plot on the right shows the advantage of the sat-
approach over catchAndGlue. To produce it, I took all in- 25
stances that were solved by both solvers, ordered them by o
their treewidth, and used the instances as x-coordinate. 25
For each instance, there is a bar that indicates the advan-

tage: A positive bar means that the saT-approach is faster

by the length of the bar, while a negative bar means that
catchAndClue is faster. All bars are capped at 50 seconds,

and the curve visualizes the treewidth of the instances.
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PARALLELIZATION VIA SPLITTING

In this experiment we examine the power of splitting when computing optimal tree
decompositions using the optimized catchAndClue algorithm. In particular, we will
study how well these techniques can be used for parallelization. The following ex-
periments were again executed on Machine I, which is equipped with 8 cores. I com-
pared catchAndGlue with sequential splitting (atoms are handled sequentially), with
parallelsplitting (all atoms are handled in parallel, but everything else is still sequen-
tial), and (sequential algorithm that does not compute atoms at all)
on Testset I1. As before, I used a 30 minutes timeout per instance. The results are vi-
sualized in the following cactus plot:
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We can see that splitting allows the solver to solve about 20 instances more com-
pared to the solver that does not use splitting. Concerning parallelization, the posi-
tive message of the plot is that, even though the parallel version solves one instance
less than the sequential version, it is generally equal or faster than the sequential
one. That the solver does not become worse when using parallelization is due to the
fact that the splitting is implemented in a work optimal way, that is, the sequen-
tial solver performs the same amount of operations to apply splitting as the parallel
solver. However, the resolution of the cactus plot is not high enough to see whether
or not we obtain a speedup using parallelization.

The advantage plot on the next page shows the advantage of the parallel version over
the sequential version. As in the experiment in which we compared various solvers,
I took only the instances that were solved by both solvers, ordered them by their
treewidth, and used them as x-coordinates. For each instance, there is a bar that
indicates whether the parallel solver is better (by the amount of a positive bar), or
whether the sequential solver is better (by the amount of a negative bar). The curve
illustrates the treewidth of the instances.
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This plot shows that the difference of the sequential and the parallel version is negli-
gible on most of the instances. However, if there is a meaningful difference for some
instance then it is in most cases in favor of the parallel algorithm. Interestingly, es-
pecially the graphs with higher treewidth seem to be well suited for parallelization.
The following domination plot visualizes the total time used by the parallel solver and
used by the sequential solver. To generate the plot, I used only the instances that
were solved by both solvers. The length (total time) is the sum of the run times of
both solvers (that is, the time the whole experiment took), while the individual times
are the times of the corresponding solvers.

526 min
47% | 53 %
249 min 277 min
parallel solver sequential solver

As expected from the previous plot, the figure underpins that the parallel version is
overall faster than the sequential version. In detail, the parallel version of the pro-
gram is able to solve the whole test set 25 minutes faster than the sequential solver.
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Due to Jdrasil’s architecture, we can not only execute catchAndClue in parallel, but
also any other algorithm. For the following plot I used Tamaki’s algorithm with se-
quential splitting, with parallel splitting, and . The experiment was
performed on Machine I and Testset II, with a timeout of 30 minutes per instance.
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We can observe that, using splitting, Tamaki’s algorithm is able to solve almost the
whole testset within the given time; and that the parallel version is again a bit faster.
The following advantage plot and domination plot highlight the speedup obtained
in parallel: The parallel version is able to solve the whole test set 30 minutes faster

than the sequential one.
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SPEEDUP AND EFFICIENCY

In this last experiment we will study experimentally the speedup and efficiency we
gain by the parallel version of /drasil. From a theoretical point of view, the speedup we
obtain using p processors is usually defined as S, (n) = T;(n) /T, (n), where T;(n)
is the (theoretical worst case) time the algorithm requires to solve an instance of size
nwhen it uses i processors. Accordingly, the efficiency of the parallel algorithm is de-
finedasEp(n) = Ty (n)/(p - Tp(n)). However, these definitions are not well suited
for our type of parallelization, as the splitting strategy uses a structural property
(the number of atoms) in order to apply parallelization. Therefore, for any n there
will be instances were we have no speedup up at all (they have just one atom), or a
high speedup (they have many atoms). To circumnavigate this problem, we study
the speedup and the efficiency with respect to the number of atoms a, rather than
with respect ton: Sy(a) = Ti(a)/Ty(a) and Ey(a) = Ti(a)/(p - Tp(a)), where
Ti(a) is the (experimental) time to solve all instances with a atoms of a given test
set. Note that it does not make sense for the splitting approach to considerp > a
(we can not parallelize more than handle each atom on an individual processor) and,
thus, the best speedup we can hope for is a.

The following table shows the distribution of instances with a certain number of
atoms?® in Testset II. It contains, however, only instances with at least two atoms,
and only atom classes that contain at least 2% of the instances of the test set. For
every atom class, the table shows the time Jdrasil requires to solve all instances of
this class given a certain number of processors on Machine I.

Number of Atoms Instances Time using p Processors
1 2 3 4 5 6 7
2 19% 4967 3534s - - - - -
3 13,5% 6278  502s 471s - - - -
4 3% 85s 81s 81s 798 - - -
5 2% 43s 37s 508 368 378 - -
7 2% 418 28s 325 30s 31s 19s 17s

3The number of atoms refers to the number of atoms generated by Jdrasil’s heuristics, and not to
the (unknown) optimal number of such objects.
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The times collected in the previous table result in the experimental speedups and
efficiencies that are illustrated in the following table:

Atoms Speedup / Efficiency using p Processors
2 3 4 5 6 7
2 1,40 /0,70 - - - _ _
3 1,24 /0,62 1,50/0,44 - - - _
4 1,04/0,52 1,04/0,34 1,07/0,26 - - -
5 1,16 /0,58 0,86/0,28 1,19/0,29 1,16/0,23 - -
7 1,46 /0,73 1,28/0,42 1,36/034 1,32/0,26 2,15/0,35 2,41/0,34

The data shows that we obtain a speedup in general, although it is comparable small
to the one we might expect from theory — the sole exception is the set of instances
with 5 atoms solved using 3 processors, where the parallel version is slower than the
sequential one. The reason for the comparatively low speedup is that for an optimal
speedup all atoms of an instance would have to have the same size. However, many
instances contain a single large atom together with a collection of smaller atoms.
This phenomenon also explains the above average efficiency of using two processors:
One processor can handle the big atom, while the other one can handle all the small
atoms within the same time.
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11 JATATOSK: A LIGHTWEIGHT MODEL
CHECKER FOR A FRAGMENT OF MSO

In this chapter we will explore a possible path to handle monadic second-order logic
model checking in practice. A model checker is a tool that, given a logical struc-
ture S and a formula ¢, tests whether or not S = ¢ holds — we have studied such
algorithms in Chapter 8. In practice, we usually require that, in the case of S = ¢,
the model checker also outputs an assignment of the free variables of ¢. For conve-
nience, we further require an assignment to existentially bounded variables that are
not in the scope of a universal quantifier.

A model checker can be seen as convenient interface to dynamic programming over
tree decompositions. Such an interface is highly desirable from a parallel point view,
as dynamic programs over tree decompositions offer a way to solve combinatorial
problems in parallel (which is otherwise often a difficult task). This is particularly
true in practice, as such dynamic programs have many points that can be parallelized
ondifferent architectures [139]. For instance, if we have multiple CPU cores or even a
cluster, we can split the tree decomposition and handle multiple subtrees in parallel.
If we have an architecture that allows massive parallelization (such as a GPU), we can
parallelize a single step of the dynamic program (transforming the table of one bag
to the table of the next bag). The later approach was successfully applied to saT, a
problem that otherwise is hard to parallelize as well [82].

Unfortunately, using the techniques developed in Chapter 8 directly in practice is
difficult, as the generated tree automata are huge. Instead, in this chapter I intro-
duce a fragment of MSO that can be checked more directly. In particular, we can
model check formulas of this fragment in an “event-driven” way, in which the dy-
namic program has to perform most of its computations only on edge-bags.

For this fragment I present the model checker Jatatosk, which is implemented on
top of the dynamic programming interface of Jdrasil — therefore the name, which
is a portmanteau of “Java” and “Ratatosk,” the squirrel that runs up and down on
Yggdrasil to transmit messages from the animals at the crown of the tree to those
sitting at its roots. The current implementation of Jatatosk is sequential, as it aims
to explore the power of the fragment and the viability of the approach. However, it
isimplemented with an architecture that has parallelization in mind such thatit can
be parallelized in the future. Jatatosk is publicly available at GitHub [12], where the
reader will find a manual that guides through the first steps of using this tool.
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11.1 THE AIM OF JATATOSK

The primary goal of Jatatosk is, of course, a happy marriage of theoretical powerful
tools —such as Courcelle’s Theorem — with practice. Similar attempts can be found in
the literature. For instance, Sequoia is a full MSO-model checker based on a game
theoretic characterization of Courcelle’s Theorem [117, 126]. Another contender is
D-Flat, which is an Answer Set Programming (ASP) solver for problems of small
treewidth [30], which allows an implementation of Courcelle’s Theorem as well [31].

So why do we need another tool for that task? Both tools, Sequoia and D-Flat, solve
the general problem of MSO-model checking, which is arguably a very hard task.
While both of them perform decently on real world instances —in particular for prob-
lems that require a connected solution — they are not yet fully competitive against
modern SAT- or ILP-solvers [118]. In fact, an MSO-model checker can probably not
run in time f(| | + tw) - poly(n) for any elementary function f [91]. Even worse, it is
usually unclear what the concrete run time of such a tool is for a specific formula .
To that end, the authors of Sequoia have performed a sophisticated analysis of their
tool to obtain worst-case bounds for standard formulas [118].

To tackle all these problems, the design principle of Jatatosk is the focus on a frag-
ment of MSO. The result is a streamlined solver that is comparatively faster and eas-
ier to analyze. In particular, the run time of Jatatosk can directly be derived from the
syntax of the input formula.

11.2 A HIGH-LEVEL VIEW ON THE TOOL

The main idea of the architecture of Jatatosk is an event-driven evaluation of the for-
mula. This event-driven approach is inspired by the classical guess-and-verify ap-
proach used in nondeterministic computations. For instance, consider the problem
of testing whether a graph can be properly colored with three colors: A nondeter-
ministic computation would first guess the coloring, which means assigning a color
to each vertex; and would secondly verify it, which means checking for every edge
whether the endpoints have different colors. This strategy can be implemented as a
dynamic program over tree decompositions (compare with Example 137): At every
introduce-bag we guess a color for the introduced vertex, and on every edge-bag we
verify that the two endpoints have obtained different colors. In this particular case,
forget- and join-bags actually do nothing more than a little bookkeeping, and the
run time and correctness of the algorithm is almost immediate. Jatatosk is event-
driven in the sense that it will evaluate the formula only on edge-bags (so these bags
trigger an event), while all other bags are handled in a very uniform way.
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In order to make the event-driven approach work in general, we will restrict the al-
lowed input structures slightly. In general, Jatatosk expects as input a relational
vocabulary T = (R, R,, ..., Ry) as well as a T-structure S. We require, however, that
T contains a binary relation E, and that S interprets E in a symmetric way. That is,
S has to contain an undirected graph as substructure. Jatatosk will compute a tree
decomposition of this graph, and the edges of this graph will trigger events in edge-
bags. Note in particular that this stands in contrast to the other standard approach
of using the Gaifman Graph (see Definition 6).

Internally, Jatatosk computes a tree decomposition using /drasil, and implements a
tree automaton that evaluates the formula using the dynamic programming inter-
face of drasil. Every state of the automaton is represented as bit vector (sometimes
also called bit set). The bits of these vectors essentially describe for every vertex in
the current bag, to which variables of the formula it is assigned (the details will be
explained in the following sections). We will choose the fragment of MSO in a way
that allows us to deduce from the syntax of the formula the required size s of the
bit vectors as well as the way in which we have to modify the bits on different bag-
types — without explicitly constructing the automaton. In this way, we can directly
deduce the run time of the algorithm from the syntax of the formula as well: It will
be of magnitude 25.

11.3 DESCRIPTION OF THE FRAGMENT

We seek a fragment of monadic second-order logic that can be checked with the
sketched event-driven approach. First observe that existential second-order quanti-
fiers are “easy,” as we have already seen in the example of graph coloring. Therefore,
our fragment contains only formulas of the following form, where ¥ is a first-order
formula defined later:

3X, 3X,. ... 3Xq Y.

There is an easy implementation for such quantifiers. Assume we work on a tree
decomposition of bag-size k, then a state can be represented by k - q bits that sim-
ply indicate which vertex in the current bag is in which sets. On introduce-bags we
guess the sets X; to which the introduced vertex shall be assigned, and we set the
corresponding bits; in forget-bags we just have to clear the bits of the forgotten ver-
tex; on edge-bags we do not have to do anything; and on join-bags we have to ensure
that the bit vectors are the same for both children.

Observe that, from an event-driven perspective, the representation with k - q bit can
be very lavish. For instance, consider the following formula:

Pexample = JR3IB VX(R(X) A _‘B(X))
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In this example R and B constitute a partition of the vertices and, thus, one bit per
vertex would be sufficient. An event-driven approach will notice this too late, as it
will evaluate the formula after it has assigned vertices to R and B. Since Jatatosk
has an exponential run time with respect to the number of bits in the states, thisis a
rather big deal. Therefore, the fragment also contains partition quantifier, which have
the following semantic and can be implemented by using only k - log q bits:

Jeartition, |, Xq = IX;3X,... IXq (X \q/ Xi(x)) A (vx /q\ A —Xi(x) A=X;(x)).
i=1 i=1j#i

A second observation about event-driven evaluation is that we can check multiple

formulas at every event independently. Therefore, ¥ has the form ¥ = /\f:1 V.

The interesting part of the description are the formulas 1;. The natural formula for

the event-driven approach is:

Py = XVY E(x,y) — Xi,

where x; is some quantifier-free first-order formula. Observe that these are exactly
the formulas we need to express graph coloring; and observe that we can check such
formulas directly on edge-bags without storing any further information in the state
of the automaton. Apart from optimization (which we handle later), this fragment
can already express graph coloring, vertex cover, and independent set:

el = PR, G, B VXYY E(x,y) — \ ~C(x) V ~Cly);
C e{R,G,B}
@ve = 3ISVXVY E(x,y) = (S(x) V S(y));
@is = ISVxVY E(x,y) = (=S(x) V =S(y)).

There are many problems for which it is not sufficient to check whether a property
holds on every edge. Instead, such problems often require that some edges satisfy
the property. Consider for instance the dominating set problem in reflexive graphs,
which we can express with the following formula (again omitting optimization):

@gs = IS Vx3y E(x,y) A S(y).

We can still check such formulas in an event-driven way, but we cannot simply reject
if some edge does not satisfy the formula. Therefore, we now have to reserve some
bits in the state of the automaton to describe whether we have already seen the cor-
rect y for a vertex x. In particular, we store k bits and, whenever a vertex is intro-
duced, we set the corresponding bit to 0. For each edge {x, y} we check whether or
not the formula is true and, if so, set the bit for x. Furthermore, whenever we forget
avertex x we have to check if its corresponding bit was already set to 1, otherwise we
have to reject the current state. Finally, observe that in join-bags we cannot simply
reject anymore if the bit vectors are different. For the bits reserve for this formula,
we have to propagate the logical-or of both bit vectors, as we may have seen the edge
in one of the two subtrees.
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In a very similar way, we can also check formulas of the form Ix3y E(x,y) /A xi,
IxVy E(x,y) — Xxi, VxFy E(x,y) A xi, Ix Xi, and Vx X;i. This finalizes the de-
scription of the fragment, which contains formulas of the form 3X; ... 3X4 /\f:1 Vi
where the 1; are formulas of the following form:

Yy € {WxVy E(x,y) = xi, Vx3y E(x,y) Axi, IxVy B(x,y) = X4,
IxFy E(x,y) Axi, VX Xi, IXXi )

Here, all x; are quantifier-free first-order formulas. For convenience, we require
thattheyare in conjunctive normal form. Note thatin theliterature, the atom E(x, y)
used in the above formulas is sometimes called a guard.

11.4 EXTENSIONS OF THE FRAGMENT

Asthe formulas from the previous section already indicate, performing model check-
ing alone will not be sufficient to express many natural problems. In fact, every
graph is a model of the formula @y, if the vertex cover simply contains all vertices.
On the other hand, many interesting problems can be expressed in monadic second-
order logic, but not within our fragment. The solution to both problems is an exten-
sion of the fragment by operations that behave “nicely” during the model checking
process.

An Extension to Optimization. The optimization version of the model checking prob-
lem is usually formulated as follows [59, 85]: Given a logical structure S, a formula
@(Xy, ..., Xp) ofthe MSO-fragment defined in the previous section with free second-

order variables X;, ..., X;,, and weight functions wy, ..., w, with wi: V — Z; the
taskistofindsetsS;,..., Sy, with S C V such that Zle ZSGSi wi (s) is minimized
under S = @(S,, ..., Sp), or conclude that S is not a model for ¢ for any assignment

of the free variables. We can express the (actually weighted) optimization version of
vertex cover as follows: @y(S) = VxVy E(x,y) = (S(x) V S(y)).

We can, of course, maximize the term 3 P_ > s wi(s) by simply multiplying all
weights with —1. In that way, we can turn the formula to find an independent set
into a correct one.

The implementation of such an optimization is straightforward: There is an exis-
tential quantifier for every free variable X; of the formula, and we assign the current
valueof ) P 3 s wi(s) toevery state of the automaton. This value is adapted if
elements are “added” to some free variables at introduce nodes. Note that, since we
optimize an affine function, this does not increase the state space: Even if multiple
computational paths lead to the same state with different values at some node of the
tree, it will be well defined which of these values is the optimal one. Therefore, we
have to reserve only k bits in the description of the states of the automaton per free
variable — independently of the weights.
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Quantifier Extensions. Many interesting properties, such as graph connectivity, can
be expressed in monadic second-order logic. For instance, that a set X is connected
in graph theoretic terms can be expressed by the following formula (compare with
Example 14 in Section 2):

(Pconnected(x) =VY (Elley X(X) A\ X(y) AN Y(X) AN _'Y(U))
— (IxFy X(x) AX(y) AY(x) A=Y(y) ANE(x,y)).

There are two flaws with this formula. First of all, it is rather long for a “simple”
statement, and it is (probably) only for logicians a natural way to express connectiv-
ity. In the light of Jatatosk, the even bigger problem is that the formula is not part of
the fragment we work on. On the other hand, “guessing a connected set” is actually
a well understood topic on tree decompositions [59]. In order to make this power
available to the user, we introduce a quantifier extension to our fragment. We add
the connected quantifier, which guesses a set X that is connected in graph theoretic
terms with respect to the relation E and, thus, which has the following semantic:

Elconnectedxll)(x) =dX ((Pconnected(x) N IP(X))

Implementing the connected quantifier is considerably harder than implementing
a classical existential quantifier. The automaton has to overcome the difficulty that
an introduced vertex may not be connected to the rest of the bag in the moment it
got introduced, but may be connected to it when further vertices “arrive.” The so-
lution to this dilemma is to manage a partition of the bag into k’ < k connected
components Py, ..., Py/, for which we reserve k - log, k bit in the state description.
Whenever a vertex v is introduced, the automaton either guesses that it is not con-
tained in X and clears the corresponding bits, or it guesses that v € X and assigns
some P; to v. Since v is isolated in the bag in the moment of its introduction (re-
call that we work on a very nice tree decomposition), it requires its own component
and is therefore assigned to the smallest empty partition P;. When a vertex v is for-
gotten, there are four possible scenarios: (i) v ¢ X, then the corresponding bits are
already cleared and nothing happens; (ii) v € X and v € P; with [Pi| > 1, then
v is removed and the corresponding bits are cleared; (iii) v € X and v € P; with
[Pi| = 1and there are other vertices w in the bag with w € X, then the automaton
rejects the configuration, as v is the last vertex of P; and may not be connected to
any other partition anymore; (iv) v € X is the last vertex of the bag that is contained
in X, then the connected component is “done,” the corresponding bits are cleared
and one additional bit is set to indicate that the connected component cannot be ex-
tended anymore. When an edge {u, v} is introduced, components might need to be
merged. Assumeu,v € X, u € Py, andv € P; with i < j (otherwise, an edge-bag
does not change the state), then we essentially perform a classical union-operation
from the well-known union-find data structure. Hence, we assign all vertices that
are assigned to Pj to P;. Finally, at a join-bag we may join two states that agree lo-
cally on the vertices that are in X (they have assigned the same vertices to some P;),
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however, they do not have to agree in the way the different vertices are assigned to
P; (in fact, there does not have to be an isomorphism between these assignments).
Therefore, the transition at a join-bag has to connect the corresponding components
analogously to the edge-bags.

Adding the connected quantifier to the fragment allows us to describe many prob-
lems, which otherwise require sophisticated formulas, in a natural way. Besides the
obvious fact that we can now express problems such as connected vertex cover, we
can also describe more involved problems. For instance, the following sentence is
true whenever the graph contains a triangle as minor (and thus contains a cycle),
and it is easy to see that the sentence can be extended to describe that any fixed
graph H is a minor of the input graph:
Ptriangle-minor :ElconnectedR ElconnectedG ElconnectedB .

(Vx (=R(x) V=G (x)) A (—G(x) V =B(x)) A\ (—B(x) V —R(x)))
A\ (EIxEIy E(x,y) AR(x) A G(y)) A (Exﬂy E(x,y) AG(x) A B(y))
A (3x3y E(x,y) AB(x) AR(y)).

With similar tools as for the connected quantifier, we introduce the forest quantifier
that guesses a cycle free set X (in graph theoretic terms with respect to the relation
E). Itsimplementation is almost identical to the one of the connected quantifier: We
manage a partition of the baginto Py, ..., Py and, at introduce-bags, guess whether
the introduced vertex is part of the forest or not (giving it its singleton partition
eventually). On edge-bags and join-bags, we perform the same union-find opera-
tion, but we additionally reject the state if this operation creates a cycle. Forget-bags
can even be handled more easily: Here we just have to clear the bits, as the forgotten
vertex may not be part of any cycle in the future.

The main and natural application of the forest quantifier is the problem of finding
a feedback-vertex set in the input graph. This task can now be naturally expressed
with the following formula:

©gs(S) = FFvx (S(x) V F(x)).

11.5 PREDICTING THE RUN TIME AND EXPERIMENTS

We have defined the fragment and have discussed how to handle optimization and
powerful quantifier extensions. For each formula and quantifier that we have intro-
duced, we have reserved some bits in the state description of the automaton. In this
section we analyze the exact performance of Jatatosk with respect to the number of
reserved bits. For that end, let bit(¢, k) be the number of bits we reserve for the
input formula ¢ on a tree decomposition of bag-size k.
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A nondeterministic tree automaton will process a labeled tree with n nodes in time
O(m). If the automaton has state set Q, one might think that a running time of the
form O(|Q| - n) is sufficient to simulate the automaton deterministically, as the au-
tomaton could be in any potential subset of the states at some node of the tree. How-
ever, there is a pitfall: For every node we have to compute the set of potential states
of the automaton depending on the sets of potential states of its children, leading
to a quadratic dependency on |Q|. In detail, let x be a node with children y and z
and let Qy and Q; be the set of potential states in which the automaton is at these
nodes. To determine Q,, we have to check for every q; € Qy and every q; € Q. if
thereisap € Q such that (q3, gj, L(x),p) € A. Note that the number of states |Q|
can be quite large even for moderately sized parameters k, as |Q| is typically of size
22(K)_Therefore, we will try to avoid this quadratic blow-up.

The crucial observation is that, often, a tree automaton will only continue if both
children are in the same state. For instance, this is the case for the automaton that
checks whether a graph can be colored with three colors. We call automata with this
property symmetric:

Definition 156 (Symmetric Tree Automaton)

A symmetric nondeterministic bottom-up tree automaton is a nondeterministic bot-
tom-up tree automaton A = (Q, L, A, F) in which all transitions (1, r,0,q) € A
satisfy eitherl= 1, r= 1,orl =r. <

Assume as before that we wish to compute the set of potential states for a node x
with children y and z. Observe that in a symmetric tree automaton it is sufficient to
consider the set Qy N Q and that the intersection of two sets can be computed in
linear time if we choose the underlying data structures carefully.

Observation 157
A symmetric tree automaton can be simulated in time O(|Q] - n).

By the above observations it follows that, if the automaton that we construct is sym-
metric, then Jatatosk will run in time O* (zbit("”k) . n), but it will only run in time
O* ((2%t(#*))2. nn) otherwise. Unfortunately, not all formulas will yield a symmet-
ric automaton. To overcome this issue, we partition the bits of the state description
into “symmetric bits” and “asymmetric bits.” The idea is that, if we would only have
symmetric bits, then the automaton would be symmetric as well. In particular, inde-
pendently of the asymmetric bits, the symmetric bits must be identical in the states
of all children. Let symmetric(¢, k) and asymmetric(@, k) be defined analogously
to bit(@, k). We implement the join of states as in the following lemma, allowing us
to deduce the running time of the model checker for concrete formulas.

Lemma 158

Letx beanode of T with childreny and z, and let Q and Q. be sets of states in which
the automaton may be at y and z. Then the set Qy of states in which the automaton
may be at node x can be computed in time O* (zsymme"ic(‘P'k)“'asymme“ic(‘P'k) ).
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Proof. To compute Qy, we first split Qy, into By, ..

., Bq such that all elements in one

B share the same “symmetric bits”. This can be done in time |Q| using bucket-
sort. Note that we have q < psymmetric(@,k) gpd |B;| < 22ymmetric(@.k) yi7ith the
same technique we identify for every elementvin Q its corresponding partition B;.
Finally, we compare v with the elements in B to identify those for which there is a

transition in the automaton. This strategy yields a total running time of the form
|QZ|~maX?:1 |B1| < 2‘bit((p,k)'Zasymmetric((p,k) — Zsymmetric(cp,k)Jrz-asymmetric(cp,k)‘ 0

The table at the right shows all
formulas and quantifiers that an
input formula may use. For each
quantifier and formula the table
states the amount of bits that we
will reserve in the state descrip-
tion of the tree automaton, as
well as the fact if they are sym-
metric or not.

Given the table at the right, we
can, simply by looking at the syn-
tax of the input formula, deter-

Quantifier / Formula  Bits Sym.
freevar. X;,...,Xq q-k v
Jpartitiony, X4 k-log, q v
Hconnectedx k- logz k41 X
Jforestx k- log, k X
Vxvy E(x,y) > xi © v
Vxdy E(x,y) Axi k X
VY E(x,y) > xi k+1 X
IxFy E(x,y) Axi 1 X
Vxxi O v
Ixxi 1 X

mine the number of symmetric and asymmetric bits that Jatatosk will reserve in the
state space of the tree automaton — and thus we can directly determine the worst-
case run time of Jatatosk for that formula. The following table illustrates this for all

formulas used within this chapter.

Input Formula ¢ symmetric(g, k)

Worst Case Run Time

asymmetric( @, k)

P3col k- logz(3)
o
Pve(S) k
(o]
Pds (S) k
k
Ptriangle-minor o

(pfvs(s) k

163



Experiments with Natural Problems. To study the performance of Jatatosk, we compare
it to Sequoia and D-Flat for various natural problems. All experiments in this section
were performed on Machine II with a timeout of 10 minutes per instance. All solvers
were tested on the graphs of Testset III and IV, as well as the graphs of Testset II
with treewidth at most 11. Overall, this results in a test set of 61 instances. Jatatosk
(and underlying Jdrasil) were used with Java 1.8, while Sequoia and D-Flat were both
compiled with gcc 7.2.

For every experiment I provide three color coded figures that visualize the results.
The first graphic is always a classical cactus plot that visualizes how many instances
can be solved by each of the tools in x minutes. Therefore, a faster growing function
is better. On the right side of the diagram the name of the corresponding solver and
its total amount of solved instances (in percent) is shown.

The second graphic is always an advantage plot of Jatatosk against D-Flat and Se-
quoia. For these I have taken all instances of the test set and ordered them by their
treewidth. An x-coordinate corresponds to one test instance (with respect to the or-
dering) and for each instance there is an advantage bar: A positive bar means that
Jatatosk is faster than the best of D-Flat and Sequoia on this instance; a negative bar
means that the fastest of D-Flat and Sequoia is faster than Jatatosk by length of the
bar. The bars are capped at 100 seconds.

The third and last diagram for each experiment is a domination plot, which contains
the time Jatatosk needed to solve all instances, as well as the time D-Flat and Sequoia
needed to solve them, where for each individual instance the fastest of the two was
used. Then the diagram contains the sum of these two values (the complete time
required for the experiment) and the percent of this time used for either Jatatosk
or its competitors. Therefore, if both have 50% the solvers used exactly the same
amount of time, while otherwise the solver with the smaller percentage is faster.
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RESULTS FOR 3-COLORING

Number of
Instances Solved

60 — Jatatosk (98%)

50

40 - / - = - . - * * D-Flat (66%)
o » Sequoia (58%)

30

Time in Minutes

Advantage in

Seconds Treewidth

100 —
75 1
50
25 —

o

25 —
50 —

75

100

515 min

%] n

44 min 471 min
Jatatosk D-Flat and Sequoia

165



RESULTS FOR VERTEX COVER
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RESULTS FOR INDEPENDENT SET
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RESULTS FOR DOMINATING SET
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RESULTS FOR FEEDBACK-VERTEX SET
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Evaluation of the Experiments. It can be seen that Jatatosk is competitive (though not
always superior) against its competitors, as it is faster than the faster of the two on
many instances. Jatatosk outperforms the others for the task of coloring a graph
with three colors, but gets outperformed by Sequoia for finding a minimum vertex
cover. The same holds for the problem of finding an independent set, although the
difference is much smaller in this case. For the task of computing a dominating-set,
we have a more complicated situation: Jatatosk outperforms the others on about
half of the instances, and gets outperformed on the other half. Interestingly, the
difference is quite high in both halves in both directions.

Solving feedback-vertex set seems to be the hardest task for all tested solvers. In case
of Jatatosk, this is also reflected by the formula and the expected run time. Jatatosk
manages to solve only about 50% of the test set for this problem. However, Sequoia
falls behind a little more, and D-Flat does not seem to work for this problem at all.
The superiority of Jatatosk in solving feedback-vertex set is also reflected by the dif-
ference plot, in which almost all non-zero bars are in favor of Jatatosk.

All the cactus plots reveal that Jatatosk is able to solve more instances in a smaller
amount of time in almost all cases. The exception are vertex cover and independent
set, where the cactus plot of Sequoia looks slightly better. However, the difference
in this two cases is very small, while the advantage of Jatatosk on the other problems
is comparatively large. I assume the similarity for vertex cover and independent set
is owed to the circumstance that all solvers compile internally a similar algorithm.
The slight advantage of Sequoia might be due to a performance difference of Java
and C++. That Jatatosk outperforms the other solves for coloring is not surprising,
as the Mso-fragment used by Jatatosk is tailored around the corresponding graph
coloring formula. That Jatatosk is better at solving feedback-vertex set is probably
due to the fact that we have implemented and optimized the forest quantifier di-
rectly, while the other solvers have to extract this from the formula as well. I was
surprised, however, that Jatatosk did well for the dominating set problem, as the
promised run time by the fragment is much worse than the best known run time.
However, it seems that the other solvers do not reach a better run time neither.
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12 OUTLOOK AND FURTHER DIRECTIONS

In the second part of this thesis, we have moved from parameterized algorithm de-
sign to parameterized algorithm engineering — an intermediate discipline between
theory and practice that explores implementations of theoretical concepts. While
we studied paralle] parameterized algorithms that guarantee certain worst-case per-
formances in the first part of this thesis, in this part we developed parallel strategies
that work well in practice.

There were two main problems that we tackled: The computation of optimal tree de-
compositionsin Chapter 10, and the implementation of a model checker for monadic
second-order logic on top of it in Chapter 11. In case of treewidth computations, we
examined in detail the library Jdrasil. Here, I have decided to use a coarse paral-
lelization strategy, that parallelizes the computation of a tree decomposition inde-
pendently of the used (exact or heuristic) subroutines. This strategy fits well into
the modular architecture of Jdrasil and provides at least a small speedup. We have
first explored the modular architecture of Jdrasil and have then glanced at some of
its subroutines. In particular, we have evaluated the sar-based approach by Berg
and Jarvisalo and extended it by tricks known from the parameterized complexity
community. Afterwards, we screened the concept of splitting and safe separators,
which has turned out to be a key technology for computing tree decompositions in
practice — and especially for turning these algorithms into parallel ones. This ap-
proach leads to interesting further research directions. Since the size of a kernel
for the treewidth problem cannot be bounded by a function in the treewidth (un-
less NP C coNP/poly), splitting could provide an alternative to kernelization. Ulti-
mately, a Turing-kernel for the problem is not excluded, but achieving any guaran-
tees for the splitting process would be a welcome first step.

Open Problem: Improving the procedure for finding safe separators to provide any
guarantee. Either in terms of a probability to find safe separators if they exist; or in
terms of a bound for the size of the atoms. -

An important tool to test whether a separator S is safe for treewidth was to check
whether a clique on S is contained as labeled minor in the components associated
with S. The heuristics that are currently used to perform this check are rather simple.
Improving them could lead to faster algorithms for computing tree decompositions.

Open Problem: Finding alternative heuristics for the following problem: Given a graph
G =(V,E)andasetS C V,isaclique on S contained as labeled minor in G? =
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= Open Problem: Is there an exponential time or FPT-algorithm for the above problem
that works fast in practice? —

In the second chapter of this part, we studied a fragment of MSO that was crafted
with the aim of being easy to model check in practice —both, sequentially and in par-
allel. It was especially selected to overcome the huge automata constructions that we
encountered in Chapter 8. To see if the approach is viable, I introduced the model
checker Jatatosk. While it is implemented sequentially in its current form, the ar-
chitecture of Jatatosk (and of course of the whole fragment) has parallelization in
mind. Therefore, it is a natural next step to parallelize Jatatosk.

= Open Problem: Extending Jatatosk with parallel capabilities. In particular, multiple
subtrees of the tree decomposition can be handled in parallel on multiple CPUs,
while single steps of the dynamic program can be outsourced to a GPU. .

Note, however, that although the architecture has parallelization in mind, imple-
menting it in a way that results in an actual speedup will be non-trivial. This is be-
cause there are many details that have to be overcome and that will slow down the
implementation. For instance, for such dynamic programs both, load balancing and
GPU balancing are very difficult tasks.

Since Jatatosk was fully development from an algorithm engineering point of view,
rather than a pure algorithm design point of view, it lacks some features that could,
in theory, be easily added to it. Most importantly: It does not handle whole MSO,
but only a fragment of it. Given the success of Jatatosk, it is a natural next step to
explore implementations of model checkers for further fragments. For instance, it
should be possible to push the event-driven evaluation of Jatatosk (which uses the
binary relation E as guard) to guarded first-order logic (by working on the Gaifman
graph).

= Open Problem: Exploring other fragments of monadic second-order logic for their
capability of being model checked quickly in practice. .

Since the initial fragment was quite limited, we extended it with special quantifiers
for some problems that can be solved efficiently on graphs of small treewidth. How-
ever, the list of problems that can be solved efficiently on graphs of small treewidth
is virtually endless and, therefore, there are many further quantifier extensions that
are possible. One could, for instance, existentially bind a long path, a long cycle, a
vertex cover, or a dominating set.

= Open Problem: What are useful quantifier extensions that increase the expressiveness
of the fragment and that can be implemented fast in practice? -
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13 CONCLUSION

In this thesis we have explored the fascinating field of fixed-parameter tractability
from a parallel point of view — both, in theory and practice. To that end, we started
by establishing a collection of parallel subclasses of FPT. The resulting framework is
build on top of earlier work due to Flum and Grohe [84], and Elberfeld, Stockhusen,
and Tantau [76]. It is based on parameterized circuit classes that inherit some of
their features from classical circuit complexity, but which also confronted us with
new technical challenges — we discussed and resolved them in Chapter 3.

Once we had the definitions settled, we were ready to design parallel parameterized
algorithms. The first objective, which we engaged in Chapter 4, was the compilation
of a toolbox of basic parallel parameterized algorithms. A cornerstone for many al-
gorithms within this box, but also for many other algorithms across this thesis, was
the technique of color coding. In fact, one could say that what prefix sum or pointer
jumping are for classical parallel algorithms, is color coding for parameterized con-
stant time algorithms — almost all algorithms use it, and it seems unavoidable most
of the time.

An elementary technique in the design of parallel algorithms is symmetry breaking
in the form of computing independent sets. We encountered this problem multiple
times with various parameters throughout this thesis. In particular, we proved the
following three results — however, we did only focus on minimizing the parallel time,
while it is often also important to implement symmetry breaking in a work optimal
way, which is, thus, an interesting further research direction.

+ PA-MAXIMAL-INDEPENDENT-SET € para-AC°"€,
* Pk, A-INDEPENDENT-SET € para-AC?

* Pk-PLANAR-INDEPENDENT-SET € para-AC:

We continued by adapting many techniques that parameterized complexity has in
its quiver to work in parallel. It is not surprising that this works well for bounded
search trees, as such trees can naturally be evaluated in parallel. We explored the
technique with the help of various interesting problems, including multiple modula-
tor problems as well as the feedback-vertex set problem. In contrast, I was surprised
that kernelization is well suited for parallelization as well - after all, the technique is
presented in a very sequential way in any textbook. However, we were even able to
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prove that the relation “FPT equals kernelization” holds in the parallel setting: “par-
allel parameterized algorithms equal parallel kernelization.” The by far strongest
result that we obtained in this area is a constant-time kernelization for hitting set
parameterized by the solution size k and the maximum size d of any hyperedge. By
doing so, we have refuted a conjecture by Chen, Flum, and Huang [53], which states
that such a kernelization requires parallel time Q(d). The following table illustrates
the kernel sizes that we achieved for various problems in different circuit classes
(the function f is some highly exponential function that results from Theorem 77
and Corollary 78):

Problem Kernel size achievable in

AC° TC® NC RNC P
p-POINT-LINE-COVER - k* k> k* k*
Pk-VERTEX-COVER 2k k*+2k Kk*+2k 2k 2k —clogk
Pk-MATCHING 2k 6k 6k? 1 1
Pvc-TREEWIDTH 218! ISP NE NE NE
Pvc-PATHWIDTH 218! ISP NE NE NE
Pvc-TREEDEPTH 218! NE NE NE NE

Pk, d-HITTING-SET f(k,d) f(k,d) f(k,d) f(k d) kd . k!

The results of the table are all positive in the sense that they try to minimize the
size of the corresponding circuits. However, circuit complexity is also famous for
its power in providing lower bounds. Although we showed that a certain kernel for
Pk-VERTEX-COVER cannot be parallelized unless we can compute large matchings in
parallel, we did not discuss “real” circuit lower bounds in this thesis. A natural next
step s, thus, to rule out that certain kernel sizes can be achieved by circuits of certain
size or depth.

In order to develop parallel parameterized algorithms for a broad range of problems
atonce, I ended the first part of this thesis by presenting parallel versions of famous
algorithmic meta-theorems. To that end, we needed a parallel way of decomposing
a graph with respect to various graph parameters. The following table summarizes
the corresponding results from Chapter 7:

Decomposition Complexity Note

Crown Decomposition  para-AC° optimal
Treedepth Decomposition  para-AC® approximation
Tree Decomposition para-AC* optimal

Equipped with these algorithms, we were able to establish parallel algorithmic meta-
theorems in Chapter 8. I presented such theorems for first- and monadic second-
order logic with respect to various graph parameters. The results are summarized
in the table on the next page.
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Logic Parameter Complexity

First-Order ||+ A para-AC®
Monadic Second-Order || + vc para-AC°
Monadic Second-Order ||+ td para-AC®
Monadic Second-Order |@| + tw para-AC*

The objective of the second part of this thesis was the development of a practical tool
for the result in the last line. The foundation for such a tool is a library that is able to
compute tree decompositions quickly in practice. Chapter 10 showcases the Java li-
brary Jdrasil, which was developed for this purpose. I presented some of its features,
in particular an improved saT-encoding as well as a game theoretic characterization
of positive instance driven dynamic programming. Furthermore, I highlighted ways
to parallelize the computation of tree decompositions through safe separators.

With all the results concerning the computation of tree decompositions and the solv-
ing of model checking problems that were discussed in the course of this thesis, it
was possible to present a model checker that performs well in practice: Jatatosk. The
main achievement of Chapter 11 is the elaboration of a fragment of monadic second-
order logic that is both, general enough to express many natural problems, but re-
stricted enough to be model checked efficiently in practice. Jatatosk s tailored to this
fragment, which makes it more efficient than many of its competitors. Addition-
ally, its architecture allows to deduce the precise run time of Jatatosk directly from
the syntax of an input formula. The following figure illustrates the performance of
Jatatosk against its competitors over all formulas: It is the sum of the cactus plots
discussed in Chapter 11. Although the plot looks positive for Jatatosk, I should point
out once more that the other two tools can solve a more general problem — in par-
ticular, both can be used to model check monadic second-order logic, while Jatatosk
can only handle a fragment of it.

Number of
Instances Solved
. . . oo ——&—o]atatosk (88%)

250 —
200 |
150 — —» D-Flat (50%)
100 — ..* ——— *

I I I

1 5 10

Time in Minutes

175



Atthe end of each part, I already sketched many possible paths for further research. I
would like to close this thesis by repeating the three paths that I personally think are
the most interesting ones. The first path is the application of parallel color coding in
practice. We have seen that many parallel parameterized algorithms are based on
color coding, but the algorithms presented within this thesis use the technique quite
heavily — probably too heavily for an efficient implementation. It is therefore a de-
sirable path to balance the “amount of used color coding” in order to obtain parallel
algorithms that are fast in practice.

The second path I would like to highlight is the exploration of polynomial kernels
that are computable within FAC® Within this thesis, all kernels that we were able to
compute in FAC® have exponential size. However, we do not have any lower bound
that forbids kernels of polynomial size. It would therefore be interesting to close this
gap, either with positive results (natural problems that have kernels of polynomial
size that can be computed in FAC®), or with negative results (a technique to prove
that such kernels cannot exist for certain problems).

Finally, the third path that should — in my opinion - obtain further attention in the
future is the computation of optimal tree decompositions in practice. During the
pastyears —in the light of the Parameterized Algorithms and Computational Exper-
iments Challenge - the available tools already became much better, and the under-
standing of the community of how to solve this problem did increase a lot as well.
However, techniques like positive instance driven dynamic programming are still
not fully understood, and we do not have the tools yet to grasp when and why this
technique works well. Here, the practice is currently one step ahead of the theory,
and it is of course important to catch up. Beyond that, the most challenging task for
the future will be to understand whether and how positive instance driven dynamic
programming can be parallelized.
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COMPENDIUM OF CLASSES AND PROBLEMS

The figure illustrates the complexity classes that we studied. An arrow A — B means
that A is a subclass of B. Gray classes are known in the literature, but were not fur-

ther discussed within this thesis. In the center of the figure a collection of “typical

»

problems that we have encountered for some of the classes is presented. A complete
list of all problems and results can be found on the next page.

ACt: Problems decidable by
uniform families of circuits of size
n° and depth c log' n.

NCt / TCt: As ACt but with
bounded fan-in circuits / circuits
with threshold gates.

AC®: Problems decidable by
uniform families of circuits of size
n¢ and constant depth.

NP

f
P

ACt

TCO

P, ow-MODEL-CHECKING(MSO)

W]

A
FPT

T

- para—ACi

f

pK-FEEDBACK-VERTEX-SET ———— para-AC"

Px-PLANAR-INDEPENDENT-SET

PA-MAXIMAL-INDEPENDENT-SET

Pk -EDITING ( H-free)

Pa-ADISTANCE ——

P,:d"MODEL-CHECKING (MSO)

Pk -POINT-LINE-COVER

k¥ —— Kernel for
Pk-VERTEX-COVER

Pk,d-HITTING-SET

Color Coding

T

— para-ACt <~

para-NL
. para-AC°T¢€
para-L
—— para-AC®
para-NC*
o para-TC®
para-AC°®

para-AC* for i > o: Problems
decidable by uniform families of
circuits of size f (k) - n¢ and
depth f(k) + clog' n.

para-ACY: Problems decidable by
uniform families of circuits of size
f(k)-n° and depth f(k)-log'n.

para-AC®: Problems decidable by
uniform families of circuits of size
f(k) - n© and constant depth.
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ADISTANCE
Instance: A directed graph G = (V, E), a partition V = V3 U Wy, two vertices s, t € V, a
distance d.
Question: Is the alternating distance from s to t in G at most d?
Result:

o in para-AC® for parameter d . .......ovuininin it e 41
Referenced on pages: 41-43, 177

CLIQUE
Instance: A graph G = (V, E) and a number k € N.

Question: Is there a set X C V with |X| > k such that G[X] is a complete graph?
Referenced on page: 8

CLUSTER-EDITING
Instance: A graph G = (V, E) and a number k € N.
Question: Can G be transformed into a graph in which every component is a clique by just k
edge-modifications?
Result:

o in para-AC® for parameter K ........ouiiiiiii i e 51
Referenced on page: 51

DISTANCE
Instance: A graph G = (V, E), two vertices s, t € V, and anumber d € N.
Question: Is there a path of length at most d from s to tin G?
Result:
o inpara-AC® for parameter d ........ouinininer e 41
Referenced on pages: 41, 43

DOMINATING-SET
Instance: A graph G = (V, E) and a number k € N.
Question: Isthereaset S C Vwith|S| < kand{ve V|INMNX >1}=V?
Result:
« inpara-AC® for parameter K+ A ..ot 90
Referenced on pages: 90, 102

DUAL-COLORING
Instance: A graph G = (V, E) and a number q € N.
Question: Is there a proper coloring of G with at most |V| — g colors?
Result:
o In para-AC® fOr PATAMETEr ( ... vttt ettt e et e e et 93
Referenced on page: 93
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EDITING(F)
Instance: A graph G = (V, E) and a number k € N.
Question: Are there sets R C Eand A C E with |RU A| < k such that we have
G' =(V,(EA\R)UA) e 2
Result:
« in para-AC® for parameter k if F is the class of H-free graphs ..................... 52
Referenced on pages: 51-52

EMB-MODULATOR(H)
Instance: Two graphs H = (V(H), E") € Hand G = (V(G), E€), and a number k € N.
Question: Is there a set X C V(G) with |X| < ksuch that H » G[V \ X]?
Result:

« in para-AC® parameterized by H for I of constant treewidth ..................... 56
Referenced on pages: 55—56

EMBEDDING(H)
Instance: Two graphs H = (V(H),E") € Hand G = (V(G), EC).
Question: H > G?

Results:
« in para-AC® parameterized by H for 3 of constant treewidth ..................... 56
- in para-AC® parameterized by H for H of constant treedepth ...................... 56

Referenced on pages: 55—56

FEEDBACK-VERTEX-SET
Instance: A graph G = (V, E) and a number k € N.
Question: Is there a set X C V with |X| < k such that G[V \ X] is a forest?
Result:
« PK-FEEDBACK-VERTEX-SET € para-AC! ... ... it 58
Referenced on pages: 3, 8, 57-59, 91, 177

HITTING-SET
Instance: A hypergraph H = (V, E) with max.cg [e| = d and a number k € N.
Question: Is thereaset X C Vwith [X| < kandeN X # (foralle € E?
Results:
o in para-AC® for parameter K+ d . .o.veneininni i 90
« kernelin FAC® for parameter k 4+ d .......oovuiiniiii i 90
Referenced on pages: 4, 8, 56, 64, 81-83, 90, 112, 174, 177

HOM-MODULATOR(XH)
Instance: Two graphs H = (V(H), E") € Hand G = (V(G), E€), and a number k € N.
Question: Is there a set X C V(G) with |X| < ksuch that H -» G[V \ X]?
Result:

« in para-AC® parameterized by H for I of constant treewidth ..................... 55
Referenced on pages: 52, 55
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HOMOMORPHISM(H)
Instance: Two graphs H = (V(H),EM) € Hand G = (V(G), EC).
Question: H — G?

Results:
« in para-AC® parameterized by H for H of constant treewidth ..................... 54
« in para-AC® parameterized by H for 3 of constant treedepth ...................... 55

Referenced on pages: 53-55

INDEPENDENT-SET
Instance: A graph G = (V, E) and a number k € N.
Question: Is there a set X C V with [X| > k such that G[X] is edgeless?
Results:
« maximal solution can be found in para-FAC®*" ¢ on graphs of bounded degree ....... 38
o in para-AC® for parameter K A ... .ot 47
Referenced on pages: 3, 36, 38, 47,173

MATCHING

Instance: A graph G = (V, E) and a number k € N.

Question: Is there a set M C E with [M| = k such that no vertex is incident to more than
one element of M?

Results:
o In para-AC® fOr parameter K .. ...ouuuu ittt e 76
o K*-kernel in FTCO oo i 76

Referenced on pages: 76-77, 174

MODEL-CHECKING(L)
Instance: A relational structure S and an £-formula .

Question: S = @?

Results:
« in para-AC® for £L = FO and parameter [@| + A(S) «.ovriiii i 102
« in para-AC® for £ = MSO and parameter [@| +vc(S) ...oeveiiiin i 104
« in para-AC® for £ = MSO and parameter [@| +td(S) ....coviiiiiiiiii 104
« in para-AC* for L = MSO and parameter |@| +tw(S) ......coviiiiiiiiiin... 104

Referenced on pages: 101-102, 104, 177

MODULATOR(F)
Instance: A graph G = (V, E) and a number k € N.
Question: Is there a set X C V with |X| < ksuch that G[V \ X] € F?

Results:
« in para-AC® for parameter k if F is the class of H-free graphs ..................... 52
« in para-AC°® for parameter k if F is the class of H-free graphs ..................... 90

Referenced on pages: 51-52, 90

PARITY

Instance: A binary string w € {o, 1}*.
Question: ™! wli] mod 2 = o?
Referenced on page: 30
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PARTIAL-VERTEX-COVER
Instance: A graph G = (V, E) and two numbers k, t € N.
Question: Is thereaset SC Vwith |S| < kand [{{u,v}|ueSVveS} >t
Result:
o inpara-AC® for parameter K+t ....ouen ettt 104
Referenced on pages: 101, 104

PATH-VERTEX-COVER
Instance: A graph G = (V, E) and two numbers k, c € N.
Question: Is there aset S C V with [S| < kand S N P # () for each length-c path P in G?
Results:
« in para-AC® for parameter K if C IS CONSTANT « . v\ vt vt vreeetnnn e eeaeaenes 56
- in para-AC® for parameter kand € ..........ouiiiiiii i 56
Referenced on page: 56

PATHWIDTH
Instance: A graph G = (V, E) and anumber k € N.
Question: pw(G) < k?

Results:
o SP-kernelin FTCO .t 80
« in para-AC® parameterized by Ve .. ..ottt 81

Referenced on pages: 77-81, 174

PLANAR-INDEPENDENT-SET

Instance: A graph G = (V, E) and a number k € N.

Question: Is G planar and is there a set X C V with [X| > k such that G[X] is edgeless?
Results:

o in para-AC! fOr Parameter K .. ....un ettt e 50
- in para-AC® if planarity is promised for parameterk ............c.oviiiiiiina.... 50
o 4k-kernelin FACT ... e 65

Referenced on pages: 5051, 65

POINT-LINE-COVER

Instance: A set of points Py, ..., pn € Z4 forafixed d > 2 and a number k € N. Both, the
points and k, are encoded as binary numbers.

Question: Can we cover all points by at most k straight lines?

Results:
o KZ-kernelin FTCO ...t e 65
o every slice is TCO-complete ... ......iinin it 66

Referenced on pages: 65-67, 72, 174, 177

RAINBOW-MATCHING
Instance: An edge-colored graph G = (V, E,x) withx: E — {1,..., k}.
Question: Is there a matching M C E with [M| = k that contains an edge of every color,
that is, all edges in M have distinct colors?
Result:

o In para-AC® fOr Parameter K ... ..uutn ittt e e 46
Referenced on pages: 44, 46
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SAT

Instance: A propositional formula ¢.

Question: Is there a satisfying assignment {3 of ¢, that is, one with § = @?
Referenced on pages: 5, 77, 117, 121, 123-126, 143145, 147-148, 171, 175

THRESHOLD

Instance: A bitstring b € {0,1}™ and anumber t € N.
Question: Are there atleast t many ’s in b?

Result:

o In para-AC® for parametert .. .....uueninen e

Referenced on page: 47

TREEDEPTH

Instance: A graph G = (V, E) and anumber k € N.
Question: td(G) < k?

Results:

o [SP-kernel In FTCO e
« in para-AC® parameterized by ve .. ...oiniti i
« in para-AC® for parameterk .........ooviiiiiii e

Referenced on pages: 77-81, 94, 174

TREEWIDTH

Instance: A graph G = (V, E) and anumber k € N.
Question: tw(G) < k?

Results:

o [SP-kernel In FTCO Lo
« in para-AC® parameterized by ve . ......ooi i
o In para-ACH fOr parameter K ... ..oeuenenen ettt

Referenced on pages: 77-79, 95, 174

VERTEX-COVER

Instance: A graph G = (V, E) and anumber k € N.

Question: Is there a set X C V with [X| < k such that G[V \ X] contains no edge?
Result:

o in para-AC® for parameter K ... ..vutneeet et

Referenced on pages: 4, 8, 21-22, 30, 56, 63, 7273, 92, 101, 111, 174, 177

WEIGHTED-CIRCUIT-SATISFIABILITY

Instance: An AC-circuit C and a number k € N,

Question: Is there a string w € {0, 1}* with levlll wli] =kand C(w) =12
Referenced on pages: 28-29
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EXPERIMENT SETUP

MachineI A MacBook Pro (Retina, 2012) with a 2,7 GHz Intel Core i7 and 16 GB
1600 MHz DDR3. The machine runs macOS Mojave in version 10.14.2.

Machine Il A desktop computer equipped with 8 GB RAM and an Intel Core pro-
cessor that contains four cores of 3.2 GHz each. The machine runs Ubuntu in ver-
sion 17.10.

Testset] Containsall the graphs thatwere used for the treewidth track in the PACE
2016 and which were labeled as “solvable in 100s” [63]. This test set shares most of
the graphs with the standard test set for graph coloring from the DIMACS graph
coloring challenge.

Testset I Contains all graphs of the second iteration of the PACE challenge [64].
It contains both, the public and the hidden graphs (which were released after the
challenge). The graphs were handcrafted by the authors of the challenge to gen-
erate instances that are difficult, but manageable for the current technology. The
approach was to start with an instance from the Probabilistic Inference Challenge
(which is reasonable, since many probabilistic inference algorithms first compute
a tree-decomposition of the input), then a random center vertex v was chosen, and
the graph was reduced to the vertices of distance at most r to v (that is, to the ball of
radius r around v).

Testset III A collection of publicly available transit graphs that were generated
from GTFS-transit feeds [80]. This test set was also used for experiments in [83].

Testset IV A collection of real-world instances collected in [2].
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