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Abstract

Abstract

Food intake and energy homeostasis (the body’s energy needs) are regulated by pathways of the
central nervous system and by their bidirectional connections from and to peripheral organs.
Understanding brain functions under different homeostatic conditions are of great importance.
However, these functions remain incompletely characterized until now. Therefore, this dissertation
investigates the effects of physical metabolic states (i.e. hunger and satiety) on brain functions as
well as the association between brain activity and peripheral energy stores (i.e. insulin and glucose
levels). This study outlines how to analyze human neuroimaging data (i.e. functional magnetic
resonance imaging) to study the spontaneous (i.e. resting-state) brain activity in the context of
metabolism and food intake to address these knowledge gaps.

Resting-state functional magnetic resonance imaging (rs-fMRI) and blood samples were
obtained from 24 healthy normal-weight men in a repeated measurement design. Each participant
was examined twice: once after 36 hours of fasting, i.e. hunger state, and once in a standard eating
condition (three meals/day for 36 hours), i.e. satiety state. Rs-fMRI was recorded before and after
the oral administration of 75 g of glucose for each metabolic state. Hunger ratings, plasma glucose
levels and insulin levels data per condition were also collected.

First, functional connectivity (local and global) and activity (amplitude) approaches on the
whole-brain level were applied to investigate the effects of glucose treatment on the resting brain’s
fluctuations during different metabolic states. We found that oral administration of glucose led to
a reduction of brain connectivity as well as activity in the left supplementary motor area and
increased local connectivity and amplitude of brain signals in the right middle and superior frontal
gyri. In addition, the amplitude approach showed a significant interaction between metabolic state

(hunger vs. satiety) and glucose treatment in the left thalamus. Second, functional connectivity and

XVii



Abstract

activity modeling approaches were used to classifying two metabolic states depending on the
observed rs-fMRI fluctuations by using feature selection algorithms with the objective function of
a linear support vector machine classifier. The results revealed that the amplitude of rs-fMRI data
IS @ more accurate parameter than local and global connectivity features in capturing the changes
of the resting brain during states of hunger and satiety with a classification accuracy higher than
80%. Third, we tested whether changes in brain activity metrics are linked to hypoglycemia and
whether they are modulated by peripheral signals. We observed a modulatory impact of fasting
condition on intrinsic brain activity in the posterior cingulate cortex. Strikingly, differences in
plasma insulin levels between hunger and satiety states after glucose administration at the time of
the scans were negatively related to brain activity in the posterior insula and superior frontal gyrus,
while plasma glucose levels were positively associated with activity changes in the fusiform gyrus.
Finally, the effective (directed) interactions within a hypothalamus-posterior insula-anterior insula
circuit under different metabolic states were investigated by using the dynamic causal modeling
approach and Bayesian model selection. The strength of the connectivity parameter from posterior
insula to anterior insula was increased in the fasting condition compared to satiety condition.
Overall, the findings presented here provide novel insights into brain activity patterns
underlying energy homeostasis. Furthermore, the results extend the current understanding about
how brain regions exchange information, thereby highlighting the impact of metabolic states on

functional neural integration.
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Zusammenfassung

Zusammenfassung

Nahrungsaufnahme und Energiehomoostase werden durch Netzwerke im zentralen Nervensystem
sowie durch deren bidirektionale Verbindungen zu peripheren Organen reguliert. Komplexe
Veranderungen der Hirnfunktionen und der Homdoostase des korpereigenen Stoffwechsels sind
zugrundeliegende pathologische Mechanismen vieler korperlicher Erkankungen, wie zum Beispiel
der Adipositas. Die Untersuchung des Zusammenhangs zwischen Metabolismus und
Nahrungsaufnahme kann zur Verbesserung bestehender und zur Entwicklung neuer Ansétze in
Diagnostik und Therapie fuhren. -Daher ist die Verwendung funktioneller Bildgebung zum
besseren Verstandnis der Veranderung von Hirnfunktionen unter verschiedenen homoostatischen
Bedingungen von groRer Bedeutung.

Im Kontext von Nahrungsaufnahme wurde bereits eine Vielzahl von aufgabenbasierten f-
MRT Studien durchgefihrt, die spezifische Hirnregionen und Aktivitdtsmuster in Reaktion auf die
Verarbeitung von lebensmittelassoziierten Reizen im Hunger- und Séttigungszustand
identifizierten. Eine Einschrankung dieser Studien, die die gesamte Hirnaktivitat untersuchen und
bestimmte Hirnregionen und Netzwerke lokalisieren, ist, dass die verwendeten experimentellen
Designs sich jeweils auf nur einen Aspekt (d.h. Stimulus bezogene Aktivitat) beschranken. Bisher
ist der Zusammenhang zwischen funktioneller neuronaler Integration, das heif3t wie verschiedene
Hirnregionen miteinander verbunden sind, und verschiedenen metabolischen Zustdnden (Hunger
und Séattigung) unzureichend verstanden. Vor allem in Humanstudien ist die Datenlage bislang
uneindeutig. Die Untersuchung des Einflusses verschiedener metabolischer Zustande auf die
Gehirnkonnektivitat ist wichtig fir ein tieferes Verstdndnis der Regulation von
Nahrungsaufnahme. In dieser Arbeit werden Ergebnisse von vier mathematischen

Modellierungsansatzen présentiert, die Hirnaktivitat in Bezug zur Nahrungsaufnahme untersucht

XiX



Zusammenfassung

haben, sowie den Zusammenhang zwischen Hirnaktivitat und peripheren Signalen, die als
Reaktion auf unterschiedliche homdoostatische Zustande gebildet werden. Die vorliegende Arbeit
beginnt mit einer allgemeinen Einfiihrung (Kapitel 1), in der aktuelle Konzepte neuronaler
bildgebenden Verfahren (insbesondere fMRT) sowie verschiedene Erndhrungsmodelle und die
Zielsetzungen der jeweiligen Kapitel dargestellt werden. Die Einleitung fasst bisherige
Forschungsergebnisse zur Beziehung von Gehirnaktivitat und Nahrungsaufnahme zusammen und
verdeutlicht, dass insbesondere das Wechselspiel mit peripheren metabolischen Signalen, die in
Reaktion auf Nahrungsaufnahme erzeugt werden, noch unterverstanden ist. Um diesen
unverstandenen Aspekt zu untersuchen , wurde ein Experiment mit einem cross-over Design
durchgefiihrt (Kapitel 2). In diesem Experiment wurden 24 gesunde und normalgewichtige
Ménner mehrfach untersucht. Eine erste Messung erfolgte nach 36-stiindigem Fasten, eine zweite
in einem gesattigten Zustand (drei Mahlzeiten/Tag fur 36 Stunden). Am Ende jeder Sitzung wurde
eine Ruhe-fMRT Messung (rs-fmrt) vor und nach oraler Verabreichung einer Glukoseldsung
angefertigt. Zusétzlich wurden 19 Blutproben pro Person und Bedingung zur Bestimmung des
basalen Blutzucker-, Insulin- und Cortisolspiegels entnommen. Weiter werden in Kapitel 3 die
Auswirkungen von Stoffwechselzustanden (Hunger vs. Séttigung) sowie von Nahrungsaufnahme
(Glucoselésung) auf die Physiologie (Insulin- und Cortisolspiegels) und auf das Verhalten
erlautert.

Da es keinen einheitlichen Ansatz zur Analyse der rs-fMRT Daten gibt und diese des
Weiteren von der jeweiligen Fragestellung anhédngig ist, werden in Kapitel 4 verschiedene
Auswertungsmethoden zur Modellierung der Hirnaktivitdt und Konnektivitat vorgestellt. In den
darauffolgenden Abschnitten werden vier rs-fMRT Analysen dargestellt und analysiert die die
zuvor genannten Auswertungsmethoden verwenden und damit den Zusammenhang zwischen
homoostatischen Zustdnden und der Aktivitét relevanter neuronaler Netzwerke demonstrieren.
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Zusammenfassung

Die erste Analyse in Kapitel 5 wurde durchgefiihrt, um Informationen tber die spontane
neuronale Aktivitat als Funktion des Stoffwechsels und der Glukoseaufnahme zu erforschen. Fur
die statistische Auswertung von drei datengesteuerten Ansétzen (lokale Konnektivitét, globale
Konnektivitat und der Amplitude von rs-fMRT-Signalen) wurden separate, und Varianzanalysen
fir Wiederholungsmessungen (repeated-measurements-ANOVA) durchgefiihrt. Die Ergebnisse
zeigen, dass diese drei Methoden angewandt auf rs-fMRT zur Aufklarung des Zusammenhangs
zwischen Verdnderungen in der Energiehomdostase und der Kalorienzufuhr betragen kénnen.
Dartiber hinaus deuten die Ergebnisse darauf hin, dass die Amplituden von rs-fMRT den
sensitivsten Messwert zur Erkennung des Effekts von metabolischen Zustdnden auf die
Ruhegehirnaktivitat liefern.

Der zweite Teil dieser Arbeit zielt darauf ab, die Genauigkeit von drei datengesteuerten
Ansatzen in der Klassifizierung von zwei Stoffwechselzustdanden (Hunger vs. Séttigung) zu
vergleichen. Alle drei Ansétze basierten auf Variablen aus rs-fMRT-Messungen. Fiir jeden Ansatz
wurden Merkmalsparameter aus 90 Hirnregionen extrahiert, gefolgt von der Selektion von
relevanten Parametern durch Merkmalsauswahlalgorithmen. Eine Klassifizierung mit einer
linearen Support-Vector-Machine sollte zeigen, welcher Ansatz die gegensétzlichen
homd@ostatischen Zustdnde (Hunger vs. Sattigung) anhand der vorher klassifizierten Merkmale
unterscheiden kann. Die Ergebnisse zeigen, dass mithilfe von amplitudenbasierten rs-fMRT-
Signalen zwischen Hunger und Sattigung mit einer Genauigkeit von bis zu 81% unterschieden
werden kann. Diese Ergebnisse werden in Kapitel 6 prasentiert.

In einer dritten Analyse (Kapitel 7) wurde die multiple lineare Regressionsanalyse
verwendet, um basierend auf den Ergebnissen der ersten und zweiten Studie die Interdependenz
von amplitudenbasierten Ruhe-fMRT-Signalen und Insulin-/Glukosespiegeln im Plasma zu
untersuchen. Unterschiede im Plasma-Insulinspiegel zwischen hungrigem und geséttigtem
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Zusammenfassung

Zustand nach der Glukoseverabreichung waren negativ mit amplitudenbasierten rs-fMRT-
Signalen in der posterioren Insula und dem superioren frontalen Gyrus korreliert. Differenzen im
Plasmaglukosespiegel waren positiv mit Aktivitatsanderungen im fusiformen Gyrus assoziiert.

In der vierten Analyse (Kapitel 8) wurden die Verfahren des dynamic causal modelling
(DCM) und der Bayesian model selection verwendet, um die kausalen Wechselwirkungen
innerhalb des Netzwerks aus Hypothalamus, posteriorer Insula und anteriorer Insula unter
verschiedenen Stoffwechselzustanden zu untersuchen. Die Analysen ergaben, dass die Starke der
Verbindung zwischen posteriorer Insula und anteriorer Insula bei Hunger- im Vergleich zu
Sattigungszustand erhoht war.

Die Arbeit schlieBt mit einer allgemeinen Diskussion (Kapitel 9) ab. Hier werden die
Ergebnisse der vorliegenden Studien zusammengefasst, Ruckschlisse auf Hirnfunktionen nach der
Nahrungsaufnahme gezogen und schlieRlich zukunftige Forschungsfragen aufgezeigt, die aus den

vorgestellten Ergebnissen abgeleitet werden kénnen.
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Chapter 1: General introduction

Food intake is vital for any living organism to provide energy for the maintenance of all bodily
processes from the absorbed nutrients such as carbohydrates, proteins and fats [1]. The control of
food intake is remarkably complex, as it is determined by various endocrine signals and multiple
interacting neural circuits [1-3]. The human brain uses two mechanisms to regulate food intake:
The first non-homeostasic mechanism comprises factors which are not directly related to energy
demands but instead are driven by external factors, such as food palatability, socioeconomic status,
habits, social influence and emotional states [4—6]. The second homeostatic mechanism regulates
food intake to keep the balance between energy supply and energy expenditure. For instance, after
a period of energy expenditure or after fasting, hunger signals are generated, whereas, after a meal,
these signals are inhibited [4]. One of the strategies to investigate homeostatic regulation and its
changes in healthy participants is to predefine a fasting period in order to induce hunger and cause
satiety after a predetermined standard meal or glucose administration [7]. Less is known about
how metabolic energy is modulating brain functions, such as learning and memory or
hypothalamic regulation of homeostasis. Neuroimaging has become an essential tool in obesity
research to understand the neurobiological underpinnings of appetite and body weight homeostasis
in humans.

This dissertation focuses on the impacts of the homeostatic mechanisms on brain functions.
Here, we apply four approaches to analyze the data of participants. Each path is chosen to answer
specific questions about the association between food intake and the brain's functions related to
homeostatic balance/appetite. Readers who are familiar with the principles of generating

functional brain imaging can skip the theoretical background section and proceed to Section 1.2,
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where the related work that leads to the present dissertation is reviewed or Section 1.3 where the

aims of this dissertation are presented.

1.1 Neuroimaging: Theoretical background

Over the past 25 years, cognitive neuroscientists have increasingly investigated brain functions by
using functional neuroimaging techniques. Common neuroimaging approaches include positron
emission tomography (PET) and functional magnetic resonance imaging (fMRI). PET imaging is
based on the local quantification of concentrations of injected radioactive tracers. The resulting
gamma ray emissions are detected and used as a measure for local functional changes in the brain,
such as glucose metabolism or blood flow.

In contrast, in fMRI (describing the basic physics of MRI and fMRI in the next sub-section),
the magnetic resonance imaging (MRI) technology is used to investigate brain function over time.
Unlike PET, fMRI does not require any ionizing radiation and offers enhanced temporal resolution.
For instance, fMRI acquires an image every few seconds while in PET needs a minute or even
longer to measure the changes in brain activity [8]. Therefore, subjects can repeatedly participate
without the cumulative health risks of emitted radiation. Indeed, fMRI can identify functional brain
changes caused by experimental manipulations. These advantages contributed to the constantly
increasing body of fMRI studies on brain functions.

In this dissertation, the fMRI technique is used to localize changes in brain activation patterns
during controlled food intake modulations. In this section, the basic principles of MRI generation
will firstly be presented [9-13]. Then the generation of the functional brain signal and its relation

to neural activity are demonstrated [8,14].
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1.1.1 Basics principle of MRI

The essential components of a MRI scanner are the external static magnetic field, radiofrequency
coils and gradient coils. Fundamental ideas of using these compounds to create an image from an
MRI scanner are described here.

The basic unit of all matter is called an atom. Each atom has an atomic nucleus and a cloud
of electrons (negative charges). An atomic nucleus, in turn, has neutrons (neutral with no charges)
and protons (positive charges). These atoms might have different magnetic properties among oft
tissues in organisms. Human bodies are mainly composed of water molecules and fat where both
of them contain an abundance of hydrogen atoms. Therefore MRI signals are generally derived
from the behavior of hydrogen nuclei.

For a single hydrogen atom, the proton rotates (spins) around itself at a certain time point
and with a certain number of rotations per second, these processes are known as the spinning phase
and frequency, respectively, owing to thermal energy (Figure 1.1A). This spin motion generates
an electric charge or current on its surface, which will cause a non-zero small magnetic source and
a torque when there is no external magnetic field. A quantity that represents the strength of this
magnetic source to make a magnetic field is called a magnetic moment. Meanwhile, the spin also
results in a non-zero angular momentum because the hydrogen proton has an odd-numbered atomic
number (i.e. a mass of one). Under normal conditions (absence of external magnetic field), the
spin’s axes of the protons are randomly oriented and this different orientation cause those
magnetization moments to cancel with each other and lead to a very small net magnetization
(Figure 1.1B), which is the vector sum of all spin vectors. To increase the net magnetization of the

hydrogen atomic nucleus, a strong magnetic field must be applied to line up the axes of the spin
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of the protons. Therefore, the MRI techniques do not measure a single atomic nucleus, but instead,
measure the net magnetization of all protons in a volume.

In magnetic resonance (MR) examination, the subject is placed in a strong static magnetic
field, usually referred to as Boand it is fixed in most devices to either 1.5 or 3 Tesla for clinical
applications. The Bo is a powerful magnetic field compared to the Earth’s magnetic field, which is
approximately 0.00005 Tesla. In this situation, the spinning proton of hydrogen nuclei will initiate
a gyroscopic motion, which is known as precession (Figure 1.1C), where the spin axes of the
proton rotate around a central axis of a magnetic field, like a spinning top. The speed of precession,
which is how many times the hydrogen protons precess per second, is measured as the precession
frequency, which is often called the Larmor frequency (w,) in MHz, and is given

Wo = ¥YnBo, (1.1)
where y,, is the constant gyromagnetic ration of hydrogen, which is the ratio of the magnetic
moment (from the rotating charge of the proton) over the angular momentum (from the rotating
mass of the proton) vector , y, = 42.6 MHz/Tesla. Also, the precession axis will align either
parallel (i.e. the nuclei do not have enough energy to oppose the Bo field, that is the low-energy
state) or anti-parallel (i.e. the nuclei have enough energy to oppose the By field, that is the high-
energy state) to the magnetic field. The low-energy state is more stable than the high-energy state.
Therefore more protons stay in the parallel state at the minimum energy level of the system, also
the net magnetization will be parallel to the magnetic field, which is known as longitudinal
magnetization. The magnitude of the longitudinal magnetization is proportional to the difference
between a number of protons aligning parallel and anti-parallel to the Bo, which ultimately depends
on the temperature of the sample and the strength of the Bo (Figure 1.1D). However, when an
organism, like animal or human, is placed in the magnetic field of a MRI, the participant essentially

acts as a magnet with a magnetic vector aligned with the external magnetic field. The net

4



1.1 Neuroimaging: Theoretical background

magnetization of the subject cannot be measured when it is in the same direction as Bo directly.
To measure the net magnetization, the equilibrium of the protons must be disturbed and then
detected how they are responding to the perturbation distortion.
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Figure 1.1: Basic characteristics of hydrogen protons.
(A) Spinning proton with angular momentum property, which is induced by the rotating charge.

(B) In the absence of an external magnetic field, i.e. Bo, protons are initially randomly oriented,
which gives a total net magnetization (Mo) approximately equal to zero. (C) The motion of
rotating proton (spin axis) around the main axis of Bo is known as precession. (D) When By is
introduced, each proton’s axis of spin aligns to the By either parallel state, which has a lower
energy level (shown in orange), or anti-parallel state, which has a high energy level (shown in
green). In equilibrium condition, more protons align in a parallel state, resulting in an MO that
is longitudinal, aligned with Bo direction. Adapted from [8].

The MRI scanner uses a series of radiofrequency (RF) pulses to perturb the collection of
protons at one spatial location, which is known as protons system. This perturbation happens
through transference electromagnetic energy from RF coils to the anatomic nuclei of hydrogen and
that leading to jump (flip) some protons from a low-energy state to a high-energy state, this process
is called excitation (Figure 1.2A and B). Excitation occurs when RF coils send an electromagnetic

wave that has the same frequency as the processional frequency of hydrogen nuclei within the
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static magnetic field (i.e. Larmor frequency), in this situation the protons can take energy from the
electromagnetic wave and this phenomenon is called resonance. The activation of a RF pulse has
two primary influences in the protons. First, more protons will move from the parallel direction to
the anti-parallel direction of Bo and thus, the longitudinal magnetization decreases. Second, during
RF pulse, precession protons will be flipped from the longitudinal direction, which is parallel to
Bo, towards the transverse plane, which is orthogonal to Bo, and generate magnetization
components called transverse magnetization. This transverse magnetization is created because the
protons begin to process together in the same direction at the same time, which leads the protons
to become in phase (together). The transverse magnetization vector is a rotating magnetic field at
the Larmor frequency.

When the RF pulse is switched off and the excitation is over, the protons of hydrogen nuclei
start to lose phase coherence and also return to a lower-energy state by emitting photons whose
energy is equal to the difference between energy levels, i.e. high- and low-energy states
(Figure 1.2C). During this reception period, this energy is a measurable MR signal and can be
detected by receiver coils which are the same RF coils, because both excitation and reception have

happened at Larmor frequency.
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RF Pulse

Figure 1.2: The change between states owing to absorption or transmission of energy.
(A) When protons are placed in a Bo, more will be at the low-energy state (orange) than at the

high-energy state (green). (B) If a radiofrequency (RF) pulse, which is an expatiation pulse, with
the right amount of energy is applied, some protons will absorb that energy and jump to the high-
energy state. (C) After the RF pulse is switched off, some of the protons in the high-energy state
will relax and return to their low-energy state, releasing the absorbed energy as a radiofrequency
wave with the same frequency of the RF pulse. Adapted from [8].
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MR signals that are detected through RF coils following excitation and reception do not
remain stable over time. Changes in MR signal (net magnetization) over time is referred to as
protons relaxation. Relaxation of protons happens in two exponential processes. First, the
transverse magnetization quickly loses phase coherence and begins to disappear. The time constant
that describes the time taken for transverse magnetization to decay to approximately 37% of its
original value, due to the accumulated phase difference is called T2 relaxation (T2 decay) or spin-
spin relaxation because it involves only the effects of internal inhomogeneity of spins (protons)
with each other. However, in physiological tissue, the protons lose their phase coherence due to
variations in local magnetic susceptibility, which is an essential characteristic of the tissue. Thus,
the time constant that combines the effects of spin-spin relaxation, magnetic file inhomogeneity
within the external magnetic field (Bo) and magnetic susceptibility to describe the decay signal of
transverse magnetization is called T2* (star) relaxation or T2* decay. In the human head, magnetic
susceptibility vibration that is seen in the blood vessels can be related to the neural activity in the
brain. Therefore, T2* relaxation is more significant to fMRI [10]. The shape of T2 (Figure 1.3B)
and T2* (Figure 1.3C) decay curves are similar but T2* is always faster (shorter) than T2. More
details about associations between brain activity and T2* signals can be found in the next section.

The second exponential process that is describing the protons’ return to the equilibrium state
is known as longitudinal relaxation. The longitudinal relaxation occurs when the protons exchange
energy with their surroundings or lattices to return to their lower-energy state. The time constant
that describes the time taken for longitudinal magnetization to recovery/ return from zero to
approximately 63% of its initial maximum value (Mo) parallel to Bo is called T1 relaxation (T1

recovery) or spin-lattice relaxation (Figure 1.3A).
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Figure 1.3: T1, T2 and T2* relaxation.
(A) T1 curve, the recovery of longitudinal magnetization over time following the switching off of

a radiofrequency (RF) pulse. To recover most of the longitudinal magnetization, the repetition
time (TR) has to be long enough. (B) T2 curve, the decay of transverse magnetization occurs over
a period on milliseconds and a temporary gain in signal intensity at time echo (TE) due to
accumulated phase differences caused by spin-spin interaction after 180° refocusing pulse. (C)
T2* curve, this curve explains the time decay of transverse magnetization over time due to
accumulated phase differences caused by both spin-spin interaction and local magnetic field
inhomogeneity when a 180° refocusing pulse is not used. The T2* signal decays much faster than
the T2 signal. Adapted from [13].

<

In contrast to longitudinal relaxation process, where energy is transferred from protons to the
surrounding system, transverse relaxation may occur with or without overall energy loss.
Moreover, T2 and T2* relaxation times are less dependent on the strength of the magnetic field,
because they are more sensitive to languid molecular motions and not only to movements at the

Larmor frequency. On the contrary, T1 relaxation times are dependent on the strength of the
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magnetic field. From the Larmor equation, of the power of the By field is increased the Larmor
frequency will also increase, leading in longer T1 relaxation times for brain tissue. Generally, T1
relaxation times is approximately ten times longer than T2 relaxation. Table 1.1 provides T1, T2
and T2* relaxation values for different brain tissue.

Table 1.1: List of relaxation times by brain tissue type and static magnetic field strength.
Adapted from [15].

Magnetic strength Tissue T1 (ms) T2 (ms) T2*(ms)
White matter 510 67 78
Gray matter 760 77 69
1.5 Tesla CSF 2650 280 -
Arterial blood 1441 290 55
White matter 1080 70 50
Gray matter 1820 100 50
3 Tesla CSF 3817 1442 =
Arterial blood 1932 275 46

The overall goal of MRI is to form an image that is a map of the spatial distribution of some
property of the atomic nuclei within the sample. To capture this spatial information in three
dimensions (3D) at least three gradients (G) coils are needed. These coils indicate how the strength
of Bo varies linearly in each of the x-,y- and z- directions. These gradients cannot turn all at the
same time. Therefore, an MR image formation is sequentially separated into three steps: First, a
spatial magnetic field gradient in the z-direction (Gz) is applied at the same time with an RF pulse
to excite protons within a slice in order to select a particle slice of tissue in the brain or body
volume. During this process, a two-dimensional (2D) slice of the tissue of interest is selected.

Second, a phase-encoding gradient oriented in the y-direction (Gy) is activated and then quickly

10
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turned off to change the protons phase and to process at different rates depending on their positions.
Finally, a frequency-encoding gradient is turned on along the x-direction (Gx) to change the
proton’s frequency when the MR signals are read out. Each RF pulse fills a line in the k-space
matrix, which reflects the Fourier transform of the image space, by repeating the process in the y-
direction of k-space for the number of times equal to the number rows in an in-plane image. After
a full k-space matrix is filled, a 2D inverse Fourier transform is applied to that matrix to convert
the raw data from 2D k-space to 2D image space, thus completing a single slice image collection.
Then the position of Gz is changed and the process mentioned above is repeated to create a 3D
brain image, i.e. a complete brain volume. After k-space is filled, a 2D inverse Fourier transform
is performed to convert raw data from k-space to image space, thus completing a single slice image
collection. Then the position of Gz is changed and the above process is repeated to get a whole
brain volume.

Different brain tissues have different MR relaxation times, as can see in Table 1.1. This
allows creating different images that have high contrast among these tissues through adjusting the
MRI sequences. The contrast of images in which the difference in signal intensity between tissues
is derived from differences in T1, T2 or T2* relaxation times are called a T1-weighted, T2-
weighted or T2*-weighted images, respectively. The T1-weighted image can be obtained by
reducing the time between subsequent RF pulses, i.e. repetition time (TR), and it is used to study
anatomical brain structures. For instance, cerebrospinal fluid (CSF) appears dark in the T1-
weighted image, because it has long T1 and relaxes slowly. However, the T1 relaxation time of
white matter is shorter than the relaxation time of CSF. Whereas, the gray matter has intermediate
T1 value. Therefore, white matter, which has fast relaxation time, and gray matter, which has
medium relaxation time, appear in a bright and gray contrast relative to CSF in the T1-weighted
image, respectively. In contrast to the T1-weighted image, the T2-weighted image can be given by

11
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increasing the time interval between the excitation and data acquisition, i.e. echo time (TE). The
resulting T2-weighted image is darkest in voxels with short T2 values because those voxels will
lose more signal (de-phases rapidly), such as white matter, and brightest in areas within long T2
values (de-phases slowly), such as CSF. Because T2-weighted scans have maximal signal in the
CSF, itis essential for many clinical applications, such as tumors and arteriovenous malformations.
The T2*-weighted image is more sensitive to changes in blood flow in the brain thus it is used to
study brain functions over time. Both T2- and T2*-weighted images are provided by the pulse
sequences with intermediate TE and long TR values. However, different sequences are used to
create contrast images. For instance, spin-echo and gradient-echo sequences are most commonly
used in T2- and T2*-weighted images, respectively [8]. Figure 1.4 shows examples of T1-, T2-

and T2*-weighted images of the human brain.

Figure 1.4: Examples of different MRI image types.
(A) The T1-weighted MRI. (B) The T2-weighted MRI. (C) The T2*-weighted fMRI. (A) and (C)

are the average images of the collection of images that are obtained from the data that was
used in this dissertation.

After collecting the MRI/fMRI images, these images are placed in a standard three-
dimensional Cartesian coordinate space. Thus, the points in the MRI/fMRI image are related to

spatial locations and the different individuals are aligned. In this dissertation, we used the

12
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conventions and terminology of standard space, as shown in Figure 1.5, to describe the orientation
when reporting the fMRI results.
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Figure 1.5: A depiction of the three principal axes used in the standard coordinate space for MRI
from neurological views.
Adapted from [16] and

(http://www fieldtriptoolbox.org/fag/how_are_the different_head and_mri_coordinate_systems_defined).

1.1.2 Correlation between BOLD and neural activity

As mentioned above, fMRI uses MRI scanners to investigate changes in brain function over time.
The question that now arises is: how can the fMRI signals be related to the neural activity? In this

section, the most important works are demonstrated to answer that question.
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Active cells need energy, but the brain cells, so-called "neurons™ do not store energy. They
need glucose and oxygen supply by glial cells, which are supporting the activities in neurons and
regulating their chemical environment around them. Both glucose and oxygen are provided by
increases in blood flow, i.e. the volume of moving blood per unit time, to the active brain regions.
Consequently, active neurons fulfill their functions. During this processing, oxygenated (oxygen-
rich) hemoglobin in the blood flow turns to deoxygenated hemoglobin (oxygen-poor). However,
the vascular system supplies active brain regions with more blood that is rich in oxygen, which in
turn leads to a decrease in deoxygenated hemoglobin in those regions. In 1936, Pauling and Coryell
[17] detected that oxygenated and deoxygenated hemoglobin have different magnetic properties.
Oxygenated hemoglobin is diamagnetic, which is weakly repulsing from a magnetic field and
exerts little effects on the surrounding magnetic field. In contrast, deoxygenated hemoglobin is
paramagnetic, which is weakly attracted to magnetic fields and in consequence distorts the local
magnetic field. In 1990, Ogawa and colleagues [18] found that the gradient-echo brain images of
rodents breathing pure oxygen were different from those of rodents breathing normal air (21%
oxygen), suggesting that signal differences on T2*-weighted images are a function of the amount
of deoxygenated hemoglobin. This signal is called blood oxygenation level dependent (BOLD)
contrast or signal. Maloney and Grinvald [19] showed a rising in the BOLD signal and reaching
the peak (i.e. maximum amplitude) at approximately 5 seconds after stimulation onset. That result
has been observed using high-resolution optical imaging in cat visual cortex.

To summarize, fMRI uses BOLD signals, which arise from the interplay of blood flow, blood
volume and blood oxygenation, as an indirect approach to measure neural activity in the brain.
When the neurons get activated, the fresh blood flow is oversupplied locally/specifically to the
neural activity which gives rise to the relatively good spatial resolution of fMRI. This activity
increases the local concentration of oxygenated hemoglobin and decreases the concentration of

14
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deoxygenated hemoglobin. The reduction in the amount of deoxygenated hemoglobin corresponds
with the decline in MR signal loss due to T2* effects and leads to increasing MR signals in the
T2*-weighted image (i.e. a brighter MR image).

1.1.3 Task fMRI vs. resting-state fMRI

In classical fMRI experiments, the participants are instructed to perform a particular task, which
is tailored to assess a defined function of the brain, for example, a motor task, vision, memory and
language. The localization of the activated brain regions involved in solving the task is achieved
by comparing the BOLD signal intensity during task performance to that at baseline conditions,
i.e. when the respective task is not performed. This experimental paradigm is called "task-based
fMRI" [20-23].

In contrast to the traditional fMRI described above, resting state fMRI (rs-fMRI) reflects the
brain activity at rest when individuals are not requested to do a specific task [24,25]. The term
"resting-state™ is often used to denote this type of data, but other terms have been adopted as well,

such as "intrinsic," "spontaneous™ [26] and "model-free” analysis [27]. In this thesis, the term
"resting-state” will be used because it is the conventional term within the field's literature. Rs-
fMRI describes the natural low frequency (<0.1 Hz) of brain activity in the transient fluctuation of
the BOLD baseline signal [28]. Analyses of the temporal coherence of spontaneous BOLD signals
allow identification of brain regions that display a high degree of synchronicity, which is therefore
considered as functionally connected. Although the BOLD contrast is the underlying phenomenon
behind the rs-fMRI and task-based fMRI, some notable differences between these two techniques
as contrasted in Table 1.2,

Biswal and coworkers [29,30] first introduced the concept of rs-fMRI by investigating the

transfer function of the motor cortex in the brain. The rs-fMRI approach gained popularity when
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Raichle and colleagues [31,32] identified the so-called default mode network (DMN). This
network is activated during rs-fMRI and deactivated during task-based fMRI, when attention is
oriented directly towards internal rather than towards external stimuli [33]. The DMN consists of
the posterior cingulate cortex (PCC), precuneus, angular gyrus and medial prefrontal cortex. These
regions have been identified to be involved in different functions including self-awareness and
theory of mind [34,35]. In past years, rs-fMRI has become an established tool in clinical and drug
development domains and also in the investigation of feeding behavior [26,36—46] to cite just a

few studies.

1.2 Food Consumption?

The brain is a major regulator of whole-body energy homeostasis. Fluctuations in brain activity
are linked to changes in glucose metabolism and are a crucial influencing factor for whole-body
energy homeostasis [47]. Homeostatic regulation in healthy participants can be investigated by
comparing a ‘‘hunger condition” entailing a fasting period with a ‘‘satiety condition” after a
predetermined standard meal [48]. Moreover, the common 75-g oral glucose tolerance test used
clinically for the diagnosis of diabetes can be used to probe the brain’s response to these different
conditions. This approach has been used to study brain responses to food pictures after overnight
fasting [7,48], and to explore brain connectivity at rest [46]. The brain is the only organ able to
control its own energy supply, mainly via glucose, depending on its varying requirements [49]. In
line with that, fluctuations in neural brain activity are linked to glucose metabolism and are a

crucial influencing factor for whole body energy homeostasis [47].

! Portions of this section are adapted from the following publication: Al-Zubaidi, A., Heldmann, M.,
Mertins, A., Jauch-Chara, K., & Miinte, T. F. (2018). Influences of hunger, satiety and oral glucose on
functional brain connectivity: A multimethod resting state fMRI study. Neuroscience. | participated in the
experiment design and data collection. | analyzed the data and wrote the manuscript.

16



1.2 Food Consumption

Table 1.2: Comparison of rs-fMRI and task-based fMRI paradigms.

Adapted from [50]

Rs-fMRI

Task-based fMRI

1  Analyses of spontaneous BOLD signal in
the absence of any explicit task or input.

2 60-80% of the brain’s energy is consumed
during the resting state.

3 High contribution to overall brain activity.

4  Signals which are discarded as noise in task
fMRI are taken as signals in rs-fMRI as they
are the low-frequency spontaneous
fluctuations in the BOLD signal.

5 Improved SNR since it takes the overall
spontaneous low-frequency fluctuations;
spontaneous ongoing activity explains 50-
80% of the BOLD variance.

6 Requires only one trial/session.

7  Acquired data of one session may be used to
analyze several functions.

8 No consciousness and patient cooperation
required. Rs-fMRI Allows investigation of
pediatric, low 1Q and vegetative or even
comatose subpopulations.

9 No familiarity or repetition effects even in
repeated measurements design. Therefore,
rs-fMRI is comparable between sessions.

Analyses of spontaneous modulations in the BOLD

signal in the presence of a particular (cognitive)
task or activity.

Task-related increase in neuronal metabolism is
less than 5%.

Contribution to only a small fraction of overall
brain activity.

The signal during a task-related activity is tiny
compared to noise, i.e. 80% of the BOLD
modulation is discarded as noise.

Due to the discarding of the signal as noise, task
fMRI has a low SNR; task-related modulation

explains at maximum 20% of the BOLD variance.

Requires a large number of trials which increase
the time needed to measure the participants!

Each function of interest requires a separate task.

Patient consciousness, cooperation and capability
required.

Familiarity and repetition effects to assess the
disease prognosis, treatment, etc. Results are
limited comparability between sessions due to
interference with task performance.
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1.2.1 Neural mechanisms, metabolic state and glucose intake

There is a large body of research that has used task-based fMRI in different metabolic states
(hunger and satiety). Killgore and colleagues [51] were among the first to study fMRI activations
in response to pictures of food of different caloric density. Killgore et al. [51] as well as other
studies [52,53] reported a pattern of greater activation in medial and dorsolateral prefrontal areas,
the anterior cingulate cortex (ACC), orbitofrontal cortex, striatum, amygdala, and insula in
response to pictures depicting high caloric food. Further studies have shown that the reaction of
these regions is modulated by the metabolic state, i.e. hunger vs. satiety [54-57]. Regarding the
effect of sugar intake, Luo et al. [58], for example, have used fMRI while presenting food cues in
conjunction with the ingestion of either fructose or glucose in a double-blinded, random-order
cross-over design. Fructose relative to glucose resulted in greater activations to food cues in the
visual and left orbital frontal cortex. One limitation of these studies is that task-related designs
focus on one single aspect during the brain analysis to explain how the brain’s overall activity is
organized under food consumption. For example, the brain regions could appear statistically
insignificant in response to a particular task. Thus, those regions cannot be investigated under food
intake conditions, although they might carry some information related to eating behavior.

In contrast to task-based fMRI, human and animals resting-state studies have been shown
that changes in the activity of hypothalamus and insula are associated with appetite and
gastrointestinal signals [59-62]. For instance, the neurons of hypothalamus and insula belong to a
homeostatic energy balance circuit and respond to orexigenic (i.e. appetite stimulant, e.g. hunger-
inducing) and anorexigenic (i.e. loss of appetite, e.g. satiety-signaling) [63-66]. While hunger
status increases the activity of hypothalamus and insula [59], satiety status as well as glucose or

insulin administration have suppressive effects on the hypothalamic and insula signals [67—71].
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This suggests that recording BOLD signals in the rs-fMRI design under hunger/ satiety conditions

and analyzing them can indeed yield meaningful results.

1.2.2 Endocrine mechanisms

There is evidence that signals from the brain-gut axis constitute an integrated system which affects
both food-related neural functions and behavioral aspects of food intake [72—74]. The hormones
leptin and insulin have long been considered to play a particularly prominent role. Leptin and
insulin provide signals to the brain about body adiposity and changes of metabolic status [1,75,76].
For instance, increasing both leptin and insulin, i.e. via direct administration, has been found to
reduce food intake and to potentiate anorexia [77].

In the present thesis, we focus on insulin which has been hypothesized as a hunger-regulating
hormone by researchers for more than 45 years, see [76]. Insulin is secreted by the pancreas to
regulate blood glucose. Insulin receptors are distributed throughout body tissues (i.e. liver and
muscle) and brain, where they can be activated by insulin after it passed the blood-brain barrier
[78]. In animals and the human brain, insulin receptors are prominently expressed in the
hypothalamus, prefrontal areas, limbic system and fusiform gyrus [79-83]. Insulin is one of the
hormones that form a negative adiposity feedback loop ensuring balanced energy homeostasis
[77,84-86] by signaling energy expenditure to the brain [83,87,88]. The function of insulin in the
regulation of energy homeostasis was demonstrated by studies showing that intraventricular
injections, as well as the intranasal administration of insulin to the central nervous system (CNS),
decreases food intake and body weight in rodents [89,90] and humans [91].

In contrast, the inactivation of this hormone caused opposite effects [92,93]. Up to now,
findings on insulin’s impact on connections between brain regions are ambiguous. To gain further

insights into that subject, we used rs-fMRI to reveal associations of insulin with the activation
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Chapter 1: General introduction

amplitude of specific brain networks or brain sites that are modulated to the regulation of

homeostatic states.

1.3 Aims and overview of chapters

The present work focuses on the analyses of rs-fMRI data under two metabolic conditions to
investigate the integration of the neural processes, food intake and the fluctuations of hormone
signals. This dissertation probes two general hypotheses:
The methods that are sensitive to the magnitude of the BOLD signals in the resting state are useful
for assessing the brain regions that are involved in food intake and energy homeostasis circuits.
The metabolic state has modulatory effects on the endogenous (intrinsic) connections between
brain regions that are involved in the energy homeostasis.
This doctoral dissertation aims to answer the following questions:
What is the effect of oral glucose administration on the resting brain activity during hunger
and satiety conditions using rs-fMRI data?
What is a reliable marker of rs-fMRI signals to study the effect of hunger and satiety on the
human brain?
How can different metabolic states change whole brain activity and how are these changes
associated with peripheral signals?
What is the impact of different metabolic states on the causal interactions in a specific
homeostasis hypothalamus-insula circuit?
A schematic depiction of neuroimaging, biomarkers and behavior analyses, as well as the focus

of each chapter of the present dissertation, are presented below and summarized in Figure 1.6.

Chapter 2: Describes the experimental design used in this thesis to investigate the effects of

hunger and satiety on human brain signals as well as of MRI acquisition and preprocessing of rs-
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1.3 Aims and overview of chapters

fMRI data. Also, information about the handling of blood samples to measure hormone
concentrations is documented.

Chapter 3: Reports and interprets the results of circulating glucose, insulin and cortisol levels
and hunger ratings under different metabolic conditions.

Chapter 4: Explains the common modalities (methods) that have been developed to probe brain
activity from BOLD signals. These modalities are applied to estimate the brain function from rs-
fMRI as well to determine the causal interactions model from functional neuroimaging data. This
chapter aims to provide details and methodological issues of rs-fMRI analysis.

Chapter 5: Investigates whether the metabolic states (hunger and satiety) and glucose
administration (before and after treatment) have an impact on fluctuations of BOLD signals, and
how these influences manifest in multimethod analyses of rs-fMRI data. Therefore, this chapter
examines the interplay between spontaneous neural activity as a function of metabolic state and
glucose intake.

Chapter 6: Compares the accuracy of three features, i.e. local connectivity, global connectivity
and signal amplitude that can be extracted from rs-fMRI data to classify human metabolic states
based on machine learning approaches. More specifically, we evaluate the different aspects of rs-
fMRI fluctuations to find reliable markers for studying effects of hunger status on the human
brain.

Chapter 7: Performs multiple linear regression analysis to find associations between the
amplitude of rs-fMRI signals and both blood glucose and insulin concentrations under hunger
and satiety conditions in response to glucose administration. This chapter investigates the links
between changes in physiological biomarkers (glucose and plasma insulin levels), different

homeostatic, states and resting brain activity.
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Chapter 8: Investigates the impact of hunger and satiety conditions on the causal relationships
between hypothalamus and insula. We specifically use dynamic causal modeling, a Bayesian
approach allowing the estimation of direct connectivity on hidden neural states from measured
brain data.

Chapter 9: Summarizes and discusses the findings of this thesis in terms of methods of rs-fMRI
connectivity-modeling and establish directions for future work. The chapter then concludes the
contributions of this thesis to extend the current understanding of brain functions under different

metabolic states
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Experimental design & Data
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Figure 1.6: Schematic depiction of the functional neuroimaging analysis under food intake modulation and the stage on which each
of the chapters focused.
Green arrows indicate which results are carried forward for subsequent analysis. Abbreviations: ANOVA, analysis of variance; DC, degree

of centrality; fALFF, fractional amplitude of low-frequency fluctuations; FC, functional connectivity; ReHo, regional homogeneity; rs-
fMRI, resting-state functional magnetic resonance imaging.
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Chapter 2: Materials?

The four different analyses that will be explained later (Chapters 5, 6, 7 and 8) are based on the
experimental design that is explained below. Furthermore, the preprocessing pipeline of rs-fMRI
images is the same for all analyses (except the analysis of Chapter 8, will be mentioned later) and

will be similarly detailed below.

2.1 Participants

Twenty-four normal weight healthy male volunteers (mean age: 25 years, range: 20-30 years, mean
BMI: 22.5 kg/ m?, range: 20-25 kg/ m?) were recruited from the local university community via e-
mails and flyers. Female participants were not included to rule out any influences related to the
hormonal cycle. All participants were subjected to a medical interview and examination assessing
general health, medication, drug abuse, blood glucose concentration and cognitive disorders. Any
regular medication, previous and current psychiatric, neurological (e.g. multiple sclerosis,
previous head trauma), or metabolic disorders led to exclusion. Moreover, participants were
required to have a BMI between 20 and 25. All participants were informed about the procedures
and data handling. None of the participants from this all-male group reported any current or past
periods of prolonged fasting. Within four weeks before and during the trials, subjects were
instructed not to participate in other studies or to donate blood. All participants gave their informed

consent before participation and received a small financial compensation. The study was carried

2 This chapter corresponds largely to: Al-Zubaidi, A., Heldmann, M., Mertins, A., Jauch-Chara, K.
and Miinte, T. F. (2018). Influences of hunger, satiety and oral glucose on functional brain connectivity: A
multimethod resting state fMRI study. Neuroscience. | participated in the experiment design and data
collection. | analyzed the data and wrote the manuscript.
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out in accordance with the Declaration of Helsinki (2002) and was approved by the ethics

committee of the University of Libeck, Germany.

2.2 Experimental design

Each subject was investigated twice, once while being in a hungry (36 hours fasting) and once
while being in a satiated state (standardized eating, five meals over 36 hours). The order of the two
sessions was counterbalanced across subjects and sessions were separated at least one week. Each
session lasted two days. To control food intake and physical activity, participants were required to
stay in the sleep laboratory of the Department of Psychiatry of the University Medical Campus
Schleswig-Holstein (UKSH) for the entire 36 hours of the experiment. At the end of each 36 hours,
the functional MRI was recorded.

In both conditions, participants abstained from eating and drinking from 23:00 hour the night
before the experimental session and arrived fasted in the morning. In the hunger condition,
participants stayed fasted (except water drinking) for 36 hours, while in the satiety condition
participants got five standardized meals over the identical time span.

Standardized meals were served according to recommendations of the clinical diabetes
counseling department at the UKSH: Breakfast (25% protein, 50% carbohydrate and 25% fat),
lunch (20% protein, 63% carbohydrate and 17% fat) and dinner (22% protein, 60% carbohydrate
and 18% fat) were provided at 09:00, 12:00 and 19:00 hours, respectively. For both sessions,
participants arrived at the sleep lab at 08:00 hour. A cannula was inserted into a peripheral vein on
the back of the hand to collect blood samples. The first blood samples for determining basal blood
sugar, insulin and cortisol concentrations were drawn at 08:45 hour with subsequent blood samples
drawn during the first day at 10:00, 12:45, 14:00, 16:00, 18:00, 18:45, 20:00 and 22:00 hours

(Figure 2.1). All participants stayed and slept overnight in the sleep laboratory at UKSH. The next
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2.2 Experimental design

morning, blood samples were taken at 08:45, 10:00, 11:45 and 13:05 hours. At the end of each
experimental condition, functional MRI was obtained. Each MRI session started with the recording
of resting state activity at 13:05 hour. Then, the participants were removed from the scanner and
drank a solution containing the equivalent of 75 g of glucose at 13:25 hour (defined by a 300 ml
mixture of mono and oligosaccharides; ACCU-CHEK® Dextro® O.G-T., Roche, Grenzach-
Wyhlen, Germany). At 13:45 hour, another fMRI resting state was recorded and a blood sample
was drawn. After the MRI measurements, participants returned to the sleep lab and provided blood
samples every 30 minutes (14:15, 14:45, 15:15 and 15:45 hours) until 16:15 hour the same day. In
total, 19 blood samples per subject and condition were collected, with 13 taken before
administration of oral glucose and the remaining six samples thereafter. In each condition,
participants rated their subjective hunger feeling 20 minutes before and 20 minutes after oral
glucose intake on a visual analog scale ranging from 0 (not hungry at all) to 9 (very hungry).

For the resting state fMRI recording, participants were instructed to lie still inside the
scanner with their eyes closed. They were instructed to not engage in any particular cognitive

activity. The functional run’s duration was six minutes.
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Figure 2.1: Time course of physiological parameters under hunger and satiety
conditions.

Mean plasma concentrations of cortisol (A), insulin (B) and glucose (C) under hunger and
satiety conditions before and after oral glucose treatment. Boxes on the bottom of the
graph indicate the time points of meals in the satiety condition (B = breakfast, L = lunch
and D = dinner at 09:00, 12:00 and 19:00 hours, respectively). In each condition, the
first rs-fMRI was recorded 20 min before, the second rs-fMRI 20 min after the intake of
oral glucose. The error bars represent the standard deviation.
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2.3 Functional brain images

2.3.1 Acquisition

All structural and functional images were recorded with a 3-T Philips Achieva scanner (Philips
Healthcare, the Netherlands). A standard eight-channel phased array head coil was used for radio
frequency transmission and recording. The high-resolution structural T1 image consisted of 180
sagittal slices, by applying a T1-weighted 3D turbo gradient-echo sequence with SENSE (image
matrix 240x240; field of view 240x240 mm?; slice thickness=1 mm; flip angle= 9°). For functional
resting state recording, 178 whole-brain functional images were acquired (T2*-weighted single-
shot gradient-echo echo-planar imaging (EPI) sequence; repetition time TR= 2000 ms; echo time
TE= 28 ms; isotropic 3 mm voxel size; field of view 192x192 mm?; flip angle= 80°; 40 slices,

ascending interleaved slice order).

2.3.2 Preprocessing

Part of preprocessing on functional images was initially carried out using FSLv5.0 (available at
http://fsl.fmrib.ox.ac.uk/fsl/) to implement independent component analysis (ICA)-based strategy
for automatic removal of motion artifacts (ICA-AROMA) for head motion correction [94]. It has
been shown that ICA-AROMA enhances the sensitivity and specificity of rs-fMRI activation and
connectivity analyses [94]. To improve inter-subject alignment [95,96], the spatial preprocessing
of the data were performed with the statistical parametric mapping 12b (SPM12b; available at
http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB (MathWorks, Natick, MA, USA) and data
processing assistant for resting-state fMRI toolbox (DPARSF advanced edition, version 3.2,
available at http://rfmri.org/DPARSF ).

The rs-fMRI images were preprocessed as follows: (i) The first 7 volumes of each dataset

were discarded to allow the signal to reach equilibrium and to allow the subjects to adjust to the

29



Chapter 2: Materials

scanning noise; (ii) All images were manually reoriented in setting the origin to the anterior
commissure; (iii) Head movement correction was performed during data acquisition by volume-
realignment to the middle volume using MCFLIRT [97]; The MCFLIRT results in estimated
realignment parameters for each experimental condition were summarized in Figure 2.2 and
Figure 2.3 for motion translation and rotation parameters, respectively; (iv) We then submitted the
data to ICA-AROMA [98] for identification and removing the independent components related to
the head motion artifacts by three steps. The first step was running a probabilistic independent
component analysis (PICA) using MELODIC (see Section 4.1.2) with automatic dimensionality
estimation to find a set of components for each subject per session and per recording individually.
Then, a predetermined classifier was applied on independent components to represent the motion-
related artifact components, which were identified at least by assessing each component to one of
the following criteria: (1) maximum correlation with realignment parameters, (2) high-frequency
temporal content > 35%, (3) spatial content in edge voxels and cerebrospinal fluid (CSF) > 10%.
Finally, the regression of the motion-relevant components out of the data. Then the structural and
denoised functional images were further preprocessed with DPARSF toolbox as follows [99]: (V)
The T1 structural image was co-registered to the mean functional image; (vi) Gray matter, white
matter and CSF segmentation, bias correction and spatial normalization of the T1 structural image
were adjusted to the Montreal Neurological Institute (MNI) template using the DARTEL
algorithm; (vii) Nuisance regression was performed to reduce the influence of unspecific
physiological effects on BOLD signal. Nuisance variables included white matter and CSF; (viii)
The functional images were spatially normalized to the MNI-template, by using the normalization
parameters estimated by DARTEL algorithm with voxels size to 3 mm isotropic; (ix) Spatial

smoothing was performed with a 6 mm full width at half maximum (FWHM) Gaussian kernel.
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According to Zang et al. [100] fMRI signals were smoothed after calculating regional homogeneity
not before (see Section 4.1.3); (X) Temporal band-pass filtering (0.01-0.08 Hz) was applied to the
resting state fMRI signal to reduce the effect of low-frequency drift, e.g. respiratory, and high-
frequency noise, such as heart activity. As suggested by Zou et al. [101] no further filters were
applied when calculating the fractional amplitude of low-frequency fluctuations (see
Section 4.1.5); (xi) All functional images were masked with a gray matter mask. The gray matter
mask was calculated by averaging the grey matter images of all subjects. To generate the binary
mask, we defined the common voxels between the average gray matter image and the gray matter
template (without cerebellum lobules) derived from Automated-Anatomical-Labeling (AAL) atlas
[102] by using the xjView toolbox. In some subjects, we were not able to measure the whole
cerebellum. Therefore, cerebellum cortex was excluded from the gray matter mask and regions of

interest (ROIs).
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Figure 2.2: Summary of MCFLIRT estimated translation parameters for each experimental

condition.
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Chapter 3: Physiological and behavioral effects®

Details regarding participants, the exact timing for obtaining blood samples and experimental

design can be found in Chapter 2.

3.1 Analysis

Glucose concentrations were determined using the B-Glucose-Data-Management device
(HemoCue GmbH, Grossostheim, Germany). For measuring the hormone levels, blood samples
were centrifuged immediately. The supernatants were stored at -80° C until they were analyzed.
Blood serum and plasma were used to measure the insulin and cortisol levels by commercial
enzyme-linked immunoassay (Immulite DPC, Los Angeles, USA; insulin: intra-assay coefficient
of variation (CV) < 1.5% and inter-assay CV < 4.9%; cortisol: intra-assay CV < 1.7% and inter-
assay CV < 2.8%).

To investigate differences between the two experimental conditions (hunger and satiety) for
plasma glucose, insulin and cortisol levels before and after glucose administration (oral glucose
intake) two averages across the relevant samples of the second day were calculated for each
participant and condition: one before and one after the oral glucose intake.

To test for differences two-way repeated measures ANOVAs (rm-ANOVA) with factors
metabolic state (levels: hunger, satiety) and glucose administration (levels: before, after glucose

intake) were performed for each of the dependent variables, i.e. hunger rating, plasma glucose,

3 Portions of this Chapter are adapted from the following publication: Al-Zubaidi, A., Heldmann,
M., Mertins, A., Jauch-Chara, K. and Munte, T. F. (2018). Influences of hunger, satiety and oral glucose
on functional brain connectivity: A multimethod resting state fMRI study. Neuroscience. | participated in
the experiment design and data collection. | analyzed the data and wrote the manuscript.
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insulin, and cortisol levels, separately. All analyses were performed using SPSS software Version

22.0. Values are reported as mean (M) and standard deviation (x SD).

3.2 Results

The analysis of plasma glucose (Figure 3.1A) concentrations resulted in significant main effects
of metabolic state (F(1,23=25, p<0.0001) and glucose administration (F23=187, p<0.0001) and a
significant metabolic state * glucose administration interaction (F(,23=72, p<0.0001). Post hoc t-
tests performed to reveal the interaction driving effects indicated that the glucose level before the
glucose administration was significantly higher in the satiated (M=4.8 mmol/L, SD=1.5) compared
to the hunger state (M=4.2 mmol/L, SD=1.4). After glucose administration, this effect reversed
and a significantly higher glucose level was seen in the hungry (M=7.5 mmol/l, SD=2.9) compared
to the satiated state (M=5.8 mmol/l, SD=1.5). This effect indicates reduced responsiveness to the
circulating glucose during the satiated state.

The analysis of plasma insulin (Figure 3.1B) concentrations revealed a significant main
effect of glucose administration (F(,23=106, p<0.0001) and a significant metabolic state * glucose
administration interaction (F,23=102, p<0.0001), but no significant main effect of the metabolic
state (F(1,23)=0.65, p=0.4). The post hoc analysis showed significantly higher insulin concentrations
in the satiated state (M=198.8 pmol/L, SD=65.2) compared to the hunger state (M=22.5 pmol/L,
SD=10.1) before the administration of glucose. After glucose administration, this effect reversed
and significantly higher insulin concentrations were observed in the hunger state (M=457.9
pmol/L, SD=185.6) than in the satiated state (M=314.6 pmol/L, SD=123.5) indicating reduced
responsiveness to circulating insulin. Due to the fasting-induced insulin resistance, the body

secretes more insulin to overcome this resistance.
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3.2 Results

Furthermore, for plasma cortisol (see Figure 3.1C) significant main effects of metabolic state
(F@,23=9.1, p=0.006) and glucose administration (F23=7, p=0.01) were revealed with no
significant interaction (F(1,23=0.03, p=0.9). Before glucose treatment, the plasma cortisol level for
the hunger state (M= 260 nmol/L, SD=68.2) was higher compared to the satiated state (M=229.2
nmol/L, SD=56.4). A similar effect was found after glucose treatment, the plasma cortisol level
was greater in the hunger (M=230.6 nmol/L, SD=44.4) compared to a satiated state (M=169.6
nmol/L, SD=61.2). This result demonstrates that glucose treatment had no impact on how the
metabolic states affected the plasma cortisol levels.

Finally, with regard to subjective hunger ratings (Figure 3.1D) a main effect of metabolic
state (F(1,23=28.9, p<0.001) with higher hunger ratings in the hunger state (M=5.3, SD=2.6)
compared to the satiated state (M=2.7, SD=2.1) was obtained but neither the main effect of glucose
administration or a metabolic state * glucose administration interaction. These findings confirm

the success of our fasting treatment.
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Figure 3.1: Statistical differences in physiological and behavioral parameters under hunger
and satiety conditions.

Mean of (A) plasma glucose, (B) plasma insulin, (C) plasma cortisol levels, and (D) hunger ratings
per factor: metabolic states (two levels: hunger and satiety) and oral glucose administration (two
levels: before, and after treatment) across participants. The error bars represent the standard
deviation. * and *** represent the significant differences between conditions, at a threshold of p
< 0.01 and p<0.0001, respectively.

3.3 Discussion

Expectedly, plasma glucose and insulin levels differed between hunger and satiety conditions and
were also differentially influenced by glucose administration (Figure 3.1A and B). In the satiety
condition, a major peak in insulin and glucose levels around 3 hours before glucose ingestion is
related to the breakfast consumed in this condition. Generally, before glucose administration,
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3.3 Discussion

insulin and glucose levels are higher in the satiety compared to fasting condition, which is in
quality and quantity the expected result [103]. After ingestion of glucose, there is a massive rise
of both insulin and glucose levels as expected. This curve (Figure 2.1 B and C) is higher and wider
for both parameters in the fasting condition, which can be explained by post-fasting glucose
intolerance [103]. Furthermore, the delay in the time until the maximum is reached in the fasting
condition compared to the satiety condition can be explained with a delayed gastric emptying time
for fasted individuals [104]. In addition, a meta-analysis showed that high insulin levels in
response to a meal suppress appetite [105]. Therefore, glucose and insulin may act as biomarkers
of the satiety [106]. Hunger ratings have been shown to increase with a blood glucose
concentration of 4.4 mmol/L (85 mg/dL) or lower [107]. In our study, the mean blood glucose
level was 3.6 mmol/L under hunger condition (Figure 2.1C), and the feeling of hunger was higher
under hunger relative to satiety condition before the fMRI scans (Figure 3.1D). These findings
suggest that the experimental manipulation was successful allowing us to place our rs-fMRI
findings into the context of fundamental metabolic regulations.

Finally, blood cortisol concentrations increased as expected during the fasting relative to the
satiety condition (Figure 3.1C) pointing to higher stress during periods of food deprivation.
Previous studies have shown a direct relationship between increases in cortisol levels and dieting
or starvation due to changes in biological functioning such as freeing of energy and psychological
influences like resisting food temptation [108,109].

To conclude, our study shows differential effects in response to glucose ingestion of three
investigated physiological markers, glucose, insulin and cortisol, during different metabolic states,

namely hunger and satiation, in healthy normal weight man.
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Chapter 4: Rs-fMRI connectivity-modeling

Researchers in imaging neuroscience assume that human brain function needs to be characterized
in terms of synchronization, functional segregation and integration processes [110-112].
Functional segregation refers to specific brain areas and networks that are involved in particular,
separated brain functions. For example, Broca’s and Wernicke’s areas are known to be involved
in language processing, whereas the supplementary motor area (SMA) and preSMA support motor
processing. In contrast, functional integration, also called brain connectivity, concerns how
different brain areas interact or connect to create specific functions within individual networks. In
terms of functional neuroimaging, brain connectivity analyses can be organized into three different
categories to explore brain connections, as follows:

1- Anatomical or structural connectivity depends on measurement of structural links between
neurons and neural populations based on axonal connections, i.e. fiber tracks of white matter,
or synaptic contacts. To identify the fiber tracks between brain areas, diffusion-weighted
MRI (DWI) techniques are used to quantify the motion of water molecules in a voxel into
directional components [8].

2- Functional connectivity (FC) reflects statistical dependencies or relationships between time
series (i.e. BOLD signals) to remote neurophysiological events. Usually, FC is based on a
statistical measure like correlation, covariance or spectral coherence. In rs-fMRI studies, this
type of connectivity is a mechanism-free model and is used to identify synchronous BOLD
signals from different brain areas. Thus, changes in resting-state functional connectivity are

thought to characterize certain intrinsic processes of the brain [8].

41



Chapter 4: Rs-fMRI connectivity-modeling

3- Effective connectivity (EC) refers to directed functional connectivity between brain regions.
In fMRI studies, EC describes the direct influence of BOLD signal activation of one brain
area to directly cause changes (i.e. activation or depression) of the signals in another brain
area based on a specific statistical model.

In this chapter, typical common models or approaches to assess functional and effective

connectivity from rs-fMRI signals will be explained.

4.1 Functional connectivity

4.1.1 Seed-based correlation analysis (SCA)

SCA is a straightforward method to compute the time course models of FC from rs-fMRI data. In
SCA, typically, the strength of the FC is estimated by calculating the linear correlation coefficients
between time series vectors. These time series vectors may be either extracted from any voxel in
the brain or by averaging the time series of voxels within a particular brain region of interest (ROI).
To generate the FC map, the linear correlation is estimated by calculating the Pearson correlation
coefficient (p) between the time series of ROI and other voxels within the brain mask [29,113], as

follows:

=a[(Al] —A)(X[t], - %) | i=1,...N,t =1,...T,

Pax; = 21 J
JE [t - 02 (x1a, - 5)°]

(4.1)

where A is the average of the time series of voxels within a ROl and X; is the time series of voxel

jth. 4 and )_(j are the mean of the A and X; , respectively. N is the number of voxels within the
brain mask and T is the length of the time series. Then, the p values are usually normalized into a

normal distribution by using Fisher’s z-score transformations:
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1+ pax;
PR (4.2)
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The main advantage of adopting an SCA approach is that it provides a direct answer to a
direct question, for instance how the FC pattern of a specific region might change across
participants or experimental conditions. An essential disadvantage of SCA that its results are
sensitive to the prior selection of size, location and shape of ROI. Furthermore, SCA results
become more complex and not practical when utilizing more than a few simultaneous ROIls. Due
to that complexity, using SCA alone is usually not possible to provide a general picture regarding

the association between brain networks [50,114].

4.1.2 Independent component analysis (ICA)

ICA has been developed to determine unknown (i.e. hidden) source signals from a set of
measurements or observed data [115,116]. In the ICA approach, the observed data (e.g. fMRI data)
are assumed to be a linear mix of different source signals or physical processes (e.g. different
neural processes in fMRI). Thus, those source signals are statistically independent [115]. Statistical
independence implies that obtaining the value of one source signal does not provide any
information about the value of the others. Furthermore, the histogram of each source signal is more
non-Gaussian (e.g. peaky) than the histogram of the observed data [115]. The goal of ICA is to
estimate an un-mixing matrix by searching for non-Gaussian signals in the data and thus enable a
good approximation of source signals [117].

The application of the ICA approach to rs-fMRI data allows recovering spatial components
that are independent over space [118-121]. The spatial ICA approach has been widely used by
neuroimaging researchers to identify maps of brain networks that represent independent spatial
patterns (i.e. stationery sets of voxels that have minimal spatial redundancy in the maps of the
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resting-state connectivity) and different time courses from measured rs-fMRI data [8,16]. Each
brain network consists of a set of voxels, these voxels could be from different brain regions but
with similar BOLD signal fluctuations over rs-fMRI recording time [8]. Notably, the standard ICA
model is noise-free and has a certain risk of overfitting the data [122]. Beckmann and Smith [123]
suggested a new model called probabilistic ICA to avoid overfitting. Probabilistic ICA model is
performed as the multivariate exploratory linear optimized decomposition into independent
components (MELODIC) toolbox in FMRIB Software Library (FSL) [120,124]. It has the

following mathematical representation for rs-fMRI data:

X=AS+E,
X11X12 = Xi(N-1) XN a1 - Qgp
X = X21X22 -+ X2(N-1) X2N A= Qi -+ QAyp
- H : . : : ) - )
Xr1iXry 0 XT(N-1)  XTN arp -+ QArp 4.3)
€11X12 - €i(N-1) €N
Sll 512 Sl(N—l) SlN elezz eZ(N—l) eZN
S = : : : : |LE= H : H K

S S .+ Sp(N-1) SPN ) y ’
P1 P2 ( ) eriXry v érn-1) €rn

where N, T and P(<T) represent some voxels, dimensional of time series observations and
independent spatial components (spatial maps), respectively. X is the rs-fMRI data that we are
trying to decompose. Each row vector in matrix X denotes rs-fMRI data from a 3D volume at a
time point t, i.e. X=[X1,X2,...,xn] *. A is the unknown linear mixing matrix that combines a set of
unknown spatial components, which is S matrix, to obtain the rs-fMRI data. Each column vector
in matrix A, i.e. A=[a1;az;...;at]’, comprises the contributions of all P spatial independent
components to the rs-fMRI volume at the corresponding time point. Each row vector in S matrix
refers to an independent spatial component, i.e. a brain network. E matrix represents the Gaussian
noise. Using Gaussian noise as an explicit background in probabilistic ICA reduces the influence

of noisy parts of the rs-fMRI data when estimating the number of spatial components by assessing
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the statistical significance of the estimated sources [120,122,125]. For a given number of sources,
the set of the spatial independent components and time courses can be estimated using the FastICA
algorithm [117,123].

The advantage of using ICA over SCA approaches on rs-fMRI data is that ICA can provide
brain networks as well as noise components without including any specific time series in the
analysis model. Therefore, ICA-based approaches can be used to clean up the rs-fMRI data by
determining noise from a wide variety of sources, such as head motion effects, physiological noise
and MR artifacts. In this dissertation, the ICA-AROMA approach was used to identify and remove
the noise components from the data; more details about that technique are explained in
Section 2.3.2, prepossessing section. One limitation of classical or even probabilistic ICA is that
the results are not unique when analyzing the same data multiple times with an ICA procedure.
For instance, the order of extracted components and also the component parameters may change

slightly because of the method used to optimize ICA solutions.

4.1.3 Regional homogeneity (ReHo)

ReHo describes the local connectivity within brain regions and is a measure of the temporal
homogeneity among brain voxels and the neighboring brain voxels within the low-frequency range
of rs-fMRI signals [100]. ReHo is based on the assumption that the BOLD signal has
characteristics that depend on neuronal activities and therefore the time series of neighboring
voxels in a functional brain area will be highly similar or synchronized when that area supports
specific goals or representations [126]. The ReHo index for a particular voxel is calculated by
using Kendall's coefficient concordance (KCC) approach. In this study, the KCC was calculated

using the following formula [100]:
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ILy(R)? = n(R)?
1

= K2(pn3 —
12K(n n)

KCC = (4.4)

where KCC is the ranging coefficient, from 0 to 1 (no to maximal coherence), of a given voxel in
relation to its nearest neighbors, R; represents the rank sum of ith time pointas R; = le r;; and
r;; is the rank of the ith time point of the jth voxel. R refers to the average of the R; and n
represents the length of the time series (here n = 170 time points). K is the number of voxels
within the targeted clusters (here K = 27 , the given voxel (which is the center voxel) plus its 26
immediate neighbors). Then, the KCC value is assigned to the center voxel of the respective cluster.
From the KCC of all voxels, the so-called ReHo map can be constructed. In order to reduce the
effect of individual variability, a z-scores normalization was applied, by subtracting the ReHo
mean value of each individual ReHo map and dividing by the standard deviation.

Relative to other methods (e.g. SCA), ReHo does not require prior selection of ROI to
estimate FC. Because ReHo is looking at the homogeneity of local FC, the boundaries between
brain regions that are functionally inhomogeneous emerge [114,126,127]. In contrast to the ICA
method, ReHo does not need an assumption regarding the spatial independence of identified maps
to estimate the measure of the local FC [100,114]. However, it is highly sensitive to different levels

of spatial smoothing because it is fundamentally driven by the local neighborhood [114,122].

4.1.4 Degree of centrality (DC)

According to graph theory [128], a network (graph) is defined as a set of objects and the lines
between them. Each object (voxel or anatomical area) in the network is called a node, and the lines
that connect some pairs of objects (voxels) are called edges [129]. DC is used to investigate the
global connectivity of brain regions, which is defined as the number of connections of one voxel

in the brain to the voxels of the entire brain [130]. This measure depends on graph theoretical
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approaches. The individual DC map was generated by correlating the time course of each voxel in
the brain with all other voxels in the brain and calculating the number of connections above a
definite threshold [130]. The temporal relationship between two voxels is defined by Pearson’s

correlation coefficient (r) approach. The individual correlation coefficients are then used to
i1 o Ty

generate a correlation matrix = [ P ] ,1 <1i,j < N,where N is the number of voxels
Tig o T

within the whole-brain mask and r;; is the temporal Pearson’s correlation of time series between

the ith and jth voxels measuring the similarity between two voxels. The correlation matrix was

thresholded at 0.25 to build a binary undirected and unweighted network matrix d;; as follows:

0, 1;; < 0.25
d;; ={ Z

The binary connectivity matrix d;; was used to define the degree centrality of voxel D; by the
following:

D= YL, dj. (4.6)

The voxel degree maps were transformed to z-score to ensure they were comparably scaled and to
prepare them for comparing across subjects. The z-scores standardization is:

D; =D
Zi = . (l =1 N) f (47)

D

where D and o, are mean the and standard deviation of the degree voxel maps within the brain
mask, respectively.

DC is an efficient method to summarize complex networks. It calculates how each voxel,
from a specific network, is correlated with other networks’ voxels and then yields a single value

to each participant. However, thresholding the correlation matrix into a binary matrix removes a
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lot of potentially relevant information from the original data. Accordingly, it can be difficult to

understand how the changes in the DC index are associated with changes in brain states [122].

4.1.5 Fractional amplitude of low-frequency fluctuation (fALFF)

To quantify spontaneous local brain activity, the amplitude of the BOLD signals has been used.
This can be assessed by the amplitude of low-frequency fluctuations (ALFF) and its derivative
fALFF [101,131]. While ALFF describes the local spontaneous brain activity across the whole
brain by assessing the amplitude in a given voxel or brain area in the low-frequency range (0.01-
0.08 Hz), fALFF is a normalized derivation of ALFF representing the ratio of low-frequency range
amplitudes (0.01-0.08 Hz) relative to the entire frequency range (e.g. 0-0.25 if TR=2 seconds)
amplitudes. To calculate the individual fALFF map, a fast Fourier transform (FFT) is performed
on the time series of each voxel without temporal band-pass filtering. Then, the amplitude of each
frequency is estimated by calculating the square root of the power spectrum. Finally, the total
amplitude of the low-frequency range (0.01-0.08 Hz) is divided by that of the entire frequency
range 0-0.25 Hz (TR=2s). For standardization purposes, the individual fALFF map is transformed
to z-scores by subtracting its mean and dividing it by the standard deviation.

Both ALFF and fALFF have high temporal stability [132] and test-retest reliability [133]. In
contrast to ALFF, fALFF has been reported to have higher specificity in detecting local
spontaneous brain activity, especially in the gray matter [101,134]. Moreover, fALFF is
recommended to be used instead of ALFF [45] since it is more robust against nonspecific signal
components, such as physiological noise [134]. In the present study, the fALFF on rs-fMRI data

was performed to describe the local spontaneous brain activities.
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4.2 Effective connectivity

Several methods have been used to estimate effective connectivity (EC). For instance, Granger
causality (GC) has been applied to test whether a BOLD signal extracted from a certain region Z
has a direct effect of causing a BOLD signal from another region X [135,136]. Similarly, structural
equation modeling (SEM) is another method to test hypotheses regarding the influences among
interacting a set of independent and dependent variables [137,138]. GC and SEM are not suitable
to capture the dynamic change in the fMRI because both of them are excluding the temporal
infraction, i.e. history of an experimental task or imaging data, and ignore the hemodynamic
convolution [139-144]. In contrast, multivariate autoregressive modeling (MAR) uses temporal
information in terms of the historical influence to measure the inferior causality among BOLD
time series. However, the MAR model cannot estimate the hidden neuronal states.

Friston and colleges [145] proposed a method to estimate at the neuronal level the causal
effects of one region over another called dynamic causal modeling (DCM). DCM allows inferring
effective (directed) connectivity on latent (hidden) neural states from measured brain data using
predefined models [145]. Furthermore, DCM can be used to gather evidence favoring one model
(hypothesis) over another to understand how brain regions communicate and influence each other
[146]. With a DCM based algorithm called spectral DCM (spDCM) it is now possible to reveal
the intrinsic connectivity in resting-state fMRI data [147]. Spectral DCM uses a Bayesian

procedure to estimate the likeliest strength of endogenous causality.

4.2.1 Spectral DCM (spDCM)

SpDCM uses a Bayesian model inversion procedure to infer from the measured cross-spectra
density (CSD) of BOLD signals on parameters of connections that link neural states in pre-defined
networks of regions. The inverse Fourier transform of CSD corresponds to a cross-correlation
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function over time, which is the measure of the FC (Pearson's correlation) at zero lag [147-149].
In other words, inverting a probabilistic forward model (from hidden neural states to observed
CSD of BOLD signals), spDCM estimates the directed connectivity among hidden neuronal states
that best explains the measured FC between brain regions.

In DCM for fMRI, the dynamic changes in regional- and time-dependent activity (i.e. x =
%) are modeled using a system of differential equations [145,150]. Furthermore, the DCM for rs-

fMRI has two components [151]: The first component is a state space model with linear differential
equations, which is used to describe neural dynamics (neuronal states) of a system of distributed
brain regions. The second one is a nonlinear differential equation model (hemodynamic model)
that is based on the Balloon/Windkessel model [152], which is used to translate the predicted
neural dynamics into region-wise blood oxygen level dependent (BOLD) signals. The basic form
of DCM for rs-fMRI (in the absence of external inputs) comprises two sets of differential equations

modeling the neuronal dynamics and hemodynamics, respectively:

x = Ax(t) + v(t),

(4.8)
y(©) = h(x(¢),6,) + e(t),
where A is a matrix repesenting the endogenous connectivity among the regions, A c 6. The
column vector x(t) = [x4 (t), ..., x,(t)]T represents a hidden neural states of n brain regions at
time t. The endogenous neuronal fluctuations are denoted by v(t). The observed BOLD fMRI
data y(t) are modeled as a nonlinear hemodynamic response function h of the neuronal state x(t)
as well as the hemodynamic parameters of the model 8,, < 6 [153] and an additional measurement
error e(t).

In spDCM, the nature of the endogenous fluctuations underlying neuronal activity and

observed noise are modeled with a free scale power-law form with a spectral density of “pink”
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noise [154-156]. In the absence of any external stimulus, i.e. a resting state, the v(t) and e(t) can
be modeled as:

9v(w,0) = a, wF?, 49)
ge(W' 0) = aew_ﬁe- .

Here, g(w) represents the complex cross-spectra, where a and 8, {«, B} < 0, are the parameters
controlling the amplitude and exponents of the spectral density of the neuronal fluctuation,
respectively, w is the angular frequncy (2rf). In summary, the likelihood model is specified by
considering the probability of observing some data features given the model parameters 8 =
{A,a,B,0,}. These parameters are used to generate the expected cross-spectra g(w, 6) of the
BOLD signals using Fourier transform
G(w,8) = K(w) . g,(w,8).K(W)" + g.(w,6), (4.10)
where K (w) is the Fourier transform of a function of the Jacobian or EC. By using linear systems
theory in frequency space, the observed sample cross-spectra of the BOLD signal g(w) can then
be considered as the predicted cross-spectra g(w, 8) plus some Gaussian sampling error N(w)
such that
gw) = g(w,0) + N(w). (4.11)
By specifying the relationship between the sample and the expected cross-spectra, one can
assess the likelihood function p(g(w)|8, m), which descibes the probility of the observied cross
spectra g(w) data to be generated from model m given a set of parameters 0. The product of the
likelihood function p(g(w)|6,m) and the prior beliefs distribution of the model parameters
p(8|m) is called a generative model. The word “generative” refers to the fact that one can generate
or simulate synthetic data points by sampling parameter values from the prior and inserting them

into the likelihood function. In spDCM, this generative model defines the joint probability
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distribution p(g(w), 8|m) over the observed cross spectra g(w) and model parameters 6, given
the model m:
p(gw),8Im) = p(gw)|6,m) p(6Im). (4.12)

This generative modal can be understood as a probabilistic forward mapping from latent
(hidden) parameter values to the observed cross spectra. Usually, a main goal of the generative
models is to infer on the most likely latent (hidden) parameter values of the system given the
observed data [157,158]. This is known as “model inversion” and basically corresponds to
computing the probability (i.e. conditional posterior density) of a set of model parameters given
the observed cross spectra p(8|g(w), m) according to Bayesian inversion of the generative model:

p(g(w)|8, m)p(0|m)
p(g(w)|m)

p(Blg(w),m) = ) (4.13)

where p(g(w)|m) refers to model evidence or marginal likelihood, which represents the
probability to obtain the data under model m. Since the conditional posterior distribution
p(6|g(w),m) is computationally exorbitant to compute, it is approximated using variational
Bayes under the Laplace approximation (VBL) [159]. Briefly, VBL for DCM provides an
approximation to guess the true conditional posterior density p(6|g(w), m) by assuming a mean
field assumption to split between parameters and hyperparameters and uses variational or proposal
densities q(8) under a fixed-form Laplace (i.e. Gaussian) approximation. Importantly, this
approximation is optimized by maximising model log-evidence, which can be expressed

mathematically as:

Inp(gw)lm) = F(gw), q) + DKL[q(0)||p(61g(w), m),
F(gw),q) = Inp(g(w)|lm) — DKL[q(6)||Ip(8|g(w), m),
where F(g(w),q) represents negative free-energy and DKL refers to the Kullback—Leibler

(4.14)

divergence between the approximated posterior density q(6) and the true posterior p(68|g(w), m).
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Due to the fact that the DKL divergence is always positive or zero when the densities are identical
[160,161], the negative free-energy provides the lower bound or becomes equal (when g(6) is
equal to true posterior) to the model evidence. Furthemore, minimizing DKL divergence can be
done by maximizing the negative free energy. The F(g(w),q) depends on the approximate
posterior but does not depend on the true unknown posterior p(8|g(w), m). Thus, estimating this
negative free-energy is feasible. In other words, maximizing negative free-energy concerning VBL
assumptions by using a gradient ascent provides two things: First, the variational density becomes
posterior density over 6 parameters, q(6) = p(0|g(w),m), which is needed for model
identification. The second one is the negative free-energy that becomes an approximation to the
lower bound of the log model evidence, F(g(w), q) < Inp(g(w)|m), which is needed to measure
the model “goodness”, and which takes into account both the accuracy and complexity of the
model [162]. The negative free-energy is a metric for comparing different models (alternative
hypotheses) and for selecting the most plausible model (hypothesis) of how the data were

generated [163,164].
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Chapter 5: Influence of hunger, satiety and oral glucose on brain

functional connectivity*

5.1 Introduction

In contrast to the task-related fMRI, resting state fMRI (rs-fMRI) reflects the brain activity at rest,
i.e. when individuals are not requested to perform a particular task [24], more details can be found
in Section 1.1.3. Fluctuations of rs-fMRI have been considered to reflect rates of glucose oxidation
in the gray matter [165]. Rs-fMRI lends itself to functional connectivity (FC, see Chapter 4)
analyses by a number of techniques that analyze temporal correlations between spatially remote
neurophysiological events [8,166]. In response to glucose uptake, the relationship between spatial
metabolic information, which was provided by fluorodeoxyglucose- PET (FDG-PET), and FC,
which was derived from rs-fMRI metrics, has been observed in the hypothalamus, thalamus and
within the DMN [167,168]. Thereby, changes in FC of rs-fMRI signals can be considered as a
biomarker for baseline shifts of resting state activity and have also been used to assess glucose
metabolism in the brain [169].

Correspondingly, Bolo et al. [170] showed increased FC of the posterior cingulate cortex
with the default mode network (DMN) and decreased FC of the inferior/ superior frontal gyrus
with the cerebellum/ basal ganglia and temporal networks in hypoglycemia. Consistent with that,

DMN activity was positively correlated with hunger ratings [171].

4 This chapter corresponds largely to: Al-Zubaidi, A., Heldmann, M., Mertins, A., Jauch-Chara, K.
and Miinte, T. F. (2018). Influences of hunger, satiety and oral glucose on functional brain connectivity: A
multimethod resting state fMRI study. Neuroscience. | participated in the experiment design and data
collection. | analyzed the data and wrote the manuscript.
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Glucose administration decreases the hypothalamic BOLD signal [67,68] and increases
functional connectivity (FC) between the hypothalamus, thalamus, caudate and putamen within
the limbic network after overnight fasting [46,172]. However, these studies did not investigate the
responses and connectivity patterns to oral glucose on the whole brain level. To address this
research gap, we investigated the interaction of metabolic state (hungry vs. satiated) and glucose
administration (before vs. after administration of 75 g of oral glucose) with regard to rs-fMRI
activity. The study of rs-fMRI is a relatively new field with rapid methodological developments.
To encompass different aspects of the resting fMRI activity, we employed three methods that
assess local and global FC as well as amplitude fluctuations of the BOLD response: First, regional
homogeneity (ReHo) was determined, which describes the local connectivity of brain regions
[100,126]. The ReHo method is termed after its property to reflect the coherence of spontaneous
neuronal activity in a brain region [173]. It describes the similarity or synchronization of time
series of a given voxel and its nearest neighbors at the low-frequency fluctuations of the BOLD
signal [100]. The ReHo analysis revealed altered local connectivity of the brain in Alzheimer's
disease [174], schizophrenia [175], attention deficit hyperactivity disorder [176], autism spectrum
disorders [177] and Parkinson’s disease [178]. Second, the degree of centrality (DC) measures the
global connectivity of brain regions [128-130] in the sense of ‘global functional connectivity
density’ [179]. The DC measures the connectedness of a node (here a voxel) within the entire brain
network, by calculating the number of connections of a voxel to the other voxels in the brain above
a certain threshold [128-130]. Nodes with high DC are considered to function as “hubs’’. Recently,
the DC approach has been used as a marker for altered connectivity in Alzheimer’s disease [130],
obsessive-compulsive disorder [180,181], Parkinson’s disease (PD) [182], attention deficit

disorders and autism spectrum disorder [183] among others. In one study of PD [182], for example,
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it was suggested that PD leads to a disconnection syndrome, i.e. a reduction of connectivity, which
was most apparent in the visual network module. On the other hand, a higher connectedness within
the sensorimotor module in PD patients was interpreted in terms of a compensation mechanism in
order to overcome the functional deficit of the striato-cortical motor loops. Similar functional
interpretations have been made for the other conditions mentioned above.

The third approach utilized here is the fractional amplitude of low-frequency fluctuations
(FALFF). The fALFF provides information about the amplitude of spontaneous brain activity of
each brain region within a network based on the magnitude of the BOLD signal in the low-
frequency range [101]. The fALFF approach has been shown to efficiently suppress non-specific
signal components, such as physiological noise [101,184]. Recently, studies have observed that
fALFF can be related to emotion processing [185], differences in behavior [186] and social
decision-making [187]. For example, in the [186] study, the amplitude of spontaneous low-
frequency oscillations during rest predicted task-related fMRI activations and behavior in an
Eriksen flanker task taxing executive control. In particular, low-frequency oscillations in the
cingulate cortex predicted the magnitude of the behavioral congruency effect typically measured
in the flanker task. These results support the notion that the brain's intrinsic functional architecture
as measured in the resting state constrains behavior in tasks. Furthermore, the fALFF method has
been shown to reflect aspects of depression [188,189] and attention deficit disorders with
hyperactivity [173].

A multimethod approach of rs-fMRI has been used before to investigate brain disorders such
as autism spectrum disorder and Granulin mutations [190,191]. One important question of the
present study is, whether or not the different approaches are equally sensitive to changes in

metabolic state. One previous investigation by Aiello et al. [168] showed there is a high inter-
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correlation between these metrics after glucose uptake. Also, these parameters have been shown

to correlate with regional glucose metabolism as measured by PET [167,168].

5.2 Materials and methods

Details regarding samples and preprocessing pipeline of rs-fMRI images can be found in
Chapter 2. Calculating of ReHo, DC and fALFF maps for each subject per experimental condition

are done as explanted in Chapter 4.

5.2.1 Statistical analysis

To investigate the effects of metabolic states, glucose treatment and the interaction between them
on FC matrices, we performed a separate fixable factorial model in SPM 12 for each connectivity
matrix (FALFF, ReHo and DC). We designed rm-ANOVA in the fixable factorial model by
including three factors, see [192]: subject (to control for the repeated measures), metabolic state
(two levels: hunger, satiety) and glucose treatment (two levels: before, and after treatment). The
statistical results of whole-brain analyses were inspected at an initial threshold of p<0.001, which
is the liberal primary threshold to avoid type | error [193]. Then the main effects of hunger vs.
satiety and before vs. after glucose were reported statically from T-values at a cluster-defining
threshold of p<0.016, corrected for multiple comparisons according to the FWE (Family Wise
Error) method and adjusted for the number of FC analyses (0.05/3, Bonferroni corrected for
multiple comparisons). For the interaction between factors, we inspected the F contrast
corresponding to the two-way interaction; the interaction result was as well thresholded at peak-
level p<0.001, the number of voxel per cluster (K) >10. As a post-hoc test, the paired-sample t-
test was used. Significant clusters were anatomically labeled according to the AAL atlas [102]

included in the xjView toolbox (http://www.alivelearn.net/xjview8 ). The MNI-template Morel

Atlas of the thalamus was applied to identify the substructure of the thalamic nuclei [194]. To
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visualize the spatial overlap among increases and decreases in multimethod rs-fMRI approaches,
we projected the significant clusters as overlays on a structural brain image and determined the
common voxels for all approaches. The xjView toolbox was used to identify the interaction among

significant results

5.3 Results

Main effects of glucose treatment for the multimethod rs-fMRI (fALFF, ReHo, and DC) from rm-
ANOVA are shown in Figure 5.1 and summarized in Table 5.1. There were some common effects
for the different analyses: Significantly decreased fALFF, ReHo, and DC after glucose treatment
were found in the left supplementary motor area (SMA) while increased fALFF and ReHo were
observed in the right superior and middle frontal gyri (SFG, MFG; Figure 5.1D). There were also
effects that were found only in one of the analysis approaches: Reduced fALFF was found in the
right precentral gyrus (PreCG) and the right postcentral gyrus after glucose administration (PoCG,;
Figure 5.1A, Table 5.1). The ReHo analysis showed an increased after glucose treatment in the
right parahippocampal gyrus (PHG) and hippocampal structures (HS), while a reduced ReHo was
evident in the left inferior parietal gyrus (IPG) and the left PoCG (Figure 5.1B, Table 5.1). Finally,
a reduction of DC after glucose treatment was seen in the left orbital inferior frontal gyrus (IFGorb)
and the left anterior insula (AINS; Figure 5.1C, Table 5.1).

For the main effect of hunger, fALFF was increased in the posterior cingulate cortex (PCC)
and the anterior precuneus (APCUN; Figure 5.2A and Table 5.2). Otherwise, we found no
significant main effect on the satiety condition. For ReHo and DC analyses we observed no
significant interaction between metabolic state and glucose treatment, and the main effect of

metabolic state did not survive the correction for multiple comparisons.
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Figure 5.1: Influences of glucose treatment found with different brain connectivity analyses.
(A) Fractional amplitude of low-frequency fluctuation (fALFF). (B) Regional homogeneity

(ReHo). (C) Degree centrality (DC). (D) Common regions of multimethod brain approach. All
statistical images were assessed for cluster-wise significance using a cluster defining threshold
P<0.001, 0.016 FWE corrected at the cluster level. Abbreviations: PreCG: precentral gyrus;
PoCG: postcentral gyrus; SMA: supplementary motor area; SFG: superior frontal gyrus; MFG:
middle frontal gyrus; IFGorb: orbital inferior frontal gyrus; AINS: anterior insula; PHG:

parahippocampal; HS: hippocampal structures.
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Table 5.1: Influences of oral glucose tolerance test treatment for different brain connectivity parameters

Regions Hes. p(adj.) K Tvalue Local maxima (xy z) (mm)

fALFF (increased)

Sup. orbital frontal gyrus R 0.007 48 4.78 24 57 -6
Middle frontal gyrus R 4.38 39 60 0

Sup. frontal gyrus R 4.33 36 60 12
fALFF (reduced)

Supplementary motor area L 0.000 323 6.08 -3 -3 54
Supplementary motor area R 4.39 12 3 45
Precentral gyrus R 0.000 125 5.09 39 -15 57
Postcentral gyrus R 4.32 45 -24 57
Postcentral gyrus R 3.59 39 -33 69
ReHo (increased)

Middle frontal gyrus R 0.006 130 5.36 39 60 12
Middle frontal gyrus R 4.64 36 63 3

Sup. orbital frontal gyrus R 4.49 21 60 -6
Hippocampus R 0.010 116 5.13 33 -24 -15
Parahippocampal gyrus R 4.01 33 -39 -9
Hippocampus R 3.83 30 -30 -6
ReHo (reduced)

Supplementary motor area R 0.000 377 5.97 9 3 48
Supplementary motor area L 5.96 0 -6 54
Supplementary motor area R 581 -3 6 54
Postcentral gyrus L 0.005 135 5.06 -60 -15 24
Inferior parietal gyrus L 4.06 -54 -21 39
DC (reduced)

Inf. orbital frontal gyrus L 0.000 221 6.23 -33 27 -12
Anterior insula L 4.18 -36 12 -9
Supplementary motor area L 0.000 363 5.28 -9 3 60
Supplementary motor area R 4.68 12 3 48

Notes: The table shows three local maxima (MNI coordinates) more than 8.0 mm, the adjusted p-values are
reported at p<0.001 (height threshold) and cluster-level FEW corrected p<0.016 (0.05/3). T=peak of T
values. K=cluster size. Hes. =hemisphere. fALFF= fractional amplitude of low-frequency fluctuations.
ReHo= regional homogeneity. DC= degree of centrality.

For fALFF, a significant interaction between metabolic state and glucose treatment in the
left thalamus was observed (Figure 5.2B, Table 5.2). The z-score of the left thalamus were
extracted and are shown in Figure 5.2C to illustrate the direction of this interaction. Before glucose

treatment, the fALFF of the thalamus in hunger and satiety conditions did not differ; however,
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after glucose treatment, the fALFF increased in hunger and decreased in satiety. Post-hoc

comparisons of hunger vs. satiety after glucose treatment are shown in Figure 5.2D.
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Figure 5.2: Changes of fALFF were obtained by two-way repeated measurements ANOVA.

(A) The main effect of hunger versus satiety. (B) A significant interaction of metabolic state and
glucose in the left thalamus (peak-level of P<0.001, K >10). (C) Interaction of metabolic state and
glucose treatment in the left thalamus. (D) fALFF in the left thalamus in hunger vs. satiety after
glucose (post-hoc test). Statistical images were assessed for cluster-wise significance using a
cluster defining threshold p<0.001, 0.016 FWE corrected at the cluster level. Abbreviations: PCC:

posterior cingulate cortex; APCUN: anterior precuneus.
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Table 5.2: Brain regions showing differences in the fractional amplitude of low-frequency
fluctuations (FALFF)

Regions Hes. p(adj.) K T value Local maxima (x y z) (mm)

Main effect: hunger > satiety

Posterior cingulate cortex L 0.001 67 4.47 -6 -42 33
Anterior precuneus R 3.91 3 -63 30
Anterior precuneus R 3.63 6 -54 27

Interaction: metabolic state x glucose treatment

Thalamus L 0.000* 12 15.33 € -12 -24 18
Post-hoc paired t-test after glucose: hanger > satiety

Thalamus L 0.000 62 6.67 -3 -21 15
Thalamus L 5.34 -12 -21 15
Thalamus L 5.05 -9 -33 6

Notes: The table shows three local maxima (MNI coordinates) more than 8.0 mm, the adjusted p-values
are reported at p<.001 (height threshold) and p<0.016 (FWE extent threshold for cluster levels, 0.05/3). .
* is the p-value (p <0.001) at peak level. T=peak of T values, except € is the peak of F value. K=cluster
size. Hes. =hemisphere.

5.4 Discussion

This Chapter explored whether the metabolic state (fasted vs. satiated states) and fluctuations in
blood glucose levels might be reflected in changes of resting-state connectivity in the brain.
Therefore, we used data-driven approaches to assess hemodynamic changes related to neuronal
activity (BOLD signal). In Chapter 3, we showed that blood sugar levels were differentially
affected by metabolic state and administration of glucose. In this Chapter, after glucose treatment,
we found a significant decrease of fALFF, ReHo, and DC in the left SMA, while a significant
increase of fALFF and ReHo was observed in the right MFG and SFG. Third, hunger relative to
satiety increased the amplitude (intensity) of spontaneous brain activity in the PCC and the anterior
PCUN. Fourth, we observed a significant interaction between metabolic state and glucose
treatment in the left thalamus using fALFF analysis.

In the main effects of glucose treatment, a decreased of fALFF, ReHo, and DC was found in

the left SMA after glucose treatment. This region is important for motor planning and
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programming [195,196] and action observation [197]. While our data were obtained during rest
without a task, the effect of glucose treatment on SMA might indicate suppressed action planning
or initiation, because the energy requirements of the brain and body are met. Thus, we propose
that different levels of circulating glucose differentially affect activity in brain regions involved in
attention, motor planning, and food evaluation, thereby providing a background signal that might
modulate activities such as foraging.

Apart from subcortical structures we also found increased fALFF and ReHo in the right SFG
and MFG when we evaluated the main effects of glucose treatment. Activation in both regions is
positively correlated in healthy participants using whole brain correlation analysis [198]. The SFG
is activated in response to appetitive stimuli in fasting participants [199,200]. The right MFG is
active during attention shifts towards unexpected stimuli [201,202] or reorienting attention from
exogenous to endogenous foci [198] and is part of a ventral attention network (VAN) [203,204].

We identified further differences in brain responses after glucose. First, we found it
decreased fALFF in the right PreCG and the right PoCG. The PreCG is a primary motor area, and
the PoCG is a primary sensory area and both regions are part of the sensorimotor network
[120,205]. For this network, we furthermore found decreased amplitudes of the BOLD signal after
glucose administration pointing to overall reduced activation of that network. Supporting our
findings, a study using ICA showed increased FC of the PreCG and PoCG regions in the
sensorimotor network during hypoglycemia [170]. Secondly, we found increased ReHo in the right
PHG and HS, regions that figure prominently in memory processes. Reduced ReHo was evident
in the left IPG and the left PoCG. Finally, suppression of DC was marked in the left IFGorb and
AINS which harbors the primary gustatory cortex and contains neurons that respond to different

tastes and food textures [206,207]. Furthermore, a meta-analysis by Kelley and colleagues [208]
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affirmed participation of the left insula in the processing of appetite and food stimuli. In addition,
the AINS is connected with the anterior cingulate cortex, the middle and inferior frontal cortex,
and the temporoparietal cortex within the resting state network [134]. This network is mostly
related to limbic regions that play a role in emotion processing [129]. Our observations suggest
that sensing the arrival of energy supply from oral glucose, probably via signaling from sweet taste
receptors, suppresses connectivity in AINS to interrupt the resting state network as proposed by
Zou et al. [129] and switch to a state of increased activity.

For the main effect of metabolic state, DC and ReHo analyses failed to identify differential
connectivity patterns according to hunger vs. satiety after correction for multiple comparisons.
Thus, the global and local connectivity of the brain appears to be largely independent of metabolic
changes in perceived hunger, at least with regard to the extent seen in the present experiment. By
contrast, fALFF analysis revealed that the amplitude of the BOLD signal was increased in PCC
and APCUN during hunger (Figure 5.2A and Table 5.2). As has been shown before, the insula,
PCC, and the precuneus are activated during food choice versus non-food choice in hunger
conditions [209]. Moreover, PCC, APCUN are core hubs of the default mode network (DMN)
[23,35] which is activated in rs-fMRI when attention is oriented towards internal rather than
towards external stimuli [33,34]. The PCC has been shown to be involved in self-referential
processes [210] and APCUN in self-centered mental imagery strategies [211]. In an FC study on
overweight/obese participants, the reduction of DMN activity was associated with a decrease in
fat mass and hunger ratings after six months of exercise [171]. In the current experiment, the
increased BOLD amplitude in PCC independent of glucose administration appears to be related to

the metabolic state [107]. DMN activity has previously been shown to be positively correlated
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with hunger ratings [171] and with lower blood glucose levels [170]. The enhanced activation of
DMN under hunger conditions leads to the hypothesis that this indicates an increase in self-focus.

In addition to the main effects of metabolic state, we found a significant interaction between
metabolic state and glucose level on the activation of the left thalamus (mediodorsal). This
interaction was driven by a fALFF increase after glucose treatment in the hunger and a fALFF
decrease after glucose in the satiety condition. In agreement with our findings, it has been shown
before, that hunger is associated with increased amplitude of BOLD signals and cerebral blood
flow in the thalamus [212,213]. By contrast, ghrelin application [214] as well as glucose infusion
decreased the BOLD signals in the thalamus [70,215]. Kroemer et al. [48] found that fasting levels
of ghrelin correlated positively with brain responses to food pictures in the thalamus but did not
find an effect of standardized glucose intake. The thalamus plays a central role in the processing
of food-related sensory information as well as the integration of information from the
gastrointestinal (GI) tract [70,216]. In particular, a spinothalamic pathway conveys afferent
information from the GI tract to thalamus via the vagus nerve [217]. Rolls [207,218] has identified
the role of the mediodorsal thalamus in the short-term regulation of food intake. We therefore
suggest that the altered activity of the mediodorsal thalamus region after glucose treatment is
dependent on the perception of hunger or satiety, and related to the glucose level.

In summary, we found that changes in the metabolic state, i.e. hunger vs. satiety affected the
amplitude of the BOLD signal, but did not influence local and global connectivity. By contrast,
we did observe significant alterations in amplitude as well as local and global connectivity after
glucose treatment. This indicates that local and global brain connectivity remained stable after 36
hours of fasting or standardized meals, whereas they were acutely modulated after glucose. It has

previously been stressed that the brain has a unique capacity to control its own energy supply [49]
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even under conditions of hunger and the stable connectivity pattern between satiated and hungry

state might reflect this control function.

5.5 Conclusions

The fALFF method proved to be a sensitive and reliable marker to measure changes in the
homeostasis of the resting brain. While fALFF is an index for the power of the BOLD signal in
the low-frequency ranges, ReHo and DC measure local and global connectivity, respectively. We
found indications of VAN and DMN activation as reflected by corresponding increases in signal
intensities of SFG, MFG, PCC, and APUCN. Both networks serving different functions are
involved in attention shifts between internal and external stimuli (VAN) and feeding-related
behavior (DMN), suggesting that the changes in blood sugar levels lead to changes in brain activity
which may be important to initiate behaviors such as foraging and food intake. The current findings
suggest that examining the effect of oral glucose under different metabolic states by a multimethod
approach for rs-fMRI analysis can contribute to the delineation of the relationship between
metabolism, brain, and behavior. Particularly, the results indicated a rather stable pattern of
connectivity in both metabolic states, suggesting that the brain’s energy supply is kept stable.
Glucose administration on the other hand led to an acute modulation of the connectivity pattern

which might indicate the need to adjust behaviors in the face of ample energy supply.
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Chapter 6: Amplitude of brain signals classify hunger status based on

machine learning in resting-state fMRI°

6.1 Introduction

Resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly applied to
study activity and connectivity of the resting brain and involves the recording of the blood-oxygen-
level-dependent (BOLD) signal without imposing a task [45,219]. This approach can be used to
assess intrinsic and spontaneous brain activity. Analysis techniques of rs-fMRI have evolved
rapidly over the past few years and are based on correlation methods [128,220-222], partial
correlation [223-225], graph theory based analysis [128,226] and sparse representation methods
[227,228], among others. Because of its simplicity (short scan time, no stimulation equipment
needed, no task requirements, see Section 1.1.3), the rs-fMRI method has become particularly
popular for the characterization of clinical conditions, for example pinpointing to differences
between healthy participants and patients with Parkinson’s disease [182,229], Alzheimer’s disease
[230,231], bilateral vestibular failure [232], schizophrenia [233,234], obsessive-compulsive
disorder [235,236] to name but a few targeted neuropsychiatric conditions.

In neuroimaging, machine learning classifier (MLC) methods are applied to fMRI data to
detect model-free brain activity and to use these brain activity patterns to differentiate between
groups or conditions [237,238]. The application of MLC to fMRI data is often referred to as multi-

voxel (i.e. analyzing more than one voxel at once) pattern analysis (MVPA). MVPA is a helpful

®This chapter corresponds largely to: Arkan Al-Zubaidi, Alfred Mertins, Marcus Heldmann, Kamila
Jauch-Chara and Thomas F. Minte (2019). Machine learning based classification of resting-state fMRI
features exemplified by metabolic state (hunger/satiety). Frontiers in human neuroscience. | participated
in the experiment design and data collection. | analyzed the data and wrote the manuscript.
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tool to investigate how a pattern of brain activity is related to different cognitive state [239-241].
The process of applying the MVPA approach to fMRI data can be broken down into three stages
[16,238]. First, feature extraction, which converts the BOLD fMRI signals to the relevant
variables, i.e. features, which will be used to train and to test the classifier. Second, feature
selection, which determines features that have to be included in the classifier analysis in order to
improve the classification. Third, cross-validation methods that divide the data into training and
testing samples and determine the accuracy of the classifier in generalization to new data.

Support vector machine (SVM) [242,243] is a powerful method available to perform MVPA.
In contrast to alternative MVVPA methods (such as linear discriminant analyses), SVM provides
better prediction accuracy, having the advantage of being relatively insensitive to the sample size
of the training dataset [244,245]. Furthermore, SVM has additional advantages regarding
efficiency, simplicity, robustness and is less susceptible to noise [245,246].

The application of SVM to fMRI data at the group level has several advantages over
traditional univariate (i.e. individual) voxel-based methods, like the general linear model (GLM).
For instance, SVM allows to identify voxels or brain regions of interest that are informative for
classifying groups by accumulating the information in an efficient way across many spatial
locations, while in GLM analysis, these voxels or brain regions could appear statistically
insignificant, although they might carry some information about differences between states or
groups [239,240]. Thus, SVM provides insight into the defining differences between the two states
or groups [237,247].

In many cases, fMRI data have a small number of samples and a large number of variables
or features. This often leads to overfitting in classification, which in turn leads to deceptive

diagnostic results and poor generalization performance [238,248]. To avoid the danger of
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overfitting, most of the MVVPA-based fMRI studies applied both methodologies, feature-selection
algorithms to remove redundant information and MLC methods that are less sensitive to high
dimensionalities, such as linear SVM. Finally, cross-validation analyses are performed to evaluate
the classification accuracy and generalizability for unseen data [237,249-251].

Rs-fMRI yields data comprise multiple data points per subject and/or condition among other
things raising the question of whether it might be possible to distinguish between different
conditions (e.g. disease present or not) using classification algorithms from the realm of machine
learning. Indeed, several recent publications have tackled this question. For example, Abds et al.
[252] obtained functional connectomes from the rs-fMRI in healthy controls (HC) and 70
Parkinson’s disease patients (of which one third had a mild cognitive impairment (MCI)). Using a
SV M trained on features selected through randomized logistic regression with leave-one-out cross-
validation (LOOCYV) they could separate patients with MCI from those not having MCI with an
accuracy of about 83% in the training sample. In a smaller validation sample of 25 Parkinson
patients (8 MCI), classification accuracy with regard to MCI was 80% using the features found in
the training sample [252]. This suggests that SVM classification based on metrics obtained from
rs-fMRI can indeed yield meaningful results. Likewise, applying a graph theoretical approach to
rs-fMRI to characterize functional connectivity in patients with MCI, Alzheimer’s disease (AD)
and age-matched HC (total sample n=168) followed by SVM based classification, Khazaee et al.
[253] were able to accurately classify the subjects into three groups (HC, MCI, AD) with 88.4%
accuracy. The same research group [254] tried to distinguish patients with MCI who later
converted to an AD from MCI patients who did not. Again a SVM using features derived from
local and global graph measures was used. This approach yielded a specificity of 91.4% and

sensitivity of 83.2% regarding the conversion to the AD. Bi et al. [255] attempted to classify
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patients with autism spectrum disorder (ASD) from HC using random SVM cluster and reported
classification accuracy based on the optimal feature to be 96%. These are just a few examples
illustrating that rs-fMRI derived features can be used for classification of conditions using machine
learning algorithms. What it is less clear, however, is which method of rs-fMRI analysis delivering
the most discriminating features might be best in distinguishing different metabolic states (hunger
vs. satiety).

In the present investigation, we therefore sought to compare the accuracies of three different
connectivity parameters or features (the predictor variables used for classification) extracted from
rs-fMRI fluctuations. These features assess local and global functional connectivity as well as
changes in the brain activity as indicated by the amplitude of the BOLD signal, i.e. regional
homogeneity (ReHo), degree of centrality (DC) and fractional amplitude of low-frequency
fluctuations (fALFF), respectively (see Chapter 4). Briefly, ReHo characterizes the local
connectivity of a brain voxel to its nearest neighboring brain voxels [100,126] by determining the
coherence among spontaneous BOLD signals that might reflect spontaneous neuronal activity
[173]. ReHo has been applied to widely differing neuropsychiatric conditions
[174,175,178,256,257]. DC is derived from graph theory based analysis and describes the global
connectivity (global connectedness) of a given voxel with the voxels in the entire brain, by
computing the number of connections above a certain threshold [128-130]. Again, DC has seen
widespread application in neuropsychiatric conditions [130,180,181,183,232]. Finally, to quantify
spontaneous local brain activities, the amplitude or intensity of the BOLD signals is used as a
marker. We performed fALFF on rs-fMRI datasets to describe the local spontaneous brain

activities.
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The aim of feature selection algorithms is to reduce the dimensionality of feature space and
computation time as well as to enhance the accuracy of optimization methods by ignoring
redundant, irrelevant or noisy features [258,259]. In general, the feature selection algorithms are
classified into two categories, according to the type of objective functions that one chooses to work
with: filter methods and wrapper methods [238,260]. Filter methods select the feature subsets
based on statistical properties (such as interclass distance, mutual information, entropy or
statistical independence) of the features to filter out poorly informative ones without employing
any classification algorithm. In contrast, wrapper methods rate the feature subsets based on their
predictive accuracy to improve the performance of classification when applying a particular
classifier (such as SVM or the k-nearest neighbor). Filter methods are advantageous because they
perform quickly, afford a more general solution and tend to select large feature subsets. Wrapper
methods are expensive because they need more time to train the classifier of each subject many
times (i.e. cross-validation), but often do not deteriorate from the problem of overfitting [261] and
provide more accurate results comparable to filter methods [262,263].

There are several strategies to apply wrapper methods [260]. For instance, sequential forward
selection (SFS) and sequential forward floating selection (SFFS) are easy to execute and are
assumed to provide useful results. Although the SFFS strategy requires massive computational
resources, it performs better and is more effective for solving small- and medium-scale problems
than simpler strategies like SFS [264]. However, the SFS strategy reduces the computational costs
for the feature subset selection. Accordingly, Burrell and colleagues [261] concluded that SFS was
a reasonable alternative to select a small subset of features for fMRI data. In this work, we
compared between SFS and SFFS strategies for creating feature subsets to distinguish different

metabolic states.

73



Chapter 6: Amplitude of brain signals classify hunger status based on machine learning in resting-state fMRI

The emphasis of the present work is on the ability to classify the metabolic states (hunger vs.
satiety) by MVPA approach. Therefore, we first estimate and compare the prediction accuracy of
classification (hunger vs. satiety) based on different features of rs-fMRI data (ReHo, DC and
fALFF). Second, we identify brain regions containing discriminating information between
different metabolic states. To this end, we apply support linear SVM as classifier and two feature
selection strategies (SFS and SFFS) to identify those brain regions that most efficiently
differentiate between hungry and satiated states based on rs-fMRI data. Finally, we employ a cross-
validation scheme and permutation tests to validate the reliability of classifier and significance

testing, respectively (see Figure 6.1 for classification procedure).
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Figure 6.1: Full analysis procedure of hunger classification based on rs-fMRI data.

6.2 Materials and methods

Twenty-four lean, healthy male volunteers (age 25 + 5 years) were recruited from the University
and the local population of Liibeck city. Each subject was measured under two metabolic states,
once under fasting (36 hours fasting) and once under the standardized eating condition with a break
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of one week between conditions. At the end of each session, structural and functional images were
recorded. More details on the experimental design, image acquisition and preprocessing of rs-

fMRI data can be found in Chapter 2.

6.2.1 Feature extraction from rs-fMRI data

Feature extraction is used to reduce the dimension of the original data space to a new feature space.
This new feature space helps to minimize the training time taken by the classifier [265]. To
encompass different aspects of rs-fMRI fluctuations, we extracted and compared three of the most
common features according to their accuracy to select those brain regions that best distinguish
different metabolic states by using linear SVM together with feature selection strategies. In the
beginning, we submitted the preprocessed data to the DPARSF toolbox [99] and extracted three
features (DC, ReHo and fALFF) from each subject per section as described in Chapter 4. Then,

those features were analyzed as explained in Section 6.2.2.

6.2.2 Feature selection for hunger/satiety status classification

After generating ReHo, DC and fALFF maps from rs-fMRI data for each subject per condition,
we used the AAL atlas to define the ROIs. The AAL atlas is a well-established anatomical
parcellation of the brain into 45 ROIs per hemisphere when excluding the cerebellar lobules (see
Chapter 2, Section preprocessing). Mean values of ReHo, DC and fALFF were calculated for each
ROl and used to create a feature (region) vector, i.e. R [1,...,90], with 90 dimensions for each map.

Those features are listed in Table 6.1.
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Table 6.1: List of the anatomical regions (AAL atlas) of interest and their labels in the region vector.

Label Anatomical Label Anatomical Label Anatomical
1 L. Amygdala 31  R. Sup. Frontal Med. 61 L. Sup. Parietal Gyrus
2 R. Amygdala 32 L. Sup. Frontal Orbital 62  R. Sup. Parietal Gyrus
3 L. Angular Gyrus 33 R. Sup. Frontal Orbital 63 L. Postcentral Gyrus
4 R. Angular Gyrus 34 R. Superior Frontal 64 R. Postcentral Gyrus
5 L. Calcarine Fissure 35 L. Fusiform Gyrus 65 L. Precentral Gyrus
6 R. Calcarine Fissure 36  R. Fusiform Gyrus 66 R.Precentral Gyrus
7 L. Caudate Nucleus 37 L. Heschl Gyrus 67 L. Precuneus
8 R. Caudate Nucleus 38  R. Heschl Gyrus 68 R.Precuneus
9 L. Ant. Cingulate Cort. 39 L. Hippocampus 69 L. Putamen
10 R. Ant. Cingulate Cort. 40  R. Hippocampus 70 R.Putamen
11 L. Mid. Cingulate Cort. 41 L. Insula 71 L. Rectus gyrus
12 R. Mid. Cingulate Cort. 42  R.Insula 72 R. Rectus gyrus
13 L. Pos. Cingulate Cort. 43 L. Lingual Gyrus 73 L. Rolandic Operculum
14  R. Pos. Cingulate Cort. 44  R. Lingual Gyrus 74  R. Rolandic Operculum
15 L. Cuneus 45 L. Inf. Occipital Gyrus 75 L. Supplementary Motor Area
16  R. Cuneus 46  R. Inf. Occipital Gyrus 76  R. Supplementary Motor Area
17 L. Inf. Frontal Oper. 47 L. Mid. Occipital Gyrus 77 L. Supramarginal Gyrus
18 R. Inf. Frontal Oper. 48  R. Mid. Occipital Gyrus 78  R. Supramarginal Gyrus
19 L. Inf. Frontal Orbital 49 L. Sup. Occipital Gyrus 79 L. Inf. Temporal Gyrus
20  R. Inf. Frontal Orbital 50 R. Sup. Occipital Gyrus 80 R. Inf. Temporal Gyrus
21 L. Inf. Frontal Triang. 51 L. Olfactory Cortex 81 L. Mid. Temporal Gyrus
22 R.Inf. Frontal Triang. 52  R. Olfactory Cortex 82  R. Mid. Temporal Gyrus
23 L. Med. Frontal Orbital 53 L. Pallidum 83 L. Mid. Temporal Pole Gyrus
24  R. Med. Frontal Orbital 54  R.Pallidum 84  R. Mid. Temporal Pole Gyrus
25 L. Frontal Middle 55 L. Paracentral Lobule 85 L. Sup. Temporal Pole Gyrus
26 L. Frontal Mid. Orbital 56  R. Paracentral Lobule 86  R. Sup. Temporal Pole Gyrus
27  R. Mid Frontal Orbital 57 L. Parahippocampal 87 L. Sup. Temporal Gyrus
28  R. Middle Frontal 58  R. Parahippocampal 88  R. Sup. Temporal Gyrus
29 L. Superior Frontal 59 L. Inf. Parietal Gyrus 89 L. Thalamus
30 L. Frontal Sup. Med. 60 R. Inf. Parietal Gyrus 90 R. Thalamus

Abbreviations: AAL: Automated-Anatomical-Labeling. Ant: Anterior; Cort: Cortex; Inf: Inferior; L: Left;
Med: Medial; Mid: Middle; Oper: Opercular; Pos: Posterior; R: Right; Sup: Superior; Triang: Triangular;

In the classical classification problem, the goal of feature selection is to automatically search

and select the best feature subset for the classification purpose. Here, we applied sequential feature

selection algorithms to select the optimal feature subset (region subset) that best captured

differences between hunger and satiety. This type of selection algorithm contains two components.

The first element is a sequential search strategy to select and establish the best future subset, which

evaluates additional features by a criterion function. In this study we used two strategies, namely
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sequential forward selection (SFS) and sequential forward floating selection (SFFS). The SFS
procedure starts by identifying the first feature with the highest classification rate and feeds it to a
new empty candidate set. Other features are selected sequentially by adding a local feature to the
first feature or the last subset of features in the candidate set, and testing a new feature combination
until the highest classification rate (objective function) is achieved. The processing continues until
further features do not enhance the objective function. However, the SFS algorithm is suboptimal
and suffers from the “nesting effect” [266], while SFFS offers the flexibility to discard features
that were earlier selected and to re-evaluate features that had been discarded previously. This
theoretical advantage notwithstanding, Burrell and colleagues [261] showed that the
computationally less demanding SFS could provide a reasonable alternative to SFFS to select
features for discriminating between epileptic and non-epileptic activity of epileptic patients,
indicating that both strategies had similar difficulties to separate patterns of functional and
dysfunctional brain activities in epileptic patients. In this study, we compared SFS and SFFS
strategies in order to figure out if SFS already provides near-optimal results. SFS and SFFS
strategies were performed using the “sequentialfs” function in MATLAB and sequential floating

feature selection toolbox (http://splab.cz/en/download/software/software-pro-sekvencni-selekci-

priznaku), respectively.

The second component in the feature selection strategy is an objective (criterion) function to
evaluate over all possible feature subsets. In this work, the misclassification rate of the linear SVM
classifier was set as an objective function [262]. The combination of SFFS and SVMs has
previously been used, for example, to assess Gabor features for classification of Parkinson's
disease risk assessment based on transcranial sonography images [267]. To evaluate the feature

subset, the data were divided into test and training samples using a leave-one-out cross-validation
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(LOOCV) scheme. Accordingly, independent samples were used for training and testing. For each
LOOCYV loop, the training samples were submitted to train an SVM model, and the test sample
was applied to that model to evaluate the feature subset. In the end, the average of the values
returned by LOOCYV loops was calculated and used to assess each candidate’s feature subset [268].

The classification accuracy (CA) was derived by using a LOOCYV strategy with confusion
matrix (CM) and calculation of classification error rate (ER). In our study, the CM comprises
information about the actual and predicted classifications generated by linear SVM. By comparing
the results of the SVM classifier (hunger or satiety) with the reference data, we documented the
outcomes of the CM in the present study as given in Table 6.2. For significance testing [238], we
estimated the empirical distribution by calculating the error rate 10000 times for random label
permutations in a cross-validation procedure. P < 0.05 implies that classification results differ
significantly from chance.

Table 6.2: Confusion matrix

Reference data

Hunger Satiety
Classified Hur]ger [TP Fp ]
Satiety EFN TN

True positive (TP): The number of participants that were correctly classified in hunger condition
False positive (FP): The number of participants that were incorrectly classified in hunger condition
False negative (FN): The number of participants that were incorrectly classified in satiety condition
True negative (TN): The number of participants that were correctly classified in satiety condition

6.3 Results

The experiments showed that fALFF was marginally better than ReHo and DC in distinguishing
between hunger and satiety states in the healthy brain (Table 6.3). The region subset obtained by

SFFS resulted in higher classification accuracy than SFS, both higher than no feature selection (90
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regions). Using a linear SVM classifier with a LOOCV strategy, we observed that the fALFF
region subset selected by SFFS identified the hunger state with the highest classification accuracy
of 81%. In our SFFS results (Table 6.3), the regions 45 and 46 are the left and right inferior
occipital lobe (Table 6.1), respectively, and region 50 is the right superior occipital lobe. Also,
regions 5 and 35 are medial (Calcarine) and inferior (Fusiform) surfaces of the occipital lobe,
respectively. Furthermore, regions 17 and 18 are left and right frontal gyrus, respectively, region
52 is the right Olfactory cortex, region 56 is the right Paracentral lobule and region 73 is the left
Rolandic operculum. SFFS-identified brain regions which distinguished best between hunger and
satiety for each rs-fMRI feature are shown in Figure 6.2. Furthermore, SFFS fALFF (Figure 6.3)
was most stable in the permutation test (ER=0.19 / p=0.0001) closely followed by DC (ER=0.21/

p=0.0004) and ReHo (ER=0.29 / p=0.0068).

Table 6.3: Classification accuracy of rs-fMRI data using different models of brain connectivity/activity and

features selection algorithms with linear SVM classifier

90 regions Region sets by SFS Regions sets by SFFS
Rs-fMRI

features CA CM R[1,...,90] CA CM R[1,...,90] CA CM
ReHo 50% [12 12] R[22,61] 69% [17 8] R[45,17] 71% [20 10]
112 12! L7 16! L4 14!
DC 54% [16 14] R[50,55,4,68] 71% [19 9] R[50,4,5,35] 79% [22 8]
L8 10 L9 15 L2 16!
fALFF 58% [16 12] R[61,77,356,1] 73% [17 6] R[56,73,46,52,18] 81% [19 4]
L8 12 L7 18 L5 20

Abbreviations: SFS: sequential forward selection; SFFS: sequential forward floating selection; CA: classification
accuracy; CM: confusion matrix.
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[l Oifactory I Occipital gyrus [l Paracentral ] Angular gyrus
Rolandic operculum [llFrontal gyrus [ Calcarine Fusiform

Figure 6.2: Brain regions that provided relevant information to distinguish between hunger
and satiety states in healthy lean participants.

The performance of these regions was evaluated by linear SVM classifier and SFFS algorithm.
All images are in neurological orientation, i.e. right = right and left = left.
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Figure 6.3: Empirical distributions of incorrect classification generated via 10000 times of
random label permutations for region sets selected by SFFS.
Red line shows the actual classification error.
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6.4 Discussion

The primary goal of the present chapter was to assess the ability to classify different brain states
by applying a MVPA approach, i.e. feature selection strategies and linear SVM, on various
features, i.e. connectivity parameters, derived from rs-fMRI data. This approach was carried out
on a data set comprising two conditions (hungry and satiated) in a repeated measures design. As
the two metabolic states, i.e. hunger and satiety, were induced for a rather long time (36 hours),
experimental conditions can be treated as the ground truth to compare and evaluate the
classification scheme.

An advanced preprocessing, including ICA-AROMA, was carefully applied (see
Section 2.3.2), ensuring the removal of motion artifacts and other structured noise from the data
(e.g. cardiac pulsation artifacts [98]). Thus, classification in the current case is deemed to reflect
true brain differences rather than extracerebral differences (e.g. motion) between the conditions.

A critical question with regard to classification is the selection of the best approach for
feature selection. The inclusion of all possible features and the computation of all possible
combinations of features is computationally not feasible at present. Therefore, sequential search
techniques have gained some popularity. These work by choosing the best individual feature and
then adding a second feature that yields the best classification accuracy in combination with the
first feature. This procedure is repeated for a third and any subsequent features until the addition
of further features does not yield in an improvement of classification rates. Alternatively, the user
can predetermine the maximum number of features. The SFFS method tries to optimize feature
selection by adding an elimination step to this sequential search process. Concretely, at each level,
it is examined whether the classification rates improve if any of the selected features are

eliminated. If this happens, the feature set is reduced by this feature. Then, the search continues
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based on the new set. Jain and Zongker [269], for example, compared 14 different methods for
feature selection applying them to the problem of handwriting recognition. In this case, the SFFS
method outperformed other feature selection schemes. It has to be pointed out, however, that
conventional feature selection approaches, including SFS and SFFS as well as filter approaches
[270,271], have recently been supplemented by metaheuristic methods for feature selection. In this
regard, Zhu et al. [272] have suggested a genetic algorithm combined with local search in a hybrid
wrapper and filter feature selection algorithms. Others like Neshatian and Zhang [273] and Gu et
al. [274] proposed new optimizations methods including such advanced feature selection
procedures. Applying genetic algorithms and new optimization functions on rs-fMRI data are
beyond the scope of this study and will be considered in future work.

In the present analysis, the subset of regions obtained by the SFFS algorithm provided the
highest classification rate for all rs-fMRI maps (Table 6.3). Using fALFF, SFFS and SVM
classification, we were able to demonstrate that patterns of amplitude BOLD signals in five brain
regions (paracentral lobule, Rolandic operculum, olfactory cortex, lateral occipital (inferior
division) gyrus, and inferior frontal (opercular) gyrus; Figure 6.2) can distinguish between
metabolic states (hunger vs. satiety) with 81% accuracy.

The Rolandic operculum, which belongs to somatosensory regions, is activated during the
anticipation and consumption of food [275,276], in response to palatable food receipt [277] and
has been associated with the processing of high- and low-caloric food pictures [278]. Among many
functions, paracentral gyrus is known to response to highly rewarding stimuli [276]. A study using
independent component analysis to estimate functional connectivity (FC) parameters showed that
the connectivity strength of the paracentral gyrus in the sensorimotor network was increased during

hypoglycemia relative to euglycemia [170]. Furthermore, Van Duinkerken and colleagues [279]
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reported that the change of sensorimotor FC was associated with basal glycemic levels in type 1
diabetes mellitus patients. Thus, the paracentral lobule seems to be part of the reward system and
the sensorimotor network. The olfactory cortex (OLFC), whose activity was modulated by
metabolic states as well, is involved in the experience and processing of negative affective states,
including anxiety and depression [280]. Consistent with that, a rs-fMRI study in rodents
demonstrated that ReHo of the OLFC is increased in stress-exposed rats compared to a control
group [281]. In our study, the fasting for 36 hours might have led to a stress increase which might
be reflected in an increased OLFC activity. Moreover, the satiety state might have reduced
peripheral hunger signals compared to the hunger state and accordingly might have influenced
brain regions related to somatosensory processes, such as Rolandic operculum, and parts of the
sensorimotor network like the paracentral lobule.

The inferior frontal gyrus (IFG) has been suggested to be involved in cognitive control
[282,283]. IFG activation during response inhibition has been associated with a reduced desire for
food and with successful impulse regulation [284-286]. In addition, stronger IFG activity in
response to orosensory stimulation was found in successful weight loss maintainers compared to
people who were obese or normal weighted [287]. In our experiment, participants had to refrain
from eating during the hunger state and from overfeeding during the satiety state, which may have
contributed to the finding that the IFG is partially important for classifying between different
metabolic states.

The lateral occipital cortex (LOC) is part of the visual association cortex and is activated in
response to the perception of emotionally salient stimuli, such as food, which is thought to be a
correlate of heightened attention [288,289]. For instance, a recent rs-fMRI study using SVM on

graph theory analysis indicates that the LOC is partly important for classification between high-
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caloric (potato chips) vs. low-caloric (zucchini) food ingestion on the brain of healthy subjects
[290]. Furthermore, it has been suggested that the processing of visual salience of a stimulus
depends on the affective state of the individual and the motivational value of a stimulus [288].
Considering the general role of the LOC in the visual processing of food stimuli, this region might
potentially facilitate the detection/perception of such cues in a deprived state. Note that these
interpretations are based on reverse inference of resting-state data and should thus be taken with
caution.

However, some studies have used rs-fMRI to investigate changes in baseline brain activity
of lean or obese participants during both hunger and satiety states. For instance, Lohmann et al.
[27] showed increased centrality, which was measured by eigenvector centrality analysis, of
anterior precuneus (APCUN) during the hunger relative to the satiety state of 22 normal volunteers.
Consistent with that, our previous analysis (Chapter 5) revealed that the fALFF was increased in
the APCUN and posterior cingulate cortex (PCC) when comparing hunger against satiety state.
Additionally, Wright and colleagues [66] used seed-based connectivity analysis to estimate the FC
parameters of 19 healthy participants. They reported that the FC between the posterior insula and
superior frontal gyrus and between the hypothalamus and IFG were enhanced during the hunger
state. Furthermore, it has been found that both 20 lean and 20 obese subjects had increased ReHo
connectivity from hunger to the satiety state in the orbitofrontal cortex and inferior temporal lobe
[291]. These studies reported different brain regions that might be related to the changes in the
metabolic state compared to the results of the current study, except IFG. These inconsistencies
here might be associated with the different experimental paradigms and neuroimaging modalities.

Importantly, the statistical analysis at group levels of the studies mentioned above was

computed by using GLM approaches to define the significant brain regions at baseline activity that
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are sensitive to changes in metabolic state. In GLM approaches, the p-values are the successful
statistical tests to represent significant brain regions that show different brain activities in the
average sense of one or more brain features when compare between different groups and/or
experimental conditions. On the other hand, SVM classifier aims to automatically classify each
subject into one of the groups or experimental design in the study. Thus, the overall classification
accuracy is usually used to measure the success of the studies. In general, it is easier to demonstrate
group or experimental condition differences compared to predict a single subject [292].
Furthermore, the significant variables or features that show the difference between group or
experiment do not necessarily have high classification accuracy and vice versa [292,293]. Hence,
brain regions that showed significant differences between hunger and satiety states in previous
studies do not necessarily mean that these regions can predict the subject class with high accuracy
and vice versa.

Furthermore, our results indicate that fALFF analysis is more informative than ReHo and is
slightly more precise than DC for classification of resting brain changes during hunger and satiety,
probably because fALFF is an index of the power of the BOLD signal. Against this, ReHo and DC
parameters refer to dynamics of BOLD connectivity, either with some (in this case, 26)
neighboring voxels (ReHo) or with all voxels (DC) in the gray matter of the brain.

One other important question is, whether SFFS based classification is superior to simply
trying to classify states using statistically significant group differences. Baker et al. [294] answered
this question on an EEG data set from AD patients, MCI patients and HC. They used an SFFS
algorithm and a t-test to classify patients and found that the SFFS technique resulted in improved

classification rates compared to the t-test for four feature types (average power, coherence,
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correlation, and phase synchrony). They conclude that the SFFS algorithm selects reliable features
for classification where statistically significant features fail in classification.

The sample size of most fMRI studies is often relatively small due to the high costs of
scanning time and subject stamina [295]. However, sample size impacts the trade-off between
accuracy and generalizability [296]. For instance, in the context of rs-fMRI features and SVM
classification methods, several studies reported high classification accuracies (92+9%) with
relatively small sample sizes (20+5 subjects per group) when classifying groups of brain disease
patients and healthy subjects [253,297-302]. Here, the high classification accuracy is driven by
the heterogeneity between groups [292,296]. In contrast, studies with large sample sizes are
assumed to result in classification models with a higher degree of generalizability, allowing for a
better prediction in samples drawn from other populations. Their classification models capture a
complete picture of disease patterns but at the cost of lower accuracy, which is likely due to the
within-group heterogeneity [292,296,303-305].

One limitation of the present analysis is the ability to generalize since the sample size of 24
subjects is relatively small. Accordingly, larger samples are needed to confirm our findings.
However, we would like to argue that our results are not driven by the heterogeneity between
samples, because we have chosen a within-subject design in a well-controlled experimental setting.
Also, we evaluated whether the rs-fMRI features in conjunction with sequential feature selection
strategies were sufficiently reliable to predict the subject’s metabolic state by using the LOOCV
scheme. Thus, independent training and testing samples were used to estimate the SVM model
parameters and to validate the classification model. In this case, the CA was derived by averaging

the resulting classification accuracies over all samples. All in all, the homogeneity of our samples
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and the high CA results in an increased validity of our findings determining brain patterns that can

discriminate between different metabolic states.

6.5 Conclusions

As rs-fMRI has received widespread attention over the past ten years, the possibility of reliable
classification of disease conditions or subject states (e.g. sleep stages) paves the way for using rs-
fMRI as a diagnostic tool on an individual patient/subject level. In addition, the applications
mentioned in the introduction, such as the prediction of conversion of MCI to AD [254], many
other diagnostic and research questions lend themselves to this approach, e.g. the differentiation
of typical Parkinson’s disease from atypical Parkinsonian syndromes (c.f., Tang et al. [306]). From
our data, we conclude that fALFF in combination with SFFS based feature selection is a useful

and straightforward way to proceed in tackling such research questions.
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Chapter 7: Impact of hunger, satiety, and oral glucose on the

association between plasma insulin and resting-state brain activity®

7.1 Introduction

Food ingestion and energy homeostasis are regulated by central nervous pathways [307-309] and
modulated by endocrine signals [310]. Insulin is one of the hormones that is part of a negative
feedback loop that ensures balanced energy homeostasis [84,86,311]. Of note, both intraventricular
injection and intranasal administration of insulin decreases food intake and body weight in rodents
[89,90] and humans [91]. In contrast, inactivation of insulin leads to opposite effects [92,93].

Task-based fMRI has been used to study the impact of insulin and glucose on brain responses
to food-related stimuli under different homeostatic conditions on the network level [312,313]
linking plasma glucose [7] and fasting insulin levels [314] to neural activity changes in the
hypothalamus, thalamus, amygdala, insula, and superior frontal cortex, brain sites assumed to
regulate appetite-related eating behavior [315]. According to Smitha et al. [50], task-based designs
focus on a small fraction of the brain’s overall activity only. To avoid these disadvantages in the
present investigation, we used resting-state fMRI in order to reveal potential links between whole
brain activity and insulin and glucose levels in different metabolic states.

Resting-state fMRI (rs-fMRI) is a task-free paradigm in which participants do not perform

any specific task [29,316,317], more details can be found in Section 1.1.3. Several studies using

& This chapter corresponds largely to: Arkan Al-Zubaidi, Marcus Heldmann, Alfred Mertins, Georg
Brabant, Janis Marc Nolde, Kamila Jauch-Chara and Thomas F. Minte (2019). Impact of hunger, satiety,
and oral glucose on the association between insulin and resting-state human brain activity. Frontiers in
human neuroscience. | participated in the experiment design and data collection. | analyzed the data and
wrote the manuscript.
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rs-fMRI revealed associations of insulin or glucose levels with the functional connectivity (FC) of
particular brain networks or brain sites that are related to homeostatic regulation but not without
contradictions. Some studies reported an increase of resting-state FC within the limbic system in
response to the administration of 75 g oral glucose after overnight fasting. This increase in FC was
positively correlated with plasma insulin levels [46,318]. Conflicting results were found by Page
etal. [172] using MRI-CBF (cerebral blood flow) during rest: here, changes of insulin levels were
negatively associated with changes of CBF signals in the caudate and the putamen in response to
glucose administration. Similarly, changes in plasma insulin levels in response to a meal after
overnight fasting were negatively correlated with changes of CBF signals in the insula and
prefrontal cortex [212]. Additionally, the FC between the posterior insula (PINS) and superior
frontal gyrus (SFG) under hunger conditions was partially moderated by the plasma glucose levels,
indicating that the PINS connectivity depends on the homeostatic energy deficit caused by fasting
[66]. Furthermore, a study with experimentally induced hypoglycemia reported increased FC of
the default mode network (DMN) with the posterior cingulate cortex (PCC) and decreased FC of
the insula, superior and inferior frontal gyri with temporal networks, basal ganglia, and cerebellum
in healthy subjects [170]. The inconsistencies reported here might be related to the different
experimental paradigms and neuroimaging modalities. In most of these studies, FC parameters
were computed by using seed-based analysis or independent component analysis (ICA) to define
brain networks of interest or to decompose the brain into multiple networks, respectively. This
means that FC studies rely on the correlations and ignore the changes in regional brain activity
under different metabolic conditions. However, it has been shown that there is a linear relationship
between the amplitude of the BOLD signal and brain metabolism [179]. Therefore, in our study,

we used the amplitude of the rs-fMRI signal to investigate the sensitivity of resting-state brain
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activity [101] to changes in metabolic states. A critical question of the present search is, whether
or not the changes in the amplitude of the BOLD signal of specific brain regions are associated
with changes in hormonal signals, such as insulin.

To clarify some of the issues discussed in the previous paragraph, we investigated (i) whether
changes in brain regions linked to hypoglycemia, such as the default mode network, are modulated
by insulin and glucose or different metabolic states and (ii) whether changes in activity of specific
brain regions, such as hypothalamus and insula, are modulated by changes of blood insulin or
glucose levels after glucose administration. In the present investigation, we used a voxel-wise
frequency-domain approach to measure whole brain activity by using amplitude (intensity) values
of BOLD signals called fractional amplitude of low-frequency fluctuation (fALFF) for each
individual per condition [101]. The fALFF allow us to study the local spontaneous brain activity
across the whole brain based on the magnitude of the BOLD signal in the low-frequency range
[101,319] which is higher in gray than in white matter [134]. The fALFF approach efficiently
suppresses non-specific signal components, such as physiological noise [101,184]. Other studies
have observed that fALFF is associated with body mass index (BMI) after intranasal insulin
application [315].

In Chapter 5, we examined the activity and connectivity brain responses to the interaction of
metabolic state (hungry vs. satiated) and glucose administration (before vs. after administration of
75 g of oral glucose). In that Chapter, we used multimethod rs-fMRI approaches to identify brain
activation patterns that are associated with changes in metabolic states and caloric intake. We
showed that in contrast to other voxel-wise analyses like regional homogeneity or degree of
centrality, FALFF is a more sensitive metric for identifying differences in the resting brain activity,

for example, the amplitude of the SFG and PCC were increased after oral glucose treatment and

91



Chapter 7: Impact of hunger, satiety, and oral glucose on the association between plasma insulin and resting-state
brain activity

in hunger conditions, respectively. However, Chapter 5 focused on the effect of glucose treatment
solely on brain activity and connectivity without taking the impact of plasma glucose and insulin
levels into account when analyzing neuroimaging data. To get a better insight into hormone-
dependent brain activity at rest, in the present analysis we used multiple linear regression analysis
(MLRA) with covariates (plasma insulin and glucose levels) to investigate the dependencies
between brain activities, measured as the amplitude of the BOLD signal, and hormone levels. By
manipulating metabolic state (hunger/satiety) and glucose administration (before and after 75 g of
oral glucose) in a factorial design, we tested the hypothesis that brain areas involved in homeostatic

regulation are modulated by peripheral circulating insulin and glucose levels [3,320,321].

7.2 Materials and methods

To study the interplay of metabolic state (hungry vs. satiated) and glucose administration
(including hormonal modulation) on brain function, rs-fMRI and blood samples were obtained in
24 healthy normal-weight men in a repeated measurement design. Participants were measured
twice: once after a 36 hours fast (except water) and once under satiation (three meals/day for 36
hours). During each session, rs-fMRI and hormone concentrations were recorded before and after
a 75 g oral dose of glucose. As reported in Chapter 2, nine blood samples on the first day and ten
blood samples on the second day per subject and condition were collected. The blood samples of
the second day were potentially a valuable source of information because they were taken before
and after glucose administration. Figure 7.1 shows the time course of the mean concentrations of
plasma glucose and insulin on the second day of the experiment for hunger and satiety states.
Details on the exclusion criteria of participants, the exact timing for obtaining blood samples
and the preprocessing pipeline of rs-fMRI images can be found in Chapter 2. Furthermore, fALFF

maps of each subject per experimental condition were calculated as mentioned in Chapter 4.
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Figure 7.1: Time course of physiological parameters on the second day of the experiment
for different metabolic states.
Mean plasma concentration of insulin (A) and glucose (B) under hunger and satiety conditions.

Glucose administration was ingested at time point 0. The time-points of the first and second fMRI
investigations are marked in gray. Boxes on the bottom of the graph indicate the time points of
meals on the second day (B = breakfast, L = lunch at 09:00 am and 12:00 pm, respectively). The
error bars represent the standard deviation..
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7.2.1 Statistical analysis

To capture the modulatory impact of glucose administration on the association between the activity
of brain regions and plasma insulin or glucose levels under different metabolic states, we
performed two multiple linear regression analyses (MLRA) using SPM12, the first “before” and
the second “after” oral glucose treatment. Each MLRA was designed with two covariates (plasma
insulin and glucose levels). Briefly, MLRA is used to describe how a 'linear combination' of
multiple variables, called independent or explanatory variables, to predict a single response
variable, referred to as the dependent or target variable. The contribution of each independent
variable to the model is assessed by looking at the regression coefficients [322].

In this Chapter, we used MLRA to figure out the contribution of plasma insulin (an
independent variable) to the prediction of brain activity (the dependent variable) when taking the
effect of plasma glucose (another independent variable) into account [323,324], and vice versa.

Accordingly, our multiple linear regression model is:

Y = u+xj101 +x5282 + €, (7.1)

where Y; is a dependent variable (such as fALFF at a particular voxel) and j = 1, ...,] indexes the

observation. The regression coefficient u represents a constant term (the mean of the dependent
variable when all predictors are zero), while B; represents the regression slope, which gquantifies
the association of Y with x; (such as plasma insulin), adjusting for the effect of x, (plasma glucose)
on Y and vice versa for 8, and e is the error associated with the regression (the variance of the
dependent variable from its mean when all predictors are zero). The parameters were estimated by
using the least squares method. To find significant voxels whose activity was affected by hunger
vs. satiety or by glucose or insulin, we used one-sample t-tests for each regression coefficient on

the voxel level per MLRA (see the section below). The resulting statistics indicate whether the
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regression coefficient of a particular voxel is significantly different from the error in that estimate
[324]. To correct for multiple comparisons, the topological false discovery rate (FDR) q=0.05 was
employed with a cluster defining threshold of p<0.001 for the t-tests [325].

In the 1 MLRA (before glucose administration), we contrasted hunger vs. satiety states
while controlling the moderating fluctuation of glucose and insulin. We calculated differences
(delta (A) =hunger-satiety) of fALFF maps before oral glucose treatment. For glucose and insulin,
the area under the concentration-time curve (AUC) of the first four samples (Figure 7.1A and B)
was calculated and the A of the AUC was obtained. The AUC has been used as an index to assess
the regulation of glucose and insulin [326,327]. It was calculated using the standard trapezoid
method, which is computing the AUC with respect to ground, see Formula 2 in [328]. The group
level analysis was performed using A AUC of glucose and insulin as covariates (independent
variables) and the A fALFF maps as the dependent variable in the MLRA. Notably, the A AUC of
glucose and insulin were not significantly correlated (Jr|=0.3, p=0.1). To check whether the AUC
of plasma glucose and insulin influence our findings, we also recomputed the 1% MLRA by
including the A plasma glucose and insulin based on the value 20 min before glucose ingestion
(Figure 7.1) as independent variables. The results of this model were similar to the results of the
model with AUC (see Table 7.1 and Figure 7.2). The AUC provides an overview of plasma glucose
and insulin level profiles under diet or standard meal versus time [103]. Also, we believe that the
changes in brain activity before glucose ingestion may be related to profile change more than single
glucose and insulin values. Therefore, we will report the AUC model results only.

The 2™ MLRA (after glucose administration) had a similar design as first MLRA.
Differences (A) of amplitude rs-fMRI signals were calculated by subtracting the fALFF maps of

hunger condition from satiety condition. The A calculated for glucose and insulin was based on
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the value 20 min after glucose ingestion (Figure 7.1) only to keep the temporal association of
endocrine and functional imaging data as clear as possible. A glucose and A insulin were used as
covariates in the MLRA. Again, glucose and insulin were not significantly correlated (|r|=0.14,
p=0.5). Additional glucose and insulin samples collected after oral glucose intake were not
included in this analysis, because they were taken after the second rs-fMRI recording.

To ensure that the correlation between specific brain regions and glucose or insulin values is
not biased [329], we extracted fALFF values by averaging across voxels in each cluster that
survived the cluster-significance test. Then, we performed the leave-one-out cross-validation
(LOOCYV) of Pearson correlation to evaluate the relationship between averaged AfALFF values of
each brain region with A of the plasma glucose and insulin. Finally, we performed full and partial
correlation analyses between clusters linked to plasma insulin levels to investigate the association
between them and the effects of glucose and insulin values on that association.

Finally, to investigate the acute effect of glucose administration on the interaction between
brain activity and physiological changes, we performed two additional MLRA. The 3rd and 4th
MLRASs estimate the correlations between changes in fALFF (A fALFF= pre-post glucose
ingestion) and changes in plasma glucose/insulin (A of plasma glucose/insulin were calculated
based on the value of 20 min before and after glucose ingestion; Figure 7.1) under satiety and
hunger conditions separately, respectively.

We used the automated anatomical labeling (AAL) atlas [102] included in the xjView
toolbox (http://www.alivelearn.net/xjview8) to label the anatomical location of significant

clusters. Thalamic nuclei were identified by applying the MNI-based Morel Atlas [194].
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We also ran a Pearson correlation analysis to investigate the associations between changes
of the subjective feeling of hunger with changes plasma glucose and insulin as well as with changes

brain activity (i.e. clusters that survived the cluster-significance test).

7.3 Results

7.3.1 Resting state fMRI: hunger vs. satiety effects

The 1st MLRA (before glucose administration) revealed differences of resting brain activity as a
function of hunger in the posterior cingulate cortex (PCC) and the left anterior precuneus (PCUN),
as well as in the left inferior parietal gyrus (IPG; Figure 7.2A and B, Table 7.1). The 2nd MLRA
(after glucose administration) showed an increase of the fALFF signal in the hunger compared to
the satiety condition in the left thalamus and the left PCC (Figure 7.2C and D, Table 7.1).

7.3.2 Resting state fMRI: before vs. after glucose treatment

The 3rd (under satiety condition) and 4th (under hunger condition) MLRA results showed that the
resting brain activity of supplementary motor area (SMA) was significantly decreased after
glucose ingestion (Figure 7.3A and B, Table 7.2). In the hunger condition (4th MLRA), a reduced
resting brain activity was evident in the precentral gyrus (PreCG) and the postcentral gyrus (PoCG)

after glucose administration (Figure 7.3B, Table 7.2).
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Figure 7.2: Hunger vs. satiety effects on brain activity.

(A) Mean fALFF value of all voxels of a significant cluster per condition across participants.
(B) Results of the first model (before glucose administration). (C) Mean fALFF value of all
voxels of a significant cluster per condition across participants. (D) Results of the second model
(after glucose administration). Abbreviations: PCC: posterior cingulate cortex; PCUN:
precuneus. IPG: inferior parietal gyrus.
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Table 7.1: Changes and associations of fALFF with food conditions and hormone levels.

Regions Hes. p(adj.) K  Tvalue Local maxima (xyz)(mm)
Before glucose administration: hunger > satiety

Inferior parietal gyrus L 0.03 24 4.78 -45 -51 36
Inferior parietal gyrus L 451 -51 -57 36
Posterior cingulate cortex L 0.01 34 4.70 -6 -45 36
Posterior cingulate cortex L 4.16 0 -48 30
Precuneus R 4.04 9 -54 30
After glucose administration: hunger > satiety

Thalamus L 0.001 55 6.54 -3 -21 15
Thalamus L 5.18 -12 -21 15
Thalamus L 4.86 -9 -33 5
Posterior cingulate cortex L 0.002 45 5.68 0 -33 33
Posterior cingulate cortex L 4.42 -9 -33 33

Correlations between changes in physiological and neural of metabolic
states(hunger-satiety), after glucose administration

Positive correlation with plasma glucose levels

Fusiform gyrus L 0.04 25 4.07 -42 -63 -12
Fusiform gyrus L 4.05 -27 -72 -15
Fusiform gyrus L 3.39 -33 -66 -15

Negative correlation with plasma insulin levels

superior frontal gyrus L 0.04 19 5.50 -12 21 63
superior frontal gyrus L 4.47 -15 15 57
superior frontal gyrus L 3.99 -6 33 57
Posterior insula L 0.004 19 4.39 -33 -9 9
Posterior insula L 4.31 -36 -21 9

Notes: The table shows three local maxima (MNI coordinates) more than 8.0 mm, the
adjusted (adj.) p-values are reported at p<0.001 (height threshold) and g<0.05 (FDR
extent threshold). T=peak of T values. K=cluster size. Hes. =hemisphere. L=left. R=right.
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Figure 7.3: Before vs. after glucose administration on brain activity.
(A) Results of the third model (under satiety condition). (B) Results of the fourth model (under

hunger condition). Abbreviations: SMA: supplementary motor area; PreCG: precentral gyrus.
PoCG: postcentral gyrus.

7.3.3 Correlations between physiological and neural effects

For the 1st, 3rd and 4th MLRAs, we found no correlation between changes in resting brain activity

and changes in glucose and insulin passing the correction for multiple comparisons.

For 2nd MLRA (i.e. hunger-satiety), after glucose administration and while controlling for effects

of A insulin we found a correlation between A fALFF and A plasma glucose in the left fusiform

gyrus (Figure 7.4A and B, Table 7.1). A LOOCV between the average A fALFF values of the
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fusiform cluster and A plasma glucose after data being adjusted for A plasma insulin level
(Figure 7.4C) revealed a significant positive correlation (r=0.75).

Table 7.2: Influences of oral glucose administration on brain activity under hunger and satiety
conditions

Regions Hes. p(adj.) K Tvalue Local maxima (xyz)(mm)

Satiety condition: after oral glucose < before oral glucose

Supplementary motor area L 0.003 39 5.85 -3 -18 54
Supplementary motor area R <0.001 86 4.77 12 3 45
Supplementary motor area L 4.63 -6 3 48

Hunger condition: after oral glucose < before oral glucose

Postcentral gyrus R <0.001 136 6.73 51 -18 51
Precentral gyrus R 5.61 30 -6 69
Precentral gyrus R 5.49 36 -15 66
Precentral gyrus L <0.001 51 6.60 -24 -12 69
Supplementary motor area L <0.001 58 5.52 -3 -6 54
Supplementary motor area R 4.88 6 -15 54

Notes: The table shows three local maxima (MNI coordinates) more than 8.0 mm, the
adjusted (adj.) p-values are reported at p<0.001 (height threshold) and g<0.05 (FDR extent
threshold). T=peak of T values. K=cluster size. Hes. =hemisphere. L=left. R=right

Next, when controlling for A plasma glucose we found a connection between A fALFF and
A plasma insulin after glucose administration in the left posterior insula and superior frontal gyrus
(SFG; Figure 7.5A and B). A significant negative correlation (r=-0.7) was found between average
A TALFF of the posterior Insula cluster and A plasma insulin (Figure 7.5C; red dots and line), as
well as a significant negative correlation (r=-0.8) between average A fALFF SFG and A plasma
insulin (Figure 7.5C; blue dots and line).

A potential influence of plasma insulin and plasma glucose on the association between A
fALFF posterior insula and A fALFF SFG was tested by using the average A fALFF in these

clusters and revealed a significant positive correlation (r=0.5, p=0.004, Figure 7.5D) which

101



Chapter 7: Impact of hunger, satiety, and oral glucose on the association between plasma insulin and resting-state
brain activity

survived when adjusting for A plasma glucose(r=0.5, p=0.004, Figure 7.5E) but not when adjusting

for A plasma insulin level (r=-0.06, p=0.7, Figure 7.5F).

o
O

A Z=-15mm :
O Hunger M Satiety

Left

os] — 1

zfALFF of Fusiform

Fusiform

T Value, FDRc<0.05

A zfALFF of Fusiform (hunger-satiety)

T3 2 4 0 1 2 3 4
A Glucose (hunger-satiety) in mmol/L

o N A2 @ @ QO

Plasma glucose in mmol/L
20 min after oral glucose

Figure 7.4: Glucose-associated low-frequency BOLD fluctuations.
(A) The A (hunger-satiety) of fALFF in Fusiform connected with A glucose plasma after glucose

administration. The statistical image was assessed for cluster-wise significance using a cluster
defining threshold p<0.001, 0.05 FDR corrected at the cluster level. (B) Amplitude of BOLD
signal in the fusiform gyrus and plasma glucose levels in the hunger and satiety states. (C) The
LOOCYV showed that a positive correlation (r=0.75) between the average A fALFF value of
fusiform cluster and A plasma glucose, adjusted for A plasma insulin level. LOOCV: leave-one-
out cross-validation.
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Figure 7.5: Insulin-associated low-frequency BOLD fluctuations.
(4) The A (hunger-satiety) of fALFF in the left posterior (pos.) insula and superior frontal gyrus (SFG)

connected with A plasma insulin after glucose administration. The results were assessed for cluster-
wise significance using a cluster defining threshold p<0.001, 0.05 FDR corrected at the cluster level.
(B) SFG and pos. insula amplitude values of the BOLD signal and plasma insulin levels in the hunger
and satiety states. (C) Scatter plot of the correlation between A plasma insulin and average A fALFF
value of left pos. Insula (LOOCV of r=0.7; red dots and line) and left SFG (LOOCV of r=0.8; blue
dots and line), adjusted for A plasma glucose level. (D and E) Represent a significant positive
correlation between the average A fALFF values of left pos. Insula and left SFG when the data was
either not adjusted or adjusted for A plasma glucose, respectively. (F) The correlation between the
average A fALFF value of left posterior Insula and left SFG was no longer significant when the data
were adjusted for A plasma insulin level, which suggests the effects were driven by plasma insulin.
LOOCV: leave-one-out cross-validation.

In addition, we found no significant correlations between subjective feeling of hunger with

changes plasma glucose and insulin as well as with changes brain activity (i.e. clusters that

survived the cluster-significance test). These results are shown in Figure 7.6.
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Figure 7.6: Scatter plots illustrate the correlations between changes subjective feeling of
hunger with changes plasma glucose and insulin as well as with changes in brain activity
(i.e. clusters that survived the cluster-significance test).

(A)-(C) represent the associations before glucose administration. (D)-(I) represent the

associations after glucose administration. A refers to the difference between hunger and satiety.

7.4 Discussion

As mentioned in Chapter 3, plasma glucose and insulin levels differed between hunger and satiety
conditions and were also differentially influenced by glucose administration (Figure 3.1).

In the present chapter, we investigated the interaction of hunger and satiety with plasma
glucose and plasma insulin levels before and after glucose administration and explored this
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interaction’s impact on changes in resting state fMRI. We used fALFF, a measure reflecting the
temporal fluctuation of the BOLD signal, to study neural activity and connectivity. Multiple linear
regressions analyses (MLRA) with two covariates (glucose, insulin) was used to assess the
moderating influence of these covariates on the differences between hunger and satiety conditions.

The analyses of the fALFF data revealed an increased BOLD signal amplitude in the
posterior cingulate cortex in hunger relative to satiety that was independent of glucose and insulin
plasma levels. Brain activity reflecting the difference between hunger vs. satiety was modulated
by changes in glucose and insulin plasma levels in fusiform and PINS after oral glucose intake,

respectively.

7.4.1 Resting-state fMRI: hunger vs. satiety effects

The amplitude of the rs-fMRI signal was increased for hunger vs. satiety in the left inferior parietal
gyrus (IPG) before oral glucose treatment and in the posterior cingulate cortex (PCC) before and
after oral glucose treatment (Figure 7.2). Several studies using visual stimuli showed the enhanced
activity of IPG,PCC, precuneus and insula during food choice vs. non-food choice under hunger
conditions [209,330]. Moreover, PCC and precuneus are core hubs of the default mode network
(DMN) [91,211]. The DMN is activated during the rs-fMRI paradigm and deactivated during task-
based fMRI, when attention is oriented towards internal rather than external stimuli [34,331]. In
line with that, the DMN, especially in the PCC, has been shown to be involved in self-referential
processes [210]. A study using ICA approach to investigate the FC of obese/overweight subjects
found a reduction of DMN activity associated with a decrease in hunger ratings and fat mass after
six months of exercise [171]. In the current experiment, the increased fALFF in PCC region seems
to be driven by metabolic state (hunger vs. satiety; Figure 7.2) independently of changes in the

plasma glucose and insulin levels. Consistent with our results, DMN activity has been shown to
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be positively correlated with lower blood glucose levels [170] and with hunger ratings [171]. Our
findings in the current and previous chapter about increased activation of the DMN (i.e. PCC)
under hunger condition might be indicative of increased self-focus during food deprivation.

We found a significant increase of fALFF in the left mediodorsal thalamus under hunger
conditions and a decrease in satiety after (but not before) glucose treatment indicating an
interaction between metabolic state and glucose administration in this region. Thalamic brain
activity has been reported to vary as a function of hunger [212,213], ghrelin application [214] and
glucose infusion [70,215]. A previous study [48] reported a positive correlation between fasting
levels of ghrelin and thalamic reactivity to food images, though this effect was not further
modulated by glucose intake (75 g glucose). The thalamus is central for the integration of
proprioceptive information stemming from the gastrointestinal (Gl) tract [70,216]. Specifically,
afferent information from this tract reaches the thalamus via the vagus nerve [217]. Consistent
with this observation, Rolls [207,218] postulated that the mediodorsal thalamus impacts short-term
eating behavior. Our results agree with these proposals in that mediodorsal thalamus activity is

partly dependent on metabolic state and associated with glucose metabolism.

7.4.2 Resting state fMRI: before vs. after glucose treatment

FALFF was lower in the left SMA after glucose ingestion (Figure 7.3). The SMA is crucial for
planning movements [195,196] and observation of actions [197]. The response to glucose
ingestion in the form of lower activity in the SMA could potentially lead to suppressed action
planning or initiation because of an alteration in the available energy resources of the body.
Therefore, plasma glucose might affect brain regions controlling attention, food evaluation and

motor planning. Further research is needed to back up this interpretation in the form of task-related

106



7.4 Discussion

fMRI or behavioral studies that show such functional differences in dependency of blood glucose

levels.

7.4.3 Correlations between physiological and neural effects

We observed that changes in plasma insulin levels (hunger vs. satiety) after oral glucose
administration were negatively associated with changes in the amplitude of the BOLD signal in
the left PINS and the left SFG). Furthermore, we found a significant positive correlation between
left PINS and left SFG when the A fALFF values were adjusted for the Aplasma glucose, while
this relationship disappeared when the A fALFF values were adjusted for the Aplasma insulin
(Figure 7.5). In contrast, changes in plasma glucose levels were positively correlated with changes
in the fALFF in the left fusiform after oral glucose administration (Figure 7.4). The PINS is
involved in sensory, motor and interoception taste intensity [208,332—334] but is also activated
during hunger [212], during food craving [335], and on receiving an appetitive drink [336]. The
SFG is activated in response to appetitive stimuli in fasted subjects [199,200], and it is frequently
involved in inhibiting approach behavior towards food [337—339]. The fusiform gyrus harbors
high-level visual processes (e.g. face recognition [340]) but has been shown to be activated in the
response of food cues after glucose administration [341], to high vs. low caloric food pictures in
lean subjects [7], and as a function of increasing hunger [213].

Our data showed that oral glucose administration modulates the insulin-dependent
association between PINS and SFG, as well as the association between left fusiform gyrus activity
with plasma glucose. Our results suggest that the fusiform, PINS, and SFG activity is modulated
by an intricate interplay of glucose and insulin levels, most likely to regulate ingestive behavior

by differential engagement of attentional, executive and effective processes.
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These findings dovetail nicely with results from rs-fMRI studies demonstrating that body
weight and insulin levels influence the functional connectivity within and between cognitive and
homeostatic brain regions [315,318].

One limitation of the current analysis is the correlation analysis after glucose administration
was only performed with endocrine data narrowly associated with the fMRI data collection to keep
this connection as clear as possible. This Chapter focused on revealing correlations between
plasma insulin and glucose concentrations and brain activity under different metabolic states. To
strengthen these results, future studies might employ a longitudinal design with multiple fMRI
sessions during the course of the fasting and control conditions and collection of the endocrine
data. If the shown correlations persist or build up in a sensible way over time, these results would
be a strong contribution to the correlational findings of this study. As this study was designed to
confirm findings of other studies and show the validity of these potential correlations in a
physiological setting with an oral glucose intake intervention we only performed two fMRI
sessions. To establish a causal relationship in contrast to our correlational findings, an

experimental manipulation using insulin clamp and/or glucose clamp techniques is needed.

7.5 Conclusions

Our results suggest that plasma glucose and insulin respond similarly to oral glucose intake
(Chapter 3) depending on metabolic states (hunger vs. satiety) and that these responses are related
to different neural processing in the brain (Chapter 7). Changes in plasma glucose were associated
with changes of activation patterns in the fusiform gyrus, while changes in plasma insulin
enhanced connectivity between the posterior insula and superior frontal gyrus when added as a
covariate in the multiple linear regression analysis, indicating that changes in plasma insulin levels

were at least partially responsible for the augmented connectivity. This connectivity appears to be
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related to alleviating an acute hemostatic energy deficit. This connectivity appears to be related to
alleviating an acute hemostatic energy deficit. These results contribute to identifying the neural
mechanisms through which insulin regulates food intake [38]. All in all, our findings expand
existing neural models of homeostatic energy and highlight the complex nature of food intake and

hormone-relationships in humans.
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Chapter 8: Effect of hunger, satiety and oral glucose on the effective

connectivity between hypothalamus and insular cortex’

8.1 Introduction

Food intake in humans is determined and affected by non-homeostatic (i.e. external) factors, such
as the social situation and time, and homeostatic (i.e. internal) factors related to the body's energy
needs, such as hunger and starvation [1,342,343]. However, controlling food intake and energy
homeostasis under different metabolic states (hunger vs. satiety) is remarkably complex in
humans, since it is influenced by the interaction of the endocrine system and brain structures
involved in monitoring proprioceptive signals [1,4,64]. Interactions between brain function and
body energy homeostasis can be further altered by various pathophysiological conditions such as
increased blood lipids in obesity [344—-346]. For instance, in overweight subjects, body mass index
(BMI) and insulin levels are associated with variations in neural of resting-state functional
connectivity (FC) after an overnight fast [318]. Furthermore, FC imbalance between brain regions
associated with impulsivity (i.e. inferior parietal lobe), response inhibition (i.e. frontal pole) and
reward (i.e. nucleus accumbens) is correlated with increased food approach behaviors and obesity
in children [347]. Nevertheless, FC captures purely correlational relationships between the two
regions and does not yield information with regard to the direction of influences. Therefore,

studying how the directed connectivity within brain networks involved in homeostatic regulation

" This chapter corresponds largely to: Arkan Al-Zubaidi, Sandra Iglesias, Klaas E. Stephan, Macia
Buades-Rotger, Marcus Heldmann, Janis Marc Nolde, Henriette Kirchner, Alfred Mertins, Kamila Jauch-
Chara and Thomas F. Miinte. Effects of hunger, satiety and oral glucose on effective connectivity between
hypothalamus and insular cortex. In revision at Neurolmag. | participated in the experiment design and data
collection. | analyzed the data and wrote the manuscript.
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is modulated by physiological (metabolic) states would constitute an important step forward to
understanding the neural control of food intake.

The hypothalamus was identified as a core node of homeostatic networks many decades ago
[348-351]. It is linked, at both the structural and functional levels, with brain regions, such as the
insula, thalamus, prefrontal cortex and brainstem, which are involved in controlling the
homeostatic energy balance [352-357].

The insular cortex is a heterogeneous and complex area that has been linked to diverse
processes including motivation, reward and emotion [333,358,359]. However, its functions also
include the processing of external sensory (e.g. gustatory) information [360,361], and is therefore
thought to represents an interface between homeostatic and hedonic processes controlling food
intake [351,362,363]. The insula is also proposed to be a hub linking multiple large-scale brain
systems [358]. Macroscopically, it is divided into the anterior/agranular insula (AINS) and the
posterior/granular insula (PINS) in humans [333,364], rats [358,365] and non-human primates
[366,367].

Both hypothalamus and insular cortex respond to hunger- and satiety-inducing signals [63—
66]. For instance, whilst hunger increases activity of the hypothalamus [59], satiety exerts
suppressive effects on the hypothalamic signal, as occurs after exogenous glucose or insulin
administration, [67—71]. However, most of brain imaging studies used a typical resting-state fMRI
(rs-fMRI) approach to investigate the FC between seeds (i.e. hypothalamus, AINS and PINS) and
brain areas involved in appetite regulation [60,66,368,369] and thus cannot clarify the
directionality of connections between these regions. For example, a study using seed-based

analysis to investigate the effect of fasting and satiation on FC of healthy subjects found an
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enhancement of FC between the posterior insula and superior frontal gyrus, and between the
hypothalamus and inferior frontal gyrus after overnight fasting [66].

Much of our understanding on how the central nervous system governs ingestive behavior is
based on experiments in rodents, which has proven especially fruitful to uncover functional sub
specializatzions within the hypothalamus [370]. However, the markedly larger and more gyrified
neocortex observed in humans [371] complicates direct comparisons in cortical processing
between humans and rodents. Non-human primates offer a more valid animal model with which
to delineate the neural architecture of appetite regulation. Indeed, convergent evidence from
studies in non-human and human primates suggests a highly conserved architecture underlying the
neural processing of food. Specifically, the AINS —which contains the primary gustatory cortex-
appears to code for the physical properties of food (i.e. texture, temperature), whereas the
orbitofrontal cortex (OFC) tracks the subjective pleasantness of flavors and smells [207].
Subcortical areas such as the hypothalamus or the brain stem do not seem to be involved in these
evaluative processes to the same degree. Rather, these structures receive interoceptive information
signaling hunger and satiety [207,372,373]. This information is then relayed through the PINS
towards the AINS and from there to orbitofrontal areas, where subjective valuation of the
organisms’ metabolic state presumably takes place [374—-376].

There is thus a hierarchical structure by which proprioceptive information reaches the
hypothalamus and becomes increasingly elaborated in the insular cortex, where it is integrated
with external inputs and forwarded to the OFC. Despite the similarity of this circuit between apes
and humans, the enlarged relative size and folding of frontal and temporal lobes in humans
intrinsically limits generalization across species [377]. Moreover, human ingestive behavior is

more strongly governed by non-homeostatic (i.e. external) factors, and thus animal models might
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not suffice to capture complex processes that go beyond rudimentary affective states such as joy
or fear [378].

Finally, it is unclear how metabolic states affect the effective connectivity (EC), between
these regions. To fill this research gap, we applied dynamic causal modeling (DCM) to infer
effective (directed) connectivity on latent (hidden) neuronal states from measured brain data using
predefined models [145] in a study that manipulated metabolic state (hunger vs. satiety) and energy
availability (before and after glucose administration) in healthy young men. DCM can be used to
gather evidence favoring one network model (hypothesis) over other models and to understand
how nodes (i.e. brain regions) might influence each other [146]. With a DCM variant called
spectral DCM (spDCM) it has become possible to examine the intrinsic connectivity in rs-fMRI
data [147]. Spectral DCM uses a Bayesian procedure to estimate the strengths of endogenous
connectivity in the absence of (known) external perturbations like tasks or stimuli.

In a previous analysis of the same data set, we observed reduced FC in AINS after glucose
application during both hunger and satiety, see Chapter 5. Furthermore, we found that increases
in plasma insulin levels between hunger and satiety were negatively related to PINS activity after
glucose administration, see Chapter 7.

In the present investigation, we first used spDCM to estimate the EC parameters for each
participant and experimental condition (hunger vs. satiety, before vs. after glucose administration)
using rs-fMRI data. Subsequently, we applied Bayesian model selection (BMS) [163] to determine
the most plausible model in each condition from a set of competing hypotheses (i.e. models).
Finally, we performed an analysis of variance (ANOVA) on estimated neural parameters to test
whether the estimated connection strengths between hypothalamus, PINS and AINS are affected

by the metabolic states and glucose treatment. We hypothesized increased forward information
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flow in the hypothalamus-PINS-AINS network during fasting relative to satiety, in line with
studies showing enhanced hypothalamic activity [59] and coupling with frontal structures [66] in
a hunger state. We further speculated that glucose administration would act as a transient satiety
signal [67—71] and hence reduce the strength of these forward connections. We were however
agnostic regarding the effect of prandial state and glucose administration on backward connections

due to the absence of previous studies on the topic.

8.2 Materials and methods

8.2.1 Participants

Twenty-four healthy male participants of normal weight were twice measured: once after 36 hours
of fasting (except water consumption) and once under satiated conditions. During each session, rs-
fMRI and hormone concentrations were recorded before and after glucose administration.
Furthermore, the only plasma cortisol, glucose and insulin levels narrowly associated with the rs-
fMRI data collection (i.e. at 20 min before and after glucose; see Figure 8.1) were used to associate
the EC parameters with endocrine signals.

In four participants, we were not able to obtain a sufficient normalization of the functional
individual brain image into standard space. Accordingly, these subjects were excluded from the
analyses (see section “Region-of-interest time-series extraction” for further explanation). Details
on the exclusion criteria of participants and the exact timing for obtaining blood samples can be

found in Chapter 2.
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Figure 8.1: Time course of physiological parameters on the second day of the experiment for
different metabolic states.
Mean blood plasma concentrations for cortisol (A), insulin (B) and glucose (C) under hunger and satiety

conditions before and after oral glucose treatment (time point 0). Boxes on the bottom of the graph
indicate the time points of meals on the second day (B = breakfast, L = lunch at 09:00 am and 12:00
pm., respectively). In each condition, the first rs-fMRI was recorded 20 min before, the second rs-fMRI
20 min after the intake of oral glucose. The error bars represent the standard deviation.
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8.2.2 Preprocessing

All structural and functional images were recorded using a 3-T Philips Achieva scanner
(Philips Healthcare, the Netherlands). More information regarding the image acquisition can be
found in Chapter 2

Preprocessing of the data was performed with the “data processing assistant for resting-state

fMRI” toolbox (DPARSF advanced edition, version 3.2, available at http://rfmri.org/DPARSF).

DPARSF uses a subset of functions provided by SPM (SPM12, available at

http://www.fil.ion.ucl.ac.uk/spm/). The rs-fMRI images were preprocessed as follows: (i) The first

7 volumes of each dataset were discarded to allow the signal to reach equilibrium and to allow the
subjects to adjust to the scanning noise; (ii) The origins of structural and functional images were
manually set to the anterior commissure and reoriented to enable a better alignment to the SPM
template in order to prevent from normalization artifacts and to optimize between-subject
alignment; (iii) Functional images were slice-time corrected to the middle slice by means of
Fourier phase shift interpolation [379]. Head movement correction was performed on data by
volume-realignment to the mean volume using a rigid body spatial transform to estimate the
realignment parameters; (iv) Then, the T1 structural image was co-registered to the mean
functional image of each subject; (v) Gray matter, white matter and cerebrospinal fluid (CSF)
segmentation, bias correction and spatial normalization of the T1 structural image were adjusted
to the Montreal Neurological Institute (MNI) template using the DARTEL algorithm [380]; (vi)
The functional images were spatially normalized to the MNI-template by using the normalization
parameters estimated by the DARTEL algorithm with voxels size to 3 mm isotropic; (vii) Spatial

smoothing was performed with a 6 mm full width at half maximum (FWHM) Gaussian kernel.
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8.2.3 Region-of-interest time-series extraction

As regions of interest (ROI), we defined four ROIs located in the insula (two insula ROIs per
hemisphere) and one within the hypothalamus (Figure 8.2). For each insula ROI, we determined
several coordinates (Table 8.1) to cover the functional differentiation within human insula [66].
These coordinates were chosen based on FC studies that provided the association of the specific
ROIs of the insula with other brain areas [368] and which investigated the effect of hunger and
satiety on the insular cortex [66]. Subsequently, each coordinate was used to generate a 5 mm?3
sphere cluster (Figure 8.2A) by using the SPM Marsbar toolbox. Then, we summed up these
clusters to create one combined seed for every subregion of the insula (i.e. anterior and posterior
insula ROI). To avoid an overlap of the insula seed regions and other anatomical brain regions (i.e.
regions outside the insula), we defined the final insula ROIs by finding common voxels between
the insula ROIs and the corresponding insula masks from the Neuromorphometrics atlas provided
by SPM12. The middle insula was not defined in order to avoid any overlap between the anterior
and posterior insula ROIs.

The hypothalamus is notoriously difficult to examine in fMRI experiments as multiple
factors can cause interference due to its anatomical position and size [376]. Even though the
hypothalamus is very extensively subdivided with functional subcenters, we focused our analysis
on the whole hypothalamus as it would have been unrealistic to achieve more spatially detailed
results without running unique measurements adapted to the hypothalamus, which was not the
primary goal of this study. The bilateral hypothalamus ROl (Figure 8.2B) was based on the SPM

Wake Forest University (WFU) Pickatlas toolbox (http://www.fmri.wfubmc.edu/cms/software,

version 3.0; [381]).
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The preprocessed rs-fMRI data for each subject per condition were entered into the general
linear model (GLM) with a constant term, the confound regressors of the CSF signal, the white
matter signal and 24 head motion parameters (six standard realignment parameters, their derivative
and the quadratic terms of these 12 realignment parameters; [382]). The applied temporal high
pass filter of 1/100 Hz was included in the GLM model to remove slow frequency components
caused by scanner drift. After estimation of the GLM model, we extracted time series from our
ROIls, removing any signal that could be explained as a linear mixture of our 26 confound
regressors. The time series was extracted using a singular value decomposition (SVD) procedure
implemented in SPM12 and the first principal eigenvector was retained to represent the ROI time
series (Figure 8.3B). Figure 8.3C and D show the predicted cross-spectral density of the BOLD
signals and the hidden neuronal states, respectively, of the winning model for a single subject. In
four subjects, we were not able to calculate the time series of the bilateral hypothalamus ROI
correctly because some of the voxels within the hypothalamus ROI belonged to the CSF

(normalization artifact). Accordingly, these subjects were excluded from further analyses.
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Figure 8.2: Seeds superimposed on an average structural T1 image.
(A) Middle picture and upper row: left and right anterior insula (green and cyan) and posterior insula

(red and magenta) ROIls. Lower row: individual seeds in the right and left insula. (B) Hypothalamus
(blue) ROL. L, left; R, right.

Table 8.1: Coordinates of the individual 5-mm? sphere clusters of the left and right ROIs of the

anterior and posterior insula, defined by Cauda et al. [383] and Wright et al. [66].

K represents the number of voxels that are common between the insula ROIs and the insula masks
from the Neuromorphometrics atlas provided by SPM12.

Seeds Clusters Left Hems. MNI (x,y,z) ROI(K) Right Hems. MNI (x,y,z) ROI(K)
Ant. Ins. 1 -345 125 25 ) 34.5 12.5 25
2 -36.5 45 -3 385 55 -2.5
3 -30.5 185 55 — 59 355 16.5 55 — 62
4 -32.5 9 11.5 36.5 7 5
5 -30.5 9 45 325 9 11.5
Post. Ins. 1 -36.5 -7.5 -3.5 36.5 -4.5 -3 ]
2 -36.5  -10 4 24 38.5 -8 4 25
3 -345  -13 10 34.5 -11 10.5
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Figure 8.3: Illustration of the hypothalamus-insula network and the results of the winning

model for a single subject.
The five spheres in (A) denote the five ROIs used in the spDCM analysis. The time series (B) from

the five regions are the principle eigenvariates of the regions identified using a conventional SPM
analysis. The observed (dashed lines) and predicted (solid lines) CSD of BOLD signals (C) by the
winning model in the five ROIs. The underlying CSD predicted for the hidden neural states (D).
Hyp = Hypothalamus; AIN= anterior Insula; PIN = posterior Insula; AU = arbitrary units; CSD
= cross-spectral density; abs = absolute.
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8.2.4 Spectral DCM and model space selection

The spDCM analyses (more details can be found in Section 4.2.1 regarding spDCM) were
specified for each subject in each experimental condition (satiety-before, satiety-after, hunger-
before and hunger-after oral glucose) separately using DCM12 (revision 7196) implemented in
SPM12 (revision 7219). For each condition and participant, the average EC between the ROIs was
modeled using different models. These different models varied in their directed connections
between the five ROIs and were specified in order to explore alternative hypotheses of insula-
hypothalamus network interactions. To limit the number of possible models, we assumed that
during rs-fMRI measurements connectivity patterns are symmetric for the left-right hemisphere.
The connections between hemispheres were supposed to take place either via hypothalamus, PINS
and AINS (Figure 8.4A: models 1-4) or via hypothalamic connections alone (Figure 8.4A: models
5-8). Endocrine signaling of gut peptides that are related to promote meal initiation (e.g. ghrelin)
or to promote meal cessation (e.g. insulin and leptin) reach specialized neurons within the
hypothalamus and achieve their consequences by influencing brain regions involved in food intake
regulation [3,64,384,385]. Therefore, we abstained from calculating models without any
hypothalamic connections. The models in Figure 8.4A display eight possible connections (parallel,
i.e. models 1,2,5 and 6, forward, i.e. models 3 and 7, and backward, i.e. models 4 and 8) between
the hypothalamus, PINS and AINS. After inverting and estimating the models, we used BMS to
determine the most accurate model structure to describe the measured fMRI data [163]. The
optimal model is determined by selecting the model with the best balance between data fitting (i.e.
accuracy) and model complexity, as defined by the free energy bound on the model evidence [386].
Random-effects BMS calculates the posterior model probability (that a specific model generated

the data of a randomly chosen subject) and the protected exceedance probability (that a given
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model is more likely than any other model considered). Treating the model as a random variable
in the population renders the method capable of dealing with population heterogeneity whilst being

robust to outliers, or equivalent [163].

@ Satiety after glucose mm Satiety before glucose mm Hunger before glucose mm Hunger after glucose
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Figure 8.4: Different plausible hypotheses and Bayesian model selection.
(A) Possible connections among the five ROIls to explain the effective connectivity in the

hypothalamus-insula network. Note that double arrow means reciprocal connections between two
regions. (B) and (C) denote Bayesian model selection results per experimental condition for
expected and protected exceedance probability in 8 models compared using RFX BMS,
respectively. Hypo = Hypothalamus; AINS= anterior Insula; PINS = posterior Insula.
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To evaluate the success of model inversion or fit, the percent variance explained (or R2) by
the models for each experimental condition and subject were calculated using
spm_dcm_fmri_check.m, see Figure 8.5.
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Figure 8.5: Percent variance explained (R?) by the models for each experimental condition.
The bars show mean of R? across subjects and the error bars represent the standard deviation.

8.2.5 Parameter estimate of the winning model
The random-effects BMS procedures were used to determine the “winning model” for each
metabolic state condition (hunger or satiety) and glucose treatment (before or after glucose

administration), separately. Then, we evaluated the endogenous connectivity parameters of the

winning model in each condition using a second-level frequentist test. [387]. One-sample t-tests
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(p<0.05/16, Bonferroni corrected for multiple comparisons) were applied to test whether the
parameters of interest deviated significantly from zero. We reported the strength of the connections
in Hz across participants (mean + SD) and the corresponding p-value.

The winning model of each condition resulted in the same model (see results section). Thus,
we can examine the influence of conditions on the connections between ROIs. In the next step, the
endogenous connectivity parameters of the winning model were submitted to rm-ANOVA with
factors metabolic state (levels: hunger, satiety) and glucose administration (levels: before, and after

treatment).

8.2.6 Associations between DCM parameters, physiological and behavioral responses

We tested whether the participant’s physiological (plasma cortisol, glucose and insulin levels) and
behavioral (rating of hunger) responses could be predicted by the neuronal parameter estimates
(NPEs; i.e. from 16 endogenous connections and 5 self-connections) of the winning model. We
used multiple linear regression (MLR) analysis to test for a statistically significant relationship
between components of NPEs (independent variables) and the respective dependent variable. First,
we performed principal component analysis (PCA) on NPEs to reduce the dimensionality of the
independent variables and to provide principal components (PCs), which are the linear
combination of the NPEs. Separate PCA analyses were applied to 21 parameters for each of the
four experimental conditions to determine the number of components (Figure 8.6). Approximately
87+2% of the variance was explained by the remaining the first six neuronal parameter components
(NPCs; Figure 8.6). Therefore, six NPCs were extracted from the NPEs per experimental
conditions. Next, these NPCs were used as independent variables in the MLR model [388] to
predict participants’ plasma glucose, plasma insulin, plasma cortisol and hunger ratings. Each of

the MLR analysis was performed four times to cover all experimental conditions. To keep the
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temporal association of endocrine and functional imaging data as clear as possible, the
physiological data at 20 min before and after glucose ingestion only (Figure 8.1) were used as
dependent variables for MLR analysis.

The rm-ANOVA on the NPEs (see Results 8.3.2 and Figure 8.8), resulted in a significant
main effect of the metabolic state on the endogenous connection estimates from the right posterior
to the right anterior insula (RPINS—>RAINS) and from the right anterior to the right posterior
insula (RPINS<RAINS). To investigate whether the changes in these connections were associated
with physiological and behavioral responses, we used linear mixed-effects (LME) analysis which
allows us to perform multiple regression while taking into account the repeated measures design
of our subjects [389]. The LME model identifies the linear relationships between a dependent
variable (e.g. cortisol) and independent variables (NPEs), with coefficients that explain variation
in respect to one or more grouping variables (e.g. experimental conditions). To this end, separate
LME analyses were carried out for each of the four dependent variables (i.e. plasma cortisol,
glucose and insulin levels as well as hunger ratings). Furthermore, the only plasma cortisol,
glucose and insulin levels narrowly associated with the rs-fMRI data collection were used as
dependent variables (Figure 8.1). For each of these four models, we entered the metabolic state
(levels: hunger vs. satiety) and glucose administration (levels: before vs. after glucose
administration) as well as EC of RPINS>RAINS and RPINS<RAINS as a fixed effect with the
intercepts for subjects as a random effect. As post-hoc tests, a set of LME was used to further
analyze the interaction driving factor levels. All continuous variables were z-scored. LME analyses
were performed using the “Imer” function in the Ime4 package [390] with R [391] and sjPlot [392].

For significant slopes, we reported the regression coefficient parameter estimate ().
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Figure 8.6: Principal component analysis (PCA) on neuronal parameter estimates (NPEs; i.e.
from 16 endogenous connections and 5 self-connections) for each of the four experimental
conditions.

The bars show the proportion of variance represented by each component and the solid line
represents the cumulative variance. Approximately 87+2% of NPEs information (variance)
was explained by remaining the first six neuronal parameter components.

8.3 Results

8.3.1 Bayesian model selection

When testing for the model structure that explains the rs-fMRI data best by using RFX BMS,
model 1 (Figure 8.4B) had the highest protected exceedance probability (PXP=0.99) at the group

level for each experimental condition (shown in Figure 8.4C). The lower evidence of models
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without interhemispheric connections (models 5-8) indicates that lack of inter-hemispheric
connectivity led to a worse explanation of the participants’ network activity. This result suggests
that the reciprocal connections, both within hemispheres (i.e. hypothalamus-PINS-AINS) and

between hemispheres were necessary network features.

8.3.2 Model parameters

We investigated whether the EC among the ROIs estimated using the winning model were
significantly non-zero separately for each condition. In Table 8.2 and Figure 8.7 we show the mean
connection strength (in Hz) and the results from the one-sample t-tests. For simplicity, self-
connections are not included in the table and graph. To sum up, in the satiety condition after oral
glucose intake we found that the connection strength from left anterior insula (LAINS) to left
posterior insula (LPINS) was significantly different from zero (p=0.002, surviving Bonferroni
correction). Furthermore, in the hunger condition before oral glucose intake, we found that the
connection from the right posterior insula (RPINS) to the right anterior insula (RAINS) was
significantly different from zero in satiety (p=0.001, surviving Bonferroni correction), too. Finally,

we did not find any significant connections from or to the hypothalamus.
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Figure 8.7: The winning model at the group level and its mean connectivity parameters (in Hz)
per experimental condition.

The significant (p<0.05) connections are shown in bold. The * and # represent significance at p<0.01
and after Bonferroni correction (p<0.05), respectively.
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Two-way rm-ANOVA was conducted to determine the influence of two independent
variables (metabolic state and glucose administration) on endogenous connection estimates of the
winning model. Both metabolic state (hunger and satiety) and administration (before and after
glucose intake) consisted of two levels. There were no significant effects of glucose administration
and interactions between both factors on all endogenous connection estimates. We found a
significant (p<0.05) main effect of metabolic state on the endogenous connections from RPINS to
RAINS (forward connection, RPINS>RAINS) (F,19=8.8, p=0.008), indicating significant
stronger connectivity during hunger (M=0.37 Hz, SD=0.49) compared to satiety (M=0.15 Hz,
SD=0.54 ). Also, we observed a significant main effect of metabolic state on the endogenous
connections from RAINS to RPINS (backward connection, RPINS&RAINS) (F(1,19=4.7, p=0.04)
indicating that the satiated state (M=0.12 Hz, SD=0.49) showed higher connectivity strength
compared to the hunger state (M=-0.11 Hz, SD=0.55), as shown in Figure 8.8.
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Figure 8.8: Effective connectivity parameters that showed a significant main effect of
the metabolic state (hunger vs. satiety).
(A) Strength of the forward connections from RPINS to RAINS (RPINS RAINS). (B) Strength of

the backward connections from RAINS to RPINS (RPINS €RAINS). * and ** represent the
significant differences between conditions, p < 0.05 and p<0.01, respectively.
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Table 8.2: Posterior estimates of effective connectivity (Hz) in the winning model (mean + SD) per experimental condition.
Using one-sample t-tests, we tested whether effective connectivity was significantly different from zero.

Satiety Hunger
Connections Before Glucose After Glucose Before Glucose After Glucose
Strength (HZ) ~ P-Value  Strength (HZ)  P-Value | Strength (HZ)  P-Value  Strength (HZ)  P-Value
LAINS - Hypo -0.07 £ 0.61 0.8 -0.08 + 0.37 0.15 0.04 £0.68 0.35 -0.01 +0.44 0.21
LPINS = Hypo -0.06 + 0.29 0.9 -0.04 +0.28 0.85 -0.12+0.41 0.85 -0.01 +0.23 0.5
RAINS - Hypo -0.02 +0.72 0.32 0.09 +0.64 0.85 -0.11+0.51 0.07 0.09+£0.51 0.92
RPINS - Hypo 0.07 £0.56 0.46 -0.04 +0.38 0.95 0.1+£044 0.91 -0.11+0.42 0.26
Hypo > LAINS 0.03+0.61 0.62 0.17+0.51 0.34 0.13+£0.62 0.77 0.18 +0.61 0.89
LPINS > LAINS 0.09 £0.43 0.16 0.15+£0.53 0.46 0.26 £0.35 0.03 0.2+0.39 0.04
RAINS - LAINS 0.24 £0.59 0.16 0.31+0.51 0.008* 0.06 £0.85 0.21 0.23+0.73 0.11
Hypo > LPINS -0.02 + 0.68 0.37 0.03 £0.67 0.57 -0.01 + 0.68 0.2 0.13+£0.83 0.87
LAINS - LPINS 0.29 £0.89 0.35 0.5+£0.25 0.002# 0.12+£0.72 0.07 0.15+0.63 0.06
RPINS - LPINS 0.25+0.73 0.12 0.003 £ 0.72 0.43 0.42+£0.75 0.006* 0.22 £ 0.58 0.05
Hypo > RAINS -0.09 +0.38 0.91 -0.07 £ 0.45 0.55 0.13+0.32 0.36 0.01+£0.38 0.43
LAINS > RAINS 0.16 £ 0.47 0.08 0.19+0.39 0.009* 0.16 £ 0.55 0.78 0.14 £ 0.37 0.17
RPINS > RAINS 0.16 £ 0.56 0.11 0.13+0.52 0.67 0.41 +0.46 0.001# 0.32£0.53 0.004*
Hypo > RPINS -0.07 £ 0.43 0.58 -0.01 £ 0.59 0.65 -0.01 £ 0.47 0.33 0.12 £ 0.47 0.24
LPINS - RPINS 0.11+0.35 0.14 0.25+0.36 0.006* 0.1+£0.54 0.11 0.21+0.42 0.02
RAINS > RPINS 0.19 £0.52 0.23 0.05+0.46 0.29 -0.14 + 0.59 0.72 -0.08 + 0.52 0.82

The significant (p<0.05) connections are shown in bold. The * and # represent significance at p<0.01 and after Bonferroni correction (p<0.05),
respectively. Abbreviations: LAINS, left anterior insula; LPINS, left posterior insula; Hypo, hypothalamus; RAINS, right anterior insula; RPINS,
right posterior insula.
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8.3.3 Associations between DCM parameters, physiological and behavioral responses

MLR analysis was applied to explain the physiological or behavioral responses of participants

based on their NPEs (i.e. six NPCs). We found a significant regression equation for the prediction

of plasma cortisol levels before oral glucose intake for both satiety (F,13=3, p=0.04 with an R? of

0.58) and hunger conditions (F(13=2.8, p=0.05 with an R? of 0.56). As shown in Figure 8.9 no

other regression became significant.
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Figure 8.9: Multiple linear regression (MLR) analysis.
The expression of significant regression equations to predict physiological (plasma glucose, insulin
and cortisol levels) and behavioral responses (rating of hunger) of participants based on their six
principal components computed from the spDCM neuronal parameter estimates (for every
experimental condition separately). The red color represents the significant results.
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Critically, LME analyses revealed significant interactions ($=-0.8, p =0.007) between
RPINS—>RAINS connection (forward connection) strength, metabolic state and glucose
administration in explaining cortisol levels (Figure 8.10A). To further analyze the interaction-
driving factor, we performed LME analyses per glucose treatment condition separately, as post-
hoc tests. We found that the interactions between RPINS->RAINS and metabolic state predicting
the cortisol levels was significant ($=0.9, p=0.01) before, but not (B=-0.5, p=0.2) after oral glucose.
More precisely, before oral glucose treatment, the forward RPINS—>RAINS connectivity showed
a strong positive (f=0.7, p=0.03) and negative (f=-0.5, p=0.06) relation to cortisol levels in hunger
and satiety conditions, respectively. Whereas, after oral glucose treatment, the relationship
between RPINS—>RAINS strength and cortisol disappeared for both the hunger (f=-0.4, p=0.08)
and satiety (f=-0.03, p=0.9) conditions.

Finally, the interactions between the RPINS<RAINS connection strength (backward
connection) and metabolic state significantly predicted cortisol levels (Figure 8.10B; =-0.7,
p=0.02) and the hunger ratings (Figure 8.10C; p=-0.6, p=0.03). More precisely, the backward
RPINS €<RAINS connection strength showed positive relations to both, the cortisol levels (f=0.5,
p =0.1) and hunger ratings (=0.7, p=0.007) in the satiety condition. In contrast, in the hunger
condition, the RPINS<RAINS connection strength was negatively and non-significantly
associated with cortisol levels (p=-0.3, p=0.2) and hunger ratings (f=-0.5, p=0.08). In addition, we
observed no significant relations between the glucose or insulin levels and the forward

RPINS—>RAINS or backward RPINS<RAINS connection strengths.
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Figure 8.10: Interactions between covariates in the linear mixed effects model predicting

individual physiological and behavioral response
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(A) Interaction of RPINS 2RAINS connectivity (forward connection) with the metabolic state (levels:
hunger vs. satiety) and glucose administration (levels: before vs. after glucose administration). (B) and
(C) interaction of RAINS 2RPINS connectivity (backward connection) with metabolic state predicting
cortisol levels and hunger ratings, respectively. Solid lines indicate linear regression fit between the

dependent variables (y-axis) and covariates (x-axis). int.

> interaction. RAINS: right anterior insula.

RPINS: right posterior insula. f5: slope coefficient parameter estimate resulting from linear mixed-effects

models. ns: represent no significance.
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8.4 Discussion

The purpose of this study was to investigate the influence of prandial state (hunger vs. satiety) and
glucose administration on EC patterns between the hypothalamus, PINS and AINS as core
components of the neural network supporting ingestive behavior. Applying spDCM to rs-fMRI
data, we were able to estimate the directed connectivity between brain regions of interest at
neuronal states. Our results suggest that the strength of the EC was modulated by changes in
prandial states, but not glucose administration. Specifically, during the hunger condition, the
strength of endogenous connectivity was increased from right PINS to the right AINS, while it
was decreased from right AINS to right PINS (Figure 8.8). Connectivity strength from AINS to
PINS was further related to enhanced hunger ratings during the satiety condition, suggesting that
EC changes in the homeostasis regulation network might partly underlie subjective hunger

perceptions and thereby impact food intake.

8.4.1 Changes in endogenous connectivity related to metabolic conditions

Spectral DCM analysis is a framework to model the effective connectivity between ROIs based on
the FC in rs-fMRI data as well as make inferences about specific parameter changes [147]. BMS
reveals the most likely model (i.e. possible way of connections) among a set of different models
to explain the data by taking into account the balance between complexity and goodness-of-fit
[386,393,394]. In this work, BMS suggested that the fully connected model (model 1 in
Figure 8.4A) was the best model in all experimental conditions (Figure 8.4C).

Regarding the endogenous connectivity, we observed that inter-hemispheric connections
between left-right AINS and between left-right PINS were positive in both directions for all
experimental conditions, i.e. left and right insula exerted a mutual positive influence on each other;
this could be regarded as ‘baseline’ reciprocal activation. Lateralization of emotional and
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homeostatic processing in the insula has been suggested to be associated with differential
autonomic inputs (sympathetic/parasympathetic) to this structure [395-397]. For instance,
Oppenheimer et al. [398] demonstrated that direct stimulation of the right insular cortex results in
changes in sympathetic functions, which are needed in hunger, avoidance behavior and negative
affect [374], while the left insular cortex has been reported to be involved in parasympathetic
functions, which are required in feeding, approach behavior and positive affect [374].
Furthermore, a recent meta-analytical study demonstrated asymmetrical information processing in
the insular cortex in response to hunger-inducing food stimuli [399]. Our results suggest
continuous cross-communication between homologous insula regions, which could serve to
integrate sympathetic and parasympathetic signals.

After fasting, we observed a strong positive connection in the right hemisphere from PINS
to AINS (RPINS—>RAINS; Figure 8.7 and Figure 8.8A) which suggests a more intense influence
of interoceptive inputs represented in PINS on AINS function [397,400-402]. In the same
condition, a negative connection from right AINS to right PINS (RPINS <RAINS; Figure 8.7 and
Figure 8.8B) indicated an inhibitory influence of the anterior insula on posterior insula during
hunger. These findings can be interpreted in the context of recent theories of interoception that we
describe below.

According to meta-analyses [403,404], PINS receives information about the physiological
and homeostatic conditions of the body. For instance, PINS is activated in response to hunger,
receiving an appetitive drink, thirst, sensual touch, gastric distention without actual food intake,
itch and temperature changes [208,333,334,401,405-411]. Also, the PINS is linked to the posterior
cingulate cortex, supplementary motor area, sensory-motor and part of occipital areas. This

network is mainly related to environmental monitoring, response selection and body orientation
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[332,395,405,412-414]. It thus subserves the objective representation of physical body conditions
[415,416].

In contrast to PINS, AINS is of particular significance for food intake and corresponding
primary gustatory signals [207,417]. For example, right AINS is activated in response to different
tastes, smells and food textures [332,334]. In addition, the right AINS is proposed as a primary
cortical area for awareness of and attention shift to internal body signals, for instance in the
perception of pain and heartbeat [415,416,418-423]. Furthermore, the AINS is anatomically and
functionally connected to the middle and inferior temporal cortex, anterior cingulate cortex (ACC)
and orbitofrontal cortex. This network is mostly concerned with attention and executive
functioning as well as salience detection [368,383,424-429]. The AINS is therefore regarded as
one of the main brain areas for multimodal integration and has been proposed to represent
subjective emotional states [415,416].

Craig [430] suggested a pathway that maps objective representations of body conditions onto
a subjective representation of the physical self, via posterior-to-anterior pathways within the right
insula. Our results demonstrate that the connection strength from the right PINS to the right AINS
is increased in hunger by 22% relative to satiety conditions. This finding indicates that the
connectivity within the right posterior-to-anterior insula pathway (RPINS—>RAINS) can be altered
by food intake because those changes were only observed in response to changes in metabolic
states, but not in glucose treatment. Our observations suggest that changes within this pathway,
which is related to subjective hunger feelings, could be caused by increasing the perceived salience
of internal bodily states [397,430]. In contrast, we observed a decreased strength of backward
connections from right AINS to right PINS (RPINS<RAINS) during hunger conditions. One

could assume that the reduced strength of EC from RAINS to RPINS might be the result of bodily
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signals forwarded from posterior to anterior insula (RPINS—>RAINS), which may become more
salient in the hunger condition. An alternative (and equally tentative) interpretation refers to recent
theories that PINS, AINS, and ACC are part of a hierarchical system for inference on bodily states
(interoception) and homeostatic/allostatic regulation [431,432]. These theories view interoception
as a “predictive coding” [433,434] process in which inference is mediated by transmitting
predictions via backward connections and prediction errors via forward connections. Predictions
represent previously learned and expected bodily states, whereas (interoceptive) prediction errors
signal the mismatch between the actual bodily state and the expectation. Therefore, interoceptive
prediction errors signal changes in the AINS, thereby triggering homeostatic regulation [435].
Thus, the strengthening of forwarding connections from PINS to AINS during hunger states could
be potentially interpreted as the reflection of tonically increased prediction error signals, while the
negative (inhibitory) connection could reflect the effect of predictions (which, in predictive coding,

are subtracted from actual states).

8.4.2 Associations between DCM parameters, physiological and behavioral responses

Only blood cortisol levels before glucose administration could be predicted by the six neuronal
PCs (Figure 8.9). Furthermore, the relationship between the strength of RPINS->RAINS
connection (i.e. forward connection) and plasma cortisol levels was modulated by metabolic states
before oral glucose intake (Figure 8.10A). However, the modulation of the association between
the strength of RPINS<RAINS connection (i.e. backward connection) and both, plasma cortisol
levels and hunger ratings, depended only on the metabolic states and were therefore independent
of glucose treatment (Figure 8.10B and C, respectively).

After glucose stimulation, the insulin and cortisol levels of fasted and non-fasted subjects

responded differentially, namely insulin increased and cortisol remain stable. Variability in insulin
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and cortisol responsivity is nonetheless influenced by a complex interplay of the glucose
absorption-rate,  fasting-induced insulin  resistance and  gastrointestinal  hormone
secretion[436,437]; this may have decreased our ability to explain physiological states as a
function of connectivity estimates. Especially the onset of fasting-induced insulin resistance and
the associated increase in inflammatory markers [436,437] that, in turn affect, cortisol levels may
have confounded the relation between connectivity estimates and physiological states that was
visible before glucose administration.

One limitation of the current analysis, due to the rather small sample size we could not
directly investigate the relation between all NPEs and hormone variables (i.e. plasma glucose,
insulin and cortical levels) using standard multiple linear regression. We used principal component
regression instead. To establish a direct relationship between NPEs and hormonal data, a

replication of the current study with a larger sample would be desirable.

8.5 Conclusions

Hypothalamic and insular cortex activation has previously been found to reflect changes in the
homeostatic energy balance. By applying spDCM and BMS analyses to rs-fMRI data, we
examined whether the metabolic state (hunger vs. satiety) and glucose administration (before vs.
after) would modulate the EC between brain regions involved in ingestive behavior. Our most
plausible model in all metabolic and glucose conditions comprised intra- and interhemispheric
connections within a bilateral the hypothalamus-PINS-AINS network model. EC was significantly
increased for the forward connection RPINS—>RAINS but decreased for the backward connection
RPINS<RAINS under hunger compared to satiety, with no influence of glucose treatment.
Furthermore, the strength of RPINS—>RAINS connectivity was positively associated with plasma

cortisol levels in the hunger condition, particularly before glucose administration. Overall, these
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results illustrate how connections among brain regions involved in interoception and homeostatic
regulation change between hunger and satiety and provide a basis for future investigations of

hypothalamic-insular networks in the context of food intake
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Chapter 9: General discussion

The overarching goal of the current dissertation was to investigate and understand the impact of
varying metabolic states (hunger vs. satiety) on the human brain’s functional connectivity by using
different approaches to analyze rs-fMRI data. Each approach was chosen to answer a specific
question and also to carry the results forward from one analysis to subsequent analyses.

Rs-fMRI was used to investigate the neural correlates of changing hunger and satiety states
as well as glucose intake. Therefore, the basic principles of MRI recording and the link of fMRI
signals to neural activity were outlined in the introduction (Chapter 1). Also, the recent literature
on the impact of food consumption on brain functions has been summarized. From this literature
review, there are open questions regarding the relationship of brain activity to food intake, in
particular pertaining to the link between brain activity and peripheral hormonal and metabolic
signals. To fill this gap, an experiment was designed to examine the role of modulations of
metabolic states on human brain function as explained in Chapter 2. This study examined 24
healthy normal-weight men twice: once after 36 hours of fasting (except water) and once in satiated
(five meals/day for 36 hours) conditions. At the end of each session, rs-fMRI was recorded before
and after glucose administration (75 g of oral glucose). Furthermore, 19 blood samples per subject
and condition were drawn to assess hormonal and metabolic measures. In Chapter 3, the effects of
metabolic states and glucose treatment on physiological and behavioral data were explained. As
the results of Chapter 3 met our expectations and corresponded with the literature, this
experimental design allowed us to interpret our rs-fMRI findings appropriately concerning

fundamental metabolic regulations.
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There is no ideal approach to analyze rs-fMRI signals. Instead, the selection of a specific
analysis technique depends on the specific questions that the researchers wish to answer from the
rs-fMRI data. Therefore, in Chapter 4, a methodological review and comparison of several
common methods to analyze rs-fMRI data were provided.

As mentioned in the introduction, this work was particularly interested in answering four
different, non-redundant questions from one experimental design but different analysis procedures.
In the next paragraphs, these questions will be recalled and the methods and results to answer them
will be summarized. Moreover, methodological considerations supporting the results of this
project will be discussed. Finally, relevant caveats will be addressed and future directions to
continue this work will be suggested. In the end, this work will close with some concluding

remarks that support our primary two hypotheses mentioned in the introduction of this dissertation.

9.1 Addressing research questions

9.1.1 First question: What is the effect of oral glucose administration on the resting brain

activity during hunger and satiety conditions using rs-fMRI data?

In Chapter 5, a multi-method rs-fMRI analysis approach was used to investigate the effect of
glucose administration on the brain’s resting functional connectivity and activity during different
metabolic states. We found that glucose administration reduced these measures selectively in the
left supplementary motor area, indicating reduced synchronization between a target voxel within
that region with its neighbor voxels or all voxels in the brain as well as reduced the resting state
activity in that region, and increased fALFF and ReHo in the right middle frontal gyrus. For
fALFF, we observed a significant interaction between metabolic states and glucose in the left
thalamus. This interaction was driven by a fALFF increase after glucose treatment in the hunger
relative to the satiety condition. The findings of Chapter 5 suggest that even when there is less
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energy in the body, the brain can flexibly allocate the energy to regions of higher needs, as
indicated by the changes in local (ReHo) and global (DC) connectivity after glucose
administration, owing to the brain's unique capacity to control its own energy supply [49].

The results of Chapter 5 show that using local and global connectivity as well as the
amplitude of rs-fMRI signals can contribute to the delineation of the relationship between changes

in energy homeostasis and caloric intake.

9.1.2 Second question: What is a reliable marker of rs-fMRI signals to study the effect of

hunger and satiety on the human brain?

In Chapter 6, we compared the accuracy of ReHo, DC and fALFF approaches for the classification
of two metabolic states (hunger vs. satiety) depending on the observed rs-fMRI fluctuations.
Therefore, we reanalyzed the obtained data but focused on the brain activity of both experimental
conditions before glucose administration. After extracting the associated connectivity parameters
of 90 brain regions for each method, we used feature selection algorithms with the objective
function of linear SVM classification and permutation tests to investigate which method
differentiates best between hunger and satiety. We observed that the fALFF region subset selected
by the sequential forward floating selection algorithm identified the hunger state with the highest
classification accuracy of 81%, while the classification accuracy based on ReHo and DC was 79%
and 70%, respectively.

Our results indicate that the amplitude of rs-fMRI signals serves as a suitable basis for
machine learning based classification of brain activity. This opens up the possibility to apply this
combination of algorithms to similar research questions, such as the characterization of brain states

(e.g. sleep stages) or disease conditions (e.g. Alzheimer’s disease, minimal cognitive impairment).
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9.1.3 Third question: How can different metabolic states change whole brain activity and

how are these changes associated with hormonal signals?

In Chapter 7 we studied the interplay of metabolic state (hungry vs. satiety) and glucose
administration (including hormonal modulation) on brain activity. We used fALFF as an index
that shows changes of brain activity because the results of Chapters 5 and 0 indicate that the fALFF
of the BOLD rs-fMRI signal was the most sensitive measure to identify spontaneous brain activity
associated with changes in homeostasis and caloric intake. To answer the above questions, multiple
linear regression analysis was used to investigate the interdependence of amplitude of rs-fMRI
signals, plasma insulin as well as glucose levels. We observed a modulatory impact of the fasting
state on intrinsic brain activity in the posterior cingulate cortex. Strikingly, differences in plasma
insulin levels between hunger and satiety states after glucose administration at the time of the scan
were negatively related to brain activity in the posterior insula and superior frontal gyrus, while
plasma glucose levels were positively associated with activity changes in the fusiform gyrus.
Furthermore, we could show that changes in plasma insulin enhanced the connectivity between
the posterior insula and superior frontal gyrus.

Our results suggest that hormonal signals like insulin alleviate an acute hemostatic energy

deficit by modifying the homeostatic and frontal circuitry of the human brain.

9.1.4 Fourth question: What is the impact of different metabolic states on the causal

interactions in a specific homeostasis hypothalamus-insula circuit?

Both the hypothalamus and insular cortex play an essential role in the regulation of homeostasis
by responding to hunger- and satiety-related signals. Rs-fMRI studies showed that alterations in
FC of these sites are associated with the fluctuation of metabolic states and caloric intake (see

Chapter 8). However, FC captures purely correlational dependencies between the neurovascular
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signaling of two regions. Accordingly, FC cannot provide any information regarding the
modulatory impact of metabolic states on the directed or effective connectivity between the
hypothalamus, posterior insula (PINS) and anterior insula (AINS). To overcome this limitation,
we used spectral DCM to estimate effective connectivity between brain regions at the neural rather
than vascular levels [147]. Specifically, we investigated whether effective connectivity within this
network varies as a function of the metabolic state (hunger vs. satiety) and energy availability (e.g.
glucose levels).

Using a Bayesian model selection, we observed that the same model was identified as the
most likely model for each rs-fMRI recording. Compared to satiety, the hunger condition enhanced
the strength of the forward connections from PINS to AINS and reduced the strength of backward
connections from AINS to PINS. Furthermore, the strength of connectivity from PINS to AINS
was positively related to plasma cortisol levels in the hunger condition, mainly before glucose
administration. However, there was no direct relationship between glucose treatment and effective
connectivity.

Our findings suggest that metabolic states modulate connectivity between PINS and AINS
and relate to theories of interoception and homeostatic regulation that invoke hierarchical relations

between posterior and anterior insula.

9.2 Methodological considerations

For the present work various approaches for analyzing rs-fMRI data were applied, which require
some methodological considerations:

First of all, we minimized frequently discussed limitations related to fMRI approaches such
as artifacts and noise. Because we applied an ICA-AROMA strategy on the data, which in addition

to motion artifacts also removes other structured noise from the data (e.g. cardiac pulsation
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artifacts; Pruim et al. 2015b), we argue that the results of this work are not caused by motion
artifacts and non-specific physiological effects. Also, we regressed out the time-series for WM and
CSF from the data to remove and reduce residual (non-motion related) physiological noise.

Regarding voxel-based connectivity modeling, we applied three data-driven approaches to
study the effect of glucose on local and global of brain FC as well as on the amplitude of brain
activity. Of those three, fALFF index appeared to be the most sensitive measure for the detection
of homeostatic changes in the resting brain. This might result from fALFF’s property as an index
of the power of the BOLD signal in the low-frequency range. Whereas fALFF measures the overall
BOLD fluctuations of a single voxel without evaluating the relationship between voxels, ReHo
and DC analyses calculate the state-dependent dynamics of BOLD connectivity, either with the 26
neighboring voxels (ReHo) or with the entire brain (DC). Overall, using multimethod rs-fMRI
analyses provided additional insights into underlying network changes, which were crucial for
interpreting our results

In terms of statistical models, we used rm-ANOVAs to study the changes in brain activity
over experimental conditions except for the functional connectivity analyses described in
Chapter 4. In short, ANOVA is a univariate approach, applied on a voxel-by-voxel basis, and
hence a special case of the general linear model (GLM) [438]. One critical limitation of GLM
approaches is the fact that covariance across neighboring voxels is not informative about the
combination of voxels or brain regions to study differences between groups or experimental
conditions [238,241].

In contrast, multivariate approaches provide a complete realistic design which is better suited
for complex research problems [439,440], such as associations between brain networks [241,441].

To address this issue, we additionally applied a linear SVM method (Chapter 6) to investigate the
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influence of hunger and satiety on patterns or profiles of both local and global connectivity as well
as the amplitude of rs-fMRI signals. The results of both univariate and multivariate approaches
pointed to the amplitude of the BOLD signal as the most informative index to investigate the

effects of metabolic states on brain functions, rather than local and global connectivity.

9.3 Caveats and future directions

Although the current study led to novel findings on mechanisms changing spontaneous brain
activity under different metabolic states, some limitations need to be addressed.

First, although the hypothalamus is a central region for the regulation of energy homeostasis,
food intake and glucose sensing [442,443], we did not find its activity modulated in each of our
investigations (Chapters 5 and 7), which may be due to insufficient resolution of this small
structure in fTMRI imaging [4] and the use of cluster-level correction (number of voxels per cluster;
[193]). This shortcoming might be overcome by performing specific scanning protocols targeted
at subcortical structures (e.g. by reducing voxel size to 1 x 1 x 1 mm, see [444]) in combination
with region-of-interest analyses to detect hypothalamic effects. Furthermore, we were not able to
show a significant effect of hunger on connections from the hypothalamus to AINS or PINS and
vice versa (see Chapter 8). It has been shown that nuclei of the hypothalamus stimulate feeding
(lateral hypothalamus, LH) or inhibit feeding behavior (ventromedial hypothalamus nucleus,
VMN) [445,446]. This dual function of hypothalamic nuclei, as well as their small size, might
have led to a canceling of the two opposing signals [4]. Moreover, the acquisition parameters of
the fMRI were not optimized to differentiate between different nuclei in such a small subcortical
structure. Additionally, the SNR of BOLD signals from subcortical nuclei is generally lower than

in cortex.
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Second, to limit the influence of the hormonal cycle, we only included healthy young male
participants in the current study. Therefore, the results of this dissertation may not be readily
generalizable to other populations such as women. However, functional neuroimaging studies have
shown differences in response to food taste (e.g. sweet, liquid meals) and even to odors of sweet
(e.g. Abu Afif Baklava) under hunger and satiety conditions in several sexually dimorphic and
BMI-sensitive brain regions [372,447—-449]. Also, the effects of insulin signaling on the human
brain show sex differences [91,450]. Future studies could address this question by also including
women and overweight participants and thus discuss the relationship between changes in brain
activity under different metabolic states and sex or BMI.

Finally, as mentioned in the introduction of Chapter 8, the hypothalamus and insular cortex
are involved in a variety of functions related to interoception and homeostatic regulation in
response to different metabolic states. Here, we investigated a particular set of models comprising
five brain regions to address specific questions about relationships among connectivity in this
network and physiological states. It is important to keep in mind that the models we examined are
(necessarily) wrong in that they are enormously simplified compared to the real neural system and
only consider a small number of potentially relevant regions. Including additional regions and
connections (e.g. hypothalamic subnuclei) could change the input structure to (some or all) regions
and may alter the results. This “missing region” problem — and other caveats of effective
connectivity analyses with DCM (and other methods) — are well known and have been discussed
previously (e.g. [451]). It is therefore important to establish the “utility” of the particular model
we identified, for example, whether the inferred connection strengths relate to independent

variables (e.g. physiological states) and whether these connectivity estimates allow for out-of-
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sample predictions. While the former has been examined in this study, the latter will be
investigated in future work.

There are still many questions arising from the results of this dissertation worth to be
explored in the future in order to enhance the understanding of food intake and its impact on brain
activity and connectivity. For instance, from the method’s point of view, dynamic fluctuation of
adipocyte-dependent (e.g. leptin and adiponectin) and gut-dependent (e.g. ghrelin and insulin)
hormones together with their relationships to resting state brain networks under different metabolic
conditions have not been studied yet. To investigate this issue, an experimental paradigm that
collects both rs-fMRI measurements and hormone levels over multiple time points under fasting
and eating conditions appears suitable, together with a multivariate approach for instance, such as
parallel ICA [452—-454], to investigate the relationship between the time-variations in resting state
brain networks and hormone time-courses.

Another interesting question is how the changes in homeostasis and caloric intake affect the
organization and the effective connectivity of large-scale networks, namely: the salience network
(SN), dorsal attention network (DAN) and DMN. While the DMN is involved in self-related
processes and future-oriented thinking during resting brain functions, the DAN is engaged in
externally directed tasks, such as cognitive control of emotion and behavior. The SN is proposed
as a switching network between DMN and DAN to allocate behavior with the goal of maintaining
homeostasis [455]. Therefore, re-analysis of the data obtained by this project by using group ICA
analysis to specify the ROIs for each network and spectral DCM models to find the direct
connectivity between the networks could help to understand the causal processes among resting
state networks in response to the interactions between metabolic states and glucose treatment

[456].
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9.4 Concluding remarks

The present dissertation investigated whether changes in physiological metabolic states (i.e.
hunger and satiety) together with the availability of energy (e.g. glucose administration) can affect
the resting state brain activity in healthy normal-weight male participants. Additional
physiological and behavioral responses of fasting and standard meal conditions were determined
to gain insights into the underlying regulatory mechanism between hormonal levels (e.g. insulin
and cortisol levels) and metabolic states.

The current project shows for the first time that the amplitude of BOLD signals is a reliable
and accurate marker rather than local (ReHo) and global (DC) connectivity to localize brain
functions and to find patterns of brain networks related to metabolic states. For localizing brain
function the metabolic state of hunger increased the amplitude of BOLD signals or the activity of
brain regions in the PCC and thalamus. Furthermore, the changes in the amplitude of brain signals,
reflecting the difference between hunger vs. satiety, were associated negatively with changes in
plasma insulin levels in the posterior insula after glucose administration. Regarding brain
activation patterns, combinations of amplitude BOLD signals in five brain regions (Olfactory,
Occipital, Paracentral, Rolandic operculum and Frontal gyri) can accurately distinguish between
metabolic states (hunger vs. satiety) with 81% accuracy.

The second important finding of the current work is that changes in metabolic states, not oral
glucose administration, have effects on the strength of the endogenous (intrinsic) connections
within the insular cortex. Our results seem to be consistent with other research which found that
the transfer information from posterior to anterior insula is associated with awareness of bodily
and homeostatic perceptions [397,430]. Furthermore, our findings indicate that spDCM provides

helpful insights into the brain mechanisms involved in homeostatic regulation.

150



9.4 Concluding remarks

Overall, the hunger and satiety states not only modulate brain activity but also have
influences on the direction of information flow. Using multi-method rs-fMRI to investigate the
brain connectivity provides an unbiased approach to identify spontaneous brain activity associated
with changes in homeostasis and caloric intake. Taken together, this work provides new insights
into the interaction of food intake and CNS activity that may be used for further investigations of

metabolic dysfunction, for instance, obesity.
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