UNIVERSITAT ZU LUBECK

From the Institute for Theoretical Computer Science
of the University of Liibeck
Director: Prof. Dr. Riidiger Reischuk

Algorithmic Learning of DNF Formulas,
Finite Automata, and Distributions

Dissertation
for Fulfillment of Requirements

for the Doctoral Degree
of the University of Liibeck

from the Department of Computer Sciences

Submitted by

Matthias Lutter
from Winsen (Luhe)

Liibeck, June 18, 2019

First referee: Prof. Dr. Riidiger Reischuk
Second referee: Prof. Dr. Hans Simon
Date of oral examination: October 25, 2019

Approved for printing. Liibeck, October 28, 2019

Abstract

In this thesis, two open problems regarding learning DNF formulas and regular
languages, respectively, are solved. Further, new results concerning the identifi-
cation of areas exceeding a specific density in probability distributions, called
density levels, is presented.

First, efficient and proper learning of DNF formulas is studied. For k-term
DNF formulas, a learning algorithm that learns from positive examples alone is
presented, where the examples are drawn at random according to an unknown
g-bounded distribution, a generalization of the uniform distribution. This solves
an open problem addressed by Pitt and Valiant [J. ACM, 1988]. Afterwards, a
negative result concerning learnability of poly(d)-term DNF is presented.

Second, learning regular languages represented by a specific type of finite
automata, namely residual alternating automata, is considered. An alternating
automaton can provide a very succinct representation of a regular language,
while residuality adds a natural meaning to the automaton’s states that may
simplify its later analysis. It is shown that the AL* algorithm designed by
Angluin, Eisenstat, and Fisman [Proc. IJCAI, 2015] sometimes returns non-
residual alternating automata (AFAs), which disproves a conjecture postulated
by the authors. This issue is fixed by the design of a a new algorithm AL**
that always returns residual AFAs. This algorithm fulfills the same asymptotic
complexity bounds as AL*. Afterwards, the succinctness of different finite
automata is investigated.

Last but not least, the estimation of density levels via algorithmic learning is
investigated within the framework of Ben-David and Lindenbaum [JCSS, 1997]
— a framework that transforms the spirit of PAC learning to density levels. At
first, the relation between learning density levels and the estimation of the entire
probability distribution function is clarified. Then it is shown that algorithms
that maximize the empirical excess mass can be applied directly to learn density
levels in this framework. Until now, it seems that this framework has not been
helpful to design learning algorithms. Empirical excess mass maximization has
been introduced by Miiller and Sawitzki [JASA, 1991] and Hartigan [JASA, 1987]
independently. It has been used widely to estimate density levels without such
a framework. The result presented in this thesis implies that empirical excess
mass maximization algorithms are successful learners without the necessity to
prove this property for each algorithm separately.

iii

Zusammenfassung

In dieser Arbeit werden zwei offene Probleme beziiglich des Lernens von DNF-
Formeln beziehungsweise von reguléren Sprachen geldst. Des Weiteren werden
neue Forschungsergebnisse bei der Identifikation von Bereichen bestimmter
Mindestdichte in Wahrscheinlichkeitsverteilungen préasentiert, den Dichteleveln.

Zuerst wird effizientes und sogenanntes ,proper” Lernen von k-term-DNF-
Formeln untersucht. Im Zuge dessen wird ein Lernalgorithmus vorgestellt, der
einzig aus positiven Beispielen lernt, wobei die Beispiele zuféllig geméf einer
unbekannten g-beschrankten Verteilung gezogen werden. Diese Klasse von Wahr-
scheinlichkeitsverteilungen stellt eine Verallgemeinerung der Gleichverteilung
dar. Mit dem vorgestellten Verfahren wird ein offenes Problem von Pitt und
Valiant [J. ACM, 1988] gelost. AnschlieBend wird ein negatives Ergebnis fiir das
Lernen von poly(d)-term-DNF vorgestellt.

Als Zweites wird das Lernen von reguléren Sprachen, représentiert durch residua-
le alternierende Automaten, betrachtet. Alternierung ermoglicht die kompakte
Beschreibung regulérer Sprachen, wihrend Residualitdt den Automatenzustin-
den eine natiirliche Bedeutung verleiht, die die spatere Analyse des Automaten
vereinfacht. Es wird gezeigt, dass der AL*-Algorithmus, entworfen von Angluin,
Eisenstat, und Fisman [Proc. IJCAI, 2015], vereinzelt nicht residuale alternie-
rende Automaten (AFAs) ausgibt. Dies widerlegt eine Vermutung der Autoren.
Folglich wird der neue Algorithmus AL*™* entwickelt, der dieses Problem behebt
und beweisbar stets residuale AFAs erzeugt. Dabei werden die gleichen asym-
ptotischen Komplexitdtsschranken eingehalten wie von AL*. Anschlieend wird
die Kompaktheit verschiedener Typen von endlichen Automaten untersucht.

Schlussendlich wird das Abschédtzen von Dichteleveln mittels algorithmischen
Lernens im Framework von Ben-David und Lindenbaum [JCSS, 1997] untersucht.
Dieses Framework tibertragt das PAC-Lernen auf das Lernen von Dichteleveln.
Zunéchst wird jedoch der Zusammenhang zwischen dem Lernen von Dichteleveln
und der vollstdndigen Abschitzung der Wahrscheinlichkeitsverteilungsfunktion
abgeklart. Darauffolgend wird gezeigt, dass jeder Algorithmus, der die ,,em-
pirische Uberschussmasse® maximiert, direkt im Framework zum Lernen von
Dichteleveln angewendet werden kann. Bisher erschien das Framework von Ben-
David und Lindenbaum wenig hilfreich beim Entwurf von Lernalgorithmen. Die
Maximierung der empirischen Uberschussmasse wurde unabhéingig voneinan-
der von Miiller und Sawitzki [JASA, 1991] sowie von Hartigan [JASA, 1987]
eingefiihrt. Sie wurde bereits auflerhalb des Frameworks genutzt, um Dichte-
level abzuschétzen. Das hier vorgestellte Ergebnis impliziert, dass derartige
Lernverfahren erfolgreich sind, ohne dies jedes Mal einzeln zeigen zu miissen.

Contents

1 Introduction and Motivation

2 Learning Models
2.1 General Setting
2.2 Learning from Examples
2.3 Learning with Queries
2.4 Relationship of Learning Models

3 Learning k-term DNF Formulas From Satisfying Assignments
3.1 Related Work
3.2 On Monomials, k-term DNFs, and Other Formulas
3.3 The k-term DNF Learner
3.4 Generating Maximal Monomials for a CNF Formula
3.5 Bounding the Subset Size for Maximal Monomials
3.6 The Correctness and Complexity of Learn-k-Term-DNF
3.7 Infeasibility for Unrestricted DNF Formulas

4 Learning Residual Alternating Automata
4.1 On Automata and Regular Languages
4.2 Learning Automata
4.3 Analysis of the AL* Algorithm
4.4 Learning Residual Alternating Automata
4.5 The Size of Residual AFAs

5 Learning Density Levels of Distributions
5.1 The Learning Model
5.2 Learning Density Levels Versus the Complete Density Function .
5.3 Consistent Density Level Learners
5.4 Empirical Excess Mass Maximization

6 Conclusions and Discussion
Bibliography

Curriculum Vitae

vii

1 Introduction and Motivation

Machine learning is the algorithmic generalization of data in order to predict
specific attributes of future data. The amount of data a learning algorithm
can access before it needs to formulate a hypothesis is bounded to prevent it
from trivial reproduction. Learning is not always possible, e.g. if the data is
completely random. In the case of random data, only rote learning is possible,
i. e. obtaining and memorizing all data.

Consider the model of PAC learning. It has been introduced by Valiant [61]
and is kind of the standard model in computational learning theory. In this
model, the learner shall identify an unknown subset — called the concept — of the
learning domain. The learner receives a sample consisting of random examples
from the learning domain according to an unknown arbitrary distribution. The
examples are labeled by their membership of the concept. Learning algorithms
are designed under an assumption about which concepts may occur at all. The
set of these concepts is called the concept class. For example, a concept may be
the set of binary strings satisfying a specific monomial. Then, the concept class
may be the set of all concepts represented by a monomial. Whenever we talk
about learning specific Boolean functions such as monomials, disjunctive normal
form (DNF) formulas, and so on, we consider the concept class that consists
of the concepts containing the satisfying assignments of such a formula each.
Ideally, the learner identifies the target concept exactly. This may not always
be possible, thus a slightly diverging hypothesis, which even may not be part of
the concept class, could be returned. If the hypothesis generated by the learner
always is guaranteed to be part of the concept class, learning is called proper.

Blumer et al. [14] have shown that the number of examples required for learning
in the PAC model is linear in the complexity of the concept class, measured by
the VC dimension. However, even for concept classes with small VC dimension,
the learning problem may not be solvable within a reasonable time complexity.
E. g., this is the case for proper learning of k-term DNF formulas — DNF formulas
that consist of at most k monomials — for k£ > 2, unless RP = NP [51].

In computational learning theory, it is studied which concepts can be learned in
which learning models at all and within which computational time complexity.
This lays the foundation of practical machine learning methods and helps to
understand how and why they work. Recently, there has been great progress
in practice, e.g. see AlphaZero [58]. Most of the recent advances have been
achieved without a well-founded theoretical basis. This may work for a certain
time, but for further targeted development it is necessary to deeply understand
the functional principles. Therefore, research in learning theory is important

1 Introduction and Motivation

especially to close the gap between theory and practice. In this thesis, we will
consider three different problems from computational learning theory, regarding
learnability of DNF formulas, finite automata, and probability distributions.

As already mentioned above, in the PAC model k-term DNF formulas cannot be
learned properly and efficiently from arbitrary distributions of examples unless
RP = N'P. Pitt and Valiant [51] have formulated the question whether the
situation changes if the set of possible distributions is restricted. Subsequent
research indeed shows that if the family of probability distributions is restricted,
the situation changes dramatically. Three notable results are as follows.

e Proper and efficient learning of k-term DNF formulas becomes possible
over g-bounded distributions [34].

e However, depending on the application the learner may only have access to
positive examples (satisfying assignments). The problem of learning k-term
DNF formulas from satisfying assignments alone has been solved partially
by Sakai and Maruoka [54] for the uniform distribution. The authors
have constructed an efficient algorithm for learning the more restricted
monotone DNF (MDNF) formulas — DNF formulas without negated vari-
ables — properly and from satisfying assignments alone. Moreover, the
algorithm presented by the authors stays efficient even for log(d)-term
MDNF formulas, where d denotes the number of different variables that
may occur in the formula.

e More recently, De et al. [21] managed to learn general DNF formulas
efficiently from uniformly distributed satisfying assignments alone, but
not properly.

In Chapter 3 of this thesis, the problem of learning k-term DNF formulas properly
and efficiently from satisfying assignments only over g-bounded distributions is
solved. Also a negative result for unbounded DNF formulas in the considered
learning model is presented.

Let us introduce the second learning problem studied in this thesis: learning
regular languages by finite-state automata (FA). In 1987, Angluin [5] has in-
troduced the L* algorithm that learns the minimal deterministic FA (DFA) for
an unknown regular target language L by asking membership and equivalence
queries. While the answer to a membership query tells the learner whether a
specific word is in L, an equivalence query is answered with a counterexample
if the hypothesis presented within the query is not equivalent to the target
language L. Since the minimal DFA may be quite large, some effort has been
expended to learn more succinct automata like non-deterministic ones (NFA)
or even alternating FAs (AFA). A first attempt to generate an NFA hypothesis
was due to Yokomori [66]. However, in some cases the automata generated
by his algorithm may be even larger than the equivalent minimal DFA [42].
The breakthrough for learning NFAs was the work of Bollig et al. [15], using a
property called residuality that had been found by Denis et al. [26] before. Bollig
et al. [15] presented the algorithm NL* for learning residual NFAs (RNFA), which
may be more compact than DFAs. Alternating finite automata (AFA) may

allow an even more compact representation than NFAs while the membership
problem can still be solved efficiently [17]. Angluin et al. [7] have constructed
the learning algorithm AL* for AFAs more recently. They conjectured that their
algorithm always outputs residual alternating automata automata (RAFAs), but
they left this question open since they were not able to give a proof. Residuality
is desirable, because it makes NFAs and AFAs more natural such that they may
be easier to analyze.

The conjecture of Angluin et al. is disproved by a carefully designed counterex-
ample in Chapter 4 of this thesis. Afterwards, a modified algorithm AL** is
constructed and proven to always output RAFAs, solving the open problem.

Finally, we consider distribution learning. The learner receives unlabeled ex-
amples drawn at random according to an unknown distribution. The goal is
to estimate the density function of the target distribution or at least a specific
property of the distribution. Ben-David and Lindenbaum [11] have introduced
a framework for learning high-density areas of probability distributions. The
learner shall return a hypothesis i such that the density function of the unknown
target distribution exceeds a specific value for almost all elements = € h. The
authors mention applications like detection of accident-prone drivers, marketing
analysis, or pattern recognition. However, we are aware of only one concrete
application of this framework, see Ernst [28]. That may be because it seems
hard to implement tests for the sufficient conditions introduced by Ben-David
and Lindenbaum. Also it seems difficult to prove the correctness of such tests if
non-trivial concept classes are considered. In Chapter 5, it is shown that the
maximization of the empirical excess mass is an alternative sufficient condition
for a successful learning algorithm in the framework. The empirical excess
mass is a measure that has been introduced by Hartigan [36] and Miller and
Sawitzki [48] independently. It has been studied in statistical distribution esti-
mation, but has not been used in computational learning theory yet. Combining
the framework of Ben-David and Lindenbaum with the empirical excess mass
maximization yields applicability of already-known algorithms from statistical
distribution estimation in the framework.

The results presented in Chapter 3 originate from common work with Maciej
Liskiewicz and Riidiger Reischuk and have been published in [29]. Among other
things, the author of this thesis has especially contributed the fundamental
solution strategies and drafts of the proofs. Regarding Chapter 4, the results
presented there have been published together with Sebastian Berndt, Maciej
Liskiewicz, and Riidiger Reischuk before in [12]. Here, again among other things,
the author of this thesis has contributed the construction of a complex software
package to examine learning algorithms for finite automata, the non-residual
counterexample for AL*, and the method to ensure residuality of AL**. Finally,
the results presented in Chapter 5 originate from common work with Riidiger
Reischuk. The author of this thesis has especially contributed the fundamental
solution strategies and drafts of the proofs.

2 Learning Models

In this chapter, an overview of models commonly used in the computational
learning theory literature is given. The presentation focuses on PAC(-like)
models (e.g. PAC, CN, SQ, ...) and perfect learning. Before a precise definition
of each model is given, a general setting is presented that abstracts the different
learning models to their similarities.

When the general setting has been defined, the main differences of the specific
models will become visible. They differ in their (error) parameters and the
error parameters’ ranges as well as in the oracle the learner can access. For all
learning models, their parameters and the parameters’ range turn out to be
a natural consequence of what the oracles allow. Thus, PAC-like learning is
separated from perfect learning by the error parameters’ range. Nevertheless, it
seems natural to classify the learning models by their oracles, which then imply
the parameters and parameters’ restrictions.

Besides the pure models, there exist variants that can be applied to them. E. g.,
one can choose a specific family of underlying distributions, require efficient
computability, or proper learning. These variants and the power of different
models with and without variations will be discussed at the end of this chapter.

2.1 General Setting

Let X = {X; : d € IN} denote the learning domain, a family of sets X,;, where
X, contains elements with a representation of length d. In the following, d will
always denote the length of representation, also called dimension of Xj.

A concept of dimension d is a subset ¢ C X;. We overload the notation with
the characteristic function ¢ : Xy — {0,1}. Let Cq C 2% be a set of concepts of
dimension d. A concept class C = {Cq : d € N} is a family of sets Cy.

For example, the concept class of monomials is a family of sets of all concepts
that can be represented by a monomial. I.e., a concept ¢ of dimension d is in
Cy if there exists a monomial M over X; = {0,1}% such that M = c.

Let Dy denote a set of distributions over X and D := {D, : d € N}. Further, let
Hq be a set of hypotheses h : Xy — {0,1} with dimension d. The corresponding
family of hypotheses is H = {Hy4 : d € IN}. For a concept ¢ € C4 and a
probability distribution D € D, let O denote an oracle that provides some kind
of information about ¢ and D.

2 Learning Models

Definition 2.1 (Learning Algorithm). In the general setting, a learning algo-
rithm A with hypothesis space H = {Hq : d € N} receives parameters d, e, and
0 and generates a hypothesis h € Hy. For that purpose, A may ask its oracle O
at most a polynomial number of queries with respect to d. The number of queries
asked is called query complexity. A is called efficient if its running time is also
polynomially bounded. In the setting of proper learning, Hq C Cq is required for
every d € IN.

A learning algorithm may access several oracles. Formally, a set of oracles
O1,...,0 can be combined to a single oracle O1 4 - - - + Oy, that on a query

(i, Q) returns O;(Q).

Definition 2.2 (Successful Learning Algorithm). Given certain ranges R. and
Rs, a learning algorithm A is successful for a concept class C over a class
of distributions D if for every dimension d € IN, every concept ¢ € Cq, every
probability distribution D € Dy, and every error parameters € € R.,0 € Rs with
probability at least 1 — § the error of the hypothesis h output by A, defined by

error(h) := Pr [h(z) # c(x)] ,

rEpXy

1s less than €.

Typically R. = Rs = (0,1), but the situation R. = Rs = {0}, which is called
perfect learning, is also considered. Learning weakly without false positives
denotes that the condition error(h) < e is supplemented by the additional
requirement h C c. Learning strongly without false positives requires that the
hypothesis must always satisfy h C ¢, independent of the confidence parameter

J.

Definition 2.3 (Learnability). A concept class C is (efficiently) learnable with
respect to D if an (efficient) learning algorithm for C over D exists.

A concept class C is learnable in the distribution-free setting if C is learnable
with respect to the family of all probability distributions.

2.2 Learning from Examples

Let us organize the great quantity of different settings used in learning theory
by the oracles that are available to the learner. In this section, different types of
non-interactive oracles are considered. These oracles just provide some randomly
chosen element each time they are queried. In the next section, interactive
oracles that respond to queries will be described.

For learning models that use only non-interactive oracles, € and § are restricted
to positive values, because learning with error probability 0 is impossible. The
query complexity of learning algorithms in these models must be bounded
polynomially with respect to d, 1/e, and 1/6. We begin with the following brief

2.2 Learning from Examples

definition of the EX(D) oracle. This oracle provides random elements of X
with respect to the hidden distribution D € Dj.

2.2.1 Learning from Labeled Examples

The probably approximately correct (PAC) learning has been introduced by
Valiant [61]. The essence of this model are the confidence and error parameters
d > 0 ("probably") and € > 0 ("approximately"). The PAC model provides the
basis for the other example-based learning models considered later in this section
as well as for SQ learning (see Section 2.3.2). Strictly speaking, distribution-free
learning is required in the PAC model and the models derived from PAC learning.
We will specify the family of distributions D together with the learning model
in each case. Thus, the following PAC definition is more about the oracle than
the distributions.

Definition 2.4. For a concept ¢ € Cq and a probability distribution D € Dy,
let PAC(¢, D) denote the following oracle. When given a query to PAC(c, D), it
returns a pair (x,c(z)), where x is drawn from X; according to D independently
at random.

A learning algorithm A with a PAC oracle is called a PAC learner.

2.2.2 Learning from Positive Examples Alone

For applications like steganography or machine learning, it is often difficult to
obtain meaningful natural counterexamples, while positive examples can be
gathered easily. E. g. for learning in steganography, innocuous digital images can
be collected easily. However, it is not clear how suspicious images are distributed
in general and how they can be obtained independent of a specific stegosystem
[45, 29]. The PAC model can be modified as follows to cover the setting of
positive examples only.

Definition 2.5. For a concept ¢ € Cq and a probability distribution D € Dy, let
POS(¢, D) = EX(D,) be the sampling oracle where D, denotes the conditional
probability distribution of D over the set ¢, i.e. D.(x) = D(z)/D(c) if z € c,
and otherwise D.(z) = 0, where D(c) = 3, c. D(y)-

A learning algorithm A with a POS oracle is called a POS learner.

2.2.3 Learning from Positive and Unlabeled Examples

Learning from positive examples alone is a hard requirement, especially in
the distribution-free setting. In this setting, successful learning from a POS
oracle alone implies that the learner must not output a hypothesis that contains
any false positives. The reason is that every single false-positive could have
an arbitrary large probability according to the unknown distribution over the

2 Learning Models

learning domain. Information about the distribution of elements outside the
concept class may help the learner who can make a two-sided error in this setting.
For a details discussion see Denis [24].

Denis has suggested to provide distribution information by an additional EX
oracle. Note that learning with access to POS and EX oracles is not an artificial
setting. Denis mentions applications in marketing analysis or medicine. In
addition, applications are in steganalysis or intrusion detection, where positive
examples (stegotexts or network attacks, resp.) are available among a large
set of unclassified examples (set of images found on the internet or the entire
network traffic, respectively).

Definition 2.6. A learning algorithm A with a POS+FEX oracle is called a
POS+EX learner.

2.2.4 Learning from Noisy Examples

Examples obtained in practice may sometimes be labeled incorrectly, e.g. when
the examples are classified by humans. A learning algorithm that assumes every
example to be labeled correctly might probably output a bad hypothesis or run
into a deadlock. The learning model with classification noise (CN) has been
introduced by Angluin [8].

In the CN model, the noise is stochastically independent of the examples.
However, the noise rate 7 is not known to the learning algorithm, but an
upper bound 79 < 0.5. The query complexity (respectively time complexity)
of (efficient) learning algorithms in the noisy models must be bounded by a
polynomial with respect to d, 1/e, 1/§, and 1/(1/2 — no).

Definition 2.7. For a concept ¢ € Cq and a probability distribution D € Dy, let
CNy(c, D) denote an oracle defined as follows. Every time the CNy(c, D) oracle
is queried, with probability 1 — n it returns (z,c(x)), and with probability n the
pair (z,1 — c¢(x)). In both cases, x is drawn from Xy independently at random
according to D.

A is called a CN learner if for all CN,, oracles with n < ng, A is a learning
algorithm with access to CNy,.

The CN model assumes that the noise is constant. This strict requirement can
be relaxed as follows. The constant partition classification noise (CPCN) model,
introduced by Decatur [23], is a generalization of the CN model. The domain Xy
is partitioned into a constant number k of arbitrary regions X7, ..., X, where
each partition X; has its own noise rate n; < ng. The actual partitioning is not
known to the learner. Ralaivola et al. [53] have shown that a concept class C
can be learned (efficiently) in the CN model if and only if it can be learned
(efficiently) in the CPCN model.

2.3 Learning with Queries

2.2.5 Learning High-density Regions of Distributions

This model has been introduced by Ben-David and Lindenbaum [11]. The goal
is to identify regions where the unknown probability measure attains high values.
The learner can access an EX oracle to perform this task.

This model has similarities to a noisy POS setting, where elements of the concept
are sampled with higher probability than elements outside of the concept. The
details of this model will be presented in Chapter 5.

2.3 Learning with Queries

Now let us consider interactive oracles that react to (adaptive) queries and
provide specific information requested by the learner.

2.3.1 Learning from Membership Queries and Counterexamples

In this model, which has been introduced by Angluin [5], the learner can ask
two different types of queries to its oracle:

e For a membership query, the oracle MEMBER(c) is called with some
element = € X; and returns c(z).

e For an equivalence query, the oracle EQUIV (c) is called with some hy-
pothesis h : X3 — {0,1} and returns "yes" if A = c¢. Otherwise it returns a
counterexample x € X such that h(x) # c(z).

The oracles provide exact information without randomness, hence in principal
perfect learning can be achieved if there is no bound on the number of queries.

Definition 2.8. A is called a learner from membership queries and counterex-
amples if A is a perfect learner with access to a MEMBER+EQUIV oracle.

In Section 2.4.1, we will see that the EQUIV oracle can be simulated by a PAC
oracle if errors are allowed. This leads to a variation of the MEMBER+EQUIV
model towards the PAC+MEMBER model: the MEMBER oracle may help
the PAC learner to remove uncertainty about elements he has not received
by sampling. In this model, perfect learning is not required particularly with
respect to the PAC oracle.

2.3.2 Learning from Statistical Queries

Learning from Statistical Queries (SQ) has been introduced by Kearns [38]. The
motivation for his model is that every learning algorithm in the SQ model can
be transformed to a CN learner and it is easier to design an algorithm and prove
its correctness in the SQ model.

2 Learning Models

The learner has access to an SQ oracle STAT (¢, D) which he can ask the
following type of queries. A statistical query (x, T) consists of a set of labeled
examples x C X x {0,1} and an accuracy parameter 0 < 7 < 1. When
STAT(c, D) receives a statistical query (x,7), it returns an estimation P of
P = Pryc,x,[(x,c(z)) € x], which is the probability that a PAC(c, D) example
is in x. The estimation satisfies |P — P| < 7. A set y may be compactly
represented, e. g. by an algorithm that computes a membership test. The length
of representation and the computation time of membership testing must be
bounded by a polynomial with respect to d and 1/¢.

The learner A needs to choose 7 in order to adapt it to its required accuracy
e. To prevent A from choosing arbitrary small values, we require 1/7 to be
polynomial in d and 1/e.

Contrary to learning from non-interactive oracles, an SQ learner does not have
to deal with rare cases in which the relative frequencies notably deviate from
the underlying distribution. The SQ oracle guarantees that the probability
estimation always satisfies the requested accuracy 7. Thus, the real probability
of specific events is known to the learner with just a small deviation. Contrary
to that, a PAC oracle may provide a sample whose relative probability differs
massively from the real underlying probability distribution. In such a case, the
learner has no chance to find an appropriate hypothesis and will fail consequently.
Even though this case is rare, it makes learning impossible if the learner is not
allowed to fail completely sometimes. The confidence parameter § determines
how often the learner is allowed to fail. A choice of § > 0 is necessary in PAC
learning to enable learning ever. On contrary, an SQ learner does not have
to deal with this problem, thus a confidence of § = 0 can be achieved — and
consequently is required in this model. However, the approximation error 7 > 0
of P makes it impossible to achieve perfect learning, thus an error of € > 0 must
be allowed.

Definition 2.9. A is called an SQ learner if A is a learning algorithm with an
SQ oracle.

In [25], Denis describes learning from positive statistical queries. In this
model, the SQ oracle STAT (¢, D) is replaced by POSSTAT+EXSTAT, where
POSSTAT(¢,D) := STAT(c,D.) and EXSTAT (¢, D) := STAT(X,D). While
the STAT oracle returns estimates for the distribution of a PAC oracle, POS-
STAT estimates a POS oracle and FXSTAT estimates an EX oracle. Thus,
Denis’ model is an SQ variant of learning from positive and unlabeled examples.
More types of interactive oracles for learning with queries can be found in [6].

2.4 Relationship of Learning Models

In the previous sections, the following main attributes of learning models have
been discussed: the oracles the learner may access, the distribution family,
requirements regarding time efficiency, and proper learning. These attributes

10

2.4 Relationship of Learning Models

can be combined in different ways and each combination may lead to a different
set of learnable concept classes. For example, the class of k-term DNF formulas
can be PAC learned in the distribution-free setting efficiently if and only if
proper learning is not required [51].

2.4.1 The Power of Oracles

We denote the set of concept classes that are distribution-free learnable without
requirements regarding efficiency or proper learning within a specific model by the
name of the corresponding oracle. For example, STAT = {C : C is SQ learnable}.

The following relationships of learning models are known:

POSSTAT+EXSTAT C STAT
C STAT+EX
C CPCN
= CN
C POS+EX
C PAC C PAC+MEMBER .

The relations POSSTAT+EXSTAT C STAT C STAT+EX hold trivially as
well as PAC C PAC+MEMBER.

Feldman [30] has shown that STAT+EX is strictly more powerful than STAT
alone. For a special designed concept class Line,, learning with the help of a
STAT+EX oracle is possible with polynomial sample complexity, while for a
pure STAT oracle every algorithm needs an exponential sample complexity in d
in order to bound the hypothesis’s error to ¢.

To show STAT+EX C CN, the STAT4+EX oracle can be simulated with
the help of a CN oracle as follows. For STAT queries, use the technique of
Kearns [38]. For EX queries simply remove the labeling from the output of the
CN oracle.

Denis [24] has shown a method to simulate a CPCN oracle using a POS+EX
oracle. The simulation of the CPCN oracle answers a query as follows. With
probability 2/3, it returns an example from POS tagged with a positive label.
On the other hand with probability 1/3, it returns an example from EX tagged
with a negative label. Applying this method, all examples that are not inside the
concept are labeled correctly. Examples of the concept may be labeled incorrectly
as negative, but only with probability D(c)/3. Note that the distribution of
examples is changed by this simulation. However, this does not affect the
learnability of a concept if the error parameter ¢ is adjusted appropriately. This
implies CPCN C POS+EX. For more details see [24].

For POS+EX C PAC, the EX oracle can be simulated trivially by a PAC
oracle. To simulate the POS oracle, the PAC oracle is queries many times

11

2 Learning Models

until it returns a positive example. If positive examples are rare and no one is
returned by the PAC oracle after polynomially many queries, a simulation of
the POS oracle is not necessary. In this case, the empty hypothesis is a good
approximation for the target concept, and can be returned by the learner. The
relation POS+FEX C PAC has been observed originally by Denis [24].

In the following we look at some further relations of oracles that are not covered
by the inequation above.

As already mentioned in Section 2.2.3, learning from a POS oracle alone may be
difficult in the distribution-free setting. By continuing with this observation, the
weakness of a pure POS oracle can be proven. The lack of information about the
probability distribution of negative examples yields an information-theoretical
difference between a POS oracle and a POS+EX setting [24]. Thus, at least for
proper learning, POS C POS+FEX. More detailed results for learning from a
POS oracle alone can be found in [49, 57]

Under cryptographic assumptions and for efficient learning, it holds that PAC' C
PAC+MEMBER. This follows from the learnability of the concept class of
deterministic finite automata (DFAs). This class can be learned in the PAC
model with an additional MEMBER oracle [5]. However, under cryptographic
assumptions DFAs cannot be learned efficiently in the pure PAC model [41].

Finally, let us compare the PAC oracle with the EQUIV oracle. We have noted
before that the EQUIV oracle may allow perfect learning for specific concept
classes, while for non trivial concept classes this is impossible using a PAC
oracle. However, the error requirements in the corresponding learning models
take this into account. So when comparing the oracles, one may ask: “Can a
perfect learning algorithm with an EQUIV oracle be transformed into a PAC
algorithm with bounded error £, > 0?” Angluin [6] has shown that the answer
is “yes”. Every equivalence query can be simulated by a number of PAC queries
depending on the error parameters. In the same work, she has also shown that
the other direction is not true, at least if time efficiency is considered. Thus,
EQUIV C PAC and for efficient learning this inclusion is strict.

2.4.2 Distribution Families

In the previous subsections, we have seen that information about the distribution,
even if they can only be obtained from an EX oracle, may help the learner as well
for SQ learning (STAT C STAT+EX) as for learning from positive examples
alone (for proper learning POS C POS+EX). If the set of distributions D
is restricted to specific families of distributions, this may obviate the need
for the EX oracle, depending on the concrete distribution family. In this
section, we discuss the situation for the uniform distribution. Since this family
contains only one distribution for each dimension d of the learning domain Xy,
in this setting the learner has full knowledge about the probability distribution.
However, most results discussed in this section can be extended to more general
distribution families like g-bounded distributions, product distributions, or

12

2.4 Relationship of Learning Models

smooth distributions (for a definition of these distributions see e.g. [56], or
Chapter 3 for g-bounded distributions).

Even when a learner has access to a PAC oracle, the distribution family matters
for learnability of specific concept classes. An example is the class of k-term DNF
again. For efficient and proper PAC learning, k-term DNF is not PAC learnable
in the distribution-free setting [51], but it can be learned if the distribution
family D is restricted to the uniform distribution [34].

2.4.3 Absolute and Relative Error

Let us consider learning from positive examples alone over the uniform distribu-
tion. In this setting, the definition of the error plays an important role, which
we will discuss in the following. This matters especially when the hypothesis is
used for sampling, as e. g. in grey-box steganography (see [45] for sampling from
DNF formulas for grey-box steganography).

Let us assume that D is the uniform distribution over X; and the concept c
is very small such that D(c) < e. In this case, the error measure given in
Definition 2.2 (the absolute error) allows a region of false positives with up
to the same probability weight as the concept itself. Assume that h is such a
hypothesis, i.e. ¢ C h and D(h\ ¢) = ¢ > D(c). When sampling uniformly at
random from the hypothesis, at most half of the examples are expected to lie
inside the concept, because D(h \ ¢) > D(hN¢) = D(c). On the other hand, at
least half of the examples drawn from A uniformly at random are expected to
lie outside of c.

One solution is to explicitly disallow false positives. However, this does not
solve an other issue with small concepts: successful learning with the absolute
error measure becomes trivial for small concepts, because the empty hypothesis
can always be returned for such concepts, because it satisfies the error bound
error(()) = D(c) < e.

The relative error measure, which has been used e. g. by Shvaytser [57] and De
et al. [21], solves this issue. It is defined by

h):= Pr [h P .

ertora(h) = _Pr, [h(x) # e(w)] / _Pr, [c(@)
This measure is perfectly suited if learning from positive examples alone over
the uniform distribution, because it solves the issues mentioned above. This has
also been discussed by De et al. [21] before.

13

3 Learning k-term DNF Formulas
From Satisfying Assighments

This chapter discusses learning of k-term DNF formulas over Xy = {0,1}%. A
proper learning algorithm for k-term DNF is developed. Afterwards, a negative
result of Kearns et al. [39] regarding learnability of d-term DNF from positive
examples without false positives is strengthened.

The setting is as follows. Only positive examples, i.e. satisfying assignments
of the k-term DNF formula that represents the unknown target concept c, are
available to the learner via a POS oracle. These examples are distributed
randomly according to an unknown g-bounded distribution, which is defined as
follows.

Definition 3.1. A distribution D over Xy is called g-bounded if, for a rational
number ¢ > 1,

max{D(a)} < ¢-min{D(a)}.

With probability 1 — J, the learner has to output a hypothesis h in k-term DNF
with a relative error of at most €. In every case, the learning process must be
efficient and the final hypothesis must satisfy the condition h C ¢, i.e. learning
must be strongly without false positives.

Our learning algorithm is divided into two phases. In the first phase, a standard
procedure is applied to learn a k-CNF representation of the target formula
strongly without false positives. Afterwards, a set of maximal monomials that
should cover most of the area of this k-CNF formula is constructed. Since the
number of these monomials can be much greater than k, in a second phase with
a separate sequence of positive examples, tests are performed to find a subset of
size at most k as final hypothesis.

An application for learning in this setting comes from grey-box steganography. In
steganography, a sender wants to transmit a hidden message to a transceiver by
embedding it into unsuspicious documents, called coverdocuments, such that an
observer cannot determine whether an additional hidden message is transmitted.
In the model of grey-box steganography, which has been introduced by Liskiewicz
et al. [45], the sender does not know the coverdocuments look like. However, he
has access to a POSoracle that samples those coverdocuments. Hence the sender
has to find a suitable hypothesis about these documents first. Afterwards, he has
to generate stegodocuments in order to embed his secret message. To prevent
detection by the adversary, the distribution of these stegodocuments must be
indistinguishable from the distribution of coverdocuments. Liskiewicz et al. have

15

3 Learning k-term DNF Formulas From Satisfying Assignments

shown that, given a DNF formula that describes a set of uniformly distributed
coverdocuments exactly, the sender can efficiently generate stegodocuments that
are indistinguishable from the coverdocuments. An equivalent CNF formula is
not sufficient for this task, because it does not allow efficient sampling since the
satisfiability problem for k-CNF formulas is N'P-hard if £ > 3. Consequently, if
the coverdocuments follow a uniform distribution over the satisfying assignments
of an unknown k-term DNF formula, a learning algorithm for k-term DNFs in
our setting yields a secure and efficient grey-box stegoencoder [45, 29].

Note that learning strongly without false positives is not mandatory to build a
secure stegosystem as long as the relative error is small enough, i.e. such that it
is very unlikely that the sender samples a stegodocument from its hypothesis
that is not part of the concept representing the coverdocuments. However, the
benefits of the stricter setting are as follows. Whenever the sender samples a
false positive, an adversary that knows the true concept can detect the deviation,
and consequently the use of a stegosystem, with absolutely certainty. Without
false positives the adversary can never be absolutely sure about the use of
a stegosystem. If the entire communication observed does not contain any
non-coverdocument messages, the adversary can only make use of a probabilistic
analysis. Thus, learning strongly without false positives is a nice property for
grey-box steganography, because it completely prevents the (unlikely) risk of
definite detection.

3.1 Related Work

For proper learning DNF formulas from a PAC oracle with two-sided error,
the following results have been shown. The fastest learning algorithm for
unrestricted DNF formulas in the distribution-free setting has been designed by
Klivans and Servedio [43] with time complexity 2°(*"*). Pitt and Valiant [51]
have shown that efficient and proper learning of DNF formulas is impossible
in the distribution-free setting, even for restricted k-term DNF formulas with
k > 2, unless RP = N'P. For k = 1 we actually consider monomials, which
are learnable in this setting. For the uniform distribution, Verbeurgt [64] has
given a proper PAC learning algorithm for unrestricted DNFs that runs in
quasi-polynomial time, roughly d°1°84) Tt is open whether proper learning of
unrestricted DNF formulas can be done efficiently over the uniform distribution.
For k-term DNF formulas, this is possible due to Flammini et al. [34].

Let us consider known results for learning DNFs from positive examples alone
without false positives and regarding the relative error measure. Since ev-
ery POS learning algorithm satisfying the relative error bound is also a PAC
learning algorithm, the negative result of Pitt and Valiant holds here as well,
while monomials stay learnable. When the distribution family is restricted to
g-bounded distributions, 2-term DNF formulas become learnable efficiently due
to Flammini et al. [34]. Their algorithms uses the relative error measure and
learns weakly without false positives. Thus, the result presented in the next

16

3.1 Related Work

sections is an improvement even for 2-term DNFs since it guarantees learning
strongly without false positives. Unrestricted DNF formulas, resp. d-term DNFs,
cannot be learned weakly without false positives from a sub-exponential number
of examples if only a POS oracle is used, regardless of the computation time and
hypothesis space. This negative result even holds when the distribution family
is restricted to the uniform distribution [39]. Since the uniform distribution is
g-bounded for every g > 1, this is a negative result for g-bounded distributions
as well. In Section 3.7 this result is strengthened even more. It is shown that no
subfamily of ¢-bounded distributions allows learning of d-term DNF formulas
in the setting described just here. This is a stronger result, because specific
g-bounded distributions may set a higher probability to regions that are easy
to learn and a lower probability to the the harder ones, which may reduce the
relative error of the hypothesis. The results for proper and efficient learning of
DNFs from a POS oracle without false positives are summarized in Table 3.1.

‘ concept class ‘ distribution-free ‘ uniform / ¢g-bounded ‘
1-term DNF (monomials) yes [61] yes [61]
2-term DNF no [49, 51] yes [34]
k-term DNF no [49, 51] yes (Theorem 3.5)
log-term DNF no [51] open
unrestricted DNF no [51] no [39] / no (Theorem 3.19)

Table 3.1: Positive and negative results for efficient and proper learning of DNF
formulas from positive examples with one-sided error over several
distributions. The negative results of [51] (unless RP = N'P) for
k-term, with k£ > 3, log-term, and unrestricted DNFs even hold for
learning with two-sided error from positive and negative examples.

If the formulas to be learned are restricted to monotone DNF (MDNF) formulas,
Sakai and Maruoka [54] have presented an efficient algorithm that properly
learns log(d)-term MDNF formulas from satisfying assignments drawn randomly
according the uniform distribution. Another notable result on learning (non-
monotone) DNF formulas over the uniform distribution with the relative error
measure errory is due to De et al. [21]. They use only a POS oracle, but have
to allow two-sided errors and do not learn properly. From a sample with size
bounded by a polynomial in d, k, and 1/, De et al. can construct a hypothesis
that is suitable for sampling, where k is the number of terms of the (unrestricted)
target DNF formula. Their algorithm runs in time d°(*/¢). Since the hypothesis
is not a DNF formula, it is not known whether embedding of given hidden
messages for steganography is possible with their sampler. The result of De
et al. does not contradict Kearns et al. [39], because the negative result only holds
for learning with one-sided error or in the distribution-free setting, respectively.
We present the first efficient proper learning algorithm for k-term DNF formulas
from positive samples alone — and even strongly without false positives.

17

3 Learning k-term DNF Formulas From Satisfying Assignments

3.2 On Monomials, k-term DNFs, and Other Formulas

The following terms an facts about Boolean formulas are needed to investigate
the learnability of k-term DNF formulas in this chapter.

The number of Boolean variables x1, ..., x4 is always equal to the dimension d.
x? = T; denotes the negation of x; whereas 1311 = xz;. For a Boolean formula ¢
let sat(p) := {a € {0,1}%: ¢(a) = 1} denote the set of assignments that satisfy
o, which will also be called the support of . For the algorithms described
below it may happen that ¢ becomes the empty formula A\. Depending on the
surroundings, we define sat()\) = {0,1}% if X is considered as a special case of
CNF formulas and sat(A) = () in case of DNF formulas. A formula is called
unate if for each variable x;, it does not contain positive and negative occurrences

of XT;.

Considering {0, l}d as an d-dimensional cube the support of a monomial M over
r1,...,2Tq will always be a subcube. We may assume that no monomial contains
a literal twice or becomes trivial by containing a variable and its complement.
Two monomials M and M’ are considered identical if sat(M) = sat(M’) — that
means they have the same set of literals. A monomial of length ¢, that means
consisting of ¢ variables, has a support of size 2¢7¢.

A k-term DNF formula ¢ is a disjunction of at most & monomials. ¢ is called
non-redundant if it does not contain a monomial M such that removing M
from ¢ does not change sat(y), in particular there are no identical or trivial
monomials. Throughout this thesis only non-redundant DNF formulas are
considered. The support of a k-term DNF is the union of at most k& subcubes.

For a k-term DNF ¢ consisting of monomials M, ..., M of length ¢1,... ¢
the size of sat(y) can be at most 2¢ Y% | 274 If a distribution D is ¢-bounded,
for every a € {0,1}? the probability D(a) has to be at least ¢~ 27¢ and at
most ¢ 2~ Thus, for g-bounded distributions D, D(sat(M;)) < q 27%.

Definition 3.2. A monomial M is shorter (with respect to its length) than a
monomial M’ if M consists of fewer literals than M’ — which by excluding trivial
monomials is equivalent to | sat(M)| > | sat(M')|, i.e. M has a larger support
than M'.

On the other hand, a proper submonomial of M is obtained by removing some
literals from M, thus enlarging the support.

Note that a proper submonomial of M is always shorter and has a larger support,
but a shorter monomial does not have to be a submonomial. The following
notion plays an important role for the learner to be constructed.

Definition 3.3. Let 1) be a Boolean formula and a € sat(y). A monomial
M is (¢,a)-maximal if a € sat(M) and M is a prime implicant of 9, i.e.
sat(M) C sat(v) and there is no proper submonomial of M fulfilling this
inclusion.

18

3.3 The k-term DNF Learner

Let §(1¢,a) denote the set of all (1, a)-maximal monomials. For an integer
¢ > 0 we call a subset &' C S(¢,a) a (¥,a,c)-set if |S'| = min{c,|S(¢,a)|},
that means S’ contains ¢ many mazimal monomials or all monomials of S(1, a)
if their number is fewer than c.

A Ek-CNF formula) is given by a conjunction of clauses each containing at most
k literals. We assume that no clause contains a literal more than once or a
variable and its negation (a trivial clause). Also no clause should be empty which
would make 1 unsatisfiable. Similarly to DNF formulas, a CNF formula fulfilling
these properties is called non-redundant and we will consider only such CNF
formulas. The support of a clause with k literals is the complement of a subcube
of dimension d — k. This implies that the support of a k-CNF formula ¢ is the
intersection of such complementary subcubes, which may become arbitrarily
complex.

3.3 The k-term DNF Learner

Flammini et al. [34] have developed an algorithm for proper learning of k-term
DNF formulas from positive and negative examples with two-sided error. In
a first phase, their algorithm generates candidate monomials from positive
examples alone. Every monomial of the unknown target DNF formula ¢ is
guaranteed to become a candidate monomial with high probability if the support
of that monomial is large enough. In general, the number of candidate monomials
may be much larger than k£ and some of these candidates may satisfy a lot of
assignments that are not satisfied by ¢. Thus, in a second phase, combinations of
at most k£ candidate monomials are tested against a set of positive and negative
examples in order to find a k-term DNF hypothesis. If such a combination
fulfills a specific error bound then it becomes the output. Flammini et al. have
shown that their method yields an approximately correct hypothesis with high
probability.

In the following an alternative approach that can handle the lack of negative
examples is described. In the second phase, monomials with false positives
cannot be detected if only positive examples are available. Thus, in the first
phase our approach generates only candidate monomials strongly without false
positives. With this set of candidate monomials, our learner can properly learn
a hypothesis from positive examples only. The hypothesis will not include false
positives, but is still close to the real concept.

Our main challenge is to find appropriate candidate monomials. We start by
constructing a k-CNF formula from a first sample. Then the main technical
difficulty is to construct appropriate monomials from this CNF formula. This
strategy in pseudo code is listed in Algorithm 1.

It has been shown how to learn a k-term DNF formula ¢ strongly without false
positives by using as hypothesis space k-CNF formulas [51, 61, 14]. The learner
starts with the conjunction of all possible non-tautological clauses of length at

19

3 Learning k-term DNF Formulas From Satisfying Assignments

Input: number of variables d, distribution bound ¢, error parameter ¢,
confidence parameter d, oracle POS(sat(y), D) respecting the
unknown target k-term DNF formula ¢ and the unknown
g-bounded distribution D

Output: k-term DNF hypothesis

ey £ g2 kL 9 (Bk+D).

ny < eyt ((2d + 1)F 4 1In(4/9));

get my positive examples E = (e, ..., ey,) from POS(sat(y), D);

learn k-CNF formula v using sample F;

M «— ;

for j «+ 1 ton; do

// generate a (¢,e;,2F —1)-set M,
M < MaxMonomials (v, ej, 2k —1);
M = MU M;j;

10 ng + 48 e72 (k*In(2) + kln(ny) + In(4/9));

11 get another ng positive examples S = (s1, ..., Sp,) from POS(sat(y), D);

12 foreach subset W of M of size at most k do

13 ow < Vyew M;

14 if pw misclassifies fewer than 3eng/4 examples of S
then return gy ;

© O N OO s W N =

15 return \/ oy M for some W C M of size k; // default output
Algorithm 1: Learn-k-Term-DNF(d, ¢, ¢,)

most k, of which there are at most (2d + 1)*. Then clauses not satisfied by
a positive example are deleted. This strategy is used by Learn-k-Term-DNF
in Line 4. Figure 3.1 illustrates such a hypothesis ¢ for a target formula ¢
consisting of three monomials.

Fact 3.4. For every g1 > 0, using e7* ((2d + 1)* +In(4/6)) positive examples
one can learn a k-CNF formula 1 for sat(y) such that error(¢) < 1 with
probability at least 1 — 6 /4.

We construct candidate monomials for ¢ by extracting monomials from 1. For
k > 3 it is N"P-hard to find a single satisfying assignment for a k-CNF formula in
general. But here we already know a number of satisfying assignments, namely
the positive examples used to create 1. Therefore, we can define a criterion for
potential candidate monomials generated from 1 and an example a € sat(v):
M has to be (1, a)-maximal (for an illustration see Fig. 3.1).

In Line 8 for every positive example e; used to learn the k-CNF formula v, the
algorithm selects several (1, e;)-maximal monomials, but at most 2¥ — 1 many.
The algorithm MaxMonomials that computes these monomials will be explained
in detail in the next section.

Finally, to construct the output, a k-term DNF formula ', the learner chooses a
subset of £ monomials in M = {J; M;, where M; denotes the (1, e, 2F —1)-set

20

3.3 The k-term DNF Learner

M,y

My

Figure 3.1: A running example for k¥ = 3. The grey region illustrates the set
{0, 1}9 of all possible assignments.
Left: For a target 3-term DNF ¢ = My V Ms VvV Mj, the support of
each monomial is indicated as a dashed-line rectangle.
Middle: The support of the (hypothetical) 3-CNF formula v that
approximates ¢ is surrounded by the solid black line. To compare,
we show also the supports of the monomials M;. On the right a
scattered region (like a staircase) is generated that requires many
rectangles to be covered.

Right: The dotted rectangle shows the support of a (1, a)-maximal
monomial that is bounded to the right by the scattered region. Here
we use the intuitive convention that (i, a)-maximal monomials are
represented as maximal rectangles (with horizontal and vertical sides)
containing a and included in a region illustrating the support of .

for an example e;, such that the formula ¢’ consisting of these monomials
misclassifies a small fraction of the fresh sample. This learner achieves the
following properties.

Theorem 3.5. For every constant k, distribution bound ¢ > 1, errore > 0, and
confidence parameter § > 0, Learn-k-Term-DNF(d, q,¢,0) learns k-term DNF
formulas from positive examples strongly without false positives over q-bounded
distributions. The sample size can be bounded by

or(d,q,e,0) = et ¢® k23kH! ((Zd + 1)k + 1n(4/5)) + 4872 (4k* + k) In(2)
+48e72 (kn (=7 ¢ & ((2d+1)* +In(4/5))) +In(4/5)) .

Its time complexity is polynomially bounded with respect to (d,q,1/e,log1/d).

We note that our learning algorithm can be made applicable even if the parameter
q is unknown: The method described by Flammini et al. [34] that makes their
learning algorithm applicable for unknown ¢ can be used here as well. The
learning algorithm starts with ¢ = 1 and doubles ¢ until the sequential test
finds a hypothesis that is satisfied by enough examples. To bound the error, §
is halved in each step. The average running time stays polynomial in d, ¢, 1/¢,
and log 1/4.

Theorem 3.5 is proven in the following sections.

21

3 Learning k-term DNF Formulas From Satisfying Assignments

3.4 Generating Maximal Monomials for a CNF Formula

Let ¢ be a non-redundant k-CNF formula over variables x1,...,zq with a
satisfying assignment a and c a natural number. For a set M of monomials,
define sat(M) := Upsers sat(M). For a set I C [d], let e; =e1...eq € {0,1}¢
denote the string with e; =1 < ¢ € I. Now consider the following procedure
for computing a (v, a, ¢)-set. The algorithm is based on a modified version of
Algorithm T of [1] as follows. First, every literal from ¢ that is not satisfied by
a is removed, making the formula unate. Then the algorithm deals with such
DNF formulas (instead of monotone ones). Every membership query in [1] is
replaced by an evaluation of 1.

Input: k-CNF formula v; satisfying assignment a € sat(1));
requested number of monomials ¢ > 0

Output: a (¥, a,c)-set M

let 1" denote the formula obtained by removing every literal from ¢ that
is not satisfied by a;

M 0

while |[M| < ¢ do

by brute-force search find a set I C [d] of size at most | M| such that
a®er € sat(y)) \ sat(M);

if such a set does not exist then return M,

while there exists some i € [d] \ I with a © ey € sat(y') do
I+ TU{i};

7 My < Nieraps %5

| M < MU{M};

9 return M;

Juy

B W

Algorithm 2: MaxMonomials(%),a, c)

In the following analysis, 1, a, ¢ always denote the inputs for MaxMonomials and
1)’ the formula generated in Line 1.

Claim 3.6. The set S(1,a) of all (1, a)-mazximal monomials is equal to the set
S, a) of all (¢, a)-mazimal monomials.

Proof. A monomial M is a prime implicant of ¢ if and only if for every clause
K of 9, at least one literal of K appears in M and for every literal £ in M, there
is at least one clause K in 1 such that £ is the only literal of K that occurs in
M. For prime implicants M that are (1), a)-maximal monomials, the condition
a € sat(M) implies that all literals in M must be satisfied by a.

Thus, since a is a satisfying assignment of both v and v)’, we can conclude that
for all monomials M, with a € sat(M), the following equivalence is true.

22

3.4 Generating Maximal Monomials for a CNF Formula

e For every clause K’ of ¢/ at least one literal of K’ appears in M and
e for every literal £ in M, there is at least one clause K’ in ¢’ such that ¢ is
the only literal of K’ that occurs in M

if and only if

e for every clause K of ¢ at least one literal of K appears in M and
e for every literal £ in M, there is at least one clause K in v such that £ is
the only literal of K that occurs in M.

This implies S(¢,a) = S, a). O

Claim 3.7. For every monomial M that is contained in the final output M of
MaxMonomials, the following holds:

(i) a € sat(M),
(17) sat(M) C sat(¢)').

Proof. Property (i) is fulfilled because only literals that are satisfied by as-
signment a are added to M in Line 7 of MaxMonomials. For property (ii) it
suffices to show that for every index set I C [d] the condition a & e; € sat(y)’)
implies sat(M;) C sat(¢)’). Since ¢ only contains literals that are satis-
fied by a, a ® e; € sat(y)’) implies VI’ C I : a ® ep € sat(y)/) and thus
sat(My) C sat(¢). O

Claim 3.8. Let M’ be the value of the variable M in Line 8 of MaxMonomials
at an arbitrary iteration of the outer while loop.

(13i) If sat(M') C sat(y)') and a € sat(M) for all M € M’ then there exists
a set I C [d] of size |I| < |M'| such that a ® e € sat(¢’) \ sat(M’).
(iv) If sat(M') C sat(y'), a € sat(M) for all M € M', and in Line 4 a set
I C [d] satisfying a ® ey € sat(y’)\ sat(M’) is found then MaxMonomials
finds a new (¢, a)-mazimal monomial My in Line 7.
(v) If sat(M’) = sat(¢’) then M’ contains every (¢, a)-mazimal monomial.

Proof. Every vector b € {0,1}¢ can be written as b = a @ ep for a suitable
index set I’ C [d]. Thus, take an arbitrary b € sat(¢’) \ sat(M’) and the
corresponding I’. Since)’ can only be satisfied with the help of a variable x; by
taking the value a; it holds that a ® e; € sat(¢)’) for every subset I of I’ as well.

We exploit the following property of monomials. If a € sat(M) and a ® ey ¢
sat(M) then an index i € I’ exists such that a @ eg;; ¢ sat(M). Furthermore,
a®er ¢ sat(M) for every set I with {i} C I. Now, we construct the set I
by selecting such an index i for every monomial in M’. Then, |I| < |M’| and
a® ey ¢ sat(M) for every M in M’, which proves property (7ii).

If the search in Line 4 is successful a monomial M; covering a @ ey is missing.
The set I contains all literals that definitely will not occur in Mj. In Line 6
further literals are selected for removal, but ensuring that one stays within
sat(¢)'). When Line 6 is completed, no more literals can be removed without

23

3 Learning k-term DNF Formulas From Satisfying Assignments

violating this condition. Therefore, the monomial M} constructed in Line 7 is
a new prime implicant of ¢’. Since a € sat(My) (by (i) in Claim 3.7) M is a
(', a)-maximal monomial. This proves property (iv).

A prime implicant M is called essential if there is some assignment satisfying
M, but no other prime implicant. It is well known that for unate formulas every
prime implicant is essential. Equation sat(M’) = sat(¢’) implies that every
essential and hence every prime implicant of 1)’ must be in M’. In particular,
M’ contains all (¢, a)-maximal monomials. O

Lemma 3.9. MaxMonomials correctly computes a (v, a,c)-set and needs time

O(de).

Proof. First we note that the algorithm computes a set M of (¢/, a) maximal
monomials. By Claim 3.6 we have that S(¢,a) = S(¢/, a).

Consider the case ¢ > |S(¢/,a)|. By (iv) in Claim 3.8, every monomial M;
generated is a (1, a)-maximal monomial. Property (i7) in Claim 3.7 and (i)
in Claim 3.8, imply that new (¢’, a)-maximal monomials are added to M until
sat(M) = sat(¢)'). Then, by property (v), every (¢, a)-maximal monomial has
been found.

If ¢ < |S(1), a)|, by the same arguments as above, a new (¢, a)-maximal monomial
is constructed until |[M| = ¢ holds and then M is provided as output. Thus, M
is a (¢, a, ¢)-set.

The brute-force search in Line 4 needs time O(d™). The other lines within the
outer while-loop can be executed in time O(d). This results in a running time
bounded by O(3¢_, d') = O(d°). O

3.5 Bounding the Subset Size for Maximal Monomials

In this section we analyze the (¢, e;, 2F — 1)-sets M that are generated by
Learn-k-Term-DNF in Line 8. For some examples e; there can be a huge number
of (1, e;)-maximal monomials. Since the algorithm has to run in polynomial
time, it computes only (1, ej,2¥ — 1)-sets for M; instead of S(¢,e;). By this
strategy, random monomials may be skipped and only monomials with small
supports might be selected, i.e. those that cover only small sub-regions of 1. As
a consequence, (1, e;)-maximal monomials with large supports that are crucial
to construct a good output hypothesis might be skipped. Thus, the restriction
to (1, ej, 2% — 1)-sets requires extra attention for the analysis of the algorithm.

Figure 3.2 illustrates this problem for the 3-term DNF target formula ¢ and
the 3-CNF hypothesis 1 that have been presented in Fig. 3.1. For the example
e on the left that satisfies the monomial M; of ¢ with large support, marked
as a dashed-line rectangle, there are nine (1, ¢)-maximal monomials: eight
monomials — two of them are drawn in grey — which cover only a small portion
of satisfying assignments of ¢ (the grey region) and one large (¢, e¢)-maximal

24

3.5 Bounding the Subset Size for Maximal Monomials

M1 Ml

o C |

Figure 3.2: The grey region represents the support of the 3-CNF formula v of
Fig. 3.1 that approximates the target 3-term DNF ¢ = M1V MV Ms.
The dashed-line rectangle illustrates the support of M;.
Left: The assignment e shows a positive example and the two solid-
line rectangles the supports of two possible (¢, €)-maximal monomials
of which there are many more.
Right: For the assignment €', only two (1, ¢’)-maximal monomials
exist, one of them coinciding with Mj.

monomial which coincides with M;. However, since 9 > 2% — 1 for k = 3, the
large maximal monomial could be omitted. Thus, with Proposition 3.11 it will
be proven that if the algorithm gets enough positive examples E, then for every
monomial M; of ¢ of large support there exists an example ¢ € F as illustrated
in Fig. 3.2 on the right with high probability. The example ¢’ has at most 2¥ — 1
maximal monomials and one of them includes the support sat(/;). For such an
example it is guaranteed that Learn-k-Term-DNF computes a set M; in Line 8
which contains a (1), €’)-maximal monomial with support including sat(M;).
Since it will be shown that such an example exists for every relevant monomial,
all monomials of ¢ with support large enough will be added to M in Line 9
of Learn-k-Term-DNF and thus be considered by the brute-force search in the
second phase of the algorithm. In Fig. 3.2, ¢’ has only two (¢, €’)-maximal
monomials. One of them is identical to the dashed-line monomial M;.

Let the unknown k-term DNF formula ¢ to be learned consist of monomials
M ..., My ordered by increasing length.

Definition 3.10. For v with 0 <~y <1 we call M; ~y-relevant if | sat(M;)| >
v | sat(p)|. Furthermore, let

o

In the proposition below we analyze 4-relevant monomials of ¢.

Proposition 3.11. With probability at least 1 — /2, for every 4-relevant mono-
mial M; of ¢ the following holds: Learn-k-Term-DNF draws at least one example
e € sat(M;) in Line 3 such that

(a) the number of (1, e)-mazimal monomials is at most 2% — 1, and

(b) there exists a (1, e)-mazimal monomial M| with sat(M;) C sat(M]).

25

3 Learning k-term DNF Formulas From Satisfying Assignments

Proof. As illustrated in Fig. 3.1, sat(y)) may cover only a part of the satis-
fying region of a monomial in a scattered way and there could exist many
(1, e)-maximal monomials.

Lemma 3.12 ([18, 47]). For every k-term DNF, the number of its prime
implicants is bounded by 2F — 1.

This implies that the number of different (¢, a)-maximal monomials over all
a € sat(yp) is bounded by 2¥ — 1 as well. Next we will derive a bound on the
number of satisfying assignments for those maximal monomials that potentially
intersect scattered regions of ¢, outside of 4-relevant monomials.

Lemma 3.13. For u € N let m(u) be the number of monomials M; of ¢ with
| sat(M;)| > 2%. Let
(Pu:Ml\/“'\/Mm(u)

be the disjunction of these monomials (remember the monomials My, ..., My of
¢ are ordered increasingly by length) and

Xu = Mm(u)+1 VeV Mg
the disjunction of the remaining monomials. Define

Tail, = sat(xu.) \sat(pu) and & = Vierua, Vimes(p,a) M-

Then |sat(&,)| < 2utk—1

Proof. 1If sat(x,) C sat(p,) then |sat(&,)| = 0. Otherwise, consider an
assignment a € Tail,. Let ¢,(a) denote the formula derived from ¢, by
removing every literal that supports a, thus sat(p,(a)) 2 sat(yy), but still
a ¢ ¢y (a). Further, let M® denote the unique monomial with sat(M?) = {a}.
To continue the analysis we make some claims — their proofs will be given at
the end of this proof.

Claim 3.14. For every z € sat(§,), there exists an assignment a € Tail,, such
that every (¢ (a) V M®, a)-mazimal monomial is satisfied by z.

Next, for every a € Tail, we select a fixed, but arbitrary (¢, (a)VM?*, a)-maximal
monomial M, , and define £, to be a disjunction of such monomials:

!
gu L \/aETailu Mu,a-

Due to Claim 3.14 we know that sat(&,) C sat(&,).

Claim 3.15. BEvery (@, (a)V M®, a)-mazimal monomial M, , has at most 2™(%)
satisfying assignments.

26

3.5 Bounding the Subset Size for Maximal Monomials

Using these properties we can conclude the upper bound stated in Lemma 3.13
as follows:

[sat(&u)l < sat()] < D |sat(Mua)l < |sat(x) 2"

a€ Taily,

< 2% (k—m(u)) 2m® < gutk—1

The last inequality is true since m(u) < k.

It remains to prove Claim 3.14 and Claim 3.15.

Proof of Claim 3.14. Consider an arbitrary assignment z € sat(&,).

e Case 1: z ¢ sat(py,).
Since z € sat(py V xu), we get z € Tail,. Obviously, for a = z, every
(pula) V M® a)-maximal monomial is satisfied by z.

e Case 2: z € sat(yp,).
Note that in this case z ¢ Tail,. Let M be a monomial of &,, with
z € sat(M). Furthermore, there must be at least one assignment in
(sat(M)Nsat(xu)) \ sat(py) due to the construction of &,. From this set
we choose an assignment a with minimal Hamming distance to z.

Let y be an arbitrary assignment obtained from a by flipping one of the
positions at which a and z differ. Note that y € sat(M) N sat(p,). Let
M; be a monomial in ¢, that is satisfied by y. During the construction
of pu(a), all literals that are satisfied by a are removed from M;. Thus,
the counterpart of Mj; in ¢,(a) — monomial M;(a) — consists only of one
literal £, 4, i.e. Mj(a) = €4y, with a ¢ sat({,,) and y € sat({,,). Hence,
no (¢y(a) v M, a)-maximal monomial contains the literal -/, ,,.

This argument can be repeated for every choice of y and all =/, , that
satisfy a, but not z. Since every (¢y(a) V M?, a)-maximal monomial is
satisfied by a, it is also satisfied by z.

O]

Proof of Claim 3.15. Let M, , be a (¢y(a) V M*, a)-maximal monomial. It
holds {a} = sat(M*) C sat(M,,). Thus, M® only differs from M, , in some
additional literals, denoted as ¢1,...,4,, i.e. M* = My o AN ¢y A ... AN {,.. This
implies | sat(My,q)| = 2" | sat(M*?)| = 2" and below we argue that r cannot
exceed the value of m(u).

Let M%™* denote the monomial that is formed by replacing ¢ by =¢ in M®. We
consider a literal ¢5, with s € {1,...,r}. From sat(M®™%) C sat(M,,) C
sat(py,(a) V M?), it follows that the only assignment satisfying M® ™ satisfies
vula), too. Hence, there must be at least one monomial M; in ¢, (a), with
t € {1,...,m(u)}, that is satisfied by the same assignment as M ® s, This means
that M; cannot contain any negated literal from M®™%. By the construction
of ¢y (a), the monomial M; cannot contain any literal from M®. Therefore, the

27

3 Learning k-term DNF Formulas From Satisfying Assignments

only possibility remaining is that M; = —fs. If r > m(u), then the number of
monomials of ¢, (a) would be larger than m(wu). This is a contradiction. O

This completes the proof of Lemma 3.13. 0

Next, for every monomial M; of ¢ a lower bound on the number of assignments
in sat(y) that satisfy only M; will be shown. For i € [k] let formula ¢_; be
generated from ¢ by removing M;.

Lemma 3.16. Choose a monomial M; of ¢. Then |sat(M;) \ sat(p-;)| >
| sat(M;)] - 27+,

Proof. Consider a monomial M; # M; of ¢. There must be at least one literal
¢; in M; that is not contained in M;. So, sat(M; A —¢;) N sat(M;) = 0 and
|sat(M;) \ sat(M;)| > |sat(M; A —4;)| > |sat(M;)| - 271, Successively, we
obtain | sat(M;) \ sat(p-;)| > | sat(M;)] - 27F+1, O

Now in order to bound the size of the scattered regions ., let us estimate
how well a k-CNF formula 1) can approximate the monomials M; of ¢. Let
g1 = ¢ ¢ 2k~ 276Gk be the error parameter defined in Learn-k-Term-DNF.

Lemma 3.17. Let ¢ be a k-CNF' formula with sat(y) C sat(y).
If errore) (V) < €1 then sat(M;) C sat(v)) for every (272% 4)-relevant monomial
M; of .

Proof. Assume error,e(¢) < €1, let M; be a (272 4)-relevant monomial of ¢,
and consider an arbitrary a € sat(M;) \ sat(¢)). There must be a clause K in
¥ with a ¢ sat(K). This clause cannot contain any literal from M;. So, K is
not satisfied by at least 27%| sat(M;)| assignments that satisfy M;. Even in the
case that for the unknown ¢-bounded distribution D all these assignments are
g-times less likely than any other assignment satisfying ¢, one has

errore (1) > D(sat(M; A=) / D(sat(p)) > 27" [sat(M;)| / (¢ |sat(p)])
2 27/{: 272]6 e qfl kfl 271 qg = 2*(3k+1) e q72 k*l = & .

This is a contradiction. Consequently, such an assignment a does not exist and
the lemma is proven. O

Thus, if a k-CNF formula 1 approximates a k-term DNF formula ¢ without
false positives quite well, then every monomial of ¢ with support not too small
is completely covered by . Only monomials with very small support may give
rise to errors in the approximation.

Now the proof of Proposition 3.11 can be finished. Let M; be a %-relevant
monomial of ¢ and let ¢_; be defined as above. Applying Lemma 3.13 with
u = [log(¥ | sat(p)|) — 2k] one gets

sat(&,)] < 2471 < 278 4 [sat(p)| < 27" [sat (D)

28

3.5 Bounding the Subset Size for Maximal Monomials

Define usatg(M;) := sat(M;) \ (sat(yp-i) Usat(£,)) as the set of assignments
uniquely satisfying M;. Then, by Lemma 3.16 we obtain

|usaty(M;)| > 27" sat(M;)]

3.1
> 95 aat(p)) = cq k20D [aat(p) .

Claim 3.18. With probability at least 1 — §/4 for every y-relevant monomial
M; of ¢, the sample E given to Learn-k-Term-DNF in Line 3 contains at least
one element e such that e € usaty(M;).

Using this claim (to be shown below) and the previous Lemmata both properties
(a) and (b) of Proposition 3.11 can be proven as follows. First let us argue that
the number of (1, e)-maximal monomials is bounded by 2¥ —1. Due to Claim 3.18
we know that with probability at least 1 — §/4 for every M;, as assumed in the
proposition, the sample F contains an element e € usaty(M;). Consider the
monomials M that are (p, e)-maximal. Since e ¢ sat(&,), the construction of
&, yields sat(M) N (sat(x.) \ sat(py)) = 0, because otherwise an assignment
a in sat(M) N (sat(xu) \ sat(p,)) would cause a (g, a)-maximal monomial
M = M in &, and therefore e € sat(€,). Therefore, sat(M) C sat(p,) and M

is (4w, e)-maximal. This implies S(p, e) = S(pu, €).

If error(¢) < e1 Lemma 3.17 yields sat(p,) C sat(¢) C sat(y) and hence
S(¢,e) = S(¢u,e). The number of (¢, €)-maximal monomials is bounded by
2% — 1 due to Lemma 3.12. Further we can conclude that at least one of the
(1, e)-maximal monomials M/ covers M, completely.

By adding the probabilities of failure of the event in Claim 3.18 and [errore(¢)) <
1] (Fact 3.4) together, with probability at least 1 — §/2 for every 4-relevant
monomial M; of ¢ such an example e exists in the sample E.

It remains to prove Claim 3.18.

Proof of Claim 8.18. For the number n; of examples in E it holds
ny =e 1 ® k22K ((2d + 1)F + In(4/6)) > e 7L 2 k2¥! In(4k/95) .

Fix a 4-relevant monomial M; of ¢. The probability p that the sample E given
to Learn-k-Term-DNF in Line 3 does not contain any element e € usaty(M;) is
bounded by
o< <1 B]usa1:d(]\4i)|>N1 7
q|sat(y)|
because the underlying distribution D is ¢g-bounded. Due to (3.1),

p <(1—eqtk okt /M
(1 —eq 2k Lo (kHD))e™ ¢ k28 In(ak/0)

<
< (1/e)"U0 = 6/(ak)

29

3 Learning k-term DNF Formulas From Satisfying Assignments

because for every 0 < o < 1 it holds that (1 —)Y/ < 1/e.

The probability that for at least one 4-relevant monomial M; of ¢ the sample
E given to Learn-k-Term-DNF in Line 3 does not contain any element e €
usaty(M;) is bounded by k- p < /4. O

This completes the proof of Proposition 3.11. O

3.6 The Correctness and Complexity of
Learn-k-Term-DNF

In this section we conclude that Learn-k-Term-DNF(d, q, ¢, d) satisfies the prop-
erties stated in Theorem 3.5 for the target k-term DNF .

Proof of Theorem 3.5. The output hypothesis ¢’ of the learner is a disjunction
of maximal monomials. The support of every maximal monomial is a subset of
the support of the k-CNF formula 1. Since sat(y) C sat(yp) it follows that the
output hypothesis has no false positives.

Suppose that for every monomial M; of ¢ with |sat(M;)| > g the learner has
added a monomial M/ with sat(M]) D sat(M;) to M. In the final stage as
possible hypotheses the set of all up to k-fold disjunctions of monomials of M
are used. Denote the set as H 4. Its size can be bounded by

k
Hul <> ('T) < (nl-Qk)k . (3.2)

=0

Let us call a hypothesis h € H g good if for every monomial M; of ¢ with
| sat(M;)| > g, h includes a maximal monomial M/ as above. For every good
hypothesis, fewer than & monomials from ¢ with fewer than g satisfying assign-
ments each are not covered. Hence, the cardinality of the error region of h is
bounded as

€
|sat(p) \sat(h)| < kg = % | sat ()]
and the error of A can be estimated as follows:
errorei(h) < q-|sat(y) \ sat(h)|/ |sat(p)] < /2. (3.3)

We call a hypothesis h € Hq bad if error(h) > €. Note that some hypotheses
of Har may be neither good nor bad. Let us analyze the probability that
Learn-k-Term-DNF returns a bad hypothesis (either in Line 14 or in Line 15)
despite H ¢ contains at least one good hypothesis.

Case 1: A good hypothesis h is not satisfied by enough examples in S to be
selected as a hypothesis.
The probability p; that this happens can be bounded by Proposition 2.4 of

30

3.6 The Correctness and Complexity of Learn-k-Term-DNF

Angluin and Valiant [3] derived from Chernoff’s bound. For § =¢/(4 — 2¢), we
can bound p; by the following inequality:

eny (1— S))

< .
o= eXp(2(4 — 2¢)2

L e <_gzg§(k2 In(2) +klIn(n1) +1n(3)) (1 - ;))
’ 32(1-5)°

5 3/(2-)
* ()

Since 0 < e < 1 implies 3/(2 —¢) > 1 and due to 0 < § < 1 we get p; < §/4.

Case 2: In Line 14, the learner chooses a bad hypothesis i’ € H before
reaching a good hypothesis h, it returns A/, and terminates.

The probability po that A’ is satisfied by enough examples to be accepted as a
resulting hypothesis can be bounded similarly to p;. For § = ¢/(4 — 4¢), one
can bound py using the following inequality:

e2ns(1 — ¢)
P2 < exp <—3(4_4€)2>

_ 82;%(]{72 In(2) +kln(ny) +1n(3))(1 —¢)
P (‘ 1B(1 - 2)?)

5 1/(1—¢)
- (4 () - 2k2> :

Since 1/(1 —¢) > 1 and 0 < ¢ < 1, using the estimation (3.2), we get pa <
|Hpq| 7t 5/4.

Thus, assuming a good hypothesis h € H exists, the probability that the
learner neither rejects h and finally outputs a (probably bad) default hypothesis
in Line 15 nor outputs a bad hypothesis in Line 14 is bounded from below by

1—(p1+|Hmlp2) > 1-06/2 .

In this case, the error of the hypothesis ¢’ returned by the learner is bounded by
error,e (') < e. According to Proposition 3.11, the probability that the learner
computes a set M such that H 4 contains at least one good hypothesis is at
least (1 —§/2). So, with probability at least 1 — §, the hypothesis generated by
Learn-k-Term-DNF satisfies the error bound ¢.

It is left to show that for constant k the algorithm runs in time polynomial in d,
g, 1/e, and log 1/9. The number of examples o (d, ¢, ¢, 0) fulfills this bound. The
k-CNF formula can be learned in polynomial time with respect to all parameters
except k. The algorithm computes at most 2¥ — 1 maximal monomials for each
example. By Lemma 3.9 this can be done in polynomial time. The size of the

31

3 Learning k-term DNF Formulas From Satisfying Assignments

hypothesis space for the sequential test is |Ha| < (nq)* - 2" The test itself can
be performed in polynomial time. O

3.7 Infeasibility for Unrestricted DNF Formulas

Verbeurgt [64] has developed a method for learning poly(d)-term DNF over
the uniform distribution from a polynomial number of positive and negative
examples with a quasi-polynomial running time. In contrast, excluding false
positives it can be shown:

Theorem 3.19. For every hypothesis space H and sufficiently small error
parameters ¢,0, learning d-term DNF formulas weakly without false positives
requires an exponential number of positive examples. This even holds when fizing
the family of possible distributions for every d to a single arbitrary q-bounded
distribution.

Proof. Kearns et al. [39] have shown for the uniform distribution that the number
of positive examples needed to learn (monotone) clauses weakly without false
positives is Q(Zd/ 4) for sufficiently small error parameters ¢, §, independent of
the hypothesis space. The class d-term DNF in particular contains all nontrivial
clauses, thus the number of examples needed to learn d-term DNF weakly
without false positives cannot be smaller for the uniform distribution.

This lower bound immediately applies if one requires successful learning for
every g-bounded distribution since the uniform distribution belongs to this class.
But what happens if we consider only a single fixed distribution other than the
uniform one? Being the simplest g-bounded distribution, one would expect that
the lower bound easily translates to every other ¢-bounded distribution. However,
the formal proof of [39] uses the symmetry of the uniform distribution explicitly.
Thus, it is not obvious whether it could be extended. Furthermore, this lower
bound cannot hold for every distribution, for example not for distributions with
a support of polynomial size. In the following we generalize the proof technique
to the case that the learner has to deal with a single ¢g-bounded distribution
only and this may even be known.

Let ¢ > 1 and D be an arbitrary ¢-bounded distribution over {0,1}¢, thus
g '18]27% < D(S) < ¢q|S|27¢ for every subset S C {0,1}%. To keep the
calculation simple we may assume that d is even. Let

Cqa = {sat(yp): ¢ is a monotone clause with at least d/2 variables}

and ¢ € Cq. Then |Cy] = 297! and D(¢) < ¢ -2-%2. Such a concept ¢ can
uniquely be associated with an assignment u. € {0,1}¢ where the i-th bit of u,.
is 0 if and only if the clause representing ¢ contains the variable x;. Obviously,
ue & ¢, thus u. cannot be included in any hypothesis for c if false positives are
not allowed.

32

3.7 Infeasibility for Unrestricted DNF Formulas

It will be shown that the lower bound even holds when restricting the concept
class to Cq. For a contradiction suppose there exists an algorithm A which learns
Cq from positive examples strongly without false positives with respect to D
such that the number of training examples used by A is bounded by n = 24/4.
The case of learning weakly without false positives will be discussed at the end
of this proof.

Let ¥ be the set of all sample sequences T over {0,1}% of length n. A randomly
drawn 7" € ¥ may contain negative examples for a clause ¢ € C4, but this
happens with probability at most 7(d,q,n) = n - q-2~%2. We denote this
property by T Z ¢ and its complement by T'C ¢. Let ¥, := {T'e ¥:T C ¢},
then Pr[¥.] > 1—mn(d,q,n).

By [u. € A(T)] we denote the event that the hypothesis A(T') generated by .4
on sample sequence T' contains the negative example wu.. It is not determined
how A behaves on illegal sequences T' & V., but if false positives are strongly
not allowed for correct sequences, we can estimate

e € AT)] = Pr fuc € AT) AT € W]
+ Prfuc € AT AT ¢ 0] (3.4)

< 0+PrT¢Vv.] < n(dqn).

Pr
Tevw

Since this holds for every ¢ € C; summing up gives

Z Z Pr[T] - Prlu. € A(T)] < 2% '7(d,q,n)

ceCqy TeEY

or exchanging the summation

Z Pr[T] Z Prlu. € A(T)] < 2471 7(d,qn) .

Tev c€Cyq

Define
Ut = {TeW:) Prlucc AT)] > [Cql/2}
ceCy

and ¥~ := ¥\ T, Then

> PilT) < 27(d,q.n)
Tev+

since otherwise

Z Pr[T] Z Prlu. € A(T)] > 2n(d,q,n) |Cq|/2 = 24 n(d,q,n) .
Tew ceCy

For T € W~ the following holds:

> Prluc g AT)] = > (1—Prluc € AT)]) = [Cal = > Pruc € A(T)]
ceCy ceCy ceCqy
> |C4l/2 .

33

3 Learning k-term DNF Formulas From Satisfying Assignments

Since the u, are all different elements of {0,1}% this implies that the expected
size of the complement of A(T) is at least |Cy|/2 for every T' € U~. Then also
the probability that [A(T)| is not too small has to achieve a certain minimal
level, more precisely

Pr{|A(T)| < 297%] < 7/8

since otherwise

B[[AT)|] < £ 245+ 220 < [Cul/2.

(el IEN|

Thus, the probability that a sample sequence belongs to U™ is at least 1 —
2 7(d,q,n) and for T € ¥~ with probability at least 1/8 the hypothesis A(T")
excludes at least 2973 assignments . with ¢ € Cq. For every ¢ holds

Pr[¥.N¥"] > Pr[¥.]—Pr[¥*] > 1-3n(d,qn).

Since ¢ has at most 2%4/2 negative assignments, on examples in 7' € U.N¥~ with
probability at least 1/8 at least 2473 —2%/2 elements in {0, 1} are misclassified by
A(T). Thus, for d > 8 with probability at least 1/8—3 7(d, ¢,n) = 1/8—3 ¢ 2~%*4
the hypothesis A(T) yields an error

_ D(e\ A(T))

errorrel (A(T)) = > D(\A(T)) = ¢ El A

> (16¢) " .
D) — 9d = (169)
The value 1/8 —3 ¢ 2=%* can be made larger than any error § < 1/8 by choosing
d large enough.

Looking at the estimation (3.4) one can notice that the condition strongly without
false positives can be relaxed by requiring TP1:II [ue € A(T)ANT € U] < o(1) for
€

every ¢, which allows to prove the statement for the weak case as well.]

Summarizing, a polynomial-time algorithm for learning k-term DNF formulas
properly from positive samples alone for every fixed k£ has been presented in this
chapter. On the other hand, we have seen that due to information theoretical
reasons k-term DNF formulas cannot be learned from positive samples weakly
without false positives if k grows linearly with the number of variables.

34

4 Learning Residual Alternating
Automata

Regular languages can be described in different ways, commonly either by regular
grammars or by a finite automata. There are different types of finite automata
(FA) to describe regular languages. They all have the same expressive power,
but differ in succinctness and efficiency when solving automata-related problems:
starting with deterministic finite automata (DFA), over their generalization to
nondeterministic ones (NFA) and the dual of NFAs, universal finite automata
(UFA), up to alternating FAs (AFA), which are the common generalization of
NFAs and UFAs. A minimal (measured by the number of states) DFA might
be exponentially larger than an NFA and double-exponentially larger than an
AFA. Since the membership problem for AFAs remains solvable efficiently [17],
one may want to work with these more succinct automata.

Learning of regular languages has great relevance for practice applications. To
name a few: model checking, pattern recognition, robot navigation, automated
verification, and many others [22]. However, regular languages are hard to
learn. Independent of their representation, deterministic finite automata (DFAs)
cannot be PAC learned efficiently unless the RSA cryptosystem is not secure
[41]. Positive results for the PAC setting can be obtained if the concept class is
restricted to subclasses like e. g. Terminal Distinguishable Regular Languages
(TDRL). A TDRL is produced by a regular grammar that is backward determin-
istic and fulfills particular constraints regarding discriminability of production
rules by disjoint sets of terminal symbols. The class of TDRL can be PAC
learned in the distribution-free setting [13].

In contrast, when learning from membership queries and counterexamples,
general DFAs can be learned efficiently and without restrictions. The learning
algorithm for DFAs, called L*, has been provided by Angluin in [5]. It learns
the minimal DFA, which is unique. The time and query complexity is bounded
by a polynomial with respect to the size of the minimal equivalent DFA.

Yokomori [66] has constructed a learning algorithm for NFAs. Unfortunately, in
some cases the NFAs produced by his learning algorithm may even be larger
than the minimal DFA, i.e. than the output of L* [42]. A generalization of L*
to NFAs that produces more compact automata has been proposed by Bollig
et al. [15]. Their NL* algorithm builds upon the following observation. Every
DFA has a useful property called residuality. An automaton 2 accepting a
language L is residual if every state ¢ of 2 corresponds to a residual language
wq_lL = {v € ¥* : wgv € L} of L. Denis, Lemay, and Terlutte [26] introduced

35

4 Learning Residual Alternating Automata

the class of residual NFA (RNFA). In a later work [27], they have presented a
learning algorithm for RNFAs in the limit from an informant, a famous learning
model introduced by Gold [35]. While the minimal NFA (or UFA, resp.) is not
unique, the minimal RNFA (or RUFA) with a maximum number of transitions
is unique. It is called canonical. Using the residuality property, Bollig et al.
have created NL* that learns the canonical RNFA with a polynomial number
of membership and equivalence queries with respect to the size of the minimal
equivalent DFA. The algorithm can be adapted to learn the dual, residual
universal FAs (RUFA). This variation, called UL*, is described by Kern [42].

Both algorithms, NL* and UL*, are implemented in the 1ibalf learning library
[16]. In the area of formal verification, among others learning algorithms for
automata from libalf have been used for the compositional verification of
probabilistic systems [31, 32] and verification and model synthesis of sequential
programs [20].

Angluin, Eisenstat, and Fisman [7] extended the definition of residual automata
to residual alternating finite automata (RAFA) and provided AL*, a learning
algorithm for AFAs. Based on experiments with randomly generated languages,
the authors conjectured that AL* always outputs residual AFAs, but they were
not able to give a proof. Although no natural definition of a minimal unique
RAFA (i.e. a canonical RAFA) is known yet, residuality is still desirable when
learning AFAs, because residual FAs contain a certain structure that may be
helpful for later use in practical applications, especially for involved automata.
The states of a residual automaton represent specific semantics of the language,
which may simplify the analysis of the automaton.

In this chapter we disprove the conjecture of Angluin et al. by providing a
carefully designed counterexample. Afterwards, we construct an efficient learning
algorithm, named AL**, and give a proof that AL** outputs residual AFAs only.
Finally, we investigate the succinctness of different FA types.

4.1 On Automata and Regular Languages

The model of alternating finite automata has been introduced by Chandra,
Kozen, and Stockmeyer [17]. Let the symmetric difference of sets be denoted by
A\, the set of all suffixes of a string w denoted by Suffs(w), the empty string as
A, and the Boolean values “true” as T and “false” as L. For a set S let F(S) be
the set of all formulas over S using the binary operators A and V plus the trivial
formulas T and L that are always, respectively never satisfied. The restriction
Fy(S), respectively Fa(S) denotes the subset of formulas containing only the V
operator plus the formula L (respectively only A and T).

Definition 4.1. Given a finite alphabet X, an alternating finite automaton
(AFA) is a four-tuple (Q, Qo, F,T), where Q is the set of states, Qo € F(Q) the
initial configuration, F' C @) the subset of accepting states, and 7: Qx ¥ — F(Q)
the transition function.

36

4.1 On Automata and Regular Languages

Figure 4.1: An AFA for the language L1 = a™ U bat U aba*.
The initial configuration is Qg = s and the set of accepting states is
F={q}.
From state s the automaton has the transitions 7(s,a) = p V ¢ and
7(s,b) = sAg.

If Qo and, for all ¢ € Q and all a € X3, the transition 7(q,a) consist of a single
state then the automaton is called deterministic (DFA). If Qo € Fv(Q) and
7(q,a) € Fy(Q) for all ¢ € Q and all a € X, it models a nondeterministic
automaton (NFA). If Qo € FA(Q) and 7(q,a) € FA(Q) for all ¢ € Q and all
a € X, the automaton is called universal (UFA).

A transition 7(g,a) of an AFA can be a nested formula of VV and A operators.
Such a formula may be difficult to illustrate graphically. However, it can
equivalently be represented by its monotone disjunctive normal form (MDNF).
Each monomial in such an MDNF is represented by an edge from g marked with
the symbol a leading to a little square. From this square we draw edges to all
states that are contained in this monomial. If the monomial consists of a single
state only the square can be omitted. For an example, see the AFA in Fig. 4.1.

The function 7 is extended to arbitrary formulas ¢ € F(Q) and strings w € ¥* as
follows. Let ovpnr = V; M; with M; = /\j gi,; be an MDNF formula equivalent
to ¢. Then 7(p,a) :==V; A\; 7(¢i,a) for a single symbol a € ¥ and 7(p, A) := ¢
for the empty string A\. For w € 7, we define 7(p, wa) := 7(7(p,w),a). For
an NFA, this simply reduces to 7(q¢ V p,a) = 7(q,a) V 7(q,b).

Definition 4.2. For an AFA A = (Q, Qo, F,7) and a formula ¢ € F(Q), we
define the evaluation of ¢, denoted as (p)), recursively as follows: (T) := T and
(L) := L. For singletons let (q) := T if ¢ € F and equal L otherwise. Finally,
loRu) = () R (&) for R € {A,V}.

The automaton A accepts a word w if (7(Qo,w)) = T. The language L(2) is
the set of all accepted strings. For a state g €), we write A, for the automaton
(Q,q, F, 1) that starts in configuration q instead of Q.

For an NFA with 7(Qo,w) = q1 V ...V g the evaluation (7(Qo,w)) = T
corresponds to the usual condition {q1,...,q} N F #), i.e. when starting with
initial configuration)¢ and reading the word w some accepting state is reached.
For a UFA with 7(Qo,w) = q1 A ... A g it requires {q1,...,qx} C F, i.e. all
states reached are accepting.

Definition 4.3. Let L C X* be a regular language.

37

4 Learning Residual Alternating Automata

Figure 4.2: A residual AFA (RAFA) for the language L1 = a™ U ba™ U aba*.
State s corresponds to A™'L = at U bat U aba*, state p to
a"'L =a* U ba*, and state ¢ to (ab) 'L = a*.
Note that these residual languages A\~'L, a~!'L and (ab)~'L are
both U-prime and N-prime.

e For a word u € ¥*, we define the residual language u~'L as {v € ¥*
wv € L}.

e The set of all residual languages of language L is denoted by RES(L).

o A residual language w1 L is called U-prime, respectively N-prime if u= 'L
cannot be defined as the union, respectively intersection of other residual
languages. We denote the set of all U-prime, respectively N-prime residuals
of L by U-Primes(L), respectively N-Primes(L).

o An automaton 2 with states @ is residual, if L(,) € RES(L()) for all
q € Q, i. e. if every state corresponds to a prefix u and its residual language
u TL(2A).

e Let RNFA, RUFA and RAFA denote the appropriate residual restrictions.

For an example, see the residual AFA in Fig. 4.2 that accepts the same language
Li=a" U ba™ U aba* as the nonresidual AFA illustrated in Fig. 4.1

4.2 Learning Automata

Given an alphabet 3, let the learning domain be X; = ¥* for every dimension
d € IN. We define the concept class of regular languages dependent on d as
Cq:={L C X" : L is a regular language,
the minimal DFA 2(with L(2() = L has at most d states, and
the minimal DFA 2 with L(2) = L™ has at most d states} ,

where L™ denotes the reverse language
L™V :={w € ¥* : the reverse string of w is in L} .

We study perfect learning from membership and equivalence queries of C = {Cy :
d € N}. The distribution D over X, is not used by the oracles in this setting.
However, in order to provide efficient learning algorithms we assume that the
maximal length of a counterexample presented by the EQUIVoracle is bounded

38

4.2 Learning Automata

by a polynomial in the dimension d!. Since the distribution D affects the error
measure, we consider the distribution-free setting to ensure that perfect learning
implies the equivalence of the target language L and the language 2A(L) accepted
by the automaton 2l output by the learner.

We require the hypothesis to be a specific type of automaton, e.g. minimal
DFA or canonical RNFA, and so on. This is an even stronger requirement than
proper learning, because for proper learning it is sufficient that Hy; = C4 for
every d € IN, which is already guaranteed by perfect learning.

Now that we have defined the setting, we present the known learning algorithms
XL* for automata (i.e. L*, NL*, UL*, and AL*). All these algorithms follow a
similar pattern, and the new AL** also does. Two sets U, V' C ¥* are constructed,
where U is prefix-closed and V is suffix-closed. For all strings uv € UV or
uav € UXV a membership query is performed. The resulting matrix, indexed
by UUUY and V is called a table. The rows indexed by U correspond to
possible states. To minimize the number of states, a subset P of rows (a basis)
is constructed such that all rows can be built based on the elements of P. The
specific way to build a row depends on the type of automaton. A hypothesized
automaton is constructed from this subset P. For a row r, indexed by u € U
and a symbol a € ¥, the transition 7(ry,a) equals the formula that builds the
row indexed by ua. For this purpose, similar to Bollig et al. [15] we introduce
the following notion.

Definition 4.4. Let L be a reqular language. For a prefix-closed set U and a
suffiz-closed set V, a |[UUUX| x |V| table T = (T, U, V) for L with entries in
{+, =} is determined by a function T: ¥* — {+, —, L} specified as follows. Let
W(T) denote the set (U UUX)V described by T. Then for w € ¥*

1L difw g W(T),

T(w)={+ ifweW(T)nL,
— ifweW(T)\ L.

The entry of T in row x and column y is equal to T'(zy).

Note that to define 7 we only need values 7" on W (7). We extend the domain
of T to all words over X for the sake of completeness. An example of a table is
given in Fig. 4.3.

Definition 4.5. Let L be a regular language and T = (T,U,V) be a table for
L.

o An automaton 2 and a table T are called compatible if for every w € W(T)
holds: A accepts w if and only if T(w) = +.

'If the automaton presented to the EQUIVoracle is huge, the shortest counterexample may
become very long, too. Since all learning algorithms try to generate automata that are as
small as possible, this case will not occur as we will see later. Thus we ignore this issue
here.

39

4 Learning Residual Alternating Automata

|4
A ab b
N
U - - |+
- — —
Rilaa | — - -
ab | + — +

Figure 4.3: Table T = (T,U, V) for the language L = ab™, with U = {\,a},
V ={Aab,b}, and R = UX \ U = {b,aa,ab}. The entries of the
table are determined by T": the value in row x and column y equals
T(zy). For example, the value in row ab and column b is + since
T(abb) = + (abb € L) and abb € W(T). An example for a row is
rx = (— + —). Furthermore, Rowshigh(7) = {rx,7a}-

o For every u € UUUX we associate a vector r,, of length |V | over {+,—}
with r,[v] = T(uwv) for v € V, called the row of u. The set of all rows is
denoted by Rows(T) and the subset of those r,, with u € U by Rowspign (7).

e A table T is consistent if for every u,u’ € U with r, = ry the condition
Tua = Turq 05 fulfilled for every a € ¥.7

e To simplify the notation, for a consistent table T, row r € Rowshigh(T),
and symbol a € ¥, let ra denote the vector ry, where u € U is an arbitrary
string with ry, = 1.

The order — < + on the set {4, —} is extended to a partial order on vectors
by requiring < to hold for each component. The binary operators I, Ll on the
set {4, —} are defined by a M b = min{a, b} and a Ub = max{a,b}. For vectors,
these operators are extended by performing the operation componentwise.

For a formula ¢ € F(Rows(7)) on the rows of a table, we define the evaluation
el by [Tl =+ =+ 4, [1] = =V = = — [ru] = ru, [0 AY] =
[e] M [v] and Je V] = [¢] U [¢] and extend this to a set P of formulas by
[P] ={[¥] : ¢ € P}. For example,

[(+=+A==FH)V—-—F+—-]=—++

Definition 4.6. A table T is called

D-closed if Rows(7T) € Rowspign(7),
N-closed if Rows(7) C [Fv(Rowsnigh(7))],
U-closed if Rows(7T) C [Fa(Rowshigh(7))], and
A-closed if Rows(7T) C [F(Rowshign(7))].

2This is a weaker requirement than the RFSA-consistency of [15], which requires that r,, < 7,/
implies ryq < ryra.

40

4.2 Learning Automata

Algorithm 3 shows the general form of an XL* algorithm, i.e. L*, NL*, UL*, and
AL*. The construction of the XFA A(7) from a table 7 will be presented in the
following subsections, as well as a discussion of the individual properties of all
the XL* algorithms each.

Input: type of automaton X, membership oracle MEMBER(L) and
equivalence oracle EQUIV (L) respecting the unknown target
language L C ¥*

Output: an XFA 2*

1 U+ {2}V« {\}
2 initialize 7 = (T,U, V) with |X| 4+ 1 membership queries;
3 while true do
4 while T is not X-closed do
5 find a row 7y, € Rows(T) such that r,, violates the inclusion for
X-closedness in Definition 4.6;
6 add ua to U;
7 complete T via membership queries;
construct the XFA 2A%X(T);
if L(2AX(T)) = L then
10 ‘ return 2AX(7);
11 else
12 get a counterexample w € L A L(2A%X(T));
13 set V « V U Suffs(w);
14 complete T via membership queries;

Algorithm 3: XL*. For L* we set X = D.

We start the analysis of XL* with the following observation, which allows to
assume consistency of 7 within the constructions of the particular XFAs.

Lemma 4.7. Every table T constructed by XL* is consistent.

Proof. Let T = (T,U,V) be any table constructed by XL*. It suffices to show
that for different u,u’ € U the rows r, # r, are different, too. Then the
precondition for the consistency requirement, namely equal rows, is never
fulfilled, and consistency holds trivially. Assume that u’ has been added to U
after u. This can only happen if the X-closedness condition is violated in Line 4.
This, however, contradicts r,, = 7, € Rowspign 7.]

4.2.1 Learning Deterministic Automata

The construction of the DFA by L* is as follows.

Definition 4.8. Let T be a consistent and D-closed table. The DFA QID(T) =
(Q, Qo, F,T) consists of the following components: @ = Rowshigh(7), Qo = 7
and F={re @ :r[]\|=+}. Forr €@ and a € ¥ let 7(r,a) = ra.

41

4 Learning Residual Alternating Automata

Al — + -
al + - -
| - — —
aa || — + -
ab | — - -

bal — | — | -
| — | - | -

Figure 4.4: A consistent and D-closed table 7 and the corresponding DFA
AP (7).

For an example of this construction see Fig. 4.4.

In the original L* algorithm proposed by Angluin [5], a counterexample w and its
prefixes obtained from the equivalence oracle are added to U. For this original
version of the algorithm, Lemma 4.7 does not hold. The set V is then extended
whenever the consistency criterion is violated. The version of L* presented in
Algorithm 3 adds a counterexample w and its suffixes in Line 13 to V instead.
This modification has been suggested by Maler and Pnueli originally [46].

Theorem 4.9 (Angluin [5]). For every regular language L € Cq, the algorithm
L* always generates the minimal DFA AP such that L(AP) = L. The algorithm
runs in time bounded by a polynomial in d, |X|, and £, where ¢ is the size of the
longest counterexample obtained from the equivalence oracle.

4.2.2 Learning Residual Nondeterministic and Universal Automata

The following definition helps to conclude that NL* and UL* always learn a unique
minimal RNFA or RUFA, respectively. Canonical RNFAs have been introduced
by [26]. The definition has been adapted to canonical RUFAs by [42].

Definition 4.10 (Canonical RNFA and canonical RUFA). Let L be a regular
language.

e The canonical RNFA for L is the tuple (Q, Qo, F,) with Q = U-Primes(L),
Qo={L'e€Q:LCL}, F={L'eQ: L'}, and7(L1,a) ={L2 € Q:
Ly C a_lLl}.

e The canonical RUFA for L is the tuple (Q, Qo, F, T) with @ = N-Primes(L),
Qo={L'eQ:LCL}, F={L'eQ:AelL}, and 7(L1,a) ={L2 € Q:
CL_lLl - LQ}

The canonical RNFA and RUFA have the minimal number of states and the
maximal number of transitions between these states, which makes them unique.

Figure 4.5 shows the canonical RUFA for the same language L as used in
Fig. 4.1 and 4.2.

42

4.2 Learning Automata

Figure 4.5: The canonical RUFA for the language L1 = a* U ba™ U aba*.

Definition 4.11. Let L be a regular language and T = (T,U, V') be a table for
L.

o A row ry of a table T is L-composite if there are rows ry,,..., Ty, €
Rowshigh(7), with 1y, # Tu, such that r, = |_|le Tu;- Otherwise, r, is
called U-prime. Let Primes (7)) be the set of U-prime rows in Rowspign (7).
For the M operator, M-composite, M-prime, and Primesq(7) are defined
analogously.

e To simplify the notation, for every r, € Rows(T), let By(ry,) := {rv €
Rowshigh (T) : 7oy < 7y} and Br(ry) := {ry € Rowshign(T) : ry < 1o}

o A subset of rows that can generate all rows of T using Ll (or M) is called
a U-basis (or M-basis, resp.) for T.

For example, in Fig. 4.3, the row ry, of T is M-composite as r, = r) M7y, whereas
TXsTas Tap are M-prime and Primesq(7) = {7y, rq}-

Thus, 7 is U-closed if Primes(7) is a Li-basis for 7. Analogously, T is M-closed
if Primesn(7) is a MM-basis for 7 The table in Fig. 4.3 is not M-closed as the row
Tqp € Rows(T) is not composable by rows of Rowspign (7).

In this thesis, a weaker form of consistency is used for NL* compared with Bollig
et al. [15] (or Kern [42] for UL*, respectively). Namely, the initial consistency
notion as already introduced by Angluin [5] for L* is used. In [7], Angluin et al.
have mentioned, but not proven, that this weaker form is sufficient for NL*,
UL*, and AL*. A formal justification has been given by Berndt et al. in [12].
The versions of NL* and UL* presented here use the weaker consistency notion.
The original algorithms, which use the stronger consistency notion, have been
presented in [15, 42]. With this weaker consistency notion, Lemma 4.7 can be
applied for NL* and UL*.

The construction of the NFA or UFA is as follows.

Definition 4.12. Let T be a consistent and X-closed table. For X = N or
X = U, the XFA 2AX(T) = (Q, Qo, F,7) consists of the following components:

e If X =N, Q= Primes (T), Qo =By(r\)NQ and F = {r € Q : r[\] = +}.
Forre @ anda € X let 7(r,a) = By(ra) N Q.

43

4 Learning Residual Alternating Automata

Al — | + | — a
) I Qo
aa || — | + | — =

ab| — | - | -

Figure 4.6: A consistent and U-closed table 7 and the corresponding UFA
UP(T).

e If X =U,Q =Primesq(T), Qo =Bnr(r\)NQ and F = {r € Q : r[\] = +}.
Forre @ anda € X let 7(r,a) = Bn(ra) N Q.

These constructions complete the presentation of NL* and UL*. For an example
of building a UFA from a table, see Fig. 4.6. Both algorithms, NL* and UL*,
learn the corresponding canonical automata:

Theorem 4.13 (Bollig et al. [15]). For every regular language L € Cq, the
algorithm NL* always generates the canonical RNFA AN such that L(AN) = L.
The algorithm runs in time bounded by a polynomial in d, ||, and £, where £ is
the size of the longest counterexample obtained from the equivalence oracle.

Theorem 4.14 (Kern [42]). For every reqular language L € Cq, the algorithm
UL* always generates the canonical RUFA AY such that L(AY) = L. The
algorithm runs in time bounded by a polynomial in d, |3|, and ¢, where € is the
size of the longest counterexample obtained from the equivalence oracle.

4.2.3 Learning Alternating Automata

In the following we describe the AL* algorithm of Angluin et al. [7]. The authors
have presented a basic version (see Algorithm 1 in their paper) and suggested
further optimizations afterwards. In our experiments (see Section 4.4.2), these
optimizations are reducing the number of membership queries, but they are
increasing the number of expensive equivalence queries. Our new algorithm AL**
does not use these optimizations, nor do L*, NL*, or UL*. Thus we present and
analyze the basic version of AL* here. Note that our counterexample, which we
will present in Section 4.3, works with both versions of AL*.

Definition 4.15. In the following P will always denote a subset of Rowspigh (7).

o The set P is a (U,MN)-basis for T (in the following simply called a basis)
if Rows(T) C [F(P)] and table T is then called P-closed.

e The table T is called P-minimal if P is a minimal basis for T, i.e. for
all p € P, the set P\ {p} is not a basis.

e For a P-closed table T and v € V, let MT (v) be the monomial defined by

MPw)= AN p,

pEPp[v]=+

44

4.2 Learning Automata

which is a mazimal one over all monomials in FA(P) such that
[MF ()] [v] = +. If for all p € P we have p[v] = — then M (v) :==T.
e Forr € Rows(T) of a P-closed table T let b¥ (1) € F(P) be the expression

bP (r) = \/ MP(U)

veVrjvl=+

representing r. If for all v € V we have r[v] = — then b¥ (r) :== L.
e For a monomial M and a € X we define Ma as the monomial derived
from M by replacing every row r € P of M by ra.

Note that [o” (r)] =r.

Definition 4.16. Let ¢ be an MDNF formula consisting of monomials M;. We
use the notation M; C ¢ and for a monomial M; = \; x; the notation x; T M,
for its literals x;.

For formulas p(x1,...,x) and ¥(z1,...,xx) with literals x1,. ..,z that rep-
resent vectors r over {+, —}, we say that ¢ and v are equivalent (in symbols
o =) if [e(ri,re, ..., re)] = [¥(r1,...,7m)] for all vectors ri,. .., of iden-
tical length.

Now all necessary tools have been defined to construct an AFA 217 (7)) from a
table a 7.

Definition 4.17. Let T be a consistent and P-closed table. The AFA AF(T) =
(Q, Qo, F,T) consists of the following components: @ = P, Qo = b* (ry) and
F={rcP:r[Nl=+}. ForrcQ anda € X let 7(r,a) = b" (ra).

Recall that, according to our convention, the term ra in the last expression
denotes the vector r,, such that u € U is any string with r, = r. Note, moreover,
that 7(r,a) = b” (ra) is always an MDNF formula. An example of constructing
an AFA from a table is illustrated in Fig. 4.7.

The automaton 2A*(7) computed by AL* (Line 8, Algorithm 3) has the form
AX(T) = AP (T), where P is an arbitrary minimal basis for 7. AL* may adapt
the old minimal basis whenever it computes a new automaton. The size of the
basis equals the number of states of the automaton 217 (7). Thus the basis
should be as small as possible. However, AL* only constructs a minimal basis,
because computing a minimum basis (i. e. of minimal cardinality) is NP-hard,
as shown by Angluin et al. in [7]. The approximation of the minimum basis is
discussed in Section 4.4.1.

Theorem 4.18 (Angluin et al. [7]). For every regular language L € Cq, the
algorithm AL* always generates an AFA AT such that L(AY) = L. The algorithm
runs in time bounded by a polynomial in d, |X|, and ¢, where ¢ is the size of the
longest counterezample obtained from the equivalence oracle.

45

4 Learning Residual Alternating Automata

A a ba

Al — + +
a| + + -
b| — + -
aa || + + +
ab || — — —

Figure 4.7: A consistent and P-closed table 7 with P = {ry,r,} and the cor-
responding AFA A7 (T). For reasons of clarity, here and in the
following figures, unnecessary monomials have been removed from
the MDNF formulas: the formula 7, V () Arg) has been replaced by
the equivalent formula r,, as well as r, V (ry Arg) V ry by 74 V 7).

4.3 Analysis of the AL* Algorithm

The AL* algorithm to learn alternating automata has been presented in [7]
and its running time has been analyzed. However, properties of the automata
produced have remained unclear. We close this gap by establishing several
properties of AL*. These properties form a part of the proof that the new AL**
always generates residual automata. Thus, the counterexample to disprove the
conjecture about residuality needs to be constructed around the properties of
AL* we prove in this section. We finish our analysis of AL* with the presentation
of the counterexample.

Let us analyze the properties of the automata generated by AL* in detail. From
the construction of the AFA one can easily derive the following lemma.

Lemma 4.19. For every ¢ € F(Q) and every automaton AP (T) it holds:
(e) =T if and only if [¢] [N = +.

Proof. We use induction upon the nesting of ¢. For r € Q it holds (r) = T <
r € F < r[A] = [r] [\] = +. In the inductive step one can conclude

WA =T<—=@Wh=TA[E)=T
= WIN=+AEN=+=[¥AJN =+,

WV =T W =TVE)=T
= WIA =+ VN =+ < [V =+.

In the following, fix a regular language L, a prefix-closed set U, a suffix-closed
set V', the corresponding table 7 and a minimal basis P of Rowspigh (7).

Lemma 4.20. For allr € P and v € V holds r[v] = [r(r,v)] [A].

46

4.3 Analysis of the AL* Algorithm

Proof. We prove the lemma by induction upon the length of v. For v = X\ one
gets r[A]l = [r[[A] = [7(r, VT Al

For v = av’ we have r[v] = rlav’] = rafv'], as r € P and v' € V due to its
suffix-closedness.

e case ra[v'] = +:
It holds 7(r,a) = b¥ (ra) =\ ey MFP(v). As v € V and ra[v] = +
ralv]=+
one can conclude M (v') C 7(r,a). For every ' = M¥(v') the induction
hypothesis implies [7(r/,v')] [\] = 7/[v/] = + by the definition of M ¥ (v').
Hence

[r(MP @), N =7 A || =+.

r'eP, r'[v]=+
Finally, as 7(r, a) contains the monomial M” (v') one can conclude

IIT(T7U)]] [)‘] = [[T(T7 av,)]] P‘] = [[T(T(Tv a),v’)]] [)‘]
> [[T(MP(UI),U/)]] A =+.

e case rafv'] = —:
For every monomial M C 7(r,a) it must hold [M] [v'] = —. Thus, there
is a row rpy € P with rj/[v'] = —. The induction hypothesis then implies
[7(rar, v)] [A] = —. So, for every M C 7(r,a) we get [7(M,v")] [\ = —,
and finally

HT(T,U)]] [)‘] = [[T(T(T, a)7vl)]] [)‘] = [[T(bp (ra) 77)/)]] [)‘] =

Hence, rafv'] = + if and only if [7(r,v)] [\] = + which implies r[v] = + if and
only if [7(r,v)] [\] = +. O

Lemma 4.21. For all ¢ € F(P) and v € V we have [¢] [v] = [7(p,v)] [A].

Proof. We may assume that ¢ is in MDNF. If [¢] [v] = — then for every
monomial M T ¢ it must hold [M][v] = —. Therefore, there exists some
r C M, such that r[v] = —. By Lemma 4.20, [r(r,v)][\] = — and hence
[7(e,)N = —

Otherwise, if [¢] [v] = + there exists a monomial M T ¢ with [M] [
Hence, for all » — M it must hold r[v] = 4. Lemma 4.20 implies [7(r,v)]
and thus [7(¢,v)] [A\] = +.

Using these properties we continue the analysis as follows.

Lemma 4.22. If T and A¥ (T) are compatible then for every u € U with r, € P
it holds L(AE (T)) € u™'L(AL(T)).

47

4 Learning Residual Alternating Automata

Proof. Assume L(AL (T)) ¢ u=*L(AT(T)), i.e. there exists a string w such
that w € L(AL (7)) and w ¢ w 'L(AP(T)). Since w € L(AL (T)), we have
[7(ry,w)] [A\] = + by definition. Moreover, w ¢ u~'L(AF(T)) implies uw ¢
L(AF(T)) and thus [7(7(Qo,w),w)] [\ = —.

We will now prove that such an w cannot come from V or ¥V by showing that
w ¢ (BU{A})V. Assume that w = av with a € XU {A},v € V. By Lemma 4.21,
[T(ry,a)] [v] = [7(ry,w)] [A]. Further, [7(ry,a)] = ruq by definition. Thus

rua[v] = [7(ru,)] [v] = [T (ru, w)] (Al = +,

but this contradicts compatibility, as ry.[v] = + implies that vav = ww €

L(AP(T)).

Now let w = a®@. From the construction of 7, we know that the row r,, is not
completely filled with —, since

[0 (rua) B N = [r0F (= =) @] N = (L&)
= [N = -

would contradict

+ = [r(ru, W) [N = [r(ru,a@)] [A] = [7(7(ru,a),@)] [A]
= [t (rua),@)] [N -

Let 7(Qo,u)MpNe = M1V My V - -+ V My, be the formula that is reached in
the automaton after reading u. For every column v € V with ry,[v] = +,
consider all monomials M; with [M;a] [v] = 4. There must be at least one
monomial, because otherwise uav ¢ L(2F(T)), which would contradict the
compatibility of 7 and 217 (7). It holds M (v) = 7(ry, a) by the construction
of 7(ru,a) = b (rua). For every row rz C M;, we have 7(rgz,a) = bF (ra,) =
VeV, raalsl=+ MP(%). Hence, M¥ (v) C 7(rga). Thus, MF (v) C 7(M;, a)mMpNr
and MP(U) C ’T(Ml VeV Mk,a)MDNF.

So, for every monomial M¥ (v) C 7(ry,a), we have M¥(v) C 7(My V --- V
My, a)yprr and thus MP(v) © 7(Qo,u)ypnr. Hence, [7(ry,ad)] [N = +
directly implies

[[T(Ml\/'--\/Mk,a(Z))]] [)\] = +.

But [r(M; V-V Mg, a@)] [\ = [7(7(Qo,u),w)] [\ = —. Hence, this is a
contradiction and no such w exists. O

For NFAs and UFAs, the reverse inclusion between the two languages in the
statement of Lemma 4.22 holds in the case of compatibility, too. Angluin et al. [7]
have conjectured that this is also the case for AFAs since extensive tests of the
algorithm AL* never produced a non-residual AFA. With the help of specially
developed software that simulates and visualizes the run of AL* interactively, we
have been able to construct a counterexample. With our software, the user can
define the alphabet X, a target regular language L, the rows U and columns V' of

48

4.3 Analysis of the AL* Algorithm

the table 7, and a specific minimal base if desired. The software fills the entire
table 7 including the rows R = UX \ U by membership tests for L, computes a
minimal basis P if not fixed by the user, and generates a visualization of AF (7).
Based on a failed attempt to prove the reverse inclusion of Lemma 4.22, the
following counterexample has been constructed with the help of the software
eventually.

Lemma 4.23. There exists a reqular language L for which the algorithm AL*
constructs a table T defining a compatible AFA AF(T) with LAY (T)) = L,
such that for some r € P and all w € ¥* the residual language w™'L is not
contained in L(AL (T)).

Proof. Tt can be shown that the AFA in Fig. 4.8 is compatible to a table T that
can be constructed by AL* on a carefully designed language L. The state labeled
nr is not residual.

717 Onr, pclf

V2, Onr, Pc2f

715 Pclw

Figure 4.8: A non-residual AFA constructed by AL* with initial configuration
Qo = s and accepting states F' = {f}.

We give the construction of the language L and the run of AL* that results in
the AFA mentioned above. Let

Y= {UcaUnr>O'clfya'clw;Uc2f,0—c2w70w1a0'w2a
pnmpclfapclwap02fapc2wapw17pw2>'71772yw})
Ly ={ocn, 0cv2, 0cOnrpnr,
OclfPclfs OclwPeclw; Tc2fPc2fr Oc2wPc2w;

OwlPwl, Uw2pw2} ,

49

4 Learning Residual Alternating Automata

Ly = {Uclf’Yla OclfOnrPnr, OclwY1s OclwOnrPnr,
0c2fV25, 0c2fO0nrPnr, Oc2wV25 UcQanrpnr})
L,= {Uw2w7 OwlWW, OywlWPw2; OclfOnr, 0c2f0nr,
OclwOnrPwls OclwOnrWpPw2; OclwOnrWW,
O c2w0nrPwl, UcQwanerwQUCQwonrww} s

Ly= (L UL, UL, U{ocopww}){w}”,

and 2 be the AFA illustrated in Fig. 4.8. A detailed case analysis shows
L(2A) = Lo.

For learning Lo, the following implementation of an FQUIV oracle is used based
on a total ordering < over L, given by

OcOnrPnr = OclfPclf = 0c2fPc2f = 0cV2 = 0cY1 = Oc2wPc2w = TclwPelw

< OwlPwl < Ow2Pw2 -

For a hypothesized AFA 2" that does not accept Lo, EQUIV according to <
searches the smallest element £ € L, \ L('). If such a £ exists, EQUIV returns
it as counterexample, otherwise an arbitrary counterexample is chosen.?

We have implemented AL* with access to this equivalence oracle. For the language
Lo the non-residual automaton 2 in Fig. 4.8 has been obtained as final result.
This holds for both cases, AL* with and without the optimizations suggested by
Angluin et al. The complete table 7 of the corresponding run is not presented
here since it has hundreds of rows. O

We now give some intuition concerning the construction of the non-residual
automaton 2 or rather the language Lo. Let Q' = {clf, clw, c2f, 2w, wl, w2}
be a subset of the states of A. For ¢ € Q' the symbol oy is used to generate a
row of T of a specific form that will serve as a state of 2. For ¢ to ensure that
the corresponding row is prime the symbol p, is used which generates a unique
+ in this row. Thus, we add o4pq to L, for every ¢ € Q'. In the subtable in
Fig. 4.9 see for example the second row labelled o.; ¢ and column labelled p,1 ¢.
This column has a single + at this row that makes this row prime.

To get a non-residual AFA, Lemma 4.24 implies that we have to construct a
prime row r, where u = .0y, such that r,, is not prime. This is achieved by
symbols 71, v2. For the subtable in Fig. 4.9 one notices that

7,0-6 = (TUclf |—I'r‘o'clw) U (TUCQf M 7.‘0'c2w) .

3We cannot provide the sequence of counterexamples exactly because it depends on details
of the implementation of AL*. In [7] the authors have suggested some optimizations in
order to save membership queries. However, these optimizations may increase the number
of (expensive) equivalence queries, because now AL* may produce automata that do not
classify already seen counterexamples correctly. In this case, the equivalence oracle defined
above would simply provide a previous counterexample again.

50

4.4 Learning Residual Alternating Automata

The row with label o.0,, plays a special role representing the non-residual state
nr. This completes the construction of L, C Lo.

A a! V2 Pclf | Pclw | Pc2f | Pc2w | Pnr
Oc — + + — - — — -
Oclf — + - + — — — —
Oclw - + - - + — — -
Oc2f - - + - - + - —
Oc2w - - + - - - + —
OcOnr - - - - - - - +

Figure 4.9: A subtable of 7 used to construct non-residual AFA 24 = 24(T).

We still have to make sure that the state nr corresponding to r, is non-residual.
For this purpose, we add the string o.0,,ww to the language Lo and make
sure that the string ww is not accepted while the automaton is in state nr, i.e.
ww ¢ L(2A,,). For the automaton to accept o.on,ww the suffix oy,,ww must be
accepted from the configuration (clf A clw) V (¢2f A c2w). The non-residuality
is achieved by the table not containing information on o.0,,ww and ww. To
hide this information, we have to make sure that w is never added to V. This is
done by two “waiting” states wl and w2. As a path from the states clw and
c2w to the accepting state f visits the states wl and w2, the automaton has
to “wait” for the string ww to reach f. By construction of r,, either clw or
c2w have to be visited in order to accept a word. But, as w ¢ V, this waiting
behavior cannot be observed by AL* and hence ww ¢ L(2L,,).

For technical reasons one has to add some words like o,,;ww to the language to
get the final version of Ls. Based on these properties, the segmentation of Lo is
as follows. The words in L, are the counterexamples that let AL* add necessary
columns to V' and finally necessary rows to U. The words in L, ensure that row
T, gets suitably extended. Finally, the words in L, correspond to the waiting
process before merging the different A-branches in the accepting state f.

4.4 Learning Residual Alternating Automata

Let L be a given regular language. In order to construct only residual AFAs for
L we build on AL* and design a new algorithm AL** presented as Algorithm 4
that solves this problem. The main obstacle that one encounters is the test of
residuality of the constructed automaton. We use the power of the equivalence-
oracle to incorporate this task into AL* by reducing it to a single equivalence
query of a larger automaton.

The main difference between AL* and AL** lies in the construction of the automa-
ton A7 (T) in Line 10 of AL**. This modification of AL* allows us to guarantee
the residuality of the generated automaton. The lemmata shown for AL* hold for
AL** as well, especially Lemma 4.7 and 4.22. As shown in the previous section,

51

4 Learning Residual Alternating Automata

Input: membership oracle MEMBER(L) and equivalence oracle
EQUIV (L) respecting the unknown target language L C X*
Output: an AFA 2
1 U+ {A} V+{\}
2 initialize 7 = (T, U, V') with |X| + 1 membership queries;
3 while true do

4 while T is not A-closed do
5 find a row 7y € Rows(T) with ry, ¢ [F(Rowshigh(7))];
6 add ua to U;
7 complete T via membership queries;
8 | construct a minimal basis P and the AFA A”(T) for P;
9 | if L(AY(T)) = L then
10 construct A7 (T) with P’ = Rowspign(7);
11 if L(AY'(T)) = L then
12 | return 2A7(7);
13 else
14 get a counterexample w € L A LAY (T));
15 set V « V U Suffs(w);
16 complete T via membership queries;
17 else
18 get a counterexample w € L A L(AP(T));
19 set V < V U Suffs(w);
20 complete T via membership queries;

Algorithm 4: AL**

the reason for the possible non-residuality of the automaton produced by AL*
is that the reverse statement of Lemma 4.22 does not hold for AFAs. As we
perform no basis reduction in the construction of A’ (T), compatibility of the
table and the automaton guarantees residuality of the automaton.

Lemma 4.24. If the AFA A (T)) constructed in Line 10 is compatible with T,
then automaton AX (T is residual.

Proof. Consider some u € U. As P’ = Rowshjgh(7), we have r, € P’ and thus
L(Qlf;’ (7)) C u 'L(AT'(T)) by Lemma 4.22. It remains to prove the inclusion
in the other direction. Iterating over the length of u one can show that for every
configuration of the AFA 7(Qq,u) = ry, A Ry, where R,, is some expression.

By construction, every monomial of Qo = b¥ (r)) contains 7. Therefore,
Qo = r\ A Ry for some expression Ry. Hence, 7(Qo, A\) = Qo =) A Rj.

As U is prefix-closed, every prefix of u is also in U. If u = v/a, every monomial
of 7(u/,a) contains ry, = r, € P’ by the induction hypothesis. Therefore,

52

4.4 Learning Residual Alternating Automata

7(u',a) = r, N R),, where R], is an expression. Thus, for an appropriate
expression R, we get

7(Qo,u) = 7(7(Qo,), a) = 7(ry A Ryya) = (ry ARL) ARy =1y ARy

Therefore, L(Qlf: (7)) 2 u= LAY (T)). -

Computing the large residual automaton A /(7') in Line 10 upon the trivial basis
P’ allows us to test the smaller automaton A (7) for residuality via the following
lemma. If AT (T) passes the equivalency test it certificates the residuality of
AP (T). Otherwise, the construction directly gives us a counterexample that
helps 2A” /(’7') to pass the equivalence test the next time.

Lemma 4.25. If the two AFAs A7 (T) and A7 (T) constructed in Line 8,
respectively 10 satisfy the condition L(AY(T)) = L = LAY (T)) then AL (T) is
residual.

Proof. Assume L(2AP(T)) = L = L(A”'(T)). Lemma 4.24 states that A" (T
is residual. Consider a state ¢ = r, of A" (7)) with corresponding state ¢’ of
AP (T). As 1, € P C Rowsyign(T) = P, there is always such a corresponding
state. Let a € X be any alphabet symbol. For every monomial M’ C 7(¢/, a),
there is a monomial M C 7(q,a) such that every literal of M is in M’ (with
the corresponding v we have M = MP (v) and M’ = M*'(v) and M (v) may
consist of states not in P). Hence, [7(q,w)] > [7(¢',w)]. From Lemma 4.24 one
gets 'L = u='L(AP(T)) € LAY (T)) and from Lemma 4.22 L(AL(T)) €
u ' LAP(T)) = w'L. Thus, we get u='L C L(Ql(f,/(T)) CLEN(T) Cu'L
and v 'L = u'L(AY(T)) = L(AL(T)). Therefore, the automaton A (T) is
residual, too. O

A basis P is called optimal for a regular language L if its size is minimal over all
bases P for all tables 7 for L such that 217 (7) is an RAFA. The reverse of L
contains all strings aj ...ar € X* such that a...a; is in L. Now we are ready
to state the main result of this chapter.

Theorem 4.26. For every reqular language L, the algorithm AL** always gen-
erates an RAFA AP such that L(AT) = L. Moreover, if the basis P is optimal
then AT has the minimal number of states over all RAFAs for L.

The algorithm terminates after at most k1, equivalence queries and krkr(1+|X[)¢
membership queries, where k1, and K1, denote the number of states of the min-
imal DFA for L, respectively the reverse of L and £ is the size of the longest
counterezample obtained from the equivalence oracle. It runs in time bounded by
a polynomial in kg, Rr, ||, and €.

Recall that, by definition of the concept class of regular languages, for every
d € N and every L € Cyq, kp < d and R < d.

93

4 Learning Residual Alternating Automata

Proof. Lemma 4.25 implies that the output of AL** is always residual. The
number of states of the final hypothesis equals the size of the basis. Thus, an
optimal basis leads to a minimal number of states. The table 7 cannot have
more different rows than kr, the number of states of the minimal DFA for L
(compare Lemma 5 of [15]).

Claim 4.27. ry[v] = [7(Qo,v)] [\] for every v € V.
Proof. Choose ¢ = b” (r)). By construction we have ry = [b” (r))]. Now we
can apply Lemma 4.21. O

Claim 4.28. If ¢ € ¥* is classified incorrectly by the AFA then there exists
a suffix v of ¢ such that the corresponding column v ¢ V is different from all
columns in V.

Proof. The claim above shows that every w € V is classified correctly by 2% (T)
as well as by Qlil (T). So, for every counterexample ¢ € ¥* we know that c is
not classified correctly by the current AFA, but will be classified correctly by
every future AFA, which will be constructed from a table 7' = (T",U’, V') with
cin V'. Hence, every counterexample yields a change of 7 at least for Qlﬁl(T).
This can only be the case if either one of the new columns (added when seeing
the counterexample) differs from all of the old columns, or if a new row is added
to Rowshignh(7). However, a new row is only added if the table has become
non- P-closed. Therefore, a column that differs from every old column must have
been added before. O

Thus, the maximal number of different columns is bounded by the minimal
number of states of a DFA for the reserve language of L denoted by #r. Note
that 47 < 2. Thus both, AL (T) and AL (T), must be equivalent to the
unknown language L after a finite number of counterexamples. Thus, AL**
terminates.

By construction, Rowspigh(7) does not contain a row more than once. So, |U]
is bounded by xr, and Rows(7) by (1+|X|) . V is bounded by the number of
equivalence queries multiplied by the length of the counterexamples. Therefore,
V<R

The size of the final table is thus at most xRz (1 + |X])¢, and also the number
of membership queries. The total running time of AL** is polynomial in the size
of the final table. O

4.4.1 Approximating the Minimum Basis

Assume T = (T,U, V) is a table for a regular language. Analogously to AL*, AL**
constructs a minimal basis, because computing a minimum basis is N'P-hard
(see [7]). In order to guarantee that the basis (and hence the set of states) used
by the algorithm is small enough, we give an approximation algorithm for this

54

4.4 Learning Residual Alternating Automata

problem. In the optimization problem MIN-SET-COVER, one is given a groundset
& and a set S of subsets of X and searches the smallest S C S with (J,cgs = &
(see e.g. [65]). If MF := {[[MP(’U)]] RS V} for P C Rowspign(7), we obtain
the following lemma.

Lemma 4.29. For every P it holds: MRoWsnien(T) = MP if and only if P is a
basis of Rowspign (7).

Proof. Assume that P is a basis of Rowshigh(7), but M Rowshign (T) £ MP.
By construction, for every m = [[MP(U)]] € MP there must be some m' =
[MEBowsuien(T) ()] € MBowsnien(T) with m/ < m. By assumption, there must
be such a pair m, m’ with m’ < m. Now consider v,v" € V such that m =
[MP ()], m = [[MROWShigh(T) (v)] and m/[v'] < m[v']. There must be a row r,, €
Rowshigh(7) with 7,[v] = + and ry[v'] = —. Note that r, € MROWShigh(T)(U).
From [[M P (v)]] [v'] = + we know that P cannot contain such a row r,. Thus,
every monomial over P that evaluates to + at position v must evaluate to +
at position v’. But then, 7, € Rowshign(7) cannot be composed from P by an
MDNF. Thus, P cannot be a basis of Rowspigh (7).

Now assume that P is not a basis of Rowshigh(7). So there is some u € U
such that r, cannot be expressed by an MDNF over P. Thus, there is a
v € V with ufv] = +, but [MF(v)] > r, = [MROWShigh(T) (v)]. This implies
MRowshigh(’T) 75 MP‘ n

We will now reduce the problem of finding a basis of Rowspigh(7) to the problem
of finding a solution to a SET-COVER instance.

Lemma 4.30. Let X = {(v,i) : v,i € V A [[MROWShigh(T)(v)]] [i] = —} be the
groundset and S = {my : u € U} with subsets m, = {(v,i) € X : ry >
[MBowsnien(T) (v)] and r,[i] = =} be an instance of SET-COVER. The set P is
a basis of Rowsnigh(T) if and only if there exists a feasible solution C of the set
cover instance above such that P = {r, : m, € C}.

Proof. Every vector of M¥ can be composed by the vectors of P by intersection,
so requiring these compositions does not increase P. Now we apply the lemma
above. O

We can now use the well known algorithm for the optimization problem MIN-
SET-COVER due to [37] that on input (X,S) produces a feasible solution S C S
with |S] < (In(]X|) +1)|S*| in polynomial time, where S* is an optimal solution
to the instance. We get the following result.

Theorem 4.31. There exists a polynomial time algorithm that for a given table
T = (T,U,V) returns a basis P of Rowsnigh(7T) with |P| < (2In(|V]) +1) - |P¥|,

where P* is a minimum basis of Rowspigh (7).

95

4 Learning Residual Alternating Automata

It is important to note here that P* is a minimum basis of Rowspien(7) and
does not necessarily correspond to an optimal basis. One can indeed construct
tables T such that no basis P C Rows(7) is optimal.

4.4.2 Experimental Results

We have run L*, NL*, and AL** on random AFA targets. The first distribution
of these random AFAs (RAT1) has been generated similar to the experiments
of Angluin et al. [7] as told by Fisman [33].

e Every AFA has 7 states over an alphabet of size 3.
e The number of accepting states is chosen randomly between 1 and 3.

e The initial state and every transition are either disjunctions or conjunctions
each.

e Each such formula consists of 1 up to 3 variables.
e Trivial AFAs are discarded.

For the equivalence oracle we have used the probabilistic (non-error free) equiv-
alence oracle (REQ) described in [7] and also implemented an exact version
(EEQ). Whenever REQ returned “equivalent”, this has been verified by EEQ. In
almost every run of L*, NL*, and AL**, at least one wrong answer given by REQ
has shown up. Thus, the following experiments have been obtained by using the
exact algorithm EEQ. However, in about 50% of all non-trivial RAT1 instances
EEQ has required so much computational power that the computation could not
be finished. This problem is unlikely to be fixed by a more efficient implementa-
tion of EEQ, because AFA-equivalence is PSPACE-hard (NFA-equivalence is
already PSP.ACE-complete [59)]).

Figure 4.10: An example of a RAT?2 instance.

Therefore, to reduce the computational complexity of the instances we have
generated a different set of random AFA targets (RAT2) obtained as follows.

56

4.5 The Size of Residual AFAs

e Every AFA has 6 states over an alphabet of size 3.
e Every state is accepting with probability 1/2.

e With probability 1/3, there is exactly one initial state. Otherwise, the
initial configuration is a disjunction of two different random states.

e Every transition is an MDNF formula, consisting of two monomials. Each
monomial is a conjunction of random states. With probability 2/3, such a
monomial is of size 1, otherwise of size 2.

e Trivial AFAs are discarded.

Figure 4.10 shows such a randomly generated target AFA. There were still about
24% non-trivial RAT?2 instances we had to abort.

Figure 4.11 summarizes our experimental results with EEQ for RAT2 comparing
the sizes of the automata generated by L*, NL* and AL**. Note that the target
instances randomly generated may not be residual, while the AFAs output by
AL** are always residual.

100

— DFA (L*)
— NFA (NL*)

5 — AFA (AL*)

3

> 50

(8]

Q

g

=

Z.

50 100
Size of minimal DFA

Figure 4.11: Comparison of the size of automata learned by L*, NL* and AL**
for random regular languages generated by AFAs.

4.5 The Size of Residual AFAs

Angluin et al. [7] have shown that RAFAs may be exponentially more succinct
than RNFAs and RUFAs and double exponentially more succinct than DFAs.
We strengthen these results by proving that RAFAs may be exponentially more
succinct than every equivalent non-residual NFAs or UFAs. Furthermore, there
exists an RAFA that is double exponentially more succinct than the minimal DFA
and uses only 2 nondeterministic (i.e. V) transitions and only a linear number

o7

4 Learning Residual Alternating Automata

of universal (i.e. A) transitions. Thus, the restriction to residual automata still
allows a very compact representation. On the other hand, we give an example
where the residuality of an automata demands an exponentially larger state set.

Figure 4.12: The residual AFA for the language A, of Theorem 4.32 with n = 2.
The corresponding alphabet is ¥, = ¥, U X, with X, = {a1,as}
and X, = {b1, b2}, the initial configuration is Qy = p1 A p2, and the
set of accepting states is F' = {q1, ¢2}.

Theorem 4.32. For every even n € IN, there exists a language A,, that can be
accepted by a residual AFA with 2n + 1 states and every NFA or UFA for A,
needs at least (n72) states.

Proof. The alphabet %,, for A,, consists of disjoint subsets 3, = {a1, a2, ...,an}
and ¥ = {b1, ba,...,b,}. The language is defined as

Ay ={wjwy :wy € X} we € X7, wy contains all symbols from 3,

wg does not contain all symbols from ¥} .

We construct a residual AFA with states {pi,...,pn, q1,-..,qn,x} that is
sketched for n = 2 in Fig. 4.12. A general construction of AFAs A" for A, is
given below:

Q" ={p1,p2, s Pn, 01,92, - - @, T}, Qo= NiZipi, F=1{q1,q2,.-qn}
T(pi,ai) =piV @i Vg V...V,

T(pi,o) = p; for o € ¥y \{a;}, 7(pi,0) =z for o € Xy, 7(g;,b;) =x
7(gi,0) = q; for all 0 € ¥, \ {b;}, 7(x,0) =z forallo € X,

Residuality follows from the following strings u(q) for ¢ € Q™ such that L(2(,) =
u(q) " Ap:

u(x) = ajag...ap biba ... by,

u(ql) = aijag. .. anblbg e biflbiJrl PN bn,

u(pz) =a1a2...a4;—10541 -..0n.

In order to prove the lower bound for the size of NFAs for A,,, we use permutations
on ¥,. For a permutation 7 on ¥, we define Sy(7) = {n(1),7(2),...,7(n/2)},

58

4.5 The Size of Residual AFAs

Figure 4.13: The (non-residual) AFA for the language B,, of Theorem 4.33 with
n = 2.

Si(m) ={m(n/2+4+1),...,7(n)} and w(mw) = 7(1)7(2)...7w(n). The string w(m)
contains each letter of ¥, exactly once and hence belongs to A,,.

Let 2 = (Q,Qo, 7, F) be an NFA for A,. For w(w), consider an accepting
computation generating the sequence of states g, ¢2, ..., ¢* with ¢° € F. There
are (HT;Q) many pairs of permutations 7, 7" with So(7) # Sp(n’). If 2 has less
than that many states there must exist two such permutations 7 and 7’ with

q:rl/z = q:,/2. Hence,

1 n/2 n/2+1 n
qwa"'77r/>qﬂ—/ a"'q7r’

is an accepting run of
w(m, ') =a()w(2)...7(n/2) 7’'(n/2+1)...7'(n) .

But, as So(7) # So(n'), there is some symbol o € S;(7) with o ¢ S;(n’). Hence,
o does not occur in w(m, 7’) and thus w &€ A,,. Thus, 2 does not recognize A,
correctly.

The lower bound proof for UFAs is dual by taking permutations on ;. Now a
string w(m) starts with ay .. .a, to fulfill the first conditions and then continues
with the permutation 7 of the letters in X;. All these strings do not belong
to A,, but omitting one letter b; in the second part puts the input into the
language. O

Theorem 4.33. For every n € IN there exists a language B, over a binary
alphabet that can be accepted by a (non-residual) AFA with 2n + 2 states, but
every residual AFA for B, requires at least 2" states.

Proof. We start with an auxiliary lemma. For an AFA 2 = (Q, Qo, F,) and
p € F(Q) let A, = (Q,p, F,7) denote the AFA starting with the initial
configuration .

Lemma 4.34. Let L be a regular language and A an AFA accepting L. For
every w € X*, there is a formula ¢, € F(Q) such that L(™A,) = w L.

99

4 Learning Residual Alternating Automata

Proof. Suppose that this is wrong and there exists a @w € X* that for every
v € F(Q), L(A,) # W 'L. Hence, for every ¢ € F(Q), there is a string v, such
that v, € L(2A,) A@ L. This means that wv, is wrongly classified by 2. [

Let ¥ = {a, b} and consider B, = {w*w’ : w € X" w' is a prefix of w} (based
on the construction of [63]). Let us construct a (non-residual) AFA for B,:

Q:{paqvala"'7an7b17"'>bn}a Qoz{p}v
F:{p)al)a27°"Jan7blab27"‘7bn}

7(p,a) =pAay, T(p,b) =p A by

7(ai,0) = aj41 for i <nand o € ¥

(bijyo) =biy1 fori <nmand o € X
(
(

\]

anva) =D, T(bnvb) =D, T(anvb) =4q, T(bma) =4q
qg,0)=gqforalloc e X

\]

T

For n = 2, the non-residual AFA 2 = (Q, Qo, 7, F') for B,, is sketched in Fig. 4.13.
It should not be too difficult to convince oneself that this AFA does the job.

To prove that every residual AFA accepting B, has at least 2" states, let
S ={u : wu € {a,b}* |ul < n} be the set of strings of maximal length
n. For w = wiws...w, in B,, with w; € ¥ and m > n, we have that
w By = (Wm—nt1Wm—nt2 - - - Wy) "' By, by the construction of B,,. Hence, for
each residual language L of B, there is a string u € S such that L' = u~'B,,.
For u,u’ € S with u # v/, we have either u='B,, C u/~'B,,, or v'~'B,, C u™'B,,
or u”'B,Nu'"'B,, = (), due to the construction of B,,. Hence, there is a bijection
between RES(B,,) and S.

Let 2 be a residual AFA for B, with states (). As 2 is residual, every state
q € @ corresponds to a residual language and thus to a string u, € S. Now
consider a string v € ¥". We have (v"'B,,) N " = {v}. In order to correctly
recognize B,,, one can see that there is a configuration ¢, € F(Q) such that
L(2A,,) = v~ !B, (see Lemma 4.34 above). Without loss of generality, suppose
that ¢, = \/le M; and M; C Q. Remember that for all residual languages, they
are either disjoint or one of the languages is a subset of the other. Hence, for
every M;, either L(pz,) = (0 (and it thus can be removed from ¢,) or there is
a state ¢; T M; such that L(Aps,) = L(2,,). Now ¢, can be represented as a
conjunction of states, i.e. ¢, = \/le ¢ But, as L(,,) = v~ B,, we conclude
that there is a single state ¢, € @ such that ¢, = ¢, (as the language of every
other state is either disjoint or a proper superset). As all of these states need to
be disjoint, we have |Q] > |X|" = 2™. O

A closer look at the constructions of succinct automata for B,, reveals that the
resulting AFAs are in fact UFAs. Dually, B, = ¥* \ B, can be accepted by
an NFA with the same number of states 2n + 2. Thus, we obtain families of
languages B,, and B,, for n = 1,2,..., such that every residual AFA for B,
respectively B, is exponentially larger than the corresponding minimal UFA,
respectively NFA.

60

4.5 The Size of Residual AFAs

M

Figure 4.14: The AFA A, for n = 2.

As it has already been noted in [7], RAFAs may be double exponentially smaller
than the minimal DFAs. We give a more precise bound inspired by a language
defined in [17].

Theorem 4.35. For every n € IN there exists a language C,, such that the
minimal DFA for C,, needs at least 22" states and there is a residual AFA with
2n2 + 5n states for C,.

Proof. Consider the alphabet
Y= {a,0,€,8}U{s;: 1 <i<n} U {sip:1<i<nAoe{a,b}}

For sake of simplicity, let Z = {4, (i,0) : 1 <i<n,o € {a,b}} be the indices
of the alphabet symbols s; (respectively s;). The AFA ,, = (Q, Qo, T, F) is
constructed as follows.

Q={¢i:ti0rGioj: 1 <i<n,o€{a,b},0<j<n}, Qo=q
F={gion:1<i<nAoc{ab}}

[}

[}

o 7(

o 7(

o 7(gi,a) = Gia N Git1, T(¢i,0) = qip A giy1 for 1 <i<n
® 7(qn,a) = Gna, T(Gn,b) = Gnp
o 7(
o 7(
o 7(
o 7(
[}

=)

iy @) = T(Qio,b) = T(Gi0,€) = qip for 1 <i<mnando € {a,b}
Gios8) = qiop for 1 <i<nand o € {a,b}

Gi0i-1,0) = ¢igi for 1 <i<n and o € {a,b}

Gi0j>0) = T(Qioj:b) = iojy1 for 1 <i<n, j#i—1,and o € {a,b}
7(q,0) = L for every ¢ € Q and o € X" such that 7(¢g,0) has not been
defined above, where | is the empty MDNF.

[}

The corresponding automaton 2fs is shown in Fig. 4.14.

61

4 Learning Residual Alternating Automata

Note that 20, has n + 2n + 2n(n + 1) = 2n? + 5n states and its transitions are
of polynomial size. It accepts the language

Cy, = {uwvSw : u,v € {a,b,€}* ANw € {a,b}"} U
{uspvr: we {0,1,€}* AT € ZANvr € L((A)g,)}-

This language is inspired by [17]. It remains to show that 2, is residual, and
that C,, has at least 22" different Nerode classes.

1. For every index I € Z it holds L ((2y,)q;) = (s1) "1 Ch, because 7(Qo, s1) =
qr- For gioj; with 1 < i < n and 0 € {a,b}, 0 < j < n, consider
the set {w1,...,wem1} = {a,b}* " 1o{a,b}" . Since L ((Q'ln)(h',o,j)
(wi€wo€ . .. €wyn-1$07)71C,, the AFA 2, is residual.

2. For every subset W = {w1, ..., we} of {a,b}" , (w1€w2€ ... €w,8$) 1C), =
W. Thus, the number of different Nerode classes of C,, is at least 22",

O]

The tables below are showing the results presented in this section. Here

Ay Ao
kl (n) kz(n)

has the following meaning: For every n there exists a language L, with a k;i(n)
state automata of type 2; and every automaton of type 2o for L,, needs at least
ka(n) states.

RAFA | NFA/UFA NFA/UFA | RAFA RAFA | DFA
2n+1 (,)2) 2n + 2 2" 2n% +5n | 22"

In this chapter the conjecture that the algorithm AL* generates residual AFAs
only has been disproved. A modified algorithm AL** that achieves this property
has been designed. Experiments with randomly generated automata show that
AL** typically generates automata that are significantly more succinct than
equivalent minimal DFAs and RNFAs.

62

5 Learning Density Levels of
Distributions

Density level sets, or density levels, are high probability areas of probability
distributions. Estimating density level sets has been studied widely from a
statistical point of view [36, 48, 50, 60]. These works from statistical research
area develop density level set estimators and estimate their convergence, but
algorithmic learning is not considered. Especially, convergence of the estimators
in the limit is proven, but not the computational and sample complexity with
respect to accuracy requirements. On the other hand, Kearns et al. [40] have
considered learning probability distributions in the spirit of PAC learning. Their
framework is restricted to discrete distributions that are generated by specific
kinds of circuits. When it comes to more natural distributions, Ashtiani et al. [10]
have shown a new bound on the sample complexity for algorithmically learning
mixtures of Gaussian distributions. For learning a much wider class of natural
distributions, Ben-David and Lindenbaum [11] have developed an approach, in
the following called BL framework, to identify high-density areas of distributions.
The authors consider the problem as unsupervised learning, where the density
level is the unknown concept to be learned. They have defined requirements
on the accuracy based on the PAC framework and obtained lower and upper
bounds for the sample complexity. These bounds are polynomial in the VC
dimension of the class of density level sets and the inverse of the error bounds.
For learning without time constraints, this implies learnability from a finite
number of examples if and only if the VC dimension of the density level sets is
finite.

Let P be a probability distribution with probability density function up. For
s € Ry, the density level Lev (up, s) := {x € X : up(x) > s} describes a region
of high probability. These levels are the targets to be learned. This kind of
question arises if one wants to identify high-risk groups in a population, as
well as in social studies, marketing analysis, pattern recognition, and computer
vision [11].

Ben-David and Lindenbaum have defined a consistency criterion for learning
algorithms that is sufficient for an algorithm to be a successful learner. However,
it looks difficult to determine whether this criterion is satisfied. So far we
could apply this setting only in the one-dimensional case [28]. Even worse, the
application of their consistency criterion requires density level sets around the
target to be part of the concept class. To be specific, the levels Lev (up, s — p)
and Lev (up, s+ p) must occur in the concept class, where p > 0 denotes an
arbitrary error parameter. In consequence, since learning must work for every

63

5 Learning Density Levels of Distributions

choice of the error parameter p > 0, the concept class must cover all density
levels Lev (up, s) for every s € Ry. This removes an advantage of density level
learning: the learnability of a specific level even if the probability distribution is
too complicated to be learned at other levels.

We build on the technique of empirical excess mass maximization used in
statistics, which has been developed by Hartigan [36] and Miiller and Sawitzki [48]
independently. It is shown that this measure can be made compatible with the
BL framework. As a consequence, a wide range of already existing density level
estimators are proven to be successful learning algorithms in the BL framework.
Additionally, we can improve the upper sample bound by a constant factor.

5.1 The Learning Model

In this chapter we fix a dimension d and write C = Cy, X = Xy, and H = Hg.
Let M = (X, B) be a measure space consisting of a set X and a o-algebra B on
X with the Lebesgue measure A, i.e. for all X € B, A(X) = [1 dz.

For a function r : X — R4 and some threshold s € R4, the s-level of r is the
set
Lev (r,s) :={z € X :r(z) > s} .

Additionally, define
Lev” (r,s) = {z € X :r(z) > s} .

Let R denote the set of all functions r : X — R, that satisfy Lev (r,s) € B for
every s € Ry.

Definition 5.1. For s,e,p € Ry and r € R, a measurable set h € B is
(e, p)-close to the set Lev (r,s) if

Ah\ Lev(r,s —p)) + MLev” (r,s+p)\h) < € .

For an illustration of (e, p)-closeness see Fig. 5.1.

Now let P be a probability distribution on M with probability density function
up . X — Rg . Learning the entire density function pup of an unknown
distribution P from a sample drawn according to P may be impossible depending
on the properties of P (see Section 5.2 for a discussion). Thus, instead we want
to solve the easier problem of identifying high-probability regions of P — the
s-levels of pp for some fixed s € R..

64

5.1 The Learning Model

0 20 40 60 80 100

Figure 5.1: To be (0, 0.5)-close to Lev (7, 1.5) a hypothesis must include the deep
blue, but exclude the white regions. The light blue regions do not
matter. For (g,0.5)-closeness, a small percentage ¢ of misclassifi-
cation is allowed within these mandatory, respectively forbidden
regions.

Let P be a family of probability distributions on M. A concept class C C B is
compatible with the s-levels of P if

P CD(C,s):={P: P is a probability distribution on M,
up € R, andLev (up,s) € C} .

A learner for the density levels of P with a compatible concept class C for some
level s € Ry is told the parameter s and then given random samples from X
distributed according to P € P.

Definition 5.2. A learning algorithm A for density levels with hypothesis space
H C B is (m,e,d, p)-successful for C and s € Ry if for every P € P CD(C,s)
after drawing m random samples according to P, with probability at least (1 —)
it outputs a hypothesis h € H that is (e, p)-close to Lev (up,s) according to the
Lebesgue measure .

As in the previous chapters, we require the sample complexity of a learning
algorithm to be bounded by a polynomial in the inverse error parameters (- p)~!
and 07!, and in the dimension d of the concept class C. Here, we use the VC
dimension d = VC-dim(C). For an efficient learning algorithm, the running
time also must be bounded by such a polynomial.

As an example, consider a univariate probability distribution whose density
function has at most k local maxima. For such a distribution, the concept class
of its density levels is the k-fold union of intervals. This concept class has VC
dimension 2k. Now let us consider an example in the bivariate case. The density
levels of bivariate Gaussian distributions form ellipses. The VC dimension of
the concept class of ellipses is at least 5, because the five points at the corners

65

5 Learning Density Levels of Distributions

3
0.02

2

1.5

1

0 0

0 20 40 60 80 100 0 20 40 60 80 100
z T

Figure 5.2: Left: The probability density function of the known distribution

of age up over the basic population (blue) and the probability
density function pp over infected individuals (red), which is used
for sampling.
Right: The conditional infection risk r and the corresponding high-
risk density level set Lev (r,1.5) = [0; 15.41]U[94; 100] that should be
identified by the learner. High density levels occur where P exceeds
D significantly. For high-density regions of D, very high density of
P is required (young people), whereas a low density of P is already
sufficient within rare areas according to D (old people).

of a regular pentagon can be shattered by ellipses. This argument cannot be
extended to six points, thus the VC dimension of ellipses is 5 [2].

Now that we have seen a basic model for learning density levels, we describe the
BL framework, a generalization of this model. Instead of the Lebesgue measure
A, an arbitrary measure D with density function up € R is used. Further, we
are now interested in the s-levels of r = up/up instead of up = pup/py\. An
application that uses a probability measure D may be the following. Let D
be the distribution of age (X ={0,1,...,100}) within a population and P the
distribution of age restricted to people that suffer from a certain disease. The
value 7(x) quantifies whether the group of z-years old people has a smaller or
larger portion of infected people compared to its proportion within the whole
population.

In this setting, the measure D is known to the learner and samples are drawn
according to P. If we were interested to learn the density levels of pp, we would
not need the generalization that introduces the measure D. In this generalized
setting, we want to find areas of high probability compared to the expected
probability within the population, i.e. the density levels of up/up. See Fig. 5.2
for an illustration.

66

5.2 Learning Density Levels Versus the Complete Density Function

Definition 5.3. For s,e,p € Ry and r € R, a measurable set h € B is
(e, p)-close to the set Lev (r, s) with respect to the measure D if

D(h\ Lev(r,s —p)) + D(Lev” (r,s+p)\h) < e .

In this more general setting, a concept class C C B is compatible with the s-levels
of P with respect to D if

P CDp(C,s):={P: P is a probability distribution on M,
pp/up € R, andLev (up/up,s) € C} .

Further, let

D7, (C,8) := {P: P is a probability distribution on M,
pwp/pp € R, andLev” (up/pup,s) € C} .

C is p-compatible to P if

PQD;’)(C,S) :=Dp (C,s —p)NDp(C,s)NDL(C,s+ p)

We assume that the learner for density levels has complete knowledge about
D. The learner is told the parameter s and then given random samples from X’
distributed according to P € P.

Definition 5.4. Let D be a fixred measure. A learning algorithm A for density
levels with hypothesis space H C B is (m, e, 0, p)-successful for C and s € Ry
if for every every unknown distribution P € P C Dp (C,s) after drawing m
random samples according to P, with probability at least (1 — &) A outputs a
hypothesis h € H that is (e, p)-close to Lev (up/pp, s) according to D.

As in the specific scenario, in the general setting we also require the sample
complexity of a learning algorithm to be bounded by a polynomial in the inverse
error parameters (¢ - p)~! and 67!, and in the VC dimension of C.

5.2 Learning Density Levels Versus the Complete
Density Function

The learning techniques for density level set estimation discussed in the literature
can be divided into two different approaches: plug-in and direct. To our
knowledge, the term "plug-in estimator" has been introduced by Tsybakov [60]
initially. If the plug-in method is used, an estimation g of the entire probability
density function pp is computed first. Afterwards, the s-level Lev (up,s) is
estimated by Lev (g, s). On the other hand, the direct method denotes estimation
of density levels without estimating the probability density function first.

The BL framework, which forms the basis of the research in this chapter, is
a direct method for learning density levels. The main advantage of the direct

67

5 Learning Density Levels of Distributions

method is that only the complexity of the density level to be learned is relevant.
Thus, density levels can be estimated even if the density function is arbitrarily
complicated at other levels and cannot be estimated therefore.

However, despite mentioning of this advantage by Ben-David and Lindenbaum,
the learnability within their framework depends on the VC dimension of every
density level (to be more precise, the levels whose VC dimension has to be taken
into account depend on the choice of the error parameter p), but not only on
the VC dimension of the density level to be learned. Thus, the BL framework
does not fully provide this advantage. This is a consequence of the consistency
criterion, which we will get rid off in Section 5.4 yielding learnability of density
levels independent of the complexity of other levels.

Given two density functions f: X — R4 and g : X — R4, their distance with
respect to a measure D is defined by

Ly (£.9):= [17(@) 9@ - uo(a) do .

By Claim 1 of Ben-David and Lindenbaum [11], for two functions f, g with
LY (pp,g) < e, and every s € Ry, the density level Lev (g,s) is (e, p)-close
to the level Lev (f,s) with respect to D. Thus, successful approximation of a
probability density function pp implies density level learnability of up. It is
not clear whether the other direction holds as well, i. e. whether density level
learning of pup can be used to find a function g that satisfies L}, (up, g) < e.

Polonik [52] has shown that if density levels are estimated by excess mass
maximization (see Section 5.4), the density function can be approximated as
well. In Section 5.4, we show that excess mass maximization can be used to
obtain a density level learner in the BL framework. However, the framework
is more general and allows other methods of learning as well, e.g. consistent
learning algorithms (see Section 5.3). The hypotheses obtained by excess mass
maximization are monotone with respect to the s-level, which is exploited by
Polonik. This kind of monotonicity is not guaranteed in the BL framework.
In [11] it is claimed:

As it turns out, most of the results of this paper can be readily
extended to apply to learning density functions in the L1 morm.

We have tried to do this, but it is not at all obvious to us how this can
be proven formally since we have to face a lot of technical difficulties. In
the remainder of this section for Lebesgue measure D = A an algorithm is
designed that, with probability at least 1 — §, computes an approximation g
of up / up = pp satisfying L' (up, g) := L} (up, g) < € by repeatedly calling a
density level learner for up. Our algorithm can be generalized to work with
arbitrary measures D on (X, B).

The approximation function ¢ may not be a probability density function.
However, this can be fixed easily by defining a function h : X — R with

68

5.2 Learning Density Levels Versus the Complete Density Function

0.29 0.29

0.06 0.06

Figure 5.3: Approximation of the probability density function up by appropri-
ately selected density levels.
Left: The learning range of levels [0.06,0.29] is marked blue. The
area of the density function up that is not approximated due to
the restriction of the learning range is marked red. The error
r-error (pp,0.06,0.29) is the weight of this red area.
Right: Approximation of up within the range [0.06,0.29] by density
levels. The distance of the lower levels has to be smaller than the
distance of the higher levels.

h(z) = g(x)/ ([y g(x) dz) for x € X. If L' (up,g) < e for 0 < e < 1, then h is
a probability density function that satisfies L' (up,h) <e/(1 —¢).

Observation. Lower s-levels of up may include a wider area of X than higher
levels, because for s € Ry, A(Lev (up,s)) < s~ L.

The approximation algorithm can only learn a finite number of levels. By the
observation, the distance between the levels has to be smaller for lower levels.
As a result, computing an approximation g requires not only an upper bound
Smax, but also a lower bound spi, > 0 for the range s of the s-levels learned.
This is illustrated in the right subfigure of Fig. 5.3.

The approximation algorithm for pp works as follows. It searches the minimum
and the maximum density level needed for a good approximation incrementally.
For that purpose, it calls a subroutine that approximates pp within a given range
of levels [Smin, Smax]- The range is extended until the error bound guaranteed
by the subroutine is small enough.

We start by introducing the subroutine ApproxRange as Algorithm 5. For the
function g : X — R4, aset U C X, and a value s € Ry, we write g[U] < s to

69

5 Learning Density Levels of Distributions

denote that s is assigned to g(u) for every u € U. The limitation of the learning
range of the algorithm yields an error

r-error ((p, Smin, Smax) ‘= wup(x)dx

/‘;(\Lev(uPysmin)
+ (,U,p(CC) - Smax) dz .

LeV(IJfPrSmax)
This error is illustrated in the left subfigure of Fig. 5.3. Using the r-error,
we will bound the approximation error of ApproxRange by L' (up,g) < e+
r-error ([P, Smin, Smax) t0 guarantee that a good hypothesis is found if it exists.

However, the density function up must be known to compute the r-error. Thus,
this error bound does not help to decide whether the range of density levels needs
to be extended and ApproxRange has to be called again. For that purpose, we
establish a second error bound L' (up, g) < 2e+1— [y g(z) dz, depending on the
approximation g returned by the subroutine instead of r-error (fip, Smin, Smax)-

Input: error parameter €, confidence parameter 9, learning range of
levels [Smin, Smax|, density level learner for f Learn(-,-,-, ")

Output: approximation g of function up

glX] < 0;

so < 0

$1 < Smin / 2;

14 1;

while s; 1 < spax do

§; < 6/(2i%);

ps; < si€/5;

£s, & 571 e/(8%);

hlsi] < Learn(s;,¢s,, 0i, ps;);

glhlsil] = si;

sit1 < 8i - (1+¢/5);

141+ 1;

© O N o s W N

e e
N = O

return g;

=
«w

Algorithm 5: ApproxRange(s, 0, Smin, Smax, Learn)

Lemma 5.5. Consider a probability density function pup such that every level
s € Ry of up is density level learnable. For every 0 < smin < Smax € R and
every € > 0 and § > 0, with probability at least 1 — §, ApproxRange computes
an approzimation g that satisfies

L' (up,g) < min {6 + r-error ({p, Smin, Smax), 26 + 1 — / g(x) dx}
X

in time O(e! log(Smax / Smin) T), where T is the worst case running time of
the density level learner. The density level learner is called repeatedly with
different parameters es,, 0;, ps,. Both (e, -psi)*1 and 61»_1 are always bounded
by a polynomial in €, &, and 10g(Smin / Smax)-

70

5.2 Learning Density Levels Versus the Complete Density Function

Proof. Consider a run of ApproxRange on the probability density function up
with parameters €, §, Smin, and Smax. There are two different scenarios.

Case 1: At least one time when the density level learner is called in Line 9
of ApproxRange, a hypothesis h[s;] is returned that is not (es,, ps;)-close to

Lev (up, s;).

Let §; denote the values assigned to the corresponding variables during the run
of the algorithm. The probability that Case 1 actually occurs is bounded by

> 26=)06/(2*)=67"/12<6 .
=1

=1

Case 2: Every time the density level learner is called in Line 9 of ApproxRange,
a hypothesis h[s;] is returned that is actually (es,, ps;)-close to Lev (up, s;).

For arbitrary k € Z, let sg = smin/2 - (1 +¢/5)*~! and ps, = s, - /5. Further
let ¢ denote the number of iterations of the while loop in Line 5 during the run
of ApproxRange. For k € [{] the values sj and ps, as defined here actually occur
during the run of the algorithm, but not for & ¢ [¢]. Note that sy > Smax-

Let g : X — {0} UUpZ _oo{sk} denote the function returned at the end of the
run of of ApproxRange. In the following we define three functions g1, g2, and g3
in order to show a bound for L' (uup, g) using the triangle inequation

L' (up,9) < L' (g9,01) + L' (1, 92) + L' (92, 93) + L' (g3, up) -

An example of the functions defined below is visualized in Fig. 5.4.

The first function to be defined is g; that eliminates the error ¢ of the density
level learner from g. Let g1 : X — {0} UUje_oo{sx} denote the function
returned by the following virtual run of ApproxRange. The run of the algorithm
is modified such that each time a hypothesis h[s;] is constructed in Line 5 of
the while loop, it is changed to

h'[si] := (h[si] U Lev (up,s; + ps;)) N Lev (up, s; — ps;) -

This transforms h[s;] into the (0, ps,)-close hypothesis h'[s;] with minimum
distance A(h[s;] A B[si]) over all (0, ps,)-close hypotheses, where A denotes the
symmetric difference of sets.

The function g3 eliminates all errors of g, except the stairstepping that is
established by discrete density level learning. Let the function g3 : X —
{0} UURZ _oo{sk} be defined by
max{si: k € Z N up(x) > sp} if pp(x) >
g93(x) ==

0
0 if up(x) =0 (5:1)

71

5 Learning Density Levels of Distributions

g9(z) g1(x) 92(x)
0.29 0.29 0.29
0.06 | 0.06 | 0.06
—4-20 2 4 —4-20 2 4 —4-20 2 4
x x x
93(1-) NP(x)
0.29 0.29
0.06 0.06
—-4-20 2 4 -4 -2 0 2 4
T X

Figure 5.4: Construction of g1, g2, and g3 for an example run of ApproxRange
on pp that returned g. The error €5, of the density level learner is
chosen quite large to improve its visibility.

The last approximation function to be defined, go, removes the r-error from
g1. The value of g;(z) within regions that are cut by s; (or sy, respectively)
are changed to a reasonable approximation gs3(z) of pp(x). Define go : X —

{0} UURZ—o{s} by

(7)== {gl(x) if g1(z) 20 A (up(x) < sp V g1(z) # s¢)

| " (5.2)
ga(2) i @) =0 V (up() = se A g1(x) = s0)

Claim 5.6. For the functions up and g1, g2, g3 with approximation range
[Smin, Smax] and error parameter € as defined above,

1. Ll (:U’Pvg3) S 8/57
2. L1 (93,92) <¢€/2, and

The proof of this claim will be given at the end of this section. By 1. and 2. of
Claim 5.6 we conclude

/ () = g1(@)] d
X\g1 71 (0)\ (g1~ (se)NLev(pp,se))

(5.2)

/ np(e) = ga()] d
A\g1 71 (0)\ (g1~ (se)NLev(pp,se))

< [lup(@) - @) do < /5 +2/2
X

72

5.2 Learning Density Levels Versus the Complete Density Function

and, by 3. of the same claim,

/. np(@) = (@) d
9171 (0)U(g1 = (se)NLev(pp,se))

/ pe(e) da + () = S|
X\Lev(pp,Smin) Lev(pup,Smax)

= r-error (1P, Smin, Smax) -

<

By combining both inequations,

L (up, 1) = lup(z) — g1(z)| do

/X\gl1 (0)\(g1~ (se)NLev(pp,se))

+f pp(e) () dw (5
9171 (0)U(g1 " (s¢)NLev(pp,se))

< e/5+4€/2 + r-error ({4p, Smin, Smax) -

Note that for every = € g1 =1(0)U(g1 1 (s¢)NLev (up, s¢)) it holds up(z) > g1(z).
Hence,

/Xgl(x) dr = / wp(z) dz

-/ (1p(w) - g1(2)) do
X\g171(0)\ (g1~ (s¢)NLev(pp,se))
/ (p(z) — g1(7)) dz
917 1(0)U(g1~ 1 (se)NLev(pp,se))
< / () dx (5'4)

\pp(x) — g1(z)| da
9171(0)\ (g1~ (s¢)NLev(pp,s¢))

a
/g 1p () — 1 (x)] da

0)U(g1 1 (se)NLev(pp,se))
< 1+5/5+€/2— (L' (P, g1) — /5 —¢/2)
=1+4+14-c— L' (up,q1) -

Claim 5.7. For the functions g and g1 and error parameter ¢ as defined above,
Ll (9791) < 6/4 .

The proof of this claim will be given at the end of this section as well. By
Claim 5.7 and (5.3) we conclude

L' (up,g) < L' (up,g1) + L* (9. g1) < & + r-error (1p, Smin, Smax) -

By Claim 5.7 and (5.4) we conclude

/g(l‘) dz < /gl(f) dz + L' (9, 1)
X X

73

5 Learning Density Levels of Distributions

< 1+ 1.4e — (Ll (,up,g) - Ll (9791)) + Ll (gagl)
<142~ L' (up,g)

and thus
L' (up,g) §2€+1—/ g(x)dz .
X

Now consider the running time of ApproxRange. We show a bound for the
number £ of iterations of the while loop in Line 5. Recall sy_1 < Smax < s¢. By

S¢-1 = Smin/2- (1 + 5/5)K_2
we have
¢ =1n(28/_1/ Smin)/ In(1+¢&/5) + 2 < In(28max / Smin) -6 +2 .

Consequently, the algorithm runs in time O(e ™! log(Smax / Smin) T'), where T is
the worst case running time of the density level learner. The parameters used
to call the density level learner are bounded by

Es; " Ps; > 4071 52 (ln(23max Sr_niln) . 6571 + 2)72 S Q<€4 10g72(3max / Smin))

and

§; >47t§ (In(28max smiln) 6+ 2)_2 € 9(52 1) log_2(5max / Smin)) -

This completes the proof of Lemma 5.5. O

The final approximation algorithm ApproxDist calls ApproxRange incrementally
with a growing region of s-levels [Smin, Smax]- 1t is presented as Algorithm 6.

Input: error parameter €, confidence parameter 9,
density level learner for f Learn(,-,-, ")

Output: approximation g of function up

144+ 1;

2 Smin < 0.5;

3 Smax < 2;

4 while true do

5 g + ApproxRange (¢ /4,27 6, Smin, Smax, Learn);

6 | if |[1— [, g(x)dz| <e/2 then

7 L return g;

Smin < Smin/Q;
Smax < 2 Smax;
10 141+ 1;

Algorithm 6: ApproxDist(e,d, Learn)

74

5.2 Learning Density Levels Versus the Complete Density Function

Definition 5.8. For a density function pup and an error parameter €, the
e-variation of up

B (up,e) :=min{s € [1,00) : r-error (up, s~ h s) <e}

18 the minimum value for Smax and Smin L such that the range error made by
ApproxRange ¢s at most €.

Lemma 5.9. Consider a probability density function up such that every level
s € Ry of up is density level learnable and, for every € > 0, the e-variation
of wp is finite. For every € > 0 and § > 0, with probability at least 1 — 6,
ApproxDist computes an approzimation g that satisfies L' (up,g) < e. If the
density level learner for up is efficient, the expected running time of ApproxDist
is bounded by a polynomial in €1, 6=, and log(B (up,e/4)).

Proof. Consider the termination condition in Line 6 of ApproxDist at an arbi-
trary step of the while loop. Let 7, smin, Smax denote the values of the correspond-
ing variables. Assume that ApproxRange has just returned a hypothesis g that
satisfies L' (up,g) < min {e/4 + r-error (up, Smin, Smax),€/2 + 1 — [y g(z) dz}.
Due to Lemma 5.5 this happens with probability at least 1 — 27¢ 6.

If L' (up,g) < £/2, which is especially true if smax = 551, > B (up,€/4), the
termination condition is satisfied, because

‘1 — /Xg(m) dz

If, on the other hand, L' (up, g) > €, we know

— | [(up @) - g(a) da] < L' (o)
X

[9@ de < e/24 1= L' (up,g) < 12/

and consequently |1 — [, g(z) dz| > /2.

The probability that ApproxRange returns a function g that does not satisfy
LY (up,g) < min{e/4 + r-error (up, Smin, Smax), /2 + 1 — [y g(z) dz} at least
once is bounded by Y22, 27 § = 4.

Assume that the density level learner is efficient. Let ¢ = [log(8 (up,e/4))]
denote the number of steps of the while loop until spax = s;ﬁln > B (up,e/4)
holds. Beginning from the ¢-th iteration of the while loop, the algorithm will
terminate with probability 1 —27% § every time the while loop is executed, where
i is the iteration count. Thus, for k& € IN, the probability py., that the (k+ ¢)-th
iteration is ever executed, is bounded by

Do < 9—kto—(kK*+k)/2

If this iteration is executed, the parameters used for the call of ApproxRange are
(e/4,27F=¢ ¢, 27F=¢ 2k+0) By Lemma 5.5 and efficient density level learning,

75

5 Learning Density Levels of Distributions

this call runs in time Ty bounded by a polynomial in 1/¢, 1/0, and k + ¢. This
yields an expected running time 7" for ApproxDist of

s —k
T <0 T+ (27) - poly(1/e,1/0,k + 1)
k.f

> —k
< - Ty +poly(1/2,1/8) - Y (2?/ poly(1/e,1/6,k +0))
k=1

< {-Ty+poly(1/e,1/0)
= poly(1/e,1/6,log(B (up.c/4))) -

Theorem 5.10. If a probability density function pup has a finite e-variation
and every level s € Ry of up is density level learnable, an approzimation g of
wp that satisfies L' (up, g) < e can be computed.

If in addition the e-variation (up,€) is bounded by an exponential function in
L the approximation can be computed with sample complexity of the learner
bounded by a polynomial in e~' and 6.

Furthermore if the density level learner is efficient for every s-level of up, the
computation of the approrimation g is efficient as well, i. e. the time complexity
is bounded by a polynomial in e~ and 6~ ".

Recall that, according to Claim 1 of Ben-David and Lindenbaum [11], the other
direction also is true.

As an example, we estimate 3 (up,¢) for a Gaussian distribution P = N(0,02?).
Since pp(x) < (21)"/2 07! for every x € Ry,

~1
8 (ups) = max {pp (o 71 (1= 2/2)) L 2m) 2ot}
where ® is the cumulative distribution function of N'(0,1). By
Ha)=v2ef 2z -1) ,

where erf(z) := 2/y/7 [; exp (—t?) dt denotes the Gauss error function,

B (up,e) = max { (1/\/ 2702 exp (— erf 2(1 — 5)))_1 L (2m)~1/? 0_1} .

Let erfc (1 — z) := erf ~!(z) denote the inverse complementary error function.
By Theorem 2 of Chang et al. [19], erfe(z) > \/e/(27) exp (—22?) for every

x > 0. Thus
erfc ! (z) < \/ In (mW) /2

76

5.2 Learning Density Levels Versus the Complete Density Function

and finally
B (pp,e) < max {61/2 oet, (2n) /2 071} .

We finish this section with the remaining proofs of Claim 5.6 and 5.7.

Proof of Claim 5.6. We prove the three statements of the claim separately. We
start with statement 1. By (5.1), for all k € Z and all z € g3~ !(sp)

93(x) = s < pp(x) < Spg1 = S+ Spe/5

and thus

0 < up(z) —g3(x) < sk +spe/5—gs(x) = gs(x)e/d < pp(x)e/5 .

Hence

/ () = ga(a)] d
Lev(up,si)\Lev(up,ski1)

<

< / up(z)e/b dx
Lev(up,si)\Lev(pp,sk+1)

for every k € Z.

Since pp is a probability density function, we know that [, pp(z) de =1 and
consequently

[Inp(@) - gs@)| da
X

- >/ lup(x) - ga(2)| da
b —oo Y Lev(up,si)\Lev(pp,sk11)
<e/5- / pup(x) de
ke —oo Y Lev(up,sk)\Lev(ip,sk11)
=¢e/5- / wp(x) dz
X
<e/5.

Now we prove statement 2., starting with an additional claim.

Claim 5.11.

1. For every x € X, g2(z) =0 < pp(x) =0.
2. For every x € X \ pp~1(0),

max{sy : k € Z N\ up(x) > s+ ps, }
< go(x) <min{sg : k € Z A pp(x) < Sk — ps, } -

7

5 Learning Density Levels of Distributions

Proof. For every x € up~1(0), g1(x) = 0 because s1 (1 — &/5) > 0. This implies
go(x) = g3(z) = 0 for every z € up~—1(0). On the other hand, for x € up=1(0)

there are two cases. For gi(z) = 0, g2(x) = g3(z) # 0. For ¢g1(z) # 0, ga(x)
equals either g3(z) # 0 or gi(x) # 0. This finishes the proof of the first
statement.

Now fix some z € X \ up~1(0). If g1(z) = 0 or up(x) > s¢ A g1(x) = s¢, then
g2(z) = g3(x) = max{sy : k € Z N up(x) > sp}. Thus, go(x) satisfies the
inequation

max{sy, : k € ZA pp(x) = sp + ps, } < g2()
<min{sg: k € ZAup(x) < sp— ps,} -

Assume z € X'\ g171(0) \ (Lev (up, s¢) N g1~ 1(s¢)). By definition of gy in (5.2),
g2(z) = g1(z) for such z.

e Assume gi(x) > min{s; : k € ZApp(z) < sg — ps, }- This implies that for
some k € [¢] with s — ps, > pp(z) and the corresponding density level sy,
the density level learner must have returned a hypothesis h[sy] that contains
x and is not (0, ps,)-close for that reason. This contradicts the definition
of g1. Hence, g2(x) = g1(x) < min{sy : k € Z A pp(x) < Sk, — ps, }-

e Assume ¢i(x) < max{sy : k € Z A up(x) > si + ps, }- Recall g1(z) >0
and if g1(z) = s¢ then pp(x) < sg. Thus, at least for the maximum value
of k € {2,...,4} with s + ps, < pp(x) and the corresponding density
level sg, the density level learner must have returned a hypothesis h[sg]
that does not contain x and is not (0, ps,)-close for that reason. This
contradicts the definition of g;. Hence, ga2(z) = ¢g1(x) < max{sy : k €

Z N pp(z) 2 si+ psy }-
O

Fix any k € Z. By Claim 5.11 for every z € X with pup(z) > sg = sp—1 + ps,_,
we have ga(z) > sp_1.

By
Sk = Spe2- (L+e/5)7°
((1+e/5)%(1 - 5/5))71 (1—¢/5)
-1
= spra- (1+2/5-¢2/25—/125) (1 -¢/5)

< Spyo- (1 —¢€/5)

= Sg42 — psk+2

= Sk42

and Claim 5.11 for every x € X with pp(z) < s < sp42 — ps,,, We have
g2(x) < sky2. Consequently, for every z € X with pup(x) < s, it holds

92(x) < Sgt1-

78

5.2 Learning Density Levels Versus the Complete Density Function

We conclude that for all & € Z and for all z € g3~!(sg) it holds sx_; < ga(z) <
Sk12, because g(z) = sk < ip(z) < s by (5.1).

Since for every k € Z
Sky2 — Sk = Sk - (1 —i—<>5/5)2 — Sk = Sk - 2¢/5+ sk - 82/25 < sp-€g/2
and

Sk — Sk—1 = Sk—1 + Psj_; — Sk—1 = Psy_1 < Ps, = 5k " €/D < 85 -€/2

we conclude
193(%) — g2(2)| < g3() - £/2
for every z € X \ up~1(0). Also note that up=1(0) = g371(0) = g21(0).

We conclude
(93, 92) / 93(x) — g2(x)|dx<5/2+/ g3(z) dx < /2

since g3(z) < pp(z) for every x € X and [, pp(x) de = 1.

We finish the proof of Claim 5.6 by proving statement Claim 3 now. Obviously,
Jor=1(0) ltP(@) — g1(2)| dz = [, —1 (o) pp(2) dz. Fix some arbitrary z € g171(0).
By definition of g1, we conclude pp(x) < Spyin/2 + Pomin/2 = (1 + £/5)Smin/2 <
Smin. Thus, € X \ Lev (1up, Smin) and finally g1 =*(0) € X'\ Lev (1p, Smin). O

Proof of Claim 5.7. Consider x € X with g(x) # g1(x). If g1(x) < g(z) then
there exists some k € [{] such that g(x) = s and ¢1(x) < sg. In the other
case, namely g;(x) > g(x), there exists some k € [¢] such that ¢g;(x) = s and
g(x) < si. We conclude

/Ig z)| dv

/ j9(2) — g1 (2)] da
{wGX 9(x)#g1 ()}

(/L. o) — 91(0)] o
!(sk)\Lev(g1,sk)

l9(x) = g1()] da?) :

I
I~

/91 Y(sk)\Lev(g,sk)

Now consider an arbitrary k € [(]. We show bounds for both summands
separately.

79

5 Learning Density Levels of Distributions

First summand:

l9(z) — g1(z)] dz < g(x) d

/gl (sk)\Lev(g1,sk) /91 (sw)\Lev(g1,sk)

s dx

/QI(Sk)\LeV(QLSk)
Sk A (g_l(sk) \ Lev (g1, sk))
< Sk *)\(h[Sk] \Lev (/’va Sk — psk)))

where h[sg] is the hypothesis for s; returned by the density level learner
during the construction of g.

Second summand:

l9(z) — g1(z)| dz < g1(z) dw

17 1(sk)\Lev(g,sk)

/gll(sk)\LeV(%Sk)

s dx

Lo
/91 L(sk)\Lev(g,sk)

= s A (917 (s1) \ Lev (g,)
< s - MLev™ (up, sk + ps) \ hlsk]) -

Since the density level learner is called with error parameter ¢, , it holds that
A(h[sk] \Lev (up, sk — ps,.)) + MLev” (up, sk + ps,) \ h[sk]) < €s,. We conclude

14

¢
/\9) —g1(x)] dz < Zsk o = €/ (8K?)

k=1

< e/(8k*) =en?/48 < e/4 .

M8]

T
I

5.3 Consistent Density Level Learners

Ben-David and Lindenbaum [11] have shown that a concept class C, respectively
the distribution family P that C is p-compatible with (for every p > 0), can
be density level learned if the VC dimension of C is finite. They introduce a
sufficient (but not necessary) criterion, called the consistency criterion, which
guarantees that a density learner is successful. This is analogous to PAC learning,
where a learner is successful if it always returns a hypothesis that is consistent
to the sample the learner has received. In this section the results of Ben-David
and Lindenbaum regarding the consistency criterion for density level learning
are presented.

80

5.3 Consistent Density Level Learners

For a sample X € X with m € IN and a measurable set C' € B let v (X,C) :=
|{i € [m] : X; € C'}|/m denote the proportion of elements of X that belong to
C.

Definition 5.12. A sample X € X™ with m € N is an e-approximation of a
distribution P on X relative to C C B if

VCOel: [v(X,0)-P(C) <e .

Thus for a given set C C B, a sample X generated independently at random
according to P is expected to be an e-approximation of P relative to C. To
shorten the notation let us define

16 16 d 4
N(d,E,(;) = ’752 (dln€2—|—ln5>—‘

Lemma 5.13 (Vapnik and Chervonenkis [62]). Consider a probability distribu-
tion P and a set C C B and choose €,6 > 0. If d = VC-dim(C) s finite, then
with probability at least 1 — 6 a sample X of length at least N(d,e,d) that is
generated independently at random according to P is an e-approximation of P
relative to C.

For a concept class C and a hypothesis space H define the set of all error regions
by
Cyy = {c\h:ceCAheH} U {h\c:ceCANheH} .

To shorten the notation, we write C* for C7.

Definition 5.14. Let D be a measure, Cy; C B a set of error regions, s € Ry a
level, and n € Ry an error bound. A hypothesis h € H is (s,n)-consistent with
a sample X € X"™ relative to C3, and D if for every e € Cj; holds:

eNnh=0 = v(X,e)<sD(e)+n,
eCh = v(X,e)>sD(e)—n.

The idea of this definition is as follows. At first note that for every set e € B
and the expected value E[v (X, e)] it holds

e CLev(up/pp,s) = E[p(X,e)]>s-
eNLev(up/up,s) =0 = E[p(X,e)] <s-
Let ¢ = Lev (up/up, s) € C denote the target concept and h € H the hypothesis.
If the error region c\ h is large, we expect that for e = ¢\ h € C;, and sufficient
small 7 the first condition of the consistency criterion is violated. If, on the
other hand, the error region h \ ¢ is large, analogously we expect the second
condition to be violated.

To be more precise, a violation of consistency can only be guaranteed with high
probability if a region e = Lev (up/pup, s + p)\hor e = h\Lev (up/up,s — p) is

81

5 Learning Density Levels of Distributions

considered. The reason for that is statistical noise and the relaxation parameter 7,
which, on the other hand, is necessary to guarantee closeness of good hypothesis
with high probability despite statistical noise. Hence, C must be chosen in such
a way that C* contains these regions e. This is the case if C is p-compatible with
the s-levels of P (instead of simple compatibility only). Since p is a variable
parameter, it seems necessary either to restrict the range of p or to require
compatibility of C with every s-level of P.

Finally, to restrict the range of v (X, e), X needs to be an e-approximation of P
according to C*. In order to estimate the probability of this event, an estimation
of the VC dimension of C* is necessary.

Claim 5.15 ([11]). Let C C B denote a concept class with finite VC dimension.
Then VC-dim(C*) < 2VC-dim(C) - log(VC-dim(C)).

With the tools of e-approximation and (s, n)-consistency, Ben-David and Lin-
denbaum were able to conclude the following result.

Lemma 5.16 ([11]). Let C be a concept class, d = VC-dim(C) and D a measure.
Let A be a learning algorithm that draws a sample X € X™ of length m € IN
according to a probability distribution P and returns, whenever possible, a
hypothesis h € H = C that is (s,ep/4)-consistent with X relative to C*, where s,
g, 6, and p are parameters given to A.

For every e,0,p > 0, every s € Ry, and every probability distribution P € P C
Df)p (C,s), Ais (m,e,p,d)-successful for C and s if m > N(2dlogd,ep/4,0).

Ben-David and Lindenbaum have restricted the measure D to probability mea-
sures. However, it is easy to see that their results hold for arbitrary measures D
as well, as long as D is a measure on (X,3). They also have shown that the
finiteness of the VC dimension is a necessary condition for density level learning.

Lemma 5.17 ([11]). Let C be a concept class with infinite VC dimension and
D a measure.

There exists no learning algorithm A and function m : (0,1]®> — IN such that
A is (m(e, p,0),e, p,0)-successful for every e,d,p > 0, every s € Ry, and every
probability distribution P € P C D3’ (C, s).

5.4 Empirical Excess Mass Maximization

Empirical excess mass maximization has been introduced by Hartigan [36] and
Miiller and Sawitzki [48]. Algorithms for density level estimation by excess mass
maximization have been designed such as for the concept class of k-fold unions
of intervals in R by Miiller and Sawitzki [48], the class of convex polygons in R?
by Hartigan [36], and the class of closed ellipsoids in R? by Nolan [50]. However,
the quality of estimation has been studied by terms of the convergence rates,
but not in a computational learning theory setting, i.e. with respect to the

82

5.4 Empirical Excess Mass Maximization

sample and time complexity bounds depending on the estimation error. As
a consequence, for each concept class the convergence rate of the estimator
is proven separately. This is not necessary if excess mass maximization gets
embedded into a framework for density level learning. In this section we will
show that such algorithms can indeed be used in the BL framework. Note that
this does not apply to convex polygons considered by Hartigan, which provably
cannot be learned in the BL framework, because that concept class has an
infinite VC dimension.

Definition 5.18. Given a probability distribution P, a measure D, and a
threshold value s € Ry, the excess mass function for a hypothesis h € H 1is
defined by

Epp(h,s):=P(h) —s up(h) .

Obviously, for h = Lev (up/up,s) we get Epp (h,s) > 0. Furthermore, if
pup/up(x) = s for all z € h then Epg(h) = 0. Thus, Epp (h,s) measures how
much pp/up exceeds the s-level within the hypothesis h. Replacing P(h) by
the relative frequency leads to the definition of the empirical excess mass.

Definition 5.19. Given a finite sample set X, a measure D, and a threshold
value s € R4, the empirical excess mass function for a hypothesis h € H is given
by

HX7D (h7 S) =V (X7 h) - ,U,(h) :

For C C B, a hypothesis h € H is (Hx p,s)-mazimal relative to C if

vVCeClC: HX7D(h,S) ZHX’D(C,S) .

Empirical excess mass maximization means to find a (Hx p,s)-maximal hy-
pothesis. Since D is countably additive, Ep p (h,s) becomes maximal for h if
Lev” (jup/pip, s) C h C Lev (up/pip, 5).

In the following we will show that for every C C B with finite VC dimension
and H = C, every empirical excess mass maximization algorithm is a successful
density level learner according to Definition 5.4. Note that on the other hand,
the negative result for concept classes with infinite VC dimension stated in
Lemma 5.17 is independent of the learning algorithm and holds for empirical
excess mass maximization algorithms obviously as well.

First, it will be shown that every hypothesis h generated by empirical excess
mass maximization is (e, p)-close to Lev (up/up, s) if a suitable sample set X
has been used.

Lemma 5.20. Let C C B denote a concept class, D a measure, s € Ry a
threshold value, and £, p > 0 error parameters. Consider a probability distribution
P € P where C is compatible with the s-levels of P with respect to D. Further
let X € X™ be an (ep/2)-approximation of P relative to C* and choose a
hypothesis h € C that is (Hx p, s)-maximal relative to C. Then h is (g, p)-close

to Lev (up/up, s).

83

5 Learning Density Levels of Distributions

Proof. Let r = pup/pup. From h being (Hx p, s)-maximal relative to C follows
Hx p (Lev(r,s),s) < Hx p (h,s). Furthermore, from

Hx p (Lev (r,s),s) = Hx p (h,s)
+ Hx p (Lev (r,s)\ h,s)
— Hx p (h\ Lev(r,s),s)

we conclude
Hx p (Lev(r,s)\ h,s) < Hxp(h\Lev(r,s),s) . (5.5)
The sample X is an (ep/2)-approximation of P relative to C*. Therefore
ep
v(X,Lev(r,s)\ h) > P(Lev(r,s)\h)— 5

> s-D((Lev(r,s) \ Lev” (r,s+p)) \ h)
+ (s+p) D(Lev™ (r,5+ p) \ h)

e
2
= s-D(Lev(r,s)\ h)+p-D(Lev” (r,s +p)\ h) — %
and thus
Hy.p (Lev(r,s)\ h,s) > p-D(Lev” (T,s—i—p)\h)—%o . (5.6)

Again X being an (ep/2)-approximation of P relative to C* implies

v(X,h\ Lev(r,s) < P(h\Lev(r,s)H%’”
< (s—p) D(h\Lev(rs—p))
+ s-D((hNLev(r,s —p))\ Lev(r,s))
ep
)

= s.D(h\Lev(r,s))fp-D(h\LeV(r,sfp))Jr%

and thus

Hy.p (h\Lev(r,s),s) < % — p-D(h\ Lev (r,s — p)) . (5.7)

By putting (5.5), (5.6), and (5.7) together we get
ol —p-D(h\ Lev(r,s —p)) > Hx p (h\ Lev (r,s),s)

2
> Hx p (Lev(r,s) \ h,s)
£p

>,0~D(Lev>(r,s+p)\h)—?

84

5.4 Empirical Excess Mass Maximization

and finally D(h \ Lev (r,s — p)) + D(Lev” (r,s+p) \ h) < e. O

With the help of Lemma 5.13 and Claim 5.15, Lemma 5.20 yields the following
theorem.

Theorem 5.21. Let C be a concept class, d = VC-dim(C) and D a measure.
Let A be a learning algorithm that draws a sample X € X™ of length m € IN
according to an unknown probability distribution P € P and always returns a
hypothesis h € H = C that is (Hx p,s)-mazimal relative to C, where s is a
parameter given to A.

For every €,6,p > 0, every s € Ry, and every family of probability distributions
P CDp(C,s), Ais(m,e,p,d)-successful for C and s if m > N(2dlogd,ep/2,9).

In contrast to Lemma 5.16, a density learner that maximizes the empirical
excess mass has only to deal with the concept class C that is compatible to the
actual s-level to be learned. There is no need to consider the neighborhood
levels at s — p and s 4 p, neither to bother with C* when the learning algorithm
is designed. In fact, here the set of all error regions C* occurs inside the
correctness proof only, yielding a minimum sample size of N(2dlogd,ep/2,0)
(instead of N(d,ep/2,6)). Also note that the upper bound for the number
of samples m needed for successful density level learning has decreased from
m > N(2dlogd,ep/4,d) in Lemma 5.16 to m > N(2dlogd,ecp/2,d) here.

Empirical excess mass maximization has already been studied for learning density
levels. For specific concept classes algorithms that maximize the empirical excess
mass are already known (see the beginning of this section). Theorem 5.21 can
be applied to these algorithms directly, yielding density learners for the BL
framework instantly.

As an example, consider a generalization of k-fold mixtures of Gaussian distribu-
tions, consisting of univariate probability distributions whose density functions
have at most k local maxima each. All of its density levels are covered by the
concept class of k-fold unions of intervals. This concept class has VC dimension
2k. Using the algorithm that maximizes the empirical excess mass for this
class [48], the density function of such distributions can be approximated by
ApproxDist.

For the class of k-fold mixtures of Gaussian distributions, Ashtiani et al. [10]
have given new bounds on the sample complexity for learning the density
function, making use of specific properties of these mixtures. In the univariate
case, é(k: £72) examples are sufficient. The sample complexity of our approach
also depends on these parameters polynomially. However, our approach also
works for the generalized class described above. This class includes k-fold
mixtures of uniform distributions on intervals, triangular distributions, Gaussian
distributions, and many others.

Consider the bivariate case. The density levels of a single Gaussian distribution
form ellipses with VC dimension 5. The empirical excess mass of closed ellipses

85

5 Learning Density Levels of Distributions

can be maximized by the algorithm of Nolan [50]. Therefore the density function
of bivariate Gaussian distributions can be approximated by our method as well.
However, density levels of k-fold mixtures of bivariate Gaussians may have a
complicated pattern, which cannot be described by the k-fold union of ellipses.
It is left for future work to analyze the concept class of these density levels and
design an algorithm that maximizes the empirical excess mass.

86

6 Conclusions and Discussion

In this thesis, different learning problems been studied. We have solved two
open problems, regarding learning DNF formulas and regular languages. Fur-
ther, we have studied the identification of high probability areas in probability
distributions.

Concerning DNF formulas, we have presented an efficient and proper learning
algorithm for k-term DNF formulas that learns from positive examples alone
that are drawn at random according to an unknown ¢-bounded distribution.
Thereby we have answered an open question of Pitt and Valiant [51], who have
asked whether restrictions of the probability distributions used for sampling
yield learnability of k-term DNF formulas from positive examples alone. Our
result is even stronger since our algorithm learns strongly without false positives.
The impossibility to learn poly(d)-term DNF formulas weakly without false
positives from positive examples alone independent of running time constraints
and the hypothesis class indicates that our sample complexity bound, which
grows exponentially in &k, cannot be improved substantially.

The question about whether log(d)-term DNF formulas can be learned properly
and efficiently from positive examples alone is still open for further research.
The positive result for monotone log(d)-term DNF formulas by Sakai and
Maruoka [54] indicates that efficient and proper learning could be possible. As
well does the negative result, which has been proven for poly(d)-term DNF
formulas only.

Another open problem is the extension of our results to other or more general
classes of distributions. Flammini et al. [34] have claimed that their proper learn-
ing algorithm for k-term DNF formulas from positive and negative samples can
be adapted to the class of product distributions as well. Sakai and Maruoka [55]
have introduced a generalization of g-bounded distributions and product distri-
butions, called smooth distributions. They have shown that monotone k-term
DNF formulas can be learned properly and efficiently even from examples drawn
according to unknown smooth distributions. Further research is needed to figure
out whether k-term DNF formulas can be learned efficiently and properly from
positive examples alone under product or even smooth distributions.

When it comes to regular languages, we have shown that the AL* algorithm
designed by Angluin et al. [7] may return non-residual AFAs. This disproves a
conjecture postulated by the authors. We have fixed that issue and designed a
new algorithm AL** that always returns residual AFAs. This algorithm fulfills
the same asymptotic complexity bounds as AL*. Moreover, even the absolute
query complexity is almost the same. We have performed experiments with

87

6 Conclusions and Discussion

random regular languages, and for more than 98% of the non-trivial instances,
AL** needs only one additional equivalence-query compared to AL* in order
to verify the residuality. In these cases, the number of membership queries
keeps the same. Besides the fact that AL** always returns residual AFAs, it has
almost the same properties as AL*. It generates an AFA that has always less
states than (or the same number of) the equivalent canonical RNFA. Typically,
AL** generates automata which are significantly more succinct than DFAs and
RNFAs. This observation fits to the theoretical analysis, which shows that
(residual) AFAs can be exponentially more succinct than NFAs and even double
exponentially more succinct than the minimal DFA.

However, it is still open to find a definition of canonical AFAs that, like canonical
NFAs or the canonical UFAs, are not only residual, but also unique. While
residuality always adds a natural meaning to the automaton’s states, uniqueness
of the minimal residual AFA is not guaranteed. We have encountered regular
languages for which both, the canonical NFA and the canonical UFA, are minimal
residual AFAs as well. Naturally, these two minimal residual AFAs differ. It is
not obvious how a natural definition of the canonical AFA should look like.

An ambitious open problem is learning of context-free grammars (CFG), or
pushdown automata respectively, from membership and equivalence queries.
Learning CFGs has been solved by Angluin [4] for CFGs that have at most k
non-terminal symbols at the right-hand side of each production rule, and with
even more powerful non-terminal membership queries. To our best knowledge,
this problem is still open for general CFGs or if only ordinary membership
queries can be asked (see also the survey by Lee [44]).

Finally we have considered the identification of high-density areas in probability
distributions via algorithmic learning. We have clarified the relation between
learning density levels and the estimation of the entire probability distribution
function. Afterwards, we have shown that algorithms that maximize the empiri-
cal excess mass can be applied directly to learn density levels in the framework
of Ben-David and Lindenbaum — a framework that transforms the spirit of
PAC learning to density levels. Before, the design of learning algorithms in
Ben-David’s and Lindenbaum’s framework required a lot of effort. On the other
hand, empirical excess mass maximization algorithms are known to be successful
learners without further proof now.

Nonetheless, the following open questions about empirical excess mass maximiza-
tion arise for further research: Which concept classes are meaningful to describe
density levels of probability distributions, especially in the multivariate case?
What is their VC dimension? For bivariate Gaussian distributions, every density
level is a ellipse, yielding a concept class with VC dimension 5. However, the
geometry of density levels corresponding to mixtures of multivariate Gaussian
distributions becomes complicated, not to mention mixtures of other distribu-
tions. If the structure of density levels is clarified, the question about whether
the empirical excess mass can be maximized efficiently arises subsequently. And,

88

concerning existing excess mass maximizers as well, with which measures do
these algorithms work? Are they restricted to the Lebesgue measure?

Recently, there have been astounding progress in the area of practical machine
learning. For example, consider the artificial intelligence AlphaZero [58], which
can beat the best human players of the board games Go, chess, and shogi
after a few hours of training only. For training, only the rules were given to
AlphaZero, which has learned the strategy by playing against itself repeatedly.
Another example of great advances is lung cancer screening, where a newly
developed learning algorithm surpasses expert specialists in computed tomogra-
phy findings [9]. However, these successes originate essentially from practical
approaches without a well-founded theoretical basis. For the further targeted
development, it seems to be helpful to understand why and how these methods
work. Thus, research in learning theory must be promoted, especially to close
the gap between theory and practice and to improve the understanding of the
most recently practical progress.

89

Bibliography

1]

[10]

Hasan Abasi, Nader H. Bshouty, and Hanna Mazzawi. On exact learning
monotone DNF from membership queries. In Peter Auer, Alexander Clark,
Thomas Zeugmann, and Sandra Zilles, editors, Algorithmic Learning Theory,
pages 111-124, Cham, 2014. Springer International Publishing.

Yohji Akama and Kei Irie. VC dimension of ellipsoids. arXiv e-prints,
arXiv:1109.4347, 2011.

D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian
circuits and matchings. J. Comput. Syst. Sci., 18(2):155-193, 1979.

Dana Angluin. Learning k-bounded context-free grammars. Technical
Report RR-~557, Yale University, 1987.

Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87-106, 1987.

Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319—
342, Apr 1988.

Dana Angluin, Sarah Eisenstat, and Dana Fisman. Learning regular lan-
guages via alternating automata. In Proc. 24. IJCAI, pages 3308-3314,
2015.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine
Learning, 2(4):343-370, 1988.

Diego Ardila, Atilla P. Kiraly, Sujeeth Bharadwaj, Bokyung Choi, Joshua J.
Reicher, Lily Peng, Daniel Tse, Mozziyar Etemadi, Wenxing Ye, Greg
Corrado, David P. Naidich, and Shravya Shetty. End-to-end lung cancer
screening with three-dimensional deep learning on low-dose chest computed
tomography. Nature Medicine, 2019.

Hassan Ashtiani, Shai Ben-David, Nicholas Harvey, Christopher Liaw,
Abbas Mehrabian, and Yaniv Plan. Nearly tight sample complexity bounds
for learning mixtures of gaussians via sample compression schemes. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems
81, pages 3412-3421. Curran Associates, Inc., 2018.

Shai Ben-David and Michael Lindenbaum. Learning distributions by their
density levels: A paradigm for learning without a teacher. Journal of
Computer and System Sciences, 55(1):171-182, 1997.

91

Bibliography

[12]

[21]

[22]

23]

Sebastian Berndt, Maciej Likiewicz, Matthias Lutter, and Riudiger Reis-
chuk. Learning residual alternating automata. AAAI Conference on Artifi-
cial Intelligence, 2017.

P. Bhattacharyya and G. Nagaraja. Learning a class of regular languages
in the probably approximately correct learnability framework of valiant.
In IEE Colloguium on Grammatical Inference: Theory, Applications and
Alternatives, pages 2/1-2/16, 1993.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.
Warmuth. Learnability and the Vapnik—Chervonenkis dimension. J. ACM,
36(4):929-965, 1989.

Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
Angluin-style learning of NFA. In Proc. 21. IJCAI, pages 1004-1009, 2009.

Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel
Neider, and David R Piegdon. libalf: The automata learning framework. In
International Conference on Computer Aided Verification, pages 360—-364.
Springer, 2010.

Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation.
J. ACM, 28(1):114-133, January 1981.

Ashok K. Chandra and George Markowsky. On the number of prime
implicants. Discrete Mathematics, 24(1):7-11, 1978.

S. Chang, P. C. Cosman, and L. B. Milstein. Chernoff-type bounds
for the gaussian error function. IEEE Transactions on Communications,
59(11):2939-2944, 2011.

Yu-Fang Chen, Chiao Hsieh, Ondfej Lengdl, Tsung-Ju Lii, Ming-Hsien Tsai,
Bow-Yaw Wang, and Farn Wang. PAC learning-based verification and

model synthesis. In Proceedings of the 38th International Conference on
Software Engineering, pages 714-724. ACM, 2016.

Anindya De, Ilias Diakonikolas, and Rocco A Servedio. Learning from
satisfying assignments. In Proc. 26th SODA, pages 478-497. STAM, 2014.

Colin De La Higuera. A bibliographical study of grammatical inference.
Pattern recognition, 38(9):1332-1348, 2005.

Scott E. Decatur. PAC learning with constant-partition classification noise
and applications to decision tree induction. In Proc. ICML, pages 83-91,
San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

Frangois Denis. PAC learning from positive statistical queries. In Michael M.
Richter, Carl H. Smith, Rolf Wiehagen, and Thomas Zeugmann, editors,
Proc. ALT, pages 112-126, Berlin, Heidelberg, 1998. Springer Berlin Hei-
delberg.

92

Bibliography

[25]

[26]

[27]

[28]

[29]

[32]

Frangois Denis. PAC learning from positive statistical queries. In Proc. 9th
ALT, pages 112-126. Springer, 1998.

Frangois Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state
automata. In Proc. 18. STACS, LNCS 2010, pages 144-157. Springer, 2001.

Francois Denis, Aurélien Lemay, and Alain Terlutte. Learning regular
languages using RFSAs. Theoretical Computer Science, 313(2):267-294,
2004.

Matthias Ernst. Algorithmic learning of distributions (in german). Master’s
thesis, Institut fir Theoretische Informatik, Universitéit zu Liibeck, Liibeck,
Germany, 2013.

Matthias Ernst, Maciej Liskiewicz, and Riidiger Reischuk. Algorithmic
learning for steganography: Proper learning of k-term DNF formulas from
positive samples. In Proc. 26th ISAAC, pages 151-162. Springer, 2015.

Vitaly Feldman. A general characterization of the statistical query com-
plexity. In Satyen Kale and Ohad Shamir, editors, Proc. COLT, volume 65
of Proceedings of Machine Learning Research, pages 785—830, Amsterdam,
Netherlands, 2017. PMLR.

Lu Feng, Marta Kwiatkowska, and David Parker. Compositional verification
of probabilistic systems using learning. In Quantitative Evaluation of
Systems (QEST), 2010 Seventh International Conference on the, pages
133-142. IEEE, 2010.

Lu Feng, Marta Kwiatkowska, and David Parker. Automated learning of
probabilistic assumptions for compositional reasoning. In International
Conference on Fundamental Approaches to Software Engineering, pages
2-17. Springer, 2011.

Dana Fisman. . personal communication, 2017.

Michele Flammini, Alberto Marchetti-Spaccamela, and Ludék Kucera.
Learning DNF formulae under classes of probability distributions. In Proc.
5th COLT, pages 85-92. ACM, 1992.

E Mark Gold. Language identification in the limit. Information and Control,
10(5):447-474, 1967.

J. A. Hartigan. Estimation of a convex density contour in two dimensions.
Journal of the American Statistical Association, 82(397):267-270, 1987.

David S. Johnson. Approximation algorithms for combinatorial problems.
J. Comput. Syst. Sci., 9(3):256-278, 1974.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. J.
ACM, 45(6):983-1006, November 1998.

93

Bibliography

[39]

[40]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Michael Kearns, Ming Li, and Leslie Valiant. Learning Boolean formulas.
J. ACM, 41(6):1298-1328, 1994.

Michael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E.
Schapire, and Linda Sellie. On the learnability of discrete distributions. In
Proc. STOC, pages 273-282, New York, NY, USA, 1994. ACM, ACM.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning
boolean formulae and finite automata. Journal of the ACM (JACM),
41(1):67-95, 1994.

Carsten Kern. Learning communicating and nondeterministic automata.
PhD thesis, RWTH, Fachgruppe Informatik, 2009.

Adam R Klivans and Rocco Servedio. Learning DNF in time 20(n'?) .
Comput. System Sci., 68(2):303-318, 2004.

Lillian Lee. Learning of context-free languages: A survey of the literature.
Technical Report TR-12-96, Harvard Computer Science Group, 1996.

Maciej Liskiewicz, Riidiger Reischuk, and Ulrich Wolfel. Grey-box steganog-
raphy. Theor. Comput. Sc., 505:27-41, 2013.

Oded Maler and Amir Pnueli. On the learnability of infinitary regular sets.
Information and Computation, 118(2):316-326, 1995.

C. McMullen and J. Shearer. Prime implicants, minimum covers, and
the complexity of logic simplification. IEEE Transactions on Computers,
C-35(8):761-762, 1986.

Dietrich Werner Miiller and Giinther Sawitzki. Excess mass estimates and
tests for multimodality. Journal of the American Statistical Association,

86(415):738-746, 1991.

Balaubramaniam Kausik Natarajan. On learning boolean functions. In
Proc. 19th STOC, pages 296-304. ACM, 1987.

Deborah Nolan. The excess-mass ellipsoid. Journal of Multivariate Analysis,
39(2):348-371, 1991.

Leonard Pitt and Leslie G. Valiant. Computational limitations on learning
from examples. J. ACM, 35(4):965-984, 1988.

Wolfgang Polonik. Density estimation under qualitative assumptions in
higher dimensions. Journal of Multivariate Analysis, 55(1):61-81, 1995.

Liva Ralaivola, Francois Denis, and Christophe Nicolas Magnan. CN =
CPCN. In Proc. ICML, pages 721-728, New York, NY, USA, 2006. ACM.

Y. Sakai and A. Maruoka. Learning monotone log-term DNF formulas
under the uniform distribution. Theory of Comput. Systems, 33(1):17-33,
2000.

94

Bibliography

[55]

[56]

[57]

[58]

[63]

[64]

[65]

[66]

Yoshifumi SAKAI and Akira MARUOKA. Learning k-term monotone
Boolean formulae. Interdisciplinary Information Sciences, 3(2):71-80, 1997.

Yoshifumi Sakai, Eiji Takimoto, and Akira Maruoka. Proper learning
algorithm for functions of £ terms under smooth distributions. Inform. and
Comput., 152(2):188-204, 1999.

Haim Shvaytser. A necessary condition for learning from positive examples.
Machine Learning, 5(1):101-113, 1990.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and Demis
Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140-1144, 2018.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time (preliminary report). In Proceedings of the Fifth Annual ACM Sym-
posium on Theory of Computing, STOC, pages 1-9, New York, NY, USA,
1973. ACM.

Alexandre B. Tsybakov. On nonparametric estimation of density level sets.
The Annals of Statistics, 25(3):948-969, 1997.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

Vladimir Naumovich Vapnik and Alexey Jakovlevich Chervonenkis. On the
uniform convergence of relative frequencies of events to their probabilities.
Theory of Probability and Its Applications, 16(2):264-280, 1971.

Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for Concurrency: Structure versus Automata, LNCS 1043, pages
238-266. Springer, 1995.

Karsten Verbeurgt. Learning DNF under the uniform distribution in quasi-
polynomial time. In Proc. 3rd COLT, pages 314-326, San Francisco, 1990.
Morgan Kaufmann Publishers Inc.

David P. Williamson and David B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

T. Yokomori. Machine intelligence 13. chapter Learning Non-deterministic
Finite Automata from Queries and Counterexamples, pages 169-189. Oxford
University Press, Inc., New York, NY, USA, 1995.

95

Curriculum Vitae

Matthias Lutter received his Abitur certificate
at the Gymnasium Winsen in 2007. In the same
year, he began to study computer science at
the University of Liibeck. He received his B.Sc. F
degree in 2011 and his M.Sc. degree in 2013
from the University of Liibeck, both as the best
student of the corresponding year. His master’s
thesis addresses learning of high-density level
areas of probability distributions.

Since 2013 Matthias Lutter is a PhD student at
the Institute for Theoretical Computer Science
of the University of Liibeck. He has held tu-
torials mainly in the area of cryptography and
IT security. His research area has been com-
putational learning theory with applications to
steganography, automata theory, and differential privacy.

97

	Title Page
	Abstract
	Zusammenfassung
	Contents
	Introduction and Motivation
	Learning Models
	General Setting
	Learning from Examples
	Learning with Queries
	Relationship of Learning Models

	Learning k-term DNF Formulas From Satisfying Assignments
	Related Work
	On Monomials, k-term DNFs, and Other Formulas
	The k-term DNF Learner
	Generating Maximal Monomials for a CNF Formula
	Bounding the Subset Size for Maximal Monomials
	The Correctness and Complexity of Learn-k-Term-DNF
	Infeasibility for Unrestricted DNF Formulas

	Learning Residual Alternating Automata
	On Automata and Regular Languages
	Learning Automata
	Analysis of the AL* Algorithm
	Learning Residual Alternating Automata
	The Size of Residual AFAs

	Learning Density Levels of Distributions
	The Learning Model
	Learning Density Levels Versus the Complete Density Function
	Consistent Density Level Learners
	Empirical Excess Mass Maximization

	Conclusions and Discussion
	Bibliography
	Curriculum Vitae

