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Abstract

In this work we study Recurrent Neural Networks applied to various problems in Nat-
ural Language and Computer Vision. We propose a general purpose extension of the
dropout regularization technique applicable to Recurrent Neural Networks, introduce a
recurrent model for classification of natural images and discuss a number of applications
of generative models to natural texts.

We present a novel approach to Recurrent Neural Network regularization, that dif-
fers from the widely adopted dropout method, which is applied to forward connections.
Instead, we propose to drop neurons directly in recurrent connections in a way that does
not cause loss of long-term memory. Our approach is as easy to implement and apply
as the regular feed-forward dropout and we demonstrate its effectiveness for Long Short-
Term Memory networks, the most popular type of Recurrent Neural Networks. Our
experiments on Natural Language Processing benchmarks show consistent improvements
even when combined with conventional feed-forward dropout.

We then apply a fully differentiable Recurrent Model of Visual Attention to uncon-
strained real-world images. We propose a deep recurrent attention model and show that
it can successfully learn to jointly localize and classify objects. We evaluate our model
on multiple digit images generated from MNIST data, Google Street View images, and
a fine-grained recognition dataset of 200 bird species, and show that its performance is
either comparable or superior to that of conventional Convolutional Neural Networks.

Lastly, we explore applications of generative models to natural texts. We show the
effects of architectural choices on learning a variational autoencoder for text generation.
We propose a novel hybrid architecture that blends fully feed-forward convolutional and
deconvolutional components with a recurrent language model and experimentally show
that our architecture exhibits several attractive properties such as faster run time and
convergence, and the ability to better handle long sequences. We then discuss the eval-
uation of Generative Adversarial Networks when applied to language generation. In
this work, we argue that this often misrepresents the true picture. We propose a novel
evaluation protocol and show that, under this evaluation, and find that neither of the
considered state-of-the-art models performs convincingly better than older conventional
ones.
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Kurzfassung

Diese Arbeit befasst sich mit der Anwendung von rekurrenten neuronalen Netzwerken
auf Problemstellungen in den Domänen der Sprachverarbeitung und Computer Vision.
Sie stellt eine allgemein nutzbare Erweiterung der Dropout-Regularisierungs Technik bei
rekurrenten Netzwerken vor, sowie ein rekurrentes Modell zur Klassifikation natürlicher
Bilder. Anschließend werden generative Modelle zur automatischen Erstellung natür-
licher Texte evaluiert und diskutiert.

Zunächst präsentieren wir einen neuen Ansatz zur Regularisierung rekurrenter neu-
ronaler Netzwerke, der sich von der allgemein bekannten Technik des Dropouts für Feed-
Forward Netzwerke maßgeblich unterscheidet. Unsere Methode schaltet Neurone für den
jeweiligen Trainingsschritt auf eine Art aus, die es ermöglicht, die Langzeitgedächtnis-
Signale zu erhalten und dabei weiterhin so einfach zu nutzen ist wie das konventionelle
Dropout. Anhand der populären Long Short-Term Memory Netzwerke wird die Effektiv-
ität der Methode verifiziert. Die Experimente mit Natural Language Processing zeigen
durchgängig eine Verbesserung in der Qualität, sogar bei Benutzung des Feed Forward
Dropouts.

Der darauffolgende Teil widmet sich der Verarbeitung natürlicher Bilddaten jeglicher
Art mit einem vollständig differenzierbaren rekurrenten Modell, welches auf visueller
Aufmerksamkeit basiert. Dieses von uns entwickelte, tiefe, rekurrente und Aufmerksamkeits-
basierte Modell schafft, es Objekte in Bildern gleichzeitig zu klassifizieren und zu lokalisieren.
Die Evaluation des Modells befasst sich mit mehrstelligen Zahlen aus dem MNIST-
Datensatz, Hausnummern enthalten im Google Street View Datensatz, sowie einer fein-
granularen Erkennungsaufgabe von 200 verschiedenen Vogelarten und zeigt vergleichbare
oder bessere Ergebnisse gegenüber konventionellen faltungsbasierten Methoden.

Abschließend befasst sich die Arbeit mit Anwendungen generativer Modelle bei natür-
lichen Texten. Zum einen wird der Effekt von Architekturunterschieden bei Text Gener-
ierung mit Variational Autoencodern untersucht. Des Weiteren wird ein hybrides Modell
welches Faltungs- und Entfaltungs-Methoden der Feed Forward Netzwerke mit rekur-
renten Sprach modellen kombiniert vorgestellt, das, anhand von Experimenten belegt,
eine Vielzahl vorteilhafter Eigenschaften aufweist, darunter eine schnellere Laufzeit und
bessere Verarbeitung langer Sequenzen. Es folgt eine Diskussion über die Evaluations-
methoden von Generative Adversarial Networks im Kontext der Sprachgenerierung. Die
Arbeit zeigt auf, dass einige der genutzten Metriken die wahre Qualität der Modelle
nicht akkurat wiedergeben und stellt diesen ein neues Evaluationsprotokoll gegenüber.
Unter dem Gesichtspunkt einer erneuten Evaluation mit diesem Protokoll können Mod-
elle die momentan als State of the Art betrachtet werden sich nicht überzeugend von
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konventionellen Methoden abheben.
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1
Introduction

1.1 Motivation

Computer Science in general is concerned with creating efficient algorithms for data
processing. It is a crucial part of modern world and has enabled numerous advances in
diverse set of domains, e.g. finance, health-care, logistics, etc. Traditionally, an algorithm
is explicitly coded using a programming language. However, such an approach has proven
to be too difficult to use for various pattern recognition tasks, e.g. classifying an object in
an image. Indeed, it is virtually impossible to explicitly discover and encode relationships
between pixels that make an image look like a certain object.

Among other motivations, this has led to increased interest in a subfield of Computer
Science called Machine Learning. It is concerned with automatic discovery of algorithms
from raw data, such as input-output pairs. Machine Learning has achieved a number of
exceptional results, unavailable by conventional programming, in the past. In the recent
years it has become even more prominent due to increased sizes of dataset and available
computational resources. In the field of pattern recognition, especially in natural data
such as images, Deep Machine Learning has achieved substantial results. In its core are
a variety of Artificial Neural Networks models trained with backpropagation algorithm.
One such model is a Recurrent Neural Network.

The Recurrent Neural Network (RNN) is a general purpose deep machine learning
model for sequences that maintains internal state and processes inputs one sequence ele-
ment at a time. The presence of a loop over the internal state makes recurrent networks
similar to regular computer programs when compared to a feedforward network that im-
plement regular functions. The downside of such an approach, however, is more difficult
training. RNN come in a number of flavors, each more or less difficult to train. A no-
table example are Long Short-Term Memory (LSTM) networks [49] that have become a
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CHAPTER 1. INTRODUCTION

de-facto standard tool for machine learning researchers dealing with sequences.
Given the success of Recurrent Neural Networks in different domains it is plausible

that further improvements would yield even better results. Hence, in this work we at-
tempt to improve RNNs as a general purpose algorithm and apply them in novel ways
to natural texts and images.

1.2 Contributions

This work is concerned with RNN based machine learning algorithms applied to natural
images and texts. Such work can be very broadly divided into three major directions:
(i) general-purpose improvements of algorithms; (ii) introductions of RNNs into domains
where another approach is prevalent; and (iii) improvements in domains where RNNs are
already present and accepted. In our work we follow all three paths. Main contributions
of the thesis are as follows:

• We introduce a novel approach to dropout [48] regularization in RNNs. Dropout
is a successful algorithm allowing to improve performance of a feedforward neural
network and has been used to achieve state-of-the-art results in large-scale image
recognition [69]. However, its application to recurrent neural networks have been
limited to the use in only forward connections [15, 132]. We identify the root cause
of difficulty of successful training of RNNs with dropout and introduce a version
that does not suffer from this issue. We experimentally verify its effectiveness
on a number of Natural Language Processing (NLP) tasks. This work has been
presented at the COLING 2016 conference [107] and has had substantial impact in
the field, e.g. it has been used to achieve state-of-the-art results in character-level
language modeling [44], and accumulated a total of 80 citations 1.

• We then consider the application of RNNs to natural image processing, specifically
classification. The currently dominant approach to image classification is based on
training a deep Convolutional Neural Network (CNN) on a large corpus of anno-
tated images. While achieving very impressive results, CNN’s single-pass approach
to image analysis may not be the optimal one. Indeed, human perception is based
on iterative exploration of an image through focusing on different parts of it and
then building a full representation, potentially revisiting some parts to refine what
has already been seen. We hypothesize that including such a scheme into an image

1According to Google Scholar as of 30.10.2018.
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processing algorithm could help build better representations. The Recurrent Atten-
tion Model (RAM) introduced here, is a model that follows this paradigm [40, 3].
We build a deep fully differentiable RAM and show that it can outperform CNNs
on synthetic data as well as natural images. We then achieve state-of-the-art re-
sults on task of transcribing unsegmented house numbers with this model. This
contribution is published as a conference paper at IEEE SSCI 2016 [106].

• We consider the domain of generative modeling of natural texts. In this domain
Recurrent Neural Networks outperform other models by a large margin. The dom-
inant approach to text generation is a Language Model (LM). These models are
trained in an unsupervised fashion to predict a word given all previous ones. Such
an approach, however, suffers from lack of global context, defining what a model
should generate. The Variational Autoencoder (VAE) is a latent variable genera-
tive model that has been applied to text generation [18] with the goal of addressing
the issue of global context in LMs. However, the combination of VAE and LM
suffers from the fact that LM is an overly powerful model on its own and the com-
bination chooses to not use the global context vector. We quantify this issue and
propose effective solutions. We have presented our findings at the EMNLP 2017
conference [108] and have already accumulated 40 citations 2.

• Generative Adversarial Network (GAN) based approaches have been used in com-
bination with LMs. They form a very powerful class of models that achieved very
impressive results in generative modeling of natural images. However, evaluation
of such models is a non-trivial task. We have found that common metrics used to
evaluate GAN-based approaches to text generation provide a meaningless compar-
ison. We address this issue by introducing a set of metrics and empirically evaluate
a set of GAN-based models for text generation. Our main finding is that Language
Models are still very hard to beat baselines, since in our experiment no GAN model
is convincingly better than an LM on our newly proposed set of metrics. We have
presented our findings as a workshop contribution on ICML 2018 [109].

1.3 Outline

The work is structured as follows: Chapter 2 introduces basic concepts of machine learn-
ing, briefly recaps training of neural networks with backpropagation and summarizes

2According to Google Scholar as of 30.10.2018.
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CHAPTER 1. INTRODUCTION

established well performing neural network architectures. In provides an in-depth dis-
cussion of weak and strong sides of different types of RNNs and briefly discusses efforts
in circumventing most common issues arising during RNN training. In Chapter 3 we
discuss the dropout regularization technique and present our approach to applying this
technique to Recurrent Neural Networks. We present a detailed analysis of reasons for
failures of previous approaches, show how our dropout avoids these issues and support
it with experimental results.

Chapter 4 introduces an alternative to one-shot style image classification, performed
by convolutional neural networks based on the work of Gregor et al. [40]. The model is
a combination of convolutional and recurrent neural networks capable of processing an
image iteratively by gradually exploring its contents locally. We present experimental
results suggesting its superiority on tasks where an image contains multiple objects or
when the object does not occupy a major portion of an image.

Chapter 5 provides an in depth discussion of generative models of natural texts.
Specifically, we show an application of the RNN-based Variational Autoencoder algorithm
to texts. Such models are known to suffer from a so called KL-collapse issue [18]. In
this work we quantify this issue and propose a more effective solution by combining
purely recurrent architectures with feedforward convolutional layers. The experimental
results demonstrate orders of magnitude faster convergence and much better control of
model’s behavior. We then address a newly emerged Generative Adversarial Networks
framework for generative modeling applied to textual data. Specifically, we discuss its
application to fully unsupervised learning. It is known that such models are not trivial
to properly compare and we show that the currently accepted evaluation metrics do not
provide meaningful comparison. To remedy this, we propose a number of alternatives
and perform an empirical study of a number of GAN-based models.

Chapter 6 concludes the thesis by summarizing contributions, proposed approaches,
and major achieved results on various Computer Vision and Natural Language Processing
benchmarks. We discuss possible extensions and outline directions for future research.
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2
Background

2.1 Artificial Neural Networks

2.1.1 Feedforward Neural Networks

The Neural Network is a discriminative machine learning model. It is inspired by the
structure of a brain - a large number of relatively simple units, called neurons, and
connections between neurons. One neuron is a very simple building block that has a
number of inputs and one output. Given a set of inputs, its output is computed with the
following equation:

y = f

(
b+

k∑
i=0

wixi

)
(2.1.1)

where f is a scalar-to-scalar function, k is a number of inputs, b is a bias constant and
xi and wi are i-th input and associated weight respectively. f is called the activation
function. The typically used activation functions are tanh, sigmoid, rectifier (f(x) =

max(x, 0)) and linear functions. As can be observed from the equation (2.1.1), a neuron
first computes the weighted sum of all its inputs and then passes it through the activation
function in order to model a nonlinear system. Afterwards its output can be either routed
to an arbitrary number of other neurons or used as an output of a neural network.

The typical approach to organization of neurons in the neural network is to group
them in a number of layers and the output of each neuron in the layer k is an input to
each neuron in the layer k + 1. The first layer is called the input layer. The last layer
serves as the network’s output and is called the output layer. All the other layers are
referred to as hidden layers. This organization is called the Feedforward Neural Network.
An example of such network with three layers is presented in figure 2.1. In this case it
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CHAPTER 2. BACKGROUND

Figure 2.1: Example of a basic Feedforward Neural Network with three input, four hidden and
two output units.

is a three layered network. The number of hidden layers and sizes of these layers are
hyperparameters of the network and are picked prior to training. Once an architecture is
selected, it becomes non-trivial to alter anything but individual weights of the network.

The neural network layer can be expressed in the matrix notation using the following
equation:

y = f(Wx + b) (2.1.2)

where x is a vector of layer inputs, y is a vector of layer outputs, b is a bias vector,
f is the activation function and W is a weight matrix. W contains weights of all the
connections between neurons, such that element in row i and column j is the weight that
neuron j uses for input i to compute the weighted sum. Such a layer is also referred to
as the fully connected layer.

One of the important properties of the neural network is the way it models a phe-
nomenon or entity. As one neuron can only produce one scalar value, which is not enough
to model a complex phenomenon, the layer has to learn to build representations with
sets of neurons. This effect is referred to as a distributed representation, i.e., none of
the neuron’s values matter by themselves. Instead, neurons form patterns that represent
entities that the neural network has to model. This allows to increase the representa-
tional capacity of the network, as a single neuron can be reused to take part in different
patterns, representing possibly completely unrelated entities. In addition distributed
representations are robust to losses of individual neurons as long as there is sufficient
amount of uncorrupted ones.
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2.1. ARTIFICIAL NEURAL NETWORKS

2.1.2 Backpropagation

In order for a neural network to be produce meaningful results its weights have to be
picked so that the network performs the desired computation. The most common ap-
proach is to learn these weights using a supervised machine learning algorithm.

The most commonly used approach to training a neural network is a version of gra-
dient descent in combination with the backpropagation algorithm. The algorithm allows
to compute the gradient of the network’s error with respect to its parameters in hidden
layers. Its main idea is that after a network’s output was computed during training, one
can compute the error contributed by a neuron in the hidden layer by moving through
the network in the backwards direction, from output to input units.

To demonstrate the algorithm we shall rewrite the equation (2.1.2):

z = Wx + b (2.1.3)

y = f(z) (2.1.4)

The goal of the algorithm is to compute the gradient of the cost function with respect
to a single weight. This can be achieved by applying the chain rule:

∂C

∂wij
=
∂C

∂yj

∂yj
∂zj

∂zj
∂wij

(2.1.5)

where C is the cost function. Computing the terms
∂yj
∂zj

and
∂zj
∂wij

of the equation (2.1.5)

is trivial: the second term is the partial derivative of the activation function. The third
term is the value of the i-th input to the j-th neuron. The first term can also be computed
easily in case the neuron is in the output layer. In this case one can directly differentiate
the cost function and obtain the gradient. However, when computing gradients of a
weight of a hidden unit, one has to use the chain rule once again and derive the following
expression:

∂C

∂yj
=

L∑
k=0

(
∂C

∂yk

∂yk
∂zk

∂zk
∂yj

)
=

L∑
k=0

(
∂C

∂yk

∂yk
∂zk

wjk

)
(2.1.6)

where L is the size of the layer that follows the hidden layer being considered. The
equation (2.1.6) is a recursive one. It allows to compute the error of the hidden layer
when errors of the next layers are already computed.

The common practice of writing the whole backpropagation equation is to introduce
an intermediate variable δ:

9



CHAPTER 2. BACKGROUND

Figure 2.2: Example of a basic Convolutional Neural Network. All three neurons in the output
layer share connection strengths, as shown with the type of an arrow, e.g. dashed arrows have
the same weight of the connection.

δj =
∂C

∂yj

∂yj
∂zj

=


∂C

∂yj

∂yj
∂zj

, if j is a neuron in the output layer,∑L
k=0 (δkwjk)

∂yj
∂zj

, otherwise
(2.1.7)

∂C

∂wij
= δjxi (2.1.8)

The backpropagation algorithm allows to efficiently train neural networks greatly
outperforming less advanced strategies, such as evolutionary algorithm or random search.
Since its introduction by Rumelhart et al. [103] in 1988 it has become the de-facto
standard neural network learning algorithm when combined with a form of gradient
descent.

2.1.3 Convolutional Neural Networks

The convolutional neural network is a model that originates from a well-known com-
puter vision approach. The approach is to use a relatively small weight matrix, called
the convolutional kernel or filter, and perform the dense convolutions with an image. The
densely extracted features are then used as an input to a classification algorithm. The
commonly used convolutional kernels are Gaussian, Gabor, Sobel etc. The Convolutional
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2.1. ARTIFICIAL NEURAL NETWORKS

(a) Convolutional kernels
learned from data [25].

(b) Gaussian kernel. (c) Gabor kernel.

Figure 2.3: Examples of convolutional kernels. Note how kernels learned from data closely
resemble the widely used Gaussian and Gabor hand-designed filters. Best viewed in color.

Neural Network is conceptually similar to this approach but with a major advantage that
the convolutional kernel’s weights are not fixed and instead are adapted with backprop-
agation. This allows the network to select the kernel that is best suited to the task at
hand. An example of such network is given in Figure 2.2.

When a number of convolutional layers are stacked upon one another, the resulting
structure becomes capable of simultaneously learning a hierarchy of convolutional ker-
nels, resulting in an extremely powerful model. This requires a lot of training data and
computational resources, but the resulting networks are able to show very good perfor-
mance when compared to other types of approaches [20]. Interestingly enough, even
though networks are not constrained in any way in the choice of kernels, the learning
process yields filters that are very similar to the commonly used ones. Example of the
learned kernels is presented in figure 2.3(a). The important advantage of the Convolu-
tional Networks is that they are able to learn a number of layers of filters. This allows
them to learn a very high-level kernels that are tailored specifically to, for example, faces
or wheels. We refer the reader to the work by Zeiler and Fergus [133] for the visualization
of the higher level filters.

2.1.4 Normalization in Feedforward Neural Networks

It is widely known that normalization of input data to be 0 mean and 1 variance is
helpful for machine learning algorithms in general. It is also true for Neural Networks.
There has been a lot of research directed towards how to maintain these properties in
representations of intermediate layers of a Neural Network. One such approach is to
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carefully choose how weights of a Neural Network (NN) are initialized [35]. Glorot and
Bengio [35] propose to initialize the weights such that the variance of features extracted
by a layer does not change. However, this has no effect on the backward pass, where
the variance of error vectors can increase or decrease arbitrarily. It is possible to design
a similar approach by keeping the backward pass in mind, but it would still provide no
guarantees that the weights would continue to preserve variance during training.

To address this issue, Ioffe and Szegedy [51] propose to normalize intermediate repre-
sentations of a Neural Network explicitly by simply computing mean and variance over a
batch of features. They note, however, that naive normalization hurts the final results of
a network. Instead, in addition to explicit normalization, they propose to include learn-
able scales and shifts that would follow the transformation. More formally, the Batch
Normalization layer performs the following computation:

µ =
1

m

m∑
i=1

xi (2.1.9)

σ2 =
1

m

m∑
i=1

(xi − µ)2 (2.1.10)

x′i =
xi − µ√
σ2 + ε

(2.1.11)

yi = γx′i + β (2.1.12)

where m is the batch size, xi is a data point, ε is a small scalar for numerical stability and
γ and β are the learnable scale and shift respectively. These operations are continuous
and can thus be backpropagated through. It is also possible to obtain the gradient of γ
and β with respect to an arbitrary loss function and then update them jointly with all
the other parameters of a network. We refer the reader to the work of Ioffe and Szegedy
[51] for derivations of the gradients.

While the introduced batch normalization is suited to Fully-Connected Neural Net-
works, it is straightforward to generalize it to CNNs. To do so, one can apply the Batch
Normalization function similarly to the convolution operation, that is to share the scale
and shift positions across every spacial location and normalize using mean over both
batch and location dimensions. In this formulation BN is incredibly effective in increas-
ing the convergence speed of a CNN. Figure 2.4 shows examples of networks with the
same architecture and with or without BN.

Lastly, it is required to obtain global mean and variance of every feature in order for
BN to be used during inference. To do so, one can either collect these values offline after
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Figure 2.4: Learning curves of deep neural networks trained with and without Batch Normal-
ization. Note that some variants with BN achieve the same result as unnormalized baseline in
ten times less iterations and then continue to improve. Figure by Ioffe and Szegedy [51].

training is complete by computing mean and variance over the full training dataset, or
maintain running mean and variance over batch-level moments. Once these values are
collected they can be used in place of per-batch µ and σ2 from Equation 2.1.11. The two
approaches produce similar results in practice. Due to its effectiveness and simplicity BN
is a de-facto standard tool for training Deep Convolutional Neural Networks and every
state-of-the-art system is trained with the help of Batch Normalization.

Other types of normalization have been considered, such as Layer Normalization [5],
Weight Normalization [105], Local Response Normalization [69], etc, but none is as effi-
cient as BN when applied to CNNs.

2.1.5 Residual Networks

Once the depths of trained networks have reached the order of hundreds, researchers
have noticed that such networks suffer from issues similar to those of Recurrent Neural
Networks trained on long sequences, specifically vanishing and exploding gradients [49].
To address these issues, He et al. [45] propose to use what the call Residual Networks.
These networks perform the following computation:

y = x + f(x) (2.1.13)

where f is an arbitrary function, x is the input and y is the output. This formulation
allows to much more efficiently backpropagate gradients through very deep networks.
The authors demonstrate it is possible to train networks with depths of more than a

13



CHAPTER 2. BACKGROUND

x

f(x)

y

(a) Vanilla Neural Layer.
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(b) Residual Layer.

Figure 2.5: Side by side comparison of standard and residual neural layers. Note that residual
layers model a difference between inputs and outputs, thus giving the name "Residual".

thousand layers with this technique. Figure 2.5 shows a side-by-side comparison of a
vanilla Neural Layer with the Residual Layer. The approach have then been used to
establish state-of-the-art result on a large scale image recognition benchmark [45].

It should be noted that since the output of function f from Equation 2.1.13 is summed
up with a layer’s input, it is required to be of the exact same size than the input. However,
it is desirable to increase the amount of convolutional kernels further in the hierarchy
of filters. A typical approach to address this issue, also used by the authors, is to em-
ploy NxN convolutions with as many filters as required followed by a 1x1 convolution
compressing outputs of the previous convolution to the size of the input. BN further im-
proves convergence of the whole system. A common building block for image recognition
systems would then be formally expressed as follows:

x′ = ReLU(BN(conv_NxN(x))) (2.1.14)

y = x +ReLU(BN(conv_1x1(x′))) (2.1.15)

where BN is the Batch Normalization function, ReLU is the rectifier nonlinearity and
conv_NxN and conv_1x1 are convolutional layers with kernel sizesN and 1 respectively.
Stacking a number of such blocks allows to achieve very impressive results on natural
images.
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Figure 2.6: Example of a basic Recurrent Neural Network with one hidden neuron.

2.2 Recurrent Neural Networks

2.2.1 Vanilla Recurrent Networks

The Recurrent Network is an extension of the feedforward one. It can be expressed using
the following equations:

h0 = 0 (2.2.1)

ht = f(Wihxt + Whhht−1 + bh) (2.2.2)

yt = g(Whoht + bo) (2.2.3)

where f and g are activation functions of hidden and output layers respectively. The
typically used functions are tanh and sigmoid, as they are saturating functions and
automatically prevent the absolute values of the hidden layer activations from growing
to exponentially large values. Wih, Whh and Who are weight matrices of the input-to-
hidden, hidden-to-hidden and hidden-to-output connections respectively. bh and bo are
bias units of hidden and output layers. The difference from feedforward network can be
seen in Equation (2.2.2). This equation has a term Whhht−1, indicating that activations
of a hidden layer at the previous time step are also an input at the current time step.
Equation (2.2.1) sets the initial state of hidden layer activations to zero. In general, this
can be of arbitrary value or can even be learned for a conditioning vector extracted from
data. An example of an RNN is given in Figure 2.6.
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Figure 2.7: Visual representation of the RNN from Figure 2.6, unrolled over time for compu-
tation of the gradients.

2.2.2 Backpropagation-Through-Time

The most commonly used method for training Recurrent Networks is a version of gra-
dient descent in conjunction with Backpropagation-Through-Time (BPTT). BPTT is
an extension of the standard backpropagation algorithm discussed in Section 2.1.2 for
computing gradients in a neural network. Its idea is schematically depicted in figure
2.7. An RNN is unrolled through time and is treated as a very deep feedforward net-
work with weights shared across all timesteps. This allows to seamlessly apply standard
backpropagation to a recurrent network and compute gradients of its parameters.

This approach has one major problem - when the gradient is backpropagated through
the recurrent connections, it gets repeatedly multiplied by the hidden weights matrix.
When computing the values of δ of the recurrent neurons at time step t, δt, we multiply
δt+1 by the weight of corresponding connection. However, δt+1 have also been multiplied
by this weight when it was computed from δt+2. When δ has to be propagated to
many time steps back, it can become exponentially small or large, depending on the
properties of the hidden-to-hidden weight matrix. This problem has received the name
of vanishing and exploding gradients, respectively [49]. There have been a number of
attempts to solve this problem, such as echo-state networks [55], leaky integrator units
[56] and second-order optimization algorithms [81]. One of the most promising ones is
the Long Short-Term Memory unit [49]. These units are specifically designed to avoid
the problem of vanishing and exploding gradients and were able to achieve very good
results in handwriting recognition [38], speech recognition [39] and machine translation
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ct-1

g

+f ct

iht-1 o ht

(a) Long Short-Term Memory Unit.
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(b) Gated Recurrent Unit.

Figure 2.8: Graphical illustrations of LSTM and GRU networks. We omit connections from
input data for brevity.

[117], and are becoming more and more popular among researchers.

2.2.3 Long Short-Term Memory Networks

Initially introduced by Hochreiter and Schmidhuber [49], Long Short-Term Memory units
address the problems of exploding and vanishing gradients. The authors propose to
formulate the forward pass of the RNN in such a way that the two problems would
be greatly reduced. To do so, they propose to compose networks from so-called cells,
whose interactions with themselves are additive instead of multiplicative. More formally,
a single step of an LSTM network can be defined as follows:


it

ft

ot

gt

 =


σ(Wi

[
xt,ht−1

]
+ bi)

σ(Wf

[
xt,ht−1

]
+ bf )

σ(Wo

[
xt,ht−1

]
+ bo)

f(Wg

[
xt,ht−1

]
+ bg)

 (2.2.4)

ct = ft ∗ ct−1 + it ∗ gt (2.2.5)

ht = ot ∗ f(ct), (2.2.6)

where σ is the sigmoid activation function and f is an arbitrary nonlinearity, typically
the tanh function. xt is the network’s input on current step. ct and ct−1 are cell values
on current and previous steps respectively. ht and ht−1 are cell outputs on current and
previous steps respectively. Vectors i, f , o and g are gates controlling, for example,
how cell values are exposed to the rest of the network. One step of the LSTM cell is
graphically shown in Figure 2.8(a).

In LSTM the recurrence is defined by Equation 2.2.5. Note that the current state ct
is a gated copy of the previous state ct−1 plus the contribution coming from inputs on
current step. Use of summation instead of multiplication allows to easily backpropagate
error vectors during the backward pass. In this regard, LSTMs and Residual Networks,
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discussed in Section 2.1.5, are conceptually close since they are based on the same obser-
vation that the product between state and a weight matrix during forward pass makes
training very deep networks problematic. They differ in the "direction" of depth – Resid-
ual Networks are architecturally deep, that is they have a lot of layers, while LSTMs are
temporally deep, i.e. they work on very long sequences. It should be noted, that his-
torically LSTMs were introduced two decades earlier than the Residual Networks. One
could thus view Residual Networks as architecturally deep LSTMs with simplified single
step.

2.2.4 Gated Recurrent Unit Networks

Since LSTM networks have been shown to be a very successful instantiation of RNNs,
various attempts at improving their architecture have been made [59, 23]. However, the
LSTM architecture has been shown to be a very successful variant that is very difficult
ot improve upon. One successful attempt at improving over LSTMs is a GRU [22]. They
are built on a similar principle, that is additive recurrence rather than multiplicative.
More formally, one step of a GRU network can be expressed as follows:

(
zt

rt

)
=

σ(Wz

[
xt,ht−1

]
+ bz)

σ(Wr

[
xt,ht−1

]
+ br)

 (2.2.7)

gt = f(Wg

[
xt, rt ∗ ht−1

]
+ bg) (2.2.8)

ht = (1− zt) ∗ ht−1 + zt ∗ gt (2.2.9)

where σ is the sigmoid activation function and f is an arbitrary nonlinearity, typically
the tanh function. xt is the current network’s input. ht and ht−1 are network states
on current and previous steps respectively. Vectors z, r, and g are gates with functions
similar to those of LSTM. GRU enjoys a better computational cost when compared to
LSTMs due to three gates instead of four and achieves comparable results. A Gated
Recurrent Unit is graphically shown in Figure 2.8(b).

2.2.5 Normalization in Recurrent Neural Networks

Normalization has been proven to be extremely effective when applied to Feedforward
Neural Networks, what gave rise to works applying normalization to RNNs as well. Initial
attempts to apply BN to Recurrent Neural Networks have shown that application of BN
to RNNs is not straightforward [73]. Subsequent work [27] has demonstrated that diffi-
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culty of applying BN to RNNs is caused by incorrect initialization of γ parameter causing
severe vanishing gradients. The authors demonstrate better convergence and generaliza-
tion of RNNs with Batch Normalization, but at the cost of cumbersome maintenance of
per-step mean and variance statistics.

Layer Normalization [5] has been introduced to address both issues. It is conceptually
similar to BN, but instead of normalizing over batch dimension, that does not guaran-
tee that a specific feature vector has zero mean and one variance, Layer Normalization
explicitly rescales hidden states of an RNN:

µ =
1

D

D∑
i=1

x[i] (2.2.10)

σ2 =
1

D

D∑
i=1

(x[i]− µ)2 (2.2.11)

x′ =
x− µ√
σ2 + ε

(2.2.12)

y = γx′ + β (2.2.13)

where D is the dimensionality of the hidden state, x[i] is a single feature from the hidden
state. γ, β and ε have the same functions as in BN. Such a formulation removes all issues
of Recurrent Batch Normalization, while maintaining it benefits. It should be noted that
while improving training of RNNs, no normalization yields improvements on the order of
those that BN brings to CNNs. Thus, despite being a useful tool to use, normalization
is not as imprortant for RNNs as it is to Feedforward Networks.

2.3 Generative Modeling

Machine learning models can be broadly divided into discriminative and generative by
the type of problems that they attempt to solve. The goal of discriminative models is to
find a decision boundary between datapoints belonging to different classes. This can be
achieved by minimizing the Negative Log Likelihood (NLL) of the conditional distribution
p(y|x), where x is a data point and y is the class label associated with this data point,
− log(p(y|x)). There are other approaches to this problem, but they are out of scope
of this work. In contrast, generative models attempt to discover the data distribution,
instead of just a simple boundary between classes, by minimizing −log(p(x)). Note that
in this formulation an algorithm only has access to data points and not to the associated
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class labels. Since such models approximate a probability distribution, they have a
number of applications, e.g. estimation of probability of a single data point. It should be
noted that in some cases the two classes of machine learning models are relatively close,
e.g. in Machine Translation, where y is a sentence in a certain language with it’s own
grammar that does not depend on the input sentence x. In this section we provide an
overview of the most prominent modern generative models.

2.3.1 Autoregressive Models

To introduce the class of autoregressive models, we shall first rewrite the objective func-
tion of the generative model:

− log(p(x)) = −
N∑
i=1

p(xi|x1..xN/xi) (2.3.1)

where N is the dimensionality of a data point and xi is the i-th element of a data
point. Equation 2.3.1 decomposes the joint probability p(x) into product of individual
probabilities p(xi). Since there is no prior knowledge about how data elements interact,
in this equation xi is conditioned on every other data element.

Autoregressive models make an assumption that there exists a certain order of ele-
ments, e.g. words, in a data point and one data element only depends on other elements
that come prior to it:

− log(p(x)) = −
N∑
i=1

p(xi|x<i) (2.3.2)

This formulation is attractive because it allows to (i) straightforwardly train gener-
ative models with the help of so-called Teacher Forcing; (ii) straightforwardly sample
new data points from a trained model by sampling one data element at a time and
feeding them back into the model and (iii) the ordering assumptions fits very well to
some types of data, e.g. natural language or audio. The function p(xi|x<i) is usually
parametrized with a Neural Network whose parameters are then minimized with respect
to the decomposed objective function in Equation 2.3.2.

Teacher Forcing. An efficient approach to training of such models is Teacher Forc-
ing. In this regime the model’s inputs always come from the natural data that it should
model. The model is then trained to predict a data element, e.g. a word, given all ele-
ments that precede it. When applied to natural languages this approach is referred to as
a Language Model and has received a lot of attention from the NLP community. Neural
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(a) Training an autoregressive RNN in teacher
forcing mode.
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(b) Sampling from an RNN based autoregres-
sive model.

Figure 2.9: Graphical illustrations of training and inference of autoregressive models. Note
that the length of a sequence is not fixed and instead defined by the model itself by emitting the
special symbol for end of a sequence.

Language Models have recently achieved very impressive results and became state-of-
the-art generative models of natural texts. The process is schematically depicted in
Figure 2.9(a).

Sampling. Sampling from a trained model can be performed by generating one
data element at a time. For example, if data elements are characters, a model can
generate sentences one character at a time until a special <end_of_sequence> charecter
is generated. At this point the process is complete. Figure 2.9(b) presents a graphical
illustration of this process. It is additionally possible to add a conditioning information
to this process to achieve, for example, image captioning. Combining this generation
process with a state-of-the-art image recognition systems yields state-of-the-art image
captioning algorithms [122].

2.3.2 Variational Autoencoders

Variational Autoencoders are directed graphical models where data x is generated from
the latent vector z, graphically shown in Figure 2.10. In such models one of the goals
is to learn the inference function p(z|x). A typical approach to this problem is to min-
imize the Kullback-Leibler (KL) divergence between the true posterior p(z|x) and the
approximating distribution q(z|x). However, this has the downside that it would involve
computation of an intractable term p(x) that requires integration of all possible values
of z. Instead, one can derive a so-called Evidence Lower Bound (ELBO) term, that
would be an upper bound on the target KL divergence. This approach broadly falls

21



CHAPTER 2. BACKGROUND

x

z

Figure 2.10: Variational Autoencoder as a probabilistic graphical model.

into the class of Variational Inference algorithms, thus giving its name to the Variational
Autoencoder. Specifically, the derivation of the VAE objective is as follows:

KL(q(z|x)||p(z|x) =
∑
z

q(z|x) log
q(z|x)

p(z|x)
=

E
[

log
q(z|x)

p(z|x)

]
=

E[log q(z|x)− log(p(z|x)] =

E
[

log q(z|x)− log
p(z|x)p(z)

p(x)

]
=

E[log q(z|x)− log p(x|z)− log p(z) + log p(x)]

Note, that expectation over p(x) is independent of z and can thus be moved outside
of the expectation:

KL(q(z|x)||p(z|x)− log p(x) = E[log q(z|x)− log p(x|z)− log p(z)]

log p(x)−KL(q(z|x)||p(z|x) = E[− log q(z|x) + log p(x|z) + log p(z)] =

E[log p(x|z)− (log q(z|x)− log p(z))] =

E[log p(x|z)]− E[log q(z|x)− log p(z)] =

E[log p(x|z)]−KL(q(z|x)||p(z))

Since log p(x) is a negative constant depending on a dataset, we can write the following
equation:

22



2.3. GENERATIVE MODELING

KL(q(z|x)||p(z|x)) ≤ −E[log p(x|z)] +KL(q(z|x)||p(z)) (2.3.3)

Closely examining Equation 2.3.3 reveals that it consists of (i) a reconstruction term
and (ii) a regularization term promoting posterior q(z|x) to be close to a prior over
z. The second term can be trivially computed if both these distributions are carefully
constructed, for example, if q(z|x) is diagonal Gaussian and p(z) is a unit Gaussian distri-
bution. The first term closely resembles the objective function of a typical Autoencoder,
but with a stochastic bottleneck.

Thus, from a neural network perspective, a VAE is an autoencoder with a stochas-
tic bottleneck and an additional regularization term restricting outputs of the encoder
network q(z|x). Once this network has predicted the parameters of the posterior distri-
bution, the generating model, or decoder, reconstructs the input from a sampled latent
code, thus allowing the model to be efficiently trained with Stochastic Gradient Descent.

A final note is on the so-called reparametrization trick. When sampling a latent vector
from the posterior distribution q(z|x), one can naively sample directly from N(µ, σ),
where µ and σ are predicted by the inference model:

µ, σ = f(x) (2.3.4)

z ∼ N(µ, σ) (2.3.5)

where f if the inference model. This formulation, however, results in a high variance of the
gradients estimated with backpropagation. Instead, the authors propose to reparametrize
the sampling procedure:

µ, σ = f(x) (2.3.6)

z′ ∼ N(0, 1) (2.3.7)

z = µ+ σz′ (2.3.8)

When sampling with Equation 2.3.8, the forward pass of a model remains unchanged,
while the backward pass becomes much more stable when compared to sampling with
Equation 2.3.5. This allows to successfully train large-scale VAE models in reasonable
time.
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2.3.3 Generative Adversarial Networks

Training a generative model involves minimizing a divergence between a data distribution
p(x) and model distribution q(x). Training with NLL is equivalent to minimizing the KL-
divergence between these distributions. However, it is not obvious that this divergence
is the perfect one to optimize. One issue, for example, is that it can be viewed as recall
based, that is by definition a model should put non-zero mass on data points that occur
in the training dataset. However, it does not penalize spurious high-probability data
points if they never appear in the training set.

Generative Adversarial Network is a two player game where one player is referred to
as the discriminator and the other as the generator formally expressed as:

min
G

max
D

J(D,G) = Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))] (2.3.9)

where D is the discriminator function and G is the generator function. It can be
shown [37] that this formulation is equivalent to minimizing the Jensen-Shannon (JS)
divergence between two distributions:

m =
p+ q

2
(2.3.10)

JS(p||q) =
1

2
(KL(p||m) +KL(q||m) (2.3.11)

where KL is the KL-divergence. Nowozin et al. [91] further show that depending on spe-
cific variants of Equation 2.3.9, the minimax optimization process will minimize different
kinds of divergences.

While the framework allows to train models capable of producing convincing samples
[13] and learning good feature representations [96], it is very sensitive to the choice of
hyperparameters. In addition, it suffers from a so-called mode collapse problem [37] and
often exhibits unstable training. A notable modification of the framework [2] reviews the
game based on optimal transport distances between distributions and changes Equation
2.3.9 to

min
G

max
D∈L

J(D,G) = Ex∼pdata [D(x)]− Ez∼pz [D(G(z))] (2.3.12)

where L is a set of 1-Lipshitz functions. In practice, constraining the discriminator to be
such a function is a non-trivial task and the authors instead propose to use k-Lipshitz
functions by clipping the weights of the discriminator. Gulrajani et al. [42] improve
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over the work of Arjovsky et al. [2] by proposing a soft version of ensuring that the
discriminator belongs to the set of 1-Lipshitz by directly penalizing its gradients with
respect to the input:

min
G

max
D

J(D,G) = Ex∼pdata [D(x)]− Ez∼pz [D(G(z))]− λEx̂∼px̂ [(||∇x̂D(x̂)||2 − 1)2]

(2.3.13)
where λ is a hyperparameter and x̂ is a specifically chosen point from the joint

data and generator space. The authors demonstrate robustness to various choices of
hyperparameters and architectures and show that their system is one of the first ones
capable of generating texts and sequences of discrete elements, which have been difficult
to model with traditional GANs.

An elegant application of GANs is to use them in place of the KL-divergence of the
VAE objective function. The VAE objective function is:

Jvae = KL(q(z|x)||p(z))− Eq(z|x)[log p(x|z)] (2.3.14)

Makhzani et al. [79] propose to use a GAN discriminating between samples from prior
p(z) and posterior q(z|x). Specifically:

Jaae = −αEz∼qz|x [log(1−D(G(z)))]− Eq(z|x)[log p(x|z)] (2.3.15)

where α is a hyperparameter. This formulation has the disadvantage of losing the theo-
retical justification. Indeed, while the objective function of the VAE has a clear interpre-
tation, it is not obvious what exactly is being minimized in Equation 2.3.15. However,
this reformulation allows to move away from diagonal Gaussian priors and use arbitrarily
complex distribution in their place.
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3
Recurrent Dropout

3.1 Introduction

Recurrent Neural Networks, LSTMs in particular, have recently become a popular tool
among NLP researchers for their superior ability to model and learn from sequential
data. These models have shown state-of-the-art results on various public benchmarks
ranging from sentence classification [124, 52, 76] and various tagging problems [29] to
language modelling [65, 137], text generation [136] and sequence-to-sequence prediction
tasks [117].

Having shown excellent ability to capture and learn complex linguistic phenomena,
RNN architectures are prone to overfitting. Among the most widely used techniques
to avoid overfitting in neural networks is the dropout regularization [48]. Since its in-
troduction it has become, together with the L2 weight decay, the standard method for
neural network regularization. While showing significant improvements when used in
feed-forward architectures, e.g., Convolutional Neural Networks [69], the application of
dropout in RNNs has been somewhat limited. Indeed, so far dropout in RNNs has been
applied in the same fashion as in feed-forward architectures: it is typically injected in
input-to-hidden and hidden-to-output connections, i.e., along the input axis, but not
between the recurrent connections (time axis). Given that RNNs are mainly used to
model sequential data with the goal of capturing short- and long-term interactions, it
seems natural to also regularize the recurrent weights. This observation has led us and
other researchers [88, 33] to the idea of applying dropout to the recurrent connections in
RNNs.

In this work we propose a novel recurrent dropout technique and demonstrate how our
method is superiour to other recurrent dropout methods recently proposed in [88, 33].
Additionally, we answer the following questions which helps to understand how to best
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apply recurrent dropout: (i) how to apply the dropout in recurrent connections of the
LSTM architecture in a way that prevents possible corruption of the long-term mem-
ory; (ii) what is the relationship between our recurrent dropout and the widely adopted
dropout in input-to-hidden and hidden-to-output connections; (iii) how the dropout mask
in RNNs should be sampled: once per step or once per sequence. The latter question of
sampling the mask appears to be crucial in some cases to make the recurrent dropout
work and, to the best of our knowledge, has received very little attention in the literature.
Our work is the first one to provide empirical evaluation of the differences between these
two sampling approaches.

Regarding empirical evaluation, we first highlight the problem of information loss in
memory cells of LSTMs when applying recurrent dropout. We demonstrate that previous
approaches of dropping hidden state vectors cause loss of memory while our proposed
method to use dropout mask in hidden state update vectors does not suffer from this
problem. Our experimental results demonstrate that our recurrent dropout helps to
achieve better regularization and yields improvements across all the tasks, even when
combined with the conventional feed-forward dropout. Furthermore, we compare our
dropout scheme with the recently proposed alternative recurrent dropout methods and
show that our technique is superior in almost all cases.

3.2 Related Work

Neural Network models often suffer from overfitting, especially when the number of
network parameters is large and the amount of training data is small. This has led
to a lot of research directed towards improving their generalization ability. Below we
primarily discuss some of the methods aimed at improving regularization of RNNs.

Pham et al. [95] and Zaremba et al. [132] have shown that LSTMs can be effectively
regularized by using dropout in forward connections. While this already allows for ef-
fective regularization of recurrent networks, it is intuitive that introducing dropout also
in the hidden state may force it to create more robust representations. Indeed, Moon
et al. [88] have extended the idea of dropping neurons in forward direction and proposed
to drop cell states as well showing good results on a Speech Recognition task. Bluche
et al. [15] carry out a study to find where dropout is most effective, e.g. input-to-hidden
or hidden-to-output connections. The authors conclude that it is more beneficial to use
it once in the correct spot, rather than to put it everywhere. Bengio et al. [10] have
proposed an algorithm called scheduled sampling to improve performance of recurrent
networks on sequence-to-sequence labeling tasks. A disadvantage of this work is that the

28



3.3. RECURRENT DROPOUT

scheduled sampling is specifically tailored to this kind of tasks, what makes it impossible
to use in, for example, sequence-to-label tasks. Gal [33] uses insights from variational
Bayesian inference to propose a variant of LSTM with dropout that achieves consistent
improvements over a baseline architecture without dropout.

The main contribution discussed in this chapter is a new recurrent dropout tech-
nique, which is most useful in gated recurrent architectures such as LSTMs and GRUs.
We demonstrate that applying dropout to arbitrary vectors in LSTM cells may lead to
loss of memory thus hindering the ability of the network to encode long-term informa-
tion. In other words, our technique allows for adding a strong regularizer on the model
weights responsible for learning short and long-term dependencies without affecting the
ability to capture long-term relationships, which are especially important to model when
dealing with natural language. Finally, we compare our method with alternative recur-
rent dropout methods recently introduced in [88, 33] and demonstrate that our method
allows to achieve better results.

3.3 Recurrent Dropout

In this section we first show how the idea of feed-forward dropout [48] can be applied
to recurrent connections in vanilla RNNs. We then introduce our recurrent dropout
method specifically tailored for gated architectures such as LSTMs and GRUs. We
draw parallels and contrast our approach with alternative recurrent dropout techniques
recently proposed in [88, 33] showing that our method is favourable when considering
potential memory loss issues in long short-term architectures.

3.3.1 Dropout

The Dropout is a regularization method originally proposed by Hinton et al. [48]. The
method is motivated by the observation that it is possible for neurons in a network to
co-adapt to each others presence. This makes neurons in a hidden layer as a whole less
robust to small changes of a single unit. To overcome this issue, the authors propose
to stochastically zero-out units in a hidden layer. Intuitively, this makes the neurons
more independent from one another and forces a layer to build representations that are
more robust to loss of a single unit. As the network cannot rely on a single neuron being
active, it learns to make use of the corrupted distributed representations. This helps the
network to generalize, as when it is presented a new input, it is very likely that it will
be different from ones used during training and its representation will be corrupted by
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some degree.

More formally the algorithm can be expressed with the following equations:

mask = Bernoulli(p) (3.3.1)

d(x) =

{
mask ∗ x, if train phase

(1− p)x otherwise,
(3.3.2)

where p is the probability to turn off an individual neuron, mask is a vector of values,
sampled from the Bernoulli distribution with success probability p, ∗ is the element wise
product operator.

The Dropout is currently one of the most widely used regularization methods for
Neural Networks. It have been used by the state-of-the-art systems in image classification
[69, 113] and activity recognition [114].

3.3.2 Dropout in vanilla RNNs

Vanilla RNNs process the input sequences as follows:

ht = f(Wh[xt,ht−1] + bh), (3.3.3)

where xt is the input at time step t; ht and ht−1 are hidden vectors that encode the
current and previous states of the network; Wh is parameter matrix that models input-
to-hidden and hidden-to-hidden (recurrent) connections; b is a vector of bias terms, and
f is the activation function.

As RNNs model sequential data by a fully-connected layer, dropout can be applied
by simply dropping the previous hidden state of a network. Specifically, we modify
Equation 3.3.3 in the following way:

ht = f(Wh[xt, d(ht−1)] + bh), (3.3.4)

where d is the dropout function from Equation 3.3.2.

This modification leads to a reduction the validation error of vanilla RNNs. However,
plain LSTM networks without dropout still outperform RNNs with dropout. Hence, it
is important to design a solution suitable for LSTM networks as well.
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Figure 3.1: Illustration of the three types of dropout in recurrent connections of LSTM net-
works. Dashed arrows refer to dropped connections. Input connections are omitted for clarity.

3.3.3 Dropout in LSTM networks

Long Short-Term Memory networks [49] have introduced the concept of gated inputs in
RNNs, which effectively allow the network to preserve its memory over a larger number
of time steps during both forward and backward passes, thus alleviating the problem of
vanishing gradients [11]. Formally, it is expressed with the following equations:
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ct = ft ∗ ct−1 + it ∗ gt (3.3.6)

ht = ot ∗ f(ct), (3.3.7)

where it, ft,ot are input, output and forget gates at step t; gt is the vector of cell updates
and ct is the updated cell vector used to update the hidden state ht; σ is the sigmoid
function and ∗ is the element-wise multiplication.

Gal [33] proposes to drop the previous hidden state vectors when computing values
of gates and updates of the current step, where he samples the dropout mask once for
every sequence:
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Moon et al. [88] propose to apply dropout directly to the cell values and use per-
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sequence sampling as well:

ct = d(ft ∗ ct−1 + it ∗ gt) (3.3.9)

In contrast to dropout techniques proposed by Gal [33] and Moon et al. [88], we
propose to apply dropout to the cell update vector gt as follows:

ct = ft ∗ ct−1 + it ∗ d(gt) (3.3.10)

Different from methods of [88, 33], our approach does not require sampling of the
dropout masks once for every training sequence. On the contrary, as we will show in
Section 3.4, networks trained with a dropout mask sampled per-step achieve results that
are at least as good and often better than per-sequence sampling. Figure 3.1 shows
differences between approaches to dropout.

The approach of [33] differs from ours in the overall strategy – they consider network’s
hidden state as input to subnetworks that compute gate values and cell updates and the
purpose of dropout is to regularize these subnetworks. Our approach considers the archi-
tecture as a whole with the hidden state as its key part and regularize the whole network.
The approach of [88] on the other hand is seemingly similar to ours. In Section 3.3.4 we
argue that our method is a more principled way to drop recurrent connections in gated
architectures.

It should be noted that while being different, the three discussed dropout schemes are
not mutually exclusive. It is in general possible to combine our approach and the other
two. We expect the merge of our scheme and that of [33] to hold the biggest potential.
The relations between recurrent dropout schemes are however out of scope of this thesis
and we rather focus on studying the relationships of different dropout approaches with
the conventional forward dropout.

Lastly, we note that our dropout is also applicable to the recently introduced Gated
Recurrent Unit (GRU) networks [22]. GRU networks are built on the same design prin-
ciples as LSTM networks and our dropout technique applies in a similar fashion.

3.3.4 Dropout and memory

We found that an intuitive idea to drop previous hidden states directly, as proposed in
Moon et al. [88], produces mixed results. We have observed that it helps the network to
generalize better when not coupled with the forward dropout, but is usually no longer
beneficial when used together with a regular forward dropout.
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The problem is caused by the scaling of neuron activations during inference. Consider
the hidden state update rule in the test phase of an LSTM network. For clarity, we assume
every gate to be equal to 1:

ht = (ht−1 + gt)p, (3.3.11)

where gt are update vectors computed by Eq. 3.3.5 and p is the probability to not drop a
neuron. As ht−1 was, in turn, computed using the same rule, we can rewrite this equation
as:

ht = ((ht−2 + gt−1)p+ gt)p (3.3.12)

Recursively expanding h for every timestep results in the following equation:

ht = ((((h0 + g0)p+ g1)p+ ...)p+ gt)p (3.3.13)

Pushing p inside parenthesis, Eq. 3.3.13 can be written as:

ht = pt+1h0 +
t∑

i=0

pt−i+1gi (3.3.14)

Since p is a value between zero and one, sum components that are far away in the past are
multiplied by a very low value and are effectively removed from the summation. Thus,
even though the network is able to learn long-term dependencies, it is not capable of
exploiting them during test phase. Note that our assumption of all gates being equal
to 1 helps the network to preserve hidden state, since in a real network gate values lie
within (0, 1) interval. In practice trained networks tend to saturate gate values [63] what
makes gates to behave as binary switches. The fact that Moon et al. [88] have achieved
an improvement can be explained by the experimentation domain. Le et al. [74] have
proposed a simple yet effective way to initialize vanilla RNNs and reported that they
have achieved a good result in the Speech Recognition domain while having an effect
similar to the one caused by Eq. 3.3.14. One can reduce the influence of this effect by
selecting a low dropout rate. This solution however is partial, since it only increases
the number of steps required to completely forget past history and does not remove the
problem completely.

One important note is that the dropout function from Eq. 3.3.2 can be implemented
as:

d(x) =

{
mask ∗ x/p, if train phase

x otherwise
(3.3.15)
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In this case the above argument holds as well, but instead of observing exponentially
decreasing hidden states during testing, we will observe exponentially increasing values
of hidden states during training.

Our approach addresses the problem discussed previously by dropping the update
vectors g. Since we drop only candidates, we do not scale the hidden state directly. This
allows for solving the scaling issue, as Eq. 3.3.14 becomes:

ht = ph0 +

t∑
i=0

p gi = ph0 + p

t∑
i=0

gi (3.3.16)

Moreover, since we only drop differences that are added to the network’s hidden state at
each time-step, this dropout scheme allows us to use per-step mask sampling while still
being able to learn long-term dependencies. Thus, our approach allows to freely apply
dropout in the recurrent connections of a gated network without hindering its ability to
process long-term relationships.

We note that the discussed problem does not affect vanilla RNNs because they over-
write their hidden state at every timestep. Lastly, the approach of Gal [33] is not affected
by the issue as well.

3.4 Experiments

First, we empirically demonstrate the issues linked to memory loss when using various
dropout techniques in recurrent nets (see Sec. 3.3.4). For this purpose we experiment
with training LSTM networks on one of the synthetic tasks from [49], specifically the
Temporal Order task. We then validate the effectiveness of our recurrent dropout on three
public benchmarks: word and character-level Language Modeling and Named Entity
Recognition comparing directly to alternative recurrent dropout methods from [88, 33].

3.4.1 Synthetic Task

Data. In this task the input sequences are generated as follows: all but two elements in
a sequence are drawn randomly from {C, D} and the remaining two symbols from {A,
B}. Symbols from {A, B} can appear at any position in the sequence. The task is to
classify a sequence into one of four classes ({AA, AB, BA, BB}) based on the order of
the symbols. We generate data so that every sequence is split into three parts with the
same size and emit one meaningful symbol in first and second parts of a sequence. The
prediction is taken after the full sequence has been processed. We use two modes in our
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Sampling
Moon et al. [88] Gal [33]; Ours

short sequences medium sequences short sequences medium sequences
Train Test Train Test Train Test Train Test

per-step 100% 100% 25% 25% 100% 100% 100% 100%
per-sequence 100% 25% 100% <25% 100% 100% 100% 100%

Table 3.1: Accuracies on the Temporal Order task.

Dropout rate Sampling Moon et al. [88] Gal [33] Ours
Valid Test Valid Test Valid Test

0.0 – 130.0 125.2 130.0 125.2 130.0 125.2
0.25 per-step 113.0 108.7 119.8 114.2 106.1 100.0
0.5 per-step 124.0 116.5 118.3 112.5 102.8 98.0
0.25 per-sequence 121.0 113.0 120.5 114.0 106.3 100.7
0.5 per-sequence 137.7 126.2 125.2 117.9 103.2 96.8

0.0 – 94.1 89.5 94.1 89.5 94.1 89.5
0.25 per-step 113.5 105.8 92.9 88.4 91.6 87.0
0.5 per-step 140.6 130.1 98.6 92.5 100.6 95.5
0.25 per-sequence 105.7 99.9 94.5 89.7 92.4 87.6
0.5 per-sequence 125.4 117.4 98.4 92.5 107.8 101.8

Table 3.2: Perplexity scores of the LSTM network on word level Language Modeling task (lower
is better). Upper and lower parts of the table report results without and with forward dropout
respectively. Networks with forward dropout use 0.2 and 0.5 dropout rates in input and output
connections respectively. Values in bold show best results for each of the recurrent dropout
schemes with and without forward dropout.

experiments: Short with sequences of length 15 and Medium with sequences of length 30.
Setup. We use LSTM with one layer that contains 256 hidden units and recurrent
dropout with 0.5 strength. Network is trained by SGD with a learning rate of 0.1 for 5k
epochs. The networks are trained on 200 mini-batches with 32 sequences and tested on
10k sequences.
Results. Table 3.1 reports the results on the Temporal Order task when recurrent
dropout is applied using our method and methods from [88] and [33]. Using dropout from
[88] with per-sequence sampling, networks are able to discover the long-term dependency,
but fail to use it on the test set due to the scaling issue. Interestingly, in Medium case
results on the test set are worse than random. Networks trained with per-step sampling
exhibit different behaviour: in Short case they are capable of capturing the temporal
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dependency and generalizing to the test set, but require 10-20 times more iterations to do
so. In Medium case these networks do not fit into the allocated number of iterations. This
suggests that applying dropout to hidden states as suggested in [88] corrupts memory
cells hindering the long-term memory capacity of LSTMs.

In contrast, using our recurrent dropout methods, networks are able to solve the
problem in all cases. We have also ran the same experiments for longer sequences, but
found that the results are equivalent to the Medium case. We also note that the approach
of [33] does not seem to exhibit the memory loss problem.

3.4.2 Word Level Language Modeling

Data. Following Mikolov et al. [84] we use the Penn Treebank Corpus to train our
Language Modeling (LM) models. The dataset contains approximately 1 million words
and comes with pre-defined training, validation and test splits, and a vocabulary of 10k
words.

Setup. In our LM experiments we use recurrent networks with a single layer with 256
cells. Network parameters were initialized uniformly in [-0.05, 0.05]. For training, we use
plain SGD with batch size 32 with the maximum norm gradient clipping [94]. Learning
rate, clipping threshold and number of Backpropagation Through Time (BPTT) steps
were set to 1, 10 and 35 respectively. For the learning rate decay we use the following
strategy: if the validation error does not decrease after each epoch, we divide the learning
rate by 1.5. The aforementioned choices were largely guided by the work of Mikolov et al.
[86].

Results. Table 3.2 reports the results for LSTM networks. We also present results when
the dropout is applied directly to hidden states as in [88] and results of networks trained
with the dropout scheme of [33]. In addition, we report results of networks trained with
no regularization and with dropout in only forward connetions in first rows of upper
and lower parts of the table respectivelly. We make the following observations: (i) our
approach shows better results than the alternatives; (ii) per-step mask sampling is better
when dropping hidden state directly; (iii) on this task our method using per-step sampling
seems to yield results similar to per-sequence sampling; (iv) in this case forward dropout
yields better results than any of the three recurrent dropouts; and finally (v) both our
approach and that of [33] are effective when combined with the forward dropout, though
ours is more effective.

To demonstrate the effect of our approach on the learning process, we also present
learning curves of recurrent networks trained with and without recurrent dropout (Fig. 5.10).
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Figure 3.2: Learning curves when training without and with 0.25 per-step recurrent dropout.
Solid and dashed lines show training and validation errors respectively. Best viewed in color.

As expected, models trained using our recurrent dropout scheme have slower convergence
than models without dropout and usually have larger training error and lower validation
errors. This behaviour is consistent with what is expected from a regularizer and is
similar to the effect of the feed-forward dropout applied to non-recurrent networks [48].

3.4.3 Character Level Language Modeling

Data. We train our networks on the dataset described in the previous section. It
contains approximately 6 million characters, and a vocabulary of 50 characters. We use
the provided partitions train, validation and test partitions.

Setup. We use networks with 1024 units to solve the character level LM task. The
characters are embedded into 256 dimensional space before being processed by the LSTM.
All parameters of the networks are initialized uniformly in [-0.01, 0.01]. We train our
networks on non-overlapping sequences of 100 characters. The networks are trained with
the Adam [66] algorithm with initial learning rate of 0.001 for 50 epochs. We decrease
the learning rate by 0.97 after every epoch starting from epoch 10. To avoid exploding
gradients, we use MaxNorm gradient clipping with threshold set to 10.

Results. Results of our experiments are given in Table 3.3. Note that on this task
regularizing only the recurrent connections is more beneficial than only the forward ones.
In particular, LSTM networks trained with our approach and the approach of [33] yield
a lower bit-per-character (bpc) score than those trained with forward dropout only. We
attribute it to pronounced long term dependencies. In addition, our approach is the only
one that improves over baseline LSTM with forward dropout. The overall best result
is achieved by a network trained with our dropout with 0.25 dropout rate and per-step
sampling, closely followed by network with Gal [33] dropout.
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Dropout rate Sampling Moon et al. [88] Gal [33] Ours
Valid Test Valid Test Valid Test

0.0 – 1.460 1.457 1.460 1.457 1.460 1.457
0.25 per-step 1.435 1.394 1.345 1.308 1.338 1.301
0.5 per-step 1.610 1.561 1.387 1.348 1.355 1.316
0.25 per-sequence 1.433 1.390 1.341 1.304 1.356 1.319
0.5 per-sequence 1.691 1.647 1.408 1.369 1.496 1.450

0.0 – 1.362 1.326 1.362 1.326 1.362 1.326
0.25 per-step 1.471 1.428 1.381 1.344 1.358 1.321
0.5 per-step 1.668 1.622 1.463 1.425 1.422 1.380
0.25 per-sequence 1.455 1.413 1.387 1.348 1.403 1.363
0.5 per-sequence 1.681 1.637 1.477 1.435 1.567 1.522

Table 3.3: Bit-per-character scores of the LSTM network on character level Language Modelling
task (lower is better). Upper and lower parts of the table report results without and with forward
dropout respectively. Networks with forward dropout use 0.2 and 0.5 dropout rates in input and
output connections respectively. Values in bold show best results for each of the recurrent dropout
schemes with and without forward dropout.

3.4.4 Named Entity Recognition

Data. To assess our recurrent Named Entity Recognition (NER) taggers when using
recurrent dropout we use a public benchmark from CONLL 2003 [119]. The dataset
contains approximately 300k words split into train, validation and test partitions. Each
word is labeled with either a named entity class it belongs to, such as Location or
Person, or as being not named. The majority of words are labeled as not named entities.
The vocabulary size is about 22k words.

Setup. Previous state-of-the-art NER systems have shown the importance of using
word context features around entities. Hence, we slightly modify the architecture of our
recurrent networks to consume the context around the target word by preprocessing the
inputs by a convolutional layer. The size of the convolutional kernel is fixed to 5 words
(the word to be labeled, two words before and two words after) and the number of filters
is fixed to 256. The recurrent layer size is 1024 units. The network inputs include word
embeddings (initialized with pretrained word2vec embeddings [85] and kept static) and
capitalization features. For training we use the Adam algorithm [66] with initial learning
rate of 0.001. We train for 50 epochs and multiply the learning rate by 0.95 after every
epoch starting at epoch 10. We also combine our recurrent dropout with the conventional
forward dropout with the rate 0.2 in input and 0.5 in output connections. Lastly, we
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Dropout rate Sampling Moon et al. [88] Gal [33] Ours
Valid Test Valid Test Valid Test

0.0 – 88.56 84.46 88.56 84.46 88.56 84.46
0.25 per-step 88.79 84.80 88.95 84.34 89.27 84.78
0.5 per-step 88.68 84.43 88.66 84.33 89.06 84.39
0.25 per-sequence 88.71 84.33 88.54 84.88 89.32 84.95
0.5 per-sequence 88.06 83.92 89.05 84.22 88.94 84.32

0.0 – 90.53 86.99 90.53 86.99 90.53 86.99
0.25 per-step 90.86 87.19 91.06 87.05 91.02 87.03
0.5 per-step 90.71 87.03 90.76 87.23 90.78 87.31
0.25 per-sequence 90.73 87.32 90.86 86.89 90.99 87.33
0.5 per-sequence 89.61 86.39 90.76 86.68 90.40 86.82

Table 3.4: F1 scores (higher is better) of the LSTM network on NER task (average scores over
3 runs). Upper and lower parts of the table report results without and with forward dropout
respectively. Values in bold show best results for each of the recurrent dropout schemes with
and without forward dropout.

found that using relu(x) = max(x, 0) nonlinearity resulted in higher performance than
tanh(x). We train our network on randomly extracted samples up to 15 words long and
use full sentences for testing.
Results. Table 3.4 reports the results of networks trained with and without forward
dropout and compares our algorithm to approaches of [88] and [33]. We make the follow-
ing observations: (i) forward dropout provides a much bigger improvement than recurrent
one, what can be explained by the fact that long term dependencies are much less im-
portant in the NER task, in contrast to the Language Modeling; (ii) the results of our
approach and dropout of [33] are comparable and both better than those of [88]; and
(iii) all three approaches consistently outperform baseline networks without dropout in
recurrent connections.

3.4.5 Twitter Sentiment Analysis

Data. We use Twitter sentiment corpus from SemEval-2015 Task 10 (subtask B) [102].
It contains 15k labeled tweets split into training and validation partitions. The total
number of words is approximately 330k and the vocabulary size is 22k. The task consists
of classifying a tweet into three classes: positive, neutral, and negative. Performance
of a classifier is measured by the average of F1 scores of positive and negative classes.
We evaluate our models on a number of datasets that were used for benchmarking during
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Dropout rate Twitter13 LiveJournal14 Twitter15 Twitter14 SMS13 Sarcasm14

RNN
0 67.54 71.20 59.35 68.90 64.51 53.58

0.25 66.35 67.70 59.91 67.76 64.46 48.74
LSTM

0 67.97 69.82 57.84 67.95 61.47 53.49
0.25 69.11 71.39 61.35 68.08 65.45 53.80

GRU
0 67.09 70.80 59.07 67.02 67.11 51.01

0.25 69.04 72.10 60.34 69.65 65.73 54.77

Table 3.5: F1 scores (higher is better) on Sentiment Evaluation task

the last years.

Setup. We use recurrent networks in the standard sequence labeling manner - we input
words to a network one by one and take the label at the last step. Similarly to [112], we use
1 million of weakly labeled tweets to pre-train our networks. We use networks composed
of 500 neurons in all cases. Our models are trained with the RMSProp algorithm with a
learning rate of 0.001. We use our recurrent dropout regularization with per-step mask
sampling. All the other settings are equivalent to the ones used in the NER task.

Results. The results of these experiments are presented in Table 3.5. Note that in this
case our algorithm decreases the performance of the vanilla RNNs while this is not the
case for LSTM and GRU networks. This is due to the nature of the problem: differently
from LM and NER tasks, a network needs to aggregate information over a long sequence.
Vanilla RNNs notoriously have difficulties with this and our dropout scheme impairs their
ability to remember even further. The best result over most of the datasets is achieved by
the GRU network with recurrent dropout. The only exception is the Twitter2015 dataset,
where the LSTM network shows better results.

3.5 Conclusions

This chapter presents a novel recurrent dropout method specifically tailored to the gated
recurrent neural networks. Our approach is easy to implement and is even more effec-
tive when combined with conventional forward dropout. We have shown that applying
dropout to arbitrary cell vectors results in suboptimal performance. We discuss in detail
the cause of this effect and propose a simple solution to overcome it. The effectiveness

40



3.5. CONCLUSIONS

of our approach is verified on three public NLP benchmarks.
Our findings along with our empirical results help us to answer the questions posed

in Section 3.1: (i) while is straight-forward to use dropout in vanilla RNNs due to their
strong similarity with the feed-forward architectures, its application to LSTM networks
is not so straightforward. We demonstrate that recurrent dropout is most effective when
applied to hidden state update vectors in LSTMs rather than to hidden states; (ii) we
observe an improvement in the network’s performance when our recurrent dropout is
coupled with the standard forward dropout, though the extent of this improvement de-
pends on the values of dropout rates; (iii) per-step mask sampling is at least as good as
per-sequence mask sampling when using our recurrent dropout method, with the most
pronounced difference in the character level LM experiments, while the results of [88]
and [33] are mixed.
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4
Recurrent Attention Models

4.1 Introduction

CNNs have recently achieved excellent results in various of visual recognition tasks [34,
62, 69]. However, CNNs suffer from poor scalability with respect to the input image
size. Due to high computational costs, despite the fact that images are almost always
rescaled to a smaller size, most of the current state-of-the-art CNNs are trained either
on multiple high-end GPUs or in a highly distributed environment [118]. One way to
overcome this issue is to allow a network to dynamically attend to most informative
regions of an image. The dynamic attention approach has received a lot of attention in
recent years [3, 4, 30, 40, 87, 98] and prior to CNNs achieving state-of-the-art results
[53, 70].

This work continues the line of research directed towards learning a RAM. It pro-
cesses an image sequentially, gradually collecting information present in the image. The
model achieves this by extracting a glimpse from an image, extracting features from the
glimpse and updating its internal state. The most simple and straightforward form of
glimpse extraction is cropping an area from an image. However, this procedure is not dif-
ferentiable and thus prevents end-to-end learning with backpropagation. There are two
major ways to overcome this issue. One is to use a different learning approach [87, 4, 98]
and the other is to define a differentiable glimpse extraction procedure [54, 40]. Our work
follows the second approach.

In this chapter we describe a deep differentiable Recurrent Attention Model, show
that it can consistently learn to jointly locate and classify objects in an image, and
demonstrate that it achieves performance superior to that of reinforcement learning based
RAM. We then describe ways to increase the speed of learning, improve generalization,
and prevent the learning of bad attention policies. We use these techniques to establish
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a new state-of-the-art on the task of transcribing tightly cropped unsegmented house
numbers.

4.2 Related Work

The computational efficiency of recognition algorithms has always received a lot of atten-
tion. It is especially important for object detection algorithms, since they usually need to
perform multiple inferences per image. The amount of computation is mostly affected by
the number of regions to be examined. This number is the largest for the simple sliding
window approach and researchers have made a number of attempts to find alternatives
to the sliding window approach such as a model that internally performs object detection
step.

The most straightforward way to integrate object detection is to enable a model to
extract crops from an image and process them subsequently. However, this approach
poses a problem to backpropagation based learning, since the cropping is not differen-
tiable. A number of attempts to overcome this issue have been made. Mnih et al. [87]
have shown that it is possible to use reinforcement learning to successfully train an at-
tention model. Ba et al. [3] and Sermanet et al. [111] extended this work and showed
that RAM trained with reinforcement learning can be effective in challenging real world
applications. Their work differs from ours in the training method: the authors have used
a Reinforcement Learning based algorithm, while our model can be trained end-to-end
with backpropagation. Ranzato [98] have used a two phase algorithm that optimizes lo-
cation estimation and target predictions independently. Gregor et al. [40] have proposed
a generative model that creates an image in an iterative fashion. Among other contri-
butions, the authors have presented a differentiable crop operation and thus completely
removed the need of dedicated attention learning algorithms. They have demonstrated
that their model outperforms the one by Mnih et al. [87] on a synthetic classification
task. Our work extends the model and investigates the classification performance it can
achieve. Jaderberg et al. [54] have proposed a trainable module called Spatial Trans-
former, that is very similar in nature to a recurrent attention model. The authors use
an affine transformation matrix to parametrize grid sampling points and a differentiable
interpolation kernel to produce a crop from an image. Sønderby et al. [116] combine the
Spatial Transformer modules with a Recurrent Neural Network. This work is the closest
to ours in terms of the methodology, however the direct comparison is difficult due to a
limited amount of experimental results in Sønderby et al. [116].
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Figure 4.1: Illustration of one processing step of the proposed model. fcontext, fext, fglimpse,
fclass and frec denote context, extraction, glimpse, classification and recurrent networks respec-
tively. See text for details on their structure and tasks. The blocks inside the dashed rectangle
are iterated.

4.3 Recurrent Attention Model

A Recurrent Attention Model is a model that processes information in a sequential man-
ner. Its processing consists of three steps: choosing where to look, extracting features
from the chosen location, and updating the RAM’s internal state. These steps form one
iteration, which is then repeated for as many times as required by the task at hand. This
process is very different from one-shot approach of CNNs and has a number of potential
advantages. It allows the model to ignore any kind of unnecessary information present
in an image, collect data scattered over an image and naturally model object detection.

Figure 4.1 provides a graphical description of our model, which mostly follows the it-
erative scheme described before, with two notable differences. Firstly, we extract features
from the whole frame before iterations start. These features encode a rough representa-
tion of an image and are used by the model to guide its attention. Secondly, we explicitly
split the hidden state into two parts, one responsible for modeling attention and the other
for aggregating features over multiple iterations. As shown in Figure 4.1, our model can
be split into a number of relatively independent modules. Most of these modules are
neural networks, each serving its distinct purpose. Now we will introduce these modules
and comment on their structure and the tasks they perform.

Context network. The context network receives the whole image as input and
outputs a feature vector. The job of the context network is to provide clues on where to
deploy the model’s attention. We usually parametrize this network by a CNN with two
or three layers. In addition, it is possible to downsample an image before processing it
with the context network to save computations.

Recurrent network. The core of our model is a two-layer recurrent neural network
that aggregates information over multiple glimpses and controls the locations of the
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glimpses. We initialize the states of both layers to zeros. In general, any kind of recurrent
function can be used to implement this module. We use a Gated Recurrent Unit (GRU)
[22] network for its good trade-off between stable learning and computational costs.
There is a clear separation of tasks between the two recurrent layers: the first aggregates
data over multiple iterations and is used as an input to the classification network, while
the second one only affects attention. In contrast to the widely adopted bottom-up
computation order, we compute activations of the second layer before activations of the
first layer. The main reason for this top-down order of computation is that the context
network is only connected to the second layer. Since we compute activations of the
second layer prior to the first one, the context network features are able to affect the first
glimpse. When the allowed number of iterations is small, i.e. 2 or 3, having the location
of the first glimpse fixed can use a large portion of the allowed computations. We have
experimented with a variant of our model with a single recurrent layer, but encountered
severe with issues exploding gradients.

Glimpse extraction network. The extraction network maps the hidden state of
the second recurrent layer to attention parameters and uses them to yield the current
glimpse. We use a linear mapping (y = Wx + b) from the hidden state of the second
recurrent layer to the attention parameters. The module then extracts a NxN glimpse
following the procedure described by Gregor et al. [40]. The authors use a NxN grid of
Gaussian filters placed upon an image to create a glimpse. The grid is parametrized by
the location of its center cx and cy, the distance between adjacent points δ, the variance
of Gaussian filters σ and the sharpening coefficient γ. We make two alterations to the
grid parametrization. First, we use rectangular attention and replace the δ parameter
with a pair δx and δy. Second, we make sure that the predicted center of the sampling
grid is always within the image by restricting cx and cy to be between -1 and 1.

Glimpse network. The glimpse network is a function that receives the current
extracted glimpse and outputs a feature vector. Its responsibility is to extract a set of
useful features that are later used by the recurrent network. In most of our experiments
this function is implemented with a CNN.

Classification network. The classification network produces the prediction given a
current state of the first recurrent layer. In general it outputs a prediction on every step.
However the exact moments when to use supervision, i.e. only on last step, can vary.
We have observed very little influence of this module on the final result, so we have used
small networks, such as logistic regression or a fully connected network with one hidden
layer.

Full model. Lastly, we put all the discussed modules together. Let fcontext, fext,
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fglimpse, fclass and frec denote context, extraction, glimpse, classification and recurrent
networks respectively. Given input image I, our model can be defined by the following
equations:

h2
t = frec(

[
h1
t−1, fcontext(I)

]
,h2

t−1) (4.3.1)

g = fext(I,h
2
t ) (4.3.2)

h1
t = frec(fglimpse(g),h1

t−1) (4.3.3)

yt = fclass(h
1
t ) (4.3.4)

where h1
t , h2

t and yt are the hidden state of first and second layers and the model’s output
on step t respectively. Note that the second recurrent layer uses the hidden state of the
first layer from previous step as input. Since each module of our model is differentiable,
the whole model can be trained end-to-end with backpropagation. The most important
module in this regard is the glimpse extraction network.

4.4 Experiments

First, our model is evaluated on synthetic tasks, derived from the MNIST dataset. We
show that it achieves either superior or competitive results compared to a reinforcement
learning based alternative [3]. We then train it to read house numbers from the publicly
available Street View House Numbers (SVHN) dataset [89] and show that our model
achieves state-of-the-art performance on the task of reading house numbers from an
image. Lastly, we demonstrate that the attention mechanism is capable of learning a
decent object localizer when trained on the Birds-200-2011 dataset [123].

We have used Theano [9] and Caffe [58] frameworks to implement our experiments.
Unless otherwise noted, the Adam [66] algorithm with an initial learning rate of 0.0001
was used to determine the step size of the gradient descent. β1, β2 and ε hyperparameters
were set to 0.9, 0.999, and 1e-8 respectively.

4.4.1 Cluttered MNIST

Data. The dataset is derived from the popular MNIST benchmark by randomly placing
one or two randomly selected digits in a 100x100 image. In addition, to simulate clutter
present in natural images, 8x8 fragments of other digits are randomly placed in the same
image as well. We define three subtasks based on this dataset: classifying an image
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Figure 4.2: Examples of learned attention on digit recognition (first row), pair recognition
(second row) and digit summation (third row). Best viewed in color.

Model Error

Mnih et al. [87], 4 glimpses 9.41%
Mnih et al. [87], 8 glimpses 8.11%
Gregor et al. [40], 4 glimpses 4.18%
Gregor et al. [40], 8 glimpses 3.36%
Ours, without context 3.29%
Ours, with context 1.80%

Table 4.1: Test classification errors on the single digit recognition task

with one digit into 10 classes, classifying an image with two digits into 55 classes, each
corresponding to a particular pair of digits and classifying an image with two digits into
19 classes based on the sum of the digits. In the last task we follow [3] and use an empty
background. Note that since digits are sampled randomly, the distribution of classes is
not uniform.

Setup. We have chosen the glimpse and classification networks to be fully connected
networks with one hidden layer with 256 units. In this case the model’s performance
directly depends on its ability to discover a good attention policy. In addition, it allows
for a fair comparison with the work of [3]. The number iterations was set to 4 in all

Model Pair Sum

Ba et al. [3] 5% 2.5%
Ours 4.3% 2.55%

Table 4.2: Test classification errors on the pair recognition task
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experiments in this section. We have used a three layer CNN as context network.

We have found that it is difficult for our model to learn on weakly supervised images
with two digits. There are two main problems that prevent it from learning a good
attention policy. Firstly, the model tends to choose attention regions that include both
digits instead of focusing on one and then switching to the other. This issue can be solved
by imposing an upper limit on the size of the attention regions. However, it does not
solve the problem completely, as in this case the network focuses on only one digit and
never switches to the other. We have solved this issue by reparametrizing the reader’s
sampling grid and adding a regularization term to the cost function. The extraction
network, discussed in Section 4.3, originally regresses absolute values of locations of grid
centers. We have modified it to regress relative shifts 4cx and 4cy that are added to
the previous center location. We then use Gaussian RBFs depending on relative shifts
as regularization term:

R = ae−(4c2x+4c2y)/b (4.4.1)

where a and b are hyperparameters that we set to 0.1 in our experiments. This term
promotes the model to choose locations that are far from the current one. We use this
term only on the third processing step to force the model that after two steps it should
deploy its attention elsewhere.

Results. The results of our model on single digit recognition task can be found in
Table 4.1. Our model achieves an almost two times smaller error than the model of [40].
It should be noted that the authors did not strive to optimize the performance of their
model on the digit recognition task. To highlight the importance of the context network,
we note that errors in this task are caused by either incorrect digit localization or errors
of the classification network. When the context network is used the percentage of errors
caused by mislocalization is less than 1% in contrast to about 10% without the context
network.

Results of our model on pair classification and digit summation are given in Table
4.2. Our RAM outperforms the model of [3] on the pair classification task. This is not
the case for digit summation and our model performs slightly worse on this task. We
find it somewhat surprising, since the images are very similar for these two tasks. In
fact, it is possible to use a model trained on pair recognition to initialize weights of all
components of a model for digit summation except for the last classification layer, and
vice versa. Such a model converges orders of magnitude faster than a randomly initialized
one. Examples of learned attention mechanisms are presented in Figure 4.2.
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Figure 4.3: Example of an image processed by forward (top row) and backward (bottom row)
models. Computation proceeds from left to right, i.e. the first step corresponds to leftmost image
in each row. Image was taken from the test partition. Best viewed in color.

4.4.2 Street View House Numbers

Data. In this section we apply our model to the medium sized dataset of house number
images [89]. We follow Goodfellow et al. [36] and form a validation set by randomly
choosing 5000 images from train and extra partitions. We also follow the same work in
terms of data preprocessing and generate 64x64 tightly cropped images that contain all
digits of a single house number. To do that, we use the ground truth bounding boxes,
provided with the dataset, and compute a bounding box that includes all digits present
in an image. We then increase the bounding box by 30% of its original size, crop the
resulting area and rescale it to 64x64. We also follow Ba et al. [3] and generate 128x128
loosely cropped images by expanding the bounding boxes that enclose all digits in an
image by 130%. In both cases we then convert the images to grayscale, subtract the
mean image and divide by 128.

Setup. This task is different from the ones discussed in Section 4.4.1 since images
contain variable numbers of objects. To address this, we train our model to read the
image and output digits one by one. The model is trained to read an image from left
to right. We add an extra class to encode that no more objects are present in an image
and run our model until we receive the terminal label. The model is allowed to perform
3 glimpses per object. Since the dataset contains at most 5 objects in one image, the
maximum possible amount of iterations is 18.

The SVHN dataset is more diverse than the one used in the previous section, so it is
no longer sufficient to use a simple fully connected glimpse network. Following Ba et al.
[3], we use a three layer CNN. However, we have observed that it leads to relatively slow
convergence. We address this issue by training our model in two steps: first, we use a very
simple glimpse network and train the model for a small number of epochs. After that
we switch the simple glimpse network with the one that we actually would like to use.
We have observed that it significantly speeds up training of the full model. Figure 4.4
shows learning curves of models trained from scratch and after 2 epochs of pretraining.
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Figure 4.4: Validation errors of full models with and without pretraining for first 25 epochs.
We omit training errors since they follow the same pattern

Computational costs of pretraining are negligible with respect to the amount of time
required to train the full model, so we use this approach in all experiments presented in
this section. Note that such curriculum approach does not affect the final result, as the
full model trained from scratch achieves similar results but requires more iterations to
do so.

This phenomenon can be explained by expressive power of the CNN: it is possible
that it can extract reasonable features even when the attention mechanism is not very
well trained. Thus, even though we train the full model jointly, the training actually
happens in two steps. First, the attention mechanism learns to focus on important parts
of an image and only then can the glimpse network learn to extract features that are
good for classification. During the first phase of learning attention, regions constantly
change and thus the nature of extracted glimpses changes as well, preventing the network
from learning effectively. This effect is somewhat similar to the Internal Covariate Shift
issue, discussed by Ioffe and Szegedy [51] and addressed by Batch Normalization.

We regularize our model with 0.5 dropout in the outputs of the glimpse network
and 0.5 dropout in recurrent connections [107]. Data augmentation does not provide
satisfactory improvements of the final result, so we do not use it and always feed the
network with the original 64x64 images. This can be explained by the presence of the
attention mechanism that focuses on the same part of an image and effectively counteracts
data augmentation. To address this, we add noise to the sampling grid parameters. We
uniformly sample noise coefficient n from [-α, α] and add it to the location of grid
center (cx = cx + n, cy = cy + n). This corresponds to small random shifts of attention
regions. In addition, we multiply the distance between sampling points by 1 + n (δx =

δx ∗ (1 +n), δy = δy ∗ (1 +n)), that results in either increase or decrease of corresponding
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Model 64x64 128x128

Goodfellow et al. [36] 3.96% –
Ba et al. [3] 3.9% 4.46%
Jaderberg et al. [54] 3.6% 3.9%

forward, single pass 4.5% 5.5%
forward, average 4.3% 5.2%
both, single pass 3.9% 4.45%
both, average 3.65% 4.35%
5 layers, both, average 3.4% 4.34%

Table 4.3: Test classification errors on full sequence house number recognition task

dimensions. We have used α = 0.1 in all our experiments and sample noise independently
for every parameter. This modification can be viewed as the data augmentation applied
to attention regions instead of the full image. There are two options of how to use noise
during testing. One is to not use corrupted attention parameters. The other is to allow
noise injection, run the model multiple times and average the results over all runs. The
second approach is similar to Markov Chain Monte Carlo (MCMC) averaging used by
Ba et al. [3] and widely adopted oversampling [69]. It allows to achieve lower error rate
at the cost of higher computational expenses when compared to the first option.

Results. The results of our model on transcribing house numbers are given in Table
4.3. Similarly to Ba et al. [3], we have observed that our model tends to overestimate
the number of digits in an image. To address this, we train an additional model that
reads an image from right to left. We show an example of a single run of both models
in Figure 4.3. During testing we choose the smaller sequence length from two models
and average predictions from them. This heuristic allows us to match the performance
of the model with MCMC averaging from Ba et al. [3] with our model without averaging
over multiple runs with sampling grid noise. When we allow injection of noise during
testing and average over 10 runs, the performance of our model improves and almost
achieves the performance of a Spatial Transformer based model [54]. All of the discussed
models outperform a conventional CNN with eleven layers [36] while requiring much less
computation. Lastly, we have found that our model with the three layer glimpse network
slightly underfits training data due to regularization. This allowed us to add two more
convolutional layers. The resulting five layer model yields a result better than that of
Jaderberg et al. [54] and achieves state-of-the-art performance. However, it should be
noted that the result of [54] is achieved with a single pass of a single model, while we
use model averaging. In the case of loosely cropped house numbers our model achieves
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Model Accuracy

Jaderberg et al. [54] 84.1%

CNN, w/o localization 78.57%
CNN, GT localization 79.63%
CNN, RAM localization 79.77%

Table 4.4: Test classification accuracies on the bird recognition task
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Figure 4.5: Illustration of our approach to fine grained classification. R blocks denote one
iteration of the model.

a better result than that of [3] by a similar margin. Interestingly, in this case the model
with a 5 layer glimpse network achieves only marginally better result. However, the
Spatial Transformer based model of Jaderberg et al. [54] is still superior to both RAMs
on loosely cropped images.

4.4.3 Fine-Grained Bird Recognition

Data. In this section we apply our model to the CUB-200-2011 dataset [123]. The
dataset contains 12k images of various bird species split into train and test partitions of
approximately the same size. We preprocess images by resizing to 256x256 and subtract-
ing per-channel mean values.

Setup. We consider an Inception architecture with Batch Normalization [51] as our
baseline model. We train it on the ImageNet1000 dataset and finetune it on the CUB-
200-2011 dataset. We use the standard data augmentation during training and randomly
crop 224x224 areas of an image and mirror them with a 0.5 probability. We do not use
multiscale augmentation. During testing we average outputs of the model applied to ten
crops as described by [69]. The baseline Inception network achieves 78.57% accuracy.

In this case, the object of interest is relatively easy to locate and usually occupies
a large portion of an image. Hence, we do not use the context network for these ex-
periments. In contrast to our previous experiments, in this case we apply the attention
mechanism to convolutional images. In particular, we first process an image with two
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Figure 4.6: Examples of learned attention policy. Computation proceeds from top to bottom,
i.e. the first step corresponds to topmost image in each column. Since in this experiment our
model acts on a convolutional image, shown bounding boxes are expanded to approximately
cover the corresponding area of the raw image. Note that the attention region on the first step
is always the same, since we do not use the context network. Images were taken from the test
partition. Best viewed in color.

sets of convolution-relu-pooling operations and only then use attention. Parameters of
convolutional layers are pretrained on the ImageNet1000 dataset as part of a larger CNN
with five convolutional layers and kept fixed throughout all experiments on this dataset.
Our initial experiments have shown a substantial amount of overfitting. Therefore, we
have changed the input of the classification network to be the output of the glimpse
network instead of the hidden state of the first recurrent layer. In addition, we have
hypothesized that the main source of overfitting is the classification network and that
the full model does not have enough time to learn a good attention policy before the clas-
sification network overfits to the data. To address this issue, we have reset the weights
of the last 200-way classification layer after every 10 epochs. We reset the weights of the
classification network 10 times and then allow the model to converge. Indeed, this simple
procedure reduces the validation error. However, while these modifications substantially
reduce overfitting when compared to the original model, the baseline CNN still achieves
a superior result. Thus, we use our model for an object localization step before baseline
CNN.

To do that, we compute the attention region selected by the network on the last
processing step and expand it to approximately cover the corresponding area of the raw
image, extract this area from the image and resize it to 256x256 size. We process the
whole dataset in this manner and train our baseline CNN on extracted images following
exactly the same procedure as described before. This approach is schematically depicted
in Figure 4.5. Note that the purpose of this experiment is to demonstrate that our model
is capable of learning attention mechanisms on natural images. We do not achieve the
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current state-of-the-art results [54] in these experiments.
Results. Results of our experiments are presented in Table 4.4. The CNN that

uses our model for localization achieves 1.2% improvement with respect to the baseline
model trained on whole images. Examples of localizations are presented in Figure 4.6.
To put performance of localization into context, we use the provided ground truth (GT)
bounding boxes as a "perfect" localizer. Interestingly, CNN with RAM localization
slightly outperforms the one with GT localization. The difference between these two is
rather small, however.

4.5 Discussion

In our experiments the Recurrent Attention Model consistently learns good attention
policies, although in some cases it requires some extra built-in knowledge. Reinforcement
learning based RAM is superior to ours in this regard, since it can learn to switch between
two digits based on the classification error only. This issue deserves further attention,
since objects in natural scenes are very likely to appear at different locations of an image.

Ba et al. [3] have observed that their model does not benefit much from dropout
regularization. In contrast, we have found that our model does not achieve the results of
alternative models when we do not. We speculate that this is due to a certain amount
of stochasticity built in into the model of Ba et al. [3], while ours is fully deterministic.
Our model does not benefit much from data augmentation. We attribute it to a certain
amount of spatial invariance built into any RAM. If the localization mechanism is robust
to small distortions of the input image, then it will always extract the same glimpses and
diminish any kind of positive effects of data augmentation. However, data augmentation
can help with learning to localize better by requiring a model to choose a different
attention region for each crop.

Our model has a number of further applications. While it shows reasonable results
on image classification, CNN based models are already very well suited for this task
and we do not expect RAM to significantly outperform them in terms of classification
accuracy. RAM can rather yield an improvement for tasks that have some dependencies
between predicted labels, such as optical character recognition or object detection. In
addition, our model is easily extendable to temporal data. Some of our early experiments
suggest that RAM trained on static images can learn to follow an object in a video with
its attention region. In OCR a recurrent attention model can jointly learn to locate
characters, classify them and model language to resolve cases that are ambigious without
context, i.e. whether a vertical stroke is a letter i or l. In object detection it can learn
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relationships between objects, i.e. a whole-part relationship or the fact that certain
objects are more or less likely to appear in the same image.

4.6 Conclusions

We have presented a deep recurrent model based on recent advances in fully differentiable
RAMs and have experimentally shown that it achieves competitive results on the MNIST
based synthetic benchmark and state-of-the-art result on transcribing house numbers
from an image. We have shown that it can operate on outputs of convolutional layers
and learn object localizers from image labels only. We have demonstrated that learned
attention can be used subsequently in a recognition pipeline to boost the final result.
Lastly, we have shown a set of procedures that decrease the testing error of our model
and improve convergence speed. The two most important techniques are pretraining with
a simple glimpse network and injection of noise into attention parameters.
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5
Generative Models of Natural Texts

5.1 Introduction

Generative models of texts are currently at the cornerstone of natural language under-
standing enabling recent breakthroughs in machine translation [7, 126], dialogue mod-
elling [110], abstractive summarization [104], etc.

Currently, RNN-based generative models hold state-of-the-art results in both uncon-
ditional [60, 44] and conditional [122] text generation. At a high level, these models
represent a class of autoregressive models that work by generating outputs sequentially
one step at a time where the next predicted element is conditioned on the history of
elements generated thus far.

VAEs, recently introduced by [67, 101], offer a different approach to generative mod-
eling by integrating stochastic latent variables into the conventional autoencoder archi-
tecture. The primary purpose of learning VAE-based generative models is to be able
to generate realistic examples as if they were drawn from the input data distribution
by simply feeding noise vectors through the decoder. Additionally, the latent represen-
tations obtained by applying the encoder to input examples give a fine-grained control
over the generation process that is harder to achieve with more conventional autoregres-
sive models. Similar to compelling examples from image generation, where it is possible
to condition generated human faces on various attributes such as hair, skin color and
style [128, 72], in text generation it should be possible to also control various attributes
of the generated sentences, such as, for example, sentiment or writing style.

While training VAE-based models seems to pose little difficulty when applied to the
tasks of generating natural images [6, 41] and speech [32], their application to natural
text generation requires additional care [18, 83]. As discussed by Bowman et al. [18], the
core difficulty of training VAE models is the collapse of the latent loss (represented by
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the KL divergence term) to zero. In this case the generator tends to completely ignore
latent representations and becomes a standard language model. This is largely due to
the high modeling power of the RNN-based decoders which with sufficiently small history
can achieve low reconstruction errors while not relying on the latent vector provided by
the encoder.

In this work, we propose a novel VAE model for texts that is more effective in forcing
the decoder to make use of latent vectors. Contrary to existing work, where both encoder
and decoder layers are LSTMs, the core of our model is a feed-forward architecture
composed of one-dimensional convolutional and deconvolutional [134] layers. This choice
of architecture helps to gain more control over the KL term, which is crucial for training
a VAE model. Given the difficulty of generating long sequences in a fully feed-forward
manner, we augment our network with an RNN language model layer.

While being very successful, both autoregressive and VAE-based models still suffer
from a number of problems. Arguably, the most prominent are exposure bias [10] and
a mismatch between the NLL objective used during training and a task-specific metric
that we would like to minimize [8]. Exposure bias stems from the fact that there is a
mismatch between training and inference procedures. During training a model always
receives histories that come from the well-behaved ground-truth sequences, whereas at
inference it is conditioned on its own imperfect predictions.

Reinforcement Learning techniques that have recently received increased interest in
the NLP community carry the promise of addressing both of these issues by allowing for
task-specific (even non-differentiable) loss functions and incorporating sampling directly
in the training process. However, previously used manually designed metrics based on
n-gram matching such as BLEU [93] or ROUGE [75], are crude approximations for the
true objective of generating samples that are perceptually indistinguishable from the real
data.

The recently proposed GAN framework [37] goes beyond optimizing a manually de-
signed objective by leveraging a discriminator that learns to distinguish between real
and generated data samples. It thus mitigates both issues of NLL training, since it in-
cludes sampling into the training procedure and aims at generating samples that cannot
be discriminated from the real data points. Despite their recent success in the image
generation domain (both unconditional [13, 64] and conditional [99, 92]), applying GANs
to text generation is still a challenging task. One of the many challenges that slows
down the progress is the lack of proper evaluation, which is a largely unsolved problem
and is an active area of research. Previous works studying GANs for text generation
have either reported metrics specific to a family of algorithms [108] or resorted to BLEU
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scores where a validation set is used as a reference [131, 43] to asses the quality of the
generated samples. In this work we study the currently adopted evaluation approach
to GAN models for language generation, explore their shortcomings and propose novel
solutions.

5.2 Related Work

So far, the majority of neural generative models of text are built on the autoregressive as-
sumption [71, 120]. Such models assume that the current data element can be accurately
predicted given sufficient history of elements generated thus far. The conventional RNN
based language models fall into this category and currently dominate the language model-
ing and generation problem in NLP. Neural architectures based on recurrent [60, 140, 44]
or convolutional decoders [61, 28] provide an effective solution to this problem.

A recent work by Bowman et al. [18] tackles language generation problem within the
VAE framework [67, 101]. The authors demonstrate that with some care it is possible
to successfully learn a latent variable generative model of text. Although their model is
slightly outperformed by a traditional LSTM [49] language model, their model achieves
a similar effect as in computer vision where one can (i) sample realistic sentences by
feeding randomly generated novel latent vectors through the decoder and (ii) linearly
interpolate between two points in the latent space. Miao et al. [83] apply VAE to bag-
of-words representations of documents and the answer selection problem achieving good
results on both tasks. Yang et al. [129] discuss a VAE consisting of RNN encoder and
CNN decoder so that the decoder’s receptive field is limited. They demonstrate that
this allows for a better control of KL and reconstruction terms. Hu et al. [50] build a
VAE for text generation and design a cost function that encourages interpretability of
the latent variables. Zhang et al. [135], Serban et al. [110] and Zhao et al. [139] apply
VAE to sequence-to-sequence problems, improving over deterministic alternatives. Chen
et al. [21] propose a hybrid model combining autoregressive convolutional layers with
the VAE. The authors make an argument based on the Bit-Back coding [47] that when
the decoder is powerful enough the best thing for the encoder to do is to make the
posterior distribution equivalent to the prior. While they experiment on images, this
argument is very relevant to the textual data. A recent work by Bousquet et al. [16]
approaches VAEs and GANs from the optimal transport point of view. The authors
show that commonly known blurriness of samples from VAEs trained on image data
are a necessary property of the model. While the implications of their argument to
models combining latent variables and autoregressive layers trained on non-image data
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are still unclear, the argument supports the hypothesis of Chen et al. [21] that difficulty
of training a hybrid model is not caused by a simple optimization difficulty but rather
may be a more principled issue.

Various techniques to improve training of VAE models where the total cost repre-
sents a trade-off between the reconstruction cost and KL term have been used so far:
KL-term annealing and input dropout [18, 115], imposing structured sparsity on latent
variables [130] and more expressive formulations of the posterior distribution [100, 68].
A work by [82] follows the same motivation and combines GANs and VAEs allowing a
model to use arbitrary complex formulations of both prior and posterior distributions.
In Section 5.3.4 we propose another efficient technique to control the trade-off between
KL and reconstruction terms.

GANs are a promising algorithm specifically designed to generate samples indistin-
guishable from real data. This has led to an increased interest in systematic comparison
of different algorithms, both for images [78] and texts [77]. A recent study [78] shows that
careful hyperparameter tuning is very important for a fair comparison of different image
GAN models and significant improvement can be achieved with a larger computational
budget rather that from a better algorithm. Another recent work studies a set of GANs
targeted specifically at text generation [77]. However, it has all the drawbacks of the
accepted evaluation approach, namely using n-gram based metrics and reporting only a
single best result. It is thus difficult to draw a convincing conclusion based on this kind
of comparison. Another related work conducts a study on the properties of Variational
and Adversarial Autoencoder-based generative models [24].

Currently, the evaluation protocol adopted by the previous work on GAN-based text
generation [131, 43] is primarily based on metrics derived from n-gram matching, e.g.,
BLEU and self-BLEU, which are used to assess sample quality and diversity. Addition-
ally, a single best metric [131, 43] is reported which does not convey how sensitive various
models are w.r.t. random initialization and hyperparameter choices. In this evaluation,
we demonstrate that n-gram based metrics are inadequate for evaluation of unsupervised
text generation models. Furthermore, we demonstrate that GAN models are extremely
sensitive to random initialization and careful hyperparameter tuning is a must to have a
meaningful comparison.

In this work we first address the issue of metrics used for evaluation of textual GANs.
We then introduce a number of alternatives to the widely used BLEU and self-BLEU
scores and demonstrate that they are capable of detecting a number of failure modes
that the BLEU score does not capture. We then demonstrate the need of extensive
hyperparameter tuning and conduct an initial set of experiments comparing a number of
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Figure 5.1: LSTM VAE model of [18]

recent GAN-based approaches to text generation.

5.3 Hybrid Variational Autoencoder Model

In this section we first briefly explain the VAE framework of Kingma and Welling
[67], then describe our hybrid architecture where the feed-forward part is composed of
a fully convolutional encoder and a decoder that combines deconvolutional layers and
a conventional RNN. Finally, we discuss optimization recipes that help VAE to respect
latent variables, which is critical training a model with a meaningful latent space and
being able to sample realistic sentences.

5.3.1 Variational Autoencoder

The VAE is a recently introduced latent variable generative model, which combines vari-
ational inference with deep learning. It modifies the conventional autoencoder framework
in two key ways. Firstly, a deterministic internal representation z (provided by the en-
coder) of an input x is replaced with a posterior distribution q(z|x). Inputs are then
reconstructed by sampling z from this posterior and passing them through a decoder.
To make sampling easy, the posterior distribution is usually parametrized by a Gaussian
with its mean and variance predicted by the encoder. Secondly, to ensure that we can
sample from any point of the latent space and still generate valid and diverse outputs,
the posterior q(z|x) is regularized with its KL divergence from a prior distribution p(z).
The prior is typically chosen to be also a Gaussian with zero mean and unit variance,
such that the KL term between posterior and prior can be computed in closed form [67].
The total VAE cost is composed of the reconstruction term, i.e., negative log-likelihood
of the data, and the KL regularizer:

Jvae = KL(q(z|x)||p(z))

−Eq(z|x)[log p(x|z)]
(5.3.1)

Kingma and Welling [67] show that the loss function from Eq (5.3.1) can be derived
from the probabilistic model perspective and it is an upper bound on the true negative
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Figure 5.2: Fully feedforward component of the proposed model.

likelihood of the data. One can view a VAE as a traditional Autoencoder with some
restrictions imposed on the internal representation space. Specifically, using a sample
from the q(z|x) to reconstruct the input instead of a deterministic z, forces the model to
map an input to a region of the space rather than to a single point. The most straight-
forward way to achieve a good reconstruction error in this case is to predict a very sharp
probability distribution effectively corresponding to a single point in the latent space
[97]. The additional KL term in Eq (5.3.1) prevents this behavior and forces the model
to find a solution with, on one hand, low reconstruction error and, on the other, predicted
posterior distributions close to the prior. Thus, the decoder part of the VAE is capable
of reconstructing a sensible data sample from every point in the latent space that has
non-zero probability under the prior. This allows for straightforward generation of novel
samples and linear operations on the latent codes. Bowman et al. [18] demonstrate that
this does not work in the fully deterministic Autoencoder framework . In addition to
regularizing the latent space, KL term indicates how much information the VAE stores
in the latent vector.

Bowman et al. [18] propose a VAE model for text generation where both encoder and
decoder are LSTM networks (Figure 5.1). We will refer to this model as LSTM VAE in
the remainder of the thesis. The authors show that adapting VAEs to text generation is
more challenging as the decoder tends to ignore the latent vector (KL term is close to
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(a) Hybrid model with
LSTM decoder

(b) Hybrid model with
ByteNet decoder

Figure 5.3: Illustrations of our proposed models.

zero) and falls back to a language model. Two training tricks are required to mitigate this
issue: (i) KL-term annealing where its weight in Eq (5.3.1) gradually increases from 0 to
1 during the training; and (ii) applying dropout to the inputs of the decoder to limit its
expressiveness and thereby forcing the model to rely more on the latent variables. We will
discuss these tricks in more detail in Section 5.3.4. Next we describe a deconvolutional
layer, which is the core element of the decoder in our VAE model.

5.3.2 Deconvolutional Networks

A deconvolutional layer (also referred to as transposed convolutions [41] and fractionally
strided convolutions [96]) performs spatial up-sampling of its inputs and is an integral
part of latent variable generative models of images [96, 41] and semantic segmentation
algorithms [90]. Its goal is to perform an "inverse" convolution operation and increase
the spatial size of the input while decreasing the number of feature maps. This operation
can be viewed as a backward pass of a convolutional layer and can be implemented by
simply switching the forward and backward passes of the convolution operation. In the
context of generative modeling based on global representations, the deconvolutions are
typically used as follows: the global representation is first linearly mapped to another
representation with small spatial resolution and large number of feature maps. A stack
of deconvolutional layers is then applied to this representation, each layer progressively
increasing spatial resolution and decreasing the amount of feature channels. The output
of the last layer is an image or, in our case, a text fragment. A notable example of such
a model is the deep network of [96] trained with adversarial objective. Our model uses a
similar approach but is instead trained with the VAE objective.

There are two primary motivations for choosing deconvolutional layers instead of
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the dominantly used recurrent ones: firstly, such layers have extremely efficient GPU
implementations due to their fully parallel structure. Secondly, feed-forward architectures
are typically easier to optimize than their recurrent counterparts, as the number of back-
propagation steps is constant and potentially much smaller than in RNNs. Both points
become significant as the length of the generated text increases. Next, we describe our
VAE architecture that blends deconvolutional and RNN layers in the decoder to allow
for better control over the KL-term.

5.3.3 Hybrid Convolutional-Recurrent VAE

Our model is composed of two relatively independent modules. The first component is a
standard VAE where the encoder and decoder modules are parametrized by convolutional
and deconvolutional layers respectively (see Figure 5.2). This architecture is attractive
for its computational efficiency and simplicity of training.

The other component is a recurrent language model consuming activations from the
deconvolutional decoder concatenated with the previous output characters. We consider
two flavors of recurrent functions: a conventional LSTM network (Figure 5.3(a)) and a
stack of masked convolutions also known as the ByteNet decoder from Kalchbrenner et al.
[61] (Figure 5.3(b)). The primary reason for having a recurrent component in the decoder
is to capture dependencies between elements of the text sequences – a hard task for a fully
feed-forward architecture. Indeed, the conditional distribution P (x|z) = P (x1, . . . , xn|z)

of generated sentences cannot be richly represented with a feed-forward network. Instead,
it factorizes as: P (x1, . . . , xn|z) =

∏
i P (xi|z) where components are independent of

each other and are conditioned only on z. To minimize the reconstruction cost the
model is forced to encode every detail of a text fragment. A recurrent language model
instead models the full joint distribution of output sequences without having to make
independence assumptions P (x1, . . . , xn|z) =

∏
i P (xi|xi−1, . . . , x1, z). Thus, adding a

recurrent layer on top of our fully feed-forward encoder-decoder architecture relieves it
from encoding every aspect of a text fragment into the latent vector and allows it to
instead focus on more high-level semantic and stylistic features.

Note that the feed-forward part of our model is different from the existing fully
convolutional approaches of Dauphin et al. [28] and Kalchbrenner et al. [61] in two
respects: firstly, while being fully parallelizable during training, these models still require
predictions from previous time steps during inference and thus behave as a variant of
recurrent networks. In contrast, expansion of the z vector is fully parallel in our model
(except for the recurrent component). Secondly, our model down- and up-samples a
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text fragment during processing while the existing fully convolutional decoders do not.
Preserving spatial resolution can be beneficial to the overall result, but comes at a higher
computational cost. Lastly, we note that our model imposes an upper bound on the
size of text samples it is able to generate. While it is possible to model short texts by
adding special padding characters at the end of a sample, generating texts longer than
certain thresholds is not possible by design. This is not an unavoidable restriction, since
the model can be extended to generate variable sized text fragments by, for example,
variable sized latent codes. These extensions however are out of scope of this work.

5.3.4 Optimization Difficulties

The addition of the recurrent component results in optimization difficulties that are
similar to those described by Bowman et al. [18]. In most cases the model converges to a
solution with a vanishingly small KL term, thus effectively falling back to a conventional
language model. Bowman et al. [18] have proposed to use input dropout and KL term
annealing to encourage their model to encode meaningful representations into the z

vector. We found that these techniques also help our model to achieve solutions with
non-zero KL term.

KL term annealing can be viewed as a gradual transition from conventional deter-
ministic Autoencoder to a full VAE. In this work we use linear annealing from 0 to 1.
We have experimented with other schedules but did not find them to have a significant
impact on the final result. As long as the KL term weight starts to grow sufficiently
slowly, the exact shape and speed of its growth does not seem to affect the overall result.
We have found the following heuristic to work well: we first run a model with KL weight
fixed to 0 to find the number of iterations it needs to converge. We then configure the
annealing schedule to start after the unregularized model has converged and last for no
less than 20% of that amount.

While helping to regularize the latent vector, input dropout tends to slow down
convergence. We propose an alternative technique to encourage the model to compress
information into the latent vector: in addition to the reconstruction cost computed on
the outputs of the recurrent language model, we also add an auxiliary reconstruction
term computed from the activations of the last deconvolutional layer:

Jaux = −Eq(z|x)[log p(x|z)]

= −Eq(z|x)[
∑
t

log p(xt|z)].
(5.3.2)
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Since at this layer the model does not have access to previous output elements it
needs to rely on the z vector to produce a meaningful reconstruction. The final cost
minimized by our model is:

Jhybrid = Jvae + αJaux (5.3.3)

where α is a hyperparameter, Jaux is the intermediate reconstruction term and Jvae is
the bound from Eq (5.3.1). Expanding the two terms from Eq (5.3.3) gives:

Jhybrid = KL(q(z|x)||p(z))

−Eq(z|x)[
∑
t

log p(xt|z, x<t)]

−αEq(z|x)[
∑
t

log p(xt|z)].

(5.3.4)

The objective function from Eq (5.3.4) puts a mild constraint on the latent vector to
produce features useful for historyless reconstruction. Since the autoregressive part reuses
these features, it also improves the main reconstruction term. We are thus able to encode
information in the latent vector without hurting expressiveness of the decoder.

One can view the objective function in Eq 5.3.4 as a joint objective for two VAEs: one
only feed-forward, as in Figure 5.2, and the other combining feed-forward and recurrent
parts, as in Figures 5.3(a) and 5.3(b), that partially share parameters. Since the feed-
forward VAE is incapable of producing reasonable reconstructions without making use
of the latent vector, the full architecture also gains access to the latent vector through
shared parameters. We note that this trick comes at a cost of worse result on the density
estimation task, since part of the parameters of the full model are trained to optimize
an objective that does not capture all the dependencies that exist in the textual data.
However, the gap between purely deterministic LM and our model is small and easily
controllable by the α hyperparameter. We refer the reader to Figure 5.6 for quantitative
results regarding the effect of α on the performance of our model on the LM task.

5.4 GAN Models for Natural Language

GANs have had big success in generating real-valued data such as images. This has led
to a huge number of newly proposed GAN-based approaches for image generation. While
text generating GANs are not as numerous, they also differ significantly from each other.
In our evaluation we have opted for benchmarking individual core GAN techniques that
we decouple from the original models to ensure they can be compared on equal footing. In
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this section we briefly review the models and introduce components that we benchmark.
The models can be broadly divided into two large subclasses – continuous and discrete.

5.4.1 Continuous models

Continuous models for text closely follow how GANs are applied to images, i.e. they treat
a sequence of tokens as a one-dimensional signal and directly backpropagate from the
discriminator into the generator. We adopt the architecture of a continuous GAN model
for language generation from [42]. The generator is a stack of one-dimensional transposed
convolutions and the discriminator is a stack of one-dimensional convolutional layers. The
use of continuous generator outputs allows for straightforward application of GANs to
text generation. To train this model we use the proposed WGAN-GP [42] objective:

min
G

max
D

J(D,G) = Ex∼pdata [D(x)]− Ez∼pz [D(G(z))]− λEx̂∼px̂ [(||∇x̂D(x̂)||2 − 1)2]

(5.4.1)
where D and G are the discriminator and the generator functions respectively. D is a

stack of convolutional layers that consumes the outputs from G. The authors [42] use a
feedforward network as a generator, which consists of a stack of transposed convolutional
layers (Conv-Deconv). Such a generator, however, does not properly model the sequential
structure of language. Thus, we also consider an RNN-based generator. To ensure it
remains continuous and gradients from D can be backpropagated into G, instead of taking
argmax or sampling from the output distribution at each step, we feed the entire softmax
output as the input for the next step of G. This follows the generation process of RNN-
based Language Models with the difference that it models the conditional distribution
p(xt|x<t) implicitly. Another option is to make use of annealed softmax temperature,
gumbel softmax [57] or straight-through estimator [12], but we leave it for the future
research.

5.4.2 Discrete models

Discrete models learn the distribution over the next token p(xt|x<t) explicitly and thus
sample (or take argmax) from the output distribution at each step. This makes the gen-
erator output non-differentiable and gradients from D can no longer be backpropagated
through G.

To train such a non-differentiable generator one can use Reinforcement Learning (RL)
where scores from D are treated as rewards. The majority of discrete GAN models for
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text generation employ RL to train their models [131, 43, 31]. However, in addition
to instability of GAN training one has to also address problems of RL training such as
reward sparsity, credit assignment, large action space, etc. For example, one approach
to the credit assignment issue is to use Monte-Carlo(MC) rollouts [131], which allows for
providing a training signal to the generator at each step. Most commonly adopted solu-
tion to avoid reward sparsity is to pre-train the generator with the NLL objective, since
sampling from a randomly initialized model in large action spaces makes it extremely
hard to discover a well formed sequence. Many other RL techniques have been applied
to NLP problems, for instance actor-critic methods, e.g., [8], or hierarchical learning [43].
However, these are out of the scope of this work.

SeqGAN. In its simplest form RL-based GAN would employ a generator and a
discriminator scoring the full sequence. The generator can then be trained with the
REINFORCE objective Jg =

∑
tD(y) ∗ log(p(yt|y<t)). We refer to this variant as

SeqGAN-reinforce. While this objective is enough in theory, in practice it has a number
of problems. One such problem is credit assignment, where single per-sequence deci-
sion is an overly coarse feedback to train a generator. To address this, we consider two
options. In SeqGAN-step we make use of the discriminator that outputs a decision at
every step following previous research that has addressed credit assignment with this
approach [31]. The generator’s loss is then given by Jg =

∑
tRt ∗ log(p(yt|y<t)), where

Rt = γ ∗Rt+1 +D(y1:t). Such a formulation allows us to more accurately perform credit
assignment and make sure that the generator does not behave greedily and take into
account the long term effect a generated token might have. The issue however is that
scoring an incomplete sequence might be difficult. To address this we follow the SeqGAN
model [131] and employ MC rollouts to continue a sequence till the end. We then score
these rollouts with a per-sequence discriminator and use its output as a reward. We will
refer to this variant as SeqGAN-rollout in the rest of the chapter. The three considered
variants are close to the original SeqGAN model and differ in their approach to the credit
assignment problem.

LeakGAN. To address GAN instability in the RL training setup, a recent work [43]
proposes to reveal discriminator’s state to the generator. We decouple this idea from
the complicated RL training setup used by the authors and study the utility of passing
discriminator’s state to the generator during training. Our initial experiments have
shown that it is important to fuse discriminator’s and generator’s state with a non-linear
function and thus we use a one-layer MLP to predict the distribution over next token.
In this setup we only use per-step discriminators. We consider three variants of the
LeakGAN model that differ in how a hidden state of D is made available to G: leak,
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Figure 5.4: Schematic description of the three considered LeakGAN models. Solid and dashed
arrows represent weights learned in generator and discriminator phases respectively. hg and hd
represent hidden states of the generator and discriminator respectively. Note that hg is absent
in LeakGAN-leak case. xt and xt+1 are current and predicted tokens. D(x) is output of the
discriminator.
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Figure 5.5: Training curves of LSTM autoencoder and our model on samples of different length.
Solid and dashed lines show training and validation curves respectively. Note that the model
exhibits little to no overfitting since the validation curve follows the training one almost perfectly.

noleak and mixed, where the generator has access to the discriminator’s, generator’s and
both hidden states respectively. Note that in LeakGAN-leak generator is an MLP and
it does not maintain its own hidden state, only consuming that of the discriminator.
Lastly, we do not update discriminator weights during generator’s update phase. This
way these features are external to the generator. We note that these variants are simpler
when compared to the original LeakGAN model [43] since we do not use the complicated
RL technique used by the authors and do not interleave GAN and NLL training. These
simplifications allow us to decouple the influence of the architectural changes from other
dimensions. Figure 5.4 presents graphical illustration of the three models.

5.5 Experiments on VAE-based Models

We use KL term annealing and input dropout when training the LSTM VAE models
from Bowman et al. [18] and KL term annealing and regularized objective function from
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Eq (5.3.3) when training our models. All models were trained with the Adam optimiza-
tion algorithm [66] with decaying learning rate. We use Layer Normalization [5] in LSTM
layers and Batch Normalization [51] in convolutional and deconvolutional layers.

Data. Our first task is character-level language generation performed on the standard
Penn Treebank dataset [80]. One of the goals is to test the ability of the models to
successfully learn the representations of long sequences. For training, fixed-size data
samples are selected from random positions in the standard training and validation sets.

5.5.1 Comparison with LSTM VAE

Historyless decoding. We start with an experiment where the decoder is forced to
ignore the history and has to rely fully on the latent vector. By conditioning the decoder
only on the latent vector z we can directly compare the expressiveness of the compared
models. For the LSTM VAE model historyless decoding is achieved by using the dropout
on the input elements with the dropout rate equal to 1 so that its decoder is only
conditioned on the z vector and, implicitly, on the number tokens generated so far.
We compare it to our fully-feedforward model without the recurrent layer in the decoder
(Figure 5.2). Both networks are parametrized to have comparable number of parameters.

To test how well both models can cope with the stochasticity of the latent vectors,
we minimize only the reconstruction term from Eq. (5.3.1). This is equivalent to a pure
autoencoder setting with stochastic internal representation and no regularization of the
latent space. This experiment corresponds to an initial stage of training with KL term
annealing when its weight is set to 0. We pursue two goals with this experiment: firstly,
we investigate how do the two alternative encoders behave in the beginning of training
and establish a lower bound on the quality of the reconstructions. Secondly, we attempt
to put the Bit Back coding argument from Chen et al. [21] in context. The authors
assume the encoder to be powerful enough to produce a good representation of the data.
One interpretation of this argument applied to textual data is that factorizing the joint
probability as p(x) =

∏
t p(xt|x<t) provides the model with a sufficiently powerful decoder

that does not need the latent variables. However, our experimental results suggest that
LSTM encoder may not be a sufficiently expressive encoder for VAEs for textual data,
potentially making the argument inapplicable.

The results are presented in Figure 5.5. Note that when the length of input samples
reaches 30 characters, the historyless LSTM autoencoder fails to fit the data well, while
the convolutional architecture converges almost instantaneously. The results appear even
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Figure 5.6: The full cost (solid lines) and its KL component (dashed lines) in bits-per-character
of our Hybrid model trained with 0.2 α hyper-parameter vs. LSTM based VAE trained with 0.2
and 0.5 input dropout, measured on validation partition.

worse for LSTMs on sequences of 50 characters. To make sure that this effect is not caused
by optimization difficulties, i.e. exploding gradients [94], we have searched over learning
rates, gradient clipping thresholds and sizes of LSTM layers but were only able to get
results comparable to those shown in Figure 5.5. Note that LSTM networks make use of
Layer Normalization [5] which has been shown to make training of such networks easier.
These results suggest that our model is easier to train than the LSTM-based model,
especially for modeling longer pieces of text. Additionally, our model is computationally
faster by a factor of roughly two, since we run only one recurrent network per sample
and time complexity of the convolutional part is negligible in comparison.

Decoding with history. We now move to a case where the decoder is conditioned on
both the latent vector and previous output elements. In these experiments we pursue
two goals: firstly, we verify whether the results obtained on the historyless decoding task
also generalize to a less restricted case. Secondly, we study how well the models cope
with stochasticity introduced by the latent variables. Note that we do not attempt to
improve the state-of-the-art result on the Language Modeling task but instead focus on
providing an approach capable of generating long and diverse sequences. We experiment
on the task to obtain a detailed picture of how are our model and LSTM VAE affected
by various choices and compare the two models, focusing on how effective is the encoder
at producing meaningful latent vector. However, we note that our model performs fairly
well on the LM task and is only slightly worse than purely deterministic Language Model,
trained in the same environment, and is comparable to the one of Bowman et al. [18] in
this regard.

We fix input dropout rates at 0.2 and 0.5 for LSTM VAE and use auxiliary recon-
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Figure 5.7: The full cost (solid line) and the KL component (dashed line) of our Hybrid
model with LSTM decoder trained with various α, with and without KL term weight annealing,
measured on the validation partition.

struction loss (Section 5.3.4) with 0.2 weight in our Hybrid model. The bits-per-character
scores on differently sized text samples are presented in Figure 5.6. As discussed in Sec-
tion 5.3.1, the KL term value indicates how much information the network stores in the
latent vector. We observe that the amount of information stored in the latent vector by
our model and the LSTM VAE is comparable when we train on short samples and largely
depends on hyper-parameters α and p. When the length of a text fragment increases,
LSTM VAE is able to put less information into the latent vector (i.e., the KL component
is small) and for texts longer than 48 characters, the KL term drops to almost zero while
for our model the ratio between KL and reconstruction terms stays roughly constant.
This suggests that our model is better at encoding latent representations of long texts
since the amount of information in the latent vector does not decrease as the length of a
text fragment grows. In contrast, there is a steady decline of the KL term of the LSTM
VAE model. This result is consistent with our findings from the historyless decoding ex-
periment. Note that in both of these experiments the LSTM VAE model fails to produce
meaningful latent vectors with inputs over 50 characters long. This further suggests that
our Hybrid model encodes long texts better than the LSTM VAE.

5.5.2 Controlling the KL term

We study the effect of various training techniques that help control the KL term which
is crucial for training a generative VAE model.

Aux cost weight. First, we provide a detailed view of how optimization tricks dis-
cussed in Section 5.3.4 affect the performance of our Hybrid model. Figure 5.7 presents
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Figure 5.8: The full cost (solid line) and the KL component (dashed line) of our Hybrid model
with ByteNet decoder trained with various number of convolutional layers, measured on the
validation partition

@userid @userid @userid @userid @userid ...
I want to see you so much @userid #FollowMeCam ...
@userid @userid @userid @userid @userid ...
Why do I start the day today?

@userid thanks for the follow back
no matter what I’m doing with my friends they are so cute
@userid Hello How are you doing
I wanna go to the UK tomorrow!! #feelinggood #selfie #instago
@userid @userid I’ll come to the same time and it was a good day too xx

Table 5.1: Random sample tweets generated by LSTM VAE (top) and our Hybrid model
(bottom).

results of our model trained with different values of α from Eq. (5.3.3). Note that the
inclusion of the auxiliary reconstruction loss slightly harms the bound on the likelihood
of the data but helps the model to rely more on the latent vector as α grows. A similar
effect on model’s bound was observed by Bowman et al. [18]: increased input dropout
rates force their model to put more information into the z vector but at the cost of
increased final loss values. This is a trade-off that allows for sampling outputs in the
VAE framework. Note that our model can find a solution with non-trivial latent vec-
tors when trained with the full VAE loss provided that the α hyper-parameter is large
enough. Combining it with KL term annealing helps to find non-zero KL term solutions
at smaller α values.
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Rec KL
LSTM, p = 0.2 67.4 1.0
LSTM, p = 0.5 77.1 2.1
LSTM, p = 0.8 93.7 3.8
Hybrid, α = 0.2 58.5 12.5

Table 5.2: Breakdown into KL and reconstruction terms for char-level tweet generation. p
refers to input dropout rate.

Receptive field. The goal of this experiment is to study the relationship between the
KL term values and the expressiveness of the decoder. Without KL term annealing and
input dropout, the RNN decoder in LSTM VAE tends to completely ignore information
stored in the latent vector and essentially falls back to an RNN language model. To have
a full control over the receptive field size of the recurrent component in our decoder, we
experiment with masked convolutions (Figure 5.3(b)), which is similar to the decoder in
ByteNet model from Kalchbrenner et al. [61]. We fix the size of the convolutional kernels
to 2 and do not use dilated convolutions and skip connections as in the original ByteNet.

The resulting receptive field size of the recurrent layer in our decoder is equal to
N + 1 characters, where N is the number of convolutional layers. We vary the number of
layers to find the amount of preceding characters that our model can consume without
collapsing the KL term to zero.

Results of these experiments are presented in Figure 5.8. Interestingly, with the
receptive field size larger than 3 and without the auxiliary reconstruction term from
Eq. (5.3.3) (α = 0) the KL term collapses to zero and the model falls back to a pure
language model. This suggests that the training signal received from the previous char-
acters is much stronger than that from the input to be reconstructed. Using the auxiliary
reconstruction term, however, helps to find solutions with non-zero KL term component
irrespective of receptive field size. Note that increasing the value of α results in stronger
values of KL component. This is consistent with the results obtained with LSTM decoder
in Figure 5.7.

5.5.3 Generating Tweets

In this section we present qualitative results on the task of generating tweets.
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Data. We use 1M tweets1 to train our model and test it on a held out dataset of
10k samples. We minimally preprocess tweets by only replacing user ids and urls with
“@userid" and “url".

Setup. We use 5 convolutional layers with the ReLU non-linearity, kernel size 3 and
stride 2 in the encoder. The number of feature maps is [128, 256, 512, 512, 512] for
each layer respectively. The decoder is configured equivalently but with the amount
of feature maps decreasing in each consecutive layer. The top layer is an LSTM with
1000 units. We have not observed significant overfitting. The baseline LSTM VAE model
contained two distinct LSTMs both with 1000 cells. The models have comparable number
of parameters: 10.5M for the LSTM VAE model and 10.8M for our hybrid model.

Results. Both VAE models are trained on the character-level generation. The break-
down of total cost into KL and reconstruction terms is given in Table 5.2. Note that
while the total cost values are comparable, our model puts more information into the
latent vector, further supporting our observations from Section 5.5.1. This is reflected
in the random samples from both models, presented in Table 5.1. We perform greedy
decoding during generation so any variation in samples is only due to the latent vec-
tor. LSTM VAE produces very limited range of tweets and tends to repeat "@userid"
sequence, while our model produces much more diverse samples.

5.6 Evaluation of GANs for Natural Texts

Data. We perform our experiments on the Stanford Natural Language Inference (SNLI) [17]
and MultiNLI datasets [125]. SNLI is a dataset of pairs of sentences where each pair is
labeled with semantic relationship between two sentences. We discard these labels and
use all unique sentences to train our model. The size of the resulting dataset is 600k
unique sentences. We preprocess the data with the SentencePiece model with a vocabu-
lary size equal to 4k. MultiNLI follows the SNLI structure but also provides a topic that
a sentence pair comes from. This allows us to emulate mode collapse and thus measure
the recall. We use SNLI for model comparison and MultiNLI for metric evaluation.

5.6.1 Metrics

Previous work on GANs for text generation has used unique n-grams [127] and dataset-
level BLEU scores [131, 43] . Some works have also performed human evaluations of the

1a random sample collected using the Twitter API
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generated samples [31]. While the ultimate goal is to obtain models that generate samples
indistinguishable by a human rater from real ones, human evaluation of unsupervised
models may not tell the full story. Most commonly, raters are presented with one sample
at a time, which makes it possible to measure only precision but not recall. If a model
produces only a few very good samples, it will score well on human evaluation, but
models with severe mode-drop will not be penalized. Additionally, human evaluation is
expensive and hence cannot be used for model tuning.

Thus, to make faster progress in GAN research for text we require an automatic
metric that is: (i) fast to compute so that it can be used for model tuning; (ii) able to
capture both precision and recall or ideally measure the distance between distributions
of the real and generated data. Hence, our goal is to thoroughly evaluate the utility
of various evaluation metrics for unsupervised text generation, as it is not obvious that
previously reported n-gram matching scores computed by BLEU can be used to measure
and compare GAN models in a fair way. In our study, we additionally propose to use a
variant of Frechet Inception Distance (FID) [46] for text, scores assigned to real data by
a Language Model trained on generated data [138], and scores assigned to samples by a
pretrained Language Model.

N-gram based metrics. Typical metrics that researchers have used to evaluate
textual GANs are the number of unique n-grams [127] and dataset level BLEU scores [131,
43]. We use BLEU4 throughout the experiments since we found the results to be similar
for different sizes of N-grams. While they do give some insight into a model’s behavior
they have a number of drawbacks. The main criticism is that they do not capture
semantic variations in generated texts and can only detect relatively simple problems
with syntax.

Language Model score. Another feasible way to evaluate a model is to estimate
the likelihood of samples under a pretrained Language Model. This, however, has a
drawback that a model that always generates a few highly likely sentences will score very
well. Despite this, it is still a useful metric reacting only on the quality of generated
samples and thus is a good proxy for a model’s precision.

Reverse Language Model score. A more general approach is to train a Language
Model on samples from a model and then evaluate its performance on a held out set of
real texts [138]. In this setting, however, the score is biased due to two factors. One
is model bias caused by the imperfection of the LM that may not be good enough to
model the data distribution. The other is data bias caused by the fact that we use a
data sample to train a LM that will serve as a proxy for the true data distribution.

Frechet InferSent Distance. Another approach to evaluate a generative model is
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through an embedding model. Originally proposed in the computer vision community,
Frechet Inception Distance (FID) [46] computes the distance between distributions of
features extracted from real and generated samples. Inception refers to a specific image
classifier architecture [118]. To evaluate FID, the authors first make an assumption that
features extracted by a classifier are normally distributed. They then propose to sample
a number of data points from real and estimated distributions and compute

FID(r, g) = ||µr − µg||22 + Tr(Σr + Σg − 2(ΣrΣg)0.5) (5.6.1)

where (µr,Σr) and (µg,Σg) are the mean and covariance of embeddings of samples
from data and model distributions respectively. While researchers have pointed out that
FID has its drawbacks, namely that it is a biased metric [78, 14] and it makes unnecessary
assumptions about feature distributions [14], it is a widely accepted metric in the Com-
puter Vision community. In this work we adapt this metric for text by using InferSent
text embedding model [26], which is a bidirectional LSTM with max pooling trained in a
supervised manner. Unless otherwise noted, we use InferSent embedding model to com-
pute sentence embeddings. However, we note that training a sequence embedding model
is an ongoing research which will likely affect the quality of the discussed metric. Thus
we omit specific embedding model from the metric name refer to it as Frechet Distance
(FD).

Human Evaluation. Since the goal of a text generation model is to create samples
that are indistinguishable from real ones, it is important to also perform human evalua-
tion to assess their quality. We send 200 samples from each model (uniformly sampling
from random restarts) to the human raters (using 3 raters per sample) asking them to
score if the presented sentence is grammatically correct and understandable on a scale
from 1 to 5 (with being 5 the best score).

5.6.2 Parameter optimization procedure

Since GANs are very sensitive to the choice of hyperparameters, we optimize these pa-
rameters using random search limiting the computational budget to 100 trials. Once we
have discovered the best performing set of hyperparameters, we retrain a model with
these hyperparameters 7 times and report mean and standard deviation for each metric
to quantify how sensitive the model is to random initialization. To justify the need of
such a procedure we show distributions of results achieved by three models during one
run in Figure 5.11. As expected, GAN-based models are considerably less stable than
Language Model.
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Figure 5.9: Scores assigned by four considered metrics for data with controllable amount of
quality deterioration. Each row shows one metric and each column one task. Note that neither
BLEU nor self-BLEU scores capture semantic deterioration of the data. For BLEU higher is
better. For other metrics lower is better. We increase FDs obtained with UniSent and LM
score embedding by a factor of 10 and decrease LM scores by the same factor for visualization
purposes.

In addition, we generally see that the best results achieved in a run are usually ob-
tained with a fortunate random seed supporting the second step of our procedure where
we retrain a number of models and then report both mean and standard deviation using
the best hyperparameters found during model tuning. We use the Adam optimizer [66] to
train our models and tune its hyperparameters separately for the generator and the dis-
criminator. When training models with per-step discriminators we also tune the discount
factor γ.

5.6.3 Metric Evaluation

In the following experiments we measure how well BLEU, Language Model and FD scores
capture syntactic and semantic variations.

Mode collapse. To emulate samples with varying degrees of diversity, we sample sen-
tences from the train set using a fixed set of allowed topics. We then use the development
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Figure 5.10: Learning curves of three differently sized Language Models. For all metrics lower
is better.

set containing the full set of topics as a reference. An evaluation metric should be able to
capture the fact that some topics, e.g. fictional sentences, are present in the reference but
not in samples. Results of this experiment are shown in Figure 5.9. We find that results
vary when the number of topics is small, so we run the evaluation 5 times and report the
average. Note that BLEU and LM score fail to capture semantic variations. FD, on the
other hand, drastically increases as we remove more and more topics. This also holds for
the reversed LM score. To test robustness of FD to the choice of embedding model we
use two additional sequence encoders [19] on the same data. One model is a mean pooled
uni- and bigram embeddings followed by a feedforward network (UniSent). The other
is a more computationally expensive Transformer [121] based model (UniSent-T). The
models are trained with a combination of supervised and unsupervised learning. We find
that all three models show comparable results suggesting that FD is robust to the choice
of a sequence embedding model. We also evaluate the self-BLEU score that has been
used to evaluate the degree of mode collapse [77]. To compute this metric we sample
from a model twice and then compute BLEU score of one set of samples with respect
to the other one. If a model suffers from mode collapse, then its samples are similar to
each other and such a metric will produce high values. In this experiment, however, we
observe that self-BLEU cannot detect this kind of mode collapse.

Sample quality. To measure metric sensitivity to the changes in the sample quality
we introduce two types of perturbations in the samples. One is word dropout where
we remove words with certain probability p that controls the quality of the samples.
The other is word swapping where we take a fraction of words present in a sentence and
randomly swap their places. Results of these experiments are presented in columns 2 and
3 of Figure 5.9. Interestingly, the BLEU score is not very sensitive to word dropping.
FD, on the other hand, significantly worsens under heavy word dropout. The situation
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Conv-LSTM GAN (BLEU4=0.197, FD=1.464)

a young woman is sitting on a into into, on his sit
young woman woman woman while a group of son
the people are hair with sons
a little girl is wearing dogss
the children is at a red
man man white whiteing

Language Model (BLEU4=0.204, FD=0.273)

a man is competing in his ski class
the man is playing the accordion
she is the baby’s sisters
the man is walking towards the fountain
a boy is climbing a tree lined
a man uses what looks to be a lawn mower

Table 5.3: Random samples from two models
with close BLEU scores and considerably differ-
ent FD.

is the opposite for word swapping, where the BLEU score is reacting more than FD.
We attribute this behavior of FD to the underlying sequence embedding model. Since
we use a bi-directional LSTM with max-pooling, it might have learned to be position-
invariant due to pooling and is thus having difficulties detecting this kind of syntactic
perturbations. Further research on better sequence embedding models is likely to improve
the quality of evaluation with FD. LM score successfully captures decreased quality of
samples but does not react to decreased diversity. Reversed LM score is sensitive to all
three types of deteriorations.

In our second experiment we train three LSTM Language Models with one hidden
layer with sizes 32, 256 and 1024. In this setting a larger model consistently achieves
lower perplexity scores and thus we expect a metric to be able to detect that larger model
produces better samples. In addition, we evaluate the models during training to also get
the FD and LM score curves. Results of this experiment are shown in Figure 5.10. Note
that all three metrics exhibit strong correlation and generally maintain ordering between
differently sized models and different checkpoints of the same model. Our experiments
suggest that both FD and reverse LM score can be successfully used as a metric for
unsupervised sequence generation models. We generally observe reverse LM score to be
more sensitive. However, it is prohibitively expensive to use during tuning. We thus opt
for FD as a metric to optimize during hyperparameter searches. We report both for fully
trained models and encourage other researchers to also make use of these metrics for
evaluation. Lastly, we note that neither of the proposed metrics is perfect since they do
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Figure 5.12: Results of best models shown on two complementary axes. We show negative
values of BLEU4 for visualization purposes. Note that according to BLEU scores three models
have comparable results, while LM scores show significantly better results for one model. We omit
Conv-Deconv and Conv-LSTM models from these Figures since they show results considerably
worse than those of other models.

not detect overfitting. Indeed, if a model simply remembers the training set and samples
from it uniformly then this model will score perfectly on each of the proposed metrics.
The same observation holds for BLEU scores. In addition, no metric provides breakdown
into precision and recall. We leave these issues for further research.

5.6.4 GAN model comparison

For all GAN models that we compare we fix the generator architecture to be a one-layer
Long Short-Term Memory (LSTM) network (except for the Conv-Deconv model). Other
types of generators show promise [121], but we leave them for further research.

Table 5.4 shows the results obtained by various models using our evaluation proce-
dure. We make the following observations: (i) discrete GAN models outperform con-
tinuous ones, which could be attributed to the pretraining step – most discrete models
barely achieve non-random results without supervised pretraining; (ii) SeqGAN-reinforce
achieves lower LM score and higher human ratings than the Language Model but higher
reverse LM scores, suggesting improved precision at large cost to recall; (iii) Most of
GAN models achieve higher BLEU scores than the LM, while other metrics disagree,
showing that looking only at BLEU scores would put the LM at a significant disadvan-
tage; (iv) No GAN model is convincingly better than the LM. However, the LM is not
convincingly better than SeqGAN-reinforce either. While the LM achieves lower FD,
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Metric Language Model Conv-LSTM Conv-Deconv

Unique 4grams ↑ 43.5k ± 1.7k 35k ± 1.4k 24.9k ± 1.6k
BLEU4 ↑ 0.204± 0.005 0.197± 0.003 0.08± 0.02

Self-BLEU4 ↓ 0.21± 0.008 0.34± 0.02 0.45± 0.11
FD ↓ 0.273± 0.001 1.464± 0.087 1.81± 0.11

LM score ↓ 28.7± 1.3 221± 15 2800± 1100
Reverse LM score ↓ 80.3± 1.7 2273± 358 4000± 0.3
Human evaluation ↑ 3.37± 0.08 1.4± 0.1 1.88± 0.2

SeqGAN-reinforce SeqGAN-step SeqGAN-rollouts

Unique 4grams ↑ 34.9k ± 0.7k 56.2k ± 1.6k 38.2k ± 0.8k
BLEU4 ↑ 0.225± 0.005 0.192± 0.002 0.213± 0.005

Self-BLEU4 ↓ 0.226± 0.004 0.207± 0.006 0.217± 0.007
FD ↓ 0.316± 0.005 0.364± 0.01 0.348± 0.006

LM score ↓ 27.1± 0.36 37.5± 0.6 61.7± 5.4
Reverse LM score ↓ 94.6± 1.4 80.7± 1.4 106.6± 1.5
Human evaluation ↑ 3.49± 0.22 3.27± 0.16 2.78± 0.08

LeakGAN-leak LeakGAN-noleak LeakGAN-mixed

Unique 4grams ↑ 45k ± 1.3k 54.4k ± 2.8k 45.3k ± 2.4k
BLEU4 ↑ 0.219± 0.007 0.193± 0.008 0.21± 0.008

Self-BLEU4 ↓ 0.245± 0.01 0.21± 0.009 0.23± 0.011
FD ↓ 0.4± 0.009 0.385± 0.02 0.352± 0.008

LM score ↓ 67.9± 4 34.9± 1.5 35.9± 1.7
Reverse LM score ↓ 114.3± 1.6 87.4± 1.5 99.5± 3.9
Human evaluation ↑ 2.47± 0.28 3.35± 0.22 3.22± 0.15

Table 5.4: Results of best models obtained with our evaluation procedure. For brevity, we
report only BLEU4 scores in this table. We have measured scores humans assign to real samples
for reference and obtained a value of 4.27. ↓ means lower is better, ↑ higher is better.
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Figure 5.13: Results of models on FD, Human evaluation and Unique 4-grams.

LM score and human evaluations prefer the GAN model. This further supports that it
is important to report different metrics – reporting only FD would make the comparison
biased towards the LM; (v) We do not observe improvements of models with access to
the discriminator’s state, suggesting that the previously reported good result [43] may be
due to the RL setup; (vi) Supervised pretraining of the generator is extremely important,
since training of every GAN model that achieves reasonable results includes pretraining
step.

In addition, we generally observe that hyperparameter search favors low values of gen-
erator learning rates. This suggests that lower learning rates help to keep the generator
weights close to a Language Model used to initialize the weights. However, we note that
BLEU scores of the generated sequences improve suggesting, higher precision for GAN
models. We expect metrics that are capable of revealing trade-offs between precision and
recall to allow better understanding of what kind of generators GANs learn.

To further demonstrate that BLEU scores are not representative of a model’s quality
we present samples from the Conv-LSTM GAN and the Language Model in Table 5.3.
We make the following observations: Conv-LSTM GAN’s samples are qualitatively worse
than those of the Language Model due to spelling and syntactic errors. Its sentences
are also generally less coherent. However, the difference in BLEU score between these
two models is less than 1 point, as shown in Table 5.4. It is thus difficult to draw
conclusions from BLEU scores alone whether SeqGAN-rollout produces better samples
than a Language Model since the difference in BLEU scores for these two models is also
less than 1 point. FD and reverse LM score, on the other hand, reveal that samples from
Conv-LSTM GAN are considerably worse than those from a Language Model.

Human evaluation supports FD and the reverse LM score and also assigns better
scores to the Language Model. Note that in this particular case simply inspecting samples
from Conv-LSTM GAN and a Language Model would suffice. We are, however, interested
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in automated comparison of models, where BLEU scores seem to not show reliable results.

5.7 Conclusions

We have introduced a novel generative model of natural texts based on the VAE frame-
work. Its core components are a convolutional encoder and a deconvolutional decoder
combined with a recurrent layer. We have shown that the feed-forward part of our model
architecture makes it easier to train a VAE and avoid the problem of KL-term collapsing
to zero, where the decoder falls back to a standard language model thus inhibiting the
sampling ability of VAE.

Additionally, we propose an efficient way to encourage the model to rely on the latent
vector by introducing an additional cost term in the training objective. We observe that it
works well on long sequences which is hard to achieve with purely RNN-based VAEs using
the previously proposed tricks such as KL-term annealing and input dropout. Finally,
we have extensively evaluated the trade-off between the KL-term and the reconstruction
loss.

In addition, in this work we discuss a proper evaluation of GANs for language gener-
ation. We have discussed drawbacks of previously adopted evaluation using BLEU scores
and focused on the Frechet Distance and reverse Language Model scores. Our results
suggest that BLEU scores are insufficient to evaluate textual GAN systems. In contrast,
we have shown that both FD and reverse LM scores can successfully detect deteriorations
that BLEU is not sensitive to. In addition, we have proposed a more systematic evalu-
ation protocol and shown evidence that it provides a better picture than just reporting
the single best result.

We used the proposed protocol and metrics to evaluate a number of adversarial text
generation systems. We found that properly tuned conventional Language Models yield
better results than any of the considered GAN-based systems. In fact, with proper hy-
perparameter tuning we find that when evaluated with FD the best results are achieved
when the learning rate of the GAN generator after pre-training is the lowest, which
corresponds to not performing GAN training at all, further supporting the need of re-
porting a number of metrics. These results generally agree with those obtained by a
recent study [77]. The authors find that most models yield worse results than a simple
Language Model. However, they do not perform hyperparameter tuning and report only
BLEU scores, which makes it difficult to draw a convincing conclusion from the proposed
comparison.
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6
Conclusions

In this work we have introduced a number of improvements to RNNs applied to natural
texts and images. In this chapter we briefly summarize our contributions and outline
directions for further research.

We have generalized the successful dropout regularization to RNNs by identifying the
core issue of naive application of this regularization scheme. We have then experimentally
demonstrated its effectiveness across a number of NLP tasks, including tagging, classifi-
cation and language modeling. The approach have then been used by other researchers to
establish state-of-the-art results in NLP tasks [44]. The introduced algorithm is readily
available in Tensorflow, one of the major frameworks for Deep Learning research [1].

We have introduced a fully differentiable Recurrent Attention Model and have exper-
imentally validated its effectiveness. The model was able to achieve a significantly lower
error rate on a specifically designed semi-synthetic task when compared to a strong base-
line. Furthermore, we have achieved state-of-the-art result on the task of transcribing
unsegmented house number images. However, our model was not able to outperform a
CNN based baseline on the large-scale Imagenet dataset. We attribute this to the na-
ture of the dataset – most images already contain a single centered object occupying the
majority of an image. Under these conditions, an attention mechanism cannot do much
more than simply scan the whole image. We observe this behavior in our trained models,
suggesting that an object detection task would be more suited to this kind of models.
This suggest one direction of future research, where it is possible to train a model to
perform object detection without explicit and expensive supervision, since it is capable
of learning object detection only from classification error. Another direction is to apply
the proposed Recurrent Attention Model to more challenging datasets.

Lastly, we have focused our research on generative models of natural texts based
on combinations of conventional Language Models with Variational Autoencoders and
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Generative Adversarial Networks. We have shown that a purely recurrent VAE for text
suffers from poor convergence on long text snippets and addressed this issue with a hybrid
architecture combining both recurrent and feedforward layers. This has allowed us to
better control the KL-term of the VAE objective function leading to better generations
on challenging text datasets. An immediate extension of this work is to build a system
capable of generating texts based on external attributes provided by a user, such as
sentiment or topic. A recent work [50] discusses such a model using similar approach.

Researchers working on GAN based models for text generation have been using BLEU
scores to compare various models. In our work we demonstrate that this is a flawed met-
ric that can yield very misleading results. In addition, it is not capable of detecting
certain failure modes of text generation models. To address these issues, we have intro-
duced a number of metrics to compare such models. Furthermore, we have introduced
a common comparison protocol to ensure that every model being compared is allocated
a similar amount of computational budget for hyperparameter tuning. We have then
used the proposed metrics and protocol to perform an empirical evaluation of a number
of GAN based models and to compare these models with a LM baseline. Somewhat
surprisingly, we found that none of the considered models consistently outperforms the
Language Model. Further research in this direction involves further improvements to
becnhmarking protocol, design of a unified metric for evaluation of languge generation
and better coverage of evaluated models.

In conclusion, in this work we have introduced a number of improvements to RNN
based Machine Learning models. They boost regularization capabilities of Recurrent
Neural Networks and open new directions of research in image analysis. We have studied
the problem of generative modeling of natural texts and made a number of contributions,
ranging from architectural improvements to better evaluation metrics.
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