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Abstract 

Food intake and energy homeostasis (the body’s energy needs) are regulated by pathways of the 

central nervous system and by their bidirectional connections from and to peripheral organs. 

Understanding brain functions under different homeostatic conditions are of great importance. 

However, these functions remain incompletely characterized until now. Therefore, this dissertation 

investigates the effects of physical metabolic states (i.e. hunger and satiety) on brain functions as 

well as the association between brain activity and peripheral energy stores (i.e. insulin and glucose 

levels). This study outlines how to analyze human neuroimaging data (i.e. functional magnetic 

resonance imaging) to study the spontaneous (i.e. resting-state) brain activity in the context of 

metabolism and food intake to address these knowledge gaps. 

Resting-state functional magnetic resonance imaging (rs-fMRI) and blood samples were 

obtained from 24 healthy normal-weight men in a repeated measurement design. Each participant 

was examined twice: once after 36 hours of fasting, i.e. hunger state, and once in a standard eating 

condition (three meals/day for 36 hours), i.e. satiety state. Rs-fMRI was recorded before and after 

the oral administration of 75 g of glucose for each metabolic state. Hunger ratings, plasma glucose 

levels and insulin levels data per condition were also collected. 

First, functional connectivity (local and global) and activity (amplitude) approaches on the 

whole-brain level were applied to investigate the effects of glucose treatment on the resting brain’s 

fluctuations during different metabolic states. We found that oral administration of glucose led to 

a reduction of brain connectivity as well as activity in the left supplementary motor area and 

increased local connectivity and amplitude of brain signals in the right middle and superior frontal 

gyri. In addition, the amplitude approach showed a significant interaction between metabolic state 

(hunger vs. satiety) and glucose treatment in the left thalamus. Second, functional connectivity and 
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activity modeling approaches were used to classifying two metabolic states depending on the 

observed rs-fMRI fluctuations by using feature selection algorithms with the objective function of 

a linear support vector machine classifier. The results revealed that the amplitude of rs-fMRI data 

is a more accurate parameter than local and global connectivity features in capturing the changes 

of the resting brain during states of hunger and satiety with a classification accuracy higher than 

80%. Third, we tested whether changes in brain activity metrics are linked to hypoglycemia and 

whether they are modulated by peripheral signals. We observed a modulatory impact of fasting 

condition on intrinsic brain activity in the posterior cingulate cortex. Strikingly, differences in 

plasma insulin levels between hunger and satiety states after glucose administration at the time of 

the scans were negatively related to brain activity in the posterior insula and superior frontal gyrus, 

while plasma glucose levels were positively associated with activity changes in the fusiform gyrus. 

Finally, the effective (directed) interactions within a hypothalamus-posterior insula-anterior insula 

circuit under different metabolic states were investigated by using the dynamic causal modeling 

approach and Bayesian model selection. The strength of the connectivity parameter from posterior 

insula to anterior insula was increased in the fasting condition compared to satiety condition. 

Overall, the findings presented here provide novel insights into brain activity patterns 

underlying energy homeostasis. Furthermore, the results extend the current understanding about 

how brain regions exchange information, thereby highlighting the impact of metabolic states on 

functional neural integration.
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Zusammenfassung 

Nahrungsaufnahme und Energiehomöostase werden durch Netzwerke im zentralen Nervensystem 

sowie durch deren bidirektionale Verbindungen zu peripheren Organen reguliert. Komplexe 

Veränderungen der Hirnfunktionen und der Homöostase des körpereigenen Stoffwechsels sind 

zugrundeliegende pathologische Mechanismen vieler körperlicher Erkankungen, wie zum Beispiel 

der Adipositas. Die Untersuchung des Zusammenhangs zwischen Metabolismus und 

Nahrungsaufnahme kann zur Verbesserung bestehender und zur Entwicklung neuer Ansätze in 

Diagnostik und Therapie führen. -Daher ist die Verwendung funktioneller Bildgebung zum 

besseren Verständnis der Veränderung von Hirnfunktionen unter verschiedenen homöostatischen 

Bedingungen  von großer Bedeutung. 

Im Kontext von Nahrungsaufnahme wurde bereits eine Vielzahl von aufgabenbasierten f-

MRT Studien durchgeführt, die spezifische Hirnregionen und Aktivitätsmuster in Reaktion auf die 

Verarbeitung von lebensmittelassoziierten Reizen im Hunger- und Sättigungszustand 

identifizierten. Eine Einschränkung dieser Studien, die die gesamte Hirnaktivität untersuchen und  

bestimmte Hirnregionen und Netzwerke lokalisieren, ist, dass die verwendeten experimentellen 

Designs sich jeweils auf nur einen Aspekt (d.h. Stimulus bezogene Aktivität) beschränken. Bisher 

ist der Zusammenhang zwischen funktioneller neuronaler Integration, das heißt wie verschiedene 

Hirnregionen miteinander verbunden sind, und verschiedenen metabolischen Zuständen (Hunger 

und Sättigung) unzureichend verstanden. Vor allem in Humanstudien ist die Datenlage bislang 

uneindeutig. Die Untersuchung des Einflusses verschiedener metabolischer Zustände auf die 

Gehirnkonnektivität ist wichtig für ein tieferes Verständnis der Regulation von 

Nahrungsaufnahme. In dieser Arbeit werden Ergebnisse von vier mathematischen 

Modellierungsansätzen präsentiert, die Hirnaktivität in Bezug zur Nahrungsaufnahme untersucht 
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haben, sowie den Zusammenhang zwischen Hirnaktivität und peripheren Signalen, die als 

Reaktion auf unterschiedliche homöostatische Zustände gebildet werden. Die vorliegende Arbeit 

beginnt mit einer allgemeinen Einführung (Kapitel 1), in der aktuelle Konzepte neuronaler 

bildgebenden Verfahren (insbesondere fMRT) sowie verschiedene Ernährungsmodelle und die 

Zielsetzungen der jeweiligen Kapitel dargestellt werden. Die Einleitung fasst bisherige 

Forschungsergebnisse zur Beziehung von Gehirnaktivität und Nahrungsaufnahme zusammen und 

verdeutlicht, dass insbesondere das Wechselspiel mit peripheren metabolischen Signalen, die in 

Reaktion auf Nahrungsaufnahme erzeugt werden, noch unterverstanden ist. Um diesen 

unverstandenen Aspekt zu untersuchen , wurde ein Experiment mit einem cross-over Design 

durchgeführt (Kapitel 2). In diesem Experiment  wurden 24 gesunde und normalgewichtige 

Männer mehrfach untersucht. Eine erste Messung erfolgte nach 36-stündigem Fasten, eine zweite 

in einem gesättigten Zustand (drei Mahlzeiten/Tag für 36 Stunden). Am Ende jeder Sitzung wurde 

eine Ruhe-fMRT Messung (rs-fmrt) vor und nach oraler Verabreichung einer Glukoselösung 

angefertigt. Zusätzlich wurden 19 Blutproben pro Person und Bedingung zur Bestimmung des 

basalen Blutzucker-, Insulin- und Cortisolspiegels entnommen. Weiter werden in Kapitel 3 die 

Auswirkungen von Stoffwechselzuständen (Hunger vs. Sättigung) sowie von Nahrungsaufnahme 

(Glucoselösung) auf die Physiologie (Insulin- und Cortisolspiegels) und auf das Verhalten  

erläutert. 

Da es keinen einheitlichen Ansatz zur Analyse der rs-fMRT Daten gibt und diese des 

Weiteren von der jeweiligen Fragestellung anhängig ist, werden in Kapitel 4 verschiedene 

Auswertungsmethoden zur Modellierung der Hirnaktivität  und Konnektivität vorgestellt. In den 

darauffolgenden Abschnitten werden vier rs-fMRT Analysen dargestellt und  analysiert  die die 

zuvor genannten Auswertungsmethoden verwenden und damit  den Zusammenhang zwischen  

homöostatischen Zuständen und  der Aktivität relevanter neuronaler Netzwerke  demonstrieren. 
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  Die erste Analyse in Kapitel 5 wurde durchgeführt, um Informationen über die spontane 

neuronale Aktivität als Funktion des Stoffwechsels und der Glukoseaufnahme zu erforschen. Für 

die statistische Auswertung von drei datengesteuerten Ansätzen (lokale Konnektivität, globale 

Konnektivität und der Amplitude von rs-fMRT-Signalen) wurden separate, und Varianzanalysen 

für Wiederholungsmessungen (repeated-measurements-ANOVA) durchgeführt. Die Ergebnisse 

zeigen, dass diese drei Methoden angewandt auf rs-fMRT zur Aufklärung des Zusammenhangs 

zwischen Veränderungen in der Energiehomöostase  und der Kalorienzufuhr betragen können. 

Darüber hinaus deuten die Ergebnisse darauf hin, dass die Amplituden von rs-fMRT den 

sensitivsten Messwert zur Erkennung des Effekts von metabolischen Zuständen  auf die 

Ruhegehirnaktivität liefern. 

Der zweite Teil dieser Arbeit zielt darauf ab, die Genauigkeit von drei datengesteuerten 

Ansätzen in der Klassifizierung von zwei Stoffwechselzuständen (Hunger vs. Sättigung) zu 

vergleichen. Alle drei Ansätze basierten auf Variablen aus rs-fMRT-Messungen. Für jeden Ansatz 

wurden Merkmalsparameter aus 90 Hirnregionen extrahiert, gefolgt von der Selektion von 

relevanten Parametern durch Merkmalsauswahlalgorithmen. Eine Klassifizierung mit einer 

linearen Support-Vector-Machine sollte zeigen, welcher Ansatz die gegensätzlichen 

homöostatischen Zustände (Hunger vs. Sättigung) anhand der vorher klassifizierten Merkmale 

unterscheiden kann. Die Ergebnisse zeigen, dass mithilfe von amplitudenbasierten  rs-fMRT-

Signalen zwischen Hunger und Sättigung mit einer Genauigkeit von bis zu 81% unterschieden 

werden kann.  Diese Ergebnisse werden in Kapitel 6 präsentiert. 

In einer dritten Analyse (Kapitel 7) wurde die multiple lineare Regressionsanalyse 

verwendet, um basierend auf den Ergebnissen der ersten und zweiten Studie die Interdependenz 

von amplitudenbasierten Ruhe-fMRT-Signalen und Insulin-/Glukosespiegeln im Plasma zu 

untersuchen. Unterschiede im Plasma-Insulinspiegel zwischen hungrigem und gesättigtem 
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Zustand nach der Glukoseverabreichung waren negativ mit amplitudenbasierten  rs-fMRT-

Signalen in der posterioren Insula und dem superioren frontalen Gyrus korreliert. Differenzen im 

Plasmaglukosespiegel waren positiv mit Aktivitätsänderungen im fusiformen Gyrus assoziiert. 

In der vierten Analyse (Kapitel 8) wurden die Verfahren des dynamic causal modelling 

(DCM) und der Bayesian model selection verwendet, um die kausalen Wechselwirkungen 

innerhalb des Netzwerks aus Hypothalamus, posteriorer Insula und anteriorer Insula unter 

verschiedenen Stoffwechselzuständen zu untersuchen. Die Analysen ergaben, dass die Stärke der 

Verbindung zwischen posteriorer Insula und anteriorer Insula bei Hunger- im Vergleich zu 

Sättigungszustand erhöht war. 

Die Arbeit schließt mit einer allgemeinen Diskussion (Kapitel 9) ab. Hier werden die 

Ergebnisse der vorliegenden Studien zusammengefasst, Rückschlüsse auf Hirnfunktionen nach der 

Nahrungsaufnahme gezogen und schließlich zukünftige Forschungsfragen aufgezeigt, die aus den 

vorgestellten Ergebnissen abgeleitet werden können.
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1. Chapter 1:  General introduction 

Food intake is vital for any living organism to provide energy for the maintenance of all bodily 

processes from the absorbed nutrients such as carbohydrates, proteins and fats [1]. The control of 

food intake is remarkably complex, as it is determined by various endocrine signals and multiple 

interacting neural circuits [1–3]. The human brain uses two mechanisms to regulate food intake: 

The first non-homeostasic mechanism comprises factors which are not directly related to energy 

demands but instead are driven by external factors, such as food palatability, socioeconomic status, 

habits, social influence and emotional states [4–6]. The second homeostatic mechanism regulates 

food intake to keep the balance between energy supply and energy expenditure. For instance, after 

a period of energy expenditure or after fasting, hunger signals are generated, whereas, after a meal, 

these signals are inhibited [4]. One of the strategies to investigate homeostatic regulation and its 

changes in healthy participants is to predefine a fasting period in order to induce hunger and cause 

satiety after a predetermined standard meal or glucose administration [7]. Less is known about 

how metabolic energy is modulating brain functions, such as learning and memory or 

hypothalamic regulation of homeostasis. Neuroimaging has become an essential tool in obesity 

research to understand the neurobiological underpinnings of appetite and body weight homeostasis 

in humans. 

This dissertation focuses on the impacts of the homeostatic mechanisms on brain functions. 

Here, we apply four approaches to analyze the data of participants. Each path is chosen to answer 

specific questions about the association between food intake and the brain's functions related to 

homeostatic balance/appetite. Readers who are familiar with the principles of generating 

functional brain imaging can skip the theoretical background section and proceed to Section 1.2, 
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where the related work that leads to the present dissertation is reviewed or Section 1.3 where the 

aims of this dissertation are presented. 

1.1 Neuroimaging: Theoretical background 

Over the past 25 years, cognitive neuroscientists have increasingly investigated brain functions by 

using functional neuroimaging techniques. Common neuroimaging approaches include positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI). PET imaging is 

based on the local quantification of concentrations of injected radioactive tracers. The resulting 

gamma ray emissions are detected and used as a measure for local functional changes in the brain, 

such as glucose metabolism or blood flow.  

In contrast, in fMRI (describing the basic physics of MRI and fMRI in the next sub-section), 

the magnetic resonance imaging (MRI) technology is used to investigate brain function over time. 

Unlike PET, fMRI does not require any ionizing radiation and offers enhanced temporal resolution. 

For instance, fMRI acquires an image every few seconds while in PET needs a minute or even 

longer to measure the changes in brain activity [8]. Therefore, subjects can repeatedly participate 

without the cumulative health risks of emitted radiation. Indeed, fMRI can identify functional brain 

changes caused by experimental manipulations. These advantages contributed to the constantly 

increasing body of fMRI studies on brain functions.  

In this dissertation, the fMRI technique is used to localize changes in brain activation patterns 

during controlled food intake modulations. In this section, the basic principles of MRI generation 

will firstly be presented [9–13]. Then the generation of the functional brain signal and its relation 

to neural activity are demonstrated [8,14]. 
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1.1.1 Basics principle of MRI 

The essential components of a MRI scanner are the external static magnetic field, radiofrequency 

coils and gradient coils. Fundamental ideas of using these compounds to create an image from an 

MRI scanner are described here. 

The basic unit of all matter is called an atom. Each atom has an atomic nucleus and a cloud 

of electrons (negative charges). An atomic nucleus, in turn, has neutrons (neutral with no charges) 

and protons (positive charges). These atoms might have different magnetic properties among oft 

tissues in organisms. Human bodies are mainly composed of water molecules and fat where both 

of them contain an abundance of hydrogen atoms. Therefore MRI signals are generally derived 

from the behavior of hydrogen nuclei. 

For a single hydrogen atom, the proton rotates (spins) around itself at a certain time point 

and with a certain number of rotations per second, these processes are known as the spinning phase 

and frequency, respectively, owing to thermal energy (Figure 1.1A). This spin motion generates 

an electric charge or current on its surface, which will cause a non-zero small magnetic source and 

a torque when there is no external magnetic field. A quantity that represents the strength of this 

magnetic source to make a magnetic field is called a magnetic moment. Meanwhile, the spin also 

results in a non-zero angular momentum because the hydrogen proton has an odd-numbered atomic 

number (i.e. a mass of one). Under normal conditions (absence of external magnetic field), the 

spin’s axes of the protons are randomly oriented and this different orientation cause those 

magnetization moments to cancel with each other and lead to a very small net magnetization 

(Figure 1.1B), which is the vector sum of all spin vectors. To increase the net magnetization of the 

hydrogen atomic nucleus, a strong magnetic field must be applied to line up the axes of the spin 
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of the protons. Therefore, the MRI techniques do not measure a single atomic nucleus, but instead, 

measure the net magnetization of all protons in a volume. 

In magnetic resonance (MR) examination, the subject is placed in a strong static magnetic 

field, usually referred to as B0 and it is fixed in most devices to either 1.5 or 3 Tesla for clinical 

applications. The B0 is a powerful magnetic field compared to the Earth’s magnetic field, which is 

approximately 0.00005 Tesla. In this situation, the spinning proton of hydrogen nuclei will initiate 

a gyroscopic motion, which is known as precession (Figure 1.1C), where the spin axes of the 

proton rotate around a central axis of a magnetic field, like a spinning top. The speed of precession, 

which is how many times the hydrogen protons precess per second, is measured as the precession 

frequency, which is often called the Larmor frequency (𝑤0) in MHz, and is given 

 𝑤0 =  𝛾ℎ𝐵0, (1.1) 

where 𝛾ℎ is the constant gyromagnetic ration of hydrogen, which is the ratio of the magnetic 

moment (from the rotating charge of the proton) over the angular momentum (from the rotating 

mass of the proton) vector , 𝛾ℎ = 42.6 MHz/Tesla. Also, the precession axis will align either 

parallel (i.e. the nuclei do not have enough energy to oppose the B0 field, that is the low-energy 

state) or anti-parallel (i.e. the nuclei have enough energy to oppose the B0 field, that is the high-

energy state) to the magnetic field. The low-energy state is more stable than the high-energy state. 

Therefore more protons stay in the parallel state at the minimum energy level of the system, also 

the net magnetization will be parallel to the magnetic field, which is known as longitudinal 

magnetization. The magnitude of the longitudinal magnetization is proportional to the difference 

between a number of protons aligning parallel and anti-parallel to the B0, which ultimately depends 

on the temperature of the sample and the strength of the B0 (Figure 1.1D). However, when an 

organism, like animal or human, is placed in the magnetic field of a MRI, the participant essentially 

acts as a magnet with a magnetic vector aligned with the external magnetic field. The net 
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magnetization of the subject cannot be measured when it is in the same direction as B0 directly. 

To measure the net magnetization, the equilibrium of the protons must be disturbed and then 

detected how they are responding to the perturbation distortion. 

 

Figure 1.1: Basic characteristics of hydrogen protons. 

(A) Spinning proton with angular momentum property, which is induced by the rotating charge. 

(B) In the absence of an external magnetic field, i.e. B0, protons are initially randomly oriented, 

which gives a total net magnetization (M0) approximately equal to zero. (C) The motion of 

rotating proton (spin axis) around the main axis of B0 is known as precession. (D) When B0 is 

introduced, each proton’s axis of spin aligns to the B0 either parallel state, which has a lower 

energy level (shown in orange), or anti-parallel state, which has a high energy level (shown in 

green). In equilibrium condition, more protons align in a parallel state, resulting in an M0 that 

is longitudinal, aligned with B0 direction. Adapted from [8]. 

The MRI scanner uses a series of radiofrequency (RF) pulses to perturb the collection of 

protons at one spatial location, which is known as protons system. This perturbation happens 

through transference electromagnetic energy from RF coils to the anatomic nuclei of hydrogen and 

that leading to jump (flip) some protons from a low-energy state to a high-energy state, this process 

is called excitation (Figure 1.2A and B). Excitation occurs when RF coils send an electromagnetic 

wave that has the same frequency as the processional frequency of hydrogen nuclei within the 
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static magnetic field (i.e. Larmor frequency), in this situation the protons can take energy from the 

electromagnetic wave and this phenomenon is called resonance. The activation of a RF pulse has 

two primary influences in the protons. First, more protons will move from the parallel direction to 

the anti-parallel direction of B0 and thus, the longitudinal magnetization decreases. Second, during 

RF pulse, precession protons will be flipped from the longitudinal direction, which is parallel to 

B0, towards the transverse plane, which is orthogonal to B0, and generate magnetization 

components called transverse magnetization. This transverse magnetization is created because the 

protons begin to process together in the same direction at the same time, which leads the protons 

to become in phase (together). The transverse magnetization vector is a rotating magnetic field at 

the Larmor frequency.  

When the RF pulse is switched off and the excitation is over, the protons of hydrogen nuclei 

start to lose phase coherence and also return to a lower-energy state by emitting photons whose 

energy is equal to the difference between energy levels, i.e. high- and low-energy states 

(Figure 1.2C). During this reception period, this energy is a measurable MR signal and can be 

detected by receiver coils which are the same RF coils, because both excitation and reception have 

happened at Larmor frequency. 
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Figure 1.2: The change between states owing to absorption or transmission of energy. 

(A) When protons are placed in a B0, more will be at the low-energy state (orange) than at the 

high-energy state (green). (B) If a radiofrequency (RF) pulse, which is an expatiation pulse, with 

the right amount of energy is applied, some protons will absorb that energy and jump to the high-

energy state.  (C) After the RF pulse is switched off, some of the protons in the high-energy state 

will relax and return to their low-energy state, releasing the absorbed energy as a radiofrequency 

wave with the same frequency of the RF pulse. Adapted from [8]. 
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MR signals that are detected through RF coils following excitation and reception do not 

remain stable over time. Changes in MR signal (net magnetization) over time is referred to as 

protons relaxation. Relaxation of protons happens in two exponential processes. First, the 

transverse magnetization quickly loses phase coherence and begins to disappear. The time constant 

that describes the time taken for transverse magnetization to decay to approximately 37% of its 

original value, due to the accumulated phase difference is called T2 relaxation (T2 decay) or spin-

spin relaxation because it involves only the effects of internal inhomogeneity of spins (protons) 

with each other. However, in physiological tissue, the protons lose their phase coherence due to 

variations in local magnetic susceptibility, which is an essential characteristic of the tissue. Thus, 

the time constant that combines the effects of spin-spin relaxation, magnetic file inhomogeneity 

within the external magnetic field (B0) and magnetic susceptibility to describe the decay signal of 

transverse magnetization is called T2* (star) relaxation or T2* decay. In the human head, magnetic 

susceptibility vibration that is seen in the blood vessels can be related to the neural activity in the 

brain. Therefore, T2* relaxation is more significant to fMRI [10]. The shape of T2 (Figure 1.3B) 

and T2* (Figure 1.3C) decay curves are similar but T2* is always faster (shorter) than T2. More 

details about associations between brain activity and T2* signals can be found in the next section.  

The second exponential process that is describing the protons’ return to the equilibrium state 

is known as longitudinal relaxation. The longitudinal relaxation occurs when the protons exchange 

energy with their surroundings or lattices to return to their lower-energy state. The time constant 

that describes the time taken for longitudinal magnetization to recovery/ return from zero to 

approximately 63% of its initial maximum value (M0) parallel to B0 is called T1 relaxation (T1 

recovery) or spin-lattice relaxation (Figure 1.3A). 
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Figure 1.3: T1, T2 and T2* relaxation. 

 (A) T1 curve, the recovery of longitudinal magnetization over time following the switching off of 

a radiofrequency (RF) pulse. To recover most of the longitudinal magnetization, the repetition 

time (TR) has to be long enough. (B) T2 curve, the decay of transverse magnetization occurs over 

a period on milliseconds and a temporary gain in signal intensity at time echo (TE) due to 

accumulated phase differences caused by spin-spin interaction after 180° refocusing pulse. (C) 

T2* curve, this curve explains the time decay of transverse magnetization over time due to 

accumulated phase differences caused by both spin-spin interaction and local magnetic field 

inhomogeneity when a 180° refocusing pulse is not used. The T2* signal decays much faster than 

the T2 signal. Adapted from [13]. 

In contrast to longitudinal relaxation process, where energy is transferred from protons to the 

surrounding system, transverse relaxation may occur with or without overall energy loss. 

Moreover, T2 and T2* relaxation times are less dependent on the strength of the magnetic field, 

because they are more sensitive to languid molecular motions and not only to movements at the 

Larmor frequency. On the contrary, T1 relaxation times are dependent on the strength of the 
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magnetic field. From the Larmor equation, of the power of the B0 field is increased the Larmor 

frequency will also increase, leading in longer T1 relaxation times for brain tissue. Generally, T1 

relaxation times is approximately ten times longer than T2 relaxation. Table 1.1 provides T1, T2 

and T2* relaxation values for different brain tissue.   

Table 1.1: List of relaxation times by brain tissue type and static magnetic field strength. 

Adapted from [15].  

Magnetic strength Tissue T1 (ms) T2 (ms) T2*(ms) 

 

 

1.5  Tesla 

White matter 510 67 78 

Gray matter 760 77 69 

CSF 2650 280 -                    

Arterial blood 1441 290 55 

 

 

3 Tesla 

White matter 1080 70 50 

Gray matter 1820 100 50 

CSF 3817 1442  - 

Arterial blood 1932 275 46 

 

The overall goal of MRI is to form an image that is a map of the spatial distribution of some 

property of the atomic nuclei within the sample. To capture this spatial information in three 

dimensions (3D) at least three gradients (G) coils are needed. These coils indicate how the strength 

of B0 varies linearly in each of the x-,y- and z- directions. These gradients cannot turn all at the 

same time. Therefore, an MR image formation is sequentially separated into three steps: First, a 

spatial magnetic field gradient in the z-direction (Gz) is applied at the same time with an RF pulse 

to excite protons within a slice in order to select a particle slice of tissue in the brain or body 

volume. During this process, a two-dimensional (2D) slice of the tissue of interest is selected. 

Second, a phase-encoding gradient oriented in the y-direction (Gy) is activated and then quickly 
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turned off to change the protons phase and to process at different rates depending on their positions. 

Finally, a frequency-encoding gradient is turned on along the x-direction (Gx) to change the 

proton’s frequency when the MR signals are read out. Each RF pulse fills a line in the k-space 

matrix, which reflects the Fourier transform of the image space, by repeating the process in the y-

direction of k-space for the number of times equal to the number rows in an in-plane image. After 

a full k-space matrix is filled, a 2D inverse Fourier transform is applied to that matrix to convert 

the raw data from 2D k-space to 2D image space, thus completing a single slice image collection. 

Then the position of Gz is changed and the process mentioned above is repeated to create a 3D 

brain image, i.e. a complete brain volume. After k-space is filled, a 2D inverse Fourier transform 

is performed to convert raw data from k-space to image space, thus completing a single slice image 

collection. Then the position of Gz is changed and the above process is repeated to get a whole 

brain volume.  

Different brain tissues have different MR relaxation times, as can see in Table 1.1. This 

allows creating different images that have high contrast among these tissues through adjusting the 

MRI sequences. The contrast of images in which the difference in signal intensity between tissues 

is derived from differences in T1, T2 or T2* relaxation times are called a T1-weighted, T2-

weighted or T2*-weighted images, respectively. The T1-weighted image can be obtained by 

reducing the time between subsequent RF pulses, i.e. repetition time (TR), and it is used to study 

anatomical brain structures. For instance, cerebrospinal fluid (CSF) appears dark in the T1-

weighted image, because it has long T1 and relaxes slowly. However, the T1 relaxation time of 

white matter is shorter than the relaxation time of CSF. Whereas, the gray matter has intermediate 

T1 value. Therefore, white matter, which has fast relaxation time, and gray matter, which has 

medium relaxation time, appear in a bright and gray contrast relative to CSF in the T1-weighted 

image, respectively. In contrast to the T1-weighted image, the T2-weighted image can be given by 
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increasing the time interval between the excitation and data acquisition, i.e. echo time (TE). The 

resulting T2-weighted image is darkest in voxels with short T2 values because those voxels will 

lose more signal (de-phases rapidly), such as white matter, and brightest in areas within long T2 

values (de-phases slowly), such as CSF. Because T2-weighted scans have maximal signal in the 

CSF, it is essential for many clinical applications, such as tumors and arteriovenous malformations. 

The T2*-weighted image is more sensitive to changes in blood flow in the brain thus it is used to 

study brain functions over time. Both T2- and T2*-weighted images are provided by the pulse 

sequences with intermediate TE and long TR values. However, different sequences are used to 

create contrast images. For instance, spin-echo and gradient-echo sequences are most commonly 

used in T2- and T2*-weighted images, respectively [8]. Figure 1.4 shows examples of T1-, T2- 

and T2*-weighted images of the human brain. 

 

Figure 1.4: Examples of different MRI image types. 

(A) The T1-weighted MRI. (B) The T2-weighted MRI. (C) The T2*-weighted fMRI. (A) and (C) 

are the average images of the collection of images that are obtained from the data that was 

used in this dissertation. 

After collecting the MRI/fMRI images, these images are placed in a standard three-

dimensional Cartesian coordinate space. Thus, the points in the MRI/fMRI image are related to 

spatial locations and the different individuals are aligned. In this dissertation, we used the 
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conventions and terminology of standard space, as shown in Figure 1.5, to describe the orientation 

when reporting the fMRI results. 

 

Figure 1.5: A depiction of the three principal axes used in the standard coordinate space for MRI 

from neurological views. 

Adapted from [16] and 

(http://www.fieldtriptoolbox.org/faq/how_are_the_different_head_and_mri_coordinate_systems_defined). 

1.1.2 Correlation between BOLD and neural activity 

As mentioned above, fMRI uses MRI scanners to investigate changes in brain function over time. 

The question that now arises is: how can the fMRI signals be related to the neural activity? In this 

section, the most important works are demonstrated to answer that question.   

http://www.fieldtriptoolbox.org/faq/how_are_the_different_head_and_mri_coordinate_systems_defined
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Active cells need energy, but the brain cells, so-called "neurons" do not store energy. They 

need glucose and oxygen supply by glial cells, which are supporting the activities in neurons and 

regulating their chemical environment around them. Both glucose and oxygen are provided by 

increases in blood flow, i.e. the volume of moving blood per unit time, to the active brain regions. 

Consequently, active neurons fulfill their functions. During this processing, oxygenated (oxygen-

rich) hemoglobin in the blood flow turns to deoxygenated hemoglobin (oxygen-poor). However, 

the vascular system supplies active brain regions with more blood that is rich in oxygen, which in 

turn leads to a decrease in deoxygenated hemoglobin in those regions. In 1936, Pauling and Coryell 

[17] detected that oxygenated and deoxygenated hemoglobin have different magnetic properties. 

Oxygenated hemoglobin is diamagnetic, which is weakly repulsing from a magnetic field and 

exerts little effects on the surrounding magnetic field. In contrast, deoxygenated hemoglobin is 

paramagnetic, which is weakly attracted to magnetic fields and in consequence distorts the local 

magnetic field. In 1990, Ogawa and colleagues [18] found that the gradient-echo brain images of 

rodents breathing pure oxygen were different from those of rodents breathing normal air (21% 

oxygen), suggesting that signal differences on T2*-weighted images are a function of the amount 

of deoxygenated hemoglobin. This signal is called blood oxygenation level dependent (BOLD) 

contrast or signal. Maloney and Grinvald [19] showed a rising in the BOLD signal and reaching 

the peak (i.e. maximum amplitude) at approximately 5 seconds after stimulation onset. That result 

has been observed using high-resolution optical imaging in cat visual cortex.  

To summarize, fMRI uses BOLD signals, which arise from the interplay of blood flow, blood 

volume and blood oxygenation, as an indirect approach to measure neural activity in the brain. 

When the neurons get activated, the fresh blood flow is oversupplied locally/specifically to the 

neural activity which gives rise to the relatively good spatial resolution of fMRI. This activity 

increases the local concentration of oxygenated hemoglobin and decreases the concentration of 
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deoxygenated hemoglobin. The reduction in the amount of deoxygenated hemoglobin corresponds 

with the decline in MR signal loss due to T2* effects and leads to increasing MR signals in the 

T2*-weighted image (i.e. a brighter MR image). 

1.1.3 Task fMRI vs. resting-state fMRI 

In classical fMRI experiments, the participants are instructed to perform a particular task, which 

is tailored to assess a defined function of the brain, for example, a motor task, vision, memory and 

language. The localization of the activated brain regions involved in solving the task is achieved 

by comparing the BOLD signal intensity during task performance to that at baseline conditions, 

i.e. when the respective task is not performed. This experimental paradigm is called "task-based 

fMRI" [20–23]. 

In contrast to the traditional fMRI described above, resting state fMRI (rs-fMRI) reflects the 

brain activity at rest when individuals are not requested to do a specific task [24,25]. The term 

"resting-state" is often used to denote this type of data, but other terms have been adopted as well, 

such as "intrinsic," "spontaneous" [26] and "model-free" analysis [27]. In this thesis, the term 

"resting-state" will be used because it is the conventional term within the field's literature. Rs-

fMRI describes the natural low frequency (<0.1 Hz) of brain activity in the transient fluctuation of 

the BOLD baseline signal [28]. Analyses of the temporal coherence of spontaneous BOLD signals 

allow identification of brain regions that display a high degree of synchronicity, which is therefore 

considered as functionally connected. Although the BOLD contrast is the underlying phenomenon 

behind the rs-fMRI and task-based fMRI, some notable differences between these two techniques 

as contrasted in Table 1.2. 

  Biswal and coworkers [29,30] first introduced the concept of rs-fMRI by investigating the 

transfer function of the motor cortex in the brain. The rs-fMRI approach gained popularity when 
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Raichle and colleagues [31,32] identified the so-called default mode network (DMN). This 

network is activated during rs-fMRI and deactivated during task-based fMRI, when attention is 

oriented directly towards internal rather than towards external stimuli [33]. The DMN consists of 

the posterior cingulate cortex (PCC), precuneus, angular gyrus and medial prefrontal cortex. These 

regions have been identified to be involved in different functions including self-awareness and 

theory of mind [34,35]. In past years, rs-fMRI has become an established tool in clinical and drug 

development domains and also in the investigation of feeding behavior [26,36–46] to cite just a 

few studies. 

1.2 Food Consumption1 

The brain is a major regulator of whole-body energy homeostasis. Fluctuations in brain activity 

are linked to changes in glucose metabolism and are a crucial influencing factor for whole-body 

energy homeostasis [47]. Homeostatic regulation in healthy participants can be investigated by 

comparing a ‘‘hunger condition” entailing a fasting period with a ‘‘satiety condition” after a 

predetermined standard meal [48]. Moreover, the common 75-g oral glucose tolerance test used 

clinically for the diagnosis of diabetes can be used to probe the brain’s response to these different 

conditions. This approach has been used to study brain responses to food pictures after overnight 

fasting [7,48], and to explore brain connectivity at rest [46]. The brain is the only organ able to 

control its own energy supply, mainly via glucose, depending on its varying requirements [49]. In 

line with that, fluctuations in neural brain activity are linked to glucose metabolism and are a 

crucial influencing factor for whole body energy homeostasis [47]. 

                                                 
1 Portions of this section are adapted from the following publication: Al-Zubaidi, A., Heldmann, M., 

Mertins, A., Jauch-Chara, K., & Münte, T. F. (2018). Influences of hunger, satiety and oral glucose on 

functional brain connectivity: A multimethod resting state fMRI study. Neuroscience. I participated in the 

experiment design and data collection. I analyzed the data and wrote the manuscript. 
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Table 1.2: Comparison of rs-fMRI and task-based fMRI paradigms. 

Adapted from [50] 

 Rs-fMRI Task-based fMRI 

1 Analyses of spontaneous BOLD signal in 

the absence of any explicit task or input. 

Analyses of spontaneous modulations in the BOLD 

signal in the presence of a particular (cognitive) 

task or activity.  

2 60–80% of the brain’s energy is consumed 

during the resting state. 

Task-related increase in neuronal metabolism is 

less than 5%. 

3 High contribution to overall brain activity. Contribution to only a small fraction of overall 

brain activity. 

4 Signals which are discarded as noise in task 

fMRI are taken as signals in rs-fMRI as they 

are the low-frequency spontaneous 

fluctuations in the BOLD signal. 

The signal during a task-related activity is tiny 

compared to noise, i.e. 80% of the BOLD 

modulation is discarded as noise. 

5 Improved SNR since it takes the overall 

spontaneous low-frequency fluctuations; 

spontaneous ongoing activity explains 50-

80% of the BOLD variance. 

Due to the discarding of the signal as noise, task 

fMRI has a low SNR; task-related modulation 

explains at maximum 20% of the BOLD variance. 

6 Requires only one trial/session. Requires a large number of trials which increase 

the time needed to measure the participants! 

7 Acquired data of one session may be used to 

analyze several functions. 

Each function of interest requires a separate task.  

8 No consciousness and patient cooperation 

required. Rs-fMRI Allows investigation of 

pediatric, low IQ and vegetative or even 

comatose subpopulations. 

Patient consciousness, cooperation and capability 

required. 

9 No familiarity or repetition effects even in 

repeated measurements design. Therefore, 

rs-fMRI is comparable between sessions. 

Familiarity and repetition effects to assess the 

disease prognosis, treatment, etc. Results are 

limited comparability between sessions due to 

interference with task performance. 
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1.2.1 Neural mechanisms, metabolic state and glucose intake 

There is a large body of research that has used task-based fMRI in different metabolic states 

(hunger and satiety). Killgore and colleagues [51] were among the first to study fMRI activations 

in response to pictures of food of different caloric density. Killgore et al. [51] as well as other 

studies [52,53] reported a pattern of greater activation in medial and dorsolateral prefrontal areas, 

the anterior cingulate cortex (ACC), orbitofrontal cortex, striatum, amygdala, and insula in 

response to pictures depicting high caloric food. Further studies have shown that the reaction of 

these regions is modulated by the metabolic state, i.e. hunger vs. satiety [54–57]. Regarding the 

effect of sugar intake, Luo et al. [58], for example, have used fMRI while presenting food cues in 

conjunction with the ingestion of either fructose or glucose in a double-blinded, random-order 

cross-over design. Fructose relative to glucose resulted in greater activations to food cues in the 

visual and left orbital frontal cortex. One limitation of these studies is that task-related designs 

focus on one single aspect during the brain analysis to explain how the brain’s overall activity is 

organized under food consumption. For example, the brain regions could appear statistically 

insignificant in response to a particular task. Thus, those regions cannot be investigated under food 

intake conditions, although they might carry some information related to eating behavior.  

In contrast to task-based fMRI, human and animals resting-state studies have been shown 

that changes in the activity of hypothalamus and insula are associated with appetite and 

gastrointestinal signals [59–62]. For instance, the neurons of hypothalamus and insula belong to a 

homeostatic energy balance circuit and respond to orexigenic (i.e. appetite stimulant, e.g. hunger-

inducing) and anorexigenic (i.e. loss of appetite, e.g. satiety-signaling) [63–66]. While hunger 

status increases the activity of hypothalamus and insula [59], satiety status as well as glucose or 

insulin administration have suppressive effects on the hypothalamic and insula signals [67–71]. 
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This suggests that recording BOLD signals in the rs-fMRI design under hunger/ satiety conditions 

and analyzing them can indeed yield meaningful results. 

1.2.2 Endocrine mechanisms 

There is evidence that signals from the brain-gut axis constitute an integrated system which affects 

both food-related neural functions and behavioral aspects of food intake [72–74]. The hormones 

leptin and insulin have long been considered to play a particularly prominent role. Leptin and 

insulin provide signals to the brain about body adiposity and changes of metabolic status [1,75,76]. 

For instance, increasing both leptin and insulin, i.e. via direct administration, has been found to 

reduce food intake and to potentiate anorexia [77].  

In the present thesis, we focus on insulin which has been hypothesized as a hunger-regulating 

hormone by researchers for more than 45 years, see [76]. Insulin is secreted by the pancreas to 

regulate blood glucose. Insulin receptors are distributed throughout body tissues (i.e. liver and 

muscle) and brain, where they can be activated by insulin after it passed the blood-brain barrier 

[78]. In animals and the human brain, insulin receptors are prominently expressed in the 

hypothalamus, prefrontal areas, limbic system and fusiform gyrus [79–83]. Insulin is one of the 

hormones that form a negative adiposity feedback loop ensuring balanced energy homeostasis 

[77,84–86] by signaling energy expenditure to the brain [83,87,88]. The function of insulin in the 

regulation of energy homeostasis was demonstrated by studies showing that intraventricular 

injections, as well as the intranasal administration of insulin to the central nervous system (CNS), 

decreases food intake and body weight in rodents [89,90] and humans [91].  

In contrast, the inactivation of this hormone caused opposite effects [92,93]. Up to now, 

findings on insulin’s impact on connections between brain regions are ambiguous. To gain further 

insights into that subject, we used rs-fMRI to reveal associations of insulin with the activation 
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amplitude of specific brain networks or brain sites that are modulated to the regulation of 

homeostatic states. 

1.3 Aims and overview of chapters 

The present work focuses on the analyses of rs-fMRI data under two metabolic conditions to 

investigate the integration of the neural processes, food intake and the fluctuations of hormone 

signals. This dissertation probes two general hypotheses:  

The methods that are sensitive to the magnitude of the BOLD signals in the resting state are useful 

for assessing the brain regions that are involved in food intake and energy homeostasis circuits.  

The metabolic state has modulatory effects on the endogenous (intrinsic) connections between 

brain regions that are involved in the energy homeostasis.  

This doctoral dissertation aims to answer the following questions:  

i. What is the effect of oral glucose administration on the resting brain activity during hunger 

and satiety conditions using rs-fMRI data? 

ii. What is a reliable marker of rs-fMRI signals to study the effect of hunger and satiety on the 

human brain? 

iii. How can different metabolic states change whole brain activity and how are these changes 

associated with peripheral signals?  

iv. What is the impact of different metabolic states on the causal interactions in a specific 

homeostasis hypothalamus-insula circuit? 

A schematic depiction of neuroimaging, biomarkers and behavior analyses, as well as the focus 

of each chapter of the present dissertation, are presented below and summarized in Figure 1.6. 

Chapter 2: Describes the experimental design used in this thesis to investigate the effects of 

hunger and satiety on human brain signals as well as of MRI acquisition and preprocessing of rs-
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fMRI data. Also, information about the handling of blood samples to measure hormone 

concentrations is documented.  

Chapter 3: Reports and interprets the results of circulating glucose, insulin and cortisol levels 

and hunger ratings under different metabolic conditions. 

Chapter 4: Explains the common modalities (methods) that have been developed to probe brain 

activity from BOLD signals. These modalities are applied to estimate the brain function from rs-

fMRI as well to determine the causal interactions model from functional neuroimaging data. This 

chapter aims to provide details and methodological issues of rs-fMRI analysis. 

Chapter 5: Investigates whether the metabolic states (hunger and satiety) and glucose 

administration (before and after treatment) have an impact on fluctuations of BOLD signals, and 

how these influences manifest in multimethod analyses of rs-fMRI data. Therefore, this chapter 

examines the interplay between spontaneous neural activity as a function of metabolic state and 

glucose intake.  

Chapter 6: Compares the accuracy of three features, i.e. local connectivity, global connectivity 

and signal amplitude that can be extracted from rs-fMRI data to classify human metabolic states 

based on machine learning approaches. More specifically, we evaluate the different aspects of rs-

fMRI fluctuations to find reliable markers for studying effects of hunger status on the human 

brain. 

Chapter 7: Performs multiple linear regression analysis to find associations between the 

amplitude of rs-fMRI signals and both blood glucose and insulin concentrations under hunger 

and satiety conditions in response to glucose administration. This chapter investigates the links 

between changes in physiological biomarkers (glucose and plasma insulin levels), different 

homeostatic, states and resting brain activity.  
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Chapter 8: Investigates the impact of hunger and satiety conditions on the causal relationships 

between hypothalamus and insula. We specifically use dynamic causal modeling, a Bayesian 

approach allowing the estimation of direct connectivity on hidden neural states from measured 

brain data.  

Chapter 9: Summarizes and discusses the findings of this thesis in terms of methods of rs-fMRI 

connectivity-modeling and establish directions for future work. The chapter then concludes the 

contributions of this thesis to extend the current understanding of brain functions under different 

metabolic states
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Figure 1.6: Schematic depiction of the functional neuroimaging analysis under food intake modulation and the stage on which each 

of the chapters focused.  

Green arrows indicate which results are carried forward for subsequent analysis. Abbreviations: ANOVA, analysis of variance; DC, degree 

of centrality; fALFF, fractional amplitude of low-frequency fluctuations; FC, functional connectivity; ReHo, regional homogeneity; rs-

fMRI, resting-state functional magnetic resonance imaging. 
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2. Chapter 2: Materials2 

The four different analyses that will be explained later (Chapters 5, 6, 7 and 8) are based on the 

experimental design that is explained below. Furthermore, the preprocessing pipeline of rs-fMRI 

images is the same for all analyses (except the analysis of Chapter 8, will be mentioned later) and 

will be similarly detailed below.   

2.1 Participants 

Twenty-four normal weight healthy male volunteers (mean age: 25 years, range: 20-30 years, mean 

BMI: 22.5 kg/ m², range: 20-25 kg/ m²) were recruited from the local university community via e-

mails and flyers. Female participants were not included to rule out any influences related to the 

hormonal cycle. All participants were subjected to a medical interview and examination assessing 

general health, medication, drug abuse, blood glucose concentration and cognitive disorders. Any 

regular medication, previous and current psychiatric, neurological (e.g. multiple sclerosis, 

previous head trauma), or metabolic disorders led to exclusion. Moreover, participants were 

required to have a BMI between 20 and 25. All participants were informed about the procedures 

and data handling. None of the participants from this all-male group reported any current or past 

periods of prolonged fasting. Within four weeks before and during the trials, subjects were 

instructed not to participate in other studies or to donate blood. All participants gave their informed 

consent before participation and received a small financial compensation. The study was carried 

                                                 
2 This chapter corresponds largely to: Al-Zubaidi, A., Heldmann, M., Mertins, A., Jauch-Chara, K. 

and Münte, T. F. (2018). Influences of hunger, satiety and oral glucose on functional brain connectivity: A 

multimethod resting state fMRI study. Neuroscience. I participated in the experiment design and data 

collection. I analyzed the data and wrote the manuscript. 
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out in accordance with the Declaration of Helsinki (2002) and was approved by the ethics 

committee of the University of Lübeck, Germany.  

2.2 Experimental design 

Each subject was investigated twice, once while being in a hungry (36 hours fasting) and once 

while being in a satiated state (standardized eating, five meals over 36 hours). The order of the two 

sessions was counterbalanced across subjects and sessions were separated at least one week. Each 

session lasted two days. To control food intake and physical activity, participants were required to 

stay in the sleep laboratory of the Department of Psychiatry of the University Medical Campus 

Schleswig-Holstein (UKSH) for the entire 36 hours of the experiment. At the end of each 36 hours, 

the functional MRI was recorded.  

In both conditions, participants abstained from eating and drinking from 23:00 hour the night 

before the experimental session and arrived fasted in the morning. In the hunger condition, 

participants stayed fasted (except water drinking) for 36 hours, while in the satiety condition 

participants got five standardized meals over the identical time span.  

Standardized meals were served  according to recommendations of the clinical diabetes 

counseling department at the UKSH: Breakfast (25% protein, 50% carbohydrate and 25% fat), 

lunch (20% protein, 63% carbohydrate and 17% fat) and dinner (22% protein, 60% carbohydrate 

and 18% fat) were provided at 09:00, 12:00 and 19:00 hours, respectively. For both sessions, 

participants arrived at the sleep lab at 08:00 hour. A cannula was inserted into a peripheral vein on 

the back of the hand to collect blood samples. The first blood samples for determining basal blood 

sugar, insulin and cortisol concentrations were drawn at 08:45 hour with subsequent blood samples 

drawn during the first day at 10:00, 12:45, 14:00, 16:00, 18:00, 18:45, 20:00 and 22:00 hours 

(Figure 2.1). All participants stayed and slept overnight in the sleep laboratory at UKSH. The next 
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morning, blood samples were taken at 08:45, 10:00, 11:45 and 13:05 hours. At the end of each 

experimental condition, functional MRI was obtained. Each MRI session started with the recording 

of resting state activity at 13:05 hour. Then, the participants were removed from the scanner and 

drank a solution containing the equivalent of 75 g of glucose at 13:25 hour (defined by a 300 ml 

mixture of mono and oligosaccharides; ACCU-CHEK® Dextro® O.G-T., Roche, Grenzach-

Wyhlen, Germany). At 13:45 hour, another fMRI resting state was recorded and a blood sample 

was drawn. After the MRI measurements, participants returned to the sleep lab and provided blood 

samples every 30 minutes (14:15, 14:45, 15:15 and 15:45 hours) until 16:15 hour the same day. In 

total, 19 blood samples per subject and condition were collected, with 13 taken before 

administration of oral glucose and the remaining six samples thereafter. In each condition, 

participants rated their subjective hunger feeling 20 minutes before and 20 minutes after oral 

glucose intake on a visual analog scale ranging from 0 (not hungry at all) to 9 (very hungry). 

   For the resting state fMRI recording, participants were instructed to lie still inside the 

scanner with their eyes closed. They were instructed to not engage in any particular cognitive 

activity. The functional run’s duration was six minutes. 
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Figure 2.1: Time course of physiological parameters under hunger and satiety 

conditions. 

Mean plasma concentrations of cortisol (A), insulin (B) and glucose (C) under hunger and 

satiety conditions before and after oral glucose treatment. Boxes on the bottom of the 

graph indicate the time points of meals in the satiety condition (B = breakfast, L = lunch 

and D = dinner at 09:00, 12:00 and 19:00 hours, respectively). In each condition, the 

first rs-fMRI was recorded 20 min before, the second rs-fMRI 20 min after the intake of 

oral glucose. The error bars represent the standard deviation. 
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2.3 Functional brain images 

2.3.1 Acquisition 

All structural and functional images were recorded with a 3-T Philips Achieva scanner (Philips 

Healthcare, the Netherlands). A standard eight-channel phased array head coil was used for radio 

frequency transmission and recording. The high-resolution structural T1 image consisted of 180 

sagittal slices, by applying a T1-weighted 3D turbo gradient-echo sequence with SENSE (image 

matrix 240×240; field of view 240×240 mm2; slice thickness=1 mm; flip angle= 9o). For functional 

resting state recording, 178 whole-brain functional images were acquired (T2*-weighted single-

shot gradient-echo echo-planar imaging (EPI) sequence; repetition time TR= 2000 ms; echo time 

TE= 28 ms; isotropic 3 mm voxel size; field of view 192×192 mm2; flip angle= 80o; 40 slices, 

ascending interleaved slice order). 

2.3.2 Preprocessing 

Part of preprocessing on functional images was initially carried out using FSLv5.0 (available at 

http://fsl.fmrib.ox.ac.uk/fsl/) to implement independent component analysis (ICA)-based strategy 

for automatic removal of motion artifacts (ICA-AROMA) for head motion correction [94]. It has 

been shown that ICA-AROMA enhances the sensitivity and specificity of rs-fMRI activation and 

connectivity analyses [94]. To improve inter-subject alignment [95,96], the spatial preprocessing 

of the data were performed with the statistical parametric mapping 12b (SPM12b; available at 

http://www.fil.ion.ucl.ac.uk/spm/) in MATLAB (MathWorks, Natick, MA, USA) and data 

processing assistant for resting-state fMRI toolbox  (DPARSF advanced edition, version 3.2, 

available at http://rfmri.org/DPARSF ). 

The rs-fMRI images were preprocessed as follows: (i) The first 7 volumes of each dataset 

were discarded to allow the signal to reach equilibrium and to allow the subjects to adjust to the 



Chapter 2: Materials 

30 
 

scanning noise; (ii) All images were manually reoriented in setting the origin to the anterior 

commissure; (iii) Head movement correction was performed during data acquisition by volume-

realignment to the middle volume using MCFLIRT [97]; The MCFLIRT results in estimated 

realignment parameters for each experimental condition were summarized in Figure 2.2 and 

Figure 2.3 for motion translation and rotation parameters, respectively; (iv) We then submitted the 

data to ICA-AROMA [98] for identification and removing the independent components related to 

the head motion artifacts by three steps. The first step was running a probabilistic independent 

component analysis (PICA) using MELODIC (see Section 4.1.2) with automatic dimensionality 

estimation to find a set of components for each subject per session and per recording individually. 

Then, a predetermined classifier was applied on independent components to represent the motion-

related artifact components, which were identified at least by assessing each component to one of 

the following criteria: (1) maximum correlation with realignment parameters, (2) high-frequency 

temporal content > 35%, (3) spatial content in edge voxels and cerebrospinal fluid (CSF) > 10%.  

Finally, the regression of the motion-relevant components out of the data. Then the structural and 

denoised functional images were further preprocessed with DPARSF toolbox as follows [99]: (v) 

The T1 structural image was co-registered to the mean functional image; (vi) Gray matter, white 

matter and CSF segmentation, bias correction and spatial normalization of the T1 structural image 

were adjusted to the Montreal Neurological Institute (MNI) template using the DARTEL 

algorithm; (vii) Nuisance regression was performed to reduce the influence of unspecific 

physiological effects on BOLD signal. Nuisance variables included white matter and CSF; (viii) 

The functional images were spatially normalized to the MNI-template, by using the normalization 

parameters estimated by DARTEL algorithm with voxels size to 3 mm isotropic; (ix) Spatial 

smoothing was performed with a 6 mm full width at half maximum (FWHM) Gaussian kernel. 
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According to Zang et al. [100] fMRI signals were smoothed after calculating regional homogeneity 

not before (see Section 4.1.3); (x) Temporal band-pass filtering (0.01-0.08 Hz) was applied to the 

resting state fMRI signal to reduce the effect of low-frequency drift, e.g. respiratory, and high-

frequency noise, such as heart activity. As suggested by Zou et al. [101] no further filters were 

applied when calculating the fractional amplitude of low-frequency fluctuations (see 

Section 4.1.5); (xi) All functional images were masked with a gray matter mask. The gray matter 

mask was calculated by averaging the grey matter images of all subjects. To generate the binary 

mask, we defined the common voxels between the average gray matter image and the gray matter 

template (without cerebellum lobules) derived from Automated-Anatomical-Labeling (AAL) atlas 

[102] by using the xjView toolbox. In some subjects, we were not able to measure the whole 

cerebellum. Therefore, cerebellum cortex was excluded from the gray matter mask and regions of 

interest (ROIs). 
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Figure 2.2: Summary of MCFLIRT estimated translation parameters for each experimental 

condition. 
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Figure 2.3: Summary of MCFLIRT estimated rotation parameters for each experimental 

condition. 
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3. Chapter 3: Physiological and behavioral effects3 

Details regarding participants, the exact timing for obtaining blood samples and experimental 

design can be found in Chapter 2. 

3.1 Analysis 

Glucose concentrations were determined using the B-Glucose-Data-Management device 

(HemoCue GmbH, Grossostheim, Germany). For measuring the hormone levels, blood samples 

were centrifuged immediately. The supernatants were stored at -80° C until they were analyzed. 

Blood serum and plasma were used to measure the insulin and cortisol levels by commercial 

enzyme-linked immunoassay (Immulite DPC, Los Angeles, USA; insulin: intra-assay coefficient 

of variation (CV) < 1.5% and inter-assay CV < 4.9%; cortisol: intra-assay CV < 1.7% and inter-

assay CV < 2.8%). 

To investigate differences between the two experimental conditions (hunger and satiety) for 

plasma glucose, insulin and cortisol levels before and after glucose administration (oral glucose 

intake) two averages across the relevant samples of the second day were calculated for each 

participant and condition: one before and one after the oral glucose intake. 

To test for differences two-way repeated measures ANOVAs (rm-ANOVA) with factors 

metabolic state (levels: hunger, satiety) and glucose administration (levels: before, after glucose 

intake) were performed for each of the dependent variables, i.e. hunger rating, plasma glucose, 

                                                 
3 Portions of this Chapter are adapted from the following publication: Al-Zubaidi, A., Heldmann, 

M., Mertins, A., Jauch-Chara, K. and Münte, T. F. (2018). Influences of hunger, satiety and oral glucose 

on functional brain connectivity: A multimethod resting state fMRI study. Neuroscience. I participated in 

the experiment design and data collection. I analyzed the data and wrote the manuscript. 
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insulin, and cortisol levels, separately. All analyses were performed using SPSS software Version 

22.0. Values are reported as mean (M) and standard deviation (± SD). 

3.2 Results 

The analysis of plasma glucose (Figure 3.1A) concentrations resulted in significant main effects 

of  metabolic state (F(1,23)=25, p<0.0001) and glucose administration (F(1,23)=187, p<0.0001) and a 

significant metabolic state * glucose administration interaction (F(1,23)=72, p<0.0001). Post hoc t-

tests performed to reveal the interaction driving effects indicated that the glucose level before the 

glucose administration was significantly higher in the satiated (M=4.8 mmol/L, SD=1.5) compared 

to the hunger state (M=4.2 mmol/L, SD=1.4). After glucose administration, this effect reversed 

and a significantly higher glucose level was seen in the hungry (M=7.5 mmol/l, SD=2.9) compared 

to the satiated state (M=5.8 mmol/l, SD=1.5). This effect indicates reduced responsiveness to the 

circulating glucose during the satiated state.  

The analysis of plasma insulin (Figure 3.1B) concentrations revealed a significant main 

effect of glucose administration (F(1,23)=106, p<0.0001) and a significant metabolic state * glucose 

administration interaction (F(1,23)=102, p<0.0001), but no significant main effect of the metabolic 

state (F(1,23)=0.65, p=0.4). The post hoc analysis showed significantly higher insulin concentrations 

in the satiated state (M=198.8 pmol/L, SD=65.2) compared to the hunger state (M=22.5 pmol/L, 

SD=10.1) before the administration of glucose. After glucose administration, this effect reversed 

and significantly higher insulin concentrations were observed in the hunger state (M=457.9 

pmol/L, SD=185.6) than in the satiated state (M=314.6 pmol/L, SD=123.5) indicating reduced 

responsiveness to circulating insulin. Due to the fasting-induced insulin resistance, the body 

secretes more insulin to overcome this resistance. 
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Furthermore, for plasma cortisol (see Figure 3.1C) significant main effects of metabolic state 

(F(1,23)=9.1, p=0.006) and glucose administration (F(1,23)=7, p=0.01) were revealed with no 

significant interaction (F(1,23)=0.03, p=0.9). Before glucose treatment, the plasma cortisol level for 

the hunger state (M= 260 nmol/L, SD=68.2) was higher compared to the satiated state (M=229.2 

nmol/L, SD=56.4). A similar effect was found after glucose treatment, the plasma cortisol level 

was greater in the hunger (M=230.6 nmol/L, SD=44.4) compared to a satiated state (M=169.6 

nmol/L, SD=61.2). This result demonstrates that glucose treatment had no impact on how the 

metabolic states affected the plasma cortisol levels. 

Finally, with regard to subjective hunger ratings (Figure 3.1D) a main effect of metabolic 

state (F(1,23)=28.9, p<0.001) with higher hunger ratings in the hunger state (M=5.3, SD=2.6) 

compared to the satiated state (M=2.7, SD=2.1) was obtained but neither the main effect of glucose 

administration or a metabolic state * glucose administration interaction. These findings confirm 

the success of our fasting treatment. 
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Figure 3.1: Statistical differences in physiological and behavioral parameters under hunger 

and satiety conditions. 

Mean of (A) plasma glucose, (B) plasma insulin, (C) plasma cortisol levels, and (D) hunger ratings 

per factor: metabolic states (two levels: hunger and satiety) and oral glucose administration (two 

levels: before, and after treatment) across participants. The error bars represent the standard 

deviation. * and *** represent the significant differences between conditions, at a threshold of p 

< 0.01 and p<0.0001, respectively. 

3.3 Discussion 

Expectedly, plasma glucose and insulin levels differed between hunger and satiety conditions and 

were also differentially influenced by glucose administration (Figure 3.1A and B). In the satiety 

condition, a major peak in insulin and glucose levels around 3 hours before glucose ingestion is 

related to the breakfast consumed in this condition. Generally, before glucose administration, 
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insulin and glucose levels are higher in the satiety compared to fasting condition, which is in 

quality and quantity the expected result [103]. After ingestion of glucose, there is a massive rise 

of both insulin and glucose levels as expected. This curve (Figure 2.1 B and C) is higher and wider 

for both parameters in the fasting condition, which can be explained by post-fasting glucose 

intolerance [103]. Furthermore, the delay in the time until the maximum is reached in the fasting 

condition compared to the satiety condition can be explained with a delayed gastric emptying time 

for fasted individuals [104]. In addition, a meta-analysis showed that high insulin levels in 

response to a meal suppress appetite [105]. Therefore, glucose and insulin may act as biomarkers 

of the satiety [106]. Hunger ratings have been shown to increase with a blood glucose 

concentration of 4.4 mmol/L (85 mg/dL) or lower [107]. In our study, the mean blood glucose 

level was 3.6 mmol/L under hunger condition (Figure 2.1C), and the feeling of hunger was higher 

under hunger relative to satiety condition before the fMRI scans (Figure 3.1D). These findings 

suggest that the experimental manipulation was successful allowing us to place our rs-fMRI 

findings into the context of fundamental metabolic regulations. 

Finally, blood cortisol concentrations increased as expected during the fasting relative to the 

satiety condition (Figure 3.1C) pointing to higher stress during periods of food deprivation. 

Previous studies have shown a direct relationship between increases in cortisol levels and dieting 

or starvation due to changes in biological functioning such as freeing of energy and psychological 

influences like resisting food temptation [108,109].  

To conclude, our study shows differential effects in response to glucose ingestion of three 

investigated physiological markers, glucose, insulin and cortisol, during different metabolic states, 

namely hunger and satiation, in healthy normal weight man. 
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4. Chapter 4: Rs-fMRI connectivity-modeling  

Researchers in imaging neuroscience assume that human brain function needs to be characterized 

in terms of synchronization, functional segregation and integration processes [110–112]. 

Functional segregation refers to specific brain areas and networks that are involved in particular, 

separated brain functions. For example, Broca’s and Wernicke’s areas are known to be involved 

in language processing, whereas the supplementary motor area (SMA) and preSMA support motor 

processing. In contrast, functional integration, also called brain connectivity, concerns how 

different brain areas interact or connect to create specific functions within individual networks. In 

terms of functional neuroimaging, brain connectivity analyses can be organized into three different 

categories to explore brain connections, as follows: 

1- Anatomical or structural connectivity depends on measurement of structural links between 

neurons and neural populations based on axonal connections, i.e. fiber tracks of white matter, 

or synaptic contacts. To identify the fiber tracks between brain areas, diffusion-weighted 

MRI (DWI) techniques are used to quantify the motion of water molecules in a voxel into 

directional components [8].  

2- Functional connectivity (FC) reflects statistical dependencies or relationships between time 

series (i.e. BOLD signals) to remote neurophysiological events. Usually, FC is based on a 

statistical measure like correlation, covariance or spectral coherence. In rs-fMRI studies, this 

type of connectivity is a mechanism-free model and is used to identify synchronous BOLD 

signals from different brain areas. Thus, changes in resting-state functional connectivity are 

thought to characterize certain intrinsic processes of the brain [8]. 
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3- Effective connectivity (EC) refers to directed functional connectivity between brain regions. 

In fMRI studies, EC describes the direct influence of BOLD signal activation of one brain 

area to directly cause changes (i.e. activation or depression) of the signals in another brain 

area based on a specific statistical model. 

In this chapter, typical common models or approaches to assess functional and effective 

connectivity from rs-fMRI signals will be explained. 

4.1 Functional connectivity  

4.1.1 Seed-based correlation analysis (SCA) 

SCA is a straightforward method to compute the time course models of FC from rs-fMRI data. In 

SCA, typically, the strength of the FC is estimated by calculating the linear correlation coefficients 

between time series vectors. These time series vectors may be either extracted from any voxel in 

the brain or by averaging the time series of voxels within a particular brain region of interest (ROI). 

To generate the FC map, the linear correlation is estimated by calculating the Pearson correlation 

coefficient (ρ) between the time series of ROI and other voxels within the brain mask [29,113], as 

follows: 

𝜌𝐴, 𝑋𝑗 =  
∑ [(𝐴[𝑡] − 𝐴 )(𝑋[𝑡]𝑗 − 𝑥̅𝑗) ]𝑇

𝑡=1  

√∑ [(𝐴[𝑡] − 𝐴̅ )2 (𝑋[𝑡]𝑗 − 𝑥̅𝑗)
2

]𝑇
𝑡=1

,  𝑗 = 1,  .  .  .  𝑁,  𝑡 = 1,  .  .  .  𝑇, 
(4.1) 

where 𝐴 is the average of the time series of voxels within a ROI and 𝑋𝑗 is the time series of voxel 

𝑗th. 𝐴 and 𝑋𝑗 are the mean of the 𝐴 and 𝑋𝑗 , respectively. 𝑁 is the number of voxels within the 

brain mask and 𝑇 is the length of the time series. Then, the ρ values are usually normalized into a 

normal distribution by using Fisher’s 𝑧-score transformations:  
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 𝑍𝐴,𝑋𝑗
= 0.5 𝑙𝑛 (

1 + 𝜌𝐴,𝑋𝑗

1 − 𝜌𝐴,𝑋𝑗

) (4.2) 

 

The main advantage of adopting an SCA approach is that it provides a direct answer to a 

direct question, for instance how the FC pattern of a specific region might change across 

participants or experimental conditions. An essential disadvantage of SCA that its results are 

sensitive to the prior selection of size, location and shape of ROI. Furthermore, SCA results 

become more complex and not practical when utilizing more than a few simultaneous ROIs. Due 

to that complexity, using SCA alone is usually not possible to provide a general picture regarding 

the association between brain networks [50,114]. 

4.1.2 Independent component analysis (ICA) 

ICA has been developed to determine unknown (i.e. hidden) source signals from a set of 

measurements or observed data [115,116]. In the ICA approach, the observed data (e.g. fMRI data) 

are assumed to be a linear mix of different source signals or physical processes (e.g. different 

neural processes in fMRI). Thus, those source signals are statistically independent [115]. Statistical 

independence implies that obtaining the value of one source signal does not provide any 

information about the value of the others. Furthermore, the histogram of each source signal is more 

non-Gaussian (e.g. peaky) than the histogram of the observed data [115]. The goal of ICA is to 

estimate an un-mixing matrix by searching for non-Gaussian signals in the data and thus enable a 

good approximation of source signals [117].  

The application of the ICA approach to rs-fMRI data allows recovering spatial components 

that are independent over space [118–121]. The spatial ICA approach has been widely used by 

neuroimaging researchers to identify maps of brain networks that represent independent spatial 

patterns (i.e. stationery sets of voxels that have minimal spatial redundancy in the maps of the 
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resting-state connectivity) and different time courses from measured rs-fMRI data [8,16]. Each 

brain network consists of a set of voxels, these voxels could be from different brain regions but 

with similar BOLD signal fluctuations over rs-fMRI recording time [8]. Notably, the standard ICA 

model is noise-free and has a certain risk of overfitting the data [122]. Beckmann and Smith [123] 

suggested a new model called probabilistic ICA to avoid overfitting. Probabilistic ICA model is 

performed as the multivariate exploratory linear optimized decomposition into independent 

components (MELODIC) toolbox in FMRIB Software Library (FSL) [120,124]. It has the 

following mathematical representation for rs-fMRI data: 

𝑿 = 𝑨𝑺 + 𝑬, 

𝑿 = [

𝑥11

𝑥21

⋮
𝑥𝑇1

𝑥12

𝑥22

…
…

𝑥1(𝑁−1)

𝑥2(𝑁−1)

𝑥1𝑁

𝑥2𝑁

⋮ ⋱ ⋮               ⋮
𝑥𝑇2 ⋯ 𝑥𝑇(𝑁−1) 𝑥𝑇𝑁

] , 𝑨 = [

𝑎11

𝑎12

…
…

𝑎1𝑃

𝑎2𝑃
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𝑎𝑇1 ⋯ 𝑎𝑇𝑃

], 

 𝑺 = [

𝑠11 𝑠12 ⋯ 𝑠1(𝑁−1) 𝑠1𝑁

⋮  ⋮ ⋱ ⋮            ⋮
𝑠𝑃1 𝑠𝑃2 ⋯ 𝑠𝑃(𝑁−1) 𝑠𝑃𝑁

] , 𝑬 =  [

𝑒11

𝑒21

⋮
𝑒𝑇1

𝑥12

𝑥22

…
…

𝑒1(𝑁−1)

𝑒2(𝑁−1)

𝑒1𝑁

𝑒2𝑁

⋮ ⋱ ⋮                ⋮
𝑥𝑇2 ⋯ 𝑒𝑇(𝑁−1) 𝑒𝑇𝑁

], 

(4.3) 

where N, T and P(<T) represent some voxels, dimensional of time series observations and 

independent spatial components (spatial maps), respectively. X is the rs-fMRI data that we are 

trying to decompose. Each row vector in matrix X denotes rs-fMRI data from a 3D volume at a 

time point t, i.e. X=[x1,x2,…,xN] t.  A is the unknown linear mixing matrix that combines a set of 

unknown spatial components, which is S matrix, to obtain the rs-fMRI data. Each column vector 

in matrix A, i.e. A=[a1;a2;…;aT]p, comprises the contributions of all P spatial independent 

components to the rs-fMRI volume at the corresponding time point. Each row vector in S matrix 

refers to an independent spatial component, i.e. a brain network. E matrix represents the Gaussian 

noise. Using Gaussian noise as an explicit background in probabilistic ICA reduces the influence 

of noisy parts of the rs-fMRI data when estimating the number of spatial components by assessing 
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the statistical significance of the estimated sources [120,122,125]. For a given number of sources, 

the set of the spatial independent components and time courses can be estimated using the FastICA 

algorithm [117,123]. 

The advantage of using ICA over SCA approaches on rs-fMRI data is that ICA can provide 

brain networks as well as noise components without including any specific time series in the 

analysis model. Therefore, ICA-based approaches can be used to clean up the rs-fMRI data by 

determining noise from a wide variety of sources, such as head motion effects, physiological noise 

and MRI artifacts. In this dissertation, the ICA-AROMA approach was used to identify and remove 

the noise components from the data; more details about that technique are explained in 

Section 2.3.2, prepossessing section. One limitation of classical or even probabilistic ICA is that 

the results are not unique when analyzing the same data multiple times with an ICA procedure. 

For instance, the order of extracted components and also the component parameters may change 

slightly because of the method used to optimize ICA solutions. 

4.1.3 Regional homogeneity (ReHo) 

ReHo describes the local connectivity within brain regions and is a measure of the temporal 

homogeneity among brain voxels and the neighboring brain voxels within the low-frequency range 

of rs-fMRI signals [100]. ReHo is based on the assumption that the BOLD signal has 

characteristics that depend on neuronal activities and therefore the time series of neighboring 

voxels in a functional brain area will be highly similar or synchronized when that area supports 

specific goals or representations [126]. The ReHo index for a particular voxel is calculated by 

using Kendall's coefficient concordance (KCC) approach. In this study, the KCC was calculated 

using the following formula [100]:  
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𝐾𝐶𝐶 =

∑ (𝑅𝑖)2 − 𝑛(𝑅̅)2𝑛
𝑖=1

1
12  𝐾2(𝑛3 − 𝑛)

 
(4.4) 

where 𝐾𝐶𝐶  is the ranging coefficient, from 0 to 1 (no to maximal coherence), of a given voxel in 

relation to its nearest neighbors, 𝑅𝑖 represents the rank sum of 𝑖th time point as   𝑅𝑖 = ∑ 𝑟𝑖𝑗 
𝑘
𝑗=1  and 

𝑟𝑖𝑗 is the rank of the 𝑖th time point of the 𝑗th voxel. 𝑅̅ refers to the average of the 𝑅𝑖  and 𝑛 

represents the length of the time series (here 𝑛 = 170 time points). 𝐾 is the number of voxels 

within the targeted clusters (here 𝐾 = 27 , the given voxel (which is the center voxel) plus its 26 

immediate neighbors). Then, the 𝐾𝐶𝐶 value is assigned to the center voxel of the respective cluster. 

From the 𝐾𝐶𝐶 of all voxels, the so-called ReHo map can be constructed. In order to reduce the 

effect of individual variability, a z-scores normalization was applied, by subtracting the ReHo 

mean value of each individual ReHo map and dividing by the standard deviation.  

Relative to other methods (e.g. SCA), ReHo does not require prior selection of ROI to 

estimate FC. Because ReHo is looking at the homogeneity of local FC, the boundaries between 

brain regions that are functionally inhomogeneous emerge [114,126,127]. In contrast to the ICA 

method, ReHo does not need an assumption regarding the spatial independence of identified maps 

to estimate the measure of the local FC [100,114]. However, it is highly sensitive to different levels 

of spatial smoothing because it is fundamentally driven by the local neighborhood [114,122]. 

4.1.4 Degree of centrality (DC) 

According to graph theory [128], a network (graph) is defined as a set of objects and the lines 

between them. Each object (voxel or anatomical area) in the network is called a node, and the lines 

that connect some pairs of objects (voxels) are called edges [129]. DC is used to investigate the 

global connectivity of brain regions, which is defined as the number of connections of one voxel 

in the brain to the voxels of the entire brain [130]. This measure depends on graph theoretical 
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approaches. The individual DC map was generated by correlating the time course of each voxel in 

the brain with all other voxels in the brain and calculating the number of connections above a 

definite threshold [130]. The temporal relationship between two voxels is defined by Pearson’s 

correlation coefficient (𝑟) approach. The individual correlation coefficients are then used to 

generate a correlation matrix = [

𝑟11 ⋯ 𝑟1𝑗

⋮ ⋱ ⋮
𝑟𝑖1 ⋯ 𝑟𝑖𝑗

] , 1 ≤ 𝑖, 𝑗 ≤ 𝑁, where N is the number of voxels 

within the whole-brain mask and 𝑟𝑖𝑗  is the temporal Pearson’s correlation of time series between 

the 𝑖th and 𝑗th voxels measuring the similarity between two voxels. The correlation matrix was 

thresholded at 0.25 to build a binary undirected and unweighted network matrix 𝑑𝑖𝑗 as follows: 

 𝑑𝑖𝑗  = {
0, 𝑟𝑖𝑗 < 0.25

1, 𝑟𝑖𝑗 ≥ 0.25 
. (4.5) 

 The binary connectivity matrix 𝑑𝑖𝑗 was used to define the degree centrality of voxel 𝐷𝑖  by the 

following:  

 Di= ∑ dij
N
j=1 . (4.6) 

The voxel degree maps were transformed to z-score to ensure they were comparably scaled and to 

prepare them for comparing across subjects. The z-scores standardization is: 

 𝑍𝑖 =  
𝐷𝑖  − 𝐷

𝜎𝐷

(𝑖 = 1 … 𝑁) , (4.7) 

where 𝐷 and 𝜎𝐷 are mean the and standard deviation of the degree voxel maps within the brain 

mask, respectively. 

DC is an efficient method to summarize complex networks. It calculates how each voxel, 

from a specific network, is correlated with other networks’ voxels and then yields a single value 

to each participant. However, thresholding the correlation matrix into a binary matrix removes a 
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lot of potentially relevant information from the original data. Accordingly, it can be difficult to 

understand how the changes in the DC index are associated with changes in brain states [122]. 

4.1.5 Fractional amplitude of low-frequency fluctuation (fALFF) 

To quantify spontaneous local brain activity, the amplitude of the BOLD signals has been used. 

This can be assessed by the amplitude of low-frequency fluctuations (ALFF) and its derivative 

fALFF [101,131]. While ALFF describes the local spontaneous brain activity across the whole 

brain by assessing the amplitude in a given voxel or brain area in the low-frequency range (0.01-

0.08 Hz), fALFF is a normalized derivation of ALFF representing the ratio of low-frequency range 

amplitudes (0.01-0.08 Hz) relative to the entire frequency range (e.g. 0-0.25 if TR=2 seconds) 

amplitudes. To calculate the individual fALFF map, a fast Fourier transform (FFT) is performed 

on the time series of each voxel without temporal band-pass filtering. Then, the amplitude of each 

frequency is estimated by calculating the square root of the power spectrum. Finally, the total 

amplitude of the low-frequency range (0.01-0.08 Hz) is divided by that of the entire frequency 

range 0-0.25 Hz (TR=2s). For standardization purposes, the individual fALFF map is transformed 

to z-scores by subtracting its mean and dividing it by the standard deviation. 

Both ALFF and fALFF have high temporal stability [132] and test-retest reliability [133]. In 

contrast to ALFF, fALFF has been reported to have higher specificity in detecting local 

spontaneous brain activity, especially in the gray matter [101,134]. Moreover, fALFF is 

recommended to be used instead of ALFF [45] since it is more robust against nonspecific signal 

components, such as physiological noise [134]. In the present study, the fALFF on rs-fMRI data 

was performed to describe the local spontaneous brain activities. 
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4.2 Effective connectivity  

Several methods have been used to estimate effective connectivity (EC). For instance, Granger 

causality (GC) has been applied to test whether a BOLD signal extracted from a certain region Z 

has a direct effect of causing a BOLD signal from another region X [135,136]. Similarly, structural 

equation modeling (SEM) is another method to test hypotheses regarding the influences among 

interacting a set of independent and dependent variables [137,138]. GC and SEM are not suitable 

to capture the dynamic change in the fMRI because both of them are excluding the temporal 

infraction, i.e. history of an experimental task or imaging data, and ignore the hemodynamic 

convolution [139–144]. In contrast, multivariate autoregressive modeling (MAR) uses temporal 

information in terms of the historical influence to measure the inferior causality among BOLD 

time series. However, the MAR model cannot estimate the hidden neuronal states.  

Friston and colleges [145] proposed a method to estimate at the neuronal level the causal 

effects of one region over another called dynamic causal modeling (DCM). DCM allows inferring 

effective (directed) connectivity on latent (hidden) neural states from measured brain data using 

predefined models [145]. Furthermore, DCM can be used to gather evidence favoring one model 

(hypothesis) over another to understand how brain regions communicate and influence each other 

[146]. With a DCM based algorithm called spectral DCM (spDCM) it is now possible to reveal 

the intrinsic connectivity in resting-state fMRI data [147]. Spectral DCM uses a Bayesian 

procedure to estimate the likeliest strength of endogenous causality. 

4.2.1 Spectral DCM (spDCM) 

SpDCM uses a Bayesian model inversion procedure to infer from the measured cross-spectra 

density (CSD) of BOLD signals on parameters of connections that link neural states in pre-defined 

networks of regions. The inverse Fourier transform of CSD corresponds to a cross-correlation 
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function over time, which is the measure of the FC (Pearson's correlation) at zero lag [147–149]. 

In other words, inverting a probabilistic forward model (from hidden neural states to observed 

CSD of BOLD signals), spDCM estimates the directed connectivity among hidden neuronal states 

that best explains the measured FC between brain regions. 

In DCM for fMRI, the dynamic changes in regional- and time-dependent activity (i.e. 𝑥̇ =

dx

dt
) are modeled using a system of differential equations [145,150]. Furthermore, the DCM for rs-

fMRI has two components [151]: The first component is a state space model with linear differential 

equations, which is used to describe neural dynamics (neuronal states) of a system of distributed 

brain regions. The second one is a nonlinear differential equation model (hemodynamic model) 

that is based on the Balloon/Windkessel model [152], which is used to translate the predicted 

neural dynamics into region-wise blood oxygen level dependent (BOLD) signals. The basic form 

of DCM for rs-fMRI (in the absence of external inputs) comprises two sets of differential equations 

modeling the neuronal dynamics and hemodynamics, respectively: 

𝑥̇ = 𝐴𝑥(𝑡) + 𝑣(𝑡), 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝜃ℎ) + 𝑒(𝑡), 
 

(4.8) 

where 𝐴 is a matrix repesenting the endogenous connectivity among the regions, 𝐴 ⊂ 𝜃. The 

column vector  𝑥(𝑡) = [𝑥1 (𝑡), … , 𝑥𝑛(𝑡)]𝑇 represents a hidden neural states of 𝑛 brain regions at 

time 𝑡. The endogenous neuronal fluctuations are denoted by 𝑣(𝑡). The observed BOLD fMRI 

data 𝑦(𝑡) are modeled as a nonlinear hemodynamic response function ℎ of the neuronal state 𝑥(𝑡) 

as well as the hemodynamic parameters of the model 𝜃ℎ ⊂ 𝜃 [153] and an additional measurement 

error 𝑒(𝑡).    

In spDCM, the nature of the endogenous fluctuations underlying neuronal activity and 

observed noise are modeled with a free scale power-law form with a spectral density of “pink” 
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noise [154–156]. In the absence of any external stimulus, i.e. a resting state, the 𝑣(𝑡) and 𝑒(𝑡) can 

be modeled as: 

𝑔𝑣(𝑤, 𝜃) =  𝛼𝑣 𝑤
−𝛽𝑣, 

 𝑔𝑒(𝑤, 𝜃) = 𝛼𝑒𝑤−𝛽𝑒. 
 

(4.9) 

Here, 𝑔(𝑤) represents the complex cross-spectra, where  𝛼 and 𝛽, {𝛼, 𝛽} ⊂ 𝜃, are the parameters 

controlling the amplitude and exponents of the spectral density of the neuronal fluctuation, 

respectively, 𝑤 is the angular frequncy (2𝜋𝑓). In summary, the likelihood model is specified by 

considering the probability of observing some data features given the model parameters 𝜃 =

{𝐴, 𝛼, 𝛽, 𝜃ℎ}. These parameters are used to generate the expected cross-spectra 𝑔̂(𝑤, 𝜃) of the 

BOLD signals using Fourier transform 

  𝑔̂(𝑤, 𝜃) = 𝐾(𝑤) . 𝑔𝑣(𝑤, 𝜃). 𝐾(𝑤)∗ +  𝑔𝑒(𝑤, 𝜃),                                     (4.10) 

where 𝐾(𝑤) is the Fourier transform of a function of the Jacobian or EC. By using linear systems 

theory in frequency space, the observed sample cross-spectra of the BOLD signal 𝑔(𝑤) can then 

be considered as the predicted cross-spectra 𝑔̂(𝑤, 𝜃) plus some Gaussian sampling error 𝑁(𝑤) 

such that  

         𝑔(𝑤) = 𝑔̂(𝑤, 𝜃) + 𝑁(𝑤).                                    (4.11) 

By specifying the relationship between the sample and the expected cross-spectra, one can 

assess the likelihood function 𝑝(𝑔(𝑤)|𝜃, 𝑚), which descibes the probility of the observied cross 

spectra 𝑔(𝑤) data to be generated from model m given a set of parameters θ. The product of the 

likelihood function 𝑝(𝑔(𝑤)|𝜃, 𝑚) and the prior beliefs distribution of the model parameters 

𝑝(𝜃|𝑚) is called a generative model. The word “generative” refers to the fact that one can generate 

or simulate synthetic data points by sampling parameter values from the prior and inserting them 

into the likelihood function. In spDCM, this generative model defines the joint probability 
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distribution 𝑝(𝑔(𝑤), 𝜃|𝑚) over the observed cross spectra 𝑔(𝑤) and model parameters θ, given 

the model 𝑚: 

 𝑝(𝑔(𝑤), 𝜃|𝑚) =  𝑝(𝑔(𝑤)|𝜃, 𝑚) 𝑝(𝜃|𝑚).  (4.12) 

This generative modal can be understood as a probabilistic forward mapping from latent 

(hidden) parameter values to the observed cross spectra. Usually, a main goal of the generative 

models is to infer on the most likely latent (hidden) parameter values of the system given the 

observed data [157,158]. This is known as “model inversion” and basically corresponds to 

computing the probability (i.e. conditional posterior density) of a set of model parameters given 

the observed cross spectra 𝑝(𝜃|𝑔(𝑤), 𝑚) according to Bayesian inversion of the generative model: 

 𝑝(𝜃|𝑔(𝑤), 𝑚) =
𝑝(𝑔(𝑤)|𝜃, 𝑚)𝑝(𝜃|𝑚)

𝑝(𝑔(𝑤)|𝑚)
, (4.13) 

where 𝑝(𝑔(𝑤)|𝑚) refers to model evidence or marginal likelihood, which represents the 

probability to obtain the data under model m. Since the conditional posterior distribution 

𝑝(𝜃|𝑔(𝑤), 𝑚) is computationally exorbitant to compute, it is approximated using variational 

Bayes under the Laplace approximation (VBL) [159]. Briefly, VBL for DCM provides an 

approximation to guess the true conditional posterior density 𝑝(𝜃|𝑔(𝑤), 𝑚) by assuming a mean 

field assumption to split between parameters and hyperparameters and uses variational or proposal 

densities 𝑞(𝜃) under a fixed-form Laplace (i.e. Gaussian) approximation. Importantly, this 

approximation is optimized by maximising model log-evidence, which can be expressed 

mathematically as:   

 
𝑙𝑛 𝑝(𝑔(𝑤)|𝑚) = 𝐹(𝑔(𝑤), 𝑞) + 𝐷𝐾𝐿[𝑞(𝜃)||𝑝(𝜃|𝑔(𝑤), 𝑚), 

𝐹(𝑔(𝑤), 𝑞) = 𝑙𝑛 𝑝(𝑔(𝑤)|𝑚) − 𝐷𝐾𝐿[𝑞(𝜃)||𝑝(𝜃|𝑔(𝑤), 𝑚), 
(4.14) 

where 𝐹(𝑔(𝑤), 𝑞) represents negative free-energy and 𝐷𝐾𝐿 refers to the Kullback–Leibler 

divergence between the approximated posterior density 𝑞(𝜃) and the true posterior 𝑝(𝜃|𝑔(𝑤), 𝑚). 



4.2 Effective connectivity  

 

53 
 

Due to the fact that the 𝐷𝐾𝐿 divergence is always positive or zero when the densities are identical 

[160,161], the negative free-energy provides the lower bound or becomes equal (when 𝑞(𝜃) is 

equal to true posterior)  to the model evidence. Furthemore, minimizing 𝐷𝐾𝐿 divergence can be 

done by maximizing the negative free energy. The 𝐹(𝑔(𝑤), 𝑞) depends on the approximate 

posterior but does not depend on the true unknown posterior 𝑝(𝜃|𝑔(𝑤), 𝑚). Thus, estimating this 

negative free-energy is feasible. In other words, maximizing negative free-energy concerning VBL 

assumptions by using a gradient ascent provides two things: First, the variational density becomes 

posterior density over 𝜃 parameters, 𝑞(𝜃) ≈ 𝑝(𝜃|𝑔(𝑤), 𝑚), which is needed for model 

identification. The second one is the negative free-energy that becomes an approximation to the 

lower bound of the log model evidence, 𝐹(𝑔(𝑤), 𝑞) ≤ 𝑙𝑛 𝑝(𝑔(𝑤)|𝑚), which is needed to measure 

the model “goodness”, and which takes into account both the accuracy and complexity of the 

model [162]. The negative free-energy is a metric for comparing different models (alternative 

hypotheses) and for selecting the most plausible model (hypothesis) of how the data were 

generated [163,164]. 
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5. Chapter 5: Influence of hunger, satiety and oral glucose on brain 

functional connectivity4 

5.1 Introduction 

In contrast to the task-related fMRI, resting state fMRI (rs-fMRI) reflects the brain activity at rest, 

i.e. when individuals are not requested to perform a particular task [24], more details can be found 

in Section 1.1.3. Fluctuations of rs-fMRI have been considered to reflect rates of glucose oxidation 

in the gray matter [165]. Rs-fMRI lends itself to functional connectivity (FC, see Chapter 4) 

analyses by a number of techniques that analyze temporal correlations between spatially remote 

neurophysiological events [8,166]. In response to glucose uptake, the relationship between spatial 

metabolic information, which was provided by fluorodeoxyglucose- PET (FDG-PET), and FC, 

which was derived from rs-fMRI metrics,  has been observed in the hypothalamus, thalamus and 

within the DMN [167,168]. Thereby, changes in FC of rs-fMRI signals can be considered as a 

biomarker for baseline shifts of resting state activity and have also been used to assess glucose 

metabolism in the brain [169].   

Correspondingly, Bolo et al. [170] showed increased FC of the posterior cingulate cortex 

with the default mode network (DMN) and decreased FC of the inferior/ superior frontal gyrus 

with the cerebellum/ basal ganglia and temporal networks in hypoglycemia. Consistent with that, 

DMN activity was positively correlated with hunger ratings [171].  

                                                 
4 This chapter corresponds largely to: Al-Zubaidi, A., Heldmann, M., Mertins, A., Jauch-Chara, K. 

and Münte, T. F. (2018). Influences of hunger, satiety and oral glucose on functional brain connectivity: A 

multimethod resting state fMRI study. Neuroscience. I participated in the experiment design and data 

collection. I analyzed the data and wrote the manuscript. 
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Glucose administration decreases the hypothalamic BOLD signal [67,68] and increases 

functional connectivity (FC) between the hypothalamus, thalamus, caudate and putamen within 

the limbic network after overnight fasting [46,172]. However, these studies did not investigate the 

responses and connectivity patterns to oral glucose on the whole brain level. To address this 

research gap, we investigated the interaction of metabolic state (hungry vs. satiated) and glucose 

administration (before vs. after administration of 75 g of oral glucose) with regard to rs-fMRI 

activity.  The study of rs-fMRI is a relatively new field with rapid methodological developments. 

To encompass different aspects of the resting fMRI activity, we employed three methods that 

assess local and global FC as well as amplitude fluctuations of the BOLD response: First, regional 

homogeneity (ReHo) was determined, which describes the local connectivity of brain regions  

[100,126]. The ReHo method is termed after its property to reflect the coherence of spontaneous 

neuronal activity in a brain region [173]. It describes the similarity or synchronization of time 

series of a given voxel and its nearest neighbors at the low-frequency fluctuations of the BOLD 

signal [100]. The ReHo analysis revealed altered local connectivity of the brain in Alzheimer's 

disease [174], schizophrenia [175], attention deficit hyperactivity disorder [176], autism spectrum 

disorders [177] and Parkinson’s disease [178].  Second, the degree of centrality (DC) measures the 

global connectivity of brain regions [128–130] in the sense of ‘global functional connectivity 

density’ [179]. The DC measures the connectedness of a node (here a voxel) within the entire brain 

network, by calculating the number of connections of a voxel to the other voxels in the brain above 

a certain threshold [128–130]. Nodes with high DC are considered to function as “hubs’’. Recently, 

the DC approach has been used as a marker for altered connectivity in Alzheimer’s disease [130], 

obsessive-compulsive disorder [180,181], Parkinson’s disease (PD) [182], attention deficit 

disorders and autism spectrum disorder [183] among others. In one study of PD [182], for example, 



5.1 Introduction  

 

57 
 

it was suggested that PD leads to a disconnection syndrome, i.e. a reduction of connectivity, which 

was most apparent in the visual network module. On the other hand, a higher connectedness within 

the sensorimotor module in PD patients was interpreted in terms of a compensation mechanism in 

order to overcome the functional deficit of the striato-cortical motor loops. Similar functional 

interpretations have been made for the other conditions mentioned above.  

The third approach utilized here is the fractional amplitude of low-frequency fluctuations 

(fALFF). The fALFF provides information about the amplitude of spontaneous brain activity of 

each brain region within a network based on the magnitude of the BOLD signal in the low-

frequency range [101]. The fALFF approach has been shown to efficiently suppress non-specific 

signal components, such as physiological noise [101,184]. Recently, studies have observed that 

fALFF can be related to emotion processing [185], differences in behavior [186] and social 

decision-making [187]. For example, in the [186] study, the amplitude of spontaneous low-

frequency oscillations during rest predicted task-related fMRI activations and behavior in an 

Eriksen flanker task taxing executive control. In particular, low-frequency oscillations in the 

cingulate cortex predicted the magnitude of the behavioral congruency effect typically measured 

in the flanker task. These results support the notion that the brain's intrinsic functional architecture 

as measured in the resting state constrains behavior in tasks. Furthermore, the fALFF method has 

been shown to reflect aspects of depression [188,189] and attention deficit disorders with 

hyperactivity [173].  

A multimethod approach of rs-fMRI has been used before to investigate brain disorders such 

as autism spectrum disorder and Granulin mutations [190,191]. One important question of the 

present study is, whether or not the different approaches are equally sensitive to changes in 

metabolic state. One previous investigation by Aiello et al. [168] showed there is a high inter-
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correlation between these metrics after glucose uptake. Also, these parameters have been shown 

to correlate with regional glucose metabolism as measured by PET [167,168]. 

5.2 Materials and methods 

Details regarding samples and preprocessing pipeline of rs-fMRI images can be found in 

Chapter 2. Calculating of ReHo, DC and fALFF maps for each subject per experimental condition 

are done as explanted in Chapter 4. 

5.2.1 Statistical analysis 

To investigate the effects of metabolic states, glucose treatment and the interaction between them 

on FC matrices, we performed a separate fixable factorial model in SPM 12 for each connectivity 

matrix (fALFF, ReHo and DC). We designed rm-ANOVA in the fixable factorial model by 

including three factors, see [192]: subject (to control for the repeated measures), metabolic state 

(two levels: hunger, satiety) and glucose treatment (two levels: before, and after treatment). The 

statistical results of whole-brain analyses were inspected at an initial threshold of p<0.001, which 

is the liberal primary threshold to avoid type I error [193]. Then the main effects of hunger vs. 

satiety and before vs. after glucose were reported statically from T-values at a cluster-defining 

threshold of p<0.016, corrected for multiple comparisons according to the FWE (Family Wise 

Error) method and adjusted for the number of FC analyses (0.05/3, Bonferroni corrected for 

multiple comparisons). For the interaction between factors, we inspected the F contrast 

corresponding to the two-way interaction; the interaction result was as well thresholded at peak-

level p<0.001, the number of voxel per cluster (K) >10. As a post-hoc test, the paired-sample t-

test was used. Significant clusters were anatomically labeled according to the AAL atlas [102] 

included in the xjView toolbox (http://www.alivelearn.net/xjview8 ). The MNI-template Morel 

Atlas of the thalamus was applied to identify the substructure of the thalamic nuclei [194]. To 

http://www.alivelearn.net/xjview8
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visualize the spatial overlap among increases and decreases in multimethod rs-fMRI approaches, 

we projected the significant clusters as overlays on a structural brain image and determined the 

common voxels for all approaches. The xjView toolbox was used to identify the interaction among 

significant results 

5.3 Results 

Main effects of glucose treatment for the multimethod rs-fMRI (fALFF, ReHo, and DC) from rm-

ANOVA are shown in Figure 5.1 and summarized in Table 5.1. There were some common effects 

for the different analyses: Significantly decreased fALFF, ReHo, and DC after glucose treatment 

were found in the left supplementary motor area (SMA) while increased fALFF and ReHo were 

observed in the right superior and middle frontal gyri (SFG, MFG; Figure 5.1D). There were also 

effects that were found only in one of the analysis approaches: Reduced fALFF was found in the 

right precentral gyrus (PreCG) and the right postcentral gyrus after glucose administration (PoCG; 

Figure 5.1A, Table 5.1). The ReHo analysis showed an increased after glucose treatment in the 

right parahippocampal gyrus (PHG) and hippocampal structures (HS), while a reduced ReHo was 

evident in the left inferior parietal gyrus (IPG) and the left PoCG (Figure 5.1B, Table 5.1). Finally, 

a reduction of DC after glucose treatment was seen in the left orbital inferior frontal gyrus (IFGorb) 

and the left anterior insula (AINS; Figure 5.1C, Table 5.1).  

For the main effect of hunger, fALFF was increased in the posterior cingulate cortex (PCC) 

and the anterior precuneus (APCUN; Figure 5.2A and Table 5.2). Otherwise, we found no 

significant main effect on the satiety condition. For ReHo and DC analyses we observed no 

significant interaction between metabolic state and glucose treatment, and the main effect of 

metabolic state did not survive the correction for multiple comparisons. 
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Figure 5.1: Influences of glucose treatment found with different brain connectivity analyses. 

(A) Fractional amplitude of low-frequency fluctuation (fALFF). (B) Regional homogeneity 

(ReHo). (C) Degree centrality (DC). (D) Common regions of multimethod brain approach. All 

statistical images were assessed for cluster-wise significance using a cluster defining threshold 

P<0.001, 0.016 FWE corrected at the cluster level. Abbreviations: PreCG: precentral gyrus; 

PoCG: postcentral gyrus; SMA: supplementary motor area; SFG: superior frontal gyrus; MFG: 

middle frontal gyrus; IFGorb: orbital inferior frontal gyrus; AINS:  anterior insula; PHG: 

parahippocampal; HS: hippocampal structures. 
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Table 5.1: Influences of oral glucose tolerance test treatment for different brain connectivity parameters 

 

For fALFF, a significant interaction between metabolic state and glucose treatment in the 

left thalamus was observed (Figure 5.2B, Table 5.2). The z-score of the left thalamus were 

extracted and are shown in Figure 5.2C to illustrate the direction of this interaction. Before glucose 

treatment, the fALFF of the thalamus in hunger and satiety conditions did not differ; however, 

Regions Hes. p(adj.) K T value Local maxima (x y z) (mm) 

fALFF (increased) 

Sup. orbital frontal gyrus          R 0.007 48 4.78 24 57 -6 

Middle frontal gyrus               R   4.38 39 60 0 

Sup. frontal gyrus        R   4.33 36 60 12 

        

fALFF (reduced)  

Supplementary motor area L 0.000 323 6.08 -3 -3 54 

Supplementary motor area R   4.39 12 3 45 

Precentral gyrus R 0.000 125 5.09 39 -15 57 

Postcentral gyrus R   4.32 45 -24 57 

Postcentral gyrus R   3.59 39 -33 69 

        

ReHo (increased)  

Middle frontal gyrus R 0.006 130 5.36 39 60 12 

Middle frontal gyrus R   4.64 36 63 3 

Sup. orbital frontal gyrus R   4.49 21 60 -6 

Hippocampus R 0.010 116 5.13 33 -24 -15 

Parahippocampal gyrus R   4.01 33 -39 -9 

Hippocampus R   3.83 30 -30 -6 

        

ReHo (reduced) 

Supplementary motor area R 0.000 377 5.97 9 3 48 

Supplementary motor area L   5.96 0 -6 54 

Supplementary motor area R   5.81 -3 6 54 

Postcentral gyrus L 0.005 135 5.06 -60 -15 24 

Inferior parietal gyrus L   4.06 -54 -21 39 

        

DC (reduced) 

Inf. orbital frontal gyrus L 0.000 221 6.23 -33 27 -12 

Anterior insula L   4.18 -36 12 -9 

Supplementary motor area L 0.000 363 5.28 -9 3 60 

Supplementary motor area R   4.68 12 3 48 

Notes:  The table shows three local maxima (MNI coordinates) more than 8.0 mm, the adjusted p-values are 

reported at p<0.001 (height threshold) and cluster-level FEW corrected p<0.016 (0.05/3). T=peak of T 

values. K=cluster size. Hes. =hemisphere. fALFF= fractional amplitude of low-frequency fluctuations. 

ReHo= regional homogeneity. DC= degree of centrality. 
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after glucose treatment, the fALFF increased in hunger and decreased in satiety. Post-hoc 

comparisons of hunger vs. satiety after glucose treatment are shown in Figure 5.2D. 

 

Figure 5.2: Changes of fALFF were obtained by two-way repeated measurements ANOVA. 

(A) The main effect of hunger versus satiety. (B) A significant interaction of metabolic state and 

glucose in the left thalamus (peak-level of P<0.001, K >10). (C) Interaction of metabolic state and 

glucose treatment in the left thalamus. (D) fALFF in the left thalamus in hunger vs. satiety after 

glucose (post-hoc test). Statistical images were assessed for cluster-wise significance using a 

cluster defining threshold p<0.001, 0.016 FWE corrected at the cluster level. Abbreviations: PCC: 

posterior cingulate cortex; APCUN: anterior precuneus. 
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Table 5.2: Brain regions showing differences in the fractional amplitude of low-frequency 

fluctuations (fALFF) 

 

5.4 Discussion 

This Chapter explored whether the metabolic state (fasted vs. satiated states) and fluctuations in 

blood glucose levels might be reflected in changes of resting-state connectivity in the brain. 

Therefore, we used data-driven approaches to assess hemodynamic changes related to neuronal 

activity (BOLD signal). In Chapter 3, we showed that blood sugar levels were differentially 

affected by metabolic state and administration of glucose. In this Chapter, after glucose treatment, 

we found a significant decrease of fALFF, ReHo, and DC in the left SMA, while a significant 

increase of fALFF and ReHo was observed in the right MFG and SFG. Third, hunger relative to 

satiety increased the amplitude (intensity) of spontaneous brain activity in the PCC and the anterior 

PCUN. Fourth, we observed a significant interaction between metabolic state and glucose 

treatment in the left thalamus using fALFF analysis. 

In the main effects of glucose treatment, a decreased of fALFF, ReHo, and DC was found in 

the left SMA after glucose treatment. This region is important for motor planning and 

Regions Hes. p(adj.) K T value Local maxima (x y z) (mm) 

Main effect: hunger > satiety 

Posterior cingulate cortex L 0.001 67 4.47 -6 -42 33 

Anterior precuneus R   3.91 3 -63 30 

Anterior precuneus R   3.63 6 -54 27 

        

Interaction: metabolic state × glucose treatment  

Thalamus  L 0.000 ¥ 12 15.33 € -12 -24 18 

        

Post-hoc paired t-test after glucose: hanger > satiety 

Thalamus          L 0.000 62 6.67 -3 -21 15 

Thalamus L   5.34 -12 -21 15 

Thalamus L   5.05 -9 -33 6 

Notes:  The table shows three local maxima (MNI coordinates) more than 8.0 mm, the adjusted p-values 

are reported at p<.001 (height threshold) and p<0.016 (FWE extent threshold for cluster levels, 0.05/3). . 
¥ is the p-value (p <0.001) at peak level.  T=peak of T values, except € is the peak of F value. K=cluster 

size. Hes. =hemisphere. 
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programming [195,196] and action observation [197]. While our data were obtained during rest 

without a task, the effect of glucose treatment on SMA might indicate suppressed action planning 

or initiation, because the energy requirements of the brain and body are met. Thus, we propose 

that different levels of circulating glucose differentially affect activity in brain regions involved in 

attention, motor planning, and food evaluation, thereby providing a background signal that might 

modulate activities such as foraging.  

Apart from subcortical structures we also found increased fALFF and ReHo in the right SFG 

and MFG when we evaluated the main effects of glucose treatment. Activation in both regions is 

positively correlated in healthy participants using whole brain correlation analysis [198]. The SFG 

is activated in response to appetitive stimuli in fasting participants [199,200]. The right MFG is 

active during attention shifts towards unexpected stimuli [201,202] or reorienting attention from 

exogenous to endogenous foci [198] and is part of a ventral attention network (VAN) [203,204]. 

We identified further differences in brain responses after glucose. First, we found it 

decreased fALFF in the right PreCG and the right PoCG. The PreCG is a primary motor area, and 

the PoCG is a primary sensory area and both regions are part of the sensorimotor network 

[120,205]. For this network, we furthermore found decreased amplitudes of the BOLD signal after 

glucose administration pointing to overall reduced activation of that network. Supporting our 

findings, a study using ICA showed increased FC of the PreCG and PoCG regions in the 

sensorimotor network during hypoglycemia [170]. Secondly, we found increased ReHo in the right 

PHG and HS, regions that figure prominently in memory processes. Reduced ReHo was evident 

in the left IPG and the left PoCG. Finally, suppression of DC was marked in the left IFGorb and 

AINS which harbors the primary gustatory cortex and contains neurons that respond to different 

tastes and food textures [206,207]. Furthermore, a meta-analysis by Kelley and colleagues [208] 
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affirmed participation of the left insula in the processing of appetite and food stimuli. In addition, 

the AINS is connected with the anterior cingulate cortex, the middle and inferior frontal cortex, 

and the temporoparietal cortex within the resting state network [134]. This network is mostly 

related to limbic regions that play a role in emotion processing [129]. Our observations suggest 

that sensing the arrival of energy supply from oral glucose, probably via signaling from sweet taste 

receptors, suppresses connectivity in AINS to interrupt the resting state network as proposed by 

Zou et al. [129] and switch to a state of increased activity. 

For the main effect of metabolic state, DC and ReHo analyses failed to identify differential 

connectivity patterns according to hunger vs. satiety after correction for multiple comparisons. 

Thus, the global and local connectivity of the brain appears to be largely independent of metabolic 

changes in perceived hunger, at least with regard to the extent seen in the present experiment. By 

contrast, fALFF analysis revealed that the amplitude of the BOLD signal was increased in PCC 

and APCUN during hunger (Figure 5.2A and Table 5.2). As has been shown before, the insula, 

PCC, and the precuneus are activated during food choice versus non-food choice in hunger 

conditions [209]. Moreover, PCC, APCUN are core hubs of the default mode network (DMN) 

[23,35] which is activated in rs-fMRI when attention is oriented towards internal rather than 

towards external stimuli [33,34]. The PCC has been shown to be involved in self-referential 

processes [210] and APCUN in self-centered mental imagery strategies [211]. In an FC study on 

overweight/obese participants, the reduction of DMN activity was associated with a decrease in 

fat mass and hunger ratings after six months of exercise [171]. In the current experiment, the 

increased BOLD amplitude in PCC independent of glucose administration appears to be related to 

the metabolic state [107]. DMN activity has previously been shown to be positively correlated 
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with hunger ratings [171] and with lower blood glucose levels [170]. The enhanced activation of 

DMN under hunger conditions leads to the hypothesis that this indicates an increase in self-focus.    

In addition to the main effects of metabolic state, we found a significant interaction between 

metabolic state and glucose level on the activation of the left thalamus (mediodorsal). This 

interaction was driven by a fALFF increase after glucose treatment in the hunger and a fALFF 

decrease after glucose in the satiety condition. In agreement with our findings, it has been shown 

before, that hunger is associated with increased amplitude of BOLD signals and cerebral blood 

flow in the thalamus [212,213]. By contrast, ghrelin application [214] as well as glucose infusion 

decreased the BOLD signals in the thalamus [70,215]. Kroemer et al. [48] found that fasting levels 

of ghrelin correlated positively with brain responses to food pictures in the thalamus but did not 

find an effect of standardized glucose intake. The thalamus plays a central role in the processing 

of food-related sensory information as well as the integration of information from the 

gastrointestinal (GI) tract [70,216]. In particular, a spinothalamic pathway conveys afferent 

information from the GI tract to thalamus via the vagus nerve [217]. Rolls [207,218] has identified 

the role of the mediodorsal thalamus in the short-term regulation of food intake. We therefore 

suggest that the altered activity of the mediodorsal thalamus region after glucose treatment is 

dependent on the perception of hunger or satiety, and related to the glucose level.  

In summary, we found that changes in the metabolic state, i.e. hunger vs. satiety affected the 

amplitude of the BOLD signal, but did not influence local and global connectivity. By contrast, 

we did observe significant alterations in amplitude as well as local and global connectivity after 

glucose treatment. This indicates that local and global brain connectivity remained stable after 36 

hours of fasting or standardized meals, whereas they were acutely modulated after glucose. It has 

previously been stressed that the brain has a unique capacity to control its own energy supply [49] 
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even under conditions of hunger and the stable connectivity pattern between satiated and hungry 

state might reflect this control function. 

5.5 Conclusions 

The fALFF method proved to be a sensitive and reliable marker to measure changes in the 

homeostasis of the resting brain. While fALFF is an index for the power of the BOLD signal in 

the low-frequency ranges, ReHo and DC measure local and global connectivity, respectively. We 

found indications of VAN and DMN activation as reflected by corresponding increases in signal 

intensities of SFG, MFG, PCC, and APUCN. Both networks serving different functions are 

involved in attention shifts between internal and external stimuli (VAN) and feeding-related 

behavior (DMN), suggesting that the changes in blood sugar levels lead to changes in brain activity 

which may be important to initiate behaviors such as foraging and food intake. The current findings 

suggest that examining the effect of oral glucose under different metabolic states by a multimethod 

approach for rs-fMRI analysis can contribute to the delineation of the relationship between 

metabolism, brain, and behavior. Particularly, the results indicated a rather stable pattern of 

connectivity in both metabolic states, suggesting that the brain’s energy supply is kept stable. 

Glucose administration on the other hand led to an acute modulation of the connectivity pattern 

which might indicate the need to adjust behaviors in the face of ample energy supply.
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6. Chapter 6: Amplitude of brain signals classify hunger status based on 

machine learning in resting-state fMRI5 

6.1 Introduction 

Resting-state functional magnetic resonance imaging (rs-fMRI) has been increasingly applied to 

study activity and connectivity of the resting brain and involves the recording of the blood-oxygen-

level-dependent (BOLD) signal without imposing a task [45,219]. This approach can be used to 

assess intrinsic and spontaneous brain activity. Analysis techniques of rs-fMRI have evolved 

rapidly over the past few years and are based on correlation methods [128,220–222], partial 

correlation [223–225], graph theory based analysis [128,226] and sparse representation methods 

[227,228], among others. Because of its simplicity (short scan time, no stimulation equipment 

needed, no task requirements, see Section 1.1.3), the rs-fMRI method has become particularly 

popular for the characterization of clinical conditions, for example pinpointing to differences 

between healthy participants and patients with Parkinson’s disease [182,229], Alzheimer’s disease 

[230,231], bilateral vestibular failure [232], schizophrenia [233,234], obsessive-compulsive 

disorder [235,236] to name but a few targeted neuropsychiatric conditions. 

In neuroimaging, machine learning classifier (MLC) methods are applied to fMRI data to 

detect model-free brain activity and to use these brain activity patterns to differentiate between 

groups or conditions [237,238]. The application of MLC to fMRI data is often referred to as multi-

voxel (i.e. analyzing more than one voxel at once) pattern analysis (MVPA). MVPA is a helpful 

                                                 
5 This chapter corresponds largely to: Arkan Al-Zubaidi, Alfred Mertins, Marcus Heldmann, Kamila 

Jauch-Chara and Thomas F. Münte (2019). Machine learning based classification of resting-state fMRI 

features exemplified by metabolic state (hunger/satiety). Frontiers in human neuroscience. I participated 

in the experiment design and data collection. I analyzed the data and wrote the manuscript. 
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tool to investigate how a pattern of brain activity is related to different cognitive state [239–241]. 

The process of applying the MVPA approach to fMRI data can be broken down into three stages 

[16,238]. First, feature extraction, which converts the BOLD fMRI signals to the relevant 

variables, i.e. features, which will be used to train and to test the classifier. Second, feature 

selection, which determines features that have to be included in the classifier analysis in order to 

improve the classification. Third, cross-validation methods that divide the data into training and 

testing samples and determine the accuracy of the classifier in generalization to new data. 

Support vector machine (SVM) [242,243] is a powerful method available to perform MVPA. 

In contrast to alternative MVPA methods (such as linear discriminant analyses), SVM provides 

better prediction accuracy, having the advantage of being relatively insensitive to the sample size 

of the training dataset [244,245]. Furthermore, SVM has additional advantages regarding 

efficiency, simplicity, robustness and is less susceptible to noise [245,246].  

The application of SVM to fMRI data at the group level has several advantages over 

traditional univariate (i.e. individual) voxel-based methods, like the general linear model (GLM). 

For instance, SVM allows to identify voxels or brain regions of interest that are informative for 

classifying groups by accumulating the information in an efficient way across many spatial 

locations, while in GLM analysis, these voxels or brain regions could appear statistically 

insignificant, although they might carry some information about differences between states or 

groups [239,240]. Thus, SVM provides insight into the defining differences between the two states 

or groups [237,247].  

In many cases, fMRI data have a small number of samples and a large number of variables 

or features. This often leads to overfitting in classification, which in turn leads to deceptive 

diagnostic results and poor generalization performance [238,248]. To avoid the danger of 
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overfitting, most of the MVPA-based fMRI studies applied both methodologies, feature-selection 

algorithms to remove redundant information and MLC methods that are less sensitive to high 

dimensionalities, such as linear SVM. Finally, cross-validation analyses are performed to evaluate 

the classification accuracy and generalizability for unseen data [237,249–251]. 

Rs-fMRI yields data comprise multiple data points per subject and/or condition among other 

things raising the question of whether it might be possible to distinguish between different 

conditions (e.g. disease present or not) using classification algorithms from the realm of machine 

learning.  Indeed, several recent publications have tackled this question. For example, Abós et al. 

[252] obtained functional connectomes from the rs-fMRI in healthy controls (HC) and 70 

Parkinson’s disease patients (of which one third had a mild cognitive impairment (MCI)). Using a 

SVM trained on features selected through randomized logistic regression with leave-one-out cross-

validation (LOOCV) they could separate patients with MCI from those not having MCI with an 

accuracy of about 83% in the training sample. In a smaller validation sample of 25 Parkinson 

patients (8 MCI), classification accuracy with regard to MCI was 80% using the features found in 

the training sample [252]. This suggests that SVM classification based on metrics obtained from 

rs-fMRI can indeed yield meaningful results. Likewise, applying a graph theoretical approach to 

rs-fMRI to characterize functional connectivity in patients with MCI, Alzheimer’s disease (AD) 

and age-matched HC (total sample n=168) followed by SVM based classification, Khazaee et al. 

[253] were able to accurately classify the subjects into three groups (HC, MCI, AD) with 88.4% 

accuracy. The same research group [254] tried to distinguish patients with MCI who later 

converted to an AD from MCI patients who did not. Again a SVM using features derived from 

local and global graph measures was used. This approach yielded a specificity of 91.4% and 

sensitivity of 83.2% regarding the conversion to the AD. Bi et al. [255] attempted to classify 
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patients with autism spectrum disorder (ASD) from HC using random SVM cluster and reported 

classification accuracy based on the optimal feature to be 96%. These are just a few examples 

illustrating that rs-fMRI derived features can be used for classification of conditions using machine 

learning algorithms. What it is less clear, however, is which method of rs-fMRI analysis delivering 

the most discriminating features might be best in distinguishing different metabolic states (hunger 

vs. satiety). 

In the present investigation, we therefore sought to compare the accuracies of three different 

connectivity parameters or features (the predictor variables used for classification) extracted from 

rs-fMRI fluctuations. These features assess local and global functional connectivity as well as 

changes in the brain activity as indicated by the amplitude of the BOLD signal, i.e. regional 

homogeneity (ReHo), degree of centrality (DC) and fractional amplitude of low-frequency 

fluctuations (fALFF), respectively (see Chapter 4). Briefly, ReHo characterizes the local 

connectivity of a brain voxel to its nearest neighboring brain voxels [100,126] by determining the 

coherence among spontaneous BOLD signals that might reflect spontaneous neuronal activity 

[173]. ReHo has been applied to widely differing neuropsychiatric conditions 

[174,175,178,256,257]. DC is derived from graph theory based analysis and describes the global 

connectivity (global connectedness) of a given voxel with the voxels in the entire brain, by 

computing the number of connections above a certain threshold [128–130]. Again, DC has seen 

widespread application in neuropsychiatric conditions [130,180,181,183,232]. Finally, to quantify 

spontaneous local brain activities, the amplitude or intensity of the BOLD signals is used as a 

marker. We performed fALFF on rs-fMRI datasets to describe the local spontaneous brain 

activities. 
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The aim of feature selection algorithms is to reduce the dimensionality of feature space and 

computation time as well as to enhance the accuracy of optimization methods by ignoring 

redundant, irrelevant or noisy features [258,259]. In general, the feature selection algorithms are 

classified into two categories, according to the type of objective functions that one chooses to work 

with: filter methods and wrapper methods [238,260]. Filter methods select the feature subsets 

based on statistical properties (such as interclass distance, mutual information, entropy or 

statistical independence) of the features to filter out poorly informative ones without employing 

any classification algorithm. In contrast, wrapper methods rate the feature subsets based on their 

predictive accuracy to improve the performance of classification when applying a particular 

classifier (such as SVM or the k-nearest neighbor). Filter methods are advantageous because they 

perform quickly, afford a more general solution and tend to select large feature subsets. Wrapper 

methods are expensive because they need more time to train the classifier of each subject many 

times (i.e. cross-validation), but often do not deteriorate from the problem of overfitting [261] and 

provide more accurate results comparable to filter methods [262,263].  

There are several strategies to apply wrapper methods [260]. For instance, sequential forward 

selection (SFS) and sequential forward floating selection (SFFS) are easy to execute and are 

assumed to provide useful results. Although the SFFS strategy requires massive computational 

resources, it performs better and is more effective for solving small- and medium-scale problems 

than simpler strategies like SFS [264]. However, the SFS strategy reduces the computational costs 

for the feature subset selection. Accordingly, Burrell and colleagues [261] concluded that SFS was 

a reasonable alternative to select a small subset of features for fMRI data. In this work, we 

compared between SFS and SFFS strategies for creating feature subsets to distinguish different 

metabolic states.  
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The emphasis of the present work is on the ability to classify the metabolic states (hunger vs. 

satiety) by MVPA approach. Therefore, we first estimate and compare the prediction accuracy of 

classification (hunger vs. satiety) based on different features of rs-fMRI data (ReHo, DC and 

fALFF). Second, we identify brain regions containing discriminating information between 

different metabolic states. To this end, we apply support linear SVM as classifier and two feature 

selection strategies (SFS and SFFS) to identify those brain regions that most efficiently 

differentiate between hungry and satiated states based on rs-fMRI data. Finally, we employ a cross-

validation scheme and permutation tests to validate the reliability of classifier and significance 

testing, respectively (see Figure 6.1 for classification procedure). 

 

Figure 6.1: Full analysis procedure of hunger classification based on rs-fMRI data. 

6.2 Materials and methods 

Twenty-four lean, healthy male volunteers (age 25 ± 5 years) were recruited from the University 

and the local population of Lübeck city. Each subject was measured under two metabolic states, 

once under fasting (36 hours fasting) and once under the standardized eating condition with a break 
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of one week between conditions. At the end of each session, structural and functional images were 

recorded. More details on the experimental design, image acquisition and preprocessing of rs-

fMRI data can be found in Chapter 2. 

6.2.1 Feature extraction from rs-fMRI data 

Feature extraction is used to reduce the dimension of the original data space to a new feature space. 

This new feature space helps to minimize the training time taken by the classifier [265]. To 

encompass different aspects of rs-fMRI fluctuations, we extracted and compared three of the most 

common features according to their accuracy to select those brain regions that best distinguish 

different metabolic states by using linear SVM together with feature selection strategies. In the 

beginning, we submitted the preprocessed data to the DPARSF toolbox [99] and extracted three 

features (DC, ReHo and fALFF) from each subject per section as described in Chapter 4. Then, 

those features were analyzed as explained in Section 6.2.2. 

6.2.2 Feature selection for hunger/satiety status classification 

After generating ReHo, DC and fALFF maps from rs-fMRI data for each subject per condition, 

we used the AAL atlas to define the ROIs. The AAL atlas is a well-established anatomical 

parcellation of the brain into 45 ROIs per hemisphere when excluding the cerebellar lobules (see 

Chapter 2, Section preprocessing). Mean values of ReHo, DC and fALFF were calculated for each 

ROI and used to create a feature (region) vector, i.e. R [1,…,90], with 90 dimensions for each map. 

Those features are listed in Table 6.1.  
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Table 6.1: List of the anatomical regions (AAL atlas) of interest and their labels in the region vector.  

 

Label Anatomical Label Anatomical Label Anatomical 
1 L. Amygdala 31 R. Sup. Frontal Med. 61 L. Sup. Parietal Gyrus 
2 R. Amygdala 32 L. Sup. Frontal Orbital 62 R. Sup. Parietal Gyrus 
3 L. Angular Gyrus 33 R. Sup. Frontal Orbital 63 L. Postcentral Gyrus 

4 R. Angular Gyrus 34 R. Superior Frontal 64 R. Postcentral Gyrus 
5 L. Calcarine Fissure 35 L. Fusiform Gyrus 65 L. Precentral Gyrus 

6 R. Calcarine Fissure 36 R. Fusiform Gyrus 66 R. Precentral Gyrus 
7 L. Caudate Nucleus 37 L. Heschl Gyrus 67 L. Precuneus  

8 R. Caudate Nucleus 38 R. Heschl Gyrus 68 R. Precuneus 
9 L. Ant. Cingulate Cort. 39 L. Hippocampus 69 L. Putamen 

10 R. Ant. Cingulate Cort. 40 R. Hippocampus 70 R. Putamen 
11 L. Mid. Cingulate Cort. 41 L. Insula 71 L. Rectus gyrus 

12 R. Mid. Cingulate Cort. 42 R. Insula 72 R. Rectus gyrus 
13 L. Pos. Cingulate Cort. 43 L. Lingual Gyrus 73 L. Rolandic Operculum 

14 R. Pos. Cingulate Cort. 44 R. Lingual Gyrus 74 R. Rolandic Operculum 
15 L. Cuneus  45 L. Inf. Occipital Gyrus 75 L. Supplementary Motor Area 

16 R. Cuneus 46 R. Inf. Occipital Gyrus 76 R. Supplementary Motor Area 
17 L. Inf. Frontal Oper. 47 L. Mid. Occipital Gyrus 77 L. Supramarginal Gyrus 

18 R. Inf. Frontal Oper. 48 R. Mid. Occipital Gyrus 78 R. Supramarginal Gyrus 
19 L. Inf. Frontal Orbital 49 L. Sup. Occipital Gyrus 79 L. Inf. Temporal Gyrus 

20 R. Inf. Frontal Orbital 50 R. Sup. Occipital Gyrus 80 R. Inf. Temporal Gyrus 
21 L. Inf. Frontal Triang. 51 L. Olfactory Cortex 81 L. Mid. Temporal Gyrus 
22 R. Inf. Frontal Triang. 52 R. Olfactory Cortex 82 R. Mid. Temporal Gyrus 
23 L. Med. Frontal Orbital 53 L. Pallidum  83 L. Mid. Temporal Pole Gyrus 
24 R. Med. Frontal Orbital 54 R. Pallidum 84 R. Mid. Temporal Pole Gyrus 
25 L. Frontal Middle 55 L. Paracentral Lobule 85 L. Sup. Temporal Pole Gyrus 
26 L. Frontal Mid. Orbital 56 R. Paracentral Lobule 86 R. Sup. Temporal Pole Gyrus 
27 R. Mid Frontal Orbital 57 L. Parahippocampal  87 L. Sup. Temporal Gyrus 
28 R. Middle Frontal  58 R. Parahippocampal  88 R. Sup. Temporal Gyrus 
29 L. Superior Frontal  59 L. Inf. Parietal Gyrus 89 L. Thalamus 

30 L. Frontal Sup. Med. 60 R. Inf. Parietal Gyrus 90 R. Thalamus 

Abbreviations: AAL: Automated-Anatomical-Labeling. Ant: Anterior; Cort: Cortex; Inf: Inferior; L: Left; 

Med: Medial;  Mid: Middle; Oper: Opercular; Pos: Posterior; R: Right; Sup: Superior; Triang: Triangular;  

 

In the classical classification problem, the goal of feature selection is to automatically search 

and select the best feature subset for the classification purpose. Here, we applied sequential feature 

selection algorithms to select the optimal feature subset (region subset) that best captured 

differences between hunger and satiety. This type of selection algorithm contains two components. 

The first element is a sequential search strategy to select and establish the best future subset, which 

evaluates additional features by a criterion function. In this study we used two strategies, namely 
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sequential forward selection (SFS) and sequential forward floating selection (SFFS). The SFS 

procedure starts by identifying the first feature with the highest classification rate and feeds it to a 

new empty candidate set. Other features are selected sequentially by adding a local feature to the 

first feature or the last subset of features in the candidate set, and testing a new feature combination 

until the highest classification rate (objective function) is achieved. The processing continues until 

further features do not enhance the objective function. However, the SFS algorithm is suboptimal 

and suffers from the “nesting effect” [266], while SFFS offers the flexibility to discard features 

that were earlier selected and to re-evaluate features that had been discarded previously. This 

theoretical advantage notwithstanding, Burrell and colleagues [261] showed that the 

computationally less demanding SFS could provide a reasonable alternative to SFFS to select 

features for discriminating between epileptic and non-epileptic activity of epileptic patients, 

indicating that both strategies had similar difficulties to separate patterns of functional and 

dysfunctional brain activities in epileptic patients. In this study, we compared SFS and SFFS 

strategies in order to figure out if SFS already provides near-optimal results.  SFS and SFFS 

strategies were performed using the “sequentialfs” function in MATLAB and sequential floating 

feature selection toolbox (http://splab.cz/en/download/software/software-pro-sekvencni-selekci-

priznaku), respectively. 

The second component in the feature selection strategy is an objective (criterion) function to 

evaluate over all possible feature subsets. In this work, the misclassification rate of the linear SVM 

classifier was set as an objective function [262]. The combination of SFFS and SVMs has 

previously been used, for example, to assess Gabor features for classification of Parkinson's 

disease risk assessment based on transcranial sonography images [267]. To evaluate the feature 

subset, the data were divided into test and training samples using a leave-one-out cross-validation 

http://splab.cz/en/download/software/software-pro-sekvencni-selekci-priznaku
http://splab.cz/en/download/software/software-pro-sekvencni-selekci-priznaku
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(LOOCV) scheme. Accordingly, independent samples were used for training and testing. For each 

LOOCV loop, the training samples were submitted to train an SVM model, and the test sample 

was applied to that model to evaluate the feature subset. In the end, the average of the values 

returned by LOOCV loops was calculated and used to assess each candidate’s feature subset [268]. 

The classification accuracy (CA) was derived by using a LOOCV strategy with confusion 

matrix (CM) and calculation of classification error rate (ER). In our study, the CM comprises 

information about the actual and predicted classifications generated by linear SVM. By comparing 

the results of the SVM classifier (hunger or satiety) with the reference data, we documented the 

outcomes of the CM in the present study as given in Table 6.2.  For significance testing [238], we 

estimated the empirical distribution by calculating the error rate 10000 times for random label 

permutations in a cross-validation procedure. P < 0.05 implies that classification results differ 

significantly from chance. 

Table 6.2: Confusion matrix 

         Reference data 

Hunger                Satiety 

 

Hunger 
  [

𝑇𝑃            𝐹𝑃
𝐹𝑁             𝑇𝑁

]                                
Satiety 

True positive (𝑇𝑃): The number of participants that were correctly classified  in hunger condition 

False positive (𝐹𝑃): The number of participants that were incorrectly classified  in hunger condition 

False negative (𝐹𝑁): The number of participants that were incorrectly classified  in satiety condition 

True negative (𝑇𝑁): The number of participants that were correctly classified  in satiety condition 

 

6.3 Results 

The experiments showed that fALFF was marginally better than ReHo and DC in distinguishing 

between hunger and satiety states in the healthy brain (Table 6.3). The region subset obtained by 

SFFS resulted in higher classification accuracy than SFS, both higher than no feature selection (90 

Classified 

data 
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regions). Using a linear SVM classifier with a LOOCV strategy, we observed that the fALFF 

region subset selected by SFFS identified the hunger state with the highest classification accuracy 

of 81%. In our SFFS results (Table 6.3), the regions 45 and 46 are the left and right inferior 

occipital lobe (Table 6.1), respectively, and region 50 is the right superior occipital lobe. Also, 

regions 5 and 35 are medial (Calcarine) and inferior (Fusiform) surfaces of the occipital lobe, 

respectively. Furthermore, regions 17 and 18 are left and right frontal gyrus, respectively, region 

52 is the right Olfactory cortex, region 56 is the right Paracentral lobule and region 73 is the left 

Rolandic operculum. SFFS-identified brain regions which distinguished best between hunger and 

satiety for each rs-fMRI feature are shown in Figure 6.2. Furthermore, SFFS fALFF (Figure 6.3) 

was most stable in the permutation test (ER=0.19 / p=0.0001) closely followed by DC (ER=0.21 / 

p=0.0004) and ReHo (ER=0.29 / p=0.0068).  

 

Table 6.3: Classification accuracy of rs-fMRI data using different models of brain connectivity/activity and 

features selection algorithms with linear SVM classifier 

 

Rs-fMRI 

features 

90 regions Region sets by SFS Regions sets by SFFS 

CA CM 𝑅[1, … ,90] CA CM 𝑅[1, … ,90] CA CM 

ReHo 50% [
12 12
12 12

] 𝑅[22,61] 69% [
17 8
7 16

] 𝑅[45,17] 71% [
20 10
4 14

] 

DC 54% [
16 14
8 10

] 𝑅[50,55,4,68] 71% [
19 9
9 15

] 𝑅[50,4,5,35] 79% [
22 8
2 16

] 

fALFF 58% [
16 12
8 12

] 𝑅[61,77,35,6,1] 73% [
17 6
7 18

] 𝑅[56,73,46,52,18] 81% [
19 4
5 20

] 

Abbreviations: SFS: sequential forward selection; SFFS: sequential forward floating selection; CA: classification 

accuracy; CM: confusion matrix. 
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Figure 6.2: Brain regions that provided relevant information to distinguish between hunger 

and satiety states in healthy lean participants.  

The performance of these regions was evaluated by linear SVM classifier and SFFS algorithm. 

All images are in neurological orientation, i.e. right = right and left = left. 

 

 

Figure 6.3: Empirical distributions of incorrect classification generated via 10000 times of 

random label permutations for region sets selected by SFFS. 

Red line shows the actual classification error. 
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6.4 Discussion 

The primary goal of the present chapter was to assess the ability to classify different brain states 

by applying a MVPA approach, i.e. feature selection strategies and linear SVM, on various 

features, i.e. connectivity parameters, derived from rs-fMRI data. This approach was carried out 

on a data set comprising two conditions (hungry and satiated) in a repeated measures design. As 

the two metabolic states, i.e. hunger and satiety, were induced for a rather long time (36 hours), 

experimental conditions can be treated as the ground truth to compare and evaluate the 

classification scheme. 

An advanced preprocessing, including ICA-AROMA, was carefully applied (see 

Section 2.3.2), ensuring the removal of motion artifacts and other structured noise from the data 

(e.g. cardiac pulsation artifacts [98]). Thus, classification in the current case is deemed to reflect 

true brain differences rather than extracerebral differences (e.g. motion) between the conditions. 

A critical question with regard to classification is the selection of the best approach for 

feature selection. The inclusion of all possible features and the computation of all possible 

combinations of features is computationally not feasible at present. Therefore, sequential search 

techniques have gained some popularity. These work by choosing the best individual feature and 

then adding a second feature that yields the best classification accuracy in combination with the 

first feature. This procedure is repeated for a third and any subsequent features until the addition 

of further features does not yield in an improvement of classification rates. Alternatively, the user 

can predetermine the maximum number of features. The SFFS method tries to optimize feature 

selection by adding an elimination step to this sequential search process. Concretely, at each level, 

it is examined whether the classification rates improve if any of the selected features are 

eliminated. If this happens, the feature set is reduced by this feature. Then, the search continues 
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based on the new set. Jain and Zongker [269], for example, compared 14 different methods for 

feature selection applying them to the problem of handwriting recognition. In this case, the SFFS 

method outperformed other feature selection schemes. It has to be pointed out, however, that 

conventional feature selection approaches, including SFS and SFFS as well as filter approaches 

[270,271], have recently been supplemented by metaheuristic methods for feature selection. In this 

regard, Zhu et al. [272] have suggested a genetic algorithm combined with local search in a hybrid 

wrapper and filter feature selection algorithms. Others like Neshatian and Zhang [273] and Gu et 

al. [274] proposed new optimizations methods including such advanced feature selection 

procedures. Applying genetic algorithms and new optimization functions on rs-fMRI data are 

beyond the scope of this study and will be considered in future work. 

In the present analysis, the subset of regions obtained by the SFFS algorithm provided the 

highest classification rate for all rs-fMRI maps (Table 6.3). Using fALFF, SFFS and SVM 

classification, we were able to demonstrate that patterns of amplitude BOLD signals in five brain 

regions (paracentral lobule, Rolandic operculum, olfactory cortex, lateral occipital (inferior 

division) gyrus, and inferior frontal (opercular) gyrus; Figure 6.2) can distinguish between 

metabolic states (hunger vs. satiety) with 81% accuracy.  

The Rolandic operculum, which belongs to somatosensory regions, is activated during the 

anticipation and consumption of food [275,276], in response to palatable food receipt [277] and 

has been associated with the processing of high- and low-caloric food pictures [278]. Among many 

functions, paracentral gyrus is known to response to highly rewarding stimuli [276]. A study using 

independent component analysis to estimate functional connectivity (FC) parameters showed that 

the connectivity strength of the paracentral gyrus in the sensorimotor network was increased during 

hypoglycemia relative to euglycemia [170]. Furthermore, Van Duinkerken and colleagues [279] 
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reported that the change of sensorimotor FC was associated with basal glycemic levels in type 1 

diabetes mellitus patients. Thus, the paracentral lobule seems to be part of the reward system and 

the sensorimotor network. The olfactory cortex (OLFC), whose activity was modulated by 

metabolic states as well, is involved in the experience and processing of negative affective states, 

including anxiety and depression [280]. Consistent with that, a rs-fMRI study in rodents 

demonstrated that ReHo of the OLFC is increased in stress-exposed rats compared to a control 

group [281]. In our study, the fasting for 36 hours might have led to a stress increase which might 

be reflected in an increased OLFC activity. Moreover, the satiety state might have reduced 

peripheral hunger signals compared to the hunger state and accordingly might have influenced 

brain regions related to somatosensory processes, such as Rolandic operculum, and parts of the 

sensorimotor network like the paracentral lobule. 

The inferior frontal gyrus (IFG) has been suggested to be involved in cognitive control 

[282,283]. IFG activation during response inhibition has been associated with a reduced desire for 

food and with successful impulse regulation [284–286]. In addition, stronger IFG activity in 

response to orosensory stimulation was found in successful weight loss maintainers compared to 

people who were obese or normal weighted [287].  In our experiment, participants had to refrain 

from eating during the hunger state and from overfeeding during the satiety state, which may have 

contributed to the finding that the IFG is partially important for classifying between different 

metabolic states. 

The lateral occipital cortex (LOC) is part of the visual association cortex and is activated in 

response to the perception of emotionally salient stimuli, such as food, which is thought to be a 

correlate of heightened attention [288,289]. For instance, a recent rs-fMRI study using SVM on 

graph theory analysis indicates that the LOC is partly important for classification between high-
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caloric (potato chips) vs. low-caloric (zucchini) food ingestion on the brain of healthy subjects 

[290]. Furthermore, it has been suggested that the processing of visual salience of a stimulus 

depends on the affective state of the individual and the motivational value of a stimulus [288]. 

Considering the general role of the LOC in the visual processing of food stimuli, this region might 

potentially facilitate the detection/perception of such cues in a deprived state. Note that these 

interpretations are based on reverse inference of resting-state data and should thus be taken with 

caution. 

However, some studies have used rs-fMRI to investigate changes in baseline brain activity 

of lean or obese participants during both hunger and satiety states. For instance, Lohmann et al. 

[27] showed increased centrality, which was measured by eigenvector centrality analysis, of 

anterior precuneus (APCUN) during the hunger relative to the satiety state of 22 normal volunteers. 

Consistent with that, our previous analysis (Chapter 5) revealed that the fALFF was increased in 

the APCUN and posterior cingulate cortex (PCC) when comparing hunger against satiety state. 

Additionally, Wright and colleagues [66] used seed-based connectivity analysis to estimate the FC 

parameters of 19 healthy participants. They reported that the FC between the posterior insula and 

superior frontal gyrus and between the hypothalamus and IFG were enhanced during the hunger 

state. Furthermore, it has been found that both 20 lean and 20 obese subjects had increased ReHo 

connectivity from hunger to the satiety state in the orbitofrontal cortex and inferior temporal lobe 

[291]. These studies reported different brain regions that might be related to the changes in the 

metabolic state compared to the results of the current study, except IFG. These inconsistencies 

here might be associated with the different experimental paradigms and neuroimaging modalities.  

Importantly, the statistical analysis at group levels of the studies mentioned above was 

computed by using GLM approaches to define the significant brain regions at baseline activity that 
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are sensitive to changes in metabolic state. In GLM approaches, the p-values are the successful 

statistical tests to represent significant brain regions that show different brain activities in the 

average sense of one or more brain features when compare between different groups and/or 

experimental conditions. On the other hand, SVM classifier aims to automatically classify each 

subject into one of the groups or experimental design in the study. Thus, the overall classification 

accuracy is usually used to measure the success of the studies. In general, it is easier to demonstrate 

group or experimental condition differences compared to predict a single subject [292]. 

Furthermore, the significant variables or features that show the difference between group or 

experiment do not necessarily have high classification accuracy and vice versa [292,293]. Hence, 

brain regions that showed significant differences between hunger and satiety states in previous 

studies do not necessarily mean that these regions can predict the subject class with high accuracy 

and vice versa. 

Furthermore, our results indicate that fALFF analysis is more informative than ReHo and is 

slightly more precise than DC for classification of resting brain changes during hunger and satiety, 

probably because fALFF is an index of the power of the BOLD signal. Against this, ReHo and DC 

parameters refer to dynamics of BOLD connectivity, either with some (in this case, 26) 

neighboring voxels (ReHo) or with all voxels (DC) in the gray matter of the brain.  

One other important question is, whether SFFS based classification is superior to simply 

trying to classify states using statistically significant group differences. Baker et al. [294] answered 

this question on an EEG data set from AD patients, MCI patients and HC. They used an SFFS 

algorithm and a t-test to classify patients and found that the SFFS technique resulted in improved 

classification rates compared to the t-test for four feature types (average power, coherence, 
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correlation, and phase synchrony). They conclude that the SFFS algorithm selects reliable features 

for classification where statistically significant features fail in classification. 

The sample size of most fMRI studies is often relatively small due to the high costs of 

scanning time and subject stamina [295]. However, sample size impacts the trade-off between 

accuracy and generalizability [296]. For instance, in the context of rs-fMRI features and SVM 

classification methods, several studies reported high classification accuracies (92±9%) with 

relatively small sample sizes (20±5 subjects per group) when classifying groups of brain disease 

patients and healthy subjects [253,297–302]. Here, the high classification accuracy is driven by 

the heterogeneity between groups [292,296]. In contrast, studies with large sample sizes are 

assumed to result in classification models with a higher degree of generalizability, allowing for a 

better prediction in samples drawn from other populations. Their classification models capture a 

complete picture of disease patterns but at the cost of lower accuracy, which is likely due to the 

within-group heterogeneity [292,296,303–305].  

One limitation of the present analysis is the ability to generalize since the sample size of 24 

subjects is relatively small. Accordingly, larger samples are needed to confirm our findings. 

However, we would like to argue that our results are not driven by the heterogeneity between 

samples, because we have chosen a within-subject design in a well-controlled experimental setting. 

Also, we evaluated whether the rs-fMRI features in conjunction with sequential feature selection 

strategies were sufficiently reliable to predict the subject’s metabolic state by using the LOOCV 

scheme. Thus, independent training and testing samples were used to estimate the SVM model 

parameters and to validate the classification model. In this case, the CA was derived by averaging 

the resulting classification accuracies over all samples. All in all, the homogeneity of our samples 



6.5 Conclusions  

 

87 
 

and the high CA results in an increased validity of our findings determining brain patterns that can 

discriminate between different metabolic states. 

6.5 Conclusions 

As rs-fMRI has received widespread attention over the past ten years, the possibility of reliable 

classification of disease conditions or subject states (e.g. sleep stages) paves the way for using rs-

fMRI as a diagnostic tool on an individual patient/subject level. In addition, the applications 

mentioned in the introduction, such as the prediction of conversion of MCI to AD [254], many 

other diagnostic and research questions lend themselves to this approach, e.g. the differentiation 

of typical Parkinson’s disease from atypical Parkinsonian syndromes (c.f., Tang et al. [306]). From 

our data, we conclude that fALFF in combination with SFFS based feature selection is a useful 

and straightforward way to proceed in tackling such research questions. 
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7. Chapter 7: Impact of hunger, satiety, and oral glucose on the 

association between plasma insulin and resting-state brain activity6 

7.1 Introduction 

Food ingestion and energy homeostasis are regulated by central nervous pathways  [307–309] and 

modulated by endocrine signals [310]. Insulin is one of the hormones that is part of a negative 

feedback loop that ensures balanced energy homeostasis [84,86,311]. Of note, both intraventricular 

injection and intranasal administration of insulin decreases food intake and body weight in rodents 

[89,90] and humans [91]. In contrast, inactivation of insulin leads to opposite effects [92,93].  

Task-based fMRI has been used to study the impact of insulin and glucose on brain responses 

to food-related stimuli under different homeostatic conditions on the network level [312,313] 

linking plasma glucose [7] and fasting insulin levels [314] to neural activity changes in the 

hypothalamus, thalamus, amygdala, insula, and superior frontal cortex, brain sites assumed to 

regulate appetite-related eating behavior [315]. According to Smitha et al. [50], task-based designs 

focus on a small fraction of the brain’s overall activity only. To avoid these disadvantages in the 

present investigation, we used resting-state fMRI in order to reveal potential links between whole 

brain activity and insulin and glucose levels in different metabolic states. 

Resting-state fMRI (rs-fMRI) is a task-free paradigm in which participants do not perform 

any specific task [29,316,317], more details can be found in Section 1.1.3. Several studies using 

                                                 
6 This chapter corresponds largely to: Arkan Al-Zubaidi, Marcus Heldmann, Alfred Mertins, Georg 

Brabant, Janis Marc Nolde, Kamila Jauch-Chara and Thomas F. Münte (2019). Impact of hunger, satiety, 

and oral glucose on the association between insulin and resting-state human brain activity. Frontiers in 

human neuroscience. I participated in the experiment design and data collection. I analyzed the data and 

wrote the manuscript. 
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rs-fMRI revealed associations of insulin or glucose levels with the functional connectivity (FC) of 

particular brain networks or brain sites that are related to homeostatic regulation but not without 

contradictions. Some studies reported an increase of resting-state FC within the limbic system in 

response to the administration of 75 g oral glucose after overnight fasting. This increase in FC was 

positively correlated with plasma insulin levels [46,318]. Conflicting results were found by Page 

et al. [172] using MRI-CBF (cerebral blood flow) during rest: here, changes of insulin levels were 

negatively associated with changes of CBF signals in the caudate and the putamen in response to 

glucose administration. Similarly, changes in plasma insulin levels in response to a meal after 

overnight fasting were negatively correlated with changes of CBF signals in the insula and 

prefrontal cortex [212]. Additionally, the FC between the posterior insula (PINS) and superior 

frontal gyrus (SFG) under hunger conditions was partially moderated by the plasma glucose levels, 

indicating that the PINS connectivity depends on the homeostatic energy deficit caused by fasting 

[66]. Furthermore, a study with experimentally induced hypoglycemia reported increased FC of 

the default mode network (DMN) with the posterior cingulate cortex (PCC) and decreased FC of 

the insula, superior and inferior frontal gyri with temporal networks, basal ganglia, and cerebellum 

in healthy subjects [170]. The inconsistencies reported here might be related to the different 

experimental paradigms and neuroimaging modalities. In most of these studies, FC parameters 

were computed by using seed-based analysis or independent component analysis (ICA) to define 

brain networks of interest or to decompose the brain into multiple networks, respectively. This 

means that FC studies rely on the correlations and ignore the changes in regional brain activity 

under different metabolic conditions. However, it has been shown that there is a linear relationship 

between the amplitude of the BOLD signal and brain metabolism [179]. Therefore, in our study, 

we used the amplitude of the rs-fMRI signal to investigate the sensitivity of resting-state brain 
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activity [101] to changes in metabolic states. A critical question of the present search is, whether 

or not the changes in the amplitude of the BOLD signal of specific brain regions are associated 

with changes in hormonal signals, such as insulin.  

To clarify some of the issues discussed in the previous paragraph, we investigated (i) whether 

changes in brain regions linked to hypoglycemia, such as the default mode network, are modulated 

by insulin and glucose or different metabolic states and (ii) whether changes in activity of specific 

brain regions, such as hypothalamus and insula, are modulated by changes of blood insulin or 

glucose levels after glucose administration. In the present investigation, we used a voxel-wise 

frequency-domain approach to measure whole brain activity by using amplitude (intensity) values 

of BOLD signals called fractional amplitude of low-frequency fluctuation (fALFF) for each 

individual per condition [101]. The fALFF allow us to study the local spontaneous brain activity 

across the whole brain based on the magnitude of the BOLD signal in the low-frequency range 

[101,319] which is higher in gray than in white matter [134]. The fALFF approach efficiently 

suppresses non-specific signal components, such as physiological noise [101,184]. Other studies 

have observed that fALFF is associated with body mass index (BMI) after intranasal insulin 

application [315].  

In Chapter 5, we examined the activity and connectivity brain responses to the interaction of 

metabolic state (hungry vs. satiated) and glucose administration (before vs. after administration of 

75 g of oral glucose). In that Chapter, we used multimethod rs-fMRI approaches to identify brain 

activation patterns that are associated with changes in metabolic states and caloric intake. We 

showed that in contrast to other voxel-wise analyses like regional homogeneity or degree of 

centrality, fALFF is a more sensitive metric for identifying differences in the resting brain activity, 

for example, the amplitude of the SFG and PCC were increased after oral glucose treatment and 
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in hunger conditions, respectively. However, Chapter 5 focused on the effect of glucose treatment 

solely on brain activity and connectivity without taking the impact of plasma glucose and insulin 

levels into account when analyzing neuroimaging data. To get a better insight into hormone-

dependent brain activity at rest, in the present analysis we used multiple linear regression analysis 

(MLRA) with covariates (plasma insulin and glucose levels) to investigate the dependencies 

between brain activities, measured as the amplitude of the BOLD signal, and hormone levels. By 

manipulating metabolic state (hunger/satiety) and glucose administration (before and after 75 g of 

oral glucose) in a factorial design, we tested the hypothesis that brain areas involved in homeostatic 

regulation are modulated by peripheral circulating insulin and glucose levels [3,320,321]. 

7.2 Materials and methods  

To study the interplay of metabolic state (hungry vs. satiated) and glucose administration 

(including hormonal modulation) on brain function, rs-fMRI and blood samples were obtained in 

24 healthy normal-weight men in a repeated measurement design. Participants were measured 

twice: once after a 36 hours fast (except water) and once under satiation (three meals/day for 36 

hours). During each session, rs-fMRI and hormone concentrations were recorded before and after 

a 75 g oral dose of glucose. As reported in Chapter 2, nine blood samples on the first day and ten 

blood samples on the second day per subject and condition were collected. The blood samples of 

the second day were potentially a valuable source of information because they were taken before 

and after glucose administration. Figure 7.1 shows the time course of the mean concentrations of 

plasma glucose and insulin on the second day of the experiment for hunger and satiety states. 

Details on the exclusion criteria of participants, the exact timing for obtaining blood samples 

and the preprocessing pipeline of rs-fMRI images can be found in Chapter 2. Furthermore, fALFF 

maps of each subject per experimental condition were calculated as mentioned in Chapter 4. 
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Figure 7.1: Time course of physiological parameters on the second day of the experiment 

for different metabolic states. 

Mean plasma concentration of insulin (A) and glucose (B) under hunger and satiety conditions. 

Glucose administration was ingested at time point 0. The time-points of the first and second fMRI 

investigations are marked in gray. Boxes on the bottom of the graph indicate the time points of 

meals on the second day (B = breakfast, L = lunch at 09:00 am and 12:00 pm, respectively). The 

error bars represent the standard deviation.. 
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7.2.1 Statistical analysis 

To capture the modulatory impact of glucose administration on the association between the activity 

of brain regions and plasma insulin or glucose levels under different metabolic states, we 

performed two multiple linear regression analyses (MLRA) using SPM12, the first “before” and 

the second “after” oral glucose treatment. Each MLRA was designed with two covariates (plasma 

insulin and glucose levels). Briefly, MLRA is used to describe how a 'linear combination' of 

multiple variables, called independent or explanatory variables, to predict a single response 

variable, referred to as the dependent or target variable. The contribution of each independent 

variable to the model is assessed by looking at the regression coefficients [322].  

In this Chapter, we used MLRA to figure out the contribution of plasma insulin (an 

independent variable) to the prediction of brain activity (the dependent variable) when taking the 

effect of plasma glucose (another independent variable) into account [323,324], and vice versa. 

Accordingly, our multiple linear regression model is:  

 𝑌𝑗 = 𝜇 + 𝑥𝑗1𝛽1 + 𝑥𝑗2𝛽2 + 𝜖𝑗,          (7.1) 

where 𝑌𝑗 is a dependent variable (such as fALFF at a particular voxel) and 𝑗 = 1, … , 𝐽 indexes the 

observation. The regression coefficient 𝜇 represents a constant term (the mean of the dependent 

variable when all predictors are zero), while  𝛽1 represents the regression slope, which quantifies 

the association of 𝑌 with 𝑥1 (such as plasma insulin), adjusting for the effect of 𝑥2 (plasma glucose) 

on 𝑌 and vice versa for 𝛽2 and 𝜖 is the error associated with the regression (the variance of the 

dependent variable from its mean when all predictors are zero). The parameters were estimated by 

using the least squares method. To find significant voxels whose activity was affected by hunger 

vs. satiety or by glucose or insulin, we used one-sample t-tests for each regression coefficient on 

the voxel level per MLRA (see the section below). The resulting statistics indicate whether the 
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regression coefficient of a particular voxel is significantly different from the error in that estimate 

[324]. To correct for multiple comparisons, the topological false discovery rate (FDR) q=0.05 was 

employed with a cluster defining threshold of p<0.001 for the t-tests [325].   

In the 1st MLRA (before glucose administration), we contrasted hunger vs. satiety states 

while controlling the moderating fluctuation of glucose and insulin. We calculated differences 

(delta (∆) =hunger-satiety) of fALFF maps before oral glucose treatment. For glucose and insulin, 

the area under the concentration-time curve (AUC) of the first four samples (Figure 7.1A and B) 

was calculated and the ∆ of the AUC was obtained. The AUC has been used as an index to assess 

the regulation of glucose and insulin [326,327]. It was calculated using the standard trapezoid 

method, which is computing the AUC with respect to ground, see Formula 2 in [328]. The group 

level analysis was performed using ∆ AUC of glucose and insulin as covariates (independent 

variables) and the ∆ fALFF maps as the dependent variable in the MLRA. Notably, the ∆ AUC of 

glucose and insulin were not significantly correlated (|r|=0.3, p=0.1). To check whether the AUC 

of plasma glucose and insulin influence our findings, we also recomputed the 1st MLRA by 

including the ∆ plasma glucose and insulin based on the value 20 min before glucose ingestion 

(Figure 7.1) as independent variables. The results of this model were similar to the results of the 

model with AUC (see Table 7.1 and Figure 7.2). The AUC provides an overview of plasma glucose 

and insulin level profiles under diet or standard meal versus time [103]. Also, we believe that the 

changes in brain activity before glucose ingestion may be related to profile change more than single 

glucose and insulin values. Therefore, we will report the AUC model results only. 

The 2nd MLRA (after glucose administration) had a similar design as first MLRA. 

Differences (∆) of amplitude rs-fMRI signals were calculated by subtracting the fALFF maps of 

hunger condition from satiety condition. The ∆ calculated for glucose and insulin was based on 
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the value 20 min after glucose ingestion (Figure 7.1) only to keep the temporal association of 

endocrine and functional imaging data as clear as possible. ∆ glucose and ∆ insulin were used as 

covariates in the MLRA. Again, glucose and insulin were not significantly correlated (|r|=0.14, 

p=0.5). Additional glucose and insulin samples collected after oral glucose intake were not 

included in this analysis, because they were taken after the second rs-fMRI recording. 

To ensure that the correlation between specific brain regions and glucose or insulin values is 

not biased [329], we extracted fALFF values by averaging across voxels in each cluster that 

survived the cluster-significance test. Then, we performed the leave-one-out cross-validation 

(LOOCV) of Pearson correlation to evaluate the relationship between averaged ∆fALFF values of 

each brain region with ∆ of the plasma glucose and insulin. Finally, we performed full and partial 

correlation analyses between clusters linked to plasma insulin levels to investigate the association 

between them and the effects of glucose and insulin values on that association.  

Finally, to investigate the acute effect of glucose administration on the interaction between 

brain activity and physiological changes, we performed two additional MLRA. The 3rd and 4th 

MLRAs estimate the correlations between changes in fALFF (∆ fALFF= pre-post glucose 

ingestion) and changes in plasma glucose/insulin (∆ of plasma glucose/insulin were calculated 

based on the value of 20 min before and after glucose ingestion; Figure 7.1) under satiety and 

hunger conditions separately, respectively. 

We used the automated anatomical labeling (AAL) atlas [102] included in the xjView 

toolbox (http://www.alivelearn.net/xjview8) to label the anatomical location of significant 

clusters. Thalamic nuclei were identified by applying the MNI-based Morel Atlas [194]. 
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We also ran a Pearson correlation analysis to investigate the associations between changes 

of the subjective feeling of hunger with changes plasma glucose and insulin as well as with changes 

brain activity (i.e. clusters that survived the cluster-significance test). 

7.3 Results 

7.3.1 Resting state fMRI: hunger vs. satiety effects 

The 1st  MLRA (before glucose administration) revealed differences of resting brain activity as a 

function of hunger in the posterior cingulate cortex (PCC) and the left anterior precuneus (PCUN), 

as well as in the left inferior parietal gyrus (IPG; Figure 7.2A and B, Table 7.1). The 2nd MLRA 

(after glucose administration) showed an increase of the fALFF signal in the hunger compared to 

the satiety condition in the left thalamus and the left PCC (Figure 7.2C and D, Table 7.1). 

7.3.2 Resting state fMRI: before vs. after glucose treatment 

The 3rd (under satiety condition) and 4th (under hunger condition) MLRA results showed that the 

resting brain activity of supplementary motor area (SMA) was significantly decreased after 

glucose ingestion (Figure 7.3A and B, Table 7.2). In the hunger condition (4th MLRA), a reduced 

resting brain activity was evident in the precentral gyrus (PreCG) and the postcentral gyrus (PoCG) 

after glucose administration (Figure 7.3B, Table 7.2). 
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Figure 7.2: Hunger vs. satiety effects on brain activity. 

(A) Mean fALFF value of all voxels of a significant cluster per condition across participants. 

(B) Results of the first model (before glucose administration). (C) Mean fALFF value of all 

voxels of a significant cluster per condition across participants. (D) Results of the second model 

(after glucose administration). Abbreviations: PCC: posterior cingulate cortex; PCUN: 

precuneus. IPG: inferior parietal gyrus. 

 

 

 

 

 

 

 

 



7.3 Results  

 

99 
 

Table 7.1: Changes and associations of fALFF with food conditions and hormone levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regions Hes. p(adj.) K T value Local maxima (x y z) (mm) 

Before glucose administration: hunger > satiety 

Inferior parietal gyrus  L 0.03 24 4.78 -45 -51 36 

Inferior parietal gyrus L   4.51 -51 -57 36 

Posterior cingulate cortex L 0.01 34 4.70 -6 -45 36 

Posterior cingulate cortex L   4.16 0 -48 30 

Precuneus R   4.04 9 -54 30 

        

After glucose administration: hunger > satiety   

Thalamus L 0.001 55 6.54 -3 -21 15 

Thalamus L   5.18 -12 -21 15 

Thalamus L   4.86 -9 -33 5 

Posterior cingulate cortex L 0.002 45 5.68 0 -33 33 

Posterior cingulate cortex L   4.42 -9 -33 33 

        

Correlations between changes in physiological and neural of metabolic 

states(hunger-satiety), after glucose administration 

 

Positive correlation with plasma glucose levels 

Fusiform gyrus L 0.04 25 4.07 -42 -63 -12 

Fusiform gyrus L   4.05 -27 -72 -15 

Fusiform gyrus L   3.39 -33 -66 -15 

        

Negative correlation with plasma insulin levels 

superior frontal gyrus L 0.04 19 5.50 -12 21 63 

superior frontal gyrus L   4.47 -15 15 57 

superior frontal gyrus L   3.99 -6 33 57 

Posterior insula L 0.004 19 4.39 -33 -9 9 

Posterior insula L   4.31 -36 -21 9 

        

Notes:  The table shows three local maxima (MNI coordinates) more than 8.0 mm, the 

adjusted (adj.) p-values are reported at p<0.001 (height threshold) and q<0.05 (FDR 

extent threshold). T=peak of T values. K=cluster size. Hes. =hemisphere. L=left. R=right. 
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Figure 7.3: Before vs. after glucose administration on brain activity. 

(A) Results of the third model (under satiety condition). (B) Results of the fourth model (under 

hunger condition). Abbreviations: SMA: supplementary motor area; PreCG: precentral gyrus. 

PoCG: postcentral gyrus. 

 

7.3.3 Correlations between physiological and neural effects 

For the 1st, 3rd and 4th MLRAs, we found no correlation between changes in resting brain activity 

and changes in glucose and insulin passing the correction for multiple comparisons. 

For 2nd MLRA (i.e. hunger-satiety), after glucose administration and while controlling for effects 

of ∆ insulin we found a correlation between ∆ fALFF and ∆ plasma glucose in the left fusiform 

gyrus (Figure 7.4A and B, Table 7.1). A LOOCV between the average ∆ fALFF values of the 
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fusiform cluster and ∆ plasma glucose after data being adjusted for ∆ plasma insulin level 

(Figure 7.4C) revealed a significant positive correlation (r=0.75). 

Table 7.2: Influences of oral glucose administration on brain activity under hunger and satiety 

conditions 

 

Next, when controlling for ∆ plasma glucose we found a connection between ∆ fALFF and 

∆ plasma insulin after glucose administration in the left posterior insula and superior frontal gyrus 

(SFG; Figure 7.5A and B). A significant negative correlation (r=-0.7) was found between average 

∆ fALFF of the posterior Insula cluster and ∆ plasma insulin (Figure 7.5C; red dots and line), as 

well as a significant negative correlation (r=-0.8) between average ∆ fALFF  SFG and ∆ plasma 

insulin (Figure 7.5C; blue dots and line). 

A potential influence of plasma insulin and plasma glucose on the association between ∆ 

fALFF posterior insula and ∆ fALFF SFG was tested by using the average ∆ fALFF in these 

clusters and revealed a significant positive correlation (r=0.5, p=0.004, Figure 7.5D) which 

Regions Hes. p(adj.) K T value Local maxima (x y z) (mm) 

 

Satiety condition: after oral glucose < before oral glucose 

Supplementary motor area  L 0.003 39 5.85 -3 -18 54 

Supplementary motor area R <0.001 86 4.77 12 3 45 

Supplementary motor area L   4.63 -6 3 48 

 

Hunger condition: after oral glucose < before oral glucose 

Postcentral gyrus  R <0.001 136 6.73 51 -18 51 

Precentral gyrus R   5.61 30 -6 69 

Precentral gyrus R   5.49 36 -15 66 

Precentral gyrus L <0.001 51 6.60 -24 -12 69 

Supplementary motor area L <0.001 58 5.52 -3 -6 54 

Supplementary motor area R   4.88 6 -15 54 

Notes:  The table shows three local maxima (MNI coordinates) more than 8.0 mm, the 

adjusted (adj.) p-values are reported at p<0.001 (height threshold) and q<0.05 (FDR extent 

threshold). T=peak of T values. K=cluster size. Hes. =hemisphere. L=left. R=right 
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survived when adjusting for ∆ plasma glucose(r=0.5, p=0.004, Figure 7.5E) but not when adjusting 

for ∆ plasma insulin level (r=-0.06, p=0.7, Figure 7.5F). 

 

Figure 7.4: Glucose-associated low-frequency BOLD fluctuations. 

(A) The ∆ (hunger-satiety) of fALFF in Fusiform connected with ∆ glucose plasma after glucose 

administration. The statistical image was assessed for cluster-wise significance using a cluster 

defining threshold p<0.001, 0.05 FDR corrected at the cluster level. (B) Amplitude of BOLD 

signal in the fusiform gyrus and plasma glucose levels in the hunger and satiety states. (C) The 

LOOCV showed that a positive correlation (r=0.75) between the average ∆ fALFF value of 

fusiform cluster and ∆ plasma glucose, adjusted for ∆ plasma insulin level. LOOCV: leave-one-

out cross-validation. 
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Figure 7.5: Insulin-associated low-frequency BOLD fluctuations. 

(A) The ∆ (hunger-satiety) of fALFF in the left posterior (pos.) insula and superior frontal gyrus (SFG) 

connected with ∆ plasma insulin after glucose administration. The results were assessed for cluster-

wise significance using a cluster defining threshold p<0.001, 0.05 FDR corrected at the cluster level. 

(B) SFG and pos. insula amplitude values of the BOLD signal and plasma insulin levels in the hunger 

and satiety states. (C) Scatter plot of the correlation between ∆ plasma insulin and average ∆ fALFF 

value of left pos. Insula (LOOCV of r=0.7; red dots and line) and left SFG (LOOCV of r=0.8; blue 

dots and line), adjusted for ∆ plasma glucose level. (D and E) Represent a significant positive 

correlation between the average ∆ fALFF values of left pos. Insula and left SFG when the data was 

either not adjusted or adjusted for ∆ plasma glucose, respectively. (F) The correlation between the 

average ∆ fALFF value of left posterior Insula and left SFG was no longer significant when the data 

were adjusted for ∆ plasma insulin level, which suggests the effects were driven by plasma insulin. 

LOOCV: leave-one-out cross-validation. 

 

In addition, we found no significant correlations between subjective feeling of hunger with 

changes plasma glucose and insulin as well as with changes brain activity (i.e. clusters that 

survived the cluster-significance test). These results are shown in Figure 7.6. 
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Figure 7.6: Scatter plots illustrate the correlations between changes subjective feeling of 

hunger with changes plasma glucose and insulin as well as with changes in brain activity 

(i.e. clusters that survived the cluster-significance test). 

(A)-(C) represent the associations before glucose administration. (D)-(I) represent the 

associations after glucose administration. ∆ refers to the difference between hunger and satiety. 

7.4 Discussion 

As mentioned in Chapter 3, plasma glucose and insulin levels differed between hunger and satiety 

conditions and were also differentially influenced by glucose administration (Figure 3.1). 

In the present chapter, we investigated the interaction of hunger and satiety with plasma 

glucose and plasma insulin levels before and after glucose administration and explored this 



7.4 Discussion  

 

105 
 

interaction’s impact on changes in resting state fMRI. We used fALFF, a measure reflecting the 

temporal fluctuation of the BOLD signal, to study neural activity and connectivity. Multiple linear 

regressions analyses (MLRA) with two covariates (glucose, insulin) was used to assess the 

moderating influence of these covariates on the differences between hunger and satiety conditions. 

The analyses of the fALFF data revealed an increased BOLD signal amplitude in the 

posterior cingulate cortex in hunger relative to satiety that was independent of glucose and insulin 

plasma levels. Brain activity reflecting the difference between hunger vs. satiety was modulated 

by changes in glucose and insulin plasma levels in fusiform and PINS after oral glucose intake, 

respectively. 

7.4.1 Resting-state fMRI: hunger vs. satiety effects 

The amplitude of the rs-fMRI signal was increased for hunger vs. satiety in the left inferior parietal 

gyrus (IPG) before oral glucose treatment and in the posterior cingulate cortex (PCC) before and 

after oral glucose treatment (Figure 7.2). Several studies using visual stimuli showed the enhanced 

activity of IPG,PCC, precuneus and insula during food choice vs. non-food choice under hunger 

conditions [209,330]. Moreover, PCC and precuneus are core hubs of the default mode network 

(DMN) [91,211]. The DMN is activated during the rs-fMRI paradigm and deactivated during task-

based fMRI, when attention is oriented towards internal rather than external stimuli [34,331]. In 

line with that, the DMN, especially in the PCC, has been shown to be involved in self-referential 

processes [210]. A study using  ICA approach to investigate the FC of obese/overweight subjects 

found a reduction of DMN activity associated with a decrease in hunger ratings and fat mass after 

six months of exercise [171]. In the current experiment, the increased fALFF in PCC region seems 

to be driven by metabolic state (hunger vs. satiety; Figure 7.2) independently of changes in the 

plasma glucose and insulin levels. Consistent with our results, DMN activity has been shown to 
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be positively correlated with lower blood glucose levels [170] and with hunger ratings [171]. Our 

findings in the current and previous chapter about increased activation of the DMN (i.e. PCC) 

under hunger condition might be indicative of increased self-focus during food deprivation. 

We found a significant increase of fALFF in the left mediodorsal thalamus under hunger 

conditions and a decrease in satiety after (but not before) glucose treatment indicating an 

interaction between metabolic state and glucose administration in this region. Thalamic brain 

activity has been reported to vary as a function of hunger [212,213], ghrelin application [214] and 

glucose infusion [70,215]. A previous study [48] reported a positive correlation between fasting 

levels of ghrelin and thalamic reactivity to food images, though this effect was not further 

modulated by glucose intake (75 g glucose). The thalamus is central for the integration of 

proprioceptive information stemming from the gastrointestinal (GI) tract [70,216]. Specifically, 

afferent information from this tract reaches the thalamus via the vagus nerve [217]. Consistent 

with this observation, Rolls [207,218] postulated that the mediodorsal thalamus impacts short-term 

eating behavior. Our results agree with these proposals in that mediodorsal thalamus activity is 

partly dependent on metabolic state and associated with glucose metabolism.   

7.4.2 Resting state fMRI: before vs. after glucose treatment 

FALFF was lower in the left SMA after glucose ingestion (Figure 7.3). The SMA is crucial for 

planning movements [195,196] and observation of actions [197]. The response to glucose 

ingestion in the form of lower activity in the SMA could potentially lead to suppressed action 

planning or initiation because of an alteration in the available energy resources of the body. 

Therefore, plasma glucose might affect brain regions controlling attention, food evaluation and 

motor planning. Further research is needed to back up this interpretation in the form of task-related 
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fMRI or behavioral studies that show such functional differences in dependency of blood glucose 

levels. 

7.4.3 Correlations between physiological and neural effects 

We observed that changes in plasma insulin levels (hunger vs. satiety) after oral glucose 

administration were negatively associated with changes in the amplitude of the BOLD signal in 

the left PINS and the left SFG). Furthermore, we found a significant positive correlation between 

left PINS and left SFG when the ∆ fALFF values were adjusted for the ∆plasma glucose, while 

this relationship disappeared when the ∆ fALFF values were adjusted for the ∆plasma insulin 

(Figure 7.5). In contrast, changes in plasma glucose levels were positively correlated with changes 

in the fALFF in the left fusiform after oral glucose administration (Figure 7.4). The PINS is 

involved in sensory, motor and interoception taste intensity [208,332–334] but is also activated 

during hunger [212], during food craving [335], and on receiving an appetitive drink [336]. The 

SFG is activated in response to appetitive stimuli in fasted subjects [199,200], and it is frequently 

involved in inhibiting approach behavior towards food [337–339]. The fusiform gyrus harbors 

high-level visual processes (e.g. face recognition [340]) but has been shown to be activated in the 

response of food cues after glucose administration [341], to high vs. low caloric food pictures in 

lean subjects [7], and as a function of increasing hunger [213].  

Our data showed that oral glucose administration modulates the insulin-dependent 

association between PINS and SFG, as well as the association between left fusiform gyrus activity 

with plasma glucose. Our results suggest that the fusiform, PINS, and SFG activity is modulated 

by an intricate interplay of glucose and insulin levels, most likely to regulate ingestive behavior 

by differential engagement of attentional, executive and effective processes. 
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These findings dovetail nicely with results from rs-fMRI studies demonstrating that body 

weight and insulin levels influence the functional connectivity within and between cognitive and 

homeostatic brain regions [315,318].  

One limitation of the current analysis is the correlation analysis after glucose administration 

was only performed with endocrine data narrowly associated with the fMRI data collection to keep 

this connection as clear as possible. This Chapter focused on revealing correlations between 

plasma insulin and glucose concentrations and brain activity under different metabolic states. To 

strengthen these results, future studies might employ a longitudinal design with multiple fMRI 

sessions during the course of the fasting and control conditions and collection of the endocrine 

data. If the shown correlations persist or build up in a sensible way over time, these results would 

be a strong contribution to the correlational findings of this study. As this study was designed to 

confirm findings of other studies and show the validity of these potential correlations in a 

physiological setting with an oral glucose intake intervention we only performed two fMRI 

sessions. To establish a causal relationship in contrast to our correlational findings, an 

experimental manipulation using insulin clamp and/or glucose clamp techniques is needed. 

7.5 Conclusions 

Our results suggest that plasma glucose and insulin respond similarly to oral glucose intake 

(Chapter 3) depending on metabolic states (hunger vs. satiety) and that these responses are related 

to different neural processing in the brain (Chapter 7). Changes in plasma glucose were associated 

with changes of activation patterns in the fusiform gyrus, while changes in plasma insulin 

enhanced connectivity between the posterior insula and superior frontal gyrus when added as a 

covariate in the multiple linear regression analysis, indicating that changes in plasma insulin levels 

were at least partially responsible for the augmented connectivity. This connectivity appears to be 
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related to alleviating an acute hemostatic energy deficit. This connectivity appears to be related to 

alleviating an acute hemostatic energy deficit. These results contribute to identifying the neural 

mechanisms through which insulin regulates food intake [38]. All in all, our findings expand 

existing neural models of homeostatic energy and highlight the complex nature of food intake and 

hormone-relationships in humans. 
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8. Chapter 8: Effect of hunger, satiety and oral glucose on the effective 

connectivity between hypothalamus and insular cortex7 

8.1 Introduction 

Food intake in humans is determined and affected by non-homeostatic (i.e. external) factors, such 

as the social situation and time, and homeostatic (i.e. internal) factors related to the body's energy 

needs, such as hunger and starvation [1,342,343]. However, controlling food intake and energy 

homeostasis under different metabolic states (hunger vs. satiety) is remarkably complex in 

humans, since it is influenced by the interaction of the endocrine system and brain structures 

involved in monitoring proprioceptive signals [1,4,64]. Interactions between brain function and 

body energy homeostasis can be further altered by various pathophysiological conditions such as 

increased blood lipids in obesity [344–346]. For instance, in overweight subjects, body mass index 

(BMI) and insulin levels are associated with variations in neural of resting-state functional 

connectivity (FC) after an overnight fast [318]. Furthermore, FC imbalance between brain regions 

associated with impulsivity (i.e. inferior parietal lobe), response inhibition (i.e. frontal pole) and 

reward (i.e. nucleus accumbens) is correlated with increased food approach behaviors  and obesity 

in children [347]. Nevertheless, FC captures purely correlational relationships between the two 

regions and does not yield information with regard to the direction of influences. Therefore, 

studying how the directed connectivity within brain networks involved in homeostatic regulation 

                                                 
7 This chapter corresponds largely to: Arkan Al-Zubaidi, Sandra Iglesias, Klaas E. Stephan, Macià 

Buades-Rotger, Marcus Heldmann, Janis Marc Nolde, Henriette Kirchner, Alfred Mertins, Kamila Jauch-

Chara and Thomas F. Münte. Effects of hunger, satiety and oral glucose on effective connectivity between 

hypothalamus and insular cortex. In revision at NeuroImag. I participated in the experiment design and data 

collection. I analyzed the data and wrote the manuscript. 
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is modulated by physiological (metabolic) states would constitute an important step forward to 

understanding the neural control of food intake. 

The hypothalamus was identified as a core node of homeostatic networks many decades ago 

[348–351]. It is linked, at both the structural and functional levels, with brain regions, such as the 

insula, thalamus, prefrontal cortex and brainstem, which are involved in controlling the 

homeostatic energy balance [352–357]. 

The insular cortex is a heterogeneous and complex area that has been linked to diverse 

processes including motivation, reward and emotion [333,358,359]. However, its functions also 

include the processing of external sensory (e.g. gustatory) information [360,361], and is therefore 

thought to represents an interface between homeostatic and hedonic processes controlling food 

intake [351,362,363]. The insula is also proposed to be a hub linking multiple large-scale brain 

systems [358]. Macroscopically, it is divided into the anterior/agranular insula (AINS) and the 

posterior/granular insula (PINS) in humans [333,364], rats [358,365] and non-human primates 

[366,367]. 

Both hypothalamus and insular cortex respond to hunger- and satiety-inducing signals [63–

66]. For instance, whilst hunger increases activity of the hypothalamus [59], satiety exerts 

suppressive effects on the hypothalamic signal, as occurs after exogenous glucose or insulin 

administration, [67–71]. However, most of brain imaging studies used a typical resting-state fMRI 

(rs-fMRI) approach to investigate the FC between seeds (i.e. hypothalamus, AINS and PINS) and 

brain areas involved in appetite regulation [60,66,368,369] and thus cannot clarify the 

directionality of connections between these regions. For example, a study using seed-based 

analysis to investigate the effect of fasting and satiation on FC of healthy subjects found an 



8.1 Introduction  

 

113 
 

enhancement of FC between the posterior insula and superior frontal gyrus, and between the 

hypothalamus and inferior frontal gyrus after overnight fasting [66]. 

Much of our understanding on how the central nervous system governs ingestive behavior is 

based on experiments in rodents, which has proven especially fruitful to uncover functional sub 

specializatzions within the hypothalamus [370]. However, the markedly larger and more gyrified 

neocortex observed in humans [371] complicates direct comparisons in cortical processing 

between humans and rodents. Non-human primates offer a more valid animal model with which 

to delineate the neural architecture of appetite regulation. Indeed, convergent evidence from 

studies in non-human and human primates suggests a highly conserved architecture underlying the 

neural processing of food. Specifically, the AINS –which contains the primary gustatory cortex- 

appears to code for the physical properties of food (i.e. texture, temperature), whereas the 

orbitofrontal cortex (OFC) tracks the subjective pleasantness of flavors and smells [207]. 

Subcortical areas such as the hypothalamus or the brain stem do not seem to be involved in these 

evaluative processes to the same degree. Rather, these structures receive interoceptive information 

signaling hunger and satiety [207,372,373]. This information is then relayed through the PINS 

towards the AINS and from there to orbitofrontal areas, where subjective valuation of the 

organisms’ metabolic state presumably takes place [374–376].  

There is thus a hierarchical structure by which proprioceptive information reaches the 

hypothalamus and becomes increasingly elaborated in the insular cortex, where it is integrated 

with external inputs and forwarded to the OFC. Despite the similarity of this circuit between apes 

and humans, the enlarged relative size and folding of frontal and temporal lobes in humans 

intrinsically limits generalization across species [377]. Moreover, human ingestive behavior is 

more strongly governed by non-homeostatic (i.e. external) factors, and thus animal models might 
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not suffice to capture complex processes that go beyond rudimentary affective states such as joy 

or fear [378]. 

Finally, it is unclear how metabolic states affect the effective connectivity (EC), between 

these regions. To fill this research gap, we applied dynamic causal modeling (DCM) to infer 

effective (directed) connectivity on latent (hidden) neuronal states from measured brain data using 

predefined models [145] in a study that manipulated metabolic state (hunger vs. satiety) and energy 

availability (before and after glucose administration) in healthy young men. DCM can be used to 

gather evidence favoring one network model (hypothesis) over other models and to understand 

how nodes (i.e. brain regions) might influence each other [146]. With a DCM variant called 

spectral DCM (spDCM) it has become possible to examine the intrinsic connectivity in rs-fMRI 

data [147]. Spectral DCM uses a Bayesian procedure to estimate the strengths of endogenous 

connectivity in the absence of (known) external perturbations like tasks or stimuli. 

In a previous analysis of the same data set, we observed reduced FC in AINS after glucose 

application during both hunger and satiety, see Chapter 5. Furthermore, we found that increases 

in plasma insulin levels between hunger and satiety were negatively related to PINS activity after 

glucose administration, see Chapter 7. 

In the present investigation, we first used spDCM to estimate the EC parameters for each 

participant and experimental condition (hunger vs. satiety, before vs. after glucose administration) 

using rs-fMRI data. Subsequently, we applied Bayesian model selection (BMS) [163] to determine 

the most plausible model in each condition from a set of competing hypotheses (i.e. models). 

Finally, we performed an analysis of variance (ANOVA) on estimated neural parameters to test 

whether the estimated connection strengths between hypothalamus, PINS and AINS are affected 

by the metabolic states and glucose treatment. We hypothesized increased forward information 
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flow in the hypothalamus-PINS-AINS network during fasting relative to satiety, in line with 

studies showing enhanced hypothalamic activity [59] and coupling with frontal structures [66] in 

a hunger state. We further speculated that glucose administration would act as a transient satiety 

signal [67–71] and hence reduce the strength of these forward connections. We were however 

agnostic regarding the effect of prandial state and glucose administration on backward connections 

due to the absence of previous studies on the topic. 

8.2 Materials and methods  

8.2.1 Participants 

Twenty-four healthy male participants of normal weight were twice measured: once after 36 hours 

of fasting (except water consumption) and once under satiated conditions. During each session, rs-

fMRI and hormone concentrations were recorded before and after glucose administration. 

Furthermore, the only plasma cortisol, glucose and insulin levels narrowly associated with the rs-

fMRI data collection (i.e. at 20 min before and after glucose; see Figure 8.1) were used to associate 

the EC parameters with endocrine signals.  

In four participants, we were not able to obtain a sufficient normalization of the functional 

individual brain image into standard space. Accordingly, these subjects were excluded from the 

analyses (see section “Region-of-interest time-series extraction” for further explanation). Details 

on the exclusion criteria of participants and the exact timing for obtaining blood samples can be 

found in Chapter 2.  
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Figure 8.1: Time course of physiological parameters on the second day of the experiment for 

different metabolic states. 

Mean blood plasma concentrations for cortisol (A), insulin (B) and glucose (C) under hunger and satiety 

conditions before and after oral glucose treatment (time point 0). Boxes on the bottom of the graph 

indicate the time points of meals on the second day (B = breakfast, L = lunch at 09:00 am and 12:00 

pm., respectively). In each condition, the first rs-fMRI was recorded 20 min before, the second rs-fMRI 

20 min after the intake of oral glucose. The error bars represent the standard deviation. 
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8.2.2 Preprocessing 

All structural and functional images were recorded using a 3-T Philips Achieva scanner 

(Philips Healthcare, the Netherlands). More information regarding the image acquisition can be 

found in Chapter 2 

 Preprocessing of the data was performed with the “data processing assistant for resting-state 

fMRI” toolbox (DPARSF advanced edition, version 3.2, available at http://rfmri.org/DPARSF). 

DPARSF uses a subset of functions provided by SPM (SPM12, available at 

http://www.fil.ion.ucl.ac.uk/spm/). The rs-fMRI images were preprocessed as follows: (i) The first 

7 volumes of each dataset were discarded to allow the signal to reach equilibrium and to allow the 

subjects to adjust to the scanning noise; (ii) The origins of structural and functional images were 

manually set to the anterior commissure and reoriented to enable a better alignment to the SPM 

template in order to prevent from normalization artifacts and to optimize between-subject 

alignment; (iii) Functional images were slice-time corrected to the middle slice by means of 

Fourier phase shift interpolation [379]. Head movement correction was performed on data by 

volume-realignment to the mean volume using a rigid body spatial transform to estimate the 

realignment parameters; (iv) Then, the T1 structural image was co-registered to the mean 

functional image of each subject; (v) Gray matter, white matter and cerebrospinal fluid (CSF) 

segmentation, bias correction and spatial normalization of the T1 structural image were adjusted 

to the Montreal Neurological Institute (MNI) template using the DARTEL algorithm [380];  (vi) 

The functional images were spatially normalized to the MNI-template by using the normalization 

parameters estimated by the DARTEL algorithm with voxels size to 3 mm isotropic; (vii) Spatial 

smoothing was performed with a 6 mm full width at half maximum (FWHM) Gaussian kernel. 

http://rfmri.org/DPARSF
http://www.fil.ion.ucl.ac.uk/spm/
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8.2.3 Region-of-interest time-series extraction 

As regions of interest (ROI), we defined four ROIs located in the insula (two insula ROIs per 

hemisphere) and one within the hypothalamus (Figure 8.2). For each insula ROI, we determined 

several coordinates (Table 8.1) to cover the functional differentiation within human insula [66]. 

These coordinates were chosen based on FC studies that provided the association of the specific 

ROIs of the insula with other brain areas [368] and which investigated the effect of hunger and 

satiety on the insular cortex [66]. Subsequently, each coordinate was used to generate a 5 mm3 

sphere cluster (Figure 8.2A) by using the SPM Marsbar toolbox. Then, we summed up these 

clusters to create one combined seed for every subregion of the insula (i.e. anterior and posterior 

insula ROI). To avoid an overlap of the insula seed regions and other anatomical brain regions (i.e. 

regions outside the insula), we defined the final insula ROIs by finding common voxels between 

the insula ROIs and the corresponding insula masks from the Neuromorphometrics atlas provided 

by SPM12. The middle insula was not defined in order to avoid any overlap between the anterior 

and posterior insula ROIs. 

The hypothalamus is notoriously difficult to examine in fMRI experiments as multiple 

factors can cause interference due to its anatomical position and size [376]. Even though the 

hypothalamus is very extensively subdivided with functional subcenters, we focused our analysis 

on the whole hypothalamus as it would have been unrealistic to achieve more spatially detailed 

results without running unique measurements adapted to the hypothalamus, which was not the 

primary goal of this study. The bilateral hypothalamus ROI (Figure 8.2B) was based on the SPM 

Wake Forest University (WFU) Pickatlas toolbox (http://www.fmri.wfubmc.edu/cms/software, 

version 3.0; [381]).  

http://www.fmri.wfubmc.edu/cms/software
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The preprocessed rs-fMRI data for each subject per condition were entered into the general 

linear model (GLM) with a constant term, the confound regressors of the CSF signal, the white 

matter signal and 24 head motion parameters (six standard realignment parameters, their derivative 

and the quadratic terms of these 12 realignment parameters; [382]). The applied temporal high 

pass filter of 1/100 Hz was included in the GLM model to remove slow frequency components 

caused by scanner drift.  After estimation of the GLM model, we extracted time series from our 

ROIs, removing any signal that could be explained as a linear mixture of our 26 confound 

regressors. The time series was extracted using a singular value decomposition (SVD) procedure 

implemented in SPM12 and the first principal eigenvector was retained to represent the ROI time 

series (Figure 8.3B). Figure 8.3C and D show the predicted cross-spectral density of the BOLD 

signals and the hidden neuronal states, respectively, of the winning model for a single subject. In 

four subjects, we were not able to calculate the time series of the bilateral hypothalamus ROI 

correctly because some of the voxels within the hypothalamus ROI belonged to the CSF 

(normalization artifact). Accordingly, these subjects were excluded from further analyses. 
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Figure 8.2: Seeds superimposed on an average structural T1 image. 

(A) Middle picture and upper row: left and right anterior insula (green and cyan) and posterior insula 

(red and magenta) ROIs. Lower row: individual seeds in the right and left insula. (B) Hypothalamus 

(blue) ROI. L, left; R, right. 

Table 8.1: Coordinates of the individual 5-mm3 sphere clusters of the left and right ROIs of the 

anterior and posterior insula, defined by Cauda et al. [383] and  Wright et al. [66]. 

K represents the number of voxels that are common between the insula ROIs and the insula masks 

from the Neuromorphometrics atlas provided by SPM12. 

Seeds Clusters Left Hems.  MNI (x,y,z) ROI(K) Right Hems.  MNI (x,y,z) ROI(K) 

Ant. Ins. 1 -34.5 12.5 -2.5  

 

     59 

34.5 12.5 -2.5  

 

      62 

 

 2 -36.5 4.5 -3 38.5 5.5 -2.5 

 3 -30.5 18.5 5.5 35.5 16.5 5.5 

 4 -32.5 9 11.5 36.5 7 5 

 5 -30.5 9 4.5 32.5 9 11.5 

Post. Ins. 1 -36.5 -7.5 -3.5  

   24 

36.5 -4.5 -3  

    25  2 -36.5 -10 4 38.5 -8 4 

 3 -34.5 -13 10 34.5 -11 10.5 
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Figure 8.3: Illustration of the hypothalamus-insula network and the results of the winning 

model for a single subject. 

The five spheres in (A) denote the five ROIs used in the spDCM analysis. The time series (B) from 

the five regions are the principle eigenvariates of the regions identified using a conventional SPM 

analysis. The observed (dashed lines) and predicted (solid lines) CSD of BOLD signals (C) by the 

winning model in the five ROIs. The underlying CSD predicted for the hidden neural states (D). 

Hyp = Hypothalamus; AIN= anterior Insula; PIN = posterior Insula; AU = arbitrary units; CSD 

= cross-spectral density; abs = absolute. 
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8.2.4 Spectral DCM and model space selection 

The spDCM analyses (more details can be found in Section 4.2.1 regarding spDCM) were 

specified for each subject in each experimental condition (satiety-before, satiety-after, hunger-

before and hunger-after oral glucose) separately using DCM12 (revision 7196) implemented in 

SPM12 (revision 7219). For each condition and participant, the average EC between the ROIs was 

modeled using different models. These different models varied in their directed connections 

between the five ROIs and were specified in order to explore alternative hypotheses of insula-

hypothalamus network interactions. To limit the number of possible models, we assumed that 

during rs-fMRI measurements connectivity patterns are symmetric for the left-right hemisphere. 

The connections between hemispheres were supposed to take place either via hypothalamus, PINS 

and AINS (Figure 8.4A: models 1-4) or via hypothalamic connections alone (Figure 8.4A: models 

5-8). Endocrine signaling of gut peptides that are related to promote meal initiation (e.g. ghrelin) 

or to promote meal cessation (e.g. insulin and leptin) reach specialized neurons within the 

hypothalamus and achieve their consequences by influencing brain regions involved in food intake 

regulation [3,64,384,385]. Therefore, we abstained from calculating models without any 

hypothalamic connections. The models in Figure 8.4A display eight possible connections (parallel, 

i.e. models 1,2,5 and 6, forward, i.e. models 3 and 7, and backward, i.e. models 4 and 8) between 

the hypothalamus, PINS and AINS. After inverting and estimating the models, we used BMS to 

determine the most accurate model structure to describe the measured fMRI data [163]. The 

optimal model is determined by selecting the model with the best balance between data fitting (i.e. 

accuracy) and model complexity, as defined by the free energy bound on the model evidence [386]. 

Random-effects BMS calculates the posterior model probability (that a specific model generated 

the data of a randomly chosen subject) and the protected exceedance probability (that a given 
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model is more likely than any other model considered). Treating the model as a random variable 

in the population renders the method capable of dealing with population heterogeneity whilst being 

robust to outliers, or equivalent [163].  

 

Figure 8.4: Different plausible hypotheses and Bayesian model selection. 

(A) Possible connections among the five ROIs to explain the effective connectivity in the 

hypothalamus-insula network. Note that double arrow means reciprocal connections between two 

regions. (B) and (C) denote Bayesian model selection results per experimental condition for 

expected and protected exceedance probability in 8 models compared using RFX BMS, 

respectively. Hypo = Hypothalamus; AINS= anterior Insula; PINS = posterior Insula. 
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To evaluate the success of model inversion or fit, the percent variance explained (or R2) by 

the models for each experimental condition and subject were calculated using 

spm_dcm_fmri_check.m, see Figure 8.5. 

 

Figure 8.5: Percent variance explained (R2) by the models for each experimental condition. 

The bars show mean of R2 across subjects and the error bars represent the standard deviation. 

8.2.5 Parameter estimate of the winning model 

The random-effects BMS procedures were used to determine the “winning model” for each 

metabolic state condition (hunger or satiety) and glucose treatment (before or after glucose 

administration), separately. Then, we evaluated the endogenous connectivity parameters of the 

winning model in each condition using a second-level frequentist test. [387]. One-sample t-tests 
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(p<0.05/16, Bonferroni corrected for multiple comparisons) were applied to test whether the 

parameters of interest deviated significantly from zero. We reported the strength of the connections 

in Hz across participants (mean ± SD) and the corresponding p-value. 

The winning model of each condition resulted in the same model (see results section). Thus, 

we can examine the influence of conditions on the connections between ROIs. In the next step, the 

endogenous connectivity parameters of the winning model were submitted to rm-ANOVA with 

factors metabolic state (levels: hunger, satiety) and glucose administration (levels: before, and after 

treatment). 

8.2.6 Associations between DCM parameters, physiological and behavioral responses 

We tested whether the participant’s physiological (plasma cortisol, glucose and insulin levels) and 

behavioral (rating of hunger) responses could be predicted by the neuronal parameter estimates 

(NPEs; i.e. from 16 endogenous connections and 5 self-connections) of the winning model. We 

used multiple linear regression (MLR) analysis to test for a statistically significant relationship 

between components of NPEs (independent variables) and the respective dependent variable. First, 

we performed principal component analysis (PCA) on NPEs to reduce the dimensionality of the 

independent variables and to provide principal components (PCs), which are the linear 

combination of the NPEs. Separate PCA analyses were applied to 21 parameters for each of the 

four experimental conditions to determine the number of components (Figure 8.6). Approximately 

87±2% of the variance was explained by the remaining the first six neuronal parameter components 

(NPCs; Figure 8.6). Therefore, six NPCs were extracted from the NPEs per experimental 

conditions. Next, these NPCs were used as independent variables in the MLR model [388] to 

predict participants’ plasma glucose, plasma insulin, plasma cortisol and hunger ratings. Each of 

the MLR analysis was performed four times to cover all experimental conditions. To keep the 
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temporal association of endocrine and functional imaging data as clear as possible, the 

physiological data at 20 min before and after glucose ingestion only (Figure 8.1) were used as 

dependent variables for MLR analysis. 

The rm-ANOVA on the NPEs (see Results 8.3.2 and Figure 8.8), resulted in a significant 

main effect of the metabolic state on the endogenous connection estimates from the right posterior 

to the right anterior insula (RPINSRAINS) and from the right anterior to the right posterior 

insula (RPINSRAINS). To investigate whether the changes in these connections were associated 

with physiological and behavioral responses, we used linear mixed-effects (LME) analysis which 

allows us to perform multiple regression while taking into account the repeated measures design 

of our subjects [389]. The LME model identifies the linear relationships between a dependent 

variable (e.g. cortisol) and independent variables (NPEs), with coefficients that explain variation 

in respect to one or more grouping variables (e.g. experimental conditions). To this end, separate 

LME analyses were carried out for each of the four dependent variables (i.e. plasma cortisol, 

glucose and insulin levels as well as hunger ratings). Furthermore, the only plasma cortisol, 

glucose and insulin levels narrowly associated with the rs-fMRI data collection were used as 

dependent variables (Figure 8.1). For each of these four models, we entered the metabolic state 

(levels: hunger vs. satiety) and glucose administration (levels: before vs. after glucose 

administration) as well as EC of RPINSRAINS and RPINSRAINS as a fixed effect with the 

intercepts for subjects as a random effect. As post-hoc tests, a set of LME was used to further 

analyze the interaction driving factor levels. All continuous variables were z-scored. LME analyses 

were performed using the “lmer” function in the lme4 package [390] with R [391] and sjPlot [392]. 

For significant slopes, we reported the regression coefficient parameter estimate (β).  
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Figure 8.6: Principal component analysis (PCA) on neuronal parameter estimates (NPEs; i.e. 

from 16 endogenous connections and 5 self-connections) for each of the four experimental 

conditions. 

The bars show the proportion of variance represented by each component and the solid line 

represents the cumulative variance. Approximately 87±2% of NPEs information (variance) 

was explained by remaining the first six neuronal parameter components. 

8.3 Results 

8.3.1 Bayesian model selection 

When testing for the model structure that explains the rs-fMRI data best by using RFX BMS, 

model 1 (Figure 8.4B) had the highest protected exceedance probability (PXP= 0.99) at the group 

level for each experimental condition (shown in Figure 8.4C). The lower evidence of models 
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without interhemispheric connections (models 5-8) indicates that lack of inter-hemispheric 

connectivity led to a worse explanation of the participants’ network activity. This result suggests 

that the reciprocal connections, both within hemispheres (i.e. hypothalamus-PINS-AINS) and 

between hemispheres were necessary network features. 

8.3.2 Model parameters 

We investigated whether the EC among the ROIs estimated using the winning model were 

significantly non-zero separately for each condition. In Table 8.2 and Figure 8.7 we show the mean 

connection strength (in Hz) and the results from the one-sample t-tests. For simplicity, self-

connections are not included in the table and graph. To sum up, in the satiety condition after oral 

glucose intake we found that the connection strength from left anterior insula (LAINS) to left 

posterior insula (LPINS) was significantly different from zero (p=0.002, surviving Bonferroni 

correction). Furthermore, in the hunger condition before oral glucose intake, we found that the 

connection from the right posterior insula (RPINS) to the right anterior insula (RAINS) was 

significantly different from zero in satiety (p=0.001, surviving Bonferroni correction), too. Finally, 

we did not find any significant connections from or to the hypothalamus. 
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Figure 8.7: The winning model at the group level and its mean connectivity parameters (in Hz) 

per experimental condition. 

The significant (p<0.05) connections are shown in bold. The * and # represent significance at p<0.01 

and after Bonferroni correction (p<0.05), respectively. 
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Two-way rm-ANOVA was conducted to determine the influence of two independent 

variables (metabolic state and glucose administration) on endogenous connection estimates of the 

winning model. Both metabolic state (hunger and satiety) and administration (before and after 

glucose intake) consisted of two levels. There were no significant effects of glucose administration 

and interactions between both factors on all endogenous connection estimates. We found a 

significant (p<0.05) main effect of metabolic state on the endogenous connections from RPINS to 

RAINS (forward connection, RPINSRAINS) (F(1,19)=8.8, p=0.008), indicating significant 

stronger connectivity during hunger (M=0.37 Hz, SD=0.49) compared to satiety (M=0.15 Hz, 

SD=0.54 ). Also, we observed a significant main effect of metabolic state on the endogenous 

connections from RAINS to RPINS (backward connection, RPINSRAINS) (F(1,19)=4.7, p=0.04) 

indicating that the satiated state (M=0.12 Hz, SD=0.49) showed higher connectivity strength 

compared to the hunger state (M=-0.11 Hz, SD=0.55), as shown in Figure 8.8.   

 

Figure 8.8: Effective connectivity parameters that showed a significant main effect of 

the metabolic state (hunger vs. satiety). 
(A) Strength of the forward connections from RPINS to RAINS (RPINSRAINS). (B) Strength of 

the backward connections from RAINS to RPINS (RPINSRAINS). * and ** represent the 

significant differences between conditions, p < 0.05 and p<0.01, respectively. 
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Table 8.2: Posterior estimates of effective connectivity (Hz) in the winning model (mean ± SD) per experimental condition. 

Using one-sample t-tests, we tested whether effective connectivity was significantly different from zero. 

 

Connections 

Satiety Hunger 

Before Glucose After Glucose Before  Glucose After Glucose 

Strength (HZ) P-Value Strength (HZ) P-Value Strength (HZ) P-Value Strength (HZ) P-Value 

LAINS  Hypo -0.07 ± 0.61 0.8 -0.08 ± 0.37 0.15 0.04 ± 0.68 0.35 -0.01 ± 0.44 0.21 

LPINS  Hypo -0.06 ± 0.29 0.9 -0.04 ± 0.28 0.85 -0.12 ± 0.41 0.85 -0.01 ± 0.23 0.5 

RAINS  Hypo -0.02 ± 0.72 0.32 0.09 ± 0.64 0.85 -0.11 ± 0.51 0.07 0.09 ± 0.51 0.92 

RPINS  Hypo 

 

0.07 ± 0.56 0.46 -0.04 ± 0.38 0.95 0.1 ± 0.44 0.91 -0.11 ± 0.42 0.26 

Hypo  LAINS 0.03 ± 0.61 0.62 0.17 ± 0.51 0.34 0.13 ± 0.62 0.77 0.18 ± 0.61 0.89 

LPINS  LAINS 0.09 ± 0.43 0.16 0.15 ± 0.53 0.46 0.26 ± 0.35 0.03 0.2 ± 0.39 0.04 

RAINS  LAINS 

 

0.24 ± 0.59 0.16 0.31 ± 0.51 0.008* 0.06 ± 0.85 0.21 0.23 ± 0.73 0.11 

Hypo  LPINS -0.02 ± 0.68 0.37 0.03 ± 0.67 0.57 -0.01 ± 0.68 0.2 0.13 ± 0.83 0.87 

LAINS  LPINS 0.29 ± 0.89 0.35 0.5 ± 0.25 0.002# 0.12 ± 0.72 0.07 0.15 ± 0.63 0.06 

RPINS  LPINS 

 

0.25 ± 0.73 0.12 0.003 ± 0.72 0.43 0.42 ± 0.75 0.006* 0.22 ± 0.58 0.05 

Hypo  RAINS -0.09 ± 0.38 0.91 -0.07 ± 0.45 0.55 0.13 ± 0.32 0.36 0.01 ± 0.38 0.43 

LAINS  RAINS 0.16 ± 0.47 0.08 0.19 ± 0.39 0.009* 0.16 ± 0.55 0.78 0.14 ± 0.37 0.17 

RPINS  RAINS 

 

0.16 ± 0.56 0.11 0.13 ± 0.52 0.67 0.41 ± 0.46 0.001# 0.32 ± 0.53 0.004* 

Hypo  RPINS -0.07 ± 0.43 0.58 -0.01 ± 0.59 0.65 -0.01 ± 0.47 0.33 0.12 ± 0.47 0.24 

LPINS  RPINS 0.11 ± 0.35 0.14 0.25 ± 0.36 0.006* 0.1 ± 0.54 0.11 0.21 ± 0.42 0.02 

RAINS  RPINS 0.19 ± 0.52 0.23 0.05 ± 0.46 0.29 -0.14 ± 0.59 0.72 -0.08 ± 0.52 0.82 

The significant (p<0.05) connections are shown in bold. The * and # represent significance at p<0.01 and after Bonferroni correction (p<0.05), 

respectively. Abbreviations: LAINS, left anterior insula; LPINS, left posterior insula; Hypo, hypothalamus; RAINS, right anterior insula; RPINS, 

right posterior insula. 
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8.3.3 Associations between DCM parameters, physiological and behavioral responses 

MLR analysis was applied to explain the physiological or behavioral responses of participants 

based on their NPEs (i.e. six NPCs). We found a significant regression equation for the prediction 

of plasma cortisol levels before oral glucose intake for both satiety (F(6,13)=3, p=0.04 with an R2 of 

0.58) and hunger conditions (F(6,13)=2.8, p=0.05 with an R2 of 0.56). As shown in Figure 8.9 no 

other regression became significant. 

 

Figure 8.9: Multiple linear regression (MLR) analysis. 

The expression of significant regression equations to predict physiological (plasma glucose, insulin 

and cortisol levels) and behavioral responses (rating of hunger) of participants based on their six 

principal components computed from the spDCM neuronal parameter estimates (for every 

experimental condition separately). The red color represents the significant results. 
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Critically, LME analyses revealed significant interactions (β=-0.8, p =0.007) between 

RPINSRAINS connection (forward connection) strength, metabolic state and glucose 

administration in explaining cortisol levels (Figure 8.10A). To further analyze the interaction-

driving factor, we performed LME analyses per glucose treatment condition separately, as post-

hoc tests. We found that the interactions between RPINSRAINS and metabolic state predicting 

the cortisol levels was significant (β=0.9, p=0.01) before, but not (β=-0.5, p=0.2) after oral glucose. 

More precisely, before oral glucose treatment, the forward RPINSRAINS connectivity showed 

a strong positive (β=0.7, p=0.03) and negative (β=-0.5, p=0.06) relation to cortisol levels in hunger 

and satiety conditions, respectively. Whereas, after oral glucose treatment, the relationship 

between RPINSRAINS strength and cortisol disappeared for both the hunger (β=-0.4, p=0.08) 

and satiety (β=-0.03, p=0.9) conditions.  

Finally, the interactions between the RPINSRAINS connection strength (backward 

connection) and metabolic state significantly predicted cortisol levels (Figure 8.10B; β=-0.7, 

p=0.02) and the hunger ratings (Figure 8.10C; β=-0.6, p=0.03). More precisely, the backward 

RPINS RAINS connection strength showed positive relations to both, the cortisol levels (β=0.5, 

p =0.1) and hunger ratings (β=0.7, p=0.007) in the satiety condition. In contrast, in the hunger 

condition, the RPINSRAINS connection strength was negatively and non-significantly 

associated with cortisol levels (β=-0.3, p=0.2) and hunger ratings (β=-0.5, p=0.08). In addition, we 

observed no significant relations between the glucose or insulin levels and the forward 

RPINSRAINS or backward RPINSRAINS connection strengths. 
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Figure 8.10: Interactions between covariates in the linear mixed effects model predicting 

individual physiological and behavioral responses. 

(A) Interaction of RPINSRAINS connectivity (forward connection) with the metabolic state (levels: 

hunger vs. satiety) and glucose administration (levels: before vs. after glucose administration). (B) and 

(C) interaction of RAINSRPINS connectivity (backward connection) with metabolic state predicting 

cortisol levels and hunger ratings, respectively. Solid lines indicate linear regression fit between the 

dependent variables (y-axis) and covariates (x-axis). int.: interaction. RAINS: right anterior insula. 

RPINS: right posterior insula. β: slope coefficient parameter estimate resulting from linear mixed-effects 

models. ns: represent no significance. 
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8.4 Discussion 

The purpose of this study was to investigate the influence of prandial state (hunger vs. satiety) and 

glucose administration on EC patterns between the hypothalamus, PINS and AINS as core 

components of the neural network supporting ingestive behavior. Applying spDCM to rs-fMRI 

data, we were able to estimate the directed connectivity between brain regions of interest at 

neuronal states. Our results suggest that the strength of the EC was modulated by changes in 

prandial states, but not glucose administration. Specifically, during the hunger condition, the 

strength of endogenous connectivity was increased from right PINS to the right AINS, while it 

was decreased from right AINS to right PINS (Figure 8.8). Connectivity strength from AINS to 

PINS was further related to enhanced hunger ratings during the satiety condition, suggesting that 

EC changes in the homeostasis regulation network might partly underlie subjective hunger 

perceptions and thereby impact food intake. 

8.4.1 Changes in endogenous connectivity related to metabolic conditions  

Spectral DCM analysis is a framework to model the effective connectivity between ROIs based on 

the FC in rs-fMRI data as well as make inferences about specific parameter changes [147]. BMS 

reveals the most likely model (i.e. possible way of connections) among a set of different models 

to explain the data by taking into account the balance between complexity and goodness-of-fit 

[386,393,394]. In this work, BMS suggested that the fully connected model (model 1 in 

Figure 8.4A) was the best model in all experimental conditions (Figure 8.4C).  

Regarding the endogenous connectivity, we observed that inter-hemispheric connections 

between left-right AINS and between left-right PINS were positive in both directions for all 

experimental conditions, i.e. left and right insula exerted a mutual positive influence on each other; 

this could be regarded as ‘baseline’ reciprocal activation. Lateralization of emotional and 
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homeostatic processing in the insula has been suggested to be associated with differential 

autonomic inputs (sympathetic/parasympathetic) to this structure [395–397]. For instance, 

Oppenheimer et al. [398] demonstrated that direct stimulation of the right insular cortex results in 

changes in sympathetic functions, which are needed in hunger, avoidance behavior and negative 

affect [374], while the left insular cortex has been reported to be involved in parasympathetic 

functions, which are required in feeding, approach behavior and  positive affect [374]. 

Furthermore, a recent meta-analytical study demonstrated asymmetrical information processing in 

the insular cortex in response to hunger-inducing food stimuli [399]. Our results suggest 

continuous cross-communication between homologous insula regions, which could serve to 

integrate sympathetic and parasympathetic signals.  

After fasting, we observed a strong positive connection in the right hemisphere from PINS 

to AINS (RPINSRAINS; Figure 8.7 and Figure 8.8A) which suggests a more intense influence 

of interoceptive inputs represented in PINS on AINS function [397,400–402].  In the same 

condition, a negative connection from right AINS to right PINS (RPINSRAINS; Figure 8.7 and 

Figure 8.8B) indicated an inhibitory influence of the anterior insula on posterior insula during 

hunger. These findings can be interpreted in the context of recent theories of interoception that we 

describe below. 

According to meta-analyses [403,404], PINS receives information about the physiological 

and homeostatic conditions of the body. For instance, PINS is activated in response to hunger, 

receiving an appetitive drink, thirst, sensual touch, gastric distention without actual food intake, 

itch and temperature changes [208,333,334,401,405–411]. Also, the PINS is linked to the posterior 

cingulate cortex, supplementary motor area, sensory-motor and part of occipital areas. This 

network is mainly related to environmental monitoring, response selection and body orientation 
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[332,395,405,412–414]. It thus subserves the objective representation of physical body conditions 

[415,416].  

In contrast to PINS, AINS is of particular significance for food intake and corresponding 

primary gustatory signals [207,417]. For example, right AINS is activated in response to different 

tastes, smells and food textures [332,334]. In addition, the right AINS is proposed as a primary 

cortical area for awareness of and attention shift to internal body signals, for instance in the 

perception of pain and heartbeat [415,416,418–423]. Furthermore, the AINS is anatomically and 

functionally connected to the middle and inferior temporal cortex, anterior cingulate cortex (ACC) 

and orbitofrontal cortex. This network is mostly concerned with attention and executive 

functioning as well as salience detection [368,383,424–429]. The AINS is therefore regarded as 

one of the main brain areas for multimodal integration and has been proposed to represent 

subjective emotional states [415,416]. 

Craig [430] suggested a pathway that maps objective representations of body conditions onto 

a subjective representation of the physical self, via posterior-to-anterior pathways within the right 

insula. Our results demonstrate that the connection strength from the right PINS to the right AINS 

is increased in hunger by 22% relative to satiety conditions. This finding indicates that the 

connectivity within the right posterior-to-anterior insula pathway (RPINSRAINS) can be altered 

by food intake because those changes were only observed in response to changes in metabolic 

states, but not in glucose treatment. Our observations suggest that changes within this pathway, 

which is related to subjective hunger feelings, could be caused by increasing the perceived salience 

of internal bodily states [397,430]. In contrast, we observed a decreased strength of backward 

connections from right AINS to right PINS (RPINSRAINS) during hunger conditions. One 

could assume that the reduced strength of EC from RAINS to RPINS might be the result of bodily 
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signals forwarded from posterior to anterior insula (RPINSRAINS), which may become more 

salient in the hunger condition. An alternative (and equally tentative) interpretation refers to recent 

theories that PINS, AINS, and ACC are part of a hierarchical system for inference on bodily states 

(interoception) and homeostatic/allostatic regulation [431,432]. These theories view interoception 

as a “predictive coding” [433,434] process in which inference is mediated by transmitting 

predictions via backward connections and prediction errors via forward connections. Predictions 

represent previously learned and expected bodily states, whereas (interoceptive) prediction errors 

signal the mismatch between the actual bodily state and the expectation. Therefore, interoceptive 

prediction errors signal changes in the AINS, thereby triggering homeostatic regulation [435]. 

Thus, the strengthening of forwarding connections from PINS to AINS during hunger states could 

be potentially interpreted as the reflection of tonically increased prediction error signals, while the 

negative (inhibitory) connection could reflect the effect of predictions (which, in predictive coding, 

are subtracted from actual states). 

8.4.2 Associations between DCM parameters, physiological and behavioral responses 

Only blood cortisol levels before glucose administration could be predicted by the six neuronal 

PCs (Figure 8.9). Furthermore, the relationship between the strength of RPINSRAINS 

connection (i.e. forward connection) and plasma cortisol levels was modulated by metabolic states 

before oral glucose intake (Figure 8.10A). However, the modulation of the association between 

the strength of RPINSRAINS connection (i.e. backward connection) and both, plasma cortisol 

levels and hunger ratings, depended only on the metabolic states and were therefore independent 

of glucose treatment (Figure 8.10B and C, respectively). 

After glucose stimulation, the insulin and cortisol levels of fasted and non-fasted subjects 

responded differentially, namely insulin increased and cortisol remain stable. Variability in insulin 
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and cortisol responsivity is nonetheless influenced by a complex interplay of the glucose 

absorption-rate, fasting-induced insulin resistance and gastrointestinal hormone 

secretion[436,437]; this may have decreased our ability to explain physiological states as a 

function of connectivity estimates. Especially the onset of fasting-induced insulin resistance and 

the associated increase in inflammatory markers [436,437] that, in turn affect, cortisol levels may 

have confounded the relation between connectivity estimates and physiological states that was 

visible before glucose administration.  

One limitation of the current analysis, due to the rather small sample size we could not 

directly investigate the relation between all NPEs and hormone variables (i.e. plasma glucose, 

insulin and cortical levels) using standard multiple linear regression. We used principal component 

regression instead. To establish a direct relationship between NPEs and hormonal data, a 

replication of the current study with a larger sample would be desirable. 

8.5 Conclusions 

Hypothalamic and insular cortex activation has previously been found to reflect changes in the 

homeostatic energy balance. By applying spDCM and BMS analyses to rs-fMRI data, we 

examined whether the metabolic state (hunger vs. satiety) and glucose administration (before vs. 

after) would modulate the EC between brain regions involved in ingestive behavior. Our most 

plausible model in all metabolic and glucose conditions comprised intra- and interhemispheric 

connections within a bilateral the hypothalamus-PINS-AINS network model. EC was significantly 

increased for the forward connection RPINSRAINS but decreased for the backward connection 

RPINSRAINS under hunger compared to satiety, with no influence of glucose treatment. 

Furthermore, the strength of RPINSRAINS connectivity was positively associated with plasma 

cortisol levels in the hunger condition, particularly before glucose administration. Overall, these 
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results illustrate how connections among brain regions involved in interoception and homeostatic 

regulation change between hunger and satiety and provide a basis for future investigations of 

hypothalamic-insular networks in the context of food intake
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9. Chapter 9: General discussion 

The overarching goal of the current dissertation was to investigate and understand the impact of 

varying metabolic states (hunger vs. satiety) on the human brain’s functional connectivity by using 

different approaches to analyze rs-fMRI data. Each approach was chosen to answer a specific 

question and also to carry the results forward from one analysis to subsequent analyses. 

Rs-fMRI was used to investigate the neural correlates of changing hunger and satiety states 

as well as glucose intake. Therefore, the basic principles of MRI recording and the link of fMRI 

signals to neural activity were outlined in the introduction (Chapter 1). Also, the recent literature 

on the impact of food consumption on brain functions has been summarized. From this literature 

review, there are open questions regarding the relationship of brain activity to food intake, in 

particular pertaining to the link between brain activity and peripheral hormonal and metabolic 

signals. To fill this gap, an experiment was designed to examine the role of modulations of 

metabolic states on human brain function as explained in Chapter 2. This study examined 24 

healthy normal-weight men twice: once after 36 hours of fasting (except water) and once in satiated 

(five meals/day for 36 hours) conditions. At the end of each session, rs-fMRI was recorded before 

and after glucose administration (75 g of oral glucose). Furthermore, 19 blood samples per subject 

and condition were drawn to assess hormonal and metabolic measures. In Chapter 3, the effects of 

metabolic states and glucose treatment on physiological and behavioral data were explained. As 

the results of Chapter 3 met our expectations and corresponded with the literature, this 

experimental design allowed us to interpret our rs-fMRI findings appropriately concerning 

fundamental metabolic regulations. 
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There is no ideal approach to analyze rs-fMRI signals. Instead, the selection of a specific 

analysis technique depends on the specific questions that the researchers wish to answer from the 

rs-fMRI data. Therefore, in Chapter 4, a methodological review and comparison of several 

common methods to analyze rs-fMRI data were provided.  

As mentioned in the introduction, this work was particularly interested in answering four 

different, non-redundant questions from one experimental design but different analysis procedures. 

In the next paragraphs, these questions will be recalled and the methods and results to answer them 

will be summarized. Moreover, methodological considerations supporting the results of this 

project will be discussed. Finally, relevant caveats will be addressed and future directions to 

continue this work will be suggested. In the end, this work will close with some concluding 

remarks that support our primary two hypotheses mentioned in the introduction of this dissertation. 

9.1 Addressing research questions 

9.1.1 First question: What is the effect of oral glucose administration on the resting brain 

activity during hunger and satiety conditions using rs-fMRI data? 

In Chapter 5, a multi-method rs-fMRI analysis approach was used to investigate the effect of 

glucose administration on the brain’s resting functional connectivity and activity during different 

metabolic states. We found that glucose administration reduced these measures selectively in the 

left supplementary motor area, indicating reduced synchronization between a target voxel within 

that region with its neighbor voxels or all voxels in the brain as well as reduced the resting state 

activity in that region, and increased fALFF and ReHo in the right middle frontal gyrus. For 

fALFF, we observed a significant interaction between metabolic states and glucose in the left 

thalamus. This interaction was driven by a fALFF increase after glucose treatment in the hunger 

relative to the satiety condition. The findings of Chapter 5 suggest that even when there is less 
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energy in the body, the brain can flexibly allocate the energy to regions of higher needs, as 

indicated by the changes in local (ReHo) and global (DC) connectivity after glucose 

administration, owing to the brain's unique capacity to control its own energy supply [49].  

The results of Chapter 5 show that using local and global connectivity as well as the 

amplitude of rs-fMRI signals can contribute to the delineation of the relationship between changes 

in energy homeostasis and caloric intake. 

9.1.2 Second question:  What is a reliable marker of rs-fMRI signals to study the effect of 

hunger and satiety on the human brain? 

In Chapter 6, we compared the accuracy of ReHo, DC and fALFF approaches for the classification 

of two metabolic states (hunger vs. satiety) depending on the observed rs-fMRI fluctuations. 

Therefore, we reanalyzed the obtained data but focused on the brain activity of both experimental 

conditions before glucose administration. After extracting the associated connectivity parameters 

of 90 brain regions for each method, we used feature selection algorithms with the objective 

function of linear SVM classification and permutation tests to investigate which method 

differentiates best between hunger and satiety. We observed that the fALFF region subset selected 

by the sequential forward floating selection algorithm identified the hunger state with the highest 

classification accuracy of 81%, while the classification accuracy based on ReHo and DC was 79% 

and 70%, respectively.  

Our results indicate that the amplitude of rs-fMRI signals serves as a suitable basis for 

machine learning based classification of brain activity. This opens up the possibility to apply this 

combination of algorithms to similar research questions, such as the characterization of brain states 

(e.g. sleep stages) or disease conditions (e.g. Alzheimer’s disease, minimal cognitive impairment). 
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9.1.3 Third question:  How can different metabolic states change whole brain activity and 

how are these changes associated with hormonal signals? 

In Chapter 7 we studied the interplay of metabolic state (hungry vs. satiety) and glucose 

administration (including hormonal modulation) on brain activity. We used fALFF as an index 

that shows changes of brain activity because the results of Chapters 5 and 0 indicate that the fALFF 

of the BOLD rs-fMRI signal was the most sensitive measure to identify spontaneous brain activity 

associated with changes in homeostasis and caloric intake. To answer the above questions, multiple 

linear regression analysis was used to investigate the interdependence of amplitude of rs-fMRI 

signals, plasma insulin as well as glucose levels. We observed a modulatory impact of the fasting 

state on intrinsic brain activity in the posterior cingulate cortex. Strikingly, differences in plasma 

insulin levels between hunger and satiety states after glucose administration at the time of the scan 

were negatively related to brain activity in the posterior insula and superior frontal gyrus, while 

plasma glucose levels were positively associated with activity changes in the fusiform gyrus. 

Furthermore, we could show that changes in plasma insulin enhanced the connectivity between 

the posterior insula and superior frontal gyrus. 

Our results suggest that hormonal signals like insulin alleviate an acute hemostatic energy 

deficit by modifying the homeostatic and frontal circuitry of the human brain. 

9.1.4 Fourth question: What is the impact of different metabolic states on the causal 

interactions in a specific homeostasis hypothalamus-insula circuit? 

Both the hypothalamus and insular cortex play an essential role in the regulation of homeostasis 

by responding to hunger- and satiety-related signals. Rs-fMRI studies showed that alterations in 

FC of these sites are associated with the fluctuation of metabolic states and caloric intake (see 

Chapter 8). However, FC captures purely correlational dependencies between the neurovascular 
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signaling of two regions. Accordingly, FC cannot provide any information regarding the 

modulatory impact of metabolic states on the directed or effective connectivity between the 

hypothalamus, posterior insula (PINS) and anterior insula (AINS). To overcome this limitation, 

we used spectral DCM to estimate effective connectivity between brain regions at the neural rather 

than vascular levels [147]. Specifically, we investigated whether effective connectivity within this 

network varies as a function of the metabolic state (hunger vs. satiety) and energy availability (e.g. 

glucose levels). 

Using a Bayesian model selection, we observed that the same model was identified as the 

most likely model for each rs-fMRI recording. Compared to satiety, the hunger condition enhanced 

the strength of the forward connections from PINS to AINS and reduced the strength of backward 

connections from AINS to PINS. Furthermore, the strength of connectivity from PINS to AINS 

was positively related to plasma cortisol levels in the hunger condition, mainly before glucose 

administration. However, there was no direct relationship between glucose treatment and effective 

connectivity. 

Our findings suggest that metabolic states modulate connectivity between PINS and AINS 

and relate to theories of interoception and homeostatic regulation that invoke hierarchical relations 

between posterior and anterior insula. 

9.2 Methodological considerations 

For the present work various approaches for analyzing rs-fMRI data were applied, which require 

some methodological considerations: 

First of all, we minimized frequently discussed limitations related to fMRI approaches such 

as artifacts and noise. Because we applied an ICA-AROMA strategy on the data, which in addition 

to motion artifacts also removes other structured noise from the data (e.g. cardiac pulsation 
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artifacts; Pruim et al. 2015b), we argue that the results of this work are not caused by motion 

artifacts and non-specific physiological effects. Also, we regressed out the time-series for WM and 

CSF from the data to remove and reduce residual (non-motion related) physiological noise. 

Regarding voxel-based connectivity modeling, we applied three data-driven approaches to 

study the effect of glucose on local and global of brain FC as well as on the amplitude of brain 

activity. Of those three, fALFF index appeared to be the most sensitive measure for the detection 

of homeostatic changes in the resting brain. This might result from fALFF´s property as an index 

of the power of the BOLD signal in the low-frequency range. Whereas fALFF measures the overall 

BOLD fluctuations of a single voxel without evaluating the relationship between voxels, ReHo 

and DC analyses calculate the state-dependent dynamics of BOLD connectivity, either with the 26 

neighboring voxels (ReHo) or with the entire brain (DC). Overall, using multimethod rs-fMRI 

analyses provided additional insights into underlying network changes, which were crucial for 

interpreting our results 

In terms of statistical models, we used rm-ANOVAs to study the changes in brain activity 

over experimental conditions except for the functional connectivity analyses described in 

Chapter 4. In short, ANOVA is a univariate approach, applied on a voxel-by-voxel basis, and 

hence a special case of the general linear model (GLM) [438]. One critical limitation of GLM 

approaches is the fact that covariance across neighboring voxels is not informative about the 

combination of voxels or brain regions to study differences between groups or experimental 

conditions [238,241]. 

In contrast, multivariate approaches provide a complete realistic design which is better suited 

for complex research problems [439,440], such as associations between brain networks [241,441]. 

To address this issue, we additionally applied a linear SVM method (Chapter 6) to investigate the 
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influence of hunger and satiety on patterns or profiles of both local and global connectivity as well 

as the amplitude of rs-fMRI signals. The results of both univariate and multivariate approaches 

pointed to the amplitude of the BOLD signal as the most informative index to investigate the 

effects of metabolic states on brain functions, rather than local and global connectivity. 

9.3 Caveats and future directions 

Although the current study led to novel findings on mechanisms changing spontaneous brain 

activity under different metabolic states, some limitations need to be addressed. 

First, although the hypothalamus is a central region for the regulation of energy homeostasis, 

food intake and glucose sensing [442,443], we did not find its activity modulated in each of our 

investigations (Chapters 5 and 7), which may be due to insufficient resolution of this small 

structure in fMRI imaging [4] and the use of cluster-level correction (number of voxels per cluster; 

[193]). This shortcoming might be overcome by performing specific scanning protocols targeted 

at subcortical structures (e.g. by reducing voxel size to 1 x 1 x 1 mm, see [444]) in combination 

with region-of-interest analyses to detect hypothalamic effects. Furthermore, we were not able to 

show a significant effect of hunger on connections from the hypothalamus to AINS or PINS and 

vice versa (see Chapter 8). It has been shown that nuclei of the hypothalamus stimulate feeding 

(lateral hypothalamus, LH) or inhibit feeding behavior (ventromedial hypothalamus nucleus, 

VMN) [445,446]. This dual function of hypothalamic nuclei, as well as their small size, might 

have led to a canceling of the two opposing signals [4]. Moreover, the acquisition parameters of 

the fMRI were not optimized to differentiate between different nuclei in such a small subcortical 

structure. Additionally, the SNR of BOLD signals from subcortical nuclei is generally lower than 

in cortex.  
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Second, to limit the influence of the hormonal cycle, we only included healthy young male 

participants in the current study. Therefore, the results of this dissertation may not be readily 

generalizable to other populations such as women. However, functional neuroimaging studies have 

shown differences in response to food taste (e.g. sweet, liquid meals) and even to odors of sweet 

(e.g. Abu Afif Baklava) under hunger and satiety conditions in several sexually dimorphic and 

BMI-sensitive brain regions [372,447–449]. Also, the effects of insulin signaling on the human 

brain show sex differences [91,450]. Future studies could address this question by also including 

women and overweight participants and thus discuss the relationship between changes in brain 

activity under different metabolic states and sex or BMI. 

Finally, as mentioned in the introduction of Chapter 8, the hypothalamus and insular cortex 

are involved in a variety of functions related to interoception and homeostatic regulation in 

response to different metabolic states. Here, we investigated a particular set of models comprising 

five brain regions to address specific questions about relationships among connectivity in this 

network and physiological states. It is important to keep in mind that the models we examined are 

(necessarily) wrong in that they are enormously simplified compared to the real neural system and 

only consider a small number of potentially relevant regions. Including additional regions and 

connections (e.g. hypothalamic subnuclei) could change the input structure to (some or all) regions 

and may alter the results. This “missing region” problem – and other caveats of effective 

connectivity analyses with DCM (and other methods) – are well known and have been discussed 

previously (e.g. [451]).  It is therefore important to establish the “utility” of the particular model 

we identified, for example, whether the inferred connection strengths relate to independent 

variables (e.g. physiological states) and whether these connectivity estimates allow for out-of-
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sample predictions. While the former has been examined in this study, the latter will be 

investigated in future work. 

There are still many questions arising from the results of this dissertation worth to be 

explored in the future in order to enhance the understanding of food intake and its impact on brain 

activity and connectivity. For instance, from the method’s point of view, dynamic fluctuation of 

adipocyte-dependent (e.g. leptin and adiponectin) and gut-dependent (e.g. ghrelin and insulin) 

hormones together with their relationships to resting state brain networks under different metabolic 

conditions have not been studied yet. To investigate this issue, an experimental paradigm that 

collects both rs-fMRI measurements and hormone levels over multiple time points under fasting 

and eating conditions appears suitable, together with a multivariate approach for instance, such as 

parallel ICA [452–454], to investigate the relationship between the time-variations in resting state 

brain networks and hormone time-courses. 

Another interesting question is how the changes in homeostasis and caloric intake affect the 

organization and the effective connectivity of large-scale networks, namely: the salience network 

(SN), dorsal attention network (DAN) and DMN. While the DMN is involved in self-related 

processes and future-oriented thinking during resting brain functions, the DAN is engaged in 

externally directed tasks, such as cognitive control of emotion and behavior. The SN is proposed 

as a switching network between DMN and DAN to allocate behavior with the goal of maintaining 

homeostasis [455]. Therefore, re-analysis of the data obtained by this project by using group ICA 

analysis to specify the ROIs for each network and spectral DCM models to find the direct 

connectivity between the networks could help to understand the causal processes among resting 

state networks in response to the interactions between metabolic states and glucose treatment 

[456].  
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9.4 Concluding remarks 

The present dissertation investigated whether changes in physiological metabolic states (i.e. 

hunger and satiety) together with the availability of energy (e.g. glucose administration) can affect 

the resting state brain activity in healthy normal-weight male participants. Additional 

physiological and behavioral responses of fasting and standard meal conditions were determined 

to gain insights into the underlying regulatory mechanism between hormonal levels (e.g. insulin 

and cortisol levels) and metabolic states. 

The current project shows for the first time that the amplitude of BOLD signals is a reliable 

and accurate marker rather than local (ReHo) and global (DC) connectivity to localize brain 

functions and to find patterns of brain networks related to metabolic states. For localizing brain 

function the metabolic state of hunger increased the amplitude of BOLD signals or the activity of 

brain regions in the PCC and thalamus. Furthermore, the changes in the amplitude of brain signals, 

reflecting the difference between hunger vs. satiety, were associated negatively with changes in 

plasma insulin levels in the posterior insula after glucose administration. Regarding brain 

activation patterns,  combinations of amplitude BOLD signals in five brain regions (Olfactory, 

Occipital, Paracentral, Rolandic operculum and Frontal gyri) can accurately distinguish between 

metabolic states (hunger vs. satiety) with 81% accuracy.  

The second important finding of the current work is that changes in metabolic states, not oral 

glucose administration, have effects on the strength of the endogenous (intrinsic) connections 

within the insular cortex. Our results seem to be consistent with other research which found that 

the transfer information from posterior to anterior insula is associated with awareness of bodily 

and homeostatic perceptions [397,430]. Furthermore, our findings indicate that spDCM provides 

helpful insights into the brain mechanisms involved in homeostatic regulation. 
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Overall, the hunger and satiety states not only modulate brain activity but also have 

influences on the direction of information flow. Using multi-method rs-fMRI to investigate the 

brain connectivity provides an unbiased approach to identify spontaneous brain activity associated 

with changes in homeostasis and caloric intake. Taken together, this work provides new insights 

into the interaction of food intake and CNS activity that may be used for further investigations of 

metabolic dysfunction, for instance, obesity. 
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